1 /* 2 * Copyright (c) 1999, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "c1/c1_MacroAssembler.hpp" 26 #include "c1/c1_Runtime1.hpp" 27 #include "code/compiledIC.hpp" 28 #include "compiler/compilerDefinitions.inline.hpp" 29 #include "gc/shared/barrierSet.hpp" 30 #include "gc/shared/barrierSetAssembler.hpp" 31 #include "gc/shared/collectedHeap.hpp" 32 #include "gc/shared/tlab_globals.hpp" 33 #include "interpreter/interpreter.hpp" 34 #include "oops/arrayOop.hpp" 35 #include "oops/markWord.hpp" 36 #include "runtime/basicLock.hpp" 37 #include "runtime/frame.inline.hpp" 38 #include "runtime/globals.hpp" 39 #include "runtime/os.hpp" 40 #include "runtime/sharedRuntime.hpp" 41 #include "runtime/stubRoutines.hpp" 42 #include "utilities/checkedCast.hpp" 43 #include "utilities/globalDefinitions.hpp" 44 45 int C1_MacroAssembler::lock_object(Register hdr, Register obj, Register disp_hdr, Register tmp, Label& slow_case) { 46 const int aligned_mask = BytesPerWord -1; 47 const int hdr_offset = oopDesc::mark_offset_in_bytes(); 48 assert(hdr == rax, "hdr must be rax, for the cmpxchg instruction"); 49 assert_different_registers(hdr, obj, disp_hdr, tmp); 50 int null_check_offset = -1; 51 52 verify_oop(obj); 53 54 // save object being locked into the BasicObjectLock 55 movptr(Address(disp_hdr, BasicObjectLock::obj_offset()), obj); 56 57 null_check_offset = offset(); 58 59 if (LockingMode == LM_LIGHTWEIGHT) { 60 lightweight_lock(disp_hdr, obj, hdr, tmp, slow_case); 61 } else if (LockingMode == LM_LEGACY) { 62 Label done; 63 64 if (DiagnoseSyncOnValueBasedClasses != 0) { 65 load_klass(hdr, obj, rscratch1); 66 testb(Address(hdr, Klass::misc_flags_offset()), KlassFlags::_misc_is_value_based_class); 67 jcc(Assembler::notZero, slow_case); 68 } 69 70 // Load object header 71 movptr(hdr, Address(obj, hdr_offset)); 72 // and mark it as unlocked 73 orptr(hdr, markWord::unlocked_value); 74 if (EnableValhalla) { 75 // Mask inline_type bit such that we go to the slow path if object is an inline type 76 andptr(hdr, ~((int) markWord::inline_type_bit_in_place)); 77 } 78 // save unlocked object header into the displaced header location on the stack 79 movptr(Address(disp_hdr, 0), hdr); 80 // test if object header is still the same (i.e. unlocked), and if so, store the 81 // displaced header address in the object header - if it is not the same, get the 82 // object header instead 83 MacroAssembler::lock(); // must be immediately before cmpxchg! 84 cmpxchgptr(disp_hdr, Address(obj, hdr_offset)); 85 // if the object header was the same, we're done 86 jcc(Assembler::equal, done); 87 // if the object header was not the same, it is now in the hdr register 88 // => test if it is a stack pointer into the same stack (recursive locking), i.e.: 89 // 90 // 1) (hdr & aligned_mask) == 0 91 // 2) rsp <= hdr 92 // 3) hdr <= rsp + page_size 93 // 94 // these 3 tests can be done by evaluating the following expression: 95 // 96 // (hdr - rsp) & (aligned_mask - page_size) 97 // 98 // assuming both the stack pointer and page_size have their least 99 // significant 2 bits cleared and page_size is a power of 2 100 subptr(hdr, rsp); 101 andptr(hdr, aligned_mask - (int)os::vm_page_size()); 102 // for recursive locking, the result is zero => save it in the displaced header 103 // location (null in the displaced hdr location indicates recursive locking) 104 movptr(Address(disp_hdr, 0), hdr); 105 // otherwise we don't care about the result and handle locking via runtime call 106 jcc(Assembler::notZero, slow_case); 107 // done 108 bind(done); 109 inc_held_monitor_count(); 110 } 111 112 return null_check_offset; 113 } 114 115 void C1_MacroAssembler::unlock_object(Register