1 /*
    2  * Copyright (c) 1997, 2023, Oracle and/or its affiliates. All rights reserved.
    3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
    4  *
    5  * This code is free software; you can redistribute it and/or modify it
    6  * under the terms of the GNU General Public License version 2 only, as
    7  * published by the Free Software Foundation.
    8  *
    9  * This code is distributed in the hope that it will be useful, but WITHOUT
   10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
   11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
   12  * version 2 for more details (a copy is included in the LICENSE file that
   13  * accompanied this code).
   14  *
   15  * You should have received a copy of the GNU General Public License version
   16  * 2 along with this work; if not, write to the Free Software Foundation,
   17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
   18  *
   19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
   20  * or visit www.oracle.com if you need additional information or have any
   21  * questions.
   22  *
   23  */
   24 
   25 #include "precompiled.hpp"
   26 #include "asm/assembler.hpp"
   27 #include "asm/assembler.inline.hpp"
   28 #include "compiler/compiler_globals.hpp"
   29 #include "compiler/disassembler.hpp"
   30 #include "crc32c.h"
   31 #include "gc/shared/barrierSet.hpp"
   32 #include "gc/shared/barrierSetAssembler.hpp"
   33 #include "gc/shared/collectedHeap.inline.hpp"
   34 #include "gc/shared/tlab_globals.hpp"
   35 #include "interpreter/bytecodeHistogram.hpp"
   36 #include "interpreter/interpreter.hpp"
   37 #include "jvm.h"
   38 #include "memory/resourceArea.hpp"
   39 #include "memory/universe.hpp"
   40 #include "oops/accessDecorators.hpp"
   41 #include "oops/compressedKlass.inline.hpp"
   42 #include "oops/compressedOops.inline.hpp"
   43 #include "oops/klass.inline.hpp"
   44 #include "prims/methodHandles.hpp"
   45 #include "runtime/continuation.hpp"
   46 #include "runtime/interfaceSupport.inline.hpp"
   47 #include "runtime/javaThread.hpp"
   48 #include "runtime/jniHandles.hpp"
   49 #include "runtime/objectMonitor.hpp"
   50 #include "runtime/os.hpp"
   51 #include "runtime/safepoint.hpp"
   52 #include "runtime/safepointMechanism.hpp"
   53 #include "runtime/sharedRuntime.hpp"
   54 #include "runtime/stubRoutines.hpp"
   55 #include "utilities/checkedCast.hpp"
   56 #include "utilities/macros.hpp"
   57 
   58 #ifdef PRODUCT
   59 #define BLOCK_COMMENT(str) /* nothing */
   60 #define STOP(error) stop(error)
   61 #else
   62 #define BLOCK_COMMENT(str) block_comment(str)
   63 #define STOP(error) block_comment(error); stop(error)
   64 #endif
   65 
   66 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
   67 
   68 #ifdef ASSERT
   69 bool AbstractAssembler::pd_check_instruction_mark() { return true; }
   70 #endif
   71 
   72 static const Assembler::Condition reverse[] = {
   73     Assembler::noOverflow     /* overflow      = 0x0 */ ,
   74     Assembler::overflow       /* noOverflow    = 0x1 */ ,
   75     Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
   76     Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
   77     Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
   78     Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
   79     Assembler::above          /* belowEqual    = 0x6 */ ,
   80     Assembler::belowEqual     /* above         = 0x7 */ ,
   81     Assembler::positive       /* negative      = 0x8 */ ,
   82     Assembler::negative       /* positive      = 0x9 */ ,
   83     Assembler::noParity       /* parity        = 0xa */ ,
   84     Assembler::parity         /* noParity      = 0xb */ ,
   85     Assembler::greaterEqual   /* less          = 0xc */ ,
   86     Assembler::less           /* greaterEqual  = 0xd */ ,
   87     Assembler::greater        /* lessEqual     = 0xe */ ,
   88     Assembler::lessEqual      /* greater       = 0xf, */
   89 
   90 };
   91 
   92 
   93 // Implementation of MacroAssembler
   94 
   95 // First all the versions that have distinct versions depending on 32/64 bit
   96 // Unless the difference is trivial (1 line or so).
   97 
   98 #ifndef _LP64
   99 
  100 // 32bit versions
  101 
  102 Address MacroAssembler::as_Address(AddressLiteral adr) {
  103   return Address(adr.target(), adr.rspec());
  104 }
  105 
  106 Address MacroAssembler::as_Address(ArrayAddress adr, Register rscratch) {
  107   assert(rscratch == noreg, "");
  108   return Address::make_array(adr);
  109 }
  110 
  111 void MacroAssembler::call_VM_leaf_base(address entry_point,
  112                                        int number_of_arguments) {
  113   call(RuntimeAddress(entry_point));
  114   increment(rsp, number_of_arguments * wordSize);
  115 }
  116 
  117 void MacroAssembler::cmpklass(Address src1, Metadata* obj) {
  118   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
  119 }
  120 
  121 
  122 void MacroAssembler::cmpklass(Register src1, Metadata* obj) {
  123   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
  124 }
  125 
  126 void MacroAssembler::cmpoop(Address src1, jobject obj) {
  127   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
  128 }
  129 
  130 void MacroAssembler::cmpoop(Register src1, jobject obj, Register rscratch) {
  131   assert(rscratch == noreg, "redundant");
  132   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
  133 }
  134 
  135 void MacroAssembler::extend_sign(Register hi, Register lo) {
  136   // According to Intel Doc. AP-526, "Integer Divide", p.18.
  137   if (VM_Version::is_P6() && hi == rdx && lo == rax) {
  138     cdql();
  139   } else {
  140     movl(hi, lo);
  141     sarl(hi, 31);
  142   }
  143 }
  144 
  145 void MacroAssembler::jC2(Register tmp, Label& L) {
  146   // set parity bit if FPU flag C2 is set (via rax)
  147   save_rax(tmp);
  148   fwait(); fnstsw_ax();
  149   sahf();
  150   restore_rax(tmp);
  151   // branch
  152   jcc(Assembler::parity, L);
  153 }
  154 
  155 void MacroAssembler::jnC2(Register tmp, Label& L) {
  156   // set parity bit if FPU flag C2 is set (via rax)
  157   save_rax(tmp);
  158   fwait(); fnstsw_ax();
  159   sahf();
  160   restore_rax(tmp);
  161   // branch
  162   jcc(Assembler::noParity, L);
  163 }
  164 
  165 // 32bit can do a case table jump in one instruction but we no longer allow the base
  166 // to be installed in the Address class
  167 void MacroAssembler::jump(ArrayAddress entry, Register rscratch) {
  168   assert(rscratch == noreg, "not needed");
  169   jmp(as_Address(entry, noreg));
  170 }
  171 
  172 // Note: y_lo will be destroyed
  173 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
  174   // Long compare for Java (semantics as described in JVM spec.)
  175   Label high, low, done;
  176 
  177   cmpl(x_hi, y_hi);
  178   jcc(Assembler::less, low);
  179   jcc(Assembler::greater, high);
  180   // x_hi is the return register
  181   xorl(x_hi, x_hi);
  182   cmpl(x_lo, y_lo);
  183   jcc(Assembler::below, low);
  184   jcc(Assembler::equal, done);
  185 
  186   bind(high);
  187   xorl(x_hi, x_hi);
  188   increment(x_hi);
  189   jmp(done);
  190 
  191   bind(low);
  192   xorl(x_hi, x_hi);
  193   decrementl(x_hi);
  194 
  195   bind(done);
  196 }
  197 
  198 void MacroAssembler::lea(Register dst, AddressLiteral src) {
  199   mov_literal32(dst, (int32_t)src.target(), src.rspec());
  200 }
  201 
  202 void MacroAssembler::lea(Address dst, AddressLiteral adr, Register rscratch) {
  203   assert(rscratch == noreg, "not needed");
  204 
  205   // leal(dst, as_Address(adr));
  206   // see note in movl as to why we must use a move
  207   mov_literal32(dst, (int32_t)adr.target(), adr.rspec());
  208 }
  209 
  210 void MacroAssembler::leave() {
  211   mov(rsp, rbp);
  212   pop(rbp);
  213 }
  214 
  215 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
  216   // Multiplication of two Java long values stored on the stack
  217   // as illustrated below. Result is in rdx:rax.
  218   //
  219   // rsp ---> [  ??  ] \               \
  220   //            ....    | y_rsp_offset  |
  221   //          [ y_lo ] /  (in bytes)    | x_rsp_offset
  222   //          [ y_hi ]                  | (in bytes)
  223   //            ....                    |
  224   //          [ x_lo ]                 /
  225   //          [ x_hi ]
  226   //            ....
  227   //
  228   // Basic idea: lo(result) = lo(x_lo * y_lo)
  229   //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
  230   Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
  231   Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
  232   Label quick;
  233   // load x_hi, y_hi and check if quick
  234   // multiplication is possible
  235   movl(rbx, x_hi);
  236   movl(rcx, y_hi);
  237   movl(rax, rbx);
  238   orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
  239   jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
  240   // do full multiplication
  241   // 1st step
  242   mull(y_lo);                                    // x_hi * y_lo
  243   movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
  244   // 2nd step
  245   movl(rax, x_lo);
  246   mull(rcx);                                     // x_lo * y_hi
  247   addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
  248   // 3rd step
  249   bind(quick);                                   // note: rbx, = 0 if quick multiply!
  250   movl(rax, x_lo);
  251   mull(y_lo);                                    // x_lo * y_lo
  252   addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
  253 }
  254 
  255 void MacroAssembler::lneg(Register hi, Register lo) {
  256   negl(lo);
  257   adcl(hi, 0);
  258   negl(hi);
  259 }
  260 
  261 void MacroAssembler::lshl(Register hi, Register lo) {
  262   // Java shift left long support (semantics as described in JVM spec., p.305)
  263   // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
  264   // shift value is in rcx !
  265   assert(hi != rcx, "must not use rcx");
  266   assert(lo != rcx, "must not use rcx");
  267   const Register s = rcx;                        // shift count
  268   const int      n = BitsPerWord;
  269   Label L;
  270   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
  271   cmpl(s, n);                                    // if (s < n)
  272   jcc(Assembler::less, L);                       // else (s >= n)
  273   movl(hi, lo);                                  // x := x << n
  274   xorl(lo, lo);
  275   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
  276   bind(L);                                       // s (mod n) < n
  277   shldl(hi, lo);                                 // x := x << s
  278   shll(lo);
  279 }
  280 
  281 
  282 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
  283   // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
  284   // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
  285   assert(hi != rcx, "must not use rcx");
  286   assert(lo != rcx, "must not use rcx");
  287   const Register s = rcx;                        // shift count
  288   const int      n = BitsPerWord;
  289   Label L;
  290   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
  291   cmpl(s, n);                                    // if (s < n)
  292   jcc(Assembler::less, L);                       // else (s >= n)
  293   movl(lo, hi);                                  // x := x >> n
  294   if (sign_extension) sarl(hi, 31);
  295   else                xorl(hi, hi);
  296   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
  297   bind(L);                                       // s (mod n) < n
  298   shrdl(lo, hi);                                 // x := x >> s
  299   if (sign_extension) sarl(hi);
  300   else                shrl(hi);
  301 }
  302 
  303 void MacroAssembler::movoop(Register dst, jobject obj) {
  304   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
  305 }
  306 
  307 void MacroAssembler::movoop(Address dst, jobject obj, Register rscratch) {
  308   assert(rscratch == noreg, "redundant");
  309   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
  310 }
  311 
  312 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
  313   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
  314 }
  315 
  316 void MacroAssembler::mov_metadata(Address dst, Metadata* obj, Register rscratch) {
  317   assert(rscratch == noreg, "redundant");
  318   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
  319 }
  320 
  321 void MacroAssembler::movptr(Register dst, AddressLiteral src) {
  322   if (src.is_lval()) {
  323     mov_literal32(dst, (intptr_t)src.target(), src.rspec());
  324   } else {
  325     movl(dst, as_Address(src));
  326   }
  327 }
  328 
  329 void MacroAssembler::movptr(ArrayAddress dst, Register src, Register rscratch) {
  330   assert(rscratch == noreg, "redundant");
  331   movl(as_Address(dst, noreg), src);
  332 }
  333 
  334 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
  335   movl(dst, as_Address(src, noreg));
  336 }
  337 
  338 void MacroAssembler::movptr(Address dst, intptr_t src, Register rscratch) {
  339   assert(rscratch == noreg, "redundant");
  340   movl(dst, src);
  341 }
  342 
  343 void MacroAssembler::pushoop(jobject obj, Register rscratch) {
  344   assert(rscratch == noreg, "redundant");
  345   push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
  346 }
  347 
  348 void MacroAssembler::pushklass(Metadata* obj, Register rscratch) {
  349   assert(rscratch == noreg, "redundant");
  350   push_literal32((int32_t)obj, metadata_Relocation::spec_for_immediate());
  351 }
  352 
  353 void MacroAssembler::pushptr(AddressLiteral src, Register rscratch) {
  354   assert(rscratch == noreg, "redundant");
  355   if (src.is_lval()) {
  356     push_literal32((int32_t)src.target(), src.rspec());
  357   } else {
  358     pushl(as_Address(src));
  359   }
  360 }
  361 
  362 static void pass_arg0(MacroAssembler* masm, Register arg) {
  363   masm->push(arg);
  364 }
  365 
  366 static void pass_arg1(MacroAssembler* masm, Register arg) {
  367   masm->push(arg);
  368 }
  369 
  370 static void pass_arg2(MacroAssembler* masm, Register arg) {
  371   masm->push(arg);
  372 }
  373 
  374 static void pass_arg3(MacroAssembler* masm, Register arg) {
  375   masm->push(arg);
  376 }
  377 
  378 #ifndef PRODUCT
  379 extern "C" void findpc(intptr_t x);
  380 #endif
  381 
  382 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
  383   // In order to get locks to work, we need to fake a in_VM state
  384   JavaThread* thread = JavaThread::current();
  385   JavaThreadState saved_state = thread->thread_state();
  386   thread->set_thread_state(_thread_in_vm);
  387   if (ShowMessageBoxOnError) {
  388     JavaThread* thread = JavaThread::current();
  389     JavaThreadState saved_state = thread->thread_state();
  390     thread->set_thread_state(_thread_in_vm);
  391     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
  392       ttyLocker ttyl;
  393       BytecodeCounter::print();
  394     }
  395     // To see where a verify_oop failed, get $ebx+40/X for this frame.
  396     // This is the value of eip which points to where verify_oop will return.
  397     if (os::message_box(msg, "Execution stopped, print registers?")) {
  398       print_state32(rdi, rsi, rbp, rsp, rbx, rdx, rcx, rax, eip);
  399       BREAKPOINT;
  400     }
  401   }
  402   fatal("DEBUG MESSAGE: %s", msg);
  403 }
  404 
  405 void MacroAssembler::print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip) {
  406   ttyLocker ttyl;
  407   DebuggingContext debugging{};
  408   tty->print_cr("eip = 0x%08x", eip);
  409 #ifndef PRODUCT
  410   if ((WizardMode || Verbose) && PrintMiscellaneous) {
  411     tty->cr();
  412     findpc(eip);
  413     tty->cr();
  414   }
  415 #endif
  416 #define PRINT_REG(rax) \
  417   { tty->print("%s = ", #rax); os::print_location(tty, rax); }
  418   PRINT_REG(rax);
  419   PRINT_REG(rbx);
  420   PRINT_REG(rcx);
  421   PRINT_REG(rdx);
  422   PRINT_REG(rdi);
  423   PRINT_REG(rsi);
  424   PRINT_REG(rbp);
  425   PRINT_REG(rsp);
  426 #undef PRINT_REG
  427   // Print some words near top of staack.
  428   int* dump_sp = (int*) rsp;
  429   for (int col1 = 0; col1 < 8; col1++) {
  430     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
  431     os::print_location(tty, *dump_sp++);
  432   }
  433   for (int row = 0; row < 16; row++) {
  434     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
  435     for (int col = 0; col < 8; col++) {
  436       tty->print(" 0x%08x", *dump_sp++);
  437     }
  438     tty->cr();
  439   }
  440   // Print some instructions around pc:
  441   Disassembler::decode((address)eip-64, (address)eip);
  442   tty->print_cr("--------");
  443   Disassembler::decode((address)eip, (address)eip+32);
  444 }
  445 
  446 void MacroAssembler::stop(const char* msg) {
  447   // push address of message
  448   ExternalAddress message((address)msg);
  449   pushptr(message.addr(), noreg);
  450   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
  451   pusha();                                            // push registers
  452   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
  453   hlt();
  454 }
  455 
  456 void MacroAssembler::warn(const char* msg) {
  457   push_CPU_state();
  458 
  459   // push address of message
  460   ExternalAddress message((address)msg);
  461   pushptr(message.addr(), noreg);
  462 
  463   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
  464   addl(rsp, wordSize);       // discard argument
  465   pop_CPU_state();
  466 }
  467 
  468 void MacroAssembler::print_state() {
  469   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
  470   pusha();                                            // push registers
  471 
  472   push_CPU_state();
  473   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::print_state32)));
  474   pop_CPU_state();
  475 
  476   popa();
  477   addl(rsp, wordSize);
  478 }
  479 
  480 #else // _LP64
  481 
  482 // 64 bit versions
  483 
  484 Address MacroAssembler::as_Address(AddressLiteral adr) {
  485   // amd64 always does this as a pc-rel
  486   // we can be absolute or disp based on the instruction type
  487   // jmp/call are displacements others are absolute
  488   assert(!adr.is_lval(), "must be rval");
  489   assert(reachable(adr), "must be");
  490   return Address(checked_cast<int32_t>(adr.target() - pc()), adr.target(), adr.reloc());
  491 
  492 }
  493 
  494 Address MacroAssembler::as_Address(ArrayAddress adr, Register rscratch) {
  495   AddressLiteral base = adr.base();
  496   lea(rscratch, base);
  497   Address index = adr.index();
  498   assert(index._disp == 0, "must not have disp"); // maybe it can?
  499   Address array(rscratch, index._index, index._scale, index._disp);
  500   return array;
  501 }
  502 
  503 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
  504   Label L, E;
  505 
  506 #ifdef _WIN64
  507   // Windows always allocates space for it's register args
  508   assert(num_args <= 4, "only register arguments supported");
  509   subq(rsp,  frame::arg_reg_save_area_bytes);
  510 #endif
  511 
  512   // Align stack if necessary
  513   testl(rsp, 15);
  514   jcc(Assembler::zero, L);
  515 
  516   subq(rsp, 8);
  517   call(RuntimeAddress(entry_point));
  518   addq(rsp, 8);
  519   jmp(E);
  520 
  521   bind(L);
  522   call(RuntimeAddress(entry_point));
  523 
  524   bind(E);
  525 
  526 #ifdef _WIN64
  527   // restore stack pointer
  528   addq(rsp, frame::arg_reg_save_area_bytes);
  529 #endif
  530 
  531 }
  532 
  533 void MacroAssembler::cmp64(Register src1, AddressLiteral src2, Register rscratch) {
  534   assert(!src2.is_lval(), "should use cmpptr");
  535   assert(rscratch != noreg || always_reachable(src2), "missing");
  536 
  537   if (reachable(src2)) {
  538     cmpq(src1, as_Address(src2));
  539   } else {
  540     lea(rscratch, src2);
  541     Assembler::cmpq(src1, Address(rscratch, 0));
  542   }
  543 }
  544 
  545 int MacroAssembler::corrected_idivq(Register reg) {
  546   // Full implementation of Java ldiv and lrem; checks for special
  547   // case as described in JVM spec., p.243 & p.271.  The function
  548   // returns the (pc) offset of the idivl instruction - may be needed
  549   // for implicit exceptions.
  550   //
  551   //         normal case                           special case
  552   //
  553   // input : rax: dividend                         min_long
  554   //         reg: divisor   (may not be eax/edx)   -1
  555   //
  556   // output: rax: quotient  (= rax idiv reg)       min_long
  557   //         rdx: remainder (= rax irem reg)       0
  558   assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
  559   static const int64_t min_long = 0x8000000000000000;
  560   Label normal_case, special_case;
  561 
  562   // check for special case
  563   cmp64(rax, ExternalAddress((address) &min_long), rdx /*rscratch*/);
  564   jcc(Assembler::notEqual, normal_case);
  565   xorl(rdx, rdx); // prepare rdx for possible special case (where
  566                   // remainder = 0)
  567   cmpq(reg, -1);
  568   jcc(Assembler::equal, special_case);
  569 
  570   // handle normal case
  571   bind(normal_case);
  572   cdqq();
  573   int idivq_offset = offset();
  574   idivq(reg);
  575 
  576   // normal and special case exit
  577   bind(special_case);
  578 
  579   return idivq_offset;
  580 }
  581 
  582 void MacroAssembler::decrementq(Register reg, int value) {
  583   if (value == min_jint) { subq(reg, value); return; }
  584   if (value <  0) { incrementq(reg, -value); return; }
  585   if (value == 0) {                        ; return; }
  586   if (value == 1 && UseIncDec) { decq(reg) ; return; }
  587   /* else */      { subq(reg, value)       ; return; }
  588 }
  589 
  590 void MacroAssembler::decrementq(Address dst, int value) {
  591   if (value == min_jint) { subq(dst, value); return; }
  592   if (value <  0) { incrementq(dst, -value); return; }
  593   if (value == 0) {                        ; return; }
  594   if (value == 1 && UseIncDec) { decq(dst) ; return; }
  595   /* else */      { subq(dst, value)       ; return; }
  596 }
  597 
  598 void MacroAssembler::incrementq(AddressLiteral dst, Register rscratch) {
  599   assert(rscratch != noreg || always_reachable(dst), "missing");
  600 
  601   if (reachable(dst)) {
  602     incrementq(as_Address(dst));
  603   } else {
  604     lea(rscratch, dst);
  605     incrementq(Address(rscratch, 0));
  606   }
  607 }
  608 
  609 void MacroAssembler::incrementq(Register reg, int value) {
  610   if (value == min_jint) { addq(reg, value); return; }
  611   if (value <  0) { decrementq(reg, -value); return; }
  612   if (value == 0) {                        ; return; }
  613   if (value == 1 && UseIncDec) { incq(reg) ; return; }
  614   /* else */      { addq(reg, value)       ; return; }
  615 }
  616 
  617 void MacroAssembler::incrementq(Address dst, int value) {
  618   if (value == min_jint) { addq(dst, value); return; }
  619   if (value <  0) { decrementq(dst, -value); return; }
  620   if (value == 0) {                        ; return; }
  621   if (value == 1 && UseIncDec) { incq(dst) ; return; }
  622   /* else */      { addq(dst, value)       ; return; }
  623 }
  624 
  625 // 32bit can do a case table jump in one instruction but we no longer allow the base
  626 // to be installed in the Address class
  627 void MacroAssembler::jump(ArrayAddress entry, Register rscratch) {
  628   lea(rscratch, entry.base());
  629   Address dispatch = entry.index();
  630   assert(dispatch._base == noreg, "must be");
  631   dispatch._base = rscratch;
  632   jmp(dispatch);
  633 }
  634 
  635 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
  636   ShouldNotReachHere(); // 64bit doesn't use two regs
  637   cmpq(x_lo, y_lo);
  638 }
  639 
  640 void MacroAssembler::lea(Register dst, AddressLiteral src) {
  641   mov_literal64(dst, (intptr_t)src.target(), src.rspec());
  642 }
  643 
  644 void MacroAssembler::lea(Address dst, AddressLiteral adr, Register rscratch) {
  645   lea(rscratch, adr);
  646   movptr(dst, rscratch);
  647 }
  648 
  649 void MacroAssembler::leave() {
  650   // %%% is this really better? Why not on 32bit too?
  651   emit_int8((unsigned char)0xC9); // LEAVE
  652 }
  653 
  654 void MacroAssembler::lneg(Register hi, Register lo) {
  655   ShouldNotReachHere(); // 64bit doesn't use two regs
  656   negq(lo);
  657 }
  658 
  659 void MacroAssembler::movoop(Register dst, jobject obj) {
  660   mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
  661 }
  662 
  663 void MacroAssembler::movoop(Address dst, jobject obj, Register rscratch) {
  664   mov_literal64(rscratch, (intptr_t)obj, oop_Relocation::spec_for_immediate());
  665   movq(dst, rscratch);
  666 }
  667 
  668 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
  669   mov_literal64(dst, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
  670 }
  671 
  672 void MacroAssembler::mov_metadata(Address dst, Metadata* obj, Register rscratch) {
  673   mov_literal64(rscratch, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
  674   movq(dst, rscratch);
  675 }
  676 
  677 void MacroAssembler::movptr(Register dst, AddressLiteral src) {
  678   if (src.is_lval()) {
  679     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
  680   } else {
  681     if (reachable(src)) {
  682       movq(dst, as_Address(src));
  683     } else {
  684       lea(dst, src);
  685       movq(dst, Address(dst, 0));
  686     }
  687   }
  688 }
  689 
  690 void MacroAssembler::movptr(ArrayAddress dst, Register src, Register rscratch) {
  691   movq(as_Address(dst, rscratch), src);
  692 }
  693 
  694 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
  695   movq(dst, as_Address(src, dst /*rscratch*/));
  696 }
  697 
  698 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
  699 void MacroAssembler::movptr(Address dst, intptr_t src, Register rscratch) {
  700   if (is_simm32(src)) {
  701     movptr(dst, checked_cast<int32_t>(src));
  702   } else {
  703     mov64(rscratch, src);
  704     movq(dst, rscratch);
  705   }
  706 }
  707 
  708 void MacroAssembler::pushoop(jobject obj, Register rscratch) {
  709   movoop(rscratch, obj);
  710   push(rscratch);
  711 }
  712 
  713 void MacroAssembler::pushklass(Metadata* obj, Register rscratch) {
  714   mov_metadata(rscratch, obj);
  715   push(rscratch);
  716 }
  717 
  718 void MacroAssembler::pushptr(AddressLiteral src, Register rscratch) {
  719   lea(rscratch, src);
  720   if (src.is_lval()) {
  721     push(rscratch);
  722   } else {
  723     pushq(Address(rscratch, 0));
  724   }
  725 }
  726 
  727 void MacroAssembler::reset_last_Java_frame(bool clear_fp) {
  728   reset_last_Java_frame(r15_thread, clear_fp);
  729 }
  730 
  731 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
  732                                          Register last_java_fp,
  733                                          address  last_java_pc,
  734                                          Register rscratch) {
  735   set_last_Java_frame(r15_thread, last_java_sp, last_java_fp, last_java_pc, rscratch);
  736 }
  737 
  738 static void pass_arg0(MacroAssembler* masm, Register arg) {
  739   if (c_rarg0 != arg ) {
  740     masm->mov(c_rarg0, arg);
  741   }
  742 }
  743 
  744 static void pass_arg1(MacroAssembler* masm, Register arg) {
  745   if (c_rarg1 != arg ) {
  746     masm->mov(c_rarg1, arg);
  747   }
  748 }
  749 
  750 static void pass_arg2(MacroAssembler* masm, Register arg) {
  751   if (c_rarg2 != arg ) {
  752     masm->mov(c_rarg2, arg);
  753   }
  754 }
  755 
  756 static void pass_arg3(MacroAssembler* masm, Register arg) {
  757   if (c_rarg3 != arg ) {
  758     masm->mov(c_rarg3, arg);
  759   }
  760 }
  761 
  762 void MacroAssembler::stop(const char* msg) {
  763   if (ShowMessageBoxOnError) {
  764     address rip = pc();
  765     pusha(); // get regs on stack
  766     lea(c_rarg1, InternalAddress(rip));
  767     movq(c_rarg2, rsp); // pass pointer to regs array
  768   }
  769   lea(c_rarg0, ExternalAddress((address) msg));
  770   andq(rsp, -16); // align stack as required by ABI
  771   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
  772   hlt();
  773 }
  774 
  775 void MacroAssembler::warn(const char* msg) {
  776   push(rbp);
  777   movq(rbp, rsp);
  778   andq(rsp, -16);     // align stack as required by push_CPU_state and call
  779   push_CPU_state();   // keeps alignment at 16 bytes
  780 
  781   lea(c_rarg0, ExternalAddress((address) msg));
  782   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
  783 
  784   pop_CPU_state();
  785   mov(rsp, rbp);
  786   pop(rbp);
  787 }
  788 
  789 void MacroAssembler::print_state() {
  790   address rip = pc();
  791   pusha();            // get regs on stack
  792   push(rbp);
  793   movq(rbp, rsp);
  794   andq(rsp, -16);     // align stack as required by push_CPU_state and call
  795   push_CPU_state();   // keeps alignment at 16 bytes
  796 
  797   lea(c_rarg0, InternalAddress(rip));
  798   lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array
  799   call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1);
  800 
  801   pop_CPU_state();
  802   mov(rsp, rbp);
  803   pop(rbp);
  804   popa();
  805 }
  806 
  807 #ifndef PRODUCT
  808 extern "C" void findpc(intptr_t x);
  809 #endif
  810 
  811 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
  812   // In order to get locks to work, we need to fake a in_VM state
  813   if (ShowMessageBoxOnError) {
  814     JavaThread* thread = JavaThread::current();
  815     JavaThreadState saved_state = thread->thread_state();
  816     thread->set_thread_state(_thread_in_vm);
  817 #ifndef PRODUCT
  818     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
  819       ttyLocker ttyl;
  820       BytecodeCounter::print();
  821     }
  822 #endif
  823     // To see where a verify_oop failed, get $ebx+40/X for this frame.
  824     // XXX correct this offset for amd64
  825     // This is the value of eip which points to where verify_oop will return.
  826     if (os::message_box(msg, "Execution stopped, print registers?")) {
  827       print_state64(pc, regs);
  828       BREAKPOINT;
  829     }
  830   }
  831   fatal("DEBUG MESSAGE: %s", msg);
  832 }
  833 
  834 void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) {
  835   ttyLocker ttyl;
  836   DebuggingContext debugging{};
  837   tty->print_cr("rip = 0x%016lx", (intptr_t)pc);
  838 #ifndef PRODUCT
  839   tty->cr();
  840   findpc(pc);
  841   tty->cr();
  842 #endif
  843 #define PRINT_REG(rax, value) \
  844   { tty->print("%s = ", #rax); os::print_location(tty, value); }
  845   PRINT_REG(rax, regs[15]);
  846   PRINT_REG(rbx, regs[12]);
  847   PRINT_REG(rcx, regs[14]);
  848   PRINT_REG(rdx, regs[13]);
  849   PRINT_REG(rdi, regs[8]);
  850   PRINT_REG(rsi, regs[9]);
  851   PRINT_REG(rbp, regs[10]);
  852   // rsp is actually not stored by pusha(), compute the old rsp from regs (rsp after pusha): regs + 16 = old rsp
  853   PRINT_REG(rsp, (intptr_t)(&regs[16]));
  854   PRINT_REG(r8 , regs[7]);
  855   PRINT_REG(r9 , regs[6]);
  856   PRINT_REG(r10, regs[5]);
  857   PRINT_REG(r11, regs[4]);
  858   PRINT_REG(r12, regs[3]);
  859   PRINT_REG(r13, regs[2]);
  860   PRINT_REG(r14, regs[1]);
  861   PRINT_REG(r15, regs[0]);
  862 #undef PRINT_REG
  863   // Print some words near the top of the stack.
  864   int64_t* rsp = &regs[16];
  865   int64_t* dump_sp = rsp;
  866   for (int col1 = 0; col1 < 8; col1++) {
  867     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
  868     os::print_location(tty, *dump_sp++);
  869   }
  870   for (int row = 0; row < 25; row++) {
  871     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
  872     for (int col = 0; col < 4; col++) {
  873       tty->print(" 0x%016lx", (intptr_t)*dump_sp++);
  874     }
  875     tty->cr();
  876   }
  877   // Print some instructions around pc:
  878   Disassembler::decode((address)pc-64, (address)pc);
  879   tty->print_cr("--------");
  880   Disassembler::decode((address)pc, (address)pc+32);
  881 }
  882 
  883 // The java_calling_convention describes stack locations as ideal slots on
  884 // a frame with no abi restrictions. Since we must observe abi restrictions
  885 // (like the placement of the register window) the slots must be biased by
  886 // the following value.
  887 static int reg2offset_in(VMReg r) {
  888   // Account for saved rbp and return address
  889   // This should really be in_preserve_stack_slots
  890   return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size;
  891 }
  892 
  893 static int reg2offset_out(VMReg r) {
  894   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
  895 }
  896 
  897 // A long move
  898 void MacroAssembler::long_move(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) {
  899 
  900   // The calling conventions assures us that each VMregpair is either
  901   // all really one physical register or adjacent stack slots.
  902 
  903   if (src.is_single_phys_reg() ) {
  904     if (dst.is_single_phys_reg()) {
  905       if (dst.first() != src.first()) {
  906         mov(dst.first()->as_Register(), src.first()->as_Register());
  907       }
  908     } else {
  909       assert(dst.is_single_reg(), "not a stack pair: (%s, %s), (%s, %s)",
  910              src.first()->name(), src.second()->name(), dst.first()->name(), dst.second()->name());
  911       movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_Register());
  912     }
  913   } else if (dst.is_single_phys_reg()) {
  914     assert(src.is_single_reg(),  "not a stack pair");
  915     movq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias));
  916   } else {
  917     assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
  918     movq(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias));
  919     movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp);
  920   }
  921 }
  922 
  923 // A double move
  924 void MacroAssembler::double_move(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) {
  925 
  926   // The calling conventions assures us that each VMregpair is either
  927   // all really one physical register or adjacent stack slots.
  928 
  929   if (src.is_single_phys_reg() ) {
  930     if (dst.is_single_phys_reg()) {
  931       // In theory these overlap but the ordering is such that this is likely a nop
  932       if ( src.first() != dst.first()) {
  933         movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister());
  934       }
  935     } else {
  936       assert(dst.is_single_reg(), "not a stack pair");
  937       movdbl(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_XMMRegister());
  938     }
  939   } else if (dst.is_single_phys_reg()) {
  940     assert(src.is_single_reg(),  "not a stack pair");
  941     movdbl(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias));
  942   } else {
  943     assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
  944     movq(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias));
  945     movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp);
  946   }
  947 }
  948 
  949 
  950 // A float arg may have to do float reg int reg conversion
  951 void MacroAssembler::float_move(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) {
  952   assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
  953 
  954   // The calling conventions assures us that each VMregpair is either
  955   // all really one physical register or adjacent stack slots.
  956 
  957   if (src.first()->is_stack()) {
  958     if (dst.first()->is_stack()) {
  959       movl(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias));
  960       movptr(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp);
  961     } else {
  962       // stack to reg
  963       assert(dst.first()->is_XMMRegister(), "only expect xmm registers as parameters");
  964       movflt(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias));
  965     }
  966   } else if (dst.first()->is_stack()) {
  967     // reg to stack
  968     assert(src.first()->is_XMMRegister(), "only expect xmm registers as parameters");
  969     movflt(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_XMMRegister());
  970   } else {
  971     // reg to reg
  972     // In theory these overlap but the ordering is such that this is likely a nop
  973     if ( src.first() != dst.first()) {
  974       movdbl(dst.first()->as_XMMRegister(),  src.first()->as_XMMRegister());
  975     }
  976   }
  977 }
  978 
  979 // On 64 bit we will store integer like items to the stack as
  980 // 64 bits items (x86_32/64 abi) even though java would only store
  981 // 32bits for a parameter. On 32bit it will simply be 32 bits
  982 // So this routine will do 32->32 on 32bit and 32->64 on 64bit
  983 void MacroAssembler::move32_64(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) {
  984   if (src.first()->is_stack()) {
  985     if (dst.first()->is_stack()) {
  986       // stack to stack
  987       movslq(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias));
  988       movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp);
  989     } else {
  990       // stack to reg
  991       movslq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias));
  992     }
  993   } else if (dst.first()->is_stack()) {
  994     // reg to stack
  995     // Do we really have to sign extend???
  996     // __ movslq(src.first()->as_Register(), src.first()->as_Register());
  997     movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_Register());
  998   } else {
  999     // Do we really have to sign extend???
 1000     // __ movslq(dst.first()->as_Register(), src.first()->as_Register());
 1001     if (dst.first() != src.first()) {
 1002       movq(dst.first()->as_Register(), src.first()->as_Register());
 1003     }
 1004   }
 1005 }
 1006 
 1007 void MacroAssembler::move_ptr(VMRegPair src, VMRegPair dst) {
 1008   if (src.first()->is_stack()) {
 1009     if (dst.first()->is_stack()) {
 1010       // stack to stack
 1011       movq(rax, Address(rbp, reg2offset_in(src.first())));
 1012       movq(Address(rsp, reg2offset_out(dst.first())), rax);
 1013     } else {
 1014       // stack to reg
 1015       movq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
 1016     }
 1017   } else if (dst.first()->is_stack()) {
 1018     // reg to stack
 1019     movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
 1020   } else {
 1021     if (dst.first() != src.first()) {
 1022       movq(dst.first()->as_Register(), src.first()->as_Register());
 1023     }
 1024   }
 1025 }
 1026 
 1027 // An oop arg. Must pass a handle not the oop itself
 1028 void MacroAssembler::object_move(OopMap* map,
 1029                         int oop_handle_offset,
 1030                         int framesize_in_slots,
 1031                         VMRegPair src,
 1032                         VMRegPair dst,
 1033                         bool is_receiver,
 1034                         int* receiver_offset) {
 1035 
 1036   // must pass a handle. First figure out the location we use as a handle
 1037 
 1038   Register rHandle = dst.first()->is_stack() ? rax : dst.first()->as_Register();
 1039 
 1040   // See if oop is null if it is we need no handle
 1041 
 1042   if (src.first()->is_stack()) {
 1043 
 1044     // Oop is already on the stack as an argument
 1045     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
 1046     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
 1047     if (is_receiver) {
 1048       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
 1049     }
 1050 
 1051     cmpptr(Address(rbp, reg2offset_in(src.first())), NULL_WORD);
 1052     lea(rHandle, Address(rbp, reg2offset_in(src.first())));
 1053     // conditionally move a null
 1054     cmovptr(Assembler::equal, rHandle, Address(rbp, reg2offset_in(src.first())));
 1055   } else {
 1056 
 1057     // Oop is in a register we must store it to the space we reserve
 1058     // on the stack for oop_handles and pass a handle if oop is non-null
 1059 
 1060     const Register rOop = src.first()->as_Register();
 1061     int oop_slot;
 1062     if (rOop == j_rarg0)
 1063       oop_slot = 0;
 1064     else if (rOop == j_rarg1)
 1065       oop_slot = 1;
 1066     else if (rOop == j_rarg2)
 1067       oop_slot = 2;
 1068     else if (rOop == j_rarg3)
 1069       oop_slot = 3;
 1070     else if (rOop == j_rarg4)
 1071       oop_slot = 4;
 1072     else {
 1073       assert(rOop == j_rarg5, "wrong register");
 1074       oop_slot = 5;
 1075     }
 1076 
 1077     oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset;
 1078     int offset = oop_slot*VMRegImpl::stack_slot_size;
 1079 
 1080     map->set_oop(VMRegImpl::stack2reg(oop_slot));
 1081     // Store oop in handle area, may be null
 1082     movptr(Address(rsp, offset), rOop);
 1083     if (is_receiver) {
 1084       *receiver_offset = offset;
 1085     }
 1086 
 1087     cmpptr(rOop, NULL_WORD);
 1088     lea(rHandle, Address(rsp, offset));
 1089     // conditionally move a null from the handle area where it was just stored
 1090     cmovptr(Assembler::equal, rHandle, Address(rsp, offset));
 1091   }
 1092 
 1093   // If arg is on the stack then place it otherwise it is already in correct reg.
 1094   if (dst.first()->is_stack()) {
 1095     movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
 1096   }
 1097 }
 1098 
 1099 #endif // _LP64
 1100 
 1101 // Now versions that are common to 32/64 bit
 1102 
 1103 void MacroAssembler::addptr(Register dst, int32_t imm32) {
 1104   LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
 1105 }
 1106 
 1107 void MacroAssembler::addptr(Register dst, Register src) {
 1108   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 1109 }
 1110 
 1111 void MacroAssembler::addptr(Address dst, Register src) {
 1112   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 1113 }
 1114 
 1115 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src, Register rscratch) {
 1116   assert(rscratch != noreg || always_reachable(src), "missing");
 1117 
 1118   if (reachable(src)) {
 1119     Assembler::addsd(dst, as_Address(src));
 1120   } else {
 1121     lea(rscratch, src);
 1122     Assembler::addsd(dst, Address(rscratch, 0));
 1123   }
 1124 }
 1125 
 1126 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src, Register rscratch) {
 1127   assert(rscratch != noreg || always_reachable(src), "missing");
 1128 
 1129   if (reachable(src)) {
 1130     addss(dst, as_Address(src));
 1131   } else {
 1132     lea(rscratch, src);
 1133     addss(dst, Address(rscratch, 0));
 1134   }
 1135 }
 1136 
 1137 void MacroAssembler::addpd(XMMRegister dst, AddressLiteral src, Register rscratch) {
 1138   assert(rscratch != noreg || always_reachable(src), "missing");
 1139 
 1140   if (reachable(src)) {
 1141     Assembler::addpd(dst, as_Address(src));
 1142   } else {
 1143     lea(rscratch, src);
 1144     Assembler::addpd(dst, Address(rscratch, 0));
 1145   }
 1146 }
 1147 
 1148 // See 8273459.  Function for ensuring 64-byte alignment, intended for stubs only.
 1149 // Stub code is generated once and never copied.
 1150 // NMethods can't use this because they get copied and we can't force alignment > 32 bytes.
 1151 void MacroAssembler::align64() {
 1152   align(64, (unsigned long long) pc());
 1153 }
 1154 
 1155 void MacroAssembler::align32() {
 1156   align(32, (unsigned long long) pc());
 1157 }
 1158 
 1159 void MacroAssembler::align(int modulus) {
 1160   // 8273459: Ensure alignment is possible with current segment alignment
 1161   assert(modulus <= CodeEntryAlignment, "Alignment must be <= CodeEntryAlignment");
 1162   align(modulus, offset());
 1163 }
 1164 
 1165 void MacroAssembler::align(int modulus, int target) {
 1166   if (target % modulus != 0) {
 1167     nop(modulus - (target % modulus));
 1168   }
 1169 }
 1170 
 1171 void MacroAssembler::push_f(XMMRegister r) {
 1172   subptr(rsp, wordSize);
 1173   movflt(Address(rsp, 0), r);
 1174 }
 1175 
 1176 void MacroAssembler::pop_f(XMMRegister r) {
 1177   movflt(r, Address(rsp, 0));
 1178   addptr(rsp, wordSize);
 1179 }
 1180 
 1181 void MacroAssembler::push_d(XMMRegister r) {
 1182   subptr(rsp, 2 * wordSize);
 1183   movdbl(Address(rsp, 0), r);
 1184 }
 1185 
 1186 void MacroAssembler::pop_d(XMMRegister r) {
 1187   movdbl(r, Address(rsp, 0));
 1188   addptr(rsp, 2 * Interpreter::stackElementSize);
 1189 }
 1190 
 1191 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src, Register rscratch) {
 1192   // Used in sign-masking with aligned address.
 1193   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
 1194   assert(rscratch != noreg || always_reachable(src), "missing");
 1195 
 1196   if (reachable(src)) {
 1197     Assembler::andpd(dst, as_Address(src));
 1198   } else {
 1199     lea(rscratch, src);
 1200     Assembler::andpd(dst, Address(rscratch, 0));
 1201   }
 1202 }
 1203 
 1204 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src, Register rscratch) {
 1205   // Used in sign-masking with aligned address.
 1206   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
 1207   assert(rscratch != noreg || always_reachable(src), "missing");
 1208 
 1209   if (reachable(src)) {
 1210     Assembler::andps(dst, as_Address(src));
 1211   } else {
 1212     lea(rscratch, src);
 1213     Assembler::andps(dst, Address(rscratch, 0));
 1214   }
 1215 }
 1216 
 1217 void MacroAssembler::andptr(Register dst, int32_t imm32) {
 1218   LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
 1219 }
 1220 
 1221 #ifdef _LP64
 1222 void MacroAssembler::andq(Register dst, AddressLiteral src, Register rscratch) {
 1223   assert(rscratch != noreg || always_reachable(src), "missing");
 1224 
 1225   if (reachable(src)) {
 1226     andq(dst, as_Address(src));
 1227   } else {
 1228     lea(rscratch, src);
 1229     andq(dst, Address(rscratch, 0));
 1230   }
 1231 }
 1232 #endif
 1233 
 1234 void MacroAssembler::atomic_incl(Address counter_addr) {
 1235   lock();
 1236   incrementl(counter_addr);
 1237 }
 1238 
 1239 void MacroAssembler::atomic_incl(AddressLiteral counter_addr, Register rscratch) {
 1240   assert(rscratch != noreg || always_reachable(counter_addr), "missing");
 1241 
 1242   if (reachable(counter_addr)) {
 1243     atomic_incl(as_Address(counter_addr));
 1244   } else {
 1245     lea(rscratch, counter_addr);
 1246     atomic_incl(Address(rscratch, 0));
 1247   }
 1248 }
 1249 
 1250 #ifdef _LP64
 1251 void MacroAssembler::atomic_incq(Address counter_addr) {
 1252   lock();
 1253   incrementq(counter_addr);
 1254 }
 1255 
 1256 void MacroAssembler::atomic_incq(AddressLiteral counter_addr, Register rscratch) {
 1257   assert(rscratch != noreg || always_reachable(counter_addr), "missing");
 1258 
 1259   if (reachable(counter_addr)) {
 1260     atomic_incq(as_Address(counter_addr));
 1261   } else {
 1262     lea(rscratch, counter_addr);
 1263     atomic_incq(Address(rscratch, 0));
 1264   }
 1265 }
 1266 #endif
 1267 
 1268 // Writes to stack successive pages until offset reached to check for
 1269 // stack overflow + shadow pages.  This clobbers tmp.
 1270 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
 1271   movptr(tmp, rsp);
 1272   // Bang stack for total size given plus shadow page size.
 1273   // Bang one page at a time because large size can bang beyond yellow and
 1274   // red zones.
 1275   Label loop;
 1276   bind(loop);
 1277   movl(Address(tmp, (-(int)os::vm_page_size())), size );
 1278   subptr(tmp, (int)os::vm_page_size());
 1279   subl(size, (int)os::vm_page_size());
 1280   jcc(Assembler::greater, loop);
 1281 
 1282   // Bang down shadow pages too.
 1283   // At this point, (tmp-0) is the last address touched, so don't
 1284   // touch it again.  (It was touched as (tmp-pagesize) but then tmp
 1285   // was post-decremented.)  Skip this address by starting at i=1, and
 1286   // touch a few more pages below.  N.B.  It is important to touch all
 1287   // the way down including all pages in the shadow zone.
 1288   for (int i = 1; i < ((int)StackOverflow::stack_shadow_zone_size() / (int)os::vm_page_size()); i++) {
 1289     // this could be any sized move but this is can be a debugging crumb
 1290     // so the bigger the better.
 1291     movptr(Address(tmp, (-i*(int)os::vm_page_size())), size );
 1292   }
 1293 }
 1294 
 1295 void MacroAssembler::reserved_stack_check() {
 1296   // testing if reserved zone needs to be enabled
 1297   Label no_reserved_zone_enabling;
 1298   Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread);
 1299   NOT_LP64(get_thread(rsi);)
 1300 
 1301   cmpptr(rsp, Address(thread, JavaThread::reserved_stack_activation_offset()));
 1302   jcc(Assembler::below, no_reserved_zone_enabling);
 1303 
 1304   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), thread);
 1305   jump(RuntimeAddress(StubRoutines::throw_delayed_StackOverflowError_entry()));
 1306   should_not_reach_here();
 1307 
 1308   bind(no_reserved_zone_enabling);
 1309 }
 1310 
 1311 void MacroAssembler::c2bool(Register x) {
 1312   // implements x == 0 ? 0 : 1
 1313   // note: must only look at least-significant byte of x
 1314   //       since C-style booleans are stored in one byte
 1315   //       only! (was bug)
 1316   andl(x, 0xFF);
 1317   setb(Assembler::notZero, x);
 1318 }
 1319 
 1320 // Wouldn't need if AddressLiteral version had new name
 1321 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
 1322   Assembler::call(L, rtype);
 1323 }
 1324 
 1325 void MacroAssembler::call(Register entry) {
 1326   Assembler::call(entry);
 1327 }
 1328 
 1329 void MacroAssembler::call(AddressLiteral entry, Register rscratch) {
 1330   assert(rscratch != noreg || always_reachable(entry), "missing");
 1331 
 1332   if (reachable(entry)) {
 1333     Assembler::call_literal(entry.target(), entry.rspec());
 1334   } else {
 1335     lea(rscratch, entry);
 1336     Assembler::call(rscratch);
 1337   }
 1338 }
 1339 
 1340 void MacroAssembler::ic_call(address entry, jint method_index) {
 1341   RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index);
 1342 #ifdef _LP64
 1343   // Needs full 64-bit immediate for later patching.
 1344   mov64(rax, (intptr_t)Universe::non_oop_word());
 1345 #else
 1346   movptr(rax, (intptr_t)Universe::non_oop_word());
 1347 #endif
 1348   call(AddressLiteral(entry, rh));
 1349 }
 1350 
 1351 void MacroAssembler::emit_static_call_stub() {
 1352   // Static stub relocation also tags the Method* in the code-stream.
 1353   mov_metadata(rbx, (Metadata*) nullptr);  // Method is zapped till fixup time.
 1354   // This is recognized as unresolved by relocs/nativeinst/ic code.
