1 /* 2 * Copyright (c) 2000, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/macroAssembler.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "c1/c1_CodeStubs.hpp" 29 #include "c1/c1_Compilation.hpp" 30 #include "c1/c1_LIRAssembler.hpp" 31 #include "c1/c1_MacroAssembler.hpp" 32 #include "c1/c1_Runtime1.hpp" 33 #include "c1/c1_ValueStack.hpp" 34 #include "ci/ciArrayKlass.hpp" 35 #include "ci/ciInlineKlass.hpp" 36 #include "ci/ciInstance.hpp" 37 #include "compiler/oopMap.hpp" 38 #include "gc/shared/collectedHeap.hpp" 39 #include "gc/shared/gc_globals.hpp" 40 #include "nativeInst_x86.hpp" 41 #include "oops/oop.inline.hpp" 42 #include "oops/objArrayKlass.hpp" 43 #include "runtime/frame.inline.hpp" 44 #include "runtime/safepointMechanism.hpp" 45 #include "runtime/sharedRuntime.hpp" 46 #include "runtime/stubRoutines.hpp" 47 #include "utilities/powerOfTwo.hpp" 48 #include "vmreg_x86.inline.hpp" 49 50 51 // These masks are used to provide 128-bit aligned bitmasks to the XMM 52 // instructions, to allow sign-masking or sign-bit flipping. They allow 53 // fast versions of NegF/NegD and AbsF/AbsD. 54 55 // Note: 'double' and 'long long' have 32-bits alignment on x86. 56 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) { 57 // Use the expression (adr)&(~0xF) to provide 128-bits aligned address 58 // of 128-bits operands for SSE instructions. 59 jlong *operand = (jlong*)(((intptr_t)adr) & ((intptr_t)(~0xF))); 60 // Store the value to a 128-bits operand. 61 operand[0] = lo; 62 operand[1] = hi; 63 return operand; 64 } 65 66 // Buffer for 128-bits masks used by SSE instructions. 67 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment) 68 69 // Static initialization during VM startup. 70 static jlong *float_signmask_pool = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF)); 71 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF)); 72 static jlong *float_signflip_pool = double_quadword(&fp_signmask_pool[3*2], (jlong)UCONST64(0x8000000080000000), (jlong)UCONST64(0x8000000080000000)); 73 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], (jlong)UCONST64(0x8000000000000000), (jlong)UCONST64(0x8000000000000000)); 74 75 76 NEEDS_CLEANUP // remove this definitions ? 77 const Register IC_Klass = rax; // where the IC klass is cached 78 const Register SYNC_header = rax; // synchronization header 79 const Register SHIFT_count = rcx; // where count for shift operations must be 80 81 #define __ _masm-> 82 83 84 static void select_different_registers(Register preserve, 85 Register extra, 86 Register &tmp1, 87 Register &tmp2) { 88 if (tmp1 == preserve) { 89 assert_different_registers(tmp1, tmp2, extra); 90 tmp1 = extra; 91 } else if (tmp2 == preserve) { 92 assert_different_registers(tmp1, tmp2, extra); 93 tmp2 = extra; 94 } 95 assert_different_registers(preserve, tmp1, tmp2); 96 } 97 98 99 100 static void select_different_registers(Register preserve, 101 Register extra, 102 Register &tmp1, 103 Register &tmp2, 104 Register &tmp3) { 105 if (tmp1 == preserve) { 106 assert_different_registers(tmp1, tmp2, tmp3, extra); 107 tmp1 = extra; 108 } else if (tmp2 == preserve) { 109 assert_different_registers(tmp1, tmp2, tmp3, extra); 110 tmp2 = extra; 111 } else if (tmp3 == preserve) { 112 assert_different_registers(tmp1, tmp2, tmp3, extra); 113 tmp3 = extra; 114 } 115 assert_different_registers(preserve, tmp1, tmp2, tmp3); 116 } 117 118 119 120 bool LIR_Assembler::is_small_constant(LIR_Opr opr) { 121 if (opr->is_constant()) { 122 LIR_Const* constant = opr->as_constant_ptr(); 123 switch (constant->type()) { 124 case T_INT: { 125 return true; 126 } 127 128 default: 129 return false; 130 } 131 } 132 return false; 133 } 134 135 136 LIR_Opr LIR_Assembler::receiverOpr() { 137 return FrameMap::receiver_opr; 138 } 139 140 LIR_Opr LIR_Assembler::osrBufferPointer() { 141 return FrameMap::as_pointer_opr(receiverOpr()->as_register()); 142 } 143 144 //--------------fpu register translations----------------------- 145 146 147 address LIR_Assembler::float_constant(float f) { 148 address const_addr = __ float_constant(f); 149 if (const_addr == nullptr) { 150 bailout("const section overflow"); 151 return __ code()->consts()->start(); 152 } else { 153 return const_addr; 154 } 155 } 156 157 158 address LIR_Assembler::double_constant(double d) { 159 address const_addr = __ double_constant(d); 160 if (const_addr == nullptr) { 161 bailout("const section overflow"); 162 return __ code()->consts()->start(); 163 } else { 164 return const_addr; 165 } 166 } 167 168 #ifndef _LP64 169 void LIR_Assembler::fpop() { 170 __ fpop(); 171 } 172 173 void LIR_Assembler::fxch(int i) { 174 __ fxch(i); 175 } 176 177 void LIR_Assembler::fld(int i) { 178 __ fld_s(i); 179 } 180 181 void LIR_Assembler::ffree(int i) { 182 __ ffree(i); 183 } 184 #endif // !_LP64 185 186 void LIR_Assembler::breakpoint() { 187 __ int3(); 188 } 189 190 void LIR_Assembler::push(LIR_Opr opr) { 191 if (opr->is_single_cpu()) { 192 __ push_reg(opr->as_register()); 193 } else if (opr->is_double_cpu()) { 194 NOT_LP64(__ push_reg(opr->as_register_hi())); 195 __ push_reg(opr->as_register_lo()); 196 } else if (opr->is_stack()) { 197 __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix())); 198 } else if (opr->is_constant()) { 199 LIR_Const* const_opr = opr->as_constant_ptr(); 200 if (const_opr->type() == T_OBJECT || const_opr->type() == T_PRIMITIVE_OBJECT) { 201 __ push_oop(const_opr->as_jobject(), rscratch1); 202 } else if (const_opr->type() == T_INT) { 203 __ push_jint(const_opr->as_jint()); 204 } else { 205 ShouldNotReachHere(); 206 } 207 208 } else { 209 ShouldNotReachHere(); 210 } 211 } 212 213 void LIR_Assembler::pop(LIR_Opr opr) { 214 if (opr->is_single_cpu()) { 215 __ pop_reg(opr->as_register()); 216 } else { 217 ShouldNotReachHere(); 218 } 219 } 220 221 bool LIR_Assembler::is_literal_address(LIR_Address* addr) { 222 return addr->base()->is_illegal() && addr->index()->is_illegal(); 223 } 224 225 //------------------------------------------- 226 227 Address LIR_Assembler::as_Address(LIR_Address* addr) { 228 return as_Address(addr, rscratch1); 229 } 230 231 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) { 232 if (addr->base()->is_illegal()) { 233 assert(addr->index()->is_illegal(), "must be illegal too"); 234 AddressLiteral laddr((address)addr->disp(), relocInfo::none); 235 if (! __ reachable(laddr)) { 236 __ movptr(tmp, laddr.addr()); 237 Address res(tmp, 0); 238 return res; 239 } else { 240 return __ as_Address(laddr); 241 } 242 } 243 244 Register base = addr->base()->as_pointer_register(); 245 246 if (addr->index()->is_illegal()) { 247 return Address( base, addr->disp()); 248 } else if (addr->index()->is_cpu_register()) { 249 Register index = addr->index()->as_pointer_register(); 250 return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp()); 251 } else if (addr->index()->is_constant()) { 252 intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp(); 253 assert(Assembler::is_simm32(addr_offset), "must be"); 254 255 return Address(base, addr_offset); 256 } else { 257 Unimplemented(); 258 return Address(); 259 } 260 } 261 262 263 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) { 264 Address base = as_Address(addr); 265 return Address(base._base, base._index, base._scale, base._disp + BytesPerWord); 266 } 267 268 269 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) { 270 return as_Address(addr); 271 } 272 273 274 void LIR_Assembler::osr_entry() { 275 offsets()->set_value(CodeOffsets::OSR_Entry, code_offset()); 276 BlockBegin* osr_entry = compilation()->hir()->osr_entry(); 277 ValueStack* entry_state = osr_entry->state(); 278 int number_of_locks = entry_state->locks_size(); 279 280 // we jump here if osr happens with the interpreter 281 // state set up to continue at the beginning of the 282 // loop that triggered osr - in particular, we have 283 // the following registers setup: 284 // 285 // rcx: osr buffer 286 // 287 288 // build frame 289 ciMethod* m = compilation()->method(); 290 __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes()); 291 292 // OSR buffer is 293 // 294 // locals[nlocals-1..0] 295 // monitors[0..number_of_locks] 296 // 297 // locals is a direct copy of the interpreter frame so in the osr buffer 298 // so first slot in the local array is the last local from the interpreter 299 // and last slot is local[0] (receiver) from the interpreter 300 // 301 // Similarly with locks. The first lock slot in the osr buffer is the nth lock 302 // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock 303 // in the interpreter frame (the method lock if a sync method) 304 305 // Initialize monitors in the compiled activation. 306 // rcx: pointer to osr buffer 307 // 308 // All other registers are dead at this point and the locals will be 309 // copied into place by code emitted in the IR. 310 311 Register OSR_buf = osrBufferPointer()->as_pointer_register(); 312 { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below"); 313 int monitor_offset = BytesPerWord * method()->max_locals() + 314 (BasicObjectLock::size() * BytesPerWord) * (number_of_locks - 1); 315 // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in 316 // the OSR buffer using 2 word entries: first the lock and then 317 // the oop. 318 for (int i = 0; i < number_of_locks; i++) { 319 int slot_offset = monitor_offset - ((i * 2) * BytesPerWord); 320 #ifdef ASSERT 321 // verify the interpreter's monitor has a non-null object 322 { 323 Label L; 324 __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), NULL_WORD); 325 __ jcc(Assembler::notZero, L); 326 __ stop("locked object is null"); 327 __ bind(L); 328 } 329 #endif 330 __ movptr(rbx, Address(OSR_buf, slot_offset + 0)); 331 __ movptr(frame_map()->address_for_monitor_lock(i), rbx); 332 __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord)); 333 __ movptr(frame_map()->address_for_monitor_object(i), rbx); 334 } 335 } 336 } 337 338 339 // inline cache check; done before the frame is built. 340 int LIR_Assembler::check_icache() { 341 Register receiver = FrameMap::receiver_opr->as_register(); 342 Register ic_klass = IC_Klass; 343 const int ic_cmp_size = LP64_ONLY(10) NOT_LP64(9); 344 const bool do_post_padding = VerifyOops || UseCompressedClassPointers; 345 if (!do_post_padding) { 346 // insert some nops so that the verified entry point is aligned on CodeEntryAlignment 347 __ align(CodeEntryAlignment, __ offset() + ic_cmp_size); 348 } 349 int offset = __ offset(); 350 __ inline_cache_check(receiver, IC_Klass); 351 assert(__ offset() % CodeEntryAlignment == 0 || do_post_padding, "alignment must be correct"); 352 if (do_post_padding) { 353 // force alignment after the cache check. 354 // It's been verified to be aligned if !VerifyOops 355 __ align(CodeEntryAlignment); 356 } 357 return offset; 358 } 359 360 void LIR_Assembler::clinit_barrier(ciMethod* method) { 361 assert(VM_Version::supports_fast_class_init_checks(), "sanity"); 362 assert(!method->holder()->is_not_initialized(), "initialization should have been started"); 363 364 Label L_skip_barrier; 365 Register klass = rscratch1; 366 Register thread = LP64_ONLY( r15_thread ) NOT_LP64( noreg ); 367 assert(thread != noreg, "x86_32 not implemented"); 368 369 __ mov_metadata(klass, method->holder()->constant_encoding()); 370 __ clinit_barrier(klass, thread, &L_skip_barrier /*L_fast_path*/); 371 372 __ jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); 373 374 __ bind(L_skip_barrier); 375 } 376 377 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) { 378 jobject o = nullptr; 379 PatchingStub* patch = new PatchingStub(_masm, patching_id(info)); 380 __ movoop(reg, o); 381 patching_epilog(patch, lir_patch_normal, reg, info); 382 } 383 384 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) { 385 Metadata* o = nullptr; 386 PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id); 387 __ mov_metadata(reg, o); 388 patching_epilog(patch, lir_patch_normal, reg, info); 389 } 390 391 // This specifies the rsp decrement needed to build the frame 392 int LIR_Assembler::initial_frame_size_in_bytes() const { 393 // if rounding, must let FrameMap know! 394 395 // The frame_map records size in slots (32bit word) 396 397 // subtract two words to account for return address and link 398 return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word)) * VMRegImpl::stack_slot_size; 399 } 400 401 402 int LIR_Assembler::emit_exception_handler() { 403 // generate code for exception handler 404 address handler_base = __ start_a_stub(exception_handler_size()); 405 if (handler_base == nullptr) { 406 // not enough space left for the handler 407 bailout("exception handler overflow"); 408 return -1; 409 } 410 411 int offset = code_offset(); 412 413 // the exception oop and pc are in rax, and rdx 414 // no other registers need to be preserved, so invalidate them 415 __ invalidate_registers(false, true, true, false, true, true); 416 417 // check that there is really an exception 418 __ verify_not_null_oop(rax); 419 420 // search an exception handler (rax: exception oop, rdx: throwing pc) 421 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id))); 422 __ should_not_reach_here(); 423 guarantee(code_offset() - offset <= exception_handler_size(), "overflow"); 424 __ end_a_stub(); 425 426 return offset; 427 } 428 429 430 // Emit the code to remove the frame from the stack in the exception 431 // unwind path. 432 int LIR_Assembler::emit_unwind_handler() { 433 #ifndef PRODUCT 434 if (CommentedAssembly) { 435 _masm->block_comment("Unwind handler"); 436 } 437 #endif 438 439 int offset = code_offset(); 440 441 // Fetch the exception from TLS and clear out exception related thread state 442 Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread); 443 NOT_LP64(__ get_thread(thread)); 444 __ movptr(rax, Address(thread, JavaThread::exception_oop_offset())); 445 __ movptr(Address(thread, JavaThread::exception_oop_offset()), NULL_WORD); 446 __ movptr(Address(thread, JavaThread::exception_pc_offset()), NULL_WORD); 447 448 __ bind(_unwind_handler_entry); 449 __ verify_not_null_oop(rax); 450 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) { 451 __ mov(rbx, rax); // Preserve the exception (rbx is always callee-saved) 452 } 453 454 // Perform needed unlocking 455 MonitorExitStub* stub = nullptr; 456 if (method()->is_synchronized()) { 457 monitor_address(0, FrameMap::rax_opr); 458 stub = new MonitorExitStub(FrameMap::rax_opr, true, 0); 459 if (LockingMode == LM_MONITOR) { 460 __ jmp(*stub->entry()); 461 } else { 462 __ unlock_object(rdi, rsi, rax, *stub->entry()); 463 } 464 __ bind(*stub->continuation()); 465 } 466 467 if (compilation()->env()->dtrace_method_probes()) { 468 #ifdef _LP64 469 __ mov(rdi, r15_thread); 470 __ mov_metadata(rsi, method()->constant_encoding()); 471 #else 472 __ get_thread(rax); 473 __ movptr(Address(rsp, 0), rax); 474 __ mov_metadata(Address(rsp, sizeof(void*)), method()->constant_encoding(), noreg); 475 #endif 476 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit))); 477 } 478 479 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) { 480 __ mov(rax, rbx); // Restore the exception 481 } 482 483 // remove the activation and dispatch to the unwind handler 484 __ remove_frame(initial_frame_size_in_bytes(), needs_stack_repair()); 485 __ jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id))); 486 487 // Emit the slow path assembly 488 if (stub != nullptr) { 489 stub->emit_code(this); 490 } 491 492 return offset; 493 } 494 495 496 int LIR_Assembler::emit_deopt_handler() { 497 // generate code for exception handler 498 address handler_base = __ start_a_stub(deopt_handler_size()); 499 if (handler_base == nullptr) { 500 // not enough space left for the handler 501 bailout("deopt handler overflow"); 502 return -1; 503 } 504 505 int offset = code_offset(); 506 InternalAddress here(__ pc()); 507 508 __ pushptr(here.addr(), rscratch1); 509 __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack())); 510 guarantee(code_offset() - offset <= deopt_handler_size(), "overflow"); 511 __ end_a_stub(); 512 513 return offset; 514 } 515 516 void LIR_Assembler::return_op(LIR_Opr result, C1SafepointPollStub* code_stub) { 517 assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,"); 518 if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) { 519 assert(result->fpu() == 0, "result must already be on TOS"); 520 } 521 if (InlineTypeReturnedAsFields) { 522 #ifndef _LP64 523 Unimplemented(); 524 #endif 525 // Check if we are returning an non-null inline type and load its fields into registers 526 ciType* return_type = compilation()->method()->return_type(); 527 if (return_type->is_inlinetype()) { 528 ciInlineKlass* vk = return_type->as_inline_klass(); 529 if (vk->can_be_returned_as_fields()) { 530 address unpack_handler = vk->unpack_handler(); 531 assert(unpack_handler != nullptr, "must be"); 532 __ call(RuntimeAddress(unpack_handler)); 533 } 534 } else if (return_type->is_instance_klass() && (!return_type->is_loaded() || StressCallingConvention)) { 535 Label skip; 536 __ test_oop_is_not_inline_type(rax, rscratch1, skip); 537 538 // Load fields from a buffered value with an inline class specific handler 539 __ load_klass(rdi, rax, rscratch1); 540 __ movptr(rdi, Address(rdi, InstanceKlass::adr_inlineklass_fixed_block_offset())); 541 __ movptr(rdi, Address(rdi, InlineKlass::unpack_handler_offset())); 542 // Unpack handler can be null if inline type is not scalarizable in returns 543 __ testptr(rdi, rdi); 544 __ jcc(Assembler::zero, skip); 545 __ call(rdi); 546 547 __ bind(skip); 548 } 549 // At this point, rax points to the value object (for interpreter or C1 caller). 550 // The fields of the object are copied into registers (for C2 caller). 