hdr, Register obj, Register disp_hdr, Label& slow_case) { 116 const int aligned_mask = BytesPerWord -1; 117 const int hdr_offset = oopDesc::mark_offset_in_bytes(); 118 assert(disp_hdr == rax, "disp_hdr must be rax, for the cmpxchg instruction"); 119 assert(hdr != obj && hdr != disp_hdr && obj != disp_hdr, "registers must be different"); 120 Label done; 121 122 if (LockingMode != LM_LIGHTWEIGHT) { 123 // load displaced header 124 movptr(hdr, Address(disp_hdr, 0)); 125 // if the loaded hdr is null we had recursive locking 126 testptr(hdr, hdr); 127 // if we had recursive locking, we are done 128 jcc(Assembler::zero, done); 129 } 130 131 // load object 132 movptr(obj, Address(disp_hdr, BasicObjectLock::obj_offset())); 133 verify_oop(obj); 134 135 if (LockingMode == LM_LIGHTWEIGHT) { 136 lightweight_unlock(obj, disp_hdr, hdr, slow_case); 137 } else if (LockingMode == LM_LEGACY) { 138 // test if object header is pointing to the displaced header, and if so, restore 139 // the displaced header in the object - if the object header is not pointing to 140 // the displaced header, get the object header instead 141 MacroAssembler::lock(); // must be immediately before cmpxchg! 142 cmpxchgptr(hdr, Address(obj, hdr_offset)); 143 // if the object header was not pointing to the displaced header, 144 // we do unlocking via runtime call 145 jcc(Assembler::notEqual, slow_case); 146 // done 147 bind(done); 148 dec_held_monitor_count(); 149 } 150 } 151 152 153 // Defines obj, preserves var_size_in_bytes 154 void C1_MacroAssembler::try_allocate(Register obj, Register var_size_in_bytes, int con_size_in_bytes, Register t1, Register t2, Label& slow_case) { 155 if (UseTLAB) { 156 tlab_allocate(obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case); 157 } else { 158 jmp(slow_case); 159 } 160 } 161 162 163 void C1_MacroAssembler::initialize_header(Register obj, Register klass, Register len, Register t1, Register t2) { 164 assert_different_registers(obj, klass, len, t1, t2); 165 if (UseCompactObjectHeaders || EnableValhalla) { 166 movptr(t1, Address(klass, Klass::prototype_header_offset())); 167 movptr(Address(obj, oopDesc::mark_offset_in_bytes()), t1); 168 } else { 169 movptr(Address(obj, oopDesc::mark_offset_in_bytes()), checked_cast<int32_t>(markWord::prototype().value())); 170 } 171 if (UseCompressedClassPointers) { // Take care not to kill klass 172 movptr(t1, klass); 173 encode_klass_not_null(t1, rscratch1); 174 movl(Address(obj, oopDesc::klass_offset_in_bytes()), t1); 175 } else if (!UseCompactObjectHeaders) { 176 movptr(Address(obj, oopDesc::klass_offset_in_bytes()), klass); 177 } 178 179 if (len->is_valid()) { 180 movl(Address(obj, arrayOopDesc::length_offset_in_bytes()), len); 181 int base_offset = arrayOopDesc::length_offset_in_bytes() + BytesPerInt; 182 if (!is_aligned(base_offset, BytesPerWord)) { 183 assert(is_aligned(base_offset, BytesPerInt), "must be 4-byte aligned"); 184 // Clear gap/first 4 bytes following the length field. 185 xorl(t1, t1); 186 movl(Address(obj, base_offset), t1); 187 } 188 } else if (UseCompressedClassPointers && !UseCompactObjectHeaders) { 189 xorptr(t1, t1); 190 store_klass_gap(obj, t1); 191 } 192 } 193 194 195 // preserves obj, destroys len_in_bytes 196 void C1_MacroAssembler::initialize_body(Register obj, Register len_in_bytes, int hdr_size_in_bytes, Register t1) { 197 assert(hdr_size_in_bytes >= 0, "header size must be positive or 0"); 198 Label done; 199 200 // len_in_bytes is positive and ptr sized 201 subptr(len_in_bytes, hdr_size_in_bytes); 202 zero_memory(obj, len_in_bytes, hdr_size_in_bytes, t1); 203 bind(done); 204 } 205 206 207 void C1_MacroAssembler::allocate_object(Register obj, Register t1, Register t2, int header_size, int object_size, Register klass, Label& slow_case) { 208 assert(obj == rax, "obj must be in rax, for cmpxchg"); 209 assert_different_registers(obj, t1, t2); // XXX really? 