1 /* 2 * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/assembler.hpp" 27 #include "asm/assembler.inline.hpp" 28 #include "code/compiledIC.hpp" 29 #include "compiler/compiler_globals.hpp" 30 #include "compiler/disassembler.hpp" 31 #include "ci/ciInlineKlass.hpp" 32 #include "crc32c.h" 33 #include "gc/shared/barrierSet.hpp" 34 #include "gc/shared/barrierSetAssembler.hpp" 35 #include "gc/shared/collectedHeap.inline.hpp" 36 #include "gc/shared/tlab_globals.hpp" 37 #include "interpreter/bytecodeHistogram.hpp" 38 #include "interpreter/interpreter.hpp" 39 #include "jvm.h" 40 #include "memory/resourceArea.hpp" 41 #include "memory/universe.hpp" 42 #include "oops/accessDecorators.hpp" 43 #include "oops/compressedKlass.inline.hpp" 44 #include "oops/compressedOops.inline.hpp" 45 #include "oops/klass.inline.hpp" 46 #include "oops/resolvedFieldEntry.hpp" 47 #include "prims/methodHandles.hpp" 48 #include "runtime/continuation.hpp" 49 #include "runtime/interfaceSupport.inline.hpp" 50 #include "runtime/javaThread.hpp" 51 #include "runtime/jniHandles.hpp" 52 #include "runtime/objectMonitor.hpp" 53 #include "runtime/os.hpp" 54 #include "runtime/safepoint.hpp" 55 #include "runtime/safepointMechanism.hpp" 56 #include "runtime/sharedRuntime.hpp" 57 #include "runtime/signature_cc.hpp" 58 #include "runtime/stubRoutines.hpp" 59 #include "utilities/checkedCast.hpp" 60 #include "utilities/macros.hpp" 61 #include "vmreg_x86.inline.hpp" 62 #ifdef COMPILER2 63 #include "opto/output.hpp" 64 #endif 65 66 #ifdef PRODUCT 67 #define BLOCK_COMMENT(str) /* nothing */ 68 #define STOP(error) stop(error) 69 #else 70 #define BLOCK_COMMENT(str) block_comment(str) 71 #define STOP(error) block_comment(error); stop(error) 72 #endif 73 74 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") 75 76 #ifdef ASSERT 77 bool AbstractAssembler::pd_check_instruction_mark() { return true; } 78 #endif 79 80 static const Assembler::Condition reverse[] = { 81 Assembler::noOverflow /* overflow = 0x0 */ , 82 Assembler::overflow /* noOverflow = 0x1 */ , 83 Assembler::aboveEqual /* carrySet = 0x2, below = 0x2 */ , 84 Assembler::below /* aboveEqual = 0x3, carryClear = 0x3 */ , 85 Assembler::notZero /* zero = 0x4, equal = 0x4 */ , 86 Assembler::zero /* notZero = 0x5, notEqual = 0x5 */ , 87 Assembler::above /* belowEqual = 0x6 */ , 88 Assembler::belowEqual /* above = 0x7 */ , 89 Assembler::positive /* negative = 0x8 */ , 90 Assembler::negative /* positive = 0x9 */ , 91 Assembler::noParity /* parity = 0xa */ , 92 Assembler::parity /* noParity = 0xb */ , 93 Assembler::greaterEqual /* less = 0xc */ , 94 Assembler::less /* greaterEqual = 0xd */ , 95 Assembler::greater /* lessEqual = 0xe */ , 96 Assembler::lessEqual /* greater = 0xf, */ 97 98 }; 99 100 101 // Implementation of MacroAssembler 102 103 // First all the versions that have distinct versions depending on 32/64 bit 104 // Unless the difference is trivial (1 line or so). 105 106 #ifndef _LP64 107 108 // 32bit versions 109 110 Address MacroAssembler::as_Address(AddressLiteral adr) { 111 return Address(adr.target(), adr.rspec()); 112 } 113 114 Address MacroAssembler::as_Address(ArrayAddress adr, Register rscratch) { 115 assert(rscratch == noreg, ""); 116 return Address::make_array(adr); 117 } 118 119 void MacroAssembler::call_VM_leaf_base(address entry_point, 120 int number_of_arguments) { 121 call(RuntimeAddress(entry_point)); 122 increment(rsp, number_of_arguments * wordSize); 123 } 124 125 void MacroAssembler::cmpklass(Address src1, Metadata* obj) { 126 cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate()); 127 } 128 129 130 void MacroAssembler::cmpklass(Register src1, Metadata* obj) { 131 cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate()); 132 } 133 134 void MacroAssembler::cmpoop(Address src1, jobject obj) { 135 cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate()); 136 } 137 138 void MacroAssembler::cmpoop(Register src1, jobject obj, Register rscratch) { 139 assert(rscratch == noreg, "redundant"); 140 cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate()); 141 } 142 143 void MacroAssembler::extend_sign(Register hi, Register lo) { 144 // According to Intel Doc. AP-526, "Integer Divide", p.18. 145 if (VM_Version::is_P6() && hi == rdx && lo == rax) { 146 cdql(); 147 } else { 148 movl(hi, lo); 149 sarl(hi, 31); 150 } 151 } 152 153 void MacroAssembler::jC2(Register tmp, Label& L) { 154 // set parity bit if FPU flag C2 is set (via rax) 155 save_rax(tmp); 156 fwait(); fnstsw_ax(); 157 sahf(); 158 restore_rax(tmp); 159 // branch 160 jcc(Assembler::parity, L); 161 } 162 163 void MacroAssembler::jnC2(Register tmp, Label& L) { 164 // set parity bit if FPU flag C2 is set (via rax) 165 save_rax(tmp); 166 fwait(); fnstsw_ax(); 167 sahf(); 168 restore_rax(tmp); 169 // branch 170 jcc(Assembler::noParity, L); 171 } 172 173 // 32bit can do a case table jump in one instruction but we no longer allow the base 174 // to be installed in the Address class 175 void MacroAssembler::jump(ArrayAddress entry, Register rscratch) { 176 assert(rscratch == noreg, "not needed"); 177 jmp(as_Address(entry, noreg)); 178 } 179 180 // Note: y_lo will be destroyed 181 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) { 182 // Long compare for Java (semantics as described in JVM spec.) 183 Label high, low, done; 184 185 cmpl(x_hi, y_hi); 186 jcc(Assembler::less, low); 187 jcc(Assembler::greater, high); 188 // x_hi is the return register 189 xorl(x_hi, x_hi); 190 cmpl(x_lo, y_lo); 191 jcc(Assembler::below, low); 192 jcc(Assembler::equal, done); 193 194 bind(high); 195 xorl(x_hi, x_hi); 196 increment(x_hi); 197 jmp(done); 198 199 bind(low); 200 xorl(x_hi, x_hi); 201 decrementl(x_hi); 202 203 bind(done); 204 } 205 206 void MacroAssembler::lea(Register dst, AddressLiteral src) { 207 mov_literal32(dst, (int32_t)src.target(), src.rspec()); 208 } 209 210 void MacroAssembler::lea(Address dst, AddressLiteral adr, Register rscratch) { 211 assert(rscratch == noreg, "not needed"); 212 213 // leal(dst, as_Address(adr)); 214 // see note in movl as to why we must use a move 215 mov_literal32(dst, (int32_t)adr.target(), adr.rspec()); 216 } 217 218 void MacroAssembler::leave() { 219 mov(rsp, rbp); 220 pop(rbp); 221 } 222 223 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) { 224 // Multiplication of two Java long values stored on the stack 225 // as illustrated below. Result is in rdx:rax. 226 // 227 // rsp ---> [ ?? ] \ \ 228 // .... | y_rsp_offset | 229 // [ y_lo ] / (in bytes) | x_rsp_offset 230 // [ y_hi ] | (in bytes) 231 // .... | 232 // [ x_lo ] / 233 // [ x_hi ] 234 // .... 235 // 236 // Basic idea: lo(result) = lo(x_lo * y_lo) 237 // hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi) 238 Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset); 239 Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset); 240 Label quick; 241 // load x_hi, y_hi and check if quick 242 // multiplication is possible 243 movl(rbx, x_hi); 244 movl(rcx, y_hi); 245 movl(rax, rbx); 246 orl(rbx, rcx); // rbx, = 0 <=> x_hi = 0 and y_hi = 0 247 jcc(Assembler::zero, quick); // if rbx, = 0 do quick multiply 248 // do full multiplication 249 // 1st step 250 mull(y_lo); // x_hi * y_lo 251 movl(rbx, rax); // save lo(x_hi * y_lo) in rbx, 252 // 2nd step 253 movl(rax, x_lo); 254 mull(rcx); // x_lo * y_hi 255 addl(rbx, rax); // add lo(x_lo * y_hi) to rbx, 256 // 3rd step 257 bind(quick); // note: rbx, = 0 if quick multiply! 258 movl(rax, x_lo); 259 mull(y_lo); // x_lo * y_lo 260 addl(rdx, rbx); // correct hi(x_lo * y_lo) 261 } 262 263 void MacroAssembler::lneg(Register hi, Register lo) { 264 negl(lo); 265 adcl(hi, 0); 266 negl(hi); 267 } 268 269 void MacroAssembler::lshl(Register hi, Register lo) { 270 // Java shift left long support (semantics as described in JVM spec., p.305) 271 // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n)) 272 // shift value is in rcx ! 273 assert(hi != rcx, "must not use rcx"); 274 assert(lo != rcx, "must not use rcx"); 275 const Register s = rcx; // shift count 276 const int n = BitsPerWord; 277 Label L; 278 andl(s, 0x3f); // s := s & 0x3f (s < 0x40) 279 cmpl(s, n); // if (s < n) 280 jcc(Assembler::less, L); // else (s >= n) 281 movl(hi, lo); // x := x << n 282 xorl(lo, lo); 283 // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n! 284 bind(L); // s (mod n) < n 285 shldl(hi, lo); // x := x << s 286 shll(lo); 287 } 288 289 290 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) { 291 // Java shift right long support (semantics as described in JVM spec., p.306 & p.310) 292 // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n)) 293 assert(hi != rcx, "must not use rcx"); 294 assert(lo != rcx, "must not use rcx"); 295 const Register s = rcx; // shift count 296 const int n = BitsPerWord; 297 Label L; 298 andl(s, 0x3f); // s := s & 0x3f (s < 0x40) 299 cmpl(s, n); // if (s < n) 300 jcc(Assembler::less, L); // else (s >= n) 301 movl(lo, hi); // x := x >> n 302 if (sign_extension) sarl(hi, 31); 303 else xorl(hi, hi); 304 // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n! 305 bind(L); // s (mod n) < n 306 shrdl(lo, hi); // x := x >> s 307 if (sign_extension) sarl(hi); 308 else shrl(hi); 309 } 310 311 void MacroAssembler::movoop(Register dst, jobject obj) { 312 mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate()); 313 } 314 315 void MacroAssembler::movoop(Address dst, jobject obj, Register rscratch) { 316 assert(rscratch == noreg, "redundant"); 317 mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate()); 318 } 319 320 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) { 321 mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate()); 322 } 323 324 void MacroAssembler::mov_metadata(Address dst, Metadata* obj, Register rscratch) { 325 assert(rscratch == noreg, "redundant"); 326 mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate()); 327 } 328 329 void MacroAssembler::movptr(Register dst, AddressLiteral src) { 330 if (src.is_lval()) { 331 mov_literal32(dst, (intptr_t)src.target(), src.rspec()); 332 } else { 333 movl(dst, as_Address(src)); 334 } 335 } 336 337 void MacroAssembler::movptr(ArrayAddress dst, Register src, Register rscratch) { 338 assert(rscratch == noreg, "redundant"); 339 movl(as_Address(dst, noreg), src); 340 } 341 342 void MacroAssembler::movptr(Register dst, ArrayAddress src) { 343 movl(dst, as_Address(src, noreg)); 344 } 345 346 void MacroAssembler::movptr(Address dst, intptr_t src, Register rscratch) { 347 assert(rscratch == noreg, "redundant"); 348 movl(dst, src); 349 } 350 351 void MacroAssembler::pushoop(jobject obj, Register rscratch) { 352 assert(rscratch == noreg, "redundant"); 353 push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate()); 354 } 355 356 void MacroAssembler::pushklass(Metadata* obj, Register rscratch) { 357 assert(rscratch == noreg, "redundant"); 358 push_literal32((int32_t)obj, metadata_Relocation::spec_for_immediate()); 359 } 360 361 void MacroAssembler::pushptr(AddressLiteral src, Register rscratch) { 362 assert(rscratch == noreg, "redundant"); 363 if (src.is_lval()) { 364 push_literal32((int32_t)src.target(), src.rspec()); 365 } else { 366 pushl(as_Address(src)); 367 } 368 } 369 370 static void pass_arg0(MacroAssembler* masm, Register arg) { 371 masm->push(arg); 372 } 373 374 static void pass_arg1(MacroAssembler* masm, Register arg) { 375 masm->push(arg); 376 } 377 378 static void pass_arg2(MacroAssembler* masm, Register arg) { 379 masm->push(arg); 380 } 381 382 static void pass_arg3(MacroAssembler* masm, Register arg) { 383 masm->push(arg); 384 } 385 386 #ifndef PRODUCT 387 extern "C" void findpc(intptr_t x); 388 #endif 389 390 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) { 391 // In order to get locks to work, we need to fake a in_VM state 392 JavaThread* thread = JavaThread::current(); 393 JavaThreadState saved_state = thread->thread_state(); 394 thread->set_thread_state(_thread_in_vm); 395 if (ShowMessageBoxOnError) { 396 JavaThread* thread = JavaThread::current(); 397 JavaThreadState saved_state = thread->thread_state(); 398 thread->set_thread_state(_thread_in_vm); 399 if (CountBytecodes || TraceBytecodes || StopInterpreterAt) { 400 ttyLocker ttyl; 401 BytecodeCounter::print(); 402 } 403 // To see where a verify_oop failed, get $ebx+40/X for this frame. 404 // This is the value of eip which points to where verify_oop will return. 405 if (os::message_box(msg, "Execution stopped, print registers?")) { 406 print_state32(rdi, rsi, rbp, rsp, rbx, rdx, rcx, rax, eip); 407 BREAKPOINT; 408 } 409 } 410 fatal("DEBUG MESSAGE: %s", msg); 411 } 412 413 void MacroAssembler::print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip) { 414 ttyLocker ttyl; 415 DebuggingContext debugging{}; 416 tty->print_cr("eip = 0x%08x", eip); 417 #ifndef PRODUCT 418 if ((WizardMode || Verbose) && PrintMiscellaneous) { 419 tty->cr(); 420 findpc(eip); 421 tty->cr(); 422 } 423 #endif 424 #define PRINT_REG(rax) \ 425 { tty->print("%s = ", #rax); os::print_location(tty, rax); } 426 PRINT_REG(rax); 427 PRINT_REG(rbx); 428 PRINT_REG(rcx); 429 PRINT_REG(rdx); 430 PRINT_REG(rdi); 431 PRINT_REG(rsi); 432 PRINT_REG(rbp); 433 PRINT_REG(rsp); 434 #undef PRINT_REG 435 // Print some words near top of staack. 436 int* dump_sp = (int*) rsp; 437 for (int col1 = 0; col1 < 8; col1++) { 438 tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp); 439 os::print_location(tty, *dump_sp++); 440 } 441 for (int row = 0; row < 16; row++) { 442 tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp); 443 for (int col = 0; col < 8; col++) { 444 tty->print(" 0x%08x", *dump_sp++); 445 } 446 tty->cr(); 447 } 448 // Print some instructions around pc: 449 Disassembler::decode((address)eip-64, (address)eip); 450 tty->print_cr("--------"); 451 Disassembler::decode((address)eip, (address)eip+32); 452 } 453 454 void MacroAssembler::stop(const char* msg) { 455 // push address of message 456 ExternalAddress message((address)msg); 457 pushptr(message.addr(), noreg); 458 { Label L; call(L, relocInfo::none); bind(L); } // push eip 459 pusha(); // push registers 460 call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32))); 461 hlt(); 462 } 463 464 void MacroAssembler::warn(const char* msg) { 465 push_CPU_state(); 466 467 // push address of message 468 ExternalAddress message((address)msg); 469 pushptr(message.addr(), noreg); 470 471 call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning))); 472 addl(rsp, wordSize); // discard argument 473 pop_CPU_state(); 474 } 475 476 void MacroAssembler::print_state() { 477 { Label L; call(L, relocInfo::none); bind(L); } // push eip 478 pusha(); // push registers 479 480 push_CPU_state(); 481 call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::print_state32))); 482 pop_CPU_state(); 483 484 popa(); 485 addl(rsp, wordSize); 486 } 487 488 #else // _LP64 489 490 // 64 bit versions 491 492 Address MacroAssembler::as_Address(AddressLiteral adr) { 493 // amd64 always does this as a pc-rel 494 // we can be absolute or disp based on the instruction type 495 // jmp/call are displacements others are absolute 496 assert(!adr.is_lval(), "must be rval"); 497 assert(reachable(adr), "must be"); 498 return Address(checked_cast<int32_t>(adr.target() - pc()), adr.target(), adr.reloc()); 499 500 } 501 502 Address MacroAssembler::as_Address(ArrayAddress adr, Register rscratch) { 503 AddressLiteral base = adr.base(); 504 lea(rscratch, base); 505 Address index = adr.index(); 506 assert(index._disp == 0, "must not have disp"); // maybe it can? 507 Address array(rscratch, index._index, index._scale, index._disp); 508 return array; 509 } 510 511 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) { 512 Label L, E; 513 514 #ifdef _WIN64 515 // Windows always allocates space for it's register args 516 assert(num_args <= 4, "only register arguments supported"); 517 subq(rsp, frame::arg_reg_save_area_bytes); 518 #endif 519 520 // Align stack if necessary 521 testl(rsp, 15); 522 jcc(Assembler::zero, L); 523 524 subq(rsp, 8); 525 call(RuntimeAddress(entry_point)); 526 addq(rsp, 8); 527 jmp(E); 528 529 bind(L); 530 call(RuntimeAddress(entry_point)); 531 532 bind(E); 533 534 #ifdef _WIN64 535 // restore stack pointer 536 addq(rsp, frame::arg_reg_save_area_bytes); 537 #endif 538 539 } 540 541 void MacroAssembler::cmp64(Register src1, AddressLiteral src2, Register rscratch) { 542 assert(!src2.is_lval(), "should use cmpptr"); 543 assert(rscratch != noreg || always_reachable(src2), "missing"); 544 545 if (reachable(src2)) { 546 cmpq(src1, as_Address(src2)); 547 } else { 548 lea(rscratch, src2); 549 Assembler::cmpq(src1, Address(rscratch, 0)); 550 } 551 } 552 553 int MacroAssembler::corrected_idivq(Register reg) { 554 // Full implementation of Java ldiv and lrem; checks for special 555 // case as described in JVM spec., p.243 & p.271. The function 556 // returns the (pc) offset of the idivl instruction - may be needed 557 // for implicit exceptions. 558 // 559 // normal case special case 560 // 561 // input : rax: dividend min_long 562 // reg: divisor (may not be eax/edx) -1 563 // 564 // output: rax: quotient (= rax idiv reg) min_long 565 // rdx: remainder (= rax irem reg) 0 566 assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register"); 567 static const int64_t min_long = 0x8000000000000000; 568 Label normal_case, special_case; 569 570 // check for special case 571 cmp64(rax, ExternalAddress((address) &min_long), rdx /*rscratch*/); 572 jcc(Assembler::notEqual, normal_case); 573 xorl(rdx, rdx); // prepare rdx for possible special case (where 574 // remainder = 0) 575 cmpq(reg, -1); 576 jcc(Assembler::equal, special_case); 577 578 // handle normal case 579 bind(normal_case); 580 cdqq(); 581 int idivq_offset = offset(); 582 idivq(reg); 583 584 // normal and special case exit 585 bind(special_case); 586 587 return idivq_offset; 588 } 589 590 void MacroAssembler::decrementq(Register reg, int value) { 591 if (value == min_jint) { subq(reg, value); return; } 592 if (value < 0) { incrementq(reg, -value); return; } 593 if (value == 0) { ; return; } 594 if (value == 1 && UseIncDec) { decq(reg) ; return; } 595 /* else */ { subq(reg, value) ; return; } 596 } 597 598 void MacroAssembler::decrementq(Address dst, int value) { 599 if (value == min_jint) { subq(dst, value); return; } 600 if (value < 0) { incrementq(dst, -value); return; } 601 if (value == 0) { ; return; } 602 if (value == 1 && UseIncDec) { decq(dst) ; return; } 603 /* else */ { subq(dst, value) ; return; } 604 } 605 606 void MacroAssembler::incrementq(AddressLiteral dst, Register rscratch) { 607 assert(rscratch != noreg || always_reachable(dst), "missing"); 608 609 if (reachable(dst)) { 610 incrementq(as_Address(dst)); 611 } else { 612 lea(rscratch, dst); 613 incrementq(Address(rscratch, 0)); 614 } 615 } 616 617 void MacroAssembler::incrementq(Register reg, int value) { 618 if (value == min_jint) { addq(reg, value); return; } 619 if (value < 0) { decrementq(reg, -value); return; } 620 if (value == 0) { ; return; } 621 if (value == 1 && UseIncDec) { incq(reg) ; return; } 622 /* else */ { addq(reg, value) ; return; } 623 } 624 625 void MacroAssembler::incrementq(Address dst, int value) { 626 if (value == min_jint) { addq(dst, value); return; } 627 if (value < 0) { decrementq(dst, -value); return; } 628 if (value == 0) { ; return; } 629 if (value == 1 && UseIncDec) { incq(dst) ; return; } 630 /* else */ { addq(dst, value) ; return; } 631 } 632 633 // 32bit can do a case table jump in one instruction but we no longer allow the base 634 // to be installed in the Address class 635 void MacroAssembler::jump(ArrayAddress entry, Register rscratch) { 636 lea(rscratch, entry.base()); 637 Address dispatch = entry.index(); 638 assert(dispatch._base == noreg, "must be"); 639 dispatch._base = rscratch; 640 jmp(dispatch); 641 } 642 643 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) { 644 ShouldNotReachHere(); // 64bit doesn't use two regs 645 cmpq(x_lo, y_lo); 646 } 647 648 void MacroAssembler::lea(Register dst, AddressLiteral src) { 649 mov_literal64(dst, (intptr_t)src.target(), src.rspec()); 650 } 651 652 void MacroAssembler::lea(Address dst, AddressLiteral adr, Register rscratch) { 653 lea(rscratch, adr); 654 movptr(dst, rscratch); 655 } 656 657 void MacroAssembler::leave() { 658 // %%% is this really better? Why not on 32bit too? 659 emit_int8((unsigned char)0xC9); // LEAVE 660 } 661 662 void MacroAssembler::lneg(Register hi, Register lo) { 663 ShouldNotReachHere(); // 64bit doesn't use two regs 664 negq(lo); 665 } 666 667 void MacroAssembler::movoop(Register dst, jobject obj) { 668 mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate()); 669 } 670 671 void MacroAssembler::movoop(Address dst, jobject obj, Register rscratch) { 672 mov_literal64(rscratch, (intptr_t)obj, oop_Relocation::spec_for_immediate()); 673 movq(dst, rscratch); 674 } 675 676 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) { 677 mov_literal64(dst, (intptr_t)obj, metadata_Relocation::spec_for_immediate()); 678 } 679 680 void MacroAssembler::mov_metadata(Address dst, Metadata* obj, Register rscratch) { 681 mov_literal64(rscratch, (intptr_t)obj, metadata_Relocation::spec_for_immediate()); 682 movq(dst, rscratch); 683 } 684 685 void MacroAssembler::movptr(Register dst, AddressLiteral src) { 686 if (src.is_lval()) { 687 mov_literal64(dst, (intptr_t)src.target(), src.rspec()); 688 } else { 689 if (reachable(src)) { 690 movq(dst, as_Address(src)); 691 } else { 692 lea(dst, src); 693 movq(dst, Address(dst, 0)); 694 } 695 } 696 } 697 698 void MacroAssembler::movptr(ArrayAddress dst, Register src, Register rscratch) { 699 movq(as_Address(dst, rscratch), src); 700 } 701 702 void MacroAssembler::movptr(Register dst, ArrayAddress src) { 703 movq(dst, as_Address(src, dst /*rscratch*/)); 704 } 705 706 // src should NEVER be a real pointer. Use AddressLiteral for true pointers 707 void MacroAssembler::movptr(Address dst, intptr_t src, Register rscratch) { 708 if (is_simm32(src)) { 709 movptr(dst, checked_cast<int32_t>(src)); 710 } else { 711 mov64(rscratch, src); 712 movq(dst, rscratch); 713 } 714 } 715 716 void MacroAssembler::pushoop(jobject obj, Register rscratch) { 717 movoop(rscratch, obj); 718 push(rscratch); 719 } 720 721 void MacroAssembler::pushklass(Metadata* obj, Register rscratch) { 722 mov_metadata(rscratch, obj); 723 push(rscratch); 724 } 725 726 void MacroAssembler::pushptr(AddressLiteral src, Register rscratch) { 727 lea(rscratch, src); 728 if (src.is_lval()) { 729 push(rscratch); 730 } else { 731 pushq(Address(rscratch, 0)); 732 } 733 } 734 735 void MacroAssembler::reset_last_Java_frame(bool clear_fp) { 736 reset_last_Java_frame(r15_thread, clear_fp); 737 } 738 739 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 740 Register last_java_fp, 741 address last_java_pc, 742 Register rscratch) { 743 set_last_Java_frame(r15_thread, last_java_sp, last_java_fp, last_java_pc, rscratch); 744 } 745 746 static void pass_arg0(MacroAssembler* masm, Register arg) { 747 if (c_rarg0 != arg ) { 748 masm->mov(c_rarg0, arg); 749 } 750 } 751 752 static void pass_arg1(MacroAssembler* masm, Register arg) { 753 if (c_rarg1 != arg ) { 754 masm->mov(c_rarg1, arg); 755 } 756 } 757 758 static void pass_arg2(MacroAssembler* masm, Register arg) { 759 if (c_rarg2 != arg ) { 760 masm->mov(c_rarg2, arg); 761 } 762 } 763 764 static void pass_arg3(MacroAssembler* masm, Register arg) { 765 if (c_rarg3 != arg ) { 766 masm->mov(c_rarg3, arg); 767 } 768 } 769 770 void MacroAssembler::stop(const char* msg) { 771 if (ShowMessageBoxOnError) { 772 address rip = pc(); 773 pusha(); // get regs on stack 774 lea(c_rarg1, InternalAddress(rip)); 775 movq(c_rarg2, rsp); // pass pointer to regs array 776 } 777 lea(c_rarg0, ExternalAddress((address) msg)); 778 andq(rsp, -16); // align stack as required by ABI 779 call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64))); 780 hlt(); 781 } 782 783 void MacroAssembler::warn(const char* msg) { 784 push(rbp); 785 movq(rbp, rsp); 786 andq(rsp, -16); // align stack as required by push_CPU_state and call 787 push_CPU_state(); // keeps alignment at 16 bytes 788 789 lea(c_rarg0, ExternalAddress((address) msg)); 790 call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning))); 791 792 pop_CPU_state(); 793 mov(rsp, rbp); 794 pop(rbp); 795 } 796 797 void MacroAssembler::print_state() { 798 address rip = pc(); 799 pusha(); // get regs on stack 800 push(rbp); 801 movq(rbp, rsp); 802 andq(rsp, -16); // align stack as required by push_CPU_state and call 803 push_CPU_state(); // keeps alignment at 16 bytes 804 805 lea(c_rarg0, InternalAddress(rip)); 806 lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array 807 call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1); 808 809 pop_CPU_state(); 810 mov(rsp, rbp); 811 pop(rbp); 812 popa(); 813 } 814 815 #ifndef PRODUCT 816 extern "C" void findpc(intptr_t x); 817 #endif 818 819 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) { 820 // In order to get locks to work, we need to fake a in_VM state 821 if (ShowMessageBoxOnError) { 822 JavaThread* thread = JavaThread::current(); 823 JavaThreadState saved_state = thread->thread_state(); 824 thread->set_thread_state(_thread_in_vm); 825 #ifndef PRODUCT 826 if (CountBytecodes || TraceBytecodes || StopInterpreterAt) { 827 ttyLocker ttyl; 828 BytecodeCounter::print(); 829 } 830 #endif 831 // To see where a verify_oop failed, get $ebx+40/X for this frame. 832 // XXX correct this offset for amd64 833 // This is the value of eip which points to where verify_oop will return. 834 if (os::message_box(msg, "Execution stopped, print registers?")) { 835 print_state64(pc, regs); 836 BREAKPOINT; 837 } 838 } 839 fatal("DEBUG MESSAGE: %s", msg); 840 } 841 842 void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) { 843 ttyLocker ttyl; 844 DebuggingContext debugging{}; 845 tty->print_cr("rip = 0x%016lx", (intptr_t)pc); 846 #ifndef PRODUCT 847 tty->cr(); 848 findpc(pc); 849 tty->cr(); 850 #endif 851 #define PRINT_REG(rax, value) \ 852 { tty->print("%s = ", #rax); os::print_location(tty, value); } 853 PRINT_REG(rax, regs[15]); 854 PRINT_REG(rbx, regs[12]); 855 PRINT_REG(rcx, regs[14]); 856 PRINT_REG(rdx, regs[13]); 857 PRINT_REG(rdi, regs[8]); 858 PRINT_REG(rsi, regs[9]); 859 PRINT_REG(rbp, regs[10]); 860 // rsp is actually not stored by pusha(), compute the old rsp from regs (rsp after pusha): regs + 16 = old rsp 861 PRINT_REG(rsp, (intptr_t)(®s[16])); 862 PRINT_REG(r8 , regs[7]); 863 PRINT_REG(r9 , regs[6]); 864 PRINT_REG(r10, regs[5]); 865 PRINT_REG(r11, regs[4]); 866 PRINT_REG(r12, regs[3]); 867 PRINT_REG(r13, regs[2]); 868 PRINT_REG(r14, regs[1]); 869 PRINT_REG(r15, regs[0]); 870 #undef PRINT_REG 871 // Print some words near the top of the stack. 872 int64_t* rsp = ®s[16]; 873 int64_t* dump_sp = rsp; 874 for (int col1 = 0; col1 < 8; col1++) { 875 tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp); 876 os::print_location(tty, *dump_sp++); 877 } 878 for (int row = 0; row < 25; row++) { 879 tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp); 880 for (int col = 0; col < 4; col++) { 881 tty->print(" 0x%016lx", (intptr_t)*dump_sp++); 882 } 883 tty->cr(); 884 } 885 // Print some instructions around pc: 886 Disassembler::decode((address)pc-64, (address)pc); 887 tty->print_cr("--------"); 888 Disassembler::decode((address)pc, (address)pc+32); 889 } 890 891 // The java_calling_convention describes stack locations as ideal slots on 892 // a frame with no abi restrictions. Since we must observe abi restrictions 893 // (like the placement of the register window) the slots must be biased by 894 // the following value. 895 static int reg2offset_in(VMReg r) { 896 // Account for saved rbp and return address 897 // This should really be in_preserve_stack_slots 898 return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size; 899 } 900 901 static int reg2offset_out(VMReg r) { 902 return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size; 903 } 904 905 // A long move 906 void MacroAssembler::long_move(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) { 907 908 // The calling conventions assures us that each VMregpair is either 909 // all really one physical register or adjacent stack slots. 910 911 if (src.is_single_phys_reg() ) { 912 if (dst.is_single_phys_reg()) { 913 if (dst.first() != src.first()) { 914 mov(dst.first()->as_Register(), src.first()->as_Register()); 915 } 916 } else { 917 assert(dst.is_single_reg(), "not a stack pair: (%s, %s), (%s, %s)", 918 src.first()->name(), src.second()->name(), dst.first()->name(), dst.second()->name()); 919 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_Register()); 920 } 921 } else if (dst.is_single_phys_reg()) { 922 assert(src.is_single_reg(), "not a stack pair"); 923 movq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 924 } else { 925 assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs"); 926 movq(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 927 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp); 928 } 929 } 930 931 // A double move 932 void MacroAssembler::double_move(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) { 933 934 // The calling conventions assures us that each VMregpair is either 935 // all really one physical register or adjacent stack slots. 936 937 if (src.is_single_phys_reg() ) { 938 if (dst.is_single_phys_reg()) { 939 // In theory these overlap but the ordering is such that this is likely a nop 940 if ( src.first() != dst.first()) { 941 movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister()); 942 } 943 } else { 944 assert(dst.is_single_reg(), "not a stack pair"); 945 movdbl(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_XMMRegister()); 946 } 947 } else if (dst.is_single_phys_reg()) { 948 assert(src.is_single_reg(), "not a stack pair"); 949 movdbl(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 950 } else { 951 assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs"); 952 movq(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 953 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp); 954 } 955 } 956 957 958 // A float arg may have to do float reg int reg conversion 959 void MacroAssembler::float_move(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) { 960 assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move"); 961 962 // The calling conventions assures us that each VMregpair is either 963 // all really one physical register or adjacent stack slots. 964 965 if (src.first()->is_stack()) { 966 if (dst.first()->is_stack()) { 967 movl(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 968 movptr(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp); 969 } else { 970 // stack to reg 971 assert(dst.first()->is_XMMRegister(), "only expect xmm registers as parameters"); 972 movflt(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 973 } 974 } else if (dst.first()->is_stack()) { 975 // reg to stack 976 assert(src.first()->is_XMMRegister(), "only expect xmm registers as parameters"); 977 movflt(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_XMMRegister()); 978 } else { 979 // reg to reg 980 // In theory these overlap but the ordering is such that this is likely a nop 981 if ( src.first() != dst.first()) { 982 movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister()); 983 } 984 } 985 } 986 987 // On 64 bit we will store integer like items to the stack as 988 // 64 bits items (x86_32/64 abi) even though java would only store 989 // 32bits for a parameter. On 32bit it will simply be 32 bits 990 // So this routine will do 32->32 on 32bit and 32->64 on 64bit 991 void MacroAssembler::move32_64(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) { 992 if (src.first()->is_stack()) { 993 if (dst.first()->is_stack()) { 994 // stack to stack 995 movslq(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 996 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp); 997 } else { 998 // stack to reg 999 movslq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 1000 } 1001 } else if (dst.first()->is_stack()) { 1002 // reg to stack 1003 // Do we really have to sign extend??? 1004 // __ movslq(src.first()->as_Register(), src.first()->as_Register()); 1005 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_Register()); 1006 } else { 1007 // Do we really have to sign extend??? 1008 // __ movslq(dst.first()->as_Register(), src.first()->as_Register()); 1009 if (dst.first() != src.first()) { 1010 movq(dst.first()->as_Register(), src.first()->as_Register()); 1011 } 1012 } 1013 } 1014 1015 void MacroAssembler::move_ptr(VMRegPair src, VMRegPair dst) { 1016 if (src.first()->is_stack()) { 1017 if (dst.first()->is_stack()) { 1018 // stack to stack 1019 movq(rax, Address(rbp, reg2offset_in(src.first()))); 1020 movq(Address(rsp, reg2offset_out(dst.first())), rax); 1021 } else { 1022 // stack to reg 1023 movq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first()))); 1024 } 1025 } else if (dst.first()->is_stack()) { 1026 // reg to stack 1027 movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register()); 1028 } else { 1029 if (dst.first() != src.first()) { 1030 movq(dst.first()->as_Register(), src.first()->as_Register()); 1031 } 1032 } 1033 } 1034 1035 // An oop arg. Must pass a handle not the oop itself 1036 void MacroAssembler::object_move(OopMap* map, 1037 int oop_handle_offset, 1038 int framesize_in_slots, 1039 VMRegPair src, 1040 VMRegPair dst, 1041 bool is_receiver, 1042 int* receiver_offset) { 1043 1044 // must pass a handle. First figure out the location we use as a handle 1045 1046 Register rHandle = dst.first()->is_stack() ? rax : dst.first()->as_Register(); 1047 1048 // See if oop is null if it is we need no handle 1049 1050 if (src.first()->is_stack()) { 1051 1052 // Oop is already on the stack as an argument 1053 int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots(); 1054 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots)); 1055 if (is_receiver) { 1056 *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size; 1057 } 1058 1059 cmpptr(Address(rbp, reg2offset_in(src.first())), NULL_WORD); 1060 lea(rHandle, Address(rbp, reg2offset_in(src.first()))); 1061 // conditionally move a null 1062 cmovptr(Assembler::equal, rHandle, Address(rbp, reg2offset_in(src.first()))); 1063 } else { 1064 1065 // Oop is in a register we must store it to the space we reserve 1066 // on the stack for oop_handles and pass a handle if oop is non-null 1067 1068 const Register rOop = src.first()->as_Register(); 1069 int oop_slot; 1070 if (rOop == j_rarg0) 1071 oop_slot = 0; 1072 else if (rOop == j_rarg1) 1073 oop_slot = 1; 1074 else if (rOop == j_rarg2) 1075 oop_slot = 2; 1076 else if (rOop == j_rarg3) 1077 oop_slot = 3; 1078 else if (rOop == j_rarg4) 1079 oop_slot = 4; 1080 else { 1081 assert(rOop == j_rarg5, "wrong register"); 1082 oop_slot = 5; 1083 } 1084 1085 oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset; 1086 int offset = oop_slot*VMRegImpl::stack_slot_size; 1087 1088 map->set_oop(VMRegImpl::stack2reg(oop_slot)); 1089 // Store oop in handle area, may be null 1090 movptr(Address(rsp, offset), rOop); 1091 if (is_receiver) { 1092 *receiver_offset = offset; 1093 } 1094 1095 cmpptr(rOop, NULL_WORD); 1096 lea(rHandle, Address(rsp, offset)); 1097 // conditionally move a null from the handle area where it was just stored 1098 cmovptr(Assembler::equal, rHandle, Address(rsp, offset)); 1099 } 1100 1101 // If arg is on the stack then place it otherwise it is already in correct reg. 1102 if (dst.first()->is_stack()) { 1103 movptr(Address(rsp, reg2offset_out(dst.first())), rHandle); 1104 } 1105 } 1106 1107 #endif // _LP64 1108 1109 // Now versions that are common to 32/64 bit 1110 1111 void MacroAssembler::addptr(Register dst, int32_t imm32) { 1112 LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32)); 1113 } 1114 1115 void MacroAssembler::addptr(Register dst, Register src) { 1116 LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); 1117 } 1118 1119 void MacroAssembler::addptr(Address dst, Register src) { 1120 LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); 1121 } 1122 1123 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src, Register rscratch) { 1124 assert(rscratch != noreg || always_reachable(src), "missing"); 1125 1126 if (reachable(src)) { 1127 Assembler::addsd(dst, as_Address(src)); 1128 } else { 1129 lea(rscratch, src); 1130 Assembler::addsd(dst, Address(rscratch, 0)); 1131 } 1132 } 1133 1134 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src, Register rscratch) { 1135 assert(rscratch != noreg || always_reachable(src), "missing"); 1136 1137 if (reachable(src)) { 1138 addss(dst, as_Address(src)); 1139 } else { 1140 lea(rscratch, src); 1141 addss(dst, Address(rscratch, 0)); 1142 } 1143 } 1144 1145 void MacroAssembler::addpd(XMMRegister dst, AddressLiteral src, Register rscratch) { 1146 assert(rscratch != noreg || always_reachable(src), "missing"); 1147 1148 if (reachable(src)) { 1149 Assembler::addpd(dst, as_Address(src)); 1150 } else { 1151 lea(rscratch, src); 1152 Assembler::addpd(dst, Address(rscratch, 0)); 1153 } 1154 } 1155 1156 // See 8273459. Function for ensuring 64-byte alignment, intended for stubs only. 1157 // Stub code is generated once and never copied. 1158 // NMethods can't use this because they get copied and we can't force alignment > 32 bytes. 1159 void MacroAssembler::align64() { 1160 align(64, (uint)(uintptr_t)pc()); 1161 } 1162 1163 void MacroAssembler::align32() { 1164 align(32, (uint)(uintptr_t)pc()); 1165 } 1166 1167 void MacroAssembler::align(uint modulus) { 1168 // 8273459: Ensure alignment is possible with current segment alignment 1169 assert(modulus <= (uintx)CodeEntryAlignment, "Alignment must be <= CodeEntryAlignment"); 1170 align(modulus, offset()); 1171 } 1172 1173 void MacroAssembler::align(uint modulus, uint target) { 1174 if (target % modulus != 0) { 1175 nop(modulus - (target % modulus)); 1176 } 1177 } 1178 1179 void MacroAssembler::push_f(XMMRegister r) { 1180 subptr(rsp, wordSize); 1181 movflt(Address(rsp, 0), r); 1182 } 1183 1184 void MacroAssembler::pop_f(XMMRegister r) { 1185 movflt(r, Address(rsp, 0)); 1186 addptr(rsp, wordSize); 1187 } 1188 1189 void MacroAssembler::push_d(XMMRegister r) { 1190 subptr(rsp, 2 * wordSize); 1191 movdbl(Address(rsp, 0), r); 1192 } 1193 1194 void MacroAssembler::pop_d(XMMRegister r) { 1195 movdbl(r, Address(rsp, 0)); 1196 addptr(rsp, 2 * Interpreter::stackElementSize); 1197 } 1198 1199 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src, Register rscratch) { 1200 // Used in sign-masking with aligned address. 1201 assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes"); 1202 assert(rscratch != noreg || always_reachable(src), "missing"); 1203 1204 if (reachable(src)) { 1205 Assembler::andpd(dst, as_Address(src)); 1206 } else { 1207 lea(rscratch, src); 1208 Assembler::andpd(dst, Address(rscratch, 0)); 1209 } 1210 } 1211 1212 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src, Register rscratch) { 1213 // Used in sign-masking with aligned address. 1214 assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes"); 1215 assert(rscratch != noreg || always_reachable(src), "missing"); 1216 1217 if (reachable(src)) { 1218 Assembler::andps(dst, as_Address(src)); 1219 } else { 1220 lea(rscratch, src); 1221 Assembler::andps(dst, Address(rscratch, 0)); 1222 } 1223 } 1224 1225 void MacroAssembler::andptr(Register dst, int32_t imm32) { 1226 LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32)); 1227 } 1228 1229 #ifdef _LP64 1230 void MacroAssembler::andq(Register dst, AddressLiteral src, Register rscratch) { 1231 assert(rscratch != noreg || always_reachable(src), "missing"); 1232 1233 if (reachable(src)) { 1234 andq(dst, as_Address(src)); 1235 } else { 1236 lea(rscratch, src); 1237 andq(dst, Address(rscratch, 0)); 1238 } 1239 } 1240 #endif 1241 1242 void MacroAssembler::atomic_incl(Address counter_addr) { 1243 lock(); 1244 incrementl(counter_addr); 1245 } 1246 1247 void MacroAssembler::atomic_incl(AddressLiteral counter_addr, Register rscratch) { 1248 assert(rscratch != noreg || always_reachable(counter_addr), "missing"); 1249 1250 if (reachable(counter_addr)) { 1251 atomic_incl(as_Address(counter_addr)); 1252 } else { 1253 lea(rscratch, counter_addr); 1254 atomic_incl(Address(rscratch, 0)); 1255 } 1256 } 1257 1258 #ifdef _LP64 1259 void MacroAssembler::atomic_incq(Address counter_addr) { 1260 lock(); 1261 incrementq(counter_addr); 1262 } 1263 1264 void MacroAssembler::atomic_incq(AddressLiteral counter_addr, Register rscratch) { 1265 assert(rscratch != noreg || always_reachable(counter_addr), "missing"); 1266 1267 if (reachable(counter_addr)) { 1268 atomic_incq(as_Address(counter_addr)); 1269 } else { 1270 lea(rscratch, counter_addr); 1271 atomic_incq(Address(rscratch, 0)); 1272 } 1273 } 1274 #endif 1275 1276 // Writes to stack successive pages until offset reached to check for 1277 // stack overflow + shadow pages. This clobbers tmp. 1278 void MacroAssembler::bang_stack_size(Register size, Register tmp) { 1279 movptr(tmp, rsp); 1280 // Bang stack for total size given plus shadow page size. 1281 // Bang one page at a time because large size can bang beyond yellow and 1282 // red zones. 1283 Label loop; 1284 bind(loop); 1285 movl(Address(tmp, (-(int)os::vm_page_size())), size ); 1286 subptr(tmp, (int)os::vm_page_size()); 1287 subl(size, (int)os::vm_page_size()); 1288 jcc(Assembler::greater, loop); 1289 1290 // Bang down shadow pages too. 1291 // At this point, (tmp-0) is the last address touched, so don't 1292 // touch it again. (It was touched as (tmp-pagesize) but then tmp 1293 // was post-decremented.) Skip this address by starting at i=1, and 1294 // touch a few more pages below. N.B. It is important to touch all 1295 // the way down including all pages in the shadow zone. 1296 for (int i = 1; i < ((int)StackOverflow::stack_shadow_zone_size() / (int)os::vm_page_size()); i++) { 1297 // this could be any sized move but this is can be a debugging crumb 1298 // so the bigger the better. 1299 movptr(Address(tmp, (-i*(int)os::vm_page_size())), size ); 1300 } 1301 } 1302 1303 void MacroAssembler::reserved_stack_check() { 1304 // testing if reserved zone needs to be enabled 1305 Label no_reserved_zone_enabling; 1306 Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread); 1307 NOT_LP64(get_thread(rsi);) 1308 1309 cmpptr(rsp, Address(thread, JavaThread::reserved_stack_activation_offset())); 1310 jcc(Assembler::below, no_reserved_zone_enabling); 1311 1312 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), thread); 1313 jump(RuntimeAddress(SharedRuntime::throw_delayed_StackOverflowError_entry())); 1314 should_not_reach_here(); 1315 1316 bind(no_reserved_zone_enabling); 1317 } 1318 1319 void MacroAssembler::c2bool(Register x) { 1320 // implements x == 0 ? 0 : 1 1321 // note: must only look at least-significant byte of x 1322 // since C-style booleans are stored in one byte 1323 // only! (was bug) 1324 andl(x, 0xFF); 1325 setb(Assembler::notZero, x); 1326 } 1327 1328 // Wouldn't need if AddressLiteral version had new name 1329 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) { 1330 Assembler::call(L, rtype); 1331 } 1332 1333 void MacroAssembler::call(Register entry) { 1334 Assembler::call(entry); 1335 } 1336 1337 void MacroAssembler::call(AddressLiteral entry, Register rscratch) { 1338 assert(rscratch != noreg || always_reachable(entry), "missing"); 1339 1340 if (reachable(entry)) { 1341 Assembler::call_literal(entry.target(), entry.rspec()); 1342 } else { 1343 lea(rscratch, entry); 1344 Assembler::call(rscratch); 1345 } 1346 } 1347 1348 void MacroAssembler::ic_call(address entry, jint method_index) { 1349 RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index); 1350 #ifdef _LP64 1351 // Needs full 64-bit immediate for later patching. 1352 mov64(rax, (int64_t)Universe::non_oop_word()); 1353 #else 1354 movptr(rax, (intptr_t)Universe::non_oop_word()); 1355 #endif 1356 call(AddressLiteral(entry, rh)); 1357 } 1358 1359 int MacroAssembler::ic_check_size() { 1360 return LP64_ONLY(14) NOT_LP64(12); 1361 } 1362 1363 int MacroAssembler::ic_check(int end_alignment) { 1364 Register receiver = LP64_ONLY(j_rarg0) NOT_LP64(rcx); 1365 Register data = rax; 1366 Register temp = LP64_ONLY(rscratch1) NOT_LP64(rbx); 1367 1368 // The UEP of a code blob ensures that the VEP is padded. However, the padding of the UEP is placed 1369 // before the inline cache check, so we don't have to execute any nop instructions when dispatching 1370 // through the UEP, yet we can ensure that the VEP is aligned appropriately. That's why we align 1371 // before the inline cache check here, and not after 1372 align(end_alignment, offset() + ic_check_size()); 1373 1374 int uep_offset = offset(); 1375 1376 if (UseCompressedClassPointers) { 1377 movl(temp, Address(receiver, oopDesc::klass_offset_in_bytes())); 1378 cmpl(temp, Address(data, CompiledICData::speculated_klass_offset())); 1379 } else { 1380 movptr(temp, Address(receiver, oopDesc::klass_offset_in_bytes())); 1381 cmpptr(temp, Address(data, CompiledICData::speculated_klass_offset())); 1382 } 1383 1384 // if inline cache check fails, then jump to runtime routine 1385 jump_cc(Assembler::notEqual, RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 1386 assert((offset() % end_alignment) == 0, "Misaligned verified entry point"); 1387 1388 return uep_offset; 1389 } 1390 1391 void MacroAssembler::emit_static_call_stub() { 1392 // Static stub relocation also tags the Method* in the code-stream. 