551 } 552 553 // Pop the stack before the safepoint code 554 __ remove_frame(initial_frame_size_in_bytes(), needs_stack_repair()); 555 556 if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) { 557 __ reserved_stack_check(); 558 } 559 560 // Note: we do not need to round double result; float result has the right precision 561 // the poll sets the condition code, but no data registers 562 563 #ifdef _LP64 564 const Register thread = r15_thread; 565 #else 566 const Register thread = rbx; 567 __ get_thread(thread); 568 #endif 569 code_stub->set_safepoint_offset(__ offset()); 570 __ relocate(relocInfo::poll_return_type); 571 __ safepoint_poll(*code_stub->entry(), thread, true /* at_return */, true /* in_nmethod */); 572 __ ret(0); 573 } 574 575 576 int LIR_Assembler::store_inline_type_fields_to_buf(ciInlineKlass* vk) { 577 return (__ store_inline_type_fields_to_buf(vk, false)); 578 } 579 580 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) { 581 guarantee(info != nullptr, "Shouldn't be null"); 582 int offset = __ offset(); 583 #ifdef _LP64 584 const Register poll_addr = rscratch1; 585 __ movptr(poll_addr, Address(r15_thread, JavaThread::polling_page_offset())); 586 #else 587 assert(tmp->is_cpu_register(), "needed"); 588 const Register poll_addr = tmp->as_register(); 589 __ get_thread(poll_addr); 590 __ movptr(poll_addr, Address(poll_addr, in_bytes(JavaThread::polling_page_offset()))); 591 #endif 592 add_debug_info_for_branch(info); 593 __ relocate(relocInfo::poll_type); 594 address pre_pc = __ pc(); 595 __ testl(rax, Address(poll_addr, 0)); 596 address post_pc = __ pc(); 597 guarantee(pointer_delta(post_pc, pre_pc, 1) == 2 LP64_ONLY(+1), "must be exact length"); 598 return offset; 599 } 600 601 602 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) { 603 if (from_reg != to_reg) __ mov(to_reg, from_reg); 604 } 605 606 void LIR_Assembler::swap_reg(Register a, Register b) { 607 __ xchgptr(a, b); 608 } 609 610 611 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) { 612 assert(src->is_constant(), "should not call otherwise"); 613 assert(dest->is_register(), "should not call otherwise"); 614 LIR_Const* c = src->as_constant_ptr(); 615 616 switch (c->type()) { 617 case T_INT: { 618 assert(patch_code == lir_patch_none, "no patching handled here"); 619 __ movl(dest->as_register(), c->as_jint()); 620 break; 621 } 622 623 case T_ADDRESS: { 624 assert(patch_code == lir_patch_none, "no patching handled here"); 625 __ movptr(dest->as_register(), c->as_jint()); 626 break; 627 } 628 629 case T_LONG: { 630 assert(patch_code == lir_patch_none, "no patching handled here"); 631 #ifdef _LP64 632 __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong()); 633 #else 634 __ movptr(dest->as_register_lo(), c->as_jint_lo()); 635 __ movptr(dest->as_register_hi(), c->as_jint_hi()); 636 #endif // _LP64 637 break; 638 } 639 640 case T_PRIMITIVE_OBJECT: // Fall through 641 case T_OBJECT: { 642 if (patch_code != lir_patch_none) { 643 jobject2reg_with_patching(dest->as_register(), info); 644 } else { 645 __ movoop(dest->as_register(), c->as_jobject()); 646 } 647 break; 648 } 649 650 case T_METADATA: { 651 if (patch_code != lir_patch_none) { 652 klass2reg_with_patching(dest->as_register(), info); 653 } else { 654 __ mov_metadata(dest->as_register(), c->as_metadata()); 655 } 656 break; 657 } 658 659 case T_FLOAT: { 660 if (dest->is_single_xmm()) { 661 if (LP64_ONLY(UseAVX <= 2 &&) c->is_zero_float()) { 662 __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg()); 663 } else { 664 __ movflt(dest->as_xmm_float_reg(), 665 InternalAddress(float_constant(c->as_jfloat()))); 666 } 667 } else { 668 #ifndef _LP64 669 assert(dest->is_single_fpu(), "must be"); 670 assert(dest->fpu_regnr() == 0, "dest must be TOS"); 671 if (c->is_zero_float()) { 672 __ fldz(); 673 } else if (c->is_one_float()) { 674 __ fld1(); 675 } else { 676 __ fld_s (InternalAddress(float_constant(c->as_jfloat()))); 677 } 678 #else 679 ShouldNotReachHere(); 680 #endif // !_LP64 681 } 682 break; 683 } 684 685 case T_DOUBLE: { 686 if (dest->is_double_xmm()) { 687 if (LP64_ONLY(UseAVX <= 2 &&) c->is_zero_double()) { 688 __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg()); 689 } else { 690 __ movdbl(dest->as_xmm_double_reg(), 691 InternalAddress(double_constant(c->as_jdouble()))); 692 } 693 } else { 694 #ifndef _LP64 695 assert(dest->is_double_fpu(), "must be"); 696 assert(dest->fpu_regnrLo() == 0, "dest must be TOS"); 697 if (c->is_zero_double()) { 698 __ fldz(); 699 } else if (c->is_one_double()) { 700 __ fld1(); 701 } else { 702 __ fld_d (InternalAddress(double_constant(c->as_jdouble()))); 703 } 704 #else 705 ShouldNotReachHere(); 706 #endif // !_LP64 707 } 708 break; 709 } 710 711 default: 712 ShouldNotReachHere(); 713 } 714 } 715 716 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) { 717 assert(src->is_constant(), "should not call otherwise"); 718 assert(dest->is_stack(), "should not call otherwise"); 719 LIR_Const* c = src->as_constant_ptr(); 720 721 switch (c->type()) { 722 case T_INT: // fall through 723 case T_FLOAT: 724 __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits()); 725 break; 726 727 case T_ADDRESS: 728 __ movptr(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits()); 729 break; 730 731 case T_PRIMITIVE_OBJECT: // Fall through 732 case T_OBJECT: 733 __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject(), rscratch1); 734 break; 735 736 case T_LONG: // fall through 737 case T_DOUBLE: 738 #ifdef _LP64 739 __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(), 740 lo_word_offset_in_bytes), 741 (intptr_t)c->as_jlong_bits(), 742 rscratch1); 743 #else 744 __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(), 745 lo_word_offset_in_bytes), c->as_jint_lo_bits()); 746 __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(), 747 hi_word_offset_in_bytes), c->as_jint_hi_bits()); 748 #endif // _LP64 749 break; 750 751 default: 752 ShouldNotReachHere(); 753 } 754 } 755 756 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) { 757 assert(src->is_constant(), "should not call otherwise"); 758 assert(dest->is_address(), "should not call otherwise"); 759 LIR_Const* c = src->as_constant_ptr(); 760 LIR_Address* addr = dest->as_address_ptr(); 761 762 int null_check_here = code_offset(); 763 switch (type) { 764 case T_INT: // fall through 765 case T_FLOAT: 766 __ movl(as_Address(addr), c->as_jint_bits()); 767 break; 768 769 case T_ADDRESS: 770 __ movptr(as_Address(addr), c->as_jint_bits()); 771 break; 772 773 case T_PRIMITIVE_OBJECT: // fall through 774 case T_OBJECT: // fall through 775 case T_ARRAY: 776 if (c->as_jobject() == nullptr) { 777 if (UseCompressedOops && !wide) { 778 __ movl(as_Address(addr), NULL_WORD); 779 } else { 780 #ifdef _LP64 781 __ xorptr(rscratch1, rscratch1); 782 null_check_here = code_offset(); 783 __ movptr(as_Address(addr), rscratch1); 784 #else 785 __ movptr(as_Address(addr), NULL_WORD); 786 #endif 787 } 788 } else { 789 if (is_literal_address(addr)) { 790 ShouldNotReachHere(); 791 __ movoop(as_Address(addr, noreg), c->as_jobject(), rscratch1); 792 } else { 793 #ifdef _LP64 794 __ movoop(rscratch1, c->as_jobject()); 795 if (UseCompressedOops && !wide) { 796 __ encode_heap_oop(rscratch1); 797 null_check_here = code_offset(); 798 __ movl(as_Address_lo(addr), rscratch1); 799 } else { 800 null_check_here = code_offset(); 801 __ movptr(as_Address_lo(addr), rscratch1); 802 } 803 #else 804 __ movoop(as_Address(addr), c->as_jobject(), noreg); 805 #endif 806 } 807 } 808 break; 809 810 case T_LONG: // fall through 811 case T_DOUBLE: 812 #ifdef _LP64 813 if (is_literal_address(addr)) { 814 ShouldNotReachHere(); 815 __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits()); 816 } else { 817 __ movptr(r10, (intptr_t)c->as_jlong_bits()); 818 null_check_here = code_offset(); 819 __ movptr(as_Address_lo(addr), r10); 820 } 821 #else 822 // Always reachable in 32bit so this doesn't produce useless move literal 823 __ movptr(as_Address_hi(addr), c->as_jint_hi_bits()); 824 __ movptr(as_Address_lo(addr), c->as_jint_lo_bits()); 825 #endif // _LP64 826 break; 827 828 case T_BOOLEAN: // fall through 829 case T_BYTE: 830 __ movb(as_Address(addr), c->as_jint() & 0xFF); 831 break; 832 833 case T_CHAR: // fall through 834 case T_SHORT: 835 __ movw(as_Address(addr), c->as_jint() & 0xFFFF); 836 break; 837 838 default: 839 ShouldNotReachHere(); 840 }; 841 842 if (info != nullptr) { 843 add_debug_info_for_null_check(null_check_here, info); 844 } 845 } 846 847 848 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) { 849 assert(src->is_register(), "should not call otherwise"); 850 assert(dest->is_register(), "should not call otherwise"); 851 852 // move between cpu-registers 853 if (dest->is_single_cpu()) { 854 #ifdef _LP64 855 if (src->type() == T_LONG) { 856 // Can do LONG -> OBJECT 857 move_regs(src->as_register_lo(), dest->as_register()); 858 return; 859 } 860 #endif 861 assert(src->is_single_cpu(), "must match"); 862 if (src->type() == T_OBJECT || src->type() == T_PRIMITIVE_OBJECT) { 863 __ verify_oop(src->as_register()); 864 } 865 move_regs(src->as_register(), dest->as_register()); 866 867 } else if (dest->is_double_cpu()) { 868 #ifdef _LP64 869 if (is_reference_type(src->type())) { 870 // Surprising to me but we can see move of a long to t_object 871 __ verify_oop(src->as_register()); 872 move_regs(src->as_register(), dest->as_register_lo()); 873 return; 874 } 875 #endif 876 assert(src->is_double_cpu(), "must match"); 877 Register f_lo = src->as_register_lo(); 878 Register f_hi = src->as_register_hi(); 879 Register t_lo = dest->as_register_lo(); 880 Register t_hi = dest->as_register_hi(); 881 #ifdef _LP64 882 assert(f_hi == f_lo, "must be same"); 883 assert(t_hi == t_lo, "must be same"); 884 move_regs(f_lo, t_lo); 885 #else 886 assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation"); 887 888 889 if (f_lo == t_hi && f_hi == t_lo) { 890 swap_reg(f_lo, f_hi); 891 } else if (f_hi == t_lo) { 892 assert(f_lo != t_hi, "overwriting register"); 893 move_regs(f_hi, t_hi); 894 move_regs(f_lo, t_lo); 895 } else { 896 assert(f_hi != t_lo, "overwriting register"); 897 move_regs(f_lo, t_lo); 898 move_regs(f_hi, t_hi); 899 } 900 #endif // LP64 901 902 #ifndef _LP64 903 // special moves from fpu-register to xmm-register 904 // necessary for method results 905 } else if (src->is_single_xmm() && !dest->is_single_xmm()) { 906 __ movflt(Address(rsp, 0), src->as_xmm_float_reg()); 907 __ fld_s(Address(rsp, 0)); 908 } else if (src->is_double_xmm() && !dest->is_double_xmm()) { 909 __ movdbl(Address(rsp, 0), src->as_xmm_double_reg()); 910 __ fld_d(Address(rsp, 0)); 911 } else if (dest->is_single_xmm() && !src->is_single_xmm()) { 912 __ fstp_s(Address(rsp, 0)); 913 __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0)); 914 } else if (dest->is_double_xmm() && !src->is_double_xmm()) { 915 __ fstp_d(Address(rsp, 0)); 916 __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0)); 917 #endif // !_LP64 918 919 // move between xmm-registers 920 } else if (dest->is_single_xmm()) { 921 assert(src->is_single_xmm(), "must match"); 922 __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg()); 923 } else if (dest->is_double_xmm()) { 924 assert(src->is_double_xmm(), "must match"); 925 __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg()); 926 927 #ifndef _LP64 928 // move between fpu-registers (no instruction necessary because of fpu-stack) 929 } else if (dest->is_single_fpu() || dest->is_double_fpu()) { 930 assert(src->is_single_fpu() || src->is_double_fpu(), "must match"); 931 assert(src->fpu() == dest->fpu(), "currently should be nothing to do"); 932 #endif // !_LP64 933 934 } else { 935 ShouldNotReachHere(); 936 } 937 } 938 939 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) { 940 assert(src->is_register(), "should not call otherwise"); 941 assert(dest->is_stack(), "should not call otherwise"); 942 943 if (src->is_single_cpu()) { 944 Address dst = frame_map()->address_for_slot(dest->single_stack_ix()); 945 if (is_reference_type(type)) { 946 __ verify_oop(src->as_register()); 947 __ movptr (dst, src->as_register()); 948 } else if (type == T_METADATA || type == T_ADDRESS) { 949 __ movptr (dst, src->as_register()); 950 } else { 951 __ movl (dst, src->as_register()); 952 } 953 954 } else if (src->is_double_cpu()) { 955 Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes); 956 Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes); 957 __ movptr (dstLO, src->as_register_lo()); 958 NOT_LP64(__ movptr (dstHI, src->as_register_hi())); 959 960 } else if (src->is_single_xmm()) { 961 Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix()); 962 __ movflt(dst_addr, src->as_xmm_float_reg()); 963 964 } else if (src->is_double_xmm()) { 965 Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix()); 966 __ movdbl(dst_addr, src->as_xmm_double_reg()); 967 968 #ifndef _LP64 969 } else if (src->is_single_fpu()) { 970 assert(src->fpu_regnr() == 0, "argument must be on TOS"); 971 Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix()); 972 if (pop_fpu_stack) __ fstp_s (dst_addr); 973 else __ fst_s (dst_addr); 974 975 } else if (src->is_double_fpu()) { 976 assert(src->fpu_regnrLo() == 0, "argument must be on TOS"); 977 Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix()); 978 if (pop_fpu_stack) __ fstp_d (dst_addr); 979 else __ fst_d (dst_addr); 980 #endif // !_LP64 981 982 } else { 983 ShouldNotReachHere(); 984 } 985 } 986 987 988 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide) { 989 LIR_Address* to_addr = dest->as_address_ptr(); 990 PatchingStub* patch = nullptr; 991 Register compressed_src = rscratch1; 992 993 if (is_reference_type(type)) { 994 __ verify_oop(src->as_register()); 995 #ifdef _LP64 996 if (UseCompressedOops && !wide) { 997 __ movptr(compressed_src, src->as_register()); 998 __ encode_heap_oop(compressed_src); 999 if (patch_code != lir_patch_none) { 1000 info->oop_map()->set_narrowoop(compressed_src->as_VMReg()); 1001 } 1002 } 1003 #endif 1004 } 1005 1006 if (patch_code != lir_patch_none) { 1007 patch = new PatchingStub(_masm, PatchingStub::access_field_id); 1008 Address toa = as_Address(to_addr); 1009 assert(toa.disp() != 0, "must have"); 1010 } 1011 1012 int null_check_here = code_offset(); 1013 switch (type) { 1014 case T_FLOAT: { 1015 #ifdef _LP64 1016 assert(src->is_single_xmm(), "not a float"); 1017 __ movflt(as_Address(to_addr), src->as_xmm_float_reg()); 1018 #else 1019 if (src->is_single_xmm()) { 1020 __ movflt(as_Address(to_addr), src->as_xmm_float_reg()); 1021 } else { 1022 assert(src->is_single_fpu(), "must be"); 1023 assert(src->fpu_regnr() == 0, "argument must be on TOS"); 1024 if (pop_fpu_stack) __ fstp_s(as_Address(to_addr)); 1025 else __ fst_s (as_Address(to_addr)); 1026 } 1027 #endif // _LP64 1028 break; 1029 } 1030 1031 case T_DOUBLE: { 1032 #ifdef _LP64 1033 assert(src->is_double_xmm(), "not a double"); 1034 __ movdbl(as_Address(to_addr), src->as_xmm_double_reg()); 1035 #else 1036 if (src->is_double_xmm()) { 1037 __ movdbl(as_Address(to_addr), src->as_xmm_double_reg()); 1038 } else { 1039 assert(src->is_double_fpu(), "must be"); 1040 assert(src->fpu_regnrLo() == 0, "argument must be on TOS"); 1041 if (pop_fpu_stack) __ fstp_d(as_Address(to_addr)); 1042 else __ fst_d (as_Address(to_addr)); 1043 } 1044 #endif // _LP64 1045 break; 1046 } 1047 1048 case T_PRIMITIVE_OBJECT: // fall through 1049 case T_ARRAY: // fall through 1050 case T_OBJECT: // fall through 1051 if (UseCompressedOops && !wide) { 1052 __ movl(as_Address(to_addr), compressed_src); 1053 } else { 1054 __ movptr(as_Address(to_addr), src->as_register()); 1055 } 1056 break; 1057 case T_METADATA: 1058 // We get here to store a method pointer to the stack to pass to 1059 // a dtrace runtime call. This can't work on 64 bit with 1060 // compressed klass ptrs: T_METADATA can be a compressed klass 1061 // ptr or a 64 bit method pointer. 1062 LP64_ONLY(ShouldNotReachHere()); 1063 __ movptr(as_Address(to_addr), src->as_register()); 1064 break; 1065 case T_ADDRESS: 1066 __ movptr(as_Address(to_addr), src->as_register()); 1067 break; 1068 case T_INT: 1069 __ movl(as_Address(to_addr), src->as_register()); 1070 break; 1071 1072 case T_LONG: { 1073 Register from_lo = src->as_register_lo(); 1074 Register from_hi = src->as_register_hi(); 1075 #ifdef _LP64 1076 __ movptr(as_Address_lo(to_addr), from_lo); 1077 #else 1078 Register base = to_addr->base()->as_register(); 1079 Register index = noreg; 1080 if (to_addr->index()->is_register()) { 1081 index = to_addr->index()->as_register(); 1082 } 1083 if (base == from_lo || index == from_lo) { 1084 assert(base != from_hi, "can't be"); 1085 assert(index == noreg || (index != base && index != from_hi), "can't handle this"); 1086 __ movl(as_Address_hi(to_addr), from_hi); 1087 if (patch != nullptr) { 1088 patching_epilog(patch, lir_patch_high, base, info); 1089 patch = new PatchingStub(_masm, PatchingStub::access_field_id); 1090 patch_code = lir_patch_low; 1091 } 1092 __ movl(as_Address_lo(to_addr), from_lo); 1093 } else { 1094 assert(index == noreg || (index != base && index != from_lo), "can't handle this"); 1095 __ movl(as_Address_lo(to_addr), from_lo); 1096 if (patch != nullptr) { 1097 patching_epilog(patch, lir_patch_low, base, info); 1098 patch = new PatchingStub(_masm, PatchingStub::access_field_id); 1099 patch_code = lir_patch_high; 1100 } 1101 __ movl(as_Address_hi(to_addr), from_hi); 1102 } 1103 #endif // _LP64 1104 break; 1105 } 1106 1107 case T_BYTE: // fall through 1108 case T_BOOLEAN: { 1109 Register src_reg = src->as_register(); 1110 Address dst_addr = as_Address(to_addr); 1111 assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6"); 1112 __ movb(dst_addr, src_reg); 1113 break; 1114 } 1115 1116 case T_CHAR: // fall through 1117 case T_SHORT: 1118 __ movw(as_Address(to_addr), src->as_register()); 1119 break; 1120 1121 default: 1122 ShouldNotReachHere(); 1123 } 1124 if (info != nullptr) { 1125 add_debug_info_for_null_check(null_check_here, info); 1126 } 1127 1128 if (patch_code != lir_patch_none) { 1129 patching_epilog(patch, patch_code, to_addr->base()->as_register(), info); 1130 } 1131 } 1132 1133 1134 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) { 1135 assert(src->is_stack(), "should not call otherwise"); 1136 assert(dest->is_register(), "should not call otherwise"); 1137 1138 if (dest->is_single_cpu()) { 1139 if (is_reference_type(type)) { 1140 __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix())); 1141 __ verify_oop(dest->as_register()); 1142 } else if (type == T_METADATA || type == T_ADDRESS) { 1143 __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix())); 1144 } else { 1145 __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix())); 1146 } 1147 1148 } else if (dest->is_double_cpu()) { 1149 Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes); 1150 Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes); 1151 __ movptr(dest->as_register_lo(), src_addr_LO); 1152 NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI)); 1153 1154 } else if (dest->is_single_xmm()) { 1155 Address src_addr = frame_map()->address_for_slot(src->single_stack_ix()); 1156 __ movflt(dest->as_xmm_float_reg(), src_addr); 1157 1158 } else if (dest->is_double_xmm()) { 1159 Address src_addr = frame_map()->address_for_slot(src->double_stack_ix()); 1160 __ movdbl(dest->as_xmm_double_reg(), src_addr); 1161 1162 #ifndef _LP64 1163 } else if (dest->is_single_fpu()) { 1164 assert(dest->fpu_regnr() == 0, "dest must be TOS"); 1165 Address src_addr = frame_map()->address_for_slot(src->single_stack_ix()); 1166 __ fld_s(src_addr); 1167 1168 } else if (dest->is_double_fpu()) { 1169 assert(dest->fpu_regnrLo() == 0, "dest must be TOS"); 1170 Address src_addr = frame_map()->address_for_slot(src->double_stack_ix()); 1171 __ fld_d(src_addr); 1172 #endif // _LP64 1173 1174 } else { 1175 ShouldNotReachHere(); 1176 } 1177 } 1178 1179 1180 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) { 1181 if (src->is_single_stack()) { 1182 if (is_reference_type(type)) { 1183 __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix())); 1184 __ popptr (frame_map()->address_for_slot(dest->single_stack_ix())); 1185 } else { 1186 #ifndef _LP64 1187 __ pushl(frame_map()->address_for_slot(src ->single_stack_ix())); 1188 __ popl (frame_map()->address_for_slot(dest->single_stack_ix())); 1189 #else 1190 //no pushl on 64bits 1191 __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix())); 1192 __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1); 1193 #endif 1194 } 1195 1196 } else if (src->is_double_stack()) { 1197 #ifdef _LP64 1198 __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix())); 1199 __ popptr (frame_map()->address_for_slot(dest->double_stack_ix())); 1200 #else 1201 __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0)); 1202 // push and pop the part at src + wordSize, adding wordSize for the previous push 1203 __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize)); 1204 __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize)); 1205 __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0)); 1206 #endif // _LP64 1207 1208 } else { 1209 ShouldNotReachHere(); 1210 } 1211 } 1212 1213 1214 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide) { 1215 assert(src->is_address(), "should not call otherwise"); 1216 assert(dest->is_register(), "should not call otherwise"); 1217 1218 LIR_Address* addr = src->as_address_ptr(); 1219 Address from_addr = as_Address(addr); 1220 1221 if (addr->base()->type() == T_OBJECT || addr->base()->type() == T_PRIMITIVE_OBJECT) { 1222 __ verify_oop(addr->base()->as_pointer_register()); 1223 } 1224 1225 switch (type) { 1226 case T_BOOLEAN: // fall through 1227 case T_BYTE: // fall through 1228 case T_CHAR: // fall through 1229 case T_SHORT: 1230 if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) { 1231 // on pre P6 processors we may get partial register stalls 1232 // so blow away the value of to_rinfo before loading a 1233 // partial word into it. Do it here so that it precedes 1234 // the potential patch point below. 1235 __ xorptr(dest->as_register(), dest->as_register()); 1236 } 1237 break; 1238 default: 1239 break; 1240 } 1241 1242 PatchingStub* patch = nullptr; 1243 if (patch_code != lir_patch_none) { 1244 patch = new PatchingStub(_masm, PatchingStub::access_field_id); 1245 assert(from_addr.disp() != 0, "must have"); 1246 } 1247 if (info != nullptr) { 1248 add_debug_info_for_null_check_here(info); 1249 } 1250 1251 switch (type) { 1252 case T_FLOAT: { 1253 if (dest->is_single_xmm()) { 1254 __ movflt(dest->as_xmm_float_reg(), from_addr); 1255 } else { 1256 #ifndef _LP64 1257 assert(dest->is_single_fpu(), "must be"); 1258 assert(dest->fpu_regnr() == 0, "dest must be TOS"); 1259 __ fld_s(from_addr); 1260 #else 1261 ShouldNotReachHere(); 1262 #endif // !LP64 1263 } 1264 break; 1265 } 1266 1267 case T_DOUBLE: { 1268 if (dest->is_double_xmm()) { 1269 __ movdbl(dest->as_xmm_double_reg(), from_addr); 1270 } else { 1271 #ifndef _LP64 1272 assert(dest->is_double_fpu(), "must be"); 1273 assert(dest->fpu_regnrLo() == 0, "dest must be TOS"); 1274 __ fld_d(from_addr); 1275 #else 1276 ShouldNotReachHere(); 1277 #endif // !LP64 1278 } 1279 break; 1280 } 1281 1282 case T_PRIMITIVE_OBJECT: // fall through 1283 case T_OBJECT: // fall through 1284 case T_ARRAY: // fall through 1285 if (UseCompressedOops && !wide) { 1286 __ movl(dest->as_register(), from_addr); 1287 } else { 1288 __ movptr(dest->as_register(), from_addr); 1289 } 1290 break; 1291 1292 case T_ADDRESS: 1293 __ movptr(dest->as_register(), from_addr); 1294 break; 1295 case T_INT: 1296 __ movl(dest->as_register(), from_addr); 1297 break; 1298 1299 case T_LONG: { 1300 Register to_lo = dest->as_register_lo(); 1301 Register to_hi = dest->as_register_hi(); 1302 #ifdef _LP64 1303 __ movptr(to_lo, as_Address_lo(addr)); 1304 #else 1305 Register base = addr->base()->as_register(); 1306 Register index = noreg; 1307 if (addr->index()->is_register()) { 1308 index = addr->index()->as_register(); 1309 } 1310 if ((base == to_lo && index == to_hi) || 1311 (base == to_hi && index == to_lo)) { 1312 // addresses with 2 registers are only formed as a result of 1313 // array access so this code will never have to deal with 1314 // patches or null checks. 1315 assert(info == nullptr && patch == nullptr, "must be"); 1316 __ lea(to_hi, as_Address(addr)); 1317 __ movl(to_lo, Address(to_hi, 0)); 1318 __ movl(to_hi, Address(to_hi, BytesPerWord)); 1319 } else if (base == to_lo || index == to_lo) { 1320 assert(base != to_hi, "can't be"); 1321 assert(index == noreg || (index != base && index != to_hi), "can't handle this"); 1322 __ movl(to_hi, as_Address_hi(addr)); 1323 if (patch != nullptr) { 1324 patching_epilog(patch, lir_patch_high, base, info); 1325 patch = new PatchingStub(_masm, PatchingStub::access_field_id); 1326 patch_code = lir_patch_low; 1327 } 1328 __ movl(to_lo, as_Address_lo(addr)); 1329 } else { 1330 assert(index == noreg || (index != base && index != to_lo), "can't handle this"); 1331 __ movl(to_lo, as_Address_lo(addr)); 1332 if (patch != nullptr) { 1333 patching_epilog(patch, lir_patch_low, base, info); 1334 patch = new PatchingStub(_masm, PatchingStub::access_field_id); 1335 patch_code = lir_patch_high; 1336 } 1337 __ movl(to_hi, as_Address_hi(addr)); 1338 } 1339 #endif // _LP64 1340 break; 1341 } 1342 1343 case T_BOOLEAN: // fall through 1344 case T_BYTE: { 1345 Register dest_reg = dest->as_register(); 1346 assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6"); 1347 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) { 1348 __ movsbl(dest_reg, from_addr); 1349 } else { 1350 __ movb(dest_reg, from_addr); 1351 __ shll(dest_reg, 24); 1352 __ sarl(dest_reg, 24); 1353 } 1354 break; 1355 } 1356 1357 case T_CHAR: { 1358 Register dest_reg = dest->as_register(); 1359 assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6"); 1360 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) { 1361 __ movzwl(dest_reg, from_addr); 1362 } else { 1363 __ movw(dest_reg, from_addr); 1364 } 1365 break; 1366 } 1367 1368 case T_SHORT: { 1369 Register dest_reg = dest->as_register(); 1370 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) { 1371 __ movswl(dest_reg, from_addr); 1372 } else { 1373 __ movw(dest_reg, from_addr); 1374 __ shll(dest_reg, 16); 1375 __ sarl(dest_reg, 16); 1376 } 1377 break; 1378 } 1379 1380 default: 1381 ShouldNotReachHere(); 1382 } 1383 1384 if (patch != nullptr) { 1385 patching_epilog(patch, patch_code, addr->base()->as_register(), info); 1386 } 1387 1388 if (is_reference_type(type)) { 1389 #ifdef _LP64 1390 if (UseCompressedOops && !wide) { 1391 __ decode_heap_oop(dest->as_register()); 1392 } 1393 #endif 1394 1395 if (!(UseZGC && !ZGenerational)) { 1396 // Load barrier has not yet been applied, so ZGC can't verify the oop here 1397 __ verify_oop(dest->as_register()); 1398 } 1399 } 1400 } 1401 1402 1403 NEEDS_CLEANUP; // This could be static? 1404 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const { 1405 int elem_size = type2aelembytes(type); 1406 switch (elem_size) { 1407 case 1: return Address::times_1; 1408 case 2: return Address::times_2; 1409 case 4: return Address::times_4; 1410 case 8: return Address::times_8; 1411 } 1412 ShouldNotReachHere(); 1413 return Address::no_scale; 1414 } 1415 1416 1417 void LIR_Assembler::emit_op3(LIR_Op3* op) { 1418 switch (op->code()) { 1419 case lir_idiv: 1420 case lir_irem: 1421 arithmetic_idiv(op->code(), 1422 op->in_opr1(), 1423 op->in_opr2(), 1424 op->in_opr3(), 1425 op->result_opr(), 1426 op->info()); 1427 break; 1428 case lir_fmad: 1429 __ fmad(op->result_opr()->as_xmm_double_reg(), 1430 op->in_opr1()->as_xmm_double_reg(), 1431 op->in_opr2()->as_xmm_double_reg(), 1432 op->in_opr3()->as_xmm_double_reg()); 1433 break; 1434 case lir_fmaf: 1435 __ fmaf(op->result_opr()->as_xmm_float_reg(), 1436 op->in_opr1()->as_xmm_float_reg(), 1437 op->in_opr2()->as_xmm_float_reg(), 1438 op->in_opr3()->as_xmm_float_reg()); 1439 break; 1440 default: ShouldNotReachHere(); break; 1441 } 1442 } 1443 1444 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) { 1445 #ifdef ASSERT 1446 assert(op->block() == nullptr || op->block()->label() == op->label(), "wrong label"); 1447 if (op->block() != nullptr) _branch_target_blocks.append(op->block()); 1448 if (op->ublock() != nullptr) _branch_target_blocks.append(op->ublock()); 1449 #endif 1450 1451 if (op->cond() == lir_cond_always) { 1452 if (op->info() != nullptr) add_debug_info_for_branch(op->info()); 1453 __ jmp (*(op->label())); 1454 } else { 1455 Assembler::Condition acond = Assembler::zero; 1456 if (op->code() == lir_cond_float_branch) { 1457 assert(op->ublock() != nullptr, "must have unordered successor"); 1458 __ jcc(Assembler::parity, *(op->ublock()->label())); 1459 switch(op->cond()) { 1460 case lir_cond_equal: acond = Assembler::equal; break; 1461 case lir_cond_notEqual: acond = Assembler::notEqual; break; 1462 case lir_cond_less: acond = Assembler::below; break; 1463 case lir_cond_lessEqual: acond = Assembler::belowEqual; break; 1464 case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break; 1465 case lir_cond_greater: acond = Assembler::above; break; 1466 default: ShouldNotReachHere(); 1467 } 1468 } else { 1469 switch (op->cond()) { 1470 case lir_cond_equal: acond = Assembler::equal; break; 1471 case lir_cond_notEqual: acond = Assembler::notEqual; break; 1472 case lir_cond_less: acond = Assembler::less; break; 1473 case lir_cond_lessEqual: acond = Assembler::lessEqual; break; 1474 case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break; 1475 case lir_cond_greater: acond = Assembler::greater; break; 1476 case lir_cond_belowEqual: acond = Assembler::belowEqual; break; 1477 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; break; 1478 default: ShouldNotReachHere(); 1479 } 1480 } 1481 __ jcc(acond,*(op->label())); 1482 } 1483 } 1484 1485 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) { 1486 LIR_Opr src = op->in_opr(); 1487 LIR_Opr dest = op->result_opr(); 1488 1489 switch (op->bytecode()) { 1490 case Bytecodes::_i2l: 1491 #ifdef _LP64 1492 __ movl2ptr(dest->as_register_lo(), src->as_register()); 1493 #else 1494 move_regs(src->as_register(), dest->as_register_lo()); 1495 move_regs(src->as_register(), dest->as_register_hi()); 1496 __ sarl(dest->as_register_hi(), 31); 1497 #endif // LP64 1498 break; 1499 1500 case Bytecodes::_l2i: 1501 #ifdef _LP64 1502 __ movl(dest->as_register(), src->as_register_lo()); 1503 #else 1504 move_regs(src->as_register_lo(), dest->as_register()); 1505 #endif 1506 break; 1507 1508 case Bytecodes::_i2b: 1509 move_regs(src->as_register(), dest->as_register()); 1510 __ sign_extend_byte(dest->as_register()); 1511 break; 1512 1513 case Bytecodes::_i2c: 1514 move_regs(src->as_register(), dest->as_register()); 1515 __ andl(dest->as_register(), 0xFFFF); 1516 break; 1517 1518 case Bytecodes::_i2s: 1519 move_regs(src->as_register(), dest->as_register()); 1520 __ sign_extend_short(dest->as_register()); 1521 break; 1522 1523 1524 #ifdef _LP64 1525 case Bytecodes::_f2d: 1526 __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg()); 1527 break; 1528 1529 case Bytecodes::_d2f: 1530 __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg()); 1531 break; 1532 1533 case Bytecodes::_i2f: 1534 __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register()); 1535 break; 1536 1537 case Bytecodes::_i2d: 1538 __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register()); 1539 break; 1540 1541 case Bytecodes::_l2f: 1542 __ cvtsi2ssq(dest->as_xmm_float_reg(), src->as_register_lo()); 1543 break; 1544 1545 case Bytecodes::_l2d: 1546 __ cvtsi2sdq(dest->as_xmm_double_reg(), src->as_register_lo()); 1547 break; 1548 1549 case Bytecodes::_f2i: 1550 __ convert_f2i(dest->as_register(), src->as_xmm_float_reg()); 1551 break; 1552 1553 case Bytecodes::_d2i: 1554 __ convert_d2i(dest->as_register(), src->as_xmm_double_reg()); 1555 break; 1556 1557 case Bytecodes::_f2l: 1558 __ convert_f2l(dest->as_register_lo(), src->as_xmm_float_reg()); 1559 break; 1560 1561 case Bytecodes::_d2l: 1562 __ convert_d2l(dest->as_register_lo(), src->as_xmm_double_reg()); 1563 break; 1564 #else 1565 case Bytecodes::_f2d: 1566 case Bytecodes::_d2f: 1567 if (dest->is_single_xmm()) { 1568 __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg()); 1569 } else if (dest->is_double_xmm()) { 1570 __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg()); 1571 } else { 1572 assert(src->fpu() == dest->fpu(), "register must be equal"); 1573 // do nothing (float result is rounded later through spilling) 1574 } 1575 break; 1576 1577 case Bytecodes::_i2f: 1578 case Bytecodes::_i2d: 1579 if (dest->is_single_xmm()) { 1580 __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register()); 1581 } else if (dest->is_double_xmm()) { 1582 __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register()); 1583 } else { 1584 assert(dest->fpu() == 0, "result must be on TOS"); 1585 __ movl(Address(rsp, 0), src->as_register()); 1586 __ fild_s(Address(rsp, 0)); 1587 } 1588 break; 1589 1590 case Bytecodes::_l2f: 1591 case Bytecodes::_l2d: 1592 assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)"); 1593 assert(dest->fpu() == 0, "result must be on TOS"); 1594 __ movptr(Address(rsp, 0), src->as_register_lo()); 1595 __ movl(Address(rsp, BytesPerWord), src->as_register_hi()); 1596 __ fild_d(Address(rsp, 0)); 1597 // float result is rounded later through spilling 1598 break; 1599 1600 case Bytecodes::_f2i: 1601 case Bytecodes::_d2i: 1602 if (src->is_single_xmm()) { 1603 __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg()); 1604 } else if (src->is_double_xmm()) { 1605 __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg()); 1606 } else { 1607 assert(src->fpu() == 0, "input must be on TOS"); 1608 __ fldcw(ExternalAddress(StubRoutines::x86::addr_fpu_cntrl_wrd_trunc())); 1609 __ fist_s(Address(rsp, 0)); 1610 __ movl(dest->as_register(), Address(rsp, 0)); 1611 __ fldcw(ExternalAddress(StubRoutines::x86::addr_fpu_cntrl_wrd_std())); 1612 } 1613 // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub 1614 assert(op->stub() != nullptr, "stub required"); 1615 __ cmpl(dest->as_register(), 0x80000000); 1616 __ jcc(Assembler::equal, *op->stub()->entry()); 1617 __ bind(*op->stub()->continuation()); 1618 break; 1619 1620 case Bytecodes::_f2l: 1621 case Bytecodes::_d2l: 1622 assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)"); 1623 assert(src->fpu() == 0, "input must be on TOS"); 1624 assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers"); 1625 1626 // instruction sequence too long to inline it here 1627 { 1628 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::fpu2long_stub_id))); 1629 } 1630 break; 1631 #endif // _LP64 1632 1633 default: ShouldNotReachHere(); 1634 } 1635 } 1636 1637 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) { 1638 if (op->init_check()) { 1639 add_debug_info_for_null_check_here(op->stub()->info()); 1640 __ cmpb(Address(op->klass()->as_register(), 1641 InstanceKlass::init_state_offset()), 1642 InstanceKlass::fully_initialized); 1643 __ jcc(Assembler::notEqual, *op->stub()->entry()); 1644 } 1645 __ allocate_object(op->obj()->as_register(), 1646 op->tmp1()->as_register(), 1647 op->tmp2()->as_register(), 1648 op->header_size(), 1649 op->object_size(), 1650 op->klass()->as_register(), 1651 *op->stub()->entry()); 1652 __ bind(*op->stub()->continuation()); 1653 } 1654 1655 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) { 1656 Register len = op->len()->as_register(); 1657 LP64_ONLY( __ movslq(len, len); ) 1658 1659 if (UseSlowPath || op->type() == T_PRIMITIVE_OBJECT || 1660 (!UseFastNewObjectArray && is_reference_type(op->type())) || 1661 (!UseFastNewTypeArray && !is_reference_type(op->type()))) { 1662 __ jmp(*op->stub()->entry()); 1663 } else { 1664 Register tmp1 = op->tmp1()->as_register(); 1665 Register tmp2 = op->tmp2()->as_register(); 1666 Register tmp3 = op->tmp3()->as_register(); 1667 if (len == tmp1) { 1668 tmp1 = tmp3; 1669 } else if (len == tmp2) { 1670 tmp2 = tmp3; 1671 } else if (len == tmp3) { 1672 // everything is ok 1673 } else { 1674 __ mov(tmp3, len); 1675 } 1676 __ allocate_array(op->obj()->as_register(), 1677 len, 1678 tmp1, 1679 tmp2, 1680 arrayOopDesc::header_size(op->type()), 1681 array_element_size(op->type()), 1682 op->klass()->as_register(), 1683 *op->stub()->entry()); 1684 } 1685 __ bind(*op->stub()->continuation()); 1686 } 1687 1688 void LIR_Assembler::type_profile_helper(Register mdo, 1689 ciMethodData *md, ciProfileData *data, 1690 Register recv, Label* update_done) { 1691 for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) { 1692 Label next_test; 1693 // See if the receiver is receiver[n]. 