1 /* 2 * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "compiler/oopMap.hpp" 27 #include "interpreter/interpreter.hpp" 28 #include "memory/resourceArea.hpp" 29 #include "memory/universe.hpp" 30 #include "oops/markWord.hpp" 31 #include "oops/method.hpp" 32 #include "oops/oop.inline.hpp" 33 #include "prims/methodHandles.hpp" 34 #include "runtime/continuation.hpp" 35 #include "runtime/frame.inline.hpp" 36 #include "runtime/handles.inline.hpp" 37 #include "runtime/javaCalls.hpp" 38 #include "runtime/monitorChunk.hpp" 39 #include "runtime/signature.hpp" 40 #include "runtime/stackWatermarkSet.hpp" 41 #include "runtime/stubCodeGenerator.hpp" 42 #include "runtime/stubRoutines.hpp" 43 #include "vmreg_x86.inline.hpp" 44 #include "utilities/formatBuffer.hpp" 45 #ifdef COMPILER1 46 #include "c1/c1_Runtime1.hpp" 47 #include "runtime/vframeArray.hpp" 48 #endif 49 50 #ifdef ASSERT 51 void RegisterMap::check_location_valid() { 52 } 53 #endif 54 55 // Profiling/safepoint support 56 57 bool frame::safe_for_sender(JavaThread *thread) { 58 if (is_heap_frame()) { 59 return true; 60 } 61 address sp = (address)_sp; 62 address fp = (address)_fp; 63 address unextended_sp = (address)_unextended_sp; 64 65 // consider stack guards when trying to determine "safe" stack pointers 66 // sp must be within the usable part of the stack (not in guards) 67 if (!thread->is_in_usable_stack(sp)) { 68 return false; 69 } 70 71 // unextended sp must be within the stack 72 // Note: sp can be greater than unextended_sp in the case of 73 // interpreted -> interpreted calls that go through a method handle linker, 74 // since those pop the last argument (the appendix) from the stack. 75 if (!thread->is_in_stack_range_incl(unextended_sp, sp - Interpreter::stackElementSize)) { 76 return false; 77 } 78 79 // an fp must be within the stack and above (but not equal) sp 80 // second evaluation on fp+ is added to handle situation where fp is -1 81 bool fp_safe = thread->is_in_stack_range_excl(fp, sp) && 82 thread->is_in_full_stack_checked(fp + (return_addr_offset * sizeof(void*))); 83 84 // We know sp/unextended_sp are safe only fp is questionable here 85 86 // If the current frame is known to the code cache then we can attempt to 87 // construct the sender and do some validation of it. This goes a long way 88 // toward eliminating issues when we get in frame construction code 89 90 if (_cb != nullptr ) { 91 92 // First check if frame is complete and tester is reliable 93 // Unfortunately we can only check frame complete for runtime stubs and nmethod 94 // other generic buffer blobs are more problematic so we just assume they are 95 // ok. adapter blobs never have a frame complete and are never ok. 96 97 if (!_cb->is_frame_complete_at(_pc)) { 98 if (_cb->is_nmethod() || _cb->is_adapter_blob() || _cb->is_runtime_stub()) { 99 return false; 100 } 101 } 102 103 // Could just be some random pointer within the codeBlob 104 if (!_cb->code_contains(_pc)) { 105 return false; 106 } 107 108 // Entry frame checks 109 if (is_entry_frame()) { 110 // an entry frame must have a valid fp. 111 return fp_safe && is_entry_frame_valid(thread); 112 } else if (is_upcall_stub_frame()) { 113 return fp_safe; 114 } 115 116 intptr_t* sender_sp = nullptr; 117 intptr_t* sender_unextended_sp = nullptr; 118 address sender_pc = nullptr; 119 intptr_t* saved_fp = nullptr; 120 121 if (is_interpreted_frame()) { 122 // fp must be safe 123 if (!fp_safe) { 124 return false; 125 } 126 127 sender_pc = (address) this->fp()[return_addr_offset]; 128 // for interpreted frames, the value below is the sender "raw" sp, 129 // which can be different from the sender unextended sp (the sp seen 130 // by the sender) because of current frame local variables 131 sender_sp = (intptr_t*) addr_at(sender_sp_offset); 132 sender_unextended_sp = (intptr_t*) this->fp()[interpreter_frame_sender_sp_offset]; 133 saved_fp = (intptr_t*) this->fp()[link_offset]; 134 135 } else { 136 // must be some sort of compiled/runtime frame 137 // fp does not have to be safe (although it could be check for c1?) 