1393 mov_metadata(rbx, (Metadata*) nullptr); // Method is zapped till fixup time. 1394 // This is recognized as unresolved by relocs/nativeinst/ic code. 1395 jump(RuntimeAddress(pc())); 1396 } 1397 1398 // Implementation of call_VM versions 1399 1400 void MacroAssembler::call_VM(Register oop_result, 1401 address entry_point, 1402 bool check_exceptions) { 1403 Label C, E; 1404 call(C, relocInfo::none); 1405 jmp(E); 1406 1407 bind(C); 1408 call_VM_helper(oop_result, entry_point, 0, check_exceptions); 1409 ret(0); 1410 1411 bind(E); 1412 } 1413 1414 void MacroAssembler::call_VM(Register oop_result, 1415 address entry_point, 1416 Register arg_1, 1417 bool check_exceptions) { 1418 Label C, E; 1419 call(C, relocInfo::none); 1420 jmp(E); 1421 1422 bind(C); 1423 pass_arg1(this, arg_1); 1424 call_VM_helper(oop_result, entry_point, 1, check_exceptions); 1425 ret(0); 1426 1427 bind(E); 1428 } 1429 1430 void MacroAssembler::call_VM(Register oop_result, 1431 address entry_point, 1432 Register arg_1, 1433 Register arg_2, 1434 bool check_exceptions) { 1435 Label C, E; 1436 call(C, relocInfo::none); 1437 jmp(E); 1438 1439 bind(C); 1440 1441 LP64_ONLY(assert_different_registers(arg_1, c_rarg2)); 1442 1443 pass_arg2(this, arg_2); 1444 pass_arg1(this, arg_1); 1445 call_VM_helper(oop_result, entry_point, 2, check_exceptions); 1446 ret(0); 1447 1448 bind(E); 1449 } 1450 1451 void MacroAssembler::call_VM(Register oop_result, 1452 address entry_point, 1453 Register arg_1, 1454 Register arg_2, 1455 Register arg_3, 1456 bool check_exceptions) { 1457 Label C, E; 1458 call(C, relocInfo::none); 1459 jmp(E); 1460 1461 bind(C); 1462 1463 LP64_ONLY(assert_different_registers(arg_1, c_rarg2, c_rarg3)); 1464 LP64_ONLY(assert_different_registers(arg_2, c_rarg3)); 1465 pass_arg3(this, arg_3); 1466 pass_arg2(this, arg_2); 1467 pass_arg1(this, arg_1); 1468 call_VM_helper(oop_result, entry_point, 3, check_exceptions); 1469 ret(0); 1470 1471 bind(E); 1472 } 1473 1474 void MacroAssembler::call_VM(Register oop_result, 1475 Register last_java_sp, 1476 address entry_point, 1477 int number_of_arguments, 1478 bool check_exceptions) { 1479 Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg); 1480 call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions); 1481 } 1482 1483 void MacroAssembler::call_VM(Register oop_result, 1484 Register last_java_sp, 1485 address entry_point, 1486 Register arg_1, 1487 bool check_exceptions) { 1488 pass_arg1(this, arg_1); 1489 call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions); 1490 } 1491 1492 void MacroAssembler::call_VM(Register oop_result, 1493 Register last_java_sp, 1494 address entry_point, 1495 Register arg_1, 1496 Register arg_2, 1497 bool check_exceptions) { 1498 1499 LP64_ONLY(assert_different_registers(arg_1, c_rarg2)); 1500 pass_arg2(this, arg_2); 1501 pass_arg1(this, arg_1); 1502 call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions); 1503 } 1504 1505 void MacroAssembler::call_VM(Register oop_result, 1506 Register last_java_sp, 1507 address entry_point, 1508 Register arg_1, 1509 Register arg_2, 1510 Register arg_3, 1511 bool check_exceptions) { 1512 LP64_ONLY(assert_different_registers(arg_1, c_rarg2, c_rarg3)); 1513 LP64_ONLY(assert_different_registers(arg_2, c_rarg3)); 1514 pass_arg3(this, arg_3); 1515 pass_arg2(this, arg_2); 1516 pass_arg1(this, arg_1); 1517 call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions); 1518 } 1519 1520 void MacroAssembler::super_call_VM(Register oop_result, 1521 Register last_java_sp, 1522 address entry_point, 1523 int number_of_arguments, 1524 bool check_exceptions) { 1525 Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg); 1526 MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions); 1527 } 1528 1529 void MacroAssembler::super_call_VM(Register oop_result, 1530 Register last_java_sp, 1531 address entry_point, 1532 Register arg_1, 1533 bool check_exceptions) { 1534 pass_arg1(this, arg_1); 1535 super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions); 1536 } 1537 1538 void MacroAssembler::super_call_VM(Register oop_result, 1539 Register last_java_sp, 1540 address entry_point, 1541 Register arg_1, 1542 Register arg_2, 1543 bool check_exceptions) { 1544 1545 LP64_ONLY(assert_different_registers(arg_1, c_rarg2)); 1546 pass_arg2(this, arg_2); 1547 pass_arg1(this, arg_1); 1548 super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions); 1549 } 1550 1551 void MacroAssembler::super_call_VM(Register oop_result, 1552 Register last_java_sp, 1553 address entry_point, 1554 Register arg_1, 1555 Register arg_2, 1556 Register arg_3, 1557 bool check_exceptions) { 1558 LP64_ONLY(assert_different_registers(arg_1, c_rarg2, c_rarg3)); 1559 LP64_ONLY(assert_different_registers(arg_2, c_rarg3)); 1560 pass_arg3(this, arg_3); 1561 pass_arg2(this, arg_2); 1562 pass_arg1(this, arg_1); 1563 super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions); 1564 } 1565 1566 void MacroAssembler::call_VM_base(Register oop_result, 1567 Register java_thread, 1568 Register last_java_sp, 1569 address entry_point, 1570 int number_of_arguments, 1571 bool check_exceptions) { 1572 // determine java_thread register 1573 if (!java_thread->is_valid()) { 1574 #ifdef _LP64 1575 java_thread = r15_thread; 1576 #else 1577 java_thread = rdi; 1578 get_thread(java_thread); 1579 #endif // LP64 1580 } 1581 // determine last_java_sp register 1582 if (!last_java_sp->is_valid()) { 1583 last_java_sp = rsp; 1584 } 1585 // debugging support 1586 assert(number_of_arguments >= 0 , "cannot have negative number of arguments"); 1587 LP64_ONLY(assert(java_thread == r15_thread, "unexpected register")); 1588 #ifdef ASSERT 1589 // TraceBytecodes does not use r12 but saves it over the call, so don't verify 1590 // r12 is the heapbase. 1591 LP64_ONLY(if (UseCompressedOops && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");) 1592 #endif // ASSERT 1593 1594 assert(java_thread != oop_result , "cannot use the same register for java_thread & oop_result"); 1595 assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp"); 1596 1597 // push java thread (becomes first argument of C function) 1598 1599 NOT_LP64(push(java_thread); number_of_arguments++); 1600 LP64_ONLY(mov(c_rarg0, r15_thread)); 1601 1602 // set last Java frame before call 1603 assert(last_java_sp != rbp, "can't use ebp/rbp"); 1604 1605 // Only interpreter should have to set fp 1606 set_last_Java_frame(java_thread, last_java_sp, rbp, nullptr, rscratch1); 1607 1608 // do the call, remove parameters 1609 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments); 1610 1611 // restore the thread (cannot use the pushed argument since arguments 1612 // may be overwritten by C code generated by an optimizing compiler); 1613 // however can use the register value directly if it is callee saved. 1614 if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) { 1615 // rdi & rsi (also r15) are callee saved -> nothing to do 1616 #ifdef ASSERT 1617 guarantee(java_thread != rax, "change this code"); 1618 push(rax); 1619 { Label L; 1620 get_thread(rax); 1621 cmpptr(java_thread, rax); 1622 jcc(Assembler::equal, L); 1623 STOP("MacroAssembler::call_VM_base: rdi not callee saved?"); 1624 bind(L); 1625 } 1626 pop(rax); 1627 #endif 1628 } else { 1629 get_thread(java_thread); 1630 } 1631 // reset last Java frame 1632 // Only interpreter should have to clear fp 1633 reset_last_Java_frame(java_thread, true); 1634 1635 // C++ interp handles this in the interpreter 1636 check_and_handle_popframe(java_thread); 1637 check_and_handle_earlyret(java_thread); 1638 1639 if (check_exceptions) { 1640 // check for pending exceptions (java_thread is set upon return) 1641 cmpptr(Address(java_thread, Thread::pending_exception_offset()), NULL_WORD); 1642 #ifndef _LP64 1643 jump_cc(Assembler::notEqual, 1644 RuntimeAddress(StubRoutines::forward_exception_entry())); 1645 #else 1646 // This used to conditionally jump to forward_exception however it is 1647 // possible if we relocate that the branch will not reach. So we must jump 1648 // around so we can always reach 1649 1650 Label ok; 1651 jcc(Assembler::equal, ok); 1652 jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 1653 bind(ok); 1654 #endif // LP64 1655 } 1656 1657 // get oop result if there is one and reset the value in the thread 1658 if (oop_result->is_valid()) { 1659 get_vm_result(oop_result, java_thread); 1660 } 1661 } 1662 1663 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) { 1664 1665 // Calculate the value for last_Java_sp 1666 // somewhat subtle. call_VM does an intermediate call 1667 // which places a return address on the stack just under the 1668 // stack pointer as the user finished with it. This allows 1669 // use to retrieve last_Java_pc from last_Java_sp[-1]. 1670 // On 32bit we then have to push additional args on the stack to accomplish 1671 // the actual requested call. On 64bit call_VM only can use register args 1672 // so the only extra space is the return address that call_VM created. 1673 // This hopefully explains the calculations here. 1674 1675 #ifdef _LP64 1676 // We've pushed one address, correct last_Java_sp 1677 lea(rax, Address(rsp, wordSize)); 1678 #else 1679 lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize)); 1680 #endif // LP64 1681 1682 call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions); 1683 1684 } 1685 1686 // Use this method when MacroAssembler version of call_VM_leaf_base() should be called from Interpreter. 1687 void MacroAssembler::call_VM_leaf0(address entry_point) { 1688 MacroAssembler::call_VM_leaf_base(entry_point, 0); 1689 } 1690 1691 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) { 1692 call_VM_leaf_base(entry_point, number_of_arguments); 1693 } 1694 1695 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) { 1696 pass_arg0(this, arg_0); 1697 call_VM_leaf(entry_point, 1); 1698 } 1699 1700 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 1701 1702 LP64_ONLY(assert_different_registers(arg_0, c_rarg1)); 1703 pass_arg1(this, arg_1); 1704 pass_arg0(this, arg_0); 1705 call_VM_leaf(entry_point, 2); 1706 } 1707 1708 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) { 1709 LP64_ONLY(assert_different_registers(arg_0, c_rarg1, c_rarg2)); 1710 LP64_ONLY(assert_different_registers(arg_1, c_rarg2)); 1711 pass_arg2(this, arg_2); 1712 pass_arg1(this, arg_1); 1713 pass_arg0(this, arg_0); 1714 call_VM_leaf(entry_point, 3); 1715 } 1716 1717 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) { 1718 LP64_ONLY(assert_different_registers(arg_0, c_rarg1, c_rarg2, c_rarg3)); 1719 LP64_ONLY(assert_different_registers(arg_1, c_rarg2, c_rarg3)); 1720 LP64_ONLY(assert_different_registers(arg_2, c_rarg3)); 1721 pass_arg3(this, arg_3); 1722 pass_arg2(this, arg_2); 1723 pass_arg1(this, arg_1); 1724 pass_arg0(this, arg_0); 1725 call_VM_leaf(entry_point, 3); 1726 } 1727 1728 void MacroAssembler::super_call_VM_leaf(address entry_point) { 1729 MacroAssembler::call_VM_leaf_base(entry_point, 1); 1730 } 1731 1732 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) { 1733 pass_arg0(this, arg_0); 1734 MacroAssembler::call_VM_leaf_base(entry_point, 1); 1735 } 1736 1737 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 1738 LP64_ONLY(assert_different_registers(arg_0, c_rarg1)); 1739 pass_arg1(this, arg_1); 1740 pass_arg0(this, arg_0); 1741 MacroAssembler::call_VM_leaf_base(entry_point, 2); 1742 } 1743 1744 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) { 1745 LP64_ONLY(assert_different_registers(arg_0, c_rarg1, c_rarg2)); 1746 LP64_ONLY(assert_different_registers(arg_1, c_rarg2)); 1747 pass_arg2(this, arg_2); 1748 pass_arg1(this, arg_1); 1749 pass_arg0(this, arg_0); 1750 MacroAssembler::call_VM_leaf_base(entry_point, 3); 1751 } 1752 1753 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) { 1754 LP64_ONLY(assert_different_registers(arg_0, c_rarg1, c_rarg2, c_rarg3)); 1755 LP64_ONLY(assert_different_registers(arg_1, c_rarg2, c_rarg3)); 1756 LP64_ONLY(assert_different_registers(arg_2, c_rarg3)); 1757 pass_arg3(this, arg_3); 1758 pass_arg2(this, arg_2); 1759 pass_arg1(this, arg_1); 1760 pass_arg0(this, arg_0); 1761 MacroAssembler::call_VM_leaf_base(entry_point, 4); 1762 } 1763 1764 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) { 1765 movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset())); 1766 movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD); 1767 verify_oop_msg(oop_result, "broken oop in call_VM_base"); 1768 } 1769 1770 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) { 1771 movptr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset())); 1772 movptr(Address(java_thread, JavaThread::vm_result_2_offset()), NULL_WORD); 1773 } 1774 1775 void MacroAssembler::check_and_handle_earlyret(Register java_thread) { 1776 } 1777 1778 void MacroAssembler::check_and_handle_popframe(Register java_thread) { 1779 } 1780 1781 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm, Register rscratch) { 1782 assert(rscratch != noreg || always_reachable(src1), "missing"); 1783 1784 if (reachable(src1)) { 1785 cmpl(as_Address(src1), imm); 1786 } else { 1787 lea(rscratch, src1); 1788 cmpl(Address(rscratch, 0), imm); 1789 } 1790 } 1791 1792 void MacroAssembler::cmp32(Register src1, AddressLiteral src2, Register rscratch) { 1793 assert(!src2.is_lval(), "use cmpptr"); 1794 assert(rscratch != noreg || always_reachable(src2), "missing"); 1795 1796 if (reachable(src2)) { 1797 cmpl(src1, as_Address(src2)); 1798 } else { 1799 lea(rscratch, src2); 1800 cmpl(src1, Address(rscratch, 0)); 1801 } 1802 } 1803 1804 void MacroAssembler::cmp32(Register src1, int32_t imm) { 1805 Assembler::cmpl(src1, imm); 1806 } 1807 1808 void MacroAssembler::cmp32(Register src1, Address src2) { 1809 Assembler::cmpl(src1, src2); 1810 } 1811 1812 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) { 1813 ucomisd(opr1, opr2); 1814 1815 Label L; 1816 if (unordered_is_less) { 1817 movl(dst, -1); 1818 jcc(Assembler::parity, L); 1819 jcc(Assembler::below , L); 1820 movl(dst, 0); 1821 jcc(Assembler::equal , L); 1822 increment(dst); 1823 } else { // unordered is greater 1824 movl(dst, 1); 1825 jcc(Assembler::parity, L); 1826 jcc(Assembler::above , L); 1827 movl(dst, 0); 1828 jcc(Assembler::equal , L); 1829 decrementl(dst); 1830 } 1831 bind(L); 1832 } 1833 1834 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) { 1835 ucomiss(opr1, opr2); 1836 1837 Label L; 1838 if (unordered_is_less) { 1839 movl(dst, -1); 1840 jcc(Assembler::parity, L); 1841 jcc(Assembler::below , L); 1842 movl(dst, 0); 1843 jcc(Assembler::equal , L); 1844 increment(dst); 1845 } else { // unordered is greater 1846 movl(dst, 1); 1847 jcc(Assembler::parity, L); 1848 jcc(Assembler::above , L); 1849 movl(dst, 0); 1850 jcc(Assembler::equal , L); 1851 decrementl(dst); 1852 } 1853 bind(L); 1854 } 1855 1856 1857 void MacroAssembler::cmp8(AddressLiteral src1, int imm, Register rscratch) { 1858 assert(rscratch != noreg || always_reachable(src1), "missing"); 1859 1860 if (reachable(src1)) { 1861 cmpb(as_Address(src1), imm); 1862 } else { 1863 lea(rscratch, src1); 1864 cmpb(Address(rscratch, 0), imm); 1865 } 1866 } 1867 1868 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2, Register rscratch) { 1869 #ifdef _LP64 1870 assert(rscratch != noreg || always_reachable(src2), "missing"); 1871 1872 if (src2.is_lval()) { 1873 movptr(rscratch, src2); 1874 Assembler::cmpq(src1, rscratch); 1875 } else if (reachable(src2)) { 1876 cmpq(src1, as_Address(src2)); 1877 } else { 1878 lea(rscratch, src2); 1879 Assembler::cmpq(src1, Address(rscratch, 0)); 1880 } 1881 #else 1882 assert(rscratch == noreg, "not needed"); 1883 if (src2.is_lval()) { 1884 cmp_literal32(src1, (int32_t)src2.target(), src2.rspec()); 1885 } else { 1886 cmpl(src1, as_Address(src2)); 1887 } 1888 #endif // _LP64 1889 } 1890 1891 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2, Register rscratch) { 1892 assert(src2.is_lval(), "not a mem-mem compare"); 1893 #ifdef _LP64 1894 // moves src2's literal address 1895 movptr(rscratch, src2); 1896 Assembler::cmpq(src1, rscratch); 1897 #else 1898 assert(rscratch == noreg, "not needed"); 1899 cmp_literal32(src1, (int32_t)src2.target(), src2.rspec()); 1900 #endif // _LP64 1901 } 1902 1903 void MacroAssembler::cmpoop(Register src1, Register src2) { 1904 cmpptr(src1, src2); 1905 } 1906 1907 void MacroAssembler::cmpoop(Register src1, Address src2) { 1908 cmpptr(src1, src2); 1909 } 1910 1911 #ifdef _LP64 1912 void MacroAssembler::cmpoop(Register src1, jobject src2, Register rscratch) { 1913 movoop(rscratch, src2); 1914 cmpptr(src1, rscratch); 1915 } 1916 #endif 1917 1918 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr, Register rscratch) { 1919 assert(rscratch != noreg || always_reachable(adr), "missing"); 1920 1921 if (reachable(adr)) { 1922 lock(); 1923 cmpxchgptr(reg, as_Address(adr)); 1924 } else { 1925 lea(rscratch, adr); 1926 lock(); 1927 cmpxchgptr(reg, Address(rscratch, 0)); 1928 } 1929 } 1930 1931 void MacroAssembler::cmpxchgptr(Register reg, Address adr) { 1932 LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr)); 1933 } 1934 1935 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src, Register rscratch) { 1936 assert(rscratch != noreg || always_reachable(src), "missing"); 1937 1938 if (reachable(src)) { 1939 Assembler::comisd(dst, as_Address(src)); 1940 } else { 1941 lea(rscratch, src); 1942 Assembler::comisd(dst, Address(rscratch, 0)); 1943 } 1944 } 1945 1946 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src, Register rscratch) { 1947 assert(rscratch != noreg || always_reachable(src), "missing"); 1948 1949 if (reachable(src)) { 1950 Assembler::comiss(dst, as_Address(src)); 1951 } else { 1952 lea(rscratch, src); 1953 Assembler::comiss(dst, Address(rscratch, 0)); 1954 } 1955 } 1956 1957 1958 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr, Register rscratch) { 1959 assert(rscratch != noreg || always_reachable(counter_addr), "missing"); 1960 1961 Condition negated_cond = negate_condition(cond); 1962 Label L; 1963 jcc(negated_cond, L); 1964 pushf(); // Preserve flags 1965 atomic_incl(counter_addr, rscratch); 1966 popf(); 1967 bind(L); 1968 } 1969 1970 int MacroAssembler::corrected_idivl(Register reg) { 1971 // Full implementation of Java idiv and irem; checks for 1972 // special case as described in JVM spec., p.243 & p.271. 1973 // The function returns the (pc) offset of the idivl 1974 // instruction - may be needed for implicit exceptions. 1975 // 1976 // normal case special case 1977 // 1978 // input : rax,: dividend min_int 1979 // reg: divisor (may not be rax,/rdx) -1 1980 // 1981 // output: rax,: quotient (= rax, idiv reg) min_int 1982 // rdx: remainder (= rax, irem reg) 0 1983 assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register"); 1984 const int min_int = 0x80000000; 1985 Label normal_case, special_case; 1986 1987 // check for special case 1988 cmpl(rax, min_int); 1989 jcc(Assembler::notEqual, normal_case); 1990 xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0) 1991 cmpl(reg, -1); 1992 jcc(Assembler::equal, special_case); 1993 1994 // handle normal case 1995 bind(normal_case); 1996 cdql(); 1997 int idivl_offset = offset(); 1998 idivl(reg); 1999 2000 // normal and special case exit 2001 bind(special_case); 2002 2003 return idivl_offset; 2004 } 2005 2006 2007 2008 void MacroAssembler::decrementl(Register reg, int value) { 2009 if (value == min_jint) {subl(reg, value) ; return; } 2010 if (value < 0) { incrementl(reg, -value); return; } 2011 if (value == 0) { ; return; } 2012 if (value == 1 && UseIncDec) { decl(reg) ; return; } 2013 /* else */ { subl(reg, value) ; return; } 2014 } 2015 2016 void MacroAssembler::decrementl(Address dst, int value) { 2017 if (value == min_jint) {subl(dst, value) ; return; } 2018 if (value < 0) { incrementl(dst, -value); return; } 2019 if (value == 0) { ; return; } 2020 if (value == 1 && UseIncDec) { decl(dst) ; return; } 2021 /* else */ { subl(dst, value) ; return; } 2022 } 2023 2024 void MacroAssembler::division_with_shift (Register reg, int shift_value) { 2025 assert(shift_value > 0, "illegal shift value"); 2026 Label _is_positive; 2027 testl (reg, reg); 2028 jcc (Assembler::positive, _is_positive); 2029 int offset = (1 << shift_value) - 1 ; 2030 2031 if (offset == 1) { 2032 incrementl(reg); 2033 } else { 2034 addl(reg, offset); 2035 } 2036 2037 bind (_is_positive); 2038 sarl(reg, shift_value); 2039 } 2040 2041 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src, Register rscratch) { 2042 assert(rscratch != noreg || always_reachable(src), "missing"); 2043 2044 if (reachable(src)) { 2045 Assembler::divsd(dst, as_Address(src)); 2046 } else { 2047 lea(rscratch, src); 2048 Assembler::divsd(dst, Address(rscratch, 0)); 2049 } 2050 } 2051 2052 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src, Register rscratch) { 2053 assert(rscratch != noreg || always_reachable(src), "missing"); 2054 2055 if (reachable(src)) { 2056 Assembler::divss(dst, as_Address(src)); 2057 } else { 2058 lea(rscratch, src); 2059 Assembler::divss(dst, Address(rscratch, 0)); 2060 } 2061 } 2062 2063 void MacroAssembler::enter() { 2064 push(rbp); 2065 mov(rbp, rsp); 2066 } 2067 2068 void MacroAssembler::post_call_nop() { 2069 if (!Continuations::enabled()) { 2070 return; 2071 } 2072 InstructionMark im(this); 2073 relocate(post_call_nop_Relocation::spec()); 2074 InlineSkippedInstructionsCounter skipCounter(this); 2075 emit_int8((uint8_t)0x0f); 2076 emit_int8((uint8_t)0x1f); 2077 emit_int8((uint8_t)0x84); 2078 emit_int8((uint8_t)0x00); 2079 emit_int32(0x00); 2080 } 2081 2082 // A 5 byte nop that is safe for patching (see patch_verified_entry) 2083 void MacroAssembler::fat_nop() { 2084 if (UseAddressNop) { 2085 addr_nop_5(); 2086 } else { 2087 emit_int8((uint8_t)0x26); // es: 2088 emit_int8((uint8_t)0x2e); // cs: 2089 emit_int8((uint8_t)0x64); // fs: 2090 emit_int8((uint8_t)0x65); // gs: 2091 emit_int8((uint8_t)0x90); 2092 } 2093 } 2094 2095 #ifndef _LP64 2096 void MacroAssembler::fcmp(Register tmp) { 2097 fcmp(tmp, 1, true, true); 2098 } 2099 2100 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) { 2101 assert(!pop_right || pop_left, "usage error"); 2102 if (VM_Version::supports_cmov()) { 2103 assert(tmp == noreg, "unneeded temp"); 2104 if (pop_left) { 2105 fucomip(index); 2106 } else { 2107 fucomi(index); 2108 } 2109 if (pop_right) { 2110 fpop(); 2111 } 2112 } else { 2113 assert(tmp != noreg, "need temp"); 2114 if (pop_left) { 2115 if (pop_right) { 2116 fcompp(); 2117 } else { 2118 fcomp(index); 2119 } 2120 } else { 2121 fcom(index); 2122 } 2123 // convert FPU condition into eflags condition via rax, 2124 save_rax(tmp); 2125 fwait(); fnstsw_ax(); 2126 sahf(); 2127 restore_rax(tmp); 2128 } 2129 // condition codes set as follows: 2130 // 2131 // CF (corresponds to C0) if x < y 2132 // PF (corresponds to C2) if unordered 2133 // ZF (corresponds to C3) if x = y 2134 } 2135 2136 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) { 2137 fcmp2int(dst, unordered_is_less, 1, true, true); 2138 } 2139 2140 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) { 2141 fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right); 2142 Label L; 2143 if (unordered_is_less) { 2144 movl(dst, -1); 2145 jcc(Assembler::parity, L); 2146 jcc(Assembler::below , L); 2147 movl(dst, 0); 2148 jcc(Assembler::equal , L); 2149 increment(dst); 2150 } else { // unordered is greater 2151 movl(dst, 1); 2152 jcc(Assembler::parity, L); 2153 jcc(Assembler::above , L); 2154 movl(dst, 0); 2155 jcc(Assembler::equal , L); 2156 decrementl(dst); 2157 } 2158 bind(L); 2159 } 2160 2161 void MacroAssembler::fld_d(AddressLiteral src) { 2162 fld_d(as_Address(src)); 2163 } 2164 2165 void MacroAssembler::fld_s(AddressLiteral src) { 2166 fld_s(as_Address(src)); 2167 } 2168 2169 void MacroAssembler::fldcw(AddressLiteral src) { 2170 fldcw(as_Address(src)); 2171 } 2172 2173 void MacroAssembler::fpop() { 2174 ffree(); 2175 fincstp(); 2176 } 2177 2178 void MacroAssembler::fremr(Register tmp) { 2179 save_rax(tmp); 2180 { Label L; 2181 bind(L); 2182 fprem(); 2183 fwait(); fnstsw_ax(); 2184 sahf(); 2185 jcc(Assembler::parity, L); 2186 } 2187 restore_rax(tmp); 2188 // Result is in ST0. 2189 // Note: fxch & fpop to get rid of ST1 2190 // (otherwise FPU stack could overflow eventually) 2191 fxch(1); 2192 fpop(); 2193 } 2194 2195 void MacroAssembler::empty_FPU_stack() { 2196 if (VM_Version::supports_mmx()) { 2197 emms(); 2198 } else { 2199 for (int i = 8; i-- > 0; ) ffree(i); 2200 } 2201 } 2202 #endif // !LP64 2203 2204 void MacroAssembler::mulpd(XMMRegister dst, AddressLiteral src, Register rscratch) { 2205 assert(rscratch != noreg || always_reachable(src), "missing"); 2206 if (reachable(src)) { 2207 Assembler::mulpd(dst, as_Address(src)); 2208 } else { 2209 lea(rscratch, src); 2210 Assembler::mulpd(dst, Address(rscratch, 0)); 2211 } 2212 } 2213 2214 void MacroAssembler::load_float(Address src) { 2215 #ifdef _LP64 2216 movflt(xmm0, src); 2217 #else 2218 if (UseSSE >= 1) { 2219 movflt(xmm0, src); 2220 } else { 2221 fld_s(src); 2222 } 2223 #endif // LP64 2224 } 2225 2226 void MacroAssembler::store_float(Address dst) { 2227 #ifdef _LP64 2228 movflt(dst, xmm0); 2229 #else 2230 if (UseSSE >= 1) { 2231 movflt(dst, xmm0); 2232 } else { 2233 fstp_s(dst); 2234 } 2235 #endif // LP64 2236 } 2237 2238 void MacroAssembler::load_double(Address src) { 2239 #ifdef _LP64 2240 movdbl(xmm0, src); 2241 #else 2242 if (UseSSE >= 2) { 2243 movdbl(xmm0, src); 2244 } else { 2245 fld_d(src); 2246 } 2247 #endif // LP64 2248 } 2249 2250 void MacroAssembler::store_double(Address dst) { 2251 #ifdef _LP64 2252 movdbl(dst, xmm0); 2253 #else 2254 if (UseSSE >= 2) { 2255 movdbl(dst, xmm0); 2256 } else { 2257 fstp_d(dst); 2258 } 2259 #endif // LP64 2260 } 2261 2262 // dst = c = a * b + c 2263 void MacroAssembler::fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) { 2264 Assembler::vfmadd231sd(c, a, b); 2265 if (dst != c) { 2266 movdbl(dst, c); 2267 } 2268 } 2269 2270 // dst = c = a * b + c 2271 void MacroAssembler::fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) { 2272 Assembler::vfmadd231ss(c, a, b); 2273 if (dst != c) { 2274 movflt(dst, c); 2275 } 2276 } 2277 2278 // dst = c = a * b + c 2279 void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) { 2280 Assembler::vfmadd231pd(c, a, b, vector_len); 2281 if (dst != c) { 2282 vmovdqu(dst, c); 2283 } 2284 } 2285 2286 // dst = c = a * b + c 2287 void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) { 2288 Assembler::vfmadd231ps(c, a, b, vector_len); 2289 if (dst != c) { 2290 vmovdqu(dst, c); 2291 } 2292 } 2293 2294 // dst = c = a * b + c 2295 void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) { 2296 Assembler::vfmadd231pd(c, a, b, vector_len); 2297 if (dst != c) { 2298 vmovdqu(dst, c); 2299 } 2300 } 2301 2302 // dst = c = a * b + c 2303 void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) { 2304 Assembler::vfmadd231ps(c, a, b, vector_len); 2305 if (dst != c) { 2306 vmovdqu(dst, c); 2307 } 2308 } 2309 2310 void MacroAssembler::incrementl(AddressLiteral dst, Register rscratch) { 2311 assert(rscratch != noreg || always_reachable(dst), "missing"); 2312 2313 if (reachable(dst)) { 2314 incrementl(as_Address(dst)); 2315 } else { 2316 lea(rscratch, dst); 2317 incrementl(Address(rscratch, 0)); 2318 } 2319 } 2320 2321 void MacroAssembler::incrementl(ArrayAddress dst, Register rscratch) { 2322 incrementl(as_Address(dst, rscratch)); 2323 } 2324 2325 void MacroAssembler::incrementl(Register reg, int value) { 2326 if (value == min_jint) {addl(reg, value) ; return; } 2327 if (value < 0) { decrementl(reg, -value); return; } 2328 if (value == 0) { ; return; } 2329 if (value == 1 && UseIncDec) { incl(reg) ; return; } 2330 /* else */ { addl(reg, value) ; return; } 2331 } 2332 2333 void MacroAssembler::incrementl(Address dst, int value) { 2334 if (value == min_jint) {addl(dst, value) ; return; } 2335 if (value < 0) { decrementl(dst, -value); return; } 2336 if (value == 0) { ; return; } 2337 if (value == 1 && UseIncDec) { incl(dst) ; return; } 2338 /* else */ { addl(dst, value) ; return; } 2339 } 2340 2341 void MacroAssembler::jump(AddressLiteral dst, Register rscratch) { 2342 assert(rscratch != noreg || always_reachable(dst), "missing"); 2343 assert(!dst.rspec().reloc()->is_data(), "should not use ExternalAddress for jump"); 2344 if (reachable(dst)) { 2345 jmp_literal(dst.target(), dst.rspec()); 2346 } else { 2347 lea(rscratch, dst); 2348 jmp(rscratch); 2349 } 2350 } 2351 2352 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst, Register rscratch) { 2353 assert(rscratch != noreg || always_reachable(dst), "missing"); 2354 assert(!dst.rspec().reloc()->is_data(), "should not use ExternalAddress for jump_cc"); 2355 if (reachable(dst)) { 2356 InstructionMark im(this); 2357 relocate(dst.reloc()); 2358 const int short_size = 2; 2359 const int long_size = 6; 2360 int offs = (intptr_t)dst.target() - ((intptr_t)pc()); 2361 if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) { 2362 // 0111 tttn #8-bit disp 2363 emit_int8(0x70 | cc); 2364 emit_int8((offs - short_size) & 0xFF); 2365 } else { 2366 // 0000 1111 1000 tttn #32-bit disp 2367 emit_int8(0x0F); 2368 emit_int8((unsigned char)(0x80 | cc)); 2369 emit_int32(offs - long_size); 2370 } 2371 } else { 2372 #ifdef ASSERT 2373 warning("reversing conditional branch"); 2374 #endif /* ASSERT */ 2375 Label skip; 2376 jccb(reverse[cc], skip); 2377 lea(rscratch, dst); 2378 Assembler::jmp(rscratch); 2379 bind(skip); 2380 } 2381 } 2382 2383 void MacroAssembler::ldmxcsr(AddressLiteral src, Register rscratch) { 2384 assert(rscratch != noreg || always_reachable(src), "missing"); 2385 2386 if (reachable(src)) { 2387 Assembler::ldmxcsr(as_Address(src)); 2388 } else { 2389 lea(rscratch, src); 2390 Assembler::ldmxcsr(Address(rscratch, 0)); 2391 } 2392 } 2393 2394 int MacroAssembler::load_signed_byte(Register dst, Address src) { 2395 int off; 2396 if (LP64_ONLY(true ||) VM_Version::is_P6()) { 2397 off = offset(); 2398 movsbl(dst, src); // movsxb 2399 } else { 2400 off = load_unsigned_byte(dst, src); 2401 shll(dst, 24); 2402 sarl(dst, 24); 2403 } 2404 return off; 2405 } 2406 2407 // Note: load_signed_short used to be called load_signed_word. 2408 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler 2409 // manual, which means 16 bits, that usage is found nowhere in HotSpot code. 2410 // The term "word" in HotSpot means a 32- or 64-bit machine word. 2411 int MacroAssembler::load_signed_short(Register dst, Address src) { 2412 int off; 2413 if (LP64_ONLY(true ||) VM_Version::is_P6()) { 2414 // This is dubious to me since it seems safe to do a signed 16 => 64 bit 2415 // version but this is what 64bit has always done. This seems to imply 2416 // that users are only using 32bits worth. 2417 off = offset(); 2418 movswl(dst, src); // movsxw 2419 } else { 2420 off = load_unsigned_short(dst, src); 2421 shll(dst, 16); 2422 sarl(dst, 16); 2423 } 2424 return off; 2425 } 2426 2427 int MacroAssembler::load_unsigned_byte(Register dst, Address src) { 2428 // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16, 2429 // and "3.9 Partial Register Penalties", p. 22). 2430 int off; 2431 if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) { 2432 off = offset(); 2433 movzbl(dst, src); // movzxb 2434 } else { 2435 xorl(dst, dst); 2436 off = offset(); 2437 movb(dst, src); 2438 } 2439 return off; 2440 } 2441 2442 // Note: load_unsigned_short used to be called load_unsigned_word. 2443 int MacroAssembler::load_unsigned_short(Register dst, Address src) { 2444 // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16, 2445 // and "3.9 Partial Register Penalties", p. 22). 2446 int off; 2447 if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) { 2448 off = offset(); 2449 movzwl(dst, src); // movzxw 2450 } else { 2451 xorl(dst, dst); 2452 off = offset(); 2453 movw(dst, src); 2454 } 2455 return off; 2456 } 2457 2458 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) { 2459 switch (size_in_bytes) { 2460 #ifndef _LP64 2461 case 8: 2462 assert(dst2 != noreg, "second dest register required"); 2463 movl(dst, src); 2464 movl(dst2, src.plus_disp(BytesPerInt)); 2465 break; 2466 #else 2467 case 8: movq(dst, src); break; 2468 #endif 2469 case 4: movl(dst, src); break; 2470 case 2: is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break; 2471 case 1: is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break; 2472 default: ShouldNotReachHere(); 2473 } 2474 } 2475 2476 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) { 2477 switch (size_in_bytes) { 2478 #ifndef _LP64 2479 case 8: 2480 assert(src2 != noreg, "second source register required"); 2481 movl(dst, src); 2482 movl(dst.plus_disp(BytesPerInt), src2); 2483 break; 2484 #else 2485 case 8: movq(dst, src); break; 2486 #endif 2487 case 4: movl(dst, src); break; 2488 case 2: movw(dst, src); break; 2489 case 1: movb(dst, src); break; 2490 default: ShouldNotReachHere(); 2491 } 2492 } 2493 2494 void MacroAssembler::mov32(AddressLiteral dst, Register src, Register rscratch) { 2495 assert(rscratch != noreg || always_reachable(dst), "missing"); 2496 2497 if (reachable(dst)) { 2498 movl(as_Address(dst), src); 2499 } else { 2500 lea(rscratch, dst); 2501 movl(Address(rscratch, 0), src); 2502 } 2503 } 2504 2505 void MacroAssembler::mov32(Register dst, AddressLiteral src) { 2506 if (reachable(src)) { 2507 movl(dst, as_Address(src)); 2508 } else { 2509 lea(dst, src); 2510 movl(dst, Address(dst, 0)); 2511 } 2512 } 2513 2514 // C++ bool manipulation 2515 2516 void MacroAssembler::movbool(Register dst, Address src) { 2517 if(sizeof(bool) == 1) 2518 movb(dst, src); 2519 else if(sizeof(bool) == 2) 2520 movw(dst, src); 2521 else if(sizeof(bool) == 4) 2522 movl(dst, src); 2523 else 2524 // unsupported 2525 ShouldNotReachHere(); 2526 } 2527 2528 void MacroAssembler::movbool(Address dst, bool boolconst) { 2529 if(sizeof(bool) == 1) 2530 movb(dst, (int) boolconst); 2531 else if(sizeof(bool) == 2) 2532 movw(dst, (int) boolconst); 2533 else if(sizeof(bool) == 4) 2534 movl(dst, (int) boolconst); 2535 else 2536 // unsupported 2537 ShouldNotReachHere(); 2538 } 2539 2540 void MacroAssembler::movbool(Address dst, Register src) { 2541 if(sizeof(bool) == 1) 2542 movb(dst, src); 2543 else if(sizeof(bool) == 2) 2544 movw(dst, src); 2545 else if(sizeof(bool) == 4) 2546 movl(dst, src); 2547 else 2548 // unsupported 2549 ShouldNotReachHere(); 2550 } 2551 2552 void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src, Register rscratch) { 2553 assert(rscratch != noreg || always_reachable(src), "missing"); 2554 2555 if (reachable(src)) { 2556 movdl(dst, as_Address(src)); 2557 } else { 2558 lea(rscratch, src); 2559 movdl(dst, Address(rscratch, 0)); 2560 } 2561 } 2562 2563 void MacroAssembler::movq(XMMRegister dst, AddressLiteral src, Register rscratch) { 2564 assert(rscratch != noreg || always_reachable(src), "missing"); 2565 2566 if (reachable(src)) { 2567 movq(dst, as_Address(src)); 2568 } else { 2569 lea(rscratch, src); 2570 movq(dst, Address(rscratch, 0)); 2571 } 2572 } 2573 2574 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src, Register rscratch) { 2575 assert(rscratch != noreg || always_reachable(src), "missing"); 2576 2577 if (reachable(src)) { 2578 if (UseXmmLoadAndClearUpper) { 2579 movsd (dst, as_Address(src)); 2580 } else { 2581 movlpd(dst, as_Address(src)); 2582 } 2583 } else { 2584 lea(rscratch, src); 2585 if (UseXmmLoadAndClearUpper) { 2586 movsd (dst, Address(rscratch, 0)); 2587 } else { 2588 movlpd(dst, Address(rscratch, 0)); 2589 } 2590 } 2591 } 2592 2593 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src, Register rscratch) { 2594 assert(rscratch != noreg || always_reachable(src), "missing"); 2595 2596 if (reachable(src)) { 2597 movss(dst, as_Address(src)); 2598 } else { 2599 lea(rscratch, src); 2600 movss(dst, Address(rscratch, 0)); 2601 } 2602 } 2603 2604 void MacroAssembler::movptr(Register dst, Register src) { 2605 LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src)); 2606 } 2607 2608 void MacroAssembler::movptr(Register dst, Address src) { 2609 LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src)); 2610 } 2611 2612 // src should NEVER be a real pointer. Use AddressLiteral for true pointers 2613 void MacroAssembler::movptr(Register dst, intptr_t src) { 2614 #ifdef _LP64 2615 if (is_uimm32(src)) { 2616 movl(dst, checked_cast<uint32_t>(src)); 2617 } else if (is_simm32(src)) { 2618 movq(dst, checked_cast<int32_t>(src)); 2619 } else { 2620 mov64(dst, src); 2621 } 2622 #else 2623 movl(dst, src); 2624 #endif 2625 } 2626 2627 void MacroAssembler::movptr(Address dst, Register src) { 2628 LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src)); 2629 } 2630 2631 void MacroAssembler::movptr(Address dst, int32_t src) { 2632 LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); 2633 } 2634 2635 void MacroAssembler::movdqu(Address dst, XMMRegister src) { 2636 assert(((src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2637 Assembler::movdqu(dst, src); 2638 } 2639 2640 void MacroAssembler::movdqu(XMMRegister dst, Address src) { 2641 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2642 Assembler::movdqu(dst, src); 2643 } 2644 2645 void MacroAssembler::movdqu(XMMRegister dst, XMMRegister src) { 2646 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2647 Assembler::movdqu(dst, src); 2648 } 2649 2650 void MacroAssembler::movdqu(XMMRegister dst, AddressLiteral src, Register rscratch) { 2651 assert(rscratch != noreg || always_reachable(src), "missing"); 2652 2653 if (reachable(src)) { 2654 movdqu(dst, as_Address(src)); 2655 } else { 2656 lea(rscratch, src); 2657 movdqu(dst, Address(rscratch, 0)); 2658 } 2659 } 2660 2661 void MacroAssembler::vmovdqu(Address dst, XMMRegister src) { 2662 assert(((src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2663 Assembler::vmovdqu(dst, src); 2664 } 2665 2666 void MacroAssembler::vmovdqu(XMMRegister dst, Address src) { 2667 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2668 Assembler::vmovdqu(dst, src); 2669 } 2670 2671 void MacroAssembler::vmovdqu(XMMRegister dst, XMMRegister src) { 2672 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2673 Assembler::vmovdqu(dst, src); 2674 } 2675 2676 void MacroAssembler::vmovdqu(XMMRegister dst, AddressLiteral src, Register rscratch) { 2677 assert(rscratch != noreg || always_reachable(src), "missing"); 2678 2679 if (reachable(src)) { 2680 vmovdqu(dst, as_Address(src)); 2681 } 2682 else { 2683 lea(rscratch, src); 2684 vmovdqu(dst, Address(rscratch, 0)); 2685 } 2686 } 2687 2688 void MacroAssembler::vmovdqu(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 2689 assert(rscratch != noreg || always_reachable(src), "missing"); 2690 2691 if (vector_len == AVX_512bit) { 2692 evmovdquq(dst, src, AVX_512bit, rscratch); 2693 } else if (vector_len == AVX_256bit) { 2694 vmovdqu(dst, src, rscratch); 2695 } else { 2696 movdqu(dst, src, rscratch); 2697 } 2698 } 2699 2700 void MacroAssembler::kmov(KRegister dst, Address src) { 2701 if (VM_Version::supports_avx512bw()) { 2702 kmovql(dst, src); 2703 } else { 2704 assert(VM_Version::supports_evex(), ""); 2705 kmovwl(dst, src); 2706 } 2707 } 2708 2709 void MacroAssembler::kmov(Address dst, KRegister src) { 2710 if (VM_Version::supports_avx512bw()) { 2711 kmovql(dst, src); 2712 } else { 2713 assert(VM_Version::supports_evex(), ""); 2714 kmovwl(dst, src); 2715 } 2716 } 2717 2718 void MacroAssembler::kmov(KRegister dst, KRegister src) { 2719 if (VM_Version::supports_avx512bw()) { 2720 kmovql(dst, src); 2721 } else { 2722 assert(VM_Version::supports_evex(), ""); 2723 kmovwl(dst, src); 2724 } 2725 } 2726 2727 void MacroAssembler::kmov(Register dst, KRegister src) { 2728 if (VM_Version::supports_avx512bw()) { 2729 kmovql(dst, src); 2730 } else { 2731 assert(VM_Version::supports_evex(), ""); 2732 kmovwl(dst, src); 2733 } 2734 } 2735 2736 void MacroAssembler::kmov(KRegister dst, Register src) { 2737 if (VM_Version::supports_avx512bw()) { 2738 kmovql(dst, src); 2739 } else { 2740 assert(VM_Version::supports_evex(), ""); 2741 kmovwl(dst, src); 2742 } 2743 } 2744 2745 void MacroAssembler::kmovql(KRegister dst, AddressLiteral src, Register rscratch) { 2746 assert(rscratch != noreg || always_reachable(src), "missing"); 2747 2748 if (reachable(src)) { 2749 kmovql(dst, as_Address(src)); 2750 } else { 2751 lea(rscratch, src); 2752 kmovql(dst, Address(rscratch, 0)); 2753 } 2754 } 2755 2756 void MacroAssembler::kmovwl(KRegister dst, AddressLiteral src, Register rscratch) { 2757 assert(rscratch != noreg || always_reachable(src), "missing"); 2758 2759 if (reachable(src)) { 2760 kmovwl(dst, as_Address(src)); 2761 } else { 2762 lea(rscratch, src); 2763 kmovwl(dst, Address(rscratch, 0)); 2764 } 2765 } 2766 2767 void MacroAssembler::evmovdqub(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, 2768 int vector_len, Register rscratch) { 2769 assert(rscratch != noreg || always_reachable(src), "missing"); 2770 2771 if (reachable(src)) { 2772 Assembler::evmovdqub(dst, mask, as_Address(src), merge, vector_len); 2773 } else { 2774 lea(rscratch, src); 2775 Assembler::evmovdqub(dst, mask, Address(rscratch, 0), merge, vector_len); 2776 } 2777 } 2778 2779 void MacroAssembler::evmovdquw(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, 2780 int vector_len, Register rscratch) { 2781 assert(rscratch != noreg || always_reachable(src), "missing"); 2782 2783 if (reachable(src)) { 2784 Assembler::evmovdquw(dst, mask, as_Address(src), merge, vector_len); 2785 } else { 2786 lea(rscratch, src); 2787 Assembler::evmovdquw(dst, mask, Address(rscratch, 0), merge, vector_len); 2788 } 2789 } 2790 2791 void MacroAssembler::evmovdqul(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch) { 2792 assert(rscratch != noreg || always_reachable(src), "missing"); 2793 2794 if (reachable(src)) { 2795 Assembler::evmovdqul(dst, mask, as_Address(src), merge, vector_len); 2796 } else { 2797 lea(rscratch, src); 2798 Assembler::evmovdqul(dst, mask, Address(rscratch, 0), merge, vector_len); 2799 } 2800 } 2801 2802 void MacroAssembler::evmovdquq(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch) { 2803 assert(rscratch != noreg || always_reachable(src), "missing"); 2804 2805 if (reachable(src)) { 2806 Assembler::evmovdquq(dst, mask, as_Address(src), merge, vector_len); 2807 } else { 2808 lea(rscratch, src); 2809 Assembler::evmovdquq(dst, mask, Address(rscratch, 0), merge, vector_len); 2810 } 2811 } 2812 2813 void MacroAssembler::evmovdquq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 2814 assert(rscratch != noreg || always_reachable(src), "missing"); 2815 2816 if (reachable(src)) { 2817 Assembler::evmovdquq(dst, as_Address(src), vector_len); 2818 } else { 2819 lea(rscratch, src); 2820 Assembler::evmovdquq(dst, Address(rscratch, 0), vector_len); 2821 } 2822 } 2823 2824 void MacroAssembler::movdqa(XMMRegister dst, AddressLiteral src, Register rscratch) { 2825 assert(rscratch != noreg || always_reachable(src), "missing"); 2826 2827 if (reachable(src)) { 2828 Assembler::movdqa(dst, as_Address(src)); 2829 } else { 2830 lea(rscratch, src); 2831 Assembler::movdqa(dst, Address(rscratch, 0)); 2832 } 2833 } 2834 2835 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src, Register rscratch) { 2836 assert(rscratch != noreg || always_reachable(src), "missing"); 2837 2838 if (reachable(src)) { 2839 Assembler::movsd(dst, as_Address(src)); 2840 } else { 2841 lea(rscratch, src); 2842 Assembler::movsd(dst, Address(rscratch, 0)); 2843 } 2844 } 2845 2846 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src, Register rscratch) { 2847 assert(rscratch != noreg || always_reachable(src), "missing"); 2848 2849 if (reachable(src)) { 2850 Assembler::movss(dst, as_Address(src)); 2851 } else { 2852 lea(rscratch, src); 2853 Assembler::movss(dst, Address(rscratch, 0)); 2854 } 2855 } 2856 2857 void MacroAssembler::movddup(XMMRegister dst, AddressLiteral src, Register rscratch) { 2858 assert(rscratch != noreg || always_reachable(src), "missing"); 2859 2860 if (reachable(src)) { 2861 Assembler::movddup(dst, as_Address(src)); 2862 } else { 2863 lea(rscratch, src); 2864 Assembler::movddup(dst, Address(rscratch, 0)); 2865 } 2866 } 2867 2868 void MacroAssembler::vmovddup(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 2869 assert(rscratch != noreg || always_reachable(src), "missing"); 2870 2871 if (reachable(src)) { 2872 Assembler::vmovddup(dst, as_Address(src), vector_len); 2873 } else { 2874 lea(rscratch, src); 2875 Assembler::vmovddup(dst, Address(rscratch, 0), vector_len); 2876 } 2877 } 2878 2879 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src, Register rscratch) { 2880 assert(rscratch != noreg || always_reachable(src), "missing"); 2881 2882 if (reachable(src)) { 2883 Assembler::mulsd(dst, as_Address(src)); 2884 } else { 2885 lea(rscratch, src); 2886 Assembler::mulsd(dst, Address(rscratch, 0)); 2887 } 2888 } 2889 2890 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src, Register rscratch) { 2891 assert(rscratch != noreg || always_reachable(src), "missing"); 2892 2893 if (reachable(src)) { 2894 Assembler::mulss(dst, as_Address(src)); 2895 } else { 2896 lea(rscratch, src); 2897 Assembler::mulss(dst, Address(rscratch, 0)); 2898 } 2899 } 2900 2901 void MacroAssembler::null_check(Register reg, int offset) { 2902 if (needs_explicit_null_check(offset)) { 2903 // provoke OS null exception if reg is null by 2904 // accessing M[reg] w/o changing any (non-CC) registers 2905 // NOTE: cmpl is plenty here to provoke a segv 2906 cmpptr(rax, Address(reg, 0)); 2907 // Note: should probably use testl(rax, Address(reg, 0)); 2908 // may be shorter code (however, this version of 2909 // testl needs to be implemented first) 2910 } else { 2911 // nothing to do, (later) access of M[reg + offset] 2912 // will provoke OS null exception if reg is null 2913 } 2914 } 2915 2916 void MacroAssembler::test_markword_is_inline_type(Register markword, Label& is_inline_type) { 2917 andptr(markword, markWord::inline_type_mask_in_place); 2918 cmpptr(markword, markWord::inline_type_pattern); 2919 jcc(Assembler::equal, is_inline_type); 2920 } 2921 2922 void MacroAssembler::test_klass_is_inline_type(Register klass, Register temp_reg, Label& is_inline_type) { 2923 movl(temp_reg, Address(klass, Klass::access_flags_offset())); 2924 testl(temp_reg, JVM_ACC_IDENTITY); 2925 jcc(Assembler::zero, is_inline_type); 2926 } 2927 2928 void MacroAssembler::test_oop_is_not_inline_type(Register object, Register tmp, Label& not_inline_type) { 2929 testptr(object, object); 2930 jcc(Assembler::zero, not_inline_type); 2931 const int is_inline_type_mask = markWord::inline_type_pattern; 2932 movptr(tmp, Address(object, oopDesc::mark_offset_in_bytes())); 2933 andptr(tmp, is_inline_type_mask); 2934 cmpptr(tmp, is_inline_type_mask); 2935 jcc(Assembler::notEqual, not_inline_type); 2936 } 2937 2938 void MacroAssembler::test_klass_is_empty_inline_type(Register klass, Register temp_reg, Label& is_empty_inline_type) { 2939 #ifdef ASSERT 2940 { 2941 Label done_check; 2942 test_klass_is_inline_type(klass, temp_reg, done_check); 2943 stop("test_klass_is_empty_inline_type with non inline type klass"); 2944 bind(done_check); 2945 } 2946 #endif 2947 movl(temp_reg, Address(klass, InstanceKlass::misc_flags_offset())); 2948 testl(temp_reg, InstanceKlassFlags::is_empty_inline_type_value()); 2949 jcc(Assembler::notZero, is_empty_inline_type); 2950 } 2951 2952 void MacroAssembler::test_field_is_null_free_inline_type(Register flags, Register temp_reg, Label& is_null_free_inline_type) { 2953 movl(temp_reg, flags); 2954 testl(temp_reg, 1 << ResolvedFieldEntry::is_null_free_inline_type_shift); 2955 jcc(Assembler::notEqual, is_null_free_inline_type); 2956 } 2957 2958 void MacroAssembler::test_field_is_not_null_free_inline_type(Register flags, Register temp_reg, Label& not_null_free_inline_type) { 2959 movl(temp_reg, flags); 2960 testl(temp_reg, 1 << ResolvedFieldEntry::is_null_free_inline_type_shift); 2961 jcc(Assembler::equal, not_null_free_inline_type); 2962 } 2963 2964 void MacroAssembler::test_field_is_flat(Register flags, Register temp_reg, Label& is_flat) { 2965 movl(temp_reg, flags); 2966 testl(temp_reg, 1 << ResolvedFieldEntry::is_flat_shift); 2967 jcc(Assembler::notEqual, is_flat); 2968 } 2969 2970 void MacroAssembler::test_field_has_null_marker(Register flags, Register temp_reg, Label& has_null_marker) { 2971 movl(temp_reg, flags); 2972 testl(temp_reg, 1 << ResolvedFieldEntry::has_null_marker_shift); 2973 jcc(Assembler::notEqual, has_null_marker); 2974 } 2975 2976 void MacroAssembler::test_oop_prototype_bit(Register oop, Register temp_reg, int32_t test_bit, bool jmp_set, Label& jmp_label) { 2977 Label test_mark_word; 2978 // load mark word 2979 movptr(temp_reg, Address(oop, oopDesc::mark_offset_in_bytes())); 2980 // check displaced 2981 testl(temp_reg, markWord::unlocked_value); 2982 jccb(Assembler::notZero, test_mark_word); 2983 // slow path use klass prototype 2984 push(rscratch1); 2985 load_prototype_header(temp_reg, oop, rscratch1); 2986 pop(rscratch1); 2987 2988 bind(test_mark_word); 2989 testl(temp_reg, test_bit); 2990 jcc((jmp_set) ? Assembler::notZero : Assembler::zero, jmp_label); 2991 } 2992 2993 void MacroAssembler::test_flat_array_oop(Register oop, Register temp_reg, 2994 Label& is_flat_array) { 2995 #ifdef _LP64 2996 test_oop_prototype_bit(oop, temp_reg, markWord::flat_array_bit_in_place, true, is_flat_array); 2997 #else 2998 load_klass(temp_reg, oop, noreg); 2999 movl(temp_reg, Address(temp_reg, Klass::layout_helper_offset())); 3000 test_flat_array_layout(temp_reg, is_flat_array); 3001 #endif 3002 } 3003 3004 void MacroAssembler::test_non_flat_array_oop(Register oop, Register temp_reg, 3005 Label& is_non_flat_array) { 3006 #ifdef _LP64 3007 test_oop_prototype_bit(oop, temp_reg, markWord::flat_array_bit_in_place, false, is_non_flat_array); 3008 #else 3009 load_klass(temp_reg, oop, noreg); 3010 movl(temp_reg, Address(temp_reg, Klass::layout_helper_offset())); 3011 test_non_flat_array_layout(temp_reg, is_non_flat_array); 3012 #endif 3013 } 3014 3015 void MacroAssembler::test_null_free_array_oop(Register oop, Register temp_reg, Label&is_null_free_array) { 3016 #ifdef _LP64 3017 test_oop_prototype_bit(oop, temp_reg, markWord::null_free_array_bit_in_place, true, is_null_free_array); 3018 #else 3019 Unimplemented(); 3020 #endif 3021 } 3022 3023 void MacroAssembler::test_non_null_free_array_oop(Register oop, Register temp_reg, Label&is_non_null_free_array) { 3024 #ifdef _LP64 3025 test_oop_prototype_bit(oop, temp_reg, markWord::null_free_array_bit_in_place, false, is_non_null_free_array); 3026 #else 3027 Unimplemented(); 3028 #endif 3029 } 3030 3031 void MacroAssembler::test_flat_array_layout(Register lh, Label& is_flat_array) { 3032 testl(lh, Klass::_lh_array_tag_flat_value_bit_inplace); 3033 jcc(Assembler::notZero, is_flat_array); 3034 } 3035 3036 void MacroAssembler::test_non_flat_array_layout(Register lh, Label& is_non_flat_array) { 3037 testl(lh, Klass::_lh_array_tag_flat_value_bit_inplace); 3038 jcc(Assembler::zero, is_non_flat_array); 3039 } 3040 3041 void MacroAssembler::os_breakpoint() { 3042 // instead of directly emitting a breakpoint, call os:breakpoint for better debugability 3043 // (e.g., MSVC can't call ps() otherwise) 3044 call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint))); 3045 } 3046 3047 void MacroAssembler::unimplemented(const char* what) { 3048 const char* buf = nullptr; 3049 { 3050 ResourceMark rm; 3051 stringStream ss; 3052 ss.print("unimplemented: %s", what); 3053 buf = code_string(ss.as_string()); 3054 } 3055 stop(buf); 3056 } 3057 3058 #ifdef _LP64 3059 #define XSTATE_BV 0x200 3060 #endif 3061 3062 void MacroAssembler::pop_CPU_state() { 3063 pop_FPU_state(); 3064 pop_IU_state(); 3065 } 3066 3067 void MacroAssembler::pop_FPU_state() { 3068 #ifndef _LP64 3069 frstor(Address(rsp, 0)); 3070 #else 3071 fxrstor(Address(rsp, 0)); 3072 #endif 3073 addptr(rsp, FPUStateSizeInWords * wordSize); 3074 } 3075 3076 void MacroAssembler::pop_IU_state() { 3077 popa(); 3078 LP64_ONLY(addq(rsp, 8)); 3079 popf(); 3080 } 3081 3082 // Save Integer and Float state 3083 // Warning: Stack must be 16 byte aligned (64bit) 3084 void MacroAssembler::push_CPU_state() { 3085 push_IU_state(); 3086 push_FPU_state(); 3087 } 3088 3089 void MacroAssembler::push_FPU_state() { 3090 subptr(rsp, FPUStateSizeInWords * wordSize); 3091 #ifndef _LP64 3092 fnsave(Address(rsp, 0)); 3093 fwait(); 3094 #else 3095 fxsave(Address(rsp, 0)); 3096 #endif // LP64 3097 } 3098 3099 void MacroAssembler::push_IU_state() { 3100 // Push flags first because pusha kills them 3101 pushf(); 3102 // Make sure rsp stays 16-byte aligned 3103 LP64_ONLY(subq(rsp, 8)); 3104 pusha(); 3105 } 3106 3107 void MacroAssembler::push_cont_fastpath() { 3108 if (!Continuations::enabled()) return; 3109 3110 #ifndef _LP64 3111 Register rthread = rax; 3112 Register rrealsp = rbx; 3113 push(rthread); 3114 push(rrealsp); 3115 3116 get_thread(rthread); 3117 3118 // The code below wants the original RSP. 3119 // Move it back after the pushes above. 