1 /*
   2  * Copyright (c) 2000, 2023, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "c1/c1_CodeStubs.hpp"
  29 #include "c1/c1_Compilation.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_MacroAssembler.hpp"
  32 #include "c1/c1_Runtime1.hpp"
  33 #include "c1/c1_ValueStack.hpp"
  34 #include "ci/ciArrayKlass.hpp"
  35 #include "ci/ciInlineKlass.hpp"
  36 #include "ci/ciInstance.hpp"
  37 #include "compiler/oopMap.hpp"
  38 #include "gc/shared/collectedHeap.hpp"
  39 #include "gc/shared/gc_globals.hpp"
  40 #include "nativeInst_x86.hpp"
  41 #include "oops/oop.inline.hpp"
  42 #include "oops/objArrayKlass.hpp"
  43 #include "runtime/frame.inline.hpp"
  44 #include "runtime/safepointMechanism.hpp"
  45 #include "runtime/sharedRuntime.hpp"
  46 #include "runtime/stubRoutines.hpp"
  47 #include "utilities/powerOfTwo.hpp"
  48 #include "vmreg_x86.inline.hpp"
  49 
  50 
  51 // These masks are used to provide 128-bit aligned bitmasks to the XMM
  52 // instructions, to allow sign-masking or sign-bit flipping.  They allow
  53 // fast versions of NegF/NegD and AbsF/AbsD.
  54 
  55 // Note: 'double' and 'long long' have 32-bits alignment on x86.
  56 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
  57   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
  58   // of 128-bits operands for SSE instructions.
  59   jlong *operand = (jlong*)(((intptr_t)adr) & ((intptr_t)(~0xF)));
  60   // Store the value to a 128-bits operand.
  61   operand[0] = lo;
  62   operand[1] = hi;
  63   return operand;
  64 }
  65 
  66 // Buffer for 128-bits masks used by SSE instructions.
  67 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
  68 
  69 // Static initialization during VM startup.
  70 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2],         CONST64(0x7FFFFFFF7FFFFFFF),         CONST64(0x7FFFFFFF7FFFFFFF));
  71 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2],         CONST64(0x7FFFFFFFFFFFFFFF),         CONST64(0x7FFFFFFFFFFFFFFF));
  72 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], (jlong)UCONST64(0x8000000080000000), (jlong)UCONST64(0x8000000080000000));
  73 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], (jlong)UCONST64(0x8000000000000000), (jlong)UCONST64(0x8000000000000000));
  74 
  75 
  76 NEEDS_CLEANUP // remove this definitions ?
  77 const Register IC_Klass    = rax;   // where the IC klass is cached
  78 const Register SYNC_header = rax;   // synchronization header
  79 const Register SHIFT_count = rcx;   // where count for shift operations must be
  80 
  81 #define __ _masm->
  82 
  83 
  84 static void select_different_registers(Register preserve,
  85                                        Register extra,
  86                                        Register &tmp1,
  87                                        Register &tmp2) {
  88   if (tmp1 == preserve) {
  89     assert_different_registers(tmp1, tmp2, extra);
  90     tmp1 = extra;
  91   } else if (tmp2 == preserve) {
  92     assert_different_registers(tmp1, tmp2, extra);
  93     tmp2 = extra;
  94   }
  95   assert_different_registers(preserve, tmp1, tmp2);
  96 }
  97 
  98 
  99 
 100 static void select_different_registers(Register preserve,
 101                                        Register extra,
 102                                        Register &tmp1,
 103                                        Register &tmp2,
 104                                        Register &tmp3) {
 105   if (tmp1 == preserve) {
 106     assert_different_registers(tmp1, tmp2, tmp3, extra);
 107     tmp1 = extra;
 108   } else if (tmp2 == preserve) {
 109     assert_different_registers(tmp1, tmp2, tmp3, extra);
 110     tmp2 = extra;
 111   } else if (tmp3 == preserve) {
 112     assert_different_registers(tmp1, tmp2, tmp3, extra);
 113     tmp3 = extra;
 114   }
 115   assert_different_registers(preserve, tmp1, tmp2, tmp3);
 116 }
 117 
 118 
 119 
 120 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
 121   if (opr->is_constant()) {
 122     LIR_Const* constant = opr->as_constant_ptr();
 123     switch (constant->type()) {
 124       case T_INT: {
 125         return true;
 126       }
 127 
 128       default:
 129         return false;
 130     }
 131   }
 132   return false;
 133 }
 134 
 135 
 136 LIR_Opr LIR_Assembler::receiverOpr() {
 137   return FrameMap::receiver_opr;
 138 }
 139 
 140 LIR_Opr LIR_Assembler::osrBufferPointer() {
 141   return FrameMap::as_pointer_opr(receiverOpr()->as_register());
 142 }
 143 
 144 //--------------fpu register translations-----------------------
 145 
 146 
 147 address LIR_Assembler::float_constant(float f) {
 148   address const_addr = __ float_constant(f);
 149   if (const_addr == nullptr) {
 150     bailout("const section overflow");
 151     return __ code()->consts()->start();
 152   } else {
 153     return const_addr;
 154   }
 155 }
 156 
 157 
 158 address LIR_Assembler::double_constant(double d) {
 159   address const_addr = __ double_constant(d);
 160   if (const_addr == nullptr) {
 161     bailout("const section overflow");
 162     return __ code()->consts()->start();
 163   } else {
 164     return const_addr;
 165   }
 166 }
 167 
 168 #ifndef _LP64
 169 void LIR_Assembler::fpop() {
 170   __ fpop();
 171 }
 172 
 173 void LIR_Assembler::fxch(int i) {
 174   __ fxch(i);
 175 }
 176 
 177 void LIR_Assembler::fld(int i) {
 178   __ fld_s(i);
 179 }
 180 
 181 void LIR_Assembler::ffree(int i) {
 182   __ ffree(i);
 183 }
 184 #endif // !_LP64
 185 
 186 void LIR_Assembler::breakpoint() {
 187   __ int3();
 188 }
 189 
 190 void LIR_Assembler::push(LIR_Opr opr) {
 191   if (opr->is_single_cpu()) {
 192     __ push_reg(opr->as_register());
 193   } else if (opr->is_double_cpu()) {
 194     NOT_LP64(__ push_reg(opr->as_register_hi()));
 195     __ push_reg(opr->as_register_lo());
 196   } else if (opr->is_stack()) {
 197     __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix()));
 198   } else if (opr->is_constant()) {
 199     LIR_Const* const_opr = opr->as_constant_ptr();
 200     if (const_opr->type() == T_OBJECT) {
 201       __ push_oop(const_opr->as_jobject(), rscratch1);
 202     } else if (const_opr->type() == T_INT) {
 203       __ push_jint(const_opr->as_jint());
 204     } else {
 205       ShouldNotReachHere();
 206     }
 207 
 208   } else {
 209     ShouldNotReachHere();
 210   }
 211 }
 212 
 213 void LIR_Assembler::pop(LIR_Opr opr) {
 214   if (opr->is_single_cpu()) {
 215     __ pop_reg(opr->as_register());
 216   } else {
 217     ShouldNotReachHere();
 218   }
 219 }
 220 
 221 bool LIR_Assembler::is_literal_address(LIR_Address* addr) {
 222   return addr->base()->is_illegal() && addr->index()->is_illegal();
 223 }
 224 
 225 //-------------------------------------------
 226 
 227 Address LIR_Assembler::as_Address(LIR_Address* addr) {
 228   return as_Address(addr, rscratch1);
 229 }
 230 
 231 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
 232   if (addr->base()->is_illegal()) {
 233     assert(addr->index()->is_illegal(), "must be illegal too");
 234     AddressLiteral laddr((address)addr->disp(), relocInfo::none);
 235     if (! __ reachable(laddr)) {
 236       __ movptr(tmp, laddr.addr());
 237       Address res(tmp, 0);
 238       return res;
 239     } else {
 240       return __ as_Address(laddr);
 241     }
 242   }
 243 
 244   Register base = addr->base()->as_pointer_register();
 245 
 246   if (addr->index()->is_illegal()) {
 247     return Address( base, addr->disp());
 248   } else if (addr->index()->is_cpu_register()) {
 249     Register index = addr->index()->as_pointer_register();
 250     return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp());
 251   } else if (addr->index()->is_constant()) {
 252     intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp();
 253     assert(Assembler::is_simm32(addr_offset), "must be");
 254 
 255     return Address(base, addr_offset);
 256   } else {
 257     Unimplemented();
 258     return Address();
 259   }
 260 }
 261 
 262 
 263 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
 264   Address base = as_Address(addr);
 265   return Address(base._base, base._index, base._scale, base._disp + BytesPerWord);
 266 }
 267 
 268 
 269 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
 270   return as_Address(addr);
 271 }
 272 
 273 
 274 void LIR_Assembler::osr_entry() {
 275   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
 276   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
 277   ValueStack* entry_state = osr_entry->state();
 278   int number_of_locks = entry_state->locks_size();
 279 
 280   // we jump here if osr happens with the interpreter
 281   // state set up to continue at the beginning of the
 282   // loop that triggered osr - in particular, we have
 283   // the following registers setup:
 284   //
 285   // rcx: osr buffer
 286   //
 287 
 288   // build frame
 289   ciMethod* m = compilation()->method();
 290   __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes());
 291 
 292   // OSR buffer is
 293   //
 294   // locals[nlocals-1..0]
 295   // monitors[0..number_of_locks]
 296   //
 297   // locals is a direct copy of the interpreter frame so in the osr buffer
 298   // so first slot in the local array is the last local from the interpreter
 299   // and last slot is local[0] (receiver) from the interpreter
 300   //
 301   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
 302   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
 303   // in the interpreter frame (the method lock if a sync method)
 304 
 305   // Initialize monitors in the compiled activation.
 306   //   rcx: pointer to osr buffer
 307   //
 308   // All other registers are dead at this point and the locals will be
 309   // copied into place by code emitted in the IR.
 310 
 311   Register OSR_buf = osrBufferPointer()->as_pointer_register();
 312   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
 313     int monitor_offset = BytesPerWord * method()->max_locals() +
 314       (BasicObjectLock::size() * BytesPerWord) * (number_of_locks - 1);
 315     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
 316     // the OSR buffer using 2 word entries: first the lock and then
 317     // the oop.
 318     for (int i = 0; i < number_of_locks; i++) {
 319       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
 320 #ifdef ASSERT
 321       // verify the interpreter's monitor has a non-null object
 322       {
 323         Label L;
 324         __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), NULL_WORD);
 325         __ jcc(Assembler::notZero, L);
 326         __ stop("locked object is null");
 327         __ bind(L);
 328       }
 329 #endif
 330       __ movptr(rbx, Address(OSR_buf, slot_offset + 0));
 331       __ movptr(frame_map()->address_for_monitor_lock(i), rbx);
 332       __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord));
 333       __ movptr(frame_map()->address_for_monitor_object(i), rbx);
 334     }
 335   }
 336 }
 337 
 338 
 339 // inline cache check; done before the frame is built.
 340 int LIR_Assembler::check_icache() {
 341   Register receiver = FrameMap::receiver_opr->as_register();
 342   Register ic_klass = IC_Klass;
 343   const int ic_cmp_size = LP64_ONLY(10) NOT_LP64(9);
 344   const bool do_post_padding = VerifyOops || UseCompressedClassPointers;
 345   if (!do_post_padding) {
 346     // insert some nops so that the verified entry point is aligned on CodeEntryAlignment
 347     __ align(CodeEntryAlignment, __ offset() + ic_cmp_size);
 348   }
 349   int offset = __ offset();
 350   __ inline_cache_check(receiver, IC_Klass);
 351   assert(__ offset() % CodeEntryAlignment == 0 || do_post_padding, "alignment must be correct");
 352   if (do_post_padding) {
 353     // force alignment after the cache check.
 354     // It's been verified to be aligned if !VerifyOops
 355     __ align(CodeEntryAlignment);
 356   }
 357   return offset;
 358 }
 359 
 360 void LIR_Assembler::clinit_barrier(ciMethod* method) {
 361   assert(VM_Version::supports_fast_class_init_checks(), "sanity");
 362   assert(!method->holder()->is_not_initialized(), "initialization should have been started");
 363 
 364   Label L_skip_barrier;
 365   Register klass = rscratch1;
 366   Register thread = LP64_ONLY( r15_thread ) NOT_LP64( noreg );
 367   assert(thread != noreg, "x86_32 not implemented");
 368 
 369   __ mov_metadata(klass, method->holder()->constant_encoding());
 370   __ clinit_barrier(klass, thread, &L_skip_barrier /*L_fast_path*/);
 371 
 372   __ jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub()));
 373 
 374   __ bind(L_skip_barrier);
 375 }
 376 
 377 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
 378   jobject o = nullptr;
 379   PatchingStub* patch = new PatchingStub(_masm, patching_id(info));
 380   __ movoop(reg, o);
 381   patching_epilog(patch, lir_patch_normal, reg, info);
 382 }
 383 
 384 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) {
 385   Metadata* o = nullptr;
 386   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id);
 387   __ mov_metadata(reg, o);
 388   patching_epilog(patch, lir_patch_normal, reg, info);
 389 }
 390 
 391 // This specifies the rsp decrement needed to build the frame
 392 int LIR_Assembler::initial_frame_size_in_bytes() const {
 393   // if rounding, must let FrameMap know!
 394 
 395   // The frame_map records size in slots (32bit word)
 396 
 397   // subtract two words to account for return address and link
 398   return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word))  * VMRegImpl::stack_slot_size;
 399 }
 400 
 401 
 402 int LIR_Assembler::emit_exception_handler() {
 403   // generate code for exception handler
 404   address handler_base = __ start_a_stub(exception_handler_size());
 405   if (handler_base == nullptr) {
 406     // not enough space left for the handler
 407     bailout("exception handler overflow");
 408     return -1;
 409   }
 410 
 411   int offset = code_offset();
 412 
 413   // the exception oop and pc are in rax, and rdx
 414   // no other registers need to be preserved, so invalidate them
 415   __ invalidate_registers(false, true, true, false, true, true);
 416 
 417   // check that there is really an exception
 418   __ verify_not_null_oop(rax);
 419 
 420   // search an exception handler (rax: exception oop, rdx: throwing pc)
 421   __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id)));
 422   __ should_not_reach_here();
 423   guarantee(code_offset() - offset <= exception_handler_size(), "overflow");
 424   __ end_a_stub();
 425 
 426   return offset;
 427 }
 428 
 429 
 430 // Emit the code to remove the frame from the stack in the exception
 431 // unwind path.
 432 int LIR_Assembler::emit_unwind_handler() {
 433 #ifndef PRODUCT
 434   if (CommentedAssembly) {
 435     _masm->block_comment("Unwind handler");
 436   }
 437 #endif
 438 
 439   int offset = code_offset();
 440 
 441   // Fetch the exception from TLS and clear out exception related thread state
 442   Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread);
 443   NOT_LP64(__ get_thread(thread));
 444   __ movptr(rax, Address(thread, JavaThread::exception_oop_offset()));
 445   __ movptr(Address(thread, JavaThread::exception_oop_offset()), NULL_WORD);
 446   __ movptr(Address(thread, JavaThread::exception_pc_offset()), NULL_WORD);
 447 
 448   __ bind(_unwind_handler_entry);
 449   __ verify_not_null_oop(rax);
 450   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 451     __ mov(rbx, rax);  // Preserve the exception (rbx is always callee-saved)
 452   }
 453 
 454   // Perform needed unlocking
 455   MonitorExitStub* stub = nullptr;
 456   if (method()->is_synchronized()) {
 457     monitor_address(0, FrameMap::rax_opr);
 458     stub = new MonitorExitStub(FrameMap::rax_opr, true, 0);
 459     if (LockingMode == LM_MONITOR) {
 460       __ jmp(*stub->entry());
 461     } else {
 462       __ unlock_object(rdi, rsi, rax, *stub->entry());
 463     }
 464     __ bind(*stub->continuation());
 465   }
 466 
 467   if (compilation()->env()->dtrace_method_probes()) {
 468 #ifdef _LP64
 469     __ mov(rdi, r15_thread);
 470     __ mov_metadata(rsi, method()->constant_encoding());
 471 #else
 472     __ get_thread(rax);
 473     __ movptr(Address(rsp, 0), rax);
 474     __ mov_metadata(Address(rsp, sizeof(void*)), method()->constant_encoding(), noreg);
 475 #endif
 476     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit)));
 477   }
 478 
 479   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 480     __ mov(rax, rbx);  // Restore the exception
 481   }
 482 
 483   // remove the activation and dispatch to the unwind handler
 484   __ remove_frame(initial_frame_size_in_bytes(), needs_stack_repair());
 485   __ jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
 486 
 487   // Emit the slow path assembly
 488   if (stub != nullptr) {
 489     stub->emit_code(this);
 490   }
 491 
 492   return offset;
 493 }
 494 
 495 
 496 int LIR_Assembler::emit_deopt_handler() {
 497   // generate code for exception handler
 498   address handler_base = __ start_a_stub(deopt_handler_size());
 499   if (handler_base == nullptr) {
 500     // not enough space left for the handler
 501     bailout("deopt handler overflow");
 502     return -1;
 503   }
 504 
 505   int offset = code_offset();
 506   InternalAddress here(__ pc());
 507 
 508   __ pushptr(here.addr(), rscratch1);
 509   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
 510   guarantee(code_offset() - offset <= deopt_handler_size(), "overflow");
 511   __ end_a_stub();
 512 
 513   return offset;
 514 }
 515 
 516 void LIR_Assembler::return_op(LIR_Opr result, C1SafepointPollStub* code_stub) {
 517   assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,");
 518   if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) {
 519     assert(result->fpu() == 0, "result must already be on TOS");
 520   }
 521   if (InlineTypeReturnedAsFields) {
 522   #ifndef _LP64
 523      Unimplemented();
 524   #endif
 525     // Check if we are returning an non-null inline type and load its fields into registers
 526     ciType* return_type = compilation()->method()->return_type();
 527     if (return_type->is_inlinetype()) {
 528       ciInlineKlass* vk = return_type->as_inline_klass();
 529       if (vk->can_be_returned_as_fields()) {
 530         address unpack_handler = vk->unpack_handler();
 531         assert(unpack_handler != nullptr, "must be");
 532         __ call(RuntimeAddress(unpack_handler));
 533       }
 534     } else if (return_type->is_instance_klass() && (!return_type->is_loaded() || StressCallingConvention)) {
 535       Label skip;
 536       __ test_oop_is_not_inline_type(rax, rscratch1, skip);
 537 
 538       // Load fields from a buffered value with an inline class specific handler
 539       __ load_klass(rdi, rax, rscratch1);
 540       __ movptr(rdi, Address(rdi, InstanceKlass::adr_inlineklass_fixed_block_offset()));
 541       __ movptr(rdi, Address(rdi, InlineKlass::unpack_handler_offset()));
 542       // Unpack handler can be null if inline type is not scalarizable in returns
 543       __ testptr(rdi, rdi);
 544       __ jcc(Assembler::zero, skip);
 545       __ call(rdi);
 546 
 547       __ bind(skip);
 548     }
 549     // At this point, rax points to the value object (for interpreter or C1 caller).
 550     // The fields of the object are copied into registers (for C2 caller).