138 139 // check for a valid frame_size, otherwise we are unlikely to get a valid sender_pc 140 if (_cb->frame_size() <= 0) { 141 return false; 142 } 143 144 sender_sp = _unextended_sp + _cb->frame_size(); 145 // Is sender_sp safe? 146 if (!thread->is_in_full_stack_checked((address)sender_sp)) { 147 return false; 148 } 149 // On Intel the return_address is always the word on the stack 150 sender_pc = (address) *(sender_sp-1); 151 // Note: frame::sender_sp_offset is only valid for compiled frame 152 intptr_t** saved_fp_addr = (intptr_t**) (sender_sp - frame::sender_sp_offset); 153 saved_fp = *saved_fp_addr; 154 155 // Repair the sender sp if this is a method with scalarized inline type args 156 sender_sp = repair_sender_sp(sender_sp, saved_fp_addr); 157 sender_unextended_sp = sender_sp; 158 } 159 if (Continuation::is_return_barrier_entry(sender_pc)) { 160 // If our sender_pc is the return barrier, then our "real" sender is the continuation entry 161 frame s = Continuation::continuation_bottom_sender(thread, *this, sender_sp); 162 sender_sp = s.sp(); 163 sender_pc = s.pc(); 164 } 165 166 // If the potential sender is the interpreter then we can do some more checking 167 if (Interpreter::contains(sender_pc)) { 168 169 // ebp is always saved in a recognizable place in any code we generate. However 170 // only if the sender is interpreted/call_stub (c1 too?) are we certain that the saved ebp 171 // is really a frame pointer. 172 173 if (!thread->is_in_stack_range_excl((address)saved_fp, (address)sender_sp)) { 174 return false; 175 } 176 177 // construct the potential sender 178 179 frame sender(sender_sp, sender_unextended_sp, saved_fp, sender_pc); 180 181 return sender.is_interpreted_frame_valid(thread); 182 183 } 184 185 // We must always be able to find a recognizable pc 186 CodeBlob* sender_blob = CodeCache::find_blob(sender_pc); 187 if (sender_pc == nullptr || sender_blob == nullptr) { 188 return false; 189 } 190 191 // Could just be some random pointer within the codeBlob 192 if (!sender_blob->code_contains(sender_pc)) { 193 return false; 194 } 195 196 // We should never be able to see an adapter if the current frame is something from code cache 197 if (sender_blob->is_adapter_blob()) { 198 return false; 199 } 200 201 // Could be the call_stub 202 if (StubRoutines::returns_to_call_stub(sender_pc)) { 203 if (!thread->is_in_stack_range_excl((address)saved_fp, (address)sender_sp)) { 204 return false; 205 } 206 207 // construct the potential sender 208 209 frame sender(sender_sp, sender_unextended_sp, saved_fp, sender_pc); 210 211 // Validate the JavaCallWrapper an entry frame must have 212 address jcw = (address)sender.entry_frame_call_wrapper(); 213 214 return thread->is_in_stack_range_excl(jcw, (address)sender.fp()); 215 } else if (sender_blob->is_upcall_stub()) { 216 return false; 217 } 218 219 nmethod* nm = sender_blob->as_nmethod_or_null(); 220 if (nm != nullptr) { 221 if (nm->is_deopt_mh_entry(sender_pc) || nm->is_deopt_entry(sender_pc) || 222 nm->method()->is_method_handle_intrinsic()) { 223 return false; 224 } 225 } 226 227 // If the frame size is 0 something (or less) is bad because every nmethod has a non-zero frame size 228 // because the return address counts against the callee's frame. 