1694 __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)))); 1695 __ jccb(Assembler::notEqual, next_test); 1696 Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))); 1697 __ addptr(data_addr, DataLayout::counter_increment); 1698 __ jmp(*update_done); 1699 __ bind(next_test); 1700 } 1701 1702 // Didn't find receiver; find next empty slot and fill it in 1703 for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) { 1704 Label next_test; 1705 Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))); 1706 __ cmpptr(recv_addr, NULL_WORD); 1707 __ jccb(Assembler::notEqual, next_test); 1708 __ movptr(recv_addr, recv); 1709 __ movptr(Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))), DataLayout::counter_increment); 1710 __ jmp(*update_done); 1711 __ bind(next_test); 1712 } 1713 } 1714 1715 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) { 1716 // we always need a stub for the failure case. 1717 CodeStub* stub = op->stub(); 1718 Register obj = op->object()->as_register(); 1719 Register k_RInfo = op->tmp1()->as_register(); 1720 Register klass_RInfo = op->tmp2()->as_register(); 1721 Register dst = op->result_opr()->as_register(); 1722 ciKlass* k = op->klass(); 1723 Register Rtmp1 = noreg; 1724 Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg); 1725 1726 // check if it needs to be profiled 1727 ciMethodData* md = nullptr; 1728 ciProfileData* data = nullptr; 1729 1730 if (op->should_profile()) { 1731 ciMethod* method = op->profiled_method(); 1732 assert(method != nullptr, "Should have method"); 1733 int bci = op->profiled_bci(); 1734 md = method->method_data_or_null(); 1735 assert(md != nullptr, "Sanity"); 1736 data = md->bci_to_data(bci); 1737 assert(data != nullptr, "need data for type check"); 1738 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check"); 1739 } 1740 Label profile_cast_success, profile_cast_failure; 1741 Label *success_target = op->should_profile() ? &profile_cast_success : success; 1742 Label *failure_target = op->should_profile() ? &profile_cast_failure : failure; 1743 1744 if (obj == k_RInfo) { 1745 k_RInfo = dst; 1746 } else if (obj == klass_RInfo) { 1747 klass_RInfo = dst; 1748 } 1749 if (k->is_loaded() && !UseCompressedClassPointers) { 1750 select_different_registers(obj, dst, k_RInfo, klass_RInfo); 1751 } else { 1752 Rtmp1 = op->tmp3()->as_register(); 1753 select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1); 1754 } 1755 1756 assert_different_registers(obj, k_RInfo, klass_RInfo); 1757 1758 if (op->need_null_check()) { 1759 __ cmpptr(obj, NULL_WORD); 1760 if (op->should_profile()) { 1761 Label not_null; 1762 __ jccb(Assembler::notEqual, not_null); 1763 // Object is null; update MDO and exit 1764 Register mdo = klass_RInfo; 1765 __ mov_metadata(mdo, md->constant_encoding()); 1766 Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset())); 1767 int header_bits = BitData::null_seen_byte_constant(); 1768 __ orb(data_addr, header_bits); 1769 __ jmp(*obj_is_null); 1770 __ bind(not_null); 1771 } else { 1772 __ jcc(Assembler::equal, *obj_is_null); 1773 } 1774 } 1775 1776 if (!k->is_loaded()) { 1777 klass2reg_with_patching(k_RInfo, op->info_for_patch()); 1778 } else { 1779 #ifdef _LP64 1780 __ mov_metadata(k_RInfo, k->constant_encoding()); 1781 #endif // _LP64 1782 } 1783 __ verify_oop(obj); 1784 1785 if (op->fast_check()) { 1786 // get object class 1787 // not a safepoint as obj null check happens earlier 1788 #ifdef _LP64 1789 if (UseCompressedClassPointers) { 1790 __ load_klass(Rtmp1, obj, tmp_load_klass); 1791 __ cmpptr(k_RInfo, Rtmp1); 1792 } else { 1793 __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes())); 1794 } 1795 #else 1796 if (k->is_loaded()) { 1797 __ cmpklass(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding()); 1798 } else { 1799 __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes())); 1800 } 1801 #endif 1802 __ jcc(Assembler::notEqual, *failure_target); 1803 // successful cast, fall through to profile or jump 1804 } else { 1805 // get object class 1806 // not a safepoint as obj null check happens earlier 1807 __ load_klass(klass_RInfo, obj, tmp_load_klass); 1808 if (k->is_loaded()) { 1809 // See if we get an immediate positive hit 1810 #ifdef _LP64 1811 __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset())); 1812 #else 1813 __ cmpklass(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding()); 1814 #endif // _LP64 1815 if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) { 1816 __ jcc(Assembler::notEqual, *failure_target); 1817 // successful cast, fall through to profile or jump 1818 } else { 1819 // See if we get an immediate positive hit 1820 __ jcc(Assembler::equal, *success_target); 1821 // check for self 1822 #ifdef _LP64 1823 __ cmpptr(klass_RInfo, k_RInfo); 1824 #else 1825 __ cmpklass(klass_RInfo, k->constant_encoding()); 1826 #endif // _LP64 1827 __ jcc(Assembler::equal, *success_target); 1828 1829 __ push(klass_RInfo); 1830 #ifdef _LP64 1831 __ push(k_RInfo); 1832 #else 1833 __ pushklass(k->constant_encoding(), noreg); 1834 #endif // _LP64 1835 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id))); 1836 __ pop(klass_RInfo); 1837 __ pop(klass_RInfo); 1838 // result is a boolean 1839 __ cmpl(klass_RInfo, 0); 1840 __ jcc(Assembler::equal, *failure_target); 1841 // successful cast, fall through to profile or jump 1842 } 1843 } else { 1844 // perform the fast part of the checking logic 1845 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, nullptr); 1846 // call out-of-line instance of __ check_klass_subtype_slow_path(...): 1847 __ push(klass_RInfo); 1848 __ push(k_RInfo); 1849 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id))); 1850 __ pop(klass_RInfo); 1851 __ pop(k_RInfo); 1852 // result is a boolean 1853 __ cmpl(k_RInfo, 0); 1854 __ jcc(Assembler::equal, *failure_target); 1855 // successful cast, fall through to profile or jump 1856 } 1857 } 1858 if (op->should_profile()) { 1859 Register mdo = klass_RInfo, recv = k_RInfo; 1860 __ bind(profile_cast_success); 1861 __ mov_metadata(mdo, md->constant_encoding()); 1862 __ load_klass(recv, obj, tmp_load_klass); 1863 type_profile_helper(mdo, md, data, recv, success); 1864 __ jmp(*success); 1865 1866 __ bind(profile_cast_failure); 1867 __ mov_metadata(mdo, md->constant_encoding()); 1868 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); 1869 __ subptr(counter_addr, DataLayout::counter_increment); 1870 __ jmp(*failure); 1871 } 1872 __ jmp(*success); 1873 } 1874 1875 1876 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) { 1877 Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg); 1878 LIR_Code code = op->code(); 1879 if (code == lir_store_check) { 1880 Register value = op->object()->as_register(); 1881 Register array = op->array()->as_register(); 1882 Register k_RInfo = op->tmp1()->as_register(); 1883 Register klass_RInfo = op->tmp2()->as_register(); 1884 Register Rtmp1 = op->tmp3()->as_register(); 1885 1886 CodeStub* stub = op->stub(); 1887 1888 // check if it needs to be profiled 1889 ciMethodData* md = nullptr; 1890 ciProfileData* data = nullptr; 1891 1892 if (op->should_profile()) { 1893 ciMethod* method = op->profiled_method(); 1894 assert(method != nullptr, "Should have method"); 1895 int bci = op->profiled_bci(); 1896 md = method->method_data_or_null(); 1897 assert(md != nullptr, "Sanity"); 1898 data = md->bci_to_data(bci); 1899 assert(data != nullptr, "need data for type check"); 1900 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check"); 1901 } 1902 Label profile_cast_success, profile_cast_failure, done; 1903 Label *success_target = op->should_profile() ? &profile_cast_success : &done; 1904 Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry(); 1905 1906 __ cmpptr(value, NULL_WORD); 1907 if (op->should_profile()) { 1908 Label not_null; 1909 __ jccb(Assembler::notEqual, not_null); 1910 // Object is null; update MDO and exit 1911 Register mdo = klass_RInfo; 1912 __ mov_metadata(mdo, md->constant_encoding()); 1913 Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset())); 1914 int header_bits = BitData::null_seen_byte_constant(); 1915 __ orb(data_addr, header_bits); 1916 __ jmp(done); 1917 __ bind(not_null); 1918 } else { 1919 __ jcc(Assembler::equal, done); 1920 } 1921 1922 add_debug_info_for_null_check_here(op->info_for_exception()); 1923 __ load_klass(k_RInfo, array, tmp_load_klass); 1924 __ load_klass(klass_RInfo, value, tmp_load_klass); 1925 1926 // get instance klass (it's already uncompressed) 1927 __ movptr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset())); 1928 // perform the fast part of the checking logic 1929 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, nullptr); 1930 // call out-of-line instance of __ check_klass_subtype_slow_path(...): 1931 __ push(klass_RInfo); 1932 __ push(k_RInfo); 1933 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id))); 1934 __ pop(klass_RInfo); 1935 __ pop(k_RInfo); 1936 // result is a boolean 1937 __ cmpl(k_RInfo, 0); 1938 __ jcc(Assembler::equal, *failure_target); 1939 // fall through to the success case 1940 1941 if (op->should_profile()) { 1942 Register mdo = klass_RInfo, recv = k_RInfo; 1943 __ bind(profile_cast_success); 1944 __ mov_metadata(mdo, md->constant_encoding()); 1945 __ load_klass(recv, value, tmp_load_klass); 1946 type_profile_helper(mdo, md, data, recv, &done); 1947 __ jmpb(done); 1948 1949 __ bind(profile_cast_failure); 1950 __ mov_metadata(mdo, md->constant_encoding()); 1951 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); 1952 __ subptr(counter_addr, DataLayout::counter_increment); 1953 __ jmp(*stub->entry()); 1954 } 1955 1956 __ bind(done); 1957 } else 1958 if (code == lir_checkcast) { 1959 Register obj = op->object()->as_register(); 1960 Register dst = op->result_opr()->as_register(); 1961 Label success; 1962 emit_typecheck_helper(op, &success, op->stub()->entry(), &success); 1963 __ bind(success); 1964 if (dst != obj) { 1965 __ mov(dst, obj); 1966 } 1967 } else 1968 if (code == lir_instanceof) { 1969 Register obj = op->object()->as_register(); 1970 Register dst = op->result_opr()->as_register(); 1971 Label success, failure, done; 1972 emit_typecheck_helper(op, &success, &failure, &failure); 1973 __ bind(failure); 1974 __ xorptr(dst, dst); 1975 __ jmpb(done); 1976 __ bind(success); 1977 __ movptr(dst, 1); 1978 __ bind(done); 1979 } else { 1980 ShouldNotReachHere(); 1981 } 1982 1983 } 1984 1985 void LIR_Assembler::emit_opFlattenedArrayCheck(LIR_OpFlattenedArrayCheck* op) { 1986 // We are loading/storing from/to an array that *may* be flattened (the 1987 // declared type is Object[], abstract[], interface[] or VT.ref[]). 1988 // If this array is flattened, take the slow path. 1989 Register klass = op->tmp()->as_register(); 1990 if (UseArrayMarkWordCheck) { 1991 __ test_flattened_array_oop(op->array()->as_register(), op->tmp()->as_register(), *op->stub()->entry()); 1992 } else { 1993 Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg); 1994 __ load_klass(klass, op->array()->as_register(), tmp_load_klass); 1995 __ movl(klass, Address(klass, Klass::layout_helper_offset())); 1996 __ testl(klass, Klass::_lh_array_tag_flat_value_bit_inplace); 1997 __ jcc(Assembler::notZero, *op->stub()->entry()); 1998 } 1999 if (!op->value()->is_illegal()) { 2000 // The array is not flattened, but it might be null-free. If we are storing 2001 // a null into a null-free array, take the slow path (which will throw NPE). 2002 Label skip; 2003 __ cmpptr(op->value()->as_register(), NULL_WORD); 2004 __ jcc(Assembler::notEqual, skip); 2005 if (UseArrayMarkWordCheck) { 2006 __ test_null_free_array_oop(op->array()->as_register(), op->tmp()->as_register(), *op->stub()->entry()); 2007 } else { 2008 __ testl(klass, Klass::_lh_null_free_array_bit_inplace); 2009 __ jcc(Assembler::notZero, *op->stub()->entry()); 2010 } 2011 __ bind(skip); 2012 } 2013 } 2014 2015 void LIR_Assembler::emit_opNullFreeArrayCheck(LIR_OpNullFreeArrayCheck* op) { 2016 // We are storing into an array that *may* be null-free (the declared type is 2017 // Object[], abstract[], interface[] or VT.ref[]). 2018 if (UseArrayMarkWordCheck) { 2019 Label test_mark_word; 2020 Register tmp = op->tmp()->as_register(); 2021 __ movptr(tmp, Address(op->array()->as_register(), oopDesc::mark_offset_in_bytes())); 2022 __ testl(tmp, markWord::unlocked_value); 2023 __ jccb(Assembler::notZero, test_mark_word); 2024 __ load_prototype_header(tmp, op->array()->as_register(), rscratch1); 2025 __ bind(test_mark_word); 2026 __ testl(tmp, markWord::null_free_array_bit_in_place); 2027 } else { 2028 Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg); 2029 Register klass = op->tmp()->as_register(); 2030 __ load_klass(klass, op->array()->as_register(), tmp_load_klass); 2031 __ movl(klass, Address(klass, Klass::layout_helper_offset())); 2032 __ testl(klass, Klass::_lh_null_free_array_bit_inplace); 2033 } 2034 } 2035 2036 void LIR_Assembler::emit_opSubstitutabilityCheck(LIR_OpSubstitutabilityCheck* op) { 2037 Label L_oops_equal; 2038 Label L_oops_not_equal; 2039 Label L_end; 2040 2041 Register left = op->left()->as_register(); 2042 Register right = op->right()->as_register(); 2043 2044 __ cmpptr(left, right); 2045 __ jcc(Assembler::equal, L_oops_equal); 2046 2047 // (1) Null check -- if one of the operands is null, the other must not be null (because 2048 // the two references are not equal), so they are not substitutable, 2049 // FIXME: do null check only if the operand is nullable 2050 __ testptr(left, right); 2051 __ jcc(Assembler::zero, L_oops_not_equal); 2052 2053 ciKlass* left_klass = op->left_klass(); 2054 ciKlass* right_klass = op->right_klass(); 2055 2056 // (2) Inline type check -- if either of the operands is not a inline type, 2057 // they are not substitutable. We do this only if we are not sure that the 2058 // operands are inline type 2059 if ((left_klass == nullptr || right_klass == nullptr) ||// The klass is still unloaded, or came from a Phi node. 2060 !left_klass->is_inlinetype() || !right_klass->is_inlinetype()) { 2061 Register tmp1 = op->tmp1()->as_register(); 2062 __ movptr(tmp1, (intptr_t)markWord::inline_type_pattern); 2063 __ andptr(tmp1, Address(left, oopDesc::mark_offset_in_bytes())); 2064 __ andptr(tmp1, Address(right, oopDesc::mark_offset_in_bytes())); 2065 __ cmpptr(tmp1, (intptr_t)markWord::inline_type_pattern); 2066 __ jcc(Assembler::notEqual, L_oops_not_equal); 2067 } 2068 2069 // (3) Same klass check: if the operands are of different klasses, they are not substitutable. 2070 if (left_klass != nullptr && left_klass->is_inlinetype() && left_klass == right_klass) { 2071 // No need to load klass -- the operands are statically known to be the same inline klass. 2072 __ jmp(*op->stub()->entry()); 2073 } else { 2074 Register left_klass_op = op->left_klass_op()->as_register(); 2075 Register right_klass_op = op->right_klass_op()->as_register(); 2076 2077 if (UseCompressedClassPointers) { 2078 __ movl(left_klass_op, Address(left, oopDesc::klass_offset_in_bytes())); 2079 __ movl(right_klass_op, Address(right, oopDesc::klass_offset_in_bytes())); 2080 __ cmpl(left_klass_op, right_klass_op); 2081 } else { 2082 __ movptr(left_klass_op, Address(left, oopDesc::klass_offset_in_bytes())); 2083 __ movptr(right_klass_op, Address(right, oopDesc::klass_offset_in_bytes())); 2084 __ cmpptr(left_klass_op, right_klass_op); 2085 } 2086 2087 __ jcc(Assembler::equal, *op->stub()->entry()); // same klass -> do slow check 2088 // fall through to L_oops_not_equal 2089 } 2090 2091 __ bind(L_oops_not_equal); 2092 move(op->not_equal_result(), op->result_opr()); 2093 __ jmp(L_end); 2094 2095 __ bind(L_oops_equal); 2096 move(op->equal_result(), op->result_opr()); 2097 __ jmp(L_end); 2098 2099 // We've returned from the stub. RAX contains 0x0 IFF the two 2100 // operands are not substitutable. (Don't compare against 0x1 in case the 2101 // C compiler is naughty) 2102 __ bind(*op->stub()->continuation()); 2103 __ cmpl(rax, 0); 2104 __ jcc(Assembler::equal, L_oops_not_equal); // (call_stub() == 0x0) -> not_equal 2105 move(op->equal_result(), op->result_opr()); // (call_stub() != 0x0) -> equal 2106 // fall-through 2107 __ bind(L_end); 2108 } 2109 2110 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) { 2111 if (LP64_ONLY(false &&) op->code() == lir_cas_long && VM_Version::supports_cx8()) { 2112 assert(op->cmp_value()->as_register_lo() == rax, "wrong register"); 2113 assert(op->cmp_value()->as_register_hi() == rdx, "wrong register"); 2114 assert(op->new_value()->as_register_lo() == rbx, "wrong register"); 2115 assert(op->new_value()->as_register_hi() == rcx, "wrong register"); 2116 Register addr = op->addr()->as_register(); 2117 __ lock(); 2118 NOT_LP64(__ cmpxchg8(Address(addr, 0))); 2119 2120 } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) { 2121 NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");) 2122 Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo()); 2123 Register newval = op->new_value()->as_register(); 2124 Register cmpval = op->cmp_value()->as_register(); 2125 assert(cmpval == rax, "wrong register"); 2126 assert(newval != noreg, "new val must be register"); 2127 assert(cmpval != newval, "cmp and new values must be in different registers"); 2128 assert(cmpval != addr, "cmp and addr must be in different registers"); 2129 assert(newval != addr, "new value and addr must be in different registers"); 2130 2131 if ( op->code() == lir_cas_obj) { 2132 #ifdef _LP64 2133 if (UseCompressedOops) { 2134 __ encode_heap_oop(cmpval); 2135 __ mov(rscratch1, newval); 2136 __ encode_heap_oop(rscratch1); 2137 __ lock(); 2138 // cmpval (rax) is implicitly used by this instruction 2139 __ cmpxchgl(rscratch1, Address(addr, 0)); 2140 } else 2141 #endif 2142 { 2143 __ lock(); 2144 __ cmpxchgptr(newval, Address(addr, 0)); 2145 } 2146 } else { 2147 assert(op->code() == lir_cas_int, "lir_cas_int expected"); 2148 __ lock(); 2149 __ cmpxchgl(newval, Address(addr, 0)); 2150 } 2151 #ifdef _LP64 2152 } else if (op->code() == lir_cas_long) { 2153 Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo()); 2154 Register newval = op->new_value()->as_register_lo(); 2155 Register cmpval = op->cmp_value()->as_register_lo(); 2156 assert(cmpval == rax, "wrong register"); 2157 assert(newval != noreg, "new val must be register"); 2158 assert(cmpval != newval, "cmp and new values must be in different registers"); 2159 assert(cmpval != addr, "cmp and addr must be in different registers"); 2160 assert(newval != addr, "new value and