< prev index next > src/hotspot/cpu/x86/macroAssembler_x86.cpp
Print this page
#include "asm/assembler.hpp"
#include "asm/assembler.inline.hpp"
#include "code/compiledIC.hpp"
#include "compiler/compiler_globals.hpp"
#include "compiler/disassembler.hpp"
+ #include "ci/ciInlineKlass.hpp"
#include "crc32c.h"
#include "gc/shared/barrierSet.hpp"
#include "gc/shared/barrierSetAssembler.hpp"
#include "gc/shared/collectedHeap.inline.hpp"
#include "gc/shared/tlab_globals.hpp"
#include "memory/universe.hpp"
#include "oops/accessDecorators.hpp"
#include "oops/compressedKlass.inline.hpp"
#include "oops/compressedOops.inline.hpp"
#include "oops/klass.inline.hpp"
+ #include "oops/resolvedFieldEntry.hpp"
#include "prims/methodHandles.hpp"
#include "runtime/continuation.hpp"
#include "runtime/interfaceSupport.inline.hpp"
#include "runtime/javaThread.hpp"
#include "runtime/jniHandles.hpp"
#include "runtime/objectMonitor.hpp"
#include "runtime/os.hpp"
#include "runtime/safepoint.hpp"
#include "runtime/safepointMechanism.hpp"
#include "runtime/sharedRuntime.hpp"
+ #include "runtime/signature_cc.hpp"
#include "runtime/stubRoutines.hpp"
#include "utilities/checkedCast.hpp"
#include "utilities/macros.hpp"
+ #include "vmreg_x86.inline.hpp"
+ #ifdef COMPILER2
+ #include "opto/output.hpp"
+ #endif
#ifdef PRODUCT
#define BLOCK_COMMENT(str) /* nothing */
#define STOP(error) stop(error)
#else
pass_arg1(this, arg_1);
pass_arg0(this, arg_0);
call_VM_leaf(entry_point, 3);
}
+ void MacroAssembler::super_call_VM_leaf(address entry_point) {
+ MacroAssembler::call_VM_leaf_base(entry_point, 1);
+ }
+
void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
pass_arg0(this, arg_0);
MacroAssembler::call_VM_leaf_base(entry_point, 1);
}
// nothing to do, (later) access of M[reg + offset]
// will provoke OS null exception if reg is null
}
}
+ void MacroAssembler::test_markword_is_inline_type(Register markword, Label& is_inline_type) {
+ andptr(markword, markWord::inline_type_mask_in_place);
+ cmpptr(markword, markWord::inline_type_pattern);
+ jcc(Assembler::equal, is_inline_type);
+ }
+
+ void MacroAssembler::test_klass_is_inline_type(Register klass, Register temp_reg, Label& is_inline_type) {
+ movl(temp_reg, Address(klass, Klass::access_flags_offset()));
+ testl(temp_reg, JVM_ACC_IDENTITY);
+ jcc(Assembler::zero, is_inline_type);
+ }
+
+ void MacroAssembler::test_oop_is_not_inline_type(Register object, Register tmp, Label& not_inline_type) {
+ testptr(object, object);
+ jcc(Assembler::zero, not_inline_type);
+ const int is_inline_type_mask = markWord::inline_type_pattern;
+ movptr(tmp, Address(object, oopDesc::mark_offset_in_bytes()));
+ andptr(tmp, is_inline_type_mask);
+ cmpptr(tmp, is_inline_type_mask);
+ jcc(Assembler::notEqual, not_inline_type);
+ }
+
+ void MacroAssembler::test_klass_is_empty_inline_type(Register klass, Register temp_reg, Label& is_empty_inline_type) {
+ #ifdef ASSERT
+ {
+ Label done_check;
+ test_klass_is_inline_type(klass, temp_reg, done_check);
+ stop("test_klass_is_empty_inline_type with non inline type klass");
+ bind(done_check);
+ }
+ #endif
+ movl(temp_reg, Address(klass, InstanceKlass::misc_flags_offset()));
+ testl(temp_reg, InstanceKlassFlags::is_empty_inline_type_value());
+ jcc(Assembler::notZero, is_empty_inline_type);
+ }
+
+ void MacroAssembler::test_field_is_null_free_inline_type(Register flags, Register temp_reg, Label& is_null_free_inline_type) {
+ movl(temp_reg, flags);
+ testl(temp_reg, 1 << ResolvedFieldEntry::is_null_free_inline_type_shift);
+ jcc(Assembler::notEqual, is_null_free_inline_type);
+ }
+
+ void MacroAssembler::test_field_is_not_null_free_inline_type(Register flags, Register temp_reg, Label& not_null_free_inline_type) {
+ movl(temp_reg, flags);
+ testl(temp_reg, 1 << ResolvedFieldEntry::is_null_free_inline_type_shift);
+ jcc(Assembler::equal, not_null_free_inline_type);
+ }
+
+ void MacroAssembler::test_field_is_flat(Register flags, Register temp_reg, Label& is_flat) {
+ movl(temp_reg, flags);
+ testl(temp_reg, 1 << ResolvedFieldEntry::is_flat_shift);
+ jcc(Assembler::notEqual, is_flat);
+ }
+
+ void MacroAssembler::test_field_has_null_marker(Register flags, Register temp_reg, Label& has_null_marker) {
+ movl(temp_reg, flags);
+ testl(temp_reg, 1 << ResolvedFieldEntry::has_null_marker_shift);
+ jcc(Assembler::notEqual, has_null_marker);
+ }
+
+ void MacroAssembler::test_oop_prototype_bit(Register oop, Register temp_reg, int32_t test_bit, bool jmp_set, Label& jmp_label) {
+ Label test_mark_word;
+ // load mark word
+ movptr(temp_reg, Address(oop, oopDesc::mark_offset_in_bytes()));
