1 /*
   2  * Copyright (c) 2005, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "c1/c1_Compilation.hpp"
  26 #include "c1/c1_FrameMap.hpp"
  27 #include "c1/c1_Instruction.hpp"
  28 #include "c1/c1_LIRAssembler.hpp"
  29 #include "c1/c1_LIRGenerator.hpp"
  30 #include "c1/c1_Runtime1.hpp"
  31 #include "c1/c1_ValueStack.hpp"
  32 #include "ci/ciArray.hpp"
  33 #include "ci/ciInlineKlass.hpp"
  34 #include "ci/ciObjArrayKlass.hpp"
  35 #include "ci/ciTypeArrayKlass.hpp"
  36 #include "gc/shared/c1/barrierSetC1.hpp"
  37 #include "runtime/sharedRuntime.hpp"
  38 #include "runtime/stubRoutines.hpp"
  39 #include "utilities/powerOfTwo.hpp"
  40 #include "vmreg_x86.inline.hpp"
  41 
  42 #ifdef ASSERT
  43 #define __ gen()->lir(__FILE__, __LINE__)->
  44 #else
  45 #define __ gen()->lir()->
  46 #endif
  47 
  48 // Item will be loaded into a byte register; Intel only
  49 void LIRItem::load_byte_item() {
  50   load_item();
  51   LIR_Opr res = result();
  52 
  53   if (!res->is_virtual() || !_gen->is_vreg_flag_set(res, LIRGenerator::byte_reg)) {
  54     // make sure that it is a byte register
  55     assert(!value()->type()->is_float() && !value()->type()->is_double(),
  56            "can't load floats in byte register");
  57     LIR_Opr reg = _gen->rlock_byte(T_BYTE);
  58     __ move(res, reg);
  59 
  60     _result = reg;
  61   }
  62 }
  63 
  64 
  65 void LIRItem::load_nonconstant() {
  66   LIR_Opr r = value()->operand();
  67   if (r->is_constant()) {
  68     _result = r;
  69   } else {
  70     load_item();
  71   }
  72 }
  73 
  74 //--------------------------------------------------------------
  75 //               LIRGenerator
  76 //--------------------------------------------------------------
  77 
  78 
  79 LIR_Opr LIRGenerator::exceptionOopOpr() { return FrameMap::rax_oop_opr; }
  80 LIR_Opr LIRGenerator::exceptionPcOpr()  { return FrameMap::rdx_opr; }
  81 LIR_Opr LIRGenerator::divInOpr()        { return FrameMap::rax_opr; }
  82 LIR_Opr LIRGenerator::divOutOpr()       { return FrameMap::rax_opr; }
  83 LIR_Opr LIRGenerator::remOutOpr()       { return FrameMap::rdx_opr; }
  84 LIR_Opr LIRGenerator::shiftCountOpr()   { return FrameMap::rcx_opr; }
  85 LIR_Opr LIRGenerator::syncLockOpr()     { return new_register(T_INT); }
  86 LIR_Opr LIRGenerator::syncTempOpr()     { return FrameMap::rax_opr; }
  87 LIR_Opr LIRGenerator::getThreadTemp()   { return LIR_OprFact::illegalOpr; }
  88 
  89 
  90 LIR_Opr LIRGenerator::result_register_for(ValueType* type, bool callee) {
  91   LIR_Opr opr;
  92   switch (type->tag()) {
  93     case intTag:     opr = FrameMap::rax_opr;          break;
  94     case objectTag:  opr = FrameMap::rax_oop_opr;      break;
  95     case longTag:    opr = FrameMap::long0_opr;        break;
  96     case floatTag:   opr = FrameMap::xmm0_float_opr;   break;
  97     case doubleTag:  opr = FrameMap::xmm0_double_opr;  break;
  98     case addressTag:
  99     default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
 100   }
 101 
 102   assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch");
 103   return opr;
 104 }
 105 
 106 
 107 LIR_Opr LIRGenerator::rlock_byte(BasicType type) {
 108   LIR_Opr reg = new_register(T_INT);
 109   set_vreg_flag(reg, LIRGenerator::byte_reg);
 110   return reg;
 111 }
 112 
 113 
 114 void LIRGenerator::init_temps_for_substitutability_check(LIR_Opr& tmp1, LIR_Opr& tmp2) {
 115   // We just need one 32-bit temp register for x86/x64, to check whether both
 116   // oops have markWord::always_locked_pattern. See LIR_Assembler::emit_opSubstitutabilityCheck().
 117   // @temp = %r10d
 118   // mov $0x405, %r10d
 119   // and (%left), %r10d   /* if need to check left */
 120   // and (%right), %r10d  /* if need to check right */
 121   // cmp $0x405, $r10d
 122   // jne L_oops_not_equal
 123   tmp1 = new_register(T_INT);
 124   tmp2 = LIR_OprFact::illegalOpr;
 125 }
 126 
 127 //--------- loading items into registers --------------------------------
 128 
 129 
 130 // i486 instructions can inline constants
 131 bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const {
 132   if (type == T_SHORT || type == T_CHAR) {
 133     return false;
 134   }
 135   Constant* c = v->as_Constant();
 136   if (c && c->state_before() == nullptr) {
 137     // constants of any type can be stored directly, except for
 138     // unloaded object constants.
 139     return true;
 140   }
 141   return false;
 142 }
 143 
 144 
 145 bool LIRGenerator::can_inline_as_constant(Value v) const {
 146   if (v->type()->tag() == longTag) return false;
 147   return v->type()->tag() != objectTag ||
 148     (v->type()->is_constant() && v->type()->as_ObjectType()->constant_value()->is_null_object());
 149 }
 150 
 151 
 152 bool LIRGenerator::can_inline_as_constant(LIR_Const* c) const {
 153   if (c->type() == T_LONG) return false;
 154   return c->type() != T_OBJECT || c->as_jobject() == nullptr;
 155 }
 156 
 157 
 158 LIR_Opr LIRGenerator::safepoint_poll_register() {
 159   NOT_LP64( return new_register(T_ADDRESS); )
 160   return LIR_OprFact::illegalOpr;
 161 }
 162 
 163 
 164 LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index,
 165                                             int shift, int disp, BasicType type) {
 166   assert(base->is_register(), "must be");
 167   if (index->is_constant()) {
 168     LIR_Const *constant = index->as_constant_ptr();
 169 #ifdef _LP64
 170     jlong c;
 171     if (constant->type() == T_INT) {
 172       c = (jlong(index->as_jint()) << shift) + disp;
 173     } else {
 174       assert(constant->type() == T_LONG, "should be");
 175       c = (index->as_jlong() << shift) + disp;
 176     }
 177     if ((jlong)((jint)c) == c) {
 178       return new LIR_Address(base, (jint)c, type);
 179     } else {
 180       LIR_Opr tmp = new_register(T_LONG);
 181       __ move(index, tmp);
 182       return new LIR_Address(base, tmp, type);
 183     }
 184 #else
 185     return new LIR_Address(base,
 186                            ((intx)(constant->as_jint()) << shift) + disp,
 187                            type);
 188 #endif
 189   } else {
 190     return new LIR_Address(base, index, (LIR_Address::Scale)shift, disp, type);
 191   }
 192 }
 193 
 194 
 195 LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr,
 196                                               BasicType type) {
 197   int offset_in_bytes = arrayOopDesc::base_offset_in_bytes(type);
 198 
 199   LIR_Address* addr;
 200   if (index_opr->is_constant()) {
 201     int elem_size = type2aelembytes(type);
 202 #ifdef _LP64
 203     jint index = index_opr->as_jint();
 204     jlong disp = offset_in_bytes + (jlong)(index) * elem_size;
 205     if (disp > max_jint) {
 206       // Displacement overflow. Cannot directly use instruction with 32-bit displacement for 64-bit addresses.
 207       // Convert array index to long to do array offset computation with 64-bit values.
 208       index_opr = new_register(T_LONG);
 209       __ move(LIR_OprFact::longConst(index), index_opr);
 210       addr = new LIR_Address(array_opr, index_opr, LIR_Address::scale(type), offset_in_bytes, type);
 211     } else {
 212       addr = new LIR_Address(array_opr, (intx)disp, type);
 213     }
 214 #else
 215     // A displacement overflow can also occur for x86 but that is not a problem due to the 32-bit address range!
 216     // Let's assume an array 'a' and an access with displacement 'disp'. When disp overflows, then "a + disp" will
 217     // always be negative (i.e. underflows the 32-bit address range):
 218     // Let N = 2^32: a + signed_overflow(disp) = a + disp - N.