210 assert(header_size >= 0 && object_size >= header_size, "illegal sizes"); 211 212 try_allocate(obj, noreg, object_size * BytesPerWord, t1, t2, slow_case); 213 214 initialize_object(obj, klass, noreg, object_size * HeapWordSize, t1, t2, UseTLAB); 215 } 216 217 void C1_MacroAssembler::initialize_object(Register obj, Register klass, Register var_size_in_bytes, int con_size_in_bytes, Register t1, Register t2, bool is_tlab_allocated) { 218 assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, 219 "con_size_in_bytes is not multiple of alignment"); 220 const int hdr_size_in_bytes = instanceOopDesc::header_size() * HeapWordSize; 221 if (UseCompactObjectHeaders) { 222 assert(hdr_size_in_bytes == 8, "check object headers size"); 223 } 224 initialize_header(obj, klass, noreg, t1, t2); 225 226 if (!(UseTLAB && ZeroTLAB && is_tlab_allocated)) { 227 // clear rest of allocated space 228 const Register t1_zero = t1; 229 const Register index = t2; 230 const int threshold = 6 * BytesPerWord; // approximate break even point for code size (see comments below) 231 if (var_size_in_bytes != noreg) { 232 mov(index, var_size_in_bytes); 233 initialize_body(obj, index, hdr_size_in_bytes, t1_zero); 234 } else if (con_size_in_bytes <= threshold) { 235 // use explicit null stores 236 // code size = 2 + 3*n bytes (n = number of fields to clear) 237 xorptr(t1_zero, t1_zero); // use t1_zero reg to clear memory (shorter code) 238 for (int i = hdr_size_in_bytes; i < con_size_in_bytes; i += BytesPerWord) 239 movptr(Address(obj, i), t1_zero); 240 } else if (con_size_in_bytes > hdr_size_in_bytes) { 241 // use loop to null out the fields 242 // code size = 16 bytes for even n (n = number of fields to clear) 243 // initialize last object field first if odd number of fields 244 xorptr(t1_zero, t1_zero); // use t1_zero reg to clear memory (shorter code) 245 movptr(index, (con_size_in_bytes - hdr_size_in_bytes) >> 3); 246 // initialize last object field if constant size is odd 247 if (((con_size_in_bytes - hdr_size_in_bytes) & 4) != 0) 248 movptr(Address(obj, con_size_in_bytes - (1*BytesPerWord)), t1_zero); 249 // initialize remaining object fields: rdx is a multiple of 2 250 { Label loop; 251 bind(loop); 252 movptr(Address(obj, index, Address::times_8, hdr_size_in_bytes - (1*BytesPerWord)), 253 t1_zero); 254 decrement(index); 255 jcc(Assembler::notZero, loop); 256 } 257 } 258 } 259 260 if (CURRENT_ENV->dtrace_alloc_probes()) { 261 assert(obj == rax, "must be"); 262 call(RuntimeAddress(Runtime1::entry_for(C1StubId::dtrace_object_alloc_id))); 263 } 264 265 verify_oop(obj); 266 } 267 268 void C1_MacroAssembler::allocate_array(Register obj, Register len, Register t1, Register t2, int base_offset_in_bytes, Address::ScaleFactor f, Register klass, Label& slow_case, bool zero_array) { 269 assert(obj == rax, "obj must be in rax, for cmpxchg"); 270 assert_different_registers(obj, len, t1, t2, klass); 271 272 // determine alignment mask 273 assert(!(BytesPerWord & 1), "must be a multiple of 2 for masking code to work"); 274 275 // check for negative or excessive length 276 cmpptr(len, checked_cast<int32_t>(max_array_allocation_length)); 277 jcc(Assembler::above, slow_case); 278 279 const Register arr_size = t2; // okay to be the same 280 // align object end 281 movptr(arr_size, base_offset_in_bytes + MinObjAlignmentInBytesMask); 282 lea(arr_size, Address(arr_size, len, f)); 283 andptr(arr_size, ~MinObjAlignmentInBytesMask); 284 285 try_allocate(obj, arr_size, 0, t1, t2, slow_case); 286 287 initialize_header(obj, klass, len, t1, t2); 288 289 // clear rest of allocated space 290 if (zero_array) { 291 const Register len_zero = len; 292 // Align-up to word boundary, because we clear the 4 bytes potentially 293 // following the length field in initialize_header(). 