 1355   jump(RuntimeAddress(pc()));
 1356 }
 1357 
 1358 // Implementation of call_VM versions
 1359 
 1360 void MacroAssembler::call_VM(Register oop_result,
 1361                              address entry_point,
 1362                              bool check_exceptions) {
 1363   Label C, E;
 1364   call(C, relocInfo::none);
 1365   jmp(E);
 1366 
 1367   bind(C);
 1368   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
 1369   ret(0);
 1370 
 1371   bind(E);
 1372 }
 1373 
 1374 void MacroAssembler::call_VM(Register oop_result,
 1375                              address entry_point,
 1376                              Register arg_1,
 1377                              bool check_exceptions) {
 1378   Label C, E;
 1379   call(C, relocInfo::none);
 1380   jmp(E);
 1381 
 1382   bind(C);
 1383   pass_arg1(this, arg_1);
 1384   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
 1385   ret(0);
 1386 
 1387   bind(E);
 1388 }
 1389 
 1390 void MacroAssembler::call_VM(Register oop_result,
 1391                              address entry_point,
 1392                              Register arg_1,
 1393                              Register arg_2,
 1394                              bool check_exceptions) {
 1395   Label C, E;
 1396   call(C, relocInfo::none);
 1397   jmp(E);
 1398 
 1399   bind(C);
 1400 
 1401   LP64_ONLY(assert_different_registers(arg_1, c_rarg2));
 1402 
 1403   pass_arg2(this, arg_2);
 1404   pass_arg1(this, arg_1);
 1405   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
 1406   ret(0);
 1407 
 1408   bind(E);
 1409 }
 1410 
 1411 void MacroAssembler::call_VM(Register oop_result,
 1412                              address entry_point,
 1413                              Register arg_1,
 1414                              Register arg_2,
 1415                              Register arg_3,
 1416                              bool check_exceptions) {
 1417   Label C, E;
 1418   call(C, relocInfo::none);
 1419   jmp(E);
 1420 
 1421   bind(C);
 1422 
 1423   LP64_ONLY(assert_different_registers(arg_1, c_rarg2, c_rarg3));
 1424   LP64_ONLY(assert_different_registers(arg_2, c_rarg3));
 1425   pass_arg3(this, arg_3);
 1426   pass_arg2(this, arg_2);
 1427   pass_arg1(this, arg_1);
 1428   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
 1429   ret(0);
 1430 
 1431   bind(E);
 1432 }
 1433 
 1434 void MacroAssembler::call_VM(Register oop_result,
 1435                              Register last_java_sp,
 1436                              address entry_point,
 1437                              int number_of_arguments,
 1438                              bool check_exceptions) {
 1439   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
 1440   call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
 1441 }
 1442 
 1443 void MacroAssembler::call_VM(Register oop_result,
 1444                              Register last_java_sp,
 1445                              address entry_point,
 1446                              Register arg_1,
 1447                              bool check_exceptions) {
 1448   pass_arg1(this, arg_1);
 1449   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
 1450 }
 1451 
 1452 void MacroAssembler::call_VM(Register oop_result,
 1453                              Register last_java_sp,
 1454                              address entry_point,
 1455                              Register arg_1,
 1456                              Register arg_2,
 1457                              bool check_exceptions) {
 1458 
 1459   LP64_ONLY(assert_different_registers(arg_1, c_rarg2));
 1460   pass_arg2(this, arg_2);
 1461   pass_arg1(this, arg_1);
 1462   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
 1463 }
 1464 
 1465 void MacroAssembler::call_VM(Register oop_result,
 1466                              Register last_java_sp,
 1467                              address entry_point,
 1468                              Register arg_1,
 1469                              Register arg_2,
 1470                              Register arg_3,
 1471                              bool check_exceptions) {
 1472   LP64_ONLY(assert_different_registers(arg_1, c_rarg2, c_rarg3));
 1473   LP64_ONLY(assert_different_registers(arg_2, c_rarg3));
 1474   pass_arg3(this, arg_3);
 1475   pass_arg2(this, arg_2);
 1476   pass_arg1(this, arg_1);
 1477   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
 1478 }
 1479 
 1480 void MacroAssembler::super_call_VM(Register oop_result,
 1481                                    Register last_java_sp,
 1482                                    address entry_point,
 1483                                    int number_of_arguments,
 1484                                    bool check_exceptions) {
 1485   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
 1486   MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
 1487 }
 1488 
 1489 void MacroAssembler::super_call_VM(Register oop_result,
 1490                                    Register last_java_sp,
 1491                                    address entry_point,
 1492                                    Register arg_1,
 1493                                    bool check_exceptions) {
 1494   pass_arg1(this, arg_1);
 1495   super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
 1496 }
 1497 
 1498 void MacroAssembler::super_call_VM(Register oop_result,
 1499                                    Register last_java_sp,
 1500                                    address entry_point,
 1501                                    Register arg_1,
 1502                                    Register arg_2,
 1503                                    bool check_exceptions) {
 1504 
 1505   LP64_ONLY(assert_different_registers(arg_1, c_rarg2));
 1506   pass_arg2(this, arg_2);
 1507   pass_arg1(this, arg_1);
 1508   super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
 1509 }
 1510 
 1511 void MacroAssembler::super_call_VM(Register oop_result,
 1512                                    Register last_java_sp,
 1513                                    address entry_point,
 1514                                    Register arg_1,
 1515                                    Register arg_2,
 1516                                    Register arg_3,
 1517                                    bool check_exceptions) {
 1518   LP64_ONLY(assert_different_registers(arg_1, c_rarg2, c_rarg3));
 1519   LP64_ONLY(assert_different_registers(arg_2, c_rarg3));
 1520   pass_arg3(this, arg_3);
 1521   pass_arg2(this, arg_2);
 1522   pass_arg1(this, arg_1);
 1523   super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
 1524 }
 1525 
 1526 void MacroAssembler::call_VM_base(Register oop_result,
 1527                                   Register java_thread,
 1528                                   Register last_java_sp,
 1529                                   address  entry_point,
 1530                                   int      number_of_arguments,
 1531                                   bool     check_exceptions) {
 1532   // determine java_thread register
 1533   if (!java_thread->is_valid()) {
 1534 #ifdef _LP64
 1535     java_thread = r15_thread;
 1536 #else
 1537     java_thread = rdi;
 1538     get_thread(java_thread);
 1539 #endif // LP64
 1540   }
 1541   // determine last_java_sp register
 1542   if (!last_java_sp->is_valid()) {
 1543     last_java_sp = rsp;
 1544   }
 1545   // debugging support
 1546   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
 1547   LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
 1548 #ifdef ASSERT
 1549   // TraceBytecodes does not use r12 but saves it over the call, so don't verify
 1550   // r12 is the heapbase.
 1551   LP64_ONLY(if (UseCompressedOops && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");)
 1552 #endif // ASSERT
 1553 
 1554   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
 1555   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
 1556 
 1557   // push java thread (becomes first argument of C function)
 1558 
 1559   NOT_LP64(push(java_thread); number_of_arguments++);
 1560   LP64_ONLY(mov(c_rarg0, r15_thread));
 1561 
 1562   // set last Java frame before call
 1563   assert(last_java_sp != rbp, "can't use ebp/rbp");
 1564 
 1565   // Only interpreter should have to set fp
 1566   set_last_Java_frame(java_thread, last_java_sp, rbp, nullptr, rscratch1);
 1567 
 1568   // do the call, remove parameters
 1569   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
 1570 
 1571   // restore the thread (cannot use the pushed argument since arguments
 1572   // may be overwritten by C code generated by an optimizing compiler);
 1573   // however can use the register value directly if it is callee saved.
 1574   if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
 1575     // rdi & rsi (also r15) are callee saved -> nothing to do
 1576 #ifdef ASSERT
 1577     guarantee(java_thread != rax, "change this code");
 1578     push(rax);
 1579     { Label L;
 1580       get_thread(rax);
 1581       cmpptr(java_thread, rax);
 1582       jcc(Assembler::equal, L);
 1583       STOP("MacroAssembler::call_VM_base: rdi not callee saved?");
 1584       bind(L);
 1585     }
 1586     pop(rax);
 1587 #endif
 1588   } else {
 1589     get_thread(java_thread);
 1590   }
 1591   // reset last Java frame
 1592   // Only interpreter should have to clear fp
 1593   reset_last_Java_frame(java_thread, true);
 1594 
 1595    // C++ interp handles this in the interpreter
 1596   check_and_handle_popframe(java_thread);
 1597   check_and_handle_earlyret(java_thread);
 1598 
 1599   if (check_exceptions) {
 1600     // check for pending exceptions (java_thread is set upon return)
 1601     cmpptr(Address(java_thread, Thread::pending_exception_offset()), NULL_WORD);
 1602 #ifndef _LP64
 1603     jump_cc(Assembler::notEqual,
 1604             RuntimeAddress(StubRoutines::forward_exception_entry()));
 1605 #else
 1606     // This used to conditionally jump to forward_exception however it is
 1607     // possible if we relocate that the branch will not reach. So we must jump
 1608     // around so we can always reach
 1609 
 1610     Label ok;
 1611     jcc(Assembler::equal, ok);
 1612     jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
 1613     bind(ok);
 1614 #endif // LP64
 1615   }
 1616 
 1617   // get oop result if there is one and reset the value in the thread
 1618   if (oop_result->is_valid()) {
 1619     get_vm_result(oop_result, java_thread);
 1620   }
 1621 }
 1622 
 1623 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
 1624 
 1625   // Calculate the value for last_Java_sp
 1626   // somewhat subtle. call_VM does an intermediate call
 1627   // which places a return address on the stack just under the
 1628   // stack pointer as the user finished with it. This allows
 1629   // use to retrieve last_Java_pc from last_Java_sp[-1].
 1630   // On 32bit we then have to push additional args on the stack to accomplish
 1631   // the actual requested call. On 64bit call_VM only can use register args
 1632   // so the only extra space is the return address that call_VM created.
 1633   // This hopefully explains the calculations here.
 1634 
 1635 #ifdef _LP64
 1636   // We've pushed one address, correct last_Java_sp
 1637   lea(rax, Address(rsp, wordSize));
 1638 #else
 1639   lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
 1640 #endif // LP64
 1641 
 1642   call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
 1643 
 1644 }
 1645 
 1646 // Use this method when MacroAssembler version of call_VM_leaf_base() should be called from Interpreter.
 1647 void MacroAssembler::call_VM_leaf0(address entry_point) {
 1648   MacroAssembler::call_VM_leaf_base(entry_point, 0);
 1649 }
 1650 
 1651 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
 1652   call_VM_leaf_base(entry_point, number_of_arguments);
 1653 }
 1654 
 1655 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
 1656   pass_arg0(this, arg_0);
 1657   call_VM_leaf(entry_point, 1);
 1658 }
 1659 
 1660 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
 1661 
 1662   LP64_ONLY(assert_different_registers(arg_0, c_rarg1));
 1663   pass_arg1(this, arg_1);
 1664   pass_arg0(this, arg_0);
 1665   call_VM_leaf(entry_point, 2);
 1666 }
 1667 
 1668 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
 1669   LP64_ONLY(assert_different_registers(arg_0, c_rarg1, c_rarg2));
 1670   LP64_ONLY(assert_different_registers(arg_1, c_rarg2));
 1671   pass_arg2(this, arg_2);
 1672   pass_arg1(this, arg_1);
 1673   pass_arg0(this, arg_0);
 1674   call_VM_leaf(entry_point, 3);
 1675 }
 1676 
 1677 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
 1678   LP64_ONLY(assert_different_registers(arg_0, c_rarg1, c_rarg2, c_rarg3));
 1679   LP64_ONLY(assert_different_registers(arg_1, c_rarg2, c_rarg3));
 1680   LP64_ONLY(assert_different_registers(arg_2, c_rarg3));
 1681   pass_arg3(this, arg_3);
 1682   pass_arg2(this, arg_2);
 1683   pass_arg1(this, arg_1);
 1684   pass_arg0(this, arg_0);
 1685   call_VM_leaf(entry_point, 3);
 1686 }
 1687 
 1688 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
 1689   pass_arg0(this, arg_0);
 1690   MacroAssembler::call_VM_leaf_base(entry_point, 1);
 1691 }
 1692 
 1693 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
 1694   LP64_ONLY(assert_different_registers(arg_0, c_rarg1));
 1695   pass_arg1(this, arg_1);
 1696   pass_arg0(this, arg_0);
 1697   MacroAssembler::call_VM_leaf_base(entry_point, 2);
 1698 }
 1699 
 1700 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
 1701   LP64_ONLY(assert_different_registers(arg_0, c_rarg1, c_rarg2));
 1702   LP64_ONLY(assert_different_registers(arg_1, c_rarg2));
 1703   pass_arg2(this, arg_2);
 1704   pass_arg1(this, arg_1);
 1705   pass_arg0(this, arg_0);
 1706   MacroAssembler::call_VM_leaf_base(entry_point, 3);
 1707 }
 1708 
 1709 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
 1710   LP64_ONLY(assert_different_registers(arg_0, c_rarg1, c_rarg2, c_rarg3));
 1711   LP64_ONLY(assert_different_registers(arg_1, c_rarg2, c_rarg3));
 1712   LP64_ONLY(assert_different_registers(arg_2, c_rarg3));
 1713   pass_arg3(this, arg_3);
 1714   pass_arg2(this, arg_2);
 1715   pass_arg1(this, arg_1);
 1716   pass_arg0(this, arg_0);
 1717   MacroAssembler::call_VM_leaf_base(entry_point, 4);
 1718 }
 1719 
 1720 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) {
 1721   movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
 1722   movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
 1723   verify_oop_msg(oop_result, "broken oop in call_VM_base");
 1724 }
 1725 
 1726 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) {
 1727   movptr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset()));
 1728   movptr(Address(java_thread, JavaThread::vm_result_2_offset()), NULL_WORD);
 1729 }
 1730 
 1731 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
 1732 }
 1733 
 1734 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
 1735 }
 1736 
 1737 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm, Register rscratch) {
 1738   assert(rscratch != noreg || always_reachable(src1), "missing");
 1739 
 1740   if (reachable(src1)) {
 1741     cmpl(as_Address(src1), imm);
 1742   } else {
 1743     lea(rscratch, src1);
 1744     cmpl(Address(rscratch, 0), imm);
 1745   }
 1746 }
 1747 
 1748 void MacroAssembler::cmp32(Register src1, AddressLiteral src2, Register rscratch) {
 1749   assert(!src2.is_lval(), "use cmpptr");
 1750   assert(rscratch != noreg || always_reachable(src2), "missing");
 1751 
 1752   if (reachable(src2)) {
 1753     cmpl(src1, as_Address(src2));
 1754   } else {
 1755     lea(rscratch, src2);
 1756     cmpl(src1, Address(rscratch, 0));
 1757   }
 1758 }
 1759 
 1760 void MacroAssembler::cmp32(Register src1, int32_t imm) {
 1761   Assembler::cmpl(src1, imm);
 1762 }
 1763 
 1764 void MacroAssembler::cmp32(Register src1, Address src2) {
 1765   Assembler::cmpl(src1, src2);
 1766 }
 1767 
 1768 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
 1769   ucomisd(opr1, opr2);
 1770 
 1771   Label L;
 1772   if (unordered_is_less) {
 1773     movl(dst, -1);
 1774     jcc(Assembler::parity, L);
 1775     jcc(Assembler::below , L);
 1776     movl(dst, 0);
 1777     jcc(Assembler::equal , L);
 1778     increment(dst);
 1779   } else { // unordered is greater
 1780     movl(dst, 1);
 1781     jcc(Assembler::parity, L);
 1782     jcc(Assembler::above , L);
 1783     movl(dst, 0);
 1784     jcc(Assembler::equal , L);
 1785     decrementl(dst);
 1786   }
 1787   bind(L);
 1788 }
 1789 
 1790 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
 1791   ucomiss(opr1, opr2);
 1792 
 1793   Label L;
 1794   if (unordered_is_less) {
 1795     movl(dst, -1);
 1796     jcc(Assembler::parity, L);
 1797     jcc(Assembler::below , L);
 1798     movl(dst, 0);
 1799     jcc(Assembler::equal , L);
 1800     increment(dst);
 1801   } else { // unordered is greater
 1802     movl(dst, 1);
 1803     jcc(Assembler::parity, L);
 1804     jcc(Assembler::above , L);
 1805     movl(dst, 0);
 1806     jcc(Assembler::equal , L);
 1807     decrementl(dst);
 1808   }
 1809   bind(L);
 1810 }
 1811 
 1812 
 1813 void MacroAssembler::cmp8(AddressLiteral src1, int imm, Register rscratch) {
 1814   assert(rscratch != noreg || always_reachable(src1), "missing");
 1815 
 1816   if (reachable(src1)) {
 1817     cmpb(as_Address(src1), imm);
 1818   } else {
 1819     lea(rscratch, src1);
 1820     cmpb(Address(rscratch, 0), imm);
 1821   }
 1822 }
 1823 
 1824 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2, Register rscratch) {
 1825 #ifdef _LP64
 1826   assert(rscratch != noreg || always_reachable(src2), "missing");
 1827 
 1828   if (src2.is_lval()) {
 1829     movptr(rscratch, src2);
 1830     Assembler::cmpq(src1, rscratch);
 1831   } else if (reachable(src2)) {
 1832     cmpq(src1, as_Address(src2));
 1833   } else {
 1834     lea(rscratch, src2);
 1835     Assembler::cmpq(src1, Address(rscratch, 0));
 1836   }
 1837 #else
 1838   assert(rscratch == noreg, "not needed");
 1839   if (src2.is_lval()) {
 1840     cmp_literal32(src1, (int32_t)src2.target(), src2.rspec());
 1841   } else {
 1842     cmpl(src1, as_Address(src2));
 1843   }
 1844 #endif // _LP64
 1845 }
 1846 
 1847 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2, Register rscratch) {
 1848   assert(src2.is_lval(), "not a mem-mem compare");
 1849 #ifdef _LP64
 1850   // moves src2's literal address
 1851   movptr(rscratch, src2);
 1852   Assembler::cmpq(src1, rscratch);
 1853 #else
 1854   assert(rscratch == noreg, "not needed");
 1855   cmp_literal32(src1, (int32_t)src2.target(), src2.rspec());
 1856 #endif // _LP64
 1857 }
 1858 
 1859 void MacroAssembler::cmpoop(Register src1, Register src2) {
 1860   cmpptr(src1, src2);
 1861 }
 1862 
 1863 void MacroAssembler::cmpoop(Register src1, Address src2) {
 1864   cmpptr(src1, src2);
 1865 }
 1866 
 1867 #ifdef _LP64
 1868 void MacroAssembler::cmpoop(Register src1, jobject src2, Register rscratch) {
 1869   movoop(rscratch, src2);
 1870   cmpptr(src1, rscratch);
 1871 }
 1872 #endif
 1873 
 1874 void MacroAssembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
 1875   if ((UseAVX > 0) && (dst != src)) {
 1876     xorpd(dst, dst);
 1877   }
 1878   Assembler::cvtss2sd(dst, src);
 1879 }
 1880 
 1881 void MacroAssembler::cvtss2sd(XMMRegister dst, Address src) {
 1882   if (UseAVX > 0) {
 1883     xorpd(dst, dst);
 1884   }
 1885   Assembler::cvtss2sd(dst, src);
 1886 }
 1887 
 1888 void MacroAssembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
 1889   if ((UseAVX > 0) && (dst != src)) {
 1890     xorps(dst, dst);
 1891   }
 1892   Assembler::cvtsd2ss(dst, src);
 1893 }
 1894 
 1895 void MacroAssembler::cvtsd2ss(XMMRegister dst, Address src) {
 1896   if (UseAVX > 0) {
 1897     xorps(dst, dst);
 1898   }
 1899   Assembler::cvtsd2ss(dst, src);
 1900 }
 1901 
 1902 void MacroAssembler::cvtsi2sdl(XMMRegister dst, Register src) {
 1903   if (UseAVX > 0) {
 1904     xorpd(dst, dst);
 1905   }
 1906   Assembler::cvtsi2sdl(dst, src);
 1907 }
 1908 
 1909 void MacroAssembler::cvtsi2sdl(XMMRegister dst, Address src) {
 1910   if (UseAVX > 0) {
 1911     xorpd(dst, dst);
 1912   }
 1913   Assembler::cvtsi2sdl(dst, src);
 1914 }
 1915 
 1916 void MacroAssembler::cvtsi2ssl(XMMRegister dst, Register src) {
 1917   if (UseAVX > 0) {
 1918     xorps(dst, dst);
 1919   }
 1920   Assembler::cvtsi2ssl(dst, src);
 1921 }
 1922 
 1923 void MacroAssembler::cvtsi2ssl(XMMRegister dst, Address src) {
 1924   if (UseAVX > 0) {
 1925     xorps(dst, dst);
 1926   }
 1927   Assembler::cvtsi2ssl(dst, src);
 1928 }
 1929 
 1930 #ifdef _LP64
 1931 void MacroAssembler::cvtsi2sdq(XMMRegister dst, Register src) {
 1932   if (UseAVX > 0) {
 1933     xorpd(dst, dst);
 1934   }
 1935   Assembler::cvtsi2sdq(dst, src);
 1936 }
 1937 
 1938 void MacroAssembler::cvtsi2sdq(XMMRegister dst, Address src) {
 1939   if (UseAVX > 0) {
 1940     xorpd(dst, dst);
 1941   }
 1942   Assembler::cvtsi2sdq(dst, src);
 1943 }
 1944 
 1945 void MacroAssembler::cvtsi2ssq(XMMRegister dst, Register src) {
 1946   if (UseAVX > 0) {
 1947     xorps(dst, dst);
 1948   }
 1949   Assembler::cvtsi2ssq(dst, src);
 1950 }
 1951 
 1952 void MacroAssembler::cvtsi2ssq(XMMRegister dst, Address src) {
 1953   if (UseAVX > 0) {
 1954     xorps(dst, dst);
 1955   }
 1956   Assembler::cvtsi2ssq(dst, src);
 1957 }
 1958 #endif  // _LP64
 1959 
 1960 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr, Register rscratch) {
 1961   assert(rscratch != noreg || always_reachable(adr), "missing");
 1962 
 1963   if (reachable(adr)) {
 1964     lock();
 1965     cmpxchgptr(reg, as_Address(adr));
 1966   } else {
 1967     lea(rscratch, adr);
 1968     lock();
 1969     cmpxchgptr(reg, Address(rscratch, 0));
 1970   }
 1971 }
 1972 
 1973 void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
 1974   LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
 1975 }
 1976 
 1977 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src, Register rscratch) {
 1978   assert(rscratch != noreg || always_reachable(src), "missing");
 1979 
 1980   if (reachable(src)) {
 1981     Assembler::comisd(dst, as_Address(src));
 1982   } else {
 1983     lea(rscratch, src);
 1984     Assembler::comisd(dst, Address(rscratch, 0));
 1985   }
 1986 }
 1987 
 1988 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src, Register rscratch) {
 1989   assert(rscratch != noreg || always_reachable(src), "missing");
 1990 
 1991   if (reachable(src)) {
 1992     Assembler::comiss(dst, as_Address(src));
 1993   } else {
 1994     lea(rscratch, src);
 1995     Assembler::comiss(dst, Address(rscratch, 0));
 1996   }
 1997 }
 1998 
 1999 
 2000 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr, Register rscratch) {
 2001   assert(rscratch != noreg || always_reachable(counter_addr), "missing");
 2002 
 2003   Condition negated_cond = negate_condition(cond);
 2004   Label L;
 2005   jcc(negated_cond, L);
 2006   pushf(); // Preserve flags
 2007   atomic_incl(counter_addr, rscratch);
 2008   popf();
 2009   bind(L);
 2010 }
 2011 
 2012 int MacroAssembler::corrected_idivl(Register reg) {
 2013   // Full implementation of Java idiv and irem; checks for
 2014   // special case as described in JVM spec., p.243 & p.271.
 2015   // The function returns the (pc) offset of the idivl
 2016   // instruction - may be needed for implicit exceptions.
 2017   //
 2018   //         normal case                           special case
 2019   //
 2020   // input : rax,: dividend                         min_int
 2021   //         reg: divisor   (may not be rax,/rdx)   -1
 2022   //
 2023   // output: rax,: quotient  (= rax, idiv reg)       min_int
 2024   //         rdx: remainder (= rax, irem reg)       0
 2025   assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
 2026   const int min_int = 0x80000000;
 2027   Label normal_case, special_case;
 2028 
 2029   // check for special case
 2030   cmpl(rax, min_int);
 2031   jcc(Assembler::notEqual, normal_case);
 2032   xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
 2033   cmpl(reg, -1);
 2034   jcc(Assembler::equal, special_case);
 2035 
 2036   // handle normal case
 2037   bind(normal_case);
 2038   cdql();
 2039   int idivl_offset = offset();
 2040   idivl(reg);
 2041 
 2042   // normal and special case exit
 2043   bind(special_case);
 2044 
 2045   return idivl_offset;
 2046 }
 2047 
 2048 
 2049 
 2050 void MacroAssembler::decrementl(Register reg, int value) {
 2051   if (value == min_jint) {subl(reg, value) ; return; }
 2052   if (value <  0) { incrementl(reg, -value); return; }
 2053   if (value == 0) {                        ; return; }
 2054   if (value == 1 && UseIncDec) { decl(reg) ; return; }
 2055   /* else */      { subl(reg, value)       ; return; }
 2056 }
 2057 
 2058 void MacroAssembler::decrementl(Address dst, int value) {
 2059   if (value == min_jint) {subl(dst, value) ; return; }
 2060   if (value <  0) { incrementl(dst, -value); return; }
 2061   if (value == 0) {                        ; return; }
 2062   if (value == 1 && UseIncDec) { decl(dst) ; return; }
 2063   /* else */      { subl(dst, value)       ; return; }
 2064 }
 2065 
 2066 void MacroAssembler::division_with_shift (Register reg, int shift_value) {
 2067   assert(shift_value > 0, "illegal shift value");
 2068   Label _is_positive;
 2069   testl (reg, reg);
 2070   jcc (Assembler::positive, _is_positive);
 2071   int offset = (1 << shift_value) - 1 ;
 2072 
 2073   if (offset == 1) {
 2074     incrementl(reg);
 2075   } else {
 2076     addl(reg, offset);
 2077   }
 2078 
 2079   bind (_is_positive);
 2080   sarl(reg, shift_value);
 2081 }
 2082 
 2083 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2084   assert(rscratch != noreg || always_reachable(src), "missing");
 2085 
 2086   if (reachable(src)) {
 2087     Assembler::divsd(dst, as_Address(src));
 2088   } else {
 2089     lea(rscratch, src);
 2090     Assembler::divsd(dst, Address(rscratch, 0));
 2091   }
 2092 }
 2093 
 2094 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2095   assert(rscratch != noreg || always_reachable(src), "missing");
 2096 
 2097   if (reachable(src)) {
 2098     Assembler::divss(dst, as_Address(src));
 2099   } else {
 2100     lea(rscratch, src);
 2101     Assembler::divss(dst, Address(rscratch, 0));
 2102   }
 2103 }
 2104 
 2105 void MacroAssembler::enter() {
 2106   push(rbp);
 2107   mov(rbp, rsp);
 2108 }
 2109 
 2110 void MacroAssembler::post_call_nop() {
 2111   if (!Continuations::enabled()) {
 2112     return;
 2113   }
 2114   InstructionMark im(this);
 2115   relocate(post_call_nop_Relocation::spec());
 2116   InlineSkippedInstructionsCounter skipCounter(this);
 2117   emit_int8((uint8_t)0x0f);
 2118   emit_int8((uint8_t)0x1f);
 2119   emit_int8((uint8_t)0x84);
 2120   emit_int8((uint8_t)0x00);
 2121   emit_int32(0x00);
 2122 }
 2123 
 2124 // A 5 byte nop that is safe for patching (see patch_verified_entry)
 2125 void MacroAssembler::fat_nop() {
 2126   if (UseAddressNop) {
 2127     addr_nop_5();
 2128   } else {
 2129     emit_int8((uint8_t)0x26); // es:
 2130     emit_int8((uint8_t)0x2e); // cs:
 2131     emit_int8((uint8_t)0x64); // fs:
 2132     emit_int8((uint8_t)0x65); // gs:
 2133     emit_int8((uint8_t)0x90);
 2134   }
 2135 }
 2136 
 2137 #ifndef _LP64
 2138 void MacroAssembler::fcmp(Register tmp) {
 2139   fcmp(tmp, 1, true, true);
 2140 }
 2141 
 2142 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
 2143   assert(!pop_right || pop_left, "usage error");
 2144   if (VM_Version::supports_cmov()) {
 2145     assert(tmp == noreg, "unneeded temp");
 2146     if (pop_left) {
 2147       fucomip(index);
 2148     } else {
 2149       fucomi(index);
 2150     }
 2151     if (pop_right) {
 2152       fpop();
 2153     }
 2154   } else {
 2155     assert(tmp != noreg, "need temp");
 2156     if (pop_left) {
 2157       if (pop_right) {
 2158         fcompp();
 2159       } else {
 2160         fcomp(index);
 2161       }
 2162     } else {
 2163       fcom(index);
 2164     }
 2165     // convert FPU condition into eflags condition via rax,
 2166     save_rax(tmp);
 2167     fwait(); fnstsw_ax();
 2168     sahf();
 2169     restore_rax(tmp);
 2170   }
 2171   // condition codes set as follows:
 2172   //
 2173   // CF (corresponds to C0) if x < y
 2174   // PF (corresponds to C2) if unordered
 2175   // ZF (corresponds to C3) if x = y
 2176 }
 2177 
 2178 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
 2179   fcmp2int(dst, unordered_is_less, 1, true, true);
 2180 }
 2181 
 2182 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
 2183   fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
 2184   Label L;
 2185   if (unordered_is_less) {
 2186     movl(dst, -1);
 2187     jcc(Assembler::parity, L);
 2188     jcc(Assembler::below , L);
 2189     movl(dst, 0);
 2190     jcc(Assembler::equal , L);
 2191     increment(dst);
 2192   } else { // unordered is greater
 2193     movl(dst, 1);
 2194     jcc(Assembler::parity, L);
 2195     jcc(Assembler::above , L);
 2196     movl(dst, 0);
 2197     jcc(Assembler::equal , L);
 2198     decrementl(dst);
 2199   }
 2200   bind(L);
 2201 }
 2202 
 2203 void MacroAssembler::fld_d(AddressLiteral src) {
 2204   fld_d(as_Address(src));
 2205 }
 2206 
 2207 void MacroAssembler::fld_s(AddressLiteral src) {
 2208   fld_s(as_Address(src));
 2209 }
 2210 
 2211 void MacroAssembler::fldcw(AddressLiteral src) {
 2212   fldcw(as_Address(src));
 2213 }
 2214 
 2215 void MacroAssembler::fpop() {
 2216   ffree();
 2217   fincstp();
 2218 }
 2219 
 2220 void MacroAssembler::fremr(Register tmp) {
 2221   save_rax(tmp);
 2222   { Label L;
 2223     bind(L);
 2224     fprem();
 2225     fwait(); fnstsw_ax();
 2226     sahf();
 2227     jcc(Assembler::parity, L);
 2228   }
 2229   restore_rax(tmp);
 2230   // Result is in ST0.
 2231   // Note: fxch & fpop to get rid of ST1
 2232   // (otherwise FPU stack could overflow eventually)
 2233   fxch(1);
 2234   fpop();
 2235 }
 2236 
 2237 void MacroAssembler::empty_FPU_stack() {
 2238   if (VM_Version::supports_mmx()) {
 2239     emms();
 2240   } else {
 2241     for (int i = 8; i-- > 0; ) ffree(i);
 2242   }
 2243 }
 2244 #endif // !LP64
 2245 
 2246 void MacroAssembler::mulpd(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2247   assert(rscratch != noreg || always_reachable(src), "missing");
 2248   if (reachable(src)) {
 2249     Assembler::mulpd(dst, as_Address(src));
 2250   } else {
 2251     lea(rscratch, src);
 2252     Assembler::mulpd(dst, Address(rscratch, 0));
 2253   }
 2254 }
 2255 
 2256 void MacroAssembler::load_float(Address src) {
 2257 #ifdef _LP64
 2258   movflt(xmm0, src);
 2259 #else
 2260   if (UseSSE >= 1) {
 2261     movflt(xmm0, src);
 2262   } else {
 2263     fld_s(src);
 2264   }
 2265 #endif // LP64
 2266 }
 2267 
 2268 void MacroAssembler::store_float(Address dst) {
 2269 #ifdef _LP64
 2270   movflt(dst, xmm0);
 2271 #else
 2272   if (UseSSE >= 1) {
 2273     movflt(dst, xmm0);
 2274   } else {
 2275     fstp_s(dst);
 2276   }
 2277 #endif // LP64
 2278 }
 2279 
 2280 void MacroAssembler::load_double(Address src) {
 2281 #ifdef _LP64
 2282   movdbl(xmm0, src);
 2283 #else
 2284   if (UseSSE >= 2) {
 2285     movdbl(xmm0, src);
 2286   } else {
 2287     fld_d(src);
 2288   }
 2289 #endif // LP64
 2290 }
 2291 
 2292 void MacroAssembler::store_double(Address dst) {
 2293 #ifdef _LP64
 2294   movdbl(dst, xmm0);
 2295 #else
 2296   if (UseSSE >= 2) {
 2297     movdbl(dst, xmm0);
 2298   } else {
 2299     fstp_d(dst);
 2300   }
 2301 #endif // LP64
 2302 }
 2303 
 2304 // dst = c = a * b + c
 2305 void MacroAssembler::fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) {
 2306   Assembler::vfmadd231sd(c, a, b);
 2307   if (dst != c) {
 2308     movdbl(dst, c);
 2309   }
 2310 }
 2311 
 2312 // dst = c = a * b + c
 2313 void MacroAssembler::fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) {
 2314   Assembler::vfmadd231ss(c, a, b);
 2315   if (dst != c) {
 2316     movflt(dst, c);
 2317   }
 2318 }
 2319 
 2320 // dst = c = a * b + c
 2321 void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) {
 2322   Assembler::vfmadd231pd(c, a, b, vector_len);
 2323   if (dst != c) {
 2324     vmovdqu(dst, c);
 2325   }
 2326 }
 2327 
 2328 // dst = c = a * b + c
 2329 void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) {
 2330   Assembler::vfmadd231ps(c, a, b, vector_len);
 2331   if (dst != c) {
 2332     vmovdqu(dst, c);
 2333   }
 2334 }
 2335 
 2336 // dst = c = a * b + c
 2337 void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) {
 2338   Assembler::vfmadd231pd(c, a, b, vector_len);
 2339   if (dst != c) {
 2340     vmovdqu(dst, c);
 2341   }
 2342 }
 2343 
 2344 // dst = c = a * b + c
 2345 void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) {
 2346   Assembler::vfmadd231ps(c, a, b, vector_len);
 2347   if (dst != c) {
 2348     vmovdqu(dst, c);
 2349   }
 2350 }
 2351 
 2352 void MacroAssembler::incrementl(AddressLiteral dst, Register rscratch) {
 2353   assert(rscratch != noreg || always_reachable(dst), "missing");
 2354 
 2355   if (reachable(dst)) {
 2356     incrementl(as_Address(dst));
 2357   } else {
 2358     lea(rscratch, dst);
 2359     incrementl(Address(rscratch, 0));
 2360   }
 2361 }
 2362 
 2363 void MacroAssembler::incrementl(ArrayAddress dst, Register rscratch) {
 2364   incrementl(as_Address(dst, rscratch));
 2365 }
 2366 
 2367 void MacroAssembler::incrementl(Register reg, int value) {
 2368   if (value == min_jint) {addl(reg, value) ; return; }
 2369   if (value <  0) { decrementl(reg, -value); return; }
 2370   if (value == 0) {                        ; return; }
 2371   if (value == 1 && UseIncDec) { incl(reg) ; return; }
 2372   /* else */      { addl(reg, value)       ; return; }
 2373 }
 2374 
 2375 void MacroAssembler::incrementl(Address dst, int value) {
 2376   if (value == min_jint) {addl(dst, value) ; return; }
 2377   if (value <  0) { decrementl(dst, -value); return; }
 2378   if (value == 0) {                        ; return; }
 2379   if (value == 1 && UseIncDec) { incl(dst) ; return; }
 2380   /* else */      { addl(dst, value)       ; return; }
 2381 }
 2382 
 2383 void MacroAssembler::jump(AddressLiteral dst, Register rscratch) {
 2384   assert(rscratch != noreg || always_reachable(dst), "missing");
 2385 
 2386   if (reachable(dst)) {
 2387     jmp_literal(dst.target(), dst.rspec());
 2388   } else {
 2389     lea(rscratch, dst);
 2390     jmp(rscratch);
 2391   }
 2392 }
 2393 
 2394 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst, Register rscratch) {
 2395   assert(rscratch != noreg || always_reachable(dst), "missing");
 2396 
 2397   if (reachable(dst)) {
 2398     InstructionMark im(this);
 2399     relocate(dst.reloc());
 2400     const int short_size = 2;
 2401     const int long_size = 6;
 2402     int offs = (intptr_t)dst.target() - ((intptr_t)pc());
 2403     if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
 2404       // 0111 tttn #8-bit disp
 2405       emit_int8(0x70 | cc);
 2406       emit_int8((offs - short_size) & 0xFF);
 2407     } else {
 2408       // 0000 1111 1000 tttn #32-bit disp
 2409       emit_int8(0x0F);
 2410       emit_int8((unsigned char)(0x80 | cc));
 2411       emit_int32(offs - long_size);
 2412     }
 2413   } else {
 2414 #ifdef ASSERT
 2415     warning("reversing conditional branch");
 2416 #endif /* ASSERT */
 2417     Label skip;
 2418     jccb(reverse[cc], skip);
 2419     lea(rscratch, dst);
 2420     Assembler::jmp(rscratch);
 2421     bind(skip);
 2422   }
 2423 }
 2424 
 2425 void MacroAssembler::ldmxcsr(AddressLiteral src, Register rscratch) {
 2426   assert(rscratch != noreg || always_reachable(src), "missing");
 2427 
 2428   if (reachable(src)) {
 2429     Assembler::ldmxcsr(as_Address(src));
 2430   } else {
 2431     lea(rscratch, src);
 2432     Assembler::ldmxcsr(Address(rscratch, 0));
 2433   }
 2434 }
 2435 
 2436 int MacroAssembler::load_signed_byte(Register dst, Address src) {
 2437   int off;
 2438   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
 2439     off = offset();
 2440     movsbl(dst, src); // movsxb
 2441   } else {
 2442     off = load_unsigned_byte(dst, src);
 2443     shll(dst, 24);
 2444     sarl(dst, 24);
 2445   }
 2446   return off;
 2447 }
 2448 
 2449 // Note: load_signed_short used to be called load_signed_word.
 2450 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler
 2451 // manual, which means 16 bits, that usage is found nowhere in HotSpot code.
 2452 // The term "word" in HotSpot means a 32- or 64-bit machine word.
 2453 int MacroAssembler::load_signed_short(Register dst, Address src) {
 2454   int off;
 2455   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
 2456     // This is dubious to me since it seems safe to do a signed 16 => 64 bit
 2457     // version but this is what 64bit has always done. This seems to imply
 2458     // that users are only using 32bits worth.
 2459     off = offset();
 2460     movswl(dst, src); // movsxw
 2461   } else {
 2462     off = load_unsigned_short(dst, src);
 2463     shll(dst, 16);
 2464     sarl(dst, 16);
 2465   }
 2466   return off;
 2467 }
 2468 
 2469 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
 2470   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
 2471   // and "3.9 Partial Register Penalties", p. 22).
 2472   int off;
 2473   if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
 2474     off = offset();
 2475     movzbl(dst, src); // movzxb
 2476   } else {
 2477     xorl(dst, dst);
 2478     off = offset();
 2479     movb(dst, src);
 2480   }
 2481   return off;
 2482 }
 2483 
 2484 // Note: load_unsigned_short used to be called load_unsigned_word.
 2485 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
 2486   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
 2487   // and "3.9 Partial Register Penalties", p. 22).
 2488   int off;
 2489   if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
 2490     off = offset();
 2491     movzwl(dst, src); // movzxw
 2492   } else {
 2493     xorl(dst, dst);
 2494     off = offset();
 2495     movw(dst, src);
 2496   }
 2497   return off;
 2498 }
 2499 
 2500 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
 2501   switch (size_in_bytes) {
 2502 #ifndef _LP64
 2503   case  8:
 2504     assert(dst2 != noreg, "second dest register required");
 2505     movl(dst,  src);
 2506     movl(dst2, src.plus_disp(BytesPerInt));
 2507     break;
 2508 #else
 2509   case  8:  movq(dst, src); break;
 2510 #endif
 2511   case  4:  movl(dst, src); break;
 2512   case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
 2513   case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
 2514   default:  ShouldNotReachHere();
 2515   }
 2516 }
 2517 
 2518 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
 2519   switch (size_in_bytes) {
 2520 #ifndef _LP64
 2521   case  8:
 2522     assert(src2 != noreg, "second source register required");
 2523     movl(dst,                        src);
 2524     movl(dst.plus_disp(BytesPerInt), src2);
 2525     break;
 2526 #else
 2527   case  8:  movq(dst, src); break;
 2528 #endif
 2529   case  4:  movl(dst, src); break;
 2530   case  2:  movw(dst, src); break;
 2531   case  1:  movb(dst, src); break;
 2532   default:  ShouldNotReachHere();
 2533   }
 2534 }
 2535 
 2536 void MacroAssembler::mov32(AddressLiteral dst, Register src, Register rscratch) {
 2537   assert(rscratch != noreg || always_reachable(dst), "missing");
 2538 
 2539   if (reachable(dst)) {
 2540     movl(as_Address(dst), src);
 2541   } else {
 2542     lea(rscratch, dst);
 2543     movl(Address(rscratch, 0), src);
 2544   }
 2545 }
 2546 
 2547 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
 2548   if (reachable(src)) {
 2549     movl(dst, as_Address(src));
 2550   } else {
 2551     lea(dst, src);
 2552     movl(dst, Address(dst, 0));
 2553   }
 2554 }
 2555 
 2556 // C++ bool manipulation
 2557 
 2558 void MacroAssembler::movbool(Register dst, Address src) {
 2559   if(sizeof(bool) == 1)
 2560     movb(dst, src);
 2561   else if(sizeof(bool) == 2)
 2562     movw(dst, src);
 2563   else if(sizeof(bool) == 4)
 2564     movl(dst, src);
 2565   else
 2566     // unsupported
 2567     ShouldNotReachHere();
 2568 }
 2569 
 2570 void MacroAssembler::movbool(Address dst, bool boolconst) {
 2571   if(sizeof(bool) == 1)
 2572     movb(dst, (int) boolconst);
 2573   else if(sizeof(bool) == 2)
 2574     movw(dst, (int) boolconst);
 2575   else if(sizeof(bool) == 4)
 2576     movl(dst, (int) boolconst);
 2577   else
 2578     // unsupported
 2579     ShouldNotReachHere();
 2580 }
 2581 
 2582 void MacroAssembler::movbool(Address dst, Register src) {
 2583   if(sizeof(bool) == 1)
 2584     movb(dst, src);
 2585   else if(sizeof(bool) == 2)
 2586     movw(dst, src);
 2587   else if(sizeof(bool) == 4)
 2588     movl(dst, src);
 2589   else
 2590     // unsupported
 2591     ShouldNotReachHere();
 2592 }
 2593 
 2594 void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2595   assert(rscratch != noreg || always_reachable(src), "missing");
 2596 
 2597   if (reachable(src)) {
 2598     movdl(dst, as_Address(src));
 2599   } else {
 2600     lea(rscratch, src);
 2601     movdl(dst, Address(rscratch, 0));
 2602   }
 2603 }
 2604 
 2605 void MacroAssembler::movq(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2606   assert(rscratch != noreg || always_reachable(src), "missing");
 2607 
 2608   if (reachable(src)) {
 2609     movq(dst, as_Address(src));
 2610   } else {
 2611     lea(rscratch, src);
 2612     movq(dst, Address(rscratch, 0));
 2613   }
 2614 }
 2615 
 2616 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2617   assert(rscratch != noreg || always_reachable(src), "missing");
 2618 
 2619   if (reachable(src)) {
 2620     if (UseXmmLoadAndClearUpper) {
 2621       movsd (dst, as_Address(src));
 2622     } else {
 2623       movlpd(dst, as_Address(src));
 2624     }
 2625   } else {
 2626     lea(rscratch, src);
 2627     if (UseXmmLoadAndClearUpper) {
 2628       movsd (dst, Address(rscratch, 0));
 2629     } else {
 2630       movlpd(dst, Address(rscratch, 0));
 2631     }
 2632   }
 2633 }
 2634 
 2635 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2636   assert(rscratch != noreg || always_reachable(src), "missing");
 2637 
 2638   if (reachable(src)) {
 2639     movss(dst, as_Address(src));
 2640   } else {
 2641     lea(rscratch, src);
 2642     movss(dst, Address(rscratch, 0));
 2643   }
 2644 }
 2645 
 2646 void MacroAssembler::movptr(Register dst, Register src) {
 2647   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
 2648 }
 2649 
 2650 void MacroAssembler::movptr(Register dst, Address src) {
 2651   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
 2652 }
 2653 
 2654 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 2655 void MacroAssembler::movptr(Register dst, intptr_t src) {
 2656 #ifdef _LP64
 2657   if (is_simm32(src)) {
 2658     movq(dst, checked_cast<int32_t>(src));
 2659   } else {
 2660     mov64(dst, src);
 2661   }
 2662 #else
 2663   movl(dst, src);
 2664 #endif
 2665 }
 2666 
 2667 void MacroAssembler::movptr(Address dst, Register src) {
 2668   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
 2669 }
 2670 
 2671 void MacroAssembler::movptr(Address dst, int32_t src) {
 2672   LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src));
 2673 }
 2674 
 2675 void MacroAssembler::movdqu(Address dst, XMMRegister src) {
 2676   assert(((src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
 2677   Assembler::movdqu(dst, src);
 2678 }
 2679 
 2680 void MacroAssembler::movdqu(XMMRegister dst, Address src) {
 2681   assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
 2682   Assembler::movdqu(dst, src);
 2683 }
 2684 
 2685 void MacroAssembler::movdqu(XMMRegister dst, XMMRegister src) {
 2686   assert(((dst->encoding() < 16  && src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
 2687   Assembler::movdqu(dst, src);
 2688 }
 2689 
 2690 void MacroAssembler::movdqu(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2691   assert(rscratch != noreg || always_reachable(src), "missing");
 2692 
 2693   if (reachable(src)) {
 2694     movdqu(dst, as_Address(src));
 2695   } else {
 2696     lea(rscratch, src);
 2697     movdqu(dst, Address(rscratch, 0));
 2698   }
 2699 }
 2700 
 2701 void MacroAssembler::vmovdqu(Address dst, XMMRegister src) {
 2702   assert(((src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
 2703   Assembler::vmovdqu(dst, src);
 2704 }
 2705 
 2706 void MacroAssembler::vmovdqu(XMMRegister dst, Address src) {
 2707   assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
 2708   Assembler::vmovdqu(dst, src);
 2709 }
 2710 
 2711 void MacroAssembler::vmovdqu(XMMRegister dst, XMMRegister src) {
 2712   assert(((dst->encoding() < 16  && src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
 2713   Assembler::vmovdqu(dst, src);
 2714 }
 2715 
 2716 void MacroAssembler::vmovdqu(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2717   assert(rscratch != noreg || always_reachable(src), "missing");
 2718 
 2719   if (reachable(src)) {
 2720     vmovdqu(dst, as_Address(src));
 2721   }
 2722   else {
 2723     lea(rscratch, src);
 2724     vmovdqu(dst, Address(rscratch, 0));
 2725   }
 2726 }
 2727 
 2728 void MacroAssembler::vmovdqu(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
 2729   assert(rscratch != noreg || always_reachable(src), "missing");
 2730 
 2731   if (vector_len == AVX_512bit) {
 2732     evmovdquq(dst, src, AVX_512bit, rscratch);
 2733   } else if (vector_len == AVX_256bit) {
 2734     vmovdqu(dst, src, rscratch);
 2735   } else {
 2736     movdqu(dst, src, rscratch);
 2737   }
 2738 }
 2739 
 2740 void MacroAssembler::kmov(KRegister dst, Address src) {
 2741   if (VM_Version::supports_avx512bw()) {
 2742     kmovql(dst, src);
 2743   } else {
 2744     assert(VM_Version::supports_evex(), "");
 2745     kmovwl(dst, src);
 2746   }
 2747 }
 2748 
 2749 void MacroAssembler::kmov(Address dst, KRegister src) {
 2750   if (VM_Version::supports_avx512bw()) {
 2751     kmovql(dst, src);
 2752   } else {
 2753     assert(VM_Version::supports_evex(), "");
 2754     kmovwl(dst, src);
 2755   }
 2756 }
 2757 
 2758 void MacroAssembler::kmov(KRegister dst, KRegister src) {
 2759   if (VM_Version::supports_avx512bw()) {
 2760     kmovql(dst, src);
 2761   } else {
 2762     assert(VM_Version::supports_evex(), "");
 2763     kmovwl(dst, src);
 2764   }
 2765 }
 2766 
 2767 void MacroAssembler::kmov(Register dst, KRegister src) {
 2768   if (VM_Version::supports_avx512bw()) {
 2769     kmovql(dst, src);
 2770   } else {
 2771     assert(VM_Version::supports_evex(), "");
 2772     kmovwl(dst, src);
 2773   }
 2774 }
 2775 
 2776 void MacroAssembler::kmov(KRegister dst, Register src) {
 2777   if (VM_Version::supports_avx512bw()) {
 2778     kmovql(dst, src);
 2779   } else {
 2780     assert(VM_Version::supports_evex(), "");
 2781     kmovwl(dst, src);
 2782   }
 2783 }
 2784 
 2785 void MacroAssembler::kmovql(KRegister dst, AddressLiteral src, Register rscratch) {
 2786   assert(rscratch != noreg || always_reachable(src), "missing");
 2787 
 2788   if (reachable(src)) {
 2789     kmovql(dst, as_Address(src));
 2790   } else {
 2791     lea(rscratch, src);
 2792     kmovql(dst, Address(rscratch, 0));
 2793   }
 2794 }
 2795 
 2796 void MacroAssembler::kmovwl(KRegister dst, AddressLiteral src, Register rscratch) {
 2797   assert(rscratch != noreg || always_reachable(src), "missing");
 2798 
 2799   if (reachable(src)) {
 2800     kmovwl(dst, as_Address(src));
 2801   } else {
 2802     lea(rscratch, src);
 2803     kmovwl(dst, Address(rscratch, 0));
 2804   }
 2805 }
 2806 
 2807 void MacroAssembler::evmovdqub(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge,
 2808                                int vector_len, Register rscratch) {
 2809   assert(rscratch != noreg || always_reachable(src), "missing");
 2810 
 2811   if (reachable(src)) {
 2812     Assembler::evmovdqub(dst, mask, as_Address(src), merge, vector_len);
 2813   } else {
 2814     lea(rscratch, src);
 2815     Assembler::evmovdqub(dst, mask, Address(rscratch, 0), merge, vector_len);
 2816   }
 2817 }
 2818 
 2819 void MacroAssembler::evmovdquw(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge,
 2820                                int vector_len, Register rscratch) {
 2821   assert(rscratch != noreg || always_reachable(src), "missing");
 2822 
 2823   if (reachable(src)) {
 2824     Assembler::evmovdquw(dst, mask, as_Address(src), merge, vector_len);
 2825   } else {
 2826     lea(rscratch, src);
 2827     Assembler::evmovdquw(dst, mask, Address(rscratch, 0), merge, vector_len);
 2828   }
 2829 }
 2830 
 2831 void MacroAssembler::evmovdqul(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch) {
 2832   assert(rscratch != noreg || always_reachable(src), "missing");
 2833 
 2834   if (reachable(src)) {
 2835     Assembler::evmovdqul(dst, mask, as_Address(src), merge, vector_len);
 2836   } else {
 2837     lea(rscratch, src);
 2838     Assembler::evmovdqul(dst, mask, Address(rscratch, 0), merge, vector_len);
 2839   }
 2840 }
 2841 
 2842 void MacroAssembler::evmovdquq(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch) {
 2843   assert(rscratch != noreg || always_reachable(src), "missing");
 2844 
 2845   if (reachable(src)) {
 2846     Assembler::evmovdquq(dst, mask, as_Address(src), merge, vector_len);
 2847   } else {
 2848     lea(rscratch, src);
 2849     Assembler::evmovdquq(dst, mask, Address(rscratch, 0), merge, vector_len);
 2850   }
 2851 }
 2852 
 2853 void MacroAssembler::evmovdquq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
 2854   assert(rscratch != noreg || always_reachable(src), "missing");
 2855 
 2856   if (reachable(src)) {
 2857     Assembler::evmovdquq(dst, as_Address(src), vector_len);
 2858   } else {
 2859     lea(rscratch, src);
 2860     Assembler::evmovdquq(dst, Address(rscratch, 0), vector_len);
 2861   }
 2862 }
 2863 
 2864 void MacroAssembler::movdqa(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2865   assert(rscratch != noreg || always_reachable(src), "missing");
 2866 
 2867   if (reachable(src)) {
 2868     Assembler::movdqa(dst, as_Address(src));
 2869   } else {
 2870     lea(rscratch, src);
 2871     Assembler::movdqa(dst, Address(rscratch, 0));
 2872   }
 2873 }
 2874 
 2875 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2876   assert(rscratch != noreg || always_reachable(src), "missing");
 2877 
 2878   if (reachable(src)) {
 2879     Assembler::movsd(dst, as_Address(src));
 2880   } else {
 2881     lea(rscratch, src);
 2882     Assembler::movsd(dst, Address(rscratch, 0));
 2883   }
 2884 }
 2885 
 2886 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2887   assert(rscratch != noreg || always_reachable(src), "missing");
 2888 
 2889   if (reachable(src)) {
 2890     Assembler::movss(dst, as_Address(src));
 2891   } else {
 2892     lea(rscratch, src);
 2893     Assembler::movss(dst, Address(rscratch, 0));
 2894   }
 2895 }
 2896 
 2897 void MacroAssembler::movddup(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2898   assert(rscratch != noreg || always_reachable(src), "missing");
 2899 
 2900   if (reachable(src)) {
 2901     Assembler::movddup(dst, as_Address(src));
 2902   } else {
 2903     lea(rscratch, src);
 2904     Assembler::movddup(dst, Address(rscratch, 0));
 2905   }
 2906 }
 2907 
 2908 void MacroAssembler::vmovddup(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
 2909   assert(rscratch != noreg || always_reachable(src), "missing");
 2910 
 2911   if (reachable(src)) {
 2912     Assembler::vmovddup(dst, as_Address(src), vector_len);
 2913   } else {
 2914     lea(rscratch, src);
 2915     Assembler::vmovddup(dst, Address(rscratch, 0), vector_len);
 2916   }
 2917 }
 2918 
 2919 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2920   assert(rscratch != noreg || always_reachable(src), "missing");
 2921 
 2922   if (reachable(src)) {
 2923     Assembler::mulsd(dst, as_Address(src));
 2924   } else {
 2925     lea(rscratch, src);
 2926     Assembler::mulsd(dst, Address(rscratch, 0));
 2927   }
 2928 }
 2929 
 2930 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2931   assert(rscratch != noreg || always_reachable(src), "missing");
 2932 
 2933   if (reachable(src)) {
 2934     Assembler::mulss(dst, as_Address(src));
 2935   } else {
 2936     lea(rscratch, src);
 2937     Assembler::mulss(dst, Address(rscratch, 0));
 2938   }
 2939 }
 2940 
 2941 void MacroAssembler::null_check(Register reg, int offset) {
 2942   if (needs_explicit_null_check(offset)) {
 2943     // provoke OS null exception if reg is null by
 2944     // accessing M[reg] w/o changing any (non-CC) registers
 2945     // NOTE: cmpl is plenty here to provoke a segv
 2946     cmpptr(rax, Address(reg, 0));
 2947     // Note: should probably use testl(rax, Address(reg, 0));
 2948     //       may be shorter code (however, this version of
 2949     //       testl needs to be implemented first)
 2950   } else {
 2951     // nothing to do, (later) access of M[reg + offset]
 2952     // will provoke OS null exception if reg is null
 2953   }
 2954 }
 2955 
 2956 void MacroAssembler::os_breakpoint() {
 2957   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
 2958   // (e.g., MSVC can't call ps() otherwise)
 2959   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
 2960 }
 2961 
 2962 void MacroAssembler::unimplemented(const char* what) {
 2963   const char* buf = nullptr;
 2964   {
 2965     ResourceMark rm;
 2966     stringStream ss;
 2967     ss.print("unimplemented: %s", what);
 2968     buf = code_string(ss.as_string());
 2969   }
 2970   stop(buf);
 2971 }
 2972 
 2973 #ifdef _LP64
 2974 #define XSTATE_BV 0x200
 2975 #endif
 2976 
 2977 void MacroAssembler::pop_CPU_state() {
 2978   pop_FPU_state();
 2979   pop_IU_state();
 2980 }
 2981 
 2982 void MacroAssembler::pop_FPU_state() {
 2983 #ifndef _LP64
 2984   frstor(Address(rsp, 0));
 2985 #else
 2986   fxrstor(Address(rsp, 0));
 2987 #endif
 2988   addptr(rsp, FPUStateSizeInWords * wordSize);
 2989 }
 2990 
 2991 void MacroAssembler::pop_IU_state() {
 2992   popa();
 2993   LP64_ONLY(addq(rsp, 8));
 2994   popf();
 2995 }
 2996 
 2997 // Save Integer and Float state
 2998 // Warning: Stack must be 16 byte aligned (64bit)
 2999 void MacroAssembler::push_CPU_state() {
 3000   push_IU_state();
 3001   push_FPU_state();
 3002 }
 3003 
 3004 void MacroAssembler::push_FPU_state() {
 3005   subptr(rsp, FPUStateSizeInWords * wordSize);
 3006 #ifndef _LP64
 3007   fnsave(Address(rsp, 0));
 3008   fwait();
 3009 #else
 3010   fxsave(Address(rsp, 0));
 3011 #endif // LP64
 3012 }
 3013 
 3014 void MacroAssembler::push_IU_state() {
 3015   // Push flags first because pusha kills them
 3016   pushf();
 3017   // Make sure rsp stays 16-byte aligned
 3018   LP64_ONLY(subq(rsp, 8));
 3019   pusha();
 3020 }
 3021 
 3022 void MacroAssembler::push_cont_fastpath() {
 3023   if (!Continuations::enabled()) return;
 3024 
 3025 #ifndef _LP64
 3026   Register rthread = rax;
 3027   Register rrealsp = rbx;
 3028   push(rthread);
 3029   push(rrealsp);
 3030 
 3031   get_thread(rthread);
 3032 
 3033   // The code below wants the original RSP.
