1 /*
2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "compiler/oopMap.hpp"
26 #include "interpreter/interpreter.hpp"
27 #include "memory/resourceArea.hpp"
28 #include "memory/universe.hpp"
29 #include "oops/markWord.hpp"
30 #include "oops/method.hpp"
31 #include "oops/oop.inline.hpp"
32 #include "prims/methodHandles.hpp"
33 #include "runtime/continuation.hpp"
34 #include "runtime/frame.inline.hpp"
35 #include "runtime/handles.inline.hpp"
36 #include "runtime/javaCalls.hpp"
37 #include "runtime/monitorChunk.hpp"
38 #include "runtime/signature.hpp"
39 #include "runtime/stackWatermarkSet.hpp"
40 #include "runtime/stubCodeGenerator.hpp"
41 #include "runtime/stubRoutines.hpp"
42 #include "vmreg_x86.inline.hpp"
43 #include "utilities/formatBuffer.hpp"
44 #ifdef COMPILER1
45 #include "c1/c1_Runtime1.hpp"
46 #include "runtime/vframeArray.hpp"
47 #endif
48
49 #ifdef ASSERT
50 void RegisterMap::check_location_valid() {
51 }
52 #endif
53
54 // Profiling/safepoint support
55
56 bool frame::safe_for_sender(JavaThread *thread) {
57 if (is_heap_frame()) {
58 return true;
59 }
60 address sp = (address)_sp;
61 address fp = (address)_fp;
62 address unextended_sp = (address)_unextended_sp;
63
64 // consider stack guards when trying to determine "safe" stack pointers
65 // sp must be within the usable part of the stack (not in guards)
66 if (!thread->is_in_usable_stack(sp)) {
67 return false;
68 }
69
70 // unextended sp must be within the stack
71 // Note: sp can be greater than unextended_sp in the case of
72 // interpreted -> interpreted calls that go through a method handle linker,
73 // since those pop the last argument (the appendix) from the stack.
74 if (!thread->is_in_stack_range_incl(unextended_sp, sp - Interpreter::stackElementSize)) {
75 return false;
76 }
77
78 // an fp must be within the stack and above (but not equal) sp
79 // second evaluation on fp+ is added to handle situation where fp is -1
80 bool fp_safe = thread->is_in_stack_range_excl(fp, sp) &&
81 thread->is_in_full_stack_checked(fp + (return_addr_offset * sizeof(void*)));
82
83 // We know sp/unextended_sp are safe only fp is questionable here
84
85 // If the current frame is known to the code cache then we can attempt to
86 // construct the sender and do some validation of it. This goes a long way
87 // toward eliminating issues when we get in frame construction code
88
89 if (_cb != nullptr ) {
90
91 // First check if frame is complete and tester is reliable
92 // Unfortunately we can only check frame complete for runtime stubs and nmethod
93 // other generic buffer blobs are more problematic so we just assume they are
94 // ok. adapter blobs never have a frame complete and are never ok.
95
96 if (!_cb->is_frame_complete_at(_pc)) {
97 if (_cb->is_nmethod() || _cb->is_adapter_blob() || _cb->is_runtime_stub()) {
98 return false;
99 }
100 }
101
102 // Could just be some random pointer within the codeBlob
103 if (!_cb->code_contains(_pc)) {
104 return false;
105 }
106
107 // Entry frame checks
108 if (is_entry_frame()) {
109 // an entry frame must have a valid fp.
