1 /*
2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "compiler/compiler_globals.hpp"
26 #include "interp_masm_x86.hpp"
27 #include "interpreter/interpreter.hpp"
28 #include "interpreter/interpreterRuntime.hpp"
29 #include "logging/log.hpp"
30 #include "oops/arrayOop.hpp"
31 #include "oops/constMethodFlags.hpp"
32 #include "oops/markWord.hpp"
33 #include "oops/methodData.hpp"
34 #include "oops/method.hpp"
35 #include "oops/inlineKlass.hpp"
36 #include "oops/resolvedFieldEntry.hpp"
37 #include "oops/resolvedIndyEntry.hpp"
38 #include "oops/resolvedMethodEntry.hpp"
39 #include "prims/jvmtiExport.hpp"
40 #include "prims/jvmtiThreadState.hpp"
41 #include "runtime/basicLock.hpp"
42 #include "runtime/frame.inline.hpp"
43 #include "runtime/javaThread.hpp"
44 #include "runtime/safepointMechanism.hpp"
45 #include "runtime/sharedRuntime.hpp"
46 #include "utilities/powerOfTwo.hpp"
47
48 // Implementation of InterpreterMacroAssembler
49
50 void InterpreterMacroAssembler::jump_to_entry(address entry) {
51 assert(entry, "Entry must have been generated by now");
52 jump(RuntimeAddress(entry));
53 }
54
55 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) {
56 Label update, next, none;
57
58 assert_different_registers(obj, rscratch1, mdo_addr.base(), mdo_addr.index());
59
60 interp_verify_oop(obj, atos);
61
62 testptr(obj, obj);
63 jccb(Assembler::notZero, update);
64 testptr(mdo_addr, TypeEntries::null_seen);
65 jccb(Assembler::notZero, next); // null already seen. Nothing to do anymore.
66 // atomic update to prevent overwriting Klass* with 0
67 lock();
68 orptr(mdo_addr, TypeEntries::null_seen);
69 jmpb(next);
70
71 bind(update);
72 load_klass(obj, obj, rscratch1);
73 mov(rscratch1, obj);
74
75 xorptr(obj, mdo_addr);
76 testptr(obj, TypeEntries::type_klass_mask);
77 jccb(Assembler::zero, next); // klass seen before, nothing to
78 // do. The unknown bit may have been
79 // set already but no need to check.
80
81 testptr(obj, TypeEntries::type_unknown);
82 jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
83
84 cmpptr(mdo_addr, 0);
85 jccb(Assembler::equal, none);
86 cmpptr(mdo_addr, TypeEntries::null_seen);
87 jccb(Assembler::equal, none);
88
89 // There is a chance that the checks above (re-reading profiling
90 // data from memory) fail if another thread has just set the
91 // profiling to this obj's klass
92 mov(obj, rscratch1);
93 xorptr(obj, mdo_addr);
94 testptr(obj, TypeEntries::type_klass_mask);
95 jccb(Assembler::zero, next);
96
97 // different than before. Cannot keep accurate profile.
98 orptr(mdo_addr, TypeEntries::type_unknown);
99 jmpb(next);
100
101 bind(none);
102 // first time here. Set profile type.
103 movptr(mdo_addr, obj);
104 #ifdef ASSERT
105 andptr(obj, TypeEntries::type_klass_mask);
106 verify_klass_ptr(obj);
107 #endif
108
109 bind(next);
110 }
111
112 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) {
113 if (!ProfileInterpreter) {
114 return;
115 }
116
117 if (MethodData::profile_arguments() || MethodData::profile_return()) {
118 Label profile_continue;
119
120 test_method_data_pointer(mdp, profile_continue);
121
122 int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size());
123
124 cmpb(Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start), is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag);
125 jcc(Assembler::notEqual, profile_continue);
126
127 if (MethodData::profile_arguments()) {
128 Label done;
129 int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset());
130 addptr(mdp, off_to_args);
131
132 for (int i = 0; i < TypeProfileArgsLimit; i++) {
133 if (i > 0 || MethodData::profile_return()) {
134 // If return value type is profiled we may have no argument to profile
135 movptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args));
136 subl(tmp, i*TypeStackSlotEntries::per_arg_count());
137 cmpl(tmp, TypeStackSlotEntries::per_arg_count());
138 jcc(Assembler::less, done);
139 }
140 movptr(tmp, Address(callee, Method::const_offset()));
141 load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset()));
142 // stack offset o (zero based) from the start of the argument
143 // list, for n arguments translates into offset n - o - 1 from
144 // the end of the argument list
145 subptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args));
146 subl(tmp, 1);
147 Address arg_addr = argument_address(tmp);
148 movptr(tmp, arg_addr);
149
150 Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args);
151 profile_obj_type(tmp, mdo_arg_addr);
152
153 int to_add = in_bytes(TypeStackSlotEntries::per_arg_size());
154 addptr(mdp, to_add);
155 off_to_args += to_add;
156 }
157
158 if (MethodData::profile_return()) {
159 movptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args));
160 subl(tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count());
161 }
162
163 bind(done);
164
165 if (MethodData::profile_return()) {
166 // We're right after the type profile for the last
167 // argument. tmp is the number of cells left in the
168 // CallTypeData/VirtualCallTypeData to reach its end. Non null
169 // if there's a return to profile.
170 assert(SingleTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type");
171 shll(tmp, log2i_exact((int)DataLayout::cell_size));
172 addptr(mdp, tmp);
173 }
174 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp);
175 } else {
176 assert(MethodData::profile_return(), "either profile call args or call ret");
177 update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size()));
178 }
179
180 // mdp points right after the end of the
181 // CallTypeData/VirtualCallTypeData, right after the cells for the
182 // return value type if there's one
183
184 bind(profile_continue);
185 }
186 }
187
188 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) {
189 assert_different_registers(mdp, ret, tmp, _bcp_register);
190 if (ProfileInterpreter && MethodData::profile_return()) {
191 Label profile_continue;
192
193 test_method_data_pointer(mdp, profile_continue);
194
195 if (MethodData::profile_return_jsr292_only()) {
196 assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2");
197
198 // If we don't profile all invoke bytecodes we must make sure
199 // it's a bytecode we indeed profile. We can't go back to the
200 // beginning of the ProfileData we intend to update to check its
201 // type because we're right after it and we don't known its
202 // length
203 Label do_profile;
204 cmpb(Address(_bcp_register, 0), Bytecodes::_invokedynamic);
205 jcc(Assembler::equal, do_profile);
206 cmpb(Address(_bcp_register, 0), Bytecodes::_invokehandle);
207 jcc(Assembler::equal, do_profile);
208 get_method(tmp);
209 cmpw(Address(tmp, Method::intrinsic_id_offset()), static_cast<int>(vmIntrinsics::_compiledLambdaForm));
210 jcc(Assembler::notEqual, profile_continue);
211
212 bind(do_profile);
213 }
214
215 Address mdo_ret_addr(mdp, -in_bytes(SingleTypeEntry::size()));
216 mov(tmp, ret);
217 profile_obj_type(tmp, mdo_ret_addr);
218
219 bind(profile_continue);
220 }
221 }
222
223 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) {
224 if (ProfileInterpreter && MethodData::profile_parameters()) {
225 Label profile_continue;
226
227 test_method_data_pointer(mdp, profile_continue);
228
229 // Load the offset of the area within the MDO used for
230 // parameters. If it's negative we're not profiling any parameters
231 movl(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset())));
232 testl(tmp1, tmp1);
233 jcc(Assembler::negative, profile_continue);
234
235 // Compute a pointer to the area for parameters from the offset
236 // and move the pointer to the slot for the last
237 // parameters. Collect profiling from last parameter down.
238 // mdo start + parameters offset + array length - 1
239 addptr(mdp, tmp1);
240 movptr(tmp1, Address(mdp, ArrayData::array_len_offset()));
241 decrement(tmp1, TypeStackSlotEntries::per_arg_count());
242
243 Label loop;
244 bind(loop);
245
246 int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0));
247 int type_base = in_bytes(ParametersTypeData::type_offset(0));
248 Address::ScaleFactor per_arg_scale = Address::times(DataLayout::cell_size);
249 Address arg_off(mdp, tmp1, per_arg_scale, off_base);
250 Address arg_type(mdp, tmp1, per_arg_scale, type_base);
251
252 // load offset on the stack from the slot for this parameter
253 movptr(tmp2, arg_off);
254 negptr(tmp2);
255 // read the parameter from the local area
256 movptr(tmp2, Address(_locals_register, tmp2, Interpreter::stackElementScale()));
257
258 // profile the parameter
259 profile_obj_type(tmp2, arg_type);
260
261 // go to next parameter
262 decrement(tmp1, TypeStackSlotEntries::per_arg_count());
263 jcc(Assembler::positive, loop);
264
265 bind(profile_continue);
266 }
267 }
268
269 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point,
270 int number_of_arguments) {
271 // interpreter specific
272 //
273 // Note: No need to save/restore bcp & locals registers
274 // since these are callee saved registers and no blocking/
275 // GC can happen in leaf calls.
276 // Further Note: DO NOT save/restore bcp/locals. If a caller has
277 // already saved them so that it can use rsi/rdi as temporaries
278 // then a save/restore here will DESTROY the copy the caller
279 // saved! There used to be a save_bcp() that only happened in
280 // the ASSERT path (no restore_bcp). Which caused bizarre failures
281 // when jvm built with ASSERTs.