 219     // "a + disp" is always smaller than N. If an index was chosen which would point to an address beyond N, then
 220     // range checks would catch that and throw an exception. Thus, a + disp < 0 holds which means that it always
 221     // underflows the 32-bit address range:
 222     // unsigned_underflow(a + signed_overflow(disp)) = unsigned_underflow(a + disp - N)
 223     //                                              = (a + disp - N) + N = a + disp
 224     // This shows that we still end up at the correct address with a displacement overflow due to the 32-bit address
 225     // range limitation. This overflow only needs to be handled if addresses can be larger as on 64-bit platforms.
 226     addr = new LIR_Address(array_opr, offset_in_bytes + (intx)(index_opr->as_jint()) * elem_size, type);
 227 #endif // _LP64
 228   } else {
 229 #ifdef _LP64
 230     if (index_opr->type() == T_INT) {
 231       LIR_Opr tmp = new_register(T_LONG);
 232       __ convert(Bytecodes::_i2l, index_opr, tmp);
 233       index_opr = tmp;
 234     }
 235 #endif // _LP64
 236     addr =  new LIR_Address(array_opr,
 237                             index_opr,
 238                             LIR_Address::scale(type),
 239                             offset_in_bytes, type);
 240   }
 241   return addr;
 242 }
 243 
 244 
 245 LIR_Opr LIRGenerator::load_immediate(jlong x, BasicType type) {
 246   LIR_Opr r;
 247   if (type == T_LONG) {
 248     r = LIR_OprFact::longConst(x);
 249   } else if (type == T_INT) {
 250     r = LIR_OprFact::intConst(checked_cast<jint>(x));
 251   } else {
 252     ShouldNotReachHere();
 253   }
 254   return r;
 255 }
 256 
 257 void LIRGenerator::increment_counter(address counter, BasicType type, int step) {
 258   LIR_Opr pointer = new_pointer_register();
 259   __ move(LIR_OprFact::intptrConst(counter), pointer);
 260   LIR_Address* addr = new LIR_Address(pointer, type);
 261   increment_counter(addr, step);
 262 }
 263 
 264 
 265 void LIRGenerator::increment_counter(LIR_Address* addr, int step) {
 266   __ add((LIR_Opr)addr, LIR_OprFact::intConst(step), (LIR_Opr)addr);
 267 }
 268 
 269 void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
 270   __ cmp_mem_int(condition, base, disp, c, info);
 271 }
 272 
 273 
 274 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info) {
 275   __ cmp_reg_mem(condition, reg, new LIR_Address(base, disp, type), info);
 276 }
 277 
 278 
 279 bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, jint c, LIR_Opr result, LIR_Opr tmp) {
 280   if (tmp->is_valid() && c > 0 && c < max_jint) {
 281     if (is_power_of_2(c + 1)) {
 282       __ move(left, tmp);
 283       __ shift_left(left, log2i_exact(c + 1), left);
 284       __ sub(left, tmp, result);
 285       return true;
 286     } else if (is_power_of_2(c - 1)) {
 287       __ move(left, tmp);
 288       __ shift_left(left, log2i_exact(c - 1), left);
 289       __ add(left, tmp, result);
 290       return true;
 291     }
 292   }
 293   return false;
 294 }
 295 
 296 
 297 void LIRGenerator::store_stack_parameter (LIR_Opr item, ByteSize offset_from_sp) {
 298   BasicType type = item->type();
 299   __ store(item, new LIR_Address(FrameMap::rsp_opr, in_bytes(offset_from_sp), type));
 300 }
 301 
 302 void LIRGenerator::array_store_check(LIR_Opr value, LIR_Opr array, CodeEmitInfo* store_check_info, ciMethod* profiled_method, int profiled_bci) {
 303   LIR_Opr tmp1 = new_register(objectType);
 304   LIR_Opr tmp2 = new_register(objectType);
 305   LIR_Opr tmp3 = new_register(objectType);
 306   __ store_check(value, array, tmp1, tmp2, tmp3, store_check_info, profiled_method, profiled_bci);
 307 }
 308 
 309 //----------------------------------------------------------------------
 310 //             visitor functions
 311 //----------------------------------------------------------------------
 312 
 313 void LIRGenerator::do_MonitorEnter(MonitorEnter* x) {
 314   assert(x->is_pinned(),"");
 315   LIRItem obj(x->obj(), this);
 316   obj.load_item();
 317 
 318   set_no_result(x);
 319 
 320   // "lock" stores the address of the monitor stack slot, so this is not an oop
 321   LIR_Opr lock = new_register(T_INT);
 322   // Need a scratch register for inline types on x86
 323   LIR_Opr scratch = LIR_OprFact::illegalOpr;
 324   if ((LockingMode == LM_LIGHTWEIGHT) ||
 325       (EnableValhalla && x->maybe_inlinetype())) {
 326     scratch = new_register(T_ADDRESS);
 327   }
 328 
 329   CodeEmitInfo* info_for_exception = nullptr;
 330   if (x->needs_null_check()) {
 331     info_for_exception = state_for(x);
 332   }
 333 
 334   CodeStub* throw_ie_stub = x->maybe_inlinetype() ?
 335       new SimpleExceptionStub(C1StubId::throw_identity_exception_id,
 336                               obj.result(), state_for(x))
 337     : nullptr;
 338 
 339   // this CodeEmitInfo must not have the xhandlers because here the
 340   // object is already locked (xhandlers expect object to be unlocked)
 341   CodeEmitInfo* info = state_for(x, x->state(), true);
 342   monitor_enter(obj.result(), lock, syncTempOpr(), scratch,
 343                 x->monitor_no(), info_for_exception, info, throw_ie_stub);
 344 }
 345 
 346 
 347 void LIRGenerator::do_MonitorExit(MonitorExit* x) {
 348   assert(x->is_pinned(),"");
 349 
 350   LIRItem obj(x->obj(), this);
 351   obj.dont_load_item();
 352 
 353   LIR_Opr lock = new_register(T_INT);
 354   LIR_Opr obj_temp = new_register(T_INT);
 355   set_no_result(x);
 356   monitor_exit(obj_temp, lock, syncTempOpr(), LIR_OprFact::illegalOpr, x->monitor_no());
 357 }
 358 
 359 // _ineg, _lneg, _fneg, _dneg
 360 void LIRGenerator::do_NegateOp(NegateOp* x) {
 361   LIRItem value(x->x(), this);
 362   value.set_destroys_register();
 363   value.load_item();
 364   LIR_Opr reg = rlock(x);
 365 
 366   __ negate(value.result(), reg);
 367 
 368   set_result(x, reg);
 369 }
 370 
 371 // for  _fadd, _fmul, _fsub, _fdiv, _frem
 372 //      _dadd, _dmul, _dsub, _ddiv, _drem
 373 void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) {
 374   LIRItem left(x->x(),  this);
 375   LIRItem right(x->y(), this);
 376   LIRItem* left_arg  = &left;
 377   LIRItem* right_arg = &right;
 378   assert(!left.is_stack() || !right.is_stack(), "can't both be memory operands");
 379   bool must_load_both = (x->op() == Bytecodes::_frem || x->op() == Bytecodes::_drem);
 380   if (left.is_register() || x->x()->type()->is_constant() || must_load_both) {
 381     left.load_item();
 382   } else {
 383     left.dont_load_item();
 384   }
 385 
 386 #ifndef _LP64
 387   // do not load right operand if it is a constant.  only 0 and 1 are
 388   // loaded because there are special instructions for loading them
 389   // without memory access (not needed for SSE2 instructions)
 390   bool must_load_right = false;
 391   if (right.is_constant()) {
 392     LIR_Const* c = right.result()->as_constant_ptr();
 393     assert(c != nullptr, "invalid constant");
 394     assert(c->type() == T_FLOAT || c->type() == T_DOUBLE, "invalid type");
 395 
 396     if (c->type() == T_FLOAT) {
 397       must_load_right = UseSSE < 1 && (c->is_one_float() || c->is_zero_float());
 398     } else {
 399       must_load_right = UseSSE < 2 && (c->is_one_double() || c->is_zero_double());
 400     }
 401   }
 402 #endif // !LP64
 403 
 404   if (must_load_both) {
 405     // frem and drem destroy also right operand, so move it to a new register
 406     right.set_destroys_register();
 407     right.load_item();
 408   } else if (right.is_register()) {
 409     right.load_item();
 410 #ifndef _LP64
 411   } else if (must_load_right) {
 412     right.load_item();
 413 #endif // !LP64
 414   } else {
 415     right.dont_load_item();
 416   }
 417   LIR_Opr reg = rlock(x);
 418   LIR_Opr tmp = LIR_OprFact::illegalOpr;
 419   if (x->op() == Bytecodes::_dmul || x->op() == Bytecodes::_ddiv) {
 420     tmp = new_register(T_DOUBLE);
 421   }
 422 
 423 #ifdef _LP64
 424   if (x->op() == Bytecodes::_frem || x->op() == Bytecodes::_drem) {
 425     // frem and drem are implemented as a direct call into the runtime.