110 return fp_safe && is_entry_frame_valid(thread);
111 } else if (is_upcall_stub_frame()) {
112 return fp_safe;
113 }
114
115 intptr_t* sender_sp = nullptr;
116 intptr_t* sender_unextended_sp = nullptr;
117 address sender_pc = nullptr;
118 intptr_t* saved_fp = nullptr;
119
120 if (is_interpreted_frame()) {
121 // fp must be safe
122 if (!fp_safe) {
123 return false;
124 }
125
126 sender_pc = (address) this->fp()[return_addr_offset];
127 // for interpreted frames, the value below is the sender "raw" sp,
128 // which can be different from the sender unextended sp (the sp seen
129 // by the sender) because of current frame local variables
130 sender_sp = (intptr_t*) addr_at(sender_sp_offset);
131 sender_unextended_sp = (intptr_t*) this->fp()[interpreter_frame_sender_sp_offset];
132 saved_fp = (intptr_t*) this->fp()[link_offset];
133
134 } else {
135 // must be some sort of compiled/runtime frame
136 // fp does not have to be safe (although it could be check for c1?)
137
138 // check for a valid frame_size, otherwise we are unlikely to get a valid sender_pc
139 if (_cb->frame_size() <= 0) {
140 return false;
141 }
142
143 sender_sp = _unextended_sp + _cb->frame_size();
144 // Is sender_sp safe?
145 if (!thread->is_in_full_stack_checked((address)sender_sp)) {
146 return false;
147 }
148 sender_unextended_sp = sender_sp;
149 // On Intel the return_address is always the word on the stack
150 sender_pc = (address) *(sender_sp-1);
151 // Note: frame::sender_sp_offset is only valid for compiled frame
152 saved_fp = (intptr_t*) *(sender_sp - frame::sender_sp_offset);
153 }
154
155 if (Continuation::is_return_barrier_entry(sender_pc)) {
156 // sender_pc might be invalid so check that the frame
157 // actually belongs to a Continuation.
158 if (!Continuation::is_frame_in_continuation(thread, *this)) {
159 return false;
160 }
161 // If our sender_pc is the return barrier, then our "real" sender is the continuation entry
162 frame s = Continuation::continuation_bottom_sender(thread, *this, sender_sp);
163 sender_sp = s.sp();
164 sender_pc = s.pc();
165 }
166
167 // If the potential sender is the interpreter then we can do some more checking
168 if (Interpreter::contains(sender_pc)) {
169
170 // ebp is always saved in a recognizable place in any code we generate. However
171 // only if the sender is interpreted/call_stub (c1 too?) are we certain that the saved ebp
172 // is really a frame pointer.
173
174 if (!thread->is_in_stack_range_excl((address)saved_fp, (address)sender_sp)) {
175 return false;
176 }
177
178 // construct the potential sender
179
180 frame sender(sender_sp, sender_unextended_sp, saved_fp, sender_pc);
181
182 return sender.is_interpreted_frame_valid(thread);
183
184 }
185
186 // We must always be able to find a recognizable pc
187 CodeBlob* sender_blob = CodeCache::find_blob(sender_pc);
188 if (sender_pc == nullptr || sender_blob == nullptr) {
189 return false;
190 }
191
192 // Could just be some random pointer within the codeBlob
193 if (!sender_blob->code_contains(sender_pc)) {
194 return false;
195 }
196
197 // We should never be able to see an adapter if the current frame is something from code cache
198 if (sender_blob->is_adapter_blob()) {
199 return false;
200 }
201
202 // Could be the call_stub
203 if (StubRoutines::returns_to_call_stub(sender_pc)) {
204 if (!thread->is_in_stack_range_excl((address)saved_fp, (address)sender_sp)) {
205 return false;
206 }
207
208 // construct the potential sender
209
210 frame sender(sender_sp, sender_unextended_sp, saved_fp, sender_pc);
211
212 // Validate the JavaCallWrapper an entry frame must have
213 address jcw = (address)sender.entry_frame_call_wrapper();
214
215 return thread->is_in_stack_range_excl(jcw, (address)sender.fp());
216 } else if (sender_blob->is_upcall_stub()) {
217 return false;
218 }
219
220 nmethod* nm = sender_blob->as_nmethod_or_null();
221 if (nm != nullptr) {
222 if (nm->is_deopt_entry(sender_pc) || nm->method()->is_method_handle_intrinsic()) {
223 return false;
224 }
225 }
226
227 // If the frame size is 0 something (or less) is bad because every nmethod has a non-zero frame size
228 // because the return address counts against the callee's frame.