 551   }
 552 
 553   // Pop the stack before the safepoint code
 554   __ remove_frame(initial_frame_size_in_bytes(), needs_stack_repair());
 555 
 556   if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) {
 557     __ reserved_stack_check();
 558   }
 559 
 560   // Note: we do not need to round double result; float result has the right precision
 561   // the poll sets the condition code, but no data registers
 562 
 563 #ifdef _LP64
 564   const Register thread = r15_thread;
 565 #else
 566   const Register thread = rbx;
 567   __ get_thread(thread);
 568 #endif
 569   code_stub->set_safepoint_offset(__ offset());
 570   __ relocate(relocInfo::poll_return_type);
 571   __ safepoint_poll(*code_stub->entry(), thread, true /* at_return */, true /* in_nmethod */);
 572   __ ret(0);
 573 }
 574 
 575 
 576 int LIR_Assembler::store_inline_type_fields_to_buf(ciInlineKlass* vk) {
 577   return (__ store_inline_type_fields_to_buf(vk, false));
 578 }
 579 
 580 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
 581   guarantee(info != nullptr, "Shouldn't be null");
 582   int offset = __ offset();
 583 #ifdef _LP64
 584   const Register poll_addr = rscratch1;
 585   __ movptr(poll_addr, Address(r15_thread, JavaThread::polling_page_offset()));
 586 #else
 587   assert(tmp->is_cpu_register(), "needed");
 588   const Register poll_addr = tmp->as_register();
 589   __ get_thread(poll_addr);
 590   __ movptr(poll_addr, Address(poll_addr, in_bytes(JavaThread::polling_page_offset())));
 591 #endif
 592   add_debug_info_for_branch(info);
 593   __ relocate(relocInfo::poll_type);
 594   address pre_pc = __ pc();
 595   __ testl(rax, Address(poll_addr, 0));
 596   address post_pc = __ pc();
 597   guarantee(pointer_delta(post_pc, pre_pc, 1) == 2 LP64_ONLY(+1), "must be exact length");
 598   return offset;
 599 }
 600 
 601 
 602 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
 603   if (from_reg != to_reg) __ mov(to_reg, from_reg);
 604 }
 605 
 606 void LIR_Assembler::swap_reg(Register a, Register b) {
 607   __ xchgptr(a, b);
 608 }
 609 
 610 
 611 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
 612   assert(src->is_constant(), "should not call otherwise");
 613   assert(dest->is_register(), "should not call otherwise");
 614   LIR_Const* c = src->as_constant_ptr();
 615 
 616   switch (c->type()) {
 617     case T_INT: {
 618       assert(patch_code == lir_patch_none, "no patching handled here");
 619       __ movl(dest->as_register(), c->as_jint());
 620       break;
 621     }
 622 
 623     case T_ADDRESS: {
 624       assert(patch_code == lir_patch_none, "no patching handled here");
 625       __ movptr(dest->as_register(), c->as_jint());
 626       break;
 627     }
 628 
 629     case T_LONG: {
 630       assert(patch_code == lir_patch_none, "no patching handled here");
 631 #ifdef _LP64
 632       __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong());
 633 #else
 634       __ movptr(dest->as_register_lo(), c->as_jint_lo());
 635       __ movptr(dest->as_register_hi(), c->as_jint_hi());
 636 #endif // _LP64
 637       break;
 638     }
 639 
 640     case T_OBJECT: {
 641       if (patch_code != lir_patch_none) {
 642         jobject2reg_with_patching(dest->as_register(), info);
 643       } else {
 644         __ movoop(dest->as_register(), c->as_jobject());
 645       }
 646       break;
 647     }
 648 
 649     case T_METADATA: {
 650       if (patch_code != lir_patch_none) {
 651         klass2reg_with_patching(dest->as_register(), info);
 652       } else {
 653         __ mov_metadata(dest->as_register(), c->as_metadata());
 654       }
 655       break;
 656     }
 657 
 658     case T_FLOAT: {
 659       if (dest->is_single_xmm()) {
 660         if (LP64_ONLY(UseAVX <= 2 &&) c->is_zero_float()) {
 661           __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg());
 662         } else {
 663           __ movflt(dest->as_xmm_float_reg(),
 664                    InternalAddress(float_constant(c->as_jfloat())));
 665         }
 666       } else {
 667 #ifndef _LP64
 668         assert(dest->is_single_fpu(), "must be");
 669         assert(dest->fpu_regnr() == 0, "dest must be TOS");
 670         if (c->is_zero_float()) {
 671           __ fldz();
 672         } else if (c->is_one_float()) {
 673           __ fld1();
 674         } else {
 675           __ fld_s (InternalAddress(float_constant(c->as_jfloat())));
 676         }
 677 #else
 678         ShouldNotReachHere();
 679 #endif // !_LP64
 680       }
 681       break;
 682     }
 683 
 684     case T_DOUBLE: {
 685       if (dest->is_double_xmm()) {
 686         if (LP64_ONLY(UseAVX <= 2 &&) c->is_zero_double()) {
 687           __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg());
 688         } else {
 689           __ movdbl(dest->as_xmm_double_reg(),
 690                     InternalAddress(double_constant(c->as_jdouble())));
 691         }
 692       } else {
 693 #ifndef _LP64
 694         assert(dest->is_double_fpu(), "must be");
 695         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
 696         if (c->is_zero_double()) {
 697           __ fldz();
 698         } else if (c->is_one_double()) {
 699           __ fld1();
 700         } else {
 701           __ fld_d (InternalAddress(double_constant(c->as_jdouble())));
 702         }
 703 #else
 704         ShouldNotReachHere();
 705 #endif // !_LP64
 706       }
 707       break;
 708     }
 709 
 710     default:
 711       ShouldNotReachHere();
 712   }
 713 }
 714 
 715 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
 716   assert(src->is_constant(), "should not call otherwise");
 717   assert(dest->is_stack(), "should not call otherwise");
 718   LIR_Const* c = src->as_constant_ptr();
 719 
 720   switch (c->type()) {
 721     case T_INT:  // fall through
 722     case T_FLOAT:
 723       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
 724       break;
 725 
 726     case T_ADDRESS:
 727       __ movptr(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
 728       break;
 729 
 730     case T_OBJECT:
 731       __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject(), rscratch1);
 732       break;
 733 
 734     case T_LONG:  // fall through
 735     case T_DOUBLE:
 736 #ifdef _LP64
 737       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 738                                               lo_word_offset_in_bytes),
 739                 (intptr_t)c->as_jlong_bits(),
 740                 rscratch1);
 741 #else
 742       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 743                                               lo_word_offset_in_bytes), c->as_jint_lo_bits());
 744       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 745                                               hi_word_offset_in_bytes), c->as_jint_hi_bits());
 746 #endif // _LP64
 747       break;
 748 
 749     default:
 750       ShouldNotReachHere();
 751   }
 752 }
 753 
 754 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
 755   assert(src->is_constant(), "should not call otherwise");
 756   assert(dest->is_address(), "should not call otherwise");
 757   LIR_Const* c = src->as_constant_ptr();
 758   LIR_Address* addr = dest->as_address_ptr();
 759 
 760   int null_check_here = code_offset();
 761   switch (type) {
 762     case T_INT:    // fall through
 763     case T_FLOAT:
 764       __ movl(as_Address(addr), c->as_jint_bits());
 765       break;
 766 
 767     case T_ADDRESS:
 768       __ movptr(as_Address(addr), c->as_jint_bits());
 769       break;
 770 
 771     case T_OBJECT:  // fall through
 772     case T_ARRAY:
 773       if (c->as_jobject() == nullptr) {
 774         if (UseCompressedOops && !wide) {
 775           __ movl(as_Address(addr), NULL_WORD);
 776         } else {
 777 #ifdef _LP64
 778           __ xorptr(rscratch1, rscratch1);
 779           null_check_here = code_offset();
 780           __ movptr(as_Address(addr), rscratch1);
 781 #else
 782           __ movptr(as_Address(addr), NULL_WORD);
 783 #endif
 784         }
 785       } else {
 786         if (is_literal_address(addr)) {
 787           ShouldNotReachHere();
 788           __ movoop(as_Address(addr, noreg), c->as_jobject(), rscratch1);
 789         } else {
 790 #ifdef _LP64
 791           __ movoop(rscratch1, c->as_jobject());
 792           if (UseCompressedOops && !wide) {
 793             __ encode_heap_oop(rscratch1);
 794             null_check_here = code_offset();
 795             __ movl(as_Address_lo(addr), rscratch1);
 796           } else {
 797             null_check_here = code_offset();
 798             __ movptr(as_Address_lo(addr), rscratch1);
 799           }
 800 #else
 801           __ movoop(as_Address(addr), c->as_jobject(), noreg);
 802 #endif
 803         }
 804       }
 805       break;
 806 
 807     case T_LONG:    // fall through
 808     case T_DOUBLE:
 809 #ifdef _LP64
 810       if (is_literal_address(addr)) {
 811         ShouldNotReachHere();
 812         __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits());
 813       } else {
 814         __ movptr(r10, (intptr_t)c->as_jlong_bits());
 815         null_check_here = code_offset();
 816         __ movptr(as_Address_lo(addr), r10);
 817       }
 818 #else
 819       // Always reachable in 32bit so this doesn't produce useless move literal
 820       __ movptr(as_Address_hi(addr), c->as_jint_hi_bits());
 821       __ movptr(as_Address_lo(addr), c->as_jint_lo_bits());
 822 #endif // _LP64
 823       break;
 824 
 825     case T_BOOLEAN: // fall through
 826     case T_BYTE:
 827       __ movb(as_Address(addr), c->as_jint() & 0xFF);
 828       break;
 829 
 830     case T_CHAR:    // fall through
 831     case T_SHORT:
 832       __ movw(as_Address(addr), c->as_jint() & 0xFFFF);
 833       break;
 834 
 835     default:
 836       ShouldNotReachHere();
 837   };
 838 
 839   if (info != nullptr) {
 840     add_debug_info_for_null_check(null_check_here, info);
 841   }
 842 }
 843 
 844 
 845 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
 846   assert(src->is_register(), "should not call otherwise");
 847   assert(dest->is_register(), "should not call otherwise");
 848 
 849   // move between cpu-registers
 850   if (dest->is_single_cpu()) {
 851 #ifdef _LP64
 852     if (src->type() == T_LONG) {
 853       // Can do LONG -> OBJECT
 854       move_regs(src->as_register_lo(), dest->as_register());
 855       return;
 856     }
 857 #endif
 858     assert(src->is_single_cpu(), "must match");
 859     if (src->type() == T_OBJECT) {
 860       __ verify_oop(src->as_register());
 861     }
 862     move_regs(src->as_register(), dest->as_register());
 863 
 864   } else if (dest->is_double_cpu()) {
 865 #ifdef _LP64
 866     if (is_reference_type(src->type())) {
 867       // Surprising to me but we can see move of a long to t_object
 868       __ verify_oop(src->as_register());
 869       move_regs(src->as_register(), dest->as_register_lo());
 870       return;
 871     }
 872 #endif
 873     assert(src->is_double_cpu(), "must match");
 874     Register f_lo = src->as_register_lo();
 875     Register f_hi = src->as_register_hi();
 876     Register t_lo = dest->as_register_lo();
 877     Register t_hi = dest->as_register_hi();
 878 #ifdef _LP64
 879     assert(f_hi == f_lo, "must be same");
 880     assert(t_hi == t_lo, "must be same");
 881     move_regs(f_lo, t_lo);
 882 #else
 883     assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation");
 884 
 885 
 886     if (f_lo == t_hi && f_hi == t_lo) {
 887       swap_reg(f_lo, f_hi);
 888     } else if (f_hi == t_lo) {
 889       assert(f_lo != t_hi, "overwriting register");
 890       move_regs(f_hi, t_hi);
 891       move_regs(f_lo, t_lo);
 892     } else {
 893       assert(f_hi != t_lo, "overwriting register");
 894       move_regs(f_lo, t_lo);
 895       move_regs(f_hi, t_hi);
 896     }
 897 #endif // LP64
 898 
 899 #ifndef _LP64
 900     // special moves from fpu-register to xmm-register
 901     // necessary for method results
 902   } else if (src->is_single_xmm() && !dest->is_single_xmm()) {
 903     __ movflt(Address(rsp, 0), src->as_xmm_float_reg());
 904     __ fld_s(Address(rsp, 0));
 905   } else if (src->is_double_xmm() && !dest->is_double_xmm()) {
 906     __ movdbl(Address(rsp, 0), src->as_xmm_double_reg());
 907     __ fld_d(Address(rsp, 0));
 908   } else if (dest->is_single_xmm() && !src->is_single_xmm()) {
 909     __ fstp_s(Address(rsp, 0));
 910     __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0));
 911   } else if (dest->is_double_xmm() && !src->is_double_xmm()) {
 912     __ fstp_d(Address(rsp, 0));
 913     __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0));
 914 #endif // !_LP64
 915 
 916     // move between xmm-registers
 917   } else if (dest->is_single_xmm()) {
 918     assert(src->is_single_xmm(), "must match");
 919     __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg());
 920   } else if (dest->is_double_xmm()) {
 921     assert(src->is_double_xmm(), "must match");
 922     __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg());
 923 
 924 #ifndef _LP64
 925     // move between fpu-registers (no instruction necessary because of fpu-stack)
 926   } else if (dest->is_single_fpu() || dest->is_double_fpu()) {
 927     assert(src->is_single_fpu() || src->is_double_fpu(), "must match");
 928     assert(src->fpu() == dest->fpu(), "currently should be nothing to do");
 929 #endif // !_LP64
 930 
 931   } else {
 932     ShouldNotReachHere();
 933   }
 934 }
 935 
 936 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
 937   assert(src->is_register(), "should not call otherwise");
 938   assert(dest->is_stack(), "should not call otherwise");
 939 
 940   if (src->is_single_cpu()) {
 941     Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
 942     if (is_reference_type(type)) {
 943       __ verify_oop(src->as_register());
 944       __ movptr (dst, src->as_register());
 945     } else if (type == T_METADATA || type == T_ADDRESS) {
 946       __ movptr (dst, src->as_register());
 947     } else {
 948       __ movl (dst, src->as_register());
 949     }
 950 
 951   } else if (src->is_double_cpu()) {
 952     Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
 953     Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes);
 954     __ movptr (dstLO, src->as_register_lo());
 955     NOT_LP64(__ movptr (dstHI, src->as_register_hi()));
 956 
 957   } else if (src->is_single_xmm()) {
 958     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
 959     __ movflt(dst_addr, src->as_xmm_float_reg());
 960 
 961   } else if (src->is_double_xmm()) {
 962     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
 963     __ movdbl(dst_addr, src->as_xmm_double_reg());
 964 
 965 #ifndef _LP64
 966   } else if (src->is_single_fpu()) {
 967     assert(src->fpu_regnr() == 0, "argument must be on TOS");
 968     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
 969     if (pop_fpu_stack)     __ fstp_s (dst_addr);
 970     else                   __ fst_s  (dst_addr);
 971 
 972   } else if (src->is_double_fpu()) {
 973     assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
 974     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
 975     if (pop_fpu_stack)     __ fstp_d (dst_addr);
 976     else                   __ fst_d  (dst_addr);
 977 #endif // !_LP64
 978 
 979   } else {
 980     ShouldNotReachHere();
 981   }
 982 }
 983 
 984 
 985 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide) {
 986   LIR_Address* to_addr = dest->as_address_ptr();
 987   PatchingStub* patch = nullptr;
 988   Register compressed_src = rscratch1;
 989 
 990   if (is_reference_type(type)) {
 991     __ verify_oop(src->as_register());
 992 #ifdef _LP64
 993     if (UseCompressedOops && !wide) {
 994       __ movptr(compressed_src, src->as_register());
 995       __ encode_heap_oop(compressed_src);
 996       if (patch_code != lir_patch_none) {
 997         info->oop_map()->set_narrowoop(compressed_src->as_VMReg());
 998       }
 999     }
1000 #endif
1001   }
1002 
1003   if (patch_code != lir_patch_none) {
1004     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1005     Address toa = as_Address(to_addr);
1006     assert(toa.disp() != 0, "must have");
1007   }
1008 
1009   int null_check_here = code_offset();
1010   switch (type) {
1011     case T_FLOAT: {
1012 #ifdef _LP64
1013       assert(src->is_single_xmm(), "not a float");
1014       __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
1015 #else
1016       if (src->is_single_xmm()) {
1017         __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
1018       } else {
1019         assert(src->is_single_fpu(), "must be");
1020         assert(src->fpu_regnr() == 0, "argument must be on TOS");
1021         if (pop_fpu_stack)      __ fstp_s(as_Address(to_addr));
1022         else                    __ fst_s (as_Address(to_addr));
1023       }
1024 #endif // _LP64
1025       break;
1026     }
1027 
1028     case T_DOUBLE: {
1029 #ifdef _LP64
1030       assert(src->is_double_xmm(), "not a double");
1031       __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
1032 #else
1033       if (src->is_double_xmm()) {
1034         __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
1035       } else {
1036         assert(src->is_double_fpu(), "must be");
1037         assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
1038         if (pop_fpu_stack)      __ fstp_d(as_Address(to_addr));
1039         else                    __ fst_d (as_Address(to_addr));
1040       }
1041 #endif // _LP64
1042       break;
1043     }
1044 
1045     case T_ARRAY:   // fall through
1046     case T_OBJECT:  // fall through
1047       if (UseCompressedOops && !wide) {
1048         __ movl(as_Address(to_addr), compressed_src);
1049       } else {
1050         __ movptr(as_Address(to_addr), src->as_register());
1051       }
1052       break;
1053     case T_METADATA:
1054       // We get here to store a method pointer to the stack to pass to
1055       // a dtrace runtime call. This can't work on 64 bit with
1056       // compressed klass ptrs: T_METADATA can be a compressed klass
1057       // ptr or a 64 bit method pointer.
