1 /*
2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "compiler/compiler_globals.hpp"
26 #include "interp_masm_x86.hpp"
27 #include "interpreter/interpreter.hpp"
28 #include "interpreter/interpreterRuntime.hpp"
29 #include "logging/log.hpp"
30 #include "oops/arrayOop.hpp"
31 #include "oops/constMethodFlags.hpp"
32 #include "oops/markWord.hpp"
33 #include "oops/methodData.hpp"
34 #include "oops/method.hpp"
35 #include "oops/inlineKlass.hpp"
36 #include "oops/resolvedFieldEntry.hpp"
37 #include "oops/resolvedIndyEntry.hpp"
38 #include "oops/resolvedMethodEntry.hpp"
39 #include "prims/jvmtiExport.hpp"
40 #include "prims/jvmtiThreadState.hpp"
41 #include "runtime/basicLock.hpp"
42 #include "runtime/frame.inline.hpp"
43 #include "runtime/javaThread.hpp"
44 #include "runtime/safepointMechanism.hpp"
45 #include "runtime/sharedRuntime.hpp"
46 #include "utilities/powerOfTwo.hpp"
47
48 // Implementation of InterpreterMacroAssembler
49
50 void InterpreterMacroAssembler::jump_to_entry(address entry) {
51 assert(entry, "Entry must have been generated by now");
52 jump(RuntimeAddress(entry));
53 }
54
55 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) {
56 Label update, next, none;
57
58 assert_different_registers(obj, rscratch1, mdo_addr.base(), mdo_addr.index());
59
60 interp_verify_oop(obj, atos);
61
62 testptr(obj, obj);
63 jccb(Assembler::notZero, update);
64 testptr(mdo_addr, TypeEntries::null_seen);
65 jccb(Assembler::notZero, next); // null already seen. Nothing to do anymore.
66 // atomic update to prevent overwriting Klass* with 0
67 lock();
68 orptr(mdo_addr, TypeEntries::null_seen);
69 jmpb(next);
70
71 bind(update);
72 load_klass(obj, obj, rscratch1);
73 mov(rscratch1, obj);
74
75 xorptr(obj, mdo_addr);
76 testptr(obj, TypeEntries::type_klass_mask);
77 jccb(Assembler::zero, next); // klass seen before, nothing to
78 // do. The unknown bit may have been
79 // set already but no need to check.
80
81 testptr(obj, TypeEntries::type_unknown);
82 jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
83
84 cmpptr(mdo_addr, 0);
85 jccb(Assembler::equal, none);
86 cmpptr(mdo_addr, TypeEntries::null_seen);
87 jccb(Assembler::equal, none);
88
89 // There is a chance that the checks above (re-reading profiling
90 // data from memory) fail if another thread has just set the
91 // profiling to this obj's klass
92 mov(obj, rscratch1);
93 xorptr(obj, mdo_addr);
94 testptr(obj, TypeEntries::type_klass_mask);
95 jccb(Assembler::zero, next);
96
97 // different than before. Cannot keep accurate profile.
98 orptr(mdo_addr, TypeEntries::type_unknown);
99 jmpb(next);
100
101 bind(none);
102 // first time here. Set profile type.
103 movptr(mdo_addr, obj);
104 #ifdef ASSERT
105 andptr(obj, TypeEntries::type_klass_mask);
106 verify_klass_ptr(obj);
107 #endif
108
109 bind(next);
110 }
111
112 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) {
113 if (!ProfileInterpreter) {
114 return;
115 }
116
117 if (MethodData::profile_arguments() || MethodData::profile_return()) {
118 Label profile_continue;
119
120 test_method_data_pointer(mdp, profile_continue);
121
122 int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size());
123
124 cmpb(Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start), is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag);
125 jcc(Assembler::notEqual, profile_continue);
126
127 if (MethodData::profile_arguments()) {
128 Label done;
129 int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset());
130 addptr(mdp, off_to_args);
131
132 for (int i = 0; i < TypeProfileArgsLimit; i++) {
133 if (i > 0 || MethodData::profile_return()) {
134 // If return value type is profiled we may have no argument to profile
135 movptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args));
136 subl(tmp, i*TypeStackSlotEntries::per_arg_count());
137 cmpl(tmp, TypeStackSlotEntries::per_arg_count());
138 jcc(Assembler::less, done);
139 }
140 movptr(tmp, Address(callee, Method::const_offset()));
141 load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset()));
142 // stack offset o (zero based) from the start of the argument
143 // list, for n arguments translates into offset n - o - 1 from
144 // the end of the argument list
145 subptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args));
146 subl(tmp, 1);
147 Address arg_addr = argument_address(tmp);
148 movptr(tmp, arg_addr);
149
150 Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args);
151 profile_obj_type(tmp, mdo_arg_addr);
152
153 int to_add = in_bytes(TypeStackSlotEntries::per_arg_size());
154 addptr(mdp, to_add);
155 off_to_args += to_add;
156 }
157
158 if (MethodData::profile_return()) {
159 movptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args));
160 subl(tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count());
161 }
162
163 bind(done);
164
165 if (MethodData::profile_return()) {
166 // We're right after the type profile for the last
167 // argument. tmp is the number of cells left in the
168 // CallTypeData/VirtualCallTypeData to reach its end. Non null
169 // if there's a return to profile.
170 assert(SingleTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type");
171 shll(tmp, log2i_exact((int)DataLayout::cell_size));
172 addptr(mdp, tmp);
173 }
174 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp);
175 } else {
176 assert(MethodData::profile_return(), "either profile call args or call ret");
177 update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size()));
178 }
179
180 // mdp points right after the end of the
181 // CallTypeData/VirtualCallTypeData, right after the cells for the
182 // return value type if there's one
183
184 bind(profile_continue);
185 }
186 }
187
188 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) {
189 assert_different_registers(mdp, ret, tmp, _bcp_register);
190 if (ProfileInterpreter && MethodData::profile_return()) {
191 Label profile_continue;
192
193 test_method_data_pointer(mdp, profile_continue);
194
195 if (MethodData::profile_return_jsr292_only()) {
196 assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2");
197
198 // If we don't profile all invoke bytecodes we must make sure
199 // it's a bytecode we indeed profile. We can't go back to the
200 // beginning of the ProfileData we intend to update to check its
201 // type because we're right after it and we don't known its
202 // length
203 Label do_profile;
204 cmpb(Address(_bcp_register, 0), Bytecodes::_invokedynamic);
205 jcc(Assembler::equal, do_profile);
206 cmpb(Address(_bcp_register, 0), Bytecodes::_invokehandle);
207 jcc(Assembler::equal, do_profile);
208 get_method(tmp);
209 cmpw(Address(tmp, Method::intrinsic_id_offset()), static_cast<int>(vmIntrinsics::_compiledLambdaForm));
210 jcc(Assembler::notEqual, profile_continue);
211
212 bind(do_profile);
213 }
214
215 Address mdo_ret_addr(mdp, -in_bytes(SingleTypeEntry::size()));
216 mov(tmp, ret);
217 profile_obj_type(tmp, mdo_ret_addr);
218
219 bind(profile_continue);
220 }
221 }
222
223 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) {
224 if (ProfileInterpreter && MethodData::profile_parameters()) {
225 Label profile_continue;
226
227 test_method_data_pointer(mdp, profile_continue);
228
229 // Load the offset of the area within the MDO used for
230 // parameters. If it's negative we're not profiling any parameters
231 movl(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset())));
232 testl(tmp1, tmp1);
233 jcc(Assembler::negative, profile_continue);
234
235 // Compute a pointer to the area for parameters from the offset
236 // and move the pointer to the slot for the last
237 // parameters. Collect profiling from last parameter down.
238 // mdo start + parameters offset + array length - 1
239 addptr(mdp, tmp1);
240 movptr(tmp1, Address(mdp, ArrayData::array_len_offset()));
241 decrement(tmp1, TypeStackSlotEntries::per_arg_count());
242
243 Label loop;
244 bind(loop);
245
246 int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0));
247 int type_base = in_bytes(ParametersTypeData::type_offset(0));
248 Address::ScaleFactor per_arg_scale = Address::times(DataLayout::cell_size);
249 Address arg_off(mdp, tmp1, per_arg_scale, off_base);
250 Address arg_type(mdp, tmp1, per_arg_scale, type_base);
251
252 // load offset on the stack from the slot for this parameter
253 movptr(tmp2, arg_off);
254 negptr(tmp2);
255 // read the parameter from the local area
256 movptr(tmp2, Address(_locals_register, tmp2, Interpreter::stackElementScale()));
257
258 // profile the parameter
259 profile_obj_type(tmp2, arg_type);
260
261 // go to next parameter
262 decrement(tmp1, TypeStackSlotEntries::per_arg_count());
263 jcc(Assembler::positive, loop);
264
265 bind(profile_continue);
266 }
267 }
268
269 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point,
270 int number_of_arguments) {
271 // interpreter specific
272 //
273 // Note: No need to save/restore bcp & locals registers
274 // since these are callee saved registers and no blocking/
275 // GC can happen in leaf calls.
