1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "compiler/compiler_globals.hpp" 26 #include "interp_masm_x86.hpp" 27 #include "interpreter/interpreter.hpp" 28 #include "interpreter/interpreterRuntime.hpp" 29 #include "logging/log.hpp" 30 #include "oops/arrayOop.hpp" 31 #include "oops/constMethodFlags.hpp" 32 #include "oops/markWord.hpp" 33 #include "oops/methodData.hpp" 34 #include "oops/method.hpp" 35 #include "oops/inlineKlass.hpp" 36 #include "oops/resolvedFieldEntry.hpp" 37 #include "oops/resolvedIndyEntry.hpp" 38 #include "oops/resolvedMethodEntry.hpp" 39 #include "prims/jvmtiExport.hpp" 40 #include "prims/jvmtiThreadState.hpp" 41 #include "runtime/basicLock.hpp" 42 #include "runtime/frame.inline.hpp" 43 #include "runtime/javaThread.hpp" 44 #include "runtime/safepointMechanism.hpp" 45 #include "runtime/sharedRuntime.hpp" 46 #include "utilities/powerOfTwo.hpp" 47 48 // Implementation of InterpreterMacroAssembler 49 50 void InterpreterMacroAssembler::jump_to_entry(address entry) { 51 assert(entry, "Entry must have been generated by now"); 52 jump(RuntimeAddress(entry)); 53 } 54 55 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) { 56 Label update, next, none; 57 58 assert_different_registers(obj, rscratch1, mdo_addr.base(), mdo_addr.index()); 59 60 interp_verify_oop(obj, atos); 61 62 testptr(obj, obj); 63 jccb(Assembler::notZero, update); 64 testptr(mdo_addr, TypeEntries::null_seen); 65 jccb(Assembler::notZero, next); // null already seen. Nothing to do anymore. 66 // atomic update to prevent overwriting Klass* with 0 67 lock(); 68 orptr(mdo_addr, TypeEntries::null_seen); 69 jmpb(next); 70 71 bind(update); 72 load_klass(obj, obj, rscratch1); 73 mov(rscratch1, obj); 74 75 xorptr(obj, mdo_addr); 76 testptr(obj, TypeEntries::type_klass_mask); 77 jccb(Assembler::zero, next); // klass seen before, nothing to 78 // do. The unknown bit may have been 79 // set already but no need to check. 80 81 testptr(obj, TypeEntries::type_unknown); 82 jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore. 83 84 cmpptr(mdo_addr, 0); 85 jccb(Assembler::equal, none); 86 cmpptr(mdo_addr, TypeEntries::null_seen); 87 jccb(Assembler::equal, none); 88 89 // There is a chance that the checks above (re-reading profiling 90 // data from memory) fail if another thread has just set the 91 // profiling to this obj's klass 92 mov(obj, rscratch1); 93 xorptr(obj, mdo_addr); 94 testptr(obj, TypeEntries::type_klass_mask); 95 jccb(Assembler::zero, next); 96 97 // different than before. Cannot keep accurate profile. 98 orptr(mdo_addr, TypeEntries::type_unknown); 99 jmpb(next); 100 101 bind(none); 102 // first time here. Set profile type. 103 movptr(mdo_addr, obj); 104 #ifdef ASSERT 105 andptr(obj, TypeEntries::type_klass_mask); 106 verify_klass_ptr(obj); 107 #endif 108 109 bind(next); 110 } 111 112 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) { 113 if (!ProfileInterpreter) { 114 return; 115 } 116 117 if (MethodData::profile_arguments() || MethodData::profile_return()) { 118 Label profile_continue; 119 120 test_method_data_pointer(mdp, profile_continue); 121 122 int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size()); 123 124 cmpb(Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start), is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag); 125 jcc(Assembler::notEqual, profile_continue); 126 127 if (MethodData::profile_arguments()) { 128 Label done; 129 int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset()); 130 addptr(mdp, off_to_args); 131 132 for (int i = 0; i < TypeProfileArgsLimit; i++) { 133 if (i > 0 || MethodData::profile_return()) { 134 // If return value type is profiled we may have no argument to profile 135 movptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args)); 136 subl(tmp, i*TypeStackSlotEntries::per_arg_count()); 137 cmpl(tmp, TypeStackSlotEntries::per_arg_count()); 138 jcc(Assembler::less, done); 139 } 140 movptr(tmp, Address(callee, Method::const_offset())); 141 load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset())); 142 // stack offset o (zero based) from the start of the argument 143 // list, for n arguments translates into offset n - o - 1 from 144 // the end of the argument list 145 subptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args)); 146 subl(tmp, 1); 147 Address arg_addr = argument_address(tmp); 148 movptr(tmp, arg_addr); 149 150 Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args); 151 profile_obj_type(tmp, mdo_arg_addr); 152 153 int to_add = in_bytes(TypeStackSlotEntries::per_arg_size()); 154 addptr(mdp, to_add); 155 off_to_args += to_add; 156 } 157 158 if (MethodData::profile_return()) { 159 movptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args)); 160 subl(tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count()); 161 } 162 163 bind(done); 164 165 if (MethodData::profile_return()) { 166 // We're right after the type profile for the last 167 // argument. tmp is the number of cells left in the 168 // CallTypeData/VirtualCallTypeData to reach its end. Non null 169 // if there's a return to profile. 170 assert(SingleTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type"); 171 shll(tmp, log2i_exact((int)DataLayout::cell_size)); 172 addptr(mdp, tmp); 173 } 174 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp); 175 } else { 176 assert(MethodData::profile_return(), "either profile call args or call ret"); 177 update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size())); 178 } 179 180 // mdp points right after the end of the 181 // CallTypeData/VirtualCallTypeData, right after the cells for the 182 // return value type if there's one 183 184 bind(profile_continue); 185 } 186 } 187 188 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) { 189 assert_different_registers(mdp, ret, tmp, _bcp_register); 190 if (ProfileInterpreter && MethodData::profile_return()) { 191 Label profile_continue; 192 193 test_method_data_pointer(mdp, profile_continue); 194 195 if (MethodData::profile_return_jsr292_only()) { 196 assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2"); 197 198 // If we don't profile all invoke bytecodes we must make sure 199 // it's a bytecode we indeed profile. We can't go back to the 200 // beginning of the ProfileData we intend to update to check its 201 // type because we're right after it and we don't known its 202 // length 203 Label do_profile; 204 cmpb(Address(_bcp_register, 0), Bytecodes::_invokedynamic); 205 jcc(Assembler::equal, do_profile); 206 cmpb(Address(_bcp_register, 0), Bytecodes::_invokehandle); 207 jcc(Assembler::equal, do_profile); 208 get_method(tmp); 209 cmpw(Address(tmp, Method::intrinsic_id_offset()), static_cast<int>(vmIntrinsics::_compiledLambdaForm)); 210 jcc(Assembler::notEqual, profile_continue); 211 212 bind(do_profile); 213 } 214 215 Address mdo_ret_addr(mdp, -in_bytes(SingleTypeEntry::size())); 216 mov(tmp, ret); 217 profile_obj_type(tmp, mdo_ret_addr); 218 219 bind(profile_continue); 220 } 221 } 222 223 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) { 224 if (ProfileInterpreter && MethodData::profile_parameters()) { 225 Label profile_continue; 226 227 test_method_data_pointer(mdp, profile_continue); 228 229 // Load the offset of the area within the MDO used for 230 // parameters. If it's negative we're not profiling any parameters 231 movl(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset()))); 232 testl(tmp1, tmp1); 233 jcc(Assembler::negative, profile_continue); 234 235 // Compute a pointer to the area for parameters from the offset 236 // and move the pointer to the slot for the last 237 // parameters. Collect profiling from last parameter down. 238 // mdo start + parameters offset + array length - 1 239 addptr(mdp, tmp1); 240 movptr(tmp1, Address(mdp, ArrayData::array_len_offset())); 241 decrement(tmp1, TypeStackSlotEntries::per_arg_count()); 242 243 Label loop; 244 bind(loop); 245 246 int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0)); 247 int type_base = in_bytes(ParametersTypeData::type_offset(0)); 248 Address::ScaleFactor per_arg_scale = Address::times(DataLayout::cell_size); 249 Address arg_off(mdp, tmp1, per_arg_scale, off_base); 250 Address arg_type(mdp, tmp1, per_arg_scale, type_base); 251 252 // load offset on the stack from the slot for this parameter 253 movptr(tmp2, arg_off); 254 negptr(tmp2); 255 // read the parameter from the local area 256 movptr(tmp2, Address(_locals_register, tmp2, Interpreter::stackElementScale())); 257 258 // profile the parameter 259 profile_obj_type(tmp2, arg_type); 260 261 // go to next parameter 262 decrement(tmp1, TypeStackSlotEntries::per_arg_count()); 263 jcc(Assembler::positive, loop); 264 265 bind(profile_continue); 266 } 267 } 268 269 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point, 270 int number_of_arguments) { 271 // interpreter specific 272 // 273 // Note: No need to save/restore bcp & locals registers 274 // since these are callee saved registers and no blocking/ 275 // GC can happen in leaf calls. 