1 /*
   2  * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compiler_globals.hpp"
  27 #include "interp_masm_x86.hpp"
  28 #include "interpreter/interpreter.hpp"
  29 #include "interpreter/interpreterRuntime.hpp"
  30 #include "logging/log.hpp"
  31 #include "oops/arrayOop.hpp"
  32 #include "oops/constMethodFlags.hpp"
  33 #include "oops/markWord.hpp"
  34 #include "oops/methodData.hpp"
  35 #include "oops/method.hpp"
  36 #include "oops/inlineKlass.hpp"
  37 #include "oops/resolvedFieldEntry.hpp"
  38 #include "oops/resolvedIndyEntry.hpp"
  39 #include "oops/resolvedMethodEntry.hpp"
  40 #include "prims/jvmtiExport.hpp"
  41 #include "prims/jvmtiThreadState.hpp"
  42 #include "runtime/basicLock.hpp"
  43 #include "runtime/frame.inline.hpp"
  44 #include "runtime/javaThread.hpp"
  45 #include "runtime/safepointMechanism.hpp"
  46 #include "runtime/sharedRuntime.hpp"
  47 #include "utilities/powerOfTwo.hpp"
  48 
  49 // Implementation of InterpreterMacroAssembler
  50 
  51 void InterpreterMacroAssembler::jump_to_entry(address entry) {
  52   assert(entry, "Entry must have been generated by now");
  53   jump(RuntimeAddress(entry));
  54 }
  55 
  56 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) {
  57   Label update, next, none;
  58 
  59 #ifdef _LP64
  60   assert_different_registers(obj, rscratch1, mdo_addr.base(), mdo_addr.index());
  61 #else
  62   assert_different_registers(obj, mdo_addr.base(), mdo_addr.index());
  63 #endif
  64 
  65   interp_verify_oop(obj, atos);
  66 
  67   testptr(obj, obj);
  68   jccb(Assembler::notZero, update);
  69   testptr(mdo_addr, TypeEntries::null_seen);
  70   jccb(Assembler::notZero, next); // null already seen. Nothing to do anymore.
  71   // atomic update to prevent overwriting Klass* with 0
  72   lock();
  73   orptr(mdo_addr, TypeEntries::null_seen);
  74   jmpb(next);
  75 
  76   bind(update);
  77   load_klass(obj, obj, rscratch1);
  78 #ifdef _LP64
  79   mov(rscratch1, obj);
  80 #endif
  81 
  82   xorptr(obj, mdo_addr);
  83   testptr(obj, TypeEntries::type_klass_mask);
  84   jccb(Assembler::zero, next); // klass seen before, nothing to
  85                                // do. The unknown bit may have been
  86                                // set already but no need to check.
  87 
  88   testptr(obj, TypeEntries::type_unknown);
  89   jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
  90 
  91   cmpptr(mdo_addr, 0);
  92   jccb(Assembler::equal, none);
  93   cmpptr(mdo_addr, TypeEntries::null_seen);
  94   jccb(Assembler::equal, none);
  95 #ifdef _LP64
  96   // There is a chance that the checks above (re-reading profiling
  97   // data from memory) fail if another thread has just set the
  98   // profiling to this obj's klass
  99   mov(obj, rscratch1);
 100   xorptr(obj, mdo_addr);
 101   testptr(obj, TypeEntries::type_klass_mask);
 102   jccb(Assembler::zero, next);
 103 #endif
 104 
 105   // different than before. Cannot keep accurate profile.
 106   orptr(mdo_addr, TypeEntries::type_unknown);
 107   jmpb(next);
 108 
 109   bind(none);
 110   // first time here. Set profile type.
 111   movptr(mdo_addr, obj);
 112 #ifdef ASSERT
 113   andptr(obj, TypeEntries::type_klass_mask);
 114   verify_klass_ptr(obj);
 115 #endif
 116 
 117   bind(next);
 118 }
 119 
 120 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) {
 121   if (!ProfileInterpreter) {
 122     return;
 123   }
 124 
 125   if (MethodData::profile_arguments() || MethodData::profile_return()) {
 126     Label profile_continue;
 127 
 128     test_method_data_pointer(mdp, profile_continue);
 129 
 130     int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size());
 131 
 132     cmpb(Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start), is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag);
 133     jcc(Assembler::notEqual, profile_continue);
 134 
 135     if (MethodData::profile_arguments()) {
 136       Label done;
 137       int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset());
 138       addptr(mdp, off_to_args);
 139 
 140       for (int i = 0; i < TypeProfileArgsLimit; i++) {
 141         if (i > 0 || MethodData::profile_return()) {
 142           // If return value type is profiled we may have no argument to profile
 143           movptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args));
 144           subl(tmp, i*TypeStackSlotEntries::per_arg_count());
 145           cmpl(tmp, TypeStackSlotEntries::per_arg_count());
 146           jcc(Assembler::less, done);
 147         }
 148         movptr(tmp, Address(callee, Method::const_offset()));
 149         load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset()));
 150         // stack offset o (zero based) from the start of the argument
 151         // list, for n arguments translates into offset n - o - 1 from
 152         // the end of the argument list
 153         subptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args));
 154         subl(tmp, 1);
 155         Address arg_addr = argument_address(tmp);
 156         movptr(tmp, arg_addr);
 157 
 158         Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args);
 159         profile_obj_type(tmp, mdo_arg_addr);
 160 
 161         int to_add = in_bytes(TypeStackSlotEntries::per_arg_size());
 162         addptr(mdp, to_add);
 163         off_to_args += to_add;
 164       }
 165 
 166       if (MethodData::profile_return()) {
 167         movptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args));
 168         subl(tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count());
 169       }
 170 
 171       bind(done);
 172 
 173       if (MethodData::profile_return()) {
 174         // We're right after the type profile for the last
 175         // argument. tmp is the number of cells left in the
 176         // CallTypeData/VirtualCallTypeData to reach its end. Non null
 177         // if there's a return to profile.
 178         assert(SingleTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type");
 179         shll(tmp, log2i_exact((int)DataLayout::cell_size));
 180         addptr(mdp, tmp);
 181       }
 182       movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp);
 183     } else {
 184       assert(MethodData::profile_return(), "either profile call args or call ret");
 185       update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size()));
 186     }
 187 
 188     // mdp points right after the end of the
 189     // CallTypeData/VirtualCallTypeData, right after the cells for the
 190     // return value type if there's one
 191 
 192     bind(profile_continue);
 193   }
 194 }
 195 
 196 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) {
 197   assert_different_registers(mdp, ret, tmp, _bcp_register);
 198   if (ProfileInterpreter && MethodData::profile_return()) {
 199     Label profile_continue;
 200 
 201     test_method_data_pointer(mdp, profile_continue);
 202 
 203     if (MethodData::profile_return_jsr292_only()) {
 204       assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2");
 205 
 206       // If we don't profile all invoke bytecodes we must make sure
 207       // it's a bytecode we indeed profile. We can't go back to the
 208       // beginning of the ProfileData we intend to update to check its
 209       // type because we're right after it and we don't known its
 210       // length
 211       Label do_profile;
 212       cmpb(Address(_bcp_register, 0), Bytecodes::_invokedynamic);
 213       jcc(Assembler::equal, do_profile);
 214       cmpb(Address(_bcp_register, 0), Bytecodes::_invokehandle);
 215       jcc(Assembler::equal, do_profile);
 216       get_method(tmp);
 217       cmpw(Address(tmp, Method::intrinsic_id_offset()), static_cast<int>(vmIntrinsics::_compiledLambdaForm));
 218       jcc(Assembler::notEqual, profile_continue);
 219 
 220       bind(do_profile);
 221     }
 222 
 223     Address mdo_ret_addr(mdp, -in_bytes(SingleTypeEntry::size()));
 224     mov(tmp, ret);
 225     profile_obj_type(tmp, mdo_ret_addr);
 226 
 227     bind(profile_continue);
 228   }
 229 }
 230 
 231 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) {
 232   if (ProfileInterpreter && MethodData::profile_parameters()) {
 233     Label profile_continue;
 234 
 235     test_method_data_pointer(mdp, profile_continue);
 236 
 237     // Load the offset of the area within the MDO used for
 238     // parameters. If it's negative we're not profiling any parameters
 239     movl(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset())));
 240     testl(tmp1, tmp1);
 241     jcc(Assembler::negative, profile_continue);
 242 
 243     // Compute a pointer to the area for parameters from the offset
 244     // and move the pointer to the slot for the last
 245     // parameters. Collect profiling from last parameter down.
 246     // mdo start + parameters offset + array length - 1
 247     addptr(mdp, tmp1);
 248     movptr(tmp1, Address(mdp, ArrayData::array_len_offset()));
 249     decrement(tmp1, TypeStackSlotEntries::per_arg_count());
 250 
 251     Label loop;
 252     bind(loop);
 253 
 254     int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0));
 255     int type_base = in_bytes(ParametersTypeData::type_offset(0));
 256     Address::ScaleFactor per_arg_scale = Address::times(DataLayout::cell_size);
 257     Address arg_off(mdp, tmp1, per_arg_scale, off_base);
 258     Address arg_type(mdp, tmp1, per_arg_scale, type_base);
 259 
 260     // load offset on the stack from the slot for this parameter
 261     movptr(tmp2, arg_off);
 262     negptr(tmp2);
 263     // read the parameter from the local area
 264     movptr(tmp2, Address(_locals_register, tmp2, Interpreter::stackElementScale()));
 265 
 266     // profile the parameter
 267     profile_obj_type(tmp2, arg_type);
 268 
 269     // go to next parameter
 270     decrement(tmp1, TypeStackSlotEntries::per_arg_count());
 271     jcc(Assembler::positive, loop);
 272 
 273     bind(profile_continue);
 274   }
 275 }
 276 
 277 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point,
 278                                                   int number_of_arguments) {
 279   // interpreter specific
 280   //
 281   // Note: No need to save/restore bcp & locals registers
 282   //       since these are callee saved registers and no blocking/
 283   //       GC can happen in leaf calls.
 284   // Further Note: DO NOT save/restore bcp/locals. If a caller has
 285   // already saved them so that it can use rsi/rdi as temporaries
 286   // then a save/restore here will DESTROY the copy the caller
 287   // saved! There used to be a save_bcp() that only happened in
 288   // the ASSERT path (no restore_bcp). Which caused bizarre failures
 289   // when jvm built with ASSERTs.
 290 #ifdef ASSERT
 291   {
 292     Label L;
 293     cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
 294     jcc(Assembler::equal, L);
 295     stop("InterpreterMacroAssembler::call_VM_leaf_base:"
 296          " last_sp != null");
 297     bind(L);
 298   }
 299 #endif
 300   // super call
 301   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
 302   // interpreter specific
 303   // LP64: Used to ASSERT that r13/r14 were equal to frame's bcp/locals
 304   // but since they may not have been saved (and we don't want to
 305   // save them here (see note above) the assert is invalid.