229
230 if (sender_blob->frame_size() <= 0) {
231 assert(!sender_blob->is_nmethod(), "should count return address at least");
232 return false;
233 }
234
235 // We should never be able to see anything here except an nmethod. If something in the
236 // code cache (current frame) is called by an entity within the code cache that entity
237 // should not be anything but the call stub (already covered), the interpreter (already covered)
238 // or an nmethod.
239
240 if (!sender_blob->is_nmethod()) {
241 return false;
242 }
243
244 // Could put some more validation for the potential non-interpreted sender
245 // frame we'd create by calling sender if I could think of any. Wait for next crash in forte...
246
247 // One idea is seeing if the sender_pc we have is one that we'd expect to call to current cb
248
249 // We've validated the potential sender that would be created
250 return true;
251 }
252
253 // Must be native-compiled frame. Since sender will try and use fp to find
254 // linkages it must be safe
255
256 if (!fp_safe) {
257 return false;
258 }
259
260 // Will the pc we fetch be non-zero (which we'll find at the oldest frame)
261
262 if ( (address) this->fp()[return_addr_offset] == nullptr) return false;
263
264
265 // could try and do some more potential verification of native frame if we could think of some...
266
267 return true;
268
269 }
270
271
272 void frame::patch_pc(Thread* thread, address pc) {
273 assert(_cb == CodeCache::find_blob(pc), "unexpected pc");
274 address* pc_addr = &(((address*) sp())[-1]);
275
276 if (TracePcPatching) {
277 tty->print_cr("patch_pc at address " INTPTR_FORMAT " [" INTPTR_FORMAT " -> " INTPTR_FORMAT "]",
278 p2i(pc_addr), p2i(*pc_addr), p2i(pc));
279 }
280 // Either the return address is the original one or we are going to
281 // patch in the same address that's already there.
282
283 assert(!Continuation::is_return_barrier_entry(*pc_addr), "return barrier");
284
285 assert(_pc == *pc_addr || pc == *pc_addr || *pc_addr == nullptr, "");
286 DEBUG_ONLY(address old_pc = _pc;)
287 *pc_addr = pc;
288 _pc = pc; // must be set before call to get_deopt_original_pc
289 address original_pc = get_deopt_original_pc();
290 if (original_pc != nullptr) {
291 assert(original_pc == old_pc, "expected original PC to be stored before patching");
292 _deopt_state = is_deoptimized;
293 _pc = original_pc;
294 } else {
295 _deopt_state = not_deoptimized;
296 }
297 assert(!is_compiled_frame() || !_cb->as_nmethod()->is_deopt_entry(_pc), "must be");
298
299 #ifdef ASSERT
300 {
301 frame f(this->sp(), this->unextended_sp(), this->fp(), pc);
302 assert(f.is_deoptimized_frame() == this->is_deoptimized_frame() && f.pc() == this->pc() && f.raw_pc() == this->raw_pc(),
303 "must be (f.is_deoptimized_frame(): %d this->is_deoptimized_frame(): %d "
304 "f.pc(): " INTPTR_FORMAT " this->pc(): " INTPTR_FORMAT " f.raw_pc(): " INTPTR_FORMAT " this->raw_pc(): " INTPTR_FORMAT ")",
305 f.is_deoptimized_frame(), this->is_deoptimized_frame(), p2i(f.pc()), p2i(this->pc()), p2i(f.raw_pc()), p2i(this->raw_pc()));