276 // Further Note: DO NOT save/restore bcp/locals. If a caller has
277 // already saved them so that it can use rsi/rdi as temporaries
278 // then a save/restore here will DESTROY the copy the caller
279 // saved! There used to be a save_bcp() that only happened in
280 // the ASSERT path (no restore_bcp). Which caused bizarre failures
281 // when jvm built with ASSERTs.
282 #ifdef ASSERT
283 {
284 Label L;
285 cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
286 jcc(Assembler::equal, L);
287 stop("InterpreterMacroAssembler::call_VM_leaf_base:"
288 " last_sp != null");
289 bind(L);
290 }
291 #endif
292 // super call
293 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
294 // interpreter specific
295 // LP64: Used to ASSERT that r13/r14 were equal to frame's bcp/locals
296 // but since they may not have been saved (and we don't want to
297 // save them here (see note above) the assert is invalid.
298 }
299
300 void InterpreterMacroAssembler::call_VM_base(Register oop_result,
301 Register last_java_sp,
302 address entry_point,
303 int number_of_arguments,
304 bool check_exceptions) {
305 // interpreter specific
306 //
307 // Note: Could avoid restoring locals ptr (callee saved) - however doesn't
308 // really make a difference for these runtime calls, since they are
309 // slow anyway. Btw., bcp must be saved/restored since it may change
310 // due to GC.
311 save_bcp();
312 #ifdef ASSERT
313 {
314 Label L;
315 cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
316 jcc(Assembler::equal, L);
317 stop("InterpreterMacroAssembler::call_VM_base:"
318 " last_sp isn't null");
319 bind(L);
320 }
321 #endif /* ASSERT */
322 // super call
323 MacroAssembler::call_VM_base(oop_result, last_java_sp,
324 entry_point, number_of_arguments,
325 check_exceptions);
326 // interpreter specific
327 restore_bcp();
328 restore_locals();
329 }
330
331 void InterpreterMacroAssembler::call_VM_preemptable(Register oop_result,
332 address entry_point,
333 Register arg_1) {
334 assert(arg_1 == c_rarg1, "");
335 Label resume_pc, not_preempted;
336
337 #ifdef ASSERT
338 {
339 Label L;
340 cmpptr(Address(r15_thread, JavaThread::preempt_alternate_return_offset()), NULL_WORD);
341 jcc(Assembler::equal, L);
342 stop("Should not have alternate return address set");
343 bind(L);
344 }
345 #endif /* ASSERT */
346
347 // Force freeze slow path.
348 push_cont_fastpath();
349
350 // Make VM call. In case of preemption set last_pc to the one we want to resume to.
351 // Note: call_VM_helper requires last_Java_pc for anchor to be at the top of the stack.
352 lea(rscratch1, resume_pc);
353 push(rscratch1);
354 MacroAssembler::call_VM_helper(oop_result, entry_point, 1, false /*check_exceptions*/);
355 pop(rscratch1);
356
357 pop_cont_fastpath();
358
359 // Check if preempted.
360 movptr(rscratch1, Address(r15_thread, JavaThread::preempt_alternate_return_offset()));
361 cmpptr(rscratch1, NULL_WORD);
362 jccb(Assembler::zero, not_preempted);
363 movptr(Address(r15_thread, JavaThread::preempt_alternate_return_offset()), NULL_WORD);
364 jmp(rscratch1);
365
366 // In case of preemption, this is where we will resume once we finally acquire the monitor.
367 bind(resume_pc);
368 restore_after_resume(false /* is_native */);
369
370 bind(not_preempted);
371 }
372
373 void InterpreterMacroAssembler::restore_after_resume(bool is_native) {
374 lea(rscratch1, ExternalAddress(Interpreter::cont_resume_interpreter_adapter()));
375 call(rscratch1);
376 if (is_native) {
377 // On resume we need to set up stack as expected.
378 push(dtos);
379 push(ltos);
380 }
381 }
382
383 void InterpreterMacroAssembler::check_and_handle_popframe() {
384 if (JvmtiExport::can_pop_frame()) {
385 Label L;
386 // Initiate popframe handling only if it is not already being
387 // processed. If the flag has the popframe_processing bit set, it
388 // means that this code is called *during* popframe handling - we
389 // don't want to reenter.
390 // This method is only called just after the call into the vm in
391 // call_VM_base, so the arg registers are available.
392 Register pop_cond = c_rarg0;
393 movl(pop_cond, Address(r15_thread, JavaThread::popframe_condition_offset()));
394 testl(pop_cond, JavaThread::popframe_pending_bit);
395 jcc(Assembler::zero, L);
396 testl(pop_cond, JavaThread::popframe_processing_bit);
397 jcc(Assembler::notZero, L);
398 // Call Interpreter::remove_activation_preserving_args_entry() to get the
399 // address of the same-named entrypoint in the generated interpreter code.
400 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
401 jmp(rax);
402 bind(L);
403 }
404 }
405
406 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
407 movptr(rcx, Address(r15_thread, JavaThread::jvmti_thread_state_offset()));
408 const Address tos_addr(rcx, JvmtiThreadState::earlyret_tos_offset());
409 const Address oop_addr(rcx, JvmtiThreadState::earlyret_oop_offset());
410 const Address val_addr(rcx, JvmtiThreadState::earlyret_value_offset());
411
412 switch (state) {
413 case atos: movptr(rax, oop_addr);
414 movptr(oop_addr, NULL_WORD);
415 interp_verify_oop(rax, state); break;
416 case ltos: movptr(rax, val_addr); break;
417 case btos: // fall through
418 case ztos: // fall through
419 case ctos: // fall through
420 case stos: // fall through
421 case itos: movl(rax, val_addr); break;
422 case ftos: movflt(xmm0, val_addr); break;
423 case dtos: movdbl(xmm0, val_addr); break;
424 case vtos: /* nothing to do */ break;
425 default : ShouldNotReachHere();
426 }
427
428 // Clean up tos value in the thread object
429 movl(tos_addr, ilgl);
430 movptr(val_addr, NULL_WORD);
431 }
432
433
434 void InterpreterMacroAssembler::check_and_handle_earlyret() {
435 if (JvmtiExport::can_force_early_return()) {
436 Label L;
437 Register tmp = c_rarg0;
438 Register rthread = r15_thread;
439
440 movptr(tmp, Address(rthread, JavaThread::jvmti_thread_state_offset()));
441 testptr(tmp, tmp);
442 jcc(Assembler::zero, L); // if (thread->jvmti_thread_state() == nullptr) exit;
443
444 // Initiate earlyret handling only if it is not already being processed.
445 // If the flag has the earlyret_processing bit set, it means that this code
446 // is called *during* earlyret handling - we don't want to reenter.
447 movl(tmp, Address(tmp, JvmtiThreadState::earlyret_state_offset()));
448 cmpl(tmp, JvmtiThreadState::earlyret_pending);
449 jcc(Assembler::notEqual, L);
450
451 // Call Interpreter::remove_activation_early_entry() to get the address of the
452 // same-named entrypoint in the generated interpreter code.
453 movptr(tmp, Address(rthread, JavaThread::jvmti_thread_state_offset()));
454 movl(tmp, Address(tmp, JvmtiThreadState::earlyret_tos_offset()));
455 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), tmp);
456 jmp(rax);
457 bind(L);
458 }
459 }
460
461 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(Register reg, int bcp_offset) {
462 assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
463 load_unsigned_short(reg, Address(_bcp_register, bcp_offset));
464 bswapl(reg);
465 shrl(reg, 16);
466 }
467
468 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index,
469 int bcp_offset,
470 size_t index_size) {
471 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
472 if (index_size == sizeof(u2)) {
473 load_unsigned_short(index, Address(_bcp_register, bcp_offset));
474 } else if (index_size == sizeof(u4)) {
475 movl(index, Address(_bcp_register, bcp_offset));
476 } else if (index_size == sizeof(u1)) {
477 load_unsigned_byte(index, Address(_bcp_register, bcp_offset));
478 } else {
479 ShouldNotReachHere();
480 }
481 }
482
483 // Load object from cpool->resolved_references(index)
484 void InterpreterMacroAssembler::load_resolved_reference_at_index(Register result,
485 Register index,
486 Register tmp) {
487 assert_different_registers(result, index);
488
489 get_constant_pool(result);
490 // load pointer for resolved_references[] objArray
491 movptr(result, Address(result, ConstantPool::cache_offset()));
492 movptr(result, Address(result, ConstantPoolCache::resolved_references_offset()));
493 resolve_oop_handle(result, tmp);
494 load_heap_oop(result, Address(result, index,
495 UseCompressedOops ? Address::times_4 : Address::times_ptr,
496 arrayOopDesc::base_offset_in_bytes(T_OBJECT)), tmp);
497 }
498
499 // load cpool->resolved_klass_at(index)
500 void InterpreterMacroAssembler::load_resolved_klass_at_index(Register klass,
501 Register cpool,
502 Register index) {
503 assert_different_registers(cpool, index);
504
505 movw(index, Address(cpool, index, Address::times_ptr, sizeof(ConstantPool)));
506 Register resolved_klasses = cpool;
507 movptr(resolved_klasses, Address(cpool, ConstantPool::resolved_klasses_offset()));
508 movptr(klass, Address(resolved_klasses, index, Address::times_ptr, Array<Klass*>::base_offset_in_bytes()));
509 }
510
511 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a
512 // subtype of super_klass.