276 // Further Note: DO NOT save/restore bcp/locals. If a caller has 277 // already saved them so that it can use rsi/rdi as temporaries 278 // then a save/restore here will DESTROY the copy the caller 279 // saved! There used to be a save_bcp() that only happened in 280 // the ASSERT path (no restore_bcp). Which caused bizarre failures 281 // when jvm built with ASSERTs. 282 #ifdef ASSERT 283 { 284 Label L; 285 cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD); 286 jcc(Assembler::equal, L); 287 stop("InterpreterMacroAssembler::call_VM_leaf_base:" 288 " last_sp != null"); 289 bind(L); 290 } 291 #endif 292 // super call 293 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments); 294 // interpreter specific 295 // LP64: Used to ASSERT that r13/r14 were equal to frame's bcp/locals 296 // but since they may not have been saved (and we don't want to 297 // save them here (see note above) the assert is invalid. 298 } 299 300 void InterpreterMacroAssembler::call_VM_base(Register oop_result, 301 Register last_java_sp, 302 address entry_point, 303 int number_of_arguments, 304 bool check_exceptions) { 305 // interpreter specific 306 // 307 // Note: Could avoid restoring locals ptr (callee saved) - however doesn't 308 // really make a difference for these runtime calls, since they are 309 // slow anyway. Btw., bcp must be saved/restored since it may change 310 // due to GC. 311 save_bcp(); 312 #ifdef ASSERT 313 { 314 Label L; 315 cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD); 316 jcc(Assembler::equal, L); 317 stop("InterpreterMacroAssembler::call_VM_base:" 318 " last_sp isn't null"); 319 bind(L); 320 } 321 #endif /* ASSERT */ 322 // super call 323 MacroAssembler::call_VM_base(oop_result, last_java_sp, 324 entry_point, number_of_arguments, 325 check_exceptions); 326 // interpreter specific 327 restore_bcp(); 328 restore_locals(); 329 } 330 331 void InterpreterMacroAssembler::call_VM_preemptable(Register oop_result, 332 address entry_point, 333 Register arg_1) { 334 assert(arg_1 == c_rarg1, ""); 335 Label resume_pc, not_preempted; 336 337 #ifdef ASSERT 338 { 339 Label L; 340 cmpptr(Address(r15_thread, JavaThread::preempt_alternate_return_offset()), NULL_WORD); 341 jcc(Assembler::equal, L); 342 stop("Should not have alternate return address set"); 343 bind(L); 344 } 345 #endif /* ASSERT */ 346 347 // Force freeze slow path. 348 push_cont_fastpath(); 349 350 // Make VM call. In case of preemption set last_pc to the one we want to resume to. 351 // Note: call_VM_helper requires last_Java_pc for anchor to be at the top of the stack. 352 lea(rscratch1, resume_pc); 353 push(rscratch1); 354 MacroAssembler::call_VM_helper(oop_result, entry_point, 1, false /*check_exceptions*/); 355 pop(rscratch1); 356 357 pop_cont_fastpath(); 358 359 // Check if preempted. 360 movptr(rscratch1, Address(r15_thread, JavaThread::preempt_alternate_return_offset())); 361 cmpptr(rscratch1, NULL_WORD); 362 jccb(Assembler::zero, not_preempted); 363 movptr(Address(r15_thread, JavaThread::preempt_alternate_return_offset()), NULL_WORD); 364 jmp(rscratch1); 365 366 // In case of preemption, this is where we will resume once we finally acquire the monitor. 367 bind(resume_pc); 368 restore_after_resume(false /* is_native */); 369 370 bind(not_preempted); 371 } 372 373 void InterpreterMacroAssembler::restore_after_resume(bool is_native) { 374 lea(rscratch1, ExternalAddress(Interpreter::cont_resume_interpreter_adapter())); 375 call(rscratch1); 376 if (is_native) { 377 // On resume we need to set up stack as expected. 378 push(dtos); 379 push(ltos); 380 } 381 } 382 383 void InterpreterMacroAssembler::check_and_handle_popframe() { 384 if (JvmtiExport::can_pop_frame()) { 385 Label L; 386 // Initiate popframe handling only if it is not already being 387 // processed. If the flag has the popframe_processing bit set, it 388 // means that this code is called *during* popframe handling - we 389 // don't want to reenter. 390 // This method is only called just after the call into the vm in 391 // call_VM_base, so the arg registers are available. 392 Register pop_cond = c_rarg0; 393 movl(pop_cond, Address(r15_thread, JavaThread::popframe_condition_offset())); 394 testl(pop_cond, JavaThread::popframe_pending_bit); 395 jcc(Assembler::zero, L); 396 testl(pop_cond, JavaThread::popframe_processing_bit); 397 jcc(Assembler::notZero, L); 398 // Call Interpreter::remove_activation_preserving_args_entry() to get the 399 // address of the same-named entrypoint in the generated interpreter code. 400 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry)); 401 jmp(rax); 402 bind(L); 403 } 404 } 405 406 void InterpreterMacroAssembler::load_earlyret_value(TosState state) { 407 movptr(rcx, Address(r15_thread, JavaThread::jvmti_thread_state_offset())); 408 const Address tos_addr(rcx, JvmtiThreadState::earlyret_tos_offset()); 409 const Address oop_addr(rcx, JvmtiThreadState::earlyret_oop_offset()); 410 const Address val_addr(rcx, JvmtiThreadState::earlyret_value_offset()); 411 412 switch (state) { 413 case atos: movptr(rax, oop_addr); 414 movptr(oop_addr, NULL_WORD); 415 interp_verify_oop(rax, state); break; 416 case ltos: movptr(rax, val_addr); break; 417 case btos: // fall through 418 case ztos: // fall through 419 case ctos: // fall through 420 case stos: // fall through 421 case itos: movl(rax, val_addr); break; 422 case ftos: movflt(xmm0, val_addr); break; 423 case dtos: movdbl(xmm0, val_addr); break; 424 case vtos: /* nothing to do */ break; 425 default : ShouldNotReachHere(); 426 } 427 428 // Clean up tos value in the thread object 429 movl(tos_addr, ilgl); 430 movptr(val_addr, NULL_WORD); 431 } 432 433 434 void InterpreterMacroAssembler::check_and_handle_earlyret() { 435 if (JvmtiExport::can_force_early_return()) { 436 Label L; 437 Register tmp = c_rarg0; 438 Register rthread = r15_thread; 439 440 movptr(tmp, Address(rthread, JavaThread::jvmti_thread_state_offset())); 441 testptr(tmp, tmp); 442 jcc(Assembler::zero, L); // if (thread->jvmti_thread_state() == nullptr) exit; 443 444 // Initiate earlyret handling only if it is not already being processed. 445 // If the flag has the earlyret_processing bit set, it means that this code 446 // is called *during* earlyret handling - we don't want to reenter. 447 movl(tmp, Address(tmp, JvmtiThreadState::earlyret_state_offset())); 448 cmpl(tmp, JvmtiThreadState::earlyret_pending); 449 jcc(Assembler::notEqual, L); 450 451 // Call Interpreter::remove_activation_early_entry() to get the address of the 452 // same-named entrypoint in the generated interpreter code. 453 movptr(tmp, Address(rthread, JavaThread::jvmti_thread_state_offset())); 454 movl(tmp, Address(tmp, JvmtiThreadState::earlyret_tos_offset())); 455 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), tmp); 456 jmp(rax); 457 bind(L); 458 } 459 } 460 461 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(Register reg, int bcp_offset) { 462 assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode"); 463 load_unsigned_short(reg, Address(_bcp_register, bcp_offset)); 464 bswapl(reg); 465 shrl(reg, 16); 466 } 467 468 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index, 469 int bcp_offset, 470 size_t index_size) { 471 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode"); 472 if (index_size == sizeof(u2)) { 473 load_unsigned_short(index, Address(_bcp_register, bcp_offset)); 474 } else if (index_size == sizeof(u4)) { 475 movl(index, Address(_bcp_register, bcp_offset)); 476 } else if (index_size == sizeof(u1)) { 477 load_unsigned_byte(index, Address(_bcp_register, bcp_offset)); 478 } else { 479 ShouldNotReachHere(); 480 } 481 } 482 483 // Load object from cpool->resolved_references(index) 484 void InterpreterMacroAssembler::load_resolved_reference_at_index(Register result, 485 Register index, 486 Register tmp) { 487 assert_different_registers(result, index); 488 489 get_constant_pool(result); 490 // load pointer for resolved_references[] objArray 491 movptr(result, Address(result, ConstantPool::cache_offset())); 492 movptr(result, Address(result, ConstantPoolCache::resolved_references_offset())); 493 resolve_oop_handle(result, tmp); 494 load_heap_oop(result, Address(result, index, 495 UseCompressedOops ? Address::times_4 : Address::times_ptr, 496 arrayOopDesc::base_offset_in_bytes(T_OBJECT)), tmp); 497 } 498 499 // load cpool->resolved_klass_at(index) 500 void InterpreterMacroAssembler::load_resolved_klass_at_index(Register klass, 501 Register cpool, 502 Register index) { 503 assert_different_registers(cpool, index); 504 505 movw(index, Address(cpool, index, Address::times_ptr, sizeof(ConstantPool))); 506 Register resolved_klasses = cpool; 507 movptr(resolved_klasses, Address(cpool, ConstantPool::resolved_klasses_offset())); 508 movptr(klass, Address(resolved_klasses, index, Address::times_ptr, Array<Klass*>::base_offset_in_bytes())); 509 } 510 511 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a 512 // subtype of super_klass. 513 // 514 // Args: 515 // rax: superklass 516 // Rsub_klass: subklass 517 // 518 // Kills: 519 // rcx, rdi 520 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass, 521 Label& ok_is_subtype, 522 bool profile) { 523 assert(Rsub_klass != rax, "rax holds superklass"); 524 LP64_ONLY(assert(Rsub_klass != r14, "r14 holds locals");) 525 LP64_ONLY(assert(Rsub_klass != r13, "r13 holds bcp");) 526 assert(Rsub_klass != rcx, "rcx holds 2ndary super array length"); 527 assert(Rsub_klass != rdi, "rdi holds 2ndary super array scan ptr"); 528 529 // Profile the not-null value's klass. 