1 /* 2 * Copyright (c) 1999, 2022, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/assembler.hpp" 27 #include "c1/c1_Defs.hpp" 28 #include "c1/c1_FrameMap.hpp" 29 #include "c1/c1_MacroAssembler.hpp" 30 #include "c1/c1_Runtime1.hpp" 31 #include "ci/ciUtilities.hpp" 32 #include "compiler/compilerDefinitions.inline.hpp" 33 #include "compiler/oopMap.hpp" 34 #include "gc/shared/cardTable.hpp" 35 #include "gc/shared/cardTableBarrierSet.hpp" 36 #include "gc/shared/collectedHeap.hpp" 37 #include "gc/shared/tlab_globals.hpp" 38 #include "interpreter/interpreter.hpp" 39 #include "memory/universe.hpp" 40 #include "nativeInst_x86.hpp" 41 #include "oops/compiledICHolder.hpp" 42 #include "oops/oop.inline.hpp" 43 #include "prims/jvmtiExport.hpp" 44 #include "register_x86.hpp" 45 #include "runtime/sharedRuntime.hpp" 46 #include "runtime/signature.hpp" 47 #include "runtime/stubRoutines.hpp" 48 #include "runtime/vframeArray.hpp" 49 #include "utilities/macros.hpp" 50 #include "vmreg_x86.inline.hpp" 51 52 // Implementation of StubAssembler 53 54 int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, int args_size) { 55 // setup registers 56 const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread); // is callee-saved register (Visual C++ calling conventions) 57 assert(!(oop_result1->is_valid() || metadata_result->is_valid()) || oop_result1 != metadata_result, "registers must be different"); 58 assert(oop_result1 != thread && metadata_result != thread, "registers must be different"); 59 assert(args_size >= 0, "illegal args_size"); 60 bool align_stack = false; 61 #ifdef _LP64 62 // At a method handle call, the stack may not be properly aligned 63 // when returning with an exception. 64 align_stack = (stub_id() == Runtime1::handle_exception_from_callee_id); 65 #endif 66 67 #ifdef _LP64 68 mov(c_rarg0, thread); 69 set_num_rt_args(0); // Nothing on stack 70 #else 71 set_num_rt_args(1 + args_size); 72 73 // push java thread (becomes first argument of C function) 74 get_thread(thread); 75 push(thread); 76 #endif // _LP64 77 78 int call_offset = -1; 79 if (!align_stack) { 80 set_last_Java_frame(thread, noreg, rbp, NULL, rscratch1); 81 } else { 82 address the_pc = pc(); 83 call_offset = offset(); 84 set_last_Java_frame(thread, noreg, rbp, the_pc, rscratch1); 85 andptr(rsp, -(StackAlignmentInBytes)); // Align stack 86 } 87 88 // do the call 89 call(RuntimeAddress(entry)); 90 if (!align_stack) { 91 call_offset = offset(); 92 } 93 // verify callee-saved register 94 #ifdef ASSERT 95 guarantee(thread != rax, "change this code"); 96 push(rax); 97 { Label L; 98 get_thread(rax); 99 cmpptr(thread, rax); 100 jcc(Assembler::equal, L); 101 int3(); 102 stop("StubAssembler::call_RT: rdi not callee saved?"); 103 bind(L); 104 } 105 pop(rax); 106 #endif 107 reset_last_Java_frame(thread, true); 108 109 // discard thread and arguments 110 NOT_LP64(addptr(rsp, num_rt_args()*BytesPerWord)); 111 112 // check for pending exceptions 113 { Label L; 114 cmpptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD); 115 jcc(Assembler::equal, L); 116 // exception pending => remove activation and forward to exception handler 117 movptr(rax, Address(thread, Thread::pending_exception_offset())); 118 // make sure that the vm_results are cleared 119 if (oop_result1->is_valid()) { 120 movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD); 121 } 122 if (metadata_result->is_valid()) { 123 movptr(Address(thread, JavaThread::vm_result_2_offset()), NULL_WORD); 124 } 125 if (frame_size() == no_frame_size) { 126 leave(); 127 jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 128 } else if (_stub_id == Runtime1::forward_exception_id) { 129 should_not_reach_here(); 130 } else { 131 jump(RuntimeAddress(Runtime1::entry_for(Runtime1::forward_exception_id))); 132 } 133 bind(L); 134 } 135 // get oop results if there are any and reset the values in the thread 136 if (oop_result1->is_valid()) { 137 get_vm_result(oop_result1, thread); 138 } 139 if (metadata_result->is_valid()) { 140 get_vm_result_2(metadata_result, thread); 141 } 142 143 assert(call_offset >= 0, "Should be set"); 144 return call_offset; 145 } 146 147 148 int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, Register arg1) { 149 #ifdef _LP64 150 mov(c_rarg1, arg1); 151 #else 152 push(arg1); 153 #endif // _LP64 154 return call_RT(oop_result1, metadata_result, entry, 1); 155 } 156 157 158 int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, Register arg1, Register arg2) { 159 #ifdef _LP64 160 if (c_rarg1 == arg2) { 161 if (c_rarg2 == arg1) { 162 xchgq(arg1, arg2); 163 } else { 164 mov(c_rarg2, arg2); 165 mov(c_rarg1, arg1); 166 } 167 } else { 168 mov(c_rarg1, arg1); 169 mov(c_rarg2, arg2); 170 } 171 #else 172 push(arg2); 173 push(arg1); 174 #endif // _LP64 175 return call_RT(oop_result1, metadata_result, entry, 2); 176 } 177 178 179 int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, Register arg1, Register arg2, Register arg3) { 180 #ifdef _LP64 181 // if there is any conflict use the stack 182 if (arg1 == c_rarg2 || arg1 == c_rarg3 || 183 arg2 == c_rarg1 || arg2 == c_rarg3 || 184 arg3 == c_rarg1 || arg3 == c_rarg2) { 185 push(arg3); 186 push(arg2); 187 push(arg1); 188 pop(c_rarg1); 189 pop(c_rarg2); 190 pop(c_rarg3); 191 } else { 192 mov(c_rarg1, arg1); 193 mov(c_rarg2, arg2); 194 mov(c_rarg3, arg3); 195 } 196 #else 197 push(arg3); 198 push(arg2); 199 push(arg1); 200 #endif // _LP64 201 return call_RT(oop_result1, metadata_result, entry, 3); 202 } 203 204 205 // Implementation of StubFrame 206 207 class StubFrame: public StackObj { 208 private: 209 StubAssembler* _sasm; 210 211 public: 212 StubFrame(StubAssembler* sasm, const char* name, bool must_gc_arguments); 213 void load_argument(int offset_in_words, Register reg); 214 215 ~StubFrame(); 216 }; 217 218 void StubAssembler::prologue(const char* name, bool must_gc_arguments) { 219 set_info(name, must_gc_arguments); 220 enter(); 221 } 222 223 void StubAssembler::epilogue() { 224 leave(); 225 ret(0); 226 } 227 228 #define __ _sasm-> 229 230 StubFrame::StubFrame(StubAssembler* sasm, const char* name, bool must_gc_arguments) { 231 _sasm = sasm; 232 __ prologue(name, must_gc_arguments); 233 } 234 235 // load parameters that were stored with LIR_Assembler::store_parameter 236 // Note: offsets for store_parameter and load_argument must match 237 void StubFrame::load_argument(int offset_in_words, Register reg) { 238 __ load_parameter(offset_in_words, reg); 239 } 240 241 242 StubFrame::~StubFrame() { 243 __ epilogue(); 244 } 245 246 #undef __ 247 248 249 // Implementation of Runtime1 250 251 const int float_regs_as_doubles_size_in_slots = pd_nof_fpu_regs_frame_map * 2; 252 const int xmm_regs_as_doubles_size_in_slots = FrameMap::nof_xmm_regs * 2; 253 254 // Stack layout for saving/restoring all the registers needed during a runtime 255 // call (this includes deoptimization) 256 // Note: note that users of this frame may well have arguments to some runtime 257 // while these values are on the stack. These positions neglect those arguments 258 // but the code in save_live_registers will take the argument count into 259 // account. 