1058       LP64_ONLY(ShouldNotReachHere());
1059       __ movptr(as_Address(to_addr), src->as_register());
1060       break;
1061     case T_ADDRESS:
1062       __ movptr(as_Address(to_addr), src->as_register());
1063       break;
1064     case T_INT:
1065       __ movl(as_Address(to_addr), src->as_register());
1066       break;
1067 
1068     case T_LONG: {
1069       Register from_lo = src->as_register_lo();
1070       Register from_hi = src->as_register_hi();
1071 #ifdef _LP64
1072       __ movptr(as_Address_lo(to_addr), from_lo);
1073 #else
1074       Register base = to_addr->base()->as_register();
1075       Register index = noreg;
1076       if (to_addr->index()->is_register()) {
1077         index = to_addr->index()->as_register();
1078       }
1079       if (base == from_lo || index == from_lo) {
1080         assert(base != from_hi, "can't be");
1081         assert(index == noreg || (index != base && index != from_hi), "can't handle this");
1082         __ movl(as_Address_hi(to_addr), from_hi);
1083         if (patch != nullptr) {
1084           patching_epilog(patch, lir_patch_high, base, info);
1085           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1086           patch_code = lir_patch_low;
1087         }
1088         __ movl(as_Address_lo(to_addr), from_lo);
1089       } else {
1090         assert(index == noreg || (index != base && index != from_lo), "can't handle this");
1091         __ movl(as_Address_lo(to_addr), from_lo);
1092         if (patch != nullptr) {
1093           patching_epilog(patch, lir_patch_low, base, info);
1094           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1095           patch_code = lir_patch_high;
1096         }
1097         __ movl(as_Address_hi(to_addr), from_hi);
1098       }
1099 #endif // _LP64
1100       break;
1101     }
1102 
1103     case T_BYTE:    // fall through
1104     case T_BOOLEAN: {
1105       Register src_reg = src->as_register();
1106       Address dst_addr = as_Address(to_addr);
1107       assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6");
1108       __ movb(dst_addr, src_reg);
1109       break;
1110     }
1111 
1112     case T_CHAR:    // fall through
1113     case T_SHORT:
1114       __ movw(as_Address(to_addr), src->as_register());
1115       break;
1116 
1117     default:
1118       ShouldNotReachHere();
1119   }
1120   if (info != nullptr) {
1121     add_debug_info_for_null_check(null_check_here, info);
1122   }
1123 
1124   if (patch_code != lir_patch_none) {
1125     patching_epilog(patch, patch_code, to_addr->base()->as_register(), info);
1126   }
1127 }
1128 
1129 
1130 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
1131   assert(src->is_stack(), "should not call otherwise");
1132   assert(dest->is_register(), "should not call otherwise");
1133 
1134   if (dest->is_single_cpu()) {
1135     if (is_reference_type(type)) {
1136       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1137       __ verify_oop(dest->as_register());
1138     } else if (type == T_METADATA || type == T_ADDRESS) {
1139       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1140     } else {
1141       __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1142     }
1143 
1144   } else if (dest->is_double_cpu()) {
1145     Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
1146     Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes);
1147     __ movptr(dest->as_register_lo(), src_addr_LO);
1148     NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI));
1149 
1150   } else if (dest->is_single_xmm()) {
1151     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1152     __ movflt(dest->as_xmm_float_reg(), src_addr);
1153 
1154   } else if (dest->is_double_xmm()) {
1155     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1156     __ movdbl(dest->as_xmm_double_reg(), src_addr);
1157 
1158 #ifndef _LP64
1159   } else if (dest->is_single_fpu()) {
1160     assert(dest->fpu_regnr() == 0, "dest must be TOS");
1161     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1162     __ fld_s(src_addr);
1163 
1164   } else if (dest->is_double_fpu()) {
1165     assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1166     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1167     __ fld_d(src_addr);
1168 #endif // _LP64
1169 
1170   } else {
1171     ShouldNotReachHere();
1172   }
1173 }
1174 
1175 
1176 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
1177   if (src->is_single_stack()) {
1178     if (is_reference_type(type)) {
1179       __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix()));
1180       __ popptr (frame_map()->address_for_slot(dest->single_stack_ix()));
1181     } else {
1182 #ifndef _LP64
1183       __ pushl(frame_map()->address_for_slot(src ->single_stack_ix()));
1184       __ popl (frame_map()->address_for_slot(dest->single_stack_ix()));
1185 #else
1186       //no pushl on 64bits
1187       __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix()));
1188       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1);
1189 #endif
1190     }
1191 
1192   } else if (src->is_double_stack()) {
1193 #ifdef _LP64
1194     __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix()));
1195     __ popptr (frame_map()->address_for_slot(dest->double_stack_ix()));
1196 #else
1197     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0));
1198     // push and pop the part at src + wordSize, adding wordSize for the previous push
1199     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize));
1200     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize));
1201     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0));
1202 #endif // _LP64
1203 
1204   } else {
1205     ShouldNotReachHere();
1206   }
1207 }
1208 
1209 
1210 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide) {
1211   assert(src->is_address(), "should not call otherwise");
1212   assert(dest->is_register(), "should not call otherwise");
1213 
1214   LIR_Address* addr = src->as_address_ptr();
1215   Address from_addr = as_Address(addr);
1216 
1217   if (addr->base()->type() == T_OBJECT) {
1218     __ verify_oop(addr->base()->as_pointer_register());
1219   }
1220 
1221   switch (type) {
1222     case T_BOOLEAN: // fall through
1223     case T_BYTE:    // fall through
1224     case T_CHAR:    // fall through
1225     case T_SHORT:
1226       if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) {
1227         // on pre P6 processors we may get partial register stalls
1228         // so blow away the value of to_rinfo before loading a
1229         // partial word into it.  Do it here so that it precedes
1230         // the potential patch point below.
1231         __ xorptr(dest->as_register(), dest->as_register());
1232       }
1233       break;
1234    default:
1235      break;
1236   }
1237 
1238   PatchingStub* patch = nullptr;
1239   if (patch_code != lir_patch_none) {
1240     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1241     assert(from_addr.disp() != 0, "must have");
1242   }
1243   if (info != nullptr) {
1244     add_debug_info_for_null_check_here(info);
1245   }
1246 
1247   switch (type) {
1248     case T_FLOAT: {
1249       if (dest->is_single_xmm()) {
1250         __ movflt(dest->as_xmm_float_reg(), from_addr);
1251       } else {
1252 #ifndef _LP64
1253         assert(dest->is_single_fpu(), "must be");
1254         assert(dest->fpu_regnr() == 0, "dest must be TOS");
1255         __ fld_s(from_addr);
1256 #else
1257         ShouldNotReachHere();
1258 #endif // !LP64
1259       }
1260       break;
1261     }
1262 
1263     case T_DOUBLE: {
1264       if (dest->is_double_xmm()) {
1265         __ movdbl(dest->as_xmm_double_reg(), from_addr);
1266       } else {
1267 #ifndef _LP64
1268         assert(dest->is_double_fpu(), "must be");
1269         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1270         __ fld_d(from_addr);
1271 #else
1272         ShouldNotReachHere();
1273 #endif // !LP64
1274       }
1275       break;
1276     }
1277 
1278     case T_OBJECT:  // fall through
1279     case T_ARRAY:   // fall through
1280       if (UseCompressedOops && !wide) {
1281         __ movl(dest->as_register(), from_addr);
1282       } else {
1283         __ movptr(dest->as_register(), from_addr);
1284       }
1285       break;
1286 
1287     case T_ADDRESS:
1288       __ movptr(dest->as_register(), from_addr);
1289       break;
1290     case T_INT:
1291       __ movl(dest->as_register(), from_addr);
1292       break;
1293 
1294     case T_LONG: {
1295       Register to_lo = dest->as_register_lo();
1296       Register to_hi = dest->as_register_hi();
1297 #ifdef _LP64
1298       __ movptr(to_lo, as_Address_lo(addr));
1299 #else
1300       Register base = addr->base()->as_register();
1301       Register index = noreg;
1302       if (addr->index()->is_register()) {
1303         index = addr->index()->as_register();
1304       }
1305       if ((base == to_lo && index == to_hi) ||
1306           (base == to_hi && index == to_lo)) {
1307         // addresses with 2 registers are only formed as a result of
1308         // array access so this code will never have to deal with
1309         // patches or null checks.
1310         assert(info == nullptr && patch == nullptr, "must be");
1311         __ lea(to_hi, as_Address(addr));
1312         __ movl(to_lo, Address(to_hi, 0));
1313         __ movl(to_hi, Address(to_hi, BytesPerWord));
1314       } else if (base == to_lo || index == to_lo) {
1315         assert(base != to_hi, "can't be");
1316         assert(index == noreg || (index != base && index != to_hi), "can't handle this");
1317         __ movl(to_hi, as_Address_hi(addr));
1318         if (patch != nullptr) {
1319           patching_epilog(patch, lir_patch_high, base, info);
1320           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1321           patch_code = lir_patch_low;
1322         }
1323         __ movl(to_lo, as_Address_lo(addr));
1324       } else {
1325         assert(index == noreg || (index != base && index != to_lo), "can't handle this");
1326         __ movl(to_lo, as_Address_lo(addr));
1327         if (patch != nullptr) {
1328           patching_epilog(patch, lir_patch_low, base, info);
1329           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1330           patch_code = lir_patch_high;
1331         }
1332         __ movl(to_hi, as_Address_hi(addr));
1333       }
1334 #endif // _LP64
1335       break;
1336     }
1337 
1338     case T_BOOLEAN: // fall through
1339     case T_BYTE: {
1340       Register dest_reg = dest->as_register();
1341       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1342       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1343         __ movsbl(dest_reg, from_addr);
1344       } else {
1345         __ movb(dest_reg, from_addr);
1346         __ shll(dest_reg, 24);
1347         __ sarl(dest_reg, 24);
1348       }
1349       break;
1350     }
1351 
1352     case T_CHAR: {
1353       Register dest_reg = dest->as_register();
1354       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1355       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1356         __ movzwl(dest_reg, from_addr);
1357       } else {
1358         __ movw(dest_reg, from_addr);
1359       }
1360       break;
1361     }
1362 
1363     case T_SHORT: {
1364       Register dest_reg = dest->as_register();
1365       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1366         __ movswl(dest_reg, from_addr);
1367       } else {
1368         __ movw(dest_reg, from_addr);
1369         __ shll(dest_reg, 16);
1370         __ sarl(dest_reg, 16);
1371       }
1372       break;
1373     }
1374 
1375     default:
1376       ShouldNotReachHere();
1377   }
1378 
1379   if (patch != nullptr) {
1380     patching_epilog(patch, patch_code, addr->base()->as_register(), info);
1381   }
1382 
1383   if (is_reference_type(type)) {
1384 #ifdef _LP64
1385     if (UseCompressedOops && !wide) {
1386       __ decode_heap_oop(dest->as_register());
1387     }
1388 #endif
1389 
1390     if (!(UseZGC && !ZGenerational)) {
1391       // Load barrier has not yet been applied, so ZGC can't verify the oop here
1392       __ verify_oop(dest->as_register());
1393     }
1394   }
1395 }
1396 
1397 
1398 NEEDS_CLEANUP; // This could be static?
1399 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const {
1400   int elem_size = type2aelembytes(type);
1401   switch (elem_size) {
1402     case 1: return Address::times_1;
1403     case 2: return Address::times_2;
1404     case 4: return Address::times_4;
1405     case 8: return Address::times_8;
1406   }
1407   ShouldNotReachHere();
1408   return Address::no_scale;
1409 }
1410 
1411 
1412 void LIR_Assembler::emit_op3(LIR_Op3* op) {
1413   switch (op->code()) {
1414     case lir_idiv:
1415     case lir_irem:
1416       arithmetic_idiv(op->code(),
1417                       op->in_opr1(),
1418                       op->in_opr2(),
1419                       op->in_opr3(),
1420                       op->result_opr(),
1421                       op->info());
1422       break;
1423     case lir_fmad:
1424       __ fmad(op->result_opr()->as_xmm_double_reg(),
1425               op->in_opr1()->as_xmm_double_reg(),
1426               op->in_opr2()->as_xmm_double_reg(),
1427               op->in_opr3()->as_xmm_double_reg());
1428       break;
1429     case lir_fmaf:
1430       __ fmaf(op->result_opr()->as_xmm_float_reg(),
1431               op->in_opr1()->as_xmm_float_reg(),
1432               op->in_opr2()->as_xmm_float_reg(),
1433               op->in_opr3()->as_xmm_float_reg());
1434       break;
1435     default:      ShouldNotReachHere(); break;
1436   }
1437 }
1438 
1439 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
1440 #ifdef ASSERT
1441   assert(op->block() == nullptr || op->block()->label() == op->label(), "wrong label");
1442   if (op->block() != nullptr)  _branch_target_blocks.append(op->block());
1443   if (op->ublock() != nullptr) _branch_target_blocks.append(op->ublock());
1444 #endif
1445 
1446   if (op->cond() == lir_cond_always) {
1447     if (op->info() != nullptr) add_debug_info_for_branch(op->info());
1448     __ jmp (*(op->label()));
1449   } else {
1450     Assembler::Condition acond = Assembler::zero;
1451     if (op->code() == lir_cond_float_branch) {
1452       assert(op->ublock() != nullptr, "must have unordered successor");
1453       __ jcc(Assembler::parity, *(op->ublock()->label()));
1454       switch(op->cond()) {
1455         case lir_cond_equal:        acond = Assembler::equal;      break;
1456         case lir_cond_notEqual:     acond = Assembler::notEqual;   break;
1457         case lir_cond_less:         acond = Assembler::below;      break;
1458         case lir_cond_lessEqual:    acond = Assembler::belowEqual; break;
1459         case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break;
1460         case lir_cond_greater:      acond = Assembler::above;      break;
1461         default:                         ShouldNotReachHere();
1462       }
1463     } else {
1464       switch (op->cond()) {
1465         case lir_cond_equal:        acond = Assembler::equal;       break;
1466         case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
1467         case lir_cond_less:         acond = Assembler::less;        break;
1468         case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
1469         case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
1470         case lir_cond_greater:      acond = Assembler::greater;     break;
1471         case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
1472         case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
1473         default:                         ShouldNotReachHere();
1474       }
1475     }
1476     __ jcc(acond,*(op->label()));
1477   }
1478 }
1479 
1480 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
1481   LIR_Opr src  = op->in_opr();
1482   LIR_Opr dest = op->result_opr();
1483 
1484   switch (op->bytecode()) {
1485     case Bytecodes::_i2l:
1486 #ifdef _LP64
1487       __ movl2ptr(dest->as_register_lo(), src->as_register());
1488 #else
1489       move_regs(src->as_register(), dest->as_register_lo());
1490       move_regs(src->as_register(), dest->as_register_hi());
1491       __ sarl(dest->as_register_hi(), 31);
1492 #endif // LP64
1493       break;
1494 
1495     case Bytecodes::_l2i:
1496 #ifdef _LP64
1497       __ movl(dest->as_register(), src->as_register_lo());
1498 #else
1499       move_regs(src->as_register_lo(), dest->as_register());
1500 #endif
1501       break;
1502 
1503     case Bytecodes::_i2b:
1504       move_regs(src->as_register(), dest->as_register());
1505       __ sign_extend_byte(dest->as_register());
1506       break;
1507 
1508     case Bytecodes::_i2c:
1509       move_regs(src->as_register(), dest->as_register());
1510       __ andl(dest->as_register(), 0xFFFF);
1511       break;
1512 
1513     case Bytecodes::_i2s:
1514       move_regs(src->as_register(), dest->as_register());
1515       __ sign_extend_short(dest->as_register());
1516       break;
1517 
1518 
1519 #ifdef _LP64
1520     case Bytecodes::_f2d:
1521       __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
1522       break;
1523 
1524     case Bytecodes::_d2f:
1525       __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
1526       break;
1527 
1528     case Bytecodes::_i2f:
1529       __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
1530       break;
1531 
1532     case Bytecodes::_i2d:
1533       __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
1534       break;
1535 
1536     case Bytecodes::_l2f:
1537       __ cvtsi2ssq(dest->as_xmm_float_reg(), src->as_register_lo());
1538       break;
1539 
1540     case Bytecodes::_l2d:
1541       __ cvtsi2sdq(dest->as_xmm_double_reg(), src->as_register_lo());
1542       break;
1543 
1544     case Bytecodes::_f2i:
1545       __ convert_f2i(dest->as_register(), src->as_xmm_float_reg());
1546       break;
1547 
1548     case Bytecodes::_d2i:
1549       __ convert_d2i(dest->as_register(), src->as_xmm_double_reg());
1550       break;
1551 
1552     case Bytecodes::_f2l:
1553       __ convert_f2l(dest->as_register_lo(), src->as_xmm_float_reg());
1554       break;
1555 
1556     case Bytecodes::_d2l:
1557       __ convert_d2l(dest->as_register_lo(), src->as_xmm_double_reg());
1558       break;
1559 #else
1560     case Bytecodes::_f2d:
1561     case Bytecodes::_d2f:
1562       if (dest->is_single_xmm()) {
1563         __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
1564       } else if (dest->is_double_xmm()) {
1565         __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
1566       } else {
1567         assert(src->fpu() == dest->fpu(), "register must be equal");
1568         // do nothing (float result is rounded later through spilling)
1569       }
1570       break;
1571 
1572     case Bytecodes::_i2f:
1573     case Bytecodes::_i2d:
1574       if (dest->is_single_xmm()) {
1575         __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
1576       } else if (dest->is_double_xmm()) {
1577         __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
1578       } else {
1579         assert(dest->fpu() == 0, "result must be on TOS");
1580         __ movl(Address(rsp, 0), src->as_register());
1581         __ fild_s(Address(rsp, 0));
1582       }
1583       break;
1584 
1585     case Bytecodes::_l2f:
1586     case Bytecodes::_l2d:
1587       assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)");
1588       assert(dest->fpu() == 0, "result must be on TOS");
1589       __ movptr(Address(rsp, 0),          src->as_register_lo());
1590       __ movl(Address(rsp, BytesPerWord), src->as_register_hi());
1591       __ fild_d(Address(rsp, 0));
1592       // float result is rounded later through spilling
1593       break;
1594 
1595     case Bytecodes::_f2i:
1596     case Bytecodes::_d2i:
1597       if (src->is_single_xmm()) {
1598         __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg());
1599       } else if (src->is_double_xmm()) {
1600         __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg());
1601       } else {
1602         assert(src->fpu() == 0, "input must be on TOS");
1603         __ fldcw(ExternalAddress(StubRoutines::x86::addr_fpu_cntrl_wrd_trunc()));
1604         __ fist_s(Address(rsp, 0));
1605         __ movl(dest->as_register(), Address(rsp, 0));
1606         __ fldcw(ExternalAddress(StubRoutines::x86::addr_fpu_cntrl_wrd_std()));
1607       }
1608       // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
1609       assert(op->stub() != nullptr, "stub required");
1610       __ cmpl(dest->as_register(), 0x80000000);
1611       __ jcc(Assembler::equal, *op->stub()->entry());
1612       __ bind(*op->stub()->continuation());
1613       break;
1614 
1615     case Bytecodes::_f2l:
1616     case Bytecodes::_d2l:
1617       assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)");
1618       assert(src->fpu() == 0, "input must be on TOS");
1619       assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers");
1620 
1621       // instruction sequence too long to inline it here
1622       {
1623         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::fpu2long_stub_id)));
1624       }
1625       break;
1626 #endif // _LP64
1627 
1628     default: ShouldNotReachHere();
1629   }
1630 }
1631 
1632 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
1633   if (op->init_check()) {
1634     add_debug_info_for_null_check_here(op->stub()->info());
1635     __ cmpb(Address(op->klass()->as_register(),
1636                     InstanceKlass::init_state_offset()),
1637                     InstanceKlass::fully_initialized);
1638     __ jcc(Assembler::notEqual, *op->stub()->entry());
1639   }
1640   __ allocate_object(op->obj()->as_register(),
1641                      op->tmp1()->as_register(),
1642                      op->tmp2()->as_register(),
1643                      op->header_size(),
1644                      op->object_size(),
1645                      op->klass()->as_register(),
1646                      *op->stub()->entry());
1647   __ bind(*op->stub()->continuation());
1648 }
1649 
1650 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
1651   Register len =  op->len()->as_register();
1652   LP64_ONLY( __ movslq(len, len); )
1653 
1654   if (UseSlowPath || op->is_null_free() ||
1655       (!UseFastNewObjectArray && is_reference_type(op->type())) ||
1656       (!UseFastNewTypeArray   && !is_reference_type(op->type()))) {
1657     __ jmp(*op->stub()->entry());
1658   } else {
1659     Register tmp1 = op->tmp1()->as_register();
1660     Register tmp2 = op->tmp2()->as_register();
1661     Register tmp3 = op->tmp3()->as_register();
1662     if (len == tmp1) {
1663       tmp1 = tmp3;
1664     } else if (len == tmp2) {
1665       tmp2 = tmp3;
1666     } else if (len == tmp3) {
1667       // everything is ok
1668     } else {
1669       __ mov(tmp3, len);
1670     }
1671     __ allocate_array(op->obj()->as_register(),
1672                       len,
1673                       tmp1,
1674                       tmp2,
1675                       arrayOopDesc::header_size(op->type()),
1676                       array_element_size(op->type()),
1677                       op->klass()->as_register(),
1678                       *op->stub()->entry());
1679   }
1680   __ bind(*op->stub()->continuation());
1681 }
1682 
1683 void LIR_Assembler::type_profile_helper(Register mdo,
1684                                         ciMethodData *md, ciProfileData *data,
1685                                         Register recv, Label* update_done) {
1686   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1687     Label next_test;
1688     // See if the receiver is receiver[n].
1689     __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
1690     __ jccb(Assembler::notEqual, next_test);
1691     Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
1692     __ addptr(data_addr, DataLayout::counter_increment);
1693     __ jmp(*update_done);
1694     __ bind(next_test);
1695   }
1696 
1697   // Didn't find receiver; find next empty slot and fill it in
1698   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1699     Label next_test;
1700     Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)));
1701     __ cmpptr(recv_addr, NULL_WORD);
1702     __ jccb(Assembler::notEqual, next_test);
1703     __ movptr(recv_addr, recv);
1704     __ movptr(Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))), DataLayout::counter_increment);
1705     __ jmp(*update_done);
1706     __ bind(next_test);
1707   }
1708 }
1709 
1710 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
1711   // we always need a stub for the failure case.