 3034   // Move it back after the pushes above.
 3035   movptr(rrealsp, rsp);
 3036   addptr(rrealsp, 2*wordSize);
 3037 #else
 3038   Register rthread = r15_thread;
 3039   Register rrealsp = rsp;
 3040 #endif
 3041 
 3042   Label done;
 3043   cmpptr(rrealsp, Address(rthread, JavaThread::cont_fastpath_offset()));
 3044   jccb(Assembler::belowEqual, done);
 3045   movptr(Address(rthread, JavaThread::cont_fastpath_offset()), rrealsp);
 3046   bind(done);
 3047 
 3048 #ifndef _LP64
 3049   pop(rrealsp);
 3050   pop(rthread);
 3051 #endif
 3052 }
 3053 
 3054 void MacroAssembler::pop_cont_fastpath() {
 3055   if (!Continuations::enabled()) return;
 3056 
 3057 #ifndef _LP64
 3058   Register rthread = rax;
 3059   Register rrealsp = rbx;
 3060   push(rthread);
 3061   push(rrealsp);
 3062 
 3063   get_thread(rthread);
 3064 
 3065   // The code below wants the original RSP.
 3066   // Move it back after the pushes above.
 3067   movptr(rrealsp, rsp);
 3068   addptr(rrealsp, 2*wordSize);
 3069 #else
 3070   Register rthread = r15_thread;
 3071   Register rrealsp = rsp;
 3072 #endif
 3073 
 3074   Label done;
 3075   cmpptr(rrealsp, Address(rthread, JavaThread::cont_fastpath_offset()));
 3076   jccb(Assembler::below, done);
 3077   movptr(Address(rthread, JavaThread::cont_fastpath_offset()), 0);
 3078   bind(done);
 3079 
 3080 #ifndef _LP64
 3081   pop(rrealsp);
 3082   pop(rthread);
 3083 #endif
 3084 }
 3085 
 3086 void MacroAssembler::inc_held_monitor_count() {
 3087 #ifndef _LP64
 3088   Register thread = rax;
 3089   push(thread);
 3090   get_thread(thread);
 3091   incrementl(Address(thread, JavaThread::held_monitor_count_offset()));
 3092   pop(thread);
 3093 #else // LP64
 3094   incrementq(Address(r15_thread, JavaThread::held_monitor_count_offset()));
 3095 #endif
 3096 }
 3097 
 3098 void MacroAssembler::dec_held_monitor_count() {
 3099 #ifndef _LP64
 3100   Register thread = rax;
 3101   push(thread);
 3102   get_thread(thread);
 3103   decrementl(Address(thread, JavaThread::held_monitor_count_offset()));
 3104   pop(thread);
 3105 #else // LP64
 3106   decrementq(Address(r15_thread, JavaThread::held_monitor_count_offset()));
 3107 #endif
 3108 }
 3109 
 3110 #ifdef ASSERT
 3111 void MacroAssembler::stop_if_in_cont(Register cont, const char* name) {
 3112 #ifdef _LP64
 3113   Label no_cont;
 3114   movptr(cont, Address(r15_thread, JavaThread::cont_entry_offset()));
 3115   testl(cont, cont);
 3116   jcc(Assembler::zero, no_cont);
 3117   stop(name);
 3118   bind(no_cont);
 3119 #else
 3120   Unimplemented();
 3121 #endif
 3122 }
 3123 #endif
 3124 
 3125 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp) { // determine java_thread register
 3126   if (!java_thread->is_valid()) {
 3127     java_thread = rdi;
 3128     get_thread(java_thread);
 3129   }
 3130   // we must set sp to zero to clear frame
 3131   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
 3132   // must clear fp, so that compiled frames are not confused; it is
 3133   // possible that we need it only for debugging
 3134   if (clear_fp) {
 3135     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
 3136   }
 3137   // Always clear the pc because it could have been set by make_walkable()
 3138   movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
 3139   vzeroupper();
 3140 }
 3141 
 3142 void MacroAssembler::restore_rax(Register tmp) {
 3143   if (tmp == noreg) pop(rax);
 3144   else if (tmp != rax) mov(rax, tmp);
 3145 }
 3146 
 3147 void MacroAssembler::round_to(Register reg, int modulus) {
 3148   addptr(reg, modulus - 1);
 3149   andptr(reg, -modulus);
 3150 }
 3151 
 3152 void MacroAssembler::save_rax(Register tmp) {
 3153   if (tmp == noreg) push(rax);
 3154   else if (tmp != rax) mov(tmp, rax);
 3155 }
 3156 
 3157 void MacroAssembler::safepoint_poll(Label& slow_path, Register thread_reg, bool at_return, bool in_nmethod) {
 3158   if (at_return) {
 3159     // Note that when in_nmethod is set, the stack pointer is incremented before the poll. Therefore,
 3160     // we may safely use rsp instead to perform the stack watermark check.
 3161     cmpptr(in_nmethod ? rsp : rbp, Address(thread_reg, JavaThread::polling_word_offset()));
 3162     jcc(Assembler::above, slow_path);
 3163     return;
 3164   }
 3165   testb(Address(thread_reg, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit());
 3166   jcc(Assembler::notZero, slow_path); // handshake bit set implies poll
 3167 }
 3168 
 3169 // Calls to C land
 3170 //
 3171 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
 3172 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
 3173 // has to be reset to 0. This is required to allow proper stack traversal.
 3174 void MacroAssembler::set_last_Java_frame(Register java_thread,
 3175                                          Register last_java_sp,
 3176                                          Register last_java_fp,
 3177                                          address  last_java_pc,
 3178                                          Register rscratch) {
 3179   vzeroupper();
 3180   // determine java_thread register
 3181   if (!java_thread->is_valid()) {
 3182     java_thread = rdi;
 3183     get_thread(java_thread);
 3184   }
 3185   // determine last_java_sp register
 3186   if (!last_java_sp->is_valid()) {
 3187     last_java_sp = rsp;
 3188   }
 3189   // last_java_fp is optional
 3190   if (last_java_fp->is_valid()) {
 3191     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
 3192   }
 3193   // last_java_pc is optional
 3194   if (last_java_pc != nullptr) {
 3195     Address java_pc(java_thread,
 3196                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
 3197     lea(java_pc, InternalAddress(last_java_pc), rscratch);
 3198   }
 3199   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
 3200 }
 3201 
 3202 void MacroAssembler::shlptr(Register dst, int imm8) {
 3203   LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
 3204 }
 3205 
 3206 void MacroAssembler::shrptr(Register dst, int imm8) {
 3207   LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
 3208 }
 3209 
 3210 void MacroAssembler::sign_extend_byte(Register reg) {
 3211   if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
 3212     movsbl(reg, reg); // movsxb
 3213   } else {
 3214     shll(reg, 24);
 3215     sarl(reg, 24);
 3216   }
 3217 }
 3218 
 3219 void MacroAssembler::sign_extend_short(Register reg) {
 3220   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
 3221     movswl(reg, reg); // movsxw
 3222   } else {
 3223     shll(reg, 16);
 3224     sarl(reg, 16);
 3225   }
 3226 }
 3227 
 3228 void MacroAssembler::testl(Address dst, int32_t imm32) {
 3229   if (imm32 >= 0 && is8bit(imm32)) {
 3230     testb(dst, imm32);
 3231   } else {
 3232     Assembler::testl(dst, imm32);
 3233   }
 3234 }
 3235 
 3236 void MacroAssembler::testl(Register dst, int32_t imm32) {
 3237   if (imm32 >= 0 && is8bit(imm32) && dst->has_byte_register()) {
 3238     testb(dst, imm32);
 3239   } else {
 3240     Assembler::testl(dst, imm32);
 3241   }
 3242 }
 3243 
 3244 void MacroAssembler::testl(Register dst, AddressLiteral src) {
 3245   assert(always_reachable(src), "Address should be reachable");
 3246   testl(dst, as_Address(src));
 3247 }
 3248 
 3249 #ifdef _LP64
 3250 
 3251 void MacroAssembler::testq(Address dst, int32_t imm32) {
 3252   if (imm32 >= 0) {
 3253     testl(dst, imm32);
 3254   } else {
 3255     Assembler::testq(dst, imm32);
 3256   }
 3257 }
 3258 
 3259 void MacroAssembler::testq(Register dst, int32_t imm32) {
 3260   if (imm32 >= 0) {
 3261     testl(dst, imm32);
 3262   } else {
 3263     Assembler::testq(dst, imm32);
 3264   }
 3265 }
 3266 
 3267 #endif
 3268 
 3269 void MacroAssembler::pcmpeqb(XMMRegister dst, XMMRegister src) {
 3270   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3271   Assembler::pcmpeqb(dst, src);
 3272 }
 3273 
 3274 void MacroAssembler::pcmpeqw(XMMRegister dst, XMMRegister src) {
 3275   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3276   Assembler::pcmpeqw(dst, src);
 3277 }
 3278 
 3279 void MacroAssembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
 3280   assert((dst->encoding() < 16),"XMM register should be 0-15");
 3281   Assembler::pcmpestri(dst, src, imm8);
 3282 }
 3283 
 3284 void MacroAssembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
 3285   assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15");
 3286   Assembler::pcmpestri(dst, src, imm8);
 3287 }
 3288 
 3289 void MacroAssembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
 3290   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3291   Assembler::pmovzxbw(dst, src);
 3292 }
 3293 
 3294 void MacroAssembler::pmovzxbw(XMMRegister dst, Address src) {
 3295   assert(((dst->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3296   Assembler::pmovzxbw(dst, src);
 3297 }
 3298 
 3299 void MacroAssembler::pmovmskb(Register dst, XMMRegister src) {
 3300   assert((src->encoding() < 16),"XMM register should be 0-15");
 3301   Assembler::pmovmskb(dst, src);
 3302 }
 3303 
 3304 void MacroAssembler::ptest(XMMRegister dst, XMMRegister src) {
 3305   assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15");
 3306   Assembler::ptest(dst, src);
 3307 }
 3308 
 3309 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src, Register rscratch) {
 3310   assert(rscratch != noreg || always_reachable(src), "missing");
 3311 
 3312   if (reachable(src)) {
 3313     Assembler::sqrtss(dst, as_Address(src));
 3314   } else {
 3315     lea(rscratch, src);
 3316     Assembler::sqrtss(dst, Address(rscratch, 0));
 3317   }
 3318 }
 3319 
 3320 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src, Register rscratch) {
 3321   assert(rscratch != noreg || always_reachable(src), "missing");
 3322 
 3323   if (reachable(src)) {
 3324     Assembler::subsd(dst, as_Address(src));
 3325   } else {
 3326     lea(rscratch, src);
 3327     Assembler::subsd(dst, Address(rscratch, 0));
 3328   }
 3329 }
 3330 
 3331 void MacroAssembler::roundsd(XMMRegister dst, AddressLiteral src, int32_t rmode, Register rscratch) {
 3332   assert(rscratch != noreg || always_reachable(src), "missing");
 3333 
 3334   if (reachable(src)) {
 3335     Assembler::roundsd(dst, as_Address(src), rmode);
 3336   } else {
 3337     lea(rscratch, src);
 3338     Assembler::roundsd(dst, Address(rscratch, 0), rmode);
 3339   }
 3340 }
 3341 
 3342 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src, Register rscratch) {
 3343   assert(rscratch != noreg || always_reachable(src), "missing");
 3344 
 3345   if (reachable(src)) {
 3346     Assembler::subss(dst, as_Address(src));
 3347   } else {
 3348     lea(rscratch, src);
 3349     Assembler::subss(dst, Address(rscratch, 0));
 3350   }
 3351 }
 3352 
 3353 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src, Register rscratch) {
 3354   assert(rscratch != noreg || always_reachable(src), "missing");
 3355 
 3356   if (reachable(src)) {
 3357     Assembler::ucomisd(dst, as_Address(src));
 3358   } else {
 3359     lea(rscratch, src);
 3360     Assembler::ucomisd(dst, Address(rscratch, 0));
 3361   }
 3362 }
 3363 
 3364 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src, Register rscratch) {
 3365   assert(rscratch != noreg || always_reachable(src), "missing");
 3366 
 3367   if (reachable(src)) {
 3368     Assembler::ucomiss(dst, as_Address(src));
 3369   } else {
 3370     lea(rscratch, src);
 3371     Assembler::ucomiss(dst, Address(rscratch, 0));
 3372   }
 3373 }
 3374 
 3375 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src, Register rscratch) {
 3376   assert(rscratch != noreg || always_reachable(src), "missing");
 3377 
 3378   // Used in sign-bit flipping with aligned address.
 3379   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
 3380   if (reachable(src)) {
 3381     Assembler::xorpd(dst, as_Address(src));
 3382   } else {
 3383     lea(rscratch, src);
 3384     Assembler::xorpd(dst, Address(rscratch, 0));
 3385   }
 3386 }
 3387 
 3388 void MacroAssembler::xorpd(XMMRegister dst, XMMRegister src) {
 3389   if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) {
 3390     Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit);
 3391   }
 3392   else {
 3393     Assembler::xorpd(dst, src);
 3394   }
 3395 }
 3396 
 3397 void MacroAssembler::xorps(XMMRegister dst, XMMRegister src) {
 3398   if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) {
 3399     Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit);
 3400   } else {
 3401     Assembler::xorps(dst, src);
 3402   }
 3403 }
 3404 
 3405 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src, Register rscratch) {
 3406   assert(rscratch != noreg || always_reachable(src), "missing");
 3407 
 3408   // Used in sign-bit flipping with aligned address.
 3409   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
 3410   if (reachable(src)) {
 3411     Assembler::xorps(dst, as_Address(src));
 3412   } else {
 3413     lea(rscratch, src);
 3414     Assembler::xorps(dst, Address(rscratch, 0));
 3415   }
 3416 }
 3417 
 3418 void MacroAssembler::pshufb(XMMRegister dst, AddressLiteral src, Register rscratch) {
 3419   assert(rscratch != noreg || always_reachable(src), "missing");
 3420 
 3421   // Used in sign-bit flipping with aligned address.
 3422   bool aligned_adr = (((intptr_t)src.target() & 15) == 0);
 3423   assert((UseAVX > 0) || aligned_adr, "SSE mode requires address alignment 16 bytes");
 3424   if (reachable(src)) {
 3425     Assembler::pshufb(dst, as_Address(src));
 3426   } else {
 3427     lea(rscratch, src);
 3428     Assembler::pshufb(dst, Address(rscratch, 0));
 3429   }
 3430 }
 3431 
 3432 // AVX 3-operands instructions
 3433 
 3434 void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
 3435   assert(rscratch != noreg || always_reachable(src), "missing");
 3436 
 3437   if (reachable(src)) {
 3438     vaddsd(dst, nds, as_Address(src));
 3439   } else {
 3440     lea(rscratch, src);
 3441     vaddsd(dst, nds, Address(rscratch, 0));
 3442   }
 3443 }
 3444 
 3445 void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
 3446   assert(rscratch != noreg || always_reachable(src), "missing");
 3447 
 3448   if (reachable(src)) {
 3449     vaddss(dst, nds, as_Address(src));
 3450   } else {
 3451     lea(rscratch, src);
 3452     vaddss(dst, nds, Address(rscratch, 0));
 3453   }
 3454 }
 3455 
 3456 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
 3457   assert(UseAVX > 0, "requires some form of AVX");
 3458   assert(rscratch != noreg || always_reachable(src), "missing");
 3459 
 3460   if (reachable(src)) {
 3461     Assembler::vpaddb(dst, nds, as_Address(src), vector_len);
 3462   } else {
 3463     lea(rscratch, src);
 3464     Assembler::vpaddb(dst, nds, Address(rscratch, 0), vector_len);
 3465   }
 3466 }
 3467 
 3468 void MacroAssembler::vpaddd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
 3469   assert(UseAVX > 0, "requires some form of AVX");
 3470   assert(rscratch != noreg || always_reachable(src), "missing");
 3471 
 3472   if (reachable(src)) {
 3473     Assembler::vpaddd(dst, nds, as_Address(src), vector_len);
 3474   } else {
 3475     lea(rscratch, src);
 3476     Assembler::vpaddd(dst, nds, Address(rscratch, 0), vector_len);
 3477   }
 3478 }
 3479 
 3480 void MacroAssembler::vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len, Register rscratch) {
 3481   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15");
 3482   assert(rscratch != noreg || always_reachable(negate_field), "missing");
 3483 
 3484   vandps(dst, nds, negate_field, vector_len, rscratch);
 3485 }
 3486 
 3487 void MacroAssembler::vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len, Register rscratch) {
 3488   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15");
 3489   assert(rscratch != noreg || always_reachable(negate_field), "missing");
 3490 
 3491   vandpd(dst, nds, negate_field, vector_len, rscratch);
 3492 }
 3493 
 3494 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
 3495   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3496   Assembler::vpaddb(dst, nds, src, vector_len);
 3497 }
 3498 
 3499 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
 3500   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3501   Assembler::vpaddb(dst, nds, src, vector_len);
 3502 }
 3503 
 3504 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
 3505   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3506   Assembler::vpaddw(dst, nds, src, vector_len);
 3507 }
 3508 
 3509 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
 3510   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3511   Assembler::vpaddw(dst, nds, src, vector_len);
 3512 }
 3513 
 3514 void MacroAssembler::vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
 3515   assert(rscratch != noreg || always_reachable(src), "missing");
 3516 
 3517   if (reachable(src)) {
 3518     Assembler::vpand(dst, nds, as_Address(src), vector_len);
 3519   } else {
 3520     lea(rscratch, src);
 3521     Assembler::vpand(dst, nds, Address(rscratch, 0), vector_len);
 3522   }
 3523 }
 3524 
 3525 void MacroAssembler::vpbroadcastd(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
 3526   assert(rscratch != noreg || always_reachable(src), "missing");
 3527 
 3528   if (reachable(src)) {
 3529     Assembler::vpbroadcastd(dst, as_Address(src), vector_len);
 3530   } else {
 3531     lea(rscratch, src);
 3532     Assembler::vpbroadcastd(dst, Address(rscratch, 0), vector_len);
 3533   }
 3534 }
 3535 
 3536 void MacroAssembler::vpbroadcastq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
 3537   assert(rscratch != noreg || always_reachable(src), "missing");
 3538 
 3539   if (reachable(src)) {
 3540     Assembler::vpbroadcastq(dst, as_Address(src), vector_len);
 3541   } else {
 3542     lea(rscratch, src);
 3543     Assembler::vpbroadcastq(dst, Address(rscratch, 0), vector_len);
 3544   }
 3545 }
 3546 
 3547 void MacroAssembler::vbroadcastsd(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
 3548   assert(rscratch != noreg || always_reachable(src), "missing");
 3549 
 3550   if (reachable(src)) {
 3551     Assembler::vbroadcastsd(dst, as_Address(src), vector_len);
 3552   } else {
 3553     lea(rscratch, src);
 3554     Assembler::vbroadcastsd(dst, Address(rscratch, 0), vector_len);
 3555   }
 3556 }
 3557 
 3558 void MacroAssembler::vbroadcastss(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
 3559   assert(rscratch != noreg || always_reachable(src), "missing");
 3560 
 3561   if (reachable(src)) {
 3562     Assembler::vbroadcastss(dst, as_Address(src), vector_len);
 3563   } else {
 3564     lea(rscratch, src);
 3565     Assembler::vbroadcastss(dst, Address(rscratch, 0), vector_len);
 3566   }
 3567 }
 3568 
 3569 // Vector float blend
 3570 // vblendvps(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister mask, int vector_len, bool compute_mask = true, XMMRegister scratch = xnoreg)
 3571 void MacroAssembler::vblendvps(XMMRegister dst, XMMRegister src1, XMMRegister src2, XMMRegister mask, int vector_len, bool compute_mask, XMMRegister scratch) {
 3572   // WARN: Allow dst == (src1|src2), mask == scratch
 3573   bool blend_emulation = EnableX86ECoreOpts && UseAVX > 1;
 3574   bool scratch_available = scratch != xnoreg && scratch != src1 && scratch != src2 && scratch != dst;
 3575   bool dst_available = dst != mask && (dst != src1 || dst != src2);
 3576   if (blend_emulation && scratch_available && dst_available) {
 3577     if (compute_mask) {
 3578       vpsrad(scratch, mask, 32, vector_len);
 3579       mask = scratch;
 3580     }
 3581     if (dst == src1) {
 3582       vpandn(dst,     mask, src1, vector_len); // if mask == 0, src1
 3583       vpand (scratch, mask, src2, vector_len); // if mask == 1, src2
 3584     } else {
 3585       vpand (dst,     mask, src2, vector_len); // if mask == 1, src2
 3586       vpandn(scratch, mask, src1, vector_len); // if mask == 0, src1
 3587     }
 3588     vpor(dst, dst, scratch, vector_len);
 3589   } else {
 3590     Assembler::vblendvps(dst, src1, src2, mask, vector_len);
 3591   }
 3592 }
 3593 
 3594 // vblendvpd(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister mask, int vector_len, bool compute_mask = true, XMMRegister scratch = xnoreg)
 3595 void MacroAssembler::vblendvpd(XMMRegister dst, XMMRegister src1, XMMRegister src2, XMMRegister mask, int vector_len, bool compute_mask, XMMRegister scratch) {
 3596   // WARN: Allow dst == (src1|src2), mask == scratch
 3597   bool blend_emulation = EnableX86ECoreOpts && UseAVX > 1;
 3598   bool scratch_available = scratch != xnoreg && scratch != src1 && scratch != src2 && scratch != dst && (!compute_mask || scratch != mask);
 3599   bool dst_available = dst != mask && (dst != src1 || dst != src2);
 3600   if (blend_emulation && scratch_available && dst_available) {
 3601     if (compute_mask) {
 3602       vpxor(scratch, scratch, scratch, vector_len);
 3603       vpcmpgtq(scratch, scratch, mask, vector_len);
 3604       mask = scratch;
 3605     }
 3606     if (dst == src1) {
 3607       vpandn(dst,     mask, src1, vector_len); // if mask == 0, src
 3608       vpand (scratch, mask, src2, vector_len); // if mask == 1, src2
 3609     } else {
 3610       vpand (dst,     mask, src2, vector_len); // if mask == 1, src2
 3611       vpandn(scratch, mask, src1, vector_len); // if mask == 0, src
 3612     }
 3613     vpor(dst, dst, scratch, vector_len);
 3614   } else {
 3615     Assembler::vblendvpd(dst, src1, src2, mask, vector_len);
 3616   }
 3617 }
 3618 
 3619 void MacroAssembler::vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
 3620   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3621   Assembler::vpcmpeqb(dst, nds, src, vector_len);
 3622 }
 3623 
 3624 void MacroAssembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
 3625   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3626   Assembler::vpcmpeqw(dst, nds, src, vector_len);
 3627 }
 3628 
 3629 void MacroAssembler::evpcmpeqd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
 3630   assert(rscratch != noreg || always_reachable(src), "missing");
 3631 
 3632   if (reachable(src)) {
 3633     Assembler::evpcmpeqd(kdst, mask, nds, as_Address(src), vector_len);
 3634   } else {
 3635     lea(rscratch, src);
 3636     Assembler::evpcmpeqd(kdst, mask, nds, Address(rscratch, 0), vector_len);
 3637   }
 3638 }
 3639 
 3640 void MacroAssembler::evpcmpd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src,
 3641                              int comparison, bool is_signed, int vector_len, Register rscratch) {
 3642   assert(rscratch != noreg || always_reachable(src), "missing");
 3643 
 3644   if (reachable(src)) {
 3645     Assembler::evpcmpd(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len);
 3646   } else {
 3647     lea(rscratch, src);
 3648     Assembler::evpcmpd(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len);
 3649   }
 3650 }
 3651 
 3652 void MacroAssembler::evpcmpq(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src,
 3653                              int comparison, bool is_signed, int vector_len, Register rscratch) {
 3654   assert(rscratch != noreg || always_reachable(src), "missing");
 3655 
 3656   if (reachable(src)) {
 3657     Assembler::evpcmpq(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len);
 3658   } else {
 3659     lea(rscratch, src);
 3660     Assembler::evpcmpq(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len);
 3661   }
 3662 }
 3663 
 3664 void MacroAssembler::evpcmpb(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src,
 3665                              int comparison, bool is_signed, int vector_len, Register rscratch) {
 3666   assert(rscratch != noreg || always_reachable(src), "missing");
 3667 
 3668   if (reachable(src)) {
 3669     Assembler::evpcmpb(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len);
 3670   } else {
 3671     lea(rscratch, src);
 3672     Assembler::evpcmpb(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len);
 3673   }
 3674 }
 3675 
 3676 void MacroAssembler::evpcmpw(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src,
 3677                              int comparison, bool is_signed, int vector_len, Register rscratch) {
 3678   assert(rscratch != noreg || always_reachable(src), "missing");
 3679 
 3680   if (reachable(src)) {
 3681     Assembler::evpcmpw(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len);
 3682   } else {
 3683     lea(rscratch, src);
 3684     Assembler::evpcmpw(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len);
 3685   }
 3686 }
 3687 
 3688 void MacroAssembler::vpcmpCC(XMMRegister dst, XMMRegister nds, XMMRegister src, int cond_encoding, Width width, int vector_len) {
 3689   if (width == Assembler::Q) {
 3690     Assembler::vpcmpCCq(dst, nds, src, cond_encoding, vector_len);
 3691   } else {
 3692     Assembler::vpcmpCCbwd(dst, nds, src, cond_encoding, vector_len);
 3693   }
 3694 }
 3695 
 3696 void MacroAssembler::vpcmpCCW(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister xtmp, ComparisonPredicate cond, Width width, int vector_len) {
 3697   int eq_cond_enc = 0x29;
 3698   int gt_cond_enc = 0x37;
 3699   if (width != Assembler::Q) {
 3700     eq_cond_enc = 0x74 + width;
 3701     gt_cond_enc = 0x64 + width;
 3702   }
 3703   switch (cond) {
 3704   case eq:
 3705     vpcmpCC(dst, nds, src, eq_cond_enc, width, vector_len);
 3706     break;
 3707   case neq:
 3708     vpcmpCC(dst, nds, src, eq_cond_enc, width, vector_len);
 3709     vallones(xtmp, vector_len);
 3710     vpxor(dst, xtmp, dst, vector_len);
 3711     break;
 3712   case le:
 3713     vpcmpCC(dst, nds, src, gt_cond_enc, width, vector_len);
 3714     vallones(xtmp, vector_len);
 3715     vpxor(dst, xtmp, dst, vector_len);
 3716     break;
 3717   case nlt:
 3718     vpcmpCC(dst, src, nds, gt_cond_enc, width, vector_len);
 3719     vallones(xtmp, vector_len);
 3720     vpxor(dst, xtmp, dst, vector_len);
 3721     break;
 3722   case lt:
 3723     vpcmpCC(dst, src, nds, gt_cond_enc, width, vector_len);
 3724     break;
 3725   case nle:
 3726     vpcmpCC(dst, nds, src, gt_cond_enc, width, vector_len);
 3727     break;
 3728   default:
 3729     assert(false, "Should not reach here");
 3730   }
 3731 }
 3732 
 3733 void MacroAssembler::vpmovzxbw(XMMRegister dst, Address src, int vector_len) {
 3734   assert(((dst->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3735   Assembler::vpmovzxbw(dst, src, vector_len);
 3736 }
 3737 
 3738 void MacroAssembler::vpmovmskb(Register dst, XMMRegister src, int vector_len) {
 3739   assert((src->encoding() < 16),"XMM register should be 0-15");
 3740   Assembler::vpmovmskb(dst, src, vector_len);
 3741 }
 3742 
 3743 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
 3744   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3745   Assembler::vpmullw(dst, nds, src, vector_len);
 3746 }
 3747 
 3748 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
 3749   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3750   Assembler::vpmullw(dst, nds, src, vector_len);
 3751 }
 3752 
 3753 void MacroAssembler::vpmulld(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
 3754   assert((UseAVX > 0), "AVX support is needed");
 3755   assert(rscratch != noreg || always_reachable(src), "missing");
 3756 
 3757   if (reachable(src)) {
 3758     Assembler::vpmulld(dst, nds, as_Address(src), vector_len);
 3759   } else {
 3760     lea(rscratch, src);
 3761     Assembler::vpmulld(dst, nds, Address(rscratch, 0), vector_len);
 3762   }
 3763 }
 3764 
 3765 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
 3766   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3767   Assembler::vpsubb(dst, nds, src, vector_len);
 3768 }
 3769 
 3770 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
 3771   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3772   Assembler::vpsubb(dst, nds, src, vector_len);
 3773 }
 3774 
 3775 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
 3776   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3777   Assembler::vpsubw(dst, nds, src, vector_len);
 3778 }
 3779 
 3780 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
 3781   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3782   Assembler::vpsubw(dst, nds, src, vector_len);
 3783 }
 3784 
 3785 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
 3786   assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3787   Assembler::vpsraw(dst, nds, shift, vector_len);
 3788 }
 3789 
 3790 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
 3791   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3792   Assembler::vpsraw(dst, nds, shift, vector_len);
 3793 }
 3794 
 3795 void MacroAssembler::evpsraq(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
 3796   assert(UseAVX > 2,"");
 3797   if (!VM_Version::supports_avx512vl() && vector_len < 2) {
 3798      vector_len = 2;
 3799   }
 3800   Assembler::evpsraq(dst, nds, shift, vector_len);
 3801 }
 3802 
 3803 void MacroAssembler::evpsraq(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
 3804   assert(UseAVX > 2,"");
 3805   if (!VM_Version::supports_avx512vl() && vector_len < 2) {
 3806      vector_len = 2;
 3807   }
 3808   Assembler::evpsraq(dst, nds, shift, vector_len);
 3809 }
 3810 
 3811 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
 3812   assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3813   Assembler::vpsrlw(dst, nds, shift, vector_len);
 3814 }
 3815 
 3816 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
 3817   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3818   Assembler::vpsrlw(dst, nds, shift, vector_len);
 3819 }
 3820 
 3821 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
 3822   assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3823   Assembler::vpsllw(dst, nds, shift, vector_len);
 3824 }
 3825 
 3826 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
 3827   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3828   Assembler::vpsllw(dst, nds, shift, vector_len);
 3829 }
 3830 
 3831 void MacroAssembler::vptest(XMMRegister dst, XMMRegister src) {
 3832   assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15");
 3833   Assembler::vptest(dst, src);
 3834 }
 3835 
 3836 void MacroAssembler::punpcklbw(XMMRegister dst, XMMRegister src) {
 3837   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3838   Assembler::punpcklbw(dst, src);
 3839 }
 3840 
 3841 void MacroAssembler::pshufd(XMMRegister dst, Address src, int mode) {
 3842   assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
 3843   Assembler::pshufd(dst, src, mode);
 3844 }
 3845 
 3846 void MacroAssembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
 3847   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3848   Assembler::pshuflw(dst, src, mode);
 3849 }
 3850 
 3851 void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
 3852   assert(rscratch != noreg || always_reachable(src), "missing");
 3853 
 3854   if (reachable(src)) {
 3855     vandpd(dst, nds, as_Address(src), vector_len);
 3856   } else {
 3857     lea(rscratch, src);
 3858     vandpd(dst, nds, Address(rscratch, 0), vector_len);
 3859   }
 3860 }
 3861 
 3862 void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
 3863   assert(rscratch != noreg || always_reachable(src), "missing");
 3864 
 3865   if (reachable(src)) {
 3866     vandps(dst, nds, as_Address(src), vector_len);
 3867   } else {
 3868     lea(rscratch, src);
 3869     vandps(dst, nds, Address(rscratch, 0), vector_len);
 3870   }
 3871 }
 3872 
 3873 void MacroAssembler::evpord(XMMRegister dst, KRegister mask, XMMRegister nds, AddressLiteral src,
 3874                             bool merge, int vector_len, Register rscratch) {
 3875   assert(rscratch != noreg || always_reachable(src), "missing");
 3876 
 3877   if (reachable(src)) {
 3878     Assembler::evpord(dst, mask, nds, as_Address(src), merge, vector_len);
 3879   } else {
 3880     lea(rscratch, src);
 3881     Assembler::evpord(dst, mask, nds, Address(rscratch, 0), merge, vector_len);
 3882   }
 3883 }
 3884 
 3885 void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
 3886   assert(rscratch != noreg || always_reachable(src), "missing");
 3887 
 3888   if (reachable(src)) {
 3889     vdivsd(dst, nds, as_Address(src));
 3890   } else {
 3891     lea(rscratch, src);
 3892     vdivsd(dst, nds, Address(rscratch, 0));
 3893   }
 3894 }
 3895 
 3896 void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
 3897   assert(rscratch != noreg || always_reachable(src), "missing");
 3898 
 3899   if (reachable(src)) {
 3900     vdivss(dst, nds, as_Address(src));
 3901   } else {
 3902     lea(rscratch, src);
 3903     vdivss(dst, nds, Address(rscratch, 0));
 3904   }
 3905 }
 3906 
 3907 void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
 3908   assert(rscratch != noreg || always_reachable(src), "missing");
 3909 
 3910   if (reachable(src)) {
 3911     vmulsd(dst, nds, as_Address(src));
 3912   } else {
 3913     lea(rscratch, src);
 3914     vmulsd(dst, nds, Address(rscratch, 0));
 3915   }
 3916 }
 3917 
 3918 void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
 3919   assert(rscratch != noreg || always_reachable(src), "missing");
 3920 
 3921   if (reachable(src)) {
 3922     vmulss(dst, nds, as_Address(src));
 3923   } else {
 3924     lea(rscratch, src);
 3925     vmulss(dst, nds, Address(rscratch, 0));
 3926   }
 3927 }
 3928 
 3929 void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
 3930   assert(rscratch != noreg || always_reachable(src), "missing");
 3931 
 3932   if (reachable(src)) {
 3933     vsubsd(dst, nds, as_Address(src));
 3934   } else {
 3935     lea(rscratch, src);
 3936     vsubsd(dst, nds, Address(rscratch, 0));
 3937   }
 3938 }
 3939 
 3940 void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
 3941   assert(rscratch != noreg || always_reachable(src), "missing");
 3942 
 3943   if (reachable(src)) {
 3944     vsubss(dst, nds, as_Address(src));
 3945   } else {
 3946     lea(rscratch, src);
 3947     vsubss(dst, nds, Address(rscratch, 0));
 3948   }
 3949 }
 3950 
 3951 void MacroAssembler::vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
 3952   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15");
 3953   assert(rscratch != noreg || always_reachable(src), "missing");
 3954 
 3955   vxorps(dst, nds, src, Assembler::AVX_128bit, rscratch);
 3956 }
 3957 
 3958 void MacroAssembler::vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
 3959   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15");
 3960   assert(rscratch != noreg || always_reachable(src), "missing");
 3961 
 3962   vxorpd(dst, nds, src, Assembler::AVX_128bit, rscratch);
 3963 }
 3964 
 3965 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
 3966   assert(rscratch != noreg || always_reachable(src), "missing");
 3967 
 3968   if (reachable(src)) {
 3969     vxorpd(dst, nds, as_Address(src), vector_len);
 3970   } else {
 3971     lea(rscratch, src);
 3972     vxorpd(dst, nds, Address(rscratch, 0), vector_len);
 3973   }
 3974 }
 3975 
 3976 void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
 3977   assert(rscratch != noreg || always_reachable(src), "missing");
 3978 
 3979   if (reachable(src)) {
 3980     vxorps(dst, nds, as_Address(src), vector_len);
 3981   } else {
 3982     lea(rscratch, src);
 3983     vxorps(dst, nds, Address(rscratch, 0), vector_len);
 3984   }
 3985 }
 3986 
 3987 void MacroAssembler::vpxor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
 3988   assert(rscratch != noreg || always_reachable(src), "missing");
 3989 
 3990   if (UseAVX > 1 || (vector_len < 1)) {
 3991     if (reachable(src)) {
 3992       Assembler::vpxor(dst, nds, as_Address(src), vector_len);
 3993     } else {
 3994       lea(rscratch, src);
 3995       Assembler::vpxor(dst, nds, Address(rscratch, 0), vector_len);
 3996     }
 3997   } else {
 3998     MacroAssembler::vxorpd(dst, nds, src, vector_len, rscratch);
 3999   }
 4000 }
 4001 
 4002 void MacroAssembler::vpermd(XMMRegister dst,  XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
 4003   assert(rscratch != noreg || always_reachable(src), "missing");
 4004 
 4005   if (reachable(src)) {
 4006     Assembler::vpermd(dst, nds, as_Address(src), vector_len);
 4007   } else {
 4008     lea(rscratch, src);
 4009     Assembler::vpermd(dst, nds, Address(rscratch, 0), vector_len);
 4010   }
 4011 }
 4012 
 4013 void MacroAssembler::clear_jobject_tag(Register possibly_non_local) {
 4014   const int32_t inverted_mask = ~static_cast<int32_t>(JNIHandles::tag_mask);
 4015   STATIC_ASSERT(inverted_mask == -4); // otherwise check this code
 4016   // The inverted mask is sign-extended
 4017   andptr(possibly_non_local, inverted_mask);
 4018 }
 4019 
 4020 void MacroAssembler::resolve_jobject(Register value,
 4021                                      Register thread,
 4022                                      Register tmp) {
 4023   assert_different_registers(value, thread, tmp);
 4024   Label done, tagged, weak_tagged;
 4025   testptr(value, value);
 4026   jcc(Assembler::zero, done);           // Use null as-is.
 4027   testptr(value, JNIHandles::tag_mask); // Test for tag.
 4028   jcc(Assembler::notZero, tagged);
 4029 
 4030   // Resolve local handle
 4031   access_load_at(T_OBJECT, IN_NATIVE | AS_RAW, value, Address(value, 0), tmp, thread);
 4032   verify_oop(value);
 4033   jmp(done);
 4034 
 4035   bind(tagged);
 4036   testptr(value, JNIHandles::TypeTag::weak_global); // Test for weak tag.
 4037   jcc(Assembler::notZero, weak_tagged);
 4038 
 4039   // Resolve global handle
 4040   access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp, thread);
 4041   verify_oop(value);
 4042   jmp(done);
 4043 
 4044   bind(weak_tagged);
 4045   // Resolve jweak.
 4046   access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF,
 4047                  value, Address(value, -JNIHandles::TypeTag::weak_global), tmp, thread);
 4048   verify_oop(value);
 4049 
 4050   bind(done);
 4051 }
 4052 
 4053 void MacroAssembler::resolve_global_jobject(Register value,
 4054                                             Register thread,
 4055                                             Register tmp) {
 4056   assert_different_registers(value, thread, tmp);
 4057   Label done;
 4058 
 4059   testptr(value, value);
 4060   jcc(Assembler::zero, done);           // Use null as-is.
 4061 
 4062 #ifdef ASSERT
 4063   {
 4064     Label valid_global_tag;
 4065     testptr(value, JNIHandles::TypeTag::global); // Test for global tag.
