1 /* 2 * Copyright (c) 1997, 2021, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "compiler/oopMap.hpp" 27 #include "interpreter/interpreter.hpp" 28 #include "memory/resourceArea.hpp" 29 #include "memory/universe.hpp" 30 #include "oops/markWord.hpp" 31 #include "oops/method.hpp" 32 #include "oops/oop.inline.hpp" 33 #include "prims/methodHandles.hpp" 34 #include "runtime/frame.inline.hpp" 35 #include "runtime/handles.inline.hpp" 36 #include "runtime/javaCalls.hpp" 37 #include "runtime/monitorChunk.hpp" 38 #include "runtime/signature.hpp" 39 #include "runtime/stackWatermarkSet.hpp" 40 #include "runtime/stubCodeGenerator.hpp" 41 #include "runtime/stubRoutines.hpp" 42 #include "vmreg_x86.inline.hpp" 43 #include "utilities/formatBuffer.hpp" 44 #ifdef COMPILER1 45 #include "c1/c1_Runtime1.hpp" 46 #include "runtime/vframeArray.hpp" 47 #endif 48 49 #ifdef ASSERT 50 void RegisterMap::check_location_valid() { 51 } 52 #endif 53 54 // Profiling/safepoint support 55 56 bool frame::safe_for_sender(JavaThread *thread) { 57 address sp = (address)_sp; 58 address fp = (address)_fp; 59 address unextended_sp = (address)_unextended_sp; 60 61 // consider stack guards when trying to determine "safe" stack pointers 62 // sp must be within the usable part of the stack (not in guards) 63 if (!thread->is_in_usable_stack(sp)) { 64 return false; 65 } 66 67 // unextended sp must be within the stack and above or equal sp 68 if (!thread->is_in_stack_range_incl(unextended_sp, sp)) { 69 return false; 70 } 71 72 // an fp must be within the stack and above (but not equal) sp 73 // second evaluation on fp+ is added to handle situation where fp is -1 74 bool fp_safe = thread->is_in_stack_range_excl(fp, sp) && 75 thread->is_in_full_stack_checked(fp + (return_addr_offset * sizeof(void*))); 76 77 // We know sp/unextended_sp are safe only fp is questionable here 78 79 // If the current frame is known to the code cache then we can attempt to 80 // construct the sender and do some validation of it. This goes a long way 81 // toward eliminating issues when we get in frame construction code 82 83 if (_cb != NULL ) { 84 85 // First check if frame is complete and tester is reliable 86 // Unfortunately we can only check frame complete for runtime stubs and nmethod 87 // other generic buffer blobs are more problematic so we just assume they are 88 // ok. adapter blobs never have a frame complete and are never ok. 89 90 if (!_cb->is_frame_complete_at(_pc)) { 91 if (_cb->is_compiled() || _cb->is_adapter_blob() || _cb->is_runtime_stub()) { 92 return false; 93 } 94 } 95 96 // Could just be some random pointer within the codeBlob 97 if (!_cb->code_contains(_pc)) { 98 return false; 99 } 100 101 // Entry frame checks 102 if (is_entry_frame()) { 103 // an entry frame must have a valid fp. 104 return fp_safe && is_entry_frame_valid(thread); 105 } else if (is_optimized_entry_frame()) { 106 return fp_safe; 107 } 108 109 intptr_t* sender_sp = NULL; 110 intptr_t* sender_unextended_sp = NULL; 111 address sender_pc = NULL; 112 intptr_t* saved_fp = NULL; 113 114 if (is_interpreted_frame()) { 115 // fp must be safe 116 if (!fp_safe) { 117 return false; 118 } 119 120 sender_pc = (address) this->fp()[return_addr_offset]; 121 // for interpreted frames, the value below is the sender "raw" sp, 122 // which can be different from the sender unextended sp (the sp seen 123 // by the sender) because of current frame local variables 124 sender_sp = (intptr_t*) addr_at(sender_sp_offset); 125 sender_unextended_sp = (intptr_t*) this->fp()[interpreter_frame_sender_sp_offset]; 126 saved_fp = (intptr_t*) this->fp()[link_offset]; 127 128 } else { 129 // must be some sort of compiled/runtime frame 130 // fp does not have to be safe (although it could be check for c1?) 