1712   CodeStub* stub = op->stub();
1713   Register obj = op->object()->as_register();
1714   Register k_RInfo = op->tmp1()->as_register();
1715   Register klass_RInfo = op->tmp2()->as_register();
1716   Register dst = op->result_opr()->as_register();
1717   ciKlass* k = op->klass();
1718   Register Rtmp1 = noreg;
1719   Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg);
1720 
1721   // check if it needs to be profiled
1722   ciMethodData* md = nullptr;
1723   ciProfileData* data = nullptr;
1724 
1725   if (op->should_profile()) {
1726     ciMethod* method = op->profiled_method();
1727     assert(method != nullptr, "Should have method");
1728     int bci = op->profiled_bci();
1729     md = method->method_data_or_null();
1730     assert(md != nullptr, "Sanity");
1731     data = md->bci_to_data(bci);
1732     assert(data != nullptr,                "need data for type check");
1733     assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1734   }
1735   Label* success_target = success;
1736   Label* failure_target = failure;
1737 
1738   if (obj == k_RInfo) {
1739     k_RInfo = dst;
1740   } else if (obj == klass_RInfo) {
1741     klass_RInfo = dst;
1742   }
1743   if (k->is_loaded() && !UseCompressedClassPointers) {
1744     select_different_registers(obj, dst, k_RInfo, klass_RInfo);
1745   } else {
1746     Rtmp1 = op->tmp3()->as_register();
1747     select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
1748   }
1749 
1750   assert_different_registers(obj, k_RInfo, klass_RInfo);
1751 
1752   if (op->need_null_check()) {
1753     __ testptr(obj, obj);
1754     if (op->should_profile()) {
1755       Label not_null;
1756       Register mdo  = klass_RInfo;
1757       __ mov_metadata(mdo, md->constant_encoding());
1758       __ jccb(Assembler::notEqual, not_null);
1759       // Object is null; update MDO and exit
1760       Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()));
1761       int header_bits = BitData::null_seen_byte_constant();
1762       __ orb(data_addr, header_bits);
1763       __ jmp(*obj_is_null);
1764       __ bind(not_null);
1765 
1766       Label update_done;
1767       Register recv = k_RInfo;
1768       __ load_klass(recv, obj, tmp_load_klass);
1769       type_profile_helper(mdo, md, data, recv, &update_done);
1770 
1771       Address nonprofiled_receiver_count_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1772       __ addptr(nonprofiled_receiver_count_addr, DataLayout::counter_increment);
1773 
1774       __ bind(update_done);
1775     } else {
1776       __ jcc(Assembler::equal, *obj_is_null);
1777     }
1778   }
1779 
1780   if (!k->is_loaded()) {
1781     klass2reg_with_patching(k_RInfo, op->info_for_patch());
1782   } else {
1783 #ifdef _LP64
1784     __ mov_metadata(k_RInfo, k->constant_encoding());
1785 #endif // _LP64
1786   }
1787   __ verify_oop(obj);
1788 
1789   if (op->fast_check()) {
1790     // get object class
1791     // not a safepoint as obj null check happens earlier
1792 #ifdef _LP64
1793     if (UseCompressedClassPointers) {
1794       __ load_klass(Rtmp1, obj, tmp_load_klass);
1795       __ cmpptr(k_RInfo, Rtmp1);
1796     } else {
1797       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1798     }
1799 #else
1800     if (k->is_loaded()) {
1801       __ cmpklass(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding());
1802     } else {
1803       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1804     }
1805 #endif
1806     __ jcc(Assembler::notEqual, *failure_target);
1807     // successful cast, fall through to profile or jump
1808   } else {
1809     // get object class
1810     // not a safepoint as obj null check happens earlier
1811     __ load_klass(klass_RInfo, obj, tmp_load_klass);
1812     if (k->is_loaded()) {
1813       // See if we get an immediate positive hit
1814 #ifdef _LP64
1815       __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset()));
1816 #else
1817       __ cmpklass(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
1818 #endif // _LP64
1819       if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) {
1820         __ jcc(Assembler::notEqual, *failure_target);
1821         // successful cast, fall through to profile or jump
1822       } else {
1823         // See if we get an immediate positive hit
1824         __ jcc(Assembler::equal, *success_target);
1825         // check for self
1826 #ifdef _LP64
1827         __ cmpptr(klass_RInfo, k_RInfo);
1828 #else
1829         __ cmpklass(klass_RInfo, k->constant_encoding());
1830 #endif // _LP64
1831         __ jcc(Assembler::equal, *success_target);
1832 
1833         __ push(klass_RInfo);
1834 #ifdef _LP64
1835         __ push(k_RInfo);
1836 #else
1837         __ pushklass(k->constant_encoding(), noreg);
1838 #endif // _LP64
1839         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1840         __ pop(klass_RInfo);
1841         __ pop(klass_RInfo);
1842         // result is a boolean
1843         __ testl(klass_RInfo, klass_RInfo);
1844         __ jcc(Assembler::equal, *failure_target);
1845         // successful cast, fall through to profile or jump
1846       }
1847     } else {
1848       // perform the fast part of the checking logic
1849       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, nullptr);
1850       // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1851       __ push(klass_RInfo);
1852       __ push(k_RInfo);
1853       __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1854       __ pop(klass_RInfo);
1855       __ pop(k_RInfo);
1856       // result is a boolean
1857       __ testl(k_RInfo, k_RInfo);
1858       __ jcc(Assembler::equal, *failure_target);
1859       // successful cast, fall through to profile or jump
1860     }
1861   }
1862   __ jmp(*success);
1863 }
1864 
1865 
1866 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
1867   Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg);
1868   LIR_Code code = op->code();
1869   if (code == lir_store_check) {
1870     Register value = op->object()->as_register();
1871     Register array = op->array()->as_register();
1872     Register k_RInfo = op->tmp1()->as_register();
1873     Register klass_RInfo = op->tmp2()->as_register();
1874     Register Rtmp1 = op->tmp3()->as_register();
1875 
1876     CodeStub* stub = op->stub();
1877 
1878     // check if it needs to be profiled
1879     ciMethodData* md = nullptr;
1880     ciProfileData* data = nullptr;
1881 
1882     if (op->should_profile()) {
1883       ciMethod* method = op->profiled_method();
1884       assert(method != nullptr, "Should have method");
1885       int bci = op->profiled_bci();
1886       md = method->method_data_or_null();
1887       assert(md != nullptr, "Sanity");
1888       data = md->bci_to_data(bci);
1889       assert(data != nullptr,                "need data for type check");
1890       assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1891     }
1892     Label done;
1893     Label* success_target = &done;
1894     Label* failure_target = stub->entry();
1895 
1896     __ testptr(value, value);
1897     if (op->should_profile()) {
1898       Label not_null;
1899       Register mdo  = klass_RInfo;
1900       __ mov_metadata(mdo, md->constant_encoding());
1901       __ jccb(Assembler::notEqual, not_null);
1902       // Object is null; update MDO and exit
1903       Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()));
1904       int header_bits = BitData::null_seen_byte_constant();
1905       __ orb(data_addr, header_bits);
1906       __ jmp(done);
1907       __ bind(not_null);
1908 
1909       Label update_done;
1910       Register recv = k_RInfo;
1911       __ load_klass(recv, value, tmp_load_klass);
1912       type_profile_helper(mdo, md, data, recv, &update_done);
1913 
1914       Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1915       __ addptr(counter_addr, DataLayout::counter_increment);
1916       __ bind(update_done);
1917     } else {
1918       __ jcc(Assembler::equal, done);
1919     }
1920 
1921     add_debug_info_for_null_check_here(op->info_for_exception());
1922     __ load_klass(k_RInfo, array, tmp_load_klass);
1923     __ load_klass(klass_RInfo, value, tmp_load_klass);
1924 
1925     // get instance klass (it's already uncompressed)
1926     __ movptr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset()));
1927     // perform the fast part of the checking logic
1928     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, nullptr);
1929     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1930     __ push(klass_RInfo);
1931     __ push(k_RInfo);
1932     __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1933     __ pop(klass_RInfo);
1934     __ pop(k_RInfo);
1935     // result is a boolean
1936     __ testl(k_RInfo, k_RInfo);
1937     __ jcc(Assembler::equal, *failure_target);
1938     // fall through to the success case
1939 
1940     __ bind(done);
1941   } else
1942     if (code == lir_checkcast) {
1943       Register obj = op->object()->as_register();
1944       Register dst = op->result_opr()->as_register();
1945       Label success;
1946       emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
1947       __ bind(success);
1948       if (dst != obj) {
1949         __ mov(dst, obj);
1950       }
1951     } else
1952       if (code == lir_instanceof) {
1953         Register obj = op->object()->as_register();
1954         Register dst = op->result_opr()->as_register();
1955         Label success, failure, done;
1956         emit_typecheck_helper(op, &success, &failure, &failure);
1957         __ bind(failure);
1958         __ xorptr(dst, dst);
1959         __ jmpb(done);
1960         __ bind(success);
1961         __ movptr(dst, 1);
1962         __ bind(done);
1963       } else {
1964         ShouldNotReachHere();
1965       }
1966 
1967 }
1968 
1969 void LIR_Assembler::emit_opFlattenedArrayCheck(LIR_OpFlattenedArrayCheck* op) {
1970   // We are loading/storing from/to an array that *may* be a flat array (the
1971   // declared type is Object[], abstract[], interface[] or VT.ref[]).
1972   // If this array is a flat array, take the slow path.
1973   Register klass = op->tmp()->as_register();
1974   if (UseArrayMarkWordCheck) {
1975     __ test_flat_array_oop(op->array()->as_register(), op->tmp()->as_register(), *op->stub()->entry());
1976   } else {
1977     Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg);
1978     __ load_klass(klass, op->array()->as_register(), tmp_load_klass);
1979     __ movl(klass, Address(klass, Klass::layout_helper_offset()));
1980     __ testl(klass, Klass::_lh_array_tag_flat_value_bit_inplace);
1981     __ jcc(Assembler::notZero, *op->stub()->entry());
1982   }
1983   if (!op->value()->is_illegal()) {
1984     // The array is not a flat array, but it might be null-free. If we are storing
1985     // a null into a null-free array, take the slow path (which will throw NPE).
1986     Label skip;
1987     __ cmpptr(op->value()->as_register(), NULL_WORD);
1988     __ jcc(Assembler::notEqual, skip);
1989     if (UseArrayMarkWordCheck) {
1990       __ test_null_free_array_oop(op->array()->as_register(), op->tmp()->as_register(), *op->stub()->entry());
1991     } else {
1992       __ testl(klass, Klass::_lh_null_free_array_bit_inplace);
1993       __ jcc(Assembler::notZero, *op->stub()->entry());
1994     }
1995     __ bind(skip);
1996   }
1997 }
1998 
1999 void LIR_Assembler::emit_opNullFreeArrayCheck(LIR_OpNullFreeArrayCheck* op) {
2000   // We are storing into an array that *may* be null-free (the declared type is
2001   // Object[], abstract[], interface[] or VT.ref[]).
2002   if (UseArrayMarkWordCheck) {
2003     Label test_mark_word;
2004     Register tmp = op->tmp()->as_register();
2005     __ movptr(tmp, Address(op->array()->as_register(), oopDesc::mark_offset_in_bytes()));
2006     __ testl(tmp, markWord::unlocked_value);
2007     __ jccb(Assembler::notZero, test_mark_word);
2008     __ load_prototype_header(tmp, op->array()->as_register(), rscratch1);
2009     __ bind(test_mark_word);
2010     __ testl(tmp, markWord::null_free_array_bit_in_place);
2011   } else {
2012     Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg);
2013     Register klass = op->tmp()->as_register();
2014     __ load_klass(klass, op->array()->as_register(), tmp_load_klass);
2015     __ movl(klass, Address(klass, Klass::layout_helper_offset()));
2016     __ testl(klass, Klass::_lh_null_free_array_bit_inplace);
2017   }
2018 }
2019 
2020 void LIR_Assembler::emit_opSubstitutabilityCheck(LIR_OpSubstitutabilityCheck* op) {
2021   Label L_oops_equal;
2022   Label L_oops_not_equal;
2023   Label L_end;
2024 
2025   Register left  = op->left()->as_register();
2026   Register right = op->right()->as_register();
2027 
2028   __ cmpptr(left, right);
2029   __ jcc(Assembler::equal, L_oops_equal);
2030 
2031   // (1) Null check -- if one of the operands is null, the other must not be null (because
2032   //     the two references are not equal), so they are not substitutable,
2033   //     FIXME: do null check only if the operand is nullable
2034   __ testptr(left, right);
2035   __ jcc(Assembler::zero, L_oops_not_equal);
2036 
2037   ciKlass* left_klass = op->left_klass();
2038   ciKlass* right_klass = op->right_klass();
2039 
2040   // (2) Inline type check -- if either of the operands is not a inline type,
2041   //     they are not substitutable. We do this only if we are not sure that the
2042   //     operands are inline type
2043   if ((left_klass == nullptr || right_klass == nullptr) ||// The klass is still unloaded, or came from a Phi node.
2044       !left_klass->is_inlinetype() || !right_klass->is_inlinetype()) {
2045     Register tmp1  = op->tmp1()->as_register();
2046     __ movptr(tmp1, (intptr_t)markWord::inline_type_pattern);
2047     __ andptr(tmp1, Address(left, oopDesc::mark_offset_in_bytes()));
2048     __ andptr(tmp1, Address(right, oopDesc::mark_offset_in_bytes()));
2049     __ cmpptr(tmp1, (intptr_t)markWord::inline_type_pattern);
2050     __ jcc(Assembler::notEqual, L_oops_not_equal);
2051   }
2052 
2053   // (3) Same klass check: if the operands are of different klasses, they are not substitutable.
2054   if (left_klass != nullptr && left_klass->is_inlinetype() && left_klass == right_klass) {
2055     // No need to load klass -- the operands are statically known to be the same inline klass.
