1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "asm/assembler.hpp" 26 #include "asm/assembler.inline.hpp" 27 #include "code/aotCodeCache.hpp" 28 #include "code/compiledIC.hpp" 29 #include "compiler/compiler_globals.hpp" 30 #include "compiler/disassembler.hpp" 31 #include "ci/ciInlineKlass.hpp" 32 #include "crc32c.h" 33 #include "gc/shared/barrierSet.hpp" 34 #include "gc/shared/barrierSetAssembler.hpp" 35 #include "gc/shared/collectedHeap.inline.hpp" 36 #include "gc/shared/tlab_globals.hpp" 37 #include "interpreter/bytecodeHistogram.hpp" 38 #include "interpreter/interpreter.hpp" 39 #include "interpreter/interpreterRuntime.hpp" 40 #include "jvm.h" 41 #include "memory/resourceArea.hpp" 42 #include "memory/universe.hpp" 43 #include "oops/accessDecorators.hpp" 44 #include "oops/compressedKlass.inline.hpp" 45 #include "oops/compressedOops.inline.hpp" 46 #include "oops/klass.inline.hpp" 47 #include "oops/resolvedFieldEntry.hpp" 48 #include "prims/methodHandles.hpp" 49 #include "runtime/continuation.hpp" 50 #include "runtime/interfaceSupport.inline.hpp" 51 #include "runtime/javaThread.hpp" 52 #include "runtime/jniHandles.hpp" 53 #include "runtime/objectMonitor.hpp" 54 #include "runtime/os.hpp" 55 #include "runtime/safepoint.hpp" 56 #include "runtime/safepointMechanism.hpp" 57 #include "runtime/sharedRuntime.hpp" 58 #include "runtime/signature_cc.hpp" 59 #include "runtime/stubRoutines.hpp" 60 #include "utilities/checkedCast.hpp" 61 #include "utilities/macros.hpp" 62 #include "vmreg_x86.inline.hpp" 63 #ifdef COMPILER2 64 #include "opto/output.hpp" 65 #endif 66 67 #ifdef PRODUCT 68 #define BLOCK_COMMENT(str) /* nothing */ 69 #define STOP(error) stop(error) 70 #else 71 #define BLOCK_COMMENT(str) block_comment(str) 72 #define STOP(error) block_comment(error); stop(error) 73 #endif 74 75 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") 76 77 #ifdef ASSERT 78 bool AbstractAssembler::pd_check_instruction_mark() { return true; } 79 #endif 80 81 static const Assembler::Condition reverse[] = { 82 Assembler::noOverflow /* overflow = 0x0 */ , 83 Assembler::overflow /* noOverflow = 0x1 */ , 84 Assembler::aboveEqual /* carrySet = 0x2, below = 0x2 */ , 85 Assembler::below /* aboveEqual = 0x3, carryClear = 0x3 */ , 86 Assembler::notZero /* zero = 0x4, equal = 0x4 */ , 87 Assembler::zero /* notZero = 0x5, notEqual = 0x5 */ , 88 Assembler::above /* belowEqual = 0x6 */ , 89 Assembler::belowEqual /* above = 0x7 */ , 90 Assembler::positive /* negative = 0x8 */ , 91 Assembler::negative /* positive = 0x9 */ , 92 Assembler::noParity /* parity = 0xa */ , 93 Assembler::parity /* noParity = 0xb */ , 94 Assembler::greaterEqual /* less = 0xc */ , 95 Assembler::less /* greaterEqual = 0xd */ , 96 Assembler::greater /* lessEqual = 0xe */ , 97 Assembler::lessEqual /* greater = 0xf, */ 98 99 }; 100 101 102 // Implementation of MacroAssembler 103 104 Address MacroAssembler::as_Address(AddressLiteral adr) { 105 // amd64 always does this as a pc-rel 106 // we can be absolute or disp based on the instruction type 107 // jmp/call are displacements others are absolute 108 assert(!adr.is_lval(), "must be rval"); 109 assert(reachable(adr), "must be"); 110 return Address(checked_cast<int32_t>(adr.target() - pc()), adr.target(), adr.reloc()); 111 112 } 113 114 Address MacroAssembler::as_Address(ArrayAddress adr, Register rscratch) { 115 AddressLiteral base = adr.base(); 116 lea(rscratch, base); 117 Address index = adr.index(); 118 assert(index._disp == 0, "must not have disp"); // maybe it can? 119 Address array(rscratch, index._index, index._scale, index._disp); 120 return array; 121 } 122 123 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) { 124 Label L, E; 125 126 #ifdef _WIN64 127 // Windows always allocates space for it's register args 128 assert(num_args <= 4, "only register arguments supported"); 129 subq(rsp, frame::arg_reg_save_area_bytes); 130 #endif 131 132 // Align stack if necessary 133 testl(rsp, 15); 134 jcc(Assembler::zero, L); 135 136 subq(rsp, 8); 137 call(RuntimeAddress(entry_point)); 138 addq(rsp, 8); 139 jmp(E); 140 141 bind(L); 142 call(RuntimeAddress(entry_point)); 143 144 bind(E); 145 146 #ifdef _WIN64 147 // restore stack pointer 148 addq(rsp, frame::arg_reg_save_area_bytes); 149 #endif 150 } 151 152 void MacroAssembler::cmp64(Register src1, AddressLiteral src2, Register rscratch) { 153 assert(!src2.is_lval(), "should use cmpptr"); 154 assert(rscratch != noreg || always_reachable(src2), "missing"); 155 156 if (reachable(src2)) { 157 cmpq(src1, as_Address(src2)); 158 } else { 159 lea(rscratch, src2); 160 Assembler::cmpq(src1, Address(rscratch, 0)); 161 } 162 } 163 164 int MacroAssembler::corrected_idivq(Register reg) { 165 // Full implementation of Java ldiv and lrem; checks for special 166 // case as described in JVM spec., p.243 & p.271. The function 167 // returns the (pc) offset of the idivl instruction - may be needed 168 // for implicit exceptions. 169 // 170 // normal case special case 171 // 172 // input : rax: dividend min_long 173 // reg: divisor (may not be eax/edx) -1 174 // 175 // output: rax: quotient (= rax idiv reg) min_long 176 // rdx: remainder (= rax irem reg) 0 177 assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register"); 178 static const int64_t min_long = 0x8000000000000000; 179 Label normal_case, special_case; 180 181 // check for special case 182 cmp64(rax, ExternalAddress((address) &min_long), rdx /*rscratch*/); 183 jcc(Assembler::notEqual, normal_case); 184 xorl(rdx, rdx); // prepare rdx for possible special case (where 185 // remainder = 0) 186 cmpq(reg, -1); 187 jcc(Assembler::equal, special_case); 188 189 // handle normal case 190 bind(normal_case); 191 cdqq(); 192 int idivq_offset = offset(); 193 idivq(reg); 194 195 // normal and special case exit 196 bind(special_case); 197 198 return idivq_offset; 199 } 200 201 void MacroAssembler::decrementq(Register reg, int value) { 202 if (value == min_jint) { subq(reg, value); return; } 203 if (value < 0) { incrementq(reg, -value); return; } 204 if (value == 0) { ; return; } 205 if (value == 1 && UseIncDec) { decq(reg) ; return; } 206 /* else */ { subq(reg, value) ; return; } 207 } 208 209 void MacroAssembler::decrementq(Address dst, int value) { 210 if (value == min_jint) { subq(dst, value); return; } 211 if (value < 0) { incrementq(dst, -value); return; } 212 if (value == 0) { ; return; } 213 if (value == 1 && UseIncDec) { decq(dst) ; return; } 214 /* else */ { subq(dst, value) ; return; } 215 } 216 217 void MacroAssembler::incrementq(AddressLiteral dst, Register rscratch) { 218 assert(rscratch != noreg || always_reachable(dst), "missing"); 219 220 if (reachable(dst)) { 221 incrementq(as_Address(dst)); 222 } else { 223 lea(rscratch, dst); 224 incrementq(Address(rscratch, 0)); 225 } 226 } 227 228 void MacroAssembler::incrementq(Register reg, int value) { 229 if (value == min_jint) { addq(reg, value); return; } 230 if (value < 0) { decrementq(reg, -value); return; } 231 if (value == 0) { ; return; } 232 if (value == 1 && UseIncDec) { incq(reg) ; return; } 233 /* else */ { addq(reg, value) ; return; } 234 } 235 236 void MacroAssembler::incrementq(Address dst, int value) { 237 if (value == min_jint) { addq(dst, value); return; } 238 if (value < 0) { decrementq(dst, -value); return; } 239 if (value == 0) { ; return; } 240 if (value == 1 && UseIncDec) { incq(dst) ; return; } 241 /* else */ { addq(dst, value) ; return; } 242 } 243 244 // 32bit can do a case table jump in one instruction but we no longer allow the base 245 // to be installed in the Address class 246 void MacroAssembler::jump(ArrayAddress entry, Register rscratch) { 247 lea(rscratch, entry.base()); 248 Address dispatch = entry.index(); 249 assert(dispatch._base == noreg, "must be"); 250 dispatch._base = rscratch; 251 jmp(dispatch); 252 } 253 254 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) { 255 ShouldNotReachHere(); // 64bit doesn't use two regs 256 cmpq(x_lo, y_lo); 257 } 258 259 void MacroAssembler::lea(Register dst, AddressLiteral src) { 260 mov_literal64(dst, (intptr_t)src.target(), src.rspec()); 261 } 262 263 void MacroAssembler::lea(Address dst, AddressLiteral adr, Register rscratch) { 264 lea(rscratch, adr); 265 movptr(dst, rscratch); 266 } 267 268 void MacroAssembler::leave() { 269 // %%% is this really better? Why not on 32bit too? 270 emit_int8((unsigned char)0xC9); // LEAVE 271 } 272 273 void MacroAssembler::lneg(Register hi, Register lo) { 274 ShouldNotReachHere(); // 64bit doesn't use two regs 275 negq(lo); 276 } 277 278 void MacroAssembler::movoop(Register dst, jobject obj) { 279 mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate()); 280 } 281 282 void MacroAssembler::movoop(Address dst, jobject obj, Register rscratch) { 283 mov_literal64(rscratch, (intptr_t)obj, oop_Relocation::spec_for_immediate()); 284 movq(dst, rscratch); 285 } 286 287 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) { 288 mov_literal64(dst, (intptr_t)obj, metadata_Relocation::spec_for_immediate()); 289 } 290 291 void MacroAssembler::mov_metadata(Address dst, Metadata* obj, Register rscratch) { 292 mov_literal64(rscratch, (intptr_t)obj, metadata_Relocation::spec_for_immediate()); 293 movq(dst, rscratch); 294 } 295 296 void MacroAssembler::movptr(Register dst, AddressLiteral src) { 297 if (src.is_lval()) { 298 mov_literal64(dst, (intptr_t)src.target(), src.rspec()); 299 } else { 300 if (reachable(src)) { 301 movq(dst, as_Address(src)); 302 } else { 303 lea(dst, src); 304 movq(dst, Address(dst, 0)); 305 } 306 } 307 } 308 309 void MacroAssembler::movptr(ArrayAddress dst, Register src, Register rscratch) { 310 movq(as_Address(dst, rscratch), src); 311 } 312 313 void MacroAssembler::movptr(Register dst, ArrayAddress src) { 314 movq(dst, as_Address(src, dst /*rscratch*/)); 315 } 316 317 // src should NEVER be a real pointer. Use AddressLiteral for true pointers 318 void MacroAssembler::movptr(Address dst, intptr_t src, Register rscratch) { 319 if (is_simm32(src)) { 320 movptr(dst, checked_cast<int32_t>(src)); 321 } else { 322 mov64(rscratch, src); 323 movq(dst, rscratch); 324 } 325 } 326 327 void MacroAssembler::pushoop(jobject obj, Register rscratch) { 328 movoop(rscratch, obj); 329 push(rscratch); 330 } 331 332 void MacroAssembler::pushklass(Metadata* obj, Register rscratch) { 333 mov_metadata(rscratch, obj); 334 push(rscratch); 335 } 336 337 void MacroAssembler::pushptr(AddressLiteral src, Register rscratch) { 338 lea(rscratch, src); 339 if (src.is_lval()) { 340 push(rscratch); 341 } else { 342 pushq(Address(rscratch, 0)); 343 } 344 } 345 346 static void pass_arg0(MacroAssembler* masm, Register arg) { 347 if (c_rarg0 != arg ) { 348 masm->mov(c_rarg0, arg); 349 } 350 } 351 352 static void pass_arg1(MacroAssembler* masm, Register arg) { 353 if (c_rarg1 != arg ) { 354 masm->mov(c_rarg1, arg); 355 } 356 } 357 358 static void pass_arg2(MacroAssembler* masm, Register arg) { 359 if (c_rarg2 != arg ) { 360 masm->mov(c_rarg2, arg); 361 } 362 } 363 364 static void pass_arg3(MacroAssembler* masm, Register arg) { 365 if (c_rarg3 != arg ) { 366 masm->mov(c_rarg3, arg); 367 } 368 } 369 370 void MacroAssembler::stop(const char* msg) { 371 if (ShowMessageBoxOnError) { 372 address rip = pc(); 373 pusha(); // get regs on stack 374 lea(c_rarg1, InternalAddress(rip)); 375 movq(c_rarg2, rsp); // pass pointer to regs array 376 } 377 // Skip AOT caching C strings in scratch buffer. 378 const char* str = (code_section()->scratch_emit()) ? msg : AOTCodeCache::add_C_string(msg); 379 lea(c_rarg0, ExternalAddress((address) str)); 380 andq(rsp, -16); // align stack as required by ABI 381 call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64))); 382 hlt(); 383 } 384 385 void MacroAssembler::warn(const char* msg) { 386 push(rbp); 387 movq(rbp, rsp); 388 andq(rsp, -16); // align stack as required by push_CPU_state and call 389 push_CPU_state(); // keeps alignment at 16 bytes 390 391 #ifdef _WIN64 392 // Windows always allocates space for its register args 393 subq(rsp, frame::arg_reg_save_area_bytes); 394 #endif 395 lea(c_rarg0, ExternalAddress((address) msg)); 396 call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning))); 397 398 #ifdef _WIN64 399 // restore stack pointer 400 addq(rsp, frame::arg_reg_save_area_bytes); 401 #endif 402 pop_CPU_state(); 403 mov(rsp, rbp); 404 pop(rbp); 405 } 406 407 void MacroAssembler::print_state() { 408 address rip = pc(); 409 pusha(); // get regs on stack 410 push(rbp); 411 movq(rbp, rsp); 412 andq(rsp, -16); // align stack as required by push_CPU_state and call 413 push_CPU_state(); // keeps alignment at 16 bytes 414 415 lea(c_rarg0, InternalAddress(rip)); 416 lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array 417 call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1); 418 419 pop_CPU_state(); 420 mov(rsp, rbp); 421 pop(rbp); 422 popa(); 423 } 424 425 #ifndef PRODUCT 426 extern "C" void findpc(intptr_t x); 427 #endif 428 429 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) { 430 // In order to get locks to work, we need to fake a in_VM state 431 if (ShowMessageBoxOnError) { 432 JavaThread* thread = JavaThread::current(); 433 JavaThreadState saved_state = thread->thread_state(); 434 thread->set_thread_state(_thread_in_vm); 435 #ifndef PRODUCT 436 if (CountBytecodes || TraceBytecodes || StopInterpreterAt) { 437 ttyLocker ttyl; 438 BytecodeCounter::print(); 439 } 440 #endif 441 // To see where a verify_oop failed, get $ebx+40/X for this frame. 442 // XXX correct this offset for amd64 443 // This is the value of eip which points to where verify_oop will return. 444 if (os::message_box(msg, "Execution stopped, print registers?")) { 445 print_state64(pc, regs); 446 BREAKPOINT; 447 } 448 } 449 fatal("DEBUG MESSAGE: %s", msg); 450 } 451 452 void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) { 453 ttyLocker ttyl; 454 DebuggingContext debugging{}; 455 tty->print_cr("rip = 0x%016lx", (intptr_t)pc); 456 #ifndef PRODUCT 457 tty->cr(); 458 findpc(pc); 459 tty->cr(); 460 #endif 461 #define PRINT_REG(rax, value) \ 462 { tty->print("%s = ", #rax); os::print_location(tty, value); } 463 PRINT_REG(rax, regs[15]); 464 PRINT_REG(rbx, regs[12]); 465 PRINT_REG(rcx, regs[14]); 466 PRINT_REG(rdx, regs[13]); 467 PRINT_REG(rdi, regs[8]); 468 PRINT_REG(rsi, regs[9]); 469 PRINT_REG(rbp, regs[10]); 470 // rsp is actually not stored by pusha(), compute the old rsp from regs (rsp after pusha): regs + 16 = old rsp 471 PRINT_REG(rsp, (intptr_t)(®s[16])); 472 PRINT_REG(r8 , regs[7]); 473 PRINT_REG(r9 , regs[6]); 474 PRINT_REG(r10, regs[5]); 475 PRINT_REG(r11, regs[4]); 476 PRINT_REG(r12, regs[3]); 477 PRINT_REG(r13, regs[2]); 478 PRINT_REG(r14, regs[1]); 479 PRINT_REG(r15, regs[0]); 480 #undef PRINT_REG 481 // Print some words near the top of the stack. 482 int64_t* rsp = ®s[16]; 483 int64_t* dump_sp = rsp; 484 for (int col1 = 0; col1 < 8; col1++) { 485 tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp); 486 os::print_location(tty, *dump_sp++); 487 } 488 for (int row = 0; row < 25; row++) { 489 tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp); 490 for (int col = 0; col < 4; col++) { 491 tty->print(" 0x%016lx", (intptr_t)*dump_sp++); 492 } 493 tty->cr(); 494 } 495 // Print some instructions around pc: 496 Disassembler::decode((address)pc-64, (address)pc); 497 tty->print_cr("--------"); 498 Disassembler::decode((address)pc, (address)pc+32); 499 } 500 501 // The java_calling_convention describes stack locations as ideal slots on 502 // a frame with no abi restrictions. Since we must observe abi restrictions 503 // (like the placement of the register window) the slots must be biased by 504 // the following value. 505 static int reg2offset_in(VMReg r) { 506 // Account for saved rbp and return address 507 // This should really be in_preserve_stack_slots 508 return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size; 509 } 510 511 static int reg2offset_out(VMReg r) { 512 return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size; 513 } 514 515 // A long move 516 void MacroAssembler::long_move(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) { 517 518 // The calling conventions assures us that each VMregpair is either 519 // all really one physical register or adjacent stack slots. 520 521 if (src.is_single_phys_reg() ) { 522 if (dst.is_single_phys_reg()) { 523 if (dst.first() != src.first()) { 524 mov(dst.first()->as_Register(), src.first()->as_Register()); 525 } 526 } else { 527 assert(dst.is_single_reg(), "not a stack pair: (%s, %s), (%s, %s)", 528 src.first()->name(), src.second()->name(), dst.first()->name(), dst.second()->name()); 529 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_Register()); 530 } 531 } else if (dst.is_single_phys_reg()) { 532 assert(src.is_single_reg(), "not a stack pair"); 533 movq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 534 } else { 535 assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs"); 536 movq(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 537 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp); 538 } 539 } 540 541 // A double move 542 void MacroAssembler::double_move(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) { 543 544 // The calling conventions assures us that each VMregpair is either 545 // all really one physical register or adjacent stack slots. 546 547 if (src.is_single_phys_reg() ) { 548 if (dst.is_single_phys_reg()) { 549 // In theory these overlap but the ordering is such that this is likely a nop 550 if ( src.first() != dst.first()) { 551 movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister()); 552 } 553 } else { 554 assert(dst.is_single_reg(), "not a stack pair"); 555 movdbl(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_XMMRegister()); 556 } 557 } else if (dst.is_single_phys_reg()) { 558 assert(src.is_single_reg(), "not a stack pair"); 559 movdbl(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 560 } else { 561 assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs"); 562 movq(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 563 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp); 564 } 565 } 566 567 568 // A float arg may have to do float reg int reg conversion 569 void MacroAssembler::float_move(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) { 570 assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move"); 571 572 // The calling conventions assures us that each VMregpair is either 573 // all really one physical register or adjacent stack slots. 574 575 if (src.first()->is_stack()) { 576 if (dst.first()->is_stack()) { 577 movl(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 578 movptr(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp); 579 } else { 580 // stack to reg 581 assert(dst.first()->is_XMMRegister(), "only expect xmm registers as parameters"); 582 movflt(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 583 } 584 } else if (dst.first()->is_stack()) { 585 // reg to stack 586 assert(src.first()->is_XMMRegister(), "only expect xmm registers as parameters"); 587 movflt(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_XMMRegister()); 588 } else { 589 // reg to reg 590 // In theory these overlap but the ordering is such that this is likely a nop 591 if ( src.first() != dst.first()) { 592 movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister()); 593 } 594 } 595 } 596 597 // On 64 bit we will store integer like items to the stack as 598 // 64 bits items (x86_32/64 abi) even though java would only store 599 // 32bits for a parameter. On 32bit it will simply be 32 bits 600 // So this routine will do 32->32 on 32bit and 32->64 on 64bit 601 void MacroAssembler::move32_64(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) { 602 if (src.first()->is_stack()) { 603 if (dst.first()->is_stack()) { 604 // stack to stack 605 movslq(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 606 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp); 607 } else { 608 // stack to reg 609 movslq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 610 } 611 } else if (dst.first()->is_stack()) { 612 // reg to stack 613 // Do we really have to sign extend??? 614 // __ movslq(src.first()->as_Register(), src.first()->as_Register()); 615 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_Register()); 616 } else { 617 // Do we really have to sign extend??? 618 // __ movslq(dst.first()->as_Register(), src.first()->as_Register()); 619 if (dst.first() != src.first()) { 620 movq(dst.first()->as_Register(), src.first()->as_Register()); 621 } 622 } 623 } 624 625 void MacroAssembler::move_ptr(VMRegPair src, VMRegPair dst) { 626 if (src.first()->is_stack()) { 627 if (dst.first()->is_stack()) { 628 // stack to stack 629 movq(rax, Address(rbp, reg2offset_in(src.first()))); 630 movq(Address(rsp, reg2offset_out(dst.first())), rax); 631 } else { 632 // stack to reg 633 movq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first()))); 634 } 635 } else if (dst.first()->is_stack()) { 636 // reg to stack 637 movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register()); 638 } else { 639 if (dst.first() != src.first()) { 640 movq(dst.first()->as_Register(), src.first()->as_Register()); 641 } 642 } 643 } 644 645 // An oop arg. Must pass a handle not the oop itself 646 void MacroAssembler::object_move(OopMap* map, 647 int oop_handle_offset, 648 int framesize_in_slots, 649 VMRegPair src, 650 VMRegPair dst, 651 bool is_receiver, 652 int* receiver_offset) { 653 654 // must pass a handle. First figure out the location we use as a handle 655 656 Register rHandle = dst.first()->is_stack() ? rax : dst.first()->as_Register(); 657 658 // See if oop is null if it is we need no handle 659 660 if (src.first()->is_stack()) { 661 662 // Oop is already on the stack as an argument 663 int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots(); 664 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots)); 665 if (is_receiver) { 666 *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size; 667 } 668 669 cmpptr(Address(rbp, reg2offset_in(src.first())), NULL_WORD); 670 lea(rHandle, Address(rbp, reg2offset_in(src.first()))); 671 // conditionally move a null 672 cmovptr(Assembler::equal, rHandle, Address(rbp, reg2offset_in(src.first()))); 673 } else { 674 675 // Oop is in a register we must store it to the space we reserve 676 // on the stack for oop_handles and pass a handle if oop is non-null 677 678 const Register rOop = src.first()->as_Register(); 679 int oop_slot; 680 if (rOop == j_rarg0) 681 oop_slot = 0; 682 else if (rOop == j_rarg1) 683 oop_slot = 1; 684 else if (rOop == j_rarg2) 685 oop_slot = 2; 686 else if (rOop == j_rarg3) 687 oop_slot = 3; 688 else if (rOop == j_rarg4) 689 oop_slot = 4; 690 else { 691 assert(rOop == j_rarg5, "wrong register"); 692 oop_slot = 5; 693 } 694 695 oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset; 696 int offset = oop_slot*VMRegImpl::stack_slot_size; 697 698 map->set_oop(VMRegImpl::stack2reg(oop_slot)); 699 // Store oop in handle area, may be null 700 movptr(Address(rsp, offset), rOop); 701 if (is_receiver) { 702 *receiver_offset = offset; 703 } 704 705 cmpptr(rOop, NULL_WORD); 706 lea(rHandle, Address(rsp, offset)); 707 // conditionally move a null from the handle area where it was just stored 708 cmovptr(Assembler::equal, rHandle, Address(rsp, offset)); 709 } 710 711 // If arg is on the stack then place it otherwise it is already in correct reg. 712 if (dst.first()->is_stack()) { 713 movptr(Address(rsp, reg2offset_out(dst.first())), rHandle); 714 } 715 } 716 717 void MacroAssembler::addptr(Register dst, int32_t imm32) { 718 addq(dst, imm32); 719 } 720 721 void MacroAssembler::addptr(Register dst, Register src) { 722 addq(dst, src); 723 } 724 725 void MacroAssembler::addptr(Address dst, Register src) { 726 addq(dst, src); 727 } 728 729 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src, Register rscratch) { 730 assert(rscratch != noreg || always_reachable(src), "missing"); 731 732 if (reachable(src)) { 733 Assembler::addsd(dst, as_Address(src)); 734 } else { 735 lea(rscratch, src); 736 Assembler::addsd(dst, Address(rscratch, 0)); 737 } 738 } 739 740 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src, Register rscratch) { 741 assert(rscratch != noreg || always_reachable(src), "missing"); 742 743 if (reachable(src)) { 744 addss(dst, as_Address(src)); 745 } else { 746 lea(rscratch, src); 747 addss(dst, Address(rscratch, 0)); 748 } 749 } 750 751 void MacroAssembler::addpd(XMMRegister dst, AddressLiteral src, Register rscratch) { 752 assert(rscratch != noreg || always_reachable(src), "missing"); 753 754 if (reachable(src)) { 755 Assembler::addpd(dst, as_Address(src)); 756 } else { 757 lea(rscratch, src); 758 Assembler::addpd(dst, Address(rscratch, 0)); 759 } 760 } 761 762 // See 8273459. Function for ensuring 64-byte alignment, intended for stubs only. 763 // Stub code is generated once and never copied. 764 // NMethods can't use this because they get copied and we can't force alignment > 32 bytes. 765 void MacroAssembler::align64() { 766 align(64, (uint)(uintptr_t)pc()); 767 } 768 769 void MacroAssembler::align32() { 770 align(32, (uint)(uintptr_t)pc()); 771 } 772 773 void MacroAssembler::align(uint modulus) { 774 // 8273459: Ensure alignment is possible with current segment alignment 775 assert(modulus <= (uintx)CodeEntryAlignment, "Alignment must be <= CodeEntryAlignment"); 776 align(modulus, offset()); 777 } 778 779 void MacroAssembler::align(uint modulus, uint target) { 780 if (target % modulus != 0) { 781 nop(modulus - (target % modulus)); 782 } 783 } 784 785 void MacroAssembler::push_f(XMMRegister r) { 786 subptr(rsp, wordSize); 787 movflt(Address(rsp, 0), r); 788 } 789 790 void MacroAssembler::pop_f(XMMRegister r) { 791 movflt(r, Address(rsp, 0)); 792 addptr(rsp, wordSize); 793 } 794 795 void MacroAssembler::push_d(XMMRegister r) { 796 subptr(rsp, 2 * wordSize); 797 movdbl(Address(rsp, 0), r); 798 } 799 800 void MacroAssembler::pop_d(XMMRegister r) { 801 movdbl(r, Address(rsp, 0)); 802 addptr(rsp, 2 * Interpreter::stackElementSize); 803 } 804 805 void MacroAssembler::push_ppx(Register src) { 806 if (VM_Version::supports_apx_f()) { 807 pushp(src); 808 } else { 809 Assembler::push(src); 810 } 811 } 812 813 void MacroAssembler::pop_ppx(Register dst) { 814 if (VM_Version::supports_apx_f()) { 815 popp(dst); 816 } else { 817 Assembler::pop(dst); 818 } 819 } 820 821 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src, Register rscratch) { 822 // Used in sign-masking with aligned address. 823 assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes"); 824 assert(rscratch != noreg || always_reachable(src), "missing"); 825 826 if (UseAVX > 2 && 827 (!VM_Version::supports_avx512dq() || !VM_Version::supports_avx512vl()) && 828 (dst->encoding() >= 16)) { 829 vpand(dst, dst, src, AVX_512bit, rscratch); 830 } else if (reachable(src)) { 831 Assembler::andpd(dst, as_Address(src)); 832 } else { 833 lea(rscratch, src); 834 Assembler::andpd(dst, Address(rscratch, 0)); 835 } 836 } 837 838 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src, Register rscratch) { 839 // Used in sign-masking with aligned address. 840 assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes"); 841 assert(rscratch != noreg || always_reachable(src), "missing"); 842 843 if (reachable(src)) { 844 Assembler::andps(dst, as_Address(src)); 845 } else { 846 lea(rscratch, src); 847 Assembler::andps(dst, Address(rscratch, 0)); 848 } 849 } 850 851 void MacroAssembler::andptr(Register dst, int32_t imm32) { 852 andq(dst, imm32); 853 } 854 855 void MacroAssembler::andq(Register dst, AddressLiteral src, Register rscratch) { 856 assert(rscratch != noreg || always_reachable(src), "missing"); 857 858 if (reachable(src)) { 859 andq(dst, as_Address(src)); 860 } else { 861 lea(rscratch, src); 862 andq(dst, Address(rscratch, 0)); 863 } 864 } 865 866 void MacroAssembler::atomic_incl(Address counter_addr) { 867 lock(); 868 incrementl(counter_addr); 869 } 870 871 void MacroAssembler::atomic_incl(AddressLiteral counter_addr, Register rscratch) { 872 assert(rscratch != noreg || always_reachable(counter_addr), "missing"); 873 874 if (reachable(counter_addr)) { 875 atomic_incl(as_Address(counter_addr)); 876 } else { 877 lea(rscratch, counter_addr); 878 atomic_incl(Address(rscratch, 0)); 879 } 880 } 881 882 void MacroAssembler::atomic_incq(Address counter_addr) { 883 lock(); 884 incrementq(counter_addr); 885 } 886 887 void MacroAssembler::atomic_incq(AddressLiteral counter_addr, Register rscratch) { 888 assert(rscratch != noreg || always_reachable(counter_addr), "missing"); 889 890 if (reachable(counter_addr)) { 891 atomic_incq(as_Address(counter_addr)); 892 } else { 893 lea(rscratch, counter_addr); 894 atomic_incq(Address(rscratch, 0)); 895 } 896 } 897 898 // Writes to stack successive pages until offset reached to check for 899 // stack overflow + shadow pages. This clobbers tmp. 900 void MacroAssembler::bang_stack_size(Register size, Register tmp) { 901 movptr(tmp, rsp); 902 // Bang stack for total size given plus shadow page size. 903 // Bang one page at a time because large size can bang beyond yellow and 904 // red zones. 905 Label loop; 906 bind(loop); 907 movl(Address(tmp, (-(int)os::vm_page_size())), size ); 908 subptr(tmp, (int)os::vm_page_size()); 909 subl(size, (int)os::vm_page_size()); 910 jcc(Assembler::greater, loop); 911 912 // Bang down shadow pages too. 913 // At this point, (tmp-0) is the last address touched, so don't 914 // touch it again. (It was touched as (tmp-pagesize) but then tmp 915 // was post-decremented.) Skip this address by starting at i=1, and 916 // touch a few more pages below. N.B. It is important to touch all 917 // the way down including all pages in the shadow zone. 918 for (int i = 1; i < ((int)StackOverflow::stack_shadow_zone_size() / (int)os::vm_page_size()); i++) { 919 // this could be any sized move but this is can be a debugging crumb 920 // so the bigger the better. 921 movptr(Address(tmp, (-i*(int)os::vm_page_size())), size ); 922 } 923 } 924 925 void MacroAssembler::reserved_stack_check() { 926 // testing if reserved zone needs to be enabled 927 Label no_reserved_zone_enabling; 928 929 cmpptr(rsp, Address(r15_thread, JavaThread::reserved_stack_activation_offset())); 930 jcc(Assembler::below, no_reserved_zone_enabling); 931 932 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), r15_thread); 933 jump(RuntimeAddress(SharedRuntime::throw_delayed_StackOverflowError_entry())); 934 should_not_reach_here(); 935 936 bind(no_reserved_zone_enabling); 937 } 938 939 void MacroAssembler::c2bool(Register x) { 940 // implements x == 0 ? 0 : 1 941 // note: must only look at least-significant byte of x 942 // since C-style booleans are stored in one byte 943 // only! (was bug) 944 andl(x, 0xFF); 945 setb(Assembler::notZero, x); 946 } 947 948 // Wouldn't need if AddressLiteral version had new name 949 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) { 950 Assembler::call(L, rtype); 951 } 952 953 void MacroAssembler::call(Register entry) { 954 Assembler::call(entry); 955 } 956 957 void MacroAssembler::call(AddressLiteral entry, Register rscratch) { 958 assert(rscratch != noreg || always_reachable(entry), "missing"); 959 960 if (reachable(entry)) { 961 Assembler::call_literal(entry.target(), entry.rspec()); 962 } else { 963 lea(rscratch, entry); 964 Assembler::call(rscratch); 965 } 966 } 967 968 void MacroAssembler::ic_call(address entry, jint method_index) { 969 RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index); 970 // Needs full 64-bit immediate for later patching. 971 mov64(rax, (int64_t)Universe::non_oop_word()); 972 call(AddressLiteral(entry, rh)); 973 } 974 975 int MacroAssembler::ic_check_size() { 976 return UseCompactObjectHeaders ? 17 : 14; 977 } 978 979 int MacroAssembler::ic_check(int end_alignment) { 980 Register receiver = j_rarg0; 981 Register data = rax; 982 Register temp = rscratch1; 983 984 // The UEP of a code blob ensures that the VEP is padded. However, the padding of the UEP is placed 985 // before the inline cache check, so we don't have to execute any nop instructions when dispatching 986 // through the UEP, yet we can ensure that the VEP is aligned appropriately. That's why we align 987 // before the inline cache check here, and not after 988 align(end_alignment, offset() + ic_check_size()); 989 990 int uep_offset = offset(); 991 992 if (UseCompactObjectHeaders) { 993 load_narrow_klass_compact(temp, receiver); 994 cmpl(temp, Address(data, CompiledICData::speculated_klass_offset())); 995 } else if (UseCompressedClassPointers) { 996 movl(temp, Address(receiver, oopDesc::klass_offset_in_bytes())); 997 cmpl(temp, Address(data, CompiledICData::speculated_klass_offset())); 998 } else { 999 movptr(temp, Address(receiver, oopDesc::klass_offset_in_bytes())); 1000 cmpptr(temp, Address(data, CompiledICData::speculated_klass_offset())); 1001 } 1002 1003 // if inline cache check fails, then jump to runtime routine 1004 jump_cc(Assembler::notEqual, RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 1005 assert((offset() % end_alignment) == 0, "Misaligned verified entry point (%d, %d, %d)", uep_offset, offset(), end_alignment); 1006 1007 return uep_offset; 1008 } 1009 1010 void MacroAssembler::emit_static_call_stub() { 1011 // Static stub relocation also tags the Method* in the code-stream. 1012 mov_metadata(rbx, (Metadata*) nullptr); // Method is zapped till fixup time. 1013 // This is recognized as unresolved by relocs/nativeinst/ic code. 1014 jump(RuntimeAddress(pc())); 1015 } 1016 1017 // Implementation of call_VM versions 1018 1019 void MacroAssembler::call_VM(Register oop_result, 1020 address entry_point, 1021 bool check_exceptions) { 1022 Label C, E; 1023 call(C, relocInfo::none); 1024 jmp(E); 1025 1026 bind(C); 1027 call_VM_helper(oop_result, entry_point, 0, check_exceptions); 1028 ret(0); 1029 1030 bind(E); 1031 } 1032 1033 void MacroAssembler::call_VM(Register oop_result, 1034 address entry_point, 1035 Register arg_1, 1036 bool check_exceptions) { 1037 Label C, E; 1038 call(C, relocInfo::none); 1039 jmp(E); 1040 1041 bind(C); 1042 pass_arg1(this, arg_1); 1043 call_VM_helper(oop_result, entry_point, 1, check_exceptions); 1044 ret(0); 1045 1046 bind(E); 1047 } 1048 1049 void MacroAssembler::call_VM(Register oop_result, 1050 address entry_point, 1051 Register arg_1, 1052 Register arg_2, 1053 bool check_exceptions) { 1054 Label C, E; 1055 call(C, relocInfo::none); 1056 jmp(E); 1057 1058 bind(C); 1059 1060 assert_different_registers(arg_1, c_rarg2); 1061 1062 pass_arg2(this, arg_2); 1063 pass_arg1(this, arg_1); 1064 call_VM_helper(oop_result, entry_point, 2, check_exceptions); 1065 ret(0); 1066 1067 bind(E); 1068 } 1069 1070 void MacroAssembler::call_VM(Register oop_result, 1071 address entry_point, 1072 Register arg_1, 1073 Register arg_2, 1074 Register arg_3, 1075 bool check_exceptions) { 1076 Label C, E; 1077 call(C, relocInfo::none); 1078 jmp(E); 1079 1080 bind(C); 1081 1082 assert_different_registers(arg_1, c_rarg2, c_rarg3); 1083 assert_different_registers(arg_2, c_rarg3); 1084 pass_arg3(this, arg_3); 1085 pass_arg2(this, arg_2); 1086 pass_arg1(this, arg_1); 1087 call_VM_helper(oop_result, entry_point, 3, check_exceptions); 1088 ret(0); 1089 1090 bind(E); 1091 } 1092 1093 void MacroAssembler::call_VM(Register oop_result, 1094 Register last_java_sp, 1095 address entry_point, 1096 int number_of_arguments, 1097 bool check_exceptions) { 1098 call_VM_base(oop_result, last_java_sp, entry_point, number_of_arguments, check_exceptions); 1099 } 1100 1101 void MacroAssembler::call_VM(Register oop_result, 1102 Register last_java_sp, 1103 address entry_point, 1104 Register arg_1, 1105 bool check_exceptions) { 1106 pass_arg1(this, arg_1); 1107 call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions); 1108 } 1109 1110 void MacroAssembler::call_VM(Register oop_result, 1111 Register last_java_sp, 1112 address entry_point, 1113 Register arg_1, 1114 Register arg_2, 1115 bool check_exceptions) { 1116 1117 assert_different_registers(arg_1, c_rarg2); 1118 pass_arg2(this, arg_2); 1119 pass_arg1(this, arg_1); 1120 call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions); 1121 } 1122 1123 void MacroAssembler::call_VM(Register oop_result, 1124 Register last_java_sp, 1125 address entry_point, 1126 Register arg_1, 1127 Register arg_2, 1128 Register arg_3, 1129 bool check_exceptions) { 1130 assert_different_registers(arg_1, c_rarg2, c_rarg3); 1131 assert_different_registers(arg_2, c_rarg3); 1132 pass_arg3(this, arg_3); 1133 pass_arg2(this, arg_2); 1134 pass_arg1(this, arg_1); 1135 call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions); 1136 } 1137 1138 void MacroAssembler::super_call_VM(Register oop_result, 1139 Register last_java_sp, 1140 address entry_point, 1141 int number_of_arguments, 1142 bool check_exceptions) { 1143 MacroAssembler::call_VM_base(oop_result, last_java_sp, entry_point, number_of_arguments, check_exceptions); 1144 } 1145 1146 void MacroAssembler::super_call_VM(Register oop_result, 1147 Register last_java_sp, 1148 address entry_point, 1149 Register arg_1, 1150 bool check_exceptions) { 1151 pass_arg1(this, arg_1); 1152 super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions); 1153 } 1154 1155 void MacroAssembler::super_call_VM(Register oop_result, 1156 Register last_java_sp, 1157 address entry_point, 1158 Register arg_1, 1159 Register arg_2, 1160 bool check_exceptions) { 1161 1162 assert_different_registers(arg_1, c_rarg2); 1163 pass_arg2(this, arg_2); 1164 pass_arg1(this, arg_1); 1165 super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions); 1166 } 1167 1168 void MacroAssembler::super_call_VM(Register oop_result, 1169 Register last_java_sp, 1170 address entry_point, 1171 Register arg_1, 1172 Register arg_2, 1173 Register arg_3, 1174 bool check_exceptions) { 1175 assert_different_registers(arg_1, c_rarg2, c_rarg3); 1176 assert_different_registers(arg_2, c_rarg3); 1177 pass_arg3(this, arg_3); 1178 pass_arg2(this, arg_2); 1179 pass_arg1(this, arg_1); 1180 super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions); 1181 } 1182 1183 void MacroAssembler::call_VM_base(Register oop_result, 1184 Register last_java_sp, 1185 address entry_point, 1186 int number_of_arguments, 1187 bool check_exceptions) { 1188 Register java_thread = r15_thread; 1189 1190 // determine last_java_sp register 1191 if (!last_java_sp->is_valid()) { 1192 last_java_sp = rsp; 1193 } 1194 // debugging support 1195 assert(number_of_arguments >= 0 , "cannot have negative number of arguments"); 1196 #ifdef ASSERT 1197 // TraceBytecodes does not use r12 but saves it over the call, so don't verify 1198 // r12 is the heapbase. 1199 if (UseCompressedOops && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?"); 1200 #endif // ASSERT 1201 1202 assert(java_thread != oop_result , "cannot use the same register for java_thread & oop_result"); 1203 assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp"); 1204 1205 // push java thread (becomes first argument of C function) 1206 1207 mov(c_rarg0, r15_thread); 1208 1209 // set last Java frame before call 1210 assert(last_java_sp != rbp, "can't use ebp/rbp"); 1211 1212 // Only interpreter should have to set fp 1213 set_last_Java_frame(last_java_sp, rbp, nullptr, rscratch1); 1214 1215 // do the call, remove parameters 1216 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments); 1217 1218 #ifdef ASSERT 1219 // Check that thread register is not clobbered. 1220 guarantee(java_thread != rax, "change this code"); 1221 push(rax); 1222 { Label L; 1223 get_thread_slow(rax); 1224 cmpptr(java_thread, rax); 1225 jcc(Assembler::equal, L); 1226 STOP("MacroAssembler::call_VM_base: java_thread not callee saved?"); 1227 bind(L); 1228 } 1229 pop(rax); 1230 #endif 1231 1232 // reset last Java frame 1233 // Only interpreter should have to clear fp 1234 reset_last_Java_frame(true); 1235 1236 // C++ interp handles this in the interpreter 1237 check_and_handle_popframe(); 1238 check_and_handle_earlyret(); 1239 1240 if (check_exceptions) { 1241 // check for pending exceptions (java_thread is set upon return) 1242 cmpptr(Address(r15_thread, Thread::pending_exception_offset()), NULL_WORD); 1243 // This used to conditionally jump to forward_exception however it is 1244 // possible if we relocate that the branch will not reach. So we must jump 1245 // around so we can always reach 1246 1247 Label ok; 1248 jcc(Assembler::equal, ok); 1249 jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 1250 bind(ok); 1251 } 1252 1253 // get oop result if there is one and reset the value in the thread 1254 if (oop_result->is_valid()) { 1255 get_vm_result_oop(oop_result); 1256 } 1257 } 1258 1259 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) { 1260 // Calculate the value for last_Java_sp somewhat subtle. 1261 // call_VM does an intermediate call which places a return address on 1262 // the stack just under the stack pointer as the user finished with it. 1263 // This allows use to retrieve last_Java_pc from last_Java_sp[-1]. 1264 1265 // We've pushed one address, correct last_Java_sp 1266 lea(rax, Address(rsp, wordSize)); 1267 1268 call_VM_base(oop_result, rax, entry_point, number_of_arguments, check_exceptions); 1269 } 1270 1271 // Use this method when MacroAssembler version of call_VM_leaf_base() should be called from Interpreter. 