 4066     jcc(Assembler::notZero, valid_global_tag);
 4067     stop("non global jobject using resolve_global_jobject");
 4068     bind(valid_global_tag);
 4069   }
 4070 #endif
 4071 
 4072   // Resolve global handle
 4073   access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp, thread);
 4074   verify_oop(value);
 4075 
 4076   bind(done);
 4077 }
 4078 
 4079 void MacroAssembler::subptr(Register dst, int32_t imm32) {
 4080   LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
 4081 }
 4082 
 4083 // Force generation of a 4 byte immediate value even if it fits into 8bit
 4084 void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) {
 4085   LP64_ONLY(subq_imm32(dst, imm32)) NOT_LP64(subl_imm32(dst, imm32));
 4086 }
 4087 
 4088 void MacroAssembler::subptr(Register dst, Register src) {
 4089   LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
 4090 }
 4091 
 4092 // C++ bool manipulation
 4093 void MacroAssembler::testbool(Register dst) {
 4094   if(sizeof(bool) == 1)
 4095     testb(dst, 0xff);
 4096   else if(sizeof(bool) == 2) {
 4097     // testw implementation needed for two byte bools
 4098     ShouldNotReachHere();
 4099   } else if(sizeof(bool) == 4)
 4100     testl(dst, dst);
 4101   else
 4102     // unsupported
 4103     ShouldNotReachHere();
 4104 }
 4105 
 4106 void MacroAssembler::testptr(Register dst, Register src) {
 4107   LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
 4108 }
 4109 
 4110 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
 4111 void MacroAssembler::tlab_allocate(Register thread, Register obj,
 4112                                    Register var_size_in_bytes,
 4113                                    int con_size_in_bytes,
 4114                                    Register t1,
 4115                                    Register t2,
 4116                                    Label& slow_case) {
 4117   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
 4118   bs->tlab_allocate(this, thread, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case);
 4119 }
 4120 
 4121 RegSet MacroAssembler::call_clobbered_gp_registers() {
 4122   RegSet regs;
 4123 #ifdef _LP64
 4124   regs += RegSet::of(rax, rcx, rdx);
 4125 #ifndef WINDOWS
 4126   regs += RegSet::of(rsi, rdi);
 4127 #endif
 4128   regs += RegSet::range(r8, r11);
 4129 #else
 4130   regs += RegSet::of(rax, rcx, rdx);
 4131 #endif
 4132   return regs;
 4133 }
 4134 
 4135 XMMRegSet MacroAssembler::call_clobbered_xmm_registers() {
 4136   int num_xmm_registers = XMMRegister::available_xmm_registers();
 4137 #if defined(WINDOWS) && defined(_LP64)
 4138   XMMRegSet result = XMMRegSet::range(xmm0, xmm5);
 4139   if (num_xmm_registers > 16) {
 4140      result += XMMRegSet::range(xmm16, as_XMMRegister(num_xmm_registers - 1));
 4141   }
 4142   return result;
 4143 #else
 4144   return XMMRegSet::range(xmm0, as_XMMRegister(num_xmm_registers - 1));
 4145 #endif
 4146 }
 4147 
 4148 static int FPUSaveAreaSize = align_up(108, StackAlignmentInBytes); // 108 bytes needed for FPU state by fsave/frstor
 4149 
 4150 #ifndef _LP64
 4151 static bool use_x87_registers() { return UseSSE < 2; }
 4152 #endif
 4153 static bool use_xmm_registers() { return UseSSE >= 1; }
 4154 
 4155 // C1 only ever uses the first double/float of the XMM register.
 4156 static int xmm_save_size() { return UseSSE >= 2 ? sizeof(double) : sizeof(float); }
 4157 
 4158 static void save_xmm_register(MacroAssembler* masm, int offset, XMMRegister reg) {
 4159   if (UseSSE == 1) {
 4160     masm->movflt(Address(rsp, offset), reg);
 4161   } else {
 4162     masm->movdbl(Address(rsp, offset), reg);
 4163   }
 4164 }
 4165 
 4166 static void restore_xmm_register(MacroAssembler* masm, int offset, XMMRegister reg) {
 4167   if (UseSSE == 1) {
 4168     masm->movflt(reg, Address(rsp, offset));
 4169   } else {
 4170     masm->movdbl(reg, Address(rsp, offset));
 4171   }
 4172 }
 4173 
 4174 int register_section_sizes(RegSet gp_registers, XMMRegSet xmm_registers, bool save_fpu,
 4175                            int& gp_area_size, int& fp_area_size, int& xmm_area_size) {
 4176 
 4177   gp_area_size = align_up(gp_registers.size() * Register::max_slots_per_register * VMRegImpl::stack_slot_size,
 4178                          StackAlignmentInBytes);
 4179 #ifdef _LP64
 4180   fp_area_size = 0;
 4181 #else
 4182   fp_area_size = (save_fpu && use_x87_registers()) ? FPUSaveAreaSize : 0;
 4183 #endif
 4184   xmm_area_size = (save_fpu && use_xmm_registers()) ? xmm_registers.size() * xmm_save_size() : 0;
 4185 
 4186   return gp_area_size + fp_area_size + xmm_area_size;
 4187 }
 4188 
 4189 void MacroAssembler::push_call_clobbered_registers_except(RegSet exclude, bool save_fpu) {
 4190   block_comment("push_call_clobbered_registers start");
 4191   // Regular registers
 4192   RegSet gp_registers_to_push = call_clobbered_gp_registers() - exclude;
 4193 
 4194   int gp_area_size;
 4195   int fp_area_size;
 4196   int xmm_area_size;
 4197   int total_save_size = register_section_sizes(gp_registers_to_push, call_clobbered_xmm_registers(), save_fpu,
 4198                                                gp_area_size, fp_area_size, xmm_area_size);
 4199   subptr(rsp, total_save_size);
 4200 
 4201   push_set(gp_registers_to_push, 0);
 4202 
 4203 #ifndef _LP64
 4204   if (save_fpu && use_x87_registers()) {
 4205     fnsave(Address(rsp, gp_area_size));
 4206     fwait();
 4207   }
 4208 #endif
 4209   if (save_fpu && use_xmm_registers()) {
 4210     push_set(call_clobbered_xmm_registers(), gp_area_size + fp_area_size);
 4211   }
 4212 
 4213   block_comment("push_call_clobbered_registers end");
 4214 }
 4215 
 4216 void MacroAssembler::pop_call_clobbered_registers_except(RegSet exclude, bool restore_fpu) {
 4217   block_comment("pop_call_clobbered_registers start");
 4218 
 4219   RegSet gp_registers_to_pop = call_clobbered_gp_registers() - exclude;
 4220 
 4221   int gp_area_size;
 4222   int fp_area_size;
 4223   int xmm_area_size;
 4224   int total_save_size = register_section_sizes(gp_registers_to_pop, call_clobbered_xmm_registers(), restore_fpu,
 4225                                                gp_area_size, fp_area_size, xmm_area_size);
 4226 
 4227   if (restore_fpu && use_xmm_registers()) {
 4228     pop_set(call_clobbered_xmm_registers(), gp_area_size + fp_area_size);
 4229   }
 4230 #ifndef _LP64
 4231   if (restore_fpu && use_x87_registers()) {
 4232     frstor(Address(rsp, gp_area_size));
 4233   }
 4234 #endif
 4235 
 4236   pop_set(gp_registers_to_pop, 0);
 4237 
 4238   addptr(rsp, total_save_size);
 4239 
 4240   vzeroupper();
 4241 
 4242   block_comment("pop_call_clobbered_registers end");
 4243 }
 4244 
 4245 void MacroAssembler::push_set(XMMRegSet set, int offset) {
 4246   assert(is_aligned(set.size() * xmm_save_size(), StackAlignmentInBytes), "must be");
 4247   int spill_offset = offset;
 4248 
 4249   for (RegSetIterator<XMMRegister> it = set.begin(); *it != xnoreg; ++it) {
 4250     save_xmm_register(this, spill_offset, *it);
 4251     spill_offset += xmm_save_size();
 4252   }
 4253 }
 4254 
 4255 void MacroAssembler::pop_set(XMMRegSet set, int offset) {
 4256   int restore_size = set.size() * xmm_save_size();
 4257   assert(is_aligned(restore_size, StackAlignmentInBytes), "must be");
 4258 
 4259   int restore_offset = offset + restore_size - xmm_save_size();
 4260 
 4261   for (ReverseRegSetIterator<XMMRegister> it = set.rbegin(); *it != xnoreg; ++it) {
 4262     restore_xmm_register(this, restore_offset, *it);
 4263     restore_offset -= xmm_save_size();
 4264   }
 4265 }
 4266 
 4267 void MacroAssembler::push_set(RegSet set, int offset) {
 4268   int spill_offset;
 4269   if (offset == -1) {
 4270     int register_push_size = set.size() * Register::max_slots_per_register * VMRegImpl::stack_slot_size;
 4271     int aligned_size = align_up(register_push_size, StackAlignmentInBytes);
 4272     subptr(rsp, aligned_size);
 4273     spill_offset = 0;
 4274   } else {
 4275     spill_offset = offset;
 4276   }
 4277 
 4278   for (RegSetIterator<Register> it = set.begin(); *it != noreg; ++it) {
 4279     movptr(Address(rsp, spill_offset), *it);
 4280     spill_offset += Register::max_slots_per_register * VMRegImpl::stack_slot_size;
 4281   }
 4282 }
 4283 
 4284 void MacroAssembler::pop_set(RegSet set, int offset) {
 4285 
 4286   int gp_reg_size = Register::max_slots_per_register * VMRegImpl::stack_slot_size;
 4287   int restore_size = set.size() * gp_reg_size;
 4288   int aligned_size = align_up(restore_size, StackAlignmentInBytes);
 4289 
 4290   int restore_offset;
 4291   if (offset == -1) {
 4292     restore_offset = restore_size - gp_reg_size;
 4293   } else {
 4294     restore_offset = offset + restore_size - gp_reg_size;
 4295   }
 4296   for (ReverseRegSetIterator<Register> it = set.rbegin(); *it != noreg; ++it) {
 4297     movptr(*it, Address(rsp, restore_offset));
 4298     restore_offset -= gp_reg_size;
 4299   }
 4300 
 4301   if (offset == -1) {
 4302     addptr(rsp, aligned_size);
 4303   }
 4304 }
 4305 
 4306 // Preserves the contents of address, destroys the contents length_in_bytes and temp.
 4307 void MacroAssembler::zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp) {
 4308   assert(address != length_in_bytes && address != temp && temp != length_in_bytes, "registers must be different");
 4309   assert((offset_in_bytes & (BytesPerWord - 1)) == 0, "offset must be a multiple of BytesPerWord");
 4310   Label done;
 4311 
 4312   testptr(length_in_bytes, length_in_bytes);
 4313   jcc(Assembler::zero, done);
 4314 
 4315   // initialize topmost word, divide index by 2, check if odd and test if zero
 4316   // note: for the remaining code to work, index must be a multiple of BytesPerWord
 4317 #ifdef ASSERT
 4318   {
 4319     Label L;
 4320     testptr(length_in_bytes, BytesPerWord - 1);
 4321     jcc(Assembler::zero, L);
 4322     stop("length must be a multiple of BytesPerWord");
 4323     bind(L);
 4324   }
 4325 #endif
 4326   Register index = length_in_bytes;
 4327   xorptr(temp, temp);    // use _zero reg to clear memory (shorter code)
 4328   if (UseIncDec) {
 4329     shrptr(index, 3);  // divide by 8/16 and set carry flag if bit 2 was set
 4330   } else {
 4331     shrptr(index, 2);  // use 2 instructions to avoid partial flag stall
 4332     shrptr(index, 1);
 4333   }
 4334 #ifndef _LP64
 4335   // index could have not been a multiple of 8 (i.e., bit 2 was set)
 4336   {
 4337     Label even;
 4338     // note: if index was a multiple of 8, then it cannot
 4339     //       be 0 now otherwise it must have been 0 before
 4340     //       => if it is even, we don't need to check for 0 again
 4341     jcc(Assembler::carryClear, even);
 4342     // clear topmost word (no jump would be needed if conditional assignment worked here)
 4343     movptr(Address(address, index, Address::times_8, offset_in_bytes - 0*BytesPerWord), temp);
 4344     // index could be 0 now, must check again
 4345     jcc(Assembler::zero, done);
 4346     bind(even);
 4347   }
 4348 #endif // !_LP64
 4349   // initialize remaining object fields: index is a multiple of 2 now
 4350   {
 4351     Label loop;
 4352     bind(loop);
 4353     movptr(Address(address, index, Address::times_8, offset_in_bytes - 1*BytesPerWord), temp);
 4354     NOT_LP64(movptr(Address(address, index, Address::times_8, offset_in_bytes - 2*BytesPerWord), temp);)
 4355     decrement(index);
 4356     jcc(Assembler::notZero, loop);
 4357   }
 4358 
 4359   bind(done);
 4360 }
 4361 
 4362 // Look up the method for a megamorphic invokeinterface call.
 4363 // The target method is determined by <intf_klass, itable_index>.
 4364 // The receiver klass is in recv_klass.
 4365 // On success, the result will be in method_result, and execution falls through.
 4366 // On failure, execution transfers to the given label.
 4367 void MacroAssembler::lookup_interface_method(Register recv_klass,
 4368                                              Register intf_klass,
 4369                                              RegisterOrConstant itable_index,
 4370                                              Register method_result,
 4371                                              Register scan_temp,
 4372                                              Label& L_no_such_interface,
 4373                                              bool return_method) {
 4374   assert_different_registers(recv_klass, intf_klass, scan_temp);
 4375   assert_different_registers(method_result, intf_klass, scan_temp);
 4376   assert(recv_klass != method_result || !return_method,
 4377          "recv_klass can be destroyed when method isn't needed");
 4378 
 4379   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
 4380          "caller must use same register for non-constant itable index as for method");
 4381 
 4382   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
 4383   int vtable_base = in_bytes(Klass::vtable_start_offset());
 4384   int itentry_off = in_bytes(itableMethodEntry::method_offset());
 4385   int scan_step   = itableOffsetEntry::size() * wordSize;
 4386   int vte_size    = vtableEntry::size_in_bytes();
 4387   Address::ScaleFactor times_vte_scale = Address::times_ptr;
 4388   assert(vte_size == wordSize, "else adjust times_vte_scale");
 4389 
 4390   movl(scan_temp, Address(recv_klass, Klass::vtable_length_offset()));
 4391 
 4392   // %%% Could store the aligned, prescaled offset in the klassoop.
 4393   lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
 4394 
 4395   if (return_method) {
 4396     // Adjust recv_klass by scaled itable_index, so we can free itable_index.
 4397     assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
 4398     lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
 4399   }
 4400 
 4401   // for (scan = klass->itable(); scan->interface() != nullptr; scan += scan_step) {
 4402   //   if (scan->interface() == intf) {
 4403   //     result = (klass + scan->offset() + itable_index);
 4404   //   }
 4405   // }
 4406   Label search, found_method;
 4407 
 4408   for (int peel = 1; peel >= 0; peel--) {
 4409     movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset()));
 4410     cmpptr(intf_klass, method_result);
 4411 
 4412     if (peel) {
 4413       jccb(Assembler::equal, found_method);
 4414     } else {
 4415       jccb(Assembler::notEqual, search);
 4416       // (invert the test to fall through to found_method...)
 4417     }
 4418 
 4419     if (!peel)  break;
 4420 
 4421     bind(search);
 4422 
 4423     // Check that the previous entry is non-null.  A null entry means that
 4424     // the receiver class doesn't implement the interface, and wasn't the
 4425     // same as when the caller was compiled.
 4426     testptr(method_result, method_result);
 4427     jcc(Assembler::zero, L_no_such_interface);
 4428     addptr(scan_temp, scan_step);
 4429   }
 4430 
 4431   bind(found_method);
 4432 
 4433   if (return_method) {
 4434     // Got a hit.
 4435     movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset()));
 4436     movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
 4437   }
 4438 }
 4439 
 4440 // Look up the method for a megamorphic invokeinterface call in a single pass over itable:
 4441 // - check recv_klass (actual object class) is a subtype of resolved_klass from CompiledICHolder
 4442 // - find a holder_klass (class that implements the method) vtable offset and get the method from vtable by index
 4443 // The target method is determined by <holder_klass, itable_index>.
 4444 // The receiver klass is in recv_klass.
 4445 // On success, the result will be in method_result, and execution falls through.
 4446 // On failure, execution transfers to the given label.
 4447 void MacroAssembler::lookup_interface_method_stub(Register recv_klass,
 4448                                                   Register holder_klass,
 4449                                                   Register resolved_klass,
 4450                                                   Register method_result,
 4451                                                   Register scan_temp,
 4452                                                   Register temp_reg2,
 4453                                                   Register receiver,
 4454                                                   int itable_index,
 4455                                                   Label& L_no_such_interface) {
 4456   assert_different_registers(recv_klass, method_result, holder_klass, resolved_klass, scan_temp, temp_reg2, receiver);
 4457   Register temp_itbl_klass = method_result;
 4458   Register temp_reg = (temp_reg2 == noreg ? recv_klass : temp_reg2); // reuse recv_klass register on 32-bit x86 impl
 4459 
 4460   int vtable_base = in_bytes(Klass::vtable_start_offset());
 4461   int itentry_off = in_bytes(itableMethodEntry::method_offset());
 4462   int scan_step = itableOffsetEntry::size() * wordSize;
 4463   int vte_size = vtableEntry::size_in_bytes();
 4464   int ioffset = in_bytes(itableOffsetEntry::interface_offset());
 4465   int ooffset = in_bytes(itableOffsetEntry::offset_offset());
 4466   Address::ScaleFactor times_vte_scale = Address::times_ptr;
 4467   assert(vte_size == wordSize, "adjust times_vte_scale");
 4468 
 4469   Label L_loop_scan_resolved_entry, L_resolved_found, L_holder_found;
 4470 
 4471   // temp_itbl_klass = recv_klass.itable[0]
 4472   // scan_temp = &recv_klass.itable[0] + step
 4473   movl(scan_temp, Address(recv_klass, Klass::vtable_length_offset()));
 4474   movptr(temp_itbl_klass, Address(recv_klass, scan_temp, times_vte_scale, vtable_base + ioffset));
 4475   lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base + ioffset + scan_step));
 4476   xorptr(temp_reg, temp_reg);
 4477 
 4478   // Initial checks:
 4479   //   - if (holder_klass != resolved_klass), go to "scan for resolved"
 4480   //   - if (itable[0] == 0), no such interface
 4481   //   - if (itable[0] == holder_klass), shortcut to "holder found"
 4482   cmpptr(holder_klass, resolved_klass);
 4483   jccb(Assembler::notEqual, L_loop_scan_resolved_entry);
 4484   testptr(temp_itbl_klass, temp_itbl_klass);
 4485   jccb(Assembler::zero, L_no_such_interface);
 4486   cmpptr(holder_klass, temp_itbl_klass);
 4487   jccb(Assembler::equal, L_holder_found);
 4488 
 4489   // Loop: Look for holder_klass record in itable
 4490   //   do {
 4491   //     tmp = itable[index];
 4492   //     index += step;
 4493   //     if (tmp == holder_klass) {
 4494   //       goto L_holder_found; // Found!
 4495   //     }
 4496   //   } while (tmp != 0);
 4497   //   goto L_no_such_interface // Not found.
 4498   Label L_scan_holder;
 4499   bind(L_scan_holder);
 4500     movptr(temp_itbl_klass, Address(scan_temp, 0));
 4501     addptr(scan_temp, scan_step);
 4502     cmpptr(holder_klass, temp_itbl_klass);
 4503     jccb(Assembler::equal, L_holder_found);
 4504     testptr(temp_itbl_klass, temp_itbl_klass);
 4505     jccb(Assembler::notZero, L_scan_holder);
 4506 
 4507   jmpb(L_no_such_interface);
 4508 
 4509   // Loop: Look for resolved_class record in itable
 4510   //   do {
 4511   //     tmp = itable[index];
 4512   //     index += step;
 4513   //     if (tmp == holder_klass) {
 4514   //        // Also check if we have met a holder klass
 4515   //        holder_tmp = itable[index-step-ioffset];
 4516   //     }
 4517   //     if (tmp == resolved_klass) {
 4518   //        goto L_resolved_found;  // Found!
 4519   //     }
 4520   //   } while (tmp != 0);
 4521   //   goto L_no_such_interface // Not found.
 4522   //
 4523   Label L_loop_scan_resolved;
 4524   bind(L_loop_scan_resolved);
 4525     movptr(temp_itbl_klass, Address(scan_temp, 0));
 4526     addptr(scan_temp, scan_step);
 4527     bind(L_loop_scan_resolved_entry);
 4528     cmpptr(holder_klass, temp_itbl_klass);
 4529     cmovl(Assembler::equal, temp_reg, Address(scan_temp, ooffset - ioffset - scan_step));
 4530     cmpptr(resolved_klass, temp_itbl_klass);
 4531     jccb(Assembler::equal, L_resolved_found);
 4532     testptr(temp_itbl_klass, temp_itbl_klass);
 4533     jccb(Assembler::notZero, L_loop_scan_resolved);
 4534 
 4535   jmpb(L_no_such_interface);
 4536 
 4537   Label L_ready;
 4538 
 4539   // See if we already have a holder klass. If not, go and scan for it.
 4540   bind(L_resolved_found);
 4541   testptr(temp_reg, temp_reg);
 4542   jccb(Assembler::zero, L_scan_holder);
 4543   jmpb(L_ready);
 4544 
 4545   bind(L_holder_found);
 4546   movl(temp_reg, Address(scan_temp, ooffset - ioffset - scan_step));
 4547 
 4548   // Finally, temp_reg contains holder_klass vtable offset
 4549   bind(L_ready);
 4550   assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
 4551   if (temp_reg2 == noreg) { // recv_klass register is clobbered for 32-bit x86 impl
 4552     load_klass(scan_temp, receiver, noreg);
 4553     movptr(method_result, Address(scan_temp, temp_reg, Address::times_1, itable_index * wordSize + itentry_off));
 4554   } else {
 4555     movptr(method_result, Address(recv_klass, temp_reg, Address::times_1, itable_index * wordSize + itentry_off));
 4556   }
 4557 }
 4558 
 4559 
 4560 // virtual method calling
 4561 void MacroAssembler::lookup_virtual_method(Register recv_klass,
 4562                                            RegisterOrConstant vtable_index,
 4563                                            Register method_result) {
 4564   const ByteSize base = Klass::vtable_start_offset();
 4565   assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below");
 4566   Address vtable_entry_addr(recv_klass,
 4567                             vtable_index, Address::times_ptr,
 4568                             base + vtableEntry::method_offset());
 4569   movptr(method_result, vtable_entry_addr);
 4570 }
 4571 
 4572 
 4573 void MacroAssembler::check_klass_subtype(Register sub_klass,
 4574                            Register super_klass,
 4575                            Register temp_reg,
 4576                            Label& L_success) {
 4577   Label L_failure;
 4578   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, nullptr);
 4579   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, nullptr);
 4580   bind(L_failure);
 4581 }
 4582 
 4583 
 4584 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
 4585                                                    Register super_klass,
 4586                                                    Register temp_reg,
 4587                                                    Label* L_success,
 4588                                                    Label* L_failure,
 4589                                                    Label* L_slow_path,
 4590                                         RegisterOrConstant super_check_offset) {
 4591   assert_different_registers(sub_klass, super_klass, temp_reg);
 4592   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
 4593   if (super_check_offset.is_register()) {
 4594     assert_different_registers(sub_klass, super_klass,
 4595                                super_check_offset.as_register());
 4596   } else if (must_load_sco) {
 4597     assert(temp_reg != noreg, "supply either a temp or a register offset");
 4598   }
 4599 
 4600   Label L_fallthrough;
 4601   int label_nulls = 0;
 4602   if (L_success == nullptr)   { L_success   = &L_fallthrough; label_nulls++; }
 4603   if (L_failure == nullptr)   { L_failure   = &L_fallthrough; label_nulls++; }
 4604   if (L_slow_path == nullptr) { L_slow_path = &L_fallthrough; label_nulls++; }
 4605   assert(label_nulls <= 1, "at most one null in the batch");
 4606 
 4607   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
 4608   int sco_offset = in_bytes(Klass::super_check_offset_offset());
 4609   Address super_check_offset_addr(super_klass, sco_offset);
 4610 
 4611   // Hacked jcc, which "knows" that L_fallthrough, at least, is in
 4612   // range of a jccb.  If this routine grows larger, reconsider at
 4613   // least some of these.
 4614 #define local_jcc(assembler_cond, label)                                \
 4615   if (&(label) == &L_fallthrough)  jccb(assembler_cond, label);         \
 4616   else                             jcc( assembler_cond, label) /*omit semi*/
 4617 
 4618   // Hacked jmp, which may only be used just before L_fallthrough.
 4619 #define final_jmp(label)                                                \
 4620   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
 4621   else                            jmp(label)                /*omit semi*/
 4622 
 4623   // If the pointers are equal, we are done (e.g., String[] elements).
 4624   // This self-check enables sharing of secondary supertype arrays among
 4625   // non-primary types such as array-of-interface.  Otherwise, each such
 4626   // type would need its own customized SSA.
 4627   // We move this check to the front of the fast path because many
 4628   // type checks are in fact trivially successful in this manner,
 4629   // so we get a nicely predicted branch right at the start of the check.
 4630   cmpptr(sub_klass, super_klass);
 4631   local_jcc(Assembler::equal, *L_success);
 4632 
 4633   // Check the supertype display:
 4634   if (must_load_sco) {
 4635     // Positive movl does right thing on LP64.
 4636     movl(temp_reg, super_check_offset_addr);
 4637     super_check_offset = RegisterOrConstant(temp_reg);
 4638   }
 4639   Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
 4640   cmpptr(super_klass, super_check_addr); // load displayed supertype
 4641 
 4642   // This check has worked decisively for primary supers.
 4643   // Secondary supers are sought in the super_cache ('super_cache_addr').
 4644   // (Secondary supers are interfaces and very deeply nested subtypes.)
 4645   // This works in the same check above because of a tricky aliasing
 4646   // between the super_cache and the primary super display elements.
 4647   // (The 'super_check_addr' can address either, as the case requires.)
 4648   // Note that the cache is updated below if it does not help us find
 4649   // what we need immediately.
 4650   // So if it was a primary super, we can just fail immediately.
 4651   // Otherwise, it's the slow path for us (no success at this point).
 4652 
 4653   if (super_check_offset.is_register()) {
 4654     local_jcc(Assembler::equal, *L_success);
 4655     cmpl(super_check_offset.as_register(), sc_offset);
 4656     if (L_failure == &L_fallthrough) {
 4657       local_jcc(Assembler::equal, *L_slow_path);
 4658     } else {
 4659       local_jcc(Assembler::notEqual, *L_failure);
 4660       final_jmp(*L_slow_path);
 4661     }
 4662   } else if (super_check_offset.as_constant() == sc_offset) {
 4663     // Need a slow path; fast failure is impossible.
 4664     if (L_slow_path == &L_fallthrough) {
 4665       local_jcc(Assembler::equal, *L_success);
 4666     } else {
 4667       local_jcc(Assembler::notEqual, *L_slow_path);
 4668       final_jmp(*L_success);
 4669     }
 4670   } else {
 4671     // No slow path; it's a fast decision.
 4672     if (L_failure == &L_fallthrough) {
 4673       local_jcc(Assembler::equal, *L_success);
 4674     } else {
 4675       local_jcc(Assembler::notEqual, *L_failure);
 4676       final_jmp(*L_success);
 4677     }
 4678   }
 4679 
 4680   bind(L_fallthrough);
 4681 
 4682 #undef local_jcc
 4683 #undef final_jmp
 4684 }
 4685 
 4686 
 4687 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
 4688                                                    Register super_klass,
 4689                                                    Register temp_reg,
 4690                                                    Register temp2_reg,
 4691                                                    Label* L_success,
 4692                                                    Label* L_failure,
 4693                                                    bool set_cond_codes) {
 4694   assert_different_registers(sub_klass, super_klass, temp_reg);
 4695   if (temp2_reg != noreg)
 4696     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
 4697 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
 4698 
 4699   Label L_fallthrough;
 4700   int label_nulls = 0;
 4701   if (L_success == nullptr)   { L_success   = &L_fallthrough; label_nulls++; }
 4702   if (L_failure == nullptr)   { L_failure   = &L_fallthrough; label_nulls++; }
 4703   assert(label_nulls <= 1, "at most one null in the batch");
 4704 
 4705   // a couple of useful fields in sub_klass:
 4706   int ss_offset = in_bytes(Klass::secondary_supers_offset());
 4707   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
 4708   Address secondary_supers_addr(sub_klass, ss_offset);
 4709   Address super_cache_addr(     sub_klass, sc_offset);
 4710 
 4711   // Do a linear scan of the secondary super-klass chain.
 4712   // This code is rarely used, so simplicity is a virtue here.
 4713   // The repne_scan instruction uses fixed registers, which we must spill.
 4714   // Don't worry too much about pre-existing connections with the input regs.
 4715 
 4716   assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
 4717   assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)
 4718 
 4719   // Get super_klass value into rax (even if it was in rdi or rcx).
 4720   bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
 4721   if (super_klass != rax) {
 4722     if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
 4723     mov(rax, super_klass);
 4724   }
 4725   if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
 4726   if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }
 4727 
 4728 #ifndef PRODUCT
 4729   uint* pst_counter = &SharedRuntime::_partial_subtype_ctr;
 4730   ExternalAddress pst_counter_addr((address) pst_counter);
 4731   NOT_LP64(  incrementl(pst_counter_addr) );
 4732   LP64_ONLY( lea(rcx, pst_counter_addr) );
 4733   LP64_ONLY( incrementl(Address(rcx, 0)) );
 4734 #endif //PRODUCT
 4735 
 4736   // We will consult the secondary-super array.
 4737   movptr(rdi, secondary_supers_addr);
 4738   // Load the array length.  (Positive movl does right thing on LP64.)
 4739   movl(rcx, Address(rdi, Array<Klass*>::length_offset_in_bytes()));
 4740   // Skip to start of data.
 4741   addptr(rdi, Array<Klass*>::base_offset_in_bytes());
 4742 
 4743   // Scan RCX words at [RDI] for an occurrence of RAX.
 4744   // Set NZ/Z based on last compare.
 4745   // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
 4746   // not change flags (only scas instruction which is repeated sets flags).
 4747   // Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
 4748 
 4749     testptr(rax,rax); // Set Z = 0
 4750     repne_scan();
 4751 
 4752   // Unspill the temp. registers:
 4753   if (pushed_rdi)  pop(rdi);
 4754   if (pushed_rcx)  pop(rcx);
 4755   if (pushed_rax)  pop(rax);
 4756 
 4757   if (set_cond_codes) {
 4758     // Special hack for the AD files:  rdi is guaranteed non-zero.
 4759     assert(!pushed_rdi, "rdi must be left non-null");
 4760     // Also, the condition codes are properly set Z/NZ on succeed/failure.
 4761   }
 4762 
 4763   if (L_failure == &L_fallthrough)
 4764         jccb(Assembler::notEqual, *L_failure);
 4765   else  jcc(Assembler::notEqual, *L_failure);
 4766 
 4767   // Success.  Cache the super we found and proceed in triumph.
 4768   movptr(super_cache_addr, super_klass);
 4769 
 4770   if (L_success != &L_fallthrough) {
 4771     jmp(*L_success);
 4772   }
 4773 
 4774 #undef IS_A_TEMP
 4775 
 4776   bind(L_fallthrough);
 4777 }
 4778 
 4779 void MacroAssembler::clinit_barrier(Register klass, Register thread, Label* L_fast_path, Label* L_slow_path) {
 4780   assert(L_fast_path != nullptr || L_slow_path != nullptr, "at least one is required");
 4781 
 4782   Label L_fallthrough;
 4783   if (L_fast_path == nullptr) {
 4784     L_fast_path = &L_fallthrough;
 4785   } else if (L_slow_path == nullptr) {
 4786     L_slow_path = &L_fallthrough;
 4787   }
 4788 
 4789   // Fast path check: class is fully initialized
 4790   cmpb(Address(klass, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized);
 4791   jcc(Assembler::equal, *L_fast_path);
 4792 
 4793   // Fast path check: current thread is initializer thread
 4794   cmpptr(thread, Address(klass, InstanceKlass::init_thread_offset()));
 4795   if (L_slow_path == &L_fallthrough) {
 4796     jcc(Assembler::equal, *L_fast_path);
 4797     bind(*L_slow_path);
 4798   } else if (L_fast_path == &L_fallthrough) {
 4799     jcc(Assembler::notEqual, *L_slow_path);
 4800     bind(*L_fast_path);
 4801   } else {
 4802     Unimplemented();
 4803   }
 4804 }
 4805 
 4806 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) {
 4807   if (VM_Version::supports_cmov()) {
 4808     cmovl(cc, dst, src);
 4809   } else {
 4810     Label L;
 4811     jccb(negate_condition(cc), L);
 4812     movl(dst, src);
 4813     bind(L);
 4814   }
 4815 }
 4816 
 4817 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) {
 4818   if (VM_Version::supports_cmov()) {
 4819     cmovl(cc, dst, src);
 4820   } else {
 4821     Label L;
 4822     jccb(negate_condition(cc), L);
 4823     movl(dst, src);
 4824     bind(L);
 4825   }
 4826 }
 4827 
 4828 void MacroAssembler::_verify_oop(Register reg, const char* s, const char* file, int line) {
 4829   if (!VerifyOops) return;
 4830 
 4831   BLOCK_COMMENT("verify_oop {");
 4832 #ifdef _LP64
 4833   push(rscratch1);
 4834 #endif
 4835   push(rax);                          // save rax
 4836   push(reg);                          // pass register argument
 4837 
 4838   // Pass register number to verify_oop_subroutine
 4839   const char* b = nullptr;
 4840   {
 4841     ResourceMark rm;
 4842     stringStream ss;
 4843     ss.print("verify_oop: %s: %s (%s:%d)", reg->name(), s, file, line);
 4844     b = code_string(ss.as_string());
 4845   }
 4846   ExternalAddress buffer((address) b);
 4847   pushptr(buffer.addr(), rscratch1);
 4848 
 4849   // call indirectly to solve generation ordering problem
 4850   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
 4851   call(rax);
 4852   // Caller pops the arguments (oop, message) and restores rax, r10
 4853   BLOCK_COMMENT("} verify_oop");
 4854 }
 4855 
 4856 void MacroAssembler::vallones(XMMRegister dst, int vector_len) {
 4857   if (UseAVX > 2 && (vector_len == Assembler::AVX_512bit || VM_Version::supports_avx512vl())) {
 4858     // Only pcmpeq has dependency breaking treatment (i.e the execution can begin without
 4859     // waiting for the previous result on dst), not vpcmpeqd, so just use vpternlog
 4860     vpternlogd(dst, 0xFF, dst, dst, vector_len);
 4861   } else if (VM_Version::supports_avx()) {
 4862     vpcmpeqd(dst, dst, dst, vector_len);
 4863   } else {
 4864     assert(VM_Version::supports_sse2(), "");
 4865     pcmpeqd(dst, dst);
 4866   }
 4867 }
 4868 
 4869 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
 4870                                          int extra_slot_offset) {
 4871   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
 4872   int stackElementSize = Interpreter::stackElementSize;
 4873   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
 4874 #ifdef ASSERT
 4875   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
 4876   assert(offset1 - offset == stackElementSize, "correct arithmetic");
 4877 #endif
 4878   Register             scale_reg    = noreg;
 4879   Address::ScaleFactor scale_factor = Address::no_scale;
 4880   if (arg_slot.is_constant()) {
 4881     offset += arg_slot.as_constant() * stackElementSize;
 4882   } else {
 4883     scale_reg    = arg_slot.as_register();
 4884     scale_factor = Address::times(stackElementSize);
 4885   }
 4886   offset += wordSize;           // return PC is on stack
 4887   return Address(rsp, scale_reg, scale_factor, offset);
 4888 }
 4889 
 4890 void MacroAssembler::_verify_oop_addr(Address addr, const char* s, const char* file, int line) {
 4891   if (!VerifyOops) return;
 4892 
 4893 #ifdef _LP64
 4894   push(rscratch1);
 4895 #endif
 4896   push(rax); // save rax,
 4897   // addr may contain rsp so we will have to adjust it based on the push
 4898   // we just did (and on 64 bit we do two pushes)
 4899   // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
 4900   // stores rax into addr which is backwards of what was intended.
 4901   if (addr.uses(rsp)) {
 4902     lea(rax, addr);
 4903     pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord));
 4904   } else {
 4905     pushptr(addr);
 4906   }
 4907 
 4908   // Pass register number to verify_oop_subroutine
 4909   const char* b = nullptr;
 4910   {
 4911     ResourceMark rm;
 4912     stringStream ss;
 4913     ss.print("verify_oop_addr: %s (%s:%d)", s, file, line);
 4914     b = code_string(ss.as_string());
 4915   }
 4916   ExternalAddress buffer((address) b);
 4917   pushptr(buffer.addr(), rscratch1);
 4918 
 4919   // call indirectly to solve generation ordering problem
 4920   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
 4921   call(rax);
 4922   // Caller pops the arguments (addr, message) and restores rax, r10.
 4923 }
 4924 
 4925 void MacroAssembler::verify_tlab() {
 4926 #ifdef ASSERT
 4927   if (UseTLAB && VerifyOops) {
 4928     Label next, ok;
 4929     Register t1 = rsi;
 4930     Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);
 4931 
 4932     push(t1);
 4933     NOT_LP64(push(thread_reg));
 4934     NOT_LP64(get_thread(thread_reg));
 4935 
 4936     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
 4937     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
 4938     jcc(Assembler::aboveEqual, next);
 4939     STOP("assert(top >= start)");
 4940     should_not_reach_here();
 4941 
 4942     bind(next);
 4943     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
 4944     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
 4945     jcc(Assembler::aboveEqual, ok);
 4946     STOP("assert(top <= end)");
 4947     should_not_reach_here();
 4948 
 4949     bind(ok);
 4950     NOT_LP64(pop(thread_reg));
 4951     pop(t1);
 4952   }
 4953 #endif
 4954 }
 4955 
 4956 class ControlWord {
 4957  public:
 4958   int32_t _value;
 4959 
 4960   int  rounding_control() const        { return  (_value >> 10) & 3      ; }
 4961   int  precision_control() const       { return  (_value >>  8) & 3      ; }
 4962   bool precision() const               { return ((_value >>  5) & 1) != 0; }
 4963   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
 4964   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
 4965   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
 4966   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
 4967   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
 4968 
 4969   void print() const {
 4970     // rounding control
 4971     const char* rc;
 4972     switch (rounding_control()) {
 4973       case 0: rc = "round near"; break;
 4974       case 1: rc = "round down"; break;
 4975       case 2: rc = "round up  "; break;
 4976       case 3: rc = "chop      "; break;
 4977       default:
 4978         rc = nullptr; // silence compiler warnings
 4979         fatal("Unknown rounding control: %d", rounding_control());
 4980     };
 4981     // precision control
 4982     const char* pc;
 4983     switch (precision_control()) {
 4984       case 0: pc = "24 bits "; break;
 4985       case 1: pc = "reserved"; break;
 4986       case 2: pc = "53 bits "; break;
 4987       case 3: pc = "64 bits "; break;
 4988       default:
 4989         pc = nullptr; // silence compiler warnings
 4990         fatal("Unknown precision control: %d", precision_control());
 4991     };
 4992     // flags
 4993     char f[9];
 4994     f[0] = ' ';
 4995     f[1] = ' ';
 4996     f[2] = (precision   ()) ? 'P' : 'p';
 4997     f[3] = (underflow   ()) ? 'U' : 'u';
 4998     f[4] = (overflow    ()) ? 'O' : 'o';
 4999     f[5] = (zero_divide ()) ? 'Z' : 'z';
 5000     f[6] = (denormalized()) ? 'D' : 'd';
 5001     f[7] = (invalid     ()) ? 'I' : 'i';
 5002     f[8] = '\x0';
 5003     // output
 5004     printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
 5005   }
 5006 
 5007 };
 5008 
 5009 class StatusWord {
 5010  public:
 5011   int32_t _value;
 5012 
 5013   bool busy() const                    { return ((_value >> 15) & 1) != 0; }
 5014   bool C3() const                      { return ((_value >> 14) & 1) != 0; }
 5015   bool C2() const                      { return ((_value >> 10) & 1) != 0; }
 5016   bool C1() const                      { return ((_value >>  9) & 1) != 0; }
 5017   bool C0() const                      { return ((_value >>  8) & 1) != 0; }
 5018   int  top() const                     { return  (_value >> 11) & 7      ; }
 5019   bool error_status() const            { return ((_value >>  7) & 1) != 0; }
 5020   bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
 5021   bool precision() const               { return ((_value >>  5) & 1) != 0; }
 5022   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
 5023   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
 5024   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
 5025   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
 5026   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
 5027 
 5028   void print() const {
 5029     // condition codes
 5030     char c[5];
 5031     c[0] = (C3()) ? '3' : '-';
 5032     c[1] = (C2()) ? '2' : '-';
 5033     c[2] = (C1()) ? '1' : '-';
 5034     c[3] = (C0()) ? '0' : '-';
 5035     c[4] = '\x0';
 5036     // flags
 5037     char f[9];
 5038     f[0] = (error_status()) ? 'E' : '-';
 5039     f[1] = (stack_fault ()) ? 'S' : '-';
 5040     f[2] = (precision   ()) ? 'P' : '-';
 5041     f[3] = (underflow   ()) ? 'U' : '-';
 5042     f[4] = (overflow    ()) ? 'O' : '-';
 5043     f[5] = (zero_divide ()) ? 'Z' : '-';
 5044     f[6] = (denormalized()) ? 'D' : '-';
 5045     f[7] = (invalid     ()) ? 'I' : '-';
 5046     f[8] = '\x0';
 5047     // output
 5048     printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
 5049   }
 5050 
 5051 };
 5052 
 5053 class TagWord {
 5054  public:
 5055   int32_t _value;
 5056 
 5057   int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
 5058 
 5059   void print() const {
 5060     printf("%04x", _value & 0xFFFF);
 5061   }
 5062 
 5063 };
 5064 
 5065 class FPU_Register {
 5066  public:
 5067   int32_t _m0;
 5068   int32_t _m1;
 5069   int16_t _ex;
 5070 
 5071   bool is_indefinite() const           {
 5072     return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
 5073   }
 5074 
 5075   void print() const {
 5076     char  sign = (_ex < 0) ? '-' : '+';
 5077     const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
 5078     printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
 5079   };
 5080 
 5081 };
 5082 
 5083 class FPU_State {
 5084  public:
 5085   enum {
 5086     register_size       = 10,
 5087     number_of_registers =  8,
 5088     register_mask       =  7
 5089   };
 5090 
 5091   ControlWord  _control_word;
 5092   StatusWord   _status_word;
 5093   TagWord      _tag_word;
 5094   int32_t      _error_offset;
 5095   int32_t      _error_selector;
 5096   int32_t      _data_offset;
 5097   int32_t      _data_selector;
 5098   int8_t       _register[register_size * number_of_registers];
 5099 
 5100   int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
 5101   FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }
 5102 
 5103   const char* tag_as_string(int tag) const {
 5104     switch (tag) {
 5105       case 0: return "valid";
 5106       case 1: return "zero";
 5107       case 2: return "special";
 5108       case 3: return "empty";
 5109     }
 5110     ShouldNotReachHere();
 5111     return nullptr;
 5112   }
 5113 
 5114   void print() const {
 5115     // print computation registers
 5116     { int t = _status_word.top();
 5117       for (int i = 0; i < number_of_registers; i++) {
 5118         int j = (i - t) & register_mask;
 5119         printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
 5120         st(j)->print();
 5121         printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
 5122       }
 5123     }
 5124     printf("\n");
 5125     // print control registers
 5126     printf("ctrl = "); _control_word.print(); printf("\n");
 5127     printf("stat = "); _status_word .print(); printf("\n");
 5128     printf("tags = "); _tag_word    .print(); printf("\n");
 5129   }
 5130 
 5131 };
 5132 
 5133 class Flag_Register {
 5134  public:
 5135   int32_t _value;
 5136 
 5137   bool overflow() const                { return ((_value >> 11) & 1) != 0; }
 5138   bool direction() const               { return ((_value >> 10) & 1) != 0; }
 5139   bool sign() const                    { return ((_value >>  7) & 1) != 0; }
 5140   bool zero() const                    { return ((_value >>  6) & 1) != 0; }
 5141   bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
 5142   bool parity() const                  { return ((_value >>  2) & 1) != 0; }
 5143   bool carry() const                   { return ((_value >>  0) & 1) != 0; }
 5144 
 5145   void print() const {
 5146     // flags
 5147     char f[8];
 5148     f[0] = (overflow       ()) ? 'O' : '-';
 5149     f[1] = (direction      ()) ? 'D' : '-';
 5150     f[2] = (sign           ()) ? 'S' : '-';
 5151     f[3] = (zero           ()) ? 'Z' : '-';
 5152     f[4] = (auxiliary_carry()) ? 'A' : '-';
 5153     f[5] = (parity         ()) ? 'P' : '-';
 5154     f[6] = (carry          ()) ? 'C' : '-';
 5155     f[7] = '\x0';
 5156     // output
 5157     printf("%08x  flags = %s", _value, f);
 5158   }
 5159 
 5160 };
 5161 
 5162 class IU_Register {
 5163  public:
 5164   int32_t _value;
 5165 
 5166   void print() const {
 5167     printf("%08x  %11d", _value, _value);
 5168   }
 5169 
 5170 };
 5171 
 5172 class IU_State {
 5173  public:
 5174   Flag_Register _eflags;
 5175   IU_Register   _rdi;
 5176   IU_Register   _rsi;
 5177   IU_Register   _rbp;
 5178   IU_Register   _rsp;
 5179   IU_Register   _rbx;
 5180   IU_Register   _rdx;
 5181   IU_Register   _rcx;
 5182   IU_Register   _rax;
 5183 
 5184   void print() const {
 5185     // computation registers
 5186     printf("rax,  = "); _rax.print(); printf("\n");
 5187     printf("rbx,  = "); _rbx.print(); printf("\n");
 5188     printf("rcx  = "); _rcx.print(); printf("\n");
 5189     printf("rdx  = "); _rdx.print(); printf("\n");
 5190     printf("rdi  = "); _rdi.print(); printf("\n");
 5191     printf("rsi  = "); _rsi.print(); printf("\n");
 5192     printf("rbp,  = "); _rbp.print(); printf("\n");
 5193     printf("rsp  = "); _rsp.print(); printf("\n");
 5194     printf("\n");
 5195     // control registers
 5196     printf("flgs = "); _eflags.print(); printf("\n");
 5197   }
 5198 };
 5199 
 5200 
 5201 class CPU_State {
 5202  public:
 5203   FPU_State _fpu_state;
 5204   IU_State  _iu_state;
 5205 
 5206   void print() const {
 5207     printf("--------------------------------------------------\n");
 5208     _iu_state .print();
 5209     printf("\n");
 5210     _fpu_state.print();
 5211     printf("--------------------------------------------------\n");
 5212   }
 5213 
 5214 };
 5215 
 5216 
 5217 static void _print_CPU_state(CPU_State* state) {
 5218   state->print();
 5219 };
 5220 
 5221 
 5222 void MacroAssembler::print_CPU_state() {
 5223   push_CPU_state();
 5224   push(rsp);                // pass CPU state
 5225   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
 5226   addptr(rsp, wordSize);       // discard argument
 5227   pop_CPU_state();
 5228 }
 5229 
 5230 
 5231 #ifndef _LP64
 5232 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
 5233   static int counter = 0;
 5234   FPU_State* fs = &state->_fpu_state;
 5235   counter++;
 5236   // For leaf calls, only verify that the top few elements remain empty.
 5237   // We only need 1 empty at the top for C2 code.
 5238   if( stack_depth < 0 ) {
 5239     if( fs->tag_for_st(7) != 3 ) {
 5240       printf("FPR7 not empty\n");
 5241       state->print();
 5242       assert(false, "error");
 5243       return false;
 5244     }
 5245     return true;                // All other stack states do not matter
 5246   }
 5247 
 5248   assert((fs->_control_word._value & 0xffff) == StubRoutines::x86::fpu_cntrl_wrd_std(),
 5249          "bad FPU control word");
 5250 
 5251   // compute stack depth
 5252   int i = 0;
 5253   while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
 5254   int d = i;
 5255   while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
 5256   // verify findings
 5257   if (i != FPU_State::number_of_registers) {
 5258     // stack not contiguous
 5259     printf("%s: stack not contiguous at ST%d\n", s, i);
 5260     state->print();
 5261     assert(false, "error");
 5262     return false;
 5263   }
 5264   // check if computed stack depth corresponds to expected stack depth
 5265   if (stack_depth < 0) {
 5266     // expected stack depth is -stack_depth or less
 5267     if (d > -stack_depth) {
 5268       // too many elements on the stack
 5269       printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
 5270       state->print();
 5271       assert(false, "error");
 5272       return false;
 5273     }
 5274   } else {
 5275     // expected stack depth is stack_depth
 5276     if (d != stack_depth) {
 5277       // wrong stack depth
 5278       printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
 5279       state->print();
 5280       assert(false, "error");
 5281       return false;
 5282     }
 5283   }
 5284   // everything is cool
 5285   return true;
 5286 }
 5287 
 5288 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
 5289   if (!VerifyFPU) return;
 5290   push_CPU_state();
 5291   push(rsp);                // pass CPU state
 5292   ExternalAddress msg((address) s);
 5293   // pass message string s
 5294   pushptr(msg.addr(), noreg);
 5295   push(stack_depth);        // pass stack depth
 5296   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
 5297   addptr(rsp, 3 * wordSize);   // discard arguments
 5298   // check for error
 5299   { Label L;
 5300     testl(rax, rax);
 5301     jcc(Assembler::notZero, L);
 5302     int3();                  // break if error condition
 5303     bind(L);
 5304   }
 5305   pop_CPU_state();
 5306 }
 5307 #endif // _LP64
 5308 
 5309 void MacroAssembler::restore_cpu_control_state_after_jni(Register rscratch) {
 5310   // Either restore the MXCSR register after returning from the JNI Call
 5311   // or verify that it wasn't changed (with -Xcheck:jni flag).
 5312   if (VM_Version::supports_sse()) {
 5313     if (RestoreMXCSROnJNICalls) {
 5314       ldmxcsr(ExternalAddress(StubRoutines::x86::addr_mxcsr_std()), rscratch);
 5315     } else if (CheckJNICalls) {
 5316       call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry()));
 5317     }
 5318   }
 5319   // Clear upper bits of YMM registers to avoid SSE <-> AVX transition penalty.
 5320   vzeroupper();
 5321 
 5322 #ifndef _LP64
 5323   // Either restore the x87 floating pointer control word after returning
 5324   // from the JNI call or verify that it wasn't changed.