 426     LIRItem left(x->x(), this);
 427     LIRItem right(x->y(), this);
 428 
 429     BasicType bt = as_BasicType(x->type());
 430     BasicTypeList signature(2);
 431     signature.append(bt);
 432     signature.append(bt);
 433     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
 434 
 435     const LIR_Opr result_reg = result_register_for(x->type());
 436     left.load_item_force(cc->at(0));
 437     right.load_item_force(cc->at(1));
 438 
 439     address entry = nullptr;
 440     switch (x->op()) {
 441       case Bytecodes::_frem:
 442         entry = CAST_FROM_FN_PTR(address, SharedRuntime::frem);
 443         break;
 444       case Bytecodes::_drem:
 445         entry = CAST_FROM_FN_PTR(address, SharedRuntime::drem);
 446         break;
 447       default:
 448         ShouldNotReachHere();
 449     }
 450 
 451     LIR_Opr result = rlock_result(x);
 452     __ call_runtime_leaf(entry, getThreadTemp(), result_reg, cc->args());
 453     __ move(result_reg, result);
 454   } else {
 455     arithmetic_op_fpu(x->op(), reg, left.result(), right.result(), tmp);
 456     set_result(x, reg);
 457   }
 458 #else
 459   if ((UseSSE >= 1 && x->op() == Bytecodes::_frem) || (UseSSE >= 2 && x->op() == Bytecodes::_drem)) {
 460     // special handling for frem and drem: no SSE instruction, so must use FPU with temporary fpu stack slots
 461     LIR_Opr fpu0, fpu1;
 462     if (x->op() == Bytecodes::_frem) {
 463       fpu0 = LIR_OprFact::single_fpu(0);
 464       fpu1 = LIR_OprFact::single_fpu(1);
 465     } else {
 466       fpu0 = LIR_OprFact::double_fpu(0);
 467       fpu1 = LIR_OprFact::double_fpu(1);
 468     }
 469     __ move(right.result(), fpu1); // order of left and right operand is important!
 470     __ move(left.result(), fpu0);
 471     __ rem (fpu0, fpu1, fpu0);
 472     __ move(fpu0, reg);
 473 
 474   } else {
 475     arithmetic_op_fpu(x->op(), reg, left.result(), right.result(), tmp);
 476   }
 477   set_result(x, reg);
 478 #endif // _LP64
 479 }
 480 
 481 
 482 // for  _ladd, _lmul, _lsub, _ldiv, _lrem
 483 void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) {
 484   if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem ) {
 485     // long division is implemented as a direct call into the runtime
 486     LIRItem left(x->x(), this);
 487     LIRItem right(x->y(), this);
 488 
 489     // the check for division by zero destroys the right operand
 490     right.set_destroys_register();
 491 
 492     BasicTypeList signature(2);
 493     signature.append(T_LONG);
 494     signature.append(T_LONG);
 495     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
 496 
 497     // check for division by zero (destroys registers of right operand!)
 498     CodeEmitInfo* info = state_for(x);
 499 
 500     const LIR_Opr result_reg = result_register_for(x->type());
 501     left.load_item_force(cc->at(1));
 502     right.load_item();
 503 
 504     __ move(right.result(), cc->at(0));
 505 
 506     __ cmp(lir_cond_equal, right.result(), LIR_OprFact::longConst(0));
 507     __ branch(lir_cond_equal, new DivByZeroStub(info));
 508 
 509     address entry = nullptr;
 510     switch (x->op()) {
 511     case Bytecodes::_lrem:
 512       entry = CAST_FROM_FN_PTR(address, SharedRuntime::lrem);
 513       break; // check if dividend is 0 is done elsewhere
 514     case Bytecodes::_ldiv:
 515       entry = CAST_FROM_FN_PTR(address, SharedRuntime::ldiv);
 516       break; // check if dividend is 0 is done elsewhere
 517     default:
 518       ShouldNotReachHere();
 519     }
 520 
 521     LIR_Opr result = rlock_result(x);
 522     __ call_runtime_leaf(entry, getThreadTemp(), result_reg, cc->args());
 523     __ move(result_reg, result);
 524   } else if (x->op() == Bytecodes::_lmul) {
 525     // missing test if instr is commutative and if we should swap
 526     LIRItem left(x->x(), this);
 527     LIRItem right(x->y(), this);
 528 
 529     // right register is destroyed by the long mul, so it must be
 530     // copied to a new register.
 531     right.set_destroys_register();
 532 
 533     left.load_item();
 534     right.load_item();
 535 
 536     LIR_Opr reg = FrameMap::long0_opr;
 537     arithmetic_op_long(x->op(), reg, left.result(), right.result(), nullptr);
 538     LIR_Opr result = rlock_result(x);
 539     __ move(reg, result);
 540   } else {
 541     // missing test if instr is commutative and if we should swap
 542     LIRItem left(x->x(), this);
 543     LIRItem right(x->y(), this);
 544 
 545     left.load_item();
 546     // don't load constants to save register
 547     right.load_nonconstant();
 548     rlock_result(x);
 549     arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), nullptr);
 550   }
 551 }
 552 
 553 
 554 
 555 // for: _iadd, _imul, _isub, _idiv, _irem
 556 void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) {
 557   if (x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem) {
 558     // The requirements for division and modulo
 559     // input : rax,: dividend                         min_int
 560     //         reg: divisor   (may not be rax,/rdx)   -1
 561     //
 562     // output: rax,: quotient  (= rax, idiv reg)       min_int
 563     //         rdx: remainder (= rax, irem reg)       0
 564 
 565     // rax, and rdx will be destroyed
 566 
 567     // Note: does this invalidate the spec ???
 568     LIRItem right(x->y(), this);
 569     LIRItem left(x->x() , this);   // visit left second, so that the is_register test is valid
 570 
 571     // call state_for before load_item_force because state_for may
 572     // force the evaluation of other instructions that are needed for
 573     // correct debug info.  Otherwise the live range of the fix
 574     // register might be too long.
 575     CodeEmitInfo* info = state_for(x);
 576 
 577     left.load_item_force(divInOpr());
 578 
 579     right.load_item();
 580 
 581     LIR_Opr result = rlock_result(x);
 582     LIR_Opr result_reg;
 583     if (x->op() == Bytecodes::_idiv) {
 584       result_reg = divOutOpr();
 585     } else {
 586       result_reg = remOutOpr();
 587     }
 588 
 589     if (!ImplicitDiv0Checks) {
 590       __ cmp(lir_cond_equal, right.result(), LIR_OprFact::intConst(0));
 591       __ branch(lir_cond_equal, new DivByZeroStub(info));
 592       // Idiv/irem cannot trap (passing info would generate an assertion).