131 132 // check for a valid frame_size, otherwise we are unlikely to get a valid sender_pc 133 if (_cb->frame_size() <= 0) { 134 return false; 135 } 136 137 sender_sp = _unextended_sp + _cb->frame_size(); 138 // Is sender_sp safe? 139 if (!thread->is_in_full_stack_checked((address)sender_sp)) { 140 return false; 141 } 142 // On Intel the return_address is always the word on the stack 143 sender_pc = (address) *(sender_sp-1); 144 // Note: frame::sender_sp_offset is only valid for compiled frame 145 intptr_t** saved_fp_addr = (intptr_t**) (sender_sp - frame::sender_sp_offset); 146 saved_fp = *saved_fp_addr; 147 148 // Repair the sender sp if this is a method with scalarized inline type args 149 sender_sp = repair_sender_sp(sender_sp, saved_fp_addr); 150 sender_unextended_sp = sender_sp; 151 } 152 153 // If the potential sender is the interpreter then we can do some more checking 154 if (Interpreter::contains(sender_pc)) { 155 156 // ebp is always saved in a recognizable place in any code we generate. However 157 // only if the sender is interpreted/call_stub (c1 too?) are we certain that the saved ebp 158 // is really a frame pointer. 159 160 if (!thread->is_in_stack_range_excl((address)saved_fp, (address)sender_sp)) { 161 return false; 162 } 163 164 // construct the potential sender 165 166 frame sender(sender_sp, sender_unextended_sp, saved_fp, sender_pc); 167 168 return sender.is_interpreted_frame_valid(thread); 169 170 } 171 172 // We must always be able to find a recognizable pc 173 CodeBlob* sender_blob = CodeCache::find_blob_unsafe(sender_pc); 174 if (sender_pc == NULL || sender_blob == NULL) { 175 return false; 176 } 177 178 // Could be a zombie method 179 if (sender_blob->is_zombie() || sender_blob->is_unloaded()) { 180 return false; 181 } 182 183 // Could just be some random pointer within the codeBlob 184 if (!sender_blob->code_contains(sender_pc)) { 185 return false; 186 } 187 188 // We should never be able to see an adapter if the current frame is something from code cache 189 if (sender_blob->is_adapter_blob()) { 190 return false; 191 } 192 193 // Could be the call_stub 194 if (StubRoutines::returns_to_call_stub(sender_pc)) { 195 if (!thread->is_in_stack_range_excl((address)saved_fp, (address)sender_sp)) { 196 return false; 197 } 198 199 // construct the potential sender 200 201 frame sender(sender_sp, sender_unextended_sp, saved_fp, sender_pc); 202 203 // Validate the JavaCallWrapper an entry frame must have 204 address jcw = (address)sender.entry_frame_call_wrapper(); 205 206 return thread->is_in_stack_range_excl(jcw, (address)sender.fp()); 207 } else if (sender_blob->is_optimized_entry_blob()) { 208 return false; 209 } 210 211 CompiledMethod* nm = sender_blob->as_compiled_method_or_null(); 212 if (nm != NULL) { 213 if (nm->is_deopt_mh_entry(sender_pc) || nm->is_deopt_entry(sender_pc) || 214 nm->method()->is_method_handle_intrinsic()) { 215 return false; 216 } 217 } 218 219 // If the frame size is 0 something (or less) is bad because every nmethod has a non-zero frame size 220 // because the return address counts against the callee's frame. 221 222 if (sender_blob->frame_size() <= 0) { 223 assert(!sender_blob->is_compiled(), "should count return address at least"); 224 return false; 225 } 226 227 // We should never be able to see anything here except an nmethod. If something in the 228 // code cache (current frame) is called by an entity within the code cache that entity 229 // should not be anything but the call stub (already covered), the interpreter (already covered) 230 // or an nmethod. 