1 /* 2 * Copyright (c) 1997, 2022, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "compiler/compiler_globals.hpp" 27 #include "interp_masm_x86.hpp" 28 #include "interpreter/interpreter.hpp" 29 #include "interpreter/interpreterRuntime.hpp" 30 #include "logging/log.hpp" 31 #include "oops/arrayOop.hpp" 32 #include "oops/markWord.hpp" 33 #include "oops/methodData.hpp" 34 #include "oops/method.hpp" 35 #include "oops/inlineKlass.hpp" 36 #include "prims/jvmtiExport.hpp" 37 #include "prims/jvmtiThreadState.hpp" 38 #include "runtime/basicLock.hpp" 39 #include "runtime/frame.inline.hpp" 40 #include "runtime/javaThread.hpp" 41 #include "runtime/safepointMechanism.hpp" 42 #include "runtime/sharedRuntime.hpp" 43 #include "utilities/powerOfTwo.hpp" 44 45 // Implementation of InterpreterMacroAssembler 46 47 void InterpreterMacroAssembler::jump_to_entry(address entry) { 48 assert(entry, "Entry must have been generated by now"); 49 jump(RuntimeAddress(entry)); 50 } 51 52 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) { 53 Label update, next, none; 54 55 interp_verify_oop(obj, atos); 56 57 testptr(obj, obj); 58 jccb(Assembler::notZero, update); 59 orptr(mdo_addr, TypeEntries::null_seen); 60 jmpb(next); 61 62 bind(update); 63 load_klass(obj, obj, rscratch1); 64 65 xorptr(obj, mdo_addr); 66 testptr(obj, TypeEntries::type_klass_mask); 67 jccb(Assembler::zero, next); // klass seen before, nothing to 68 // do. The unknown bit may have been 69 // set already but no need to check. 70 71 testptr(obj, TypeEntries::type_unknown); 72 jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore. 73 74 cmpptr(mdo_addr, 0); 75 jccb(Assembler::equal, none); 76 cmpptr(mdo_addr, TypeEntries::null_seen); 77 jccb(Assembler::equal, none); 78 // There is a chance that the checks above (re-reading profiling 79 // data from memory) fail if another thread has just set the 80 // profiling to this obj's klass 81 xorptr(obj, mdo_addr); 82 testptr(obj, TypeEntries::type_klass_mask); 83 jccb(Assembler::zero, next); 84 85 // different than before. Cannot keep accurate profile. 86 orptr(mdo_addr, TypeEntries::type_unknown); 87 jmpb(next); 88 89 bind(none); 90 // first time here. Set profile type. 91 movptr(mdo_addr, obj); 92 93 bind(next); 94 } 95 96 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) { 97 if (!ProfileInterpreter) { 98 return; 99 } 100 101 if (MethodData::profile_arguments() || MethodData::profile_return()) { 102 Label profile_continue; 103 104 test_method_data_pointer(mdp, profile_continue); 105 106 int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size()); 107 108 cmpb(Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start), is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag); 109 jcc(Assembler::notEqual, profile_continue); 110 111 if (MethodData::profile_arguments()) { 112 Label done; 113 int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset()); 114 addptr(mdp, off_to_args); 115 116 for (int i = 0; i < TypeProfileArgsLimit; i++) { 117 if (i > 0 || MethodData::profile_return()) { 118 // If return value type is profiled we may have no argument to profile 119 movptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args)); 120 subl(tmp, i*TypeStackSlotEntries::per_arg_count()); 121 cmpl(tmp, TypeStackSlotEntries::per_arg_count()); 122 jcc(Assembler::less, done); 123 } 124 movptr(tmp, Address(callee, Method::const_offset())); 125 load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset())); 126 // stack offset o (zero based) from the start of the argument 127 // list, for n arguments translates into offset n - o - 1 from 128 // the end of the argument list 129 subptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args)); 130 subl(tmp, 1); 131 Address arg_addr = argument_address(tmp); 132 movptr(tmp, arg_addr); 133 134 Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args); 135 profile_obj_type(tmp, mdo_arg_addr); 136 137 int to_add = in_bytes(TypeStackSlotEntries::per_arg_size()); 138 addptr(mdp, to_add); 139 off_to_args += to_add; 140 } 141 142 if (MethodData::profile_return()) { 143 movptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args)); 144 subl(tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count()); 145 } 146 147 bind(done); 148 149 if (MethodData::profile_return()) { 150 // We're right after the type profile for the last 151 // argument. tmp is the number of cells left in the 152 // CallTypeData/VirtualCallTypeData to reach its end. Non null 153 // if there's a return to profile. 154 assert(SingleTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type"); 155 shll(tmp, log2i_exact((int)DataLayout::cell_size)); 156 addptr(mdp, tmp); 157 } 158 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp); 159 } else { 160 assert(MethodData::profile_return(), "either profile call args or call ret"); 161 update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size())); 162 } 163 164 // mdp points right after the end of the 165 // CallTypeData/VirtualCallTypeData, right after the cells for the 166 // return value type if there's one 167 168 bind(profile_continue); 169 } 170 } 171 172 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) { 173 assert_different_registers(mdp, ret, tmp, _bcp_register); 174 if (ProfileInterpreter && MethodData::profile_return()) { 175 Label profile_continue; 176 177 test_method_data_pointer(mdp, profile_continue); 178 179 if (MethodData::profile_return_jsr292_only()) { 180 assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2"); 181 182 // If we don't profile all invoke bytecodes we must make sure 183 // it's a bytecode we indeed profile. We can't go back to the 184 // beginning of the ProfileData we intend to update to check its 185 // type because we're right after it and we don't known its 186 // length 187 Label do_profile; 188 cmpb(Address(_bcp_register, 0), Bytecodes::_invokedynamic); 189 jcc(Assembler::equal, do_profile); 190 cmpb(Address(_bcp_register, 0), Bytecodes::_invokehandle); 191 jcc(Assembler::equal, do_profile); 192 get_method(tmp); 193 cmpw(Address(tmp, Method::intrinsic_id_offset_in_bytes()), static_cast<int>(vmIntrinsics::_compiledLambdaForm)); 194 jcc(Assembler::notEqual, profile_continue); 195 196 bind(do_profile); 197 } 198 199 Address mdo_ret_addr(mdp, -in_bytes(SingleTypeEntry::size())); 200 mov(tmp, ret); 201 profile_obj_type(tmp, mdo_ret_addr); 202 203 bind(profile_continue); 204 } 205 } 206 207 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) { 208 if (ProfileInterpreter && MethodData::profile_parameters()) { 209 Label profile_continue; 210 211 test_method_data_pointer(mdp, profile_continue); 212 213 // Load the offset of the area within the MDO used for 214 // parameters. If it's negative we're not profiling any parameters 215 movl(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset()))); 216 testl(tmp1, tmp1); 217 jcc(Assembler::negative, profile_continue); 218 219 // Compute a pointer to the area for parameters from the offset 220 // and move the pointer to the slot for the last 221 // parameters. Collect profiling from last parameter down. 222 // mdo start + parameters offset + array length - 1 223 addptr(mdp, tmp1); 224 movptr(tmp1, Address(mdp, ArrayData::array_len_offset())); 225 decrement(tmp1, TypeStackSlotEntries::per_arg_count()); 226 227 Label loop; 228 bind(loop); 229 230 int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0)); 231 int type_base = in_bytes(ParametersTypeData::type_offset(0)); 232 Address::ScaleFactor per_arg_scale = Address::times(DataLayout::cell_size); 233 Address arg_off(mdp, tmp1, per_arg_scale, off_base); 234 Address arg_type(mdp, tmp1, per_arg_scale, type_base); 235 236 // load offset on the stack from the slot for this parameter 237 movptr(tmp2, arg_off); 238 negptr(tmp2); 239 // read the parameter from the local area 240 movptr(tmp2, Address(_locals_register, tmp2, Interpreter::stackElementScale())); 241 242 // profile the parameter 243 profile_obj_type(tmp2, arg_type); 244 245 // go to next parameter 246 decrement(tmp1, TypeStackSlotEntries::per_arg_count()); 247 jcc(Assembler::positive, loop); 248 249 bind(profile_continue); 250 } 251 } 252 253 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point, 254 int number_of_arguments) { 255 // interpreter specific 256 // 257 // Note: No need to save/restore bcp & locals registers 258 // since these are callee saved registers and no blocking/ 259 // GC can happen in leaf calls. 260 // Further Note: DO NOT save/restore bcp/locals. If a caller has 261 // already saved them so that it can use rsi/rdi as temporaries 262 // then a save/restore here will DESTROY the copy the caller 263 // saved! There used to be a save_bcp() that only happened in 264 // the ASSERT path (no restore_bcp). Which caused bizarre failures 265 // when jvm built with ASSERTs. 266 #ifdef ASSERT 267 { 268 Label L; 269 cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD); 270 jcc(Assembler::equal, L); 271 stop("InterpreterMacroAssembler::call_VM_leaf_base:" 272 " last_sp != NULL"); 273 bind(L); 274 } 275 #endif 276 // super call 277 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments); 278 // interpreter specific 279 // LP64: Used to ASSERT that r13/r14 were equal to frame's bcp/locals 280 // but since they may not have been saved (and we don't want to 281 // save them here (see note above) the assert is invalid. 