2056     __ jmp(*op->stub()->entry());
2057   } else {
2058     Register left_klass_op = op->left_klass_op()->as_register();
2059     Register right_klass_op = op->right_klass_op()->as_register();
2060 
2061     if (UseCompressedClassPointers) {
2062       __ movl(left_klass_op,  Address(left,  oopDesc::klass_offset_in_bytes()));
2063       __ movl(right_klass_op, Address(right, oopDesc::klass_offset_in_bytes()));
2064       __ cmpl(left_klass_op, right_klass_op);
2065     } else {
2066       __ movptr(left_klass_op,  Address(left,  oopDesc::klass_offset_in_bytes()));
2067       __ movptr(right_klass_op, Address(right, oopDesc::klass_offset_in_bytes()));
2068       __ cmpptr(left_klass_op, right_klass_op);
2069     }
2070 
2071     __ jcc(Assembler::equal, *op->stub()->entry()); // same klass -> do slow check
2072     // fall through to L_oops_not_equal
2073   }
2074 
2075   __ bind(L_oops_not_equal);
2076   move(op->not_equal_result(), op->result_opr());
2077   __ jmp(L_end);
2078 
2079   __ bind(L_oops_equal);
2080   move(op->equal_result(), op->result_opr());
2081   __ jmp(L_end);
2082 
2083   // We've returned from the stub. RAX contains 0x0 IFF the two
2084   // operands are not substitutable. (Don't compare against 0x1 in case the
2085   // C compiler is naughty)
2086   __ bind(*op->stub()->continuation());
2087   __ cmpl(rax, 0);
2088   __ jcc(Assembler::equal, L_oops_not_equal); // (call_stub() == 0x0) -> not_equal
2089   move(op->equal_result(), op->result_opr()); // (call_stub() != 0x0) -> equal
2090   // fall-through
2091   __ bind(L_end);
2092 }
2093 
2094 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
2095   if (LP64_ONLY(false &&) op->code() == lir_cas_long) {
2096     assert(op->cmp_value()->as_register_lo() == rax, "wrong register");
2097     assert(op->cmp_value()->as_register_hi() == rdx, "wrong register");
2098     assert(op->new_value()->as_register_lo() == rbx, "wrong register");
2099     assert(op->new_value()->as_register_hi() == rcx, "wrong register");
2100     Register addr = op->addr()->as_register();
2101     __ lock();
2102     NOT_LP64(__ cmpxchg8(Address(addr, 0)));
2103 
2104   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) {
2105     NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");)
2106     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
2107     Register newval = op->new_value()->as_register();
2108     Register cmpval = op->cmp_value()->as_register();
2109     assert(cmpval == rax, "wrong register");
2110     assert(newval != noreg, "new val must be register");
2111     assert(cmpval != newval, "cmp and new values must be in different registers");
2112     assert(cmpval != addr, "cmp and addr must be in different registers");
2113     assert(newval != addr, "new value and addr must be in different registers");
2114 
2115     if ( op->code() == lir_cas_obj) {
2116 #ifdef _LP64
2117       if (UseCompressedOops) {
2118         __ encode_heap_oop(cmpval);
2119         __ mov(rscratch1, newval);
2120         __ encode_heap_oop(rscratch1);
2121         __ lock();
2122         // cmpval (rax) is implicitly used by this instruction
2123         __ cmpxchgl(rscratch1, Address(addr, 0));
2124       } else
2125 #endif
2126       {
2127         __ lock();
2128         __ cmpxchgptr(newval, Address(addr, 0));
2129       }
2130     } else {
2131       assert(op->code() == lir_cas_int, "lir_cas_int expected");
2132       __ lock();
2133       __ cmpxchgl(newval, Address(addr, 0));
2134     }
2135 #ifdef _LP64
2136   } else if (op->code() == lir_cas_long) {
2137     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
2138     Register newval = op->new_value()->as_register_lo();
2139     Register cmpval = op->cmp_value()->as_register_lo();
2140     assert(cmpval == rax, "wrong register");
2141     assert(newval != noreg, "new val must be register");
2142     assert(cmpval != newval, "cmp and new values must be in different registers");
2143     assert(cmpval != addr, "cmp and addr must be in different registers");
2144     assert(newval != addr, "new value and addr must be in different registers");
2145     __ lock();
2146     __ cmpxchgq(newval, Address(addr, 0));
2147 #endif // _LP64
2148   } else {
2149     Unimplemented();
2150   }
2151 }
2152 
2153 void LIR_Assembler::move(LIR_Opr src, LIR_Opr dst) {
2154   assert(dst->is_cpu_register(), "must be");
2155   assert(dst->type() == src->type(), "must be");
2156 
2157   if (src->is_cpu_register()) {
2158     reg2reg(src, dst);
2159   } else if (src->is_stack()) {
2160     stack2reg(src, dst, dst->type());
2161   } else if (src->is_constant()) {
2162     const2reg(src, dst, lir_patch_none, nullptr);
2163   } else {
2164     ShouldNotReachHere();
2165   }
2166 }
2167 
2168 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type,
2169                           LIR_Opr cmp_opr1, LIR_Opr cmp_opr2) {
2170   assert(cmp_opr1 == LIR_OprFact::illegalOpr && cmp_opr2 == LIR_OprFact::illegalOpr, "unnecessary cmp oprs on x86");
2171 
2172   Assembler::Condition acond, ncond;
2173   switch (condition) {
2174     case lir_cond_equal:        acond = Assembler::equal;        ncond = Assembler::notEqual;     break;
2175     case lir_cond_notEqual:     acond = Assembler::notEqual;     ncond = Assembler::equal;        break;
2176     case lir_cond_less:         acond = Assembler::less;         ncond = Assembler::greaterEqual; break;
2177     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    ncond = Assembler::greater;      break;
2178     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less;         break;
2179     case lir_cond_greater:      acond = Assembler::greater;      ncond = Assembler::lessEqual;    break;
2180     case lir_cond_belowEqual:   acond = Assembler::belowEqual;   ncond = Assembler::above;        break;
2181     case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;   ncond = Assembler::below;        break;
2182     default:                    acond = Assembler::equal;        ncond = Assembler::notEqual;
2183                                 ShouldNotReachHere();
2184   }
2185 
2186   if (opr1->is_cpu_register()) {
2187     reg2reg(opr1, result);
2188   } else if (opr1->is_stack()) {
2189     stack2reg(opr1, result, result->type());
2190   } else if (opr1->is_constant()) {
2191     const2reg(opr1, result, lir_patch_none, nullptr);
2192   } else {
2193     ShouldNotReachHere();
2194   }
2195 
2196   if (VM_Version::supports_cmov() && !opr2->is_constant()) {
2197     // optimized version that does not require a branch
2198     if (opr2->is_single_cpu()) {
2199       assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
2200       __ cmov(ncond, result->as_register(), opr2->as_register());
2201     } else if (opr2->is_double_cpu()) {
2202       assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
2203       assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
2204       __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo());
2205       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());)
2206     } else if (opr2->is_single_stack()) {
2207       __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()));
2208     } else if (opr2->is_double_stack()) {
2209       __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes));
2210       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));)
2211     } else {
2212       ShouldNotReachHere();
2213     }
2214 
2215   } else {
2216     Label skip;
2217     __ jccb(acond, skip);
2218     if (opr2->is_cpu_register()) {
2219       reg2reg(opr2, result);
2220     } else if (opr2->is_stack()) {
2221       stack2reg(opr2, result, result->type());
2222     } else if (opr2->is_constant()) {
2223       const2reg(opr2, result, lir_patch_none, nullptr);
2224     } else {
2225       ShouldNotReachHere();
2226     }
2227     __ bind(skip);
2228   }
2229 }
2230 
2231 
2232 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
2233   assert(info == nullptr, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
2234 
2235   if (left->is_single_cpu()) {
2236     assert(left == dest, "left and dest must be equal");
2237     Register lreg = left->as_register();
2238 
2239     if (right->is_single_cpu()) {
2240       // cpu register - cpu register
2241       Register rreg = right->as_register();
2242       switch (code) {
2243         case lir_add: __ addl (lreg, rreg); break;
2244         case lir_sub: __ subl (lreg, rreg); break;
2245         case lir_mul: __ imull(lreg, rreg); break;
2246         default:      ShouldNotReachHere();
2247       }
2248 
2249     } else if (right->is_stack()) {
2250       // cpu register - stack
2251       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2252       switch (code) {
2253         case lir_add: __ addl(lreg, raddr); break;
2254         case lir_sub: __ subl(lreg, raddr); break;
2255         default:      ShouldNotReachHere();
2256       }
2257 
2258     } else if (right->is_constant()) {
2259       // cpu register - constant
2260       jint c = right->as_constant_ptr()->as_jint();
2261       switch (code) {
2262         case lir_add: {
2263           __ incrementl(lreg, c);
2264           break;
2265         }
2266         case lir_sub: {
2267           __ decrementl(lreg, c);
2268           break;
2269         }
2270         default: ShouldNotReachHere();
2271       }
2272 
2273     } else {
2274       ShouldNotReachHere();
2275     }
2276 
2277   } else if (left->is_double_cpu()) {
2278     assert(left == dest, "left and dest must be equal");
2279     Register lreg_lo = left->as_register_lo();
2280     Register lreg_hi = left->as_register_hi();
2281 
2282     if (right->is_double_cpu()) {
2283       // cpu register - cpu register
2284       Register rreg_lo = right->as_register_lo();
2285       Register rreg_hi = right->as_register_hi();
2286       NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi));
2287       LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo));
2288       switch (code) {
2289         case lir_add:
2290           __ addptr(lreg_lo, rreg_lo);
2291           NOT_LP64(__ adcl(lreg_hi, rreg_hi));
2292           break;
2293         case lir_sub:
2294           __ subptr(lreg_lo, rreg_lo);
2295           NOT_LP64(__ sbbl(lreg_hi, rreg_hi));
2296           break;
2297         case lir_mul:
2298 #ifdef _LP64
2299           __ imulq(lreg_lo, rreg_lo);
2300 #else
2301           assert(lreg_lo == rax && lreg_hi == rdx, "must be");
2302           __ imull(lreg_hi, rreg_lo);
2303           __ imull(rreg_hi, lreg_lo);
2304           __ addl (rreg_hi, lreg_hi);
2305           __ mull (rreg_lo);
2306           __ addl (lreg_hi, rreg_hi);
2307 #endif // _LP64
2308           break;
2309         default:
2310           ShouldNotReachHere();
2311       }
2312 
2313     } else if (right->is_constant()) {
2314       // cpu register - constant
2315 #ifdef _LP64
2316       jlong c = right->as_constant_ptr()->as_jlong_bits();
2317       __ movptr(r10, (intptr_t) c);
2318       switch (code) {
2319         case lir_add:
2320           __ addptr(lreg_lo, r10);
2321           break;
2322         case lir_sub:
2323           __ subptr(lreg_lo, r10);
2324           break;
2325         default:
2326           ShouldNotReachHere();
2327       }
2328 #else
2329       jint c_lo = right->as_constant_ptr()->as_jint_lo();
2330       jint c_hi = right->as_constant_ptr()->as_jint_hi();
2331       switch (code) {
2332         case lir_add:
2333           __ addptr(lreg_lo, c_lo);
2334           __ adcl(lreg_hi, c_hi);
2335           break;
2336         case lir_sub:
2337           __ subptr(lreg_lo, c_lo);
2338           __ sbbl(lreg_hi, c_hi);
2339           break;
2340         default:
2341           ShouldNotReachHere();
2342       }
2343 #endif // _LP64
2344 
2345     } else {
2346       ShouldNotReachHere();
2347     }
2348 
2349   } else if (left->is_single_xmm()) {
2350     assert(left == dest, "left and dest must be equal");
2351     XMMRegister lreg = left->as_xmm_float_reg();
2352 
2353     if (right->is_single_xmm()) {
2354       XMMRegister rreg = right->as_xmm_float_reg();
2355       switch (code) {
2356         case lir_add: __ addss(lreg, rreg);  break;
2357         case lir_sub: __ subss(lreg, rreg);  break;
2358         case lir_mul: __ mulss(lreg, rreg);  break;
2359         case lir_div: __ divss(lreg, rreg);  break;
2360         default: ShouldNotReachHere();
2361       }
2362     } else {
2363       Address raddr;
2364       if (right->is_single_stack()) {
2365         raddr = frame_map()->address_for_slot(right->single_stack_ix());
2366       } else if (right->is_constant()) {
2367         // hack for now
2368         raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat())));
2369       } else {
2370         ShouldNotReachHere();
2371       }
2372       switch (code) {
2373         case lir_add: __ addss(lreg, raddr);  break;
2374         case lir_sub: __ subss(lreg, raddr);  break;
2375         case lir_mul: __ mulss(lreg, raddr);  break;
2376         case lir_div: __ divss(lreg, raddr);  break;
2377         default: ShouldNotReachHere();
2378       }
2379     }
2380 
2381   } else if (left->is_double_xmm()) {
2382     assert(left == dest, "left and dest must be equal");
2383 
2384     XMMRegister lreg = left->as_xmm_double_reg();
2385     if (right->is_double_xmm()) {
2386       XMMRegister rreg = right->as_xmm_double_reg();
2387       switch (code) {
2388         case lir_add: __ addsd(lreg, rreg);  break;
2389         case lir_sub: __ subsd(lreg, rreg);  break;
2390         case lir_mul: __ mulsd(lreg, rreg);  break;
2391         case lir_div: __ divsd(lreg, rreg);  break;
2392         default: ShouldNotReachHere();
2393       }
2394     } else {
2395       Address raddr;
2396       if (right->is_double_stack()) {
2397         raddr = frame_map()->address_for_slot(right->double_stack_ix());
2398       } else if (right->is_constant()) {
2399         // hack for now
2400         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2401       } else {
2402         ShouldNotReachHere();
2403       }
2404       switch (code) {
2405         case lir_add: __ addsd(lreg, raddr);  break;
2406         case lir_sub: __ subsd(lreg, raddr);  break;
2407         case lir_mul: __ mulsd(lreg, raddr);  break;
2408         case lir_div: __ divsd(lreg, raddr);  break;
2409         default: ShouldNotReachHere();
2410       }
2411     }
2412 
2413 #ifndef _LP64
2414   } else if (left->is_single_fpu()) {
2415     assert(dest->is_single_fpu(),  "fpu stack allocation required");
2416 
2417     if (right->is_single_fpu()) {
2418       arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack);
2419 
2420     } else {
2421       assert(left->fpu_regnr() == 0, "left must be on TOS");
2422       assert(dest->fpu_regnr() == 0, "dest must be on TOS");
2423 
2424       Address raddr;
2425       if (right->is_single_stack()) {
2426         raddr = frame_map()->address_for_slot(right->single_stack_ix());
2427       } else if (right->is_constant()) {
2428         address const_addr = float_constant(right->as_jfloat());
2429         assert(const_addr != nullptr, "incorrect float/double constant maintenance");
2430         // hack for now
2431         raddr = __ as_Address(InternalAddress(const_addr));
2432       } else {
2433         ShouldNotReachHere();
2434       }
2435 
2436       switch (code) {
2437         case lir_add: __ fadd_s(raddr); break;
2438         case lir_sub: __ fsub_s(raddr); break;
2439         case lir_mul: __ fmul_s(raddr); break;
2440         case lir_div: __ fdiv_s(raddr); break;
2441         default:      ShouldNotReachHere();
2442       }
2443     }
2444 
2445   } else if (left->is_double_fpu()) {
2446     assert(dest->is_double_fpu(),  "fpu stack allocation required");
2447 
2448     if (code == lir_mul || code == lir_div) {
2449       // Double values require special handling for strictfp mul/div on x86
2450       __ fld_x(ExternalAddress(StubRoutines::x86::addr_fpu_subnormal_bias1()));
2451       __ fmulp(left->fpu_regnrLo() + 1);
2452     }
2453 
2454     if (right->is_double_fpu()) {
2455       arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack);
2456 
2457     } else {
2458       assert(left->fpu_regnrLo() == 0, "left must be on TOS");
2459       assert(dest->fpu_regnrLo() == 0, "dest must be on TOS");
2460 
2461       Address raddr;
2462       if (right->is_double_stack()) {
2463         raddr = frame_map()->address_for_slot(right->double_stack_ix());
2464       } else if (right->is_constant()) {
2465         // hack for now
2466         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2467       } else {
2468         ShouldNotReachHere();
2469       }
2470 
2471       switch (code) {
2472         case lir_add: __ fadd_d(raddr); break;
2473         case lir_sub: __ fsub_d(raddr); break;
2474         case lir_mul: __ fmul_d(raddr); break;
2475         case lir_div: __ fdiv_d(raddr); break;
2476         default: ShouldNotReachHere();
2477       }
2478     }
2479 
2480     if (code == lir_mul || code == lir_div) {
2481       // Double values require special handling for strictfp mul/div on x86
2482       __ fld_x(ExternalAddress(StubRoutines::x86::addr_fpu_subnormal_bias2()));
2483       __ fmulp(dest->fpu_regnrLo() + 1);
2484     }
2485 #endif // !_LP64
2486 
2487   } else if (left->is_single_stack() || left->is_address()) {
2488     assert(left == dest, "left and dest must be equal");
2489 
2490     Address laddr;
2491     if (left->is_single_stack()) {
2492       laddr = frame_map()->address_for_slot(left->single_stack_ix());
2493     } else if (left->is_address()) {
2494       laddr = as_Address(left->as_address_ptr());
2495     } else {
2496       ShouldNotReachHere();
2497     }
2498 
2499     if (right->is_single_cpu()) {
2500       Register rreg = right->as_register();
2501       switch (code) {
2502         case lir_add: __ addl(laddr, rreg); break;
2503         case lir_sub: __ subl(laddr, rreg); break;
2504         default:      ShouldNotReachHere();
2505       }
2506     } else if (right->is_constant()) {
2507       jint c = right->as_constant_ptr()->as_jint();
2508       switch (code) {
2509         case lir_add: {
2510           __ incrementl(laddr, c);
2511           break;
2512         }
2513         case lir_sub: {
2514           __ decrementl(laddr, c);
2515           break;
2516         }
2517         default: ShouldNotReachHere();
2518       }
2519     } else {
2520       ShouldNotReachHere();
2521     }
2522 
2523   } else {
2524     ShouldNotReachHere();
2525   }
2526 }
2527 
2528 #ifndef _LP64
2529 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) {
2530   assert(pop_fpu_stack  || (left_index     == dest_index || right_index     == dest_index), "invalid LIR");
2531   assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR");
2532   assert(left_index == 0 || right_index == 0, "either must be on top of stack");
2533 
2534   bool left_is_tos = (left_index == 0);
2535   bool dest_is_tos = (dest_index == 0);
2536   int non_tos_index = (left_is_tos ? right_index : left_index);
2537 
2538   switch (code) {
2539     case lir_add:
2540       if (pop_fpu_stack)       __ faddp(non_tos_index);
2541       else if (dest_is_tos)    __ fadd (non_tos_index);
2542       else                     __ fadda(non_tos_index);
2543       break;
2544 
2545     case lir_sub:
2546       if (left_is_tos) {
2547         if (pop_fpu_stack)     __ fsubrp(non_tos_index);
2548         else if (dest_is_tos)  __ fsub  (non_tos_index);
2549         else                   __ fsubra(non_tos_index);
2550       } else {
2551         if (pop_fpu_stack)     __ fsubp (non_tos_index);
2552         else if (dest_is_tos)  __ fsubr (non_tos_index);
2553         else                   __ fsuba (non_tos_index);
2554       }
2555       break;
2556 
2557     case lir_mul:
2558       if (pop_fpu_stack)       __ fmulp(non_tos_index);
2559       else if (dest_is_tos)    __ fmul (non_tos_index);
2560       else                     __ fmula(non_tos_index);
2561       break;
2562 
2563     case lir_div:
2564       if (left_is_tos) {
2565         if (pop_fpu_stack)     __ fdivrp(non_tos_index);
2566         else if (dest_is_tos)  __ fdiv  (non_tos_index);
2567         else                   __ fdivra(non_tos_index);
2568       } else {
2569         if (pop_fpu_stack)     __ fdivp (non_tos_index);
2570         else if (dest_is_tos)  __ fdivr (non_tos_index);
2571         else                   __ fdiva (non_tos_index);
2572       }
2573       break;
2574 
2575     case lir_rem:
2576       assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation");
2577       __ fremr(noreg);
2578       break;
2579 
2580     default:
2581       ShouldNotReachHere();
2582   }
2583 }
2584 #endif // _LP64
2585 
2586 
2587 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr tmp, LIR_Opr dest, LIR_Op* op) {
2588   if (value->is_double_xmm()) {
2589     switch(code) {
2590       case lir_abs :
2591         {
2592 #ifdef _LP64
2593           if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {
2594             assert(tmp->is_valid(), "need temporary");
2595             __ vpandn(dest->as_xmm_double_reg(), tmp->as_xmm_double_reg(), value->as_xmm_double_reg(), 2);
2596           } else
2597 #endif
2598           {
2599             if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
2600               __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
2601             }
2602             assert(!tmp->is_valid(), "do not need temporary");
2603             __ andpd(dest->as_xmm_double_reg(),
2604                      ExternalAddress((address)double_signmask_pool),
2605                      rscratch1);
2606           }
2607         }
2608         break;
2609 
2610       case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break;
2611       // all other intrinsics are not available in the SSE instruction set, so FPU is used
2612       default      : ShouldNotReachHere();
2613     }
2614 
2615 #ifndef _LP64
2616   } else if (value->is_double_fpu()) {
2617     assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS");
2618     switch(code) {
2619       case lir_abs   : __ fabs() ; break;
2620       case lir_sqrt  : __ fsqrt(); break;
2621       default      : ShouldNotReachHere();
2622     }
2623 #endif // !_LP64
2624   } else if (code == lir_f2hf) {
2625     __ flt_to_flt16(dest->as_register(), value->as_xmm_float_reg(), tmp->as_xmm_float_reg());
2626   } else if (code == lir_hf2f) {
2627     __ flt16_to_flt(dest->as_xmm_float_reg(), value->as_register());
2628   } else {
2629     Unimplemented();
2630   }
2631 }
2632 
2633 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
2634   // assert(left->destroys_register(), "check");
2635   if (left->is_single_cpu()) {
2636     Register reg = left->as_register();
2637     if (right->is_constant()) {
2638       int val = right->as_constant_ptr()->as_jint();
2639       switch (code) {
2640         case lir_logic_and: __ andl (reg, val); break;
2641         case lir_logic_or:  __ orl  (reg, val); break;
2642         case lir_logic_xor: __ xorl (reg, val); break;
2643         default: ShouldNotReachHere();
2644       }
2645     } else if (right->is_stack()) {
2646       // added support for stack operands
2647       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2648       switch (code) {
2649         case lir_logic_and: __ andl (reg, raddr); break;
2650         case lir_logic_or:  __ orl  (reg, raddr); break;
2651         case lir_logic_xor: __ xorl (reg, raddr); break;
2652         default: ShouldNotReachHere();
2653       }
2654     } else {
2655       Register rright = right->as_register();
2656       switch (code) {
2657         case lir_logic_and: __ andptr (reg, rright); break;
2658         case lir_logic_or : __ orptr  (reg, rright); break;
2659         case lir_logic_xor: __ xorptr (reg, rright); break;
2660         default: ShouldNotReachHere();
2661       }
2662     }
2663     move_regs(reg, dst->as_register());
2664   } else {
2665     Register l_lo = left->as_register_lo();
2666     Register l_hi = left->as_register_hi();
2667     if (right->is_constant()) {
2668 #ifdef _LP64
2669       __ mov64(rscratch1, right->as_constant_ptr()->as_jlong());
2670       switch (code) {
2671         case lir_logic_and:
2672           __ andq(l_lo, rscratch1);
2673           break;
2674         case lir_logic_or:
2675           __ orq(l_lo, rscratch1);
2676           break;
2677         case lir_logic_xor:
2678           __ xorq(l_lo, rscratch1);
2679           break;
2680         default: ShouldNotReachHere();
2681       }
2682 #else
2683       int r_lo = right->as_constant_ptr()->as_jint_lo();
2684       int r_hi = right->as_constant_ptr()->as_jint_hi();
2685       switch (code) {
2686         case lir_logic_and:
2687           __ andl(l_lo, r_lo);
2688           __ andl(l_hi, r_hi);
2689           break;
2690         case lir_logic_or:
2691           __ orl(l_lo, r_lo);
2692           __ orl(l_hi, r_hi);
2693           break;
2694         case lir_logic_xor:
2695           __ xorl(l_lo, r_lo);
2696           __ xorl(l_hi, r_hi);
2697           break;
2698         default: ShouldNotReachHere();
2699       }
2700 #endif // _LP64
2701     } else {
2702 #ifdef _LP64
2703       Register r_lo;
2704       if (is_reference_type(right->type())) {
2705         r_lo = right->as_register();
2706       } else {
2707         r_lo = right->as_register_lo();
2708       }
2709 #else
2710       Register r_lo = right->as_register_lo();
2711       Register r_hi = right->as_register_hi();
2712       assert(l_lo != r_hi, "overwriting registers");
2713 #endif
2714       switch (code) {
2715         case lir_logic_and:
2716           __ andptr(l_lo, r_lo);
2717           NOT_LP64(__ andptr(l_hi, r_hi);)
2718           break;
2719         case lir_logic_or:
2720           __ orptr(l_lo, r_lo);
2721           NOT_LP64(__ orptr(l_hi, r_hi);)
2722           break;
2723         case lir_logic_xor:
2724           __ xorptr(l_lo, r_lo);
2725           NOT_LP64(__ xorptr(l_hi, r_hi);)
2726           break;
2727         default: ShouldNotReachHere();
2728       }
2729     }
2730 
2731     Register dst_lo = dst->as_register_lo();
2732     Register dst_hi = dst->as_register_hi();
2733 
2734 #ifdef _LP64
2735     move_regs(l_lo, dst_lo);
2736 #else
2737     if (dst_lo == l_hi) {
2738       assert(dst_hi != l_lo, "overwriting registers");
2739       move_regs(l_hi, dst_hi);
2740       move_regs(l_lo, dst_lo);
2741     } else {
2742       assert(dst_lo != l_hi, "overwriting registers");
2743       move_regs(l_lo, dst_lo);
2744       move_regs(l_hi, dst_hi);
2745     }
2746 #endif // _LP64
2747   }
2748 }
2749 
2750 
2751 // we assume that rax, and rdx can be overwritten
2752 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
2753 
2754   assert(left->is_single_cpu(),   "left must be register");
2755   assert(right->is_single_cpu() || right->is_constant(),  "right must be register or constant");
2756   assert(result->is_single_cpu(), "result must be register");
2757 
2758   //  assert(left->destroys_register(), "check");
2759   //  assert(right->destroys_register(), "check");
2760 
2761   Register lreg = left->as_register();
2762   Register dreg = result->as_register();
2763 
2764   if (right->is_constant()) {
2765     jint divisor = right->as_constant_ptr()->as_jint();
2766     assert(divisor > 0 && is_power_of_2(divisor), "must be");
2767     if (code == lir_idiv) {
2768       assert(lreg == rax, "must be rax,");
2769       assert(temp->as_register() == rdx, "tmp register must be rdx");
2770       __ cdql(); // sign extend into rdx:rax
2771       if (divisor == 2) {
2772         __ subl(lreg, rdx);
2773       } else {
2774         __ andl(rdx, divisor - 1);
2775         __ addl(lreg, rdx);
2776       }
2777       __ sarl(lreg, log2i_exact(divisor));
2778       move_regs(lreg, dreg);
2779     } else if (code == lir_irem) {
2780       Label done;
2781       __ mov(dreg, lreg);
2782       __ andl(dreg, 0x80000000 | (divisor - 1));
2783       __ jcc(Assembler::positive, done);
2784       __ decrement(dreg);
2785       __ orl(dreg, ~(divisor - 1));
2786       __ increment(dreg);
2787       __ bind(done);
2788     } else {
2789       ShouldNotReachHere();
2790     }
2791   } else {
2792     Register rreg = right->as_register();
2793     assert(lreg == rax, "left register must be rax,");
2794     assert(rreg != rdx, "right register must not be rdx");
2795     assert(temp->as_register() == rdx, "tmp register must be rdx");
2796 
2797     move_regs(lreg, rax);
2798 
2799     int idivl_offset = __ corrected_idivl(rreg);
2800     if (ImplicitDiv0Checks) {
2801       add_debug_info_for_div0(idivl_offset, info);
2802     }
2803     if (code == lir_irem) {
2804       move_regs(rdx, dreg); // result is in rdx
2805     } else {
2806       move_regs(rax, dreg);
2807     }
2808   }
2809 }
2810 
2811 
2812 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
2813   if (opr1->is_single_cpu()) {
2814     Register reg1 = opr1->as_register();
2815     if (opr2->is_single_cpu()) {
2816       // cpu register - cpu register
2817       if (is_reference_type(opr1->type())) {
2818         __ cmpoop(reg1, opr2->as_register());
2819       } else {
2820         assert(!is_reference_type(opr2->type()), "cmp int, oop?");
2821         __ cmpl(reg1, opr2->as_register());
2822       }
2823     } else if (opr2->is_stack()) {
2824       // cpu register - stack
2825       if (is_reference_type(opr1->type())) {
2826         __ cmpoop(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2827       } else {
2828         __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2829       }
2830     } else if (opr2->is_constant()) {
2831       // cpu register - constant
2832       LIR_Const* c = opr2->as_constant_ptr();
2833       if (c->type() == T_INT) {
2834         jint i = c->as_jint();
2835         if (i == 0) {
2836           __ testl(reg1, reg1);
2837         } else {
2838           __ cmpl(reg1, i);
2839         }
2840       } else if (c->type() == T_METADATA) {
2841         // All we need for now is a comparison with null for equality.
