1 /*
   2  * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compiler_globals.hpp"
  27 #include "interp_masm_x86.hpp"
  28 #include "interpreter/interpreter.hpp"
  29 #include "interpreter/interpreterRuntime.hpp"
  30 #include "logging/log.hpp"
  31 #include "oops/arrayOop.hpp"
  32 #include "oops/constMethodFlags.hpp"
  33 #include "oops/markWord.hpp"
  34 #include "oops/methodData.hpp"
  35 #include "oops/method.hpp"
  36 #include "oops/inlineKlass.hpp"
  37 #include "oops/resolvedFieldEntry.hpp"
  38 #include "oops/resolvedIndyEntry.hpp"
  39 #include "oops/resolvedMethodEntry.hpp"
  40 #include "prims/jvmtiExport.hpp"
  41 #include "prims/jvmtiThreadState.hpp"
  42 #include "runtime/basicLock.hpp"
  43 #include "runtime/frame.inline.hpp"
  44 #include "runtime/javaThread.hpp"
  45 #include "runtime/safepointMechanism.hpp"
  46 #include "runtime/sharedRuntime.hpp"
  47 #include "utilities/powerOfTwo.hpp"
  48 
  49 // Implementation of InterpreterMacroAssembler
  50 
  51 void InterpreterMacroAssembler::jump_to_entry(address entry) {
  52   assert(entry, "Entry must have been generated by now");
  53   jump(RuntimeAddress(entry));
  54 }
  55 
  56 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) {
  57   Label update, next, none;
  58 
  59 #ifdef _LP64
  60   assert_different_registers(obj, rscratch1, mdo_addr.base(), mdo_addr.index());
  61 #else
  62   assert_different_registers(obj, mdo_addr.base(), mdo_addr.index());
  63 #endif
  64 
  65   interp_verify_oop(obj, atos);
  66 
  67   testptr(obj, obj);
  68   jccb(Assembler::notZero, update);
  69   testptr(mdo_addr, TypeEntries::null_seen);
  70   jccb(Assembler::notZero, next); // null already seen. Nothing to do anymore.
  71   // atomic update to prevent overwriting Klass* with 0
  72   lock();
  73   orptr(mdo_addr, TypeEntries::null_seen);
  74   jmpb(next);
  75 
  76   bind(update);
  77   load_klass(obj, obj, rscratch1);
  78 #ifdef _LP64
  79   mov(rscratch1, obj);
  80 #endif
  81 
  82   xorptr(obj, mdo_addr);
  83   testptr(obj, TypeEntries::type_klass_mask);
  84   jccb(Assembler::zero, next); // klass seen before, nothing to
  85                                // do. The unknown bit may have been
  86                                // set already but no need to check.
  87 
  88   testptr(obj, TypeEntries::type_unknown);
  89   jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
  90 
  91   cmpptr(mdo_addr, 0);
  92   jccb(Assembler::equal, none);
  93   cmpptr(mdo_addr, TypeEntries::null_seen);
  94   jccb(Assembler::equal, none);
  95 #ifdef _LP64
  96   // There is a chance that the checks above (re-reading profiling
  97   // data from memory) fail if another thread has just set the
  98   // profiling to this obj's klass
  99   mov(obj, rscratch1);
 100   xorptr(obj, mdo_addr);
 101   testptr(obj, TypeEntries::type_klass_mask);
 102   jccb(Assembler::zero, next);
 103 #endif
 104 
 105   // different than before. Cannot keep accurate profile.
 106   orptr(mdo_addr, TypeEntries::type_unknown);
 107   jmpb(next);
 108 
 109   bind(none);
 110   // first time here. Set profile type.
 111   movptr(mdo_addr, obj);
 112 #ifdef ASSERT
 113   andptr(obj, TypeEntries::type_klass_mask);
 114   verify_klass_ptr(obj);
 115 #endif
 116 
 117   bind(next);
 118 }
 119 
 120 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) {
 121   if (!ProfileInterpreter) {
 122     return;
 123   }
 124 
 125   if (MethodData::profile_arguments() || MethodData::profile_return()) {
 126     Label profile_continue;
 127 
 128     test_method_data_pointer(mdp, profile_continue);
 129 
 130     int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size());
 131 
 132     cmpb(Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start), is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag);
 133     jcc(Assembler::notEqual, profile_continue);
 134 
 135     if (MethodData::profile_arguments()) {
 136       Label done;
 137       int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset());
 138       addptr(mdp, off_to_args);
 139 
 140       for (int i = 0; i < TypeProfileArgsLimit; i++) {
 141         if (i > 0 || MethodData::profile_return()) {
 142           // If return value type is profiled we may have no argument to profile
 143           movptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args));
 144           subl(tmp, i*TypeStackSlotEntries::per_arg_count());
 145           cmpl(tmp, TypeStackSlotEntries::per_arg_count());
 146           jcc(Assembler::less, done);
 147         }
 148         movptr(tmp, Address(callee, Method::const_offset()));
 149         load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset()));
 150         // stack offset o (zero based) from the start of the argument
 151         // list, for n arguments translates into offset n - o - 1 from
 152         // the end of the argument list
 153         subptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args));
 154         subl(tmp, 1);
 155         Address arg_addr = argument_address(tmp);
 156         movptr(tmp, arg_addr);
 157 
 158         Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args);
 159         profile_obj_type(tmp, mdo_arg_addr);
 160 
 161         int to_add = in_bytes(TypeStackSlotEntries::per_arg_size());
 162         addptr(mdp, to_add);
 163         off_to_args += to_add;
 164       }
 165 
 166       if (MethodData::profile_return()) {
 167         movptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args));
 168         subl(tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count());
 169       }
 170 
 171       bind(done);
 172 
 173       if (MethodData::profile_return()) {
 174         // We're right after the type profile for the last
 175         // argument. tmp is the number of cells left in the
 176         // CallTypeData/VirtualCallTypeData to reach its end. Non null
 177         // if there's a return to profile.
 178         assert(SingleTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type");
 179         shll(tmp, log2i_exact((int)DataLayout::cell_size));
 180         addptr(mdp, tmp);
 181       }
 182       movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp);
 183     } else {
 184       assert(MethodData::profile_return(), "either profile call args or call ret");
 185       update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size()));
 186     }
 187 
 188     // mdp points right after the end of the
 189     // CallTypeData/VirtualCallTypeData, right after the cells for the
 190     // return value type if there's one
 191 
 192     bind(profile_continue);
 193   }
 194 }
 195 
 196 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) {
 197   assert_different_registers(mdp, ret, tmp, _bcp_register);
 198   if (ProfileInterpreter && MethodData::profile_return()) {
 199     Label profile_continue;
 200 
 201     test_method_data_pointer(mdp, profile_continue);
 202 
 203     if (MethodData::profile_return_jsr292_only()) {
 204       assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2");
 205 
 206       // If we don't profile all invoke bytecodes we must make sure
 207       // it's a bytecode we indeed profile. We can't go back to the
 208       // beginning of the ProfileData we intend to update to check its
 209       // type because we're right after it and we don't known its
 210       // length
 211       Label do_profile;
 212       cmpb(Address(_bcp_register, 0), Bytecodes::_invokedynamic);
 213       jcc(Assembler::equal, do_profile);
 214       cmpb(Address(_bcp_register, 0), Bytecodes::_invokehandle);
 215       jcc(Assembler::equal, do_profile);
 216       get_method(tmp);
 217       cmpw(Address(tmp, Method::intrinsic_id_offset()), static_cast<int>(vmIntrinsics::_compiledLambdaForm));
 218       jcc(Assembler::notEqual, profile_continue);
 219 
 220       bind(do_profile);
 221     }
 222 
 223     Address mdo_ret_addr(mdp, -in_bytes(SingleTypeEntry::size()));
 224     mov(tmp, ret);
 225     profile_obj_type(tmp, mdo_ret_addr);
 226 
 227     bind(profile_continue);
 228   }
 229 }
 230 
 231 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) {
 232   if (ProfileInterpreter && MethodData::profile_parameters()) {
 233     Label profile_continue;
 234 
 235     test_method_data_pointer(mdp, profile_continue);
 236 
 237     // Load the offset of the area within the MDO used for
 238     // parameters. If it's negative we're not profiling any parameters
 239     movl(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset())));
 240     testl(tmp1, tmp1);
 241     jcc(Assembler::negative, profile_continue);
 242 
 243     // Compute a pointer to the area for parameters from the offset
 244     // and move the pointer to the slot for the last
 245     // parameters. Collect profiling from last parameter down.
 246     // mdo start + parameters offset + array length - 1
 247     addptr(mdp, tmp1);
 248     movptr(tmp1, Address(mdp, ArrayData::array_len_offset()));
 249     decrement(tmp1, TypeStackSlotEntries::per_arg_count());
 250 
 251     Label loop;
 252     bind(loop);
 253 
 254     int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0));
 255     int type_base = in_bytes(ParametersTypeData::type_offset(0));
 256     Address::ScaleFactor per_arg_scale = Address::times(DataLayout::cell_size);
 257     Address arg_off(mdp, tmp1, per_arg_scale, off_base);
 258     Address arg_type(mdp, tmp1, per_arg_scale, type_base);
 259 
 260     // load offset on the stack from the slot for this parameter
 261     movptr(tmp2, arg_off);
 262     negptr(tmp2);
 263     // read the parameter from the local area
 264     movptr(tmp2, Address(_locals_register, tmp2, Interpreter::stackElementScale()));
 265 
 266     // profile the parameter
 267     profile_obj_type(tmp2, arg_type);
 268 
 269     // go to next parameter
 270     decrement(tmp1, TypeStackSlotEntries::per_arg_count());
 271     jcc(Assembler::positive, loop);
 272 
 273     bind(profile_continue);
 274   }
 275 }
 276 
 277 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point,
 278                                                   int number_of_arguments) {
 279   // interpreter specific
 280   //
 281   // Note: No need to save/restore bcp & locals registers
 282   //       since these are callee saved registers and no blocking/
 283   //       GC can happen in leaf calls.
 284   // Further Note: DO NOT save/restore bcp/locals. If a caller has
 285   // already saved them so that it can use rsi/rdi as temporaries
 286   // then a save/restore here will DESTROY the copy the caller
 287   // saved! There used to be a save_bcp() that only happened in
 288   // the ASSERT path (no restore_bcp). Which caused bizarre failures
 289   // when jvm built with ASSERTs.
 290 #ifdef ASSERT
 291   {
 292     Label L;
 293     cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
 294     jcc(Assembler::equal, L);
 295     stop("InterpreterMacroAssembler::call_VM_leaf_base:"
 296          " last_sp != null");
 297     bind(L);
 298   }
 299 #endif
 300   // super call
 301   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
 302   // interpreter specific
 303   // LP64: Used to ASSERT that r13/r14 were equal to frame's bcp/locals
 304   // but since they may not have been saved (and we don't want to
 305   // save them here (see note above) the assert is invalid.