 593       info = nullptr;
 594     }
 595     LIR_Opr tmp = FrameMap::rdx_opr; // idiv and irem use rdx in their implementation
 596     if (x->op() == Bytecodes::_irem) {
 597       __ irem(left.result(), right.result(), result_reg, tmp, info);
 598     } else if (x->op() == Bytecodes::_idiv) {
 599       __ idiv(left.result(), right.result(), result_reg, tmp, info);
 600     } else {
 601       ShouldNotReachHere();
 602     }
 603 
 604     __ move(result_reg, result);
 605   } else {
 606     // missing test if instr is commutative and if we should swap
 607     LIRItem left(x->x(),  this);
 608     LIRItem right(x->y(), this);
 609     LIRItem* left_arg = &left;
 610     LIRItem* right_arg = &right;
 611     if (x->is_commutative() && left.is_stack() && right.is_register()) {
 612       // swap them if left is real stack (or cached) and right is real register(not cached)
 613       left_arg = &right;
 614       right_arg = &left;
 615     }
 616 
 617     left_arg->load_item();
 618 
 619     // do not need to load right, as we can handle stack and constants
 620     if (x->op() == Bytecodes::_imul ) {
 621       // check if we can use shift instead
 622       bool use_constant = false;
 623       bool use_tmp = false;
 624       if (right_arg->is_constant()) {
 625         jint iconst = right_arg->get_jint_constant();
 626         if (iconst > 0 && iconst < max_jint) {
 627           if (is_power_of_2(iconst)) {
 628             use_constant = true;
 629           } else if (is_power_of_2(iconst - 1) || is_power_of_2(iconst + 1)) {
 630             use_constant = true;
 631             use_tmp = true;
 632           }
 633         }
 634       }
 635       if (use_constant) {
 636         right_arg->dont_load_item();
 637       } else {
 638         right_arg->load_item();
 639       }
 640       LIR_Opr tmp = LIR_OprFact::illegalOpr;
 641       if (use_tmp) {
 642         tmp = new_register(T_INT);
 643       }
 644       rlock_result(x);
 645 
 646       arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp);
 647     } else {
 648       right_arg->dont_load_item();
 649       rlock_result(x);
 650       LIR_Opr tmp = LIR_OprFact::illegalOpr;
 651       arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp);
 652     }
 653   }
 654 }
 655 
 656 
 657 void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) {
 658   // when an operand with use count 1 is the left operand, then it is
 659   // likely that no move for 2-operand-LIR-form is necessary
 660   if (x->is_commutative() && x->y()->as_Constant() == nullptr && x->x()->use_count() > x->y()->use_count()) {
 661     x->swap_operands();
 662   }
 663 
 664   ValueTag tag = x->type()->tag();
 665   assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters");
 666   switch (tag) {
 667     case floatTag:
 668     case doubleTag:  do_ArithmeticOp_FPU(x);  return;
 669     case longTag:    do_ArithmeticOp_Long(x); return;
 670     case intTag:     do_ArithmeticOp_Int(x);  return;
 671     default:         ShouldNotReachHere();    return;
 672   }
 673 }
 674 
 675 
 676 // _ishl, _lshl, _ishr, _lshr, _iushr, _lushr
 677 void LIRGenerator::do_ShiftOp(ShiftOp* x) {
 678   // count must always be in rcx
 679   LIRItem value(x->x(), this);
 680   LIRItem count(x->y(), this);
 681 
 682   ValueTag elemType = x->type()->tag();
 683   bool must_load_count = !count.is_constant() || elemType == longTag;
 684   if (must_load_count) {
 685     // count for long must be in register
 686     count.load_item_force(shiftCountOpr());
 687   } else {
 688     count.dont_load_item();
 689   }
 690   value.load_item();
 691   LIR_Opr reg = rlock_result(x);
 692 
 693   shift_op(x->op(), reg, value.result(), count.result(), LIR_OprFact::illegalOpr);
 694 }
 695 
 696 
 697 // _iand, _land, _ior, _lor, _ixor, _lxor
 698 void LIRGenerator::do_LogicOp(LogicOp* x) {
 699   // when an operand with use count 1 is the left operand, then it is
 700   // likely that no move for 2-operand-LIR-form is necessary
 701   if (x->is_commutative() && x->y()->as_Constant() == nullptr && x->x()->use_count() > x->y()->use_count()) {
 702     x->swap_operands();
 703   }
 704 
 705   LIRItem left(x->x(), this);
 706   LIRItem right(x->y(), this);
 707 
 708   left.load_item();
 709   right.load_nonconstant();
 710   LIR_Opr reg = rlock_result(x);
 711 
 712   logic_op(x->op(), reg, left.result(), right.result());
 713 }
 714 
 715 
 716 
 717 // _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg
 718 void LIRGenerator::do_CompareOp(CompareOp* x) {
 719   LIRItem left(x->x(), this);
 720   LIRItem right(x->y(), this);
 721   ValueTag tag = x->x()->type()->tag();
 722   if (tag == longTag) {
 723     left.set_destroys_register();
 724   }
 725   left.load_item();
 726   right.load_item();
 727   LIR_Opr reg = rlock_result(x);
 728 
 729   if (x->x()->type()->is_float_kind()) {
 730     Bytecodes::Code code = x->op();
 731     __ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl));
 732   } else if (x->x()->type()->tag() == longTag) {
 733     __ lcmp2int(left.result(), right.result(), reg);
 734   } else {
 735     Unimplemented();
 736   }
 737 }
 738 
 739 LIR_Opr LIRGenerator::atomic_cmpxchg(BasicType type, LIR_Opr addr, LIRItem& cmp_value, LIRItem& new_value) {
 740   LIR_Opr ill = LIR_OprFact::illegalOpr;  // for convenience
 741   if (is_reference_type(type)) {
 742     cmp_value.load_item_force(FrameMap::rax_oop_opr);
 743     new_value.load_item();
 744     __ cas_obj(addr->as_address_ptr()->base(), cmp_value.result(), new_value.result(), ill, ill);
 745   } else if (type == T_INT) {
 746     cmp_value.load_item_force(FrameMap::rax_opr);
 747     new_value.load_item();
 748     __ cas_int(addr->as_address_ptr()->base(), cmp_value.result(), new_value.result(), ill, ill);
 749   } else if (type == T_LONG) {
 750     cmp_value.load_item_force(FrameMap::long0_opr);
 751     new_value.load_item_force(FrameMap::long1_opr);
 752     __ cas_long(addr->as_address_ptr()->base(), cmp_value.result(), new_value.result(), ill, ill);
 753   } else {
 754     Unimplemented();
 755   }
 756   LIR_Opr result = new_register(T_INT);
 757   __ cmove(lir_cond_equal, LIR_OprFact::intConst(1), LIR_OprFact::intConst(0),
 758            result, T_INT);
 759   return result;
 760 }
 761 
 762 LIR_Opr LIRGenerator::atomic_xchg(BasicType type, LIR_Opr addr, LIRItem& value) {
 763   bool is_oop = is_reference_type(type);
 764   LIR_Opr result = new_register(type);
 765   value.load_item();
 766   // Because we want a 2-arg form of xchg and xadd
 767   __ move(value.result(), result);
 768   assert(type == T_INT || is_oop LP64_ONLY( || type == T_LONG ), "unexpected type");
 769   __ xchg(addr, result, result, LIR_OprFact::illegalOpr);
 770   return result;
 771 }
 772 
 773 LIR_Opr LIRGenerator::atomic_add(BasicType type, LIR_Opr addr, LIRItem& value) {
 774   LIR_Opr result = new_register(type);
 775   value.load_item();
 776   // Because we want a 2-arg form of xchg and xadd
 777   __ move(value.result(), result);
 778   assert(type == T_INT LP64_ONLY( || type == T_LONG ), "unexpected type");
 779   __ xadd(addr, result, result, LIR_OprFact::illegalOpr);
 780   return result;
 781 }
 782 
 783 void LIRGenerator::do_FmaIntrinsic(Intrinsic* x) {
 784   assert(x->number_of_arguments() == 3, "wrong type");
 785   assert(UseFMA, "Needs FMA instructions support.");
 786   LIRItem value(x->argument_at(0), this);
 787   LIRItem value1(x->argument_at(1), this);
 788   LIRItem value2(x->argument_at(2), this);
 789 
 790   value2.set_destroys_register();
 791 
 792   value.load_item();
 793   value1.load_item();
 794   value2.load_item();
 795 
 796   LIR_Opr calc_input = value.result();
 797   LIR_Opr calc_input1 = value1.result();
 798   LIR_Opr calc_input2 = value2.result();