+ // check displaced
+ testl(temp_reg, markWord::unlocked_value);
+ jccb(Assembler::notZero, test_mark_word);
+ // slow path use klass prototype
+ push(rscratch1);
+ load_prototype_header(temp_reg, oop, rscratch1);
+ pop(rscratch1);
+
+ bind(test_mark_word);
+ testl(temp_reg, test_bit);
+ jcc((jmp_set) ? Assembler::notZero : Assembler::zero, jmp_label);
+ }
+
+ void MacroAssembler::test_flat_array_oop(Register oop, Register temp_reg,
+ Label& is_flat_array) {
+ #ifdef _LP64
+ test_oop_prototype_bit(oop, temp_reg, markWord::flat_array_bit_in_place, true, is_flat_array);
+ #else
+ load_klass(temp_reg, oop, noreg);
+ movl(temp_reg, Address(temp_reg, Klass::layout_helper_offset()));
+ test_flat_array_layout(temp_reg, is_flat_array);
+ #endif
+ }
+
+ void MacroAssembler::test_non_flat_array_oop(Register oop, Register temp_reg,
+ Label& is_non_flat_array) {
+ #ifdef _LP64
+ test_oop_prototype_bit(oop, temp_reg, markWord::flat_array_bit_in_place, false, is_non_flat_array);
+ #else
+ load_klass(temp_reg, oop, noreg);
+ movl(temp_reg, Address(temp_reg, Klass::layout_helper_offset()));
+ test_non_flat_array_layout(temp_reg, is_non_flat_array);
+ #endif
+ }
+
+ void MacroAssembler::test_null_free_array_oop(Register oop, Register temp_reg, Label&is_null_free_array) {
+ #ifdef _LP64
+ test_oop_prototype_bit(oop, temp_reg, markWord::null_free_array_bit_in_place, true, is_null_free_array);
+ #else
+ Unimplemented();
+ #endif
+ }
+
+ void MacroAssembler::test_non_null_free_array_oop(Register oop, Register temp_reg, Label&is_non_null_free_array) {
+ #ifdef _LP64
+ test_oop_prototype_bit(oop, temp_reg, markWord::null_free_array_bit_in_place, false, is_non_null_free_array);
+ #else
+ Unimplemented();
+ #endif
+ }
+
+ void MacroAssembler::test_flat_array_layout(Register lh, Label& is_flat_array) {
+ testl(lh, Klass::_lh_array_tag_flat_value_bit_inplace);
+ jcc(Assembler::notZero, is_flat_array);
+ }
+
+ void MacroAssembler::test_non_flat_array_layout(Register lh, Label& is_non_flat_array) {
+ testl(lh, Klass::_lh_array_tag_flat_value_bit_inplace);
+ jcc(Assembler::zero, is_non_flat_array);
+ }
+
void MacroAssembler::os_breakpoint() {
// instead of directly emitting a breakpoint, call os:breakpoint for better debugability
// (e.g., MSVC can't call ps() otherwise)
call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
}
void MacroAssembler::testptr(Register dst, Register src) {
LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
}
+ // Object / value buffer allocation...
+ //
+ // Kills klass and rsi on LP64
+ void MacroAssembler::allocate_instance(Register klass, Register new_obj,
+ Register t1, Register t2,
+ bool clear_fields, Label& alloc_failed)
+ {
+ Label done, initialize_header, initialize_object, slow_case, slow_case_no_pop;
+ Register layout_size = t1;
+ assert(new_obj == rax, "needs to be rax");
+ assert_different_registers(klass, new_obj, t1, t2);
+
+ // get instance_size in InstanceKlass (scaled to a count of bytes)
+ movl(layout_size, Address(klass, Klass::layout_helper_offset()));
+ // test to see if it is malformed in some way
+ testl(layout_size, Klass::_lh_instance_slow_path_bit);
+ jcc(Assembler::notZero, slow_case_no_pop);
+
+ // Allocate the instance:
+ // If TLAB is enabled:
+ // Try to allocate in the TLAB.
+ // If fails, go to the slow path.
+ // Else If inline contiguous allocations are enabled:
+ // Try to allocate in eden.
+ // If fails due to heap end, go to slow path.
+ //
+ // If TLAB is enabled OR inline contiguous is enabled:
+ // Initialize the allocation.
+ // Exit.
+ //
+ // Go to slow path.
+
+ push(klass);
+ const Register thread = LP64_ONLY(r15_thread) NOT_LP64(klass);
+ #ifndef _LP64
+ if (UseTLAB) {
+ get_thread(thread);
+ }
+ #endif // _LP64
+
+ if (UseTLAB) {
+ tlab_allocate(thread, new_obj, layout_size, 0, klass, t2, slow_case);
+ if (ZeroTLAB || (!clear_fields)) {
+ // the fields have been already cleared
+ jmp(initialize_header);
+ } else {
+ // initialize both the header and fields
+ jmp(initialize_object);
+ }
+ } else {
+ jmp(slow_case);
+ }
+
+ // If UseTLAB is true, the object is created above and there is an initialize need.
+ // Otherwise, skip and go to the slow path.
+ if (UseTLAB) {
+ if (clear_fields) {
+ // The object is initialized before the header. If the object size is
+ // zero, go directly to the header initialization.
+ bind(initialize_object);
+ decrement(layout_size, sizeof(oopDesc));
+ jcc(Assembler::zero, initialize_header);
+
+ // Initialize topmost object field, divide size by 8, check if odd and
+ // test if zero.