231 232 if (!sender_blob->is_compiled()) { 233 return false; 234 } 235 236 // Could put some more validation for the potential non-interpreted sender 237 // frame we'd create by calling sender if I could think of any. Wait for next crash in forte... 238 239 // One idea is seeing if the sender_pc we have is one that we'd expect to call to current cb 240 241 // We've validated the potential sender that would be created 242 return true; 243 } 244 245 // Must be native-compiled frame. Since sender will try and use fp to find 246 // linkages it must be safe 247 248 if (!fp_safe) { 249 return false; 250 } 251 252 // Will the pc we fetch be non-zero (which we'll find at the oldest frame) 253 254 if ( (address) this->fp()[return_addr_offset] == NULL) return false; 255 256 257 // could try and do some more potential verification of native frame if we could think of some... 258 259 return true; 260 261 } 262 263 264 void frame::patch_pc(Thread* thread, address pc) { 265 assert(_cb == CodeCache::find_blob(pc), "unexpected pc"); 266 address* pc_addr = &(((address*) sp())[-1]); 267 if (TracePcPatching) { 268 tty->print_cr("patch_pc at address " INTPTR_FORMAT " [" INTPTR_FORMAT " -> " INTPTR_FORMAT "]", 269 p2i(pc_addr), p2i(*pc_addr), p2i(pc)); 270 } 271 // Either the return address is the original one or we are going to 272 // patch in the same address that's already there. 273 assert(_pc == *pc_addr || pc == *pc_addr, "must be"); 274 *pc_addr = pc; 275 address original_pc = CompiledMethod::get_deopt_original_pc(this); 276 if (original_pc != NULL) { 277 assert(original_pc == _pc, "expected original PC to be stored before patching"); 278 _deopt_state = is_deoptimized; 279 // leave _pc as is 280 } else { 281 _deopt_state = not_deoptimized; 282 _pc = pc; 283 } 284 } 285 286 bool frame::is_interpreted_frame() const { 287 return Interpreter::contains(pc()); 288 } 289 290 int frame::frame_size(RegisterMap* map) const { 291 frame sender = this->sender(map); 292 return sender.sp() - sp(); 293 } 294 295 intptr_t* frame::entry_frame_argument_at(int offset) const { 296 // convert offset to index to deal with tsi 297 int index = (Interpreter::expr_offset_in_bytes(offset)/wordSize); 298 // Entry frame's arguments are always in relation to unextended_sp() 299 return &unextended_sp()[index]; 300 } 301 302 // sender_sp 303 304 intptr_t* frame::interpreter_frame_sender_sp() const { 305 assert(is_interpreted_frame(), "interpreted frame expected"); 306 return (intptr_t*) at(interpreter_frame_sender_sp_offset); 307 } 308 309 void frame::set_interpreter_frame_sender_sp(intptr_t* sender_sp) { 310 assert(is_interpreted_frame(), "interpreted frame expected"); 311 ptr_at_put(interpreter_frame_sender_sp_offset, (intptr_t) sender_sp); 312 } 313 314 315 // monitor elements 316 317 BasicObjectLock* frame::interpreter_frame_monitor_begin() const { 318 return (BasicObjectLock*) addr_at(interpreter_frame_monitor_block_bottom_offset); 319 } 320 321 BasicObjectLock* frame::interpreter_frame_monitor_end() const { 322 BasicObjectLock* result = (BasicObjectLock*) *addr_at(interpreter_frame_monitor_block_top_offset); 323 // make sure the pointer points inside the frame 324 assert(sp() <= (intptr_t*) result, "monitor end should be above the stack pointer"); 325 assert((intptr_t*) result < fp(), "monitor end should be strictly below the frame pointer"); 326 return result; 327 } 328 329 void frame::interpreter_frame_set_monitor_end(BasicObjectLock* value) { 330 *((BasicObjectLock**)addr_at(interpreter_frame_monitor_block_top_offset)) = value; 