 799   LIR_Opr calc_result = rlock_result(x);
 800 
 801   switch (x->id()) {
 802   case vmIntrinsics::_fmaD:   __ fmad(calc_input, calc_input1, calc_input2, calc_result); break;
 803   case vmIntrinsics::_fmaF:   __ fmaf(calc_input, calc_input1, calc_input2, calc_result); break;
 804   default:                    ShouldNotReachHere();
 805   }
 806 
 807 }
 808 
 809 
 810 void LIRGenerator::do_MathIntrinsic(Intrinsic* x) {
 811   assert(x->number_of_arguments() == 1 || (x->number_of_arguments() == 2 && x->id() == vmIntrinsics::_dpow), "wrong type");
 812 
 813   if (x->id() == vmIntrinsics::_dexp || x->id() == vmIntrinsics::_dlog ||
 814       x->id() == vmIntrinsics::_dpow || x->id() == vmIntrinsics::_dcos ||
 815       x->id() == vmIntrinsics::_dsin || x->id() == vmIntrinsics::_dtan ||
 816       x->id() == vmIntrinsics::_dlog10
 817 #ifdef _LP64
 818       || x->id() == vmIntrinsics::_dtanh
 819 #endif
 820       ) {
 821     do_LibmIntrinsic(x);
 822     return;
 823   }
 824 
 825   LIRItem value(x->argument_at(0), this);
 826 
 827   bool use_fpu = false;
 828 #ifndef _LP64
 829   if (UseSSE < 2) {
 830     value.set_destroys_register();
 831   }
 832 #endif // !LP64
 833   value.load_item();
 834 
 835   LIR_Opr calc_input = value.result();
 836   LIR_Opr calc_result = rlock_result(x);
 837 
 838   LIR_Opr tmp = LIR_OprFact::illegalOpr;
 839   if (x->id() == vmIntrinsics::_floatToFloat16) {
 840     tmp = new_register(T_FLOAT);
 841   }
 842 
 843   switch(x->id()) {
 844     case vmIntrinsics::_dabs:
 845       __ abs(calc_input, calc_result, tmp);
 846       break;
 847     case vmIntrinsics::_dsqrt:
 848     case vmIntrinsics::_dsqrt_strict:
 849       __ sqrt(calc_input, calc_result, LIR_OprFact::illegalOpr);
 850       break;
 851     case vmIntrinsics::_floatToFloat16:
 852       __ f2hf(calc_input, calc_result, tmp);
 853       break;
 854     case vmIntrinsics::_float16ToFloat:
 855       __ hf2f(calc_input, calc_result, LIR_OprFact::illegalOpr);
 856       break;
 857     default:
 858       ShouldNotReachHere();
 859   }
 860 
 861   if (use_fpu) {
 862     __ move(calc_result, x->operand());
 863   }
 864 }
 865 
 866 void LIRGenerator::do_LibmIntrinsic(Intrinsic* x) {
 867   LIRItem value(x->argument_at(0), this);
 868   value.set_destroys_register();
 869 
 870   LIR_Opr calc_result = rlock_result(x);
 871   LIR_Opr result_reg = result_register_for(x->type());
 872 
 873   CallingConvention* cc = nullptr;
 874 
 875   if (x->id() == vmIntrinsics::_dpow) {
 876     LIRItem value1(x->argument_at(1), this);
 877 
 878     value1.set_destroys_register();
 879 
 880     BasicTypeList signature(2);
 881     signature.append(T_DOUBLE);
 882     signature.append(T_DOUBLE);
 883     cc = frame_map()->c_calling_convention(&signature);
 884     value.load_item_force(cc->at(0));
 885     value1.load_item_force(cc->at(1));
 886   } else {
 887     BasicTypeList signature(1);
 888     signature.append(T_DOUBLE);
 889     cc = frame_map()->c_calling_convention(&signature);
 890     value.load_item_force(cc->at(0));
 891   }
 892 
 893   switch (x->id()) {
 894     case vmIntrinsics::_dexp:
 895       if (StubRoutines::dexp() != nullptr) {
 896         __ call_runtime_leaf(StubRoutines::dexp(), getThreadTemp(), result_reg, cc->args());
 897       } else {
 898         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dexp), getThreadTemp(), result_reg, cc->args());
 899       }
 900       break;
 901     case vmIntrinsics::_dlog:
 902       if (StubRoutines::dlog() != nullptr) {
 903       __ call_runtime_leaf(StubRoutines::dlog(), getThreadTemp(), result_reg, cc->args());
 904       } else {
 905         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dlog), getThreadTemp(), result_reg, cc->args());
 906       }
 907       break;
 908     case vmIntrinsics::_dlog10:
 909       if (StubRoutines::dlog10() != nullptr) {
 910       __ call_runtime_leaf(StubRoutines::dlog10(), getThreadTemp(), result_reg, cc->args());
 911       } else {
 912         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), getThreadTemp(), result_reg, cc->args());
 913       }
 914       break;
 915     case vmIntrinsics::_dpow:
 916        if (StubRoutines::dpow() != nullptr) {
 917         __ call_runtime_leaf(StubRoutines::dpow(), getThreadTemp(), result_reg, cc->args());
 918       } else {
 919         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dpow), getThreadTemp(), result_reg, cc->args());
 920       }
 921       break;
 922     case vmIntrinsics::_dsin:
 923       if (StubRoutines::dsin() != nullptr) {
 924         __ call_runtime_leaf(StubRoutines::dsin(), getThreadTemp(), result_reg, cc->args());
 925       } else {
 926         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), getThreadTemp(), result_reg, cc->args());
 927       }
 928       break;
 929     case vmIntrinsics::_dcos:
 930       if (StubRoutines::dcos() != nullptr) {
 931         __ call_runtime_leaf(StubRoutines::dcos(), getThreadTemp(), result_reg, cc->args());
 932       } else {
 933         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), getThreadTemp(), result_reg, cc->args());
 934       }
 935       break;
 936     case vmIntrinsics::_dtan:
 937        if (StubRoutines::dtan() != nullptr) {
 938         __ call_runtime_leaf(StubRoutines::dtan(), getThreadTemp(), result_reg, cc->args());
 939       } else {
 940         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), getThreadTemp(), result_reg, cc->args());
 941       }
 942       break;
 943     case vmIntrinsics::_dtanh:
 944        assert(StubRoutines::dtanh() != nullptr, "tanh intrinsic not found");
 945        if (StubRoutines::dtanh() != nullptr) {
 946         __ call_runtime_leaf(StubRoutines::dtanh(), getThreadTemp(), result_reg, cc->args());
 947       }
 948       break;
 949     default:  ShouldNotReachHere();
 950   }
 951 
 952   __ move(result_reg, calc_result);
 953 }
 954 
 955 void LIRGenerator::do_ArrayCopy(Intrinsic* x) {
 956   assert(x->number_of_arguments() == 5, "wrong type");
 957 
 958   // Make all state_for calls early since they can emit code
 959   CodeEmitInfo* info = nullptr;
 960   if (x->state_before() != nullptr && x->state_before()->force_reexecute()) {
 961     info = state_for(x, x->state_before());
 962     info->set_force_reexecute();
 963   } else {
 964     info = state_for(x, x->state());
 965   }
 966 
 967   LIRItem src(x->argument_at(0), this);
 968   LIRItem src_pos(x->argument_at(1), this);
 969   LIRItem dst(x->argument_at(2), this);
 970   LIRItem dst_pos(x->argument_at(3), this);
 971   LIRItem length(x->argument_at(4), this);
 972 
 973   // operands for arraycopy must use fixed registers, otherwise
 974   // LinearScan will fail allocation (because arraycopy always needs a
 975   // call)
 976 
 977   int flags;
 978   ciArrayKlass* expected_type;
 979   arraycopy_helper(x, &flags, &expected_type);
 980   if (x->check_flag(Instruction::OmitChecksFlag)) {
 981     flags = 0;
 982   }
 983 
 984 #ifndef _LP64
 985   src.load_item_force     (FrameMap::rcx_oop_opr);
 986   src_pos.load_item_force (FrameMap::rdx_opr);
 987   dst.load_item_force     (FrameMap::rax_oop_opr);
 988   dst_pos.load_item_force (FrameMap::rbx_opr);
 989   length.load_item_force  (FrameMap::rdi_opr);
 990   LIR_Opr tmp =           (FrameMap::rsi_opr);
 991 
 992   if (expected_type != nullptr && flags == 0) {
 993     FrameMap* f = Compilation::current()->frame_map();
 994     f->update_reserved_argument_area_size(3 * BytesPerWord);
 995   }
 996 #else
 997 
 998   // The java calling convention will give us enough registers
 999   // so that on the stub side the args will be perfect already.
1000   // On the other slow/special case side we call C and the arg
1001   // positions are not similar enough to pick one as the best.