282 } 283 284 void InterpreterMacroAssembler::call_VM_base(Register oop_result, 285 Register java_thread, 286 Register last_java_sp, 287 address entry_point, 288 int number_of_arguments, 289 bool check_exceptions) { 290 // interpreter specific 291 // 292 // Note: Could avoid restoring locals ptr (callee saved) - however doesn't 293 // really make a difference for these runtime calls, since they are 294 // slow anyway. Btw., bcp must be saved/restored since it may change 295 // due to GC. 296 NOT_LP64(assert(java_thread == noreg , "not expecting a precomputed java thread");) 297 save_bcp(); 298 #ifdef ASSERT 299 { 300 Label L; 301 cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD); 302 jcc(Assembler::equal, L); 303 stop("InterpreterMacroAssembler::call_VM_base:" 304 " last_sp != NULL"); 305 bind(L); 306 } 307 #endif /* ASSERT */ 308 // super call 309 MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp, 310 entry_point, number_of_arguments, 311 check_exceptions); 312 // interpreter specific 313 restore_bcp(); 314 restore_locals(); 315 } 316 317 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) { 318 if (JvmtiExport::can_pop_frame()) { 319 Label L; 320 // Initiate popframe handling only if it is not already being 321 // processed. If the flag has the popframe_processing bit set, it 322 // means that this code is called *during* popframe handling - we 323 // don't want to reenter. 324 // This method is only called just after the call into the vm in 325 // call_VM_base, so the arg registers are available. 326 Register pop_cond = NOT_LP64(java_thread) // Not clear if any other register is available on 32 bit 327 LP64_ONLY(c_rarg0); 328 movl(pop_cond, Address(java_thread, JavaThread::popframe_condition_offset())); 329 testl(pop_cond, JavaThread::popframe_pending_bit); 330 jcc(Assembler::zero, L); 331 testl(pop_cond, JavaThread::popframe_processing_bit); 332 jcc(Assembler::notZero, L); 333 // Call Interpreter::remove_activation_preserving_args_entry() to get the 334 // address of the same-named entrypoint in the generated interpreter code. 335 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry)); 336 jmp(rax); 337 bind(L); 338 NOT_LP64(get_thread(java_thread);) 339 } 340 } 341 342 void InterpreterMacroAssembler::load_earlyret_value(TosState state) { 343 Register thread = LP64_ONLY(r15_thread) NOT_LP64(rcx); 344 NOT_LP64(get_thread(thread);) 345 movptr(rcx, Address(thread, JavaThread::jvmti_thread_state_offset())); 346 const Address tos_addr(rcx, JvmtiThreadState::earlyret_tos_offset()); 347 const Address oop_addr(rcx, JvmtiThreadState::earlyret_oop_offset()); 348 const Address val_addr(rcx, JvmtiThreadState::earlyret_value_offset()); 349 #ifdef _LP64 350 switch (state) { 351 case atos: movptr(rax, oop_addr); 352 movptr(oop_addr, NULL_WORD); 353 interp_verify_oop(rax, state); break; 354 case ltos: movptr(rax, val_addr); break; 355 case btos: // fall through 356 case ztos: // fall through 357 case ctos: // fall through 358 case stos: // fall through 359 case itos: movl(rax, val_addr); break; 360 case ftos: load_float(val_addr); break; 361 case dtos: load_double(val_addr); break; 362 case vtos: /* nothing to do */ break; 363 default : ShouldNotReachHere(); 364 } 365 // Clean up tos value in the thread object 366 movl(tos_addr, ilgl); 367 movl(val_addr, NULL_WORD); 368 #else 369 const Address val_addr1(rcx, JvmtiThreadState::earlyret_value_offset() 370 + in_ByteSize(wordSize)); 371 switch (state) { 372 case atos: movptr(rax, oop_addr); 373 movptr(oop_addr, NULL_WORD); 374 interp_verify_oop(rax, state); break; 375 case ltos: 376 movl(rdx, val_addr1); // fall through 377 case btos: // fall through 378 case ztos: // fall through 379 case ctos: // fall through 380 case stos: // fall through 381 case itos: movl(rax, val_addr); break; 382 case ftos: load_float(val_addr); break; 383 case dtos: load_double(val_addr); break; 384 case vtos: /* nothing to do */ break; 385 default : ShouldNotReachHere(); 386 } 387 #endif // _LP64 388 // Clean up tos value in the thread object 389 movl(tos_addr, ilgl); 390 movptr(val_addr, NULL_WORD); 391 NOT_LP64(movptr(val_addr1, NULL_WORD);) 392 } 393 394 395 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) { 396 if (JvmtiExport::can_force_early_return()) { 397 Label L; 398 Register tmp = LP64_ONLY(c_rarg0) NOT_LP64(java_thread); 399 Register rthread = LP64_ONLY(r15_thread) NOT_LP64(java_thread); 400 401 movptr(tmp, Address(rthread, JavaThread::jvmti_thread_state_offset())); 402 testptr(tmp, tmp); 403 jcc(Assembler::zero, L); // if (thread->jvmti_thread_state() == NULL) exit; 404 405 // Initiate earlyret handling only if it is not already being processed. 406 // If the flag has the earlyret_processing bit set, it means that this code 407 // is called *during* earlyret handling - we don't want to reenter. 408 movl(tmp, Address(tmp, JvmtiThreadState::earlyret_state_offset())); 409 cmpl(tmp, JvmtiThreadState::earlyret_pending); 410 jcc(Assembler::notEqual, L); 411 412 // Call Interpreter::remove_activation_early_entry() to get the address of the 413 // same-named entrypoint in the generated interpreter code. 414 NOT_LP64(get_thread(java_thread);) 415 movptr(tmp, Address(rthread, JavaThread::jvmti_thread_state_offset())); 416 #ifdef _LP64 417 movl(tmp, Address(tmp, JvmtiThreadState::earlyret_tos_offset())); 418 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), tmp); 419 #else 420 pushl(Address(tmp, JvmtiThreadState::earlyret_tos_offset())); 421 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), 1); 422 #endif // _LP64 423 jmp(rax); 424 bind(L); 425 NOT_LP64(get_thread(java_thread);) 426 } 427 } 428 429 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(Register reg, int bcp_offset) { 430 assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode"); 431 load_unsigned_short(reg, Address(_bcp_register, bcp_offset)); 432 bswapl(reg); 433 shrl(reg, 16); 434 } 435 436 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index, 437 int bcp_offset, 438 size_t index_size) { 439 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode"); 440 if (index_size == sizeof(u2)) { 441 load_unsigned_short(index, Address(_bcp_register, bcp_offset)); 442 } else if (index_size == sizeof(u4)) { 443 movl(index, Address(_bcp_register, bcp_offset)); 444 // Check if the secondary index definition is still ~x, otherwise 445 // we have to change the following assembler code to calculate the 446 // plain index. 447 assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line"); 448 notl(index); // convert to plain index 449 } else if (index_size == sizeof(u1)) { 450 load_unsigned_byte(index, Address(_bcp_register, bcp_offset)); 451 } else { 452 ShouldNotReachHere(); 453 } 454 } 455 456 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, 457 Register index, 458 int bcp_offset, 459 size_t index_size) { 460 assert_different_registers(cache, index); 461 get_cache_index_at_bcp(index, bcp_offset, index_size); 462 movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize)); 463 assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below"); 464 // convert from field index to ConstantPoolCacheEntry index 465 assert(exact_log2(in_words(ConstantPoolCacheEntry::size())) == 2, "else change next line"); 466 shll(index, 2); 467 } 468 469 void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache, 470 Register index, 471 Register bytecode, 472 int byte_no, 473 int bcp_offset, 474 size_t index_size) { 475 get_cache_and_index_at_bcp(cache, index, bcp_offset, index_size); 476 // We use a 32-bit load here since the layout of 64-bit words on 477 // little-endian machines allow us that. 478 movl(bytecode, Address(cache, index, Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset())); 479 const int shift_count = (1 + byte_no) * BitsPerByte; 480 assert((byte_no == TemplateTable::f1_byte && shift_count == ConstantPoolCacheEntry::bytecode_1_shift) || 481 (byte_no == TemplateTable::f2_byte && shift_count == ConstantPoolCacheEntry::bytecode_2_shift), 482 "correct shift count"); 483 shrl(bytecode, shift_count); 484 assert(ConstantPoolCacheEntry::bytecode_1_mask == ConstantPoolCacheEntry::bytecode_2_mask, "common mask"); 485 andl(bytecode, ConstantPoolCacheEntry::bytecode_1_mask); 486 } 487 488 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, 489 Register tmp, 490 int bcp_offset, 491 size_t index_size) { 492 assert_different_registers(cache, tmp); 493 494 get_cache_index_at_bcp(tmp, bcp_offset, index_size); 495 assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below"); 496 // convert from field index to ConstantPoolCacheEntry index 497 // and from word offset to byte offset 498 assert(exact_log2(in_bytes(ConstantPoolCacheEntry::size_in_bytes())) == 2 + LogBytesPerWord, "else change next line"); 499 shll(tmp, 2 + LogBytesPerWord); 500 movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize)); 501 // skip past the header 502 addptr(cache, in_bytes(ConstantPoolCache::base_offset())); 503 addptr(cache, tmp); // construct pointer to cache entry 504 } 505 506 // Load object from cpool->resolved_references(index) 507 void InterpreterMacroAssembler::load_resolved_reference_at_index(Register result, 508 Register index, 509 Register tmp) { 510 assert_different_registers(result, index); 511 512 get_constant_pool(result); 513 // load pointer for resolved_references[] objArray 514 movptr(result, Address(result, ConstantPool::cache_offset_in_bytes())); 515 movptr(result, Address(result, ConstantPoolCache::resolved_references_offset_in_bytes())); 516 resolve_oop_handle(result, tmp); 517 load_heap_oop(result, Address(result, index, 518 UseCompressedOops ? Address::times_4 : Address::times_ptr, 519 arrayOopDesc::base_offset_in_bytes(T_OBJECT)), tmp); 520 } 521 522 // load cpool->resolved_klass_at(index) 523 void InterpreterMacroAssembler::load_resolved_klass_at_index(Register klass, 524 Register cpool, 525 Register index) { 526 assert_different_registers(cpool, index); 527 528 movw(index, Address(cpool, index, Address::times_ptr, sizeof(ConstantPool))); 529 Register resolved_klasses = cpool; 530 movptr(resolved_klasses, Address(cpool, ConstantPool::resolved_klasses_offset_in_bytes())); 531 movptr(klass, Address(resolved_klasses, index, Address::times_ptr, Array<Klass*>::base_offset_in_bytes())); 532 } 533 534 void InterpreterMacroAssembler::load_resolved_method_at_index(int byte_no, 535 Register method, 536 Register cache, 537 Register index) { 538 assert_different_registers(cache, index); 539 540 const int method_offset = in_bytes( 541 ConstantPoolCache::base_offset() + 542 ((byte_no == TemplateTable::f2_byte) 543 ? ConstantPoolCacheEntry::f2_offset() 544 : ConstantPoolCacheEntry::f1_offset())); 545 546 movptr(method, Address(cache, index, Address::times_ptr, method_offset)); // get f1 Method* 547 } 548 549 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a 550 // subtype of super_klass. 