 5325   if (CheckJNICalls) {
 5326     call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry()));
 5327   }
 5328 #endif // _LP64
 5329 }
 5330 
 5331 // ((OopHandle)result).resolve();
 5332 void MacroAssembler::resolve_oop_handle(Register result, Register tmp) {
 5333   assert_different_registers(result, tmp);
 5334 
 5335   // Only 64 bit platforms support GCs that require a tmp register
 5336   // Only IN_HEAP loads require a thread_tmp register
 5337   // OopHandle::resolve is an indirection like jobject.
 5338   access_load_at(T_OBJECT, IN_NATIVE,
 5339                  result, Address(result, 0), tmp, /*tmp_thread*/noreg);
 5340 }
 5341 
 5342 // ((WeakHandle)result).resolve();
 5343 void MacroAssembler::resolve_weak_handle(Register rresult, Register rtmp) {
 5344   assert_different_registers(rresult, rtmp);
 5345   Label resolved;
 5346 
 5347   // A null weak handle resolves to null.
 5348   cmpptr(rresult, 0);
 5349   jcc(Assembler::equal, resolved);
 5350 
 5351   // Only 64 bit platforms support GCs that require a tmp register
 5352   // Only IN_HEAP loads require a thread_tmp register
 5353   // WeakHandle::resolve is an indirection like jweak.
 5354   access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF,
 5355                  rresult, Address(rresult, 0), rtmp, /*tmp_thread*/noreg);
 5356   bind(resolved);
 5357 }
 5358 
 5359 void MacroAssembler::load_mirror(Register mirror, Register method, Register tmp) {
 5360   // get mirror
 5361   const int mirror_offset = in_bytes(Klass::java_mirror_offset());
 5362   load_method_holder(mirror, method);
 5363   movptr(mirror, Address(mirror, mirror_offset));
 5364   resolve_oop_handle(mirror, tmp);
 5365 }
 5366 
 5367 void MacroAssembler::load_method_holder_cld(Register rresult, Register rmethod) {
 5368   load_method_holder(rresult, rmethod);
 5369   movptr(rresult, Address(rresult, InstanceKlass::class_loader_data_offset()));
 5370 }
 5371 
 5372 void MacroAssembler::load_method_holder(Register holder, Register method) {
 5373   movptr(holder, Address(method, Method::const_offset()));                      // ConstMethod*
 5374   movptr(holder, Address(holder, ConstMethod::constants_offset()));             // ConstantPool*
 5375   movptr(holder, Address(holder, ConstantPool::pool_holder_offset()));          // InstanceKlass*
 5376 }
 5377 
 5378 void MacroAssembler::load_klass(Register dst, Register src, Register tmp) {
 5379   assert_different_registers(src, tmp);
 5380   assert_different_registers(dst, tmp);
 5381 #ifdef _LP64
 5382   if (UseCompressedClassPointers) {
 5383     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
 5384     decode_klass_not_null(dst, tmp);
 5385   } else
 5386 #endif
 5387     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
 5388 }
 5389 
 5390 void MacroAssembler::store_klass(Register dst, Register src, Register tmp) {
 5391   assert_different_registers(src, tmp);
 5392   assert_different_registers(dst, tmp);
 5393 #ifdef _LP64
 5394   if (UseCompressedClassPointers) {
 5395     encode_klass_not_null(src, tmp);
 5396     movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
 5397   } else
 5398 #endif
 5399     movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
 5400 }
 5401 
 5402 void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src,
 5403                                     Register tmp1, Register thread_tmp) {
 5404   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
 5405   decorators = AccessInternal::decorator_fixup(decorators, type);
 5406   bool as_raw = (decorators & AS_RAW) != 0;
 5407   if (as_raw) {
 5408     bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1, thread_tmp);
 5409   } else {
 5410     bs->load_at(this, decorators, type, dst, src, tmp1, thread_tmp);
 5411   }
 5412 }
 5413 
 5414 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register val,
 5415                                      Register tmp1, Register tmp2, Register tmp3) {
 5416   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
 5417   decorators = AccessInternal::decorator_fixup(decorators, type);
 5418   bool as_raw = (decorators & AS_RAW) != 0;
 5419   if (as_raw) {
 5420     bs->BarrierSetAssembler::store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3);
 5421   } else {
 5422     bs->store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3);
 5423   }
 5424 }
 5425 
 5426 void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1,
 5427                                    Register thread_tmp, DecoratorSet decorators) {
 5428   access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, thread_tmp);
 5429 }
 5430 
 5431 // Doesn't do verification, generates fixed size code
 5432 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1,
 5433                                             Register thread_tmp, DecoratorSet decorators) {
 5434   access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL | decorators, dst, src, tmp1, thread_tmp);
 5435 }
 5436 
 5437 void MacroAssembler::store_heap_oop(Address dst, Register val, Register tmp1,
 5438                                     Register tmp2, Register tmp3, DecoratorSet decorators) {
 5439   access_store_at(T_OBJECT, IN_HEAP | decorators, dst, val, tmp1, tmp2, tmp3);
 5440 }
 5441 
 5442 // Used for storing nulls.
 5443 void MacroAssembler::store_heap_oop_null(Address dst) {
 5444   access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg, noreg);
 5445 }
 5446 
 5447 #ifdef _LP64
 5448 void MacroAssembler::store_klass_gap(Register dst, Register src) {
 5449   if (UseCompressedClassPointers) {
 5450     // Store to klass gap in destination
 5451     movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
 5452   }
 5453 }
 5454 
 5455 #ifdef ASSERT
 5456 void MacroAssembler::verify_heapbase(const char* msg) {
 5457   assert (UseCompressedOops, "should be compressed");
 5458   assert (Universe::heap() != nullptr, "java heap should be initialized");
 5459   if (CheckCompressedOops) {
 5460     Label ok;
 5461     ExternalAddress src2(CompressedOops::ptrs_base_addr());
 5462     const bool is_src2_reachable = reachable(src2);
 5463     if (!is_src2_reachable) {
 5464       push(rscratch1);  // cmpptr trashes rscratch1
 5465     }
 5466     cmpptr(r12_heapbase, src2, rscratch1);
 5467     jcc(Assembler::equal, ok);
 5468     STOP(msg);
 5469     bind(ok);
 5470     if (!is_src2_reachable) {
 5471       pop(rscratch1);
 5472     }
 5473   }
 5474 }
 5475 #endif
 5476 
 5477 // Algorithm must match oop.inline.hpp encode_heap_oop.
 5478 void MacroAssembler::encode_heap_oop(Register r) {
 5479 #ifdef ASSERT
 5480   verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
 5481 #endif
 5482   verify_oop_msg(r, "broken oop in encode_heap_oop");
 5483   if (CompressedOops::base() == nullptr) {
 5484     if (CompressedOops::shift() != 0) {
 5485       assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
 5486       shrq(r, LogMinObjAlignmentInBytes);
 5487     }
 5488     return;
 5489   }
 5490   testq(r, r);
 5491   cmovq(Assembler::equal, r, r12_heapbase);
 5492   subq(r, r12_heapbase);
 5493   shrq(r, LogMinObjAlignmentInBytes);
 5494 }
 5495 
 5496 void MacroAssembler::encode_heap_oop_not_null(Register r) {
 5497 #ifdef ASSERT
 5498   verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
 5499   if (CheckCompressedOops) {
 5500     Label ok;
 5501     testq(r, r);
 5502     jcc(Assembler::notEqual, ok);
 5503     STOP("null oop passed to encode_heap_oop_not_null");
 5504     bind(ok);
 5505   }
 5506 #endif
 5507   verify_oop_msg(r, "broken oop in encode_heap_oop_not_null");
 5508   if (CompressedOops::base() != nullptr) {
 5509     subq(r, r12_heapbase);
 5510   }
 5511   if (CompressedOops::shift() != 0) {
 5512     assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
 5513     shrq(r, LogMinObjAlignmentInBytes);
 5514   }
 5515 }
 5516 
 5517 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
 5518 #ifdef ASSERT
 5519   verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
 5520   if (CheckCompressedOops) {
 5521     Label ok;
 5522     testq(src, src);
 5523     jcc(Assembler::notEqual, ok);
 5524     STOP("null oop passed to encode_heap_oop_not_null2");
 5525     bind(ok);
 5526   }
 5527 #endif
 5528   verify_oop_msg(src, "broken oop in encode_heap_oop_not_null2");
 5529   if (dst != src) {
 5530     movq(dst, src);
 5531   }
 5532   if (CompressedOops::base() != nullptr) {
 5533     subq(dst, r12_heapbase);
 5534   }
 5535   if (CompressedOops::shift() != 0) {
 5536     assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
 5537     shrq(dst, LogMinObjAlignmentInBytes);
 5538   }
 5539 }
 5540 
 5541 void  MacroAssembler::decode_heap_oop(Register r) {
 5542 #ifdef ASSERT
 5543   verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
 5544 #endif
 5545   if (CompressedOops::base() == nullptr) {
 5546     if (CompressedOops::shift() != 0) {
 5547       assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
 5548       shlq(r, LogMinObjAlignmentInBytes);
 5549     }
 5550   } else {
 5551     Label done;
 5552     shlq(r, LogMinObjAlignmentInBytes);
 5553     jccb(Assembler::equal, done);
 5554     addq(r, r12_heapbase);
 5555     bind(done);
 5556   }
 5557   verify_oop_msg(r, "broken oop in decode_heap_oop");
 5558 }
 5559 
 5560 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
 5561   // Note: it will change flags
 5562   assert (UseCompressedOops, "should only be used for compressed headers");
 5563   assert (Universe::heap() != nullptr, "java heap should be initialized");
 5564   // Cannot assert, unverified entry point counts instructions (see .ad file)
 5565   // vtableStubs also counts instructions in pd_code_size_limit.
 5566   // Also do not verify_oop as this is called by verify_oop.
 5567   if (CompressedOops::shift() != 0) {
 5568     assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
 5569     shlq(r, LogMinObjAlignmentInBytes);
 5570     if (CompressedOops::base() != nullptr) {
 5571       addq(r, r12_heapbase);
 5572     }
 5573   } else {
 5574     assert (CompressedOops::base() == nullptr, "sanity");
 5575   }
 5576 }
 5577 
 5578 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
 5579   // Note: it will change flags
 5580   assert (UseCompressedOops, "should only be used for compressed headers");
 5581   assert (Universe::heap() != nullptr, "java heap should be initialized");
 5582   // Cannot assert, unverified entry point counts instructions (see .ad file)
 5583   // vtableStubs also counts instructions in pd_code_size_limit.
 5584   // Also do not verify_oop as this is called by verify_oop.
 5585   if (CompressedOops::shift() != 0) {
 5586     assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
 5587     if (LogMinObjAlignmentInBytes == Address::times_8) {
 5588       leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
 5589     } else {
 5590       if (dst != src) {
 5591         movq(dst, src);
 5592       }
 5593       shlq(dst, LogMinObjAlignmentInBytes);
 5594       if (CompressedOops::base() != nullptr) {
 5595         addq(dst, r12_heapbase);
 5596       }
 5597     }
 5598   } else {
 5599     assert (CompressedOops::base() == nullptr, "sanity");
 5600     if (dst != src) {
 5601       movq(dst, src);
 5602     }
 5603   }
 5604 }
 5605 
 5606 void MacroAssembler::encode_klass_not_null(Register r, Register tmp) {
 5607   assert_different_registers(r, tmp);
 5608   if (CompressedKlassPointers::base() != nullptr) {
 5609     mov64(tmp, (int64_t)CompressedKlassPointers::base());
 5610     subq(r, tmp);
 5611   }
 5612   if (CompressedKlassPointers::shift() != 0) {
 5613     assert (LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong");
 5614     shrq(r, LogKlassAlignmentInBytes);
 5615   }
 5616 }
 5617 
 5618 void MacroAssembler::encode_and_move_klass_not_null(Register dst, Register src) {
 5619   assert_different_registers(src, dst);
 5620   if (CompressedKlassPointers::base() != nullptr) {
 5621     mov64(dst, -(int64_t)CompressedKlassPointers::base());
 5622     addq(dst, src);
 5623   } else {
 5624     movptr(dst, src);
 5625   }
 5626   if (CompressedKlassPointers::shift() != 0) {
 5627     assert (LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong");
 5628     shrq(dst, LogKlassAlignmentInBytes);
 5629   }
 5630 }
 5631 
 5632 void  MacroAssembler::decode_klass_not_null(Register r, Register tmp) {
 5633   assert_different_registers(r, tmp);
 5634   // Note: it will change flags
 5635   assert(UseCompressedClassPointers, "should only be used for compressed headers");
 5636   // Cannot assert, unverified entry point counts instructions (see .ad file)
 5637   // vtableStubs also counts instructions in pd_code_size_limit.
 5638   // Also do not verify_oop as this is called by verify_oop.
 5639   if (CompressedKlassPointers::shift() != 0) {
 5640     assert(LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong");
 5641     shlq(r, LogKlassAlignmentInBytes);
 5642   }
 5643   if (CompressedKlassPointers::base() != nullptr) {
 5644     mov64(tmp, (int64_t)CompressedKlassPointers::base());
 5645     addq(r, tmp);
 5646   }
 5647 }
 5648 
 5649 void  MacroAssembler::decode_and_move_klass_not_null(Register dst, Register src) {
 5650   assert_different_registers(src, dst);
 5651   // Note: it will change flags
 5652   assert (UseCompressedClassPointers, "should only be used for compressed headers");
 5653   // Cannot assert, unverified entry point counts instructions (see .ad file)
 5654   // vtableStubs also counts instructions in pd_code_size_limit.
 5655   // Also do not verify_oop as this is called by verify_oop.
 5656 
 5657   if (CompressedKlassPointers::base() == nullptr &&
 5658       CompressedKlassPointers::shift() == 0) {
 5659     // The best case scenario is that there is no base or shift. Then it is already
 5660     // a pointer that needs nothing but a register rename.
 5661     movl(dst, src);
 5662   } else {
 5663     if (CompressedKlassPointers::base() != nullptr) {
 5664       mov64(dst, (int64_t)CompressedKlassPointers::base());
 5665     } else {
 5666       xorq(dst, dst);
 5667     }
 5668     if (CompressedKlassPointers::shift() != 0) {
 5669       assert(LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong");
 5670       assert(LogKlassAlignmentInBytes == Address::times_8, "klass not aligned on 64bits?");
 5671       leaq(dst, Address(dst, src, Address::times_8, 0));
 5672     } else {
 5673       addq(dst, src);
 5674     }
 5675   }
 5676 }
 5677 
 5678 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
 5679   assert (UseCompressedOops, "should only be used for compressed headers");
 5680   assert (Universe::heap() != nullptr, "java heap should be initialized");
 5681   assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder");
 5682   int oop_index = oop_recorder()->find_index(obj);
 5683   RelocationHolder rspec = oop_Relocation::spec(oop_index);
 5684   mov_narrow_oop(dst, oop_index, rspec);
 5685 }
 5686 
 5687 void  MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
 5688   assert (UseCompressedOops, "should only be used for compressed headers");
 5689   assert (Universe::heap() != nullptr, "java heap should be initialized");
 5690   assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder");
 5691   int oop_index = oop_recorder()->find_index(obj);
 5692   RelocationHolder rspec = oop_Relocation::spec(oop_index);
 5693   mov_narrow_oop(dst, oop_index, rspec);
 5694 }
 5695 
 5696 void  MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
 5697   assert (UseCompressedClassPointers, "should only be used for compressed headers");
 5698   assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder");
 5699   int klass_index = oop_recorder()->find_index(k);
 5700   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
 5701   mov_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec);
 5702 }
 5703 
 5704 void  MacroAssembler::set_narrow_klass(Address dst, Klass* k) {
 5705   assert (UseCompressedClassPointers, "should only be used for compressed headers");
 5706   assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder");
 5707   int klass_index = oop_recorder()->find_index(k);
 5708   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
 5709   mov_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec);
 5710 }
 5711 
 5712 void  MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
 5713   assert (UseCompressedOops, "should only be used for compressed headers");
 5714   assert (Universe::heap() != nullptr, "java heap should be initialized");
 5715   assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder");
 5716   int oop_index = oop_recorder()->find_index(obj);
 5717   RelocationHolder rspec = oop_Relocation::spec(oop_index);
 5718   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
 5719 }
 5720 
 5721 void  MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
 5722   assert (UseCompressedOops, "should only be used for compressed headers");
 5723   assert (Universe::heap() != nullptr, "java heap should be initialized");
 5724   assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder");
 5725   int oop_index = oop_recorder()->find_index(obj);
 5726   RelocationHolder rspec = oop_Relocation::spec(oop_index);
 5727   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
 5728 }
 5729 
 5730 void  MacroAssembler::cmp_narrow_klass(Register dst, Klass* k) {
 5731   assert (UseCompressedClassPointers, "should only be used for compressed headers");
 5732   assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder");
 5733   int klass_index = oop_recorder()->find_index(k);
 5734   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
 5735   Assembler::cmp_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec);
 5736 }
 5737 
 5738 void  MacroAssembler::cmp_narrow_klass(Address dst, Klass* k) {
 5739   assert (UseCompressedClassPointers, "should only be used for compressed headers");
 5740   assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder");
 5741   int klass_index = oop_recorder()->find_index(k);
 5742   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
 5743   Assembler::cmp_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec);
 5744 }
 5745 
 5746 void MacroAssembler::reinit_heapbase() {
 5747   if (UseCompressedOops) {
 5748     if (Universe::heap() != nullptr) {
 5749       if (CompressedOops::base() == nullptr) {
 5750         MacroAssembler::xorptr(r12_heapbase, r12_heapbase);
 5751       } else {
 5752         mov64(r12_heapbase, (int64_t)CompressedOops::ptrs_base());
 5753       }
 5754     } else {
 5755       movptr(r12_heapbase, ExternalAddress(CompressedOops::ptrs_base_addr()));
 5756     }
 5757   }
 5758 }
 5759 
 5760 #endif // _LP64
 5761 
 5762 #if COMPILER2_OR_JVMCI
 5763 
 5764 // clear memory of size 'cnt' qwords, starting at 'base' using XMM/YMM/ZMM registers
 5765 void MacroAssembler::xmm_clear_mem(Register base, Register cnt, Register rtmp, XMMRegister xtmp, KRegister mask) {
 5766   // cnt - number of qwords (8-byte words).
 5767   // base - start address, qword aligned.
 5768   Label L_zero_64_bytes, L_loop, L_sloop, L_tail, L_end;
 5769   bool use64byteVector = (MaxVectorSize == 64) && (VM_Version::avx3_threshold() == 0);
 5770   if (use64byteVector) {
 5771     vpxor(xtmp, xtmp, xtmp, AVX_512bit);
 5772   } else if (MaxVectorSize >= 32) {
 5773     vpxor(xtmp, xtmp, xtmp, AVX_256bit);
 5774   } else {
 5775     pxor(xtmp, xtmp);
 5776   }
 5777   jmp(L_zero_64_bytes);
 5778 
 5779   BIND(L_loop);
 5780   if (MaxVectorSize >= 32) {
 5781     fill64(base, 0, xtmp, use64byteVector);
 5782   } else {
 5783     movdqu(Address(base,  0), xtmp);
 5784     movdqu(Address(base, 16), xtmp);
 5785     movdqu(Address(base, 32), xtmp);
 5786     movdqu(Address(base, 48), xtmp);
 5787   }
 5788   addptr(base, 64);
 5789 
 5790   BIND(L_zero_64_bytes);
 5791   subptr(cnt, 8);
 5792   jccb(Assembler::greaterEqual, L_loop);
 5793 
 5794   // Copy trailing 64 bytes
 5795   if (use64byteVector) {
 5796     addptr(cnt, 8);
 5797     jccb(Assembler::equal, L_end);
 5798     fill64_masked(3, base, 0, xtmp, mask, cnt, rtmp, true);
 5799     jmp(L_end);
 5800   } else {
 5801     addptr(cnt, 4);
 5802     jccb(Assembler::less, L_tail);
 5803     if (MaxVectorSize >= 32) {
 5804       vmovdqu(Address(base, 0), xtmp);
 5805     } else {
 5806       movdqu(Address(base,  0), xtmp);
 5807       movdqu(Address(base, 16), xtmp);
 5808     }
 5809   }
 5810   addptr(base, 32);
 5811   subptr(cnt, 4);
 5812 
 5813   BIND(L_tail);
 5814   addptr(cnt, 4);
 5815   jccb(Assembler::lessEqual, L_end);
 5816   if (UseAVX > 2 && MaxVectorSize >= 32 && VM_Version::supports_avx512vl()) {
 5817     fill32_masked(3, base, 0, xtmp, mask, cnt, rtmp);
 5818   } else {
 5819     decrement(cnt);
 5820 
 5821     BIND(L_sloop);
 5822     movq(Address(base, 0), xtmp);
 5823     addptr(base, 8);
 5824     decrement(cnt);
 5825     jccb(Assembler::greaterEqual, L_sloop);
 5826   }
 5827   BIND(L_end);
 5828 }
 5829 
 5830 // Clearing constant sized memory using YMM/ZMM registers.
 5831 void MacroAssembler::clear_mem(Register base, int cnt, Register rtmp, XMMRegister xtmp, KRegister mask) {
 5832   assert(UseAVX > 2 && VM_Version::supports_avx512vlbw(), "");
 5833   bool use64byteVector = (MaxVectorSize > 32) && (VM_Version::avx3_threshold() == 0);
 5834 
 5835   int vector64_count = (cnt & (~0x7)) >> 3;
 5836   cnt = cnt & 0x7;
 5837   const int fill64_per_loop = 4;
 5838   const int max_unrolled_fill64 = 8;
 5839 
 5840   // 64 byte initialization loop.
 5841   vpxor(xtmp, xtmp, xtmp, use64byteVector ? AVX_512bit : AVX_256bit);
 5842   int start64 = 0;
 5843   if (vector64_count > max_unrolled_fill64) {
 5844     Label LOOP;
 5845     Register index = rtmp;
 5846 
 5847     start64 = vector64_count - (vector64_count % fill64_per_loop);
 5848 
 5849     movl(index, 0);
 5850     BIND(LOOP);
 5851     for (int i = 0; i < fill64_per_loop; i++) {
 5852       fill64(Address(base, index, Address::times_1, i * 64), xtmp, use64byteVector);
 5853     }
 5854     addl(index, fill64_per_loop * 64);
 5855     cmpl(index, start64 * 64);
 5856     jccb(Assembler::less, LOOP);
 5857   }
 5858   for (int i = start64; i < vector64_count; i++) {
 5859     fill64(base, i * 64, xtmp, use64byteVector);
 5860   }
 5861 
 5862   // Clear remaining 64 byte tail.
 5863   int disp = vector64_count * 64;
 5864   if (cnt) {
 5865     switch (cnt) {
 5866       case 1:
 5867         movq(Address(base, disp), xtmp);
 5868         break;
 5869       case 2:
 5870         evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_128bit);
 5871         break;
 5872       case 3:
 5873         movl(rtmp, 0x7);
 5874         kmovwl(mask, rtmp);
 5875         evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_256bit);
 5876         break;
 5877       case 4:
 5878         evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit);
 5879         break;
 5880       case 5:
 5881         if (use64byteVector) {
 5882           movl(rtmp, 0x1F);
 5883           kmovwl(mask, rtmp);
 5884           evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_512bit);
 5885         } else {
 5886           evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit);
 5887           movq(Address(base, disp + 32), xtmp);
 5888         }
 5889         break;
 5890       case 6:
 5891         if (use64byteVector) {
 5892           movl(rtmp, 0x3F);
 5893           kmovwl(mask, rtmp);
 5894           evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_512bit);
 5895         } else {
 5896           evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit);
 5897           evmovdqu(T_LONG, k0, Address(base, disp + 32), xtmp, false, Assembler::AVX_128bit);
 5898         }
 5899         break;
 5900       case 7:
 5901         if (use64byteVector) {
 5902           movl(rtmp, 0x7F);
 5903           kmovwl(mask, rtmp);
 5904           evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_512bit);
 5905         } else {
 5906           evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit);
 5907           movl(rtmp, 0x7);
 5908           kmovwl(mask, rtmp);
 5909           evmovdqu(T_LONG, mask, Address(base, disp + 32), xtmp, true, Assembler::AVX_256bit);
 5910         }
 5911         break;
 5912       default:
 5913         fatal("Unexpected length : %d\n",cnt);
 5914         break;
 5915     }
 5916   }
 5917 }
 5918 
 5919 void MacroAssembler::clear_mem(Register base, Register cnt, Register tmp, XMMRegister xtmp,
 5920                                bool is_large, KRegister mask) {
 5921   // cnt      - number of qwords (8-byte words).
 5922   // base     - start address, qword aligned.
 5923   // is_large - if optimizers know cnt is larger than InitArrayShortSize
 5924   assert(base==rdi, "base register must be edi for rep stos");
 5925   assert(tmp==rax,   "tmp register must be eax for rep stos");
 5926   assert(cnt==rcx,   "cnt register must be ecx for rep stos");
 5927   assert(InitArrayShortSize % BytesPerLong == 0,
 5928     "InitArrayShortSize should be the multiple of BytesPerLong");
 5929 
 5930   Label DONE;
 5931   if (!is_large || !UseXMMForObjInit) {
 5932     xorptr(tmp, tmp);
 5933   }
 5934 
 5935   if (!is_large) {
 5936     Label LOOP, LONG;
 5937     cmpptr(cnt, InitArrayShortSize/BytesPerLong);
 5938     jccb(Assembler::greater, LONG);
 5939 
 5940     NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM
 5941 
 5942     decrement(cnt);
 5943     jccb(Assembler::negative, DONE); // Zero length
 5944 
 5945     // Use individual pointer-sized stores for small counts:
 5946     BIND(LOOP);
 5947     movptr(Address(base, cnt, Address::times_ptr), tmp);
 5948     decrement(cnt);
 5949     jccb(Assembler::greaterEqual, LOOP);
 5950     jmpb(DONE);
 5951 
 5952     BIND(LONG);
 5953   }
 5954 
 5955   // Use longer rep-prefixed ops for non-small counts:
 5956   if (UseFastStosb) {
 5957     shlptr(cnt, 3); // convert to number of bytes
 5958     rep_stosb();
 5959   } else if (UseXMMForObjInit) {
 5960     xmm_clear_mem(base, cnt, tmp, xtmp, mask);
 5961   } else {
 5962     NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM
 5963     rep_stos();
 5964   }
 5965 
 5966   BIND(DONE);
 5967 }
 5968 
 5969 #endif //COMPILER2_OR_JVMCI
 5970 
 5971 
 5972 void MacroAssembler::generate_fill(BasicType t, bool aligned,
 5973                                    Register to, Register value, Register count,
 5974                                    Register rtmp, XMMRegister xtmp) {
 5975   ShortBranchVerifier sbv(this);
 5976   assert_different_registers(to, value, count, rtmp);
 5977   Label L_exit;
 5978   Label L_fill_2_bytes, L_fill_4_bytes;
 5979 
 5980 #if defined(COMPILER2) && defined(_LP64)
 5981   if(MaxVectorSize >=32 &&
 5982      VM_Version::supports_avx512vlbw() &&
 5983      VM_Version::supports_bmi2()) {
 5984     generate_fill_avx3(t, to, value, count, rtmp, xtmp);
 5985     return;
 5986   }
 5987 #endif
 5988 
 5989   int shift = -1;
 5990   switch (t) {
 5991     case T_BYTE:
 5992       shift = 2;
 5993       break;
 5994     case T_SHORT:
 5995       shift = 1;
 5996       break;
 5997     case T_INT:
 5998       shift = 0;
 5999       break;
 6000     default: ShouldNotReachHere();
 6001   }
 6002 
 6003   if (t == T_BYTE) {
 6004     andl(value, 0xff);
 6005     movl(rtmp, value);
 6006     shll(rtmp, 8);
 6007     orl(value, rtmp);
 6008   }
 6009   if (t == T_SHORT) {
 6010     andl(value, 0xffff);
 6011   }
 6012   if (t == T_BYTE || t == T_SHORT) {
 6013     movl(rtmp, value);
 6014     shll(rtmp, 16);
 6015     orl(value, rtmp);
 6016   }
 6017 
 6018   cmpl(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
 6019   jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp
 6020   if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
 6021     Label L_skip_align2;
 6022     // align source address at 4 bytes address boundary
 6023     if (t == T_BYTE) {
 6024       Label L_skip_align1;
 6025       // One byte misalignment happens only for byte arrays
 6026       testptr(to, 1);
 6027       jccb(Assembler::zero, L_skip_align1);
 6028       movb(Address(to, 0), value);
 6029       increment(to);
 6030       decrement(count);
 6031       BIND(L_skip_align1);
 6032     }
 6033     // Two bytes misalignment happens only for byte and short (char) arrays
 6034     testptr(to, 2);
 6035     jccb(Assembler::zero, L_skip_align2);
 6036     movw(Address(to, 0), value);
 6037     addptr(to, 2);
 6038     subl(count, 1<<(shift-1));
 6039     BIND(L_skip_align2);
 6040   }
 6041   if (UseSSE < 2) {
 6042     Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
 6043     // Fill 32-byte chunks
 6044     subl(count, 8 << shift);
 6045     jcc(Assembler::less, L_check_fill_8_bytes);
 6046     align(16);
 6047 
 6048     BIND(L_fill_32_bytes_loop);
 6049 
 6050     for (int i = 0; i < 32; i += 4) {
 6051       movl(Address(to, i), value);
 6052     }
 6053 
 6054     addptr(to, 32);
 6055     subl(count, 8 << shift);
 6056     jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
 6057     BIND(L_check_fill_8_bytes);
 6058     addl(count, 8 << shift);
 6059     jccb(Assembler::zero, L_exit);
 6060     jmpb(L_fill_8_bytes);
 6061 
 6062     //
 6063     // length is too short, just fill qwords
 6064     //
 6065     BIND(L_fill_8_bytes_loop);
 6066     movl(Address(to, 0), value);
 6067     movl(Address(to, 4), value);
 6068     addptr(to, 8);
 6069     BIND(L_fill_8_bytes);
 6070     subl(count, 1 << (shift + 1));
 6071     jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
 6072     // fall through to fill 4 bytes
 6073   } else {
 6074     Label L_fill_32_bytes;
 6075     if (!UseUnalignedLoadStores) {
 6076       // align to 8 bytes, we know we are 4 byte aligned to start
 6077       testptr(to, 4);
 6078       jccb(Assembler::zero, L_fill_32_bytes);
 6079       movl(Address(to, 0), value);
 6080       addptr(to, 4);
 6081       subl(count, 1<<shift);
 6082     }
 6083     BIND(L_fill_32_bytes);
 6084     {
 6085       assert( UseSSE >= 2, "supported cpu only" );
 6086       Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
 6087       movdl(xtmp, value);
 6088       if (UseAVX >= 2 && UseUnalignedLoadStores) {
 6089         Label L_check_fill_32_bytes;
 6090         if (UseAVX > 2) {
 6091           // Fill 64-byte chunks
 6092           Label L_fill_64_bytes_loop_avx3, L_check_fill_64_bytes_avx2;
 6093 
 6094           // If number of bytes to fill < VM_Version::avx3_threshold(), perform fill using AVX2
 6095           cmpl(count, VM_Version::avx3_threshold());
 6096           jccb(Assembler::below, L_check_fill_64_bytes_avx2);
 6097 
 6098           vpbroadcastd(xtmp, xtmp, Assembler::AVX_512bit);
 6099 
 6100           subl(count, 16 << shift);
 6101           jccb(Assembler::less, L_check_fill_32_bytes);
 6102           align(16);
 6103 
 6104           BIND(L_fill_64_bytes_loop_avx3);
 6105           evmovdqul(Address(to, 0), xtmp, Assembler::AVX_512bit);
 6106           addptr(to, 64);
 6107           subl(count, 16 << shift);
 6108           jcc(Assembler::greaterEqual, L_fill_64_bytes_loop_avx3);
 6109           jmpb(L_check_fill_32_bytes);
 6110 
 6111           BIND(L_check_fill_64_bytes_avx2);
 6112         }
 6113         // Fill 64-byte chunks
 6114         Label L_fill_64_bytes_loop;
 6115         vpbroadcastd(xtmp, xtmp, Assembler::AVX_256bit);
 6116 
 6117         subl(count, 16 << shift);
 6118         jcc(Assembler::less, L_check_fill_32_bytes);
 6119         align(16);
 6120 
 6121         BIND(L_fill_64_bytes_loop);
 6122         vmovdqu(Address(to, 0), xtmp);
 6123         vmovdqu(Address(to, 32), xtmp);
 6124         addptr(to, 64);
 6125         subl(count, 16 << shift);
 6126         jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
 6127 
 6128         BIND(L_check_fill_32_bytes);
 6129         addl(count, 8 << shift);
 6130         jccb(Assembler::less, L_check_fill_8_bytes);
 6131         vmovdqu(Address(to, 0), xtmp);
 6132         addptr(to, 32);
 6133         subl(count, 8 << shift);
 6134 
 6135         BIND(L_check_fill_8_bytes);
 6136         // clean upper bits of YMM registers
 6137         movdl(xtmp, value);
 6138         pshufd(xtmp, xtmp, 0);
 6139       } else {
 6140         // Fill 32-byte chunks
 6141         pshufd(xtmp, xtmp, 0);
 6142 
 6143         subl(count, 8 << shift);
 6144         jcc(Assembler::less, L_check_fill_8_bytes);
 6145         align(16);
 6146 
 6147         BIND(L_fill_32_bytes_loop);
 6148 
 6149         if (UseUnalignedLoadStores) {
 6150           movdqu(Address(to, 0), xtmp);
 6151           movdqu(Address(to, 16), xtmp);
 6152         } else {
 6153           movq(Address(to, 0), xtmp);
 6154           movq(Address(to, 8), xtmp);
 6155           movq(Address(to, 16), xtmp);
 6156           movq(Address(to, 24), xtmp);
 6157         }
 6158 
 6159         addptr(to, 32);
 6160         subl(count, 8 << shift);
 6161         jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
 6162 
 6163         BIND(L_check_fill_8_bytes);
 6164       }
 6165       addl(count, 8 << shift);
 6166       jccb(Assembler::zero, L_exit);
 6167       jmpb(L_fill_8_bytes);
 6168 
 6169       //
 6170       // length is too short, just fill qwords
 6171       //
 6172       BIND(L_fill_8_bytes_loop);
 6173       movq(Address(to, 0), xtmp);
 6174       addptr(to, 8);
 6175       BIND(L_fill_8_bytes);
 6176       subl(count, 1 << (shift + 1));
 6177       jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
 6178     }
 6179   }
 6180   // fill trailing 4 bytes
 6181   BIND(L_fill_4_bytes);
 6182   testl(count, 1<<shift);
 6183   jccb(Assembler::zero, L_fill_2_bytes);
 6184   movl(Address(to, 0), value);
 6185   if (t == T_BYTE || t == T_SHORT) {
 6186     Label L_fill_byte;
 6187     addptr(to, 4);
 6188     BIND(L_fill_2_bytes);
 6189     // fill trailing 2 bytes
 6190     testl(count, 1<<(shift-1));
 6191     jccb(Assembler::zero, L_fill_byte);
 6192     movw(Address(to, 0), value);
 6193     if (t == T_BYTE) {
 6194       addptr(to, 2);
 6195       BIND(L_fill_byte);
 6196       // fill trailing byte
 6197       testl(count, 1);
 6198       jccb(Assembler::zero, L_exit);
 6199       movb(Address(to, 0), value);
 6200     } else {
 6201       BIND(L_fill_byte);
 6202     }
 6203   } else {
 6204     BIND(L_fill_2_bytes);
 6205   }
 6206   BIND(L_exit);
 6207 }
 6208 
 6209 void MacroAssembler::evpbroadcast(BasicType type, XMMRegister dst, Register src, int vector_len) {
 6210   switch(type) {
 6211     case T_BYTE:
 6212     case T_BOOLEAN:
 6213       evpbroadcastb(dst, src, vector_len);
 6214       break;
 6215     case T_SHORT:
 6216     case T_CHAR:
 6217       evpbroadcastw(dst, src, vector_len);
 6218       break;
 6219     case T_INT:
 6220     case T_FLOAT:
 6221       evpbroadcastd(dst, src, vector_len);
 6222       break;
 6223     case T_LONG:
 6224     case T_DOUBLE:
 6225       evpbroadcastq(dst, src, vector_len);
 6226       break;
 6227     default:
 6228       fatal("Unhandled type : %s", type2name(type));
 6229       break;
 6230   }
 6231 }
 6232 
 6233 // encode char[] to byte[] in ISO_8859_1 or ASCII
 6234    //@IntrinsicCandidate
 6235    //private static int implEncodeISOArray(byte[] sa, int sp,
 6236    //byte[] da, int dp, int len) {
 6237    //  int i = 0;
 6238    //  for (; i < len; i++) {
 6239    //    char c = StringUTF16.getChar(sa, sp++);
 6240    //    if (c > '\u00FF')
 6241    //      break;
 6242    //    da[dp++] = (byte)c;
 6243    //  }
 6244    //  return i;
 6245    //}
 6246    //
 6247    //@IntrinsicCandidate
 6248    //private static int implEncodeAsciiArray(char[] sa, int sp,
 6249    //    byte[] da, int dp, int len) {
 6250    //  int i = 0;
 6251    //  for (; i < len; i++) {
 6252    //    char c = sa[sp++];
 6253    //    if (c >= '\u0080')
 6254    //      break;
 6255    //    da[dp++] = (byte)c;
 6256    //  }
 6257    //  return i;
 6258    //}
 6259 void MacroAssembler::encode_iso_array(Register src, Register dst, Register len,
 6260   XMMRegister tmp1Reg, XMMRegister tmp2Reg,
 6261   XMMRegister tmp3Reg, XMMRegister tmp4Reg,
 6262   Register tmp5, Register result, bool ascii) {
 6263 
 6264   // rsi: src
 6265   // rdi: dst
 6266   // rdx: len
 6267   // rcx: tmp5
 6268   // rax: result
 6269   ShortBranchVerifier sbv(this);
 6270   assert_different_registers(src, dst, len, tmp5, result);
 6271   Label L_done, L_copy_1_char, L_copy_1_char_exit;
 6272 
 6273   int mask = ascii ? 0xff80ff80 : 0xff00ff00;
 6274   int short_mask = ascii ? 0xff80 : 0xff00;
 6275 
 6276   // set result
 6277   xorl(result, result);
 6278   // check for zero length
 6279   testl(len, len);
 6280   jcc(Assembler::zero, L_done);
 6281 
 6282   movl(result, len);
 6283 
 6284   // Setup pointers
 6285   lea(src, Address(src, len, Address::times_2)); // char[]
 6286   lea(dst, Address(dst, len, Address::times_1)); // byte[]
 6287   negptr(len);
 6288 
 6289   if (UseSSE42Intrinsics || UseAVX >= 2) {
 6290     Label L_copy_8_chars, L_copy_8_chars_exit;
 6291     Label L_chars_16_check, L_copy_16_chars, L_copy_16_chars_exit;
 6292 
 6293     if (UseAVX >= 2) {
 6294       Label L_chars_32_check, L_copy_32_chars, L_copy_32_chars_exit;
 6295       movl(tmp5, mask);   // create mask to test for Unicode or non-ASCII chars in vector
 6296       movdl(tmp1Reg, tmp5);
 6297       vpbroadcastd(tmp1Reg, tmp1Reg, Assembler::AVX_256bit);
 6298       jmp(L_chars_32_check);
 6299 
 6300       bind(L_copy_32_chars);
 6301       vmovdqu(tmp3Reg, Address(src, len, Address::times_2, -64));
 6302       vmovdqu(tmp4Reg, Address(src, len, Address::times_2, -32));
 6303       vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
 6304       vptest(tmp2Reg, tmp1Reg);       // check for Unicode or non-ASCII chars in vector
 6305       jccb(Assembler::notZero, L_copy_32_chars_exit);
 6306       vpackuswb(tmp3Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
 6307       vpermq(tmp4Reg, tmp3Reg, 0xD8, /* vector_len */ 1);
 6308       vmovdqu(Address(dst, len, Address::times_1, -32), tmp4Reg);
 6309 
 6310       bind(L_chars_32_check);
 6311       addptr(len, 32);
 6312       jcc(Assembler::lessEqual, L_copy_32_chars);
 6313 
 6314       bind(L_copy_32_chars_exit);
 6315       subptr(len, 16);
 6316       jccb(Assembler::greater, L_copy_16_chars_exit);
 6317 
 6318     } else if (UseSSE42Intrinsics) {
 6319       movl(tmp5, mask);   // create mask to test for Unicode or non-ASCII chars in vector
 6320       movdl(tmp1Reg, tmp5);
 6321       pshufd(tmp1Reg, tmp1Reg, 0);
 6322       jmpb(L_chars_16_check);
 6323     }
 6324 
 6325     bind(L_copy_16_chars);
 6326     if (UseAVX >= 2) {
 6327       vmovdqu(tmp2Reg, Address(src, len, Address::times_2, -32));
 6328       vptest(tmp2Reg, tmp1Reg);
 6329       jcc(Assembler::notZero, L_copy_16_chars_exit);
 6330       vpackuswb(tmp2Reg, tmp2Reg, tmp1Reg, /* vector_len */ 1);
 6331       vpermq(tmp3Reg, tmp2Reg, 0xD8, /* vector_len */ 1);
 6332     } else {
 6333       if (UseAVX > 0) {
 6334         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
 6335         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
 6336         vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 0);
 6337       } else {
 6338         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
 6339         por(tmp2Reg, tmp3Reg);
 6340         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
 6341         por(tmp2Reg, tmp4Reg);
 6342       }
 6343       ptest(tmp2Reg, tmp1Reg);       // check for Unicode or non-ASCII chars in vector
 6344       jccb(Assembler::notZero, L_copy_16_chars_exit);
 6345       packuswb(tmp3Reg, tmp4Reg);
 6346     }
 6347     movdqu(Address(dst, len, Address::times_1, -16), tmp3Reg);
 6348 
 6349     bind(L_chars_16_check);
 6350     addptr(len, 16);
 6351     jcc(Assembler::lessEqual, L_copy_16_chars);
 6352 
 6353     bind(L_copy_16_chars_exit);
 6354     if (UseAVX >= 2) {
 6355       // clean upper bits of YMM registers
 6356       vpxor(tmp2Reg, tmp2Reg);
 6357       vpxor(tmp3Reg, tmp3Reg);
 6358       vpxor(tmp4Reg, tmp4Reg);
 6359       movdl(tmp1Reg, tmp5);
 6360       pshufd(tmp1Reg, tmp1Reg, 0);
 6361     }
 6362     subptr(len, 8);
 6363     jccb(Assembler::greater, L_copy_8_chars_exit);
 6364 
 6365     bind(L_copy_8_chars);
 6366     movdqu(tmp3Reg, Address(src, len, Address::times_2, -16));
 6367     ptest(tmp3Reg, tmp1Reg);
 6368     jccb(Assembler::notZero, L_copy_8_chars_exit);
 6369     packuswb(tmp3Reg, tmp1Reg);
 6370     movq(Address(dst, len, Address::times_1, -8), tmp3Reg);
 6371     addptr(len, 8);
 6372     jccb(Assembler::lessEqual, L_copy_8_chars);
 6373 
 6374     bind(L_copy_8_chars_exit);
 6375     subptr(len, 8);
 6376     jccb(Assembler::zero, L_done);
 6377   }
 6378 
 6379   bind(L_copy_1_char);
 6380   load_unsigned_short(tmp5, Address(src, len, Address::times_2, 0));
 6381   testl(tmp5, short_mask);      // check if Unicode or non-ASCII char
 6382   jccb(Assembler::notZero, L_copy_1_char_exit);
 6383   movb(Address(dst, len, Address::times_1, 0), tmp5);
 6384   addptr(len, 1);
 6385   jccb(Assembler::less, L_copy_1_char);
 6386 
 6387   bind(L_copy_1_char_exit);
 6388   addptr(result, len); // len is negative count of not processed elements
 6389 
 6390   bind(L_done);
 6391 }
 6392 
 6393 #ifdef _LP64
 6394 /**
 6395  * Helper for multiply_to_len().
 6396  */
 6397 void MacroAssembler::add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
 6398   addq(dest_lo, src1);
 6399   adcq(dest_hi, 0);
 6400   addq(dest_lo, src2);
 6401   adcq(dest_hi, 0);
 6402 }
 6403 
 6404 /**
 6405  * Multiply 64 bit by 64 bit first loop.
 6406  */
 6407 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
 6408                                            Register y, Register y_idx, Register z,
 6409                                            Register carry, Register product,
 6410                                            Register idx, Register kdx) {
 6411   //
 6412   //  jlong carry, x[], y[], z[];
 6413   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
 6414   //    huge_128 product = y[idx] * x[xstart] + carry;
 6415   //    z[kdx] = (jlong)product;
 6416   //    carry  = (jlong)(product >>> 64);
 6417   //  }
 6418   //  z[xstart] = carry;
 6419   //
 6420 
 6421   Label L_first_loop, L_first_loop_exit;
 6422   Label L_one_x, L_one_y, L_multiply;
 6423 
 6424   decrementl(xstart);
 6425   jcc(Assembler::negative, L_one_x);
 6426 
 6427   movq(x_xstart, Address(x, xstart, Address::times_4,  0));
 6428   rorq(x_xstart, 32); // convert big-endian to little-endian
 6429 
 6430   bind(L_first_loop);
 6431   decrementl(idx);
 6432   jcc(Assembler::negative, L_first_loop_exit);
 6433   decrementl(idx);
 6434   jcc(Assembler::negative, L_one_y);
 6435   movq(y_idx, Address(y, idx, Address::times_4,  0));
 6436   rorq(y_idx, 32); // convert big-endian to little-endian
 6437   bind(L_multiply);
 6438   movq(product, x_xstart);
 6439   mulq(y_idx); // product(rax) * y_idx -> rdx:rax
 6440   addq(product, carry);
 6441   adcq(rdx, 0);
 6442   subl(kdx, 2);
 6443   movl(Address(z, kdx, Address::times_4,  4), product);
 6444   shrq(product, 32);
 6445   movl(Address(z, kdx, Address::times_4,  0), product);
 6446   movq(carry, rdx);
 6447   jmp(L_first_loop);
 6448 
 6449   bind(L_one_y);
 6450   movl(y_idx, Address(y,  0));
 6451   jmp(L_multiply);
 6452 
 6453   bind(L_one_x);
 6454   movl(x_xstart, Address(x,  0));
 6455   jmp(L_first_loop);
 6456 
 6457   bind(L_first_loop_exit);
 6458 }
 6459 
 6460 /**
 6461  * Multiply 64 bit by 64 bit and add 128 bit.
 6462  */
 6463 void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y, Register z,
 6464                                             Register yz_idx, Register idx,
 6465                                             Register carry, Register product, int offset) {
 6466   //     huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry;
 6467   //     z[kdx] = (jlong)product;
 6468 
 6469   movq(yz_idx, Address(y, idx, Address::times_4,  offset));
 6470   rorq(yz_idx, 32); // convert big-endian to little-endian
 6471   movq(product, x_xstart);
 6472   mulq(yz_idx);     // product(rax) * yz_idx -> rdx:product(rax)
 6473   movq(yz_idx, Address(z, idx, Address::times_4,  offset));
 6474   rorq(yz_idx, 32); // convert big-endian to little-endian
 6475 
 6476   add2_with_carry(rdx, product, carry, yz_idx);
 6477 
 6478   movl(Address(z, idx, Address::times_4,  offset+4), product);
 6479   shrq(product, 32);
 6480   movl(Address(z, idx, Address::times_4,  offset), product);
 6481 
 6482 }
 6483 
 6484 /**
 6485  * Multiply 128 bit by 128 bit. Unrolled inner loop.
 6486  */
 6487 void MacroAssembler::multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
 6488                                              Register yz_idx, Register idx, Register jdx,
 6489                                              Register carry, Register product,
 6490                                              Register carry2) {
 6491   //   jlong carry, x[], y[], z[];
 6492   //   int kdx = ystart+1;
 6493   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
 6494   //     huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry;
 6495   //     z[kdx+idx+1] = (jlong)product;
 6496   //     jlong carry2  = (jlong)(product >>> 64);
 6497   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry2;
 6498   //     z[kdx+idx] = (jlong)product;
 6499   //     carry  = (jlong)(product >>> 64);
 6500   //   }
 6501   //   idx += 2;
 6502   //   if (idx > 0) {
 6503   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry;
 6504   //     z[kdx+idx] = (jlong)product;
 6505   //     carry  = (jlong)(product >>> 64);
 6506   //   }
 6507   //
 6508 
 6509   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
 6510 
 6511   movl(jdx, idx);
 6512   andl(jdx, 0xFFFFFFFC);
 6513   shrl(jdx, 2);
 6514 
 6515   bind(L_third_loop);
 6516   subl(jdx, 1);
 6517   jcc(Assembler::negative, L_third_loop_exit);
 6518   subl(idx, 4);
 6519 
 6520   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 8);
 6521   movq(carry2, rdx);
 6522 
 6523   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product, 0);
 6524   movq(carry, rdx);
 6525   jmp(L_third_loop);
 6526 
 6527   bind (L_third_loop_exit);
 6528 
 6529   andl (idx, 0x3);
 6530   jcc(Assembler::zero, L_post_third_loop_done);
 6531 
 6532   Label L_check_1;
 6533   subl(idx, 2);
 6534   jcc(Assembler::negative, L_check_1);
 6535 
 6536   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 0);
 6537   movq(carry, rdx);
 6538 
 6539   bind (L_check_1);
 6540   addl (idx, 0x2);
 6541   andl (idx, 0x1);
 6542   subl(idx, 1);
 6543   jcc(Assembler::negative, L_post_third_loop_done);
 6544 
 6545   movl(yz_idx, Address(y, idx, Address::times_4,  0));
 6546   movq(product, x_xstart);
 6547   mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax)
 6548   movl(yz_idx, Address(z, idx, Address::times_4,  0));
 6549 
 6550   add2_with_carry(rdx, product, yz_idx, carry);
 6551 
 6552   movl(Address(z, idx, Address::times_4,  0), product);
 6553   shrq(product, 32);
 6554 
 6555   shlq(rdx, 32);
 6556   orq(product, rdx);
 6557   movq(carry, product);
 6558 
 6559   bind(L_post_third_loop_done);
 6560 }
 6561 
 6562 /**
 6563  * Multiply 128 bit by 128 bit using BMI2. Unrolled inner loop.
