1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "asm/assembler.hpp" 26 #include "asm/assembler.inline.hpp" 27 #include "code/aotCodeCache.hpp" 28 #include "code/compiledIC.hpp" 29 #include "compiler/compiler_globals.hpp" 30 #include "compiler/disassembler.hpp" 31 #include "ci/ciInlineKlass.hpp" 32 #include "crc32c.h" 33 #include "gc/shared/barrierSet.hpp" 34 #include "gc/shared/barrierSetAssembler.hpp" 35 #include "gc/shared/collectedHeap.inline.hpp" 36 #include "gc/shared/tlab_globals.hpp" 37 #include "interpreter/bytecodeHistogram.hpp" 38 #include "interpreter/interpreter.hpp" 39 #include "interpreter/interpreterRuntime.hpp" 40 #include "jvm.h" 41 #include "memory/resourceArea.hpp" 42 #include "memory/universe.hpp" 43 #include "oops/accessDecorators.hpp" 44 #include "oops/compressedKlass.inline.hpp" 45 #include "oops/compressedOops.inline.hpp" 46 #include "oops/klass.inline.hpp" 47 #include "oops/resolvedFieldEntry.hpp" 48 #include "prims/methodHandles.hpp" 49 #include "runtime/continuation.hpp" 50 #include "runtime/interfaceSupport.inline.hpp" 51 #include "runtime/javaThread.hpp" 52 #include "runtime/jniHandles.hpp" 53 #include "runtime/objectMonitor.hpp" 54 #include "runtime/os.hpp" 55 #include "runtime/safepoint.hpp" 56 #include "runtime/safepointMechanism.hpp" 57 #include "runtime/sharedRuntime.hpp" 58 #include "runtime/signature_cc.hpp" 59 #include "runtime/stubRoutines.hpp" 60 #include "utilities/checkedCast.hpp" 61 #include "utilities/macros.hpp" 62 #include "vmreg_x86.inline.hpp" 63 #ifdef COMPILER2 64 #include "opto/output.hpp" 65 #endif 66 67 #ifdef PRODUCT 68 #define BLOCK_COMMENT(str) /* nothing */ 69 #define STOP(error) stop(error) 70 #else 71 #define BLOCK_COMMENT(str) block_comment(str) 72 #define STOP(error) block_comment(error); stop(error) 73 #endif 74 75 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") 76 77 #ifdef ASSERT 78 bool AbstractAssembler::pd_check_instruction_mark() { return true; } 79 #endif 80 81 static const Assembler::Condition reverse[] = { 82 Assembler::noOverflow /* overflow = 0x0 */ , 83 Assembler::overflow /* noOverflow = 0x1 */ , 84 Assembler::aboveEqual /* carrySet = 0x2, below = 0x2 */ , 85 Assembler::below /* aboveEqual = 0x3, carryClear = 0x3 */ , 86 Assembler::notZero /* zero = 0x4, equal = 0x4 */ , 87 Assembler::zero /* notZero = 0x5, notEqual = 0x5 */ , 88 Assembler::above /* belowEqual = 0x6 */ , 89 Assembler::belowEqual /* above = 0x7 */ , 90 Assembler::positive /* negative = 0x8 */ , 91 Assembler::negative /* positive = 0x9 */ , 92 Assembler::noParity /* parity = 0xa */ , 93 Assembler::parity /* noParity = 0xb */ , 94 Assembler::greaterEqual /* less = 0xc */ , 95 Assembler::less /* greaterEqual = 0xd */ , 96 Assembler::greater /* lessEqual = 0xe */ , 97 Assembler::lessEqual /* greater = 0xf, */ 98 99 }; 100 101 102 // Implementation of MacroAssembler 103 104 Address MacroAssembler::as_Address(AddressLiteral adr) { 105 // amd64 always does this as a pc-rel 106 // we can be absolute or disp based on the instruction type 107 // jmp/call are displacements others are absolute 108 assert(!adr.is_lval(), "must be rval"); 109 assert(reachable(adr), "must be"); 110 return Address(checked_cast<int32_t>(adr.target() - pc()), adr.target(), adr.reloc()); 111 112 } 113 114 Address MacroAssembler::as_Address(ArrayAddress adr, Register rscratch) { 115 AddressLiteral base = adr.base(); 116 lea(rscratch, base); 117 Address index = adr.index(); 118 assert(index._disp == 0, "must not have disp"); // maybe it can? 119 Address array(rscratch, index._index, index._scale, index._disp); 120 return array; 121 } 122 123 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) { 124 Label L, E; 125 126 #ifdef _WIN64 127 // Windows always allocates space for it's register args 128 assert(num_args <= 4, "only register arguments supported"); 129 subq(rsp, frame::arg_reg_save_area_bytes); 130 #endif 131 132 // Align stack if necessary 133 testl(rsp, 15); 134 jcc(Assembler::zero, L); 135 136 subq(rsp, 8); 137 call(RuntimeAddress(entry_point)); 138 addq(rsp, 8); 139 jmp(E); 140 141 bind(L); 142 call(RuntimeAddress(entry_point)); 143 144 bind(E); 145 146 #ifdef _WIN64 147 // restore stack pointer 148 addq(rsp, frame::arg_reg_save_area_bytes); 149 #endif 150 } 151 152 void MacroAssembler::cmp64(Register src1, AddressLiteral src2, Register rscratch) { 153 assert(!src2.is_lval(), "should use cmpptr"); 154 assert(rscratch != noreg || always_reachable(src2), "missing"); 155 156 if (reachable(src2)) { 157 cmpq(src1, as_Address(src2)); 158 } else { 159 lea(rscratch, src2); 160 Assembler::cmpq(src1, Address(rscratch, 0)); 161 } 162 } 163 164 int MacroAssembler::corrected_idivq(Register reg) { 165 // Full implementation of Java ldiv and lrem; checks for special 166 // case as described in JVM spec., p.243 & p.271. The function 167 // returns the (pc) offset of the idivl instruction - may be needed 168 // for implicit exceptions. 169 // 170 // normal case special case 171 // 172 // input : rax: dividend min_long 173 // reg: divisor (may not be eax/edx) -1 174 // 175 // output: rax: quotient (= rax idiv reg) min_long 176 // rdx: remainder (= rax irem reg) 0 177 assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register"); 178 static const int64_t min_long = 0x8000000000000000; 179 Label normal_case, special_case; 180 181 // check for special case 182 cmp64(rax, ExternalAddress((address) &min_long), rdx /*rscratch*/); 183 jcc(Assembler::notEqual, normal_case); 184 xorl(rdx, rdx); // prepare rdx for possible special case (where 185 // remainder = 0) 186 cmpq(reg, -1); 187 jcc(Assembler::equal, special_case); 188 189 // handle normal case 190 bind(normal_case); 191 cdqq(); 192 int idivq_offset = offset(); 193 idivq(reg); 194 195 // normal and special case exit 196 bind(special_case); 197 198 return idivq_offset; 199 } 200 201 void MacroAssembler::decrementq(Register reg, int value) { 202 if (value == min_jint) { subq(reg, value); return; } 203 if (value < 0) { incrementq(reg, -value); return; } 204 if (value == 0) { ; return; } 205 if (value == 1 && UseIncDec) { decq(reg) ; return; } 206 /* else */ { subq(reg, value) ; return; } 207 } 208 209 void MacroAssembler::decrementq(Address dst, int value) { 210 if (value == min_jint) { subq(dst, value); return; } 211 if (value < 0) { incrementq(dst, -value); return; } 212 if (value == 0) { ; return; } 213 if (value == 1 && UseIncDec) { decq(dst) ; return; } 214 /* else */ { subq(dst, value) ; return; } 215 } 216 217 void MacroAssembler::incrementq(AddressLiteral dst, Register rscratch) { 218 assert(rscratch != noreg || always_reachable(dst), "missing"); 219 220 if (reachable(dst)) { 221 incrementq(as_Address(dst)); 222 } else { 223 lea(rscratch, dst); 224 incrementq(Address(rscratch, 0)); 225 } 226 } 227 228 void MacroAssembler::incrementq(Register reg, int value) { 229 if (value == min_jint) { addq(reg, value); return; } 230 if (value < 0) { decrementq(reg, -value); return; } 231 if (value == 0) { ; return; } 232 if (value == 1 && UseIncDec) { incq(reg) ; return; } 233 /* else */ { addq(reg, value) ; return; } 234 } 235 236 void MacroAssembler::incrementq(Address dst, int value) { 237 if (value == min_jint) { addq(dst, value); return; } 238 if (value < 0) { decrementq(dst, -value); return; } 239 if (value == 0) { ; return; } 240 if (value == 1 && UseIncDec) { incq(dst) ; return; } 241 /* else */ { addq(dst, value) ; return; } 242 } 243 244 // 32bit can do a case table jump in one instruction but we no longer allow the base 245 // to be installed in the Address class 246 void MacroAssembler::jump(ArrayAddress entry, Register rscratch) { 247 lea(rscratch, entry.base()); 248 Address dispatch = entry.index(); 249 assert(dispatch._base == noreg, "must be"); 250 dispatch._base = rscratch; 251 jmp(dispatch); 252 } 253 254 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) { 255 ShouldNotReachHere(); // 64bit doesn't use two regs 256 cmpq(x_lo, y_lo); 257 } 258 259 void MacroAssembler::lea(Register dst, AddressLiteral src) { 260 mov_literal64(dst, (intptr_t)src.target(), src.rspec()); 261 } 262 263 void MacroAssembler::lea(Address dst, AddressLiteral adr, Register rscratch) { 264 lea(rscratch, adr); 265 movptr(dst, rscratch); 266 } 267 268 void MacroAssembler::leave() { 269 // %%% is this really better? Why not on 32bit too? 270 emit_int8((unsigned char)0xC9); // LEAVE 271 } 272 273 void MacroAssembler::lneg(Register hi, Register lo) { 274 ShouldNotReachHere(); // 64bit doesn't use two regs 275 negq(lo); 276 } 277 278 void MacroAssembler::movoop(Register dst, jobject obj) { 279 mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate()); 280 } 281 282 void MacroAssembler::movoop(Address dst, jobject obj, Register rscratch) { 283 mov_literal64(rscratch, (intptr_t)obj, oop_Relocation::spec_for_immediate()); 284 movq(dst, rscratch); 285 } 286 287 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) { 288 mov_literal64(dst, (intptr_t)obj, metadata_Relocation::spec_for_immediate()); 289 } 290 291 void MacroAssembler::mov_metadata(Address dst, Metadata* obj, Register rscratch) { 292 mov_literal64(rscratch, (intptr_t)obj, metadata_Relocation::spec_for_immediate()); 293 movq(dst, rscratch); 294 } 295 296 void MacroAssembler::movptr(Register dst, AddressLiteral src) { 297 if (src.is_lval()) { 298 mov_literal64(dst, (intptr_t)src.target(), src.rspec()); 299 } else { 300 if (reachable(src)) { 301 movq(dst, as_Address(src)); 302 } else { 303 lea(dst, src); 304 movq(dst, Address(dst, 0)); 305 } 306 } 307 } 308 309 void MacroAssembler::movptr(ArrayAddress dst, Register src, Register rscratch) { 310 movq(as_Address(dst, rscratch), src); 311 } 312 313 void MacroAssembler::movptr(Register dst, ArrayAddress src) { 314 movq(dst, as_Address(src, dst /*rscratch*/)); 315 } 316 317 // src should NEVER be a real pointer. Use AddressLiteral for true pointers 318 void MacroAssembler::movptr(Address dst, intptr_t src, Register rscratch) { 319 if (is_simm32(src)) { 320 movptr(dst, checked_cast<int32_t>(src)); 321 } else { 322 mov64(rscratch, src); 323 movq(dst, rscratch); 324 } 325 } 326 327 void MacroAssembler::pushoop(jobject obj, Register rscratch) { 328 movoop(rscratch, obj); 329 push(rscratch); 330 } 331 332 void MacroAssembler::pushklass(Metadata* obj, Register rscratch) { 333 mov_metadata(rscratch, obj); 334 push(rscratch); 335 } 336 337 void MacroAssembler::pushptr(AddressLiteral src, Register rscratch) { 338 lea(rscratch, src); 339 if (src.is_lval()) { 340 push(rscratch); 341 } else { 342 pushq(Address(rscratch, 0)); 343 } 344 } 345 346 static void pass_arg0(MacroAssembler* masm, Register arg) { 347 if (c_rarg0 != arg ) { 348 masm->mov(c_rarg0, arg); 349 } 350 } 351 352 static void pass_arg1(MacroAssembler* masm, Register arg) { 353 if (c_rarg1 != arg ) { 354 masm->mov(c_rarg1, arg); 355 } 356 } 357 358 static void pass_arg2(MacroAssembler* masm, Register arg) { 359 if (c_rarg2 != arg ) { 360 masm->mov(c_rarg2, arg); 361 } 362 } 363 364 static void pass_arg3(MacroAssembler* masm, Register arg) { 365 if (c_rarg3 != arg ) { 366 masm->mov(c_rarg3, arg); 367 } 368 } 369 370 void MacroAssembler::stop(const char* msg) { 371 if (ShowMessageBoxOnError) { 372 address rip = pc(); 373 pusha(); // get regs on stack 374 lea(c_rarg1, InternalAddress(rip)); 375 movq(c_rarg2, rsp); // pass pointer to regs array 376 } 377 // Skip AOT caching C strings in scratch buffer. 378 const char* str = (code_section()->scratch_emit()) ? msg : AOTCodeCache::add_C_string(msg); 379 lea(c_rarg0, ExternalAddress((address) str)); 380 andq(rsp, -16); // align stack as required by ABI 381 call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64))); 382 hlt(); 383 } 384 385 void MacroAssembler::warn(const char* msg) { 386 push(rbp); 387 movq(rbp, rsp); 388 andq(rsp, -16); // align stack as required by push_CPU_state and call 389 push_CPU_state(); // keeps alignment at 16 bytes 390 391 #ifdef _WIN64 392 // Windows always allocates space for its register args 393 subq(rsp, frame::arg_reg_save_area_bytes); 394 #endif 395 lea(c_rarg0, ExternalAddress((address) msg)); 396 call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning))); 397 398 #ifdef _WIN64 399 // restore stack pointer 400 addq(rsp, frame::arg_reg_save_area_bytes); 401 #endif 402 pop_CPU_state(); 403 mov(rsp, rbp); 404 pop(rbp); 405 } 406 407 void MacroAssembler::print_state() { 408 address rip = pc(); 409 pusha(); // get regs on stack 410 push(rbp); 411 movq(rbp, rsp); 412 andq(rsp, -16); // align stack as required by push_CPU_state and call 413 push_CPU_state(); // keeps alignment at 16 bytes 414 415 lea(c_rarg0, InternalAddress(rip)); 416 lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array 417 call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1); 418 419 pop_CPU_state(); 420 mov(rsp, rbp); 421 pop(rbp); 422 popa(); 423 } 424 425 #ifndef PRODUCT 426 extern "C" void findpc(intptr_t x); 427 #endif 428 429 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) { 430 // In order to get locks to work, we need to fake a in_VM state 431 if (ShowMessageBoxOnError) { 432 JavaThread* thread = JavaThread::current(); 433 JavaThreadState saved_state = thread->thread_state(); 434 thread->set_thread_state(_thread_in_vm); 435 #ifndef PRODUCT 436 if (CountBytecodes || TraceBytecodes || StopInterpreterAt) { 437 ttyLocker ttyl; 438 BytecodeCounter::print(); 439 } 440 #endif 441 // To see where a verify_oop failed, get $ebx+40/X for this frame. 442 // XXX correct this offset for amd64 443 // This is the value of eip which points to where verify_oop will return. 444 if (os::message_box(msg, "Execution stopped, print registers?")) { 445 print_state64(pc, regs); 446 BREAKPOINT; 447 } 448 } 449 fatal("DEBUG MESSAGE: %s", msg); 450 } 451 452 void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) { 453 ttyLocker ttyl; 454 DebuggingContext debugging{}; 455 tty->print_cr("rip = 0x%016lx", (intptr_t)pc); 456 #ifndef PRODUCT 457 tty->cr(); 458 findpc(pc); 459 tty->cr(); 460 #endif 461 #define PRINT_REG(rax, value) \ 462 { tty->print("%s = ", #rax); os::print_location(tty, value); } 463 PRINT_REG(rax, regs[15]); 464 PRINT_REG(rbx, regs[12]); 465 PRINT_REG(rcx, regs[14]); 466 PRINT_REG(rdx, regs[13]); 467 PRINT_REG(rdi, regs[8]); 468 PRINT_REG(rsi, regs[9]); 469 PRINT_REG(rbp, regs[10]); 470 // rsp is actually not stored by pusha(), compute the old rsp from regs (rsp after pusha): regs + 16 = old rsp 471 PRINT_REG(rsp, (intptr_t)(®s[16])); 472 PRINT_REG(r8 , regs[7]); 473 PRINT_REG(r9 , regs[6]); 474 PRINT_REG(r10, regs[5]); 475 PRINT_REG(r11, regs[4]); 476 PRINT_REG(r12, regs[3]); 477 PRINT_REG(r13, regs[2]); 478 PRINT_REG(r14, regs[1]); 479 PRINT_REG(r15, regs[0]); 480 #undef PRINT_REG 481 // Print some words near the top of the stack. 482 int64_t* rsp = ®s[16]; 483 int64_t* dump_sp = rsp; 484 for (int col1 = 0; col1 < 8; col1++) { 485 tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp); 486 os::print_location(tty, *dump_sp++); 487 } 488 for (int row = 0; row < 25; row++) { 489 tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp); 490 for (int col = 0; col < 4; col++) { 491 tty->print(" 0x%016lx", (intptr_t)*dump_sp++); 492 } 493 tty->cr(); 494 } 495 // Print some instructions around pc: 496 Disassembler::decode((address)pc-64, (address)pc); 497 tty->print_cr("--------"); 498 Disassembler::decode((address)pc, (address)pc+32); 499 } 500 501 // The java_calling_convention describes stack locations as ideal slots on 502 // a frame with no abi restrictions. Since we must observe abi restrictions 503 // (like the placement of the register window) the slots must be biased by 504 // the following value. 505 static int reg2offset_in(VMReg r) { 506 // Account for saved rbp and return address 507 // This should really be in_preserve_stack_slots 508 return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size; 509 } 510 511 static int reg2offset_out(VMReg r) { 512 return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size; 513 } 514 515 // A long move 516 void MacroAssembler::long_move(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) { 517 518 // The calling conventions assures us that each VMregpair is either 519 // all really one physical register or adjacent stack slots. 520 521 if (src.is_single_phys_reg() ) { 522 if (dst.is_single_phys_reg()) { 523 if (dst.first() != src.first()) { 524 mov(dst.first()->as_Register(), src.first()->as_Register()); 525 } 526 } else { 527 assert(dst.is_single_reg(), "not a stack pair: (%s, %s), (%s, %s)", 528 src.first()->name(), src.second()->name(), dst.first()->name(), dst.second()->name()); 529 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_Register()); 530 } 531 } else if (dst.is_single_phys_reg()) { 532 assert(src.is_single_reg(), "not a stack pair"); 533 movq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 534 } else { 535 assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs"); 536 movq(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 537 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp); 538 } 539 } 540 541 // A double move 542 void MacroAssembler::double_move(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) { 543 544 // The calling conventions assures us that each VMregpair is either 545 // all really one physical register or adjacent stack slots. 546 547 if (src.is_single_phys_reg() ) { 548 if (dst.is_single_phys_reg()) { 549 // In theory these overlap but the ordering is such that this is likely a nop 550 if ( src.first() != dst.first()) { 551 movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister()); 552 } 553 } else { 554 assert(dst.is_single_reg(), "not a stack pair"); 555 movdbl(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_XMMRegister()); 556 } 557 } else if (dst.is_single_phys_reg()) { 558 assert(src.is_single_reg(), "not a stack pair"); 559 movdbl(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 560 } else { 561 assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs"); 562 movq(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 563 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp); 564 } 565 } 566 567 568 // A float arg may have to do float reg int reg conversion 569 void MacroAssembler::float_move(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) { 570 assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move"); 571 572 // The calling conventions assures us that each VMregpair is either 573 // all really one physical register or adjacent stack slots. 574 575 if (src.first()->is_stack()) { 576 if (dst.first()->is_stack()) { 577 movl(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 578 movptr(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp); 579 } else { 580 // stack to reg 581 assert(dst.first()->is_XMMRegister(), "only expect xmm registers as parameters"); 582 movflt(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 583 } 584 } else if (dst.first()->is_stack()) { 585 // reg to stack 586 assert(src.first()->is_XMMRegister(), "only expect xmm registers as parameters"); 587 movflt(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_XMMRegister()); 588 } else { 589 // reg to reg 590 // In theory these overlap but the ordering is such that this is likely a nop 591 if ( src.first() != dst.first()) { 592 movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister()); 593 } 594 } 595 } 596 597 // On 64 bit we will store integer like items to the stack as 598 // 64 bits items (x86_32/64 abi) even though java would only store 599 // 32bits for a parameter. On 32bit it will simply be 32 bits 600 // So this routine will do 32->32 on 32bit and 32->64 on 64bit 601 void MacroAssembler::move32_64(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) { 602 if (src.first()->is_stack()) { 603 if (dst.first()->is_stack()) { 604 // stack to stack 605 movslq(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 606 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp); 607 } else { 608 // stack to reg 609 movslq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 610 } 611 } else if (dst.first()->is_stack()) { 612 // reg to stack 613 // Do we really have to sign extend??? 614 // __ movslq(src.first()->as_Register(), src.first()->as_Register()); 615 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_Register()); 616 } else { 617 // Do we really have to sign extend??? 618 // __ movslq(dst.first()->as_Register(), src.first()->as_Register()); 619 if (dst.first() != src.first()) { 620 movq(dst.first()->as_Register(), src.first()->as_Register()); 621 } 622 } 623 } 624 625 void MacroAssembler::move_ptr(VMRegPair src, VMRegPair dst) { 626 if (src.first()->is_stack()) { 627 if (dst.first()->is_stack()) { 628 // stack to stack 629 movq(rax, Address(rbp, reg2offset_in(src.first()))); 630 movq(Address(rsp, reg2offset_out(dst.first())), rax); 631 } else { 632 // stack to reg 633 movq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first()))); 634 } 635 } else if (dst.first()->is_stack()) { 636 // reg to stack 637 movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register()); 638 } else { 639 if (dst.first() != src.first()) { 640 movq(dst.first()->as_Register(), src.first()->as_Register()); 641 } 642 } 643 } 644 645 // An oop arg. Must pass a handle not the oop itself 646 void MacroAssembler::object_move(OopMap* map, 647 int oop_handle_offset, 648 int framesize_in_slots, 649 VMRegPair src, 650 VMRegPair dst, 651 bool is_receiver, 652 int* receiver_offset) { 653 654 // must pass a handle. First figure out the location we use as a handle 655 656 Register rHandle = dst.first()->is_stack() ? rax : dst.first()->as_Register(); 657 658 // See if oop is null if it is we need no handle 659 660 if (src.first()->is_stack()) { 661 662 // Oop is already on the stack as an argument 663 int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots(); 664 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots)); 665 if (is_receiver) { 666 *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size; 667 } 668 669 cmpptr(Address(rbp, reg2offset_in(src.first())), NULL_WORD); 670 lea(rHandle, Address(rbp, reg2offset_in(src.first()))); 671 // conditionally move a null 672 cmovptr(Assembler::equal, rHandle, Address(rbp, reg2offset_in(src.first()))); 673 } else { 674 675 // Oop is in a register we must store it to the space we reserve 676 // on the stack for oop_handles and pass a handle if oop is non-null 677 678 const Register rOop = src.first()->as_Register(); 679 int oop_slot; 680 if (rOop == j_rarg0) 681 oop_slot = 0; 682 else if (rOop == j_rarg1) 683 oop_slot = 1; 684 else if (rOop == j_rarg2) 685 oop_slot = 2; 686 else if (rOop == j_rarg3) 687 oop_slot = 3; 688 else if (rOop == j_rarg4) 689 oop_slot = 4; 690 else { 691 assert(rOop == j_rarg5, "wrong register"); 692 oop_slot = 5; 693 } 694 695 oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset; 696 int offset = oop_slot*VMRegImpl::stack_slot_size; 697 698 map->set_oop(VMRegImpl::stack2reg(oop_slot)); 699 // Store oop in handle area, may be null 700 movptr(Address(rsp, offset), rOop); 701 if (is_receiver) { 702 *receiver_offset = offset; 703 } 704 705 cmpptr(rOop, NULL_WORD); 706 lea(rHandle, Address(rsp, offset)); 707 // conditionally move a null from the handle area where it was just stored 708 cmovptr(Assembler::equal, rHandle, Address(rsp, offset)); 709 } 710 711 // If arg is on the stack then place it otherwise it is already in correct reg. 712 if (dst.first()->is_stack()) { 713 movptr(Address(rsp, reg2offset_out(dst.first())), rHandle); 714 } 715 } 716 717 void MacroAssembler::addptr(Register dst, int32_t imm32) { 718 addq(dst, imm32); 719 } 720 721 void MacroAssembler::addptr(Register dst, Register src) { 722 addq(dst, src); 723 } 724 725 void MacroAssembler::addptr(Address dst, Register src) { 726 addq(dst, src); 727 } 728 729 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src, Register rscratch) { 730 assert(rscratch != noreg || always_reachable(src), "missing"); 731 732 if (reachable(src)) { 733 Assembler::addsd(dst, as_Address(src)); 734 } else { 735 lea(rscratch, src); 736 Assembler::addsd(dst, Address(rscratch, 0)); 737 } 738 } 739 740 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src, Register rscratch) { 741 assert(rscratch != noreg || always_reachable(src), "missing"); 742 743 if (reachable(src)) { 744 addss(dst, as_Address(src)); 745 } else { 746 lea(rscratch, src); 747 addss(dst, Address(rscratch, 0)); 748 } 749 } 750 751 void MacroAssembler::addpd(XMMRegister dst, AddressLiteral src, Register rscratch) { 752 assert(rscratch != noreg || always_reachable(src), "missing"); 753 754 if (reachable(src)) { 755 Assembler::addpd(dst, as_Address(src)); 756 } else { 757 lea(rscratch, src); 758 Assembler::addpd(dst, Address(rscratch, 0)); 759 } 760 } 761 762 // See 8273459. Function for ensuring 64-byte alignment, intended for stubs only. 763 // Stub code is generated once and never copied. 764 // NMethods can't use this because they get copied and we can't force alignment > 32 bytes. 765 void MacroAssembler::align64() { 766 align(64, (uint)(uintptr_t)pc()); 767 } 768 769 void MacroAssembler::align32() { 770 align(32, (uint)(uintptr_t)pc()); 771 } 772 773 void MacroAssembler::align(uint modulus) { 774 // 8273459: Ensure alignment is possible with current segment alignment 775 assert(modulus <= (uintx)CodeEntryAlignment, "Alignment must be <= CodeEntryAlignment"); 776 align(modulus, offset()); 777 } 778 779 void MacroAssembler::align(uint modulus, uint target) { 780 if (target % modulus != 0) { 781 nop(modulus - (target % modulus)); 782 } 783 } 784 785 void MacroAssembler::push_f(XMMRegister r) { 786 subptr(rsp, wordSize); 787 movflt(Address(rsp, 0), r); 788 } 789 790 void MacroAssembler::pop_f(XMMRegister r) { 791 movflt(r, Address(rsp, 0)); 792 addptr(rsp, wordSize); 793 } 794 795 void MacroAssembler::push_d(XMMRegister r) { 796 subptr(rsp, 2 * wordSize); 797 movdbl(Address(rsp, 0), r); 798 } 799 800 void MacroAssembler::pop_d(XMMRegister r) { 801 movdbl(r, Address(rsp, 0)); 802 addptr(rsp, 2 * Interpreter::stackElementSize); 803 } 804 805 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src, Register rscratch) { 806 // Used in sign-masking with aligned address. 807 assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes"); 808 assert(rscratch != noreg || always_reachable(src), "missing"); 809 810 if (UseAVX > 2 && 811 (!VM_Version::supports_avx512dq() || !VM_Version::supports_avx512vl()) && 812 (dst->encoding() >= 16)) { 813 vpand(dst, dst, src, AVX_512bit, rscratch); 814 } else if (reachable(src)) { 815 Assembler::andpd(dst, as_Address(src)); 816 } else { 817 lea(rscratch, src); 818 Assembler::andpd(dst, Address(rscratch, 0)); 819 } 820 } 821 822 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src, Register rscratch) { 823 // Used in sign-masking with aligned address. 824 assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes"); 825 assert(rscratch != noreg || always_reachable(src), "missing"); 826 827 if (reachable(src)) { 828 Assembler::andps(dst, as_Address(src)); 829 } else { 830 lea(rscratch, src); 831 Assembler::andps(dst, Address(rscratch, 0)); 832 } 833 } 834 835 void MacroAssembler::andptr(Register dst, int32_t imm32) { 836 andq(dst, imm32); 837 } 838 839 void MacroAssembler::andq(Register dst, AddressLiteral src, Register rscratch) { 840 assert(rscratch != noreg || always_reachable(src), "missing"); 841 842 if (reachable(src)) { 843 andq(dst, as_Address(src)); 844 } else { 845 lea(rscratch, src); 846 andq(dst, Address(rscratch, 0)); 847 } 848 } 849 850 void MacroAssembler::atomic_incl(Address counter_addr) { 851 lock(); 852 incrementl(counter_addr); 853 } 854 855 void MacroAssembler::atomic_incl(AddressLiteral counter_addr, Register rscratch) { 856 assert(rscratch != noreg || always_reachable(counter_addr), "missing"); 857 858 if (reachable(counter_addr)) { 859 atomic_incl(as_Address(counter_addr)); 860 } else { 861 lea(rscratch, counter_addr); 862 atomic_incl(Address(rscratch, 0)); 863 } 864 } 865 866 void MacroAssembler::atomic_incq(Address counter_addr) { 867 lock(); 868 incrementq(counter_addr); 869 } 870 871 void MacroAssembler::atomic_incq(AddressLiteral counter_addr, Register rscratch) { 872 assert(rscratch != noreg || always_reachable(counter_addr), "missing"); 873 874 if (reachable(counter_addr)) { 875 atomic_incq(as_Address(counter_addr)); 876 } else { 877 lea(rscratch, counter_addr); 878 atomic_incq(Address(rscratch, 0)); 879 } 880 } 881 882 // Writes to stack successive pages until offset reached to check for 883 // stack overflow + shadow pages. This clobbers tmp. 884 void MacroAssembler::bang_stack_size(Register size, Register tmp) { 885 movptr(tmp, rsp); 886 // Bang stack for total size given plus shadow page size. 887 // Bang one page at a time because large size can bang beyond yellow and 888 // red zones. 889 Label loop; 890 bind(loop); 891 movl(Address(tmp, (-(int)os::vm_page_size())), size ); 892 subptr(tmp, (int)os::vm_page_size()); 893 subl(size, (int)os::vm_page_size()); 894 jcc(Assembler::greater, loop); 895 896 // Bang down shadow pages too. 897 // At this point, (tmp-0) is the last address touched, so don't 898 // touch it again. (It was touched as (tmp-pagesize) but then tmp 899 // was post-decremented.) Skip this address by starting at i=1, and 900 // touch a few more pages below. N.B. It is important to touch all 901 // the way down including all pages in the shadow zone. 902 for (int i = 1; i < ((int)StackOverflow::stack_shadow_zone_size() / (int)os::vm_page_size()); i++) { 903 // this could be any sized move but this is can be a debugging crumb 904 // so the bigger the better. 905 movptr(Address(tmp, (-i*(int)os::vm_page_size())), size ); 906 } 907 } 908 909 void MacroAssembler::reserved_stack_check() { 910 // testing if reserved zone needs to be enabled 911 Label no_reserved_zone_enabling; 912 913 cmpptr(rsp, Address(r15_thread, JavaThread::reserved_stack_activation_offset())); 914 jcc(Assembler::below, no_reserved_zone_enabling); 915 916 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), r15_thread); 917 jump(RuntimeAddress(SharedRuntime::throw_delayed_StackOverflowError_entry())); 918 should_not_reach_here(); 919 920 bind(no_reserved_zone_enabling); 921 } 922 923 void MacroAssembler::c2bool(Register x) { 924 // implements x == 0 ? 0 : 1 925 // note: must only look at least-significant byte of x 926 // since C-style booleans are stored in one byte 927 // only! (was bug) 928 andl(x, 0xFF); 929 setb(Assembler::notZero, x); 930 } 931 932 // Wouldn't need if AddressLiteral version had new name 933 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) { 934 Assembler::call(L, rtype); 935 } 936 937 void MacroAssembler::call(Register entry) { 938 Assembler::call(entry); 939 } 940 941 void MacroAssembler::call(AddressLiteral entry, Register rscratch) { 942 assert(rscratch != noreg || always_reachable(entry), "missing"); 943 944 if (reachable(entry)) { 945 Assembler::call_literal(entry.target(), entry.rspec()); 946 } else { 947 lea(rscratch, entry); 948 Assembler::call(rscratch); 949 } 950 } 951 952 void MacroAssembler::ic_call(address entry, jint method_index) { 953 RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index); 954 // Needs full 64-bit immediate for later patching. 955 mov64(rax, (int64_t)Universe::non_oop_word()); 956 call(AddressLiteral(entry, rh)); 957 } 958 959 int MacroAssembler::ic_check_size() { 960 return UseCompactObjectHeaders ? 17 : 14; 961 } 962 963 int MacroAssembler::ic_check(int end_alignment) { 964 Register receiver = j_rarg0; 965 Register data = rax; 966 Register temp = rscratch1; 967 968 // The UEP of a code blob ensures that the VEP is padded. However, the padding of the UEP is placed 969 // before the inline cache check, so we don't have to execute any nop instructions when dispatching 970 // through the UEP, yet we can ensure that the VEP is aligned appropriately. That's why we align 971 // before the inline cache check here, and not after 972 align(end_alignment, offset() + ic_check_size()); 973 974 int uep_offset = offset(); 975 976 if (UseCompactObjectHeaders) { 977 load_narrow_klass_compact(temp, receiver); 978 cmpl(temp, Address(data, CompiledICData::speculated_klass_offset())); 979 } else if (UseCompressedClassPointers) { 980 movl(temp, Address(receiver, oopDesc::klass_offset_in_bytes())); 981 cmpl(temp, Address(data, CompiledICData::speculated_klass_offset())); 982 } else { 983 movptr(temp, Address(receiver, oopDesc::klass_offset_in_bytes())); 984 cmpptr(temp, Address(data, CompiledICData::speculated_klass_offset())); 985 } 986 987 // if inline cache check fails, then jump to runtime routine 988 jump_cc(Assembler::notEqual, RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 989 assert((offset() % end_alignment) == 0, "Misaligned verified entry point (%d, %d, %d)", uep_offset, offset(), end_alignment); 990 991 return uep_offset; 992 } 993 994 void MacroAssembler::emit_static_call_stub() { 995 // Static stub relocation also tags the Method* in the code-stream. 996 mov_metadata(rbx, (Metadata*) nullptr); // Method is zapped till fixup time. 997 // This is recognized as unresolved by relocs/nativeinst/ic code. 998 jump(RuntimeAddress(pc())); 999 } 1000 1001 // Implementation of call_VM versions 1002 1003 void MacroAssembler::call_VM(Register oop_result, 1004 address entry_point, 1005 bool check_exceptions) { 1006 Label C, E; 1007 call(C, relocInfo::none); 1008 jmp(E); 1009 1010 bind(C); 1011 call_VM_helper(oop_result, entry_point, 0, check_exceptions); 1012 ret(0); 1013 1014 bind(E); 1015 } 1016 1017 void MacroAssembler::call_VM(Register oop_result, 1018 address entry_point, 1019 Register arg_1, 1020 bool check_exceptions) { 1021 Label C, E; 1022 call(C, relocInfo::none); 1023 jmp(E); 1024 1025 bind(C); 1026 pass_arg1(this, arg_1); 1027 call_VM_helper(oop_result, entry_point, 1, check_exceptions); 1028 ret(0); 1029 1030 bind(E); 1031 } 1032 1033 void MacroAssembler::call_VM(Register oop_result, 1034 address entry_point, 1035 Register arg_1, 1036 Register arg_2, 1037 bool check_exceptions) { 1038 Label C, E; 1039 call(C, relocInfo::none); 1040 jmp(E); 1041 1042 bind(C); 1043 1044 assert_different_registers(arg_1, c_rarg2); 1045 1046 pass_arg2(this, arg_2); 1047 pass_arg1(this, arg_1); 1048 call_VM_helper(oop_result, entry_point, 2, check_exceptions); 1049 ret(0); 1050 1051 bind(E); 1052 } 1053 1054 void MacroAssembler::call_VM(Register oop_result, 1055 address entry_point, 1056 Register arg_1, 1057 Register arg_2, 1058 Register arg_3, 1059 bool check_exceptions) { 1060 Label C, E; 1061 call(C, relocInfo::none); 1062 jmp(E); 1063 1064 bind(C); 1065 1066 assert_different_registers(arg_1, c_rarg2, c_rarg3); 1067 assert_different_registers(arg_2, c_rarg3); 1068 pass_arg3(this, arg_3); 1069 pass_arg2(this, arg_2); 1070 pass_arg1(this, arg_1); 1071 call_VM_helper(oop_result, entry_point, 3, check_exceptions); 1072 ret(0); 1073 1074 bind(E); 1075 } 1076 1077 void MacroAssembler::call_VM(Register oop_result, 1078 Register last_java_sp, 1079 address entry_point, 1080 int number_of_arguments, 1081 bool check_exceptions) { 1082 call_VM_base(oop_result, last_java_sp, entry_point, number_of_arguments, check_exceptions); 1083 } 1084 1085 void MacroAssembler::call_VM(Register oop_result, 1086 Register last_java_sp, 1087 address entry_point, 1088 Register arg_1, 1089 bool check_exceptions) { 1090 pass_arg1(this, arg_1); 1091 call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions); 1092 } 1093 1094 void MacroAssembler::call_VM(Register oop_result, 1095 Register last_java_sp, 1096 address entry_point, 1097 Register arg_1, 1098 Register arg_2, 1099 bool check_exceptions) { 1100 1101 assert_different_registers(arg_1, c_rarg2); 1102 pass_arg2(this, arg_2); 1103 pass_arg1(this, arg_1); 1104 call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions); 1105 } 1106 1107 void MacroAssembler::call_VM(Register oop_result, 1108 Register last_java_sp, 1109 address entry_point, 1110 Register arg_1, 1111 Register arg_2, 1112 Register arg_3, 1113 bool check_exceptions) { 1114 assert_different_registers(arg_1, c_rarg2, c_rarg3); 1115 assert_different_registers(arg_2, c_rarg3); 1116 pass_arg3(this, arg_3); 1117 pass_arg2(this, arg_2); 1118 pass_arg1(this, arg_1); 1119 call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions); 1120 } 1121 1122 void MacroAssembler::super_call_VM(Register oop_result, 1123 Register last_java_sp, 1124 address entry_point, 1125 int number_of_arguments, 1126 bool check_exceptions) { 1127 MacroAssembler::call_VM_base(oop_result, last_java_sp, entry_point, number_of_arguments, check_exceptions); 1128 } 1129 1130 void MacroAssembler::super_call_VM(Register oop_result, 1131 Register last_java_sp, 1132 address entry_point, 1133 Register arg_1, 1134 bool check_exceptions) { 1135 pass_arg1(this, arg_1); 1136 super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions); 1137 } 1138 1139 void MacroAssembler::super_call_VM(Register oop_result, 1140 Register last_java_sp, 1141 address entry_point, 1142 Register arg_1, 1143 Register arg_2, 1144 bool check_exceptions) { 1145 1146 assert_different_registers(arg_1, c_rarg2); 1147 pass_arg2(this, arg_2); 1148 pass_arg1(this, arg_1); 1149 super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions); 1150 } 1151 1152 void MacroAssembler::super_call_VM(Register oop_result, 1153 Register last_java_sp, 1154 address entry_point, 1155 Register arg_1, 1156 Register arg_2, 1157 Register arg_3, 1158 bool check_exceptions) { 1159 assert_different_registers(arg_1, c_rarg2, c_rarg3); 1160 assert_different_registers(arg_2, c_rarg3); 1161 pass_arg3(this, arg_3); 1162 pass_arg2(this, arg_2); 1163 pass_arg1(this, arg_1); 1164 super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions); 1165 } 1166 1167 void MacroAssembler::call_VM_base(Register oop_result, 1168 Register last_java_sp, 1169 address entry_point, 1170 int number_of_arguments, 1171 bool check_exceptions) { 1172 Register java_thread = r15_thread; 1173 1174 // determine last_java_sp register 1175 if (!last_java_sp->is_valid()) { 1176 last_java_sp = rsp; 1177 } 1178 // debugging support 1179 assert(number_of_arguments >= 0 , "cannot have negative number of arguments"); 1180 #ifdef ASSERT 1181 // TraceBytecodes does not use r12 but saves it over the call, so don't verify 1182 // r12 is the heapbase. 