2842         assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "oops");
2843         Metadata* m = c->as_metadata();
2844         if (m == nullptr) {
2845           __ testptr(reg1, reg1);
2846         } else {
2847           ShouldNotReachHere();
2848         }
2849       } else if (is_reference_type(c->type())) {
2850         // In 64bit oops are single register
2851         jobject o = c->as_jobject();
2852         if (o == nullptr) {
2853           __ testptr(reg1, reg1);
2854         } else {
2855           __ cmpoop(reg1, o, rscratch1);
2856         }
2857       } else {
2858         fatal("unexpected type: %s", basictype_to_str(c->type()));
2859       }
2860       // cpu register - address
2861     } else if (opr2->is_address()) {
2862       if (op->info() != nullptr) {
2863         add_debug_info_for_null_check_here(op->info());
2864       }
2865       __ cmpl(reg1, as_Address(opr2->as_address_ptr()));
2866     } else {
2867       ShouldNotReachHere();
2868     }
2869 
2870   } else if(opr1->is_double_cpu()) {
2871     Register xlo = opr1->as_register_lo();
2872     Register xhi = opr1->as_register_hi();
2873     if (opr2->is_double_cpu()) {
2874 #ifdef _LP64
2875       __ cmpptr(xlo, opr2->as_register_lo());
2876 #else
2877       // cpu register - cpu register
2878       Register ylo = opr2->as_register_lo();
2879       Register yhi = opr2->as_register_hi();
2880       __ subl(xlo, ylo);
2881       __ sbbl(xhi, yhi);
2882       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
2883         __ orl(xhi, xlo);
2884       }
2885 #endif // _LP64
2886     } else if (opr2->is_constant()) {
2887       // cpu register - constant 0
2888       assert(opr2->as_jlong() == (jlong)0, "only handles zero");
2889 #ifdef _LP64
2890       __ cmpptr(xlo, (int32_t)opr2->as_jlong());
2891 #else
2892       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case");
2893       __ orl(xhi, xlo);
2894 #endif // _LP64
2895     } else {
2896       ShouldNotReachHere();
2897     }
2898 
2899   } else if (opr1->is_single_xmm()) {
2900     XMMRegister reg1 = opr1->as_xmm_float_reg();
2901     if (opr2->is_single_xmm()) {
2902       // xmm register - xmm register
2903       __ ucomiss(reg1, opr2->as_xmm_float_reg());
2904     } else if (opr2->is_stack()) {
2905       // xmm register - stack
2906       __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2907     } else if (opr2->is_constant()) {
2908       // xmm register - constant
2909       __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat())));
2910     } else if (opr2->is_address()) {
2911       // xmm register - address
2912       if (op->info() != nullptr) {
2913         add_debug_info_for_null_check_here(op->info());
2914       }
2915       __ ucomiss(reg1, as_Address(opr2->as_address_ptr()));
2916     } else {
2917       ShouldNotReachHere();
2918     }
2919 
2920   } else if (opr1->is_double_xmm()) {
2921     XMMRegister reg1 = opr1->as_xmm_double_reg();
2922     if (opr2->is_double_xmm()) {
2923       // xmm register - xmm register
2924       __ ucomisd(reg1, opr2->as_xmm_double_reg());
2925     } else if (opr2->is_stack()) {
2926       // xmm register - stack
2927       __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix()));
2928     } else if (opr2->is_constant()) {
2929       // xmm register - constant
2930       __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble())));
2931     } else if (opr2->is_address()) {
2932       // xmm register - address
2933       if (op->info() != nullptr) {
2934         add_debug_info_for_null_check_here(op->info());
2935       }
2936       __ ucomisd(reg1, as_Address(opr2->pointer()->as_address()));
2937     } else {
2938       ShouldNotReachHere();
2939     }
2940 
2941 #ifndef _LP64
2942   } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) {
2943     assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)");
2944     assert(opr2->is_fpu_register(), "both must be registers");
2945     __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2946 #endif // LP64
2947 
2948   } else if (opr1->is_address() && opr2->is_constant()) {
2949     LIR_Const* c = opr2->as_constant_ptr();
2950 #ifdef _LP64
2951     if (is_reference_type(c->type())) {
2952       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse");
2953       __ movoop(rscratch1, c->as_jobject());
2954     }
2955 #endif // LP64
2956     if (op->info() != nullptr) {
2957       add_debug_info_for_null_check_here(op->info());
2958     }
2959     // special case: address - constant
2960     LIR_Address* addr = opr1->as_address_ptr();
2961     if (c->type() == T_INT) {
2962       __ cmpl(as_Address(addr), c->as_jint());
2963     } else if (is_reference_type(c->type())) {
2964 #ifdef _LP64
2965       // %%% Make this explode if addr isn't reachable until we figure out a
2966       // better strategy by giving noreg as the temp for as_Address
2967       __ cmpoop(rscratch1, as_Address(addr, noreg));
2968 #else
2969       __ cmpoop(as_Address(addr), c->as_jobject());
2970 #endif // _LP64
2971     } else {
2972       ShouldNotReachHere();
2973     }
2974 
2975   } else {
2976     ShouldNotReachHere();
2977   }
2978 }
2979 
2980 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
2981   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
2982     if (left->is_single_xmm()) {
2983       assert(right->is_single_xmm(), "must match");
2984       __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2985     } else if (left->is_double_xmm()) {
2986       assert(right->is_double_xmm(), "must match");
2987       __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2988 
2989     } else {
2990 #ifdef _LP64
2991       ShouldNotReachHere();
2992 #else
2993       assert(left->is_single_fpu() || left->is_double_fpu(), "must be");
2994       assert(right->is_single_fpu() || right->is_double_fpu(), "must match");
2995 
2996       assert(left->fpu() == 0, "left must be on TOS");
2997       __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(),
2998                   op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2999 #endif // LP64
3000     }
3001   } else {
3002     assert(code == lir_cmp_l2i, "check");
3003 #ifdef _LP64
3004     Label done;
3005     Register dest = dst->as_register();
3006     __ cmpptr(left->as_register_lo(), right->as_register_lo());
3007     __ movl(dest, -1);
3008     __ jccb(Assembler::less, done);
3009     __ setb(Assembler::notZero, dest);
3010     __ movzbl(dest, dest);
3011     __ bind(done);
3012 #else
3013     __ lcmp2int(left->as_register_hi(),
3014                 left->as_register_lo(),
3015                 right->as_register_hi(),
3016                 right->as_register_lo());
3017     move_regs(left->as_register_hi(), dst->as_register());
3018 #endif // _LP64
3019   }
3020 }
3021 
3022 
3023 void LIR_Assembler::align_call(LIR_Code code) {
3024   // make sure that the displacement word of the call ends up word aligned
3025   int offset = __ offset();
3026   switch (code) {
3027   case lir_static_call:
3028   case lir_optvirtual_call:
3029   case lir_dynamic_call:
3030     offset += NativeCall::displacement_offset;
3031     break;
3032   case lir_icvirtual_call:
3033     offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size;
3034     break;
3035   default: ShouldNotReachHere();
3036   }
3037   __ align(BytesPerWord, offset);
3038 }
3039 
3040 
3041 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
3042   assert((__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
3043          "must be aligned");
3044   __ call(AddressLiteral(op->addr(), rtype));
3045   add_call_info(code_offset(), op->info(), op->maybe_return_as_fields());
3046   __ post_call_nop();
3047 }
3048 
3049 
3050 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
3051   __ ic_call(op->addr());
3052   add_call_info(code_offset(), op->info(), op->maybe_return_as_fields());
3053   assert((__ offset() - NativeCall::instruction_size + NativeCall::displacement_offset) % BytesPerWord == 0,
3054          "must be aligned");
3055   __ post_call_nop();
3056 }
3057 
3058 
3059 void LIR_Assembler::emit_static_call_stub() {
3060   address call_pc = __ pc();
3061   address stub = __ start_a_stub(call_stub_size());
3062   if (stub == nullptr) {
3063     bailout("static call stub overflow");
3064     return;
3065   }
3066 
3067   int start = __ offset();
3068 
3069   // make sure that the displacement word of the call ends up word aligned
3070   __ align(BytesPerWord, __ offset() + NativeMovConstReg::instruction_size + NativeCall::displacement_offset);
3071   __ relocate(static_stub_Relocation::spec(call_pc));
3072   __ mov_metadata(rbx, (Metadata*)nullptr);
3073   // must be set to -1 at code generation time
3074   assert(((__ offset() + 1) % BytesPerWord) == 0, "must be aligned");
3075   // On 64bit this will die since it will take a movq & jmp, must be only a jmp
3076   __ jump(RuntimeAddress(__ pc()));
3077 
3078   assert(__ offset() - start <= call_stub_size(), "stub too big");
3079   __ end_a_stub();
3080 }
3081 
3082 
3083 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
3084   assert(exceptionOop->as_register() == rax, "must match");
3085   assert(exceptionPC->as_register() == rdx, "must match");
3086 
3087   // exception object is not added to oop map by LinearScan
3088   // (LinearScan assumes that no oops are in fixed registers)
3089   info->add_register_oop(exceptionOop);
3090   Runtime1::StubID unwind_id;
3091 
3092   // get current pc information
3093   // pc is only needed if the method has an exception handler, the unwind code does not need it.
3094   int pc_for_athrow_offset = __ offset();
3095   InternalAddress pc_for_athrow(__ pc());
3096   __ lea(exceptionPC->as_register(), pc_for_athrow);
3097   add_call_info(pc_for_athrow_offset, info); // for exception handler
3098 
3099   __ verify_not_null_oop(rax);
3100   // search an exception handler (rax: exception oop, rdx: throwing pc)
3101   if (compilation()->has_fpu_code()) {
3102     unwind_id = Runtime1::handle_exception_id;
3103   } else {
3104     unwind_id = Runtime1::handle_exception_nofpu_id;
3105   }
3106   __ call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
3107 
3108   // enough room for two byte trap
3109   __ nop();
3110 }
3111 
3112 
3113 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
3114   assert(exceptionOop->as_register() == rax, "must match");
3115 
3116   __ jmp(_unwind_handler_entry);
3117 }
3118 
3119 
3120 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
3121 
3122   // optimized version for linear scan:
3123   // * count must be already in ECX (guaranteed by LinearScan)
3124   // * left and dest must be equal
3125   // * tmp must be unused
3126   assert(count->as_register() == SHIFT_count, "count must be in ECX");
3127   assert(left == dest, "left and dest must be equal");
3128   assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
3129 
3130   if (left->is_single_cpu()) {
3131     Register value = left->as_register();
3132     assert(value != SHIFT_count, "left cannot be ECX");
3133 
3134     switch (code) {
3135       case lir_shl:  __ shll(value); break;
3136       case lir_shr:  __ sarl(value); break;
3137       case lir_ushr: __ shrl(value); break;
3138       default: ShouldNotReachHere();
3139     }
3140   } else if (left->is_double_cpu()) {
3141     Register lo = left->as_register_lo();
3142     Register hi = left->as_register_hi();
3143     assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX");
3144 #ifdef _LP64
3145     switch (code) {
3146       case lir_shl:  __ shlptr(lo);        break;
3147       case lir_shr:  __ sarptr(lo);        break;
3148       case lir_ushr: __ shrptr(lo);        break;
3149       default: ShouldNotReachHere();
3150     }
3151 #else
3152 
3153     switch (code) {
3154       case lir_shl:  __ lshl(hi, lo);        break;
3155       case lir_shr:  __ lshr(hi, lo, true);  break;
3156       case lir_ushr: __ lshr(hi, lo, false); break;
3157       default: ShouldNotReachHere();
3158     }
3159 #endif // LP64
3160   } else {
3161     ShouldNotReachHere();
3162   }
3163 }
3164 
3165 
3166 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
3167   if (dest->is_single_cpu()) {
3168     // first move left into dest so that left is not destroyed by the shift
3169     Register value = dest->as_register();
3170     count = count & 0x1F; // Java spec
3171 
3172     move_regs(left->as_register(), value);
3173     switch (code) {
3174       case lir_shl:  __ shll(value, count); break;
3175       case lir_shr:  __ sarl(value, count); break;
3176       case lir_ushr: __ shrl(value, count); break;
3177       default: ShouldNotReachHere();
3178     }
3179   } else if (dest->is_double_cpu()) {
3180 #ifndef _LP64
3181     Unimplemented();
3182 #else
3183     // first move left into dest so that left is not destroyed by the shift
3184     Register value = dest->as_register_lo();
3185     count = count & 0x1F; // Java spec
3186 
3187     move_regs(left->as_register_lo(), value);
3188     switch (code) {
3189       case lir_shl:  __ shlptr(value, count); break;
3190       case lir_shr:  __ sarptr(value, count); break;
3191       case lir_ushr: __ shrptr(value, count); break;
3192       default: ShouldNotReachHere();
3193     }
3194 #endif // _LP64
3195   } else {
3196     ShouldNotReachHere();
3197   }
3198 }
3199 
3200 
3201 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
3202   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3203   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3204   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3205   __ movptr (Address(rsp, offset_from_rsp_in_bytes), r);
3206 }
3207 
3208 
3209 void LIR_Assembler::store_parameter(jint c,     int offset_from_rsp_in_words) {
3210   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3211   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3212   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3213   __ movptr (Address(rsp, offset_from_rsp_in_bytes), c);
3214 }
3215 
3216 
3217 void LIR_Assembler::store_parameter(jobject o, int offset_from_rsp_in_words) {
3218   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3219   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3220   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3221   __ movoop(Address(rsp, offset_from_rsp_in_bytes), o, rscratch1);
3222 }
3223 
3224 
3225 void LIR_Assembler::store_parameter(Metadata* m, int offset_from_rsp_in_words) {
3226   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3227   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3228   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3229   __ mov_metadata(Address(rsp, offset_from_rsp_in_bytes), m, rscratch1);
3230 }
3231 
3232 
3233 void LIR_Assembler::arraycopy_inlinetype_check(Register obj, Register tmp, CodeStub* slow_path, bool is_dest, bool null_check) {
3234   if (null_check) {
3235     __ testptr(obj, obj);
3236     __ jcc(Assembler::zero, *slow_path->entry());
3237   }
3238   if (UseArrayMarkWordCheck) {
3239     if (is_dest) {
3240       __ test_null_free_array_oop(obj, tmp, *slow_path->entry());
3241     } else {
3242       __ test_flat_array_oop(obj, tmp, *slow_path->entry());
3243     }
3244   } else {
3245     Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg);
3246     __ load_klass(tmp, obj, tmp_load_klass);
3247     __ movl(tmp, Address(tmp, Klass::layout_helper_offset()));
3248     if (is_dest) {
3249       // Take the slow path if it's a null_free destination array, in case the source array contains nullptrs.