 6564  *
 6565  */
 6566 void MacroAssembler::multiply_128_x_128_bmi2_loop(Register y, Register z,
 6567                                                   Register carry, Register carry2,
 6568                                                   Register idx, Register jdx,
 6569                                                   Register yz_idx1, Register yz_idx2,
 6570                                                   Register tmp, Register tmp3, Register tmp4) {
 6571   assert(UseBMI2Instructions, "should be used only when BMI2 is available");
 6572 
 6573   //   jlong carry, x[], y[], z[];
 6574   //   int kdx = ystart+1;
 6575   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
 6576   //     huge_128 tmp3 = (y[idx+1] * rdx) + z[kdx+idx+1] + carry;
 6577   //     jlong carry2  = (jlong)(tmp3 >>> 64);
 6578   //     huge_128 tmp4 = (y[idx]   * rdx) + z[kdx+idx] + carry2;
 6579   //     carry  = (jlong)(tmp4 >>> 64);
 6580   //     z[kdx+idx+1] = (jlong)tmp3;
 6581   //     z[kdx+idx] = (jlong)tmp4;
 6582   //   }
 6583   //   idx += 2;
 6584   //   if (idx > 0) {
 6585   //     yz_idx1 = (y[idx] * rdx) + z[kdx+idx] + carry;
 6586   //     z[kdx+idx] = (jlong)yz_idx1;
 6587   //     carry  = (jlong)(yz_idx1 >>> 64);
 6588   //   }
 6589   //
 6590 
 6591   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
 6592 
 6593   movl(jdx, idx);
 6594   andl(jdx, 0xFFFFFFFC);
 6595   shrl(jdx, 2);
 6596 
 6597   bind(L_third_loop);
 6598   subl(jdx, 1);
 6599   jcc(Assembler::negative, L_third_loop_exit);
 6600   subl(idx, 4);
 6601 
 6602   movq(yz_idx1,  Address(y, idx, Address::times_4,  8));
 6603   rorxq(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian
 6604   movq(yz_idx2, Address(y, idx, Address::times_4,  0));
 6605   rorxq(yz_idx2, yz_idx2, 32);
 6606 
 6607   mulxq(tmp4, tmp3, yz_idx1);  //  yz_idx1 * rdx -> tmp4:tmp3
 6608   mulxq(carry2, tmp, yz_idx2); //  yz_idx2 * rdx -> carry2:tmp
 6609 
 6610   movq(yz_idx1,  Address(z, idx, Address::times_4,  8));
 6611   rorxq(yz_idx1, yz_idx1, 32);
 6612   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
 6613   rorxq(yz_idx2, yz_idx2, 32);
 6614 
 6615   if (VM_Version::supports_adx()) {
 6616     adcxq(tmp3, carry);
 6617     adoxq(tmp3, yz_idx1);
 6618 
 6619     adcxq(tmp4, tmp);
 6620     adoxq(tmp4, yz_idx2);
 6621 
 6622     movl(carry, 0); // does not affect flags
 6623     adcxq(carry2, carry);
 6624     adoxq(carry2, carry);
 6625   } else {
 6626     add2_with_carry(tmp4, tmp3, carry, yz_idx1);
 6627     add2_with_carry(carry2, tmp4, tmp, yz_idx2);
 6628   }
 6629   movq(carry, carry2);
 6630 
 6631   movl(Address(z, idx, Address::times_4, 12), tmp3);
 6632   shrq(tmp3, 32);
 6633   movl(Address(z, idx, Address::times_4,  8), tmp3);
 6634 
 6635   movl(Address(z, idx, Address::times_4,  4), tmp4);
 6636   shrq(tmp4, 32);
 6637   movl(Address(z, idx, Address::times_4,  0), tmp4);
 6638 
 6639   jmp(L_third_loop);
 6640 
 6641   bind (L_third_loop_exit);
 6642 
 6643   andl (idx, 0x3);
 6644   jcc(Assembler::zero, L_post_third_loop_done);
 6645 
 6646   Label L_check_1;
 6647   subl(idx, 2);
 6648   jcc(Assembler::negative, L_check_1);
 6649 
 6650   movq(yz_idx1, Address(y, idx, Address::times_4,  0));
 6651   rorxq(yz_idx1, yz_idx1, 32);
 6652   mulxq(tmp4, tmp3, yz_idx1); //  yz_idx1 * rdx -> tmp4:tmp3
 6653   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
 6654   rorxq(yz_idx2, yz_idx2, 32);
 6655 
 6656   add2_with_carry(tmp4, tmp3, carry, yz_idx2);
 6657 
 6658   movl(Address(z, idx, Address::times_4,  4), tmp3);
 6659   shrq(tmp3, 32);
 6660   movl(Address(z, idx, Address::times_4,  0), tmp3);
 6661   movq(carry, tmp4);
 6662 
 6663   bind (L_check_1);
 6664   addl (idx, 0x2);
 6665   andl (idx, 0x1);
 6666   subl(idx, 1);
 6667   jcc(Assembler::negative, L_post_third_loop_done);
 6668   movl(tmp4, Address(y, idx, Address::times_4,  0));
 6669   mulxq(carry2, tmp3, tmp4);  //  tmp4 * rdx -> carry2:tmp3
 6670   movl(tmp4, Address(z, idx, Address::times_4,  0));
 6671 
 6672   add2_with_carry(carry2, tmp3, tmp4, carry);
 6673 
 6674   movl(Address(z, idx, Address::times_4,  0), tmp3);
 6675   shrq(tmp3, 32);
 6676 
 6677   shlq(carry2, 32);
 6678   orq(tmp3, carry2);
 6679   movq(carry, tmp3);
 6680 
 6681   bind(L_post_third_loop_done);
 6682 }
 6683 
 6684 /**
 6685  * Code for BigInteger::multiplyToLen() intrinsic.
 6686  *
 6687  * rdi: x
 6688  * rax: xlen
 6689  * rsi: y
 6690  * rcx: ylen
 6691  * r8:  z
 6692  * r11: zlen
 6693  * r12: tmp1
 6694  * r13: tmp2
 6695  * r14: tmp3
 6696  * r15: tmp4
 6697  * rbx: tmp5
 6698  *
 6699  */
 6700 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
 6701                                      Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5) {
 6702   ShortBranchVerifier sbv(this);
 6703   assert_different_registers(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, rdx);
 6704 
 6705   push(tmp1);
 6706   push(tmp2);
 6707   push(tmp3);
 6708   push(tmp4);
 6709   push(tmp5);
 6710 
 6711   push(xlen);
 6712   push(zlen);
 6713 
 6714   const Register idx = tmp1;
 6715   const Register kdx = tmp2;
 6716   const Register xstart = tmp3;
 6717 
 6718   const Register y_idx = tmp4;
 6719   const Register carry = tmp5;
 6720   const Register product  = xlen;
 6721   const Register x_xstart = zlen;  // reuse register
 6722 
 6723   // First Loop.
 6724   //
 6725   //  final static long LONG_MASK = 0xffffffffL;
 6726   //  int xstart = xlen - 1;
 6727   //  int ystart = ylen - 1;
 6728   //  long carry = 0;
 6729   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
 6730   //    long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
 6731   //    z[kdx] = (int)product;
 6732   //    carry = product >>> 32;
 6733   //  }
 6734   //  z[xstart] = (int)carry;
 6735   //
 6736 
 6737   movl(idx, ylen);      // idx = ylen;
 6738   movl(kdx, zlen);      // kdx = xlen+ylen;
 6739   xorq(carry, carry);   // carry = 0;
 6740 
 6741   Label L_done;
 6742 
 6743   movl(xstart, xlen);
 6744   decrementl(xstart);
 6745   jcc(Assembler::negative, L_done);
 6746 
 6747   multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx);
 6748 
 6749   Label L_second_loop;
 6750   testl(kdx, kdx);
 6751   jcc(Assembler::zero, L_second_loop);
 6752 
 6753   Label L_carry;
 6754   subl(kdx, 1);
 6755   jcc(Assembler::zero, L_carry);
 6756 
 6757   movl(Address(z, kdx, Address::times_4,  0), carry);
 6758   shrq(carry, 32);
 6759   subl(kdx, 1);
 6760 
 6761   bind(L_carry);
 6762   movl(Address(z, kdx, Address::times_4,  0), carry);
 6763 
 6764   // Second and third (nested) loops.
 6765   //
 6766   // for (int i = xstart-1; i >= 0; i--) { // Second loop
 6767   //   carry = 0;
 6768   //   for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
 6769   //     long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
 6770   //                    (z[k] & LONG_MASK) + carry;
 6771   //     z[k] = (int)product;
 6772   //     carry = product >>> 32;
 6773   //   }
 6774   //   z[i] = (int)carry;
 6775   // }
 6776   //
 6777   // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx
 6778 
 6779   const Register jdx = tmp1;
 6780 
 6781   bind(L_second_loop);
 6782   xorl(carry, carry);    // carry = 0;
 6783   movl(jdx, ylen);       // j = ystart+1
 6784 
 6785   subl(xstart, 1);       // i = xstart-1;
 6786   jcc(Assembler::negative, L_done);
 6787 
 6788   push (z);
 6789 
 6790   Label L_last_x;
 6791   lea(z, Address(z, xstart, Address::times_4, 4)); // z = z + k - j
 6792   subl(xstart, 1);       // i = xstart-1;
 6793   jcc(Assembler::negative, L_last_x);
 6794 
 6795   if (UseBMI2Instructions) {
 6796     movq(rdx,  Address(x, xstart, Address::times_4,  0));
 6797     rorxq(rdx, rdx, 32); // convert big-endian to little-endian
 6798   } else {
 6799     movq(x_xstart, Address(x, xstart, Address::times_4,  0));
 6800     rorq(x_xstart, 32);  // convert big-endian to little-endian
 6801   }
 6802 
 6803   Label L_third_loop_prologue;
 6804   bind(L_third_loop_prologue);
 6805 
 6806   push (x);
 6807   push (xstart);
 6808   push (ylen);
 6809 
 6810 
 6811   if (UseBMI2Instructions) {
 6812     multiply_128_x_128_bmi2_loop(y, z, carry, x, jdx, ylen, product, tmp2, x_xstart, tmp3, tmp4);
 6813   } else { // !UseBMI2Instructions
 6814     multiply_128_x_128_loop(x_xstart, y, z, y_idx, jdx, ylen, carry, product, x);
 6815   }
 6816 
 6817   pop(ylen);
 6818   pop(xlen);
 6819   pop(x);
 6820   pop(z);
 6821 
 6822   movl(tmp3, xlen);
 6823   addl(tmp3, 1);
 6824   movl(Address(z, tmp3, Address::times_4,  0), carry);
 6825   subl(tmp3, 1);
 6826   jccb(Assembler::negative, L_done);
 6827 
 6828   shrq(carry, 32);
 6829   movl(Address(z, tmp3, Address::times_4,  0), carry);
 6830   jmp(L_second_loop);
 6831 
 6832   // Next infrequent code is moved outside loops.
 6833   bind(L_last_x);
 6834   if (UseBMI2Instructions) {
 6835     movl(rdx, Address(x,  0));
 6836   } else {
 6837     movl(x_xstart, Address(x,  0));
 6838   }
 6839   jmp(L_third_loop_prologue);
 6840 
 6841   bind(L_done);
 6842 
 6843   pop(zlen);
 6844   pop(xlen);
 6845 
 6846   pop(tmp5);
 6847   pop(tmp4);
 6848   pop(tmp3);
 6849   pop(tmp2);
 6850   pop(tmp1);
 6851 }
 6852 
 6853 void MacroAssembler::vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
 6854   Register result, Register tmp1, Register tmp2, XMMRegister rymm0, XMMRegister rymm1, XMMRegister rymm2){
 6855   assert(UseSSE42Intrinsics, "SSE4.2 must be enabled.");
 6856   Label VECTOR16_LOOP, VECTOR8_LOOP, VECTOR4_LOOP;
 6857   Label VECTOR8_TAIL, VECTOR4_TAIL;
 6858   Label VECTOR32_NOT_EQUAL, VECTOR16_NOT_EQUAL, VECTOR8_NOT_EQUAL, VECTOR4_NOT_EQUAL;
 6859   Label SAME_TILL_END, DONE;
 6860   Label BYTES_LOOP, BYTES_TAIL, BYTES_NOT_EQUAL;
 6861 
 6862   //scale is in rcx in both Win64 and Unix
 6863   ShortBranchVerifier sbv(this);
 6864 
 6865   shlq(length);
 6866   xorq(result, result);
 6867 
 6868   if ((AVX3Threshold == 0) && (UseAVX > 2) &&
 6869       VM_Version::supports_avx512vlbw()) {
 6870     Label VECTOR64_LOOP, VECTOR64_NOT_EQUAL, VECTOR32_TAIL;
 6871 
 6872     cmpq(length, 64);
 6873     jcc(Assembler::less, VECTOR32_TAIL);
 6874 
 6875     movq(tmp1, length);
 6876     andq(tmp1, 0x3F);      // tail count
 6877     andq(length, ~(0x3F)); //vector count
 6878 
 6879     bind(VECTOR64_LOOP);
 6880     // AVX512 code to compare 64 byte vectors.
 6881     evmovdqub(rymm0, Address(obja, result), Assembler::AVX_512bit);
 6882     evpcmpeqb(k7, rymm0, Address(objb, result), Assembler::AVX_512bit);
 6883     kortestql(k7, k7);
 6884     jcc(Assembler::aboveEqual, VECTOR64_NOT_EQUAL);     // mismatch
 6885     addq(result, 64);
 6886     subq(length, 64);
 6887     jccb(Assembler::notZero, VECTOR64_LOOP);
 6888 
 6889     //bind(VECTOR64_TAIL);
 6890     testq(tmp1, tmp1);
 6891     jcc(Assembler::zero, SAME_TILL_END);
 6892 
 6893     //bind(VECTOR64_TAIL);
 6894     // AVX512 code to compare up to 63 byte vectors.
 6895     mov64(tmp2, 0xFFFFFFFFFFFFFFFF);
 6896     shlxq(tmp2, tmp2, tmp1);
 6897     notq(tmp2);
 6898     kmovql(k3, tmp2);
 6899 
 6900     evmovdqub(rymm0, k3, Address(obja, result), false, Assembler::AVX_512bit);
 6901     evpcmpeqb(k7, k3, rymm0, Address(objb, result), Assembler::AVX_512bit);
 6902 
 6903     ktestql(k7, k3);
 6904     jcc(Assembler::below, SAME_TILL_END);     // not mismatch
 6905 
 6906     bind(VECTOR64_NOT_EQUAL);
 6907     kmovql(tmp1, k7);
 6908     notq(tmp1);
 6909     tzcntq(tmp1, tmp1);
 6910     addq(result, tmp1);
 6911     shrq(result);
 6912     jmp(DONE);
 6913     bind(VECTOR32_TAIL);
 6914   }
 6915 
 6916   cmpq(length, 8);
 6917   jcc(Assembler::equal, VECTOR8_LOOP);
 6918   jcc(Assembler::less, VECTOR4_TAIL);
 6919 
 6920   if (UseAVX >= 2) {
 6921     Label VECTOR16_TAIL, VECTOR32_LOOP;
 6922 
 6923     cmpq(length, 16);
 6924     jcc(Assembler::equal, VECTOR16_LOOP);
 6925     jcc(Assembler::less, VECTOR8_LOOP);
 6926 
 6927     cmpq(length, 32);
 6928     jccb(Assembler::less, VECTOR16_TAIL);
 6929 
 6930     subq(length, 32);
 6931     bind(VECTOR32_LOOP);
 6932     vmovdqu(rymm0, Address(obja, result));
 6933     vmovdqu(rymm1, Address(objb, result));
 6934     vpxor(rymm2, rymm0, rymm1, Assembler::AVX_256bit);
 6935     vptest(rymm2, rymm2);
 6936     jcc(Assembler::notZero, VECTOR32_NOT_EQUAL);//mismatch found
 6937     addq(result, 32);
 6938     subq(length, 32);
 6939     jcc(Assembler::greaterEqual, VECTOR32_LOOP);
 6940     addq(length, 32);
 6941     jcc(Assembler::equal, SAME_TILL_END);
 6942     //falling through if less than 32 bytes left //close the branch here.
 6943 
 6944     bind(VECTOR16_TAIL);
 6945     cmpq(length, 16);
 6946     jccb(Assembler::less, VECTOR8_TAIL);
 6947     bind(VECTOR16_LOOP);
 6948     movdqu(rymm0, Address(obja, result));
 6949     movdqu(rymm1, Address(objb, result));
 6950     vpxor(rymm2, rymm0, rymm1, Assembler::AVX_128bit);
 6951     ptest(rymm2, rymm2);
 6952     jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found
 6953     addq(result, 16);
 6954     subq(length, 16);
 6955     jcc(Assembler::equal, SAME_TILL_END);
 6956     //falling through if less than 16 bytes left
 6957   } else {//regular intrinsics
 6958 
 6959     cmpq(length, 16);
 6960     jccb(Assembler::less, VECTOR8_TAIL);
 6961 
 6962     subq(length, 16);
 6963     bind(VECTOR16_LOOP);
 6964     movdqu(rymm0, Address(obja, result));
 6965     movdqu(rymm1, Address(objb, result));
 6966     pxor(rymm0, rymm1);
 6967     ptest(rymm0, rymm0);
 6968     jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found
 6969     addq(result, 16);
 6970     subq(length, 16);
 6971     jccb(Assembler::greaterEqual, VECTOR16_LOOP);
 6972     addq(length, 16);
 6973     jcc(Assembler::equal, SAME_TILL_END);
 6974     //falling through if less than 16 bytes left
 6975   }
 6976 
 6977   bind(VECTOR8_TAIL);
 6978   cmpq(length, 8);
 6979   jccb(Assembler::less, VECTOR4_TAIL);
 6980   bind(VECTOR8_LOOP);
 6981   movq(tmp1, Address(obja, result));
 6982   movq(tmp2, Address(objb, result));
 6983   xorq(tmp1, tmp2);
 6984   testq(tmp1, tmp1);
 6985   jcc(Assembler::notZero, VECTOR8_NOT_EQUAL);//mismatch found
 6986   addq(result, 8);
 6987   subq(length, 8);
 6988   jcc(Assembler::equal, SAME_TILL_END);
 6989   //falling through if less than 8 bytes left
 6990 
 6991   bind(VECTOR4_TAIL);
 6992   cmpq(length, 4);
 6993   jccb(Assembler::less, BYTES_TAIL);
 6994   bind(VECTOR4_LOOP);
 6995   movl(tmp1, Address(obja, result));
 6996   xorl(tmp1, Address(objb, result));
 6997   testl(tmp1, tmp1);
 6998   jcc(Assembler::notZero, VECTOR4_NOT_EQUAL);//mismatch found
 6999   addq(result, 4);
 7000   subq(length, 4);
 7001   jcc(Assembler::equal, SAME_TILL_END);
 7002   //falling through if less than 4 bytes left
 7003 
 7004   bind(BYTES_TAIL);
 7005   bind(BYTES_LOOP);
 7006   load_unsigned_byte(tmp1, Address(obja, result));
 7007   load_unsigned_byte(tmp2, Address(objb, result));
 7008   xorl(tmp1, tmp2);
 7009   testl(tmp1, tmp1);
 7010   jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
 7011   decq(length);
 7012   jcc(Assembler::zero, SAME_TILL_END);
 7013   incq(result);
 7014   load_unsigned_byte(tmp1, Address(obja, result));
 7015   load_unsigned_byte(tmp2, Address(objb, result));
 7016   xorl(tmp1, tmp2);
 7017   testl(tmp1, tmp1);
 7018   jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
 7019   decq(length);
 7020   jcc(Assembler::zero, SAME_TILL_END);
 7021   incq(result);
 7022   load_unsigned_byte(tmp1, Address(obja, result));
 7023   load_unsigned_byte(tmp2, Address(objb, result));
 7024   xorl(tmp1, tmp2);
 7025   testl(tmp1, tmp1);
 7026   jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
 7027   jmp(SAME_TILL_END);
 7028 
 7029   if (UseAVX >= 2) {
 7030     bind(VECTOR32_NOT_EQUAL);
 7031     vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_256bit);
 7032     vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_256bit);
 7033     vpxor(rymm0, rymm0, rymm2, Assembler::AVX_256bit);
 7034     vpmovmskb(tmp1, rymm0);
 7035     bsfq(tmp1, tmp1);
 7036     addq(result, tmp1);
 7037     shrq(result);
 7038     jmp(DONE);
 7039   }
 7040 
 7041   bind(VECTOR16_NOT_EQUAL);
 7042   if (UseAVX >= 2) {
 7043     vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_128bit);
 7044     vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_128bit);
 7045     pxor(rymm0, rymm2);
 7046   } else {
 7047     pcmpeqb(rymm2, rymm2);
 7048     pxor(rymm0, rymm1);
 7049     pcmpeqb(rymm0, rymm1);
 7050     pxor(rymm0, rymm2);
 7051   }
 7052   pmovmskb(tmp1, rymm0);
 7053   bsfq(tmp1, tmp1);
 7054   addq(result, tmp1);
 7055   shrq(result);
 7056   jmpb(DONE);
 7057 
 7058   bind(VECTOR8_NOT_EQUAL);
 7059   bind(VECTOR4_NOT_EQUAL);
 7060   bsfq(tmp1, tmp1);
 7061   shrq(tmp1, 3);
 7062   addq(result, tmp1);
 7063   bind(BYTES_NOT_EQUAL);
 7064   shrq(result);
 7065   jmpb(DONE);
 7066 
 7067   bind(SAME_TILL_END);
 7068   mov64(result, -1);
 7069 
 7070   bind(DONE);
 7071 }
 7072 
 7073 //Helper functions for square_to_len()
 7074 
 7075 /**
 7076  * Store the squares of x[], right shifted one bit (divided by 2) into z[]
 7077  * Preserves x and z and modifies rest of the registers.
 7078  */
 7079 void MacroAssembler::square_rshift(Register x, Register xlen, Register z, Register tmp1, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
 7080   // Perform square and right shift by 1
 7081   // Handle odd xlen case first, then for even xlen do the following
 7082   // jlong carry = 0;
 7083   // for (int j=0, i=0; j < xlen; j+=2, i+=4) {
 7084   //     huge_128 product = x[j:j+1] * x[j:j+1];
 7085   //     z[i:i+1] = (carry << 63) | (jlong)(product >>> 65);
 7086   //     z[i+2:i+3] = (jlong)(product >>> 1);
 7087   //     carry = (jlong)product;
 7088   // }
 7089 
 7090   xorq(tmp5, tmp5);     // carry
 7091   xorq(rdxReg, rdxReg);
 7092   xorl(tmp1, tmp1);     // index for x
 7093   xorl(tmp4, tmp4);     // index for z
 7094 
 7095   Label L_first_loop, L_first_loop_exit;
 7096 
 7097   testl(xlen, 1);
 7098   jccb(Assembler::zero, L_first_loop); //jump if xlen is even
 7099 
 7100   // Square and right shift by 1 the odd element using 32 bit multiply
 7101   movl(raxReg, Address(x, tmp1, Address::times_4, 0));
 7102   imulq(raxReg, raxReg);
 7103   shrq(raxReg, 1);
 7104   adcq(tmp5, 0);
 7105   movq(Address(z, tmp4, Address::times_4, 0), raxReg);
 7106   incrementl(tmp1);
 7107   addl(tmp4, 2);
 7108 
 7109   // Square and  right shift by 1 the rest using 64 bit multiply
 7110   bind(L_first_loop);
 7111   cmpptr(tmp1, xlen);
 7112   jccb(Assembler::equal, L_first_loop_exit);
 7113 
 7114   // Square
 7115   movq(raxReg, Address(x, tmp1, Address::times_4,  0));
 7116   rorq(raxReg, 32);    // convert big-endian to little-endian
 7117   mulq(raxReg);        // 64-bit multiply rax * rax -> rdx:rax
 7118 
 7119   // Right shift by 1 and save carry
 7120   shrq(tmp5, 1);       // rdx:rax:tmp5 = (tmp5:rdx:rax) >>> 1
 7121   rcrq(rdxReg, 1);
 7122   rcrq(raxReg, 1);
 7123   adcq(tmp5, 0);
 7124 
 7125   // Store result in z
 7126   movq(Address(z, tmp4, Address::times_4, 0), rdxReg);
 7127   movq(Address(z, tmp4, Address::times_4, 8), raxReg);
 7128 
 7129   // Update indices for x and z
 7130   addl(tmp1, 2);
 7131   addl(tmp4, 4);
 7132   jmp(L_first_loop);
 7133 
 7134   bind(L_first_loop_exit);
 7135 }
 7136 
 7137 
 7138 /**
 7139  * Perform the following multiply add operation using BMI2 instructions
 7140  * carry:sum = sum + op1*op2 + carry
 7141  * op2 should be in rdx
 7142  * op2 is preserved, all other registers are modified
 7143  */
 7144 void MacroAssembler::multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry, Register tmp2) {
 7145   // assert op2 is rdx
 7146   mulxq(tmp2, op1, op1);  //  op1 * op2 -> tmp2:op1
 7147   addq(sum, carry);
 7148   adcq(tmp2, 0);
 7149   addq(sum, op1);
 7150   adcq(tmp2, 0);
 7151   movq(carry, tmp2);
 7152 }
 7153 
 7154 /**
 7155  * Perform the following multiply add operation:
 7156  * carry:sum = sum + op1*op2 + carry
 7157  * Preserves op1, op2 and modifies rest of registers
 7158  */
 7159 void MacroAssembler::multiply_add_64(Register sum, Register op1, Register op2, Register carry, Register rdxReg, Register raxReg) {
 7160   // rdx:rax = op1 * op2
 7161   movq(raxReg, op2);
 7162   mulq(op1);
 7163 
 7164   //  rdx:rax = sum + carry + rdx:rax
 7165   addq(sum, carry);
 7166   adcq(rdxReg, 0);
 7167   addq(sum, raxReg);
 7168   adcq(rdxReg, 0);
 7169 
 7170   // carry:sum = rdx:sum
 7171   movq(carry, rdxReg);
 7172 }
 7173 
 7174 /**
 7175  * Add 64 bit long carry into z[] with carry propagation.
 7176  * Preserves z and carry register values and modifies rest of registers.
 7177  *
 7178  */
 7179 void MacroAssembler::add_one_64(Register z, Register zlen, Register carry, Register tmp1) {
 7180   Label L_fourth_loop, L_fourth_loop_exit;
 7181 
 7182   movl(tmp1, 1);
 7183   subl(zlen, 2);
 7184   addq(Address(z, zlen, Address::times_4, 0), carry);
 7185 
 7186   bind(L_fourth_loop);
 7187   jccb(Assembler::carryClear, L_fourth_loop_exit);
 7188   subl(zlen, 2);
 7189   jccb(Assembler::negative, L_fourth_loop_exit);
 7190   addq(Address(z, zlen, Address::times_4, 0), tmp1);
 7191   jmp(L_fourth_loop);
 7192   bind(L_fourth_loop_exit);
 7193 }
 7194 
 7195 /**
 7196  * Shift z[] left by 1 bit.
 7197  * Preserves x, len, z and zlen registers and modifies rest of the registers.
 7198  *
 7199  */
 7200 void MacroAssembler::lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4) {
 7201 
 7202   Label L_fifth_loop, L_fifth_loop_exit;
 7203 
 7204   // Fifth loop
 7205   // Perform primitiveLeftShift(z, zlen, 1)
 7206 
 7207   const Register prev_carry = tmp1;
 7208   const Register new_carry = tmp4;
 7209   const Register value = tmp2;
 7210   const Register zidx = tmp3;
 7211 
 7212   // int zidx, carry;
 7213   // long value;
 7214   // carry = 0;
 7215   // for (zidx = zlen-2; zidx >=0; zidx -= 2) {
 7216   //    (carry:value)  = (z[i] << 1) | carry ;
 7217   //    z[i] = value;
 7218   // }
 7219 
 7220   movl(zidx, zlen);
 7221   xorl(prev_carry, prev_carry); // clear carry flag and prev_carry register
 7222 
 7223   bind(L_fifth_loop);
 7224   decl(zidx);  // Use decl to preserve carry flag
 7225   decl(zidx);
 7226   jccb(Assembler::negative, L_fifth_loop_exit);
 7227 
 7228   if (UseBMI2Instructions) {
 7229      movq(value, Address(z, zidx, Address::times_4, 0));
 7230      rclq(value, 1);
 7231      rorxq(value, value, 32);
 7232      movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
 7233   }
 7234   else {
 7235     // clear new_carry
 7236     xorl(new_carry, new_carry);
 7237 
 7238     // Shift z[i] by 1, or in previous carry and save new carry
 7239     movq(value, Address(z, zidx, Address::times_4, 0));
 7240     shlq(value, 1);
 7241     adcl(new_carry, 0);
 7242 
 7243     orq(value, prev_carry);
 7244     rorq(value, 0x20);
 7245     movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
 7246 
 7247     // Set previous carry = new carry
 7248     movl(prev_carry, new_carry);
 7249   }
 7250   jmp(L_fifth_loop);
 7251 
 7252   bind(L_fifth_loop_exit);
 7253 }
 7254 
 7255 
 7256 /**
 7257  * Code for BigInteger::squareToLen() intrinsic
 7258  *
 7259  * rdi: x
 7260  * rsi: len
 7261  * r8:  z
 7262  * rcx: zlen
 7263  * r12: tmp1
 7264  * r13: tmp2
 7265  * r14: tmp3
 7266  * r15: tmp4
 7267  * rbx: tmp5
 7268  *
 7269  */
 7270 void MacroAssembler::square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
 7271 
 7272   Label L_second_loop, L_second_loop_exit, L_third_loop, L_third_loop_exit, L_last_x, L_multiply;
 7273   push(tmp1);
 7274   push(tmp2);
 7275   push(tmp3);
 7276   push(tmp4);
 7277   push(tmp5);
 7278 
 7279   // First loop
 7280   // Store the squares, right shifted one bit (i.e., divided by 2).
 7281   square_rshift(x, len, z, tmp1, tmp3, tmp4, tmp5, rdxReg, raxReg);
 7282 
 7283   // Add in off-diagonal sums.
 7284   //
 7285   // Second, third (nested) and fourth loops.
 7286   // zlen +=2;
 7287   // for (int xidx=len-2,zidx=zlen-4; xidx > 0; xidx-=2,zidx-=4) {
 7288   //    carry = 0;
 7289   //    long op2 = x[xidx:xidx+1];
 7290   //    for (int j=xidx-2,k=zidx; j >= 0; j-=2) {
 7291   //       k -= 2;
 7292   //       long op1 = x[j:j+1];
 7293   //       long sum = z[k:k+1];
 7294   //       carry:sum = multiply_add_64(sum, op1, op2, carry, tmp_regs);
 7295   //       z[k:k+1] = sum;
 7296   //    }
 7297   //    add_one_64(z, k, carry, tmp_regs);
 7298   // }
 7299 
 7300   const Register carry = tmp5;
 7301   const Register sum = tmp3;
 7302   const Register op1 = tmp4;
 7303   Register op2 = tmp2;
 7304 
 7305   push(zlen);
 7306   push(len);
 7307   addl(zlen,2);
 7308   bind(L_second_loop);
 7309   xorq(carry, carry);
 7310   subl(zlen, 4);
 7311   subl(len, 2);
 7312   push(zlen);
 7313   push(len);
 7314   cmpl(len, 0);
 7315   jccb(Assembler::lessEqual, L_second_loop_exit);
 7316 
 7317   // Multiply an array by one 64 bit long.
 7318   if (UseBMI2Instructions) {
 7319     op2 = rdxReg;
 7320     movq(op2, Address(x, len, Address::times_4,  0));
 7321     rorxq(op2, op2, 32);
 7322   }
 7323   else {
 7324     movq(op2, Address(x, len, Address::times_4,  0));
 7325     rorq(op2, 32);
 7326   }
 7327 
 7328   bind(L_third_loop);
 7329   decrementl(len);
 7330   jccb(Assembler::negative, L_third_loop_exit);
 7331   decrementl(len);
 7332   jccb(Assembler::negative, L_last_x);
 7333 
 7334   movq(op1, Address(x, len, Address::times_4,  0));
 7335   rorq(op1, 32);
 7336 
 7337   bind(L_multiply);
 7338   subl(zlen, 2);
 7339   movq(sum, Address(z, zlen, Address::times_4,  0));
 7340 
 7341   // Multiply 64 bit by 64 bit and add 64 bits lower half and upper 64 bits as carry.
 7342   if (UseBMI2Instructions) {
 7343     multiply_add_64_bmi2(sum, op1, op2, carry, tmp2);
 7344   }
 7345   else {
 7346     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
 7347   }
 7348 
 7349   movq(Address(z, zlen, Address::times_4, 0), sum);
 7350 
 7351   jmp(L_third_loop);
 7352   bind(L_third_loop_exit);
 7353 
 7354   // Fourth loop
 7355   // Add 64 bit long carry into z with carry propagation.
 7356   // Uses offsetted zlen.
 7357   add_one_64(z, zlen, carry, tmp1);
 7358 
 7359   pop(len);
 7360   pop(zlen);
 7361   jmp(L_second_loop);
 7362 
 7363   // Next infrequent code is moved outside loops.
 7364   bind(L_last_x);
 7365   movl(op1, Address(x, 0));
 7366   jmp(L_multiply);
 7367 
 7368   bind(L_second_loop_exit);
 7369   pop(len);
 7370   pop(zlen);
 7371   pop(len);
 7372   pop(zlen);
 7373 
 7374   // Fifth loop
 7375   // Shift z left 1 bit.
 7376   lshift_by_1(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4);
 7377 
 7378   // z[zlen-1] |= x[len-1] & 1;
 7379   movl(tmp3, Address(x, len, Address::times_4, -4));
 7380   andl(tmp3, 1);
 7381   orl(Address(z, zlen, Address::times_4,  -4), tmp3);
 7382 
 7383   pop(tmp5);
 7384   pop(tmp4);
 7385   pop(tmp3);
 7386   pop(tmp2);
 7387   pop(tmp1);
 7388 }
 7389 
 7390 /**
 7391  * Helper function for mul_add()
 7392  * Multiply the in[] by int k and add to out[] starting at offset offs using
 7393  * 128 bit by 32 bit multiply and return the carry in tmp5.
 7394  * Only quad int aligned length of in[] is operated on in this function.
 7395  * k is in rdxReg for BMI2Instructions, for others it is in tmp2.
 7396  * This function preserves out, in and k registers.
 7397  * len and offset point to the appropriate index in "in" & "out" correspondingly
 7398  * tmp5 has the carry.
 7399  * other registers are temporary and are modified.
 7400  *
 7401  */
 7402 void MacroAssembler::mul_add_128_x_32_loop(Register out, Register in,
 7403   Register offset, Register len, Register tmp1, Register tmp2, Register tmp3,
 7404   Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
 7405 
 7406   Label L_first_loop, L_first_loop_exit;
 7407 
 7408   movl(tmp1, len);
 7409   shrl(tmp1, 2);
 7410 
 7411   bind(L_first_loop);
 7412   subl(tmp1, 1);
 7413   jccb(Assembler::negative, L_first_loop_exit);
 7414 
 7415   subl(len, 4);
 7416   subl(offset, 4);
 7417 
 7418   Register op2 = tmp2;
 7419   const Register sum = tmp3;
 7420   const Register op1 = tmp4;
 7421   const Register carry = tmp5;
 7422 
 7423   if (UseBMI2Instructions) {
 7424     op2 = rdxReg;
 7425   }
 7426 
 7427   movq(op1, Address(in, len, Address::times_4,  8));
 7428   rorq(op1, 32);
 7429   movq(sum, Address(out, offset, Address::times_4,  8));
 7430   rorq(sum, 32);
 7431   if (UseBMI2Instructions) {
 7432     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
 7433   }
 7434   else {
 7435     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
 7436   }
 7437   // Store back in big endian from little endian
 7438   rorq(sum, 0x20);
 7439   movq(Address(out, offset, Address::times_4,  8), sum);
 7440 
 7441   movq(op1, Address(in, len, Address::times_4,  0));
 7442   rorq(op1, 32);
 7443   movq(sum, Address(out, offset, Address::times_4,  0));
 7444   rorq(sum, 32);
 7445   if (UseBMI2Instructions) {
 7446     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
 7447   }
 7448   else {
 7449     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
 7450   }
 7451   // Store back in big endian from little endian
 7452   rorq(sum, 0x20);
 7453   movq(Address(out, offset, Address::times_4,  0), sum);
 7454 
 7455   jmp(L_first_loop);
 7456   bind(L_first_loop_exit);
 7457 }
 7458 
 7459 /**
 7460  * Code for BigInteger::mulAdd() intrinsic
 7461  *
 7462  * rdi: out
 7463  * rsi: in
 7464  * r11: offs (out.length - offset)
 7465  * rcx: len
 7466  * r8:  k
 7467  * r12: tmp1
 7468  * r13: tmp2
 7469  * r14: tmp3
 7470  * r15: tmp4
 7471  * rbx: tmp5
 7472  * Multiply the in[] by word k and add to out[], return the carry in rax
 7473  */
 7474 void MacroAssembler::mul_add(Register out, Register in, Register offs,
 7475    Register len, Register k, Register tmp1, Register tmp2, Register tmp3,
 7476    Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
 7477 
 7478   Label L_carry, L_last_in, L_done;
 7479 
 7480 // carry = 0;
 7481 // for (int j=len-1; j >= 0; j--) {
 7482 //    long product = (in[j] & LONG_MASK) * kLong +
 7483 //                   (out[offs] & LONG_MASK) + carry;
 7484 //    out[offs--] = (int)product;
 7485 //    carry = product >>> 32;
 7486 // }
 7487 //
 7488   push(tmp1);
 7489   push(tmp2);
 7490   push(tmp3);
 7491   push(tmp4);
 7492   push(tmp5);
 7493 
 7494   Register op2 = tmp2;
 7495   const Register sum = tmp3;
 7496   const Register op1 = tmp4;
 7497   const Register carry =  tmp5;
 7498 
 7499   if (UseBMI2Instructions) {
 7500     op2 = rdxReg;
 7501     movl(op2, k);
 7502   }
 7503   else {
 7504     movl(op2, k);
 7505   }
 7506 
 7507   xorq(carry, carry);
 7508 
 7509   //First loop
 7510 
 7511   //Multiply in[] by k in a 4 way unrolled loop using 128 bit by 32 bit multiply
 7512   //The carry is in tmp5
 7513   mul_add_128_x_32_loop(out, in, offs, len, tmp1, tmp2, tmp3, tmp4, tmp5, rdxReg, raxReg);
 7514 
 7515   //Multiply the trailing in[] entry using 64 bit by 32 bit, if any
 7516   decrementl(len);
 7517   jccb(Assembler::negative, L_carry);
 7518   decrementl(len);
 7519   jccb(Assembler::negative, L_last_in);
 7520 
 7521   movq(op1, Address(in, len, Address::times_4,  0));
 7522   rorq(op1, 32);
 7523 
 7524   subl(offs, 2);
 7525   movq(sum, Address(out, offs, Address::times_4,  0));
 7526   rorq(sum, 32);
 7527 
 7528   if (UseBMI2Instructions) {
 7529     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
 7530   }
 7531   else {
 7532     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
 7533   }
 7534 
 7535   // Store back in big endian from little endian
 7536   rorq(sum, 0x20);
 7537   movq(Address(out, offs, Address::times_4,  0), sum);
 7538 
 7539   testl(len, len);
 7540   jccb(Assembler::zero, L_carry);
 7541 
 7542   //Multiply the last in[] entry, if any
 7543   bind(L_last_in);
 7544   movl(op1, Address(in, 0));
 7545   movl(sum, Address(out, offs, Address::times_4,  -4));
 7546 
 7547   movl(raxReg, k);
 7548   mull(op1); //tmp4 * eax -> edx:eax
 7549   addl(sum, carry);
 7550   adcl(rdxReg, 0);
 7551   addl(sum, raxReg);
 7552   adcl(rdxReg, 0);
 7553   movl(carry, rdxReg);
 7554 
 7555   movl(Address(out, offs, Address::times_4,  -4), sum);
 7556 
 7557   bind(L_carry);
 7558   //return tmp5/carry as carry in rax
 7559   movl(rax, carry);
 7560 
 7561   bind(L_done);
 7562   pop(tmp5);
 7563   pop(tmp4);
 7564   pop(tmp3);
 7565   pop(tmp2);
 7566   pop(tmp1);
 7567 }
 7568 #endif
 7569 
 7570 /**
 7571  * Emits code to update CRC-32 with a byte value according to constants in table
 7572  *
 7573  * @param [in,out]crc   Register containing the crc.
 7574  * @param [in]val       Register containing the byte to fold into the CRC.
 7575  * @param [in]table     Register containing the table of crc constants.
 7576  *
 7577  * uint32_t crc;
 7578  * val = crc_table[(val ^ crc) & 0xFF];
 7579  * crc = val ^ (crc >> 8);
 7580  *
 7581  */
 7582 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
 7583   xorl(val, crc);
 7584   andl(val, 0xFF);
 7585   shrl(crc, 8); // unsigned shift
 7586   xorl(crc, Address(table, val, Address::times_4, 0));
 7587 }
 7588 
 7589 /**
 7590  * Fold 128-bit data chunk
 7591  */
 7592 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) {
 7593   if (UseAVX > 0) {
 7594     vpclmulhdq(xtmp, xK, xcrc); // [123:64]
 7595     vpclmulldq(xcrc, xK, xcrc); // [63:0]
 7596     vpxor(xcrc, xcrc, Address(buf, offset), 0 /* vector_len */);
 7597     pxor(xcrc, xtmp);
 7598   } else {
 7599     movdqa(xtmp, xcrc);
 7600     pclmulhdq(xtmp, xK);   // [123:64]
 7601     pclmulldq(xcrc, xK);   // [63:0]
 7602     pxor(xcrc, xtmp);
 7603     movdqu(xtmp, Address(buf, offset));
 7604     pxor(xcrc, xtmp);
 7605   }
 7606 }
 7607 
 7608 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf) {
 7609   if (UseAVX > 0) {
 7610     vpclmulhdq(xtmp, xK, xcrc);
 7611     vpclmulldq(xcrc, xK, xcrc);
 7612     pxor(xcrc, xbuf);
 7613     pxor(xcrc, xtmp);
 7614   } else {
 7615     movdqa(xtmp, xcrc);
 7616     pclmulhdq(xtmp, xK);
 7617     pclmulldq(xcrc, xK);
 7618     pxor(xcrc, xbuf);
 7619     pxor(xcrc, xtmp);
 7620   }
 7621 }
 7622 
 7623 /**
 7624  * 8-bit folds to compute 32-bit CRC
 7625  *
 7626  * uint64_t xcrc;
 7627  * timesXtoThe32[xcrc & 0xFF] ^ (xcrc >> 8);
 7628  */
 7629 void MacroAssembler::fold_8bit_crc32(XMMRegister xcrc, Register table, XMMRegister xtmp, Register tmp) {
 7630   movdl(tmp, xcrc);
 7631   andl(tmp, 0xFF);
 7632   movdl(xtmp, Address(table, tmp, Address::times_4, 0));
 7633   psrldq(xcrc, 1); // unsigned shift one byte
 7634   pxor(xcrc, xtmp);
 7635 }
 7636 
 7637 /**
 7638  * uint32_t crc;
 7639  * timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
 7640  */
 7641 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) {
 7642   movl(tmp, crc);
 7643   andl(tmp, 0xFF);
 7644   shrl(crc, 8);
 7645   xorl(crc, Address(table, tmp, Address::times_4, 0));
 7646 }
 7647 
 7648 /**
 7649  * @param crc   register containing existing CRC (32-bit)
 7650  * @param buf   register pointing to input byte buffer (byte*)
 7651  * @param len   register containing number of bytes
 7652  * @param table register that will contain address of CRC table
 7653  * @param tmp   scratch register
 7654  */
 7655 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp) {
 7656   assert_different_registers(crc, buf, len, table, tmp, rax);
 7657 
 7658   Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned;
 7659   Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop;
 7660 
 7661   // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge
 7662   // context for the registers used, where all instructions below are using 128-bit mode
 7663   // On EVEX without VL and BW, these instructions will all be AVX.
 7664   lea(table, ExternalAddress(StubRoutines::crc_table_addr()));
 7665   notl(crc); // ~crc
 7666   cmpl(len, 16);
 7667   jcc(Assembler::less, L_tail);
 7668 
 7669   // Align buffer to 16 bytes
 7670   movl(tmp, buf);
 7671   andl(tmp, 0xF);
 7672   jccb(Assembler::zero, L_aligned);
 7673   subl(tmp,  16);
 7674   addl(len, tmp);
 7675 
 7676   align(4);
 7677   BIND(L_align_loop);
 7678   movsbl(rax, Address(buf, 0)); // load byte with sign extension
 7679   update_byte_crc32(crc, rax, table);
 7680   increment(buf);
 7681   incrementl(tmp);
 7682   jccb(Assembler::less, L_align_loop);
 7683 
 7684   BIND(L_aligned);
 7685   movl(tmp, len); // save
 7686   shrl(len, 4);
 7687   jcc(Assembler::zero, L_tail_restore);
 7688 
 7689   // Fold crc into first bytes of vector
 7690   movdqa(xmm1, Address(buf, 0));
 7691   movdl(rax, xmm1);
 7692   xorl(crc, rax);
 7693   if (VM_Version::supports_sse4_1()) {
 7694     pinsrd(xmm1, crc, 0);
 7695   } else {
 7696     pinsrw(xmm1, crc, 0);
 7697     shrl(crc, 16);
 7698     pinsrw(xmm1, crc, 1);
 7699   }
 7700   addptr(buf, 16);
 7701   subl(len, 4); // len > 0
 7702   jcc(Assembler::less, L_fold_tail);
 7703 
 7704   movdqa(xmm2, Address(buf,  0));
 7705   movdqa(xmm3, Address(buf, 16));
 7706   movdqa(xmm4, Address(buf, 32));
 7707   addptr(buf, 48);
 7708   subl(len, 3);
 7709   jcc(Assembler::lessEqual, L_fold_512b);
 7710 
 7711   // Fold total 512 bits of polynomial on each iteration,
 7712   // 128 bits per each of 4 parallel streams.
 7713   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32), rscratch1);
 7714 
 7715   align32();
 7716   BIND(L_fold_512b_loop);
 7717   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
 7718   fold_128bit_crc32(xmm2, xmm0, xmm5, buf, 16);
 7719   fold_128bit_crc32(xmm3, xmm0, xmm5, buf, 32);
 7720   fold_128bit_crc32(xmm4, xmm0, xmm5, buf, 48);
 7721   addptr(buf, 64);
 7722   subl(len, 4);
 7723   jcc(Assembler::greater, L_fold_512b_loop);
 7724 
 7725   // Fold 512 bits to 128 bits.
 7726   BIND(L_fold_512b);
 7727   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16), rscratch1);
 7728   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm2);
 7729   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm3);
 7730   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm4);
 7731 
 7732   // Fold the rest of 128 bits data chunks
 7733   BIND(L_fold_tail);
 7734   addl(len, 3);
 7735   jccb(Assembler::lessEqual, L_fold_128b);
 7736   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16), rscratch1);
 7737 
 7738   BIND(L_fold_tail_loop);
 7739   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
 7740   addptr(buf, 16);
 7741   decrementl(len);
 7742   jccb(Assembler::greater, L_fold_tail_loop);
 7743 
 7744   // Fold 128 bits in xmm1 down into 32 bits in crc register.
 7745   BIND(L_fold_128b);
 7746   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr()), rscratch1);
 7747   if (UseAVX > 0) {
 7748     vpclmulqdq(xmm2, xmm0, xmm1, 0x1);
 7749     vpand(xmm3, xmm0, xmm2, 0 /* vector_len */);
 7750     vpclmulqdq(xmm0, xmm0, xmm3, 0x1);
 7751   } else {
 7752     movdqa(xmm2, xmm0);
 7753     pclmulqdq(xmm2, xmm1, 0x1);
 7754     movdqa(xmm3, xmm0);
 7755     pand(xmm3, xmm2);
 7756     pclmulqdq(xmm0, xmm3, 0x1);
 7757   }
 7758   psrldq(xmm1, 8);
 7759   psrldq(xmm2, 4);
 7760   pxor(xmm0, xmm1);
 7761   pxor(xmm0, xmm2);
 7762 
 7763   // 8 8-bit folds to compute 32-bit CRC.