 306 }
 307 
 308 void InterpreterMacroAssembler::call_VM_base(Register oop_result,
 309                                              Register java_thread,
 310                                              Register last_java_sp,
 311                                              address  entry_point,
 312                                              int      number_of_arguments,
 313                                              bool     check_exceptions) {
 314   // interpreter specific
 315   //
 316   // Note: Could avoid restoring locals ptr (callee saved) - however doesn't
 317   //       really make a difference for these runtime calls, since they are
 318   //       slow anyway. Btw., bcp must be saved/restored since it may change
 319   //       due to GC.
 320   NOT_LP64(assert(java_thread == noreg , "not expecting a precomputed java thread");)
 321   save_bcp();
 322 #ifdef ASSERT
 323   {
 324     Label L;
 325     cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
 326     jcc(Assembler::equal, L);
 327     stop("InterpreterMacroAssembler::call_VM_base:"
 328          " last_sp isn't null");
 329     bind(L);
 330   }
 331 #endif /* ASSERT */
 332   // super call
 333   MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp,
 334                                entry_point, number_of_arguments,
 335                                check_exceptions);
 336   // interpreter specific
 337   restore_bcp();
 338   restore_locals();
 339 }
 340 
 341 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
 342   if (JvmtiExport::can_pop_frame()) {
 343     Label L;
 344     // Initiate popframe handling only if it is not already being
 345     // processed.  If the flag has the popframe_processing bit set, it
 346     // means that this code is called *during* popframe handling - we
 347     // don't want to reenter.
 348     // This method is only called just after the call into the vm in
 349     // call_VM_base, so the arg registers are available.
 350     Register pop_cond = NOT_LP64(java_thread) // Not clear if any other register is available on 32 bit
 351                         LP64_ONLY(c_rarg0);
 352     movl(pop_cond, Address(java_thread, JavaThread::popframe_condition_offset()));
 353     testl(pop_cond, JavaThread::popframe_pending_bit);
 354     jcc(Assembler::zero, L);
 355     testl(pop_cond, JavaThread::popframe_processing_bit);
 356     jcc(Assembler::notZero, L);
 357     // Call Interpreter::remove_activation_preserving_args_entry() to get the
 358     // address of the same-named entrypoint in the generated interpreter code.
 359     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
 360     jmp(rax);
 361     bind(L);
 362     NOT_LP64(get_thread(java_thread);)
 363   }
 364 }
 365 
 366 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
 367   Register thread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
 368   NOT_LP64(get_thread(thread);)
 369   movptr(rcx, Address(thread, JavaThread::jvmti_thread_state_offset()));
 370   const Address tos_addr(rcx, JvmtiThreadState::earlyret_tos_offset());
 371   const Address oop_addr(rcx, JvmtiThreadState::earlyret_oop_offset());
 372   const Address val_addr(rcx, JvmtiThreadState::earlyret_value_offset());
 373 #ifdef _LP64
 374   switch (state) {
 375     case atos: movptr(rax, oop_addr);
 376                movptr(oop_addr, NULL_WORD);
 377                interp_verify_oop(rax, state);         break;
 378     case ltos: movptr(rax, val_addr);                 break;
 379     case btos:                                   // fall through
 380     case ztos:                                   // fall through
 381     case ctos:                                   // fall through
 382     case stos:                                   // fall through
 383     case itos: movl(rax, val_addr);                 break;
 384     case ftos: load_float(val_addr);                break;
 385     case dtos: load_double(val_addr);               break;
 386     case vtos: /* nothing to do */                  break;
 387     default  : ShouldNotReachHere();
 388   }
 389   // Clean up tos value in the thread object
 390   movl(tos_addr, ilgl);
 391   movl(val_addr, NULL_WORD);
 392 #else
 393   const Address val_addr1(rcx, JvmtiThreadState::earlyret_value_offset()
 394                              + in_ByteSize(wordSize));
 395   switch (state) {
 396     case atos: movptr(rax, oop_addr);
 397                movptr(oop_addr, NULL_WORD);
 398                interp_verify_oop(rax, state);         break;
 399     case ltos:
 400                movl(rdx, val_addr1);               // fall through
 401     case btos:                                     // fall through
 402     case ztos:                                     // fall through
 403     case ctos:                                     // fall through
 404     case stos:                                     // fall through
 405     case itos: movl(rax, val_addr);                   break;
 406     case ftos: load_float(val_addr);                  break;
 407     case dtos: load_double(val_addr);                 break;
 408     case vtos: /* nothing to do */                    break;
 409     default  : ShouldNotReachHere();
 410   }
 411 #endif // _LP64
 412   // Clean up tos value in the thread object
 413   movl(tos_addr, ilgl);
 414   movptr(val_addr, NULL_WORD);
 415   NOT_LP64(movptr(val_addr1, NULL_WORD);)
 416 }
 417 
 418 
 419 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
 420   if (JvmtiExport::can_force_early_return()) {
 421     Label L;
 422     Register tmp = LP64_ONLY(c_rarg0) NOT_LP64(java_thread);
 423     Register rthread = LP64_ONLY(r15_thread) NOT_LP64(java_thread);
 424 
 425     movptr(tmp, Address(rthread, JavaThread::jvmti_thread_state_offset()));
 426     testptr(tmp, tmp);
 427     jcc(Assembler::zero, L); // if (thread->jvmti_thread_state() == nullptr) exit;
 428 
 429     // Initiate earlyret handling only if it is not already being processed.
 430     // If the flag has the earlyret_processing bit set, it means that this code
 431     // is called *during* earlyret handling - we don't want to reenter.
 432     movl(tmp, Address(tmp, JvmtiThreadState::earlyret_state_offset()));
 433     cmpl(tmp, JvmtiThreadState::earlyret_pending);
 434     jcc(Assembler::notEqual, L);
 435 
 436     // Call Interpreter::remove_activation_early_entry() to get the address of the
 437     // same-named entrypoint in the generated interpreter code.
 438     NOT_LP64(get_thread(java_thread);)
 439     movptr(tmp, Address(rthread, JavaThread::jvmti_thread_state_offset()));
 440 #ifdef _LP64
 441     movl(tmp, Address(tmp, JvmtiThreadState::earlyret_tos_offset()));
 442     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), tmp);
 443 #else
 444     pushl(Address(tmp, JvmtiThreadState::earlyret_tos_offset()));
 445     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), 1);
 446 #endif // _LP64
 447     jmp(rax);
 448     bind(L);
 449     NOT_LP64(get_thread(java_thread);)
 450   }
 451 }
 452 
 453 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(Register reg, int bcp_offset) {
 454   assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
 455   load_unsigned_short(reg, Address(_bcp_register, bcp_offset));
 456   bswapl(reg);
 457   shrl(reg, 16);
 458 }
 459 
 460 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index,
 461                                                        int bcp_offset,
 462                                                        size_t index_size) {
 463   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
 464   if (index_size == sizeof(u2)) {
 465     load_unsigned_short(index, Address(_bcp_register, bcp_offset));
 466   } else if (index_size == sizeof(u4)) {
 467     movl(index, Address(_bcp_register, bcp_offset));
 468     // Check if the secondary index definition is still ~x, otherwise
 469     // we have to change the following assembler code to calculate the
 470     // plain index.
 471     assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line");
 472     notl(index);  // convert to plain index
 473   } else if (index_size == sizeof(u1)) {
 474     load_unsigned_byte(index, Address(_bcp_register, bcp_offset));
 475   } else {
 476     ShouldNotReachHere();
 477   }
 478 }
 479 
 480 // Load object from cpool->resolved_references(index)
 481 void InterpreterMacroAssembler::load_resolved_reference_at_index(Register result,
 482                                                                  Register index,
 483                                                                  Register tmp) {
 484   assert_different_registers(result, index);
 485 
 486   get_constant_pool(result);
 487   // load pointer for resolved_references[] objArray
 488   movptr(result, Address(result, ConstantPool::cache_offset()));
 489   movptr(result, Address(result, ConstantPoolCache::resolved_references_offset()));
 490   resolve_oop_handle(result, tmp);
 491   load_heap_oop(result, Address(result, index,
 492                                 UseCompressedOops ? Address::times_4 : Address::times_ptr,
 493                                 arrayOopDesc::base_offset_in_bytes(T_OBJECT)), tmp);
 494 }
 495 
 496 // load cpool->resolved_klass_at(index)
 497 void InterpreterMacroAssembler::load_resolved_klass_at_index(Register klass,
 498                                                              Register cpool,
 499                                                              Register index) {
 500   assert_different_registers(cpool, index);
 501 
 502   movw(index, Address(cpool, index, Address::times_ptr, sizeof(ConstantPool)));
 503   Register resolved_klasses = cpool;
 504   movptr(resolved_klasses, Address(cpool, ConstantPool::resolved_klasses_offset()));
 505   movptr(klass, Address(resolved_klasses, index, Address::times_ptr, Array<Klass*>::base_offset_in_bytes()));
 506 }
 507 
 508 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a
 509 // subtype of super_klass.
 510 //
 511 // Args:
 512 //      rax: superklass
 513 //      Rsub_klass: subklass
 514 //
 515 // Kills:
 516 //      rcx, rdi
 517 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
 518                                                   Label& ok_is_subtype,
 519                                                   bool profile) {
 520   assert(Rsub_klass != rax, "rax holds superklass");
 521   LP64_ONLY(assert(Rsub_klass != r14, "r14 holds locals");)
 522   LP64_ONLY(assert(Rsub_klass != r13, "r13 holds bcp");)
 523   assert(Rsub_klass != rcx, "rcx holds 2ndary super array length");
 524   assert(Rsub_klass != rdi, "rdi holds 2ndary super array scan ptr");
 525 
 526   // Profile the not-null value's klass.
 527   if (profile) {
 528     profile_typecheck(rcx, Rsub_klass, rdi); // blows rcx, reloads rdi
 529   }
 530 
 531   // Do the check.