282 #ifdef ASSERT
283 {
284 Label L;
285 cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
286 jcc(Assembler::equal, L);
287 stop("InterpreterMacroAssembler::call_VM_leaf_base:"
288 " last_sp != null");
289 bind(L);
290 }
291 #endif
292 // super call
293 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
294 // interpreter specific
295 // LP64: Used to ASSERT that r13/r14 were equal to frame's bcp/locals
296 // but since they may not have been saved (and we don't want to
297 // save them here (see note above) the assert is invalid.
298 }
299
300 void InterpreterMacroAssembler::call_VM_base(Register oop_result,
301 Register last_java_sp,
302 address entry_point,
303 int number_of_arguments,
304 bool check_exceptions) {
305 // interpreter specific
306 //
307 // Note: Could avoid restoring locals ptr (callee saved) - however doesn't
308 // really make a difference for these runtime calls, since they are
309 // slow anyway. Btw., bcp must be saved/restored since it may change
310 // due to GC.
311 save_bcp();
312 #ifdef ASSERT
313 {
314 Label L;
315 cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
316 jcc(Assembler::equal, L);
317 stop("InterpreterMacroAssembler::call_VM_base:"
318 " last_sp isn't null");
319 bind(L);
320 }
321 #endif /* ASSERT */
322 // super call
323 MacroAssembler::call_VM_base(oop_result, last_java_sp,
324 entry_point, number_of_arguments,
325 check_exceptions);
326 // interpreter specific
327 restore_bcp();
328 restore_locals();
329 }
330
331 void InterpreterMacroAssembler::call_VM_preemptable_helper(Register oop_result,
332 address entry_point,
333 int number_of_arguments,
334 bool check_exceptions) {
335 assert(InterpreterRuntime::is_preemptable_call(entry_point), "VM call not preemptable, should use call_VM()");
336 Label resume_pc, not_preempted;
337
338 #ifdef ASSERT
339 {
340 Label L1, L2;
341 cmpptr(Address(r15_thread, JavaThread::preempt_alternate_return_offset()), NULL_WORD);
342 jcc(Assembler::equal, L1);
343 stop("call_VM_preemptable_helper: should not have alternate return address set");
344 bind(L1);
345 // We check this counter in patch_return_pc_with_preempt_stub() during freeze.
346 incrementl(Address(r15_thread, JavaThread::interp_at_preemptable_vmcall_cnt_offset()));
347 cmpl(Address(r15_thread, JavaThread::interp_at_preemptable_vmcall_cnt_offset()), 0);
348 jcc(Assembler::greater, L2);
349 stop("call_VM_preemptable_helper: should be > 0");
350 bind(L2);
351 }
352 #endif /* ASSERT */
353
354 // Force freeze slow path.
355 push_cont_fastpath();
356
357 // Make VM call. In case of preemption set last_pc to the one we want to resume to.
358 lea(rscratch1, resume_pc);
359 push(rscratch1);
360 lea(rax, Address(rsp, wordSize));
361 call_VM_base(noreg, rax, entry_point, number_of_arguments, false);
362 pop(rscratch1);
363
364 pop_cont_fastpath();
365
366 #ifdef ASSERT
367 {
368 Label L;
369 decrementl(Address(r15_thread, JavaThread::interp_at_preemptable_vmcall_cnt_offset()));
370 cmpl(Address(r15_thread, JavaThread::interp_at_preemptable_vmcall_cnt_offset()), 0);
371 jcc(Assembler::greaterEqual, L);
372 stop("call_VM_preemptable_helper: should be >= 0");
373 bind(L);
374 }
375 #endif /* ASSERT */
376
377 // Check if preempted.
378 movptr(rscratch1, Address(r15_thread, JavaThread::preempt_alternate_return_offset()));
379 cmpptr(rscratch1, NULL_WORD);
380 jccb(Assembler::zero, not_preempted);
381 movptr(Address(r15_thread, JavaThread::preempt_alternate_return_offset()), NULL_WORD);
382 jmp(rscratch1);
383
384 // In case of preemption, this is where we will resume once we finally acquire the monitor.
385 bind(resume_pc);
386 restore_after_resume(false /* is_native */);
387
388 bind(not_preempted);
389 if (check_exceptions) {
390 // check for pending exceptions
391 cmpptr(Address(r15_thread, Thread::pending_exception_offset()), NULL_WORD);
392 Label ok;
393 jcc(Assembler::equal, ok);
394 // Exception stub expects return pc to be at top of stack. We only need
395 // it to check Interpreter::contains(return_address) so anything will do.
396 lea(rscratch1, resume_pc);
397 push(rscratch1);
398 jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
399 bind(ok);
400 }
401
402 // get oop result if there is one and reset the value in the thread
403 if (oop_result->is_valid()) {
404 get_vm_result_oop(oop_result);
405 }
406 }
407
408 static void pass_arg1(MacroAssembler* masm, Register arg) {
409 if (c_rarg1 != arg ) {
410 masm->mov(c_rarg1, arg);
411 }
412 }
413
414 static void pass_arg2(MacroAssembler* masm, Register arg) {
415 if (c_rarg2 != arg ) {
416 masm->mov(c_rarg2, arg);
417 }
418 }
419
420 void InterpreterMacroAssembler::call_VM_preemptable(Register oop_result,
421 address entry_point,
422 Register arg_1,
423 bool check_exceptions) {
424 pass_arg1(this, arg_1);
425 call_VM_preemptable_helper(oop_result, entry_point, 1, check_exceptions);
426 }
427
428 void InterpreterMacroAssembler::call_VM_preemptable(Register oop_result,
429 address entry_point,
430 Register arg_1,
431 Register arg_2,
432 bool check_exceptions) {
433 LP64_ONLY(assert_different_registers(arg_1, c_rarg2));
434 pass_arg2(this, arg_2);
435 pass_arg1(this, arg_1);
436 call_VM_preemptable_helper(oop_result, entry_point, 2, check_exceptions);
437 }
438
439 void InterpreterMacroAssembler::restore_after_resume(bool is_native) {
440 lea(rscratch1, ExternalAddress(Interpreter::cont_resume_interpreter_adapter()));
441 call(rscratch1);
442 if (is_native) {
443 // On resume we need to set up stack as expected.
444 push(dtos);
445 push(ltos);
446 }
447 }
448
449 void InterpreterMacroAssembler::check_and_handle_popframe() {
450 if (JvmtiExport::can_pop_frame()) {
451 Label L;
452 // Initiate popframe handling only if it is not already being
453 // processed. If the flag has the popframe_processing bit set, it
454 // means that this code is called *during* popframe handling - we
455 // don't want to reenter.
456 // This method is only called just after the call into the vm in
457 // call_VM_base, so the arg registers are available.
458 Register pop_cond = c_rarg0;
459 movl(pop_cond, Address(r15_thread, JavaThread::popframe_condition_offset()));
460 testl(pop_cond, JavaThread::popframe_pending_bit);
461 jcc(Assembler::zero, L);
462 testl(pop_cond, JavaThread::popframe_processing_bit);
463 jcc(Assembler::notZero, L);
464 // Call Interpreter::remove_activation_preserving_args_entry() to get the
465 // address of the same-named entrypoint in the generated interpreter code.
466 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
467 jmp(rax);
468 bind(L);
469 }
470 }
471
472 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
473 movptr(rcx, Address(r15_thread, JavaThread::jvmti_thread_state_offset()));
474 const Address tos_addr(rcx, JvmtiThreadState::earlyret_tos_offset());
475 const Address oop_addr(rcx, JvmtiThreadState::earlyret_oop_offset());
476 const Address val_addr(rcx, JvmtiThreadState::earlyret_value_offset());
477
478 switch (state) {
479 case atos: movptr(rax, oop_addr);
480 movptr(oop_addr, NULL_WORD);
481 interp_verify_oop(rax, state); break;
482 case ltos: movptr(rax, val_addr); break;
483 case btos: // fall through
484 case ztos: // fall through
485 case ctos: // fall through
486 case stos: // fall through
487 case itos: movl(rax, val_addr); break;
488 case ftos: movflt(xmm0, val_addr); break;
489 case dtos: movdbl(xmm0, val_addr); break;
490 case vtos: /* nothing to do */ break;
491 default : ShouldNotReachHere();
492 }
493
494 // Clean up tos value in the thread object
495 movl(tos_addr, ilgl);
496 movptr(val_addr, NULL_WORD);
497 }
498
499
500 void InterpreterMacroAssembler::check_and_handle_earlyret() {
501 if (JvmtiExport::can_force_early_return()) {
502 Label L;
503 Register tmp = c_rarg0;
504 Register rthread = r15_thread;
505
506 movptr(tmp, Address(rthread, JavaThread::jvmti_thread_state_offset()));
507 testptr(tmp, tmp);
508 jcc(Assembler::zero, L); // if (thread->jvmti_thread_state() == nullptr) exit;
509
510 // Initiate earlyret handling only if it is not already being processed.
511 // If the flag has the earlyret_processing bit set, it means that this code
512 // is called *during* earlyret handling - we don't want to reenter.
513 movl(tmp, Address(tmp, JvmtiThreadState::earlyret_state_offset()));
514 cmpl(tmp, JvmtiThreadState::earlyret_pending);
515 jcc(Assembler::notEqual, L);
516
517 // Call Interpreter::remove_activation_early_entry() to get the address of the
518 // same-named entrypoint in the generated interpreter code.