1272 void MacroAssembler::call_VM_leaf0(address entry_point) { 1273 MacroAssembler::call_VM_leaf_base(entry_point, 0); 1274 } 1275 1276 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) { 1277 call_VM_leaf_base(entry_point, number_of_arguments); 1278 } 1279 1280 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) { 1281 pass_arg0(this, arg_0); 1282 call_VM_leaf(entry_point, 1); 1283 } 1284 1285 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 1286 1287 assert_different_registers(arg_0, c_rarg1); 1288 pass_arg1(this, arg_1); 1289 pass_arg0(this, arg_0); 1290 call_VM_leaf(entry_point, 2); 1291 } 1292 1293 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) { 1294 assert_different_registers(arg_0, c_rarg1, c_rarg2); 1295 assert_different_registers(arg_1, c_rarg2); 1296 pass_arg2(this, arg_2); 1297 pass_arg1(this, arg_1); 1298 pass_arg0(this, arg_0); 1299 call_VM_leaf(entry_point, 3); 1300 } 1301 1302 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) { 1303 assert_different_registers(arg_0, c_rarg1, c_rarg2, c_rarg3); 1304 assert_different_registers(arg_1, c_rarg2, c_rarg3); 1305 assert_different_registers(arg_2, c_rarg3); 1306 pass_arg3(this, arg_3); 1307 pass_arg2(this, arg_2); 1308 pass_arg1(this, arg_1); 1309 pass_arg0(this, arg_0); 1310 call_VM_leaf(entry_point, 3); 1311 } 1312 1313 void MacroAssembler::super_call_VM_leaf(address entry_point) { 1314 MacroAssembler::call_VM_leaf_base(entry_point, 1); 1315 } 1316 1317 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) { 1318 pass_arg0(this, arg_0); 1319 MacroAssembler::call_VM_leaf_base(entry_point, 1); 1320 } 1321 1322 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 1323 assert_different_registers(arg_0, c_rarg1); 1324 pass_arg1(this, arg_1); 1325 pass_arg0(this, arg_0); 1326 MacroAssembler::call_VM_leaf_base(entry_point, 2); 1327 } 1328 1329 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) { 1330 assert_different_registers(arg_0, c_rarg1, c_rarg2); 1331 assert_different_registers(arg_1, c_rarg2); 1332 pass_arg2(this, arg_2); 1333 pass_arg1(this, arg_1); 1334 pass_arg0(this, arg_0); 1335 MacroAssembler::call_VM_leaf_base(entry_point, 3); 1336 } 1337 1338 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) { 1339 assert_different_registers(arg_0, c_rarg1, c_rarg2, c_rarg3); 1340 assert_different_registers(arg_1, c_rarg2, c_rarg3); 1341 assert_different_registers(arg_2, c_rarg3); 1342 pass_arg3(this, arg_3); 1343 pass_arg2(this, arg_2); 1344 pass_arg1(this, arg_1); 1345 pass_arg0(this, arg_0); 1346 MacroAssembler::call_VM_leaf_base(entry_point, 4); 1347 } 1348 1349 void MacroAssembler::get_vm_result_oop(Register oop_result) { 1350 movptr(oop_result, Address(r15_thread, JavaThread::vm_result_oop_offset())); 1351 movptr(Address(r15_thread, JavaThread::vm_result_oop_offset()), NULL_WORD); 1352 verify_oop_msg(oop_result, "broken oop in call_VM_base"); 1353 } 1354 1355 void MacroAssembler::get_vm_result_metadata(Register metadata_result) { 1356 movptr(metadata_result, Address(r15_thread, JavaThread::vm_result_metadata_offset())); 1357 movptr(Address(r15_thread, JavaThread::vm_result_metadata_offset()), NULL_WORD); 1358 } 1359 1360 void MacroAssembler::check_and_handle_earlyret() { 1361 } 1362 1363 void MacroAssembler::check_and_handle_popframe() { 1364 } 1365 1366 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm, Register rscratch) { 1367 assert(rscratch != noreg || always_reachable(src1), "missing"); 1368 1369 if (reachable(src1)) { 1370 cmpl(as_Address(src1), imm); 1371 } else { 1372 lea(rscratch, src1); 1373 cmpl(Address(rscratch, 0), imm); 1374 } 1375 } 1376 1377 void MacroAssembler::cmp32(Register src1, AddressLiteral src2, Register rscratch) { 1378 assert(!src2.is_lval(), "use cmpptr"); 1379 assert(rscratch != noreg || always_reachable(src2), "missing"); 1380 1381 if (reachable(src2)) { 1382 cmpl(src1, as_Address(src2)); 1383 } else { 1384 lea(rscratch, src2); 1385 cmpl(src1, Address(rscratch, 0)); 1386 } 1387 } 1388 1389 void MacroAssembler::cmp32(Register src1, int32_t imm) { 1390 Assembler::cmpl(src1, imm); 1391 } 1392 1393 void MacroAssembler::cmp32(Register src1, Address src2) { 1394 Assembler::cmpl(src1, src2); 1395 } 1396 1397 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) { 1398 ucomisd(opr1, opr2); 1399 1400 Label L; 1401 if (unordered_is_less) { 1402 movl(dst, -1); 1403 jcc(Assembler::parity, L); 1404 jcc(Assembler::below , L); 1405 movl(dst, 0); 1406 jcc(Assembler::equal , L); 1407 increment(dst); 1408 } else { // unordered is greater 1409 movl(dst, 1); 1410 jcc(Assembler::parity, L); 1411 jcc(Assembler::above , L); 1412 movl(dst, 0); 1413 jcc(Assembler::equal , L); 1414 decrementl(dst); 1415 } 1416 bind(L); 1417 } 1418 1419 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) { 1420 ucomiss(opr1, opr2); 1421 1422 Label L; 1423 if (unordered_is_less) { 1424 movl(dst, -1); 1425 jcc(Assembler::parity, L); 1426 jcc(Assembler::below , L); 1427 movl(dst, 0); 1428 jcc(Assembler::equal , L); 1429 increment(dst); 1430 } else { // unordered is greater 1431 movl(dst, 1); 1432 jcc(Assembler::parity, L); 1433 jcc(Assembler::above , L); 1434 movl(dst, 0); 1435 jcc(Assembler::equal , L); 1436 decrementl(dst); 1437 } 1438 bind(L); 1439 } 1440 1441 1442 void MacroAssembler::cmp8(AddressLiteral src1, int imm, Register rscratch) { 1443 assert(rscratch != noreg || always_reachable(src1), "missing"); 1444 1445 if (reachable(src1)) { 1446 cmpb(as_Address(src1), imm); 1447 } else { 1448 lea(rscratch, src1); 1449 cmpb(Address(rscratch, 0), imm); 1450 } 1451 } 1452 1453 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2, Register rscratch) { 1454 assert(rscratch != noreg || always_reachable(src2), "missing"); 1455 1456 if (src2.is_lval()) { 1457 movptr(rscratch, src2); 1458 Assembler::cmpq(src1, rscratch); 1459 } else if (reachable(src2)) { 1460 cmpq(src1, as_Address(src2)); 1461 } else { 1462 lea(rscratch, src2); 1463 Assembler::cmpq(src1, Address(rscratch, 0)); 1464 } 1465 } 1466 1467 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2, Register rscratch) { 1468 assert(src2.is_lval(), "not a mem-mem compare"); 1469 // moves src2's literal address 1470 movptr(rscratch, src2); 1471 Assembler::cmpq(src1, rscratch); 1472 } 1473 1474 void MacroAssembler::cmpoop(Register src1, Register src2) { 1475 cmpptr(src1, src2); 1476 } 1477 1478 void MacroAssembler::cmpoop(Register src1, Address src2) { 1479 cmpptr(src1, src2); 1480 } 1481 1482 void MacroAssembler::cmpoop(Register src1, jobject src2, Register rscratch) { 1483 movoop(rscratch, src2); 1484 cmpptr(src1, rscratch); 1485 } 1486 1487 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr, Register rscratch) { 1488 assert(rscratch != noreg || always_reachable(adr), "missing"); 1489 1490 if (reachable(adr)) { 1491 lock(); 1492 cmpxchgptr(reg, as_Address(adr)); 1493 } else { 1494 lea(rscratch, adr); 1495 lock(); 1496 cmpxchgptr(reg, Address(rscratch, 0)); 1497 } 1498 } 1499 1500 void MacroAssembler::cmpxchgptr(Register reg, Address adr) { 1501 cmpxchgq(reg, adr); 1502 } 1503 1504 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src, Register rscratch) { 1505 assert(rscratch != noreg || always_reachable(src), "missing"); 1506 1507 if (reachable(src)) { 1508 Assembler::comisd(dst, as_Address(src)); 1509 } else { 1510 lea(rscratch, src); 1511 Assembler::comisd(dst, Address(rscratch, 0)); 1512 } 1513 } 1514 1515 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src, Register rscratch) { 1516 assert(rscratch != noreg || always_reachable(src), "missing"); 1517 1518 if (reachable(src)) { 1519 Assembler::comiss(dst, as_Address(src)); 1520 } else { 1521 lea(rscratch, src); 1522 Assembler::comiss(dst, Address(rscratch, 0)); 1523 } 1524 } 1525 1526 1527 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr, Register rscratch) { 1528 assert(rscratch != noreg || always_reachable(counter_addr), "missing"); 1529 1530 Condition negated_cond = negate_condition(cond); 1531 Label L; 1532 jcc(negated_cond, L); 1533 pushf(); // Preserve flags 1534 atomic_incl(counter_addr, rscratch); 1535 popf(); 1536 bind(L); 1537 } 1538 1539 int MacroAssembler::corrected_idivl(Register reg) { 1540 // Full implementation of Java idiv and irem; checks for 1541 // special case as described in JVM spec., p.243 & p.271. 1542 // The function returns the (pc) offset of the idivl 1543 // instruction - may be needed for implicit exceptions. 1544 // 1545 // normal case special case 1546 // 1547 // input : rax,: dividend min_int 1548 // reg: divisor (may not be rax,/rdx) -1 1549 // 1550 // output: rax,: quotient (= rax, idiv reg) min_int 1551 // rdx: remainder (= rax, irem reg) 0 1552 assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register"); 1553 const int min_int = 0x80000000; 1554 Label normal_case, special_case; 1555 1556 // check for special case 1557 cmpl(rax, min_int); 1558 jcc(Assembler::notEqual, normal_case); 1559 xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0) 1560 cmpl(reg, -1); 1561 jcc(Assembler::equal, special_case); 1562 1563 // handle normal case 1564 bind(normal_case); 1565 cdql(); 1566 int idivl_offset = offset(); 1567 idivl(reg); 1568 1569 // normal and special case exit 1570 bind(special_case); 1571 1572 return idivl_offset; 1573 } 1574 1575 1576 1577 void MacroAssembler::decrementl(Register reg, int value) { 1578 if (value == min_jint) {subl(reg, value) ; return; } 1579 if (value < 0) { incrementl(reg, -value); return; } 1580 if (value == 0) { ; return; } 1581 if (value == 1 && UseIncDec) { decl(reg) ; return; } 1582 /* else */ { subl(reg, value) ; return; } 1583 } 1584 1585 void MacroAssembler::decrementl(Address dst, int value) { 1586 if (value == min_jint) {subl(dst, value) ; return; } 1587 if (value < 0) { incrementl(dst, -value); return; } 1588 if (value == 0) { ; return; } 1589 if (value == 1 && UseIncDec) { decl(dst) ; return; } 1590 /* else */ { subl(dst, value) ; return; } 1591 } 1592 1593 void MacroAssembler::division_with_shift (Register reg, int shift_value) { 1594 assert(shift_value > 0, "illegal shift value"); 1595 Label _is_positive; 1596 testl (reg, reg); 1597 jcc (Assembler::positive, _is_positive); 1598 int offset = (1 << shift_value) - 1 ; 1599 1600 if (offset == 1) { 1601 incrementl(reg); 1602 } else { 1603 addl(reg, offset); 1604 } 1605 1606 bind (_is_positive); 1607 sarl(reg, shift_value); 1608 } 1609 1610 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src, Register rscratch) { 1611 assert(rscratch != noreg || always_reachable(src), "missing"); 1612 1613 if (reachable(src)) { 1614 Assembler::divsd(dst, as_Address(src)); 1615 } else { 1616 lea(rscratch, src); 1617 Assembler::divsd(dst, Address(rscratch, 0)); 1618 } 1619 } 1620 1621 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src, Register rscratch) { 1622 assert(rscratch != noreg || always_reachable(src), "missing"); 1623 1624 if (reachable(src)) { 1625 Assembler::divss(dst, as_Address(src)); 1626 } else { 1627 lea(rscratch, src); 1628 Assembler::divss(dst, Address(rscratch, 0)); 1629 } 1630 } 1631 1632 void MacroAssembler::enter() { 1633 push(rbp); 1634 mov(rbp, rsp); 1635 } 1636 1637 void MacroAssembler::post_call_nop() { 1638 if (!Continuations::enabled()) { 1639 return; 1640 } 1641 InstructionMark im(this); 1642 relocate(post_call_nop_Relocation::spec()); 1643 InlineSkippedInstructionsCounter skipCounter(this); 1644 emit_int8((uint8_t)0x0f); 1645 emit_int8((uint8_t)0x1f); 1646 emit_int8((uint8_t)0x84); 1647 emit_int8((uint8_t)0x00); 1648 emit_int32(0x00); 1649 } 1650 1651 void MacroAssembler::mulpd(XMMRegister dst, AddressLiteral src, Register rscratch) { 1652 assert(rscratch != noreg || always_reachable(src), "missing"); 1653 if (reachable(src)) { 1654 Assembler::mulpd(dst, as_Address(src)); 1655 } else { 1656 lea(rscratch, src); 1657 Assembler::mulpd(dst, Address(rscratch, 0)); 1658 } 1659 } 1660 1661 // dst = c = a * b + c 1662 void MacroAssembler::fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) { 1663 Assembler::vfmadd231sd(c, a, b); 1664 if (dst != c) { 1665 movdbl(dst, c); 1666 } 1667 } 1668 1669 // dst = c = a * b + c 1670 void MacroAssembler::fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) { 1671 Assembler::vfmadd231ss(c, a, b); 1672 if (dst != c) { 1673 movflt(dst, c); 1674 } 1675 } 1676 1677 // dst = c = a * b + c 1678 void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) { 1679 Assembler::vfmadd231pd(c, a, b, vector_len); 1680 if (dst != c) { 1681 vmovdqu(dst, c); 1682 } 1683 } 1684 1685 // dst = c = a * b + c 1686 void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) { 1687 Assembler::vfmadd231ps(c, a, b, vector_len); 1688 if (dst != c) { 1689 vmovdqu(dst, c); 1690 } 1691 } 1692 1693 // dst = c = a * b + c 1694 void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) { 1695 Assembler::vfmadd231pd(c, a, b, vector_len); 1696 if (dst != c) { 1697 vmovdqu(dst, c); 1698 } 1699 } 1700 1701 // dst = c = a * b + c 1702 void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) { 1703 Assembler::vfmadd231ps(c, a, b, vector_len); 1704 if (dst != c) { 1705 vmovdqu(dst, c); 1706 } 1707 } 1708 1709 void MacroAssembler::incrementl(AddressLiteral dst, Register rscratch) { 1710 assert(rscratch != noreg || always_reachable(dst), "missing"); 1711 1712 if (reachable(dst)) { 1713 incrementl(as_Address(dst)); 1714 } else { 1715 lea(rscratch, dst); 1716 incrementl(Address(rscratch, 0)); 1717 } 1718 } 1719 1720 void MacroAssembler::incrementl(ArrayAddress dst, Register rscratch) { 1721 incrementl(as_Address(dst, rscratch)); 1722 } 1723 1724 void MacroAssembler::incrementl(Register reg, int value) { 1725 if (value == min_jint) {addl(reg, value) ; return; } 1726 if (value < 0) { decrementl(reg, -value); return; } 1727 if (value == 0) { ; return; } 1728 if (value == 1 && UseIncDec) { incl(reg) ; return; } 1729 /* else */ { addl(reg, value) ; return; } 1730 } 1731 1732 void MacroAssembler::incrementl(Address dst, int value) { 1733 if (value == min_jint) {addl(dst, value) ; return; } 1734 if (value < 0) { decrementl(dst, -value); return; } 1735 if (value == 0) { ; return; } 1736 if (value == 1 && UseIncDec) { incl(dst) ; return; } 1737 /* else */ { addl(dst, value) ; return; } 1738 } 1739 1740 void MacroAssembler::jump(AddressLiteral dst, Register rscratch) { 1741 assert(rscratch != noreg || always_reachable(dst), "missing"); 1742 assert(!dst.rspec().reloc()->is_data(), "should not use ExternalAddress for jump"); 1743 if (reachable(dst)) { 1744 jmp_literal(dst.target(), dst.rspec()); 1745 } else { 1746 lea(rscratch, dst); 1747 jmp(rscratch); 1748 } 1749 } 1750 1751 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst, Register rscratch) { 1752 assert(rscratch != noreg || always_reachable(dst), "missing"); 1753 assert(!dst.rspec().reloc()->is_data(), "should not use ExternalAddress for jump_cc"); 1754 if (reachable(dst)) { 1755 InstructionMark im(this); 1756 relocate(dst.reloc()); 1757 const int short_size = 2; 1758 const int long_size = 6; 1759 int offs = (intptr_t)dst.target() - ((intptr_t)pc()); 1760 if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) { 1761 // 0111 tttn #8-bit disp 1762 emit_int8(0x70 | cc); 1763 emit_int8((offs - short_size) & 0xFF); 1764 } else { 1765 // 0000 1111 1000 tttn #32-bit disp 1766 emit_int8(0x0F); 1767 emit_int8((unsigned char)(0x80 | cc)); 1768 emit_int32(offs - long_size); 1769 } 1770 } else { 1771 #ifdef ASSERT 1772 warning("reversing conditional branch"); 1773 #endif /* ASSERT */ 1774 Label skip; 1775 jccb(reverse[cc], skip); 1776 lea(rscratch, dst); 1777 Assembler::jmp(rscratch); 1778 bind(skip); 1779 } 1780 } 1781 1782 void MacroAssembler::cmp32_mxcsr_std(Address mxcsr_save, Register tmp, Register rscratch) { 1783 ExternalAddress mxcsr_std(StubRoutines::x86::addr_mxcsr_std()); 1784 assert(rscratch != noreg || always_reachable(mxcsr_std), "missing"); 1785 1786 stmxcsr(mxcsr_save); 1787 movl(tmp, mxcsr_save); 1788 if (EnableX86ECoreOpts) { 1789 // The mxcsr_std has status bits set for performance on ECore 1790 orl(tmp, 0x003f); 1791 } else { 1792 // Mask out status bits (only check control and mask bits) 1793 andl(tmp, 0xFFC0); 1794 } 1795 cmp32(tmp, mxcsr_std, rscratch); 1796 } 1797 1798 void MacroAssembler::ldmxcsr(AddressLiteral src, Register rscratch) { 1799 assert(rscratch != noreg || always_reachable(src), "missing"); 1800 1801 if (reachable(src)) { 1802 Assembler::ldmxcsr(as_Address(src)); 1803 } else { 1804 lea(rscratch, src); 1805 Assembler::ldmxcsr(Address(rscratch, 0)); 1806 } 1807 } 1808 1809 int MacroAssembler::load_signed_byte(Register dst, Address src) { 1810 int off = offset(); 1811 movsbl(dst, src); // movsxb 1812 return off; 1813 } 1814 1815 // Note: load_signed_short used to be called load_signed_word. 1816 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler 1817 // manual, which means 16 bits, that usage is found nowhere in HotSpot code. 1818 // The term "word" in HotSpot means a 32- or 64-bit machine word. 1819 int MacroAssembler::load_signed_short(Register dst, Address src) { 1820 // This is dubious to me since it seems safe to do a signed 16 => 64 bit 1821 // version but this is what 64bit has always done. This seems to imply 1822 // that users are only using 32bits worth. 1823 int off = offset(); 1824 movswl(dst, src); // movsxw 1825 return off; 1826 } 1827 1828 int MacroAssembler::load_unsigned_byte(Register dst, Address src) { 1829 // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16, 1830 // and "3.9 Partial Register Penalties", p. 22). 1831 int off = offset(); 1832 movzbl(dst, src); // movzxb 1833 return off; 1834 } 1835 1836 // Note: load_unsigned_short used to be called load_unsigned_word. 1837 int MacroAssembler::load_unsigned_short(Register dst, Address src) { 1838 // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16, 1839 // and "3.9 Partial Register Penalties", p. 22). 1840 int off = offset(); 1841 movzwl(dst, src); // movzxw 1842 return off; 1843 } 1844 1845 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) { 1846 switch (size_in_bytes) { 1847 case 8: movq(dst, src); break; 1848 case 4: movl(dst, src); break; 1849 case 2: is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break; 1850 case 1: is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break; 1851 default: ShouldNotReachHere(); 1852 } 1853 } 1854 1855 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) { 1856 switch (size_in_bytes) { 1857 case 8: movq(dst, src); break; 1858 case 4: movl(dst, src); break; 1859 case 2: movw(dst, src); break; 1860 case 1: movb(dst, src); break; 1861 default: ShouldNotReachHere(); 1862 } 1863 } 1864 1865 void MacroAssembler::mov32(AddressLiteral dst, Register src, Register rscratch) { 1866 assert(rscratch != noreg || always_reachable(dst), "missing"); 1867 1868 if (reachable(dst)) { 1869 movl(as_Address(dst), src); 1870 } else { 1871 lea(rscratch, dst); 1872 movl(Address(rscratch, 0), src); 1873 } 1874 } 1875 1876 void MacroAssembler::mov32(Register dst, AddressLiteral src) { 1877 if (reachable(src)) { 1878 movl(dst, as_Address(src)); 1879 } else { 1880 lea(dst, src); 1881 movl(dst, Address(dst, 0)); 1882 } 1883 } 1884 1885 // C++ bool manipulation 1886 1887 void MacroAssembler::movbool(Register dst, Address src) { 1888 if(sizeof(bool) == 1) 1889 movb(dst, src); 1890 else if(sizeof(bool) == 2) 1891 movw(dst, src); 1892 else if(sizeof(bool) == 4) 1893 movl(dst, src); 1894 else 1895 // unsupported 1896 ShouldNotReachHere(); 1897 } 1898 1899 void MacroAssembler::movbool(Address dst, bool boolconst) { 1900 if(sizeof(bool) == 1) 1901 movb(dst, (int) boolconst); 1902 else if(sizeof(bool) == 2) 1903 movw(dst, (int) boolconst); 1904 else if(sizeof(bool) == 4) 1905 movl(dst, (int) boolconst); 1906 else 1907 // unsupported 1908 ShouldNotReachHere(); 1909 } 1910 1911 void MacroAssembler::movbool(Address dst, Register src) { 1912 if(sizeof(bool) == 1) 1913 movb(dst, src); 1914 else if(sizeof(bool) == 2) 1915 movw(dst, src); 1916 else if(sizeof(bool) == 4) 1917 movl(dst, src); 1918 else 1919 // unsupported 1920 ShouldNotReachHere(); 1921 } 1922 1923 void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src, Register rscratch) { 1924 assert(rscratch != noreg || always_reachable(src), "missing"); 1925 1926 if (reachable(src)) { 1927 movdl(dst, as_Address(src)); 1928 } else { 1929 lea(rscratch, src); 1930 movdl(dst, Address(rscratch, 0)); 1931 } 1932 } 1933 1934 void MacroAssembler::movq(XMMRegister dst, AddressLiteral src, Register rscratch) { 1935 assert(rscratch != noreg || always_reachable(src), "missing"); 1936 1937 if (reachable(src)) { 1938 movq(dst, as_Address(src)); 1939 } else { 1940 lea(rscratch, src); 1941 movq(dst, Address(rscratch, 0)); 1942 } 1943 } 1944 1945 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src, Register rscratch) { 1946 assert(rscratch != noreg || always_reachable(src), "missing"); 1947 1948 if (reachable(src)) { 1949 if (UseXmmLoadAndClearUpper) { 1950 movsd (dst, as_Address(src)); 1951 } else { 1952 movlpd(dst, as_Address(src)); 1953 } 1954 } else { 1955 lea(rscratch, src); 1956 if (UseXmmLoadAndClearUpper) { 1957 movsd (dst, Address(rscratch, 0)); 1958 } else { 1959 movlpd(dst, Address(rscratch, 0)); 1960 } 1961 } 1962 } 1963 1964 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src, Register rscratch) { 1965 assert(rscratch != noreg || always_reachable(src), "missing"); 1966 1967 if (reachable(src)) { 1968 movss(dst, as_Address(src)); 1969 } else { 1970 lea(rscratch, src); 1971 movss(dst, Address(rscratch, 0)); 1972 } 1973 } 1974 1975 void MacroAssembler::movptr(Register dst, Register src) { 1976 movq(dst, src); 1977 } 1978 1979 void MacroAssembler::movptr(Register dst, Address src) { 1980 movq(dst, src); 1981 } 1982 1983 // src should NEVER be a real pointer. Use AddressLiteral for true pointers 1984 void MacroAssembler::movptr(Register dst, intptr_t src) { 1985 if (is_uimm32(src)) { 1986 movl(dst, checked_cast<uint32_t>(src)); 1987 } else if (is_simm32(src)) { 1988 movq(dst, checked_cast<int32_t>(src)); 1989 } else { 1990 mov64(dst, src); 1991 } 1992 } 1993 1994 void MacroAssembler::movptr(Address dst, Register src) { 1995 movq(dst, src); 1996 } 1997 1998 void MacroAssembler::movptr(Address dst, int32_t src) { 1999 movslq(dst, src); 2000 } 2001 2002 void MacroAssembler::movdqu(Address dst, XMMRegister src) { 2003 assert(((src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2004 Assembler::movdqu(dst, src); 2005 } 2006 2007 void MacroAssembler::movdqu(XMMRegister dst, Address src) { 2008 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2009 Assembler::movdqu(dst, src); 2010 } 2011 2012 void MacroAssembler::movdqu(XMMRegister dst, XMMRegister src) { 2013 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2014 Assembler::movdqu(dst, src); 2015 } 2016 2017 void MacroAssembler::movdqu(XMMRegister dst, AddressLiteral src, Register rscratch) { 2018 assert(rscratch != noreg || always_reachable(src), "missing"); 2019 2020 if (reachable(src)) { 2021 movdqu(dst, as_Address(src)); 2022 } else { 2023 lea(rscratch, src); 2024 movdqu(dst, Address(rscratch, 0)); 2025 } 2026 } 2027 2028 void MacroAssembler::vmovdqu(Address dst, XMMRegister src) { 2029 assert(((src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2030 Assembler::vmovdqu(dst, src); 2031 } 2032 2033 void MacroAssembler::vmovdqu(XMMRegister dst, Address src) { 2034 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2035 Assembler::vmovdqu(dst, src); 2036 } 2037 2038 void MacroAssembler::vmovdqu(XMMRegister dst, XMMRegister src) { 2039 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2040 Assembler::vmovdqu(dst, src); 2041 } 2042 2043 void MacroAssembler::vmovdqu(XMMRegister dst, AddressLiteral src, Register rscratch) { 2044 assert(rscratch != noreg || always_reachable(src), "missing"); 2045 2046 if (reachable(src)) { 2047 vmovdqu(dst, as_Address(src)); 2048 } 2049 else { 2050 lea(rscratch, src); 2051 vmovdqu(dst, Address(rscratch, 0)); 2052 } 2053 } 2054 2055 void MacroAssembler::vmovdqu(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 2056 assert(rscratch != noreg || always_reachable(src), "missing"); 2057 2058 if (vector_len == AVX_512bit) { 2059 evmovdquq(dst, src, AVX_512bit, rscratch); 2060 } else if (vector_len == AVX_256bit) { 2061 vmovdqu(dst, src, rscratch); 2062 } else { 2063 movdqu(dst, src, rscratch); 2064 } 2065 } 2066 2067 void MacroAssembler::vmovdqu(XMMRegister dst, XMMRegister src, int vector_len) { 2068 if (vector_len == AVX_512bit) { 2069 evmovdquq(dst, src, AVX_512bit); 2070 } else if (vector_len == AVX_256bit) { 2071 vmovdqu(dst, src); 2072 } else { 2073 movdqu(dst, src); 2074 } 2075 } 2076 2077 void MacroAssembler::vmovdqu(Address dst, XMMRegister src, int vector_len) { 2078 if (vector_len == AVX_512bit) { 2079 evmovdquq(dst, src, AVX_512bit); 2080 } else if (vector_len == AVX_256bit) { 2081 vmovdqu(dst, src); 2082 } else { 2083 movdqu(dst, src); 2084 } 2085 } 2086 2087 void MacroAssembler::vmovdqu(XMMRegister dst, Address src, int vector_len) { 2088 if (vector_len == AVX_512bit) { 2089 evmovdquq(dst, src, AVX_512bit); 2090 } else if (vector_len == AVX_256bit) { 2091 vmovdqu(dst, src); 2092 } else { 2093 movdqu(dst, src); 2094 } 2095 } 2096 2097 void MacroAssembler::vmovdqa(XMMRegister dst, AddressLiteral src, Register rscratch) { 2098 assert(rscratch != noreg || always_reachable(src), "missing"); 2099 2100 if (reachable(src)) { 2101 vmovdqa(dst, as_Address(src)); 2102 } 2103 else { 2104 lea(rscratch, src); 2105 vmovdqa(dst, Address(rscratch, 0)); 2106 } 2107 } 2108 2109 void MacroAssembler::vmovdqa(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 2110 assert(rscratch != noreg || always_reachable(src), "missing"); 2111 2112 if (vector_len == AVX_512bit) { 2113 evmovdqaq(dst, src, AVX_512bit, rscratch); 2114 } else if (vector_len == AVX_256bit) { 2115 vmovdqa(dst, src, rscratch); 2116 } else { 2117 movdqa(dst, src, rscratch); 2118 } 2119 } 2120 2121 void MacroAssembler::kmov(KRegister dst, Address src) { 2122 if (VM_Version::supports_avx512bw()) { 2123 kmovql(dst, src); 2124 } else { 2125 assert(VM_Version::supports_evex(), ""); 2126 kmovwl(dst, src); 2127 } 2128 } 2129 2130 void MacroAssembler::kmov(Address dst, KRegister src) { 2131 if (VM_Version::supports_avx512bw()) { 2132 kmovql(dst, src); 2133 } else { 2134 assert(VM_Version::supports_evex(), ""); 2135 kmovwl(dst, src); 2136 } 2137 } 2138 2139 void MacroAssembler::kmov(KRegister dst, KRegister src) { 2140 if (VM_Version::supports_avx512bw()) { 2141 kmovql(dst, src); 2142 } else { 2143 assert(VM_Version::supports_evex(), ""); 2144 kmovwl(dst, src); 2145 } 2146 } 2147 2148 void MacroAssembler::kmov(Register dst, KRegister src) { 2149 if (VM_Version::supports_avx512bw()) { 2150 kmovql(dst, src); 2151 } else { 2152 assert(VM_Version::supports_evex(), ""); 2153 kmovwl(dst, src); 2154 } 2155 } 2156 2157 void MacroAssembler::kmov(KRegister dst, Register src) { 2158 if (VM_Version::supports_avx512bw()) { 2159 kmovql(dst, src); 2160 } else { 2161 assert(VM_Version::supports_evex(), ""); 2162 kmovwl(dst, src); 2163 } 2164 } 2165 2166 void MacroAssembler::kmovql(KRegister dst, AddressLiteral src, Register rscratch) { 2167 assert(rscratch != noreg || always_reachable(src), "missing"); 2168 2169 if (reachable(src)) { 2170 kmovql(dst, as_Address(src)); 2171 } else { 2172 lea(rscratch, src); 2173 kmovql(dst, Address(rscratch, 0)); 2174 } 2175 } 2176 2177 void MacroAssembler::kmovwl(KRegister dst, AddressLiteral src, Register rscratch) { 2178 assert(rscratch != noreg || always_reachable(src), "missing"); 2179 2180 if (reachable(src)) { 2181 kmovwl(dst, as_Address(src)); 2182 } else { 2183 lea(rscratch, src); 2184 kmovwl(dst, Address(rscratch, 0)); 2185 } 2186 } 2187 2188 void MacroAssembler::evmovdqub(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, 2189 int vector_len, Register rscratch) { 2190 assert(rscratch != noreg || always_reachable(src), "missing"); 2191 2192 if (reachable(src)) { 2193 Assembler::evmovdqub(dst, mask, as_Address(src), merge, vector_len); 2194 } else { 2195 lea(rscratch, src); 2196 Assembler::evmovdqub(dst, mask, Address(rscratch, 0), merge, vector_len); 2197 } 2198 } 2199 2200 void MacroAssembler::evmovdquw(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, 2201 int vector_len, Register rscratch) { 2202 assert(rscratch != noreg || always_reachable(src), "missing"); 2203 2204 if (reachable(src)) { 2205 Assembler::evmovdquw(dst, mask, as_Address(src), merge, vector_len); 2206 } else { 2207 lea(rscratch, src); 2208 Assembler::evmovdquw(dst, mask, Address(rscratch, 0), merge, vector_len); 2209 } 2210 } 2211 2212 void MacroAssembler::evmovdqul(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch) { 2213 assert(rscratch != noreg || always_reachable(src), "missing"); 2214 2215 if (reachable(src)) { 2216 Assembler::evmovdqul(dst, mask, as_Address(src), merge, vector_len); 2217 } else { 2218 lea(rscratch, src); 2219 Assembler::evmovdqul(dst, mask, Address(rscratch, 0), merge, vector_len); 2220 } 2221 } 2222 2223 void MacroAssembler::evmovdquq(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch) { 2224 assert(rscratch != noreg || always_reachable(src), "missing"); 2225 2226 if (reachable(src)) { 2227 Assembler::evmovdquq(dst, mask, as_Address(src), merge, vector_len); 2228 } else { 2229 lea(rscratch, src); 2230 Assembler::evmovdquq(dst, mask, Address(rscratch, 0), merge, vector_len); 2231 } 2232 } 2233 2234 void MacroAssembler::evmovdquq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 2235 assert(rscratch != noreg || always_reachable(src), "missing"); 2236 2237 if (reachable(src)) { 2238 Assembler::evmovdquq(dst, as_Address(src), vector_len); 2239 } else { 2240 lea(rscratch, src); 2241 Assembler::evmovdquq(dst, Address(rscratch, 0), vector_len); 2242 } 2243 } 2244 2245 void MacroAssembler::evmovdqaq(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch) { 2246 assert(rscratch != noreg || always_reachable(src), "missing"); 2247 2248 if (reachable(src)) { 2249 Assembler::evmovdqaq(dst, mask, as_Address(src), merge, vector_len); 2250 } else { 2251 lea(rscratch, src); 2252 Assembler::evmovdqaq(dst, mask, Address(rscratch, 0), merge, vector_len); 2253 } 2254 } 2255 2256 void MacroAssembler::evmovdqaq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 2257 assert(rscratch != noreg || always_reachable(src), "missing"); 2258 2259 if (reachable(src)) { 2260 Assembler::evmovdqaq(dst, as_Address(src), vector_len); 2261 } else { 2262 lea(rscratch, src); 2263 Assembler::evmovdqaq(dst, Address(rscratch, 0), vector_len); 2264 } 2265 } 2266 2267 void MacroAssembler::movapd(XMMRegister dst, AddressLiteral src, Register rscratch) { 2268 assert(rscratch != noreg || always_reachable(src), "missing"); 2269 2270 if (reachable(src)) { 2271 Assembler::movapd(dst, as_Address(src)); 2272 } else { 2273 lea(rscratch, src); 2274 Assembler::movapd(dst, Address(rscratch, 0)); 2275 } 2276 } 2277 2278 void MacroAssembler::movdqa(XMMRegister dst, AddressLiteral src, Register rscratch) { 2279 assert(rscratch != noreg || always_reachable(src), "missing"); 2280 2281 if (reachable(src)) { 2282 Assembler::movdqa(dst, as_Address(src)); 2283 } else { 2284 lea(rscratch, src); 2285 Assembler::movdqa(dst, Address(rscratch, 0)); 2286 } 2287 } 2288 2289 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src, Register rscratch) { 2290 assert(rscratch != noreg || always_reachable(src), "missing"); 2291 2292 if (reachable(src)) { 2293 Assembler::movsd(dst, as_Address(src)); 2294 } else { 2295 lea(rscratch, src); 2296 Assembler::movsd(dst, Address(rscratch, 0)); 2297 } 2298 } 2299 2300 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src, Register rscratch) { 2301 assert(rscratch != noreg || always_reachable(src), "missing"); 2302 2303 if (reachable(src)) { 2304 Assembler::movss(dst, as_Address(src)); 2305 } else { 2306 lea(rscratch, src); 2307 Assembler::movss(dst, Address(rscratch, 0)); 2308 } 2309 } 2310 2311 void MacroAssembler::movddup(XMMRegister dst, AddressLiteral src, Register rscratch) { 2312 assert(rscratch != noreg || always_reachable(src), "missing"); 2313 2314 if (reachable(src)) { 2315 Assembler::movddup(dst, as_Address(src)); 2316 } else { 2317 lea(rscratch, src); 2318 Assembler::movddup(dst, Address(rscratch, 0)); 2319 } 2320 } 2321 2322 void MacroAssembler::vmovddup(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 2323 assert(rscratch != noreg || always_reachable(src), "missing"); 2324 2325 if (reachable(src)) { 2326 Assembler::vmovddup(dst, as_Address(src), vector_len); 2327 } else { 2328 lea(rscratch, src); 2329 Assembler::vmovddup(dst, Address(rscratch, 0), vector_len); 2330 } 2331 } 2332 2333 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src, Register rscratch) { 2334 assert(rscratch != noreg || always_reachable(src), "missing"); 2335 2336 if (reachable(src)) { 2337 Assembler::mulsd(dst, as_Address(src)); 2338 } else { 2339 lea(rscratch, src); 2340 Assembler::mulsd(dst, Address(rscratch, 0)); 2341 } 2342 } 2343 2344 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src, Register rscratch) { 2345 assert(rscratch != noreg || always_reachable(src), "missing"); 2346 2347 if (reachable(src)) { 2348 Assembler::mulss(dst, as_Address(src)); 2349 } else { 2350 lea(rscratch, src); 2351 Assembler::mulss(dst, Address(rscratch, 0)); 2352 } 2353 } 2354 2355 void MacroAssembler::null_check(Register reg, int offset) { 2356 if (needs_explicit_null_check(offset)) { 2357 // provoke OS null exception if reg is null by 2358 // accessing M[reg] w/o changing any (non-CC) registers 2359 // NOTE: cmpl is plenty here to provoke a segv 2360 cmpptr(rax, Address(reg, 0)); 2361 // Note: should probably use testl(rax, Address(reg, 0)); 2362 // may be shorter code (however, this version of 2363 // testl needs to be implemented first) 2364 } else { 2365 // nothing to do, (later) access of M[reg + offset] 2366 // will provoke OS null exception if reg is null 2367 } 2368 } 2369 2370 void MacroAssembler::test_markword_is_inline_type(Register markword, Label& is_inline_type) { 2371 andptr(markword, markWord::inline_type_mask_in_place); 2372 cmpptr(markword, markWord::inline_type_pattern); 2373 jcc(Assembler::equal, is_inline_type); 2374 } 2375 2376 void MacroAssembler::test_oop_is_not_inline_type(Register object, Register tmp, Label& not_inline_type, bool can_be_null) { 2377 if (can_be_null) { 2378 testptr(object, object); 2379 jcc(Assembler::zero, not_inline_type); 2380 } 2381 const int is_inline_type_mask = markWord::inline_type_pattern; 2382 movptr(tmp, Address(object, oopDesc::mark_offset_in_bytes())); 2383 andptr(tmp, is_inline_type_mask); 2384 cmpptr(tmp, is_inline_type_mask); 2385 jcc(Assembler::notEqual, not_inline_type); 2386 } 2387 2388 void MacroAssembler::test_field_is_null_free_inline_type(Register flags, Register temp_reg, Label& is_null_free_inline_type) { 2389 movl(temp_reg, flags); 2390 testl(temp_reg, 1 << ResolvedFieldEntry::is_null_free_inline_type_shift); 2391 jcc(Assembler::notEqual, is_null_free_inline_type); 2392 } 2393 2394 void MacroAssembler::test_field_is_not_null_free_inline_type(Register flags, Register temp_reg, Label& not_null_free_inline_type) { 2395 movl(temp_reg, flags); 2396 testl(temp_reg, 1 << ResolvedFieldEntry::is_null_free_inline_type_shift); 2397 jcc(Assembler::equal, not_null_free_inline_type); 2398 } 2399 2400 void MacroAssembler::test_field_is_flat(Register flags, Register temp_reg, Label& is_flat) { 2401 movl(temp_reg, flags); 2402 testl(temp_reg, 1 << ResolvedFieldEntry::is_flat_shift); 2403 jcc(Assembler::notEqual, is_flat); 2404 } 2405 2406 void MacroAssembler::test_field_has_null_marker(Register flags, Register temp_reg, Label& has_null_marker) { 2407 movl(temp_reg, flags); 2408 testl(temp_reg, 1 << ResolvedFieldEntry::has_null_marker_shift); 2409 jcc(Assembler::notEqual, has_null_marker); 2410 } 2411 2412 void MacroAssembler::test_oop_prototype_bit(Register oop, Register temp_reg, int32_t test_bit, bool jmp_set, Label& jmp_label) { 2413 Label test_mark_word; 2414 // load mark word 2415 movptr(temp_reg, Address(oop, oopDesc::mark_offset_in_bytes())); 2416 // check displaced 2417 testl(temp_reg, markWord::unlocked_value); 2418 jccb(Assembler::notZero, test_mark_word); 2419 // slow path use klass prototype 2420 push(rscratch1); 2421 load_prototype_header(temp_reg, oop, rscratch1); 2422 pop(rscratch1); 2423 2424 bind(test_mark_word); 2425 testl(temp_reg, test_bit); 2426 jcc((jmp_set) ? Assembler::notZero : Assembler::zero, jmp_label); 2427 } 2428 2429 void MacroAssembler::test_flat_array_oop(Register oop, Register temp_reg, 2430 Label& is_flat_array) { 2431 #ifdef _LP64 2432 test_oop_prototype_bit(oop, temp_reg, markWord::flat_array_bit_in_place, true, is_flat_array); 2433 #else 2434 load_klass(temp_reg, oop, noreg); 2435 movl(temp_reg, Address(temp_reg, Klass::layout_helper_offset())); 2436 test_flat_array_layout(temp_reg, is_flat_array); 2437 #endif 2438 } 2439 2440 void MacroAssembler::test_non_flat_array_oop(Register oop, Register temp_reg, 2441 Label& is_non_flat_array) { 2442 #ifdef _LP64 2443 test_oop_prototype_bit(oop, temp_reg, markWord::flat_array_bit_in_place, false, is_non_flat_array); 2444 #else 2445 load_klass(temp_reg, oop, noreg); 2446 movl(temp_reg, Address(temp_reg, Klass::layout_helper_offset())); 2447 test_non_flat_array_layout(temp_reg, is_non_flat_array); 2448 #endif 2449 } 2450 2451 void MacroAssembler::test_null_free_array_oop(Register oop, Register temp_reg, Label&is_null_free_array) { 2452 #ifdef _LP64 2453 test_oop_prototype_bit(oop, temp_reg, markWord::null_free_array_bit_in_place, true, is_null_free_array); 2454 #else 2455 Unimplemented(); 2456 #endif 2457 } 2458 2459 void MacroAssembler::test_non_null_free_array_oop(Register oop, Register temp_reg, Label&is_non_null_free_array) { 2460 #ifdef _LP64 2461 test_oop_prototype_bit(oop, temp_reg, markWord::null_free_array_bit_in_place, false, is_non_null_free_array); 2462 #else 2463 Unimplemented(); 2464 #endif 2465 } 2466 2467 void MacroAssembler::test_flat_array_layout(Register lh, Label& is_flat_array) { 2468 testl(lh, Klass::_lh_array_tag_flat_value_bit_inplace); 2469 jcc(Assembler::notZero, is_flat_array); 2470 } 2471 2472 void MacroAssembler::test_non_flat_array_layout(Register lh, Label& is_non_flat_array) { 2473 testl(lh, Klass::_lh_array_tag_flat_value_bit_inplace); 2474 jcc(Assembler::zero, is_non_flat_array); 2475 } 2476 2477 void MacroAssembler::os_breakpoint() { 2478 // instead of directly emitting a breakpoint, call os:breakpoint for better debugability 2479 // (e.g., MSVC can't call ps() otherwise) 2480 call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint))); 2481 } 2482 2483 void MacroAssembler::unimplemented(const char* what) { 2484 const char* buf = nullptr; 2485 { 2486 ResourceMark rm; 2487 stringStream ss; 2488 ss.print("unimplemented: %s", what); 2489 buf = code_string(ss.as_string()); 2490 } 2491 stop(buf); 2492 } 2493 2494 #define XSTATE_BV 0x200 2495 2496 void MacroAssembler::pop_CPU_state() { 2497 pop_FPU_state(); 2498 pop_IU_state(); 2499 } 2500 2501 void MacroAssembler::pop_FPU_state() { 2502 fxrstor(Address(rsp, 0)); 2503 addptr(rsp, FPUStateSizeInWords * wordSize); 2504 } 2505 2506 void MacroAssembler::pop_IU_state() { 2507 popa(); 2508 addq(rsp, 8); 2509 popf(); 2510 } 2511 2512 // Save Integer and Float state 2513 // Warning: Stack must be 16 byte aligned (64bit) 2514 void MacroAssembler::push_CPU_state() { 2515 push_IU_state(); 2516 push_FPU_state(); 2517 } 2518 2519 void MacroAssembler::push_FPU_state() { 2520 subptr(rsp, FPUStateSizeInWords * wordSize); 2521 fxsave(Address(rsp, 0)); 2522 } 2523 2524 void MacroAssembler::push_IU_state() { 2525 // Push flags first because pusha kills them 2526 pushf(); 2527 // Make sure rsp stays 16-byte aligned 2528 subq(rsp, 8); 2529 pusha(); 2530 } 2531 2532 void MacroAssembler::push_cont_fastpath() { 2533 if (!Continuations::enabled()) return; 2534 2535 Label L_done; 2536 cmpptr(rsp, Address(r15_thread, JavaThread::cont_fastpath_offset())); 2537 jccb(Assembler::belowEqual, L_done); 2538 movptr(Address(r15_thread, JavaThread::cont_fastpath_offset()), rsp); 2539 bind(L_done); 2540 } 2541 2542 void MacroAssembler::pop_cont_fastpath() { 2543 if (!Continuations::enabled()) return; 2544 2545 Label L_done; 2546 cmpptr(rsp, Address(r15_thread, JavaThread::cont_fastpath_offset())); 2547 jccb(Assembler::below, L_done); 2548 movptr(Address(r15_thread, JavaThread::cont_fastpath_offset()), 0); 2549 bind(L_done); 2550 } 2551 2552 void MacroAssembler::inc_held_monitor_count() { 2553 incrementq(Address(r15_thread, JavaThread::held_monitor_count_offset())); 2554 } 2555 2556 void MacroAssembler::dec_held_monitor_count() { 2557 decrementq(Address(r15_thread, JavaThread::held_monitor_count_offset())); 2558 } 2559 2560 #ifdef ASSERT 2561 void MacroAssembler::stop_if_in_cont(Register cont, const char* name) { 2562 Label no_cont; 2563 movptr(cont, Address(r15_thread, JavaThread::cont_entry_offset())); 2564 testl(cont, cont); 2565 jcc(Assembler::zero, no_cont); 2566 stop(name); 2567 bind(no_cont); 2568 } 2569 #endif 2570 2571 void MacroAssembler::reset_last_Java_frame(bool clear_fp) { // determine java_thread register 2572 // we must set sp to zero to clear frame 2573 movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD); 2574 // must clear fp, so that compiled frames are not confused; it is 2575 // possible that we need it only for debugging 2576 if (clear_fp) { 2577 movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD); 2578 } 2579 // Always clear the pc because it could have been set by make_walkable() 2580 movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD); 2581 vzeroupper(); 2582 } 2583 2584 void MacroAssembler::round_to(Register reg, int modulus) { 2585 addptr(reg, modulus - 1); 2586 andptr(reg, -modulus); 2587 } 2588 2589 void MacroAssembler::safepoint_poll(Label& slow_path, bool at_return, bool in_nmethod) { 2590 if (at_return) { 2591 // Note that when in_nmethod is set, the stack pointer is incremented before the poll. Therefore, 2592 // we may safely use rsp instead to perform the stack watermark check. 2593 cmpptr(in_nmethod ? rsp : rbp, Address(r15_thread, JavaThread::polling_word_offset())); 2594 jcc(Assembler::above, slow_path); 2595 return; 2596 } 2597 testb(Address(r15_thread, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit()); 2598 jcc(Assembler::notZero, slow_path); // handshake bit set implies poll 2599 } 2600 2601 // Calls to C land 2602 // 2603 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded 2604 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp 2605 // has to be reset to 0. This is required to allow proper stack traversal. 2606 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 2607 Register last_java_fp, 2608 address last_java_pc, 2609 Register rscratch) { 2610 vzeroupper(); 2611 // determine last_java_sp register 2612 if (!last_java_sp->is_valid()) { 2613 last_java_sp = rsp; 2614 } 2615 // last_java_fp is optional 2616 if (last_java_fp->is_valid()) { 2617 movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), last_java_fp); 2618 } 2619 // last_java_pc is optional 2620 if (last_java_pc != nullptr) { 2621 Address java_pc(r15_thread, 2622 JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()); 2623 lea(java_pc, InternalAddress(last_java_pc), rscratch); 2624 } 2625 movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp); 2626 } 2627 2628 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 2629 Register last_java_fp, 2630 Label &L, 2631 Register scratch) { 2632 lea(scratch, L); 2633 movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), scratch); 2634 set_last_Java_frame(last_java_sp, last_java_fp, nullptr, scratch); 2635 } 2636 2637 void MacroAssembler::shlptr(Register dst, int imm8) { 2638 shlq(dst, imm8); 2639 } 2640 2641 void MacroAssembler::shrptr(Register dst, int imm8) { 2642 shrq(dst, imm8); 2643 } 2644 2645 void MacroAssembler::sign_extend_byte(Register reg) { 2646 movsbl(reg, reg); // movsxb 2647 } 2648 2649 void MacroAssembler::sign_extend_short(Register reg) { 2650 movswl(reg, reg); // movsxw 2651 } 2652 2653 void MacroAssembler::testl(Address dst, int32_t imm32) { 2654 if (imm32 >= 0 && is8bit(imm32)) { 2655 testb(dst, imm32); 2656 } else { 2657 Assembler::testl(dst, imm32); 2658 } 2659 } 2660 2661 void MacroAssembler::testl(Register dst, int32_t imm32) { 2662 if (imm32 >= 0 && is8bit(imm32) && dst->has_byte_register()) { 2663 testb(dst, imm32); 2664 } else { 2665 Assembler::testl(dst, imm32); 2666 } 2667 } 2668 2669 void MacroAssembler::testl(Register dst, AddressLiteral src) { 2670 assert(always_reachable(src), "Address should be reachable"); 2671 testl(dst, as_Address(src)); 2672 } 2673 2674 void MacroAssembler::testq(Address dst, int32_t imm32) { 2675 if (imm32 >= 0) { 2676 testl(dst, imm32); 2677 } else { 2678 Assembler::testq(dst, imm32); 2679 } 2680 } 2681 2682 void MacroAssembler::testq(Register dst, int32_t imm32) { 2683 if (imm32 >= 0) { 2684 testl(dst, imm32); 2685 } else { 2686 Assembler::testq(dst, imm32); 2687 } 2688 } 2689 2690 void MacroAssembler::pcmpeqb(XMMRegister dst, XMMRegister src) { 2691 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 2692 Assembler::pcmpeqb(dst, src); 2693 } 2694 2695 void MacroAssembler::pcmpeqw(XMMRegister dst, XMMRegister src) { 2696 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 2697 Assembler::pcmpeqw(dst, src); 2698 } 2699 2700 void MacroAssembler::pcmpestri(XMMRegister dst, Address src, int imm8) { 2701 assert((dst->encoding() < 16),"XMM register should be 0-15"); 2702 Assembler::pcmpestri(dst, src, imm8); 2703 } 2704 2705 void MacroAssembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) { 2706 assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15"); 2707 Assembler::pcmpestri(dst, src, imm8); 2708 } 2709 2710 void MacroAssembler::pmovzxbw(XMMRegister dst, XMMRegister src) { 2711 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 2712 Assembler::pmovzxbw(dst, src); 2713 } 2714 2715 void MacroAssembler::pmovzxbw(XMMRegister dst, Address src) { 2716 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 2717 Assembler::pmovzxbw(dst, src); 2718 } 2719 2720 void MacroAssembler::pmovmskb(Register dst, XMMRegister src) { 2721 assert((src->encoding() < 16),"XMM register should be 0-15"); 2722 Assembler::pmovmskb(dst, src); 2723 } 2724 2725 void MacroAssembler::ptest(XMMRegister dst, XMMRegister src) { 2726 assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15"); 2727 Assembler::ptest(dst, src); 2728 } 2729 2730 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src, Register rscratch) { 2731 assert(rscratch != noreg || always_reachable(src), "missing"); 2732 2733 if (reachable(src)) { 2734 Assembler::sqrtss(dst, as_Address(src)); 2735 } else { 2736 lea(rscratch, src); 2737 Assembler::sqrtss(dst, Address(rscratch, 0)); 2738 } 2739 } 2740 2741 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src, Register rscratch) { 2742 assert(rscratch != noreg || always_reachable(src), "missing"); 2743 2744 if (reachable(src)) { 2745 Assembler::subsd(dst, as_Address(src)); 2746 } else { 2747 lea(rscratch, src); 2748 Assembler::subsd(dst, Address(rscratch, 0)); 2749 } 2750 } 2751 2752 void MacroAssembler::roundsd(XMMRegister dst, AddressLiteral src, int32_t rmode, Register rscratch) { 2753 assert(rscratch != noreg || always_reachable(src), "missing"); 2754 2755 if (reachable(src)) { 2756 Assembler::roundsd(dst, as_Address(src), rmode); 2757 } else { 2758 lea(rscratch, src); 2759 Assembler::roundsd(dst, Address(rscratch, 0), rmode); 2760 } 2761 } 2762 2763 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src, Register rscratch) { 2764 assert(rscratch != noreg || always_reachable(src), "missing"); 2765 2766 if (reachable(src)) { 2767 Assembler::subss(dst, as_Address(src)); 2768 } else { 2769 lea(rscratch, src); 2770 Assembler::subss(dst, Address(rscratch, 0)); 2771 } 2772 } 2773 2774 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src, Register rscratch) { 2775 assert(rscratch != noreg || always_reachable(src), "missing"); 2776 2777 if (reachable(src)) { 2778 Assembler::ucomisd(dst, as_Address(src)); 2779 } else { 2780 lea(rscratch, src); 2781 Assembler::ucomisd(dst, Address(rscratch, 0)); 2782 } 2783 } 2784 2785 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src, Register rscratch) { 2786 assert(rscratch != noreg || always_reachable(src), "missing"); 2787 2788 if (reachable(src)) { 2789 Assembler::ucomiss(dst, as_Address(src)); 2790 } else { 2791 lea(rscratch, src); 2792 Assembler::ucomiss(dst, Address(rscratch, 0)); 2793 } 2794 } 2795 2796 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src, Register rscratch) { 2797 assert(rscratch != noreg || always_reachable(src), "missing"); 2798 2799 // Used in sign-bit flipping with aligned address. 