addr must be in different registers"); 2161 __ lock(); 2162 __ cmpxchgq(newval, Address(addr, 0)); 2163 #endif // _LP64 2164 } else { 2165 Unimplemented(); 2166 } 2167 } 2168 2169 void LIR_Assembler::move(LIR_Opr src, LIR_Opr dst) { 2170 assert(dst->is_cpu_register(), "must be"); 2171 assert(dst->type() == src->type(), "must be"); 2172 2173 if (src->is_cpu_register()) { 2174 reg2reg(src, dst); 2175 } else if (src->is_stack()) { 2176 stack2reg(src, dst, dst->type()); 2177 } else if (src->is_constant()) { 2178 const2reg(src, dst, lir_patch_none, nullptr); 2179 } else { 2180 ShouldNotReachHere(); 2181 } 2182 } 2183 2184 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type, 2185 LIR_Opr cmp_opr1, LIR_Opr cmp_opr2) { 2186 assert(cmp_opr1 == LIR_OprFact::illegalOpr && cmp_opr2 == LIR_OprFact::illegalOpr, "unnecessary cmp oprs on x86"); 2187 2188 Assembler::Condition acond, ncond; 2189 switch (condition) { 2190 case lir_cond_equal: acond = Assembler::equal; ncond = Assembler::notEqual; break; 2191 case lir_cond_notEqual: acond = Assembler::notEqual; ncond = Assembler::equal; break; 2192 case lir_cond_less: acond = Assembler::less; ncond = Assembler::greaterEqual; break; 2193 case lir_cond_lessEqual: acond = Assembler::lessEqual; ncond = Assembler::greater; break; 2194 case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less; break; 2195 case lir_cond_greater: acond = Assembler::greater; ncond = Assembler::lessEqual; break; 2196 case lir_cond_belowEqual: acond = Assembler::belowEqual; ncond = Assembler::above; break; 2197 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; ncond = Assembler::below; break; 2198 default: acond = Assembler::equal; ncond = Assembler::notEqual; 2199 ShouldNotReachHere(); 2200 } 2201 2202 if (opr1->is_cpu_register()) { 2203 reg2reg(opr1, result); 2204 } else if (opr1->is_stack()) { 2205 stack2reg(opr1, result, result->type()); 2206 } else if (opr1->is_constant()) { 2207 const2reg(opr1, result, lir_patch_none, nullptr); 2208 } else { 2209 ShouldNotReachHere(); 2210 } 2211 2212 if (VM_Version::supports_cmov() && !opr2->is_constant()) { 2213 // optimized version that does not require a branch 2214 if (opr2->is_single_cpu()) { 2215 assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move"); 2216 __ cmov(ncond, result->as_register(), opr2->as_register()); 2217 } else if (opr2->is_double_cpu()) { 2218 assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move"); 2219 assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move"); 2220 __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo()); 2221 NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());) 2222 } else if (opr2->is_single_stack()) { 2223 __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix())); 2224 } else if (opr2->is_double_stack()) { 2225 __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes)); 2226 NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));) 2227 } else { 2228 ShouldNotReachHere(); 2229 } 2230 2231 } else { 2232 Label skip; 2233 __ jcc (acond, skip); 2234 if (opr2->is_cpu_register()) { 2235 reg2reg(opr2, result); 2236 } else if (opr2->is_stack()) { 2237 stack2reg(opr2, result, result->type()); 2238 } else if (opr2->is_constant()) { 2239 const2reg(opr2, result, lir_patch_none, nullptr); 2240 } else { 2241 ShouldNotReachHere(); 2242 } 2243 __ bind(skip); 2244 } 2245 } 2246 2247 2248 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) { 2249 assert(info == nullptr, "should never be used, idiv/irem and ldiv/lrem not handled by this method"); 2250 2251 if (left->is_single_cpu()) { 2252 assert(left == dest, "left and dest must be equal"); 2253 Register lreg = left->as_register(); 2254 2255 if (right->is_single_cpu()) { 2256 // cpu register - cpu register 2257 Register rreg = right->as_register(); 2258 switch (code) { 2259 case lir_add: __ addl (lreg, rreg); break; 2260 case lir_sub: __ subl (lreg, rreg); break; 2261 case lir_mul: __ imull(lreg, rreg); break; 2262 default: ShouldNotReachHere(); 2263 } 2264 2265 } else if (right->is_stack()) { 2266 // cpu register - stack 2267 Address raddr = frame_map()->address_for_slot(right->single_stack_ix()); 2268 switch (code) { 2269 case lir_add: __ addl(lreg, raddr); break; 2270 case lir_sub: __ subl(lreg, raddr); break; 2271 default: ShouldNotReachHere(); 2272 } 2273 2274 } else if (right->is_constant()) { 2275 // cpu register - constant 2276 jint c = right->as_constant_ptr()->as_jint(); 2277 switch (code) { 2278 case lir_add: { 2279 __ incrementl(lreg, c); 2280 break; 2281 } 2282 case lir_sub: { 2283 __ decrementl(lreg, c); 2284 break; 2285 } 2286 default: ShouldNotReachHere(); 2287 } 2288 2289 } else { 2290 ShouldNotReachHere(); 2291 } 2292 2293 } else if (left->is_double_cpu()) { 2294 assert(left == dest, "left and dest must be equal"); 2295 Register lreg_lo = left->as_register_lo(); 2296 Register lreg_hi = left->as_register_hi(); 2297 2298 if (right->is_double_cpu()) { 2299 // cpu register - cpu register 2300 Register rreg_lo = right->as_register_lo(); 2301 Register rreg_hi = right->as_register_hi(); 2302 NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi)); 2303 LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo)); 2304 switch (code) { 2305 case lir_add: 2306 __ addptr(lreg_lo, rreg_lo); 2307 NOT_LP64(__ adcl(lreg_hi, rreg_hi)); 2308 break; 2309 case lir_sub: 2310 __ subptr(lreg_lo, rreg_lo); 2311 NOT_LP64(__ sbbl(lreg_hi, rreg_hi)); 2312 break; 2313 case lir_mul: 2314 #ifdef _LP64 2315 __ imulq(lreg_lo, rreg_lo); 2316 #else 2317 assert(lreg_lo == rax && lreg_hi == rdx, "must be"); 2318 __ imull(lreg_hi, rreg_lo); 2319 __ imull(rreg_hi, lreg_lo); 2320 __ addl (rreg_hi, lreg_hi); 2321 __ mull (rreg_lo); 2322 __ addl (lreg_hi, rreg_hi); 2323 #endif // _LP64 2324 break; 2325 default: 2326 ShouldNotReachHere(); 2327 } 2328 2329 } else if (right->is_constant()) { 2330 // cpu register - constant 2331 #ifdef _LP64 2332 jlong c = right->as_constant_ptr()->as_jlong_bits(); 2333 __ movptr(r10, (intptr_t) c); 2334 switch (code) { 2335 case lir_add: 2336 __ addptr(lreg_lo, r10); 2337 break; 2338 case lir_sub: 2339 __ subptr(lreg_lo, r10); 2340 break; 2341 default: 2342 ShouldNotReachHere(); 2343 } 2344 #else 2345 jint c_lo = right->as_constant_ptr()->as_jint_lo(); 2346 jint c_hi = right->as_constant_ptr()->as_jint_hi(); 2347 switch (code) { 2348 case lir_add: 2349 __ addptr(lreg_lo, c_lo); 2350 __ adcl(lreg_hi, c_hi); 2351 break; 2352 case lir_sub: 2353 __ subptr(lreg_lo, c_lo); 2354 __ sbbl(lreg_hi, c_hi); 2355 break; 2356 default: 2357 ShouldNotReachHere(); 2358 } 2359 #endif // _LP64 2360 2361 } else { 2362 ShouldNotReachHere(); 2363 } 2364 2365 } else if (left->is_single_xmm()) { 2366 assert(left == dest, "left and dest must be equal"); 2367 XMMRegister lreg = left->as_xmm_float_reg(); 2368 2369 if (right->is_single_xmm()) { 2370 XMMRegister rreg = right->as_xmm_float_reg(); 2371 switch (code) { 2372 case lir_add: __ addss(lreg, rreg); break; 2373 case lir_sub: __ subss(lreg, rreg); break; 2374 case lir_mul: __ mulss(lreg, rreg); break; 2375 case lir_div: __ divss(lreg, rreg); break; 2376 default: ShouldNotReachHere(); 2377 } 2378 } else { 2379 Address raddr; 2380 if (right->is_single_stack()) { 2381 raddr = frame_map()->address_for_slot(right->single_stack_ix()); 2382 } else if (right->is_constant()) { 2383 // hack for now 2384 raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat()))); 2385 } else { 2386 ShouldNotReachHere(); 2387 } 2388 switch (code) { 2389 case lir_add: __ addss(lreg, raddr); break; 2390 case lir_sub: __ subss(lreg, raddr); break; 2391 case lir_mul: __ mulss(lreg, raddr); break; 2392 case lir_div: __ divss(lreg, raddr); break; 2393 default: ShouldNotReachHere(); 2394 } 2395 } 2396 2397 } else if (left->is_double_xmm()) { 2398 assert(left == dest, "left and dest must be equal"); 2399 2400 XMMRegister lreg = left->as_xmm_double_reg(); 2401 if (right->is_double_xmm()) { 2402 XMMRegister rreg = right->as_xmm_double_reg(); 2403 switch (code) { 2404 case lir_add: __ addsd(lreg, rreg); break; 2405 case lir_sub: __ subsd(lreg, rreg); break; 2406 case lir_mul: __ mulsd(lreg, rreg); break; 2407 case lir_div: __ divsd(lreg, rreg); break; 2408 default: ShouldNotReachHere(); 2409 } 2410 } else { 2411 Address raddr; 2412 if (right->is_double_stack()) { 2413 raddr = frame_map()->address_for_slot(right->double_stack_ix()); 2414 } else if (right->is_constant()) { 2415 // hack for now 2416 raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble()))); 2417 } else { 2418 ShouldNotReachHere(); 2419 } 2420 switch (code) { 2421 case lir_add: __ addsd(lreg, raddr); break; 2422 case lir_sub: __ subsd(lreg, raddr); break; 2423 case lir_mul: __ mulsd(lreg, raddr); break; 2424 case lir_div: __ divsd(lreg, raddr); break; 2425 default: ShouldNotReachHere(); 2426 } 2427 } 2428 2429 #ifndef _LP64 2430 } else if (left->is_single_fpu()) { 2431 assert(dest->is_single_fpu(), "fpu stack allocation required"); 2432 2433 if (right->is_single_fpu()) { 2434 arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack); 2435 2436 } else { 2437 assert(left->fpu_regnr() == 0, "left must be on TOS"); 2438 assert(dest->fpu_regnr() == 0, "dest must be on TOS"); 2439 2440 Address raddr; 2441 if (right->is_single_stack()) { 2442 raddr = frame_map()->address_for_slot(right->single_stack_ix()); 2443 } else if (right->is_constant()) { 2444 address const_addr = float_constant(right->as_jfloat()); 2445 assert(const_addr != nullptr, "incorrect float/double constant maintenance"); 2446 // hack for now 2447 raddr = __ as_Address(InternalAddress(const_addr)); 2448 } else { 2449 ShouldNotReachHere(); 2450 } 2451 2452 switch (code) { 2453 case lir_add: __ fadd_s(raddr); break; 2454 case lir_sub: __ fsub_s(raddr); break; 2455 case lir_mul: __ fmul_s(raddr); break; 2456 case lir_div: __ fdiv_s(raddr); break; 2457 default: ShouldNotReachHere(); 2458 } 2459 } 2460 2461 } else if (left->is_double_fpu()) { 2462 assert(dest->is_double_fpu(), "fpu stack allocation required"); 2463 2464 if (code == lir_mul || code == lir_div) { 2465 // Double values require special handling for strictfp mul/div on x86 2466 __ fld_x(ExternalAddress(StubRoutines::x86::addr_fpu_subnormal_bias1())); 2467 __ fmulp(left->fpu_regnrLo() + 1); 2468 } 2469 2470 if (right->is_double_fpu()) { 2471 arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack); 2472 2473 } else { 2474 assert(left->fpu_regnrLo() == 0, "left must be on TOS"); 2475 assert(dest->fpu_regnrLo() == 0, "dest must be on TOS"); 2476 2477 Address raddr; 2478 if (right->is_double_stack()) { 2479 raddr = frame_map()->address_for_slot(right->double_stack_ix()); 2480 } else if (right->is_constant()) { 2481 // hack for now 2482 raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble()))); 2483 } else { 2484 ShouldNotReachHere(); 2485 } 2486 2487 switch (code) { 2488 case lir_add: __ fadd_d(raddr); break; 2489 case lir_sub: __ fsub_d(raddr); break; 2490 case lir_mul: __ fmul_d(raddr); break; 2491 case lir_div: __ fdiv_d(raddr); break; 2492 default: ShouldNotReachHere(); 2493 } 2494 } 2495 2496 if (code == lir_mul || code == lir_div) { 2497 // Double values require special handling for strictfp mul/div on x86 2498 __ fld_x(ExternalAddress(StubRoutines::x86::addr_fpu_subnormal_bias2())); 2499 __ fmulp(dest->fpu_regnrLo() + 1); 2500 } 2501 #endif // !_LP64 2502 2503 } else if (left->is_single_stack() || left->is_address()) { 2504 assert(left == dest, "left and dest must be equal"); 2505 2506 Address laddr; 2507 if (left->is_single_stack()) { 2508 laddr = frame_map()->address_for_slot(left->single_stack_ix()); 2509 } else if (left->is_address()) { 2510 laddr = as_Address(left->as_address_ptr()); 2511 } else { 2512 ShouldNotReachHere(); 2513 } 2514 2515 if (right->is_single_cpu()) { 2516 Register rreg = right->as_register(); 2517 switch (code) { 2518 case lir_add: __ addl(laddr, rreg); break; 2519 case lir_sub: __ subl(laddr, rreg); break; 2520 default: ShouldNotReachHere(); 2521 } 2522 } else if (right->is_constant()) { 2523 jint c = right->as_constant_ptr()->as_jint(); 2524 switch (code) { 2525 case lir_add: { 2526 __ incrementl(laddr, c); 2527 break; 2528 } 2529 case lir_sub: { 2530 __ decrementl(laddr, c); 2531 break; 2532 } 2533 default: ShouldNotReachHere(); 2534 } 2535 } else { 2536 ShouldNotReachHere(); 2537 } 2538 2539 } else { 2540 ShouldNotReachHere(); 2541 } 2542 } 2543 2544 #ifndef _LP64 2545 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) { 2546 assert(pop_fpu_stack || (left_index == dest_index || right_index == dest_index), "invalid LIR"); 2547 assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR"); 2548 assert(left_index == 0 || right_index == 0, "either must be on top of stack"); 2549 2550 bool left_is_tos = (left_index == 0); 2551 bool dest_is_tos = (dest_index == 0); 2552 int non_tos_index = (left_is_tos ? right_index : left_index); 2553 2554 switch (code) { 2555 case lir_add: 2556 if (pop_fpu_stack) __ faddp(non_tos_index); 2557 else if (dest_is_tos) __ fadd (non_tos_index); 2558 else __ fadda(non_tos_index); 2559 break; 2560 2561 case lir_sub: 2562 if (left_is_tos) { 2563 if (pop_fpu_stack) __ fsubrp(non_tos_index); 2564 else if (dest_is_tos) __ fsub (non_tos_index); 2565 else __ fsubra(non_tos_index); 2566 } else { 2567 if (pop_fpu_stack) __ fsubp (non_tos_index); 2568 else if (dest_is_tos) __ fsubr (non_tos_index); 2569 else __ fsuba (non_tos_index); 2570 } 2571 break; 2572 2573 case lir_mul: 2574 if (pop_fpu_stack) __ fmulp(non_tos_index); 2575 else if (dest_is_tos) __ fmul (non_tos_index); 2576 else __ fmula(non_tos_index); 2577 break; 2578 2579 case lir_div: 2580 if (left_is_tos) { 2581 if (pop_fpu_stack) __ fdivrp(non_tos_index); 2582 else if (dest_is_tos) __ fdiv (non_tos_index); 2583 else __ fdivra(non_tos_index); 2584 } else { 2585 if (pop_fpu_stack) __ fdivp (non_tos_index); 2586 else if (dest_is_tos) __ fdivr (non_tos_index); 2587 else __ fdiva (non_tos_index); 2588 } 2589 break; 2590 2591 case lir_rem: 2592 assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation"); 2593 __ fremr(noreg); 2594 break; 2595 2596 default: 2597 ShouldNotReachHere(); 2598 } 2599 } 2600 #endif // _LP64 2601 2602 2603 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr tmp, LIR_Opr dest, LIR_Op* op) { 2604 if (value->is_double_xmm()) { 2605 switch(code) { 2606 case lir_abs : 2607 { 2608 #ifdef _LP64 2609 if (UseAVX > 2 && !VM_Version::supports_avx512vl()) { 2610 assert(tmp->is_valid(), "need temporary"); 2611 __ vpandn(dest->as_xmm_double_reg(), tmp->as_xmm_double_reg(), value->as_xmm_double_reg(), 2); 2612 } else 2613 #endif 2614 { 2615 if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) { 2616 __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); 2617 } 2618 assert(!tmp->is_valid(), "do not need temporary"); 2619 __ andpd(dest->as_xmm_double_reg(), 2620 ExternalAddress((address)double_signmask_pool), 2621 rscratch1); 2622 } 2623 } 2624 break; 2625 2626 case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break; 2627 // all other intrinsics are not available in the SSE instruction set, so FPU is used 2628 default : ShouldNotReachHere(); 2629 } 2630 2631 #ifndef _LP64 2632 } else if (value->is_double_fpu()) { 2633 assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS"); 2634 switch(code) { 2635 case lir_abs : __ fabs() ; break; 2636 case lir_sqrt : __ fsqrt(); break; 2637 default : ShouldNotReachHere(); 2638 } 2639 #endif // !_LP64 2640 } else if (code == lir_f2hf) { 2641 __ flt_to_flt16(dest->as_register(), value->as_xmm_float_reg(), tmp->as_xmm_float_reg()); 2642 } else if (code == lir_hf2f) { 2643 __ flt16_to_flt(dest->as_xmm_float_reg(), value->as_register()); 2644 } else { 2645 Unimplemented(); 2646 } 2647 } 2648 2649 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) { 2650 // assert(left->destroys_register(), "check"); 2651 if (left->is_single_cpu()) { 2652 Register reg = left->as_register(); 2653 if (right->is_constant()) { 2654 int val = right->as_constant_ptr()->as_jint(); 2655 switch (code) { 2656 case lir_logic_and: __ andl (reg, val); break; 2657 case lir_logic_or: __ orl (reg, val); break; 2658 case lir_logic_xor: __ xorl (reg, val); break; 2659 default: ShouldNotReachHere(); 2660 } 2661 } else if (right->is_stack()) { 2662 // added support for stack operands 2663 Address raddr = frame_map()->address_for_slot(right->single_stack_ix()); 2664 switch (code) { 2665 case lir_logic_and: __ andl (reg, raddr); break; 2666 case lir_logic_or: __ orl (reg, raddr); break; 2667 case lir_logic_xor: __ xorl (reg, raddr); break; 2668 default: ShouldNotReachHere(); 2669 } 2670 } else { 2671 Register rright = right->as_register(); 2672 switch (code) { 2673 case lir_logic_and: __ andptr (reg, rright); break; 2674 case lir_logic_or : __ orptr (reg, rright); break; 2675 case lir_logic_xor: __ xorptr (reg, rright); break; 2676 default: ShouldNotReachHere(); 2677 } 2678 } 2679 move_regs(reg, dst->as_register()); 2680 } else { 2681 Register l_lo = left->as_register_lo(); 2682 Register l_hi = left->as_register_hi(); 2683 if (right->is_constant()) { 2684 #ifdef _LP64 2685 __ mov64(rscratch1, right->as_constant_ptr()->as_jlong()); 2686 switch (code) { 2687 case lir_logic_and: 2688 __ andq(l_lo, rscratch1); 2689 break; 2690 case lir_logic_or: 2691 __ orq(l_lo, rscratch1); 2692 break; 2693 case lir_logic_xor: 2694 __ xorq(l_lo, rscratch1); 2695 break; 2696 default: ShouldNotReachHere(); 2697 } 2698 #else 2699 int r_lo = right->as_constant_ptr()->as_jint_lo(); 2700 int r_hi = right->as_constant_ptr()->as_jint_hi(); 2701 switch (code) { 2702 case lir_logic_and: 2703 __ andl(l_lo, r_lo); 2704 __ andl(l_hi, r_hi); 2705 break; 2706 case lir_logic_or: 2707 __ orl(l_lo, r_lo); 2708 __ orl(l_hi, r_hi); 2709 break; 2710 case lir_logic_xor: 2711 __ xorl(l_lo, r_lo); 2712 __ xorl(l_hi, r_hi); 2713 break; 2714 default: ShouldNotReachHere(); 2715 } 2716 #endif // _LP64 2717 } else { 2718 #ifdef _LP64 2719 Register r_lo; 2720 if (is_reference_type(right->type())) { 2721 r_lo = right->as_register(); 2722 } else { 2723 r_lo = right->as_register_lo(); 2724 } 2725 #else 2726 Register r_lo = right->as_register_lo(); 2727 Register r_hi = right->as_register_hi(); 2728 assert(l_lo != r_hi, "overwriting