519 movptr(tmp, Address(rthread, JavaThread::jvmti_thread_state_offset()));
520 movl(tmp, Address(tmp, JvmtiThreadState::earlyret_tos_offset()));
521 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), tmp);
522 jmp(rax);
523 bind(L);
524 }
525 }
526
527 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(Register reg, int bcp_offset) {
528 assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
529 load_unsigned_short(reg, Address(_bcp_register, bcp_offset));
530 bswapl(reg);
531 shrl(reg, 16);
532 }
533
534 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index,
535 int bcp_offset,
536 size_t index_size) {
537 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
538 if (index_size == sizeof(u2)) {
539 load_unsigned_short(index, Address(_bcp_register, bcp_offset));
540 } else if (index_size == sizeof(u4)) {
541 movl(index, Address(_bcp_register, bcp_offset));
542 } else if (index_size == sizeof(u1)) {
543 load_unsigned_byte(index, Address(_bcp_register, bcp_offset));
544 } else {
545 ShouldNotReachHere();
546 }
547 }
548
549 // Load object from cpool->resolved_references(index)
550 void InterpreterMacroAssembler::load_resolved_reference_at_index(Register result,
551 Register index,
552 Register tmp) {
553 assert_different_registers(result, index);
554
555 get_constant_pool(result);
556 // load pointer for resolved_references[] objArray
557 movptr(result, Address(result, ConstantPool::cache_offset()));
558 movptr(result, Address(result, ConstantPoolCache::resolved_references_offset()));
559 resolve_oop_handle(result, tmp);
560 load_heap_oop(result, Address(result, index,
561 UseCompressedOops ? Address::times_4 : Address::times_ptr,
562 arrayOopDesc::base_offset_in_bytes(T_OBJECT)), tmp);
563 }
564
565 // load cpool->resolved_klass_at(index)
566 void InterpreterMacroAssembler::load_resolved_klass_at_index(Register klass,
567 Register cpool,
568 Register index) {
569 assert_different_registers(cpool, index);
570
571 movw(index, Address(cpool, index, Address::times_ptr, sizeof(ConstantPool)));
572 Register resolved_klasses = cpool;
573 movptr(resolved_klasses, Address(cpool, ConstantPool::resolved_klasses_offset()));
574 movptr(klass, Address(resolved_klasses, index, Address::times_ptr, Array<Klass*>::base_offset_in_bytes()));
575 }
576
577 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a
578 // subtype of super_klass.
579 //
580 // Args:
581 // rax: superklass
582 // Rsub_klass: subklass
583 //
584 // Kills:
585 // rcx, rdi
586 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
587 Label& ok_is_subtype,
588 bool profile) {
589 assert(Rsub_klass != rax, "rax holds superklass");
590 assert(Rsub_klass != r14, "r14 holds locals");
591 assert(Rsub_klass != r13, "r13 holds bcp");
592 assert(Rsub_klass != rcx, "rcx holds 2ndary super array length");
593 assert(Rsub_klass != rdi, "rdi holds 2ndary super array scan ptr");
594
595 // Profile the not-null value's klass.
596 if (profile) {
597 profile_typecheck(rcx, Rsub_klass, rdi); // blows rcx, reloads rdi
598 }
599
600 // Do the check.
601 check_klass_subtype(Rsub_klass, rax, rcx, ok_is_subtype); // blows rcx
602 }
603
604
605 // Java Expression Stack
606
607 void InterpreterMacroAssembler::pop_ptr(Register r) {
608 pop(r);
609 }
610
611 void InterpreterMacroAssembler::push_ptr(Register r) {
612 push(r);
613 }
614
615 void InterpreterMacroAssembler::push_i(Register r) {
616 push(r);
617 }
618
619 void InterpreterMacroAssembler::push_i_or_ptr(Register r) {
620 push(r);
621 }
622
623 void InterpreterMacroAssembler::push_f(XMMRegister r) {
624 subptr(rsp, wordSize);
625 movflt(Address(rsp, 0), r);
626 }
627
628 void InterpreterMacroAssembler::pop_f(XMMRegister r) {
629 movflt(r, Address(rsp, 0));
630 addptr(rsp, wordSize);
631 }
632
633 void InterpreterMacroAssembler::push_d(XMMRegister r) {
634 subptr(rsp, 2 * wordSize);
635 movdbl(Address(rsp, 0), r);
636 }
637
638 void InterpreterMacroAssembler::pop_d(XMMRegister r) {
639 movdbl(r, Address(rsp, 0));
640 addptr(rsp, 2 * Interpreter::stackElementSize);
641 }
642
643 void InterpreterMacroAssembler::pop_i(Register r) {
644 // XXX can't use pop currently, upper half non clean
645 movl(r, Address(rsp, 0));
646 addptr(rsp, wordSize);
647 }
648
649 void InterpreterMacroAssembler::pop_l(Register r) {
650 movq(r, Address(rsp, 0));
651 addptr(rsp, 2 * Interpreter::stackElementSize);
652 }
653
654 void InterpreterMacroAssembler::push_l(Register r) {
655 subptr(rsp, 2 * wordSize);
656 movptr(Address(rsp, Interpreter::expr_offset_in_bytes(0)), r );
657 movptr(Address(rsp, Interpreter::expr_offset_in_bytes(1)), NULL_WORD );
658 }
659
660 void InterpreterMacroAssembler::pop(TosState state) {
661 switch (state) {
662 case atos: pop_ptr(); break;
663 case btos:
664 case ztos:
665 case ctos:
666 case stos:
667 case itos: pop_i(); break;
668 case ltos: pop_l(); break;
669 case ftos: pop_f(xmm0); break;
670 case dtos: pop_d(xmm0); break;
671 case vtos: /* nothing to do */ break;
672 default: ShouldNotReachHere();
673 }
674 interp_verify_oop(rax, state);
675 }
676
677 void InterpreterMacroAssembler::push(TosState state) {
678 interp_verify_oop(rax, state);
679 switch (state) {
680 case atos: push_ptr(); break;
681 case btos:
682 case ztos:
683 case ctos:
684 case stos:
685 case itos: push_i(); break;
686 case ltos: push_l(); break;
687 case ftos: push_f(xmm0); break;
688 case dtos: push_d(xmm0); break;
689 case vtos: /* nothing to do */ break;
690 default : ShouldNotReachHere();
691 }
692 }
693
694 // Helpers for swap and dup
695 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
696 movptr(val, Address(rsp, Interpreter::expr_offset_in_bytes(n)));
697 }
698
699 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
700 movptr(Address(rsp, Interpreter::expr_offset_in_bytes(n)), val);
701 }
702
703
704 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() {
705 // set sender sp
706 lea(_bcp_register, Address(rsp, wordSize));
707 // record last_sp
708 mov(rcx, _bcp_register);
709 subptr(rcx, rbp);
710 sarptr(rcx, LogBytesPerWord);
711 movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), rcx);
712 }
713
714
715 // Jump to from_interpreted entry of a call unless single stepping is possible
716 // in this thread in which case we must call the i2i entry
717 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
718 prepare_to_jump_from_interpreted();
719
720 if (JvmtiExport::can_post_interpreter_events()) {
721 Label run_compiled_code;
722 // JVMTI events, such as single-stepping, are implemented partly by avoiding running
723 // compiled code in threads for which the event is enabled. Check here for
724 // interp_only_mode if these events CAN be enabled.
725 // interp_only is an int, on little endian it is sufficient to test the byte only
726 // Is a cmpl faster?
727 cmpb(Address(r15_thread, JavaThread::interp_only_mode_offset()), 0);
728 jccb(Assembler::zero, run_compiled_code);
729 jmp(Address(method, Method::interpreter_entry_offset()));
730 bind(run_compiled_code);
731 }
732
733 jmp(Address(method, Method::from_interpreted_offset()));
734 }
735
736 // The following two routines provide a hook so that an implementation
737 // can schedule the dispatch in two parts. x86 does not do this.
738 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
739 // Nothing x86 specific to be done here
740 }
741
742 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
743 dispatch_next(state, step);
744 }
745
746 void InterpreterMacroAssembler::dispatch_base(TosState state,
747 address* table,
748 bool verifyoop,
749 bool generate_poll) {
750 if (VerifyActivationFrameSize) {
751 Label L;
752 mov(rcx, rbp);
753 subptr(rcx, rsp);
754 int32_t min_frame_size =
755 (frame::link_offset - frame::interpreter_frame_initial_sp_offset) *
756 wordSize;
757 cmpptr(rcx, min_frame_size);
758 jcc(Assembler::greaterEqual, L);
759 stop("broken stack frame");
760 bind(L);
761 }
762 if (verifyoop) {
763 interp_verify_oop(rax, state);
764 }
765
766 address* const safepoint_table = Interpreter::safept_table(state);
767 Label no_safepoint, dispatch;
768 if (table != safepoint_table && generate_poll) {
769 NOT_PRODUCT(block_comment("Thread-local Safepoint poll"));
770 testb(Address(r15_thread, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit());
771
772 jccb(Assembler::zero, no_safepoint);
773 lea(rscratch1, ExternalAddress((address)safepoint_table));
774 jmpb(dispatch);
775 }
776
777 bind(no_safepoint);
778 lea(rscratch1, ExternalAddress((address)table));
779 bind(dispatch);
780 jmp(Address(rscratch1, rbx, Address::times_8));
781 }
782
783 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) {
784 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll);
785 }
786
787 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
788 dispatch_base(state, Interpreter::normal_table(state));
789 }
790
791 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
792 dispatch_base(state, Interpreter::normal_table(state), false);
793 }
794
795
796 void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) {
797 // load next bytecode (load before advancing _bcp_register to prevent AGI)
798 load_unsigned_byte(rbx, Address(_bcp_register, step));
799 // advance _bcp_register
800 increment(_bcp_register, step);
801 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll);
802 }
803
804 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
805 // load current bytecode
806 load_unsigned_byte(rbx, Address(_bcp_register, 0));
807 dispatch_base(state, table);
808 }
809
810 void InterpreterMacroAssembler::narrow(Register result) {
811
812 // Get method->_constMethod->_result_type
813 movptr(rcx, Address(rbp, frame::interpreter_frame_method_offset * wordSize));
814 movptr(rcx, Address(rcx, Method::const_offset()));
815 load_unsigned_byte(rcx, Address(rcx, ConstMethod::result_type_offset()));
816
817 Label done, notBool, notByte, notChar;
818
819 // common case first
820 cmpl(rcx, T_INT);
821 jcc(Assembler::equal, done);
822
823 // mask integer result to narrower return type.