3120 movptr(rrealsp, rsp); 3121 addptr(rrealsp, 2*wordSize); 3122 #else 3123 Register rthread = r15_thread; 3124 Register rrealsp = rsp; 3125 #endif 3126 3127 Label done; 3128 cmpptr(rrealsp, Address(rthread, JavaThread::cont_fastpath_offset())); 3129 jccb(Assembler::belowEqual, done); 3130 movptr(Address(rthread, JavaThread::cont_fastpath_offset()), rrealsp); 3131 bind(done); 3132 3133 #ifndef _LP64 3134 pop(rrealsp); 3135 pop(rthread); 3136 #endif 3137 } 3138 3139 void MacroAssembler::pop_cont_fastpath() { 3140 if (!Continuations::enabled()) return; 3141 3142 #ifndef _LP64 3143 Register rthread = rax; 3144 Register rrealsp = rbx; 3145 push(rthread); 3146 push(rrealsp); 3147 3148 get_thread(rthread); 3149 3150 // The code below wants the original RSP. 3151 // Move it back after the pushes above. 3152 movptr(rrealsp, rsp); 3153 addptr(rrealsp, 2*wordSize); 3154 #else 3155 Register rthread = r15_thread; 3156 Register rrealsp = rsp; 3157 #endif 3158 3159 Label done; 3160 cmpptr(rrealsp, Address(rthread, JavaThread::cont_fastpath_offset())); 3161 jccb(Assembler::below, done); 3162 movptr(Address(rthread, JavaThread::cont_fastpath_offset()), 0); 3163 bind(done); 3164 3165 #ifndef _LP64 3166 pop(rrealsp); 3167 pop(rthread); 3168 #endif 3169 } 3170 3171 void MacroAssembler::inc_held_monitor_count() { 3172 #ifndef _LP64 3173 Register thread = rax; 3174 push(thread); 3175 get_thread(thread); 3176 incrementl(Address(thread, JavaThread::held_monitor_count_offset())); 3177 pop(thread); 3178 #else // LP64 3179 incrementq(Address(r15_thread, JavaThread::held_monitor_count_offset())); 3180 #endif 3181 } 3182 3183 void MacroAssembler::dec_held_monitor_count() { 3184 #ifndef _LP64 3185 Register thread = rax; 3186 push(thread); 3187 get_thread(thread); 3188 decrementl(Address(thread, JavaThread::held_monitor_count_offset())); 3189 pop(thread); 3190 #else // LP64 3191 decrementq(Address(r15_thread, JavaThread::held_monitor_count_offset())); 3192 #endif 3193 } 3194 3195 #ifdef ASSERT 3196 void MacroAssembler::stop_if_in_cont(Register cont, const char* name) { 3197 #ifdef _LP64 3198 Label no_cont; 3199 movptr(cont, Address(r15_thread, JavaThread::cont_entry_offset())); 3200 testl(cont, cont); 3201 jcc(Assembler::zero, no_cont); 3202 stop(name); 3203 bind(no_cont); 3204 #else 3205 Unimplemented(); 3206 #endif 3207 } 3208 #endif 3209 3210 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp) { // determine java_thread register 3211 if (!java_thread->is_valid()) { 3212 java_thread = rdi; 3213 get_thread(java_thread); 3214 } 3215 // we must set sp to zero to clear frame 3216 movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD); 3217 // must clear fp, so that compiled frames are not confused; it is 3218 // possible that we need it only for debugging 3219 if (clear_fp) { 3220 movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD); 3221 } 3222 // Always clear the pc because it could have been set by make_walkable() 3223 movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD); 3224 vzeroupper(); 3225 } 3226 3227 void MacroAssembler::restore_rax(Register tmp) { 3228 if (tmp == noreg) pop(rax); 3229 else if (tmp != rax) mov(rax, tmp); 3230 } 3231 3232 void MacroAssembler::round_to(Register reg, int modulus) { 3233 addptr(reg, modulus - 1); 3234 andptr(reg, -modulus); 3235 } 3236 3237 void MacroAssembler::save_rax(Register tmp) { 3238 if (tmp == noreg) push(rax); 3239 else if (tmp != rax) mov(tmp, rax); 3240 } 3241 3242 void MacroAssembler::safepoint_poll(Label& slow_path, Register thread_reg, bool at_return, bool in_nmethod) { 3243 if (at_return) { 3244 // Note that when in_nmethod is set, the stack pointer is incremented before the poll. Therefore, 3245 // we may safely use rsp instead to perform the stack watermark check. 3246 cmpptr(in_nmethod ? rsp : rbp, Address(thread_reg, JavaThread::polling_word_offset())); 3247 jcc(Assembler::above, slow_path); 3248 return; 3249 } 3250 testb(Address(thread_reg, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit()); 3251 jcc(Assembler::notZero, slow_path); // handshake bit set implies poll 3252 } 3253 3254 // Calls to C land 3255 // 3256 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded 3257 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp 3258 // has to be reset to 0. This is required to allow proper stack traversal. 3259 void MacroAssembler::set_last_Java_frame(Register java_thread, 3260 Register last_java_sp, 3261 Register last_java_fp, 3262 address last_java_pc, 3263 Register rscratch) { 3264 vzeroupper(); 3265 // determine java_thread register 3266 if (!java_thread->is_valid()) { 3267 java_thread = rdi; 3268 get_thread(java_thread); 3269 } 3270 // determine last_java_sp register 3271 if (!last_java_sp->is_valid()) { 3272 last_java_sp = rsp; 3273 } 3274 // last_java_fp is optional 3275 if (last_java_fp->is_valid()) { 3276 movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp); 3277 } 3278 // last_java_pc is optional 3279 if (last_java_pc != nullptr) { 3280 Address java_pc(java_thread, 3281 JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()); 3282 lea(java_pc, InternalAddress(last_java_pc), rscratch); 3283 } 3284 movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp); 3285 } 3286 3287 void MacroAssembler::shlptr(Register dst, int imm8) { 3288 LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8)); 3289 } 3290 3291 void MacroAssembler::shrptr(Register dst, int imm8) { 3292 LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8)); 3293 } 3294 3295 void MacroAssembler::sign_extend_byte(Register reg) { 3296 if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) { 3297 movsbl(reg, reg); // movsxb 3298 } else { 3299 shll(reg, 24); 3300 sarl(reg, 24); 3301 } 3302 } 3303 3304 void MacroAssembler::sign_extend_short(Register reg) { 3305 if (LP64_ONLY(true ||) VM_Version::is_P6()) { 3306 movswl(reg, reg); // movsxw 3307 } else { 3308 shll(reg, 16); 3309 sarl(reg, 16); 3310 } 3311 } 3312 3313 void MacroAssembler::testl(Address dst, int32_t imm32) { 3314 if (imm32 >= 0 && is8bit(imm32)) { 3315 testb(dst, imm32); 3316 } else { 3317 Assembler::testl(dst, imm32); 3318 } 3319 } 3320 3321 void MacroAssembler::testl(Register dst, int32_t imm32) { 3322 if (imm32 >= 0 && is8bit(imm32) && dst->has_byte_register()) { 3323 testb(dst, imm32); 3324 } else { 3325 Assembler::testl(dst, imm32); 3326 } 3327 } 3328 3329 void MacroAssembler::testl(Register dst, AddressLiteral src) { 3330 assert(always_reachable(src), "Address should be reachable"); 3331 testl(dst, as_Address(src)); 3332 } 3333 3334 #ifdef _LP64 3335 3336 void MacroAssembler::testq(Address dst, int32_t imm32) { 3337 if (imm32 >= 0) { 3338 testl(dst, imm32); 3339 } else { 3340 Assembler::testq(dst, imm32); 3341 } 3342 } 3343 3344 void MacroAssembler::testq(Register dst, int32_t imm32) { 3345 if (imm32 >= 0) { 3346 testl(dst, imm32); 3347 } else { 3348 Assembler::testq(dst, imm32); 3349 } 3350 } 3351 3352 #endif 3353 3354 void MacroAssembler::pcmpeqb(XMMRegister dst, XMMRegister src) { 3355 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3356 Assembler::pcmpeqb(dst, src); 3357 } 3358 3359 void MacroAssembler::pcmpeqw(XMMRegister dst, XMMRegister src) { 3360 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3361 Assembler::pcmpeqw(dst, src); 3362 } 3363 3364 void MacroAssembler::pcmpestri(XMMRegister dst, Address src, int imm8) { 3365 assert((dst->encoding() < 16),"XMM register should be 0-15"); 3366 Assembler::pcmpestri(dst, src, imm8); 3367 } 3368 3369 void MacroAssembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) { 3370 assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15"); 3371 Assembler::pcmpestri(dst, src, imm8); 3372 } 3373 3374 void MacroAssembler::pmovzxbw(XMMRegister dst, XMMRegister src) { 3375 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3376 Assembler::pmovzxbw(dst, src); 3377 } 3378 3379 void MacroAssembler::pmovzxbw(XMMRegister dst, Address src) { 3380 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3381 Assembler::pmovzxbw(dst, src); 3382 } 3383 3384 void MacroAssembler::pmovmskb(Register dst, XMMRegister src) { 3385 assert((src->encoding() < 16),"XMM register should be 0-15"); 3386 Assembler::pmovmskb(dst, src); 3387 } 3388 3389 void MacroAssembler::ptest(XMMRegister dst, XMMRegister src) { 3390 assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15"); 3391 Assembler::ptest(dst, src); 3392 } 3393 3394 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src, Register rscratch) { 3395 assert(rscratch != noreg || always_reachable(src), "missing"); 3396 3397 if (reachable(src)) { 3398 Assembler::sqrtss(dst, as_Address(src)); 3399 } else { 3400 lea(rscratch, src); 3401 Assembler::sqrtss(dst, Address(rscratch, 0)); 3402 } 3403 } 3404 3405 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src, Register rscratch) { 3406 assert(rscratch != noreg || always_reachable(src), "missing"); 3407 3408 if (reachable(src)) { 3409 Assembler::subsd(dst, as_Address(src)); 3410 } else { 3411 lea(rscratch, src); 3412 Assembler::subsd(dst, Address(rscratch, 0)); 3413 } 3414 } 3415 3416 void MacroAssembler::roundsd(XMMRegister dst, AddressLiteral src, int32_t rmode, Register rscratch) { 3417 assert(rscratch != noreg || always_reachable(src), "missing"); 3418 3419 if (reachable(src)) { 3420 Assembler::roundsd(dst, as_Address(src), rmode); 3421 } else { 3422 lea(rscratch, src); 3423 Assembler::roundsd(dst, Address(rscratch, 0), rmode); 3424 } 3425 } 3426 3427 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src, Register rscratch) { 3428 assert(rscratch != noreg || always_reachable(src), "missing"); 3429 3430 if (reachable(src)) { 3431 Assembler::subss(dst, as_Address(src)); 3432 } else { 3433 lea(rscratch, src); 3434 Assembler::subss(dst, Address(rscratch, 0)); 3435 } 3436 } 3437 3438 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src, Register rscratch) { 3439 assert(rscratch != noreg || always_reachable(src), "missing"); 3440 3441 if (reachable(src)) { 3442 Assembler::ucomisd(dst, as_Address(src)); 3443 } else { 3444 lea(rscratch, src); 3445 Assembler::ucomisd(dst, Address(rscratch, 0)); 3446 } 3447 } 3448 3449 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src, Register rscratch) { 3450 assert(rscratch != noreg || always_reachable(src), "missing"); 3451 3452 if (reachable(src)) { 3453 Assembler::ucomiss(dst, as_Address(src)); 3454 } else { 3455 lea(rscratch, src); 3456 Assembler::ucomiss(dst, Address(rscratch, 0)); 3457 } 3458 } 3459 3460 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src, Register rscratch) { 3461 assert(rscratch != noreg || always_reachable(src), "missing"); 3462 3463 // Used in sign-bit flipping with aligned address. 3464 assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes"); 3465 if (reachable(src)) { 3466 Assembler::xorpd(dst, as_Address(src)); 3467 } else { 3468 lea(rscratch, src); 3469 Assembler::xorpd(dst, Address(rscratch, 0)); 3470 } 3471 } 3472 3473 void MacroAssembler::xorpd(XMMRegister dst, XMMRegister src) { 3474 if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) { 3475 Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit); 3476 } 3477 else { 3478 Assembler::xorpd(dst, src); 3479 } 3480 } 3481 3482 void MacroAssembler::xorps(XMMRegister dst, XMMRegister src) { 3483 if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) { 3484 Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit); 3485 } else { 3486 Assembler::xorps(dst, src); 3487 } 3488 } 3489 3490 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src, Register rscratch) { 3491 assert(rscratch != noreg || always_reachable(src), "missing"); 3492 3493 // Used in sign-bit flipping with aligned address. 3494 assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes"); 3495 if (reachable(src)) { 3496 Assembler::xorps(dst, as_Address(src)); 3497 } else { 3498 lea(rscratch, src); 3499 Assembler::xorps(dst, Address(rscratch, 0)); 3500 } 3501 } 3502 3503 void MacroAssembler::pshufb(XMMRegister dst, AddressLiteral src, Register rscratch) { 3504 assert(rscratch != noreg || always_reachable(src), "missing"); 3505 3506 // Used in sign-bit flipping with aligned address. 3507 bool aligned_adr = (((intptr_t)src.target() & 15) == 0); 3508 assert((UseAVX > 0) || aligned_adr, "SSE mode requires address alignment 16 bytes"); 3509 if (reachable(src)) { 3510 Assembler::pshufb(dst, as_Address(src)); 3511 } else { 3512 lea(rscratch, src); 3513 Assembler::pshufb(dst, Address(rscratch, 0)); 3514 } 3515 } 3516 3517 // AVX 3-operands instructions 3518 3519 void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3520 assert(rscratch != noreg || always_reachable(src), "missing"); 3521 3522 if (reachable(src)) { 3523 vaddsd(dst, nds, as_Address(src)); 3524 } else { 3525 lea(rscratch, src); 3526 vaddsd(dst, nds, Address(rscratch, 0)); 3527 } 3528 } 3529 3530 void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3531 assert(rscratch != noreg || always_reachable(src), "missing"); 3532 3533 if (reachable(src)) { 3534 vaddss(dst, nds, as_Address(src)); 3535 } else { 3536 lea(rscratch, src); 3537 vaddss(dst, nds, Address(rscratch, 0)); 3538 } 3539 } 3540 3541 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3542 assert(UseAVX > 0, "requires some form of AVX"); 3543 assert(rscratch != noreg || always_reachable(src), "missing"); 3544 3545 if (reachable(src)) { 3546 Assembler::vpaddb(dst, nds, as_Address(src), vector_len); 3547 } else { 3548 lea(rscratch, src); 3549 Assembler::vpaddb(dst, nds, Address(rscratch, 0), vector_len); 3550 } 3551 } 3552 3553 void MacroAssembler::vpaddd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3554 assert(UseAVX > 0, "requires some form of AVX"); 3555 assert(rscratch != noreg || always_reachable(src), "missing"); 3556 3557 if (reachable(src)) { 3558 Assembler::vpaddd(dst, nds, as_Address(src), vector_len); 3559 } else { 3560 lea(rscratch, src); 3561 Assembler::vpaddd(dst, nds, Address(rscratch, 0), vector_len); 3562 } 3563 } 3564 3565 void MacroAssembler::vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len, Register rscratch) { 3566 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15"); 3567 assert(rscratch != noreg || always_reachable(negate_field), "missing"); 3568 3569 vandps(dst, nds, negate_field, vector_len, rscratch); 3570 } 3571 3572 void MacroAssembler::vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len, Register rscratch) { 3573 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15"); 3574 assert(rscratch != noreg || always_reachable(negate_field), "missing"); 3575 3576 vandpd(dst, nds, negate_field, vector_len, rscratch); 3577 } 3578 3579 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3580 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3581 Assembler::vpaddb(dst, nds, src, vector_len); 3582 } 3583 3584 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 3585 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3586 Assembler::vpaddb(dst, nds, src, vector_len); 3587 } 3588 3589 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3590 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3591 Assembler::vpaddw(dst, nds, src, vector_len); 3592 } 3593 3594 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 3595 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3596 Assembler::vpaddw(dst, nds, src, vector_len); 3597 } 3598 3599 void MacroAssembler::vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3600 assert(rscratch != noreg || always_reachable(src), "missing"); 3601 3602 if (reachable(src)) { 3603 Assembler::vpand(dst, nds, as_Address(src), vector_len); 3604 } else { 3605 lea(rscratch, src); 3606 Assembler::vpand(dst, nds, Address(rscratch, 0), vector_len); 3607 } 3608 } 3609 3610 void MacroAssembler::vpbroadcastd(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 3611 assert(rscratch != noreg || always_reachable(src), "missing"); 3612 3613 if (reachable(src)) { 3614 Assembler::vpbroadcastd(dst, as_Address(src), vector_len); 3615 } else { 3616 lea(rscratch, src); 3617 Assembler::vpbroadcastd(dst, Address(rscratch, 0), vector_len); 3618 } 3619 } 3620 3621 void MacroAssembler::vpbroadcastq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 3622 assert(rscratch != noreg || always_reachable(src), "missing"); 3623 3624 if (reachable(src)) { 3625 Assembler::vpbroadcastq(dst, as_Address(src), vector_len); 3626 } else { 3627 lea(rscratch, src); 3628 Assembler::vpbroadcastq(dst, Address(rscratch, 0), vector_len); 3629 } 3630 } 3631 3632 void MacroAssembler::vbroadcastsd(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 3633 assert(rscratch != noreg || always_reachable(src), "missing"); 3634 3635 if (reachable(src)) { 3636 Assembler::vbroadcastsd(dst, as_Address(src), vector_len); 3637 } else { 3638 lea(rscratch, src); 3639 Assembler::vbroadcastsd(dst, Address(rscratch, 0), vector_len); 3640 } 3641 } 3642 3643 void MacroAssembler::vbroadcastss(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 3644 assert(rscratch != noreg || always_reachable(src), "missing"); 3645 3646 if (reachable(src)) { 3647 Assembler::vbroadcastss(dst, as_Address(src), vector_len); 3648 } else { 3649 lea(rscratch, src); 3650 Assembler::vbroadcastss(dst, Address(rscratch, 0), vector_len); 3651 } 3652 } 3653 3654 // Vector float blend 3655 // vblendvps(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister mask, int vector_len, bool compute_mask = true, XMMRegister scratch = xnoreg) 3656 void MacroAssembler::vblendvps(XMMRegister dst, XMMRegister src1, XMMRegister src2, XMMRegister mask, int vector_len, bool compute_mask, XMMRegister scratch) { 3657 // WARN: Allow dst == (src1|src2), mask == scratch 3658 bool blend_emulation = EnableX86ECoreOpts && UseAVX > 1; 3659 bool scratch_available = scratch != xnoreg && scratch != src1 && scratch != src2 && scratch != dst; 3660 bool dst_available = dst != mask && (dst != src1 || dst != src2); 3661 if (blend_emulation && scratch_available && dst_available) { 3662 if (compute_mask) { 3663 vpsrad(scratch, mask, 32, vector_len); 3664 mask = scratch; 3665 } 3666 if (dst == src1) { 3667 vpandn(dst, mask, src1, vector_len); // if mask == 0, src1 3668 vpand (scratch, mask, src2, vector_len); // if mask == 1, src2 3669 } else { 3670 vpand (dst, mask, src2, vector_len); // if mask == 1, src2 3671 vpandn(scratch, mask, src1, vector_len); // if mask == 0, src1 3672 } 3673 vpor(dst, dst, scratch, vector_len); 3674 } else { 3675 Assembler::vblendvps(dst, src1, src2, mask, vector_len); 3676 } 3677 } 3678 3679 // vblendvpd(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister mask, int vector_len, bool compute_mask = true, XMMRegister scratch = xnoreg) 3680 void MacroAssembler::vblendvpd(XMMRegister dst, XMMRegister src1, XMMRegister src2, XMMRegister mask, int vector_len, bool compute_mask, XMMRegister scratch) { 3681 // WARN: Allow dst == (src1|src2), mask == scratch 3682 bool blend_emulation = EnableX86ECoreOpts && UseAVX > 1; 3683 bool scratch_available = scratch != xnoreg && scratch != src1 && scratch != src2 && scratch != dst && (!compute_mask || scratch != mask); 3684 bool dst_available = dst != mask && (dst != src1 || dst != src2); 3685 if (blend_emulation && scratch_available && dst_available) { 3686 if (compute_mask) { 3687 vpxor(scratch, scratch, scratch, vector_len); 3688 vpcmpgtq(scratch, scratch, mask, vector_len); 3689 mask = scratch; 3690 } 3691 if (dst == src1) { 3692 vpandn(dst, mask, src1, vector_len); // if mask == 0, src 3693 vpand (scratch, mask, src2, vector_len); // if mask == 1, src2 3694 } else { 3695 vpand (dst, mask, src2, vector_len); // if mask == 1, src2 3696 vpandn(scratch, mask, src1, vector_len); // if mask == 0, src 3697 } 3698 vpor(dst, dst, scratch, vector_len); 3699 } else { 3700 Assembler::vblendvpd(dst, src1, src2, mask, vector_len); 3701 } 3702 } 3703 3704 void MacroAssembler::vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3705 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3706 Assembler::vpcmpeqb(dst, nds, src, vector_len); 3707 } 3708 3709 void MacroAssembler::vpcmpeqb(XMMRegister dst, XMMRegister src1, Address src2, int vector_len) { 3710 assert(((dst->encoding() < 16 && src1->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3711 Assembler::vpcmpeqb(dst, src1, src2, vector_len); 3712 } 3713 3714 void MacroAssembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3715 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3716 Assembler::vpcmpeqw(dst, nds, src, vector_len); 3717 } 3718 3719 void MacroAssembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 3720 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3721 Assembler::vpcmpeqw(dst, nds, src, vector_len); 3722 } 3723 3724 void MacroAssembler::evpcmpeqd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3725 assert(rscratch != noreg || always_reachable(src), "missing"); 3726 3727 if (reachable(src)) { 3728 Assembler::evpcmpeqd(kdst, mask, nds, as_Address(src), vector_len); 3729 } else { 3730 lea(rscratch, src); 3731 Assembler::evpcmpeqd(kdst, mask, nds, Address(rscratch, 0), vector_len); 3732 } 3733 } 3734 3735 void MacroAssembler::evpcmpd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, 3736 int comparison, bool is_signed, int vector_len, Register rscratch) { 3737 assert(rscratch != noreg || always_reachable(src), "missing"); 3738 3739 if (reachable(src)) { 3740 Assembler::evpcmpd(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len); 3741 } else { 3742 lea(rscratch, src); 3743 Assembler::evpcmpd(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len); 3744 } 3745 } 3746 3747 void MacroAssembler::evpcmpq(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, 3748 int comparison, bool is_signed, int vector_len, Register rscratch) { 3749 assert(rscratch != noreg || always_reachable(src), "missing"); 3750 3751 if (reachable(src)) { 3752 Assembler::evpcmpq(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len); 3753 } else { 3754 lea(rscratch, src); 3755 Assembler::evpcmpq(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len); 3756 } 3757 } 3758 3759 void MacroAssembler::evpcmpb(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, 3760 int comparison, bool is_signed, int vector_len, Register rscratch) { 3761 assert(rscratch != noreg || always_reachable(src), "missing"); 3762 3763 if (reachable(src)) { 3764 Assembler::evpcmpb(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len); 3765 } else { 3766 lea(rscratch, src); 3767 Assembler::evpcmpb(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len); 3768 } 3769 } 3770 3771 void MacroAssembler::evpcmpw(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, 3772 int comparison, bool is_signed, int vector_len, Register rscratch) { 3773 assert(rscratch != noreg || always_reachable(src), "missing"); 3774 3775 if (reachable(src)) { 3776 Assembler::evpcmpw(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len); 3777 } else { 3778 lea(rscratch, src); 3779 Assembler::evpcmpw(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len); 3780 } 3781 } 3782 3783 void MacroAssembler::vpcmpCC(XMMRegister dst, XMMRegister nds, XMMRegister src, int cond_encoding, Width width, int vector_len) { 3784 if (width == Assembler::Q) { 3785 Assembler::vpcmpCCq(dst, nds, src, cond_encoding, vector_len); 3786 } else { 3787 Assembler::vpcmpCCbwd(dst, nds, src, cond_encoding, vector_len); 3788 } 3789 } 3790 3791 void MacroAssembler::vpcmpCCW(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister xtmp, ComparisonPredicate cond, Width width, int vector_len) { 3792 int eq_cond_enc = 0x29; 3793 int gt_cond_enc = 0x37; 3794 if (width != Assembler::Q) { 3795 eq_cond_enc = 0x74 + width; 3796 gt_cond_enc = 0x64 + width; 3797 } 3798 switch (cond) { 3799 case eq: 3800 vpcmpCC(dst, nds, src, eq_cond_enc, width, vector_len); 3801 break; 3802 case neq: 3803 vpcmpCC(dst, nds, src, eq_cond_enc, width, vector_len); 3804 vallones(xtmp, vector_len); 3805 vpxor(dst, xtmp, dst, vector_len); 3806 break; 3807 case le: 3808 vpcmpCC(dst, nds, src, gt_cond_enc, width, vector_len); 3809 vallones(xtmp, vector_len); 3810 vpxor(dst, xtmp, dst, vector_len); 3811 break; 3812 case nlt: 3813 vpcmpCC(dst, src, nds, gt_cond_enc, width, vector_len); 3814 vallones(xtmp, vector_len); 3815 vpxor(dst, xtmp, dst, vector_len); 3816 break; 3817 case lt: 3818 vpcmpCC(dst, src, nds, gt_cond_enc, width, vector_len); 3819 break; 3820 case nle: 3821 vpcmpCC(dst, nds, src, gt_cond_enc, width, vector_len); 3822 break; 3823 default: 3824 assert(false, "Should not reach here"); 3825 } 3826 } 3827 3828 void MacroAssembler::vpmovzxbw(XMMRegister dst, Address src, int vector_len) { 3829 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3830 Assembler::vpmovzxbw(dst, src, vector_len); 3831 } 3832 3833 void MacroAssembler::vpmovmskb(Register dst, XMMRegister src, int vector_len) { 3834 assert((src->encoding() < 16),"XMM register should be 0-15"); 3835 Assembler::vpmovmskb(dst, src, vector_len); 3836 } 3837 3838 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3839 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3840 Assembler::vpmullw(dst, nds, src, vector_len); 3841 } 3842 3843 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 3844 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3845 Assembler::vpmullw(dst, nds, src, vector_len); 3846 } 3847 3848 void MacroAssembler::vpmulld(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3849 assert((UseAVX > 0), "AVX support is needed"); 3850 assert(rscratch != noreg || always_reachable(src), "missing"); 3851 3852 if (reachable(src)) { 3853 Assembler::vpmulld(dst, nds, as_Address(src), vector_len); 3854 } else { 3855 lea(rscratch, src); 3856 Assembler::vpmulld(dst, nds, Address(rscratch, 0), vector_len); 3857 } 3858 } 3859 3860 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3861 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3862 Assembler::vpsubb(dst, nds, src, vector_len); 3863 } 3864 3865 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 3866 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3867 Assembler::vpsubb(dst, nds, src, vector_len); 3868 } 3869 3870 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3871 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3872 Assembler::vpsubw(dst, nds, src, vector_len); 3873 } 3874 3875 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 3876 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3877 Assembler::vpsubw(dst, nds, src, vector_len); 3878 } 3879 3880 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) { 3881 assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3882 Assembler::vpsraw(dst, nds, shift, vector_len); 3883 } 3884 3885 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) { 3886 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3887 Assembler::vpsraw(dst, nds, shift, vector_len); 3888 } 3889 3890 void MacroAssembler::evpsraq(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) { 3891 assert(UseAVX > 2,""); 3892 if (!VM_Version::supports_avx512vl() && vector_len < 2) { 3893 vector_len = 2; 3894 } 3895 Assembler::evpsraq(dst, nds, shift, vector_len); 3896 } 3897 3898 void MacroAssembler::evpsraq(XMMRegister dst, XMMRegister nds, int shift, int vector_len) { 3899 assert(UseAVX > 2,""); 3900 if (!VM_Version::supports_avx512vl() && vector_len < 2) { 3901 vector_len = 2; 3902 } 3903 Assembler::evpsraq(dst, nds, shift, vector_len); 3904 } 3905 3906 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) { 3907 assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3908 Assembler::vpsrlw(dst, nds, shift, vector_len); 3909 } 3910 3911 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) { 3912 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3913 Assembler::vpsrlw(dst, nds, shift, vector_len); 3914 } 3915 3916 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) { 3917 assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3918 Assembler::vpsllw(dst, nds, shift, vector_len); 3919 } 3920 3921 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) { 3922 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3923 Assembler::vpsllw(dst, nds, shift, vector_len); 3924 } 3925 3926 void MacroAssembler::vptest(XMMRegister dst, XMMRegister src) { 3927 assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15"); 3928 Assembler::vptest(dst, src); 3929 } 3930 3931 void MacroAssembler::punpcklbw(XMMRegister dst, XMMRegister src) { 3932 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3933 Assembler::punpcklbw(dst, src); 3934 } 3935 3936 void MacroAssembler::pshufd(XMMRegister dst, Address src, int mode) { 3937 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 3938 Assembler::pshufd(dst, src, mode); 3939 } 3940 3941 void MacroAssembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) { 3942 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3943 Assembler::pshuflw(dst, src, mode); 3944 } 3945 3946 void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3947 assert(rscratch != noreg || always_reachable(src), "missing"); 3948 3949 if (reachable(src)) { 3950 vandpd(dst, nds, as_Address(src), vector_len); 3951 } else { 3952 lea(rscratch, src); 3953 vandpd(dst, nds, Address(rscratch, 0), vector_len); 3954 } 3955 } 3956 3957 void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3958 assert(rscratch != noreg || always_reachable(src), "missing"); 3959 3960 if (reachable(src)) { 3961 vandps(dst, nds, as_Address(src), vector_len); 3962 } else { 3963 lea(rscratch, src); 3964 vandps(dst, nds, Address(rscratch, 0), vector_len); 3965 } 3966 } 3967 3968 void MacroAssembler::evpord(XMMRegister dst, KRegister mask, XMMRegister nds, AddressLiteral src, 3969 bool merge, int vector_len, Register rscratch) { 3970 assert(rscratch != noreg || always_reachable(src), "missing"); 3971 3972 if (reachable(src)) { 3973 Assembler::evpord(dst, mask, nds, as_Address(src), merge, vector_len); 3974 } else { 3975 lea(rscratch, src); 3976 Assembler::evpord(dst, mask, nds, Address(rscratch, 0), merge, vector_len); 3977 } 3978 } 3979 3980 void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3981 assert(rscratch != noreg || always_reachable(src), "missing"); 3982 3983 if (reachable(src)) { 3984 vdivsd(dst, nds, as_Address(src)); 3985 } else { 3986 lea(rscratch, src); 3987 vdivsd(dst, nds, Address(rscratch, 0)); 3988 } 3989 } 3990 3991 void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3992 assert(rscratch != noreg || always_reachable(src), "missing"); 3993 3994 if (reachable(src)) { 3995 vdivss(dst, nds, as_Address(src)); 3996 } else { 3997 lea(rscratch, src); 3998 vdivss(dst, nds, Address(rscratch, 0)); 3999 } 4000 } 4001 4002 void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 4003 assert(rscratch != noreg || always_reachable(src), "missing"); 4004 4005 if (reachable(src)) { 4006 vmulsd(dst, nds, as_Address(src)); 4007 } else { 4008 lea(rscratch, src); 4009 vmulsd(dst, nds, Address(rscratch, 0)); 4010 } 4011 } 4012 4013 void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 4014 assert(rscratch != noreg || always_reachable(src), "missing"); 4015 4016 if (reachable(src)) { 4017 vmulss(dst, nds, as_Address(src)); 4018 } else { 4019 lea(rscratch, src); 4020 vmulss(dst, nds, Address(rscratch, 0)); 4021 } 4022 } 4023 4024 void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 4025 assert(rscratch != noreg || always_reachable(src), "missing"); 4026 4027 if (reachable(src)) { 4028 vsubsd(dst, nds, as_Address(src)); 4029 } else { 4030 lea(rscratch, src); 4031 vsubsd(dst, nds, Address(rscratch, 0)); 4032 } 4033 } 4034 4035 void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 4036 assert(rscratch != noreg || always_reachable(src), "missing"); 4037 4038 if (reachable(src)) { 4039 vsubss(dst, nds, as_Address(src)); 4040 } else { 4041 lea(rscratch, src); 4042 vsubss(dst, nds, Address(rscratch, 0)); 4043 } 4044 } 4045 4046 void MacroAssembler::vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 4047 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15"); 4048 assert(rscratch != noreg || always_reachable(src), "missing"); 4049 4050 vxorps(dst, nds, src, Assembler::AVX_128bit, rscratch); 4051 } 4052 4053 void MacroAssembler::vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 4054 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15"); 4055 assert(rscratch != noreg || always_reachable(src), "missing"); 4056 4057 vxorpd(dst, nds, src, Assembler::AVX_128bit, rscratch); 4058 } 4059 4060 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 4061 assert(rscratch != noreg || always_reachable(src), "missing"); 4062 4063 if (reachable(src)) { 4064 vxorpd(dst, nds, as_Address(src), vector_len); 4065 } else { 4066 lea(rscratch, src); 4067 vxorpd(dst, nds, Address(rscratch, 0), vector_len); 4068 } 4069 } 4070 4071 void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 4072 assert(rscratch != noreg || always_reachable(src), "missing"); 4073 4074 if (reachable(src)) { 4075 vxorps(dst, nds, as_Address(src), vector_len); 4076 } else { 4077 lea(rscratch, src); 4078 vxorps(dst, nds, Address(rscratch, 0), vector_len); 4079 } 4080 } 4081 4082 void MacroAssembler::vpxor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 4083 assert(rscratch != noreg || always_reachable(src), "missing"); 4084 4085 if (UseAVX > 1 || (vector_len < 1)) { 4086 if (reachable(src)) { 4087 Assembler::vpxor(dst, nds, as_Address(src), vector_len); 4088 } else { 4089 lea(rscratch, src); 4090 Assembler::vpxor(dst, nds, Address(rscratch, 0), vector_len); 4091 } 4092 } else { 4093 MacroAssembler::vxorpd(dst, nds, src, vector_len, rscratch); 4094 } 4095 } 4096 4097 void MacroAssembler::vpermd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 4098 assert(rscratch != noreg || always_reachable(src), "missing"); 4099 4100 if (reachable(src)) { 4101 Assembler::vpermd(dst, nds, as_Address(src), vector_len); 4102 } else { 4103 lea(rscratch, src); 4104 Assembler::vpermd(dst, nds, Address(rscratch, 0), vector_len); 4105 } 4106 } 4107 4108 void MacroAssembler::clear_jobject_tag(Register possibly_non_local) { 4109 const int32_t inverted_mask = ~static_cast<int32_t>(JNIHandles::tag_mask); 4110 STATIC_ASSERT(inverted_mask == -4); // otherwise check this code 4111 // The inverted mask is sign-extended 4112 andptr(possibly_non_local, inverted_mask); 4113 } 4114 4115 void MacroAssembler::resolve_jobject(Register value, 4116 Register thread, 4117 Register tmp) { 4118 assert_different_registers(value, thread, tmp); 4119 Label done, tagged, weak_tagged; 4120 testptr(value, value); 4121 jcc(Assembler::zero, done); // Use null as-is. 4122 testptr(value, JNIHandles::tag_mask); // Test for tag. 4123 jcc(Assembler::notZero, tagged); 4124 4125 // Resolve local handle 4126 access_load_at(T_OBJECT, IN_NATIVE | AS_RAW, value, Address(value, 0), tmp, thread); 4127 verify_oop(value); 4128 jmp(done); 4129 4130 bind(tagged); 4131 testptr(value, JNIHandles::TypeTag::weak_global); // Test for weak tag. 4132 jcc(Assembler::notZero, weak_tagged); 4133 4134 // Resolve global handle 4135 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp, thread); 4136 verify_oop(value); 4137 jmp(done); 4138 4139 bind(weak_tagged); 4140 // Resolve jweak. 4141 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, 4142 value, Address(value, -JNIHandles::TypeTag::weak_global), tmp, thread); 4143 verify_oop(value); 4144 4145 bind(done); 4146 } 4147 4148 void MacroAssembler::resolve_global_jobject(Register value, 4149 Register thread, 4150 Register tmp) { 4151 assert_different_registers(value, thread, tmp); 4152 Label done; 4153 4154 testptr(value, value); 4155 jcc(Assembler::zero, done); // Use null as-is. 4156 4157 #ifdef ASSERT 4158 { 4159 Label valid_global_tag; 4160 testptr(value, JNIHandles::TypeTag::global); // Test for global tag. 4161 jcc(Assembler::notZero, valid_global_tag); 4162 stop("non global jobject using resolve_global_jobject"); 4163 bind(valid_global_tag); 4164 } 4165 #endif 4166 4167 // Resolve global handle 4168 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp, thread); 4169 verify_oop(value); 4170 4171 bind(done); 4172 } 4173 4174 void MacroAssembler::subptr(Register dst, int32_t imm32) { 4175 LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32)); 4176 } 4177 4178 // Force generation of a 4 byte immediate value even if it fits into 8bit 4179 void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) { 4180 LP64_ONLY(subq_imm32(dst, imm32)) NOT_LP64(subl_imm32(dst, imm32)); 4181 } 4182 4183 void MacroAssembler::subptr(Register dst, Register src) { 4184 LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); 4185 } 4186 4187 // C++ bool manipulation 4188 void MacroAssembler::testbool(Register dst) { 4189 if(sizeof(bool) == 1) 4190 testb(dst, 0xff); 4191 else if(sizeof(bool) == 2) { 4192 // testw implementation needed for two byte bools 4193 ShouldNotReachHere(); 4194 } else if(sizeof(bool) == 4) 4195 testl(dst, dst); 4196 else 4197 // unsupported 4198 ShouldNotReachHere(); 4199 } 4200 4201 void MacroAssembler::testptr(Register dst, Register src) { 4202 LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src)); 4203 } 4204 4205 // Object / value buffer allocation... 4206 // 4207 // Kills klass and rsi on LP64 4208 void MacroAssembler::allocate_instance(Register klass, Register new_obj, 4209 Register t1, Register t2, 4210 bool clear_fields, Label& alloc_failed) 4211 { 4212 Label done, initialize_header, initialize_object, slow_case, slow_case_no_pop; 4213 Register layout_size = t1; 4214 assert(new_obj == rax, "needs to be rax"); 4215 assert_different_registers(klass, new_obj, t1, t2); 4216 4217 // get instance_size in InstanceKlass (scaled to a count of bytes) 4218 movl(layout_size, Address(klass, Klass::layout_helper_offset())); 4219 // test to see if it is malformed in some way 4220 testl(layout_size, Klass::_lh_instance_slow_path_bit); 4221 jcc(Assembler::notZero, slow_case_no_pop); 4222 4223 // Allocate the instance: 4224 // If TLAB is enabled: 4225 // Try to allocate in the TLAB. 4226 // If fails, go to the slow path. 4227 // Else If inline contiguous allocations are enabled: 4228 // Try to allocate in eden. 4229 // If fails due to heap end, go to slow path. 4230 // 4231 // If TLAB is enabled OR inline contiguous is enabled: 4232 // Initialize the allocation. 4233 // Exit. 4234 // 4235 // Go to slow path. 4236 4237 push(klass); 4238 const Register thread = LP64_ONLY(r15_thread) NOT_LP64(klass); 4239 #ifndef _LP64 4240 if (UseTLAB) { 4241 get_thread(thread); 4242 } 4243 #endif // _LP64 4244 4245 if (UseTLAB) { 4246 tlab_allocate(thread, new_obj, layout_size, 0, klass, t2, slow_case); 4247 if (ZeroTLAB || (!clear_fields)) { 4248 // the fields have been already cleared 4249 jmp(initialize_header); 4250 } else { 4251 // initialize both the header and fields 4252 jmp(initialize_object); 4253 } 4254 } else { 4255 jmp(slow_case); 4256 } 4257 4258 // If UseTLAB is true, the object is created above and there is an initialize need. 4259 // Otherwise, skip and go to the slow path. 4260 if (UseTLAB) { 4261 if (clear_fields) { 4262 // The object is initialized before the header. If the object size is 4263 // zero, go directly to the header initialization. 