1 /*
   2  * Copyright (c) 2000, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "c1/c1_CodeStubs.hpp"
  29 #include "c1/c1_Compilation.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_MacroAssembler.hpp"
  32 #include "c1/c1_Runtime1.hpp"
  33 #include "c1/c1_ValueStack.hpp"
  34 #include "ci/ciArrayKlass.hpp"
  35 #include "ci/ciInlineKlass.hpp"
  36 #include "ci/ciInstance.hpp"
  37 #include "compiler/oopMap.hpp"
  38 #include "gc/shared/collectedHeap.hpp"
  39 #include "gc/shared/gc_globals.hpp"
  40 #include "nativeInst_x86.hpp"
  41 #include "oops/oop.inline.hpp"
  42 #include "oops/objArrayKlass.hpp"
  43 #include "runtime/frame.inline.hpp"
  44 #include "runtime/safepointMechanism.hpp"
  45 #include "runtime/sharedRuntime.hpp"
  46 #include "runtime/stubRoutines.hpp"
  47 #include "utilities/powerOfTwo.hpp"
  48 #include "vmreg_x86.inline.hpp"
  49 
  50 
  51 // These masks are used to provide 128-bit aligned bitmasks to the XMM
  52 // instructions, to allow sign-masking or sign-bit flipping.  They allow
  53 // fast versions of NegF/NegD and AbsF/AbsD.
  54 
  55 // Note: 'double' and 'long long' have 32-bits alignment on x86.
  56 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
  57   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
  58   // of 128-bits operands for SSE instructions.
  59   jlong *operand = (jlong*)(((intptr_t)adr) & ((intptr_t)(~0xF)));
  60   // Store the value to a 128-bits operand.
  61   operand[0] = lo;
  62   operand[1] = hi;
  63   return operand;
  64 }
  65 
  66 // Buffer for 128-bits masks used by SSE instructions.
  67 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
  68 
  69 // Static initialization during VM startup.
  70 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2],         CONST64(0x7FFFFFFF7FFFFFFF),         CONST64(0x7FFFFFFF7FFFFFFF));
  71 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2],         CONST64(0x7FFFFFFFFFFFFFFF),         CONST64(0x7FFFFFFFFFFFFFFF));
  72 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], (jlong)UCONST64(0x8000000080000000), (jlong)UCONST64(0x8000000080000000));
  73 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], (jlong)UCONST64(0x8000000000000000), (jlong)UCONST64(0x8000000000000000));
  74 
  75 
  76 NEEDS_CLEANUP // remove this definitions ?
  77 const Register SYNC_header = rax;   // synchronization header
  78 const Register SHIFT_count = rcx;   // where count for shift operations must be
  79 
  80 #define __ _masm->
  81 
  82 
  83 static void select_different_registers(Register preserve,
  84                                        Register extra,
  85                                        Register &tmp1,
  86                                        Register &tmp2) {
  87   if (tmp1 == preserve) {
  88     assert_different_registers(tmp1, tmp2, extra);
  89     tmp1 = extra;
  90   } else if (tmp2 == preserve) {
  91     assert_different_registers(tmp1, tmp2, extra);
  92     tmp2 = extra;
  93   }
  94   assert_different_registers(preserve, tmp1, tmp2);
  95 }
  96 
  97 
  98 
  99 static void select_different_registers(Register preserve,
 100                                        Register extra,
 101                                        Register &tmp1,
 102                                        Register &tmp2,
 103                                        Register &tmp3) {
 104   if (tmp1 == preserve) {
 105     assert_different_registers(tmp1, tmp2, tmp3, extra);
 106     tmp1 = extra;
 107   } else if (tmp2 == preserve) {
 108     assert_different_registers(tmp1, tmp2, tmp3, extra);
 109     tmp2 = extra;
 110   } else if (tmp3 == preserve) {
 111     assert_different_registers(tmp1, tmp2, tmp3, extra);
 112     tmp3 = extra;
 113   }
 114   assert_different_registers(preserve, tmp1, tmp2, tmp3);
 115 }
 116 
 117 
 118 
 119 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
 120   if (opr->is_constant()) {
 121     LIR_Const* constant = opr->as_constant_ptr();
 122     switch (constant->type()) {
 123       case T_INT: {
 124         return true;
 125       }
 126 
 127       default:
 128         return false;
 129     }
 130   }
 131   return false;
 132 }
 133 
 134 
 135 LIR_Opr LIR_Assembler::receiverOpr() {
 136   return FrameMap::receiver_opr;
 137 }
 138 
 139 LIR_Opr LIR_Assembler::osrBufferPointer() {
 140   return FrameMap::as_pointer_opr(receiverOpr()->as_register());
 141 }
 142 
 143 //--------------fpu register translations-----------------------
 144 
 145 
 146 address LIR_Assembler::float_constant(float f) {
 147   address const_addr = __ float_constant(f);
 148   if (const_addr == nullptr) {
 149     bailout("const section overflow");
 150     return __ code()->consts()->start();
 151   } else {
 152     return const_addr;
 153   }
 154 }
 155 
 156 
 157 address LIR_Assembler::double_constant(double d) {
 158   address const_addr = __ double_constant(d);
 159   if (const_addr == nullptr) {
 160     bailout("const section overflow");
 161     return __ code()->consts()->start();
 162   } else {
 163     return const_addr;
 164   }
 165 }
 166 
 167 #ifndef _LP64
 168 void LIR_Assembler::fpop() {
 169   __ fpop();
 170 }
 171 
 172 void LIR_Assembler::fxch(int i) {
 173   __ fxch(i);
 174 }
 175 
 176 void LIR_Assembler::fld(int i) {
 177   __ fld_s(i);
 178 }
 179 
 180 void LIR_Assembler::ffree(int i) {
 181   __ ffree(i);
 182 }
 183 #endif // !_LP64
 184 
 185 void LIR_Assembler::breakpoint() {
 186   __ int3();
 187 }
 188 
 189 void LIR_Assembler::push(LIR_Opr opr) {
 190   if (opr->is_single_cpu()) {
 191     __ push_reg(opr->as_register());
 192   } else if (opr->is_double_cpu()) {
 193     NOT_LP64(__ push_reg(opr->as_register_hi()));
 194     __ push_reg(opr->as_register_lo());
 195   } else if (opr->is_stack()) {
 196     __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix()));
 197   } else if (opr->is_constant()) {
 198     LIR_Const* const_opr = opr->as_constant_ptr();
 199     if (const_opr->type() == T_OBJECT) {
 200       __ push_oop(const_opr->as_jobject(), rscratch1);
 201     } else if (const_opr->type() == T_INT) {
 202       __ push_jint(const_opr->as_jint());
 203     } else {
 204       ShouldNotReachHere();
 205     }
 206 
 207   } else {
 208     ShouldNotReachHere();
 209   }
 210 }
 211 
 212 void LIR_Assembler::pop(LIR_Opr opr) {
 213   if (opr->is_single_cpu()) {
 214     __ pop_reg(opr->as_register());
 215   } else {
 216     ShouldNotReachHere();
 217   }
 218 }
 219 
 220 bool LIR_Assembler::is_literal_address(LIR_Address* addr) {
 221   return addr->base()->is_illegal() && addr->index()->is_illegal();
 222 }
 223 
 224 //-------------------------------------------
 225 
 226 Address LIR_Assembler::as_Address(LIR_Address* addr) {
 227   return as_Address(addr, rscratch1);
 228 }
 229 
 230 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
 231   if (addr->base()->is_illegal()) {
 232     assert(addr->index()->is_illegal(), "must be illegal too");
 233     AddressLiteral laddr((address)addr->disp(), relocInfo::none);
 234     if (! __ reachable(laddr)) {
 235       __ movptr(tmp, laddr.addr());
 236       Address res(tmp, 0);
 237       return res;
 238     } else {
 239       return __ as_Address(laddr);
 240     }
 241   }
 242 
 243   Register base = addr->base()->as_pointer_register();
 244 
 245   if (addr->index()->is_illegal()) {
 246     return Address( base, addr->disp());
 247   } else if (addr->index()->is_cpu_register()) {
 248     Register index = addr->index()->as_pointer_register();
 249     return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp());
 250   } else if (addr->index()->is_constant()) {
 251     intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp();
 252     assert(Assembler::is_simm32(addr_offset), "must be");
 253 
 254     return Address(base, addr_offset);
 255   } else {
 256     Unimplemented();
 257     return Address();
 258   }
 259 }
 260 
 261 
 262 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
 263   Address base = as_Address(addr);
 264   return Address(base._base, base._index, base._scale, base._disp + BytesPerWord);
 265 }
 266 
 267 
 268 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
 269   return as_Address(addr);
 270 }
 271 
 272 
 273 void LIR_Assembler::osr_entry() {
 274   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
 275   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
 276   ValueStack* entry_state = osr_entry->state();
 277   int number_of_locks = entry_state->locks_size();
 278 
 279   // we jump here if osr happens with the interpreter
 280   // state set up to continue at the beginning of the
 281   // loop that triggered osr - in particular, we have
 282   // the following registers setup:
 283   //
 284   // rcx: osr buffer
 285   //
 286 
 287   // build frame
 288   ciMethod* m = compilation()->method();
 289   __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes());
 290 
 291   // OSR buffer is
 292   //
 293   // locals[nlocals-1..0]
 294   // monitors[0..number_of_locks]
 295   //
 296   // locals is a direct copy of the interpreter frame so in the osr buffer
 297   // so first slot in the local array is the last local from the interpreter
 298   // and last slot is local[0] (receiver) from the interpreter
 299   //
 300   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
 301   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
 302   // in the interpreter frame (the method lock if a sync method)
 303 
 304   // Initialize monitors in the compiled activation.
 305   //   rcx: pointer to osr buffer
 306   //
 307   // All other registers are dead at this point and the locals will be
 308   // copied into place by code emitted in the IR.
 309 
 310   Register OSR_buf = osrBufferPointer()->as_pointer_register();
 311   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
 312     int monitor_offset = BytesPerWord * method()->max_locals() +
 313       (BasicObjectLock::size() * BytesPerWord) * (number_of_locks - 1);
 314     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
 315     // the OSR buffer using 2 word entries: first the lock and then
 316     // the oop.
 317     for (int i = 0; i < number_of_locks; i++) {
 318       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
 319 #ifdef ASSERT
 320       // verify the interpreter's monitor has a non-null object
 321       {
 322         Label L;
 323         __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), NULL_WORD);
 324         __ jcc(Assembler::notZero, L);
 325         __ stop("locked object is null");
 326         __ bind(L);
 327       }
 328 #endif
 329       __ movptr(rbx, Address(OSR_buf, slot_offset + 0));
 330       __ movptr(frame_map()->address_for_monitor_lock(i), rbx);
 331       __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord));
 332       __ movptr(frame_map()->address_for_monitor_object(i), rbx);
 333     }
 334   }
 335 }
 336 
 337 
 338 // inline cache check; done before the frame is built.
 339 int LIR_Assembler::check_icache() {
 340   return __ ic_check(CodeEntryAlignment);
 341 }
 342 
 343 void LIR_Assembler::clinit_barrier(ciMethod* method) {
 344   assert(VM_Version::supports_fast_class_init_checks(), "sanity");
 345   assert(!method->holder()->is_not_initialized(), "initialization should have been started");
 346 
 347   Label L_skip_barrier;
 348   Register klass = rscratch1;
 349   Register thread = LP64_ONLY( r15_thread ) NOT_LP64( noreg );
 350   assert(thread != noreg, "x86_32 not implemented");
 351 
 352   __ mov_metadata(klass, method->holder()->constant_encoding());
 353   __ clinit_barrier(klass, thread, &L_skip_barrier /*L_fast_path*/);
 354 
 355   __ jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub()));
 356 
 357   __ bind(L_skip_barrier);
 358 }
 359 
 360 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
 361   jobject o = nullptr;
 362   PatchingStub* patch = new PatchingStub(_masm, patching_id(info));
 363   __ movoop(reg, o);
 364   patching_epilog(patch, lir_patch_normal, reg, info);
 365 }
 366 
 367 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) {
 368   Metadata* o = nullptr;
 369   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id);
 370   __ mov_metadata(reg, o);
 371   patching_epilog(patch, lir_patch_normal, reg, info);
 372 }
 373 
 374 // This specifies the rsp decrement needed to build the frame
 375 int LIR_Assembler::initial_frame_size_in_bytes() const {
 376   // if rounding, must let FrameMap know!
 377 
 378   // The frame_map records size in slots (32bit word)
 379 
 380   // subtract two words to account for return address and link
 381   return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word))  * VMRegImpl::stack_slot_size;
 382 }
 383 
 384 
 385 int LIR_Assembler::emit_exception_handler() {
 386   // generate code for exception handler
 387   address handler_base = __ start_a_stub(exception_handler_size());
 388   if (handler_base == nullptr) {
 389     // not enough space left for the handler
 390     bailout("exception handler overflow");
 391     return -1;
 392   }
 393 
 394   int offset = code_offset();
 395 
 396   // the exception oop and pc are in rax, and rdx
 397   // no other registers need to be preserved, so invalidate them
 398   __ invalidate_registers(false, true, true, false, true, true);
 399 
 400   // check that there is really an exception
 401   __ verify_not_null_oop(rax);
 402 
 403   // search an exception handler (rax: exception oop, rdx: throwing pc)
 404   __ call(RuntimeAddress(Runtime1::entry_for(C1StubId::handle_exception_from_callee_id)));
 405   __ should_not_reach_here();
 406   guarantee(code_offset() - offset <= exception_handler_size(), "overflow");
 407   __ end_a_stub();
 408 
 409   return offset;
 410 }
 411 
 412 
 413 // Emit the code to remove the frame from the stack in the exception
 414 // unwind path.
 415 int LIR_Assembler::emit_unwind_handler() {
 416 #ifndef PRODUCT
 417   if (CommentedAssembly) {
 418     _masm->block_comment("Unwind handler");
 419   }
 420 #endif
 421 
 422   int offset = code_offset();
 423 
 424   // Fetch the exception from TLS and clear out exception related thread state
 425   Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread);
 426   NOT_LP64(__ get_thread(thread));
 427   __ movptr(rax, Address(thread, JavaThread::exception_oop_offset()));
 428   __ movptr(Address(thread, JavaThread::exception_oop_offset()), NULL_WORD);
 429   __ movptr(Address(thread, JavaThread::exception_pc_offset()), NULL_WORD);
 430 
 431   __ bind(_unwind_handler_entry);
 432   __ verify_not_null_oop(rax);
 433   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 434     __ mov(rbx, rax);  // Preserve the exception (rbx is always callee-saved)
 435   }
 436 
 437   // Perform needed unlocking
 438   MonitorExitStub* stub = nullptr;
 439   if (method()->is_synchronized()) {
 440     monitor_address(0, FrameMap::rax_opr);
 441     stub = new MonitorExitStub(FrameMap::rax_opr, true, 0);
 442     if (LockingMode == LM_MONITOR) {
 443       __ jmp(*stub->entry());
 444     } else {
 445       __ unlock_object(rdi, rsi, rax, *stub->entry());
 446     }
 447     __ bind(*stub->continuation());
 448   }
 449 
 450   if (compilation()->env()->dtrace_method_probes()) {
 451 #ifdef _LP64
 452     __ mov(rdi, r15_thread);
 453     __ mov_metadata(rsi, method()->constant_encoding());
 454 #else
 455     __ get_thread(rax);
 456     __ movptr(Address(rsp, 0), rax);
 457     __ mov_metadata(Address(rsp, sizeof(void*)), method()->constant_encoding(), noreg);
 458 #endif
 459     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit)));
 460   }
 461 
 462   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 463     __ mov(rax, rbx);  // Restore the exception
 464   }
 465 
 466   // remove the activation and dispatch to the unwind handler
 467   __ remove_frame(initial_frame_size_in_bytes(), needs_stack_repair());
 468   __ jump(RuntimeAddress(Runtime1::entry_for(C1StubId::unwind_exception_id)));
 469 
 470   // Emit the slow path assembly
 471   if (stub != nullptr) {
 472     stub->emit_code(this);
 473   }
 474 
 475   return offset;
 476 }
 477 
 478 
 479 int LIR_Assembler::emit_deopt_handler() {
 480   // generate code for exception handler
 481   address handler_base = __ start_a_stub(deopt_handler_size());
 482   if (handler_base == nullptr) {
 483     // not enough space left for the handler
 484     bailout("deopt handler overflow");
 485     return -1;
 486   }
 487 
 488   int offset = code_offset();
 489   InternalAddress here(__ pc());
 490 
 491   __ pushptr(here.addr(), rscratch1);
 492   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
 493   guarantee(code_offset() - offset <= deopt_handler_size(), "overflow");
 494   __ end_a_stub();
 495 
 496   return offset;
 497 }
 498 
 499 void LIR_Assembler::return_op(LIR_Opr result, C1SafepointPollStub* code_stub) {
 500   assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,");
 501   if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) {
 502     assert(result->fpu() == 0, "result must already be on TOS");
 503   }
 504   if (InlineTypeReturnedAsFields) {
 505   #ifndef _LP64
 506      Unimplemented();
 507   #endif
 508     // Check if we are returning an non-null inline type and load its fields into registers
 509     ciType* return_type = compilation()->method()->return_type();
 510     if (return_type->is_inlinetype()) {
 511       ciInlineKlass* vk = return_type->as_inline_klass();
 512       if (vk->can_be_returned_as_fields()) {
 513         address unpack_handler = vk->unpack_handler();
 514         assert(unpack_handler != nullptr, "must be");
 515         __ call(RuntimeAddress(unpack_handler));
 516       }
 517     } else if (return_type->is_instance_klass() && (!return_type->is_loaded() || StressCallingConvention)) {
 518       Label skip;
 519       __ test_oop_is_not_inline_type(rax, rscratch1, skip);
 520 
 521       // Load fields from a buffered value with an inline class specific handler
 522       __ load_klass(rdi, rax, rscratch1);
 523       __ movptr(rdi, Address(rdi, InstanceKlass::adr_inlineklass_fixed_block_offset()));
 524       __ movptr(rdi, Address(rdi, InlineKlass::unpack_handler_offset()));
 525       // Unpack handler can be null if inline type is not scalarizable in returns
 526       __ testptr(rdi, rdi);
 527       __ jcc(Assembler::zero, skip);
 528       __ call(rdi);
 529 
 530       __ bind(skip);
 531     }
 532     // At this point, rax points to the value object (for interpreter or C1 caller).
 533     // The fields of the object are copied into registers (for C2 caller).