+ Register zero = klass;
+ xorl(zero, zero); // use zero reg to clear memory (shorter code)
+ shrl(layout_size, LogBytesPerLong); // divide by 2*oopSize and set carry flag if odd
+
+ #ifdef ASSERT
+ // make sure instance_size was multiple of 8
+ Label L;
+ // Ignore partial flag stall after shrl() since it is debug VM
+ jcc(Assembler::carryClear, L);
+ stop("object size is not multiple of 2 - adjust this code");
+ bind(L);
+ // must be > 0, no extra check needed here
+ #endif
+
+ // initialize remaining object fields: instance_size was a multiple of 8
+ {
+ Label loop;
+ bind(loop);
+ movptr(Address(new_obj, layout_size, Address::times_8, sizeof(oopDesc) - 1*oopSize), zero);
+ NOT_LP64(movptr(Address(new_obj, layout_size, Address::times_8, sizeof(oopDesc) - 2*oopSize), zero));
+ decrement(layout_size);
+ jcc(Assembler::notZero, loop);
+ }
+ } // clear_fields
+
+ // initialize object header only.
+ bind(initialize_header);
+ pop(klass);
+ Register mark_word = t2;
+ movptr(mark_word, Address(klass, Klass::prototype_header_offset()));
+ movptr(Address(new_obj, oopDesc::mark_offset_in_bytes ()), mark_word);
+ #ifdef _LP64
+ xorl(rsi, rsi); // use zero reg to clear memory (shorter code)
+ store_klass_gap(new_obj, rsi); // zero klass gap for compressed oops
+ #endif
+ movptr(t2, klass); // preserve klass
+ store_klass(new_obj, t2, rscratch1); // src klass reg is potentially compressed
+
+ jmp(done);
+ }
+
+ bind(slow_case);
+ pop(klass);
+ bind(slow_case_no_pop);
+ jmp(alloc_failed);
+
+ bind(done);
+ }
+
// Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
void MacroAssembler::tlab_allocate(Register thread, Register obj,
Register var_size_in_bytes,
int con_size_in_bytes,
Register t1,
}
bind(done);
}
+ void MacroAssembler::get_inline_type_field_klass(Register klass, Register index, Register inline_klass) {
+ movptr(inline_klass, Address(klass, InstanceKlass::inline_type_field_klasses_offset()));
+ #ifdef ASSERT
+ {
+ Label done;
+ cmpptr(inline_klass, 0);
+ jcc(Assembler::notEqual, done);
+ stop("get_inline_type_field_klass contains no inline klass");
+ bind(done);
+ }
+ #endif
+ movptr(inline_klass, Address(inline_klass, index, Address::times_ptr, Array<InlineKlass*>::base_offset_in_bytes()));
+ }
+
+ void MacroAssembler::get_default_value_oop(Register inline_klass, Register temp_reg, Register obj) {
+ #ifdef ASSERT
+ {
+ Label done_check;
+ test_klass_is_inline_type(inline_klass, temp_reg, done_check);
+ stop("get_default_value_oop from non inline type klass");
+ bind(done_check);
+ }
+ #endif
+ Register offset = temp_reg;
+ // Getting the offset of the pre-allocated default value
+ movptr(offset, Address(inline_klass, in_bytes(InstanceKlass::adr_inlineklass_fixed_block_offset())));
+ movl(offset, Address(offset, in_bytes(InlineKlass::default_value_offset_offset())));
+
+ // Getting the mirror
+ movptr(obj, Address(inline_klass, in_bytes(Klass::java_mirror_offset())));
+ resolve_oop_handle(obj, inline_klass);
+
+ // Getting the pre-allocated default value from the mirror
+ Address field(obj, offset, Address::times_1);
+ load_heap_oop(obj, field);
+ }
+
+ void MacroAssembler::get_empty_inline_type_oop(Register inline_klass, Register temp_reg, Register obj) {
+ #ifdef ASSERT
+ {
+ Label done_check;
+ test_klass_is_empty_inline_type(inline_klass, temp_reg, done_check);
+ stop("get_empty_value from non-empty inline klass");
+ bind(done_check);
+ }
+ #endif
+ get_default_value_oop(inline_klass, temp_reg, obj);
+ }
+
+
// Look up the method for a megamorphic invokeinterface call.
// The target method is determined by <intf_klass, itable_index>.
// The receiver klass is in recv_klass.
// On success, the result will be in method_result, and execution falls through.
// On failure, execution transfers to the given label.
bind(L);
}
}
void MacroAssembler::_verify_oop(Register reg, const char* s, const char* file, int line) {
! if (!VerifyOops) return;
BLOCK_COMMENT("verify_oop {");
#ifdef _LP64
push(rscratch1);
#endif
bind(L);
}
}
void MacroAssembler::_verify_oop(Register reg, const char* s, const char* file, int line) {
! if (!VerifyOops || VerifyAdapterSharing) {
+ // Below address of the code string confuses VerifyAdapterSharing
+ // because it may differ between otherwise equivalent adapters.
+ return;
+ }
BLOCK_COMMENT("verify_oop {");
#ifdef _LP64
push(rscratch1);
#endif
offset += wordSize; // return PC is on stack
return Address(rsp, scale_reg, scale_factor, offset);
}
void MacroAssembler::_verify_oop_addr(Address addr, const char* s, const char* file, int line) {
! if (!VerifyOops) return;
#ifdef _LP64
push(rscratch1);
#endif
push(rax); // save rax,
offset += wordSize; // return PC is on stack
return Address(rsp, scale_reg, scale_factor, offset);
}
void MacroAssembler::_verify_oop_addr(Address addr, const char* s, const char* file, int line) {
! if (!VerifyOops || VerifyAdapterSharing) {
+ // Below address of the code string confuses VerifyAdapterSharing
+ // because it may differ between otherwise equivalent adapters.