530 if (profile) { 531 profile_typecheck(rcx, Rsub_klass, rdi); // blows rcx, reloads rdi 532 } 533 534 // Do the check. 535 check_klass_subtype(Rsub_klass, rax, rcx, ok_is_subtype); // blows rcx 536 } 537 538 539 // Java Expression Stack 540 541 void InterpreterMacroAssembler::pop_ptr(Register r) { 542 pop(r); 543 } 544 545 void InterpreterMacroAssembler::push_ptr(Register r) { 546 push(r); 547 } 548 549 void InterpreterMacroAssembler::push_i(Register r) { 550 push(r); 551 } 552 553 void InterpreterMacroAssembler::push_i_or_ptr(Register r) { 554 push(r); 555 } 556 557 void InterpreterMacroAssembler::push_f(XMMRegister r) { 558 subptr(rsp, wordSize); 559 movflt(Address(rsp, 0), r); 560 } 561 562 void InterpreterMacroAssembler::pop_f(XMMRegister r) { 563 movflt(r, Address(rsp, 0)); 564 addptr(rsp, wordSize); 565 } 566 567 void InterpreterMacroAssembler::push_d(XMMRegister r) { 568 subptr(rsp, 2 * wordSize); 569 movdbl(Address(rsp, 0), r); 570 } 571 572 void InterpreterMacroAssembler::pop_d(XMMRegister r) { 573 movdbl(r, Address(rsp, 0)); 574 addptr(rsp, 2 * Interpreter::stackElementSize); 575 } 576 577 void InterpreterMacroAssembler::pop_i(Register r) { 578 // XXX can't use pop currently, upper half non clean 579 movl(r, Address(rsp, 0)); 580 addptr(rsp, wordSize); 581 } 582 583 void InterpreterMacroAssembler::pop_l(Register r) { 584 movq(r, Address(rsp, 0)); 585 addptr(rsp, 2 * Interpreter::stackElementSize); 586 } 587 588 void InterpreterMacroAssembler::push_l(Register r) { 589 subptr(rsp, 2 * wordSize); 590 movptr(Address(rsp, Interpreter::expr_offset_in_bytes(0)), r ); 591 movptr(Address(rsp, Interpreter::expr_offset_in_bytes(1)), NULL_WORD ); 592 } 593 594 void InterpreterMacroAssembler::pop(TosState state) { 595 switch (state) { 596 case atos: pop_ptr(); break; 597 case btos: 598 case ztos: 599 case ctos: 600 case stos: 601 case itos: pop_i(); break; 602 case ltos: pop_l(); break; 603 case ftos: pop_f(xmm0); break; 604 case dtos: pop_d(xmm0); break; 605 case vtos: /* nothing to do */ break; 606 default: ShouldNotReachHere(); 607 } 608 interp_verify_oop(rax, state); 609 } 610 611 void InterpreterMacroAssembler::push(TosState state) { 612 interp_verify_oop(rax, state); 613 switch (state) { 614 case atos: push_ptr(); break; 615 case btos: 616 case ztos: 617 case ctos: 618 case stos: 619 case itos: push_i(); break; 620 case ltos: push_l(); break; 621 case ftos: push_f(xmm0); break; 622 case dtos: push_d(xmm0); break; 623 case vtos: /* nothing to do */ break; 624 default : ShouldNotReachHere(); 625 } 626 } 627 628 // Helpers for swap and dup 629 void InterpreterMacroAssembler::load_ptr(int n, Register val) { 630 movptr(val, Address(rsp, Interpreter::expr_offset_in_bytes(n))); 631 } 632 633 void InterpreterMacroAssembler::store_ptr(int n, Register val) { 634 movptr(Address(rsp, Interpreter::expr_offset_in_bytes(n)), val); 635 } 636 637 638 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() { 639 // set sender sp 640 lea(_bcp_register, Address(rsp, wordSize)); 641 // record last_sp 642 mov(rcx, _bcp_register); 643 subptr(rcx, rbp); 644 sarptr(rcx, LogBytesPerWord); 645 movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), rcx); 646 } 647 648 649 // Jump to from_interpreted entry of a call unless single stepping is possible 650 // in this thread in which case we must call the i2i entry 651 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) { 652 prepare_to_jump_from_interpreted(); 653 654 if (JvmtiExport::can_post_interpreter_events()) { 655 Label run_compiled_code; 656 // JVMTI events, such as single-stepping, are implemented partly by avoiding running 657 // compiled code in threads for which the event is enabled. Check here for 658 // interp_only_mode if these events CAN be enabled. 659 // interp_only is an int, on little endian it is sufficient to test the byte only 660 // Is a cmpl faster? 661 cmpb(Address(r15_thread, JavaThread::interp_only_mode_offset()), 0); 662 jccb(Assembler::zero, run_compiled_code); 663 jmp(Address(method, Method::interpreter_entry_offset())); 664 bind(run_compiled_code); 665 } 666 667 jmp(Address(method, Method::from_interpreted_offset())); 668 } 669 670 // The following two routines provide a hook so that an implementation 671 // can schedule the dispatch in two parts. x86 does not do this. 672 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) { 673 // Nothing x86 specific to be done here 674 } 675 676 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) { 677 dispatch_next(state, step); 678 } 679 680 void InterpreterMacroAssembler::dispatch_base(TosState state, 681 address* table, 682 bool verifyoop, 683 bool generate_poll) { 684 if (VerifyActivationFrameSize) { 685 Label L; 686 mov(rcx, rbp); 687 subptr(rcx, rsp); 688 int32_t min_frame_size = 689 (frame::link_offset - frame::interpreter_frame_initial_sp_offset) * 690 wordSize; 691 cmpptr(rcx, min_frame_size); 692 jcc(Assembler::greaterEqual, L); 693 stop("broken stack frame"); 694 bind(L); 695 } 696 if (verifyoop) { 697 interp_verify_oop(rax, state); 698 } 699 700 address* const safepoint_table = Interpreter::safept_table(state); 701 Label no_safepoint, dispatch; 702 if (table != safepoint_table && generate_poll) { 703 NOT_PRODUCT(block_comment("Thread-local Safepoint poll")); 704 testb(Address(r15_thread, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit()); 705 706 jccb(Assembler::zero, no_safepoint); 707 lea(rscratch1, ExternalAddress((address)safepoint_table)); 708 jmpb(dispatch); 709 } 710 711 bind(no_safepoint); 712 lea(rscratch1, ExternalAddress((address)table)); 713 bind(dispatch); 714 jmp(Address(rscratch1, rbx, Address::times_8)); 715 } 716 717 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) { 718 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll); 719 } 720 721 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) { 722 dispatch_base(state, Interpreter::normal_table(state)); 723 } 724 725 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) { 726 dispatch_base(state, Interpreter::normal_table(state), false); 727 } 728 729 730 void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) { 731 // load next bytecode (load before advancing _bcp_register to prevent AGI) 732 load_unsigned_byte(rbx, Address(_bcp_register, step)); 733 // advance _bcp_register 734 increment(_bcp_register, step); 735 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll); 736 } 737 738 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) { 739 // load current bytecode 740 load_unsigned_byte(rbx, Address(_bcp_register, 0)); 741 dispatch_base(state, table); 742 } 743 744 void InterpreterMacroAssembler::narrow(Register result) { 745 746 // Get method->_constMethod->_result_type 747 movptr(rcx, Address(rbp, frame::interpreter_frame_method_offset * wordSize)); 748 movptr(rcx, Address(rcx, Method::const_offset())); 749 load_unsigned_byte(rcx, Address(rcx, ConstMethod::result_type_offset())); 750 751 Label done, notBool, notByte, notChar; 752 753 // common case first 754 cmpl(rcx, T_INT); 755 jcc(Assembler::equal, done); 756 757 // mask integer result to narrower return type. 758 cmpl(rcx, T_BOOLEAN); 759 jcc(Assembler::notEqual, notBool); 760 andl(result, 0x1); 761 jmp(done); 762 763 bind(notBool); 764 cmpl(rcx, T_BYTE); 765 jcc(Assembler::notEqual, notByte); 766 movsbl(result, result); 767 jmp(done); 768 769 bind(notByte); 770 cmpl(rcx, T_CHAR); 771 jcc(Assembler::notEqual, notChar); 772 movzwl(result, result); 773 jmp(done); 774 775 bind(notChar); 776 // cmpl(rcx, T_SHORT); // all that's left 777 // jcc(Assembler::notEqual, done); 778 movswl(result, result); 779 780 // Nothing to do for T_INT 781 bind(done); 782 } 783 784 // remove activation 785 // 786 // Unlock the receiver if this is a synchronized method. 787 // Unlock any Java monitors from synchronized blocks. 788 // Apply stack watermark barrier. 789 // Notify JVMTI. 790 // Remove the activation from the stack. 791 // 792 // If there are locked Java monitors 793 // If throw_monitor_exception 794 // throws IllegalMonitorStateException 795 // Else if install_monitor_exception 796 // installs IllegalMonitorStateException 797 // Else 798 // no error processing 799 void InterpreterMacroAssembler::remove_activation(TosState state, 800 Register ret_addr, 801 bool throw_monitor_exception, 802 bool install_monitor_exception, 803 bool notify_jvmdi) { 804 // Note: Registers rdx xmm0 may be in use for the 805 // result check if synchronized method 806 Label unlocked, unlock, no_unlock; 807 808 const Register rthread = r15_thread; 809 const Register robj = c_rarg1; 810 const Register rmon = c_rarg1; 811 812 // get the value of _do_not_unlock_if_synchronized into rdx 813 const Address do_not_unlock_if_synchronized(rthread, 814 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset())); 815 movbool(rbx, do_not_unlock_if_synchronized); 816 movbool(do_not_unlock_if_synchronized, false); // reset the flag 817 818 // get method access flags 819 movptr(rcx, Address(rbp, frame::interpreter_frame_method_offset * wordSize)); 820 load_unsigned_short(rcx, Address(rcx, Method::access_flags_offset())); 821 testl(rcx, JVM_ACC_SYNCHRONIZED); 822 jcc(Assembler::zero, unlocked); 823 824 // Don't unlock anything if the _do_not_unlock_if_synchronized flag 825 // is set. 826 testbool(rbx); 827 jcc(Assembler::notZero, no_unlock); 828 829 // unlock monitor 830 push(state); // save result 831 832 // BasicObjectLock will be first in list, since this is a 833 // synchronized method. However, need to check that the object has 834 // not been unlocked by an explicit monitorexit bytecode. 