4264 bind(initialize_object); 4265 decrement(layout_size, sizeof(oopDesc)); 4266 jcc(Assembler::zero, initialize_header); 4267 4268 // Initialize topmost object field, divide size by 8, check if odd and 4269 // test if zero. 4270 Register zero = klass; 4271 xorl(zero, zero); // use zero reg to clear memory (shorter code) 4272 shrl(layout_size, LogBytesPerLong); // divide by 2*oopSize and set carry flag if odd 4273 4274 #ifdef ASSERT 4275 // make sure instance_size was multiple of 8 4276 Label L; 4277 // Ignore partial flag stall after shrl() since it is debug VM 4278 jcc(Assembler::carryClear, L); 4279 stop("object size is not multiple of 2 - adjust this code"); 4280 bind(L); 4281 // must be > 0, no extra check needed here 4282 #endif 4283 4284 // initialize remaining object fields: instance_size was a multiple of 8 4285 { 4286 Label loop; 4287 bind(loop); 4288 movptr(Address(new_obj, layout_size, Address::times_8, sizeof(oopDesc) - 1*oopSize), zero); 4289 NOT_LP64(movptr(Address(new_obj, layout_size, Address::times_8, sizeof(oopDesc) - 2*oopSize), zero)); 4290 decrement(layout_size); 4291 jcc(Assembler::notZero, loop); 4292 } 4293 } // clear_fields 4294 4295 // initialize object header only. 4296 bind(initialize_header); 4297 pop(klass); 4298 Register mark_word = t2; 4299 movptr(mark_word, Address(klass, Klass::prototype_header_offset())); 4300 movptr(Address(new_obj, oopDesc::mark_offset_in_bytes ()), mark_word); 4301 #ifdef _LP64 4302 xorl(rsi, rsi); // use zero reg to clear memory (shorter code) 4303 store_klass_gap(new_obj, rsi); // zero klass gap for compressed oops 4304 #endif 4305 movptr(t2, klass); // preserve klass 4306 store_klass(new_obj, t2, rscratch1); // src klass reg is potentially compressed 4307 4308 jmp(done); 4309 } 4310 4311 bind(slow_case); 4312 pop(klass); 4313 bind(slow_case_no_pop); 4314 jmp(alloc_failed); 4315 4316 bind(done); 4317 } 4318 4319 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes. 4320 void MacroAssembler::tlab_allocate(Register thread, Register obj, 4321 Register var_size_in_bytes, 4322 int con_size_in_bytes, 4323 Register t1, 4324 Register t2, 4325 Label& slow_case) { 4326 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 4327 bs->tlab_allocate(this, thread, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case); 4328 } 4329 4330 RegSet MacroAssembler::call_clobbered_gp_registers() { 4331 RegSet regs; 4332 #ifdef _LP64 4333 regs += RegSet::of(rax, rcx, rdx); 4334 #ifndef WINDOWS 4335 regs += RegSet::of(rsi, rdi); 4336 #endif 4337 regs += RegSet::range(r8, r11); 4338 #else 4339 regs += RegSet::of(rax, rcx, rdx); 4340 #endif 4341 #ifdef _LP64 4342 if (UseAPX) { 4343 regs += RegSet::range(r16, as_Register(Register::number_of_registers - 1)); 4344 } 4345 #endif 4346 return regs; 4347 } 4348 4349 XMMRegSet MacroAssembler::call_clobbered_xmm_registers() { 4350 int num_xmm_registers = XMMRegister::available_xmm_registers(); 4351 #if defined(WINDOWS) && defined(_LP64) 4352 XMMRegSet result = XMMRegSet::range(xmm0, xmm5); 4353 if (num_xmm_registers > 16) { 4354 result += XMMRegSet::range(xmm16, as_XMMRegister(num_xmm_registers - 1)); 4355 } 4356 return result; 4357 #else 4358 return XMMRegSet::range(xmm0, as_XMMRegister(num_xmm_registers - 1)); 4359 #endif 4360 } 4361 4362 static int FPUSaveAreaSize = align_up(108, StackAlignmentInBytes); // 108 bytes needed for FPU state by fsave/frstor 4363 4364 #ifndef _LP64 4365 static bool use_x87_registers() { return UseSSE < 2; } 4366 #endif 4367 static bool use_xmm_registers() { return UseSSE >= 1; } 4368 4369 // C1 only ever uses the first double/float of the XMM register. 4370 static int xmm_save_size() { return UseSSE >= 2 ? sizeof(double) : sizeof(float); } 4371 4372 static void save_xmm_register(MacroAssembler* masm, int offset, XMMRegister reg) { 4373 if (UseSSE == 1) { 4374 masm->movflt(Address(rsp, offset), reg); 4375 } else { 4376 masm->movdbl(Address(rsp, offset), reg); 4377 } 4378 } 4379 4380 static void restore_xmm_register(MacroAssembler* masm, int offset, XMMRegister reg) { 4381 if (UseSSE == 1) { 4382 masm->movflt(reg, Address(rsp, offset)); 4383 } else { 4384 masm->movdbl(reg, Address(rsp, offset)); 4385 } 4386 } 4387 4388 static int register_section_sizes(RegSet gp_registers, XMMRegSet xmm_registers, 4389 bool save_fpu, int& gp_area_size, 4390 int& fp_area_size, int& xmm_area_size) { 4391 4392 gp_area_size = align_up(gp_registers.size() * Register::max_slots_per_register * VMRegImpl::stack_slot_size, 4393 StackAlignmentInBytes); 4394 #ifdef _LP64 4395 fp_area_size = 0; 4396 #else 4397 fp_area_size = (save_fpu && use_x87_registers()) ? FPUSaveAreaSize : 0; 4398 #endif 4399 xmm_area_size = (save_fpu && use_xmm_registers()) ? xmm_registers.size() * xmm_save_size() : 0; 4400 4401 return gp_area_size + fp_area_size + xmm_area_size; 4402 } 4403 4404 void MacroAssembler::push_call_clobbered_registers_except(RegSet exclude, bool save_fpu) { 4405 block_comment("push_call_clobbered_registers start"); 4406 // Regular registers 4407 RegSet gp_registers_to_push = call_clobbered_gp_registers() - exclude; 4408 4409 int gp_area_size; 4410 int fp_area_size; 4411 int xmm_area_size; 4412 int total_save_size = register_section_sizes(gp_registers_to_push, call_clobbered_xmm_registers(), save_fpu, 4413 gp_area_size, fp_area_size, xmm_area_size); 4414 subptr(rsp, total_save_size); 4415 4416 push_set(gp_registers_to_push, 0); 4417 4418 #ifndef _LP64 4419 if (save_fpu && use_x87_registers()) { 4420 fnsave(Address(rsp, gp_area_size)); 4421 fwait(); 4422 } 4423 #endif 4424 if (save_fpu && use_xmm_registers()) { 4425 push_set(call_clobbered_xmm_registers(), gp_area_size + fp_area_size); 4426 } 4427 4428 block_comment("push_call_clobbered_registers end"); 4429 } 4430 4431 void MacroAssembler::pop_call_clobbered_registers_except(RegSet exclude, bool restore_fpu) { 4432 block_comment("pop_call_clobbered_registers start"); 4433 4434 RegSet gp_registers_to_pop = call_clobbered_gp_registers() - exclude; 4435 4436 int gp_area_size; 4437 int fp_area_size; 4438 int xmm_area_size; 4439 int total_save_size = register_section_sizes(gp_registers_to_pop, call_clobbered_xmm_registers(), restore_fpu, 4440 gp_area_size, fp_area_size, xmm_area_size); 4441 4442 if (restore_fpu && use_xmm_registers()) { 4443 pop_set(call_clobbered_xmm_registers(), gp_area_size + fp_area_size); 4444 } 4445 #ifndef _LP64 4446 if (restore_fpu && use_x87_registers()) { 4447 frstor(Address(rsp, gp_area_size)); 4448 } 4449 #endif 4450 4451 pop_set(gp_registers_to_pop, 0); 4452 4453 addptr(rsp, total_save_size); 4454 4455 vzeroupper(); 4456 4457 block_comment("pop_call_clobbered_registers end"); 4458 } 4459 4460 void MacroAssembler::push_set(XMMRegSet set, int offset) { 4461 assert(is_aligned(set.size() * xmm_save_size(), StackAlignmentInBytes), "must be"); 4462 int spill_offset = offset; 4463 4464 for (RegSetIterator<XMMRegister> it = set.begin(); *it != xnoreg; ++it) { 4465 save_xmm_register(this, spill_offset, *it); 4466 spill_offset += xmm_save_size(); 4467 } 4468 } 4469 4470 void MacroAssembler::pop_set(XMMRegSet set, int offset) { 4471 int restore_size = set.size() * xmm_save_size(); 4472 assert(is_aligned(restore_size, StackAlignmentInBytes), "must be"); 4473 4474 int restore_offset = offset + restore_size - xmm_save_size(); 4475 4476 for (ReverseRegSetIterator<XMMRegister> it = set.rbegin(); *it != xnoreg; ++it) { 4477 restore_xmm_register(this, restore_offset, *it); 4478 restore_offset -= xmm_save_size(); 4479 } 4480 } 4481 4482 void MacroAssembler::push_set(RegSet set, int offset) { 4483 int spill_offset; 4484 if (offset == -1) { 4485 int register_push_size = set.size() * Register::max_slots_per_register * VMRegImpl::stack_slot_size; 4486 int aligned_size = align_up(register_push_size, StackAlignmentInBytes); 4487 subptr(rsp, aligned_size); 4488 spill_offset = 0; 4489 } else { 4490 spill_offset = offset; 4491 } 4492 4493 for (RegSetIterator<Register> it = set.begin(); *it != noreg; ++it) { 4494 movptr(Address(rsp, spill_offset), *it); 4495 spill_offset += Register::max_slots_per_register * VMRegImpl::stack_slot_size; 4496 } 4497 } 4498 4499 void MacroAssembler::pop_set(RegSet set, int offset) { 4500 4501 int gp_reg_size = Register::max_slots_per_register * VMRegImpl::stack_slot_size; 4502 int restore_size = set.size() * gp_reg_size; 4503 int aligned_size = align_up(restore_size, StackAlignmentInBytes); 4504 4505 int restore_offset; 4506 if (offset == -1) { 4507 restore_offset = restore_size - gp_reg_size; 4508 } else { 4509 restore_offset = offset + restore_size - gp_reg_size; 4510 } 4511 for (ReverseRegSetIterator<Register> it = set.rbegin(); *it != noreg; ++it) { 4512 movptr(*it, Address(rsp, restore_offset)); 4513 restore_offset -= gp_reg_size; 4514 } 4515 4516 if (offset == -1) { 4517 addptr(rsp, aligned_size); 4518 } 4519 } 4520 4521 // Preserves the contents of address, destroys the contents length_in_bytes and temp. 4522 void MacroAssembler::zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp) { 4523 assert(address != length_in_bytes && address != temp && temp != length_in_bytes, "registers must be different"); 4524 assert((offset_in_bytes & (BytesPerWord - 1)) == 0, "offset must be a multiple of BytesPerWord"); 4525 Label done; 4526 4527 testptr(length_in_bytes, length_in_bytes); 4528 jcc(Assembler::zero, done); 4529 4530 // initialize topmost word, divide index by 2, check if odd and test if zero 4531 // note: for the remaining code to work, index must be a multiple of BytesPerWord 4532 #ifdef ASSERT 4533 { 4534 Label L; 4535 testptr(length_in_bytes, BytesPerWord - 1); 4536 jcc(Assembler::zero, L); 4537 stop("length must be a multiple of BytesPerWord"); 4538 bind(L); 4539 } 4540 #endif 4541 Register index = length_in_bytes; 4542 xorptr(temp, temp); // use _zero reg to clear memory (shorter code) 4543 if (UseIncDec) { 4544 shrptr(index, 3); // divide by 8/16 and set carry flag if bit 2 was set 4545 } else { 4546 shrptr(index, 2); // use 2 instructions to avoid partial flag stall 4547 shrptr(index, 1); 4548 } 4549 #ifndef _LP64 4550 // index could have not been a multiple of 8 (i.e., bit 2 was set) 4551 { 4552 Label even; 4553 // note: if index was a multiple of 8, then it cannot 4554 // be 0 now otherwise it must have been 0 before 4555 // => if it is even, we don't need to check for 0 again 4556 jcc(Assembler::carryClear, even); 4557 // clear topmost word (no jump would be needed if conditional assignment worked here) 4558 movptr(Address(address, index, Address::times_8, offset_in_bytes - 0*BytesPerWord), temp); 4559 // index could be 0 now, must check again 4560 jcc(Assembler::zero, done); 4561 bind(even); 4562 } 4563 #endif // !_LP64 4564 // initialize remaining object fields: index is a multiple of 2 now 4565 { 4566 Label loop; 4567 bind(loop); 4568 movptr(Address(address, index, Address::times_8, offset_in_bytes - 1*BytesPerWord), temp); 4569 NOT_LP64(movptr(Address(address, index, Address::times_8, offset_in_bytes - 2*BytesPerWord), temp);) 4570 decrement(index); 4571 jcc(Assembler::notZero, loop); 4572 } 4573 4574 bind(done); 4575 } 4576 4577 void MacroAssembler::get_inline_type_field_klass(Register holder_klass, Register index, Register inline_klass) { 4578 inline_layout_info(holder_klass, index, inline_klass); 4579 movptr(inline_klass, Address(inline_klass, InlineLayoutInfo::klass_offset())); 4580 } 4581 4582 void MacroAssembler::inline_layout_info(Register holder_klass, Register index, Register layout_info) { 4583 movptr(layout_info, Address(holder_klass, InstanceKlass::inline_layout_info_array_offset())); 4584 #ifdef ASSERT 4585 { 4586 Label done; 4587 cmpptr(layout_info, 0); 4588 jcc(Assembler::notEqual, done); 4589 stop("inline_layout_info_array is null"); 4590 bind(done); 4591 } 4592 #endif 4593 4594 InlineLayoutInfo array[2]; 4595 int size = (char*)&array[1] - (char*)&array[0]; // computing size of array elements 4596 if (is_power_of_2(size)) { 4597 shll(index, log2i_exact(size)); // Scale index by power of 2 4598 } else { 4599 imull(index, index, size); // Scale the index to be the entry index * array_element_size 4600 } 4601 lea(layout_info, Address(layout_info, index, Address::times_1, Array<InlineLayoutInfo>::base_offset_in_bytes())); 4602 } 4603 4604 void MacroAssembler::get_default_value_oop(Register inline_klass, Register temp_reg, Register obj) { 4605 #ifdef ASSERT 4606 { 4607 Label done_check; 4608 test_klass_is_inline_type(inline_klass, temp_reg, done_check); 4609 stop("get_default_value_oop from non inline type klass"); 4610 bind(done_check); 4611 } 4612 #endif 4613 Register offset = temp_reg; 4614 // Getting the offset of the pre-allocated default value 4615 movptr(offset, Address(inline_klass, in_bytes(InstanceKlass::adr_inlineklass_fixed_block_offset()))); 4616 movl(offset, Address(offset, in_bytes(InlineKlass::default_value_offset_offset()))); 4617 4618 // Getting the mirror 4619 movptr(obj, Address(inline_klass, in_bytes(Klass::java_mirror_offset()))); 4620 resolve_oop_handle(obj, inline_klass); 4621 4622 // Getting the pre-allocated default value from the mirror 4623 Address field(obj, offset, Address::times_1); 4624 load_heap_oop(obj, field); 4625 } 4626 4627 void MacroAssembler::get_empty_inline_type_oop(Register inline_klass, Register temp_reg, Register obj) { 4628 #ifdef ASSERT 4629 { 4630 Label done_check; 4631 test_klass_is_empty_inline_type(inline_klass, temp_reg, done_check); 4632 stop("get_empty_value from non-empty inline klass"); 4633 bind(done_check); 4634 } 4635 #endif 4636 get_default_value_oop(inline_klass, temp_reg, obj); 4637 } 4638 4639 4640 // Look up the method for a megamorphic invokeinterface call. 4641 // The target method is determined by <intf_klass, itable_index>. 4642 // The receiver klass is in recv_klass. 4643 // On success, the result will be in method_result, and execution falls through. 4644 // On failure, execution transfers to the given label. 4645 void MacroAssembler::lookup_interface_method(Register recv_klass, 4646 Register intf_klass, 4647 RegisterOrConstant itable_index, 4648 Register method_result, 4649 Register scan_temp, 4650 Label& L_no_such_interface, 4651 bool return_method) { 4652 assert_different_registers(recv_klass, intf_klass, scan_temp); 4653 assert_different_registers(method_result, intf_klass, scan_temp); 4654 assert(recv_klass != method_result || !return_method, 4655 "recv_klass can be destroyed when method isn't needed"); 4656 4657 assert(itable_index.is_constant() || itable_index.as_register() == method_result, 4658 "caller must use same register for non-constant itable index as for method"); 4659 4660 // Compute start of first itableOffsetEntry (which is at the end of the vtable) 4661 int vtable_base = in_bytes(Klass::vtable_start_offset()); 4662 int itentry_off = in_bytes(itableMethodEntry::method_offset()); 4663 int scan_step = itableOffsetEntry::size() * wordSize; 4664 int vte_size = vtableEntry::size_in_bytes(); 4665 Address::ScaleFactor times_vte_scale = Address::times_ptr; 4666 assert(vte_size == wordSize, "else adjust times_vte_scale"); 4667 4668 movl(scan_temp, Address(recv_klass, Klass::vtable_length_offset())); 4669 4670 // Could store the aligned, prescaled offset in the klass. 4671 lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base)); 4672 4673 if (return_method) { 4674 // Adjust recv_klass by scaled itable_index, so we can free itable_index. 4675 assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below"); 4676 lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off)); 4677 } 4678 4679 // for (scan = klass->itable(); scan->interface() != nullptr; scan += scan_step) { 4680 // if (scan->interface() == intf) { 4681 // result = (klass + scan->offset() + itable_index); 4682 // } 4683 // } 4684 Label search, found_method; 4685 4686 for (int peel = 1; peel >= 0; peel--) { 4687 movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset())); 4688 cmpptr(intf_klass, method_result); 4689 4690 if (peel) { 4691 jccb(Assembler::equal, found_method); 4692 } else { 4693 jccb(Assembler::notEqual, search); 4694 // (invert the test to fall through to found_method...) 4695 } 4696 4697 if (!peel) break; 4698 4699 bind(search); 4700 4701 // Check that the previous entry is non-null. A null entry means that 4702 // the receiver class doesn't implement the interface, and wasn't the 4703 // same as when the caller was compiled. 4704 testptr(method_result, method_result); 4705 jcc(Assembler::zero, L_no_such_interface); 4706 addptr(scan_temp, scan_step); 4707 } 4708 4709 bind(found_method); 4710 4711 if (return_method) { 4712 // Got a hit. 4713 movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset())); 4714 movptr(method_result, Address(recv_klass, scan_temp, Address::times_1)); 4715 } 4716 } 4717 4718 // Look up the method for a megamorphic invokeinterface call in a single pass over itable: 4719 // - check recv_klass (actual object class) is a subtype of resolved_klass from CompiledICData 4720 // - find a holder_klass (class that implements the method) vtable offset and get the method from vtable by index 4721 // The target method is determined by <holder_klass, itable_index>. 4722 // The receiver klass is in recv_klass. 4723 // On success, the result will be in method_result, and execution falls through. 4724 // On failure, execution transfers to the given label. 4725 void MacroAssembler::lookup_interface_method_stub(Register recv_klass, 4726 Register holder_klass, 4727 Register resolved_klass, 4728 Register method_result, 4729 Register scan_temp, 4730 Register temp_reg2, 4731 Register receiver, 4732 int itable_index, 4733 Label& L_no_such_interface) { 4734 assert_different_registers(recv_klass, method_result, holder_klass, resolved_klass, scan_temp, temp_reg2, receiver); 4735 Register temp_itbl_klass = method_result; 4736 Register temp_reg = (temp_reg2 == noreg ? recv_klass : temp_reg2); // reuse recv_klass register on 32-bit x86 impl 4737 4738 int vtable_base = in_bytes(Klass::vtable_start_offset()); 4739 int itentry_off = in_bytes(itableMethodEntry::method_offset()); 4740 int scan_step = itableOffsetEntry::size() * wordSize; 4741 int vte_size = vtableEntry::size_in_bytes(); 4742 int ioffset = in_bytes(itableOffsetEntry::interface_offset()); 4743 int ooffset = in_bytes(itableOffsetEntry::offset_offset()); 4744 Address::ScaleFactor times_vte_scale = Address::times_ptr; 4745 assert(vte_size == wordSize, "adjust times_vte_scale"); 4746 4747 Label L_loop_scan_resolved_entry, L_resolved_found, L_holder_found; 4748 4749 // temp_itbl_klass = recv_klass.itable[0] 4750 // scan_temp = &recv_klass.itable[0] + step 4751 movl(scan_temp, Address(recv_klass, Klass::vtable_length_offset())); 4752 movptr(temp_itbl_klass, Address(recv_klass, scan_temp, times_vte_scale, vtable_base + ioffset)); 4753 lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base + ioffset + scan_step)); 4754 xorptr(temp_reg, temp_reg); 4755 4756 // Initial checks: 4757 // - if (holder_klass != resolved_klass), go to "scan for resolved" 4758 // - if (itable[0] == 0), no such interface 4759 // - if (itable[0] == holder_klass), shortcut to "holder found" 4760 cmpptr(holder_klass, resolved_klass); 4761 jccb(Assembler::notEqual, L_loop_scan_resolved_entry); 4762 testptr(temp_itbl_klass, temp_itbl_klass); 4763 jccb(Assembler::zero, L_no_such_interface); 4764 cmpptr(holder_klass, temp_itbl_klass); 4765 jccb(Assembler::equal, L_holder_found); 4766 4767 // Loop: Look for holder_klass record in itable 4768 // do { 4769 // tmp = itable[index]; 4770 // index += step; 4771 // if (tmp == holder_klass) { 4772 // goto L_holder_found; // Found! 4773 // } 4774 // } while (tmp != 0); 4775 // goto L_no_such_interface // Not found. 4776 Label L_scan_holder; 4777 bind(L_scan_holder); 4778 movptr(temp_itbl_klass, Address(scan_temp, 0)); 4779 addptr(scan_temp, scan_step); 4780 cmpptr(holder_klass, temp_itbl_klass); 4781 jccb(Assembler::equal, L_holder_found); 4782 testptr(temp_itbl_klass, temp_itbl_klass); 4783 jccb(Assembler::notZero, L_scan_holder); 4784 4785 jmpb(L_no_such_interface); 4786 4787 // Loop: Look for resolved_class record in itable 4788 // do { 4789 // tmp = itable[index]; 4790 // index += step; 4791 // if (tmp == holder_klass) { 4792 // // Also check if we have met a holder klass 4793 // holder_tmp = itable[index-step-ioffset]; 4794 // } 4795 // if (tmp == resolved_klass) { 4796 // goto L_resolved_found; // Found! 4797 // } 4798 // } while (tmp != 0); 4799 // goto L_no_such_interface // Not found. 4800 // 4801 Label L_loop_scan_resolved; 4802 bind(L_loop_scan_resolved); 4803 movptr(temp_itbl_klass, Address(scan_temp, 0)); 4804 addptr(scan_temp, scan_step); 4805 bind(L_loop_scan_resolved_entry); 4806 cmpptr(holder_klass, temp_itbl_klass); 4807 cmovl(Assembler::equal, temp_reg, Address(scan_temp, ooffset - ioffset - scan_step)); 4808 cmpptr(resolved_klass, temp_itbl_klass); 4809 jccb(Assembler::equal, L_resolved_found); 4810 testptr(temp_itbl_klass, temp_itbl_klass); 4811 jccb(Assembler::notZero, L_loop_scan_resolved); 4812 4813 jmpb(L_no_such_interface); 4814 4815 Label L_ready; 4816 4817 // See if we already have a holder klass. If not, go and scan for it. 4818 bind(L_resolved_found); 4819 testptr(temp_reg, temp_reg); 4820 jccb(Assembler::zero, L_scan_holder); 4821 jmpb(L_ready); 4822 4823 bind(L_holder_found); 4824 movl(temp_reg, Address(scan_temp, ooffset - ioffset - scan_step)); 4825 4826 // Finally, temp_reg contains holder_klass vtable offset 4827 bind(L_ready); 4828 assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below"); 4829 if (temp_reg2 == noreg) { // recv_klass register is clobbered for 32-bit x86 impl 4830 load_klass(scan_temp, receiver, noreg); 4831 movptr(method_result, Address(scan_temp, temp_reg, Address::times_1, itable_index * wordSize + itentry_off)); 4832 } else { 4833 movptr(method_result, Address(recv_klass, temp_reg, Address::times_1, itable_index * wordSize + itentry_off)); 4834 } 4835 } 4836 4837 4838 // virtual method calling 4839 void MacroAssembler::lookup_virtual_method(Register recv_klass, 4840 RegisterOrConstant vtable_index, 4841 Register method_result) { 4842 const ByteSize base = Klass::vtable_start_offset(); 4843 assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below"); 4844 Address vtable_entry_addr(recv_klass, 4845 vtable_index, Address::times_ptr, 4846 base + vtableEntry::method_offset()); 4847 movptr(method_result, vtable_entry_addr); 4848 } 4849 4850 4851 void MacroAssembler::check_klass_subtype(Register sub_klass, 4852 Register super_klass, 4853 Register temp_reg, 4854 Label& L_success) { 4855 Label L_failure; 4856 check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg, &L_success, &L_failure, nullptr); 4857 check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, nullptr); 4858 bind(L_failure); 4859 } 4860 4861 4862 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass, 4863 Register super_klass, 4864 Register temp_reg, 4865 Label* L_success, 4866 Label* L_failure, 4867 Label* L_slow_path, 4868 RegisterOrConstant super_check_offset) { 4869 assert_different_registers(sub_klass, super_klass, temp_reg); 4870 bool must_load_sco = (super_check_offset.constant_or_zero() == -1); 4871 if (super_check_offset.is_register()) { 4872 assert_different_registers(sub_klass, super_klass, 4873 super_check_offset.as_register()); 4874 } else if (must_load_sco) { 4875 assert(temp_reg != noreg, "supply either a temp or a register offset"); 4876 } 4877 4878 Label L_fallthrough; 4879 int label_nulls = 0; 4880 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 4881 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 4882 if (L_slow_path == nullptr) { L_slow_path = &L_fallthrough; label_nulls++; } 4883 assert(label_nulls <= 1, "at most one null in the batch"); 4884 4885 int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); 4886 int sco_offset = in_bytes(Klass::super_check_offset_offset()); 4887 Address super_check_offset_addr(super_klass, sco_offset); 4888 4889 // Hacked jcc, which "knows" that L_fallthrough, at least, is in 4890 // range of a jccb. If this routine grows larger, reconsider at 4891 // least some of these. 4892 #define local_jcc(assembler_cond, label) \ 4893 if (&(label) == &L_fallthrough) jccb(assembler_cond, label); \ 4894 else jcc( assembler_cond, label) /*omit semi*/ 4895 4896 // Hacked jmp, which may only be used just before L_fallthrough. 4897 #define final_jmp(label) \ 4898 if (&(label) == &L_fallthrough) { /*do nothing*/ } \ 4899 else jmp(label) /*omit semi*/ 4900 4901 // If the pointers are equal, we are done (e.g., String[] elements). 4902 // This self-check enables sharing of secondary supertype arrays among 4903 // non-primary types such as array-of-interface. Otherwise, each such 4904 // type would need its own customized SSA. 4905 // We move this check to the front of the fast path because many 4906 // type checks are in fact trivially successful in this manner, 4907 // so we get a nicely predicted branch right at the start of the check. 4908 cmpptr(sub_klass, super_klass); 4909 local_jcc(Assembler::equal, *L_success); 4910 4911 // Check the supertype display: 4912 if (must_load_sco) { 4913 // Positive movl does right thing on LP64. 4914 movl(temp_reg, super_check_offset_addr); 4915 super_check_offset = RegisterOrConstant(temp_reg); 4916 } 4917 Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0); 4918 cmpptr(super_klass, super_check_addr); // load displayed supertype 4919 4920 // This check has worked decisively for primary supers. 4921 // Secondary supers are sought in the super_cache ('super_cache_addr'). 4922 // (Secondary supers are interfaces and very deeply nested subtypes.) 4923 // This works in the same check above because of a tricky aliasing 4924 // between the super_cache and the primary super display elements. 4925 // (The 'super_check_addr' can address either, as the case requires.) 4926 // Note that the cache is updated below if it does not help us find 4927 // what we need immediately. 4928 // So if it was a primary super, we can just fail immediately. 4929 // Otherwise, it's the slow path for us (no success at this point). 4930 4931 if (super_check_offset.is_register()) { 4932 local_jcc(Assembler::equal, *L_success); 4933 cmpl(super_check_offset.as_register(), sc_offset); 4934 if (L_failure == &L_fallthrough) { 4935 local_jcc(Assembler::equal, *L_slow_path); 4936 } else { 4937 local_jcc(Assembler::notEqual, *L_failure); 4938 final_jmp(*L_slow_path); 4939 } 4940 } else if (super_check_offset.as_constant() == sc_offset) { 4941 // Need a slow path; fast failure is impossible. 4942 if (L_slow_path == &L_fallthrough) { 4943 local_jcc(Assembler::equal, *L_success); 4944 } else { 4945 local_jcc(Assembler::notEqual, *L_slow_path); 4946 final_jmp(*L_success); 4947 } 4948 } else { 4949 // No slow path; it's a fast decision. 4950 if (L_failure == &L_fallthrough) { 4951 local_jcc(Assembler::equal, *L_success); 4952 } else { 4953 local_jcc(Assembler::notEqual, *L_failure); 4954 final_jmp(*L_success); 4955 } 4956 } 4957 4958 bind(L_fallthrough); 4959 4960 #undef local_jcc 4961 #undef final_jmp 4962 } 4963 4964 4965 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass, 4966 Register super_klass, 4967 Register temp_reg, 4968 Register temp2_reg, 4969 Label* L_success, 4970 Label* L_failure, 4971 bool set_cond_codes) { 4972 assert_different_registers(sub_klass, super_klass, temp_reg); 4973 if (temp2_reg != noreg) 4974 assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg); 4975 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg) 4976 4977 Label L_fallthrough; 4978 int label_nulls = 0; 4979 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 4980 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 4981 assert(label_nulls <= 1, "at most one null in the batch"); 4982 4983 // a couple of useful fields in sub_klass: 4984 int ss_offset = in_bytes(Klass::secondary_supers_offset()); 4985 int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); 4986 Address secondary_supers_addr(sub_klass, ss_offset); 4987 Address super_cache_addr( sub_klass, sc_offset); 4988 4989 // Do a linear scan of the secondary super-klass chain. 4990 // This code is rarely used, so simplicity is a virtue here. 4991 // The repne_scan instruction uses fixed registers, which we must spill. 4992 // Don't worry too much about pre-existing connections with the input regs. 4993 4994 assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super) 4995 assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter) 4996 4997 // Get super_klass value into rax (even if it was in rdi or rcx). 4998 bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false; 4999 if (super_klass != rax) { 5000 if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; } 5001 mov(rax, super_klass); 5002 } 5003 if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; } 5004 if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; } 5005 5006 #ifndef PRODUCT 5007 uint* pst_counter = &SharedRuntime::_partial_subtype_ctr; 5008 ExternalAddress pst_counter_addr((address) pst_counter); 5009 NOT_LP64( incrementl(pst_counter_addr) ); 5010 LP64_ONLY( lea(rcx, pst_counter_addr) ); 5011 LP64_ONLY( incrementl(Address(rcx, 0)) ); 5012 #endif //PRODUCT 5013 5014 // We will consult the secondary-super array. 5015 movptr(rdi, secondary_supers_addr); 5016 // Load the array length. (Positive movl does right thing on LP64.) 5017 movl(rcx, Address(rdi, Array<Klass*>::length_offset_in_bytes())); 5018 // Skip to start of data. 5019 addptr(rdi, Array<Klass*>::base_offset_in_bytes()); 5020 5021 // Scan RCX words at [RDI] for an occurrence of RAX. 5022 // Set NZ/Z based on last compare. 5023 // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does 5024 // not change flags (only scas instruction which is repeated sets flags). 5025 // Set Z = 0 (not equal) before 'repne' to indicate that class was not found. 5026 5027 testptr(rax,rax); // Set Z = 0 5028 repne_scan(); 5029 5030 // Unspill the temp. registers: 5031 if (pushed_rdi) pop(rdi); 5032 if (pushed_rcx) pop(rcx); 5033 if (pushed_rax) pop(rax); 5034 5035 if (set_cond_codes) { 5036 // Special hack for the AD files: rdi is guaranteed non-zero. 5037 assert(!pushed_rdi, "rdi must be left non-null"); 5038 // Also, the condition codes are properly set Z/NZ on succeed/failure. 5039 } 5040 5041 if (L_failure == &L_fallthrough) 5042 jccb(Assembler::notEqual, *L_failure); 5043 else jcc(Assembler::notEqual, *L_failure); 5044 5045 // Success. Cache the super we found and proceed in triumph. 5046 movptr(super_cache_addr, super_klass); 5047 5048 if (L_success != &L_fallthrough) { 5049 jmp(*L_success); 5050 } 5051 5052 #undef IS_A_TEMP 5053 5054 bind(L_fallthrough); 5055 } 5056 5057 #ifdef _LP64 5058 5059 // population_count variant for running without the POPCNT 5060 // instruction, which was introduced with SSE4.2 in 2008. 5061 void MacroAssembler::population_count(Register dst, Register src, 5062 Register scratch1, Register scratch2) { 5063 assert_different_registers(src, scratch1, scratch2); 5064 if (UsePopCountInstruction) { 5065 Assembler::popcntq(dst, src); 5066 } else { 5067 assert_different_registers(src, scratch1, scratch2); 5068 assert_different_registers(dst, scratch1, scratch2); 5069 Label loop, done; 5070 5071 mov(scratch1, src); 5072 // dst = 0; 5073 // while(scratch1 != 0) { 5074 // dst++; 5075 // scratch1 &= (scratch1 - 1); 5076 // } 5077 xorl(dst, dst); 5078 testq(scratch1, scratch1); 5079 jccb(Assembler::equal, done); 5080 { 5081 bind(loop); 5082 incq(dst); 5083 movq(scratch2, scratch1); 5084 decq(scratch2); 5085 andq(scratch1, scratch2); 5086 jccb(Assembler::notEqual, loop); 5087 } 5088 bind(done); 5089 } 5090 } 5091 5092 // Ensure that the inline code and the stub are using the same registers. 5093 #define LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS \ 5094 do { \ 5095 assert(r_super_klass == rax, "mismatch"); \ 5096 assert(r_array_base == rbx, "mismatch"); \ 5097 assert(r_array_length == rcx, "mismatch"); \ 5098 assert(r_array_index == rdx, "mismatch"); \ 5099 assert(r_sub_klass == rsi || r_sub_klass == noreg, "mismatch"); \ 5100 assert(r_bitmap == r11 || r_bitmap == noreg, "mismatch"); \ 5101 assert(result == rdi || result == noreg, "mismatch"); \ 5102 } while(0) 5103 5104 void MacroAssembler::lookup_secondary_supers_table(Register r_sub_klass, 5105 Register r_super_klass, 5106 Register temp1, 5107 Register temp2, 5108 Register temp3, 5109 Register temp4, 5110 Register result, 5111 u1 super_klass_slot) { 5112 assert_different_registers(r_sub_klass, r_super_klass, temp1, temp2, temp3, temp4, result); 5113 5114 Label L_fallthrough, L_success, L_failure; 5115 5116 BLOCK_COMMENT("lookup_secondary_supers_table {"); 5117 5118 const Register 5119 r_array_index = temp1, 5120 r_array_length = temp2, 5121 r_array_base = temp3, 5122 r_bitmap = temp4; 5123 5124 LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS; 5125 5126 xorq(result, result); // = 0 5127 5128 movq(r_bitmap, Address(r_sub_klass, Klass::bitmap_offset())); 5129 movq(r_array_index, r_bitmap); 5130 5131 // First check the bitmap to see if super_klass might be present. If 5132 // the bit is zero, we are certain that super_klass is not one of 5133 // the secondary supers. 5134 u1 bit = super_klass_slot; 5135 { 5136 // NB: If the count in a x86 shift instruction is 0, the flags are 5137 // not affected, so we do a testq instead. 5138 int shift_count = Klass::SECONDARY_SUPERS_TABLE_MASK - bit; 5139 if (shift_count != 0) { 5140 salq(r_array_index, shift_count); 5141 } else { 5142 testq(r_array_index, r_array_index); 5143 } 5144 } 5145 // We test the MSB of r_array_index, i.e. its sign bit 5146 jcc(Assembler::positive, L_failure); 5147 5148 // Get the first array index that can contain super_klass into r_array_index. 5149 if (bit != 0) { 5150 population_count(r_array_index, r_array_index, temp2, temp3); 5151 } else { 5152 movl(r_array_index, 1); 5153 } 5154 // NB! r_array_index is off by 1. It is compensated by keeping r_array_base off by 1 word. 5155 5156 // We will consult the secondary-super array. 5157 movptr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 5158 5159 // We're asserting that the first word in an Array<Klass*> is the 5160 // length, and the second word is the first word of the data. If 5161 // that ever changes, r_array_base will have to be adjusted here. 5162 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "Adjust this code"); 5163 assert(Array<Klass*>::length_offset_in_bytes() == 0, "Adjust this code"); 5164 5165 cmpq(r_super_klass, Address(r_array_base, r_array_index, Address::times_8)); 5166 jccb(Assembler::equal, L_success); 5167 5168 // Is there another entry to check? Consult the bitmap. 5169 btq(r_bitmap, (bit + 1) & Klass::SECONDARY_SUPERS_TABLE_MASK); 5170 jccb(Assembler::carryClear, L_failure); 5171 5172 // Linear probe. Rotate the bitmap so that the next bit to test is 5173 // in Bit 1. 5174 if (bit != 0) { 5175 rorq(r_bitmap, bit); 5176 } 5177 5178 // Calls into the stub generated by lookup_secondary_supers_table_slow_path. 5179 // Arguments: r_super_klass, r_array_base, r_array_index, r_bitmap. 5180 // Kills: r_array_length. 5181 // Returns: result. 5182 call(RuntimeAddress(StubRoutines::lookup_secondary_supers_table_slow_path_stub())); 5183 // Result (0/1) is in rdi 5184 jmpb(L_fallthrough); 5185 5186 bind(L_failure); 5187 incq(result); // 0 => 1 5188 5189 bind(L_success); 5190 // result = 0; 5191 5192 bind(L_fallthrough); 5193 BLOCK_COMMENT("} lookup_secondary_supers_table"); 5194 5195 if (VerifySecondarySupers) { 5196 verify_secondary_supers_table(r_sub_klass, r_super_klass, result, 5197 temp1, temp2, temp3); 5198 } 5199 } 5200 5201 void MacroAssembler::repne_scanq(Register addr, Register value, Register count, Register limit, 5202 Label* L_success, Label* L_failure) { 5203 Label L_loop, L_fallthrough; 5204 { 5205 int label_nulls = 0; 5206 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 5207 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 5208 assert(label_nulls <= 1, "at most one null in the batch"); 5209 } 5210 bind(L_loop); 5211 cmpq(value, Address(addr, count, Address::times_8)); 5212 jcc(Assembler::equal, *L_success); 5213 addl(count, 1); 5214 cmpl(count, limit); 5215 jcc(Assembler::less, L_loop); 5216 5217 if (&L_fallthrough != L_failure) { 5218 jmp(*L_failure); 5219 } 5220 bind(L_fallthrough); 5221 } 5222 5223 // Called by code generated by check_klass_subtype_slow_path 5224 // above. This is called when there is a collision in the hashed 5225 // lookup in the secondary supers array. 5226 void MacroAssembler::lookup_secondary_supers_table_slow_path(Register r_super_klass, 5227 Register r_array_base, 5228 Register r_array_index, 5229 Register r_bitmap, 5230 Register temp1, 5231 Register temp2, 5232 Label* L_success, 5233 Label* L_failure) { 5234 assert_different_registers(r_super_klass, r_array_base, r_array_index, r_bitmap, temp1, temp2); 5235 5236 const Register 5237 r_array_length = temp1, 5238 r_sub_klass = noreg, 5239 result = noreg; 5240 5241 LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS; 5242 5243 Label L_fallthrough; 5244 int label_nulls = 0; 5245 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 5246 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 5247 assert(label_nulls <= 1, "at most one null in the batch"); 5248 5249 // Load the array length. 5250 movl(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes())); 5251 // And adjust the array base to point to the data. 5252 // NB! Effectively increments current slot index by 1. 5253 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, ""); 5254 addptr(r_array_base, Array<Klass*>::base_offset_in_bytes()); 5255 5256 // Linear probe 5257 Label L_huge; 5258 5259 // The bitmap is full to bursting. 5260 // Implicit invariant: BITMAP_FULL implies (length > 0) 5261 cmpl(r_array_length, (int32_t)Klass::SECONDARY_SUPERS_TABLE_SIZE - 2); 5262 jcc(Assembler::greater, L_huge); 5263 5264 // NB! Our caller has checked bits 0 and 1 in the bitmap. The 5265 // current slot (at secondary_supers[r_array_index]) has not yet 5266 // been inspected, and r_array_index may be out of bounds if we 5267 // wrapped around the end of the array. 5268 5269 { // This is conventional linear probing, but instead of terminating 5270 // when a null entry is found in the table, we maintain a bitmap 5271 // in which a 0 indicates missing entries. 5272 // The check above guarantees there are 0s in the bitmap, so the loop 5273 // eventually terminates. 5274 5275 xorl(temp2, temp2); // = 0; 5276 5277 Label L_again; 5278 bind(L_again); 5279 5280 // Check for array wraparound. 5281 cmpl(r_array_index, r_array_length); 5282 cmovl(Assembler::greaterEqual, r_array_index, temp2); 5283 5284 cmpq(r_super_klass, Address(r_array_base, r_array_index, Address::times_8)); 5285 jcc(Assembler::equal, *L_success); 5286 5287 // If the next bit in bitmap is zero, we're done. 5288 btq(r_bitmap, 2); // look-ahead check (Bit 2); Bits 0 and 1 are tested by now 5289 jcc(Assembler::carryClear, *L_failure); 5290 5291 rorq(r_bitmap, 1); // Bits 1/2 => 0/1 5292 addl(r_array_index, 1); 5293 5294 jmp(L_again); 5295 } 5296 5297 { // Degenerate case: more than 64 secondary supers. 5298 // FIXME: We could do something smarter here, maybe a vectorized 5299 // comparison or a binary search, but is that worth any added 5300 // complexity? 5301 bind(L_huge); 5302 xorl(r_array_index, r_array_index); // = 0 5303 repne_scanq(r_array_base, r_super_klass, r_array_index, r_array_length, 5304 L_success, 5305 (&L_fallthrough != L_failure ? L_failure : nullptr)); 5306 5307 bind(L_fallthrough); 5308 } 5309 } 5310 5311 struct VerifyHelperArguments { 5312 Klass* _super; 5313 Klass* _sub; 5314 intptr_t _linear_result; 5315 intptr_t _table_result; 5316 }; 5317 5318 static void verify_secondary_supers_table_helper(const char* msg, VerifyHelperArguments* args) { 5319 Klass::on_secondary_supers_verification_failure(args->_super, 5320 args->_sub, 5321 args->_linear_result, 5322 args->_table_result, 5323 msg); 5324 } 5325 5326 // Make sure that the hashed lookup and a linear scan agree. 5327 void MacroAssembler::verify_secondary_supers_table(Register r_sub_klass, 5328 Register r_super_klass, 5329 Register result, 5330 Register temp1, 5331 Register temp2, 5332 Register temp3) { 5333 const Register 5334 r_array_index = temp1, 5335 r_array_length = temp2, 5336 r_array_base = temp3, 5337 r_bitmap = noreg; 5338 5339 LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS; 5340 5341 BLOCK_COMMENT("verify_secondary_supers_table {"); 5342 5343 Label L_success, L_failure, L_check, L_done; 5344 5345 movptr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 5346 movl(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes())); 5347 // And adjust the array base to point to the data. 5348 addptr(r_array_base, Array<Klass*>::base_offset_in_bytes()); 5349 5350 testl(r_array_length, r_array_length); // array_length == 0? 5351 jcc(Assembler::zero, L_failure); 5352 5353 movl(r_array_index, 0); 5354 repne_scanq(r_array_base, r_super_klass, r_array_index, r_array_length, &L_success); 5355 // fall through to L_failure 5356 5357 const Register linear_result = r_array_index; // reuse temp1 5358 5359 bind(L_failure); // not present 5360 movl(linear_result, 1); 5361 jmp(L_check); 5362 5363 bind(L_success); // present 5364 movl(linear_result, 0); 5365 5366 bind(L_check); 5367 cmpl(linear_result, result); 5368 jcc(Assembler::equal, L_done); 5369 5370 { // To avoid calling convention issues, build a record on the stack 5371 // and pass the pointer to that instead. 5372 push(result); 5373 push(linear_result); 5374 push(r_sub_klass); 5375 push(r_super_klass); 5376 movptr(c_rarg1, rsp); 5377 movptr(c_rarg0, (uintptr_t) "mismatch"); 5378 call(RuntimeAddress(CAST_FROM_FN_PTR(address, verify_secondary_supers_table_helper))); 5379 should_not_reach_here(); 5380 } 5381 bind(L_done); 5382 5383 BLOCK_COMMENT("} verify_secondary_supers_table"); 5384 } 5385 5386 #undef LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS 5387 5388 #endif // LP64 5389 5390 void MacroAssembler::clinit_barrier(Register klass, Register thread, Label* L_fast_path, Label* L_slow_path) { 5391 assert(L_fast_path != nullptr || L_slow_path != nullptr, "at least one is required"); 5392 5393 Label L_fallthrough; 5394 if (L_fast_path == nullptr) { 5395 L_fast_path = &L_fallthrough; 5396 } else if (L_slow_path == nullptr) { 5397 L_slow_path = &L_fallthrough; 5398 } 5399 5400 // Fast path check: class is fully initialized. 5401 // init_state needs acquire, but x86 is TSO, and so we are already good. 5402 cmpb(Address(klass, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized); 5403 jcc(Assembler::equal, *L_fast_path); 5404 5405 // Fast path check: current thread is initializer thread 5406 cmpptr(thread, Address(klass, InstanceKlass::init_thread_offset())); 5407 if (L_slow_path == &L_fallthrough) { 5408 jcc(Assembler::equal, *L_fast_path); 5409 bind(*L_slow_path); 5410 } else if (L_fast_path == &L_fallthrough) { 5411 jcc(Assembler::notEqual, *L_slow_path); 5412 bind(*L_fast_path); 5413 } else { 5414 Unimplemented(); 5415 } 5416 } 5417 5418 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) { 5419 if (VM_Version::supports_cmov()) { 5420 cmovl(cc, dst, src); 5421 } else { 5422 Label L; 5423 jccb(negate_condition(cc), L); 5424 movl(dst, src); 5425 bind(L); 5426 } 5427 } 5428 5429 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) { 5430 if (VM_Version::supports_cmov()) { 5431 cmovl(cc, dst, src); 5432 } else { 5433 Label L; 5434 jccb(negate_condition(cc), L); 5435 movl(dst, src); 5436 bind(L); 5437 } 5438 } 5439 5440 void MacroAssembler::_verify_oop(Register reg, const char* s, const char* file, int line) { 5441 if (!VerifyOops || VerifyAdapterSharing) { 5442 // Below address of the code string confuses VerifyAdapterSharing 5443 // because it may differ between otherwise equivalent adapters. 5444 return; 5445 } 5446 5447 BLOCK_COMMENT("verify_oop {"); 5448 #ifdef _LP64 5449 push(rscratch1); 5450 #endif 5451 push(rax); // save rax 5452 push(reg); // pass register argument 5453 5454 // Pass register number to verify_oop_subroutine 5455 const char* b = nullptr; 5456 { 5457 ResourceMark rm; 5458 stringStream ss; 5459 ss.print("verify_oop: %s: %s (%s:%d)", reg->name(), s, file, line); 5460 b = code_string(ss.as_string()); 5461 } 5462 AddressLiteral buffer((address) b, external_word_Relocation::spec_for_immediate()); 5463 pushptr(buffer.addr(), rscratch1); 5464 5465 // call indirectly to solve generation ordering problem 5466 movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address())); 5467 call(rax); 5468 // Caller pops the arguments (oop, message) and restores rax, r10 5469 BLOCK_COMMENT("} verify_oop"); 5470 } 5471 5472 void MacroAssembler::vallones(XMMRegister dst, int vector_len) { 5473 if (UseAVX > 2 && (vector_len == Assembler::AVX_512bit || VM_Version::supports_avx512vl())) { 5474 // Only pcmpeq has dependency breaking treatment (i.e the execution can begin without 5475 // waiting for the previous result on dst), not vpcmpeqd, so just use vpternlog 5476 vpternlogd(dst, 0xFF, dst, dst, vector_len); 5477 } else if (VM_Version::supports_avx()) { 5478 vpcmpeqd(dst, dst, dst, vector_len); 5479 } else { 5480 assert(VM_Version::supports_sse2(), ""); 5481 pcmpeqd(dst, dst); 5482 } 5483 } 5484 5485 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot, 5486 int extra_slot_offset) { 5487 // cf. TemplateTable::prepare_invoke(), if (load_receiver). 5488 int stackElementSize = Interpreter::stackElementSize; 5489 int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0); 5490 #ifdef ASSERT 5491 int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1); 5492 assert(offset1 - offset == stackElementSize, "correct arithmetic"); 5493 #endif 5494 Register scale_reg = noreg; 5495 Address::ScaleFactor scale_factor = Address::no_scale; 5496 if (arg_slot.is_constant()) { 5497 offset += arg_slot.as_constant() * stackElementSize; 5498 } else { 5499 scale_reg = arg_slot.as_register(); 5500 scale_factor = Address::times(stackElementSize); 5501 } 5502 offset += wordSize; // return PC is on stack 5503 return Address(rsp, scale_reg, scale_factor, offset); 5504 } 5505 5506 void MacroAssembler::_verify_oop_addr(Address addr, const char* s, const char* file, int line) { 5507 if (!VerifyOops || VerifyAdapterSharing) { 5508 // Below address of the code string confuses VerifyAdapterSharing 5509 // because it may differ between otherwise equivalent adapters. 5510 return; 5511 } 5512 5513 #ifdef _LP64 5514 push(rscratch1); 5515 #endif 5516 push(rax); // save rax, 5517 // addr may contain rsp so we will have to adjust it based on the push 5518 // we just did (and on 64 bit we do two pushes) 5519 // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which 5520 // stores rax into addr which is backwards of what was intended. 5521 if (addr.uses(rsp)) { 5522 lea(rax, addr); 5523 pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord)); 5524 } else { 5525 pushptr(addr); 5526 } 5527 5528 // Pass register number to verify_oop_subroutine 5529 const char* b = nullptr; 5530 { 5531 ResourceMark rm; 5532 stringStream ss; 5533 ss.print("verify_oop_addr: %s (%s:%d)", s, file, line); 5534 b = code_string(ss.as_string()); 5535 } 5536 AddressLiteral buffer((address) b, external_word_Relocation::spec_for_immediate()); 5537 pushptr(buffer.addr(), rscratch1); 5538 5539 // call indirectly to solve generation ordering problem 5540 movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address())); 5541 call(rax); 5542 // Caller pops the arguments (addr, message) and restores rax, r10. 