229 230 if (sender_blob->frame_size() <= 0) { 231 assert(!sender_blob->is_nmethod(), "should count return address at least"); 232 return false; 233 } 234 235 // We should never be able to see anything here except an nmethod. If something in the 236 // code cache (current frame) is called by an entity within the code cache that entity 237 // should not be anything but the call stub (already covered), the interpreter (already covered) 238 // or an nmethod. 239 240 if (!sender_blob->is_nmethod()) { 241 return false; 242 } 243 244 // Could put some more validation for the potential non-interpreted sender 245 // frame we'd create by calling sender if I could think of any. Wait for next crash in forte... 246 247 // One idea is seeing if the sender_pc we have is one that we'd expect to call to current cb 248 249 // We've validated the potential sender that would be created 250 return true; 251 } 252 253 // Must be native-compiled frame. Since sender will try and use fp to find 254 // linkages it must be safe 255 256 if (!fp_safe) { 257 return false; 258 } 259 260 // Will the pc we fetch be non-zero (which we'll find at the oldest frame) 261 262 if ( (address) this->fp()[return_addr_offset] == nullptr) return false; 263 264 265 // could try and do some more potential verification of native frame if we could think of some... 266 267 return true; 268 269 } 270 271 272 void frame::patch_pc(Thread* thread, address pc) { 273 assert(_cb == CodeCache::find_blob(pc), "unexpected pc"); 274 address* pc_addr = &(((address*) sp())[-1]); 275 276 if (TracePcPatching) { 277 tty->print_cr("patch_pc at address " INTPTR_FORMAT " [" INTPTR_FORMAT " -> " INTPTR_FORMAT "]", 278 p2i(pc_addr), p2i(*pc_addr), p2i(pc)); 279 } 280 // Either the return address is the original one or we are going to 281 // patch in the same address that's already there. 282 283 assert(!Continuation::is_return_barrier_entry(*pc_addr), "return barrier"); 284 285 assert(_pc == *pc_addr || pc == *pc_addr || *pc_addr == nullptr, ""); 286 DEBUG_ONLY(address old_pc = _pc;) 287 *pc_addr = pc; 288 _pc = pc; // must be set before call to get_deopt_original_pc 289 address original_pc = get_deopt_original_pc(); 290 if (original_pc != nullptr) { 291 assert(original_pc == old_pc, "expected original PC to be stored before patching"); 292 _deopt_state = is_deoptimized; 293 _pc = original_pc; 294 } else { 295 _deopt_state = not_deoptimized; 296 } 297 assert(!is_compiled_frame() || !_cb->as_nmethod()->is_deopt_entry(_pc), "must be"); 298 299 #ifdef ASSERT 300 { 301 frame f(this->sp(), this->unextended_sp(), this->fp(), pc); 302 assert(f.is_deoptimized_frame() == this->is_deoptimized_frame() && f.pc() == this->pc() && f.raw_pc() == this->raw_pc(), 303 "must be (f.is_deoptimized_frame(): %d this->is_deoptimized_frame(): %d " 304 "f.pc(): " INTPTR_FORMAT " this->pc(): " INTPTR_FORMAT " f.raw_pc(): " INTPTR_FORMAT " this->raw_pc(): " INTPTR_FORMAT ")", 305 f.is_deoptimized_frame(), this->is_deoptimized_frame(), p2i(f.pc()), p2i(this->pc()), p2i(f.raw_pc()), p2i(this->raw_pc())); 306 } 307 #endif 308 } 309 310 intptr_t* frame::entry_frame_argument_at(int offset) const { 311 // convert offset to index to deal with tsi 312 int index = (Interpreter::expr_offset_in_bytes(offset)/wordSize); 313 // Entry frame's arguments are always in relation to unextended_sp() 314 return &unextended_sp()[index]; 315 } 316 317 // locals 318 319 void frame::interpreter_frame_set_locals(intptr_t* locs) { 320 assert(is_interpreted_frame(), "interpreted frame expected"); 321 // set relativized locals 