1002   // Also because the java calling convention is a "shifted" version
1003   // of the C convention we can process the java args trivially into C
1004   // args without worry of overwriting during the xfer
1005 
1006   src.load_item_force     (FrameMap::as_oop_opr(j_rarg0));
1007   src_pos.load_item_force (FrameMap::as_opr(j_rarg1));
1008   dst.load_item_force     (FrameMap::as_oop_opr(j_rarg2));
1009   dst_pos.load_item_force (FrameMap::as_opr(j_rarg3));
1010   length.load_item_force  (FrameMap::as_opr(j_rarg4));
1011 
1012   LIR_Opr tmp =           FrameMap::as_opr(j_rarg5);
1013 #endif // LP64
1014 
1015   set_no_result(x);
1016 
1017   __ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(), length.result(), tmp, expected_type, flags, info); // does add_safepoint
1018 }
1019 
1020 void LIRGenerator::do_update_CRC32(Intrinsic* x) {
1021   assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions support");
1022   // Make all state_for calls early since they can emit code
1023   LIR_Opr result = rlock_result(x);
1024   int flags = 0;
1025   switch (x->id()) {
1026     case vmIntrinsics::_updateCRC32: {
1027       LIRItem crc(x->argument_at(0), this);
1028       LIRItem val(x->argument_at(1), this);
1029       // val is destroyed by update_crc32
1030       val.set_destroys_register();
1031       crc.load_item();
1032       val.load_item();
1033       __ update_crc32(crc.result(), val.result(), result);
1034       break;
1035     }
1036     case vmIntrinsics::_updateBytesCRC32:
1037     case vmIntrinsics::_updateByteBufferCRC32: {
1038       bool is_updateBytes = (x->id() == vmIntrinsics::_updateBytesCRC32);
1039 
1040       LIRItem crc(x->argument_at(0), this);
1041       LIRItem buf(x->argument_at(1), this);
1042       LIRItem off(x->argument_at(2), this);
1043       LIRItem len(x->argument_at(3), this);
1044       buf.load_item();
1045       off.load_nonconstant();
1046 
1047       LIR_Opr index = off.result();
1048       int offset = is_updateBytes ? arrayOopDesc::base_offset_in_bytes(T_BYTE) : 0;
1049       if(off.result()->is_constant()) {
1050         index = LIR_OprFact::illegalOpr;
1051        offset += off.result()->as_jint();
1052       }
1053       LIR_Opr base_op = buf.result();
1054 
1055 #ifndef _LP64
1056       if (!is_updateBytes) { // long b raw address
1057          base_op = new_register(T_INT);
1058          __ convert(Bytecodes::_l2i, buf.result(), base_op);
1059       }
1060 #else
1061       if (index->is_valid()) {
1062         LIR_Opr tmp = new_register(T_LONG);
1063         __ convert(Bytecodes::_i2l, index, tmp);
1064         index = tmp;
1065       }
1066 #endif
1067 
1068       LIR_Address* a = new LIR_Address(base_op,
1069                                        index,
1070                                        offset,
1071                                        T_BYTE);
1072       BasicTypeList signature(3);
1073       signature.append(T_INT);
1074       signature.append(T_ADDRESS);
1075       signature.append(T_INT);
1076       CallingConvention* cc = frame_map()->c_calling_convention(&signature);
1077       const LIR_Opr result_reg = result_register_for(x->type());
1078 
1079       LIR_Opr addr = new_pointer_register();
1080       __ leal(LIR_OprFact::address(a), addr);
1081 
1082       crc.load_item_force(cc->at(0));
1083       __ move(addr, cc->at(1));
1084       len.load_item_force(cc->at(2));
1085 
1086       __ call_runtime_leaf(StubRoutines::updateBytesCRC32(), getThreadTemp(), result_reg, cc->args());
1087       __ move(result_reg, result);
1088 
1089       break;
1090     }
1091     default: {
1092       ShouldNotReachHere();
1093     }
1094   }
1095 }
1096 
1097 void LIRGenerator::do_update_CRC32C(Intrinsic* x) {
1098   assert(UseCRC32CIntrinsics, "need AVX and CLMUL instructions support");
1099   LIR_Opr result = rlock_result(x);
1100 
1101   switch (x->id()) {
1102     case vmIntrinsics::_updateBytesCRC32C:
1103     case vmIntrinsics::_updateDirectByteBufferCRC32C: {
1104       bool is_updateBytes = (x->id() == vmIntrinsics::_updateBytesCRC32C);
1105 
1106       LIRItem crc(x->argument_at(0), this);
1107       LIRItem buf(x->argument_at(1), this);
1108       LIRItem off(x->argument_at(2), this);
1109       LIRItem end(x->argument_at(3), this);
1110       buf.load_item();
1111       off.load_nonconstant();
1112       end.load_nonconstant();
1113 
1114       // len = end - off
1115       LIR_Opr len  = end.result();
1116       LIR_Opr tmpA = new_register(T_INT);
1117       LIR_Opr tmpB = new_register(T_INT);
1118       __ move(end.result(), tmpA);
1119       __ move(off.result(), tmpB);
1120       __ sub(tmpA, tmpB, tmpA);
1121       len = tmpA;
1122 
1123       LIR_Opr index = off.result();
1124       int offset = is_updateBytes ? arrayOopDesc::base_offset_in_bytes(T_BYTE) : 0;
1125       if (off.result()->is_constant()) {
1126         index = LIR_OprFact::illegalOpr;
1127         offset += off.result()->as_jint();
1128       }
1129       LIR_Opr base_op = buf.result();
1130       LIR_Address* a = nullptr;
1131 
1132       if (index->is_valid()) {
1133         LIR_Opr tmp = new_register(T_LONG);
1134         __ convert(Bytecodes::_i2l, index, tmp);
1135         index = tmp;
1136         a = new LIR_Address(base_op, index, offset, T_BYTE);
1137       } else {
1138         a = new LIR_Address(base_op, offset, T_BYTE);
1139       }
1140 
1141       BasicTypeList signature(3);
1142       signature.append(T_INT);
1143       signature.append(T_ADDRESS);
1144       signature.append(T_INT);
1145       CallingConvention* cc = frame_map()->c_calling_convention(&signature);
1146       const LIR_Opr result_reg = result_register_for(x->type());
1147 
1148       LIR_Opr arg1 = cc->at(0),
1149               arg2 = cc->at(1),
1150               arg3 = cc->at(2);
1151 
1152       crc.load_item_force(arg1);
1153       __ leal(LIR_OprFact::address(a), arg2);
1154       __ move(len, arg3);
1155 
1156       __ call_runtime_leaf(StubRoutines::updateBytesCRC32C(), getThreadTemp(), result_reg, cc->args());
1157       __ move(result_reg, result);
1158       break;
1159     }
1160     default: {
1161       ShouldNotReachHere();
1162     }
1163   }
1164 }
1165 
1166 void LIRGenerator::do_vectorizedMismatch(Intrinsic* x) {
1167   assert(UseVectorizedMismatchIntrinsic, "need AVX instruction support");
1168 
1169   // Make all state_for calls early since they can emit code
1170   LIR_Opr result = rlock_result(x);
1171 
1172   LIRItem a(x->argument_at(0), this); // Object
1173   LIRItem aOffset(x->argument_at(1), this); // long
1174   LIRItem b(x->argument_at(2), this); // Object
1175   LIRItem bOffset(x->argument_at(3), this); // long
1176   LIRItem length(x->argument_at(4), this); // int
1177   LIRItem log2ArrayIndexScale(x->argument_at(5), this); // int
1178 
1179   a.load_item();
1180   aOffset.load_nonconstant();
1181   b.load_item();
1182   bOffset.load_nonconstant();
1183 
1184   long constant_aOffset = 0;
1185   LIR_Opr result_aOffset = aOffset.result();
1186   if (result_aOffset->is_constant()) {
1187     constant_aOffset = result_aOffset->as_jlong();
1188     result_aOffset = LIR_OprFact::illegalOpr;
1189   }
1190   LIR_Opr result_a = a.result();
1191 
1192   long constant_bOffset = 0;
1193   LIR_Opr result_bOffset = bOffset.result();
1194   if (result_bOffset->is_constant()) {
1195     constant_bOffset = result_bOffset->as_jlong();
1196     result_bOffset = LIR_OprFact::illegalOpr;
1197   }
1198   LIR_Opr result_b = b.result();
1199 
1200 #ifndef _LP64
1201   result_a = new_register(T_INT);
1202   __ convert(Bytecodes::_l2i, a.result(), result_a);
1203   result_b = new_register(T_INT);
1204   __ convert(Bytecodes::_l2i, b.result(), result_b);
1205 #endif
1206 
1207 
1208   LIR_Address* addr_a = new LIR_Address(result_a,
1209                                         result_aOffset,
1210                                         constant_aOffset,
1211                                         T_BYTE);
1212 
1213   LIR_Address* addr_b = new LIR_Address(result_b,
1214                                         result_bOffset,
1215                                         constant_bOffset,
1216                                         T_BYTE);
1217 
1218   BasicTypeList signature(4);
1219   signature.append(T_ADDRESS);