260 // 261 #ifdef _LP64 262 #define SLOT2(x) x, 263 #define SLOT_PER_WORD 2 264 #else 265 #define SLOT2(x) 266 #define SLOT_PER_WORD 1 267 #endif // _LP64 268 269 enum reg_save_layout { 270 // 64bit needs to keep stack 16 byte aligned. So we add some alignment dummies to make that 271 // happen and will assert if the stack size we create is misaligned 272 #ifdef _LP64 273 align_dummy_0, align_dummy_1, 274 #endif // _LP64 275 #ifdef _WIN64 276 // Windows always allocates space for it's argument registers (see 277 // frame::arg_reg_save_area_bytes). 278 arg_reg_save_1, arg_reg_save_1H, // 0, 4 279 arg_reg_save_2, arg_reg_save_2H, // 8, 12 280 arg_reg_save_3, arg_reg_save_3H, // 16, 20 281 arg_reg_save_4, arg_reg_save_4H, // 24, 28 282 #endif // _WIN64 283 xmm_regs_as_doubles_off, // 32 284 float_regs_as_doubles_off = xmm_regs_as_doubles_off + xmm_regs_as_doubles_size_in_slots, // 160 285 fpu_state_off = float_regs_as_doubles_off + float_regs_as_doubles_size_in_slots, // 224 286 // fpu_state_end_off is exclusive 287 fpu_state_end_off = fpu_state_off + (FPUStateSizeInWords / SLOT_PER_WORD), // 352 288 marker = fpu_state_end_off, SLOT2(markerH) // 352, 356 289 extra_space_offset, // 360 290 #ifdef _LP64 291 r15_off = extra_space_offset, r15H_off, // 360, 364 292 r14_off, r14H_off, // 368, 372 293 r13_off, r13H_off, // 376, 380 294 r12_off, r12H_off, // 384, 388 295 r11_off, r11H_off, // 392, 396 296 r10_off, r10H_off, // 400, 404 297 r9_off, r9H_off, // 408, 412 298 r8_off, r8H_off, // 416, 420 299 rdi_off, rdiH_off, // 424, 428 300 #else 301 rdi_off = extra_space_offset, 302 #endif // _LP64 303 rsi_off, SLOT2(rsiH_off) // 432, 436 304 rbp_off, SLOT2(rbpH_off) // 440, 444 305 rsp_off, SLOT2(rspH_off) // 448, 452 306 rbx_off, SLOT2(rbxH_off) // 456, 460 307 rdx_off, SLOT2(rdxH_off) // 464, 468 308 rcx_off, SLOT2(rcxH_off) // 472, 476 309 rax_off, SLOT2(raxH_off) // 480, 484 310 saved_rbp_off, SLOT2(saved_rbpH_off) // 488, 492 311 return_off, SLOT2(returnH_off) // 496, 500 312 reg_save_frame_size // As noted: neglects any parameters to runtime // 504 313 }; 314 315 // Save off registers which might be killed by calls into the runtime. 316 // Tries to smart of about FP registers. In particular we separate 317 // saving and describing the FPU registers for deoptimization since we 318 // have to save the FPU registers twice if we describe them and on P4 319 // saving FPU registers which don't contain anything appears 320 // expensive. The deopt blob is the only thing which needs to 321 // describe FPU registers. In all other cases it should be sufficient 322 // to simply save their current value. 323 // 324 static OopMap* generate_oop_map(StubAssembler* sasm, int num_rt_args, 325 bool save_fpu_registers = true) { 326 327 // In 64bit all the args are in regs so there are no additional stack slots 328 LP64_ONLY(num_rt_args = 0); 329 LP64_ONLY(assert((reg_save_frame_size * VMRegImpl::stack_slot_size) % 16 == 0, "must be 16 byte aligned");) 330 int frame_size_in_slots = reg_save_frame_size + num_rt_args; // args + thread 331 sasm->set_frame_size(frame_size_in_slots / VMRegImpl::slots_per_word); 332 333 // record saved value locations in an OopMap 334 // locations are offsets from sp after runtime call; num_rt_args is number of arguments in call, including thread 335 OopMap* map = new OopMap(frame_size_in_slots, 0); 336 map->set_callee_saved(VMRegImpl::stack2reg(rax_off + num_rt_args), rax->as_VMReg()); 337 map->set_callee_saved(VMRegImpl::stack2reg(rcx_off + num_rt_args), rcx->as_VMReg()); 338 map->set_callee_saved(VMRegImpl::stack2reg(rdx_off + num_rt_args), rdx->as_VMReg()); 339 map->set_callee_saved(VMRegImpl::stack2reg(rbx_off + num_rt_args), rbx->as_VMReg()); 340 map->set_callee_saved(VMRegImpl::stack2reg(rsi_off + num_rt_args), rsi->as_VMReg()); 341 map->set_callee_saved(VMRegImpl::stack2reg(rdi_off + num_rt_args), rdi->as_VMReg()); 342 #ifdef _LP64 343 map->set_callee_saved(VMRegImpl::stack2reg(r8_off + num_rt_args), r8->as_VMReg()); 344 map->set_callee_saved(VMRegImpl::stack2reg(r9_off + num_rt_args), r9->as_VMReg()); 345 map->set_callee_saved(VMRegImpl::stack2reg(r10_off + num_rt_args), r10->as_VMReg()); 346 map->set_callee_saved(VMRegImpl::stack2reg(r11_off + num_rt_args), r11->as_VMReg()); 347 map->set_callee_saved(VMRegImpl::stack2reg(r12_off + num_rt_args), r12->as_VMReg()); 348 map->set_callee_saved(VMRegImpl::stack2reg(r13_off + num_rt_args), r13->as_VMReg()); 349 map->set_callee_saved(VMRegImpl::stack2reg(r14_off + num_rt_args), r14->as_VMReg()); 350 map->set_callee_saved(VMRegImpl::stack2reg(r15_off + num_rt_args), r15->as_VMReg()); 351 352 // This is stupid but needed. 353 map->set_callee_saved(VMRegImpl::stack2reg(raxH_off + num_rt_args), rax->as_VMReg()->next()); 354 map->set_callee_saved(VMRegImpl::stack2reg(rcxH_off + num_rt_args), rcx->as_VMReg()->next()); 355 map->set_callee_saved(VMRegImpl::stack2reg(rdxH_off + num_rt_args), rdx->as_VMReg()->next()); 356 map->set_callee_saved(VMRegImpl::stack2reg(rbxH_off + num_rt_args), rbx->as_VMReg()->next()); 357 map->set_callee_saved(VMRegImpl::stack2reg(rsiH_off + num_rt_args), rsi->as_VMReg()->next()); 358 map->set_callee_saved(VMRegImpl::stack2reg(rdiH_off + num_rt_args), rdi->as_VMReg()->next()); 359 360 map->set_callee_saved(VMRegImpl::stack2reg(r8H_off + num_rt_args), r8->as_VMReg()->next()); 361 map->set_callee_saved(VMRegImpl::stack2reg(r9H_off + num_rt_args), r9->as_VMReg()->next()); 362 map->set_callee_saved(VMRegImpl::stack2reg(r10H_off + num_rt_args), r10->as_VMReg()->next()); 363 map->set_callee_saved(VMRegImpl::stack2reg(r11H_off + num_rt_args), r11->as_VMReg()->next()); 364 map->set_callee_saved(VMRegImpl::stack2reg(r12H_off + num_rt_args), r12->as_VMReg()->next()); 365 map->set_callee_saved(VMRegImpl::stack2reg(r13H_off + num_rt_args), r13->as_VMReg()->next()); 366 map->set_callee_saved(VMRegImpl::stack2reg(r14H_off + num_rt_args), r14->as_VMReg()->next()); 367 map->set_callee_saved(VMRegImpl::stack2reg(r15H_off + num_rt_args), r15->as_VMReg()->next()); 368 #endif // _LP64 369 370 int xmm_bypass_limit = FrameMap::get_num_caller_save_xmms(); 371 372 if (save_fpu_registers) { 373 #ifndef _LP64 374 if (UseSSE < 2) { 375 int fpu_off = float_regs_as_doubles_off; 376 for (int n = 0; n < FrameMap::nof_fpu_regs; n++) { 377 VMReg fpu_name_0 = FrameMap::fpu_regname(n); 378 map->set_callee_saved(VMRegImpl::stack2reg(fpu_off + num_rt_args), fpu_name_0); 379 // %%% This is really a waste but we'll keep things as they were for now 380 if (true) { 381 map->set_callee_saved(VMRegImpl::stack2reg(fpu_off + 1 + num_rt_args), fpu_name_0->next()); 382 } 383 fpu_off += 2; 384 } 385 assert(fpu_off == fpu_state_off, "incorrect number of fpu stack slots"); 386 387 if (UseSSE == 1) { 388 int xmm_off = xmm_regs_as_doubles_off; 389 for (int n = 0; n < FrameMap::nof_fpu_regs; n++) { 390 VMReg xmm_name_0 = as_XMMRegister(n)->as_VMReg(); 391 map->set_callee_saved(VMRegImpl::stack2reg(xmm_off + num_rt_args), xmm_name_0); 392 xmm_off += 2; 393 } 394 assert(xmm_off == float_regs_as_doubles_off, "incorrect number of xmm registers"); 395 } 396 } 397 #endif // !LP64 398 399 if (UseSSE >= 2) { 400 int xmm_off = xmm_regs_as_doubles_off; 401 for (int n = 0; n < FrameMap::nof_xmm_regs; n++) { 402 if (n < xmm_bypass_limit) { 403 VMReg xmm_name_0 = as_XMMRegister(n)->as_VMReg(); 404 map->set_callee_saved(VMRegImpl::stack2reg(xmm_off + num_rt_args), xmm_name_0); 405 // %%% This is really a waste but we'll keep things as they were for now 406 if (true) { 407 map->set_callee_saved(VMRegImpl::stack2reg(xmm_off + 1 + num_rt_args), xmm_name_0->next()); 408 } 409 } 410 xmm_off += 2; 411 } 412 assert(xmm_off == float_regs_as_doubles_off, "incorrect number of xmm registers"); 413 } 414 } 415 416 return map; 417 } 418 419 #define __ this-> 420 421 void C1_MacroAssembler::save_live_registers_no_oop_map(bool save_fpu_registers) { 422 __ block_comment("save_live_registers"); 423 424 __ pusha(); // integer registers 425 426 // assert(float_regs_as_doubles_off % 2 == 0, "misaligned offset"); 427 // assert(xmm_regs_as_doubles_off % 2 == 0, "misaligned offset"); 428 429 __ subptr(rsp, extra_space_offset * VMRegImpl::stack_slot_size); 430 431 #ifdef ASSERT 432 __ movptr(Address(rsp, marker * VMRegImpl::stack_slot_size), (int32_t)0xfeedbeef); 433 #endif 434 435 if (save_fpu_registers) { 436 #ifndef _LP64 437 if (UseSSE < 2) { 438 // save FPU stack 439 __ fnsave(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size)); 440 __ fwait(); 441 442 #ifdef ASSERT 443 Label ok; 444 __ cmpw(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size), StubRoutines::x86::fpu_cntrl_wrd_std()); 445 __ jccb(Assembler::equal, ok); 446 __ stop("corrupted control word detected"); 447 __ bind(ok); 448 #endif 449 450 // Reset the control word to guard against exceptions being unmasked 451 // since fstp_d can cause FPU stack underflow exceptions. Write it 452 // into the on stack copy and then reload that to make sure that the 453 // current and future values are correct. 454 __ movw(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size), StubRoutines::x86::fpu_cntrl_wrd_std()); 455 __ frstor(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size)); 456 457 // Save the FPU registers in de-opt-able form 458 int offset = 0; 459 for (int n = 0; n < FrameMap::nof_fpu_regs; n++) { 460 __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + offset)); 461 offset += 8; 462 } 463 464 if (UseSSE == 1) { 465 // save XMM registers as float because double not supported without SSE2(num MMX == num fpu) 466 int offset = 0; 467 for (int n = 0; n < FrameMap::nof_fpu_regs; n++) { 468 XMMRegister xmm_name = as_XMMRegister(n); 469 __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + offset), xmm_name); 470 offset += 8; 471 } 472 } 473 } 474 #endif // !_LP64 475 476 if (UseSSE >= 2) { 477 // save XMM registers 478 // XMM registers can contain float or double values, but this is not known here, 479 // so always save them as doubles. 480 // note that float values are _not_ converted automatically, so for float values 481 // the second word contains only garbage data. 482 int xmm_bypass_limit = FrameMap::get_num_caller_save_xmms(); 483 int offset = 0; 484 for (int n = 0; n < xmm_bypass_limit; n++) { 485 XMMRegister xmm_name = as_XMMRegister(n); 486 __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + offset), xmm_name); 487 offset += 8; 488 } 489 } 490 } 491 492 // FPU stack must be empty now 493 NOT_LP64( __ verify_FPU(0, "save_live_registers"); ) 494 } 495 496 #undef __ 497 #define __ sasm-> 498 499 static void restore_fpu(C1_MacroAssembler* sasm, bool restore_fpu_registers) { 500 #ifdef _LP64 501 if (restore_fpu_registers) { 502 // restore XMM registers 503 int xmm_bypass_limit = FrameMap::get_num_caller_save_xmms(); 504 int offset = 0; 505 for (int n = 0; n < xmm_bypass_limit; n++) { 506 XMMRegister xmm_name = as_XMMRegister(n); 507 __ movdbl(xmm_name, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + offset)); 508 offset += 8; 509 } 510 } 511 #else 512 if (restore_fpu_registers) { 513 if (UseSSE >= 2) { 514 // restore XMM registers 515 int xmm_bypass_limit = FrameMap::nof_xmm_regs; 516 int offset = 0; 517 for (int n = 0; n < xmm_bypass_limit; n++) { 518 XMMRegister xmm_name = as_XMMRegister(n); 519 __ movdbl(xmm_name, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + offset)); 520 offset += 8; 521 } 522 } else if (UseSSE == 1) { 523 // restore XMM registers(num MMX == num fpu) 524 int offset = 0; 525 for (int n = 0; n < FrameMap::nof_fpu_regs; n++) { 526 XMMRegister xmm_name = as_XMMRegister(n); 527 __ movflt(xmm_name, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + offset)); 528 offset += 8; 529 } 530 } 531 532 if (UseSSE < 2) { 533 __ frstor(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size)); 534 } else { 535 // check that FPU stack is really empty 536 __ verify_FPU(0, "restore_live_registers"); 537 } 538 } else { 539 // check that FPU stack is really empty 540 __ verify_FPU(0, "restore_live_registers"); 541 } 542 #endif // _LP64 543 544 #ifdef ASSERT 545 { 546 Label ok; 547 __ cmpptr(Address(rsp, marker * VMRegImpl::stack_slot_size), (int32_t)0xfeedbeef); 548 __ jcc(Assembler::equal, ok); 549 __ stop("bad offsets in frame"); 550 __ bind(ok); 551 } 552 #endif // ASSERT 553 554 __ addptr(rsp, extra_space_offset * VMRegImpl::stack_slot_size); 555 } 556 557 #undef __ 558 #define __ this-> 559 560 void C1_MacroAssembler::restore_live_registers(bool restore_fpu_registers) { 561 __ block_comment("restore_live_registers"); 562 563 restore_fpu(this, restore_fpu_registers); 564 __ popa(); 565 } 566 567 568 void C1_MacroAssembler::restore_live_registers_except_rax(bool restore_fpu_registers) { 569 __ block_comment("restore_live_registers_except_rax"); 570 571 restore_fpu(this, restore_fpu_registers); 572 573 #ifdef _LP64 574 __ movptr(r15, Address(rsp, 0)); 575 __ movptr(r14, Address(rsp, wordSize)); 576 __ movptr(r13, Address(rsp, 2 * wordSize)); 577 __ movptr(r12, Address(rsp, 3 * wordSize)); 578 __ movptr(r11, Address(rsp, 4 * wordSize)); 579 __ movptr(r10, Address(rsp, 5 * wordSize)); 580 __ movptr(r9, Address(rsp, 6 * wordSize)); 581 __ movptr(r8, Address(rsp, 7 * wordSize)); 582 __ movptr(rdi, Address(rsp, 8 * wordSize)); 583 __ movptr(rsi, Address(rsp, 9 * wordSize)); 584 __ movptr(rbp, Address(rsp, 10 * wordSize)); 585 // skip rsp 586 __ movptr(rbx, Address(rsp, 12 * wordSize)); 587 __ movptr(rdx, Address(rsp, 13 * wordSize)); 588 __ movptr(rcx, Address(rsp, 14 * wordSize)); 589 590 __ addptr(rsp, 16 * wordSize); 591 #else 592 593 __ pop(rdi); 594 __ pop(rsi); 595 __ pop(rbp); 596 __ pop(rbx); // skip this value 597 __ pop(rbx); 598 __ pop(rdx); 599 __ pop(rcx); 600 __ addptr(rsp, BytesPerWord); 601 #endif // _LP64 602 } 603 604 #undef __ 605 #define __ sasm-> 606 607 static OopMap* save_live_registers(StubAssembler* sasm, int num_rt_args, 608 bool save_fpu_registers = true) { 609 __ save_live_registers_no_oop_map(save_fpu_registers); 610 return generate_oop_map(sasm, num_rt_args, save_fpu_registers); 611 } 612 613 static void restore_live_registers(StubAssembler* sasm, bool restore_fpu_registers = true) { 614 __ restore_live_registers(restore_fpu_registers); 615 } 616 617 static void restore_live_registers_except_rax(StubAssembler* sasm, bool restore_fpu_registers = true) { 618 sasm->restore_live_registers_except_rax(restore_fpu_registers); 619 } 620 621 622 void Runtime1::initialize_pd() { 623 // nothing to do 624 } 625 626 627 // Target: the entry point of the method that creates and posts the exception oop. 628 // has_argument: true if the exception needs arguments (passed on the stack because 629 // registers must be preserved). 