 306 }
 307 
 308 void InterpreterMacroAssembler::call_VM_base(Register oop_result,
 309                                              Register java_thread,
 310                                              Register last_java_sp,
 311                                              address  entry_point,
 312                                              int      number_of_arguments,
 313                                              bool     check_exceptions) {
 314   // interpreter specific
 315   //
 316   // Note: Could avoid restoring locals ptr (callee saved) - however doesn't
 317   //       really make a difference for these runtime calls, since they are
 318   //       slow anyway. Btw., bcp must be saved/restored since it may change
 319   //       due to GC.
 320   NOT_LP64(assert(java_thread == noreg , "not expecting a precomputed java thread");)
 321   save_bcp();
 322 #ifdef ASSERT
 323   {
 324     Label L;
 325     cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
 326     jcc(Assembler::equal, L);
 327     stop("InterpreterMacroAssembler::call_VM_base:"
 328          " last_sp isn't null");
 329     bind(L);
 330   }
 331 #endif /* ASSERT */
 332   // super call
 333   MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp,
 334                                entry_point, number_of_arguments,
 335                                check_exceptions);
 336   // interpreter specific
 337   restore_bcp();
 338   restore_locals();
 339 }
 340 
 341 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
 342   if (JvmtiExport::can_pop_frame()) {
 343     Label L;
 344     // Initiate popframe handling only if it is not already being
 345     // processed.  If the flag has the popframe_processing bit set, it
 346     // means that this code is called *during* popframe handling - we
 347     // don't want to reenter.
 348     // This method is only called just after the call into the vm in
 349     // call_VM_base, so the arg registers are available.
 350     Register pop_cond = NOT_LP64(java_thread) // Not clear if any other register is available on 32 bit
 351                         LP64_ONLY(c_rarg0);
 352     movl(pop_cond, Address(java_thread, JavaThread::popframe_condition_offset()));
 353     testl(pop_cond, JavaThread::popframe_pending_bit);
 354     jcc(Assembler::zero, L);
 355     testl(pop_cond, JavaThread::popframe_processing_bit);
 356     jcc(Assembler::notZero, L);
 357     // Call Interpreter::remove_activation_preserving_args_entry() to get the
 358     // address of the same-named entrypoint in the generated interpreter code.
 359     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
 360     jmp(rax);
 361     bind(L);
 362     NOT_LP64(get_thread(java_thread);)
 363   }
 364 }
 365 
 366 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
 367   Register thread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
 368   NOT_LP64(get_thread(thread);)
 369   movptr(rcx, Address(thread, JavaThread::jvmti_thread_state_offset()));
 370   const Address tos_addr(rcx, JvmtiThreadState::earlyret_tos_offset());
 371   const Address oop_addr(rcx, JvmtiThreadState::earlyret_oop_offset());
 372   const Address val_addr(rcx, JvmtiThreadState::earlyret_value_offset());
 373 #ifdef _LP64
 374   switch (state) {
 375     case atos: movptr(rax, oop_addr);
 376                movptr(oop_addr, NULL_WORD);
 377                interp_verify_oop(rax, state);         break;
 378     case ltos: movptr(rax, val_addr);                 break;
 379     case btos:                                   // fall through
 380     case ztos:                                   // fall through
 381     case ctos:                                   // fall through
 382     case stos:                                   // fall through
 383     case itos: movl(rax, val_addr);                 break;
 384     case ftos: load_float(val_addr);                break;
 385     case dtos: load_double(val_addr);               break;
 386     case vtos: /* nothing to do */                  break;
 387     default  : ShouldNotReachHere();
 388   }
 389   // Clean up tos value in the thread object
 390   movl(tos_addr, ilgl);
 391   movl(val_addr, NULL_WORD);
 392 #else
 393   const Address val_addr1(rcx, JvmtiThreadState::earlyret_value_offset()
 394                              + in_ByteSize(wordSize));
 395   switch (state) {
 396     case atos: movptr(rax, oop_addr);
 397                movptr(oop_addr, NULL_WORD);
 398                interp_verify_oop(rax, state);         break;
 399     case ltos:
 400                movl(rdx, val_addr1);               // fall through
 401     case btos:                                     // fall through
 402     case ztos:                                     // fall through
 403     case ctos:                                     // fall through
 404     case stos:                                     // fall through
 405     case itos: movl(rax, val_addr);                   break;
 406     case ftos: load_float(val_addr);                  break;
 407     case dtos: load_double(val_addr);                 break;
 408     case vtos: /* nothing to do */                    break;
 409     default  : ShouldNotReachHere();
 410   }
 411 #endif // _LP64
 412   // Clean up tos value in the thread object
 413   movl(tos_addr, ilgl);
 414   movptr(val_addr, NULL_WORD);
 415   NOT_LP64(movptr(val_addr1, NULL_WORD);)
 416 }
 417 
 418 
 419 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
 420   if (JvmtiExport::can_force_early_return()) {
 421     Label L;
 422     Register tmp = LP64_ONLY(c_rarg0) NOT_LP64(java_thread);
 423     Register rthread = LP64_ONLY(r15_thread) NOT_LP64(java_thread);
 424 
 425     movptr(tmp, Address(rthread, JavaThread::jvmti_thread_state_offset()));
 426     testptr(tmp, tmp);
 427     jcc(Assembler::zero, L); // if (thread->jvmti_thread_state() == nullptr) exit;
 428 
 429     // Initiate earlyret handling only if it is not already being processed.
 430     // If the flag has the earlyret_processing bit set, it means that this code
 431     // is called *during* earlyret handling - we don't want to reenter.
 432     movl(tmp, Address(tmp, JvmtiThreadState::earlyret_state_offset()));
 433     cmpl(tmp, JvmtiThreadState::earlyret_pending);
 434     jcc(Assembler::notEqual, L);
 435 
 436     // Call Interpreter::remove_activation_early_entry() to get the address of the
 437     // same-named entrypoint in the generated interpreter code.
 438     NOT_LP64(get_thread(java_thread);)
 439     movptr(tmp, Address(rthread, JavaThread::jvmti_thread_state_offset()));
 440 #ifdef _LP64
 441     movl(tmp, Address(tmp, JvmtiThreadState::earlyret_tos_offset()));
 442     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), tmp);
 443 #else
 444     pushl(Address(tmp, JvmtiThreadState::earlyret_tos_offset()));
 445     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), 1);
 446 #endif // _LP64
 447     jmp(rax);
 448     bind(L);
 449     NOT_LP64(get_thread(java_thread);)
 450   }
 451 }
 452 
 453 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(Register reg, int bcp_offset) {
 454   assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
 455   load_unsigned_short(reg, Address(_bcp_register, bcp_offset));
 456   bswapl(reg);
 457   shrl(reg, 16);
 458 }
 459 
 460 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index,
 461                                                        int bcp_offset,
 462                                                        size_t index_size) {
 463   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
 464   if (index_size == sizeof(u2)) {
 465     load_unsigned_short(index, Address(_bcp_register, bcp_offset));
 466   } else if (index_size == sizeof(u4)) {
 467     movl(index, Address(_bcp_register, bcp_offset));
 468   } else if (index_size == sizeof(u1)) {
 469     load_unsigned_byte(index, Address(_bcp_register, bcp_offset));
 470   } else {
 471     ShouldNotReachHere();
 472   }
 473 }
 474 
 475 // Load object from cpool->resolved_references(index)
 476 void InterpreterMacroAssembler::load_resolved_reference_at_index(Register result,
 477                                                                  Register index,
 478                                                                  Register tmp) {
 479   assert_different_registers(result, index);
 480 
 481   get_constant_pool(result);
 482   // load pointer for resolved_references[] objArray
 483   movptr(result, Address(result, ConstantPool::cache_offset()));
 484   movptr(result, Address(result, ConstantPoolCache::resolved_references_offset()));
 485   resolve_oop_handle(result, tmp);
 486   load_heap_oop(result, Address(result, index,
 487                                 UseCompressedOops ? Address::times_4 : Address::times_ptr,
 488                                 arrayOopDesc::base_offset_in_bytes(T_OBJECT)), tmp);
 489 }
 490 
 491 // load cpool->resolved_klass_at(index)
 492 void InterpreterMacroAssembler::load_resolved_klass_at_index(Register klass,
 493                                                              Register cpool,
 494                                                              Register index) {
 495   assert_different_registers(cpool, index);
 496 
 497   movw(index, Address(cpool, index, Address::times_ptr, sizeof(ConstantPool)));
 498   Register resolved_klasses = cpool;
 499   movptr(resolved_klasses, Address(cpool, ConstantPool::resolved_klasses_offset()));
 500   movptr(klass, Address(resolved_klasses, index, Address::times_ptr, Array<Klass*>::base_offset_in_bytes()));
 501 }
 502 
 503 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a
 504 // subtype of super_klass.
 505 //
 506 // Args:
 507 //      rax: superklass
 508 //      Rsub_klass: subklass
 509 //
 510 // Kills:
 511 //      rcx, rdi
 512 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
 513                                                   Label& ok_is_subtype,
 514                                                   bool profile) {
 515   assert(Rsub_klass != rax, "rax holds superklass");
 516   LP64_ONLY(assert(Rsub_klass != r14, "r14 holds locals");)
 517   LP64_ONLY(assert(Rsub_klass != r13, "r13 holds bcp");)
 518   assert(Rsub_klass != rcx, "rcx holds 2ndary super array length");
 519   assert(Rsub_klass != rdi, "rdi holds 2ndary super array scan ptr");
 520 
 521   // Profile the not-null value's klass.
 522   if (profile) {
 523     profile_typecheck(rcx, Rsub_klass, rdi); // blows rcx, reloads rdi
 524   }
 525 
 526   // Do the check.