294 int base_offset = align_up(base_offset_in_bytes, BytesPerWord); 295 initialize_body(obj, arr_size, base_offset, len_zero); 296 } 297 298 if (CURRENT_ENV->dtrace_alloc_probes()) { 299 assert(obj == rax, "must be"); 300 call(RuntimeAddress(Runtime1::entry_for(C1StubId::dtrace_object_alloc_id))); 301 } 302 303 verify_oop(obj); 304 } 305 306 void C1_MacroAssembler::build_frame_helper(int frame_size_in_bytes, int sp_offset_for_orig_pc, int sp_inc, bool reset_orig_pc, bool needs_stack_repair) { 307 push(rbp); 308 if (PreserveFramePointer) { 309 mov(rbp, rsp); 310 } 311 decrement(rsp, frame_size_in_bytes); 312 313 if (needs_stack_repair) { 314 // Save stack increment (also account for fixed framesize and rbp) 315 assert((sp_inc & (StackAlignmentInBytes-1)) == 0, "stack increment not aligned"); 316 int real_frame_size = sp_inc + frame_size_in_bytes + wordSize; 317 movptr(Address(rsp, frame_size_in_bytes - wordSize), real_frame_size); 318 } 319 if (reset_orig_pc) { 320 // Zero orig_pc to detect deoptimization during buffering in the entry points 321 movptr(Address(rsp, sp_offset_for_orig_pc), 0); 322 } 323 } 324 325 void C1_MacroAssembler::build_frame(int frame_size_in_bytes, int bang_size_in_bytes, int sp_offset_for_orig_pc, bool needs_stack_repair, bool has_scalarized_args, Label* verified_inline_entry_label) { 326 // Make sure there is enough stack space for this method's activation. 327 // Note that we do this before doing an enter(). This matches the 328 // ordering of C2's stack overflow check / rsp decrement and allows 329 // the SharedRuntime stack overflow handling to be consistent 330 // between the two compilers. 331 assert(bang_size_in_bytes >= frame_size_in_bytes, "stack bang size incorrect"); 332 generate_stack_overflow_check(bang_size_in_bytes); 333 334 build_frame_helper(frame_size_in_bytes, sp_offset_for_orig_pc, 0, has_scalarized_args, needs_stack_repair); 335 336 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 337 // C1 code is not hot enough to micro optimize the nmethod entry barrier with an out-of-line stub 338 bs->nmethod_entry_barrier(this, nullptr /* slow_path */, nullptr /* continuation */); 339 340 if (verified_inline_entry_label != nullptr) { 341 // Jump here from the scalarized entry points that already created the frame. 342 bind(*verified_inline_entry_label); 343 } 344 } 345 346 void C1_MacroAssembler::verified_entry(bool breakAtEntry) { 347 if (breakAtEntry) { 348 // Verified Entry first instruction should be 5 bytes long for correct 349 // patching by patch_verified_entry(). 350 // 351 // Breakpoint has one byte first instruction. 352 // Also first instruction will be one byte "push(rbp)" if stack banging 353 // code is not generated (see build_frame() above). 354 // For all these cases generate long instruction first. 355 fat_nop(); 356 } 357 if (breakAtEntry) int3(); 358 // build frame 359 } 360 361 int C1_MacroAssembler::scalarized_entry(const CompiledEntrySignature* ces, int frame_size_in_bytes, int bang_size_in_bytes, int sp_offset_for_orig_pc, Label& verified_inline_entry_label, bool is_inline_ro_entry) { 362 assert(InlineTypePassFieldsAsArgs, "sanity"); 363 // Make sure there is enough stack space for this method's activation. 