2800 assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes"); 2801 2802 if (UseAVX > 2 && 2803 (!VM_Version::supports_avx512dq() || !VM_Version::supports_avx512vl()) && 2804 (dst->encoding() >= 16)) { 2805 vpxor(dst, dst, src, Assembler::AVX_512bit, rscratch); 2806 } else if (reachable(src)) { 2807 Assembler::xorpd(dst, as_Address(src)); 2808 } else { 2809 lea(rscratch, src); 2810 Assembler::xorpd(dst, Address(rscratch, 0)); 2811 } 2812 } 2813 2814 void MacroAssembler::xorpd(XMMRegister dst, XMMRegister src) { 2815 if (UseAVX > 2 && 2816 (!VM_Version::supports_avx512dq() || !VM_Version::supports_avx512vl()) && 2817 ((dst->encoding() >= 16) || (src->encoding() >= 16))) { 2818 Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit); 2819 } else { 2820 Assembler::xorpd(dst, src); 2821 } 2822 } 2823 2824 void MacroAssembler::xorps(XMMRegister dst, XMMRegister src) { 2825 if (UseAVX > 2 && 2826 (!VM_Version::supports_avx512dq() || !VM_Version::supports_avx512vl()) && 2827 ((dst->encoding() >= 16) || (src->encoding() >= 16))) { 2828 Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit); 2829 } else { 2830 Assembler::xorps(dst, src); 2831 } 2832 } 2833 2834 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src, Register rscratch) { 2835 assert(rscratch != noreg || always_reachable(src), "missing"); 2836 2837 // Used in sign-bit flipping with aligned address. 2838 assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes"); 2839 2840 if (UseAVX > 2 && 2841 (!VM_Version::supports_avx512dq() || !VM_Version::supports_avx512vl()) && 2842 (dst->encoding() >= 16)) { 2843 vpxor(dst, dst, src, Assembler::AVX_512bit, rscratch); 2844 } else if (reachable(src)) { 2845 Assembler::xorps(dst, as_Address(src)); 2846 } else { 2847 lea(rscratch, src); 2848 Assembler::xorps(dst, Address(rscratch, 0)); 2849 } 2850 } 2851 2852 void MacroAssembler::pshufb(XMMRegister dst, AddressLiteral src, Register rscratch) { 2853 assert(rscratch != noreg || always_reachable(src), "missing"); 2854 2855 // Used in sign-bit flipping with aligned address. 2856 bool aligned_adr = (((intptr_t)src.target() & 15) == 0); 2857 assert((UseAVX > 0) || aligned_adr, "SSE mode requires address alignment 16 bytes"); 2858 if (reachable(src)) { 2859 Assembler::pshufb(dst, as_Address(src)); 2860 } else { 2861 lea(rscratch, src); 2862 Assembler::pshufb(dst, Address(rscratch, 0)); 2863 } 2864 } 2865 2866 // AVX 3-operands instructions 2867 2868 void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 2869 assert(rscratch != noreg || always_reachable(src), "missing"); 2870 2871 if (reachable(src)) { 2872 vaddsd(dst, nds, as_Address(src)); 2873 } else { 2874 lea(rscratch, src); 2875 vaddsd(dst, nds, Address(rscratch, 0)); 2876 } 2877 } 2878 2879 void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 2880 assert(rscratch != noreg || always_reachable(src), "missing"); 2881 2882 if (reachable(src)) { 2883 vaddss(dst, nds, as_Address(src)); 2884 } else { 2885 lea(rscratch, src); 2886 vaddss(dst, nds, Address(rscratch, 0)); 2887 } 2888 } 2889 2890 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 2891 assert(UseAVX > 0, "requires some form of AVX"); 2892 assert(rscratch != noreg || always_reachable(src), "missing"); 2893 2894 if (reachable(src)) { 2895 Assembler::vpaddb(dst, nds, as_Address(src), vector_len); 2896 } else { 2897 lea(rscratch, src); 2898 Assembler::vpaddb(dst, nds, Address(rscratch, 0), vector_len); 2899 } 2900 } 2901 2902 void MacroAssembler::vpaddd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 2903 assert(UseAVX > 0, "requires some form of AVX"); 2904 assert(rscratch != noreg || always_reachable(src), "missing"); 2905 2906 if (reachable(src)) { 2907 Assembler::vpaddd(dst, nds, as_Address(src), vector_len); 2908 } else { 2909 lea(rscratch, src); 2910 Assembler::vpaddd(dst, nds, Address(rscratch, 0), vector_len); 2911 } 2912 } 2913 2914 void MacroAssembler::vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len, Register rscratch) { 2915 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15"); 2916 assert(rscratch != noreg || always_reachable(negate_field), "missing"); 2917 2918 vandps(dst, nds, negate_field, vector_len, rscratch); 2919 } 2920 2921 void MacroAssembler::vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len, Register rscratch) { 2922 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15"); 2923 assert(rscratch != noreg || always_reachable(negate_field), "missing"); 2924 2925 vandpd(dst, nds, negate_field, vector_len, rscratch); 2926 } 2927 2928 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 2929 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 2930 Assembler::vpaddb(dst, nds, src, vector_len); 2931 } 2932 2933 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 2934 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 2935 Assembler::vpaddb(dst, nds, src, vector_len); 2936 } 2937 2938 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 2939 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 2940 Assembler::vpaddw(dst, nds, src, vector_len); 2941 } 2942 2943 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 2944 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 2945 Assembler::vpaddw(dst, nds, src, vector_len); 2946 } 2947 2948 void MacroAssembler::vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 2949 assert(rscratch != noreg || always_reachable(src), "missing"); 2950 2951 if (reachable(src)) { 2952 Assembler::vpand(dst, nds, as_Address(src), vector_len); 2953 } else { 2954 lea(rscratch, src); 2955 Assembler::vpand(dst, nds, Address(rscratch, 0), vector_len); 2956 } 2957 } 2958 2959 void MacroAssembler::vpbroadcastd(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 2960 assert(rscratch != noreg || always_reachable(src), "missing"); 2961 2962 if (reachable(src)) { 2963 Assembler::vpbroadcastd(dst, as_Address(src), vector_len); 2964 } else { 2965 lea(rscratch, src); 2966 Assembler::vpbroadcastd(dst, Address(rscratch, 0), vector_len); 2967 } 2968 } 2969 2970 void MacroAssembler::vbroadcasti128(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 2971 assert(rscratch != noreg || always_reachable(src), "missing"); 2972 2973 if (reachable(src)) { 2974 Assembler::vbroadcasti128(dst, as_Address(src), vector_len); 2975 } else { 2976 lea(rscratch, src); 2977 Assembler::vbroadcasti128(dst, Address(rscratch, 0), vector_len); 2978 } 2979 } 2980 2981 void MacroAssembler::vpbroadcastq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 2982 assert(rscratch != noreg || always_reachable(src), "missing"); 2983 2984 if (reachable(src)) { 2985 Assembler::vpbroadcastq(dst, as_Address(src), vector_len); 2986 } else { 2987 lea(rscratch, src); 2988 Assembler::vpbroadcastq(dst, Address(rscratch, 0), vector_len); 2989 } 2990 } 2991 2992 void MacroAssembler::vbroadcastsd(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 2993 assert(rscratch != noreg || always_reachable(src), "missing"); 2994 2995 if (reachable(src)) { 2996 Assembler::vbroadcastsd(dst, as_Address(src), vector_len); 2997 } else { 2998 lea(rscratch, src); 2999 Assembler::vbroadcastsd(dst, Address(rscratch, 0), vector_len); 3000 } 3001 } 3002 3003 void MacroAssembler::vbroadcastss(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 3004 assert(rscratch != noreg || always_reachable(src), "missing"); 3005 3006 if (reachable(src)) { 3007 Assembler::vbroadcastss(dst, as_Address(src), vector_len); 3008 } else { 3009 lea(rscratch, src); 3010 Assembler::vbroadcastss(dst, Address(rscratch, 0), vector_len); 3011 } 3012 } 3013 3014 // Vector float blend 3015 // vblendvps(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister mask, int vector_len, bool compute_mask = true, XMMRegister scratch = xnoreg) 3016 void MacroAssembler::vblendvps(XMMRegister dst, XMMRegister src1, XMMRegister src2, XMMRegister mask, int vector_len, bool compute_mask, XMMRegister scratch) { 3017 // WARN: Allow dst == (src1|src2), mask == scratch 3018 bool blend_emulation = EnableX86ECoreOpts && UseAVX > 1; 3019 bool scratch_available = scratch != xnoreg && scratch != src1 && scratch != src2 && scratch != dst; 3020 bool dst_available = dst != mask && (dst != src1 || dst != src2); 3021 if (blend_emulation && scratch_available && dst_available) { 3022 if (compute_mask) { 3023 vpsrad(scratch, mask, 32, vector_len); 3024 mask = scratch; 3025 } 3026 if (dst == src1) { 3027 vpandn(dst, mask, src1, vector_len); // if mask == 0, src1 3028 vpand (scratch, mask, src2, vector_len); // if mask == 1, src2 3029 } else { 3030 vpand (dst, mask, src2, vector_len); // if mask == 1, src2 3031 vpandn(scratch, mask, src1, vector_len); // if mask == 0, src1 3032 } 3033 vpor(dst, dst, scratch, vector_len); 3034 } else { 3035 Assembler::vblendvps(dst, src1, src2, mask, vector_len); 3036 } 3037 } 3038 3039 // vblendvpd(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister mask, int vector_len, bool compute_mask = true, XMMRegister scratch = xnoreg) 3040 void MacroAssembler::vblendvpd(XMMRegister dst, XMMRegister src1, XMMRegister src2, XMMRegister mask, int vector_len, bool compute_mask, XMMRegister scratch) { 3041 // WARN: Allow dst == (src1|src2), mask == scratch 3042 bool blend_emulation = EnableX86ECoreOpts && UseAVX > 1; 3043 bool scratch_available = scratch != xnoreg && scratch != src1 && scratch != src2 && scratch != dst && (!compute_mask || scratch != mask); 3044 bool dst_available = dst != mask && (dst != src1 || dst != src2); 3045 if (blend_emulation && scratch_available && dst_available) { 3046 if (compute_mask) { 3047 vpxor(scratch, scratch, scratch, vector_len); 3048 vpcmpgtq(scratch, scratch, mask, vector_len); 3049 mask = scratch; 3050 } 3051 if (dst == src1) { 3052 vpandn(dst, mask, src1, vector_len); // if mask == 0, src 3053 vpand (scratch, mask, src2, vector_len); // if mask == 1, src2 3054 } else { 3055 vpand (dst, mask, src2, vector_len); // if mask == 1, src2 3056 vpandn(scratch, mask, src1, vector_len); // if mask == 0, src 3057 } 3058 vpor(dst, dst, scratch, vector_len); 3059 } else { 3060 Assembler::vblendvpd(dst, src1, src2, mask, vector_len); 3061 } 3062 } 3063 3064 void MacroAssembler::vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3065 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3066 Assembler::vpcmpeqb(dst, nds, src, vector_len); 3067 } 3068 3069 void MacroAssembler::vpcmpeqb(XMMRegister dst, XMMRegister src1, Address src2, int vector_len) { 3070 assert(((dst->encoding() < 16 && src1->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3071 Assembler::vpcmpeqb(dst, src1, src2, vector_len); 3072 } 3073 3074 void MacroAssembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3075 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3076 Assembler::vpcmpeqw(dst, nds, src, vector_len); 3077 } 3078 3079 void MacroAssembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 3080 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3081 Assembler::vpcmpeqw(dst, nds, src, vector_len); 3082 } 3083 3084 void MacroAssembler::evpcmpeqd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3085 assert(rscratch != noreg || always_reachable(src), "missing"); 3086 3087 if (reachable(src)) { 3088 Assembler::evpcmpeqd(kdst, mask, nds, as_Address(src), vector_len); 3089 } else { 3090 lea(rscratch, src); 3091 Assembler::evpcmpeqd(kdst, mask, nds, Address(rscratch, 0), vector_len); 3092 } 3093 } 3094 3095 void MacroAssembler::evpcmpd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, 3096 int comparison, bool is_signed, int vector_len, Register rscratch) { 3097 assert(rscratch != noreg || always_reachable(src), "missing"); 3098 3099 if (reachable(src)) { 3100 Assembler::evpcmpd(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len); 3101 } else { 3102 lea(rscratch, src); 3103 Assembler::evpcmpd(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len); 3104 } 3105 } 3106 3107 void MacroAssembler::evpcmpq(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, 3108 int comparison, bool is_signed, int vector_len, Register rscratch) { 3109 assert(rscratch != noreg || always_reachable(src), "missing"); 3110 3111 if (reachable(src)) { 3112 Assembler::evpcmpq(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len); 3113 } else { 3114 lea(rscratch, src); 3115 Assembler::evpcmpq(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len); 3116 } 3117 } 3118 3119 void MacroAssembler::evpcmpb(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, 3120 int comparison, bool is_signed, int vector_len, Register rscratch) { 3121 assert(rscratch != noreg || always_reachable(src), "missing"); 3122 3123 if (reachable(src)) { 3124 Assembler::evpcmpb(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len); 3125 } else { 3126 lea(rscratch, src); 3127 Assembler::evpcmpb(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len); 3128 } 3129 } 3130 3131 void MacroAssembler::evpcmpw(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, 3132 int comparison, bool is_signed, int vector_len, Register rscratch) { 3133 assert(rscratch != noreg || always_reachable(src), "missing"); 3134 3135 if (reachable(src)) { 3136 Assembler::evpcmpw(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len); 3137 } else { 3138 lea(rscratch, src); 3139 Assembler::evpcmpw(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len); 3140 } 3141 } 3142 3143 void MacroAssembler::vpcmpCC(XMMRegister dst, XMMRegister nds, XMMRegister src, int cond_encoding, Width width, int vector_len) { 3144 if (width == Assembler::Q) { 3145 Assembler::vpcmpCCq(dst, nds, src, cond_encoding, vector_len); 3146 } else { 3147 Assembler::vpcmpCCbwd(dst, nds, src, cond_encoding, vector_len); 3148 } 3149 } 3150 3151 void MacroAssembler::vpcmpCCW(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister xtmp, ComparisonPredicate cond, Width width, int vector_len) { 3152 int eq_cond_enc = 0x29; 3153 int gt_cond_enc = 0x37; 3154 if (width != Assembler::Q) { 3155 eq_cond_enc = 0x74 + width; 3156 gt_cond_enc = 0x64 + width; 3157 } 3158 switch (cond) { 3159 case eq: 3160 vpcmpCC(dst, nds, src, eq_cond_enc, width, vector_len); 3161 break; 3162 case neq: 3163 vpcmpCC(dst, nds, src, eq_cond_enc, width, vector_len); 3164 vallones(xtmp, vector_len); 3165 vpxor(dst, xtmp, dst, vector_len); 3166 break; 3167 case le: 3168 vpcmpCC(dst, nds, src, gt_cond_enc, width, vector_len); 3169 vallones(xtmp, vector_len); 3170 vpxor(dst, xtmp, dst, vector_len); 3171 break; 3172 case nlt: 3173 vpcmpCC(dst, src, nds, gt_cond_enc, width, vector_len); 3174 vallones(xtmp, vector_len); 3175 vpxor(dst, xtmp, dst, vector_len); 3176 break; 3177 case lt: 3178 vpcmpCC(dst, src, nds, gt_cond_enc, width, vector_len); 3179 break; 3180 case nle: 3181 vpcmpCC(dst, nds, src, gt_cond_enc, width, vector_len); 3182 break; 3183 default: 3184 assert(false, "Should not reach here"); 3185 } 3186 } 3187 3188 void MacroAssembler::vpmovzxbw(XMMRegister dst, Address src, int vector_len) { 3189 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3190 Assembler::vpmovzxbw(dst, src, vector_len); 3191 } 3192 3193 void MacroAssembler::vpmovmskb(Register dst, XMMRegister src, int vector_len) { 3194 assert((src->encoding() < 16),"XMM register should be 0-15"); 3195 Assembler::vpmovmskb(dst, src, vector_len); 3196 } 3197 3198 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3199 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3200 Assembler::vpmullw(dst, nds, src, vector_len); 3201 } 3202 3203 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 3204 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3205 Assembler::vpmullw(dst, nds, src, vector_len); 3206 } 3207 3208 void MacroAssembler::vpmulld(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3209 assert((UseAVX > 0), "AVX support is needed"); 3210 assert(rscratch != noreg || always_reachable(src), "missing"); 3211 3212 if (reachable(src)) { 3213 Assembler::vpmulld(dst, nds, as_Address(src), vector_len); 3214 } else { 3215 lea(rscratch, src); 3216 Assembler::vpmulld(dst, nds, Address(rscratch, 0), vector_len); 3217 } 3218 } 3219 3220 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3221 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3222 Assembler::vpsubb(dst, nds, src, vector_len); 3223 } 3224 3225 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 3226 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3227 Assembler::vpsubb(dst, nds, src, vector_len); 3228 } 3229 3230 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3231 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3232 Assembler::vpsubw(dst, nds, src, vector_len); 3233 } 3234 3235 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 3236 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3237 Assembler::vpsubw(dst, nds, src, vector_len); 3238 } 3239 3240 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) { 3241 assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3242 Assembler::vpsraw(dst, nds, shift, vector_len); 3243 } 3244 3245 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) { 3246 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3247 Assembler::vpsraw(dst, nds, shift, vector_len); 3248 } 3249 3250 void MacroAssembler::evpsraq(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) { 3251 assert(UseAVX > 2,""); 3252 if (!VM_Version::supports_avx512vl() && vector_len < 2) { 3253 vector_len = 2; 3254 } 3255 Assembler::evpsraq(dst, nds, shift, vector_len); 3256 } 3257 3258 void MacroAssembler::evpsraq(XMMRegister dst, XMMRegister nds, int shift, int vector_len) { 3259 assert(UseAVX > 2,""); 3260 if (!VM_Version::supports_avx512vl() && vector_len < 2) { 3261 vector_len = 2; 3262 } 3263 Assembler::evpsraq(dst, nds, shift, vector_len); 3264 } 3265 3266 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) { 3267 assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3268 Assembler::vpsrlw(dst, nds, shift, vector_len); 3269 } 3270 3271 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) { 3272 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3273 Assembler::vpsrlw(dst, nds, shift, vector_len); 3274 } 3275 3276 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) { 3277 assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3278 Assembler::vpsllw(dst, nds, shift, vector_len); 3279 } 3280 3281 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) { 3282 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3283 Assembler::vpsllw(dst, nds, shift, vector_len); 3284 } 3285 3286 void MacroAssembler::vptest(XMMRegister dst, XMMRegister src) { 3287 assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15"); 3288 Assembler::vptest(dst, src); 3289 } 3290 3291 void MacroAssembler::punpcklbw(XMMRegister dst, XMMRegister src) { 3292 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3293 Assembler::punpcklbw(dst, src); 3294 } 3295 3296 void MacroAssembler::pshufd(XMMRegister dst, Address src, int mode) { 3297 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 3298 Assembler::pshufd(dst, src, mode); 3299 } 3300 3301 void MacroAssembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) { 3302 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3303 Assembler::pshuflw(dst, src, mode); 3304 } 3305 3306 void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3307 assert(rscratch != noreg || always_reachable(src), "missing"); 3308 3309 if (reachable(src)) { 3310 vandpd(dst, nds, as_Address(src), vector_len); 3311 } else { 3312 lea(rscratch, src); 3313 vandpd(dst, nds, Address(rscratch, 0), vector_len); 3314 } 3315 } 3316 3317 void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3318 assert(rscratch != noreg || always_reachable(src), "missing"); 3319 3320 if (reachable(src)) { 3321 vandps(dst, nds, as_Address(src), vector_len); 3322 } else { 3323 lea(rscratch, src); 3324 vandps(dst, nds, Address(rscratch, 0), vector_len); 3325 } 3326 } 3327 3328 void MacroAssembler::evpord(XMMRegister dst, KRegister mask, XMMRegister nds, AddressLiteral src, 3329 bool merge, int vector_len, Register rscratch) { 3330 assert(rscratch != noreg || always_reachable(src), "missing"); 3331 3332 if (reachable(src)) { 3333 Assembler::evpord(dst, mask, nds, as_Address(src), merge, vector_len); 3334 } else { 3335 lea(rscratch, src); 3336 Assembler::evpord(dst, mask, nds, Address(rscratch, 0), merge, vector_len); 3337 } 3338 } 3339 3340 void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3341 assert(rscratch != noreg || always_reachable(src), "missing"); 3342 3343 if (reachable(src)) { 3344 vdivsd(dst, nds, as_Address(src)); 3345 } else { 3346 lea(rscratch, src); 3347 vdivsd(dst, nds, Address(rscratch, 0)); 3348 } 3349 } 3350 3351 void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3352 assert(rscratch != noreg || always_reachable(src), "missing"); 3353 3354 if (reachable(src)) { 3355 vdivss(dst, nds, as_Address(src)); 3356 } else { 3357 lea(rscratch, src); 3358 vdivss(dst, nds, Address(rscratch, 0)); 3359 } 3360 } 3361 3362 void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3363 assert(rscratch != noreg || always_reachable(src), "missing"); 3364 3365 if (reachable(src)) { 3366 vmulsd(dst, nds, as_Address(src)); 3367 } else { 3368 lea(rscratch, src); 3369 vmulsd(dst, nds, Address(rscratch, 0)); 3370 } 3371 } 3372 3373 void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3374 assert(rscratch != noreg || always_reachable(src), "missing"); 3375 3376 if (reachable(src)) { 3377 vmulss(dst, nds, as_Address(src)); 3378 } else { 3379 lea(rscratch, src); 3380 vmulss(dst, nds, Address(rscratch, 0)); 3381 } 3382 } 3383 3384 void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3385 assert(rscratch != noreg || always_reachable(src), "missing"); 3386 3387 if (reachable(src)) { 3388 vsubsd(dst, nds, as_Address(src)); 3389 } else { 3390 lea(rscratch, src); 3391 vsubsd(dst, nds, Address(rscratch, 0)); 3392 } 3393 } 3394 3395 void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3396 assert(rscratch != noreg || always_reachable(src), "missing"); 3397 3398 if (reachable(src)) { 3399 vsubss(dst, nds, as_Address(src)); 3400 } else { 3401 lea(rscratch, src); 3402 vsubss(dst, nds, Address(rscratch, 0)); 3403 } 3404 } 3405 3406 void MacroAssembler::vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3407 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15"); 3408 assert(rscratch != noreg || always_reachable(src), "missing"); 3409 3410 vxorps(dst, nds, src, Assembler::AVX_128bit, rscratch); 3411 } 3412 3413 void MacroAssembler::vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3414 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15"); 3415 assert(rscratch != noreg || always_reachable(src), "missing"); 3416 3417 vxorpd(dst, nds, src, Assembler::AVX_128bit, rscratch); 3418 } 3419 3420 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3421 assert(rscratch != noreg || always_reachable(src), "missing"); 3422 3423 if (reachable(src)) { 3424 vxorpd(dst, nds, as_Address(src), vector_len); 3425 } else { 3426 lea(rscratch, src); 3427 vxorpd(dst, nds, Address(rscratch, 0), vector_len); 3428 } 3429 } 3430 3431 void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3432 assert(rscratch != noreg || always_reachable(src), "missing"); 3433 3434 if (reachable(src)) { 3435 vxorps(dst, nds, as_Address(src), vector_len); 3436 } else { 3437 lea(rscratch, src); 3438 vxorps(dst, nds, Address(rscratch, 0), vector_len); 3439 } 3440 } 3441 3442 void MacroAssembler::vpxor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3443 assert(rscratch != noreg || always_reachable(src), "missing"); 3444 3445 if (UseAVX > 1 || (vector_len < 1)) { 3446 if (reachable(src)) { 3447 Assembler::vpxor(dst, nds, as_Address(src), vector_len); 3448 } else { 3449 lea(rscratch, src); 3450 Assembler::vpxor(dst, nds, Address(rscratch, 0), vector_len); 3451 } 3452 } else { 3453 MacroAssembler::vxorpd(dst, nds, src, vector_len, rscratch); 3454 } 3455 } 3456 3457 void MacroAssembler::vpermd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3458 assert(rscratch != noreg || always_reachable(src), "missing"); 3459 3460 if (reachable(src)) { 3461 Assembler::vpermd(dst, nds, as_Address(src), vector_len); 3462 } else { 3463 lea(rscratch, src); 3464 Assembler::vpermd(dst, nds, Address(rscratch, 0), vector_len); 3465 } 3466 } 3467 3468 void MacroAssembler::clear_jobject_tag(Register possibly_non_local) { 3469 const int32_t inverted_mask = ~static_cast<int32_t>(JNIHandles::tag_mask); 3470 STATIC_ASSERT(inverted_mask == -4); // otherwise check this code 3471 // The inverted mask is sign-extended 3472 andptr(possibly_non_local, inverted_mask); 3473 } 3474 3475 void MacroAssembler::resolve_jobject(Register value, 3476 Register tmp) { 3477 Register thread = r15_thread; 3478 assert_different_registers(value, thread, tmp); 3479 Label done, tagged, weak_tagged; 3480 testptr(value, value); 3481 jcc(Assembler::zero, done); // Use null as-is. 3482 testptr(value, JNIHandles::tag_mask); // Test for tag. 3483 jcc(Assembler::notZero, tagged); 3484 3485 // Resolve local handle 3486 access_load_at(T_OBJECT, IN_NATIVE | AS_RAW, value, Address(value, 0), tmp); 3487 verify_oop(value); 3488 jmp(done); 3489 3490 bind(tagged); 3491 testptr(value, JNIHandles::TypeTag::weak_global); // Test for weak tag. 3492 jcc(Assembler::notZero, weak_tagged); 3493 3494 // Resolve global handle 3495 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp); 3496 verify_oop(value); 3497 jmp(done); 3498 3499 bind(weak_tagged); 3500 // Resolve jweak. 3501 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, 3502 value, Address(value, -JNIHandles::TypeTag::weak_global), tmp); 3503 verify_oop(value); 3504 3505 bind(done); 3506 } 3507 3508 void MacroAssembler::resolve_global_jobject(Register value, 3509 Register tmp) { 3510 Register thread = r15_thread; 3511 assert_different_registers(value, thread, tmp); 3512 Label done; 3513 3514 testptr(value, value); 3515 jcc(Assembler::zero, done); // Use null as-is. 3516 3517 #ifdef ASSERT 3518 { 3519 Label valid_global_tag; 3520 testptr(value, JNIHandles::TypeTag::global); // Test for global tag. 3521 jcc(Assembler::notZero, valid_global_tag); 3522 stop("non global jobject using resolve_global_jobject"); 3523 bind(valid_global_tag); 3524 } 3525 #endif 3526 3527 // Resolve global handle 3528 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp); 3529 verify_oop(value); 3530 3531 bind(done); 3532 } 3533 3534 void MacroAssembler::subptr(Register dst, int32_t imm32) { 3535 subq(dst, imm32); 3536 } 3537 3538 // Force generation of a 4 byte immediate value even if it fits into 8bit 3539 void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) { 3540 subq_imm32(dst, imm32); 3541 } 3542 3543 void MacroAssembler::subptr(Register dst, Register src) { 3544 subq(dst, src); 3545 } 3546 3547 // C++ bool manipulation 3548 void MacroAssembler::testbool(Register dst) { 3549 if(sizeof(bool) == 1) 3550 testb(dst, 0xff); 3551 else if(sizeof(bool) == 2) { 3552 // testw implementation needed for two byte bools 3553 ShouldNotReachHere(); 3554 } else if(sizeof(bool) == 4) 3555 testl(dst, dst); 3556 else 3557 // unsupported 3558 ShouldNotReachHere(); 3559 } 3560 3561 void MacroAssembler::testptr(Register dst, Register src) { 3562 testq(dst, src); 3563 } 3564 3565 // Object / value buffer allocation... 3566 // 3567 // Kills klass and rsi on LP64 3568 void MacroAssembler::allocate_instance(Register klass, Register new_obj, 3569 Register t1, Register t2, 3570 bool clear_fields, Label& alloc_failed) 3571 { 3572 Label done, initialize_header, initialize_object, slow_case, slow_case_no_pop; 3573 Register layout_size = t1; 3574 assert(new_obj == rax, "needs to be rax"); 3575 assert_different_registers(klass, new_obj, t1, t2); 3576 3577 // get instance_size in InstanceKlass (scaled to a count of bytes) 3578 movl(layout_size, Address(klass, Klass::layout_helper_offset())); 3579 // test to see if it is malformed in some way 3580 testl(layout_size, Klass::_lh_instance_slow_path_bit); 3581 jcc(Assembler::notZero, slow_case_no_pop); 3582 3583 // Allocate the instance: 3584 // If TLAB is enabled: 3585 // Try to allocate in the TLAB. 3586 // If fails, go to the slow path. 3587 // Else If inline contiguous allocations are enabled: 3588 // Try to allocate in eden. 3589 // If fails due to heap end, go to slow path. 3590 // 3591 // If TLAB is enabled OR inline contiguous is enabled: 3592 // Initialize the allocation. 3593 // Exit. 3594 // 3595 // Go to slow path. 3596 3597 push(klass); 3598 if (UseTLAB) { 3599 tlab_allocate(new_obj, layout_size, 0, klass, t2, slow_case); 3600 if (ZeroTLAB || (!clear_fields)) { 3601 // the fields have been already cleared 3602 jmp(initialize_header); 3603 } else { 3604 // initialize both the header and fields 3605 jmp(initialize_object); 3606 } 3607 } else { 3608 jmp(slow_case); 3609 } 3610 3611 // If UseTLAB is true, the object is created above and there is an initialize need. 3612 // Otherwise, skip and go to the slow path. 3613 if (UseTLAB) { 3614 if (clear_fields) { 3615 // The object is initialized before the header. If the object size is 3616 // zero, go directly to the header initialization. 3617 bind(initialize_object); 3618 if (UseCompactObjectHeaders) { 3619 assert(is_aligned(oopDesc::base_offset_in_bytes(), BytesPerLong), "oop base offset must be 8-byte-aligned"); 3620 decrement(layout_size, oopDesc::base_offset_in_bytes()); 3621 } else { 3622 decrement(layout_size, sizeof(oopDesc)); 3623 } 3624 jcc(Assembler::zero, initialize_header); 3625 3626 // Initialize topmost object field, divide size by 8, check if odd and 3627 // test if zero. 3628 Register zero = klass; 3629 xorl(zero, zero); // use zero reg to clear memory (shorter code) 3630 shrl(layout_size, LogBytesPerLong); // divide by 2*oopSize and set carry flag if odd 3631 3632 #ifdef ASSERT 3633 // make sure instance_size was multiple of 8 3634 Label L; 3635 // Ignore partial flag stall after shrl() since it is debug VM 3636 jcc(Assembler::carryClear, L); 3637 stop("object size is not multiple of 2 - adjust this code"); 3638 bind(L); 3639 // must be > 0, no extra check needed here 3640 #endif 3641 3642 // initialize remaining object fields: instance_size was a multiple of 8 3643 { 3644 Label loop; 3645 bind(loop); 3646 int header_size_bytes = oopDesc::header_size() * HeapWordSize; 3647 assert(is_aligned(header_size_bytes, BytesPerLong), "oop header size must be 8-byte-aligned"); 3648 movptr(Address(new_obj, layout_size, Address::times_8, header_size_bytes - 1*oopSize), zero); 3649 decrement(layout_size); 3650 jcc(Assembler::notZero, loop); 3651 } 3652 } // clear_fields 3653 3654 // initialize object header only. 3655 bind(initialize_header); 3656 if (UseCompactObjectHeaders || EnableValhalla) { 3657 pop(klass); 3658 Register mark_word = t2; 3659 movptr(mark_word, Address(klass, Klass::prototype_header_offset())); 3660 movptr(Address(new_obj, oopDesc::mark_offset_in_bytes ()), mark_word); 3661 } else { 3662 movptr(Address(new_obj, oopDesc::mark_offset_in_bytes()), 3663 (intptr_t)markWord::prototype().value()); // header 3664 pop(klass); // get saved klass back in the register. 3665 } 3666 if (!UseCompactObjectHeaders) { 3667 xorl(rsi, rsi); // use zero reg to clear memory (shorter code) 3668 store_klass_gap(new_obj, rsi); // zero klass gap for compressed oops 3669 movptr(t2, klass); // preserve klass 3670 store_klass(new_obj, t2, rscratch1); // src klass reg is potentially compressed 3671 } 3672 jmp(done); 3673 } 3674 3675 bind(slow_case); 3676 pop(klass); 3677 bind(slow_case_no_pop); 3678 jmp(alloc_failed); 3679 3680 bind(done); 3681 } 3682 3683 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes. 3684 void MacroAssembler::tlab_allocate(Register obj, 3685 Register var_size_in_bytes, 3686 int con_size_in_bytes, 3687 Register t1, 3688 Register t2, 3689 Label& slow_case) { 3690 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 3691 bs->tlab_allocate(this, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case); 3692 } 3693 3694 RegSet MacroAssembler::call_clobbered_gp_registers() { 3695 RegSet regs; 3696 regs += RegSet::of(rax, rcx, rdx); 3697 #ifndef _WINDOWS 3698 regs += RegSet::of(rsi, rdi); 3699 #endif 3700 regs += RegSet::range(r8, r11); 3701 if (UseAPX) { 3702 regs += RegSet::range(r16, as_Register(Register::number_of_registers - 1)); 3703 } 3704 return regs; 3705 } 3706 3707 XMMRegSet MacroAssembler::call_clobbered_xmm_registers() { 3708 int num_xmm_registers = XMMRegister::available_xmm_registers(); 3709 #if defined(_WINDOWS) 3710 XMMRegSet result = XMMRegSet::range(xmm0, xmm5); 3711 if (num_xmm_registers > 16) { 3712 result += XMMRegSet::range(xmm16, as_XMMRegister(num_xmm_registers - 1)); 3713 } 3714 return result; 3715 #else 3716 return XMMRegSet::range(xmm0, as_XMMRegister(num_xmm_registers - 1)); 3717 #endif 3718 } 3719 3720 // C1 only ever uses the first double/float of the XMM register. 3721 static int xmm_save_size() { return sizeof(double); } 3722 3723 static void save_xmm_register(MacroAssembler* masm, int offset, XMMRegister reg) { 3724 masm->movdbl(Address(rsp, offset), reg); 3725 } 3726 3727 static void restore_xmm_register(MacroAssembler* masm, int offset, XMMRegister reg) { 3728 masm->movdbl(reg, Address(rsp, offset)); 3729 } 3730 3731 static int register_section_sizes(RegSet gp_registers, XMMRegSet xmm_registers, 3732 bool save_fpu, int& gp_area_size, int& xmm_area_size) { 3733 3734 gp_area_size = align_up(gp_registers.size() * Register::max_slots_per_register * VMRegImpl::stack_slot_size, 3735 StackAlignmentInBytes); 3736 xmm_area_size = save_fpu ? xmm_registers.size() * xmm_save_size() : 0; 3737 3738 return gp_area_size + xmm_area_size; 3739 } 3740 3741 void MacroAssembler::push_call_clobbered_registers_except(RegSet exclude, bool save_fpu) { 3742 block_comment("push_call_clobbered_registers start"); 3743 // Regular registers 3744 RegSet gp_registers_to_push = call_clobbered_gp_registers() - exclude; 3745 3746 int gp_area_size; 3747 int xmm_area_size; 3748 int total_save_size = register_section_sizes(gp_registers_to_push, call_clobbered_xmm_registers(), save_fpu, 3749 gp_area_size, xmm_area_size); 3750 subptr(rsp, total_save_size); 3751 3752 push_set(gp_registers_to_push, 0); 3753 3754 if (save_fpu) { 3755 push_set(call_clobbered_xmm_registers(), gp_area_size); 3756 } 3757 3758 block_comment("push_call_clobbered_registers end"); 3759 } 3760 3761 void MacroAssembler::pop_call_clobbered_registers_except(RegSet exclude, bool restore_fpu) { 3762 block_comment("pop_call_clobbered_registers start"); 3763 3764 RegSet gp_registers_to_pop = call_clobbered_gp_registers() - exclude; 3765 3766 int gp_area_size; 3767 int xmm_area_size; 3768 int total_save_size = register_section_sizes(gp_registers_to_pop, call_clobbered_xmm_registers(), restore_fpu, 3769 gp_area_size, xmm_area_size); 3770 3771 if (restore_fpu) { 3772 pop_set(call_clobbered_xmm_registers(), gp_area_size); 3773 } 3774 3775 pop_set(gp_registers_to_pop, 0); 3776 3777 addptr(rsp, total_save_size); 3778 3779 vzeroupper(); 3780 3781 block_comment("pop_call_clobbered_registers end"); 3782 } 3783 3784 void MacroAssembler::push_set(XMMRegSet set, int offset) { 3785 assert(is_aligned(set.size() * xmm_save_size(), StackAlignmentInBytes), "must be"); 3786 int spill_offset = offset; 3787 3788 for (RegSetIterator<XMMRegister> it = set.begin(); *it != xnoreg; ++it) { 3789 save_xmm_register(this, spill_offset, *it); 3790 spill_offset += xmm_save_size(); 3791 } 3792 } 3793 3794 void MacroAssembler::pop_set(XMMRegSet set, int offset) { 3795 int restore_size = set.size() * xmm_save_size(); 3796 assert(is_aligned(restore_size, StackAlignmentInBytes), "must be"); 3797 3798 int restore_offset = offset + restore_size - xmm_save_size(); 3799 3800 for (ReverseRegSetIterator<XMMRegister> it = set.rbegin(); *it != xnoreg; ++it) { 3801 restore_xmm_register(this, restore_offset, *it); 3802 restore_offset -= xmm_save_size(); 3803 } 3804 } 3805 3806 void MacroAssembler::push_set(RegSet set, int offset) { 3807 int spill_offset; 3808 if (offset == -1) { 3809 int register_push_size = set.size() * Register::max_slots_per_register * VMRegImpl::stack_slot_size; 3810 int aligned_size = align_up(register_push_size, StackAlignmentInBytes); 3811 subptr(rsp, aligned_size); 3812 spill_offset = 0; 3813 } else { 3814 spill_offset = offset; 3815 } 3816 3817 for (RegSetIterator<Register> it = set.begin(); *it != noreg; ++it) { 3818 movptr(Address(rsp, spill_offset), *it); 3819 spill_offset += Register::max_slots_per_register * VMRegImpl::stack_slot_size; 3820 } 3821 } 3822 3823 void MacroAssembler::pop_set(RegSet set, int offset) { 3824 3825 int gp_reg_size = Register::max_slots_per_register * VMRegImpl::stack_slot_size; 3826 int restore_size = set.size() * gp_reg_size; 3827 int aligned_size = align_up(restore_size, StackAlignmentInBytes); 3828 3829 int restore_offset; 3830 if (offset == -1) { 3831 restore_offset = restore_size - gp_reg_size; 3832 } else { 3833 restore_offset = offset + restore_size - gp_reg_size; 3834 } 3835 for (ReverseRegSetIterator<Register> it = set.rbegin(); *it != noreg; ++it) { 3836 movptr(*it, Address(rsp, restore_offset)); 3837 restore_offset -= gp_reg_size; 3838 } 3839 3840 if (offset == -1) { 3841 addptr(rsp, aligned_size); 3842 } 3843 } 3844 3845 // Preserves the contents of address, destroys the contents length_in_bytes and temp. 3846 void MacroAssembler::zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp) { 3847 assert(address != length_in_bytes && address != temp && temp != length_in_bytes, "registers must be different"); 3848 assert((offset_in_bytes & (BytesPerWord - 1)) == 0, "offset must be a multiple of BytesPerWord"); 3849 Label done; 3850 3851 testptr(length_in_bytes, length_in_bytes); 3852 jcc(Assembler::zero, done); 3853 3854 // initialize topmost word, divide index by 2, check if odd and test if zero 3855 // note: for the remaining code to work, index must be a multiple of BytesPerWord 3856 #ifdef ASSERT 3857 { 3858 Label L; 3859 testptr(length_in_bytes, BytesPerWord - 1); 3860 jcc(Assembler::zero, L); 3861 stop("length must be a multiple of BytesPerWord"); 3862 bind(L); 3863 } 3864 #endif 3865 Register index = length_in_bytes; 3866 xorptr(temp, temp); // use _zero reg to clear memory (shorter code) 3867 if (UseIncDec) { 3868 shrptr(index, 3); // divide by 8/16 and set carry flag if bit 2 was set 3869 } else { 3870 shrptr(index, 2); // use 2 instructions to avoid partial flag stall 3871 shrptr(index, 1); 3872 } 3873 3874 // initialize remaining object fields: index is a multiple of 2 now 3875 { 3876 Label loop; 3877 bind(loop); 3878 movptr(Address(address, index, Address::times_8, offset_in_bytes - 1*BytesPerWord), temp); 3879 decrement(index); 3880 jcc(Assembler::notZero, loop); 3881 } 3882 3883 bind(done); 3884 } 3885 3886 void MacroAssembler::get_inline_type_field_klass(Register holder_klass, Register index, Register inline_klass) { 3887 inline_layout_info(holder_klass, index, inline_klass); 3888 movptr(inline_klass, Address(inline_klass, InlineLayoutInfo::klass_offset())); 3889 } 3890 3891 void MacroAssembler::inline_layout_info(Register holder_klass, Register index, Register layout_info) { 3892 movptr(layout_info, Address(holder_klass, InstanceKlass::inline_layout_info_array_offset())); 3893 #ifdef ASSERT 3894 { 3895 Label done; 3896 cmpptr(layout_info, 0); 3897 jcc(Assembler::notEqual, done); 3898 stop("inline_layout_info_array is null"); 3899 bind(done); 3900 } 3901 #endif 3902 3903 InlineLayoutInfo array[2]; 3904 int size = (char*)&array[1] - (char*)&array[0]; // computing size of array elements 3905 if (is_power_of_2(size)) { 3906 shll(index, log2i_exact(size)); // Scale index by power of 2 3907 } else { 3908 imull(index, index, size); // Scale the index to be the entry index * array_element_size 3909 } 3910 lea(layout_info, Address(layout_info, index, Address::times_1, Array<InlineLayoutInfo>::base_offset_in_bytes())); 3911 } 3912 3913 // Look up the method for a megamorphic invokeinterface call. 3914 // The target method is determined by <intf_klass, itable_index>. 3915 // The receiver klass is in recv_klass. 3916 // On success, the result will be in method_result, and execution falls through. 3917 // On failure, execution transfers to the given label. 3918 void MacroAssembler::lookup_interface_method(Register recv_klass, 3919 Register intf_klass, 3920 RegisterOrConstant itable_index, 3921 Register method_result, 3922 Register scan_temp, 3923 Label& L_no_such_interface, 3924 bool return_method) { 3925 assert_different_registers(recv_klass, intf_klass, scan_temp); 3926 assert_different_registers(method_result, intf_klass, scan_temp); 3927 assert(recv_klass != method_result || !return_method, 3928 "recv_klass can be destroyed when method isn't needed"); 3929 3930 assert(itable_index.is_constant() || itable_index.as_register() == method_result, 3931 "caller must use same register for non-constant itable index as for method"); 3932 3933 // Compute start of first itableOffsetEntry (which is at the end of the vtable) 3934 int vtable_base = in_bytes(Klass::vtable_start_offset()); 3935 int itentry_off = in_bytes(itableMethodEntry::method_offset()); 3936 int scan_step = itableOffsetEntry::size() * wordSize; 3937 int vte_size = vtableEntry::size_in_bytes(); 3938 Address::ScaleFactor times_vte_scale = Address::times_ptr; 3939 assert(vte_size == wordSize, "else adjust times_vte_scale"); 3940 3941 movl(scan_temp, Address(recv_klass, Klass::vtable_length_offset())); 3942 3943 // Could store the aligned, prescaled offset in the klass. 3944 lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base)); 3945 3946 if (return_method) { 3947 // Adjust recv_klass by scaled itable_index, so we can free itable_index. 3948 assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below"); 3949 lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off)); 3950 } 3951 3952 // for (scan = klass->itable(); scan->interface() != nullptr; scan += scan_step) { 3953 // if (scan->interface() == intf) { 3954 // result = (klass + scan->offset() + itable_index); 3955 // } 3956 // } 3957 Label search, found_method; 3958 3959 for (int peel = 1; peel >= 0; peel--) { 3960 movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset())); 3961 cmpptr(intf_klass, method_result); 3962 3963 if (peel) { 3964 jccb(Assembler::equal, found_method); 3965 } else { 3966 jccb(Assembler::notEqual, search); 3967 // (invert the test to fall through to found_method...) 