3250       __ testl(tmp, Klass::_lh_null_free_array_bit_inplace);
3251     } else {
3252       __ testl(tmp, Klass::_lh_array_tag_flat_value_bit_inplace);
3253     }
3254     __ jcc(Assembler::notZero, *slow_path->entry());
3255   }
3256 }
3257 
3258 
3259 // This code replaces a call to arraycopy; no exception may
3260 // be thrown in this code, they must be thrown in the System.arraycopy
3261 // activation frame; we could save some checks if this would not be the case
3262 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
3263   ciArrayKlass* default_type = op->expected_type();
3264   Register src = op->src()->as_register();
3265   Register dst = op->dst()->as_register();
3266   Register src_pos = op->src_pos()->as_register();
3267   Register dst_pos = op->dst_pos()->as_register();
3268   Register length  = op->length()->as_register();
3269   Register tmp = op->tmp()->as_register();
3270   Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg);
3271 
3272   CodeStub* stub = op->stub();
3273   int flags = op->flags();
3274   BasicType basic_type = default_type != nullptr ? default_type->element_type()->basic_type() : T_ILLEGAL;
3275   if (is_reference_type(basic_type)) basic_type = T_OBJECT;
3276 
3277   if (flags & LIR_OpArrayCopy::always_slow_path) {
3278     __ jmp(*stub->entry());
3279     __ bind(*stub->continuation());
3280     return;
3281   }
3282 
3283   // if we don't know anything, just go through the generic arraycopy
3284   if (default_type == nullptr) {
3285     // save outgoing arguments on stack in case call to System.arraycopy is needed
3286     // HACK ALERT. This code used to push the parameters in a hardwired fashion
3287     // for interpreter calling conventions. Now we have to do it in new style conventions.
3288     // For the moment until C1 gets the new register allocator I just force all the
3289     // args to the right place (except the register args) and then on the back side
3290     // reload the register args properly if we go slow path. Yuck
3291 
3292     // These are proper for the calling convention
3293     store_parameter(length, 2);
3294     store_parameter(dst_pos, 1);
3295     store_parameter(dst, 0);
3296 
3297     // these are just temporary placements until we need to reload
3298     store_parameter(src_pos, 3);
3299     store_parameter(src, 4);
3300     NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");)
3301 
3302     address copyfunc_addr = StubRoutines::generic_arraycopy();
3303     assert(copyfunc_addr != nullptr, "generic arraycopy stub required");
3304 
3305     // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint
3306 #ifdef _LP64
3307     // The arguments are in java calling convention so we can trivially shift them to C
3308     // convention
3309     assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
3310     __ mov(c_rarg0, j_rarg0);
3311     assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
3312     __ mov(c_rarg1, j_rarg1);
3313     assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
3314     __ mov(c_rarg2, j_rarg2);
3315     assert_different_registers(c_rarg3, j_rarg4);
3316     __ mov(c_rarg3, j_rarg3);
3317 #ifdef _WIN64
3318     // Allocate abi space for args but be sure to keep stack aligned
3319     __ subptr(rsp, 6*wordSize);
3320     store_parameter(j_rarg4, 4);
3321 #ifndef PRODUCT
3322     if (PrintC1Statistics) {
3323       __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt), rscratch1);
3324     }
3325 #endif
3326     __ call(RuntimeAddress(copyfunc_addr));
3327     __ addptr(rsp, 6*wordSize);
3328 #else
3329     __ mov(c_rarg4, j_rarg4);
3330 #ifndef PRODUCT
3331     if (PrintC1Statistics) {
3332       __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt), rscratch1);
3333     }
3334 #endif
3335     __ call(RuntimeAddress(copyfunc_addr));
3336 #endif // _WIN64
3337 #else
3338     __ push(length);
3339     __ push(dst_pos);
3340     __ push(dst);
3341     __ push(src_pos);
3342     __ push(src);
3343 
3344 #ifndef PRODUCT
3345     if (PrintC1Statistics) {
3346       __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt), rscratch1);
3347     }
3348 #endif
3349     __ call_VM_leaf(copyfunc_addr, 5); // removes pushed parameter from the stack
3350 
3351 #endif // _LP64
3352 
3353     __ testl(rax, rax);
3354     __ jcc(Assembler::equal, *stub->continuation());
3355 
3356     __ mov(tmp, rax);
3357     __ xorl(tmp, -1);
3358 
3359     // Reload values from the stack so they are where the stub
3360     // expects them.
3361     __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
3362     __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
3363     __ movptr   (length,  Address(rsp, 2*BytesPerWord));
3364     __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
3365     __ movptr   (src,     Address(rsp, 4*BytesPerWord));
3366 
3367     __ subl(length, tmp);
3368     __ addl(src_pos, tmp);
3369     __ addl(dst_pos, tmp);
3370     __ jmp(*stub->entry());
3371 
3372     __ bind(*stub->continuation());
3373     return;
3374   }
3375 
3376   // Handle inline type arrays
3377   if (flags & LIR_OpArrayCopy::src_inlinetype_check) {
3378     arraycopy_inlinetype_check(src, tmp, stub, false, (flags & LIR_OpArrayCopy::src_null_check));
3379   }
3380   if (flags & LIR_OpArrayCopy::dst_inlinetype_check) {
3381     arraycopy_inlinetype_check(dst, tmp, stub, true, (flags & LIR_OpArrayCopy::dst_null_check));
3382   }
3383 
3384   assert(default_type != nullptr && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
3385 
3386   int elem_size = type2aelembytes(basic_type);
3387   Address::ScaleFactor scale;
3388 
3389   switch (elem_size) {
3390     case 1 :
3391       scale = Address::times_1;
3392       break;
3393     case 2 :
3394       scale = Address::times_2;
3395       break;
3396     case 4 :
3397       scale = Address::times_4;
3398       break;
3399     case 8 :
3400       scale = Address::times_8;
3401       break;
3402     default:
3403       scale = Address::no_scale;
3404       ShouldNotReachHere();
3405   }
3406 
3407   Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
3408   Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
3409   Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
3410   Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
3411 
3412   // length and pos's are all sign extended at this point on 64bit
3413 
3414   // test for null
3415   if (flags & LIR_OpArrayCopy::src_null_check) {
3416     __ testptr(src, src);
3417     __ jcc(Assembler::zero, *stub->entry());
3418   }
3419   if (flags & LIR_OpArrayCopy::dst_null_check) {
3420     __ testptr(dst, dst);
3421     __ jcc(Assembler::zero, *stub->entry());
3422   }
3423 
3424   // If the compiler was not able to prove that exact type of the source or the destination
3425   // of the arraycopy is an array type, check at runtime if the source or the destination is
3426   // an instance type.
3427   if (flags & LIR_OpArrayCopy::type_check) {
3428     if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
3429       __ load_klass(tmp, dst, tmp_load_klass);
3430       __ cmpl(Address(tmp, in_bytes(Klass::layout_helper_offset())), Klass::_lh_neutral_value);
3431       __ jcc(Assembler::greaterEqual, *stub->entry());
3432     }
3433 
3434     if (!(flags & LIR_OpArrayCopy::src_objarray)) {
3435       __ load_klass(tmp, src, tmp_load_klass);
3436       __ cmpl(Address(tmp, in_bytes(Klass::layout_helper_offset())), Klass::_lh_neutral_value);
3437       __ jcc(Assembler::greaterEqual, *stub->entry());
3438     }
3439   }
3440 
3441   // check if negative
3442   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
3443     __ testl(src_pos, src_pos);
3444     __ jcc(Assembler::less, *stub->entry());
3445   }
3446   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
3447     __ testl(dst_pos, dst_pos);
3448     __ jcc(Assembler::less, *stub->entry());
3449   }
3450 
3451   if (flags & LIR_OpArrayCopy::src_range_check) {
3452     __ lea(tmp, Address(src_pos, length, Address::times_1, 0));
3453     __ cmpl(tmp, src_length_addr);
3454     __ jcc(Assembler::above, *stub->entry());
3455   }
3456   if (flags & LIR_OpArrayCopy::dst_range_check) {
3457     __ lea(tmp, Address(dst_pos, length, Address::times_1, 0));
3458     __ cmpl(tmp, dst_length_addr);
3459     __ jcc(Assembler::above, *stub->entry());
3460   }
3461 
3462   if (flags & LIR_OpArrayCopy::length_positive_check) {
3463     __ testl(length, length);
3464     __ jcc(Assembler::less, *stub->entry());
3465   }
3466 
3467 #ifdef _LP64
3468   __ movl2ptr(src_pos, src_pos); //higher 32bits must be null
3469   __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null
3470 #endif
3471 
3472   if (flags & LIR_OpArrayCopy::type_check) {
3473     // We don't know the array types are compatible
3474     if (basic_type != T_OBJECT) {
3475       // Simple test for basic type arrays
3476       if (UseCompressedClassPointers) {
3477         __ movl(tmp, src_klass_addr);
3478         __ cmpl(tmp, dst_klass_addr);
3479       } else {
3480         __ movptr(tmp, src_klass_addr);
3481         __ cmpptr(tmp, dst_klass_addr);
3482       }
3483       __ jcc(Assembler::notEqual, *stub->entry());
3484     } else {
3485       // For object arrays, if src is a sub class of dst then we can
3486       // safely do the copy.
3487       Label cont, slow;
3488 
3489       __ push(src);
3490       __ push(dst);
3491 
3492       __ load_klass(src, src, tmp_load_klass);
3493       __ load_klass(dst, dst, tmp_load_klass);
3494 
3495       __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, nullptr);
3496 
3497       __ push(src);
3498       __ push(dst);
3499       __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
3500       __ pop(dst);
3501       __ pop(src);
3502 
3503       __ testl(src, src);
3504       __ jcc(Assembler::notEqual, cont);
3505 
3506       __ bind(slow);
3507       __ pop(dst);
3508       __ pop(src);
3509 
3510       address copyfunc_addr = StubRoutines::checkcast_arraycopy();
3511       if (copyfunc_addr != nullptr) { // use stub if available
3512         // src is not a sub class of dst so we have to do a
3513         // per-element check.
3514 
3515         int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
3516         if ((flags & mask) != mask) {
3517           // Check that at least both of them object arrays.
3518           assert(flags & mask, "one of the two should be known to be an object array");
3519 
3520           if (!(flags & LIR_OpArrayCopy::src_objarray)) {
3521             __ load_klass(tmp, src, tmp_load_klass);
3522           } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
3523             __ load_klass(tmp, dst, tmp_load_klass);
3524           }
3525           int lh_offset = in_bytes(Klass::layout_helper_offset());
3526           Address klass_lh_addr(tmp, lh_offset);
3527           jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
3528           __ cmpl(klass_lh_addr, objArray_lh);
3529           __ jcc(Assembler::notEqual, *stub->entry());
3530         }
3531 
3532        // Spill because stubs can use any register they like and it's
3533        // easier to restore just those that we care about.
3534        store_parameter(dst, 0);
3535        store_parameter(dst_pos, 1);
3536        store_parameter(length, 2);
3537        store_parameter(src_pos, 3);
3538        store_parameter(src, 4);
3539 
3540 #ifndef _LP64
3541         __ movptr(tmp, dst_klass_addr);
3542         __ movptr(tmp, Address(tmp, ObjArrayKlass::element_klass_offset()));
3543         __ push(tmp);
3544         __ movl(tmp, Address(tmp, Klass::super_check_offset_offset()));
3545         __ push(tmp);
3546         __ push(length);
3547         __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3548         __ push(tmp);
3549         __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3550         __ push(tmp);
3551 
3552         __ call_VM_leaf(copyfunc_addr, 5);
3553 #else
3554         __ movl2ptr(length, length); //higher 32bits must be null
3555 
3556         __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3557         assert_different_registers(c_rarg0, dst, dst_pos, length);
3558         __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3559         assert_different_registers(c_rarg1, dst, length);
3560 
3561         __ mov(c_rarg2, length);
3562         assert_different_registers(c_rarg2, dst);
3563 
3564 #ifdef _WIN64
3565         // Allocate abi space for args but be sure to keep stack aligned
3566         __ subptr(rsp, 6*wordSize);
3567         __ load_klass(c_rarg3, dst, tmp_load_klass);
3568         __ movptr(c_rarg3, Address(c_rarg3, ObjArrayKlass::element_klass_offset()));
3569         store_parameter(c_rarg3, 4);
3570         __ movl(c_rarg3, Address(c_rarg3, Klass::super_check_offset_offset()));
3571         __ call(RuntimeAddress(copyfunc_addr));
3572         __ addptr(rsp, 6*wordSize);
3573 #else
3574         __ load_klass(c_rarg4, dst, tmp_load_klass);
3575         __ movptr(c_rarg4, Address(c_rarg4, ObjArrayKlass::element_klass_offset()));
3576         __ movl(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset()));
3577         __ call(RuntimeAddress(copyfunc_addr));
3578 #endif
3579 
3580 #endif
3581 
3582 #ifndef PRODUCT
3583         if (PrintC1Statistics) {
3584           Label failed;
3585           __ testl(rax, rax);
3586           __ jcc(Assembler::notZero, failed);
3587           __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt), rscratch1);
3588           __ bind(failed);
3589         }
3590 #endif
3591 
3592         __ testl(rax, rax);
3593         __ jcc(Assembler::zero, *stub->continuation());
3594 
3595 #ifndef PRODUCT
3596         if (PrintC1Statistics) {
3597           __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt), rscratch1);
3598         }
3599 #endif
3600 
3601         __ mov(tmp, rax);
3602 
3603         __ xorl(tmp, -1);
3604 
3605         // Restore previously spilled arguments
3606         __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
3607         __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
3608         __ movptr   (length,  Address(rsp, 2*BytesPerWord));
3609         __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
3610         __ movptr   (src,     Address(rsp, 4*BytesPerWord));
3611 
3612 
3613         __ subl(length, tmp);
3614         __ addl(src_pos, tmp);
3615         __ addl(dst_pos, tmp);
3616       }
3617 
3618       __ jmp(*stub->entry());
3619 
3620       __ bind(cont);
3621       __ pop(dst);
3622       __ pop(src);
3623     }
3624   }
3625 
3626 #ifdef ASSERT
3627   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
3628     // Sanity check the known type with the incoming class.  For the
3629     // primitive case the types must match exactly with src.klass and
3630     // dst.klass each exactly matching the default type.  For the
3631     // object array case, if no type check is needed then either the
3632     // dst type is exactly the expected type and the src type is a
3633     // subtype which we can't check or src is the same array as dst
3634     // but not necessarily exactly of type default_type.
3635     Label known_ok, halt;
3636     __ mov_metadata(tmp, default_type->constant_encoding());
3637 #ifdef _LP64
3638     if (UseCompressedClassPointers) {
3639       __ encode_klass_not_null(tmp, rscratch1);
3640     }
3641 #endif
3642 
3643     if (basic_type != T_OBJECT) {
3644 
3645       if (UseCompressedClassPointers)          __ cmpl(tmp, dst_klass_addr);
3646       else                   __ cmpptr(tmp, dst_klass_addr);
3647       __ jcc(Assembler::notEqual, halt);
3648       if (UseCompressedClassPointers)          __ cmpl(tmp, src_klass_addr);
3649       else                   __ cmpptr(tmp, src_klass_addr);
3650       __ jcc(Assembler::equal, known_ok);
3651     } else {
3652       if (UseCompressedClassPointers)          __ cmpl(tmp, dst_klass_addr);
3653       else                   __ cmpptr(tmp, dst_klass_addr);
3654       __ jcc(Assembler::equal, known_ok);
3655       __ cmpptr(src, dst);
3656       __ jcc(Assembler::equal, known_ok);
3657     }
3658     __ bind(halt);
3659     __ stop("incorrect type information in arraycopy");
3660     __ bind(known_ok);
3661   }
3662 #endif
3663 
3664 #ifndef PRODUCT
3665   if (PrintC1Statistics) {
3666     __ incrementl(ExternalAddress(Runtime1::arraycopy_count_address(basic_type)), rscratch1);
3667   }
3668 #endif
3669 
3670 #ifdef _LP64
3671   assert_different_registers(c_rarg0, dst, dst_pos, length);
3672   __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3673   assert_different_registers(c_rarg1, length);
3674   __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3675   __ mov(c_rarg2, length);
3676 
3677 #else
3678   __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3679   store_parameter(tmp, 0);
3680   __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3681   store_parameter(tmp, 1);
3682   store_parameter(length, 2);
3683 #endif // _LP64
3684 
3685   bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
3686   bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
3687   const char *name;
3688   address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
3689   __ call_VM_leaf(entry, 0);
3690 
3691   __ bind(*stub->continuation());
3692 }
3693 
3694 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
3695   assert(op->crc()->is_single_cpu(),  "crc must be register");
3696   assert(op->val()->is_single_cpu(),  "byte value must be register");
3697   assert(op->result_opr()->is_single_cpu(), "result must be register");
3698   Register crc = op->crc()->as_register();
3699   Register val = op->val()->as_register();
3700   Register res = op->result_opr()->as_register();
3701 
3702   assert_different_registers(val, crc, res);
3703 
3704   __ lea(res, ExternalAddress(StubRoutines::crc_table_addr()));
3705   __ notl(crc); // ~crc
3706   __ update_byte_crc32(crc, val, res);
3707   __ notl(crc); // ~crc
3708   __ mov(res, crc);
3709 }
3710 
3711 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
3712   Register obj = op->obj_opr()->as_register();  // may not be an oop
3713   Register hdr = op->hdr_opr()->as_register();
3714   Register lock = op->lock_opr()->as_register();
3715   if (LockingMode == LM_MONITOR) {
3716     if (op->info() != nullptr) {
3717       add_debug_info_for_null_check_here(op->info());
3718       __ null_check(obj);
3719     }
3720     __ jmp(*op->stub()->entry());
3721   } else if (op->code() == lir_lock) {
3722     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3723     Register tmp = LockingMode == LM_LIGHTWEIGHT ? op->scratch_opr()->as_register() : noreg;
3724     // add debug info for NullPointerException only if one is possible
3725     int null_check_offset = __ lock_object(hdr, obj, lock, tmp, *op->stub()->entry());
3726     if (op->info() != nullptr) {
3727       add_debug_info_for_null_check(null_check_offset, op->info());
3728     }
3729     // done
3730   } else if (op->code() == lir_unlock) {
3731     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3732     __ unlock_object(hdr, obj, lock, *op->stub()->entry());
3733   } else {
3734     Unimplemented();
3735   }
3736   __ bind(*op->stub()->continuation());
3737 }
3738 
3739 void LIR_Assembler::emit_load_klass(LIR_OpLoadKlass* op) {
3740   Register obj = op->obj()->as_pointer_register();
3741   Register result = op->result_opr()->as_pointer_register();
3742 
3743   CodeEmitInfo* info = op->info();
3744   if (info != nullptr) {
3745     add_debug_info_for_null_check_here(info);
3746   }
3747 
3748 #ifdef _LP64
3749   if (UseCompressedClassPointers) {
3750     __ movl(result, Address(obj, oopDesc::klass_offset_in_bytes()));
3751     __ decode_klass_not_null(result, rscratch1);
3752   } else
3753 #endif
3754     __ movptr(result, Address(obj, oopDesc::klass_offset_in_bytes()));
3755 }
3756 
3757 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
3758   ciMethod* method = op->profiled_method();
3759   int bci          = op->profiled_bci();
3760   ciMethod* callee = op->profiled_callee();
3761   Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg);
3762 
3763   // Update counter for all call types
3764   ciMethodData* md = method->method_data_or_null();
3765   assert(md != nullptr, "Sanity");
3766   ciProfileData* data = md->bci_to_data(bci);
3767   assert(data != nullptr && data->is_CounterData(), "need CounterData for calls");
3768   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
3769   Register mdo  = op->mdo()->as_register();
3770   __ mov_metadata(mdo, md->constant_encoding());
3771   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
3772   // Perform additional virtual call profiling for invokevirtual and
3773   // invokeinterface bytecodes
3774   if (op->should_profile_receiver_type()) {
3775     assert(op->recv()->is_single_cpu(), "recv must be allocated");
3776     Register recv = op->recv()->as_register();
3777     assert_different_registers(mdo, recv);
3778     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
3779     ciKlass* known_klass = op->known_holder();
3780     if (C1OptimizeVirtualCallProfiling && known_klass != nullptr) {
3781       // We know the type that will be seen at this call site; we can
3782       // statically update the MethodData* rather than needing to do
3783       // dynamic tests on the receiver type
3784 
3785       // NOTE: we should probably put a lock around this search to
3786       // avoid collisions by concurrent compilations
3787       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
3788       uint i;
3789       for (i = 0; i < VirtualCallData::row_limit(); i++) {
3790         ciKlass* receiver = vc_data->receiver(i);
3791         if (known_klass->equals(receiver)) {
3792           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3793           __ addptr(data_addr, DataLayout::counter_increment);
3794           return;
3795         }
3796       }
3797 
3798       // Receiver type not found in profile data; select an empty slot
3799 
3800       // Note that this is less efficient than it should be because it
3801       // always does a write to the receiver part of the
3802       // VirtualCallData rather than just the first time
3803       for (i = 0; i < VirtualCallData::row_limit(); i++) {
3804         ciKlass* receiver = vc_data->receiver(i);
3805         if (receiver == nullptr) {
3806           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
3807           __ mov_metadata(recv_addr, known_klass->constant_encoding(), rscratch1);
3808           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3809           __ addptr(data_addr, DataLayout::counter_increment);
3810           return;
3811         }
3812       }
3813     } else {
3814       __ load_klass(recv, recv, tmp_load_klass);
3815       Label update_done;
3816       type_profile_helper(mdo, md, data, recv, &update_done);
3817       // Receiver did not match any saved receiver and there is no empty row for it.