331 } 332 333 // Used by template based interpreter deoptimization 334 void frame::interpreter_frame_set_last_sp(intptr_t* sp) { 335 *((intptr_t**)addr_at(interpreter_frame_last_sp_offset)) = sp; 336 } 337 338 frame frame::sender_for_entry_frame(RegisterMap* map) const { 339 assert(map != NULL, "map must be set"); 340 // Java frame called from C; skip all C frames and return top C 341 // frame of that chunk as the sender 342 JavaFrameAnchor* jfa = entry_frame_call_wrapper()->anchor(); 343 assert(!entry_frame_is_first(), "next Java fp must be non zero"); 344 assert(jfa->last_Java_sp() > sp(), "must be above this frame on stack"); 345 // Since we are walking the stack now this nested anchor is obviously walkable 346 // even if it wasn't when it was stacked. 347 if (!jfa->walkable()) { 348 // Capture _last_Java_pc (if needed) and mark anchor walkable. 349 jfa->capture_last_Java_pc(); 350 } 351 map->clear(); 352 assert(map->include_argument_oops(), "should be set by clear"); 353 vmassert(jfa->last_Java_pc() != NULL, "not walkable"); 354 frame fr(jfa->last_Java_sp(), jfa->last_Java_fp(), jfa->last_Java_pc()); 355 356 return fr; 357 } 358 359 OptimizedEntryBlob::FrameData* OptimizedEntryBlob::frame_data_for_frame(const frame& frame) const { 360 assert(frame.is_optimized_entry_frame(), "wrong frame"); 361 // need unextended_sp here, since normal sp is wrong for interpreter callees 362 return reinterpret_cast<OptimizedEntryBlob::FrameData*>( 363 reinterpret_cast<char*>(frame.unextended_sp()) + in_bytes(_frame_data_offset)); 364 } 365 366 bool frame::optimized_entry_frame_is_first() const { 367 assert(is_optimized_entry_frame(), "must be optimzed entry frame"); 368 OptimizedEntryBlob* blob = _cb->as_optimized_entry_blob(); 369 JavaFrameAnchor* jfa = blob->jfa_for_frame(*this); 370 return jfa->last_Java_sp() == NULL; 371 } 372 373 frame frame::sender_for_optimized_entry_frame(RegisterMap* map) const { 374 assert(map != NULL, "map must be set"); 375 OptimizedEntryBlob* blob = _cb->as_optimized_entry_blob(); 376 // Java frame called from C; skip all C frames and return top C 377 // frame of that chunk as the sender 378 JavaFrameAnchor* jfa = blob->jfa_for_frame(*this); 379 assert(!optimized_entry_frame_is_first(), "must have a frame anchor to go back to"); 380 assert(jfa->last_Java_sp() > sp(), "must be above this frame on stack"); 381 // Since we are walking the stack now this nested anchor is obviously walkable 382 // even if it wasn't when it was stacked. 383 if (!jfa->walkable()) { 384 // Capture _last_Java_pc (if needed) and mark anchor walkable. 385 jfa->capture_last_Java_pc(); 386 } 387 map->clear(); 388 assert(map->include_argument_oops(), "should be set by clear"); 389 vmassert(jfa->last_Java_pc() != NULL, "not walkable"); 390 frame fr(jfa->last_Java_sp(), jfa->last_Java_fp(), jfa->last_Java_pc()); 391 392 return fr; 393 } 394 395 //------------------------------------------------------------------------------ 396 // frame::verify_deopt_original_pc 397 // 398 // Verifies the calculated original PC of a deoptimization PC for the 399 // given unextended SP. 400 #ifdef ASSERT 401 void frame::verify_deopt_original_pc(CompiledMethod* nm, intptr_t* unextended_sp) { 402 frame fr; 403 404 // This is ugly but it's better than to change {get,set}_original_pc 405 // to take an SP value as argument. And it's only a debugging 406 // method anyway. 