1183 if (UseCompressedOops && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?"); 1184 #endif // ASSERT 1185 1186 assert(java_thread != oop_result , "cannot use the same register for java_thread & oop_result"); 1187 assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp"); 1188 1189 // push java thread (becomes first argument of C function) 1190 1191 mov(c_rarg0, r15_thread); 1192 1193 // set last Java frame before call 1194 assert(last_java_sp != rbp, "can't use ebp/rbp"); 1195 1196 // Only interpreter should have to set fp 1197 set_last_Java_frame(last_java_sp, rbp, nullptr, rscratch1); 1198 1199 // do the call, remove parameters 1200 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments); 1201 1202 #ifdef ASSERT 1203 // Check that thread register is not clobbered. 1204 guarantee(java_thread != rax, "change this code"); 1205 push(rax); 1206 { Label L; 1207 get_thread_slow(rax); 1208 cmpptr(java_thread, rax); 1209 jcc(Assembler::equal, L); 1210 STOP("MacroAssembler::call_VM_base: java_thread not callee saved?"); 1211 bind(L); 1212 } 1213 pop(rax); 1214 #endif 1215 1216 // reset last Java frame 1217 // Only interpreter should have to clear fp 1218 reset_last_Java_frame(true); 1219 1220 // C++ interp handles this in the interpreter 1221 check_and_handle_popframe(); 1222 check_and_handle_earlyret(); 1223 1224 if (check_exceptions) { 1225 // check for pending exceptions (java_thread is set upon return) 1226 cmpptr(Address(r15_thread, Thread::pending_exception_offset()), NULL_WORD); 1227 // This used to conditionally jump to forward_exception however it is 1228 // possible if we relocate that the branch will not reach. So we must jump 1229 // around so we can always reach 1230 1231 Label ok; 1232 jcc(Assembler::equal, ok); 1233 jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 1234 bind(ok); 1235 } 1236 1237 // get oop result if there is one and reset the value in the thread 1238 if (oop_result->is_valid()) { 1239 get_vm_result_oop(oop_result); 1240 } 1241 } 1242 1243 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) { 1244 // Calculate the value for last_Java_sp somewhat subtle. 1245 // call_VM does an intermediate call which places a return address on 1246 // the stack just under the stack pointer as the user finished with it. 1247 // This allows use to retrieve last_Java_pc from last_Java_sp[-1]. 1248 1249 // We've pushed one address, correct last_Java_sp 1250 lea(rax, Address(rsp, wordSize)); 1251 1252 call_VM_base(oop_result, rax, entry_point, number_of_arguments, check_exceptions); 1253 } 1254 1255 // Use this method when MacroAssembler version of call_VM_leaf_base() should be called from Interpreter. 1256 void MacroAssembler::call_VM_leaf0(address entry_point) { 1257 MacroAssembler::call_VM_leaf_base(entry_point, 0); 1258 } 1259 1260 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) { 1261 call_VM_leaf_base(entry_point, number_of_arguments); 1262 } 1263 1264 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) { 1265 pass_arg0(this, arg_0); 1266 call_VM_leaf(entry_point, 1); 1267 } 1268 1269 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 1270 1271 assert_different_registers(arg_0, c_rarg1); 1272 pass_arg1(this, arg_1); 1273 pass_arg0(this, arg_0); 1274 call_VM_leaf(entry_point, 2); 1275 } 1276 1277 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) { 1278 assert_different_registers(arg_0, c_rarg1, c_rarg2); 1279 assert_different_registers(arg_1, c_rarg2); 1280 pass_arg2(this, arg_2); 1281 pass_arg1(this, arg_1); 1282 pass_arg0(this, arg_0); 1283 call_VM_leaf(entry_point, 3); 1284 } 1285 1286 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) { 1287 assert_different_registers(arg_0, c_rarg1, c_rarg2, c_rarg3); 1288 assert_different_registers(arg_1, c_rarg2, c_rarg3); 1289 assert_different_registers(arg_2, c_rarg3); 1290 pass_arg3(this, arg_3); 1291 pass_arg2(this, arg_2); 1292 pass_arg1(this, arg_1); 1293 pass_arg0(this, arg_0); 1294 call_VM_leaf(entry_point, 3); 1295 } 1296 1297 void MacroAssembler::super_call_VM_leaf(address entry_point) { 1298 MacroAssembler::call_VM_leaf_base(entry_point, 1); 1299 } 1300 1301 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) { 1302 pass_arg0(this, arg_0); 1303 MacroAssembler::call_VM_leaf_base(entry_point, 1); 1304 } 1305 1306 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 1307 assert_different_registers(arg_0, c_rarg1); 1308 pass_arg1(this, arg_1); 1309 pass_arg0(this, arg_0); 1310 MacroAssembler::call_VM_leaf_base(entry_point, 2); 1311 } 1312 1313 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) { 1314 assert_different_registers(arg_0, c_rarg1, c_rarg2); 1315 assert_different_registers(arg_1, c_rarg2); 1316 pass_arg2(this, arg_2); 1317 pass_arg1(this, arg_1); 1318 pass_arg0(this, arg_0); 1319 MacroAssembler::call_VM_leaf_base(entry_point, 3); 1320 } 1321 1322 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) { 1323 assert_different_registers(arg_0, c_rarg1, c_rarg2, c_rarg3); 1324 assert_different_registers(arg_1, c_rarg2, c_rarg3); 1325 assert_different_registers(arg_2, c_rarg3); 1326 pass_arg3(this, arg_3); 1327 pass_arg2(this, arg_2); 1328 pass_arg1(this, arg_1); 1329 pass_arg0(this, arg_0); 1330 MacroAssembler::call_VM_leaf_base(entry_point, 4); 1331 } 1332 1333 void MacroAssembler::get_vm_result_oop(Register oop_result) { 1334 movptr(oop_result, Address(r15_thread, JavaThread::vm_result_oop_offset())); 1335 movptr(Address(r15_thread, JavaThread::vm_result_oop_offset()), NULL_WORD); 1336 verify_oop_msg(oop_result, "broken oop in call_VM_base"); 1337 } 1338 1339 void MacroAssembler::get_vm_result_metadata(Register metadata_result) { 1340 movptr(metadata_result, Address(r15_thread, JavaThread::vm_result_metadata_offset())); 1341 movptr(Address(r15_thread, JavaThread::vm_result_metadata_offset()), NULL_WORD); 1342 } 1343 1344 void MacroAssembler::check_and_handle_earlyret() { 1345 } 1346 1347 void MacroAssembler::check_and_handle_popframe() { 1348 } 1349 1350 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm, Register rscratch) { 1351 assert(rscratch != noreg || always_reachable(src1), "missing"); 1352 1353 if (reachable(src1)) { 1354 cmpl(as_Address(src1), imm); 1355 } else { 1356 lea(rscratch, src1); 1357 cmpl(Address(rscratch, 0), imm); 1358 } 1359 } 1360 1361 void MacroAssembler::cmp32(Register src1, AddressLiteral src2, Register rscratch) { 1362 assert(!src2.is_lval(), "use cmpptr"); 1363 assert(rscratch != noreg || always_reachable(src2), "missing"); 1364 1365 if (reachable(src2)) { 1366 cmpl(src1, as_Address(src2)); 1367 } else { 1368 lea(rscratch, src2); 1369 cmpl(src1, Address(rscratch, 0)); 1370 } 1371 } 1372 1373 void MacroAssembler::cmp32(Register src1, int32_t imm) { 1374 Assembler::cmpl(src1, imm); 1375 } 1376 1377 void MacroAssembler::cmp32(Register src1, Address src2) { 1378 Assembler::cmpl(src1, src2); 1379 } 1380 1381 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) { 1382 ucomisd(opr1, opr2); 1383 1384 Label L; 1385 if (unordered_is_less) { 1386 movl(dst, -1); 1387 jcc(Assembler::parity, L); 1388 jcc(Assembler::below , L); 1389 movl(dst, 0); 1390 jcc(Assembler::equal , L); 1391 increment(dst); 1392 } else { // unordered is greater 1393 movl(dst, 1); 1394 jcc(Assembler::parity, L); 1395 jcc(Assembler::above , L); 1396 movl(dst, 0); 1397 jcc(Assembler::equal , L); 1398 decrementl(dst); 1399 } 1400 bind(L); 1401 } 1402 1403 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) { 1404 ucomiss(opr1, opr2); 1405 1406 Label L; 1407 if (unordered_is_less) { 1408 movl(dst, -1); 1409 jcc(Assembler::parity, L); 1410 jcc(Assembler::below , L); 1411 movl(dst, 0); 1412 jcc(Assembler::equal , L); 1413 increment(dst); 1414 } else { // unordered is greater 1415 movl(dst, 1); 1416 jcc(Assembler::parity, L); 1417 jcc(Assembler::above , L); 1418 movl(dst, 0); 1419 jcc(Assembler::equal , L); 1420 decrementl(dst); 1421 } 1422 bind(L); 1423 } 1424 1425 1426 void MacroAssembler::cmp8(AddressLiteral src1, int imm, Register rscratch) { 1427 assert(rscratch != noreg || always_reachable(src1), "missing"); 1428 1429 if (reachable(src1)) { 1430 cmpb(as_Address(src1), imm); 1431 } else { 1432 lea(rscratch, src1); 1433 cmpb(Address(rscratch, 0), imm); 1434 } 1435 } 1436 1437 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2, Register rscratch) { 1438 assert(rscratch != noreg || always_reachable(src2), "missing"); 1439 1440 if (src2.is_lval()) { 1441 movptr(rscratch, src2); 1442 Assembler::cmpq(src1, rscratch); 1443 } else if (reachable(src2)) { 1444 cmpq(src1, as_Address(src2)); 1445 } else { 1446 lea(rscratch, src2); 1447 Assembler::cmpq(src1, Address(rscratch, 0)); 1448 } 1449 } 1450 1451 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2, Register rscratch) { 1452 assert(src2.is_lval(), "not a mem-mem compare"); 1453 // moves src2's literal address 1454 movptr(rscratch, src2); 1455 Assembler::cmpq(src1, rscratch); 1456 } 1457 1458 void MacroAssembler::cmpoop(Register src1, Register src2) { 1459 cmpptr(src1, src2); 1460 } 1461 1462 void MacroAssembler::cmpoop(Register src1, Address src2) { 1463 cmpptr(src1, src2); 1464 } 1465 1466 void MacroAssembler::cmpoop(Register src1, jobject src2, Register rscratch) { 1467 movoop(rscratch, src2); 1468 cmpptr(src1, rscratch); 1469 } 1470 1471 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr, Register rscratch) { 1472 assert(rscratch != noreg || always_reachable(adr), "missing"); 1473 1474 if (reachable(adr)) { 1475 lock(); 1476 cmpxchgptr(reg, as_Address(adr)); 1477 } else { 1478 lea(rscratch, adr); 1479 lock(); 1480 cmpxchgptr(reg, Address(rscratch, 0)); 1481 } 1482 } 1483 1484 void MacroAssembler::cmpxchgptr(Register reg, Address adr) { 1485 cmpxchgq(reg, adr); 1486 } 1487 1488 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src, Register rscratch) { 1489 assert(rscratch != noreg || always_reachable(src), "missing"); 1490 1491 if (reachable(src)) { 1492 Assembler::comisd(dst, as_Address(src)); 1493 } else { 1494 lea(rscratch, src); 1495 Assembler::comisd(dst, Address(rscratch, 0)); 1496 } 1497 } 1498 1499 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src, Register rscratch) { 1500 assert(rscratch != noreg || always_reachable(src), "missing"); 1501 1502 if (reachable(src)) { 1503 Assembler::comiss(dst, as_Address(src)); 1504 } else { 1505 lea(rscratch, src); 1506 Assembler::comiss(dst, Address(rscratch, 0)); 1507 } 1508 } 1509 1510 1511 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr, Register rscratch) { 1512 assert(rscratch != noreg || always_reachable(counter_addr), "missing"); 1513 1514 Condition negated_cond = negate_condition(cond); 1515 Label L; 1516 jcc(negated_cond, L); 1517 pushf(); // Preserve flags 1518 atomic_incl(counter_addr, rscratch); 1519 popf(); 1520 bind(L); 1521 } 1522 1523 int MacroAssembler::corrected_idivl(Register reg) { 1524 // Full implementation of Java idiv and irem; checks for 1525 // special case as described in JVM spec., p.243 & p.271. 1526 // The function returns the (pc) offset of the idivl 1527 // instruction - may be needed for implicit exceptions. 1528 // 1529 // normal case special case 1530 // 1531 // input : rax,: dividend min_int 1532 // reg: divisor (may not be rax,/rdx) -1 1533 // 1534 // output: rax,: quotient (= rax, idiv reg) min_int 1535 // rdx: remainder (= rax, irem reg) 0 1536 assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register"); 1537 const int min_int = 0x80000000; 1538 Label normal_case, special_case; 1539 1540 // check for special case 1541 cmpl(rax, min_int); 1542 jcc(Assembler::notEqual, normal_case); 1543 xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0) 1544 cmpl(reg, -1); 1545 jcc(Assembler::equal, special_case); 1546 1547 // handle normal case 1548 bind(normal_case); 1549 cdql(); 1550 int idivl_offset = offset(); 1551 idivl(reg); 1552 1553 // normal and special case exit 1554 bind(special_case); 1555 1556 return idivl_offset; 1557 } 1558 1559 1560 1561 void MacroAssembler::decrementl(Register reg, int value) { 1562 if (value == min_jint) {subl(reg, value) ; return; } 1563 if (value < 0) { incrementl(reg, -value); return; } 1564 if (value == 0) { ; return; } 1565 if (value == 1 && UseIncDec) { decl(reg) ; return; } 1566 /* else */ { subl(reg, value) ; return; } 1567 } 1568 1569 void MacroAssembler::decrementl(Address dst, int value) { 1570 if (value == min_jint) {subl(dst, value) ; return; } 1571 if (value < 0) { incrementl(dst, -value); return; } 1572 if (value == 0) { ; return; } 1573 if (value == 1 && UseIncDec) { decl(dst) ; return; } 1574 /* else */ { subl(dst, value) ; return; } 1575 } 1576 1577 void MacroAssembler::division_with_shift (Register reg, int shift_value) { 1578 assert(shift_value > 0, "illegal shift value"); 1579 Label _is_positive; 1580 testl (reg, reg); 1581 jcc (Assembler::positive, _is_positive); 1582 int offset = (1 << shift_value) - 1 ; 1583 1584 if (offset == 1) { 1585 incrementl(reg); 1586 } else { 1587 addl(reg, offset); 1588 } 1589 1590 bind (_is_positive); 1591 sarl(reg, shift_value); 1592 } 1593 1594 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src, Register rscratch) { 1595 assert(rscratch != noreg || always_reachable(src), "missing"); 1596 1597 if (reachable(src)) { 1598 Assembler::divsd(dst, as_Address(src)); 1599 } else { 1600 lea(rscratch, src); 1601 Assembler::divsd(dst, Address(rscratch, 0)); 1602 } 1603 } 1604 1605 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src, Register rscratch) { 1606 assert(rscratch != noreg || always_reachable(src), "missing"); 1607 1608 if (reachable(src)) { 1609 Assembler::divss(dst, as_Address(src)); 1610 } else { 1611 lea(rscratch, src); 1612 Assembler::divss(dst, Address(rscratch, 0)); 1613 } 1614 } 1615 1616 void MacroAssembler::enter() { 1617 push(rbp); 1618 mov(rbp, rsp); 1619 } 1620 1621 void MacroAssembler::post_call_nop() { 1622 if (!Continuations::enabled()) { 1623 return; 1624 } 1625 InstructionMark im(this); 1626 relocate(post_call_nop_Relocation::spec()); 1627 InlineSkippedInstructionsCounter skipCounter(this); 1628 emit_int8((uint8_t)0x0f); 1629 emit_int8((uint8_t)0x1f); 1630 emit_int8((uint8_t)0x84); 1631 emit_int8((uint8_t)0x00); 1632 emit_int32(0x00); 1633 } 1634 1635 void MacroAssembler::mulpd(XMMRegister dst, AddressLiteral src, Register rscratch) { 1636 assert(rscratch != noreg || always_reachable(src), "missing"); 1637 if (reachable(src)) { 1638 Assembler::mulpd(dst, as_Address(src)); 1639 } else { 1640 lea(rscratch, src); 1641 Assembler::mulpd(dst, Address(rscratch, 0)); 1642 } 1643 } 1644 1645 // dst = c = a * b + c 1646 void MacroAssembler::fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) { 1647 Assembler::vfmadd231sd(c, a, b); 1648 if (dst != c) { 1649 movdbl(dst, c); 1650 } 1651 } 1652 1653 // dst = c = a * b + c 1654 void MacroAssembler::fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) { 1655 Assembler::vfmadd231ss(c, a, b); 1656 if (dst != c) { 1657 movflt(dst, c); 1658 } 1659 } 1660 1661 // dst = c = a * b + c 1662 void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) { 1663 Assembler::vfmadd231pd(c, a, b, vector_len); 1664 if (dst != c) { 1665 vmovdqu(dst, c); 1666 } 1667 } 1668 1669 // dst = c = a * b + c 1670 void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) { 1671 Assembler::vfmadd231ps(c, a, b, vector_len); 1672 if (dst != c) { 1673 vmovdqu(dst, c); 1674 } 1675 } 1676 1677 // dst = c = a * b + c 1678 void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) { 1679 Assembler::vfmadd231pd(c, a, b, vector_len); 1680 if (dst != c) { 1681 vmovdqu(dst, c); 1682 } 1683 } 1684 1685 // dst = c = a * b + c 1686 void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) { 1687 Assembler::vfmadd231ps(c, a, b, vector_len); 1688 if (dst != c) { 1689 vmovdqu(dst, c); 1690 } 1691 } 1692 1693 void MacroAssembler::incrementl(AddressLiteral dst, Register rscratch) { 1694 assert(rscratch != noreg || always_reachable(dst), "missing"); 1695 1696 if (reachable(dst)) { 1697 incrementl(as_Address(dst)); 1698 } else { 1699 lea(rscratch, dst); 1700 incrementl(Address(rscratch, 0)); 1701 } 1702 } 1703 1704 void MacroAssembler::incrementl(ArrayAddress dst, Register rscratch) { 1705 incrementl(as_Address(dst, rscratch)); 1706 } 1707 1708 void MacroAssembler::incrementl(Register reg, int value) { 1709 if (value == min_jint) {addl(reg, value) ; return; } 1710 if (value < 0) { decrementl(reg, -value); return; } 1711 if (value == 0) { ; return; } 1712 if (value == 1 && UseIncDec) { incl(reg) ; return; } 1713 /* else */ { addl(reg, value) ; return; } 1714 } 1715 1716 void MacroAssembler::incrementl(Address dst, int value) { 1717 if (value == min_jint) {addl(dst, value) ; return; } 1718 if (value < 0) { decrementl(dst, -value); return; } 1719 if (value == 0) { ; return; } 1720 if (value == 1 && UseIncDec) { incl(dst) ; return; } 1721 /* else */ { addl(dst, value) ; return; } 1722 } 1723 1724 void MacroAssembler::jump(AddressLiteral dst, Register rscratch) { 1725 assert(rscratch != noreg || always_reachable(dst), "missing"); 1726 assert(!dst.rspec().reloc()->is_data(), "should not use ExternalAddress for jump"); 1727 if (reachable(dst)) { 1728 jmp_literal(dst.target(), dst.rspec()); 1729 } else { 1730 lea(rscratch, dst); 1731 jmp(rscratch); 1732 } 1733 } 1734 1735 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst, Register rscratch) { 1736 assert(rscratch != noreg || always_reachable(dst), "missing"); 1737 assert(!dst.rspec().reloc()->is_data(), "should not use ExternalAddress for jump_cc"); 1738 if (reachable(dst)) { 1739 InstructionMark im(this); 1740 relocate(dst.reloc()); 1741 const int short_size = 2; 1742 const int long_size = 6; 1743 int offs = (intptr_t)dst.target() - ((intptr_t)pc()); 1744 if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) { 1745 // 0111 tttn #8-bit disp 1746 emit_int8(0x70 | cc); 1747 emit_int8((offs - short_size) & 0xFF); 1748 } else { 1749 // 0000 1111 1000 tttn #32-bit disp 1750 emit_int8(0x0F); 1751 emit_int8((unsigned char)(0x80 | cc)); 1752 emit_int32(offs - long_size); 1753 } 1754 } else { 1755 #ifdef ASSERT 1756 warning("reversing conditional branch"); 1757 #endif /* ASSERT */ 1758 Label skip; 1759 jccb(reverse[cc], skip); 1760 lea(rscratch, dst); 1761 Assembler::jmp(rscratch); 1762 bind(skip); 1763 } 1764 } 1765 1766 void MacroAssembler::cmp32_mxcsr_std(Address mxcsr_save, Register tmp, Register rscratch) { 1767 ExternalAddress mxcsr_std(StubRoutines::x86::addr_mxcsr_std()); 1768 assert(rscratch != noreg || always_reachable(mxcsr_std), "missing"); 1769 1770 stmxcsr(mxcsr_save); 1771 movl(tmp, mxcsr_save); 1772 if (EnableX86ECoreOpts) { 1773 // The mxcsr_std has status bits set for performance on ECore 1774 orl(tmp, 0x003f); 1775 } else { 1776 // Mask out status bits (only check control and mask bits) 1777 andl(tmp, 0xFFC0); 1778 } 1779 cmp32(tmp, mxcsr_std, rscratch); 1780 } 1781 1782 void MacroAssembler::ldmxcsr(AddressLiteral src, Register rscratch) { 1783 assert(rscratch != noreg || always_reachable(src), "missing"); 1784 1785 if (reachable(src)) { 1786 Assembler::ldmxcsr(as_Address(src)); 1787 } else { 1788 lea(rscratch, src); 1789 Assembler::ldmxcsr(Address(rscratch, 0)); 1790 } 1791 } 1792 1793 int MacroAssembler::load_signed_byte(Register dst, Address src) { 1794 int off = offset(); 1795 movsbl(dst, src); // movsxb 1796 return off; 1797 } 1798 1799 // Note: load_signed_short used to be called load_signed_word. 1800 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler 1801 // manual, which means 16 bits, that usage is found nowhere in HotSpot code. 1802 // The term "word" in HotSpot means a 32- or 64-bit machine word. 1803 int MacroAssembler::load_signed_short(Register dst, Address src) { 1804 // This is dubious to me since it seems safe to do a signed 16 => 64 bit 1805 // version but this is what 64bit has always done. This seems to imply 1806 // that users are only using 32bits worth. 1807 int off = offset(); 1808 movswl(dst, src); // movsxw 1809 return off; 1810 } 1811 1812 int MacroAssembler::load_unsigned_byte(Register dst, Address src) { 1813 // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16, 1814 // and "3.9 Partial Register Penalties", p. 22). 1815 int off = offset(); 1816 movzbl(dst, src); // movzxb 1817 return off; 1818 } 1819 1820 // Note: load_unsigned_short used to be called load_unsigned_word. 1821 int MacroAssembler::load_unsigned_short(Register dst, Address src) { 1822 // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16, 1823 // and "3.9 Partial Register Penalties", p. 22). 1824 int off = offset(); 1825 movzwl(dst, src); // movzxw 1826 return off; 1827 } 1828 1829 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) { 1830 switch (size_in_bytes) { 1831 case 8: movq(dst, src); break; 1832 case 4: movl(dst, src); break; 1833 case 2: is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break; 1834 case 1: is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break; 1835 default: ShouldNotReachHere(); 1836 } 1837 } 1838 1839 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) { 1840 switch (size_in_bytes) { 1841 case 8: movq(dst, src); break; 1842 case 4: movl(dst, src); break; 1843 case 2: movw(dst, src); break; 1844 case 1: movb(dst, src); break; 1845 default: ShouldNotReachHere(); 1846 } 1847 } 1848 1849 void MacroAssembler::mov32(AddressLiteral dst, Register src, Register rscratch) { 1850 assert(rscratch != noreg || always_reachable(dst), "missing"); 1851 1852 if (reachable(dst)) { 1853 movl(as_Address(dst), src); 1854 } else { 1855 lea(rscratch, dst); 1856 movl(Address(rscratch, 0), src); 1857 } 1858 } 1859 1860 void MacroAssembler::mov32(Register dst, AddressLiteral src) { 1861 if (reachable(src)) { 1862 movl(dst, as_Address(src)); 1863 } else { 1864 lea(dst, src); 1865 movl(dst, Address(dst, 0)); 1866 } 1867 } 1868 1869 // C++ bool manipulation 1870 1871 void MacroAssembler::movbool(Register dst, Address src) { 1872 if(sizeof(bool) == 1) 1873 movb(dst, src); 1874 else if(sizeof(bool) == 2) 1875 movw(dst, src); 1876 else if(sizeof(bool) == 4) 1877 movl(dst, src); 1878 else 1879 // unsupported 1880 ShouldNotReachHere(); 1881 } 1882 1883 void MacroAssembler::movbool(Address dst, bool boolconst) { 1884 if(sizeof(bool) == 1) 1885 movb(dst, (int) boolconst); 1886 else if(sizeof(bool) == 2) 1887 movw(dst, (int) boolconst); 1888 else if(sizeof(bool) == 4) 1889 movl(dst, (int) boolconst); 1890 else 1891 // unsupported 1892 ShouldNotReachHere(); 1893 } 1894 1895 void MacroAssembler::movbool(Address dst, Register src) { 1896 if(sizeof(bool) == 1) 1897 movb(dst, src); 1898 else if(sizeof(bool) == 2) 1899 movw(dst, src); 1900 else if(sizeof(bool) == 4) 1901 movl(dst, src); 1902 else 1903 // unsupported 1904 ShouldNotReachHere(); 1905 } 1906 1907 void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src, Register rscratch) { 1908 assert(rscratch != noreg || always_reachable(src), "missing"); 1909 1910 if (reachable(src)) { 1911 movdl(dst, as_Address(src)); 1912 } else { 1913 lea(rscratch, src); 1914 movdl(dst, Address(rscratch, 0)); 1915 } 1916 } 1917 1918 void MacroAssembler::movq(XMMRegister dst, AddressLiteral src, Register rscratch) { 1919 assert(rscratch != noreg || always_reachable(src), "missing"); 1920 1921 if (reachable(src)) { 1922 movq(dst, as_Address(src)); 1923 } else { 1924 lea(rscratch, src); 1925 movq(dst, Address(rscratch, 0)); 1926 } 1927 } 1928 1929 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src, Register rscratch) { 1930 assert(rscratch != noreg || always_reachable(src), "missing"); 1931 1932 if (reachable(src)) { 1933 if (UseXmmLoadAndClearUpper) { 1934 movsd (dst, as_Address(src)); 1935 } else { 1936 movlpd(dst, as_Address(src)); 1937 } 1938 } else { 1939 lea(rscratch, src); 1940 if (UseXmmLoadAndClearUpper) { 1941 movsd (dst, Address(rscratch, 0)); 1942 } else { 1943 movlpd(dst, Address(rscratch, 0)); 1944 } 1945 } 1946 } 1947 1948 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src, Register rscratch) { 1949 assert(rscratch != noreg || always_reachable(src), "missing"); 1950 1951 if (reachable(src)) { 1952 movss(dst, as_Address(src)); 1953 } else { 1954 lea(rscratch, src); 1955 movss(dst, Address(rscratch, 0)); 1956 } 1957 } 1958 1959 void MacroAssembler::movptr(Register dst, Register src) { 1960 movq(dst, src); 1961 } 1962 1963 void MacroAssembler::movptr(Register dst, Address src) { 1964 movq(dst, src); 1965 } 1966 1967 // src should NEVER be a real pointer. Use AddressLiteral for true pointers 1968 void MacroAssembler::movptr(Register dst, intptr_t src) { 1969 if (is_uimm32(src)) { 1970 movl(dst, checked_cast<uint32_t>(src)); 1971 } else if (is_simm32(src)) { 1972 movq(dst, checked_cast<int32_t>(src)); 1973 } else { 1974 mov64(dst, src); 1975 } 1976 } 1977 1978 void MacroAssembler::movptr(Address dst, Register src) { 1979 movq(dst, src); 1980 } 1981 1982 void MacroAssembler::movptr(Address dst, int32_t src) { 1983 movslq(dst, src); 1984 } 1985 1986 void MacroAssembler::movdqu(Address dst, XMMRegister src) { 1987 assert(((src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 1988 Assembler::movdqu(dst, src); 1989 } 1990 1991 void MacroAssembler::movdqu(XMMRegister dst, Address src) { 1992 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 1993 Assembler::movdqu(dst, src); 1994 } 1995 1996 void MacroAssembler::movdqu(XMMRegister dst, XMMRegister src) { 1997 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 1998 Assembler::movdqu(dst, src); 1999 } 2000 2001 void MacroAssembler::movdqu(XMMRegister dst, AddressLiteral src, Register rscratch) { 2002 assert(rscratch != noreg || always_reachable(src), "missing"); 2003 2004 if (reachable(src)) { 2005 movdqu(dst, as_Address(src)); 2006 } else { 2007 lea(rscratch, src); 2008 movdqu(dst, Address(rscratch, 0)); 2009 } 2010 } 2011 2012 void MacroAssembler::vmovdqu(Address dst, XMMRegister src) { 2013 assert(((src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2014 Assembler::vmovdqu(dst, src); 2015 } 2016 2017 void MacroAssembler::vmovdqu(XMMRegister dst, Address src) { 2018 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2019 Assembler::vmovdqu(dst, src); 2020 } 2021 2022 void MacroAssembler::vmovdqu(XMMRegister dst, XMMRegister src) { 2023 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2024 Assembler::vmovdqu(dst, src); 2025 } 2026 2027 void MacroAssembler::vmovdqu(XMMRegister dst, AddressLiteral src, Register rscratch) { 2028 assert(rscratch != noreg || always_reachable(src), "missing"); 2029 2030 if (reachable(src)) { 2031 vmovdqu(dst, as_Address(src)); 2032 } 2033 else { 2034 lea(rscratch, src); 2035 vmovdqu(dst, Address(rscratch, 0)); 2036 } 2037 } 2038 2039 void MacroAssembler::vmovdqu(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 2040 assert(rscratch != noreg || always_reachable(src), "missing"); 2041 2042 if (vector_len == AVX_512bit) { 2043 evmovdquq(dst, src, AVX_512bit, rscratch); 2044 } else if (vector_len == AVX_256bit) { 2045 vmovdqu(dst, src, rscratch); 2046 } else { 2047 movdqu(dst, src, rscratch); 2048 } 2049 } 2050 2051 void MacroAssembler::vmovdqu(XMMRegister dst, XMMRegister src, int vector_len) { 2052 if (vector_len == AVX_512bit) { 2053 evmovdquq(dst, src, AVX_512bit); 2054 } else if (vector_len == AVX_256bit) { 2055 vmovdqu(dst, src); 2056 } else { 2057 movdqu(dst, src); 2058 } 2059 } 2060 2061 void MacroAssembler::vmovdqu(Address dst, XMMRegister src, int vector_len) { 2062 if (vector_len == AVX_512bit) { 2063 evmovdquq(dst, src, AVX_512bit); 2064 } else if (vector_len == AVX_256bit) { 2065 vmovdqu(dst, src); 2066 } else { 2067 movdqu(dst, src); 2068 } 2069 } 2070 2071 void MacroAssembler::vmovdqu(XMMRegister dst, Address src, int vector_len) { 2072 if (vector_len == AVX_512bit) { 2073 evmovdquq(dst, src, AVX_512bit); 2074 } else if (vector_len == AVX_256bit) { 2075 vmovdqu(dst, src); 2076 } else { 2077 movdqu(dst, src); 2078 } 2079 } 2080 2081 void MacroAssembler::vmovdqa(XMMRegister dst, AddressLiteral src, Register rscratch) { 2082 assert(rscratch != noreg || always_reachable(src), "missing"); 2083 2084 if (reachable(src)) { 2085 vmovdqa(dst, as_Address(src)); 2086 } 2087 else { 2088 lea(rscratch, src); 2089 vmovdqa(dst, Address(rscratch, 0)); 2090 } 2091 } 2092 2093 void MacroAssembler::vmovdqa(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 2094 assert(rscratch != noreg || always_reachable(src), "missing"); 2095 2096 if (vector_len == AVX_512bit) { 2097 evmovdqaq(dst, src, AVX_512bit, rscratch); 2098 } else if (vector_len == AVX_256bit) { 2099 vmovdqa(dst, src, rscratch); 2100 } else { 2101 movdqa(dst, src, rscratch); 2102 } 2103 } 2104 2105 void MacroAssembler::kmov(KRegister dst, Address src) { 2106 if (VM_Version::supports_avx512bw()) { 2107 kmovql(dst, src); 2108 } else { 2109 assert(VM_Version::supports_evex(), ""); 2110 kmovwl(dst, src); 2111 } 2112 } 2113 2114 void MacroAssembler::kmov(Address dst, KRegister src) { 2115 if (VM_Version::supports_avx512bw()) { 2116 kmovql(dst, src); 2117 } else { 2118 assert(VM_Version::supports_evex(), ""); 2119 kmovwl(dst, src); 2120 } 2121 } 2122 2123 void MacroAssembler::kmov(KRegister dst, KRegister src) { 2124 if (VM_Version::supports_avx512bw()) { 2125 kmovql(dst, src); 2126 } else { 2127 assert(VM_Version::supports_evex(), ""); 2128 kmovwl(dst, src); 2129 } 2130 } 2131 2132 void MacroAssembler::kmov(Register dst, KRegister src) { 2133 if (VM_Version::supports_avx512bw()) { 2134 kmovql(dst, src); 2135 } else { 2136 assert(VM_Version::supports_evex(), ""); 2137 kmovwl(dst, src); 2138 } 2139 } 2140 2141 void MacroAssembler::kmov(KRegister dst, Register src) { 2142 if (VM_Version::supports_avx512bw()) { 2143 kmovql(dst, src); 2144 } else { 2145 assert(VM_Version::supports_evex(), ""); 2146 kmovwl(dst, src); 2147 } 2148 } 2149 2150 void MacroAssembler::kmovql(KRegister dst, AddressLiteral src, Register rscratch) { 2151 assert(rscratch != noreg || always_reachable(src), "missing"); 2152 2153 if (reachable(src)) { 2154 kmovql(dst, as_Address(src)); 2155 } else { 2156 lea(rscratch, src); 2157 kmovql(dst, Address(rscratch, 0)); 2158 } 2159 } 2160 2161 void MacroAssembler::kmovwl(KRegister dst, AddressLiteral src, Register rscratch) { 2162 assert(rscratch != noreg || always_reachable(src), "missing"); 2163 2164 if (reachable(src)) { 2165 kmovwl(dst, as_Address(src)); 2166 } else { 2167 lea(rscratch, src); 2168 kmovwl(dst, Address(rscratch, 0)); 2169 } 2170 } 2171 2172 void MacroAssembler::evmovdqub(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, 2173 int vector_len, Register rscratch) { 2174 assert(rscratch != noreg || always_reachable(src), "missing"); 2175 2176 if (reachable(src)) { 2177 Assembler::evmovdqub(dst, mask, as_Address(src), merge, vector_len); 2178 } else { 2179 lea(rscratch, src); 2180 Assembler::evmovdqub(dst, mask, Address(rscratch, 0), merge, vector_len); 2181 } 2182 } 2183 2184 void MacroAssembler::evmovdquw(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, 2185 int vector_len, Register rscratch) { 2186 assert(rscratch != noreg || always_reachable(src), "missing"); 2187 2188 if (reachable(src)) { 2189 Assembler::evmovdquw(dst, mask, as_Address(src), merge, vector_len); 2190 } else { 2191 lea(rscratch, src); 2192 Assembler::evmovdquw(dst, mask, Address(rscratch, 0), merge, vector_len); 2193 } 2194 } 2195 2196 void MacroAssembler::evmovdqul(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch) { 2197 assert(rscratch != noreg || always_reachable(src), "missing"); 2198 2199 if (reachable(src)) { 2200 Assembler::evmovdqul(dst, mask, as_Address(src), merge, vector_len); 2201 } else { 2202 lea(rscratch, src); 2203 Assembler::evmovdqul(dst, mask, Address(rscratch, 0), merge, vector_len); 2204 } 2205 } 2206 2207 void MacroAssembler::evmovdquq(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch) { 2208 assert(rscratch != noreg || always_reachable(src), "missing"); 2209 2210 if (reachable(src)) { 2211 Assembler::evmovdquq(dst, mask, as_Address(src), merge, vector_len); 2212 } else { 2213 lea(rscratch, src); 2214 Assembler::evmovdquq(dst, mask, Address(rscratch, 0), merge, vector_len); 2215 } 2216 } 2217 2218 void MacroAssembler::evmovdquq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 2219 assert(rscratch != noreg || always_reachable(src), "missing"); 2220 2221 if (reachable(src)) { 2222 Assembler::evmovdquq(dst, as_Address(src), vector_len); 2223 } else { 2224 lea(rscratch, src); 2225 Assembler::evmovdquq(dst, Address(rscratch, 0), vector_len); 2226 } 2227 } 2228 2229 void MacroAssembler::evmovdqaq(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch) { 2230 assert(rscratch != noreg || always_reachable(src), "missing"); 2231 2232 if (reachable(src)) { 2233 Assembler::evmovdqaq(dst, mask, as_Address(src), merge, vector_len); 2234 } else { 2235 lea(rscratch, src); 2236 Assembler::evmovdqaq(dst, mask, Address(rscratch, 0), merge, vector_len); 2237 } 2238 } 2239 2240 void MacroAssembler::evmovdqaq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 2241 assert(rscratch != noreg || always_reachable(src), "missing"); 2242 2243 if (reachable(src)) { 2244 Assembler::evmovdqaq(dst, as_Address(src), vector_len); 2245 } else { 2246 lea(rscratch, src); 2247 Assembler::evmovdqaq(dst, Address(rscratch, 0), vector_len); 2248 } 2249 } 2250 2251 void MacroAssembler::movapd(XMMRegister dst, AddressLiteral src, Register rscratch) { 2252 assert(rscratch != noreg || always_reachable(src), "missing"); 2253 2254 if (reachable(src)) { 2255 Assembler::movapd(dst, as_Address(src)); 