824 cmpl(rcx, T_BOOLEAN);
825 jcc(Assembler::notEqual, notBool);
826 andl(result, 0x1);
827 jmp(done);
828
829 bind(notBool);
830 cmpl(rcx, T_BYTE);
831 jcc(Assembler::notEqual, notByte);
832 movsbl(result, result);
833 jmp(done);
834
835 bind(notByte);
836 cmpl(rcx, T_CHAR);
837 jcc(Assembler::notEqual, notChar);
838 movzwl(result, result);
839 jmp(done);
840
841 bind(notChar);
842 // cmpl(rcx, T_SHORT); // all that's left
843 // jcc(Assembler::notEqual, done);
844 movswl(result, result);
845
846 // Nothing to do for T_INT
847 bind(done);
848 }
849
850 // remove activation
851 //
852 // Unlock the receiver if this is a synchronized method.
853 // Unlock any Java monitors from synchronized blocks.
854 // Apply stack watermark barrier.
855 // Notify JVMTI.
856 // Remove the activation from the stack.
857 //
858 // If there are locked Java monitors
859 // If throw_monitor_exception
860 // throws IllegalMonitorStateException
861 // Else if install_monitor_exception
862 // installs IllegalMonitorStateException
863 // Else
864 // no error processing
865 void InterpreterMacroAssembler::remove_activation(TosState state,
866 Register ret_addr,
867 bool throw_monitor_exception,
868 bool install_monitor_exception,
869 bool notify_jvmdi) {
870 // Note: Registers rdx xmm0 may be in use for the
871 // result check if synchronized method
872 Label unlocked, unlock, no_unlock;
873
874 #ifdef ASSERT
875 Label not_preempted;
876 cmpptr(Address(r15_thread, JavaThread::preempt_alternate_return_offset()), NULL_WORD);
877 jcc(Assembler::equal, not_preempted);
878 stop("remove_activation: should not have alternate return address set");
879 bind(not_preempted);
880 #endif /* ASSERT */
881
882 const Register rthread = r15_thread;
883 const Register robj = c_rarg1;
884 const Register rmon = c_rarg1;
885
886 // get the value of _do_not_unlock_if_synchronized into rdx
887 const Address do_not_unlock_if_synchronized(rthread,
888 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
889 movbool(rbx, do_not_unlock_if_synchronized);
890 movbool(do_not_unlock_if_synchronized, false); // reset the flag
891
892 // get method access flags
893 movptr(rcx, Address(rbp, frame::interpreter_frame_method_offset * wordSize));
894 load_unsigned_short(rcx, Address(rcx, Method::access_flags_offset()));
895 testl(rcx, JVM_ACC_SYNCHRONIZED);
896 jcc(Assembler::zero, unlocked);
897
898 // Don't unlock anything if the _do_not_unlock_if_synchronized flag
899 // is set.
900 testbool(rbx);
901 jcc(Assembler::notZero, no_unlock);
902
903 // unlock monitor
904 push(state); // save result
905
906 // BasicObjectLock will be first in list, since this is a
907 // synchronized method. However, need to check that the object has
908 // not been unlocked by an explicit monitorexit bytecode.
909 const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset *
910 wordSize - (int) sizeof(BasicObjectLock));
911 // We use c_rarg1/rdx so that if we go slow path it will be the correct
912 // register for unlock_object to pass to VM directly
913 lea(robj, monitor); // address of first monitor
914
915 movptr(rax, Address(robj, BasicObjectLock::obj_offset()));
916 testptr(rax, rax);
917 jcc(Assembler::notZero, unlock);
918
919 pop(state);
920 if (throw_monitor_exception) {
921 // Entry already unlocked, need to throw exception
922 call_VM(noreg, CAST_FROM_FN_PTR(address,
923 InterpreterRuntime::throw_illegal_monitor_state_exception));
924 should_not_reach_here();
925 } else {
926 // Monitor already unlocked during a stack unroll. If requested,
927 // install an illegal_monitor_state_exception. Continue with
928 // stack unrolling.
929 if (install_monitor_exception) {
930 call_VM(noreg, CAST_FROM_FN_PTR(address,
931 InterpreterRuntime::new_illegal_monitor_state_exception));
932 }
933 jmp(unlocked);
934 }
935
936 bind(unlock);
937 unlock_object(robj);
938 pop(state);
939
940 // Check that for block-structured locking (i.e., that all locked
941 // objects has been unlocked)
942 bind(unlocked);
943
944 // rax, rdx: Might contain return value
945
946 // Check that all monitors are unlocked
947 {
948 Label loop, exception, entry, restart;
949 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
950 const Address monitor_block_top(
951 rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
952 const Address monitor_block_bot(
953 rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
954
955 bind(restart);
956 // We use c_rarg1 so that if we go slow path it will be the correct
957 // register for unlock_object to pass to VM directly
958 movptr(rmon, monitor_block_top); // derelativize pointer
959 lea(rmon, Address(rbp, rmon, Address::times_ptr));
960 // c_rarg1 points to current entry, starting with top-most entry
961
962 lea(rbx, monitor_block_bot); // points to word before bottom of
963 // monitor block
964 jmp(entry);
965
966 // Entry already locked, need to throw exception
967 bind(exception);
968
969 if (throw_monitor_exception) {
970 // Throw exception
971 MacroAssembler::call_VM(noreg,
972 CAST_FROM_FN_PTR(address, InterpreterRuntime::
973 throw_illegal_monitor_state_exception));
974 should_not_reach_here();
975 } else {
976 // Stack unrolling. Unlock object and install illegal_monitor_exception.
977 // Unlock does not block, so don't have to worry about the frame.
978 // We don't have to preserve c_rarg1 since we are going to throw an exception.
979
980 push(state);
981 mov(robj, rmon); // nop if robj and rmon are the same
982 unlock_object(robj);
983 pop(state);
984
985 if (install_monitor_exception) {
986 call_VM(noreg, CAST_FROM_FN_PTR(address,
987 InterpreterRuntime::
988 new_illegal_monitor_state_exception));
989 }
990
991 jmp(restart);
992 }
993
994 bind(loop);
995 // check if current entry is used
996 cmpptr(Address(rmon, BasicObjectLock::obj_offset()), NULL_WORD);
997 jcc(Assembler::notEqual, exception);
998
999 addptr(rmon, entry_size); // otherwise advance to next entry
1000 bind(entry);
1001 cmpptr(rmon, rbx); // check if bottom reached
1002 jcc(Assembler::notEqual, loop); // if not at bottom then check this entry
1003 }
1004
1005 bind(no_unlock);
1006
1007 JFR_ONLY(enter_jfr_critical_section();)
1008
1009 // The below poll is for the stack watermark barrier. It allows fixing up frames lazily,
1010 // that would normally not be safe to use. Such bad returns into unsafe territory of
1011 // the stack, will call InterpreterRuntime::at_unwind.
1012 Label slow_path;
1013 Label fast_path;
1014 safepoint_poll(slow_path, true /* at_return */, false /* in_nmethod */);
1015 jmp(fast_path);
1016 bind(slow_path);
1017 push(state);
1018 set_last_Java_frame(noreg, rbp, (address)pc(), rscratch1);
1019 super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), r15_thread);
1020 reset_last_Java_frame(true);
1021 pop(state);
1022 bind(fast_path);
1023
1024 // JVMTI support. Make sure the safepoint poll test is issued prior.