 534   }
 535 
 536   // Pop the stack before the safepoint code
 537   __ remove_frame(initial_frame_size_in_bytes(), needs_stack_repair());
 538 
 539   if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) {
 540     __ reserved_stack_check();
 541   }
 542 
 543   // Note: we do not need to round double result; float result has the right precision
 544   // the poll sets the condition code, but no data registers
 545 
 546 #ifdef _LP64
 547   const Register thread = r15_thread;
 548 #else
 549   const Register thread = rbx;
 550   __ get_thread(thread);
 551 #endif
 552   code_stub->set_safepoint_offset(__ offset());
 553   __ relocate(relocInfo::poll_return_type);
 554   __ safepoint_poll(*code_stub->entry(), thread, true /* at_return */, true /* in_nmethod */);
 555   __ ret(0);
 556 }
 557 
 558 
 559 int LIR_Assembler::store_inline_type_fields_to_buf(ciInlineKlass* vk) {
 560   return (__ store_inline_type_fields_to_buf(vk, false));
 561 }
 562 
 563 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
 564   guarantee(info != nullptr, "Shouldn't be null");
 565   int offset = __ offset();
 566 #ifdef _LP64
 567   const Register poll_addr = rscratch1;
 568   __ movptr(poll_addr, Address(r15_thread, JavaThread::polling_page_offset()));
 569 #else
 570   assert(tmp->is_cpu_register(), "needed");
 571   const Register poll_addr = tmp->as_register();
 572   __ get_thread(poll_addr);
 573   __ movptr(poll_addr, Address(poll_addr, in_bytes(JavaThread::polling_page_offset())));
 574 #endif
 575   add_debug_info_for_branch(info);
 576   __ relocate(relocInfo::poll_type);
 577   address pre_pc = __ pc();
 578   __ testl(rax, Address(poll_addr, 0));
 579   address post_pc = __ pc();
 580   guarantee(pointer_delta(post_pc, pre_pc, 1) == 2 LP64_ONLY(+1), "must be exact length");
 581   return offset;
 582 }
 583 
 584 
 585 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
 586   if (from_reg != to_reg) __ mov(to_reg, from_reg);
 587 }
 588 
 589 void LIR_Assembler::swap_reg(Register a, Register b) {
 590   __ xchgptr(a, b);
 591 }
 592 
 593 
 594 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
 595   assert(src->is_constant(), "should not call otherwise");
 596   assert(dest->is_register(), "should not call otherwise");
 597   LIR_Const* c = src->as_constant_ptr();
 598 
 599   switch (c->type()) {
 600     case T_INT: {
 601       assert(patch_code == lir_patch_none, "no patching handled here");
 602       __ movl(dest->as_register(), c->as_jint());
 603       break;
 604     }
 605 
 606     case T_ADDRESS: {
 607       assert(patch_code == lir_patch_none, "no patching handled here");
 608       __ movptr(dest->as_register(), c->as_jint());
 609       break;
 610     }
 611 
 612     case T_LONG: {
 613       assert(patch_code == lir_patch_none, "no patching handled here");
 614 #ifdef _LP64
 615       __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong());
 616 #else
 617       __ movptr(dest->as_register_lo(), c->as_jint_lo());
 618       __ movptr(dest->as_register_hi(), c->as_jint_hi());
 619 #endif // _LP64
 620       break;
 621     }
 622 
 623     case T_OBJECT: {
 624       if (patch_code != lir_patch_none) {
 625         jobject2reg_with_patching(dest->as_register(), info);
 626       } else {
 627         __ movoop(dest->as_register(), c->as_jobject());
 628       }
 629       break;
 630     }
 631 
 632     case T_METADATA: {
 633       if (patch_code != lir_patch_none) {
 634         klass2reg_with_patching(dest->as_register(), info);
 635       } else {
 636         __ mov_metadata(dest->as_register(), c->as_metadata());
 637       }
 638       break;
 639     }
 640 
 641     case T_FLOAT: {
 642       if (dest->is_single_xmm()) {
 643         if (LP64_ONLY(UseAVX <= 2 &&) c->is_zero_float()) {
 644           __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg());
 645         } else {
 646           __ movflt(dest->as_xmm_float_reg(),
 647                    InternalAddress(float_constant(c->as_jfloat())));
 648         }
 649       } else {
 650 #ifndef _LP64
 651         assert(dest->is_single_fpu(), "must be");
 652         assert(dest->fpu_regnr() == 0, "dest must be TOS");
 653         if (c->is_zero_float()) {
 654           __ fldz();
 655         } else if (c->is_one_float()) {
 656           __ fld1();
 657         } else {
 658           __ fld_s (InternalAddress(float_constant(c->as_jfloat())));
 659         }
 660 #else
 661         ShouldNotReachHere();
 662 #endif // !_LP64
 663       }
 664       break;
 665     }
 666 
 667     case T_DOUBLE: {
 668       if (dest->is_double_xmm()) {
 669         if (LP64_ONLY(UseAVX <= 2 &&) c->is_zero_double()) {
 670           __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg());
 671         } else {
 672           __ movdbl(dest->as_xmm_double_reg(),
 673                     InternalAddress(double_constant(c->as_jdouble())));
 674         }
 675       } else {
 676 #ifndef _LP64
 677         assert(dest->is_double_fpu(), "must be");
 678         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
 679         if (c->is_zero_double()) {
 680           __ fldz();
 681         } else if (c->is_one_double()) {
 682           __ fld1();
 683         } else {
 684           __ fld_d (InternalAddress(double_constant(c->as_jdouble())));
 685         }
 686 #else
 687         ShouldNotReachHere();
 688 #endif // !_LP64
 689       }
 690       break;
 691     }
 692 
 693     default:
 694       ShouldNotReachHere();
 695   }
 696 }
 697 
 698 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
 699   assert(src->is_constant(), "should not call otherwise");
 700   assert(dest->is_stack(), "should not call otherwise");
 701   LIR_Const* c = src->as_constant_ptr();
 702 
 703   switch (c->type()) {
 704     case T_INT:  // fall through
 705     case T_FLOAT:
 706       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
 707       break;
 708 
 709     case T_ADDRESS:
 710       __ movptr(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
 711       break;
 712 
 713     case T_OBJECT:
 714       __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject(), rscratch1);
 715       break;
 716 
 717     case T_LONG:  // fall through
 718     case T_DOUBLE:
 719 #ifdef _LP64
 720       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 721                                               lo_word_offset_in_bytes),
 722                 (intptr_t)c->as_jlong_bits(),
 723                 rscratch1);
 724 #else
 725       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 726                                               lo_word_offset_in_bytes), c->as_jint_lo_bits());
 727       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 728                                               hi_word_offset_in_bytes), c->as_jint_hi_bits());
 729 #endif // _LP64
 730       break;
 731 
 732     default:
 733       ShouldNotReachHere();
 734   }
 735 }
 736 
 737 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
 738   assert(src->is_constant(), "should not call otherwise");
 739   assert(dest->is_address(), "should not call otherwise");
 740   LIR_Const* c = src->as_constant_ptr();
 741   LIR_Address* addr = dest->as_address_ptr();
 742 
 743   int null_check_here = code_offset();
 744   switch (type) {
 745     case T_INT:    // fall through
 746     case T_FLOAT:
 747       __ movl(as_Address(addr), c->as_jint_bits());
 748       break;
 749 
 750     case T_ADDRESS:
 751       __ movptr(as_Address(addr), c->as_jint_bits());
 752       break;
 753 
 754     case T_OBJECT:  // fall through
 755     case T_ARRAY:
 756       if (c->as_jobject() == nullptr) {
 757         if (UseCompressedOops && !wide) {
 758           __ movl(as_Address(addr), NULL_WORD);
 759         } else {
 760 #ifdef _LP64
 761           __ xorptr(rscratch1, rscratch1);
 762           null_check_here = code_offset();
 763           __ movptr(as_Address(addr), rscratch1);
 764 #else
 765           __ movptr(as_Address(addr), NULL_WORD);
 766 #endif
 767         }
 768       } else {
 769         if (is_literal_address(addr)) {
 770           ShouldNotReachHere();
 771           __ movoop(as_Address(addr, noreg), c->as_jobject(), rscratch1);
 772         } else {
 773 #ifdef _LP64
 774           __ movoop(rscratch1, c->as_jobject());
 775           if (UseCompressedOops && !wide) {
 776             __ encode_heap_oop(rscratch1);
 777             null_check_here = code_offset();
 778             __ movl(as_Address_lo(addr), rscratch1);
 779           } else {
 780             null_check_here = code_offset();
 781             __ movptr(as_Address_lo(addr), rscratch1);
 782           }
 783 #else
 784           __ movoop(as_Address(addr), c->as_jobject(), noreg);
 785 #endif
 786         }
 787       }
 788       break;
 789 
 790     case T_LONG:    // fall through
 791     case T_DOUBLE:
 792 #ifdef _LP64
 793       if (is_literal_address(addr)) {
 794         ShouldNotReachHere();
 795         __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits());
 796       } else {
 797         __ movptr(r10, (intptr_t)c->as_jlong_bits());
 798         null_check_here = code_offset();
 799         __ movptr(as_Address_lo(addr), r10);
 800       }
 801 #else
 802       // Always reachable in 32bit so this doesn't produce useless move literal
 803       __ movptr(as_Address_hi(addr), c->as_jint_hi_bits());
 804       __ movptr(as_Address_lo(addr), c->as_jint_lo_bits());
 805 #endif // _LP64
 806       break;
 807 
 808     case T_BOOLEAN: // fall through
 809     case T_BYTE:
 810       __ movb(as_Address(addr), c->as_jint() & 0xFF);
 811       break;
 812 
 813     case T_CHAR:    // fall through
 814     case T_SHORT:
 815       __ movw(as_Address(addr), c->as_jint() & 0xFFFF);
 816       break;
 817 
 818     default:
 819       ShouldNotReachHere();
 820   };
 821 
 822   if (info != nullptr) {
 823     add_debug_info_for_null_check(null_check_here, info);
 824   }
 825 }
 826 
 827 
 828 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
 829   assert(src->is_register(), "should not call otherwise");
 830   assert(dest->is_register(), "should not call otherwise");
 831 
 832   // move between cpu-registers
 833   if (dest->is_single_cpu()) {
 834 #ifdef _LP64
 835     if (src->type() == T_LONG) {
 836       // Can do LONG -> OBJECT
 837       move_regs(src->as_register_lo(), dest->as_register());
 838       return;
 839     }
 840 #endif
 841     assert(src->is_single_cpu(), "must match");
 842     if (src->type() == T_OBJECT) {
 843       __ verify_oop(src->as_register());
 844     }
 845     move_regs(src->as_register(), dest->as_register());
 846 
 847   } else if (dest->is_double_cpu()) {
 848 #ifdef _LP64
 849     if (is_reference_type(src->type())) {
 850       // Surprising to me but we can see move of a long to t_object
 851       __ verify_oop(src->as_register());
 852       move_regs(src->as_register(), dest->as_register_lo());
 853       return;
 854     }
 855 #endif
 856     assert(src->is_double_cpu(), "must match");
 857     Register f_lo = src->as_register_lo();
 858     Register f_hi = src->as_register_hi();
 859     Register t_lo = dest->as_register_lo();
 860     Register t_hi = dest->as_register_hi();
 861 #ifdef _LP64
 862     assert(f_hi == f_lo, "must be same");
 863     assert(t_hi == t_lo, "must be same");
 864     move_regs(f_lo, t_lo);
 865 #else
 866     assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation");
 867 
 868 
 869     if (f_lo == t_hi && f_hi == t_lo) {
 870       swap_reg(f_lo, f_hi);
 871     } else if (f_hi == t_lo) {
 872       assert(f_lo != t_hi, "overwriting register");
 873       move_regs(f_hi, t_hi);
 874       move_regs(f_lo, t_lo);
 875     } else {
 876       assert(f_hi != t_lo, "overwriting register");
 877       move_regs(f_lo, t_lo);
 878       move_regs(f_hi, t_hi);
 879     }
 880 #endif // LP64
 881 
 882 #ifndef _LP64
 883     // special moves from fpu-register to xmm-register
 884     // necessary for method results
 885   } else if (src->is_single_xmm() && !dest->is_single_xmm()) {
 886     __ movflt(Address(rsp, 0), src->as_xmm_float_reg());
 887     __ fld_s(Address(rsp, 0));
 888   } else if (src->is_double_xmm() && !dest->is_double_xmm()) {
 889     __ movdbl(Address(rsp, 0), src->as_xmm_double_reg());
 890     __ fld_d(Address(rsp, 0));
 891   } else if (dest->is_single_xmm() && !src->is_single_xmm()) {
 892     __ fstp_s(Address(rsp, 0));
 893     __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0));
 894   } else if (dest->is_double_xmm() && !src->is_double_xmm()) {
 895     __ fstp_d(Address(rsp, 0));
 896     __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0));
 897 #endif // !_LP64
 898 
 899     // move between xmm-registers
 900   } else if (dest->is_single_xmm()) {
 901     assert(src->is_single_xmm(), "must match");
 902     __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg());
 903   } else if (dest->is_double_xmm()) {
 904     assert(src->is_double_xmm(), "must match");
 905     __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg());
 906 
 907 #ifndef _LP64
 908     // move between fpu-registers (no instruction necessary because of fpu-stack)
 909   } else if (dest->is_single_fpu() || dest->is_double_fpu()) {
 910     assert(src->is_single_fpu() || src->is_double_fpu(), "must match");
 911     assert(src->fpu() == dest->fpu(), "currently should be nothing to do");
 912 #endif // !_LP64
 913 
 914   } else {
 915     ShouldNotReachHere();
 916   }
 917 }
 918 
 919 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
 920   assert(src->is_register(), "should not call otherwise");
 921   assert(dest->is_stack(), "should not call otherwise");
 922 
 923   if (src->is_single_cpu()) {
 924     Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
 925     if (is_reference_type(type)) {
 926       __ verify_oop(src->as_register());
 927       __ movptr (dst, src->as_register());
 928     } else if (type == T_METADATA || type == T_ADDRESS) {
 929       __ movptr (dst, src->as_register());
 930     } else {
 931       __ movl (dst, src->as_register());
 932     }
 933 
 934   } else if (src->is_double_cpu()) {
 935     Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
 936     Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes);
 937     __ movptr (dstLO, src->as_register_lo());
 938     NOT_LP64(__ movptr (dstHI, src->as_register_hi()));
 939 
 940   } else if (src->is_single_xmm()) {
 941     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
 942     __ movflt(dst_addr, src->as_xmm_float_reg());
 943 
 944   } else if (src->is_double_xmm()) {
 945     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
 946     __ movdbl(dst_addr, src->as_xmm_double_reg());
 947 
 948 #ifndef _LP64
 949   } else if (src->is_single_fpu()) {
 950     assert(src->fpu_regnr() == 0, "argument must be on TOS");
 951     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
 952     if (pop_fpu_stack)     __ fstp_s (dst_addr);
 953     else                   __ fst_s  (dst_addr);
 954 
 955   } else if (src->is_double_fpu()) {
 956     assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
 957     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
 958     if (pop_fpu_stack)     __ fstp_d (dst_addr);
 959     else                   __ fst_d  (dst_addr);
 960 #endif // !_LP64
 961 
 962   } else {
 963     ShouldNotReachHere();
 964   }
 965 }
 966 
 967 
 968 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide) {
 969   LIR_Address* to_addr = dest->as_address_ptr();
 970   PatchingStub* patch = nullptr;
 971   Register compressed_src = rscratch1;
 972 
 973   if (is_reference_type(type)) {
 974     __ verify_oop(src->as_register());
 975 #ifdef _LP64
 976     if (UseCompressedOops && !wide) {
 977       __ movptr(compressed_src, src->as_register());
 978       __ encode_heap_oop(compressed_src);
 979       if (patch_code != lir_patch_none) {
 980         info->oop_map()->set_narrowoop(compressed_src->as_VMReg());
 981       }
 982     }
 983 #endif
 984   }
 985 
 986   if (patch_code != lir_patch_none) {
 987     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
 988     Address toa = as_Address(to_addr);
 989     assert(toa.disp() != 0, "must have");
 990   }
 991 
 992   int null_check_here = code_offset();
 993   switch (type) {
 994     case T_FLOAT: {
 995 #ifdef _LP64
 996       assert(src->is_single_xmm(), "not a float");
 997       __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
 998 #else
 999       if (src->is_single_xmm()) {
1000         __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
1001       } else {
1002         assert(src->is_single_fpu(), "must be");
1003         assert(src->fpu_regnr() == 0, "argument must be on TOS");
1004         if (pop_fpu_stack)      __ fstp_s(as_Address(to_addr));
1005         else                    __ fst_s (as_Address(to_addr));
1006       }
1007 #endif // _LP64
1008       break;
1009     }
1010 
1011     case T_DOUBLE: {
1012 #ifdef _LP64
1013       assert(src->is_double_xmm(), "not a double");
1014       __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
1015 #else
1016       if (src->is_double_xmm()) {
1017         __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
1018       } else {
1019         assert(src->is_double_fpu(), "must be");
1020         assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
1021         if (pop_fpu_stack)      __ fstp_d(as_Address(to_addr));
1022         else                    __ fst_d (as_Address(to_addr));
1023       }
1024 #endif // _LP64
1025       break;
1026     }
1027 
1028     case T_ARRAY:   // fall through
1029     case T_OBJECT:  // fall through
1030       if (UseCompressedOops && !wide) {
1031         __ movl(as_Address(to_addr), compressed_src);
1032       } else {
1033         __ movptr(as_Address(to_addr), src->as_register());
1034       }
1035       break;
1036     case T_METADATA:
1037       // We get here to store a method pointer to the stack to pass to
1038       // a dtrace runtime call. This can't work on 64 bit with
1039       // compressed klass ptrs: T_METADATA can be a compressed klass
1040       // ptr or a 64 bit method pointer.