322 ptr_at_put(interpreter_frame_locals_offset, (intptr_t) (locs - fp())); 323 } 324 325 // sender_sp 326 327 intptr_t* frame::interpreter_frame_sender_sp() const { 328 assert(is_interpreted_frame(), "interpreted frame expected"); 329 return (intptr_t*) at(interpreter_frame_sender_sp_offset); 330 } 331 332 void frame::set_interpreter_frame_sender_sp(intptr_t* sender_sp) { 333 assert(is_interpreted_frame(), "interpreted frame expected"); 334 ptr_at_put(interpreter_frame_sender_sp_offset, (intptr_t) sender_sp); 335 } 336 337 338 // monitor elements 339 340 BasicObjectLock* frame::interpreter_frame_monitor_begin() const { 341 return (BasicObjectLock*) addr_at(interpreter_frame_monitor_block_bottom_offset); 342 } 343 344 BasicObjectLock* frame::interpreter_frame_monitor_end() const { 345 BasicObjectLock* result = (BasicObjectLock*) at_relative(interpreter_frame_monitor_block_top_offset); 346 // make sure the pointer points inside the frame 347 assert(sp() <= (intptr_t*) result, "monitor end should be above the stack pointer"); 348 assert((intptr_t*) result < fp(), "monitor end should be strictly below the frame pointer: result: " INTPTR_FORMAT " fp: " INTPTR_FORMAT, p2i(result), p2i(fp())); 349 return result; 350 } 351 352 void frame::interpreter_frame_set_monitor_end(BasicObjectLock* value) { 353 assert(is_interpreted_frame(), "interpreted frame expected"); 354 // set relativized monitor_block_top 355 ptr_at_put(interpreter_frame_monitor_block_top_offset, (intptr_t*)value - fp()); 356 assert(at_absolute(interpreter_frame_monitor_block_top_offset) <= interpreter_frame_monitor_block_top_offset, ""); 357 } 358 359 // Used by template based interpreter deoptimization 360 void frame::interpreter_frame_set_last_sp(intptr_t* sp) { 361 assert(is_interpreted_frame(), "interpreted frame expected"); 362 // set relativized last_sp 363 ptr_at_put(interpreter_frame_last_sp_offset, sp != nullptr ? (sp - fp()) : 0); 364 } 365 366 frame frame::sender_for_entry_frame(RegisterMap* map) const { 367 assert(map != nullptr, "map must be set"); 368 // Java frame called from C; skip all C frames and return top C 369 // frame of that chunk as the sender 370 JavaFrameAnchor* jfa = entry_frame_call_wrapper()->anchor(); 371 assert(!entry_frame_is_first(), "next Java fp must be non zero"); 372 assert(jfa->last_Java_sp() > sp(), "must be above this frame on stack"); 373 // Since we are walking the stack now this nested anchor is obviously walkable 374 // even if it wasn't when it was stacked. 375 jfa->make_walkable(); 376 map->clear(); 377 assert(map->include_argument_oops(), "should be set by clear"); 378 frame fr(jfa->last_Java_sp(), jfa->last_Java_fp(), jfa->last_Java_pc()); 379 380 return fr; 381 } 382 383 UpcallStub::FrameData* UpcallStub::frame_data_for_frame(const frame& frame) const { 384 assert(frame.is_upcall_stub_frame(), "wrong frame"); 385 // need unextended_sp here, since normal sp is wrong for interpreter callees 386 return reinterpret_cast<UpcallStub::FrameData*>( 387 reinterpret_cast<address>(frame.unextended_sp()) + in_bytes(_frame_data_offset)); 388 } 389 390 bool frame::upcall_stub_frame_is_first() const { 391 assert(is_upcall_stub_frame(), "must be optimzed entry frame"); 392 UpcallStub* blob = _cb->as_upcall_stub(); 393 JavaFrameAnchor* jfa = blob->jfa_for_frame(*this); 394 return jfa->last_Java_sp() == nullptr; 395 } 396 397 frame frame::sender_for_upcall_stub_frame(RegisterMap* map) const { 398 assert(map != nullptr, "map must be set"); 399 UpcallStub* blob = _cb->as_upcall_stub(); 400 // Java frame called from C; skip all C frames and return top C 401 // frame of that chunk as the sender 402 JavaFrameAnchor* jfa = blob->jfa_for_frame(*this); 403 assert(!upcall_stub_frame_is_first(), "must have a frame anchor to go back to"); 404 assert(jfa->last_Java_sp() > sp(), "must be above this frame on stack"); 405 // Since we are walking the stack now this nested anchor is obviously walkable 406 // even if it wasn't when it was stacked. 