513 //
514 // Args:
515 // rax: superklass
516 // Rsub_klass: subklass
517 //
518 // Kills:
519 // rcx, rdi
520 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
521 Label& ok_is_subtype,
522 bool profile) {
523 assert(Rsub_klass != rax, "rax holds superklass");
524 LP64_ONLY(assert(Rsub_klass != r14, "r14 holds locals");)
525 LP64_ONLY(assert(Rsub_klass != r13, "r13 holds bcp");)
526 assert(Rsub_klass != rcx, "rcx holds 2ndary super array length");
527 assert(Rsub_klass != rdi, "rdi holds 2ndary super array scan ptr");
528
529 // Profile the not-null value's klass.
530 if (profile) {
531 profile_typecheck(rcx, Rsub_klass, rdi); // blows rcx, reloads rdi
532 }
533
534 // Do the check.
535 check_klass_subtype(Rsub_klass, rax, rcx, ok_is_subtype); // blows rcx
536 }
537
538
539 // Java Expression Stack
540
541 void InterpreterMacroAssembler::pop_ptr(Register r) {
542 pop(r);
543 }
544
545 void InterpreterMacroAssembler::push_ptr(Register r) {
546 push(r);
547 }
548
549 void InterpreterMacroAssembler::push_i(Register r) {
550 push(r);
551 }
552
553 void InterpreterMacroAssembler::push_i_or_ptr(Register r) {
554 push(r);
555 }
556
557 void InterpreterMacroAssembler::push_f(XMMRegister r) {
558 subptr(rsp, wordSize);
559 movflt(Address(rsp, 0), r);
560 }
561
562 void InterpreterMacroAssembler::pop_f(XMMRegister r) {
563 movflt(r, Address(rsp, 0));
564 addptr(rsp, wordSize);
565 }
566
567 void InterpreterMacroAssembler::push_d(XMMRegister r) {
568 subptr(rsp, 2 * wordSize);
569 movdbl(Address(rsp, 0), r);
570 }
571
572 void InterpreterMacroAssembler::pop_d(XMMRegister r) {
573 movdbl(r, Address(rsp, 0));
574 addptr(rsp, 2 * Interpreter::stackElementSize);
575 }
576
577 void InterpreterMacroAssembler::pop_i(Register r) {
578 // XXX can't use pop currently, upper half non clean
579 movl(r, Address(rsp, 0));
580 addptr(rsp, wordSize);
581 }
582
583 void InterpreterMacroAssembler::pop_l(Register r) {
584 movq(r, Address(rsp, 0));
585 addptr(rsp, 2 * Interpreter::stackElementSize);
586 }
587
588 void InterpreterMacroAssembler::push_l(Register r) {
589 subptr(rsp, 2 * wordSize);
590 movptr(Address(rsp, Interpreter::expr_offset_in_bytes(0)), r );
591 movptr(Address(rsp, Interpreter::expr_offset_in_bytes(1)), NULL_WORD );
592 }
593
594 void InterpreterMacroAssembler::pop(TosState state) {
595 switch (state) {
596 case atos: pop_ptr(); break;
597 case btos:
598 case ztos:
599 case ctos:
600 case stos:
601 case itos: pop_i(); break;
602 case ltos: pop_l(); break;
603 case ftos: pop_f(xmm0); break;
604 case dtos: pop_d(xmm0); break;
605 case vtos: /* nothing to do */ break;
606 default: ShouldNotReachHere();
607 }
608 interp_verify_oop(rax, state);
609 }
610
611 void InterpreterMacroAssembler::push(TosState state) {
612 interp_verify_oop(rax, state);
613 switch (state) {
614 case atos: push_ptr(); break;
615 case btos:
616 case ztos:
617 case ctos:
618 case stos:
619 case itos: push_i(); break;
620 case ltos: push_l(); break;
621 case ftos: push_f(xmm0); break;
622 case dtos: push_d(xmm0); break;
623 case vtos: /* nothing to do */ break;
624 default : ShouldNotReachHere();
625 }
626 }
627
628 // Helpers for swap and dup
629 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
630 movptr(val, Address(rsp, Interpreter::expr_offset_in_bytes(n)));
631 }
632
633 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
634 movptr(Address(rsp, Interpreter::expr_offset_in_bytes(n)), val);
635 }
636
637
638 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() {
639 // set sender sp
640 lea(_bcp_register, Address(rsp, wordSize));
641 // record last_sp
642 mov(rcx, _bcp_register);
643 subptr(rcx, rbp);
644 sarptr(rcx, LogBytesPerWord);
645 movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), rcx);
646 }
647
648
649 // Jump to from_interpreted entry of a call unless single stepping is possible
650 // in this thread in which case we must call the i2i entry
651 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
652 prepare_to_jump_from_interpreted();
653
654 if (JvmtiExport::can_post_interpreter_events()) {
655 Label run_compiled_code;
656 // JVMTI events, such as single-stepping, are implemented partly by avoiding running
657 // compiled code in threads for which the event is enabled. Check here for
658 // interp_only_mode if these events CAN be enabled.
659 // interp_only is an int, on little endian it is sufficient to test the byte only
660 // Is a cmpl faster?
661 cmpb(Address(r15_thread, JavaThread::interp_only_mode_offset()), 0);
662 jccb(Assembler::zero, run_compiled_code);
663 jmp(Address(method, Method::interpreter_entry_offset()));
664 bind(run_compiled_code);
665 }
666
667 jmp(Address(method, Method::from_interpreted_offset()));
668 }
669
670 // The following two routines provide a hook so that an implementation
671 // can schedule the dispatch in two parts. x86 does not do this.
672 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
673 // Nothing x86 specific to be done here
674 }
675
676 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
677 dispatch_next(state, step);
678 }
679
680 void InterpreterMacroAssembler::dispatch_base(TosState state,
681 address* table,
682 bool verifyoop,
683 bool generate_poll) {
684 if (VerifyActivationFrameSize) {
685 Label L;
686 mov(rcx, rbp);
687 subptr(rcx, rsp);
688 int32_t min_frame_size =
689 (frame::link_offset - frame::interpreter_frame_initial_sp_offset) *
690 wordSize;
691 cmpptr(rcx, min_frame_size);
692 jcc(Assembler::greaterEqual, L);
693 stop("broken stack frame");
694 bind(L);
695 }
696 if (verifyoop) {
697 interp_verify_oop(rax, state);
698 }
699
700 address* const safepoint_table = Interpreter::safept_table(state);
701 Label no_safepoint, dispatch;
702 if (table != safepoint_table && generate_poll) {
703 NOT_PRODUCT(block_comment("Thread-local Safepoint poll"));
704 testb(Address(r15_thread, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit());
705
706 jccb(Assembler::zero, no_safepoint);
707 lea(rscratch1, ExternalAddress((address)safepoint_table));
708 jmpb(dispatch);
709 }
710
711 bind(no_safepoint);
712 lea(rscratch1, ExternalAddress((address)table));
713 bind(dispatch);
714 jmp(Address(rscratch1, rbx, Address::times_8));
715 }
716
717 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) {
718 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll);
719 }
720
721 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
722 dispatch_base(state, Interpreter::normal_table(state));
723 }
724
725 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
726 dispatch_base(state, Interpreter::normal_table(state), false);
727 }
728
729
730 void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) {
731 // load next bytecode (load before advancing _bcp_register to prevent AGI)
732 load_unsigned_byte(rbx, Address(_bcp_register, step));
733 // advance _bcp_register
734 increment(_bcp_register, step);
735 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll);
736 }
737
738 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
739 // load current bytecode
740 load_unsigned_byte(rbx, Address(_bcp_register, 0));
741 dispatch_base(state, table);
742 }
743
744 void InterpreterMacroAssembler::narrow(Register result) {
745
746 // Get method->_constMethod->_result_type
747 movptr(rcx, Address(rbp, frame::interpreter_frame_method_offset * wordSize));
748 movptr(rcx, Address(rcx, Method::const_offset()));
749 load_unsigned_byte(rcx, Address(rcx, ConstMethod::result_type_offset()));
750
751 Label done, notBool, notByte, notChar;
752
753 // common case first
754 cmpl(rcx, T_INT);
755 jcc(Assembler::equal, done);
756
757 // mask integer result to narrower return type.
758 cmpl(rcx, T_BOOLEAN);
759 jcc(Assembler::notEqual, notBool);
760 andl(result, 0x1);
761 jmp(done);
762
763 bind(notBool);
764 cmpl(rcx, T_BYTE);
765 jcc(Assembler::notEqual, notByte);
766 movsbl(result, result);
767 jmp(done);
768
769 bind(notByte);
770 cmpl(rcx, T_CHAR);
771 jcc(Assembler::notEqual, notChar);
772 movzwl(result, result);
773 jmp(done);
774
775 bind(notChar);
776 // cmpl(rcx, T_SHORT); // all that's left
777 // jcc(Assembler::notEqual, done);
778 movswl(result, result);
779
780 // Nothing to do for T_INT
781 bind(done);
782 }
783
784 // remove activation
785 //
786 // Unlock the receiver if this is a synchronized method.