630 OopMapSet* Runtime1::generate_exception_throw(StubAssembler* sasm, address target, bool has_argument) { 631 // Preserve all registers. 632 int num_rt_args = has_argument ? (2 + 1) : 1; 633 OopMap* oop_map = save_live_registers(sasm, num_rt_args); 634 635 // Now all registers are saved and can be used freely. 636 // Verify that no old value is used accidentally. 637 __ invalidate_registers(true, true, true, true, true, true); 638 639 // Registers used by this stub. 640 const Register temp_reg = rbx; 641 642 // Load arguments for exception that are passed as arguments into the stub. 643 if (has_argument) { 644 #ifdef _LP64 645 __ movptr(c_rarg1, Address(rbp, 2*BytesPerWord)); 646 __ movptr(c_rarg2, Address(rbp, 3*BytesPerWord)); 647 #else 648 __ movptr(temp_reg, Address(rbp, 3*BytesPerWord)); 649 __ push(temp_reg); 650 __ movptr(temp_reg, Address(rbp, 2*BytesPerWord)); 651 __ push(temp_reg); 652 #endif // _LP64 653 } 654 int call_offset = __ call_RT(noreg, noreg, target, num_rt_args - 1); 655 656 OopMapSet* oop_maps = new OopMapSet(); 657 oop_maps->add_gc_map(call_offset, oop_map); 658 659 __ stop("should not reach here"); 660 661 return oop_maps; 662 } 663 664 665 OopMapSet* Runtime1::generate_handle_exception(StubID id, StubAssembler *sasm) { 666 __ block_comment("generate_handle_exception"); 667 668 // incoming parameters 669 const Register exception_oop = rax; 670 const Register exception_pc = rdx; 671 // other registers used in this stub 672 const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread); 673 674 // Save registers, if required. 675 OopMapSet* oop_maps = new OopMapSet(); 676 OopMap* oop_map = NULL; 677 switch (id) { 678 case forward_exception_id: 679 // We're handling an exception in the context of a compiled frame. 680 // The registers have been saved in the standard places. Perform 681 // an exception lookup in the caller and dispatch to the handler 682 // if found. Otherwise unwind and dispatch to the callers 683 // exception handler. 684 oop_map = generate_oop_map(sasm, 1 /*thread*/); 685 686 // load and clear pending exception oop into RAX 687 __ movptr(exception_oop, Address(thread, Thread::pending_exception_offset())); 688 __ movptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD); 689 690 // load issuing PC (the return address for this stub) into rdx 691 __ movptr(exception_pc, Address(rbp, 1*BytesPerWord)); 692 693 // make sure that the vm_results are cleared (may be unnecessary) 694 __ movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD); 695 __ movptr(Address(thread, JavaThread::vm_result_2_offset()), NULL_WORD); 696 break; 697 case handle_exception_nofpu_id: 698 case handle_exception_id: 699 // At this point all registers MAY be live. 700 oop_map = save_live_registers(sasm, 1 /*thread*/, id != handle_exception_nofpu_id); 701 break; 702 case handle_exception_from_callee_id: { 703 // At this point all registers except exception oop (RAX) and 704 // exception pc (RDX) are dead. 705 const int frame_size = 2 /*BP, return address*/ NOT_LP64(+ 1 /*thread*/) WIN64_ONLY(+ frame::arg_reg_save_area_bytes / BytesPerWord); 706 oop_map = new OopMap(frame_size * VMRegImpl::slots_per_word, 0); 707 sasm->set_frame_size(frame_size); 708 WIN64_ONLY(__ subq(rsp, frame::arg_reg_save_area_bytes)); 709 break; 710 } 711 default: ShouldNotReachHere(); 712 } 713 714 #if !defined(_LP64) && defined(COMPILER2) 715 if (UseSSE < 2 && !CompilerConfig::is_c1_only_no_jvmci()) { 716 // C2 can leave the fpu stack dirty 717 __ empty_FPU_stack(); 718 } 719 #endif // !_LP64 && COMPILER2 720 721 // verify that only rax, and rdx is valid at this time 722 __ invalidate_registers(false, true, true, false, true, true); 723 // verify that rax, contains a valid exception 724 __ verify_not_null_oop(exception_oop); 725 726 // load address of JavaThread object for thread-local data 727 NOT_LP64(__ get_thread(thread);) 728 729 #ifdef ASSERT 730 // check that fields in JavaThread for exception oop and issuing pc are 731 // empty before writing to them 732 Label oop_empty; 733 __ cmpptr(Address(thread, JavaThread::exception_oop_offset()), NULL_WORD); 734 __ jcc(Assembler::equal, oop_empty); 735 __ stop("exception oop already set"); 736 __ bind(oop_empty); 737 738 Label pc_empty; 739 __ cmpptr(Address(thread, JavaThread::exception_pc_offset()), 0); 740 __ jcc(Assembler::equal, pc_empty); 741 __ stop("exception pc already set"); 742 __ bind(pc_empty); 743 #endif 744 745 // save exception oop and issuing pc into JavaThread 746 // (exception handler will load it from here) 747 __ movptr(Address(thread, JavaThread::exception_oop_offset()), exception_oop); 748 __ movptr(Address(thread, JavaThread::exception_pc_offset()), exception_pc); 749 750 // patch throwing pc into return address (has bci & oop map) 751 __ movptr(Address(rbp, 1*BytesPerWord), exception_pc); 752 753 // compute the exception handler. 754 // the exception oop and the throwing pc are read from the fields in JavaThread 755 int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, exception_handler_for_pc)); 756 oop_maps->add_gc_map(call_offset, oop_map); 757 758 // rax: handler address 759 // will be the deopt blob if nmethod was deoptimized while we looked up 760 // handler regardless of whether handler existed in the nmethod. 761 762 // only rax, is valid at this time, all other registers have been destroyed by the runtime call 763 __ invalidate_registers(false, true, true, true, true, true); 764 765 // patch the return address, this stub will directly return to the exception handler 766 __ movptr(Address(rbp, 1*BytesPerWord), rax); 767 768 switch (id) { 769 case forward_exception_id: 770 case handle_exception_nofpu_id: 771 case handle_exception_id: 772 // Restore the registers that were saved at the beginning. 773 restore_live_registers(sasm, id != handle_exception_nofpu_id); 774 break; 775 case handle_exception_from_callee_id: 776 // WIN64_ONLY: No need to add frame::arg_reg_save_area_bytes to SP 777 // since we do a leave anyway. 778 779 // Pop the return address. 