306 }
307 #endif
308 }
309
310 intptr_t* frame::entry_frame_argument_at(int offset) const {
311 // convert offset to index to deal with tsi
312 int index = (Interpreter::expr_offset_in_bytes(offset)/wordSize);
313 // Entry frame's arguments are always in relation to unextended_sp()
314 return &unextended_sp()[index];
315 }
316
317 // locals
318
319 void frame::interpreter_frame_set_locals(intptr_t* locs) {
320 assert(is_interpreted_frame(), "interpreted frame expected");
321 // set relativized locals
322 ptr_at_put(interpreter_frame_locals_offset, (intptr_t) (locs - fp()));
323 }
324
325 // sender_sp
326
327 intptr_t* frame::interpreter_frame_sender_sp() const {
328 assert(is_interpreted_frame(), "interpreted frame expected");
329 return (intptr_t*) at(interpreter_frame_sender_sp_offset);
330 }
331
332 void frame::set_interpreter_frame_sender_sp(intptr_t* sender_sp) {
333 assert(is_interpreted_frame(), "interpreted frame expected");
334 ptr_at_put(interpreter_frame_sender_sp_offset, (intptr_t) sender_sp);
335 }
336
337
338 // monitor elements
339
340 BasicObjectLock* frame::interpreter_frame_monitor_begin() const {
341 return (BasicObjectLock*) addr_at(interpreter_frame_monitor_block_bottom_offset);
342 }
343
344 BasicObjectLock* frame::interpreter_frame_monitor_end() const {
345 BasicObjectLock* result = (BasicObjectLock*) at_relative(interpreter_frame_monitor_block_top_offset);
346 // make sure the pointer points inside the frame
347 assert(sp() <= (intptr_t*) result, "monitor end should be above the stack pointer");
348 assert((intptr_t*) result < fp(), "monitor end should be strictly below the frame pointer: result: " INTPTR_FORMAT " fp: " INTPTR_FORMAT, p2i(result), p2i(fp()));
349 return result;
350 }
351
352 void frame::interpreter_frame_set_monitor_end(BasicObjectLock* value) {
353 assert(is_interpreted_frame(), "interpreted frame expected");
354 // set relativized monitor_block_top
355 ptr_at_put(interpreter_frame_monitor_block_top_offset, (intptr_t*)value - fp());
356 assert(at_absolute(interpreter_frame_monitor_block_top_offset) <= interpreter_frame_monitor_block_top_offset, "");
357 }
358
359 // Used by template based interpreter deoptimization
360 void frame::interpreter_frame_set_last_sp(intptr_t* sp) {
361 assert(is_interpreted_frame(), "interpreted frame expected");
362 // set relativized last_sp
363 ptr_at_put(interpreter_frame_last_sp_offset, sp != nullptr ? (sp - fp()) : 0);
364 }
365
366 frame frame::sender_for_entry_frame(RegisterMap* map) const {
367 assert(map != nullptr, "map must be set");
368 // Java frame called from C; skip all C frames and return top C
369 // frame of that chunk as the sender
370 JavaFrameAnchor* jfa = entry_frame_call_wrapper()->anchor();
371 assert(!entry_frame_is_first(), "next Java fp must be non zero");
372 assert(jfa->last_Java_sp() > sp(), "must be above this frame on stack");
373 // Since we are walking the stack now this nested anchor is obviously walkable
374 // even if it wasn't when it was stacked.