1041       LP64_ONLY(ShouldNotReachHere());
1042       __ movptr(as_Address(to_addr), src->as_register());
1043       break;
1044     case T_ADDRESS:
1045       __ movptr(as_Address(to_addr), src->as_register());
1046       break;
1047     case T_INT:
1048       __ movl(as_Address(to_addr), src->as_register());
1049       break;
1050 
1051     case T_LONG: {
1052       Register from_lo = src->as_register_lo();
1053       Register from_hi = src->as_register_hi();
1054 #ifdef _LP64
1055       __ movptr(as_Address_lo(to_addr), from_lo);
1056 #else
1057       Register base = to_addr->base()->as_register();
1058       Register index = noreg;
1059       if (to_addr->index()->is_register()) {
1060         index = to_addr->index()->as_register();
1061       }
1062       if (base == from_lo || index == from_lo) {
1063         assert(base != from_hi, "can't be");
1064         assert(index == noreg || (index != base && index != from_hi), "can't handle this");
1065         __ movl(as_Address_hi(to_addr), from_hi);
1066         if (patch != nullptr) {
1067           patching_epilog(patch, lir_patch_high, base, info);
1068           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1069           patch_code = lir_patch_low;
1070         }
1071         __ movl(as_Address_lo(to_addr), from_lo);
1072       } else {
1073         assert(index == noreg || (index != base && index != from_lo), "can't handle this");
1074         __ movl(as_Address_lo(to_addr), from_lo);
1075         if (patch != nullptr) {
1076           patching_epilog(patch, lir_patch_low, base, info);
1077           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1078           patch_code = lir_patch_high;
1079         }
1080         __ movl(as_Address_hi(to_addr), from_hi);
1081       }
1082 #endif // _LP64
1083       break;
1084     }
1085 
1086     case T_BYTE:    // fall through
1087     case T_BOOLEAN: {
1088       Register src_reg = src->as_register();
1089       Address dst_addr = as_Address(to_addr);
1090       assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6");
1091       __ movb(dst_addr, src_reg);
1092       break;
1093     }
1094 
1095     case T_CHAR:    // fall through
1096     case T_SHORT:
1097       __ movw(as_Address(to_addr), src->as_register());
1098       break;
1099 
1100     default:
1101       ShouldNotReachHere();
1102   }
1103   if (info != nullptr) {
1104     add_debug_info_for_null_check(null_check_here, info);
1105   }
1106 
1107   if (patch_code != lir_patch_none) {
1108     patching_epilog(patch, patch_code, to_addr->base()->as_register(), info);
1109   }
1110 }
1111 
1112 
1113 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
1114   assert(src->is_stack(), "should not call otherwise");
1115   assert(dest->is_register(), "should not call otherwise");
1116 
1117   if (dest->is_single_cpu()) {
1118     if (is_reference_type(type)) {
1119       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1120       __ verify_oop(dest->as_register());
1121     } else if (type == T_METADATA || type == T_ADDRESS) {
1122       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1123     } else {
1124       __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1125     }
1126 
1127   } else if (dest->is_double_cpu()) {
1128     Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
1129     Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes);
1130     __ movptr(dest->as_register_lo(), src_addr_LO);
1131     NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI));
1132 
1133   } else if (dest->is_single_xmm()) {
1134     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1135     __ movflt(dest->as_xmm_float_reg(), src_addr);
1136 
1137   } else if (dest->is_double_xmm()) {
1138     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1139     __ movdbl(dest->as_xmm_double_reg(), src_addr);
1140 
1141 #ifndef _LP64
1142   } else if (dest->is_single_fpu()) {
1143     assert(dest->fpu_regnr() == 0, "dest must be TOS");
1144     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1145     __ fld_s(src_addr);
1146 
1147   } else if (dest->is_double_fpu()) {
1148     assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1149     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1150     __ fld_d(src_addr);
1151 #endif // _LP64
1152 
1153   } else {
1154     ShouldNotReachHere();
1155   }
1156 }
1157 
1158 
1159 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
1160   if (src->is_single_stack()) {
1161     if (is_reference_type(type)) {
1162       __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix()));
1163       __ popptr (frame_map()->address_for_slot(dest->single_stack_ix()));
1164     } else {
1165 #ifndef _LP64
1166       __ pushl(frame_map()->address_for_slot(src ->single_stack_ix()));
1167       __ popl (frame_map()->address_for_slot(dest->single_stack_ix()));
1168 #else
1169       //no pushl on 64bits
1170       __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix()));
1171       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1);
1172 #endif
1173     }
1174 
1175   } else if (src->is_double_stack()) {
1176 #ifdef _LP64
1177     __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix()));
1178     __ popptr (frame_map()->address_for_slot(dest->double_stack_ix()));
1179 #else
1180     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0));
1181     // push and pop the part at src + wordSize, adding wordSize for the previous push
1182     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize));
1183     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize));
1184     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0));
1185 #endif // _LP64
1186 
1187   } else {
1188     ShouldNotReachHere();
1189   }
1190 }
1191 
1192 
1193 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide) {
1194   assert(src->is_address(), "should not call otherwise");
1195   assert(dest->is_register(), "should not call otherwise");
1196 
1197   LIR_Address* addr = src->as_address_ptr();
1198   Address from_addr = as_Address(addr);
1199 
1200   if (addr->base()->type() == T_OBJECT) {
1201     __ verify_oop(addr->base()->as_pointer_register());
1202   }
1203 
1204   switch (type) {
1205     case T_BOOLEAN: // fall through
1206     case T_BYTE:    // fall through
1207     case T_CHAR:    // fall through
1208     case T_SHORT:
1209       if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) {
1210         // on pre P6 processors we may get partial register stalls
1211         // so blow away the value of to_rinfo before loading a
1212         // partial word into it.  Do it here so that it precedes
1213         // the potential patch point below.
1214         __ xorptr(dest->as_register(), dest->as_register());
1215       }
1216       break;
1217    default:
1218      break;
1219   }
1220 
1221   PatchingStub* patch = nullptr;
1222   if (patch_code != lir_patch_none) {
1223     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1224     assert(from_addr.disp() != 0, "must have");
1225   }
1226   if (info != nullptr) {
1227     add_debug_info_for_null_check_here(info);
1228   }
1229 
1230   switch (type) {
1231     case T_FLOAT: {
1232       if (dest->is_single_xmm()) {
1233         __ movflt(dest->as_xmm_float_reg(), from_addr);
1234       } else {
1235 #ifndef _LP64
1236         assert(dest->is_single_fpu(), "must be");
1237         assert(dest->fpu_regnr() == 0, "dest must be TOS");
1238         __ fld_s(from_addr);
1239 #else
1240         ShouldNotReachHere();
1241 #endif // !LP64
1242       }
1243       break;
1244     }
1245 
1246     case T_DOUBLE: {
1247       if (dest->is_double_xmm()) {
1248         __ movdbl(dest->as_xmm_double_reg(), from_addr);
1249       } else {
1250 #ifndef _LP64
1251         assert(dest->is_double_fpu(), "must be");
1252         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1253         __ fld_d(from_addr);
1254 #else
1255         ShouldNotReachHere();
1256 #endif // !LP64
1257       }
1258       break;
1259     }
1260 
1261     case T_OBJECT:  // fall through
1262     case T_ARRAY:   // fall through
1263       if (UseCompressedOops && !wide) {
1264         __ movl(dest->as_register(), from_addr);
1265       } else {
1266         __ movptr(dest->as_register(), from_addr);
1267       }
1268       break;
1269 
1270     case T_ADDRESS:
1271       __ movptr(dest->as_register(), from_addr);
1272       break;
1273     case T_INT:
1274       __ movl(dest->as_register(), from_addr);
1275       break;
1276 
1277     case T_LONG: {
1278       Register to_lo = dest->as_register_lo();
1279       Register to_hi = dest->as_register_hi();
1280 #ifdef _LP64
1281       __ movptr(to_lo, as_Address_lo(addr));
1282 #else
1283       Register base = addr->base()->as_register();
1284       Register index = noreg;
1285       if (addr->index()->is_register()) {
1286         index = addr->index()->as_register();
1287       }
1288       if ((base == to_lo && index == to_hi) ||
1289           (base == to_hi && index == to_lo)) {
1290         // addresses with 2 registers are only formed as a result of
1291         // array access so this code will never have to deal with
1292         // patches or null checks.
1293         assert(info == nullptr && patch == nullptr, "must be");
1294         __ lea(to_hi, as_Address(addr));
1295         __ movl(to_lo, Address(to_hi, 0));
1296         __ movl(to_hi, Address(to_hi, BytesPerWord));
1297       } else if (base == to_lo || index == to_lo) {
1298         assert(base != to_hi, "can't be");
1299         assert(index == noreg || (index != base && index != to_hi), "can't handle this");
1300         __ movl(to_hi, as_Address_hi(addr));
1301         if (patch != nullptr) {
1302           patching_epilog(patch, lir_patch_high, base, info);
1303           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1304           patch_code = lir_patch_low;
1305         }
1306         __ movl(to_lo, as_Address_lo(addr));
1307       } else {
1308         assert(index == noreg || (index != base && index != to_lo), "can't handle this");
1309         __ movl(to_lo, as_Address_lo(addr));
1310         if (patch != nullptr) {
1311           patching_epilog(patch, lir_patch_low, base, info);
1312           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1313           patch_code = lir_patch_high;
1314         }
1315         __ movl(to_hi, as_Address_hi(addr));
1316       }
1317 #endif // _LP64
1318       break;
1319     }
1320 
1321     case T_BOOLEAN: // fall through
1322     case T_BYTE: {
1323       Register dest_reg = dest->as_register();
1324       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1325       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1326         __ movsbl(dest_reg, from_addr);
1327       } else {
1328         __ movb(dest_reg, from_addr);
1329         __ shll(dest_reg, 24);
1330         __ sarl(dest_reg, 24);
1331       }
1332       break;
1333     }
1334 
1335     case T_CHAR: {
1336       Register dest_reg = dest->as_register();
1337       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1338       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1339         __ movzwl(dest_reg, from_addr);
1340       } else {
1341         __ movw(dest_reg, from_addr);
1342       }
1343       break;
1344     }
1345 
1346     case T_SHORT: {
1347       Register dest_reg = dest->as_register();
1348       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1349         __ movswl(dest_reg, from_addr);
1350       } else {
1351         __ movw(dest_reg, from_addr);
1352         __ shll(dest_reg, 16);
1353         __ sarl(dest_reg, 16);
1354       }
1355       break;
1356     }
1357 
1358     default:
1359       ShouldNotReachHere();
1360   }
1361 
1362   if (patch != nullptr) {
1363     patching_epilog(patch, patch_code, addr->base()->as_register(), info);
1364   }
1365 
1366   if (is_reference_type(type)) {
1367 #ifdef _LP64
1368     if (UseCompressedOops && !wide) {
1369       __ decode_heap_oop(dest->as_register());
1370     }
1371 #endif
1372 
1373     if (!(UseZGC && !ZGenerational)) {
1374       // Load barrier has not yet been applied, so ZGC can't verify the oop here
1375       __ verify_oop(dest->as_register());
1376     }
1377   }
1378 }
1379 
1380 
1381 NEEDS_CLEANUP; // This could be static?
1382 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const {
1383   int elem_size = type2aelembytes(type);
1384   switch (elem_size) {
1385     case 1: return Address::times_1;
1386     case 2: return Address::times_2;
1387     case 4: return Address::times_4;
1388     case 8: return Address::times_8;
1389   }
1390   ShouldNotReachHere();
1391   return Address::no_scale;
1392 }
1393 
1394 
1395 void LIR_Assembler::emit_op3(LIR_Op3* op) {
1396   switch (op->code()) {
1397     case lir_idiv:
1398     case lir_irem:
1399       arithmetic_idiv(op->code(),
1400                       op->in_opr1(),
1401                       op->in_opr2(),
1402                       op->in_opr3(),
1403                       op->result_opr(),
1404                       op->info());
1405       break;
1406     case lir_fmad:
1407       __ fmad(op->result_opr()->as_xmm_double_reg(),
1408               op->in_opr1()->as_xmm_double_reg(),
1409               op->in_opr2()->as_xmm_double_reg(),
1410               op->in_opr3()->as_xmm_double_reg());
1411       break;
1412     case lir_fmaf:
1413       __ fmaf(op->result_opr()->as_xmm_float_reg(),
1414               op->in_opr1()->as_xmm_float_reg(),
1415               op->in_opr2()->as_xmm_float_reg(),
1416               op->in_opr3()->as_xmm_float_reg());
1417       break;
1418     default:      ShouldNotReachHere(); break;
1419   }
1420 }
1421 
1422 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
1423 #ifdef ASSERT
1424   assert(op->block() == nullptr || op->block()->label() == op->label(), "wrong label");
1425   if (op->block() != nullptr)  _branch_target_blocks.append(op->block());
1426   if (op->ublock() != nullptr) _branch_target_blocks.append(op->ublock());
1427 #endif
1428 
1429   if (op->cond() == lir_cond_always) {
1430     if (op->info() != nullptr) add_debug_info_for_branch(op->info());
1431     __ jmp (*(op->label()));
1432   } else {
1433     Assembler::Condition acond = Assembler::zero;
1434     if (op->code() == lir_cond_float_branch) {
1435       assert(op->ublock() != nullptr, "must have unordered successor");
1436       __ jcc(Assembler::parity, *(op->ublock()->label()));
1437       switch(op->cond()) {
1438         case lir_cond_equal:        acond = Assembler::equal;      break;
1439         case lir_cond_notEqual:     acond = Assembler::notEqual;   break;
1440         case lir_cond_less:         acond = Assembler::below;      break;
1441         case lir_cond_lessEqual:    acond = Assembler::belowEqual; break;
1442         case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break;
1443         case lir_cond_greater:      acond = Assembler::above;      break;
1444         default:                         ShouldNotReachHere();
1445       }
1446     } else {
1447       switch (op->cond()) {
1448         case lir_cond_equal:        acond = Assembler::equal;       break;
1449         case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
1450         case lir_cond_less:         acond = Assembler::less;        break;
1451         case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
1452         case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
1453         case lir_cond_greater:      acond = Assembler::greater;     break;
1454         case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
1455         case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
1456         default:                         ShouldNotReachHere();
1457       }
1458     }
1459     __ jcc(acond,*(op->label()));
1460   }
1461 }
1462 
1463 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
1464   LIR_Opr src  = op->in_opr();
1465   LIR_Opr dest = op->result_opr();
1466 
1467   switch (op->bytecode()) {
1468     case Bytecodes::_i2l:
1469 #ifdef _LP64
1470       __ movl2ptr(dest->as_register_lo(), src->as_register());
1471 #else
1472       move_regs(src->as_register(), dest->as_register_lo());
1473       move_regs(src->as_register(), dest->as_register_hi());
1474       __ sarl(dest->as_register_hi(), 31);
1475 #endif // LP64
1476       break;
1477 
1478     case Bytecodes::_l2i:
1479 #ifdef _LP64
1480       __ movl(dest->as_register(), src->as_register_lo());
1481 #else
1482       move_regs(src->as_register_lo(), dest->as_register());
1483 #endif
1484       break;
1485 
1486     case Bytecodes::_i2b:
1487       move_regs(src->as_register(), dest->as_register());
1488       __ sign_extend_byte(dest->as_register());
1489       break;
1490 
1491     case Bytecodes::_i2c:
1492       move_regs(src->as_register(), dest->as_register());
1493       __ andl(dest->as_register(), 0xFFFF);
1494       break;
1495 
1496     case Bytecodes::_i2s:
1497       move_regs(src->as_register(), dest->as_register());
1498       __ sign_extend_short(dest->as_register());
1499       break;
1500 
1501 
1502 #ifdef _LP64
1503     case Bytecodes::_f2d:
1504       __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
1505       break;
1506 
1507     case Bytecodes::_d2f:
1508       __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
1509       break;
1510 
1511     case Bytecodes::_i2f:
1512       __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
1513       break;
1514 
1515     case Bytecodes::_i2d:
1516       __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
1517       break;
1518 
1519     case Bytecodes::_l2f:
1520       __ cvtsi2ssq(dest->as_xmm_float_reg(), src->as_register_lo());
1521       break;
1522 
1523     case Bytecodes::_l2d:
1524       __ cvtsi2sdq(dest->as_xmm_double_reg(), src->as_register_lo());
1525       break;
1526 
1527     case Bytecodes::_f2i:
1528       __ convert_f2i(dest->as_register(), src->as_xmm_float_reg());
1529       break;
1530 
1531     case Bytecodes::_d2i:
1532       __ convert_d2i(dest->as_register(), src->as_xmm_double_reg());
1533       break;
1534 
1535     case Bytecodes::_f2l:
1536       __ convert_f2l(dest->as_register_lo(), src->as_xmm_float_reg());
1537       break;
1538 
1539     case Bytecodes::_d2l:
1540       __ convert_d2l(dest->as_register_lo(), src->as_xmm_double_reg());
1541       break;
1542 #else
1543     case Bytecodes::_f2d:
1544     case Bytecodes::_d2f:
1545       if (dest->is_single_xmm()) {
1546         __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
1547       } else if (dest->is_double_xmm()) {
1548         __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
1549       } else {
1550         assert(src->fpu() == dest->fpu(), "register must be equal");
1551         // do nothing (float result is rounded later through spilling)
1552       }
1553       break;
1554 
1555     case Bytecodes::_i2f:
1556     case Bytecodes::_i2d:
1557       if (dest->is_single_xmm()) {
1558         __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
1559       } else if (dest->is_double_xmm()) {
1560         __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
1561       } else {
1562         assert(dest->fpu() == 0, "result must be on TOS");
1563         __ movl(Address(rsp, 0), src->as_register());
1564         __ fild_s(Address(rsp, 0));
1565       }
1566       break;
1567 
1568     case Bytecodes::_l2f:
1569     case Bytecodes::_l2d:
1570       assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)");
1571       assert(dest->fpu() == 0, "result must be on TOS");
1572       __ movptr(Address(rsp, 0),          src->as_register_lo());
1573       __ movl(Address(rsp, BytesPerWord), src->as_register_hi());
1574       __ fild_d(Address(rsp, 0));
1575       // float result is rounded later through spilling
1576       break;
1577 
1578     case Bytecodes::_f2i:
1579     case Bytecodes::_d2i:
1580       if (src->is_single_xmm()) {
1581         __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg());
1582       } else if (src->is_double_xmm()) {
1583         __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg());
1584       } else {
1585         assert(src->fpu() == 0, "input must be on TOS");
1586         __ fldcw(ExternalAddress(StubRoutines::x86::addr_fpu_cntrl_wrd_trunc()));
1587         __ fist_s(Address(rsp, 0));
1588         __ movl(dest->as_register(), Address(rsp, 0));
1589         __ fldcw(ExternalAddress(StubRoutines::x86::addr_fpu_cntrl_wrd_std()));
1590       }
1591       // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
1592       assert(op->stub() != nullptr, "stub required");
1593       __ cmpl(dest->as_register(), 0x80000000);
1594       __ jcc(Assembler::equal, *op->stub()->entry());
1595       __ bind(*op->stub()->continuation());
1596       break;
1597 
1598     case Bytecodes::_f2l:
1599     case Bytecodes::_d2l:
1600       assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)");
1601       assert(src->fpu() == 0, "input must be on TOS");
1602       assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers");
1603 
1604       // instruction sequence too long to inline it here
1605       {
1606         __ call(RuntimeAddress(Runtime1::entry_for(C1StubId::fpu2long_stub_id)));
1607       }
1608       break;
1609 #endif // _LP64
1610 
1611     default: ShouldNotReachHere();
1612   }
1613 }
1614 
1615 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
1616   if (op->init_check()) {
1617     add_debug_info_for_null_check_here(op->stub()->info());
1618     // init_state needs acquire, but x86 is TSO, and so we are already good.
1619     __ cmpb(Address(op->klass()->as_register(),
1620                     InstanceKlass::init_state_offset()),
1621                     InstanceKlass::fully_initialized);
1622     __ jcc(Assembler::notEqual, *op->stub()->entry());
1623   }
1624   __ allocate_object(op->obj()->as_register(),
1625                      op->tmp1()->as_register(),
1626                      op->tmp2()->as_register(),
1627                      op->header_size(),
1628                      op->object_size(),
1629                      op->klass()->as_register(),
1630                      *op->stub()->entry());
1631   __ bind(*op->stub()->continuation());
1632 }
1633 
1634 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
1635   Register len =  op->len()->as_register();
1636   LP64_ONLY( __ movslq(len, len); )
1637 
1638   if (UseSlowPath || op->is_null_free() ||
1639       (!UseFastNewObjectArray && is_reference_type(op->type())) ||
1640       (!UseFastNewTypeArray   && !is_reference_type(op->type()))) {
1641     __ jmp(*op->stub()->entry());
1642   } else {
1643     Register tmp1 = op->tmp1()->as_register();
1644     Register tmp2 = op->tmp2()->as_register();
1645     Register tmp3 = op->tmp3()->as_register();
1646     if (len == tmp1) {
1647       tmp1 = tmp3;
1648     } else if (len == tmp2) {
1649       tmp2 = tmp3;
1650     } else if (len == tmp3) {
1651       // everything is ok
1652     } else {
1653       __ mov(tmp3, len);
1654     }
1655     __ allocate_array(op->obj()->as_register(),
1656                       len,
1657                       tmp1,
1658                       tmp2,
1659                       arrayOopDesc::base_offset_in_bytes(op->type()),
1660                       array_element_size(op->type()),
1661                       op->klass()->as_register(),
1662                       *op->stub()->entry(),
1663                       op->zero_array());
1664   }
1665   __ bind(*op->stub()->continuation());
1666 }
1667 
1668 void LIR_Assembler::type_profile_helper(Register mdo,
1669                                         ciMethodData *md, ciProfileData *data,
1670                                         Register recv, Label* update_done) {
1671   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1672     Label next_test;
1673     // See if the receiver is receiver[n].