+ return;
+ }
#ifdef _LP64
push(rscratch1);
#endif
push(rax); // save rax,
movptr(holder, Address(method, Method::const_offset())); // ConstMethod*
movptr(holder, Address(holder, ConstMethod::constants_offset())); // ConstantPool*
movptr(holder, Address(holder, ConstantPool::pool_holder_offset())); // InstanceKlass*
}
void MacroAssembler::load_klass(Register dst, Register src, Register tmp) {
assert_different_registers(src, tmp);
assert_different_registers(dst, tmp);
#ifdef _LP64
if (UseCompressedClassPointers) {
movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
decode_klass_not_null(dst, tmp);
} else
#endif
! movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
}
void MacroAssembler::store_klass(Register dst, Register src, Register tmp) {
assert_different_registers(src, tmp);
assert_different_registers(dst, tmp);
movptr(holder, Address(method, Method::const_offset())); // ConstMethod*
movptr(holder, Address(holder, ConstMethod::constants_offset())); // ConstantPool*
movptr(holder, Address(holder, ConstantPool::pool_holder_offset())); // InstanceKlass*
}
+ void MacroAssembler::load_metadata(Register dst, Register src) {
+ if (UseCompressedClassPointers) {
+ movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
+ } else {
+ movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
+ }
+ }
+
void MacroAssembler::load_klass(Register dst, Register src, Register tmp) {
assert_different_registers(src, tmp);
assert_different_registers(dst, tmp);
#ifdef _LP64
if (UseCompressedClassPointers) {
movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
decode_klass_not_null(dst, tmp);
} else
#endif
! movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
+ }
+
+ void MacroAssembler::load_prototype_header(Register dst, Register src, Register tmp) {
+ load_klass(dst, src, tmp);
+ movptr(dst, Address(dst, Klass::prototype_header_offset()));
}
void MacroAssembler::store_klass(Register dst, Register src, Register tmp) {
assert_different_registers(src, tmp);
assert_different_registers(dst, tmp);
} else {
bs->store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3);
}
}
+ void MacroAssembler::access_value_copy(DecoratorSet decorators, Register src, Register dst,
+ Register inline_klass) {
+ BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
+ bs->value_copy(this, decorators, src, dst, inline_klass);
+ }
+
+ void MacroAssembler::first_field_offset(Register inline_klass, Register offset) {
+ movptr(offset, Address(inline_klass, InstanceKlass::adr_inlineklass_fixed_block_offset()));
+ movl(offset, Address(offset, InlineKlass::first_field_offset_offset()));
+ }
+
+ void MacroAssembler::data_for_oop(Register oop, Register data, Register inline_klass) {
+ // ((address) (void*) o) + vk->first_field_offset();
+ Register offset = (data == oop) ? rscratch1 : data;
+ first_field_offset(inline_klass, offset);
+ if (data == oop) {
+ addptr(data, offset);
+ } else {
+ lea(data, Address(oop, offset));
+ }
+ }
+
+ void MacroAssembler::data_for_value_array_index(Register array, Register array_klass,
+ Register index, Register data) {
+ assert(index != rcx, "index needs to shift by rcx");
+ assert_different_registers(array, array_klass, index);
+ assert_different_registers(rcx, array, index);
+
+ // array->base() + (index << Klass::layout_helper_log2_element_size(lh));
+ movl(rcx, Address(array_klass, Klass::layout_helper_offset()));
+
+ // Klass::layout_helper_log2_element_size(lh)
+ // (lh >> _lh_log2_element_size_shift) & _lh_log2_element_size_mask;
+ shrl(rcx, Klass::_lh_log2_element_size_shift);
+ andl(rcx, Klass::_lh_log2_element_size_mask);
+ shlptr(index); // index << rcx
+
+ lea(data, Address(array, index, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_PRIMITIVE_OBJECT)));
+ }
+
void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1,
Register thread_tmp, DecoratorSet decorators) {
access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, thread_tmp);
}
#endif // _LP64
#if COMPILER2_OR_JVMCI
// clear memory of size 'cnt' qwords, starting at 'base' using XMM/YMM/ZMM registers
! void MacroAssembler::xmm_clear_mem(Register base, Register cnt, Register rtmp, XMMRegister xtmp, KRegister mask) {
// cnt - number of qwords (8-byte words).
// base - start address, qword aligned.
Label L_zero_64_bytes, L_loop, L_sloop, L_tail, L_end;
bool use64byteVector = (MaxVectorSize == 64) && (VM_Version::avx3_threshold() == 0);
if (use64byteVector) {
! vpxor(xtmp, xtmp, xtmp, AVX_512bit);
} else if (MaxVectorSize >= 32) {
! vpxor(xtmp, xtmp, xtmp, AVX_256bit);
} else {
! pxor(xtmp, xtmp);
}
jmp(L_zero_64_bytes);
BIND(L_loop);
if (MaxVectorSize >= 32) {
#endif // _LP64
#if COMPILER2_OR_JVMCI
// clear memory of size 'cnt' qwords, starting at 'base' using XMM/YMM/ZMM registers
! void MacroAssembler::xmm_clear_mem(Register base, Register cnt, Register val, XMMRegister xtmp, KRegister mask) {
// cnt - number of qwords (8-byte words).
// base - start address, qword aligned.