787 // Unlock any Java monitors from synchronized blocks.
788 // Apply stack watermark barrier.
789 // Notify JVMTI.
790 // Remove the activation from the stack.
791 //
792 // If there are locked Java monitors
793 // If throw_monitor_exception
794 // throws IllegalMonitorStateException
795 // Else if install_monitor_exception
796 // installs IllegalMonitorStateException
797 // Else
798 // no error processing
799 void InterpreterMacroAssembler::remove_activation(TosState state,
800 Register ret_addr,
801 bool throw_monitor_exception,
802 bool install_monitor_exception,
803 bool notify_jvmdi) {
804 // Note: Registers rdx xmm0 may be in use for the
805 // result check if synchronized method
806 Label unlocked, unlock, no_unlock;
807
808 const Register rthread = r15_thread;
809 const Register robj = c_rarg1;
810 const Register rmon = c_rarg1;
811
812 // get the value of _do_not_unlock_if_synchronized into rdx
813 const Address do_not_unlock_if_synchronized(rthread,
814 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
815 movbool(rbx, do_not_unlock_if_synchronized);
816 movbool(do_not_unlock_if_synchronized, false); // reset the flag
817
818 // get method access flags
819 movptr(rcx, Address(rbp, frame::interpreter_frame_method_offset * wordSize));
820 load_unsigned_short(rcx, Address(rcx, Method::access_flags_offset()));
821 testl(rcx, JVM_ACC_SYNCHRONIZED);
822 jcc(Assembler::zero, unlocked);
823
824 // Don't unlock anything if the _do_not_unlock_if_synchronized flag
825 // is set.
826 testbool(rbx);
827 jcc(Assembler::notZero, no_unlock);
828
829 // unlock monitor
830 push(state); // save result
831
832 // BasicObjectLock will be first in list, since this is a
833 // synchronized method. However, need to check that the object has
834 // not been unlocked by an explicit monitorexit bytecode.
835 const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset *
836 wordSize - (int) sizeof(BasicObjectLock));
837 // We use c_rarg1/rdx so that if we go slow path it will be the correct
838 // register for unlock_object to pass to VM directly
839 lea(robj, monitor); // address of first monitor
840
841 movptr(rax, Address(robj, BasicObjectLock::obj_offset()));
842 testptr(rax, rax);
843 jcc(Assembler::notZero, unlock);
844
845 pop(state);
846 if (throw_monitor_exception) {
847 // Entry already unlocked, need to throw exception
848 call_VM(noreg, CAST_FROM_FN_PTR(address,
849 InterpreterRuntime::throw_illegal_monitor_state_exception));
850 should_not_reach_here();
851 } else {
852 // Monitor already unlocked during a stack unroll. If requested,
853 // install an illegal_monitor_state_exception. Continue with
854 // stack unrolling.
855 if (install_monitor_exception) {
856 call_VM(noreg, CAST_FROM_FN_PTR(address,
857 InterpreterRuntime::new_illegal_monitor_state_exception));
858 }
859 jmp(unlocked);
860 }
861
862 bind(unlock);
863 unlock_object(robj);
864 pop(state);
865
866 // Check that for block-structured locking (i.e., that all locked
867 // objects has been unlocked)
868 bind(unlocked);
869
870 // rax, rdx: Might contain return value
871
872 // Check that all monitors are unlocked
873 {
874 Label loop, exception, entry, restart;
875 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
876 const Address monitor_block_top(
877 rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
878 const Address monitor_block_bot(
879 rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
880
881 bind(restart);
882 // We use c_rarg1 so that if we go slow path it will be the correct
883 // register for unlock_object to pass to VM directly
884 movptr(rmon, monitor_block_top); // derelativize pointer
885 lea(rmon, Address(rbp, rmon, Address::times_ptr));
886 // c_rarg1 points to current entry, starting with top-most entry
887
888 lea(rbx, monitor_block_bot); // points to word before bottom of
889 // monitor block
890 jmp(entry);
891
892 // Entry already locked, need to throw exception
893 bind(exception);
894
895 if (throw_monitor_exception) {
896 // Throw exception
897 MacroAssembler::call_VM(noreg,
898 CAST_FROM_FN_PTR(address, InterpreterRuntime::
899 throw_illegal_monitor_state_exception));
900 should_not_reach_here();
901 } else {
902 // Stack unrolling. Unlock object and install illegal_monitor_exception.
903 // Unlock does not block, so don't have to worry about the frame.
904 // We don't have to preserve c_rarg1 since we are going to throw an exception.
905
906 push(state);
907 mov(robj, rmon); // nop if robj and rmon are the same
908 unlock_object(robj);
909 pop(state);
910
911 if (install_monitor_exception) {
912 call_VM(noreg, CAST_FROM_FN_PTR(address,
913 InterpreterRuntime::
914 new_illegal_monitor_state_exception));
915 }
916
917 jmp(restart);
918 }
919
920 bind(loop);
921 // check if current entry is used
922 cmpptr(Address(rmon, BasicObjectLock::obj_offset()), NULL_WORD);
923 jcc(Assembler::notEqual, exception);
924
925 addptr(rmon, entry_size); // otherwise advance to next entry
926 bind(entry);
927 cmpptr(rmon, rbx); // check if bottom reached
928 jcc(Assembler::notEqual, loop); // if not at bottom then check this entry
929 }
930
931 bind(no_unlock);
932
933 JFR_ONLY(enter_jfr_critical_section();)
934
935 // The below poll is for the stack watermark barrier. It allows fixing up frames lazily,
936 // that would normally not be safe to use. Such bad returns into unsafe territory of
937 // the stack, will call InterpreterRuntime::at_unwind.
938 Label slow_path;
939 Label fast_path;
940 safepoint_poll(slow_path, true /* at_return */, false /* in_nmethod */);
941 jmp(fast_path);
942 bind(slow_path);
943 push(state);
944 set_last_Java_frame(noreg, rbp, (address)pc(), rscratch1);
945 super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), r15_thread);
946 reset_last_Java_frame(true);
947 pop(state);
948 bind(fast_path);
949
950 // JVMTI support. Make sure the safepoint poll test is issued prior.
951 if (notify_jvmdi) {
952 notify_method_exit(state, NotifyJVMTI); // preserve TOSCA
953 } else {
954 notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
955 }
956
957 if (StackReservedPages > 0) {
958 movptr(rbx,
959 Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize));
960 // testing if reserved zone needs to be re-enabled
961 Register rthread = r15_thread;
962 Label no_reserved_zone_enabling;
963
964 // check if already enabled - if so no re-enabling needed
965 assert(sizeof(StackOverflow::StackGuardState) == 4, "unexpected size");
966 cmpl(Address(rthread, JavaThread::stack_guard_state_offset()), StackOverflow::stack_guard_enabled);
967 jcc(Assembler::equal, no_reserved_zone_enabling);
968
969 cmpptr(rbx, Address(rthread, JavaThread::reserved_stack_activation_offset()));
970 jcc(Assembler::lessEqual, no_reserved_zone_enabling);
971
972 JFR_ONLY(leave_jfr_critical_section();)
973
974 call_VM_leaf(
975 CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), rthread);
976 call_VM(noreg, CAST_FROM_FN_PTR(address,
977 InterpreterRuntime::throw_delayed_StackOverflowError));
978 should_not_reach_here();
979
980 bind(no_reserved_zone_enabling);
981 }
982
983 // remove activation
984 // get sender sp
985 movptr(rbx,
986 Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize));
987
988 if (state == atos && InlineTypeReturnedAsFields) {
989 Label skip;
990 Label not_null;
991 testptr(rax, rax);
992 jcc(Assembler::notZero, not_null);
993 // Returned value is null, zero all return registers because they may belong to oop fields
994 xorq(j_rarg1, j_rarg1);
995 xorq(j_rarg2, j_rarg2);
996 xorq(j_rarg3, j_rarg3);
997 xorq(j_rarg4, j_rarg4);
998 xorq(j_rarg5, j_rarg5);
999 jmp(skip);
1000 bind(not_null);
1001
1002 // Check if we are returning an non-null inline type and load its fields into registers
1003 test_oop_is_not_inline_type(rax, rscratch1, skip, /* can_be_null= */ false);
1004
1005 #ifndef _LP64
1006 super_call_VM_leaf(StubRoutines::load_inline_type_fields_in_regs());
1007 #else
1008 // Load fields from a buffered value with an inline class specific handler
1009 load_klass(rdi, rax, rscratch1);
1010 movptr(rdi, Address(rdi, InstanceKlass::adr_inlineklass_fixed_block_offset()));
1011 movptr(rdi, Address(rdi, InlineKlass::unpack_handler_offset()));
1012 // Unpack handler can be null if inline type is not scalarizable in returns
1013 testptr(rdi, rdi);
1014 jcc(Assembler::zero, skip);
1015 call(rdi);
1016 #endif
1017 #ifdef ASSERT
1018 // TODO 8284443 Enable
1019 if (StressCallingConvention && false) {
1020 Label skip_stress;
1021 movptr(rscratch1, Address(rbp, frame::interpreter_frame_method_offset * wordSize));
1022 movl(rscratch1, Address(rscratch1, Method::flags_offset()));
1023 testl(rcx, MethodFlags::has_scalarized_return_flag());
1024 jcc(Assembler::zero, skip_stress);
1025 load_klass(rax, rax, rscratch1);
1026 orptr(rax, 1);
1027 bind(skip_stress);
1028 }
1029 #endif
1030 // call above kills the value in rbx. Reload it.