 527   check_klass_subtype(Rsub_klass, rax, rcx, ok_is_subtype); // blows rcx
 528 }
 529 
 530 
 531 #ifndef _LP64
 532 void InterpreterMacroAssembler::f2ieee() {
 533   if (IEEEPrecision) {
 534     fstp_s(Address(rsp, 0));
 535     fld_s(Address(rsp, 0));
 536   }
 537 }
 538 
 539 
 540 void InterpreterMacroAssembler::d2ieee() {
 541   if (IEEEPrecision) {
 542     fstp_d(Address(rsp, 0));
 543     fld_d(Address(rsp, 0));
 544   }
 545 }
 546 #endif // _LP64
 547 
 548 // Java Expression Stack
 549 
 550 void InterpreterMacroAssembler::pop_ptr(Register r) {
 551   pop(r);
 552 }
 553 
 554 void InterpreterMacroAssembler::push_ptr(Register r) {
 555   push(r);
 556 }
 557 
 558 void InterpreterMacroAssembler::push_i(Register r) {
 559   push(r);
 560 }
 561 
 562 void InterpreterMacroAssembler::push_i_or_ptr(Register r) {
 563   push(r);
 564 }
 565 
 566 void InterpreterMacroAssembler::push_f(XMMRegister r) {
 567   subptr(rsp, wordSize);
 568   movflt(Address(rsp, 0), r);
 569 }
 570 
 571 void InterpreterMacroAssembler::pop_f(XMMRegister r) {
 572   movflt(r, Address(rsp, 0));
 573   addptr(rsp, wordSize);
 574 }
 575 
 576 void InterpreterMacroAssembler::push_d(XMMRegister r) {
 577   subptr(rsp, 2 * wordSize);
 578   movdbl(Address(rsp, 0), r);
 579 }
 580 
 581 void InterpreterMacroAssembler::pop_d(XMMRegister r) {
 582   movdbl(r, Address(rsp, 0));
 583   addptr(rsp, 2 * Interpreter::stackElementSize);
 584 }
 585 
 586 #ifdef _LP64
 587 void InterpreterMacroAssembler::pop_i(Register r) {
 588   // XXX can't use pop currently, upper half non clean
 589   movl(r, Address(rsp, 0));
 590   addptr(rsp, wordSize);
 591 }
 592 
 593 void InterpreterMacroAssembler::pop_l(Register r) {
 594   movq(r, Address(rsp, 0));
 595   addptr(rsp, 2 * Interpreter::stackElementSize);
 596 }
 597 
 598 void InterpreterMacroAssembler::push_l(Register r) {
 599   subptr(rsp, 2 * wordSize);
 600   movptr(Address(rsp, Interpreter::expr_offset_in_bytes(0)), r         );
 601   movptr(Address(rsp, Interpreter::expr_offset_in_bytes(1)), NULL_WORD );
 602 }
 603 
 604 void InterpreterMacroAssembler::pop(TosState state) {
 605   switch (state) {
 606   case atos: pop_ptr();                 break;
 607   case btos:
 608   case ztos:
 609   case ctos:
 610   case stos:
 611   case itos: pop_i();                   break;
 612   case ltos: pop_l();                   break;
 613   case ftos: pop_f(xmm0);               break;
 614   case dtos: pop_d(xmm0);               break;
 615   case vtos: /* nothing to do */        break;
 616   default:   ShouldNotReachHere();
 617   }
 618   interp_verify_oop(rax, state);
 619 }
 620 
 621 void InterpreterMacroAssembler::push(TosState state) {
 622   interp_verify_oop(rax, state);
 623   switch (state) {
 624   case atos: push_ptr();                break;
 625   case btos:
 626   case ztos:
 627   case ctos:
 628   case stos:
 629   case itos: push_i();                  break;
 630   case ltos: push_l();                  break;
 631   case ftos: push_f(xmm0);              break;
 632   case dtos: push_d(xmm0);              break;
 633   case vtos: /* nothing to do */        break;
 634   default  : ShouldNotReachHere();
 635   }
 636 }
 637 #else
 638 void InterpreterMacroAssembler::pop_i(Register r) {
 639   pop(r);
 640 }
 641 
 642 void InterpreterMacroAssembler::pop_l(Register lo, Register hi) {
 643   pop(lo);
 644   pop(hi);
 645 }
 646 
 647 void InterpreterMacroAssembler::pop_f() {
 648   fld_s(Address(rsp, 0));
 649   addptr(rsp, 1 * wordSize);
 650 }
 651 
 652 void InterpreterMacroAssembler::pop_d() {
 653   fld_d(Address(rsp, 0));
 654   addptr(rsp, 2 * wordSize);
 655 }
 656 
 657 
 658 void InterpreterMacroAssembler::pop(TosState state) {
 659   switch (state) {
 660     case atos: pop_ptr(rax);                                 break;
 661     case btos:                                               // fall through
 662     case ztos:                                               // fall through
 663     case ctos:                                               // fall through
 664     case stos:                                               // fall through
 665     case itos: pop_i(rax);                                   break;
 666     case ltos: pop_l(rax, rdx);                              break;
 667     case ftos:
 668       if (UseSSE >= 1) {
 669         pop_f(xmm0);
 670       } else {
 671         pop_f();
 672       }
 673       break;
 674     case dtos:
 675       if (UseSSE >= 2) {
 676         pop_d(xmm0);
 677       } else {
 678         pop_d();
 679       }
 680       break;
 681     case vtos: /* nothing to do */                           break;
 682     default  : ShouldNotReachHere();
 683   }
 684   interp_verify_oop(rax, state);
 685 }
 686 
 687 
 688 void InterpreterMacroAssembler::push_l(Register lo, Register hi) {
 689   push(hi);
 690   push(lo);
 691 }
 692 
 693 void InterpreterMacroAssembler::push_f() {
 694   // Do not schedule for no AGI! Never write beyond rsp!
 695   subptr(rsp, 1 * wordSize);
 696   fstp_s(Address(rsp, 0));
 697 }
 698 
 699 void InterpreterMacroAssembler::push_d() {
 700   // Do not schedule for no AGI! Never write beyond rsp!
 701   subptr(rsp, 2 * wordSize);
 702   fstp_d(Address(rsp, 0));
 703 }
 704 
 705 
 706 void InterpreterMacroAssembler::push(TosState state) {
 707   interp_verify_oop(rax, state);
 708   switch (state) {
 709     case atos: push_ptr(rax); break;
 710     case btos:                                               // fall through
 711     case ztos:                                               // fall through
 712     case ctos:                                               // fall through
 713     case stos:                                               // fall through
 714     case itos: push_i(rax);                                    break;
 715     case ltos: push_l(rax, rdx);                               break;
 716     case ftos:
 717       if (UseSSE >= 1) {
 718         push_f(xmm0);
 719       } else {
 720         push_f();
 721       }
 722       break;
 723     case dtos:
 724       if (UseSSE >= 2) {
 725         push_d(xmm0);
 726       } else {
 727         push_d();
 728       }
 729       break;
 730     case vtos: /* nothing to do */                             break;
 731     default  : ShouldNotReachHere();
 732   }
 733 }
 734 #endif // _LP64
 735 
 736 
 737 // Helpers for swap and dup
 738 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
 739   movptr(val, Address(rsp, Interpreter::expr_offset_in_bytes(n)));
 740 }
 741 
 742 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
 743   movptr(Address(rsp, Interpreter::expr_offset_in_bytes(n)), val);
 744 }
 745 
 746 
 747 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() {
 748   // set sender sp
 749   lea(_bcp_register, Address(rsp, wordSize));
 750   // record last_sp
 751   mov(rcx, _bcp_register);
 752   subptr(rcx, rbp);
 753   sarptr(rcx, LogBytesPerWord);
 754   movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), rcx);
 755 }
 756 
 757 
 758 // Jump to from_interpreted entry of a call unless single stepping is possible
 759 // in this thread in which case we must call the i2i entry
 760 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
 761   prepare_to_jump_from_interpreted();
 762 
 763   if (JvmtiExport::can_post_interpreter_events()) {
 764     Label run_compiled_code;
 765     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
 766     // compiled code in threads for which the event is enabled.  Check here for
 767     // interp_only_mode if these events CAN be enabled.
 768     // interp_only is an int, on little endian it is sufficient to test the byte only
 769     // Is a cmpl faster?
 770     LP64_ONLY(temp = r15_thread;)
 771     NOT_LP64(get_thread(temp);)
 772     cmpb(Address(temp, JavaThread::interp_only_mode_offset()), 0);
 773     jccb(Assembler::zero, run_compiled_code);
 774     jmp(Address(method, Method::interpreter_entry_offset()));
 775     bind(run_compiled_code);
 776   }
 777 
 778   jmp(Address(method, Method::from_interpreted_offset()));
 779 }
 780 
 781 // The following two routines provide a hook so that an implementation
 782 // can schedule the dispatch in two parts.  x86 does not do this.
 783 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
 784   // Nothing x86 specific to be done here
 785 }
 786 
 787 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
 788   dispatch_next(state, step);
 789 }
 790 
 791 void InterpreterMacroAssembler::dispatch_base(TosState state,
 792                                               address* table,
 793                                               bool verifyoop,
 794                                               bool generate_poll) {
 795   verify_FPU(1, state);
 796   if (VerifyActivationFrameSize) {
 797     Label L;
 798     mov(rcx, rbp);
 799     subptr(rcx, rsp);
 800     int32_t min_frame_size =
 801       (frame::link_offset - frame::interpreter_frame_initial_sp_offset) *
 802       wordSize;
 803     cmpptr(rcx, min_frame_size);
 804     jcc(Assembler::greaterEqual, L);
 805     stop("broken stack frame");
 806     bind(L);
 807   }
 808   if (verifyoop) {
 809     interp_verify_oop(rax, state);
 810   }
 811 
 812   address* const safepoint_table = Interpreter::safept_table(state);
 813 #ifdef _LP64
 814   Label no_safepoint, dispatch;
 815   if (table != safepoint_table && generate_poll) {
 816     NOT_PRODUCT(block_comment("Thread-local Safepoint poll"));
 817     testb(Address(r15_thread, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit());
 818 
 819     jccb(Assembler::zero, no_safepoint);
 820     lea(rscratch1, ExternalAddress((address)safepoint_table));
 821     jmpb(dispatch);
 822   }
 823 
 824   bind(no_safepoint);
 825   lea(rscratch1, ExternalAddress((address)table));
 826   bind(dispatch);
 827   jmp(Address(rscratch1, rbx, Address::times_8));
 828 
 829 #else
 830   Address index(noreg, rbx, Address::times_ptr);
 831   if (table != safepoint_table && generate_poll) {
 832     NOT_PRODUCT(block_comment("Thread-local Safepoint poll"));
 833     Label no_safepoint;
 834     const Register thread = rcx;
 835     get_thread(thread);
 836     testb(Address(thread, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit());
 837 
 838     jccb(Assembler::zero, no_safepoint);
 839     ArrayAddress dispatch_addr(ExternalAddress((address)safepoint_table), index);
 840     jump(dispatch_addr, noreg);
 841     bind(no_safepoint);
 842   }
 843 
 844   {
 845     ArrayAddress dispatch_addr(ExternalAddress((address)table), index);
 846     jump(dispatch_addr, noreg);
 847   }
 848 #endif // _LP64
 849 }
 850 
 851 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) {
 852   dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll);
 853 }
 854 
 855 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
 856   dispatch_base(state, Interpreter::normal_table(state));
 857 }
 858 
 859 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
 860   dispatch_base(state, Interpreter::normal_table(state), false);
 861 }
 862 
 863 
 864 void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) {
 865   // load next bytecode (load before advancing _bcp_register to prevent AGI)
 866   load_unsigned_byte(rbx, Address(_bcp_register, step));
 867   // advance _bcp_register
 868   increment(_bcp_register, step);
 869   dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll);
 870 }
 871 
 872 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
 873   // load current bytecode
 874   load_unsigned_byte(rbx, Address(_bcp_register, 0));
 875   dispatch_base(state, table);
 876 }
 877 
 878 void InterpreterMacroAssembler::narrow(Register result) {
 879 
 880   // Get method->_constMethod->_result_type
 881   movptr(rcx, Address(rbp, frame::interpreter_frame_method_offset * wordSize));
 882   movptr(rcx, Address(rcx, Method::const_offset()));
 883   load_unsigned_byte(rcx, Address(rcx, ConstMethod::result_type_offset()));
 884 
 885   Label done, notBool, notByte, notChar;
 886 
 887   // common case first
 888   cmpl(rcx, T_INT);
 889   jcc(Assembler::equal, done);
 890 
 891   // mask integer result to narrower return type.