375 jfa->make_walkable();
376 map->clear();
377 assert(map->include_argument_oops(), "should be set by clear");
378 frame fr(jfa->last_Java_sp(), jfa->last_Java_fp(), jfa->last_Java_pc());
379
380 return fr;
381 }
382
383 UpcallStub::FrameData* UpcallStub::frame_data_for_frame(const frame& frame) const {
384 assert(frame.is_upcall_stub_frame(), "wrong frame");
385 // need unextended_sp here, since normal sp is wrong for interpreter callees
386 return reinterpret_cast<UpcallStub::FrameData*>(
387 reinterpret_cast<address>(frame.unextended_sp()) + in_bytes(_frame_data_offset));
388 }
389
390 bool frame::upcall_stub_frame_is_first() const {
391 assert(is_upcall_stub_frame(), "must be optimzed entry frame");
392 UpcallStub* blob = _cb->as_upcall_stub();
393 JavaFrameAnchor* jfa = blob->jfa_for_frame(*this);
394 return jfa->last_Java_sp() == nullptr;
395 }
396
397 frame frame::sender_for_upcall_stub_frame(RegisterMap* map) const {
398 assert(map != nullptr, "map must be set");
399 UpcallStub* blob = _cb->as_upcall_stub();
400 // Java frame called from C; skip all C frames and return top C
401 // frame of that chunk as the sender
402 JavaFrameAnchor* jfa = blob->jfa_for_frame(*this);
403 assert(!upcall_stub_frame_is_first(), "must have a frame anchor to go back to");
404 assert(jfa->last_Java_sp() > sp(), "must be above this frame on stack");
405 // Since we are walking the stack now this nested anchor is obviously walkable
406 // even if it wasn't when it was stacked.
407 jfa->make_walkable();
408 map->clear();
409 assert(map->include_argument_oops(), "should be set by clear");
410 frame fr(jfa->last_Java_sp(), jfa->last_Java_fp(), jfa->last_Java_pc());
411
412 return fr;
413 }
414
415 #if defined(ASSERT)
416 static address get_register_address_in_stub(const frame& stub_fr, VMReg reg) {
417 RegisterMap map(nullptr,
418 RegisterMap::UpdateMap::include,
419 RegisterMap::ProcessFrames::skip,
420 RegisterMap::WalkContinuation::skip);
421 stub_fr.oop_map()->update_register_map(&stub_fr, &map);
422 return map.location(reg, stub_fr.sp());
423 }
424 #endif
425
426 JavaThread** frame::saved_thread_address(const frame& f) {
427 CodeBlob* cb = f.cb();
428 assert(cb != nullptr && cb->is_runtime_stub(), "invalid frame");
429
430 JavaThread** thread_addr;
431 #ifdef COMPILER1
432 if (cb == Runtime1::blob_for(StubId::c1_monitorenter_id) ||
433 cb == Runtime1::blob_for(StubId::c1_monitorenter_nofpu_id)) {
434 thread_addr = (JavaThread**)(f.sp() + Runtime1::runtime_blob_current_thread_offset(f));
435 } else
436 #endif
437 {
438 // c2 only saves rbp in the stub frame so nothing to do.
439 thread_addr = nullptr;
440 }
441 assert(get_register_address_in_stub(f, SharedRuntime::thread_register()) == (address)thread_addr, "wrong thread address");
442 return thread_addr;
443 }
444
445 //------------------------------------------------------------------------------
446 // frame::sender_for_interpreter_frame
447 frame frame::sender_for_interpreter_frame(RegisterMap* map) const {
448 // SP is the raw SP from the sender after adapter or interpreter
449 // extension.
450 intptr_t* sender_sp = this->sender_sp();
451
452 // This is the sp before any possible extension (adapter/locals).
453 intptr_t* unextended_sp = interpreter_frame_sender_sp();
454 intptr_t* sender_fp = link();
455
456 #if COMPILER2_OR_JVMCI
457 if (map->update_map()) {
458 update_map_with_saved_link(map, (intptr_t**) addr_at(link_offset));
459 }
460 #endif // COMPILER2_OR_JVMCI
461
462 address sender_pc = this->sender_pc();
463
464 if (Continuation::is_return_barrier_entry(sender_pc)) {
465 if (map->walk_cont()) { // about to walk into an h-stack
466 return Continuation::top_frame(*this, map);
467 } else {
468 return Continuation::continuation_bottom_sender(map->thread(), *this, sender_sp);
469 }
470 }
471
472 return frame(sender_sp, unextended_sp, sender_fp, sender_pc);
473 }
474
475 bool frame::is_interpreted_frame_valid(JavaThread* thread) const {
476 assert(is_interpreted_frame(), "Not an interpreted frame");
477 // These are reasonable sanity checks
478 if (fp() == nullptr || (intptr_t(fp()) & (wordSize-1)) != 0) {
479 return false;
480 }
481 if (sp() == nullptr || (intptr_t(sp()) & (wordSize-1)) != 0) {
482 return false;
483 }
484 if (fp() + interpreter_frame_initial_sp_offset < sp()) {
485 return false;
486 }
487 // These are hacks to keep us out of trouble.