1674     __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
1675     __ jccb(Assembler::notEqual, next_test);
1676     Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
1677     __ addptr(data_addr, DataLayout::counter_increment);
1678     __ jmp(*update_done);
1679     __ bind(next_test);
1680   }
1681 
1682   // Didn't find receiver; find next empty slot and fill it in
1683   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1684     Label next_test;
1685     Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)));
1686     __ cmpptr(recv_addr, NULL_WORD);
1687     __ jccb(Assembler::notEqual, next_test);
1688     __ movptr(recv_addr, recv);
1689     __ movptr(Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))), DataLayout::counter_increment);
1690     __ jmp(*update_done);
1691     __ bind(next_test);
1692   }
1693 }
1694 
1695 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
1696   // we always need a stub for the failure case.
1697   CodeStub* stub = op->stub();
1698   Register obj = op->object()->as_register();
1699   Register k_RInfo = op->tmp1()->as_register();
1700   Register klass_RInfo = op->tmp2()->as_register();
1701   Register dst = op->result_opr()->as_register();
1702   ciKlass* k = op->klass();
1703   Register Rtmp1 = noreg;
1704   Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg);
1705 
1706   // check if it needs to be profiled
1707   ciMethodData* md = nullptr;
1708   ciProfileData* data = nullptr;
1709 
1710   if (op->should_profile()) {
1711     ciMethod* method = op->profiled_method();
1712     assert(method != nullptr, "Should have method");
1713     int bci = op->profiled_bci();
1714     md = method->method_data_or_null();
1715     assert(md != nullptr, "Sanity");
1716     data = md->bci_to_data(bci);
1717     assert(data != nullptr,                "need data for type check");
1718     assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1719   }
1720   Label* success_target = success;
1721   Label* failure_target = failure;
1722 
1723   if (obj == k_RInfo) {
1724     k_RInfo = dst;
1725   } else if (obj == klass_RInfo) {
1726     klass_RInfo = dst;
1727   }
1728   if (k->is_loaded() && !UseCompressedClassPointers) {
1729     select_different_registers(obj, dst, k_RInfo, klass_RInfo);
1730   } else {
1731     Rtmp1 = op->tmp3()->as_register();
1732     select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
1733   }
1734 
1735   assert_different_registers(obj, k_RInfo, klass_RInfo);
1736 
1737   if (op->need_null_check()) {
1738     __ testptr(obj, obj);
1739     if (op->should_profile()) {
1740       Label not_null;
1741       Register mdo  = klass_RInfo;
1742       __ mov_metadata(mdo, md->constant_encoding());
1743       __ jccb(Assembler::notEqual, not_null);
1744       // Object is null; update MDO and exit
1745       Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()));
1746       int header_bits = BitData::null_seen_byte_constant();
1747       __ orb(data_addr, header_bits);
1748       __ jmp(*obj_is_null);
1749       __ bind(not_null);
1750 
1751       Label update_done;
1752       Register recv = k_RInfo;
1753       __ load_klass(recv, obj, tmp_load_klass);
1754       type_profile_helper(mdo, md, data, recv, &update_done);
1755 
1756       Address nonprofiled_receiver_count_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1757       __ addptr(nonprofiled_receiver_count_addr, DataLayout::counter_increment);
1758 
1759       __ bind(update_done);
1760     } else {
1761       __ jcc(Assembler::equal, *obj_is_null);
1762     }
1763   }
1764 
1765   if (!k->is_loaded()) {
1766     klass2reg_with_patching(k_RInfo, op->info_for_patch());
1767   } else {
1768 #ifdef _LP64
1769     __ mov_metadata(k_RInfo, k->constant_encoding());
1770 #endif // _LP64
1771   }
1772   __ verify_oop(obj);
1773 
1774   if (op->fast_check()) {
1775     // get object class
1776     // not a safepoint as obj null check happens earlier
1777 #ifdef _LP64
1778     if (UseCompressedClassPointers) {
1779       __ load_klass(Rtmp1, obj, tmp_load_klass);
1780       __ cmpptr(k_RInfo, Rtmp1);
1781     } else {
1782       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1783     }
1784 #else
1785     if (k->is_loaded()) {
1786       __ cmpklass(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding());
1787     } else {
1788       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1789     }
1790 #endif
1791     __ jcc(Assembler::notEqual, *failure_target);
1792     // successful cast, fall through to profile or jump
1793   } else {
1794     // get object class
1795     // not a safepoint as obj null check happens earlier
1796     __ load_klass(klass_RInfo, obj, tmp_load_klass);
1797     if (k->is_loaded()) {
1798       // See if we get an immediate positive hit
1799 #ifdef _LP64
1800       __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset()));
1801 #else
1802       __ cmpklass(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
1803 #endif // _LP64
1804       if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) {
1805         __ jcc(Assembler::notEqual, *failure_target);
1806         // successful cast, fall through to profile or jump
1807       } else {
1808         // See if we get an immediate positive hit
1809         __ jcc(Assembler::equal, *success_target);
1810         // check for self
1811 #ifdef _LP64
1812         __ cmpptr(klass_RInfo, k_RInfo);
1813 #else
1814         __ cmpklass(klass_RInfo, k->constant_encoding());
1815 #endif // _LP64
1816         __ jcc(Assembler::equal, *success_target);
1817 
1818         __ push(klass_RInfo);
1819 #ifdef _LP64
1820         __ push(k_RInfo);
1821 #else
1822         __ pushklass(k->constant_encoding(), noreg);
1823 #endif // _LP64
1824         __ call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id)));
1825         __ pop(klass_RInfo);
1826         __ pop(klass_RInfo);
1827         // result is a boolean
1828         __ testl(klass_RInfo, klass_RInfo);
1829         __ jcc(Assembler::equal, *failure_target);
1830         // successful cast, fall through to profile or jump
1831       }
1832     } else {
1833       // perform the fast part of the checking logic
1834       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, nullptr);
1835       // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1836       __ push(klass_RInfo);
1837       __ push(k_RInfo);
1838       __ call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id)));
1839       __ pop(klass_RInfo);
1840       __ pop(k_RInfo);
1841       // result is a boolean
1842       __ testl(k_RInfo, k_RInfo);
1843       __ jcc(Assembler::equal, *failure_target);
1844       // successful cast, fall through to profile or jump
1845     }
1846   }
1847   __ jmp(*success);
1848 }
1849 
1850 
1851 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
1852   Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg);
1853   LIR_Code code = op->code();
1854   if (code == lir_store_check) {
1855     Register value = op->object()->as_register();
1856     Register array = op->array()->as_register();
1857     Register k_RInfo = op->tmp1()->as_register();
1858     Register klass_RInfo = op->tmp2()->as_register();
1859     Register Rtmp1 = op->tmp3()->as_register();
1860 
1861     CodeStub* stub = op->stub();
1862 
1863     // check if it needs to be profiled
1864     ciMethodData* md = nullptr;
1865     ciProfileData* data = nullptr;
1866 
1867     if (op->should_profile()) {
1868       ciMethod* method = op->profiled_method();
1869       assert(method != nullptr, "Should have method");
1870       int bci = op->profiled_bci();
1871       md = method->method_data_or_null();
1872       assert(md != nullptr, "Sanity");
1873       data = md->bci_to_data(bci);
1874       assert(data != nullptr,                "need data for type check");
1875       assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1876     }
1877     Label done;
1878     Label* success_target = &done;
1879     Label* failure_target = stub->entry();
1880 
1881     __ testptr(value, value);
1882     if (op->should_profile()) {
1883       Label not_null;
1884       Register mdo  = klass_RInfo;
1885       __ mov_metadata(mdo, md->constant_encoding());
1886       __ jccb(Assembler::notEqual, not_null);
1887       // Object is null; update MDO and exit
1888       Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()));
1889       int header_bits = BitData::null_seen_byte_constant();
1890       __ orb(data_addr, header_bits);
1891       __ jmp(done);
1892       __ bind(not_null);
1893 
1894       Label update_done;
1895       Register recv = k_RInfo;
1896       __ load_klass(recv, value, tmp_load_klass);
1897       type_profile_helper(mdo, md, data, recv, &update_done);
1898 
1899       Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1900       __ addptr(counter_addr, DataLayout::counter_increment);
1901       __ bind(update_done);
1902     } else {
1903       __ jcc(Assembler::equal, done);
1904     }
1905 
1906     add_debug_info_for_null_check_here(op->info_for_exception());
1907     __ load_klass(k_RInfo, array, tmp_load_klass);
1908     __ load_klass(klass_RInfo, value, tmp_load_klass);
1909 
1910     // get instance klass (it's already uncompressed)
1911     __ movptr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset()));
1912     // perform the fast part of the checking logic
1913     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, nullptr);
1914     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1915     __ push(klass_RInfo);
1916     __ push(k_RInfo);
1917     __ call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id)));
1918     __ pop(klass_RInfo);
1919     __ pop(k_RInfo);
1920     // result is a boolean
1921     __ testl(k_RInfo, k_RInfo);
1922     __ jcc(Assembler::equal, *failure_target);
1923     // fall through to the success case
1924 
1925     __ bind(done);
1926   } else
1927     if (code == lir_checkcast) {
1928       Register obj = op->object()->as_register();
1929       Register dst = op->result_opr()->as_register();
1930       Label success;
1931       emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
1932       __ bind(success);
1933       if (dst != obj) {
1934         __ mov(dst, obj);
1935       }
1936     } else
1937       if (code == lir_instanceof) {
1938         Register obj = op->object()->as_register();
1939         Register dst = op->result_opr()->as_register();
1940         Label success, failure, done;
1941         emit_typecheck_helper(op, &success, &failure, &failure);
1942         __ bind(failure);
1943         __ xorptr(dst, dst);
1944         __ jmpb(done);
1945         __ bind(success);
1946         __ movptr(dst, 1);
1947         __ bind(done);
1948       } else {
1949         ShouldNotReachHere();
1950       }
1951 
1952 }
1953 
1954 void LIR_Assembler::emit_opFlattenedArrayCheck(LIR_OpFlattenedArrayCheck* op) {
1955   // We are loading/storing from/to an array that *may* be a flat array (the
1956   // declared type is Object[], abstract[], interface[] or VT.ref[]).
1957   // If this array is a flat array, take the slow path.
1958   __ test_flat_array_oop(op->array()->as_register(), op->tmp()->as_register(), *op->stub()->entry());
1959   if (!op->value()->is_illegal()) {
1960     // The array is not a flat array, but it might be null-free. If we are storing
1961     // a null into a null-free array, take the slow path (which will throw NPE).
1962     Label skip;
1963     __ cmpptr(op->value()->as_register(), NULL_WORD);
1964     __ jcc(Assembler::notEqual, skip);
1965     __ test_null_free_array_oop(op->array()->as_register(), op->tmp()->as_register(), *op->stub()->entry());
1966     __ bind(skip);
1967   }
1968 }
1969 
1970 void LIR_Assembler::emit_opNullFreeArrayCheck(LIR_OpNullFreeArrayCheck* op) {
1971   // We are storing into an array that *may* be null-free (the declared type is
1972   // Object[], abstract[], interface[] or VT.ref[]).
1973   Label test_mark_word;
1974   Register tmp = op->tmp()->as_register();
1975   __ movptr(tmp, Address(op->array()->as_register(), oopDesc::mark_offset_in_bytes()));
1976   __ testl(tmp, markWord::unlocked_value);
1977   __ jccb(Assembler::notZero, test_mark_word);
1978   __ load_prototype_header(tmp, op->array()->as_register(), rscratch1);
1979   __ bind(test_mark_word);
1980   __ testl(tmp, markWord::null_free_array_bit_in_place);
1981 }
1982 
1983 void LIR_Assembler::emit_opSubstitutabilityCheck(LIR_OpSubstitutabilityCheck* op) {
1984   Label L_oops_equal;
1985   Label L_oops_not_equal;
1986   Label L_end;
1987 
1988   Register left  = op->left()->as_register();
1989   Register right = op->right()->as_register();
1990 
1991   __ cmpptr(left, right);
1992   __ jcc(Assembler::equal, L_oops_equal);
1993 
1994   // (1) Null check -- if one of the operands is null, the other must not be null (because
1995   //     the two references are not equal), so they are not substitutable,
1996   //     FIXME: do null check only if the operand is nullable
1997   __ testptr(left, right);
1998   __ jcc(Assembler::zero, L_oops_not_equal);
1999 
2000   ciKlass* left_klass = op->left_klass();
2001   ciKlass* right_klass = op->right_klass();
2002 
2003   // (2) Inline type check -- if either of the operands is not a inline type,
2004   //     they are not substitutable. We do this only if we are not sure that the
2005   //     operands are inline type
2006   if ((left_klass == nullptr || right_klass == nullptr) ||// The klass is still unloaded, or came from a Phi node.
2007       !left_klass->is_inlinetype() || !right_klass->is_inlinetype()) {
2008     Register tmp1  = op->tmp1()->as_register();
2009     __ movptr(tmp1, (intptr_t)markWord::inline_type_pattern);
2010     __ andptr(tmp1, Address(left, oopDesc::mark_offset_in_bytes()));
2011     __ andptr(tmp1, Address(right, oopDesc::mark_offset_in_bytes()));
2012     __ cmpptr(tmp1, (intptr_t)markWord::inline_type_pattern);
2013     __ jcc(Assembler::notEqual, L_oops_not_equal);
2014   }
2015 
2016   // (3) Same klass check: if the operands are of different klasses, they are not substitutable.
2017   if (left_klass != nullptr && left_klass->is_inlinetype() && left_klass == right_klass) {
2018     // No need to load klass -- the operands are statically known to be the same inline klass.
2019     __ jmp(*op->stub()->entry());
2020   } else {
2021     Register left_klass_op = op->left_klass_op()->as_register();
2022     Register right_klass_op = op->right_klass_op()->as_register();
2023 
2024     if (UseCompressedClassPointers) {
2025       __ movl(left_klass_op,  Address(left,  oopDesc::klass_offset_in_bytes()));
2026       __ movl(right_klass_op, Address(right, oopDesc::klass_offset_in_bytes()));
2027       __ cmpl(left_klass_op, right_klass_op);
2028     } else {
2029       __ movptr(left_klass_op,  Address(left,  oopDesc::klass_offset_in_bytes()));
2030       __ movptr(right_klass_op, Address(right, oopDesc::klass_offset_in_bytes()));
2031       __ cmpptr(left_klass_op, right_klass_op);
2032     }
2033 
2034     __ jcc(Assembler::equal, *op->stub()->entry()); // same klass -> do slow check
2035     // fall through to L_oops_not_equal
2036   }
2037 
2038   __ bind(L_oops_not_equal);
2039   move(op->not_equal_result(), op->result_opr());
2040   __ jmp(L_end);
2041 
2042   __ bind(L_oops_equal);
2043   move(op->equal_result(), op->result_opr());
2044   __ jmp(L_end);
2045 
2046   // We've returned from the stub. RAX contains 0x0 IFF the two
2047   // operands are not substitutable. (Don't compare against 0x1 in case the
2048   // C compiler is naughty)
2049   __ bind(*op->stub()->continuation());
2050   __ cmpl(rax, 0);
2051   __ jcc(Assembler::equal, L_oops_not_equal); // (call_stub() == 0x0) -> not_equal
2052   move(op->equal_result(), op->result_opr()); // (call_stub() != 0x0) -> equal
2053   // fall-through
2054   __ bind(L_end);
2055 }
2056 
2057 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
2058   if (LP64_ONLY(false &&) op->code() == lir_cas_long) {
2059     assert(op->cmp_value()->as_register_lo() == rax, "wrong register");
2060     assert(op->cmp_value()->as_register_hi() == rdx, "wrong register");
2061     assert(op->new_value()->as_register_lo() == rbx, "wrong register");
2062     assert(op->new_value()->as_register_hi() == rcx, "wrong register");
2063     Register addr = op->addr()->as_register();
2064     __ lock();
2065     NOT_LP64(__ cmpxchg8(Address(addr, 0)));
2066 
2067   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) {
2068     NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");)
2069     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
2070     Register newval = op->new_value()->as_register();
2071     Register cmpval = op->cmp_value()->as_register();
2072     assert(cmpval == rax, "wrong register");
2073     assert(newval != noreg, "new val must be register");
2074     assert(cmpval != newval, "cmp and new values must be in different registers");
2075     assert(cmpval != addr, "cmp and addr must be in different registers");
2076     assert(newval != addr, "new value and addr must be in different registers");
2077 
2078     if ( op->code() == lir_cas_obj) {
2079 #ifdef _LP64
2080       if (UseCompressedOops) {
2081         __ encode_heap_oop(cmpval);
2082         __ mov(rscratch1, newval);
2083         __ encode_heap_oop(rscratch1);
2084         __ lock();
2085         // cmpval (rax) is implicitly used by this instruction
2086         __ cmpxchgl(rscratch1, Address(addr, 0));
2087       } else
2088 #endif
2089       {
2090         __ lock();
2091         __ cmpxchgptr(newval, Address(addr, 0));
2092       }
2093     } else {
2094       assert(op->code() == lir_cas_int, "lir_cas_int expected");
2095       __ lock();
2096       __ cmpxchgl(newval, Address(addr, 0));
2097     }
2098 #ifdef _LP64
2099   } else if (op->code() == lir_cas_long) {
2100     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
2101     Register newval = op->new_value()->as_register_lo();
2102     Register cmpval = op->cmp_value()->as_register_lo();
2103     assert(cmpval == rax, "wrong register");
2104     assert(newval != noreg, "new val must be register");
2105     assert(cmpval != newval, "cmp and new values must be in different registers");
2106     assert(cmpval != addr, "cmp and addr must be in different registers");
2107     assert(newval != addr, "new value and addr must be in different registers");
2108     __ lock();
2109     __ cmpxchgq(newval, Address(addr, 0));
2110 #endif // _LP64
2111   } else {
2112     Unimplemented();
2113   }
2114 }
2115 
2116 void LIR_Assembler::move(LIR_Opr src, LIR_Opr dst) {
2117   assert(dst->is_cpu_register(), "must be");
2118   assert(dst->type() == src->type(), "must be");
2119 
2120   if (src->is_cpu_register()) {
2121     reg2reg(src, dst);
2122   } else if (src->is_stack()) {
2123     stack2reg(src, dst, dst->type());
2124   } else if (src->is_constant()) {
2125     const2reg(src, dst, lir_patch_none, nullptr);
2126   } else {
2127     ShouldNotReachHere();
2128   }
2129 }
2130 
2131 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type,
2132                           LIR_Opr cmp_opr1, LIR_Opr cmp_opr2) {
2133   assert(cmp_opr1 == LIR_OprFact::illegalOpr && cmp_opr2 == LIR_OprFact::illegalOpr, "unnecessary cmp oprs on x86");
2134 
2135   Assembler::Condition acond, ncond;
2136   switch (condition) {
2137     case lir_cond_equal:        acond = Assembler::equal;        ncond = Assembler::notEqual;     break;
2138     case lir_cond_notEqual:     acond = Assembler::notEqual;     ncond = Assembler::equal;        break;
2139     case lir_cond_less:         acond = Assembler::less;         ncond = Assembler::greaterEqual; break;
2140     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    ncond = Assembler::greater;      break;
2141     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less;         break;
2142     case lir_cond_greater:      acond = Assembler::greater;      ncond = Assembler::lessEqual;    break;
2143     case lir_cond_belowEqual:   acond = Assembler::belowEqual;   ncond = Assembler::above;        break;
2144     case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;   ncond = Assembler::below;        break;
2145     default:                    acond = Assembler::equal;        ncond = Assembler::notEqual;
2146                                 ShouldNotReachHere();
2147   }
2148 
2149   if (opr1->is_cpu_register()) {
2150     reg2reg(opr1, result);
2151   } else if (opr1->is_stack()) {
2152     stack2reg(opr1, result, result->type());
2153   } else if (opr1->is_constant()) {
2154     const2reg(opr1, result, lir_patch_none, nullptr);
2155   } else {
2156     ShouldNotReachHere();
2157   }
2158 
2159   if (VM_Version::supports_cmov() && !opr2->is_constant()) {
2160     // optimized version that does not require a branch
2161     if (opr2->is_single_cpu()) {
2162       assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
2163       __ cmov(ncond, result->as_register(), opr2->as_register());
2164     } else if (opr2->is_double_cpu()) {
2165       assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
2166       assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
2167       __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo());
2168       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());)
2169     } else if (opr2->is_single_stack()) {
2170       __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()));
2171     } else if (opr2->is_double_stack()) {
2172       __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes));
2173       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));)
2174     } else {
2175       ShouldNotReachHere();
2176     }
2177 
2178   } else {
2179     Label skip;
2180     __ jccb(acond, skip);
2181     if (opr2->is_cpu_register()) {
2182       reg2reg(opr2, result);
2183     } else if (opr2->is_stack()) {
2184       stack2reg(opr2, result, result->type());
2185     } else if (opr2->is_constant()) {
2186       const2reg(opr2, result, lir_patch_none, nullptr);
2187     } else {
2188       ShouldNotReachHere();
2189     }
2190     __ bind(skip);
2191   }
2192 }
2193 
2194 
2195 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