Label L_zero_64_bytes, L_loop, L_sloop, L_tail, L_end;
bool use64byteVector = (MaxVectorSize == 64) && (VM_Version::avx3_threshold() == 0);
if (use64byteVector) {
! evpbroadcastq(xtmp, val, AVX_512bit);
} else if (MaxVectorSize >= 32) {
! movdq(xtmp, val);
+ punpcklqdq(xtmp, xtmp);
+ vinserti128_high(xtmp, xtmp);
} else {
! movdq(xtmp, val);
+ punpcklqdq(xtmp, xtmp);
}
jmp(L_zero_64_bytes);
BIND(L_loop);
if (MaxVectorSize >= 32) {
// Copy trailing 64 bytes
if (use64byteVector) {
addptr(cnt, 8);
jccb(Assembler::equal, L_end);
! fill64_masked(3, base, 0, xtmp, mask, cnt, rtmp, true);
jmp(L_end);
} else {
addptr(cnt, 4);
jccb(Assembler::less, L_tail);
if (MaxVectorSize >= 32) {
// Copy trailing 64 bytes
if (use64byteVector) {
addptr(cnt, 8);
jccb(Assembler::equal, L_end);
! fill64_masked(3, base, 0, xtmp, mask, cnt, val, true);
jmp(L_end);
} else {
addptr(cnt, 4);
jccb(Assembler::less, L_tail);
if (MaxVectorSize >= 32) {
BIND(L_tail);
addptr(cnt, 4);
jccb(Assembler::lessEqual, L_end);
if (UseAVX > 2 && MaxVectorSize >= 32 && VM_Version::supports_avx512vl()) {
! fill32_masked(3, base, 0, xtmp, mask, cnt, rtmp);
} else {
decrement(cnt);
BIND(L_sloop);
movq(Address(base, 0), xtmp);
BIND(L_tail);
addptr(cnt, 4);
jccb(Assembler::lessEqual, L_end);
if (UseAVX > 2 && MaxVectorSize >= 32 && VM_Version::supports_avx512vl()) {
! fill32_masked(3, base, 0, xtmp, mask, cnt, val);
} else {
decrement(cnt);
BIND(L_sloop);
movq(Address(base, 0), xtmp);
jccb(Assembler::greaterEqual, L_sloop);
}
BIND(L_end);
}
+ int MacroAssembler::store_inline_type_fields_to_buf(ciInlineKlass* vk, bool from_interpreter) {
+ assert(InlineTypeReturnedAsFields, "Inline types should never be returned as fields");
+ // An inline type might be returned. If fields are in registers we
+ // need to allocate an inline type instance and initialize it with
+ // the value of the fields.
+ Label skip;
+ // We only need a new buffered inline type if a new one is not returned
+ testptr(rax, 1);
+ jcc(Assembler::zero, skip);
+ int call_offset = -1;
+
+ #ifdef _LP64
+ // The following code is similar to allocate_instance but has some slight differences,
+ // e.g. object size is always not zero, sometimes it's constant; storing klass ptr after
+ // allocating is not necessary if vk != nullptr, etc. allocate_instance is not aware of these.
+ Label slow_case;
+ // 1. Try to allocate a new buffered inline instance either from TLAB or eden space
+ mov(rscratch1, rax); // save rax for slow_case since *_allocate may corrupt it when allocation failed
+ if (vk != nullptr) {
+ // Called from C1, where the return type is statically known.
+ movptr(rbx, (intptr_t)vk->get_InlineKlass());
+ jint lh = vk->layout_helper();
+ assert(lh != Klass::_lh_neutral_value, "inline class in return type must have been resolved");
+ if (UseTLAB && !Klass::layout_helper_needs_slow_path(lh)) {
+ tlab_allocate(r15_thread, rax, noreg, lh, r13, r14, slow_case);
+ } else {
+ jmp(slow_case);
+ }
+ } else {
+ // Call from interpreter. RAX contains ((the InlineKlass* of the return type) | 0x01)
+ mov(rbx, rax);
+ andptr(rbx, -2);
+ if (UseTLAB) {
+ movl(r14, Address(rbx, Klass::layout_helper_offset()));
+ testl(r14, Klass::_lh_instance_slow_path_bit);
+ jcc(Assembler::notZero, slow_case);
+ tlab_allocate(r15_thread, rax, r14, 0, r13, r14, slow_case);
+ } else {
+ jmp(slow_case);
+ }
+ }
+ if (UseTLAB) {
+ // 2. Initialize buffered inline instance header
+ Register buffer_obj = rax;
+ movptr(Address(buffer_obj, oopDesc::mark_offset_in_bytes()), (intptr_t)markWord::inline_type_prototype().value());
+ xorl(r13, r13);
+ store_klass_gap(buffer_obj, r13);
+ if (vk == nullptr) {
+ // store_klass corrupts rbx(klass), so save it in r13 for later use (interpreter case only).
+ mov(r13, rbx);
+ }
+ store_klass(buffer_obj, rbx, rscratch1);
+ // 3. Initialize its fields with an inline class specific handler
+ if (vk != nullptr) {
+ call(RuntimeAddress(vk->pack_handler())); // no need for call info as this will not safepoint.
+ } else {
+ movptr(rbx, Address(r13, InstanceKlass::adr_inlineklass_fixed_block_offset()));
+ movptr(rbx, Address(rbx, InlineKlass::pack_handler_offset()));
+ call(rbx);
+ }
+ jmp(skip);
+ }
+ bind(slow_case);
+ // We failed to allocate a new inline type, fall back to a runtime
+ // call. Some oop field may be live in some registers but we can't
+ // tell. That runtime call will take care of preserving them
+ // across a GC if there's one.