 532   check_klass_subtype(Rsub_klass, rax, rcx, ok_is_subtype); // blows rcx
 533 }
 534 
 535 
 536 #ifndef _LP64
 537 void InterpreterMacroAssembler::f2ieee() {
 538   if (IEEEPrecision) {
 539     fstp_s(Address(rsp, 0));
 540     fld_s(Address(rsp, 0));
 541   }
 542 }
 543 
 544 
 545 void InterpreterMacroAssembler::d2ieee() {
 546   if (IEEEPrecision) {
 547     fstp_d(Address(rsp, 0));
 548     fld_d(Address(rsp, 0));
 549   }
 550 }
 551 #endif // _LP64
 552 
 553 // Java Expression Stack
 554 
 555 void InterpreterMacroAssembler::pop_ptr(Register r) {
 556   pop(r);
 557 }
 558 
 559 void InterpreterMacroAssembler::push_ptr(Register r) {
 560   push(r);
 561 }
 562 
 563 void InterpreterMacroAssembler::push_i(Register r) {
 564   push(r);
 565 }
 566 
 567 void InterpreterMacroAssembler::push_i_or_ptr(Register r) {
 568   push(r);
 569 }
 570 
 571 void InterpreterMacroAssembler::push_f(XMMRegister r) {
 572   subptr(rsp, wordSize);
 573   movflt(Address(rsp, 0), r);
 574 }
 575 
 576 void InterpreterMacroAssembler::pop_f(XMMRegister r) {
 577   movflt(r, Address(rsp, 0));
 578   addptr(rsp, wordSize);
 579 }
 580 
 581 void InterpreterMacroAssembler::push_d(XMMRegister r) {
 582   subptr(rsp, 2 * wordSize);
 583   movdbl(Address(rsp, 0), r);
 584 }
 585 
 586 void InterpreterMacroAssembler::pop_d(XMMRegister r) {
 587   movdbl(r, Address(rsp, 0));
 588   addptr(rsp, 2 * Interpreter::stackElementSize);
 589 }
 590 
 591 #ifdef _LP64
 592 void InterpreterMacroAssembler::pop_i(Register r) {
 593   // XXX can't use pop currently, upper half non clean
 594   movl(r, Address(rsp, 0));
 595   addptr(rsp, wordSize);
 596 }
 597 
 598 void InterpreterMacroAssembler::pop_l(Register r) {
 599   movq(r, Address(rsp, 0));
 600   addptr(rsp, 2 * Interpreter::stackElementSize);
 601 }
 602 
 603 void InterpreterMacroAssembler::push_l(Register r) {
 604   subptr(rsp, 2 * wordSize);
 605   movptr(Address(rsp, Interpreter::expr_offset_in_bytes(0)), r         );
 606   movptr(Address(rsp, Interpreter::expr_offset_in_bytes(1)), NULL_WORD );
 607 }
 608 
 609 void InterpreterMacroAssembler::pop(TosState state) {
 610   switch (state) {
 611   case atos: pop_ptr();                 break;
 612   case btos:
 613   case ztos:
 614   case ctos:
 615   case stos:
 616   case itos: pop_i();                   break;
 617   case ltos: pop_l();                   break;
 618   case ftos: pop_f(xmm0);               break;
 619   case dtos: pop_d(xmm0);               break;
 620   case vtos: /* nothing to do */        break;
 621   default:   ShouldNotReachHere();
 622   }
 623   interp_verify_oop(rax, state);
 624 }
 625 
 626 void InterpreterMacroAssembler::push(TosState state) {
 627   interp_verify_oop(rax, state);
 628   switch (state) {
 629   case atos: push_ptr();                break;
 630   case btos:
 631   case ztos:
 632   case ctos:
 633   case stos:
 634   case itos: push_i();                  break;
 635   case ltos: push_l();                  break;
 636   case ftos: push_f(xmm0);              break;
 637   case dtos: push_d(xmm0);              break;
 638   case vtos: /* nothing to do */        break;
 639   default  : ShouldNotReachHere();
 640   }
 641 }
 642 #else
 643 void InterpreterMacroAssembler::pop_i(Register r) {
 644   pop(r);
 645 }
 646 
 647 void InterpreterMacroAssembler::pop_l(Register lo, Register hi) {
 648   pop(lo);
 649   pop(hi);
 650 }
 651 
 652 void InterpreterMacroAssembler::pop_f() {
 653   fld_s(Address(rsp, 0));
 654   addptr(rsp, 1 * wordSize);
 655 }
 656 
 657 void InterpreterMacroAssembler::pop_d() {
 658   fld_d(Address(rsp, 0));
 659   addptr(rsp, 2 * wordSize);
 660 }
 661 
 662 
 663 void InterpreterMacroAssembler::pop(TosState state) {
 664   switch (state) {
 665     case atos: pop_ptr(rax);                                 break;
 666     case btos:                                               // fall through
 667     case ztos:                                               // fall through
 668     case ctos:                                               // fall through
 669     case stos:                                               // fall through
 670     case itos: pop_i(rax);                                   break;
 671     case ltos: pop_l(rax, rdx);                              break;
 672     case ftos:
 673       if (UseSSE >= 1) {
 674         pop_f(xmm0);
 675       } else {
 676         pop_f();
 677       }
 678       break;
 679     case dtos:
 680       if (UseSSE >= 2) {
 681         pop_d(xmm0);
 682       } else {
 683         pop_d();
 684       }
 685       break;
 686     case vtos: /* nothing to do */                           break;
 687     default  : ShouldNotReachHere();
 688   }
 689   interp_verify_oop(rax, state);
 690 }
 691 
 692 
 693 void InterpreterMacroAssembler::push_l(Register lo, Register hi) {
 694   push(hi);
 695   push(lo);
 696 }
 697 
 698 void InterpreterMacroAssembler::push_f() {
 699   // Do not schedule for no AGI! Never write beyond rsp!
 700   subptr(rsp, 1 * wordSize);
 701   fstp_s(Address(rsp, 0));
 702 }
 703 
 704 void InterpreterMacroAssembler::push_d() {
 705   // Do not schedule for no AGI! Never write beyond rsp!
 706   subptr(rsp, 2 * wordSize);
 707   fstp_d(Address(rsp, 0));
 708 }
 709 
 710 
 711 void InterpreterMacroAssembler::push(TosState state) {
 712   interp_verify_oop(rax, state);
 713   switch (state) {
 714     case atos: push_ptr(rax); break;
 715     case btos:                                               // fall through
 716     case ztos:                                               // fall through
 717     case ctos:                                               // fall through
 718     case stos:                                               // fall through
 719     case itos: push_i(rax);                                    break;
 720     case ltos: push_l(rax, rdx);                               break;
 721     case ftos:
 722       if (UseSSE >= 1) {
 723         push_f(xmm0);
 724       } else {
 725         push_f();
 726       }
 727       break;
 728     case dtos:
 729       if (UseSSE >= 2) {
 730         push_d(xmm0);
 731       } else {
 732         push_d();
 733       }
 734       break;
 735     case vtos: /* nothing to do */                             break;
 736     default  : ShouldNotReachHere();
 737   }
 738 }
 739 #endif // _LP64
 740 
 741 
 742 // Helpers for swap and dup
 743 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
 744   movptr(val, Address(rsp, Interpreter::expr_offset_in_bytes(n)));
 745 }
 746 
 747 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
 748   movptr(Address(rsp, Interpreter::expr_offset_in_bytes(n)), val);
 749 }
 750 
 751 
 752 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() {
 753   // set sender sp
 754   lea(_bcp_register, Address(rsp, wordSize));
 755   // record last_sp
 756   mov(rcx, _bcp_register);
 757   subptr(rcx, rbp);
 758   sarptr(rcx, LogBytesPerWord);
 759   movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), rcx);
 760 }
 761 
 762 
 763 // Jump to from_interpreted entry of a call unless single stepping is possible
 764 // in this thread in which case we must call the i2i entry
 765 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
 766   prepare_to_jump_from_interpreted();
 767 
 768   if (JvmtiExport::can_post_interpreter_events()) {
 769     Label run_compiled_code;
 770     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
 771     // compiled code in threads for which the event is enabled.  Check here for
 772     // interp_only_mode if these events CAN be enabled.
 773     // interp_only is an int, on little endian it is sufficient to test the byte only
 774     // Is a cmpl faster?
 775     LP64_ONLY(temp = r15_thread;)
 776     NOT_LP64(get_thread(temp);)
 777     cmpb(Address(temp, JavaThread::interp_only_mode_offset()), 0);
 778     jccb(Assembler::zero, run_compiled_code);
 779     jmp(Address(method, Method::interpreter_entry_offset()));
 780     bind(run_compiled_code);
 781   }
 782 
 783   jmp(Address(method, Method::from_interpreted_offset()));
 784 }
 785 
 786 // The following two routines provide a hook so that an implementation
 787 // can schedule the dispatch in two parts.  x86 does not do this.
 788 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
 789   // Nothing x86 specific to be done here
 790 }
 791 
 792 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
 793   dispatch_next(state, step);
 794 }
 795 
 796 void InterpreterMacroAssembler::dispatch_base(TosState state,
 797                                               address* table,
 798                                               bool verifyoop,
 799                                               bool generate_poll) {
 800   verify_FPU(1, state);
 801   if (VerifyActivationFrameSize) {
 802     Label L;
 803     mov(rcx, rbp);
 804     subptr(rcx, rsp);
 805     int32_t min_frame_size =
 806       (frame::link_offset - frame::interpreter_frame_initial_sp_offset) *
 807       wordSize;
 808     cmpptr(rcx, min_frame_size);
 809     jcc(Assembler::greaterEqual, L);
 810     stop("broken stack frame");
 811     bind(L);
 812   }
 813   if (verifyoop) {
 814     interp_verify_oop(rax, state);
 815   }
 816 
 817   address* const safepoint_table = Interpreter::safept_table(state);
 818 #ifdef _LP64
 819   Label no_safepoint, dispatch;
 820   if (table != safepoint_table && generate_poll) {
 821     NOT_PRODUCT(block_comment("Thread-local Safepoint poll"));
 822     testb(Address(r15_thread, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit());
 823 
 824     jccb(Assembler::zero, no_safepoint);
 825     lea(rscratch1, ExternalAddress((address)safepoint_table));
 826     jmpb(dispatch);
 827   }
 828 
 829   bind(no_safepoint);
 830   lea(rscratch1, ExternalAddress((address)table));
 831   bind(dispatch);
 832   jmp(Address(rscratch1, rbx, Address::times_8));
 833 
 834 #else
 835   Address index(noreg, rbx, Address::times_ptr);
 836   if (table != safepoint_table && generate_poll) {
 837     NOT_PRODUCT(block_comment("Thread-local Safepoint poll"));
 838     Label no_safepoint;
 839     const Register thread = rcx;
 840     get_thread(thread);
 841     testb(Address(thread, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit());
 842 
 843     jccb(Assembler::zero, no_safepoint);
 844     ArrayAddress dispatch_addr(ExternalAddress((address)safepoint_table), index);
 845     jump(dispatch_addr, noreg);
 846     bind(no_safepoint);
 847   }
 848 
 849   {
 850     ArrayAddress dispatch_addr(ExternalAddress((address)table), index);
 851     jump(dispatch_addr, noreg);
 852   }
 853 #endif // _LP64
 854 }
 855 
 856 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) {
 857   dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll);
 858 }
 859 
 860 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
 861   dispatch_base(state, Interpreter::normal_table(state));
 862 }
 863 
 864 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
 865   dispatch_base(state, Interpreter::normal_table(state), false);
 866 }
 867 
 868 
 869 void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) {
 870   // load next bytecode (load before advancing _bcp_register to prevent AGI)
 871   load_unsigned_byte(rbx, Address(_bcp_register, step));
 872   // advance _bcp_register
 873   increment(_bcp_register, step);
 874   dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll);
 875 }
 876 
 877 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
 878   // load current bytecode
 879   load_unsigned_byte(rbx, Address(_bcp_register, 0));
 880   dispatch_base(state, table);
 881 }
 882 
 883 void InterpreterMacroAssembler::narrow(Register result) {
 884 
 885   // Get method->_constMethod->_result_type
 886   movptr(rcx, Address(rbp, frame::interpreter_frame_method_offset * wordSize));
 887   movptr(rcx, Address(rcx, Method::const_offset()));
 888   load_unsigned_byte(rcx, Address(rcx, ConstMethod::result_type_offset()));
 889 
 890   Label done, notBool, notByte, notChar;
 891 
 892   // common case first
 893   cmpl(rcx, T_INT);
 894   jcc(Assembler::equal, done);
 895 
 896   // mask integer result to narrower return type.