1031 movptr(rbx, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize));
1032 bind(skip);
1033 }
1034
1035 leave(); // remove frame anchor
1036
1037 JFR_ONLY(leave_jfr_critical_section();)
1038
1039 pop(ret_addr); // get return address
1040 mov(rsp, rbx); // set sp to sender sp
1041 pop_cont_fastpath();
1042
1043 }
1044
1045 #if INCLUDE_JFR
1046 void InterpreterMacroAssembler::enter_jfr_critical_section() {
1047 const Address sampling_critical_section(r15_thread, in_bytes(SAMPLING_CRITICAL_SECTION_OFFSET_JFR));
1048 movbool(sampling_critical_section, true);
1049 }
1050
1051 void InterpreterMacroAssembler::leave_jfr_critical_section() {
1052 const Address sampling_critical_section(r15_thread, in_bytes(SAMPLING_CRITICAL_SECTION_OFFSET_JFR));
1053 movbool(sampling_critical_section, false);
1054 }
1055 #endif // INCLUDE_JFR
1056
1057 void InterpreterMacroAssembler::get_method_counters(Register method,
1058 Register mcs, Label& skip) {
1059 Label has_counters;
1060 movptr(mcs, Address(method, Method::method_counters_offset()));
1061 testptr(mcs, mcs);
1062 jcc(Assembler::notZero, has_counters);
1063 call_VM(noreg, CAST_FROM_FN_PTR(address,
1064 InterpreterRuntime::build_method_counters), method);
1065 movptr(mcs, Address(method,Method::method_counters_offset()));
1066 testptr(mcs, mcs);
1067 jcc(Assembler::zero, skip); // No MethodCounters allocated, OutOfMemory
1068 bind(has_counters);
1069 }
1070
1071 void InterpreterMacroAssembler::allocate_instance(Register klass, Register new_obj,
1072 Register t1, Register t2,
1073 bool clear_fields, Label& alloc_failed) {
1074 MacroAssembler::allocate_instance(klass, new_obj, t1, t2, clear_fields, alloc_failed);
1075 if (DTraceAllocProbes) {
1076 // Trigger dtrace event for fastpath
1077 push(atos);
1078 call_VM_leaf(CAST_FROM_FN_PTR(address, static_cast<int (*)(oopDesc*)>(SharedRuntime::dtrace_object_alloc)), new_obj);
1079 pop(atos);
1080 }
1081 }
1082
1083 void InterpreterMacroAssembler::read_flat_field(Register entry, Register tmp1, Register tmp2, Register obj) {
1084 Label alloc_failed, slow_path, done;
1085 const Register alloc_temp = LP64_ONLY(rscratch1) NOT_LP64(rsi);
1086 const Register dst_temp = LP64_ONLY(rscratch2) NOT_LP64(rdi);
1087 assert_different_registers(obj, entry, tmp1, tmp2, dst_temp, r8, r9);
1088
1089 // If the field is nullable, jump to slow path
1090 load_unsigned_byte(tmp1, Address(entry, in_bytes(ResolvedFieldEntry::flags_offset())));
1091 testl(tmp1, 1 << ResolvedFieldEntry::is_null_free_inline_type_shift);
1092 jcc(Assembler::equal, slow_path);
1093
1094 // Grap the inline field klass
1095 const Register field_klass = tmp1;
1096 load_unsigned_short(tmp2, Address(entry, in_bytes(ResolvedFieldEntry::field_index_offset())));
1097
1098 movptr(tmp1, Address(entry, ResolvedFieldEntry::field_holder_offset()));
1099 get_inline_type_field_klass(tmp1, tmp2, field_klass);
1100
1101 // allocate buffer
1102 push(obj); // push object being read from
1103 allocate_instance(field_klass, obj, alloc_temp, dst_temp, false, alloc_failed);
1104
1105 // Have an oop instance buffer, copy into it
1106 load_unsigned_short(r9, Address(entry, in_bytes(ResolvedFieldEntry::field_index_offset())));
1107 movptr(r8, Address(entry, in_bytes(ResolvedFieldEntry::field_holder_offset())));
1108 inline_layout_info(r8, r9, r8); // holder, index, info => InlineLayoutInfo into r8
1109
1110 payload_addr(obj, dst_temp, field_klass);
1111 pop(alloc_temp); // restore object being read from
1112 load_sized_value(tmp2, Address(entry, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/);
1113 lea(tmp2, Address(alloc_temp, tmp2));
1114 // call_VM_leaf, clobbers a few regs, save restore new obj
1115 push(obj);
1116 flat_field_copy(IS_DEST_UNINITIALIZED, tmp2, dst_temp, r8);
1117 pop(obj);
1118 jmp(done);
1119
1120 bind(alloc_failed);
1121 pop(obj);
1122 bind(slow_path);
1123 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::read_flat_field),
1124 obj, entry);
1125 get_vm_result_oop(obj);
1126 bind(done);
1127 }
1128
1129 void InterpreterMacroAssembler::write_flat_field(Register entry, Register tmp1, Register tmp2,
1130 Register obj, Register off, Register value) {
1131 assert_different_registers(entry, tmp1, tmp2, obj, off, value);
1132
1133 Label slow_path, done;
1134
1135 load_unsigned_byte(tmp2, Address(entry, in_bytes(ResolvedFieldEntry::flags_offset())));
1136 test_field_is_not_null_free_inline_type(tmp2, tmp1, slow_path);
1137
1138 null_check(value); // FIXME JDK-8341120
1139
1140 lea(obj, Address(obj, off, Address::times_1));
1141
1142 load_klass(tmp2, value, tmp1);
1143 payload_addr(value, value, tmp2);
1144
1145 Register idx = tmp1;
1146 load_unsigned_short(idx, Address(entry, in_bytes(ResolvedFieldEntry::field_index_offset())));
1147 movptr(tmp2, Address(entry, in_bytes(ResolvedFieldEntry::field_holder_offset())));
1148
1149 Register layout_info = off;
1150 inline_layout_info(tmp2, idx, layout_info);
1151
1152 flat_field_copy(IN_HEAP, value, obj, layout_info);
1153 jmp(done);
1154
1155 bind(slow_path);
1156 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::write_flat_field), obj, value, entry);
1157
1158 bind(done);
1159 }
1160
1161 // Lock object
1162 //
1163 // Args:
1164 // rdx, c_rarg1: BasicObjectLock to be used for locking
1165 //
1166 // Kills:
1167 // rax, rbx
1168 void InterpreterMacroAssembler::lock_object(Register lock_reg) {
1169 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1");
1170
1171 Label done, slow_case;
1172
1173 const Register swap_reg = rax; // Must use rax for cmpxchg instruction
1174 const Register tmp_reg = rbx;
1175 const Register obj_reg = c_rarg3; // Will contain the oop
1176
1177 // Load object pointer into obj_reg
1178 movptr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset()));
1179
1180 lightweight_lock(lock_reg, obj_reg, swap_reg, tmp_reg, slow_case);
1181 jmp(done);
1182
1183 bind(slow_case);
1184
1185 // Call the runtime routine for slow case
1186 call_VM_preemptable(noreg,
1187 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
1188 lock_reg);
1189 bind(done);
1190 }
1191
1192
1193 // Unlocks an object. Used in monitorexit bytecode and
1194 // remove_activation. Throws an IllegalMonitorException if object is
1195 // not locked by current thread.
1196 //
1197 // Args:
1198 // rdx, c_rarg1: BasicObjectLock for lock
1199 //
1200 // Kills:
1201 // rax
1202 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs)
1203 // rscratch1 (scratch reg)
1204 // rax, rbx, rcx, rdx
1205 void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
1206 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1");
1207
1208 Label done, slow_case;
1209
1210 const Register swap_reg = rax; // Must use rax for cmpxchg instruction
1211 const Register header_reg = c_rarg2; // Will contain the old oopMark
1212 const Register obj_reg = c_rarg3; // Will contain the oop
1213
1214 save_bcp(); // Save in case of exception
1215
1216 // Load oop into obj_reg(%c_rarg3)
1217 movptr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset()));
1218
1219 // Free entry
1220 movptr(Address(lock_reg, BasicObjectLock::obj_offset()), NULL_WORD);
1221
1222 lightweight_unlock(obj_reg, swap_reg, header_reg, slow_case);
1223 jmp(done);
1224
1225 bind(slow_case);
1226 // Call the runtime routine for slow case.
1227 movptr(Address(lock_reg, BasicObjectLock::obj_offset()), obj_reg); // restore obj
1228 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
1229
1230 bind(done);
1231
1232 restore_bcp();
1233 }
1234
1235 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp,
1236 Label& zero_continue) {
1237 assert(ProfileInterpreter, "must be profiling interpreter");
1238 movptr(mdp, Address(rbp, frame::interpreter_frame_mdp_offset * wordSize));
1239 testptr(mdp, mdp);
1240 jcc(Assembler::zero, zero_continue);
1241 }
1242
1243
1244 // Set the method data pointer for the current bcp.