551 // 552 // Args: 553 // rax: superklass 554 // Rsub_klass: subklass 555 // 556 // Kills: 557 // rcx, rdi 558 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass, 559 Label& ok_is_subtype, 560 bool profile) { 561 assert(Rsub_klass != rax, "rax holds superklass"); 562 LP64_ONLY(assert(Rsub_klass != r14, "r14 holds locals");) 563 LP64_ONLY(assert(Rsub_klass != r13, "r13 holds bcp");) 564 assert(Rsub_klass != rcx, "rcx holds 2ndary super array length"); 565 assert(Rsub_klass != rdi, "rdi holds 2ndary super array scan ptr"); 566 567 // Profile the not-null value's klass. 568 if (profile) { 569 profile_typecheck(rcx, Rsub_klass, rdi); // blows rcx, reloads rdi 570 } 571 572 // Do the check. 573 check_klass_subtype(Rsub_klass, rax, rcx, ok_is_subtype); // blows rcx 574 575 // Profile the failure of the check. 576 if (profile) { 577 profile_typecheck_failed(rcx); // blows rcx 578 } 579 } 580 581 582 #ifndef _LP64 583 void InterpreterMacroAssembler::f2ieee() { 584 if (IEEEPrecision) { 585 fstp_s(Address(rsp, 0)); 586 fld_s(Address(rsp, 0)); 587 } 588 } 589 590 591 void InterpreterMacroAssembler::d2ieee() { 592 if (IEEEPrecision) { 593 fstp_d(Address(rsp, 0)); 594 fld_d(Address(rsp, 0)); 595 } 596 } 597 #endif // _LP64 598 599 // Java Expression Stack 600 601 void InterpreterMacroAssembler::pop_ptr(Register r) { 602 pop(r); 603 } 604 605 void InterpreterMacroAssembler::push_ptr(Register r) { 606 push(r); 607 } 608 609 void InterpreterMacroAssembler::push_i(Register r) { 610 push(r); 611 } 612 613 void InterpreterMacroAssembler::push_i_or_ptr(Register r) { 614 push(r); 615 } 616 617 void InterpreterMacroAssembler::push_f(XMMRegister r) { 618 subptr(rsp, wordSize); 619 movflt(Address(rsp, 0), r); 620 } 621 622 void InterpreterMacroAssembler::pop_f(XMMRegister r) { 623 movflt(r, Address(rsp, 0)); 624 addptr(rsp, wordSize); 625 } 626 627 void InterpreterMacroAssembler::push_d(XMMRegister r) { 628 subptr(rsp, 2 * wordSize); 629 movdbl(Address(rsp, 0), r); 630 } 631 632 void InterpreterMacroAssembler::pop_d(XMMRegister r) { 633 movdbl(r, Address(rsp, 0)); 634 addptr(rsp, 2 * Interpreter::stackElementSize); 635 } 636 637 #ifdef _LP64 638 void InterpreterMacroAssembler::pop_i(Register r) { 639 // XXX can't use pop currently, upper half non clean 640 movl(r, Address(rsp, 0)); 641 addptr(rsp, wordSize); 642 } 643 644 void InterpreterMacroAssembler::pop_l(Register r) { 645 movq(r, Address(rsp, 0)); 646 addptr(rsp, 2 * Interpreter::stackElementSize); 647 } 648 649 void InterpreterMacroAssembler::push_l(Register r) { 650 subptr(rsp, 2 * wordSize); 651 movptr(Address(rsp, Interpreter::expr_offset_in_bytes(0)), r ); 652 movptr(Address(rsp, Interpreter::expr_offset_in_bytes(1)), NULL_WORD ); 653 } 654 655 void InterpreterMacroAssembler::pop(TosState state) { 656 switch (state) { 657 case atos: pop_ptr(); break; 658 case btos: 659 case ztos: 660 case ctos: 661 case stos: 662 case itos: pop_i(); break; 663 case ltos: pop_l(); break; 664 case ftos: pop_f(xmm0); break; 665 case dtos: pop_d(xmm0); break; 666 case vtos: /* nothing to do */ break; 667 default: ShouldNotReachHere(); 668 } 669 interp_verify_oop(rax, state); 670 } 671 672 void InterpreterMacroAssembler::push(TosState state) { 673 interp_verify_oop(rax, state); 674 switch (state) { 675 case atos: push_ptr(); break; 676 case btos: 677 case ztos: 678 case ctos: 679 case stos: 680 case itos: push_i(); break; 681 case ltos: push_l(); break; 682 case ftos: push_f(xmm0); break; 683 case dtos: push_d(xmm0); break; 684 case vtos: /* nothing to do */ break; 685 default : ShouldNotReachHere(); 686 } 687 } 688 #else 689 void InterpreterMacroAssembler::pop_i(Register r) { 690 pop(r); 691 } 692 693 void InterpreterMacroAssembler::pop_l(Register lo, Register hi) { 694 pop(lo); 695 pop(hi); 696 } 697 698 void InterpreterMacroAssembler::pop_f() { 699 fld_s(Address(rsp, 0)); 700 addptr(rsp, 1 * wordSize); 701 } 702 703 void InterpreterMacroAssembler::pop_d() { 704 fld_d(Address(rsp, 0)); 705 addptr(rsp, 2 * wordSize); 706 } 707 708 709 void InterpreterMacroAssembler::pop(TosState state) { 710 switch (state) { 711 case atos: pop_ptr(rax); break; 712 case btos: // fall through 713 case ztos: // fall through 714 case ctos: // fall through 715 case stos: // fall through 716 case itos: pop_i(rax); break; 717 case ltos: pop_l(rax, rdx); break; 718 case ftos: 719 if (UseSSE >= 1) { 720 pop_f(xmm0); 721 } else { 722 pop_f(); 723 } 724 break; 725 case dtos: 726 if (UseSSE >= 2) { 727 pop_d(xmm0); 728 } else { 729 pop_d(); 730 } 731 break; 732 case vtos: /* nothing to do */ break; 733 default : ShouldNotReachHere(); 734 } 735 interp_verify_oop(rax, state); 736 } 737 738 739 void InterpreterMacroAssembler::push_l(Register lo, Register hi) { 740 push(hi); 741 push(lo); 742 } 743 744 void InterpreterMacroAssembler::push_f() { 745 // Do not schedule for no AGI! Never write beyond rsp! 746 subptr(rsp, 1 * wordSize); 747 fstp_s(Address(rsp, 0)); 748 } 749 750 void InterpreterMacroAssembler::push_d() { 751 // Do not schedule for no AGI! Never write beyond rsp! 752 subptr(rsp, 2 * wordSize); 753 fstp_d(Address(rsp, 0)); 754 } 755 756 757 void InterpreterMacroAssembler::push(TosState state) { 758 interp_verify_oop(rax, state); 759 switch (state) { 760 case atos: push_ptr(rax); break; 761 case btos: // fall through 762 case ztos: // fall through 763 case ctos: // fall through 764 case stos: // fall through 765 case itos: push_i(rax); break; 766 case ltos: push_l(rax, rdx); break; 767 case ftos: 768 if (UseSSE >= 1) { 769 push_f(xmm0); 770 } else { 771 push_f(); 772 } 773 break; 774 case dtos: 775 if (UseSSE >= 2) { 776 push_d(xmm0); 777 } else { 778 push_d(); 779 } 780 break; 781 case vtos: /* nothing to do */ break; 782 default : ShouldNotReachHere(); 783 } 784 } 785 #endif // _LP64 786 787 788 // Helpers for swap and dup 789 void InterpreterMacroAssembler::load_ptr(int n, Register val) { 790 movptr(val, Address(rsp, Interpreter::expr_offset_in_bytes(n))); 791 } 792 793 void InterpreterMacroAssembler::store_ptr(int n, Register val) { 794 movptr(Address(rsp, Interpreter::expr_offset_in_bytes(n)), val); 795 } 796 797 798 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() { 799 // set sender sp 800 lea(_bcp_register, Address(rsp, wordSize)); 801 // record last_sp 802 movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), _bcp_register); 803 } 804 805 806 // Jump to from_interpreted entry of a call unless single stepping is possible 807 // in this thread in which case we must call the i2i entry 808 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) { 809 prepare_to_jump_from_interpreted(); 810 811 if (JvmtiExport::can_post_interpreter_events()) { 812 Label run_compiled_code; 813 // JVMTI events, such as single-stepping, are implemented partly by avoiding running 814 // compiled code in threads for which the event is enabled. Check here for 815 // interp_only_mode if these events CAN be enabled. 816 // interp_only is an int, on little endian it is sufficient to test the byte only 817 // Is a cmpl faster? 818 LP64_ONLY(temp = r15_thread;) 819 NOT_LP64(get_thread(temp);) 820 cmpb(Address(temp, JavaThread::interp_only_mode_offset()), 0); 821 jccb(Assembler::zero, run_compiled_code); 822 jmp(Address(method, Method::interpreter_entry_offset())); 823 bind(run_compiled_code); 824 } 825 826 jmp(Address(method, Method::from_interpreted_offset())); 827 } 828 829 // The following two routines provide a hook so that an implementation 830 // can schedule the dispatch in two parts. x86 does not do this. 831 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) { 832 // Nothing x86 specific to be done here 833 } 834 835 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) { 836 dispatch_next(state, step); 837 } 838 839 void InterpreterMacroAssembler::dispatch_base(TosState state, 840 address* table, 841 bool verifyoop, 842 bool generate_poll) { 843 verify_FPU(1, state); 844 if (VerifyActivationFrameSize) { 845 Label L; 846 mov(rcx, rbp); 847 subptr(rcx, rsp); 848 int32_t min_frame_size = 849 (frame::link_offset - frame::interpreter_frame_initial_sp_offset) * 850 wordSize; 851 cmpptr(rcx, min_frame_size); 852 jcc(Assembler::greaterEqual, L); 853 stop("broken stack frame"); 854 bind(L); 855 } 856 if (verifyoop) { 857 interp_verify_oop(rax, state); 858 } 859 860 address* const safepoint_table = Interpreter::safept_table(state); 861 #ifdef _LP64 862 Label no_safepoint, dispatch; 863 if (table != safepoint_table && generate_poll) { 864 NOT_PRODUCT(block_comment("Thread-local Safepoint poll")); 865 testb(Address(r15_thread, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit()); 866 867 jccb(Assembler::zero, no_safepoint); 868 lea(rscratch1, ExternalAddress((address)safepoint_table)); 869 jmpb(dispatch); 870 } 871 872 bind(no_safepoint); 873 lea(rscratch1, ExternalAddress((address)table)); 874 bind(dispatch); 875 jmp(Address(rscratch1, rbx, Address::times_8)); 876 877 #else 878 Address index(noreg, rbx, Address::times_ptr); 879 if (table != safepoint_table && generate_poll) { 880 NOT_PRODUCT(block_comment("Thread-local Safepoint poll")); 881 Label no_safepoint; 882 const Register thread = rcx; 883 get_thread(thread); 884 testb(Address(thread, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit()); 885 886 jccb(Assembler::zero, no_safepoint); 887 ArrayAddress dispatch_addr(ExternalAddress((address)safepoint_table), index); 888 jump(dispatch_addr, noreg); 889 bind(no_safepoint); 890 } 891 892 { 893 ArrayAddress dispatch_addr(ExternalAddress((address)table), index); 894 jump(dispatch_addr, noreg); 895 } 896 #endif // _LP64 897 } 898 899 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) { 900 