2256 } else { 2257 lea(rscratch, src); 2258 Assembler::movapd(dst, Address(rscratch, 0)); 2259 } 2260 } 2261 2262 void MacroAssembler::movdqa(XMMRegister dst, AddressLiteral src, Register rscratch) { 2263 assert(rscratch != noreg || always_reachable(src), "missing"); 2264 2265 if (reachable(src)) { 2266 Assembler::movdqa(dst, as_Address(src)); 2267 } else { 2268 lea(rscratch, src); 2269 Assembler::movdqa(dst, Address(rscratch, 0)); 2270 } 2271 } 2272 2273 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src, Register rscratch) { 2274 assert(rscratch != noreg || always_reachable(src), "missing"); 2275 2276 if (reachable(src)) { 2277 Assembler::movsd(dst, as_Address(src)); 2278 } else { 2279 lea(rscratch, src); 2280 Assembler::movsd(dst, Address(rscratch, 0)); 2281 } 2282 } 2283 2284 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src, Register rscratch) { 2285 assert(rscratch != noreg || always_reachable(src), "missing"); 2286 2287 if (reachable(src)) { 2288 Assembler::movss(dst, as_Address(src)); 2289 } else { 2290 lea(rscratch, src); 2291 Assembler::movss(dst, Address(rscratch, 0)); 2292 } 2293 } 2294 2295 void MacroAssembler::movddup(XMMRegister dst, AddressLiteral src, Register rscratch) { 2296 assert(rscratch != noreg || always_reachable(src), "missing"); 2297 2298 if (reachable(src)) { 2299 Assembler::movddup(dst, as_Address(src)); 2300 } else { 2301 lea(rscratch, src); 2302 Assembler::movddup(dst, Address(rscratch, 0)); 2303 } 2304 } 2305 2306 void MacroAssembler::vmovddup(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 2307 assert(rscratch != noreg || always_reachable(src), "missing"); 2308 2309 if (reachable(src)) { 2310 Assembler::vmovddup(dst, as_Address(src), vector_len); 2311 } else { 2312 lea(rscratch, src); 2313 Assembler::vmovddup(dst, Address(rscratch, 0), vector_len); 2314 } 2315 } 2316 2317 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src, Register rscratch) { 2318 assert(rscratch != noreg || always_reachable(src), "missing"); 2319 2320 if (reachable(src)) { 2321 Assembler::mulsd(dst, as_Address(src)); 2322 } else { 2323 lea(rscratch, src); 2324 Assembler::mulsd(dst, Address(rscratch, 0)); 2325 } 2326 } 2327 2328 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src, Register rscratch) { 2329 assert(rscratch != noreg || always_reachable(src), "missing"); 2330 2331 if (reachable(src)) { 2332 Assembler::mulss(dst, as_Address(src)); 2333 } else { 2334 lea(rscratch, src); 2335 Assembler::mulss(dst, Address(rscratch, 0)); 2336 } 2337 } 2338 2339 void MacroAssembler::null_check(Register reg, int offset) { 2340 if (needs_explicit_null_check(offset)) { 2341 // provoke OS null exception if reg is null by 2342 // accessing M[reg] w/o changing any (non-CC) registers 2343 // NOTE: cmpl is plenty here to provoke a segv 2344 cmpptr(rax, Address(reg, 0)); 2345 // Note: should probably use testl(rax, Address(reg, 0)); 2346 // may be shorter code (however, this version of 2347 // testl needs to be implemented first) 2348 } else { 2349 // nothing to do, (later) access of M[reg + offset] 2350 // will provoke OS null exception if reg is null 2351 } 2352 } 2353 2354 void MacroAssembler::test_markword_is_inline_type(Register markword, Label& is_inline_type) { 2355 andptr(markword, markWord::inline_type_mask_in_place); 2356 cmpptr(markword, markWord::inline_type_pattern); 2357 jcc(Assembler::equal, is_inline_type); 2358 } 2359 2360 void MacroAssembler::test_oop_is_not_inline_type(Register object, Register tmp, Label& not_inline_type, bool can_be_null) { 2361 if (can_be_null) { 2362 testptr(object, object); 2363 jcc(Assembler::zero, not_inline_type); 2364 } 2365 const int is_inline_type_mask = markWord::inline_type_pattern; 2366 movptr(tmp, Address(object, oopDesc::mark_offset_in_bytes())); 2367 andptr(tmp, is_inline_type_mask); 2368 cmpptr(tmp, is_inline_type_mask); 2369 jcc(Assembler::notEqual, not_inline_type); 2370 } 2371 2372 void MacroAssembler::test_field_is_null_free_inline_type(Register flags, Register temp_reg, Label& is_null_free_inline_type) { 2373 movl(temp_reg, flags); 2374 testl(temp_reg, 1 << ResolvedFieldEntry::is_null_free_inline_type_shift); 2375 jcc(Assembler::notEqual, is_null_free_inline_type); 2376 } 2377 2378 void MacroAssembler::test_field_is_not_null_free_inline_type(Register flags, Register temp_reg, Label& not_null_free_inline_type) { 2379 movl(temp_reg, flags); 2380 testl(temp_reg, 1 << ResolvedFieldEntry::is_null_free_inline_type_shift); 2381 jcc(Assembler::equal, not_null_free_inline_type); 2382 } 2383 2384 void MacroAssembler::test_field_is_flat(Register flags, Register temp_reg, Label& is_flat) { 2385 movl(temp_reg, flags); 2386 testl(temp_reg, 1 << ResolvedFieldEntry::is_flat_shift); 2387 jcc(Assembler::notEqual, is_flat); 2388 } 2389 2390 void MacroAssembler::test_field_has_null_marker(Register flags, Register temp_reg, Label& has_null_marker) { 2391 movl(temp_reg, flags); 2392 testl(temp_reg, 1 << ResolvedFieldEntry::has_null_marker_shift); 2393 jcc(Assembler::notEqual, has_null_marker); 2394 } 2395 2396 void MacroAssembler::test_oop_prototype_bit(Register oop, Register temp_reg, int32_t test_bit, bool jmp_set, Label& jmp_label) { 2397 Label test_mark_word; 2398 // load mark word 2399 movptr(temp_reg, Address(oop, oopDesc::mark_offset_in_bytes())); 2400 // check displaced 2401 testl(temp_reg, markWord::unlocked_value); 2402 jccb(Assembler::notZero, test_mark_word); 2403 // slow path use klass prototype 2404 push(rscratch1); 2405 load_prototype_header(temp_reg, oop, rscratch1); 2406 pop(rscratch1); 2407 2408 bind(test_mark_word); 2409 testl(temp_reg, test_bit); 2410 jcc((jmp_set) ? Assembler::notZero : Assembler::zero, jmp_label); 2411 } 2412 2413 void MacroAssembler::test_flat_array_oop(Register oop, Register temp_reg, 2414 Label& is_flat_array) { 2415 #ifdef _LP64 2416 test_oop_prototype_bit(oop, temp_reg, markWord::flat_array_bit_in_place, true, is_flat_array); 2417 #else 2418 load_klass(temp_reg, oop, noreg); 2419 movl(temp_reg, Address(temp_reg, Klass::layout_helper_offset())); 2420 test_flat_array_layout(temp_reg, is_flat_array); 2421 #endif 2422 } 2423 2424 void MacroAssembler::test_non_flat_array_oop(Register oop, Register temp_reg, 2425 Label& is_non_flat_array) { 2426 #ifdef _LP64 2427 test_oop_prototype_bit(oop, temp_reg, markWord::flat_array_bit_in_place, false, is_non_flat_array); 2428 #else 2429 load_klass(temp_reg, oop, noreg); 2430 movl(temp_reg, Address(temp_reg, Klass::layout_helper_offset())); 2431 test_non_flat_array_layout(temp_reg, is_non_flat_array); 2432 #endif 2433 } 2434 2435 void MacroAssembler::test_null_free_array_oop(Register oop, Register temp_reg, Label&is_null_free_array) { 2436 #ifdef _LP64 2437 test_oop_prototype_bit(oop, temp_reg, markWord::null_free_array_bit_in_place, true, is_null_free_array); 2438 #else 2439 Unimplemented(); 2440 #endif 2441 } 2442 2443 void MacroAssembler::test_non_null_free_array_oop(Register oop, Register temp_reg, Label&is_non_null_free_array) { 2444 #ifdef _LP64 2445 test_oop_prototype_bit(oop, temp_reg, markWord::null_free_array_bit_in_place, false, is_non_null_free_array); 2446 #else 2447 Unimplemented(); 2448 #endif 2449 } 2450 2451 void MacroAssembler::test_flat_array_layout(Register lh, Label& is_flat_array) { 2452 testl(lh, Klass::_lh_array_tag_flat_value_bit_inplace); 2453 jcc(Assembler::notZero, is_flat_array); 2454 } 2455 2456 void MacroAssembler::test_non_flat_array_layout(Register lh, Label& is_non_flat_array) { 2457 testl(lh, Klass::_lh_array_tag_flat_value_bit_inplace); 2458 jcc(Assembler::zero, is_non_flat_array); 2459 } 2460 2461 void MacroAssembler::os_breakpoint() { 2462 // instead of directly emitting a breakpoint, call os:breakpoint for better debugability 2463 // (e.g., MSVC can't call ps() otherwise) 2464 call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint))); 2465 } 2466 2467 void MacroAssembler::unimplemented(const char* what) { 2468 const char* buf = nullptr; 2469 { 2470 ResourceMark rm; 2471 stringStream ss; 2472 ss.print("unimplemented: %s", what); 2473 buf = code_string(ss.as_string()); 2474 } 2475 stop(buf); 2476 } 2477 2478 #define XSTATE_BV 0x200 2479 2480 void MacroAssembler::pop_CPU_state() { 2481 pop_FPU_state(); 2482 pop_IU_state(); 2483 } 2484 2485 void MacroAssembler::pop_FPU_state() { 2486 fxrstor(Address(rsp, 0)); 2487 addptr(rsp, FPUStateSizeInWords * wordSize); 2488 } 2489 2490 void MacroAssembler::pop_IU_state() { 2491 popa(); 2492 addq(rsp, 8); 2493 popf(); 2494 } 2495 2496 // Save Integer and Float state 2497 // Warning: Stack must be 16 byte aligned (64bit) 2498 void MacroAssembler::push_CPU_state() { 2499 push_IU_state(); 2500 push_FPU_state(); 2501 } 2502 2503 void MacroAssembler::push_FPU_state() { 2504 subptr(rsp, FPUStateSizeInWords * wordSize); 2505 fxsave(Address(rsp, 0)); 2506 } 2507 2508 void MacroAssembler::push_IU_state() { 2509 // Push flags first because pusha kills them 2510 pushf(); 2511 // Make sure rsp stays 16-byte aligned 2512 subq(rsp, 8); 2513 pusha(); 2514 } 2515 2516 void MacroAssembler::push_cont_fastpath() { 2517 if (!Continuations::enabled()) return; 2518 2519 Label L_done; 2520 cmpptr(rsp, Address(r15_thread, JavaThread::cont_fastpath_offset())); 2521 jccb(Assembler::belowEqual, L_done); 2522 movptr(Address(r15_thread, JavaThread::cont_fastpath_offset()), rsp); 2523 bind(L_done); 2524 } 2525 2526 void MacroAssembler::pop_cont_fastpath() { 2527 if (!Continuations::enabled()) return; 2528 2529 Label L_done; 2530 cmpptr(rsp, Address(r15_thread, JavaThread::cont_fastpath_offset())); 2531 jccb(Assembler::below, L_done); 2532 movptr(Address(r15_thread, JavaThread::cont_fastpath_offset()), 0); 2533 bind(L_done); 2534 } 2535 2536 void MacroAssembler::inc_held_monitor_count() { 2537 incrementq(Address(r15_thread, JavaThread::held_monitor_count_offset())); 2538 } 2539 2540 void MacroAssembler::dec_held_monitor_count() { 2541 decrementq(Address(r15_thread, JavaThread::held_monitor_count_offset())); 2542 } 2543 2544 #ifdef ASSERT 2545 void MacroAssembler::stop_if_in_cont(Register cont, const char* name) { 2546 Label no_cont; 2547 movptr(cont, Address(r15_thread, JavaThread::cont_entry_offset())); 2548 testl(cont, cont); 2549 jcc(Assembler::zero, no_cont); 2550 stop(name); 2551 bind(no_cont); 2552 } 2553 #endif 2554 2555 void MacroAssembler::reset_last_Java_frame(bool clear_fp) { // determine java_thread register 2556 // we must set sp to zero to clear frame 2557 movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD); 2558 // must clear fp, so that compiled frames are not confused; it is 2559 // possible that we need it only for debugging 2560 if (clear_fp) { 2561 movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD); 2562 } 2563 // Always clear the pc because it could have been set by make_walkable() 2564 movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD); 2565 vzeroupper(); 2566 } 2567 2568 void MacroAssembler::round_to(Register reg, int modulus) { 2569 addptr(reg, modulus - 1); 2570 andptr(reg, -modulus); 2571 } 2572 2573 void MacroAssembler::safepoint_poll(Label& slow_path, bool at_return, bool in_nmethod) { 2574 if (at_return) { 2575 // Note that when in_nmethod is set, the stack pointer is incremented before the poll. Therefore, 2576 // we may safely use rsp instead to perform the stack watermark check. 2577 cmpptr(in_nmethod ? rsp : rbp, Address(r15_thread, JavaThread::polling_word_offset())); 2578 jcc(Assembler::above, slow_path); 2579 return; 2580 } 2581 testb(Address(r15_thread, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit()); 2582 jcc(Assembler::notZero, slow_path); // handshake bit set implies poll 2583 } 2584 2585 // Calls to C land 2586 // 2587 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded 2588 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp 2589 // has to be reset to 0. This is required to allow proper stack traversal. 2590 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 2591 Register last_java_fp, 2592 address last_java_pc, 2593 Register rscratch) { 2594 vzeroupper(); 2595 // determine last_java_sp register 2596 if (!last_java_sp->is_valid()) { 2597 last_java_sp = rsp; 2598 } 2599 // last_java_fp is optional 2600 if (last_java_fp->is_valid()) { 2601 movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), last_java_fp); 2602 } 2603 // last_java_pc is optional 2604 if (last_java_pc != nullptr) { 2605 Address java_pc(r15_thread, 2606 JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()); 2607 lea(java_pc, InternalAddress(last_java_pc), rscratch); 2608 } 2609 movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp); 2610 } 2611 2612 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 2613 Register last_java_fp, 2614 Label &L, 2615 Register scratch) { 2616 lea(scratch, L); 2617 movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), scratch); 2618 set_last_Java_frame(last_java_sp, last_java_fp, nullptr, scratch); 2619 } 2620 2621 void MacroAssembler::shlptr(Register dst, int imm8) { 2622 shlq(dst, imm8); 2623 } 2624 2625 void MacroAssembler::shrptr(Register dst, int imm8) { 2626 shrq(dst, imm8); 2627 } 2628 2629 void MacroAssembler::sign_extend_byte(Register reg) { 2630 movsbl(reg, reg); // movsxb 2631 } 2632 2633 void MacroAssembler::sign_extend_short(Register reg) { 2634 movswl(reg, reg); // movsxw 2635 } 2636 2637 void MacroAssembler::testl(Address dst, int32_t imm32) { 2638 if (imm32 >= 0 && is8bit(imm32)) { 2639 testb(dst, imm32); 2640 } else { 2641 Assembler::testl(dst, imm32); 2642 } 2643 } 2644 2645 void MacroAssembler::testl(Register dst, int32_t imm32) { 2646 if (imm32 >= 0 && is8bit(imm32) && dst->has_byte_register()) { 2647 testb(dst, imm32); 2648 } else { 2649 Assembler::testl(dst, imm32); 2650 } 2651 } 2652 2653 void MacroAssembler::testl(Register dst, AddressLiteral src) { 2654 assert(always_reachable(src), "Address should be reachable"); 2655 testl(dst, as_Address(src)); 2656 } 2657 2658 void MacroAssembler::testq(Address dst, int32_t imm32) { 2659 if (imm32 >= 0) { 2660 testl(dst, imm32); 2661 } else { 2662 Assembler::testq(dst, imm32); 2663 } 2664 } 2665 2666 void MacroAssembler::testq(Register dst, int32_t imm32) { 2667 if (imm32 >= 0) { 2668 testl(dst, imm32); 2669 } else { 2670 Assembler::testq(dst, imm32); 2671 } 2672 } 2673 2674 void MacroAssembler::pcmpeqb(XMMRegister dst, XMMRegister src) { 2675 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 2676 Assembler::pcmpeqb(dst, src); 2677 } 2678 2679 void MacroAssembler::pcmpeqw(XMMRegister dst, XMMRegister src) { 2680 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 2681 Assembler::pcmpeqw(dst, src); 2682 } 2683 2684 void MacroAssembler::pcmpestri(XMMRegister dst, Address src, int imm8) { 2685 assert((dst->encoding() < 16),"XMM register should be 0-15"); 2686 Assembler::pcmpestri(dst, src, imm8); 2687 } 2688 2689 void MacroAssembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) { 2690 assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15"); 2691 Assembler::pcmpestri(dst, src, imm8); 2692 } 2693 2694 void MacroAssembler::pmovzxbw(XMMRegister dst, XMMRegister src) { 2695 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 2696 Assembler::pmovzxbw(dst, src); 2697 } 2698 2699 void MacroAssembler::pmovzxbw(XMMRegister dst, Address src) { 2700 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 2701 Assembler::pmovzxbw(dst, src); 2702 } 2703 2704 void MacroAssembler::pmovmskb(Register dst, XMMRegister src) { 2705 assert((src->encoding() < 16),"XMM register should be 0-15"); 2706 Assembler::pmovmskb(dst, src); 2707 } 2708 2709 void MacroAssembler::ptest(XMMRegister dst, XMMRegister src) { 2710 assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15"); 2711 Assembler::ptest(dst, src); 2712 } 2713 2714 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src, Register rscratch) { 2715 assert(rscratch != noreg || always_reachable(src), "missing"); 2716 2717 if (reachable(src)) { 2718 Assembler::sqrtss(dst, as_Address(src)); 2719 } else { 2720 lea(rscratch, src); 2721 Assembler::sqrtss(dst, Address(rscratch, 0)); 2722 } 2723 } 2724 2725 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src, Register rscratch) { 2726 assert(rscratch != noreg || always_reachable(src), "missing"); 2727 2728 if (reachable(src)) { 2729 Assembler::subsd(dst, as_Address(src)); 2730 } else { 2731 lea(rscratch, src); 2732 Assembler::subsd(dst, Address(rscratch, 0)); 2733 } 2734 } 2735 2736 void MacroAssembler::roundsd(XMMRegister dst, AddressLiteral src, int32_t rmode, Register rscratch) { 2737 assert(rscratch != noreg || always_reachable(src), "missing"); 2738 2739 if (reachable(src)) { 2740 Assembler::roundsd(dst, as_Address(src), rmode); 2741 } else { 2742 lea(rscratch, src); 2743 Assembler::roundsd(dst, Address(rscratch, 0), rmode); 2744 } 2745 } 2746 2747 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src, Register rscratch) { 2748 assert(rscratch != noreg || always_reachable(src), "missing"); 2749 2750 if (reachable(src)) { 2751 Assembler::subss(dst, as_Address(src)); 2752 } else { 2753 lea(rscratch, src); 2754 Assembler::subss(dst, Address(rscratch, 0)); 2755 } 2756 } 2757 2758 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src, Register rscratch) { 2759 assert(rscratch != noreg || always_reachable(src), "missing"); 2760 2761 if (reachable(src)) { 2762 Assembler::ucomisd(dst, as_Address(src)); 2763 } else { 2764 lea(rscratch, src); 2765 Assembler::ucomisd(dst, Address(rscratch, 0)); 2766 } 2767 } 2768 2769 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src, Register rscratch) { 2770 assert(rscratch != noreg || always_reachable(src), "missing"); 2771 2772 if (reachable(src)) { 2773 Assembler::ucomiss(dst, as_Address(src)); 2774 } else { 2775 lea(rscratch, src); 2776 Assembler::ucomiss(dst, Address(rscratch, 0)); 2777 } 2778 } 2779 2780 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src, Register rscratch) { 2781 assert(rscratch != noreg || always_reachable(src), "missing"); 2782 2783 // Used in sign-bit flipping with aligned address. 2784 assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes"); 2785 2786 if (UseAVX > 2 && 2787 (!VM_Version::supports_avx512dq() || !VM_Version::supports_avx512vl()) && 2788 (dst->encoding() >= 16)) { 2789 vpxor(dst, dst, src, Assembler::AVX_512bit, rscratch); 2790 } else if (reachable(src)) { 2791 Assembler::xorpd(dst, as_Address(src)); 2792 } else { 2793 lea(rscratch, src); 2794 Assembler::xorpd(dst, Address(rscratch, 0)); 2795 } 2796 } 2797 2798 void MacroAssembler::xorpd(XMMRegister dst, XMMRegister src) { 2799 if (UseAVX > 2 && 2800 (!VM_Version::supports_avx512dq() || !VM_Version::supports_avx512vl()) && 2801 ((dst->encoding() >= 16) || (src->encoding() >= 16))) { 2802 Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit); 2803 } else { 2804 Assembler::xorpd(dst, src); 2805 } 2806 } 2807 2808 void MacroAssembler::xorps(XMMRegister dst, XMMRegister src) { 2809 if (UseAVX > 2 && 2810 (!VM_Version::supports_avx512dq() || !VM_Version::supports_avx512vl()) && 2811 ((dst->encoding() >= 16) || (src->encoding() >= 16))) { 2812 Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit); 2813 } else { 2814 Assembler::xorps(dst, src); 2815 } 2816 } 2817 2818 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src, Register rscratch) { 2819 assert(rscratch != noreg || always_reachable(src), "missing"); 2820 2821 // Used in sign-bit flipping with aligned address. 2822 assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes"); 2823 2824 if (UseAVX > 2 && 2825 (!VM_Version::supports_avx512dq() || !VM_Version::supports_avx512vl()) && 2826 (dst->encoding() >= 16)) { 2827 vpxor(dst, dst, src, Assembler::AVX_512bit, rscratch); 2828 } else if (reachable(src)) { 2829 Assembler::xorps(dst, as_Address(src)); 2830 } else { 2831 lea(rscratch, src); 2832 Assembler::xorps(dst, Address(rscratch, 0)); 2833 } 2834 } 2835 2836 void MacroAssembler::pshufb(XMMRegister dst, AddressLiteral src, Register rscratch) { 2837 assert(rscratch != noreg || always_reachable(src), "missing"); 2838 2839 // Used in sign-bit flipping with aligned address. 2840 bool aligned_adr = (((intptr_t)src.target() & 15) == 0); 2841 assert((UseAVX > 0) || aligned_adr, "SSE mode requires address alignment 16 bytes"); 2842 if (reachable(src)) { 2843 Assembler::pshufb(dst, as_Address(src)); 2844 } else { 2845 lea(rscratch, src); 2846 Assembler::pshufb(dst, Address(rscratch, 0)); 2847 } 2848 } 2849 2850 // AVX 3-operands instructions 2851 2852 void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 2853 assert(rscratch != noreg || always_reachable(src), "missing"); 2854 2855 if (reachable(src)) { 2856 vaddsd(dst, nds, as_Address(src)); 2857 } else { 2858 lea(rscratch, src); 2859 vaddsd(dst, nds, Address(rscratch, 0)); 2860 } 2861 } 2862 2863 void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 2864 assert(rscratch != noreg || always_reachable(src), "missing"); 2865 2866 if (reachable(src)) { 2867 vaddss(dst, nds, as_Address(src)); 2868 } else { 2869 lea(rscratch, src); 2870 vaddss(dst, nds, Address(rscratch, 0)); 2871 } 2872 } 2873 2874 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 2875 assert(UseAVX > 0, "requires some form of AVX"); 2876 assert(rscratch != noreg || always_reachable(src), "missing"); 2877 2878 if (reachable(src)) { 2879 Assembler::vpaddb(dst, nds, as_Address(src), vector_len); 2880 } else { 2881 lea(rscratch, src); 2882 Assembler::vpaddb(dst, nds, Address(rscratch, 0), vector_len); 2883 } 2884 } 2885 2886 void MacroAssembler::vpaddd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 2887 assert(UseAVX > 0, "requires some form of AVX"); 2888 assert(rscratch != noreg || always_reachable(src), "missing"); 2889 2890 if (reachable(src)) { 2891 Assembler::vpaddd(dst, nds, as_Address(src), vector_len); 2892 } else { 2893 lea(rscratch, src); 2894 Assembler::vpaddd(dst, nds, Address(rscratch, 0), vector_len); 2895 } 2896 } 2897 2898 void MacroAssembler::vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len, Register rscratch) { 2899 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15"); 2900 assert(rscratch != noreg || always_reachable(negate_field), "missing"); 2901 2902 vandps(dst, nds, negate_field, vector_len, rscratch); 2903 } 2904 2905 void MacroAssembler::vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len, Register rscratch) { 2906 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15"); 2907 assert(rscratch != noreg || always_reachable(negate_field), "missing"); 2908 2909 vandpd(dst, nds, negate_field, vector_len, rscratch); 2910 } 2911 2912 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 2913 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 2914 Assembler::vpaddb(dst, nds, src, vector_len); 2915 } 2916 2917 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 2918 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 2919 Assembler::vpaddb(dst, nds, src, vector_len); 2920 } 2921 2922 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 2923 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 2924 Assembler::vpaddw(dst, nds, src, vector_len); 2925 } 2926 2927 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 2928 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 2929 Assembler::vpaddw(dst, nds, src, vector_len); 2930 } 2931 2932 void MacroAssembler::vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 2933 assert(rscratch != noreg || always_reachable(src), "missing"); 2934 2935 if (reachable(src)) { 2936 Assembler::vpand(dst, nds, as_Address(src), vector_len); 2937 } else { 2938 lea(rscratch, src); 2939 Assembler::vpand(dst, nds, Address(rscratch, 0), vector_len); 2940 } 2941 } 2942 2943 void MacroAssembler::vpbroadcastd(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 2944 assert(rscratch != noreg || always_reachable(src), "missing"); 2945 2946 if (reachable(src)) { 2947 Assembler::vpbroadcastd(dst, as_Address(src), vector_len); 2948 } else { 2949 lea(rscratch, src); 2950 Assembler::vpbroadcastd(dst, Address(rscratch, 0), vector_len); 2951 } 2952 } 2953 2954 void MacroAssembler::vbroadcasti128(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 2955 assert(rscratch != noreg || always_reachable(src), "missing"); 2956 2957 if (reachable(src)) { 2958 Assembler::vbroadcasti128(dst, as_Address(src), vector_len); 2959 } else { 2960 lea(rscratch, src); 2961 Assembler::vbroadcasti128(dst, Address(rscratch, 0), vector_len); 2962 } 2963 } 2964 2965 void MacroAssembler::vpbroadcastq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 2966 assert(rscratch != noreg || always_reachable(src), "missing"); 2967 2968 if (reachable(src)) { 2969 Assembler::vpbroadcastq(dst, as_Address(src), vector_len); 2970 } else { 2971 lea(rscratch, src); 2972 Assembler::vpbroadcastq(dst, Address(rscratch, 0), vector_len); 2973 } 2974 } 2975 2976 void MacroAssembler::vbroadcastsd(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 2977 assert(rscratch != noreg || always_reachable(src), "missing"); 2978 2979 if (reachable(src)) { 2980 Assembler::vbroadcastsd(dst, as_Address(src), vector_len); 2981 } else { 2982 lea(rscratch, src); 2983 Assembler::vbroadcastsd(dst, Address(rscratch, 0), vector_len); 2984 } 2985 } 2986 2987 void MacroAssembler::vbroadcastss(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 2988 assert(rscratch != noreg || always_reachable(src), "missing"); 2989 2990 if (reachable(src)) { 2991 Assembler::vbroadcastss(dst, as_Address(src), vector_len); 2992 } else { 2993 lea(rscratch, src); 2994 Assembler::vbroadcastss(dst, Address(rscratch, 0), vector_len); 2995 } 2996 } 2997 2998 // Vector float blend 2999 // vblendvps(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister mask, int vector_len, bool compute_mask = true, XMMRegister scratch = xnoreg) 3000 void MacroAssembler::vblendvps(XMMRegister dst, XMMRegister src1, XMMRegister src2, XMMRegister mask, int vector_len, bool compute_mask, XMMRegister scratch) { 3001 // WARN: Allow dst == (src1|src2), mask == scratch 3002 bool blend_emulation = EnableX86ECoreOpts && UseAVX > 1; 3003 bool scratch_available = scratch != xnoreg && scratch != src1 && scratch != src2 && scratch != dst; 3004 bool dst_available = dst != mask && (dst != src1 || dst != src2); 3005 if (blend_emulation && scratch_available && dst_available) { 3006 if (compute_mask) { 3007 vpsrad(scratch, mask, 32, vector_len); 3008 mask = scratch; 3009 } 3010 if (dst == src1) { 3011 vpandn(dst, mask, src1, vector_len); // if mask == 0, src1 3012 vpand (scratch, mask, src2, vector_len); // if mask == 1, src2 3013 } else { 3014 vpand (dst, mask, src2, vector_len); // if mask == 1, src2 3015 vpandn(scratch, mask, src1, vector_len); // if mask == 0, src1 3016 } 3017 vpor(dst, dst, scratch, vector_len); 3018 } else { 3019 Assembler::vblendvps(dst, src1, src2, mask, vector_len); 3020 } 3021 } 3022 3023 // vblendvpd(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister mask, int vector_len, bool compute_mask = true, XMMRegister scratch = xnoreg) 3024 void MacroAssembler::vblendvpd(XMMRegister dst, XMMRegister src1, XMMRegister src2, XMMRegister mask, int vector_len, bool compute_mask, XMMRegister scratch) { 3025 // WARN: Allow dst == (src1|src2), mask == scratch 3026 bool blend_emulation = EnableX86ECoreOpts && UseAVX > 1; 3027 bool scratch_available = scratch != xnoreg && scratch != src1 && scratch != src2 && scratch != dst && (!compute_mask || scratch != mask); 3028 bool dst_available = dst != mask && (dst != src1 || dst != src2); 3029 if (blend_emulation && scratch_available && dst_available) { 3030 if (compute_mask) { 3031 vpxor(scratch, scratch, scratch, vector_len); 3032 vpcmpgtq(scratch, scratch, mask, vector_len); 3033 mask = scratch; 3034 } 3035 if (dst == src1) { 3036 vpandn(dst, mask, src1, vector_len); // if mask == 0, src 3037 vpand (scratch, mask, src2, vector_len); // if mask == 1, src2 3038 } else { 3039 vpand (dst, mask, src2, vector_len); // if mask == 1, src2 3040 vpandn(scratch, mask, src1, vector_len); // if mask == 0, src 3041 } 3042 vpor(dst, dst, scratch, vector_len); 3043 } else { 3044 Assembler::vblendvpd(dst, src1, src2, mask, vector_len); 3045 } 3046 } 3047 3048 void MacroAssembler::vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3049 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3050 Assembler::vpcmpeqb(dst, nds, src, vector_len); 3051 } 3052 3053 void MacroAssembler::vpcmpeqb(XMMRegister dst, XMMRegister src1, Address src2, int vector_len) { 3054 assert(((dst->encoding() < 16 && src1->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3055 Assembler::vpcmpeqb(dst, src1, src2, vector_len); 3056 } 3057 3058 void MacroAssembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3059 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3060 Assembler::vpcmpeqw(dst, nds, src, vector_len); 3061 } 3062 3063 void MacroAssembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 3064 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3065 Assembler::vpcmpeqw(dst, nds, src, vector_len); 3066 } 3067 3068 void MacroAssembler::evpcmpeqd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3069 assert(rscratch != noreg || always_reachable(src), "missing"); 3070 3071 if (reachable(src)) { 3072 Assembler::evpcmpeqd(kdst, mask, nds, as_Address(src), vector_len); 3073 } else { 3074 lea(rscratch, src); 3075 Assembler::evpcmpeqd(kdst, mask, nds, Address(rscratch, 0), vector_len); 3076 } 3077 } 3078 3079 void MacroAssembler::evpcmpd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, 3080 int comparison, bool is_signed, int vector_len, Register rscratch) { 3081 assert(rscratch != noreg || always_reachable(src), "missing"); 3082 3083 if (reachable(src)) { 3084 Assembler::evpcmpd(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len); 3085 } else { 3086 lea(rscratch, src); 3087 Assembler::evpcmpd(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len); 3088 } 3089 } 3090 3091 void MacroAssembler::evpcmpq(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, 3092 int comparison, bool is_signed, int vector_len, Register rscratch) { 3093 assert(rscratch != noreg || always_reachable(src), "missing"); 3094 3095 if (reachable(src)) { 3096 Assembler::evpcmpq(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len); 3097 } else { 3098 lea(rscratch, src); 3099 Assembler::evpcmpq(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len); 3100 } 3101 } 3102 3103 void MacroAssembler::evpcmpb(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, 3104 int comparison, bool is_signed, int vector_len, Register rscratch) { 3105 assert(rscratch != noreg || always_reachable(src), "missing"); 3106 3107 if (reachable(src)) { 3108 Assembler::evpcmpb(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len); 3109 } else { 3110 lea(rscratch, src); 3111 Assembler::evpcmpb(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len); 3112 } 3113 } 3114 3115 void MacroAssembler::evpcmpw(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, 3116 int comparison, bool is_signed, int vector_len, Register rscratch) { 3117 assert(rscratch != noreg || always_reachable(src), "missing"); 3118 3119 if (reachable(src)) { 3120 Assembler::evpcmpw(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len); 3121 } else { 3122 lea(rscratch, src); 3123 Assembler::evpcmpw(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len); 3124 } 3125 } 3126 3127 void MacroAssembler::vpcmpCC(XMMRegister dst, XMMRegister nds, XMMRegister src, int cond_encoding, Width width, int vector_len) { 3128 if (width == Assembler::Q) { 3129 Assembler::vpcmpCCq(dst, nds, src, cond_encoding, vector_len); 3130 } else { 3131 Assembler::vpcmpCCbwd(dst, nds, src, cond_encoding, vector_len); 3132 } 3133 } 3134 3135 void MacroAssembler::vpcmpCCW(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister xtmp, ComparisonPredicate cond, Width width, int vector_len) { 3136 int eq_cond_enc = 0x29; 3137 int gt_cond_enc = 0x37; 3138 if (width != Assembler::Q) { 3139 eq_cond_enc = 0x74 + width; 3140 gt_cond_enc = 0x64 + width; 3141 } 3142 switch (cond) { 3143 case eq: 3144 vpcmpCC(dst, nds, src, eq_cond_enc, width, vector_len); 3145 break; 3146 case neq: 3147 vpcmpCC(dst, nds, src, eq_cond_enc, width, vector_len); 3148 vallones(xtmp, vector_len); 3149 vpxor(dst, xtmp, dst, vector_len); 3150 break; 3151 case le: 3152 vpcmpCC(dst, nds, src, gt_cond_enc, width, vector_len); 3153 vallones(xtmp, vector_len); 3154 vpxor(dst, xtmp, dst, vector_len); 3155 break; 3156 case nlt: 3157 vpcmpCC(dst, src, nds, gt_cond_enc, width, vector_len); 3158 vallones(xtmp, vector_len); 3159 vpxor(dst, xtmp, dst, vector_len); 3160 break; 3161 case lt: 3162 vpcmpCC(dst, src, nds, gt_cond_enc, width, vector_len); 3163 break; 3164 case nle: 3165 vpcmpCC(dst, nds, src, gt_cond_enc, width, vector_len); 3166 break; 3167 default: 3168 assert(false, "Should not reach here"); 3169 } 3170 } 3171 3172 void MacroAssembler::vpmovzxbw(XMMRegister dst, Address src, int vector_len) { 3173 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3174 Assembler::vpmovzxbw(dst, src, vector_len); 3175 } 3176 3177 void MacroAssembler::vpmovmskb(Register dst, XMMRegister src, int vector_len) { 3178 assert((src->encoding() < 16),"XMM register should be 0-15"); 3179 Assembler::vpmovmskb(dst, src, vector_len); 3180 } 3181 3182 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3183 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3184 Assembler::vpmullw(dst, nds, src, vector_len); 3185 } 3186 3187 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 3188 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3189 Assembler::vpmullw(dst, nds, src, vector_len); 3190 } 3191 3192 void MacroAssembler::vpmulld(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3193 assert((UseAVX > 0), "AVX support is needed"); 3194 assert(rscratch != noreg || always_reachable(src), "missing"); 3195 3196 if (reachable(src)) { 3197 Assembler::vpmulld(dst, nds, as_Address(src), vector_len); 3198 } else { 3199 lea(rscratch, src); 3200 Assembler::vpmulld(dst, nds, Address(rscratch, 0), vector_len); 3201 } 3202 } 3203 3204 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3205 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3206 Assembler::vpsubb(dst, nds, src, vector_len); 3207 } 3208 3209 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 3210 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3211 Assembler::vpsubb(dst, nds, src, vector_len); 3212 } 3213 3214 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3215 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3216 Assembler::vpsubw(dst, nds, src, vector_len); 3217 } 3218 3219 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 3220 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3221 Assembler::vpsubw(dst, nds, src, vector_len); 3222 } 3223 3224 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) { 3225 assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3226 Assembler::vpsraw(dst, nds, shift, vector_len); 3227 } 3228 3229 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) { 3230 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3231 Assembler::vpsraw(dst, nds, shift, vector_len); 3232 } 3233 3234 void MacroAssembler::evpsraq(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) { 3235 assert(UseAVX > 2,""); 3236 if (!VM_Version::supports_avx512vl() && vector_len < 2) { 3237 vector_len = 2; 3238 } 3239 Assembler::evpsraq(dst, nds, shift, vector_len); 3240 } 3241 3242 void MacroAssembler::evpsraq(XMMRegister dst, XMMRegister nds, int shift, int vector_len) { 3243 assert(UseAVX > 2,""); 3244 if (!VM_Version::supports_avx512vl() && vector_len < 2) { 3245 vector_len = 2; 3246 } 3247 Assembler::evpsraq(dst, nds, shift, vector_len); 3248 } 3249 3250 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) { 3251 assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3252 Assembler::vpsrlw(dst, nds, shift, vector_len); 3253 } 3254 3255 