1025 if (notify_jvmdi) {
1026 notify_method_exit(state, NotifyJVMTI); // preserve TOSCA
1027 } else {
1028 notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
1029 }
1030
1031 if (StackReservedPages > 0) {
1032 movptr(rbx,
1033 Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize));
1034 // testing if reserved zone needs to be re-enabled
1035 Register rthread = r15_thread;
1036 Label no_reserved_zone_enabling;
1037
1038 // check if already enabled - if so no re-enabling needed
1039 assert(sizeof(StackOverflow::StackGuardState) == 4, "unexpected size");
1040 cmpl(Address(rthread, JavaThread::stack_guard_state_offset()), StackOverflow::stack_guard_enabled);
1041 jcc(Assembler::equal, no_reserved_zone_enabling);
1042
1043 cmpptr(rbx, Address(rthread, JavaThread::reserved_stack_activation_offset()));
1044 jcc(Assembler::lessEqual, no_reserved_zone_enabling);
1045
1046 JFR_ONLY(leave_jfr_critical_section();)
1047
1048 call_VM_leaf(
1049 CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), rthread);
1050 call_VM(noreg, CAST_FROM_FN_PTR(address,
1051 InterpreterRuntime::throw_delayed_StackOverflowError));
1052 should_not_reach_here();
1053
1054 bind(no_reserved_zone_enabling);
1055 }
1056
1057 // remove activation
1058 // get sender sp
1059 movptr(rbx,
1060 Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize));
1061
1062 if (state == atos && InlineTypeReturnedAsFields) {
1063 Label skip;
1064 Label not_null;
1065 testptr(rax, rax);
1066 jcc(Assembler::notZero, not_null);
1067 // Returned value is null, zero all return registers because they may belong to oop fields
1068 xorq(j_rarg1, j_rarg1);
1069 xorq(j_rarg2, j_rarg2);
1070 xorq(j_rarg3, j_rarg3);
1071 xorq(j_rarg4, j_rarg4);
1072 xorq(j_rarg5, j_rarg5);
1073 jmp(skip);
1074 bind(not_null);
1075
1076 // Check if we are returning an non-null inline type and load its fields into registers
1077 test_oop_is_not_inline_type(rax, rscratch1, skip, /* can_be_null= */ false);
1078
1079 #ifndef _LP64
1080 super_call_VM_leaf(StubRoutines::load_inline_type_fields_in_regs());
1081 #else
1082 // Load fields from a buffered value with an inline class specific handler
1083 load_klass(rdi, rax, rscratch1);
1084 movptr(rdi, Address(rdi, InstanceKlass::adr_inlineklass_fixed_block_offset()));
1085 movptr(rdi, Address(rdi, InlineKlass::unpack_handler_offset()));
1086 // Unpack handler can be null if inline type is not scalarizable in returns
1087 testptr(rdi, rdi);
1088 jcc(Assembler::zero, skip);
1089 call(rdi);
1090 #endif
1091 #ifdef ASSERT
1092 // TODO 8284443 Enable
1093 if (StressCallingConvention && false) {
1094 Label skip_stress;
1095 movptr(rscratch1, Address(rbp, frame::interpreter_frame_method_offset * wordSize));
1096 movl(rscratch1, Address(rscratch1, Method::flags_offset()));
1097 testl(rcx, MethodFlags::has_scalarized_return_flag());
1098 jcc(Assembler::zero, skip_stress);
1099 load_klass(rax, rax, rscratch1);
1100 orptr(rax, 1);
1101 bind(skip_stress);
1102 }
1103 #endif
1104 // call above kills the value in rbx. Reload it.
1105 movptr(rbx, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize));
1106 bind(skip);
1107 }
1108
1109 leave(); // remove frame anchor
1110
1111 JFR_ONLY(leave_jfr_critical_section();)
1112
1113 pop(ret_addr); // get return address
1114 mov(rsp, rbx); // set sp to sender sp
1115 pop_cont_fastpath();
1116
1117 }
1118
1119 #if INCLUDE_JFR
1120 void InterpreterMacroAssembler::enter_jfr_critical_section() {
1121 const Address sampling_critical_section(r15_thread, in_bytes(SAMPLING_CRITICAL_SECTION_OFFSET_JFR));
1122 movbool(sampling_critical_section, true);
1123 }
1124
1125 void InterpreterMacroAssembler::leave_jfr_critical_section() {
1126 const Address sampling_critical_section(r15_thread, in_bytes(SAMPLING_CRITICAL_SECTION_OFFSET_JFR));
1127 movbool(sampling_critical_section, false);
1128 }
1129 #endif // INCLUDE_JFR
1130
1131 void InterpreterMacroAssembler::get_method_counters(Register method,
1132 Register mcs, Label& skip) {
1133 Label has_counters;
1134 movptr(mcs, Address(method, Method::method_counters_offset()));
1135 testptr(mcs, mcs);
1136 jcc(Assembler::notZero, has_counters);
1137 call_VM(noreg, CAST_FROM_FN_PTR(address,
1138 InterpreterRuntime::build_method_counters), method);
1139 movptr(mcs, Address(method,Method::method_counters_offset()));
1140 testptr(mcs, mcs);
1141 jcc(Assembler::zero, skip); // No MethodCounters allocated, OutOfMemory
1142 bind(has_counters);
1143 }
1144
1145 void InterpreterMacroAssembler::allocate_instance(Register klass, Register new_obj,
1146 Register t1, Register t2,
1147 bool clear_fields, Label& alloc_failed) {
1148 MacroAssembler::allocate_instance(klass, new_obj, t1, t2, clear_fields, alloc_failed);
1149 if (DTraceAllocProbes) {
1150 // Trigger dtrace event for fastpath
1151 push(atos);
1152 call_VM_leaf(CAST_FROM_FN_PTR(address, static_cast<int (*)(oopDesc*)>(SharedRuntime::dtrace_object_alloc)), new_obj);
1153 pop(atos);
1154 }
1155 }
1156
1157 void InterpreterMacroAssembler::read_flat_field(Register entry, Register tmp1, Register tmp2, Register obj) {
1158 Label alloc_failed, slow_path, done;
1159 const Register alloc_temp = LP64_ONLY(rscratch1) NOT_LP64(rsi);
1160 const Register dst_temp = LP64_ONLY(rscratch2) NOT_LP64(rdi);
1161 assert_different_registers(obj, entry, tmp1, tmp2, dst_temp, r8, r9);
1162
1163 // If the field is nullable, jump to slow path
1164 load_unsigned_byte(tmp1, Address(entry, in_bytes(ResolvedFieldEntry::flags_offset())));
1165 testl(tmp1, 1 << ResolvedFieldEntry::is_null_free_inline_type_shift);
1166 jcc(Assembler::equal, slow_path);
1167
1168 // Grap the inline field klass
1169 const Register field_klass = tmp1;
1170 load_unsigned_short(tmp2, Address(entry, in_bytes(ResolvedFieldEntry::field_index_offset())));
1171
1172 movptr(tmp1, Address(entry, ResolvedFieldEntry::field_holder_offset()));
1173 get_inline_type_field_klass(tmp1, tmp2, field_klass);
1174
1175 // allocate buffer
1176 push(obj); // push object being read from
1177 allocate_instance(field_klass, obj, alloc_temp, dst_temp, false, alloc_failed);
1178
1179 // Have an oop instance buffer, copy into it
1180 load_unsigned_short(r9, Address(entry, in_bytes(ResolvedFieldEntry::field_index_offset())));
1181 movptr(r8, Address(entry, in_bytes(ResolvedFieldEntry::field_holder_offset())));
1182 inline_layout_info(r8, r9, r8); // holder, index, info => InlineLayoutInfo into r8
1183
1184 payload_addr(obj, dst_temp, field_klass);
1185 pop(alloc_temp); // restore object being read from
1186 load_sized_value(tmp2, Address(entry, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/);
1187 lea(tmp2, Address(alloc_temp, tmp2));
1188 // call_VM_leaf, clobbers a few regs, save restore new obj
1189 push(obj);
1190 flat_field_copy(IS_DEST_UNINITIALIZED, tmp2, dst_temp, r8);
1191 pop(obj);
1192 jmp(done);
1193
1194 bind(alloc_failed);
1195 pop(obj);
1196 bind(slow_path);
1197 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::read_flat_field),
1198 obj, entry);
1199 get_vm_result_oop(obj);
1200 bind(done);
1201 }
1202
1203 void InterpreterMacroAssembler::write_flat_field(Register entry, Register tmp1, Register tmp2,
1204 Register obj, Register off, Register value) {
1205 assert_different_registers(entry, tmp1, tmp2, obj, off, value);
1206
1207 Label slow_path, done;
1208
1209 load_unsigned_byte(tmp2, Address(entry, in_bytes(ResolvedFieldEntry::flags_offset())));
1210 test_field_is_not_null_free_inline_type(tmp2, tmp1, slow_path);
1211
1212 null_check(value); // FIXME JDK-8341120
1213
1214 lea(obj, Address(obj, off, Address::times_1));
1215
1216 load_klass(tmp2, value, tmp1);
1217 payload_addr(value, value, tmp2);
1218
1219 Register idx = tmp1;
1220 load_unsigned_short(idx, Address(entry, in_bytes(ResolvedFieldEntry::field_index_offset())));
1221 movptr(tmp2, Address(entry, in_bytes(ResolvedFieldEntry::field_holder_offset())));
1222
1223 Register layout_info = off;
1224 inline_layout_info(tmp2, idx, layout_info);
1225
1226 flat_field_copy(IN_HEAP, value, obj, layout_info);
1227 jmp(done);
1228
1229 bind(slow_path);
1230 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::write_flat_field), obj, value, entry);
1231
1232 bind(done);
1233 }
1234
1235 // Lock object
1236 //
1237 // Args:
1238 // rdx, c_rarg1: BasicObjectLock to be used for locking
1239 //
1240 // Kills:
1241 // rax, rbx
1242 void InterpreterMacroAssembler::lock_object(Register lock_reg) {
1243 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1");
1244
1245 Label done, slow_case;
1246
1247 const Register swap_reg = rax; // Must use rax for cmpxchg instruction
1248 const Register tmp_reg = rbx;
1249 const Register obj_reg = c_rarg3; // Will contain the oop
1250
1251 // Load object pointer into obj_reg
1252 movptr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset()));
1253
1254 lightweight_lock(lock_reg, obj_reg, swap_reg, tmp_reg, slow_case);
1255 jmp(done);
1256
1257 bind(slow_case);
1258
1259 // Call the runtime routine for slow case
1260 call_VM_preemptable(noreg,
1261 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
1262 lock_reg);
1263 bind(done);
1264 }
1265
1266
1267 // Unlocks an object. Used in monitorexit bytecode and
1268 // remove_activation. Throws an IllegalMonitorException if object is
1269 // not locked by current thread.