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll); 901 } 902 903 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) { 904 dispatch_base(state, Interpreter::normal_table(state)); 905 } 906 907 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) { 908 dispatch_base(state, Interpreter::normal_table(state), false); 909 } 910 911 912 void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) { 913 // load next bytecode (load before advancing _bcp_register to prevent AGI) 914 load_unsigned_byte(rbx, Address(_bcp_register, step)); 915 // advance _bcp_register 916 increment(_bcp_register, step); 917 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll); 918 } 919 920 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) { 921 // load current bytecode 922 load_unsigned_byte(rbx, Address(_bcp_register, 0)); 923 dispatch_base(state, table); 924 } 925 926 void InterpreterMacroAssembler::narrow(Register result) { 927 928 // Get method->_constMethod->_result_type 929 movptr(rcx, Address(rbp, frame::interpreter_frame_method_offset * wordSize)); 930 movptr(rcx, Address(rcx, Method::const_offset())); 931 load_unsigned_byte(rcx, Address(rcx, ConstMethod::result_type_offset())); 932 933 Label done, notBool, notByte, notChar; 934 935 // common case first 936 cmpl(rcx, T_INT); 937 jcc(Assembler::equal, done); 938 939 // mask integer result to narrower return type. 940 cmpl(rcx, T_BOOLEAN); 941 jcc(Assembler::notEqual, notBool); 942 andl(result, 0x1); 943 jmp(done); 944 945 bind(notBool); 946 cmpl(rcx, T_BYTE); 947 jcc(Assembler::notEqual, notByte); 948 LP64_ONLY(movsbl(result, result);) 949 NOT_LP64(shll(result, 24);) // truncate upper 24 bits 950 NOT_LP64(sarl(result, 24);) // and sign-extend byte 951 jmp(done); 952 953 bind(notByte); 954 cmpl(rcx, T_CHAR); 955 jcc(Assembler::notEqual, notChar); 956 LP64_ONLY(movzwl(result, result);) 957 NOT_LP64(andl(result, 0xFFFF);) // truncate upper 16 bits 958 jmp(done); 959 960 bind(notChar); 961 // cmpl(rcx, T_SHORT); // all that's left 962 // jcc(Assembler::notEqual, done); 963 LP64_ONLY(movswl(result, result);) 964 NOT_LP64(shll(result, 16);) // truncate upper 16 bits 965 NOT_LP64(sarl(result, 16);) // and sign-extend short 966 967 // Nothing to do for T_INT 968 bind(done); 969 } 970 971 // remove activation 972 // 973 // Apply stack watermark barrier. 974 // Unlock the receiver if this is a synchronized method. 975 // Unlock any Java monitors from synchronized blocks. 976 // Remove the activation from the stack. 977 // 978 // If there are locked Java monitors 979 // If throw_monitor_exception 980 // throws IllegalMonitorStateException 981 // Else if install_monitor_exception 982 // installs IllegalMonitorStateException 983 // Else 984 // no error processing 985 void InterpreterMacroAssembler::remove_activation( 986 TosState state, 987 Register ret_addr, 988 bool throw_monitor_exception, 989 bool install_monitor_exception, 990 bool notify_jvmdi) { 991 // Note: Registers rdx xmm0 may be in use for the 992 // result check if synchronized method 993 Label unlocked, unlock, no_unlock; 994 995 const Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx); 996 const Register robj = LP64_ONLY(c_rarg1) NOT_LP64(rdx); 997 const Register rmon = LP64_ONLY(c_rarg1) NOT_LP64(rcx); 998 // monitor pointers need different register 999 // because rdx may have the result in it 1000 NOT_LP64(get_thread(rthread);) 1001 1002 // The below poll is for the stack watermark barrier. It allows fixing up frames lazily, 1003 // that would normally not be safe to use. Such bad returns into unsafe territory of 1004 // the stack, will call InterpreterRuntime::at_unwind. 1005 Label slow_path; 1006 Label fast_path; 1007 safepoint_poll(slow_path, rthread, true /* at_return */, false /* in_nmethod */); 1008 jmp(fast_path); 1009 bind(slow_path); 1010 push(state); 1011 set_last_Java_frame(rthread, noreg, rbp, (address)pc(), rscratch1); 1012 super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), rthread); 1013 NOT_LP64(get_thread(rthread);) // call_VM clobbered it, restore 1014 reset_last_Java_frame(rthread, true); 1015 pop(state); 1016 bind(fast_path); 1017 1018 // get the value of _do_not_unlock_if_synchronized into rdx 1019 const Address do_not_unlock_if_synchronized(rthread, 1020 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset())); 1021 movbool(rbx, do_not_unlock_if_synchronized); 1022 movbool(do_not_unlock_if_synchronized, false); // reset the flag 1023 1024 // get method access flags 1025 movptr(rcx, Address(rbp, frame::interpreter_frame_method_offset * wordSize)); 1026 movl(rcx, Address(rcx, Method::access_flags_offset())); 1027 testl(rcx, JVM_ACC_SYNCHRONIZED); 1028 jcc(Assembler::zero, unlocked); 1029 1030 // Don't unlock anything if the _do_not_unlock_if_synchronized flag 1031 // is set. 1032 testbool(rbx); 1033 jcc(Assembler::notZero, no_unlock); 1034 1035 // unlock monitor 1036 push(state); // save result 1037 1038 // BasicObjectLock will be first in list, since this is a 1039 // synchronized method. However, need to check that the object has 1040 // not been unlocked by an explicit monitorexit bytecode. 1041 const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset * 1042 wordSize - (int) sizeof(BasicObjectLock)); 1043 // We use c_rarg1/rdx so that if we go slow path it will be the correct 1044 // register for unlock_object to pass to VM directly 1045 lea(robj, monitor); // address of first monitor 1046 1047 movptr(rax, Address(robj, BasicObjectLock::obj_offset_in_bytes())); 1048 testptr(rax, rax); 1049 jcc(Assembler::notZero, unlock); 1050 1051 pop(state); 1052 if (throw_monitor_exception) { 1053 // Entry already unlocked, need to throw exception 1054 NOT_LP64(empty_FPU_stack();) // remove possible return value from FPU-stack, otherwise stack could overflow 1055 call_VM(noreg, CAST_FROM_FN_PTR(address, 1056 InterpreterRuntime::throw_illegal_monitor_state_exception)); 1057 should_not_reach_here(); 1058 } else { 1059 // Monitor already unlocked during a stack unroll. If requested, 1060 // install an illegal_monitor_state_exception. Continue with 1061 // stack unrolling. 1062 if (install_monitor_exception) { 1063 NOT_LP64(empty_FPU_stack();) 1064 call_VM(noreg, CAST_FROM_FN_PTR(address, 1065 InterpreterRuntime::new_illegal_monitor_state_exception)); 1066 } 1067 jmp(unlocked); 1068 } 1069 1070 bind(unlock); 1071 unlock_object(robj); 1072 pop(state); 1073 1074 // Check that for block-structured locking (i.e., that all locked 1075 // objects has been unlocked) 1076 bind(unlocked); 1077 1078 // rax, rdx: Might contain return value 1079 1080 // Check that all monitors are unlocked 1081 { 1082 Label loop, exception, entry, restart; 1083 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; 1084 const Address monitor_block_top( 1085 rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 1086 const Address monitor_block_bot( 1087 rbp, frame::interpreter_frame_initial_sp_offset * wordSize); 1088 1089 bind(restart); 1090 // We use c_rarg1 so that if we go slow path it will be the correct 1091 // register for unlock_object to pass to VM directly 1092 movptr(rmon, monitor_block_top); // points to current entry, starting 1093 // with top-most entry 1094 lea(rbx, monitor_block_bot); // points to word before bottom of 1095 // monitor block 1096 jmp(entry); 1097 1098 // Entry already locked, need to throw exception 1099 bind(exception); 1100 1101 if (throw_monitor_exception) { 1102 // Throw exception 1103 NOT_LP64(empty_FPU_stack();) 1104 MacroAssembler::call_VM(noreg, 1105 CAST_FROM_FN_PTR(address, InterpreterRuntime:: 1106 throw_illegal_monitor_state_exception)); 1107 should_not_reach_here(); 1108 } else { 1109 // Stack unrolling. Unlock object and install illegal_monitor_exception. 1110 // Unlock does not block, so don't have to worry about the frame. 1111 // We don't have to preserve c_rarg1 since we are going to throw an exception. 1112 1113 push(state); 1114 mov(robj, rmon); // nop if robj and rmon are the same 1115 unlock_object(robj); 1116 pop(state); 1117 1118 if (install_monitor_exception) { 1119 NOT_LP64(empty_FPU_stack();) 1120 call_VM(noreg, CAST_FROM_FN_PTR(address, 1121 InterpreterRuntime:: 1122 new_illegal_monitor_state_exception)); 1123 } 1124 1125 jmp(restart); 1126 } 1127 1128 bind(loop); 1129 // check if current entry is used 1130 cmpptr(Address(rmon, BasicObjectLock::obj_offset_in_bytes()), NULL_WORD); 1131 jcc(Assembler::notEqual, exception); 1132 1133 addptr(rmon, entry_size); // otherwise advance to next entry 1134 bind(entry); 1135 cmpptr(rmon, rbx); // check if bottom reached 1136 jcc(Assembler::notEqual, loop); // if not at bottom then check this entry 1137 } 1138 1139 bind(no_unlock); 1140 1141 // jvmti support 1142 if (notify_jvmdi) { 1143 notify_method_exit(state, NotifyJVMTI); // preserve TOSCA 1144 } else { 1145 notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA 1146 } 1147 1148 if (StackReservedPages > 0) { 1149 movptr(rbx, 1150 Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); 1151 // testing if reserved zone needs to be re-enabled 1152 Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx); 1153 Label no_reserved_zone_enabling; 1154 1155 NOT_LP64(get_thread(rthread);) 1156 1157 cmpl(Address(rthread, JavaThread::stack_guard_state_offset()), StackOverflow::stack_guard_enabled); 1158 jcc(Assembler::equal, no_reserved_zone_enabling); 1159 1160 cmpptr(rbx, Address(rthread, JavaThread::reserved_stack_activation_offset())); 1161 jcc(Assembler::lessEqual, no_reserved_zone_enabling); 1162 1163 call_VM_leaf( 1164 CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), rthread); 1165 call_VM(noreg, CAST_FROM_FN_PTR(address, 1166 InterpreterRuntime::throw_delayed_StackOverflowError)); 1167 should_not_reach_here(); 1168 1169 bind(no_reserved_zone_enabling); 1170 } 1171 1172 // remove activation 1173 // get sender sp 1174 movptr(rbx, 1175 Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); 1176 1177 if (state == atos && InlineTypeReturnedAsFields) { 