3968 } 3969 3970 if (!peel) break; 3971 3972 bind(search); 3973 3974 // Check that the previous entry is non-null. A null entry means that 3975 // the receiver class doesn't implement the interface, and wasn't the 3976 // same as when the caller was compiled. 3977 testptr(method_result, method_result); 3978 jcc(Assembler::zero, L_no_such_interface); 3979 addptr(scan_temp, scan_step); 3980 } 3981 3982 bind(found_method); 3983 3984 if (return_method) { 3985 // Got a hit. 3986 movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset())); 3987 movptr(method_result, Address(recv_klass, scan_temp, Address::times_1)); 3988 } 3989 } 3990 3991 // Look up the method for a megamorphic invokeinterface call in a single pass over itable: 3992 // - check recv_klass (actual object class) is a subtype of resolved_klass from CompiledICData 3993 // - find a holder_klass (class that implements the method) vtable offset and get the method from vtable by index 3994 // The target method is determined by <holder_klass, itable_index>. 3995 // The receiver klass is in recv_klass. 3996 // On success, the result will be in method_result, and execution falls through. 3997 // On failure, execution transfers to the given label. 3998 void MacroAssembler::lookup_interface_method_stub(Register recv_klass, 3999 Register holder_klass, 4000 Register resolved_klass, 4001 Register method_result, 4002 Register scan_temp, 4003 Register temp_reg2, 4004 Register receiver, 4005 int itable_index, 4006 Label& L_no_such_interface) { 4007 assert_different_registers(recv_klass, method_result, holder_klass, resolved_klass, scan_temp, temp_reg2, receiver); 4008 Register temp_itbl_klass = method_result; 4009 Register temp_reg = (temp_reg2 == noreg ? recv_klass : temp_reg2); // reuse recv_klass register on 32-bit x86 impl 4010 4011 int vtable_base = in_bytes(Klass::vtable_start_offset()); 4012 int itentry_off = in_bytes(itableMethodEntry::method_offset()); 4013 int scan_step = itableOffsetEntry::size() * wordSize; 4014 int vte_size = vtableEntry::size_in_bytes(); 4015 int ioffset = in_bytes(itableOffsetEntry::interface_offset()); 4016 int ooffset = in_bytes(itableOffsetEntry::offset_offset()); 4017 Address::ScaleFactor times_vte_scale = Address::times_ptr; 4018 assert(vte_size == wordSize, "adjust times_vte_scale"); 4019 4020 Label L_loop_scan_resolved_entry, L_resolved_found, L_holder_found; 4021 4022 // temp_itbl_klass = recv_klass.itable[0] 4023 // scan_temp = &recv_klass.itable[0] + step 4024 movl(scan_temp, Address(recv_klass, Klass::vtable_length_offset())); 4025 movptr(temp_itbl_klass, Address(recv_klass, scan_temp, times_vte_scale, vtable_base + ioffset)); 4026 lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base + ioffset + scan_step)); 4027 xorptr(temp_reg, temp_reg); 4028 4029 // Initial checks: 4030 // - if (holder_klass != resolved_klass), go to "scan for resolved" 4031 // - if (itable[0] == 0), no such interface 4032 // - if (itable[0] == holder_klass), shortcut to "holder found" 4033 cmpptr(holder_klass, resolved_klass); 4034 jccb(Assembler::notEqual, L_loop_scan_resolved_entry); 4035 testptr(temp_itbl_klass, temp_itbl_klass); 4036 jccb(Assembler::zero, L_no_such_interface); 4037 cmpptr(holder_klass, temp_itbl_klass); 4038 jccb(Assembler::equal, L_holder_found); 4039 4040 // Loop: Look for holder_klass record in itable 4041 // do { 4042 // tmp = itable[index]; 4043 // index += step; 4044 // if (tmp == holder_klass) { 4045 // goto L_holder_found; // Found! 4046 // } 4047 // } while (tmp != 0); 4048 // goto L_no_such_interface // Not found. 4049 Label L_scan_holder; 4050 bind(L_scan_holder); 4051 movptr(temp_itbl_klass, Address(scan_temp, 0)); 4052 addptr(scan_temp, scan_step); 4053 cmpptr(holder_klass, temp_itbl_klass); 4054 jccb(Assembler::equal, L_holder_found); 4055 testptr(temp_itbl_klass, temp_itbl_klass); 4056 jccb(Assembler::notZero, L_scan_holder); 4057 4058 jmpb(L_no_such_interface); 4059 4060 // Loop: Look for resolved_class record in itable 4061 // do { 4062 // tmp = itable[index]; 4063 // index += step; 4064 // if (tmp == holder_klass) { 4065 // // Also check if we have met a holder klass 4066 // holder_tmp = itable[index-step-ioffset]; 4067 // } 4068 // if (tmp == resolved_klass) { 4069 // goto L_resolved_found; // Found! 4070 // } 4071 // } while (tmp != 0); 4072 // goto L_no_such_interface // Not found. 4073 // 4074 Label L_loop_scan_resolved; 4075 bind(L_loop_scan_resolved); 4076 movptr(temp_itbl_klass, Address(scan_temp, 0)); 4077 addptr(scan_temp, scan_step); 4078 bind(L_loop_scan_resolved_entry); 4079 cmpptr(holder_klass, temp_itbl_klass); 4080 cmovl(Assembler::equal, temp_reg, Address(scan_temp, ooffset - ioffset - scan_step)); 4081 cmpptr(resolved_klass, temp_itbl_klass); 4082 jccb(Assembler::equal, L_resolved_found); 4083 testptr(temp_itbl_klass, temp_itbl_klass); 4084 jccb(Assembler::notZero, L_loop_scan_resolved); 4085 4086 jmpb(L_no_such_interface); 4087 4088 Label L_ready; 4089 4090 // See if we already have a holder klass. If not, go and scan for it. 4091 bind(L_resolved_found); 4092 testptr(temp_reg, temp_reg); 4093 jccb(Assembler::zero, L_scan_holder); 4094 jmpb(L_ready); 4095 4096 bind(L_holder_found); 4097 movl(temp_reg, Address(scan_temp, ooffset - ioffset - scan_step)); 4098 4099 // Finally, temp_reg contains holder_klass vtable offset 4100 bind(L_ready); 4101 assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below"); 4102 if (temp_reg2 == noreg) { // recv_klass register is clobbered for 32-bit x86 impl 4103 load_klass(scan_temp, receiver, noreg); 4104 movptr(method_result, Address(scan_temp, temp_reg, Address::times_1, itable_index * wordSize + itentry_off)); 4105 } else { 4106 movptr(method_result, Address(recv_klass, temp_reg, Address::times_1, itable_index * wordSize + itentry_off)); 4107 } 4108 } 4109 4110 4111 // virtual method calling 4112 void MacroAssembler::lookup_virtual_method(Register recv_klass, 4113 RegisterOrConstant vtable_index, 4114 Register method_result) { 4115 const ByteSize base = Klass::vtable_start_offset(); 4116 assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below"); 4117 Address vtable_entry_addr(recv_klass, 4118 vtable_index, Address::times_ptr, 4119 base + vtableEntry::method_offset()); 4120 movptr(method_result, vtable_entry_addr); 4121 } 4122 4123 4124 void MacroAssembler::check_klass_subtype(Register sub_klass, 4125 Register super_klass, 4126 Register temp_reg, 4127 Label& L_success) { 4128 Label L_failure; 4129 check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg, &L_success, &L_failure, nullptr); 4130 check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, nullptr); 4131 bind(L_failure); 4132 } 4133 4134 4135 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass, 4136 Register super_klass, 4137 Register temp_reg, 4138 Label* L_success, 4139 Label* L_failure, 4140 Label* L_slow_path, 4141 RegisterOrConstant super_check_offset) { 4142 assert_different_registers(sub_klass, super_klass, temp_reg); 4143 bool must_load_sco = (super_check_offset.constant_or_zero() == -1); 4144 if (super_check_offset.is_register()) { 4145 assert_different_registers(sub_klass, super_klass, 4146 super_check_offset.as_register()); 4147 } else if (must_load_sco) { 4148 assert(temp_reg != noreg, "supply either a temp or a register offset"); 4149 } 4150 4151 Label L_fallthrough; 4152 int label_nulls = 0; 4153 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 4154 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 4155 if (L_slow_path == nullptr) { L_slow_path = &L_fallthrough; label_nulls++; } 4156 assert(label_nulls <= 1, "at most one null in the batch"); 4157 4158 int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); 4159 int sco_offset = in_bytes(Klass::super_check_offset_offset()); 4160 Address super_check_offset_addr(super_klass, sco_offset); 4161 4162 // Hacked jcc, which "knows" that L_fallthrough, at least, is in 4163 // range of a jccb. If this routine grows larger, reconsider at 4164 // least some of these. 4165 #define local_jcc(assembler_cond, label) \ 4166 if (&(label) == &L_fallthrough) jccb(assembler_cond, label); \ 4167 else jcc( assembler_cond, label) /*omit semi*/ 4168 4169 // Hacked jmp, which may only be used just before L_fallthrough. 4170 #define final_jmp(label) \ 4171 if (&(label) == &L_fallthrough) { /*do nothing*/ } \ 4172 else jmp(label) /*omit semi*/ 4173 4174 // If the pointers are equal, we are done (e.g., String[] elements). 4175 // This self-check enables sharing of secondary supertype arrays among 4176 // non-primary types such as array-of-interface. Otherwise, each such 4177 // type would need its own customized SSA. 4178 // We move this check to the front of the fast path because many 4179 // type checks are in fact trivially successful in this manner, 4180 // so we get a nicely predicted branch right at the start of the check. 4181 cmpptr(sub_klass, super_klass); 4182 local_jcc(Assembler::equal, *L_success); 4183 4184 // Check the supertype display: 4185 if (must_load_sco) { 4186 // Positive movl does right thing on LP64. 4187 movl(temp_reg, super_check_offset_addr); 4188 super_check_offset = RegisterOrConstant(temp_reg); 4189 } 4190 Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0); 4191 cmpptr(super_klass, super_check_addr); // load displayed supertype 4192 4193 // This check has worked decisively for primary supers. 4194 // Secondary supers are sought in the super_cache ('super_cache_addr'). 4195 // (Secondary supers are interfaces and very deeply nested subtypes.) 4196 // This works in the same check above because of a tricky aliasing 4197 // between the super_cache and the primary super display elements. 4198 // (The 'super_check_addr' can address either, as the case requires.) 4199 // Note that the cache is updated below if it does not help us find 4200 // what we need immediately. 4201 // So if it was a primary super, we can just fail immediately. 4202 // Otherwise, it's the slow path for us (no success at this point). 4203 4204 if (super_check_offset.is_register()) { 4205 local_jcc(Assembler::equal, *L_success); 4206 cmpl(super_check_offset.as_register(), sc_offset); 4207 if (L_failure == &L_fallthrough) { 4208 local_jcc(Assembler::equal, *L_slow_path); 4209 } else { 4210 local_jcc(Assembler::notEqual, *L_failure); 4211 final_jmp(*L_slow_path); 4212 } 4213 } else if (super_check_offset.as_constant() == sc_offset) { 4214 // Need a slow path; fast failure is impossible. 4215 if (L_slow_path == &L_fallthrough) { 4216 local_jcc(Assembler::equal, *L_success); 4217 } else { 4218 local_jcc(Assembler::notEqual, *L_slow_path); 4219 final_jmp(*L_success); 4220 } 4221 } else { 4222 // No slow path; it's a fast decision. 4223 if (L_failure == &L_fallthrough) { 4224 local_jcc(Assembler::equal, *L_success); 4225 } else { 4226 local_jcc(Assembler::notEqual, *L_failure); 4227 final_jmp(*L_success); 4228 } 4229 } 4230 4231 bind(L_fallthrough); 4232 4233 #undef local_jcc 4234 #undef final_jmp 4235 } 4236 4237 4238 void MacroAssembler::check_klass_subtype_slow_path_linear(Register sub_klass, 4239 Register super_klass, 4240 Register temp_reg, 4241 Register temp2_reg, 4242 Label* L_success, 4243 Label* L_failure, 4244 bool set_cond_codes) { 4245 assert_different_registers(sub_klass, super_klass, temp_reg); 4246 if (temp2_reg != noreg) 4247 assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg); 4248 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg) 4249 4250 Label L_fallthrough; 4251 int label_nulls = 0; 4252 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 4253 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 4254 assert(label_nulls <= 1, "at most one null in the batch"); 4255 4256 // a couple of useful fields in sub_klass: 4257 int ss_offset = in_bytes(Klass::secondary_supers_offset()); 4258 int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); 4259 Address secondary_supers_addr(sub_klass, ss_offset); 4260 Address super_cache_addr( sub_klass, sc_offset); 4261 4262 // Do a linear scan of the secondary super-klass chain. 4263 // This code is rarely used, so simplicity is a virtue here. 4264 // The repne_scan instruction uses fixed registers, which we must spill. 4265 // Don't worry too much about pre-existing connections with the input regs. 4266 4267 assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super) 4268 assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter) 4269 4270 // Get super_klass value into rax (even if it was in rdi or rcx). 4271 bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false; 4272 if (super_klass != rax) { 4273 if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; } 4274 mov(rax, super_klass); 4275 } 4276 if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; } 4277 if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; } 4278 4279 #ifndef PRODUCT 4280 uint* pst_counter = &SharedRuntime::_partial_subtype_ctr; 4281 ExternalAddress pst_counter_addr((address) pst_counter); 4282 lea(rcx, pst_counter_addr); 4283 incrementl(Address(rcx, 0)); 4284 #endif //PRODUCT 4285 4286 // We will consult the secondary-super array. 4287 movptr(rdi, secondary_supers_addr); 4288 // Load the array length. (Positive movl does right thing on LP64.) 4289 movl(rcx, Address(rdi, Array<Klass*>::length_offset_in_bytes())); 4290 // Skip to start of data. 4291 addptr(rdi, Array<Klass*>::base_offset_in_bytes()); 4292 4293 // Scan RCX words at [RDI] for an occurrence of RAX. 4294 // Set NZ/Z based on last compare. 4295 // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does 4296 // not change flags (only scas instruction which is repeated sets flags). 4297 // Set Z = 0 (not equal) before 'repne' to indicate that class was not found. 4298 4299 testptr(rax,rax); // Set Z = 0 4300 repne_scan(); 4301 4302 // Unspill the temp. registers: 4303 if (pushed_rdi) pop(rdi); 4304 if (pushed_rcx) pop(rcx); 4305 if (pushed_rax) pop(rax); 4306 4307 if (set_cond_codes) { 4308 // Special hack for the AD files: rdi is guaranteed non-zero. 4309 assert(!pushed_rdi, "rdi must be left non-null"); 4310 // Also, the condition codes are properly set Z/NZ on succeed/failure. 4311 } 4312 4313 if (L_failure == &L_fallthrough) 4314 jccb(Assembler::notEqual, *L_failure); 4315 else jcc(Assembler::notEqual, *L_failure); 4316 4317 // Success. Cache the super we found and proceed in triumph. 4318 movptr(super_cache_addr, super_klass); 4319 4320 if (L_success != &L_fallthrough) { 4321 jmp(*L_success); 4322 } 4323 4324 #undef IS_A_TEMP 4325 4326 bind(L_fallthrough); 4327 } 4328 4329 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass, 4330 Register super_klass, 4331 Register temp_reg, 4332 Register temp2_reg, 4333 Label* L_success, 4334 Label* L_failure, 4335 bool set_cond_codes) { 4336 assert(set_cond_codes == false, "must be false on 64-bit x86"); 4337 check_klass_subtype_slow_path 4338 (sub_klass, super_klass, temp_reg, temp2_reg, noreg, noreg, 4339 L_success, L_failure); 4340 } 4341 4342 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass, 4343 Register super_klass, 4344 Register temp_reg, 4345 Register temp2_reg, 4346 Register temp3_reg, 4347 Register temp4_reg, 4348 Label* L_success, 4349 Label* L_failure) { 4350 if (UseSecondarySupersTable) { 4351 check_klass_subtype_slow_path_table 4352 (sub_klass, super_klass, temp_reg, temp2_reg, temp3_reg, temp4_reg, 4353 L_success, L_failure); 4354 } else { 4355 check_klass_subtype_slow_path_linear 4356 (sub_klass, super_klass, temp_reg, temp2_reg, L_success, L_failure, /*set_cond_codes*/false); 4357 } 4358 } 4359 4360 Register MacroAssembler::allocate_if_noreg(Register r, 4361 RegSetIterator<Register> &available_regs, 4362 RegSet ®s_to_push) { 4363 if (!r->is_valid()) { 4364 r = *available_regs++; 4365 regs_to_push += r; 4366 } 4367 return r; 4368 } 4369 4370 void MacroAssembler::check_klass_subtype_slow_path_table(Register sub_klass, 4371 Register super_klass, 4372 Register temp_reg, 4373 Register temp2_reg, 4374 Register temp3_reg, 4375 Register result_reg, 4376 Label* L_success, 4377 Label* L_failure) { 4378 // NB! Callers may assume that, when temp2_reg is a valid register, 4379 // this code sets it to a nonzero value. 4380 bool temp2_reg_was_valid = temp2_reg->is_valid(); 4381 4382 RegSet temps = RegSet::of(temp_reg, temp2_reg, temp3_reg); 4383 4384 Label L_fallthrough; 4385 int label_nulls = 0; 4386 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 4387 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 4388 assert(label_nulls <= 1, "at most one null in the batch"); 4389 4390 BLOCK_COMMENT("check_klass_subtype_slow_path_table"); 4391 4392 RegSetIterator<Register> available_regs 4393 = (RegSet::of(rax, rcx, rdx, r8) + r9 + r10 + r11 + r12 - temps - sub_klass - super_klass).begin(); 4394 4395 RegSet pushed_regs; 4396 4397 temp_reg = allocate_if_noreg(temp_reg, available_regs, pushed_regs); 4398 temp2_reg = allocate_if_noreg(temp2_reg, available_regs, pushed_regs); 4399 temp3_reg = allocate_if_noreg(temp3_reg, available_regs, pushed_regs); 4400 result_reg = allocate_if_noreg(result_reg, available_regs, pushed_regs); 4401 Register temp4_reg = allocate_if_noreg(noreg, available_regs, pushed_regs); 4402 4403 assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, temp3_reg, result_reg); 4404 4405 { 4406 4407 int register_push_size = pushed_regs.size() * Register::max_slots_per_register * VMRegImpl::stack_slot_size; 4408 int aligned_size = align_up(register_push_size, StackAlignmentInBytes); 4409 subptr(rsp, aligned_size); 4410 push_set(pushed_regs, 0); 4411 4412 lookup_secondary_supers_table_var(sub_klass, 4413 super_klass, 4414 temp_reg, temp2_reg, temp3_reg, temp4_reg, result_reg); 4415 cmpq(result_reg, 0); 4416 4417 // Unspill the temp. registers: 4418 pop_set(pushed_regs, 0); 4419 // Increment SP but do not clobber flags. 4420 lea(rsp, Address(rsp, aligned_size)); 4421 } 4422 4423 if (temp2_reg_was_valid) { 4424 movq(temp2_reg, 1); 4425 } 4426 4427 jcc(Assembler::notEqual, *L_failure); 4428 4429 if (L_success != &L_fallthrough) { 4430 jmp(*L_success); 4431 } 4432 4433 bind(L_fallthrough); 4434 } 4435 4436 // population_count variant for running without the POPCNT 4437 // instruction, which was introduced with SSE4.2 in 2008. 4438 void MacroAssembler::population_count(Register dst, Register src, 4439 Register scratch1, Register scratch2) { 4440 assert_different_registers(src, scratch1, scratch2); 4441 if (UsePopCountInstruction) { 4442 Assembler::popcntq(dst, src); 4443 } else { 4444 assert_different_registers(src, scratch1, scratch2); 4445 assert_different_registers(dst, scratch1, scratch2); 4446 Label loop, done; 4447 4448 mov(scratch1, src); 4449 // dst = 0; 4450 // while(scratch1 != 0) { 4451 // dst++; 4452 // scratch1 &= (scratch1 - 1); 4453 // } 4454 xorl(dst, dst); 4455 testq(scratch1, scratch1); 4456 jccb(Assembler::equal, done); 4457 { 4458 bind(loop); 4459 incq(dst); 4460 movq(scratch2, scratch1); 4461 decq(scratch2); 4462 andq(scratch1, scratch2); 4463 jccb(Assembler::notEqual, loop); 4464 } 4465 bind(done); 4466 } 4467 #ifdef ASSERT 4468 mov64(scratch1, 0xCafeBabeDeadBeef); 4469 movq(scratch2, scratch1); 4470 #endif 4471 } 4472 4473 // Ensure that the inline code and the stub are using the same registers. 4474 #define LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS \ 4475 do { \ 4476 assert(r_super_klass == rax, "mismatch"); \ 4477 assert(r_array_base == rbx, "mismatch"); \ 4478 assert(r_array_length == rcx, "mismatch"); \ 4479 assert(r_array_index == rdx, "mismatch"); \ 4480 assert(r_sub_klass == rsi || r_sub_klass == noreg, "mismatch"); \ 4481 assert(r_bitmap == r11 || r_bitmap == noreg, "mismatch"); \ 4482 assert(result == rdi || result == noreg, "mismatch"); \ 4483 } while(0) 4484 4485 // Versions of salq and rorq that don't need count to be in rcx 4486 4487 void MacroAssembler::salq(Register dest, Register count) { 4488 if (count == rcx) { 4489 Assembler::salq(dest); 4490 } else { 4491 assert_different_registers(rcx, dest); 4492 xchgq(rcx, count); 4493 Assembler::salq(dest); 4494 xchgq(rcx, count); 4495 } 4496 } 4497 4498 void MacroAssembler::rorq(Register dest, Register count) { 4499 if (count == rcx) { 4500 Assembler::rorq(dest); 4501 } else { 4502 assert_different_registers(rcx, dest); 4503 xchgq(rcx, count); 4504 Assembler::rorq(dest); 4505 xchgq(rcx, count); 4506 } 4507 } 4508 4509 // Return true: we succeeded in generating this code 4510 // 4511 // At runtime, return 0 in result if r_super_klass is a superclass of 4512 // r_sub_klass, otherwise return nonzero. Use this if you know the 4513 // super_klass_slot of the class you're looking for. This is always 4514 // the case for instanceof and checkcast. 4515 void MacroAssembler::lookup_secondary_supers_table_const(Register r_sub_klass, 4516 Register r_super_klass, 4517 Register temp1, 4518 Register temp2, 4519 Register temp3, 4520 Register temp4, 4521 Register result, 4522 u1 super_klass_slot) { 4523 assert_different_registers(r_sub_klass, r_super_klass, temp1, temp2, temp3, temp4, result); 4524 4525 Label L_fallthrough, L_success, L_failure; 4526 4527 BLOCK_COMMENT("lookup_secondary_supers_table {"); 4528 4529 const Register 4530 r_array_index = temp1, 4531 r_array_length = temp2, 4532 r_array_base = temp3, 4533 r_bitmap = temp4; 4534 4535 LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS; 4536 4537 xorq(result, result); // = 0 4538 4539 movq(r_bitmap, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset())); 4540 movq(r_array_index, r_bitmap); 4541 4542 // First check the bitmap to see if super_klass might be present. If 4543 // the bit is zero, we are certain that super_klass is not one of 4544 // the secondary supers. 4545 u1 bit = super_klass_slot; 4546 { 4547 // NB: If the count in a x86 shift instruction is 0, the flags are 4548 // not affected, so we do a testq instead. 4549 int shift_count = Klass::SECONDARY_SUPERS_TABLE_MASK - bit; 4550 if (shift_count != 0) { 4551 salq(r_array_index, shift_count); 4552 } else { 4553 testq(r_array_index, r_array_index); 4554 } 4555 } 4556 // We test the MSB of r_array_index, i.e. its sign bit 4557 jcc(Assembler::positive, L_failure); 4558 4559 // Get the first array index that can contain super_klass into r_array_index. 4560 if (bit != 0) { 4561 population_count(r_array_index, r_array_index, temp2, temp3); 4562 } else { 4563 movl(r_array_index, 1); 4564 } 4565 // NB! r_array_index is off by 1. It is compensated by keeping r_array_base off by 1 word. 4566 4567 // We will consult the secondary-super array. 4568 movptr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 4569 4570 // We're asserting that the first word in an Array<Klass*> is the 4571 // length, and the second word is the first word of the data. If 4572 // that ever changes, r_array_base will have to be adjusted here. 4573 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "Adjust this code"); 4574 assert(Array<Klass*>::length_offset_in_bytes() == 0, "Adjust this code"); 4575 4576 cmpq(r_super_klass, Address(r_array_base, r_array_index, Address::times_8)); 4577 jccb(Assembler::equal, L_success); 4578 4579 // Is there another entry to check? Consult the bitmap. 4580 btq(r_bitmap, (bit + 1) & Klass::SECONDARY_SUPERS_TABLE_MASK); 4581 jccb(Assembler::carryClear, L_failure); 4582 4583 // Linear probe. Rotate the bitmap so that the next bit to test is 4584 // in Bit 1. 4585 if (bit != 0) { 4586 rorq(r_bitmap, bit); 4587 } 4588 4589 // Calls into the stub generated by lookup_secondary_supers_table_slow_path. 4590 // Arguments: r_super_klass, r_array_base, r_array_index, r_bitmap. 4591 // Kills: r_array_length. 4592 // Returns: result. 4593 call(RuntimeAddress(StubRoutines::lookup_secondary_supers_table_slow_path_stub())); 4594 // Result (0/1) is in rdi 4595 jmpb(L_fallthrough); 4596 4597 bind(L_failure); 4598 incq(result); // 0 => 1 4599 4600 bind(L_success); 4601 // result = 0; 4602 4603 bind(L_fallthrough); 4604 BLOCK_COMMENT("} lookup_secondary_supers_table"); 4605 4606 if (VerifySecondarySupers) { 4607 verify_secondary_supers_table(r_sub_klass, r_super_klass, result, 4608 temp1, temp2, temp3); 4609 } 4610 } 4611 4612 // At runtime, return 0 in result if r_super_klass is a superclass of 4613 // r_sub_klass, otherwise return nonzero. Use this version of 4614 // lookup_secondary_supers_table() if you don't know ahead of time 4615 // which superclass will be searched for. Used by interpreter and 4616 // runtime stubs. It is larger and has somewhat greater latency than 4617 // the version above, which takes a constant super_klass_slot. 4618 void MacroAssembler::lookup_secondary_supers_table_var(Register r_sub_klass, 4619 Register r_super_klass, 4620 Register temp1, 4621 Register temp2, 4622 Register temp3, 4623 Register temp4, 4624 Register result) { 4625 assert_different_registers(r_sub_klass, r_super_klass, temp1, temp2, temp3, temp4, result); 4626 assert_different_registers(r_sub_klass, r_super_klass, rcx); 4627 RegSet temps = RegSet::of(temp1, temp2, temp3, temp4); 4628 4629 Label L_fallthrough, L_success, L_failure; 4630 4631 BLOCK_COMMENT("lookup_secondary_supers_table {"); 4632 4633 RegSetIterator<Register> available_regs = (temps - rcx).begin(); 4634 4635 // FIXME. Once we are sure that all paths reaching this point really 4636 // do pass rcx as one of our temps we can get rid of the following 4637 // workaround. 4638 assert(temps.contains(rcx), "fix this code"); 4639 4640 // We prefer to have our shift count in rcx. If rcx is one of our 4641 // temps, use it for slot. If not, pick any of our temps. 4642 Register slot; 4643 if (!temps.contains(rcx)) { 4644 slot = *available_regs++; 4645 } else { 4646 slot = rcx; 4647 } 4648 4649 const Register r_array_index = *available_regs++; 4650 const Register r_bitmap = *available_regs++; 4651 4652 // The logic above guarantees this property, but we state it here. 4653 assert_different_registers(r_array_index, r_bitmap, rcx); 4654 4655 movq(r_bitmap, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset())); 4656 movq(r_array_index, r_bitmap); 4657 4658 // First check the bitmap to see if super_klass might be present. If 4659 // the bit is zero, we are certain that super_klass is not one of 4660 // the secondary supers. 4661 movb(slot, Address(r_super_klass, Klass::hash_slot_offset())); 4662 xorl(slot, (u1)(Klass::SECONDARY_SUPERS_TABLE_SIZE - 1)); // slot ^ 63 === 63 - slot (mod 64) 4663 salq(r_array_index, slot); 4664 4665 testq(r_array_index, r_array_index); 4666 // We test the MSB of r_array_index, i.e. its sign bit 4667 jcc(Assembler::positive, L_failure); 4668 4669 const Register r_array_base = *available_regs++; 4670 4671 // Get the first array index that can contain super_klass into r_array_index. 4672 // Note: Clobbers r_array_base and slot. 4673 population_count(r_array_index, r_array_index, /*temp2*/r_array_base, /*temp3*/slot); 4674 4675 // NB! r_array_index is off by 1. It is compensated by keeping r_array_base off by 1 word. 4676 4677 // We will consult the secondary-super array. 4678 movptr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 4679 4680 // We're asserting that the first word in an Array<Klass*> is the 4681 // length, and the second word is the first word of the data. If 4682 // that ever changes, r_array_base will have to be adjusted here. 4683 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "Adjust this code"); 4684 assert(Array<Klass*>::length_offset_in_bytes() == 0, "Adjust this code"); 4685 4686 cmpq(r_super_klass, Address(r_array_base, r_array_index, Address::times_8)); 4687 jccb(Assembler::equal, L_success); 4688 4689 // Restore slot to its true value 4690 movb(slot, Address(r_super_klass, Klass::hash_slot_offset())); 4691 4692 // Linear probe. Rotate the bitmap so that the next bit to test is 4693 // in Bit 1. 4694 rorq(r_bitmap, slot); 4695 4696 // Is there another entry to check? Consult the bitmap. 4697 btq(r_bitmap, 1); 4698 jccb(Assembler::carryClear, L_failure); 4699 4700 // Calls into the stub generated by lookup_secondary_supers_table_slow_path. 4701 // Arguments: r_super_klass, r_array_base, r_array_index, r_bitmap. 4702 // Kills: r_array_length. 4703 // Returns: result. 4704 lookup_secondary_supers_table_slow_path(r_super_klass, 4705 r_array_base, 4706 r_array_index, 4707 r_bitmap, 4708 /*temp1*/result, 4709 /*temp2*/slot, 4710 &L_success, 4711 nullptr); 4712 4713 bind(L_failure); 4714 movq(result, 1); 4715 jmpb(L_fallthrough); 4716 4717 bind(L_success); 4718 xorq(result, result); // = 0 4719 4720 bind(L_fallthrough); 4721 BLOCK_COMMENT("} lookup_secondary_supers_table"); 4722 4723 if (VerifySecondarySupers) { 4724 verify_secondary_supers_table(r_sub_klass, r_super_klass, result, 4725 temp1, temp2, temp3); 4726 } 4727 } 4728 4729 void MacroAssembler::repne_scanq(Register addr, Register value, Register count, Register limit, 4730 Label* L_success, Label* L_failure) { 4731 Label L_loop, L_fallthrough; 4732 { 4733 int label_nulls = 0; 4734 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 4735 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 4736 assert(label_nulls <= 1, "at most one null in the batch"); 4737 } 4738 bind(L_loop); 4739 cmpq(value, Address(addr, count, Address::times_8)); 4740 jcc(Assembler::equal, *L_success); 4741 addl(count, 1); 4742 cmpl(count, limit); 4743 jcc(Assembler::less, L_loop); 4744 4745 if (&L_fallthrough != L_failure) { 4746 jmp(*L_failure); 4747 } 4748 bind(L_fallthrough); 4749 } 4750 4751 // Called by code generated by check_klass_subtype_slow_path 4752 // above. This is called when there is a collision in the hashed 4753 // lookup in the secondary supers array. 4754 void MacroAssembler::lookup_secondary_supers_table_slow_path(Register r_super_klass, 4755 Register r_array_base, 4756 Register r_array_index, 4757 Register r_bitmap, 4758 Register temp1, 4759 Register temp2, 4760 Label* L_success, 4761 Label* L_failure) { 4762 assert_different_registers(r_super_klass, r_array_base, r_array_index, r_bitmap, temp1, temp2); 4763 4764 const Register 4765 r_array_length = temp1, 4766 r_sub_klass = noreg, 4767 result = noreg; 4768 4769 Label L_fallthrough; 4770 int label_nulls = 0; 4771 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 4772 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 4773 assert(label_nulls <= 1, "at most one null in the batch"); 4774 4775 // Load the array length. 4776 movl(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes())); 4777 // And adjust the array base to point to the data. 4778 // NB! Effectively increments current slot index by 1. 4779 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, ""); 4780 addptr(r_array_base, Array<Klass*>::base_offset_in_bytes()); 4781 4782 // Linear probe 4783 Label L_huge; 4784 4785 // The bitmap is full to bursting. 4786 // Implicit invariant: BITMAP_FULL implies (length > 0) 4787 cmpl(r_array_length, (int32_t)Klass::SECONDARY_SUPERS_TABLE_SIZE - 2); 4788 jcc(Assembler::greater, L_huge); 4789 4790 // NB! Our caller has checked bits 0 and 1 in the bitmap. The 4791 // current slot (at secondary_supers[r_array_index]) has not yet 4792 // been inspected, and r_array_index may be out of bounds if we 4793 // wrapped around the end of the array. 4794 4795 { // This is conventional linear probing, but instead of terminating 4796 // when a null entry is found in the table, we maintain a bitmap 4797 // in which a 0 indicates missing entries. 4798 // The check above guarantees there are 0s in the bitmap, so the loop 4799 // eventually terminates. 4800 4801 xorl(temp2, temp2); // = 0; 4802 4803 Label L_again; 4804 bind(L_again); 4805 4806 // Check for array wraparound. 4807 cmpl(r_array_index, r_array_length); 4808 cmovl(Assembler::greaterEqual, r_array_index, temp2); 4809 4810 cmpq(r_super_klass, Address(r_array_base, r_array_index, Address::times_8)); 4811 jcc(Assembler::equal, *L_success); 4812 4813 // If the next bit in bitmap is zero, we're done. 4814 btq(r_bitmap, 2); // look-ahead check (Bit 2); Bits 0 and 1 are tested by now 4815 jcc(Assembler::carryClear, *L_failure); 4816 4817 rorq(r_bitmap, 1); // Bits 1/2 => 0/1 4818 addl(r_array_index, 1); 4819 4820 jmp(L_again); 4821 } 4822 4823 { // Degenerate case: more than 64 secondary supers. 4824 // FIXME: We could do something smarter here, maybe a vectorized 4825 // comparison or a binary search, but is that worth any added 4826 // complexity? 4827 bind(L_huge); 4828 xorl(r_array_index, r_array_index); // = 0 4829 repne_scanq(r_array_base, r_super_klass, r_array_index, r_array_length, 4830 L_success, 4831 (&L_fallthrough != L_failure ? L_failure : nullptr)); 4832 4833 bind(L_fallthrough); 4834 } 4835 } 4836 4837 struct VerifyHelperArguments { 4838 Klass* _super; 4839 Klass* _sub; 4840 intptr_t _linear_result; 4841 intptr_t _table_result; 4842 }; 4843 4844 static void verify_secondary_supers_table_helper(const char* msg, VerifyHelperArguments* args) { 4845 Klass::on_secondary_supers_verification_failure(args->_super, 4846 args->_sub, 4847 args->_linear_result, 4848 args->_table_result, 4849 msg); 4850 } 4851 4852 // Make sure that the hashed lookup and a linear scan agree. 4853 void MacroAssembler::verify_secondary_supers_table(Register r_sub_klass, 4854 Register r_super_klass, 4855 Register result, 4856 Register temp1, 4857 Register temp2, 4858 Register temp3) { 4859 const Register 4860 r_array_index = temp1, 4861 r_array_length = temp2, 4862 r_array_base = temp3, 4863 r_bitmap = noreg; 4864 4865 BLOCK_COMMENT("verify_secondary_supers_table {"); 4866 4867 Label L_success, L_failure, L_check, L_done; 4868 4869 movptr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 4870 movl(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes())); 4871 // And adjust the array base to point to the data. 4872 addptr(r_array_base, Array<Klass*>::base_offset_in_bytes()); 4873 4874 testl(r_array_length, r_array_length); // array_length == 0? 4875 jcc(Assembler::zero, L_failure); 4876 4877 movl(r_array_index, 0); 4878 repne_scanq(r_array_base, r_super_klass, r_array_index, r_array_length, &L_success); 4879 // fall through to L_failure 4880 4881 const Register linear_result = r_array_index; // reuse temp1 4882 4883 bind(L_failure); // not present 4884 movl(linear_result, 1); 4885 jmp(L_check); 4886 4887 bind(L_success); // present 4888 movl(linear_result, 0); 4889 4890 bind(L_check); 4891 cmpl(linear_result, result); 4892 jcc(Assembler::equal, L_done); 4893 4894 { // To avoid calling convention issues, build a record on the stack 4895 // and pass the pointer to that instead. 4896 push(result); 4897 push(linear_result); 4898 push(r_sub_klass); 4899 push(r_super_klass); 4900 movptr(c_rarg1, rsp); 4901 movptr(c_rarg0, (uintptr_t) "mismatch"); 4902 call(RuntimeAddress(CAST_FROM_FN_PTR(address, verify_secondary_supers_table_helper))); 4903 should_not_reach_here(); 4904 } 4905 bind(L_done); 4906 4907 BLOCK_COMMENT("} verify_secondary_supers_table"); 4908 } 4909 4910 #undef LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS 4911 4912 void MacroAssembler::clinit_barrier(Register klass, Label* L_fast_path, Label* L_slow_path) { 4913 assert(L_fast_path != nullptr || L_slow_path != nullptr, "at least one is required"); 4914 4915 Label L_fallthrough; 4916 if (L_fast_path == nullptr) { 4917 L_fast_path = &L_fallthrough; 4918 } else if (L_slow_path == nullptr) { 4919 L_slow_path = &L_fallthrough; 4920 } 4921 4922 // Fast path check: class is fully initialized. 4923 // init_state needs acquire, but x86 is TSO, and so we are already good. 4924 cmpb(Address(klass, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized); 4925 jcc(Assembler::equal, *L_fast_path); 4926 4927 // Fast path check: current thread is initializer thread 4928 cmpptr(r15_thread, Address(klass, InstanceKlass::init_thread_offset())); 4929 if (L_slow_path == &L_fallthrough) { 4930 jcc(Assembler::equal, *L_fast_path); 4931 bind(*L_slow_path); 4932 } else if (L_fast_path == &L_fallthrough) { 4933 jcc(Assembler::notEqual, *L_slow_path); 4934 bind(*L_fast_path); 4935 } else { 4936 Unimplemented(); 4937 } 4938 } 4939 4940 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) { 4941 if (VM_Version::supports_cmov()) { 4942 cmovl(cc, dst, src); 4943 } else { 4944 Label L; 4945 jccb(negate_condition(cc), L); 4946 movl(dst, src); 4947 bind(L); 4948 } 4949 } 4950 4951 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) { 4952 if (VM_Version::supports_cmov()) { 4953 cmovl(cc, dst, src); 4954 } else { 4955 Label L; 4956 jccb(negate_condition(cc), L); 4957 movl(dst, src); 4958 bind(L); 4959 } 4960 } 4961 4962 void MacroAssembler::_verify_oop(Register reg, const char* s, const char* file, int line) { 4963 if (!VerifyOops || VerifyAdapterSharing) { 4964 // Below address of the code string confuses VerifyAdapterSharing 4965 // because it may differ between otherwise equivalent adapters. 4966 return; 4967 } 4968 4969 BLOCK_COMMENT("verify_oop {"); 4970 push(rscratch1); 4971 push(rax); // save rax 4972 push(reg); // pass register argument 4973 4974 // Pass register number to verify_oop_subroutine 4975 const char* b = nullptr; 4976 { 4977 ResourceMark rm; 4978 stringStream ss; 4979 ss.print("verify_oop: %s: %s (%s:%d)", reg->name(), s, file, line); 4980 b = code_string(ss.as_string()); 4981 } 4982 AddressLiteral buffer((address) b, external_word_Relocation::spec_for_immediate()); 4983 pushptr(buffer.addr(), rscratch1); 4984 4985 // call indirectly to solve generation ordering problem 4986 movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address())); 4987 call(rax); 4988 // Caller pops the arguments (oop, message) and restores rax, r10 4989 BLOCK_COMMENT("} verify_oop"); 4990 } 4991 4992 void MacroAssembler::vallones(XMMRegister dst, int vector_len) { 4993 if (UseAVX > 2 && (vector_len == Assembler::AVX_512bit || VM_Version::supports_avx512vl())) { 4994 // Only pcmpeq has dependency breaking treatment (i.e the execution can begin without 4995 // waiting for the previous result on dst), not vpcmpeqd, so just use vpternlog 4996 vpternlogd(dst, 0xFF, dst, dst, vector_len); 4997 } else if (VM_Version::supports_avx()) { 4998 vpcmpeqd(dst, dst, dst, vector_len); 4999 } else { 5000 pcmpeqd(dst, dst); 5001 } 5002 } 5003 5004 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot, 5005 int extra_slot_offset) { 5006 // cf. TemplateTable::prepare_invoke(), if (load_receiver). 5007 int stackElementSize = Interpreter::stackElementSize; 5008 int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0); 5009 #ifdef ASSERT 5010 int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1); 5011 assert(offset1 - offset == stackElementSize, "correct arithmetic"); 5012 #endif 5013 Register scale_reg = noreg; 5014 Address::ScaleFactor scale_factor = Address::no_scale; 5015 if (arg_slot.is_constant()) { 5016 offset += arg_slot.as_constant() * stackElementSize; 5017 } else { 5018 scale_reg = arg_slot.as_register(); 5019 scale_factor = Address::times(stackElementSize); 5020 } 5021 offset += wordSize; // return PC is on stack 5022 return Address(rsp, scale_reg, scale_factor, offset); 5023 } 5024 5025 void MacroAssembler::_verify_oop_addr(Address addr, const char* s, const char* file, int line) { 5026 if (!VerifyOops || VerifyAdapterSharing) { 5027 // Below address of the code string confuses VerifyAdapterSharing 5028 // because it may differ between otherwise equivalent adapters. 5029 return; 5030 } 5031 5032 push(rscratch1); 5033 push(rax); // save rax, 5034 // addr may contain rsp so we will have to adjust it based on the push 5035 // we just did (and on 64 bit we do two pushes) 5036 // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which 5037 // stores rax into addr which is backwards of what was intended. 5038 if (addr.uses(rsp)) { 5039 lea(rax, addr); 5040 pushptr(Address(rax, 2 * BytesPerWord)); 5041 } else { 5042 pushptr(addr); 5043 } 5044 5045 // Pass register number to verify_oop_subroutine 5046 const char* b = nullptr; 5047 { 5048 ResourceMark rm; 5049 stringStream ss; 5050 ss.print("verify_oop_addr: %s (%s:%d)", s, file, line); 5051 b = code_string(ss.as_string()); 5052 } 5053 AddressLiteral buffer((address) b, external_word_Relocation::spec_for_immediate()); 5054 pushptr(buffer.addr(), rscratch1); 5055 5056 // call indirectly to solve generation ordering problem 5057 movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address())); 5058 call(rax); 5059 // Caller pops the arguments (addr, message) and restores rax, r10. 5060 } 5061 5062 void MacroAssembler::verify_tlab() { 5063 #ifdef ASSERT 5064 if (UseTLAB && VerifyOops) { 5065 Label next, ok; 5066 Register t1 = rsi; 5067 5068 push(t1); 5069 5070 movptr(t1, Address(r15_thread, in_bytes(JavaThread::tlab_top_offset()))); 5071 cmpptr(t1, Address(r15_thread, in_bytes(JavaThread::tlab_start_offset()))); 5072 jcc(Assembler::aboveEqual, next); 5073 STOP("assert(top >= start)"); 5074 should_not_reach_here(); 5075 5076 bind(next); 5077 movptr(t1, Address(r15_thread, in_bytes(JavaThread::tlab_end_offset()))); 5078 cmpptr(t1, Address(r15_thread, in_bytes(JavaThread::tlab_top_offset()))); 5079 jcc(Assembler::aboveEqual, ok); 5080 STOP("assert(top <= end)"); 5081 should_not_reach_here(); 5082 5083 bind(ok); 5084 pop(t1); 5085 } 5086 #endif 5087 } 5088 5089 class ControlWord { 5090 public: 5091 int32_t _value; 5092 5093 int rounding_control() const { return (_value >> 10) & 3 ; } 5094 int precision_control() const { return (_value >> 8) & 3 ; } 5095 bool precision() const { return ((_value >> 5) & 1) != 0; } 5096 bool underflow() const { return ((_value >> 4) & 1) != 0; } 5097 bool overflow() const { return ((_value >> 3) & 1) != 0; } 5098 bool zero_divide() const { return ((_value >> 2) & 1) != 0; } 5099 bool denormalized() const { return ((_value >> 1) & 1) != 0; } 5100 bool invalid() const { return ((_value >> 0) & 1) != 0; } 5101 5102 void print() const { 5103 // rounding control 5104 const char* rc; 5105 switch (rounding_control()) { 5106 case 0: rc = "round near"; break; 5107 case 1: rc = "round down"; break; 5108 case 2: rc = "round up "; break; 5109 case 3: rc = "chop "; break; 5110 default: 5111 rc = nullptr; // silence compiler warnings 5112 fatal("Unknown rounding control: %d", rounding_control()); 5113 }; 5114 // precision control 5115 const char* pc; 5116 switch (precision_control()) { 5117 case 0: pc = "24 bits "; break; 5118 case 1: pc = "reserved"; break; 5119 case 2: pc = "53 bits "; break; 5120 case 3: pc = "64 bits "; break; 5121 default: 5122 pc = nullptr; // silence compiler warnings 5123 fatal("Unknown precision control: %d", precision_control()); 5124 }; 5125 // flags 5126 char f[9]; 5127 f[0] = ' '; 5128 f[1] = ' '; 5129 f[2] = (precision ()) ? 'P' : 'p'; 5130 f[3] = (underflow ()) ? 'U' : 'u'; 5131 f[4] = (overflow ()) ? 'O' : 'o'; 5132 f[5] = (zero_divide ()) ? 'Z' : 'z'; 5133 f[6] = (denormalized()) ? 'D' : 'd'; 5134 f[7] = (invalid ()) ? 'I' : 'i'; 5135 f[8] = '\x0'; 5136 // output 5137 printf("%04x masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc); 5138 } 5139 5140 }; 5141 5142 class StatusWord { 5143 public: 5144 int32_t _value; 5145 5146 bool busy() const { return ((_value >> 15) & 1) != 0; } 5147 bool C3() const { return ((_value >> 14) & 1) != 0; } 5148 bool C2() const { return ((_value >> 10) & 1) != 0; } 5149 bool C1() const { return ((_value >> 9) & 1) != 0; } 5150 bool C0() const { return ((_value >> 8) & 1) != 0; } 5151 int top() const { return (_value >> 11) & 7 ; } 5152 bool error_status() const { return ((_value >> 7) & 1) != 0; } 5153 bool stack_fault() const { return ((_value >> 6) & 1) != 0; } 5154 bool precision() const { return ((_value >> 5) & 1) != 0; } 5155 bool underflow() const { return ((_value >> 4) & 1) != 0; } 5156 bool overflow() const { return ((_value >> 3) & 1) != 0; } 5157 bool zero_divide() const { return ((_value >> 2) & 1) != 0; } 5158 bool denormalized() const { return ((_value >> 1) & 1) != 0; } 5159 bool invalid() const { return ((_value >> 0) & 1) != 0; } 5160 5161 void print() const { 5162 // condition codes 5163 char c[5]; 5164 c[0] = (C3()) ? '3' : '-'; 5165 c[1] = (C2()) ? '2' : '-'; 5166 c[2] = (C1()) ? '1' : '-'; 5167 c[3] = (C0()) ? '0' : '-'; 5168 c[4] = '\x0'; 5169 // flags 5170 char f[9]; 5171 f[0] = (error_status()) ? 