780 __ leave(); 781 __ pop(rcx); 782 __ jmp(rcx); // jump to exception handler 783 break; 784 default: ShouldNotReachHere(); 785 } 786 787 return oop_maps; 788 } 789 790 791 void Runtime1::generate_unwind_exception(StubAssembler *sasm) { 792 // incoming parameters 793 const Register exception_oop = rax; 794 // callee-saved copy of exception_oop during runtime call 795 const Register exception_oop_callee_saved = NOT_LP64(rsi) LP64_ONLY(r14); 796 // other registers used in this stub 797 const Register exception_pc = rdx; 798 const Register handler_addr = rbx; 799 const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread); 800 801 // verify that only rax, is valid at this time 802 __ invalidate_registers(false, true, true, true, true, true); 803 804 #ifdef ASSERT 805 // check that fields in JavaThread for exception oop and issuing pc are empty 806 NOT_LP64(__ get_thread(thread);) 807 Label oop_empty; 808 __ cmpptr(Address(thread, JavaThread::exception_oop_offset()), 0); 809 __ jcc(Assembler::equal, oop_empty); 810 __ stop("exception oop must be empty"); 811 __ bind(oop_empty); 812 813 Label pc_empty; 814 __ cmpptr(Address(thread, JavaThread::exception_pc_offset()), 0); 815 __ jcc(Assembler::equal, pc_empty); 816 __ stop("exception pc must be empty"); 817 __ bind(pc_empty); 818 #endif 819 820 // clear the FPU stack in case any FPU results are left behind 821 NOT_LP64( __ empty_FPU_stack(); ) 822 823 // save exception_oop in callee-saved register to preserve it during runtime calls 824 __ verify_not_null_oop(exception_oop); 825 __ movptr(exception_oop_callee_saved, exception_oop); 826 827 NOT_LP64(__ get_thread(thread);) 828 // Get return address (is on top of stack after leave). 829 __ movptr(exception_pc, Address(rsp, 0)); 830 831 // search the exception handler address of the caller (using the return address) 832 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), thread, exception_pc); 833 // rax: exception handler address of the caller 834 835 // Only RAX and RSI are valid at this time, all other registers have been destroyed by the call. 836 __ invalidate_registers(false, true, true, true, false, true); 837 838 // move result of call into correct register 839 __ movptr(handler_addr, rax); 840 841 // Restore exception oop to RAX (required convention of exception handler). 842 __ movptr(exception_oop, exception_oop_callee_saved); 843 844 // verify that there is really a valid exception in rax 845 __ verify_not_null_oop(exception_oop); 846 847 // get throwing pc (= return address). 848 // rdx has been destroyed by the call, so it must be set again 849 // the pop is also necessary to simulate the effect of a ret(0) 850 __ pop(exception_pc); 851 852 // continue at exception handler (return address removed) 853 // note: do *not* remove arguments when unwinding the 854 // activation since the caller assumes having 855 // all arguments on the stack when entering the 856 // runtime to determine the exception handler 857 // (GC happens at call site with arguments!) 858 // rax: exception oop 859 // rdx: throwing pc 860 // rbx: exception handler 861 __ jmp(handler_addr); 862 } 863 864 865 OopMapSet* Runtime1::generate_patching(StubAssembler* sasm, address target) { 866 // use the maximum number of runtime-arguments here because it is difficult to 867 // distinguish each RT-Call. 868 // Note: This number affects also the RT-Call in generate_handle_exception because 869 // the oop-map is shared for all calls. 870 const int num_rt_args = 2; // thread + dummy 871 872 DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob(); 873 assert(deopt_blob != NULL, "deoptimization blob must have been created"); 874 875 OopMap* oop_map = save_live_registers(sasm, num_rt_args); 876 877 #ifdef _LP64 878 const Register thread = r15_thread; 879 // No need to worry about dummy 880 __ mov(c_rarg0, thread); 881 #else 882 __ push(rax); // push dummy 883 884 const Register thread = rdi; // is callee-saved register (Visual C++ calling conventions) 885 // push java thread (becomes first argument of C function) 886 __ get_thread(thread); 887 __ push(thread); 888 #endif // _LP64 889 __ set_last_Java_frame(thread, noreg, rbp, NULL, rscratch1); 890 // do the call 891 __ call(RuntimeAddress(target)); 892 OopMapSet* oop_maps = new OopMapSet(); 893 oop_maps->add_gc_map(__ offset(), oop_map); 894 // verify callee-saved register 895 #ifdef ASSERT 896 guarantee(thread != rax, "change this code"); 897 __ push(rax); 898 { Label L; 899 __ get_thread(rax); 900 __ cmpptr(thread, rax); 901 __ jcc(Assembler::equal, L); 902 __ stop("StubAssembler::call_RT: rdi/r15 not callee saved?"); 903 __ bind(L); 904 } 905 __ pop(rax); 906 #endif 907 __ reset_last_Java_frame(thread, true); 908 #ifndef _LP64 909 __ pop(rcx); // discard thread arg 910 __ pop(rcx); // discard dummy 911 #endif // _LP64 912 913 // check for pending exceptions 914 { Label L; 915 __ cmpptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD); 916 __ jcc(Assembler::equal, L); 917 // exception pending => remove activation and forward to exception handler 918 919 __ testptr(rax, rax); // have we deoptimized? 920 __ jump_cc(Assembler::equal, 921 RuntimeAddress(Runtime1::entry_for(Runtime1::forward_exception_id))); 922 923 // the deopt blob expects exceptions in the special fields of 924 // JavaThread, so copy and clear pending exception. 925 926 // load and clear pending exception 927 __ movptr(rax, Address(thread, Thread::pending_exception_offset())); 928 __ movptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD); 929 930 // check that there is really a valid exception 931 __ verify_not_null_oop(rax); 932 933 // load throwing pc: this is the return address of the stub 934 __ movptr(rdx, Address(rsp, return_off * VMRegImpl::stack_slot_size)); 935 936 #ifdef ASSERT 937 // check that fields in JavaThread for exception oop and issuing pc are empty 938 Label oop_empty; 939 __ cmpptr(Address(thread, JavaThread::exception_oop_offset()), NULL_WORD); 940 __ jcc(Assembler::equal, oop_empty); 941 __ stop("exception oop must be empty"); 942 __ bind(oop_empty); 943 944 Label pc_empty; 945 __ cmpptr(Address(thread, JavaThread::exception_pc_offset()), NULL_WORD); 946 __ jcc(Assembler::equal, pc_empty); 947 __ stop("exception pc must be empty"); 948 __ bind(pc_empty); 949 #endif 950 951 // store exception oop and throwing pc to JavaThread 952 __ movptr(Address(thread, JavaThread::exception_oop_offset()), rax); 953 __ movptr(Address(thread, JavaThread::exception_pc_offset()), rdx); 954 955 restore_live_registers(sasm); 956 957 __ leave(); 958 __ addptr(rsp, BytesPerWord); // remove return address from stack 959 960 // Forward the exception directly to deopt blob. We can blow no 961 // registers and must leave throwing pc on the stack. A patch may 962 // have values live in registers so the entry point with the 963 // exception in tls. 964 __ jump(RuntimeAddress(deopt_blob->unpack_with_exception_in_tls())); 965 966 __ bind(L); 967 } 968 969 970 // Runtime will return true if the nmethod has been deoptimized during 971 // the patching process. In that case we must do a deopt reexecute instead. 972 973 Label cont; 974 975 __ testptr(rax, rax); // have we deoptimized? 