407 fr._unextended_sp = unextended_sp; 408 409 address original_pc = nm->get_original_pc(&fr); 410 assert(nm->insts_contains_inclusive(original_pc), 411 "original PC must be in the main code section of the the compiled method (or must be immediately following it)"); 412 } 413 #endif 414 415 //------------------------------------------------------------------------------ 416 // frame::adjust_unextended_sp 417 #ifdef ASSERT 418 void frame::adjust_unextended_sp() { 419 // On x86, sites calling method handle intrinsics and lambda forms are treated 420 // as any other call site. Therefore, no special action is needed when we are 421 // returning to any of these call sites. 422 423 if (_cb != NULL) { 424 CompiledMethod* sender_cm = _cb->as_compiled_method_or_null(); 425 if (sender_cm != NULL) { 426 // If the sender PC is a deoptimization point, get the original PC. 427 if (sender_cm->is_deopt_entry(_pc) || 428 sender_cm->is_deopt_mh_entry(_pc)) { 429 verify_deopt_original_pc(sender_cm, _unextended_sp); 430 } 431 } 432 } 433 } 434 #endif 435 436 //------------------------------------------------------------------------------ 437 // frame::update_map_with_saved_link 438 void frame::update_map_with_saved_link(RegisterMap* map, intptr_t** link_addr) { 439 // The interpreter and compiler(s) always save EBP/RBP in a known 440 // location on entry. We must record where that location is 441 // so this if EBP/RBP was live on callout from c2 we can find 442 // the saved copy no matter what it called. 443 444 // Since the interpreter always saves EBP/RBP if we record where it is then 445 // we don't have to always save EBP/RBP on entry and exit to c2 compiled 446 // code, on entry will be enough. 447 map->set_location(rbp->as_VMReg(), (address) link_addr); 448 #ifdef AMD64 449 // this is weird "H" ought to be at a higher address however the 450 // oopMaps seems to have the "H" regs at the same address and the 451 // vanilla register. 452 // XXXX make this go away 453 if (true) { 454 map->set_location(rbp->as_VMReg()->next(), (address) link_addr); 455 } 456 #endif // AMD64 457 } 458 459 460 //------------------------------------------------------------------------------ 461 // frame::sender_for_interpreter_frame 462 frame frame::sender_for_interpreter_frame(RegisterMap* map) const { 463 // SP is the raw SP from the sender after adapter or interpreter 464 // extension. 465 intptr_t* sender_sp = this->sender_sp(); 466 467 // This is the sp before any possible extension (adapter/locals). 468 intptr_t* unextended_sp = interpreter_frame_sender_sp(); 469 470 #if COMPILER2_OR_JVMCI 471 if (map->update_map()) { 472 update_map_with_saved_link(map, (intptr_t**) addr_at(link_offset)); 473 } 474 #endif // COMPILER2_OR_JVMCI 475 476 return frame(sender_sp, unextended_sp, link(), sender_pc()); 477 } 478 479 480 //------------------------------------------------------------------------------ 481 // frame::sender_for_compiled_frame 482 frame frame::sender_for_compiled_frame(RegisterMap* map) const { 483 assert(map != NULL, "map must be set"); 484 485 // frame owned by optimizing compiler 486 assert(_cb->frame_size() >= 0, "must have non-zero frame size"); 487 intptr_t* sender_sp = unextended_sp() + _cb->frame_size(); 488 489 #ifdef ASSERT 490 address sender_pc_copy = (address) *(sender_sp-1); 491 #endif 492 493 // This is the saved value of EBP which may or may not really be an FP. 494 // It is only an FP if the sender is an interpreter frame (or C1?). 495 intptr_t** saved_fp_addr = (intptr_t**) (sender_sp - frame::sender_sp_offset); 496 497 // Repair the sender sp if the frame has been extended 498 sender_sp = repair_sender_sp(sender_sp, saved_fp_addr); 499 500 // On Intel the return_address is always the word on the stack 501 address sender_pc = (address) *(sender_sp-1); 502 503 #ifdef ASSERT 504 if (sender_pc != sender_pc_copy) { 505 // When extending the stack in the callee method entry to make room for unpacking of value 506 // type args, we keep a copy of the sender pc at the expected location in the callee frame. 