1245 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
1246 assert(ProfileInterpreter, "must be profiling interpreter");
1247 Label set_mdp;
1248 push(rax);
1249 push(rbx);
1250
1251 get_method(rbx);
1252 // Test MDO to avoid the call if it is null.
1253 movptr(rax, Address(rbx, in_bytes(Method::method_data_offset())));
1254 testptr(rax, rax);
1255 jcc(Assembler::zero, set_mdp);
1256 // rbx: method
1257 // _bcp_register: bcp
1258 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rbx, _bcp_register);
1259 // rax: mdi
1260 // mdo is guaranteed to be non-zero here, we checked for it before the call.
1261 movptr(rbx, Address(rbx, in_bytes(Method::method_data_offset())));
1262 addptr(rbx, in_bytes(MethodData::data_offset()));
1263 addptr(rax, rbx);
1264 bind(set_mdp);
1265 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), rax);
1266 pop(rbx);
1267 pop(rax);
1268 }
1269
1270 void InterpreterMacroAssembler::verify_method_data_pointer() {
1271 assert(ProfileInterpreter, "must be profiling interpreter");
1272 #ifdef ASSERT
1273 Label verify_continue;
1274 push(rax);
1275 push(rbx);
1276 Register arg3_reg = c_rarg3;
1277 Register arg2_reg = c_rarg2;
1278 push(arg3_reg);
1279 push(arg2_reg);
1280 test_method_data_pointer(arg3_reg, verify_continue); // If mdp is zero, continue
1281 get_method(rbx);
1282
1283 // If the mdp is valid, it will point to a DataLayout header which is
1284 // consistent with the bcp. The converse is highly probable also.
1285 load_unsigned_short(arg2_reg,
1286 Address(arg3_reg, in_bytes(DataLayout::bci_offset())));
1287 addptr(arg2_reg, Address(rbx, Method::const_offset()));
1288 lea(arg2_reg, Address(arg2_reg, ConstMethod::codes_offset()));
1289 cmpptr(arg2_reg, _bcp_register);
1290 jcc(Assembler::equal, verify_continue);
1291 // rbx: method
1292 // _bcp_register: bcp
1293 // c_rarg3: mdp
1294 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp),
1295 rbx, _bcp_register, arg3_reg);
1296 bind(verify_continue);
1297 pop(arg2_reg);
1298 pop(arg3_reg);
1299 pop(rbx);
1300 pop(rax);
1301 #endif // ASSERT
1302 }
1303
1304
1305 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in,
1306 int constant,
1307 Register value) {
1308 assert(ProfileInterpreter, "must be profiling interpreter");
1309 Address data(mdp_in, constant);
1310 movptr(data, value);
1311 }
1312
1313
1314 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
1315 int constant) {
1316 assert(ProfileInterpreter, "must be profiling interpreter");
1317 Address data(mdp_in, constant);
1318 addptr(data, DataLayout::counter_increment);
1319 }
1320
1321
1322 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
1323 Register index,
1324 int constant) {
1325 assert(ProfileInterpreter, "must be profiling interpreter");
1326 Address data(mdp_in, index, Address::times_1, constant);
1327 addptr(data, DataLayout::counter_increment);
1328 }
1329
1330 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in,
1331 int flag_byte_constant) {
1332 assert(ProfileInterpreter, "must be profiling interpreter");
1333 int header_offset = in_bytes(DataLayout::flags_offset());
1334 int header_bits = flag_byte_constant;
1335 // Set the flag
1336 orb(Address(mdp_in, header_offset), header_bits);
1337 }
1338
1339
1340
1341 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
1342 int offset,
1343 Register value,
1344 Register test_value_out,
1345 Label& not_equal_continue) {
1346 assert(ProfileInterpreter, "must be profiling interpreter");
1347 if (test_value_out == noreg) {
1348 cmpptr(value, Address(mdp_in, offset));
1349 } else {
1350 // Put the test value into a register, so caller can use it:
1351 movptr(test_value_out, Address(mdp_in, offset));
1352 cmpptr(test_value_out, value);
1353 }
1354 jcc(Assembler::notEqual, not_equal_continue);
1355 }
1356
1357
1358 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
1359 int offset_of_disp) {
1360 assert(ProfileInterpreter, "must be profiling interpreter");
1361 Address disp_address(mdp_in, offset_of_disp);
1362 addptr(mdp_in, disp_address);
1363 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in);
1364 }
1365
1366
1367 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
1368 Register reg,
1369 int offset_of_disp) {
1370 assert(ProfileInterpreter, "must be profiling interpreter");
1371 Address disp_address(mdp_in, reg, Address::times_1, offset_of_disp);
1372 addptr(mdp_in, disp_address);
1373 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in);
1374 }
1375
1376
1377 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in,
1378 int constant) {
1379 assert(ProfileInterpreter, "must be profiling interpreter");
1380 addptr(mdp_in, constant);
1381 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in);
1382 }
1383
1384
1385 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
1386 assert(ProfileInterpreter, "must be profiling interpreter");
1387 push(return_bci); // save/restore across call_VM
1388 call_VM(noreg,
1389 CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret),
1390 return_bci);
1391 pop(return_bci);
1392 }
1393
1394
1395 void InterpreterMacroAssembler::profile_taken_branch(Register mdp) {
1396 if (ProfileInterpreter) {
1397 Label profile_continue;
1398
1399 // If no method data exists, go to profile_continue.
1400 test_method_data_pointer(mdp, profile_continue);
1401
1402 // We are taking a branch. Increment the taken count.
1403 increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
1404
1405 // The method data pointer needs to be updated to reflect the new target.
1406 update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
1407 bind(profile_continue);
1408 }
1409 }
1410
1411
1412 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp, bool acmp) {
1413 if (ProfileInterpreter) {
1414 Label profile_continue;
1415
1416 // If no method data exists, go to profile_continue.
1417 test_method_data_pointer(mdp, profile_continue);
1418
1419 // We are not taking a branch. Increment the not taken count.
1420 increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
1421
1422 // The method data pointer needs to be updated to correspond to
1423 // the next bytecode
1424 update_mdp_by_constant(mdp, acmp ? in_bytes(ACmpData::acmp_data_size()): in_bytes(BranchData::branch_data_size()));
1425 bind(profile_continue);
1426 }
1427 }
1428
1429 void InterpreterMacroAssembler::profile_call(Register mdp) {
1430 if (ProfileInterpreter) {
1431 Label profile_continue;
1432
1433 // If no method data exists, go to profile_continue.
1434 test_method_data_pointer(mdp, profile_continue);
1435
1436 // We are making a call. Increment the count.
1437 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1438
1439 // The method data pointer needs to be updated to reflect the new target.
1440 update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
1441 bind(profile_continue);
1442 }
1443 }
1444
1445
1446 void InterpreterMacroAssembler::profile_final_call(Register mdp) {
1447 if (ProfileInterpreter) {
1448 Label profile_continue;
1449
1450 // If no method data exists, go to profile_continue.
1451 test_method_data_pointer(mdp, profile_continue);
1452
1453 // We are making a call. Increment the count.
1454 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1455
1456 // The method data pointer needs to be updated to reflect the new target.
1457 update_mdp_by_constant(mdp,
1458 in_bytes(VirtualCallData::
1459 virtual_call_data_size()));
1460 bind(profile_continue);
1461 }
1462 }
1463
1464
1465 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
1466 Register mdp,
1467 Register reg2,
1468 bool receiver_can_be_null) {
1469 if (ProfileInterpreter) {
1470 Label profile_continue;
1471
1472 // If no method data exists, go to profile_continue.
1473 test_method_data_pointer(mdp, profile_continue);
1474
1475 Label skip_receiver_profile;
1476 if (receiver_can_be_null) {
1477 Label not_null;
1478 testptr(receiver, receiver);
1479 jccb(Assembler::notZero, not_null);
1480 // We are making a call. Increment the count for null receiver.
1481 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1482 jmp(skip_receiver_profile);
1483 bind(not_null);
1484 }
1485
1486 // Record the receiver type.
1487 record_klass_in_profile(receiver, mdp, reg2);
1488 bind(skip_receiver_profile);
1489
1490 // The method data pointer needs to be updated to reflect the new target.
1491 update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
1492 bind(profile_continue);
1493 }
1494 }
1495
1496 // This routine creates a state machine for updating the multi-row
1497 // type profile at a virtual call site (or other type-sensitive bytecode).
1498 // The machine visits each row (of receiver/count) until the receiver type
1499 // is found, or until it runs out of rows. At the same time, it remembers
1500 // the location of the first empty row. (An empty row records null for its
1501 // receiver, and can be allocated for a newly-observed receiver type.)
1502 // Because there are two degrees of freedom in the state, a simple linear
1503 // search will not work; it must be a decision tree. Hence this helper
1504 // function is recursive, to generate the required tree structured code.
1505 // It's the interpreter, so we are trading off code space for speed.