835 const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset * 836 wordSize - (int) sizeof(BasicObjectLock)); 837 // We use c_rarg1/rdx so that if we go slow path it will be the correct 838 // register for unlock_object to pass to VM directly 839 lea(robj, monitor); // address of first monitor 840 841 movptr(rax, Address(robj, BasicObjectLock::obj_offset())); 842 testptr(rax, rax); 843 jcc(Assembler::notZero, unlock); 844 845 pop(state); 846 if (throw_monitor_exception) { 847 // Entry already unlocked, need to throw exception 848 call_VM(noreg, CAST_FROM_FN_PTR(address, 849 InterpreterRuntime::throw_illegal_monitor_state_exception)); 850 should_not_reach_here(); 851 } else { 852 // Monitor already unlocked during a stack unroll. If requested, 853 // install an illegal_monitor_state_exception. Continue with 854 // stack unrolling. 855 if (install_monitor_exception) { 856 call_VM(noreg, CAST_FROM_FN_PTR(address, 857 InterpreterRuntime::new_illegal_monitor_state_exception)); 858 } 859 jmp(unlocked); 860 } 861 862 bind(unlock); 863 unlock_object(robj); 864 pop(state); 865 866 // Check that for block-structured locking (i.e., that all locked 867 // objects has been unlocked) 868 bind(unlocked); 869 870 // rax, rdx: Might contain return value 871 872 // Check that all monitors are unlocked 873 { 874 Label loop, exception, entry, restart; 875 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 876 const Address monitor_block_top( 877 rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 878 const Address monitor_block_bot( 879 rbp, frame::interpreter_frame_initial_sp_offset * wordSize); 880 881 bind(restart); 882 // We use c_rarg1 so that if we go slow path it will be the correct 883 // register for unlock_object to pass to VM directly 884 movptr(rmon, monitor_block_top); // derelativize pointer 885 lea(rmon, Address(rbp, rmon, Address::times_ptr)); 886 // c_rarg1 points to current entry, starting with top-most entry 887 888 lea(rbx, monitor_block_bot); // points to word before bottom of 889 // monitor block 890 jmp(entry); 891 892 // Entry already locked, need to throw exception 893 bind(exception); 894 895 if (throw_monitor_exception) { 896 // Throw exception 897 MacroAssembler::call_VM(noreg, 898 CAST_FROM_FN_PTR(address, InterpreterRuntime:: 899 throw_illegal_monitor_state_exception)); 900 should_not_reach_here(); 901 } else { 902 // Stack unrolling. Unlock object and install illegal_monitor_exception. 903 // Unlock does not block, so don't have to worry about the frame. 904 // We don't have to preserve c_rarg1 since we are going to throw an exception. 905 906 push(state); 907 mov(robj, rmon); // nop if robj and rmon are the same 908 unlock_object(robj); 909 pop(state); 910 911 if (install_monitor_exception) { 912 call_VM(noreg, CAST_FROM_FN_PTR(address, 913 InterpreterRuntime:: 914 new_illegal_monitor_state_exception)); 915 } 916 917 jmp(restart); 918 } 919 920 bind(loop); 921 // check if current entry is used 922 cmpptr(Address(rmon, BasicObjectLock::obj_offset()), NULL_WORD); 923 jcc(Assembler::notEqual, exception); 924 925 addptr(rmon, entry_size); // otherwise advance to next entry 926 bind(entry); 927 cmpptr(rmon, rbx); // check if bottom reached 928 jcc(Assembler::notEqual, loop); // if not at bottom then check this entry 929 } 930 931 bind(no_unlock); 932 933 JFR_ONLY(enter_jfr_critical_section();) 934 935 // The below poll is for the stack watermark barrier. It allows fixing up frames lazily, 936 // that would normally not be safe to use. Such bad returns into unsafe territory of 937 // the stack, will call InterpreterRuntime::at_unwind. 938 Label slow_path; 939 Label fast_path; 940 safepoint_poll(slow_path, true /* at_return */, false /* in_nmethod */); 941 jmp(fast_path); 942 bind(slow_path); 943 push(state); 944 set_last_Java_frame(noreg, rbp, (address)pc(), rscratch1); 945 super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), r15_thread); 946 reset_last_Java_frame(true); 947 pop(state); 948 bind(fast_path); 949 950 // JVMTI support. Make sure the safepoint poll test is issued prior. 951 if (notify_jvmdi) { 952 notify_method_exit(state, NotifyJVMTI); // preserve TOSCA 953 } else { 954 notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA 955 } 956 957 if (StackReservedPages > 0) { 958 movptr(rbx, 959 Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); 960 // testing if reserved zone needs to be re-enabled 961 Register rthread = r15_thread; 962 Label no_reserved_zone_enabling; 963 964 // check if already enabled - if so no re-enabling needed 965 assert(sizeof(StackOverflow::StackGuardState) == 4, "unexpected size"); 966 cmpl(Address(rthread, JavaThread::stack_guard_state_offset()), StackOverflow::stack_guard_enabled); 967 jcc(Assembler::equal, no_reserved_zone_enabling); 968 969 cmpptr(rbx, Address(rthread, JavaThread::reserved_stack_activation_offset())); 970 jcc(Assembler::lessEqual, no_reserved_zone_enabling); 971 972 JFR_ONLY(leave_jfr_critical_section();) 973 974 call_VM_leaf( 975 CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), rthread); 976 call_VM(noreg, CAST_FROM_FN_PTR(address, 977 InterpreterRuntime::throw_delayed_StackOverflowError)); 978 should_not_reach_here(); 979 980 bind(no_reserved_zone_enabling); 981 } 982 983 // remove activation 984 // get sender sp 985 movptr(rbx, 986 Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); 987 988 if (state == atos && InlineTypeReturnedAsFields) { 989 Label skip; 990 Label not_null; 991 testptr(rax, rax); 992 jcc(Assembler::notZero, not_null); 993 // Returned value is null, zero all return registers because they may belong to oop fields 994 xorq(j_rarg1, j_rarg1); 995 xorq(j_rarg2, j_rarg2); 996 xorq(j_rarg3, j_rarg3); 997 xorq(j_rarg4, j_rarg4); 998 xorq(j_rarg5, j_rarg5); 999 jmp(skip); 1000 bind(not_null); 1001 1002 // Check if we are returning an non-null inline type and load its fields into registers 1003 test_oop_is_not_inline_type(rax, rscratch1, skip, /* can_be_null= */ false); 1004 1005 #ifndef _LP64 1006 super_call_VM_leaf(StubRoutines::load_inline_type_fields_in_regs()); 1007 #else 1008 // Load fields from a buffered value with an inline class specific handler 1009 load_klass(rdi, rax, rscratch1); 1010 movptr(rdi, Address(rdi, InstanceKlass::adr_inlineklass_fixed_block_offset())); 1011 movptr(rdi, Address(rdi, InlineKlass::unpack_handler_offset())); 1012 // Unpack handler can be null if inline type is not scalarizable in returns 1013 testptr(rdi, rdi); 1014 jcc(Assembler::zero, skip); 1015 call(rdi); 1016 #endif 1017 #ifdef ASSERT 1018 // TODO 8284443 Enable 1019 if (StressCallingConvention && false) { 1020 Label skip_stress; 1021 movptr(rscratch1, Address(rbp, frame::interpreter_frame_method_offset * wordSize)); 1022 movl(rscratch1, Address(rscratch1, Method::flags_offset())); 1023 testl(rcx, MethodFlags::has_scalarized_return_flag()); 1024 jcc(Assembler::zero, skip_stress); 1025 load_klass(rax, rax, rscratch1); 1026 orptr(rax, 1); 1027 bind(skip_stress); 1028 } 1029 #endif 1030 // call above kills the value in rbx. Reload it. 1031 movptr(rbx, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); 1032 bind(skip); 1033 } 1034 1035 leave(); // remove frame anchor 1036 1037 JFR_ONLY(leave_jfr_critical_section();) 1038 1039 pop(ret_addr); // get return address 1040 mov(rsp, rbx); // set sp to sender sp 1041 pop_cont_fastpath(); 1042 1043 } 1044 1045 #if INCLUDE_JFR 1046 void InterpreterMacroAssembler::enter_jfr_critical_section() { 1047 const Address sampling_critical_section(r15_thread, in_bytes(SAMPLING_CRITICAL_SECTION_OFFSET_JFR)); 1048 movbool(sampling_critical_section, true); 1049 } 1050 1051 void InterpreterMacroAssembler::leave_jfr_critical_section() { 1052 const Address sampling_critical_section(r15_thread, in_bytes(SAMPLING_CRITICAL_SECTION_OFFSET_JFR)); 1053 movbool(sampling_critical_section, false); 1054 } 1055 #endif // INCLUDE_JFR 1056 1057 void InterpreterMacroAssembler::get_method_counters(Register method, 1058 Register mcs, Label& skip) { 1059 Label has_counters; 1060 movptr(mcs, Address(method, Method::method_counters_offset())); 1061 testptr(mcs, mcs); 1062 jcc(Assembler::notZero, has_counters); 1063 call_VM(noreg, CAST_FROM_FN_PTR(address, 1064 InterpreterRuntime::build_method_counters), method); 1065 movptr(mcs, Address(method,Method::method_counters_offset())); 1066 testptr(mcs, mcs); 1067 jcc(Assembler::zero, skip); // No MethodCounters allocated, OutOfMemory 1068 bind(has_counters); 1069 } 1070 1071 void InterpreterMacroAssembler::allocate_instance(Register