 892   cmpl(rcx, T_BOOLEAN);
 893   jcc(Assembler::notEqual, notBool);
 894   andl(result, 0x1);
 895   jmp(done);
 896 
 897   bind(notBool);
 898   cmpl(rcx, T_BYTE);
 899   jcc(Assembler::notEqual, notByte);
 900   LP64_ONLY(movsbl(result, result);)
 901   NOT_LP64(shll(result, 24);)      // truncate upper 24 bits
 902   NOT_LP64(sarl(result, 24);)      // and sign-extend byte
 903   jmp(done);
 904 
 905   bind(notByte);
 906   cmpl(rcx, T_CHAR);
 907   jcc(Assembler::notEqual, notChar);
 908   LP64_ONLY(movzwl(result, result);)
 909   NOT_LP64(andl(result, 0xFFFF);)  // truncate upper 16 bits
 910   jmp(done);
 911 
 912   bind(notChar);
 913   // cmpl(rcx, T_SHORT);  // all that's left
 914   // jcc(Assembler::notEqual, done);
 915   LP64_ONLY(movswl(result, result);)
 916   NOT_LP64(shll(result, 16);)      // truncate upper 16 bits
 917   NOT_LP64(sarl(result, 16);)      // and sign-extend short
 918 
 919   // Nothing to do for T_INT
 920   bind(done);
 921 }
 922 
 923 // remove activation
 924 //
 925 // Apply stack watermark barrier.
 926 // Unlock the receiver if this is a synchronized method.
 927 // Unlock any Java monitors from synchronized blocks.
 928 // Remove the activation from the stack.
 929 //
 930 // If there are locked Java monitors
 931 //    If throw_monitor_exception
 932 //       throws IllegalMonitorStateException
 933 //    Else if install_monitor_exception
 934 //       installs IllegalMonitorStateException
 935 //    Else
 936 //       no error processing
 937 void InterpreterMacroAssembler::remove_activation(
 938         TosState state,
 939         Register ret_addr,
 940         bool throw_monitor_exception,
 941         bool install_monitor_exception,
 942         bool notify_jvmdi) {
 943   // Note: Registers rdx xmm0 may be in use for the
 944   // result check if synchronized method
 945   Label unlocked, unlock, no_unlock;
 946 
 947   const Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
 948   const Register robj    = LP64_ONLY(c_rarg1) NOT_LP64(rdx);
 949   const Register rmon    = LP64_ONLY(c_rarg1) NOT_LP64(rcx);
 950                               // monitor pointers need different register
 951                               // because rdx may have the result in it
 952   NOT_LP64(get_thread(rthread);)
 953 
 954   // The below poll is for the stack watermark barrier. It allows fixing up frames lazily,
 955   // that would normally not be safe to use. Such bad returns into unsafe territory of
 956   // the stack, will call InterpreterRuntime::at_unwind.
 957   Label slow_path;
 958   Label fast_path;
 959   safepoint_poll(slow_path, rthread, true /* at_return */, false /* in_nmethod */);
 960   jmp(fast_path);
 961   bind(slow_path);
 962   push(state);
 963   set_last_Java_frame(rthread, noreg, rbp, (address)pc(), rscratch1);
 964   super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), rthread);
 965   NOT_LP64(get_thread(rthread);) // call_VM clobbered it, restore
 966   reset_last_Java_frame(rthread, true);
 967   pop(state);
 968   bind(fast_path);
 969 
 970   // get the value of _do_not_unlock_if_synchronized into rdx
 971   const Address do_not_unlock_if_synchronized(rthread,
 972     in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
 973   movbool(rbx, do_not_unlock_if_synchronized);
 974   movbool(do_not_unlock_if_synchronized, false); // reset the flag
 975 
 976   // get method access flags
 977   movptr(rcx, Address(rbp, frame::interpreter_frame_method_offset * wordSize));
 978   movl(rcx, Address(rcx, Method::access_flags_offset()));
 979   testl(rcx, JVM_ACC_SYNCHRONIZED);
 980   jcc(Assembler::zero, unlocked);
 981 
 982   // Don't unlock anything if the _do_not_unlock_if_synchronized flag
 983   // is set.
 984   testbool(rbx);
 985   jcc(Assembler::notZero, no_unlock);
 986 
 987   // unlock monitor
 988   push(state); // save result
 989 
 990   // BasicObjectLock will be first in list, since this is a
 991   // synchronized method. However, need to check that the object has
 992   // not been unlocked by an explicit monitorexit bytecode.
 993   const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset *
 994                         wordSize - (int) sizeof(BasicObjectLock));
 995   // We use c_rarg1/rdx so that if we go slow path it will be the correct
 996   // register for unlock_object to pass to VM directly
 997   lea(robj, monitor); // address of first monitor
 998 
 999   movptr(rax, Address(robj, BasicObjectLock::obj_offset()));
1000   testptr(rax, rax);
1001   jcc(Assembler::notZero, unlock);
1002 
1003   pop(state);
1004   if (throw_monitor_exception) {
1005     // Entry already unlocked, need to throw exception
1006     NOT_LP64(empty_FPU_stack();)  // remove possible return value from FPU-stack, otherwise stack could overflow
1007     call_VM(noreg, CAST_FROM_FN_PTR(address,
1008                    InterpreterRuntime::throw_illegal_monitor_state_exception));
1009     should_not_reach_here();
1010   } else {
1011     // Monitor already unlocked during a stack unroll. If requested,
1012     // install an illegal_monitor_state_exception.  Continue with
1013     // stack unrolling.
1014     if (install_monitor_exception) {
1015       NOT_LP64(empty_FPU_stack();)
1016       call_VM(noreg, CAST_FROM_FN_PTR(address,
1017                      InterpreterRuntime::new_illegal_monitor_state_exception));
1018     }
1019     jmp(unlocked);
1020   }
1021 
1022   bind(unlock);
1023   unlock_object(robj);
1024   pop(state);
1025 
1026   // Check that for block-structured locking (i.e., that all locked
1027   // objects has been unlocked)
1028   bind(unlocked);
1029 
1030   // rax, rdx: Might contain return value
1031 
1032   // Check that all monitors are unlocked
1033   {
1034     Label loop, exception, entry, restart;
1035     const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
1036     const Address monitor_block_top(
1037         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
1038     const Address monitor_block_bot(
1039         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
1040 
1041     bind(restart);
1042     // We use c_rarg1 so that if we go slow path it will be the correct
1043     // register for unlock_object to pass to VM directly
1044     movptr(rmon, monitor_block_top); // derelativize pointer
1045     lea(rmon, Address(rbp, rmon, Address::times_ptr));
1046     // c_rarg1 points to current entry, starting with top-most entry
1047 
1048     lea(rbx, monitor_block_bot);  // points to word before bottom of
1049                                   // monitor block
1050     jmp(entry);
1051 
1052     // Entry already locked, need to throw exception
1053     bind(exception);
1054 
1055     if (throw_monitor_exception) {
1056       // Throw exception
1057       NOT_LP64(empty_FPU_stack();)
1058       MacroAssembler::call_VM(noreg,
1059                               CAST_FROM_FN_PTR(address, InterpreterRuntime::
1060                                    throw_illegal_monitor_state_exception));
1061       should_not_reach_here();
1062     } else {
1063       // Stack unrolling. Unlock object and install illegal_monitor_exception.
1064       // Unlock does not block, so don't have to worry about the frame.
1065       // We don't have to preserve c_rarg1 since we are going to throw an exception.
1066 
1067       push(state);
1068       mov(robj, rmon);   // nop if robj and rmon are the same
1069       unlock_object(robj);
1070       pop(state);
1071 
1072       if (install_monitor_exception) {
1073         NOT_LP64(empty_FPU_stack();)
1074         call_VM(noreg, CAST_FROM_FN_PTR(address,
1075                                         InterpreterRuntime::
1076                                         new_illegal_monitor_state_exception));
1077       }
1078 
1079       jmp(restart);
1080     }
1081 
1082     bind(loop);
1083     // check if current entry is used
1084     cmpptr(Address(rmon, BasicObjectLock::obj_offset()), NULL_WORD);
1085     jcc(Assembler::notEqual, exception);
1086 
1087     addptr(rmon, entry_size); // otherwise advance to next entry
1088     bind(entry);
1089     cmpptr(rmon, rbx); // check if bottom reached
1090     jcc(Assembler::notEqual, loop); // if not at bottom then check this entry
1091   }
1092 
1093   bind(no_unlock);
1094 
1095   // jvmti support
1096   if (notify_jvmdi) {
1097     notify_method_exit(state, NotifyJVMTI);    // preserve TOSCA
1098   } else {
1099     notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
1100   }
1101 
1102   if (StackReservedPages > 0) {
1103     movptr(rbx,
1104                Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize));
1105     // testing if reserved zone needs to be re-enabled
1106     Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
1107     Label no_reserved_zone_enabling;
1108 
1109     NOT_LP64(get_thread(rthread);)
1110 
1111     // check if already enabled - if so no re-enabling needed
1112     assert(sizeof(StackOverflow::StackGuardState) == 4, "unexpected size");
1113     cmpl(Address(rthread, JavaThread::stack_guard_state_offset()), StackOverflow::stack_guard_enabled);
1114     jcc(Assembler::equal, no_reserved_zone_enabling);
1115 
1116     cmpptr(rbx, Address(rthread, JavaThread::reserved_stack_activation_offset()));
1117     jcc(Assembler::lessEqual, no_reserved_zone_enabling);
1118 
1119     call_VM_leaf(
1120       CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), rthread);
1121     call_VM(noreg, CAST_FROM_FN_PTR(address,
1122                    InterpreterRuntime::throw_delayed_StackOverflowError));
1123     should_not_reach_here();
1124 
1125     bind(no_reserved_zone_enabling);
1126   }
1127 
1128   // remove activation
1129   // get sender sp
1130   movptr(rbx,
1131          Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize));
1132 
1133   if (state == atos && InlineTypeReturnedAsFields) {
1134     // Check if we are returning an non-null inline type and load its fields into registers
1135     Label skip;
1136     test_oop_is_not_inline_type(rax, rscratch1, skip);
1137 
1138 #ifndef _LP64
1139     super_call_VM_leaf(StubRoutines::load_inline_type_fields_in_regs());
1140 #else
1141     // Load fields from a buffered value with an inline class specific handler
1142     load_klass(rdi, rax, rscratch1);
1143     movptr(rdi, Address(rdi, InstanceKlass::adr_inlineklass_fixed_block_offset()));
1144     movptr(rdi, Address(rdi, InlineKlass::unpack_handler_offset()));
1145     // Unpack handler can be null if inline type is not scalarizable in returns
1146     testptr(rdi, rdi);
1147     jcc(Assembler::zero, skip);
1148     call(rdi);
1149 #endif
1150 #ifdef ASSERT
1151     // TODO 8284443 Enable
1152     if (StressCallingConvention && false) {
1153       Label skip_stress;
1154       movptr(rscratch1, Address(rbp, frame::interpreter_frame_method_offset * wordSize));
1155       movl(rscratch1, Address(rscratch1, Method::flags_offset()));
1156       testl(rcx, MethodFlags::has_scalarized_return_flag());
1157       jcc(Assembler::zero, skip_stress);
1158       load_klass(rax, rax, rscratch1);
1159       orptr(rax, 1);
1160       bind(skip_stress);
1161     }
1162 #endif
1163     // call above kills the value in rbx. Reload it.