1220   signature.append(T_ADDRESS);
1221   signature.append(T_INT);
1222   signature.append(T_INT);
1223   CallingConvention* cc = frame_map()->c_calling_convention(&signature);
1224   const LIR_Opr result_reg = result_register_for(x->type());
1225 
1226   LIR_Opr ptr_addr_a = new_pointer_register();
1227   __ leal(LIR_OprFact::address(addr_a), ptr_addr_a);
1228 
1229   LIR_Opr ptr_addr_b = new_pointer_register();
1230   __ leal(LIR_OprFact::address(addr_b), ptr_addr_b);
1231 
1232   __ move(ptr_addr_a, cc->at(0));
1233   __ move(ptr_addr_b, cc->at(1));
1234   length.load_item_force(cc->at(2));
1235   log2ArrayIndexScale.load_item_force(cc->at(3));
1236 
1237   __ call_runtime_leaf(StubRoutines::vectorizedMismatch(), getThreadTemp(), result_reg, cc->args());
1238   __ move(result_reg, result);
1239 }
1240 
1241 void LIRGenerator::do_Convert(Convert* x) {
1242 #ifdef _LP64
1243   LIRItem value(x->value(), this);
1244   value.load_item();
1245   LIR_Opr input = value.result();
1246   LIR_Opr result = rlock(x);
1247   __ convert(x->op(), input, result);
1248   assert(result->is_virtual(), "result must be virtual register");
1249   set_result(x, result);
1250 #else
1251   // flags that vary for the different operations and different SSE-settings
1252   bool fixed_input = false, fixed_result = false, round_result = false, needs_stub = false;
1253 
1254   switch (x->op()) {
1255     case Bytecodes::_i2l: // fall through
1256     case Bytecodes::_l2i: // fall through
1257     case Bytecodes::_i2b: // fall through
1258     case Bytecodes::_i2c: // fall through
1259     case Bytecodes::_i2s: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = false; break;
1260 
1261     case Bytecodes::_f2d: fixed_input = UseSSE == 1; fixed_result = false;       round_result = false;      needs_stub = false; break;
1262     case Bytecodes::_d2f: fixed_input = false;       fixed_result = UseSSE == 1; round_result = UseSSE < 1; needs_stub = false; break;
1263     case Bytecodes::_i2f: fixed_input = false;       fixed_result = false;       round_result = UseSSE < 1; needs_stub = false; break;
1264     case Bytecodes::_i2d: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = false; break;
1265     case Bytecodes::_f2i: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = true;  break;
1266     case Bytecodes::_d2i: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = true;  break;
1267     case Bytecodes::_l2f: fixed_input = false;       fixed_result = UseSSE >= 1; round_result = UseSSE < 1; needs_stub = false; break;
1268     case Bytecodes::_l2d: fixed_input = false;       fixed_result = UseSSE >= 2; round_result = UseSSE < 2; needs_stub = false; break;
1269     case Bytecodes::_f2l: fixed_input = true;        fixed_result = true;        round_result = false;      needs_stub = false; break;
1270     case Bytecodes::_d2l: fixed_input = true;        fixed_result = true;        round_result = false;      needs_stub = false; break;
1271     default: ShouldNotReachHere();
1272   }
1273 
1274   LIRItem value(x->value(), this);
1275   value.load_item();
1276   LIR_Opr input = value.result();
1277   LIR_Opr result = rlock(x);
1278 
1279   // arguments of lir_convert
1280   LIR_Opr conv_input = input;
1281   LIR_Opr conv_result = result;
1282   ConversionStub* stub = nullptr;
1283 
1284   if (fixed_input) {
1285     conv_input = fixed_register_for(input->type());
1286     __ move(input, conv_input);
1287   }
1288 
1289   assert(fixed_result == false || round_result == false, "cannot set both");
1290   if (fixed_result) {
1291     conv_result = fixed_register_for(result->type());
1292   } else if (round_result) {
1293     result = new_register(result->type());
1294     set_vreg_flag(result, must_start_in_memory);
1295   }
1296 
1297   if (needs_stub) {
1298     stub = new ConversionStub(x->op(), conv_input, conv_result);
1299   }
1300 
1301   __ convert(x->op(), conv_input, conv_result, stub);
1302 
1303   if (result != conv_result) {
1304     __ move(conv_result, result);
1305   }
1306 
1307   assert(result->is_virtual(), "result must be virtual register");
1308   set_result(x, result);
1309 #endif // _LP64
1310 }
1311 
1312 
1313 void LIRGenerator::do_NewInstance(NewInstance* x) {
1314   print_if_not_loaded(x);
1315 
1316   CodeEmitInfo* info = state_for(x, x->needs_state_before() ? x->state_before() : x->state());
1317   LIR_Opr reg = result_register_for(x->type());
1318   new_instance(reg, x->klass(), x->is_unresolved(),
1319                !x->is_unresolved() && x->klass()->is_inlinetype(),
1320                FrameMap::rcx_oop_opr,
1321                FrameMap::rdi_oop_opr,
1322                FrameMap::rsi_oop_opr,
1323                LIR_OprFact::illegalOpr,
1324                FrameMap::rdx_metadata_opr, info);
1325   LIR_Opr result = rlock_result(x);
1326   __ move(reg, result);
1327 }
1328 
1329 void LIRGenerator::do_NewTypeArray(NewTypeArray* x) {
1330   CodeEmitInfo* info = nullptr;
1331   if (x->state_before() != nullptr && x->state_before()->force_reexecute()) {
1332     info = state_for(x, x->state_before());
1333     info->set_force_reexecute();
1334   } else {
1335     info = state_for(x, x->state());
1336   }
1337 
1338   LIRItem length(x->length(), this);
1339   length.load_item_force(FrameMap::rbx_opr);
1340 
1341   LIR_Opr reg = result_register_for(x->type());
1342   LIR_Opr tmp1 = FrameMap::rcx_oop_opr;
1343   LIR_Opr tmp2 = FrameMap::rsi_oop_opr;
1344   LIR_Opr tmp3 = FrameMap::rdi_oop_opr;
1345   LIR_Opr tmp4 = reg;
1346   LIR_Opr klass_reg = FrameMap::rdx_metadata_opr;
1347   LIR_Opr len = length.result();
1348   BasicType elem_type = x->elt_type();
1349 
1350   __ metadata2reg(ciTypeArrayKlass::make(elem_type)->constant_encoding(), klass_reg);
1351 
1352   CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info);
1353   __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path, x->zero_array());
1354 
1355   LIR_Opr result = rlock_result(x);
1356   __ move(reg, result);
1357 }
1358 
1359 
1360 void LIRGenerator::do_NewObjectArray(NewObjectArray* x) {
1361   LIRItem length(x->length(), this);
1362   // in case of patching (i.e., object class is not yet loaded), we need to reexecute the instruction
1363   // and therefore provide the state before the parameters have been consumed
1364   CodeEmitInfo* patching_info = nullptr;
1365   if (!x->klass()->is_loaded() || PatchALot) {
1366     patching_info =  state_for(x, x->state_before());
1367   }
1368 
1369   CodeEmitInfo* info = state_for(x, x->state());
1370 
1371   const LIR_Opr reg = result_register_for(x->type());
1372   LIR_Opr tmp1 = FrameMap::rcx_oop_opr;
1373   LIR_Opr tmp2 = FrameMap::rsi_oop_opr;
1374   LIR_Opr tmp3 = FrameMap::rdi_oop_opr;
1375   LIR_Opr tmp4 = reg;
1376   LIR_Opr klass_reg = FrameMap::rdx_metadata_opr;
1377 
1378   length.load_item_force(FrameMap::rbx_opr);
1379   LIR_Opr len = length.result();
1380 
1381   ciKlass* obj = (ciKlass*) x->exact_type();
1382   CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info, x->is_null_free());
1383   if (obj == ciEnv::unloaded_ciobjarrayklass()) {
1384     BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error");
1385   }
1386   klass2reg_with_patching(klass_reg, obj, patching_info);
1387   __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path, true, x->is_null_free());
1388 
1389   LIR_Opr result = rlock_result(x);
1390   __ move(reg, result);
1391 }
1392 
1393 
1394 void LIRGenerator::do_NewMultiArray(NewMultiArray* x) {
1395   Values* dims = x->dims();
1396   int i = dims->length();
1397   LIRItemList* items = new LIRItemList(i, i, nullptr);
1398   while (i-- > 0) {
1399     LIRItem* size = new LIRItem(dims->at(i), this);
1400     items->at_put(i, size);
1401   }
1402 
1403   // Evaluate state_for early since it may emit code.
1404   CodeEmitInfo* patching_info = nullptr;
1405   if (!x->klass()->is_loaded() || PatchALot) {
1406     patching_info = state_for(x, x->state_before());
1407 
1408     // Cannot re-use same xhandlers for multiple CodeEmitInfos, so
1409     // clone all handlers (NOTE: Usually this is handled transparently
1410     // by the CodeEmitInfo cloning logic in CodeStub constructors but
1411     // is done explicitly here because a stub isn't being used).