364 assert(bang_size_in_bytes >= frame_size_in_bytes, "stack bang size incorrect"); 365 generate_stack_overflow_check(bang_size_in_bytes); 366 367 GrowableArray<SigEntry>* sig = ces->sig(); 368 GrowableArray<SigEntry>* sig_cc = is_inline_ro_entry ? ces->sig_cc_ro() : ces->sig_cc(); 369 VMRegPair* regs = ces->regs(); 370 VMRegPair* regs_cc = is_inline_ro_entry ? ces->regs_cc_ro() : ces->regs_cc(); 371 int args_on_stack = ces->args_on_stack(); 372 int args_on_stack_cc = is_inline_ro_entry ? ces->args_on_stack_cc_ro() : ces->args_on_stack_cc(); 373 374 assert(sig->length() <= sig_cc->length(), "Zero-sized inline class not allowed!"); 375 BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, sig_cc->length()); 376 int args_passed = sig->length(); 377 int args_passed_cc = SigEntry::fill_sig_bt(sig_cc, sig_bt); 378 379 // Create a temp frame so we can call into the runtime. It must be properly set up to accommodate GC. 380 build_frame_helper(frame_size_in_bytes, sp_offset_for_orig_pc, 0, true, ces->c1_needs_stack_repair()); 381 382 // The runtime call might safepoint, make sure nmethod entry barrier is executed 383 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 384 // C1 code is not hot enough to micro optimize the nmethod entry barrier with an out-of-line stub 385 bs->nmethod_entry_barrier(this, nullptr /* slow_path */, nullptr /* continuation */); 386 387 // FIXME -- call runtime only if we cannot in-line allocate all the incoming inline type args. 388 movptr(rbx, (intptr_t)(ces->method())); 389 if (is_inline_ro_entry) { 390 call(RuntimeAddress(Runtime1::entry_for(C1StubId::buffer_inline_args_no_receiver_id))); 391 } else { 392 call(RuntimeAddress(Runtime1::entry_for(C1StubId::buffer_inline_args_id))); 393 } 394 int rt_call_offset = offset(); 395 396 // Remove the temp frame 397 addptr(rsp, frame_size_in_bytes); 398 pop(rbp); 399 400 // Check if we need to extend the stack for packing 401 int sp_inc = 0; 402 if (args_on_stack > args_on_stack_cc) { 403 sp_inc = extend_stack_for_inline_args(args_on_stack); 404 } 405 406 shuffle_inline_args(true, is_inline_ro_entry, sig_cc, 407 args_passed_cc, args_on_stack_cc, regs_cc, // from 408 args_passed, args_on_stack, regs, // to 409 sp_inc, rax); 410 411 // Create the real frame. Below jump will then skip over the stack banging and frame 412 // setup code in the verified_inline_entry (which has a different real_frame_size). 413 build_frame_helper(frame_size_in_bytes, sp_offset_for_orig_pc, sp_inc, false, ces->c1_needs_stack_repair()); 414 415 jmp(verified_inline_entry_label); 416 return rt_call_offset; 417 } 418 419 void C1_MacroAssembler::load_parameter(int offset_in_words, Register reg) { 420 // rbp, + 0: link 421 // + 1: return address 422 // + 2: argument with offset 0 423 // + 3: argument with offset 1 424 // + 4: ... 425 426 movptr(reg, Address(rbp, (offset_in_words + 2) * BytesPerWord)); 427 } 428 429 #ifndef PRODUCT 430 431 void C1_MacroAssembler::verify_stack_oop(int stack_offset) { 432 if (!VerifyOops) return; 433 verify_oop_addr(Address(rsp, stack_offset)); 434 } 435 436 void C1_MacroAssembler::verify_not_null_oop(Register r) { 437 if (!VerifyOops) return; 438 Label not_null; 439 testptr(r, r); 440 jcc(Assembler::notZero, not_null); 441 stop("non-null oop required"); 442 bind(not_null); 443 verify_oop(r); 444 } 445 446 void C1_MacroAssembler::invalidate_registers(bool inv_rax, bool inv_rbx, bool inv_rcx, bool inv_rdx, bool inv_rsi, bool inv_rdi) { 447 #ifdef ASSERT 448 if (inv_rax) movptr(rax, 0xDEAD); 449 if (inv_rbx) movptr(rbx, 0xDEAD); 450 if (inv_rcx) movptr(rcx, 0xDEAD); 451 if (inv_rdx) movptr(rdx, 0xDEAD); 452 if (inv_rsi) movptr(rsi, 0xDEAD); 453 if (inv_rdi) movptr(rdi, 0xDEAD); 454 #endif 455 } 456 457 #endif // ifndef PRODUCT