5543 } 5544 5545 void MacroAssembler::verify_tlab() { 5546 #ifdef ASSERT 5547 if (UseTLAB && VerifyOops) { 5548 Label next, ok; 5549 Register t1 = rsi; 5550 Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread); 5551 5552 push(t1); 5553 NOT_LP64(push(thread_reg)); 5554 NOT_LP64(get_thread(thread_reg)); 5555 5556 movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset()))); 5557 cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset()))); 5558 jcc(Assembler::aboveEqual, next); 5559 STOP("assert(top >= start)"); 5560 should_not_reach_here(); 5561 5562 bind(next); 5563 movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset()))); 5564 cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset()))); 5565 jcc(Assembler::aboveEqual, ok); 5566 STOP("assert(top <= end)"); 5567 should_not_reach_here(); 5568 5569 bind(ok); 5570 NOT_LP64(pop(thread_reg)); 5571 pop(t1); 5572 } 5573 #endif 5574 } 5575 5576 class ControlWord { 5577 public: 5578 int32_t _value; 5579 5580 int rounding_control() const { return (_value >> 10) & 3 ; } 5581 int precision_control() const { return (_value >> 8) & 3 ; } 5582 bool precision() const { return ((_value >> 5) & 1) != 0; } 5583 bool underflow() const { return ((_value >> 4) & 1) != 0; } 5584 bool overflow() const { return ((_value >> 3) & 1) != 0; } 5585 bool zero_divide() const { return ((_value >> 2) & 1) != 0; } 5586 bool denormalized() const { return ((_value >> 1) & 1) != 0; } 5587 bool invalid() const { return ((_value >> 0) & 1) != 0; } 5588 5589 void print() const { 5590 // rounding control 5591 const char* rc; 5592 switch (rounding_control()) { 5593 case 0: rc = "round near"; break; 5594 case 1: rc = "round down"; break; 5595 case 2: rc = "round up "; break; 5596 case 3: rc = "chop "; break; 5597 default: 5598 rc = nullptr; // silence compiler warnings 5599 fatal("Unknown rounding control: %d", rounding_control()); 5600 }; 5601 // precision control 5602 const char* pc; 5603 switch (precision_control()) { 5604 case 0: pc = "24 bits "; break; 5605 case 1: pc = "reserved"; break; 5606 case 2: pc = "53 bits "; break; 5607 case 3: pc = "64 bits "; break; 5608 default: 5609 pc = nullptr; // silence compiler warnings 5610 fatal("Unknown precision control: %d", precision_control()); 5611 }; 5612 // flags 5613 char f[9]; 5614 f[0] = ' '; 5615 f[1] = ' '; 5616 f[2] = (precision ()) ? 'P' : 'p'; 5617 f[3] = (underflow ()) ? 'U' : 'u'; 5618 f[4] = (overflow ()) ? 'O' : 'o'; 5619 f[5] = (zero_divide ()) ? 'Z' : 'z'; 5620 f[6] = (denormalized()) ? 'D' : 'd'; 5621 f[7] = (invalid ()) ? 'I' : 'i'; 5622 f[8] = '\x0'; 5623 // output 5624 printf("%04x masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc); 5625 } 5626 5627 }; 5628 5629 class StatusWord { 5630 public: 5631 int32_t _value; 5632 5633 bool busy() const { return ((_value >> 15) & 1) != 0; } 5634 bool C3() const { return ((_value >> 14) & 1) != 0; } 5635 bool C2() const { return ((_value >> 10) & 1) != 0; } 5636 bool C1() const { return ((_value >> 9) & 1) != 0; } 5637 bool C0() const { return ((_value >> 8) & 1) != 0; } 5638 int top() const { return (_value >> 11) & 7 ; } 5639 bool error_status() const { return ((_value >> 7) & 1) != 0; } 5640 bool stack_fault() const { return ((_value >> 6) & 1) != 0; } 5641 bool precision() const { return ((_value >> 5) & 1) != 0; } 5642 bool underflow() const { return ((_value >> 4) & 1) != 0; } 5643 bool overflow() const { return ((_value >> 3) & 1) != 0; } 5644 bool zero_divide() const { return ((_value >> 2) & 1) != 0; } 5645 bool denormalized() const { return ((_value >> 1) & 1) != 0; } 5646 bool invalid() const { return ((_value >> 0) & 1) != 0; } 5647 5648 void print() const { 5649 // condition codes 5650 char c[5]; 5651 c[0] = (C3()) ? '3' : '-'; 5652 c[1] = (C2()) ? '2' : '-'; 5653 c[2] = (C1()) ? '1' : '-'; 5654 c[3] = (C0()) ? '0' : '-'; 5655 c[4] = '\x0'; 5656 // flags 5657 char f[9]; 5658 f[0] = (error_status()) ? 'E' : '-'; 5659 f[1] = (stack_fault ()) ? 'S' : '-'; 5660 f[2] = (precision ()) ? 'P' : '-'; 5661 f[3] = (underflow ()) ? 'U' : '-'; 5662 f[4] = (overflow ()) ? 'O' : '-'; 5663 f[5] = (zero_divide ()) ? 'Z' : '-'; 5664 f[6] = (denormalized()) ? 'D' : '-'; 5665 f[7] = (invalid ()) ? 'I' : '-'; 5666 f[8] = '\x0'; 5667 // output 5668 printf("%04x flags = %s, cc = %s, top = %d", _value & 0xFFFF, f, c, top()); 5669 } 5670 5671 }; 5672 5673 class TagWord { 5674 public: 5675 int32_t _value; 5676 5677 int tag_at(int i) const { return (_value >> (i*2)) & 3; } 5678 5679 void print() const { 5680 printf("%04x", _value & 0xFFFF); 5681 } 5682 5683 }; 5684 5685 class FPU_Register { 5686 public: 5687 int32_t _m0; 5688 int32_t _m1; 5689 int16_t _ex; 5690 5691 bool is_indefinite() const { 5692 return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0; 5693 } 5694 5695 void print() const { 5696 char sign = (_ex < 0) ? '-' : '+'; 5697 const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : " "; 5698 printf("%c%04hx.%08x%08x %s", sign, _ex, _m1, _m0, kind); 5699 }; 5700 5701 }; 5702 5703 class FPU_State { 5704 public: 5705 enum { 5706 register_size = 10, 5707 number_of_registers = 8, 5708 register_mask = 7 5709 }; 5710 5711 ControlWord _control_word; 5712 StatusWord _status_word; 5713 TagWord _tag_word; 5714 int32_t _error_offset; 5715 int32_t _error_selector; 5716 int32_t _data_offset; 5717 int32_t _data_selector; 5718 int8_t _register[register_size * number_of_registers]; 5719 5720 int tag_for_st(int i) const { return _tag_word.tag_at((_status_word.top() + i) & register_mask); } 5721 FPU_Register* st(int i) const { return (FPU_Register*)&_register[register_size * i]; } 5722 5723 const char* tag_as_string(int tag) const { 5724 switch (tag) { 5725 case 0: return "valid"; 5726 case 1: return "zero"; 5727 case 2: return "special"; 5728 case 3: return "empty"; 5729 } 5730 ShouldNotReachHere(); 5731 return nullptr; 5732 } 5733 5734 void print() const { 5735 // print computation registers 5736 { int t = _status_word.top(); 5737 for (int i = 0; i < number_of_registers; i++) { 5738 int j = (i - t) & register_mask; 5739 printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j); 5740 st(j)->print(); 5741 printf(" %s\n", tag_as_string(_tag_word.tag_at(i))); 5742 } 5743 } 5744 printf("\n"); 5745 // print control registers 5746 printf("ctrl = "); _control_word.print(); printf("\n"); 5747 printf("stat = "); _status_word .print(); printf("\n"); 5748 printf("tags = "); _tag_word .print(); printf("\n"); 5749 } 5750 5751 }; 5752 5753 class Flag_Register { 5754 public: 5755 int32_t _value; 5756 5757 bool overflow() const { return ((_value >> 11) & 1) != 0; } 5758 bool direction() const { return ((_value >> 10) & 1) != 0; } 5759 bool sign() const { return ((_value >> 7) & 1) != 0; } 5760 bool zero() const { return ((_value >> 6) & 1) != 0; } 5761 bool auxiliary_carry() const { return ((_value >> 4) & 1) != 0; } 5762 bool parity() const { return ((_value >> 2) & 1) != 0; } 5763 bool carry() const { return ((_value >> 0) & 1) != 0; } 5764 5765 void print() const { 5766 // flags 5767 char f[8]; 5768 f[0] = (overflow ()) ? 'O' : '-'; 5769 f[1] = (direction ()) ? 'D' : '-'; 5770 f[2] = (sign ()) ? 'S' : '-'; 5771 f[3] = (zero ()) ? 'Z' : '-'; 5772 f[4] = (auxiliary_carry()) ? 'A' : '-'; 5773 f[5] = (parity ()) ? 'P' : '-'; 5774 f[6] = (carry ()) ? 'C' : '-'; 5775 f[7] = '\x0'; 5776 // output 5777 printf("%08x flags = %s", _value, f); 5778 } 5779 5780 }; 5781 5782 class IU_Register { 5783 public: 5784 int32_t _value; 5785 5786 void print() const { 5787 printf("%08x %11d", _value, _value); 5788 } 5789 5790 }; 5791 5792 class IU_State { 5793 public: 5794 Flag_Register _eflags; 5795 IU_Register _rdi; 5796 IU_Register _rsi; 5797 IU_Register _rbp; 5798 IU_Register _rsp; 5799 IU_Register _rbx; 5800 IU_Register _rdx; 5801 IU_Register _rcx; 5802 IU_Register _rax; 5803 5804 void print() const { 5805 // computation registers 5806 printf("rax, = "); _rax.print(); printf("\n"); 5807 printf("rbx, = "); _rbx.print(); printf("\n"); 5808 printf("rcx = "); _rcx.print(); printf("\n"); 5809 printf("rdx = "); _rdx.print(); printf("\n"); 5810 printf("rdi = "); _rdi.print(); printf("\n"); 5811 printf("rsi = "); _rsi.print(); printf("\n"); 5812 printf("rbp, = "); _rbp.print(); printf("\n"); 5813 printf("rsp = "); _rsp.print(); printf("\n"); 5814 printf("\n"); 5815 // control registers 5816 printf("flgs = "); _eflags.print(); printf("\n"); 5817 } 5818 }; 5819 5820 5821 class CPU_State { 5822 public: 5823 FPU_State _fpu_state; 5824 IU_State _iu_state; 5825 5826 void print() const { 5827 printf("--------------------------------------------------\n"); 5828 _iu_state .print(); 5829 printf("\n"); 5830 _fpu_state.print(); 5831 printf("--------------------------------------------------\n"); 5832 } 5833 5834 }; 5835 5836 5837 static void _print_CPU_state(CPU_State* state) { 5838 state->print(); 5839 }; 5840 5841 5842 void MacroAssembler::print_CPU_state() { 5843 push_CPU_state(); 5844 push(rsp); // pass CPU state 5845 call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state))); 5846 addptr(rsp, wordSize); // discard argument 5847 pop_CPU_state(); 5848 } 5849 5850 5851 #ifndef _LP64 5852 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) { 5853 static int counter = 0; 5854 FPU_State* fs = &state->_fpu_state; 5855 counter++; 5856 // For leaf calls, only verify that the top few elements remain empty. 5857 // We only need 1 empty at the top for C2 code. 5858 if( stack_depth < 0 ) { 5859 if( fs->tag_for_st(7) != 3 ) { 5860 printf("FPR7 not empty\n"); 5861 state->print(); 5862 assert(false, "error"); 5863 return false; 5864 } 5865 return true; // All other stack states do not matter 5866 } 5867 5868 assert((fs->_control_word._value & 0xffff) == StubRoutines::x86::fpu_cntrl_wrd_std(), 5869 "bad FPU control word"); 5870 5871 // compute stack depth 5872 int i = 0; 5873 while (i < FPU_State::number_of_registers && fs->tag_for_st(i) < 3) i++; 5874 int d = i; 5875 while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++; 5876 // verify findings 5877 if (i != FPU_State::number_of_registers) { 5878 // stack not contiguous 5879 printf("%s: stack not contiguous at ST%d\n", s, i); 5880 state->print(); 5881 assert(false, "error"); 5882 return false; 5883 } 5884 // check if computed stack depth corresponds to expected stack depth 5885 if (stack_depth < 0) { 5886 // expected stack depth is -stack_depth or less 5887 if (d > -stack_depth) { 5888 // too many elements on the stack 5889 printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d); 5890 state->print(); 5891 assert(false, "error"); 5892 return false; 5893 } 5894 } else { 5895 // expected stack depth is stack_depth 5896 if (d != stack_depth) { 5897 // wrong stack depth 5898 printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d); 5899 state->print(); 5900 assert(false, "error"); 5901 return false; 5902 } 5903 } 5904 // everything is cool 5905 return true; 5906 } 5907 5908 void MacroAssembler::verify_FPU(int stack_depth, const char* s) { 5909 if (!VerifyFPU) return; 5910 push_CPU_state(); 5911 push(rsp); // pass CPU state 5912 ExternalAddress msg((address) s); 5913 // pass message string s 5914 pushptr(msg.addr(), noreg); 5915 push(stack_depth); // pass stack depth 5916 call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU))); 5917 addptr(rsp, 3 * wordSize); // discard arguments 5918 // check for error 5919 { Label L; 5920 testl(rax, rax); 5921 jcc(Assembler::notZero, L); 5922 int3(); // break if error condition 5923 bind(L); 5924 } 5925 pop_CPU_state(); 5926 } 5927 #endif // _LP64 5928 5929 void MacroAssembler::restore_cpu_control_state_after_jni(Register rscratch) { 5930 // Either restore the MXCSR register after returning from the JNI Call 5931 // or verify that it wasn't changed (with -Xcheck:jni flag). 5932 if (VM_Version::supports_sse()) { 5933 if (RestoreMXCSROnJNICalls) { 5934 ldmxcsr(ExternalAddress(StubRoutines::x86::addr_mxcsr_std()), rscratch); 5935 } else if (CheckJNICalls) { 5936 call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry())); 5937 } 5938 } 5939 // Clear upper bits of YMM registers to avoid SSE <-> AVX transition penalty. 5940 vzeroupper(); 5941 5942 #ifndef _LP64 5943 // Either restore the x87 floating pointer control word after returning 5944 // from the JNI call or verify that it wasn't changed. 5945 if (CheckJNICalls) { 5946 call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry())); 5947 } 5948 #endif // _LP64 5949 } 5950 5951 // ((OopHandle)result).resolve(); 5952 void MacroAssembler::resolve_oop_handle(Register result, Register tmp) { 5953 assert_different_registers(result, tmp); 5954 5955 // Only 64 bit platforms support GCs that require a tmp register 5956 // Only IN_HEAP loads require a thread_tmp register 5957 // OopHandle::resolve is an indirection like jobject. 5958 access_load_at(T_OBJECT, IN_NATIVE, 5959 result, Address(result, 0), tmp, /*tmp_thread*/noreg); 5960 } 5961 5962 // ((WeakHandle)result).resolve(); 5963 void MacroAssembler::resolve_weak_handle(Register rresult, Register rtmp) { 5964 assert_different_registers(rresult, rtmp); 5965 Label resolved; 5966 5967 // A null weak handle resolves to null. 5968 cmpptr(rresult, 0); 5969 jcc(Assembler::equal, resolved); 5970 5971 // Only 64 bit platforms support GCs that require a tmp register 5972 // Only IN_HEAP loads require a thread_tmp register 5973 // WeakHandle::resolve is an indirection like jweak. 5974 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, 5975 rresult, Address(rresult, 0), rtmp, /*tmp_thread*/noreg); 5976 bind(resolved); 5977 } 5978 5979 void MacroAssembler::load_mirror(Register mirror, Register method, Register tmp) { 5980 // get mirror 5981 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 5982 load_method_holder(mirror, method); 5983 movptr(mirror, Address(mirror, mirror_offset)); 5984 resolve_oop_handle(mirror, tmp); 5985 } 5986 5987 void MacroAssembler::load_method_holder_cld(Register rresult, Register rmethod) { 5988 load_method_holder(rresult, rmethod); 5989 movptr(rresult, Address(rresult, InstanceKlass::class_loader_data_offset())); 5990 } 5991 5992 void MacroAssembler::load_method_holder(Register holder, Register method) { 5993 movptr(holder, Address(method, Method::const_offset())); // ConstMethod* 5994 movptr(holder, Address(holder, ConstMethod::constants_offset())); // ConstantPool* 5995 movptr(holder, Address(holder, ConstantPool::pool_holder_offset())); // InstanceKlass* 5996 } 5997 5998 void MacroAssembler::load_metadata(Register dst, Register src) { 5999 if (UseCompressedClassPointers) { 6000 movl(dst, Address(src, oopDesc::klass_offset_in_bytes())); 6001 } else { 6002 movptr(dst, Address(src, oopDesc::klass_offset_in_bytes())); 6003 } 6004 } 6005 6006 void MacroAssembler::load_klass(Register dst, Register src, Register tmp) { 6007 assert_different_registers(src, tmp); 6008 assert_different_registers(dst, tmp); 6009 #ifdef _LP64 6010 if (UseCompressedClassPointers) { 6011 movl(dst, Address(src, oopDesc::klass_offset_in_bytes())); 6012 decode_klass_not_null(dst, tmp); 6013 } else 6014 #endif 6015 movptr(dst, Address(src, oopDesc::klass_offset_in_bytes())); 6016 } 6017 6018 void MacroAssembler::load_prototype_header(Register dst, Register src, Register tmp) { 6019 load_klass(dst, src, tmp); 6020 movptr(dst, Address(dst, Klass::prototype_header_offset())); 6021 } 6022 6023 void MacroAssembler::store_klass(Register dst, Register src, Register tmp) { 6024 assert_different_registers(src, tmp); 6025 assert_different_registers(dst, tmp); 6026 #ifdef _LP64 6027 if (UseCompressedClassPointers) { 6028 encode_klass_not_null(src, tmp); 6029 movl(Address(dst, oopDesc::klass_offset_in_bytes()), src); 6030 } else 6031 #endif 6032 movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src); 6033 } 6034 6035 void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src, 6036 Register tmp1, Register thread_tmp) { 6037 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 6038 decorators = AccessInternal::decorator_fixup(decorators, type); 6039 bool as_raw = (decorators & AS_RAW) != 0; 6040 if (as_raw) { 6041 bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1, thread_tmp); 6042 } else { 6043 bs->load_at(this, decorators, type, dst, src, tmp1, thread_tmp); 6044 } 6045 } 6046 6047 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register val, 6048 Register tmp1, Register tmp2, Register tmp3) { 6049 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 6050 decorators = AccessInternal::decorator_fixup(decorators, type); 6051 bool as_raw = (decorators & AS_RAW) != 0; 6052 if (as_raw) { 6053 bs->BarrierSetAssembler::store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3); 6054 } else { 6055 bs->store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3); 6056 } 6057 } 6058 6059 void MacroAssembler::access_value_copy(DecoratorSet decorators, Register src, Register dst, 6060 Register inline_klass) { 6061 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 6062 bs->value_copy(this, decorators, src, dst, inline_klass); 6063 } 6064 6065 void MacroAssembler::flat_field_copy(DecoratorSet decorators, Register src, Register dst, 6066 Register inline_layout_info) { 6067 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 6068 bs->flat_field_copy(this, decorators, src, dst, inline_layout_info); 6069 } 6070 6071 void MacroAssembler::first_field_offset(Register inline_klass, Register offset) { 6072 movptr(offset, Address(inline_klass, InstanceKlass::adr_inlineklass_fixed_block_offset())); 6073 movl(offset, Address(offset, InlineKlass::first_field_offset_offset())); 6074 } 6075 6076 void MacroAssembler::data_for_oop(Register oop, Register data, Register inline_klass) { 6077 // ((address) (void*) o) + vk->first_field_offset(); 6078 Register offset = (data == oop) ? rscratch1 : data; 6079 first_field_offset(inline_klass, offset); 6080 if (data == oop) { 6081 addptr(data, offset); 6082 } else { 6083 lea(data, Address(oop, offset)); 6084 } 6085 } 6086 6087 void MacroAssembler::data_for_value_array_index(Register array, Register array_klass, 6088 Register index, Register data) { 6089 assert(index != rcx, "index needs to shift by rcx"); 6090 assert_different_registers(array, array_klass, index); 6091 assert_different_registers(rcx, array, index); 6092 6093 // array->base() + (index << Klass::layout_helper_log2_element_size(lh)); 6094 movl(rcx, Address(array_klass, Klass::layout_helper_offset())); 6095 6096 // Klass::layout_helper_log2_element_size(lh) 6097 // (lh >> _lh_log2_element_size_shift) & _lh_log2_element_size_mask; 6098 shrl(rcx, Klass::_lh_log2_element_size_shift); 6099 andl(rcx, Klass::_lh_log2_element_size_mask); 6100 shlptr(index); // index << rcx 6101 6102 lea(data, Address(array, index, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_PRIMITIVE_OBJECT))); 6103 } 6104 6105 void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1, 6106 Register thread_tmp, DecoratorSet decorators) { 6107 access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, thread_tmp); 6108 } 6109 6110 // Doesn't do verification, generates fixed size code 6111 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1, 6112 Register thread_tmp, DecoratorSet decorators) { 6113 access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL | decorators, dst, src, tmp1, thread_tmp); 6114 } 6115 6116 void MacroAssembler::store_heap_oop(Address dst, Register val, Register tmp1, 6117 Register tmp2, Register tmp3, DecoratorSet decorators) { 6118 access_store_at(T_OBJECT, IN_HEAP | decorators, dst, val, tmp1, tmp2, tmp3); 6119 } 6120 6121 // Used for storing nulls. 6122 void MacroAssembler::store_heap_oop_null(Address dst) { 6123 access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg, noreg); 6124 } 6125 6126 #ifdef _LP64 6127 void MacroAssembler::store_klass_gap(Register dst, Register src) { 6128 if (UseCompressedClassPointers) { 6129 // Store to klass gap in destination 6130 movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src); 6131 } 6132 } 6133 6134 #ifdef ASSERT 6135 void MacroAssembler::verify_heapbase(const char* msg) { 6136 assert (UseCompressedOops, "should be compressed"); 6137 assert (Universe::heap() != nullptr, "java heap should be initialized"); 6138 if (CheckCompressedOops) { 6139 Label ok; 6140 ExternalAddress src2(CompressedOops::base_addr()); 6141 const bool is_src2_reachable = reachable(src2); 6142 if (!is_src2_reachable) { 6143 push(rscratch1); // cmpptr trashes rscratch1 6144 } 6145 cmpptr(r12_heapbase, src2, rscratch1); 6146 jcc(Assembler::equal, ok); 6147 STOP(msg); 6148 bind(ok); 6149 if (!is_src2_reachable) { 6150 pop(rscratch1); 6151 } 6152 } 6153 } 6154 #endif 6155 6156 // Algorithm must match oop.inline.hpp encode_heap_oop. 6157 void MacroAssembler::encode_heap_oop(Register r) { 6158 #ifdef ASSERT 6159 verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?"); 6160 #endif 6161 verify_oop_msg(r, "broken oop in encode_heap_oop"); 6162 if (CompressedOops::base() == nullptr) { 6163 if (CompressedOops::shift() != 0) { 6164 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 6165 shrq(r, LogMinObjAlignmentInBytes); 6166 } 6167 return; 6168 } 6169 testq(r, r); 6170 cmovq(Assembler::equal, r, r12_heapbase); 6171 subq(r, r12_heapbase); 6172 shrq(r, LogMinObjAlignmentInBytes); 6173 } 6174 6175 void MacroAssembler::encode_heap_oop_not_null(Register r) { 6176 #ifdef ASSERT 6177 verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?"); 6178 if (CheckCompressedOops) { 6179 Label ok; 6180 testq(r, r); 6181 jcc(Assembler::notEqual, ok); 6182 STOP("null oop passed to encode_heap_oop_not_null"); 6183 bind(ok); 6184 } 6185 #endif 6186 verify_oop_msg(r, "broken oop in encode_heap_oop_not_null"); 6187 if (CompressedOops::base() != nullptr) { 6188 subq(r, r12_heapbase); 6189 } 6190 if (CompressedOops::shift() != 0) { 6191 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 6192 shrq(r, LogMinObjAlignmentInBytes); 6193 } 6194 } 6195 6196 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) { 6197 #ifdef ASSERT 6198 verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?"); 6199 if (CheckCompressedOops) { 6200 Label ok; 6201 testq(src, src); 6202 jcc(Assembler::notEqual, ok); 6203 STOP("null oop passed to encode_heap_oop_not_null2"); 6204 bind(ok); 6205 } 6206 #endif 6207 verify_oop_msg(src, "broken oop in encode_heap_oop_not_null2"); 6208 if (dst != src) { 6209 movq(dst, src); 6210 } 6211 if (CompressedOops::base() != nullptr) { 6212 subq(dst, r12_heapbase); 6213 } 6214 if (CompressedOops::shift() != 0) { 6215 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 6216 shrq(dst, LogMinObjAlignmentInBytes); 6217 } 6218 } 6219 6220 void MacroAssembler::decode_heap_oop(Register r) { 6221 #ifdef ASSERT 6222 verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?"); 6223 #endif 6224 if (CompressedOops::base() == nullptr) { 6225 if (CompressedOops::shift() != 0) { 6226 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 6227 shlq(r, LogMinObjAlignmentInBytes); 6228 } 6229 } else { 6230 Label done; 6231 shlq(r, LogMinObjAlignmentInBytes); 6232 jccb(Assembler::equal, done); 6233 addq(r, r12_heapbase); 6234 bind(done); 6235 } 6236 verify_oop_msg(r, "broken oop in decode_heap_oop"); 6237 } 6238 6239 void MacroAssembler::decode_heap_oop_not_null(Register r) { 6240 // Note: it will change flags 6241 assert (UseCompressedOops, "should only be used for compressed headers"); 6242 assert (Universe::heap() != nullptr, "java heap should be initialized"); 6243 // Cannot assert, unverified entry point counts instructions (see .ad file) 6244 // vtableStubs also counts instructions in pd_code_size_limit. 6245 // Also do not verify_oop as this is called by verify_oop. 6246 if (CompressedOops::shift() != 0) { 6247 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 6248 shlq(r, LogMinObjAlignmentInBytes); 6249 if (CompressedOops::base() != nullptr) { 6250 addq(r, r12_heapbase); 6251 } 6252 } else { 6253 assert (CompressedOops::base() == nullptr, "sanity"); 6254 } 6255 } 6256 6257 void MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) { 6258 // Note: it will change flags 6259 assert (UseCompressedOops, "should only be used for compressed headers"); 6260 assert (Universe::heap() != nullptr, "java heap should be initialized"); 6261 // Cannot assert, unverified entry point counts instructions (see .ad file) 6262 // vtableStubs also counts instructions in pd_code_size_limit. 6263 // Also do not verify_oop as this is called by verify_oop. 6264 if (CompressedOops::shift() != 0) { 6265 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 6266 if (LogMinObjAlignmentInBytes == Address::times_8) { 6267 leaq(dst, Address(r12_heapbase, src, Address::times_8, 0)); 6268 } else { 6269 if (dst != src) { 6270 movq(dst, src); 6271 } 6272 shlq(dst, LogMinObjAlignmentInBytes); 6273 if (CompressedOops::base() != nullptr) { 6274 addq(dst, r12_heapbase); 6275 } 6276 } 6277 } else { 6278 assert (CompressedOops::base() == nullptr, "sanity"); 6279 if (dst != src) { 6280 movq(dst, src); 6281 } 6282 } 6283 } 6284 6285 void MacroAssembler::encode_klass_not_null(Register r, Register tmp) { 6286 assert_different_registers(r, tmp); 6287 if (CompressedKlassPointers::base() != nullptr) { 6288 mov64(tmp, (int64_t)CompressedKlassPointers::base()); 6289 subq(r, tmp); 6290 } 6291 if (CompressedKlassPointers::shift() != 0) { 6292 assert (LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong"); 6293 shrq(r, LogKlassAlignmentInBytes); 6294 } 6295 } 6296 6297 void MacroAssembler::encode_and_move_klass_not_null(Register dst, Register src) { 6298 assert_different_registers(src, dst); 6299 if (CompressedKlassPointers::base() != nullptr) { 6300 mov64(dst, -(int64_t)CompressedKlassPointers::base()); 6301 addq(dst, src); 6302 } else { 6303 movptr(dst, src); 6304 } 6305 if (CompressedKlassPointers::shift() != 0) { 6306 assert (LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong"); 6307 shrq(dst, LogKlassAlignmentInBytes); 6308 } 6309 } 6310 6311 void MacroAssembler::decode_klass_not_null(Register r, Register tmp) { 6312 assert_different_registers(r, tmp); 6313 // Note: it will change flags 6314 assert(UseCompressedClassPointers, "should only be used for compressed headers"); 6315 // Cannot assert, unverified entry point counts instructions (see .ad file) 6316 // vtableStubs also counts instructions in pd_code_size_limit. 6317 // Also do not verify_oop as this is called by verify_oop. 6318 if (CompressedKlassPointers::shift() != 0) { 6319 assert(LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong"); 6320 shlq(r, LogKlassAlignmentInBytes); 6321 } 6322 if (CompressedKlassPointers::base() != nullptr) { 6323 mov64(tmp, (int64_t)CompressedKlassPointers::base()); 6324 addq(r, tmp); 6325 } 6326 } 6327 6328 void MacroAssembler::decode_and_move_klass_not_null(Register dst, Register src) { 6329 assert_different_registers(src, dst); 6330 // Note: it will change flags 6331 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 6332 // Cannot assert, unverified entry point counts instructions (see .ad file) 6333 // vtableStubs also counts instructions in pd_code_size_limit. 6334 // Also do not verify_oop as this is called by verify_oop. 6335 6336 if (CompressedKlassPointers::base() == nullptr && 6337 CompressedKlassPointers::shift() == 0) { 6338 // The best case scenario is that there is no base or shift. Then it is already 6339 // a pointer that needs nothing but a register rename. 6340 movl(dst, src); 6341 } else { 6342 if (CompressedKlassPointers::base() != nullptr) { 6343 mov64(dst, (int64_t)CompressedKlassPointers::base()); 6344 } else { 6345 xorq(dst, dst); 6346 } 6347 if (CompressedKlassPointers::shift() != 0) { 6348 assert(LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong"); 6349 assert(LogKlassAlignmentInBytes == Address::times_8, "klass not aligned on 64bits?"); 6350 leaq(dst, Address(dst, src, Address::times_8, 0)); 6351 } else { 6352 addq(dst, src); 6353 } 6354 } 6355 } 6356 6357 void MacroAssembler::set_narrow_oop(Register dst, jobject obj) { 6358 assert (UseCompressedOops, "should only be used for compressed headers"); 6359 assert (Universe::heap() != nullptr, "java heap should be initialized"); 6360 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 6361 int oop_index = oop_recorder()->find_index(obj); 6362 RelocationHolder rspec = oop_Relocation::spec(oop_index); 6363 mov_narrow_oop(dst, oop_index, rspec); 6364 } 6365 6366 void MacroAssembler::set_narrow_oop(Address dst, jobject obj) { 6367 assert (UseCompressedOops, "should only be used for compressed headers"); 6368 assert (Universe::heap() != nullptr, "java heap should be initialized"); 6369 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 6370 int oop_index = oop_recorder()->find_index(obj); 6371 RelocationHolder rspec = oop_Relocation::spec(oop_index); 6372 mov_narrow_oop(dst, oop_index, rspec); 6373 } 6374 6375 void MacroAssembler::set_narrow_klass(Register dst, Klass* k) { 6376 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 6377 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 6378 int klass_index = oop_recorder()->find_index(k); 6379 RelocationHolder rspec = metadata_Relocation::spec(klass_index); 6380 mov_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec); 6381 } 6382 6383 void MacroAssembler::set_narrow_klass(Address dst, Klass* k) { 6384 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 6385 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 6386 int klass_index = oop_recorder()->find_index(k); 6387 RelocationHolder rspec = metadata_Relocation::spec(klass_index); 6388 mov_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec); 6389 } 6390 6391 void MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) { 6392 assert (UseCompressedOops, "should only be used for compressed headers"); 6393 assert (Universe::heap() != nullptr, "java heap should be initialized"); 6394 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 6395 int oop_index = oop_recorder()->find_index(obj); 6396 RelocationHolder rspec = oop_Relocation::spec(oop_index); 6397 Assembler::cmp_narrow_oop(dst, oop_index, rspec); 6398 } 6399 6400 void MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) { 6401 assert (UseCompressedOops, "should only be used for compressed headers"); 6402 assert (Universe::heap() != nullptr, "java heap should be initialized"); 6403 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 6404 int oop_index = oop_recorder()->find_index(obj); 6405 RelocationHolder rspec = oop_Relocation::spec(oop_index); 6406 Assembler::cmp_narrow_oop(dst, oop_index, rspec); 6407 } 6408 6409 void MacroAssembler::cmp_narrow_klass(Register dst, Klass* k) { 6410 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 6411 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 6412 int klass_index = oop_recorder()->find_index(k); 6413 RelocationHolder rspec = metadata_Relocation::spec(klass_index); 6414 Assembler::cmp_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec); 6415 } 6416 6417 void MacroAssembler::cmp_narrow_klass(Address dst, Klass* k) { 6418 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 6419 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 6420 int klass_index = oop_recorder()->find_index(k); 6421 RelocationHolder rspec = metadata_Relocation::spec(klass_index); 6422 Assembler::cmp_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec); 6423 } 6424 6425 void MacroAssembler::reinit_heapbase() { 6426 if (UseCompressedOops) { 6427 if (Universe::heap() != nullptr) { 6428 if (CompressedOops::base() == nullptr) { 6429 MacroAssembler::xorptr(r12_heapbase, r12_heapbase); 6430 } else { 6431 mov64(r12_heapbase, (int64_t)CompressedOops::base()); 6432 } 6433 } else { 6434 movptr(r12_heapbase, ExternalAddress(CompressedOops::base_addr())); 6435 } 6436 } 6437 } 6438 6439 #endif // _LP64 6440 6441 #if COMPILER2_OR_JVMCI 6442 6443 // clear memory of size 'cnt' qwords, starting at 'base' using XMM/YMM/ZMM registers 6444 void MacroAssembler::xmm_clear_mem(Register base, Register cnt, Register val, XMMRegister xtmp, KRegister mask) { 6445 // cnt - number of qwords (8-byte words). 6446 // base - start address, qword aligned. 6447 Label L_zero_64_bytes, L_loop, L_sloop, L_tail, L_end; 6448 bool use64byteVector = (MaxVectorSize == 64) && (VM_Version::avx3_threshold() == 0); 6449 if (use64byteVector) { 6450 evpbroadcastq(xtmp, val, AVX_512bit); 6451 } else if (MaxVectorSize >= 32) { 6452 movdq(xtmp, val); 6453 punpcklqdq(xtmp, xtmp); 6454 vinserti128_high(xtmp, xtmp); 6455 } else { 6456 movdq(xtmp, val); 6457 punpcklqdq(xtmp, xtmp); 6458 } 6459 jmp(L_zero_64_bytes); 6460 6461 BIND(L_loop); 6462 if (MaxVectorSize >= 32) { 6463 fill64(base, 0, xtmp, use64byteVector); 6464 } else { 6465 movdqu(Address(base, 0), xtmp); 6466 movdqu(Address(base, 16), xtmp); 6467 movdqu(Address(base, 32), xtmp); 6468 movdqu(Address(base, 48), xtmp); 6469 } 6470 addptr(base, 64); 6471 6472 BIND(L_zero_64_bytes); 6473 subptr(cnt, 8); 6474 jccb(Assembler::greaterEqual, L_loop); 6475 6476 // Copy trailing 64 bytes 6477 if (use64byteVector) { 6478 addptr(cnt, 8); 6479 jccb(Assembler::equal, L_end); 6480 fill64_masked(3, base, 0, xtmp, mask, cnt, val, true); 6481 jmp(L_end); 6482 } else { 6483 addptr(cnt, 4); 6484 jccb(Assembler::less, L_tail); 6485 if (MaxVectorSize >= 32) { 6486 vmovdqu(Address(base, 0), xtmp); 6487 } else { 6488 movdqu(Address(base, 0), xtmp); 6489 movdqu(Address(base, 16), xtmp); 6490 } 6491 } 6492 addptr(base, 32); 6493 subptr(cnt, 4); 6494 6495 BIND(L_tail); 6496 addptr(cnt, 4); 6497 jccb(Assembler::lessEqual, L_end); 6498 if (UseAVX > 2 && MaxVectorSize >= 32 && VM_Version::supports_avx512vl()) { 6499 fill32_masked(3, base, 0, xtmp, mask, cnt, val); 6500 } else { 6501 decrement(cnt); 6502 6503 BIND(L_sloop); 6504 movq(Address(base, 0), xtmp); 6505 addptr(base, 8); 6506 decrement(cnt); 6507 jccb(Assembler::greaterEqual, L_sloop); 6508 } 6509 BIND(L_end); 6510 } 6511 6512 int MacroAssembler::store_inline_type_fields_to_buf(ciInlineKlass* vk, bool from_interpreter) { 6513 assert(InlineTypeReturnedAsFields, "Inline types should never be returned as fields"); 6514 // An inline type might be returned. If fields are in registers we 6515 // need to allocate an inline type instance and initialize it with 6516 // the value of the fields. 6517 Label skip; 6518 // We only need a new buffered inline type if a new one is not returned 6519 testptr(rax, 1); 6520 jcc(Assembler::zero, skip); 6521 int call_offset = -1; 6522 6523 #ifdef _LP64 6524 // The following code is similar to allocate_instance but has some slight differences, 6525 // e.g. object size is always not zero, sometimes it's constant; storing klass ptr after 6526 // allocating is not necessary if vk != nullptr, etc. allocate_instance is not aware of these. 6527 Label slow_case; 6528 // 1. Try to allocate a new buffered inline instance either from TLAB or eden space 6529 mov(rscratch1, rax); // save rax for slow_case since *_allocate may corrupt it when allocation failed 6530 if (vk != nullptr) { 6531 // Called from C1, where the return type is statically known. 6532 movptr(rbx, (intptr_t)vk->get_InlineKlass()); 6533 jint lh = vk->layout_helper(); 6534 assert(lh != Klass::_lh_neutral_value, "inline class in return type must have been resolved"); 6535 if (UseTLAB && !Klass::layout_helper_needs_slow_path(lh)) { 6536 tlab_allocate(r15_thread, rax, noreg, lh, r13, r14, slow_case); 6537 } else { 6538 jmp(slow_case); 6539 } 6540 } else { 6541 // Call from interpreter. RAX contains ((the InlineKlass* of the return type) | 0x01) 6542 mov(rbx, rax); 6543 andptr(rbx, -2); 6544 if (UseTLAB) { 6545 movl(r14, Address(rbx, Klass::layout_helper_offset())); 6546 testl(r14, Klass::_lh_instance_slow_path_bit); 6547 jcc(Assembler::notZero, slow_case); 6548 tlab_allocate(r15_thread, rax, r14, 0, r13, r14, slow_case); 6549 } else { 6550 jmp(slow_case); 6551 } 6552 } 6553 if (UseTLAB) { 6554 // 2. Initialize buffered inline instance header 6555 Register buffer_obj = rax; 6556 movptr(Address(buffer_obj, oopDesc::mark_offset_in_bytes()), (intptr_t)markWord::inline_type_prototype().value()); 6557 xorl(r13, r13); 6558 store_klass_gap(buffer_obj, r13); 6559 if (vk == nullptr) { 6560 // store_klass corrupts rbx(klass), so save it in r13 for later use (interpreter case only). 6561 mov(r13, rbx); 6562 } 6563 store_klass(buffer_obj, rbx, rscratch1); 6564 // 3. Initialize its fields with an inline class specific handler 6565 if (vk != nullptr) { 6566 call(RuntimeAddress(vk->pack_handler())); // no need for call info as this will not safepoint. 6567 } else { 6568 movptr(rbx, Address(r13, InstanceKlass::adr_inlineklass_fixed_block_offset())); 6569 movptr(rbx, Address(rbx, InlineKlass::pack_handler_offset())); 6570 call(rbx); 6571 } 6572 jmp(skip); 6573 } 6574 bind(slow_case); 6575 // We failed to allocate a new inline type, fall back to a runtime 6576 // call. Some oop field may be live in some registers but we can't 6577 // tell. That runtime call will take care of preserving them 6578 // across a GC if there's one. 6579 mov(rax, rscratch1); 6580 #endif 6581 6582 if (from_interpreter) { 6583 super_call_VM_leaf(StubRoutines::store_inline_type_fields_to_buf()); 6584 } else { 6585 call(RuntimeAddress(StubRoutines::store_inline_type_fields_to_buf())); 6586 call_offset = offset(); 6587 } 6588 6589 bind(skip); 6590 return call_offset; 6591 } 6592 6593 // Move a value between registers/stack slots and update the reg_state 6594 bool MacroAssembler::move_helper(VMReg from, VMReg to, BasicType bt, RegState reg_state[]) { 6595 assert(from->is_valid() && to->is_valid(), "source and destination must be valid"); 6596 if (reg_state[to->value()] == reg_written) { 6597 return true; // Already written 6598 } 6599 if (from != to && bt != T_VOID) { 6600 if (reg_state[to->value()] == reg_readonly) { 6601 return false; // Not yet writable 6602 } 6603 if (from->is_reg()) { 6604 if (to->is_reg()) { 6605 if (from->is_XMMRegister()) { 6606 if (bt == T_DOUBLE) { 6607 movdbl(to->as_XMMRegister(), from->as_XMMRegister()); 6608 } else { 6609 assert(bt == T_FLOAT, "must be float"); 6610 movflt(to->as_XMMRegister(), from->as_XMMRegister()); 6611 } 6612 } else { 6613 movq(to->as_Register(), from->as_Register()); 6614 } 6615 } else { 6616 int st_off = to->reg2stack() * VMRegImpl::stack_slot_size + wordSize; 6617 Address to_addr = Address(rsp, st_off); 6618 if (from->is_XMMRegister()) { 6619 if (bt == T_DOUBLE) { 6620 movdbl(to_addr, from->as_XMMRegister()); 6621 } else { 6622 assert(bt == T_FLOAT, "must be float"); 6623 movflt(to_addr, from->as_XMMRegister()); 6624 } 6625 } else { 6626 movq(to_addr, from->as_Register()); 6627 } 6628 } 6629 } else { 6630 Address from_addr = Address(rsp, from->reg2stack() * VMRegImpl::stack_slot_size + wordSize); 6631 if (to->is_reg()) { 6632 if (to->is_XMMRegister()) { 6633 if (bt == T_DOUBLE) { 6634 movdbl(to->as_XMMRegister(), from_addr); 6635 } else { 6636 assert(bt == T_FLOAT, "must be float"); 6637 movflt(to->as_XMMRegister(), from_addr); 6638 } 6639 } else { 6640 movq(to->as_Register(), from_addr); 6641 } 6642 } else { 6643 int st_off = to->reg2stack() * VMRegImpl::stack_slot_size + wordSize; 6644 movq(r13, from_addr); 6645 movq(Address(rsp, st_off), r13); 6646 } 6647 } 6648 } 6649 // Update register states 6650 reg_state[from->value()] = reg_writable; 6651 reg_state[to->value()] = reg_written; 6652 return true; 6653 } 6654 6655 // Calculate the extra stack space required for packing or unpacking inline 6656 // args and adjust the stack pointer 6657 int MacroAssembler::extend_stack_for_inline_args(int args_on_stack) { 6658 // Two additional slots to account for return address 6659 int sp_inc = (args_on_stack + 2) * VMRegImpl::stack_slot_size; 6660 sp_inc = align_up(sp_inc, StackAlignmentInBytes); 6661 // Save the return address, adjust the stack (make sure it is properly 6662 // 16-byte aligned) and copy the return address to the new top of the stack. 6663 // The stack will be repaired on return (see MacroAssembler::remove_frame). 6664 assert(sp_inc > 0, "sanity"); 6665 pop(r13); 6666 subptr(rsp, sp_inc); 6667 push(r13); 6668 return sp_inc; 6669 } 6670 6671 // Read all fields from an inline type buffer and store the field values in registers/stack slots. 6672 bool MacroAssembler::unpack_inline_helper(const GrowableArray<SigEntry>* sig, int& sig_index, 6673 VMReg from, int& from_index, VMRegPair* to, int to_count, int& to_index, 6674 RegState reg_state[]) { 6675 assert(sig->at(sig_index)._bt == T_VOID, "should be at end delimiter"); 6676 assert(from->is_valid(), "source must be valid"); 6677 bool progress = false; 6678 #ifdef ASSERT 6679 const int start_offset = offset(); 6680 #endif 6681 6682 Label L_null, L_notNull; 6683 // Don't use r14 as tmp because it's used for spilling (see MacroAssembler::spill_reg_for) 6684 Register tmp1 = r10; 6685 Register tmp2 = r13; 6686 Register fromReg = noreg; 6687 ScalarizedInlineArgsStream stream(sig, sig_index, to, to_count, to_index, -1); 6688 bool done = true; 6689 bool mark_done = true; 6690 VMReg toReg; 6691 BasicType bt; 6692 // Check if argument requires a null check 6693 bool null_check = false; 6694 VMReg nullCheckReg; 6695 while (stream.next(nullCheckReg, bt)) { 6696 if (sig->at(stream.sig_index())._offset == -1) { 6697 null_check = true; 6698 break; 6699 } 6700 } 6701 stream.reset(sig_index, to_index); 6702 while (stream.next(toReg, bt)) { 6703 assert(toReg->is_valid(), "destination must be valid"); 6704 int idx = (int)toReg->value(); 6705 if (reg_state[idx] == reg_readonly) { 6706 if (idx != from->value()) { 6707 mark_done = false; 6708 } 6709 done = false; 6710 continue; 6711 } else if (reg_state[idx] == reg_written) { 6712 continue; 6713 } 6714 assert(reg_state[idx] == reg_writable, "must be writable"); 6715 reg_state[idx] = reg_written; 6716 progress = true; 6717 6718 if (fromReg == noreg) { 6719 if (from->is_reg()) { 6720 fromReg = from->as_Register(); 6721 } else { 6722 int st_off = from->reg2stack() * VMRegImpl::stack_slot_size + wordSize; 6723 movq(tmp1, Address(rsp, st_off)); 6724 fromReg = tmp1; 6725 } 6726 if (null_check) { 6727 // Nullable inline type argument, emit null check 6728 testptr(fromReg, fromReg); 6729 jcc(Assembler::zero, L_null); 6730 } 6731 } 6732 int off = sig->at(stream.sig_index())._offset; 6733 if (off == -1) { 6734 assert(null_check, "Missing null check at"); 6735 if (toReg->is_stack()) { 6736 int st_off = toReg->reg2stack() * VMRegImpl::stack_slot_size + wordSize; 6737 movq(Address(rsp, st_off), 1); 6738 } else { 6739 movq(toReg->as_Register(), 1); 6740 } 6741 continue; 6742 } 6743 assert(off > 0, "offset in object should be positive"); 6744 Address fromAddr = Address(fromReg, off); 6745 if (!toReg->is_XMMRegister()) { 6746 Register dst = toReg->is_stack() ? tmp2 : toReg->as_Register(); 6747 if (is_reference_type(bt)) { 6748 load_heap_oop(dst, fromAddr); 6749 } else { 6750 bool is_signed = (bt != T_CHAR) && (bt != T_BOOLEAN); 6751 load_sized_value(dst, fromAddr, type2aelembytes(bt), is_signed); 6752 } 6753 if (toReg->is_stack()) { 6754 int st_off = toReg->reg2stack() * VMRegImpl::stack_slot_size + wordSize; 6755 movq(Address(rsp, st_off), dst); 6756 } 6757 } else if (bt == T_DOUBLE) { 6758 movdbl(toReg->as_XMMRegister(), fromAddr); 6759 } else { 6760 assert(bt == T_FLOAT, "must be float"); 6761 movflt(toReg->as_XMMRegister(), fromAddr); 6762 } 6763 } 6764 if (progress && null_check) { 6765 if (done) { 6766 jmp(L_notNull); 6767 bind(L_null); 6768 // Set IsInit field to zero to signal that the argument is null. 6769 // Also set all oop fields to zero to make the GC happy. 6770 stream.reset(sig_index, to_index); 6771 while (stream.next(toReg, bt)) { 6772 if (sig->at(stream.sig_index())._offset == -1 || 6773 bt == T_OBJECT || bt == T_ARRAY) { 6774 if (toReg->is_stack()) { 6775 int st_off = toReg->reg2stack() * VMRegImpl::stack_slot_size + wordSize; 6776 movq(Address(rsp, st_off), 0); 6777 } else { 6778 xorq(toReg->as_Register(), toReg->as_Register()); 6779 } 6780 } 6781 } 6782 bind(L_notNull); 6783 } else { 6784 bind(L_null); 6785 } 6786 } 6787 6788 sig_index = stream.sig_index(); 6789 to_index = stream.regs_index(); 6790 6791 if (mark_done && reg_state[from->value()] != reg_written) { 6792 // This is okay because no one else will write to that slot 6793 reg_state[from->value()] = reg_writable; 6794 } 6795 from_index--; 6796 assert(progress || (start_offset == offset()), "should not emit code"); 6797 return done; 6798 } 6799 6800 bool MacroAssembler::pack_inline_helper(const GrowableArray<SigEntry>* sig, int& sig_index, int vtarg_index, 6801 VMRegPair* from, int from_count, int& from_index, VMReg to, 6802 RegState reg_state[], Register val_array) { 6803 assert(sig->at(sig_index)._bt == T_METADATA, "should be at delimiter"); 6804 assert(to->is_valid(), "destination must be valid"); 6805 6806 if (reg_state[to->value()] == reg_written) { 6807 skip_unpacked_fields(sig, sig_index, from, from_count, from_index); 6808 return true; // Already written 6809 } 6810 6811 // TODO 8284443 Isn't it an issue if below code uses r14 as tmp when it contains a spilled value? 6812 // Be careful with r14 because it's used for spilling (see MacroAssembler::spill_reg_for). 