+ mov(rax, rscratch1);
+ #endif
+
+ if (from_interpreter) {
+ super_call_VM_leaf(StubRoutines::store_inline_type_fields_to_buf());
+ } else {
+ call(RuntimeAddress(StubRoutines::store_inline_type_fields_to_buf()));
+ call_offset = offset();
+ }
+
+ bind(skip);
+ return call_offset;
+ }
+
+ // Move a value between registers/stack slots and update the reg_state
+ bool MacroAssembler::move_helper(VMReg from, VMReg to, BasicType bt, RegState reg_state[]) {
+ assert(from->is_valid() && to->is_valid(), "source and destination must be valid");
+ if (reg_state[to->value()] == reg_written) {
+ return true; // Already written
+ }
+ if (from != to && bt != T_VOID) {
+ if (reg_state[to->value()] == reg_readonly) {
+ return false; // Not yet writable
+ }
+ if (from->is_reg()) {
+ if (to->is_reg()) {
+ if (from->is_XMMRegister()) {
+ if (bt == T_DOUBLE) {
+ movdbl(to->as_XMMRegister(), from->as_XMMRegister());
+ } else {
+ assert(bt == T_FLOAT, "must be float");
+ movflt(to->as_XMMRegister(), from->as_XMMRegister());
+ }
+ } else {
+ movq(to->as_Register(), from->as_Register());
+ }
+ } else {
+ int st_off = to->reg2stack() * VMRegImpl::stack_slot_size + wordSize;
+ Address to_addr = Address(rsp, st_off);
+ if (from->is_XMMRegister()) {
+ if (bt == T_DOUBLE) {
+ movdbl(to_addr, from->as_XMMRegister());
+ } else {
+ assert(bt == T_FLOAT, "must be float");
+ movflt(to_addr, from->as_XMMRegister());
+ }
+ } else {
+ movq(to_addr, from->as_Register());
+ }
+ }
+ } else {
+ Address from_addr = Address(rsp, from->reg2stack() * VMRegImpl::stack_slot_size + wordSize);
+ if (to->is_reg()) {
+ if (to->is_XMMRegister()) {
+ if (bt == T_DOUBLE) {
+ movdbl(to->as_XMMRegister(), from_addr);
+ } else {
+ assert(bt == T_FLOAT, "must be float");
+ movflt(to->as_XMMRegister(), from_addr);
+ }
+ } else {
+ movq(to->as_Register(), from_addr);
+ }
+ } else {
+ int st_off = to->reg2stack() * VMRegImpl::stack_slot_size + wordSize;
+ movq(r13, from_addr);
+ movq(Address(rsp, st_off), r13);
+ }
+ }
+ }
+ // Update register states
+ reg_state[from->value()] = reg_writable;
+ reg_state[to->value()] = reg_written;
+ return true;
+ }
+
+ // Calculate the extra stack space required for packing or unpacking inline
+ // args and adjust the stack pointer
+ int MacroAssembler::extend_stack_for_inline_args(int args_on_stack) {
+ // Two additional slots to account for return address
+ int sp_inc = (args_on_stack + 2) * VMRegImpl::stack_slot_size;
+ sp_inc = align_up(sp_inc, StackAlignmentInBytes);
+ // Save the return address, adjust the stack (make sure it is properly
+ // 16-byte aligned) and copy the return address to the new top of the stack.
+ // The stack will be repaired on return (see MacroAssembler::remove_frame).
+ assert(sp_inc > 0, "sanity");
+ pop(r13);
+ subptr(rsp, sp_inc);
+ push(r13);
+ return sp_inc;
+ }
+
+ // Read all fields from an inline type buffer and store the field values in registers/stack slots.
+ bool MacroAssembler::unpack_inline_helper(const GrowableArray<SigEntry>* sig, int& sig_index,
+ VMReg from, int& from_index, VMRegPair* to, int to_count, int& to_index,
+ RegState reg_state[]) {
+ assert(sig->at(sig_index)._bt == T_VOID, "should be at end delimiter");
+ assert(from->is_valid(), "source must be valid");
+ bool progress = false;
+ #ifdef ASSERT
+ const int start_offset = offset();
+ #endif
+
+ Label L_null, L_notNull;
+ // Don't use r14 as tmp because it's used for spilling (see MacroAssembler::spill_reg_for)
+ Register tmp1 = r10;
+ Register tmp2 = r13;
+ Register fromReg = noreg;
+ ScalarizedInlineArgsStream stream(sig, sig_index, to, to_count, to_index, -1);
+ bool done = true;
+ bool mark_done = true;
+ VMReg toReg;
+ BasicType bt;
+ // Check if argument requires a null check
+ bool null_check = false;
+ VMReg nullCheckReg;
+ while (stream.next(nullCheckReg, bt)) {
+ if (sig->at(stream.sig_index())._offset == -1) {
+ null_check = true;
+ break;
+ }
+ }
+ stream.reset(sig_index, to_index);
+ while (stream.next(toReg, bt)) {
+ assert(toReg->is_valid(), "destination must be valid");
+ int idx = (int)toReg->value();
+ if (reg_state[idx] == reg_readonly) {
+ if (idx != from->value()) {
+ mark_done = false;
+ }
+ done = false;
+ continue;
+ } else if (reg_state[idx] == reg_written) {
+ continue;
+ }
+ assert(reg_state[idx] == reg_writable, "must be writable");
+ reg_state[idx] = reg_written;
+ progress = true;
+
+ if (fromReg == noreg) {
+ if (from->is_reg()) {
+ fromReg = from->as_Register();
+ } else {
+ int st_off = from->reg2stack() * VMRegImpl::stack_slot_size + wordSize;
+ movq(tmp1, Address(rsp, st_off));
+ fromReg = tmp1;
+ }
+ if (null_check) {
+ // Nullable inline type argument, emit null check
+ testptr(fromReg, fromReg);
+ jcc(Assembler::zero, L_null);
+ }
+ }
+ int off = sig->at(stream.sig_index())._offset;
+ if (off == -1) {
+ assert(null_check, "Missing null check at");
+ if (toReg->is_stack()) {
+ int st_off = toReg->reg2stack() * VMRegImpl::stack_slot_size + wordSize;
+ movq(Address(rsp, st_off), 1);
+ } else {
+ movq(toReg->as_Register(), 1);
+ }
+ continue;
+ }
+ assert(off > 0, "offset in object should be positive");
+ Address fromAddr = Address(fromReg, off);
+ if (!toReg->is_XMMRegister()) {
+ Register dst = toReg->is_stack() ? tmp2 : toReg->as_Register();
+ if (is_reference_type(bt)) {
+ load_heap_oop(dst, fromAddr);
+ } else {
+ bool is_signed = (bt != T_CHAR) && (bt != T_BOOLEAN);
+ load_sized_value(dst, fromAddr, type2aelembytes(bt), is_signed);
+ }
+ if (toReg->is_stack()) {
+ int st_off = toReg->reg2stack() * VMRegImpl::stack_slot_size + wordSize;
+ movq(Address(rsp, st_off), dst);
+ }
+ } else if (bt == T_DOUBLE) {
+ movdbl(toReg->as_XMMRegister(), fromAddr);
+ } else {
+ assert(bt == T_FLOAT, "must be float");
+ movflt(toReg->as_XMMRegister(), fromAddr);
+ }
+ }
+ if (progress && null_check) {
+ if (done) {
+ jmp(L_notNull);
+ bind(L_null);
+ // Set IsInit field to zero to signal that the argument is null.