'E' : '-'; 5172 f[1] = (stack_fault ()) ? 'S' : '-'; 5173 f[2] = (precision ()) ? 'P' : '-'; 5174 f[3] = (underflow ()) ? 'U' : '-'; 5175 f[4] = (overflow ()) ? 'O' : '-'; 5176 f[5] = (zero_divide ()) ? 'Z' : '-'; 5177 f[6] = (denormalized()) ? 'D' : '-'; 5178 f[7] = (invalid ()) ? 'I' : '-'; 5179 f[8] = '\x0'; 5180 // output 5181 printf("%04x flags = %s, cc = %s, top = %d", _value & 0xFFFF, f, c, top()); 5182 } 5183 5184 }; 5185 5186 class TagWord { 5187 public: 5188 int32_t _value; 5189 5190 int tag_at(int i) const { return (_value >> (i*2)) & 3; } 5191 5192 void print() const { 5193 printf("%04x", _value & 0xFFFF); 5194 } 5195 5196 }; 5197 5198 class FPU_Register { 5199 public: 5200 int32_t _m0; 5201 int32_t _m1; 5202 int16_t _ex; 5203 5204 bool is_indefinite() const { 5205 return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0; 5206 } 5207 5208 void print() const { 5209 char sign = (_ex < 0) ? '-' : '+'; 5210 const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : " "; 5211 printf("%c%04hx.%08x%08x %s", sign, _ex, _m1, _m0, kind); 5212 }; 5213 5214 }; 5215 5216 class FPU_State { 5217 public: 5218 enum { 5219 register_size = 10, 5220 number_of_registers = 8, 5221 register_mask = 7 5222 }; 5223 5224 ControlWord _control_word; 5225 StatusWord _status_word; 5226 TagWord _tag_word; 5227 int32_t _error_offset; 5228 int32_t _error_selector; 5229 int32_t _data_offset; 5230 int32_t _data_selector; 5231 int8_t _register[register_size * number_of_registers]; 5232 5233 int tag_for_st(int i) const { return _tag_word.tag_at((_status_word.top() + i) & register_mask); } 5234 FPU_Register* st(int i) const { return (FPU_Register*)&_register[register_size * i]; } 5235 5236 const char* tag_as_string(int tag) const { 5237 switch (tag) { 5238 case 0: return "valid"; 5239 case 1: return "zero"; 5240 case 2: return "special"; 5241 case 3: return "empty"; 5242 } 5243 ShouldNotReachHere(); 5244 return nullptr; 5245 } 5246 5247 void print() const { 5248 // print computation registers 5249 { int t = _status_word.top(); 5250 for (int i = 0; i < number_of_registers; i++) { 5251 int j = (i - t) & register_mask; 5252 printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j); 5253 st(j)->print(); 5254 printf(" %s\n", tag_as_string(_tag_word.tag_at(i))); 5255 } 5256 } 5257 printf("\n"); 5258 // print control registers 5259 printf("ctrl = "); _control_word.print(); printf("\n"); 5260 printf("stat = "); _status_word .print(); printf("\n"); 5261 printf("tags = "); _tag_word .print(); printf("\n"); 5262 } 5263 5264 }; 5265 5266 class Flag_Register { 5267 public: 5268 int32_t _value; 5269 5270 bool overflow() const { return ((_value >> 11) & 1) != 0; } 5271 bool direction() const { return ((_value >> 10) & 1) != 0; } 5272 bool sign() const { return ((_value >> 7) & 1) != 0; } 5273 bool zero() const { return ((_value >> 6) & 1) != 0; } 5274 bool auxiliary_carry() const { return ((_value >> 4) & 1) != 0; } 5275 bool parity() const { return ((_value >> 2) & 1) != 0; } 5276 bool carry() const { return ((_value >> 0) & 1) != 0; } 5277 5278 void print() const { 5279 // flags 5280 char f[8]; 5281 f[0] = (overflow ()) ? 'O' : '-'; 5282 f[1] = (direction ()) ? 'D' : '-'; 5283 f[2] = (sign ()) ? 'S' : '-'; 5284 f[3] = (zero ()) ? 'Z' : '-'; 5285 f[4] = (auxiliary_carry()) ? 'A' : '-'; 5286 f[5] = (parity ()) ? 'P' : '-'; 5287 f[6] = (carry ()) ? 'C' : '-'; 5288 f[7] = '\x0'; 5289 // output 5290 printf("%08x flags = %s", _value, f); 5291 } 5292 5293 }; 5294 5295 class IU_Register { 5296 public: 5297 int32_t _value; 5298 5299 void print() const { 5300 printf("%08x %11d", _value, _value); 5301 } 5302 5303 }; 5304 5305 class IU_State { 5306 public: 5307 Flag_Register _eflags; 5308 IU_Register _rdi; 5309 IU_Register _rsi; 5310 IU_Register _rbp; 5311 IU_Register _rsp; 5312 IU_Register _rbx; 5313 IU_Register _rdx; 5314 IU_Register _rcx; 5315 IU_Register _rax; 5316 5317 void print() const { 5318 // computation registers 5319 printf("rax, = "); _rax.print(); printf("\n"); 5320 printf("rbx, = "); _rbx.print(); printf("\n"); 5321 printf("rcx = "); _rcx.print(); printf("\n"); 5322 printf("rdx = "); _rdx.print(); printf("\n"); 5323 printf("rdi = "); _rdi.print(); printf("\n"); 5324 printf("rsi = "); _rsi.print(); printf("\n"); 5325 printf("rbp, = "); _rbp.print(); printf("\n"); 5326 printf("rsp = "); _rsp.print(); printf("\n"); 5327 printf("\n"); 5328 // control registers 5329 printf("flgs = "); _eflags.print(); printf("\n"); 5330 } 5331 }; 5332 5333 5334 class CPU_State { 5335 public: 5336 FPU_State _fpu_state; 5337 IU_State _iu_state; 5338 5339 void print() const { 5340 printf("--------------------------------------------------\n"); 5341 _iu_state .print(); 5342 printf("\n"); 5343 _fpu_state.print(); 5344 printf("--------------------------------------------------\n"); 5345 } 5346 5347 }; 5348 5349 5350 static void _print_CPU_state(CPU_State* state) { 5351 state->print(); 5352 }; 5353 5354 5355 void MacroAssembler::print_CPU_state() { 5356 push_CPU_state(); 5357 push(rsp); // pass CPU state 5358 call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state))); 5359 addptr(rsp, wordSize); // discard argument 5360 pop_CPU_state(); 5361 } 5362 5363 void MacroAssembler::restore_cpu_control_state_after_jni(Register rscratch) { 5364 // Either restore the MXCSR register after returning from the JNI Call 5365 // or verify that it wasn't changed (with -Xcheck:jni flag). 5366 if (VM_Version::supports_sse()) { 5367 if (RestoreMXCSROnJNICalls) { 5368 ldmxcsr(ExternalAddress(StubRoutines::x86::addr_mxcsr_std()), rscratch); 5369 } else if (CheckJNICalls) { 5370 call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry())); 5371 } 5372 } 5373 // Clear upper bits of YMM registers to avoid SSE <-> AVX transition penalty. 5374 vzeroupper(); 5375 } 5376 5377 // ((OopHandle)result).resolve(); 5378 void MacroAssembler::resolve_oop_handle(Register result, Register tmp) { 5379 assert_different_registers(result, tmp); 5380 5381 // Only 64 bit platforms support GCs that require a tmp register 5382 // Only IN_HEAP loads require a thread_tmp register 5383 // OopHandle::resolve is an indirection like jobject. 5384 access_load_at(T_OBJECT, IN_NATIVE, 5385 result, Address(result, 0), tmp); 5386 } 5387 5388 // ((WeakHandle)result).resolve(); 5389 void MacroAssembler::resolve_weak_handle(Register rresult, Register rtmp) { 5390 assert_different_registers(rresult, rtmp); 5391 Label resolved; 5392 5393 // A null weak handle resolves to null. 5394 cmpptr(rresult, 0); 5395 jcc(Assembler::equal, resolved); 5396 5397 // Only 64 bit platforms support GCs that require a tmp register 5398 // Only IN_HEAP loads require a thread_tmp register 5399 // WeakHandle::resolve is an indirection like jweak. 5400 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, 5401 rresult, Address(rresult, 0), rtmp); 5402 bind(resolved); 5403 } 5404 5405 void MacroAssembler::load_mirror(Register mirror, Register method, Register tmp) { 5406 // get mirror 5407 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 5408 load_method_holder(mirror, method); 5409 movptr(mirror, Address(mirror, mirror_offset)); 5410 resolve_oop_handle(mirror, tmp); 5411 } 5412 5413 void MacroAssembler::load_method_holder_cld(Register rresult, Register rmethod) { 5414 load_method_holder(rresult, rmethod); 5415 movptr(rresult, Address(rresult, InstanceKlass::class_loader_data_offset())); 5416 } 5417 5418 void MacroAssembler::load_method_holder(Register holder, Register method) { 5419 movptr(holder, Address(method, Method::const_offset())); // ConstMethod* 5420 movptr(holder, Address(holder, ConstMethod::constants_offset())); // ConstantPool* 5421 movptr(holder, Address(holder, ConstantPool::pool_holder_offset())); // InstanceKlass* 5422 } 5423 5424 void MacroAssembler::load_metadata(Register dst, Register src) { 5425 if (UseCompactObjectHeaders) { 5426 load_narrow_klass_compact(dst, src); 5427 } else if (UseCompressedClassPointers) { 5428 movl(dst, Address(src, oopDesc::klass_offset_in_bytes())); 5429 } else { 5430 movptr(dst, Address(src, oopDesc::klass_offset_in_bytes())); 5431 } 5432 } 5433 5434 void MacroAssembler::load_narrow_klass_compact(Register dst, Register src) { 5435 assert(UseCompactObjectHeaders, "expect compact object headers"); 5436 movq(dst, Address(src, oopDesc::mark_offset_in_bytes())); 5437 shrq(dst, markWord::klass_shift); 5438 } 5439 5440 void MacroAssembler::load_klass(Register dst, Register src, Register tmp) { 5441 assert_different_registers(src, tmp); 5442 assert_different_registers(dst, tmp); 5443 5444 if (UseCompactObjectHeaders) { 5445 load_narrow_klass_compact(dst, src); 5446 decode_klass_not_null(dst, tmp); 5447 } else if (UseCompressedClassPointers) { 5448 movl(dst, Address(src, oopDesc::klass_offset_in_bytes())); 5449 decode_klass_not_null(dst, tmp); 5450 } else { 5451 movptr(dst, Address(src, oopDesc::klass_offset_in_bytes())); 5452 } 5453 } 5454 5455 void MacroAssembler::load_prototype_header(Register dst, Register src, Register tmp) { 5456 load_klass(dst, src, tmp); 5457 movptr(dst, Address(dst, Klass::prototype_header_offset())); 5458 } 5459 5460 void MacroAssembler::store_klass(Register dst, Register src, Register tmp) { 5461 assert(!UseCompactObjectHeaders, "not with compact headers"); 5462 assert_different_registers(src, tmp); 5463 assert_different_registers(dst, tmp); 5464 if (UseCompressedClassPointers) { 5465 encode_klass_not_null(src, tmp); 5466 movl(Address(dst, oopDesc::klass_offset_in_bytes()), src); 5467 } else { 5468 movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src); 5469 } 5470 } 5471 5472 void MacroAssembler::cmp_klass(Register klass, Register obj, Register tmp) { 5473 if (UseCompactObjectHeaders) { 5474 assert(tmp != noreg, "need tmp"); 5475 assert_different_registers(klass, obj, tmp); 5476 load_narrow_klass_compact(tmp, obj); 5477 cmpl(klass, tmp); 5478 } else if (UseCompressedClassPointers) { 5479 cmpl(klass, Address(obj, oopDesc::klass_offset_in_bytes())); 5480 } else { 5481 cmpptr(klass, Address(obj, oopDesc::klass_offset_in_bytes())); 5482 } 5483 } 5484 5485 void MacroAssembler::cmp_klasses_from_objects(Register obj1, Register obj2, Register tmp1, Register tmp2) { 5486 if (UseCompactObjectHeaders) { 5487 assert(tmp2 != noreg, "need tmp2"); 5488 assert_different_registers(obj1, obj2, tmp1, tmp2); 5489 load_narrow_klass_compact(tmp1, obj1); 5490 load_narrow_klass_compact(tmp2, obj2); 5491 cmpl(tmp1, tmp2); 5492 } else if (UseCompressedClassPointers) { 5493 movl(tmp1, Address(obj1, oopDesc::klass_offset_in_bytes())); 5494 cmpl(tmp1, Address(obj2, oopDesc::klass_offset_in_bytes())); 5495 } else { 5496 movptr(tmp1, Address(obj1, oopDesc::klass_offset_in_bytes())); 5497 cmpptr(tmp1, Address(obj2, oopDesc::klass_offset_in_bytes())); 5498 } 5499 } 5500 5501 void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src, 5502 Register tmp1) { 5503 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5504 decorators = AccessInternal::decorator_fixup(decorators, type); 5505 bool as_raw = (decorators & AS_RAW) != 0; 5506 if (as_raw) { 5507 bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1); 5508 } else { 5509 bs->load_at(this, decorators, type, dst, src, tmp1); 5510 } 5511 } 5512 5513 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register val, 5514 Register tmp1, Register tmp2, Register tmp3) { 5515 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5516 decorators = AccessInternal::decorator_fixup(decorators, type); 5517 bool as_raw = (decorators & AS_RAW) != 0; 5518 if (as_raw) { 5519 bs->BarrierSetAssembler::store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3); 5520 } else { 5521 bs->store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3); 5522 } 5523 } 5524 5525 void MacroAssembler::flat_field_copy(DecoratorSet decorators, Register src, Register dst, 5526 Register inline_layout_info) { 5527 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5528 bs->flat_field_copy(this, decorators, src, dst, inline_layout_info); 5529 } 5530 5531 void MacroAssembler::payload_offset(Register inline_klass, Register offset) { 5532 movptr(offset, Address(inline_klass, InstanceKlass::adr_inlineklass_fixed_block_offset())); 5533 movl(offset, Address(offset, InlineKlass::payload_offset_offset())); 5534 } 5535 5536 void MacroAssembler::payload_addr(Register oop, Register data, Register inline_klass) { 5537 // ((address) (void*) o) + vk->payload_offset(); 5538 Register offset = (data == oop) ? rscratch1 : data; 5539 payload_offset(inline_klass, offset); 5540 if (data == oop) { 5541 addptr(data, offset); 5542 } else { 5543 lea(data, Address(oop, offset)); 5544 } 5545 } 5546 5547 void MacroAssembler::data_for_value_array_index(Register array, Register array_klass, 5548 Register index, Register data) { 5549 assert(index != rcx, "index needs to shift by rcx"); 5550 assert_different_registers(array, array_klass, index); 5551 assert_different_registers(rcx, array, index); 5552 5553 // array->base() + (index << Klass::layout_helper_log2_element_size(lh)); 5554 movl(rcx, Address(array_klass, Klass::layout_helper_offset())); 5555 5556 // Klass::layout_helper_log2_element_size(lh) 5557 // (lh >> _lh_log2_element_size_shift) & _lh_log2_element_size_mask; 5558 shrl(rcx, Klass::_lh_log2_element_size_shift); 5559 andl(rcx, Klass::_lh_log2_element_size_mask); 5560 shlptr(index); // index << rcx 5561 5562 lea(data, Address(array, index, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_FLAT_ELEMENT))); 5563 } 5564 5565 void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1, DecoratorSet decorators) { 5566 access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1); 5567 } 5568 5569 // Doesn't do verification, generates fixed size code 5570 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1, DecoratorSet decorators) { 5571 access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL | decorators, dst, src, tmp1); 5572 } 5573 5574 void MacroAssembler::store_heap_oop(Address dst, Register val, Register tmp1, 5575 Register tmp2, Register tmp3, DecoratorSet decorators) { 5576 access_store_at(T_OBJECT, IN_HEAP | decorators, dst, val, tmp1, tmp2, tmp3); 5577 } 5578 5579 // Used for storing nulls. 5580 void MacroAssembler::store_heap_oop_null(Address dst) { 5581 access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg, noreg); 5582 } 5583 5584 void MacroAssembler::store_klass_gap(Register dst, Register src) { 5585 assert(!UseCompactObjectHeaders, "Don't use with compact headers"); 5586 if (UseCompressedClassPointers) { 5587 // Store to klass gap in destination 5588 movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src); 5589 } 5590 } 5591 5592 #ifdef ASSERT 5593 void MacroAssembler::verify_heapbase(const char* msg) { 5594 assert (UseCompressedOops, "should be compressed"); 5595 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5596 if (CheckCompressedOops) { 5597 Label ok; 5598 ExternalAddress src2(CompressedOops::base_addr()); 5599 const bool is_src2_reachable = reachable(src2); 5600 if (!is_src2_reachable) { 5601 push(rscratch1); // cmpptr trashes rscratch1 5602 } 5603 cmpptr(r12_heapbase, src2, rscratch1); 5604 jcc(Assembler::equal, ok); 5605 STOP(msg); 5606 bind(ok); 5607 if (!is_src2_reachable) { 5608 pop(rscratch1); 5609 } 5610 } 5611 } 5612 #endif 5613 5614 // Algorithm must match oop.inline.hpp encode_heap_oop. 5615 void MacroAssembler::encode_heap_oop(Register r) { 5616 #ifdef ASSERT 5617 verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?"); 5618 #endif 5619 verify_oop_msg(r, "broken oop in encode_heap_oop"); 5620 if (CompressedOops::base() == nullptr) { 5621 if (CompressedOops::shift() != 0) { 5622 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5623 shrq(r, LogMinObjAlignmentInBytes); 5624 } 5625 return; 5626 } 5627 testq(r, r); 5628 cmovq(Assembler::equal, r, r12_heapbase); 5629 subq(r, r12_heapbase); 5630 shrq(r, LogMinObjAlignmentInBytes); 5631 } 5632 5633 void MacroAssembler::encode_heap_oop_not_null(Register r) { 5634 #ifdef ASSERT 5635 verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?"); 5636 if (CheckCompressedOops) { 5637 Label ok; 5638 testq(r, r); 5639 jcc(Assembler::notEqual, ok); 5640 STOP("null oop passed to encode_heap_oop_not_null"); 5641 bind(ok); 5642 } 5643 #endif 5644 verify_oop_msg(r, "broken oop in encode_heap_oop_not_null"); 5645 if (CompressedOops::base() != nullptr) { 5646 subq(r, r12_heapbase); 5647 } 5648 if (CompressedOops::shift() != 0) { 5649 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5650 shrq(r, LogMinObjAlignmentInBytes); 5651 } 5652 } 5653 5654 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) { 5655 #ifdef ASSERT 5656 verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?"); 5657 if (CheckCompressedOops) { 5658 Label ok; 5659 testq(src, src); 5660 jcc(Assembler::notEqual, ok); 5661 STOP("null oop passed to encode_heap_oop_not_null2"); 5662 bind(ok); 5663 } 5664 #endif 5665 verify_oop_msg(src, "broken oop in encode_heap_oop_not_null2"); 5666 if (dst != src) { 5667 movq(dst, src); 5668 } 5669 if (CompressedOops::base() != nullptr) { 5670 subq(dst, r12_heapbase); 5671 } 5672 if (CompressedOops::shift() != 0) { 5673 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5674 shrq(dst, LogMinObjAlignmentInBytes); 5675 } 5676 } 5677 5678 void MacroAssembler::decode_heap_oop(Register r) { 5679 #ifdef ASSERT 5680 verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?"); 5681 #endif 5682 if (CompressedOops::base() == nullptr) { 5683 if (CompressedOops::shift() != 0) { 5684 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5685 shlq(r, LogMinObjAlignmentInBytes); 5686 } 5687 } else { 5688 Label done; 5689 shlq(r, LogMinObjAlignmentInBytes); 5690 jccb(Assembler::equal, done); 5691 addq(r, r12_heapbase); 5692 bind(done); 5693 } 5694 verify_oop_msg(r, "broken oop in decode_heap_oop"); 5695 } 5696 5697 void MacroAssembler::decode_heap_oop_not_null(Register r) { 5698 // Note: it will change flags 5699 assert (UseCompressedOops, "should only be used for compressed headers"); 5700 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5701 // Cannot assert, unverified entry point counts instructions (see .ad file) 5702 // vtableStubs also counts instructions in pd_code_size_limit. 5703 // Also do not verify_oop as this is called by verify_oop. 5704 if (CompressedOops::shift() != 0) { 5705 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5706 shlq(r, LogMinObjAlignmentInBytes); 5707 if (CompressedOops::base() != nullptr) { 5708 addq(r, r12_heapbase); 5709 } 5710 } else { 5711 assert (CompressedOops::base() == nullptr, "sanity"); 5712 } 5713 } 5714 5715 void MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) { 5716 // Note: it will change flags 5717 assert (UseCompressedOops, "should only be used for compressed headers"); 5718 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5719 // Cannot assert, unverified entry point counts instructions (see .ad file) 5720 // vtableStubs also counts instructions in pd_code_size_limit. 5721 // Also do not verify_oop as this is called by verify_oop. 5722 if (CompressedOops::shift() != 0) { 5723 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5724 if (LogMinObjAlignmentInBytes == Address::times_8) { 5725 leaq(dst, Address(r12_heapbase, src, Address::times_8, 0)); 5726 } else { 5727 if (dst != src) { 5728 movq(dst, src); 5729 } 5730 shlq(dst, LogMinObjAlignmentInBytes); 5731 if (CompressedOops::base() != nullptr) { 5732 addq(dst, r12_heapbase); 5733 } 5734 } 5735 } else { 5736 assert (CompressedOops::base() == nullptr, "sanity"); 5737 if (dst != src) { 5738 movq(dst, src); 5739 } 5740 } 5741 } 5742 5743 void MacroAssembler::encode_klass_not_null(Register r, Register tmp) { 5744 BLOCK_COMMENT("encode_klass_not_null {"); 5745 assert_different_registers(r, tmp); 5746 if (CompressedKlassPointers::base() != nullptr) { 5747 if (AOTCodeCache::is_on_for_dump()) { 5748 movptr(tmp, ExternalAddress(CompressedKlassPointers::base_addr())); 5749 } else { 5750 movptr(tmp, (intptr_t)CompressedKlassPointers::base()); 5751 } 5752 subq(r, tmp); 5753 } 5754 if (CompressedKlassPointers::shift() != 0) { 5755 shrq(r, CompressedKlassPointers::shift()); 5756 } 5757 BLOCK_COMMENT("} encode_klass_not_null"); 5758 } 5759 5760 void MacroAssembler::encode_and_move_klass_not_null(Register dst, Register src) { 5761 BLOCK_COMMENT("encode_and_move_klass_not_null {"); 5762 assert_different_registers(src, dst); 5763 if (CompressedKlassPointers::base() != nullptr) { 5764 movptr(dst, -(intptr_t)CompressedKlassPointers::base()); 5765 addq(dst, src); 5766 } else { 5767 movptr(dst, src); 5768 } 5769 if (CompressedKlassPointers::shift() != 0) { 5770 shrq(dst, CompressedKlassPointers::shift()); 5771 } 5772 BLOCK_COMMENT("} encode_and_move_klass_not_null"); 5773 } 5774 5775 void MacroAssembler::decode_klass_not_null(Register r, Register tmp) { 5776 BLOCK_COMMENT("decode_klass_not_null {"); 5777 assert_different_registers(r, tmp); 5778 // Note: it will change flags 5779 assert(UseCompressedClassPointers, "should only be used for compressed headers"); 5780 // Cannot assert, unverified entry point counts instructions (see .ad file) 5781 // vtableStubs also counts instructions in pd_code_size_limit. 5782 // Also do not verify_oop as this is called by verify_oop. 5783 if (CompressedKlassPointers::shift() != 0) { 5784 shlq(r, CompressedKlassPointers::shift()); 5785 } 5786 if (CompressedKlassPointers::base() != nullptr) { 5787 if (AOTCodeCache::is_on_for_dump()) { 5788 movptr(tmp, ExternalAddress(CompressedKlassPointers::base_addr())); 5789 } else { 5790 movptr(tmp, (intptr_t)CompressedKlassPointers::base()); 5791 } 5792 addq(r, tmp); 5793 } 5794 BLOCK_COMMENT("} decode_klass_not_null"); 5795 } 5796 5797 void MacroAssembler::decode_and_move_klass_not_null(Register dst, Register src) { 5798 BLOCK_COMMENT("decode_and_move_klass_not_null {"); 5799 assert_different_registers(src, dst); 5800 // Note: it will change flags 5801 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 5802 // Cannot assert, unverified entry point counts instructions (see .ad file) 5803 // vtableStubs also counts instructions in pd_code_size_limit. 5804 // Also do not verify_oop as this is called by verify_oop. 5805 5806 if (CompressedKlassPointers::base() == nullptr && 5807 CompressedKlassPointers::shift() == 0) { 5808 // The best case scenario is that there is no base or shift. Then it is already 5809 // a pointer that needs nothing but a register rename. 5810 movl(dst, src); 5811 } else { 5812 if (CompressedKlassPointers::shift() <= Address::times_8) { 5813 if (CompressedKlassPointers::base() != nullptr) { 5814 movptr(dst, (intptr_t)CompressedKlassPointers::base()); 5815 } else { 5816 xorq(dst, dst); 5817 } 5818 if (CompressedKlassPointers::shift() != 0) { 5819 assert(CompressedKlassPointers::shift() == Address::times_8, "klass not aligned on 64bits?"); 5820 leaq(dst, Address(dst, src, Address::times_8, 0)); 5821 } else { 5822 addq(dst, src); 5823 } 5824 } else { 5825 if (CompressedKlassPointers::base() != nullptr) { 5826 const intptr_t base_right_shifted = 5827 (intptr_t)CompressedKlassPointers::base() >> CompressedKlassPointers::shift(); 5828 movptr(dst, base_right_shifted); 5829 } else { 5830 xorq(dst, dst); 5831 } 5832 addq(dst, src); 5833 shlq(dst, CompressedKlassPointers::shift()); 5834 } 5835 } 5836 BLOCK_COMMENT("} decode_and_move_klass_not_null"); 5837 } 5838 5839 void MacroAssembler::set_narrow_oop(Register dst, jobject obj) { 5840 assert (UseCompressedOops, "should only be used for compressed headers"); 5841 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5842 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5843 int oop_index = oop_recorder()->find_index(obj); 5844 RelocationHolder rspec = oop_Relocation::spec(oop_index); 5845 mov_narrow_oop(dst, oop_index, rspec); 5846 } 5847 5848 void MacroAssembler::set_narrow_oop(Address dst, jobject obj) { 5849 assert (UseCompressedOops, "should only be used for compressed headers"); 5850 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5851 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5852 int oop_index = oop_recorder()->find_index(obj); 5853 RelocationHolder rspec = oop_Relocation::spec(oop_index); 5854 mov_narrow_oop(dst, oop_index, rspec); 5855 } 5856 5857 void MacroAssembler::set_narrow_klass(Register dst, Klass* k) { 5858 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 5859 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5860 int klass_index = oop_recorder()->find_index(k); 5861 RelocationHolder rspec = metadata_Relocation::spec(klass_index); 5862 mov_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec); 5863 } 5864 5865 void MacroAssembler::set_narrow_klass(Address dst, Klass* k) { 5866 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 5867 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5868 int klass_index = oop_recorder()->find_index(k); 5869 RelocationHolder rspec = metadata_Relocation::spec(klass_index); 5870 mov_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec); 5871 } 5872 5873 void MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) { 5874 assert (UseCompressedOops, "should only be used for compressed headers"); 5875 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5876 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5877 int oop_index = oop_recorder()->find_index(obj); 5878 RelocationHolder rspec = oop_Relocation::spec(oop_index); 5879 Assembler::cmp_narrow_oop(dst, oop_index, rspec); 5880 } 5881 5882 void MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) { 5883 assert (UseCompressedOops, "should only be used for compressed headers"); 5884 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5885 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5886 int oop_index = oop_recorder()->find_index(obj); 5887 RelocationHolder rspec = oop_Relocation::spec(oop_index); 5888 Assembler::cmp_narrow_oop(dst, oop_index, rspec); 5889 } 5890 5891 void MacroAssembler::cmp_narrow_klass(Register dst, Klass* k) { 5892 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 5893 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5894 int klass_index = oop_recorder()->find_index(k); 5895 RelocationHolder rspec = metadata_Relocation::spec(klass_index); 5896 Assembler::cmp_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec); 5897 } 5898 5899 void MacroAssembler::cmp_narrow_klass(Address dst, Klass* k) { 5900 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 5901 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5902 int klass_index = oop_recorder()->find_index(k); 5903 RelocationHolder rspec = metadata_Relocation::spec(klass_index); 5904 Assembler::cmp_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec); 5905 } 5906 5907 void MacroAssembler::reinit_heapbase() { 5908 if (UseCompressedOops) { 5909 if (Universe::heap() != nullptr) { 5910 if (CompressedOops::base() == nullptr) { 5911 MacroAssembler::xorptr(r12_heapbase, r12_heapbase); 5912 } else { 5913 mov64(r12_heapbase, (int64_t)CompressedOops::base()); 5914 } 5915 } else { 5916 movptr(r12_heapbase, ExternalAddress(CompressedOops::base_addr())); 5917 } 5918 } 5919 } 5920 5921 #if COMPILER2_OR_JVMCI 5922 5923 // clear memory of size 'cnt' qwords, starting at 'base' using XMM/YMM/ZMM registers 5924 void MacroAssembler::xmm_clear_mem(Register base, Register cnt, Register val, XMMRegister xtmp, KRegister mask) { 5925 // cnt - number of qwords (8-byte words). 5926 // base - start address, qword aligned. 5927 Label L_zero_64_bytes, L_loop, L_sloop, L_tail, L_end; 5928 bool use64byteVector = (MaxVectorSize == 64) && (VM_Version::avx3_threshold() == 0); 5929 if (use64byteVector) { 5930 evpbroadcastq(xtmp, val, AVX_512bit); 5931 } else if (MaxVectorSize >= 32) { 5932 movdq(xtmp, val); 5933 punpcklqdq(xtmp, xtmp); 5934 vinserti128_high(xtmp, xtmp); 5935 } else { 5936 movdq(xtmp, val); 5937 punpcklqdq(xtmp, xtmp); 5938 } 5939 jmp(L_zero_64_bytes); 5940 5941 BIND(L_loop); 5942 if (MaxVectorSize >= 32) { 5943 fill64(base, 0, xtmp, use64byteVector); 5944 } else { 5945 movdqu(Address(base, 0), xtmp); 5946 movdqu(Address(base, 16), xtmp); 5947 movdqu(Address(base, 32), xtmp); 5948 movdqu(Address(base, 48), xtmp); 5949 } 5950 addptr(base, 64); 5951 5952 BIND(L_zero_64_bytes); 5953 subptr(cnt, 8); 5954 jccb(Assembler::greaterEqual, L_loop); 5955 5956 // Copy trailing 64 bytes 5957 if (use64byteVector) { 5958 addptr(cnt, 8); 5959 jccb(Assembler::equal, L_end); 5960 fill64_masked(3, base, 0, xtmp, mask, cnt, val, true); 5961 jmp(L_end); 5962 } else { 5963 addptr(cnt, 4); 5964 jccb(Assembler::less, L_tail); 5965 if (MaxVectorSize >= 32) { 5966 vmovdqu(Address(base, 0), xtmp); 5967 } else { 5968 movdqu(Address(base, 0), xtmp); 5969 movdqu(Address(base, 16), xtmp); 5970 } 5971 } 5972 addptr(base, 32); 5973 subptr(cnt, 4); 5974 5975 BIND(L_tail); 5976 addptr(cnt, 4); 5977 jccb(Assembler::lessEqual, L_end); 5978 if (UseAVX > 2 && MaxVectorSize >= 32 && VM_Version::supports_avx512vl()) { 5979 fill32_masked(3, base, 0, xtmp, mask, cnt, val); 5980 } else { 5981 decrement(cnt); 5982 5983 BIND(L_sloop); 5984 movq(Address(base, 0), xtmp); 5985 addptr(base, 8); 5986 decrement(cnt); 5987 jccb(Assembler::greaterEqual, L_sloop); 5988 } 5989 BIND(L_end); 5990 } 5991 5992 int MacroAssembler::store_inline_type_fields_to_buf(ciInlineKlass* vk, bool from_interpreter) { 5993 assert(InlineTypeReturnedAsFields, "Inline types should never be returned as fields"); 5994 // An inline type might be returned. If fields are in registers we 5995 // need to allocate an inline type instance and initialize it with 5996 // the value of the fields. 5997 Label skip; 5998 // We only need a new buffered inline type if a new one is not returned 5999 testptr(rax, 1); 6000 jcc(Assembler::zero, skip); 6001 int call_offset = -1; 6002 6003 #ifdef _LP64 6004 // The following code is similar to allocate_instance but has some slight differences, 6005 // e.g. object size is always not zero, sometimes it's constant; storing klass ptr after 6006 // allocating is not necessary if vk != nullptr, etc. allocate_instance is not aware of these. 6007 Label slow_case; 6008 // 1. Try to allocate a new buffered inline instance either from TLAB or eden space 6009 mov(rscratch1, rax); // save rax for slow_case since *_allocate may corrupt it when allocation failed 6010 if (vk != nullptr) { 6011 // Called from C1, where the return type is statically known. 6012 movptr(rbx, (intptr_t)vk->get_InlineKlass()); 6013 jint lh = vk->layout_helper(); 6014 assert(lh != Klass::_lh_neutral_value, "inline class in return type must have been resolved"); 6015 if (UseTLAB && !Klass::layout_helper_needs_slow_path(lh)) { 6016 tlab_allocate(rax, noreg, lh, r13, r14, slow_case); 6017 } else { 6018 jmp(slow_case); 6019 } 6020 } else { 6021 // Call from interpreter. RAX contains ((the InlineKlass* of the return type) | 0x01) 6022 mov(rbx, rax); 6023 andptr(rbx, -2); 6024 if (UseTLAB) { 6025 movl(r14, Address(rbx, Klass::layout_helper_offset())); 6026 testl(r14, Klass::_lh_instance_slow_path_bit); 6027 jcc(Assembler::notZero, slow_case); 6028 tlab_allocate(rax, r14, 0, r13, r14, slow_case); 6029 } else { 6030 jmp(slow_case); 6031 } 6032 } 6033 if (UseTLAB) { 6034 // 2. Initialize buffered inline instance header 6035 Register buffer_obj = rax; 6036 Register klass = rbx; 6037 if (UseCompactObjectHeaders) { 6038 Register mark_word = r13; 6039 movptr(mark_word, Address(klass, Klass::prototype_header_offset())); 6040 movptr(Address(buffer_obj, oopDesc::mark_offset_in_bytes()), mark_word); 6041 } else { 6042 movptr(Address(buffer_obj, oopDesc::mark_offset_in_bytes()), (intptr_t)markWord::inline_type_prototype().value()); 6043 xorl(r13, r13); 6044 store_klass_gap(buffer_obj, r13); 6045 if (vk == nullptr) { 6046 // store_klass corrupts rbx(klass), so save it in r13 for later use (interpreter case only). 6047 mov(r13, klass); 6048 } 6049 store_klass(buffer_obj, klass, rscratch1); 6050 klass = r13; 6051 } 6052 // 3. Initialize its fields with an inline class specific handler 6053 if (vk != nullptr) { 6054 call(RuntimeAddress(vk->pack_handler())); // no need for call info as this will not safepoint. 6055 } else { 6056 movptr(rbx, Address(klass, InstanceKlass::adr_inlineklass_fixed_block_offset())); 6057 movptr(rbx, Address(rbx, InlineKlass::pack_handler_offset())); 6058 call(rbx); 6059 } 6060 jmp(skip); 6061 } 6062 bind(slow_case); 6063 // We failed to allocate a new inline type, fall back to a runtime 6064 // call. Some oop field may be live in some registers but we can't 6065 // tell. That runtime call will take care of preserving them 6066 // across a GC if there's one. 6067 mov(rax, rscratch1); 6068 #endif 6069 6070 if (from_interpreter) { 6071 super_call_VM_leaf(StubRoutines::store_inline_type_fields_to_buf()); 6072 } else { 6073 call(RuntimeAddress(StubRoutines::store_inline_type_fields_to_buf())); 6074 call_offset = offset(); 6075 } 6076 6077 bind(skip); 6078 return call_offset; 6079 } 6080 6081 // Move a value between registers/stack slots and update the reg_state 6082 bool MacroAssembler::move_helper(VMReg from, VMReg to, BasicType bt, RegState reg_state[]) { 6083 assert(from->is_valid() && to->is_valid(), "source and destination must be valid"); 6084 if (reg_state[to->value()] == reg_written) { 6085 return true; // Already written 6086 } 6087 if (from != to && bt != T_VOID) { 6088 if (reg_state[to->value()] == reg_readonly) { 6089 return false; // Not yet writable 6090 } 6091 if (from->is_reg()) { 6092 if (to->is_reg()) { 6093 if (from->is_XMMRegister()) { 6094 if (bt == T_DOUBLE) { 6095 movdbl(to->as_XMMRegister(), from->as_XMMRegister()); 6096 } else { 6097 assert(bt == T_FLOAT, "must be float"); 6098 movflt(to->as_XMMRegister(), from->as_XMMRegister()); 6099 } 6100 } else { 6101 movq(to->as_Register(), from->as_Register()); 6102 } 6103 } else { 6104 int st_off = to->reg2stack() * VMRegImpl::stack_slot_size + wordSize; 6105 Address to_addr = Address(rsp, st_off); 6106 if (from->is_XMMRegister()) { 6107 if (bt == T_DOUBLE) { 6108 movdbl(to_addr, from->as_XMMRegister()); 6109 } else { 6110 assert(bt == T_FLOAT, "must be float"); 6111 movflt(to_addr, from->as_XMMRegister()); 6112 } 6113 } else { 6114 movq(to_addr, from->as_Register()); 6115 } 6116 } 6117 } else { 6118 Address from_addr = Address(rsp, from->reg2stack() * VMRegImpl::stack_slot_size + wordSize); 6119 if (to->is_reg()) { 6120 if (to->is_XMMRegister()) { 6121 if (bt == T_DOUBLE) { 6122 movdbl(to->as_XMMRegister(), from_addr); 6123 } else { 6124 assert(bt == T_FLOAT, "must be float"); 6125 movflt(to->as_XMMRegister(), from_addr); 6126 } 6127 } else { 6128 movq(to->as_Register(), from_addr); 6129 } 6130 } else { 6131 int st_off = to->reg2stack() * VMRegImpl::stack_slot_size + wordSize; 6132 movq(r13, from_addr); 6133 movq(Address(rsp, st_off), r13); 6134 } 6135 } 6136 } 6137 // Update register states 6138 reg_state[from->value()] = reg_writable; 6139 reg_state[to->value()] = reg_written; 6140 return true; 6141 } 6142 6143 // Calculate the extra stack space required for packing or unpacking inline 6144 // args and adjust the stack pointer 6145 int MacroAssembler::extend_stack_for_inline_args(int args_on_stack) { 6146 // Two additional slots to account for return address 6147 int sp_inc = (args_on_stack + 2) * VMRegImpl::stack_slot_size; 6148 sp_inc = align_up(sp_inc, StackAlignmentInBytes); 6149 // Save the return address, adjust the stack (make sure it is properly 6150 // 16-byte aligned) and copy the return address to the new top of the stack. 6151 // The stack will be repaired on return (see MacroAssembler::remove_frame). 6152 assert(sp_inc > 0, "sanity"); 6153 pop(r13); 6154 subptr(rsp, sp_inc); 6155 push(r13); 6156 return sp_inc; 6157 } 6158 6159 // Read all fields from an inline type buffer and store the field values in registers/stack slots. 6160 bool MacroAssembler::unpack_inline_helper(const GrowableArray<SigEntry>* sig, int& sig_index, 6161 VMReg from, int& from_index, VMRegPair* to, int to_count, int& to_index, 6162 RegState reg_state[]) { 6163 assert(sig->at(sig_index)._bt == T_VOID, "should be at end delimiter"); 6164 assert(from->is_valid(), "source must be valid"); 6165 bool progress = false; 6166 #ifdef ASSERT 6167 const int start_offset = offset(); 6168 #endif 6169 6170 Label L_null, L_notNull; 6171 // Don't use r14 as tmp because it's used for spilling (see MacroAssembler::spill_reg_for) 6172 Register tmp1 = r10; 6173 Register tmp2 = r13; 6174 Register fromReg = noreg; 6175 ScalarizedInlineArgsStream stream(sig, sig_index, to, to_count, to_index, -1); 6176 bool done = true; 6177 bool mark_done = true; 6178 VMReg toReg; 6179 BasicType bt; 6180 // Check if argument requires a null check 6181 bool null_check = false; 6182 VMReg nullCheckReg; 6183 while (stream.next(nullCheckReg, bt)) { 6184 if (sig->at(stream.sig_index())._offset == -1) { 6185 null_check = true; 6186 break; 6187 } 6188 } 6189 stream.reset(sig_index, to_index); 6190 while (stream.next(toReg, bt)) { 6191 assert(toReg->is_valid(), "destination must be valid"); 6192 int idx = (int)toReg->value(); 6193 if (reg_state[idx] == reg_readonly) { 6194 if (idx != from->value()) { 6195 mark_done = false; 6196 } 6197 done = false; 6198 continue; 6199 } else if (reg_state[idx] == reg_written) { 6200 continue; 6201 } 6202 assert(reg_state[idx] == reg_writable, "must be writable"); 6203 reg_state[idx] = reg_written; 6204 progress = true; 6205 6206 if (fromReg == noreg) { 6207 if (from->is_reg()) { 6208 fromReg = from->as_Register(); 6209 } else { 6210 int st_off = from->reg2stack() * VMRegImpl::stack_slot_size + wordSize; 6211 movq(tmp1, Address(rsp, st_off)); 6212 fromReg = tmp1; 6213 } 6214 if (null_check) { 6215 // Nullable inline type argument, emit null check 6216 testptr(fromReg, fromReg); 6217 jcc(Assembler::zero, L_null); 6218 } 6219 } 6220 int off = sig->at(stream.sig_index())._offset; 6221 if (off == -1) { 6222 assert(null_check, "Missing null check at"); 6223 if (toReg->is_stack()) { 6224 int st_off = toReg->reg2stack() * VMRegImpl::stack_slot_size + wordSize; 6225 movq(Address(rsp, st_off), 1); 6226 } else { 6227 movq(toReg->as_Register(), 1); 6228 } 6229 continue; 6230 } 6231 assert(off > 0, "offset in object should be positive"); 6232 Address fromAddr = Address(fromReg, off); 6233 if (!toReg->is_XMMRegister()) { 6234 Register dst = toReg->is_stack() ? tmp2 : toReg->as_Register(); 6235 if (is_reference_type(bt)) { 6236 load_heap_oop(dst, fromAddr); 6237 } else { 6238 bool is_signed = (bt != T_CHAR) && (bt != T_BOOLEAN); 6239 load_sized_value(dst, fromAddr, type2aelembytes(bt), is_signed); 6240 } 6241 if (toReg->is_stack()) { 6242 int st_off = toReg->reg2stack() * VMRegImpl::stack_slot_size + wordSize; 6243 movq(Address(rsp, st_off), dst); 6244 } 6245 } else if (bt == T_DOUBLE) { 6246 movdbl(toReg->as_XMMRegister(), fromAddr); 6247 } else { 6248 assert(bt == T_FLOAT, "must be float"); 6249 movflt(toReg->as_XMMRegister(), fromAddr); 6250 } 6251 } 6252 if (progress && null_check) { 6253 if (done) { 6254 jmp(L_notNull); 6255 bind(L_null); 6256 // Set null marker to zero to signal that the argument is null. 6257 // Also set all oop fields to zero to make the GC happy. 6258 stream.reset(sig_index, to_index); 6259 while (stream.next(toReg, bt)) { 6260 if (sig->at(stream.sig_index())._offset == -1 || 6261 bt == T_OBJECT || bt == T_ARRAY) { 6262 if (toReg->is_stack()) { 6263 int st_off = toReg->reg2stack() * VMRegImpl::stack_slot_size + wordSize; 6264 movq(Address(rsp, st_off), 0); 6265 } else { 6266 xorq(toReg->as_Register(), toReg->as_Register()); 6267 } 6268 } 6269 } 6270 bind(L_notNull); 6271 } else { 6272 bind(L_null); 6273 } 6274 } 6275 6276 sig_index = stream.sig_index(); 6277 to_index = stream.regs_index(); 6278 6279 if (mark_done && reg_state[from->value()] != reg_written) { 6280 // This is okay because no one else will write to that slot 6281 reg_state[from->value()] = reg_writable; 6282 } 6283 from_index--; 6284 assert(progress || (start_offset == offset()), "should not emit code"); 6285 return done; 6286 } 6287 6288 bool MacroAssembler::pack_inline_helper(const GrowableArray<SigEntry>* sig, int& sig_index, int vtarg_index, 6289 VMRegPair* from, int from_count, int& from_index, VMReg to, 6290 RegState reg_state[], Register val_array) { 6291 assert(sig->at(sig_index)._bt == T_METADATA, "should be at delimiter"); 6292 assert(to->is_valid(), "destination must be valid"); 6293 6294 if (reg_state[to->value()] == reg_written) { 6295 skip_unpacked_fields(sig, sig_index, from, from_count, from_index); 6296 return true; // Already written 6297 } 6298 6299 // TODO 8284443 Isn't it an issue if below code uses r14 as tmp when it contains a spilled value? 6300 // Be careful with r14 because it's used for spilling (see MacroAssembler::spill_reg_for). 6301 Register val_obj_tmp = r11; 6302 Register from_reg_tmp = r14; 6303 Register tmp1 = r10; 6304 Register tmp2 = r13; 6305 Register tmp3 = rbx; 6306 Register val_obj = to->is_stack() ? val_obj_tmp : to->as_Register(); 6307 6308 assert_different_registers(val_obj_tmp, from_reg_tmp, tmp1, tmp2, tmp3, val_array); 6309 6310 if (reg_state[to->value()] == reg_readonly) { 6311 if (!is_reg_in_unpacked_fields(sig, sig_index, to, from, from_count, from_index)) { 6312 skip_unpacked_fields(sig, sig_index, from, from_count, from_index); 6313 return false; // Not yet writable 6314 } 6315 val_obj = val_obj_tmp; 6316 } 6317 6318 int index = arrayOopDesc::base_offset_in_bytes(T_OBJECT) + vtarg_index * type2aelembytes(T_OBJECT); 6319 load_heap_oop(val_obj, Address(val_array, index)); 6320 6321 ScalarizedInlineArgsStream stream(sig, sig_index, from, from_count, from_index); 6322 VMReg fromReg; 6323 BasicType bt; 6324 Label L_null; 6325 while (stream.next(fromReg, bt)) { 6326 assert(fromReg->is_valid(), "source must be valid"); 6327 reg_state[fromReg->value()] = reg_writable; 6328 6329 int off = sig->at(stream.sig_index())._offset; 6330 if (off == -1) { 6331 // Nullable inline type argument, emit null check 6332 Label L_notNull; 6333 if (fromReg->is_stack()) { 6334 int ld_off = fromReg->reg2stack() * VMRegImpl::stack_slot_size + wordSize; 6335 testb(Address(rsp, ld_off), 1); 6336 } else { 6337 testb(fromReg->as_Register(), 1); 6338 } 6339 jcc(Assembler::notZero, L_notNull); 6340 movptr(val_obj, 0); 6341 jmp(L_null); 6342 bind(L_notNull); 6343 continue; 6344 } 6345 6346 assert(off > 0, "offset in object should be positive"); 6347 size_t size_in_bytes = is_java_primitive(bt) ? type2aelembytes(bt) : wordSize; 6348 6349 // Pack the scalarized field into the value object. 6350 Address dst(val_obj, off); 6351 if (!fromReg->is_XMMRegister()) { 6352 Register src; 6353 if (fromReg->is_stack()) { 6354 src = from_reg_tmp; 6355 int ld_off = fromReg->reg2stack() * VMRegImpl::stack_slot_size + wordSize; 6356 load_sized_value(src, Address(rsp, ld_off), size_in_bytes, /* is_signed */ false); 6357 } else { 6358 src = fromReg->as_Register(); 6359 } 6360 assert_different_registers(dst.base(), src, tmp1, tmp2, tmp3, val_array); 6361 if (is_reference_type(bt)) { 6362 store_heap_oop(dst, src, tmp1, tmp2, tmp3, IN_HEAP | ACCESS_WRITE | IS_DEST_UNINITIALIZED); 6363 } else { 6364 store_sized_value(dst, src, size_in_bytes); 6365 } 6366 } else if (bt == T_DOUBLE) { 6367 movdbl(dst, fromReg->as_XMMRegister()); 6368 } else { 6369 assert(bt == T_FLOAT, "must be float"); 6370 movflt(dst, fromReg->as_XMMRegister()); 6371 } 6372 } 6373 bind(L_null); 6374 sig_index = stream.sig_index(); 6375 from_index = stream.regs_index(); 6376 6377 assert(reg_state[to->value()] == reg_writable, "must have already been read"); 6378 bool success = move_helper(val_obj->as_VMReg(), to, T_OBJECT, reg_state); 6379 assert(success, "to register must be writeable"); 6380 return true; 6381 } 6382 6383 VMReg MacroAssembler::spill_reg_for(VMReg reg) { 6384 return reg->is_XMMRegister() ? xmm8->as_VMReg() : r14->as_VMReg(); 6385 } 6386 6387 void MacroAssembler::remove_frame(int initial_framesize, bool needs_stack_repair) { 6388 assert((initial_framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned"); 6389 if (needs_stack_repair) { 6390 // TODO 8284443 Add a comment drawing the frame like in Aarch64's version of MacroAssembler::remove_frame 6391 movq(rbp, Address(rsp, initial_framesize)); 6392 // The stack increment resides just below the saved rbp 6393 addq(rsp, Address(rsp, initial_framesize - wordSize)); 6394 } else { 6395 if (initial_framesize > 0) { 6396 addq(rsp, initial_framesize); 6397 } 6398 pop(rbp); 6399 } 6400 } 6401 6402 // Clearing constant sized memory using YMM/ZMM registers. 