1412     x->set_exception_handlers(new XHandlers(x->exception_handlers()));
1413   }
1414   CodeEmitInfo* info = state_for(x, x->state());
1415 
1416   i = dims->length();
1417   while (i-- > 0) {
1418     LIRItem* size = items->at(i);
1419     size->load_nonconstant();
1420 
1421     store_stack_parameter(size->result(), in_ByteSize(i*4));
1422   }
1423 
1424   LIR_Opr klass_reg = FrameMap::rax_metadata_opr;
1425   klass2reg_with_patching(klass_reg, x->klass(), patching_info);
1426 
1427   LIR_Opr rank = FrameMap::rbx_opr;
1428   __ move(LIR_OprFact::intConst(x->rank()), rank);
1429   LIR_Opr varargs = FrameMap::rcx_opr;
1430   __ move(FrameMap::rsp_opr, varargs);
1431   LIR_OprList* args = new LIR_OprList(3);
1432   args->append(klass_reg);
1433   args->append(rank);
1434   args->append(varargs);
1435   LIR_Opr reg = result_register_for(x->type());
1436   __ call_runtime(Runtime1::entry_for(C1StubId::new_multi_array_id),
1437                   LIR_OprFact::illegalOpr,
1438                   reg, args, info);
1439 
1440   LIR_Opr result = rlock_result(x);
1441   __ move(reg, result);
1442 }
1443 
1444 
1445 void LIRGenerator::do_BlockBegin(BlockBegin* x) {
1446   // nothing to do for now
1447 }
1448 
1449 
1450 void LIRGenerator::do_CheckCast(CheckCast* x) {
1451   LIRItem obj(x->obj(), this);
1452 
1453   CodeEmitInfo* patching_info = nullptr;
1454   if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check() && !x->is_invokespecial_receiver_check())) {
1455     // must do this before locking the destination register as an oop register,
1456     // and before the obj is loaded (the latter is for deoptimization)
1457     patching_info = state_for(x, x->state_before());
1458   }
1459   obj.load_item();
1460 
1461   // info for exceptions
1462   CodeEmitInfo* info_for_exception =
1463       (x->needs_exception_state() ? state_for(x) :
1464                                     state_for(x, x->state_before(), true /*ignore_xhandler*/));
1465 
1466   if (x->is_null_free()) {
1467     __ null_check(obj.result(), new CodeEmitInfo(info_for_exception));
1468   }
1469 
1470   CodeStub* stub;
1471   if (x->is_incompatible_class_change_check()) {
1472     assert(patching_info == nullptr, "can't patch this");
1473     stub = new SimpleExceptionStub(C1StubId::throw_incompatible_class_change_error_id, LIR_OprFact::illegalOpr, info_for_exception);
1474   } else if (x->is_invokespecial_receiver_check()) {
1475     assert(patching_info == nullptr, "can't patch this");
1476     stub = new DeoptimizeStub(info_for_exception, Deoptimization::Reason_class_check, Deoptimization::Action_none);
1477   } else {
1478     stub = new SimpleExceptionStub(C1StubId::throw_class_cast_exception_id, obj.result(), info_for_exception);
1479   }
1480   LIR_Opr reg = rlock_result(x);
1481   LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
1482   if (!x->klass()->is_loaded() || UseCompressedClassPointers) {
1483     tmp3 = new_register(objectType);
1484   }
1485   __ checkcast(reg, obj.result(), x->klass(),
1486                new_register(objectType), new_register(objectType), tmp3,
1487                x->direct_compare(), info_for_exception, patching_info, stub,
1488                x->profiled_method(), x->profiled_bci(), x->is_null_free());
1489 }
1490 
1491 
1492 void LIRGenerator::do_InstanceOf(InstanceOf* x) {
1493   LIRItem obj(x->obj(), this);
1494 
1495   // result and test object may not be in same register
1496   LIR_Opr reg = rlock_result(x);
1497   CodeEmitInfo* patching_info = nullptr;
1498   if ((!x->klass()->is_loaded() || PatchALot)) {
1499     // must do this before locking the destination register as an oop register
1500     patching_info = state_for(x, x->state_before());
1501   }
1502   obj.load_item();
1503   LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
1504   if (!x->klass()->is_loaded() || UseCompressedClassPointers) {
1505     tmp3 = new_register(objectType);
1506   }
1507   __ instanceof(reg, obj.result(), x->klass(),
1508                 new_register(objectType), new_register(objectType), tmp3,
1509                 x->direct_compare(), patching_info, x->profiled_method(), x->profiled_bci());
1510 }
1511 
1512 // Intrinsic for Class::isInstance
1513 address LIRGenerator::isInstance_entry() {
1514   return Runtime1::entry_for(C1StubId::is_instance_of_id);
1515 }
1516 
1517 
1518 void LIRGenerator::do_If(If* x) {
1519   assert(x->number_of_sux() == 2, "inconsistency");
1520   ValueTag tag = x->x()->type()->tag();
1521   bool is_safepoint = x->is_safepoint();
1522 
1523   If::Condition cond = x->cond();
1524 
1525   LIRItem xitem(x->x(), this);
1526   LIRItem yitem(x->y(), this);
1527   LIRItem* xin = &xitem;
1528   LIRItem* yin = &yitem;
1529 
1530   if (tag == longTag) {
1531     // for longs, only conditions "eql", "neq", "lss", "geq" are valid;
1532     // mirror for other conditions
1533     if (cond == If::gtr || cond == If::leq) {
1534       cond = Instruction::mirror(cond);
1535       xin = &yitem;
1536       yin = &xitem;
1537     }
1538     xin->set_destroys_register();
1539   }
1540   xin->load_item();
1541   if (tag == longTag && yin->is_constant() && yin->get_jlong_constant() == 0 && (cond == If::eql || cond == If::neq)) {
1542     // inline long zero
1543     yin->dont_load_item();
1544   } else if (tag == longTag || tag == floatTag || tag == doubleTag || x->substitutability_check()) {
1545     // longs cannot handle constants at right side
1546     yin->load_item();
1547   } else {
1548     yin->dont_load_item();
1549   }
1550 
1551   LIR_Opr left = xin->result();
1552   LIR_Opr right = yin->result();
1553 
1554   set_no_result(x);
1555 
1556   // add safepoint before generating condition code so it can be recomputed
1557   if (x->is_safepoint()) {
1558     // increment backedge counter if needed
1559     increment_backedge_counter_conditionally(lir_cond(cond), left, right, state_for(x, x->state_before()),
1560         x->tsux()->bci(), x->fsux()->bci(), x->profiled_bci());
1561     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
1562   }
1563 
1564   if (x->substitutability_check()) {
1565     substitutability_check(x, *xin, *yin);
1566   } else {
1567     __ cmp(lir_cond(cond), left, right);
1568   }
1569   // Generate branch profiling. Profiling code doesn't kill flags.
1570   profile_branch(x, cond);
1571   move_to_phi(x->state());
1572   if (x->x()->type()->is_float_kind()) {
1573     __ branch(lir_cond(cond), x->tsux(), x->usux());
1574   } else {
1575     __ branch(lir_cond(cond), x->tsux());
1576   }
1577   assert(x->default_sux() == x->fsux(), "wrong destination above");
1578   __ jump(x->default_sux());
1579 }
1580 
1581 
1582 LIR_Opr LIRGenerator::getThreadPointer() {
1583 #ifdef _LP64
1584   return FrameMap::as_pointer_opr(r15_thread);
1585 #else
1586   LIR_Opr result = new_register(T_INT);
1587   __ get_thread(result);
1588   return result;
1589 #endif //
1590 }
1591 
1592 void LIRGenerator::trace_block_entry(BlockBegin* block) {
1593   store_stack_parameter(LIR_OprFact::intConst(block->block_id()), in_ByteSize(0));
1594   LIR_OprList* args = new LIR_OprList();
1595   address func = CAST_FROM_FN_PTR(address, Runtime1::trace_block_entry);
1596   __ call_runtime_leaf(func, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, args);
1597 }
1598 
1599 
1600 void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address,
1601                                         CodeEmitInfo* info) {
1602   if (address->type() == T_LONG) {
1603     address = new LIR_Address(address->base(),
1604                               address->index(), address->scale(),
1605                               address->disp(), T_DOUBLE);
1606     // Transfer the value atomically by using FP moves.  This means
1607     // the value has to be moved between CPU and FPU registers.  It
1608     // always has to be moved through spill slot since there's no
1609     // quick way to pack the value into an SSE register.
1610     LIR_Opr temp_double = new_register(T_DOUBLE);
1611     LIR_Opr spill = new_register(T_LONG);
1612     set_vreg_flag(spill, must_start_in_memory);
1613     __ move(value, spill);
1614     __ volatile_move(spill, temp_double, T_LONG);
1615     __ volatile_move(temp_double, LIR_OprFact::address(address), T_LONG, info);
1616   } else {
1617     __ store(value, address, info);
1618   }
1619 }
1620 
1621 void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result,
1622                                        CodeEmitInfo* info) {
1623   if (address->type() == T_LONG) {
1624     address = new LIR_Address(address->base(),
1625                               address->index(), address->scale(),
1626                               address->disp(), T_DOUBLE);
1627     // Transfer the value atomically by using FP moves.  This means
1628     // the value has to be moved between CPU and FPU registers.  In
1629     // SSE0 and SSE1 mode it has to be moved through spill slot but in
1630     // SSE2+ mode it can be moved directly.
1631     LIR_Opr temp_double = new_register(T_DOUBLE);
1632     __ volatile_move(LIR_OprFact::address(address), temp_double, T_LONG, info);
1633     __ volatile_move(temp_double, result, T_LONG);
1634 #ifndef _LP64
1635     if (UseSSE < 2) {
1636       // no spill slot needed in SSE2 mode because xmm->cpu register move is possible
1637       set_vreg_flag(result, must_start_in_memory);
1638     }
1639 #endif // !LP64
1640   } else {
1641     __ load(address, result, info);
1642   }
1643 }