klass, Register new_obj, 1072 Register t1, Register t2, 1073 bool clear_fields, Label& alloc_failed) { 1074 MacroAssembler::allocate_instance(klass, new_obj, t1, t2, clear_fields, alloc_failed); 1075 if (DTraceAllocProbes) { 1076 // Trigger dtrace event for fastpath 1077 push(atos); 1078 call_VM_leaf(CAST_FROM_FN_PTR(address, static_cast<int (*)(oopDesc*)>(SharedRuntime::dtrace_object_alloc)), new_obj); 1079 pop(atos); 1080 } 1081 } 1082 1083 void InterpreterMacroAssembler::read_flat_field(Register entry, Register tmp1, Register tmp2, Register obj) { 1084 Label alloc_failed, done; 1085 const Register alloc_temp = LP64_ONLY(rscratch1) NOT_LP64(rsi); 1086 const Register dst_temp = LP64_ONLY(rscratch2) NOT_LP64(rdi); 1087 assert_different_registers(obj, entry, tmp1, tmp2, dst_temp, r8, r9); 1088 1089 // FIXME: code below could be re-written to better use InlineLayoutInfo data structure 1090 // see aarch64 version 1091 1092 // Grap the inline field klass 1093 const Register field_klass = tmp1; 1094 load_unsigned_short(tmp2, Address(entry, in_bytes(ResolvedFieldEntry::field_index_offset()))); 1095 movptr(tmp1, Address(entry, ResolvedFieldEntry::field_holder_offset())); 1096 get_inline_type_field_klass(tmp1, tmp2, field_klass); 1097 1098 // allocate buffer 1099 push(obj); // push object being read from // FIXME spilling on stack could probably be avoided by using tmp2 1100 allocate_instance(field_klass, obj, alloc_temp, dst_temp, false, alloc_failed); 1101 1102 // Have an oop instance buffer, copy into it 1103 load_unsigned_short(r9, Address(entry, in_bytes(ResolvedFieldEntry::field_index_offset()))); 1104 movptr(r8, Address(entry, in_bytes(ResolvedFieldEntry::field_holder_offset()))); 1105 inline_layout_info(r8, r9, r8); // holder, index, info => InlineLayoutInfo into r8 1106 1107 payload_addr(obj, dst_temp, field_klass); 1108 pop(alloc_temp); // restore object being read from 1109 load_sized_value(tmp2, Address(entry, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/); 1110 lea(tmp2, Address(alloc_temp, tmp2)); 1111 // call_VM_leaf, clobbers a few regs, save restore new obj 1112 push(obj); 1113 // access_value_copy(IS_DEST_UNINITIALIZED, tmp2, dst_temp, field_klass); 1114 flat_field_copy(IS_DEST_UNINITIALIZED, tmp2, dst_temp, r8); 1115 pop(obj); 1116 jmp(done); 1117 1118 bind(alloc_failed); 1119 pop(obj); 1120 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::read_flat_field), 1121 obj, entry); 1122 get_vm_result_oop(obj); 1123 bind(done); 1124 } 1125 1126 // Lock object 1127 // 1128 // Args: 1129 // rdx, c_rarg1: BasicObjectLock to be used for locking 1130 // 1131 // Kills: 1132 // rax, rbx 1133 void InterpreterMacroAssembler::lock_object(Register lock_reg) { 1134 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1"); 1135 1136 if (LockingMode == LM_MONITOR) { 1137 call_VM_preemptable(noreg, 1138 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 1139 lock_reg); 1140 } else { 1141 Label count_locking, done, slow_case; 1142 1143 const Register swap_reg = rax; // Must use rax for cmpxchg instruction 1144 const Register tmp_reg = rbx; 1145 const Register obj_reg = c_rarg3; // Will contain the oop 1146 const Register rklass_decode_tmp = rscratch1; 1147 1148 const int obj_offset = in_bytes(BasicObjectLock::obj_offset()); 1149 const int lock_offset = in_bytes(BasicObjectLock::lock_offset()); 1150 const int mark_offset = lock_offset + 1151 BasicLock::displaced_header_offset_in_bytes(); 1152 1153 // Load object pointer into obj_reg 1154 movptr(obj_reg, Address(lock_reg, obj_offset)); 1155 1156 if (LockingMode == LM_LIGHTWEIGHT) { 1157 lightweight_lock(lock_reg, obj_reg, swap_reg, tmp_reg, slow_case); 1158 } else if (LockingMode == LM_LEGACY) { 1159 if (DiagnoseSyncOnValueBasedClasses != 0) { 1160 load_klass(tmp_reg, obj_reg, rklass_decode_tmp); 1161 testb(Address(tmp_reg, Klass::misc_flags_offset()), KlassFlags::_misc_is_value_based_class); 1162 jcc(Assembler::notZero, slow_case); 1163 } 1164 1165 // Load immediate 1 into swap_reg %rax 1166 movl(swap_reg, 1); 1167 1168 // Load (object->mark() | 1) into swap_reg %rax 1169 orptr(swap_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 1170 if (EnableValhalla) { 1171 // Mask inline_type bit such that we go to the slow path if object is an inline type 1172 andptr(swap_reg, ~((int) markWord::inline_type_bit_in_place)); 1173 } 1174 1175 // Save (object->mark() | 1) into BasicLock's displaced header 1176 movptr(Address(lock_reg, mark_offset), swap_reg); 1177 1178 assert(lock_offset == 0, 1179 "displaced header must be first word in BasicObjectLock"); 1180 1181 lock(); 1182 cmpxchgptr(lock_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 1183 jcc(Assembler::zero, count_locking); 1184 1185 const int zero_bits = 7; 1186 1187 // Fast check for recursive lock. 1188 // 1189 // Can apply the optimization only if this is a stack lock 1190 // allocated in this thread. For efficiency, we can focus on 1191 // recently allocated stack locks (instead of reading the stack 1192 // base and checking whether 'mark' points inside the current 1193 // thread stack): 1194 // 1) (mark & zero_bits) == 0, and 1195 // 2) rsp <= mark < mark + os::pagesize() 1196 // 1197 // Warning: rsp + os::pagesize can overflow the stack base. We must 1198 // neither apply the optimization for an inflated lock allocated 1199 // just above the thread stack (this is why condition 1 matters) 1200 // nor apply the optimization if the stack lock is inside the stack 1201 // of another thread. The latter is avoided even in case of overflow 1202 // because we have guard pages at the end of all stacks. Hence, if 1203 // we go over the stack base and hit the stack of another thread, 1204 // this should not be in a writeable area that could contain a 1205 // stack lock allocated by that thread. As a consequence, a stack 1206 // lock less than page size away from rsp is guaranteed to be 1207 // owned by the current thread. 1208 // 1209 // These 3 tests can be done by evaluating the following 1210 // expression: ((mark - rsp) & (zero_bits - os::vm_page_size())), 1211 // assuming both stack pointer and pagesize have their 1212 // least significant bits clear. 1213 // NOTE: the mark is in swap_reg %rax as the result of cmpxchg 1214 subptr(swap_reg, rsp); 1215 andptr(swap_reg, zero_bits - (int)os::vm_page_size()); 1216 1217 // Save the test result, for recursive case, the result is zero 1218 movptr(Address(lock_reg, mark_offset), swap_reg); 1219 jcc(Assembler::notZero, slow_case); 1220 1221 bind(count_locking); 1222 inc_held_monitor_count(); 1223 } 1224 jmp(done); 1225 1226 bind(slow_case); 1227 1228 // Call the runtime routine for slow case 1229 call_VM_preemptable(noreg, 1230 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 1231 lock_reg); 1232 bind(done); 1233 } 1234 } 1235 1236 1237 // Unlocks an object. Used in monitorexit bytecode and 1238 // remove_activation. Throws an IllegalMonitorException if object is 1239 // not locked by current thread. 1240 // 1241 // Args: 1242 // rdx, c_rarg1: BasicObjectLock for lock 1243 // 1244 // Kills: 1245 // rax 1246 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs) 1247 // rscratch1 (scratch reg) 1248 // rax, rbx, rcx, rdx 1249 void InterpreterMacroAssembler::unlock_object(Register lock_reg) { 1250 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1"); 1251 1252 if (LockingMode == LM_MONITOR) { 1253 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); 1254 } else { 1255 Label count_locking, done, slow_case; 1256 1257 const Register swap_reg = rax; // Must use rax for cmpxchg instruction 1258 const Register header_reg = c_rarg2; // Will contain the old oopMark 1259 const Register obj_reg = c_rarg3; // Will contain the oop 1260 1261 save_bcp(); // Save in case of exception 1262 1263 if (LockingMode != LM_LIGHTWEIGHT) { 1264 // Convert from BasicObjectLock structure to object and BasicLock 1265 // structure Store the BasicLock address into %rax 1266 lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset())); 1267 } 1268 1269 // Load oop into obj_reg(%c_rarg3) 1270 movptr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset())); 1271 1272 // Free entry 1273 movptr(Address(lock_reg, BasicObjectLock::obj_offset()), NULL_WORD); 1274 1275 if (LockingMode == LM_LIGHTWEIGHT) { 1276 lightweight_unlock(obj_reg, swap_reg, header_reg, slow_case); 1277 } else if (LockingMode == LM_LEGACY) { 1278 // Load the old header from BasicLock structure 1279 movptr(header_reg, Address(swap_reg, 1280 BasicLock::displaced_header_offset_in_bytes())); 1281 1282 // Test for recursion 1283 testptr(header_reg, header_reg); 1284 1285 // zero for recursive case 1286 jcc(Assembler::zero, count_locking); 1287 1288 // Atomic swap back the old header 1289 lock(); 1290 cmpxchgptr(header_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 1291 1292 // zero for simple unlock of a stack-lock case 1293 jcc(Assembler::notZero, slow_case); 1294 1295 bind(count_locking); 1296 dec_held_monitor_count(); 1297 } 1298 jmp(done); 1299 1300 bind(slow_case); 1301 // Call the runtime routine for slow case. 1302 movptr(Address(lock_reg, BasicObjectLock::obj_offset()), obj_reg); // restore