6403 void MacroAssembler::clear_mem(Register base, int cnt, Register rtmp, XMMRegister xtmp, KRegister mask) { 6404 assert(UseAVX > 2 && VM_Version::supports_avx512vl(), ""); 6405 bool use64byteVector = (MaxVectorSize > 32) && (VM_Version::avx3_threshold() == 0); 6406 6407 int vector64_count = (cnt & (~0x7)) >> 3; 6408 cnt = cnt & 0x7; 6409 const int fill64_per_loop = 4; 6410 const int max_unrolled_fill64 = 8; 6411 6412 // 64 byte initialization loop. 6413 vpxor(xtmp, xtmp, xtmp, use64byteVector ? AVX_512bit : AVX_256bit); 6414 int start64 = 0; 6415 if (vector64_count > max_unrolled_fill64) { 6416 Label LOOP; 6417 Register index = rtmp; 6418 6419 start64 = vector64_count - (vector64_count % fill64_per_loop); 6420 6421 movl(index, 0); 6422 BIND(LOOP); 6423 for (int i = 0; i < fill64_per_loop; i++) { 6424 fill64(Address(base, index, Address::times_1, i * 64), xtmp, use64byteVector); 6425 } 6426 addl(index, fill64_per_loop * 64); 6427 cmpl(index, start64 * 64); 6428 jccb(Assembler::less, LOOP); 6429 } 6430 for (int i = start64; i < vector64_count; i++) { 6431 fill64(base, i * 64, xtmp, use64byteVector); 6432 } 6433 6434 // Clear remaining 64 byte tail. 6435 int disp = vector64_count * 64; 6436 if (cnt) { 6437 switch (cnt) { 6438 case 1: 6439 movq(Address(base, disp), xtmp); 6440 break; 6441 case 2: 6442 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_128bit); 6443 break; 6444 case 3: 6445 movl(rtmp, 0x7); 6446 kmovwl(mask, rtmp); 6447 evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_256bit); 6448 break; 6449 case 4: 6450 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit); 6451 break; 6452 case 5: 6453 if (use64byteVector) { 6454 movl(rtmp, 0x1F); 6455 kmovwl(mask, rtmp); 6456 evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_512bit); 6457 } else { 6458 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit); 6459 movq(Address(base, disp + 32), xtmp); 6460 } 6461 break; 6462 case 6: 6463 if (use64byteVector) { 6464 movl(rtmp, 0x3F); 6465 kmovwl(mask, rtmp); 6466 evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_512bit); 6467 } else { 6468 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit); 6469 evmovdqu(T_LONG, k0, Address(base, disp + 32), xtmp, false, Assembler::AVX_128bit); 6470 } 6471 break; 6472 case 7: 6473 if (use64byteVector) { 6474 movl(rtmp, 0x7F); 6475 kmovwl(mask, rtmp); 6476 evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_512bit); 6477 } else { 6478 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit); 6479 movl(rtmp, 0x7); 6480 kmovwl(mask, rtmp); 6481 evmovdqu(T_LONG, mask, Address(base, disp + 32), xtmp, true, Assembler::AVX_256bit); 6482 } 6483 break; 6484 default: 6485 fatal("Unexpected length : %d\n",cnt); 6486 break; 6487 } 6488 } 6489 } 6490 6491 void MacroAssembler::clear_mem(Register base, Register cnt, Register val, XMMRegister xtmp, 6492 bool is_large, bool word_copy_only, KRegister mask) { 6493 // cnt - number of qwords (8-byte words). 6494 // base - start address, qword aligned. 6495 // is_large - if optimizers know cnt is larger than InitArrayShortSize 6496 assert(base==rdi, "base register must be edi for rep stos"); 6497 assert(val==rax, "val register must be eax for rep stos"); 6498 assert(cnt==rcx, "cnt register must be ecx for rep stos"); 6499 assert(InitArrayShortSize % BytesPerLong == 0, 6500 "InitArrayShortSize should be the multiple of BytesPerLong"); 6501 6502 Label DONE; 6503 6504 if (!is_large) { 6505 Label LOOP, LONG; 6506 cmpptr(cnt, InitArrayShortSize/BytesPerLong); 6507 jccb(Assembler::greater, LONG); 6508 6509 decrement(cnt); 6510 jccb(Assembler::negative, DONE); // Zero length 6511 6512 // Use individual pointer-sized stores for small counts: 6513 BIND(LOOP); 6514 movptr(Address(base, cnt, Address::times_ptr), val); 6515 decrement(cnt); 6516 jccb(Assembler::greaterEqual, LOOP); 6517 jmpb(DONE); 6518 6519 BIND(LONG); 6520 } 6521 6522 // Use longer rep-prefixed ops for non-small counts: 6523 if (UseFastStosb && !word_copy_only) { 6524 shlptr(cnt, 3); // convert to number of bytes 6525 rep_stosb(); 6526 } else if (UseXMMForObjInit) { 6527 xmm_clear_mem(base, cnt, val, xtmp, mask); 6528 } else { 6529 rep_stos(); 6530 } 6531 6532 BIND(DONE); 6533 } 6534 6535 #endif //COMPILER2_OR_JVMCI 6536 6537 6538 void MacroAssembler::generate_fill(BasicType t, bool aligned, 6539 Register to, Register value, Register count, 6540 Register rtmp, XMMRegister xtmp) { 6541 ShortBranchVerifier sbv(this); 6542 assert_different_registers(to, value, count, rtmp); 6543 Label L_exit; 6544 Label L_fill_2_bytes, L_fill_4_bytes; 6545 6546 #if defined(COMPILER2) 6547 if(MaxVectorSize >=32 && 6548 VM_Version::supports_avx512vlbw() && 6549 VM_Version::supports_bmi2()) { 6550 generate_fill_avx3(t, to, value, count, rtmp, xtmp); 6551 return; 6552 } 6553 #endif 6554 6555 int shift = -1; 6556 switch (t) { 6557 case T_BYTE: 6558 shift = 2; 6559 break; 6560 case T_SHORT: 6561 shift = 1; 6562 break; 6563 case T_INT: 6564 shift = 0; 6565 break; 6566 default: ShouldNotReachHere(); 6567 } 6568 6569 if (t == T_BYTE) { 6570 andl(value, 0xff); 6571 movl(rtmp, value); 6572 shll(rtmp, 8); 6573 orl(value, rtmp); 6574 } 6575 if (t == T_SHORT) { 6576 andl(value, 0xffff); 6577 } 6578 if (t == T_BYTE || t == T_SHORT) { 6579 movl(rtmp, value); 6580 shll(rtmp, 16); 6581 orl(value, rtmp); 6582 } 6583 6584 cmpptr(count, 2<<shift); // Short arrays (< 8 bytes) fill by element 6585 jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp 6586 if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) { 6587 Label L_skip_align2; 6588 // align source address at 4 bytes address boundary 6589 if (t == T_BYTE) { 6590 Label L_skip_align1; 6591 // One byte misalignment happens only for byte arrays 6592 testptr(to, 1); 6593 jccb(Assembler::zero, L_skip_align1); 6594 movb(Address(to, 0), value); 6595 increment(to); 6596 decrement(count); 6597 BIND(L_skip_align1); 6598 } 6599 // Two bytes misalignment happens only for byte and short (char) arrays 6600 testptr(to, 2); 6601 jccb(Assembler::zero, L_skip_align2); 6602 movw(Address(to, 0), value); 6603 addptr(to, 2); 6604 subptr(count, 1<<(shift-1)); 6605 BIND(L_skip_align2); 6606 } 6607 { 6608 Label L_fill_32_bytes; 6609 if (!UseUnalignedLoadStores) { 6610 // align to 8 bytes, we know we are 4 byte aligned to start 6611 testptr(to, 4); 6612 jccb(Assembler::zero, L_fill_32_bytes); 6613 movl(Address(to, 0), value); 6614 addptr(to, 4); 6615 subptr(count, 1<<shift); 6616 } 6617 BIND(L_fill_32_bytes); 6618 { 6619 Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes; 6620 movdl(xtmp, value); 6621 if (UseAVX >= 2 && UseUnalignedLoadStores) { 6622 Label L_check_fill_32_bytes; 6623 if (UseAVX > 2) { 6624 // Fill 64-byte chunks 6625 Label L_fill_64_bytes_loop_avx3, L_check_fill_64_bytes_avx2; 6626 6627 // If number of bytes to fill < VM_Version::avx3_threshold(), perform fill using AVX2 6628 cmpptr(count, VM_Version::avx3_threshold()); 6629 jccb(Assembler::below, L_check_fill_64_bytes_avx2); 6630 6631 vpbroadcastd(xtmp, xtmp, Assembler::AVX_512bit); 6632 6633 subptr(count, 16 << shift); 6634 jccb(Assembler::less, L_check_fill_32_bytes); 6635 align(16); 6636 6637 BIND(L_fill_64_bytes_loop_avx3); 6638 evmovdqul(Address(to, 0), xtmp, Assembler::AVX_512bit); 6639 addptr(to, 64); 6640 subptr(count, 16 << shift); 6641 jcc(Assembler::greaterEqual, L_fill_64_bytes_loop_avx3); 6642 jmpb(L_check_fill_32_bytes); 6643 6644 BIND(L_check_fill_64_bytes_avx2); 6645 } 6646 // Fill 64-byte chunks 6647 Label L_fill_64_bytes_loop; 6648 vpbroadcastd(xtmp, xtmp, Assembler::AVX_256bit); 6649 6650 subptr(count, 16 << shift); 6651 jcc(Assembler::less, L_check_fill_32_bytes); 6652 align(16); 6653 6654 BIND(L_fill_64_bytes_loop); 6655 vmovdqu(Address(to, 0), xtmp); 6656 vmovdqu(Address(to, 32), xtmp); 6657 addptr(to, 64); 6658 subptr(count, 16 << shift); 6659 jcc(Assembler::greaterEqual, L_fill_64_bytes_loop); 6660 6661 BIND(L_check_fill_32_bytes); 6662 addptr(count, 8 << shift); 6663 jccb(Assembler::less, L_check_fill_8_bytes); 6664 vmovdqu(Address(to, 0), xtmp); 6665 addptr(to, 32); 6666 subptr(count, 8 << shift); 6667 6668 BIND(L_check_fill_8_bytes); 6669 // clean upper bits of YMM registers 6670 movdl(xtmp, value); 6671 pshufd(xtmp, xtmp, 0); 6672 } else { 6673 // Fill 32-byte chunks 6674 pshufd(xtmp, xtmp, 0); 6675 6676 subptr(count, 8 << shift); 6677 jcc(Assembler::less, L_check_fill_8_bytes); 6678 align(16); 6679 6680 BIND(L_fill_32_bytes_loop); 6681 6682 if (UseUnalignedLoadStores) { 6683 movdqu(Address(to, 0), xtmp); 6684 movdqu(Address(to, 16), xtmp); 6685 } else { 6686 movq(Address(to, 0), xtmp); 6687 movq(Address(to, 8), xtmp); 6688 movq(Address(to, 16), xtmp); 6689 movq(Address(to, 24), xtmp); 6690 } 6691 6692 addptr(to, 32); 6693 subptr(count, 8 << shift); 6694 jcc(Assembler::greaterEqual, L_fill_32_bytes_loop); 6695 6696 BIND(L_check_fill_8_bytes); 6697 } 6698 addptr(count, 8 << shift); 6699 jccb(Assembler::zero, L_exit); 6700 jmpb(L_fill_8_bytes); 6701 6702 // 6703 // length is too short, just fill qwords 6704 // 6705 BIND(L_fill_8_bytes_loop); 6706 movq(Address(to, 0), xtmp); 6707 addptr(to, 8); 6708 BIND(L_fill_8_bytes); 6709 subptr(count, 1 << (shift + 1)); 6710 jcc(Assembler::greaterEqual, L_fill_8_bytes_loop); 6711 } 6712 } 6713 // fill trailing 4 bytes 6714 BIND(L_fill_4_bytes); 6715 testl(count, 1<<shift); 6716 jccb(Assembler::zero, L_fill_2_bytes); 6717 movl(Address(to, 0), value); 6718 if (t == T_BYTE || t == T_SHORT) { 6719 Label L_fill_byte; 6720 addptr(to, 4); 6721 BIND(L_fill_2_bytes); 6722 // fill trailing 2 bytes 6723 testl(count, 1<<(shift-1)); 6724 jccb(Assembler::zero, L_fill_byte); 6725 movw(Address(to, 0), value); 6726 if (t == T_BYTE) { 6727 addptr(to, 2); 6728 BIND(L_fill_byte); 6729 // fill trailing byte 6730 testl(count, 1); 6731 jccb(Assembler::zero, L_exit); 6732 movb(Address(to, 0), value); 6733 } else { 6734 BIND(L_fill_byte); 6735 } 6736 } else { 6737 BIND(L_fill_2_bytes); 6738 } 6739 BIND(L_exit); 6740 } 6741 6742 void MacroAssembler::evpbroadcast(BasicType type, XMMRegister dst, Register src, int vector_len) { 6743 switch(type) { 6744 case T_BYTE: 6745 case T_BOOLEAN: 6746 evpbroadcastb(dst, src, vector_len); 6747 break; 6748 case T_SHORT: 6749 case T_CHAR: 6750 evpbroadcastw(dst, src, vector_len); 6751 break; 6752 case T_INT: 6753 case T_FLOAT: 6754 evpbroadcastd(dst, src, vector_len); 6755 break; 6756 case T_LONG: 6757 case T_DOUBLE: 6758 evpbroadcastq(dst, src, vector_len); 6759 break; 6760 default: 6761 fatal("Unhandled type : %s", type2name(type)); 6762 break; 6763 } 6764 } 6765 6766 // Encode given char[]/byte[] to byte[] in ISO_8859_1 or ASCII 6767 // 6768 // @IntrinsicCandidate 6769 // int sun.nio.cs.ISO_8859_1.Encoder#encodeISOArray0( 6770 // char[] sa, int sp, byte[] da, int dp, int len) { 6771 // int i = 0; 6772 // for (; i < len; i++) { 6773 // char c = sa[sp++]; 6774 // if (c > '\u00FF') 6775 // break; 6776 // da[dp++] = (byte) c; 6777 // } 6778 // return i; 6779 // } 6780 // 6781 // @IntrinsicCandidate 6782 // int java.lang.StringCoding.encodeISOArray0( 6783 // byte[] sa, int sp, byte[] da, int dp, int len) { 6784 // int i = 0; 6785 // for (; i < len; i++) { 6786 // char c = StringUTF16.getChar(sa, sp++); 6787 // if (c > '\u00FF') 6788 // break; 6789 // da[dp++] = (byte) c; 6790 // } 6791 // return i; 6792 // } 6793 // 6794 // @IntrinsicCandidate 6795 // int java.lang.StringCoding.encodeAsciiArray0( 6796 // char[] sa, int sp, byte[] da, int dp, int len) { 6797 // int i = 0; 6798 // for (; i < len; i++) { 6799 // char c = sa[sp++]; 6800 // if (c >= '\u0080') 6801 // break; 6802 // da[dp++] = (byte) c; 6803 // } 6804 // return i; 6805 // } 6806 void MacroAssembler::encode_iso_array(Register src, Register dst, Register len, 6807 XMMRegister tmp1Reg, XMMRegister tmp2Reg, 6808 XMMRegister tmp3Reg, XMMRegister tmp4Reg, 6809 Register tmp5, Register result, bool ascii) { 6810 6811 // rsi: src 6812 // rdi: dst 6813 // rdx: len 6814 // rcx: tmp5 6815 // rax: result 6816 ShortBranchVerifier sbv(this); 6817 assert_different_registers(src, dst, len, tmp5, result); 6818 Label L_done, L_copy_1_char, L_copy_1_char_exit; 6819 6820 int mask = ascii ? 0xff80ff80 : 0xff00ff00; 6821 int short_mask = ascii ? 0xff80 : 0xff00; 6822 6823 // set result 6824 xorl(result, result); 6825 // check for zero length 6826 testl(len, len); 6827 jcc(Assembler::zero, L_done); 6828 6829 movl(result, len); 6830 6831 // Setup pointers 6832 lea(src, Address(src, len, Address::times_2)); // char[] 6833 lea(dst, Address(dst, len, Address::times_1)); // byte[] 6834 negptr(len); 6835 6836 if (UseSSE42Intrinsics || UseAVX >= 2) { 6837 Label L_copy_8_chars, L_copy_8_chars_exit; 6838 Label L_chars_16_check, L_copy_16_chars, L_copy_16_chars_exit; 6839 6840 if (UseAVX >= 2) { 6841 Label L_chars_32_check, L_copy_32_chars, L_copy_32_chars_exit; 6842 movl(tmp5, mask); // create mask to test for Unicode or non-ASCII chars in vector 6843 movdl(tmp1Reg, tmp5); 6844 vpbroadcastd(tmp1Reg, tmp1Reg, Assembler::AVX_256bit); 6845 jmp(L_chars_32_check); 6846 6847 bind(L_copy_32_chars); 6848 vmovdqu(tmp3Reg, Address(src, len, Address::times_2, -64)); 6849 vmovdqu(tmp4Reg, Address(src, len, Address::times_2, -32)); 6850 vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1); 6851 vptest(tmp2Reg, tmp1Reg); // check for Unicode or non-ASCII chars in vector 6852 jccb(Assembler::notZero, L_copy_32_chars_exit); 6853 vpackuswb(tmp3Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1); 6854 vpermq(tmp4Reg, tmp3Reg, 0xD8, /* vector_len */ 1); 6855 vmovdqu(Address(dst, len, Address::times_1, -32), tmp4Reg); 6856 6857 bind(L_chars_32_check); 6858 addptr(len, 32); 6859 jcc(Assembler::lessEqual, L_copy_32_chars); 6860 6861 bind(L_copy_32_chars_exit); 6862 subptr(len, 16); 6863 jccb(Assembler::greater, L_copy_16_chars_exit); 6864 6865 } else if (UseSSE42Intrinsics) { 6866 movl(tmp5, mask); // create mask to test for Unicode or non-ASCII chars in vector 6867 movdl(tmp1Reg, tmp5); 6868 pshufd(tmp1Reg, tmp1Reg, 0); 6869 jmpb(L_chars_16_check); 6870 } 6871 6872 bind(L_copy_16_chars); 6873 if (UseAVX >= 2) { 6874 vmovdqu(tmp2Reg, Address(src, len, Address::times_2, -32)); 6875 vptest(tmp2Reg, tmp1Reg); 6876 jcc(Assembler::notZero, L_copy_16_chars_exit); 6877 vpackuswb(tmp2Reg, tmp2Reg, tmp1Reg, /* vector_len */ 1); 6878 vpermq(tmp3Reg, tmp2Reg, 0xD8, /* vector_len */ 1); 6879 } else { 6880 if (UseAVX > 0) { 6881 movdqu(tmp3Reg, Address(src, len, Address::times_2, -32)); 6882 movdqu(tmp4Reg, Address(src, len, Address::times_2, -16)); 6883 vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 0); 6884 } else { 6885 movdqu(tmp3Reg, Address(src, len, Address::times_2, -32)); 6886 por(tmp2Reg, tmp3Reg); 6887 movdqu(tmp4Reg, Address(src, len, Address::times_2, -16)); 6888 por(tmp2Reg, tmp4Reg); 6889 } 6890 ptest(tmp2Reg, tmp1Reg); // check for Unicode or non-ASCII chars in vector 6891 jccb(Assembler::notZero, L_copy_16_chars_exit); 6892 packuswb(tmp3Reg, tmp4Reg); 6893 } 6894 movdqu(Address(dst, len, Address::times_1, -16), tmp3Reg); 6895 6896 bind(L_chars_16_check); 6897 addptr(len, 16); 6898 jcc(Assembler::lessEqual, L_copy_16_chars); 6899 6900 bind(L_copy_16_chars_exit); 6901 if (UseAVX >= 2) { 6902 // clean upper bits of YMM registers 6903 vpxor(tmp2Reg, tmp2Reg); 6904 vpxor(tmp3Reg, tmp3Reg); 6905 vpxor(tmp4Reg, tmp4Reg); 6906 movdl(tmp1Reg, tmp5); 6907 pshufd(tmp1Reg, tmp1Reg, 0); 6908 } 6909 subptr(len, 8); 6910 jccb(Assembler::greater, L_copy_8_chars_exit); 6911 6912 bind(L_copy_8_chars); 6913 movdqu(tmp3Reg, Address(src, len, Address::times_2, -16)); 6914 ptest(tmp3Reg, tmp1Reg); 6915 jccb(Assembler::notZero, L_copy_8_chars_exit); 6916 packuswb(tmp3Reg, tmp1Reg); 6917 movq(Address(dst, len, Address::times_1, -8), tmp3Reg); 6918 addptr(len, 8); 6919 jccb(Assembler::lessEqual, L_copy_8_chars); 6920 6921 bind(L_copy_8_chars_exit); 6922 subptr(len, 8); 6923 jccb(Assembler::zero, L_done); 6924 } 6925 6926 bind(L_copy_1_char); 6927 load_unsigned_short(tmp5, Address(src, len, Address::times_2, 0)); 6928 testl(tmp5, short_mask); // check if Unicode or non-ASCII char 6929 jccb(Assembler::notZero, L_copy_1_char_exit); 6930 movb(Address(dst, len, Address::times_1, 0), tmp5); 6931 addptr(len, 1); 6932 jccb(Assembler::less, L_copy_1_char); 6933 6934 bind(L_copy_1_char_exit); 6935 addptr(result, len); // len is negative count of not processed elements 6936 6937 bind(L_done); 6938 } 6939 6940 /** 6941 * Helper for multiply_to_len(). 6942 */ 6943 void MacroAssembler::add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) { 6944 addq(dest_lo, src1); 6945 adcq(dest_hi, 0); 6946 addq(dest_lo, src2); 6947 adcq(dest_hi, 0); 6948 } 6949 6950 /** 6951 * Multiply 64 bit by 64 bit first loop. 6952 */ 6953 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart, 6954 Register y, Register y_idx, Register z, 6955 Register carry, Register product, 6956 Register idx, Register kdx) { 6957 // 6958 // jlong carry, x[], y[], z[]; 6959 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 6960 // huge_128 product = y[idx] * x[xstart] + carry; 6961 // z[kdx] = (jlong)product; 6962 // carry = (jlong)(product >>> 64); 6963 // } 6964 // z[xstart] = carry; 6965 // 6966 6967 Label L_first_loop, L_first_loop_exit; 6968 Label L_one_x, L_one_y, L_multiply; 6969 6970 decrementl(xstart); 6971 jcc(Assembler::negative, L_one_x); 6972 6973 movq(x_xstart, Address(x, xstart, Address::times_4, 0)); 6974 rorq(x_xstart, 32); // convert big-endian to little-endian 6975 6976 bind(L_first_loop); 6977 decrementl(idx); 6978 jcc(Assembler::negative, L_first_loop_exit); 6979 decrementl(idx); 6980 jcc(Assembler::negative, L_one_y); 6981 movq(y_idx, Address(y, idx, Address::times_4, 0)); 6982 rorq(y_idx, 32); // convert big-endian to little-endian 6983 bind(L_multiply); 6984 movq(product, x_xstart); 6985 mulq(y_idx); // product(rax) * y_idx -> rdx:rax 6986 addq(product, carry); 6987 adcq(rdx, 0); 6988 subl(kdx, 2); 6989 movl(Address(z, kdx, Address::times_4, 4), product); 6990 shrq(product, 32); 6991 movl(Address(z, kdx, Address::times_4, 0), product); 6992 movq(carry, rdx); 6993 jmp(L_first_loop); 6994 6995 bind(L_one_y); 6996 movl(y_idx, Address(y, 0)); 6997 jmp(L_multiply); 6998 6999 bind(L_one_x); 7000 movl(x_xstart, Address(x, 0)); 7001 jmp(L_first_loop); 7002 7003 bind(L_first_loop_exit); 7004 } 7005 7006 /** 7007 * Multiply 64 bit by 64 bit and add 128 bit. 7008 */ 7009 void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y, Register z, 7010 Register yz_idx, Register idx, 7011 Register carry, Register product, int offset) { 7012 // huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry; 7013 // z[kdx] = (jlong)product; 7014 7015 movq(yz_idx, Address(y, idx, Address::times_4, offset)); 7016 rorq(yz_idx, 32); // convert big-endian to little-endian 7017 movq(product, x_xstart); 7018 mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax) 7019 movq(yz_idx, Address(z, idx, Address::times_4, offset)); 7020 rorq(yz_idx, 32); // convert big-endian to little-endian 7021 7022 add2_with_carry(rdx, product, carry, yz_idx); 7023 7024 movl(Address(z, idx, Address::times_4, offset+4), product); 7025 shrq(product, 32); 7026 movl(Address(z, idx, Address::times_4, offset), product); 7027 7028 } 7029 7030 /** 7031 * Multiply 128 bit by 128 bit. Unrolled inner loop. 7032 */ 7033 void MacroAssembler::multiply_128_x_128_loop(Register x_xstart, Register y, Register z, 7034 Register yz_idx, Register idx, Register jdx, 7035 Register carry, Register product, 7036 Register carry2) { 7037 // jlong carry, x[], y[], z[]; 7038 // int kdx = ystart+1; 7039 // for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop 7040 // huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry; 7041 // z[kdx+idx+1] = (jlong)product; 7042 // jlong carry2 = (jlong)(product >>> 64); 7043 // product = (y[idx] * x_xstart) + z[kdx+idx] + carry2; 7044 // z[kdx+idx] = (jlong)product; 7045 // carry = (jlong)(product >>> 64); 7046 // } 7047 // idx += 2; 7048 // if (idx > 0) { 7049 // product = (y[idx] * x_xstart) + z[kdx+idx] + carry; 7050 // z[kdx+idx] = (jlong)product; 7051 // carry = (jlong)(product >>> 64); 7052 // } 7053 // 7054 7055 Label L_third_loop, L_third_loop_exit, L_post_third_loop_done; 7056 7057 movl(jdx, idx); 7058 andl(jdx, 0xFFFFFFFC); 7059 shrl(jdx, 2); 7060 7061 bind(L_third_loop); 7062 subl(jdx, 1); 7063 jcc(Assembler::negative, L_third_loop_exit); 7064 subl(idx, 4); 7065 7066 multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 8); 7067 movq(carry2, rdx); 7068 7069 multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product, 0); 7070 movq(carry, rdx); 7071 jmp(L_third_loop); 7072 7073 bind (L_third_loop_exit); 7074 7075 andl (idx, 0x3); 7076 jcc(Assembler::zero, L_post_third_loop_done); 7077 7078 Label L_check_1; 7079 subl(idx, 2); 7080 jcc(Assembler::negative, L_check_1); 7081 7082 multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 0); 7083 movq(carry, rdx); 7084 7085 bind (L_check_1); 7086 addl (idx, 0x2); 7087 andl (idx, 0x1); 7088 subl(idx, 1); 7089 jcc(Assembler::negative, L_post_third_loop_done); 7090 7091 movl(yz_idx, Address(y, idx, Address::times_4, 0)); 7092 movq(product, x_xstart); 7093 mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax) 7094 movl(yz_idx, Address(z, idx, Address::times_4, 0)); 7095 7096 add2_with_carry(rdx, product, yz_idx, carry); 7097 7098 movl(Address(z, idx, Address::times_4, 0), product); 7099 shrq(product, 32); 7100 7101 shlq(rdx, 32); 7102 orq(product, rdx); 7103 movq(carry, product); 7104 7105 bind(L_post_third_loop_done); 7106 } 7107 7108 /** 7109 * Multiply 128 bit by 128 bit using BMI2. Unrolled inner loop. 7110 * 7111 */ 7112 void MacroAssembler::multiply_128_x_128_bmi2_loop(Register y, Register z, 7113 Register carry, Register carry2, 7114 Register idx, Register jdx, 7115 Register yz_idx1, Register yz_idx2, 7116 Register tmp, Register tmp3, Register tmp4) { 7117 assert(UseBMI2Instructions, "should be used only when BMI2 is available"); 7118 7119 // jlong carry, x[], y[], z[]; 7120 // int kdx = ystart+1; 7121 // for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop 7122 // huge_128 tmp3 = (y[idx+1] * rdx) + z[kdx+idx+1] + carry; 7123 // jlong carry2 = (jlong)(tmp3 >>> 64); 7124 // huge_128 tmp4 = (y[idx] * rdx) + z[kdx+idx] + carry2; 7125 // carry = (jlong)(tmp4 >>> 64); 7126 // z[kdx+idx+1] = (jlong)tmp3; 7127 // z[kdx+idx] = (jlong)tmp4; 7128 // } 7129 // idx += 2; 7130 // if (idx > 0) { 7131 // yz_idx1 = (y[idx] * rdx) + z[kdx+idx] + carry; 7132 // z[kdx+idx] = (jlong)yz_idx1; 7133 // carry = (jlong)(yz_idx1 >>> 64); 7134 // } 7135 // 7136 7137 Label L_third_loop, L_third_loop_exit, L_post_third_loop_done; 7138 7139 movl(jdx, idx); 7140 andl(jdx, 0xFFFFFFFC); 7141 shrl(jdx, 2); 7142 7143 bind(L_third_loop); 7144 subl(jdx, 1); 7145 jcc(Assembler::negative, L_third_loop_exit); 7146 subl(idx, 4); 7147 7148 movq(yz_idx1, Address(y, idx, Address::times_4, 8)); 7149 rorxq(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian 7150 movq(yz_idx2, Address(y, idx, Address::times_4, 0)); 7151 rorxq(yz_idx2, yz_idx2, 32); 7152 7153 mulxq(tmp4, tmp3, yz_idx1); // yz_idx1 * rdx -> tmp4:tmp3 7154 mulxq(carry2, tmp, yz_idx2); // yz_idx2 * rdx -> carry2:tmp 7155 7156 movq(yz_idx1, Address(z, idx, Address::times_4, 8)); 7157 rorxq(yz_idx1, yz_idx1, 32); 7158 movq(yz_idx2, Address(z, idx, Address::times_4, 0)); 7159 rorxq(yz_idx2, yz_idx2, 32); 7160 7161 if (VM_Version::supports_adx()) { 7162 adcxq(tmp3, carry); 7163 adoxq(tmp3, yz_idx1); 7164 7165 adcxq(tmp4, tmp); 7166 adoxq(tmp4, yz_idx2); 7167 7168 movl(carry, 0); // does not affect flags 7169 adcxq(carry2, carry); 7170 adoxq(carry2, carry); 7171 } else { 7172 add2_with_carry(tmp4, tmp3, carry, yz_idx1); 7173 add2_with_carry(carry2, tmp4, tmp, yz_idx2); 7174 } 7175 movq(carry, carry2); 7176 7177 movl(Address(z, idx, Address::times_4, 12), tmp3); 7178 shrq(tmp3, 32); 7179 movl(Address(z, idx, Address::times_4, 8), tmp3); 7180 7181 movl(Address(z, idx, Address::times_4, 4), tmp4); 7182 shrq(tmp4, 32); 7183 movl(Address(z, idx, Address::times_4, 0), tmp4); 7184 7185 jmp(L_third_loop); 7186 7187 bind (L_third_loop_exit); 7188 7189 andl (idx, 0x3); 7190 jcc(Assembler::zero, L_post_third_loop_done); 7191 7192 Label L_check_1; 7193 subl(idx, 2); 7194 jcc(Assembler::negative, L_check_1); 7195 7196 movq(yz_idx1, Address(y, idx, Address::times_4, 0)); 7197 rorxq(yz_idx1, yz_idx1, 32); 7198 mulxq(tmp4, tmp3, yz_idx1); // yz_idx1 * rdx -> tmp4:tmp3 7199 movq(yz_idx2, Address(z, idx, Address::times_4, 0)); 7200 rorxq(yz_idx2, yz_idx2, 32); 7201 7202 add2_with_carry(tmp4, tmp3, carry, yz_idx2); 7203 7204 movl(Address(z, idx, Address::times_4, 4), tmp3); 7205 shrq(tmp3, 32); 7206 movl(Address(z, idx, Address::times_4, 0), tmp3); 7207 movq(carry, tmp4); 7208 7209 bind (L_check_1); 7210 addl (idx, 0x2); 7211 andl (idx, 0x1); 7212 subl(idx, 1); 7213 jcc(Assembler::negative, L_post_third_loop_done); 7214 movl(tmp4, Address(y, idx, Address::times_4, 0)); 7215 mulxq(carry2, tmp3, tmp4); // tmp4 * rdx -> carry2:tmp3 7216 movl(tmp4, Address(z, idx, Address::times_4, 0)); 7217 7218 add2_with_carry(carry2, tmp3, tmp4, carry); 7219 7220 movl(Address(z, idx, Address::times_4, 0), tmp3); 7221 shrq(tmp3, 32); 7222 7223 shlq(carry2, 32); 7224 orq(tmp3, carry2); 7225 movq(carry, tmp3); 7226 7227 bind(L_post_third_loop_done); 7228 } 7229 7230 /** 7231 * Code for BigInteger::multiplyToLen() intrinsic. 7232 * 7233 * rdi: x 7234 * rax: xlen 7235 * rsi: y 7236 * rcx: ylen 7237 * r8: z 7238 * r11: tmp0 7239 * r12: tmp1 7240 * r13: tmp2 7241 * r14: tmp3 7242 * r15: tmp4 7243 * rbx: tmp5 7244 * 7245 */ 7246 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register tmp0, 7247 Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5) { 7248 ShortBranchVerifier sbv(this); 7249 assert_different_registers(x, xlen, y, ylen, z, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, rdx); 7250 7251 push(tmp0); 7252 push(tmp1); 7253 push(tmp2); 7254 push(tmp3); 7255 push(tmp4); 7256 push(tmp5); 7257 7258 push(xlen); 7259 7260 const Register idx = tmp1; 7261 const Register kdx = tmp2; 7262 const Register xstart = tmp3; 7263 7264 const Register y_idx = tmp4; 7265 const Register carry = tmp5; 7266 const Register product = xlen; 7267 const Register x_xstart = tmp0; 7268 7269 // First Loop. 7270 // 7271 // final static long LONG_MASK = 0xffffffffL; 7272 // int xstart = xlen - 1; 7273 // int ystart = ylen - 1; 7274 // long carry = 0; 7275 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 7276 // long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry; 7277 // z[kdx] = (int)product; 7278 // carry = product >>> 32; 7279 // } 7280 // z[xstart] = (int)carry; 7281 // 7282 7283 movl(idx, ylen); // idx = ylen; 7284 lea(kdx, Address(xlen, ylen)); // kdx = xlen+ylen; 7285 xorq(carry, carry); // carry = 0; 7286 7287 Label L_done; 7288 7289 movl(xstart, xlen); 7290 decrementl(xstart); 7291 jcc(Assembler::negative, L_done); 7292 7293 multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx); 7294 7295 Label L_second_loop; 7296 testl(kdx, kdx); 7297 jcc(Assembler::zero, L_second_loop); 7298 7299 Label L_carry; 7300 subl(kdx, 1); 7301 jcc(Assembler::zero, L_carry); 7302 7303 movl(Address(z, kdx, Address::times_4, 0), carry); 7304 shrq(carry, 32); 7305 subl(kdx, 1); 7306 7307 bind(L_carry); 7308 movl(Address(z, kdx, Address::times_4, 0), carry); 7309 7310 // Second and third (nested) loops. 7311 // 7312 // for (int i = xstart-1; i >= 0; i--) { // Second loop 7313 // carry = 0; 7314 // for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop 7315 // long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) + 7316 // (z[k] & LONG_MASK) + carry; 7317 // z[k] = (int)product; 7318 // carry = product >>> 32; 7319 // } 7320 // z[i] = (int)carry; 7321 // } 7322 // 7323 // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx 7324 7325 const Register jdx = tmp1; 7326 7327 bind(L_second_loop); 7328 xorl(carry, carry); // carry = 0; 7329 movl(jdx, ylen); // j = ystart+1 7330 7331 subl(xstart, 1); // i = xstart-1; 7332 jcc(Assembler::negative, L_done); 7333 7334 push (z); 7335 7336 Label L_last_x; 7337 lea(z, Address(z, xstart, Address::times_4, 4)); // z = z + k - j 7338 subl(xstart, 1); // i = xstart-1; 7339 jcc(Assembler::negative, L_last_x); 7340 7341 if (UseBMI2Instructions) { 7342 movq(rdx, Address(x, xstart, Address::times_4, 0)); 7343 rorxq(rdx, rdx, 32); // convert big-endian to little-endian 7344 } else { 7345 movq(x_xstart, Address(x, xstart, Address::times_4, 0)); 7346 rorq(x_xstart, 32); // convert big-endian to little-endian 7347 } 7348 7349 Label L_third_loop_prologue; 7350 bind(L_third_loop_prologue); 7351 7352 push (x); 7353 push (xstart); 7354 push (ylen); 7355 7356 7357 if (UseBMI2Instructions) { 7358 multiply_128_x_128_bmi2_loop(y, z, carry, x, jdx, ylen, product, tmp2, x_xstart, tmp3, tmp4); 7359 } else { // !UseBMI2Instructions 7360 multiply_128_x_128_loop(x_xstart, y, z, y_idx, jdx, ylen, carry, product, x); 7361 } 7362 7363 pop(ylen); 7364 pop(xlen); 7365 pop(x); 7366 pop(z); 7367 7368 movl(tmp3, xlen); 7369 addl(tmp3, 1); 7370 movl(Address(z, tmp3, Address::times_4, 0), carry); 7371 subl(tmp3, 1); 7372 jccb(Assembler::negative, L_done); 7373 7374 shrq(carry, 32); 7375 movl(Address(z, tmp3, Address::times_4, 0), carry); 7376 jmp(L_second_loop); 7377 7378 // Next infrequent code is moved outside loops. 7379 bind(L_last_x); 7380 if (UseBMI2Instructions) { 7381 movl(rdx, Address(x, 0)); 7382 } else { 7383 movl(x_xstart, Address(x, 0)); 7384 } 7385 jmp(L_third_loop_prologue); 7386 7387 bind(L_done); 7388 7389 pop(xlen); 7390 7391 pop(tmp5); 7392 pop(tmp4); 7393 pop(tmp3); 7394 pop(tmp2); 7395 pop(tmp1); 7396 pop(tmp0); 7397 } 7398 7399 void MacroAssembler::vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale, 7400 Register result, Register tmp1, Register tmp2, XMMRegister rymm0, XMMRegister rymm1, XMMRegister rymm2){ 7401 assert(UseSSE42Intrinsics, "SSE4.2 must be enabled."); 7402 Label VECTOR16_LOOP, VECTOR8_LOOP, VECTOR4_LOOP; 7403 Label VECTOR8_TAIL, VECTOR4_TAIL; 7404 Label VECTOR32_NOT_EQUAL, VECTOR16_NOT_EQUAL, VECTOR8_NOT_EQUAL, VECTOR4_NOT_EQUAL; 7405 Label SAME_TILL_END, DONE; 7406 Label BYTES_LOOP, BYTES_TAIL, BYTES_NOT_EQUAL; 7407 7408 //scale is in rcx in both Win64 and Unix 7409 ShortBranchVerifier sbv(this); 7410 7411 shlq(length); 7412 xorq(result, result); 7413 7414 if ((AVX3Threshold == 0) && (UseAVX > 2) && 7415 VM_Version::supports_avx512vlbw()) { 7416 Label VECTOR64_LOOP, VECTOR64_NOT_EQUAL, VECTOR32_TAIL; 7417 7418 cmpq(length, 64); 7419 jcc(Assembler::less, VECTOR32_TAIL); 7420 7421 movq(tmp1, length); 7422 andq(tmp1, 0x3F); // tail count 7423 andq(length, ~(0x3F)); //vector count 7424 7425 bind(VECTOR64_LOOP); 7426 // AVX512 code to compare 64 byte vectors. 7427 evmovdqub(rymm0, Address(obja, result), Assembler::AVX_512bit); 7428 evpcmpeqb(k7, rymm0, Address(objb, result), Assembler::AVX_512bit); 7429 kortestql(k7, k7); 7430 jcc(Assembler::aboveEqual, VECTOR64_NOT_EQUAL); // mismatch 7431 addq(result, 64); 7432 subq(length, 64); 7433 jccb(Assembler::notZero, VECTOR64_LOOP); 7434 7435 //bind(VECTOR64_TAIL); 7436 testq(tmp1, tmp1); 7437 jcc(Assembler::zero, SAME_TILL_END); 7438 7439 //bind(VECTOR64_TAIL); 7440 // AVX512 code to compare up to 63 byte vectors. 7441 mov64(tmp2, 0xFFFFFFFFFFFFFFFF); 7442 shlxq(tmp2, tmp2, tmp1); 7443 notq(tmp2); 7444 kmovql(k3, tmp2); 7445 7446 evmovdqub(rymm0, k3, Address(obja, result), false, Assembler::AVX_512bit); 7447 evpcmpeqb(k7, k3, rymm0, Address(objb, result), Assembler::AVX_512bit); 7448 7449 ktestql(k7, k3); 7450 jcc(Assembler::below, SAME_TILL_END); // not mismatch 7451 7452 bind(VECTOR64_NOT_EQUAL); 7453 kmovql(tmp1, k7); 7454 notq(tmp1); 7455 tzcntq(tmp1, tmp1); 7456 addq(result, tmp1); 7457 shrq(result); 7458 jmp(DONE); 7459 bind(VECTOR32_TAIL); 7460 } 7461 7462 cmpq(length, 8); 7463 jcc(Assembler::equal, VECTOR8_LOOP); 7464 jcc(Assembler::less, VECTOR4_TAIL); 7465 7466 if (UseAVX >= 2) { 7467 Label VECTOR16_TAIL, VECTOR32_LOOP; 7468 7469 cmpq(length, 16); 7470 jcc(Assembler::equal, VECTOR16_LOOP); 7471 jcc(Assembler::less, VECTOR8_LOOP); 7472 7473 cmpq(length, 32); 7474 jccb(Assembler::less, VECTOR16_TAIL); 7475 7476 subq(length, 32); 7477 bind(VECTOR32_LOOP); 7478 vmovdqu(rymm0, Address(obja, result)); 7479 vmovdqu(rymm1, Address(objb, result)); 7480 vpxor(rymm2, rymm0, rymm1, Assembler::AVX_256bit); 7481 vptest(rymm2, rymm2); 7482 jcc(Assembler::notZero, VECTOR32_NOT_EQUAL);//mismatch found 7483 addq(result, 32); 7484 subq(length, 32); 7485 jcc(Assembler::greaterEqual, VECTOR32_LOOP); 7486 addq(length, 32); 7487 jcc(Assembler::equal, SAME_TILL_END); 7488 //falling through if less than 32 bytes left //close the branch here. 7489 7490 bind(VECTOR16_TAIL); 7491 cmpq(length, 16); 7492 jccb(Assembler::less, VECTOR8_TAIL); 7493 bind(VECTOR16_LOOP); 7494 movdqu(rymm0, Address(obja, result)); 7495 movdqu(rymm1, Address(objb, result)); 7496 vpxor(rymm2, rymm0, rymm1, Assembler::AVX_128bit); 7497 ptest(rymm2, rymm2); 7498 jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found 7499 addq(result, 16); 7500 subq(length, 16); 7501 jcc(Assembler::equal, SAME_TILL_END); 7502 //falling through if less than 16 bytes left 7503 } else {//regular intrinsics 7504 7505 cmpq(length, 16); 7506 jccb(Assembler::less, VECTOR8_TAIL); 7507 7508 subq(length, 16); 7509 bind(VECTOR16_LOOP); 7510 movdqu(rymm0, Address(obja, result)); 7511 movdqu(rymm1, Address(objb, result)); 7512 pxor(rymm0, rymm1); 7513 ptest(rymm0, rymm0); 7514 jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found 7515 addq(result, 16); 7516 subq(length, 16); 7517 jccb(Assembler::greaterEqual, VECTOR16_LOOP); 7518 addq(length, 16); 7519 jcc(Assembler::equal, SAME_TILL_END); 7520 //falling through if less than 16 bytes left 7521 } 7522 7523 bind(VECTOR8_TAIL); 7524 cmpq(length, 8); 7525 jccb(Assembler::less, VECTOR4_TAIL); 7526 bind(VECTOR8_LOOP); 7527 movq(tmp1, Address(obja, result)); 7528 movq(tmp2, Address(objb, result)); 7529 xorq(tmp1, tmp2); 7530 testq(tmp1, tmp1); 7531 jcc(Assembler::notZero, VECTOR8_NOT_EQUAL);//mismatch found 7532 addq(result, 8); 7533 subq(length, 8); 7534 jcc(Assembler::equal, SAME_TILL_END); 7535 //falling through if less than 8 bytes left 7536 7537 bind(VECTOR4_TAIL); 7538 cmpq(length, 4); 7539 jccb(Assembler::less, BYTES_TAIL); 7540 bind(VECTOR4_LOOP); 7541 movl(tmp1, Address(obja, result)); 7542 xorl(tmp1, Address(objb, result)); 7543 testl(tmp1, tmp1); 7544 jcc(Assembler::notZero, VECTOR4_NOT_EQUAL);//mismatch found 7545 addq(result, 4); 7546 subq(length, 4); 7547 jcc(Assembler::equal, SAME_TILL_END); 7548 //falling through if less than 4 bytes left 7549 7550 bind(BYTES_TAIL); 7551 bind(BYTES_LOOP); 7552 load_unsigned_byte(tmp1, Address(obja, result)); 7553 load_unsigned_byte(tmp2, Address(objb, result)); 7554 xorl(tmp1, tmp2); 7555 testl(tmp1, tmp1); 7556 jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found 7557 decq(length); 7558 jcc(Assembler::zero, SAME_TILL_END); 7559 incq(result); 7560 load_unsigned_byte(tmp1, Address(obja, result)); 7561 load_unsigned_byte(tmp2, Address(objb, result)); 7562 xorl(tmp1, tmp2); 7563 testl(tmp1, tmp1); 7564 jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found 7565 decq(length); 7566 jcc(Assembler::zero, SAME_TILL_END); 7567 incq(result); 7568 load_unsigned_byte(tmp1, Address(obja, result)); 7569 load_unsigned_byte(tmp2, Address(objb, result)); 7570 xorl(tmp1, tmp2); 7571 testl(tmp1, tmp1); 7572 jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found 7573 jmp(SAME_TILL_END); 7574 7575 if (UseAVX >= 2) { 7576 bind(VECTOR32_NOT_EQUAL); 7577 vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_256bit); 7578 vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_256bit); 7579 vpxor(rymm0, rymm0, rymm2, Assembler::AVX_256bit); 7580 vpmovmskb(tmp1, rymm0); 7581 bsfq(tmp1, tmp1); 7582 addq(result, tmp1); 7583 shrq(result); 7584 jmp(DONE); 7585 } 7586 7587 bind(VECTOR16_NOT_EQUAL); 7588 if (UseAVX >= 2) { 7589 vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_128bit); 7590 vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_128bit); 7591 pxor(rymm0, rymm2); 7592 } else { 7593 pcmpeqb(rymm2, rymm2); 7594 pxor(rymm0, rymm1); 7595 pcmpeqb(rymm0, rymm1); 7596 pxor(rymm0, rymm2); 7597 } 7598 pmovmskb(tmp1, rymm0); 7599 bsfq(tmp1, tmp1); 7600 addq(result, tmp1); 7601 shrq(result); 7602 jmpb(DONE); 7603 7604 bind(VECTOR8_NOT_EQUAL); 7605 bind(VECTOR4_NOT_EQUAL); 7606 bsfq(tmp1, tmp1); 7607 shrq(tmp1, 3); 7608 addq(result, tmp1); 7609 bind(BYTES_NOT_EQUAL); 7610 shrq(result); 7611 jmpb(DONE); 7612 7613 bind(SAME_TILL_END); 7614 mov64(result, -1); 7615 7616 bind(DONE); 7617 } 7618 7619 //Helper functions for square_to_len() 7620 7621 /** 7622 * Store the squares of x[], right shifted one bit (divided by 2) into z[] 7623 * Preserves x and z and modifies rest of the registers. 7624 */ 7625 void MacroAssembler::square_rshift(Register x, Register xlen, Register z, Register tmp1, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) { 7626 // Perform square and right shift by 1 7627 // Handle odd xlen case first, then for even xlen do the following 7628 // jlong carry = 0; 7629 // for (int j=0, i=0; j < xlen; j+=2, i+=4) { 7630 // huge_128 product = x[j:j+1] * x[j:j+1]; 7631 // z[i:i+1] = (carry << 63) | (jlong)(product >>> 65); 7632 // z[i+2:i+3] = (jlong)(product >>> 1); 7633 // carry = (jlong)product; 7634 // } 7635 7636 xorq(tmp5, tmp5); // carry 7637 xorq(rdxReg, rdxReg); 7638 xorl(tmp1, tmp1); // index for x 7639 xorl(tmp4, tmp4); // index for z 7640 7641 Label L_first_loop, L_first_loop_exit; 7642 7643 testl(xlen, 1); 7644 jccb(Assembler::zero, L_first_loop); //jump if xlen is even 7645 7646 // Square and right shift by 1 the odd element using 32 bit multiply 7647 movl(raxReg, Address(x, tmp1, Address::times_4, 0)); 7648 imulq(raxReg, raxReg); 7649 shrq(raxReg, 1); 7650 adcq(tmp5, 0); 7651 movq(Address(z, tmp4, Address::times_4, 0), raxReg); 7652 incrementl(tmp1); 7653 addl(tmp4, 2); 7654 7655 // Square and right shift by 1 the rest using 64 bit multiply 7656 bind(L_first_loop); 7657 cmpptr(tmp1, xlen); 7658 jccb(Assembler::equal, L_first_loop_exit); 7659 7660 // Square 7661 movq(raxReg, Address(x, tmp1, Address::times_4, 0)); 7662 rorq(raxReg, 32); // convert big-endian to little-endian 7663 mulq(raxReg); // 64-bit multiply rax * rax -> rdx:rax 7664 7665 // Right shift by 1 and save carry 7666 shrq(tmp5, 1); // rdx:rax:tmp5 = (tmp5:rdx:rax) >>> 1 7667 rcrq(rdxReg, 1); 7668 rcrq(raxReg, 1); 7669 adcq(tmp5, 0); 7670 7671 // Store result in z 7672 movq(Address(z, tmp4, Address::times_4, 0), rdxReg); 7673 movq(Address(z, tmp4, Address::times_4, 8), raxReg); 7674 7675 // Update indices for x and z 7676 addl(tmp1, 2); 7677 addl(tmp4, 4); 7678 jmp(L_first_loop); 7679 7680 bind(L_first_loop_exit); 7681 } 7682 7683 7684 /** 7685 * Perform the following multiply add operation using BMI2 instructions 7686 * carry:sum = sum + op1*op2 + carry 7687 * op2 should be in rdx 7688 * op2 is preserved, all other registers are modified 7689 */ 7690 void MacroAssembler::multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry, Register tmp2) { 7691 // assert op2 is rdx 7692 mulxq(tmp2, op1, op1); // op1 * op2 -> tmp2:op1 7693 addq(sum, carry); 7694 adcq(tmp2, 0); 7695 addq(sum, op1); 7696 adcq(tmp2, 0); 7697 movq(carry, tmp2); 7698 } 7699 7700 /** 7701 * Perform the following multiply add operation: 7702 * carry:sum = sum + op1*op2 + carry 7703 * Preserves op1, op2 and modifies rest of registers 7704 */ 7705 void MacroAssembler::multiply_add_64(Register sum, Register op1, Register op2, Register carry, Register rdxReg, Register raxReg) { 7706 // rdx:rax = op1 * op2 7707 movq(raxReg, op2); 7708 mulq(op1); 7709 7710 // rdx:rax = sum + carry + rdx:rax 7711 addq(sum, carry); 7712 adcq(rdxReg, 0); 7713 addq(sum, raxReg); 7714 adcq(rdxReg, 0); 7715 7716 // carry:sum = rdx:sum 7717 movq(carry, rdxReg); 7718 } 7719 7720 /** 7721 * Add 64 bit long carry into z[] with carry propagation. 7722 * Preserves z and carry register values and modifies rest of registers. 7723 * 7724 */ 7725 void MacroAssembler::add_one_64(Register z, Register zlen, Register carry, Register tmp1) { 7726 Label L_fourth_loop, L_fourth_loop_exit; 7727 7728 movl(tmp1, 1); 7729 subl(zlen, 2); 7730 addq(Address(z, zlen, Address::times_4, 0), carry); 7731 7732 bind(L_fourth_loop); 7733 jccb(Assembler::carryClear, L_fourth_loop_exit); 7734 subl(zlen, 2); 7735 jccb(Assembler::negative, L_fourth_loop_exit); 7736 addq(Address(z, zlen, Address::times_4, 0), tmp1); 7737 jmp(L_fourth_loop); 7738 bind(L_fourth_loop_exit); 7739 } 7740 7741 /** 7742 * Shift z[] left by 1 bit. 7743 * Preserves x, len, z and zlen registers and modifies rest of the registers. 7744 * 7745 */ 7746 void MacroAssembler::lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4) { 7747 7748 Label L_fifth_loop, L_fifth_loop_exit; 7749 7750 // Fifth loop 7751 // Perform primitiveLeftShift(z, zlen, 1) 7752 7753 const Register prev_carry = tmp1; 7754 const Register new_carry = tmp4; 7755 const Register value = tmp2; 7756 const Register zidx = tmp3; 7757 7758 // int zidx, carry; 7759 // long value; 7760 // carry = 0; 7761 // for (zidx = zlen-2; zidx >=0; zidx -= 2) { 7762 // (carry:value) = (z[i] << 1) | carry ; 7763 // z[i] = value; 7764 // } 7765 7766 movl(zidx, zlen); 7767 xorl(prev_carry, prev_carry); // clear carry flag and prev_carry register 7768 7769 bind(L_fifth_loop); 7770 decl(zidx); // Use decl to preserve carry flag 7771 decl(zidx); 7772 jccb(Assembler::negative, L_fifth_loop_exit); 7773 7774 if (UseBMI2Instructions) { 7775 movq(value, Address(z, zidx, Address::times_4, 0)); 7776 rclq(value, 1); 7777 rorxq(value, value, 32); 7778 movq(Address(z, zidx, Address::times_4, 0), value); // Store back in big endian form 7779 } 7780 else { 7781 // clear new_carry 7782 xorl(new_carry, new_carry); 7783 7784 // Shift z[i] by 1, or in previous carry and save new carry 7785 movq(value, Address(z, zidx, Address::times_4, 0)); 7786 shlq(value, 1); 7787 adcl(new_carry, 0); 7788 7789 orq(value, prev_carry); 7790 rorq(value, 0x20); 7791 movq(Address(z, zidx, Address::times_4, 0), value); // Store back in big endian form 7792 7793 // Set previous carry = new carry 7794 movl(prev_carry, new_carry); 7795 } 7796 jmp(L_fifth_loop); 7797 7798 bind(L_fifth_loop_exit); 7799 } 7800 7801 7802 /** 7803 * Code for BigInteger::squareToLen() intrinsic 7804 * 7805 * rdi: x 7806 * rsi: len 7807 * r8: z 7808 * rcx: zlen 7809 * r12: tmp1 7810 * r13: tmp2 7811 * r14: tmp3 7812 * r15: tmp4 7813 * rbx: tmp5 7814 * 7815 */ 7816 void MacroAssembler::square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) { 7817 7818 Label L_second_loop, L_second_loop_exit, L_third_loop, L_third_loop_exit, L_last_x, L_multiply; 7819 push(tmp1); 7820 push(tmp2); 7821 push(tmp3); 7822 push(tmp4); 7823 push(tmp5); 7824 7825 // First loop 7826 // Store the squares, right shifted one bit (i.e., divided by 2). 7827 square_rshift(x, len, z, tmp1, tmp3, tmp4, tmp5, rdxReg, raxReg); 7828 7829 // Add in off-diagonal sums. 7830 // 7831 // Second, third (nested) and fourth loops. 