 7764   for (int j = 0; j < 4; j++) {
 7765     fold_8bit_crc32(xmm0, table, xmm1, rax);
 7766   }
 7767   movdl(crc, xmm0); // mov 32 bits to general register
 7768   for (int j = 0; j < 4; j++) {
 7769     fold_8bit_crc32(crc, table, rax);
 7770   }
 7771 
 7772   BIND(L_tail_restore);
 7773   movl(len, tmp); // restore
 7774   BIND(L_tail);
 7775   andl(len, 0xf);
 7776   jccb(Assembler::zero, L_exit);
 7777 
 7778   // Fold the rest of bytes
 7779   align(4);
 7780   BIND(L_tail_loop);
 7781   movsbl(rax, Address(buf, 0)); // load byte with sign extension
 7782   update_byte_crc32(crc, rax, table);
 7783   increment(buf);
 7784   decrementl(len);
 7785   jccb(Assembler::greater, L_tail_loop);
 7786 
 7787   BIND(L_exit);
 7788   notl(crc); // ~c
 7789 }
 7790 
 7791 #ifdef _LP64
 7792 // Helper function for AVX 512 CRC32
 7793 // Fold 512-bit data chunks
 7794 void MacroAssembler::fold512bit_crc32_avx512(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf,
 7795                                              Register pos, int offset) {
 7796   evmovdquq(xmm3, Address(buf, pos, Address::times_1, offset), Assembler::AVX_512bit);
 7797   evpclmulqdq(xtmp, xcrc, xK, 0x10, Assembler::AVX_512bit); // [123:64]
 7798   evpclmulqdq(xmm2, xcrc, xK, 0x01, Assembler::AVX_512bit); // [63:0]
 7799   evpxorq(xcrc, xtmp, xmm2, Assembler::AVX_512bit /* vector_len */);
 7800   evpxorq(xcrc, xcrc, xmm3, Assembler::AVX_512bit /* vector_len */);
 7801 }
 7802 
 7803 // Helper function for AVX 512 CRC32
 7804 // Compute CRC32 for < 256B buffers
 7805 void MacroAssembler::kernel_crc32_avx512_256B(Register crc, Register buf, Register len, Register table, Register pos,
 7806                                               Register tmp1, Register tmp2, Label& L_barrett, Label& L_16B_reduction_loop,
 7807                                               Label& L_get_last_two_xmms, Label& L_128_done, Label& L_cleanup) {
 7808 
 7809   Label L_less_than_32, L_exact_16_left, L_less_than_16_left;
 7810   Label L_less_than_8_left, L_less_than_4_left, L_less_than_2_left, L_zero_left;
 7811   Label L_only_less_than_4, L_only_less_than_3, L_only_less_than_2;
 7812 
 7813   // check if there is enough buffer to be able to fold 16B at a time
 7814   cmpl(len, 32);
 7815   jcc(Assembler::less, L_less_than_32);
 7816 
 7817   // if there is, load the constants
 7818   movdqu(xmm10, Address(table, 1 * 16));    //rk1 and rk2 in xmm10
 7819   movdl(xmm0, crc);                        // get the initial crc value
 7820   movdqu(xmm7, Address(buf, pos, Address::times_1, 0 * 16)); //load the plaintext
 7821   pxor(xmm7, xmm0);
 7822 
 7823   // update the buffer pointer
 7824   addl(pos, 16);
 7825   //update the counter.subtract 32 instead of 16 to save one instruction from the loop
 7826   subl(len, 32);
 7827   jmp(L_16B_reduction_loop);
 7828 
 7829   bind(L_less_than_32);
 7830   //mov initial crc to the return value. this is necessary for zero - length buffers.
 7831   movl(rax, crc);
 7832   testl(len, len);
 7833   jcc(Assembler::equal, L_cleanup);
 7834 
 7835   movdl(xmm0, crc);                        //get the initial crc value
 7836 
 7837   cmpl(len, 16);
 7838   jcc(Assembler::equal, L_exact_16_left);
 7839   jcc(Assembler::less, L_less_than_16_left);
 7840 
 7841   movdqu(xmm7, Address(buf, pos, Address::times_1, 0 * 16)); //load the plaintext
 7842   pxor(xmm7, xmm0);                       //xor the initial crc value
 7843   addl(pos, 16);
 7844   subl(len, 16);
 7845   movdqu(xmm10, Address(table, 1 * 16));    // rk1 and rk2 in xmm10
 7846   jmp(L_get_last_two_xmms);
 7847 
 7848   bind(L_less_than_16_left);
 7849   //use stack space to load data less than 16 bytes, zero - out the 16B in memory first.
 7850   pxor(xmm1, xmm1);
 7851   movptr(tmp1, rsp);
 7852   movdqu(Address(tmp1, 0 * 16), xmm1);
 7853 
 7854   cmpl(len, 4);
 7855   jcc(Assembler::less, L_only_less_than_4);
 7856 
 7857   //backup the counter value
 7858   movl(tmp2, len);
 7859   cmpl(len, 8);
 7860   jcc(Assembler::less, L_less_than_8_left);
 7861 
 7862   //load 8 Bytes
 7863   movq(rax, Address(buf, pos, Address::times_1, 0 * 16));
 7864   movq(Address(tmp1, 0 * 16), rax);
 7865   addptr(tmp1, 8);
 7866   subl(len, 8);
 7867   addl(pos, 8);
 7868 
 7869   bind(L_less_than_8_left);
 7870   cmpl(len, 4);
 7871   jcc(Assembler::less, L_less_than_4_left);
 7872 
 7873   //load 4 Bytes
 7874   movl(rax, Address(buf, pos, Address::times_1, 0));
 7875   movl(Address(tmp1, 0 * 16), rax);
 7876   addptr(tmp1, 4);
 7877   subl(len, 4);
 7878   addl(pos, 4);
 7879 
 7880   bind(L_less_than_4_left);
 7881   cmpl(len, 2);
 7882   jcc(Assembler::less, L_less_than_2_left);
 7883 
 7884   // load 2 Bytes
 7885   movw(rax, Address(buf, pos, Address::times_1, 0));
 7886   movl(Address(tmp1, 0 * 16), rax);
 7887   addptr(tmp1, 2);
 7888   subl(len, 2);
 7889   addl(pos, 2);
 7890 
 7891   bind(L_less_than_2_left);
 7892   cmpl(len, 1);
 7893   jcc(Assembler::less, L_zero_left);
 7894 
 7895   // load 1 Byte
 7896   movb(rax, Address(buf, pos, Address::times_1, 0));
 7897   movb(Address(tmp1, 0 * 16), rax);
 7898 
 7899   bind(L_zero_left);
 7900   movdqu(xmm7, Address(rsp, 0));
 7901   pxor(xmm7, xmm0);                       //xor the initial crc value
 7902 
 7903   lea(rax, ExternalAddress(StubRoutines::x86::shuf_table_crc32_avx512_addr()));
 7904   movdqu(xmm0, Address(rax, tmp2));
 7905   pshufb(xmm7, xmm0);
 7906   jmp(L_128_done);
 7907 
 7908   bind(L_exact_16_left);
 7909   movdqu(xmm7, Address(buf, pos, Address::times_1, 0));
 7910   pxor(xmm7, xmm0);                       //xor the initial crc value
 7911   jmp(L_128_done);
 7912 
 7913   bind(L_only_less_than_4);
 7914   cmpl(len, 3);
 7915   jcc(Assembler::less, L_only_less_than_3);
 7916 
 7917   // load 3 Bytes
 7918   movb(rax, Address(buf, pos, Address::times_1, 0));
 7919   movb(Address(tmp1, 0), rax);
 7920 
 7921   movb(rax, Address(buf, pos, Address::times_1, 1));
 7922   movb(Address(tmp1, 1), rax);
 7923 
 7924   movb(rax, Address(buf, pos, Address::times_1, 2));
 7925   movb(Address(tmp1, 2), rax);
 7926 
 7927   movdqu(xmm7, Address(rsp, 0));
 7928   pxor(xmm7, xmm0);                     //xor the initial crc value
 7929 
 7930   pslldq(xmm7, 0x5);
 7931   jmp(L_barrett);
 7932   bind(L_only_less_than_3);
 7933   cmpl(len, 2);
 7934   jcc(Assembler::less, L_only_less_than_2);
 7935 
 7936   // load 2 Bytes
 7937   movb(rax, Address(buf, pos, Address::times_1, 0));
 7938   movb(Address(tmp1, 0), rax);
 7939 
 7940   movb(rax, Address(buf, pos, Address::times_1, 1));
 7941   movb(Address(tmp1, 1), rax);
 7942 
 7943   movdqu(xmm7, Address(rsp, 0));
 7944   pxor(xmm7, xmm0);                     //xor the initial crc value
 7945 
 7946   pslldq(xmm7, 0x6);
 7947   jmp(L_barrett);
 7948 
 7949   bind(L_only_less_than_2);
 7950   //load 1 Byte
 7951   movb(rax, Address(buf, pos, Address::times_1, 0));
 7952   movb(Address(tmp1, 0), rax);
 7953 
 7954   movdqu(xmm7, Address(rsp, 0));
 7955   pxor(xmm7, xmm0);                     //xor the initial crc value
 7956 
 7957   pslldq(xmm7, 0x7);
 7958 }
 7959 
 7960 /**
 7961 * Compute CRC32 using AVX512 instructions
 7962 * param crc   register containing existing CRC (32-bit)
 7963 * param buf   register pointing to input byte buffer (byte*)
 7964 * param len   register containing number of bytes
 7965 * param table address of crc or crc32c table
 7966 * param tmp1  scratch register
 7967 * param tmp2  scratch register
 7968 * return rax  result register
 7969 *
 7970 * This routine is identical for crc32c with the exception of the precomputed constant
 7971 * table which will be passed as the table argument.  The calculation steps are
 7972 * the same for both variants.
 7973 */
 7974 void MacroAssembler::kernel_crc32_avx512(Register crc, Register buf, Register len, Register table, Register tmp1, Register tmp2) {
 7975   assert_different_registers(crc, buf, len, table, tmp1, tmp2, rax, r12);
 7976 
 7977   Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned;
 7978   Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop;
 7979   Label L_less_than_256, L_fold_128_B_loop, L_fold_256_B_loop;
 7980   Label L_fold_128_B_register, L_final_reduction_for_128, L_16B_reduction_loop;
 7981   Label L_128_done, L_get_last_two_xmms, L_barrett, L_cleanup;
 7982 
 7983   const Register pos = r12;
 7984   push(r12);
 7985   subptr(rsp, 16 * 2 + 8);
 7986 
 7987   // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge
 7988   // context for the registers used, where all instructions below are using 128-bit mode
 7989   // On EVEX without VL and BW, these instructions will all be AVX.
 7990   movl(pos, 0);
 7991 
 7992   // check if smaller than 256B
 7993   cmpl(len, 256);
 7994   jcc(Assembler::less, L_less_than_256);
 7995 
 7996   // load the initial crc value
 7997   movdl(xmm10, crc);
 7998 
 7999   // receive the initial 64B data, xor the initial crc value
 8000   evmovdquq(xmm0, Address(buf, pos, Address::times_1, 0 * 64), Assembler::AVX_512bit);
 8001   evmovdquq(xmm4, Address(buf, pos, Address::times_1, 1 * 64), Assembler::AVX_512bit);
 8002   evpxorq(xmm0, xmm0, xmm10, Assembler::AVX_512bit);
 8003   evbroadcasti32x4(xmm10, Address(table, 2 * 16), Assembler::AVX_512bit); //zmm10 has rk3 and rk4
 8004 
 8005   subl(len, 256);
 8006   cmpl(len, 256);
 8007   jcc(Assembler::less, L_fold_128_B_loop);
 8008 
 8009   evmovdquq(xmm7, Address(buf, pos, Address::times_1, 2 * 64), Assembler::AVX_512bit);
 8010   evmovdquq(xmm8, Address(buf, pos, Address::times_1, 3 * 64), Assembler::AVX_512bit);
 8011   evbroadcasti32x4(xmm16, Address(table, 0 * 16), Assembler::AVX_512bit); //zmm16 has rk-1 and rk-2
 8012   subl(len, 256);
 8013 
 8014   bind(L_fold_256_B_loop);
 8015   addl(pos, 256);
 8016   fold512bit_crc32_avx512(xmm0, xmm16, xmm1, buf, pos, 0 * 64);
 8017   fold512bit_crc32_avx512(xmm4, xmm16, xmm1, buf, pos, 1 * 64);
 8018   fold512bit_crc32_avx512(xmm7, xmm16, xmm1, buf, pos, 2 * 64);
 8019   fold512bit_crc32_avx512(xmm8, xmm16, xmm1, buf, pos, 3 * 64);
 8020 
 8021   subl(len, 256);
 8022   jcc(Assembler::greaterEqual, L_fold_256_B_loop);
 8023 
 8024   // Fold 256 into 128
 8025   addl(pos, 256);
 8026   evpclmulqdq(xmm1, xmm0, xmm10, 0x01, Assembler::AVX_512bit);
 8027   evpclmulqdq(xmm2, xmm0, xmm10, 0x10, Assembler::AVX_512bit);
 8028   vpternlogq(xmm7, 0x96, xmm1, xmm2, Assembler::AVX_512bit); // xor ABC
 8029 
 8030   evpclmulqdq(xmm5, xmm4, xmm10, 0x01, Assembler::AVX_512bit);
 8031   evpclmulqdq(xmm6, xmm4, xmm10, 0x10, Assembler::AVX_512bit);
 8032   vpternlogq(xmm8, 0x96, xmm5, xmm6, Assembler::AVX_512bit); // xor ABC
 8033 
 8034   evmovdquq(xmm0, xmm7, Assembler::AVX_512bit);
 8035   evmovdquq(xmm4, xmm8, Assembler::AVX_512bit);
 8036 
 8037   addl(len, 128);
 8038   jmp(L_fold_128_B_register);
 8039 
 8040   // at this section of the code, there is 128 * x + y(0 <= y<128) bytes of buffer.The fold_128_B_loop
 8041   // loop will fold 128B at a time until we have 128 + y Bytes of buffer
 8042 
 8043   // fold 128B at a time.This section of the code folds 8 xmm registers in parallel
 8044   bind(L_fold_128_B_loop);
 8045   addl(pos, 128);
 8046   fold512bit_crc32_avx512(xmm0, xmm10, xmm1, buf, pos, 0 * 64);
 8047   fold512bit_crc32_avx512(xmm4, xmm10, xmm1, buf, pos, 1 * 64);
 8048 
 8049   subl(len, 128);
 8050   jcc(Assembler::greaterEqual, L_fold_128_B_loop);
 8051 
 8052   addl(pos, 128);
 8053 
 8054   // at this point, the buffer pointer is pointing at the last y Bytes of the buffer, where 0 <= y < 128
 8055   // the 128B of folded data is in 8 of the xmm registers : xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7
 8056   bind(L_fold_128_B_register);
 8057   evmovdquq(xmm16, Address(table, 5 * 16), Assembler::AVX_512bit); // multiply by rk9-rk16
 8058   evmovdquq(xmm11, Address(table, 9 * 16), Assembler::AVX_512bit); // multiply by rk17-rk20, rk1,rk2, 0,0
 8059   evpclmulqdq(xmm1, xmm0, xmm16, 0x01, Assembler::AVX_512bit);
 8060   evpclmulqdq(xmm2, xmm0, xmm16, 0x10, Assembler::AVX_512bit);
 8061   // save last that has no multiplicand
 8062   vextracti64x2(xmm7, xmm4, 3);
 8063 
 8064   evpclmulqdq(xmm5, xmm4, xmm11, 0x01, Assembler::AVX_512bit);
 8065   evpclmulqdq(xmm6, xmm4, xmm11, 0x10, Assembler::AVX_512bit);
 8066   // Needed later in reduction loop
 8067   movdqu(xmm10, Address(table, 1 * 16));
 8068   vpternlogq(xmm1, 0x96, xmm2, xmm5, Assembler::AVX_512bit); // xor ABC
 8069   vpternlogq(xmm1, 0x96, xmm6, xmm7, Assembler::AVX_512bit); // xor ABC
 8070 
 8071   // Swap 1,0,3,2 - 01 00 11 10
 8072   evshufi64x2(xmm8, xmm1, xmm1, 0x4e, Assembler::AVX_512bit);
 8073   evpxorq(xmm8, xmm8, xmm1, Assembler::AVX_256bit);
 8074   vextracti128(xmm5, xmm8, 1);
 8075   evpxorq(xmm7, xmm5, xmm8, Assembler::AVX_128bit);
 8076 
 8077   // instead of 128, we add 128 - 16 to the loop counter to save 1 instruction from the loop
 8078   // instead of a cmp instruction, we use the negative flag with the jl instruction
 8079   addl(len, 128 - 16);
 8080   jcc(Assembler::less, L_final_reduction_for_128);
 8081 
 8082   bind(L_16B_reduction_loop);
 8083   vpclmulqdq(xmm8, xmm7, xmm10, 0x01);
 8084   vpclmulqdq(xmm7, xmm7, xmm10, 0x10);
 8085   vpxor(xmm7, xmm7, xmm8, Assembler::AVX_128bit);
 8086   movdqu(xmm0, Address(buf, pos, Address::times_1, 0 * 16));
 8087   vpxor(xmm7, xmm7, xmm0, Assembler::AVX_128bit);
 8088   addl(pos, 16);
 8089   subl(len, 16);
 8090   jcc(Assembler::greaterEqual, L_16B_reduction_loop);
 8091 
 8092   bind(L_final_reduction_for_128);
 8093   addl(len, 16);
 8094   jcc(Assembler::equal, L_128_done);
 8095 
 8096   bind(L_get_last_two_xmms);
 8097   movdqu(xmm2, xmm7);
 8098   addl(pos, len);
 8099   movdqu(xmm1, Address(buf, pos, Address::times_1, -16));
 8100   subl(pos, len);
 8101 
 8102   // get rid of the extra data that was loaded before
 8103   // load the shift constant
 8104   lea(rax, ExternalAddress(StubRoutines::x86::shuf_table_crc32_avx512_addr()));
 8105   movdqu(xmm0, Address(rax, len));
 8106   addl(rax, len);
 8107 
 8108   vpshufb(xmm7, xmm7, xmm0, Assembler::AVX_128bit);
 8109   //Change mask to 512
 8110   vpxor(xmm0, xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_avx512_addr() + 2 * 16), Assembler::AVX_128bit, tmp2);
 8111   vpshufb(xmm2, xmm2, xmm0, Assembler::AVX_128bit);
 8112 
 8113   blendvpb(xmm2, xmm2, xmm1, xmm0, Assembler::AVX_128bit);
 8114   vpclmulqdq(xmm8, xmm7, xmm10, 0x01);
 8115   vpclmulqdq(xmm7, xmm7, xmm10, 0x10);
 8116   vpxor(xmm7, xmm7, xmm8, Assembler::AVX_128bit);
 8117   vpxor(xmm7, xmm7, xmm2, Assembler::AVX_128bit);
 8118 
 8119   bind(L_128_done);
 8120   // compute crc of a 128-bit value
 8121   movdqu(xmm10, Address(table, 3 * 16));
 8122   movdqu(xmm0, xmm7);
 8123 
 8124   // 64b fold
 8125   vpclmulqdq(xmm7, xmm7, xmm10, 0x0);
 8126   vpsrldq(xmm0, xmm0, 0x8, Assembler::AVX_128bit);
 8127   vpxor(xmm7, xmm7, xmm0, Assembler::AVX_128bit);
 8128 
 8129   // 32b fold
 8130   movdqu(xmm0, xmm7);
 8131   vpslldq(xmm7, xmm7, 0x4, Assembler::AVX_128bit);
 8132   vpclmulqdq(xmm7, xmm7, xmm10, 0x10);
 8133   vpxor(xmm7, xmm7, xmm0, Assembler::AVX_128bit);
 8134   jmp(L_barrett);
 8135 
 8136   bind(L_less_than_256);
 8137   kernel_crc32_avx512_256B(crc, buf, len, table, pos, tmp1, tmp2, L_barrett, L_16B_reduction_loop, L_get_last_two_xmms, L_128_done, L_cleanup);
 8138 
 8139   //barrett reduction
 8140   bind(L_barrett);
 8141   vpand(xmm7, xmm7, ExternalAddress(StubRoutines::x86::crc_by128_masks_avx512_addr() + 1 * 16), Assembler::AVX_128bit, tmp2);
 8142   movdqu(xmm1, xmm7);
 8143   movdqu(xmm2, xmm7);
 8144   movdqu(xmm10, Address(table, 4 * 16));
 8145 
 8146   pclmulqdq(xmm7, xmm10, 0x0);
 8147   pxor(xmm7, xmm2);
 8148   vpand(xmm7, xmm7, ExternalAddress(StubRoutines::x86::crc_by128_masks_avx512_addr()), Assembler::AVX_128bit, tmp2);
 8149   movdqu(xmm2, xmm7);
 8150   pclmulqdq(xmm7, xmm10, 0x10);
 8151   pxor(xmm7, xmm2);
 8152   pxor(xmm7, xmm1);
 8153   pextrd(crc, xmm7, 2);
 8154 
 8155   bind(L_cleanup);
 8156   addptr(rsp, 16 * 2 + 8);
 8157   pop(r12);
 8158 }
 8159 
 8160 // S. Gueron / Information Processing Letters 112 (2012) 184
 8161 // Algorithm 4: Computing carry-less multiplication using a precomputed lookup table.
 8162 // Input: A 32 bit value B = [byte3, byte2, byte1, byte0].
 8163 // Output: the 64-bit carry-less product of B * CONST
 8164 void MacroAssembler::crc32c_ipl_alg4(Register in, uint32_t n,
 8165                                      Register tmp1, Register tmp2, Register tmp3) {
 8166   lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr()));
 8167   if (n > 0) {
 8168     addq(tmp3, n * 256 * 8);
 8169   }
 8170   //    Q1 = TABLEExt[n][B & 0xFF];
 8171   movl(tmp1, in);
 8172   andl(tmp1, 0x000000FF);
 8173   shll(tmp1, 3);
 8174   addq(tmp1, tmp3);
 8175   movq(tmp1, Address(tmp1, 0));
 8176 
 8177   //    Q2 = TABLEExt[n][B >> 8 & 0xFF];
 8178   movl(tmp2, in);
 8179   shrl(tmp2, 8);
 8180   andl(tmp2, 0x000000FF);
 8181   shll(tmp2, 3);
 8182   addq(tmp2, tmp3);
 8183   movq(tmp2, Address(tmp2, 0));
 8184 
 8185   shlq(tmp2, 8);
 8186   xorq(tmp1, tmp2);
 8187 
 8188   //    Q3 = TABLEExt[n][B >> 16 & 0xFF];
 8189   movl(tmp2, in);
 8190   shrl(tmp2, 16);
 8191   andl(tmp2, 0x000000FF);
 8192   shll(tmp2, 3);
 8193   addq(tmp2, tmp3);
 8194   movq(tmp2, Address(tmp2, 0));
 8195 
 8196   shlq(tmp2, 16);
 8197   xorq(tmp1, tmp2);
 8198 
 8199   //    Q4 = TABLEExt[n][B >> 24 & 0xFF];
 8200   shrl(in, 24);
 8201   andl(in, 0x000000FF);
 8202   shll(in, 3);
 8203   addq(in, tmp3);
 8204   movq(in, Address(in, 0));
 8205 
 8206   shlq(in, 24);
 8207   xorq(in, tmp1);
 8208   //    return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24;
 8209 }
 8210 
 8211 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1,
 8212                                       Register in_out,
 8213                                       uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
 8214                                       XMMRegister w_xtmp2,
 8215                                       Register tmp1,
 8216                                       Register n_tmp2, Register n_tmp3) {
 8217   if (is_pclmulqdq_supported) {
 8218     movdl(w_xtmp1, in_out); // modified blindly
 8219 
 8220     movl(tmp1, const_or_pre_comp_const_index);
 8221     movdl(w_xtmp2, tmp1);
 8222     pclmulqdq(w_xtmp1, w_xtmp2, 0);
 8223 
 8224     movdq(in_out, w_xtmp1);
 8225   } else {
 8226     crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3);
 8227   }
 8228 }
 8229 
 8230 // Recombination Alternative 2: No bit-reflections
 8231 // T1 = (CRC_A * U1) << 1
 8232 // T2 = (CRC_B * U2) << 1
 8233 // C1 = T1 >> 32
 8234 // C2 = T2 >> 32
 8235 // T1 = T1 & 0xFFFFFFFF
 8236 // T2 = T2 & 0xFFFFFFFF
 8237 // T1 = CRC32(0, T1)
 8238 // T2 = CRC32(0, T2)
 8239 // C1 = C1 ^ T1
 8240 // C2 = C2 ^ T2
 8241 // CRC = C1 ^ C2 ^ CRC_C
 8242 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
 8243                                      XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
 8244                                      Register tmp1, Register tmp2,
 8245                                      Register n_tmp3) {
 8246   crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
 8247   crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
 8248   shlq(in_out, 1);
 8249   movl(tmp1, in_out);
 8250   shrq(in_out, 32);
 8251   xorl(tmp2, tmp2);
 8252   crc32(tmp2, tmp1, 4);
 8253   xorl(in_out, tmp2); // we don't care about upper 32 bit contents here
 8254   shlq(in1, 1);
 8255   movl(tmp1, in1);
 8256   shrq(in1, 32);
 8257   xorl(tmp2, tmp2);
 8258   crc32(tmp2, tmp1, 4);
 8259   xorl(in1, tmp2);
 8260   xorl(in_out, in1);
 8261   xorl(in_out, in2);
 8262 }
 8263 
 8264 // Set N to predefined value
 8265 // Subtract from a length of a buffer
 8266 // execute in a loop:
 8267 // CRC_A = 0xFFFFFFFF, CRC_B = 0, CRC_C = 0
 8268 // for i = 1 to N do
 8269 //  CRC_A = CRC32(CRC_A, A[i])
 8270 //  CRC_B = CRC32(CRC_B, B[i])
 8271 //  CRC_C = CRC32(CRC_C, C[i])
 8272 // end for
 8273 // Recombine
 8274 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
 8275                                        Register in_out1, Register in_out2, Register in_out3,
 8276                                        Register tmp1, Register tmp2, Register tmp3,
 8277                                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
 8278                                        Register tmp4, Register tmp5,
 8279                                        Register n_tmp6) {
 8280   Label L_processPartitions;
 8281   Label L_processPartition;
 8282   Label L_exit;
 8283 
 8284   bind(L_processPartitions);
 8285   cmpl(in_out1, 3 * size);
 8286   jcc(Assembler::less, L_exit);
 8287     xorl(tmp1, tmp1);
 8288     xorl(tmp2, tmp2);
 8289     movq(tmp3, in_out2);
 8290     addq(tmp3, size);
 8291 
 8292     bind(L_processPartition);
 8293       crc32(in_out3, Address(in_out2, 0), 8);
 8294       crc32(tmp1, Address(in_out2, size), 8);
 8295       crc32(tmp2, Address(in_out2, size * 2), 8);
 8296       addq(in_out2, 8);
 8297       cmpq(in_out2, tmp3);
 8298       jcc(Assembler::less, L_processPartition);
 8299     crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2,
 8300             w_xtmp1, w_xtmp2, w_xtmp3,
 8301             tmp4, tmp5,
 8302             n_tmp6);
 8303     addq(in_out2, 2 * size);
 8304     subl(in_out1, 3 * size);
 8305     jmp(L_processPartitions);
 8306 
 8307   bind(L_exit);
 8308 }
 8309 #else
 8310 void MacroAssembler::crc32c_ipl_alg4(Register in_out, uint32_t n,
 8311                                      Register tmp1, Register tmp2, Register tmp3,
 8312                                      XMMRegister xtmp1, XMMRegister xtmp2) {
 8313   lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr()));
 8314   if (n > 0) {
 8315     addl(tmp3, n * 256 * 8);
 8316   }
 8317   //    Q1 = TABLEExt[n][B & 0xFF];
 8318   movl(tmp1, in_out);
 8319   andl(tmp1, 0x000000FF);
 8320   shll(tmp1, 3);
 8321   addl(tmp1, tmp3);
 8322   movq(xtmp1, Address(tmp1, 0));
 8323 
 8324   //    Q2 = TABLEExt[n][B >> 8 & 0xFF];
 8325   movl(tmp2, in_out);
 8326   shrl(tmp2, 8);
 8327   andl(tmp2, 0x000000FF);
 8328   shll(tmp2, 3);
 8329   addl(tmp2, tmp3);
 8330   movq(xtmp2, Address(tmp2, 0));
 8331 
 8332   psllq(xtmp2, 8);
 8333   pxor(xtmp1, xtmp2);
 8334 
 8335   //    Q3 = TABLEExt[n][B >> 16 & 0xFF];
 8336   movl(tmp2, in_out);
 8337   shrl(tmp2, 16);
 8338   andl(tmp2, 0x000000FF);
 8339   shll(tmp2, 3);
 8340   addl(tmp2, tmp3);
 8341   movq(xtmp2, Address(tmp2, 0));
 8342 
 8343   psllq(xtmp2, 16);
 8344   pxor(xtmp1, xtmp2);
 8345 
 8346   //    Q4 = TABLEExt[n][B >> 24 & 0xFF];
 8347   shrl(in_out, 24);
 8348   andl(in_out, 0x000000FF);
 8349   shll(in_out, 3);
 8350   addl(in_out, tmp3);
 8351   movq(xtmp2, Address(in_out, 0));
 8352 
 8353   psllq(xtmp2, 24);
 8354   pxor(xtmp1, xtmp2); // Result in CXMM
 8355   //    return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24;
 8356 }
 8357 
 8358 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1,
 8359                                       Register in_out,
 8360                                       uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
 8361                                       XMMRegister w_xtmp2,
 8362                                       Register tmp1,
 8363                                       Register n_tmp2, Register n_tmp3) {
 8364   if (is_pclmulqdq_supported) {
 8365     movdl(w_xtmp1, in_out);
 8366 
 8367     movl(tmp1, const_or_pre_comp_const_index);
 8368     movdl(w_xtmp2, tmp1);
 8369     pclmulqdq(w_xtmp1, w_xtmp2, 0);
 8370     // Keep result in XMM since GPR is 32 bit in length
 8371   } else {
 8372     crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3, w_xtmp1, w_xtmp2);
 8373   }
 8374 }
 8375 
 8376 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
 8377                                      XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
 8378                                      Register tmp1, Register tmp2,
 8379                                      Register n_tmp3) {
 8380   crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
 8381   crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
 8382 
 8383   psllq(w_xtmp1, 1);
 8384   movdl(tmp1, w_xtmp1);
 8385   psrlq(w_xtmp1, 32);
 8386   movdl(in_out, w_xtmp1);
 8387 
 8388   xorl(tmp2, tmp2);
 8389   crc32(tmp2, tmp1, 4);
 8390   xorl(in_out, tmp2);
 8391 
 8392   psllq(w_xtmp2, 1);
 8393   movdl(tmp1, w_xtmp2);
 8394   psrlq(w_xtmp2, 32);
 8395   movdl(in1, w_xtmp2);
 8396 
 8397   xorl(tmp2, tmp2);
 8398   crc32(tmp2, tmp1, 4);
 8399   xorl(in1, tmp2);
 8400   xorl(in_out, in1);
 8401   xorl(in_out, in2);
 8402 }
 8403 
 8404 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
 8405                                        Register in_out1, Register in_out2, Register in_out3,
 8406                                        Register tmp1, Register tmp2, Register tmp3,
 8407                                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
 8408                                        Register tmp4, Register tmp5,
 8409                                        Register n_tmp6) {
 8410   Label L_processPartitions;
 8411   Label L_processPartition;
 8412   Label L_exit;
 8413 
 8414   bind(L_processPartitions);
 8415   cmpl(in_out1, 3 * size);
 8416   jcc(Assembler::less, L_exit);
 8417     xorl(tmp1, tmp1);
 8418     xorl(tmp2, tmp2);
 8419     movl(tmp3, in_out2);
 8420     addl(tmp3, size);
 8421 
 8422     bind(L_processPartition);
 8423       crc32(in_out3, Address(in_out2, 0), 4);
 8424       crc32(tmp1, Address(in_out2, size), 4);
 8425       crc32(tmp2, Address(in_out2, size*2), 4);
 8426       crc32(in_out3, Address(in_out2, 0+4), 4);
 8427       crc32(tmp1, Address(in_out2, size+4), 4);
 8428       crc32(tmp2, Address(in_out2, size*2+4), 4);
 8429       addl(in_out2, 8);
 8430       cmpl(in_out2, tmp3);
 8431       jcc(Assembler::less, L_processPartition);
 8432 
 8433         push(tmp3);
 8434         push(in_out1);
 8435         push(in_out2);
 8436         tmp4 = tmp3;
 8437         tmp5 = in_out1;
 8438         n_tmp6 = in_out2;
 8439 
 8440       crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2,
 8441             w_xtmp1, w_xtmp2, w_xtmp3,
 8442             tmp4, tmp5,
 8443             n_tmp6);
 8444 
 8445         pop(in_out2);
 8446         pop(in_out1);
 8447         pop(tmp3);
 8448 
 8449     addl(in_out2, 2 * size);
 8450     subl(in_out1, 3 * size);
 8451     jmp(L_processPartitions);
 8452 
 8453   bind(L_exit);
 8454 }
 8455 #endif //LP64
 8456 
 8457 #ifdef _LP64
 8458 // Algorithm 2: Pipelined usage of the CRC32 instruction.
 8459 // Input: A buffer I of L bytes.
 8460 // Output: the CRC32C value of the buffer.
 8461 // Notations:
 8462 // Write L = 24N + r, with N = floor (L/24).
 8463 // r = L mod 24 (0 <= r < 24).
 8464 // Consider I as the concatenation of A|B|C|R, where A, B, C, each,
 8465 // N quadwords, and R consists of r bytes.
 8466 // A[j] = I [8j+7:8j], j= 0, 1, ..., N-1
 8467 // B[j] = I [N + 8j+7:N + 8j], j= 0, 1, ..., N-1
 8468 // C[j] = I [2N + 8j+7:2N + 8j], j= 0, 1, ..., N-1
 8469 // if r > 0 R[j] = I [3N +j], j= 0, 1, ...,r-1
 8470 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
 8471                                           Register tmp1, Register tmp2, Register tmp3,
 8472                                           Register tmp4, Register tmp5, Register tmp6,
 8473                                           XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
 8474                                           bool is_pclmulqdq_supported) {
 8475   uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS];
 8476   Label L_wordByWord;
 8477   Label L_byteByByteProlog;
 8478   Label L_byteByByte;
 8479   Label L_exit;
 8480 
 8481   if (is_pclmulqdq_supported ) {
 8482     const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr;
 8483     const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr+1);
 8484 
 8485     const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2);
 8486     const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3);
 8487 
 8488     const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4);
 8489     const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5);
 8490     assert((CRC32C_NUM_PRECOMPUTED_CONSTANTS - 1 ) == 5, "Checking whether you declared all of the constants based on the number of \"chunks\"");
 8491   } else {
 8492     const_or_pre_comp_const_index[0] = 1;
 8493     const_or_pre_comp_const_index[1] = 0;
 8494 
 8495     const_or_pre_comp_const_index[2] = 3;
 8496     const_or_pre_comp_const_index[3] = 2;
 8497 
 8498     const_or_pre_comp_const_index[4] = 5;
 8499     const_or_pre_comp_const_index[5] = 4;
 8500    }
 8501   crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported,
 8502                     in2, in1, in_out,
 8503                     tmp1, tmp2, tmp3,
 8504                     w_xtmp1, w_xtmp2, w_xtmp3,
 8505                     tmp4, tmp5,
 8506                     tmp6);
 8507   crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported,
 8508                     in2, in1, in_out,
 8509                     tmp1, tmp2, tmp3,
 8510                     w_xtmp1, w_xtmp2, w_xtmp3,
 8511                     tmp4, tmp5,
 8512                     tmp6);
 8513   crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported,
 8514                     in2, in1, in_out,
 8515                     tmp1, tmp2, tmp3,
 8516                     w_xtmp1, w_xtmp2, w_xtmp3,
 8517                     tmp4, tmp5,
 8518                     tmp6);
 8519   movl(tmp1, in2);
 8520   andl(tmp1, 0x00000007);
 8521   negl(tmp1);
 8522   addl(tmp1, in2);
 8523   addq(tmp1, in1);
 8524 
 8525   cmpq(in1, tmp1);
 8526   jccb(Assembler::greaterEqual, L_byteByByteProlog);
 8527   align(16);
 8528   BIND(L_wordByWord);
 8529     crc32(in_out, Address(in1, 0), 8);
 8530     addq(in1, 8);
 8531     cmpq(in1, tmp1);
 8532     jcc(Assembler::less, L_wordByWord);
 8533 
 8534   BIND(L_byteByByteProlog);
 8535   andl(in2, 0x00000007);
 8536   movl(tmp2, 1);
 8537 
 8538   cmpl(tmp2, in2);
 8539   jccb(Assembler::greater, L_exit);
 8540   BIND(L_byteByByte);
 8541     crc32(in_out, Address(in1, 0), 1);
 8542     incq(in1);
 8543     incl(tmp2);
 8544     cmpl(tmp2, in2);
 8545     jcc(Assembler::lessEqual, L_byteByByte);
 8546 
 8547   BIND(L_exit);
 8548 }
 8549 #else
 8550 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
 8551                                           Register tmp1, Register  tmp2, Register tmp3,
 8552                                           Register tmp4, Register  tmp5, Register tmp6,
 8553                                           XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
 8554                                           bool is_pclmulqdq_supported) {
 8555   uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS];
 8556   Label L_wordByWord;
 8557   Label L_byteByByteProlog;
 8558   Label L_byteByByte;
 8559   Label L_exit;
 8560 
 8561   if (is_pclmulqdq_supported) {
 8562     const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr;
 8563     const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 1);
 8564 
 8565     const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2);
 8566     const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3);
 8567 
 8568     const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4);
 8569     const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5);
 8570   } else {
 8571     const_or_pre_comp_const_index[0] = 1;
 8572     const_or_pre_comp_const_index[1] = 0;
 8573 
 8574     const_or_pre_comp_const_index[2] = 3;
 8575     const_or_pre_comp_const_index[3] = 2;
 8576 
 8577     const_or_pre_comp_const_index[4] = 5;
 8578     const_or_pre_comp_const_index[5] = 4;
 8579   }
 8580   crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported,
 8581                     in2, in1, in_out,
 8582                     tmp1, tmp2, tmp3,
 8583                     w_xtmp1, w_xtmp2, w_xtmp3,
 8584                     tmp4, tmp5,
 8585                     tmp6);
 8586   crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported,
 8587                     in2, in1, in_out,
 8588                     tmp1, tmp2, tmp3,
 8589                     w_xtmp1, w_xtmp2, w_xtmp3,
 8590                     tmp4, tmp5,
 8591                     tmp6);
 8592   crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported,
 8593                     in2, in1, in_out,
 8594                     tmp1, tmp2, tmp3,
 8595                     w_xtmp1, w_xtmp2, w_xtmp3,
 8596                     tmp4, tmp5,
 8597                     tmp6);
 8598   movl(tmp1, in2);
 8599   andl(tmp1, 0x00000007);
 8600   negl(tmp1);
 8601   addl(tmp1, in2);
 8602   addl(tmp1, in1);
 8603 
 8604   BIND(L_wordByWord);
 8605   cmpl(in1, tmp1);
 8606   jcc(Assembler::greaterEqual, L_byteByByteProlog);
 8607     crc32(in_out, Address(in1,0), 4);
 8608     addl(in1, 4);
 8609     jmp(L_wordByWord);
 8610 
 8611   BIND(L_byteByByteProlog);
 8612   andl(in2, 0x00000007);
 8613   movl(tmp2, 1);
 8614 
 8615   BIND(L_byteByByte);
 8616   cmpl(tmp2, in2);
 8617   jccb(Assembler::greater, L_exit);
 8618     movb(tmp1, Address(in1, 0));
 8619     crc32(in_out, tmp1, 1);
 8620     incl(in1);
 8621     incl(tmp2);
 8622     jmp(L_byteByByte);
 8623 
 8624   BIND(L_exit);
 8625 }
 8626 #endif // LP64
 8627 #undef BIND
 8628 #undef BLOCK_COMMENT
 8629 
 8630 // Compress char[] array to byte[].
 8631 // Intrinsic for java.lang.StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len)
 8632 // Return the array length if every element in array can be encoded,
 8633 // otherwise, the index of first non-latin1 (> 0xff) character.
 8634 //   @IntrinsicCandidate
 8635 //   public static int compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) {
 8636 //     for (int i = 0; i < len; i++) {
 8637 //       char c = src[srcOff];
 8638 //       if (c > 0xff) {
 8639 //           return i;  // return index of non-latin1 char
 8640 //       }
 8641 //       dst[dstOff] = (byte)c;
 8642 //       srcOff++;
 8643 //       dstOff++;
 8644 //     }
 8645 //     return len;
 8646 //   }
 8647 void MacroAssembler::char_array_compress(Register src, Register dst, Register len,
 8648   XMMRegister tmp1Reg, XMMRegister tmp2Reg,
 8649   XMMRegister tmp3Reg, XMMRegister tmp4Reg,
 8650   Register tmp5, Register result, KRegister mask1, KRegister mask2) {
 8651   Label copy_chars_loop, done, reset_sp, copy_tail;
 8652 
 8653   // rsi: src
 8654   // rdi: dst
 8655   // rdx: len
 8656   // rcx: tmp5
 8657   // rax: result
 8658 
 8659   // rsi holds start addr of source char[] to be compressed
 8660   // rdi holds start addr of destination byte[]
 8661   // rdx holds length
 8662 
 8663   assert(len != result, "");
 8664 
 8665   // save length for return
 8666   movl(result, len);
 8667 
 8668   if ((AVX3Threshold == 0) && (UseAVX > 2) && // AVX512
 8669     VM_Version::supports_avx512vlbw() &&
 8670     VM_Version::supports_bmi2()) {
 8671 
 8672     Label copy_32_loop, copy_loop_tail, below_threshold, reset_for_copy_tail;
 8673 
 8674     // alignment
 8675     Label post_alignment;
 8676 
 8677     // if length of the string is less than 32, handle it the old fashioned way
 8678     testl(len, -32);
 8679     jcc(Assembler::zero, below_threshold);
 8680 
 8681     // First check whether a character is compressible ( <= 0xFF).
 8682     // Create mask to test for Unicode chars inside zmm vector
 8683     movl(tmp5, 0x00FF);
 8684     evpbroadcastw(tmp2Reg, tmp5, Assembler::AVX_512bit);
 8685 
 8686     testl(len, -64);
 8687     jccb(Assembler::zero, post_alignment);
 8688 
 8689     movl(tmp5, dst);
 8690     andl(tmp5, (32 - 1));
 8691     negl(tmp5);
 8692     andl(tmp5, (32 - 1));
 8693 
 8694     // bail out when there is nothing to be done
 8695     testl(tmp5, 0xFFFFFFFF);
 8696     jccb(Assembler::zero, post_alignment);
 8697 
 8698     // ~(~0 << len), where len is the # of remaining elements to process
 8699     movl(len, 0xFFFFFFFF);
 8700     shlxl(len, len, tmp5);
 8701     notl(len);
 8702     kmovdl(mask2, len);
 8703     movl(len, result);
 8704 
 8705     evmovdquw(tmp1Reg, mask2, Address(src, 0), /*merge*/ false, Assembler::AVX_512bit);
 8706     evpcmpw(mask1, mask2, tmp1Reg, tmp2Reg, Assembler::le, /*signed*/ false, Assembler::AVX_512bit);
 8707     ktestd(mask1, mask2);
 8708     jcc(Assembler::carryClear, copy_tail);
 8709 
 8710     evpmovwb(Address(dst, 0), mask2, tmp1Reg, Assembler::AVX_512bit);
 8711 
 8712     addptr(src, tmp5);
 8713     addptr(src, tmp5);
 8714     addptr(dst, tmp5);
 8715     subl(len, tmp5);
 8716 
 8717     bind(post_alignment);
 8718     // end of alignment
 8719 
 8720     movl(tmp5, len);
 8721     andl(tmp5, (32 - 1));    // tail count (in chars)
 8722     andl(len, ~(32 - 1));    // vector count (in chars)
 8723     jccb(Assembler::zero, copy_loop_tail);
 8724 
 8725     lea(src, Address(src, len, Address::times_2));
 8726     lea(dst, Address(dst, len, Address::times_1));
 8727     negptr(len);
 8728 
 8729     bind(copy_32_loop);
 8730     evmovdquw(tmp1Reg, Address(src, len, Address::times_2), Assembler::AVX_512bit);
 8731     evpcmpuw(mask1, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
 8732     kortestdl(mask1, mask1);
 8733     jccb(Assembler::carryClear, reset_for_copy_tail);
 8734 
 8735     // All elements in current processed chunk are valid candidates for
 8736     // compression. Write a truncated byte elements to the memory.
 8737     evpmovwb(Address(dst, len, Address::times_1), tmp1Reg, Assembler::AVX_512bit);
 8738     addptr(len, 32);
 8739     jccb(Assembler::notZero, copy_32_loop);
 8740 
 8741     bind(copy_loop_tail);
 8742     // bail out when there is nothing to be done
 8743     testl(tmp5, 0xFFFFFFFF);
 8744     jcc(Assembler::zero, done);
 8745 
 8746     movl(len, tmp5);
 8747 
 8748     // ~(~0 << len), where len is the # of remaining elements to process
 8749     movl(tmp5, 0xFFFFFFFF);
 8750     shlxl(tmp5, tmp5, len);
 8751     notl(tmp5);
 8752 
 8753     kmovdl(mask2, tmp5);
 8754 
 8755     evmovdquw(tmp1Reg, mask2, Address(src, 0), /*merge*/ false, Assembler::AVX_512bit);
 8756     evpcmpw(mask1, mask2, tmp1Reg, tmp2Reg, Assembler::le, /*signed*/ false, Assembler::AVX_512bit);
 8757     ktestd(mask1, mask2);
 8758     jcc(Assembler::carryClear, copy_tail);
 8759 
 8760     evpmovwb(Address(dst, 0), mask2, tmp1Reg, Assembler::AVX_512bit);
 8761     jmp(done);
 8762 
 8763     bind(reset_for_copy_tail);
 8764     lea(src, Address(src, tmp5, Address::times_2));
 8765     lea(dst, Address(dst, tmp5, Address::times_1));
 8766     subptr(len, tmp5);
 8767     jmp(copy_chars_loop);
 8768 
 8769     bind(below_threshold);
 8770   }
 8771 
 8772   if (UseSSE42Intrinsics) {
 8773     Label copy_32_loop, copy_16, copy_tail_sse, reset_for_copy_tail;
 8774 
 8775     // vectored compression
 8776     testl(len, 0xfffffff8);
 8777     jcc(Assembler::zero, copy_tail);
 8778 
 8779     movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vectors
 8780     movdl(tmp1Reg, tmp5);
 8781     pshufd(tmp1Reg, tmp1Reg, 0);   // store Unicode mask in tmp1Reg
 8782 
 8783     andl(len, 0xfffffff0);
 8784     jccb(Assembler::zero, copy_16);
 8785 
 8786     // compress 16 chars per iter
 8787     pxor(tmp4Reg, tmp4Reg);
 8788 
 8789     lea(src, Address(src, len, Address::times_2));
 8790     lea(dst, Address(dst, len, Address::times_1));
 8791     negptr(len);
 8792 
 8793     bind(copy_32_loop);
 8794     movdqu(tmp2Reg, Address(src, len, Address::times_2));     // load 1st 8 characters
 8795     por(tmp4Reg, tmp2Reg);
 8796     movdqu(tmp3Reg, Address(src, len, Address::times_2, 16)); // load next 8 characters
 8797     por(tmp4Reg, tmp3Reg);
 8798     ptest(tmp4Reg, tmp1Reg);       // check for Unicode chars in next vector
 8799     jccb(Assembler::notZero, reset_for_copy_tail);
 8800     packuswb(tmp2Reg, tmp3Reg);    // only ASCII chars; compress each to 1 byte
 8801     movdqu(Address(dst, len, Address::times_1), tmp2Reg);
 8802     addptr(len, 16);
 8803     jccb(Assembler::notZero, copy_32_loop);
 8804 
 8805     // compress next vector of 8 chars (if any)
 8806     bind(copy_16);
 8807     // len = 0
 8808     testl(result, 0x00000008);     // check if there's a block of 8 chars to compress
 8809     jccb(Assembler::zero, copy_tail_sse);
 8810 
 8811     pxor(tmp3Reg, tmp3Reg);
 8812 
 8813     movdqu(tmp2Reg, Address(src, 0));
 8814     ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in vector
 8815     jccb(Assembler::notZero, reset_for_copy_tail);
 8816     packuswb(tmp2Reg, tmp3Reg);    // only LATIN1 chars; compress each to 1 byte
 8817     movq(Address(dst, 0), tmp2Reg);
 8818     addptr(src, 16);
 8819     addptr(dst, 8);
 8820     jmpb(copy_tail_sse);
 8821 
 8822     bind(reset_for_copy_tail);
 8823     movl(tmp5, result);
 8824     andl(tmp5, 0x0000000f);
 8825     lea(src, Address(src, tmp5, Address::times_2));
 8826     lea(dst, Address(dst, tmp5, Address::times_1));
 8827     subptr(len, tmp5);
 8828     jmpb(copy_chars_loop);
 8829 
 8830     bind(copy_tail_sse);
 8831     movl(len, result);
 8832     andl(len, 0x00000007);    // tail count (in chars)
 8833   }
 8834   // compress 1 char per iter
 8835   bind(copy_tail);
 8836   testl(len, len);
 8837   jccb(Assembler::zero, done);
 8838   lea(src, Address(src, len, Address::times_2));
 8839   lea(dst, Address(dst, len, Address::times_1));
 8840   negptr(len);
 8841 
 8842   bind(copy_chars_loop);
 8843   load_unsigned_short(tmp5, Address(src, len, Address::times_2));
 8844   testl(tmp5, 0xff00);      // check if Unicode char
 8845   jccb(Assembler::notZero, reset_sp);
 8846   movb(Address(dst, len, Address::times_1), tmp5);  // ASCII char; compress to 1 byte
 8847   increment(len);
 8848   jccb(Assembler::notZero, copy_chars_loop);
 8849 
 8850   // add len then return (len will be zero if compress succeeded, otherwise negative)
 8851   bind(reset_sp);
 8852   addl(result, len);
 8853 
 8854   bind(done);
 8855 }
 8856 
 8857 // Inflate byte[] array to char[].