976 __ jcc(Assembler::equal, cont); // no 977 978 // Will reexecute. Proper return address is already on the stack we just restore 979 // registers, pop all of our frame but the return address and jump to the deopt blob 980 restore_live_registers(sasm); 981 __ leave(); 982 __ jump(RuntimeAddress(deopt_blob->unpack_with_reexecution())); 983 984 __ bind(cont); 985 restore_live_registers(sasm); 986 __ leave(); 987 __ ret(0); 988 989 return oop_maps; 990 } 991 992 993 OopMapSet* Runtime1::generate_code_for(StubID id, StubAssembler* sasm) { 994 995 // for better readability 996 const bool must_gc_arguments = true; 997 const bool dont_gc_arguments = false; 998 999 // default value; overwritten for some optimized stubs that are called from methods that do not use the fpu 1000 bool save_fpu_registers = true; 1001 1002 // stub code & info for the different stubs 1003 OopMapSet* oop_maps = NULL; 1004 switch (id) { 1005 case forward_exception_id: 1006 { 1007 oop_maps = generate_handle_exception(id, sasm); 1008 __ leave(); 1009 __ ret(0); 1010 } 1011 break; 1012 1013 case new_instance_id: 1014 case new_instance_no_inline_id: 1015 case fast_new_instance_id: 1016 case fast_new_instance_init_check_id: 1017 { 1018 Register klass = rdx; // Incoming 1019 Register obj = rax; // Result 1020 1021 if (id == new_instance_id) { 1022 __ set_info("new_instance", dont_gc_arguments); 1023 } else if (id == new_instance_no_inline_id) { 1024 __ set_info("new_instance_no_inline", dont_gc_arguments); 1025 } else if (id == fast_new_instance_id) { 1026 __ set_info("fast new_instance", dont_gc_arguments); 1027 } else { 1028 assert(id == fast_new_instance_init_check_id, "bad StubID"); 1029 __ set_info("fast new_instance init check", dont_gc_arguments); 1030 } 1031 1032 __ enter(); 1033 OopMap* map = save_live_registers(sasm, 2); 1034 int call_offset; 1035 if (id == new_instance_no_inline_id) { 1036 call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_instance_no_inline), klass); 1037 } else { 1038 call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_instance), klass); 1039 } 1040 oop_maps = new OopMapSet(); 1041 oop_maps->add_gc_map(call_offset, map); 1042 restore_live_registers_except_rax(sasm); 1043 __ verify_oop(obj); 1044 __ leave(); 1045 __ ret(0); 1046 1047 // rax,: new instance 1048 } 1049 1050 break; 1051 1052 case counter_overflow_id: 1053 { 1054 Register bci = rax, method = rbx; 1055 __ enter(); 1056 OopMap* map = save_live_registers(sasm, 3); 1057 // Retrieve bci 1058 __ movl(bci, Address(rbp, 2*BytesPerWord)); 1059 // And a pointer to the Method* 1060 __ movptr(method, Address(rbp, 3*BytesPerWord)); 1061 int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, counter_overflow), bci, method); 1062 oop_maps = new OopMapSet(); 1063 oop_maps->add_gc_map(call_offset, map); 1064 restore_live_registers(sasm); 1065 __ leave(); 1066 __ ret(0); 1067 } 1068 break; 1069 1070 case new_type_array_id: 1071 case new_object_array_id: 1072 case new_flat_array_id: 1073 { 1074 Register length = rbx; // Incoming 1075 Register klass = rdx; // Incoming 1076 Register obj = rax; // Result 1077 1078 if (id == new_type_array_id) { 1079 __ set_info("new_type_array", dont_gc_arguments); 1080 } else if (id == new_object_array_id) { 1081 __ set_info("new_object_array", dont_gc_arguments); 1082 } else { 1083 __ set_info("new_flat_array", dont_gc_arguments); 1084 } 1085 1086 #ifdef ASSERT 1087 // assert object type is really an array of the proper kind 1088 { 1089 Label ok; 1090 Register t0 = obj; 1091 __ movl(t0, Address(klass, Klass::layout_helper_offset())); 1092 __ sarl(t0, Klass::_lh_array_tag_shift); 1093 switch (id) { 1094 case new_type_array_id: 1095 __ cmpl(t0, Klass::_lh_array_tag_type_value); 1096 __ jcc(Assembler::equal, ok); 1097 __ stop("assert(is a type array klass)"); 1098 break; 1099 case new_object_array_id: 1100 __ cmpl(t0, Klass::_lh_array_tag_obj_value); // new "[Ljava/lang/Object;" 1101 __ jcc(Assembler::equal, ok); 1102 __ cmpl(t0, Klass::_lh_array_tag_vt_value); // new "[LVT;" 1103 __ jcc(Assembler::equal, ok); 1104 __ stop("assert(is an object or inline type array klass)"); 1105 break; 1106 case new_flat_array_id: 1107 // new "[QVT;" 1108 __ cmpl(t0, Klass::_lh_array_tag_vt_value); // the array can be flattened. 1109 __ jcc(Assembler::equal, ok); 1110 __ cmpl(t0, Klass::_lh_array_tag_obj_value); // the array cannot be flattened (due to InlineArrayElementMaxFlatSize, etc) 1111 __ jcc(Assembler::equal, ok); 1112 __ stop("assert(is an object or inline type array klass)"); 1113 break; 1114 default: ShouldNotReachHere(); 1115 } 1116 __ should_not_reach_here(); 1117 __ bind(ok); 1118 } 1119 #endif // ASSERT 1120 1121 __ enter(); 1122 OopMap* map = save_live_registers(sasm, 3); 1123 int call_offset; 1124 if (id == new_type_array_id) { 1125 call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_type_array), klass, length); 1126 } else if (id == new_object_array_id) { 1127 call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_object_array), klass, length); 1128 } else { 1129 assert(id == new_flat_array_id, "must be"); 1130 call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_flat_array), klass, length); 1131 } 1132 1133 oop_maps = new OopMapSet(); 1134 oop_maps->add_gc_map(call_offset, map); 1135 restore_live_registers_except_rax(sasm); 1136 1137 __ verify_oop(obj); 1138 __ leave(); 1139 __ ret(0); 1140 1141 // rax,: new array 1142 } 1143 break; 1144 1145 case new_multi_array_id: 1146 { StubFrame f(sasm, "new_multi_array", dont_gc_arguments); 1147 // rax,: klass 1148 // rbx,: rank 1149 // rcx: address of 1st dimension 1150 OopMap* map = save_live_registers(sasm, 4); 1151 int call_offset = __ call_RT(rax, noreg, CAST_FROM_FN_PTR(address, new_multi_array), rax, rbx, rcx); 1152 1153 oop_maps = new OopMapSet(); 1154 oop_maps->add_gc_map(call_offset, map); 1155 restore_live_registers_except_rax(sasm); 1156 1157 // rax,: new multi array 1158 __ verify_oop(rax); 1159 } 1160 break; 1161 1162 case load_flattened_array_id: 1163 { 1164 StubFrame f(sasm, "load_flattened_array", dont_gc_arguments); 1165 OopMap* map = save_live_registers(sasm, 3); 1166 1167 // Called with store_parameter and not C abi 1168 1169 f.load_argument(1, rax); // rax,: array 1170 f.load_argument(0, rbx); // rbx,: index 1171 int call_offset = __ call_RT(rax, noreg, CAST_FROM_FN_PTR(address, load_flattened_array), rax, rbx); 1172 1173 oop_maps = new OopMapSet(); 1174 oop_maps->add_gc_map(call_offset, map); 1175 restore_live_registers_except_rax(sasm); 1176 1177 // rax,: loaded element at array[index] 1178 __ verify_oop(rax); 1179 } 1180 break; 1181 1182 case store_flattened_array_id: 1183 { 1184 StubFrame f(sasm, "store_flattened_array", dont_gc_arguments); 1185 OopMap* map = save_live_registers(sasm, 4); 1186 1187 // Called with store_parameter and not C abi 1188 1189 f.load_argument(2, rax); // rax,: array 1190 f.load_argument(1, rbx); // rbx,: index 1191 f.load_argument(0, rcx); // rcx,: value 1192 int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, store_flattened_array), rax, rbx, rcx); 1193 1194 oop_maps = new OopMapSet(); 1195 oop_maps->add_gc_map(call_offset, map); 1196 restore_live_registers_except_rax(sasm); 1197 } 1198 break; 1199 1200 case substitutability_check_id: 1201 { 1202 StubFrame f(sasm, "substitutability_check", dont_gc_arguments); 1203 OopMap* map = save_live_registers(sasm, 3); 1204 1205 // Called with store_parameter and not C abi 1206 1207 f.load_argument(1, rax); // rax,: left 1208 f.load_argument(0, rbx); // rbx,: right 1209 int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, substitutability_check), rax, rbx); 1210 1211 oop_maps = new OopMapSet(); 1212 oop_maps->add_gc_map(call_offset, map); 1213 restore_live_registers_except_rax(sasm); 1214 1215 // rax,: are the two operands substitutable 1216 } 1217 break; 1218 1219 1220 case buffer_inline_args_id: 1221 case buffer_inline_args_no_receiver_id: 1222 { 1223 const char* name = (id == buffer_inline_args_id) ? 