6813 Register val_obj_tmp = r11; 6814 Register from_reg_tmp = r14; 6815 Register tmp1 = r10; 6816 Register tmp2 = r13; 6817 Register tmp3 = rbx; 6818 Register val_obj = to->is_stack() ? val_obj_tmp : to->as_Register(); 6819 6820 assert_different_registers(val_obj_tmp, from_reg_tmp, tmp1, tmp2, tmp3, val_array); 6821 6822 if (reg_state[to->value()] == reg_readonly) { 6823 if (!is_reg_in_unpacked_fields(sig, sig_index, to, from, from_count, from_index)) { 6824 skip_unpacked_fields(sig, sig_index, from, from_count, from_index); 6825 return false; // Not yet writable 6826 } 6827 val_obj = val_obj_tmp; 6828 } 6829 6830 int index = arrayOopDesc::base_offset_in_bytes(T_OBJECT) + vtarg_index * type2aelembytes(T_OBJECT); 6831 load_heap_oop(val_obj, Address(val_array, index)); 6832 6833 ScalarizedInlineArgsStream stream(sig, sig_index, from, from_count, from_index); 6834 VMReg fromReg; 6835 BasicType bt; 6836 Label L_null; 6837 while (stream.next(fromReg, bt)) { 6838 assert(fromReg->is_valid(), "source must be valid"); 6839 reg_state[fromReg->value()] = reg_writable; 6840 6841 int off = sig->at(stream.sig_index())._offset; 6842 if (off == -1) { 6843 // Nullable inline type argument, emit null check 6844 Label L_notNull; 6845 if (fromReg->is_stack()) { 6846 int ld_off = fromReg->reg2stack() * VMRegImpl::stack_slot_size + wordSize; 6847 testb(Address(rsp, ld_off), 1); 6848 } else { 6849 testb(fromReg->as_Register(), 1); 6850 } 6851 jcc(Assembler::notZero, L_notNull); 6852 movptr(val_obj, 0); 6853 jmp(L_null); 6854 bind(L_notNull); 6855 continue; 6856 } 6857 6858 assert(off > 0, "offset in object should be positive"); 6859 size_t size_in_bytes = is_java_primitive(bt) ? type2aelembytes(bt) : wordSize; 6860 6861 Address dst(val_obj, off); 6862 if (!fromReg->is_XMMRegister()) { 6863 Register src; 6864 if (fromReg->is_stack()) { 6865 src = from_reg_tmp; 6866 int ld_off = fromReg->reg2stack() * VMRegImpl::stack_slot_size + wordSize; 6867 load_sized_value(src, Address(rsp, ld_off), size_in_bytes, /* is_signed */ false); 6868 } else { 6869 src = fromReg->as_Register(); 6870 } 6871 assert_different_registers(dst.base(), src, tmp1, tmp2, tmp3, val_array); 6872 if (is_reference_type(bt)) { 6873 store_heap_oop(dst, src, tmp1, tmp2, tmp3, IN_HEAP | ACCESS_WRITE | IS_DEST_UNINITIALIZED); 6874 } else { 6875 store_sized_value(dst, src, size_in_bytes); 6876 } 6877 } else if (bt == T_DOUBLE) { 6878 movdbl(dst, fromReg->as_XMMRegister()); 6879 } else { 6880 assert(bt == T_FLOAT, "must be float"); 6881 movflt(dst, fromReg->as_XMMRegister()); 6882 } 6883 } 6884 bind(L_null); 6885 sig_index = stream.sig_index(); 6886 from_index = stream.regs_index(); 6887 6888 assert(reg_state[to->value()] == reg_writable, "must have already been read"); 6889 bool success = move_helper(val_obj->as_VMReg(), to, T_OBJECT, reg_state); 6890 assert(success, "to register must be writeable"); 6891 return true; 6892 } 6893 6894 VMReg MacroAssembler::spill_reg_for(VMReg reg) { 6895 return reg->is_XMMRegister() ? xmm8->as_VMReg() : r14->as_VMReg(); 6896 } 6897 6898 void MacroAssembler::remove_frame(int initial_framesize, bool needs_stack_repair) { 6899 assert((initial_framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned"); 6900 if (needs_stack_repair) { 6901 movq(rbp, Address(rsp, initial_framesize)); 6902 // The stack increment resides just below the saved rbp 6903 addq(rsp, Address(rsp, initial_framesize - wordSize)); 6904 } else { 6905 if (initial_framesize > 0) { 6906 addq(rsp, initial_framesize); 6907 } 6908 pop(rbp); 6909 } 6910 } 6911 6912 // Clearing constant sized memory using YMM/ZMM registers. 6913 void MacroAssembler::clear_mem(Register base, int cnt, Register rtmp, XMMRegister xtmp, KRegister mask) { 6914 assert(UseAVX > 2 && VM_Version::supports_avx512vl(), ""); 6915 bool use64byteVector = (MaxVectorSize > 32) && (VM_Version::avx3_threshold() == 0); 6916 6917 int vector64_count = (cnt & (~0x7)) >> 3; 6918 cnt = cnt & 0x7; 6919 const int fill64_per_loop = 4; 6920 const int max_unrolled_fill64 = 8; 6921 6922 // 64 byte initialization loop. 6923 vpxor(xtmp, xtmp, xtmp, use64byteVector ? AVX_512bit : AVX_256bit); 6924 int start64 = 0; 6925 if (vector64_count > max_unrolled_fill64) { 6926 Label LOOP; 6927 Register index = rtmp; 6928 6929 start64 = vector64_count - (vector64_count % fill64_per_loop); 6930 6931 movl(index, 0); 6932 BIND(LOOP); 6933 for (int i = 0; i < fill64_per_loop; i++) { 6934 fill64(Address(base, index, Address::times_1, i * 64), xtmp, use64byteVector); 6935 } 6936 addl(index, fill64_per_loop * 64); 6937 cmpl(index, start64 * 64); 6938 jccb(Assembler::less, LOOP); 6939 } 6940 for (int i = start64; i < vector64_count; i++) { 6941 fill64(base, i * 64, xtmp, use64byteVector); 6942 } 6943 6944 // Clear remaining 64 byte tail. 6945 int disp = vector64_count * 64; 6946 if (cnt) { 6947 switch (cnt) { 6948 case 1: 6949 movq(Address(base, disp), xtmp); 6950 break; 6951 case 2: 6952 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_128bit); 6953 break; 6954 case 3: 6955 movl(rtmp, 0x7); 6956 kmovwl(mask, rtmp); 6957 evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_256bit); 6958 break; 6959 case 4: 6960 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit); 6961 break; 6962 case 5: 6963 if (use64byteVector) { 6964 movl(rtmp, 0x1F); 6965 kmovwl(mask, rtmp); 6966 evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_512bit); 6967 } else { 6968 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit); 6969 movq(Address(base, disp + 32), xtmp); 6970 } 6971 break; 6972 case 6: 6973 if (use64byteVector) { 6974 movl(rtmp, 0x3F); 6975 kmovwl(mask, rtmp); 6976 evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_512bit); 6977 } else { 6978 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit); 6979 evmovdqu(T_LONG, k0, Address(base, disp + 32), xtmp, false, Assembler::AVX_128bit); 6980 } 6981 break; 6982 case 7: 6983 if (use64byteVector) { 6984 movl(rtmp, 0x7F); 6985 kmovwl(mask, rtmp); 6986 evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_512bit); 6987 } else { 6988 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit); 6989 movl(rtmp, 0x7); 6990 kmovwl(mask, rtmp); 6991 evmovdqu(T_LONG, mask, Address(base, disp + 32), xtmp, true, Assembler::AVX_256bit); 6992 } 6993 break; 6994 default: 6995 fatal("Unexpected length : %d\n",cnt); 6996 break; 6997 } 6998 } 6999 } 7000 7001 void MacroAssembler::clear_mem(Register base, Register cnt, Register val, XMMRegister xtmp, 7002 bool is_large, bool word_copy_only, KRegister mask) { 7003 // cnt - number of qwords (8-byte words). 7004 // base - start address, qword aligned. 7005 // is_large - if optimizers know cnt is larger than InitArrayShortSize 7006 assert(base==rdi, "base register must be edi for rep stos"); 7007 assert(val==rax, "val register must be eax for rep stos"); 7008 assert(cnt==rcx, "cnt register must be ecx for rep stos"); 7009 assert(InitArrayShortSize % BytesPerLong == 0, 7010 "InitArrayShortSize should be the multiple of BytesPerLong"); 7011 7012 Label DONE; 7013 7014 if (!is_large) { 7015 Label LOOP, LONG; 7016 cmpptr(cnt, InitArrayShortSize/BytesPerLong); 7017 jccb(Assembler::greater, LONG); 7018 7019 NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM 7020 7021 decrement(cnt); 7022 jccb(Assembler::negative, DONE); // Zero length 7023 7024 // Use individual pointer-sized stores for small counts: 7025 BIND(LOOP); 7026 movptr(Address(base, cnt, Address::times_ptr), val); 7027 decrement(cnt); 7028 jccb(Assembler::greaterEqual, LOOP); 7029 jmpb(DONE); 7030 7031 BIND(LONG); 7032 } 7033 7034 // Use longer rep-prefixed ops for non-small counts: 7035 if (UseFastStosb && !word_copy_only) { 7036 shlptr(cnt, 3); // convert to number of bytes 7037 rep_stosb(); 7038 } else if (UseXMMForObjInit) { 7039 xmm_clear_mem(base, cnt, val, xtmp, mask); 7040 } else { 7041 NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM 7042 rep_stos(); 7043 } 7044 7045 BIND(DONE); 7046 } 7047 7048 #endif //COMPILER2_OR_JVMCI 7049 7050 7051 void MacroAssembler::generate_fill(BasicType t, bool aligned, 7052 Register to, Register value, Register count, 7053 Register rtmp, XMMRegister xtmp) { 7054 ShortBranchVerifier sbv(this); 7055 assert_different_registers(to, value, count, rtmp); 7056 Label L_exit; 7057 Label L_fill_2_bytes, L_fill_4_bytes; 7058 7059 #if defined(COMPILER2) && defined(_LP64) 7060 if(MaxVectorSize >=32 && 7061 VM_Version::supports_avx512vlbw() && 7062 VM_Version::supports_bmi2()) { 7063 generate_fill_avx3(t, to, value, count, rtmp, xtmp); 7064 return; 7065 } 7066 #endif 7067 7068 int shift = -1; 7069 switch (t) { 7070 case T_BYTE: 7071 shift = 2; 7072 break; 7073 case T_SHORT: 7074 shift = 1; 7075 break; 7076 case T_INT: 7077 shift = 0; 7078 break; 7079 default: ShouldNotReachHere(); 7080 } 7081 7082 if (t == T_BYTE) { 7083 andl(value, 0xff); 7084 movl(rtmp, value); 7085 shll(rtmp, 8); 7086 orl(value, rtmp); 7087 } 7088 if (t == T_SHORT) { 7089 andl(value, 0xffff); 7090 } 7091 if (t == T_BYTE || t == T_SHORT) { 7092 movl(rtmp, value); 7093 shll(rtmp, 16); 7094 orl(value, rtmp); 7095 } 7096 7097 cmpptr(count, 2<<shift); // Short arrays (< 8 bytes) fill by element 7098 jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp 7099 if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) { 7100 Label L_skip_align2; 7101 // align source address at 4 bytes address boundary 7102 if (t == T_BYTE) { 7103 Label L_skip_align1; 7104 // One byte misalignment happens only for byte arrays 7105 testptr(to, 1); 7106 jccb(Assembler::zero, L_skip_align1); 7107 movb(Address(to, 0), value); 7108 increment(to); 7109 decrement(count); 7110 BIND(L_skip_align1); 7111 } 7112 // Two bytes misalignment happens only for byte and short (char) arrays 7113 testptr(to, 2); 7114 jccb(Assembler::zero, L_skip_align2); 7115 movw(Address(to, 0), value); 7116 addptr(to, 2); 7117 subptr(count, 1<<(shift-1)); 7118 BIND(L_skip_align2); 7119 } 7120 if (UseSSE < 2) { 7121 Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes; 7122 // Fill 32-byte chunks 7123 subptr(count, 8 << shift); 7124 jcc(Assembler::less, L_check_fill_8_bytes); 7125 align(16); 7126 7127 BIND(L_fill_32_bytes_loop); 7128 7129 for (int i = 0; i < 32; i += 4) { 7130 movl(Address(to, i), value); 7131 } 7132 7133 addptr(to, 32); 7134 subptr(count, 8 << shift); 7135 jcc(Assembler::greaterEqual, L_fill_32_bytes_loop); 7136 BIND(L_check_fill_8_bytes); 7137 addptr(count, 8 << shift); 7138 jccb(Assembler::zero, L_exit); 7139 jmpb(L_fill_8_bytes); 7140 7141 // 7142 // length is too short, just fill qwords 7143 // 7144 BIND(L_fill_8_bytes_loop); 7145 movl(Address(to, 0), value); 7146 movl(Address(to, 4), value); 7147 addptr(to, 8); 7148 BIND(L_fill_8_bytes); 7149 subptr(count, 1 << (shift + 1)); 7150 jcc(Assembler::greaterEqual, L_fill_8_bytes_loop); 7151 // fall through to fill 4 bytes 7152 } else { 7153 Label L_fill_32_bytes; 7154 if (!UseUnalignedLoadStores) { 7155 // align to 8 bytes, we know we are 4 byte aligned to start 7156 testptr(to, 4); 7157 jccb(Assembler::zero, L_fill_32_bytes); 7158 movl(Address(to, 0), value); 7159 addptr(to, 4); 7160 subptr(count, 1<<shift); 7161 } 7162 BIND(L_fill_32_bytes); 7163 { 7164 assert( UseSSE >= 2, "supported cpu only" ); 7165 Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes; 7166 movdl(xtmp, value); 7167 if (UseAVX >= 2 && UseUnalignedLoadStores) { 7168 Label L_check_fill_32_bytes; 7169 if (UseAVX > 2) { 7170 // Fill 64-byte chunks 7171 Label L_fill_64_bytes_loop_avx3, L_check_fill_64_bytes_avx2; 7172 7173 // If number of bytes to fill < VM_Version::avx3_threshold(), perform fill using AVX2 7174 cmpptr(count, VM_Version::avx3_threshold()); 7175 jccb(Assembler::below, L_check_fill_64_bytes_avx2); 7176 7177 vpbroadcastd(xtmp, xtmp, Assembler::AVX_512bit); 7178 7179 subptr(count, 16 << shift); 7180 jccb(Assembler::less, L_check_fill_32_bytes); 7181 align(16); 7182 7183 BIND(L_fill_64_bytes_loop_avx3); 7184 evmovdqul(Address(to, 0), xtmp, Assembler::AVX_512bit); 7185 addptr(to, 64); 7186 subptr(count, 16 << shift); 7187 jcc(Assembler::greaterEqual, L_fill_64_bytes_loop_avx3); 7188 jmpb(L_check_fill_32_bytes); 7189 7190 BIND(L_check_fill_64_bytes_avx2); 7191 } 7192 // Fill 64-byte chunks 7193 Label L_fill_64_bytes_loop; 7194 vpbroadcastd(xtmp, xtmp, Assembler::AVX_256bit); 7195 7196 subptr(count, 16 << shift); 7197 jcc(Assembler::less, L_check_fill_32_bytes); 7198 align(16); 7199 7200 BIND(L_fill_64_bytes_loop); 7201 vmovdqu(Address(to, 0), xtmp); 7202 vmovdqu(Address(to, 32), xtmp); 7203 addptr(to, 64); 7204 subptr(count, 16 << shift); 7205 jcc(Assembler::greaterEqual, L_fill_64_bytes_loop); 7206 7207 BIND(L_check_fill_32_bytes); 7208 addptr(count, 8 << shift); 7209 jccb(Assembler::less, L_check_fill_8_bytes); 7210 vmovdqu(Address(to, 0), xtmp); 7211 addptr(to, 32); 7212 subptr(count, 8 << shift); 7213 7214 BIND(L_check_fill_8_bytes); 7215 // clean upper bits of YMM registers 7216 movdl(xtmp, value); 7217 pshufd(xtmp, xtmp, 0); 7218 } else { 7219 // Fill 32-byte chunks 7220 pshufd(xtmp, xtmp, 0); 7221 7222 subptr(count, 8 << shift); 7223 jcc(Assembler::less, L_check_fill_8_bytes); 7224 align(16); 7225 7226 BIND(L_fill_32_bytes_loop); 7227 7228 if (UseUnalignedLoadStores) { 7229 movdqu(Address(to, 0), xtmp); 7230 movdqu(Address(to, 16), xtmp); 7231 } else { 7232 movq(Address(to, 0), xtmp); 7233 movq(Address(to, 8), xtmp); 7234 movq(Address(to, 16), xtmp); 7235 movq(Address(to, 24), xtmp); 7236 } 7237 7238 addptr(to, 32); 7239 subptr(count, 8 << shift); 7240 jcc(Assembler::greaterEqual, L_fill_32_bytes_loop); 7241 7242 BIND(L_check_fill_8_bytes); 7243 } 7244 addptr(count, 8 << shift); 7245 jccb(Assembler::zero, L_exit); 7246 jmpb(L_fill_8_bytes); 7247 7248 // 7249 // length is too short, just fill qwords 7250 // 7251 BIND(L_fill_8_bytes_loop); 7252 movq(Address(to, 0), xtmp); 7253 addptr(to, 8); 7254 BIND(L_fill_8_bytes); 7255 subptr(count, 1 << (shift + 1)); 7256 jcc(Assembler::greaterEqual, L_fill_8_bytes_loop); 7257 } 7258 } 7259 // fill trailing 4 bytes 7260 BIND(L_fill_4_bytes); 7261 testl(count, 1<<shift); 7262 jccb(Assembler::zero, L_fill_2_bytes); 7263 movl(Address(to, 0), value); 7264 if (t == T_BYTE || t == T_SHORT) { 7265 Label L_fill_byte; 7266 addptr(to, 4); 7267 BIND(L_fill_2_bytes); 7268 // fill trailing 2 bytes 7269 testl(count, 1<<(shift-1)); 7270 jccb(Assembler::zero, L_fill_byte); 7271 movw(Address(to, 0), value); 7272 if (t == T_BYTE) { 7273 addptr(to, 2); 7274 BIND(L_fill_byte); 7275 // fill trailing byte 7276 testl(count, 1); 7277 jccb(Assembler::zero, L_exit); 7278 movb(Address(to, 0), value); 7279 } else { 7280 BIND(L_fill_byte); 7281 } 7282 } else { 7283 BIND(L_fill_2_bytes); 7284 } 7285 BIND(L_exit); 7286 } 7287 7288 void MacroAssembler::evpbroadcast(BasicType type, XMMRegister dst, Register src, int vector_len) { 7289 switch(type) { 7290 case T_BYTE: 7291 case T_BOOLEAN: 7292 evpbroadcastb(dst, src, vector_len); 7293 break; 7294 case T_SHORT: 7295 case T_CHAR: 7296 evpbroadcastw(dst, src, vector_len); 7297 break; 7298 case T_INT: 7299 case T_FLOAT: 7300 evpbroadcastd(dst, src, vector_len); 7301 break; 7302 case T_LONG: 7303 case T_DOUBLE: 7304 evpbroadcastq(dst, src, vector_len); 7305 break; 7306 default: 7307 fatal("Unhandled type : %s", type2name(type)); 7308 break; 7309 } 7310 } 7311 7312 // encode char[] to byte[] in ISO_8859_1 or ASCII 7313 //@IntrinsicCandidate 7314 //private static int implEncodeISOArray(byte[] sa, int sp, 7315 //byte[] da, int dp, int len) { 7316 // int i = 0; 7317 // for (; i < len; i++) { 7318 // char c = StringUTF16.getChar(sa, sp++); 7319 // if (c > '\u00FF') 7320 // break; 7321 // da[dp++] = (byte)c; 7322 // } 7323 // return i; 7324 //} 7325 // 7326 //@IntrinsicCandidate 7327 //private static int implEncodeAsciiArray(char[] sa, int sp, 7328 // byte[] da, int dp, int len) { 7329 // int i = 0; 7330 // for (; i < len; i++) { 7331 // char c = sa[sp++]; 7332 // if (c >= '\u0080') 7333 // break; 7334 // da[dp++] = (byte)c; 7335 // } 7336 // return i; 7337 //} 7338 void MacroAssembler::encode_iso_array(Register src, Register dst, Register len, 7339 XMMRegister tmp1Reg, XMMRegister tmp2Reg, 7340 XMMRegister tmp3Reg, XMMRegister tmp4Reg, 7341 Register tmp5, Register result, bool ascii) { 7342 7343 // rsi: src 7344 // rdi: dst 7345 // rdx: len 7346 // rcx: tmp5 7347 // rax: result 7348 ShortBranchVerifier sbv(this); 7349 assert_different_registers(src, dst, len, tmp5, result); 7350 Label L_done, L_copy_1_char, L_copy_1_char_exit; 7351 7352 int mask = ascii ? 0xff80ff80 : 0xff00ff00; 7353 int short_mask = ascii ? 0xff80 : 0xff00; 7354 7355 // set result 7356 xorl(result, result); 7357 // check for zero length 7358 testl(len, len); 7359 jcc(Assembler::zero, L_done); 7360 7361 movl(result, len); 7362 7363 // Setup pointers 7364 lea(src, Address(src, len, Address::times_2)); // char[] 7365 lea(dst, Address(dst, len, Address::times_1)); // byte[] 7366 negptr(len); 7367 7368 if (UseSSE42Intrinsics || UseAVX >= 2) { 7369 Label L_copy_8_chars, L_copy_8_chars_exit; 7370 Label L_chars_16_check, L_copy_16_chars, L_copy_16_chars_exit; 7371 7372 if (UseAVX >= 2) { 7373 Label L_chars_32_check, L_copy_32_chars, L_copy_32_chars_exit; 7374 movl(tmp5, mask); // create mask to test for Unicode or non-ASCII chars in vector 7375 movdl(tmp1Reg, tmp5); 7376 vpbroadcastd(tmp1Reg, tmp1Reg, Assembler::AVX_256bit); 7377 jmp(L_chars_32_check); 7378 7379 bind(L_copy_32_chars); 7380 vmovdqu(tmp3Reg, Address(src, len, Address::times_2, -64)); 7381 vmovdqu(tmp4Reg, Address(src, len, Address::times_2, -32)); 7382 vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1); 7383 vptest(tmp2Reg, tmp1Reg); // check for Unicode or non-ASCII chars in vector 7384 jccb(Assembler::notZero, L_copy_32_chars_exit); 7385 vpackuswb(tmp3Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1); 7386 vpermq(tmp4Reg, tmp3Reg, 0xD8, /* vector_len */ 1); 7387 vmovdqu(Address(dst, len, Address::times_1, -32), tmp4Reg); 7388 7389 bind(L_chars_32_check); 7390 addptr(len, 32); 7391 jcc(Assembler::lessEqual, L_copy_32_chars); 7392 7393 bind(L_copy_32_chars_exit); 7394 subptr(len, 16); 7395 jccb(Assembler::greater, L_copy_16_chars_exit); 7396 7397 } else if (UseSSE42Intrinsics) { 7398 movl(tmp5, mask); // create mask to test for Unicode or non-ASCII chars in vector 7399 movdl(tmp1Reg, tmp5); 7400 pshufd(tmp1Reg, tmp1Reg, 0); 7401 jmpb(L_chars_16_check); 7402 } 7403 7404 bind(L_copy_16_chars); 7405 if (UseAVX >= 2) { 7406 vmovdqu(tmp2Reg, Address(src, len, Address::times_2, -32)); 7407 vptest(tmp2Reg, tmp1Reg); 7408 jcc(Assembler::notZero, L_copy_16_chars_exit); 7409 vpackuswb(tmp2Reg, tmp2Reg, tmp1Reg, /* vector_len */ 1); 7410 vpermq(tmp3Reg, tmp2Reg, 0xD8, /* vector_len */ 1); 7411 } else { 7412 if (UseAVX > 0) { 7413 movdqu(tmp3Reg, Address(src, len, Address::times_2, -32)); 7414 movdqu(tmp4Reg, Address(src, len, Address::times_2, -16)); 7415 vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 0); 7416 } else { 7417 movdqu(tmp3Reg, Address(src, len, Address::times_2, -32)); 7418 por(tmp2Reg, tmp3Reg); 7419 movdqu(tmp4Reg, Address(src, len, Address::times_2, -16)); 7420 por(tmp2Reg, tmp4Reg); 7421 } 7422 ptest(tmp2Reg, tmp1Reg); // check for Unicode or non-ASCII chars in vector 7423 jccb(Assembler::notZero, L_copy_16_chars_exit); 7424 packuswb(tmp3Reg, tmp4Reg); 7425 } 7426 movdqu(Address(dst, len, Address::times_1, -16), tmp3Reg); 7427 7428 bind(L_chars_16_check); 7429 addptr(len, 16); 7430 jcc(Assembler::lessEqual, L_copy_16_chars); 7431 7432 bind(L_copy_16_chars_exit); 7433 if (UseAVX >= 2) { 7434 // clean upper bits of YMM registers 7435 vpxor(tmp2Reg, tmp2Reg); 7436 vpxor(tmp3Reg, tmp3Reg); 7437 vpxor(tmp4Reg, tmp4Reg); 7438 movdl(tmp1Reg, tmp5); 7439 pshufd(tmp1Reg, tmp1Reg, 0); 7440 } 7441 subptr(len, 8); 7442 jccb(Assembler::greater, L_copy_8_chars_exit); 7443 7444 bind(L_copy_8_chars); 7445 movdqu(tmp3Reg, Address(src, len, Address::times_2, -16)); 7446 ptest(tmp3Reg, tmp1Reg); 7447 jccb(Assembler::notZero, L_copy_8_chars_exit); 7448 packuswb(tmp3Reg, tmp1Reg); 7449 movq(Address(dst, len, Address::times_1, -8), tmp3Reg); 7450 addptr(len, 8); 7451 jccb(Assembler::lessEqual, L_copy_8_chars); 7452 7453 bind(L_copy_8_chars_exit); 7454 subptr(len, 8); 7455 jccb(Assembler::zero, L_done); 7456 } 7457 7458 bind(L_copy_1_char); 7459 load_unsigned_short(tmp5, Address(src, len, Address::times_2, 0)); 7460 testl(tmp5, short_mask); // check if Unicode or non-ASCII char 7461 jccb(Assembler::notZero, L_copy_1_char_exit); 7462 movb(Address(dst, len, Address::times_1, 0), tmp5); 7463 addptr(len, 1); 7464 jccb(Assembler::less, L_copy_1_char); 7465 7466 bind(L_copy_1_char_exit); 7467 addptr(result, len); // len is negative count of not processed elements 7468 7469 bind(L_done); 7470 } 7471 7472 #ifdef _LP64 7473 /** 7474 * Helper for multiply_to_len(). 7475 */ 7476 void MacroAssembler::add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) { 7477 addq(dest_lo, src1); 7478 adcq(dest_hi, 0); 7479 addq(dest_lo, src2); 7480 adcq(dest_hi, 0); 7481 } 7482 7483 /** 7484 * Multiply 64 bit by 64 bit first loop. 7485 */ 7486 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart, 7487 Register y, Register y_idx, Register z, 7488 Register carry, Register product, 7489 Register idx, Register kdx) { 7490 // 7491 // jlong carry, x[], y[], z[]; 7492 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 7493 // huge_128 product = y[idx] * x[xstart] + carry; 7494 // z[kdx] = (jlong)product; 7495 // carry = (jlong)(product >>> 64); 7496 // } 7497 // z[xstart] = carry; 7498 // 7499 7500 Label L_first_loop, L_first_loop_exit; 7501 Label L_one_x, L_one_y, L_multiply; 7502 7503 decrementl(xstart); 7504 jcc(Assembler::negative, L_one_x); 7505 7506 movq(x_xstart, Address(x, xstart, Address::times_4, 0)); 7507 rorq(x_xstart, 32); // convert big-endian to little-endian 7508 7509 bind(L_first_loop); 7510 decrementl(idx); 7511 jcc(Assembler::negative, L_first_loop_exit); 7512 decrementl(idx); 7513 jcc(Assembler::negative, L_one_y); 7514 movq(y_idx, Address(y, idx, Address::times_4, 0)); 7515 rorq(y_idx, 32); // convert big-endian to little-endian 7516 bind(L_multiply); 7517 movq(product, x_xstart); 7518 mulq(y_idx); // product(rax) * y_idx -> rdx:rax 7519 addq(product, carry); 7520 adcq(rdx, 0); 7521 subl(kdx, 2); 7522 movl(Address(z, kdx, Address::times_4, 4), product); 7523 shrq(product, 32); 7524 movl(Address(z, kdx, Address::times_4, 0), product); 7525 movq(carry, rdx); 7526 jmp(L_first_loop); 7527 7528 bind(L_one_y); 7529 movl(y_idx, Address(y, 0)); 7530 jmp(L_multiply); 7531 7532 bind(L_one_x); 7533 movl(x_xstart, Address(x, 0)); 7534 jmp(L_first_loop); 7535 7536 bind(L_first_loop_exit); 7537 } 7538 7539 /** 7540 * Multiply 64 bit by 64 bit and add 128 bit. 7541 */ 7542 void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y, Register z, 7543 Register yz_idx, Register idx, 7544 Register carry, Register product, int offset) { 7545 // huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry; 7546 // z[kdx] = (jlong)product; 7547 7548 movq(yz_idx, Address(y, idx, Address::times_4, offset)); 7549 rorq(yz_idx, 32); // convert big-endian to little-endian 7550 movq(product, x_xstart); 7551 mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax) 7552 movq(yz_idx, Address(z, idx, Address::times_4, offset)); 7553 rorq(yz_idx, 32); // convert big-endian to little-endian 7554 7555 add2_with_carry(rdx, product, carry, yz_idx); 7556 7557 movl(Address(z, idx, Address::times_4, offset+4), product); 7558 shrq(product, 32); 7559 movl(Address(z, idx, Address::times_4, offset), product); 7560 7561 } 7562 7563 /** 7564 * Multiply 128 bit by 128 bit. Unrolled inner loop. 7565 */ 7566 void MacroAssembler::multiply_128_x_128_loop(Register x_xstart, Register y, Register z, 7567 Register yz_idx, Register idx, Register jdx, 7568 Register carry, Register product, 7569 Register carry2) { 7570 // jlong carry, x[], y[], z[]; 7571 // int kdx = ystart+1; 7572 // for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop 7573 // huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry; 7574 // z[kdx+idx+1] = (jlong)product; 7575 // jlong carry2 = (jlong)(product >>> 64); 7576 // product = (y[idx] * x_xstart) + z[kdx+idx] + carry2; 7577 // z[kdx+idx] = (jlong)product; 7578 // carry = (jlong)(product >>> 64); 7579 // } 7580 // idx += 2; 7581 // if (idx > 0) { 7582 // product = (y[idx] * x_xstart) + z[kdx+idx] + carry; 7583 // z[kdx+idx] = (jlong)product; 7584 // carry = (jlong)(product >>> 64); 7585 // } 7586 // 7587 7588 Label L_third_loop, L_third_loop_exit, L_post_third_loop_done; 7589 7590 movl(jdx, idx); 7591 andl(jdx, 0xFFFFFFFC); 7592 shrl(jdx, 2); 7593 7594 bind(L_third_loop); 7595 subl(jdx, 1); 7596 jcc(Assembler::negative, L_third_loop_exit); 7597 subl(idx, 4); 7598 7599 multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 8); 7600 movq(carry2, rdx); 7601 7602 multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product, 0); 7603 movq(carry, rdx); 7604 jmp(L_third_loop); 7605 7606 bind (L_third_loop_exit); 7607 7608 andl (idx, 0x3); 7609 jcc(Assembler::zero, L_post_third_loop_done); 7610 7611 Label L_check_1; 7612 subl(idx, 2); 7613 jcc(Assembler::negative, L_check_1); 7614 7615 multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 0); 7616 movq(carry, rdx); 7617 7618 bind (L_check_1); 7619 addl (idx, 0x2); 7620 andl (idx, 0x1); 7621 subl(idx, 1); 7622 jcc(Assembler::negative, L_post_third_loop_done); 7623 7624 movl(yz_idx, Address(y, idx, Address::times_4, 0)); 7625 movq(product, x_xstart); 7626 mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax) 7627 movl(yz_idx, Address(z, idx, Address::times_4, 0)); 7628 7629 add2_with_carry(rdx, product, yz_idx, carry); 7630 7631 movl(Address(z, idx, Address::times_4, 0), product); 7632 shrq(product, 32); 7633 7634 shlq(rdx, 32); 7635 orq(product, rdx); 7636 movq(carry, product); 7637 7638 bind(L_post_third_loop_done); 7639 } 7640 7641 /** 7642 * Multiply 128 bit by 128 bit using BMI2. Unrolled inner loop. 7643 * 7644 */ 7645 void MacroAssembler::multiply_128_x_128_bmi2_loop(Register y, Register z, 7646 Register carry, Register carry2, 7647 Register idx, Register jdx, 7648 Register yz_idx1, Register yz_idx2, 7649 Register tmp, Register tmp3, Register tmp4) { 7650 assert(UseBMI2Instructions, "should be used only when BMI2 is available"); 7651 7652 // jlong carry, x[], y[], z[]; 7653 // int kdx = ystart+1; 7654 // for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop 7655 // huge_128 tmp3 = (y[idx+1] * rdx) + z[kdx+idx+1] + carry; 7656 // jlong carry2 = (jlong)(tmp3 >>> 64); 7657 // huge_128 tmp4 = (y[idx] * rdx) + z[kdx+idx] + carry2; 7658 // carry = (jlong)(tmp4 >>> 64); 7659 // z[kdx+idx+1] = (jlong)tmp3; 7660 // z[kdx+idx] = (jlong)tmp4; 7661 // } 7662 // idx += 2; 7663 // if (idx > 0) { 7664 // yz_idx1 = (y[idx] * rdx) + z[kdx+idx] + carry; 7665 // z[kdx+idx] = (jlong)yz_idx1; 7666 // carry = (jlong)(yz_idx1 >>> 64); 7667 // } 7668 // 7669 7670 Label L_third_loop, L_third_loop_exit, L_post_third_loop_done; 7671 7672 movl(jdx, idx); 7673 andl(jdx, 0xFFFFFFFC); 7674 shrl(jdx, 2); 7675 7676 bind(L_third_loop); 7677 subl(jdx, 1); 7678 jcc(Assembler::negative, L_third_loop_exit); 7679 subl(idx, 4); 7680 7681 movq(yz_idx1, Address(y, idx, Address::times_4, 8)); 7682 rorxq(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian 7683 movq(yz_idx2, Address(y, idx, Address::times_4, 0)); 7684 rorxq(yz_idx2, yz_idx2, 32); 7685 7686 mulxq(tmp4, tmp3, yz_idx1); // yz_idx1 * rdx -> tmp4:tmp3 7687 mulxq(carry2, tmp, yz_idx2); // yz_idx2 * rdx -> carry2:tmp 7688 7689 movq(yz_idx1, Address(z, idx, Address::times_4, 8)); 7690 rorxq(yz_idx1, yz_idx1, 32); 7691 movq(yz_idx2, Address(z, idx, Address::times_4, 0)); 7692 rorxq(yz_idx2, yz_idx2, 32); 7693 7694 if (VM_Version::supports_adx()) { 7695 adcxq(tmp3, carry); 7696 adoxq(tmp3, yz_idx1); 7697 7698 adcxq(tmp4, tmp); 7699 adoxq(tmp4, yz_idx2); 7700 7701 movl(carry, 0); // does not affect flags 7702 adcxq(carry2, carry); 7703 adoxq(carry2, carry); 7704 } else { 7705 add2_with_carry(tmp4, tmp3, carry, yz_idx1); 7706 add2_with_carry(carry2, tmp4, tmp, yz_idx2); 7707 } 7708 movq(carry, carry2); 7709 7710 movl(Address(z, idx, Address::times_4, 12), tmp3); 7711 shrq(tmp3, 32); 7712 movl(Address(z, idx, Address::times_4, 8), tmp3); 7713 7714 movl(Address(z, idx, Address::times_4, 4), tmp4); 7715 shrq(tmp4, 32); 7716 movl(Address(z, idx, Address::times_4, 0), tmp4); 7717 7718 jmp(L_third_loop); 7719 7720 bind (L_third_loop_exit); 7721 7722 andl (idx, 0x3); 7723 jcc(Assembler::zero, L_post_third_loop_done); 7724 7725 Label L_check_1; 7726 subl(idx, 2); 7727 jcc(Assembler::negative, L_check_1); 7728 7729 movq(yz_idx1, Address(y, idx, Address::times_4, 0)); 7730 rorxq(yz_idx1, yz_idx1, 32); 7731 mulxq(tmp4, tmp3, yz_idx1); // yz_idx1 * rdx -> tmp4:tmp3 7732 movq(yz_idx2, Address(z, idx, Address::times_4, 0)); 7733 rorxq(yz_idx2, yz_idx2, 32); 7734 7735 add2_with_carry(tmp4, tmp3, carry, yz_idx2); 7736 7737 movl(Address(z, idx, Address::times_4, 4), tmp3); 7738 shrq(tmp3, 32); 7739 movl(Address(z, idx, Address::times_4, 0), tmp3); 7740 movq(carry, tmp4); 7741 7742 bind (L_check_1); 7743 addl (idx, 0x2); 7744 andl (idx, 0x1); 7745 subl(idx, 1); 7746 jcc(Assembler::negative, L_post_third_loop_done); 7747 movl(tmp4, Address(y, idx, Address::times_4, 0)); 7748 mulxq(carry2, tmp3, tmp4); // tmp4 * rdx -> carry2:tmp3 7749 movl(tmp4, Address(z, idx, Address::times_4, 0)); 7750 7751 add2_with_carry(carry2, tmp3, tmp4, carry); 7752 7753 movl(Address(z, idx, Address::times_4, 0), tmp3); 7754 shrq(tmp3, 32); 7755 7756 shlq(carry2, 32); 7757 orq(tmp3, carry2); 7758 movq(carry, tmp3); 7759 7760 bind(L_post_third_loop_done); 7761 } 7762 7763 /** 7764 * Code for BigInteger::multiplyToLen() intrinsic. 7765 * 7766 * rdi: x 7767 * rax: xlen 7768 * rsi: y 7769 * rcx: ylen 7770 * r8: z 7771 * r11: tmp0 7772 * r12: tmp1 7773 * r13: tmp2 7774 * r14: tmp3 7775 * r15: tmp4 7776 * rbx: tmp5 7777 * 7778 */ 7779 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register tmp0, 7780 Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5) { 7781 ShortBranchVerifier sbv(this); 7782 assert_different_registers(x, xlen, y, ylen, z, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, rdx); 7783 7784 push(tmp0); 7785 push(tmp1); 7786 push(tmp2); 7787 push(tmp3); 7788 push(tmp4); 7789 push(tmp5); 7790 7791 push(xlen); 7792 7793 const Register idx = tmp1; 7794 const Register kdx = tmp2; 7795 const Register xstart = tmp3; 7796 7797 const Register y_idx = tmp4; 7798 const Register carry = tmp5; 7799 const Register product = xlen; 7800 const Register x_xstart = tmp0; 7801 7802 // First Loop. 7803 // 7804 // final static long LONG_MASK = 0xffffffffL; 7805 // int xstart = xlen - 1; 7806 // int ystart = ylen - 1; 7807 // long carry = 0; 7808 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 7809 // long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry; 7810 // z[kdx] = (int)product; 7811 // carry = product >>> 32; 7812 // } 7813 // z[xstart] = (int)carry; 7814 // 7815 7816 movl(idx, ylen); // idx = ylen; 7817 lea(kdx, Address(xlen, ylen)); // kdx = xlen+ylen; 7818 xorq(carry, carry); // carry = 0; 7819 7820 Label L_done; 7821 7822 movl(xstart, xlen); 7823 decrementl(xstart); 7824 jcc(Assembler::negative, L_done); 7825 7826 multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx); 7827 7828 Label L_second_loop; 7829 testl(kdx, kdx); 7830 jcc(Assembler::zero, L_second_loop); 7831 7832 Label L_carry; 7833 subl(kdx, 1); 7834 jcc(Assembler::zero, L_carry); 7835 7836 movl(Address(z, kdx, Address::times_4, 0), carry); 7837 shrq(carry, 32); 7838 subl(kdx, 1); 7839 7840 bind(L_carry); 7841 movl(Address(z, kdx, Address::times_4, 0), carry); 7842 7843 // Second and third (nested) loops. 7844 // 7845 // for (int i = xstart-1; i >= 0; i--) { // Second loop 7846 // carry = 0; 7847 // for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop 7848 // long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) + 7849 // (z[k] & LONG_MASK) + carry; 7850 // z[k] = (int)product; 7851 // carry = product >>> 32; 7852 // } 7853 // z[i] = (int)carry; 7854 // } 7855 // 7856 // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx 7857 7858 const Register jdx = tmp1; 7859 7860 bind(L_second_loop); 7861 xorl(carry, carry); // carry = 0; 7862 movl(jdx, ylen); // j = ystart+1 7863 7864 subl(xstart, 1); // i = xstart-1; 7865 jcc(Assembler::negative, L_done); 7866 7867 push (z); 7868 7869 Label L_last_x; 7870 lea(z, Address(z, xstart, Address::times_4, 4)); // z = z + k - j 7871 subl(xstart, 1); // i = xstart-1; 7872 jcc(Assembler::negative, L_last_x); 7873 7874 if (UseBMI2Instructions) { 7875 movq(rdx, Address(x, xstart, Address::times_4, 0)); 7876 rorxq(rdx, rdx, 32); // convert big-endian to little-endian 7877 } else { 7878 movq(x_xstart, Address(x, xstart, Address::times_4, 0)); 7879 rorq(x_xstart, 32); // convert big-endian to little-endian 7880 } 7881 7882 Label L_third_loop_prologue; 7883 bind(L_third_loop_prologue); 7884 7885 push (x); 7886 push (xstart); 7887 push (ylen); 7888 7889 7890 if (UseBMI2Instructions) { 7891 multiply_128_x_128_bmi2_loop(y, z, carry, x, jdx, ylen, product, tmp2, x_xstart, tmp3, tmp4); 7892 } else { // !UseBMI2Instructions 7893 multiply_128_x_128_loop(x_xstart, y, z, y_idx, jdx, ylen, carry, product, x); 7894 } 7895 7896 pop(ylen); 7897 pop(xlen); 7898 pop(x); 7899 pop(z); 7900 7901 movl(tmp3, xlen); 7902 addl(tmp3, 1); 7903 movl(Address(z, tmp3, Address::times_4, 0), carry); 7904 subl(tmp3, 1); 7905 jccb(Assembler::negative, L_done); 7906 7907 shrq(carry, 32); 7908 movl(Address(z, tmp3, Address::times_4, 0), carry); 7909 jmp(L_second_loop); 7910 7911 // Next infrequent code is moved outside loops. 7912 bind(L_last_x); 7913 if (UseBMI2Instructions) { 7914 movl(rdx, Address(x, 0)); 7915 } else { 7916 movl(x_xstart, Address(x, 0)); 7917 } 7918 jmp(L_third_loop_prologue); 7919 7920 bind(L_done); 7921 7922 pop(xlen); 7923 7924 pop(tmp5); 7925 pop(tmp4); 7926 pop(tmp3); 7927 pop(tmp2); 7928 pop(tmp1); 7929 pop(tmp0); 7930 } 7931 7932 void MacroAssembler::vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale, 7933 Register result, Register tmp1, Register tmp2, XMMRegister rymm0, XMMRegister rymm1, XMMRegister rymm2){ 7934 assert(UseSSE42Intrinsics, "SSE4.2 must be enabled."); 7935 Label VECTOR16_LOOP, VECTOR8_LOOP, VECTOR4_LOOP; 7936 Label VECTOR8_TAIL, VECTOR4_TAIL; 7937 Label VECTOR32_NOT_EQUAL, VECTOR16_NOT_EQUAL, VECTOR8_NOT_EQUAL, VECTOR4_NOT_EQUAL; 7938 Label SAME_TILL_END, DONE; 7939 Label BYTES_LOOP, BYTES_TAIL, BYTES_NOT_EQUAL; 7940 7941 //scale is in rcx in both Win64 and Unix 7942 ShortBranchVerifier sbv(this); 7943 7944 shlq(length); 7945 xorq(result, result); 7946 7947 if ((AVX3Threshold == 0) && (UseAVX > 2) && 7948 VM_Version::supports_avx512vlbw()) { 7949 Label VECTOR64_LOOP, VECTOR64_NOT_EQUAL, VECTOR32_TAIL; 7950 7951 cmpq(length, 64); 7952 jcc(Assembler::less, VECTOR32_TAIL); 7953 7954 movq(tmp1, length); 7955 andq(tmp1, 0x3F); // tail count 7956 andq(length, ~(0x3F)); //vector count 7957 7958 bind(VECTOR64_LOOP); 7959 // AVX512 code to compare 64 byte vectors. 7960 evmovdqub(rymm0, Address(obja, result), Assembler::AVX_512bit); 7961 evpcmpeqb(k7, rymm0, Address(objb, result), Assembler::AVX_512bit); 7962 kortestql(k7, k7); 7963 jcc(Assembler::aboveEqual, VECTOR64_NOT_EQUAL); // mismatch 7964 addq(result, 64); 7965 subq(length, 64); 7966 jccb(Assembler::notZero, VECTOR64_LOOP); 7967 7968 //bind(VECTOR64_TAIL); 7969 testq(tmp1, tmp1); 7970 jcc(Assembler::zero, SAME_TILL_END); 7971 7972 //bind(VECTOR64_TAIL); 7973 // AVX512 code to compare up to 63 byte vectors. 7974 mov64(tmp2, 0xFFFFFFFFFFFFFFFF); 7975 shlxq(tmp2, tmp2, tmp1); 7976 notq(tmp2); 7977 kmovql(k3, tmp2); 7978 7979 evmovdqub(rymm0, k3, Address(obja, result), false, Assembler::AVX_512bit); 7980 evpcmpeqb(k7, k3, rymm0, Address(objb, result), Assembler::AVX_512bit); 7981 7982 ktestql(k7, k3); 7983 jcc(Assembler::below, SAME_TILL_END); // not mismatch 7984 7985 bind(VECTOR64_NOT_EQUAL); 7986 kmovql(tmp1, k7); 7987 notq(tmp1); 7988 tzcntq(tmp1, tmp1); 7989 addq(result, tmp1); 7990 shrq(result); 7991 jmp(DONE); 7992 bind(VECTOR32_TAIL); 7993 } 7994 7995 cmpq(length, 8); 7996 jcc(Assembler::equal, VECTOR8_LOOP); 7997 jcc(Assembler::less, VECTOR4_TAIL); 7998 7999 if (UseAVX >= 2) { 8000 Label VECTOR16_TAIL, VECTOR32_LOOP; 8001 8002 cmpq(length, 16); 8003 jcc(Assembler::equal, VECTOR16_LOOP); 8004 jcc(Assembler::less, VECTOR8_LOOP); 8005 8006 cmpq(length, 32); 8007 jccb(Assembler::less, VECTOR16_TAIL); 8008 8009 subq(length, 32); 8010 bind(VECTOR32_LOOP); 8011 vmovdqu(rymm0, Address(obja, result)); 8012 vmovdqu(rymm1, Address(objb, result)); 8013 vpxor(rymm2, rymm0, rymm1, Assembler::AVX_256bit); 8014 vptest(rymm2, rymm2); 8015 jcc(Assembler::notZero, VECTOR32_NOT_EQUAL);//mismatch found 8016 addq(result, 32); 8017 subq(length, 32); 8018 jcc(Assembler::greaterEqual, VECTOR32_LOOP); 8019 addq(length, 32); 8020 jcc(Assembler::equal, SAME_TILL_END); 8021 //falling through if less than 32 bytes left //close the branch here. 8022 8023 bind(VECTOR16_TAIL); 8024 cmpq(length, 16); 8025 jccb(Assembler::less, VECTOR8_TAIL); 8026 bind(VECTOR16_LOOP); 8027 movdqu(rymm0, Address(obja, result)); 8028 movdqu(rymm1, Address(objb, result)); 8029 vpxor(rymm2, rymm0, rymm1, Assembler::AVX_128bit); 8030 ptest(rymm2, rymm2); 8031 jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found 8032 addq(result, 16); 8033 subq(length, 16); 8034 jcc(Assembler::equal, SAME_TILL_END); 8035 //falling through if less than 16 bytes left 8036 } else {//regular intrinsics 8037 8038 cmpq(length, 16); 8039 jccb(Assembler::less, VECTOR8_TAIL); 8040 8041 subq(length, 16); 8042 bind(VECTOR16_LOOP); 8043 movdqu(rymm0, Address(obja, result)); 8044 movdqu(rymm1, Address(objb, result)); 8045 pxor(rymm0, rymm1); 8046 ptest(rymm0, rymm0); 8047 jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found 8048 addq(result, 16); 8049 subq(length, 16); 8050 jccb(Assembler::greaterEqual, VECTOR16_LOOP); 8051 addq(length, 16); 8052 jcc(Assembler::equal, SAME_TILL_END); 8053 //falling through if less than 16 bytes left 8054 } 8055 8056 bind(VECTOR8_TAIL); 8057 cmpq(length, 8); 8058 jccb(Assembler::less, VECTOR4_TAIL); 8059 bind(VECTOR8_LOOP); 8060 movq(tmp1, Address(obja, result)); 8061 movq(tmp2, Address(objb, result)); 8062 xorq(tmp1, tmp2); 8063 testq(tmp1, tmp1); 8064 jcc(Assembler::notZero, VECTOR8_NOT_EQUAL);//mismatch found 8065 addq(result, 8); 8066 subq(length, 8); 8067 jcc(Assembler::equal, SAME_TILL_END); 8068 //falling through if less than 8 bytes left 8069 8070 bind(VECTOR4_TAIL); 8071 cmpq(length, 4); 8072 jccb(Assembler::less, BYTES_TAIL); 8073 bind(VECTOR4_LOOP); 8074 movl(tmp1, Address(obja, result)); 8075 xorl(tmp1, Address(objb, result)); 8076 testl(tmp1, tmp1); 8077 jcc(Assembler::notZero, VECTOR4_NOT_EQUAL);//mismatch found 8078 addq(result, 4); 8079 subq(length, 4); 8080 jcc(Assembler::equal, SAME_TILL_END); 8081 //falling through if less than 4 bytes left 8082 8083 bind(BYTES_TAIL); 8084 bind(BYTES_LOOP); 8085 load_unsigned_byte(tmp1, Address(obja, result)); 8086 load_unsigned_byte(tmp2, Address(objb, result)); 8087 xorl(tmp1, tmp2); 8088 testl(tmp1, tmp1); 8089 jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found 8090 decq(length); 8091 jcc(Assembler::zero, SAME_TILL_END); 8092 incq(result); 8093 load_unsigned_byte(tmp1, Address(obja, result)); 8094 load_unsigned_byte(tmp2, Address(objb, result)); 8095 xorl(tmp1, tmp2); 8096 testl(tmp1, tmp1); 8097 jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found 8098 decq(length); 8099 jcc(Assembler::zero, SAME_TILL_END); 8100 incq(result); 8101 load_unsigned_byte(tmp1, Address(obja, result)); 8102 load_unsigned_byte(tmp2, Address(objb, result)); 8103 xorl(tmp1, tmp2); 8104 testl(tmp1, tmp1); 8105 jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found 8106 jmp(SAME_TILL_END); 8107 8108 if (UseAVX >= 2) { 8109 bind(VECTOR32_NOT_EQUAL); 8110 vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_256bit); 8111 vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_256bit); 8112 vpxor(rymm0, rymm0, rymm2, Assembler::AVX_256bit); 8113 vpmovmskb(tmp1, rymm0); 8114 bsfq(tmp1, tmp1); 8115 addq(result, tmp1); 8116 shrq(result); 8117 jmp(DONE); 8118 } 8119 8120 bind(VECTOR16_NOT_EQUAL); 8121 if (UseAVX >= 2) { 8122 vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_128bit); 8123 vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_128bit); 8124 pxor(rymm0, rymm2); 8125 } else { 8126 pcmpeqb(rymm2, rymm2); 8127 pxor(rymm0, rymm1); 8128 pcmpeqb(rymm0, rymm1); 8129 pxor(rymm0, rymm2); 8130 } 8131 pmovmskb(tmp1, rymm0); 8132 bsfq(tmp1, tmp1); 8133 addq(result, tmp1); 8134 shrq(result); 8135 jmpb(DONE); 8136 8137 bind(VECTOR8_NOT_EQUAL); 8138 bind(VECTOR4_NOT_EQUAL); 8139 bsfq(tmp1, tmp1); 8140 shrq(tmp1, 3); 8141 addq(result, tmp1); 8142 bind(BYTES_NOT_EQUAL); 8143 shrq(result); 8144 jmpb(DONE); 8145 8146 bind(SAME_TILL_END); 8147 mov64(result, -1); 8148 8149 bind(DONE); 8150 } 8151 8152 //Helper functions for square_to_len() 8153 8154 /** 8155 * Store the squares of x[], right shifted one bit (divided by 2) into z[] 8156 * Preserves x and z and modifies rest of the registers. 8157 */ 8158 void MacroAssembler::square_rshift(Register x, Register xlen, Register z, Register tmp1, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) { 8159 // Perform square and right shift by 1 8160 // Handle odd xlen case first, then for even xlen do the following 8161 // jlong carry = 0; 8162 // for (int j=0, i=0; j < xlen; j+=2, i+=4) { 8163 // huge_128 product = x[j:j+1] * x[j:j+1]; 8164 // z[i:i+1] = (carry << 63) | (jlong)(product >>> 65); 8165 // z[i+2:i+3] = (jlong)(product >>> 1); 8166 // carry = (jlong)product; 8167 // } 8168 8169 xorq(tmp5, tmp5); // carry 8170 xorq(rdxReg, rdxReg); 8171 xorl(tmp1, tmp1); // index for x 8172 xorl(tmp4, tmp4); // index for z 8173 8174 Label L_first_loop, L_first_loop_exit; 8175 8176 testl(xlen, 1); 8177 jccb(Assembler::zero, L_first_loop); //jump if xlen is even 8178 8179 // Square and right shift by 1 the odd element using 32 bit multiply 8180 movl(raxReg, Address(x, tmp1, Address::times_4, 0)); 8181 imulq(raxReg, raxReg); 8182 shrq(raxReg, 1); 8183 adcq(tmp5, 0); 8184 movq(Address(z, tmp4, Address::times_4, 0), raxReg); 8185 incrementl(tmp1); 8186 addl(tmp4, 2); 8187 8188 // Square and right shift by 1 the rest using 64 bit multiply 8189 bind(L_first_loop); 8190 cmpptr(tmp1, xlen); 8191 jccb(Assembler::equal, L_first_loop_exit); 8192 8193 // Square 8194 movq(raxReg, Address(x, tmp1, Address::times_4, 0)); 8195 rorq(raxReg, 32); // convert big-endian to little-endian 8196 mulq(raxReg); // 64-bit multiply rax * rax -> rdx:rax 8197 8198 // Right shift by 1 and save carry 8199 shrq(tmp5, 1); // rdx:rax:tmp5 = (tmp5:rdx:rax) >>> 1 8200 rcrq(rdxReg, 1); 8201 rcrq(raxReg, 1); 8202 adcq(tmp5, 0); 8203 8204 // Store result in z 8205 movq(Address(z, tmp4, Address::times_4, 0), rdxReg); 8206 movq(Address(z, tmp4, Address::times_4, 8), raxReg); 8207 8208 // Update indices for x and z 8209 addl(tmp1, 2); 8210 addl(tmp4, 4); 8211 jmp(L_first_loop); 8212 8213 bind(L_first_loop_exit); 8214 } 8215 8216 8217 /** 8218 * Perform the following multiply add operation using BMI2 instructions 8219 * carry:sum = sum + op1*op2 + carry 8220 * op2 should be in rdx 8221 * op2 is preserved, all other registers are modified 8222 */ 8223 void MacroAssembler::multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry, Register tmp2) { 8224 // assert op2 is rdx 8225 mulxq(tmp2, op1, op1); // op1 * op2 -> tmp2:op1 8226 addq(sum, carry); 8227 adcq(tmp2, 0); 8228 addq(sum, op1); 8229 adcq(tmp2, 0); 8230 movq(carry, tmp2); 8231 } 8232 8233 /** 8234 * Perform the following multiply add operation: 8235 * carry:sum = sum + op1*op2 + carry 8236 * Preserves op1, op2 and modifies rest of registers 8237 */ 8238 void MacroAssembler::multiply_add_64(Register sum, Register op1, Register op2, Register carry, Register rdxReg, Register raxReg) { 8239 // rdx:rax = op1 * op2 8240 movq(raxReg, op2); 8241 mulq(op1); 8242 8243 // rdx:rax = sum + carry + rdx:rax 8244 addq(sum, carry); 8245 adcq(rdxReg, 0); 8246 addq(sum, raxReg); 8247 adcq(rdxReg, 0); 8248 8249 // carry:sum = rdx:sum 8250 movq(carry, rdxReg); 8251 } 8252 8253 /** 8254 * Add 64 bit long carry into z[] with carry propagation. 8255 * Preserves z and carry register values and modifies rest of registers. 8256 * 8257 */ 8258 void MacroAssembler::add_one_64(Register z, Register zlen, Register carry, Register tmp1) { 8259 Label L_fourth_loop, L_fourth_loop_exit; 8260 8261 movl(tmp1, 1); 8262 subl(zlen, 2); 8263 addq(Address(z, zlen, Address::times_4, 0), carry); 8264 8265 bind(L_fourth_loop); 8266 jccb(Assembler::carryClear, L_fourth_loop_exit); 8267 subl(zlen, 2); 8268 jccb(Assembler::negative, L_fourth_loop_exit); 8269 addq(Address(z, zlen, Address::times_4, 0), tmp1); 8270 jmp(L_fourth_loop); 8271 bind(L_fourth_loop_exit); 8272 } 8273 8274 /** 8275 * Shift z[] left by 1 bit. 8276 * Preserves x, len, z and zlen registers and modifies rest of the registers. 8277 * 8278 */ 8279 void MacroAssembler::lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4) { 8280 8281 Label L_fifth_loop, L_fifth_loop_exit; 8282 8283 // Fifth loop 8284 // Perform primitiveLeftShift(z, zlen, 1) 8285 8286 const Register prev_carry = tmp1; 8287 const Register new_carry = tmp4; 8288 const Register value = tmp2; 8289 const Register zidx = tmp3; 8290 8291 // int zidx, carry; 8292 // long value; 8293 // carry = 0; 8294 // for (zidx = zlen-2; zidx >=0; zidx -= 2) { 8295 // (carry:value) = (z[i] << 1) | carry ; 8296 // z[i] = value; 8297 // } 8298 8299 movl(zidx, zlen); 8300 xorl(prev_carry, prev_carry); // clear carry flag and prev_carry register 8301 8302 bind(L_fifth_loop); 8303 decl(zidx); // Use decl to preserve carry flag 8304 decl(zidx); 8305 jccb(Assembler::negative, L_fifth_loop_exit); 8306 8307 if (UseBMI2Instructions) { 8308 movq(value, Address(z, zidx, Address::times_4, 0)); 8309 rclq(value, 1); 8310 rorxq(value, value, 32); 8311 movq(Address(z, zidx, Address::times_4, 0), value); // Store back in big endian form 8312 } 8313 else { 8314 // clear new_carry 8315 xorl(new_carry, new_carry); 8316 8317 // Shift z[i] by 1, or in previous carry and save new carry 8318 movq(value, Address(z, zidx, Address::times_4, 0)); 8319 shlq(value, 1); 8320 adcl(new_carry, 0); 8321 8322 orq(value, prev_carry); 8323 rorq(value, 0x20); 8324 movq(Address(z, zidx, Address::times_4, 0), value); // Store back in big endian form 8325 8326 // Set previous carry = new carry 8327 movl(prev_carry, new_carry); 8328 } 8329 jmp(L_fifth_loop); 8330 8331 bind(L_fifth_loop_exit); 8332 } 8333 8334 8335 /** 8336 * Code for BigInteger::squareToLen() intrinsic 8337 * 8338 * rdi: x 8339 * rsi: len 8340 * r8: z 8341 * rcx: zlen 8342 * r12: tmp1 8343 * r13: tmp2 8344 * r14: tmp3 8345 * r15: tmp4 8346 * rbx: tmp5 8347 * 8348 */ 8349 void MacroAssembler::square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) { 8350 8351 Label L_second_loop, L_second_loop_exit, L_third_loop, L_third_loop_exit, L_last_x, L_multiply; 8352 push(tmp1); 8353 push(tmp2); 8354 push(tmp3); 8355 push(tmp4); 8356 push(tmp5); 8357 8358 // First loop 8359 // Store the squares, right shifted one bit (i.e., divided by 2). 