1270 //
1271 // Args:
1272 // rdx, c_rarg1: BasicObjectLock for lock
1273 //
1274 // Kills:
1275 // rax
1276 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs)
1277 // rscratch1 (scratch reg)
1278 // rax, rbx, rcx, rdx
1279 void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
1280 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1");
1281
1282 Label done, slow_case;
1283
1284 const Register swap_reg = rax; // Must use rax for cmpxchg instruction
1285 const Register header_reg = c_rarg2; // Will contain the old oopMark
1286 const Register obj_reg = c_rarg3; // Will contain the oop
1287
1288 save_bcp(); // Save in case of exception
1289
1290 // Load oop into obj_reg(%c_rarg3)
1291 movptr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset()));
1292
1293 // Free entry
1294 movptr(Address(lock_reg, BasicObjectLock::obj_offset()), NULL_WORD);
1295
1296 lightweight_unlock(obj_reg, swap_reg, header_reg, slow_case);
1297 jmp(done);
1298
1299 bind(slow_case);
1300 // Call the runtime routine for slow case.
1301 movptr(Address(lock_reg, BasicObjectLock::obj_offset()), obj_reg); // restore obj
1302 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
1303
1304 bind(done);
1305
1306 restore_bcp();
1307 }
1308
1309 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp,
1310 Label& zero_continue) {
1311 assert(ProfileInterpreter, "must be profiling interpreter");
1312 movptr(mdp, Address(rbp, frame::interpreter_frame_mdp_offset * wordSize));
1313 testptr(mdp, mdp);
1314 jcc(Assembler::zero, zero_continue);
1315 }
1316
1317
1318 // Set the method data pointer for the current bcp.
1319 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
1320 assert(ProfileInterpreter, "must be profiling interpreter");
1321 Label set_mdp;
1322 push(rax);
1323 push(rbx);
1324
1325 get_method(rbx);
1326 // Test MDO to avoid the call if it is null.
1327 movptr(rax, Address(rbx, in_bytes(Method::method_data_offset())));
1328 testptr(rax, rax);
1329 jcc(Assembler::zero, set_mdp);
1330 // rbx: method
1331 // _bcp_register: bcp
1332 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rbx, _bcp_register);
1333 // rax: mdi
1334 // mdo is guaranteed to be non-zero here, we checked for it before the call.
1335 movptr(rbx, Address(rbx, in_bytes(Method::method_data_offset())));
1336 addptr(rbx, in_bytes(MethodData::data_offset()));
1337 addptr(rax, rbx);
1338 bind(set_mdp);
1339 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), rax);
1340 pop(rbx);
1341 pop(rax);
1342 }
1343
1344 void InterpreterMacroAssembler::verify_method_data_pointer() {
1345 assert(ProfileInterpreter, "must be profiling interpreter");
1346 #ifdef ASSERT
1347 Label verify_continue;
1348 push(rax);
1349 push(rbx);
1350 Register arg3_reg = c_rarg3;
1351 Register arg2_reg = c_rarg2;
1352 push(arg3_reg);
1353 push(arg2_reg);
1354 test_method_data_pointer(arg3_reg, verify_continue); // If mdp is zero, continue
1355 get_method(rbx);
1356
1357 // If the mdp is valid, it will point to a DataLayout header which is
1358 // consistent with the bcp. The converse is highly probable also.
1359 load_unsigned_short(arg2_reg,
1360 Address(arg3_reg, in_bytes(DataLayout::bci_offset())));
1361 addptr(arg2_reg, Address(rbx, Method::const_offset()));
1362 lea(arg2_reg, Address(arg2_reg, ConstMethod::codes_offset()));
1363 cmpptr(arg2_reg, _bcp_register);
1364 jcc(Assembler::equal, verify_continue);
1365 // rbx: method
1366 // _bcp_register: bcp
1367 // c_rarg3: mdp
1368 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp),
1369 rbx, _bcp_register, arg3_reg);
1370 bind(verify_continue);
1371 pop(arg2_reg);
1372 pop(arg3_reg);
1373 pop(rbx);
1374 pop(rax);
1375 #endif // ASSERT
1376 }
1377
1378
1379 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in,
1380 int constant,
1381 Register value) {
1382 assert(ProfileInterpreter, "must be profiling interpreter");
1383 Address data(mdp_in, constant);
1384 movptr(data, value);
1385 }
1386
1387
1388 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
1389 int constant) {
1390 assert(ProfileInterpreter, "must be profiling interpreter");
1391 Address data(mdp_in, constant);
1392 addptr(data, DataLayout::counter_increment);
1393 }
1394
1395
1396 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
1397 Register index,
1398 int constant) {
1399 assert(ProfileInterpreter, "must be profiling interpreter");
1400 Address data(mdp_in, index, Address::times_1, constant);
1401 addptr(data, DataLayout::counter_increment);
1402 }
1403
1404 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in,
1405 int flag_byte_constant) {
1406 assert(ProfileInterpreter, "must be profiling interpreter");
1407 int header_offset = in_bytes(DataLayout::flags_offset());
1408 int header_bits = flag_byte_constant;
1409 // Set the flag
1410 orb(Address(mdp_in, header_offset), header_bits);
1411 }
1412
1413
1414
1415 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
1416 int offset,
1417 Register value,
1418 Register test_value_out,
1419 Label& not_equal_continue) {
1420 assert(ProfileInterpreter, "must be profiling interpreter");
1421 if (test_value_out == noreg) {
1422 cmpptr(value, Address(mdp_in, offset));
1423 } else {
1424 // Put the test value into a register, so caller can use it:
1425 movptr(test_value_out, Address(mdp_in, offset));
1426 cmpptr(test_value_out, value);
1427 }
1428 jcc(Assembler::notEqual, not_equal_continue);
1429 }
1430
1431
1432 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
1433 int offset_of_disp) {
1434 assert(ProfileInterpreter, "must be profiling interpreter");
1435 Address disp_address(mdp_in, offset_of_disp);
1436 addptr(mdp_in, disp_address);
1437 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in);
1438 }
1439
1440
1441 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
1442 Register reg,
1443 int offset_of_disp) {
1444 assert(ProfileInterpreter, "must be profiling interpreter");
1445 Address disp_address(mdp_in, reg, Address::times_1, offset_of_disp);
1446 addptr(mdp_in, disp_address);
1447 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in);
1448 }
1449
1450
1451 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in,
1452 int constant) {
1453 assert(ProfileInterpreter, "must be profiling interpreter");
1454 addptr(mdp_in, constant);
1455 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in);
1456 }
1457
1458
1459 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
1460 assert(ProfileInterpreter, "must be profiling interpreter");
1461 push(return_bci); // save/restore across call_VM
1462 call_VM(noreg,
1463 CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret),
1464 return_bci);
1465 pop(return_bci);
1466 }
1467
1468
1469 void InterpreterMacroAssembler::profile_taken_branch(Register mdp) {
1470 if (ProfileInterpreter) {
1471 Label profile_continue;
1472
1473 // If no method data exists, go to profile_continue.
1474 test_method_data_pointer(mdp, profile_continue);
1475
1476 // We are taking a branch. Increment the taken count.
1477 increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
1478
1479 // The method data pointer needs to be updated to reflect the new target.
1480 update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
1481 bind(profile_continue);
1482 }
1483 }
1484
1485
1486 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp, bool acmp) {
1487 if (ProfileInterpreter) {
1488 Label profile_continue;
1489
1490 // If no method data exists, go to profile_continue.
1491 test_method_data_pointer(mdp, profile_continue);
1492
1493 // We are not taking a branch. Increment the not taken count.
1494 increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
1495
1496 // The method data pointer needs to be updated to correspond to
1497 // the next bytecode
1498 update_mdp_by_constant(mdp, acmp ? in_bytes(ACmpData::acmp_data_size()): in_bytes(BranchData::branch_data_size()));
1499 bind(profile_continue);
1500 }
1501 }
1502
1503 void InterpreterMacroAssembler::profile_call(Register mdp) {
1504 if (ProfileInterpreter) {
1505 Label profile_continue;
1506
1507 // If no method data exists, go to profile_continue.
1508 test_method_data_pointer(mdp, profile_continue);
1509
1510 // We are making a call. Increment the count.
1511 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1512
1513 // The method data pointer needs to be updated to reflect the new target.
1514 update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
1515 bind(profile_continue);
1516 }
1517 }
1518
1519
1520 void InterpreterMacroAssembler::profile_final_call(Register mdp) {
1521 if (ProfileInterpreter) {
1522 Label profile_continue;
1523
1524 // If no method data exists, go to profile_continue.
1525 test_method_data_pointer(mdp, profile_continue);
1526
1527 // We are making a call. Increment the count.
1528 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1529
1530 // The method data pointer needs to be updated to reflect the new target.
1531 update_mdp_by_constant(mdp,
1532 in_bytes(VirtualCallData::
1533 virtual_call_data_size()));
1534 bind(profile_continue);
1535 }
1536 }
1537
1538
1539 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
1540 Register mdp,
1541 Register reg2,
1542 bool receiver_can_be_null) {
1543 if (ProfileInterpreter) {
1544 Label profile_continue;
1545
1546 // If no method data exists, go to profile_continue.
1547 test_method_data_pointer(mdp, profile_continue);
1548
1549 Label skip_receiver_profile;
1550 if (receiver_can_be_null) {
1551 Label not_null;
1552 testptr(receiver, receiver);
1553 jccb(Assembler::notZero, not_null);
1554 // We are making a call. Increment the count for null receiver.
1555 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1556 jmp(skip_receiver_profile);
1557 bind(not_null);
1558 }
1559
1560 // Record the receiver type.