obj 1303 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); 1304 1305 bind(done); 1306 1307 restore_bcp(); 1308 } 1309 } 1310 1311 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, 1312 Label& zero_continue) { 1313 assert(ProfileInterpreter, "must be profiling interpreter"); 1314 movptr(mdp, Address(rbp, frame::interpreter_frame_mdp_offset * wordSize)); 1315 testptr(mdp, mdp); 1316 jcc(Assembler::zero, zero_continue); 1317 } 1318 1319 1320 // Set the method data pointer for the current bcp. 1321 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() { 1322 assert(ProfileInterpreter, "must be profiling interpreter"); 1323 Label set_mdp; 1324 push(rax); 1325 push(rbx); 1326 1327 get_method(rbx); 1328 // Test MDO to avoid the call if it is null. 1329 movptr(rax, Address(rbx, in_bytes(Method::method_data_offset()))); 1330 testptr(rax, rax); 1331 jcc(Assembler::zero, set_mdp); 1332 // rbx: method 1333 // _bcp_register: bcp 1334 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rbx, _bcp_register); 1335 // rax: mdi 1336 // mdo is guaranteed to be non-zero here, we checked for it before the call. 1337 movptr(rbx, Address(rbx, in_bytes(Method::method_data_offset()))); 1338 addptr(rbx, in_bytes(MethodData::data_offset())); 1339 addptr(rax, rbx); 1340 bind(set_mdp); 1341 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), rax); 1342 pop(rbx); 1343 pop(rax); 1344 } 1345 1346 void InterpreterMacroAssembler::verify_method_data_pointer() { 1347 assert(ProfileInterpreter, "must be profiling interpreter"); 1348 #ifdef ASSERT 1349 Label verify_continue; 1350 push(rax); 1351 push(rbx); 1352 Register arg3_reg = c_rarg3; 1353 Register arg2_reg = c_rarg2; 1354 push(arg3_reg); 1355 push(arg2_reg); 1356 test_method_data_pointer(arg3_reg, verify_continue); // If mdp is zero, continue 1357 get_method(rbx); 1358 1359 // If the mdp is valid, it will point to a DataLayout header which is 1360 // consistent with the bcp. The converse is highly probable also. 1361 load_unsigned_short(arg2_reg, 1362 Address(arg3_reg, in_bytes(DataLayout::bci_offset()))); 1363 addptr(arg2_reg, Address(rbx, Method::const_offset())); 1364 lea(arg2_reg, Address(arg2_reg, ConstMethod::codes_offset())); 1365 cmpptr(arg2_reg, _bcp_register); 1366 jcc(Assembler::equal, verify_continue); 1367 // rbx: method 1368 // _bcp_register: bcp 1369 // c_rarg3: mdp 1370 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), 1371 rbx, _bcp_register, arg3_reg); 1372 bind(verify_continue); 1373 pop(arg2_reg); 1374 pop(arg3_reg); 1375 pop(rbx); 1376 pop(rax); 1377 #endif // ASSERT 1378 } 1379 1380 1381 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, 1382 int constant, 1383 Register value) { 1384 assert(ProfileInterpreter, "must be profiling interpreter"); 1385 Address data(mdp_in, constant); 1386 movptr(data, value); 1387 } 1388 1389 1390 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 1391 int constant) { 1392 assert(ProfileInterpreter, "must be profiling interpreter"); 1393 Address data(mdp_in, constant); 1394 addptr(data, DataLayout::counter_increment); 1395 } 1396 1397 1398 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 1399 Register index, 1400 int constant) { 1401 assert(ProfileInterpreter, "must be profiling interpreter"); 1402 Address data(mdp_in, index, Address::times_1, constant); 1403 addptr(data, DataLayout::counter_increment); 1404 } 1405 1406 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in, 1407 int flag_byte_constant) { 1408 assert(ProfileInterpreter, "must be profiling interpreter"); 1409 int header_offset = in_bytes(DataLayout::flags_offset()); 1410 int header_bits = flag_byte_constant; 1411 // Set the flag 1412 orb(Address(mdp_in, header_offset), header_bits); 1413 } 1414 1415 1416 1417 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in, 1418 int offset, 1419 Register value, 1420 Register test_value_out, 1421 Label& not_equal_continue) { 1422 assert(ProfileInterpreter, "must be profiling interpreter"); 1423 if (test_value_out == noreg) { 1424 cmpptr(value, Address(mdp_in, offset)); 1425 } else { 1426 // Put the test value into a register, so caller can use it: 1427 movptr(test_value_out, Address(mdp_in, offset)); 1428 cmpptr(test_value_out, value); 1429 } 1430 jcc(Assembler::notEqual, not_equal_continue); 1431 } 1432 1433 1434 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1435 int offset_of_disp) { 1436 assert(ProfileInterpreter, "must be profiling interpreter"); 1437 Address disp_address(mdp_in, offset_of_disp); 1438 addptr(mdp_in, disp_address); 1439 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in); 1440 } 1441 1442 1443 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1444 Register reg, 1445 int offset_of_disp) { 1446 assert(ProfileInterpreter, "must be profiling interpreter"); 1447 Address disp_address(mdp_in, reg, Address::times_1, offset_of_disp); 1448 addptr(mdp_in, disp_address); 1449 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in); 1450 } 1451 1452 1453 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, 1454 int constant) { 1455 assert(ProfileInterpreter, "must be profiling interpreter"); 1456 addptr(mdp_in, constant); 1457 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in); 1458 } 1459 1460 1461 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) { 1462 assert(ProfileInterpreter, "must be profiling interpreter"); 1463 push(return_bci); // save/restore across call_VM 1464 call_VM(noreg, 1465 CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), 1466 return_bci); 1467 pop(return_bci); 1468 } 1469 1470 1471 void InterpreterMacroAssembler::profile_taken_branch(Register mdp, 1472 Register bumped_count) { 1473 if (ProfileInterpreter) { 1474 Label profile_continue; 1475 1476 // If no method data exists, go to profile_continue. 1477 // Otherwise, assign to mdp 1478 test_method_data_pointer(mdp, profile_continue); 1479 1480 // We are taking a branch. Increment the taken count. 1481 // We inline increment_mdp_data_at to return bumped_count in a register 1482 //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset())); 1483 Address data(mdp, in_bytes(JumpData::taken_offset())); 1484 movptr(bumped_count, data); 1485 assert(DataLayout::counter_increment == 1, 1486 "flow-free idiom only works with 1"); 1487 addptr(bumped_count, DataLayout::counter_increment); 1488 sbbptr(bumped_count, 0); 1489 movptr(data, bumped_count); // Store back out 1490 1491 // The method data pointer needs to be updated to reflect the new target. 1492 update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset())); 1493 bind(profile_continue); 1494 } 1495 } 1496 1497 1498 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp, bool acmp) { 1499 if (ProfileInterpreter) { 1500 Label profile_continue; 1501 1502 // If no method data exists, go to profile_continue. 1503 test_method_data_pointer(mdp, profile_continue); 1504 1505 // We are taking a branch. Increment the not taken count. 1506 increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset())); 1507 1508 // The method data pointer needs to be updated to correspond to 1509 // the next bytecode 1510 update_mdp_by_constant(mdp, acmp ? in_bytes(ACmpData::acmp_data_size()): in_bytes(BranchData::branch_data_size())); 1511 bind(profile_continue); 1512 } 1513 } 1514 1515 void InterpreterMacroAssembler::profile_call(Register mdp) { 1516 if (ProfileInterpreter) { 1517 Label profile_continue; 1518 1519 // If no method data exists, go to profile_continue. 1520 test_method_data_pointer(mdp, profile_continue); 1521 1522 // We are making a call. Increment the count. 1523 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1524 1525 // The method data pointer needs to be updated to reflect the new target. 1526 update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size())); 1527 bind(profile_continue); 1528 } 1529 } 1530 1531 1532 void InterpreterMacroAssembler::profile_final_call(Register mdp) { 1533 if (ProfileInterpreter) { 1534 Label profile_continue; 1535 1536 // If no method data exists, go to profile_continue. 1537 test_method_data_pointer(mdp, profile_continue); 1538 1539 // We are making a call. Increment the count. 1540 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1541 1542 // The method data pointer needs to be updated to reflect the new target. 1543 update_mdp_by_constant(mdp, 1544 in_bytes(VirtualCallData:: 1545 virtual_call_data_size())); 1546 bind(profile_continue); 1547 } 1548 } 1549 1550 1551 void InterpreterMacroAssembler::profile_virtual_call(Register receiver, 1552 Register mdp, 1553 Register reg2, 1554 bool receiver_can_be_null) { 1555 if (ProfileInterpreter) { 1556 Label profile_continue; 1557 1558 // If no method data exists, go to profile_continue. 1559 test_method_data_pointer(mdp, profile_continue); 1560 1561 Label skip_receiver_profile; 1562 if (receiver_can_be_null) { 1563 Label not_null; 1564 testptr(receiver, receiver); 1565 jccb(Assembler::notZero, not_null); 1566 // We are making a call. Increment the count for null receiver. 1567 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1568 jmp(skip_receiver_profile); 1569 bind(not_null); 1570 } 1571 1572 // Record the receiver type. 1573 record_klass_in_profile(receiver, mdp, reg2); 1574 bind(skip_receiver_profile); 1575 1576 // The method data pointer needs to be updated to reflect the new target. 