 897   cmpl(rcx, T_BOOLEAN);
 898   jcc(Assembler::notEqual, notBool);
 899   andl(result, 0x1);
 900   jmp(done);
 901 
 902   bind(notBool);
 903   cmpl(rcx, T_BYTE);
 904   jcc(Assembler::notEqual, notByte);
 905   LP64_ONLY(movsbl(result, result);)
 906   NOT_LP64(shll(result, 24);)      // truncate upper 24 bits
 907   NOT_LP64(sarl(result, 24);)      // and sign-extend byte
 908   jmp(done);
 909 
 910   bind(notByte);
 911   cmpl(rcx, T_CHAR);
 912   jcc(Assembler::notEqual, notChar);
 913   LP64_ONLY(movzwl(result, result);)
 914   NOT_LP64(andl(result, 0xFFFF);)  // truncate upper 16 bits
 915   jmp(done);
 916 
 917   bind(notChar);
 918   // cmpl(rcx, T_SHORT);  // all that's left
 919   // jcc(Assembler::notEqual, done);
 920   LP64_ONLY(movswl(result, result);)
 921   NOT_LP64(shll(result, 16);)      // truncate upper 16 bits
 922   NOT_LP64(sarl(result, 16);)      // and sign-extend short
 923 
 924   // Nothing to do for T_INT
 925   bind(done);
 926 }
 927 
 928 // remove activation
 929 //
 930 // Apply stack watermark barrier.
 931 // Unlock the receiver if this is a synchronized method.
 932 // Unlock any Java monitors from synchronized blocks.
 933 // Remove the activation from the stack.
 934 //
 935 // If there are locked Java monitors
 936 //    If throw_monitor_exception
 937 //       throws IllegalMonitorStateException
 938 //    Else if install_monitor_exception
 939 //       installs IllegalMonitorStateException
 940 //    Else
 941 //       no error processing
 942 void InterpreterMacroAssembler::remove_activation(
 943         TosState state,
 944         Register ret_addr,
 945         bool throw_monitor_exception,
 946         bool install_monitor_exception,
 947         bool notify_jvmdi) {
 948   // Note: Registers rdx xmm0 may be in use for the
 949   // result check if synchronized method
 950   Label unlocked, unlock, no_unlock;
 951 
 952   const Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
 953   const Register robj    = LP64_ONLY(c_rarg1) NOT_LP64(rdx);
 954   const Register rmon    = LP64_ONLY(c_rarg1) NOT_LP64(rcx);
 955                               // monitor pointers need different register
 956                               // because rdx may have the result in it
 957   NOT_LP64(get_thread(rthread);)
 958 
 959   // The below poll is for the stack watermark barrier. It allows fixing up frames lazily,
 960   // that would normally not be safe to use. Such bad returns into unsafe territory of
 961   // the stack, will call InterpreterRuntime::at_unwind.
 962   Label slow_path;
 963   Label fast_path;
 964   safepoint_poll(slow_path, rthread, true /* at_return */, false /* in_nmethod */);
 965   jmp(fast_path);
 966   bind(slow_path);
 967   push(state);
 968   set_last_Java_frame(rthread, noreg, rbp, (address)pc(), rscratch1);
 969   super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), rthread);
 970   NOT_LP64(get_thread(rthread);) // call_VM clobbered it, restore
 971   reset_last_Java_frame(rthread, true);
 972   pop(state);
 973   bind(fast_path);
 974 
 975   // get the value of _do_not_unlock_if_synchronized into rdx
 976   const Address do_not_unlock_if_synchronized(rthread,
 977     in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
 978   movbool(rbx, do_not_unlock_if_synchronized);
 979   movbool(do_not_unlock_if_synchronized, false); // reset the flag
 980 
 981   // get method access flags
 982   movptr(rcx, Address(rbp, frame::interpreter_frame_method_offset * wordSize));
 983   movl(rcx, Address(rcx, Method::access_flags_offset()));
 984   testl(rcx, JVM_ACC_SYNCHRONIZED);
 985   jcc(Assembler::zero, unlocked);
 986 
 987   // Don't unlock anything if the _do_not_unlock_if_synchronized flag
 988   // is set.
 989   testbool(rbx);
 990   jcc(Assembler::notZero, no_unlock);
 991 
 992   // unlock monitor
 993   push(state); // save result
 994 
 995   // BasicObjectLock will be first in list, since this is a
 996   // synchronized method. However, need to check that the object has
 997   // not been unlocked by an explicit monitorexit bytecode.
 998   const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset *
 999                         wordSize - (int) sizeof(BasicObjectLock));
1000   // We use c_rarg1/rdx so that if we go slow path it will be the correct
1001   // register for unlock_object to pass to VM directly
1002   lea(robj, monitor); // address of first monitor
1003 
1004   movptr(rax, Address(robj, BasicObjectLock::obj_offset()));
1005   testptr(rax, rax);
1006   jcc(Assembler::notZero, unlock);
1007 
1008   pop(state);
1009   if (throw_monitor_exception) {
1010     // Entry already unlocked, need to throw exception
1011     NOT_LP64(empty_FPU_stack();)  // remove possible return value from FPU-stack, otherwise stack could overflow
1012     call_VM(noreg, CAST_FROM_FN_PTR(address,
1013                    InterpreterRuntime::throw_illegal_monitor_state_exception));
1014     should_not_reach_here();
1015   } else {
1016     // Monitor already unlocked during a stack unroll. If requested,
1017     // install an illegal_monitor_state_exception.  Continue with
1018     // stack unrolling.
1019     if (install_monitor_exception) {
1020       NOT_LP64(empty_FPU_stack();)
1021       call_VM(noreg, CAST_FROM_FN_PTR(address,
1022                      InterpreterRuntime::new_illegal_monitor_state_exception));
1023     }
1024     jmp(unlocked);
1025   }
1026 
1027   bind(unlock);
1028   unlock_object(robj);
1029   pop(state);
1030 
1031   // Check that for block-structured locking (i.e., that all locked
1032   // objects has been unlocked)
1033   bind(unlocked);
1034 
1035   // rax, rdx: Might contain return value
1036 
1037   // Check that all monitors are unlocked
1038   {
1039     Label loop, exception, entry, restart;
1040     const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
1041     const Address monitor_block_top(
1042         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
1043     const Address monitor_block_bot(
1044         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
1045 
1046     bind(restart);
1047     // We use c_rarg1 so that if we go slow path it will be the correct
1048     // register for unlock_object to pass to VM directly
1049     movptr(rmon, monitor_block_top); // derelativize pointer
1050     lea(rmon, Address(rbp, rmon, Address::times_ptr));
1051     // c_rarg1 points to current entry, starting with top-most entry
1052 
1053     lea(rbx, monitor_block_bot);  // points to word before bottom of
1054                                   // monitor block
1055     jmp(entry);
1056 
1057     // Entry already locked, need to throw exception
1058     bind(exception);
1059 
1060     if (throw_monitor_exception) {
1061       // Throw exception
1062       NOT_LP64(empty_FPU_stack();)
1063       MacroAssembler::call_VM(noreg,
1064                               CAST_FROM_FN_PTR(address, InterpreterRuntime::
1065                                    throw_illegal_monitor_state_exception));
1066       should_not_reach_here();
1067     } else {
1068       // Stack unrolling. Unlock object and install illegal_monitor_exception.
1069       // Unlock does not block, so don't have to worry about the frame.
1070       // We don't have to preserve c_rarg1 since we are going to throw an exception.
1071 
1072       push(state);
1073       mov(robj, rmon);   // nop if robj and rmon are the same
1074       unlock_object(robj);
1075       pop(state);
1076 
1077       if (install_monitor_exception) {
1078         NOT_LP64(empty_FPU_stack();)
1079         call_VM(noreg, CAST_FROM_FN_PTR(address,
1080                                         InterpreterRuntime::
1081                                         new_illegal_monitor_state_exception));
1082       }
1083 
1084       jmp(restart);
1085     }
1086 
1087     bind(loop);
1088     // check if current entry is used
1089     cmpptr(Address(rmon, BasicObjectLock::obj_offset()), NULL_WORD);
1090     jcc(Assembler::notEqual, exception);
1091 
1092     addptr(rmon, entry_size); // otherwise advance to next entry
1093     bind(entry);
1094     cmpptr(rmon, rbx); // check if bottom reached
1095     jcc(Assembler::notEqual, loop); // if not at bottom then check this entry
1096   }
1097 
1098   bind(no_unlock);
1099 
1100   // jvmti support
1101   if (notify_jvmdi) {
1102     notify_method_exit(state, NotifyJVMTI);    // preserve TOSCA
1103   } else {
1104     notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
1105   }
1106 
1107   if (StackReservedPages > 0) {
1108     movptr(rbx,
1109                Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize));
1110     // testing if reserved zone needs to be re-enabled
1111     Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
1112     Label no_reserved_zone_enabling;
1113 
1114     NOT_LP64(get_thread(rthread);)
1115 
1116     // check if already enabled - if so no re-enabling needed
1117     assert(sizeof(StackOverflow::StackGuardState) == 4, "unexpected size");
1118     cmpl(Address(rthread, JavaThread::stack_guard_state_offset()), StackOverflow::stack_guard_enabled);
1119     jcc(Assembler::equal, no_reserved_zone_enabling);
1120 
1121     cmpptr(rbx, Address(rthread, JavaThread::reserved_stack_activation_offset()));
1122     jcc(Assembler::lessEqual, no_reserved_zone_enabling);
1123 
1124     call_VM_leaf(
1125       CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), rthread);
1126     call_VM(noreg, CAST_FROM_FN_PTR(address,
1127                    InterpreterRuntime::throw_delayed_StackOverflowError));
1128     should_not_reach_here();
1129 
1130     bind(no_reserved_zone_enabling);
1131   }
1132 
1133   // remove activation
1134   // get sender sp
1135   movptr(rbx,
1136          Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize));
1137 
1138   if (state == atos && InlineTypeReturnedAsFields) {
1139     // Check if we are returning an non-null inline type and load its fields into registers
1140     Label skip;
1141     test_oop_is_not_inline_type(rax, rscratch1, skip);
1142 
1143 #ifndef _LP64
1144     super_call_VM_leaf(StubRoutines::load_inline_type_fields_in_regs());
1145 #else
1146     // Load fields from a buffered value with an inline class specific handler
1147     load_klass(rdi, rax, rscratch1);
1148     movptr(rdi, Address(rdi, InstanceKlass::adr_inlineklass_fixed_block_offset()));
1149     movptr(rdi, Address(rdi, InlineKlass::unpack_handler_offset()));
1150     // Unpack handler can be null if inline type is not scalarizable in returns
1151     testptr(rdi, rdi);
1152     jcc(Assembler::zero, skip);
1153     call(rdi);
1154 #endif
1155 #ifdef ASSERT
1156     // TODO 8284443 Enable
1157     if (StressCallingConvention && false) {
1158       Label skip_stress;
1159       movptr(rscratch1, Address(rbp, frame::interpreter_frame_method_offset * wordSize));
1160       movl(rscratch1, Address(rscratch1, Method::flags_offset()));
1161       testl(rcx, MethodFlags::has_scalarized_return_flag());
1162       jcc(Assembler::zero, skip_stress);
1163       load_klass(rax, rax, rscratch1);
1164       orptr(rax, 1);
1165       bind(skip_stress);
1166     }
1167 #endif
1168     // call above kills the value in rbx. Reload it.