1561 record_klass_in_profile(receiver, mdp, reg2);
1562 bind(skip_receiver_profile);
1563
1564 // The method data pointer needs to be updated to reflect the new target.
1565 update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
1566 bind(profile_continue);
1567 }
1568 }
1569
1570 // This routine creates a state machine for updating the multi-row
1571 // type profile at a virtual call site (or other type-sensitive bytecode).
1572 // The machine visits each row (of receiver/count) until the receiver type
1573 // is found, or until it runs out of rows. At the same time, it remembers
1574 // the location of the first empty row. (An empty row records null for its
1575 // receiver, and can be allocated for a newly-observed receiver type.)
1576 // Because there are two degrees of freedom in the state, a simple linear
1577 // search will not work; it must be a decision tree. Hence this helper
1578 // function is recursive, to generate the required tree structured code.
1579 // It's the interpreter, so we are trading off code space for speed.
1580 // See below for example code.
1581 void InterpreterMacroAssembler::record_klass_in_profile_helper(Register receiver, Register mdp,
1582 Register reg2, int start_row,
1583 Label& done) {
1584 if (TypeProfileWidth == 0) {
1585 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1586 } else {
1587 record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth,
1588 &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset);
1589 }
1590 }
1591
1592 void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp, Register reg2, int start_row,
1593 Label& done, int total_rows,
1594 OffsetFunction item_offset_fn,
1595 OffsetFunction item_count_offset_fn) {
1596 int last_row = total_rows - 1;
1597 assert(start_row <= last_row, "must be work left to do");
1598 // Test this row for both the item and for null.
1599 // Take any of three different outcomes:
1600 // 1. found item => increment count and goto done
1601 // 2. found null => keep looking for case 1, maybe allocate this cell
1602 // 3. found something else => keep looking for cases 1 and 2
1603 // Case 3 is handled by a recursive call.
1604 for (int row = start_row; row <= last_row; row++) {
1605 Label next_test;
1606 bool test_for_null_also = (row == start_row);
1607
1608 // See if the item is item[n].
1609 int item_offset = in_bytes(item_offset_fn(row));
1610 test_mdp_data_at(mdp, item_offset, item,
1611 (test_for_null_also ? reg2 : noreg),
1612 next_test);
1613 // (Reg2 now contains the item from the CallData.)
1614
1615 // The item is item[n]. Increment count[n].
1616 int count_offset = in_bytes(item_count_offset_fn(row));
1617 increment_mdp_data_at(mdp, count_offset);
1618 jmp(done);
1619 bind(next_test);
1620
1621 if (test_for_null_also) {
1622 // Failed the equality check on item[n]... Test for null.
1623 testptr(reg2, reg2);
1624 if (start_row == last_row) {
1625 // The only thing left to do is handle the null case.
1626 Label found_null;
1627 jccb(Assembler::zero, found_null);
1628 // Item did not match any saved item and there is no empty row for it.
1629 // Increment total counter to indicate polymorphic case.
1630 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1631 jmp(done);
1632 bind(found_null);
1633 break;
1634 }
1635 Label found_null;
1636 // Since null is rare, make it be the branch-taken case.
1637 jcc(Assembler::zero, found_null);
1638
1639 // Put all the "Case 3" tests here.
1640 record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows,
1641 item_offset_fn, item_count_offset_fn);
1642
1643 // Found a null. Keep searching for a matching item,
1644 // but remember that this is an empty (unused) slot.
1645 bind(found_null);
1646 }
1647 }
1648
1649 // In the fall-through case, we found no matching item, but we
1650 // observed the item[start_row] is null.
1651
1652 // Fill in the item field and increment the count.
1653 int item_offset = in_bytes(item_offset_fn(start_row));
1654 set_mdp_data_at(mdp, item_offset, item);
1655 int count_offset = in_bytes(item_count_offset_fn(start_row));
1656 movl(reg2, DataLayout::counter_increment);
1657 set_mdp_data_at(mdp, count_offset, reg2);
1658 if (start_row > 0) {
1659 jmp(done);
1660 }
1661 }
1662
1663 // Example state machine code for three profile rows:
1664 // // main copy of decision tree, rooted at row[1]
1665 // if (row[0].rec == rec) { row[0].incr(); goto done; }
1666 // if (row[0].rec != nullptr) {
1667 // // inner copy of decision tree, rooted at row[1]
1668 // if (row[1].rec == rec) { row[1].incr(); goto done; }
1669 // if (row[1].rec != nullptr) {
1670 // // degenerate decision tree, rooted at row[2]
1671 // if (row[2].rec == rec) { row[2].incr(); goto done; }
1672 // if (row[2].rec != nullptr) { count.incr(); goto done; } // overflow
1673 // row[2].init(rec); goto done;
1674 // } else {
1675 // // remember row[1] is empty
1676 // if (row[2].rec == rec) { row[2].incr(); goto done; }
1677 // row[1].init(rec); goto done;
1678 // }
1679 // } else {
1680 // // remember row[0] is empty
1681 // if (row[1].rec == rec) { row[1].incr(); goto done; }
1682 // if (row[2].rec == rec) { row[2].incr(); goto done; }
1683 // row[0].init(rec); goto done;
1684 // }
1685 // done:
1686
1687 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver, Register mdp, Register reg2) {
1688 assert(ProfileInterpreter, "must be profiling");
1689 Label done;
1690
1691 record_klass_in_profile_helper(receiver, mdp, reg2, 0, done);
1692
1693 bind (done);
1694 }
1695
1696 void InterpreterMacroAssembler::profile_ret(Register return_bci,
1697 Register mdp) {
1698 if (ProfileInterpreter) {
1699 Label profile_continue;
1700 uint row;
1701
1702 // If no method data exists, go to profile_continue.
1703 test_method_data_pointer(mdp, profile_continue);
1704
1705 // Update the total ret count.
1706 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1707
1708 for (row = 0; row < RetData::row_limit(); row++) {
1709 Label next_test;
1710
1711 // See if return_bci is equal to bci[n]:
1712 test_mdp_data_at(mdp,
1713 in_bytes(RetData::bci_offset(row)),
1714 return_bci, noreg,
1715 next_test);
1716
1717 // return_bci is equal to bci[n]. Increment the count.
1718 increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
1719
1720 // The method data pointer needs to be updated to reflect the new target.
1721 update_mdp_by_offset(mdp,
1722 in_bytes(RetData::bci_displacement_offset(row)));
1723 jmp(profile_continue);
1724 bind(next_test);
1725 }
1726
1727 update_mdp_for_ret(return_bci);
1728
1729 bind(profile_continue);
1730 }
1731 }
1732
1733
1734 void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
1735 if (ProfileInterpreter) {
1736 Label profile_continue;
1737
1738 // If no method data exists, go to profile_continue.
1739 test_method_data_pointer(mdp, profile_continue);
1740
1741 set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
1742
1743 // The method data pointer needs to be updated.
1744 int mdp_delta = in_bytes(BitData::bit_data_size());
1745 if (TypeProfileCasts) {
1746 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1747 }
1748 update_mdp_by_constant(mdp, mdp_delta);
1749
1750 bind(profile_continue);
1751 }
1752 }
1753
1754
1755 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) {
1756 if (ProfileInterpreter) {
1757 Label profile_continue;
1758
1759 // If no method data exists, go to profile_continue.
1760 test_method_data_pointer(mdp, profile_continue);
1761
1762 // The method data pointer needs to be updated.
1763 int mdp_delta = in_bytes(BitData::bit_data_size());
1764 if (TypeProfileCasts) {
1765 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1766
1767 // Record the object type.
1768 record_klass_in_profile(klass, mdp, reg2);
1769 }
1770 update_mdp_by_constant(mdp, mdp_delta);
1771
1772 bind(profile_continue);
1773 }
1774 }
1775
1776
1777 void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
1778 if (ProfileInterpreter) {
1779 Label profile_continue;
1780
1781 // If no method data exists, go to profile_continue.
1782 test_method_data_pointer(mdp, profile_continue);
1783
1784 // Update the default case count
1785 increment_mdp_data_at(mdp,
1786 in_bytes(MultiBranchData::default_count_offset()));
1787
1788 // The method data pointer needs to be updated.
1789 update_mdp_by_offset(mdp,
1790 in_bytes(MultiBranchData::
1791 default_displacement_offset()));
1792
1793 bind(profile_continue);
1794 }
1795 }
1796
1797
1798 void InterpreterMacroAssembler::profile_switch_case(Register index,
1799 Register mdp,
1800 Register reg2) {
1801 if (ProfileInterpreter) {
1802 Label profile_continue;
1803
1804 // If no method data exists, go to profile_continue.
1805 test_method_data_pointer(mdp, profile_continue);
1806
1807 // Build the base (index * per_case_size_in_bytes()) +
1808 // case_array_offset_in_bytes()
1809 movl(reg2, in_bytes(MultiBranchData::per_case_size()));
1810 imulptr(index, reg2); // XXX l ?
1811 addptr(index, in_bytes(MultiBranchData::case_array_offset())); // XXX l ?
1812
1813 // Update the case count
1814 increment_mdp_data_at(mdp,
1815 index,
1816 in_bytes(MultiBranchData::relative_count_offset()));
1817
1818 // The method data pointer needs to be updated.
1819 update_mdp_by_offset(mdp,
1820 index,
1821 in_bytes(MultiBranchData::
1822 relative_displacement_offset()));
1823
1824 bind(profile_continue);
1825 }
1826 }
1827
1828 template <class ArrayData> void InterpreterMacroAssembler::profile_array_type(Register mdp,
1829 Register array,
1830 Register tmp) {
1831 if (ProfileInterpreter) {
1832 Label profile_continue;
1833
1834 // If no method data exists, go to profile_continue.