1178 // Check if we are returning an non-null inline type and load its fields into registers 1179 Label skip; 1180 test_oop_is_not_inline_type(rax, rscratch1, skip); 1181 1182 #ifndef _LP64 1183 super_call_VM_leaf(StubRoutines::load_inline_type_fields_in_regs()); 1184 #else 1185 // Load fields from a buffered value with an inline class specific handler 1186 load_klass(rdi, rax, rscratch1); 1187 movptr(rdi, Address(rdi, InstanceKlass::adr_inlineklass_fixed_block_offset())); 1188 movptr(rdi, Address(rdi, InlineKlass::unpack_handler_offset())); 1189 // Unpack handler can be null if inline type is not scalarizable in returns 1190 testptr(rdi, rdi); 1191 jcc(Assembler::zero, skip); 1192 call(rdi); 1193 #endif 1194 #ifdef ASSERT 1195 if (StressInlineTypeReturnedAsFields) { 1196 // TODO 8284443 Enable this for value class returns (L-type descriptor) 1197 Label skip_stress; 1198 movptr(rscratch1, Address(rbp, frame::interpreter_frame_method_offset * wordSize)); 1199 movptr(rscratch1, Address(rscratch1, Method::const_offset())); 1200 load_unsigned_byte(rscratch1, Address(rscratch1, ConstMethod::result_type_offset())); 1201 cmpl(rscratch1, T_PRIMITIVE_OBJECT); 1202 jcc(Assembler::notEqual, skip_stress); 1203 load_klass(rax, rax, rscratch1); 1204 orptr(rax, 1); 1205 bind(skip_stress); 1206 } 1207 #endif 1208 // call above kills the value in rbx. Reload it. 1209 movptr(rbx, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); 1210 bind(skip); 1211 } 1212 leave(); // remove frame anchor 1213 pop(ret_addr); // get return address 1214 mov(rsp, rbx); // set sp to sender sp 1215 pop_cont_fastpath(); 1216 } 1217 1218 void InterpreterMacroAssembler::get_method_counters(Register method, 1219 Register mcs, Label& skip) { 1220 Label has_counters; 1221 movptr(mcs, Address(method, Method::method_counters_offset())); 1222 testptr(mcs, mcs); 1223 jcc(Assembler::notZero, has_counters); 1224 call_VM(noreg, CAST_FROM_FN_PTR(address, 1225 InterpreterRuntime::build_method_counters), method); 1226 movptr(mcs, Address(method,Method::method_counters_offset())); 1227 testptr(mcs, mcs); 1228 jcc(Assembler::zero, skip); // No MethodCounters allocated, OutOfMemory 1229 bind(has_counters); 1230 } 1231 1232 void InterpreterMacroAssembler::allocate_instance(Register klass, Register new_obj, 1233 Register t1, Register t2, 1234 bool clear_fields, Label& alloc_failed) { 1235 MacroAssembler::allocate_instance(klass, new_obj, t1, t2, clear_fields, alloc_failed); 1236 { 1237 SkipIfEqual skip_if(this, &DTraceAllocProbes, 0, rscratch1); 1238 // Trigger dtrace event for fastpath 1239 push(atos); 1240 call_VM_leaf(CAST_FROM_FN_PTR(address, static_cast<int (*)(oopDesc*)>(SharedRuntime::dtrace_object_alloc)), new_obj); 1241 pop(atos); 1242 } 1243 } 1244 1245 1246 void InterpreterMacroAssembler::read_inlined_field(Register holder_klass, 1247 Register field_index, Register field_offset, 1248 Register obj) { 1249 Label alloc_failed, empty_value, done; 1250 const Register src = field_offset; 1251 const Register alloc_temp = LP64_ONLY(rscratch1) NOT_LP64(rsi); 1252 const Register dst_temp = LP64_ONLY(rscratch2) NOT_LP64(rdi); 1253 assert_different_registers(obj, holder_klass, field_index, field_offset, dst_temp); 1254 1255 // Grap the inline field klass 1256 push(holder_klass); 1257 const Register field_klass = holder_klass; 1258 get_inline_type_field_klass(holder_klass, field_index, field_klass); 1259 1260 //check for empty value klass 1261 test_klass_is_empty_inline_type(field_klass, dst_temp, empty_value); 1262 1263 // allocate buffer 1264 push(obj); // save holder 1265 allocate_instance(field_klass, obj, alloc_temp, dst_temp, false, alloc_failed); 1266 1267 // Have an oop instance buffer, copy into it 1268 data_for_oop(obj, dst_temp, field_klass); 1269 pop(alloc_temp); // restore holder 1270 lea(src, Address(alloc_temp, field_offset)); 1271 // call_VM_leaf, clobbers a few regs, save restore new obj 1272 push(obj); 1273 access_value_copy(IS_DEST_UNINITIALIZED, src, dst_temp, field_klass); 1274 pop(obj); 1275 pop(holder_klass); 1276 jmp(done); 1277 1278 bind(empty_value); 1279 get_empty_inline_type_oop(field_klass, dst_temp, obj); 1280 pop(holder_klass); 1281 jmp(done); 1282 1283 bind(alloc_failed); 1284 pop(obj); 1285 pop(holder_klass); 1286 call_VM(obj, CAST_FROM_FN_PTR(address, InterpreterRuntime::read_inlined_field), 1287 obj, field_index, holder_klass); 1288 1289 bind(done); 1290 } 1291 1292 void InterpreterMacroAssembler::read_flattened_element(Register array, Register index, 1293 Register t1, Register t2, 1294 Register obj) { 1295 assert_different_registers(array, index, t1, t2); 1296 Label alloc_failed, empty_value, done; 1297 const Register array_klass = t2; 1298 const Register elem_klass = t1; 1299 const Register alloc_temp = LP64_ONLY(rscratch1) NOT_LP64(rsi); 1300 const Register dst_temp = LP64_ONLY(rscratch2) NOT_LP64(rdi); 1301 1302 // load in array->klass()->element_klass() 1303 Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg); 1304 load_klass(array_klass, array, tmp_load_klass); 1305 movptr(elem_klass, Address(array_klass, ArrayKlass::element_klass_offset())); 1306 1307 //check for empty value klass 1308 test_klass_is_empty_inline_type(elem_klass, dst_temp, empty_value); 1309 1310 // calc source into "array_klass" and free up some regs 1311 const Register src = array_klass; 1312 push(index); // preserve index reg in case alloc_failed 1313 data_for_value_array_index(array, array_klass, index, src); 1314 1315 allocate_instance(elem_klass, obj, alloc_temp, dst_temp, false, alloc_failed); 1316 // Have an oop instance buffer, copy into it 1317 store_ptr(0, obj); // preserve obj (overwrite index, no longer needed) 1318 data_for_oop(obj, dst_temp, elem_klass); 1319 access_value_copy(IS_DEST_UNINITIALIZED, src, dst_temp, elem_klass); 1320 pop(obj); 1321 jmp(done); 1322 1323 bind(empty_value); 1324 get_empty_inline_type_oop(elem_klass, dst_temp, obj); 1325 jmp(done); 1326 1327 bind(alloc_failed); 1328 pop(index); 1329 if (array == c_rarg2) { 1330 mov(elem_klass, array); 1331 array = elem_klass; 1332 } 1333 call_VM(obj, CAST_FROM_FN_PTR(address, InterpreterRuntime::value_array_load), array, index); 1334 1335 bind(done); 1336 } 1337 1338 1339 // Lock object 1340 // 1341 // Args: 1342 // rdx, c_rarg1: BasicObjectLock to be used for locking 1343 // 1344 // Kills: 1345 // rax, rbx 1346 void InterpreterMacroAssembler::lock_object(Register lock_reg) { 1347 assert(lock_reg == LP64_ONLY(c_rarg1) NOT_LP64(rdx), 1348 "The argument is only for looks. It must be c_rarg1"); 1349 1350 if (UseHeavyMonitors) { 1351 call_VM(noreg, 1352 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 1353 lock_reg); 1354 } else { 1355 Label count_locking, done, slow_case; 1356 1357 const Register swap_reg = rax; // Must use rax for cmpxchg instruction 1358 const Register tmp_reg = rbx; 1359 const Register obj_reg = LP64_ONLY(c_rarg3) NOT_LP64(rcx); // Will contain the oop 1360 const Register rklass_decode_tmp = rscratch1; 1361 1362 const int obj_offset = BasicObjectLock::obj_offset_in_bytes(); 1363 const int lock_offset = BasicObjectLock::lock_offset_in_bytes (); 1364 const int mark_offset = lock_offset + 1365 BasicLock::displaced_header_offset_in_bytes(); 1366 1367 // Load object pointer into obj_reg 1368 movptr(obj_reg, Address(lock_reg, obj_offset)); 1369 1370 if (DiagnoseSyncOnValueBasedClasses != 0) { 1371 load_klass(tmp_reg, obj_reg, rklass_decode_tmp); 1372 movl(tmp_reg, Address(tmp_reg, Klass::access_flags_offset())); 1373 testl(tmp_reg, JVM_ACC_IS_VALUE_BASED_CLASS); 1374 jcc(Assembler::notZero, slow_case); 1375 } 1376 1377 // Load immediate 1 into swap_reg %rax 1378 movl(swap_reg, 1); 1379 1380 // Load (object->mark() | 1) into swap_reg %rax 1381 orptr(swap_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 1382 if (EnableValhalla) { 1383 // Mask inline_type bit such that we go to the slow path if object is an inline type 1384 andptr(swap_reg, ~((int) markWord::inline_type_bit_in_place)); 1385 } 1386 1387 // Save (object->mark() | 1) into BasicLock's displaced header 1388 movptr(Address(lock_reg, mark_offset), swap_reg); 1389 1390 assert(lock_offset == 0, 1391 "displaced header must be first word in BasicObjectLock"); 1392 1393 lock(); 1394 cmpxchgptr(lock_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 1395 jcc(Assembler::zero, count_locking); 1396 1397 const int zero_bits = LP64_ONLY(7) NOT_LP64(3); 1398 1399 // Fast check for recursive lock. 1400 // 1401 // Can apply the optimization only if this is a stack lock 1402 // allocated in this thread. For efficiency, we can focus on 1403 // recently allocated stack locks (instead of reading the stack 1404 // base and checking whether 'mark' points inside the current 1405 // thread stack): 1406 // 1) (mark & zero_bits) == 0, and 1407 // 2) rsp <= mark < mark + os::pagesize() 1408 // 1409 // Warning: rsp + os::pagesize can overflow the stack base. We must 1410 // neither apply the optimization for an inflated lock allocated 1411 // just above the thread stack (this is why condition 1 matters) 1412 // nor apply the optimization if the stack lock is inside the stack 1413 // of another thread. The latter is avoided even in case of overflow 1414 // because we have guard pages at the end of all stacks. Hence, if 1415 // we go over the stack base and hit the stack of another thread, 1416 // this should not be in a writeable area that could contain a 1417 // stack lock allocated by that thread. As a consequence, a stack 1418 // lock less than page size away from rsp is guaranteed to be 1419 // owned by the current thread. 1420 // 1421 // These 3 tests can be done by evaluating the following 1422 // expression: ((mark - rsp) & (zero_bits - os::vm_page_size())), 1423 // assuming both stack pointer and pagesize have their 1424 // least significant bits clear. 