507 // If the sender pc is patched due to deoptimization, the copy is not consistent anymore. 508 nmethod* nm = CodeCache::find_blob(sender_pc)->as_nmethod(); 509 assert(sender_pc == nm->deopt_mh_handler_begin() || sender_pc == nm->deopt_handler_begin(), "unexpected sender pc"); 510 } 511 #endif 512 513 if (map->update_map()) { 514 // Tell GC to use argument oopmaps for some runtime stubs that need it. 515 // For C1, the runtime stub might not have oop maps, so set this flag 516 // outside of update_register_map. 517 bool caller_args = _cb->caller_must_gc_arguments(map->thread()); 518 #ifdef COMPILER1 519 if (!caller_args) { 520 nmethod* nm = _cb->as_nmethod_or_null(); 521 if (nm != NULL && nm->is_compiled_by_c1() && nm->method()->has_scalarized_args() && 522 pc() < nm->verified_inline_entry_point()) { 523 // The VEP and VIEP(RO) of C1-compiled methods call buffer_inline_args_xxx 524 // before doing any argument shuffling, so we need to scan the oops 525 // as the caller passes them. 526 caller_args = true; 527 #ifdef ASSERT 528 NativeCall* call = nativeCall_before(pc()); 529 address dest = call->destination(); 530 assert(dest == Runtime1::entry_for(Runtime1::buffer_inline_args_no_receiver_id) || 531 dest == Runtime1::entry_for(Runtime1::buffer_inline_args_id), "unexpected safepoint in entry point"); 532 #endif 533 } 534 } 535 #endif 536 map->set_include_argument_oops(caller_args); 537 if (_cb->oop_maps() != NULL) { 538 OopMapSet::update_register_map(this, map); 539 } 540 541 // Since the prolog does the save and restore of EBP there is no oopmap 542 // for it so we must fill in its location as if there was an oopmap entry 543 // since if our caller was compiled code there could be live jvm state in it. 544 update_map_with_saved_link(map, saved_fp_addr); 545 } 546 547 assert(sender_sp != sp(), "must have changed"); 548 return frame(sender_sp, sender_sp, *saved_fp_addr, sender_pc); 549 } 550 551 552 //------------------------------------------------------------------------------ 553 // frame::sender_raw 554 frame frame::sender_raw(RegisterMap* map) const { 555 // Default is we don't have to follow them. The sender_for_xxx will 556 // update it accordingly 557 map->set_include_argument_oops(false); 558 559 if (is_entry_frame()) return sender_for_entry_frame(map); 560 if (is_optimized_entry_frame()) return sender_for_optimized_entry_frame(map); 561 if (is_interpreted_frame()) return sender_for_interpreter_frame(map); 562 assert(_cb == CodeCache::find_blob(pc()),"Must be the same"); 563 564 if (_cb != NULL) { 565 return sender_for_compiled_frame(map); 566 } 567 // Must be native-compiled frame, i.e. the marshaling code for native 568 // methods that exists in the core system. 569 return frame(sender_sp(), link(), sender_pc()); 570 } 571 572 frame frame::sender(RegisterMap* map) const { 573 frame result = sender_raw(map); 574 575 if (map->process_frames()) { 576 StackWatermarkSet::on_iteration(map->thread(), result); 577 } 578 579 return result; 580 } 581 582 bool frame::is_interpreted_frame_valid(JavaThread* thread) const { 583 assert(is_interpreted_frame(), "Not an interpreted frame"); 584 // These are reasonable sanity checks 585 if (fp() == 0 || (intptr_t(fp()) & (wordSize-1)) != 0) { 586 return false; 587 } 588 if (sp() == 0 || (intptr_t(sp()) & (wordSize-1)) != 0) { 589 return false; 590 } 591 if (fp() + interpreter_frame_initial_sp_offset < sp()) { 592 return false; 593 } 594 // These are hacks to keep us out of trouble. 