1164     movptr(rbx, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize));
1165     bind(skip);
1166   }
1167   leave();                           // remove frame anchor
1168   pop(ret_addr);                     // get return address
1169   mov(rsp, rbx);                     // set sp to sender sp
1170   pop_cont_fastpath();
1171 }
1172 
1173 void InterpreterMacroAssembler::get_method_counters(Register method,
1174                                                     Register mcs, Label& skip) {
1175   Label has_counters;
1176   movptr(mcs, Address(method, Method::method_counters_offset()));
1177   testptr(mcs, mcs);
1178   jcc(Assembler::notZero, has_counters);
1179   call_VM(noreg, CAST_FROM_FN_PTR(address,
1180           InterpreterRuntime::build_method_counters), method);
1181   movptr(mcs, Address(method,Method::method_counters_offset()));
1182   testptr(mcs, mcs);
1183   jcc(Assembler::zero, skip); // No MethodCounters allocated, OutOfMemory
1184   bind(has_counters);
1185 }
1186 
1187 void InterpreterMacroAssembler::allocate_instance(Register klass, Register new_obj,
1188                                                   Register t1, Register t2,
1189                                                   bool clear_fields, Label& alloc_failed) {
1190   MacroAssembler::allocate_instance(klass, new_obj, t1, t2, clear_fields, alloc_failed);
1191   if (DTraceMethodProbes) {
1192     // Trigger dtrace event for fastpath
1193     push(atos);
1194     call_VM_leaf(CAST_FROM_FN_PTR(address, static_cast<int (*)(oopDesc*)>(SharedRuntime::dtrace_object_alloc)), new_obj);
1195     pop(atos);
1196   }
1197 }
1198 
1199 void InterpreterMacroAssembler::read_flat_field(Register entry, Register tmp1, Register tmp2, Register obj) {
1200   Label alloc_failed, empty_value, done;
1201   const Register alloc_temp = LP64_ONLY(rscratch1) NOT_LP64(rsi);
1202   const Register dst_temp   = LP64_ONLY(rscratch2) NOT_LP64(rdi);
1203   assert_different_registers(obj, entry, tmp1, tmp2, dst_temp, r8, r9);
1204 
1205   // FIXME: code below could be re-written to better use InlineLayoutInfo data structure
1206   // see aarch64 version
1207 
1208   // Grap the inline field klass
1209   const Register field_klass = tmp1;
1210   load_unsigned_short(tmp2, Address(entry, in_bytes(ResolvedFieldEntry::field_index_offset())));
1211   movptr(tmp1, Address(entry, ResolvedFieldEntry::field_holder_offset()));
1212   get_inline_type_field_klass(tmp1, tmp2, field_klass);
1213 
1214     //check for empty value klass
1215   test_klass_is_empty_inline_type(field_klass, dst_temp, empty_value);
1216 
1217   // allocate buffer
1218   push(obj);  // push object being read from     // FIXME spilling on stack could probably be avoided by using tmp2
1219   allocate_instance(field_klass, obj, alloc_temp, dst_temp, false, alloc_failed);
1220 
1221   // Have an oop instance buffer, copy into it
1222   load_unsigned_short(r9, Address(entry, in_bytes(ResolvedFieldEntry::field_index_offset())));
1223   movptr(r8, Address(entry, in_bytes(ResolvedFieldEntry::field_holder_offset())));
1224   inline_layout_info(r8, r9, r8); // holder, index, info => InlineLayoutInfo into r8
1225 
1226   data_for_oop(obj, dst_temp, field_klass);
1227   pop(alloc_temp);             // restore object being read from
1228   load_sized_value(tmp2, Address(entry, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/);
1229   lea(tmp2, Address(alloc_temp, tmp2));
1230   // call_VM_leaf, clobbers a few regs, save restore new obj
1231   push(obj);
1232   // access_value_copy(IS_DEST_UNINITIALIZED, tmp2, dst_temp, field_klass);
1233   flat_field_copy(IS_DEST_UNINITIALIZED, tmp2, dst_temp, r8);
1234   pop(obj);
1235   jmp(done);
1236 
1237   bind(empty_value);
1238   get_empty_inline_type_oop(field_klass, dst_temp, obj);
1239   jmp(done);
1240 
1241   bind(alloc_failed);
1242   pop(obj);
1243   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::read_flat_field),
1244           obj, entry);
1245   get_vm_result(obj, r15_thread);
1246   bind(done);
1247 }
1248 
1249 void InterpreterMacroAssembler::read_flat_element(Register array, Register index,
1250                                                   Register t1, Register t2,
1251                                                   Register obj) {
1252   assert_different_registers(array, index, t1, t2);
1253   Label alloc_failed, empty_value, done;
1254   const Register array_klass = t2;
1255   const Register elem_klass = t1;
1256   const Register alloc_temp = LP64_ONLY(rscratch1) NOT_LP64(rsi);
1257   const Register dst_temp   = LP64_ONLY(rscratch2) NOT_LP64(rdi);
1258 
1259   // load in array->klass()->element_klass()
1260   Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg);
1261   load_klass(array_klass, array, tmp_load_klass);
1262   movptr(elem_klass, Address(array_klass, ArrayKlass::element_klass_offset()));
1263 
1264   //check for empty value klass
1265   test_klass_is_empty_inline_type(elem_klass, dst_temp, empty_value);
1266 
1267   // calc source into "array_klass" and free up some regs
1268   const Register src = array_klass;
1269   push(index); // preserve index reg in case alloc_failed
1270   data_for_value_array_index(array, array_klass, index, src);
1271 
1272   allocate_instance(elem_klass, obj, alloc_temp, dst_temp, false, alloc_failed);
1273   // Have an oop instance buffer, copy into it
1274   store_ptr(0, obj); // preserve obj (overwrite index, no longer needed)
1275   data_for_oop(obj, dst_temp, elem_klass);
1276   access_value_copy(IS_DEST_UNINITIALIZED, src, dst_temp, elem_klass);
1277   pop(obj);
1278   jmp(done);
1279 
1280   bind(empty_value);
1281   get_empty_inline_type_oop(elem_klass, dst_temp, obj);
1282   jmp(done);
1283 
1284   bind(alloc_failed);
1285   pop(index);
1286   if (array == c_rarg2) {
1287     mov(elem_klass, array);
1288     array = elem_klass;
1289   }
1290   call_VM(obj, CAST_FROM_FN_PTR(address, InterpreterRuntime::value_array_load), array, index);
1291 
1292   bind(done);
1293 }
1294 
1295 
1296 // Lock object
1297 //
1298 // Args:
1299 //      rdx, c_rarg1: BasicObjectLock to be used for locking
1300 //
1301 // Kills:
1302 //      rax, rbx
1303 void InterpreterMacroAssembler::lock_object(Register lock_reg) {
1304   assert(lock_reg == LP64_ONLY(c_rarg1) NOT_LP64(rdx),
1305          "The argument is only for looks. It must be c_rarg1");
1306 
1307   if (LockingMode == LM_MONITOR) {
1308     call_VM(noreg,
1309             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
1310             lock_reg);
1311   } else {
1312     Label count_locking, done, slow_case;
1313 
1314     const Register swap_reg = rax; // Must use rax for cmpxchg instruction
1315     const Register tmp_reg = rbx;
1316     const Register obj_reg = LP64_ONLY(c_rarg3) NOT_LP64(rcx); // Will contain the oop
1317     const Register rklass_decode_tmp = rscratch1;
1318 
1319     const int obj_offset = in_bytes(BasicObjectLock::obj_offset());
1320     const int lock_offset = in_bytes(BasicObjectLock::lock_offset());
1321     const int mark_offset = lock_offset +
1322                             BasicLock::displaced_header_offset_in_bytes();
1323 
1324     // Load object pointer into obj_reg
1325     movptr(obj_reg, Address(lock_reg, obj_offset));
1326 
1327     if (DiagnoseSyncOnValueBasedClasses != 0) {
1328       load_klass(tmp_reg, obj_reg, rklass_decode_tmp);
1329       testb(Address(tmp_reg, Klass::misc_flags_offset()), KlassFlags::_misc_is_value_based_class);
1330       jcc(Assembler::notZero, slow_case);
1331     }
1332 
1333     if (LockingMode == LM_LIGHTWEIGHT) {
1334 #ifdef _LP64
1335       const Register thread = r15_thread;
1336       lightweight_lock(lock_reg, obj_reg, swap_reg, thread, tmp_reg, slow_case);
1337 #else
1338       // Lacking registers and thread on x86_32. Always take slow path.
1339       jmp(slow_case);
1340 #endif
1341     } else if (LockingMode == LM_LEGACY) {
1342       // Load immediate 1 into swap_reg %rax
1343       movl(swap_reg, 1);
1344 
1345       // Load (object->mark() | 1) into swap_reg %rax
1346       orptr(swap_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1347       if (EnableValhalla) {
1348         // Mask inline_type bit such that we go to the slow path if object is an inline type
1349         andptr(swap_reg, ~((int) markWord::inline_type_bit_in_place));
1350       }
1351 
1352       // Save (object->mark() | 1) into BasicLock's displaced header
1353       movptr(Address(lock_reg, mark_offset), swap_reg);
1354 
1355       assert(lock_offset == 0,
1356              "displaced header must be first word in BasicObjectLock");
1357 
1358       lock();
1359       cmpxchgptr(lock_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1360       jcc(Assembler::zero, count_locking);
1361 
1362       const int zero_bits = LP64_ONLY(7) NOT_LP64(3);
1363 
1364       // Fast check for recursive lock.
1365       //
1366       // Can apply the optimization only if this is a stack lock
1367       // allocated in this thread. For efficiency, we can focus on
1368       // recently allocated stack locks (instead of reading the stack
1369       // base and checking whether 'mark' points inside the current
1370       // thread stack):
1371       //  1) (mark & zero_bits) == 0, and
1372       //  2) rsp <= mark < mark + os::pagesize()
1373       //
1374       // Warning: rsp + os::pagesize can overflow the stack base. We must
1375       // neither apply the optimization for an inflated lock allocated
1376       // just above the thread stack (this is why condition 1 matters)
1377       // nor apply the optimization if the stack lock is inside the stack
1378       // of another thread. The latter is avoided even in case of overflow
1379       // because we have guard pages at the end of all stacks. Hence, if
1380       // we go over the stack base and hit the stack of another thread,
1381       // this should not be in a writeable area that could contain a
1382       // stack lock allocated by that thread. As a consequence, a stack
1383       // lock less than page size away from rsp is guaranteed to be
1384       // owned by the current thread.
1385       //
1386       // These 3 tests can be done by evaluating the following
1387       // expression: ((mark - rsp) & (zero_bits - os::vm_page_size())),
1388       // assuming both stack pointer and pagesize have their
1389       // least significant bits clear.