407 jfa->make_walkable(); 408 map->clear(); 409 assert(map->include_argument_oops(), "should be set by clear"); 410 frame fr(jfa->last_Java_sp(), jfa->last_Java_fp(), jfa->last_Java_pc()); 411 412 return fr; 413 } 414 415 //------------------------------------------------------------------------------ 416 // frame::verify_deopt_original_pc 417 // 418 // Verifies the calculated original PC of a deoptimization PC for the 419 // given unextended SP. 420 #ifdef ASSERT 421 void frame::verify_deopt_original_pc(nmethod* nm, intptr_t* unextended_sp) { 422 frame fr; 423 424 // This is ugly but it's better than to change {get,set}_original_pc 425 // to take an SP value as argument. And it's only a debugging 426 // method anyway. 427 fr._unextended_sp = unextended_sp; 428 429 address original_pc = nm->get_original_pc(&fr); 430 assert(nm->insts_contains_inclusive(original_pc), 431 "original PC must be in the main code section of the compiled method (or must be immediately following it) original_pc: " INTPTR_FORMAT " unextended_sp: " INTPTR_FORMAT " name: %s", p2i(original_pc), p2i(unextended_sp), nm->name()); 432 } 433 #endif 434 435 //------------------------------------------------------------------------------ 436 // frame::adjust_unextended_sp 437 #ifdef ASSERT 438 void frame::adjust_unextended_sp() { 439 // On x86, sites calling method handle intrinsics and lambda forms are treated 440 // as any other call site. Therefore, no special action is needed when we are 441 // returning to any of these call sites. 442 443 if (_cb != nullptr) { 444 nmethod* sender_nm = _cb->as_nmethod_or_null(); 445 if (sender_nm != nullptr) { 446 // If the sender PC is a deoptimization point, get the original PC. 447 if (sender_nm->is_deopt_entry(_pc) || 448 sender_nm->is_deopt_mh_entry(_pc)) { 449 verify_deopt_original_pc(sender_nm, _unextended_sp); 450 } 451 } 452 } 453 } 454 #endif 455 456 //------------------------------------------------------------------------------ 457 // frame::sender_for_interpreter_frame 458 frame frame::sender_for_interpreter_frame(RegisterMap* map) const { 459 // SP is the raw SP from the sender after adapter or interpreter 460 // extension. 461 intptr_t* sender_sp = this->sender_sp(); 462 463 // This is the sp before any possible extension (adapter/locals). 464 intptr_t* unextended_sp = interpreter_frame_sender_sp(); 465 intptr_t* sender_fp = link(); 466 467 #if COMPILER2_OR_JVMCI 468 if (map->update_map()) { 469 update_map_with_saved_link(map, (intptr_t**) addr_at(link_offset)); 470 } 471 #endif // COMPILER2_OR_JVMCI 472 473 address sender_pc = this->sender_pc(); 474 475 if (Continuation::is_return_barrier_entry(sender_pc)) { 476 if (map->walk_cont()) { // about to walk into an h-stack 477 return Continuation::top_frame(*this, map); 478 } else { 479 return Continuation::continuation_bottom_sender(map->thread(), *this, sender_sp); 480 } 481 } 482 483 return frame(sender_sp, unextended_sp, sender_fp, sender_pc); 484 } 485 486 bool frame::is_interpreted_frame_valid(JavaThread* thread) const { 487 assert(is_interpreted_frame(), "Not an interpreted frame"); 488 // These are reasonable sanity checks 489 if (fp() == nullptr || (intptr_t(fp()) & (wordSize-1)) != 0) { 490 return false; 491 } 492 if (sp() == nullptr || (intptr_t(sp()) & (wordSize-1)) != 0) { 493 return false; 494 } 495 if (fp() + interpreter_frame_initial_sp_offset < sp()) { 496 return false; 497 } 498 // These are hacks to keep us out of trouble. 