1425 // NOTE: the mark is in swap_reg %rax as the result of cmpxchg 1426 subptr(swap_reg, rsp); 1427 andptr(swap_reg, zero_bits - os::vm_page_size()); 1428 1429 // Save the test result, for recursive case, the result is zero 1430 movptr(Address(lock_reg, mark_offset), swap_reg); 1431 jcc(Assembler::notZero, slow_case); 1432 1433 bind(count_locking); 1434 inc_held_monitor_count(); 1435 jmp(done); 1436 1437 bind(slow_case); 1438 1439 // Call the runtime routine for slow case 1440 call_VM(noreg, 1441 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 1442 lock_reg); 1443 1444 bind(done); 1445 } 1446 } 1447 1448 1449 // Unlocks an object. Used in monitorexit bytecode and 1450 // remove_activation. Throws an IllegalMonitorException if object is 1451 // not locked by current thread. 1452 // 1453 // Args: 1454 // rdx, c_rarg1: BasicObjectLock for lock 1455 // 1456 // Kills: 1457 // rax 1458 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs) 1459 // rscratch1 (scratch reg) 1460 // rax, rbx, rcx, rdx 1461 void InterpreterMacroAssembler::unlock_object(Register lock_reg) { 1462 assert(lock_reg == LP64_ONLY(c_rarg1) NOT_LP64(rdx), 1463 "The argument is only for looks. It must be c_rarg1"); 1464 1465 if (UseHeavyMonitors) { 1466 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); 1467 } else { 1468 Label count_locking, done, slow_case; 1469 1470 const Register swap_reg = rax; // Must use rax for cmpxchg instruction 1471 const Register header_reg = LP64_ONLY(c_rarg2) NOT_LP64(rbx); // Will contain the old oopMark 1472 const Register obj_reg = LP64_ONLY(c_rarg3) NOT_LP64(rcx); // Will contain the oop 1473 1474 save_bcp(); // Save in case of exception 1475 1476 // Convert from BasicObjectLock structure to object and BasicLock 1477 // structure Store the BasicLock address into %rax 1478 lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes())); 1479 1480 // Load oop into obj_reg(%c_rarg3) 1481 movptr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes())); 1482 1483 // Free entry 1484 movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), NULL_WORD); 1485 1486 // Load the old header from BasicLock structure 1487 movptr(header_reg, Address(swap_reg, 1488 BasicLock::displaced_header_offset_in_bytes())); 1489 1490 // Test for recursion 1491 testptr(header_reg, header_reg); 1492 1493 // zero for recursive case 1494 jcc(Assembler::zero, count_locking); 1495 1496 // Atomic swap back the old header 1497 lock(); 1498 cmpxchgptr(header_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 1499 1500 // zero for simple unlock of a stack-lock case 1501 jcc(Assembler::notZero, slow_case); 1502 1503 bind(count_locking); 1504 dec_held_monitor_count(); 1505 jmp(done); 1506 1507 bind(slow_case); 1508 // Call the runtime routine for slow case. 1509 movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), obj_reg); // restore obj 1510 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); 1511 1512 bind(done); 1513 1514 restore_bcp(); 1515 } 1516 } 1517 1518 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, 1519 Label& zero_continue) { 1520 assert(ProfileInterpreter, "must be profiling interpreter"); 1521 movptr(mdp, Address(rbp, frame::interpreter_frame_mdp_offset * wordSize)); 1522 testptr(mdp, mdp); 1523 jcc(Assembler::zero, zero_continue); 1524 } 1525 1526 1527 // Set the method data pointer for the current bcp. 1528 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() { 1529 assert(ProfileInterpreter, "must be profiling interpreter"); 1530 Label set_mdp; 1531 push(rax); 1532 push(rbx); 1533 1534 get_method(rbx); 1535 // Test MDO to avoid the call if it is NULL. 1536 movptr(rax, Address(rbx, in_bytes(Method::method_data_offset()))); 1537 testptr(rax, rax); 1538 jcc(Assembler::zero, set_mdp); 1539 // rbx: method 1540 // _bcp_register: bcp 1541 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rbx, _bcp_register); 1542 // rax: mdi 1543 // mdo is guaranteed to be non-zero here, we checked for it before the call. 1544 movptr(rbx, Address(rbx, in_bytes(Method::method_data_offset()))); 1545 addptr(rbx, in_bytes(MethodData::data_offset())); 1546 addptr(rax, rbx); 1547 bind(set_mdp); 1548 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), rax); 1549 pop(rbx); 1550 pop(rax); 1551 } 1552 1553 void InterpreterMacroAssembler::verify_method_data_pointer() { 1554 assert(ProfileInterpreter, "must be profiling interpreter"); 1555 #ifdef ASSERT 1556 Label verify_continue; 1557 push(rax); 1558 push(rbx); 1559 Register arg3_reg = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 1560 Register arg2_reg = LP64_ONLY(c_rarg2) NOT_LP64(rdx); 1561 push(arg3_reg); 1562 push(arg2_reg); 1563 test_method_data_pointer(arg3_reg, verify_continue); // If mdp is zero, continue 1564 get_method(rbx); 1565 1566 // If the mdp is valid, it will point to a DataLayout header which is 1567 // consistent with the bcp. The converse is highly probable also. 1568 load_unsigned_short(arg2_reg, 1569 Address(arg3_reg, in_bytes(DataLayout::bci_offset()))); 1570 addptr(arg2_reg, Address(rbx, Method::const_offset())); 1571 lea(arg2_reg, Address(arg2_reg, ConstMethod::codes_offset())); 1572 cmpptr(arg2_reg, _bcp_register); 1573 jcc(Assembler::equal, verify_continue); 1574 // rbx: method 1575 // _bcp_register: bcp 1576 // c_rarg3: mdp 1577 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), 1578 rbx, _bcp_register, arg3_reg); 1579 bind(verify_continue); 1580 pop(arg2_reg); 1581 pop(arg3_reg); 1582 pop(rbx); 1583 pop(rax); 1584 #endif // ASSERT 1585 } 1586 1587 1588 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, 1589 int constant, 1590 Register value) { 1591 assert(ProfileInterpreter, "must be profiling interpreter"); 1592 Address data(mdp_in, constant); 1593 movptr(data, value); 1594 } 1595 1596 1597 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 1598 int constant, 1599 bool decrement) { 1600 // Counter address 1601 Address data(mdp_in, constant); 1602 1603 increment_mdp_data_at(data, decrement); 1604 } 1605 1606 void InterpreterMacroAssembler::increment_mdp_data_at(Address data, 1607 bool decrement) { 1608 assert(ProfileInterpreter, "must be profiling interpreter"); 1609 // %%% this does 64bit counters at best it is wasting space 1610 // at worst it is a rare bug when counters overflow 1611 1612 if (decrement) { 1613 // Decrement the register. Set condition codes. 1614 addptr(data, -DataLayout::counter_increment); 1615 // If the decrement causes the counter to overflow, stay negative 1616 Label L; 1617 jcc(Assembler::negative, L); 1618 addptr(data, DataLayout::counter_increment); 1619 bind(L); 1620 } else { 1621 assert(DataLayout::counter_increment == 1, 1622 "flow-free idiom only works with 1"); 1623 // Increment the register. Set carry flag. 1624 addptr(data, DataLayout::counter_increment); 1625 // If the increment causes the counter to overflow, pull back by 1. 1626 sbbptr(data, 0); 1627 } 1628 } 1629 1630 1631 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 1632 Register reg, 1633 int constant, 1634 bool decrement) { 1635 Address data(mdp_in, reg, Address::times_1, constant); 1636 1637 increment_mdp_data_at(data, decrement); 1638 } 1639 1640 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in, 1641 int flag_byte_constant) { 1642 assert(ProfileInterpreter, "must be profiling interpreter"); 1643 int header_offset = in_bytes(DataLayout::flags_offset()); 1644 int header_bits = flag_byte_constant; 1645 // Set the flag 1646 orb(Address(mdp_in, header_offset), header_bits); 1647 } 1648 1649 1650 1651 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in, 1652 int offset, 1653 Register value, 1654 Register test_value_out, 1655 Label& not_equal_continue) { 1656 assert(ProfileInterpreter, "must be profiling interpreter"); 1657 if (test_value_out == noreg) { 1658 cmpptr(value, Address(mdp_in, offset)); 1659 } else { 1660 // Put the test value into a register, so caller can use it: 1661 movptr(test_value_out, Address(mdp_in, offset)); 1662 cmpptr(test_value_out, value); 1663 } 1664 jcc(Assembler::notEqual, not_equal_continue); 1665 } 1666 1667 1668 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1669 int offset_of_disp) { 1670 assert(ProfileInterpreter, "must be profiling interpreter"); 1671 Address disp_address(mdp_in, offset_of_disp); 1672 addptr(mdp_in, disp_address); 1673 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in); 1674 } 1675 1676 1677 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1678 Register reg, 1679 int offset_of_disp) { 1680 assert(ProfileInterpreter, "must be profiling interpreter"); 1681 Address disp_address(mdp_in, reg, Address::times_1, offset_of_disp); 1682 addptr(mdp_in, disp_address); 1683 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in); 1684 } 1685 1686 1687 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, 1688 int constant) { 1689 assert(ProfileInterpreter, "must be profiling interpreter"); 1690 addptr(mdp_in, constant); 1691 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in); 1692 } 1693 1694 1695 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) { 1696 assert(ProfileInterpreter, "must be profiling interpreter"); 1697 push(return_bci); // save/restore across call_VM 1698 call_VM(noreg, 1699 CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), 1700 return_bci); 1701 pop(return_bci); 1702 } 1703 1704 1705 void InterpreterMacroAssembler::profile_taken_branch(Register mdp, 1706 Register bumped_count) { 1707 if (ProfileInterpreter) { 1708 Label profile_continue; 1709 1710 // If no method data exists, go to profile_continue. 1711 // Otherwise, assign to mdp 1712 test_method_data_pointer(mdp, profile_continue); 1713 1714 // We are taking a branch. Increment the taken count. 1715 // We inline increment_mdp_data_at to return bumped_count in a register 1716 //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset())); 1717 Address data(mdp, in_bytes(JumpData::taken_offset())); 1718 movptr(bumped_count, data); 1719 assert(DataLayout::counter_increment == 1, 1720 "flow-free idiom only works with 1"); 1721 addptr(bumped_count, DataLayout::counter_increment); 1722 sbbptr(bumped_count, 0); 1723 movptr(data, bumped_count); // Store back out 1724 1725 // The method data pointer needs to be updated to reflect the new target. 