 8858 //   ..\jdk\src\java.base\share\classes\java\lang\StringLatin1.java
 8859 //   @IntrinsicCandidate
 8860 //   private static void inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) {
 8861 //     for (int i = 0; i < len; i++) {
 8862 //       dst[dstOff++] = (char)(src[srcOff++] & 0xff);
 8863 //     }
 8864 //   }
 8865 void MacroAssembler::byte_array_inflate(Register src, Register dst, Register len,
 8866   XMMRegister tmp1, Register tmp2, KRegister mask) {
 8867   Label copy_chars_loop, done, below_threshold, avx3_threshold;
 8868   // rsi: src
 8869   // rdi: dst
 8870   // rdx: len
 8871   // rcx: tmp2
 8872 
 8873   // rsi holds start addr of source byte[] to be inflated
 8874   // rdi holds start addr of destination char[]
 8875   // rdx holds length
 8876   assert_different_registers(src, dst, len, tmp2);
 8877   movl(tmp2, len);
 8878   if ((UseAVX > 2) && // AVX512
 8879     VM_Version::supports_avx512vlbw() &&
 8880     VM_Version::supports_bmi2()) {
 8881 
 8882     Label copy_32_loop, copy_tail;
 8883     Register tmp3_aliased = len;
 8884 
 8885     // if length of the string is less than 16, handle it in an old fashioned way
 8886     testl(len, -16);
 8887     jcc(Assembler::zero, below_threshold);
 8888 
 8889     testl(len, -1 * AVX3Threshold);
 8890     jcc(Assembler::zero, avx3_threshold);
 8891 
 8892     // In order to use only one arithmetic operation for the main loop we use
 8893     // this pre-calculation
 8894     andl(tmp2, (32 - 1)); // tail count (in chars), 32 element wide loop
 8895     andl(len, -32);     // vector count
 8896     jccb(Assembler::zero, copy_tail);
 8897 
 8898     lea(src, Address(src, len, Address::times_1));
 8899     lea(dst, Address(dst, len, Address::times_2));
 8900     negptr(len);
 8901 
 8902 
 8903     // inflate 32 chars per iter
 8904     bind(copy_32_loop);
 8905     vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_512bit);
 8906     evmovdquw(Address(dst, len, Address::times_2), tmp1, Assembler::AVX_512bit);
 8907     addptr(len, 32);
 8908     jcc(Assembler::notZero, copy_32_loop);
 8909 
 8910     bind(copy_tail);
 8911     // bail out when there is nothing to be done
 8912     testl(tmp2, -1); // we don't destroy the contents of tmp2 here
 8913     jcc(Assembler::zero, done);
 8914 
 8915     // ~(~0 << length), where length is the # of remaining elements to process
 8916     movl(tmp3_aliased, -1);
 8917     shlxl(tmp3_aliased, tmp3_aliased, tmp2);
 8918     notl(tmp3_aliased);
 8919     kmovdl(mask, tmp3_aliased);
 8920     evpmovzxbw(tmp1, mask, Address(src, 0), Assembler::AVX_512bit);
 8921     evmovdquw(Address(dst, 0), mask, tmp1, /*merge*/ true, Assembler::AVX_512bit);
 8922 
 8923     jmp(done);
 8924     bind(avx3_threshold);
 8925   }
 8926   if (UseSSE42Intrinsics) {
 8927     Label copy_16_loop, copy_8_loop, copy_bytes, copy_new_tail, copy_tail;
 8928 
 8929     if (UseAVX > 1) {
 8930       andl(tmp2, (16 - 1));
 8931       andl(len, -16);
 8932       jccb(Assembler::zero, copy_new_tail);
 8933     } else {
 8934       andl(tmp2, 0x00000007);   // tail count (in chars)
 8935       andl(len, 0xfffffff8);    // vector count (in chars)
 8936       jccb(Assembler::zero, copy_tail);
 8937     }
 8938 
 8939     // vectored inflation
 8940     lea(src, Address(src, len, Address::times_1));
 8941     lea(dst, Address(dst, len, Address::times_2));
 8942     negptr(len);
 8943 
 8944     if (UseAVX > 1) {
 8945       bind(copy_16_loop);
 8946       vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_256bit);
 8947       vmovdqu(Address(dst, len, Address::times_2), tmp1);
 8948       addptr(len, 16);
 8949       jcc(Assembler::notZero, copy_16_loop);
 8950 
 8951       bind(below_threshold);
 8952       bind(copy_new_tail);
 8953       movl(len, tmp2);
 8954       andl(tmp2, 0x00000007);
 8955       andl(len, 0xFFFFFFF8);
 8956       jccb(Assembler::zero, copy_tail);
 8957 
 8958       pmovzxbw(tmp1, Address(src, 0));
 8959       movdqu(Address(dst, 0), tmp1);
 8960       addptr(src, 8);
 8961       addptr(dst, 2 * 8);
 8962 
 8963       jmp(copy_tail, true);
 8964     }
 8965 
 8966     // inflate 8 chars per iter
 8967     bind(copy_8_loop);
 8968     pmovzxbw(tmp1, Address(src, len, Address::times_1));  // unpack to 8 words
 8969     movdqu(Address(dst, len, Address::times_2), tmp1);
 8970     addptr(len, 8);
 8971     jcc(Assembler::notZero, copy_8_loop);
 8972 
 8973     bind(copy_tail);
 8974     movl(len, tmp2);
 8975 
 8976     cmpl(len, 4);
 8977     jccb(Assembler::less, copy_bytes);
 8978 
 8979     movdl(tmp1, Address(src, 0));  // load 4 byte chars
 8980     pmovzxbw(tmp1, tmp1);
 8981     movq(Address(dst, 0), tmp1);
 8982     subptr(len, 4);
 8983     addptr(src, 4);
 8984     addptr(dst, 8);
 8985 
 8986     bind(copy_bytes);
 8987   } else {
 8988     bind(below_threshold);
 8989   }
 8990 
 8991   testl(len, len);
 8992   jccb(Assembler::zero, done);
 8993   lea(src, Address(src, len, Address::times_1));
 8994   lea(dst, Address(dst, len, Address::times_2));
 8995   negptr(len);
 8996 
 8997   // inflate 1 char per iter
 8998   bind(copy_chars_loop);
 8999   load_unsigned_byte(tmp2, Address(src, len, Address::times_1));  // load byte char
 9000   movw(Address(dst, len, Address::times_2), tmp2);  // inflate byte char to word
 9001   increment(len);
 9002   jcc(Assembler::notZero, copy_chars_loop);
 9003 
 9004   bind(done);
 9005 }
 9006 
 9007 
 9008 void MacroAssembler::evmovdqu(BasicType type, KRegister kmask, XMMRegister dst, Address src, bool merge, int vector_len) {
 9009   switch(type) {
 9010     case T_BYTE:
 9011     case T_BOOLEAN:
 9012       evmovdqub(dst, kmask, src, merge, vector_len);
 9013       break;
 9014     case T_CHAR:
 9015     case T_SHORT:
 9016       evmovdquw(dst, kmask, src, merge, vector_len);
 9017       break;
 9018     case T_INT:
 9019     case T_FLOAT:
 9020       evmovdqul(dst, kmask, src, merge, vector_len);
 9021       break;
 9022     case T_LONG:
 9023     case T_DOUBLE:
 9024       evmovdquq(dst, kmask, src, merge, vector_len);
 9025       break;
 9026     default:
 9027       fatal("Unexpected type argument %s", type2name(type));
 9028       break;
 9029   }
 9030 }
 9031 
 9032 void MacroAssembler::evmovdqu(BasicType type, KRegister kmask, Address dst, XMMRegister src, bool merge, int vector_len) {
 9033   switch(type) {
 9034     case T_BYTE:
 9035     case T_BOOLEAN:
 9036       evmovdqub(dst, kmask, src, merge, vector_len);
 9037       break;
 9038     case T_CHAR:
 9039     case T_SHORT:
 9040       evmovdquw(dst, kmask, src, merge, vector_len);
 9041       break;
 9042     case T_INT:
 9043     case T_FLOAT:
 9044       evmovdqul(dst, kmask, src, merge, vector_len);
 9045       break;
 9046     case T_LONG:
 9047     case T_DOUBLE:
 9048       evmovdquq(dst, kmask, src, merge, vector_len);
 9049       break;
 9050     default:
 9051       fatal("Unexpected type argument %s", type2name(type));
 9052       break;
 9053   }
 9054 }
 9055 
 9056 void MacroAssembler::knot(uint masklen, KRegister dst, KRegister src, KRegister ktmp, Register rtmp) {
 9057   switch(masklen) {
 9058     case 2:
 9059        knotbl(dst, src);
 9060        movl(rtmp, 3);
 9061        kmovbl(ktmp, rtmp);
 9062        kandbl(dst, ktmp, dst);
 9063        break;
 9064     case 4:
 9065        knotbl(dst, src);
 9066        movl(rtmp, 15);
 9067        kmovbl(ktmp, rtmp);
 9068        kandbl(dst, ktmp, dst);
 9069        break;
 9070     case 8:
 9071        knotbl(dst, src);
 9072        break;
 9073     case 16:
 9074        knotwl(dst, src);
 9075        break;
 9076     case 32:
 9077        knotdl(dst, src);
 9078        break;
 9079     case 64:
 9080        knotql(dst, src);
 9081        break;
 9082     default:
 9083       fatal("Unexpected vector length %d", masklen);
 9084       break;
 9085   }
 9086 }
 9087 
 9088 void MacroAssembler::kand(BasicType type, KRegister dst, KRegister src1, KRegister src2) {
 9089   switch(type) {
 9090     case T_BOOLEAN:
 9091     case T_BYTE:
 9092        kandbl(dst, src1, src2);
 9093        break;
 9094     case T_CHAR:
 9095     case T_SHORT:
 9096        kandwl(dst, src1, src2);
 9097        break;
 9098     case T_INT:
 9099     case T_FLOAT:
 9100        kanddl(dst, src1, src2);
 9101        break;
 9102     case T_LONG:
 9103     case T_DOUBLE:
 9104        kandql(dst, src1, src2);
 9105        break;
 9106     default:
 9107       fatal("Unexpected type argument %s", type2name(type));
 9108       break;
 9109   }
 9110 }
 9111 
 9112 void MacroAssembler::kor(BasicType type, KRegister dst, KRegister src1, KRegister src2) {
 9113   switch(type) {
 9114     case T_BOOLEAN:
 9115     case T_BYTE:
 9116        korbl(dst, src1, src2);
 9117        break;
 9118     case T_CHAR:
 9119     case T_SHORT:
 9120        korwl(dst, src1, src2);
 9121        break;
 9122     case T_INT:
 9123     case T_FLOAT:
 9124        kordl(dst, src1, src2);
 9125        break;
 9126     case T_LONG:
 9127     case T_DOUBLE:
 9128        korql(dst, src1, src2);
 9129        break;
 9130     default:
 9131       fatal("Unexpected type argument %s", type2name(type));
 9132       break;
 9133   }
 9134 }
 9135 
 9136 void MacroAssembler::kxor(BasicType type, KRegister dst, KRegister src1, KRegister src2) {
 9137   switch(type) {
 9138     case T_BOOLEAN:
 9139     case T_BYTE:
 9140        kxorbl(dst, src1, src2);
 9141        break;
 9142     case T_CHAR:
 9143     case T_SHORT:
 9144        kxorwl(dst, src1, src2);
 9145        break;
 9146     case T_INT:
 9147     case T_FLOAT:
 9148        kxordl(dst, src1, src2);
 9149        break;
 9150     case T_LONG:
 9151     case T_DOUBLE:
 9152        kxorql(dst, src1, src2);
 9153        break;
 9154     default:
 9155       fatal("Unexpected type argument %s", type2name(type));
 9156       break;
 9157   }
 9158 }
 9159 
 9160 void MacroAssembler::evperm(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) {
 9161   switch(type) {
 9162     case T_BOOLEAN:
 9163     case T_BYTE:
 9164       evpermb(dst, mask, nds, src, merge, vector_len); break;
 9165     case T_CHAR:
 9166     case T_SHORT:
 9167       evpermw(dst, mask, nds, src, merge, vector_len); break;
 9168     case T_INT:
 9169     case T_FLOAT:
 9170       evpermd(dst, mask, nds, src, merge, vector_len); break;
 9171     case T_LONG:
 9172     case T_DOUBLE:
 9173       evpermq(dst, mask, nds, src, merge, vector_len); break;
 9174     default:
 9175       fatal("Unexpected type argument %s", type2name(type)); break;
 9176   }
 9177 }
 9178 
 9179 void MacroAssembler::evperm(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) {
 9180   switch(type) {
 9181     case T_BOOLEAN:
 9182     case T_BYTE:
 9183       evpermb(dst, mask, nds, src, merge, vector_len); break;
 9184     case T_CHAR:
 9185     case T_SHORT:
 9186       evpermw(dst, mask, nds, src, merge, vector_len); break;
 9187     case T_INT:
 9188     case T_FLOAT:
 9189       evpermd(dst, mask, nds, src, merge, vector_len); break;
 9190     case T_LONG:
 9191     case T_DOUBLE:
 9192       evpermq(dst, mask, nds, src, merge, vector_len); break;
 9193     default:
 9194       fatal("Unexpected type argument %s", type2name(type)); break;
 9195   }
 9196 }
 9197 
 9198 void MacroAssembler::evpmins(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) {
 9199   switch(type) {
 9200     case T_BYTE:
 9201       evpminsb(dst, mask, nds, src, merge, vector_len); break;
 9202     case T_SHORT:
 9203       evpminsw(dst, mask, nds, src, merge, vector_len); break;
 9204     case T_INT:
 9205       evpminsd(dst, mask, nds, src, merge, vector_len); break;
 9206     case T_LONG:
 9207       evpminsq(dst, mask, nds, src, merge, vector_len); break;
 9208     default:
 9209       fatal("Unexpected type argument %s", type2name(type)); break;
 9210   }
 9211 }
 9212 
 9213 void MacroAssembler::evpmaxs(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) {
 9214   switch(type) {
 9215     case T_BYTE:
 9216       evpmaxsb(dst, mask, nds, src, merge, vector_len); break;
 9217     case T_SHORT:
 9218       evpmaxsw(dst, mask, nds, src, merge, vector_len); break;
 9219     case T_INT:
 9220       evpmaxsd(dst, mask, nds, src, merge, vector_len); break;
 9221     case T_LONG:
 9222       evpmaxsq(dst, mask, nds, src, merge, vector_len); break;
 9223     default:
 9224       fatal("Unexpected type argument %s", type2name(type)); break;
 9225   }
 9226 }
 9227 
 9228 void MacroAssembler::evpmins(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) {
 9229   switch(type) {
 9230     case T_BYTE:
 9231       evpminsb(dst, mask, nds, src, merge, vector_len); break;
 9232     case T_SHORT:
 9233       evpminsw(dst, mask, nds, src, merge, vector_len); break;
 9234     case T_INT:
 9235       evpminsd(dst, mask, nds, src, merge, vector_len); break;
 9236     case T_LONG:
 9237       evpminsq(dst, mask, nds, src, merge, vector_len); break;
 9238     default:
 9239       fatal("Unexpected type argument %s", type2name(type)); break;
 9240   }
 9241 }
 9242 
 9243 void MacroAssembler::evpmaxs(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) {
 9244   switch(type) {
 9245     case T_BYTE:
 9246       evpmaxsb(dst, mask, nds, src, merge, vector_len); break;
 9247     case T_SHORT:
 9248       evpmaxsw(dst, mask, nds, src, merge, vector_len); break;
 9249     case T_INT:
 9250       evpmaxsd(dst, mask, nds, src, merge, vector_len); break;
 9251     case T_LONG:
 9252       evpmaxsq(dst, mask, nds, src, merge, vector_len); break;
 9253     default:
 9254       fatal("Unexpected type argument %s", type2name(type)); break;
 9255   }
 9256 }
 9257 
 9258 void MacroAssembler::evxor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) {
 9259   switch(type) {
 9260     case T_INT:
 9261       evpxord(dst, mask, nds, src, merge, vector_len); break;
 9262     case T_LONG:
 9263       evpxorq(dst, mask, nds, src, merge, vector_len); break;
 9264     default:
 9265       fatal("Unexpected type argument %s", type2name(type)); break;
 9266   }
 9267 }
 9268 
 9269 void MacroAssembler::evxor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) {
 9270   switch(type) {
 9271     case T_INT:
 9272       evpxord(dst, mask, nds, src, merge, vector_len); break;
 9273     case T_LONG:
 9274       evpxorq(dst, mask, nds, src, merge, vector_len); break;
 9275     default:
 9276       fatal("Unexpected type argument %s", type2name(type)); break;
 9277   }
 9278 }
 9279 
 9280 void MacroAssembler::evor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) {
 9281   switch(type) {
 9282     case T_INT:
 9283       Assembler::evpord(dst, mask, nds, src, merge, vector_len); break;
 9284     case T_LONG:
 9285       evporq(dst, mask, nds, src, merge, vector_len); break;
 9286     default:
 9287       fatal("Unexpected type argument %s", type2name(type)); break;
 9288   }
 9289 }
 9290 
 9291 void MacroAssembler::evor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) {
 9292   switch(type) {
 9293     case T_INT:
 9294       Assembler::evpord(dst, mask, nds, src, merge, vector_len); break;
 9295     case T_LONG:
 9296       evporq(dst, mask, nds, src, merge, vector_len); break;
 9297     default:
 9298       fatal("Unexpected type argument %s", type2name(type)); break;
 9299   }
 9300 }
 9301 
 9302 void MacroAssembler::evand(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) {
 9303   switch(type) {
 9304     case T_INT:
 9305       evpandd(dst, mask, nds, src, merge, vector_len); break;
 9306     case T_LONG:
 9307       evpandq(dst, mask, nds, src, merge, vector_len); break;
 9308     default:
 9309       fatal("Unexpected type argument %s", type2name(type)); break;
 9310   }
 9311 }
 9312 
 9313 void MacroAssembler::evand(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) {
 9314   switch(type) {
 9315     case T_INT:
 9316       evpandd(dst, mask, nds, src, merge, vector_len); break;
 9317     case T_LONG:
 9318       evpandq(dst, mask, nds, src, merge, vector_len); break;
 9319     default:
 9320       fatal("Unexpected type argument %s", type2name(type)); break;
 9321   }
 9322 }
 9323 
 9324 void MacroAssembler::kortest(uint masklen, KRegister src1, KRegister src2) {
 9325   switch(masklen) {
 9326     case 8:
 9327        kortestbl(src1, src2);
 9328        break;
 9329     case 16:
 9330        kortestwl(src1, src2);
 9331        break;
 9332     case 32:
 9333        kortestdl(src1, src2);
 9334        break;
 9335     case 64:
 9336        kortestql(src1, src2);
 9337        break;
 9338     default:
 9339       fatal("Unexpected mask length %d", masklen);
 9340       break;
 9341   }
 9342 }
 9343 
 9344 
 9345 void MacroAssembler::ktest(uint masklen, KRegister src1, KRegister src2) {
 9346   switch(masklen)  {
 9347     case 8:
 9348        ktestbl(src1, src2);
 9349        break;
 9350     case 16:
 9351        ktestwl(src1, src2);
 9352        break;
 9353     case 32:
 9354        ktestdl(src1, src2);
 9355        break;
 9356     case 64:
 9357        ktestql(src1, src2);
 9358        break;
 9359     default:
 9360       fatal("Unexpected mask length %d", masklen);
 9361       break;
 9362   }
 9363 }
 9364 
 9365 void MacroAssembler::evrold(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vlen_enc) {
 9366   switch(type) {
 9367     case T_INT:
 9368       evprold(dst, mask, src, shift, merge, vlen_enc); break;
 9369     case T_LONG:
 9370       evprolq(dst, mask, src, shift, merge, vlen_enc); break;
 9371     default:
 9372       fatal("Unexpected type argument %s", type2name(type)); break;
 9373       break;
 9374   }
 9375 }
 9376 
 9377 void MacroAssembler::evrord(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vlen_enc) {
 9378   switch(type) {
 9379     case T_INT:
 9380       evprord(dst, mask, src, shift, merge, vlen_enc); break;
 9381     case T_LONG:
 9382       evprorq(dst, mask, src, shift, merge, vlen_enc); break;
 9383     default:
 9384       fatal("Unexpected type argument %s", type2name(type)); break;
 9385   }
 9386 }
 9387 
 9388 void MacroAssembler::evrold(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src1, XMMRegister src2, bool merge, int vlen_enc) {
 9389   switch(type) {
 9390     case T_INT:
 9391       evprolvd(dst, mask, src1, src2, merge, vlen_enc); break;
 9392     case T_LONG:
 9393       evprolvq(dst, mask, src1, src2, merge, vlen_enc); break;
 9394     default:
 9395       fatal("Unexpected type argument %s", type2name(type)); break;
 9396   }
 9397 }
 9398 
 9399 void MacroAssembler::evrord(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src1, XMMRegister src2, bool merge, int vlen_enc) {
 9400   switch(type) {
 9401     case T_INT:
 9402       evprorvd(dst, mask, src1, src2, merge, vlen_enc); break;
 9403     case T_LONG:
 9404       evprorvq(dst, mask, src1, src2, merge, vlen_enc); break;
 9405     default:
 9406       fatal("Unexpected type argument %s", type2name(type)); break;
 9407   }
 9408 }
 9409 
 9410 void MacroAssembler::evpandq(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
 9411   assert(rscratch != noreg || always_reachable(src), "missing");
 9412 
 9413   if (reachable(src)) {
 9414     evpandq(dst, nds, as_Address(src), vector_len);
 9415   } else {
 9416     lea(rscratch, src);
 9417     evpandq(dst, nds, Address(rscratch, 0), vector_len);
 9418   }
 9419 }
 9420 
 9421 void MacroAssembler::evpaddq(XMMRegister dst, KRegister mask, XMMRegister nds, AddressLiteral src, bool merge, int vector_len, Register rscratch) {
 9422   assert(rscratch != noreg || always_reachable(src), "missing");
 9423 
 9424   if (reachable(src)) {
 9425     Assembler::evpaddq(dst, mask, nds, as_Address(src), merge, vector_len);
 9426   } else {
 9427     lea(rscratch, src);
 9428     Assembler::evpaddq(dst, mask, nds, Address(rscratch, 0), merge, vector_len);
 9429   }
 9430 }
 9431 
 9432 void MacroAssembler::evporq(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
 9433   assert(rscratch != noreg || always_reachable(src), "missing");
 9434 
 9435   if (reachable(src)) {
 9436     evporq(dst, nds, as_Address(src), vector_len);
 9437   } else {
 9438     lea(rscratch, src);
 9439     evporq(dst, nds, Address(rscratch, 0), vector_len);
 9440   }
 9441 }
 9442 
 9443 void MacroAssembler::vpshufb(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
 9444   assert(rscratch != noreg || always_reachable(src), "missing");
 9445 
 9446   if (reachable(src)) {
 9447     vpshufb(dst, nds, as_Address(src), vector_len);
 9448   } else {
 9449     lea(rscratch, src);
 9450     vpshufb(dst, nds, Address(rscratch, 0), vector_len);
 9451   }
 9452 }
 9453 
 9454 void MacroAssembler::vpternlogq(XMMRegister dst, int imm8, XMMRegister src2, AddressLiteral src3, int vector_len, Register rscratch) {
 9455   assert(rscratch != noreg || always_reachable(src3), "missing");
 9456 
 9457   if (reachable(src3)) {
 9458     vpternlogq(dst, imm8, src2, as_Address(src3), vector_len);
 9459   } else {
 9460     lea(rscratch, src3);
 9461     vpternlogq(dst, imm8, src2, Address(rscratch, 0), vector_len);
 9462   }
 9463 }
 9464 
 9465 #if COMPILER2_OR_JVMCI
 9466 
 9467 void MacroAssembler::fill_masked(BasicType bt, Address dst, XMMRegister xmm, KRegister mask,
 9468                                  Register length, Register temp, int vec_enc) {
 9469   // Computing mask for predicated vector store.
 9470   movptr(temp, -1);
 9471   bzhiq(temp, temp, length);
 9472   kmov(mask, temp);
 9473   evmovdqu(bt, mask, dst, xmm, true, vec_enc);
 9474 }
 9475 
 9476 // Set memory operation for length "less than" 64 bytes.
 9477 void MacroAssembler::fill64_masked(uint shift, Register dst, int disp,
 9478                                        XMMRegister xmm, KRegister mask, Register length,
 9479                                        Register temp, bool use64byteVector) {
 9480   assert(MaxVectorSize >= 32, "vector length should be >= 32");
 9481   const BasicType type[] = { T_BYTE, T_SHORT, T_INT, T_LONG};
 9482   if (!use64byteVector) {
 9483     fill32(dst, disp, xmm);
 9484     subptr(length, 32 >> shift);
 9485     fill32_masked(shift, dst, disp + 32, xmm, mask, length, temp);
 9486   } else {
 9487     assert(MaxVectorSize == 64, "vector length != 64");
 9488     fill_masked(type[shift], Address(dst, disp), xmm, mask, length, temp, Assembler::AVX_512bit);
 9489   }
 9490 }
 9491 
 9492 
 9493 void MacroAssembler::fill32_masked(uint shift, Register dst, int disp,
 9494                                        XMMRegister xmm, KRegister mask, Register length,
 9495                                        Register temp) {
 9496   assert(MaxVectorSize >= 32, "vector length should be >= 32");
 9497   const BasicType type[] = { T_BYTE, T_SHORT, T_INT, T_LONG};
 9498   fill_masked(type[shift], Address(dst, disp), xmm, mask, length, temp, Assembler::AVX_256bit);
 9499 }
 9500 
 9501 
 9502 void MacroAssembler::fill32(Address dst, XMMRegister xmm) {
 9503   assert(MaxVectorSize >= 32, "vector length should be >= 32");
 9504   vmovdqu(dst, xmm);
 9505 }
 9506 
 9507 void MacroAssembler::fill32(Register dst, int disp, XMMRegister xmm) {
 9508   fill32(Address(dst, disp), xmm);
 9509 }
 9510 
 9511 void MacroAssembler::fill64(Address dst, XMMRegister xmm, bool use64byteVector) {
 9512   assert(MaxVectorSize >= 32, "vector length should be >= 32");
 9513   if (!use64byteVector) {
 9514     fill32(dst, xmm);
 9515     fill32(dst.plus_disp(32), xmm);
 9516   } else {
 9517     evmovdquq(dst, xmm, Assembler::AVX_512bit);
 9518   }
 9519 }
 9520 
 9521 void MacroAssembler::fill64(Register dst, int disp, XMMRegister xmm, bool use64byteVector) {
 9522   fill64(Address(dst, disp), xmm, use64byteVector);
 9523 }
 9524 
 9525 #ifdef _LP64
 9526 void MacroAssembler::generate_fill_avx3(BasicType type, Register to, Register value,
 9527                                         Register count, Register rtmp, XMMRegister xtmp) {
 9528   Label L_exit;
 9529   Label L_fill_start;
 9530   Label L_fill_64_bytes;
 9531   Label L_fill_96_bytes;
 9532   Label L_fill_128_bytes;
 9533   Label L_fill_128_bytes_loop;
 9534   Label L_fill_128_loop_header;
 9535   Label L_fill_128_bytes_loop_header;
 9536   Label L_fill_128_bytes_loop_pre_header;
 9537   Label L_fill_zmm_sequence;
 9538 
 9539   int shift = -1;
 9540   int avx3threshold = VM_Version::avx3_threshold();
 9541   switch(type) {
 9542     case T_BYTE:  shift = 0;
 9543       break;
 9544     case T_SHORT: shift = 1;
 9545       break;
 9546     case T_INT:   shift = 2;
 9547       break;
 9548     /* Uncomment when LONG fill stubs are supported.
 9549     case T_LONG:  shift = 3;
 9550       break;
 9551     */
 9552     default:
 9553       fatal("Unhandled type: %s\n", type2name(type));
 9554   }
 9555 
 9556   if ((avx3threshold != 0)  || (MaxVectorSize == 32)) {
 9557 
 9558     if (MaxVectorSize == 64) {
 9559       cmpq(count, avx3threshold >> shift);
 9560       jcc(Assembler::greater, L_fill_zmm_sequence);
 9561     }
 9562 
 9563     evpbroadcast(type, xtmp, value, Assembler::AVX_256bit);
 9564 
 9565     bind(L_fill_start);
 9566 
 9567     cmpq(count, 32 >> shift);
 9568     jccb(Assembler::greater, L_fill_64_bytes);
 9569     fill32_masked(shift, to, 0, xtmp, k2, count, rtmp);
 9570     jmp(L_exit);
 9571 
 9572     bind(L_fill_64_bytes);
 9573     cmpq(count, 64 >> shift);
 9574     jccb(Assembler::greater, L_fill_96_bytes);
 9575     fill64_masked(shift, to, 0, xtmp, k2, count, rtmp);
 9576     jmp(L_exit);
 9577 
 9578     bind(L_fill_96_bytes);
 9579     cmpq(count, 96 >> shift);
 9580     jccb(Assembler::greater, L_fill_128_bytes);
 9581     fill64(to, 0, xtmp);
 9582     subq(count, 64 >> shift);
 9583     fill32_masked(shift, to, 64, xtmp, k2, count, rtmp);
 9584     jmp(L_exit);
 9585 
 9586     bind(L_fill_128_bytes);
 9587     cmpq(count, 128 >> shift);
 9588     jccb(Assembler::greater, L_fill_128_bytes_loop_pre_header);
 9589     fill64(to, 0, xtmp);
 9590     fill32(to, 64, xtmp);
 9591     subq(count, 96 >> shift);
 9592     fill32_masked(shift, to, 96, xtmp, k2, count, rtmp);
 9593     jmp(L_exit);
 9594 
 9595     bind(L_fill_128_bytes_loop_pre_header);
 9596     {
 9597       mov(rtmp, to);
 9598       andq(rtmp, 31);
 9599       jccb(Assembler::zero, L_fill_128_bytes_loop_header);
 9600       negq(rtmp);
 9601       addq(rtmp, 32);
 9602       mov64(r8, -1L);
 9603       bzhiq(r8, r8, rtmp);
 9604       kmovql(k2, r8);
 9605       evmovdqu(T_BYTE, k2, Address(to, 0), xtmp, true, Assembler::AVX_256bit);
 9606       addq(to, rtmp);
 9607       shrq(rtmp, shift);
 9608       subq(count, rtmp);
 9609     }
 9610 
 9611     cmpq(count, 128 >> shift);
 9612     jcc(Assembler::less, L_fill_start);
 9613 
 9614     bind(L_fill_128_bytes_loop_header);
 9615     subq(count, 128 >> shift);
 9616 
 9617     align32();
 9618     bind(L_fill_128_bytes_loop);
 9619       fill64(to, 0, xtmp);
 9620       fill64(to, 64, xtmp);
 9621       addq(to, 128);
 9622       subq(count, 128 >> shift);
 9623       jccb(Assembler::greaterEqual, L_fill_128_bytes_loop);
 9624 
 9625     addq(count, 128 >> shift);
 9626     jcc(Assembler::zero, L_exit);
 9627     jmp(L_fill_start);
 9628   }
 9629 
 9630   if (MaxVectorSize == 64) {
 9631     // Sequence using 64 byte ZMM register.
 9632     Label L_fill_128_bytes_zmm;
 9633     Label L_fill_192_bytes_zmm;
 9634     Label L_fill_192_bytes_loop_zmm;
 9635     Label L_fill_192_bytes_loop_header_zmm;
 9636     Label L_fill_192_bytes_loop_pre_header_zmm;
 9637     Label L_fill_start_zmm_sequence;
 9638 
 9639     bind(L_fill_zmm_sequence);
 9640     evpbroadcast(type, xtmp, value, Assembler::AVX_512bit);
 9641 
 9642     bind(L_fill_start_zmm_sequence);
 9643     cmpq(count, 64 >> shift);
 9644     jccb(Assembler::greater, L_fill_128_bytes_zmm);
 9645     fill64_masked(shift, to, 0, xtmp, k2, count, rtmp, true);
 9646     jmp(L_exit);
 9647 
 9648     bind(L_fill_128_bytes_zmm);
 9649     cmpq(count, 128 >> shift);
 9650     jccb(Assembler::greater, L_fill_192_bytes_zmm);
 9651     fill64(to, 0, xtmp, true);
 9652     subq(count, 64 >> shift);
 9653     fill64_masked(shift, to, 64, xtmp, k2, count, rtmp, true);
 9654     jmp(L_exit);
 9655 
 9656     bind(L_fill_192_bytes_zmm);
 9657     cmpq(count, 192 >> shift);
 9658     jccb(Assembler::greater, L_fill_192_bytes_loop_pre_header_zmm);
 9659     fill64(to, 0, xtmp, true);
 9660     fill64(to, 64, xtmp, true);
 9661     subq(count, 128 >> shift);
 9662     fill64_masked(shift, to, 128, xtmp, k2, count, rtmp, true);
 9663     jmp(L_exit);
 9664 
 9665     bind(L_fill_192_bytes_loop_pre_header_zmm);
 9666     {
 9667       movq(rtmp, to);
 9668       andq(rtmp, 63);
 9669       jccb(Assembler::zero, L_fill_192_bytes_loop_header_zmm);
 9670       negq(rtmp);
 9671       addq(rtmp, 64);
 9672       mov64(r8, -1L);
 9673       bzhiq(r8, r8, rtmp);
 9674       kmovql(k2, r8);
 9675       evmovdqu(T_BYTE, k2, Address(to, 0), xtmp, true, Assembler::AVX_512bit);
 9676       addq(to, rtmp);
 9677       shrq(rtmp, shift);
 9678       subq(count, rtmp);
 9679     }
 9680 
 9681     cmpq(count, 192 >> shift);
 9682     jcc(Assembler::less, L_fill_start_zmm_sequence);
 9683 
 9684     bind(L_fill_192_bytes_loop_header_zmm);
 9685     subq(count, 192 >> shift);
 9686 
 9687     align32();
 9688     bind(L_fill_192_bytes_loop_zmm);
 9689       fill64(to, 0, xtmp, true);
 9690       fill64(to, 64, xtmp, true);
 9691       fill64(to, 128, xtmp, true);
 9692       addq(to, 192);
 9693       subq(count, 192 >> shift);
 9694       jccb(Assembler::greaterEqual, L_fill_192_bytes_loop_zmm);
 9695 
 9696     addq(count, 192 >> shift);
 9697     jcc(Assembler::zero, L_exit);
 9698     jmp(L_fill_start_zmm_sequence);
 9699   }
 9700   bind(L_exit);
 9701 }
 9702 #endif
 9703 #endif //COMPILER2_OR_JVMCI
 9704 
 9705 
 9706 #ifdef _LP64
 9707 void MacroAssembler::convert_f2i(Register dst, XMMRegister src) {
 9708   Label done;
 9709   cvttss2sil(dst, src);
 9710   // Conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
 9711   cmpl(dst, 0x80000000); // float_sign_flip
 9712   jccb(Assembler::notEqual, done);
 9713   subptr(rsp, 8);
 9714   movflt(Address(rsp, 0), src);
 9715   call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::f2i_fixup())));
 9716   pop(dst);
 9717   bind(done);
 9718 }
 9719 
 9720 void MacroAssembler::convert_d2i(Register dst, XMMRegister src) {
 9721   Label done;
 9722   cvttsd2sil(dst, src);
 9723   // Conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
 9724   cmpl(dst, 0x80000000); // float_sign_flip
 9725   jccb(Assembler::notEqual, done);
 9726   subptr(rsp, 8);
 9727   movdbl(Address(rsp, 0), src);
 9728   call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::d2i_fixup())));
 9729   pop(dst);
 9730   bind(done);
 9731 }
 9732 
 9733 void MacroAssembler::convert_f2l(Register dst, XMMRegister src) {
 9734   Label done;
 9735   cvttss2siq(dst, src);
 9736   cmp64(dst, ExternalAddress((address) StubRoutines::x86::double_sign_flip()));
 9737   jccb(Assembler::notEqual, done);
 9738   subptr(rsp, 8);
 9739   movflt(Address(rsp, 0), src);
 9740   call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::f2l_fixup())));
 9741   pop(dst);
 9742   bind(done);
 9743 }
 9744 
 9745 void MacroAssembler::round_float(Register dst, XMMRegister src, Register rtmp, Register rcx) {
 9746   // Following code is line by line assembly translation rounding algorithm.
 9747   // Please refer to java.lang.Math.round(float) algorithm for details.
 9748   const int32_t FloatConsts_EXP_BIT_MASK = 0x7F800000;
 9749   const int32_t FloatConsts_SIGNIFICAND_WIDTH = 24;
 9750   const int32_t FloatConsts_EXP_BIAS = 127;
 9751   const int32_t FloatConsts_SIGNIF_BIT_MASK = 0x007FFFFF;
 9752   const int32_t MINUS_32 = 0xFFFFFFE0;
 9753   Label L_special_case, L_block1, L_exit;
 9754   movl(rtmp, FloatConsts_EXP_BIT_MASK);
 9755   movdl(dst, src);
 9756   andl(dst, rtmp);
 9757   sarl(dst, FloatConsts_SIGNIFICAND_WIDTH - 1);
 9758   movl(rtmp, FloatConsts_SIGNIFICAND_WIDTH - 2 + FloatConsts_EXP_BIAS);
 9759   subl(rtmp, dst);
 9760   movl(rcx, rtmp);
 9761   movl(dst, MINUS_32);
 9762   testl(rtmp, dst);
 9763   jccb(Assembler::notEqual, L_special_case);
 9764   movdl(dst, src);
 9765   andl(dst, FloatConsts_SIGNIF_BIT_MASK);
 9766   orl(dst, FloatConsts_SIGNIF_BIT_MASK + 1);
 9767   movdl(rtmp, src);
 9768   testl(rtmp, rtmp);
 9769   jccb(Assembler::greaterEqual, L_block1);
 9770   negl(dst);
 9771   bind(L_block1);
 9772   sarl(dst);
 9773   addl(dst, 0x1);
 9774   sarl(dst, 0x1);
 9775   jmp(L_exit);
 9776   bind(L_special_case);
 9777   convert_f2i(dst, src);
 9778   bind(L_exit);
 9779 }
 9780 
 9781 void MacroAssembler::round_double(Register dst, XMMRegister src, Register rtmp, Register rcx) {
 9782   // Following code is line by line assembly translation rounding algorithm.
 9783   // Please refer to java.lang.Math.round(double) algorithm for details.
 9784   const int64_t DoubleConsts_EXP_BIT_MASK = 0x7FF0000000000000L;
 9785   const int64_t DoubleConsts_SIGNIFICAND_WIDTH = 53;
 9786   const int64_t DoubleConsts_EXP_BIAS = 1023;
 9787   const int64_t DoubleConsts_SIGNIF_BIT_MASK = 0x000FFFFFFFFFFFFFL;
 9788   const int64_t MINUS_64 = 0xFFFFFFFFFFFFFFC0L;
 9789   Label L_special_case, L_block1, L_exit;
 9790   mov64(rtmp, DoubleConsts_EXP_BIT_MASK);
 9791   movq(dst, src);
 9792   andq(dst, rtmp);
 9793   sarq(dst, DoubleConsts_SIGNIFICAND_WIDTH - 1);
 9794   mov64(rtmp, DoubleConsts_SIGNIFICAND_WIDTH - 2 + DoubleConsts_EXP_BIAS);
 9795   subq(rtmp, dst);
 9796   movq(rcx, rtmp);
 9797   mov64(dst, MINUS_64);
 9798   testq(rtmp, dst);
 9799   jccb(Assembler::notEqual, L_special_case);
 9800   movq(dst, src);
 9801   mov64(rtmp, DoubleConsts_SIGNIF_BIT_MASK);
 9802   andq(dst, rtmp);
 9803   mov64(rtmp, DoubleConsts_SIGNIF_BIT_MASK + 1);
 9804   orq(dst, rtmp);
 9805   movq(rtmp, src);
 9806   testq(rtmp, rtmp);
 9807   jccb(Assembler::greaterEqual, L_block1);
 9808   negq(dst);
 9809   bind(L_block1);
 9810   sarq(dst);
 9811   addq(dst, 0x1);
 9812   sarq(dst, 0x1);
 9813   jmp(L_exit);
 9814   bind(L_special_case);
 9815   convert_d2l(dst, src);
 9816   bind(L_exit);
 9817 }
 9818 
 9819 void MacroAssembler::convert_d2l(Register dst, XMMRegister src) {
 9820   Label done;
 9821   cvttsd2siq(dst, src);
 9822   cmp64(dst, ExternalAddress((address) StubRoutines::x86::double_sign_flip()));
 9823   jccb(Assembler::notEqual, done);
 9824   subptr(rsp, 8);
 9825   movdbl(Address(rsp, 0), src);
 9826   call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::d2l_fixup())));
 9827   pop(dst);
 9828   bind(done);
 9829 }
 9830 
 9831 void MacroAssembler::cache_wb(Address line)
 9832 {
 9833   // 64 bit cpus always support clflush
 9834   assert(VM_Version::supports_clflush(), "clflush should be available");
 9835   bool optimized = VM_Version::supports_clflushopt();
 9836   bool no_evict = VM_Version::supports_clwb();
 9837 
 9838   // prefer clwb (writeback without evict) otherwise
 9839   // prefer clflushopt (potentially parallel writeback with evict)
 9840   // otherwise fallback on clflush (serial writeback with evict)
 9841 
 9842   if (optimized) {
 9843     if (no_evict) {
 9844       clwb(line);
 9845     } else {
 9846       clflushopt(line);
 9847     }
 9848   } else {
 9849     // no need for fence when using CLFLUSH
 9850     clflush(line);
 9851   }
 9852 }
 9853 
 9854 void MacroAssembler::cache_wbsync(bool is_pre)
 9855 {
 9856   assert(VM_Version::supports_clflush(), "clflush should be available");
 9857   bool optimized = VM_Version::supports_clflushopt();
 9858   bool no_evict = VM_Version::supports_clwb();
 9859 
 9860   // pick the correct implementation
 9861 
 9862   if (!is_pre && (optimized || no_evict)) {
 9863     // need an sfence for post flush when using clflushopt or clwb
 9864     // otherwise no no need for any synchroniaztion
 9865 
 9866     sfence();
 9867   }
 9868 }
 9869 
 9870 #endif // _LP64
 9871 
 9872 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
 9873   switch (cond) {
 9874     // Note some conditions are synonyms for others
 9875     case Assembler::zero:         return Assembler::notZero;
 9876     case Assembler::notZero:      return Assembler::zero;
 9877     case Assembler::less:         return Assembler::greaterEqual;
 9878     case Assembler::lessEqual:    return Assembler::greater;
 9879     case Assembler::greater:      return Assembler::lessEqual;
 9880     case Assembler::greaterEqual: return Assembler::less;
 9881     case Assembler::below:        return Assembler::aboveEqual;
 9882     case Assembler::belowEqual:   return Assembler::above;
 9883     case Assembler::above:        return Assembler::belowEqual;
 9884     case Assembler::aboveEqual:   return Assembler::below;
 9885     case Assembler::overflow:     return Assembler::noOverflow;
 9886     case Assembler::noOverflow:   return Assembler::overflow;
 9887     case Assembler::negative:     return Assembler::positive;
 9888     case Assembler::positive:     return Assembler::negative;
 9889     case Assembler::parity:       return Assembler::noParity;
 9890     case Assembler::noParity:     return Assembler::parity;
 9891   }
 9892   ShouldNotReachHere(); return Assembler::overflow;
 9893 }
 9894 
 9895 SkipIfEqual::SkipIfEqual(
 9896     MacroAssembler* masm, const bool* flag_addr, bool value, Register rscratch) {
 9897   _masm = masm;
 9898   _masm->cmp8(ExternalAddress((address)flag_addr), value, rscratch);
 9899   _masm->jcc(Assembler::equal, _label);
 9900 }
 9901 
 9902 SkipIfEqual::~SkipIfEqual() {
 9903   _masm->bind(_label);
 9904 }
 9905 
 9906 // 32-bit Windows has its own fast-path implementation
 9907 // of get_thread
 9908 #if !defined(WIN32) || defined(_LP64)
 9909 
 9910 // This is simply a call to Thread::current()
 9911 void MacroAssembler::get_thread(Register thread) {
 9912   if (thread != rax) {
 9913     push(rax);
 9914   }
 9915   LP64_ONLY(push(rdi);)
 9916   LP64_ONLY(push(rsi);)
 9917   push(rdx);
 9918   push(rcx);
 9919 #ifdef _LP64
 9920   push(r8);
 9921   push(r9);
 9922   push(r10);
 9923   push(r11);
 9924 #endif
 9925 
 9926   MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, Thread::current), 0);
 9927 
 9928 #ifdef _LP64
 9929   pop(r11);
 9930   pop(r10);
 9931   pop(r9);
 9932   pop(r8);
 9933 #endif
 9934   pop(rcx);
 9935   pop(rdx);
 9936   LP64_ONLY(pop(rsi);)
 9937   LP64_ONLY(pop(rdi);)
 9938   if (thread != rax) {
 9939     mov(thread, rax);
 9940     pop(rax);
 9941   }
 9942 }
 9943 
 9944 
 9945 #endif // !WIN32 || _LP64
 9946 
 9947 void MacroAssembler::check_stack_alignment(Register sp, const char* msg, unsigned bias, Register tmp) {
 9948   Label L_stack_ok;
 9949   if (bias == 0) {
 9950     testptr(sp, 2 * wordSize - 1);
 9951   } else {
 9952     // lea(tmp, Address(rsp, bias);
 9953     mov(tmp, sp);
 9954     addptr(tmp, bias);
 9955     testptr(tmp, 2 * wordSize - 1);
 9956   }
 9957   jcc(Assembler::equal, L_stack_ok);
 9958   block_comment(msg);
 9959   stop(msg);
 9960   bind(L_stack_ok);
 9961 }
 9962 
 9963 // Implements lightweight-locking.
 9964 // Branches to slow upon failure to lock the object, with ZF cleared.
 9965 // Falls through upon success with unspecified ZF.
 9966 //
 9967 // obj: the object to be locked
 9968 // hdr: the (pre-loaded) header of the object, must be rax
 9969 // thread: the thread which attempts to lock obj
 9970 // tmp: a temporary register
 9971 void MacroAssembler::lightweight_lock(Register obj, Register hdr, Register thread, Register tmp, Label& slow) {
 9972   assert(hdr == rax, "header must be in rax for cmpxchg");
 9973   assert_different_registers(obj, hdr, thread, tmp);
 9974 
 9975   // First we need to check if the lock-stack has room for pushing the object reference.
 9976   // Note: we subtract 1 from the end-offset so that we can do a 'greater' comparison, instead
 9977   // of 'greaterEqual' below, which readily clears the ZF. This makes C2 code a little simpler and
 9978   // avoids one branch.
 9979   cmpl(Address(thread, JavaThread::lock_stack_top_offset()), LockStack::end_offset() - 1);
 9980   jcc(Assembler::greater, slow);
 9981 
 9982   // Now we attempt to take the fast-lock.
 9983   // Clear lock_mask bits (locked state).
 9984   andptr(hdr, ~(int32_t)markWord::lock_mask_in_place);
 9985   movptr(tmp, hdr);
 9986   // Set unlocked_value bit.
 9987   orptr(hdr, markWord::unlocked_value);
 9988   lock();
 9989   cmpxchgptr(tmp, Address(obj, oopDesc::mark_offset_in_bytes()));
 9990   jcc(Assembler::notEqual, slow);
 9991 
 9992   // If successful, push object to lock-stack.
 9993   movl(tmp, Address(thread, JavaThread::lock_stack_top_offset()));
 9994   movptr(Address(thread, tmp), obj);
 9995   incrementl(tmp, oopSize);
 9996   movl(Address(thread, JavaThread::lock_stack_top_offset()), tmp);
 9997 }
 9998 
 9999 // Implements lightweight-unlocking.
10000 // Branches to slow upon failure, with ZF cleared.
10001 // Falls through upon success, with unspecified ZF.
10002 //
10003 // obj: the object to be unlocked
10004 // hdr: the (pre-loaded) header of the object, must be rax
10005 // tmp: a temporary register
10006 void MacroAssembler::lightweight_unlock(Register obj, Register hdr, Register tmp, Label& slow) {
10007   assert(hdr == rax, "header must be in rax for cmpxchg");
10008   assert_different_registers(obj, hdr, tmp);
10009 
10010   // Mark-word must be lock_mask now, try to swing it back to unlocked_value.
10011   movptr(tmp, hdr); // The expected old value
10012   orptr(tmp, markWord::unlocked_value);
10013   lock();
10014   cmpxchgptr(tmp, Address(obj, oopDesc::mark_offset_in_bytes()));
10015   jcc(Assembler::notEqual, slow);
10016   // Pop the lock object from the lock-stack.
10017 #ifdef _LP64
10018   const Register thread = r15_thread;
10019 #else
10020   const Register thread = rax;
10021   get_thread(thread);
10022 #endif
10023   subl(Address(thread, JavaThread::lock_stack_top_offset()), oopSize);
10024 #ifdef ASSERT
10025   movl(tmp, Address(thread, JavaThread::lock_stack_top_offset()));
10026   movptr(Address(thread, tmp), 0);
10027 #endif
10028 }