2196   assert(info == nullptr, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
2197 
2198   if (left->is_single_cpu()) {
2199     assert(left == dest, "left and dest must be equal");
2200     Register lreg = left->as_register();
2201 
2202     if (right->is_single_cpu()) {
2203       // cpu register - cpu register
2204       Register rreg = right->as_register();
2205       switch (code) {
2206         case lir_add: __ addl (lreg, rreg); break;
2207         case lir_sub: __ subl (lreg, rreg); break;
2208         case lir_mul: __ imull(lreg, rreg); break;
2209         default:      ShouldNotReachHere();
2210       }
2211 
2212     } else if (right->is_stack()) {
2213       // cpu register - stack
2214       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2215       switch (code) {
2216         case lir_add: __ addl(lreg, raddr); break;
2217         case lir_sub: __ subl(lreg, raddr); break;
2218         default:      ShouldNotReachHere();
2219       }
2220 
2221     } else if (right->is_constant()) {
2222       // cpu register - constant
2223       jint c = right->as_constant_ptr()->as_jint();
2224       switch (code) {
2225         case lir_add: {
2226           __ incrementl(lreg, c);
2227           break;
2228         }
2229         case lir_sub: {
2230           __ decrementl(lreg, c);
2231           break;
2232         }
2233         default: ShouldNotReachHere();
2234       }
2235 
2236     } else {
2237       ShouldNotReachHere();
2238     }
2239 
2240   } else if (left->is_double_cpu()) {
2241     assert(left == dest, "left and dest must be equal");
2242     Register lreg_lo = left->as_register_lo();
2243     Register lreg_hi = left->as_register_hi();
2244 
2245     if (right->is_double_cpu()) {
2246       // cpu register - cpu register
2247       Register rreg_lo = right->as_register_lo();
2248       Register rreg_hi = right->as_register_hi();
2249       NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi));
2250       LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo));
2251       switch (code) {
2252         case lir_add:
2253           __ addptr(lreg_lo, rreg_lo);
2254           NOT_LP64(__ adcl(lreg_hi, rreg_hi));
2255           break;
2256         case lir_sub:
2257           __ subptr(lreg_lo, rreg_lo);
2258           NOT_LP64(__ sbbl(lreg_hi, rreg_hi));
2259           break;
2260         case lir_mul:
2261 #ifdef _LP64
2262           __ imulq(lreg_lo, rreg_lo);
2263 #else
2264           assert(lreg_lo == rax && lreg_hi == rdx, "must be");
2265           __ imull(lreg_hi, rreg_lo);
2266           __ imull(rreg_hi, lreg_lo);
2267           __ addl (rreg_hi, lreg_hi);
2268           __ mull (rreg_lo);
2269           __ addl (lreg_hi, rreg_hi);
2270 #endif // _LP64
2271           break;
2272         default:
2273           ShouldNotReachHere();
2274       }
2275 
2276     } else if (right->is_constant()) {
2277       // cpu register - constant
2278 #ifdef _LP64
2279       jlong c = right->as_constant_ptr()->as_jlong_bits();
2280       __ movptr(r10, (intptr_t) c);
2281       switch (code) {
2282         case lir_add:
2283           __ addptr(lreg_lo, r10);
2284           break;
2285         case lir_sub:
2286           __ subptr(lreg_lo, r10);
2287           break;
2288         default:
2289           ShouldNotReachHere();
2290       }
2291 #else
2292       jint c_lo = right->as_constant_ptr()->as_jint_lo();
2293       jint c_hi = right->as_constant_ptr()->as_jint_hi();
2294       switch (code) {
2295         case lir_add:
2296           __ addptr(lreg_lo, c_lo);
2297           __ adcl(lreg_hi, c_hi);
2298           break;
2299         case lir_sub:
2300           __ subptr(lreg_lo, c_lo);
2301           __ sbbl(lreg_hi, c_hi);
2302           break;
2303         default:
2304           ShouldNotReachHere();
2305       }
2306 #endif // _LP64
2307 
2308     } else {
2309       ShouldNotReachHere();
2310     }
2311 
2312   } else if (left->is_single_xmm()) {
2313     assert(left == dest, "left and dest must be equal");
2314     XMMRegister lreg = left->as_xmm_float_reg();
2315 
2316     if (right->is_single_xmm()) {
2317       XMMRegister rreg = right->as_xmm_float_reg();
2318       switch (code) {
2319         case lir_add: __ addss(lreg, rreg);  break;
2320         case lir_sub: __ subss(lreg, rreg);  break;
2321         case lir_mul: __ mulss(lreg, rreg);  break;
2322         case lir_div: __ divss(lreg, rreg);  break;
2323         default: ShouldNotReachHere();
2324       }
2325     } else {
2326       Address raddr;
2327       if (right->is_single_stack()) {
2328         raddr = frame_map()->address_for_slot(right->single_stack_ix());
2329       } else if (right->is_constant()) {
2330         // hack for now
2331         raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat())));
2332       } else {
2333         ShouldNotReachHere();
2334       }
2335       switch (code) {
2336         case lir_add: __ addss(lreg, raddr);  break;
2337         case lir_sub: __ subss(lreg, raddr);  break;
2338         case lir_mul: __ mulss(lreg, raddr);  break;
2339         case lir_div: __ divss(lreg, raddr);  break;
2340         default: ShouldNotReachHere();
2341       }
2342     }
2343 
2344   } else if (left->is_double_xmm()) {
2345     assert(left == dest, "left and dest must be equal");
2346 
2347     XMMRegister lreg = left->as_xmm_double_reg();
2348     if (right->is_double_xmm()) {
2349       XMMRegister rreg = right->as_xmm_double_reg();
2350       switch (code) {
2351         case lir_add: __ addsd(lreg, rreg);  break;
2352         case lir_sub: __ subsd(lreg, rreg);  break;
2353         case lir_mul: __ mulsd(lreg, rreg);  break;
2354         case lir_div: __ divsd(lreg, rreg);  break;
2355         default: ShouldNotReachHere();
2356       }
2357     } else {
2358       Address raddr;
2359       if (right->is_double_stack()) {
2360         raddr = frame_map()->address_for_slot(right->double_stack_ix());
2361       } else if (right->is_constant()) {
2362         // hack for now
2363         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2364       } else {
2365         ShouldNotReachHere();
2366       }
2367       switch (code) {
2368         case lir_add: __ addsd(lreg, raddr);  break;
2369         case lir_sub: __ subsd(lreg, raddr);  break;
2370         case lir_mul: __ mulsd(lreg, raddr);  break;
2371         case lir_div: __ divsd(lreg, raddr);  break;
2372         default: ShouldNotReachHere();
2373       }
2374     }
2375 
2376 #ifndef _LP64
2377   } else if (left->is_single_fpu()) {
2378     assert(dest->is_single_fpu(),  "fpu stack allocation required");
2379 
2380     if (right->is_single_fpu()) {
2381       arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack);
2382 
2383     } else {
2384       assert(left->fpu_regnr() == 0, "left must be on TOS");
2385       assert(dest->fpu_regnr() == 0, "dest must be on TOS");
2386 
2387       Address raddr;
2388       if (right->is_single_stack()) {
2389         raddr = frame_map()->address_for_slot(right->single_stack_ix());
2390       } else if (right->is_constant()) {
2391         address const_addr = float_constant(right->as_jfloat());
2392         assert(const_addr != nullptr, "incorrect float/double constant maintenance");
2393         // hack for now
2394         raddr = __ as_Address(InternalAddress(const_addr));
2395       } else {
2396         ShouldNotReachHere();
2397       }
2398 
2399       switch (code) {
2400         case lir_add: __ fadd_s(raddr); break;
2401         case lir_sub: __ fsub_s(raddr); break;
2402         case lir_mul: __ fmul_s(raddr); break;
2403         case lir_div: __ fdiv_s(raddr); break;
2404         default:      ShouldNotReachHere();
2405       }
2406     }
2407 
2408   } else if (left->is_double_fpu()) {
2409     assert(dest->is_double_fpu(),  "fpu stack allocation required");
2410 
2411     if (code == lir_mul || code == lir_div) {
2412       // Double values require special handling for strictfp mul/div on x86
2413       __ fld_x(ExternalAddress(StubRoutines::x86::addr_fpu_subnormal_bias1()));
2414       __ fmulp(left->fpu_regnrLo() + 1);
2415     }
2416 
2417     if (right->is_double_fpu()) {
2418       arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack);
2419 
2420     } else {
2421       assert(left->fpu_regnrLo() == 0, "left must be on TOS");
2422       assert(dest->fpu_regnrLo() == 0, "dest must be on TOS");
2423 
2424       Address raddr;
2425       if (right->is_double_stack()) {
2426         raddr = frame_map()->address_for_slot(right->double_stack_ix());
2427       } else if (right->is_constant()) {
2428         // hack for now
2429         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2430       } else {
2431         ShouldNotReachHere();
2432       }
2433 
2434       switch (code) {
2435         case lir_add: __ fadd_d(raddr); break;
2436         case lir_sub: __ fsub_d(raddr); break;
2437         case lir_mul: __ fmul_d(raddr); break;
2438         case lir_div: __ fdiv_d(raddr); break;
2439         default: ShouldNotReachHere();
2440       }
2441     }
2442 
2443     if (code == lir_mul || code == lir_div) {
2444       // Double values require special handling for strictfp mul/div on x86
2445       __ fld_x(ExternalAddress(StubRoutines::x86::addr_fpu_subnormal_bias2()));
2446       __ fmulp(dest->fpu_regnrLo() + 1);
2447     }
2448 #endif // !_LP64
2449 
2450   } else if (left->is_single_stack() || left->is_address()) {
2451     assert(left == dest, "left and dest must be equal");
2452 
2453     Address laddr;
2454     if (left->is_single_stack()) {
2455       laddr = frame_map()->address_for_slot(left->single_stack_ix());
2456     } else if (left->is_address()) {
2457       laddr = as_Address(left->as_address_ptr());
2458     } else {
2459       ShouldNotReachHere();
2460     }
2461 
2462     if (right->is_single_cpu()) {
2463       Register rreg = right->as_register();
2464       switch (code) {
2465         case lir_add: __ addl(laddr, rreg); break;
2466         case lir_sub: __ subl(laddr, rreg); break;
2467         default:      ShouldNotReachHere();
2468       }
2469     } else if (right->is_constant()) {
2470       jint c = right->as_constant_ptr()->as_jint();
2471       switch (code) {
2472         case lir_add: {
2473           __ incrementl(laddr, c);
2474           break;
2475         }
2476         case lir_sub: {
2477           __ decrementl(laddr, c);
2478           break;
2479         }
2480         default: ShouldNotReachHere();
2481       }
2482     } else {
2483       ShouldNotReachHere();
2484     }
2485 
2486   } else {
2487     ShouldNotReachHere();
2488   }
2489 }
2490 
2491 #ifndef _LP64
2492 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) {
2493   assert(pop_fpu_stack  || (left_index     == dest_index || right_index     == dest_index), "invalid LIR");
2494   assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR");
2495   assert(left_index == 0 || right_index == 0, "either must be on top of stack");
2496 
2497   bool left_is_tos = (left_index == 0);
2498   bool dest_is_tos = (dest_index == 0);
2499   int non_tos_index = (left_is_tos ? right_index : left_index);
2500 
2501   switch (code) {
2502     case lir_add:
2503       if (pop_fpu_stack)       __ faddp(non_tos_index);
2504       else if (dest_is_tos)    __ fadd (non_tos_index);
2505       else                     __ fadda(non_tos_index);
2506       break;
2507 
2508     case lir_sub:
2509       if (left_is_tos) {
2510         if (pop_fpu_stack)     __ fsubrp(non_tos_index);
2511         else if (dest_is_tos)  __ fsub  (non_tos_index);
2512         else                   __ fsubra(non_tos_index);
2513       } else {
2514         if (pop_fpu_stack)     __ fsubp (non_tos_index);
2515         else if (dest_is_tos)  __ fsubr (non_tos_index);
2516         else                   __ fsuba (non_tos_index);
2517       }
2518       break;
2519 
2520     case lir_mul:
2521       if (pop_fpu_stack)       __ fmulp(non_tos_index);
2522       else if (dest_is_tos)    __ fmul (non_tos_index);
2523       else                     __ fmula(non_tos_index);
2524       break;
2525 
2526     case lir_div:
2527       if (left_is_tos) {
2528         if (pop_fpu_stack)     __ fdivrp(non_tos_index);
2529         else if (dest_is_tos)  __ fdiv  (non_tos_index);
2530         else                   __ fdivra(non_tos_index);
2531       } else {
2532         if (pop_fpu_stack)     __ fdivp (non_tos_index);
2533         else if (dest_is_tos)  __ fdivr (non_tos_index);
2534         else                   __ fdiva (non_tos_index);
2535       }
2536       break;
2537 
2538     case lir_rem:
2539       assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation");
2540       __ fremr(noreg);
2541       break;
2542 
2543     default:
2544       ShouldNotReachHere();
2545   }
2546 }
2547 #endif // _LP64
2548 
2549 
2550 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr tmp, LIR_Opr dest, LIR_Op* op) {
2551   if (value->is_double_xmm()) {
2552     switch(code) {
2553       case lir_abs :
2554         {
2555 #ifdef _LP64
2556           if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {
2557             assert(tmp->is_valid(), "need temporary");
2558             __ vpandn(dest->as_xmm_double_reg(), tmp->as_xmm_double_reg(), value->as_xmm_double_reg(), 2);
2559           } else
2560 #endif
2561           {
2562             if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
2563               __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
2564             }
2565             assert(!tmp->is_valid(), "do not need temporary");
2566             __ andpd(dest->as_xmm_double_reg(),
2567                      ExternalAddress((address)double_signmask_pool),
2568                      rscratch1);
2569           }
2570         }
2571         break;
2572 
2573       case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break;
2574       // all other intrinsics are not available in the SSE instruction set, so FPU is used
2575       default      : ShouldNotReachHere();
2576     }
2577 
2578 #ifndef _LP64
2579   } else if (value->is_double_fpu()) {
2580     assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS");
2581     switch(code) {
2582       case lir_abs   : __ fabs() ; break;
2583       case lir_sqrt  : __ fsqrt(); break;
2584       default      : ShouldNotReachHere();
2585     }
2586 #endif // !_LP64
2587   } else if (code == lir_f2hf) {
2588     __ flt_to_flt16(dest->as_register(), value->as_xmm_float_reg(), tmp->as_xmm_float_reg());
2589   } else if (code == lir_hf2f) {
2590     __ flt16_to_flt(dest->as_xmm_float_reg(), value->as_register());
2591   } else {
2592     Unimplemented();
2593   }
2594 }
2595 
2596 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
2597   // assert(left->destroys_register(), "check");
2598   if (left->is_single_cpu()) {
2599     Register reg = left->as_register();
2600     if (right->is_constant()) {
2601       int val = right->as_constant_ptr()->as_jint();
2602       switch (code) {
2603         case lir_logic_and: __ andl (reg, val); break;
2604         case lir_logic_or:  __ orl  (reg, val); break;
2605         case lir_logic_xor: __ xorl (reg, val); break;
2606         default: ShouldNotReachHere();
2607       }
2608     } else if (right->is_stack()) {
2609       // added support for stack operands
2610       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2611       switch (code) {
2612         case lir_logic_and: __ andl (reg, raddr); break;
2613         case lir_logic_or:  __ orl  (reg, raddr); break;
2614         case lir_logic_xor: __ xorl (reg, raddr); break;
2615         default: ShouldNotReachHere();
2616       }
2617     } else {
2618       Register rright = right->as_register();
2619       switch (code) {
2620         case lir_logic_and: __ andptr (reg, rright); break;
2621         case lir_logic_or : __ orptr  (reg, rright); break;
2622         case lir_logic_xor: __ xorptr (reg, rright); break;
2623         default: ShouldNotReachHere();
2624       }
2625     }
2626     move_regs(reg, dst->as_register());
2627   } else {
2628     Register l_lo = left->as_register_lo();
2629     Register l_hi = left->as_register_hi();
2630     if (right->is_constant()) {
2631 #ifdef _LP64
2632       __ mov64(rscratch1, right->as_constant_ptr()->as_jlong());
2633       switch (code) {
2634         case lir_logic_and:
2635           __ andq(l_lo, rscratch1);
2636           break;
2637         case lir_logic_or:
2638           __ orq(l_lo, rscratch1);
2639           break;
2640         case lir_logic_xor:
2641           __ xorq(l_lo, rscratch1);
2642           break;
2643         default: ShouldNotReachHere();
2644       }
2645 #else
2646       int r_lo = right->as_constant_ptr()->as_jint_lo();
2647       int r_hi = right->as_constant_ptr()->as_jint_hi();
2648       switch (code) {
2649         case lir_logic_and:
2650           __ andl(l_lo, r_lo);
2651           __ andl(l_hi, r_hi);
2652           break;
2653         case lir_logic_or:
2654           __ orl(l_lo, r_lo);
2655           __ orl(l_hi, r_hi);
2656           break;
2657         case lir_logic_xor:
2658           __ xorl(l_lo, r_lo);
2659           __ xorl(l_hi, r_hi);
2660           break;
2661         default: ShouldNotReachHere();
2662       }
2663 #endif // _LP64
2664     } else {
2665 #ifdef _LP64
2666       Register r_lo;
2667       if (is_reference_type(right->type())) {
2668         r_lo = right->as_register();
2669       } else {
2670         r_lo = right->as_register_lo();
2671       }
2672 #else
2673       Register r_lo = right->as_register_lo();
2674       Register r_hi = right->as_register_hi();
2675       assert(l_lo != r_hi, "overwriting registers");
2676 #endif
2677       switch (code) {
2678         case lir_logic_and:
2679           __ andptr(l_lo, r_lo);
2680           NOT_LP64(__ andptr(l_hi, r_hi);)
2681           break;
2682         case lir_logic_or:
2683           __ orptr(l_lo, r_lo);
2684           NOT_LP64(__ orptr(l_hi, r_hi);)
2685           break;
2686         case lir_logic_xor:
2687           __ xorptr(l_lo, r_lo);
2688           NOT_LP64(__ xorptr(l_hi, r_hi);)
2689           break;
2690         default: ShouldNotReachHere();
2691       }
2692     }
2693 
2694     Register dst_lo = dst->as_register_lo();
2695     Register dst_hi = dst->as_register_hi();
2696 
2697 #ifdef _LP64
2698     move_regs(l_lo, dst_lo);
2699 #else
2700     if (dst_lo == l_hi) {
2701       assert(dst_hi != l_lo, "overwriting registers");
2702       move_regs(l_hi, dst_hi);
2703       move_regs(l_lo, dst_lo);
2704     } else {
2705       assert(dst_lo != l_hi, "overwriting registers");
2706       move_regs(l_lo, dst_lo);
2707       move_regs(l_hi, dst_hi);
2708     }
2709 #endif // _LP64
2710   }
2711 }
2712 
2713 
2714 // we assume that rax, and rdx can be overwritten
2715 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
2716 
2717   assert(left->is_single_cpu(),   "left must be register");
2718   assert(right->is_single_cpu() || right->is_constant(),  "right must be register or constant");
2719   assert(result->is_single_cpu(), "result must be register");
2720 
2721   //  assert(left->destroys_register(), "check");
2722   //  assert(right->destroys_register(), "check");
2723 
2724   Register lreg = left->as_register();
2725   Register dreg = result->as_register();
2726 
2727   if (right->is_constant()) {
2728     jint divisor = right->as_constant_ptr()->as_jint();
2729     assert(divisor > 0 && is_power_of_2(divisor), "must be");
2730     if (code == lir_idiv) {
2731       assert(lreg == rax, "must be rax,");
2732       assert(temp->as_register() == rdx, "tmp register must be rdx");
2733       __ cdql(); // sign extend into rdx:rax
2734       if (divisor == 2) {
2735         __ subl(lreg, rdx);
2736       } else {
2737         __ andl(rdx, divisor - 1);
2738         __ addl(lreg, rdx);
2739       }
2740       __ sarl(lreg, log2i_exact(divisor));
2741       move_regs(lreg, dreg);
2742     } else if (code == lir_irem) {
2743       Label done;
2744       __ mov(dreg, lreg);
2745       __ andl(dreg, 0x80000000 | (divisor - 1));
2746       __ jcc(Assembler::positive, done);
2747       __ decrement(dreg);
2748       __ orl(dreg, ~(divisor - 1));
2749       __ increment(dreg);
2750       __ bind(done);
2751     } else {
2752       ShouldNotReachHere();
2753     }
2754   } else {
2755     Register rreg = right->as_register();
2756     assert(lreg == rax, "left register must be rax,");
2757     assert(rreg != rdx, "right register must not be rdx");
2758     assert(temp->as_register() == rdx, "tmp register must be rdx");
2759 
2760     move_regs(lreg, rax);
2761 
2762     int idivl_offset = __ corrected_idivl(rreg);
2763     if (ImplicitDiv0Checks) {
2764       add_debug_info_for_div0(idivl_offset, info);
2765     }
2766     if (code == lir_irem) {
2767       move_regs(rdx, dreg); // result is in rdx
2768     } else {
2769       move_regs(rax, dreg);
2770     }
2771   }
2772 }
2773 
2774 
2775 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
2776   if (opr1->is_single_cpu()) {
2777     Register reg1 = opr1->as_register();
2778     if (opr2->is_single_cpu()) {
2779       // cpu register - cpu register
2780       if (is_reference_type(opr1->type())) {
2781         __ cmpoop(reg1, opr2->as_register());
2782       } else {
2783         assert(!is_reference_type(opr2->type()), "cmp int, oop?");
2784         __ cmpl(reg1, opr2->as_register());
2785       }
2786     } else if (opr2->is_stack()) {
2787       // cpu register - stack
2788       if (is_reference_type(opr1->type())) {
2789         __ cmpoop(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2790       } else {
2791         __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2792       }
2793     } else if (opr2->is_constant()) {
2794       // cpu register - constant
2795       LIR_Const* c = opr2->as_constant_ptr();
2796       if (c->type() == T_INT) {
2797         jint i = c->as_jint();
2798         if (i == 0) {
2799           __ testl(reg1, reg1);
2800         } else {
2801           __ cmpl(reg1, i);
2802         }
2803       } else if (c->type() == T_METADATA) {
2804         // All we need for now is a comparison with null for equality.