1835 test_method_data_pointer(mdp, profile_continue);
1836
1837 mov(tmp, array);
1838 profile_obj_type(tmp, Address(mdp, in_bytes(ArrayData::array_offset())));
1839
1840 Label not_flat;
1841 test_non_flat_array_oop(array, tmp, not_flat);
1842
1843 set_mdp_flag_at(mdp, ArrayData::flat_array_byte_constant());
1844
1845 bind(not_flat);
1846
1847 Label not_null_free;
1848 test_non_null_free_array_oop(array, tmp, not_null_free);
1849
1850 set_mdp_flag_at(mdp, ArrayData::null_free_array_byte_constant());
1851
1852 bind(not_null_free);
1853
1854 bind(profile_continue);
1855 }
1856 }
1857
1858 template void InterpreterMacroAssembler::profile_array_type<ArrayLoadData>(Register mdp,
1859 Register array,
1860 Register tmp);
1861 template void InterpreterMacroAssembler::profile_array_type<ArrayStoreData>(Register mdp,
1862 Register array,
1863 Register tmp);
1864
1865
1866 void InterpreterMacroAssembler::profile_multiple_element_types(Register mdp, Register element, Register tmp, const Register tmp2) {
1867 if (ProfileInterpreter) {
1868 Label profile_continue;
1869
1870 // If no method data exists, go to profile_continue.
1871 test_method_data_pointer(mdp, profile_continue);
1872
1873 Label done, update;
1874 testptr(element, element);
1875 jccb(Assembler::notZero, update);
1876 set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
1877 jmp(done);
1878
1879 bind(update);
1880 load_klass(tmp, element, rscratch1);
1881
1882 // Record the object type.
1883 record_klass_in_profile(tmp, mdp, tmp2);
1884
1885 bind(done);
1886
1887 // The method data pointer needs to be updated.
1888 update_mdp_by_constant(mdp, in_bytes(ArrayStoreData::array_store_data_size()));
1889
1890 bind(profile_continue);
1891 }
1892 }
1893
1894 void InterpreterMacroAssembler::profile_element_type(Register mdp,
1895 Register element,
1896 Register tmp) {
1897 if (ProfileInterpreter) {
1898 Label profile_continue;
1899
1900 // If no method data exists, go to profile_continue.
1901 test_method_data_pointer(mdp, profile_continue);
1902
1903 mov(tmp, element);
1904 profile_obj_type(tmp, Address(mdp, in_bytes(ArrayLoadData::element_offset())));
1905
1906 // The method data pointer needs to be updated.
1907 update_mdp_by_constant(mdp, in_bytes(ArrayLoadData::array_load_data_size()));
1908
1909 bind(profile_continue);
1910 }
1911 }
1912
1913 void InterpreterMacroAssembler::profile_acmp(Register mdp,
1914 Register left,
1915 Register right,
1916 Register tmp) {
1917 if (ProfileInterpreter) {
1918 Label profile_continue;
1919
1920 // If no method data exists, go to profile_continue.
1921 test_method_data_pointer(mdp, profile_continue);
1922
1923 mov(tmp, left);
1924 profile_obj_type(tmp, Address(mdp, in_bytes(ACmpData::left_offset())));
1925
1926 Label left_not_inline_type;
1927 test_oop_is_not_inline_type(left, tmp, left_not_inline_type);
1928 set_mdp_flag_at(mdp, ACmpData::left_inline_type_byte_constant());
1929 bind(left_not_inline_type);
1930
1931 mov(tmp, right);
1932 profile_obj_type(tmp, Address(mdp, in_bytes(ACmpData::right_offset())));
1933
1934 Label right_not_inline_type;
1935 test_oop_is_not_inline_type(right, tmp, right_not_inline_type);
1936 set_mdp_flag_at(mdp, ACmpData::right_inline_type_byte_constant());
1937 bind(right_not_inline_type);
1938
1939 bind(profile_continue);
1940 }
1941 }
1942
1943
1944 void InterpreterMacroAssembler::_interp_verify_oop(Register reg, TosState state, const char* file, int line) {
1945 if (state == atos) {
1946 MacroAssembler::_verify_oop_checked(reg, "broken oop", file, line);
1947 }
1948 }
1949
1950
1951 // Jump if ((*counter_addr += increment) & mask) == 0
1952 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr, Address mask,
1953 Register scratch, Label* where) {
1954 // This update is actually not atomic and can lose a number of updates
1955 // under heavy contention, but the alternative of using the (contended)
1956 // atomic update here penalizes profiling paths too much.
1957 movl(scratch, counter_addr);
1958 incrementl(scratch, InvocationCounter::count_increment);
1959 movl(counter_addr, scratch);
1960 andl(scratch, mask);
1961 if (where != nullptr) {
1962 jcc(Assembler::zero, *where);
1963 }
1964 }
1965
1966 void InterpreterMacroAssembler::notify_method_entry() {
1967 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1968 // track stack depth. If it is possible to enter interp_only_mode we add
1969 // the code to check if the event should be sent.
1970 Register rthread = r15_thread;
1971 Register rarg = c_rarg1;
1972 if (JvmtiExport::can_post_interpreter_events()) {
1973 Label L;
1974 movl(rdx, Address(rthread, JavaThread::interp_only_mode_offset()));
1975 testl(rdx, rdx);
1976 jcc(Assembler::zero, L);
1977 call_VM(noreg, CAST_FROM_FN_PTR(address,
1978 InterpreterRuntime::post_method_entry));
1979 bind(L);
1980 }
1981
1982 if (DTraceMethodProbes) {
1983 get_method(rarg);
1984 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
1985 rthread, rarg);
1986 }
1987
1988 // RedefineClasses() tracing support for obsolete method entry
1989 if (log_is_enabled(Trace, redefine, class, obsolete)) {
1990 get_method(rarg);
1991 call_VM_leaf(
1992 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1993 rthread, rarg);
1994 }
1995 }
1996
1997
1998 void InterpreterMacroAssembler::notify_method_exit(
1999 TosState state, NotifyMethodExitMode mode) {
2000 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
2001 // track stack depth. If it is possible to enter interp_only_mode we add
2002 // the code to check if the event should be sent.
2003 Register rthread = r15_thread;
2004 Register rarg = c_rarg1;
2005 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
2006 Label L;
2007 // Note: frame::interpreter_frame_result has a dependency on how the
2008 // method result is saved across the call to post_method_exit. If this
2009 // is changed then the interpreter_frame_result implementation will
2010 // need to be updated too.
2011
2012 // template interpreter will leave the result on the top of the stack.
2013 push(state);
2014 movl(rdx, Address(rthread, JavaThread::interp_only_mode_offset()));
2015 testl(rdx, rdx);
2016 jcc(Assembler::zero, L);
2017 call_VM(noreg,
2018 CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
2019 bind(L);
2020 pop(state);
2021 }
2022
2023 if (DTraceMethodProbes) {
2024 push(state);
2025 get_method(rarg);
2026 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2027 rthread, rarg);
2028 pop(state);
2029 }
2030 }
2031
2032 void InterpreterMacroAssembler::load_resolved_indy_entry(Register cache, Register index) {
2033 // Get index out of bytecode pointer
2034 get_cache_index_at_bcp(index, 1, sizeof(u4));
2035 // Get address of invokedynamic array
2036 movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
2037 movptr(cache, Address(cache, in_bytes(ConstantPoolCache::invokedynamic_entries_offset())));
2038 if (is_power_of_2(sizeof(ResolvedIndyEntry))) {
2039 shll(index, log2i_exact(sizeof(ResolvedIndyEntry))); // Scale index by power of 2
2040 } else {
2041 imull(index, index, sizeof(ResolvedIndyEntry)); // Scale the index to be the entry index * sizeof(ResolvedIndyEntry)
2042 }
2043 lea(cache, Address(cache, index, Address::times_1, Array<ResolvedIndyEntry>::base_offset_in_bytes()));
2044 }
2045
2046 void InterpreterMacroAssembler::load_field_entry(Register cache, Register index, int bcp_offset) {
2047 // Get index out of bytecode pointer
2048 movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
2049 get_cache_index_at_bcp(index, bcp_offset, sizeof(u2));
2050
2051 movptr(cache, Address(cache, ConstantPoolCache::field_entries_offset()));
2052 // Take shortcut if the size is a power of 2
2053 if (is_power_of_2(sizeof(ResolvedFieldEntry))) {
2054 shll(index, log2i_exact(sizeof(ResolvedFieldEntry))); // Scale index by power of 2
2055 } else {
2056 imull(index, index, sizeof(ResolvedFieldEntry)); // Scale the index to be the entry index * sizeof(ResolvedFieldEntry)
2057 }
2058 lea(cache, Address(cache, index, Address::times_1, Array<ResolvedFieldEntry>::base_offset_in_bytes()));
2059 }
2060
2061 void InterpreterMacroAssembler::load_method_entry(Register cache, Register index, int bcp_offset) {
2062 // Get index out of bytecode pointer
2063 movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
2064 get_cache_index_at_bcp(index, bcp_offset, sizeof(u2));
2065
2066 movptr(cache, Address(cache, ConstantPoolCache::method_entries_offset()));
2067 imull(index, index, sizeof(ResolvedMethodEntry)); // Scale the index to be the entry index * sizeof(ResolvedMethodEntry)
2068 lea(cache, Address(cache, index, Address::times_1, Array<ResolvedMethodEntry>::base_offset_in_bytes()));
2069 }