3818       // Increment total counter to indicate polymorphic case.
3819       __ addptr(counter_addr, DataLayout::counter_increment);
3820 
3821       __ bind(update_done);
3822     }
3823   } else {
3824     // Static call
3825     __ addptr(counter_addr, DataLayout::counter_increment);
3826   }
3827 }
3828 
3829 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) {
3830   Register obj = op->obj()->as_register();
3831   Register tmp = op->tmp()->as_pointer_register();
3832   Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg);
3833   Address mdo_addr = as_Address(op->mdp()->as_address_ptr());
3834   ciKlass* exact_klass = op->exact_klass();
3835   intptr_t current_klass = op->current_klass();
3836   bool not_null = op->not_null();
3837   bool no_conflict = op->no_conflict();
3838 
3839   Label update, next, none;
3840 
3841   bool do_null = !not_null;
3842   bool exact_klass_set = exact_klass != nullptr && ciTypeEntries::valid_ciklass(current_klass) == exact_klass;
3843   bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set;
3844 
3845   assert(do_null || do_update, "why are we here?");
3846   assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?");
3847 
3848   __ verify_oop(obj);
3849 
3850 #ifdef ASSERT
3851   if (obj == tmp) {
3852 #ifdef _LP64
3853     assert_different_registers(obj, rscratch1, mdo_addr.base(), mdo_addr.index());
3854 #else
3855     assert_different_registers(obj, mdo_addr.base(), mdo_addr.index());
3856 #endif
3857   } else {
3858 #ifdef _LP64
3859     assert_different_registers(obj, tmp, rscratch1, mdo_addr.base(), mdo_addr.index());
3860 #else
3861     assert_different_registers(obj, tmp, mdo_addr.base(), mdo_addr.index());
3862 #endif
3863   }
3864 #endif
3865   if (do_null) {
3866     __ testptr(obj, obj);
3867     __ jccb(Assembler::notZero, update);
3868     if (!TypeEntries::was_null_seen(current_klass)) {
3869       __ testptr(mdo_addr, TypeEntries::null_seen);
3870 #ifndef ASSERT
3871       __ jccb(Assembler::notZero, next); // already set
3872 #else
3873       __ jcc(Assembler::notZero, next); // already set
3874 #endif
3875       // atomic update to prevent overwriting Klass* with 0
3876       __ lock();
3877       __ orptr(mdo_addr, TypeEntries::null_seen);
3878     }
3879     if (do_update) {
3880 #ifndef ASSERT
3881       __ jmpb(next);
3882     }
3883 #else
3884       __ jmp(next);
3885     }
3886   } else {
3887     __ testptr(obj, obj);
3888     __ jcc(Assembler::notZero, update);
3889     __ stop("unexpected null obj");
3890 #endif
3891   }
3892 
3893   __ bind(update);
3894 
3895   if (do_update) {
3896 #ifdef ASSERT
3897     if (exact_klass != nullptr) {
3898       Label ok;
3899       __ load_klass(tmp, obj, tmp_load_klass);
3900       __ push(tmp);
3901       __ mov_metadata(tmp, exact_klass->constant_encoding());
3902       __ cmpptr(tmp, Address(rsp, 0));
3903       __ jcc(Assembler::equal, ok);
3904       __ stop("exact klass and actual klass differ");
3905       __ bind(ok);
3906       __ pop(tmp);
3907     }
3908 #endif
3909     if (!no_conflict) {
3910       if (exact_klass == nullptr || TypeEntries::is_type_none(current_klass)) {
3911         if (exact_klass != nullptr) {
3912           __ mov_metadata(tmp, exact_klass->constant_encoding());
3913         } else {
3914           __ load_klass(tmp, obj, tmp_load_klass);
3915         }
3916 #ifdef _LP64
3917         __ mov(rscratch1, tmp); // save original value before XOR
3918 #endif
3919         __ xorptr(tmp, mdo_addr);
3920         __ testptr(tmp, TypeEntries::type_klass_mask);
3921         // klass seen before, nothing to do. The unknown bit may have been
3922         // set already but no need to check.
3923         __ jccb(Assembler::zero, next);
3924 
3925         __ testptr(tmp, TypeEntries::type_unknown);
3926         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3927 
3928         if (TypeEntries::is_type_none(current_klass)) {
3929           __ testptr(mdo_addr, TypeEntries::type_mask);
3930           __ jccb(Assembler::zero, none);
3931 #ifdef _LP64
3932           // There is a chance that the checks above (re-reading profiling
3933           // data from memory) fail if another thread has just set the
3934           // profiling to this obj's klass
3935           __ mov(tmp, rscratch1); // get back original value before XOR
3936           __ xorptr(tmp, mdo_addr);
3937           __ testptr(tmp, TypeEntries::type_klass_mask);
3938           __ jccb(Assembler::zero, next);
3939 #endif
3940         }
3941       } else {
3942         assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr &&
3943                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only");
3944 
3945         __ testptr(mdo_addr, TypeEntries::type_unknown);
3946         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3947       }
3948 
3949       // different than before. Cannot keep accurate profile.
3950       __ orptr(mdo_addr, TypeEntries::type_unknown);
3951 
3952       if (TypeEntries::is_type_none(current_klass)) {
3953         __ jmpb(next);
3954 
3955         __ bind(none);
3956         // first time here. Set profile type.
3957         __ movptr(mdo_addr, tmp);
3958 #ifdef ASSERT
3959         __ andptr(tmp, TypeEntries::type_klass_mask);
3960         __ verify_klass_ptr(tmp);
3961 #endif
3962       }
3963     } else {
3964       // There's a single possible klass at this profile point
3965       assert(exact_klass != nullptr, "should be");
3966       if (TypeEntries::is_type_none(current_klass)) {
3967         __ mov_metadata(tmp, exact_klass->constant_encoding());
3968         __ xorptr(tmp, mdo_addr);
3969         __ testptr(tmp, TypeEntries::type_klass_mask);
3970 #ifdef ASSERT
3971         __ jcc(Assembler::zero, next);
3972 
3973         {
3974           Label ok;
3975           __ push(tmp);
3976           __ testptr(mdo_addr, TypeEntries::type_mask);
3977           __ jcc(Assembler::zero, ok);
3978           // may have been set by another thread
3979           __ mov_metadata(tmp, exact_klass->constant_encoding());
3980           __ xorptr(tmp, mdo_addr);
3981           __ testptr(tmp, TypeEntries::type_mask);
3982           __ jcc(Assembler::zero, ok);
3983 
3984           __ stop("unexpected profiling mismatch");
3985           __ bind(ok);
3986           __ pop(tmp);
3987         }
3988 #else
3989         __ jccb(Assembler::zero, next);
3990 #endif
3991         // first time here. Set profile type.
3992         __ movptr(mdo_addr, tmp);
3993 #ifdef ASSERT
3994         __ andptr(tmp, TypeEntries::type_klass_mask);
3995         __ verify_klass_ptr(tmp);
3996 #endif
3997       } else {
3998         assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr &&
3999                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent");
4000 
4001         __ testptr(mdo_addr, TypeEntries::type_unknown);
4002         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
4003 
4004         __ orptr(mdo_addr, TypeEntries::type_unknown);
4005       }
4006     }
4007   }
4008   __ bind(next);
4009 }
4010 
4011 void LIR_Assembler::emit_profile_inline_type(LIR_OpProfileInlineType* op) {
4012   Register obj = op->obj()->as_register();
4013   Register tmp = op->tmp()->as_pointer_register();
4014   Address mdo_addr = as_Address(op->mdp()->as_address_ptr());
4015   bool not_null = op->not_null();
4016   int flag = op->flag();
4017 
4018   Label not_inline_type;
4019   if (!not_null) {
4020     __ testptr(obj, obj);
4021     __ jccb(Assembler::zero, not_inline_type);
4022   }
4023 
4024   __ test_oop_is_not_inline_type(obj, tmp, not_inline_type);
4025 
4026   __ orb(mdo_addr, flag);
4027 
4028   __ bind(not_inline_type);
4029 }
4030 
4031 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
4032   Unimplemented();
4033 }
4034 
4035 
4036 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
4037   __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
4038 }
4039 
4040 
4041 void LIR_Assembler::align_backward_branch_target() {
4042   __ align(BytesPerWord);
4043 }
4044 
4045 
4046 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest, LIR_Opr tmp) {
4047   if (left->is_single_cpu()) {
4048     __ negl(left->as_register());
4049     move_regs(left->as_register(), dest->as_register());
4050 
4051   } else if (left->is_double_cpu()) {
4052     Register lo = left->as_register_lo();
4053 #ifdef _LP64
4054     Register dst = dest->as_register_lo();
4055     __ movptr(dst, lo);
4056     __ negptr(dst);
4057 #else
4058     Register hi = left->as_register_hi();
4059     __ lneg(hi, lo);
4060     if (dest->as_register_lo() == hi) {
4061       assert(dest->as_register_hi() != lo, "destroying register");
4062       move_regs(hi, dest->as_register_hi());
4063       move_regs(lo, dest->as_register_lo());
4064     } else {
4065       move_regs(lo, dest->as_register_lo());
4066       move_regs(hi, dest->as_register_hi());
4067     }
4068 #endif // _LP64
4069 
4070   } else if (dest->is_single_xmm()) {
4071 #ifdef _LP64
4072     if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {
4073       assert(tmp->is_valid(), "need temporary");
4074       assert_different_registers(left->as_xmm_float_reg(), tmp->as_xmm_float_reg());
4075       __ vpxor(dest->as_xmm_float_reg(), tmp->as_xmm_float_reg(), left->as_xmm_float_reg(), 2);
4076     }
4077     else
4078 #endif
4079     {
4080       assert(!tmp->is_valid(), "do not need temporary");
4081       if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
4082         __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
4083       }
4084       __ xorps(dest->as_xmm_float_reg(),
4085                ExternalAddress((address)float_signflip_pool),
4086                rscratch1);
4087     }
4088   } else if (dest->is_double_xmm()) {
4089 #ifdef _LP64
4090     if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {
4091       assert(tmp->is_valid(), "need temporary");
4092       assert_different_registers(left->as_xmm_double_reg(), tmp->as_xmm_double_reg());
4093       __ vpxor(dest->as_xmm_double_reg(), tmp->as_xmm_double_reg(), left->as_xmm_double_reg(), 2);
4094     }
4095     else
4096 #endif
4097     {
4098       assert(!tmp->is_valid(), "do not need temporary");
4099       if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
4100         __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
4101       }
4102       __ xorpd(dest->as_xmm_double_reg(),
4103                ExternalAddress((address)double_signflip_pool),
4104                rscratch1);
4105     }
4106 #ifndef _LP64
4107   } else if (left->is_single_fpu() || left->is_double_fpu()) {
4108     assert(left->fpu() == 0, "arg must be on TOS");
4109     assert(dest->fpu() == 0, "dest must be TOS");
4110     __ fchs();
4111 #endif // !_LP64
4112 
4113   } else {
4114     ShouldNotReachHere();
4115   }
4116 }
4117 
4118 
4119 void LIR_Assembler::leal(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
4120   assert(src->is_address(), "must be an address");
4121   assert(dest->is_register(), "must be a register");
4122 
4123   PatchingStub* patch = nullptr;
4124   if (patch_code != lir_patch_none) {
4125     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
4126   }
4127 
4128   Register reg = dest->as_pointer_register();
4129   LIR_Address* addr = src->as_address_ptr();
4130   __ lea(reg, as_Address(addr));
4131 
4132   if (patch != nullptr) {
4133     patching_epilog(patch, patch_code, addr->base()->as_register(), info);
4134   }
4135 }
4136 
4137 
4138 
4139 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
4140   assert(!tmp->is_valid(), "don't need temporary");
4141   __ call(RuntimeAddress(dest));
4142   if (info != nullptr) {
4143     add_call_info_here(info);
4144   }
4145   __ post_call_nop();
4146 }
4147 
4148 
4149 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
4150   assert(type == T_LONG, "only for volatile long fields");
4151 
4152   if (info != nullptr) {
4153     add_debug_info_for_null_check_here(info);
4154   }
4155 
4156   if (src->is_double_xmm()) {
4157     if (dest->is_double_cpu()) {
4158 #ifdef _LP64
4159       __ movdq(dest->as_register_lo(), src->as_xmm_double_reg());
4160 #else
4161       __ movdl(dest->as_register_lo(), src->as_xmm_double_reg());
4162       __ psrlq(src->as_xmm_double_reg(), 32);
4163       __ movdl(dest->as_register_hi(), src->as_xmm_double_reg());
4164 #endif // _LP64
4165     } else if (dest->is_double_stack()) {
4166       __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg());
4167     } else if (dest->is_address()) {
4168       __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg());
4169     } else {
4170       ShouldNotReachHere();
4171     }
4172 
4173   } else if (dest->is_double_xmm()) {
4174     if (src->is_double_stack()) {
4175       __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix()));
4176     } else if (src->is_address()) {
4177       __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr()));
4178     } else {
4179       ShouldNotReachHere();
4180     }
4181 
4182 #ifndef _LP64
4183   } else if (src->is_double_fpu()) {
4184     assert(src->fpu_regnrLo() == 0, "must be TOS");
4185     if (dest->is_double_stack()) {
4186       __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix()));
4187     } else if (dest->is_address()) {
4188       __ fistp_d(as_Address(dest->as_address_ptr()));
4189     } else {
4190       ShouldNotReachHere();
4191     }
4192 
4193   } else if (dest->is_double_fpu()) {
4194     assert(dest->fpu_regnrLo() == 0, "must be TOS");
4195     if (src->is_double_stack()) {
4196       __ fild_d(frame_map()->address_for_slot(src->double_stack_ix()));
4197     } else if (src->is_address()) {
4198       __ fild_d(as_Address(src->as_address_ptr()));
4199     } else {
4200       ShouldNotReachHere();
4201     }
4202 #endif // !_LP64
4203 
4204   } else {
4205     ShouldNotReachHere();
4206   }
4207 }
4208 
4209 #ifdef ASSERT
4210 // emit run-time assertion
4211 void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
4212   assert(op->code() == lir_assert, "must be");
4213 
4214   if (op->in_opr1()->is_valid()) {
4215     assert(op->in_opr2()->is_valid(), "both operands must be valid");
4216     comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op);
4217   } else {
4218     assert(op->in_opr2()->is_illegal(), "both operands must be illegal");
4219     assert(op->condition() == lir_cond_always, "no other conditions allowed");
4220   }
4221 
4222   Label ok;
4223   if (op->condition() != lir_cond_always) {
4224     Assembler::Condition acond = Assembler::zero;
4225     switch (op->condition()) {
4226       case lir_cond_equal:        acond = Assembler::equal;       break;
4227       case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
4228       case lir_cond_less:         acond = Assembler::less;        break;
4229       case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
4230       case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
4231       case lir_cond_greater:      acond = Assembler::greater;     break;
4232       case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
4233       case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
4234       default:                    ShouldNotReachHere();
4235     }
4236     __ jcc(acond, ok);
4237   }
4238   if (op->halt()) {
4239     const char* str = __ code_string(op->msg());
4240     __ stop(str);
4241   } else {
4242     breakpoint();
4243   }
4244   __ bind(ok);
4245 }
4246 #endif
4247 
4248 void LIR_Assembler::membar() {
4249   // QQQ sparc TSO uses this,
4250   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad));
4251 }
4252 
4253 void LIR_Assembler::membar_acquire() {
4254   // No x86 machines currently require load fences
4255 }
4256 
4257 void LIR_Assembler::membar_release() {
4258   // No x86 machines currently require store fences
4259 }
4260 
4261 void LIR_Assembler::membar_loadload() {
4262   // no-op
4263   //__ membar(Assembler::Membar_mask_bits(Assembler::loadload));
4264 }
4265 
4266 void LIR_Assembler::membar_storestore() {
4267   // no-op
4268   //__ membar(Assembler::Membar_mask_bits(Assembler::storestore));
4269 }
4270 
4271 void LIR_Assembler::membar_loadstore() {
4272   // no-op
4273   //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore));
4274 }
4275 
4276 void LIR_Assembler::membar_storeload() {
4277   __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
4278 }
4279 
4280 void LIR_Assembler::on_spin_wait() {
4281   __ pause ();
4282 }
4283 
4284 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
4285   assert(result_reg->is_register(), "check");
4286 #ifdef _LP64
4287   // __ get_thread(result_reg->as_register_lo());
4288   __ mov(result_reg->as_register(), r15_thread);
4289 #else
4290   __ get_thread(result_reg->as_register());
4291 #endif // _LP64
4292 }
4293 
4294 void LIR_Assembler::check_orig_pc() {
4295   __ cmpptr(frame_map()->address_for_orig_pc_addr(), NULL_WORD);
4296 }
4297 
4298 void LIR_Assembler::peephole(LIR_List*) {
4299   // do nothing for now
4300 }
4301 
4302 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) {
4303   assert(data == dest, "xchg/xadd uses only 2 operands");
4304 
4305   if (data->type() == T_INT) {
4306     if (code == lir_xadd) {
4307       __ lock();
4308       __ xaddl(as_Address(src->as_address_ptr()), data->as_register());
4309     } else {
4310       __ xchgl(data->as_register(), as_Address(src->as_address_ptr()));
4311     }
4312   } else if (data->is_oop()) {
4313     assert (code == lir_xchg, "xadd for oops");
4314     Register obj = data->as_register();
4315 #ifdef _LP64
4316     if (UseCompressedOops) {
4317       __ encode_heap_oop(obj);
4318       __ xchgl(obj, as_Address(src->as_address_ptr()));
4319       __ decode_heap_oop(obj);
4320     } else {
4321       __ xchgptr(obj, as_Address(src->as_address_ptr()));
4322     }
4323 #else
4324     __ xchgl(obj, as_Address(src->as_address_ptr()));
4325 #endif
4326   } else if (data->type() == T_LONG) {
4327 #ifdef _LP64
4328     assert(data->as_register_lo() == data->as_register_hi(), "should be a single register");
4329     if (code == lir_xadd) {
4330       __ lock();
4331       __ xaddq(as_Address(src->as_address_ptr()), data->as_register_lo());
4332     } else {
4333       __ xchgq(data->as_register_lo(), as_Address(src->as_address_ptr()));
4334     }
4335 #else
4336     ShouldNotReachHere();
4337 #endif
4338   } else {
4339     ShouldNotReachHere();
4340   }
4341 }
4342 
4343 #undef __