1390       // NOTE: the mark is in swap_reg %rax as the result of cmpxchg
1391       subptr(swap_reg, rsp);
1392       andptr(swap_reg, zero_bits - (int)os::vm_page_size());
1393 
1394       // Save the test result, for recursive case, the result is zero
1395       movptr(Address(lock_reg, mark_offset), swap_reg);
1396       jcc(Assembler::notZero, slow_case);
1397 
1398       bind(count_locking);
1399     }
1400     inc_held_monitor_count();
1401     jmp(done);
1402 
1403     bind(slow_case);
1404 
1405     // Call the runtime routine for slow case
1406     call_VM(noreg,
1407             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
1408             lock_reg);
1409     bind(done);
1410   }
1411 }
1412 
1413 
1414 // Unlocks an object. Used in monitorexit bytecode and
1415 // remove_activation.  Throws an IllegalMonitorException if object is
1416 // not locked by current thread.
1417 //
1418 // Args:
1419 //      rdx, c_rarg1: BasicObjectLock for lock
1420 //
1421 // Kills:
1422 //      rax
1423 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs)
1424 //      rscratch1 (scratch reg)
1425 // rax, rbx, rcx, rdx
1426 void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
1427   assert(lock_reg == LP64_ONLY(c_rarg1) NOT_LP64(rdx),
1428          "The argument is only for looks. It must be c_rarg1");
1429 
1430   if (LockingMode == LM_MONITOR) {
1431     call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
1432   } else {
1433     Label count_locking, done, slow_case;
1434 
1435     const Register swap_reg   = rax;  // Must use rax for cmpxchg instruction
1436     const Register header_reg = LP64_ONLY(c_rarg2) NOT_LP64(rbx);  // Will contain the old oopMark
1437     const Register obj_reg    = LP64_ONLY(c_rarg3) NOT_LP64(rcx);  // Will contain the oop
1438 
1439     save_bcp(); // Save in case of exception
1440 
1441     if (LockingMode != LM_LIGHTWEIGHT) {
1442       // Convert from BasicObjectLock structure to object and BasicLock
1443       // structure Store the BasicLock address into %rax
1444       lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset()));
1445     }
1446 
1447     // Load oop into obj_reg(%c_rarg3)
1448     movptr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset()));
1449 
1450     // Free entry
1451     movptr(Address(lock_reg, BasicObjectLock::obj_offset()), NULL_WORD);
1452 
1453     if (LockingMode == LM_LIGHTWEIGHT) {
1454 #ifdef _LP64
1455       lightweight_unlock(obj_reg, swap_reg, r15_thread, header_reg, slow_case);
1456 #else
1457       // Lacking registers and thread on x86_32. Always take slow path.
1458       jmp(slow_case);
1459 #endif
1460     } else if (LockingMode == LM_LEGACY) {
1461       // Load the old header from BasicLock structure
1462       movptr(header_reg, Address(swap_reg,
1463                                  BasicLock::displaced_header_offset_in_bytes()));
1464 
1465       // Test for recursion
1466       testptr(header_reg, header_reg);
1467 
1468       // zero for recursive case
1469       jcc(Assembler::zero, count_locking);
1470 
1471       // Atomic swap back the old header
1472       lock();
1473       cmpxchgptr(header_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1474 
1475       // zero for simple unlock of a stack-lock case
1476       jcc(Assembler::notZero, slow_case);
1477 
1478       bind(count_locking);
1479     }
1480     dec_held_monitor_count();
1481     jmp(done);
1482 
1483     bind(slow_case);
1484     // Call the runtime routine for slow case.
1485     movptr(Address(lock_reg, BasicObjectLock::obj_offset()), obj_reg); // restore obj
1486     call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
1487 
1488     bind(done);
1489 
1490     restore_bcp();
1491   }
1492 }
1493 
1494 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp,
1495                                                          Label& zero_continue) {
1496   assert(ProfileInterpreter, "must be profiling interpreter");
1497   movptr(mdp, Address(rbp, frame::interpreter_frame_mdp_offset * wordSize));
1498   testptr(mdp, mdp);
1499   jcc(Assembler::zero, zero_continue);
1500 }
1501 
1502 
1503 // Set the method data pointer for the current bcp.
1504 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
1505   assert(ProfileInterpreter, "must be profiling interpreter");
1506   Label set_mdp;
1507   push(rax);
1508   push(rbx);
1509 
1510   get_method(rbx);
1511   // Test MDO to avoid the call if it is null.
1512   movptr(rax, Address(rbx, in_bytes(Method::method_data_offset())));
1513   testptr(rax, rax);
1514   jcc(Assembler::zero, set_mdp);
1515   // rbx: method
1516   // _bcp_register: bcp
1517   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rbx, _bcp_register);
1518   // rax: mdi
1519   // mdo is guaranteed to be non-zero here, we checked for it before the call.
1520   movptr(rbx, Address(rbx, in_bytes(Method::method_data_offset())));
1521   addptr(rbx, in_bytes(MethodData::data_offset()));
1522   addptr(rax, rbx);
1523   bind(set_mdp);
1524   movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), rax);
1525   pop(rbx);
1526   pop(rax);
1527 }
1528 
1529 void InterpreterMacroAssembler::verify_method_data_pointer() {
1530   assert(ProfileInterpreter, "must be profiling interpreter");
1531 #ifdef ASSERT
1532   Label verify_continue;
1533   push(rax);
1534   push(rbx);
1535   Register arg3_reg = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
1536   Register arg2_reg = LP64_ONLY(c_rarg2) NOT_LP64(rdx);
1537   push(arg3_reg);
1538   push(arg2_reg);
1539   test_method_data_pointer(arg3_reg, verify_continue); // If mdp is zero, continue
1540   get_method(rbx);
1541 
1542   // If the mdp is valid, it will point to a DataLayout header which is
1543   // consistent with the bcp.  The converse is highly probable also.
1544   load_unsigned_short(arg2_reg,
1545                       Address(arg3_reg, in_bytes(DataLayout::bci_offset())));
1546   addptr(arg2_reg, Address(rbx, Method::const_offset()));
1547   lea(arg2_reg, Address(arg2_reg, ConstMethod::codes_offset()));
1548   cmpptr(arg2_reg, _bcp_register);
1549   jcc(Assembler::equal, verify_continue);
1550   // rbx: method
1551   // _bcp_register: bcp
1552   // c_rarg3: mdp
1553   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp),
1554                rbx, _bcp_register, arg3_reg);
1555   bind(verify_continue);
1556   pop(arg2_reg);
1557   pop(arg3_reg);
1558   pop(rbx);
1559   pop(rax);
1560 #endif // ASSERT
1561 }
1562 
1563 
1564 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in,
1565                                                 int constant,
1566                                                 Register value) {
1567   assert(ProfileInterpreter, "must be profiling interpreter");
1568   Address data(mdp_in, constant);
1569   movptr(data, value);
1570 }
1571 
1572 
1573 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
1574                                                       int constant,
1575                                                       bool decrement) {
1576   // Counter address
1577   Address data(mdp_in, constant);
1578 
1579   increment_mdp_data_at(data, decrement);
1580 }
1581 
1582 void InterpreterMacroAssembler::increment_mdp_data_at(Address data,
1583                                                       bool decrement) {
1584   assert(ProfileInterpreter, "must be profiling interpreter");
1585   // %%% this does 64bit counters at best it is wasting space
1586   // at worst it is a rare bug when counters overflow
1587 
1588   if (decrement) {
1589     // Decrement the register.  Set condition codes.
1590     addptr(data, -DataLayout::counter_increment);
1591     // If the decrement causes the counter to overflow, stay negative
1592     Label L;
1593     jcc(Assembler::negative, L);
1594     addptr(data, DataLayout::counter_increment);
1595     bind(L);
1596   } else {
1597     assert(DataLayout::counter_increment == 1,
1598            "flow-free idiom only works with 1");
1599     // Increment the register.  Set carry flag.
1600     addptr(data, DataLayout::counter_increment);
1601     // If the increment causes the counter to overflow, pull back by 1.
1602     sbbptr(data, 0);
1603   }
1604 }
1605 
1606 
1607 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
1608                                                       Register reg,
1609                                                       int constant,
1610                                                       bool decrement) {
1611   Address data(mdp_in, reg, Address::times_1, constant);
1612 
1613   increment_mdp_data_at(data, decrement);
1614 }
1615 
1616 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in,
1617                                                 int flag_byte_constant) {
1618   assert(ProfileInterpreter, "must be profiling interpreter");
1619   int header_offset = in_bytes(DataLayout::flags_offset());
1620   int header_bits = flag_byte_constant;
1621   // Set the flag
1622   orb(Address(mdp_in, header_offset), header_bits);
1623 }
1624 
1625 
1626 
1627 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
1628                                                  int offset,
1629                                                  Register value,
1630                                                  Register test_value_out,
1631                                                  Label& not_equal_continue) {
1632   assert(ProfileInterpreter, "must be profiling interpreter");
1633   if (test_value_out == noreg) {
1634     cmpptr(value, Address(mdp_in, offset));
1635   } else {
1636     // Put the test value into a register, so caller can use it:
1637     movptr(test_value_out, Address(mdp_in, offset));
1638     cmpptr(test_value_out, value);
1639   }
1640   jcc(Assembler::notEqual, not_equal_continue);
1641 }
1642 
1643 
1644 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
1645                                                      int offset_of_disp) {
1646   assert(ProfileInterpreter, "must be profiling interpreter");
1647   Address disp_address(mdp_in, offset_of_disp);
1648   addptr(mdp_in, disp_address);
1649   movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in);
1650 }
1651 
1652 
1653 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
1654                                                      Register reg,
1655                                                      int offset_of_disp) {
1656   assert(ProfileInterpreter, "must be profiling interpreter");
1657   Address disp_address(mdp_in, reg, Address::times_1, offset_of_disp);
1658   addptr(mdp_in, disp_address);
1659   movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in);
1660 }
1661 
1662 
1663 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in,
1664                                                        int constant) {
1665   assert(ProfileInterpreter, "must be profiling interpreter");
1666   addptr(mdp_in, constant);
1667   movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in);
1668 }
1669 
1670 
1671 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
1672   assert(ProfileInterpreter, "must be profiling interpreter");
1673   push(return_bci); // save/restore across call_VM
1674   call_VM(noreg,
1675           CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret),
1676           return_bci);
1677   pop(return_bci);
1678 }
1679 
1680 
1681 void InterpreterMacroAssembler::profile_taken_branch(Register mdp,
1682                                                      Register bumped_count) {
1683   if (ProfileInterpreter) {
1684     Label profile_continue;
1685 
1686     // If no method data exists, go to profile_continue.
1687     // Otherwise, assign to mdp
1688     test_method_data_pointer(mdp, profile_continue);
1689 
1690     // We are taking a branch.  Increment the taken count.
1691     // We inline increment_mdp_data_at to return bumped_count in a register
1692     //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
1693     Address data(mdp, in_bytes(JumpData::taken_offset()));
1694     movptr(bumped_count, data);
1695     assert(DataLayout::counter_increment == 1,
1696             "flow-free idiom only works with 1");
1697     addptr(bumped_count, DataLayout::counter_increment);
1698     sbbptr(bumped_count, 0);
1699     movptr(data, bumped_count); // Store back out
1700 
1701     // The method data pointer needs to be updated to reflect the new target.
1702     update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
1703     bind(profile_continue);
1704   }
1705 }
1706 
1707 
1708 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp, bool acmp) {
1709   if (ProfileInterpreter) {
1710     Label profile_continue;
1711 
1712     // If no method data exists, go to profile_continue.