1577 update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size())); 1578 bind(profile_continue); 1579 } 1580 } 1581 1582 // This routine creates a state machine for updating the multi-row 1583 // type profile at a virtual call site (or other type-sensitive bytecode). 1584 // The machine visits each row (of receiver/count) until the receiver type 1585 // is found, or until it runs out of rows. At the same time, it remembers 1586 // the location of the first empty row. (An empty row records null for its 1587 // receiver, and can be allocated for a newly-observed receiver type.) 1588 // Because there are two degrees of freedom in the state, a simple linear 1589 // search will not work; it must be a decision tree. Hence this helper 1590 // function is recursive, to generate the required tree structured code. 1591 // It's the interpreter, so we are trading off code space for speed. 1592 // See below for example code. 1593 void InterpreterMacroAssembler::record_klass_in_profile_helper(Register receiver, Register mdp, 1594 Register reg2, int start_row, 1595 Label& done) { 1596 if (TypeProfileWidth == 0) { 1597 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1598 } else { 1599 record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth, 1600 &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset); 1601 } 1602 } 1603 1604 void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp, Register reg2, int start_row, 1605 Label& done, int total_rows, 1606 OffsetFunction item_offset_fn, 1607 OffsetFunction item_count_offset_fn) { 1608 int last_row = total_rows - 1; 1609 assert(start_row <= last_row, "must be work left to do"); 1610 // Test this row for both the item and for null. 1611 // Take any of three different outcomes: 1612 // 1. found item => increment count and goto done 1613 // 2. found null => keep looking for case 1, maybe allocate this cell 1614 // 3. found something else => keep looking for cases 1 and 2 1615 // Case 3 is handled by a recursive call. 1616 for (int row = start_row; row <= last_row; row++) { 1617 Label next_test; 1618 bool test_for_null_also = (row == start_row); 1619 1620 // See if the item is item[n]. 1621 int item_offset = in_bytes(item_offset_fn(row)); 1622 test_mdp_data_at(mdp, item_offset, item, 1623 (test_for_null_also ? reg2 : noreg), 1624 next_test); 1625 // (Reg2 now contains the item from the CallData.) 1626 1627 // The item is item[n]. Increment count[n]. 1628 int count_offset = in_bytes(item_count_offset_fn(row)); 1629 increment_mdp_data_at(mdp, count_offset); 1630 jmp(done); 1631 bind(next_test); 1632 1633 if (test_for_null_also) { 1634 // Failed the equality check on item[n]... Test for null. 1635 testptr(reg2, reg2); 1636 if (start_row == last_row) { 1637 // The only thing left to do is handle the null case. 1638 Label found_null; 1639 jccb(Assembler::zero, found_null); 1640 // Item did not match any saved item and there is no empty row for it. 1641 // Increment total counter to indicate polymorphic case. 1642 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1643 jmp(done); 1644 bind(found_null); 1645 break; 1646 } 1647 Label found_null; 1648 // Since null is rare, make it be the branch-taken case. 1649 jcc(Assembler::zero, found_null); 1650 1651 // Put all the "Case 3" tests here. 1652 record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows, 1653 item_offset_fn, item_count_offset_fn); 1654 1655 // Found a null. Keep searching for a matching item, 1656 // but remember that this is an empty (unused) slot. 1657 bind(found_null); 1658 } 1659 } 1660 1661 // In the fall-through case, we found no matching item, but we 1662 // observed the item[start_row] is null. 1663 1664 // Fill in the item field and increment the count. 1665 int item_offset = in_bytes(item_offset_fn(start_row)); 1666 set_mdp_data_at(mdp, item_offset, item); 1667 int count_offset = in_bytes(item_count_offset_fn(start_row)); 1668 movl(reg2, DataLayout::counter_increment); 1669 set_mdp_data_at(mdp, count_offset, reg2); 1670 if (start_row > 0) { 1671 jmp(done); 1672 } 1673 } 1674 1675 // Example state machine code for three profile rows: 1676 // // main copy of decision tree, rooted at row[1] 1677 // if (row[0].rec == rec) { row[0].incr(); goto done; } 1678 // if (row[0].rec != nullptr) { 1679 // // inner copy of decision tree, rooted at row[1] 1680 // if (row[1].rec == rec) { row[1].incr(); goto done; } 1681 // if (row[1].rec != nullptr) { 1682 // // degenerate decision tree, rooted at row[2] 1683 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1684 // if (row[2].rec != nullptr) { count.incr(); goto done; } // overflow 1685 // row[2].init(rec); goto done; 1686 // } else { 1687 // // remember row[1] is empty 1688 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1689 // row[1].init(rec); goto done; 1690 // } 1691 // } else { 1692 // // remember row[0] is empty 1693 // if (row[1].rec == rec) { row[1].incr(); goto done; } 1694 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1695 // row[0].init(rec); goto done; 1696 // } 1697 // done: 1698 1699 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver, Register mdp, Register reg2) { 1700 assert(ProfileInterpreter, "must be profiling"); 1701 Label done; 1702 1703 record_klass_in_profile_helper(receiver, mdp, reg2, 0, done); 1704 1705 bind (done); 1706 } 1707 1708 void InterpreterMacroAssembler::profile_ret(Register return_bci, 1709 Register mdp) { 1710 if (ProfileInterpreter) { 1711 Label profile_continue; 1712 uint row; 1713 1714 // If no method data exists, go to profile_continue. 1715 test_method_data_pointer(mdp, profile_continue); 1716 1717 // Update the total ret count. 1718 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1719 1720 for (row = 0; row < RetData::row_limit(); row++) { 1721 Label next_test; 1722 1723 // See if return_bci is equal to bci[n]: 1724 test_mdp_data_at(mdp, 1725 in_bytes(RetData::bci_offset(row)), 1726 return_bci, noreg, 1727 next_test); 1728 1729 // return_bci is equal to bci[n]. Increment the count. 1730 increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row))); 1731 1732 // The method data pointer needs to be updated to reflect the new target. 1733 update_mdp_by_offset(mdp, 1734 in_bytes(RetData::bci_displacement_offset(row))); 1735 jmp(profile_continue); 1736 bind(next_test); 1737 } 1738 1739 update_mdp_for_ret(return_bci); 1740 1741 bind(profile_continue); 1742 } 1743 } 1744 1745 1746 void InterpreterMacroAssembler::profile_null_seen(Register mdp) { 1747 if (ProfileInterpreter) { 1748 Label profile_continue; 1749 1750 // If no method data exists, go to profile_continue. 1751 test_method_data_pointer(mdp, profile_continue); 1752 1753 set_mdp_flag_at(mdp, BitData::null_seen_byte_constant()); 1754 1755 // The method data pointer needs to be updated. 1756 int mdp_delta = in_bytes(BitData::bit_data_size()); 1757 if (TypeProfileCasts) { 1758 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1759 } 1760 update_mdp_by_constant(mdp, mdp_delta); 1761 1762 bind(profile_continue); 1763 } 1764 } 1765 1766 1767 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) { 1768 if (ProfileInterpreter) { 1769 Label profile_continue; 1770 1771 // If no method data exists, go to profile_continue. 1772 test_method_data_pointer(mdp, profile_continue); 1773 1774 // The method data pointer needs to be updated. 1775 int mdp_delta = in_bytes(BitData::bit_data_size()); 1776 if (TypeProfileCasts) { 1777 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1778 1779 // Record the object type. 1780 record_klass_in_profile(klass, mdp, reg2); 1781 } 1782 update_mdp_by_constant(mdp, mdp_delta); 1783 1784 bind(profile_continue); 1785 } 1786 } 1787 1788 1789 void InterpreterMacroAssembler::profile_switch_default(Register mdp) { 1790 if (ProfileInterpreter) { 1791 Label profile_continue; 1792 1793 // If no method data exists, go to profile_continue. 1794 test_method_data_pointer(mdp, profile_continue); 1795 1796 // Update the default case count 1797 increment_mdp_data_at(mdp, 1798 in_bytes(MultiBranchData::default_count_offset())); 1799 1800 // The method data pointer needs to be updated. 1801 update_mdp_by_offset(mdp, 1802 in_bytes(MultiBranchData:: 1803 default_displacement_offset())); 1804 1805 bind(profile_continue); 1806 } 1807 } 1808 1809 1810 void InterpreterMacroAssembler::profile_switch_case(Register index, 1811 Register mdp, 1812 Register reg2) { 1813 if (ProfileInterpreter) { 1814 Label profile_continue; 1815 1816 // If no method data exists, go to profile_continue. 1817 test_method_data_pointer(mdp, profile_continue); 1818 1819 // Build the base (index * per_case_size_in_bytes()) + 1820 // case_array_offset_in_bytes() 1821 movl(reg2, in_bytes(MultiBranchData::per_case_size())); 1822 imulptr(index, reg2); // XXX l ? 1823 addptr(index, in_bytes(MultiBranchData::case_array_offset())); // XXX l ? 1824 1825 // Update the case count 1826 increment_mdp_data_at(mdp, 1827 index, 1828 in_bytes(MultiBranchData::relative_count_offset())); 1829 1830 // The method data pointer needs to be updated. 