488 // The problem with these is that they mask other problems
489 if (fp() <= sp()) { // this attempts to deal with unsigned comparison above
490 return false;
491 }
492
493 // do some validation of frame elements
494 // first the method
495
496 Method* m = safe_interpreter_frame_method();
497
498 // validate the method we'd find in this potential sender
499 if (!Method::is_valid_method(m)) return false;
500
501 // stack frames shouldn't be much larger than max_stack elements
502 // this test requires the use the unextended_sp which is the sp as seen by
503 // the current frame, and not sp which is the "raw" pc which could point
504 // further because of local variables of the callee method inserted after
505 // method arguments
506 if (fp() - unextended_sp() > 1024 + m->max_stack()*Interpreter::stackElementSize) {
507 return false;
508 }
509
510 // validate bci/bcp
511
512 address bcp = interpreter_frame_bcp();
513 if (m->validate_bci_from_bcp(bcp) < 0) {
514 return false;
515 }
516
517 // validate ConstantPoolCache*
518 ConstantPoolCache* cp = *interpreter_frame_cache_addr();
519 if (MetaspaceObj::is_valid(cp) == false) return false;
520
521 // validate locals
522
523 address locals = (address)interpreter_frame_locals();
524 return thread->is_in_stack_range_incl(locals, (address)fp());
525 }
526
527 BasicType frame::interpreter_frame_result(oop* oop_result, jvalue* value_result) {
528 assert(is_interpreted_frame(), "interpreted frame expected");
529 Method* method = interpreter_frame_method();
530 BasicType type = method->result_type();
531
532 intptr_t* tos_addr;
533 if (method->is_native()) {
534 // Prior to calling into the runtime to report the method_exit the possible
535 // return value is pushed to the native stack. If the result is a jfloat/jdouble
536 // then ST0 is saved before EAX/EDX. See the note in generate_native_result
537 tos_addr = (intptr_t*)sp();
538 if (type == T_FLOAT || type == T_DOUBLE) {
539 // QQQ seems like this code is equivalent on the two platforms
540 #ifdef AMD64
541 // This is times two because we do a push(ltos) after pushing XMM0
542 // and that takes two interpreter stack slots.
543 tos_addr += 2 * Interpreter::stackElementWords;
544 #else
545 tos_addr += 2;
546 #endif // AMD64
547 }
548 } else {
549 tos_addr = (intptr_t*)interpreter_frame_tos_address();
550 }
551
552 switch (type) {
553 case T_OBJECT :
554 case T_ARRAY : {
555 oop obj;
556 if (method->is_native()) {
557 obj = cast_to_oop(at(interpreter_frame_oop_temp_offset));
558 } else {
559 oop* obj_p = (oop*)tos_addr;
560 obj = (obj_p == nullptr) ? (oop)nullptr : *obj_p;
561 }
562 assert(Universe::is_in_heap_or_null(obj), "sanity check");
563 *oop_result = obj;
564 break;
565 }
566 case T_BOOLEAN : value_result->z = *(jboolean*)tos_addr; break;
567 case T_BYTE : value_result->b = *(jbyte*)tos_addr; break;
568 case T_CHAR : value_result->c = *(jchar*)tos_addr; break;
569 case T_SHORT : value_result->s = *(jshort*)tos_addr; break;
570 case T_INT : value_result->i = *(jint*)tos_addr; break;
571 case T_LONG : value_result->j = *(jlong*)tos_addr; break;