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) { 3256 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3257 Assembler::vpsrlw(dst, nds, shift, vector_len); 3258 } 3259 3260 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) { 3261 assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3262 Assembler::vpsllw(dst, nds, shift, vector_len); 3263 } 3264 3265 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) { 3266 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3267 Assembler::vpsllw(dst, nds, shift, vector_len); 3268 } 3269 3270 void MacroAssembler::vptest(XMMRegister dst, XMMRegister src) { 3271 assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15"); 3272 Assembler::vptest(dst, src); 3273 } 3274 3275 void MacroAssembler::punpcklbw(XMMRegister dst, XMMRegister src) { 3276 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3277 Assembler::punpcklbw(dst, src); 3278 } 3279 3280 void MacroAssembler::pshufd(XMMRegister dst, Address src, int mode) { 3281 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 3282 Assembler::pshufd(dst, src, mode); 3283 } 3284 3285 void MacroAssembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) { 3286 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3287 Assembler::pshuflw(dst, src, mode); 3288 } 3289 3290 void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3291 assert(rscratch != noreg || always_reachable(src), "missing"); 3292 3293 if (reachable(src)) { 3294 vandpd(dst, nds, as_Address(src), vector_len); 3295 } else { 3296 lea(rscratch, src); 3297 vandpd(dst, nds, Address(rscratch, 0), vector_len); 3298 } 3299 } 3300 3301 void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3302 assert(rscratch != noreg || always_reachable(src), "missing"); 3303 3304 if (reachable(src)) { 3305 vandps(dst, nds, as_Address(src), vector_len); 3306 } else { 3307 lea(rscratch, src); 3308 vandps(dst, nds, Address(rscratch, 0), vector_len); 3309 } 3310 } 3311 3312 void MacroAssembler::evpord(XMMRegister dst, KRegister mask, XMMRegister nds, AddressLiteral src, 3313 bool merge, int vector_len, Register rscratch) { 3314 assert(rscratch != noreg || always_reachable(src), "missing"); 3315 3316 if (reachable(src)) { 3317 Assembler::evpord(dst, mask, nds, as_Address(src), merge, vector_len); 3318 } else { 3319 lea(rscratch, src); 3320 Assembler::evpord(dst, mask, nds, Address(rscratch, 0), merge, vector_len); 3321 } 3322 } 3323 3324 void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3325 assert(rscratch != noreg || always_reachable(src), "missing"); 3326 3327 if (reachable(src)) { 3328 vdivsd(dst, nds, as_Address(src)); 3329 } else { 3330 lea(rscratch, src); 3331 vdivsd(dst, nds, Address(rscratch, 0)); 3332 } 3333 } 3334 3335 void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3336 assert(rscratch != noreg || always_reachable(src), "missing"); 3337 3338 if (reachable(src)) { 3339 vdivss(dst, nds, as_Address(src)); 3340 } else { 3341 lea(rscratch, src); 3342 vdivss(dst, nds, Address(rscratch, 0)); 3343 } 3344 } 3345 3346 void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3347 assert(rscratch != noreg || always_reachable(src), "missing"); 3348 3349 if (reachable(src)) { 3350 vmulsd(dst, nds, as_Address(src)); 3351 } else { 3352 lea(rscratch, src); 3353 vmulsd(dst, nds, Address(rscratch, 0)); 3354 } 3355 } 3356 3357 void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3358 assert(rscratch != noreg || always_reachable(src), "missing"); 3359 3360 if (reachable(src)) { 3361 vmulss(dst, nds, as_Address(src)); 3362 } else { 3363 lea(rscratch, src); 3364 vmulss(dst, nds, Address(rscratch, 0)); 3365 } 3366 } 3367 3368 void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3369 assert(rscratch != noreg || always_reachable(src), "missing"); 3370 3371 if (reachable(src)) { 3372 vsubsd(dst, nds, as_Address(src)); 3373 } else { 3374 lea(rscratch, src); 3375 vsubsd(dst, nds, Address(rscratch, 0)); 3376 } 3377 } 3378 3379 void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3380 assert(rscratch != noreg || always_reachable(src), "missing"); 3381 3382 if (reachable(src)) { 3383 vsubss(dst, nds, as_Address(src)); 3384 } else { 3385 lea(rscratch, src); 3386 vsubss(dst, nds, Address(rscratch, 0)); 3387 } 3388 } 3389 3390 void MacroAssembler::vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3391 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15"); 3392 assert(rscratch != noreg || always_reachable(src), "missing"); 3393 3394 vxorps(dst, nds, src, Assembler::AVX_128bit, rscratch); 3395 } 3396 3397 void MacroAssembler::vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3398 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15"); 3399 assert(rscratch != noreg || always_reachable(src), "missing"); 3400 3401 vxorpd(dst, nds, src, Assembler::AVX_128bit, rscratch); 3402 } 3403 3404 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3405 assert(rscratch != noreg || always_reachable(src), "missing"); 3406 3407 if (reachable(src)) { 3408 vxorpd(dst, nds, as_Address(src), vector_len); 3409 } else { 3410 lea(rscratch, src); 3411 vxorpd(dst, nds, Address(rscratch, 0), vector_len); 3412 } 3413 } 3414 3415 void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3416 assert(rscratch != noreg || always_reachable(src), "missing"); 3417 3418 if (reachable(src)) { 3419 vxorps(dst, nds, as_Address(src), vector_len); 3420 } else { 3421 lea(rscratch, src); 3422 vxorps(dst, nds, Address(rscratch, 0), vector_len); 3423 } 3424 } 3425 3426 void MacroAssembler::vpxor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3427 assert(rscratch != noreg || always_reachable(src), "missing"); 3428 3429 if (UseAVX > 1 || (vector_len < 1)) { 3430 if (reachable(src)) { 3431 Assembler::vpxor(dst, nds, as_Address(src), vector_len); 3432 } else { 3433 lea(rscratch, src); 3434 Assembler::vpxor(dst, nds, Address(rscratch, 0), vector_len); 3435 } 3436 } else { 3437 MacroAssembler::vxorpd(dst, nds, src, vector_len, rscratch); 3438 } 3439 } 3440 3441 void MacroAssembler::vpermd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3442 assert(rscratch != noreg || always_reachable(src), "missing"); 3443 3444 if (reachable(src)) { 3445 Assembler::vpermd(dst, nds, as_Address(src), vector_len); 3446 } else { 3447 lea(rscratch, src); 3448 Assembler::vpermd(dst, nds, Address(rscratch, 0), vector_len); 3449 } 3450 } 3451 3452 void MacroAssembler::clear_jobject_tag(Register possibly_non_local) { 3453 const int32_t inverted_mask = ~static_cast<int32_t>(JNIHandles::tag_mask); 3454 STATIC_ASSERT(inverted_mask == -4); // otherwise check this code 3455 // The inverted mask is sign-extended 3456 andptr(possibly_non_local, inverted_mask); 3457 } 3458 3459 void MacroAssembler::resolve_jobject(Register value, 3460 Register tmp) { 3461 Register thread = r15_thread; 3462 assert_different_registers(value, thread, tmp); 3463 Label done, tagged, weak_tagged; 3464 testptr(value, value); 3465 jcc(Assembler::zero, done); // Use null as-is. 3466 testptr(value, JNIHandles::tag_mask); // Test for tag. 3467 jcc(Assembler::notZero, tagged); 3468 3469 // Resolve local handle 3470 access_load_at(T_OBJECT, IN_NATIVE | AS_RAW, value, Address(value, 0), tmp); 3471 verify_oop(value); 3472 jmp(done); 3473 3474 bind(tagged); 3475 testptr(value, JNIHandles::TypeTag::weak_global); // Test for weak tag. 3476 jcc(Assembler::notZero, weak_tagged); 3477 3478 // Resolve global handle 3479 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp); 3480 verify_oop(value); 3481 jmp(done); 3482 3483 bind(weak_tagged); 3484 // Resolve jweak. 3485 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, 3486 value, Address(value, -JNIHandles::TypeTag::weak_global), tmp); 3487 verify_oop(value); 3488 3489 bind(done); 3490 } 3491 3492 void MacroAssembler::resolve_global_jobject(Register value, 3493 Register tmp) { 3494 Register thread = r15_thread; 3495 assert_different_registers(value, thread, tmp); 3496 Label done; 3497 3498 testptr(value, value); 3499 jcc(Assembler::zero, done); // Use null as-is. 3500 3501 #ifdef ASSERT 3502 { 3503 Label valid_global_tag; 3504 testptr(value, JNIHandles::TypeTag::global); // Test for global tag. 3505 jcc(Assembler::notZero, valid_global_tag); 3506 stop("non global jobject using resolve_global_jobject"); 3507 bind(valid_global_tag); 3508 } 3509 #endif 3510 3511 // Resolve global handle 3512 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp); 3513 verify_oop(value); 3514 3515 bind(done); 3516 } 3517 3518 void MacroAssembler::subptr(Register dst, int32_t imm32) { 3519 subq(dst, imm32); 3520 } 3521 3522 // Force generation of a 4 byte immediate value even if it fits into 8bit 3523 void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) { 3524 subq_imm32(dst, imm32); 3525 } 3526 3527 void MacroAssembler::subptr(Register dst, Register src) { 3528 subq(dst, src); 3529 } 3530 3531 // C++ bool manipulation 3532 void MacroAssembler::testbool(Register dst) { 3533 if(sizeof(bool) == 1) 3534 testb(dst, 0xff); 3535 else if(sizeof(bool) == 2) { 3536 // testw implementation needed for two byte bools 3537 ShouldNotReachHere(); 3538 } else if(sizeof(bool) == 4) 3539 testl(dst, dst); 3540 else 3541 // unsupported 3542 ShouldNotReachHere(); 3543 } 3544 3545 void MacroAssembler::testptr(Register dst, Register src) { 3546 testq(dst, src); 3547 } 3548 3549 // Object / value buffer allocation... 3550 // 3551 // Kills klass and rsi on LP64 3552 void MacroAssembler::allocate_instance(Register klass, Register new_obj, 3553 Register t1, Register t2, 3554 bool clear_fields, Label& alloc_failed) 3555 { 3556 Label done, initialize_header, initialize_object, slow_case, slow_case_no_pop; 3557 Register layout_size = t1; 3558 assert(new_obj == rax, "needs to be rax"); 3559 assert_different_registers(klass, new_obj, t1, t2); 3560 3561 // get instance_size in InstanceKlass (scaled to a count of bytes) 3562 movl(layout_size, Address(klass, Klass::layout_helper_offset())); 3563 // test to see if it is malformed in some way 3564 testl(layout_size, Klass::_lh_instance_slow_path_bit); 3565 jcc(Assembler::notZero, slow_case_no_pop); 3566 3567 // Allocate the instance: 3568 // If TLAB is enabled: 3569 // Try to allocate in the TLAB. 3570 // If fails, go to the slow path. 3571 // Else If inline contiguous allocations are enabled: 3572 // Try to allocate in eden. 3573 // If fails due to heap end, go to slow path. 3574 // 3575 // If TLAB is enabled OR inline contiguous is enabled: 3576 // Initialize the allocation. 3577 // Exit. 3578 // 3579 // Go to slow path. 3580 3581 push(klass); 3582 if (UseTLAB) { 3583 tlab_allocate(new_obj, layout_size, 0, klass, t2, slow_case); 3584 if (ZeroTLAB || (!clear_fields)) { 3585 // the fields have been already cleared 3586 jmp(initialize_header); 3587 } else { 3588 // initialize both the header and fields 3589 jmp(initialize_object); 3590 } 3591 } else { 3592 jmp(slow_case); 3593 } 3594 3595 // If UseTLAB is true, the object is created above and there is an initialize need. 3596 // Otherwise, skip and go to the slow path. 3597 if (UseTLAB) { 3598 if (clear_fields) { 3599 // The object is initialized before the header. If the object size is 3600 // zero, go directly to the header initialization. 3601 bind(initialize_object); 3602 if (UseCompactObjectHeaders) { 3603 assert(is_aligned(oopDesc::base_offset_in_bytes(), BytesPerLong), "oop base offset must be 8-byte-aligned"); 3604 decrement(layout_size, oopDesc::base_offset_in_bytes()); 3605 } else { 3606 decrement(layout_size, sizeof(oopDesc)); 3607 } 3608 jcc(Assembler::zero, initialize_header); 3609 3610 // Initialize topmost object field, divide size by 8, check if odd and 3611 // test if zero. 3612 Register zero = klass; 3613 xorl(zero, zero); // use zero reg to clear memory (shorter code) 3614 shrl(layout_size, LogBytesPerLong); // divide by 2*oopSize and set carry flag if odd 3615 3616 #ifdef ASSERT 3617 // make sure instance_size was multiple of 8 3618 Label L; 3619 // Ignore partial flag stall after shrl() since it is debug VM 3620 jcc(Assembler::carryClear, L); 3621 stop("object size is not multiple of 2 - adjust this code"); 3622 bind(L); 3623 // must be > 0, no extra check needed here 3624 #endif 3625 3626 // initialize remaining object fields: instance_size was a multiple of 8 3627 { 3628 Label loop; 3629 bind(loop); 3630 int header_size_bytes = oopDesc::header_size() * HeapWordSize; 3631 assert(is_aligned(header_size_bytes, BytesPerLong), "oop header size must be 8-byte-aligned"); 3632 movptr(Address(new_obj, layout_size, Address::times_8, header_size_bytes - 1*oopSize), zero); 3633 decrement(layout_size); 3634 jcc(Assembler::notZero, loop); 3635 } 3636 } // clear_fields 3637 3638 // initialize object header only. 3639 bind(initialize_header); 3640 if (UseCompactObjectHeaders || EnableValhalla) { 3641 pop(klass); 3642 Register mark_word = t2; 3643 movptr(mark_word, Address(klass, Klass::prototype_header_offset())); 3644 movptr(Address(new_obj, oopDesc::mark_offset_in_bytes ()), mark_word); 3645 } else { 3646 movptr(Address(new_obj, oopDesc::mark_offset_in_bytes()), 3647 (intptr_t)markWord::prototype().value()); // header 3648 pop(klass); // get saved klass back in the register. 3649 } 3650 if (!UseCompactObjectHeaders) { 3651 xorl(rsi, rsi); // use zero reg to clear memory (shorter code) 3652 store_klass_gap(new_obj, rsi); // zero klass gap for compressed oops 3653 movptr(t2, klass); // preserve klass 3654 store_klass(new_obj, t2, rscratch1); // src klass reg is potentially compressed 3655 } 3656 jmp(done); 3657 } 3658 3659 bind(slow_case); 3660 pop(klass); 3661 bind(slow_case_no_pop); 3662 jmp(alloc_failed); 3663 3664 bind(done); 3665 } 3666 3667 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes. 3668 void MacroAssembler::tlab_allocate(Register obj, 3669 Register var_size_in_bytes, 3670 int con_size_in_bytes, 3671 Register t1, 3672 Register t2, 3673 Label& slow_case) { 3674 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 3675 bs->tlab_allocate(this, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case); 3676 } 3677 3678 RegSet MacroAssembler::call_clobbered_gp_registers() { 3679 RegSet regs; 3680 regs += RegSet::of(rax, rcx, rdx); 3681 #ifndef _WINDOWS 3682 regs += RegSet::of(rsi, rdi); 3683 #endif 3684 regs += RegSet::range(r8, r11); 3685 if (UseAPX) { 3686 regs += RegSet::range(r16, as_Register(Register::number_of_registers - 1)); 3687 } 3688 return regs; 3689 } 3690 3691 XMMRegSet MacroAssembler::call_clobbered_xmm_registers() { 3692 int num_xmm_registers = XMMRegister::available_xmm_registers(); 3693 #if defined(_WINDOWS) 3694 XMMRegSet result = XMMRegSet::range(xmm0, xmm5); 3695 if (num_xmm_registers > 16) { 3696 result += XMMRegSet::range(xmm16, as_XMMRegister(num_xmm_registers - 1)); 3697 } 3698 return result; 3699 #else 3700 return XMMRegSet::range(xmm0, as_XMMRegister(num_xmm_registers - 1)); 3701 #endif 3702 } 3703 3704 // C1 only ever uses the first double/float of the XMM register. 3705 static int xmm_save_size() { return sizeof(double); } 3706 3707 static void save_xmm_register(MacroAssembler* masm, int offset, XMMRegister reg) { 3708 masm->movdbl(Address(rsp, offset), reg); 3709 } 3710 3711 static void restore_xmm_register(MacroAssembler* masm, int offset, XMMRegister reg) { 3712 masm->movdbl(reg, Address(rsp, offset)); 3713 } 3714 3715 static int register_section_sizes(RegSet gp_registers, XMMRegSet xmm_registers, 3716 bool save_fpu, int& gp_area_size, int& xmm_area_size) { 3717 3718 gp_area_size = align_up(gp_registers.size() * Register::max_slots_per_register * VMRegImpl::stack_slot_size, 3719 StackAlignmentInBytes); 3720 xmm_area_size = save_fpu ? xmm_registers.size() * xmm_save_size() : 0; 3721 3722 return gp_area_size + xmm_area_size; 3723 } 3724 3725 void MacroAssembler::push_call_clobbered_registers_except(RegSet exclude, bool save_fpu) { 3726 block_comment("push_call_clobbered_registers start"); 3727 // Regular registers 3728 RegSet gp_registers_to_push = call_clobbered_gp_registers() - exclude; 3729 3730 int gp_area_size; 3731 int xmm_area_size; 3732 int total_save_size = register_section_sizes(gp_registers_to_push, call_clobbered_xmm_registers(), save_fpu, 3733 gp_area_size, xmm_area_size); 3734 subptr(rsp, total_save_size); 3735 3736 push_set(gp_registers_to_push, 0); 3737 3738 if (save_fpu) { 3739 push_set(call_clobbered_xmm_registers(), gp_area_size); 3740 } 3741 3742 block_comment("push_call_clobbered_registers end"); 3743 } 3744 3745 void MacroAssembler::pop_call_clobbered_registers_except(RegSet exclude, bool restore_fpu) { 3746 block_comment("pop_call_clobbered_registers start"); 3747 3748 RegSet gp_registers_to_pop = call_clobbered_gp_registers() - exclude; 3749 3750 int gp_area_size; 3751 int xmm_area_size; 3752 int total_save_size = register_section_sizes(gp_registers_to_pop, call_clobbered_xmm_registers(), restore_fpu, 3753 gp_area_size, xmm_area_size); 3754 3755 if (restore_fpu) { 3756 pop_set(call_clobbered_xmm_registers(), gp_area_size); 3757 } 3758 3759 pop_set(gp_registers_to_pop, 0); 3760 3761 addptr(rsp, total_save_size); 3762 3763 vzeroupper(); 3764 3765 block_comment("pop_call_clobbered_registers end"); 3766 } 3767 3768 void MacroAssembler::push_set(XMMRegSet set, int offset) { 3769 assert(is_aligned(set.size() * xmm_save_size(), StackAlignmentInBytes), "must be"); 3770 int spill_offset = offset; 3771 3772 for (RegSetIterator<XMMRegister> it = set.begin(); *it != xnoreg; ++it) { 3773 save_xmm_register(this, spill_offset, *it); 3774 spill_offset += xmm_save_size(); 3775 } 3776 } 3777 3778 void MacroAssembler::pop_set(XMMRegSet set, int offset) { 3779 int restore_size = set.size() * xmm_save_size(); 3780 assert(is_aligned(restore_size, StackAlignmentInBytes), "must be"); 3781 3782 int restore_offset = offset + restore_size - xmm_save_size(); 3783 3784 for (ReverseRegSetIterator<XMMRegister> it = set.rbegin(); *it != xnoreg; ++it) { 3785 restore_xmm_register(this, restore_offset, *it); 3786 restore_offset -= xmm_save_size(); 3787 } 3788 } 3789 3790 void MacroAssembler::push_set(RegSet set, int offset) { 3791 int spill_offset; 3792 if (offset == -1) { 3793 int register_push_size = set.size() * Register::max_slots_per_register * VMRegImpl::stack_slot_size; 3794 int aligned_size = align_up(register_push_size, StackAlignmentInBytes); 3795 subptr(rsp, aligned_size); 3796 spill_offset = 0; 3797 } else { 3798 spill_offset = offset; 3799 } 3800 3801 for (RegSetIterator<Register> it = set.begin(); *it != noreg; ++it) { 3802 movptr(Address(rsp, spill_offset), *it); 3803 spill_offset += Register::max_slots_per_register * VMRegImpl::stack_slot_size; 3804 } 3805 } 3806 3807 void MacroAssembler::pop_set(RegSet set, int offset) { 3808 3809 int gp_reg_size = Register::max_slots_per_register * VMRegImpl::stack_slot_size; 3810 int restore_size = set.size() * gp_reg_size; 3811 int aligned_size = align_up(restore_size, StackAlignmentInBytes); 3812 3813 int restore_offset; 3814 if (offset == -1) { 3815 restore_offset = restore_size - gp_reg_size; 3816 } else { 3817 restore_offset = offset + restore_size - gp_reg_size; 3818 } 3819 for (ReverseRegSetIterator<Register> it = set.rbegin(); *it != noreg; ++it) { 3820 movptr(*it, Address(rsp, restore_offset)); 3821 restore_offset -= gp_reg_size; 3822 } 3823 3824 if (offset == -1) { 3825 addptr(rsp, aligned_size); 3826 } 3827 } 3828 3829 // Preserves the contents of address, destroys the contents length_in_bytes and temp. 3830 void MacroAssembler::zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp) { 3831 assert(address != length_in_bytes && address != temp && temp != length_in_bytes, "registers must be different"); 3832 assert((offset_in_bytes & (BytesPerWord - 1)) == 0, "offset must be a multiple of BytesPerWord"); 3833 Label done; 3834 3835 testptr(length_in_bytes, length_in_bytes); 3836 jcc(Assembler::zero, done); 3837 3838 // initialize topmost word, divide index by 2, check if odd and test if zero 3839 // note: for the remaining code to work, index must be a multiple of BytesPerWord 3840 #ifdef ASSERT 3841 { 3842 Label L; 3843 testptr(length_in_bytes, BytesPerWord - 1); 3844 jcc(Assembler::zero, L); 3845 stop("length must be a multiple of BytesPerWord"); 3846 bind(L); 3847 } 3848 #endif 3849 Register index = length_in_bytes; 3850 xorptr(temp, temp); // use _zero reg to clear memory (shorter code) 3851 if (UseIncDec) { 3852 shrptr(index, 3); // divide by 8/16 and set carry flag if bit 2 was set 3853 } else { 3854 shrptr(index, 2); // use 2 instructions to avoid partial flag stall 3855 shrptr(index, 1); 3856 } 3857 3858 // initialize remaining object fields: index is a multiple of 2 now 3859 { 3860 Label loop; 3861 bind(loop); 3862 movptr(Address(address, index, Address::times_8, offset_in_bytes - 1*BytesPerWord), temp); 3863 decrement(index); 3864 jcc(Assembler::notZero, loop); 3865 } 3866 3867 bind(done); 3868 } 3869 3870 void MacroAssembler::get_inline_type_field_klass(Register holder_klass, Register index, Register inline_klass) { 3871 inline_layout_info(holder_klass, index, inline_klass); 3872 movptr(inline_klass, Address(inline_klass, InlineLayoutInfo::klass_offset())); 3873 } 3874 3875 void MacroAssembler::inline_layout_info(Register holder_klass, Register index, Register layout_info) { 3876 movptr(layout_info, Address(holder_klass, InstanceKlass::inline_layout_info_array_offset())); 3877 #ifdef ASSERT 3878 { 3879 Label done; 3880 cmpptr(layout_info, 0); 3881 jcc(Assembler::notEqual, done); 3882 stop("inline_layout_info_array is null"); 3883 bind(done); 3884 } 3885 #endif 3886 3887 InlineLayoutInfo array[2]; 3888 int size = (char*)&array[1] - (char*)&array[0]; // computing size of array elements 3889 if (is_power_of_2(size)) { 3890 shll(index, log2i_exact(size)); // Scale index by power of 2 3891 } else { 3892 imull(index, index, size); // Scale the index to be the entry index * array_element_size 3893 } 3894 lea(layout_info, Address(layout_info, index, Address::times_1, Array<InlineLayoutInfo>::base_offset_in_bytes())); 3895 } 3896 3897 // Look up the method for a megamorphic invokeinterface call. 3898 // The target method is determined by <intf_klass, itable_index>. 3899 // The receiver klass is in recv_klass. 3900 // On success, the result will be in method_result, and execution falls through. 3901 // On failure, execution transfers to the given label. 3902 void MacroAssembler::lookup_interface_method(Register recv_klass, 3903 Register intf_klass, 3904 RegisterOrConstant itable_index, 3905 Register method_result, 3906 Register scan_temp, 3907 Label& L_no_such_interface, 3908 bool return_method) { 3909 assert_different_registers(recv_klass, intf_klass, scan_temp); 3910 assert_different_registers(method_result, intf_klass, scan_temp); 3911 assert(recv_klass != method_result || !return_method, 3912 "recv_klass can be destroyed when method isn't needed"); 3913 3914 assert(itable_index.is_constant() || itable_index.as_register() == method_result, 3915 "caller must use same register for non-constant itable index as for method"); 3916 3917 // Compute start of first itableOffsetEntry (which is at the end of the vtable) 3918 int vtable_base = in_bytes(Klass::vtable_start_offset()); 3919 int itentry_off = in_bytes(itableMethodEntry::method_offset()); 3920 int scan_step = itableOffsetEntry::size() * wordSize; 3921 int vte_size = vtableEntry::size_in_bytes(); 3922 Address::ScaleFactor times_vte_scale = Address::times_ptr; 3923 assert(vte_size == wordSize, "else adjust times_vte_scale"); 3924 3925 movl(scan_temp, Address(recv_klass, Klass::vtable_length_offset())); 3926 3927 // Could store the aligned, prescaled offset in the klass. 3928 lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base)); 3929 3930 if (return_method) { 3931 // Adjust recv_klass by scaled itable_index, so we can free itable_index. 3932 assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below"); 3933 lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off)); 3934 } 3935 3936 // for (scan = klass->itable(); scan->interface() != nullptr; scan += scan_step) { 3937 // if (scan->interface() == intf) { 3938 // result = (klass + scan->offset() + itable_index); 3939 // } 3940 // } 3941 Label search, found_method; 3942 3943 for (int peel = 1; peel >= 0; peel--) { 3944 movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset())); 3945 cmpptr(intf_klass, method_result); 3946 3947 if (peel) { 3948 jccb(Assembler::equal, found_method); 3949 } else { 3950 jccb(Assembler::notEqual, search); 3951 // (invert the test to fall through to found_method...) 3952 } 3953 3954 if (!peel) break; 3955 3956 bind(search); 3957 3958 // Check that the previous entry is non-null. A null entry means that 3959 // the receiver class doesn't implement the interface, and wasn't the 3960 // same as when the caller was compiled. 3961 testptr(method_result, method_result); 3962 jcc(Assembler::zero, L_no_such_interface); 3963 addptr(scan_temp, scan_step); 3964 } 3965 3966 bind(found_method); 3967 3968 if (return_method) { 3969 // Got a hit. 3970 movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset())); 3971 movptr(method_result, Address(recv_klass, scan_temp, Address::times_1)); 3972 } 3973 } 3974 3975 // Look up the method for a megamorphic invokeinterface call in a single pass over itable: 3976 // - check recv_klass (actual object class) is a subtype of resolved_klass from CompiledICData 3977 // - find a holder_klass (class that implements the method) vtable offset and get the method from vtable by index 3978 // The target method is determined by <holder_klass, itable_index>. 3979 // The receiver klass is in recv_klass. 3980 // On success, the result will be in method_result, and execution falls through. 3981 // On failure, execution transfers to the given label. 3982 void MacroAssembler::lookup_interface_method_stub(Register recv_klass, 3983 Register holder_klass, 3984 Register resolved_klass, 3985 Register method_result, 3986 Register scan_temp, 3987 Register temp_reg2, 3988 Register receiver, 3989 int itable_index, 3990 Label& L_no_such_interface) { 3991 assert_different_registers(recv_klass, method_result, holder_klass, resolved_klass, scan_temp, temp_reg2, receiver); 3992 Register temp_itbl_klass = method_result; 3993 Register temp_reg = (temp_reg2 == noreg ? recv_klass : temp_reg2); // reuse recv_klass register on 32-bit x86 impl 3994 3995 int vtable_base = in_bytes(Klass::vtable_start_offset()); 3996 int itentry_off = in_bytes(itableMethodEntry::method_offset()); 3997 int scan_step = itableOffsetEntry::size() * wordSize; 3998 int vte_size = vtableEntry::size_in_bytes(); 3999 int ioffset = in_bytes(itableOffsetEntry::interface_offset()); 4000 int ooffset = in_bytes(itableOffsetEntry::offset_offset()); 4001 Address::ScaleFactor times_vte_scale = Address::times_ptr; 4002 assert(vte_size == wordSize, "adjust times_vte_scale"); 4003 4004 Label L_loop_scan_resolved_entry, L_resolved_found, L_holder_found; 4005 4006 // temp_itbl_klass = recv_klass.itable[0] 4007 // scan_temp = &recv_klass.itable[0] + step 4008 movl(scan_temp, Address(recv_klass, Klass::vtable_length_offset())); 4009 movptr(temp_itbl_klass, Address(recv_klass, scan_temp, times_vte_scale, vtable_base + ioffset)); 4010 lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base + ioffset + scan_step)); 4011 xorptr(temp_reg, temp_reg); 4012 4013 // Initial checks: 4014 // - if (holder_klass != resolved_klass), go to "scan for resolved" 4015 // - if (itable[0] == 0), no such interface 4016 // - if (itable[0] == holder_klass), shortcut to "holder found" 4017 cmpptr(holder_klass, resolved_klass); 4018 jccb(Assembler::notEqual, L_loop_scan_resolved_entry); 4019 testptr(temp_itbl_klass, temp_itbl_klass); 4020 jccb(Assembler::zero, L_no_such_interface); 4021 cmpptr(holder_klass, temp_itbl_klass); 4022 jccb(Assembler::equal, L_holder_found); 4023 4024 // Loop: Look for holder_klass record in itable 4025 // do { 4026 // tmp = itable[index]; 4027 // index += step; 4028 // if (tmp == holder_klass) { 4029 // goto L_holder_found; // Found! 4030 // } 4031 // } while (tmp != 0); 4032 // goto L_no_such_interface // Not found. 4033 Label L_scan_holder; 4034 bind(L_scan_holder); 4035 movptr(temp_itbl_klass, Address(scan_temp, 0)); 4036 addptr(scan_temp, scan_step); 4037 cmpptr(holder_klass, temp_itbl_klass); 4038 jccb(Assembler::equal, L_holder_found); 4039 testptr(temp_itbl_klass, temp_itbl_klass); 4040 jccb(Assembler::notZero, L_scan_holder); 4041 4042 jmpb(L_no_such_interface); 4043 4044 // Loop: Look for resolved_class record in itable 4045 // do { 4046 // tmp = itable[index]; 4047 // index += step; 4048 // if (tmp == holder_klass) { 4049 // // Also check if we have met a holder klass 4050 // holder_tmp = itable[index-step-ioffset]; 4051 // } 4052 // if (tmp == resolved_klass) { 4053 // goto L_resolved_found; // Found! 4054 // } 4055 // } while (tmp != 0); 4056 // goto L_no_such_interface // Not found. 4057 // 4058 Label L_loop_scan_resolved; 4059 bind(L_loop_scan_resolved); 4060 movptr(temp_itbl_klass, Address(scan_temp, 0)); 4061 addptr(scan_temp, scan_step); 4062 bind(L_loop_scan_resolved_entry); 4063 cmpptr(holder_klass, temp_itbl_klass); 4064 cmovl(Assembler::equal, temp_reg, Address(scan_temp, ooffset - ioffset - scan_step)); 4065 cmpptr(resolved_klass, temp_itbl_klass); 4066 jccb(Assembler::equal, L_resolved_found); 4067 testptr(temp_itbl_klass, temp_itbl_klass); 4068 jccb(Assembler::notZero, L_loop_scan_resolved); 4069 4070 jmpb(L_no_such_interface); 4071 4072 Label L_ready; 4073 4074 // See if we already have a holder klass. If not, go and scan for it. 4075 bind(L_resolved_found); 4076 testptr(temp_reg, temp_reg); 4077 jccb(Assembler::zero, L_scan_holder); 4078 jmpb(L_ready); 4079 4080 bind(L_holder_found); 4081 movl(temp_reg, Address(scan_temp, ooffset - ioffset - scan_step)); 4082 4083 // Finally, temp_reg contains holder_klass vtable offset 4084 bind(L_ready); 4085 assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below"); 4086 if (temp_reg2 == noreg) { // recv_klass register is clobbered for 32-bit x86 impl 4087 load_klass(scan_temp, receiver, noreg); 4088 movptr(method_result, Address(scan_temp, temp_reg, Address::times_1, itable_index * wordSize + itentry_off)); 4089 } else { 4090 movptr(method_result, Address(recv_klass, temp_reg, Address::times_1, itable_index * wordSize + itentry_off)); 4091 } 4092 } 4093 4094 4095 // virtual method calling 4096 void MacroAssembler::lookup_virtual_method(Register recv_klass, 4097 RegisterOrConstant vtable_index, 4098 Register method_result) { 4099 const ByteSize base = Klass::vtable_start_offset(); 4100 assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below"); 4101 Address vtable_entry_addr(recv_klass, 4102 vtable_index, Address::times_ptr, 4103 base + vtableEntry::method_offset()); 4104 movptr(method_result, vtable_entry_addr); 4105 } 4106 4107 4108 void MacroAssembler::check_klass_subtype(Register sub_klass, 4109 Register super_klass, 4110 Register temp_reg, 4111 Label& L_success) { 4112 Label L_failure; 4113 check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg, &L_success, &L_failure, nullptr); 4114 check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, nullptr); 4115 bind(L_failure); 4116 } 4117 4118 4119 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass, 4120 Register super_klass, 4121 Register temp_reg, 4122 Label* L_success, 4123 Label* L_failure, 4124 Label* L_slow_path, 4125 RegisterOrConstant super_check_offset) { 4126 assert_different_registers(sub_klass, super_klass, temp_reg); 4127 bool must_load_sco = (super_check_offset.constant_or_zero() == -1); 4128 if (super_check_offset.is_register()) { 4129 assert_different_registers(sub_klass, super_klass, 4130 super_check_offset.as_register()); 4131 } else if (must_load_sco) { 4132 assert(temp_reg != noreg, "supply either a temp or a register offset"); 4133 } 4134 4135 Label L_fallthrough; 4136 int label_nulls = 0; 4137 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 4138 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 4139 if (L_slow_path == nullptr) { L_slow_path = &L_fallthrough; label_nulls++; } 4140 assert(label_nulls <= 1, "at most one null in the batch"); 4141 4142 int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); 4143 int sco_offset = in_bytes(Klass::super_check_offset_offset()); 4144 Address super_check_offset_addr(super_klass, sco_offset); 4145 4146 // Hacked jcc, which "knows" that L_fallthrough, at least, is in 4147 // range of a jccb. If this routine grows larger, reconsider at 4148 // least some of these. 4149 #define local_jcc(assembler_cond, label) \ 4150 if (&(label) == &L_fallthrough) jccb(assembler_cond, label); \ 4151 else jcc( assembler_cond, label) /*omit semi*/ 4152 4153 // Hacked jmp, which may only be used just before L_fallthrough. 4154 #define final_jmp(label) \ 4155 if (&(label) == &L_fallthrough) { /*do nothing*/ } \ 4156 else jmp(label) /*omit semi*/ 4157 4158 // If the pointers are equal, we are done (e.g., String[] elements). 4159 // This self-check enables sharing of secondary supertype arrays among 4160 // non-primary types such as array-of-interface. Otherwise, each such 4161 // type would need its own customized SSA. 4162 // We move this check to the front of the fast path because many 4163 // type checks are in fact trivially successful in this manner, 4164 // so we get a nicely predicted branch right at the start of the check. 4165 cmpptr(sub_klass, super_klass); 4166 local_jcc(Assembler::equal, *L_success); 4167 4168 // Check the supertype display: 4169 if (must_load_sco) { 4170 // Positive movl does right thing on LP64. 4171 movl(temp_reg, super_check_offset_addr); 4172 super_check_offset = RegisterOrConstant(temp_reg); 4173 } 4174 Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0); 4175 cmpptr(super_klass, super_check_addr); // load displayed supertype 4176 4177 // This check has worked decisively for primary supers. 4178 // Secondary supers are sought in the super_cache ('super_cache_addr'). 4179 // (Secondary supers are interfaces and very deeply nested subtypes.) 4180 // This works in the same check above because of a tricky aliasing 4181 // between the super_cache and the primary super display elements. 4182 // (The 'super_check_addr' can address either, as the case requires.) 4183 // Note that the cache is updated below if it does not help us find 4184 // what we need immediately. 4185 // So if it was a primary super, we can just fail immediately. 4186 // Otherwise, it's the slow path for us (no success at this point). 4187 4188 if (super_check_offset.is_register()) { 4189 local_jcc(Assembler::equal, *L_success); 4190 cmpl(super_check_offset.as_register(), sc_offset); 4191 if (L_failure == &L_fallthrough) { 4192 local_jcc(Assembler::equal, *L_slow_path); 4193 } else { 4194 local_jcc(Assembler::notEqual, *L_failure); 4195 final_jmp(*L_slow_path); 4196 } 4197 } else if (super_check_offset.as_constant() == sc_offset) { 4198 // Need a slow path; fast failure is impossible. 4199 if (L_slow_path == &L_fallthrough) { 4200 local_jcc(Assembler::equal, *L_success); 4201 } else { 4202 local_jcc(Assembler::notEqual, *L_slow_path); 4203 final_jmp(*L_success); 4204 } 4205 } else { 4206 // No slow path; it's a fast decision. 4207 if (L_failure == &L_fallthrough) { 4208 local_jcc(Assembler::equal, *L_success); 4209 } else { 4210 local_jcc(Assembler::notEqual, *L_failure); 4211 final_jmp(*L_success); 4212 } 4213 } 4214 4215 bind(L_fallthrough); 4216 4217 #undef local_jcc 4218 #undef final_jmp 4219 } 4220 4221 4222 void MacroAssembler::check_klass_subtype_slow_path_linear(Register sub_klass, 4223 Register super_klass, 4224 Register temp_reg, 4225 Register temp2_reg, 4226 Label* L_success, 4227 Label* L_failure, 4228 bool set_cond_codes) { 4229 assert_different_registers(sub_klass, super_klass, temp_reg); 4230 if (temp2_reg != noreg) 4231 assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg); 4232 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg) 4233 4234 Label L_fallthrough; 4235 int label_nulls = 0; 4236 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 4237 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 4238 assert(label_nulls <= 1, "at most one null in the batch"); 4239 4240 // a couple of useful fields in sub_klass: 4241 int ss_offset = in_bytes(Klass::secondary_supers_offset()); 4242 int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); 4243 Address secondary_supers_addr(sub_klass, ss_offset); 4244 Address super_cache_addr( sub_klass, sc_offset); 4245 4246 // Do a linear scan of the secondary super-klass chain. 