1169     movptr(rbx, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize));
1170     bind(skip);
1171   }
1172   leave();                           // remove frame anchor
1173   pop(ret_addr);                     // get return address
1174   mov(rsp, rbx);                     // set sp to sender sp
1175   pop_cont_fastpath();
1176 }
1177 
1178 void InterpreterMacroAssembler::get_method_counters(Register method,
1179                                                     Register mcs, Label& skip) {
1180   Label has_counters;
1181   movptr(mcs, Address(method, Method::method_counters_offset()));
1182   testptr(mcs, mcs);
1183   jcc(Assembler::notZero, has_counters);
1184   call_VM(noreg, CAST_FROM_FN_PTR(address,
1185           InterpreterRuntime::build_method_counters), method);
1186   movptr(mcs, Address(method,Method::method_counters_offset()));
1187   testptr(mcs, mcs);
1188   jcc(Assembler::zero, skip); // No MethodCounters allocated, OutOfMemory
1189   bind(has_counters);
1190 }
1191 
1192 void InterpreterMacroAssembler::allocate_instance(Register klass, Register new_obj,
1193                                                   Register t1, Register t2,
1194                                                   bool clear_fields, Label& alloc_failed) {
1195   MacroAssembler::allocate_instance(klass, new_obj, t1, t2, clear_fields, alloc_failed);
1196   {
1197     SkipIfEqual skip_if(this, &DTraceAllocProbes, 0, rscratch1);
1198     // Trigger dtrace event for fastpath
1199     push(atos);
1200     call_VM_leaf(CAST_FROM_FN_PTR(address, static_cast<int (*)(oopDesc*)>(SharedRuntime::dtrace_object_alloc)), new_obj);
1201     pop(atos);
1202   }
1203 }
1204 
1205 
1206 void InterpreterMacroAssembler::read_flat_field(Register holder_klass,
1207                                                 Register field_index, Register field_offset,
1208                                                 Register obj) {
1209   Label alloc_failed, empty_value, done;
1210   const Register src = field_offset;
1211   const Register alloc_temp = LP64_ONLY(rscratch1) NOT_LP64(rsi);
1212   const Register dst_temp   = LP64_ONLY(rscratch2) NOT_LP64(rdi);
1213   assert_different_registers(obj, holder_klass, field_index, field_offset, dst_temp);
1214 
1215   // Grap the inline field klass
1216   push(holder_klass);
1217   const Register field_klass = holder_klass;
1218   get_inline_type_field_klass(holder_klass, field_index, field_klass);
1219 
1220   //check for empty value klass
1221   test_klass_is_empty_inline_type(field_klass, dst_temp, empty_value);
1222 
1223   // allocate buffer
1224   push(obj); // save holder
1225   allocate_instance(field_klass, obj, alloc_temp, dst_temp, false, alloc_failed);
1226 
1227   // Have an oop instance buffer, copy into it
1228   data_for_oop(obj, dst_temp, field_klass);
1229   pop(alloc_temp);             // restore holder
1230   lea(src, Address(alloc_temp, field_offset));
1231   // call_VM_leaf, clobbers a few regs, save restore new obj
1232   push(obj);
1233   access_value_copy(IS_DEST_UNINITIALIZED, src, dst_temp, field_klass);
1234   pop(obj);
1235   pop(holder_klass);
1236   jmp(done);
1237 
1238   bind(empty_value);
1239   get_empty_inline_type_oop(field_klass, dst_temp, obj);
1240   pop(holder_klass);
1241   jmp(done);
1242 
1243   bind(alloc_failed);
1244   pop(obj);
1245   pop(holder_klass);
1246   call_VM(obj, CAST_FROM_FN_PTR(address, InterpreterRuntime::read_flat_field),
1247           obj, field_index, holder_klass);
1248 
1249   bind(done);
1250 }
1251 
1252 void InterpreterMacroAssembler::read_flat_element(Register array, Register index,
1253                                                   Register t1, Register t2,
1254                                                   Register obj) {
1255   assert_different_registers(array, index, t1, t2);
1256   Label alloc_failed, empty_value, done;
1257   const Register array_klass = t2;
1258   const Register elem_klass = t1;
1259   const Register alloc_temp = LP64_ONLY(rscratch1) NOT_LP64(rsi);
1260   const Register dst_temp   = LP64_ONLY(rscratch2) NOT_LP64(rdi);
1261 
1262   // load in array->klass()->element_klass()
1263   Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg);
1264   load_klass(array_klass, array, tmp_load_klass);
1265   movptr(elem_klass, Address(array_klass, ArrayKlass::element_klass_offset()));
1266 
1267   //check for empty value klass
1268   test_klass_is_empty_inline_type(elem_klass, dst_temp, empty_value);
1269 
1270   // calc source into "array_klass" and free up some regs
1271   const Register src = array_klass;
1272   push(index); // preserve index reg in case alloc_failed
1273   data_for_value_array_index(array, array_klass, index, src);
1274 
1275   allocate_instance(elem_klass, obj, alloc_temp, dst_temp, false, alloc_failed);
1276   // Have an oop instance buffer, copy into it
1277   store_ptr(0, obj); // preserve obj (overwrite index, no longer needed)
1278   data_for_oop(obj, dst_temp, elem_klass);
1279   access_value_copy(IS_DEST_UNINITIALIZED, src, dst_temp, elem_klass);
1280   pop(obj);
1281   jmp(done);
1282 
1283   bind(empty_value);
1284   get_empty_inline_type_oop(elem_klass, dst_temp, obj);
1285   jmp(done);
1286 
1287   bind(alloc_failed);
1288   pop(index);
1289   if (array == c_rarg2) {
1290     mov(elem_klass, array);
1291     array = elem_klass;
1292   }
1293   call_VM(obj, CAST_FROM_FN_PTR(address, InterpreterRuntime::value_array_load), array, index);
1294 
1295   bind(done);
1296 }
1297 
1298 
1299 // Lock object
1300 //
1301 // Args:
1302 //      rdx, c_rarg1: BasicObjectLock to be used for locking
1303 //
1304 // Kills:
1305 //      rax, rbx
1306 void InterpreterMacroAssembler::lock_object(Register lock_reg) {
1307   assert(lock_reg == LP64_ONLY(c_rarg1) NOT_LP64(rdx),
1308          "The argument is only for looks. It must be c_rarg1");
1309 
1310   if (LockingMode == LM_MONITOR) {
1311     call_VM(noreg,
1312             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
1313             lock_reg);
1314   } else {
1315     Label count_locking, done, slow_case;
1316 
1317     const Register swap_reg = rax; // Must use rax for cmpxchg instruction
1318     const Register tmp_reg = rbx;
1319     const Register obj_reg = LP64_ONLY(c_rarg3) NOT_LP64(rcx); // Will contain the oop
1320     const Register rklass_decode_tmp = rscratch1;
1321 
1322     const int obj_offset = in_bytes(BasicObjectLock::obj_offset());
1323     const int lock_offset = in_bytes(BasicObjectLock::lock_offset());
1324     const int mark_offset = lock_offset +
1325                             BasicLock::displaced_header_offset_in_bytes();
1326 
1327     // Load object pointer into obj_reg
1328     movptr(obj_reg, Address(lock_reg, obj_offset));
1329 
1330     if (DiagnoseSyncOnValueBasedClasses != 0) {
1331       load_klass(tmp_reg, obj_reg, rklass_decode_tmp);
1332       movl(tmp_reg, Address(tmp_reg, Klass::access_flags_offset()));
1333       testl(tmp_reg, JVM_ACC_IS_VALUE_BASED_CLASS);
1334       jcc(Assembler::notZero, slow_case);
1335     }
1336 
1337     if (LockingMode == LM_LIGHTWEIGHT) {
1338 #ifdef _LP64
1339       const Register thread = r15_thread;
1340 #else
1341       const Register thread = lock_reg;
1342       get_thread(thread);
1343 #endif
1344       lightweight_lock(obj_reg, swap_reg, thread, tmp_reg, slow_case);
1345     } else if (LockingMode == LM_LEGACY) {
1346       // Load immediate 1 into swap_reg %rax
1347       movl(swap_reg, 1);
1348 
1349       // Load (object->mark() | 1) into swap_reg %rax
1350       orptr(swap_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1351       if (EnableValhalla) {
1352         // Mask inline_type bit such that we go to the slow path if object is an inline type
1353         andptr(swap_reg, ~((int) markWord::inline_type_bit_in_place));
1354       }
1355 
1356       // Save (object->mark() | 1) into BasicLock's displaced header
1357       movptr(Address(lock_reg, mark_offset), swap_reg);
1358 
1359       assert(lock_offset == 0,
1360              "displaced header must be first word in BasicObjectLock");
1361 
1362       lock();
1363       cmpxchgptr(lock_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1364       jcc(Assembler::zero, count_locking);
1365 
1366       const int zero_bits = LP64_ONLY(7) NOT_LP64(3);
1367 
1368       // Fast check for recursive lock.
1369       //
1370       // Can apply the optimization only if this is a stack lock
1371       // allocated in this thread. For efficiency, we can focus on
1372       // recently allocated stack locks (instead of reading the stack
1373       // base and checking whether 'mark' points inside the current
1374       // thread stack):
1375       //  1) (mark & zero_bits) == 0, and
1376       //  2) rsp <= mark < mark + os::pagesize()
1377       //
1378       // Warning: rsp + os::pagesize can overflow the stack base. We must
1379       // neither apply the optimization for an inflated lock allocated
1380       // just above the thread stack (this is why condition 1 matters)
1381       // nor apply the optimization if the stack lock is inside the stack
1382       // of another thread. The latter is avoided even in case of overflow
1383       // because we have guard pages at the end of all stacks. Hence, if
1384       // we go over the stack base and hit the stack of another thread,
1385       // this should not be in a writeable area that could contain a
1386       // stack lock allocated by that thread. As a consequence, a stack
1387       // lock less than page size away from rsp is guaranteed to be
1388       // owned by the current thread.
1389       //
1390       // These 3 tests can be done by evaluating the following
1391       // expression: ((mark - rsp) & (zero_bits - os::vm_page_size())),
1392       // assuming both stack pointer and pagesize have their
1393       // least significant bits clear.
1394       // NOTE: the mark is in swap_reg %rax as the result of cmpxchg
1395       subptr(swap_reg, rsp);
1396       andptr(swap_reg, zero_bits - (int)os::vm_page_size());
1397 
1398       // Save the test result, for recursive case, the result is zero
1399       movptr(Address(lock_reg, mark_offset), swap_reg);
1400       jcc(Assembler::notZero, slow_case);
1401 
1402       bind(count_locking);
1403     }
1404     inc_held_monitor_count();
1405     jmp(done);
1406 
1407     bind(slow_case);
1408 
1409     // Call the runtime routine for slow case
1410     if (LockingMode == LM_LIGHTWEIGHT) {
1411       call_VM(noreg,
1412               CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter_obj),
1413               obj_reg);
1414     } else {
1415       call_VM(noreg,
1416               CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
1417               lock_reg);
1418     }
1419     bind(done);
1420   }
1421 }
1422 
1423 
1424 // Unlocks an object. Used in monitorexit bytecode and
1425 // remove_activation.  Throws an IllegalMonitorException if object is
1426 // not locked by current thread.