499 // The problem with these is that they mask other problems 500 if (fp() <= sp()) { // this attempts to deal with unsigned comparison above 501 return false; 502 } 503 504 // do some validation of frame elements 505 // first the method 506 507 Method* m = safe_interpreter_frame_method(); 508 509 // validate the method we'd find in this potential sender 510 if (!Method::is_valid_method(m)) return false; 511 512 // stack frames shouldn't be much larger than max_stack elements 513 // this test requires the use the unextended_sp which is the sp as seen by 514 // the current frame, and not sp which is the "raw" pc which could point 515 // further because of local variables of the callee method inserted after 516 // method arguments 517 if (fp() - unextended_sp() > 1024 + m->max_stack()*Interpreter::stackElementSize) { 518 return false; 519 } 520 521 // validate bci/bcp 522 523 address bcp = interpreter_frame_bcp(); 524 if (m->validate_bci_from_bcp(bcp) < 0) { 525 return false; 526 } 527 528 // validate ConstantPoolCache* 529 ConstantPoolCache* cp = *interpreter_frame_cache_addr(); 530 if (MetaspaceObj::is_valid(cp) == false) return false; 531 532 // validate locals 533 534 address locals = (address)interpreter_frame_locals(); 535 return thread->is_in_stack_range_incl(locals, (address)fp()); 536 } 537 538 BasicType frame::interpreter_frame_result(oop* oop_result, jvalue* value_result) { 539 assert(is_interpreted_frame(), "interpreted frame expected"); 540 Method* method = interpreter_frame_method(); 541 BasicType type = method->result_type(); 542 543 intptr_t* tos_addr; 544 if (method->is_native()) { 545 // Prior to calling into the runtime to report the method_exit the possible 546 // return value is pushed to the native stack. If the result is a jfloat/jdouble 547 // then ST0 is saved before EAX/EDX. See the note in generate_native_result 548 tos_addr = (intptr_t*)sp(); 549 if (type == T_FLOAT || type == T_DOUBLE) { 550 // QQQ seems like this code is equivalent on the two platforms 551 #ifdef AMD64 552 // This is times two because we do a push(ltos) after pushing XMM0 553 // and that takes two interpreter stack slots. 554 tos_addr += 2 * Interpreter::stackElementWords; 555 #else 556 tos_addr += 2; 557 #endif // AMD64 558 } 559 } else { 560 tos_addr = (intptr_t*)interpreter_frame_tos_address(); 561 } 562 563 switch (type) { 564 case T_OBJECT : 565 case T_ARRAY : { 566 oop obj; 567 if (method->is_native()) { 568 obj = cast_to_oop(at(interpreter_frame_oop_temp_offset)); 569 } else { 570 oop* obj_p = (oop*)tos_addr; 571 obj = (obj_p == nullptr) ? (oop)nullptr : *obj_p; 572 } 573 assert(Universe::is_in_heap_or_null(obj), "sanity check"); 574 *oop_result = obj; 575 break; 576 } 577 case T_BOOLEAN : value_result->z = *(jboolean*)tos_addr; break; 578 case T_BYTE : value_result->b = *(jbyte*)tos_addr; break; 579 case T_CHAR : value_result->c = *(jchar*)tos_addr; break; 580 case T_SHORT : value_result->s = *(jshort*)tos_addr; break; 581 case T_INT : value_result->i = *(jint*)tos_addr; break; 582 case T_LONG : value_result->j = *(jlong*)tos_addr; break; 583 case T_FLOAT : { 584 #ifdef AMD64 585 value_result->f = *(jfloat*)tos_addr; 586 #else 587 if (method->is_native()) { 588 jdouble d = *(jdouble*)tos_addr; // Result was in ST0 so need to convert to jfloat 589 value_result->f = (jfloat)d; 590 } else { 591 value_result->f = *(jfloat*)tos_addr; 592 } 593 #endif // AMD64 