4247 // This code is rarely used, so simplicity is a virtue here. 4248 // The repne_scan instruction uses fixed registers, which we must spill. 4249 // Don't worry too much about pre-existing connections with the input regs. 4250 4251 assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super) 4252 assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter) 4253 4254 // Get super_klass value into rax (even if it was in rdi or rcx). 4255 bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false; 4256 if (super_klass != rax) { 4257 if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; } 4258 mov(rax, super_klass); 4259 } 4260 if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; } 4261 if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; } 4262 4263 #ifndef PRODUCT 4264 uint* pst_counter = &SharedRuntime::_partial_subtype_ctr; 4265 ExternalAddress pst_counter_addr((address) pst_counter); 4266 lea(rcx, pst_counter_addr); 4267 incrementl(Address(rcx, 0)); 4268 #endif //PRODUCT 4269 4270 // We will consult the secondary-super array. 4271 movptr(rdi, secondary_supers_addr); 4272 // Load the array length. (Positive movl does right thing on LP64.) 4273 movl(rcx, Address(rdi, Array<Klass*>::length_offset_in_bytes())); 4274 // Skip to start of data. 4275 addptr(rdi, Array<Klass*>::base_offset_in_bytes()); 4276 4277 // Scan RCX words at [RDI] for an occurrence of RAX. 4278 // Set NZ/Z based on last compare. 4279 // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does 4280 // not change flags (only scas instruction which is repeated sets flags). 4281 // Set Z = 0 (not equal) before 'repne' to indicate that class was not found. 4282 4283 testptr(rax,rax); // Set Z = 0 4284 repne_scan(); 4285 4286 // Unspill the temp. registers: 4287 if (pushed_rdi) pop(rdi); 4288 if (pushed_rcx) pop(rcx); 4289 if (pushed_rax) pop(rax); 4290 4291 if (set_cond_codes) { 4292 // Special hack for the AD files: rdi is guaranteed non-zero. 4293 assert(!pushed_rdi, "rdi must be left non-null"); 4294 // Also, the condition codes are properly set Z/NZ on succeed/failure. 4295 } 4296 4297 if (L_failure == &L_fallthrough) 4298 jccb(Assembler::notEqual, *L_failure); 4299 else jcc(Assembler::notEqual, *L_failure); 4300 4301 // Success. Cache the super we found and proceed in triumph. 4302 movptr(super_cache_addr, super_klass); 4303 4304 if (L_success != &L_fallthrough) { 4305 jmp(*L_success); 4306 } 4307 4308 #undef IS_A_TEMP 4309 4310 bind(L_fallthrough); 4311 } 4312 4313 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass, 4314 Register super_klass, 4315 Register temp_reg, 4316 Register temp2_reg, 4317 Label* L_success, 4318 Label* L_failure, 4319 bool set_cond_codes) { 4320 assert(set_cond_codes == false, "must be false on 64-bit x86"); 4321 check_klass_subtype_slow_path 4322 (sub_klass, super_klass, temp_reg, temp2_reg, noreg, noreg, 4323 L_success, L_failure); 4324 } 4325 4326 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass, 4327 Register super_klass, 4328 Register temp_reg, 4329 Register temp2_reg, 4330 Register temp3_reg, 4331 Register temp4_reg, 4332 Label* L_success, 4333 Label* L_failure) { 4334 if (UseSecondarySupersTable) { 4335 check_klass_subtype_slow_path_table 4336 (sub_klass, super_klass, temp_reg, temp2_reg, temp3_reg, temp4_reg, 4337 L_success, L_failure); 4338 } else { 4339 check_klass_subtype_slow_path_linear 4340 (sub_klass, super_klass, temp_reg, temp2_reg, L_success, L_failure, /*set_cond_codes*/false); 4341 } 4342 } 4343 4344 Register MacroAssembler::allocate_if_noreg(Register r, 4345 RegSetIterator<Register> &available_regs, 4346 RegSet ®s_to_push) { 4347 if (!r->is_valid()) { 4348 r = *available_regs++; 4349 regs_to_push += r; 4350 } 4351 return r; 4352 } 4353 4354 void MacroAssembler::check_klass_subtype_slow_path_table(Register sub_klass, 4355 Register super_klass, 4356 Register temp_reg, 4357 Register temp2_reg, 4358 Register temp3_reg, 4359 Register result_reg, 4360 Label* L_success, 4361 Label* L_failure) { 4362 // NB! Callers may assume that, when temp2_reg is a valid register, 4363 // this code sets it to a nonzero value. 4364 bool temp2_reg_was_valid = temp2_reg->is_valid(); 4365 4366 RegSet temps = RegSet::of(temp_reg, temp2_reg, temp3_reg); 4367 4368 Label L_fallthrough; 4369 int label_nulls = 0; 4370 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 4371 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 4372 assert(label_nulls <= 1, "at most one null in the batch"); 4373 4374 BLOCK_COMMENT("check_klass_subtype_slow_path_table"); 4375 4376 RegSetIterator<Register> available_regs 4377 = (RegSet::of(rax, rcx, rdx, r8) + r9 + r10 + r11 + r12 - temps - sub_klass - super_klass).begin(); 4378 4379 RegSet pushed_regs; 4380 4381 temp_reg = allocate_if_noreg(temp_reg, available_regs, pushed_regs); 4382 temp2_reg = allocate_if_noreg(temp2_reg, available_regs, pushed_regs); 4383 temp3_reg = allocate_if_noreg(temp3_reg, available_regs, pushed_regs); 4384 result_reg = allocate_if_noreg(result_reg, available_regs, pushed_regs); 4385 Register temp4_reg = allocate_if_noreg(noreg, available_regs, pushed_regs); 4386 4387 assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, temp3_reg, result_reg); 4388 4389 { 4390 4391 int register_push_size = pushed_regs.size() * Register::max_slots_per_register * VMRegImpl::stack_slot_size; 4392 int aligned_size = align_up(register_push_size, StackAlignmentInBytes); 4393 subptr(rsp, aligned_size); 4394 push_set(pushed_regs, 0); 4395 4396 lookup_secondary_supers_table_var(sub_klass, 4397 super_klass, 4398 temp_reg, temp2_reg, temp3_reg, temp4_reg, result_reg); 4399 cmpq(result_reg, 0); 4400 4401 // Unspill the temp. registers: 4402 pop_set(pushed_regs, 0); 4403 // Increment SP but do not clobber flags. 4404 lea(rsp, Address(rsp, aligned_size)); 4405 } 4406 4407 if (temp2_reg_was_valid) { 4408 movq(temp2_reg, 1); 4409 } 4410 4411 jcc(Assembler::notEqual, *L_failure); 4412 4413 if (L_success != &L_fallthrough) { 4414 jmp(*L_success); 4415 } 4416 4417 bind(L_fallthrough); 4418 } 4419 4420 // population_count variant for running without the POPCNT 4421 // instruction, which was introduced with SSE4.2 in 2008. 4422 void MacroAssembler::population_count(Register dst, Register src, 4423 Register scratch1, Register scratch2) { 4424 assert_different_registers(src, scratch1, scratch2); 4425 if (UsePopCountInstruction) { 4426 Assembler::popcntq(dst, src); 4427 } else { 4428 assert_different_registers(src, scratch1, scratch2); 4429 assert_different_registers(dst, scratch1, scratch2); 4430 Label loop, done; 4431 4432 mov(scratch1, src); 4433 // dst = 0; 4434 // while(scratch1 != 0) { 4435 // dst++; 4436 // scratch1 &= (scratch1 - 1); 4437 // } 4438 xorl(dst, dst); 4439 testq(scratch1, scratch1); 4440 jccb(Assembler::equal, done); 4441 { 4442 bind(loop); 4443 incq(dst); 4444 movq(scratch2, scratch1); 4445 decq(scratch2); 4446 andq(scratch1, scratch2); 4447 jccb(Assembler::notEqual, loop); 4448 } 4449 bind(done); 4450 } 4451 #ifdef ASSERT 4452 mov64(scratch1, 0xCafeBabeDeadBeef); 4453 movq(scratch2, scratch1); 4454 #endif 4455 } 4456 4457 // Ensure that the inline code and the stub are using the same registers. 4458 #define LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS \ 4459 do { \ 4460 assert(r_super_klass == rax, "mismatch"); \ 4461 assert(r_array_base == rbx, "mismatch"); \ 4462 assert(r_array_length == rcx, "mismatch"); \ 4463 assert(r_array_index == rdx, "mismatch"); \ 4464 assert(r_sub_klass == rsi || r_sub_klass == noreg, "mismatch"); \ 4465 assert(r_bitmap == r11 || r_bitmap == noreg, "mismatch"); \ 4466 assert(result == rdi || result == noreg, "mismatch"); \ 4467 } while(0) 4468 4469 // Versions of salq and rorq that don't need count to be in rcx 4470 4471 void MacroAssembler::salq(Register dest, Register count) { 4472 if (count == rcx) { 4473 Assembler::salq(dest); 4474 } else { 4475 assert_different_registers(rcx, dest); 4476 xchgq(rcx, count); 4477 Assembler::salq(dest); 4478 xchgq(rcx, count); 4479 } 4480 } 4481 4482 void MacroAssembler::rorq(Register dest, Register count) { 4483 if (count == rcx) { 4484 Assembler::rorq(dest); 4485 } else { 4486 assert_different_registers(rcx, dest); 4487 xchgq(rcx, count); 4488 Assembler::rorq(dest); 4489 xchgq(rcx, count); 4490 } 4491 } 4492 4493 // Return true: we succeeded in generating this code 4494 // 4495 // At runtime, return 0 in result if r_super_klass is a superclass of 4496 // r_sub_klass, otherwise return nonzero. Use this if you know the 4497 // super_klass_slot of the class you're looking for. This is always 4498 // the case for instanceof and checkcast. 4499 void MacroAssembler::lookup_secondary_supers_table_const(Register r_sub_klass, 4500 Register r_super_klass, 4501 Register temp1, 4502 Register temp2, 4503 Register temp3, 4504 Register temp4, 4505 Register result, 4506 u1 super_klass_slot) { 4507 assert_different_registers(r_sub_klass, r_super_klass, temp1, temp2, temp3, temp4, result); 4508 4509 Label L_fallthrough, L_success, L_failure; 4510 4511 BLOCK_COMMENT("lookup_secondary_supers_table {"); 4512 4513 const Register 4514 r_array_index = temp1, 4515 r_array_length = temp2, 4516 r_array_base = temp3, 4517 r_bitmap = temp4; 4518 4519 LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS; 4520 4521 xorq(result, result); // = 0 4522 4523 movq(r_bitmap, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset())); 4524 movq(r_array_index, r_bitmap); 4525 4526 // First check the bitmap to see if super_klass might be present. If 4527 // the bit is zero, we are certain that super_klass is not one of 4528 // the secondary supers. 4529 u1 bit = super_klass_slot; 4530 { 4531 // NB: If the count in a x86 shift instruction is 0, the flags are 4532 // not affected, so we do a testq instead. 4533 int shift_count = Klass::SECONDARY_SUPERS_TABLE_MASK - bit; 4534 if (shift_count != 0) { 4535 salq(r_array_index, shift_count); 4536 } else { 4537 testq(r_array_index, r_array_index); 4538 } 4539 } 4540 // We test the MSB of r_array_index, i.e. its sign bit 4541 jcc(Assembler::positive, L_failure); 4542 4543 // Get the first array index that can contain super_klass into r_array_index. 4544 if (bit != 0) { 4545 population_count(r_array_index, r_array_index, temp2, temp3); 4546 } else { 4547 movl(r_array_index, 1); 4548 } 4549 // NB! r_array_index is off by 1. It is compensated by keeping r_array_base off by 1 word. 4550 4551 // We will consult the secondary-super array. 4552 movptr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 4553 4554 // We're asserting that the first word in an Array<Klass*> is the 4555 // length, and the second word is the first word of the data. If 4556 // that ever changes, r_array_base will have to be adjusted here. 4557 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "Adjust this code"); 4558 assert(Array<Klass*>::length_offset_in_bytes() == 0, "Adjust this code"); 4559 4560 cmpq(r_super_klass, Address(r_array_base, r_array_index, Address::times_8)); 4561 jccb(Assembler::equal, L_success); 4562 4563 // Is there another entry to check? Consult the bitmap. 4564 btq(r_bitmap, (bit + 1) & Klass::SECONDARY_SUPERS_TABLE_MASK); 4565 jccb(Assembler::carryClear, L_failure); 4566 4567 // Linear probe. Rotate the bitmap so that the next bit to test is 4568 // in Bit 1. 4569 if (bit != 0) { 4570 rorq(r_bitmap, bit); 4571 } 4572 4573 // Calls into the stub generated by lookup_secondary_supers_table_slow_path. 4574 // Arguments: r_super_klass, r_array_base, r_array_index, r_bitmap. 4575 // Kills: r_array_length. 4576 // Returns: result. 4577 call(RuntimeAddress(StubRoutines::lookup_secondary_supers_table_slow_path_stub())); 4578 // Result (0/1) is in rdi 4579 jmpb(L_fallthrough); 4580 4581 bind(L_failure); 4582 incq(result); // 0 => 1 4583 4584 bind(L_success); 4585 // result = 0; 4586 4587 bind(L_fallthrough); 4588 BLOCK_COMMENT("} lookup_secondary_supers_table"); 4589 4590 if (VerifySecondarySupers) { 4591 verify_secondary_supers_table(r_sub_klass, r_super_klass, result, 4592 temp1, temp2, temp3); 4593 } 4594 } 4595 4596 // At runtime, return 0 in result if r_super_klass is a superclass of 4597 // r_sub_klass, otherwise return nonzero. Use this version of 4598 // lookup_secondary_supers_table() if you don't know ahead of time 4599 // which superclass will be searched for. Used by interpreter and 4600 // runtime stubs. It is larger and has somewhat greater latency than 4601 // the version above, which takes a constant super_klass_slot. 4602 void MacroAssembler::lookup_secondary_supers_table_var(Register r_sub_klass, 4603 Register r_super_klass, 4604 Register temp1, 4605 Register temp2, 4606 Register temp3, 4607 Register temp4, 4608 Register result) { 4609 assert_different_registers(r_sub_klass, r_super_klass, temp1, temp2, temp3, temp4, result); 4610 assert_different_registers(r_sub_klass, r_super_klass, rcx); 4611 RegSet temps = RegSet::of(temp1, temp2, temp3, temp4); 4612 4613 Label L_fallthrough, L_success, L_failure; 4614 4615 BLOCK_COMMENT("lookup_secondary_supers_table {"); 4616 4617 RegSetIterator<Register> available_regs = (temps - rcx).begin(); 4618 4619 // FIXME. Once we are sure that all paths reaching this point really 4620 // do pass rcx as one of our temps we can get rid of the following 4621 // workaround. 4622 assert(temps.contains(rcx), "fix this code"); 4623 4624 // We prefer to have our shift count in rcx. If rcx is one of our 4625 // temps, use it for slot. If not, pick any of our temps. 4626 Register slot; 4627 if (!temps.contains(rcx)) { 4628 slot = *available_regs++; 4629 } else { 4630 slot = rcx; 4631 } 4632 4633 const Register r_array_index = *available_regs++; 4634 const Register r_bitmap = *available_regs++; 4635 4636 // The logic above guarantees this property, but we state it here. 4637 assert_different_registers(r_array_index, r_bitmap, rcx); 4638 4639 movq(r_bitmap, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset())); 4640 movq(r_array_index, r_bitmap); 4641 4642 // First check the bitmap to see if super_klass might be present. If 4643 // the bit is zero, we are certain that super_klass is not one of 4644 // the secondary supers. 4645 movb(slot, Address(r_super_klass, Klass::hash_slot_offset())); 4646 xorl(slot, (u1)(Klass::SECONDARY_SUPERS_TABLE_SIZE - 1)); // slot ^ 63 === 63 - slot (mod 64) 4647 salq(r_array_index, slot); 4648 4649 testq(r_array_index, r_array_index); 4650 // We test the MSB of r_array_index, i.e. its sign bit 4651 jcc(Assembler::positive, L_failure); 4652 4653 const Register r_array_base = *available_regs++; 4654 4655 // Get the first array index that can contain super_klass into r_array_index. 4656 // Note: Clobbers r_array_base and slot. 4657 population_count(r_array_index, r_array_index, /*temp2*/r_array_base, /*temp3*/slot); 4658 4659 // NB! r_array_index is off by 1. It is compensated by keeping r_array_base off by 1 word. 4660 4661 // We will consult the secondary-super array. 4662 movptr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 4663 4664 // We're asserting that the first word in an Array<Klass*> is the 4665 // length, and the second word is the first word of the data. If 4666 // that ever changes, r_array_base will have to be adjusted here. 4667 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "Adjust this code"); 4668 assert(Array<Klass*>::length_offset_in_bytes() == 0, "Adjust this code"); 4669 4670 cmpq(r_super_klass, Address(r_array_base, r_array_index, Address::times_8)); 4671 jccb(Assembler::equal, L_success); 4672 4673 // Restore slot to its true value 4674 movb(slot, Address(r_super_klass, Klass::hash_slot_offset())); 4675 4676 // Linear probe. Rotate the bitmap so that the next bit to test is 4677 // in Bit 1. 4678 rorq(r_bitmap, slot); 4679 4680 // Is there another entry to check? Consult the bitmap. 4681 btq(r_bitmap, 1); 4682 jccb(Assembler::carryClear, L_failure); 4683 4684 // Calls into the stub generated by lookup_secondary_supers_table_slow_path. 4685 // Arguments: r_super_klass, r_array_base, r_array_index, r_bitmap. 4686 // Kills: r_array_length. 4687 // Returns: result. 4688 lookup_secondary_supers_table_slow_path(r_super_klass, 4689 r_array_base, 4690 r_array_index, 4691 r_bitmap, 4692 /*temp1*/result, 4693 /*temp2*/slot, 4694 &L_success, 4695 nullptr); 4696 4697 bind(L_failure); 4698 movq(result, 1); 4699 jmpb(L_fallthrough); 4700 4701 bind(L_success); 4702 xorq(result, result); // = 0 4703 4704 bind(L_fallthrough); 4705 BLOCK_COMMENT("} lookup_secondary_supers_table"); 4706 4707 if (VerifySecondarySupers) { 4708 verify_secondary_supers_table(r_sub_klass, r_super_klass, result, 4709 temp1, temp2, temp3); 4710 } 4711 } 4712 4713 void MacroAssembler::repne_scanq(Register addr, Register value, Register count, Register limit, 4714 Label* L_success, Label* L_failure) { 4715 Label L_loop, L_fallthrough; 4716 { 4717 int label_nulls = 0; 4718 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 4719 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 4720 assert(label_nulls <= 1, "at most one null in the batch"); 4721 } 4722 bind(L_loop); 4723 cmpq(value, Address(addr, count, Address::times_8)); 4724 jcc(Assembler::equal, *L_success); 4725 addl(count, 1); 4726 cmpl(count, limit); 4727 jcc(Assembler::less, L_loop); 4728 4729 if (&L_fallthrough != L_failure) { 4730 jmp(*L_failure); 4731 } 4732 bind(L_fallthrough); 4733 } 4734 4735 // Called by code generated by check_klass_subtype_slow_path 4736 // above. This is called when there is a collision in the hashed 4737 // lookup in the secondary supers array. 4738 void MacroAssembler::lookup_secondary_supers_table_slow_path(Register r_super_klass, 4739 Register r_array_base, 4740 Register r_array_index, 4741 Register r_bitmap, 4742 Register temp1, 4743 Register temp2, 4744 Label* L_success, 4745 Label* L_failure) { 4746 assert_different_registers(r_super_klass, r_array_base, r_array_index, r_bitmap, temp1, temp2); 4747 4748 const Register 4749 r_array_length = temp1, 4750 r_sub_klass = noreg, 4751 result = noreg; 4752 4753 Label L_fallthrough; 4754 int label_nulls = 0; 4755 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 4756 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 4757 assert(label_nulls <= 1, "at most one null in the batch"); 4758 4759 // Load the array length. 4760 movl(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes())); 4761 // And adjust the array base to point to the data. 4762 // NB! Effectively increments current slot index by 1. 4763 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, ""); 4764 addptr(r_array_base, Array<Klass*>::base_offset_in_bytes()); 4765 4766 // Linear probe 4767 Label L_huge; 4768 4769 // The bitmap is full to bursting. 4770 // Implicit invariant: BITMAP_FULL implies (length > 0) 4771 cmpl(r_array_length, (int32_t)Klass::SECONDARY_SUPERS_TABLE_SIZE - 2); 4772 jcc(Assembler::greater, L_huge); 4773 4774 // NB! Our caller has checked bits 0 and 1 in the bitmap. The 4775 // current slot (at secondary_supers[r_array_index]) has not yet 4776 // been inspected, and r_array_index may be out of bounds if we 4777 // wrapped around the end of the array. 4778 4779 { // This is conventional linear probing, but instead of terminating 4780 // when a null entry is found in the table, we maintain a bitmap 4781 // in which a 0 indicates missing entries. 4782 // The check above guarantees there are 0s in the bitmap, so the loop 4783 // eventually terminates. 4784 4785 xorl(temp2, temp2); // = 0; 4786 4787 Label L_again; 4788 bind(L_again); 4789 4790 // Check for array wraparound. 4791 cmpl(r_array_index, r_array_length); 4792 cmovl(Assembler::greaterEqual, r_array_index, temp2); 4793 4794 cmpq(r_super_klass, Address(r_array_base, r_array_index, Address::times_8)); 4795 jcc(Assembler::equal, *L_success); 4796 4797 // If the next bit in bitmap is zero, we're done. 4798 btq(r_bitmap, 2); // look-ahead check (Bit 2); Bits 0 and 1 are tested by now 4799 jcc(Assembler::carryClear, *L_failure); 4800 4801 rorq(r_bitmap, 1); // Bits 1/2 => 0/1 4802 addl(r_array_index, 1); 4803 4804 jmp(L_again); 4805 } 4806 4807 { // Degenerate case: more than 64 secondary supers. 4808 // FIXME: We could do something smarter here, maybe a vectorized 4809 // comparison or a binary search, but is that worth any added 4810 // complexity? 4811 bind(L_huge); 4812 xorl(r_array_index, r_array_index); // = 0 4813 repne_scanq(r_array_base, r_super_klass, r_array_index, r_array_length, 4814 L_success, 4815 (&L_fallthrough != L_failure ? L_failure : nullptr)); 4816 4817 bind(L_fallthrough); 4818 } 4819 } 4820 4821 struct VerifyHelperArguments { 4822 Klass* _super; 4823 Klass* _sub; 4824 intptr_t _linear_result; 4825 intptr_t _table_result; 4826 }; 4827 4828 static void verify_secondary_supers_table_helper(const char* msg, VerifyHelperArguments* args) { 4829 Klass::on_secondary_supers_verification_failure(args->_super, 4830 args->_sub, 4831 args->_linear_result, 4832 args->_table_result, 4833 msg); 4834 } 4835 4836 // Make sure that the hashed lookup and a linear scan agree. 4837 void MacroAssembler::verify_secondary_supers_table(Register r_sub_klass, 4838 Register r_super_klass, 4839 Register result, 4840 Register temp1, 4841 Register temp2, 4842 Register temp3) { 4843 const Register 4844 r_array_index = temp1, 4845 r_array_length = temp2, 4846 r_array_base = temp3, 4847 r_bitmap = noreg; 4848 4849 BLOCK_COMMENT("verify_secondary_supers_table {"); 4850 4851 Label L_success, L_failure, L_check, L_done; 4852 4853 movptr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 4854 movl(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes())); 4855 // And adjust the array base to point to the data. 4856 addptr(r_array_base, Array<Klass*>::base_offset_in_bytes()); 4857 4858 testl(r_array_length, r_array_length); // array_length == 0? 4859 jcc(Assembler::zero, L_failure); 4860 4861 movl(r_array_index, 0); 4862 repne_scanq(r_array_base, r_super_klass, r_array_index, r_array_length, &L_success); 4863 // fall through to L_failure 4864 4865 const Register linear_result = r_array_index; // reuse temp1 4866 4867 bind(L_failure); // not present 4868 movl(linear_result, 1); 4869 jmp(L_check); 4870 4871 bind(L_success); // present 4872 movl(linear_result, 0); 4873 4874 bind(L_check); 4875 cmpl(linear_result, result); 4876 jcc(Assembler::equal, L_done); 4877 4878 { // To avoid calling convention issues, build a record on the stack 4879 // and pass the pointer to that instead. 4880 push(result); 4881 push(linear_result); 4882 push(r_sub_klass); 4883 push(r_super_klass); 4884 movptr(c_rarg1, rsp); 4885 movptr(c_rarg0, (uintptr_t) "mismatch"); 4886 call(RuntimeAddress(CAST_FROM_FN_PTR(address, verify_secondary_supers_table_helper))); 4887 should_not_reach_here(); 4888 } 4889 bind(L_done); 4890 4891 BLOCK_COMMENT("} verify_secondary_supers_table"); 4892 } 4893 4894 #undef LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS 4895 4896 void MacroAssembler::clinit_barrier(Register klass, Label* L_fast_path, Label* L_slow_path) { 4897 assert(L_fast_path != nullptr || L_slow_path != nullptr, "at least one is required"); 4898 4899 Label L_fallthrough; 4900 if (L_fast_path == nullptr) { 4901 L_fast_path = &L_fallthrough; 4902 } else if (L_slow_path == nullptr) { 4903 L_slow_path = &L_fallthrough; 4904 } 4905 4906 // Fast path check: class is fully initialized. 4907 // init_state needs acquire, but x86 is TSO, and so we are already good. 4908 cmpb(Address(klass, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized); 4909 jcc(Assembler::equal, *L_fast_path); 4910 4911 // Fast path check: current thread is initializer thread 4912 cmpptr(r15_thread, Address(klass, InstanceKlass::init_thread_offset())); 4913 if (L_slow_path == &L_fallthrough) { 4914 jcc(Assembler::equal, *L_fast_path); 4915 bind(*L_slow_path); 4916 } else if (L_fast_path == &L_fallthrough) { 4917 jcc(Assembler::notEqual, *L_slow_path); 4918 bind(*L_fast_path); 4919 } else { 4920 Unimplemented(); 4921 } 4922 } 4923 4924 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) { 4925 if (VM_Version::supports_cmov()) { 4926 cmovl(cc, dst, src); 4927 } else { 4928 Label L; 4929 jccb(negate_condition(cc), L); 4930 movl(dst, src); 4931 bind(L); 4932 } 4933 } 4934 4935 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) { 4936 if (VM_Version::supports_cmov()) { 4937 cmovl(cc, dst, src); 4938 } else { 4939 Label L; 4940 jccb(negate_condition(cc), L); 4941 movl(dst, src); 4942 bind(L); 4943 } 4944 } 4945 4946 void MacroAssembler::_verify_oop(Register reg, const char* s, const char* file, int line) { 4947 if (!VerifyOops || VerifyAdapterSharing) { 4948 // Below address of the code string confuses VerifyAdapterSharing 4949 // because it may differ between otherwise equivalent adapters. 4950 return; 4951 } 4952 4953 BLOCK_COMMENT("verify_oop {"); 4954 push(rscratch1); 4955 push(rax); // save rax 4956 push(reg); // pass register argument 4957 4958 // Pass register number to verify_oop_subroutine 4959 const char* b = nullptr; 4960 { 4961 ResourceMark rm; 4962 stringStream ss; 4963 ss.print("verify_oop: %s: %s (%s:%d)", reg->name(), s, file, line); 4964 b = code_string(ss.as_string()); 4965 } 4966 AddressLiteral buffer((address) b, external_word_Relocation::spec_for_immediate()); 4967 pushptr(buffer.addr(), rscratch1); 4968 4969 // call indirectly to solve generation ordering problem 4970 movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address())); 4971 call(rax); 4972 // Caller pops the arguments (oop, message) and restores rax, r10 4973 BLOCK_COMMENT("} verify_oop"); 4974 } 4975 4976 void MacroAssembler::vallones(XMMRegister dst, int vector_len) { 4977 if (UseAVX > 2 && (vector_len == Assembler::AVX_512bit || VM_Version::supports_avx512vl())) { 4978 // Only pcmpeq has dependency breaking treatment (i.e the execution can begin without 4979 // waiting for the previous result on dst), not vpcmpeqd, so just use vpternlog 4980 vpternlogd(dst, 0xFF, dst, dst, vector_len); 4981 } else if (VM_Version::supports_avx()) { 4982 vpcmpeqd(dst, dst, dst, vector_len); 4983 } else { 4984 pcmpeqd(dst, dst); 4985 } 4986 } 4987 4988 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot, 4989 int extra_slot_offset) { 4990 // cf. TemplateTable::prepare_invoke(), if (load_receiver). 4991 int stackElementSize = Interpreter::stackElementSize; 4992 int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0); 4993 #ifdef ASSERT 4994 int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1); 4995 assert(offset1 - offset == stackElementSize, "correct arithmetic"); 4996 #endif 4997 Register scale_reg = noreg; 4998 Address::ScaleFactor scale_factor = Address::no_scale; 4999 if (arg_slot.is_constant()) { 5000 offset += arg_slot.as_constant() * stackElementSize; 5001 } else { 5002 scale_reg = arg_slot.as_register(); 5003 scale_factor = Address::times(stackElementSize); 5004 } 5005 offset += wordSize; // return PC is on stack 5006 return Address(rsp, scale_reg, scale_factor, offset); 5007 } 5008 5009 void MacroAssembler::_verify_oop_addr(Address addr, const char* s, const char* file, int line) { 5010 if (!VerifyOops || VerifyAdapterSharing) { 5011 // Below address of the code string confuses VerifyAdapterSharing 5012 // because it may differ between otherwise equivalent adapters. 5013 return; 5014 } 5015 5016 push(rscratch1); 5017 push(rax); // save rax, 5018 // addr may contain rsp so we will have to adjust it based on the push 5019 // we just did (and on 64 bit we do two pushes) 5020 // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which 5021 // stores rax into addr which is backwards of what was intended. 5022 if (addr.uses(rsp)) { 5023 lea(rax, addr); 5024 pushptr(Address(rax, 2 * BytesPerWord)); 5025 } else { 5026 pushptr(addr); 5027 } 5028 5029 // Pass register number to verify_oop_subroutine 5030 const char* b = nullptr; 5031 { 5032 ResourceMark rm; 5033 stringStream ss; 5034 ss.print("verify_oop_addr: %s (%s:%d)", s, file, line); 5035 b = code_string(ss.as_string()); 5036 } 5037 AddressLiteral buffer((address) b, external_word_Relocation::spec_for_immediate()); 5038 pushptr(buffer.addr(), rscratch1); 5039 5040 // call indirectly to solve generation ordering problem 5041 movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address())); 5042 call(rax); 5043 // Caller pops the arguments (addr, message) and restores rax, r10. 5044 } 5045 5046 void MacroAssembler::verify_tlab() { 5047 #ifdef ASSERT 5048 if (UseTLAB && VerifyOops) { 5049 Label next, ok; 5050 Register t1 = rsi; 5051 5052 push(t1); 5053 5054 movptr(t1, Address(r15_thread, in_bytes(JavaThread::tlab_top_offset()))); 5055 cmpptr(t1, Address(r15_thread, in_bytes(JavaThread::tlab_start_offset()))); 5056 jcc(Assembler::aboveEqual, next); 5057 STOP("assert(top >= start)"); 5058 should_not_reach_here(); 5059 5060 bind(next); 5061 movptr(t1, Address(r15_thread, in_bytes(JavaThread::tlab_end_offset()))); 5062 cmpptr(t1, Address(r15_thread, in_bytes(JavaThread::tlab_top_offset()))); 5063 jcc(Assembler::aboveEqual, ok); 5064 STOP("assert(top <= end)"); 5065 should_not_reach_here(); 5066 5067 bind(ok); 5068 pop(t1); 5069 } 5070 #endif 5071 } 5072 5073 class ControlWord { 5074 public: 5075 int32_t _value; 5076 5077 int rounding_control() const { return (_value >> 10) & 3 ; } 5078 int precision_control() const { return (_value >> 8) & 3 ; } 5079 bool precision() const { return ((_value >> 5) & 1) != 0; } 5080 bool underflow() const { return ((_value >> 4) & 1) != 0; } 5081 bool overflow() const { return ((_value >> 3) & 1) != 0; } 5082 bool zero_divide() const { return ((_value >> 2) & 1) != 0; } 5083 bool denormalized() const { return ((_value >> 1) & 1) != 0; } 5084 bool invalid() const { return ((_value >> 0) & 1) != 0; } 5085 5086 void print() const { 5087 // rounding control 5088 const char* rc; 5089 switch (rounding_control()) { 5090 case 0: rc = "round near"; break; 5091 case 1: rc = "round down"; break; 5092 case 2: rc = "round up "; break; 5093 case 3: rc = "chop "; break; 5094 default: 5095 rc = nullptr; // silence compiler warnings 5096 fatal("Unknown rounding control: %d", rounding_control()); 5097 }; 5098 // precision control 5099 const char* pc; 5100 switch (precision_control()) { 5101 case 0: pc = "24 bits "; break; 5102 case 1: pc = "reserved"; break; 5103 case 2: pc = "53 bits "; break; 5104 case 3: pc = "64 bits "; break; 5105 default: 5106 pc = nullptr; // silence compiler warnings 5107 fatal("Unknown precision control: %d", precision_control()); 5108 }; 5109 // flags 5110 char f[9]; 5111 f[0] = ' '; 5112 f[1] = ' '; 5113 f[2] = (precision ()) ? 'P' : 'p'; 5114 f[3] = (underflow ()) ? 'U' : 'u'; 5115 f[4] = (overflow ()) ? 'O' : 'o'; 5116 f[5] = (zero_divide ()) ? 'Z' : 'z'; 5117 f[6] = (denormalized()) ? 'D' : 'd'; 5118 f[7] = (invalid ()) ? 'I' : 'i'; 5119 f[8] = '\x0'; 5120 // output 5121 printf("%04x masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc); 5122 } 5123 5124 }; 5125 5126 class StatusWord { 5127 public: 5128 int32_t _value; 5129 5130 bool busy() const { return ((_value >> 15) & 1) != 0; } 5131 bool C3() const { return ((_value >> 14) & 1) != 0; } 5132 bool C2() const { return ((_value >> 10) & 1) != 0; } 5133 bool C1() const { return ((_value >> 9) & 1) != 0; } 5134 bool C0() const { return ((_value >> 8) & 1) != 0; } 5135 int top() const { return (_value >> 11) & 7 ; } 5136 bool error_status() const { return ((_value >> 7) & 1) != 0; } 5137 bool stack_fault() const { return ((_value >> 6) & 1) != 0; } 5138 bool precision() const { return ((_value >> 5) & 1) != 0; } 5139 bool underflow() const { return ((_value >> 4) & 1) != 0; } 5140 bool overflow() const { return ((_value >> 3) & 1) != 0; } 5141 bool zero_divide() const { return ((_value >> 2) & 1) != 0; } 5142 bool denormalized() const { return ((_value >> 1) & 1) != 0; } 5143 bool invalid() const { return ((_value >> 0) & 1) != 0; } 5144 5145 void print() const { 5146 // condition codes 5147 char c[5]; 5148 c[0] = (C3()) ? '3' : '-'; 5149 c[1] = (C2()) ? '2' : '-'; 5150 c[2] = (C1()) ? '1' : '-'; 5151 c[3] = (C0()) ? '0' : '-'; 5152 c[4] = '\x0'; 5153 // flags 5154 char f[9]; 5155 f[0] = (error_status()) ? 'E' : '-'; 5156 f[1] = (stack_fault ()) ? 'S' : '-'; 5157 f[2] = (precision ()) ? 'P' : '-'; 5158 f[3] = (underflow ()) ? 'U' : '-'; 5159 f[4] = (overflow ()) ? 'O' : '-'; 5160 f[5] = (zero_divide ()) ? 'Z' : '-'; 5161 f[6] = (denormalized()) ? 'D' : '-'; 5162 f[7] = (invalid ()) ? 'I' : '-'; 5163 f[8] = '\x0'; 5164 // output 5165 printf("%04x flags = %s, cc = %s, top = %d", _value & 0xFFFF, f, c, top()); 5166 } 5167 5168 }; 5169 5170 class TagWord { 5171 public: 5172 int32_t _value; 5173 5174 int tag_at(int i) const { return (_value >> (i*2)) & 3; } 5175 5176 void print() const { 5177 printf("%04x", _value & 0xFFFF); 5178 } 5179 5180 }; 5181 5182 class FPU_Register { 5183 public: 5184 int32_t _m0; 5185 int32_t _m1; 5186 int16_t _ex; 5187 5188 bool is_indefinite() const { 5189 return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0; 5190 } 5191 5192 void print() const { 5193 char sign = (_ex < 0) ? '-' : '+'; 5194 const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : " "; 5195 printf("%c%04hx.%08x%08x %s", sign, _ex, _m1, _m0, kind); 5196 }; 5197 5198 }; 5199 5200 class FPU_State { 5201 public: 5202 enum { 5203 register_size = 10, 5204 number_of_registers = 8, 5205 register_mask = 7 5206 }; 5207 5208 ControlWord _control_word; 5209 StatusWord _status_word; 5210 TagWord _tag_word; 5211 int32_t _error_offset; 5212 int32_t _error_selector; 5213 int32_t _data_offset; 5214 int32_t _data_selector; 5215 int8_t _register[register_size * number_of_registers]; 5216 5217 int tag_for_st(int i) const { return _tag_word.tag_at((_status_word.top() + i) & register_mask); } 5218 FPU_Register* st(int i) const { return (FPU_Register*)&_register[register_size * i]; } 5219 5220 const char* tag_as_string(int tag) const { 5221 switch (tag) { 5222 case 0: return "valid"; 5223 case 1: return "zero"; 5224 case 2: return "special"; 5225 case 3: return "empty"; 5226 } 5227 ShouldNotReachHere(); 5228 return nullptr; 5229 } 5230 5231 void print() const { 5232 // print computation registers 5233 { int t = _status_word.top(); 5234 for (int i = 0; i < number_of_registers; i++) { 5235 int j = (i - t) & register_mask; 5236 printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j); 5237 st(j)->print(); 5238 printf(" %s\n", tag_as_string(_tag_word.tag_at(i))); 5239 } 5240 } 5241 printf("\n"); 5242 // print control registers 5243 printf("ctrl = "); _control_word.print(); printf("\n"); 5244 printf("stat = "); _status_word .print(); printf("\n"); 5245 printf("tags = "); _tag_word .print(); printf("\n"); 5246 } 5247 5248 }; 5249 5250 class Flag_Register { 5251 public: 5252 int32_t _value; 5253 5254 bool overflow() const { return ((_value >> 11) & 1) != 0; } 5255 bool direction() const { return ((_value >> 10) & 1) != 0; } 5256 bool sign() const { return ((_value >> 7) & 1) != 0; } 5257 bool zero() const { return ((_value >> 6) & 1) != 0; } 5258 bool auxiliary_carry() const { return ((_value >> 4) & 1) != 0; } 5259 bool parity() const { return ((_value >> 2) & 1) != 0; } 5260 bool carry() const { return ((_value >> 0) & 1) != 0; } 5261 5262 void print() const { 5263 // flags 5264 char f[8]; 5265 f[0] = (overflow ()) ? 