1224 "buffer_inline_args" : "buffer_inline_args_no_receiver"; 1225 StubFrame f(sasm, name, dont_gc_arguments); 1226 OopMap* map = save_live_registers(sasm, 2); 1227 Register method = rbx; 1228 address entry = (id == buffer_inline_args_id) ? 1229 CAST_FROM_FN_PTR(address, buffer_inline_args) : 1230 CAST_FROM_FN_PTR(address, buffer_inline_args_no_receiver); 1231 int call_offset = __ call_RT(rax, noreg, entry, method); 1232 oop_maps = new OopMapSet(); 1233 oop_maps->add_gc_map(call_offset, map); 1234 restore_live_registers_except_rax(sasm); 1235 __ verify_oop(rax); // rax: an array of buffered value objects 1236 } 1237 break; 1238 1239 case register_finalizer_id: 1240 { 1241 __ set_info("register_finalizer", dont_gc_arguments); 1242 1243 // This is called via call_runtime so the arguments 1244 // will be place in C abi locations 1245 1246 #ifdef _LP64 1247 __ verify_oop(c_rarg0); 1248 __ mov(rax, c_rarg0); 1249 #else 1250 // The object is passed on the stack and we haven't pushed a 1251 // frame yet so it's one work away from top of stack. 1252 __ movptr(rax, Address(rsp, 1 * BytesPerWord)); 1253 __ verify_oop(rax); 1254 #endif // _LP64 1255 1256 // load the klass and check the has finalizer flag 1257 Label register_finalizer; 1258 Register t = rsi; 1259 __ load_klass(t, rax, rscratch1); 1260 __ movl(t, Address(t, Klass::access_flags_offset())); 1261 __ testl(t, JVM_ACC_HAS_FINALIZER); 1262 __ jcc(Assembler::notZero, register_finalizer); 1263 __ ret(0); 1264 1265 __ bind(register_finalizer); 1266 __ enter(); 1267 OopMap* oop_map = save_live_registers(sasm, 2 /*num_rt_args */); 1268 int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, SharedRuntime::register_finalizer), rax); 1269 oop_maps = new OopMapSet(); 1270 oop_maps->add_gc_map(call_offset, oop_map); 1271 1272 // Now restore all the live registers 1273 restore_live_registers(sasm); 1274 1275 __ leave(); 1276 __ ret(0); 1277 } 1278 break; 1279 1280 case throw_range_check_failed_id: 1281 { StubFrame f(sasm, "range_check_failed", dont_gc_arguments); 1282 oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_range_check_exception), true); 1283 } 1284 break; 1285 1286 case throw_index_exception_id: 1287 { StubFrame f(sasm, "index_range_check_failed", dont_gc_arguments); 1288 oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_index_exception), true); 1289 } 1290 break; 1291 1292 case throw_div0_exception_id: 1293 { StubFrame f(sasm, "throw_div0_exception", dont_gc_arguments); 1294 oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_div0_exception), false); 1295 } 1296 break; 1297 1298 case throw_null_pointer_exception_id: 1299 { StubFrame f(sasm, "throw_null_pointer_exception", dont_gc_arguments); 1300 oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_null_pointer_exception), false); 1301 } 1302 break; 1303 1304 case handle_exception_nofpu_id: 1305 case handle_exception_id: 1306 { StubFrame f(sasm, "handle_exception", dont_gc_arguments); 1307 oop_maps = generate_handle_exception(id, sasm); 1308 } 1309 break; 1310 1311 case handle_exception_from_callee_id: 1312 { StubFrame f(sasm, "handle_exception_from_callee", dont_gc_arguments); 1313 oop_maps = generate_handle_exception(id, sasm); 1314 } 1315 break; 1316 1317 case unwind_exception_id: 1318 { __ set_info("unwind_exception", dont_gc_arguments); 1319 // note: no stubframe since we are about to leave the current 1320 // activation and we are calling a leaf VM function only. 1321 generate_unwind_exception(sasm); 1322 } 1323 break; 1324 1325 case throw_array_store_exception_id: 1326 { StubFrame f(sasm, "throw_array_store_exception", dont_gc_arguments); 1327 // tos + 0: link 1328 // + 1: return address 1329 oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_array_store_exception), true); 1330 } 1331 break; 1332 1333 case throw_class_cast_exception_id: 1334 { StubFrame f(sasm, "throw_class_cast_exception", dont_gc_arguments); 1335 oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_class_cast_exception), true); 1336 } 1337 break; 1338 1339 case throw_incompatible_class_change_error_id: 1340 { StubFrame f(sasm, "throw_incompatible_class_change_error", dont_gc_arguments); 1341 oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_incompatible_class_change_error), false); 1342 } 1343 break; 1344 1345 case throw_illegal_monitor_state_exception_id: 1346 { StubFrame f(sasm, "throw_illegal_monitor_state_exception", dont_gc_arguments); 1347 oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_illegal_monitor_state_exception), false); 1348 } 1349 break; 1350 1351 case slow_subtype_check_id: 1352 { 1353 // Typical calling sequence: 1354 // __ push(klass_RInfo); // object klass or other subclass 1355 // __ push(sup_k_RInfo); // array element klass or other superclass 1356 // __ call(slow_subtype_check); 1357 // Note that the subclass is pushed first, and is therefore deepest. 1358 // Previous versions of this code reversed the names 'sub' and 'super'. 1359 // This was operationally harmless but made the code unreadable. 1360 enum layout { 1361 rax_off, SLOT2(raxH_off) 1362 rcx_off, SLOT2(rcxH_off) 1363 rsi_off, SLOT2(rsiH_off) 1364 rdi_off, SLOT2(rdiH_off) 1365 // saved_rbp_off, SLOT2(saved_rbpH_off) 1366 return_off, SLOT2(returnH_off) 1367 sup_k_off, SLOT2(sup_kH_off) 1368 klass_off, SLOT2(superH_off) 1369 framesize, 1370 result_off = klass_off // deepest argument is also the return value 1371 }; 1372 1373 __ set_info("slow_subtype_check", dont_gc_arguments); 1374 __ push(rdi); 1375 __ push(rsi); 1376 __ push(rcx); 1377 __ push(rax); 1378 1379 // This is called by pushing args and not with C abi 1380 __ movptr(rsi, Address(rsp, (klass_off) * VMRegImpl::stack_slot_size)); // subclass 1381 __ movptr(rax, Address(rsp, (sup_k_off) * VMRegImpl::stack_slot_size)); // superclass 1382 1383 Label miss; 1384 __ check_klass_subtype_slow_path(rsi, rax, rcx, rdi, NULL, &miss); 1385 1386 // fallthrough on success: 1387 __ movptr(Address(rsp, (result_off) * VMRegImpl::stack_slot_size), 1); // result 1388 __ pop(rax); 1389 __ pop(rcx); 1390 __ pop(rsi); 1391 __ pop(rdi); 1392 __ ret(0); 1393 1394 __ bind(miss); 1395 __ movptr(Address(rsp, (result_off) * VMRegImpl::stack_slot_size), NULL_WORD); // result 1396 __ pop(rax); 1397 __ pop(rcx); 1398 __ pop(rsi); 1399 __ pop(rdi); 1400 __ ret(0); 1401 } 1402 break; 1403 1404 case monitorenter_nofpu_id: 1405 save_fpu_registers = false; 1406 // fall through 1407 case monitorenter_id: 1408 { 1409 StubFrame f(sasm, "monitorenter", dont_gc_arguments); 1410 OopMap* map = save_live_registers(sasm, 