1713     test_method_data_pointer(mdp, profile_continue);
1714 
1715     // We are taking a branch.  Increment the not taken count.
1716     increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
1717 
1718     // The method data pointer needs to be updated to correspond to
1719     // the next bytecode
1720     update_mdp_by_constant(mdp, acmp ? in_bytes(ACmpData::acmp_data_size()): in_bytes(BranchData::branch_data_size()));
1721     bind(profile_continue);
1722   }
1723 }
1724 
1725 void InterpreterMacroAssembler::profile_call(Register mdp) {
1726   if (ProfileInterpreter) {
1727     Label profile_continue;
1728 
1729     // If no method data exists, go to profile_continue.
1730     test_method_data_pointer(mdp, profile_continue);
1731 
1732     // We are making a call.  Increment the count.
1733     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1734 
1735     // The method data pointer needs to be updated to reflect the new target.
1736     update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
1737     bind(profile_continue);
1738   }
1739 }
1740 
1741 
1742 void InterpreterMacroAssembler::profile_final_call(Register mdp) {
1743   if (ProfileInterpreter) {
1744     Label profile_continue;
1745 
1746     // If no method data exists, go to profile_continue.
1747     test_method_data_pointer(mdp, profile_continue);
1748 
1749     // We are making a call.  Increment the count.
1750     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1751 
1752     // The method data pointer needs to be updated to reflect the new target.
1753     update_mdp_by_constant(mdp,
1754                            in_bytes(VirtualCallData::
1755                                     virtual_call_data_size()));
1756     bind(profile_continue);
1757   }
1758 }
1759 
1760 
1761 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
1762                                                      Register mdp,
1763                                                      Register reg2,
1764                                                      bool receiver_can_be_null) {
1765   if (ProfileInterpreter) {
1766     Label profile_continue;
1767 
1768     // If no method data exists, go to profile_continue.
1769     test_method_data_pointer(mdp, profile_continue);
1770 
1771     Label skip_receiver_profile;
1772     if (receiver_can_be_null) {
1773       Label not_null;
1774       testptr(receiver, receiver);
1775       jccb(Assembler::notZero, not_null);
1776       // We are making a call.  Increment the count for null receiver.
1777       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1778       jmp(skip_receiver_profile);
1779       bind(not_null);
1780     }
1781 
1782     // Record the receiver type.
1783     record_klass_in_profile(receiver, mdp, reg2);
1784     bind(skip_receiver_profile);
1785 
1786     // The method data pointer needs to be updated to reflect the new target.
1787     update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
1788     bind(profile_continue);
1789   }
1790 }
1791 
1792 // This routine creates a state machine for updating the multi-row
1793 // type profile at a virtual call site (or other type-sensitive bytecode).
1794 // The machine visits each row (of receiver/count) until the receiver type
1795 // is found, or until it runs out of rows.  At the same time, it remembers
1796 // the location of the first empty row.  (An empty row records null for its
1797 // receiver, and can be allocated for a newly-observed receiver type.)
1798 // Because there are two degrees of freedom in the state, a simple linear
1799 // search will not work; it must be a decision tree.  Hence this helper
1800 // function is recursive, to generate the required tree structured code.
1801 // It's the interpreter, so we are trading off code space for speed.
1802 // See below for example code.
1803 void InterpreterMacroAssembler::record_klass_in_profile_helper(Register receiver, Register mdp,
1804                                                                Register reg2, int start_row,
1805                                                                Label& done) {
1806   if (TypeProfileWidth == 0) {
1807     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1808   } else {
1809     record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth,
1810                                   &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset);
1811   }
1812 }
1813 
1814 void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp, Register reg2, int start_row,
1815                                                               Label& done, int total_rows,
1816                                                               OffsetFunction item_offset_fn,
1817                                                               OffsetFunction item_count_offset_fn) {
1818   int last_row = total_rows - 1;
1819   assert(start_row <= last_row, "must be work left to do");
1820   // Test this row for both the item and for null.
1821   // Take any of three different outcomes:
1822   //   1. found item => increment count and goto done
1823   //   2. found null => keep looking for case 1, maybe allocate this cell
1824   //   3. found something else => keep looking for cases 1 and 2
1825   // Case 3 is handled by a recursive call.
1826   for (int row = start_row; row <= last_row; row++) {
1827     Label next_test;
1828     bool test_for_null_also = (row == start_row);
1829 
1830     // See if the item is item[n].
1831     int item_offset = in_bytes(item_offset_fn(row));
1832     test_mdp_data_at(mdp, item_offset, item,
1833                      (test_for_null_also ? reg2 : noreg),
1834                      next_test);
1835     // (Reg2 now contains the item from the CallData.)
1836 
1837     // The item is item[n].  Increment count[n].
1838     int count_offset = in_bytes(item_count_offset_fn(row));
1839     increment_mdp_data_at(mdp, count_offset);
1840     jmp(done);
1841     bind(next_test);
1842 
1843     if (test_for_null_also) {
1844       // Failed the equality check on item[n]...  Test for null.
1845       testptr(reg2, reg2);
1846       if (start_row == last_row) {
1847         // The only thing left to do is handle the null case.
1848         Label found_null;
1849         jccb(Assembler::zero, found_null);
1850         // Item did not match any saved item and there is no empty row for it.
1851         // Increment total counter to indicate polymorphic case.
1852         increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1853         jmp(done);
1854         bind(found_null);
1855         break;
1856       }
1857       Label found_null;
1858       // Since null is rare, make it be the branch-taken case.
1859       jcc(Assembler::zero, found_null);
1860 
1861       // Put all the "Case 3" tests here.
1862       record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows,
1863                                     item_offset_fn, item_count_offset_fn);
1864 
1865       // Found a null.  Keep searching for a matching item,
1866       // but remember that this is an empty (unused) slot.
1867       bind(found_null);
1868     }
1869   }
1870 
1871   // In the fall-through case, we found no matching item, but we
1872   // observed the item[start_row] is null.
1873 
1874   // Fill in the item field and increment the count.
1875   int item_offset = in_bytes(item_offset_fn(start_row));
1876   set_mdp_data_at(mdp, item_offset, item);
1877   int count_offset = in_bytes(item_count_offset_fn(start_row));
1878   movl(reg2, DataLayout::counter_increment);
1879   set_mdp_data_at(mdp, count_offset, reg2);
1880   if (start_row > 0) {
1881     jmp(done);
1882   }
1883 }
1884 
1885 // Example state machine code for three profile rows:
1886 //   // main copy of decision tree, rooted at row[1]
1887 //   if (row[0].rec == rec) { row[0].incr(); goto done; }
1888 //   if (row[0].rec != nullptr) {
1889 //     // inner copy of decision tree, rooted at row[1]
1890 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
1891 //     if (row[1].rec != nullptr) {
1892 //       // degenerate decision tree, rooted at row[2]
1893 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
1894 //       if (row[2].rec != nullptr) { count.incr(); goto done; } // overflow
1895 //       row[2].init(rec); goto done;
1896 //     } else {
1897 //       // remember row[1] is empty
1898 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
1899 //       row[1].init(rec); goto done;
1900 //     }
1901 //   } else {
1902 //     // remember row[0] is empty
1903 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
1904 //     if (row[2].rec == rec) { row[2].incr(); goto done; }
1905 //     row[0].init(rec); goto done;
1906 //   }
1907 //   done:
1908 
1909 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver, Register mdp, Register reg2) {
1910   assert(ProfileInterpreter, "must be profiling");
1911   Label done;
1912 
1913   record_klass_in_profile_helper(receiver, mdp, reg2, 0, done);
1914 
1915   bind (done);
1916 }
1917 
1918 void InterpreterMacroAssembler::profile_ret(Register return_bci,
1919                                             Register mdp) {
1920   if (ProfileInterpreter) {
1921     Label profile_continue;
1922     uint row;
1923 
1924     // If no method data exists, go to profile_continue.
1925     test_method_data_pointer(mdp, profile_continue);
1926 
1927     // Update the total ret count.
1928     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1929 
1930     for (row = 0; row < RetData::row_limit(); row++) {
1931       Label next_test;
1932 
1933       // See if return_bci is equal to bci[n]:
1934       test_mdp_data_at(mdp,
1935                        in_bytes(RetData::bci_offset(row)),
1936                        return_bci, noreg,
1937                        next_test);
1938 
1939       // return_bci is equal to bci[n].  Increment the count.
1940       increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
1941 
1942       // The method data pointer needs to be updated to reflect the new target.
1943       update_mdp_by_offset(mdp,
1944                            in_bytes(RetData::bci_displacement_offset(row)));
1945       jmp(profile_continue);
1946       bind(next_test);
1947     }
1948 
1949     update_mdp_for_ret(return_bci);
1950 
1951     bind(profile_continue);
1952   }
1953 }
1954 
1955 
1956 void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
1957   if (ProfileInterpreter) {
1958     Label profile_continue;
1959 
1960     // If no method data exists, go to profile_continue.
1961     test_method_data_pointer(mdp, profile_continue);
1962 
1963     set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
1964 
1965     // The method data pointer needs to be updated.
1966     int mdp_delta = in_bytes(BitData::bit_data_size());
1967     if (TypeProfileCasts) {
1968       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1969     }
1970     update_mdp_by_constant(mdp, mdp_delta);
1971 
1972     bind(profile_continue);
1973   }
1974 }
1975 
1976 
1977 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) {
1978   if (ProfileInterpreter) {
1979     Label profile_continue;
1980 
1981     // If no method data exists, go to profile_continue.
1982     test_method_data_pointer(mdp, profile_continue);
1983 
1984     // The method data pointer needs to be updated.
1985     int mdp_delta = in_bytes(BitData::bit_data_size());
1986     if (TypeProfileCasts) {
1987       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1988 
1989       // Record the object type.
1990       record_klass_in_profile(klass, mdp, reg2);
1991       NOT_LP64(assert(reg2 == rdi, "we know how to fix this blown reg");)
1992       NOT_LP64(restore_locals();)         // Restore EDI
1993     }
1994     update_mdp_by_constant(mdp, mdp_delta);
1995 
1996     bind(profile_continue);
1997   }
1998 }
1999 
2000 
2001 void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
2002   if (ProfileInterpreter) {
2003     Label profile_continue;
2004 
2005     // If no method data exists, go to profile_continue.
2006     test_method_data_pointer(mdp, profile_continue);
2007 
2008     // Update the default case count
2009     increment_mdp_data_at(mdp,
2010                           in_bytes(MultiBranchData::default_count_offset()));
2011 
2012     // The method data pointer needs to be updated.
2013     update_mdp_by_offset(mdp,
2014                          in_bytes(MultiBranchData::
2015                                   default_displacement_offset()));
2016 
2017     bind(profile_continue);
2018   }
2019 }
2020 
2021 
2022 void InterpreterMacroAssembler::profile_switch_case(Register index,
2023                                                     Register mdp,
2024                                                     Register reg2) {
2025   if (ProfileInterpreter) {
2026     Label profile_continue;
2027 
2028     // If no method data exists, go to profile_continue.