'O' : '-'; 5266 f[1] = (direction ()) ? 'D' : '-'; 5267 f[2] = (sign ()) ? 'S' : '-'; 5268 f[3] = (zero ()) ? 'Z' : '-'; 5269 f[4] = (auxiliary_carry()) ? 'A' : '-'; 5270 f[5] = (parity ()) ? 'P' : '-'; 5271 f[6] = (carry ()) ? 'C' : '-'; 5272 f[7] = '\x0'; 5273 // output 5274 printf("%08x flags = %s", _value, f); 5275 } 5276 5277 }; 5278 5279 class IU_Register { 5280 public: 5281 int32_t _value; 5282 5283 void print() const { 5284 printf("%08x %11d", _value, _value); 5285 } 5286 5287 }; 5288 5289 class IU_State { 5290 public: 5291 Flag_Register _eflags; 5292 IU_Register _rdi; 5293 IU_Register _rsi; 5294 IU_Register _rbp; 5295 IU_Register _rsp; 5296 IU_Register _rbx; 5297 IU_Register _rdx; 5298 IU_Register _rcx; 5299 IU_Register _rax; 5300 5301 void print() const { 5302 // computation registers 5303 printf("rax, = "); _rax.print(); printf("\n"); 5304 printf("rbx, = "); _rbx.print(); printf("\n"); 5305 printf("rcx = "); _rcx.print(); printf("\n"); 5306 printf("rdx = "); _rdx.print(); printf("\n"); 5307 printf("rdi = "); _rdi.print(); printf("\n"); 5308 printf("rsi = "); _rsi.print(); printf("\n"); 5309 printf("rbp, = "); _rbp.print(); printf("\n"); 5310 printf("rsp = "); _rsp.print(); printf("\n"); 5311 printf("\n"); 5312 // control registers 5313 printf("flgs = "); _eflags.print(); printf("\n"); 5314 } 5315 }; 5316 5317 5318 class CPU_State { 5319 public: 5320 FPU_State _fpu_state; 5321 IU_State _iu_state; 5322 5323 void print() const { 5324 printf("--------------------------------------------------\n"); 5325 _iu_state .print(); 5326 printf("\n"); 5327 _fpu_state.print(); 5328 printf("--------------------------------------------------\n"); 5329 } 5330 5331 }; 5332 5333 5334 static void _print_CPU_state(CPU_State* state) { 5335 state->print(); 5336 }; 5337 5338 5339 void MacroAssembler::print_CPU_state() { 5340 push_CPU_state(); 5341 push(rsp); // pass CPU state 5342 call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state))); 5343 addptr(rsp, wordSize); // discard argument 5344 pop_CPU_state(); 5345 } 5346 5347 void MacroAssembler::restore_cpu_control_state_after_jni(Register rscratch) { 5348 // Either restore the MXCSR register after returning from the JNI Call 5349 // or verify that it wasn't changed (with -Xcheck:jni flag). 5350 if (VM_Version::supports_sse()) { 5351 if (RestoreMXCSROnJNICalls) { 5352 ldmxcsr(ExternalAddress(StubRoutines::x86::addr_mxcsr_std()), rscratch); 5353 } else if (CheckJNICalls) { 5354 call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry())); 5355 } 5356 } 5357 // Clear upper bits of YMM registers to avoid SSE <-> AVX transition penalty. 5358 vzeroupper(); 5359 } 5360 5361 // ((OopHandle)result).resolve(); 5362 void MacroAssembler::resolve_oop_handle(Register result, Register tmp) { 5363 assert_different_registers(result, tmp); 5364 5365 // Only 64 bit platforms support GCs that require a tmp register 5366 // Only IN_HEAP loads require a thread_tmp register 5367 // OopHandle::resolve is an indirection like jobject. 5368 access_load_at(T_OBJECT, IN_NATIVE, 5369 result, Address(result, 0), tmp); 5370 } 5371 5372 // ((WeakHandle)result).resolve(); 5373 void MacroAssembler::resolve_weak_handle(Register rresult, Register rtmp) { 5374 assert_different_registers(rresult, rtmp); 5375 Label resolved; 5376 5377 // A null weak handle resolves to null. 5378 cmpptr(rresult, 0); 5379 jcc(Assembler::equal, resolved); 5380 5381 // Only 64 bit platforms support GCs that require a tmp register 5382 // Only IN_HEAP loads require a thread_tmp register 5383 // WeakHandle::resolve is an indirection like jweak. 5384 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, 5385 rresult, Address(rresult, 0), rtmp); 5386 bind(resolved); 5387 } 5388 5389 void MacroAssembler::load_mirror(Register mirror, Register method, Register tmp) { 5390 // get mirror 5391 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 5392 load_method_holder(mirror, method); 5393 movptr(mirror, Address(mirror, mirror_offset)); 5394 resolve_oop_handle(mirror, tmp); 5395 } 5396 5397 void MacroAssembler::load_method_holder_cld(Register rresult, Register rmethod) { 5398 load_method_holder(rresult, rmethod); 5399 movptr(rresult, Address(rresult, InstanceKlass::class_loader_data_offset())); 5400 } 5401 5402 void MacroAssembler::load_method_holder(Register holder, Register method) { 5403 movptr(holder, Address(method, Method::const_offset())); // ConstMethod* 5404 movptr(holder, Address(holder, ConstMethod::constants_offset())); // ConstantPool* 5405 movptr(holder, Address(holder, ConstantPool::pool_holder_offset())); // InstanceKlass* 5406 } 5407 5408 void MacroAssembler::load_metadata(Register dst, Register src) { 5409 if (UseCompactObjectHeaders) { 5410 load_narrow_klass_compact(dst, src); 5411 } else if (UseCompressedClassPointers) { 5412 movl(dst, Address(src, oopDesc::klass_offset_in_bytes())); 5413 } else { 5414 movptr(dst, Address(src, oopDesc::klass_offset_in_bytes())); 5415 } 5416 } 5417 5418 void MacroAssembler::load_narrow_klass_compact(Register dst, Register src) { 5419 assert(UseCompactObjectHeaders, "expect compact object headers"); 5420 movq(dst, Address(src, oopDesc::mark_offset_in_bytes())); 5421 shrq(dst, markWord::klass_shift); 5422 } 5423 5424 void MacroAssembler::load_klass(Register dst, Register src, Register tmp) { 5425 assert_different_registers(src, tmp); 5426 assert_different_registers(dst, tmp); 5427 5428 if (UseCompactObjectHeaders) { 5429 load_narrow_klass_compact(dst, src); 5430 decode_klass_not_null(dst, tmp); 5431 } else if (UseCompressedClassPointers) { 5432 movl(dst, Address(src, oopDesc::klass_offset_in_bytes())); 5433 decode_klass_not_null(dst, tmp); 5434 } else { 5435 movptr(dst, Address(src, oopDesc::klass_offset_in_bytes())); 5436 } 5437 } 5438 5439 void MacroAssembler::load_prototype_header(Register dst, Register src, Register tmp) { 5440 load_klass(dst, src, tmp); 5441 movptr(dst, Address(dst, Klass::prototype_header_offset())); 5442 } 5443 5444 void MacroAssembler::store_klass(Register dst, Register src, Register tmp) { 5445 assert(!UseCompactObjectHeaders, "not with compact headers"); 5446 assert_different_registers(src, tmp); 5447 assert_different_registers(dst, tmp); 5448 if (UseCompressedClassPointers) { 5449 encode_klass_not_null(src, tmp); 5450 movl(Address(dst, oopDesc::klass_offset_in_bytes()), src); 5451 } else { 5452 movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src); 5453 } 5454 } 5455 5456 void MacroAssembler::cmp_klass(Register klass, Register obj, Register tmp) { 5457 if (UseCompactObjectHeaders) { 5458 assert(tmp != noreg, "need tmp"); 5459 assert_different_registers(klass, obj, tmp); 5460 load_narrow_klass_compact(tmp, obj); 5461 cmpl(klass, tmp); 5462 } else if (UseCompressedClassPointers) { 5463 cmpl(klass, Address(obj, oopDesc::klass_offset_in_bytes())); 5464 } else { 5465 cmpptr(klass, Address(obj, oopDesc::klass_offset_in_bytes())); 5466 } 5467 } 5468 5469 void MacroAssembler::cmp_klasses_from_objects(Register obj1, Register obj2, Register tmp1, Register tmp2) { 5470 if (UseCompactObjectHeaders) { 5471 assert(tmp2 != noreg, "need tmp2"); 5472 assert_different_registers(obj1, obj2, tmp1, tmp2); 5473 load_narrow_klass_compact(tmp1, obj1); 5474 load_narrow_klass_compact(tmp2, obj2); 5475 cmpl(tmp1, tmp2); 5476 } else if (UseCompressedClassPointers) { 5477 movl(tmp1, Address(obj1, oopDesc::klass_offset_in_bytes())); 5478 cmpl(tmp1, Address(obj2, oopDesc::klass_offset_in_bytes())); 5479 } else { 5480 movptr(tmp1, Address(obj1, oopDesc::klass_offset_in_bytes())); 5481 cmpptr(tmp1, Address(obj2, oopDesc::klass_offset_in_bytes())); 5482 } 5483 } 5484 5485 void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src, 5486 Register tmp1) { 5487 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5488 decorators = AccessInternal::decorator_fixup(decorators, type); 5489 bool as_raw = (decorators & AS_RAW) != 0; 5490 if (as_raw) { 5491 bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1); 5492 } else { 5493 bs->load_at(this, decorators, type, dst, src, tmp1); 5494 } 5495 } 5496 5497 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register val, 5498 Register tmp1, Register tmp2, Register tmp3) { 5499 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5500 decorators = AccessInternal::decorator_fixup(decorators, type); 5501 bool as_raw = (decorators & AS_RAW) != 0; 5502 if (as_raw) { 5503 bs->BarrierSetAssembler::store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3); 5504 } else { 5505 bs->store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3); 5506 } 5507 } 5508 5509 void MacroAssembler::flat_field_copy(DecoratorSet decorators, Register src, Register dst, 5510 Register inline_layout_info) { 5511 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5512 bs->flat_field_copy(this, decorators, src, dst, inline_layout_info); 5513 } 5514 5515 void MacroAssembler::payload_offset(Register inline_klass, Register offset) { 5516 movptr(offset, Address(inline_klass, InstanceKlass::adr_inlineklass_fixed_block_offset())); 5517 movl(offset, Address(offset, InlineKlass::payload_offset_offset())); 5518 } 5519 5520 void MacroAssembler::payload_addr(Register oop, Register data, Register inline_klass) { 5521 // ((address) (void*) o) + vk->payload_offset(); 5522 Register offset = (data == oop) ? rscratch1 : data; 5523 payload_offset(inline_klass, offset); 5524 if (data == oop) { 5525 addptr(data, offset); 5526 } else { 5527 lea(data, Address(oop, offset)); 5528 } 5529 } 5530 5531 void MacroAssembler::data_for_value_array_index(Register array, Register array_klass, 5532 Register index, Register data) { 5533 assert(index != rcx, "index needs to shift by rcx"); 5534 assert_different_registers(array, array_klass, index); 5535 assert_different_registers(rcx, array, index); 5536 5537 // array->base() + (index << Klass::layout_helper_log2_element_size(lh)); 5538 movl(rcx, Address(array_klass, Klass::layout_helper_offset())); 5539 5540 // Klass::layout_helper_log2_element_size(lh) 5541 // (lh >> _lh_log2_element_size_shift) & _lh_log2_element_size_mask; 5542 shrl(rcx, Klass::_lh_log2_element_size_shift); 5543 andl(rcx, Klass::_lh_log2_element_size_mask); 5544 shlptr(index); // index << rcx 5545 5546 lea(data, Address(array, index, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_FLAT_ELEMENT))); 5547 } 5548 5549 void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1, DecoratorSet decorators) { 5550 access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1); 5551 } 5552 5553 // Doesn't do verification, generates fixed size code 5554 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1, DecoratorSet decorators) { 5555 access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL | decorators, dst, src, tmp1); 5556 } 5557 5558 void MacroAssembler::store_heap_oop(Address dst, Register val, Register tmp1, 5559 Register tmp2, Register tmp3, DecoratorSet decorators) { 5560 access_store_at(T_OBJECT, IN_HEAP | decorators, dst, val, tmp1, tmp2, tmp3); 5561 } 5562 5563 // Used for storing nulls. 5564 void MacroAssembler::store_heap_oop_null(Address dst) { 5565 access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg, noreg); 5566 } 5567 5568 void MacroAssembler::store_klass_gap(Register dst, Register src) { 5569 assert(!UseCompactObjectHeaders, "Don't use with compact headers"); 5570 if (UseCompressedClassPointers) { 5571 // Store to klass gap in destination 5572 movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src); 5573 } 5574 } 5575 5576 #ifdef ASSERT 5577 void MacroAssembler::verify_heapbase(const char* msg) { 5578 assert (UseCompressedOops, "should be compressed"); 5579 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5580 if (CheckCompressedOops) { 5581 Label ok; 5582 ExternalAddress src2(CompressedOops::base_addr()); 5583 const bool is_src2_reachable = reachable(src2); 5584 if (!is_src2_reachable) { 5585 push(rscratch1); // cmpptr trashes rscratch1 5586 } 5587 cmpptr(r12_heapbase, src2, rscratch1); 5588 jcc(Assembler::equal, ok); 5589 STOP(msg); 5590 bind(ok); 5591 if (!is_src2_reachable) { 5592 pop(rscratch1); 5593 } 5594 } 5595 } 5596 #endif 5597 5598 // Algorithm must match oop.inline.hpp encode_heap_oop. 5599 void MacroAssembler::encode_heap_oop(Register r) { 5600 #ifdef ASSERT 5601 verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?"); 5602 #endif 5603 verify_oop_msg(r, "broken oop in encode_heap_oop"); 5604 if (CompressedOops::base() == nullptr) { 5605 if (CompressedOops::shift() != 0) { 5606 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5607 shrq(r, LogMinObjAlignmentInBytes); 5608 } 5609 return; 5610 } 5611 testq(r, r); 5612 cmovq(Assembler::equal, r, r12_heapbase); 5613 subq(r, r12_heapbase); 5614 shrq(r, LogMinObjAlignmentInBytes); 5615 } 5616 5617 void MacroAssembler::encode_heap_oop_not_null(Register r) { 5618 #ifdef ASSERT 5619 verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?"); 5620 if (CheckCompressedOops) { 5621 Label ok; 5622 testq(r, r); 5623 jcc(Assembler::notEqual, ok); 5624 STOP("null oop passed to encode_heap_oop_not_null"); 5625 bind(ok); 5626 } 5627 #endif 5628 verify_oop_msg(r, "broken oop in encode_heap_oop_not_null"); 5629 if (CompressedOops::base() != nullptr) { 5630 subq(r, r12_heapbase); 5631 } 5632 if (CompressedOops::shift() != 0) { 5633 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5634 shrq(r, LogMinObjAlignmentInBytes); 5635 } 5636 } 5637 5638 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) { 5639 #ifdef ASSERT 5640 verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?"); 5641 if (CheckCompressedOops) { 5642 Label ok; 5643 testq(src, src); 5644 jcc(Assembler::notEqual, ok); 5645 STOP("null oop passed to encode_heap_oop_not_null2"); 5646 bind(ok); 5647 } 5648 #endif 5649 verify_oop_msg(src, "broken oop in encode_heap_oop_not_null2"); 5650 if (dst != src) { 5651 movq(dst, src); 5652 } 5653 if (CompressedOops::base() != nullptr) { 5654 subq(dst, r12_heapbase); 5655 } 5656 if (CompressedOops::shift() != 0) { 5657 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5658 shrq(dst, LogMinObjAlignmentInBytes); 5659 } 5660 } 5661 5662 void MacroAssembler::decode_heap_oop(Register r) { 5663 #ifdef ASSERT 5664 verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?"); 5665 #endif 5666 if (CompressedOops::base() == nullptr) { 5667 if (CompressedOops::shift() != 0) { 5668 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5669 shlq(r, LogMinObjAlignmentInBytes); 5670 } 5671 } else { 5672 Label done; 5673 shlq(r, LogMinObjAlignmentInBytes); 5674 jccb(Assembler::equal, done); 5675 addq(r, r12_heapbase); 5676 bind(done); 5677 } 5678 verify_oop_msg(r, "broken oop in decode_heap_oop"); 5679 } 5680 5681 void MacroAssembler::decode_heap_oop_not_null(Register r) { 5682 // Note: it will change flags 5683 assert (UseCompressedOops, "should only be used for compressed headers"); 5684 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5685 // Cannot assert, unverified entry point counts instructions (see .ad file) 5686 // vtableStubs also counts instructions in pd_code_size_limit. 5687 // Also do not verify_oop as this is called by verify_oop. 5688 if (CompressedOops::shift() != 0) { 5689 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5690 shlq(r, LogMinObjAlignmentInBytes); 5691 if (CompressedOops::base() != nullptr) { 5692 addq(r, r12_heapbase); 5693 } 5694 } else { 5695 assert (CompressedOops::base() == nullptr, "sanity"); 5696 } 5697 } 5698 5699 void MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) { 5700 // Note: it will change flags 5701 assert (UseCompressedOops, "should only be used for compressed headers"); 5702 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5703 // Cannot assert, unverified entry point counts instructions (see .ad file) 5704 // vtableStubs also counts instructions in pd_code_size_limit. 5705 // Also do not verify_oop as this is called by verify_oop. 5706 if (CompressedOops::shift() != 0) { 5707 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5708 if (LogMinObjAlignmentInBytes == Address::times_8) { 5709 leaq(dst, Address(r12_heapbase, src, Address::times_8, 0)); 5710 } else { 5711 if (dst != src) { 5712 movq(dst, src); 5713 } 5714 shlq(dst, LogMinObjAlignmentInBytes); 5715 if (CompressedOops::base() != nullptr) { 5716 addq(dst, r12_heapbase); 5717 } 5718 } 5719 } else { 5720 assert (CompressedOops::base() == nullptr, "sanity"); 5721 if (dst != src) { 5722 movq(dst, src); 5723 } 5724 } 5725 } 5726 5727 void MacroAssembler::encode_klass_not_null(Register r, Register tmp) { 5728 BLOCK_COMMENT("encode_klass_not_null {"); 5729 assert_different_registers(r, tmp); 5730 if (CompressedKlassPointers::base() != nullptr) { 5731 if (AOTCodeCache::is_on_for_dump()) { 5732 movptr(tmp, ExternalAddress(CompressedKlassPointers::base_addr())); 5733 } else { 5734 movptr(tmp, (intptr_t)CompressedKlassPointers::base()); 5735 } 5736 subq(r, tmp); 5737 } 5738 if (CompressedKlassPointers::shift() != 0) { 5739 shrq(r, CompressedKlassPointers::shift()); 5740 } 5741 BLOCK_COMMENT("} encode_klass_not_null"); 5742 } 5743 5744 void MacroAssembler::encode_and_move_klass_not_null(Register dst, Register src) { 5745 BLOCK_COMMENT("encode_and_move_klass_not_null {"); 5746 assert_different_registers(src, dst); 5747 if (CompressedKlassPointers::base() != nullptr) { 5748 movptr(dst, -(intptr_t)CompressedKlassPointers::base()); 5749 addq(dst, src); 5750 } else { 5751 movptr(dst, src); 5752 } 5753 if (CompressedKlassPointers::shift() != 0) { 5754 shrq(dst, CompressedKlassPointers::shift()); 5755 } 5756 BLOCK_COMMENT("} encode_and_move_klass_not_null"); 5757 } 5758 5759 void MacroAssembler::decode_klass_not_null(Register r, Register tmp) { 5760 BLOCK_COMMENT("decode_klass_not_null {"); 5761 assert_different_registers(r, tmp); 5762 // Note: it will change flags 5763 assert(UseCompressedClassPointers, "should only be used for compressed headers"); 5764 // Cannot assert, unverified entry point counts instructions (see .ad file) 5765 // vtableStubs also counts instructions in pd_code_size_limit. 5766 // Also do not verify_oop as this is called by verify_oop. 5767 if (CompressedKlassPointers::shift() != 0) { 5768 shlq(r, CompressedKlassPointers::shift()); 5769 } 5770 if (CompressedKlassPointers::base() != nullptr) { 5771 if (AOTCodeCache::is_on_for_dump()) { 5772 movptr(tmp, ExternalAddress(CompressedKlassPointers::base_addr())); 5773 } else { 5774 movptr(tmp, (intptr_t)CompressedKlassPointers::base()); 5775 } 5776 addq(r, tmp); 5777 } 5778 BLOCK_COMMENT("} decode_klass_not_null"); 5779 } 5780 5781 void MacroAssembler::decode_and_move_klass_not_null(Register dst, Register src) { 5782 BLOCK_COMMENT("decode_and_move_klass_not_null {"); 5783 assert_different_registers(src, dst); 5784 // Note: it will change flags 5785 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 5786 // Cannot assert, unverified entry point counts instructions (see .ad file) 5787 // vtableStubs also counts instructions in pd_code_size_limit. 5788 // Also do not verify_oop as this is called by verify_oop. 5789 5790 if (CompressedKlassPointers::base() == nullptr && 5791 CompressedKlassPointers::shift() == 0) { 5792 // The best case scenario is that there is no base or shift. Then it is already 5793 // a pointer that needs nothing but a register rename. 5794 movl(dst, src); 5795 } else { 5796 if (CompressedKlassPointers::shift() <= Address::times_8) { 5797 if (CompressedKlassPointers::base() != nullptr) { 5798 movptr(dst, (intptr_t)CompressedKlassPointers::base()); 5799 } else { 5800 xorq(dst, dst); 5801 } 5802 if (CompressedKlassPointers::shift() != 0) { 5803 assert(CompressedKlassPointers::shift() == Address::times_8, "klass not aligned on 64bits?"); 5804 leaq(dst, Address(dst, src, Address::times_8, 0)); 5805 } else { 5806 addq(dst, src); 5807 } 5808 } else { 5809 if (CompressedKlassPointers::base() != nullptr) { 5810 const intptr_t base_right_shifted = 5811 (intptr_t)CompressedKlassPointers::base() >> CompressedKlassPointers::shift(); 5812 movptr(dst, base_right_shifted); 5813 } else { 5814 xorq(dst, dst); 5815 } 5816 addq(dst, src); 5817 shlq(dst, CompressedKlassPointers::shift()); 5818 } 5819 } 5820 BLOCK_COMMENT("} decode_and_move_klass_not_null"); 5821 } 5822 5823 void MacroAssembler::set_narrow_oop(Register dst, jobject obj) { 5824 assert (UseCompressedOops, "should only be used for compressed headers"); 5825 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5826 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5827 int oop_index = oop_recorder()->find_index(obj); 5828 RelocationHolder rspec = oop_Relocation::spec(oop_index); 5829 mov_narrow_oop(dst, oop_index, rspec); 5830 } 5831 5832 void MacroAssembler::set_narrow_oop(Address dst, jobject obj) { 5833 assert (UseCompressedOops, "should only be used for compressed headers"); 5834 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5835 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5836 int oop_index = oop_recorder()->find_index(obj); 5837 RelocationHolder rspec = oop_Relocation::spec(oop_index); 5838 mov_narrow_oop(dst, oop_index, rspec); 5839 } 5840 5841 void MacroAssembler::set_narrow_klass(Register dst, Klass* k) { 5842 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 5843 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5844 int klass_index = oop_recorder()->find_index(k); 5845 RelocationHolder rspec = metadata_Relocation::spec(klass_index); 5846 mov_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec); 5847 } 5848 5849 void MacroAssembler::set_narrow_klass(Address dst, Klass* k) { 5850 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 5851 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5852 int klass_index = oop_recorder()->find_index(k); 5853 RelocationHolder rspec = metadata_Relocation::spec(klass_index); 5854 mov_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec); 5855 } 5856 5857 void MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) { 5858 assert (UseCompressedOops, "should only be used for compressed headers"); 5859 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5860 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5861 int oop_index = oop_recorder()->find_index(obj); 5862 RelocationHolder rspec = oop_Relocation::spec(oop_index); 5863 Assembler::cmp_narrow_oop(dst, oop_index, rspec); 5864 } 5865 5866 void MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) { 5867 assert (UseCompressedOops, "should only be used for compressed headers"); 5868 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5869 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5870 int oop_index = oop_recorder()->find_index(obj); 5871 RelocationHolder rspec = oop_Relocation::spec(oop_index); 5872 Assembler::cmp_narrow_oop(dst, oop_index, rspec); 5873 } 5874 5875 void MacroAssembler::cmp_narrow_klass(Register dst, Klass* k) { 5876 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 5877 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5878 int klass_index = oop_recorder()->find_index(k); 5879 RelocationHolder rspec = metadata_Relocation::spec(klass_index); 5880 Assembler::cmp_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec); 5881 } 5882 5883 void MacroAssembler::cmp_narrow_klass(Address dst, Klass* k) { 5884 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 5885 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5886 int klass_index = oop_recorder()->find_index(k); 5887 RelocationHolder rspec = metadata_Relocation::spec(klass_index); 5888 Assembler::cmp_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec); 5889 } 5890 5891 void MacroAssembler::reinit_heapbase() { 5892 if (UseCompressedOops) { 5893 if (Universe::heap() != nullptr) { 5894 if (CompressedOops::base() == nullptr) { 5895 MacroAssembler::xorptr(r12_heapbase, r12_heapbase); 5896 } else { 5897 mov64(r12_heapbase, (int64_t)CompressedOops::base()); 5898 } 5899 } else { 5900 movptr(r12_heapbase, ExternalAddress(CompressedOops::base_addr())); 5901 } 5902 } 5903 } 5904 5905 #if COMPILER2_OR_JVMCI 5906 5907 // clear memory of size 'cnt' qwords, starting at 'base' using XMM/YMM/ZMM registers 5908 void MacroAssembler::xmm_clear_mem(Register base, Register cnt, Register val, XMMRegister xtmp, KRegister mask) { 5909 // cnt - number of qwords (8-byte words). 5910 // base - start address, qword aligned. 5911 Label L_zero_64_bytes, L_loop, L_sloop, L_tail, L_end; 5912 bool use64byteVector = (MaxVectorSize == 64) && (VM_Version::avx3_threshold() == 0); 5913 if (use64byteVector) { 5914 evpbroadcastq(xtmp, val, AVX_512bit); 5915 } else if (MaxVectorSize >= 32) { 5916 movdq(xtmp, val); 5917 punpcklqdq(xtmp, xtmp); 5918 vinserti128_high(xtmp, xtmp); 5919 } else { 5920 movdq(xtmp, val); 5921 punpcklqdq(xtmp, xtmp); 5922 } 5923 jmp(L_zero_64_bytes); 5924 5925 BIND(L_loop); 5926 if (MaxVectorSize >= 32) { 5927 fill64(base, 0, xtmp, use64byteVector); 5928 } else { 5929 movdqu(Address(base, 0), xtmp); 5930 movdqu(Address(base, 16), xtmp); 5931 movdqu(Address(base, 32), xtmp); 5932 movdqu(Address(base, 48), xtmp); 5933 } 5934 addptr(base, 64); 5935 5936 BIND(L_zero_64_bytes); 5937 subptr(cnt, 8); 5938 jccb(Assembler::greaterEqual, L_loop); 5939 5940 // Copy trailing 64 bytes 5941 if (use64byteVector) { 5942 addptr(cnt, 8); 5943 jccb(Assembler::equal, L_end); 5944 fill64_masked(3, base, 0, xtmp, mask, cnt, val, true); 5945 jmp(L_end); 5946 } else { 5947 addptr(cnt, 4); 5948 jccb(Assembler::less, L_tail); 5949 if (MaxVectorSize >= 32) { 5950 vmovdqu(Address(base, 0), xtmp); 5951 } else { 5952 movdqu(Address(base, 0), xtmp); 5953 movdqu(Address(base, 16), xtmp); 5954 } 5955 } 5956 addptr(base, 32); 5957 subptr(cnt, 4); 5958 5959 BIND(L_tail); 5960 addptr(cnt, 4); 5961 jccb(Assembler::lessEqual, L_end); 5962 if (UseAVX > 2 && MaxVectorSize >= 32 && VM_Version::supports_avx512vl()) { 5963 fill32_masked(3, base, 0, xtmp, mask, cnt, val); 5964 } else { 5965 decrement(cnt); 5966 5967 BIND(L_sloop); 5968 movq(Address(base, 0), xtmp); 5969 addptr(base, 8); 5970 decrement(cnt); 5971 jccb(Assembler::greaterEqual, L_sloop); 5972 } 5973 BIND(L_end); 5974 } 5975 5976 int MacroAssembler::store_inline_type_fields_to_buf(ciInlineKlass* vk, bool from_interpreter) { 5977 assert(InlineTypeReturnedAsFields, "Inline types should never be returned as fields"); 5978 // An inline type might be returned. If fields are in registers we 5979 // need to allocate an inline type instance and initialize it with 5980 // the value of the fields. 5981 Label skip; 5982 // We only need a new buffered inline type if a new one is not returned 5983 testptr(rax, 1); 5984 jcc(Assembler::zero, skip); 5985 int call_offset = -1; 5986 5987 #ifdef _LP64 5988 // The following code is similar to allocate_instance but has some slight differences, 5989 // e.g. object size is always not zero, sometimes it's constant; storing klass ptr after 5990 // allocating is not necessary if vk != nullptr, etc. allocate_instance is not aware of these. 5991 Label slow_case; 5992 // 1. Try to allocate a new buffered inline instance either from TLAB or eden space 5993 mov(rscratch1, rax); // save rax for slow_case since *_allocate may corrupt it when allocation failed 5994 if (vk != nullptr) { 5995 // Called from C1, where the return type is statically known. 5996 movptr(rbx, (intptr_t)vk->get_InlineKlass()); 5997 jint lh = vk->layout_helper(); 5998 assert(lh != Klass::_lh_neutral_value, "inline class in return type must have been resolved"); 5999 if (UseTLAB && !Klass::layout_helper_needs_slow_path(lh)) { 6000 tlab_allocate(rax, noreg, lh, r13, r14, slow_case); 6001 } else { 6002 jmp(slow_case); 6003 } 6004 } else { 6005 // Call from interpreter. RAX contains ((the InlineKlass* of the return type) | 0x01) 6006 mov(rbx, rax); 6007 andptr(rbx, -2); 6008 if (UseTLAB) { 6009 movl(r14, Address(rbx, Klass::layout_helper_offset())); 6010 testl(r14, Klass::_lh_instance_slow_path_bit); 6011 jcc(Assembler::notZero, slow_case); 6012 tlab_allocate(rax, r14, 0, r13, r14, slow_case); 6013 } else { 6014 jmp(slow_case); 6015 } 6016 } 6017 if (UseTLAB) { 6018 // 2. Initialize buffered inline instance header 6019 Register buffer_obj = rax; 6020 if (UseCompactObjectHeaders) { 6021 Register mark_word = r13; 6022 movptr(mark_word, Address(rbx, Klass::prototype_header_offset())); 6023 movptr(Address(buffer_obj, oopDesc::mark_offset_in_bytes ()), mark_word); 6024 } else { 6025 movptr(Address(buffer_obj, oopDesc::mark_offset_in_bytes()), (intptr_t)markWord::inline_type_prototype().value()); 6026 xorl(r13, r13); 6027 store_klass_gap(buffer_obj, r13); 6028 if (vk == nullptr) { 6029 // store_klass corrupts rbx(klass), so save it in r13 for later use (interpreter case only). 6030 mov(r13, rbx); 6031 } 6032 store_klass(buffer_obj, rbx, rscratch1); 6033 } 6034 // 3. Initialize its fields with an inline class specific handler 6035 if (vk != nullptr) { 6036 call(RuntimeAddress(vk->pack_handler())); // no need for call info as this will not safepoint. 6037 } else { 6038 movptr(rbx, Address(r13, InstanceKlass::adr_inlineklass_fixed_block_offset())); 6039 movptr(rbx, Address(rbx, InlineKlass::pack_handler_offset())); 6040 call(rbx); 6041 } 6042 jmp(skip); 6043 } 6044 bind(slow_case); 6045 // We failed to allocate a new inline type, fall back to a runtime 6046 // call. Some oop field may be live in some registers but we can't 6047 // tell. That runtime call will take care of preserving them 6048 // across a GC if there's one. 6049 mov(rax, rscratch1); 6050 #endif 6051 6052 if (from_interpreter) { 6053 super_call_VM_leaf(StubRoutines::store_inline_type_fields_to_buf()); 6054 } else { 6055 call(RuntimeAddress(StubRoutines::store_inline_type_fields_to_buf())); 6056 call_offset = offset(); 6057 } 6058 6059 bind(skip); 6060 return call_offset; 6061 } 6062 6063 // Move a value between registers/stack slots and update the reg_state 6064 bool MacroAssembler::move_helper(VMReg from, VMReg to, BasicType bt, RegState reg_state[]) { 6065 assert(from->is_valid() && to->is_valid(), "source and destination must be valid"); 6066 if (reg_state[to->value()] == reg_written) { 6067 return true; // Already written 6068 } 6069 if (from != to && bt != T_VOID) { 6070 if (reg_state[to->value()] == reg_readonly) { 6071 return false; // Not yet writable 6072 } 6073 if (from->is_reg()) { 6074 if (to->is_reg()) { 6075 if (from->is_XMMRegister()) { 6076 if (bt == T_DOUBLE) { 6077 movdbl(to->as_XMMRegister(), from->as_XMMRegister()); 6078 } else { 6079 assert(bt == T_FLOAT, "must be float"); 6080 movflt(to->as_XMMRegister(), from->as_XMMRegister()); 6081 } 6082 } else { 6083 movq(to->as_Register(), from->as_Register()); 6084 } 6085 } else { 6086 int st_off = to->reg2stack() * VMRegImpl::stack_slot_size + wordSize; 6087 Address to_addr = Address(rsp, st_off); 6088 if (from->is_XMMRegister()) { 6089 if (bt == T_DOUBLE) { 6090 movdbl(to_addr, from->as_XMMRegister()); 6091 } else { 6092 assert(bt == T_FLOAT, "must be float"); 6093 movflt(to_addr, from->as_XMMRegister()); 6094 } 6095 } else { 6096 movq(to_addr, from->as_Register()); 6097 } 6098 } 6099 } else { 6100 Address from_addr = Address(rsp, from->reg2stack() * VMRegImpl::stack_slot_size + wordSize); 6101 if (to->is_reg()) { 6102 if (to->is_XMMRegister()) { 6103 if (bt == T_DOUBLE) { 6104 movdbl(to->as_XMMRegister(), from_addr); 6105 } else { 6106 assert(bt == T_FLOAT, "must be float"); 6107 movflt(to->as_XMMRegister(), from_addr); 6108 } 6109 } else { 6110 movq(to->as_Register(), from_addr); 6111 } 6112 } else { 6113 int st_off = to->reg2stack() * VMRegImpl::stack_slot_size + wordSize; 6114 movq(r13, from_addr); 6115 movq(Address(rsp, st_off), r13); 6116 } 6117 } 6118 } 6119 // Update register states 6120 reg_state[from->value()] = reg_writable; 6121 reg_state[to->value()] = reg_written; 6122 return true; 6123 } 6124 6125 // Calculate the extra stack space required for packing or unpacking inline 6126 // args and adjust the stack pointer 6127 int MacroAssembler::extend_stack_for_inline_args(int args_on_stack) { 6128 // Two additional slots to account for return address 6129 int sp_inc = (args_on_stack + 2) * VMRegImpl::stack_slot_size; 6130 sp_inc = align_up(sp_inc, StackAlignmentInBytes); 6131 // Save the return address, adjust the stack (make sure it is properly 6132 // 16-byte aligned) and copy the return address to the new top of the stack. 6133 // The stack will be repaired on return (see MacroAssembler::remove_frame). 6134 assert(sp_inc > 0, "sanity"); 6135 pop(r13); 6136 subptr(rsp, sp_inc); 6137 push(r13); 6138 return sp_inc; 6139 } 6140 6141 // Read all fields from an inline type buffer and store the field values in registers/stack slots. 6142 bool MacroAssembler::unpack_inline_helper(const GrowableArray<SigEntry>* sig, int& sig_index, 6143 VMReg from, int& from_index, VMRegPair* to, int to_count, int& to_index, 6144 RegState reg_state[]) { 6145 assert(sig->at(sig_index)._bt == T_VOID, "should be at end delimiter"); 6146 assert(from->is_valid(), "source must be valid"); 6147 bool progress = false; 6148 #ifdef ASSERT 6149 const int start_offset = offset(); 6150 #endif 6151 6152 Label L_null, L_notNull; 6153 // Don't use r14 as tmp because it's used for spilling (see MacroAssembler::spill_reg_for) 6154 Register tmp1 = r10; 6155 Register tmp2 = r13; 6156 Register fromReg = noreg; 6157 ScalarizedInlineArgsStream stream(sig, sig_index, to, to_count, to_index, -1); 6158 bool done = true; 6159 bool mark_done = true; 6160 VMReg toReg; 6161 BasicType bt; 6162 // Check if argument requires a null check 6163 bool null_check = false; 6164 VMReg nullCheckReg; 6165 while (stream.next(nullCheckReg, bt)) { 6166 if (sig->at(stream.sig_index())._offset == -1) { 6167 null_check = true; 6168 break; 6169 } 6170 } 6171 stream.reset(sig_index, to_index); 6172 while (stream.next(toReg, bt)) { 6173 assert(toReg->is_valid(), "destination must be valid"); 6174 int idx = (int)toReg->value(); 6175 if (reg_state[idx] == reg_readonly) { 6176 if (idx != from->value()) { 6177 mark_done = false; 6178 } 6179 done = false; 6180 continue; 6181 } else if (reg_state[idx] == reg_written) { 6182 continue; 6183 } 6184 assert(reg_state[idx] == reg_writable, "must be writable"); 6185 reg_state[idx] = reg_written; 6186 progress = true; 6187 6188 if (fromReg == noreg) { 6189 if (from->is_reg()) { 6190 fromReg = from->as_Register(); 6191 } else { 6192 int st_off = from->reg2stack() * VMRegImpl::stack_slot_size + wordSize; 6193 movq(tmp1, Address(rsp, st_off)); 6194 fromReg = tmp1; 6195 } 6196 if (null_check) { 6197 // Nullable inline type argument, emit null check 6198 testptr(fromReg, fromReg); 6199 jcc(Assembler::zero, L_null); 6200 } 6201 } 6202 int off = sig->at(stream.sig_index())._offset; 6203 if (off == -1) { 6204 assert(null_check, "Missing null check at"); 6205 if (toReg->is_stack()) { 6206 int st_off = toReg->reg2stack() * VMRegImpl::stack_slot_size + wordSize; 6207 movq(Address(rsp, st_off), 1); 6208 } else { 6209 movq(toReg->as_Register(), 1); 6210 } 6211 continue; 6212 } 6213 assert(off > 0, "offset in object should be positive"); 6214 Address fromAddr = Address(fromReg, off); 6215 if (!toReg->is_XMMRegister()) { 6216 Register dst = toReg->is_stack() ? tmp2 : toReg->as_Register(); 6217 if (is_reference_type(bt)) { 6218 load_heap_oop(dst, fromAddr); 6219 } else { 6220 bool is_signed = (bt != T_CHAR) && (bt != T_BOOLEAN); 6221 load_sized_value(dst, fromAddr, type2aelembytes(bt), is_signed); 6222 } 6223 if (toReg->is_stack()) { 6224 int st_off = toReg->reg2stack() * VMRegImpl::stack_slot_size + wordSize; 6225 movq(Address(rsp, st_off), dst); 6226 } 6227 } else if (bt == T_DOUBLE) { 6228 movdbl(toReg->as_XMMRegister(), fromAddr); 6229 } else { 6230 assert(bt == T_FLOAT, "must be float"); 6231 movflt(toReg->as_XMMRegister(), fromAddr); 6232 } 6233 } 6234 if (progress && null_check) { 6235 if (done) { 6236 jmp(L_notNull); 6237 bind(L_null); 6238 // Set null marker to zero to signal that the argument is null. 6239 // Also set all oop fields to zero to make the GC happy. 