registers"); 2729 #endif 2730 switch (code) { 2731 case lir_logic_and: 2732 __ andptr(l_lo, r_lo); 2733 NOT_LP64(__ andptr(l_hi, r_hi);) 2734 break; 2735 case lir_logic_or: 2736 __ orptr(l_lo, r_lo); 2737 NOT_LP64(__ orptr(l_hi, r_hi);) 2738 break; 2739 case lir_logic_xor: 2740 __ xorptr(l_lo, r_lo); 2741 NOT_LP64(__ xorptr(l_hi, r_hi);) 2742 break; 2743 default: ShouldNotReachHere(); 2744 } 2745 } 2746 2747 Register dst_lo = dst->as_register_lo(); 2748 Register dst_hi = dst->as_register_hi(); 2749 2750 #ifdef _LP64 2751 move_regs(l_lo, dst_lo); 2752 #else 2753 if (dst_lo == l_hi) { 2754 assert(dst_hi != l_lo, "overwriting registers"); 2755 move_regs(l_hi, dst_hi); 2756 move_regs(l_lo, dst_lo); 2757 } else { 2758 assert(dst_lo != l_hi, "overwriting registers"); 2759 move_regs(l_lo, dst_lo); 2760 move_regs(l_hi, dst_hi); 2761 } 2762 #endif // _LP64 2763 } 2764 } 2765 2766 2767 // we assume that rax, and rdx can be overwritten 2768 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) { 2769 2770 assert(left->is_single_cpu(), "left must be register"); 2771 assert(right->is_single_cpu() || right->is_constant(), "right must be register or constant"); 2772 assert(result->is_single_cpu(), "result must be register"); 2773 2774 // assert(left->destroys_register(), "check"); 2775 // assert(right->destroys_register(), "check"); 2776 2777 Register lreg = left->as_register(); 2778 Register dreg = result->as_register(); 2779 2780 if (right->is_constant()) { 2781 jint divisor = right->as_constant_ptr()->as_jint(); 2782 assert(divisor > 0 && is_power_of_2(divisor), "must be"); 2783 if (code == lir_idiv) { 2784 assert(lreg == rax, "must be rax,"); 2785 assert(temp->as_register() == rdx, "tmp register must be rdx"); 2786 __ cdql(); // sign extend into rdx:rax 2787 if (divisor == 2) { 2788 __ subl(lreg, rdx); 2789 } else { 2790 __ andl(rdx, divisor - 1); 2791 __ addl(lreg, rdx); 2792 } 2793 __ sarl(lreg, log2i_exact(divisor)); 2794 move_regs(lreg, dreg); 2795 } else if (code == lir_irem) { 2796 Label done; 2797 __ mov(dreg, lreg); 2798 __ andl(dreg, 0x80000000 | (divisor - 1)); 2799 __ jcc(Assembler::positive, done); 2800 __ decrement(dreg); 2801 __ orl(dreg, ~(divisor - 1)); 2802 __ increment(dreg); 2803 __ bind(done); 2804 } else { 2805 ShouldNotReachHere(); 2806 } 2807 } else { 2808 Register rreg = right->as_register(); 2809 assert(lreg == rax, "left register must be rax,"); 2810 assert(rreg != rdx, "right register must not be rdx"); 2811 assert(temp->as_register() == rdx, "tmp register must be rdx"); 2812 2813 move_regs(lreg, rax); 2814 2815 int idivl_offset = __ corrected_idivl(rreg); 2816 if (ImplicitDiv0Checks) { 2817 add_debug_info_for_div0(idivl_offset, info); 2818 } 2819 if (code == lir_irem) { 2820 move_regs(rdx, dreg); // result is in rdx 2821 } else { 2822 move_regs(rax, dreg); 2823 } 2824 } 2825 } 2826 2827 2828 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) { 2829 if (opr1->is_single_cpu()) { 2830 Register reg1 = opr1->as_register(); 2831 if (opr2->is_single_cpu()) { 2832 // cpu register - cpu register 2833 if (is_reference_type(opr1->type())) { 2834 __ cmpoop(reg1, opr2->as_register()); 2835 } else { 2836 assert(!is_reference_type(opr2->type()), "cmp int, oop?"); 2837 __ cmpl(reg1, opr2->as_register()); 2838 } 2839 } else if (opr2->is_stack()) { 2840 // cpu register - stack 2841 if (is_reference_type(opr1->type())) { 2842 __ cmpoop(reg1, frame_map()->address_for_slot(opr2->single_stack_ix())); 2843 } else { 2844 __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix())); 2845 } 2846 } else if (opr2->is_constant()) { 2847 // cpu register - constant 2848 LIR_Const* c = opr2->as_constant_ptr(); 2849 if (c->type() == T_INT) { 2850 __ cmpl(reg1, c->as_jint()); 2851 } else if (c->type() == T_METADATA) { 2852 // All we need for now is a comparison with null for equality. 2853 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "oops"); 2854 Metadata* m = c->as_metadata(); 2855 if (m == nullptr) { 2856 __ cmpptr(reg1, NULL_WORD); 2857 } else { 2858 ShouldNotReachHere(); 2859 } 2860 } else if (is_reference_type(c->type())) { 2861 // In 64bit oops are single register 2862 jobject o = c->as_jobject(); 2863 if (o == nullptr) { 2864 __ cmpptr(reg1, NULL_WORD); 2865 } else { 2866 __ cmpoop(reg1, o, rscratch1); 2867 } 2868 } else { 2869 fatal("unexpected type: %s", basictype_to_str(c->type())); 2870 } 2871 // cpu register - address 2872 } else if (opr2->is_address()) { 2873 if (op->info() != nullptr) { 2874 add_debug_info_for_null_check_here(op->info()); 2875 } 2876 __ cmpl(reg1, as_Address(opr2->as_address_ptr())); 2877 } else { 2878 ShouldNotReachHere(); 2879 } 2880 2881 } else if(opr1->is_double_cpu()) { 2882 Register xlo = opr1->as_register_lo(); 2883 Register xhi = opr1->as_register_hi(); 2884 if (opr2->is_double_cpu()) { 2885 #ifdef _LP64 2886 __ cmpptr(xlo, opr2->as_register_lo()); 2887 #else 2888 // cpu register - cpu register 2889 Register ylo = opr2->as_register_lo(); 2890 Register yhi = opr2->as_register_hi(); 2891 __ subl(xlo, ylo); 2892 __ sbbl(xhi, yhi); 2893 if (condition == lir_cond_equal || condition == lir_cond_notEqual) { 2894 __ orl(xhi, xlo); 2895 } 2896 #endif // _LP64 2897 } else if (opr2->is_constant()) { 2898 // cpu register - constant 0 2899 assert(opr2->as_jlong() == (jlong)0, "only handles zero"); 2900 #ifdef _LP64 2901 __ cmpptr(xlo, (int32_t)opr2->as_jlong()); 2902 #else 2903 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case"); 2904 __ orl(xhi, xlo); 2905 #endif // _LP64 2906 } else { 2907 ShouldNotReachHere(); 2908 } 2909 2910 } else if (opr1->is_single_xmm()) { 2911 XMMRegister reg1 = opr1->as_xmm_float_reg(); 2912 if (opr2->is_single_xmm()) { 2913 // xmm register - xmm register 2914 __ ucomiss(reg1, opr2->as_xmm_float_reg()); 2915 } else if (opr2->is_stack()) { 2916 // xmm register - stack 2917 __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix())); 2918 } else if (opr2->is_constant()) { 2919 // xmm register - constant 2920 __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat()))); 2921 } else if (opr2->is_address()) { 2922 // xmm register - address 2923 if (op->info() != nullptr) { 2924 add_debug_info_for_null_check_here(op->info()); 2925 } 2926 __ ucomiss(reg1, as_Address(opr2->as_address_ptr())); 2927 } else { 2928 ShouldNotReachHere(); 2929 } 2930 2931 } else if (opr1->is_double_xmm()) { 2932 XMMRegister reg1 = opr1->as_xmm_double_reg(); 2933 if (opr2->is_double_xmm()) { 2934 // xmm register - xmm register 2935 __ ucomisd(reg1, opr2->as_xmm_double_reg()); 2936 } else if (opr2->is_stack()) { 2937 // xmm register - stack 2938 __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix())); 2939 } else if (opr2->is_constant()) { 2940 // xmm register - constant 2941 __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble()))); 2942 } else if (opr2->is_address()) { 2943 // xmm register - address 2944 if (op->info() != nullptr) { 2945 add_debug_info_for_null_check_here(op->info()); 2946 } 2947 __ ucomisd(reg1, as_Address(opr2->pointer()->as_address())); 2948 } else { 2949 ShouldNotReachHere(); 2950 } 2951 2952 #ifndef _LP64 2953 } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) { 2954 assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)"); 2955 assert(opr2->is_fpu_register(), "both must be registers"); 2956 __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1); 2957 #endif // LP64 2958 2959 } else if (opr1->is_address() && opr2->is_constant()) { 2960 LIR_Const* c = opr2->as_constant_ptr(); 2961 #ifdef _LP64 2962 if (is_reference_type(c->type())) { 2963 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse"); 2964 __ movoop(rscratch1, c->as_jobject()); 2965 } 2966 #endif // LP64 2967 if (op->info() != nullptr) { 2968 add_debug_info_for_null_check_here(op->info()); 2969 } 2970 // special case: address - constant 2971 LIR_Address* addr = opr1->as_address_ptr(); 2972 if (c->type() == T_INT) { 2973 __ cmpl(as_Address(addr), c->as_jint()); 2974 } else if (is_reference_type(c->type())) { 2975 #ifdef _LP64 2976 // %%% Make this explode if addr isn't reachable until we figure out a 2977 // better strategy by giving noreg as the temp for as_Address 2978 __ cmpoop(rscratch1, as_Address(addr, noreg)); 2979 #else 2980 __ cmpoop(as_Address(addr), c->as_jobject()); 2981 #endif // _LP64 2982 } else { 2983 ShouldNotReachHere(); 2984 } 2985 2986 } else { 2987 ShouldNotReachHere(); 2988 } 2989 } 2990 2991 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) { 2992 if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) { 2993 if (left->is_single_xmm()) { 2994 assert(right->is_single_xmm(), "must match"); 2995 __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i); 2996 } else if (left->is_double_xmm()) { 2997 assert(right->is_double_xmm(), "must match"); 2998 __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i); 2999 3000 } else { 3001 #ifdef _LP64 3002 ShouldNotReachHere(); 3003 #else 3004 assert(left->is_single_fpu() || left->is_double_fpu(), "must be"); 3005 assert(right->is_single_fpu() || right->is_double_fpu(), "must match"); 3006 3007 assert(left->fpu() == 0, "left must be on TOS"); 3008 __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(), 3009 op->fpu_pop_count() > 0, op->fpu_pop_count() > 1); 3010 #endif // LP64 3011 } 3012 } else { 3013 assert(code == lir_cmp_l2i, "check"); 3014 #ifdef _LP64 3015 Label done; 3016 Register dest = dst->as_register(); 3017 __ cmpptr(left->as_register_lo(), right->as_register_lo()); 3018 __ movl(dest, -1); 3019 __ jccb(Assembler::less, done); 3020 __ set_byte_if_not_zero(dest); 3021 __ movzbl(dest, dest); 3022 __ bind(done); 3023 #else 3024 __ lcmp2int(left->as_register_hi(), 3025 left->as_register_lo(), 3026 right->as_register_hi(), 3027 right->as_register_lo()); 3028 move_regs(left->as_register_hi(), dst->as_register()); 3029 #endif // _LP64 3030 } 3031 } 3032 3033 3034 void LIR_Assembler::align_call(LIR_Code code) { 3035 // make sure that the displacement word of the call ends up word aligned 3036 int offset = __ offset(); 3037 switch (code) { 3038 case lir_static_call: 3039 case lir_optvirtual_call: 3040 case lir_dynamic_call: 3041 offset += NativeCall::displacement_offset; 3042 break; 3043 case lir_icvirtual_call: 3044 offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size; 3045 break; 3046 default: ShouldNotReachHere(); 3047 } 3048 __ align(BytesPerWord, offset); 3049 } 3050 3051 3052 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) { 3053 assert((__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0, 3054 "must be aligned"); 3055 __ call(AddressLiteral(op->addr(), rtype)); 3056 add_call_info(code_offset(), op->info(), op->maybe_return_as_fields()); 3057 __ post_call_nop(); 3058 } 3059 3060 3061 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) { 3062 __ ic_call(op->addr()); 3063 add_call_info(code_offset(), op->info(), op->maybe_return_as_fields()); 3064 assert((__ offset() - NativeCall::instruction_size + NativeCall::displacement_offset) % BytesPerWord == 0, 3065 "must be aligned"); 3066 __ post_call_nop(); 3067 } 3068 3069 3070 void LIR_Assembler::emit_static_call_stub() { 3071 address call_pc = __ pc(); 3072 address stub = __ start_a_stub(call_stub_size()); 3073 if (stub == nullptr) { 3074 bailout("static call stub overflow"); 3075 return; 3076 } 3077 3078 int start = __ offset(); 3079 3080 // make sure that the displacement word of the call ends up word aligned 3081 __ align(BytesPerWord, __ offset() + NativeMovConstReg::instruction_size + NativeCall::displacement_offset); 3082 __ relocate(static_stub_Relocation::spec(call_pc)); 3083 __ mov_metadata(rbx, (Metadata*)nullptr); 3084 // must be set to -1 at code generation time 3085 assert(((__ offset() + 1) % BytesPerWord) == 0, "must be aligned"); 3086 // On 64bit this will die since it will take a movq & jmp, must be only a jmp 3087 __ jump(RuntimeAddress(__ pc())); 3088 3089 assert(__ offset() - start <= call_stub_size(), "stub too big"); 3090 __ end_a_stub(); 3091 } 3092 3093 3094 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) { 3095 assert(exceptionOop->as_register() == rax, "must match"); 3096 assert(exceptionPC->as_register() == rdx, "must match"); 3097 3098 // exception object is not added to oop map by LinearScan 3099 // (LinearScan assumes that no oops are in fixed registers) 3100 info->add_register_oop(exceptionOop); 3101 Runtime1::StubID unwind_id; 3102 3103 // get current pc information 3104 // pc is only needed if the method has an exception handler, the unwind code does not need it. 3105 int pc_for_athrow_offset = __ offset(); 3106 InternalAddress pc_for_athrow(__ pc()); 3107 __ lea(exceptionPC->as_register(), pc_for_athrow); 3108 add_call_info(pc_for_athrow_offset, info); // for exception handler 3109 3110 __ verify_not_null_oop(rax); 3111 // search an exception handler (rax: exception oop, rdx: throwing pc) 3112 if (compilation()->has_fpu_code()) { 3113 unwind_id = Runtime1::handle_exception_id; 3114 } else { 3115 unwind_id = Runtime1::handle_exception_nofpu_id; 3116 } 3117 __ call(RuntimeAddress(Runtime1::entry_for(unwind_id))); 3118 3119 // enough room for two byte trap 3120 __ nop(); 3121 } 3122 3123 3124 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) { 3125 assert(exceptionOop->as_register() == rax, "must match"); 3126 3127 __ jmp(_unwind_handler_entry); 3128 } 3129 3130 3131 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) { 3132 3133 // optimized version for linear scan: 3134 // * count must be already in ECX (guaranteed by LinearScan) 3135 // * left and dest must be equal 3136 // * tmp must be unused 3137 assert(count->as_register() == SHIFT_count, "count must be in ECX"); 3138 assert(left == dest, "left and dest must be equal"); 3139 assert(tmp->is_illegal(), "wasting a register if tmp is allocated"); 3140 3141 if (left->is_single_cpu()) { 3142 Register value = left->as_register(); 3143 assert(value != SHIFT_count, "left cannot be ECX"); 3144 3145 switch (code) { 3146 case lir_shl: __ shll(value); break; 3147 case lir_shr: __ sarl(value); break; 3148 case lir_ushr: __ shrl(value); break; 3149 default: ShouldNotReachHere(); 3150 } 3151 } else if (left->is_double_cpu()) { 3152 Register lo = left->as_register_lo(); 3153 Register hi = left->as_register_hi(); 3154 assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX"); 3155 #ifdef _LP64 3156 switch (code) { 3157 case lir_shl: __ shlptr(lo); break; 3158 case lir_shr: __ sarptr(lo); break; 3159 case lir_ushr: __ shrptr(lo); break; 3160 default: ShouldNotReachHere(); 3161 } 3162 #else 3163 3164 switch (code) { 3165 case lir_shl: __ lshl(hi, lo); break; 3166 case lir_shr: __ lshr(hi, lo, true); break; 3167 case lir_ushr: __ lshr(hi, lo, false); break; 3168 default: ShouldNotReachHere(); 3169 } 3170 #endif // LP64 3171 } else { 3172 ShouldNotReachHere(); 3173 } 3174 } 3175 3176 3177 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) { 3178 if (dest->is_single_cpu()) { 3179 // first move left into dest so that left is not destroyed by the shift 3180 Register value = dest->as_register(); 3181 count = count & 0x1F; // Java spec 3182 3183 move_regs(left->as_register(), value); 3184 switch (code) { 3185 case lir_shl: __ shll(value, count); break; 3186 case lir_shr: __ sarl(value, count); break; 3187 case lir_ushr: __ shrl(value, count); break; 3188 default: ShouldNotReachHere(); 3189 } 3190 } else if (dest->is_double_cpu()) { 3191 #ifndef _LP64 3192 Unimplemented(); 3193 #else 3194 // first move left into dest so that left is not destroyed by the shift 3195 Register value = dest->as_register_lo(); 3196 count = count & 0x1F; // Java spec 3197 3198 move_regs(left->as_register_lo(), value); 3199 switch (code) { 3200 case lir_shl: __ shlptr(value, count); break; 3201 case lir_shr: __ sarptr(value, count); break; 3202 case lir_ushr: __ shrptr(value, count); break; 3203 default: ShouldNotReachHere(); 3204 } 3205 #endif // _LP64 3206 } else { 3207 ShouldNotReachHere(); 3208 } 3209 } 3210 3211 3212 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) { 3213 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 3214 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 3215 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 3216 __ movptr (Address(rsp, offset_from_rsp_in_bytes), r); 3217 } 3218 3219 3220 void LIR_Assembler::store_parameter(jint c, int offset_from_rsp_in_words) { 3221 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 3222 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 3223 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 3224 __ movptr (Address(rsp, offset_from_rsp_in_bytes), c); 3225 } 3226 3227 3228 void LIR_Assembler::store_parameter(jobject o, int offset_from_rsp_in_words) { 3229 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 3230 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 3231 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 3232 __ movoop(Address(rsp, offset_from_rsp_in_bytes), o, rscratch1); 3233 } 3234 3235 3236 void LIR_Assembler::store_parameter(Metadata* m, int offset_from_rsp_in_words) { 3237 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 3238 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 3239 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 3240 __ mov_metadata(Address(rsp, offset_from_rsp_in_bytes), m, rscratch1); 3241 } 3242 3243 3244 void LIR_Assembler::arraycopy_inlinetype_check(Register obj, Register tmp, CodeStub* slow_path, bool is_dest, bool null_check) { 3245 if (null_check) { 3246 __ testptr(obj, obj); 3247 __ jcc(Assembler::zero, *slow_path->entry()); 3248 } 3249 if (UseArrayMarkWordCheck) { 3250 if (is_dest) { 3251 __ test_null_free_array_oop(obj, tmp, *slow_path->entry()); 3252 } else { 3253 __ test_flattened_array_oop(obj, tmp, *slow_path->entry()); 3254 } 3255 } else { 3256 Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg); 3257 __ load_klass(tmp, obj, tmp_load_klass); 3258 __ movl(tmp, Address(tmp, Klass::layout_helper_offset())); 3259 if (is_dest) { 3260 // Take the slow path if it's a null_free destination array, in case the source array contains nullptrs. 