1506 // See below for example code.
1507 void InterpreterMacroAssembler::record_klass_in_profile_helper(Register receiver, Register mdp,
1508 Register reg2, int start_row,
1509 Label& done) {
1510 if (TypeProfileWidth == 0) {
1511 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1512 } else {
1513 record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth,
1514 &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset);
1515 }
1516 }
1517
1518 void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp, Register reg2, int start_row,
1519 Label& done, int total_rows,
1520 OffsetFunction item_offset_fn,
1521 OffsetFunction item_count_offset_fn) {
1522 int last_row = total_rows - 1;
1523 assert(start_row <= last_row, "must be work left to do");
1524 // Test this row for both the item and for null.
1525 // Take any of three different outcomes:
1526 // 1. found item => increment count and goto done
1527 // 2. found null => keep looking for case 1, maybe allocate this cell
1528 // 3. found something else => keep looking for cases 1 and 2
1529 // Case 3 is handled by a recursive call.
1530 for (int row = start_row; row <= last_row; row++) {
1531 Label next_test;
1532 bool test_for_null_also = (row == start_row);
1533
1534 // See if the item is item[n].
1535 int item_offset = in_bytes(item_offset_fn(row));
1536 test_mdp_data_at(mdp, item_offset, item,
1537 (test_for_null_also ? reg2 : noreg),
1538 next_test);
1539 // (Reg2 now contains the item from the CallData.)
1540
1541 // The item is item[n]. Increment count[n].
1542 int count_offset = in_bytes(item_count_offset_fn(row));
1543 increment_mdp_data_at(mdp, count_offset);
1544 jmp(done);
1545 bind(next_test);
1546
1547 if (test_for_null_also) {
1548 // Failed the equality check on item[n]... Test for null.
1549 testptr(reg2, reg2);
1550 if (start_row == last_row) {
1551 // The only thing left to do is handle the null case.
1552 Label found_null;
1553 jccb(Assembler::zero, found_null);
1554 // Item did not match any saved item and there is no empty row for it.
1555 // Increment total counter to indicate polymorphic case.
1556 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1557 jmp(done);
1558 bind(found_null);
1559 break;
1560 }
1561 Label found_null;
1562 // Since null is rare, make it be the branch-taken case.
1563 jcc(Assembler::zero, found_null);
1564
1565 // Put all the "Case 3" tests here.
1566 record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows,
1567 item_offset_fn, item_count_offset_fn);
1568
1569 // Found a null. Keep searching for a matching item,
1570 // but remember that this is an empty (unused) slot.
1571 bind(found_null);
1572 }
1573 }
1574
1575 // In the fall-through case, we found no matching item, but we
1576 // observed the item[start_row] is null.
1577
1578 // Fill in the item field and increment the count.
1579 int item_offset = in_bytes(item_offset_fn(start_row));
1580 set_mdp_data_at(mdp, item_offset, item);
1581 int count_offset = in_bytes(item_count_offset_fn(start_row));
1582 movl(reg2, DataLayout::counter_increment);
1583 set_mdp_data_at(mdp, count_offset, reg2);
1584 if (start_row > 0) {
1585 jmp(done);
1586 }
1587 }
1588
1589 // Example state machine code for three profile rows:
1590 // // main copy of decision tree, rooted at row[1]
1591 // if (row[0].rec == rec) { row[0].incr(); goto done; }
1592 // if (row[0].rec != nullptr) {
1593 // // inner copy of decision tree, rooted at row[1]
1594 // if (row[1].rec == rec) { row[1].incr(); goto done; }
1595 // if (row[1].rec != nullptr) {
1596 // // degenerate decision tree, rooted at row[2]
1597 // if (row[2].rec == rec) { row[2].incr(); goto done; }
1598 // if (row[2].rec != nullptr) { count.incr(); goto done; } // overflow
1599 // row[2].init(rec); goto done;
1600 // } else {
1601 // // remember row[1] is empty
1602 // if (row[2].rec == rec) { row[2].incr(); goto done; }
1603 // row[1].init(rec); goto done;
1604 // }
1605 // } else {
1606 // // remember row[0] is empty
1607 // if (row[1].rec == rec) { row[1].incr(); goto done; }
1608 // if (row[2].rec == rec) { row[2].incr(); goto done; }
1609 // row[0].init(rec); goto done;
1610 // }
1611 // done:
1612
1613 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver, Register mdp, Register reg2) {
1614 assert(ProfileInterpreter, "must be profiling");
1615 Label done;
1616
1617 record_klass_in_profile_helper(receiver, mdp, reg2, 0, done);
1618
1619 bind (done);
1620 }
1621
1622 void InterpreterMacroAssembler::profile_ret(Register return_bci,
1623 Register mdp) {
1624 if (ProfileInterpreter) {
1625 Label profile_continue;
1626 uint row;
1627
1628 // If no method data exists, go to profile_continue.
1629 test_method_data_pointer(mdp, profile_continue);
1630
1631 // Update the total ret count.
1632 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1633
1634 for (row = 0; row < RetData::row_limit(); row++) {
1635 Label next_test;
1636
1637 // See if return_bci is equal to bci[n]:
1638 test_mdp_data_at(mdp,
1639 in_bytes(RetData::bci_offset(row)),
1640 return_bci, noreg,
1641 next_test);
1642
1643 // return_bci is equal to bci[n]. Increment the count.
1644 increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
1645
1646 // The method data pointer needs to be updated to reflect the new target.
1647 update_mdp_by_offset(mdp,
1648 in_bytes(RetData::bci_displacement_offset(row)));
1649 jmp(profile_continue);
1650 bind(next_test);
1651 }
1652
1653 update_mdp_for_ret(return_bci);
1654
1655 bind(profile_continue);
1656 }
1657 }
1658
1659
1660 void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
1661 if (ProfileInterpreter) {
1662 Label profile_continue;
1663
1664 // If no method data exists, go to profile_continue.
1665 test_method_data_pointer(mdp, profile_continue);
1666
1667 set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
1668
1669 // The method data pointer needs to be updated.
1670 int mdp_delta = in_bytes(BitData::bit_data_size());
1671 if (TypeProfileCasts) {
1672 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1673 }
1674 update_mdp_by_constant(mdp, mdp_delta);
1675
1676 bind(profile_continue);
1677 }
1678 }
1679
1680
1681 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) {
1682 if (ProfileInterpreter) {
1683 Label profile_continue;
1684
1685 // If no method data exists, go to profile_continue.
1686 test_method_data_pointer(mdp, profile_continue);
1687
1688 // The method data pointer needs to be updated.
1689 int mdp_delta = in_bytes(BitData::bit_data_size());
1690 if (TypeProfileCasts) {
1691 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1692
1693 // Record the object type.
1694 record_klass_in_profile(klass, mdp, reg2);
1695 }
1696 update_mdp_by_constant(mdp, mdp_delta);
1697
1698 bind(profile_continue);
1699 }
1700 }
1701
1702
1703 void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
1704 if (ProfileInterpreter) {
1705 Label profile_continue;
1706
1707 // If no method data exists, go to profile_continue.
1708 test_method_data_pointer(mdp, profile_continue);
1709
1710 // Update the default case count
1711 increment_mdp_data_at(mdp,
1712 in_bytes(MultiBranchData::default_count_offset()));
1713
1714 // The method data pointer needs to be updated.
1715 update_mdp_by_offset(mdp,
1716 in_bytes(MultiBranchData::
1717 default_displacement_offset()));
1718
1719 bind(profile_continue);
1720 }
1721 }
1722
1723
1724 void InterpreterMacroAssembler::profile_switch_case(Register index,
1725 Register mdp,
1726 Register reg2) {
1727 if (ProfileInterpreter) {
1728 Label profile_continue;
1729
1730 // If no method data exists, go to profile_continue.
1731 test_method_data_pointer(mdp, profile_continue);
1732
1733 // Build the base (index * per_case_size_in_bytes()) +
1734 // case_array_offset_in_bytes()
1735 movl(reg2, in_bytes(MultiBranchData::per_case_size()));
1736 imulptr(index, reg2); // XXX l ?
1737 addptr(index, in_bytes(MultiBranchData::case_array_offset())); // XXX l ?
1738
1739 // Update the case count
1740 increment_mdp_data_at(mdp,
1741 index,
1742 in_bytes(MultiBranchData::relative_count_offset()));
1743
1744 // The method data pointer needs to be updated.
1745 update_mdp_by_offset(mdp,
1746 index,
1747 in_bytes(MultiBranchData::
1748 relative_displacement_offset()));
1749
1750 bind(profile_continue);
1751 }
1752 }
1753
1754 template <class ArrayData> void InterpreterMacroAssembler::profile_array_type(Register mdp,
1755 Register array,
1756 Register tmp) {
1757 if (ProfileInterpreter) {
1758 Label profile_continue;
1759
1760 // If no method data exists, go to profile_continue.