1427 //
1428 // Args:
1429 //      rdx, c_rarg1: BasicObjectLock for lock
1430 //
1431 // Kills:
1432 //      rax
1433 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs)
1434 //      rscratch1 (scratch reg)
1435 // rax, rbx, rcx, rdx
1436 void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
1437   assert(lock_reg == LP64_ONLY(c_rarg1) NOT_LP64(rdx),
1438          "The argument is only for looks. It must be c_rarg1");
1439 
1440   if (LockingMode == LM_MONITOR) {
1441     call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
1442   } else {
1443     Label count_locking, done, slow_case;
1444 
1445     const Register swap_reg   = rax;  // Must use rax for cmpxchg instruction
1446     const Register header_reg = LP64_ONLY(c_rarg2) NOT_LP64(rbx);  // Will contain the old oopMark
1447     const Register obj_reg    = LP64_ONLY(c_rarg3) NOT_LP64(rcx);  // Will contain the oop
1448 
1449     save_bcp(); // Save in case of exception
1450 
1451     if (LockingMode != LM_LIGHTWEIGHT) {
1452       // Convert from BasicObjectLock structure to object and BasicLock
1453       // structure Store the BasicLock address into %rax
1454       lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset()));
1455     }
1456 
1457     // Load oop into obj_reg(%c_rarg3)
1458     movptr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset()));
1459 
1460     // Free entry
1461     movptr(Address(lock_reg, BasicObjectLock::obj_offset()), NULL_WORD);
1462 
1463     if (LockingMode == LM_LIGHTWEIGHT) {
1464 #ifdef _LP64
1465       lightweight_unlock(obj_reg, swap_reg, r15_thread, header_reg, slow_case);
1466 #else
1467       // This relies on the implementation of lightweight_unlock being able to handle
1468       // that the reg_rax and thread Register parameters may alias each other.
1469       get_thread(swap_reg);
1470       lightweight_unlock(obj_reg, swap_reg, swap_reg, header_reg, slow_case);
1471 #endif
1472     } else if (LockingMode == LM_LEGACY) {
1473       // Load the old header from BasicLock structure
1474       movptr(header_reg, Address(swap_reg,
1475                                  BasicLock::displaced_header_offset_in_bytes()));
1476 
1477       // Test for recursion
1478       testptr(header_reg, header_reg);
1479 
1480       // zero for recursive case
1481       jcc(Assembler::zero, count_locking);
1482 
1483       // Atomic swap back the old header
1484       lock();
1485       cmpxchgptr(header_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1486 
1487       // zero for simple unlock of a stack-lock case
1488       jcc(Assembler::notZero, slow_case);
1489 
1490       bind(count_locking);
1491     }
1492     dec_held_monitor_count();
1493     jmp(done);
1494 
1495     bind(slow_case);
1496     // Call the runtime routine for slow case.
1497     movptr(Address(lock_reg, BasicObjectLock::obj_offset()), obj_reg); // restore obj
1498     call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
1499 
1500     bind(done);
1501 
1502     restore_bcp();
1503   }
1504 }
1505 
1506 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp,
1507                                                          Label& zero_continue) {
1508   assert(ProfileInterpreter, "must be profiling interpreter");
1509   movptr(mdp, Address(rbp, frame::interpreter_frame_mdp_offset * wordSize));
1510   testptr(mdp, mdp);
1511   jcc(Assembler::zero, zero_continue);
1512 }
1513 
1514 
1515 // Set the method data pointer for the current bcp.
1516 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
1517   assert(ProfileInterpreter, "must be profiling interpreter");
1518   Label set_mdp;
1519   push(rax);
1520   push(rbx);
1521 
1522   get_method(rbx);
1523   // Test MDO to avoid the call if it is null.
1524   movptr(rax, Address(rbx, in_bytes(Method::method_data_offset())));
1525   testptr(rax, rax);
1526   jcc(Assembler::zero, set_mdp);
1527   // rbx: method
1528   // _bcp_register: bcp
1529   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rbx, _bcp_register);
1530   // rax: mdi
1531   // mdo is guaranteed to be non-zero here, we checked for it before the call.
1532   movptr(rbx, Address(rbx, in_bytes(Method::method_data_offset())));
1533   addptr(rbx, in_bytes(MethodData::data_offset()));
1534   addptr(rax, rbx);
1535   bind(set_mdp);
1536   movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), rax);
1537   pop(rbx);
1538   pop(rax);
1539 }
1540 
1541 void InterpreterMacroAssembler::verify_method_data_pointer() {
1542   assert(ProfileInterpreter, "must be profiling interpreter");
1543 #ifdef ASSERT
1544   Label verify_continue;
1545   push(rax);
1546   push(rbx);
1547   Register arg3_reg = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
1548   Register arg2_reg = LP64_ONLY(c_rarg2) NOT_LP64(rdx);
1549   push(arg3_reg);
1550   push(arg2_reg);
1551   test_method_data_pointer(arg3_reg, verify_continue); // If mdp is zero, continue
1552   get_method(rbx);
1553 
1554   // If the mdp is valid, it will point to a DataLayout header which is
1555   // consistent with the bcp.  The converse is highly probable also.
1556   load_unsigned_short(arg2_reg,
1557                       Address(arg3_reg, in_bytes(DataLayout::bci_offset())));
1558   addptr(arg2_reg, Address(rbx, Method::const_offset()));
1559   lea(arg2_reg, Address(arg2_reg, ConstMethod::codes_offset()));
1560   cmpptr(arg2_reg, _bcp_register);
1561   jcc(Assembler::equal, verify_continue);
1562   // rbx: method
1563   // _bcp_register: bcp
1564   // c_rarg3: mdp
1565   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp),
1566                rbx, _bcp_register, arg3_reg);
1567   bind(verify_continue);
1568   pop(arg2_reg);
1569   pop(arg3_reg);
1570   pop(rbx);
1571   pop(rax);
1572 #endif // ASSERT
1573 }
1574 
1575 
1576 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in,
1577                                                 int constant,
1578                                                 Register value) {
1579   assert(ProfileInterpreter, "must be profiling interpreter");
1580   Address data(mdp_in, constant);
1581   movptr(data, value);
1582 }
1583 
1584 
1585 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
1586                                                       int constant,
1587                                                       bool decrement) {
1588   // Counter address
1589   Address data(mdp_in, constant);
1590 
1591   increment_mdp_data_at(data, decrement);
1592 }
1593 
1594 void InterpreterMacroAssembler::increment_mdp_data_at(Address data,
1595                                                       bool decrement) {
1596   assert(ProfileInterpreter, "must be profiling interpreter");
1597   // %%% this does 64bit counters at best it is wasting space
1598   // at worst it is a rare bug when counters overflow
1599 
1600   if (decrement) {
1601     // Decrement the register.  Set condition codes.
1602     addptr(data, -DataLayout::counter_increment);
1603     // If the decrement causes the counter to overflow, stay negative
1604     Label L;
1605     jcc(Assembler::negative, L);
1606     addptr(data, DataLayout::counter_increment);
1607     bind(L);
1608   } else {
1609     assert(DataLayout::counter_increment == 1,
1610            "flow-free idiom only works with 1");
1611     // Increment the register.  Set carry flag.
1612     addptr(data, DataLayout::counter_increment);
1613     // If the increment causes the counter to overflow, pull back by 1.
1614     sbbptr(data, 0);
1615   }
1616 }
1617 
1618 
1619 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
1620                                                       Register reg,
1621                                                       int constant,
1622                                                       bool decrement) {
1623   Address data(mdp_in, reg, Address::times_1, constant);
1624 
1625   increment_mdp_data_at(data, decrement);
1626 }
1627 
1628 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in,
1629                                                 int flag_byte_constant) {
1630   assert(ProfileInterpreter, "must be profiling interpreter");
1631   int header_offset = in_bytes(DataLayout::flags_offset());
1632   int header_bits = flag_byte_constant;
1633   // Set the flag
1634   orb(Address(mdp_in, header_offset), header_bits);
1635 }
1636 
1637 
1638 
1639 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
1640                                                  int offset,
1641                                                  Register value,
1642                                                  Register test_value_out,
1643                                                  Label& not_equal_continue) {
1644   assert(ProfileInterpreter, "must be profiling interpreter");
1645   if (test_value_out == noreg) {
1646     cmpptr(value, Address(mdp_in, offset));
1647   } else {
1648     // Put the test value into a register, so caller can use it:
1649     movptr(test_value_out, Address(mdp_in, offset));
1650     cmpptr(test_value_out, value);
1651   }
1652   jcc(Assembler::notEqual, not_equal_continue);
1653 }
1654 
1655 
1656 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
1657                                                      int offset_of_disp) {
1658   assert(ProfileInterpreter, "must be profiling interpreter");
1659   Address disp_address(mdp_in, offset_of_disp);
1660   addptr(mdp_in, disp_address);
1661   movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in);
1662 }
1663 
1664 
1665 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
1666                                                      Register reg,
1667                                                      int offset_of_disp) {
1668   assert(ProfileInterpreter, "must be profiling interpreter");
1669   Address disp_address(mdp_in, reg, Address::times_1, offset_of_disp);
1670   addptr(mdp_in, disp_address);
1671   movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in);
1672 }
1673 
1674 
1675 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in,
1676                                                        int constant) {
1677   assert(ProfileInterpreter, "must be profiling interpreter");
1678   addptr(mdp_in, constant);
1679   movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in);
1680 }
1681 
1682 
1683 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
1684   assert(ProfileInterpreter, "must be profiling interpreter");
1685   push(return_bci); // save/restore across call_VM
1686   call_VM(noreg,
1687           CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret),
1688           return_bci);
1689   pop(return_bci);
1690 }
1691 
1692 
1693 void InterpreterMacroAssembler::profile_taken_branch(Register mdp,
1694                                                      Register bumped_count) {
1695   if (ProfileInterpreter) {
1696     Label profile_continue;
1697 
1698     // If no method data exists, go to profile_continue.
1699     // Otherwise, assign to mdp
1700     test_method_data_pointer(mdp, profile_continue);
1701 
1702     // We are taking a branch.  Increment the taken count.
1703     // We inline increment_mdp_data_at to return bumped_count in a register
1704     //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
1705     Address data(mdp, in_bytes(JumpData::taken_offset()));
1706     movptr(bumped_count, data);
1707     assert(DataLayout::counter_increment == 1,
1708             "flow-free idiom only works with 1");
1709     addptr(bumped_count, DataLayout::counter_increment);
1710     sbbptr(bumped_count, 0);
1711     movptr(data, bumped_count); // Store back out
1712 
1713     // The method data pointer needs to be updated to reflect the new target.
1714     update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
1715     bind(profile_continue);
1716   }
1717 }
1718 
1719 
1720 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp, bool acmp) {
1721   if (ProfileInterpreter) {
1722     Label profile_continue;
1723 
1724     // If no method data exists, go to profile_continue.