3261 __ testl(tmp, Klass::_lh_null_free_array_bit_inplace); 3262 } else { 3263 __ testl(tmp, Klass::_lh_array_tag_flat_value_bit_inplace); 3264 } 3265 __ jcc(Assembler::notZero, *slow_path->entry()); 3266 } 3267 } 3268 3269 3270 // This code replaces a call to arraycopy; no exception may 3271 // be thrown in this code, they must be thrown in the System.arraycopy 3272 // activation frame; we could save some checks if this would not be the case 3273 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) { 3274 ciArrayKlass* default_type = op->expected_type(); 3275 Register src = op->src()->as_register(); 3276 Register dst = op->dst()->as_register(); 3277 Register src_pos = op->src_pos()->as_register(); 3278 Register dst_pos = op->dst_pos()->as_register(); 3279 Register length = op->length()->as_register(); 3280 Register tmp = op->tmp()->as_register(); 3281 Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg); 3282 3283 CodeStub* stub = op->stub(); 3284 int flags = op->flags(); 3285 BasicType basic_type = default_type != nullptr ? default_type->element_type()->basic_type() : T_ILLEGAL; 3286 if (is_reference_type(basic_type)) basic_type = T_OBJECT; 3287 3288 if (flags & LIR_OpArrayCopy::always_slow_path) { 3289 __ jmp(*stub->entry()); 3290 __ bind(*stub->continuation()); 3291 return; 3292 } 3293 3294 // if we don't know anything, just go through the generic arraycopy 3295 if (default_type == nullptr) { 3296 // save outgoing arguments on stack in case call to System.arraycopy is needed 3297 // HACK ALERT. This code used to push the parameters in a hardwired fashion 3298 // for interpreter calling conventions. Now we have to do it in new style conventions. 3299 // For the moment until C1 gets the new register allocator I just force all the 3300 // args to the right place (except the register args) and then on the back side 3301 // reload the register args properly if we go slow path. Yuck 3302 3303 // These are proper for the calling convention 3304 store_parameter(length, 2); 3305 store_parameter(dst_pos, 1); 3306 store_parameter(dst, 0); 3307 3308 // these are just temporary placements until we need to reload 3309 store_parameter(src_pos, 3); 3310 store_parameter(src, 4); 3311 NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");) 3312 3313 address copyfunc_addr = StubRoutines::generic_arraycopy(); 3314 assert(copyfunc_addr != nullptr, "generic arraycopy stub required"); 3315 3316 // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint 3317 #ifdef _LP64 3318 // The arguments are in java calling convention so we can trivially shift them to C 3319 // convention 3320 assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4); 3321 __ mov(c_rarg0, j_rarg0); 3322 assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4); 3323 __ mov(c_rarg1, j_rarg1); 3324 assert_different_registers(c_rarg2, j_rarg3, j_rarg4); 3325 __ mov(c_rarg2, j_rarg2); 3326 assert_different_registers(c_rarg3, j_rarg4); 3327 __ mov(c_rarg3, j_rarg3); 3328 #ifdef _WIN64 3329 // Allocate abi space for args but be sure to keep stack aligned 3330 __ subptr(rsp, 6*wordSize); 3331 store_parameter(j_rarg4, 4); 3332 #ifndef PRODUCT 3333 if (PrintC1Statistics) { 3334 __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt), rscratch1); 3335 } 3336 #endif 3337 __ call(RuntimeAddress(copyfunc_addr)); 3338 __ addptr(rsp, 6*wordSize); 3339 #else 3340 __ mov(c_rarg4, j_rarg4); 3341 #ifndef PRODUCT 3342 if (PrintC1Statistics) { 3343 __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt), rscratch1); 3344 } 3345 #endif 3346 __ call(RuntimeAddress(copyfunc_addr)); 3347 #endif // _WIN64 3348 #else 3349 __ push(length); 3350 __ push(dst_pos); 3351 __ push(dst); 3352 __ push(src_pos); 3353 __ push(src); 3354 3355 #ifndef PRODUCT 3356 if (PrintC1Statistics) { 3357 __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt), rscratch1); 3358 } 3359 #endif 3360 __ call_VM_leaf(copyfunc_addr, 5); // removes pushed parameter from the stack 3361 3362 #endif // _LP64 3363 3364 __ cmpl(rax, 0); 3365 __ jcc(Assembler::equal, *stub->continuation()); 3366 3367 __ mov(tmp, rax); 3368 __ xorl(tmp, -1); 3369 3370 // Reload values from the stack so they are where the stub 3371 // expects them. 3372 __ movptr (dst, Address(rsp, 0*BytesPerWord)); 3373 __ movptr (dst_pos, Address(rsp, 1*BytesPerWord)); 3374 __ movptr (length, Address(rsp, 2*BytesPerWord)); 3375 __ movptr (src_pos, Address(rsp, 3*BytesPerWord)); 3376 __ movptr (src, Address(rsp, 4*BytesPerWord)); 3377 3378 __ subl(length, tmp); 3379 __ addl(src_pos, tmp); 3380 __ addl(dst_pos, tmp); 3381 __ jmp(*stub->entry()); 3382 3383 __ bind(*stub->continuation()); 3384 return; 3385 } 3386 3387 // Handle inline type arrays 3388 if (flags & LIR_OpArrayCopy::src_inlinetype_check) { 3389 arraycopy_inlinetype_check(src, tmp, stub, false, (flags & LIR_OpArrayCopy::src_null_check)); 3390 } 3391 if (flags & LIR_OpArrayCopy::dst_inlinetype_check) { 3392 arraycopy_inlinetype_check(dst, tmp, stub, true, (flags & LIR_OpArrayCopy::dst_null_check)); 3393 } 3394 3395 assert(default_type != nullptr && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point"); 3396 3397 int elem_size = type2aelembytes(basic_type); 3398 Address::ScaleFactor scale; 3399 3400 switch (elem_size) { 3401 case 1 : 3402 scale = Address::times_1; 3403 break; 3404 case 2 : 3405 scale = Address::times_2; 3406 break; 3407 case 4 : 3408 scale = Address::times_4; 3409 break; 3410 case 8 : 3411 scale = Address::times_8; 3412 break; 3413 default: 3414 scale = Address::no_scale; 3415 ShouldNotReachHere(); 3416 } 3417 3418 Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes()); 3419 Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes()); 3420 Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes()); 3421 Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes()); 3422 3423 // length and pos's are all sign extended at this point on 64bit 3424 3425 // test for null 3426 if (flags & LIR_OpArrayCopy::src_null_check) { 3427 __ testptr(src, src); 3428 __ jcc(Assembler::zero, *stub->entry()); 3429 } 3430 if (flags & LIR_OpArrayCopy::dst_null_check) { 3431 __ testptr(dst, dst); 3432 __ jcc(Assembler::zero, *stub->entry()); 3433 } 3434 3435 // If the compiler was not able to prove that exact type of the source or the destination 3436 // of the arraycopy is an array type, check at runtime if the source or the destination is 3437 // an instance type. 3438 if (flags & LIR_OpArrayCopy::type_check) { 3439 if (!(flags & LIR_OpArrayCopy::dst_objarray)) { 3440 __ load_klass(tmp, dst, tmp_load_klass); 3441 __ cmpl(Address(tmp, in_bytes(Klass::layout_helper_offset())), Klass::_lh_neutral_value); 3442 __ jcc(Assembler::greaterEqual, *stub->entry()); 3443 } 3444 3445 if (!(flags & LIR_OpArrayCopy::src_objarray)) { 3446 __ load_klass(tmp, src, tmp_load_klass); 3447 __ cmpl(Address(tmp, in_bytes(Klass::layout_helper_offset())), Klass::_lh_neutral_value); 3448 __ jcc(Assembler::greaterEqual, *stub->entry()); 3449 } 3450 } 3451 3452 // check if negative 3453 if (flags & LIR_OpArrayCopy::src_pos_positive_check) { 3454 __ testl(src_pos, src_pos); 3455 __ jcc(Assembler::less, *stub->entry()); 3456 } 3457 if (flags & LIR_OpArrayCopy::dst_pos_positive_check) { 3458 __ testl(dst_pos, dst_pos); 3459 __ jcc(Assembler::less, *stub->entry()); 3460 } 3461 3462 if (flags & LIR_OpArrayCopy::src_range_check) { 3463 __ lea(tmp, Address(src_pos, length, Address::times_1, 0)); 3464 __ cmpl(tmp, src_length_addr); 3465 __ jcc(Assembler::above, *stub->entry()); 3466 } 3467 if (flags & LIR_OpArrayCopy::dst_range_check) { 3468 __ lea(tmp, Address(dst_pos, length, Address::times_1, 0)); 3469 __ cmpl(tmp, dst_length_addr); 3470 __ jcc(Assembler::above, *stub->entry()); 3471 } 3472 3473 if (flags & LIR_OpArrayCopy::length_positive_check) { 3474 __ testl(length, length); 3475 __ jcc(Assembler::less, *stub->entry()); 3476 } 3477 3478 #ifdef _LP64 3479 __ movl2ptr(src_pos, src_pos); //higher 32bits must be null 3480 __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null 3481 #endif 3482 3483 if (flags & LIR_OpArrayCopy::type_check) { 3484 // We don't know the array types are compatible 3485 if (basic_type != T_OBJECT) { 3486 // Simple test for basic type arrays 3487 if (UseCompressedClassPointers) { 3488 __ movl(tmp, src_klass_addr); 3489 __ cmpl(tmp, dst_klass_addr); 3490 } else { 3491 __ movptr(tmp, src_klass_addr); 3492 __ cmpptr(tmp, dst_klass_addr); 3493 } 3494 __ jcc(Assembler::notEqual, *stub->entry()); 3495 } else { 3496 // For object arrays, if src is a sub class of dst then we can 3497 // safely do the copy. 3498 Label cont, slow; 3499 3500 __ push(src); 3501 __ push(dst); 3502 3503 __ load_klass(src, src, tmp_load_klass); 3504 __ load_klass(dst, dst, tmp_load_klass); 3505 3506 __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, nullptr); 3507 3508 __ push(src); 3509 __ push(dst); 3510 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id))); 3511 __ pop(dst); 3512 __ pop(src); 3513 3514 __ cmpl(src, 0); 3515 __ jcc(Assembler::notEqual, cont); 3516 3517 __ bind(slow); 3518 __ pop(dst); 3519 __ pop(src); 3520 3521 address copyfunc_addr = StubRoutines::checkcast_arraycopy(); 3522 if (copyfunc_addr != nullptr) { // use stub if available 3523 // src is not a sub class of dst so we have to do a 3524 // per-element check. 3525 3526 int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray; 3527 if ((flags & mask) != mask) { 3528 // Check that at least both of them object arrays. 3529 assert(flags & mask, "one of the two should be known to be an object array"); 3530 3531 if (!(flags & LIR_OpArrayCopy::src_objarray)) { 3532 __ load_klass(tmp, src, tmp_load_klass); 3533 } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) { 3534 __ load_klass(tmp, dst, tmp_load_klass); 3535 } 3536 int lh_offset = in_bytes(Klass::layout_helper_offset()); 3537 Address klass_lh_addr(tmp, lh_offset); 3538 jint objArray_lh = Klass::array_layout_helper(T_OBJECT); 3539 __ cmpl(klass_lh_addr, objArray_lh); 3540 __ jcc(Assembler::notEqual, *stub->entry()); 3541 } 3542 3543 // Spill because stubs can use any register they like and it's 3544 // easier to restore just those that we care about. 3545 store_parameter(dst, 0); 3546 store_parameter(dst_pos, 1); 3547 store_parameter(length, 2); 3548 store_parameter(src_pos, 3); 3549 store_parameter(src, 4); 3550 3551 #ifndef _LP64 3552 __ movptr(tmp, dst_klass_addr); 3553 __ movptr(tmp, Address(tmp, ObjArrayKlass::element_klass_offset())); 3554 __ push(tmp); 3555 __ movl(tmp, Address(tmp, Klass::super_check_offset_offset())); 3556 __ push(tmp); 3557 __ push(length); 3558 __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type))); 3559 __ push(tmp); 3560 __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type))); 3561 __ push(tmp); 3562 3563 __ call_VM_leaf(copyfunc_addr, 5); 3564 #else 3565 __ movl2ptr(length, length); //higher 32bits must be null 3566 3567 __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type))); 3568 assert_different_registers(c_rarg0, dst, dst_pos, length); 3569 __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type))); 3570 assert_different_registers(c_rarg1, dst, length); 3571 3572 __ mov(c_rarg2, length); 3573 assert_different_registers(c_rarg2, dst); 3574 3575 #ifdef _WIN64 3576 // Allocate abi space for args but be sure to keep stack aligned 3577 __ subptr(rsp, 6*wordSize); 3578 __ load_klass(c_rarg3, dst, tmp_load_klass); 3579 __ movptr(c_rarg3, Address(c_rarg3, ObjArrayKlass::element_klass_offset())); 3580 store_parameter(c_rarg3, 4); 3581 __ movl(c_rarg3, Address(c_rarg3, Klass::super_check_offset_offset())); 3582 __ call(RuntimeAddress(copyfunc_addr)); 3583 __ addptr(rsp, 6*wordSize); 3584 #else 3585 __ load_klass(c_rarg4, dst, tmp_load_klass); 3586 __ movptr(c_rarg4, Address(c_rarg4, ObjArrayKlass::element_klass_offset())); 3587 __ movl(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset())); 3588 __ call(RuntimeAddress(copyfunc_addr)); 3589 #endif 3590 3591 #endif 3592 3593 #ifndef PRODUCT 3594 if (PrintC1Statistics) { 3595 Label failed; 3596 __ testl(rax, rax); 3597 __ jcc(Assembler::notZero, failed); 3598 __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt), rscratch1); 3599 __ bind(failed); 3600 } 3601 #endif 3602 3603 __ testl(rax, rax); 3604 __ jcc(Assembler::zero, *stub->continuation()); 3605 3606 #ifndef PRODUCT 3607 if (PrintC1Statistics) { 3608 __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt), rscratch1); 3609 } 3610 #endif 3611 3612 __ mov(tmp, rax); 3613 3614 __ xorl(tmp, -1); 3615 3616 // Restore previously spilled arguments 3617 __ movptr (dst, Address(rsp, 0*BytesPerWord)); 3618 __ movptr (dst_pos, Address(rsp, 1*BytesPerWord)); 3619 __ movptr (length, Address(rsp, 2*BytesPerWord)); 3620 __ movptr (src_pos, Address(rsp, 3*BytesPerWord)); 3621 __ movptr (src, Address(rsp, 4*BytesPerWord)); 3622 3623 3624 __ subl(length, tmp); 3625 __ addl(src_pos, tmp); 3626 __ addl(dst_pos, tmp); 3627 } 3628 3629 __ jmp(*stub->entry()); 3630 3631 __ bind(cont); 3632 __ pop(dst); 3633 __ pop(src); 3634 } 3635 } 3636 3637 #ifdef ASSERT 3638 if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) { 3639 // Sanity check the known type with the incoming class. For the 3640 // primitive case the types must match exactly with src.klass and 3641 // dst.klass each exactly matching the default type. For the 3642 // object array case, if no type check is needed then either the 3643 // dst type is exactly the expected type and the src type is a 3644 // subtype which we can't check or src is the same array as dst 3645 // but not necessarily exactly of type default_type. 3646 Label known_ok, halt; 3647 __ mov_metadata(tmp, default_type->constant_encoding()); 3648 #ifdef _LP64 3649 if (UseCompressedClassPointers) { 3650 __ encode_klass_not_null(tmp, rscratch1); 3651 } 3652 #endif 3653 3654 if (basic_type != T_OBJECT) { 3655 3656 if (UseCompressedClassPointers) __ cmpl(tmp, dst_klass_addr); 3657 else __ cmpptr(tmp, dst_klass_addr); 3658 __ jcc(Assembler::notEqual, halt); 3659 if (UseCompressedClassPointers) __ cmpl(tmp, src_klass_addr); 3660 else __ cmpptr(tmp, src_klass_addr); 3661 __ jcc(Assembler::equal, known_ok); 3662 } else { 3663 if (UseCompressedClassPointers) __ cmpl(tmp, dst_klass_addr); 3664 else __ cmpptr(tmp, dst_klass_addr); 3665 __ jcc(Assembler::equal, known_ok); 3666 __ cmpptr(src, dst); 3667 __ jcc(Assembler::equal, known_ok); 3668 } 3669 __ bind(halt); 3670 __ stop("incorrect type information in arraycopy"); 3671 __ bind(known_ok); 3672 } 3673 #endif 3674 3675 #ifndef PRODUCT 3676 if (PrintC1Statistics) { 3677 __ incrementl(ExternalAddress(Runtime1::arraycopy_count_address(basic_type)), rscratch1); 3678 } 3679 #endif 3680 3681 #ifdef _LP64 3682 assert_different_registers(c_rarg0, dst, dst_pos, length); 3683 __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type))); 3684 assert_different_registers(c_rarg1, length); 3685 __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type))); 3686 __ mov(c_rarg2, length); 3687 3688 #else 3689 __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type))); 3690 store_parameter(tmp, 0); 3691 __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type))); 3692 store_parameter(tmp, 1); 3693 store_parameter(length, 2); 3694 #endif // _LP64 3695 3696 bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0; 3697 bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0; 3698 const char *name; 3699 address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false); 3700 __ call_VM_leaf(entry, 0); 3701 3702 __ bind(*stub->continuation()); 3703 } 3704 3705 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) { 3706 assert(op->crc()->is_single_cpu(), "crc must be register"); 3707 assert(op->val()->is_single_cpu(), "byte value must be register"); 3708 assert(op->result_opr()->is_single_cpu(), "result must be register"); 3709 Register crc = op->crc()->as_register(); 3710 Register val = op->val()->as_register(); 3711 Register res = op->result_opr()->as_register(); 3712 3713 assert_different_registers(val, crc, res); 3714 3715 __ lea(res, ExternalAddress(StubRoutines::crc_table_addr())); 3716 __ notl(crc); // ~crc 3717 __ update_byte_crc32(crc, val, res); 3718 __ notl(crc); // ~crc 3719 __ mov(res, crc); 3720 } 3721 3722 void LIR_Assembler::emit_lock(LIR_OpLock* op) { 3723 Register obj = op->obj_opr()->as_register(); // may not be an oop 3724 Register hdr = op->hdr_opr()->as_register(); 3725 Register lock = op->lock_opr()->as_register(); 3726 if (LockingMode == LM_MONITOR) { 3727 if (op->info() != nullptr) { 3728 add_debug_info_for_null_check_here(op->info()); 3729 __ null_check(obj); 3730 } 3731 __ jmp(*op->stub()->entry()); 3732 } else if (op->code() == lir_lock) { 3733 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); 3734 Register tmp = LockingMode == LM_LIGHTWEIGHT ? op->scratch_opr()->as_register() : noreg; 3735 // add debug info for NullPointerException only if one is possible 3736 int null_check_offset = __ lock_object(hdr, obj, lock, tmp, *op->stub()->entry()); 3737 if (op->info() != nullptr) { 3738 add_debug_info_for_null_check(null_check_offset, op->info()); 3739 } 3740 // done 3741 } else if (op->code() == lir_unlock) { 3742 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); 3743 __ unlock_object(hdr, obj, lock, *op->stub()->entry()); 3744 } else { 3745 Unimplemented(); 3746 } 3747 __ bind(*op->stub()->continuation()); 3748 } 3749 3750 void LIR_Assembler::emit_load_klass(LIR_OpLoadKlass* op) { 3751 Register obj = op->obj()->as_pointer_register(); 3752 Register result = op->result_opr()->as_pointer_register(); 3753 3754 CodeEmitInfo* info = op->info(); 3755 if (info != nullptr) { 3756 add_debug_info_for_null_check_here(info); 3757 } 3758 3759 #ifdef _LP64 3760 if (UseCompressedClassPointers) { 3761 __ movl(result, Address(obj, oopDesc::klass_offset_in_bytes())); 3762 __ decode_klass_not_null(result, rscratch1); 3763 } else 3764 #endif 3765 __ movptr(result, Address(obj, oopDesc::klass_offset_in_bytes())); 3766 } 3767 3768 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) { 3769 ciMethod* method = op->profiled_method(); 3770 int bci = op->profiled_bci(); 3771 ciMethod* callee = op->profiled_callee(); 3772 Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg); 3773 3774 // Update counter for all call types 3775 ciMethodData* md = method->method_data_or_null(); 3776 