2805         assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "oops");
2806         Metadata* m = c->as_metadata();
2807         if (m == nullptr) {
2808           __ testptr(reg1, reg1);
2809         } else {
2810           ShouldNotReachHere();
2811         }
2812       } else if (is_reference_type(c->type())) {
2813         // In 64bit oops are single register
2814         jobject o = c->as_jobject();
2815         if (o == nullptr) {
2816           __ testptr(reg1, reg1);
2817         } else {
2818           __ cmpoop(reg1, o, rscratch1);
2819         }
2820       } else {
2821         fatal("unexpected type: %s", basictype_to_str(c->type()));
2822       }
2823       // cpu register - address
2824     } else if (opr2->is_address()) {
2825       if (op->info() != nullptr) {
2826         add_debug_info_for_null_check_here(op->info());
2827       }
2828       __ cmpl(reg1, as_Address(opr2->as_address_ptr()));
2829     } else {
2830       ShouldNotReachHere();
2831     }
2832 
2833   } else if(opr1->is_double_cpu()) {
2834     Register xlo = opr1->as_register_lo();
2835     Register xhi = opr1->as_register_hi();
2836     if (opr2->is_double_cpu()) {
2837 #ifdef _LP64
2838       __ cmpptr(xlo, opr2->as_register_lo());
2839 #else
2840       // cpu register - cpu register
2841       Register ylo = opr2->as_register_lo();
2842       Register yhi = opr2->as_register_hi();
2843       __ subl(xlo, ylo);
2844       __ sbbl(xhi, yhi);
2845       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
2846         __ orl(xhi, xlo);
2847       }
2848 #endif // _LP64
2849     } else if (opr2->is_constant()) {
2850       // cpu register - constant 0
2851       assert(opr2->as_jlong() == (jlong)0, "only handles zero");
2852 #ifdef _LP64
2853       __ cmpptr(xlo, (int32_t)opr2->as_jlong());
2854 #else
2855       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case");
2856       __ orl(xhi, xlo);
2857 #endif // _LP64
2858     } else {
2859       ShouldNotReachHere();
2860     }
2861 
2862   } else if (opr1->is_single_xmm()) {
2863     XMMRegister reg1 = opr1->as_xmm_float_reg();
2864     if (opr2->is_single_xmm()) {
2865       // xmm register - xmm register
2866       __ ucomiss(reg1, opr2->as_xmm_float_reg());
2867     } else if (opr2->is_stack()) {
2868       // xmm register - stack
2869       __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2870     } else if (opr2->is_constant()) {
2871       // xmm register - constant
2872       __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat())));
2873     } else if (opr2->is_address()) {
2874       // xmm register - address
2875       if (op->info() != nullptr) {
2876         add_debug_info_for_null_check_here(op->info());
2877       }
2878       __ ucomiss(reg1, as_Address(opr2->as_address_ptr()));
2879     } else {
2880       ShouldNotReachHere();
2881     }
2882 
2883   } else if (opr1->is_double_xmm()) {
2884     XMMRegister reg1 = opr1->as_xmm_double_reg();
2885     if (opr2->is_double_xmm()) {
2886       // xmm register - xmm register
2887       __ ucomisd(reg1, opr2->as_xmm_double_reg());
2888     } else if (opr2->is_stack()) {
2889       // xmm register - stack
2890       __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix()));
2891     } else if (opr2->is_constant()) {
2892       // xmm register - constant
2893       __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble())));
2894     } else if (opr2->is_address()) {
2895       // xmm register - address
2896       if (op->info() != nullptr) {
2897         add_debug_info_for_null_check_here(op->info());
2898       }
2899       __ ucomisd(reg1, as_Address(opr2->pointer()->as_address()));
2900     } else {
2901       ShouldNotReachHere();
2902     }
2903 
2904 #ifndef _LP64
2905   } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) {
2906     assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)");
2907     assert(opr2->is_fpu_register(), "both must be registers");
2908     __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2909 #endif // LP64
2910 
2911   } else if (opr1->is_address() && opr2->is_constant()) {
2912     LIR_Const* c = opr2->as_constant_ptr();
2913 #ifdef _LP64
2914     if (is_reference_type(c->type())) {
2915       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse");
2916       __ movoop(rscratch1, c->as_jobject());
2917     }
2918 #endif // LP64
2919     if (op->info() != nullptr) {
2920       add_debug_info_for_null_check_here(op->info());
2921     }
2922     // special case: address - constant
2923     LIR_Address* addr = opr1->as_address_ptr();
2924     if (c->type() == T_INT) {
2925       __ cmpl(as_Address(addr), c->as_jint());
2926     } else if (is_reference_type(c->type())) {
2927 #ifdef _LP64
2928       // %%% Make this explode if addr isn't reachable until we figure out a
2929       // better strategy by giving noreg as the temp for as_Address
2930       __ cmpoop(rscratch1, as_Address(addr, noreg));
2931 #else
2932       __ cmpoop(as_Address(addr), c->as_jobject());
2933 #endif // _LP64
2934     } else {
2935       ShouldNotReachHere();
2936     }
2937 
2938   } else {
2939     ShouldNotReachHere();
2940   }
2941 }
2942 
2943 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
2944   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
2945     if (left->is_single_xmm()) {
2946       assert(right->is_single_xmm(), "must match");
2947       __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2948     } else if (left->is_double_xmm()) {
2949       assert(right->is_double_xmm(), "must match");
2950       __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2951 
2952     } else {
2953 #ifdef _LP64
2954       ShouldNotReachHere();
2955 #else
2956       assert(left->is_single_fpu() || left->is_double_fpu(), "must be");
2957       assert(right->is_single_fpu() || right->is_double_fpu(), "must match");
2958 
2959       assert(left->fpu() == 0, "left must be on TOS");
2960       __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(),
2961                   op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2962 #endif // LP64
2963     }
2964   } else {
2965     assert(code == lir_cmp_l2i, "check");
2966 #ifdef _LP64
2967     Label done;
2968     Register dest = dst->as_register();
2969     __ cmpptr(left->as_register_lo(), right->as_register_lo());
2970     __ movl(dest, -1);
2971     __ jccb(Assembler::less, done);
2972     __ setb(Assembler::notZero, dest);
2973     __ movzbl(dest, dest);
2974     __ bind(done);
2975 #else
2976     __ lcmp2int(left->as_register_hi(),
2977                 left->as_register_lo(),
2978                 right->as_register_hi(),
2979                 right->as_register_lo());
2980     move_regs(left->as_register_hi(), dst->as_register());
2981 #endif // _LP64
2982   }
2983 }
2984 
2985 
2986 void LIR_Assembler::align_call(LIR_Code code) {
2987   // make sure that the displacement word of the call ends up word aligned
2988   int offset = __ offset();
2989   switch (code) {
2990   case lir_static_call:
2991   case lir_optvirtual_call:
2992   case lir_dynamic_call:
2993     offset += NativeCall::displacement_offset;
2994     break;
2995   case lir_icvirtual_call:
2996     offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size_rex;
2997     break;
2998   default: ShouldNotReachHere();
2999   }
3000   __ align(BytesPerWord, offset);
3001 }
3002 
3003 
3004 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
3005   assert((__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
3006          "must be aligned");
3007   __ call(AddressLiteral(op->addr(), rtype));
3008   add_call_info(code_offset(), op->info(), op->maybe_return_as_fields());
3009   __ post_call_nop();
3010 }
3011 
3012 
3013 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
3014   __ ic_call(op->addr());
3015   add_call_info(code_offset(), op->info(), op->maybe_return_as_fields());
3016   assert((__ offset() - NativeCall::instruction_size + NativeCall::displacement_offset) % BytesPerWord == 0,
3017          "must be aligned");
3018   __ post_call_nop();
3019 }
3020 
3021 
3022 void LIR_Assembler::emit_static_call_stub() {
3023   address call_pc = __ pc();
3024   address stub = __ start_a_stub(call_stub_size());
3025   if (stub == nullptr) {
3026     bailout("static call stub overflow");
3027     return;
3028   }
3029 
3030   int start = __ offset();
3031 
3032   // make sure that the displacement word of the call ends up word aligned
3033   __ align(BytesPerWord, __ offset() + NativeMovConstReg::instruction_size_rex + NativeCall::displacement_offset);
3034   __ relocate(static_stub_Relocation::spec(call_pc));
3035   __ mov_metadata(rbx, (Metadata*)nullptr);
3036   // must be set to -1 at code generation time
3037   assert(((__ offset() + 1) % BytesPerWord) == 0, "must be aligned");
3038   // On 64bit this will die since it will take a movq & jmp, must be only a jmp
3039   __ jump(RuntimeAddress(__ pc()));
3040 
3041   assert(__ offset() - start <= call_stub_size(), "stub too big");
3042   __ end_a_stub();
3043 }
3044 
3045 
3046 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
3047   assert(exceptionOop->as_register() == rax, "must match");
3048   assert(exceptionPC->as_register() == rdx, "must match");
3049 
3050   // exception object is not added to oop map by LinearScan
3051   // (LinearScan assumes that no oops are in fixed registers)
3052   info->add_register_oop(exceptionOop);
3053   C1StubId unwind_id;
3054 
3055   // get current pc information
3056   // pc is only needed if the method has an exception handler, the unwind code does not need it.
3057   int pc_for_athrow_offset = __ offset();
3058   InternalAddress pc_for_athrow(__ pc());
3059   __ lea(exceptionPC->as_register(), pc_for_athrow);
3060   add_call_info(pc_for_athrow_offset, info); // for exception handler
3061 
3062   __ verify_not_null_oop(rax);
3063   // search an exception handler (rax: exception oop, rdx: throwing pc)
3064   if (compilation()->has_fpu_code()) {
3065     unwind_id = C1StubId::handle_exception_id;
3066   } else {
3067     unwind_id = C1StubId::handle_exception_nofpu_id;
3068   }
3069   __ call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
3070 
3071   // enough room for two byte trap
3072   __ nop();
3073 }
3074 
3075 
3076 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
3077   assert(exceptionOop->as_register() == rax, "must match");
3078 
3079   __ jmp(_unwind_handler_entry);
3080 }
3081 
3082 
3083 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
3084 
3085   // optimized version for linear scan:
3086   // * count must be already in ECX (guaranteed by LinearScan)
3087   // * left and dest must be equal
3088   // * tmp must be unused
3089   assert(count->as_register() == SHIFT_count, "count must be in ECX");
3090   assert(left == dest, "left and dest must be equal");
3091   assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
3092 
3093   if (left->is_single_cpu()) {
3094     Register value = left->as_register();
3095     assert(value != SHIFT_count, "left cannot be ECX");
3096 
3097     switch (code) {
3098       case lir_shl:  __ shll(value); break;
3099       case lir_shr:  __ sarl(value); break;
3100       case lir_ushr: __ shrl(value); break;
3101       default: ShouldNotReachHere();
3102     }
3103   } else if (left->is_double_cpu()) {
3104     Register lo = left->as_register_lo();
3105     Register hi = left->as_register_hi();
3106     assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX");
3107 #ifdef _LP64
3108     switch (code) {
3109       case lir_shl:  __ shlptr(lo);        break;
3110       case lir_shr:  __ sarptr(lo);        break;
3111       case lir_ushr: __ shrptr(lo);        break;
3112       default: ShouldNotReachHere();
3113     }
3114 #else
3115 
3116     switch (code) {
3117       case lir_shl:  __ lshl(hi, lo);        break;
3118       case lir_shr:  __ lshr(hi, lo, true);  break;
3119       case lir_ushr: __ lshr(hi, lo, false); break;
3120       default: ShouldNotReachHere();
3121     }
3122 #endif // LP64
3123   } else {
3124     ShouldNotReachHere();
3125   }
3126 }
3127 
3128 
3129 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
3130   if (dest->is_single_cpu()) {
3131     // first move left into dest so that left is not destroyed by the shift
3132     Register value = dest->as_register();
3133     count = count & 0x1F; // Java spec
3134 
3135     move_regs(left->as_register(), value);
3136     switch (code) {
3137       case lir_shl:  __ shll(value, count); break;
3138       case lir_shr:  __ sarl(value, count); break;
3139       case lir_ushr: __ shrl(value, count); break;
3140       default: ShouldNotReachHere();
3141     }
3142   } else if (dest->is_double_cpu()) {
3143 #ifndef _LP64
3144     Unimplemented();
3145 #else
3146     // first move left into dest so that left is not destroyed by the shift
3147     Register value = dest->as_register_lo();
3148     count = count & 0x1F; // Java spec
3149 
3150     move_regs(left->as_register_lo(), value);
3151     switch (code) {
3152       case lir_shl:  __ shlptr(value, count); break;
3153       case lir_shr:  __ sarptr(value, count); break;
3154       case lir_ushr: __ shrptr(value, count); break;
3155       default: ShouldNotReachHere();
3156     }
3157 #endif // _LP64
3158   } else {
3159     ShouldNotReachHere();
3160   }
3161 }
3162 
3163 
3164 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
3165   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3166   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3167   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3168   __ movptr (Address(rsp, offset_from_rsp_in_bytes), r);
3169 }
3170 
3171 
3172 void LIR_Assembler::store_parameter(jint c,     int offset_from_rsp_in_words) {
3173   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3174   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3175   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3176   __ movptr (Address(rsp, offset_from_rsp_in_bytes), c);
3177 }
3178 
3179 
3180 void LIR_Assembler::store_parameter(jobject o, int offset_from_rsp_in_words) {
3181   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3182   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3183   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3184   __ movoop(Address(rsp, offset_from_rsp_in_bytes), o, rscratch1);
3185 }
3186 
3187 
3188 void LIR_Assembler::store_parameter(Metadata* m, int offset_from_rsp_in_words) {
3189   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3190   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3191   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3192   __ mov_metadata(Address(rsp, offset_from_rsp_in_bytes), m, rscratch1);
3193 }
3194 
3195 
3196 void LIR_Assembler::arraycopy_inlinetype_check(Register obj, Register tmp, CodeStub* slow_path, bool is_dest, bool null_check) {
3197   if (null_check) {
3198     __ testptr(obj, obj);
3199     __ jcc(Assembler::zero, *slow_path->entry());
3200   }
3201   if (is_dest) {
3202     __ test_null_free_array_oop(obj, tmp, *slow_path->entry());
3203   } else {
3204     __ test_flat_array_oop(obj, tmp, *slow_path->entry());
3205   }
3206 }
3207 
3208 
3209 // This code replaces a call to arraycopy; no exception may
3210 // be thrown in this code, they must be thrown in the System.arraycopy
3211 // activation frame; we could save some checks if this would not be the case
3212 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
3213   ciArrayKlass* default_type = op->expected_type();
3214   Register src = op->src()->as_register();
3215   Register dst = op->dst()->as_register();
3216   Register src_pos = op->src_pos()->as_register();
3217   Register dst_pos = op->dst_pos()->as_register();
3218   Register length  = op->length()->as_register();
3219   Register tmp = op->tmp()->as_register();
3220   Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg);
3221 
3222   CodeStub* stub = op->stub();
3223   int flags = op->flags();
3224   BasicType basic_type = default_type != nullptr ? default_type->element_type()->basic_type() : T_ILLEGAL;
3225   if (is_reference_type(basic_type)) basic_type = T_OBJECT;
3226 
3227   if (flags & LIR_OpArrayCopy::always_slow_path) {
3228     __ jmp(*stub->entry());
3229     __ bind(*stub->continuation());
3230     return;
3231   }
3232 
3233   // if we don't know anything, just go through the generic arraycopy
3234   if (default_type == nullptr) {
3235     // save outgoing arguments on stack in case call to System.arraycopy is needed
3236     // HACK ALERT. This code used to push the parameters in a hardwired fashion
3237     // for interpreter calling conventions. Now we have to do it in new style conventions.