1726 update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset())); 1727 bind(profile_continue); 1728 } 1729 } 1730 1731 1732 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp, bool acmp) { 1733 if (ProfileInterpreter) { 1734 Label profile_continue; 1735 1736 // If no method data exists, go to profile_continue. 1737 test_method_data_pointer(mdp, profile_continue); 1738 1739 // We are taking a branch. Increment the not taken count. 1740 increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset())); 1741 1742 // The method data pointer needs to be updated to correspond to 1743 // the next bytecode 1744 update_mdp_by_constant(mdp, acmp ? in_bytes(ACmpData::acmp_data_size()): in_bytes(BranchData::branch_data_size())); 1745 bind(profile_continue); 1746 } 1747 } 1748 1749 void InterpreterMacroAssembler::profile_call(Register mdp) { 1750 if (ProfileInterpreter) { 1751 Label profile_continue; 1752 1753 // If no method data exists, go to profile_continue. 1754 test_method_data_pointer(mdp, profile_continue); 1755 1756 // We are making a call. Increment the count. 1757 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1758 1759 // The method data pointer needs to be updated to reflect the new target. 1760 update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size())); 1761 bind(profile_continue); 1762 } 1763 } 1764 1765 1766 void InterpreterMacroAssembler::profile_final_call(Register mdp) { 1767 if (ProfileInterpreter) { 1768 Label profile_continue; 1769 1770 // If no method data exists, go to profile_continue. 1771 test_method_data_pointer(mdp, profile_continue); 1772 1773 // We are making a call. Increment the count. 1774 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1775 1776 // The method data pointer needs to be updated to reflect the new target. 1777 update_mdp_by_constant(mdp, 1778 in_bytes(VirtualCallData:: 1779 virtual_call_data_size())); 1780 bind(profile_continue); 1781 } 1782 } 1783 1784 1785 void InterpreterMacroAssembler::profile_virtual_call(Register receiver, 1786 Register mdp, 1787 Register reg2, 1788 bool receiver_can_be_null) { 1789 if (ProfileInterpreter) { 1790 Label profile_continue; 1791 1792 // If no method data exists, go to profile_continue. 1793 test_method_data_pointer(mdp, profile_continue); 1794 1795 Label skip_receiver_profile; 1796 if (receiver_can_be_null) { 1797 Label not_null; 1798 testptr(receiver, receiver); 1799 jccb(Assembler::notZero, not_null); 1800 // We are making a call. Increment the count for null receiver. 1801 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1802 jmp(skip_receiver_profile); 1803 bind(not_null); 1804 } 1805 1806 // Record the receiver type. 1807 record_klass_in_profile(receiver, mdp, reg2, true); 1808 bind(skip_receiver_profile); 1809 1810 // The method data pointer needs to be updated to reflect the new target. 1811 update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size())); 1812 bind(profile_continue); 1813 } 1814 } 1815 1816 // This routine creates a state machine for updating the multi-row 1817 // type profile at a virtual call site (or other type-sensitive bytecode). 1818 // The machine visits each row (of receiver/count) until the receiver type 1819 // is found, or until it runs out of rows. At the same time, it remembers 1820 // the location of the first empty row. (An empty row records null for its 1821 // receiver, and can be allocated for a newly-observed receiver type.) 1822 // Because there are two degrees of freedom in the state, a simple linear 1823 // search will not work; it must be a decision tree. Hence this helper 1824 // function is recursive, to generate the required tree structured code. 1825 // It's the interpreter, so we are trading off code space for speed. 1826 // See below for example code. 1827 void InterpreterMacroAssembler::record_klass_in_profile_helper( 1828 Register receiver, Register mdp, 1829 Register reg2, int start_row, 1830 Label& done, bool is_virtual_call) { 1831 if (TypeProfileWidth == 0) { 1832 if (is_virtual_call) { 1833 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1834 } 1835 #if INCLUDE_JVMCI 1836 else if (EnableJVMCI) { 1837 increment_mdp_data_at(mdp, in_bytes(ReceiverTypeData::nonprofiled_receiver_count_offset())); 1838 } 1839 #endif // INCLUDE_JVMCI 1840 } else { 1841 int non_profiled_offset = -1; 1842 if (is_virtual_call) { 1843 non_profiled_offset = in_bytes(CounterData::count_offset()); 1844 } 1845 #if INCLUDE_JVMCI 1846 else if (EnableJVMCI) { 1847 non_profiled_offset = in_bytes(ReceiverTypeData::nonprofiled_receiver_count_offset()); 1848 } 1849 #endif // INCLUDE_JVMCI 1850 1851 record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth, 1852 &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset, non_profiled_offset); 1853 } 1854 } 1855 1856 void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp, 1857 Register reg2, int start_row, Label& done, int total_rows, 1858 OffsetFunction item_offset_fn, OffsetFunction item_count_offset_fn, 1859 int non_profiled_offset) { 1860 int last_row = total_rows - 1; 1861 assert(start_row <= last_row, "must be work left to do"); 1862 // Test this row for both the item and for null. 1863 // Take any of three different outcomes: 1864 // 1. found item => increment count and goto done 1865 // 2. found null => keep looking for case 1, maybe allocate this cell 1866 // 3. found something else => keep looking for cases 1 and 2 1867 // Case 3 is handled by a recursive call. 1868 for (int row = start_row; row <= last_row; row++) { 1869 Label next_test; 1870 bool test_for_null_also = (row == start_row); 1871 1872 // See if the item is item[n]. 1873 int item_offset = in_bytes(item_offset_fn(row)); 1874 test_mdp_data_at(mdp, item_offset, item, 1875 (test_for_null_also ? reg2 : noreg), 1876 next_test); 1877 // (Reg2 now contains the item from the CallData.) 1878 1879 // The item is item[n]. Increment count[n]. 1880 int count_offset = in_bytes(item_count_offset_fn(row)); 1881 increment_mdp_data_at(mdp, count_offset); 1882 jmp(done); 1883 bind(next_test); 1884 1885 if (test_for_null_also) { 1886 // Failed the equality check on item[n]... Test for null. 1887 testptr(reg2, reg2); 1888 if (start_row == last_row) { 1889 // The only thing left to do is handle the null case. 1890 if (non_profiled_offset >= 0) { 1891 Label found_null; 1892 jccb(Assembler::zero, found_null); 1893 // Item did not match any saved item and there is no empty row for it. 1894 // Increment total counter to indicate polymorphic case. 1895 increment_mdp_data_at(mdp, non_profiled_offset); 1896 jmp(done); 1897 bind(found_null); 1898 } else { 1899 jcc(Assembler::notZero, done); 1900 } 1901 break; 1902 } 1903 Label found_null; 1904 // Since null is rare, make it be the branch-taken case. 1905 jcc(Assembler::zero, found_null); 1906 1907 // Put all the "Case 3" tests here. 1908 record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows, 1909 item_offset_fn, item_count_offset_fn, non_profiled_offset); 1910 1911 // Found a null. Keep searching for a matching item, 1912 // but remember that this is an empty (unused) slot. 1913 bind(found_null); 1914 } 1915 } 1916 1917 // In the fall-through case, we found no matching item, but we 1918 // observed the item[start_row] is NULL. 1919 1920 // Fill in the item field and increment the count. 1921 int item_offset = in_bytes(item_offset_fn(start_row)); 1922 set_mdp_data_at(mdp, item_offset, item); 1923 int count_offset = in_bytes(item_count_offset_fn(start_row)); 1924 movl(reg2, DataLayout::counter_increment); 1925 set_mdp_data_at(mdp, count_offset, reg2); 1926 if (start_row > 0) { 1927 jmp(done); 1928 } 1929 } 1930 1931 // Example state machine code for three profile rows: 1932 // // main copy of decision tree, rooted at row[1] 1933 // if (row[0].rec == rec) { row[0].incr(); goto done; } 1934 // if (row[0].rec != NULL) { 1935 // // inner copy of decision tree, rooted at row[1] 1936 // if (row[1].rec == rec) { row[1].incr(); goto done; } 1937 // if (row[1].rec != NULL) { 1938 // // degenerate decision tree, rooted at row[2] 1939 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1940 // if (row[2].rec != NULL) { count.incr(); goto done; } // overflow 1941 // row[2].init(rec); goto done; 1942 // } else { 1943 // // remember row[1] is empty 1944 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1945 // row[1].init(rec); goto done; 1946 // } 1947 // } else { 1948 // // remember row[0] is empty 1949 // if (row[1].rec == rec) { row[1].incr(); goto done; } 1950 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1951 // row[0].init(rec); goto done; 1952 // } 1953 // done: 1954 1955 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver, 1956 Register mdp, Register reg2, 1957 bool is_virtual_call) { 1958 assert(ProfileInterpreter, "must be profiling"); 1959 Label done; 1960 1961 record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call); 1962 1963 bind (done); 1964 } 1965 1966 void InterpreterMacroAssembler::profile_ret(Register return_bci, 1967 Register mdp) { 1968 if (ProfileInterpreter) { 1969 Label profile_continue; 1970 uint row; 1971 1972 // If no method data exists, go to profile_continue. 1973 test_method_data_pointer(mdp, profile_continue); 1974 1975 // Update the total ret count. 1976 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1977 1978 for (row = 0; row < RetData::row_limit(); row++) { 1979 Label next_test; 1980 1981 // See if return_bci is equal to bci[n]: 1982 test_mdp_data_at(mdp, 1983 in_bytes(RetData::bci_offset(row)), 1984 return_bci, noreg, 1985 next_test); 1986 1987 // return_bci is equal to bci[n]. Increment the count. 1988 increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row))); 1989 1990 // The method data pointer needs to be updated to reflect the new target. 