1761 test_method_data_pointer(mdp, profile_continue);
1762
1763 mov(tmp, array);
1764 profile_obj_type(tmp, Address(mdp, in_bytes(ArrayData::array_offset())));
1765
1766 Label not_flat;
1767 test_non_flat_array_oop(array, tmp, not_flat);
1768
1769 set_mdp_flag_at(mdp, ArrayData::flat_array_byte_constant());
1770
1771 bind(not_flat);
1772
1773 Label not_null_free;
1774 test_non_null_free_array_oop(array, tmp, not_null_free);
1775
1776 set_mdp_flag_at(mdp, ArrayData::null_free_array_byte_constant());
1777
1778 bind(not_null_free);
1779
1780 bind(profile_continue);
1781 }
1782 }
1783
1784 template void InterpreterMacroAssembler::profile_array_type<ArrayLoadData>(Register mdp,
1785 Register array,
1786 Register tmp);
1787 template void InterpreterMacroAssembler::profile_array_type<ArrayStoreData>(Register mdp,
1788 Register array,
1789 Register tmp);
1790
1791
1792 void InterpreterMacroAssembler::profile_multiple_element_types(Register mdp, Register element, Register tmp, const Register tmp2) {
1793 if (ProfileInterpreter) {
1794 Label profile_continue;
1795
1796 // If no method data exists, go to profile_continue.
1797 test_method_data_pointer(mdp, profile_continue);
1798
1799 Label done, update;
1800 testptr(element, element);
1801 jccb(Assembler::notZero, update);
1802 set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
1803 jmp(done);
1804
1805 bind(update);
1806 load_klass(tmp, element, rscratch1);
1807
1808 // Record the object type.
1809 record_klass_in_profile(tmp, mdp, tmp2);
1810
1811 bind(done);
1812
1813 // The method data pointer needs to be updated.
1814 update_mdp_by_constant(mdp, in_bytes(ArrayStoreData::array_store_data_size()));
1815
1816 bind(profile_continue);
1817 }
1818 }
1819
1820 void InterpreterMacroAssembler::profile_element_type(Register mdp,
1821 Register element,
1822 Register tmp) {
1823 if (ProfileInterpreter) {
1824 Label profile_continue;
1825
1826 // If no method data exists, go to profile_continue.
1827 test_method_data_pointer(mdp, profile_continue);
1828
1829 mov(tmp, element);
1830 profile_obj_type(tmp, Address(mdp, in_bytes(ArrayLoadData::element_offset())));
1831
1832 // The method data pointer needs to be updated.
1833 update_mdp_by_constant(mdp, in_bytes(ArrayLoadData::array_load_data_size()));
1834
1835 bind(profile_continue);
1836 }
1837 }
1838
1839 void InterpreterMacroAssembler::profile_acmp(Register mdp,
1840 Register left,
1841 Register right,
1842 Register tmp) {
1843 if (ProfileInterpreter) {
1844 Label profile_continue;
1845
1846 // If no method data exists, go to profile_continue.
1847 test_method_data_pointer(mdp, profile_continue);
1848
1849 mov(tmp, left);
1850 profile_obj_type(tmp, Address(mdp, in_bytes(ACmpData::left_offset())));
1851
1852 Label left_not_inline_type;
1853 test_oop_is_not_inline_type(left, tmp, left_not_inline_type);
1854 set_mdp_flag_at(mdp, ACmpData::left_inline_type_byte_constant());
1855 bind(left_not_inline_type);
1856
1857 mov(tmp, right);
1858 profile_obj_type(tmp, Address(mdp, in_bytes(ACmpData::right_offset())));
1859
1860 Label right_not_inline_type;
1861 test_oop_is_not_inline_type(right, tmp, right_not_inline_type);
1862 set_mdp_flag_at(mdp, ACmpData::right_inline_type_byte_constant());
1863 bind(right_not_inline_type);
1864
1865 bind(profile_continue);
1866 }
1867 }
1868
1869
1870 void InterpreterMacroAssembler::_interp_verify_oop(Register reg, TosState state, const char* file, int line) {
1871 if (state == atos) {
1872 MacroAssembler::_verify_oop_checked(reg, "broken oop", file, line);
1873 }
1874 }
1875
1876
1877 // Jump if ((*counter_addr += increment) & mask) == 0
1878 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr, Address mask,
1879 Register scratch, Label* where) {
1880 // This update is actually not atomic and can lose a number of updates
1881 // under heavy contention, but the alternative of using the (contended)
1882 // atomic update here penalizes profiling paths too much.
1883 movl(scratch, counter_addr);
1884 incrementl(scratch, InvocationCounter::count_increment);
1885 movl(counter_addr, scratch);
1886 andl(scratch, mask);
1887 if (where != nullptr) {
1888 jcc(Assembler::zero, *where);
1889 }
1890 }
1891
1892 void InterpreterMacroAssembler::notify_method_entry() {
1893 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1894 // track stack depth. If it is possible to enter interp_only_mode we add
1895 // the code to check if the event should be sent.
1896 Register rthread = r15_thread;
1897 Register rarg = c_rarg1;
1898 if (JvmtiExport::can_post_interpreter_events()) {
1899 Label L;
1900 movl(rdx, Address(rthread, JavaThread::interp_only_mode_offset()));
1901 testl(rdx, rdx);
1902 jcc(Assembler::zero, L);
1903 call_VM(noreg, CAST_FROM_FN_PTR(address,
1904 InterpreterRuntime::post_method_entry));
1905 bind(L);
1906 }
1907
1908 if (DTraceMethodProbes) {
1909 get_method(rarg);
1910 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
1911 rthread, rarg);
1912 }
1913
1914 // RedefineClasses() tracing support for obsolete method entry
1915 if (log_is_enabled(Trace, redefine, class, obsolete)) {
1916 get_method(rarg);
1917 call_VM_leaf(
1918 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1919 rthread, rarg);
1920 }
1921 }
1922
1923
1924 void InterpreterMacroAssembler::notify_method_exit(
1925 TosState state, NotifyMethodExitMode mode) {
1926 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1927 // track stack depth. If it is possible to enter interp_only_mode we add
1928 // the code to check if the event should be sent.
1929 Register rthread = r15_thread;
1930 Register rarg = c_rarg1;
1931 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
1932 Label L;
1933 // Note: frame::interpreter_frame_result has a dependency on how the
1934 // method result is saved across the call to post_method_exit. If this
1935 // is changed then the interpreter_frame_result implementation will
1936 // need to be updated too.
1937
1938 // template interpreter will leave the result on the top of the stack.
1939 push(state);
1940 movl(rdx, Address(rthread, JavaThread::interp_only_mode_offset()));
1941 testl(rdx, rdx);
1942 jcc(Assembler::zero, L);
1943 call_VM(noreg,
1944 CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
1945 bind(L);
1946 pop(state);
1947 }
1948
1949 if (DTraceMethodProbes) {
1950 push(state);
1951 get_method(rarg);
1952 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
1953 rthread, rarg);
1954 pop(state);
1955 }
1956 }
1957
1958 void InterpreterMacroAssembler::load_resolved_indy_entry(Register cache, Register index) {
1959 // Get index out of bytecode pointer
1960 get_cache_index_at_bcp(index, 1, sizeof(u4));
1961 // Get address of invokedynamic array
1962 movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
1963 movptr(cache, Address(cache, in_bytes(ConstantPoolCache::invokedynamic_entries_offset())));
1964 if (is_power_of_2(sizeof(ResolvedIndyEntry))) {
1965 shll(index, log2i_exact(sizeof(ResolvedIndyEntry))); // Scale index by power of 2
1966 } else {
1967 imull(index, index, sizeof(ResolvedIndyEntry)); // Scale the index to be the entry index * sizeof(ResolvedIndyEntry)
1968 }
1969 lea(cache, Address(cache, index, Address::times_1, Array<ResolvedIndyEntry>::base_offset_in_bytes()));
1970 }
1971
1972 void InterpreterMacroAssembler::load_field_entry(Register cache, Register index, int bcp_offset) {
1973 // Get index out of bytecode pointer
1974 movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
1975 get_cache_index_at_bcp(index, bcp_offset, sizeof(u2));
1976
1977 movptr(cache, Address(cache, ConstantPoolCache::field_entries_offset()));
1978 // Take shortcut if the size is a power of 2
1979 if (is_power_of_2(sizeof(ResolvedFieldEntry))) {
1980 shll(index, log2i_exact(sizeof(ResolvedFieldEntry))); // Scale index by power of 2
1981 } else {
1982 imull(index, index, sizeof(ResolvedFieldEntry)); // Scale the index to be the entry index * sizeof(ResolvedFieldEntry)
1983 }
1984 lea(cache, Address(cache, index, Address::times_1, Array<ResolvedFieldEntry>::base_offset_in_bytes()));
1985 }
1986
1987 void InterpreterMacroAssembler::load_method_entry(Register cache, Register index, int bcp_offset) {
1988 // Get index out of bytecode pointer
1989 movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
1990 get_cache_index_at_bcp(index, bcp_offset, sizeof(u2));
1991
1992 movptr(cache, Address(cache, ConstantPoolCache::method_entries_offset()));
1993 imull(index, index, sizeof(ResolvedMethodEntry)); // Scale the index to be the entry index * sizeof(ResolvedMethodEntry)
1994 lea(cache, Address(cache, index, Address::times_1, Array<ResolvedMethodEntry>::base_offset_in_bytes()));
1995 }