594 break; 595 } 596 case T_DOUBLE : value_result->d = *(jdouble*)tos_addr; break; 597 case T_VOID : /* Nothing to do */ break; 598 default : ShouldNotReachHere(); 599 } 600 601 return type; 602 } 603 604 intptr_t* frame::interpreter_frame_tos_at(jint offset) const { 605 int index = (Interpreter::expr_offset_in_bytes(offset)/wordSize); 606 return &interpreter_frame_tos_address()[index]; 607 } 608 609 #ifndef PRODUCT 610 611 #define DESCRIBE_FP_OFFSET(name) \ 612 values.describe(frame_no, fp() + frame::name##_offset, #name, 1) 613 614 void frame::describe_pd(FrameValues& values, int frame_no) { 615 if (is_interpreted_frame()) { 616 DESCRIBE_FP_OFFSET(interpreter_frame_sender_sp); 617 DESCRIBE_FP_OFFSET(interpreter_frame_last_sp); 618 DESCRIBE_FP_OFFSET(interpreter_frame_method); 619 DESCRIBE_FP_OFFSET(interpreter_frame_mirror); 620 DESCRIBE_FP_OFFSET(interpreter_frame_mdp); 621 DESCRIBE_FP_OFFSET(interpreter_frame_cache); 622 DESCRIBE_FP_OFFSET(interpreter_frame_locals); 623 DESCRIBE_FP_OFFSET(interpreter_frame_bcp); 624 DESCRIBE_FP_OFFSET(interpreter_frame_initial_sp); 625 #ifdef AMD64 626 } else if (is_entry_frame()) { 627 // This could be more descriptive if we use the enum in 628 // stubGenerator to map to real names but it's most important to 629 // claim these frame slots so the error checking works. 630 for (int i = 0; i < entry_frame_after_call_words; i++) { 631 values.describe(frame_no, fp() - i, err_msg("call_stub word fp - %d", i)); 632 } 633 #endif // AMD64 634 } 635 636 if (is_java_frame() || Continuation::is_continuation_enterSpecial(*this)) { 637 intptr_t* ret_pc_loc; 638 intptr_t* fp_loc; 639 if (is_interpreted_frame()) { 640 ret_pc_loc = fp() + return_addr_offset; 641 fp_loc = fp(); 642 } else { 643 ret_pc_loc = real_fp() - return_addr_offset; 644 fp_loc = real_fp() - sender_sp_offset; 645 } 646 address ret_pc = *(address*)ret_pc_loc; 647 values.describe(frame_no, ret_pc_loc, 648 Continuation::is_return_barrier_entry(ret_pc) ? "return address (return barrier)" : "return address"); 649 values.describe(-1, fp_loc, "saved fp", 0); // "unowned" as value belongs to sender 650 } 651 } 652 653 #endif // !PRODUCT 654 655 intptr_t *frame::initial_deoptimization_info() { 656 // used to reset the saved FP 657 return fp(); 658 } 659 660 #ifndef PRODUCT 661 // This is a generic constructor which is only used by pns() in debug.cpp. 662 frame::frame(void* sp, void* fp, void* pc) { 663 init((intptr_t*)sp, (intptr_t*)fp, (address)pc); 664 } 665 666 #endif 667 668 // Check for a method with scalarized inline type arguments that needs 669 // a stack repair and return the repaired sender stack pointer. 670 intptr_t* frame::repair_sender_sp(intptr_t* sender_sp, intptr_t** saved_fp_addr) const { 671 nmethod* nm = _cb->as_nmethod_or_null(); 672 if (nm != nullptr && nm->needs_stack_repair()) { 673 // The stack increment resides just below the saved rbp on the stack 674 // and does not account for the return address. 675 intptr_t* real_frame_size_addr = (intptr_t*) (saved_fp_addr - 1); 676 int real_frame_size = ((*real_frame_size_addr) + wordSize) / wordSize; 677 assert(real_frame_size >= _cb->frame_size() && real_frame_size <= 1000000, "invalid frame size"); 678 sender_sp = unextended_sp() + real_frame_size; 679 } 680 return sender_sp; 681 } 682 683 void JavaFrameAnchor::make_walkable() { 684 // last frame set? 685 if (last_Java_sp() == nullptr) return; 686 // already walkable? 687 if (walkable()) return; 688 vmassert(last_Java_pc() == nullptr, "already walkable"); 689 _last_Java_pc = (address)_last_Java_sp[-1]; 690 vmassert(walkable(), "something went wrong"); 691 }