assert(md != nullptr, "Sanity"); 3777 ciProfileData* data = md->bci_to_data(bci); 3778 assert(data != nullptr && data->is_CounterData(), "need CounterData for calls"); 3779 assert(op->mdo()->is_single_cpu(), "mdo must be allocated"); 3780 Register mdo = op->mdo()->as_register(); 3781 __ mov_metadata(mdo, md->constant_encoding()); 3782 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); 3783 // Perform additional virtual call profiling for invokevirtual and 3784 // invokeinterface bytecodes 3785 if (op->should_profile_receiver_type()) { 3786 assert(op->recv()->is_single_cpu(), "recv must be allocated"); 3787 Register recv = op->recv()->as_register(); 3788 assert_different_registers(mdo, recv); 3789 assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls"); 3790 ciKlass* known_klass = op->known_holder(); 3791 if (C1OptimizeVirtualCallProfiling && known_klass != nullptr) { 3792 // We know the type that will be seen at this call site; we can 3793 // statically update the MethodData* rather than needing to do 3794 // dynamic tests on the receiver type 3795 3796 // NOTE: we should probably put a lock around this search to 3797 // avoid collisions by concurrent compilations 3798 ciVirtualCallData* vc_data = (ciVirtualCallData*) data; 3799 uint i; 3800 for (i = 0; i < VirtualCallData::row_limit(); i++) { 3801 ciKlass* receiver = vc_data->receiver(i); 3802 if (known_klass->equals(receiver)) { 3803 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))); 3804 __ addptr(data_addr, DataLayout::counter_increment); 3805 return; 3806 } 3807 } 3808 3809 // Receiver type not found in profile data; select an empty slot 3810 3811 // Note that this is less efficient than it should be because it 3812 // always does a write to the receiver part of the 3813 // VirtualCallData rather than just the first time 3814 for (i = 0; i < VirtualCallData::row_limit(); i++) { 3815 ciKlass* receiver = vc_data->receiver(i); 3816 if (receiver == nullptr) { 3817 Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i))); 3818 __ mov_metadata(recv_addr, known_klass->constant_encoding(), rscratch1); 3819 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))); 3820 __ addptr(data_addr, DataLayout::counter_increment); 3821 return; 3822 } 3823 } 3824 } else { 3825 __ load_klass(recv, recv, tmp_load_klass); 3826 Label update_done; 3827 type_profile_helper(mdo, md, data, recv, &update_done); 3828 // Receiver did not match any saved receiver and there is no empty row for it. 3829 // Increment total counter to indicate polymorphic case. 3830 __ addptr(counter_addr, DataLayout::counter_increment); 3831 3832 __ bind(update_done); 3833 } 3834 } else { 3835 // Static call 3836 __ addptr(counter_addr, DataLayout::counter_increment); 3837 } 3838 } 3839 3840 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) { 3841 Register obj = op->obj()->as_register(); 3842 Register tmp = op->tmp()->as_pointer_register(); 3843 Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg); 3844 Address mdo_addr = as_Address(op->mdp()->as_address_ptr()); 3845 ciKlass* exact_klass = op->exact_klass(); 3846 intptr_t current_klass = op->current_klass(); 3847 bool not_null = op->not_null(); 3848 bool no_conflict = op->no_conflict(); 3849 3850 Label update, next, none; 3851 3852 bool do_null = !not_null; 3853 bool exact_klass_set = exact_klass != nullptr && ciTypeEntries::valid_ciklass(current_klass) == exact_klass; 3854 bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set; 3855 3856 assert(do_null || do_update, "why are we here?"); 3857 assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?"); 3858 3859 __ verify_oop(obj); 3860 3861 if (tmp != obj) { 3862 __ mov(tmp, obj); 3863 } 3864 if (do_null) { 3865 __ testptr(tmp, tmp); 3866 __ jccb(Assembler::notZero, update); 3867 if (!TypeEntries::was_null_seen(current_klass)) { 3868 __ orptr(mdo_addr, TypeEntries::null_seen); 3869 } 3870 if (do_update) { 3871 #ifndef ASSERT 3872 __ jmpb(next); 3873 } 3874 #else 3875 __ jmp(next); 3876 } 3877 } else { 3878 __ testptr(tmp, tmp); 3879 __ jcc(Assembler::notZero, update); 3880 __ stop("unexpected null obj"); 3881 #endif 3882 } 3883 3884 __ bind(update); 3885 3886 if (do_update) { 3887 #ifdef ASSERT 3888 if (exact_klass != nullptr) { 3889 Label ok; 3890 __ load_klass(tmp, tmp, tmp_load_klass); 3891 __ push(tmp); 3892 __ mov_metadata(tmp, exact_klass->constant_encoding()); 3893 __ cmpptr(tmp, Address(rsp, 0)); 3894 __ jcc(Assembler::equal, ok); 3895 __ stop("exact klass and actual klass differ"); 3896 __ bind(ok); 3897 __ pop(tmp); 3898 } 3899 #endif 3900 if (!no_conflict) { 3901 if (exact_klass == nullptr || TypeEntries::is_type_none(current_klass)) { 3902 if (exact_klass != nullptr) { 3903 __ mov_metadata(tmp, exact_klass->constant_encoding()); 3904 } else { 3905 __ load_klass(tmp, tmp, tmp_load_klass); 3906 } 3907 3908 __ xorptr(tmp, mdo_addr); 3909 __ testptr(tmp, TypeEntries::type_klass_mask); 3910 // klass seen before, nothing to do. The unknown bit may have been 3911 // set already but no need to check. 3912 __ jccb(Assembler::zero, next); 3913 3914 __ testptr(tmp, TypeEntries::type_unknown); 3915 __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore. 3916 3917 if (TypeEntries::is_type_none(current_klass)) { 3918 __ cmpptr(mdo_addr, 0); 3919 __ jccb(Assembler::equal, none); 3920 __ cmpptr(mdo_addr, TypeEntries::null_seen); 3921 __ jccb(Assembler::equal, none); 3922 // There is a chance that the checks above (re-reading profiling 3923 // data from memory) fail if another thread has just set the 3924 // profiling to this obj's klass 3925 __ xorptr(tmp, mdo_addr); 3926 __ testptr(tmp, TypeEntries::type_klass_mask); 3927 __ jccb(Assembler::zero, next); 3928 } 3929 } else { 3930 assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr && 3931 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only"); 3932 3933 __ movptr(tmp, mdo_addr); 3934 __ testptr(tmp, TypeEntries::type_unknown); 3935 __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore. 3936 } 3937 3938 // different than before. Cannot keep accurate profile. 3939 __ orptr(mdo_addr, TypeEntries::type_unknown); 3940 3941 if (TypeEntries::is_type_none(current_klass)) { 3942 __ jmpb(next); 3943 3944 __ bind(none); 3945 // first time here. Set profile type. 3946 __ movptr(mdo_addr, tmp); 3947 } 3948 } else { 3949 // There's a single possible klass at this profile point 3950 assert(exact_klass != nullptr, "should be"); 3951 if (TypeEntries::is_type_none(current_klass)) { 3952 __ mov_metadata(tmp, exact_klass->constant_encoding()); 3953 __ xorptr(tmp, mdo_addr); 3954 __ testptr(tmp, TypeEntries::type_klass_mask); 3955 #ifdef ASSERT 3956 __ jcc(Assembler::zero, next); 3957 3958 { 3959 Label ok; 3960 __ push(tmp); 3961 __ cmpptr(mdo_addr, 0); 3962 __ jcc(Assembler::equal, ok); 3963 __ cmpptr(mdo_addr, TypeEntries::null_seen); 3964 __ jcc(Assembler::equal, ok); 3965 // may have been set by another thread 3966 __ mov_metadata(tmp, exact_klass->constant_encoding()); 3967 __ xorptr(tmp, mdo_addr); 3968 __ testptr(tmp, TypeEntries::type_mask); 3969 __ jcc(Assembler::zero, ok); 3970 3971 __ stop("unexpected profiling mismatch"); 3972 __ bind(ok); 3973 __ pop(tmp); 3974 } 3975 #else 3976 __ jccb(Assembler::zero, next); 3977 #endif 3978 // first time here. Set profile type. 3979 __ movptr(mdo_addr, tmp); 3980 } else { 3981 assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr && 3982 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent"); 3983 3984 __ movptr(tmp, mdo_addr); 3985 __ testptr(tmp, TypeEntries::type_unknown); 3986 __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore. 3987 3988 __ orptr(mdo_addr, TypeEntries::type_unknown); 3989 } 3990 } 3991 3992 __ bind(next); 3993 } 3994 } 3995 3996 void LIR_Assembler::emit_profile_inline_type(LIR_OpProfileInlineType* op) { 3997 Register obj = op->obj()->as_register(); 3998 Register tmp = op->tmp()->as_pointer_register(); 3999 Address mdo_addr = as_Address(op->mdp()->as_address_ptr()); 4000 bool not_null = op->not_null(); 4001 int flag = op->flag(); 4002 4003 Label not_inline_type; 4004 if (!not_null) { 4005 __ testptr(obj, obj); 4006 __ jccb(Assembler::zero, not_inline_type); 4007 } 4008 4009 __ test_oop_is_not_inline_type(obj, tmp, not_inline_type); 4010 4011 __ orb(mdo_addr, flag); 4012 4013 __ bind(not_inline_type); 4014 } 4015 4016 void LIR_Assembler::emit_delay(LIR_OpDelay*) { 4017 Unimplemented(); 4018 } 4019 4020 4021 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) { 4022 __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no)); 4023 } 4024 4025 4026 void LIR_Assembler::align_backward_branch_target() { 4027 __ align(BytesPerWord); 4028 } 4029 4030 4031 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest, LIR_Opr tmp) { 4032 if (left->is_single_cpu()) { 4033 __ negl(left->as_register()); 4034 move_regs(left->as_register(), dest->as_register()); 4035 4036 } else if (left->is_double_cpu()) { 4037 Register lo = left->as_register_lo(); 4038 #ifdef _LP64 4039 Register dst = dest->as_register_lo(); 4040 __ movptr(dst, lo); 4041 __ negptr(dst); 4042 #else 4043 Register hi = left->as_register_hi(); 4044 __ lneg(hi, lo); 4045 if (dest->as_register_lo() == hi) { 4046 assert(dest->as_register_hi() != lo, "destroying register"); 4047 move_regs(hi, dest->as_register_hi()); 4048 move_regs(lo, dest->as_register_lo()); 4049 } else { 4050 move_regs(lo, dest->as_register_lo()); 4051 move_regs(hi, dest->as_register_hi()); 4052 } 4053 #endif // _LP64 4054 4055 } else if (dest->is_single_xmm()) { 4056 #ifdef _LP64 4057 if (UseAVX > 2 && !VM_Version::supports_avx512vl()) { 4058 assert(tmp->is_valid(), "need temporary"); 4059 assert_different_registers(left->as_xmm_float_reg(), tmp->as_xmm_float_reg()); 4060 __ vpxor(dest->as_xmm_float_reg(), tmp->as_xmm_float_reg(), left->as_xmm_float_reg(), 2); 4061 } 4062 else 4063 #endif 4064 { 4065 assert(!tmp->is_valid(), "do not need temporary"); 4066 if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) { 4067 __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg()); 4068 } 4069 __ xorps(dest->as_xmm_float_reg(), 4070 ExternalAddress((address)float_signflip_pool), 4071 rscratch1); 4072 } 4073 } else if (dest->is_double_xmm()) { 4074 #ifdef _LP64 4075 if (UseAVX > 2 && !VM_Version::supports_avx512vl()) { 4076 assert(tmp->is_valid(), "need temporary"); 4077 assert_different_registers(left->as_xmm_double_reg(), tmp->as_xmm_double_reg()); 4078 __ vpxor(dest->as_xmm_double_reg(), tmp->as_xmm_double_reg(), left->as_xmm_double_reg(), 2); 4079 } 4080 else 4081 #endif 4082 { 4083 assert(!tmp->is_valid(), "do not need temporary"); 4084 if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) { 4085 __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg()); 4086 } 4087 __ xorpd(dest->as_xmm_double_reg(), 4088 ExternalAddress((address)double_signflip_pool), 4089 rscratch1); 4090 } 4091 #ifndef _LP64 4092 } else if (left->is_single_fpu() || left->is_double_fpu()) { 4093 assert(left->fpu() == 0, "arg must be on TOS"); 4094 assert(dest->fpu() == 0, "dest must be TOS"); 4095 __ fchs(); 4096 #endif // !_LP64 4097 4098 } else { 4099 ShouldNotReachHere(); 4100 } 4101 } 4102 4103 4104 void LIR_Assembler::leal(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) { 4105 assert(src->is_address(), "must be an address"); 4106 assert(dest->is_register(), "must be a register"); 4107 4108 PatchingStub* patch = nullptr; 4109 if (patch_code != lir_patch_none) { 4110 patch = new PatchingStub(_masm, PatchingStub::access_field_id); 4111 } 4112 4113 Register reg = dest->as_pointer_register(); 4114 LIR_Address* addr = src->as_address_ptr(); 4115 __ lea(reg, as_Address(addr)); 4116 4117 if (patch != nullptr) { 4118 patching_epilog(patch, patch_code, addr->base()->as_register(), info); 4119 } 4120 } 4121 4122 4123 4124 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) { 4125 assert(!tmp->is_valid(), "don't need temporary"); 4126 __ call(RuntimeAddress(dest)); 4127 if (info != nullptr) { 4128 add_call_info_here(info); 4129 } 4130 __ post_call_nop(); 4131 } 4132 4133 4134 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) { 4135 assert(type == T_LONG, "only for volatile long fields"); 4136 4137 if (info != nullptr) { 4138 add_debug_info_for_null_check_here(info); 4139 } 4140 4141 if (src->is_double_xmm()) { 4142 if (dest->is_double_cpu()) { 4143 #ifdef _LP64 4144 __ movdq(dest->as_register_lo(), src->as_xmm_double_reg()); 4145 #else 4146 __ movdl(dest->as_register_lo(), src->as_xmm_double_reg()); 4147 __ psrlq(src->as_xmm_double_reg(), 32); 4148 __ movdl(dest->as_register_hi(), src->as_xmm_double_reg()); 4149 #endif // _LP64 4150 } else if (dest->is_double_stack()) { 4151 __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg()); 4152 } else if (dest->is_address()) { 4153 __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg()); 4154 } else { 4155 ShouldNotReachHere(); 4156 } 4157 4158 } else if (dest->is_double_xmm()) { 4159 if (src->is_double_stack()) { 4160 __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix())); 4161 } else if (src->is_address()) { 4162 __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr())); 4163 } else { 4164 ShouldNotReachHere(); 4165 } 4166 4167 #ifndef _LP64 4168 } else if (src->is_double_fpu()) { 4169 assert(src->fpu_regnrLo() == 0, "must be TOS"); 4170 if (dest->is_double_stack()) { 4171 __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix())); 4172 } else if (dest->is_address()) { 4173 __ fistp_d(as_Address(dest->as_address_ptr())); 4174 } else { 4175 ShouldNotReachHere(); 4176 } 4177 4178 } else if (dest->is_double_fpu()) { 4179 assert(dest->fpu_regnrLo() == 0, "must be TOS"); 4180 if (src->is_double_stack()) { 4181 __ fild_d(frame_map()->address_for_slot(src->double_stack_ix())); 4182 } else if (src->is_address()) { 4183 __ fild_d(as_Address(src->as_address_ptr())); 4184 } else { 4185 ShouldNotReachHere(); 4186 } 4187 #endif // !_LP64 4188 4189 } else { 4190 ShouldNotReachHere(); 4191 } 4192 } 4193 4194 #ifdef ASSERT 4195 // emit run-time assertion 4196 void LIR_Assembler::emit_assert(LIR_OpAssert* op) { 4197 assert(op->code() == lir_assert, "must be"); 4198 4199 if (op->in_opr1()->is_valid()) { 4200 assert(op->in_opr2()->is_valid(), "both operands must be valid"); 4201 comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op); 4202 } else { 4203 assert(op->in_opr2()->is_illegal(), "both operands must be illegal"); 4204 assert(op->condition() == lir_cond_always, "no other conditions allowed"); 4205 } 4206 4207 Label ok; 4208 if (op->condition() != lir_cond_always) { 4209 Assembler::Condition acond = Assembler::zero; 4210 switch (op->condition()) { 4211 case lir_cond_equal: acond = Assembler::equal; break; 4212 case lir_cond_notEqual: acond = Assembler::notEqual; break; 4213 case lir_cond_less: acond = Assembler::less; break; 4214 case lir_cond_lessEqual: acond = Assembler::lessEqual; break; 4215 case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break; 4216 case lir_cond_greater: acond = Assembler::greater; break; 4217 case lir_cond_belowEqual: acond = Assembler::belowEqual; break; 4218 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; break; 4219 default: ShouldNotReachHere(); 4220 } 4221 __ jcc(acond, ok); 4222 } 4223 if (op->halt()) { 4224 const char* str = __ code_string(op->msg()); 4225 __ stop(str); 4226 } else { 4227 breakpoint(); 4228 } 4229 __ bind(ok); 4230 } 4231 #endif 4232 4233 void LIR_Assembler::membar() { 4234 // QQQ sparc TSO uses this, 4235 __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad)); 4236 } 4237 4238 void LIR_Assembler::membar_acquire() { 4239 // No x86 machines currently require load fences 4240 } 4241 4242 void LIR_Assembler::membar_release() { 4243 // No x86 machines currently require store fences 4244 } 4245 4246 void LIR_Assembler::membar_loadload() { 4247 // no-op 4248 //__ membar(Assembler::Membar_mask_bits(Assembler::loadload)); 4249 } 4250 4251 void LIR_Assembler::membar_storestore() { 4252 // no-op 4253 //__ membar(Assembler::Membar_mask_bits(Assembler::storestore)); 4254 } 4255 4256 void LIR_Assembler::membar_loadstore() { 4257 // no-op 4258 //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore)); 4259 } 4260 4261 void LIR_Assembler::membar_storeload() { 4262 __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad)); 4263 } 4264 4265 void LIR_Assembler::on_spin_wait() { 4266 __ pause (); 4267 } 4268 4269 void LIR_Assembler::get_thread(LIR_Opr result_reg) { 4270 assert(result_reg->is_register(), "check"); 4271 #ifdef _LP64 4272 // __ get_thread(result_reg->as_register_lo()); 4273 __ mov(result_reg->as_register(), r15_thread); 4274 #else 4275 __ get_thread(result_reg->as_register()); 4276 #endif // _LP64 4277 } 4278 4279 void LIR_Assembler::check_orig_pc() { 4280 __ cmpptr(frame_map()->address_for_orig_pc_addr(), NULL_WORD); 4281 } 4282 4283 void LIR_Assembler::peephole(LIR_List*) { 4284 // do nothing for now 4285 } 4286 4287 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) { 4288 assert(data == dest, "xchg/xadd uses only 2 operands"); 4289 4290 if (data->type() == T_INT) { 4291 if (code == lir_xadd) { 4292 __ lock(); 4293 __ xaddl(as_Address(src->as_address_ptr()), data->as_register()); 4294 } else { 4295 __ xchgl(data->as_register(), as_Address(src->as_address_ptr())); 4296 } 4297 } else if (data->is_oop()) { 4298 assert (code == lir_xchg, "xadd for oops"); 4299 Register obj = data->as_register(); 4300 #ifdef _LP64 4301 if (UseCompressedOops) { 4302 __ encode_heap_oop(obj); 4303 __ xchgl(obj, as_Address(src->as_address_ptr())); 4304 __ decode_heap_oop(obj); 4305 } else { 4306 __ xchgptr(obj, as_Address(src->as_address_ptr())); 4307 } 4308 #else 4309 __ xchgl(obj, as_Address(src->as_address_ptr())); 4310 #endif 4311 } else if (data->type() == T_LONG) { 4312 #ifdef _LP64 4313 assert(data->as_register_lo() == data->as_register_hi(), "should be a single register"); 4314 if (code == lir_xadd) { 4315 __ lock(); 4316 __ xaddq(as_Address(src->as_address_ptr()), data->as_register_lo()); 4317 } else { 4318 __ xchgq(data->as_register_lo(), as_Address(src->as_address_ptr())); 4319 } 4320 #else 4321 ShouldNotReachHere(); 4322 #endif 4323 } else { 4324 ShouldNotReachHere(); 4325 } 4326 } 4327 4328 #undef __