3238     // For the moment until C1 gets the new register allocator I just force all the
3239     // args to the right place (except the register args) and then on the back side
3240     // reload the register args properly if we go slow path. Yuck
3241 
3242     // These are proper for the calling convention
3243     store_parameter(length, 2);
3244     store_parameter(dst_pos, 1);
3245     store_parameter(dst, 0);
3246 
3247     // these are just temporary placements until we need to reload
3248     store_parameter(src_pos, 3);
3249     store_parameter(src, 4);
3250     NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");)
3251 
3252     address copyfunc_addr = StubRoutines::generic_arraycopy();
3253     assert(copyfunc_addr != nullptr, "generic arraycopy stub required");
3254 
3255     // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint
3256 #ifdef _LP64
3257     // The arguments are in java calling convention so we can trivially shift them to C
3258     // convention
3259     assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
3260     __ mov(c_rarg0, j_rarg0);
3261     assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
3262     __ mov(c_rarg1, j_rarg1);
3263     assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
3264     __ mov(c_rarg2, j_rarg2);
3265     assert_different_registers(c_rarg3, j_rarg4);
3266     __ mov(c_rarg3, j_rarg3);
3267 #ifdef _WIN64
3268     // Allocate abi space for args but be sure to keep stack aligned
3269     __ subptr(rsp, 6*wordSize);
3270     store_parameter(j_rarg4, 4);
3271 #ifndef PRODUCT
3272     if (PrintC1Statistics) {
3273       __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt), rscratch1);
3274     }
3275 #endif
3276     __ call(RuntimeAddress(copyfunc_addr));
3277     __ addptr(rsp, 6*wordSize);
3278 #else
3279     __ mov(c_rarg4, j_rarg4);
3280 #ifndef PRODUCT
3281     if (PrintC1Statistics) {
3282       __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt), rscratch1);
3283     }
3284 #endif
3285     __ call(RuntimeAddress(copyfunc_addr));
3286 #endif // _WIN64
3287 #else
3288     __ push(length);
3289     __ push(dst_pos);
3290     __ push(dst);
3291     __ push(src_pos);
3292     __ push(src);
3293 
3294 #ifndef PRODUCT
3295     if (PrintC1Statistics) {
3296       __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt), rscratch1);
3297     }
3298 #endif
3299     __ call_VM_leaf(copyfunc_addr, 5); // removes pushed parameter from the stack
3300 
3301 #endif // _LP64
3302 
3303     __ testl(rax, rax);
3304     __ jcc(Assembler::equal, *stub->continuation());
3305 
3306     __ mov(tmp, rax);
3307     __ xorl(tmp, -1);
3308 
3309     // Reload values from the stack so they are where the stub
3310     // expects them.
3311     __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
3312     __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
3313     __ movptr   (length,  Address(rsp, 2*BytesPerWord));
3314     __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
3315     __ movptr   (src,     Address(rsp, 4*BytesPerWord));
3316 
3317     __ subl(length, tmp);
3318     __ addl(src_pos, tmp);
3319     __ addl(dst_pos, tmp);
3320     __ jmp(*stub->entry());
3321 
3322     __ bind(*stub->continuation());
3323     return;
3324   }
3325 
3326   // Handle inline type arrays
3327   if (flags & LIR_OpArrayCopy::src_inlinetype_check) {
3328     arraycopy_inlinetype_check(src, tmp, stub, false, (flags & LIR_OpArrayCopy::src_null_check));
3329   }
3330   if (flags & LIR_OpArrayCopy::dst_inlinetype_check) {
3331     arraycopy_inlinetype_check(dst, tmp, stub, true, (flags & LIR_OpArrayCopy::dst_null_check));
3332   }
3333 
3334   assert(default_type != nullptr && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
3335 
3336   int elem_size = type2aelembytes(basic_type);
3337   Address::ScaleFactor scale;
3338 
3339   switch (elem_size) {
3340     case 1 :
3341       scale = Address::times_1;
3342       break;
3343     case 2 :
3344       scale = Address::times_2;
3345       break;
3346     case 4 :
3347       scale = Address::times_4;
3348       break;
3349     case 8 :
3350       scale = Address::times_8;
3351       break;
3352     default:
3353       scale = Address::no_scale;
3354       ShouldNotReachHere();
3355   }
3356 
3357   Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
3358   Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
3359   Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
3360   Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
3361 
3362   // length and pos's are all sign extended at this point on 64bit
3363 
3364   // test for null
3365   if (flags & LIR_OpArrayCopy::src_null_check) {
3366     __ testptr(src, src);
3367     __ jcc(Assembler::zero, *stub->entry());
3368   }
3369   if (flags & LIR_OpArrayCopy::dst_null_check) {
3370     __ testptr(dst, dst);
3371     __ jcc(Assembler::zero, *stub->entry());
3372   }
3373 
3374   // If the compiler was not able to prove that exact type of the source or the destination
3375   // of the arraycopy is an array type, check at runtime if the source or the destination is
3376   // an instance type.
3377   if (flags & LIR_OpArrayCopy::type_check) {
3378     if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
3379       __ load_klass(tmp, dst, tmp_load_klass);
3380       __ cmpl(Address(tmp, in_bytes(Klass::layout_helper_offset())), Klass::_lh_neutral_value);
3381       __ jcc(Assembler::greaterEqual, *stub->entry());
3382     }
3383 
3384     if (!(flags & LIR_OpArrayCopy::src_objarray)) {
3385       __ load_klass(tmp, src, tmp_load_klass);
3386       __ cmpl(Address(tmp, in_bytes(Klass::layout_helper_offset())), Klass::_lh_neutral_value);
3387       __ jcc(Assembler::greaterEqual, *stub->entry());
3388     }
3389   }
3390 
3391   // check if negative
3392   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
3393     __ testl(src_pos, src_pos);
3394     __ jcc(Assembler::less, *stub->entry());
3395   }
3396   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
3397     __ testl(dst_pos, dst_pos);
3398     __ jcc(Assembler::less, *stub->entry());
3399   }
3400 
3401   if (flags & LIR_OpArrayCopy::src_range_check) {
3402     __ lea(tmp, Address(src_pos, length, Address::times_1, 0));
3403     __ cmpl(tmp, src_length_addr);
3404     __ jcc(Assembler::above, *stub->entry());
3405   }
3406   if (flags & LIR_OpArrayCopy::dst_range_check) {
3407     __ lea(tmp, Address(dst_pos, length, Address::times_1, 0));
3408     __ cmpl(tmp, dst_length_addr);
3409     __ jcc(Assembler::above, *stub->entry());
3410   }
3411 
3412   if (flags & LIR_OpArrayCopy::length_positive_check) {
3413     __ testl(length, length);
3414     __ jcc(Assembler::less, *stub->entry());
3415   }
3416 
3417 #ifdef _LP64
3418   __ movl2ptr(src_pos, src_pos); //higher 32bits must be null
3419   __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null
3420 #endif
3421 
3422   if (flags & LIR_OpArrayCopy::type_check) {
3423     // We don't know the array types are compatible
3424     if (basic_type != T_OBJECT) {
3425       // Simple test for basic type arrays
3426       if (UseCompressedClassPointers) {
3427         __ movl(tmp, src_klass_addr);
3428         __ cmpl(tmp, dst_klass_addr);
3429       } else {
3430         __ movptr(tmp, src_klass_addr);
3431         __ cmpptr(tmp, dst_klass_addr);
3432       }
3433       __ jcc(Assembler::notEqual, *stub->entry());
3434     } else {
3435       // For object arrays, if src is a sub class of dst then we can
3436       // safely do the copy.
3437       Label cont, slow;
3438 
3439       __ push(src);
3440       __ push(dst);
3441 
3442       __ load_klass(src, src, tmp_load_klass);
3443       __ load_klass(dst, dst, tmp_load_klass);
3444 
3445       __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, nullptr);
3446 
3447       __ push(src);
3448       __ push(dst);
3449       __ call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id)));
3450       __ pop(dst);
3451       __ pop(src);
3452 
3453       __ testl(src, src);
3454       __ jcc(Assembler::notEqual, cont);
3455 
3456       __ bind(slow);
3457       __ pop(dst);
3458       __ pop(src);
3459 
3460       address copyfunc_addr = StubRoutines::checkcast_arraycopy();
3461       if (copyfunc_addr != nullptr) { // use stub if available
3462         // src is not a sub class of dst so we have to do a
3463         // per-element check.
3464 
3465         int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
3466         if ((flags & mask) != mask) {
3467           // Check that at least both of them object arrays.
3468           assert(flags & mask, "one of the two should be known to be an object array");
3469 
3470           if (!(flags & LIR_OpArrayCopy::src_objarray)) {
3471             __ load_klass(tmp, src, tmp_load_klass);
3472           } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
3473             __ load_klass(tmp, dst, tmp_load_klass);
3474           }
3475           int lh_offset = in_bytes(Klass::layout_helper_offset());
3476           Address klass_lh_addr(tmp, lh_offset);
3477           jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
3478           __ cmpl(klass_lh_addr, objArray_lh);
3479           __ jcc(Assembler::notEqual, *stub->entry());
3480         }
3481 
3482        // Spill because stubs can use any register they like and it's
3483        // easier to restore just those that we care about.
3484        store_parameter(dst, 0);
3485        store_parameter(dst_pos, 1);
3486        store_parameter(length, 2);
3487        store_parameter(src_pos, 3);
3488        store_parameter(src, 4);
3489 
3490 #ifndef _LP64
3491         __ movptr(tmp, dst_klass_addr);
3492         __ movptr(tmp, Address(tmp, ObjArrayKlass::element_klass_offset()));
3493         __ push(tmp);
3494         __ movl(tmp, Address(tmp, Klass::super_check_offset_offset()));
3495         __ push(tmp);
3496         __ push(length);
3497         __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3498         __ push(tmp);
3499         __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3500         __ push(tmp);
3501 
3502         __ call_VM_leaf(copyfunc_addr, 5);
3503 #else
3504         __ movl2ptr(length, length); //higher 32bits must be null
3505 
3506         __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3507         assert_different_registers(c_rarg0, dst, dst_pos, length);
3508         __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3509         assert_different_registers(c_rarg1, dst, length);
3510 
3511         __ mov(c_rarg2, length);
3512         assert_different_registers(c_rarg2, dst);
3513 
3514 #ifdef _WIN64
3515         // Allocate abi space for args but be sure to keep stack aligned
3516         __ subptr(rsp, 6*wordSize);
3517         __ load_klass(c_rarg3, dst, tmp_load_klass);
3518         __ movptr(c_rarg3, Address(c_rarg3, ObjArrayKlass::element_klass_offset()));
3519         store_parameter(c_rarg3, 4);
3520         __ movl(c_rarg3, Address(c_rarg3, Klass::super_check_offset_offset()));
3521         __ call(RuntimeAddress(copyfunc_addr));
3522         __ addptr(rsp, 6*wordSize);
3523 #else
3524         __ load_klass(c_rarg4, dst, tmp_load_klass);
3525         __ movptr(c_rarg4, Address(c_rarg4, ObjArrayKlass::element_klass_offset()));
3526         __ movl(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset()));
3527         __ call(RuntimeAddress(copyfunc_addr));
3528 #endif
3529 
3530 #endif
3531 
3532 #ifndef PRODUCT
3533         if (PrintC1Statistics) {
3534           Label failed;
3535           __ testl(rax, rax);
3536           __ jcc(Assembler::notZero, failed);
3537           __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt), rscratch1);
3538           __ bind(failed);
3539         }
3540 #endif
3541 
3542         __ testl(rax, rax);
3543         __ jcc(Assembler::zero, *stub->continuation());
3544 
3545 #ifndef PRODUCT
3546         if (PrintC1Statistics) {
3547           __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt), rscratch1);
3548         }
3549 #endif
3550 
3551         __ mov(tmp, rax);
3552 
3553         __ xorl(tmp, -1);
3554 
3555         // Restore previously spilled arguments
3556         __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
3557         __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
3558         __ movptr   (length,  Address(rsp, 2*BytesPerWord));
3559         __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
3560         __ movptr   (src,     Address(rsp, 4*BytesPerWord));
3561 
3562 
3563         __ subl(length, tmp);
3564         __ addl(src_pos, tmp);
3565         __ addl(dst_pos, tmp);
3566       }
3567 
3568       __ jmp(*stub->entry());
3569 
3570       __ bind(cont);
3571       __ pop(dst);
3572       __ pop(src);
3573     }
3574   }
3575 
3576 #ifdef ASSERT
3577   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
3578     // Sanity check the known type with the incoming class.  For the
3579     // primitive case the types must match exactly with src.klass and
3580     // dst.klass each exactly matching the default type.  For the
3581     // object array case, if no type check is needed then either the
3582     // dst type is exactly the expected type and the src type is a
3583     // subtype which we can't check or src is the same array as dst
3584     // but not necessarily exactly of type default_type.
3585     Label known_ok, halt;
3586     __ mov_metadata(tmp, default_type->constant_encoding());
3587 #ifdef _LP64
3588     if (UseCompressedClassPointers) {
3589       __ encode_klass_not_null(tmp, rscratch1);
3590     }
3591 #endif
3592 
3593     if (basic_type != T_OBJECT) {
3594 
3595       if (UseCompressedClassPointers)          __ cmpl(tmp, dst_klass_addr);
3596       else                   __ cmpptr(tmp, dst_klass_addr);
3597       __ jcc(Assembler::notEqual, halt);
3598       if (UseCompressedClassPointers)          __ cmpl(tmp, src_klass_addr);
3599       else                   __ cmpptr(tmp, src_klass_addr);
3600       __ jcc(Assembler::equal, known_ok);
3601     } else {
3602       if (UseCompressedClassPointers)          __ cmpl(tmp, dst_klass_addr);
3603       else                   __ cmpptr(tmp, dst_klass_addr);
3604       __ jcc(Assembler::equal, known_ok);
3605       __ cmpptr(src, dst);
3606       __ jcc(Assembler::equal, known_ok);
3607     }
3608     __ bind(halt);
3609     __ stop("incorrect type information in arraycopy");
3610     __ bind(known_ok);
3611   }
3612 #endif
3613 
3614 #ifndef PRODUCT
3615   if (PrintC1Statistics) {
3616     __ incrementl(ExternalAddress(Runtime1::arraycopy_count_address(basic_type)), rscratch1);
3617   }
3618 #endif
3619 
3620 #ifdef _LP64
3621   assert_different_registers(c_rarg0, dst, dst_pos, length);
3622   __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3623   assert_different_registers(c_rarg1, length);
3624   __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3625   __ mov(c_rarg2, length);
3626 
3627 #else
3628   __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3629   store_parameter(tmp, 0);
3630   __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3631   store_parameter(tmp, 1);
3632   store_parameter(length, 2);
3633 #endif // _LP64
3634 
3635   bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
3636   bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
3637   const char *name;
3638   address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
3639   __ call_VM_leaf(entry, 0);
3640 
3641   if (stub != nullptr) {
3642     __ bind(*stub->continuation());
3643   }
3644 }
3645 
3646 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
3647   assert(op->crc()->is_single_cpu(),  "crc must be register");
3648   assert(op->val()->is_single_cpu(),  "byte value must be register");
3649   assert(op->result_opr()->is_single_cpu(), "result must be register");
3650   Register crc = op->crc()->as_register();
3651   Register val = op->val()->as_register();
3652   Register res = op->result_opr()->as_register();
3653 
3654   assert_different_registers(val, crc, res);
3655 
3656   __ lea(res, ExternalAddress(StubRoutines::crc_table_addr()));
3657   __ notl(crc); // ~crc
3658   __ update_byte_crc32(crc, val, res);
3659   __ notl(crc); // ~crc
3660   __ mov(res, crc);
3661 }
3662 
3663 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
3664   Register obj = op->obj_opr()->as_register();  // may not be an oop
3665   Register hdr = op->hdr_opr()->as_register();
3666   Register lock = op->lock_opr()->as_register();
3667   if (LockingMode == LM_MONITOR) {
3668     if (op->info() != nullptr) {
3669       add_debug_info_for_null_check_here(op->info());
3670       __ null_check(obj);
3671     }
3672     __ jmp(*op->stub()->entry());
3673   } else if (op->code() == lir_lock) {
3674     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3675     Register tmp = LockingMode == LM_LIGHTWEIGHT ? op->scratch_opr()->as_register() : noreg;
3676     // add debug info for NullPointerException only if one is possible
3677     int null_check_offset = __ lock_object(hdr, obj, lock, tmp, *op->stub()->entry());
3678     if (op->info() != nullptr) {
3679       add_debug_info_for_null_check(null_check_offset, op->info());
3680     }
3681     // done
3682   } else if (op->code() == lir_unlock) {
3683     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3684     __ unlock_object(hdr, obj, lock, *op->stub()->entry());
3685   } else {
3686     Unimplemented();
3687   }
3688   __ bind(*op->stub()->continuation());
3689 }
3690 
3691 void LIR_Assembler::emit_load_klass(LIR_OpLoadKlass* op) {
3692   Register obj = op->obj()->as_pointer_register();
3693   Register result = op->result_opr()->as_pointer_register();
3694 
3695   CodeEmitInfo* info = op->info();
3696   if (info != nullptr) {
3697     add_debug_info_for_null_check_here(info);
3698   }
3699 
3700 #ifdef _LP64
3701   if (UseCompressedClassPointers) {
3702     __ movl(result, Address(obj, oopDesc::klass_offset_in_bytes()));
3703     __ decode_klass_not_null(result, rscratch1);
3704   } else
3705 #endif
3706     __ movptr(result, Address(obj, oopDesc::klass_offset_in_bytes()));
3707 }
3708 
3709 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
3710   ciMethod* method = op->profiled_method();
3711   int bci          = op->profiled_bci();
3712   ciMethod* callee = op->profiled_callee();
3713   Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg);
3714 
3715   // Update counter for all call types
3716   ciMethodData* md = method->method_data_or_null();
3717   assert(md != nullptr, "Sanity");
3718   ciProfileData* data = md->bci_to_data(bci);
3719   assert(data != nullptr && data->is_CounterData(), "need CounterData for calls");
3720   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
3721   Register mdo  = op->mdo()->as_register();
3722   __ mov_metadata(mdo, md->constant_encoding());
3723   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
3724   // Perform additional virtual call profiling for invokevirtual and
3725   // invokeinterface bytecodes
3726   if (op->should_profile_receiver_type()) {
3727     assert(op->recv()->is_single_cpu(), "recv must be allocated");
3728     Register recv = op->recv()->as_register();
3729     assert_different_registers(mdo, recv);
3730     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
3731     ciKlass* known_klass = op->known_holder();
3732     if (C1OptimizeVirtualCallProfiling && known_klass != nullptr) {
3733       // We know the type that will be seen at this call site; we can
3734       // statically update the MethodData* rather than needing to do
3735       // dynamic tests on the receiver type
3736 
3737       // NOTE: we should probably put a lock around this search to
3738       // avoid collisions by concurrent compilations
3739       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
3740       uint i;
3741       for (i = 0; i < VirtualCallData::row_limit(); i++) {
3742         ciKlass* receiver = vc_data->receiver(i);
3743         if (known_klass->equals(receiver)) {
3744           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3745           __ addptr(data_addr, DataLayout::counter_increment);
3746           return;
3747         }
3748       }
3749 
3750       // Receiver type not found in profile data; select an empty slot
3751 
3752       // Note that this is less efficient than it should be because it
3753       // always does a write to the receiver part of the
3754       // VirtualCallData rather than just the first time
3755       for (i = 0; i < VirtualCallData::row_limit(); i++) {
3756         ciKlass* receiver = vc_data->receiver(i);
3757         if (receiver == nullptr) {
3758           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
3759           __ mov_metadata(recv_addr, known_klass->constant_encoding(), rscratch1);
3760           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3761           __ addptr(data_addr, DataLayout::counter_increment);
3762           return;
3763         }
3764       }
3765     } else {
3766       __ load_klass(recv, recv, tmp_load_klass);
3767       Label update_done;
3768       type_profile_helper(mdo, md, data, recv, &update_done);
3769       // Receiver did not match any saved receiver and there is no empty row for it.