+ // Also set all oop fields to zero to make the GC happy.
+ stream.reset(sig_index, to_index);
+ while (stream.next(toReg, bt)) {
+ if (sig->at(stream.sig_index())._offset == -1 ||
+ bt == T_OBJECT || bt == T_ARRAY) {
+ if (toReg->is_stack()) {
+ int st_off = toReg->reg2stack() * VMRegImpl::stack_slot_size + wordSize;
+ movq(Address(rsp, st_off), 0);
+ } else {
+ xorq(toReg->as_Register(), toReg->as_Register());
+ }
+ }
+ }
+ bind(L_notNull);
+ } else {
+ bind(L_null);
+ }
+ }
+
+ sig_index = stream.sig_index();
+ to_index = stream.regs_index();
+
+ if (mark_done && reg_state[from->value()] != reg_written) {
+ // This is okay because no one else will write to that slot
+ reg_state[from->value()] = reg_writable;
+ }
+ from_index--;
+ assert(progress || (start_offset == offset()), "should not emit code");
+ return done;
+ }
+
+ bool MacroAssembler::pack_inline_helper(const GrowableArray<SigEntry>* sig, int& sig_index, int vtarg_index,
+ VMRegPair* from, int from_count, int& from_index, VMReg to,
+ RegState reg_state[], Register val_array) {
+ assert(sig->at(sig_index)._bt == T_METADATA, "should be at delimiter");
+ assert(to->is_valid(), "destination must be valid");
+
+ if (reg_state[to->value()] == reg_written) {
+ skip_unpacked_fields(sig, sig_index, from, from_count, from_index);
+ return true; // Already written
+ }
+
+ // TODO 8284443 Isn't it an issue if below code uses r14 as tmp when it contains a spilled value?
+ // Be careful with r14 because it's used for spilling (see MacroAssembler::spill_reg_for).
+ Register val_obj_tmp = r11;
+ Register from_reg_tmp = r14;
+ Register tmp1 = r10;
+ Register tmp2 = r13;
+ Register tmp3 = rbx;
+ Register val_obj = to->is_stack() ? val_obj_tmp : to->as_Register();
+
+ assert_different_registers(val_obj_tmp, from_reg_tmp, tmp1, tmp2, tmp3, val_array);
+
+ if (reg_state[to->value()] == reg_readonly) {
+ if (!is_reg_in_unpacked_fields(sig, sig_index, to, from, from_count, from_index)) {
+ skip_unpacked_fields(sig, sig_index, from, from_count, from_index);
+ return false; // Not yet writable
+ }
+ val_obj = val_obj_tmp;
+ }
+
+ int index = arrayOopDesc::base_offset_in_bytes(T_OBJECT) + vtarg_index * type2aelembytes(T_OBJECT);
+ load_heap_oop(val_obj, Address(val_array, index));
+
+ ScalarizedInlineArgsStream stream(sig, sig_index, from, from_count, from_index);
+ VMReg fromReg;
+ BasicType bt;
+ Label L_null;
+ while (stream.next(fromReg, bt)) {
+ assert(fromReg->is_valid(), "source must be valid");
+ reg_state[fromReg->value()] = reg_writable;
+
+ int off = sig->at(stream.sig_index())._offset;
+ if (off == -1) {
+ // Nullable inline type argument, emit null check
+ Label L_notNull;
+ if (fromReg->is_stack()) {
+ int ld_off = fromReg->reg2stack() * VMRegImpl::stack_slot_size + wordSize;
+ testb(Address(rsp, ld_off), 1);
+ } else {
+ testb(fromReg->as_Register(), 1);
+ }
+ jcc(Assembler::notZero, L_notNull);
+ movptr(val_obj, 0);
+ jmp(L_null);
+ bind(L_notNull);
+ continue;
+ }
+
+ assert(off > 0, "offset in object should be positive");
+ size_t size_in_bytes = is_java_primitive(bt) ? type2aelembytes(bt) : wordSize;
+
+ Address dst(val_obj, off);
+ if (!fromReg->is_XMMRegister()) {
+ Register src;
+ if (fromReg->is_stack()) {
+ src = from_reg_tmp;
+ int ld_off = fromReg->reg2stack() * VMRegImpl::stack_slot_size + wordSize;
+ load_sized_value(src, Address(rsp, ld_off), size_in_bytes, /* is_signed */ false);
+ } else {
+ src = fromReg->as_Register();
+ }
+ assert_different_registers(dst.base(), src, tmp1, tmp2, tmp3, val_array);
+ if (is_reference_type(bt)) {
+ store_heap_oop(dst, src, tmp1, tmp2, tmp3, IN_HEAP | ACCESS_WRITE | IS_DEST_UNINITIALIZED);
+ } else {
+ store_sized_value(dst, src, size_in_bytes);
+ }
+ } else if (bt == T_DOUBLE) {
+ movdbl(dst, fromReg->as_XMMRegister());
+ } else {
+ assert(bt == T_FLOAT, "must be float");
+ movflt(dst, fromReg->as_XMMRegister());
+ }
+ }
+ bind(L_null);
+ sig_index = stream.sig_index();
+ from_index = stream.regs_index();
+
+ assert(reg_state[to->value()] == reg_writable, "must have already been read");
+ bool success = move_helper(val_obj->as_VMReg(), to, T_OBJECT, reg_state);
+ assert(success, "to register must be writeable");
+ return true;
+ }
+
+ VMReg MacroAssembler::spill_reg_for(VMReg reg) {
+ return reg->is_XMMRegister() ? xmm8->as_VMReg() : r14->as_VMReg();
+ }
+
+ void MacroAssembler::remove_frame(int initial_framesize, bool needs_stack_repair) {
+ assert((initial_framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
+ if (needs_stack_repair) {
+ movq(rbp, Address(rsp, initial_framesize));
+ // The stack increment resides just below the saved rbp
+ addq(rsp, Address(rsp, initial_framesize - wordSize));
+ } else {
+ if (initial_framesize > 0) {
+ addq(rsp, initial_framesize);
+ }
+ pop(rbp);
+ }
+ }
+
// Clearing constant sized memory using YMM/ZMM registers.