6240 stream.reset(sig_index, to_index); 6241 while (stream.next(toReg, bt)) { 6242 if (sig->at(stream.sig_index())._offset == -1 || 6243 bt == T_OBJECT || bt == T_ARRAY) { 6244 if (toReg->is_stack()) { 6245 int st_off = toReg->reg2stack() * VMRegImpl::stack_slot_size + wordSize; 6246 movq(Address(rsp, st_off), 0); 6247 } else { 6248 xorq(toReg->as_Register(), toReg->as_Register()); 6249 } 6250 } 6251 } 6252 bind(L_notNull); 6253 } else { 6254 bind(L_null); 6255 } 6256 } 6257 6258 sig_index = stream.sig_index(); 6259 to_index = stream.regs_index(); 6260 6261 if (mark_done && reg_state[from->value()] != reg_written) { 6262 // This is okay because no one else will write to that slot 6263 reg_state[from->value()] = reg_writable; 6264 } 6265 from_index--; 6266 assert(progress || (start_offset == offset()), "should not emit code"); 6267 return done; 6268 } 6269 6270 bool MacroAssembler::pack_inline_helper(const GrowableArray<SigEntry>* sig, int& sig_index, int vtarg_index, 6271 VMRegPair* from, int from_count, int& from_index, VMReg to, 6272 RegState reg_state[], Register val_array) { 6273 assert(sig->at(sig_index)._bt == T_METADATA, "should be at delimiter"); 6274 assert(to->is_valid(), "destination must be valid"); 6275 6276 if (reg_state[to->value()] == reg_written) { 6277 skip_unpacked_fields(sig, sig_index, from, from_count, from_index); 6278 return true; // Already written 6279 } 6280 6281 // TODO 8284443 Isn't it an issue if below code uses r14 as tmp when it contains a spilled value? 6282 // Be careful with r14 because it's used for spilling (see MacroAssembler::spill_reg_for). 6283 Register val_obj_tmp = r11; 6284 Register from_reg_tmp = r14; 6285 Register tmp1 = r10; 6286 Register tmp2 = r13; 6287 Register tmp3 = rbx; 6288 Register val_obj = to->is_stack() ? val_obj_tmp : to->as_Register(); 6289 6290 assert_different_registers(val_obj_tmp, from_reg_tmp, tmp1, tmp2, tmp3, val_array); 6291 6292 if (reg_state[to->value()] == reg_readonly) { 6293 if (!is_reg_in_unpacked_fields(sig, sig_index, to, from, from_count, from_index)) { 6294 skip_unpacked_fields(sig, sig_index, from, from_count, from_index); 6295 return false; // Not yet writable 6296 } 6297 val_obj = val_obj_tmp; 6298 } 6299 6300 int index = arrayOopDesc::base_offset_in_bytes(T_OBJECT) + vtarg_index * type2aelembytes(T_OBJECT); 6301 load_heap_oop(val_obj, Address(val_array, index)); 6302 6303 ScalarizedInlineArgsStream stream(sig, sig_index, from, from_count, from_index); 6304 VMReg fromReg; 6305 BasicType bt; 6306 Label L_null; 6307 while (stream.next(fromReg, bt)) { 6308 assert(fromReg->is_valid(), "source must be valid"); 6309 reg_state[fromReg->value()] = reg_writable; 6310 6311 int off = sig->at(stream.sig_index())._offset; 6312 if (off == -1) { 6313 // Nullable inline type argument, emit null check 6314 Label L_notNull; 6315 if (fromReg->is_stack()) { 6316 int ld_off = fromReg->reg2stack() * VMRegImpl::stack_slot_size + wordSize; 6317 testb(Address(rsp, ld_off), 1); 6318 } else { 6319 testb(fromReg->as_Register(), 1); 6320 } 6321 jcc(Assembler::notZero, L_notNull); 6322 movptr(val_obj, 0); 6323 jmp(L_null); 6324 bind(L_notNull); 6325 continue; 6326 } 6327 6328 assert(off > 0, "offset in object should be positive"); 6329 size_t size_in_bytes = is_java_primitive(bt) ? type2aelembytes(bt) : wordSize; 6330 6331 // Pack the scalarized field into the value object. 6332 Address dst(val_obj, off); 6333 if (!fromReg->is_XMMRegister()) { 6334 Register src; 6335 if (fromReg->is_stack()) { 6336 src = from_reg_tmp; 6337 int ld_off = fromReg->reg2stack() * VMRegImpl::stack_slot_size + wordSize; 6338 load_sized_value(src, Address(rsp, ld_off), size_in_bytes, /* is_signed */ false); 6339 } else { 6340 src = fromReg->as_Register(); 6341 } 6342 assert_different_registers(dst.base(), src, tmp1, tmp2, tmp3, val_array); 6343 if (is_reference_type(bt)) { 6344 store_heap_oop(dst, src, tmp1, tmp2, tmp3, IN_HEAP | ACCESS_WRITE | IS_DEST_UNINITIALIZED); 6345 } else { 6346 store_sized_value(dst, src, size_in_bytes); 6347 } 6348 } else if (bt == T_DOUBLE) { 6349 movdbl(dst, fromReg->as_XMMRegister()); 6350 } else { 6351 assert(bt == T_FLOAT, "must be float"); 6352 movflt(dst, fromReg->as_XMMRegister()); 6353 } 6354 } 6355 bind(L_null); 6356 sig_index = stream.sig_index(); 6357 from_index = stream.regs_index(); 6358 6359 assert(reg_state[to->value()] == reg_writable, "must have already been read"); 6360 bool success = move_helper(val_obj->as_VMReg(), to, T_OBJECT, reg_state); 6361 assert(success, "to register must be writeable"); 6362 return true; 6363 } 6364 6365 VMReg MacroAssembler::spill_reg_for(VMReg reg) { 6366 return reg->is_XMMRegister() ? xmm8->as_VMReg() : r14->as_VMReg(); 6367 } 6368 6369 void MacroAssembler::remove_frame(int initial_framesize, bool needs_stack_repair) { 6370 assert((initial_framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned"); 6371 if (needs_stack_repair) { 6372 // TODO 8284443 Add a comment drawing the frame like in Aarch64's version of MacroAssembler::remove_frame 6373 movq(rbp, Address(rsp, initial_framesize)); 6374 // The stack increment resides just below the saved rbp 6375 addq(rsp, Address(rsp, initial_framesize - wordSize)); 6376 } else { 6377 if (initial_framesize > 0) { 6378 addq(rsp, initial_framesize); 6379 } 6380 pop(rbp); 6381 } 6382 } 6383 6384 // Clearing constant sized memory using YMM/ZMM registers. 6385 void MacroAssembler::clear_mem(Register base, int cnt, Register rtmp, XMMRegister xtmp, KRegister mask) { 6386 assert(UseAVX > 2 && VM_Version::supports_avx512vl(), ""); 6387 bool use64byteVector = (MaxVectorSize > 32) && (VM_Version::avx3_threshold() == 0); 6388 6389 int vector64_count = (cnt & (~0x7)) >> 3; 6390 cnt = cnt & 0x7; 6391 const int fill64_per_loop = 4; 6392 const int max_unrolled_fill64 = 8; 6393 6394 // 64 byte initialization loop. 6395 vpxor(xtmp, xtmp, xtmp, use64byteVector ? AVX_512bit : AVX_256bit); 6396 int start64 = 0; 6397 if (vector64_count > max_unrolled_fill64) { 6398 Label LOOP; 6399 Register index = rtmp; 6400 6401 start64 = vector64_count - (vector64_count % fill64_per_loop); 6402 6403 movl(index, 0); 6404 BIND(LOOP); 6405 for (int i = 0; i < fill64_per_loop; i++) { 6406 fill64(Address(base, index, Address::times_1, i * 64), xtmp, use64byteVector); 6407 } 6408 addl(index, fill64_per_loop * 64); 6409 cmpl(index, start64 * 64); 6410 jccb(Assembler::less, LOOP); 6411 } 6412 for (int i = start64; i < vector64_count; i++) { 6413 fill64(base, i * 64, xtmp, use64byteVector); 6414 } 6415 6416 // Clear remaining 64 byte tail. 6417 int disp = vector64_count * 64; 6418 if (cnt) { 6419 switch (cnt) { 6420 case 1: 6421 movq(Address(base, disp), xtmp); 6422 break; 6423 case 2: 6424 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_128bit); 6425 break; 6426 case 3: 6427 movl(rtmp, 0x7); 6428 kmovwl(mask, rtmp); 6429 evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_256bit); 6430 break; 6431 case 4: 6432 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit); 6433 break; 6434 case 5: 6435 if (use64byteVector) { 6436 movl(rtmp, 0x1F); 6437 kmovwl(mask, rtmp); 6438 evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_512bit); 6439 } else { 6440 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit); 6441 movq(Address(base, disp + 32), xtmp); 6442 } 6443 break; 6444 case 6: 6445 if (use64byteVector) { 6446 movl(rtmp, 0x3F); 6447 kmovwl(mask, rtmp); 6448 evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_512bit); 6449 } else { 6450 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit); 6451 evmovdqu(T_LONG, k0, Address(base, disp + 32), xtmp, false, Assembler::AVX_128bit); 6452 } 6453 break; 6454 case 7: 6455 if (use64byteVector) { 6456 movl(rtmp, 0x7F); 6457 kmovwl(mask, rtmp); 6458 evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_512bit); 6459 } else { 6460 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit); 6461 movl(rtmp, 0x7); 6462 kmovwl(mask, rtmp); 6463 evmovdqu(T_LONG, mask, Address(base, disp + 32), xtmp, true, Assembler::AVX_256bit); 6464 } 6465 break; 6466 default: 6467 fatal("Unexpected length : %d\n",cnt); 6468 break; 6469 } 6470 } 6471 } 6472 6473 void MacroAssembler::clear_mem(Register base, Register cnt, Register val, XMMRegister xtmp, 6474 bool is_large, bool word_copy_only, KRegister mask) { 6475 // cnt - number of qwords (8-byte words). 6476 // base - start address, qword aligned. 6477 // is_large - if optimizers know cnt is larger than InitArrayShortSize 6478 assert(base==rdi, "base register must be edi for rep stos"); 6479 assert(val==rax, "val register must be eax for rep stos"); 6480 assert(cnt==rcx, "cnt register must be ecx for rep stos"); 6481 assert(InitArrayShortSize % BytesPerLong == 0, 6482 "InitArrayShortSize should be the multiple of BytesPerLong"); 6483 6484 Label DONE; 6485 6486 if (!is_large) { 6487 Label LOOP, LONG; 6488 cmpptr(cnt, InitArrayShortSize/BytesPerLong); 6489 jccb(Assembler::greater, LONG); 6490 6491 decrement(cnt); 6492 jccb(Assembler::negative, DONE); // Zero length 6493 6494 // Use individual pointer-sized stores for small counts: 6495 BIND(LOOP); 6496 movptr(Address(base, cnt, Address::times_ptr), val); 6497 decrement(cnt); 6498 jccb(Assembler::greaterEqual, LOOP); 6499 jmpb(DONE); 6500 6501 BIND(LONG); 6502 } 6503 6504 // Use longer rep-prefixed ops for non-small counts: 6505 if (UseFastStosb && !word_copy_only) { 6506 shlptr(cnt, 3); // convert to number of bytes 6507 rep_stosb(); 6508 } else if (UseXMMForObjInit) { 6509 xmm_clear_mem(base, cnt, val, xtmp, mask); 6510 } else { 6511 rep_stos(); 6512 } 6513 6514 BIND(DONE); 6515 } 6516 6517 #endif //COMPILER2_OR_JVMCI 6518 6519 6520 void MacroAssembler::generate_fill(BasicType t, bool aligned, 6521 Register to, Register value, Register count, 6522 Register rtmp, XMMRegister xtmp) { 6523 ShortBranchVerifier sbv(this); 6524 assert_different_registers(to, value, count, rtmp); 6525 Label L_exit; 6526 Label L_fill_2_bytes, L_fill_4_bytes; 6527 6528 #if defined(COMPILER2) 6529 if(MaxVectorSize >=32 && 6530 VM_Version::supports_avx512vlbw() && 6531 VM_Version::supports_bmi2()) { 6532 generate_fill_avx3(t, to, value, count, rtmp, xtmp); 6533 return; 6534 } 6535 #endif 6536 6537 int shift = -1; 6538 switch (t) { 6539 case T_BYTE: 6540 shift = 2; 6541 break; 6542 case T_SHORT: 6543 shift = 1; 6544 break; 6545 case T_INT: 6546 shift = 0; 6547 break; 6548 default: ShouldNotReachHere(); 6549 } 6550 6551 if (t == T_BYTE) { 6552 andl(value, 0xff); 6553 movl(rtmp, value); 6554 shll(rtmp, 8); 6555 orl(value, rtmp); 6556 } 6557 if (t == T_SHORT) { 6558 andl(value, 0xffff); 6559 } 6560 if (t == T_BYTE || t == T_SHORT) { 6561 movl(rtmp, value); 6562 shll(rtmp, 16); 6563 orl(value, rtmp); 6564 } 6565 6566 cmpptr(count, 2<<shift); // Short arrays (< 8 bytes) fill by element 6567 jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp 6568 if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) { 6569 Label L_skip_align2; 6570 // align source address at 4 bytes address boundary 6571 if (t == T_BYTE) { 6572 Label L_skip_align1; 6573 // One byte misalignment happens only for byte arrays 6574 testptr(to, 1); 6575 jccb(Assembler::zero, L_skip_align1); 6576 movb(Address(to, 0), value); 6577 increment(to); 6578 decrement(count); 6579 BIND(L_skip_align1); 6580 } 6581 // Two bytes misalignment happens only for byte and short (char) arrays 6582 testptr(to, 2); 6583 jccb(Assembler::zero, L_skip_align2); 6584 movw(Address(to, 0), value); 6585 addptr(to, 2); 6586 subptr(count, 1<<(shift-1)); 6587 BIND(L_skip_align2); 6588 } 6589 { 6590 Label L_fill_32_bytes; 6591 if (!UseUnalignedLoadStores) { 6592 // align to 8 bytes, we know we are 4 byte aligned to start 6593 testptr(to, 4); 6594 jccb(Assembler::zero, L_fill_32_bytes); 6595 movl(Address(to, 0), value); 6596 addptr(to, 4); 6597 subptr(count, 1<<shift); 6598 } 6599 BIND(L_fill_32_bytes); 6600 { 6601 Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes; 6602 movdl(xtmp, value); 6603 if (UseAVX >= 2 && UseUnalignedLoadStores) { 6604 Label L_check_fill_32_bytes; 6605 if (UseAVX > 2) { 6606 // Fill 64-byte chunks 6607 Label L_fill_64_bytes_loop_avx3, L_check_fill_64_bytes_avx2; 6608 6609 // If number of bytes to fill < VM_Version::avx3_threshold(), perform fill using AVX2 6610 cmpptr(count, VM_Version::avx3_threshold()); 6611 jccb(Assembler::below, L_check_fill_64_bytes_avx2); 6612 6613 vpbroadcastd(xtmp, xtmp, Assembler::AVX_512bit); 6614 6615 subptr(count, 16 << shift); 6616 jccb(Assembler::less, L_check_fill_32_bytes); 6617 align(16); 6618 6619 BIND(L_fill_64_bytes_loop_avx3); 6620 evmovdqul(Address(to, 0), xtmp, Assembler::AVX_512bit); 6621 addptr(to, 64); 6622 subptr(count, 16 << shift); 6623 jcc(Assembler::greaterEqual, L_fill_64_bytes_loop_avx3); 6624 jmpb(L_check_fill_32_bytes); 6625 6626 BIND(L_check_fill_64_bytes_avx2); 6627 } 6628 // Fill 64-byte chunks 6629 Label L_fill_64_bytes_loop; 6630 vpbroadcastd(xtmp, xtmp, Assembler::AVX_256bit); 6631 6632 subptr(count, 16 << shift); 6633 jcc(Assembler::less, L_check_fill_32_bytes); 6634 align(16); 6635 6636 BIND(L_fill_64_bytes_loop); 6637 vmovdqu(Address(to, 0), xtmp); 6638 vmovdqu(Address(to, 32), xtmp); 6639 addptr(to, 64); 6640 subptr(count, 16 << shift); 6641 jcc(Assembler::greaterEqual, L_fill_64_bytes_loop); 6642 6643 BIND(L_check_fill_32_bytes); 6644 addptr(count, 8 << shift); 6645 jccb(Assembler::less, L_check_fill_8_bytes); 6646 vmovdqu(Address(to, 0), xtmp); 6647 addptr(to, 32); 6648 subptr(count, 8 << shift); 6649 6650 BIND(L_check_fill_8_bytes); 6651 // clean upper bits of YMM registers 6652 movdl(xtmp, value); 6653 pshufd(xtmp, xtmp, 0); 6654 } else { 6655 // Fill 32-byte chunks 6656 pshufd(xtmp, xtmp, 0); 6657 6658 subptr(count, 8 << shift); 6659 jcc(Assembler::less, L_check_fill_8_bytes); 6660 align(16); 6661 6662 BIND(L_fill_32_bytes_loop); 6663 6664 if (UseUnalignedLoadStores) { 6665 movdqu(Address(to, 0), xtmp); 6666 movdqu(Address(to, 16), xtmp); 6667 } else { 6668 movq(Address(to, 0), xtmp); 6669 movq(Address(to, 8), xtmp); 6670 movq(Address(to, 16), xtmp); 6671 movq(Address(to, 24), xtmp); 6672 } 6673 6674 addptr(to, 32); 6675 subptr(count, 8 << shift); 6676 jcc(Assembler::greaterEqual, L_fill_32_bytes_loop); 6677 6678 BIND(L_check_fill_8_bytes); 6679 } 6680 addptr(count, 8 << shift); 6681 jccb(Assembler::zero, L_exit); 6682 jmpb(L_fill_8_bytes); 6683 6684 // 6685 // length is too short, just fill qwords 6686 // 6687 BIND(L_fill_8_bytes_loop); 6688 movq(Address(to, 0), xtmp); 6689 addptr(to, 8); 6690 BIND(L_fill_8_bytes); 6691 subptr(count, 1 << (shift + 1)); 6692 jcc(Assembler::greaterEqual, L_fill_8_bytes_loop); 6693 } 6694 } 6695 // fill trailing 4 bytes 6696 BIND(L_fill_4_bytes); 6697 testl(count, 1<<shift); 6698 jccb(Assembler::zero, L_fill_2_bytes); 6699 movl(Address(to, 0), value); 6700 if (t == T_BYTE || t == T_SHORT) { 6701 Label L_fill_byte; 6702 addptr(to, 4); 6703 BIND(L_fill_2_bytes); 6704 // fill trailing 2 bytes 6705 testl(count, 1<<(shift-1)); 6706 jccb(Assembler::zero, L_fill_byte); 6707 movw(Address(to, 0), value); 6708 if (t == T_BYTE) { 6709 addptr(to, 2); 6710 BIND(L_fill_byte); 6711 // fill trailing byte 6712 testl(count, 1); 6713 jccb(Assembler::zero, L_exit); 6714 movb(Address(to, 0), value); 6715 } else { 6716 BIND(L_fill_byte); 6717 } 6718 } else { 6719 BIND(L_fill_2_bytes); 6720 } 6721 BIND(L_exit); 6722 } 6723 6724 void MacroAssembler::evpbroadcast(BasicType type, XMMRegister dst, Register src, int vector_len) { 6725 switch(type) { 6726 case T_BYTE: 6727 case T_BOOLEAN: 6728 evpbroadcastb(dst, src, vector_len); 6729 break; 6730 case T_SHORT: 6731 case T_CHAR: 6732 evpbroadcastw(dst, src, vector_len); 6733 break; 6734 case T_INT: 6735 case T_FLOAT: 6736 evpbroadcastd(dst, src, vector_len); 6737 break; 6738 case T_LONG: 6739 case T_DOUBLE: 6740 evpbroadcastq(dst, src, vector_len); 6741 break; 6742 default: 6743 fatal("Unhandled type : %s", type2name(type)); 6744 break; 6745 } 6746 } 6747 6748 // encode char[] to byte[] in ISO_8859_1 or ASCII 6749 //@IntrinsicCandidate 6750 //private static int implEncodeISOArray(byte[] sa, int sp, 6751 //byte[] da, int dp, int len) { 6752 // int i = 0; 6753 // for (; i < len; i++) { 6754 // char c = StringUTF16.getChar(sa, sp++); 6755 // if (c > '\u00FF') 6756 // break; 6757 // da[dp++] = (byte)c; 6758 // } 6759 // return i; 6760 //} 6761 // 6762 //@IntrinsicCandidate 6763 //private static int implEncodeAsciiArray(char[] sa, int sp, 6764 // byte[] da, int dp, int len) { 6765 // int i = 0; 6766 // for (; i < len; i++) { 6767 // char c = sa[sp++]; 6768 // if (c >= '\u0080') 6769 // break; 6770 // da[dp++] = (byte)c; 6771 // } 6772 // return i; 6773 //} 6774 void MacroAssembler::encode_iso_array(Register src, Register dst, Register len, 6775 XMMRegister tmp1Reg, XMMRegister tmp2Reg, 6776 XMMRegister tmp3Reg, XMMRegister tmp4Reg, 6777 Register tmp5, Register result, bool ascii) { 6778 6779 // rsi: src 6780 // rdi: dst 6781 // rdx: len 6782 // rcx: tmp5 6783 // rax: result 6784 ShortBranchVerifier sbv(this); 6785 assert_different_registers(src, dst, len, tmp5, result); 6786 Label L_done, L_copy_1_char, L_copy_1_char_exit; 6787 6788 int mask = ascii ? 0xff80ff80 : 0xff00ff00; 6789 int short_mask = ascii ? 0xff80 : 0xff00; 6790 6791 // set result 6792 xorl(result, result); 6793 // check for zero length 6794 testl(len, len); 6795 jcc(Assembler::zero, L_done); 6796 6797 movl(result, len); 6798 6799 // Setup pointers 6800 lea(src, Address(src, len, Address::times_2)); // char[] 6801 lea(dst, Address(dst, len, Address::times_1)); // byte[] 6802 negptr(len); 6803 6804 if (UseSSE42Intrinsics || UseAVX >= 2) { 6805 Label L_copy_8_chars, L_copy_8_chars_exit; 6806 Label L_chars_16_check, L_copy_16_chars, L_copy_16_chars_exit; 6807 6808 if (UseAVX >= 2) { 6809 Label L_chars_32_check, L_copy_32_chars, L_copy_32_chars_exit; 6810 movl(tmp5, mask); // create mask to test for Unicode or non-ASCII chars in vector 6811 movdl(tmp1Reg, tmp5); 6812 vpbroadcastd(tmp1Reg, tmp1Reg, Assembler::AVX_256bit); 6813 jmp(L_chars_32_check); 6814 6815 bind(L_copy_32_chars); 6816 vmovdqu(tmp3Reg, Address(src, len, Address::times_2, -64)); 6817 vmovdqu(tmp4Reg, Address(src, len, Address::times_2, -32)); 6818 vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1); 6819 vptest(tmp2Reg, tmp1Reg); // check for Unicode or non-ASCII chars in vector 6820 jccb(Assembler::notZero, L_copy_32_chars_exit); 6821 vpackuswb(tmp3Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1); 6822 vpermq(tmp4Reg, tmp3Reg, 0xD8, /* vector_len */ 1); 6823 vmovdqu(Address(dst, len, Address::times_1, -32), tmp4Reg); 6824 6825 bind(L_chars_32_check); 6826 addptr(len, 32); 6827 jcc(Assembler::lessEqual, L_copy_32_chars); 6828 6829 bind(L_copy_32_chars_exit); 6830 subptr(len, 16); 6831 jccb(Assembler::greater, L_copy_16_chars_exit); 6832 6833 } else if (UseSSE42Intrinsics) { 6834 movl(tmp5, mask); // create mask to test for Unicode or non-ASCII chars in vector 6835 movdl(tmp1Reg, tmp5); 6836 pshufd(tmp1Reg, tmp1Reg, 0); 6837 jmpb(L_chars_16_check); 6838 } 6839 6840 bind(L_copy_16_chars); 6841 if (UseAVX >= 2) { 6842 vmovdqu(tmp2Reg, Address(src, len, Address::times_2, -32)); 6843 vptest(tmp2Reg, tmp1Reg); 6844 jcc(Assembler::notZero, L_copy_16_chars_exit); 6845 vpackuswb(tmp2Reg, tmp2Reg, tmp1Reg, /* vector_len */ 1); 6846 vpermq(tmp3Reg, tmp2Reg, 0xD8, /* vector_len */ 1); 6847 } else { 6848 if (UseAVX > 0) { 6849 movdqu(tmp3Reg, Address(src, len, Address::times_2, -32)); 6850 movdqu(tmp4Reg, Address(src, len, Address::times_2, -16)); 6851 vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 0); 6852 } else { 6853 movdqu(tmp3Reg, Address(src, len, Address::times_2, -32)); 6854 por(tmp2Reg, tmp3Reg); 6855 movdqu(tmp4Reg, Address(src, len, Address::times_2, -16)); 6856 por(tmp2Reg, tmp4Reg); 6857 } 6858 ptest(tmp2Reg, tmp1Reg); // check for Unicode or non-ASCII chars in vector 6859 jccb(Assembler::notZero, L_copy_16_chars_exit); 6860 packuswb(tmp3Reg, tmp4Reg); 6861 } 6862 movdqu(Address(dst, len, Address::times_1, -16), tmp3Reg); 6863 6864 bind(L_chars_16_check); 6865 addptr(len, 16); 6866 jcc(Assembler::lessEqual, L_copy_16_chars); 6867 6868 bind(L_copy_16_chars_exit); 6869 if (UseAVX >= 2) { 6870 // clean upper bits of YMM registers 6871 vpxor(tmp2Reg, tmp2Reg); 6872 vpxor(tmp3Reg, tmp3Reg); 6873 vpxor(tmp4Reg, tmp4Reg); 6874 movdl(tmp1Reg, tmp5); 6875 pshufd(tmp1Reg, tmp1Reg, 0); 6876 } 6877 subptr(len, 8); 6878 jccb(Assembler::greater, L_copy_8_chars_exit); 6879 6880 bind(L_copy_8_chars); 6881 movdqu(tmp3Reg, Address(src, len, Address::times_2, -16)); 6882 ptest(tmp3Reg, tmp1Reg); 6883 jccb(Assembler::notZero, L_copy_8_chars_exit); 6884 packuswb(tmp3Reg, tmp1Reg); 6885 movq(Address(dst, len, Address::times_1, -8), tmp3Reg); 6886 addptr(len, 8); 6887 jccb(Assembler::lessEqual, L_copy_8_chars); 6888 6889 bind(L_copy_8_chars_exit); 6890 subptr(len, 8); 6891 jccb(Assembler::zero, L_done); 6892 } 6893 6894 bind(L_copy_1_char); 6895 load_unsigned_short(tmp5, Address(src, len, Address::times_2, 0)); 6896 testl(tmp5, short_mask); // check if Unicode or non-ASCII char 6897 jccb(Assembler::notZero, L_copy_1_char_exit); 6898 movb(Address(dst, len, Address::times_1, 0), tmp5); 6899 addptr(len, 1); 6900 jccb(Assembler::less, L_copy_1_char); 6901 6902 bind(L_copy_1_char_exit); 6903 addptr(result, len); // len is negative count of not processed elements 6904 6905 bind(L_done); 6906 } 6907 6908 /** 6909 * Helper for multiply_to_len(). 6910 */ 6911 void MacroAssembler::add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) { 6912 addq(dest_lo, src1); 6913 adcq(dest_hi, 0); 6914 addq(dest_lo, src2); 6915 adcq(dest_hi, 0); 6916 } 6917 6918 /** 6919 * Multiply 64 bit by 64 bit first loop. 6920 */ 6921 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart, 6922 Register y, Register y_idx, Register z, 6923 Register carry, Register product, 6924 Register idx, Register kdx) { 6925 // 6926 // jlong carry, x[], y[], z[]; 6927 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 6928 // huge_128 product = y[idx] * x[xstart] + carry; 6929 // z[kdx] = (jlong)product; 6930 // carry = (jlong)(product >>> 64); 6931 // } 6932 // z[xstart] = carry; 6933 // 6934 6935 Label L_first_loop, L_first_loop_exit; 6936 Label L_one_x, L_one_y, L_multiply; 6937 6938 decrementl(xstart); 6939 jcc(Assembler::negative, L_one_x); 6940 6941 movq(x_xstart, Address(x, xstart, Address::times_4, 0)); 6942 rorq(x_xstart, 32); // convert big-endian to little-endian 6943 6944 bind(L_first_loop); 6945 decrementl(idx); 6946 jcc(Assembler::negative, L_first_loop_exit); 6947 decrementl(idx); 6948 jcc(Assembler::negative, L_one_y); 6949 movq(y_idx, Address(y, idx, Address::times_4, 0)); 6950 rorq(y_idx, 32); // convert big-endian to little-endian 6951 bind(L_multiply); 6952 movq(product, x_xstart); 6953 mulq(y_idx); // product(rax) * y_idx -> rdx:rax 6954 addq(product, carry); 6955 adcq(rdx, 0); 6956 subl(kdx, 2); 6957 movl(Address(z, kdx, Address::times_4, 4), product); 6958 shrq(product, 32); 6959 movl(Address(z, kdx, Address::times_4, 0), product); 6960 movq(carry, rdx); 6961 jmp(L_first_loop); 6962 6963 bind(L_one_y); 6964 movl(y_idx, Address(y, 0)); 6965 jmp(L_multiply); 6966 6967 bind(L_one_x); 6968 movl(x_xstart, Address(x, 0)); 6969 jmp(L_first_loop); 6970 6971 bind(L_first_loop_exit); 6972 } 6973 6974 /** 6975 * Multiply 64 bit by 64 bit and add 128 bit. 6976 */ 6977 void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y, Register z, 6978 Register yz_idx, Register idx, 6979 Register carry, Register product, int offset) { 6980 // huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry; 6981 // z[kdx] = (jlong)product; 6982 6983 movq(yz_idx, Address(y, idx, Address::times_4, offset)); 6984 rorq(yz_idx, 32); // convert big-endian to little-endian 6985 movq(product, x_xstart); 6986 mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax) 6987 movq(yz_idx, Address(z, idx, Address::times_4, offset)); 6988 rorq(yz_idx, 32); // convert big-endian to little-endian 6989 6990 add2_with_carry(rdx, product, carry, yz_idx); 6991 6992 movl(Address(z, idx, Address::times_4, offset+4), product); 6993 shrq(product, 32); 6994 movl(Address(z, idx, Address::times_4, offset), product); 6995 6996 } 6997 6998 /** 6999 * Multiply 128 bit by 128 bit. Unrolled inner loop. 7000 */ 7001 void MacroAssembler::multiply_128_x_128_loop(Register x_xstart, Register y, Register z, 7002 Register yz_idx, Register idx, Register jdx, 7003 Register carry, Register product, 7004 Register carry2) { 7005 // jlong carry, x[], y[], z[]; 7006 // int kdx = ystart+1; 7007 // for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop 7008 // huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry; 7009 // z[kdx+idx+1] = (jlong)product; 7010 // jlong carry2 = (jlong)(product >>> 64); 7011 // product = (y[idx] * x_xstart) + z[kdx+idx] + carry2; 7012 // z[kdx+idx] = (jlong)product; 7013 // carry = (jlong)(product >>> 64); 7014 // } 7015 // idx += 2; 7016 // if (idx > 0) { 7017 // product = (y[idx] * x_xstart) + z[kdx+idx] + carry; 7018 // z[kdx+idx] = (jlong)product; 7019 // carry = (jlong)(product >>> 64); 7020 // } 7021 // 7022 7023 Label L_third_loop, L_third_loop_exit, L_post_third_loop_done; 7024 7025 movl(jdx, idx); 7026 andl(jdx, 0xFFFFFFFC); 7027 shrl(jdx, 2); 7028 7029 bind(L_third_loop); 7030 subl(jdx, 1); 7031 jcc(Assembler::negative, L_third_loop_exit); 7032 subl(idx, 4); 7033 7034 multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 8); 7035 movq(carry2, rdx); 7036 7037 multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product, 0); 7038 movq(carry, rdx); 7039 jmp(L_third_loop); 7040 7041 bind (L_third_loop_exit); 7042 7043 andl (idx, 0x3); 7044 jcc(Assembler::zero, L_post_third_loop_done); 7045 7046 Label L_check_1; 7047 subl(idx, 2); 7048 jcc(Assembler::negative, L_check_1); 7049 7050 multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 0); 7051 movq(carry, rdx); 7052 7053 bind (L_check_1); 7054 addl (idx, 0x2); 7055 andl (idx, 0x1); 7056 subl(idx, 1); 7057 jcc(Assembler::negative, L_post_third_loop_done); 7058 7059 movl(yz_idx, Address(y, idx, Address::times_4, 0)); 7060 movq(product, x_xstart); 7061 mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax) 7062 movl(yz_idx, Address(z, idx, Address::times_4, 0)); 7063 7064 add2_with_carry(rdx, product, yz_idx, carry); 7065 7066 movl(Address(z, idx, Address::times_4, 0), product); 7067 shrq(product, 32); 7068 7069 shlq(rdx, 32); 7070 orq(product, rdx); 7071 movq(carry, product); 7072 7073 bind(L_post_third_loop_done); 7074 } 7075 7076 /** 7077 * Multiply 128 bit by 128 bit using BMI2. Unrolled inner loop. 7078 * 7079 */ 7080 void MacroAssembler::multiply_128_x_128_bmi2_loop(Register y, Register z, 7081 Register carry, Register carry2, 7082 Register idx, Register jdx, 7083 Register yz_idx1, Register yz_idx2, 7084 Register tmp, Register tmp3, Register tmp4) { 7085 assert(UseBMI2Instructions, "should be used only when BMI2 is available"); 7086 7087 // jlong carry, x[], y[], z[]; 7088 // int kdx = ystart+1; 7089 // for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop 7090 // huge_128 tmp3 = (y[idx+1] * rdx) + z[kdx+idx+1] + carry; 7091 // jlong carry2 = (jlong)(tmp3 >>> 64); 7092 // huge_128 tmp4 = (y[idx] * rdx) + z[kdx+idx] + carry2; 7093 // carry = (jlong)(tmp4 >>> 64); 7094 // z[kdx+idx+1] = (jlong)tmp3; 7095 // z[kdx+idx] = (jlong)tmp4; 7096 // } 7097 // idx += 2; 7098 // if (idx > 0) { 7099 // yz_idx1 = (y[idx] * rdx) + z[kdx+idx] + carry; 7100 // z[kdx+idx] = (jlong)yz_idx1; 7101 // carry = (jlong)(yz_idx1 >>> 64); 7102 // } 7103 // 7104 7105 Label L_third_loop, L_third_loop_exit, L_post_third_loop_done; 7106 7107 movl(jdx, idx); 7108 andl(jdx, 0xFFFFFFFC); 7109 shrl(jdx, 2); 7110 7111 bind(L_third_loop); 7112 subl(jdx, 1); 7113 jcc(Assembler::negative, L_third_loop_exit); 7114 subl(idx, 4); 7115 7116 movq(yz_idx1, Address(y, idx, Address::times_4, 8)); 7117 rorxq(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian 7118 movq(yz_idx2, Address(y, idx, Address::times_4, 0)); 7119 rorxq(yz_idx2, yz_idx2, 32); 7120 7121 mulxq(tmp4, tmp3, yz_idx1); // yz_idx1 * rdx -> tmp4:tmp3 7122 mulxq(carry2, tmp, yz_idx2); // yz_idx2 * rdx -> carry2:tmp 7123 7124 movq(yz_idx1, Address(z, idx, Address::times_4, 8)); 7125 rorxq(yz_idx1, yz_idx1, 32); 7126 movq(yz_idx2, Address(z, idx, Address::times_4, 0)); 7127 rorxq(yz_idx2, yz_idx2, 32); 7128 7129 if (VM_Version::supports_adx()) { 7130 adcxq(tmp3, carry); 7131 adoxq(tmp3, yz_idx1); 7132 7133 adcxq(tmp4, tmp); 7134 adoxq(tmp4, yz_idx2); 7135 7136 movl(carry, 0); // does not affect flags 7137 adcxq(carry2, carry); 7138 adoxq(carry2, carry); 7139 } else { 7140 add2_with_carry(tmp4, tmp3, carry, yz_idx1); 7141 add2_with_carry(carry2, tmp4, tmp, yz_idx2); 7142 } 7143 movq(carry, carry2); 7144 7145 movl(Address(z, idx, Address::times_4, 12), tmp3); 7146 shrq(tmp3, 32); 7147 movl(Address(z, idx, Address::times_4, 8), tmp3); 7148 7149 movl(Address(z, idx, Address::times_4, 4), tmp4); 7150 shrq(tmp4, 32); 7151 movl(Address(z, idx, Address::times_4, 0), tmp4); 7152 7153 jmp(L_third_loop); 7154 7155 bind (L_third_loop_exit); 7156 7157 andl (idx, 0x3); 7158 jcc(Assembler::zero, L_post_third_loop_done); 7159 7160 Label L_check_1; 7161 subl(idx, 2); 7162 jcc(Assembler::negative, L_check_1); 7163 7164 movq(yz_idx1, Address(y, idx, Address::times_4, 0)); 7165 rorxq(yz_idx1, yz_idx1, 32); 7166 mulxq(tmp4, tmp3, yz_idx1); // yz_idx1 * rdx -> tmp4:tmp3 7167 movq(yz_idx2, Address(z, idx, Address::times_4, 0)); 7168 rorxq(yz_idx2, yz_idx2, 32); 7169 7170 add2_with_carry(tmp4, tmp3, carry, yz_idx2); 7171 7172 movl(Address(z, idx, Address::times_4, 4), tmp3); 7173 shrq(tmp3, 32); 7174 movl(Address(z, idx, Address::times_4, 0), tmp3); 7175 movq(carry, tmp4); 7176 7177 bind (L_check_1); 7178 addl (idx, 0x2); 7179 andl (idx, 0x1); 7180 subl(idx, 1); 7181 jcc(Assembler::negative, L_post_third_loop_done); 7182 movl(tmp4, Address(y, idx, Address::times_4, 0)); 7183 mulxq(carry2, tmp3, tmp4); // tmp4 * rdx -> carry2:tmp3 7184 movl(tmp4, Address(z, idx, Address::times_4, 0)); 7185 7186 add2_with_carry(carry2, tmp3, tmp4, carry); 7187 7188 movl(Address(z, idx, Address::times_4, 0), tmp3); 7189 shrq(tmp3, 32); 7190 7191 shlq(carry2, 32); 7192 orq(tmp3, carry2); 7193 movq(carry, tmp3); 7194 7195 bind(L_post_third_loop_done); 7196 } 7197 7198 /** 7199 * Code for BigInteger::multiplyToLen() intrinsic. 7200 * 7201 * rdi: x 7202 * rax: xlen 7203 * rsi: y 7204 * rcx: ylen 7205 * r8: z 7206 * r11: tmp0 7207 * r12: tmp1 7208 * r13: tmp2 7209 * r14: tmp3 7210 * r15: tmp4 7211 * rbx: tmp5 7212 * 7213 */ 7214 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register tmp0, 7215 Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5) { 7216 ShortBranchVerifier sbv(this); 7217 assert_different_registers(x, xlen, y, ylen, z, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, rdx); 7218 7219 push(tmp0); 7220 push(tmp1); 7221 push(tmp2); 7222 push(tmp3); 7223 push(tmp4); 7224 push(tmp5); 7225 7226 push(xlen); 7227 7228 const Register idx = tmp1; 7229 const Register kdx = tmp2; 7230 const Register xstart = tmp3; 7231 7232 const Register y_idx = tmp4; 7233 const Register carry = tmp5; 7234 const Register product = xlen; 7235 const Register x_xstart = tmp0; 7236 7237 // First Loop. 7238 // 7239 // final static long LONG_MASK = 0xffffffffL; 7240 // int xstart = xlen - 1; 7241 // int ystart = ylen - 1; 7242 // long carry = 0; 7243 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 7244 // long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry; 7245 // z[kdx] = (int)product; 7246 // carry = product >>> 32; 7247 // } 7248 // z[xstart] = (int)carry; 7249 // 7250 7251 movl(idx, ylen); // idx = ylen; 7252 lea(kdx, Address(xlen, ylen)); // kdx = xlen+ylen; 7253 xorq(carry, carry); // carry = 0; 7254 7255 Label L_done; 7256 7257 movl(xstart, xlen); 7258 decrementl(xstart); 7259 jcc(Assembler::negative, L_done); 7260 7261 multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx); 7262 7263 Label L_second_loop; 7264 testl(kdx, kdx); 7265 jcc(Assembler::zero, L_second_loop); 7266 7267 Label L_carry; 7268 subl(kdx, 1); 7269 jcc(Assembler::zero, L_carry); 7270 7271 movl(Address(z, kdx, Address::times_4, 0), carry); 7272 shrq(carry, 32); 7273 subl(kdx, 1); 7274 7275 bind(L_carry); 7276 movl(Address(z, kdx, Address::times_4, 0), carry); 7277 7278 // Second and third (nested) loops. 7279 // 7280 // for (int i = xstart-1; i >= 0; i--) { // Second loop 7281 // carry = 0; 7282 // for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop 7283 // long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) + 7284 // (z[k] & LONG_MASK) + carry; 7285 // z[k] = (int)product; 7286 // carry = product >>> 32; 7287 // } 7288 // z[i] = (int)carry; 7289 // } 7290 // 7291 // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx 7292 7293 const Register jdx = tmp1; 7294 7295 bind(L_second_loop); 7296 xorl(carry, carry); // carry = 0; 7297 movl(jdx, ylen); // j = ystart+1 7298 7299 subl(xstart, 1); // i = xstart-1; 7300 jcc(Assembler::negative, L_done); 7301 7302 push (z); 7303 7304 Label L_last_x; 7305 lea(z, Address(z, xstart, Address::times_4, 4)); // z = z + k - j 7306 subl(xstart, 1); // i = xstart-1; 7307 jcc(Assembler::negative, L_last_x); 7308 7309 if (UseBMI2Instructions) { 7310 movq(rdx, Address(x, xstart, Address::times_4, 0)); 7311 rorxq(rdx, rdx, 32); // convert big-endian to little-endian 7312 } else { 7313 movq(x_xstart, Address(x, xstart, Address::times_4, 0)); 7314 rorq(x_xstart, 32); // convert big-endian to little-endian 7315 } 7316 7317 Label L_third_loop_prologue; 7318 bind(L_third_loop_prologue); 7319 7320 push (x); 7321 push (xstart); 7322 push (ylen); 7323 7324 7325 if (UseBMI2Instructions) { 7326 multiply_128_x_128_bmi2_loop(y, z, carry, x, jdx, ylen, product, tmp2, x_xstart, tmp3, tmp4); 7327 } else { // !UseBMI2Instructions 7328 multiply_128_x_128_loop(x_xstart, y, z, y_idx, jdx, ylen, carry, product, x); 7329 } 7330 7331 pop(ylen); 7332 pop(xlen); 7333 pop(x); 7334 pop(z); 7335 7336 movl(tmp3, xlen); 7337 addl(tmp3, 1); 7338 movl(Address(z, tmp3, Address::times_4, 0), carry); 7339 subl(tmp3, 1); 7340 jccb(Assembler::negative, L_done); 7341 7342 shrq(carry, 32); 7343 movl(Address(z, tmp3, Address::times_4, 0), carry); 7344 jmp(L_second_loop); 7345 7346 // Next infrequent code is moved outside loops. 7347 bind(L_last_x); 7348 if (UseBMI2Instructions) { 7349 movl(rdx, Address(x, 0)); 7350 } else { 7351 movl(x_xstart, Address(x, 0)); 7352 } 7353 jmp(L_third_loop_prologue); 7354 7355 bind(L_done); 7356 7357 pop(xlen); 7358 7359 pop(tmp5); 7360 pop(tmp4); 7361 pop(tmp3); 7362 pop(tmp2); 7363 pop(tmp1); 7364 pop(tmp0); 7365 } 7366 7367 void MacroAssembler::vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale, 7368 Register result, Register tmp1, Register tmp2, XMMRegister rymm0, XMMRegister rymm1, XMMRegister rymm2){ 7369 assert(UseSSE42Intrinsics, "SSE4.2 must be enabled."); 7370 Label VECTOR16_LOOP, VECTOR8_LOOP, VECTOR4_LOOP; 7371 Label VECTOR8_TAIL, VECTOR4_TAIL; 7372 Label VECTOR32_NOT_EQUAL, VECTOR16_NOT_EQUAL, VECTOR8_NOT_EQUAL, VECTOR4_NOT_EQUAL; 7373 Label SAME_TILL_END, DONE; 7374 Label BYTES_LOOP, BYTES_TAIL, BYTES_NOT_EQUAL; 7375 7376 //scale is in rcx in both Win64 and Unix 7377 ShortBranchVerifier sbv(this); 7378 7379 shlq(length); 7380 xorq(result, result); 7381 7382 if ((AVX3Threshold == 0) && (UseAVX > 2) && 7383 VM_Version::supports_avx512vlbw()) { 7384 Label VECTOR64_LOOP, VECTOR64_NOT_EQUAL, VECTOR32_TAIL; 7385 7386 cmpq(length, 64); 7387 jcc(Assembler::less, VECTOR32_TAIL); 7388 7389 movq(tmp1, length); 7390 andq(tmp1, 0x3F); // tail count 7391 andq(length, ~(0x3F)); //vector count 7392 7393 bind(VECTOR64_LOOP); 7394 // AVX512 code to compare 64 byte vectors. 