7832 // zlen +=2; 7833 // for (int xidx=len-2,zidx=zlen-4; xidx > 0; xidx-=2,zidx-=4) { 7834 // carry = 0; 7835 // long op2 = x[xidx:xidx+1]; 7836 // for (int j=xidx-2,k=zidx; j >= 0; j-=2) { 7837 // k -= 2; 7838 // long op1 = x[j:j+1]; 7839 // long sum = z[k:k+1]; 7840 // carry:sum = multiply_add_64(sum, op1, op2, carry, tmp_regs); 7841 // z[k:k+1] = sum; 7842 // } 7843 // add_one_64(z, k, carry, tmp_regs); 7844 // } 7845 7846 const Register carry = tmp5; 7847 const Register sum = tmp3; 7848 const Register op1 = tmp4; 7849 Register op2 = tmp2; 7850 7851 push(zlen); 7852 push(len); 7853 addl(zlen,2); 7854 bind(L_second_loop); 7855 xorq(carry, carry); 7856 subl(zlen, 4); 7857 subl(len, 2); 7858 push(zlen); 7859 push(len); 7860 cmpl(len, 0); 7861 jccb(Assembler::lessEqual, L_second_loop_exit); 7862 7863 // Multiply an array by one 64 bit long. 7864 if (UseBMI2Instructions) { 7865 op2 = rdxReg; 7866 movq(op2, Address(x, len, Address::times_4, 0)); 7867 rorxq(op2, op2, 32); 7868 } 7869 else { 7870 movq(op2, Address(x, len, Address::times_4, 0)); 7871 rorq(op2, 32); 7872 } 7873 7874 bind(L_third_loop); 7875 decrementl(len); 7876 jccb(Assembler::negative, L_third_loop_exit); 7877 decrementl(len); 7878 jccb(Assembler::negative, L_last_x); 7879 7880 movq(op1, Address(x, len, Address::times_4, 0)); 7881 rorq(op1, 32); 7882 7883 bind(L_multiply); 7884 subl(zlen, 2); 7885 movq(sum, Address(z, zlen, Address::times_4, 0)); 7886 7887 // Multiply 64 bit by 64 bit and add 64 bits lower half and upper 64 bits as carry. 7888 if (UseBMI2Instructions) { 7889 multiply_add_64_bmi2(sum, op1, op2, carry, tmp2); 7890 } 7891 else { 7892 multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg); 7893 } 7894 7895 movq(Address(z, zlen, Address::times_4, 0), sum); 7896 7897 jmp(L_third_loop); 7898 bind(L_third_loop_exit); 7899 7900 // Fourth loop 7901 // Add 64 bit long carry into z with carry propagation. 7902 // Uses offsetted zlen. 7903 add_one_64(z, zlen, carry, tmp1); 7904 7905 pop(len); 7906 pop(zlen); 7907 jmp(L_second_loop); 7908 7909 // Next infrequent code is moved outside loops. 7910 bind(L_last_x); 7911 movl(op1, Address(x, 0)); 7912 jmp(L_multiply); 7913 7914 bind(L_second_loop_exit); 7915 pop(len); 7916 pop(zlen); 7917 pop(len); 7918 pop(zlen); 7919 7920 // Fifth loop 7921 // Shift z left 1 bit. 7922 lshift_by_1(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4); 7923 7924 // z[zlen-1] |= x[len-1] & 1; 7925 movl(tmp3, Address(x, len, Address::times_4, -4)); 7926 andl(tmp3, 1); 7927 orl(Address(z, zlen, Address::times_4, -4), tmp3); 7928 7929 pop(tmp5); 7930 pop(tmp4); 7931 pop(tmp3); 7932 pop(tmp2); 7933 pop(tmp1); 7934 } 7935 7936 /** 7937 * Helper function for mul_add() 7938 * Multiply the in[] by int k and add to out[] starting at offset offs using 7939 * 128 bit by 32 bit multiply and return the carry in tmp5. 7940 * Only quad int aligned length of in[] is operated on in this function. 7941 * k is in rdxReg for BMI2Instructions, for others it is in tmp2. 7942 * This function preserves out, in and k registers. 7943 * len and offset point to the appropriate index in "in" & "out" correspondingly 7944 * tmp5 has the carry. 7945 * other registers are temporary and are modified. 7946 * 7947 */ 7948 void MacroAssembler::mul_add_128_x_32_loop(Register out, Register in, 7949 Register offset, Register len, Register tmp1, Register tmp2, Register tmp3, 7950 Register tmp4, Register tmp5, Register rdxReg, Register raxReg) { 7951 7952 Label L_first_loop, L_first_loop_exit; 7953 7954 movl(tmp1, len); 7955 shrl(tmp1, 2); 7956 7957 bind(L_first_loop); 7958 subl(tmp1, 1); 7959 jccb(Assembler::negative, L_first_loop_exit); 7960 7961 subl(len, 4); 7962 subl(offset, 4); 7963 7964 Register op2 = tmp2; 7965 const Register sum = tmp3; 7966 const Register op1 = tmp4; 7967 const Register carry = tmp5; 7968 7969 if (UseBMI2Instructions) { 7970 op2 = rdxReg; 7971 } 7972 7973 movq(op1, Address(in, len, Address::times_4, 8)); 7974 rorq(op1, 32); 7975 movq(sum, Address(out, offset, Address::times_4, 8)); 7976 rorq(sum, 32); 7977 if (UseBMI2Instructions) { 7978 multiply_add_64_bmi2(sum, op1, op2, carry, raxReg); 7979 } 7980 else { 7981 multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg); 7982 } 7983 // Store back in big endian from little endian 7984 rorq(sum, 0x20); 7985 movq(Address(out, offset, Address::times_4, 8), sum); 7986 7987 movq(op1, Address(in, len, Address::times_4, 0)); 7988 rorq(op1, 32); 7989 movq(sum, Address(out, offset, Address::times_4, 0)); 7990 rorq(sum, 32); 7991 if (UseBMI2Instructions) { 7992 multiply_add_64_bmi2(sum, op1, op2, carry, raxReg); 7993 } 7994 else { 7995 multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg); 7996 } 7997 // Store back in big endian from little endian 7998 rorq(sum, 0x20); 7999 movq(Address(out, offset, Address::times_4, 0), sum); 8000 8001 jmp(L_first_loop); 8002 bind(L_first_loop_exit); 8003 } 8004 8005 /** 8006 * Code for BigInteger::mulAdd() intrinsic 8007 * 8008 * rdi: out 8009 * rsi: in 8010 * r11: offs (out.length - offset) 8011 * rcx: len 8012 * r8: k 8013 * r12: tmp1 8014 * r13: tmp2 8015 * r14: tmp3 8016 * r15: tmp4 8017 * rbx: tmp5 8018 * Multiply the in[] by word k and add to out[], return the carry in rax 8019 */ 8020 void MacroAssembler::mul_add(Register out, Register in, Register offs, 8021 Register len, Register k, Register tmp1, Register tmp2, Register tmp3, 8022 Register tmp4, Register tmp5, Register rdxReg, Register raxReg) { 8023 8024 Label L_carry, L_last_in, L_done; 8025 8026 // carry = 0; 8027 // for (int j=len-1; j >= 0; j--) { 8028 // long product = (in[j] & LONG_MASK) * kLong + 8029 // (out[offs] & LONG_MASK) + carry; 8030 // out[offs--] = (int)product; 8031 // carry = product >>> 32; 8032 // } 8033 // 8034 push(tmp1); 8035 push(tmp2); 8036 push(tmp3); 8037 push(tmp4); 8038 push(tmp5); 8039 8040 Register op2 = tmp2; 8041 const Register sum = tmp3; 8042 const Register op1 = tmp4; 8043 const Register carry = tmp5; 8044 8045 if (UseBMI2Instructions) { 8046 op2 = rdxReg; 8047 movl(op2, k); 8048 } 8049 else { 8050 movl(op2, k); 8051 } 8052 8053 xorq(carry, carry); 8054 8055 //First loop 8056 8057 //Multiply in[] by k in a 4 way unrolled loop using 128 bit by 32 bit multiply 8058 //The carry is in tmp5 8059 mul_add_128_x_32_loop(out, in, offs, len, tmp1, tmp2, tmp3, tmp4, tmp5, rdxReg, raxReg); 8060 8061 //Multiply the trailing in[] entry using 64 bit by 32 bit, if any 8062 decrementl(len); 8063 jccb(Assembler::negative, L_carry); 8064 decrementl(len); 8065 jccb(Assembler::negative, L_last_in); 8066 8067 movq(op1, Address(in, len, Address::times_4, 0)); 8068 rorq(op1, 32); 8069 8070 subl(offs, 2); 8071 movq(sum, Address(out, offs, Address::times_4, 0)); 8072 rorq(sum, 32); 8073 8074 if (UseBMI2Instructions) { 8075 multiply_add_64_bmi2(sum, op1, op2, carry, raxReg); 8076 } 8077 else { 8078 multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg); 8079 } 8080 8081 // Store back in big endian from little endian 8082 rorq(sum, 0x20); 8083 movq(Address(out, offs, Address::times_4, 0), sum); 8084 8085 testl(len, len); 8086 jccb(Assembler::zero, L_carry); 8087 8088 //Multiply the last in[] entry, if any 8089 bind(L_last_in); 8090 movl(op1, Address(in, 0)); 8091 movl(sum, Address(out, offs, Address::times_4, -4)); 8092 8093 movl(raxReg, k); 8094 mull(op1); //tmp4 * eax -> edx:eax 8095 addl(sum, carry); 8096 adcl(rdxReg, 0); 8097 addl(sum, raxReg); 8098 adcl(rdxReg, 0); 8099 movl(carry, rdxReg); 8100 8101 movl(Address(out, offs, Address::times_4, -4), sum); 8102 8103 bind(L_carry); 8104 //return tmp5/carry as carry in rax 8105 movl(rax, carry); 8106 8107 bind(L_done); 8108 pop(tmp5); 8109 pop(tmp4); 8110 pop(tmp3); 8111 pop(tmp2); 8112 pop(tmp1); 8113 } 8114 8115 /** 8116 * Emits code to update CRC-32 with a byte value according to constants in table 8117 * 8118 * @param [in,out]crc Register containing the crc. 8119 * @param [in]val Register containing the byte to fold into the CRC. 8120 * @param [in]table Register containing the table of crc constants. 8121 * 8122 * uint32_t crc; 8123 * val = crc_table[(val ^ crc) & 0xFF]; 8124 * crc = val ^ (crc >> 8); 8125 * 8126 */ 8127 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) { 8128 xorl(val, crc); 8129 andl(val, 0xFF); 8130 shrl(crc, 8); // unsigned shift 8131 xorl(crc, Address(table, val, Address::times_4, 0)); 8132 } 8133 8134 /** 8135 * Fold 128-bit data chunk 8136 */ 8137 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) { 8138 if (UseAVX > 0) { 8139 vpclmulhdq(xtmp, xK, xcrc); // [123:64] 8140 vpclmulldq(xcrc, xK, xcrc); // [63:0] 8141 vpxor(xcrc, xcrc, Address(buf, offset), 0 /* vector_len */); 8142 pxor(xcrc, xtmp); 8143 } else { 8144 movdqa(xtmp, xcrc); 8145 pclmulhdq(xtmp, xK); // [123:64] 8146 pclmulldq(xcrc, xK); // [63:0] 8147 pxor(xcrc, xtmp); 8148 movdqu(xtmp, Address(buf, offset)); 8149 pxor(xcrc, xtmp); 8150 } 8151 } 8152 8153 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf) { 8154 if (UseAVX > 0) { 8155 vpclmulhdq(xtmp, xK, xcrc); 8156 vpclmulldq(xcrc, xK, xcrc); 8157 pxor(xcrc, xbuf); 8158 pxor(xcrc, xtmp); 8159 } else { 8160 movdqa(xtmp, xcrc); 8161 pclmulhdq(xtmp, xK); 8162 pclmulldq(xcrc, xK); 8163 pxor(xcrc, xbuf); 8164 pxor(xcrc, xtmp); 8165 } 8166 } 8167 8168 /** 8169 * 8-bit folds to compute 32-bit CRC 8170 * 8171 * uint64_t xcrc; 8172 * timesXtoThe32[xcrc & 0xFF] ^ (xcrc >> 8); 8173 */ 8174 void MacroAssembler::fold_8bit_crc32(XMMRegister xcrc, Register table, XMMRegister xtmp, Register tmp) { 8175 movdl(tmp, xcrc); 8176 andl(tmp, 0xFF); 8177 movdl(xtmp, Address(table, tmp, Address::times_4, 0)); 8178 psrldq(xcrc, 1); // unsigned shift one byte 8179 pxor(xcrc, xtmp); 8180 } 8181 8182 /** 8183 * uint32_t crc; 8184 * timesXtoThe32[crc & 0xFF] ^ (crc >> 8); 8185 */ 8186 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) { 8187 movl(tmp, crc); 8188 andl(tmp, 0xFF); 8189 shrl(crc, 8); 8190 xorl(crc, Address(table, tmp, Address::times_4, 0)); 8191 } 8192 8193 /** 8194 * @param crc register containing existing CRC (32-bit) 8195 * @param buf register pointing to input byte buffer (byte*) 8196 * @param len register containing number of bytes 8197 * @param table register that will contain address of CRC table 8198 * @param tmp scratch register 8199 */ 8200 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp) { 8201 assert_different_registers(crc, buf, len, table, tmp, rax); 8202 8203 Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned; 8204 Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop; 8205 8206 // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge 8207 // context for the registers used, where all instructions below are using 128-bit mode 8208 // On EVEX without VL and BW, these instructions will all be AVX. 8209 lea(table, ExternalAddress(StubRoutines::crc_table_addr())); 8210 notl(crc); // ~crc 8211 cmpl(len, 16); 8212 jcc(Assembler::less, L_tail); 8213 8214 // Align buffer to 16 bytes 8215 movl(tmp, buf); 8216 andl(tmp, 0xF); 8217 jccb(Assembler::zero, L_aligned); 8218 subl(tmp, 16); 8219 addl(len, tmp); 8220 8221 align(4); 8222 BIND(L_align_loop); 8223 movsbl(rax, Address(buf, 0)); // load byte with sign extension 8224 update_byte_crc32(crc, rax, table); 8225 increment(buf); 8226 incrementl(tmp); 8227 jccb(Assembler::less, L_align_loop); 8228 8229 BIND(L_aligned); 8230 movl(tmp, len); // save 8231 shrl(len, 4); 8232 jcc(Assembler::zero, L_tail_restore); 8233 8234 // Fold crc into first bytes of vector 8235 movdqa(xmm1, Address(buf, 0)); 8236 movdl(rax, xmm1); 8237 xorl(crc, rax); 8238 if (VM_Version::supports_sse4_1()) { 8239 pinsrd(xmm1, crc, 0); 8240 } else { 8241 pinsrw(xmm1, crc, 0); 8242 shrl(crc, 16); 8243 pinsrw(xmm1, crc, 1); 8244 } 8245 addptr(buf, 16); 8246 subl(len, 4); // len > 0 8247 jcc(Assembler::less, L_fold_tail); 8248 8249 movdqa(xmm2, Address(buf, 0)); 8250 movdqa(xmm3, Address(buf, 16)); 8251 movdqa(xmm4, Address(buf, 32)); 8252 addptr(buf, 48); 8253 subl(len, 3); 8254 jcc(Assembler::lessEqual, L_fold_512b); 8255 8256 // Fold total 512 bits of polynomial on each iteration, 8257 // 128 bits per each of 4 parallel streams. 8258 movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32), rscratch1); 8259 8260 align32(); 8261 BIND(L_fold_512b_loop); 8262 fold_128bit_crc32(xmm1, xmm0, xmm5, buf, 0); 8263 fold_128bit_crc32(xmm2, xmm0, xmm5, buf, 16); 8264 fold_128bit_crc32(xmm3, xmm0, xmm5, buf, 32); 8265 fold_128bit_crc32(xmm4, xmm0, xmm5, buf, 48); 8266 addptr(buf, 64); 8267 subl(len, 4); 8268 jcc(Assembler::greater, L_fold_512b_loop); 8269 8270 // Fold 512 bits to 128 bits. 8271 BIND(L_fold_512b); 8272 movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16), rscratch1); 8273 fold_128bit_crc32(xmm1, xmm0, xmm5, xmm2); 8274 fold_128bit_crc32(xmm1, xmm0, xmm5, xmm3); 8275 fold_128bit_crc32(xmm1, xmm0, xmm5, xmm4); 8276 8277 // Fold the rest of 128 bits data chunks 8278 BIND(L_fold_tail); 8279 addl(len, 3); 8280 jccb(Assembler::lessEqual, L_fold_128b); 8281 movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16), rscratch1); 8282 8283 BIND(L_fold_tail_loop); 8284 fold_128bit_crc32(xmm1, xmm0, xmm5, buf, 0); 8285 addptr(buf, 16); 8286 decrementl(len); 8287 jccb(Assembler::greater, L_fold_tail_loop); 8288 8289 // Fold 128 bits in xmm1 down into 32 bits in crc register. 8290 BIND(L_fold_128b); 8291 movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr()), rscratch1); 8292 if (UseAVX > 0) { 8293 vpclmulqdq(xmm2, xmm0, xmm1, 0x1); 8294 vpand(xmm3, xmm0, xmm2, 0 /* vector_len */); 8295 vpclmulqdq(xmm0, xmm0, xmm3, 0x1); 8296 } else { 8297 movdqa(xmm2, xmm0); 8298 pclmulqdq(xmm2, xmm1, 0x1); 8299 movdqa(xmm3, xmm0); 8300 pand(xmm3, xmm2); 8301 pclmulqdq(xmm0, xmm3, 0x1); 8302 } 8303 psrldq(xmm1, 8); 8304 psrldq(xmm2, 4); 8305 pxor(xmm0, xmm1); 8306 pxor(xmm0, xmm2); 8307 8308 // 8 8-bit folds to compute 32-bit CRC. 8309 for (int j = 0; j < 4; j++) { 8310 fold_8bit_crc32(xmm0, table, xmm1, rax); 8311 } 8312 movdl(crc, xmm0); // mov 32 bits to general register 8313 for (int j = 0; j < 4; j++) { 8314 fold_8bit_crc32(crc, table, rax); 8315 } 8316 8317 BIND(L_tail_restore); 8318 movl(len, tmp); // restore 8319 BIND(L_tail); 8320 andl(len, 0xf); 8321 jccb(Assembler::zero, L_exit); 8322 8323 // Fold the rest of bytes 8324 align(4); 8325 BIND(L_tail_loop); 8326 movsbl(rax, Address(buf, 0)); // load byte with sign extension 8327 update_byte_crc32(crc, rax, table); 8328 increment(buf); 8329 decrementl(len); 8330 jccb(Assembler::greater, L_tail_loop); 8331 8332 BIND(L_exit); 8333 notl(crc); // ~c 8334 } 8335 8336 // Helper function for AVX 512 CRC32 8337 // Fold 512-bit data chunks 8338 void MacroAssembler::fold512bit_crc32_avx512(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, 8339 Register pos, int offset) { 8340 evmovdquq(xmm3, Address(buf, pos, Address::times_1, offset), Assembler::AVX_512bit); 8341 evpclmulqdq(xtmp, xcrc, xK, 0x10, Assembler::AVX_512bit); // [123:64] 8342 evpclmulqdq(xmm2, xcrc, xK, 0x01, Assembler::AVX_512bit); // [63:0] 8343 evpxorq(xcrc, xtmp, xmm2, Assembler::AVX_512bit /* vector_len */); 8344 evpxorq(xcrc, xcrc, xmm3, Assembler::AVX_512bit /* vector_len */); 8345 } 8346 8347 // Helper function for AVX 512 CRC32 8348 // Compute CRC32 for < 256B buffers 8349 void MacroAssembler::kernel_crc32_avx512_256B(Register crc, Register buf, Register len, Register table, Register pos, 8350 Register tmp1, Register tmp2, Label& L_barrett, Label& L_16B_reduction_loop, 8351 Label& L_get_last_two_xmms, Label& L_128_done, Label& L_cleanup) { 8352 8353 Label L_less_than_32, L_exact_16_left, L_less_than_16_left; 8354 Label L_less_than_8_left, L_less_than_4_left, L_less_than_2_left, L_zero_left; 8355 Label L_only_less_than_4, L_only_less_than_3, L_only_less_than_2; 8356 8357 // check if there is enough buffer to be able to fold 16B at a time 8358 cmpl(len, 32); 8359 jcc(Assembler::less, L_less_than_32); 8360 8361 // if there is, load the constants 8362 movdqu(xmm10, Address(table, 1 * 16)); //rk1 and rk2 in xmm10 8363 movdl(xmm0, crc); // get the initial crc value 8364 movdqu(xmm7, Address(buf, pos, Address::times_1, 0 * 16)); //load the plaintext 8365 pxor(xmm7, xmm0); 8366 8367 // update the buffer pointer 8368 addl(pos, 16); 8369 //update the counter.subtract 32 instead of 16 to save one instruction from the loop 8370 subl(len, 32); 8371 jmp(L_16B_reduction_loop); 8372 8373 bind(L_less_than_32); 8374 //mov initial crc to the return value. this is necessary for zero - length buffers. 8375 movl(rax, crc); 8376 testl(len, len); 8377 jcc(Assembler::equal, L_cleanup); 8378 8379 movdl(xmm0, crc); //get the initial crc value 8380 8381 cmpl(len, 16); 8382 jcc(Assembler::equal, L_exact_16_left); 8383 jcc(Assembler::less, L_less_than_16_left); 8384 8385 movdqu(xmm7, Address(buf, pos, Address::times_1, 0 * 16)); //load the plaintext 8386 pxor(xmm7, xmm0); //xor the initial crc value 8387 addl(pos, 16); 8388 subl(len, 16); 8389 movdqu(xmm10, Address(table, 1 * 16)); // rk1 and rk2 in xmm10 8390 jmp(L_get_last_two_xmms); 8391 8392 bind(L_less_than_16_left); 8393 //use stack space to load data less than 16 bytes, zero - out the 16B in memory first. 8394 pxor(xmm1, xmm1); 8395 movptr(tmp1, rsp); 8396 movdqu(Address(tmp1, 0 * 16), xmm1); 8397 8398 cmpl(len, 4); 8399 jcc(Assembler::less, L_only_less_than_4); 8400 8401 //backup the counter value 8402 movl(tmp2, len); 8403 cmpl(len, 8); 8404 jcc(Assembler::less, L_less_than_8_left); 8405 8406 //load 8 Bytes 8407 movq(rax, Address(buf, pos, Address::times_1, 0 * 16)); 8408 movq(Address(tmp1, 0 * 16), rax); 8409 addptr(tmp1, 8); 8410 subl(len, 8); 8411 addl(pos, 8); 8412 8413 bind(L_less_than_8_left); 8414 cmpl(len, 4); 8415 jcc(Assembler::less, L_less_than_4_left); 8416 8417 //load 4 Bytes 8418 movl(rax, Address(buf, pos, Address::times_1, 0)); 8419 movl(Address(tmp1, 0 * 16), rax); 8420 addptr(tmp1, 4); 8421 subl(len, 4); 8422 addl(pos, 4); 8423 8424 bind(L_less_than_4_left); 8425 cmpl(len, 2); 8426 jcc(Assembler::less, L_less_than_2_left); 8427 8428 // load 2 Bytes 8429 movw(rax, Address(buf, pos, Address::times_1, 0)); 8430 movl(Address(tmp1, 0 * 16), rax); 8431 addptr(tmp1, 2); 8432 subl(len, 2); 8433 addl(pos, 2); 8434 8435 bind(L_less_than_2_left); 8436 cmpl(len, 1); 8437 jcc(Assembler::less, L_zero_left); 8438 8439 // load 1 Byte 8440 movb(rax, Address(buf, pos, Address::times_1, 0)); 8441 movb(Address(tmp1, 0 * 16), rax); 8442 8443 bind(L_zero_left); 8444 movdqu(xmm7, Address(rsp, 0)); 8445 pxor(xmm7, xmm0); //xor the initial crc value 8446 8447 lea(rax, ExternalAddress(StubRoutines::x86::shuf_table_crc32_avx512_addr())); 8448 movdqu(xmm0, Address(rax, tmp2)); 8449 pshufb(xmm7, xmm0); 8450 jmp(L_128_done); 8451 8452 bind(L_exact_16_left); 8453 movdqu(xmm7, Address(buf, pos, Address::times_1, 0)); 8454 pxor(xmm7, xmm0); //xor the initial crc value 8455 jmp(L_128_done); 8456 8457 bind(L_only_less_than_4); 8458 cmpl(len, 3); 8459 jcc(Assembler::less, L_only_less_than_3); 8460 8461 // load 3 Bytes 8462 movb(rax, Address(buf, pos, Address::times_1, 0)); 8463 movb(Address(tmp1, 0), rax); 8464 8465 movb(rax, Address(buf, pos, Address::times_1, 1)); 8466 movb(Address(tmp1, 1), rax); 8467 8468 movb(rax, Address(buf, pos, Address::times_1, 2)); 8469 movb(Address(tmp1, 2), rax); 8470 8471 movdqu(xmm7, Address(rsp, 0)); 8472 pxor(xmm7, xmm0); //xor the initial crc value 8473 8474 pslldq(xmm7, 0x5); 8475 jmp(L_barrett); 8476 bind(L_only_less_than_3); 8477 cmpl(len, 2); 8478 jcc(Assembler::less, L_only_less_than_2); 8479 8480 // load 2 Bytes 8481 movb(rax, Address(buf, pos, Address::times_1, 0)); 8482 movb(Address(tmp1, 0), rax); 8483 8484 movb(rax, Address(buf, pos, Address::times_1, 1)); 8485 movb(Address(tmp1, 1), rax); 8486 8487 movdqu(xmm7, Address(rsp, 0)); 8488 pxor(xmm7, xmm0); //xor the initial crc value 8489 8490 pslldq(xmm7, 0x6); 8491 jmp(L_barrett); 8492 8493 bind(L_only_less_than_2); 8494 //load 1 Byte 8495 movb(rax, Address(buf, pos, Address::times_1, 0)); 8496 movb(Address(tmp1, 0), rax); 8497 8498 movdqu(xmm7, Address(rsp, 0)); 8499 pxor(xmm7, xmm0); //xor the initial crc value 8500 8501 pslldq(xmm7, 0x7); 8502 } 8503 8504 /** 8505 * Compute CRC32 using AVX512 instructions 8506 * param crc register containing existing CRC (32-bit) 8507 * param buf register pointing to input byte buffer (byte*) 8508 * param len register containing number of bytes 8509 * param table address of crc or crc32c table 8510 * param tmp1 scratch register 8511 * param tmp2 scratch register 8512 * return rax result register 8513 * 8514 * This routine is identical for crc32c with the exception of the precomputed constant 8515 * table which will be passed as the table argument. The calculation steps are 8516 * the same for both variants. 8517 */ 8518 void MacroAssembler::kernel_crc32_avx512(Register crc, Register buf, Register len, Register table, Register tmp1, Register tmp2) { 8519 assert_different_registers(crc, buf, len, table, tmp1, tmp2, rax, r12); 8520 8521 Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned; 8522 Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop; 8523 Label L_less_than_256, L_fold_128_B_loop, L_fold_256_B_loop; 8524 Label L_fold_128_B_register, L_final_reduction_for_128, L_16B_reduction_loop; 8525 Label L_128_done, L_get_last_two_xmms, L_barrett, L_cleanup; 8526 8527 const Register pos = r12; 8528 push(r12); 8529 subptr(rsp, 16 * 2 + 8); 8530 8531 // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge 8532 // context for the registers used, where all instructions below are using 128-bit mode 8533 // On EVEX without VL and BW, these instructions will all be AVX. 8534 movl(pos, 0); 8535 8536 // check if smaller than 256B 8537 cmpl(len, 256); 8538 jcc(Assembler::less, L_less_than_256); 8539 8540 // load the initial crc value 8541 movdl(xmm10, crc); 8542 8543 // receive the initial 64B data, xor the initial crc value 8544 evmovdquq(xmm0, Address(buf, pos, Address::times_1, 0 * 64), Assembler::AVX_512bit); 8545 evmovdquq(xmm4, Address(buf, pos, Address::times_1, 1 * 64), Assembler::AVX_512bit); 8546 evpxorq(xmm0, xmm0, xmm10, Assembler::AVX_512bit); 8547 evbroadcasti32x4(xmm10, Address(table, 2 * 16), Assembler::AVX_512bit); //zmm10 has rk3 and rk4 8548 8549 subl(len, 256); 8550 cmpl(len, 256); 8551 jcc(Assembler::less, L_fold_128_B_loop); 8552 8553 evmovdquq(xmm7, Address(buf, pos, Address::times_1, 2 * 64), Assembler::AVX_512bit); 8554 evmovdquq(xmm8, Address(buf, pos, Address::times_1, 3 * 64), Assembler::AVX_512bit); 8555 evbroadcasti32x4(xmm16, Address(table, 0 * 16), Assembler::AVX_512bit); //zmm16 has rk-1 and rk-2 8556 subl(len, 256); 8557 8558 bind(L_fold_256_B_loop); 8559 addl(pos, 256); 8560 fold512bit_crc32_avx512(xmm0, xmm16, xmm1, buf, pos, 0 * 64); 8561 fold512bit_crc32_avx512(xmm4, xmm16, xmm1, buf, pos, 1 * 64); 8562 fold512bit_crc32_avx512(xmm7, xmm16, xmm1, buf, pos, 2 * 64); 8563 fold512bit_crc32_avx512(xmm8, xmm16, xmm1, buf, pos, 3 * 64); 8564 8565 subl(len, 256); 8566 jcc(Assembler::greaterEqual, L_fold_256_B_loop); 8567 8568 // Fold 256 into 128 8569 addl(pos, 256); 8570 evpclmulqdq(xmm1, xmm0, xmm10, 0x01, Assembler::AVX_512bit); 8571 evpclmulqdq(xmm2, xmm0, xmm10, 0x10, Assembler::AVX_512bit); 8572 vpternlogq(xmm7, 0x96, xmm1, xmm2, Assembler::AVX_512bit); // xor ABC 8573 8574 evpclmulqdq(xmm5, xmm4, xmm10, 0x01, Assembler::AVX_512bit); 8575 evpclmulqdq(xmm6, xmm4, xmm10, 0x10, Assembler::AVX_512bit); 8576 vpternlogq(xmm8, 0x96, xmm5, xmm6, Assembler::AVX_512bit); // xor ABC 8577 8578 evmovdquq(xmm0, xmm7, Assembler::AVX_512bit); 8579 evmovdquq(xmm4, xmm8, Assembler::AVX_512bit); 8580 8581 addl(len, 128); 8582 jmp(L_fold_128_B_register); 8583 8584 // at this section of the code, there is 128 * x + y(0 <= y<128) bytes of buffer.The fold_128_B_loop 8585 // loop will fold 128B at a time until we have 128 + y Bytes of buffer 8586 8587 // fold 128B at a time.This section of the code folds 8 xmm registers in parallel 8588 bind(L_fold_128_B_loop); 8589 addl(pos, 128); 8590 fold512bit_crc32_avx512(xmm0, xmm10, xmm1, buf, pos, 0 * 64); 8591 fold512bit_crc32_avx512(xmm4, xmm10, xmm1, buf, pos, 1 * 64); 8592 8593 subl(len, 128); 8594 jcc(Assembler::greaterEqual, L_fold_128_B_loop); 8595 8596 addl(pos, 128); 8597 8598 // at this point, the buffer pointer is pointing at the last y Bytes of the buffer, where 0 <= y < 128 8599 // the 128B of folded data is in 8 of the xmm registers : xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7 8600 bind(L_fold_128_B_register); 8601 evmovdquq(xmm16, Address(table, 5 * 16), Assembler::AVX_512bit); // multiply by rk9-rk16 8602 evmovdquq(xmm11, Address(table, 9 * 16), Assembler::AVX_512bit); // multiply by rk17-rk20, rk1,rk2, 0,0 8603 evpclmulqdq(xmm1, xmm0, xmm16, 0x01, Assembler::AVX_512bit); 8604 evpclmulqdq(xmm2, xmm0, xmm16, 0x10, Assembler::AVX_512bit); 8605 // save last that has no multiplicand 8606 vextracti64x2(xmm7, xmm4, 3); 8607 8608 evpclmulqdq(xmm5, xmm4, xmm11, 0x01, Assembler::AVX_512bit); 8609 evpclmulqdq(xmm6, xmm4, xmm11, 0x10, Assembler::AVX_512bit); 8610 // Needed later in reduction loop 8611 movdqu(xmm10, Address(table, 1 * 16)); 8612 vpternlogq(xmm1, 0x96, xmm2, xmm5, Assembler::AVX_512bit); // xor ABC 8613 vpternlogq(xmm1, 0x96, xmm6, xmm7, Assembler::AVX_512bit); // xor ABC 8614 8615 // Swap 1,0,3,2 - 01 00 11 10 8616 evshufi64x2(xmm8, xmm1, xmm1, 0x4e, Assembler::AVX_512bit); 8617 evpxorq(xmm8, xmm8, xmm1, Assembler::AVX_256bit); 8618 vextracti128(xmm5, xmm8, 1); 8619 evpxorq(xmm7, xmm5, xmm8, Assembler::AVX_128bit); 8620 8621 // instead of 128, we add 128 - 16 to the loop counter to save 1 instruction from the loop 8622 // instead of a cmp instruction, we use the negative flag with the jl instruction 8623 addl(len, 128 - 16); 8624 jcc(Assembler::less, L_final_reduction_for_128); 8625 8626 bind(L_16B_reduction_loop); 8627 vpclmulqdq(xmm8, xmm7, xmm10, 0x01); 8628 vpclmulqdq(xmm7, xmm7, xmm10, 0x10); 8629 vpxor(xmm7, xmm7, xmm8, Assembler::AVX_128bit); 8630 movdqu(xmm0, Address(buf, pos, Address::times_1, 0 * 16)); 8631 vpxor(xmm7, xmm7, xmm0, Assembler::AVX_128bit); 8632 addl(pos, 16); 8633 subl(len, 16); 8634 jcc(Assembler::greaterEqual, L_16B_reduction_loop); 8635 8636 bind(L_final_reduction_for_128); 8637 addl(len, 16); 8638 jcc(Assembler::equal, L_128_done); 8639 8640 bind(L_get_last_two_xmms); 8641 movdqu(xmm2, xmm7); 8642 addl(pos, len); 8643 movdqu(xmm1, Address(buf, pos, Address::times_1, -16)); 8644 subl(pos, len); 8645 8646 // get rid of the extra data that was loaded before 8647 // load the shift constant 8648 lea(rax, ExternalAddress(StubRoutines::x86::shuf_table_crc32_avx512_addr())); 8649 movdqu(xmm0, Address(rax, len)); 8650 addl(rax, len); 8651 8652 vpshufb(xmm7, xmm7, xmm0, Assembler::AVX_128bit); 8653 //Change mask to 512 8654 vpxor(xmm0, xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_avx512_addr() + 2 * 16), Assembler::AVX_128bit, tmp2); 8655 vpshufb(xmm2, xmm2, xmm0, Assembler::AVX_128bit); 8656 8657 blendvpb(xmm2, xmm2, xmm1, xmm0, Assembler::AVX_128bit); 8658 vpclmulqdq(xmm8, xmm7, xmm10, 0x01); 8659 vpclmulqdq(xmm7, xmm7, xmm10, 0x10); 8660 vpxor(xmm7, xmm7, xmm8, Assembler::AVX_128bit); 8661 vpxor(xmm7, xmm7, xmm2, Assembler::AVX_128bit); 8662 8663 bind(L_128_done); 8664 // compute crc of a 128-bit value 8665 movdqu(xmm10, Address(table, 3 * 16)); 8666 movdqu(xmm0, xmm7); 8667 8668 // 64b fold 8669 vpclmulqdq(xmm7, xmm7, xmm10, 0x0); 8670 vpsrldq(xmm0, xmm0, 0x8, Assembler::AVX_128bit); 8671 vpxor(xmm7, xmm7, xmm0, Assembler::AVX_128bit); 8672 8673 // 32b fold 8674 movdqu(xmm0, xmm7); 8675 vpslldq(xmm7, xmm7, 0x4, Assembler::AVX_128bit); 8676 vpclmulqdq(xmm7, xmm7, xmm10, 0x10); 8677 vpxor(xmm7, xmm7, xmm0, Assembler::AVX_128bit); 8678 jmp(L_barrett); 8679 8680 bind(L_less_than_256); 8681 kernel_crc32_avx512_256B(crc, buf, len, table, pos, tmp1, tmp2, L_barrett, L_16B_reduction_loop, L_get_last_two_xmms, L_128_done, L_cleanup); 8682 8683 //barrett reduction 8684 bind(L_barrett); 8685 vpand(xmm7, xmm7, ExternalAddress(StubRoutines::x86::crc_by128_masks_avx512_addr() + 1 * 16), Assembler::AVX_128bit, tmp2); 8686 movdqu(xmm1, xmm7); 8687 movdqu(xmm2, xmm7); 8688 movdqu(xmm10, Address(table, 4 * 16)); 8689 8690 pclmulqdq(xmm7, xmm10, 0x0); 8691 pxor(xmm7, xmm2); 8692 vpand(xmm7, xmm7, ExternalAddress(StubRoutines::x86::crc_by128_masks_avx512_addr()), Assembler::AVX_128bit, tmp2); 8693 movdqu(xmm2, xmm7); 8694 pclmulqdq(xmm7, xmm10, 0x10); 8695 pxor(xmm7, xmm2); 8696 pxor(xmm7, xmm1); 8697 pextrd(crc, xmm7, 2); 8698 8699 bind(L_cleanup); 8700 addptr(rsp, 16 * 2 + 8); 8701 pop(r12); 8702 } 8703 8704 // S. Gueron / Information Processing Letters 112 (2012) 184 8705 // Algorithm 4: Computing carry-less multiplication using a precomputed lookup table. 8706 // Input: A 32 bit value B = [byte3, byte2, byte1, byte0]. 8707 // Output: the 64-bit carry-less product of B * CONST 8708 void MacroAssembler::crc32c_ipl_alg4(Register in, uint32_t n, 8709 Register tmp1, Register tmp2, Register tmp3) { 8710 lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr())); 8711 if (n > 0) { 8712 addq(tmp3, n * 256 * 8); 8713 } 8714 // Q1 = TABLEExt[n][B & 0xFF]; 8715 movl(tmp1, in); 8716 andl(tmp1, 0x000000FF); 8717 shll(tmp1, 3); 8718 addq(tmp1, tmp3); 8719 movq(tmp1, Address(tmp1, 0)); 8720 8721 // Q2 = TABLEExt[n][B >> 8 & 0xFF]; 8722 movl(tmp2, in); 8723 shrl(tmp2, 8); 8724 andl(tmp2, 0x000000FF); 8725 shll(tmp2, 3); 8726 addq(tmp2, tmp3); 8727 movq(tmp2, Address(tmp2, 0)); 8728 8729 shlq(tmp2, 8); 8730 xorq(tmp1, tmp2); 8731 8732 // Q3 = TABLEExt[n][B >> 16 & 0xFF]; 8733 movl(tmp2, in); 8734 shrl(tmp2, 16); 8735 andl(tmp2, 0x000000FF); 8736 shll(tmp2, 3); 8737 addq(tmp2, tmp3); 8738 movq(tmp2, Address(tmp2, 0)); 8739 8740 shlq(tmp2, 16); 8741 xorq(tmp1, tmp2); 8742 8743 // Q4 = TABLEExt[n][B >> 24 & 0xFF]; 8744 shrl(in, 24); 8745 andl(in, 0x000000FF); 8746 shll(in, 3); 8747 addq(in, tmp3); 8748 movq(in, Address(in, 0)); 8749 8750 shlq(in, 24); 8751 xorq(in, tmp1); 8752 // return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24; 8753 } 8754 8755 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1, 8756 Register in_out, 8757 uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported, 8758 XMMRegister w_xtmp2, 8759 Register tmp1, 8760 Register n_tmp2, Register n_tmp3) { 8761 if (is_pclmulqdq_supported) { 8762 movdl(w_xtmp1, in_out); // modified blindly 8763 8764 movl(tmp1, const_or_pre_comp_const_index); 8765 movdl(w_xtmp2, tmp1); 8766 pclmulqdq(w_xtmp1, w_xtmp2, 0); 8767 8768 movdq(in_out, w_xtmp1); 8769 } else { 8770 crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3); 8771 } 8772 } 8773 8774 // Recombination Alternative 2: No bit-reflections 8775 // T1 = (CRC_A * U1) << 1 8776 // T2 = (CRC_B * U2) << 1 8777 // C1 = T1 >> 32 8778 // C2 = T2 >> 32 8779 // T1 = T1 & 0xFFFFFFFF 8780 // T2 = T2 & 0xFFFFFFFF 8781 // T1 = CRC32(0, T1) 8782 // T2 = CRC32(0, T2) 8783 // C1 = C1 ^ T1 8784 // C2 = C2 ^ T2 8785 // CRC = C1 ^ C2 ^ CRC_C 8786 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2, 8787 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 8788 Register tmp1, Register tmp2, 8789 Register n_tmp3) { 8790 crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3); 8791 crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3); 8792 shlq(in_out, 1); 8793 movl(tmp1, in_out); 8794 shrq(in_out, 32); 8795 xorl(tmp2, tmp2); 8796 crc32(tmp2, tmp1, 4); 8797 xorl(in_out, tmp2); // we don't care about upper 32 bit contents here 8798 shlq(in1, 1); 8799 movl(tmp1, in1); 8800 shrq(in1, 32); 8801 xorl(tmp2, tmp2); 8802 crc32(tmp2, tmp1, 4); 8803 xorl(in1, tmp2); 8804 xorl(in_out, in1); 8805 xorl(in_out, in2); 8806 } 8807 8808 // Set N to predefined value 8809 // Subtract from a length of a buffer 8810 // execute in a loop: 8811 // CRC_A = 0xFFFFFFFF, CRC_B = 0, CRC_C = 0 8812 // for i = 1 to N do 8813 // CRC_A = CRC32(CRC_A, A[i]) 8814 // CRC_B = CRC32(CRC_B, B[i]) 8815 // CRC_C = CRC32(CRC_C, C[i]) 8816 // end for 8817 // Recombine 8818 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, 8819 Register in_out1, Register in_out2, Register in_out3, 8820 Register tmp1, Register tmp2, Register tmp3, 8821 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 8822 Register tmp4, Register tmp5, 8823 Register n_tmp6) { 8824 Label L_processPartitions; 8825 Label L_processPartition; 8826 Label L_exit; 8827 8828 bind(L_processPartitions); 8829 cmpl(in_out1, 3 * size); 8830 jcc(Assembler::less, L_exit); 8831 xorl(tmp1, tmp1); 8832 xorl(tmp2, tmp2); 8833 movq(tmp3, in_out2); 8834 addq(tmp3, size); 8835 8836 bind(L_processPartition); 8837 crc32(in_out3, Address(in_out2, 0), 8); 8838 crc32(tmp1, Address(in_out2, size), 8); 8839 crc32(tmp2, Address(in_out2, size * 2), 8); 8840 addq(in_out2, 8); 8841 cmpq(in_out2, tmp3); 8842 jcc(Assembler::less, L_processPartition); 8843 crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2, 8844 w_xtmp1, w_xtmp2, w_xtmp3, 8845 tmp4, tmp5, 8846 n_tmp6); 8847 addq(in_out2, 2 * size); 8848 subl(in_out1, 3 * size); 8849 jmp(L_processPartitions); 8850 8851 bind(L_exit); 8852 } 8853 8854 // Algorithm 2: Pipelined usage of the CRC32 instruction. 8855 // Input: A buffer I of L bytes. 8856 // Output: the CRC32C value of the buffer. 8857 // Notations: 8858 // Write L = 24N + r, with N = floor (L/24). 8859 // r = L mod 24 (0 <= r < 24). 8860 // Consider I as the concatenation of A|B|C|R, where A, B, C, each, 8861 // N quadwords, and R consists of r bytes. 8862 // A[j] = I [8j+7:8j], j= 0, 1, ..., N-1 8863 // B[j] = I [N + 8j+7:N + 8j], j= 0, 1, ..., N-1 8864 // C[j] = I [2N + 8j+7:2N + 8j], j= 0, 1, ..., N-1 8865 // if r > 0 R[j] = I [3N +j], j= 0, 1, ...,r-1 8866 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2, 8867 Register tmp1, Register tmp2, Register tmp3, 8868 Register tmp4, Register tmp5, Register tmp6, 8869 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 8870 bool is_pclmulqdq_supported) { 8871 uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS]; 8872 Label L_wordByWord; 8873 Label L_byteByByteProlog; 8874 Label L_byteByByte; 8875 Label L_exit; 8876 8877 if (is_pclmulqdq_supported ) { 8878 const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::crc32c_table_addr(); 8879 const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::crc32c_table_addr() + 1); 8880 8881 const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::crc32c_table_addr() + 2); 8882 const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::crc32c_table_addr() + 3); 8883 8884 const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::crc32c_table_addr() + 4); 8885 const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::crc32c_table_addr() + 5); 8886 assert((CRC32C_NUM_PRECOMPUTED_CONSTANTS - 1 ) == 5, "Checking whether you declared all of the constants based on the number of \"chunks\""); 8887 } else { 8888 const_or_pre_comp_const_index[0] = 1; 8889 const_or_pre_comp_const_index[1] = 0; 8890 8891 const_or_pre_comp_const_index[2] = 3; 8892 const_or_pre_comp_const_index[3] = 2; 8893 8894 const_or_pre_comp_const_index[4] = 5; 8895 const_or_pre_comp_const_index[5] = 4; 8896 } 8897 crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported, 8898 in2, in1, in_out, 8899 tmp1, tmp2, tmp3, 8900 w_xtmp1, w_xtmp2, w_xtmp3, 8901 tmp4, tmp5, 8902 tmp6); 8903 crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported, 8904 in2, in1, in_out, 8905 tmp1, tmp2, tmp3, 8906 w_xtmp1, w_xtmp2, w_xtmp3, 8907 tmp4, tmp5, 8908 tmp6); 8909 crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported, 8910 in2, in1, in_out, 8911 tmp1, tmp2, tmp3, 8912 w_xtmp1, w_xtmp2, w_xtmp3, 8913 tmp4, tmp5, 8914 tmp6); 8915 movl(tmp1, in2); 8916 andl(tmp1, 0x00000007); 8917 negl(tmp1); 8918 addl(tmp1, in2); 8919 addq(tmp1, in1); 8920 8921 cmpq(in1, tmp1); 8922 jccb(Assembler::greaterEqual, L_byteByByteProlog); 8923 align(16); 8924 BIND(L_wordByWord); 8925 crc32(in_out, Address(in1, 0), 8); 8926 addq(in1, 8); 8927 cmpq(in1, tmp1); 8928 jcc(Assembler::less, L_wordByWord); 8929 8930 BIND(L_byteByByteProlog); 8931 andl(in2, 0x00000007); 8932 movl(tmp2, 1); 8933 8934 cmpl(tmp2, in2); 8935 jccb(Assembler::greater, L_exit); 8936 BIND(L_byteByByte); 8937 crc32(in_out, Address(in1, 0), 1); 8938 incq(in1); 8939 incl(tmp2); 8940 cmpl(tmp2, in2); 8941 jcc(Assembler::lessEqual, L_byteByByte); 8942 8943 BIND(L_exit); 8944 } 8945 #undef BIND 8946 #undef BLOCK_COMMENT 8947 8948 // Compress char[] array to byte[]. 8949 // Intrinsic for java.lang.StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) 8950 // Return the array length if every element in array can be encoded, 8951 // otherwise, the index of first non-latin1 (> 0xff) character. 8952 // @IntrinsicCandidate 8953 // public static int compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) { 8954 // for (int i = 0; i < len; i++) { 8955 // char c = src[srcOff]; 8956 // if (c > 0xff) { 8957 // return i; // return index of non-latin1 char 8958 // } 8959 // dst[dstOff] = (byte)c; 8960 // srcOff++; 8961 // dstOff++; 8962 // } 8963 // return len; 8964 // } 8965 void MacroAssembler::char_array_compress(Register src, Register dst, Register len, 8966 XMMRegister tmp1Reg, XMMRegister tmp2Reg, 8967 XMMRegister tmp3Reg, XMMRegister tmp4Reg, 8968 Register tmp5, Register result, KRegister mask1, KRegister mask2) { 8969 Label copy_chars_loop, done, reset_sp, copy_tail; 8970 8971 // rsi: src 8972 // rdi: dst 8973 // rdx: len 8974 // rcx: tmp5 8975 // rax: result 8976 8977 // rsi holds start addr of source char[] to be compressed 8978 // rdi holds start addr of destination byte[] 8979 // rdx holds length 8980 8981 assert(len != result, ""); 8982 8983 // save length for return 8984 movl(result, len); 8985 8986 if ((AVX3Threshold == 0) && (UseAVX > 2) && // AVX512 8987 VM_Version::supports_avx512vlbw() && 8988 VM_Version::supports_bmi2()) { 8989 8990 Label copy_32_loop, copy_loop_tail, below_threshold, reset_for_copy_tail; 8991 8992 // alignment 8993 Label post_alignment; 8994 8995 // if length of the string is less than 32, handle it the old fashioned way 8996 testl(len, -32); 8997 jcc(Assembler::zero, below_threshold); 8998 8999 // First check whether a character is compressible ( <= 0xFF). 9000 // Create mask to test for Unicode chars inside zmm vector 9001 movl(tmp5, 0x00FF); 9002 evpbroadcastw(tmp2Reg, tmp5, Assembler::AVX_512bit); 9003 9004 testl(len, -64); 9005 jccb(Assembler::zero, post_alignment); 9006 9007 movl(tmp5, dst); 9008 andl(tmp5, (32 - 1)); 9009 negl(tmp5); 9010 andl(tmp5, (32 - 1)); 9011 9012 // bail out when there is nothing to be done 9013 testl(tmp5, 0xFFFFFFFF); 9014 jccb(Assembler::zero, post_alignment); 9015 9016 // ~(~0 << len), where len is the # of remaining elements to process 9017 movl(len, 0xFFFFFFFF); 9018 shlxl(len, len, tmp5); 9019 notl(len); 9020 kmovdl(mask2, len); 9021 movl(len, result); 9022 9023 evmovdquw(tmp1Reg, mask2, Address(src, 0), /*merge*/ false, Assembler::AVX_512bit); 9024 evpcmpw(mask1, mask2, tmp1Reg, tmp2Reg, Assembler::le, /*signed*/ false, Assembler::AVX_512bit); 9025 ktestd(mask1, mask2); 9026 jcc(Assembler::carryClear, copy_tail); 9027 9028 evpmovwb(Address(dst, 0), mask2, tmp1Reg, Assembler::AVX_512bit); 9029 9030 addptr(src, tmp5); 9031 addptr(src, tmp5); 9032 addptr(dst, tmp5); 9033 subl(len, tmp5); 9034 9035 bind(post_alignment); 9036 // end of alignment 9037 9038 movl(tmp5, len); 9039 andl(tmp5, (32 - 1)); // tail count (in chars) 9040 andl(len, ~(32 - 1)); // vector count (in chars) 9041 jccb(Assembler::zero, copy_loop_tail); 9042 9043 lea(src, Address(src, len, Address::times_2)); 9044 lea(dst, Address(dst, len, Address::times_1)); 9045 negptr(len); 9046 9047 bind(copy_32_loop); 9048 evmovdquw(tmp1Reg, Address(src, len, Address::times_2), Assembler::AVX_512bit); 9049 evpcmpuw(mask1, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit); 9050 kortestdl(mask1, mask1); 9051 jccb(Assembler::carryClear, reset_for_copy_tail); 9052 9053 // All elements in current processed chunk are valid candidates for 9054 // compression. Write a truncated byte elements to the memory. 9055 evpmovwb(Address(dst, len, Address::times_1), tmp1Reg, Assembler::AVX_512bit); 9056 addptr(len, 32); 9057 jccb(Assembler::notZero, copy_32_loop); 9058 9059 bind(copy_loop_tail); 9060 // bail out when there is nothing to be done 9061 testl(tmp5, 0xFFFFFFFF); 9062 jcc(Assembler::zero, done); 9063 9064 movl(len, tmp5); 9065 9066 // ~(~0 << len), where len is the # of remaining elements to process 9067 movl(tmp5, 0xFFFFFFFF); 9068 shlxl(tmp5, tmp5, len); 9069 notl(tmp5); 9070 9071 kmovdl(mask2, tmp5); 9072 9073 evmovdquw(tmp1Reg, mask2, Address(src, 0), /*merge*/ false, Assembler::AVX_512bit); 9074 evpcmpw(mask1, mask2, tmp1Reg, tmp2Reg, Assembler::le, /*signed*/ false, Assembler::AVX_512bit); 9075 ktestd(mask1, mask2); 9076 jcc(Assembler::carryClear, copy_tail); 9077 9078 evpmovwb(Address(dst, 0), mask2, tmp1Reg, Assembler::AVX_512bit); 9079 jmp(done); 9080 9081 bind(reset_for_copy_tail); 9082 lea(src, Address(src, tmp5, Address::times_2)); 9083 lea(dst, Address(dst, tmp5, Address::times_1)); 9084 subptr(len, tmp5); 9085 jmp(copy_chars_loop); 9086 9087 bind(below_threshold); 9088 } 9089 9090 if (UseSSE42Intrinsics) { 9091 Label copy_32_loop, copy_16, copy_tail_sse, reset_for_copy_tail; 9092 9093 // vectored compression 9094 testl(len, 0xfffffff8); 9095 jcc(Assembler::zero, copy_tail); 9096 9097 movl(tmp5, 0xff00ff00); // create mask to test for Unicode chars in vectors 9098 movdl(tmp1Reg, tmp5); 9099 pshufd(tmp1Reg, tmp1Reg, 0); // store Unicode mask in tmp1Reg 9100 9101 andl(len, 0xfffffff0); 9102 jccb(Assembler::zero, copy_16); 9103 9104 // compress 16 chars per iter 9105 pxor(tmp4Reg, tmp4Reg); 9106 9107 lea(src, Address(src, len, Address::times_2)); 9108 lea(dst, Address(dst, len, Address::times_1)); 9109 negptr(len); 9110 9111 bind(copy_32_loop); 9112 movdqu(tmp2Reg, Address(src, len, Address::times_2)); // load 1st 8 characters 9113 por(tmp4Reg, tmp2Reg); 9114 movdqu(tmp3Reg, Address(src, len, Address::times_2, 16)); // load next 8 characters 9115 por(tmp4Reg, tmp3Reg); 9116 ptest(tmp4Reg, tmp1Reg); // check for Unicode chars in next vector 9117 jccb(Assembler::notZero, reset_for_copy_tail); 9118 packuswb(tmp2Reg, tmp3Reg); // only ASCII chars; compress each to 1 byte 9119 movdqu(Address(dst, len, Address::times_1), tmp2Reg); 9120 addptr(len, 16); 9121 jccb(Assembler::notZero, copy_32_loop); 9122 9123 // compress next vector of 8 chars (if any) 9124 bind(copy_16); 9125 // len = 0 9126 testl(result, 0x00000008); // check if there's a block of 8 chars to compress 9127 jccb(Assembler::zero, copy_tail_sse); 9128 9129 pxor(tmp3Reg, tmp3Reg); 9130 9131 movdqu(tmp2Reg, Address(src, 0)); 9132 ptest(tmp2Reg, tmp1Reg); // check for Unicode chars in vector 9133 jccb(Assembler::notZero, reset_for_copy_tail); 9134 packuswb(tmp2Reg, tmp3Reg); // only LATIN1 chars; compress each to 1 byte 9135 movq(Address(dst, 0), tmp2Reg); 9136 addptr(src, 16); 9137 addptr(dst, 8); 9138 jmpb(copy_tail_sse); 9139 9140 bind(reset_for_copy_tail); 9141 movl(tmp5, result); 9142 andl(tmp5, 0x0000000f); 9143 lea(src, Address(src, tmp5, Address::times_2)); 9144 lea(dst, Address(dst, tmp5, Address::times_1)); 9145 subptr(len, tmp5); 9146 jmpb(copy_chars_loop); 9147 9148 bind(copy_tail_sse); 9149 movl(len, result); 9150 andl(len, 0x00000007); // tail count (in chars) 9151 } 9152 // compress 1 char per iter 9153 bind(copy_tail); 9154 testl(len, len); 9155 jccb(Assembler::zero, done); 9156 lea(src, Address(src, len, Address::times_2)); 9157 lea(dst, Address(dst, len, Address::times_1)); 9158 negptr(len); 9159 9160 bind(copy_chars_loop); 9161 load_unsigned_short(tmp5, Address(src, len, Address::times_2)); 9162 testl(tmp5, 0xff00); // check if Unicode char 9163 jccb(Assembler::notZero, reset_sp); 9164 movb(Address(dst, len, Address::times_1), tmp5); // ASCII char; compress to 1 byte 9165 increment(len); 9166 jccb(Assembler::notZero, copy_chars_loop); 9167 9168 // add len then return (len will be zero if compress succeeded, otherwise negative) 9169 bind(reset_sp); 9170 addl(result, len); 9171 9172 bind(done); 9173 } 9174 9175 // Inflate byte[] array to char[]. 9176 // ..