2029     test_method_data_pointer(mdp, profile_continue);
2030 
2031     // Build the base (index * per_case_size_in_bytes()) +
2032     // case_array_offset_in_bytes()
2033     movl(reg2, in_bytes(MultiBranchData::per_case_size()));
2034     imulptr(index, reg2); // XXX l ?
2035     addptr(index, in_bytes(MultiBranchData::case_array_offset())); // XXX l ?
2036 
2037     // Update the case count
2038     increment_mdp_data_at(mdp,
2039                           index,
2040                           in_bytes(MultiBranchData::relative_count_offset()));
2041 
2042     // The method data pointer needs to be updated.
2043     update_mdp_by_offset(mdp,
2044                          index,
2045                          in_bytes(MultiBranchData::
2046                                   relative_displacement_offset()));
2047 
2048     bind(profile_continue);
2049   }
2050 }
2051 
2052 template <class ArrayData> void InterpreterMacroAssembler::profile_array_type(Register mdp,
2053                                                                               Register array,
2054                                                                               Register tmp) {
2055   if (ProfileInterpreter) {
2056     Label profile_continue;
2057 
2058     // If no method data exists, go to profile_continue.
2059     test_method_data_pointer(mdp, profile_continue);
2060 
2061     mov(tmp, array);
2062     profile_obj_type(tmp, Address(mdp, in_bytes(ArrayData::array_offset())));
2063 
2064     Label not_flat;
2065     test_non_flat_array_oop(array, tmp, not_flat);
2066 
2067     set_mdp_flag_at(mdp, ArrayData::flat_array_byte_constant());
2068 
2069     bind(not_flat);
2070 
2071     Label not_null_free;
2072     test_non_null_free_array_oop(array, tmp, not_null_free);
2073 
2074     set_mdp_flag_at(mdp, ArrayData::null_free_array_byte_constant());
2075 
2076     bind(not_null_free);
2077 
2078     bind(profile_continue);
2079   }
2080 }
2081 
2082 template void InterpreterMacroAssembler::profile_array_type<ArrayLoadData>(Register mdp,
2083                                                                            Register array,
2084                                                                            Register tmp);
2085 template void InterpreterMacroAssembler::profile_array_type<ArrayStoreData>(Register mdp,
2086                                                                             Register array,
2087                                                                             Register tmp);
2088 
2089 
2090 void InterpreterMacroAssembler::profile_multiple_element_types(Register mdp, Register element, Register tmp, const Register tmp2) {
2091   if (ProfileInterpreter) {
2092     Label profile_continue;
2093 
2094     // If no method data exists, go to profile_continue.
2095     test_method_data_pointer(mdp, profile_continue);
2096 
2097     Label done, update;
2098     testptr(element, element);
2099     jccb(Assembler::notZero, update);
2100     set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
2101     jmp(done);
2102 
2103     bind(update);
2104     load_klass(tmp, element, rscratch1);
2105 
2106     // Record the object type.
2107     record_klass_in_profile(tmp, mdp, tmp2);
2108 
2109     bind(done);
2110 
2111     // The method data pointer needs to be updated.
2112     update_mdp_by_constant(mdp, in_bytes(ArrayStoreData::array_store_data_size()));
2113 
2114     bind(profile_continue);
2115   }
2116 }
2117 
2118 void InterpreterMacroAssembler::profile_element_type(Register mdp,
2119                                                      Register element,
2120                                                      Register tmp) {
2121   if (ProfileInterpreter) {
2122     Label profile_continue;
2123 
2124     // If no method data exists, go to profile_continue.
2125     test_method_data_pointer(mdp, profile_continue);
2126 
2127     mov(tmp, element);
2128     profile_obj_type(tmp, Address(mdp, in_bytes(ArrayLoadData::element_offset())));
2129 
2130     // The method data pointer needs to be updated.
2131     update_mdp_by_constant(mdp, in_bytes(ArrayLoadData::array_load_data_size()));
2132 
2133     bind(profile_continue);
2134   }
2135 }
2136 
2137 void InterpreterMacroAssembler::profile_acmp(Register mdp,
2138                                              Register left,
2139                                              Register right,
2140                                              Register tmp) {
2141   if (ProfileInterpreter) {
2142     Label profile_continue;
2143 
2144     // If no method data exists, go to profile_continue.
2145     test_method_data_pointer(mdp, profile_continue);
2146 
2147     mov(tmp, left);
2148     profile_obj_type(tmp, Address(mdp, in_bytes(ACmpData::left_offset())));
2149 
2150     Label left_not_inline_type;
2151     test_oop_is_not_inline_type(left, tmp, left_not_inline_type);
2152     set_mdp_flag_at(mdp, ACmpData::left_inline_type_byte_constant());
2153     bind(left_not_inline_type);
2154 
2155     mov(tmp, right);
2156     profile_obj_type(tmp, Address(mdp, in_bytes(ACmpData::right_offset())));
2157 
2158     Label right_not_inline_type;
2159     test_oop_is_not_inline_type(right, tmp, right_not_inline_type);
2160     set_mdp_flag_at(mdp, ACmpData::right_inline_type_byte_constant());
2161     bind(right_not_inline_type);
2162 
2163     bind(profile_continue);
2164   }
2165 }
2166 
2167 
2168 void InterpreterMacroAssembler::_interp_verify_oop(Register reg, TosState state, const char* file, int line) {
2169   if (state == atos) {
2170     MacroAssembler::_verify_oop_checked(reg, "broken oop", file, line);
2171   }
2172 }
2173 
2174 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
2175 #ifndef _LP64
2176   if ((state == ftos && UseSSE < 1) ||
2177       (state == dtos && UseSSE < 2)) {
2178     MacroAssembler::verify_FPU(stack_depth);
2179   }
2180 #endif
2181 }
2182 
2183 // Jump if ((*counter_addr += increment) & mask) == 0
2184 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr, Address mask,
2185                                                         Register scratch, Label* where) {
2186   // This update is actually not atomic and can lose a number of updates
2187   // under heavy contention, but the alternative of using the (contended)
2188   // atomic update here penalizes profiling paths too much.
2189   movl(scratch, counter_addr);
2190   incrementl(scratch, InvocationCounter::count_increment);
2191   movl(counter_addr, scratch);
2192   andl(scratch, mask);
2193   if (where != nullptr) {
2194     jcc(Assembler::zero, *where);
2195   }
2196 }
2197 
2198 void InterpreterMacroAssembler::notify_method_entry() {
2199   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
2200   // track stack depth.  If it is possible to enter interp_only_mode we add
2201   // the code to check if the event should be sent.
2202   Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
2203   Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rbx);
2204   if (JvmtiExport::can_post_interpreter_events()) {
2205     Label L;
2206     NOT_LP64(get_thread(rthread);)
2207     movl(rdx, Address(rthread, JavaThread::interp_only_mode_offset()));
2208     testl(rdx, rdx);
2209     jcc(Assembler::zero, L);
2210     call_VM(noreg, CAST_FROM_FN_PTR(address,
2211                                     InterpreterRuntime::post_method_entry));
2212     bind(L);
2213   }
2214 
2215   if (DTraceMethodProbes) {
2216     NOT_LP64(get_thread(rthread);)
2217     get_method(rarg);
2218     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
2219                  rthread, rarg);
2220   }
2221 
2222   // RedefineClasses() tracing support for obsolete method entry
2223   if (log_is_enabled(Trace, redefine, class, obsolete)) {
2224     NOT_LP64(get_thread(rthread);)
2225     get_method(rarg);
2226     call_VM_leaf(
2227       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
2228       rthread, rarg);
2229   }
2230 }
2231 
2232 
2233 void InterpreterMacroAssembler::notify_method_exit(
2234     TosState state, NotifyMethodExitMode mode) {
2235   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
2236   // track stack depth.  If it is possible to enter interp_only_mode we add
2237   // the code to check if the event should be sent.
2238   Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
2239   Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rbx);
2240   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
2241     Label L;
2242     // Note: frame::interpreter_frame_result has a dependency on how the
2243     // method result is saved across the call to post_method_exit. If this
2244     // is changed then the interpreter_frame_result implementation will
2245     // need to be updated too.
2246 
2247     // template interpreter will leave the result on the top of the stack.
2248     push(state);
2249     NOT_LP64(get_thread(rthread);)
2250     movl(rdx, Address(rthread, JavaThread::interp_only_mode_offset()));
2251     testl(rdx, rdx);
2252     jcc(Assembler::zero, L);
2253     call_VM(noreg,
2254             CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
2255     bind(L);
2256     pop(state);
2257   }
2258 
2259   if (DTraceMethodProbes) {
2260     push(state);
2261     NOT_LP64(get_thread(rthread);)
2262     get_method(rarg);
2263     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2264                  rthread, rarg);
2265     pop(state);
2266   }
2267 }
2268 
2269 void InterpreterMacroAssembler::load_resolved_indy_entry(Register cache, Register index) {
2270   // Get index out of bytecode pointer
2271   get_cache_index_at_bcp(index, 1, sizeof(u4));
2272   // Get address of invokedynamic array
2273   movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
2274   movptr(cache, Address(cache, in_bytes(ConstantPoolCache::invokedynamic_entries_offset())));
2275   if (is_power_of_2(sizeof(ResolvedIndyEntry))) {
2276     shll(index, log2i_exact(sizeof(ResolvedIndyEntry))); // Scale index by power of 2
2277   } else {
2278     imull(index, index, sizeof(ResolvedIndyEntry)); // Scale the index to be the entry index * sizeof(ResolvedIndyEntry)
2279   }
2280   lea(cache, Address(cache, index, Address::times_1, Array<ResolvedIndyEntry>::base_offset_in_bytes()));
2281 }
2282 
2283 void InterpreterMacroAssembler::load_field_entry(Register cache, Register index, int bcp_offset) {
2284   // Get index out of bytecode pointer
2285   movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
2286   get_cache_index_at_bcp(index, bcp_offset, sizeof(u2));
2287 
2288   movptr(cache, Address(cache, ConstantPoolCache::field_entries_offset()));
2289   // Take shortcut if the size is a power of 2
2290   if (is_power_of_2(sizeof(ResolvedFieldEntry))) {
2291     shll(index, log2i_exact(sizeof(ResolvedFieldEntry))); // Scale index by power of 2
2292   } else {
2293     imull(index, index, sizeof(ResolvedFieldEntry)); // Scale the index to be the entry index * sizeof(ResolvedFieldEntry)
2294   }
2295   lea(cache, Address(cache, index, Address::times_1, Array<ResolvedFieldEntry>::base_offset_in_bytes()));
2296 }
2297 
2298 void InterpreterMacroAssembler::load_method_entry(Register cache, Register index, int bcp_offset) {
2299   // Get index out of bytecode pointer
2300   movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
2301   get_cache_index_at_bcp(index, bcp_offset, sizeof(u2));
2302 
2303   movptr(cache, Address(cache, ConstantPoolCache::method_entries_offset()));
2304   imull(index, index, sizeof(ResolvedMethodEntry)); // Scale the index to be the entry index * sizeof(ResolvedMethodEntry)
2305   lea(cache, Address(cache, index, Address::times_1, Array<ResolvedMethodEntry>::base_offset_in_bytes()));
2306 }