572 case T_FLOAT : {
573 #ifdef AMD64
574 value_result->f = *(jfloat*)tos_addr;
575 #else
576 if (method->is_native()) {
577 jdouble d = *(jdouble*)tos_addr; // Result was in ST0 so need to convert to jfloat
578 value_result->f = (jfloat)d;
579 } else {
580 value_result->f = *(jfloat*)tos_addr;
581 }
582 #endif // AMD64
583 break;
584 }
585 case T_DOUBLE : value_result->d = *(jdouble*)tos_addr; break;
586 case T_VOID : /* Nothing to do */ break;
587 default : ShouldNotReachHere();
588 }
589
590 return type;
591 }
592
593 intptr_t* frame::interpreter_frame_tos_at(jint offset) const {
594 int index = (Interpreter::expr_offset_in_bytes(offset)/wordSize);
595 return &interpreter_frame_tos_address()[index];
596 }
597
598 #ifndef PRODUCT
599
600 #define DESCRIBE_FP_OFFSET(name) \
601 values.describe(frame_no, fp() + frame::name##_offset, #name, 1)
602
603 void frame::describe_pd(FrameValues& values, int frame_no) {
604 if (is_interpreted_frame()) {
605 DESCRIBE_FP_OFFSET(interpreter_frame_sender_sp);
606 DESCRIBE_FP_OFFSET(interpreter_frame_last_sp);
607 DESCRIBE_FP_OFFSET(interpreter_frame_method);
608 DESCRIBE_FP_OFFSET(interpreter_frame_mirror);
609 DESCRIBE_FP_OFFSET(interpreter_frame_mdp);
610 DESCRIBE_FP_OFFSET(interpreter_frame_cache);
611 DESCRIBE_FP_OFFSET(interpreter_frame_locals);
612 DESCRIBE_FP_OFFSET(interpreter_frame_bcp);
613 DESCRIBE_FP_OFFSET(interpreter_frame_initial_sp);
614 #ifdef AMD64
615 } else if (is_entry_frame()) {
616 // This could be more descriptive if we use the enum in
617 // stubGenerator to map to real names but it's most important to
618 // claim these frame slots so the error checking works.
619 for (int i = 0; i < entry_frame_after_call_words; i++) {
620 values.describe(frame_no, fp() - i, err_msg("call_stub word fp - %d", i));
621 }
622 #endif // AMD64
623 }
624
625 if (is_java_frame() || Continuation::is_continuation_enterSpecial(*this)) {
626 intptr_t* ret_pc_loc;
627 intptr_t* fp_loc;
628 if (is_interpreted_frame()) {
629 ret_pc_loc = fp() + return_addr_offset;
630 fp_loc = fp();
631 } else {
632 ret_pc_loc = real_fp() - return_addr_offset;
633 fp_loc = real_fp() - sender_sp_offset;
634 }
635 address ret_pc = *(address*)ret_pc_loc;
636 values.describe(frame_no, ret_pc_loc,
637 Continuation::is_return_barrier_entry(ret_pc) ? "return address (return barrier)" : "return address");
638 values.describe(-1, fp_loc, "saved fp", 0); // "unowned" as value belongs to sender
639 }
640 }
641
642 #endif // !PRODUCT
643
644 intptr_t *frame::initial_deoptimization_info() {
645 // used to reset the saved FP
646 return fp();
647 }
648
649 #ifndef PRODUCT
650 // This is a generic constructor which is only used by pns() in debug.cpp.
651 frame::frame(void* sp, void* fp, void* pc) {
652 init((intptr_t*)sp, (intptr_t*)fp, (address)pc);
653 }
654
655 #endif
656
657 void JavaFrameAnchor::make_walkable() {
658 // last frame set?
659 if (last_Java_sp() == nullptr) return;
660 // already walkable?
661 if (walkable()) return;
662 _last_Java_pc = (address)_last_Java_sp[-1];
663 vmassert(walkable(), "something went wrong");
664 }