8360 square_rshift(x, len, z, tmp1, tmp3, tmp4, tmp5, rdxReg, raxReg); 8361 8362 // Add in off-diagonal sums. 8363 // 8364 // Second, third (nested) and fourth loops. 8365 // zlen +=2; 8366 // for (int xidx=len-2,zidx=zlen-4; xidx > 0; xidx-=2,zidx-=4) { 8367 // carry = 0; 8368 // long op2 = x[xidx:xidx+1]; 8369 // for (int j=xidx-2,k=zidx; j >= 0; j-=2) { 8370 // k -= 2; 8371 // long op1 = x[j:j+1]; 8372 // long sum = z[k:k+1]; 8373 // carry:sum = multiply_add_64(sum, op1, op2, carry, tmp_regs); 8374 // z[k:k+1] = sum; 8375 // } 8376 // add_one_64(z, k, carry, tmp_regs); 8377 // } 8378 8379 const Register carry = tmp5; 8380 const Register sum = tmp3; 8381 const Register op1 = tmp4; 8382 Register op2 = tmp2; 8383 8384 push(zlen); 8385 push(len); 8386 addl(zlen,2); 8387 bind(L_second_loop); 8388 xorq(carry, carry); 8389 subl(zlen, 4); 8390 subl(len, 2); 8391 push(zlen); 8392 push(len); 8393 cmpl(len, 0); 8394 jccb(Assembler::lessEqual, L_second_loop_exit); 8395 8396 // Multiply an array by one 64 bit long. 8397 if (UseBMI2Instructions) { 8398 op2 = rdxReg; 8399 movq(op2, Address(x, len, Address::times_4, 0)); 8400 rorxq(op2, op2, 32); 8401 } 8402 else { 8403 movq(op2, Address(x, len, Address::times_4, 0)); 8404 rorq(op2, 32); 8405 } 8406 8407 bind(L_third_loop); 8408 decrementl(len); 8409 jccb(Assembler::negative, L_third_loop_exit); 8410 decrementl(len); 8411 jccb(Assembler::negative, L_last_x); 8412 8413 movq(op1, Address(x, len, Address::times_4, 0)); 8414 rorq(op1, 32); 8415 8416 bind(L_multiply); 8417 subl(zlen, 2); 8418 movq(sum, Address(z, zlen, Address::times_4, 0)); 8419 8420 // Multiply 64 bit by 64 bit and add 64 bits lower half and upper 64 bits as carry. 8421 if (UseBMI2Instructions) { 8422 multiply_add_64_bmi2(sum, op1, op2, carry, tmp2); 8423 } 8424 else { 8425 multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg); 8426 } 8427 8428 movq(Address(z, zlen, Address::times_4, 0), sum); 8429 8430 jmp(L_third_loop); 8431 bind(L_third_loop_exit); 8432 8433 // Fourth loop 8434 // Add 64 bit long carry into z with carry propagation. 8435 // Uses offsetted zlen. 8436 add_one_64(z, zlen, carry, tmp1); 8437 8438 pop(len); 8439 pop(zlen); 8440 jmp(L_second_loop); 8441 8442 // Next infrequent code is moved outside loops. 8443 bind(L_last_x); 8444 movl(op1, Address(x, 0)); 8445 jmp(L_multiply); 8446 8447 bind(L_second_loop_exit); 8448 pop(len); 8449 pop(zlen); 8450 pop(len); 8451 pop(zlen); 8452 8453 // Fifth loop 8454 // Shift z left 1 bit. 8455 lshift_by_1(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4); 8456 8457 // z[zlen-1] |= x[len-1] & 1; 8458 movl(tmp3, Address(x, len, Address::times_4, -4)); 8459 andl(tmp3, 1); 8460 orl(Address(z, zlen, Address::times_4, -4), tmp3); 8461 8462 pop(tmp5); 8463 pop(tmp4); 8464 pop(tmp3); 8465 pop(tmp2); 8466 pop(tmp1); 8467 } 8468 8469 /** 8470 * Helper function for mul_add() 8471 * Multiply the in[] by int k and add to out[] starting at offset offs using 8472 * 128 bit by 32 bit multiply and return the carry in tmp5. 8473 * Only quad int aligned length of in[] is operated on in this function. 8474 * k is in rdxReg for BMI2Instructions, for others it is in tmp2. 8475 * This function preserves out, in and k registers. 8476 * len and offset point to the appropriate index in "in" & "out" correspondingly 8477 * tmp5 has the carry. 8478 * other registers are temporary and are modified. 8479 * 8480 */ 8481 void MacroAssembler::mul_add_128_x_32_loop(Register out, Register in, 8482 Register offset, Register len, Register tmp1, Register tmp2, Register tmp3, 8483 Register tmp4, Register tmp5, Register rdxReg, Register raxReg) { 8484 8485 Label L_first_loop, L_first_loop_exit; 8486 8487 movl(tmp1, len); 8488 shrl(tmp1, 2); 8489 8490 bind(L_first_loop); 8491 subl(tmp1, 1); 8492 jccb(Assembler::negative, L_first_loop_exit); 8493 8494 subl(len, 4); 8495 subl(offset, 4); 8496 8497 Register op2 = tmp2; 8498 const Register sum = tmp3; 8499 const Register op1 = tmp4; 8500 const Register carry = tmp5; 8501 8502 if (UseBMI2Instructions) { 8503 op2 = rdxReg; 8504 } 8505 8506 movq(op1, Address(in, len, Address::times_4, 8)); 8507 rorq(op1, 32); 8508 movq(sum, Address(out, offset, Address::times_4, 8)); 8509 rorq(sum, 32); 8510 if (UseBMI2Instructions) { 8511 multiply_add_64_bmi2(sum, op1, op2, carry, raxReg); 8512 } 8513 else { 8514 multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg); 8515 } 8516 // Store back in big endian from little endian 8517 rorq(sum, 0x20); 8518 movq(Address(out, offset, Address::times_4, 8), sum); 8519 8520 movq(op1, Address(in, len, Address::times_4, 0)); 8521 rorq(op1, 32); 8522 movq(sum, Address(out, offset, Address::times_4, 0)); 8523 rorq(sum, 32); 8524 if (UseBMI2Instructions) { 8525 multiply_add_64_bmi2(sum, op1, op2, carry, raxReg); 8526 } 8527 else { 8528 multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg); 8529 } 8530 // Store back in big endian from little endian 8531 rorq(sum, 0x20); 8532 movq(Address(out, offset, Address::times_4, 0), sum); 8533 8534 jmp(L_first_loop); 8535 bind(L_first_loop_exit); 8536 } 8537 8538 /** 8539 * Code for BigInteger::mulAdd() intrinsic 8540 * 8541 * rdi: out 8542 * rsi: in 8543 * r11: offs (out.length - offset) 8544 * rcx: len 8545 * r8: k 8546 * r12: tmp1 8547 * r13: tmp2 8548 * r14: tmp3 8549 * r15: tmp4 8550 * rbx: tmp5 8551 * Multiply the in[] by word k and add to out[], return the carry in rax 8552 */ 8553 void MacroAssembler::mul_add(Register out, Register in, Register offs, 8554 Register len, Register k, Register tmp1, Register tmp2, Register tmp3, 8555 Register tmp4, Register tmp5, Register rdxReg, Register raxReg) { 8556 8557 Label L_carry, L_last_in, L_done; 8558 8559 // carry = 0; 8560 // for (int j=len-1; j >= 0; j--) { 8561 // long product = (in[j] & LONG_MASK) * kLong + 8562 // (out[offs] & LONG_MASK) + carry; 8563 // out[offs--] = (int)product; 8564 // carry = product >>> 32; 8565 // } 8566 // 8567 push(tmp1); 8568 push(tmp2); 8569 push(tmp3); 8570 push(tmp4); 8571 push(tmp5); 8572 8573 Register op2 = tmp2; 8574 const Register sum = tmp3; 8575 const Register op1 = tmp4; 8576 const Register carry = tmp5; 8577 8578 if (UseBMI2Instructions) { 8579 op2 = rdxReg; 8580 movl(op2, k); 8581 } 8582 else { 8583 movl(op2, k); 8584 } 8585 8586 xorq(carry, carry); 8587 8588 //First loop 8589 8590 //Multiply in[] by k in a 4 way unrolled loop using 128 bit by 32 bit multiply 8591 //The carry is in tmp5 8592 mul_add_128_x_32_loop(out, in, offs, len, tmp1, tmp2, tmp3, tmp4, tmp5, rdxReg, raxReg); 8593 8594 //Multiply the trailing in[] entry using 64 bit by 32 bit, if any 8595 decrementl(len); 8596 jccb(Assembler::negative, L_carry); 8597 decrementl(len); 8598 jccb(Assembler::negative, L_last_in); 8599 8600 movq(op1, Address(in, len, Address::times_4, 0)); 8601 rorq(op1, 32); 8602 8603 subl(offs, 2); 8604 movq(sum, Address(out, offs, Address::times_4, 0)); 8605 rorq(sum, 32); 8606 8607 if (UseBMI2Instructions) { 8608 multiply_add_64_bmi2(sum, op1, op2, carry, raxReg); 8609 } 8610 else { 8611 multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg); 8612 } 8613 8614 // Store back in big endian from little endian 8615 rorq(sum, 0x20); 8616 movq(Address(out, offs, Address::times_4, 0), sum); 8617 8618 testl(len, len); 8619 jccb(Assembler::zero, L_carry); 8620 8621 //Multiply the last in[] entry, if any 8622 bind(L_last_in); 8623 movl(op1, Address(in, 0)); 8624 movl(sum, Address(out, offs, Address::times_4, -4)); 8625 8626 movl(raxReg, k); 8627 mull(op1); //tmp4 * eax -> edx:eax 8628 addl(sum, carry); 8629 adcl(rdxReg, 0); 8630 addl(sum, raxReg); 8631 adcl(rdxReg, 0); 8632 movl(carry, rdxReg); 8633 8634 movl(Address(out, offs, Address::times_4, -4), sum); 8635 8636 bind(L_carry); 8637 //return tmp5/carry as carry in rax 8638 movl(rax, carry); 8639 8640 bind(L_done); 8641 pop(tmp5); 8642 pop(tmp4); 8643 pop(tmp3); 8644 pop(tmp2); 8645 pop(tmp1); 8646 } 8647 #endif 8648 8649 /** 8650 * Emits code to update CRC-32 with a byte value according to constants in table 8651 * 8652 * @param [in,out]crc Register containing the crc. 8653 * @param [in]val Register containing the byte to fold into the CRC. 8654 * @param [in]table Register containing the table of crc constants. 8655 * 8656 * uint32_t crc; 8657 * val = crc_table[(val ^ crc) & 0xFF]; 8658 * crc = val ^ (crc >> 8); 8659 * 8660 */ 8661 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) { 8662 xorl(val, crc); 8663 andl(val, 0xFF); 8664 shrl(crc, 8); // unsigned shift 8665 xorl(crc, Address(table, val, Address::times_4, 0)); 8666 } 8667 8668 /** 8669 * Fold 128-bit data chunk 8670 */ 8671 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) { 8672 if (UseAVX > 0) { 8673 vpclmulhdq(xtmp, xK, xcrc); // [123:64] 8674 vpclmulldq(xcrc, xK, xcrc); // [63:0] 8675 vpxor(xcrc, xcrc, Address(buf, offset), 0 /* vector_len */); 8676 pxor(xcrc, xtmp); 8677 } else { 8678 movdqa(xtmp, xcrc); 8679 pclmulhdq(xtmp, xK); // [123:64] 8680 pclmulldq(xcrc, xK); // [63:0] 8681 pxor(xcrc, xtmp); 8682 movdqu(xtmp, Address(buf, offset)); 8683 pxor(xcrc, xtmp); 8684 } 8685 } 8686 8687 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf) { 8688 if (UseAVX > 0) { 8689 vpclmulhdq(xtmp, xK, xcrc); 8690 vpclmulldq(xcrc, xK, xcrc); 8691 pxor(xcrc, xbuf); 8692 pxor(xcrc, xtmp); 8693 } else { 8694 movdqa(xtmp, xcrc); 8695 pclmulhdq(xtmp, xK); 8696 pclmulldq(xcrc, xK); 8697 pxor(xcrc, xbuf); 8698 pxor(xcrc, xtmp); 8699 } 8700 } 8701 8702 /** 8703 * 8-bit folds to compute 32-bit CRC 8704 * 8705 * uint64_t xcrc; 8706 * timesXtoThe32[xcrc & 0xFF] ^ (xcrc >> 8); 8707 */ 8708 void MacroAssembler::fold_8bit_crc32(XMMRegister xcrc, Register table, XMMRegister xtmp, Register tmp) { 8709 movdl(tmp, xcrc); 8710 andl(tmp, 0xFF); 8711 movdl(xtmp, Address(table, tmp, Address::times_4, 0)); 8712 psrldq(xcrc, 1); // unsigned shift one byte 8713 pxor(xcrc, xtmp); 8714 } 8715 8716 /** 8717 * uint32_t crc; 8718 * timesXtoThe32[crc & 0xFF] ^ (crc >> 8); 8719 */ 8720 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) { 8721 movl(tmp, crc); 8722 andl(tmp, 0xFF); 8723 shrl(crc, 8); 8724 xorl(crc, Address(table, tmp, Address::times_4, 0)); 8725 } 8726 8727 /** 8728 * @param crc register containing existing CRC (32-bit) 8729 * @param buf register pointing to input byte buffer (byte*) 8730 * @param len register containing number of bytes 8731 * @param table register that will contain address of CRC table 8732 * @param tmp scratch register 8733 */ 8734 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp) { 8735 assert_different_registers(crc, buf, len, table, tmp, rax); 8736 8737 Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned; 8738 Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop; 8739 8740 // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge 8741 // context for the registers used, where all instructions below are using 128-bit mode 8742 // On EVEX without VL and BW, these instructions will all be AVX. 8743 lea(table, ExternalAddress(StubRoutines::crc_table_addr())); 8744 notl(crc); // ~crc 8745 cmpl(len, 16); 8746 jcc(Assembler::less, L_tail); 8747 8748 // Align buffer to 16 bytes 8749 movl(tmp, buf); 8750 andl(tmp, 0xF); 8751 jccb(Assembler::zero, L_aligned); 8752 subl(tmp, 16); 8753 addl(len, tmp); 8754 8755 align(4); 8756 BIND(L_align_loop); 8757 movsbl(rax, Address(buf, 0)); // load byte with sign extension 8758 update_byte_crc32(crc, rax, table); 8759 increment(buf); 8760 incrementl(tmp); 8761 jccb(Assembler::less, L_align_loop); 8762 8763 BIND(L_aligned); 8764 movl(tmp, len); // save 8765 shrl(len, 4); 8766 jcc(Assembler::zero, L_tail_restore); 8767 8768 // Fold crc into first bytes of vector 8769 movdqa(xmm1, Address(buf, 0)); 8770 movdl(rax, xmm1); 8771 xorl(crc, rax); 8772 if (VM_Version::supports_sse4_1()) { 8773 pinsrd(xmm1, crc, 0); 8774 } else { 8775 pinsrw(xmm1, crc, 0); 8776 shrl(crc, 16); 8777 pinsrw(xmm1, crc, 1); 8778 } 8779 addptr(buf, 16); 8780 subl(len, 4); // len > 0 8781 jcc(Assembler::less, L_fold_tail); 8782 8783 movdqa(xmm2, Address(buf, 0)); 8784 movdqa(xmm3, Address(buf, 16)); 8785 movdqa(xmm4, Address(buf, 32)); 8786 addptr(buf, 48); 8787 subl(len, 3); 8788 jcc(Assembler::lessEqual, L_fold_512b); 8789 8790 // Fold total 512 bits of polynomial on each iteration, 8791 // 128 bits per each of 4 parallel streams. 8792 movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32), rscratch1); 8793 8794 align32(); 8795 BIND(L_fold_512b_loop); 8796 fold_128bit_crc32(xmm1, xmm0, xmm5, buf, 0); 8797 fold_128bit_crc32(xmm2, xmm0, xmm5, buf, 16); 8798 fold_128bit_crc32(xmm3, xmm0, xmm5, buf, 32); 8799 fold_128bit_crc32(xmm4, xmm0, xmm5, buf, 48); 8800 addptr(buf, 64); 8801 subl(len, 4); 8802 jcc(Assembler::greater, L_fold_512b_loop); 8803 8804 // Fold 512 bits to 128 bits. 8805 BIND(L_fold_512b); 8806 movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16), rscratch1); 8807 fold_128bit_crc32(xmm1, xmm0, xmm5, xmm2); 8808 fold_128bit_crc32(xmm1, xmm0, xmm5, xmm3); 8809 fold_128bit_crc32(xmm1, xmm0, xmm5, xmm4); 8810 8811 // Fold the rest of 128 bits data chunks 8812 BIND(L_fold_tail); 8813 addl(len, 3); 8814 jccb(Assembler::lessEqual, L_fold_128b); 8815 movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16), rscratch1); 8816 8817 BIND(L_fold_tail_loop); 8818 fold_128bit_crc32(xmm1, xmm0, xmm5, buf, 0); 8819 addptr(buf, 16); 8820 decrementl(len); 8821 jccb(Assembler::greater, L_fold_tail_loop); 8822 8823 // Fold 128 bits in xmm1 down into 32 bits in crc register. 8824 BIND(L_fold_128b); 8825 movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr()), rscratch1); 8826 if (UseAVX > 0) { 8827 vpclmulqdq(xmm2, xmm0, xmm1, 0x1); 8828 vpand(xmm3, xmm0, xmm2, 0 /* vector_len */); 8829 vpclmulqdq(xmm0, xmm0, xmm3, 0x1); 8830 } else { 8831 movdqa(xmm2, xmm0); 8832 pclmulqdq(xmm2, xmm1, 0x1); 8833 movdqa(xmm3, xmm0); 8834 pand(xmm3, xmm2); 8835 pclmulqdq(xmm0, xmm3, 0x1); 8836 } 8837 psrldq(xmm1, 8); 8838 psrldq(xmm2, 4); 8839 pxor(xmm0, xmm1); 8840 pxor(xmm0, xmm2); 8841 8842 // 8 8-bit folds to compute 32-bit CRC. 8843 for (int j = 0; j < 4; j++) { 8844 fold_8bit_crc32(xmm0, table, xmm1, rax); 8845 } 8846 movdl(crc, xmm0); // mov 32 bits to general register 8847 for (int j = 0; j < 4; j++) { 8848 fold_8bit_crc32(crc, table, rax); 8849 } 8850 8851 BIND(L_tail_restore); 8852 movl(len, tmp); // restore 8853 BIND(L_tail); 8854 andl(len, 0xf); 8855 jccb(Assembler::zero, L_exit); 8856 8857 // Fold the rest of bytes 8858 align(4); 8859 BIND(L_tail_loop); 8860 movsbl(rax, Address(buf, 0)); // load byte with sign extension 8861 update_byte_crc32(crc, rax, table); 8862 increment(buf); 8863 decrementl(len); 8864 jccb(Assembler::greater, L_tail_loop); 8865 8866 BIND(L_exit); 8867 notl(crc); // ~c 8868 } 8869 8870 #ifdef _LP64 8871 // Helper function for AVX 512 CRC32 8872 // Fold 512-bit data chunks 8873 void MacroAssembler::fold512bit_crc32_avx512(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, 8874 Register pos, int offset) { 8875 evmovdquq(xmm3, Address(buf, pos, Address::times_1, offset), Assembler::AVX_512bit); 8876 evpclmulqdq(xtmp, xcrc, xK, 0x10, Assembler::AVX_512bit); // [123:64] 8877 evpclmulqdq(xmm2, xcrc, xK, 0x01, Assembler::AVX_512bit); // [63:0] 8878 evpxorq(xcrc, xtmp, xmm2, Assembler::AVX_512bit /* vector_len */); 8879 evpxorq(xcrc, xcrc, xmm3, Assembler::AVX_512bit /* vector_len */); 8880 } 8881 8882 // Helper function for AVX 512 CRC32 8883 // Compute CRC32 for < 256B buffers 8884 void MacroAssembler::kernel_crc32_avx512_256B(Register crc, Register buf, Register len, Register table, Register pos, 8885 Register tmp1, Register tmp2, Label& L_barrett, Label& L_16B_reduction_loop, 8886 Label& L_get_last_two_xmms, Label& L_128_done, Label& L_cleanup) { 8887 8888 Label L_less_than_32, L_exact_16_left, L_less_than_16_left; 8889 Label L_less_than_8_left, L_less_than_4_left, L_less_than_2_left, L_zero_left; 8890 Label L_only_less_than_4, L_only_less_than_3, L_only_less_than_2; 8891 8892 // check if there is enough buffer to be able to fold 16B at a time 8893 cmpl(len, 32); 8894 jcc(Assembler::less, L_less_than_32); 8895 8896 // if there is, load the constants 8897 movdqu(xmm10, Address(table, 1 * 16)); //rk1 and rk2 in xmm10 8898 movdl(xmm0, crc); // get the initial crc value 8899 movdqu(xmm7, Address(buf, pos, Address::times_1, 0 * 16)); //load the plaintext 8900 pxor(xmm7, xmm0); 8901 8902 // update the buffer pointer 8903 addl(pos, 16); 8904 //update the counter.subtract 32 instead of 16 to save one instruction from the loop 8905 subl(len, 32); 8906 jmp(L_16B_reduction_loop); 8907 8908 bind(L_less_than_32); 8909 //mov initial crc to the return value. this is necessary for zero - length buffers. 8910 movl(rax, crc); 8911 testl(len, len); 8912 jcc(Assembler::equal, L_cleanup); 8913 8914 movdl(xmm0, crc); //get the initial crc value 8915 8916 cmpl(len, 16); 8917 jcc(Assembler::equal, L_exact_16_left); 8918 jcc(Assembler::less, L_less_than_16_left); 8919 8920 movdqu(xmm7, Address(buf, pos, Address::times_1, 0 * 16)); //load the plaintext 8921 pxor(xmm7, xmm0); //xor the initial crc value 8922 addl(pos, 16); 8923 subl(len, 16); 8924 movdqu(xmm10, Address(table, 1 * 16)); // rk1 and rk2 in xmm10 8925 jmp(L_get_last_two_xmms); 8926 8927 bind(L_less_than_16_left); 8928 //use stack space to load data less than 16 bytes, zero - out the 16B in memory first. 8929 pxor(xmm1, xmm1); 8930 movptr(tmp1, rsp); 8931 movdqu(Address(tmp1, 0 * 16), xmm1); 8932 8933 cmpl(len, 4); 8934 jcc(Assembler::less, L_only_less_than_4); 8935 8936 //backup the counter value 8937 movl(tmp2, len); 8938 cmpl(len, 8); 8939 jcc(Assembler::less, L_less_than_8_left); 8940 8941 //load 8 Bytes 8942 movq(rax, Address(buf, pos, Address::times_1, 0 * 16)); 8943 movq(Address(tmp1, 0 * 16), rax); 8944 addptr(tmp1, 8); 8945 subl(len, 8); 8946 addl(pos, 8); 8947 8948 bind(L_less_than_8_left); 8949 cmpl(len, 4); 8950 jcc(Assembler::less, L_less_than_4_left); 8951 8952 //load 4 Bytes 8953 movl(rax, Address(buf, pos, Address::times_1, 0)); 8954 movl(Address(tmp1, 0 * 16), rax); 8955 addptr(tmp1, 4); 8956 subl(len, 4); 8957 addl(pos, 4); 8958 8959 bind(L_less_than_4_left); 8960 cmpl(len, 2); 8961 jcc(Assembler::less, L_less_than_2_left); 8962 8963 // load 2 Bytes 8964 movw(rax, Address(buf, pos, Address::times_1, 0)); 8965 movl(Address(tmp1, 0 * 16), rax); 8966 addptr(tmp1, 2); 8967 subl(len, 2); 8968 addl(pos, 2); 8969 8970 bind(L_less_than_2_left); 8971 cmpl(len, 1); 8972 jcc(Assembler::less, L_zero_left); 8973 8974 // load 1 Byte 8975 movb(rax, Address(buf, pos, Address::times_1, 0)); 8976 movb(Address(tmp1, 0 * 16), rax); 8977 8978 bind(L_zero_left); 8979 movdqu(xmm7, Address(rsp, 0)); 8980 pxor(xmm7, xmm0); //xor the initial crc value 8981 8982 lea(rax, ExternalAddress(StubRoutines::x86::shuf_table_crc32_avx512_addr())); 8983 movdqu(xmm0, Address(rax, tmp2)); 8984 pshufb(xmm7, xmm0); 8985 jmp(L_128_done); 8986 8987 bind(L_exact_16_left); 8988 movdqu(xmm7, Address(buf, pos, Address::times_1, 0)); 8989 pxor(xmm7, xmm0); //xor the initial crc value 8990 jmp(L_128_done); 8991 8992 bind(L_only_less_than_4); 8993 cmpl(len, 3); 8994 jcc(Assembler::less, L_only_less_than_3); 8995 8996 // load 3 Bytes 8997 movb(rax, Address(buf, pos, Address::times_1, 0)); 8998 movb(Address(tmp1, 0), rax); 8999 9000 movb(rax, Address(buf, pos, Address::times_1, 1)); 9001 movb(Address(tmp1, 1), rax); 9002 9003 movb(rax, Address(buf, pos, Address::times_1, 2)); 9004 movb(Address(tmp1, 2), rax); 9005 9006 movdqu(xmm7, Address(rsp, 0)); 9007 pxor(xmm7, xmm0); //xor the initial crc value 9008 9009 pslldq(xmm7, 0x5); 9010 jmp(L_barrett); 9011 bind(L_only_less_than_3); 9012 cmpl(len, 2); 9013 jcc(Assembler::less, L_only_less_than_2); 9014 9015 // load 2 Bytes 9016 movb(rax, Address(buf, pos, Address::times_1, 0)); 9017 movb(Address(tmp1, 0), rax); 9018 9019 movb(rax, Address(buf, pos, Address::times_1, 1)); 9020 movb(Address(tmp1, 1), rax); 9021 9022 movdqu(xmm7, Address(rsp, 0)); 9023 pxor(xmm7, xmm0); //xor the initial crc value 9024 9025 pslldq(xmm7, 0x6); 9026 jmp(L_barrett); 9027 9028 bind(L_only_less_than_2); 9029 //load 1 Byte 9030 movb(rax, Address(buf, pos, Address::times_1, 0)); 9031 movb(Address(tmp1, 0), rax); 9032 9033 movdqu(xmm7, Address(rsp, 0)); 9034 pxor(xmm7, xmm0); //xor the initial crc value 9035 9036 pslldq(xmm7, 0x7); 9037 } 9038 9039 /** 9040 * Compute CRC32 using AVX512 instructions 9041 * param crc register containing existing CRC (32-bit) 9042 * param buf register pointing to input byte buffer (byte*) 9043 * param len register containing number of bytes 9044 * param table address of crc or crc32c table 9045 * param tmp1 scratch register 9046 * param tmp2 scratch register 9047 * return rax result register 9048 * 9049 * This routine is identical for crc32c with the exception of the precomputed constant 9050 * table which will be passed as the table argument. The calculation steps are 9051 * the same for both variants. 9052 */ 9053 void MacroAssembler::kernel_crc32_avx512(Register crc, Register buf, Register len, Register table, Register tmp1, Register tmp2) { 9054 assert_different_registers(crc, buf, len, table, tmp1, tmp2, rax, r12); 9055 9056 Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned; 9057 Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop; 9058 Label L_less_than_256, L_fold_128_B_loop, L_fold_256_B_loop; 9059 Label L_fold_128_B_register, L_final_reduction_for_128, L_16B_reduction_loop; 9060 Label L_128_done, L_get_last_two_xmms, L_barrett, L_cleanup; 9061 9062 const Register pos = r12; 9063 push(r12); 9064 subptr(rsp, 16 * 2 + 8); 9065 9066 // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge 9067 // context for the registers used, where all instructions below are using 128-bit mode 9068 // On EVEX without VL and BW, these instructions will all be AVX. 9069 movl(pos, 0); 9070 9071 // check if smaller than 256B 9072 cmpl(len, 256); 9073 jcc(Assembler::less, L_less_than_256); 9074 9075 // load the initial crc value 9076 movdl(xmm10, crc); 9077 9078 // receive the initial 64B data, xor the initial crc value 9079 evmovdquq(xmm0, Address(buf, pos, Address::times_1, 0 * 64), Assembler::AVX_512bit); 9080 evmovdquq(xmm4, Address(buf, pos, Address::times_1, 1 * 64), Assembler::AVX_512bit); 9081 evpxorq(xmm0, xmm0, xmm10, Assembler::AVX_512bit); 9082 evbroadcasti32x4(xmm10, Address(table, 2 * 16), Assembler::AVX_512bit); //zmm10 has rk3 and rk4 9083 9084 subl(len, 256); 9085 cmpl(len, 256); 9086 jcc(Assembler::less, L_fold_128_B_loop); 9087 9088 evmovdquq(xmm7, Address(buf, pos, Address::times_1, 2 * 64), Assembler::AVX_512bit); 9089 evmovdquq(xmm8, Address(buf, pos, Address::times_1, 3 * 64), Assembler::AVX_512bit); 9090 evbroadcasti32x4(xmm16, Address(table, 0 * 16), Assembler::AVX_512bit); //zmm16 has rk-1 and rk-2 9091 subl(len, 256); 9092 9093 bind(L_fold_256_B_loop); 9094 addl(pos, 256); 9095 fold512bit_crc32_avx512(xmm0, xmm16, xmm1, buf, pos, 0 * 64); 9096 fold512bit_crc32_avx512(xmm4, xmm16, xmm1, buf, pos, 1 * 64); 9097 fold512bit_crc32_avx512(xmm7, xmm16, xmm1, buf, pos, 2 * 64); 9098 fold512bit_crc32_avx512(xmm8, xmm16, xmm1, buf, pos, 3 * 64); 9099 9100 subl(len, 256); 9101 jcc(Assembler::greaterEqual, L_fold_256_B_loop); 9102 9103 // Fold 256 into 128 9104 addl(pos, 256); 9105 evpclmulqdq(xmm1, xmm0, xmm10, 0x01, Assembler::AVX_512bit); 9106 evpclmulqdq(xmm2, xmm0, xmm10, 0x10, Assembler::AVX_512bit); 9107 vpternlogq(xmm7, 0x96, xmm1, xmm2, Assembler::AVX_512bit); // xor ABC 9108 9109 evpclmulqdq(xmm5, xmm4, xmm10, 0x01, Assembler::AVX_512bit); 9110 evpclmulqdq(xmm6, xmm4, xmm10, 0x10, Assembler::AVX_512bit); 9111 vpternlogq(xmm8, 0x96, xmm5, xmm6, Assembler::AVX_512bit); // xor ABC 9112 9113 evmovdquq(xmm0, xmm7, Assembler::AVX_512bit); 9114 evmovdquq(xmm4, xmm8, Assembler::AVX_512bit); 9115 9116 addl(len, 128); 9117 jmp(L_fold_128_B_register); 9118 9119 // at this section of the code, there is 128 * x + y(0 <= y<128) bytes of buffer.The fold_128_B_loop 9120 // loop will fold 128B at a time until we have 128 + y Bytes of buffer 9121 9122 // fold 128B at a time.This section of the code folds 8 xmm registers in parallel 9123 bind(L_fold_128_B_loop); 9124 addl(pos, 128); 9125 fold512bit_crc32_avx512(xmm0, xmm10, xmm1, buf, pos, 0 * 64); 9126 fold512bit_crc32_avx512(xmm4, xmm10, xmm1, buf, pos, 1 * 64); 9127 9128 subl(len, 128); 9129 jcc(Assembler::greaterEqual, L_fold_128_B_loop); 9130 9131 addl(pos, 128); 9132 9133 // at this point, the buffer pointer is pointing at the last y Bytes of the buffer, where 0 <= y < 128 9134 // the 128B of folded data is in 8 of the xmm registers : xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7 9135 bind(L_fold_128_B_register); 9136 evmovdquq(xmm16, Address(table, 5 * 16), Assembler::AVX_512bit); // multiply by rk9-rk16 9137 evmovdquq(xmm11, Address(table, 9 * 16), Assembler::AVX_512bit); // multiply by rk17-rk20, rk1,rk2, 0,0 9138 evpclmulqdq(xmm1, xmm0, xmm16, 0x01, Assembler::AVX_512bit); 9139 evpclmulqdq(xmm2, xmm0, xmm16, 0x10, Assembler::AVX_512bit); 9140 // save last that has no multiplicand 9141 vextracti64x2(xmm7, xmm4, 3); 9142 9143 evpclmulqdq(xmm5, xmm4, xmm11, 0x01, Assembler::AVX_512bit); 9144 evpclmulqdq(xmm6, xmm4, xmm11, 0x10, Assembler::AVX_512bit); 9145 // Needed later in reduction loop 9146 movdqu(xmm10, Address(table, 1 * 16)); 9147 vpternlogq(xmm1, 0x96, xmm2, xmm5, Assembler::AVX_512bit); // xor ABC 9148 vpternlogq(xmm1, 0x96, xmm6, xmm7, Assembler::AVX_512bit); // xor ABC 9149 9150 // Swap 1,0,3,2 - 01 00 11 10 9151 evshufi64x2(xmm8, xmm1, xmm1, 0x4e, Assembler::AVX_512bit); 9152 evpxorq(xmm8, xmm8, xmm1, Assembler::AVX_256bit); 9153 vextracti128(xmm5, xmm8, 1); 9154 evpxorq(xmm7, xmm5, xmm8, Assembler::AVX_128bit); 9155 9156 // instead of 128, we add 128 - 16 to the loop counter to save 1 instruction from the loop 9157 // instead of a cmp instruction, we use the negative flag with the jl instruction 9158 addl(len, 128 - 16); 9159 jcc(Assembler::less, L_final_reduction_for_128); 9160 9161 bind(L_16B_reduction_loop); 9162 vpclmulqdq(xmm8, xmm7, xmm10, 0x01); 9163 vpclmulqdq(xmm7, xmm7, xmm10, 0x10); 9164 vpxor(xmm7, xmm7, xmm8, Assembler::AVX_128bit); 9165 movdqu(xmm0, Address(buf, pos, Address::times_1, 0 * 16)); 9166 vpxor(xmm7, xmm7, xmm0, Assembler::AVX_128bit); 9167 addl(pos, 16); 9168 subl(len, 16); 9169 jcc(Assembler::greaterEqual, L_16B_reduction_loop); 9170 9171 bind(L_final_reduction_for_128); 9172 addl(len, 16); 9173 jcc(Assembler::equal, L_128_done); 9174 9175 bind(L_get_last_two_xmms); 9176 movdqu(xmm2, xmm7); 9177 addl(pos, len); 9178 movdqu(xmm1, Address(buf, pos, Address::times_1, -16)); 9179 subl(pos, len); 9180 9181 // get rid of the extra data that was loaded before 9182 // load the shift constant 9183 lea(rax, ExternalAddress(StubRoutines::x86::shuf_table_crc32_avx512_addr())); 9184 movdqu(xmm0, Address(rax, len)); 9185 addl(rax, len); 9186 9187 vpshufb(xmm7, xmm7, xmm0, Assembler::AVX_128bit); 9188 //Change mask to 512 9189 vpxor(xmm0, xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_avx512_addr() + 2 * 16), Assembler::AVX_128bit, tmp2); 9190 vpshufb(xmm2, xmm2, xmm0, Assembler::AVX_128bit); 9191 9192 blendvpb(xmm2, xmm2, xmm1, xmm0, Assembler::AVX_128bit); 9193 vpclmulqdq(xmm8, xmm7, xmm10, 0x01); 9194 vpclmulqdq(xmm7, xmm7, xmm10, 0x10); 9195 vpxor(xmm7, xmm7, xmm8, Assembler::AVX_128bit); 9196 vpxor(xmm7, xmm7, xmm2, Assembler::AVX_128bit); 9197 9198 bind(L_128_done); 9199 // compute crc of a 128-bit value 9200 movdqu(xmm10, Address(table, 3 * 16)); 9201 movdqu(xmm0, xmm7); 9202 9203 // 64b fold 9204 vpclmulqdq(xmm7, xmm7, xmm10, 0x0); 9205 vpsrldq(xmm0, xmm0, 0x8, Assembler::AVX_128bit); 9206 vpxor(xmm7, xmm7, xmm0, Assembler::AVX_128bit); 9207 9208 // 32b fold 9209 movdqu(xmm0, xmm7); 9210 vpslldq(xmm7, xmm7, 0x4, Assembler::AVX_128bit); 9211 vpclmulqdq(xmm7, xmm7, xmm10, 0x10); 9212 vpxor(xmm7, xmm7, xmm0, Assembler::AVX_128bit); 9213 jmp(L_barrett); 9214 9215 bind(L_less_than_256); 9216 kernel_crc32_avx512_256B(crc, buf, len, table, pos, tmp1, tmp2, L_barrett, L_16B_reduction_loop, L_get_last_two_xmms, L_128_done, L_cleanup); 9217 9218 //barrett reduction 9219 bind(L_barrett); 9220 vpand(xmm7, xmm7, ExternalAddress(StubRoutines::x86::crc_by128_masks_avx512_addr() + 1 * 16), Assembler::AVX_128bit, tmp2); 9221 movdqu(xmm1, xmm7); 9222 movdqu(xmm2, xmm7); 9223 movdqu(xmm10, Address(table, 4 * 16)); 9224 9225 pclmulqdq(xmm7, xmm10, 0x0); 9226 pxor(xmm7, xmm2); 9227 vpand(xmm7, xmm7, ExternalAddress(StubRoutines::x86::crc_by128_masks_avx512_addr()), Assembler::AVX_128bit, tmp2); 9228 movdqu(xmm2, xmm7); 9229 pclmulqdq(xmm7, xmm10, 0x10); 9230 pxor(xmm7, xmm2); 9231 pxor(xmm7, xmm1); 9232 pextrd(crc, xmm7, 2); 9233 9234 bind(L_cleanup); 9235 addptr(rsp, 16 * 2 + 8); 9236 pop(r12); 9237 } 9238 9239 // S. Gueron / Information Processing Letters 112 (2012) 184 9240 // Algorithm 4: Computing carry-less multiplication using a precomputed lookup table. 9241 // Input: A 32 bit value B = [byte3, byte2, byte1, byte0]. 9242 // Output: the 64-bit carry-less product of B * CONST 9243 void MacroAssembler::crc32c_ipl_alg4(Register in, uint32_t n, 9244 Register tmp1, Register tmp2, Register tmp3) { 9245 lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr())); 9246 if (n > 0) { 9247 addq(tmp3, n * 256 * 8); 9248 } 9249 // Q1 = TABLEExt[n][B & 0xFF]; 9250 movl(tmp1, in); 9251 andl(tmp1, 0x000000FF); 9252 shll(tmp1, 3); 9253 addq(tmp1, tmp3); 9254 movq(tmp1, Address(tmp1, 0)); 9255 9256 // Q2 = TABLEExt[n][B >> 8 & 0xFF]; 9257 movl(tmp2, in); 9258 shrl(tmp2, 8); 9259 andl(tmp2, 0x000000FF); 9260 shll(tmp2, 3); 9261 addq(tmp2, tmp3); 9262 movq(tmp2, Address(tmp2, 0)); 9263 9264 shlq(tmp2, 8); 9265 xorq(tmp1, tmp2); 9266 9267 // Q3 = TABLEExt[n][B >> 16 & 0xFF]; 9268 movl(tmp2, in); 9269 shrl(tmp2, 16); 9270 andl(tmp2, 0x000000FF); 9271 shll(tmp2, 3); 9272 addq(tmp2, tmp3); 9273 movq(tmp2, Address(tmp2, 0)); 9274 9275 shlq(tmp2, 16); 9276 xorq(tmp1, tmp2); 9277 9278 // Q4 = TABLEExt[n][B >> 24 & 0xFF]; 9279 shrl(in, 24); 9280 andl(in, 0x000000FF); 9281 shll(in, 3); 9282 addq(in, tmp3); 9283 movq(in, Address(in, 0)); 9284 9285 shlq(in, 24); 9286 xorq(in, tmp1); 9287 // return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24; 9288 } 9289 9290 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1, 9291 Register in_out, 9292 uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported, 9293 XMMRegister w_xtmp2, 9294 Register tmp1, 9295 Register n_tmp2, Register n_tmp3) { 9296 if (is_pclmulqdq_supported) { 9297 movdl(w_xtmp1, in_out); // modified blindly 9298 9299 movl(tmp1, const_or_pre_comp_const_index); 9300 movdl(w_xtmp2, tmp1); 9301 pclmulqdq(w_xtmp1, w_xtmp2, 0); 9302 9303 movdq(in_out, w_xtmp1); 9304 } else { 9305 crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3); 9306 } 9307 } 9308 9309 // Recombination Alternative 2: No bit-reflections 9310 // T1 = (CRC_A * U1) << 1 9311 // T2 = (CRC_B * U2) << 1 9312 // C1 = T1 >> 32 9313 // C2 = T2 >> 32 9314 // T1 = T1 & 0xFFFFFFFF 9315 // T2 = T2 & 0xFFFFFFFF 9316 // T1 = CRC32(0, T1) 9317 // T2 = CRC32(0, T2) 9318 // C1 = C1 ^ T1 9319 // C2 = C2 ^ T2 9320 // CRC = C1 ^ C2 ^ CRC_C 9321 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2, 9322 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 9323 Register tmp1, Register tmp2, 9324 Register n_tmp3) { 9325 crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3); 9326 crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3); 9327 shlq(in_out, 1); 9328 movl(tmp1, in_out); 9329 shrq(in_out, 32); 9330 xorl(tmp2, tmp2); 9331 crc32(tmp2, tmp1, 4); 9332 xorl(in_out, tmp2); // we don't care about upper 32 bit contents here 9333 shlq(in1, 1); 9334 movl(tmp1, in1); 9335 shrq(in1, 32); 9336 xorl(tmp2, tmp2); 9337 crc32(tmp2, tmp1, 4); 9338 xorl(in1, tmp2); 9339 xorl(in_out, in1); 9340 xorl(in_out, in2); 9341 } 9342 9343 // Set N to predefined value 9344 // Subtract from a length of a buffer 9345 // execute in a loop: 9346 // CRC_A = 0xFFFFFFFF, CRC_B = 0, CRC_C = 0 9347 // for i = 1 to N do 9348 // CRC_A = CRC32(CRC_A, A[i]) 9349 // CRC_B = CRC32(CRC_B, B[i]) 9350 // CRC_C = CRC32(CRC_C, C[i]) 9351 // end for 9352 // Recombine 9353 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, 9354 Register in_out1, Register in_out2, Register in_out3, 9355 Register tmp1, Register tmp2, Register tmp3, 9356 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 9357 Register tmp4, Register tmp5, 9358 Register n_tmp6) { 9359 Label L_processPartitions; 9360 Label L_processPartition; 9361 Label L_exit; 9362 9363 bind(L_processPartitions); 9364 cmpl(in_out1, 3 * size); 9365 jcc(Assembler::less, L_exit); 9366 xorl(tmp1, tmp1); 9367 xorl(tmp2, tmp2); 9368 movq(tmp3, in_out2); 9369 addq(tmp3, size); 9370 9371 bind(L_processPartition); 9372 crc32(in_out3, Address(in_out2, 0), 8); 9373 crc32(tmp1, Address(in_out2, size), 8); 9374 crc32(tmp2, Address(in_out2, size * 2), 8); 9375 addq(in_out2, 8); 9376 cmpq(in_out2, tmp3); 9377 jcc(Assembler::less, L_processPartition); 9378 crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2, 9379 w_xtmp1, w_xtmp2, w_xtmp3, 9380 tmp4, tmp5, 9381 n_tmp6); 9382 addq(in_out2, 2 * size); 9383 subl(in_out1, 3 * size); 9384 jmp(L_processPartitions); 9385 9386 bind(L_exit); 9387 } 9388 #else 9389 void MacroAssembler::crc32c_ipl_alg4(Register in_out, uint32_t n, 9390 Register tmp1, Register tmp2, Register tmp3, 9391 XMMRegister xtmp1, XMMRegister xtmp2) { 9392 lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr())); 9393 if (n > 0) { 9394 addl(tmp3, n * 256 * 8); 9395 } 9396 // Q1 = TABLEExt[n][B & 0xFF]; 9397 movl(tmp1, in_out); 9398 andl(tmp1, 0x000000FF); 9399 shll(tmp1, 3); 9400 addl(tmp1, tmp3); 9401 movq(xtmp1, Address(tmp1, 0)); 9402 9403 // Q2 = TABLEExt[n][B >> 8 & 0xFF]; 9404 movl(tmp2, in_out); 9405 shrl(tmp2, 8); 9406 andl(tmp2, 0x000000FF); 9407 shll(tmp2, 3); 9408 addl(tmp2, tmp3); 9409 movq(xtmp2, Address(tmp2, 0)); 9410 9411 psllq(xtmp2, 8); 9412 pxor(xtmp1, xtmp2); 9413 9414 // Q3 = TABLEExt[n][B >> 16 & 0xFF]; 9415 movl(tmp2, in_out); 9416 shrl(tmp2, 16); 9417 andl(tmp2, 0x000000FF); 9418 shll(tmp2, 3); 9419 addl(tmp2, tmp3); 9420 movq(xtmp2, Address(tmp2, 0)); 9421 9422 psllq(xtmp2, 16); 9423 pxor(xtmp1, xtmp2); 9424 9425 // Q4 = TABLEExt[n][B >> 24 & 0xFF]; 9426 shrl(in_out, 24); 9427 andl(in_out, 0x000000FF); 9428 shll(in_out, 3); 9429 addl(in_out, tmp3); 9430 movq(xtmp2, Address(in_out, 0)); 9431 9432 psllq(xtmp2, 24); 9433 pxor(xtmp1, xtmp2); // Result in CXMM 9434 // return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24; 9435 } 9436 9437 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1, 9438 Register in_out, 9439 uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported, 9440 XMMRegister w_xtmp2, 9441 Register tmp1, 9442 Register n_tmp2, Register n_tmp3) { 9443 if (is_pclmulqdq_supported) { 9444 movdl(w_xtmp1, in_out); 9445 9446 movl(tmp1, const_or_pre_comp_const_index); 9447 movdl(w_xtmp2, tmp1); 9448 pclmulqdq(w_xtmp1, w_xtmp2, 0); 9449 // Keep result in XMM since GPR is 32 bit in length 9450 } else { 9451 crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3, w_xtmp1, w_xtmp2); 9452 } 9453 } 9454 9455 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2, 9456 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 9457 Register tmp1, Register tmp2, 9458 Register n_tmp3) { 9459 crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3); 9460 crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3); 9461 9462 psllq(w_xtmp1, 1); 9463 movdl(tmp1, w_xtmp1); 9464 psrlq(w_xtmp1, 32); 9465 movdl(in_out, w_xtmp1); 9466 9467 xorl(tmp2, tmp2); 9468 crc32(tmp2, tmp1, 4); 9469 xorl(in_out, tmp2); 9470 9471 psllq(w_xtmp2, 1); 9472 movdl(tmp1, w_xtmp2); 9473 psrlq(w_xtmp2, 32); 9474 movdl(in1, w_xtmp2); 9475 9476 xorl(tmp2, tmp2); 9477 crc32(tmp2, tmp1, 4); 9478 xorl(in1, tmp2); 9479 xorl(in_out, in1); 9480 xorl(in_out, in2); 9481 } 9482 9483 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, 9484 Register in_out1, Register in_out2, Register in_out3, 9485 Register tmp1, Register tmp2, Register tmp3, 9486 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 9487 Register tmp4, Register tmp5, 9488 Register n_tmp6) { 9489 Label L_processPartitions; 9490 Label L_processPartition; 9491 Label L_exit; 9492 9493 bind(L_processPartitions); 9494 cmpl(in_out1, 3 * size); 9495 jcc(Assembler::less, L_exit); 9496 xorl(tmp1, tmp1); 9497 xorl(tmp2, tmp2); 9498 movl(tmp3, in_out2); 9499 addl(tmp3, size); 9500 9501 bind(L_processPartition); 9502 crc32(in_out3, Address(in_out2, 0), 4); 9503 crc32(tmp1, Address(in_out2, size), 4); 9504 crc32(tmp2, Address(in_out2, size*2), 4); 9505 crc32(in_out3, Address(in_out2, 0+4), 4); 9506 crc32(tmp1, Address(in_out2, size+4), 4); 9507 crc32(tmp2, Address(in_out2, size*2+4), 4); 9508 addl(in_out2, 8); 9509 cmpl(in_out2, tmp3); 9510 jcc(Assembler::less, L_processPartition); 9511 9512 push(tmp3); 9513 push(in_out1); 9514 push(in_out2); 9515 tmp4 = tmp3; 9516 tmp5 = in_out1; 9517 n_tmp6 = in_out2; 9518 9519 crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2, 9520 w_xtmp1, w_xtmp2, w_xtmp3, 9521 tmp4, tmp5, 9522 n_tmp6); 9523 9524 pop(in_out2); 9525 pop(in_out1); 9526 pop(tmp3); 9527 9528 addl(in_out2, 2 * size); 9529 subl(in_out1, 3 * size); 9530 jmp(L_processPartitions); 9531 9532 bind(L_exit); 9533 } 9534 #endif //LP64 9535 9536 #ifdef _LP64 9537 // Algorithm 2: Pipelined usage of the CRC32 instruction. 9538 // Input: A buffer I of L bytes. 9539 // Output: the CRC32C value of the buffer. 9540 // Notations: 9541 // Write L = 24N + r, with N = floor (L/24). 9542 // r = L mod 24 (0 <= r < 24). 9543 // Consider I as the concatenation of A|B|C|R, where A, B, C, each, 9544 // N quadwords, and R consists of r bytes. 9545 // A[j] = I [8j+7:8j], j= 0, 1, ..., N-1 9546 // B[j] = I [N + 8j+7:N + 8j], j= 0, 1, ..., N-1 9547 // C[j] = I [2N + 8j+7:2N + 8j], j= 0, 1, ..., N-1 9548 // if r > 0 R[j] = I [3N +j], j= 0, 1, ...,r-1 9549 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2, 9550 Register tmp1, Register tmp2, Register tmp3, 9551 Register tmp4, Register tmp5, Register tmp6, 9552 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 9553 bool is_pclmulqdq_supported) { 9554 uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS]; 9555 Label L_wordByWord; 9556 Label L_byteByByteProlog; 9557 Label L_byteByByte; 9558 Label L_exit; 9559 9560 if (is_pclmulqdq_supported ) { 9561 const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr; 9562 const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr+1); 9563 9564 const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2); 9565 const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3); 9566 9567 const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4); 9568 const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5); 9569 assert((CRC32C_NUM_PRECOMPUTED_CONSTANTS - 1 ) == 5, "Checking whether you declared all of the constants based on the number of \"chunks\""); 9570 } else { 9571 const_or_pre_comp_const_index[0] = 1; 9572 const_or_pre_comp_const_index[1] = 0; 9573 9574 const_or_pre_comp_const_index[2] = 3; 9575 const_or_pre_comp_const_index[3] = 2; 9576 9577 const_or_pre_comp_const_index[4] = 5; 9578 const_or_pre_comp_const_index[5] = 4; 9579 } 9580 crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported, 9581 in2, in1, in_out, 9582 tmp1, tmp2, tmp3, 9583 w_xtmp1, w_xtmp2, w_xtmp3, 9584 tmp4, tmp5, 9585 tmp6); 9586 crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported, 9587 in2, in1, in_out, 9588 tmp1, tmp2, tmp3, 9589 w_xtmp1, w_xtmp2, w_xtmp3, 9590 tmp4, tmp5, 9591 tmp6); 9592 crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported, 9593 in2, in1, in_out, 9594 tmp1, tmp2, tmp3, 9595 w_xtmp1, w_xtmp2, w_xtmp3, 9596 tmp4, tmp5, 9597 tmp6); 9598 movl(tmp1, in2); 9599 andl(tmp1, 0x00000007); 9600 negl(tmp1); 9601 addl(tmp1, in2); 9602 addq(tmp1, in1); 9603 9604 cmpq(in1, tmp1); 9605 jccb(Assembler::greaterEqual, L_byteByByteProlog); 9606 align(16); 9607 BIND(L_wordByWord); 9608 crc32(in_out, Address(in1, 0), 8); 9609 addq(in1, 8); 9610 cmpq(in1, tmp1); 9611 jcc(Assembler::less, L_wordByWord); 9612 9613 BIND(L_byteByByteProlog); 9614 andl(in2, 0x00000007); 9615 movl(tmp2, 1); 9616 9617 cmpl(tmp2, in2); 9618 jccb(Assembler::greater, L_exit); 9619 BIND(L_byteByByte); 9620 crc32(in_out, Address(in1, 0), 1); 9621 incq(in1); 9622 incl(tmp2); 9623 cmpl(tmp2, in2); 9624 jcc(Assembler::lessEqual, L_byteByByte); 9625 9626 BIND(L_exit); 9627 } 9628 #else 9629 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2, 9630 Register tmp1, Register tmp2, Register tmp3, 9631 Register tmp4, Register tmp5, Register tmp6, 9632 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 9633 bool is_pclmulqdq_supported) { 9634 uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS]; 9635 Label L_wordByWord; 9636 Label L_byteByByteProlog; 9637 Label L_byteByByte; 9638 Label L_exit; 9639 9640 if (is_pclmulqdq_supported) { 9641 const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr; 9642 const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 1); 9643 9644 const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2); 9645 const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3); 9646 9647 const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4); 9648 const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5); 9649 } else { 9650 const_or_pre_comp_const_index[0] = 1; 9651 const_or_pre_comp_const_index[1] = 0; 9652 9653 const_or_pre_comp_const_index[2] = 3; 9654 const_or_pre_comp_const_index[3] = 2; 9655 9656 const_or_pre_comp_const_index[4] = 5; 9657 const_or_pre_comp_const_index[5] = 4; 9658 } 9659 crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported, 9660 in2, in1, in_out, 9661 tmp1, tmp2, tmp3, 9662 w_xtmp1, w_xtmp2, w_xtmp3, 9663 tmp4, tmp5, 9664 tmp6); 9665 crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported, 9666 in2, in1, in_out, 9667 tmp1, tmp2, tmp3, 9668 w_xtmp1, w_xtmp2, w_xtmp3, 9669 tmp4, tmp5, 9670 tmp6); 9671 crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported, 9672 in2, in1, in_out, 9673 tmp1, tmp2, tmp3, 9674 w_xtmp1, w_xtmp2, w_xtmp3, 9675 tmp4, tmp5, 9676 tmp6); 9677 movl(tmp1, in2); 9678 andl(tmp1, 0x00000007); 9679 negl(tmp1); 9680 addl(tmp1, in2); 9681 addl(tmp1, in1); 9682 9683 BIND(L_wordByWord); 9684 cmpl(in1, tmp1); 9685 jcc(Assembler::greaterEqual, L_byteByByteProlog); 9686 crc32(in_out, Address(in1,0), 4); 9687 addl(in1, 4); 9688 jmp(L_wordByWord); 9689 9690 BIND(L_byteByByteProlog); 9691 andl(in2, 0x00000007); 9692 movl(tmp2, 1); 9693 9694 BIND(L_byteByByte); 9695 cmpl(tmp2, in2); 9696 jccb(Assembler::greater, L_exit); 9697 movb(tmp1, Address(in1, 0)); 9698 crc32(in_out, tmp1, 1); 9699 incl(in1); 9700 incl(tmp2); 9701 jmp(L_byteByByte); 9702 9703 BIND(L_exit); 9704 } 9705 #endif // LP64 9706 #undef BIND 9707 #undef BLOCK_COMMENT 9708 9709 // Compress char[] array to byte[]. 9710 // Intrinsic for java.lang.StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) 9711 // Return the array length if every element in array can be encoded, 9712 // otherwise, the index of first non-latin1 (> 0xff) character. 9713 // @IntrinsicCandidate 9714 // public static int compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) { 9715 // for (int i = 0; i < len; i++) { 9716 // char c = src[srcOff]; 9717 // if (c > 0xff) { 9718 // return i; // return index of non-latin1 char 9719 // } 9720 // dst[dstOff] = (byte)c; 9721 // srcOff++; 9722 // dstOff++; 9723 // } 9724 // return len; 9725 // } 9726 void MacroAssembler::char_array_compress(Register src, Register dst, Register len, 9727 XMMRegister tmp1Reg, XMMRegister tmp2Reg, 9728 XMMRegister tmp3Reg, XMMRegister tmp4Reg, 9729 Register tmp5, Register result, KRegister mask1, KRegister mask2) { 9730 Label copy_chars_loop, done, reset_sp, copy_tail; 9731 9732 // rsi: src 9733 // rdi: dst 9734 // rdx: len 9735 // rcx: tmp5 9736 // rax: result 9737 9738 // rsi holds start addr of source char[] to be compressed 9739 // rdi holds start addr of destination byte[] 9740 // rdx holds length 9741 9742 assert(len != result, ""); 9743 9744 // save length for return 9745 movl(result, len); 9746 9747 if ((AVX3Threshold == 0) && (UseAVX > 2) && // AVX512 9748 VM_Version::supports_avx512vlbw() && 9749 VM_Version::supports_bmi2()) { 9750 9751 Label copy_32_loop, copy_loop_tail, below_threshold, reset_for_copy_tail; 9752 9753 // alignment 9754 Label post_alignment; 9755 9756 // if length of the string is less than 32, handle it the old fashioned way 9757 testl(len, -32); 9758 jcc(Assembler::zero, below_threshold); 9759 9760 // First check whether a character is compressible ( <= 0xFF). 9761 // Create mask to test for Unicode chars inside zmm vector 9762 movl(tmp5, 0x00FF); 9763 evpbroadcastw(tmp2Reg, tmp5, Assembler::AVX_512bit); 9764 9765 testl(len, -64); 9766 jccb(Assembler::zero, post_alignment); 9767 9768 movl(tmp5, dst); 9769 andl(tmp5, (32 - 1)); 9770 negl(tmp5); 9771 andl(tmp5, (32 - 1)); 9772 9773 // bail out when there is nothing to be done 9774 testl(tmp5, 0xFFFFFFFF); 9775 jccb(Assembler::zero, post_alignment); 9776 9777 // ~(~0 << len), where len is the # of remaining elements to process 9778 movl(len, 0xFFFFFFFF); 9779 shlxl(len, len, tmp5); 9780 notl(len); 9781 kmovdl(mask2, len); 9782 movl(len, result); 9783 9784 evmovdquw(tmp1Reg, mask2, Address(src, 0), /*merge*/ false, Assembler::AVX_512bit); 9785 evpcmpw(mask1, mask2, tmp1Reg, tmp2Reg, Assembler::le, /*signed*/ false, Assembler::AVX_512bit); 9786 ktestd(mask1, mask2); 9787 jcc(Assembler::carryClear, copy_tail); 9788 9789 evpmovwb(Address(dst, 0), mask2, tmp1Reg, Assembler::AVX_512bit); 9790 9791 addptr(src, tmp5); 9792 addptr(src, tmp5); 9793 addptr(dst, tmp5); 9794 subl(len, tmp5); 9795 9796 bind(post_alignment); 9797 // end of alignment 9798 9799 movl(tmp5, len); 9800 andl(tmp5, (32 - 1)); // tail count (in chars) 9801 andl(len, ~(32 - 1)); // vector count (in chars) 9802 jccb(Assembler::zero, copy_loop_tail); 9803 9804 lea(src, Address(src, len, Address::times_2)); 9805 lea(dst, Address(dst, len, Address::times_1)); 9806 negptr(len); 9807 9808 bind(copy_32_loop); 9809 evmovdquw(tmp1Reg, Address(src, len, Address::times_2), Assembler::AVX_512bit); 9810 evpcmpuw(mask1, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit); 9811 kortestdl(mask1, mask1); 9812 jccb(Assembler::carryClear, reset_for_copy_tail); 9813 9814 // All elements in current processed chunk are valid candidates for 9815 // compression. Write a truncated byte elements to the memory. 