void MacroAssembler::clear_mem(Register base, int cnt, Register rtmp, XMMRegister xtmp, KRegister mask) {
assert(UseAVX > 2 && VM_Version::supports_avx512vl(), "");
bool use64byteVector = (MaxVectorSize > 32) && (VM_Version::avx3_threshold() == 0);
break;
}
}
}
! void MacroAssembler::clear_mem(Register base, Register cnt, Register tmp, XMMRegister xtmp,
! bool is_large, KRegister mask) {
// cnt - number of qwords (8-byte words).
// base - start address, qword aligned.
// is_large - if optimizers know cnt is larger than InitArrayShortSize
assert(base==rdi, "base register must be edi for rep stos");
! assert(tmp==rax, "tmp register must be eax for rep stos");
assert(cnt==rcx, "cnt register must be ecx for rep stos");
assert(InitArrayShortSize % BytesPerLong == 0,
"InitArrayShortSize should be the multiple of BytesPerLong");
Label DONE;
- if (!is_large || !UseXMMForObjInit) {
- xorptr(tmp, tmp);
- }
if (!is_large) {
Label LOOP, LONG;
cmpptr(cnt, InitArrayShortSize/BytesPerLong);
jccb(Assembler::greater, LONG);
break;
}
}
}
! void MacroAssembler::clear_mem(Register base, Register cnt, Register val, XMMRegister xtmp,
! bool is_large, bool word_copy_only, KRegister mask) {
// cnt - number of qwords (8-byte words).
// base - start address, qword aligned.
// is_large - if optimizers know cnt is larger than InitArrayShortSize
assert(base==rdi, "base register must be edi for rep stos");
! assert(val==rax, "val register must be eax for rep stos");
assert(cnt==rcx, "cnt register must be ecx for rep stos");
assert(InitArrayShortSize % BytesPerLong == 0,
"InitArrayShortSize should be the multiple of BytesPerLong");
Label DONE;
if (!is_large) {
Label LOOP, LONG;
cmpptr(cnt, InitArrayShortSize/BytesPerLong);
jccb(Assembler::greater, LONG);
decrement(cnt);
jccb(Assembler::negative, DONE); // Zero length
// Use individual pointer-sized stores for small counts:
BIND(LOOP);
! movptr(Address(base, cnt, Address::times_ptr), tmp);
decrement(cnt);
jccb(Assembler::greaterEqual, LOOP);
jmpb(DONE);
BIND(LONG);
}
// Use longer rep-prefixed ops for non-small counts:
! if (UseFastStosb) {
shlptr(cnt, 3); // convert to number of bytes
rep_stosb();
} else if (UseXMMForObjInit) {
! xmm_clear_mem(base, cnt, tmp, xtmp, mask);
} else {
NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM
rep_stos();
}
decrement(cnt);
jccb(Assembler::negative, DONE); // Zero length
// Use individual pointer-sized stores for small counts:
BIND(LOOP);
! movptr(Address(base, cnt, Address::times_ptr), val);
decrement(cnt);
jccb(Assembler::greaterEqual, LOOP);
jmpb(DONE);
BIND(LONG);
}
// Use longer rep-prefixed ops for non-small counts:
! if (UseFastStosb && !word_copy_only) {
shlptr(cnt, 3); // convert to number of bytes
rep_stosb();
} else if (UseXMMForObjInit) {
! xmm_clear_mem(base, cnt, val, xtmp, mask);
} else {
NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM
rep_stos();
}
// Try to lock. Transition lock bits 0b01 => 0b00
movptr(tmp, reg_rax);
andptr(tmp, ~(int32_t)markWord::unlocked_value);
orptr(reg_rax, markWord::unlocked_value);
+ if (EnableValhalla) {
+ // Mask inline_type bit such that we go to the slow path if object is an inline type
+ andptr(reg_rax, ~((int) markWord::inline_type_bit_in_place));
+ }
lock(); cmpxchgptr(tmp, Address(obj, oopDesc::mark_offset_in_bytes()));
jcc(Assembler::notEqual, slow);
// Restore top, CAS clobbers register.
movl(top, Address(thread, JavaThread::lock_stack_top_offset()));
< prev index next >