1831 update_mdp_by_offset(mdp, 1832 index, 1833 in_bytes(MultiBranchData:: 1834 relative_displacement_offset())); 1835 1836 bind(profile_continue); 1837 } 1838 } 1839 1840 template <class ArrayData> void InterpreterMacroAssembler::profile_array_type(Register mdp, 1841 Register array, 1842 Register tmp) { 1843 if (ProfileInterpreter) { 1844 Label profile_continue; 1845 1846 // If no method data exists, go to profile_continue. 1847 test_method_data_pointer(mdp, profile_continue); 1848 1849 mov(tmp, array); 1850 profile_obj_type(tmp, Address(mdp, in_bytes(ArrayData::array_offset()))); 1851 1852 Label not_flat; 1853 test_non_flat_array_oop(array, tmp, not_flat); 1854 1855 set_mdp_flag_at(mdp, ArrayData::flat_array_byte_constant()); 1856 1857 bind(not_flat); 1858 1859 Label not_null_free; 1860 test_non_null_free_array_oop(array, tmp, not_null_free); 1861 1862 set_mdp_flag_at(mdp, ArrayData::null_free_array_byte_constant()); 1863 1864 bind(not_null_free); 1865 1866 bind(profile_continue); 1867 } 1868 } 1869 1870 template void InterpreterMacroAssembler::profile_array_type<ArrayLoadData>(Register mdp, 1871 Register array, 1872 Register tmp); 1873 template void InterpreterMacroAssembler::profile_array_type<ArrayStoreData>(Register mdp, 1874 Register array, 1875 Register tmp); 1876 1877 1878 void InterpreterMacroAssembler::profile_multiple_element_types(Register mdp, Register element, Register tmp, const Register tmp2) { 1879 if (ProfileInterpreter) { 1880 Label profile_continue; 1881 1882 // If no method data exists, go to profile_continue. 1883 test_method_data_pointer(mdp, profile_continue); 1884 1885 Label done, update; 1886 testptr(element, element); 1887 jccb(Assembler::notZero, update); 1888 set_mdp_flag_at(mdp, BitData::null_seen_byte_constant()); 1889 jmp(done); 1890 1891 bind(update); 1892 load_klass(tmp, element, rscratch1); 1893 1894 // Record the object type. 1895 record_klass_in_profile(tmp, mdp, tmp2); 1896 1897 bind(done); 1898 1899 // The method data pointer needs to be updated. 1900 update_mdp_by_constant(mdp, in_bytes(ArrayStoreData::array_store_data_size())); 1901 1902 bind(profile_continue); 1903 } 1904 } 1905 1906 void InterpreterMacroAssembler::profile_element_type(Register mdp, 1907 Register element, 1908 Register tmp) { 1909 if (ProfileInterpreter) { 1910 Label profile_continue; 1911 1912 // If no method data exists, go to profile_continue. 1913 test_method_data_pointer(mdp, profile_continue); 1914 1915 mov(tmp, element); 1916 profile_obj_type(tmp, Address(mdp, in_bytes(ArrayLoadData::element_offset()))); 1917 1918 // The method data pointer needs to be updated. 1919 update_mdp_by_constant(mdp, in_bytes(ArrayLoadData::array_load_data_size())); 1920 1921 bind(profile_continue); 1922 } 1923 } 1924 1925 void InterpreterMacroAssembler::profile_acmp(Register mdp, 1926 Register left, 1927 Register right, 1928 Register tmp) { 1929 if (ProfileInterpreter) { 1930 Label profile_continue; 1931 1932 // If no method data exists, go to profile_continue. 1933 test_method_data_pointer(mdp, profile_continue); 1934 1935 mov(tmp, left); 1936 profile_obj_type(tmp, Address(mdp, in_bytes(ACmpData::left_offset()))); 1937 1938 Label left_not_inline_type; 1939 test_oop_is_not_inline_type(left, tmp, left_not_inline_type); 1940 set_mdp_flag_at(mdp, ACmpData::left_inline_type_byte_constant()); 1941 bind(left_not_inline_type); 1942 1943 mov(tmp, right); 1944 profile_obj_type(tmp, Address(mdp, in_bytes(ACmpData::right_offset()))); 1945 1946 Label right_not_inline_type; 1947 test_oop_is_not_inline_type(right, tmp, right_not_inline_type); 1948 set_mdp_flag_at(mdp, ACmpData::right_inline_type_byte_constant()); 1949 bind(right_not_inline_type); 1950 1951 bind(profile_continue); 1952 } 1953 } 1954 1955 1956 void InterpreterMacroAssembler::_interp_verify_oop(Register reg, TosState state, const char* file, int line) { 1957 if (state == atos) { 1958 MacroAssembler::_verify_oop_checked(reg, "broken oop", file, line); 1959 } 1960 } 1961 1962 1963 // Jump if ((*counter_addr += increment) & mask) == 0 1964 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr, Address mask, 1965 Register scratch, Label* where) { 1966 // This update is actually not atomic and can lose a number of updates 1967 // under heavy contention, but the alternative of using the (contended) 1968 // atomic update here penalizes profiling paths too much. 1969 movl(scratch, counter_addr); 1970 incrementl(scratch, InvocationCounter::count_increment); 1971 movl(counter_addr, scratch); 1972 andl(scratch, mask); 1973 if (where != nullptr) { 1974 jcc(Assembler::zero, *where); 1975 } 1976 } 1977 1978 void InterpreterMacroAssembler::notify_method_entry() { 1979 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 1980 // track stack depth. If it is possible to enter interp_only_mode we add 1981 // the code to check if the event should be sent. 1982 Register rthread = r15_thread; 1983 Register rarg = c_rarg1; 1984 if (JvmtiExport::can_post_interpreter_events()) { 1985 Label L; 1986 movl(rdx, Address(rthread, JavaThread::interp_only_mode_offset())); 1987 testl(rdx, rdx); 1988 jcc(Assembler::zero, L); 1989 call_VM(noreg, CAST_FROM_FN_PTR(address, 1990 InterpreterRuntime::post_method_entry)); 1991 bind(L); 1992 } 1993 1994 if (DTraceMethodProbes) { 1995 get_method(rarg); 1996 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), 1997 rthread, rarg); 1998 } 1999 2000 // RedefineClasses() tracing support for obsolete method entry 2001 if (log_is_enabled(Trace, redefine, class, obsolete)) { 2002 get_method(rarg); 2003 call_VM_leaf( 2004 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), 2005 rthread, rarg); 2006 } 2007 } 2008 2009 2010 void InterpreterMacroAssembler::notify_method_exit( 2011 TosState state, NotifyMethodExitMode mode) { 2012 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 2013 // track stack depth. If it is possible to enter interp_only_mode we add 2014 // the code to check if the event should be sent. 2015 Register rthread = r15_thread; 2016 Register rarg = c_rarg1; 2017 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) { 2018 Label L; 2019 // Note: frame::interpreter_frame_result has a dependency on how the 2020 // method result is saved across the call to post_method_exit. If this 2021 // is changed then the interpreter_frame_result implementation will 2022 // need to be updated too. 2023 2024 // template interpreter will leave the result on the top of the stack. 2025 push(state); 2026 movl(rdx, Address(rthread, JavaThread::interp_only_mode_offset())); 2027 testl(rdx, rdx); 2028 jcc(Assembler::zero, L); 2029 call_VM(noreg, 2030 CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit)); 2031 bind(L); 2032 pop(state); 2033 } 2034 2035 if (DTraceMethodProbes) { 2036 push(state); 2037 get_method(rarg); 2038 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), 2039 rthread, rarg); 2040 pop(state); 2041 } 2042 } 2043 2044 void InterpreterMacroAssembler::load_resolved_indy_entry(Register cache, Register index) { 2045 // Get index out of bytecode pointer 2046 get_cache_index_at_bcp(index, 1, sizeof(u4)); 2047 // Get address of invokedynamic array 2048 movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize)); 2049 movptr(cache, Address(cache, in_bytes(ConstantPoolCache::invokedynamic_entries_offset()))); 2050 if (is_power_of_2(sizeof(ResolvedIndyEntry))) { 2051 shll(index, log2i_exact(sizeof(ResolvedIndyEntry))); // Scale index by power of 2 2052 } else { 2053 imull(index, index, sizeof(ResolvedIndyEntry)); // Scale the index to be the entry index * sizeof(ResolvedIndyEntry) 2054 } 2055 lea(cache, Address(cache, index, Address::times_1, Array<ResolvedIndyEntry>::base_offset_in_bytes())); 2056 } 2057 2058 void InterpreterMacroAssembler::load_field_entry(Register cache, Register index, int bcp_offset) { 2059 // Get index out of bytecode pointer 2060 movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize)); 2061 get_cache_index_at_bcp(index, bcp_offset, sizeof(u2)); 2062 2063 movptr(cache, Address(cache, ConstantPoolCache::field_entries_offset())); 2064 // Take shortcut if the size is a power of 2 2065 if (is_power_of_2(sizeof(ResolvedFieldEntry))) { 2066 shll(index, log2i_exact(sizeof(ResolvedFieldEntry))); // Scale index by power of 2 2067 } else { 2068 imull(index, index, sizeof(ResolvedFieldEntry)); // Scale the index to be the entry index * sizeof(ResolvedFieldEntry) 2069 } 2070 lea(cache, Address(cache, index, Address::times_1, Array<ResolvedFieldEntry>::base_offset_in_bytes())); 2071 } 2072 2073 void InterpreterMacroAssembler::load_method_entry(Register cache, Register index, int bcp_offset) { 2074 // Get index out of bytecode pointer 2075 movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize)); 2076 get_cache_index_at_bcp(index, bcp_offset, sizeof(u2)); 2077 2078 movptr(cache, Address(cache, ConstantPoolCache::method_entries_offset())); 2079 imull(index, index, sizeof(ResolvedMethodEntry)); // Scale the index to be the entry index * sizeof(ResolvedMethodEntry) 2080 lea(cache, Address(cache, index, Address::times_1, Array<ResolvedMethodEntry>::base_offset_in_bytes())); 2081 }