1725     test_method_data_pointer(mdp, profile_continue);
1726 
1727     // We are taking a branch.  Increment the not taken count.
1728     increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
1729 
1730     // The method data pointer needs to be updated to correspond to
1731     // the next bytecode
1732     update_mdp_by_constant(mdp, acmp ? in_bytes(ACmpData::acmp_data_size()): in_bytes(BranchData::branch_data_size()));
1733     bind(profile_continue);
1734   }
1735 }
1736 
1737 void InterpreterMacroAssembler::profile_call(Register mdp) {
1738   if (ProfileInterpreter) {
1739     Label profile_continue;
1740 
1741     // If no method data exists, go to profile_continue.
1742     test_method_data_pointer(mdp, profile_continue);
1743 
1744     // We are making a call.  Increment the count.
1745     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1746 
1747     // The method data pointer needs to be updated to reflect the new target.
1748     update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
1749     bind(profile_continue);
1750   }
1751 }
1752 
1753 
1754 void InterpreterMacroAssembler::profile_final_call(Register mdp) {
1755   if (ProfileInterpreter) {
1756     Label profile_continue;
1757 
1758     // If no method data exists, go to profile_continue.
1759     test_method_data_pointer(mdp, profile_continue);
1760 
1761     // We are making a call.  Increment the count.
1762     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1763 
1764     // The method data pointer needs to be updated to reflect the new target.
1765     update_mdp_by_constant(mdp,
1766                            in_bytes(VirtualCallData::
1767                                     virtual_call_data_size()));
1768     bind(profile_continue);
1769   }
1770 }
1771 
1772 
1773 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
1774                                                      Register mdp,
1775                                                      Register reg2,
1776                                                      bool receiver_can_be_null) {
1777   if (ProfileInterpreter) {
1778     Label profile_continue;
1779 
1780     // If no method data exists, go to profile_continue.
1781     test_method_data_pointer(mdp, profile_continue);
1782 
1783     Label skip_receiver_profile;
1784     if (receiver_can_be_null) {
1785       Label not_null;
1786       testptr(receiver, receiver);
1787       jccb(Assembler::notZero, not_null);
1788       // We are making a call.  Increment the count for null receiver.
1789       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1790       jmp(skip_receiver_profile);
1791       bind(not_null);
1792     }
1793 
1794     // Record the receiver type.
1795     record_klass_in_profile(receiver, mdp, reg2);
1796     bind(skip_receiver_profile);
1797 
1798     // The method data pointer needs to be updated to reflect the new target.
1799     update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
1800     bind(profile_continue);
1801   }
1802 }
1803 
1804 // This routine creates a state machine for updating the multi-row
1805 // type profile at a virtual call site (or other type-sensitive bytecode).
1806 // The machine visits each row (of receiver/count) until the receiver type
1807 // is found, or until it runs out of rows.  At the same time, it remembers
1808 // the location of the first empty row.  (An empty row records null for its
1809 // receiver, and can be allocated for a newly-observed receiver type.)
1810 // Because there are two degrees of freedom in the state, a simple linear
1811 // search will not work; it must be a decision tree.  Hence this helper
1812 // function is recursive, to generate the required tree structured code.
1813 // It's the interpreter, so we are trading off code space for speed.
1814 // See below for example code.
1815 void InterpreterMacroAssembler::record_klass_in_profile_helper(Register receiver, Register mdp,
1816                                                                Register reg2, int start_row,
1817                                                                Label& done) {
1818   if (TypeProfileWidth == 0) {
1819     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1820   } else {
1821     record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth,
1822                                   &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset);
1823   }
1824 }
1825 
1826 void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp, Register reg2, int start_row,
1827                                                               Label& done, int total_rows,
1828                                                               OffsetFunction item_offset_fn,
1829                                                               OffsetFunction item_count_offset_fn) {
1830   int last_row = total_rows - 1;
1831   assert(start_row <= last_row, "must be work left to do");
1832   // Test this row for both the item and for null.
1833   // Take any of three different outcomes:
1834   //   1. found item => increment count and goto done
1835   //   2. found null => keep looking for case 1, maybe allocate this cell
1836   //   3. found something else => keep looking for cases 1 and 2
1837   // Case 3 is handled by a recursive call.
1838   for (int row = start_row; row <= last_row; row++) {
1839     Label next_test;
1840     bool test_for_null_also = (row == start_row);
1841 
1842     // See if the item is item[n].
1843     int item_offset = in_bytes(item_offset_fn(row));
1844     test_mdp_data_at(mdp, item_offset, item,
1845                      (test_for_null_also ? reg2 : noreg),
1846                      next_test);
1847     // (Reg2 now contains the item from the CallData.)
1848 
1849     // The item is item[n].  Increment count[n].
1850     int count_offset = in_bytes(item_count_offset_fn(row));
1851     increment_mdp_data_at(mdp, count_offset);
1852     jmp(done);
1853     bind(next_test);
1854 
1855     if (test_for_null_also) {
1856       // Failed the equality check on item[n]...  Test for null.
1857       testptr(reg2, reg2);
1858       if (start_row == last_row) {
1859         // The only thing left to do is handle the null case.
1860         Label found_null;
1861         jccb(Assembler::zero, found_null);
1862         // Item did not match any saved item and there is no empty row for it.
1863         // Increment total counter to indicate polymorphic case.
1864         increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1865         jmp(done);
1866         bind(found_null);
1867         break;
1868       }
1869       Label found_null;
1870       // Since null is rare, make it be the branch-taken case.
1871       jcc(Assembler::zero, found_null);
1872 
1873       // Put all the "Case 3" tests here.
1874       record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows,
1875                                     item_offset_fn, item_count_offset_fn);
1876 
1877       // Found a null.  Keep searching for a matching item,
1878       // but remember that this is an empty (unused) slot.
1879       bind(found_null);
1880     }
1881   }
1882 
1883   // In the fall-through case, we found no matching item, but we
1884   // observed the item[start_row] is null.
1885 
1886   // Fill in the item field and increment the count.
1887   int item_offset = in_bytes(item_offset_fn(start_row));
1888   set_mdp_data_at(mdp, item_offset, item);
1889   int count_offset = in_bytes(item_count_offset_fn(start_row));
1890   movl(reg2, DataLayout::counter_increment);
1891   set_mdp_data_at(mdp, count_offset, reg2);
1892   if (start_row > 0) {
1893     jmp(done);
1894   }
1895 }
1896 
1897 // Example state machine code for three profile rows:
1898 //   // main copy of decision tree, rooted at row[1]
1899 //   if (row[0].rec == rec) { row[0].incr(); goto done; }
1900 //   if (row[0].rec != nullptr) {
1901 //     // inner copy of decision tree, rooted at row[1]
1902 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
1903 //     if (row[1].rec != nullptr) {
1904 //       // degenerate decision tree, rooted at row[2]
1905 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
1906 //       if (row[2].rec != nullptr) { count.incr(); goto done; } // overflow
1907 //       row[2].init(rec); goto done;
1908 //     } else {
1909 //       // remember row[1] is empty
1910 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
1911 //       row[1].init(rec); goto done;
1912 //     }
1913 //   } else {
1914 //     // remember row[0] is empty
1915 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
1916 //     if (row[2].rec == rec) { row[2].incr(); goto done; }
1917 //     row[0].init(rec); goto done;
1918 //   }
1919 //   done:
1920 
1921 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver, Register mdp, Register reg2) {
1922   assert(ProfileInterpreter, "must be profiling");
1923   Label done;
1924 
1925   record_klass_in_profile_helper(receiver, mdp, reg2, 0, done);
1926 
1927   bind (done);
1928 }
1929 
1930 void InterpreterMacroAssembler::profile_ret(Register return_bci,
1931                                             Register mdp) {
1932   if (ProfileInterpreter) {
1933     Label profile_continue;
1934     uint row;
1935 
1936     // If no method data exists, go to profile_continue.
1937     test_method_data_pointer(mdp, profile_continue);
1938 
1939     // Update the total ret count.
1940     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1941 
1942     for (row = 0; row < RetData::row_limit(); row++) {
1943       Label next_test;
1944 
1945       // See if return_bci is equal to bci[n]:
1946       test_mdp_data_at(mdp,
1947                        in_bytes(RetData::bci_offset(row)),
1948                        return_bci, noreg,
1949                        next_test);
1950 
1951       // return_bci is equal to bci[n].  Increment the count.
1952       increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
1953 
1954       // The method data pointer needs to be updated to reflect the new target.
1955       update_mdp_by_offset(mdp,
1956                            in_bytes(RetData::bci_displacement_offset(row)));
1957       jmp(profile_continue);
1958       bind(next_test);
1959     }
1960 
1961     update_mdp_for_ret(return_bci);
1962 
1963     bind(profile_continue);
1964   }
1965 }
1966 
1967 
1968 void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
1969   if (ProfileInterpreter) {
1970     Label profile_continue;
1971 
1972     // If no method data exists, go to profile_continue.
1973     test_method_data_pointer(mdp, profile_continue);
1974 
1975     set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
1976 
1977     // The method data pointer needs to be updated.
1978     int mdp_delta = in_bytes(BitData::bit_data_size());
1979     if (TypeProfileCasts) {
1980       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1981     }
1982     update_mdp_by_constant(mdp, mdp_delta);
1983 
1984     bind(profile_continue);
1985   }
1986 }
1987 
1988 
1989 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) {
1990   if (ProfileInterpreter) {
1991     Label profile_continue;
1992 
1993     // If no method data exists, go to profile_continue.
1994     test_method_data_pointer(mdp, profile_continue);
1995 
1996     // The method data pointer needs to be updated.
1997     int mdp_delta = in_bytes(BitData::bit_data_size());
1998     if (TypeProfileCasts) {
1999       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
2000 
2001       // Record the object type.
2002       record_klass_in_profile(klass, mdp, reg2);
2003       NOT_LP64(assert(reg2 == rdi, "we know how to fix this blown reg");)
2004       NOT_LP64(restore_locals();)         // Restore EDI
2005     }
2006     update_mdp_by_constant(mdp, mdp_delta);
2007 
2008     bind(profile_continue);
2009   }
2010 }
2011 
2012 
2013 void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
2014   if (ProfileInterpreter) {
2015     Label profile_continue;
2016 
2017     // If no method data exists, go to profile_continue.
2018     test_method_data_pointer(mdp, profile_continue);
2019 
2020     // Update the default case count
2021     increment_mdp_data_at(mdp,
2022                           in_bytes(MultiBranchData::default_count_offset()));
2023 
2024     // The method data pointer needs to be updated.
2025     update_mdp_by_offset(mdp,
2026                          in_bytes(MultiBranchData::
2027                                   default_displacement_offset()));
2028 
2029     bind(profile_continue);
2030   }
2031 }
2032 
2033 
2034 void InterpreterMacroAssembler::profile_switch_case(Register index,
2035                                                     Register mdp,
2036                                                     Register reg2) {
2037   if (ProfileInterpreter) {
2038     Label profile_continue;
2039 
2040     // If no method data exists, go to profile_continue.