595 // The problem with these is that they mask other problems 596 if (fp() <= sp()) { // this attempts to deal with unsigned comparison above 597 return false; 598 } 599 600 // do some validation of frame elements 601 // first the method 602 603 Method* m = *interpreter_frame_method_addr(); 604 605 // validate the method we'd find in this potential sender 606 if (!Method::is_valid_method(m)) return false; 607 608 // stack frames shouldn't be much larger than max_stack elements 609 // this test requires the use the unextended_sp which is the sp as seen by 610 // the current frame, and not sp which is the "raw" pc which could point 611 // further because of local variables of the callee method inserted after 612 // method arguments 613 if (fp() - unextended_sp() > 1024 + m->max_stack()*Interpreter::stackElementSize) { 614 return false; 615 } 616 617 // validate bci/bcp 618 619 address bcp = interpreter_frame_bcp(); 620 if (m->validate_bci_from_bcp(bcp) < 0) { 621 return false; 622 } 623 624 // validate ConstantPoolCache* 625 ConstantPoolCache* cp = *interpreter_frame_cache_addr(); 626 if (MetaspaceObj::is_valid(cp) == false) return false; 627 628 // validate locals 629 630 address locals = (address) *interpreter_frame_locals_addr(); 631 return thread->is_in_stack_range_incl(locals, (address)fp()); 632 } 633 634 BasicType frame::interpreter_frame_result(oop* oop_result, jvalue* value_result) { 635 assert(is_interpreted_frame(), "interpreted frame expected"); 636 Method* method = interpreter_frame_method(); 637 BasicType type = method->result_type(); 638 639 intptr_t* tos_addr; 640 if (method->is_native()) { 641 // Prior to calling into the runtime to report the method_exit the possible 642 // return value is pushed to the native stack. If the result is a jfloat/jdouble 643 // then ST0 is saved before EAX/EDX. See the note in generate_native_result 644 tos_addr = (intptr_t*)sp(); 645 if (type == T_FLOAT || type == T_DOUBLE) { 646 // QQQ seems like this code is equivalent on the two platforms 647 #ifdef AMD64 648 // This is times two because we do a push(ltos) after pushing XMM0 649 // and that takes two interpreter stack slots. 650 tos_addr += 2 * Interpreter::stackElementWords; 651 #else 652 tos_addr += 2; 653 #endif // AMD64 654 } 655 } else { 656 tos_addr = (intptr_t*)interpreter_frame_tos_address(); 657 } 658 659 switch (type) { 660 case T_OBJECT : 661 case T_PRIMITIVE_OBJECT: 662 case T_ARRAY : { 663 oop obj; 664 if (method->is_native()) { 665 obj = cast_to_oop(at(interpreter_frame_oop_temp_offset)); 666 } else { 667 oop* obj_p = (oop*)tos_addr; 668 obj = (obj_p == NULL) ? (oop)NULL : *obj_p; 669 } 670 assert(Universe::is_in_heap_or_null(obj), "sanity check"); 671 *oop_result = obj; 672 break; 673 } 674 case T_BOOLEAN : value_result->z = *(jboolean*)tos_addr; break; 675 case T_BYTE : value_result->b = *(jbyte*)tos_addr; break; 676 case T_CHAR : value_result->c = *(jchar*)tos_addr; break; 677 case T_SHORT : value_result->s = *(jshort*)tos_addr; break; 678 case T_INT : value_result->i = *(jint*)tos_addr; break; 679 case T_LONG : value_result->j = *(jlong*)tos_addr; break; 680 case T_FLOAT : { 681 #ifdef AMD64 682 value_result->f = *(jfloat*)tos_addr; 683 #else 684 if (method->is_native()) { 685 jdouble d = *(jdouble*)tos_addr; // Result was in ST0 so need to convert to jfloat 686 value_result->f = (jfloat)d; 687 } else { 688 value_result->f = *(jfloat*)tos_addr; 689 } 690 #endif // AMD64 691 break; 692 } 693 case T_DOUBLE : value_result->d = *(jdouble*)tos_addr; break; 694 case T_VOID : /* Nothing to do */ break; 695 default : ShouldNotReachHere(); 696 } 697 698 return type; 699 } 700 701 702 intptr_t* frame::interpreter_frame_tos_at(jint offset) const { 703 int index = (Interpreter::expr_offset_in_bytes(offset)/wordSize); 704 return &interpreter_frame_tos_address()[index]; 705 } 706 707 #ifndef PRODUCT 708 709 #define DESCRIBE_FP_OFFSET(name) \ 710 values.describe(frame_no, fp() + frame::name##_offset, #name) 711 712 void frame::describe_pd(FrameValues& values, int frame_no) { 713 if (is_interpreted_frame()) { 714 DESCRIBE_FP_OFFSET(interpreter_frame_sender_sp); 715 DESCRIBE_FP_OFFSET(interpreter_frame_last_sp); 716 DESCRIBE_FP_OFFSET(interpreter_frame_method); 717 DESCRIBE_FP_OFFSET(interpreter_frame_mirror); 718 DESCRIBE_FP_OFFSET(interpreter_frame_mdp); 719 DESCRIBE_FP_OFFSET(interpreter_frame_cache); 720 DESCRIBE_FP_OFFSET(interpreter_frame_locals); 721 DESCRIBE_FP_OFFSET(interpreter_frame_bcp); 722 DESCRIBE_FP_OFFSET(interpreter_frame_initial_sp); 723 #ifdef AMD64 724 } else if (is_entry_frame()) { 725 // This could be more descriptive if we use the enum in 726 // stubGenerator to map to real names but it's most important to 727 // claim these frame slots so the error checking works. 728 for (int i = 0; i < entry_frame_after_call_words; i++) { 729 values.describe(frame_no, fp() - i, err_msg("call_stub word fp - %d", i)); 730 } 731 #endif // AMD64 732 } 733 } 734 #endif // !PRODUCT 735 736 intptr_t *frame::initial_deoptimization_info() { 737 // used to reset the saved FP 738 return fp(); 739 } 740 741 intptr_t* frame::real_fp() const { 742 if (_cb != NULL) { 743 // use the frame size if valid 744 int size = _cb->frame_size(); 745 if (size > 0) { 746 return unextended_sp() + size; 747 } 748 } 749 // else rely on fp() 750 assert(! is_compiled_frame(), "unknown compiled frame size"); 751 return fp(); 752 } 753 754 #ifndef PRODUCT 755 // This is a generic constructor which is only used by pns() in debug.cpp. 756 frame::frame(void* sp, void* fp, void* pc) { 757 init((intptr_t*)sp, (intptr_t*)fp, (address)pc); 758 } 759 760 #endif 761 762 // Check for a method with scalarized inline type arguments that needs 763 // a stack repair and return the repaired sender stack pointer. 764 intptr_t* frame::repair_sender_sp(intptr_t* sender_sp, intptr_t** saved_fp_addr) const { 765 CompiledMethod* cm = _cb->as_compiled_method_or_null(); 766 if (cm != NULL && cm->needs_stack_repair()) { 767 // The stack increment resides just below the saved rbp on the stack 768 // and does not account for the return address. 769 intptr_t* real_frame_size_addr = (intptr_t*) (saved_fp_addr - 1); 770 int real_frame_size = ((*real_frame_size_addr) + wordSize) / wordSize; 771 assert(real_frame_size >= _cb->frame_size() && real_frame_size <= 1000000, "invalid frame size"); 772 sender_sp = unextended_sp() + real_frame_size; 773 } 774 return sender_sp; 775 } 776 777 void JavaFrameAnchor::make_walkable(JavaThread* thread) { 778 // last frame set? 779 if (last_Java_sp() == NULL) return; 780 // already walkable? 781 if (walkable()) return; 782 vmassert(Thread::current() == (Thread*)thread, "not current thread"); 783 vmassert(last_Java_sp() != NULL, "not called from Java code?"); 784 vmassert(last_Java_pc() == NULL, "already walkable"); 785 capture_last_Java_pc(); 786 vmassert(walkable(), "something went wrong"); 787 } 788 789 void JavaFrameAnchor::capture_last_Java_pc() { 790 vmassert(_last_Java_sp != NULL, "no last frame set"); 791 vmassert(_last_Java_pc == NULL, "already walkable"); 792 _last_Java_pc = (address)_last_Java_sp[-1]; 793 }