3, save_fpu_registers); 1411 1412 // Called with store_parameter and not C abi 1413 1414 f.load_argument(1, rax); // rax,: object 1415 f.load_argument(0, rbx); // rbx,: lock address 1416 1417 int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, monitorenter), rax, rbx); 1418 1419 oop_maps = new OopMapSet(); 1420 oop_maps->add_gc_map(call_offset, map); 1421 restore_live_registers(sasm, save_fpu_registers); 1422 } 1423 break; 1424 1425 case monitorexit_nofpu_id: 1426 save_fpu_registers = false; 1427 // fall through 1428 case monitorexit_id: 1429 { 1430 StubFrame f(sasm, "monitorexit", dont_gc_arguments); 1431 OopMap* map = save_live_registers(sasm, 2, save_fpu_registers); 1432 1433 // Called with store_parameter and not C abi 1434 1435 f.load_argument(0, rax); // rax,: lock address 1436 1437 // note: really a leaf routine but must setup last java sp 1438 // => use call_RT for now (speed can be improved by 1439 // doing last java sp setup manually) 1440 int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, monitorexit), rax); 1441 1442 oop_maps = new OopMapSet(); 1443 oop_maps->add_gc_map(call_offset, map); 1444 restore_live_registers(sasm, save_fpu_registers); 1445 } 1446 break; 1447 1448 case deoptimize_id: 1449 { 1450 StubFrame f(sasm, "deoptimize", dont_gc_arguments); 1451 const int num_rt_args = 2; // thread, trap_request 1452 OopMap* oop_map = save_live_registers(sasm, num_rt_args); 1453 f.load_argument(0, rax); 1454 int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, deoptimize), rax); 1455 oop_maps = new OopMapSet(); 1456 oop_maps->add_gc_map(call_offset, oop_map); 1457 restore_live_registers(sasm); 1458 DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob(); 1459 assert(deopt_blob != NULL, "deoptimization blob must have been created"); 1460 __ leave(); 1461 __ jump(RuntimeAddress(deopt_blob->unpack_with_reexecution())); 1462 } 1463 break; 1464 1465 case access_field_patching_id: 1466 { StubFrame f(sasm, "access_field_patching", dont_gc_arguments); 1467 // we should set up register map 1468 oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, access_field_patching)); 1469 } 1470 break; 1471 1472 case load_klass_patching_id: 1473 { StubFrame f(sasm, "load_klass_patching", dont_gc_arguments); 1474 // we should set up register map 1475 oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_klass_patching)); 1476 } 1477 break; 1478 1479 case load_mirror_patching_id: 1480 { StubFrame f(sasm, "load_mirror_patching", dont_gc_arguments); 1481 // we should set up register map 1482 oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_mirror_patching)); 1483 } 1484 break; 1485 1486 case load_appendix_patching_id: 1487 { StubFrame f(sasm, "load_appendix_patching", dont_gc_arguments); 1488 // we should set up register map 1489 oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_appendix_patching)); 1490 } 1491 break; 1492 1493 case dtrace_object_alloc_id: 1494 { // rax,: object 1495 StubFrame f(sasm, "dtrace_object_alloc", dont_gc_arguments); 1496 // we can't gc here so skip the oopmap but make sure that all 1497 // the live registers get saved. 1498 save_live_registers(sasm, 1); 1499 1500 __ NOT_LP64(push(rax)) LP64_ONLY(mov(c_rarg0, rax)); 1501 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, static_cast<int (*)(oopDesc*)>(SharedRuntime::dtrace_object_alloc)))); 1502 NOT_LP64(__ pop(rax)); 1503 1504 restore_live_registers(sasm); 1505 } 1506 break; 1507 1508 case fpu2long_stub_id: 1509 { 1510 #ifdef _LP64 1511 Label done; 1512 __ cvttsd2siq(rax, Address(rsp, wordSize)); 1513 __ cmp64(rax, ExternalAddress((address) StubRoutines::x86::double_sign_flip())); 1514 __ jccb(Assembler::notEqual, done); 1515 __ movq(rax, Address(rsp, wordSize)); 1516 __ subptr(rsp, 8); 1517 __ movq(Address(rsp, 0), rax); 1518 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::d2l_fixup()))); 1519 __ pop(rax); 1520 __ bind(done); 1521 __ ret(0); 1522 #else 1523 // rax, and rdx are destroyed, but should be free since the result is returned there 1524 // preserve rsi,ecx 1525 __ push(rsi); 1526 __ push(rcx); 1527 1528 // check for NaN 1529 Label return0, do_return, return_min_jlong, do_convert; 1530 1531 Address value_high_word(rsp, wordSize + 4); 1532 Address value_low_word(rsp, wordSize); 1533 Address result_high_word(rsp, 3*wordSize + 4); 1534 Address result_low_word(rsp, 3*wordSize); 1535 1536 __ subptr(rsp, 32); // more than enough on 32bit 1537 __ fst_d(value_low_word); 1538 __ movl(rax, value_high_word); 1539 __ andl(rax, 0x7ff00000); 1540 __ cmpl(rax, 0x7ff00000); 1541 __ jcc(Assembler::notEqual, do_convert); 1542 __ movl(rax, value_high_word); 1543 __ andl(rax, 0xfffff); 1544 __ orl(rax, value_low_word); 1545 __ jcc(Assembler::notZero, return0); 1546 1547 __ bind(do_convert); 1548 __ fnstcw(Address(rsp, 0)); 1549 __ movzwl(rax, Address(rsp, 0)); 1550 __ orl(rax, 0xc00); 1551 __ movw(Address(rsp, 2), rax); 1552 __ fldcw(Address(rsp, 2)); 1553 __ fwait(); 1554 __ fistp_d(result_low_word); 1555 __ fldcw(Address(rsp, 0)); 1556 __ fwait(); 1557 // This gets the entire long in rax on 64bit 1558 __ movptr(rax, result_low_word); 1559 // testing of high bits 1560 __ movl(rdx, result_high_word); 1561 __ mov(rcx, rax); 1562 // What the heck is the point of the next instruction??? 1563 __ xorl(rcx, 0x0); 1564 __ movl(rsi, 0x80000000); 1565 __ xorl(rsi, rdx); 1566 __ orl(rcx, rsi); 1567 __ jcc(Assembler::notEqual, do_return); 1568 __ fldz(); 1569 __ fcomp_d(value_low_word); 1570 __ fnstsw_ax(); 1571 __ sahf(); 1572 __ jcc(Assembler::above, return_min_jlong); 1573 // return max_jlong 1574 __ movl(rdx, 0x7fffffff); 1575 __ movl(rax, 0xffffffff); 1576 __ jmp(do_return); 1577 1578 __ bind(return_min_jlong); 1579 __ movl(rdx, 0x80000000); 1580 __ xorl(rax, rax); 1581 __ jmp(do_return); 1582 1583 __ bind(return0); 1584 __ fpop(); 1585 __ xorptr(rdx,rdx); 1586 __ xorptr(rax,rax); 1587 1588 __ bind(do_return); 1589 __ addptr(rsp, 32); 1590 __ pop(rcx); 1591 __ pop(rsi); 1592 __ ret(0); 1593 #endif // _LP64 1594 } 1595 break; 1596 1597 case predicate_failed_trap_id: 1598 { 1599 StubFrame f(sasm, "predicate_failed_trap", dont_gc_arguments); 1600 1601 OopMap* map = save_live_registers(sasm, 1); 1602 1603 int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, predicate_failed_trap)); 1604 oop_maps = new OopMapSet(); 1605 oop_maps->add_gc_map(call_offset, map); 1606 restore_live_registers(sasm); 1607 __ leave(); 1608 DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob(); 1609 assert(deopt_blob != NULL, "deoptimization blob must have been created"); 1610 1611 __ jump(RuntimeAddress(deopt_blob->unpack_with_reexecution())); 1612 } 1613 break; 1614 1615 default: 1616 { StubFrame f(sasm, "unimplemented entry", dont_gc_arguments); 1617 __ movptr(rax, (int)id); 1618 __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, unimplemented_entry), rax); 1619 __ should_not_reach_here(); 1620 } 1621 break; 1622 } 1623 return oop_maps; 1624 } 1625 1626 #undef __ 1627 1628 const char *Runtime1::pd_name_for_address(address entry) { 1629 return "<unknown function>"; 1630 }