2041     test_method_data_pointer(mdp, profile_continue);
2042 
2043     // Build the base (index * per_case_size_in_bytes()) +
2044     // case_array_offset_in_bytes()
2045     movl(reg2, in_bytes(MultiBranchData::per_case_size()));
2046     imulptr(index, reg2); // XXX l ?
2047     addptr(index, in_bytes(MultiBranchData::case_array_offset())); // XXX l ?
2048 
2049     // Update the case count
2050     increment_mdp_data_at(mdp,
2051                           index,
2052                           in_bytes(MultiBranchData::relative_count_offset()));
2053 
2054     // The method data pointer needs to be updated.
2055     update_mdp_by_offset(mdp,
2056                          index,
2057                          in_bytes(MultiBranchData::
2058                                   relative_displacement_offset()));
2059 
2060     bind(profile_continue);
2061   }
2062 }
2063 
2064 template <class ArrayData> void InterpreterMacroAssembler::profile_array_type(Register mdp,
2065                                                                               Register array,
2066                                                                               Register tmp) {
2067   if (ProfileInterpreter) {
2068     Label profile_continue;
2069 
2070     // If no method data exists, go to profile_continue.
2071     test_method_data_pointer(mdp, profile_continue);
2072 
2073     mov(tmp, array);
2074     profile_obj_type(tmp, Address(mdp, in_bytes(ArrayData::array_offset())));
2075 
2076     Label not_flat;
2077     test_non_flat_array_oop(array, tmp, not_flat);
2078 
2079     set_mdp_flag_at(mdp, ArrayData::flat_array_byte_constant());
2080 
2081     bind(not_flat);
2082 
2083     Label not_null_free;
2084     test_non_null_free_array_oop(array, tmp, not_null_free);
2085 
2086     set_mdp_flag_at(mdp, ArrayData::null_free_array_byte_constant());
2087 
2088     bind(not_null_free);
2089 
2090     bind(profile_continue);
2091   }
2092 }
2093 
2094 template void InterpreterMacroAssembler::profile_array_type<ArrayLoadData>(Register mdp,
2095                                                                            Register array,
2096                                                                            Register tmp);
2097 template void InterpreterMacroAssembler::profile_array_type<ArrayStoreData>(Register mdp,
2098                                                                             Register array,
2099                                                                             Register tmp);
2100 
2101 
2102 void InterpreterMacroAssembler::profile_multiple_element_types(Register mdp, Register element, Register tmp, const Register tmp2) {
2103   if (ProfileInterpreter) {
2104     Label profile_continue;
2105 
2106     // If no method data exists, go to profile_continue.
2107     test_method_data_pointer(mdp, profile_continue);
2108 
2109     Label done, update;
2110     testptr(element, element);
2111     jccb(Assembler::notZero, update);
2112     set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
2113     jmp(done);
2114 
2115     bind(update);
2116     load_klass(tmp, element, rscratch1);
2117 
2118     // Record the object type.
2119     record_klass_in_profile(tmp, mdp, tmp2);
2120 
2121     bind(done);
2122 
2123     // The method data pointer needs to be updated.
2124     update_mdp_by_constant(mdp, in_bytes(ArrayStoreData::array_store_data_size()));
2125 
2126     bind(profile_continue);
2127   }
2128 }
2129 
2130 void InterpreterMacroAssembler::profile_element_type(Register mdp,
2131                                                      Register element,
2132                                                      Register tmp) {
2133   if (ProfileInterpreter) {
2134     Label profile_continue;
2135 
2136     // If no method data exists, go to profile_continue.
2137     test_method_data_pointer(mdp, profile_continue);
2138 
2139     mov(tmp, element);
2140     profile_obj_type(tmp, Address(mdp, in_bytes(ArrayLoadData::element_offset())));
2141 
2142     // The method data pointer needs to be updated.
2143     update_mdp_by_constant(mdp, in_bytes(ArrayLoadData::array_load_data_size()));
2144 
2145     bind(profile_continue);
2146   }
2147 }
2148 
2149 void InterpreterMacroAssembler::profile_acmp(Register mdp,
2150                                              Register left,
2151                                              Register right,
2152                                              Register tmp) {
2153   if (ProfileInterpreter) {
2154     Label profile_continue;
2155 
2156     // If no method data exists, go to profile_continue.
2157     test_method_data_pointer(mdp, profile_continue);
2158 
2159     mov(tmp, left);
2160     profile_obj_type(tmp, Address(mdp, in_bytes(ACmpData::left_offset())));
2161 
2162     Label left_not_inline_type;
2163     test_oop_is_not_inline_type(left, tmp, left_not_inline_type);
2164     set_mdp_flag_at(mdp, ACmpData::left_inline_type_byte_constant());
2165     bind(left_not_inline_type);
2166 
2167     mov(tmp, right);
2168     profile_obj_type(tmp, Address(mdp, in_bytes(ACmpData::right_offset())));
2169 
2170     Label right_not_inline_type;
2171     test_oop_is_not_inline_type(right, tmp, right_not_inline_type);
2172     set_mdp_flag_at(mdp, ACmpData::right_inline_type_byte_constant());
2173     bind(right_not_inline_type);
2174 
2175     bind(profile_continue);
2176   }
2177 }
2178 
2179 
2180 void InterpreterMacroAssembler::_interp_verify_oop(Register reg, TosState state, const char* file, int line) {
2181   if (state == atos) {
2182     MacroAssembler::_verify_oop_checked(reg, "broken oop", file, line);
2183   }
2184 }
2185 
2186 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
2187 #ifndef _LP64
2188   if ((state == ftos && UseSSE < 1) ||
2189       (state == dtos && UseSSE < 2)) {
2190     MacroAssembler::verify_FPU(stack_depth);
2191   }
2192 #endif
2193 }
2194 
2195 // Jump if ((*counter_addr += increment) & mask) == 0
2196 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr, Address mask,
2197                                                         Register scratch, Label* where) {
2198   // This update is actually not atomic and can lose a number of updates
2199   // under heavy contention, but the alternative of using the (contended)
2200   // atomic update here penalizes profiling paths too much.
2201   movl(scratch, counter_addr);
2202   incrementl(scratch, InvocationCounter::count_increment);
2203   movl(counter_addr, scratch);
2204   andl(scratch, mask);
2205   if (where != nullptr) {
2206     jcc(Assembler::zero, *where);
2207   }
2208 }
2209 
2210 void InterpreterMacroAssembler::notify_method_entry() {
2211   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
2212   // track stack depth.  If it is possible to enter interp_only_mode we add
2213   // the code to check if the event should be sent.
2214   Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
2215   Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rbx);
2216   if (JvmtiExport::can_post_interpreter_events()) {
2217     Label L;
2218     NOT_LP64(get_thread(rthread);)
2219     movl(rdx, Address(rthread, JavaThread::interp_only_mode_offset()));
2220     testl(rdx, rdx);
2221     jcc(Assembler::zero, L);
2222     call_VM(noreg, CAST_FROM_FN_PTR(address,
2223                                     InterpreterRuntime::post_method_entry));
2224     bind(L);
2225   }
2226 
2227   {
2228     SkipIfEqual skip(this, &DTraceMethodProbes, false, rscratch1);
2229     NOT_LP64(get_thread(rthread);)
2230     get_method(rarg);
2231     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
2232                  rthread, rarg);
2233   }
2234 
2235   // RedefineClasses() tracing support for obsolete method entry
2236   if (log_is_enabled(Trace, redefine, class, obsolete)) {
2237     NOT_LP64(get_thread(rthread);)
2238     get_method(rarg);
2239     call_VM_leaf(
2240       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
2241       rthread, rarg);
2242   }
2243 }
2244 
2245 
2246 void InterpreterMacroAssembler::notify_method_exit(
2247     TosState state, NotifyMethodExitMode mode) {
2248   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
2249   // track stack depth.  If it is possible to enter interp_only_mode we add
2250   // the code to check if the event should be sent.
2251   Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
2252   Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rbx);
2253   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
2254     Label L;
2255     // Note: frame::interpreter_frame_result has a dependency on how the
2256     // method result is saved across the call to post_method_exit. If this
2257     // is changed then the interpreter_frame_result implementation will
2258     // need to be updated too.
2259 
2260     // template interpreter will leave the result on the top of the stack.
2261     push(state);
2262     NOT_LP64(get_thread(rthread);)
2263     movl(rdx, Address(rthread, JavaThread::interp_only_mode_offset()));
2264     testl(rdx, rdx);
2265     jcc(Assembler::zero, L);
2266     call_VM(noreg,
2267             CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
2268     bind(L);
2269     pop(state);
2270   }
2271 
2272   {
2273     SkipIfEqual skip(this, &DTraceMethodProbes, false, rscratch1);
2274     push(state);
2275     NOT_LP64(get_thread(rthread);)
2276     get_method(rarg);
2277     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2278                  rthread, rarg);
2279     pop(state);
2280   }
2281 }
2282 
2283 void InterpreterMacroAssembler::load_resolved_indy_entry(Register cache, Register index) {
2284   // Get index out of bytecode pointer
2285   get_cache_index_at_bcp(index, 1, sizeof(u4));
2286   // Get address of invokedynamic array
2287   movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
2288   movptr(cache, Address(cache, in_bytes(ConstantPoolCache::invokedynamic_entries_offset())));
2289   if (is_power_of_2(sizeof(ResolvedIndyEntry))) {
2290     shll(index, log2i_exact(sizeof(ResolvedIndyEntry))); // Scale index by power of 2
2291   } else {
2292     imull(index, index, sizeof(ResolvedIndyEntry)); // Scale the index to be the entry index * sizeof(ResolvedIndyEntry)
2293   }
2294   lea(cache, Address(cache, index, Address::times_1, Array<ResolvedIndyEntry>::base_offset_in_bytes()));
2295 }
2296 
2297 void InterpreterMacroAssembler::load_field_entry(Register cache, Register index, int bcp_offset) {
2298   // Get index out of bytecode pointer
2299   movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
2300   get_cache_index_at_bcp(index, bcp_offset, sizeof(u2));
2301 
2302   movptr(cache, Address(cache, ConstantPoolCache::field_entries_offset()));
2303   // Take shortcut if the size is a power of 2
2304   if (is_power_of_2(sizeof(ResolvedFieldEntry))) {
2305     shll(index, log2i_exact(sizeof(ResolvedFieldEntry))); // Scale index by power of 2
2306   } else {
2307     imull(index, index, sizeof(ResolvedFieldEntry)); // Scale the index to be the entry index * sizeof(ResolvedFieldEntry)
2308   }
2309   lea(cache, Address(cache, index, Address::times_1, Array<ResolvedFieldEntry>::base_offset_in_bytes()));
2310 }
2311 
2312 void InterpreterMacroAssembler::load_method_entry(Register cache, Register index, int bcp_offset) {
2313   // Get index out of bytecode pointer
2314   movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
2315   get_cache_index_at_bcp(index, bcp_offset, sizeof(u2));
2316 
2317   movptr(cache, Address(cache, ConstantPoolCache::method_entries_offset()));
2318   imull(index, index, sizeof(ResolvedMethodEntry)); // Scale the index to be the entry index * sizeof(ResolvedMethodEntry)
2319   lea(cache, Address(cache, index, Address::times_1, Array<ResolvedMethodEntry>::base_offset_in_bytes()));
2320 }