1991 update_mdp_by_offset(mdp, 1992 in_bytes(RetData::bci_displacement_offset(row))); 1993 jmp(profile_continue); 1994 bind(next_test); 1995 } 1996 1997 update_mdp_for_ret(return_bci); 1998 1999 bind(profile_continue); 2000 } 2001 } 2002 2003 2004 void InterpreterMacroAssembler::profile_null_seen(Register mdp) { 2005 if (ProfileInterpreter) { 2006 Label profile_continue; 2007 2008 // If no method data exists, go to profile_continue. 2009 test_method_data_pointer(mdp, profile_continue); 2010 2011 set_mdp_flag_at(mdp, BitData::null_seen_byte_constant()); 2012 2013 // The method data pointer needs to be updated. 2014 int mdp_delta = in_bytes(BitData::bit_data_size()); 2015 if (TypeProfileCasts) { 2016 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 2017 } 2018 update_mdp_by_constant(mdp, mdp_delta); 2019 2020 bind(profile_continue); 2021 } 2022 } 2023 2024 2025 void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) { 2026 if (ProfileInterpreter && TypeProfileCasts) { 2027 Label profile_continue; 2028 2029 // If no method data exists, go to profile_continue. 2030 test_method_data_pointer(mdp, profile_continue); 2031 2032 int count_offset = in_bytes(CounterData::count_offset()); 2033 // Back up the address, since we have already bumped the mdp. 2034 count_offset -= in_bytes(VirtualCallData::virtual_call_data_size()); 2035 2036 // *Decrement* the counter. We expect to see zero or small negatives. 2037 increment_mdp_data_at(mdp, count_offset, true); 2038 2039 bind (profile_continue); 2040 } 2041 } 2042 2043 2044 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) { 2045 if (ProfileInterpreter) { 2046 Label profile_continue; 2047 2048 // If no method data exists, go to profile_continue. 2049 test_method_data_pointer(mdp, profile_continue); 2050 2051 // The method data pointer needs to be updated. 2052 int mdp_delta = in_bytes(BitData::bit_data_size()); 2053 if (TypeProfileCasts) { 2054 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 2055 2056 // Record the object type. 2057 record_klass_in_profile(klass, mdp, reg2, false); 2058 NOT_LP64(assert(reg2 == rdi, "we know how to fix this blown reg");) 2059 NOT_LP64(restore_locals();) // Restore EDI 2060 } 2061 update_mdp_by_constant(mdp, mdp_delta); 2062 2063 bind(profile_continue); 2064 } 2065 } 2066 2067 2068 void InterpreterMacroAssembler::profile_switch_default(Register mdp) { 2069 if (ProfileInterpreter) { 2070 Label profile_continue; 2071 2072 // If no method data exists, go to profile_continue. 2073 test_method_data_pointer(mdp, profile_continue); 2074 2075 // Update the default case count 2076 increment_mdp_data_at(mdp, 2077 in_bytes(MultiBranchData::default_count_offset())); 2078 2079 // The method data pointer needs to be updated. 2080 update_mdp_by_offset(mdp, 2081 in_bytes(MultiBranchData:: 2082 default_displacement_offset())); 2083 2084 bind(profile_continue); 2085 } 2086 } 2087 2088 2089 void InterpreterMacroAssembler::profile_switch_case(Register index, 2090 Register mdp, 2091 Register reg2) { 2092 if (ProfileInterpreter) { 2093 Label profile_continue; 2094 2095 // If no method data exists, go to profile_continue. 2096 test_method_data_pointer(mdp, profile_continue); 2097 2098 // Build the base (index * per_case_size_in_bytes()) + 2099 // case_array_offset_in_bytes() 2100 movl(reg2, in_bytes(MultiBranchData::per_case_size())); 2101 imulptr(index, reg2); // XXX l ? 2102 addptr(index, in_bytes(MultiBranchData::case_array_offset())); // XXX l ? 2103 2104 // Update the case count 2105 increment_mdp_data_at(mdp, 2106 index, 2107 in_bytes(MultiBranchData::relative_count_offset())); 2108 2109 // The method data pointer needs to be updated. 2110 update_mdp_by_offset(mdp, 2111 index, 2112 in_bytes(MultiBranchData:: 2113 relative_displacement_offset())); 2114 2115 bind(profile_continue); 2116 } 2117 } 2118 2119 void InterpreterMacroAssembler::profile_array(Register mdp, 2120 Register array, 2121 Register tmp) { 2122 if (ProfileInterpreter) { 2123 Label profile_continue; 2124 2125 // If no method data exists, go to profile_continue. 2126 test_method_data_pointer(mdp, profile_continue); 2127 2128 mov(tmp, array); 2129 profile_obj_type(tmp, Address(mdp, in_bytes(ArrayLoadStoreData::array_offset()))); 2130 2131 Label not_flat; 2132 test_non_flattened_array_oop(array, tmp, not_flat); 2133 2134 set_mdp_flag_at(mdp, ArrayLoadStoreData::flat_array_byte_constant()); 2135 2136 bind(not_flat); 2137 2138 Label not_null_free; 2139 test_non_null_free_array_oop(array, tmp, not_null_free); 2140 2141 set_mdp_flag_at(mdp, ArrayLoadStoreData::null_free_array_byte_constant()); 2142 2143 bind(not_null_free); 2144 2145 bind(profile_continue); 2146 } 2147 } 2148 2149 void InterpreterMacroAssembler::profile_element(Register mdp, 2150 Register element, 2151 Register tmp) { 2152 if (ProfileInterpreter) { 2153 Label profile_continue; 2154 2155 // If no method data exists, go to profile_continue. 2156 test_method_data_pointer(mdp, profile_continue); 2157 2158 mov(tmp, element); 2159 profile_obj_type(tmp, Address(mdp, in_bytes(ArrayLoadStoreData::element_offset()))); 2160 2161 // The method data pointer needs to be updated. 2162 update_mdp_by_constant(mdp, in_bytes(ArrayLoadStoreData::array_load_store_data_size())); 2163 2164 bind(profile_continue); 2165 } 2166 } 2167 2168 void InterpreterMacroAssembler::profile_acmp(Register mdp, 2169 Register left, 2170 Register right, 2171 Register tmp) { 2172 if (ProfileInterpreter) { 2173 Label profile_continue; 2174 2175 // If no method data exists, go to profile_continue. 2176 test_method_data_pointer(mdp, profile_continue); 2177 2178 mov(tmp, left); 2179 profile_obj_type(tmp, Address(mdp, in_bytes(ACmpData::left_offset()))); 2180 2181 Label left_not_inline_type; 2182 test_oop_is_not_inline_type(left, tmp, left_not_inline_type); 2183 set_mdp_flag_at(mdp, ACmpData::left_inline_type_byte_constant()); 2184 bind(left_not_inline_type); 2185 2186 mov(tmp, right); 2187 profile_obj_type(tmp, Address(mdp, in_bytes(ACmpData::right_offset()))); 2188 2189 Label right_not_inline_type; 2190 test_oop_is_not_inline_type(right, tmp, right_not_inline_type); 2191 set_mdp_flag_at(mdp, ACmpData::right_inline_type_byte_constant()); 2192 bind(right_not_inline_type); 2193 2194 bind(profile_continue); 2195 } 2196 } 2197 2198 2199 void InterpreterMacroAssembler::_interp_verify_oop(Register reg, TosState state, const char* file, int line) { 2200 if (state == atos) { 2201 MacroAssembler::_verify_oop_checked(reg, "broken oop", file, line); 2202 } 2203 } 2204 2205 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) { 2206 #ifndef _LP64 2207 if ((state == ftos && UseSSE < 1) || 2208 (state == dtos && UseSSE < 2)) { 2209 MacroAssembler::verify_FPU(stack_depth); 2210 } 2211 #endif 2212 } 2213 2214 // Jump if ((*counter_addr += increment) & mask) == 0 2215 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr, Address mask, 2216 Register scratch, Label* where) { 2217 // This update is actually not atomic and can lose a number of updates 2218 // under heavy contention, but the alternative of using the (contended) 2219 // atomic update here penalizes profiling paths too much. 2220 movl(scratch, counter_addr); 2221 incrementl(scratch, InvocationCounter::count_increment); 2222 movl(counter_addr, scratch); 2223 andl(scratch, mask); 2224 if (where != NULL) { 2225 jcc(Assembler::zero, *where); 2226 } 2227 } 2228 2229 void InterpreterMacroAssembler::notify_method_entry() { 2230 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 2231 // track stack depth. If it is possible to enter interp_only_mode we add 2232 // the code to check if the event should be sent. 2233 Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx); 2234 Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rbx); 2235 if (JvmtiExport::can_post_interpreter_events()) { 2236 Label L; 2237 NOT_LP64(get_thread(rthread);) 2238 movl(rdx, Address(rthread, JavaThread::interp_only_mode_offset())); 2239 testl(rdx, rdx); 2240 jcc(Assembler::zero, L); 2241 call_VM(noreg, CAST_FROM_FN_PTR(address, 2242 InterpreterRuntime::post_method_entry)); 2243 bind(L); 2244 } 2245 2246 { 2247 SkipIfEqual skip(this, &DTraceMethodProbes, false, rscratch1); 2248 NOT_LP64(get_thread(rthread);) 2249 get_method(rarg); 2250 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), 2251 rthread, rarg); 2252 } 2253 2254 // RedefineClasses() tracing support for obsolete method entry 2255 if (log_is_enabled(Trace, redefine, class, obsolete)) { 2256 NOT_LP64(get_thread(rthread);) 2257 get_method(rarg); 2258 call_VM_leaf( 2259 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), 2260 rthread, rarg); 2261 } 2262 } 2263 2264 2265 void InterpreterMacroAssembler::notify_method_exit( 2266 TosState state, NotifyMethodExitMode mode) { 2267 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 2268 // track stack depth. If it is possible to enter interp_only_mode we add 2269 // the code to check if the event should be sent. 2270 Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx); 2271 Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rbx); 2272 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) { 2273 Label L; 2274 // Note: frame::interpreter_frame_result has a dependency on how the 2275 // method result is saved across the call to post_method_exit. If this 2276 // is changed then the interpreter_frame_result implementation will 2277 // need to be updated too. 2278 2279 // template interpreter will leave the result on the top of the stack. 2280 push(state); 2281 NOT_LP64(get_thread(rthread);) 2282 movl(rdx, Address(rthread, JavaThread::interp_only_mode_offset())); 2283 testl(rdx, rdx); 2284 jcc(Assembler::zero, L); 2285 call_VM(noreg, 2286 CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit)); 2287 bind(L); 2288 pop(state); 2289 } 2290 2291 { 2292 SkipIfEqual skip(this, &DTraceMethodProbes, false, rscratch1); 2293 push(state); 2294 NOT_LP64(get_thread(rthread);) 2295 get_method(rarg); 2296 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), 2297 rthread, rarg); 2298 pop(state); 2299 } 2300 }