3770       // Increment total counter to indicate polymorphic case.
3771       __ addptr(counter_addr, DataLayout::counter_increment);
3772 
3773       __ bind(update_done);
3774     }
3775   } else {
3776     // Static call
3777     __ addptr(counter_addr, DataLayout::counter_increment);
3778   }
3779 }
3780 
3781 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) {
3782   Register obj = op->obj()->as_register();
3783   Register tmp = op->tmp()->as_pointer_register();
3784   Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg);
3785   Address mdo_addr = as_Address(op->mdp()->as_address_ptr());
3786   ciKlass* exact_klass = op->exact_klass();
3787   intptr_t current_klass = op->current_klass();
3788   bool not_null = op->not_null();
3789   bool no_conflict = op->no_conflict();
3790 
3791   Label update, next, none;
3792 
3793   bool do_null = !not_null;
3794   bool exact_klass_set = exact_klass != nullptr && ciTypeEntries::valid_ciklass(current_klass) == exact_klass;
3795   bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set;
3796 
3797   assert(do_null || do_update, "why are we here?");
3798   assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?");
3799 
3800   __ verify_oop(obj);
3801 
3802 #ifdef ASSERT
3803   if (obj == tmp) {
3804 #ifdef _LP64
3805     assert_different_registers(obj, rscratch1, mdo_addr.base(), mdo_addr.index());
3806 #else
3807     assert_different_registers(obj, mdo_addr.base(), mdo_addr.index());
3808 #endif
3809   } else {
3810 #ifdef _LP64
3811     assert_different_registers(obj, tmp, rscratch1, mdo_addr.base(), mdo_addr.index());
3812 #else
3813     assert_different_registers(obj, tmp, mdo_addr.base(), mdo_addr.index());
3814 #endif
3815   }
3816 #endif
3817   if (do_null) {
3818     __ testptr(obj, obj);
3819     __ jccb(Assembler::notZero, update);
3820     if (!TypeEntries::was_null_seen(current_klass)) {
3821       __ testptr(mdo_addr, TypeEntries::null_seen);
3822 #ifndef ASSERT
3823       __ jccb(Assembler::notZero, next); // already set
3824 #else
3825       __ jcc(Assembler::notZero, next); // already set
3826 #endif
3827       // atomic update to prevent overwriting Klass* with 0
3828       __ lock();
3829       __ orptr(mdo_addr, TypeEntries::null_seen);
3830     }
3831     if (do_update) {
3832 #ifndef ASSERT
3833       __ jmpb(next);
3834     }
3835 #else
3836       __ jmp(next);
3837     }
3838   } else {
3839     __ testptr(obj, obj);
3840     __ jcc(Assembler::notZero, update);
3841     __ stop("unexpected null obj");
3842 #endif
3843   }
3844 
3845   __ bind(update);
3846 
3847   if (do_update) {
3848 #ifdef ASSERT
3849     if (exact_klass != nullptr) {
3850       Label ok;
3851       __ load_klass(tmp, obj, tmp_load_klass);
3852       __ push(tmp);
3853       __ mov_metadata(tmp, exact_klass->constant_encoding());
3854       __ cmpptr(tmp, Address(rsp, 0));
3855       __ jcc(Assembler::equal, ok);
3856       __ stop("exact klass and actual klass differ");
3857       __ bind(ok);
3858       __ pop(tmp);
3859     }
3860 #endif
3861     if (!no_conflict) {
3862       if (exact_klass == nullptr || TypeEntries::is_type_none(current_klass)) {
3863         if (exact_klass != nullptr) {
3864           __ mov_metadata(tmp, exact_klass->constant_encoding());
3865         } else {
3866           __ load_klass(tmp, obj, tmp_load_klass);
3867         }
3868 #ifdef _LP64
3869         __ mov(rscratch1, tmp); // save original value before XOR
3870 #endif
3871         __ xorptr(tmp, mdo_addr);
3872         __ testptr(tmp, TypeEntries::type_klass_mask);
3873         // klass seen before, nothing to do. The unknown bit may have been
3874         // set already but no need to check.
3875         __ jccb(Assembler::zero, next);
3876 
3877         __ testptr(tmp, TypeEntries::type_unknown);
3878         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3879 
3880         if (TypeEntries::is_type_none(current_klass)) {
3881           __ testptr(mdo_addr, TypeEntries::type_mask);
3882           __ jccb(Assembler::zero, none);
3883 #ifdef _LP64
3884           // There is a chance that the checks above (re-reading profiling
3885           // data from memory) fail if another thread has just set the
3886           // profiling to this obj's klass
3887           __ mov(tmp, rscratch1); // get back original value before XOR
3888           __ xorptr(tmp, mdo_addr);
3889           __ testptr(tmp, TypeEntries::type_klass_mask);
3890           __ jccb(Assembler::zero, next);
3891 #endif
3892         }
3893       } else {
3894         assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr &&
3895                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only");
3896 
3897         __ testptr(mdo_addr, TypeEntries::type_unknown);
3898         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3899       }
3900 
3901       // different than before. Cannot keep accurate profile.
3902       __ orptr(mdo_addr, TypeEntries::type_unknown);
3903 
3904       if (TypeEntries::is_type_none(current_klass)) {
3905         __ jmpb(next);
3906 
3907         __ bind(none);
3908         // first time here. Set profile type.
3909         __ movptr(mdo_addr, tmp);
3910 #ifdef ASSERT
3911         __ andptr(tmp, TypeEntries::type_klass_mask);
3912         __ verify_klass_ptr(tmp);
3913 #endif
3914       }
3915     } else {
3916       // There's a single possible klass at this profile point
3917       assert(exact_klass != nullptr, "should be");
3918       if (TypeEntries::is_type_none(current_klass)) {
3919         __ mov_metadata(tmp, exact_klass->constant_encoding());
3920         __ xorptr(tmp, mdo_addr);
3921         __ testptr(tmp, TypeEntries::type_klass_mask);
3922 #ifdef ASSERT
3923         __ jcc(Assembler::zero, next);
3924 
3925         {
3926           Label ok;
3927           __ push(tmp);
3928           __ testptr(mdo_addr, TypeEntries::type_mask);
3929           __ jcc(Assembler::zero, ok);
3930           // may have been set by another thread
3931           __ mov_metadata(tmp, exact_klass->constant_encoding());
3932           __ xorptr(tmp, mdo_addr);
3933           __ testptr(tmp, TypeEntries::type_mask);
3934           __ jcc(Assembler::zero, ok);
3935 
3936           __ stop("unexpected profiling mismatch");
3937           __ bind(ok);
3938           __ pop(tmp);
3939         }
3940 #else
3941         __ jccb(Assembler::zero, next);
3942 #endif
3943         // first time here. Set profile type.
3944         __ movptr(mdo_addr, tmp);
3945 #ifdef ASSERT
3946         __ andptr(tmp, TypeEntries::type_klass_mask);
3947         __ verify_klass_ptr(tmp);
3948 #endif
3949       } else {
3950         assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr &&
3951                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent");
3952 
3953         __ testptr(mdo_addr, TypeEntries::type_unknown);
3954         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3955 
3956         __ orptr(mdo_addr, TypeEntries::type_unknown);
3957       }
3958     }
3959   }
3960   __ bind(next);
3961 }
3962 
3963 void LIR_Assembler::emit_profile_inline_type(LIR_OpProfileInlineType* op) {
3964   Register obj = op->obj()->as_register();
3965   Register tmp = op->tmp()->as_pointer_register();
3966   Address mdo_addr = as_Address(op->mdp()->as_address_ptr());
3967   bool not_null = op->not_null();
3968   int flag = op->flag();
3969 
3970   Label not_inline_type;
3971   if (!not_null) {
3972     __ testptr(obj, obj);
3973     __ jccb(Assembler::zero, not_inline_type);
3974   }
3975 
3976   __ test_oop_is_not_inline_type(obj, tmp, not_inline_type);
3977 
3978   __ orb(mdo_addr, flag);
3979 
3980   __ bind(not_inline_type);
3981 }
3982 
3983 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
3984   Unimplemented();
3985 }
3986 
3987 
3988 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
3989   __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
3990 }
3991 
3992 
3993 void LIR_Assembler::align_backward_branch_target() {
3994   __ align(BytesPerWord);
3995 }
3996 
3997 
3998 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest, LIR_Opr tmp) {
3999   if (left->is_single_cpu()) {
4000     __ negl(left->as_register());
4001     move_regs(left->as_register(), dest->as_register());
4002 
4003   } else if (left->is_double_cpu()) {
4004     Register lo = left->as_register_lo();
4005 #ifdef _LP64
4006     Register dst = dest->as_register_lo();
4007     __ movptr(dst, lo);
4008     __ negptr(dst);
4009 #else
4010     Register hi = left->as_register_hi();
4011     __ lneg(hi, lo);
4012     if (dest->as_register_lo() == hi) {
4013       assert(dest->as_register_hi() != lo, "destroying register");
4014       move_regs(hi, dest->as_register_hi());
4015       move_regs(lo, dest->as_register_lo());
4016     } else {
4017       move_regs(lo, dest->as_register_lo());
4018       move_regs(hi, dest->as_register_hi());
4019     }
4020 #endif // _LP64
4021 
4022   } else if (dest->is_single_xmm()) {
4023 #ifdef _LP64
4024     if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {
4025       assert(tmp->is_valid(), "need temporary");
4026       assert_different_registers(left->as_xmm_float_reg(), tmp->as_xmm_float_reg());
4027       __ vpxor(dest->as_xmm_float_reg(), tmp->as_xmm_float_reg(), left->as_xmm_float_reg(), 2);
4028     }
4029     else
4030 #endif
4031     {
4032       assert(!tmp->is_valid(), "do not need temporary");
4033       if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
4034         __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
4035       }
4036       __ xorps(dest->as_xmm_float_reg(),
4037                ExternalAddress((address)float_signflip_pool),
4038                rscratch1);
4039     }
4040   } else if (dest->is_double_xmm()) {
4041 #ifdef _LP64
4042     if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {
4043       assert(tmp->is_valid(), "need temporary");
4044       assert_different_registers(left->as_xmm_double_reg(), tmp->as_xmm_double_reg());
4045       __ vpxor(dest->as_xmm_double_reg(), tmp->as_xmm_double_reg(), left->as_xmm_double_reg(), 2);
4046     }
4047     else
4048 #endif
4049     {
4050       assert(!tmp->is_valid(), "do not need temporary");
4051       if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
4052         __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
4053       }
4054       __ xorpd(dest->as_xmm_double_reg(),
4055                ExternalAddress((address)double_signflip_pool),
4056                rscratch1);
4057     }
4058 #ifndef _LP64
4059   } else if (left->is_single_fpu() || left->is_double_fpu()) {
4060     assert(left->fpu() == 0, "arg must be on TOS");
4061     assert(dest->fpu() == 0, "dest must be TOS");
4062     __ fchs();
4063 #endif // !_LP64
4064 
4065   } else {
4066     ShouldNotReachHere();
4067   }
4068 }
4069 
4070 
4071 void LIR_Assembler::leal(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
4072   assert(src->is_address(), "must be an address");
4073   assert(dest->is_register(), "must be a register");
4074 
4075   PatchingStub* patch = nullptr;
4076   if (patch_code != lir_patch_none) {
4077     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
4078   }
4079 
4080   Register reg = dest->as_pointer_register();
4081   LIR_Address* addr = src->as_address_ptr();
4082   __ lea(reg, as_Address(addr));
4083 
4084   if (patch != nullptr) {
4085     patching_epilog(patch, patch_code, addr->base()->as_register(), info);
4086   }
4087 }
4088 
4089 
4090 
4091 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
4092   assert(!tmp->is_valid(), "don't need temporary");
4093   __ call(RuntimeAddress(dest));
4094   if (info != nullptr) {
4095     add_call_info_here(info);
4096   }
4097   __ post_call_nop();
4098 }
4099 
4100 
4101 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
4102   assert(type == T_LONG, "only for volatile long fields");
4103 
4104   if (info != nullptr) {
4105     add_debug_info_for_null_check_here(info);
4106   }
4107 
4108   if (src->is_double_xmm()) {
4109     if (dest->is_double_cpu()) {
4110 #ifdef _LP64
4111       __ movdq(dest->as_register_lo(), src->as_xmm_double_reg());
4112 #else
4113       __ movdl(dest->as_register_lo(), src->as_xmm_double_reg());
4114       __ psrlq(src->as_xmm_double_reg(), 32);
4115       __ movdl(dest->as_register_hi(), src->as_xmm_double_reg());
4116 #endif // _LP64
4117     } else if (dest->is_double_stack()) {
4118       __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg());
4119     } else if (dest->is_address()) {
4120       __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg());
4121     } else {
4122       ShouldNotReachHere();
4123     }
4124 
4125   } else if (dest->is_double_xmm()) {
4126     if (src->is_double_stack()) {
4127       __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix()));
4128     } else if (src->is_address()) {
4129       __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr()));
4130     } else {
4131       ShouldNotReachHere();
4132     }
4133 
4134 #ifndef _LP64
4135   } else if (src->is_double_fpu()) {
4136     assert(src->fpu_regnrLo() == 0, "must be TOS");
4137     if (dest->is_double_stack()) {
4138       __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix()));
4139     } else if (dest->is_address()) {
4140       __ fistp_d(as_Address(dest->as_address_ptr()));
4141     } else {
4142       ShouldNotReachHere();
4143     }
4144 
4145   } else if (dest->is_double_fpu()) {
4146     assert(dest->fpu_regnrLo() == 0, "must be TOS");
4147     if (src->is_double_stack()) {
4148       __ fild_d(frame_map()->address_for_slot(src->double_stack_ix()));
4149     } else if (src->is_address()) {
4150       __ fild_d(as_Address(src->as_address_ptr()));
4151     } else {
4152       ShouldNotReachHere();
4153     }
4154 #endif // !_LP64
4155 
4156   } else {
4157     ShouldNotReachHere();
4158   }
4159 }
4160 
4161 #ifdef ASSERT
4162 // emit run-time assertion
4163 void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
4164   assert(op->code() == lir_assert, "must be");
4165 
4166   if (op->in_opr1()->is_valid()) {
4167     assert(op->in_opr2()->is_valid(), "both operands must be valid");
4168     comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op);
4169   } else {
4170     assert(op->in_opr2()->is_illegal(), "both operands must be illegal");
4171     assert(op->condition() == lir_cond_always, "no other conditions allowed");
4172   }
4173 
4174   Label ok;
4175   if (op->condition() != lir_cond_always) {
4176     Assembler::Condition acond = Assembler::zero;
4177     switch (op->condition()) {
4178       case lir_cond_equal:        acond = Assembler::equal;       break;
4179       case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
4180       case lir_cond_less:         acond = Assembler::less;        break;
4181       case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
4182       case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
4183       case lir_cond_greater:      acond = Assembler::greater;     break;
4184       case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
4185       case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
4186       default:                    ShouldNotReachHere();
4187     }
4188     __ jcc(acond, ok);
4189   }
4190   if (op->halt()) {
4191     const char* str = __ code_string(op->msg());
4192     __ stop(str);
4193   } else {
4194     breakpoint();
4195   }
4196   __ bind(ok);
4197 }
4198 #endif
4199 
4200 void LIR_Assembler::membar() {
4201   // QQQ sparc TSO uses this,
4202   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad));
4203 }
4204 
4205 void LIR_Assembler::membar_acquire() {
4206   // No x86 machines currently require load fences
4207 }
4208 
4209 void LIR_Assembler::membar_release() {
4210   // No x86 machines currently require store fences
4211 }
4212 
4213 void LIR_Assembler::membar_loadload() {
4214   // no-op
4215   //__ membar(Assembler::Membar_mask_bits(Assembler::loadload));
4216 }
4217 
4218 void LIR_Assembler::membar_storestore() {
4219   // no-op
4220   //__ membar(Assembler::Membar_mask_bits(Assembler::storestore));
4221 }
4222 
4223 void LIR_Assembler::membar_loadstore() {
4224   // no-op
4225   //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore));
4226 }
4227 
4228 void LIR_Assembler::membar_storeload() {
4229   __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
4230 }
4231 
4232 void LIR_Assembler::on_spin_wait() {
4233   __ pause ();
4234 }
4235 
4236 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
4237   assert(result_reg->is_register(), "check");
4238 #ifdef _LP64
4239   // __ get_thread(result_reg->as_register_lo());
4240   __ mov(result_reg->as_register(), r15_thread);
4241 #else
4242   __ get_thread(result_reg->as_register());
4243 #endif // _LP64
4244 }
4245 
4246 void LIR_Assembler::check_orig_pc() {
4247   __ cmpptr(frame_map()->address_for_orig_pc_addr(), NULL_WORD);
4248 }
4249 
4250 void LIR_Assembler::peephole(LIR_List*) {
4251   // do nothing for now
4252 }
4253 
4254 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) {
4255   assert(data == dest, "xchg/xadd uses only 2 operands");
4256 
4257   if (data->type() == T_INT) {
4258     if (code == lir_xadd) {
4259       __ lock();
4260       __ xaddl(as_Address(src->as_address_ptr()), data->as_register());
4261     } else {
4262       __ xchgl(data->as_register(), as_Address(src->as_address_ptr()));
4263     }
4264   } else if (data->is_oop()) {
4265     assert (code == lir_xchg, "xadd for oops");
4266     Register obj = data->as_register();
4267 #ifdef _LP64
4268     if (UseCompressedOops) {
4269       __ encode_heap_oop(obj);
4270       __ xchgl(obj, as_Address(src->as_address_ptr()));
4271       __ decode_heap_oop(obj);
4272     } else {
4273       __ xchgptr(obj, as_Address(src->as_address_ptr()));
4274     }
4275 #else
4276     __ xchgl(obj, as_Address(src->as_address_ptr()));
4277 #endif
4278   } else if (data->type() == T_LONG) {
4279 #ifdef _LP64
4280     assert(data->as_register_lo() == data->as_register_hi(), "should be a single register");
4281     if (code == lir_xadd) {
4282       __ lock();
4283       __ xaddq(as_Address(src->as_address_ptr()), data->as_register_lo());
4284     } else {
4285       __ xchgq(data->as_register_lo(), as_Address(src->as_address_ptr()));
4286     }
4287 #else
4288     ShouldNotReachHere();
4289 #endif
4290   } else {
4291     ShouldNotReachHere();
4292   }
4293 }
4294 
4295 #undef __