\jdk\src\java.base\share\classes\java\lang\StringLatin1.java 9177 // @IntrinsicCandidate 9178 // private static void inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) { 9179 // for (int i = 0; i < len; i++) { 9180 // dst[dstOff++] = (char)(src[srcOff++] & 0xff); 9181 // } 9182 // } 9183 void MacroAssembler::byte_array_inflate(Register src, Register dst, Register len, 9184 XMMRegister tmp1, Register tmp2, KRegister mask) { 9185 Label copy_chars_loop, done, below_threshold, avx3_threshold; 9186 // rsi: src 9187 // rdi: dst 9188 // rdx: len 9189 // rcx: tmp2 9190 9191 // rsi holds start addr of source byte[] to be inflated 9192 // rdi holds start addr of destination char[] 9193 // rdx holds length 9194 assert_different_registers(src, dst, len, tmp2); 9195 movl(tmp2, len); 9196 if ((UseAVX > 2) && // AVX512 9197 VM_Version::supports_avx512vlbw() && 9198 VM_Version::supports_bmi2()) { 9199 9200 Label copy_32_loop, copy_tail; 9201 Register tmp3_aliased = len; 9202 9203 // if length of the string is less than 16, handle it in an old fashioned way 9204 testl(len, -16); 9205 jcc(Assembler::zero, below_threshold); 9206 9207 testl(len, -1 * AVX3Threshold); 9208 jcc(Assembler::zero, avx3_threshold); 9209 9210 // In order to use only one arithmetic operation for the main loop we use 9211 // this pre-calculation 9212 andl(tmp2, (32 - 1)); // tail count (in chars), 32 element wide loop 9213 andl(len, -32); // vector count 9214 jccb(Assembler::zero, copy_tail); 9215 9216 lea(src, Address(src, len, Address::times_1)); 9217 lea(dst, Address(dst, len, Address::times_2)); 9218 negptr(len); 9219 9220 9221 // inflate 32 chars per iter 9222 bind(copy_32_loop); 9223 vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_512bit); 9224 evmovdquw(Address(dst, len, Address::times_2), tmp1, Assembler::AVX_512bit); 9225 addptr(len, 32); 9226 jcc(Assembler::notZero, copy_32_loop); 9227 9228 bind(copy_tail); 9229 // bail out when there is nothing to be done 9230 testl(tmp2, -1); // we don't destroy the contents of tmp2 here 9231 jcc(Assembler::zero, done); 9232 9233 // ~(~0 << length), where length is the # of remaining elements to process 9234 movl(tmp3_aliased, -1); 9235 shlxl(tmp3_aliased, tmp3_aliased, tmp2); 9236 notl(tmp3_aliased); 9237 kmovdl(mask, tmp3_aliased); 9238 evpmovzxbw(tmp1, mask, Address(src, 0), Assembler::AVX_512bit); 9239 evmovdquw(Address(dst, 0), mask, tmp1, /*merge*/ true, Assembler::AVX_512bit); 9240 9241 jmp(done); 9242 bind(avx3_threshold); 9243 } 9244 if (UseSSE42Intrinsics) { 9245 Label copy_16_loop, copy_8_loop, copy_bytes, copy_new_tail, copy_tail; 9246 9247 if (UseAVX > 1) { 9248 andl(tmp2, (16 - 1)); 9249 andl(len, -16); 9250 jccb(Assembler::zero, copy_new_tail); 9251 } else { 9252 andl(tmp2, 0x00000007); // tail count (in chars) 9253 andl(len, 0xfffffff8); // vector count (in chars) 9254 jccb(Assembler::zero, copy_tail); 9255 } 9256 9257 // vectored inflation 9258 lea(src, Address(src, len, Address::times_1)); 9259 lea(dst, Address(dst, len, Address::times_2)); 9260 negptr(len); 9261 9262 if (UseAVX > 1) { 9263 bind(copy_16_loop); 9264 vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_256bit); 9265 vmovdqu(Address(dst, len, Address::times_2), tmp1); 9266 addptr(len, 16); 9267 jcc(Assembler::notZero, copy_16_loop); 9268 9269 bind(below_threshold); 9270 bind(copy_new_tail); 9271 movl(len, tmp2); 9272 andl(tmp2, 0x00000007); 9273 andl(len, 0xFFFFFFF8); 9274 jccb(Assembler::zero, copy_tail); 9275 9276 pmovzxbw(tmp1, Address(src, 0)); 9277 movdqu(Address(dst, 0), tmp1); 9278 addptr(src, 8); 9279 addptr(dst, 2 * 8); 9280 9281 jmp(copy_tail, true); 9282 } 9283 9284 // inflate 8 chars per iter 9285 bind(copy_8_loop); 9286 pmovzxbw(tmp1, Address(src, len, Address::times_1)); // unpack to 8 words 9287 movdqu(Address(dst, len, Address::times_2), tmp1); 9288 addptr(len, 8); 9289 jcc(Assembler::notZero, copy_8_loop); 9290 9291 bind(copy_tail); 9292 movl(len, tmp2); 9293 9294 cmpl(len, 4); 9295 jccb(Assembler::less, copy_bytes); 9296 9297 movdl(tmp1, Address(src, 0)); // load 4 byte chars 9298 pmovzxbw(tmp1, tmp1); 9299 movq(Address(dst, 0), tmp1); 9300 subptr(len, 4); 9301 addptr(src, 4); 9302 addptr(dst, 8); 9303 9304 bind(copy_bytes); 9305 } else { 9306 bind(below_threshold); 9307 } 9308 9309 testl(len, len); 9310 jccb(Assembler::zero, done); 9311 lea(src, Address(src, len, Address::times_1)); 9312 lea(dst, Address(dst, len, Address::times_2)); 9313 negptr(len); 9314 9315 // inflate 1 char per iter 9316 bind(copy_chars_loop); 9317 load_unsigned_byte(tmp2, Address(src, len, Address::times_1)); // load byte char 9318 movw(Address(dst, len, Address::times_2), tmp2); // inflate byte char to word 9319 increment(len); 9320 jcc(Assembler::notZero, copy_chars_loop); 9321 9322 bind(done); 9323 } 9324 9325 void MacroAssembler::evmovdqu(BasicType type, KRegister kmask, XMMRegister dst, XMMRegister src, bool merge, int vector_len) { 9326 switch(type) { 9327 case T_BYTE: 9328 case T_BOOLEAN: 9329 evmovdqub(dst, kmask, src, merge, vector_len); 9330 break; 9331 case T_CHAR: 9332 case T_SHORT: 9333 evmovdquw(dst, kmask, src, merge, vector_len); 9334 break; 9335 case T_INT: 9336 case T_FLOAT: 9337 evmovdqul(dst, kmask, src, merge, vector_len); 9338 break; 9339 case T_LONG: 9340 case T_DOUBLE: 9341 evmovdquq(dst, kmask, src, merge, vector_len); 9342 break; 9343 default: 9344 fatal("Unexpected type argument %s", type2name(type)); 9345 break; 9346 } 9347 } 9348 9349 9350 void MacroAssembler::evmovdqu(BasicType type, KRegister kmask, XMMRegister dst, Address src, bool merge, int vector_len) { 9351 switch(type) { 9352 case T_BYTE: 9353 case T_BOOLEAN: 9354 evmovdqub(dst, kmask, src, merge, vector_len); 9355 break; 9356 case T_CHAR: 9357 case T_SHORT: 9358 evmovdquw(dst, kmask, src, merge, vector_len); 9359 break; 9360 case T_INT: 9361 case T_FLOAT: 9362 evmovdqul(dst, kmask, src, merge, vector_len); 9363 break; 9364 case T_LONG: 9365 case T_DOUBLE: 9366 evmovdquq(dst, kmask, src, merge, vector_len); 9367 break; 9368 default: 9369 fatal("Unexpected type argument %s", type2name(type)); 9370 break; 9371 } 9372 } 9373 9374 void MacroAssembler::evmovdqu(BasicType type, KRegister kmask, Address dst, XMMRegister src, bool merge, int vector_len) { 9375 switch(type) { 9376 case T_BYTE: 9377 case T_BOOLEAN: 9378 evmovdqub(dst, kmask, src, merge, vector_len); 9379 break; 9380 case T_CHAR: 9381 case T_SHORT: 9382 evmovdquw(dst, kmask, src, merge, vector_len); 9383 break; 9384 case T_INT: 9385 case T_FLOAT: 9386 evmovdqul(dst, kmask, src, merge, vector_len); 9387 break; 9388 case T_LONG: 9389 case T_DOUBLE: 9390 evmovdquq(dst, kmask, src, merge, vector_len); 9391 break; 9392 default: 9393 fatal("Unexpected type argument %s", type2name(type)); 9394 break; 9395 } 9396 } 9397 9398 void MacroAssembler::knot(uint masklen, KRegister dst, KRegister src, KRegister ktmp, Register rtmp) { 9399 switch(masklen) { 9400 case 2: 9401 knotbl(dst, src); 9402 movl(rtmp, 3); 9403 kmovbl(ktmp, rtmp); 9404 kandbl(dst, ktmp, dst); 9405 break; 9406 case 4: 9407 knotbl(dst, src); 9408 movl(rtmp, 15); 9409 kmovbl(ktmp, rtmp); 9410 kandbl(dst, ktmp, dst); 9411 break; 9412 case 8: 9413 knotbl(dst, src); 9414 break; 9415 case 16: 9416 knotwl(dst, src); 9417 break; 9418 case 32: 9419 knotdl(dst, src); 9420 break; 9421 case 64: 9422 knotql(dst, src); 9423 break; 9424 default: 9425 fatal("Unexpected vector length %d", masklen); 9426 break; 9427 } 9428 } 9429 9430 void MacroAssembler::kand(BasicType type, KRegister dst, KRegister src1, KRegister src2) { 9431 switch(type) { 9432 case T_BOOLEAN: 9433 case T_BYTE: 9434 kandbl(dst, src1, src2); 9435 break; 9436 case T_CHAR: 9437 case T_SHORT: 9438 kandwl(dst, src1, src2); 9439 break; 9440 case T_INT: 9441 case T_FLOAT: 9442 kanddl(dst, src1, src2); 9443 break; 9444 case T_LONG: 9445 case T_DOUBLE: 9446 kandql(dst, src1, src2); 9447 break; 9448 default: 9449 fatal("Unexpected type argument %s", type2name(type)); 9450 break; 9451 } 9452 } 9453 9454 void MacroAssembler::kor(BasicType type, KRegister dst, KRegister src1, KRegister src2) { 9455 switch(type) { 9456 case T_BOOLEAN: 9457 case T_BYTE: 9458 korbl(dst, src1, src2); 9459 break; 9460 case T_CHAR: 9461 case T_SHORT: 9462 korwl(dst, src1, src2); 9463 break; 9464 case T_INT: 9465 case T_FLOAT: 9466 kordl(dst, src1, src2); 9467 break; 9468 case T_LONG: 9469 case T_DOUBLE: 9470 korql(dst, src1, src2); 9471 break; 9472 default: 9473 fatal("Unexpected type argument %s", type2name(type)); 9474 break; 9475 } 9476 } 9477 9478 void MacroAssembler::kxor(BasicType type, KRegister dst, KRegister src1, KRegister src2) { 9479 switch(type) { 9480 case T_BOOLEAN: 9481 case T_BYTE: 9482 kxorbl(dst, src1, src2); 9483 break; 9484 case T_CHAR: 9485 case T_SHORT: 9486 kxorwl(dst, src1, src2); 9487 break; 9488 case T_INT: 9489 case T_FLOAT: 9490 kxordl(dst, src1, src2); 9491 break; 9492 case T_LONG: 9493 case T_DOUBLE: 9494 kxorql(dst, src1, src2); 9495 break; 9496 default: 9497 fatal("Unexpected type argument %s", type2name(type)); 9498 break; 9499 } 9500 } 9501 9502 void MacroAssembler::evperm(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 9503 switch(type) { 9504 case T_BOOLEAN: 9505 case T_BYTE: 9506 evpermb(dst, mask, nds, src, merge, vector_len); break; 9507 case T_CHAR: 9508 case T_SHORT: 9509 evpermw(dst, mask, nds, src, merge, vector_len); break; 9510 case T_INT: 9511 case T_FLOAT: 9512 evpermd(dst, mask, nds, src, merge, vector_len); break; 9513 case T_LONG: 9514 case T_DOUBLE: 9515 evpermq(dst, mask, nds, src, merge, vector_len); break; 9516 default: 9517 fatal("Unexpected type argument %s", type2name(type)); break; 9518 } 9519 } 9520 9521 void MacroAssembler::evperm(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 9522 switch(type) { 9523 case T_BOOLEAN: 9524 case T_BYTE: 9525 evpermb(dst, mask, nds, src, merge, vector_len); break; 9526 case T_CHAR: 9527 case T_SHORT: 9528 evpermw(dst, mask, nds, src, merge, vector_len); break; 9529 case T_INT: 9530 case T_FLOAT: 9531 evpermd(dst, mask, nds, src, merge, vector_len); break; 9532 case T_LONG: 9533 case T_DOUBLE: 9534 evpermq(dst, mask, nds, src, merge, vector_len); break; 9535 default: 9536 fatal("Unexpected type argument %s", type2name(type)); break; 9537 } 9538 } 9539 9540 void MacroAssembler::evpminu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 9541 switch(type) { 9542 case T_BYTE: 9543 evpminub(dst, mask, nds, src, merge, vector_len); break; 9544 case T_SHORT: 9545 evpminuw(dst, mask, nds, src, merge, vector_len); break; 9546 case T_INT: 9547 evpminud(dst, mask, nds, src, merge, vector_len); break; 9548 case T_LONG: 9549 evpminuq(dst, mask, nds, src, merge, vector_len); break; 9550 default: 9551 fatal("Unexpected type argument %s", type2name(type)); break; 9552 } 9553 } 9554 9555 void MacroAssembler::evpmaxu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 9556 switch(type) { 9557 case T_BYTE: 9558 evpmaxub(dst, mask, nds, src, merge, vector_len); break; 9559 case T_SHORT: 9560 evpmaxuw(dst, mask, nds, src, merge, vector_len); break; 9561 case T_INT: 9562 evpmaxud(dst, mask, nds, src, merge, vector_len); break; 9563 case T_LONG: 9564 evpmaxuq(dst, mask, nds, src, merge, vector_len); break; 9565 default: 9566 fatal("Unexpected type argument %s", type2name(type)); break; 9567 } 9568 } 9569 9570 void MacroAssembler::evpminu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 9571 switch(type) { 9572 case T_BYTE: 9573 evpminub(dst, mask, nds, src, merge, vector_len); break; 9574 case T_SHORT: 9575 evpminuw(dst, mask, nds, src, merge, vector_len); break; 9576 case T_INT: 9577 evpminud(dst, mask, nds, src, merge, vector_len); break; 9578 case T_LONG: 9579 evpminuq(dst, mask, nds, src, merge, vector_len); break; 9580 default: 9581 fatal("Unexpected type argument %s", type2name(type)); break; 9582 } 9583 } 9584 9585 void MacroAssembler::evpmaxu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 9586 switch(type) { 9587 case T_BYTE: 9588 evpmaxub(dst, mask, nds, src, merge, vector_len); break; 9589 case T_SHORT: 9590 evpmaxuw(dst, mask, nds, src, merge, vector_len); break; 9591 case T_INT: 9592 evpmaxud(dst, mask, nds, src, merge, vector_len); break; 9593 case T_LONG: 9594 evpmaxuq(dst, mask, nds, src, merge, vector_len); break; 9595 default: 9596 fatal("Unexpected type argument %s", type2name(type)); break; 9597 } 9598 } 9599 9600 void MacroAssembler::evpmins(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 9601 switch(type) { 9602 case T_BYTE: 9603 evpminsb(dst, mask, nds, src, merge, vector_len); break; 9604 case T_SHORT: 9605 evpminsw(dst, mask, nds, src, merge, vector_len); break; 9606 case T_INT: 9607 evpminsd(dst, mask, nds, src, merge, vector_len); break; 9608 case T_LONG: 9609 evpminsq(dst, mask, nds, src, merge, vector_len); break; 9610 case T_FLOAT: 9611 evminmaxps(dst, mask, nds, src, merge, AVX10_MINMAX_MIN_COMPARE_SIGN, vector_len); break; 9612 case T_DOUBLE: 9613 evminmaxpd(dst, mask, nds, src, merge, AVX10_MINMAX_MIN_COMPARE_SIGN, vector_len); break; 9614 default: 9615 fatal("Unexpected type argument %s", type2name(type)); break; 9616 } 9617 } 9618 9619 void MacroAssembler::evpmaxs(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 9620 switch(type) { 9621 case T_BYTE: 9622 evpmaxsb(dst, mask, nds, src, merge, vector_len); break; 9623 case T_SHORT: 9624 evpmaxsw(dst, mask, nds, src, merge, vector_len); break; 9625 case T_INT: 9626 evpmaxsd(dst, mask, nds, src, merge, vector_len); break; 9627 case T_LONG: 9628 evpmaxsq(dst, mask, nds, src, merge, vector_len); break; 9629 case T_FLOAT: 9630 evminmaxps(dst, mask, nds, src, merge, AVX10_MINMAX_MAX_COMPARE_SIGN, vector_len); break; 9631 case T_DOUBLE: 9632 evminmaxpd(dst, mask, nds, src, merge, AVX10_MINMAX_MAX_COMPARE_SIGN, vector_len); break; 9633 default: 9634 fatal("Unexpected type argument %s", type2name(type)); break; 9635 } 9636 } 9637 9638 void MacroAssembler::evpmins(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 9639 switch(type) { 9640 case T_BYTE: 9641 evpminsb(dst, mask, nds, src, merge, vector_len); break; 9642 case T_SHORT: 9643 evpminsw(dst, mask, nds, src, merge, vector_len); break; 9644 case T_INT: 9645 evpminsd(dst, mask, nds, src, merge, vector_len); break; 9646 case T_LONG: 9647 evpminsq(dst, mask, nds, src, merge, vector_len); break; 9648 case T_FLOAT: 9649 evminmaxps(dst, mask, nds, src, merge, AVX10_MINMAX_MIN_COMPARE_SIGN, vector_len); break; 9650 case T_DOUBLE: 9651 evminmaxpd(dst, mask, nds, src, merge, AVX10_MINMAX_MIN_COMPARE_SIGN, vector_len); break; 9652 default: 9653 fatal("Unexpected type argument %s", type2name(type)); break; 9654 } 9655 } 9656 9657 void MacroAssembler::evpmaxs(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 9658 switch(type) { 9659 case T_BYTE: 9660 evpmaxsb(dst, mask, nds, src, merge, vector_len); break; 9661 case T_SHORT: 9662 evpmaxsw(dst, mask, nds, src, merge, vector_len); break; 9663 case T_INT: 9664 evpmaxsd(dst, mask, nds, src, merge, vector_len); break; 9665 case T_LONG: 9666 evpmaxsq(dst, mask, nds, src, merge, vector_len); break; 9667 case T_FLOAT: 9668 evminmaxps(dst, mask, nds, src, merge, AVX10_MINMAX_MAX_COMPARE_SIGN, vector_len); break; 9669 case T_DOUBLE: 9670 evminmaxps(dst, mask, nds, src, merge, AVX10_MINMAX_MAX_COMPARE_SIGN, vector_len); break; 9671 default: 9672 fatal("Unexpected type argument %s", type2name(type)); break; 9673 } 9674 } 9675 9676 void MacroAssembler::evxor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 9677 switch(type) { 9678 case T_INT: 9679 evpxord(dst, mask, nds, src, merge, vector_len); break; 9680 case T_LONG: 9681 evpxorq(dst, mask, nds, src, merge, vector_len); break; 9682 default: 9683 fatal("Unexpected type argument %s", type2name(type)); break; 9684 } 9685 } 9686 9687 void MacroAssembler::evxor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 9688 switch(type) { 9689 case T_INT: 9690 evpxord(dst, mask, nds, src, merge, vector_len); break; 9691 case T_LONG: 9692 evpxorq(dst, mask, nds, src, merge, vector_len); break; 9693 default: 9694 fatal("Unexpected type argument %s", type2name(type)); break; 9695 } 9696 } 9697 9698 void MacroAssembler::evor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 9699 switch(type) { 9700 case T_INT: 9701 Assembler::evpord(dst, mask, nds, src, merge, vector_len); break; 9702 case T_LONG: 9703 evporq(dst, mask, nds, src, merge, vector_len); break; 9704 default: 9705 fatal("Unexpected type argument %s", type2name(type)); break; 9706 } 9707 } 9708 9709 void MacroAssembler::evor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 9710 switch(type) { 9711 case T_INT: 9712 Assembler::evpord(dst, mask, nds, src, merge, vector_len); break; 9713 case T_LONG: 9714 evporq(dst, mask, nds, src, merge, vector_len); break; 9715 default: 9716 fatal("Unexpected type argument %s", type2name(type)); break; 9717 } 9718 } 9719 9720 void MacroAssembler::evand(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 9721 switch(type) { 9722 case T_INT: 9723 evpandd(dst, mask, nds, src, merge, vector_len); break; 9724 case T_LONG: 9725 evpandq(dst, mask, nds, src, merge, vector_len); break; 9726 default: 9727 fatal("Unexpected type argument %s", type2name(type)); break; 9728 } 9729 } 9730 9731 void MacroAssembler::evand(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 9732 switch(type) { 9733 case T_INT: 9734 evpandd(dst, mask, nds, src, merge, vector_len); break; 9735 case T_LONG: 9736 evpandq(dst, mask, nds, src, merge, vector_len); break; 9737 default: 9738 fatal("Unexpected type argument %s", type2name(type)); break; 9739 } 9740 } 9741 9742 void MacroAssembler::kortest(uint masklen, KRegister src1, KRegister src2) { 9743 switch(masklen) { 9744 case 8: 9745 kortestbl(src1, src2); 9746 break; 9747 case 16: 9748 kortestwl(src1, src2); 9749 break; 9750 case 32: 9751 kortestdl(src1, src2); 9752 break; 9753 case 64: 9754 kortestql(src1, src2); 9755 break; 9756 default: 9757 fatal("Unexpected mask length %d", masklen); 9758 break; 9759 } 9760 } 9761 9762 9763 void MacroAssembler::ktest(uint masklen, KRegister src1, KRegister src2) { 9764 switch(masklen) { 9765 case 8: 9766 ktestbl(src1, src2); 9767 break; 9768 case 16: 9769 ktestwl(src1, src2); 9770 break; 9771 case 32: 9772 ktestdl(src1, src2); 9773 break; 9774 case 64: 9775 ktestql(src1, src2); 9776 break; 9777 default: 9778 fatal("Unexpected mask length %d", masklen); 9779 break; 9780 } 9781 } 9782 9783 void MacroAssembler::evrold(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vlen_enc) { 9784 switch(type) { 9785 case T_INT: 9786 evprold(dst, mask, src, shift, merge, vlen_enc); break; 9787 case T_LONG: 9788 evprolq(dst, mask, src, shift, merge, vlen_enc); break; 9789 default: 9790 fatal("Unexpected type argument %s", type2name(type)); break; 9791 break; 9792 } 9793 } 9794 9795 void MacroAssembler::evrord(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vlen_enc) { 9796 switch(type) { 9797 case T_INT: 9798 evprord(dst, mask, src, shift, merge, vlen_enc); break; 9799 case T_LONG: 9800 evprorq(dst, mask, src, shift, merge, vlen_enc); break; 9801 default: 9802 fatal("Unexpected type argument %s", type2name(type)); break; 9803 } 9804 } 9805 9806 void MacroAssembler::evrold(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src1, XMMRegister src2, bool merge, int vlen_enc) { 9807 switch(type) { 9808 case T_INT: 9809 evprolvd(dst, mask, src1, src2, merge, vlen_enc); break; 9810 case T_LONG: 9811 evprolvq(dst, mask, src1, src2, merge, vlen_enc); break; 9812 default: 9813 fatal("Unexpected type argument %s", type2name(type)); break; 9814 } 9815 } 9816 9817 void MacroAssembler::evrord(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src1, XMMRegister src2, bool merge, int vlen_enc) { 9818 switch(type) { 9819 case T_INT: 9820 evprorvd(dst, mask, src1, src2, merge, vlen_enc); break; 9821 case T_LONG: 9822 evprorvq(dst, mask, src1, src2, merge, vlen_enc); break; 9823 default: 9824 fatal("Unexpected type argument %s", type2name(type)); break; 9825 } 9826 } 9827 9828 void MacroAssembler::evpandq(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 9829 assert(rscratch != noreg || always_reachable(src), "missing"); 9830 9831 if (reachable(src)) { 9832 evpandq(dst, nds, as_Address(src), vector_len); 9833 } else { 9834 lea(rscratch, src); 9835 evpandq(dst, nds, Address(rscratch, 0), vector_len); 9836 } 9837 } 9838 9839 void MacroAssembler::evpaddq(XMMRegister dst, KRegister mask, XMMRegister nds, AddressLiteral src, bool merge, int vector_len, Register rscratch) { 9840 assert(rscratch != noreg || always_reachable(src), "missing"); 9841 9842 if (reachable(src)) { 9843 Assembler::evpaddq(dst, mask, nds, as_Address(src), merge, vector_len); 9844 } else { 9845 lea(rscratch, src); 9846 Assembler::evpaddq(dst, mask, nds, Address(rscratch, 0), merge, vector_len); 9847 } 9848 } 9849 9850 void MacroAssembler::evporq(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 9851 assert(rscratch != noreg || always_reachable(src), "missing"); 9852 9853 if (reachable(src)) { 9854 evporq(dst, nds, as_Address(src), vector_len); 9855 } else { 9856 lea(rscratch, src); 9857 evporq(dst, nds, Address(rscratch, 0), vector_len); 9858 } 9859 } 9860 9861 void MacroAssembler::vpshufb(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 9862 assert(rscratch != noreg || always_reachable(src), "missing"); 9863 9864 if (reachable(src)) { 9865 vpshufb(dst, nds, as_Address(src), vector_len); 9866 } else { 9867 lea(rscratch, src); 9868 vpshufb(dst, nds, Address(rscratch, 0), vector_len); 9869 } 9870 } 9871 9872 void MacroAssembler::vpor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 9873 assert(rscratch != noreg || always_reachable(src), "missing"); 9874 9875 if (reachable(src)) { 9876 Assembler::vpor(dst, nds, as_Address(src), vector_len); 9877 } else { 9878 lea(rscratch, src); 9879 Assembler::vpor(dst, nds, Address(rscratch, 0), vector_len); 9880 } 9881 } 9882 9883 void MacroAssembler::vpternlogq(XMMRegister dst, int imm8, XMMRegister src2, AddressLiteral src3, int vector_len, Register rscratch) { 9884 assert(rscratch != noreg || always_reachable(src3), "missing"); 9885 9886 if (reachable(src3)) { 9887 vpternlogq(dst, imm8, src2, as_Address(src3), vector_len); 9888 } else { 9889 lea(rscratch, src3); 9890 vpternlogq(dst, imm8, src2, Address(rscratch, 0), vector_len); 9891 } 9892 } 9893 9894 #if COMPILER2_OR_JVMCI 9895 9896 void MacroAssembler::fill_masked(BasicType bt, Address dst, XMMRegister xmm, KRegister mask, 9897 Register length, Register temp, int vec_enc) { 9898 // Computing mask for predicated vector store. 9899 movptr(temp, -1); 9900 bzhiq(temp, temp, length); 9901 kmov(mask, temp); 9902 evmovdqu(bt, mask, dst, xmm, true, vec_enc); 9903 } 9904 9905 // Set memory operation for length "less than" 64 bytes. 9906 void MacroAssembler::fill64_masked(uint shift, Register dst, int disp, 9907 XMMRegister xmm, KRegister mask, Register length, 9908 Register temp, bool use64byteVector) { 9909 assert(MaxVectorSize >= 32, "vector length should be >= 32"); 9910 const BasicType type[] = { T_BYTE, T_SHORT, T_INT, T_LONG}; 9911 if (!use64byteVector) { 9912 fill32(dst, disp, xmm); 9913 subptr(length, 32 >> shift); 9914 fill32_masked(shift, dst, disp + 32, xmm, mask, length, temp); 9915 } else { 9916 assert(MaxVectorSize == 64, "vector length != 64"); 9917 fill_masked(type[shift], Address(dst, disp), xmm, mask, length, temp, Assembler::AVX_512bit); 9918 } 9919 } 9920 9921 9922 void MacroAssembler::fill32_masked(uint shift, Register dst, int disp, 9923 XMMRegister xmm, KRegister mask, Register length, 9924 Register temp) { 9925 assert(MaxVectorSize >= 32, "vector length should be >= 32"); 9926 const BasicType type[] = { T_BYTE, T_SHORT, T_INT, T_LONG}; 9927 fill_masked(type[shift], Address(dst, disp), xmm, mask, length, temp, Assembler::AVX_256bit); 9928 } 9929 9930 9931 void MacroAssembler::fill32(Address dst, XMMRegister xmm) { 9932 assert(MaxVectorSize >= 32, "vector length should be >= 32"); 9933 vmovdqu(dst, xmm); 9934 } 9935 9936 void MacroAssembler::fill32(Register dst, int disp, XMMRegister xmm) { 9937 fill32(Address(dst, disp), xmm); 9938 } 9939 9940 void MacroAssembler::fill64(Address dst, XMMRegister xmm, bool use64byteVector) { 9941 assert(MaxVectorSize >= 32, "vector length should be >= 32"); 9942 if (!use64byteVector) { 9943 fill32(dst, xmm); 9944 fill32(dst.plus_disp(32), xmm); 9945 } else { 9946 evmovdquq(dst, xmm, Assembler::AVX_512bit); 9947 } 9948 } 9949 9950 void MacroAssembler::fill64(Register dst, int disp, XMMRegister xmm, bool use64byteVector) { 9951 fill64(Address(dst, disp), xmm, use64byteVector); 9952 } 9953 9954 void MacroAssembler::generate_fill_avx3(BasicType type, Register to, Register value, 9955 Register count, Register rtmp, XMMRegister xtmp) { 9956 Label L_exit; 9957 Label L_fill_start; 9958 Label L_fill_64_bytes; 9959 Label L_fill_96_bytes; 9960 Label L_fill_128_bytes; 9961 Label L_fill_128_bytes_loop; 9962 Label L_fill_128_loop_header; 9963 Label L_fill_128_bytes_loop_header; 9964 Label L_fill_128_bytes_loop_pre_header; 9965 Label L_fill_zmm_sequence; 9966 9967 int shift = -1; 9968 int avx3threshold = VM_Version::avx3_threshold(); 9969 switch(type) { 9970 case T_BYTE: shift = 0; 9971 break; 9972 case T_SHORT: shift = 1; 9973 break; 9974 case T_INT: shift = 2; 9975 break; 9976 /* Uncomment when LONG fill stubs are supported. 9977 case T_LONG: shift = 3; 9978 break; 9979 */ 9980 default: 9981 fatal("Unhandled type: %s\n", type2name(type)); 9982 } 9983 9984 if ((avx3threshold != 0) || (MaxVectorSize == 32)) { 9985 9986 if (MaxVectorSize == 64) { 9987 cmpq(count, avx3threshold >> shift); 9988 jcc(Assembler::greater, L_fill_zmm_sequence); 9989 } 9990 9991 evpbroadcast(type, xtmp, value, Assembler::AVX_256bit); 9992 9993 bind(L_fill_start); 9994 9995 cmpq(count, 32 >> shift); 9996 jccb(Assembler::greater, L_fill_64_bytes); 9997 fill32_masked(shift, to, 0, xtmp, k2, count, rtmp); 9998 jmp(L_exit); 9999 10000 bind(L_fill_64_bytes); 10001 cmpq(count, 64 >> shift); 10002 jccb(Assembler::greater, L_fill_96_bytes); 10003 fill64_masked(shift, to, 0, xtmp, k2, count, rtmp); 10004 jmp(L_exit); 10005 10006 bind(L_fill_96_bytes); 10007 cmpq(count, 96 >> shift); 10008 jccb(Assembler::greater, L_fill_128_bytes); 10009 fill64(to, 0, xtmp); 10010 subq(count, 64 >> shift); 10011 fill32_masked(shift, to, 64, xtmp, k2, count, rtmp); 10012 jmp(L_exit); 10013 10014 bind(L_fill_128_bytes); 10015 cmpq(count, 128 >> shift); 10016 jccb(Assembler::greater, L_fill_128_bytes_loop_pre_header); 10017 fill64(to, 0, xtmp); 10018 fill32(to, 64, xtmp); 10019 subq(count, 96 >> shift); 10020 fill32_masked(shift, to, 96, xtmp, k2, count, rtmp); 10021 jmp(L_exit); 10022 10023 bind(L_fill_128_bytes_loop_pre_header); 10024 { 10025 mov(rtmp, to); 10026 andq(rtmp, 31); 10027 jccb(Assembler::zero, L_fill_128_bytes_loop_header); 10028 negq(rtmp); 10029 addq(rtmp, 32); 10030 mov64(r8, -1L); 10031 bzhiq(r8, r8, rtmp); 10032 kmovql(k2, r8); 10033 evmovdqu(T_BYTE, k2, Address(to, 0), xtmp, true, Assembler::AVX_256bit); 10034 addq(to, rtmp); 10035 shrq(rtmp, shift); 10036 subq(count, rtmp); 10037 } 10038 10039 cmpq(count, 128 >> shift); 10040 jcc(Assembler::less, L_fill_start); 10041 10042 bind(L_fill_128_bytes_loop_header); 10043 subq(count, 128 >> shift); 10044 10045 align32(); 10046 bind(L_fill_128_bytes_loop); 10047 fill64(to, 0, xtmp); 10048 fill64(to, 64, xtmp); 10049 addq(to, 128); 10050 subq(count, 128 >> shift); 10051 jccb(Assembler::greaterEqual, L_fill_128_bytes_loop); 10052 10053 addq(count, 128 >> shift); 10054 jcc(Assembler::zero, L_exit); 10055 jmp(L_fill_start); 10056 } 10057 10058 if (MaxVectorSize == 64) { 10059 // Sequence using 64 byte ZMM register. 10060 Label L_fill_128_bytes_zmm; 10061 Label L_fill_192_bytes_zmm; 10062 Label L_fill_192_bytes_loop_zmm; 10063 Label L_fill_192_bytes_loop_header_zmm; 10064 Label L_fill_192_bytes_loop_pre_header_zmm; 10065 Label L_fill_start_zmm_sequence; 10066 10067 bind(L_fill_zmm_sequence); 10068 evpbroadcast(type, xtmp, value, Assembler::AVX_512bit); 10069 10070 bind(L_fill_start_zmm_sequence); 10071 cmpq(count, 64 >> shift); 10072 jccb(Assembler::greater, L_fill_128_bytes_zmm); 10073 fill64_masked(shift, to, 0, xtmp, k2, count, rtmp, true); 10074 jmp(L_exit); 10075 10076 bind(L_fill_128_bytes_zmm); 10077 cmpq(count, 128 >> shift); 10078 jccb(Assembler::greater, L_fill_192_bytes_zmm); 10079 fill64(to, 0, xtmp, true); 10080 subq(count, 64 >> shift); 10081 fill64_masked(shift, to, 64, xtmp, k2, count, rtmp, true); 10082 jmp(L_exit); 10083 10084 bind(L_fill_192_bytes_zmm); 10085 cmpq(count, 192 >> shift); 10086 jccb(Assembler::greater, L_fill_192_bytes_loop_pre_header_zmm); 10087 fill64(to, 0, xtmp, true); 10088 fill64(to, 64, xtmp, true); 10089 subq(count, 128 >> shift); 10090 fill64_masked(shift, to, 128, xtmp, k2, count, rtmp, true); 10091 jmp(L_exit); 10092 10093 bind(L_fill_192_bytes_loop_pre_header_zmm); 10094 { 10095 movq(rtmp, to); 10096 andq(rtmp, 63); 10097 jccb(Assembler::zero, L_fill_192_bytes_loop_header_zmm); 10098 negq(rtmp); 10099 addq(rtmp, 64); 10100 mov64(r8, -1L); 10101 bzhiq(r8, r8, rtmp); 10102 kmovql(k2, r8); 10103 evmovdqu(T_BYTE, k2, Address(to, 0), xtmp, true, Assembler::AVX_512bit); 10104 addq(to, rtmp); 10105 shrq(rtmp, shift); 10106 subq(count, rtmp); 10107 } 10108 10109 cmpq(count, 192 >> shift); 10110 jcc(Assembler::less, L_fill_start_zmm_sequence); 10111 10112 bind(L_fill_192_bytes_loop_header_zmm); 10113 subq(count, 192 >> shift); 10114 10115 align32(); 10116 bind(L_fill_192_bytes_loop_zmm); 10117 fill64(to, 0, xtmp, true); 10118 fill64(to, 64, xtmp, true); 10119 fill64(to, 128, xtmp, true); 10120 addq(to, 192); 10121 subq(count, 192 >> shift); 10122 jccb(Assembler::greaterEqual, L_fill_192_bytes_loop_zmm); 10123 10124 addq(count, 192 >> shift); 10125 jcc(Assembler::zero, L_exit); 10126 jmp(L_fill_start_zmm_sequence); 10127 } 10128 bind(L_exit); 10129 } 10130 #endif //COMPILER2_OR_JVMCI 10131 10132 10133 void MacroAssembler::convert_f2i(Register dst, XMMRegister src) { 10134 Label done; 10135 cvttss2sil(dst, src); 10136 // Conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub 10137 cmpl(dst, 0x80000000); // float_sign_flip 10138 jccb(Assembler::notEqual, done); 10139 subptr(rsp, 8); 10140 movflt(Address(rsp, 0), src); 10141 call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::f2i_fixup()))); 10142 pop(dst); 10143 bind(done); 10144 } 10145 10146 void MacroAssembler::convert_d2i(Register dst, XMMRegister src) { 10147 Label done; 10148 cvttsd2sil(dst, src); 10149 // Conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub 10150 cmpl(dst, 0x80000000); // float_sign_flip 10151 jccb(Assembler::notEqual, done); 10152 subptr(rsp, 8); 10153 movdbl(Address(rsp, 0), src); 10154 call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::d2i_fixup()))); 10155 pop(dst); 10156 bind(done); 10157 } 10158 10159 void MacroAssembler::convert_f2l(Register dst, XMMRegister src) { 10160 Label done; 10161 cvttss2siq(dst, src); 10162 cmp64(dst, ExternalAddress((address) StubRoutines::x86::double_sign_flip())); 10163 jccb(Assembler::notEqual, done); 10164 subptr(rsp, 8); 10165 movflt(Address(rsp, 0), src); 10166 call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::f2l_fixup()))); 10167 pop(dst); 10168 bind(done); 10169 } 10170 10171 void MacroAssembler::round_float(Register dst, XMMRegister src, Register rtmp, Register rcx) { 10172 // Following code is line by line assembly translation rounding algorithm. 10173 // Please refer to java.lang.Math.round(float) algorithm for details. 10174 const int32_t FloatConsts_EXP_BIT_MASK = 0x7F800000; 10175 const int32_t FloatConsts_SIGNIFICAND_WIDTH = 24; 10176 const int32_t FloatConsts_EXP_BIAS = 127; 10177 const int32_t FloatConsts_SIGNIF_BIT_MASK = 0x007FFFFF; 10178 const int32_t MINUS_32 = 0xFFFFFFE0; 10179 Label L_special_case, L_block1, L_exit; 10180 movl(rtmp, FloatConsts_EXP_BIT_MASK); 10181 movdl(dst, src); 10182 andl(dst, rtmp); 10183 sarl(dst, FloatConsts_SIGNIFICAND_WIDTH - 1); 10184 movl(rtmp, FloatConsts_SIGNIFICAND_WIDTH - 2 + FloatConsts_EXP_BIAS); 10185 subl(rtmp, dst); 10186 movl(rcx, rtmp); 10187 movl(dst, MINUS_32); 10188 testl(rtmp, dst); 10189 jccb(Assembler::notEqual, L_special_case); 10190 movdl(dst, src); 10191 andl(dst, FloatConsts_SIGNIF_BIT_MASK); 10192 orl(dst, FloatConsts_SIGNIF_BIT_MASK + 1); 10193 movdl(rtmp, src); 10194 testl(rtmp, rtmp); 10195 jccb(Assembler::greaterEqual, L_block1); 10196 negl(dst); 10197 bind(L_block1); 10198 sarl(dst); 10199 addl(dst, 0x1); 10200 sarl(dst, 0x1); 10201 jmp(L_exit); 10202 bind(L_special_case); 10203 convert_f2i(dst, src); 10204 bind(L_exit); 10205 } 10206 10207 void MacroAssembler::round_double(Register dst, XMMRegister src, Register rtmp, Register rcx) { 10208 // Following code is line by line assembly translation rounding algorithm. 10209 // Please refer to java.lang.Math.round(double) algorithm for details. 10210 const int64_t DoubleConsts_EXP_BIT_MASK = 0x7FF0000000000000L; 10211 const int64_t DoubleConsts_SIGNIFICAND_WIDTH = 53; 10212 const int64_t DoubleConsts_EXP_BIAS = 1023; 10213 const int64_t DoubleConsts_SIGNIF_BIT_MASK = 0x000FFFFFFFFFFFFFL; 10214 const int64_t MINUS_64 = 0xFFFFFFFFFFFFFFC0L; 10215 Label L_special_case, L_block1, L_exit; 10216 mov64(rtmp, DoubleConsts_EXP_BIT_MASK); 10217 movq(dst, src); 10218 andq(dst, rtmp); 10219 sarq(dst, DoubleConsts_SIGNIFICAND_WIDTH - 1); 10220 mov64(rtmp, DoubleConsts_SIGNIFICAND_WIDTH - 2 + DoubleConsts_EXP_BIAS); 10221 subq(rtmp, dst); 10222 movq(rcx, rtmp); 10223 mov64(dst, MINUS_64); 10224 testq(rtmp, dst); 10225 jccb(Assembler::notEqual, L_special_case); 10226 movq(dst, src); 10227 mov64(rtmp, DoubleConsts_SIGNIF_BIT_MASK); 10228 andq(dst, rtmp); 10229 mov64(rtmp, DoubleConsts_SIGNIF_BIT_MASK + 1); 10230 orq(dst, rtmp); 10231 movq(rtmp, src); 10232 testq(rtmp, rtmp); 10233 jccb(Assembler::greaterEqual, L_block1); 10234 negq(dst); 10235 bind(L_block1); 10236 sarq(dst); 10237 addq(dst, 0x1); 10238 sarq(dst, 0x1); 10239 jmp(L_exit); 10240 bind(L_special_case); 10241 convert_d2l(dst, src); 10242 bind(L_exit); 10243 } 10244 10245 void MacroAssembler::convert_d2l(Register dst, XMMRegister src) { 10246 Label done; 10247 cvttsd2siq(dst, src); 10248 cmp64(dst, ExternalAddress((address) StubRoutines::x86::double_sign_flip())); 10249 jccb(Assembler::notEqual, done); 10250 subptr(rsp, 8); 10251 movdbl(Address(rsp, 0), src); 10252 call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::d2l_fixup()))); 10253 pop(dst); 10254 bind(done); 10255 } 10256 10257 void MacroAssembler::cache_wb(Address line) 10258 { 10259 // 64 bit cpus always support clflush 10260 assert(VM_Version::supports_clflush(), "clflush should be available"); 10261 bool optimized = VM_Version::supports_clflushopt(); 10262 bool no_evict = VM_Version::supports_clwb(); 10263 10264 // prefer clwb (writeback without evict) otherwise 10265 // prefer clflushopt (potentially parallel writeback with evict) 10266 // otherwise fallback on clflush (serial writeback with evict) 10267 10268 if (optimized) { 10269 if (no_evict) { 10270 clwb(line); 10271 } else { 10272 clflushopt(line); 10273 } 10274 } else { 10275 // no need for fence when using CLFLUSH 10276 clflush(line); 10277 } 10278 } 10279 10280 void MacroAssembler::cache_wbsync(bool is_pre) 10281 { 10282 assert(VM_Version::supports_clflush(), "clflush should be available"); 10283 bool optimized = VM_Version::supports_clflushopt(); 10284 bool no_evict = VM_Version::supports_clwb(); 10285 10286 // pick the correct implementation 10287 10288 if (!is_pre && (optimized || no_evict)) { 10289 // need an sfence for post flush when using clflushopt or clwb 10290 // otherwise no no need for any synchroniaztion 10291 10292 sfence(); 10293 } 10294 } 10295 10296 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) { 10297 switch (cond) { 10298 // Note some conditions are synonyms for others 10299 case Assembler::zero: return Assembler::notZero; 10300 case Assembler::notZero: return Assembler::zero; 10301 case Assembler::less: return Assembler::greaterEqual; 10302 case Assembler::lessEqual: return Assembler::greater; 10303 case Assembler::greater: return Assembler::lessEqual; 10304 case Assembler::greaterEqual: return Assembler::less; 10305 case Assembler::below: return Assembler::aboveEqual; 10306 case Assembler::belowEqual: return Assembler::above; 10307 case Assembler::above: return Assembler::belowEqual; 10308 case Assembler::aboveEqual: return Assembler::below; 10309 case Assembler::overflow: return Assembler::noOverflow; 10310 case Assembler::noOverflow: return Assembler::overflow; 10311 case Assembler::negative: return Assembler::positive; 10312 case Assembler::positive: return Assembler::negative; 10313 case Assembler::parity: return Assembler::noParity; 10314 case Assembler::noParity: return Assembler::parity; 10315 } 10316 ShouldNotReachHere(); return Assembler::overflow; 10317 } 10318 10319 // This is simply a call to Thread::current() 10320 void MacroAssembler::get_thread_slow(Register thread) { 10321 if (thread != rax) { 10322 push(rax); 10323 } 10324 push(rdi); 10325 push(rsi); 10326 push(rdx); 10327 push(rcx); 10328 push(r8); 10329 push(r9); 10330 push(r10); 10331 push(r11); 10332 10333 MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, Thread::current), 0); 10334 10335 pop(r11); 10336 pop(r10); 10337 pop(r9); 10338 pop(r8); 10339 pop(rcx); 10340 pop(rdx); 10341 pop(rsi); 10342 pop(rdi); 10343 if (thread != rax) { 10344 mov(thread, rax); 10345 pop(rax); 10346 } 10347 } 10348 10349 void MacroAssembler::check_stack_alignment(Register sp, const char* msg, unsigned bias, Register tmp) { 10350 Label L_stack_ok; 10351 if (bias == 0) { 10352 testptr(sp, 2 * wordSize - 1); 10353 } else { 10354 // lea(tmp, Address(rsp, bias); 10355 mov(tmp, sp); 10356 addptr(tmp, bias); 10357 testptr(tmp, 2 * wordSize - 1); 10358 } 10359 jcc(Assembler::equal, L_stack_ok); 10360 block_comment(msg); 10361 stop(msg); 10362 bind(L_stack_ok); 10363 } 10364 10365 // Implements lightweight-locking. 10366 // 10367 // obj: the object to be locked 10368 // reg_rax: rax 10369 // thread: the thread which attempts to lock obj 10370 // tmp: a temporary register 10371 void MacroAssembler::lightweight_lock(Register basic_lock, Register obj, Register reg_rax, Register tmp, Label& slow) { 10372 Register thread = r15_thread; 10373 10374 assert(reg_rax == rax, ""); 10375 assert_different_registers(basic_lock, obj, reg_rax, thread, tmp); 10376 10377 Label push; 10378 const Register top = tmp; 10379 10380 // Preload the markWord. It is important that this is the first 10381 // instruction emitted as it is part of C1's null check semantics. 10382 movptr(reg_rax, Address(obj, oopDesc::mark_offset_in_bytes())); 10383 10384 if (UseObjectMonitorTable) { 10385 // Clear cache in case fast locking succeeds or we need to take the slow-path. 10386 movptr(Address(basic_lock, BasicObjectLock::lock_offset() + in_ByteSize((BasicLock::object_monitor_cache_offset_in_bytes()))), 0); 10387 } 10388 10389 if (DiagnoseSyncOnValueBasedClasses != 0) { 10390 load_klass(tmp, obj, rscratch1); 10391 testb(Address(tmp, Klass::misc_flags_offset()), KlassFlags::_misc_is_value_based_class); 10392 jcc(Assembler::notZero, slow); 10393 } 10394 10395 // Load top. 10396 movl(top, Address(thread, JavaThread::lock_stack_top_offset())); 10397 10398 // Check if the lock-stack is full. 10399 cmpl(top, LockStack::end_offset()); 10400 jcc(Assembler::greaterEqual, slow); 10401 10402 // Check for recursion. 10403 cmpptr(obj, Address(thread, top, Address::times_1, -oopSize)); 10404 jcc(Assembler::equal, push); 10405 10406 // Check header for monitor (0b10). 10407 testptr(reg_rax, markWord::monitor_value); 10408 jcc(Assembler::notZero, slow); 10409 10410 // Try to lock. Transition lock bits 0b01 => 0b00 10411 movptr(tmp, reg_rax); 10412 andptr(tmp, ~(int32_t)markWord::unlocked_value); 10413 orptr(reg_rax, markWord::unlocked_value); 10414 if (EnableValhalla) { 10415 // Mask inline_type bit such that we go to the slow path if object is an inline type 10416 andptr(reg_rax, ~((int) markWord::inline_type_bit_in_place)); 10417 } 10418 lock(); cmpxchgptr(tmp, Address(obj, oopDesc::mark_offset_in_bytes())); 10419 jcc(Assembler::notEqual, slow); 10420 10421 // Restore top, CAS clobbers register. 10422 movl(top, Address(thread, JavaThread::lock_stack_top_offset())); 10423 10424 bind(push); 10425 // After successful lock, push object on lock-stack. 10426 movptr(Address(thread, top), obj); 10427 incrementl(top, oopSize); 10428 movl(Address(thread, JavaThread::lock_stack_top_offset()), top); 10429 } 10430 10431 // Implements lightweight-unlocking. 10432 // 10433 // obj: the object to be unlocked 10434 // reg_rax: rax 10435 // thread: the thread 10436 // tmp: a temporary register 10437 void MacroAssembler::lightweight_unlock(Register obj, Register reg_rax, Register tmp, Label& slow) { 10438 Register thread = r15_thread; 10439 10440 assert(reg_rax == rax, ""); 10441 assert_different_registers(obj, reg_rax, thread, tmp); 10442 10443 Label unlocked, push_and_slow; 10444 const Register top = tmp; 10445 10446 // Check if obj is top of lock-stack. 10447 movl(top, Address(thread, JavaThread::lock_stack_top_offset())); 10448 cmpptr(obj, Address(thread, top, Address::times_1, -oopSize)); 10449 jcc(Assembler::notEqual, slow); 10450 10451 // Pop lock-stack. 10452 DEBUG_ONLY(movptr(Address(thread, top, Address::times_1, -oopSize), 0);) 10453 subl(Address(thread, JavaThread::lock_stack_top_offset()), oopSize); 10454 10455 // Check if recursive. 10456 cmpptr(obj, Address(thread, top, Address::times_1, -2 * oopSize)); 10457 jcc(Assembler::equal, unlocked); 10458 10459 // Not recursive. Check header for monitor (0b10). 10460 movptr(reg_rax, Address(obj, oopDesc::mark_offset_in_bytes())); 10461 testptr(reg_rax, markWord::monitor_value); 10462 jcc(Assembler::notZero, push_and_slow); 10463 10464 #ifdef ASSERT 10465 // Check header not unlocked (0b01). 10466 Label not_unlocked; 10467 testptr(reg_rax, markWord::unlocked_value); 10468 jcc(Assembler::zero, not_unlocked); 10469 stop("lightweight_unlock already unlocked"); 10470 bind(not_unlocked); 10471 #endif 10472 10473 // Try to unlock. Transition lock bits 0b00 => 0b01 10474 movptr(tmp, reg_rax); 10475 orptr(tmp, markWord::unlocked_value); 10476 lock(); cmpxchgptr(tmp, Address(obj, oopDesc::mark_offset_in_bytes())); 10477 jcc(Assembler::equal, unlocked); 10478 10479 bind(push_and_slow); 10480 // Restore lock-stack and handle the unlock in runtime. 10481 #ifdef ASSERT 10482 movl(top, Address(thread, JavaThread::lock_stack_top_offset())); 10483 movptr(Address(thread, top), obj); 10484 #endif 10485 addl(Address(thread, JavaThread::lock_stack_top_offset()), oopSize); 10486 jmp(slow); 10487 10488 bind(unlocked); 10489 } 10490 10491 // Saves legacy GPRs state on stack. 10492 void MacroAssembler::save_legacy_gprs() { 10493 subq(rsp, 16 * wordSize); 10494 movq(Address(rsp, 15 * wordSize), rax); 10495 movq(Address(rsp, 14 * wordSize), rcx); 10496 movq(Address(rsp, 13 * wordSize), rdx); 10497 movq(Address(rsp, 12 * wordSize), rbx); 10498 movq(Address(rsp, 10 * wordSize), rbp); 10499 movq(Address(rsp, 9 * wordSize), rsi); 10500 movq(Address(rsp, 8 * wordSize), rdi); 10501 movq(Address(rsp, 7 * wordSize), r8); 10502 movq(Address(rsp, 6 * wordSize), r9); 10503 movq(Address(rsp, 5 * wordSize), r10); 10504 movq(Address(rsp, 4 * wordSize), r11); 10505 movq(Address(rsp, 3 * wordSize), r12); 10506 movq(Address(rsp, 2 * wordSize), r13); 10507 movq(Address(rsp, wordSize), r14); 10508 movq(Address(rsp, 0), r15); 10509 } 10510 10511 // Resotres back legacy GPRs state from stack. 10512 void MacroAssembler::restore_legacy_gprs() { 10513 movq(r15, Address(rsp, 0)); 10514 movq(r14, Address(rsp, wordSize)); 10515 movq(r13, Address(rsp, 2 * wordSize)); 10516 movq(r12, Address(rsp, 3 * wordSize)); 10517 movq(r11, Address(rsp, 4 * wordSize)); 10518 movq(r10, Address(rsp, 5 * wordSize)); 10519 movq(r9, Address(rsp, 6 * wordSize)); 10520 movq(r8, Address(rsp, 7 * wordSize)); 10521 movq(rdi, Address(rsp, 8 * wordSize)); 10522 movq(rsi, Address(rsp, 9 * wordSize)); 10523 movq(rbp, Address(rsp, 10 * wordSize)); 10524 movq(rbx, Address(rsp, 12 * wordSize)); 10525 movq(rdx, Address(rsp, 13 * wordSize)); 10526 movq(rcx, Address(rsp, 14 * wordSize)); 10527 movq(rax, Address(rsp, 15 * wordSize)); 10528 addq(rsp, 16 * wordSize); 10529 } 10530 10531 void MacroAssembler::setcc(Assembler::Condition comparison, Register dst) { 10532 if (VM_Version::supports_apx_f()) { 10533 esetzucc(comparison, dst); 10534 } else { 10535 setb(comparison, dst); 10536 movzbl(dst, dst); 10537 } 10538 }