9816 evpmovwb(Address(dst, len, Address::times_1), tmp1Reg, Assembler::AVX_512bit); 9817 addptr(len, 32); 9818 jccb(Assembler::notZero, copy_32_loop); 9819 9820 bind(copy_loop_tail); 9821 // bail out when there is nothing to be done 9822 testl(tmp5, 0xFFFFFFFF); 9823 jcc(Assembler::zero, done); 9824 9825 movl(len, tmp5); 9826 9827 // ~(~0 << len), where len is the # of remaining elements to process 9828 movl(tmp5, 0xFFFFFFFF); 9829 shlxl(tmp5, tmp5, len); 9830 notl(tmp5); 9831 9832 kmovdl(mask2, tmp5); 9833 9834 evmovdquw(tmp1Reg, mask2, Address(src, 0), /*merge*/ false, Assembler::AVX_512bit); 9835 evpcmpw(mask1, mask2, tmp1Reg, tmp2Reg, Assembler::le, /*signed*/ false, Assembler::AVX_512bit); 9836 ktestd(mask1, mask2); 9837 jcc(Assembler::carryClear, copy_tail); 9838 9839 evpmovwb(Address(dst, 0), mask2, tmp1Reg, Assembler::AVX_512bit); 9840 jmp(done); 9841 9842 bind(reset_for_copy_tail); 9843 lea(src, Address(src, tmp5, Address::times_2)); 9844 lea(dst, Address(dst, tmp5, Address::times_1)); 9845 subptr(len, tmp5); 9846 jmp(copy_chars_loop); 9847 9848 bind(below_threshold); 9849 } 9850 9851 if (UseSSE42Intrinsics) { 9852 Label copy_32_loop, copy_16, copy_tail_sse, reset_for_copy_tail; 9853 9854 // vectored compression 9855 testl(len, 0xfffffff8); 9856 jcc(Assembler::zero, copy_tail); 9857 9858 movl(tmp5, 0xff00ff00); // create mask to test for Unicode chars in vectors 9859 movdl(tmp1Reg, tmp5); 9860 pshufd(tmp1Reg, tmp1Reg, 0); // store Unicode mask in tmp1Reg 9861 9862 andl(len, 0xfffffff0); 9863 jccb(Assembler::zero, copy_16); 9864 9865 // compress 16 chars per iter 9866 pxor(tmp4Reg, tmp4Reg); 9867 9868 lea(src, Address(src, len, Address::times_2)); 9869 lea(dst, Address(dst, len, Address::times_1)); 9870 negptr(len); 9871 9872 bind(copy_32_loop); 9873 movdqu(tmp2Reg, Address(src, len, Address::times_2)); // load 1st 8 characters 9874 por(tmp4Reg, tmp2Reg); 9875 movdqu(tmp3Reg, Address(src, len, Address::times_2, 16)); // load next 8 characters 9876 por(tmp4Reg, tmp3Reg); 9877 ptest(tmp4Reg, tmp1Reg); // check for Unicode chars in next vector 9878 jccb(Assembler::notZero, reset_for_copy_tail); 9879 packuswb(tmp2Reg, tmp3Reg); // only ASCII chars; compress each to 1 byte 9880 movdqu(Address(dst, len, Address::times_1), tmp2Reg); 9881 addptr(len, 16); 9882 jccb(Assembler::notZero, copy_32_loop); 9883 9884 // compress next vector of 8 chars (if any) 9885 bind(copy_16); 9886 // len = 0 9887 testl(result, 0x00000008); // check if there's a block of 8 chars to compress 9888 jccb(Assembler::zero, copy_tail_sse); 9889 9890 pxor(tmp3Reg, tmp3Reg); 9891 9892 movdqu(tmp2Reg, Address(src, 0)); 9893 ptest(tmp2Reg, tmp1Reg); // check for Unicode chars in vector 9894 jccb(Assembler::notZero, reset_for_copy_tail); 9895 packuswb(tmp2Reg, tmp3Reg); // only LATIN1 chars; compress each to 1 byte 9896 movq(Address(dst, 0), tmp2Reg); 9897 addptr(src, 16); 9898 addptr(dst, 8); 9899 jmpb(copy_tail_sse); 9900 9901 bind(reset_for_copy_tail); 9902 movl(tmp5, result); 9903 andl(tmp5, 0x0000000f); 9904 lea(src, Address(src, tmp5, Address::times_2)); 9905 lea(dst, Address(dst, tmp5, Address::times_1)); 9906 subptr(len, tmp5); 9907 jmpb(copy_chars_loop); 9908 9909 bind(copy_tail_sse); 9910 movl(len, result); 9911 andl(len, 0x00000007); // tail count (in chars) 9912 } 9913 // compress 1 char per iter 9914 bind(copy_tail); 9915 testl(len, len); 9916 jccb(Assembler::zero, done); 9917 lea(src, Address(src, len, Address::times_2)); 9918 lea(dst, Address(dst, len, Address::times_1)); 9919 negptr(len); 9920 9921 bind(copy_chars_loop); 9922 load_unsigned_short(tmp5, Address(src, len, Address::times_2)); 9923 testl(tmp5, 0xff00); // check if Unicode char 9924 jccb(Assembler::notZero, reset_sp); 9925 movb(Address(dst, len, Address::times_1), tmp5); // ASCII char; compress to 1 byte 9926 increment(len); 9927 jccb(Assembler::notZero, copy_chars_loop); 9928 9929 // add len then return (len will be zero if compress succeeded, otherwise negative) 9930 bind(reset_sp); 9931 addl(result, len); 9932 9933 bind(done); 9934 } 9935 9936 // Inflate byte[] array to char[]. 9937 // ..\jdk\src\java.base\share\classes\java\lang\StringLatin1.java 9938 // @IntrinsicCandidate 9939 // private static void inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) { 9940 // for (int i = 0; i < len; i++) { 9941 // dst[dstOff++] = (char)(src[srcOff++] & 0xff); 9942 // } 9943 // } 9944 void MacroAssembler::byte_array_inflate(Register src, Register dst, Register len, 9945 XMMRegister tmp1, Register tmp2, KRegister mask) { 9946 Label copy_chars_loop, done, below_threshold, avx3_threshold; 9947 // rsi: src 9948 // rdi: dst 9949 // rdx: len 9950 // rcx: tmp2 9951 9952 // rsi holds start addr of source byte[] to be inflated 9953 // rdi holds start addr of destination char[] 9954 // rdx holds length 9955 assert_different_registers(src, dst, len, tmp2); 9956 movl(tmp2, len); 9957 if ((UseAVX > 2) && // AVX512 9958 VM_Version::supports_avx512vlbw() && 9959 VM_Version::supports_bmi2()) { 9960 9961 Label copy_32_loop, copy_tail; 9962 Register tmp3_aliased = len; 9963 9964 // if length of the string is less than 16, handle it in an old fashioned way 9965 testl(len, -16); 9966 jcc(Assembler::zero, below_threshold); 9967 9968 testl(len, -1 * AVX3Threshold); 9969 jcc(Assembler::zero, avx3_threshold); 9970 9971 // In order to use only one arithmetic operation for the main loop we use 9972 // this pre-calculation 9973 andl(tmp2, (32 - 1)); // tail count (in chars), 32 element wide loop 9974 andl(len, -32); // vector count 9975 jccb(Assembler::zero, copy_tail); 9976 9977 lea(src, Address(src, len, Address::times_1)); 9978 lea(dst, Address(dst, len, Address::times_2)); 9979 negptr(len); 9980 9981 9982 // inflate 32 chars per iter 9983 bind(copy_32_loop); 9984 vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_512bit); 9985 evmovdquw(Address(dst, len, Address::times_2), tmp1, Assembler::AVX_512bit); 9986 addptr(len, 32); 9987 jcc(Assembler::notZero, copy_32_loop); 9988 9989 bind(copy_tail); 9990 // bail out when there is nothing to be done 9991 testl(tmp2, -1); // we don't destroy the contents of tmp2 here 9992 jcc(Assembler::zero, done); 9993 9994 // ~(~0 << length), where length is the # of remaining elements to process 9995 movl(tmp3_aliased, -1); 9996 shlxl(tmp3_aliased, tmp3_aliased, tmp2); 9997 notl(tmp3_aliased); 9998 kmovdl(mask, tmp3_aliased); 9999 evpmovzxbw(tmp1, mask, Address(src, 0), Assembler::AVX_512bit); 10000 evmovdquw(Address(dst, 0), mask, tmp1, /*merge*/ true, Assembler::AVX_512bit); 10001 10002 jmp(done); 10003 bind(avx3_threshold); 10004 } 10005 if (UseSSE42Intrinsics) { 10006 Label copy_16_loop, copy_8_loop, copy_bytes, copy_new_tail, copy_tail; 10007 10008 if (UseAVX > 1) { 10009 andl(tmp2, (16 - 1)); 10010 andl(len, -16); 10011 jccb(Assembler::zero, copy_new_tail); 10012 } else { 10013 andl(tmp2, 0x00000007); // tail count (in chars) 10014 andl(len, 0xfffffff8); // vector count (in chars) 10015 jccb(Assembler::zero, copy_tail); 10016 } 10017 10018 // vectored inflation 10019 lea(src, Address(src, len, Address::times_1)); 10020 lea(dst, Address(dst, len, Address::times_2)); 10021 negptr(len); 10022 10023 if (UseAVX > 1) { 10024 bind(copy_16_loop); 10025 vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_256bit); 10026 vmovdqu(Address(dst, len, Address::times_2), tmp1); 10027 addptr(len, 16); 10028 jcc(Assembler::notZero, copy_16_loop); 10029 10030 bind(below_threshold); 10031 bind(copy_new_tail); 10032 movl(len, tmp2); 10033 andl(tmp2, 0x00000007); 10034 andl(len, 0xFFFFFFF8); 10035 jccb(Assembler::zero, copy_tail); 10036 10037 pmovzxbw(tmp1, Address(src, 0)); 10038 movdqu(Address(dst, 0), tmp1); 10039 addptr(src, 8); 10040 addptr(dst, 2 * 8); 10041 10042 jmp(copy_tail, true); 10043 } 10044 10045 // inflate 8 chars per iter 10046 bind(copy_8_loop); 10047 pmovzxbw(tmp1, Address(src, len, Address::times_1)); // unpack to 8 words 10048 movdqu(Address(dst, len, Address::times_2), tmp1); 10049 addptr(len, 8); 10050 jcc(Assembler::notZero, copy_8_loop); 10051 10052 bind(copy_tail); 10053 movl(len, tmp2); 10054 10055 cmpl(len, 4); 10056 jccb(Assembler::less, copy_bytes); 10057 10058 movdl(tmp1, Address(src, 0)); // load 4 byte chars 10059 pmovzxbw(tmp1, tmp1); 10060 movq(Address(dst, 0), tmp1); 10061 subptr(len, 4); 10062 addptr(src, 4); 10063 addptr(dst, 8); 10064 10065 bind(copy_bytes); 10066 } else { 10067 bind(below_threshold); 10068 } 10069 10070 testl(len, len); 10071 jccb(Assembler::zero, done); 10072 lea(src, Address(src, len, Address::times_1)); 10073 lea(dst, Address(dst, len, Address::times_2)); 10074 negptr(len); 10075 10076 // inflate 1 char per iter 10077 bind(copy_chars_loop); 10078 load_unsigned_byte(tmp2, Address(src, len, Address::times_1)); // load byte char 10079 movw(Address(dst, len, Address::times_2), tmp2); // inflate byte char to word 10080 increment(len); 10081 jcc(Assembler::notZero, copy_chars_loop); 10082 10083 bind(done); 10084 } 10085 10086 10087 void MacroAssembler::evmovdqu(BasicType type, KRegister kmask, XMMRegister dst, Address src, bool merge, int vector_len) { 10088 switch(type) { 10089 case T_BYTE: 10090 case T_BOOLEAN: 10091 evmovdqub(dst, kmask, src, merge, vector_len); 10092 break; 10093 case T_CHAR: 10094 case T_SHORT: 10095 evmovdquw(dst, kmask, src, merge, vector_len); 10096 break; 10097 case T_INT: 10098 case T_FLOAT: 10099 evmovdqul(dst, kmask, src, merge, vector_len); 10100 break; 10101 case T_LONG: 10102 case T_DOUBLE: 10103 evmovdquq(dst, kmask, src, merge, vector_len); 10104 break; 10105 default: 10106 fatal("Unexpected type argument %s", type2name(type)); 10107 break; 10108 } 10109 } 10110 10111 void MacroAssembler::evmovdqu(BasicType type, KRegister kmask, Address dst, XMMRegister src, bool merge, int vector_len) { 10112 switch(type) { 10113 case T_BYTE: 10114 case T_BOOLEAN: 10115 evmovdqub(dst, kmask, src, merge, vector_len); 10116 break; 10117 case T_CHAR: 10118 case T_SHORT: 10119 evmovdquw(dst, kmask, src, merge, vector_len); 10120 break; 10121 case T_INT: 10122 case T_FLOAT: 10123 evmovdqul(dst, kmask, src, merge, vector_len); 10124 break; 10125 case T_LONG: 10126 case T_DOUBLE: 10127 evmovdquq(dst, kmask, src, merge, vector_len); 10128 break; 10129 default: 10130 fatal("Unexpected type argument %s", type2name(type)); 10131 break; 10132 } 10133 } 10134 10135 void MacroAssembler::knot(uint masklen, KRegister dst, KRegister src, KRegister ktmp, Register rtmp) { 10136 switch(masklen) { 10137 case 2: 10138 knotbl(dst, src); 10139 movl(rtmp, 3); 10140 kmovbl(ktmp, rtmp); 10141 kandbl(dst, ktmp, dst); 10142 break; 10143 case 4: 10144 knotbl(dst, src); 10145 movl(rtmp, 15); 10146 kmovbl(ktmp, rtmp); 10147 kandbl(dst, ktmp, dst); 10148 break; 10149 case 8: 10150 knotbl(dst, src); 10151 break; 10152 case 16: 10153 knotwl(dst, src); 10154 break; 10155 case 32: 10156 knotdl(dst, src); 10157 break; 10158 case 64: 10159 knotql(dst, src); 10160 break; 10161 default: 10162 fatal("Unexpected vector length %d", masklen); 10163 break; 10164 } 10165 } 10166 10167 void MacroAssembler::kand(BasicType type, KRegister dst, KRegister src1, KRegister src2) { 10168 switch(type) { 10169 case T_BOOLEAN: 10170 case T_BYTE: 10171 kandbl(dst, src1, src2); 10172 break; 10173 case T_CHAR: 10174 case T_SHORT: 10175 kandwl(dst, src1, src2); 10176 break; 10177 case T_INT: 10178 case T_FLOAT: 10179 kanddl(dst, src1, src2); 10180 break; 10181 case T_LONG: 10182 case T_DOUBLE: 10183 kandql(dst, src1, src2); 10184 break; 10185 default: 10186 fatal("Unexpected type argument %s", type2name(type)); 10187 break; 10188 } 10189 } 10190 10191 void MacroAssembler::kor(BasicType type, KRegister dst, KRegister src1, KRegister src2) { 10192 switch(type) { 10193 case T_BOOLEAN: 10194 case T_BYTE: 10195 korbl(dst, src1, src2); 10196 break; 10197 case T_CHAR: 10198 case T_SHORT: 10199 korwl(dst, src1, src2); 10200 break; 10201 case T_INT: 10202 case T_FLOAT: 10203 kordl(dst, src1, src2); 10204 break; 10205 case T_LONG: 10206 case T_DOUBLE: 10207 korql(dst, src1, src2); 10208 break; 10209 default: 10210 fatal("Unexpected type argument %s", type2name(type)); 10211 break; 10212 } 10213 } 10214 10215 void MacroAssembler::kxor(BasicType type, KRegister dst, KRegister src1, KRegister src2) { 10216 switch(type) { 10217 case T_BOOLEAN: 10218 case T_BYTE: 10219 kxorbl(dst, src1, src2); 10220 break; 10221 case T_CHAR: 10222 case T_SHORT: 10223 kxorwl(dst, src1, src2); 10224 break; 10225 case T_INT: 10226 case T_FLOAT: 10227 kxordl(dst, src1, src2); 10228 break; 10229 case T_LONG: 10230 case T_DOUBLE: 10231 kxorql(dst, src1, src2); 10232 break; 10233 default: 10234 fatal("Unexpected type argument %s", type2name(type)); 10235 break; 10236 } 10237 } 10238 10239 void MacroAssembler::evperm(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 10240 switch(type) { 10241 case T_BOOLEAN: 10242 case T_BYTE: 10243 evpermb(dst, mask, nds, src, merge, vector_len); break; 10244 case T_CHAR: 10245 case T_SHORT: 10246 evpermw(dst, mask, nds, src, merge, vector_len); break; 10247 case T_INT: 10248 case T_FLOAT: 10249 evpermd(dst, mask, nds, src, merge, vector_len); break; 10250 case T_LONG: 10251 case T_DOUBLE: 10252 evpermq(dst, mask, nds, src, merge, vector_len); break; 10253 default: 10254 fatal("Unexpected type argument %s", type2name(type)); break; 10255 } 10256 } 10257 10258 void MacroAssembler::evperm(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 10259 switch(type) { 10260 case T_BOOLEAN: 10261 case T_BYTE: 10262 evpermb(dst, mask, nds, src, merge, vector_len); break; 10263 case T_CHAR: 10264 case T_SHORT: 10265 evpermw(dst, mask, nds, src, merge, vector_len); break; 10266 case T_INT: 10267 case T_FLOAT: 10268 evpermd(dst, mask, nds, src, merge, vector_len); break; 10269 case T_LONG: 10270 case T_DOUBLE: 10271 evpermq(dst, mask, nds, src, merge, vector_len); break; 10272 default: 10273 fatal("Unexpected type argument %s", type2name(type)); break; 10274 } 10275 } 10276 10277 void MacroAssembler::evpmins(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 10278 switch(type) { 10279 case T_BYTE: 10280 evpminsb(dst, mask, nds, src, merge, vector_len); break; 10281 case T_SHORT: 10282 evpminsw(dst, mask, nds, src, merge, vector_len); break; 10283 case T_INT: 10284 evpminsd(dst, mask, nds, src, merge, vector_len); break; 10285 case T_LONG: 10286 evpminsq(dst, mask, nds, src, merge, vector_len); break; 10287 default: 10288 fatal("Unexpected type argument %s", type2name(type)); break; 10289 } 10290 } 10291 10292 void MacroAssembler::evpmaxs(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 10293 switch(type) { 10294 case T_BYTE: 10295 evpmaxsb(dst, mask, nds, src, merge, vector_len); break; 10296 case T_SHORT: 10297 evpmaxsw(dst, mask, nds, src, merge, vector_len); break; 10298 case T_INT: 10299 evpmaxsd(dst, mask, nds, src, merge, vector_len); break; 10300 case T_LONG: 10301 evpmaxsq(dst, mask, nds, src, merge, vector_len); break; 10302 default: 10303 fatal("Unexpected type argument %s", type2name(type)); break; 10304 } 10305 } 10306 10307 void MacroAssembler::evpmins(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 10308 switch(type) { 10309 case T_BYTE: 10310 evpminsb(dst, mask, nds, src, merge, vector_len); break; 10311 case T_SHORT: 10312 evpminsw(dst, mask, nds, src, merge, vector_len); break; 10313 case T_INT: 10314 evpminsd(dst, mask, nds, src, merge, vector_len); break; 10315 case T_LONG: 10316 evpminsq(dst, mask, nds, src, merge, vector_len); break; 10317 default: 10318 fatal("Unexpected type argument %s", type2name(type)); break; 10319 } 10320 } 10321 10322 void MacroAssembler::evpmaxs(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 10323 switch(type) { 10324 case T_BYTE: 10325 evpmaxsb(dst, mask, nds, src, merge, vector_len); break; 10326 case T_SHORT: 10327 evpmaxsw(dst, mask, nds, src, merge, vector_len); break; 10328 case T_INT: 10329 evpmaxsd(dst, mask, nds, src, merge, vector_len); break; 10330 case T_LONG: 10331 evpmaxsq(dst, mask, nds, src, merge, vector_len); break; 10332 default: 10333 fatal("Unexpected type argument %s", type2name(type)); break; 10334 } 10335 } 10336 10337 void MacroAssembler::evxor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 10338 switch(type) { 10339 case T_INT: 10340 evpxord(dst, mask, nds, src, merge, vector_len); break; 10341 case T_LONG: 10342 evpxorq(dst, mask, nds, src, merge, vector_len); break; 10343 default: 10344 fatal("Unexpected type argument %s", type2name(type)); break; 10345 } 10346 } 10347 10348 void MacroAssembler::evxor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 10349 switch(type) { 10350 case T_INT: 10351 evpxord(dst, mask, nds, src, merge, vector_len); break; 10352 case T_LONG: 10353 evpxorq(dst, mask, nds, src, merge, vector_len); break; 10354 default: 10355 fatal("Unexpected type argument %s", type2name(type)); break; 10356 } 10357 } 10358 10359 void MacroAssembler::evor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 10360 switch(type) { 10361 case T_INT: 10362 Assembler::evpord(dst, mask, nds, src, merge, vector_len); break; 10363 case T_LONG: 10364 evporq(dst, mask, nds, src, merge, vector_len); break; 10365 default: 10366 fatal("Unexpected type argument %s", type2name(type)); break; 10367 } 10368 } 10369 10370 void MacroAssembler::evor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 10371 switch(type) { 10372 case T_INT: 10373 Assembler::evpord(dst, mask, nds, src, merge, vector_len); break; 10374 case T_LONG: 10375 evporq(dst, mask, nds, src, merge, vector_len); break; 10376 default: 10377 fatal("Unexpected type argument %s", type2name(type)); break; 10378 } 10379 } 10380 10381 void MacroAssembler::evand(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 10382 switch(type) { 10383 case T_INT: 10384 evpandd(dst, mask, nds, src, merge, vector_len); break; 10385 case T_LONG: 10386 evpandq(dst, mask, nds, src, merge, vector_len); break; 10387 default: 10388 fatal("Unexpected type argument %s", type2name(type)); break; 10389 } 10390 } 10391 10392 void MacroAssembler::evand(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 10393 switch(type) { 10394 case T_INT: 10395 evpandd(dst, mask, nds, src, merge, vector_len); break; 10396 case T_LONG: 10397 evpandq(dst, mask, nds, src, merge, vector_len); break; 10398 default: 10399 fatal("Unexpected type argument %s", type2name(type)); break; 10400 } 10401 } 10402 10403 void MacroAssembler::kortest(uint masklen, KRegister src1, KRegister src2) { 10404 switch(masklen) { 10405 case 8: 10406 kortestbl(src1, src2); 10407 break; 10408 case 16: 10409 kortestwl(src1, src2); 10410 break; 10411 case 32: 10412 kortestdl(src1, src2); 10413 break; 10414 case 64: 10415 kortestql(src1, src2); 10416 break; 10417 default: 10418 fatal("Unexpected mask length %d", masklen); 10419 break; 10420 } 10421 } 10422 10423 10424 void MacroAssembler::ktest(uint masklen, KRegister src1, KRegister src2) { 10425 switch(masklen) { 10426 case 8: 10427 ktestbl(src1, src2); 10428 break; 10429 case 16: 10430 ktestwl(src1, src2); 10431 break; 10432 case 32: 10433 ktestdl(src1, src2); 10434 break; 10435 case 64: 10436 ktestql(src1, src2); 10437 break; 10438 default: 10439 fatal("Unexpected mask length %d", masklen); 10440 break; 10441 } 10442 } 10443 10444 void MacroAssembler::evrold(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vlen_enc) { 10445 switch(type) { 10446 case T_INT: 10447 evprold(dst, mask, src, shift, merge, vlen_enc); break; 10448 case T_LONG: 10449 evprolq(dst, mask, src, shift, merge, vlen_enc); break; 10450 default: 10451 fatal("Unexpected type argument %s", type2name(type)); break; 10452 break; 10453 } 10454 } 10455 10456 void MacroAssembler::evrord(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vlen_enc) { 10457 switch(type) { 10458 case T_INT: 10459 evprord(dst, mask, src, shift, merge, vlen_enc); break; 10460 case T_LONG: 10461 evprorq(dst, mask, src, shift, merge, vlen_enc); break; 10462 default: 10463 fatal("Unexpected type argument %s", type2name(type)); break; 10464 } 10465 } 10466 10467 void MacroAssembler::evrold(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src1, XMMRegister src2, bool merge, int vlen_enc) { 10468 switch(type) { 10469 case T_INT: 10470 evprolvd(dst, mask, src1, src2, merge, vlen_enc); break; 10471 case T_LONG: 10472 evprolvq(dst, mask, src1, src2, merge, vlen_enc); break; 10473 default: 10474 fatal("Unexpected type argument %s", type2name(type)); break; 10475 } 10476 } 10477 10478 void MacroAssembler::evrord(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src1, XMMRegister src2, bool merge, int vlen_enc) { 10479 switch(type) { 10480 case T_INT: 10481 evprorvd(dst, mask, src1, src2, merge, vlen_enc); break; 10482 case T_LONG: 10483 evprorvq(dst, mask, src1, src2, merge, vlen_enc); break; 10484 default: 10485 fatal("Unexpected type argument %s", type2name(type)); break; 10486 } 10487 } 10488 10489 void MacroAssembler::evpandq(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 10490 assert(rscratch != noreg || always_reachable(src), "missing"); 10491 10492 if (reachable(src)) { 10493 evpandq(dst, nds, as_Address(src), vector_len); 10494 } else { 10495 lea(rscratch, src); 10496 evpandq(dst, nds, Address(rscratch, 0), vector_len); 10497 } 10498 } 10499 10500 void MacroAssembler::evpaddq(XMMRegister dst, KRegister mask, XMMRegister nds, AddressLiteral src, bool merge, int vector_len, Register rscratch) { 10501 assert(rscratch != noreg || always_reachable(src), "missing"); 10502 10503 if (reachable(src)) { 10504 Assembler::evpaddq(dst, mask, nds, as_Address(src), merge, vector_len); 10505 } else { 10506 lea(rscratch, src); 10507 Assembler::evpaddq(dst, mask, nds, Address(rscratch, 0), merge, vector_len); 10508 } 10509 } 10510 10511 void MacroAssembler::evporq(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 10512 assert(rscratch != noreg || always_reachable(src), "missing"); 10513 10514 if (reachable(src)) { 10515 evporq(dst, nds, as_Address(src), vector_len); 10516 } else { 10517 lea(rscratch, src); 10518 evporq(dst, nds, Address(rscratch, 0), vector_len); 10519 } 10520 } 10521 10522 void MacroAssembler::vpshufb(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 10523 assert(rscratch != noreg || always_reachable(src), "missing"); 10524 10525 if (reachable(src)) { 10526 vpshufb(dst, nds, as_Address(src), vector_len); 10527 } else { 10528 lea(rscratch, src); 10529 vpshufb(dst, nds, Address(rscratch, 0), vector_len); 10530 } 10531 } 10532 10533 void MacroAssembler::vpor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 10534 assert(rscratch != noreg || always_reachable(src), "missing"); 10535 10536 if (reachable(src)) { 10537 Assembler::vpor(dst, nds, as_Address(src), vector_len); 10538 } else { 10539 lea(rscratch, src); 10540 Assembler::vpor(dst, nds, Address(rscratch, 0), vector_len); 10541 } 10542 } 10543 10544 void MacroAssembler::vpternlogq(XMMRegister dst, int imm8, XMMRegister src2, AddressLiteral src3, int vector_len, Register rscratch) { 10545 assert(rscratch != noreg || always_reachable(src3), "missing"); 10546 10547 if (reachable(src3)) { 10548 vpternlogq(dst, imm8, src2, as_Address(src3), vector_len); 10549 } else { 10550 lea(rscratch, src3); 10551 vpternlogq(dst, imm8, src2, Address(rscratch, 0), vector_len); 10552 } 10553 } 10554 10555 #if COMPILER2_OR_JVMCI 10556 10557 void MacroAssembler::fill_masked(BasicType bt, Address dst, XMMRegister xmm, KRegister mask, 10558 Register length, Register temp, int vec_enc) { 10559 // Computing mask for predicated vector store. 10560 movptr(temp, -1); 10561 bzhiq(temp, temp, length); 10562 kmov(mask, temp); 10563 evmovdqu(bt, mask, dst, xmm, true, vec_enc); 10564 } 10565 10566 // Set memory operation for length "less than" 64 bytes. 10567 void MacroAssembler::fill64_masked(uint shift, Register dst, int disp, 10568 XMMRegister xmm, KRegister mask, Register length, 10569 Register temp, bool use64byteVector) { 10570 assert(MaxVectorSize >= 32, "vector length should be >= 32"); 10571 const BasicType type[] = { T_BYTE, T_SHORT, T_INT, T_LONG}; 10572 if (!use64byteVector) { 10573 fill32(dst, disp, xmm); 10574 subptr(length, 32 >> shift); 10575 fill32_masked(shift, dst, disp + 32, xmm, mask, length, temp); 10576 } else { 10577 assert(MaxVectorSize == 64, "vector length != 64"); 10578 fill_masked(type[shift], Address(dst, disp), xmm, mask, length, temp, Assembler::AVX_512bit); 10579 } 10580 } 10581 10582 10583 void MacroAssembler::fill32_masked(uint shift, Register dst, int disp, 10584 XMMRegister xmm, KRegister mask, Register length, 10585 Register temp) { 10586 assert(MaxVectorSize >= 32, "vector length should be >= 32"); 10587 const BasicType type[] = { T_BYTE, T_SHORT, T_INT, T_LONG}; 10588 fill_masked(type[shift], Address(dst, disp), xmm, mask, length, temp, Assembler::AVX_256bit); 10589 } 10590 10591 10592 void MacroAssembler::fill32(Address dst, XMMRegister xmm) { 10593 assert(MaxVectorSize >= 32, "vector length should be >= 32"); 10594 vmovdqu(dst, xmm); 10595 } 10596 10597 void MacroAssembler::fill32(Register dst, int disp, XMMRegister xmm) { 10598 fill32(Address(dst, disp), xmm); 10599 } 10600 10601 void MacroAssembler::fill64(Address dst, XMMRegister xmm, bool use64byteVector) { 10602 assert(MaxVectorSize >= 32, "vector length should be >= 32"); 10603 if (!use64byteVector) { 10604 fill32(dst, xmm); 10605 fill32(dst.plus_disp(32), xmm); 10606 } else { 10607 evmovdquq(dst, xmm, Assembler::AVX_512bit); 10608 } 10609 } 10610 10611 void MacroAssembler::fill64(Register dst, int disp, XMMRegister xmm, bool use64byteVector) { 10612 fill64(Address(dst, disp), xmm, use64byteVector); 10613 } 10614 10615 #ifdef _LP64 10616 void MacroAssembler::generate_fill_avx3(BasicType type, Register to, Register value, 10617 Register count, Register rtmp, XMMRegister xtmp) { 10618 Label L_exit; 10619 Label L_fill_start; 10620 Label L_fill_64_bytes; 10621 Label L_fill_96_bytes; 10622 Label L_fill_128_bytes; 10623 Label L_fill_128_bytes_loop; 10624 Label L_fill_128_loop_header; 10625 Label L_fill_128_bytes_loop_header; 10626 Label L_fill_128_bytes_loop_pre_header; 10627 Label L_fill_zmm_sequence; 10628 10629 int shift = -1; 10630 int avx3threshold = VM_Version::avx3_threshold(); 10631 switch(type) { 10632 case T_BYTE: shift = 0; 10633 break; 10634 case T_SHORT: shift = 1; 10635 break; 10636 case T_INT: shift = 2; 10637 break; 10638 /* Uncomment when LONG fill stubs are supported. 10639 case T_LONG: shift = 3; 10640 break; 10641 */ 10642 default: 10643 fatal("Unhandled type: %s\n", type2name(type)); 10644 } 10645 10646 if ((avx3threshold != 0) || (MaxVectorSize == 32)) { 10647 10648 if (MaxVectorSize == 64) { 10649 cmpq(count, avx3threshold >> shift); 10650 jcc(Assembler::greater, L_fill_zmm_sequence); 10651 } 10652 10653 evpbroadcast(type, xtmp, value, Assembler::AVX_256bit); 10654 10655 bind(L_fill_start); 10656 10657 cmpq(count, 32 >> shift); 10658 jccb(Assembler::greater, L_fill_64_bytes); 10659 fill32_masked(shift, to, 0, xtmp, k2, count, rtmp); 10660 jmp(L_exit); 10661 10662 bind(L_fill_64_bytes); 10663 cmpq(count, 64 >> shift); 10664 jccb(Assembler::greater, L_fill_96_bytes); 10665 fill64_masked(shift, to, 0, xtmp, k2, count, rtmp); 10666 jmp(L_exit); 10667 10668 bind(L_fill_96_bytes); 10669 cmpq(count, 96 >> shift); 10670 jccb(Assembler::greater, L_fill_128_bytes); 10671 fill64(to, 0, xtmp); 10672 subq(count, 64 >> shift); 10673 fill32_masked(shift, to, 64, xtmp, k2, count, rtmp); 10674 jmp(L_exit); 10675 10676 bind(L_fill_128_bytes); 10677 cmpq(count, 128 >> shift); 10678 jccb(Assembler::greater, L_fill_128_bytes_loop_pre_header); 10679 fill64(to, 0, xtmp); 10680 fill32(to, 64, xtmp); 10681 subq(count, 96 >> shift); 10682 fill32_masked(shift, to, 96, xtmp, k2, count, rtmp); 10683 jmp(L_exit); 10684 10685 bind(L_fill_128_bytes_loop_pre_header); 10686 { 10687 mov(rtmp, to); 10688 andq(rtmp, 31); 10689 jccb(Assembler::zero, L_fill_128_bytes_loop_header); 10690 negq(rtmp); 10691 addq(rtmp, 32); 10692 mov64(r8, -1L); 10693 bzhiq(r8, r8, rtmp); 10694 kmovql(k2, r8); 10695 evmovdqu(T_BYTE, k2, Address(to, 0), xtmp, true, Assembler::AVX_256bit); 10696 addq(to, rtmp); 10697 shrq(rtmp, shift); 10698 subq(count, rtmp); 10699 } 10700 10701 cmpq(count, 128 >> shift); 10702 jcc(Assembler::less, L_fill_start); 10703 10704 bind(L_fill_128_bytes_loop_header); 10705 subq(count, 128 >> shift); 10706 10707 align32(); 10708 bind(L_fill_128_bytes_loop); 10709 fill64(to, 0, xtmp); 10710 fill64(to, 64, xtmp); 10711 addq(to, 128); 10712 subq(count, 128 >> shift); 10713 jccb(Assembler::greaterEqual, L_fill_128_bytes_loop); 10714 10715 addq(count, 128 >> shift); 10716 jcc(Assembler::zero, L_exit); 10717 jmp(L_fill_start); 10718 } 10719 10720 if (MaxVectorSize == 64) { 10721 // Sequence using 64 byte ZMM register. 10722 Label L_fill_128_bytes_zmm; 10723 Label L_fill_192_bytes_zmm; 10724 Label L_fill_192_bytes_loop_zmm; 10725 Label L_fill_192_bytes_loop_header_zmm; 10726 Label L_fill_192_bytes_loop_pre_header_zmm; 10727 Label L_fill_start_zmm_sequence; 10728 10729 bind(L_fill_zmm_sequence); 10730 evpbroadcast(type, xtmp, value, Assembler::AVX_512bit); 10731 10732 bind(L_fill_start_zmm_sequence); 10733 cmpq(count, 64 >> shift); 10734 jccb(Assembler::greater, L_fill_128_bytes_zmm); 10735 fill64_masked(shift, to, 0, xtmp, k2, count, rtmp, true); 10736 jmp(L_exit); 10737 10738 bind(L_fill_128_bytes_zmm); 10739 cmpq(count, 128 >> shift); 10740 jccb(Assembler::greater, L_fill_192_bytes_zmm); 10741 fill64(to, 0, xtmp, true); 10742 subq(count, 64 >> shift); 10743 fill64_masked(shift, to, 64, xtmp, k2, count, rtmp, true); 10744 jmp(L_exit); 10745 10746 bind(L_fill_192_bytes_zmm); 10747 cmpq(count, 192 >> shift); 10748 jccb(Assembler::greater, L_fill_192_bytes_loop_pre_header_zmm); 10749 fill64(to, 0, xtmp, true); 10750 fill64(to, 64, xtmp, true); 10751 subq(count, 128 >> shift); 10752 fill64_masked(shift, to, 128, xtmp, k2, count, rtmp, true); 10753 jmp(L_exit); 10754 10755 bind(L_fill_192_bytes_loop_pre_header_zmm); 10756 { 10757 movq(rtmp, to); 10758 andq(rtmp, 63); 10759 jccb(Assembler::zero, L_fill_192_bytes_loop_header_zmm); 10760 negq(rtmp); 10761 addq(rtmp, 64); 10762 mov64(r8, -1L); 10763 bzhiq(r8, r8, rtmp); 10764 kmovql(k2, r8); 10765 evmovdqu(T_BYTE, k2, Address(to, 0), xtmp, true, Assembler::AVX_512bit); 10766 addq(to, rtmp); 10767 shrq(rtmp, shift); 10768 subq(count, rtmp); 10769 } 10770 10771 cmpq(count, 192 >> shift); 10772 jcc(Assembler::less, L_fill_start_zmm_sequence); 10773 10774 bind(L_fill_192_bytes_loop_header_zmm); 10775 subq(count, 192 >> shift); 10776 10777 align32(); 10778 bind(L_fill_192_bytes_loop_zmm); 10779 fill64(to, 0, xtmp, true); 10780 fill64(to, 64, xtmp, true); 10781 fill64(to, 128, xtmp, true); 10782 addq(to, 192); 10783 subq(count, 192 >> shift); 10784 jccb(Assembler::greaterEqual, L_fill_192_bytes_loop_zmm); 10785 10786 addq(count, 192 >> shift); 10787 jcc(Assembler::zero, L_exit); 10788 jmp(L_fill_start_zmm_sequence); 10789 } 10790 bind(L_exit); 10791 } 10792 #endif 10793 #endif //COMPILER2_OR_JVMCI 10794 10795 10796 #ifdef _LP64 10797 void MacroAssembler::convert_f2i(Register dst, XMMRegister src) { 10798 Label done; 10799 cvttss2sil(dst, src); 10800 // Conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub 10801 cmpl(dst, 0x80000000); // float_sign_flip 10802 jccb(Assembler::notEqual, done); 10803 subptr(rsp, 8); 10804 movflt(Address(rsp, 0), src); 10805 call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::f2i_fixup()))); 10806 pop(dst); 10807 bind(done); 10808 } 10809 10810 void MacroAssembler::convert_d2i(Register dst, XMMRegister src) { 10811 Label done; 10812 cvttsd2sil(dst, src); 10813 // Conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub 10814 cmpl(dst, 0x80000000); // float_sign_flip 10815 jccb(Assembler::notEqual, done); 10816 subptr(rsp, 8); 10817 movdbl(Address(rsp, 0), src); 10818 call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::d2i_fixup()))); 10819 pop(dst); 10820 bind(done); 10821 } 10822 10823 void MacroAssembler::convert_f2l(Register dst, XMMRegister src) { 10824 Label done; 10825 cvttss2siq(dst, src); 10826 cmp64(dst, ExternalAddress((address) StubRoutines::x86::double_sign_flip())); 10827 jccb(Assembler::notEqual, done); 10828 subptr(rsp, 8); 10829 movflt(Address(rsp, 0), src); 10830 call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::f2l_fixup()))); 10831 pop(dst); 10832 bind(done); 10833 } 10834 10835 void MacroAssembler::round_float(Register dst, XMMRegister src, Register rtmp, Register rcx) { 10836 // Following code is line by line assembly translation rounding algorithm. 10837 // Please refer to java.lang.Math.round(float) algorithm for details. 10838 const int32_t FloatConsts_EXP_BIT_MASK = 0x7F800000; 10839 const int32_t FloatConsts_SIGNIFICAND_WIDTH = 24; 10840 const int32_t FloatConsts_EXP_BIAS = 127; 10841 const int32_t FloatConsts_SIGNIF_BIT_MASK = 0x007FFFFF; 10842 const int32_t MINUS_32 = 0xFFFFFFE0; 10843 Label L_special_case, L_block1, L_exit; 10844 movl(rtmp, FloatConsts_EXP_BIT_MASK); 10845 movdl(dst, src); 10846 andl(dst, rtmp); 10847 sarl(dst, FloatConsts_SIGNIFICAND_WIDTH - 1); 10848 movl(rtmp, FloatConsts_SIGNIFICAND_WIDTH - 2 + FloatConsts_EXP_BIAS); 10849 subl(rtmp, dst); 10850 movl(rcx, rtmp); 10851 movl(dst, MINUS_32); 10852 testl(rtmp, dst); 10853 jccb(Assembler::notEqual, L_special_case); 10854 movdl(dst, src); 10855 andl(dst, FloatConsts_SIGNIF_BIT_MASK); 10856 orl(dst, FloatConsts_SIGNIF_BIT_MASK + 1); 10857 movdl(rtmp, src); 10858 testl(rtmp, rtmp); 10859 jccb(Assembler::greaterEqual, L_block1); 10860 negl(dst); 10861 bind(L_block1); 10862 sarl(dst); 10863 addl(dst, 0x1); 10864 sarl(dst, 0x1); 10865 jmp(L_exit); 10866 bind(L_special_case); 10867 convert_f2i(dst, src); 10868 bind(L_exit); 10869 } 10870 10871 void MacroAssembler::round_double(Register dst, XMMRegister src, Register rtmp, Register rcx) { 10872 // Following code is line by line assembly translation rounding algorithm. 10873 // Please refer to java.lang.Math.round(double) algorithm for details. 10874 const int64_t DoubleConsts_EXP_BIT_MASK = 0x7FF0000000000000L; 10875 const int64_t DoubleConsts_SIGNIFICAND_WIDTH = 53; 10876 const int64_t DoubleConsts_EXP_BIAS = 1023; 10877 const int64_t DoubleConsts_SIGNIF_BIT_MASK = 0x000FFFFFFFFFFFFFL; 10878 const int64_t MINUS_64 = 0xFFFFFFFFFFFFFFC0L; 10879 Label L_special_case, L_block1, L_exit; 10880 mov64(rtmp, DoubleConsts_EXP_BIT_MASK); 10881 movq(dst, src); 10882 andq(dst, rtmp); 10883 sarq(dst, DoubleConsts_SIGNIFICAND_WIDTH - 1); 10884 mov64(rtmp, DoubleConsts_SIGNIFICAND_WIDTH - 2 + DoubleConsts_EXP_BIAS); 10885 subq(rtmp, dst); 10886 movq(rcx, rtmp); 10887 mov64(dst, MINUS_64); 10888 testq(rtmp, dst); 10889 jccb(Assembler::notEqual, L_special_case); 10890 movq(dst, src); 10891 mov64(rtmp, DoubleConsts_SIGNIF_BIT_MASK); 10892 andq(dst, rtmp); 10893 mov64(rtmp, DoubleConsts_SIGNIF_BIT_MASK + 1); 10894 orq(dst, rtmp); 10895 movq(rtmp, src); 10896 testq(rtmp, rtmp); 10897 jccb(Assembler::greaterEqual, L_block1); 10898 negq(dst); 10899 bind(L_block1); 10900 sarq(dst); 10901 addq(dst, 0x1); 10902 sarq(dst, 0x1); 10903 jmp(L_exit); 10904 bind(L_special_case); 10905 convert_d2l(dst, src); 10906 bind(L_exit); 10907 } 10908 10909 void MacroAssembler::convert_d2l(Register dst, XMMRegister src) { 10910 Label done; 10911 cvttsd2siq(dst, src); 10912 cmp64(dst, ExternalAddress((address) StubRoutines::x86::double_sign_flip())); 10913 jccb(Assembler::notEqual, done); 10914 subptr(rsp, 8); 10915 movdbl(Address(rsp, 0), src); 10916 call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::d2l_fixup()))); 10917 pop(dst); 10918 bind(done); 10919 } 10920 10921 void MacroAssembler::cache_wb(Address line) 10922 { 10923 // 64 bit cpus always support clflush 10924 assert(VM_Version::supports_clflush(), "clflush should be available"); 10925 bool optimized = VM_Version::supports_clflushopt(); 10926 bool no_evict = VM_Version::supports_clwb(); 10927 10928 // prefer clwb (writeback without evict) otherwise 10929 // prefer clflushopt (potentially parallel writeback with evict) 10930 // otherwise fallback on clflush (serial writeback with evict) 10931 10932 if (optimized) { 10933 if (no_evict) { 10934 clwb(line); 10935 } else { 10936 clflushopt(line); 10937 } 10938 } else { 10939 // no need for fence when using CLFLUSH 10940 clflush(line); 10941 } 10942 } 10943 10944 void MacroAssembler::cache_wbsync(bool is_pre) 10945 { 10946 assert(VM_Version::supports_clflush(), "clflush should be available"); 10947 bool optimized = VM_Version::supports_clflushopt(); 10948 bool no_evict = VM_Version::supports_clwb(); 10949 10950 // pick the correct implementation 10951 10952 if (!is_pre && (optimized || no_evict)) { 10953 // need an sfence for post flush when using clflushopt or clwb 10954 // otherwise no no need for any synchroniaztion 10955 10956 sfence(); 10957 } 10958 } 10959 10960 #endif // _LP64 10961 10962 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) { 10963 switch (cond) { 10964 // Note some conditions are synonyms for others 10965 case Assembler::zero: return Assembler::notZero; 10966 case Assembler::notZero: return Assembler::zero; 10967 case Assembler::less: return Assembler::greaterEqual; 10968 case Assembler::lessEqual: return Assembler::greater; 10969 case Assembler::greater: return Assembler::lessEqual; 10970 case Assembler::greaterEqual: return Assembler::less; 10971 case Assembler::below: return Assembler::aboveEqual; 10972 case Assembler::belowEqual: return Assembler::above; 10973 case Assembler::above: return Assembler::belowEqual; 10974 case Assembler::aboveEqual: return Assembler::below; 10975 case Assembler::overflow: return Assembler::noOverflow; 10976 case Assembler::noOverflow: return Assembler::overflow; 10977 case Assembler::negative: return Assembler::positive; 10978 case Assembler::positive: return Assembler::negative; 10979 case Assembler::parity: return Assembler::noParity; 10980 case Assembler::noParity: return Assembler::parity; 10981 } 10982 ShouldNotReachHere(); return Assembler::overflow; 10983 } 10984 10985 SkipIfEqual::SkipIfEqual( 10986 MacroAssembler* masm, const bool* flag_addr, bool value, Register rscratch) { 10987 _masm = masm; 10988 _masm->cmp8(ExternalAddress((address)flag_addr), value, rscratch); 10989 _masm->jcc(Assembler::equal, _label); 10990 } 10991 10992 SkipIfEqual::~SkipIfEqual() { 10993 _masm->bind(_label); 10994 } 10995 10996 // 32-bit Windows has its own fast-path implementation 10997 // of get_thread 10998 #if !defined(WIN32) || defined(_LP64) 10999 11000 // This is simply a call to Thread::current() 11001 void MacroAssembler::get_thread(Register thread) { 11002 if (thread != rax) { 11003 push(rax); 11004 } 11005 LP64_ONLY(push(rdi);) 11006 LP64_ONLY(push(rsi);) 11007 push(rdx); 11008 push(rcx); 11009 #ifdef _LP64 11010 push(r8); 11011 push(r9); 11012 push(r10); 11013 push(r11); 11014 #endif 11015 11016 MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, Thread::current), 0); 11017 11018 #ifdef _LP64 11019 pop(r11); 11020 pop(r10); 11021 pop(r9); 11022 pop(r8); 11023 #endif 11024 pop(rcx); 11025 pop(rdx); 11026 LP64_ONLY(pop(rsi);) 11027 LP64_ONLY(pop(rdi);) 11028 if (thread != rax) { 11029 mov(thread, rax); 11030 pop(rax); 11031 } 11032 } 11033 11034 11035 #endif // !WIN32 || _LP64 11036 11037 void MacroAssembler::check_stack_alignment(Register sp, const char* msg, unsigned bias, Register tmp) { 11038 Label L_stack_ok; 11039 if (bias == 0) { 11040 testptr(sp, 2 * wordSize - 1); 11041 } else { 11042 // lea(tmp, Address(rsp, bias); 11043 mov(tmp, sp); 11044 addptr(tmp, bias); 11045 testptr(tmp, 2 * wordSize - 1); 11046 } 11047 jcc(Assembler::equal, L_stack_ok); 11048 block_comment(msg); 11049 stop(msg); 11050 bind(L_stack_ok); 11051 } 11052 11053 // Implements lightweight-locking. 11054 // 11055 // obj: the object to be locked 11056 // reg_rax: rax 11057 // thread: the thread which attempts to lock obj 11058 // tmp: a temporary register 11059 void MacroAssembler::lightweight_lock(Register basic_lock, Register obj, Register reg_rax, Register thread, Register tmp, Label& slow) { 11060 assert(reg_rax == rax, ""); 11061 assert_different_registers(basic_lock, obj, reg_rax, thread, tmp); 11062 11063 Label push; 11064 const Register top = tmp; 11065 11066 // Preload the markWord. It is important that this is the first 11067 // instruction emitted as it is part of C1's null check semantics. 11068 movptr(reg_rax, Address(obj, oopDesc::mark_offset_in_bytes())); 11069 11070 if (UseObjectMonitorTable) { 11071 // Clear cache in case fast locking succeeds. 11072 movptr(Address(basic_lock, BasicObjectLock::lock_offset() + in_ByteSize((BasicLock::object_monitor_cache_offset_in_bytes()))), 0); 11073 } 11074 11075 // Load top. 11076 movl(top, Address(thread, JavaThread::lock_stack_top_offset())); 11077 11078 // Check if the lock-stack is full. 11079 cmpl(top, LockStack::end_offset()); 11080 jcc(Assembler::greaterEqual, slow); 11081 11082 // Check for recursion. 11083 cmpptr(obj, Address(thread, top, Address::times_1, -oopSize)); 11084 jcc(Assembler::equal, push); 11085 11086 // Check header for monitor (0b10). 11087 testptr(reg_rax, markWord::monitor_value); 11088 jcc(Assembler::notZero, slow); 11089 11090 // Try to lock. Transition lock bits 0b01 => 0b00 11091 movptr(tmp, reg_rax); 11092 andptr(tmp, ~(int32_t)markWord::unlocked_value); 11093 orptr(reg_rax, markWord::unlocked_value); 11094 if (EnableValhalla) { 11095 // Mask inline_type bit such that we go to the slow path if object is an inline type 11096 andptr(reg_rax, ~((int) markWord::inline_type_bit_in_place)); 11097 } 11098 lock(); cmpxchgptr(tmp, Address(obj, oopDesc::mark_offset_in_bytes())); 11099 jcc(Assembler::notEqual, slow); 11100 11101 // Restore top, CAS clobbers register. 11102 movl(top, Address(thread, JavaThread::lock_stack_top_offset())); 11103 11104 bind(push); 11105 // After successful lock, push object on lock-stack. 11106 movptr(Address(thread, top), obj); 11107 incrementl(top, oopSize); 11108 movl(Address(thread, JavaThread::lock_stack_top_offset()), top); 11109 } 11110 11111 // Implements lightweight-unlocking. 11112 // 11113 // obj: the object to be unlocked 11114 // reg_rax: rax 11115 // thread: the thread 11116 // tmp: a temporary register 11117 void MacroAssembler::lightweight_unlock(Register obj, Register reg_rax, Register thread, Register tmp, Label& slow) { 11118 assert(reg_rax == rax, ""); 11119 assert_different_registers(obj, reg_rax, thread, tmp); 11120 11121 Label unlocked, push_and_slow; 11122 const Register top = tmp; 11123 11124 // Check if obj is top of lock-stack. 11125 movl(top, Address(thread, JavaThread::lock_stack_top_offset())); 11126 cmpptr(obj, Address(thread, top, Address::times_1, -oopSize)); 11127 jcc(Assembler::notEqual, slow); 11128 11129 // Pop lock-stack. 11130 DEBUG_ONLY(movptr(Address(thread, top, Address::times_1, -oopSize), 0);) 11131 subl(Address(thread, JavaThread::lock_stack_top_offset()), oopSize); 11132 11133 // Check if recursive. 11134 cmpptr(obj, Address(thread, top, Address::times_1, -2 * oopSize)); 11135 jcc(Assembler::equal, unlocked); 11136 11137 // Not recursive. Check header for monitor (0b10). 11138 movptr(reg_rax, Address(obj, oopDesc::mark_offset_in_bytes())); 11139 testptr(reg_rax, markWord::monitor_value); 11140 jcc(Assembler::notZero, push_and_slow); 11141 11142 #ifdef ASSERT 11143 // Check header not unlocked (0b01). 11144 Label not_unlocked; 11145 testptr(reg_rax, markWord::unlocked_value); 11146 jcc(Assembler::zero, not_unlocked); 11147 stop("lightweight_unlock already unlocked"); 11148 bind(not_unlocked); 11149 #endif 11150 11151 // Try to unlock. Transition lock bits 0b00 => 0b01 11152 movptr(tmp, reg_rax); 11153 orptr(tmp, markWord::unlocked_value); 11154 lock(); cmpxchgptr(tmp, Address(obj, oopDesc::mark_offset_in_bytes())); 11155 jcc(Assembler::equal, unlocked); 11156 11157 bind(push_and_slow); 11158 // Restore lock-stack and handle the unlock in runtime. 11159 #ifdef ASSERT 11160 movl(top, Address(thread, JavaThread::lock_stack_top_offset())); 11161 movptr(Address(thread, top), obj); 11162 #endif 11163 addl(Address(thread, JavaThread::lock_stack_top_offset()), oopSize); 11164 jmp(slow); 11165 11166 bind(unlocked); 11167 } 11168 11169 #ifdef _LP64 11170 // Saves legacy GPRs state on stack. 11171 void MacroAssembler::save_legacy_gprs() { 11172 subq(rsp, 16 * wordSize); 11173 movq(Address(rsp, 15 * wordSize), rax); 11174 movq(Address(rsp, 14 * wordSize), rcx); 11175 movq(Address(rsp, 13 * wordSize), rdx); 11176 movq(Address(rsp, 12 * wordSize), rbx); 11177 movq(Address(rsp, 10 * wordSize), rbp); 11178 movq(Address(rsp, 9 * wordSize), rsi); 11179 movq(Address(rsp, 8 * wordSize), rdi); 11180 movq(Address(rsp, 7 * wordSize), r8); 11181 movq(Address(rsp, 6 * wordSize), r9); 11182 movq(Address(rsp, 5 * wordSize), r10); 11183 movq(Address(rsp, 4 * wordSize), r11); 11184 movq(Address(rsp, 3 * wordSize), r12); 11185 movq(Address(rsp, 2 * wordSize), r13); 11186 movq(Address(rsp, wordSize), r14); 11187 movq(Address(rsp, 0), r15); 11188 } 11189 11190 // Resotres back legacy GPRs state from stack. 11191 void MacroAssembler::restore_legacy_gprs() { 11192 movq(r15, Address(rsp, 0)); 11193 movq(r14, Address(rsp, wordSize)); 11194 movq(r13, Address(rsp, 2 * wordSize)); 11195 movq(r12, Address(rsp, 3 * wordSize)); 11196 movq(r11, Address(rsp, 4 * wordSize)); 11197 movq(r10, Address(rsp, 5 * wordSize)); 11198 movq(r9, Address(rsp, 6 * wordSize)); 11199 movq(r8, Address(rsp, 7 * wordSize)); 11200 movq(rdi, Address(rsp, 8 * wordSize)); 11201 movq(rsi, Address(rsp, 9 * wordSize)); 11202 movq(rbp, Address(rsp, 10 * wordSize)); 11203 movq(rbx, Address(rsp, 12 * wordSize)); 11204 movq(rdx, Address(rsp, 13 * wordSize)); 11205 movq(rcx, Address(rsp, 14 * wordSize)); 11206 movq(rax, Address(rsp, 15 * wordSize)); 11207 addq(rsp, 16 * wordSize); 11208 } 11209 11210 void MacroAssembler::setcc(Assembler::Condition comparison, Register dst) { 11211 if (VM_Version::supports_apx_f()) { 11212 esetzucc(comparison, dst); 11213 } else { 11214 setb(comparison, dst); 11215 movzbl(dst, dst); 11216 } 11217 } 11218 #endif