7395 evmovdqub(rymm0, Address(obja, result), Assembler::AVX_512bit); 7396 evpcmpeqb(k7, rymm0, Address(objb, result), Assembler::AVX_512bit); 7397 kortestql(k7, k7); 7398 jcc(Assembler::aboveEqual, VECTOR64_NOT_EQUAL); // mismatch 7399 addq(result, 64); 7400 subq(length, 64); 7401 jccb(Assembler::notZero, VECTOR64_LOOP); 7402 7403 //bind(VECTOR64_TAIL); 7404 testq(tmp1, tmp1); 7405 jcc(Assembler::zero, SAME_TILL_END); 7406 7407 //bind(VECTOR64_TAIL); 7408 // AVX512 code to compare up to 63 byte vectors. 7409 mov64(tmp2, 0xFFFFFFFFFFFFFFFF); 7410 shlxq(tmp2, tmp2, tmp1); 7411 notq(tmp2); 7412 kmovql(k3, tmp2); 7413 7414 evmovdqub(rymm0, k3, Address(obja, result), false, Assembler::AVX_512bit); 7415 evpcmpeqb(k7, k3, rymm0, Address(objb, result), Assembler::AVX_512bit); 7416 7417 ktestql(k7, k3); 7418 jcc(Assembler::below, SAME_TILL_END); // not mismatch 7419 7420 bind(VECTOR64_NOT_EQUAL); 7421 kmovql(tmp1, k7); 7422 notq(tmp1); 7423 tzcntq(tmp1, tmp1); 7424 addq(result, tmp1); 7425 shrq(result); 7426 jmp(DONE); 7427 bind(VECTOR32_TAIL); 7428 } 7429 7430 cmpq(length, 8); 7431 jcc(Assembler::equal, VECTOR8_LOOP); 7432 jcc(Assembler::less, VECTOR4_TAIL); 7433 7434 if (UseAVX >= 2) { 7435 Label VECTOR16_TAIL, VECTOR32_LOOP; 7436 7437 cmpq(length, 16); 7438 jcc(Assembler::equal, VECTOR16_LOOP); 7439 jcc(Assembler::less, VECTOR8_LOOP); 7440 7441 cmpq(length, 32); 7442 jccb(Assembler::less, VECTOR16_TAIL); 7443 7444 subq(length, 32); 7445 bind(VECTOR32_LOOP); 7446 vmovdqu(rymm0, Address(obja, result)); 7447 vmovdqu(rymm1, Address(objb, result)); 7448 vpxor(rymm2, rymm0, rymm1, Assembler::AVX_256bit); 7449 vptest(rymm2, rymm2); 7450 jcc(Assembler::notZero, VECTOR32_NOT_EQUAL);//mismatch found 7451 addq(result, 32); 7452 subq(length, 32); 7453 jcc(Assembler::greaterEqual, VECTOR32_LOOP); 7454 addq(length, 32); 7455 jcc(Assembler::equal, SAME_TILL_END); 7456 //falling through if less than 32 bytes left //close the branch here. 7457 7458 bind(VECTOR16_TAIL); 7459 cmpq(length, 16); 7460 jccb(Assembler::less, VECTOR8_TAIL); 7461 bind(VECTOR16_LOOP); 7462 movdqu(rymm0, Address(obja, result)); 7463 movdqu(rymm1, Address(objb, result)); 7464 vpxor(rymm2, rymm0, rymm1, Assembler::AVX_128bit); 7465 ptest(rymm2, rymm2); 7466 jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found 7467 addq(result, 16); 7468 subq(length, 16); 7469 jcc(Assembler::equal, SAME_TILL_END); 7470 //falling through if less than 16 bytes left 7471 } else {//regular intrinsics 7472 7473 cmpq(length, 16); 7474 jccb(Assembler::less, VECTOR8_TAIL); 7475 7476 subq(length, 16); 7477 bind(VECTOR16_LOOP); 7478 movdqu(rymm0, Address(obja, result)); 7479 movdqu(rymm1, Address(objb, result)); 7480 pxor(rymm0, rymm1); 7481 ptest(rymm0, rymm0); 7482 jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found 7483 addq(result, 16); 7484 subq(length, 16); 7485 jccb(Assembler::greaterEqual, VECTOR16_LOOP); 7486 addq(length, 16); 7487 jcc(Assembler::equal, SAME_TILL_END); 7488 //falling through if less than 16 bytes left 7489 } 7490 7491 bind(VECTOR8_TAIL); 7492 cmpq(length, 8); 7493 jccb(Assembler::less, VECTOR4_TAIL); 7494 bind(VECTOR8_LOOP); 7495 movq(tmp1, Address(obja, result)); 7496 movq(tmp2, Address(objb, result)); 7497 xorq(tmp1, tmp2); 7498 testq(tmp1, tmp1); 7499 jcc(Assembler::notZero, VECTOR8_NOT_EQUAL);//mismatch found 7500 addq(result, 8); 7501 subq(length, 8); 7502 jcc(Assembler::equal, SAME_TILL_END); 7503 //falling through if less than 8 bytes left 7504 7505 bind(VECTOR4_TAIL); 7506 cmpq(length, 4); 7507 jccb(Assembler::less, BYTES_TAIL); 7508 bind(VECTOR4_LOOP); 7509 movl(tmp1, Address(obja, result)); 7510 xorl(tmp1, Address(objb, result)); 7511 testl(tmp1, tmp1); 7512 jcc(Assembler::notZero, VECTOR4_NOT_EQUAL);//mismatch found 7513 addq(result, 4); 7514 subq(length, 4); 7515 jcc(Assembler::equal, SAME_TILL_END); 7516 //falling through if less than 4 bytes left 7517 7518 bind(BYTES_TAIL); 7519 bind(BYTES_LOOP); 7520 load_unsigned_byte(tmp1, Address(obja, result)); 7521 load_unsigned_byte(tmp2, Address(objb, result)); 7522 xorl(tmp1, tmp2); 7523 testl(tmp1, tmp1); 7524 jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found 7525 decq(length); 7526 jcc(Assembler::zero, SAME_TILL_END); 7527 incq(result); 7528 load_unsigned_byte(tmp1, Address(obja, result)); 7529 load_unsigned_byte(tmp2, Address(objb, result)); 7530 xorl(tmp1, tmp2); 7531 testl(tmp1, tmp1); 7532 jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found 7533 decq(length); 7534 jcc(Assembler::zero, SAME_TILL_END); 7535 incq(result); 7536 load_unsigned_byte(tmp1, Address(obja, result)); 7537 load_unsigned_byte(tmp2, Address(objb, result)); 7538 xorl(tmp1, tmp2); 7539 testl(tmp1, tmp1); 7540 jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found 7541 jmp(SAME_TILL_END); 7542 7543 if (UseAVX >= 2) { 7544 bind(VECTOR32_NOT_EQUAL); 7545 vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_256bit); 7546 vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_256bit); 7547 vpxor(rymm0, rymm0, rymm2, Assembler::AVX_256bit); 7548 vpmovmskb(tmp1, rymm0); 7549 bsfq(tmp1, tmp1); 7550 addq(result, tmp1); 7551 shrq(result); 7552 jmp(DONE); 7553 } 7554 7555 bind(VECTOR16_NOT_EQUAL); 7556 if (UseAVX >= 2) { 7557 vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_128bit); 7558 vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_128bit); 7559 pxor(rymm0, rymm2); 7560 } else { 7561 pcmpeqb(rymm2, rymm2); 7562 pxor(rymm0, rymm1); 7563 pcmpeqb(rymm0, rymm1); 7564 pxor(rymm0, rymm2); 7565 } 7566 pmovmskb(tmp1, rymm0); 7567 bsfq(tmp1, tmp1); 7568 addq(result, tmp1); 7569 shrq(result); 7570 jmpb(DONE); 7571 7572 bind(VECTOR8_NOT_EQUAL); 7573 bind(VECTOR4_NOT_EQUAL); 7574 bsfq(tmp1, tmp1); 7575 shrq(tmp1, 3); 7576 addq(result, tmp1); 7577 bind(BYTES_NOT_EQUAL); 7578 shrq(result); 7579 jmpb(DONE); 7580 7581 bind(SAME_TILL_END); 7582 mov64(result, -1); 7583 7584 bind(DONE); 7585 } 7586 7587 //Helper functions for square_to_len() 7588 7589 /** 7590 * Store the squares of x[], right shifted one bit (divided by 2) into z[] 7591 * Preserves x and z and modifies rest of the registers. 7592 */ 7593 void MacroAssembler::square_rshift(Register x, Register xlen, Register z, Register tmp1, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) { 7594 // Perform square and right shift by 1 7595 // Handle odd xlen case first, then for even xlen do the following 7596 // jlong carry = 0; 7597 // for (int j=0, i=0; j < xlen; j+=2, i+=4) { 7598 // huge_128 product = x[j:j+1] * x[j:j+1]; 7599 // z[i:i+1] = (carry << 63) | (jlong)(product >>> 65); 7600 // z[i+2:i+3] = (jlong)(product >>> 1); 7601 // carry = (jlong)product; 7602 // } 7603 7604 xorq(tmp5, tmp5); // carry 7605 xorq(rdxReg, rdxReg); 7606 xorl(tmp1, tmp1); // index for x 7607 xorl(tmp4, tmp4); // index for z 7608 7609 Label L_first_loop, L_first_loop_exit; 7610 7611 testl(xlen, 1); 7612 jccb(Assembler::zero, L_first_loop); //jump if xlen is even 7613 7614 // Square and right shift by 1 the odd element using 32 bit multiply 7615 movl(raxReg, Address(x, tmp1, Address::times_4, 0)); 7616 imulq(raxReg, raxReg); 7617 shrq(raxReg, 1); 7618 adcq(tmp5, 0); 7619 movq(Address(z, tmp4, Address::times_4, 0), raxReg); 7620 incrementl(tmp1); 7621 addl(tmp4, 2); 7622 7623 // Square and right shift by 1 the rest using 64 bit multiply 7624 bind(L_first_loop); 7625 cmpptr(tmp1, xlen); 7626 jccb(Assembler::equal, L_first_loop_exit); 7627 7628 // Square 7629 movq(raxReg, Address(x, tmp1, Address::times_4, 0)); 7630 rorq(raxReg, 32); // convert big-endian to little-endian 7631 mulq(raxReg); // 64-bit multiply rax * rax -> rdx:rax 7632 7633 // Right shift by 1 and save carry 7634 shrq(tmp5, 1); // rdx:rax:tmp5 = (tmp5:rdx:rax) >>> 1 7635 rcrq(rdxReg, 1); 7636 rcrq(raxReg, 1); 7637 adcq(tmp5, 0); 7638 7639 // Store result in z 7640 movq(Address(z, tmp4, Address::times_4, 0), rdxReg); 7641 movq(Address(z, tmp4, Address::times_4, 8), raxReg); 7642 7643 // Update indices for x and z 7644 addl(tmp1, 2); 7645 addl(tmp4, 4); 7646 jmp(L_first_loop); 7647 7648 bind(L_first_loop_exit); 7649 } 7650 7651 7652 /** 7653 * Perform the following multiply add operation using BMI2 instructions 7654 * carry:sum = sum + op1*op2 + carry 7655 * op2 should be in rdx 7656 * op2 is preserved, all other registers are modified 7657 */ 7658 void MacroAssembler::multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry, Register tmp2) { 7659 // assert op2 is rdx 7660 mulxq(tmp2, op1, op1); // op1 * op2 -> tmp2:op1 7661 addq(sum, carry); 7662 adcq(tmp2, 0); 7663 addq(sum, op1); 7664 adcq(tmp2, 0); 7665 movq(carry, tmp2); 7666 } 7667 7668 /** 7669 * Perform the following multiply add operation: 7670 * carry:sum = sum + op1*op2 + carry 7671 * Preserves op1, op2 and modifies rest of registers 7672 */ 7673 void MacroAssembler::multiply_add_64(Register sum, Register op1, Register op2, Register carry, Register rdxReg, Register raxReg) { 7674 // rdx:rax = op1 * op2 7675 movq(raxReg, op2); 7676 mulq(op1); 7677 7678 // rdx:rax = sum + carry + rdx:rax 7679 addq(sum, carry); 7680 adcq(rdxReg, 0); 7681 addq(sum, raxReg); 7682 adcq(rdxReg, 0); 7683 7684 // carry:sum = rdx:sum 7685 movq(carry, rdxReg); 7686 } 7687 7688 /** 7689 * Add 64 bit long carry into z[] with carry propagation. 7690 * Preserves z and carry register values and modifies rest of registers. 7691 * 7692 */ 7693 void MacroAssembler::add_one_64(Register z, Register zlen, Register carry, Register tmp1) { 7694 Label L_fourth_loop, L_fourth_loop_exit; 7695 7696 movl(tmp1, 1); 7697 subl(zlen, 2); 7698 addq(Address(z, zlen, Address::times_4, 0), carry); 7699 7700 bind(L_fourth_loop); 7701 jccb(Assembler::carryClear, L_fourth_loop_exit); 7702 subl(zlen, 2); 7703 jccb(Assembler::negative, L_fourth_loop_exit); 7704 addq(Address(z, zlen, Address::times_4, 0), tmp1); 7705 jmp(L_fourth_loop); 7706 bind(L_fourth_loop_exit); 7707 } 7708 7709 /** 7710 * Shift z[] left by 1 bit. 7711 * Preserves x, len, z and zlen registers and modifies rest of the registers. 7712 * 7713 */ 7714 void MacroAssembler::lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4) { 7715 7716 Label L_fifth_loop, L_fifth_loop_exit; 7717 7718 // Fifth loop 7719 // Perform primitiveLeftShift(z, zlen, 1) 7720 7721 const Register prev_carry = tmp1; 7722 const Register new_carry = tmp4; 7723 const Register value = tmp2; 7724 const Register zidx = tmp3; 7725 7726 // int zidx, carry; 7727 // long value; 7728 // carry = 0; 7729 // for (zidx = zlen-2; zidx >=0; zidx -= 2) { 7730 // (carry:value) = (z[i] << 1) | carry ; 7731 // z[i] = value; 7732 // } 7733 7734 movl(zidx, zlen); 7735 xorl(prev_carry, prev_carry); // clear carry flag and prev_carry register 7736 7737 bind(L_fifth_loop); 7738 decl(zidx); // Use decl to preserve carry flag 7739 decl(zidx); 7740 jccb(Assembler::negative, L_fifth_loop_exit); 7741 7742 if (UseBMI2Instructions) { 7743 movq(value, Address(z, zidx, Address::times_4, 0)); 7744 rclq(value, 1); 7745 rorxq(value, value, 32); 7746 movq(Address(z, zidx, Address::times_4, 0), value); // Store back in big endian form 7747 } 7748 else { 7749 // clear new_carry 7750 xorl(new_carry, new_carry); 7751 7752 // Shift z[i] by 1, or in previous carry and save new carry 7753 movq(value, Address(z, zidx, Address::times_4, 0)); 7754 shlq(value, 1); 7755 adcl(new_carry, 0); 7756 7757 orq(value, prev_carry); 7758 rorq(value, 0x20); 7759 movq(Address(z, zidx, Address::times_4, 0), value); // Store back in big endian form 7760 7761 // Set previous carry = new carry 7762 movl(prev_carry, new_carry); 7763 } 7764 jmp(L_fifth_loop); 7765 7766 bind(L_fifth_loop_exit); 7767 } 7768 7769 7770 /** 7771 * Code for BigInteger::squareToLen() intrinsic 7772 * 7773 * rdi: x 7774 * rsi: len 7775 * r8: z 7776 * rcx: zlen 7777 * r12: tmp1 7778 * r13: tmp2 7779 * r14: tmp3 7780 * r15: tmp4 7781 * rbx: tmp5 7782 * 7783 */ 7784 void MacroAssembler::square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) { 7785 7786 Label L_second_loop, L_second_loop_exit, L_third_loop, L_third_loop_exit, L_last_x, L_multiply; 7787 push(tmp1); 7788 push(tmp2); 7789 push(tmp3); 7790 push(tmp4); 7791 push(tmp5); 7792 7793 // First loop 7794 // Store the squares, right shifted one bit (i.e., divided by 2). 7795 square_rshift(x, len, z, tmp1, tmp3, tmp4, tmp5, rdxReg, raxReg); 7796 7797 // Add in off-diagonal sums. 7798 // 7799 // Second, third (nested) and fourth loops. 7800 // zlen +=2; 7801 // for (int xidx=len-2,zidx=zlen-4; xidx > 0; xidx-=2,zidx-=4) { 7802 // carry = 0; 7803 // long op2 = x[xidx:xidx+1]; 7804 // for (int j=xidx-2,k=zidx; j >= 0; j-=2) { 7805 // k -= 2; 7806 // long op1 = x[j:j+1]; 7807 // long sum = z[k:k+1]; 7808 // carry:sum = multiply_add_64(sum, op1, op2, carry, tmp_regs); 7809 // z[k:k+1] = sum; 7810 // } 7811 // add_one_64(z, k, carry, tmp_regs); 7812 // } 7813 7814 const Register carry = tmp5; 7815 const Register sum = tmp3; 7816 const Register op1 = tmp4; 7817 Register op2 = tmp2; 7818 7819 push(zlen); 7820 push(len); 7821 addl(zlen,2); 7822 bind(L_second_loop); 7823 xorq(carry, carry); 7824 subl(zlen, 4); 7825 subl(len, 2); 7826 push(zlen); 7827 push(len); 7828 cmpl(len, 0); 7829 jccb(Assembler::lessEqual, L_second_loop_exit); 7830 7831 // Multiply an array by one 64 bit long. 7832 if (UseBMI2Instructions) { 7833 op2 = rdxReg; 7834 movq(op2, Address(x, len, Address::times_4, 0)); 7835 rorxq(op2, op2, 32); 7836 } 7837 else { 7838 movq(op2, Address(x, len, Address::times_4, 0)); 7839 rorq(op2, 32); 7840 } 7841 7842 bind(L_third_loop); 7843 decrementl(len); 7844 jccb(Assembler::negative, L_third_loop_exit); 7845 decrementl(len); 7846 jccb(Assembler::negative, L_last_x); 7847 7848 movq(op1, Address(x, len, Address::times_4, 0)); 7849 rorq(op1, 32); 7850 7851 bind(L_multiply); 7852 subl(zlen, 2); 7853 movq(sum, Address(z, zlen, Address::times_4, 0)); 7854 7855 // Multiply 64 bit by 64 bit and add 64 bits lower half and upper 64 bits as carry. 7856 if (UseBMI2Instructions) { 7857 multiply_add_64_bmi2(sum, op1, op2, carry, tmp2); 7858 } 7859 else { 7860 multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg); 7861 } 7862 7863 movq(Address(z, zlen, Address::times_4, 0), sum); 7864 7865 jmp(L_third_loop); 7866 bind(L_third_loop_exit); 7867 7868 // Fourth loop 7869 // Add 64 bit long carry into z with carry propagation. 7870 // Uses offsetted zlen. 7871 add_one_64(z, zlen, carry, tmp1); 7872 7873 pop(len); 7874 pop(zlen); 7875 jmp(L_second_loop); 7876 7877 // Next infrequent code is moved outside loops. 7878 bind(L_last_x); 7879 movl(op1, Address(x, 0)); 7880 jmp(L_multiply); 7881 7882 bind(L_second_loop_exit); 7883 pop(len); 7884 pop(zlen); 7885 pop(len); 7886 pop(zlen); 7887 7888 // Fifth loop 7889 // Shift z left 1 bit. 7890 lshift_by_1(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4); 7891 7892 // z[zlen-1] |= x[len-1] & 1; 7893 movl(tmp3, Address(x, len, Address::times_4, -4)); 7894 andl(tmp3, 1); 7895 orl(Address(z, zlen, Address::times_4, -4), tmp3); 7896 7897 pop(tmp5); 7898 pop(tmp4); 7899 pop(tmp3); 7900 pop(tmp2); 7901 pop(tmp1); 7902 } 7903 7904 /** 7905 * Helper function for mul_add() 7906 * Multiply the in[] by int k and add to out[] starting at offset offs using 7907 * 128 bit by 32 bit multiply and return the carry in tmp5. 7908 * Only quad int aligned length of in[] is operated on in this function. 7909 * k is in rdxReg for BMI2Instructions, for others it is in tmp2. 7910 * This function preserves out, in and k registers. 7911 * len and offset point to the appropriate index in "in" & "out" correspondingly 7912 * tmp5 has the carry. 7913 * other registers are temporary and are modified. 7914 * 7915 */ 7916 void MacroAssembler::mul_add_128_x_32_loop(Register out, Register in, 7917 Register offset, Register len, Register tmp1, Register tmp2, Register tmp3, 7918 Register tmp4, Register tmp5, Register rdxReg, Register raxReg) { 7919 7920 Label L_first_loop, L_first_loop_exit; 7921 7922 movl(tmp1, len); 7923 shrl(tmp1, 2); 7924 7925 bind(L_first_loop); 7926 subl(tmp1, 1); 7927 jccb(Assembler::negative, L_first_loop_exit); 7928 7929 subl(len, 4); 7930 subl(offset, 4); 7931 7932 Register op2 = tmp2; 7933 const Register sum = tmp3; 7934 const Register op1 = tmp4; 7935 const Register carry = tmp5; 7936 7937 if (UseBMI2Instructions) { 7938 op2 = rdxReg; 7939 } 7940 7941 movq(op1, Address(in, len, Address::times_4, 8)); 7942 rorq(op1, 32); 7943 movq(sum, Address(out, offset, Address::times_4, 8)); 7944 rorq(sum, 32); 7945 if (UseBMI2Instructions) { 7946 multiply_add_64_bmi2(sum, op1, op2, carry, raxReg); 7947 } 7948 else { 7949 multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg); 7950 } 7951 // Store back in big endian from little endian 7952 rorq(sum, 0x20); 7953 movq(Address(out, offset, Address::times_4, 8), sum); 7954 7955 movq(op1, Address(in, len, Address::times_4, 0)); 7956 rorq(op1, 32); 7957 movq(sum, Address(out, offset, Address::times_4, 0)); 7958 rorq(sum, 32); 7959 if (UseBMI2Instructions) { 7960 multiply_add_64_bmi2(sum, op1, op2, carry, raxReg); 7961 } 7962 else { 7963 multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg); 7964 } 7965 // Store back in big endian from little endian 7966 rorq(sum, 0x20); 7967 movq(Address(out, offset, Address::times_4, 0), sum); 7968 7969 jmp(L_first_loop); 7970 bind(L_first_loop_exit); 7971 } 7972 7973 /** 7974 * Code for BigInteger::mulAdd() intrinsic 7975 * 7976 * rdi: out 7977 * rsi: in 7978 * r11: offs (out.length - offset) 7979 * rcx: len 7980 * r8: k 7981 * r12: tmp1 7982 * r13: tmp2 7983 * r14: tmp3 7984 * r15: tmp4 7985 * rbx: tmp5 7986 * Multiply the in[] by word k and add to out[], return the carry in rax 7987 */ 7988 void MacroAssembler::mul_add(Register out, Register in, Register offs, 7989 Register len, Register k, Register tmp1, Register tmp2, Register tmp3, 7990 Register tmp4, Register tmp5, Register rdxReg, Register raxReg) { 7991 7992 Label L_carry, L_last_in, L_done; 7993 7994 // carry = 0; 7995 // for (int j=len-1; j >= 0; j--) { 7996 // long product = (in[j] & LONG_MASK) * kLong + 7997 // (out[offs] & LONG_MASK) + carry; 7998 // out[offs--] = (int)product; 7999 // carry = product >>> 32; 8000 // } 8001 // 8002 push(tmp1); 8003 push(tmp2); 8004 push(tmp3); 8005 push(tmp4); 8006 push(tmp5); 8007 8008 Register op2 = tmp2; 8009 const Register sum = tmp3; 8010 const Register op1 = tmp4; 8011 const Register carry = tmp5; 8012 8013 if (UseBMI2Instructions) { 8014 op2 = rdxReg; 8015 movl(op2, k); 8016 } 8017 else { 8018 movl(op2, k); 8019 } 8020 8021 xorq(carry, carry); 8022 8023 //First loop 8024 8025 //Multiply in[] by k in a 4 way unrolled loop using 128 bit by 32 bit multiply 8026 //The carry is in tmp5 8027 mul_add_128_x_32_loop(out, in, offs, len, tmp1, tmp2, tmp3, tmp4, tmp5, rdxReg, raxReg); 8028 8029 //Multiply the trailing in[] entry using 64 bit by 32 bit, if any 8030 decrementl(len); 8031 jccb(Assembler::negative, L_carry); 8032 decrementl(len); 8033 jccb(Assembler::negative, L_last_in); 8034 8035 movq(op1, Address(in, len, Address::times_4, 0)); 8036 rorq(op1, 32); 8037 8038 subl(offs, 2); 8039 movq(sum, Address(out, offs, Address::times_4, 0)); 8040 rorq(sum, 32); 8041 8042 if (UseBMI2Instructions) { 8043 multiply_add_64_bmi2(sum, op1, op2, carry, raxReg); 8044 } 8045 else { 8046 multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg); 8047 } 8048 8049 // Store back in big endian from little endian 8050 rorq(sum, 0x20); 8051 movq(Address(out, offs, Address::times_4, 0), sum); 8052 8053 testl(len, len); 8054 jccb(Assembler::zero, L_carry); 8055 8056 //Multiply the last in[] entry, if any 8057 bind(L_last_in); 8058 movl(op1, Address(in, 0)); 8059 movl(sum, Address(out, offs, Address::times_4, -4)); 8060 8061 movl(raxReg, k); 8062 mull(op1); //tmp4 * eax -> edx:eax 8063 addl(sum, carry); 8064 adcl(rdxReg, 0); 8065 addl(sum, raxReg); 8066 adcl(rdxReg, 0); 8067 movl(carry, rdxReg); 8068 8069 movl(Address(out, offs, Address::times_4, -4), sum); 8070 8071 bind(L_carry); 8072 //return tmp5/carry as carry in rax 8073 movl(rax, carry); 8074 8075 bind(L_done); 8076 pop(tmp5); 8077 pop(tmp4); 8078 pop(tmp3); 8079 pop(tmp2); 8080 pop(tmp1); 8081 } 8082 8083 /** 8084 * Emits code to update CRC-32 with a byte value according to constants in table 8085 * 8086 * @param [in,out]crc Register containing the crc. 8087 * @param [in]val Register containing the byte to fold into the CRC. 8088 * @param [in]table Register containing the table of crc constants. 8089 * 8090 * uint32_t crc; 8091 * val = crc_table[(val ^ crc) & 0xFF]; 8092 * crc = val ^ (crc >> 8); 8093 * 8094 */ 8095 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) { 8096 xorl(val, crc); 8097 andl(val, 0xFF); 8098 shrl(crc, 8); // unsigned shift 8099 xorl(crc, Address(table, val, Address::times_4, 0)); 8100 } 8101 8102 /** 8103 * Fold 128-bit data chunk 8104 */ 8105 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) { 8106 if (UseAVX > 0) { 8107 vpclmulhdq(xtmp, xK, xcrc); // [123:64] 8108 vpclmulldq(xcrc, xK, xcrc); // [63:0] 8109 vpxor(xcrc, xcrc, Address(buf, offset), 0 /* vector_len */); 8110 pxor(xcrc, xtmp); 8111 } else { 8112 movdqa(xtmp, xcrc); 8113 pclmulhdq(xtmp, xK); // [123:64] 8114 pclmulldq(xcrc, xK); // [63:0] 8115 pxor(xcrc, xtmp); 8116 movdqu(xtmp, Address(buf, offset)); 8117 pxor(xcrc, xtmp); 8118 } 8119 } 8120 8121 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf) { 8122 if (UseAVX > 0) { 8123 vpclmulhdq(xtmp, xK, xcrc); 8124 vpclmulldq(xcrc, xK, xcrc); 8125 pxor(xcrc, xbuf); 8126 pxor(xcrc, xtmp); 8127 } else { 8128 movdqa(xtmp, xcrc); 8129 pclmulhdq(xtmp, xK); 8130 pclmulldq(xcrc, xK); 8131 pxor(xcrc, xbuf); 8132 pxor(xcrc, xtmp); 8133 } 8134 } 8135 8136 /** 8137 * 8-bit folds to compute 32-bit CRC 8138 * 8139 * uint64_t xcrc; 8140 * timesXtoThe32[xcrc & 0xFF] ^ (xcrc >> 8); 8141 */ 8142 void MacroAssembler::fold_8bit_crc32(XMMRegister xcrc, Register table, XMMRegister xtmp, Register tmp) { 8143 movdl(tmp, xcrc); 8144 andl(tmp, 0xFF); 8145 movdl(xtmp, Address(table, tmp, Address::times_4, 0)); 8146 psrldq(xcrc, 1); // unsigned shift one byte 8147 pxor(xcrc, xtmp); 8148 } 8149 8150 /** 8151 * uint32_t crc; 8152 * timesXtoThe32[crc & 0xFF] ^ (crc >> 8); 8153 */ 8154 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) { 8155 movl(tmp, crc); 8156 andl(tmp, 0xFF); 8157 shrl(crc, 8); 8158 xorl(crc, Address(table, tmp, Address::times_4, 0)); 8159 } 8160 8161 /** 8162 * @param crc register containing existing CRC (32-bit) 8163 * @param buf register pointing to input byte buffer (byte*) 8164 * @param len register containing number of bytes 8165 * @param table register that will contain address of CRC table 8166 * @param tmp scratch register 8167 */ 8168 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp) { 8169 assert_different_registers(crc, buf, len, table, tmp, rax); 8170 8171 Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned; 8172 Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop; 8173 8174 // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge 8175 // context for the registers used, where all instructions below are using 128-bit mode 8176 // On EVEX without VL and BW, these instructions will all be AVX. 8177 lea(table, ExternalAddress(StubRoutines::crc_table_addr())); 8178 notl(crc); // ~crc 8179 cmpl(len, 16); 8180 jcc(Assembler::less, L_tail); 8181 8182 // Align buffer to 16 bytes 8183 movl(tmp, buf); 8184 andl(tmp, 0xF); 8185 jccb(Assembler::zero, L_aligned); 8186 subl(tmp, 16); 8187 addl(len, tmp); 8188 8189 align(4); 8190 BIND(L_align_loop); 8191 movsbl(rax, Address(buf, 0)); // load byte with sign extension 8192 update_byte_crc32(crc, rax, table); 8193 increment(buf); 8194 incrementl(tmp); 8195 jccb(Assembler::less, L_align_loop); 8196 8197 BIND(L_aligned); 8198 movl(tmp, len); // save 8199 shrl(len, 4); 8200 jcc(Assembler::zero, L_tail_restore); 8201 8202 // Fold crc into first bytes of vector 8203 movdqa(xmm1, Address(buf, 0)); 8204 movdl(rax, xmm1); 8205 xorl(crc, rax); 8206 if (VM_Version::supports_sse4_1()) { 8207 pinsrd(xmm1, crc, 0); 8208 } else { 8209 pinsrw(xmm1, crc, 0); 8210 shrl(crc, 16); 8211 pinsrw(xmm1, crc, 1); 8212 } 8213 addptr(buf, 16); 8214 subl(len, 4); // len > 0 8215 jcc(Assembler::less, L_fold_tail); 8216 8217 movdqa(xmm2, Address(buf, 0)); 8218 movdqa(xmm3, Address(buf, 16)); 8219 movdqa(xmm4, Address(buf, 32)); 8220 addptr(buf, 48); 8221 subl(len, 3); 8222 jcc(Assembler::lessEqual, L_fold_512b); 8223 8224 // Fold total 512 bits of polynomial on each iteration, 8225 // 128 bits per each of 4 parallel streams. 8226 movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32), rscratch1); 8227 8228 align32(); 8229 BIND(L_fold_512b_loop); 8230 fold_128bit_crc32(xmm1, xmm0, xmm5, buf, 0); 8231 fold_128bit_crc32(xmm2, xmm0, xmm5, buf, 16); 8232 fold_128bit_crc32(xmm3, xmm0, xmm5, buf, 32); 8233 fold_128bit_crc32(xmm4, xmm0, xmm5, buf, 48); 8234 addptr(buf, 64); 8235 subl(len, 4); 8236 jcc(Assembler::greater, L_fold_512b_loop); 8237 8238 // Fold 512 bits to 128 bits. 8239 BIND(L_fold_512b); 8240 movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16), rscratch1); 8241 fold_128bit_crc32(xmm1, xmm0, xmm5, xmm2); 8242 fold_128bit_crc32(xmm1, xmm0, xmm5, xmm3); 8243 fold_128bit_crc32(xmm1, xmm0, xmm5, xmm4); 8244 8245 // Fold the rest of 128 bits data chunks 8246 BIND(L_fold_tail); 8247 addl(len, 3); 8248 jccb(Assembler::lessEqual, L_fold_128b); 8249 movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16), rscratch1); 8250 8251 BIND(L_fold_tail_loop); 8252 fold_128bit_crc32(xmm1, xmm0, xmm5, buf, 0); 8253 addptr(buf, 16); 8254 decrementl(len); 8255 jccb(Assembler::greater, L_fold_tail_loop); 8256 8257 // Fold 128 bits in xmm1 down into 32 bits in crc register. 8258 BIND(L_fold_128b); 8259 movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr()), rscratch1); 8260 if (UseAVX > 0) { 8261 vpclmulqdq(xmm2, xmm0, xmm1, 0x1); 8262 vpand(xmm3, xmm0, xmm2, 0 /* vector_len */); 8263 vpclmulqdq(xmm0, xmm0, xmm3, 0x1); 8264 } else { 8265 movdqa(xmm2, xmm0); 8266 pclmulqdq(xmm2, xmm1, 0x1); 8267 movdqa(xmm3, xmm0); 8268 pand(xmm3, xmm2); 8269 pclmulqdq(xmm0, xmm3, 0x1); 8270 } 8271 psrldq(xmm1, 8); 8272 psrldq(xmm2, 4); 8273 pxor(xmm0, xmm1); 8274 pxor(xmm0, xmm2); 8275 8276 // 8 8-bit folds to compute 32-bit CRC. 8277 for (int j = 0; j < 4; j++) { 8278 fold_8bit_crc32(xmm0, table, xmm1, rax); 8279 } 8280 movdl(crc, xmm0); // mov 32 bits to general register 8281 for (int j = 0; j < 4; j++) { 8282 fold_8bit_crc32(crc, table, rax); 8283 } 8284 8285 BIND(L_tail_restore); 8286 movl(len, tmp); // restore 8287 BIND(L_tail); 8288 andl(len, 0xf); 8289 jccb(Assembler::zero, L_exit); 8290 8291 // Fold the rest of bytes 8292 align(4); 8293 BIND(L_tail_loop); 8294 movsbl(rax, Address(buf, 0)); // load byte with sign extension 8295 update_byte_crc32(crc, rax, table); 8296 increment(buf); 8297 decrementl(len); 8298 jccb(Assembler::greater, L_tail_loop); 8299 8300 BIND(L_exit); 8301 notl(crc); // ~c 8302 } 8303 8304 // Helper function for AVX 512 CRC32 8305 // Fold 512-bit data chunks 8306 void MacroAssembler::fold512bit_crc32_avx512(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, 8307 Register pos, int offset) { 8308 evmovdquq(xmm3, Address(buf, pos, Address::times_1, offset), Assembler::AVX_512bit); 8309 evpclmulqdq(xtmp, xcrc, xK, 0x10, Assembler::AVX_512bit); // [123:64] 8310 evpclmulqdq(xmm2, xcrc, xK, 0x01, Assembler::AVX_512bit); // [63:0] 8311 evpxorq(xcrc, xtmp, xmm2, Assembler::AVX_512bit /* vector_len */); 8312 evpxorq(xcrc, xcrc, xmm3, Assembler::AVX_512bit /* vector_len */); 8313 } 8314 8315 // Helper function for AVX 512 CRC32 8316 // Compute CRC32 for < 256B buffers 8317 void MacroAssembler::kernel_crc32_avx512_256B(Register crc, Register buf, Register len, Register table, Register pos, 8318 Register tmp1, Register tmp2, Label& L_barrett, Label& L_16B_reduction_loop, 8319 Label& L_get_last_two_xmms, Label& L_128_done, Label& L_cleanup) { 8320 8321 Label L_less_than_32, L_exact_16_left, L_less_than_16_left; 8322 Label L_less_than_8_left, L_less_than_4_left, L_less_than_2_left, L_zero_left; 8323 Label L_only_less_than_4, L_only_less_than_3, L_only_less_than_2; 8324 8325 // check if there is enough buffer to be able to fold 16B at a time 8326 cmpl(len, 32); 8327 jcc(Assembler::less, L_less_than_32); 8328 8329 // if there is, load the constants 8330 movdqu(xmm10, Address(table, 1 * 16)); //rk1 and rk2 in xmm10 8331 movdl(xmm0, crc); // get the initial crc value 8332 movdqu(xmm7, Address(buf, pos, Address::times_1, 0 * 16)); //load the plaintext 8333 pxor(xmm7, xmm0); 8334 8335 // update the buffer pointer 8336 addl(pos, 16); 8337 //update the counter.subtract 32 instead of 16 to save one instruction from the loop 8338 subl(len, 32); 8339 jmp(L_16B_reduction_loop); 8340 8341 bind(L_less_than_32); 8342 //mov initial crc to the return value. this is necessary for zero - length buffers. 8343 movl(rax, crc); 8344 testl(len, len); 8345 jcc(Assembler::equal, L_cleanup); 8346 8347 movdl(xmm0, crc); //get the initial crc value 8348 8349 cmpl(len, 16); 8350 jcc(Assembler::equal, L_exact_16_left); 8351 jcc(Assembler::less, L_less_than_16_left); 8352 8353 movdqu(xmm7, Address(buf, pos, Address::times_1, 0 * 16)); //load the plaintext 8354 pxor(xmm7, xmm0); //xor the initial crc value 8355 addl(pos, 16); 8356 subl(len, 16); 8357 movdqu(xmm10, Address(table, 1 * 16)); // rk1 and rk2 in xmm10 8358 jmp(L_get_last_two_xmms); 8359 8360 bind(L_less_than_16_left); 8361 //use stack space to load data less than 16 bytes, zero - out the 16B in memory first. 8362 pxor(xmm1, xmm1); 8363 movptr(tmp1, rsp); 8364 movdqu(Address(tmp1, 0 * 16), xmm1); 8365 8366 cmpl(len, 4); 8367 jcc(Assembler::less, L_only_less_than_4); 8368 8369 //backup the counter value 8370 movl(tmp2, len); 8371 cmpl(len, 8); 8372 jcc(Assembler::less, L_less_than_8_left); 8373 8374 //load 8 Bytes 8375 movq(rax, Address(buf, pos, Address::times_1, 0 * 16)); 8376 movq(Address(tmp1, 0 * 16), rax); 8377 addptr(tmp1, 8); 8378 subl(len, 8); 8379 addl(pos, 8); 8380 8381 bind(L_less_than_8_left); 8382 cmpl(len, 4); 8383 jcc(Assembler::less, L_less_than_4_left); 8384 8385 //load 4 Bytes 8386 movl(rax, Address(buf, pos, Address::times_1, 0)); 8387 movl(Address(tmp1, 0 * 16), rax); 8388 addptr(tmp1, 4); 8389 subl(len, 4); 8390 addl(pos, 4); 8391 8392 bind(L_less_than_4_left); 8393 cmpl(len, 2); 8394 jcc(Assembler::less, L_less_than_2_left); 8395 8396 // load 2 Bytes 8397 movw(rax, Address(buf, pos, Address::times_1, 0)); 8398 movl(Address(tmp1, 0 * 16), rax); 8399 addptr(tmp1, 2); 8400 subl(len, 2); 8401 addl(pos, 2); 8402 8403 bind(L_less_than_2_left); 8404 cmpl(len, 1); 8405 jcc(Assembler::less, L_zero_left); 8406 8407 // load 1 Byte 8408 movb(rax, Address(buf, pos, Address::times_1, 0)); 8409 movb(Address(tmp1, 0 * 16), rax); 8410 8411 bind(L_zero_left); 8412 movdqu(xmm7, Address(rsp, 0)); 8413 pxor(xmm7, xmm0); //xor the initial crc value 8414 8415 lea(rax, ExternalAddress(StubRoutines::x86::shuf_table_crc32_avx512_addr())); 8416 movdqu(xmm0, Address(rax, tmp2)); 8417 pshufb(xmm7, xmm0); 8418 jmp(L_128_done); 8419 8420 bind(L_exact_16_left); 8421 movdqu(xmm7, Address(buf, pos, Address::times_1, 0)); 8422 pxor(xmm7, xmm0); //xor the initial crc value 8423 jmp(L_128_done); 8424 8425 bind(L_only_less_than_4); 8426 cmpl(len, 3); 8427 jcc(Assembler::less, L_only_less_than_3); 8428 8429 // load 3 Bytes 8430 movb(rax, Address(buf, pos, Address::times_1, 0)); 8431 movb(Address(tmp1, 0), rax); 8432 8433 movb(rax, Address(buf, pos, Address::times_1, 1)); 8434 movb(Address(tmp1, 1), rax); 8435 8436 movb(rax, Address(buf, pos, Address::times_1, 2)); 8437 movb(Address(tmp1, 2), rax); 8438 8439 movdqu(xmm7, Address(rsp, 0)); 8440 pxor(xmm7, xmm0); //xor the initial crc value 8441 8442 pslldq(xmm7, 0x5); 8443 jmp(L_barrett); 8444 bind(L_only_less_than_3); 8445 cmpl(len, 2); 8446 jcc(Assembler::less, L_only_less_than_2); 8447 8448 // load 2 Bytes 8449 movb(rax, Address(buf, pos, Address::times_1, 0)); 8450 movb(Address(tmp1, 0), rax); 8451 8452 movb(rax, Address(buf, pos, Address::times_1, 1)); 8453 movb(Address(tmp1, 1), rax); 8454 8455 movdqu(xmm7, Address(rsp, 0)); 8456 pxor(xmm7, xmm0); //xor the initial crc value 8457 8458 pslldq(xmm7, 0x6); 8459 jmp(L_barrett); 8460 8461 bind(L_only_less_than_2); 8462 //load 1 Byte 8463 movb(rax, Address(buf, pos, Address::times_1, 0)); 8464 movb(Address(tmp1, 0), rax); 8465 8466 movdqu(xmm7, Address(rsp, 0)); 8467 pxor(xmm7, xmm0); //xor the initial crc value 8468 8469 pslldq(xmm7, 0x7); 8470 } 8471 8472 /** 8473 * Compute CRC32 using AVX512 instructions 8474 * param crc register containing existing CRC (32-bit) 8475 * param buf register pointing to input byte buffer (byte*) 8476 * param len register containing number of bytes 8477 * param table address of crc or crc32c table 8478 * param tmp1 scratch register 8479 * param tmp2 scratch register 8480 * return rax result register 8481 * 8482 * This routine is identical for crc32c with the exception of the precomputed constant 8483 * table which will be passed as the table argument. The calculation steps are 8484 * the same for both variants. 8485 */ 8486 void MacroAssembler::kernel_crc32_avx512(Register crc, Register buf, Register len, Register table, Register tmp1, Register tmp2) { 8487 assert_different_registers(crc, buf, len, table, tmp1, tmp2, rax, r12); 8488 8489 Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned; 8490 Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop; 8491 Label L_less_than_256, L_fold_128_B_loop, L_fold_256_B_loop; 8492 Label L_fold_128_B_register, L_final_reduction_for_128, L_16B_reduction_loop; 8493 Label L_128_done, L_get_last_two_xmms, L_barrett, L_cleanup; 8494 8495 const Register pos = r12; 8496 push(r12); 8497 subptr(rsp, 16 * 2 + 8); 8498 8499 // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge 8500 // context for the registers used, where all instructions below are using 128-bit mode 8501 // On EVEX without VL and BW, these instructions will all be AVX. 8502 movl(pos, 0); 8503 8504 // check if smaller than 256B 8505 cmpl(len, 256); 8506 jcc(Assembler::less, L_less_than_256); 8507 8508 // load the initial crc value 8509 movdl(xmm10, crc); 8510 8511 // receive the initial 64B data, xor the initial crc value 8512 evmovdquq(xmm0, Address(buf, pos, Address::times_1, 0 * 64), Assembler::AVX_512bit); 8513 evmovdquq(xmm4, Address(buf, pos, Address::times_1, 1 * 64), Assembler::AVX_512bit); 8514 evpxorq(xmm0, xmm0, xmm10, Assembler::AVX_512bit); 8515 evbroadcasti32x4(xmm10, Address(table, 2 * 16), Assembler::AVX_512bit); //zmm10 has rk3 and rk4 8516 8517 subl(len, 256); 8518 cmpl(len, 256); 8519 jcc(Assembler::less, L_fold_128_B_loop); 8520 8521 evmovdquq(xmm7, Address(buf, pos, Address::times_1, 2 * 64), Assembler::AVX_512bit); 8522 evmovdquq(xmm8, Address(buf, pos, Address::times_1, 3 * 64), Assembler::AVX_512bit); 8523 evbroadcasti32x4(xmm16, Address(table, 0 * 16), Assembler::AVX_512bit); //zmm16 has rk-1 and rk-2 8524 subl(len, 256); 8525 8526 bind(L_fold_256_B_loop); 8527 addl(pos, 256); 8528 fold512bit_crc32_avx512(xmm0, xmm16, xmm1, buf, pos, 0 * 64); 8529 fold512bit_crc32_avx512(xmm4, xmm16, xmm1, buf, pos, 1 * 64); 8530 fold512bit_crc32_avx512(xmm7, xmm16, xmm1, buf, pos, 2 * 64); 8531 fold512bit_crc32_avx512(xmm8, xmm16, xmm1, buf, pos, 3 * 64); 8532 8533 subl(len, 256); 8534 jcc(Assembler::greaterEqual, L_fold_256_B_loop); 8535 8536 // Fold 256 into 128 8537 addl(pos, 256); 8538 evpclmulqdq(xmm1, xmm0, xmm10, 0x01, Assembler::AVX_512bit); 8539 evpclmulqdq(xmm2, xmm0, xmm10, 0x10, Assembler::AVX_512bit); 8540 vpternlogq(xmm7, 0x96, xmm1, xmm2, Assembler::AVX_512bit); // xor ABC 8541 8542 evpclmulqdq(xmm5, xmm4, xmm10, 0x01, Assembler::AVX_512bit); 8543 evpclmulqdq(xmm6, xmm4, xmm10, 0x10, Assembler::AVX_512bit); 8544 vpternlogq(xmm8, 0x96, xmm5, xmm6, Assembler::AVX_512bit); // xor ABC 8545 8546 evmovdquq(xmm0, xmm7, Assembler::AVX_512bit); 8547 evmovdquq(xmm4, xmm8, Assembler::AVX_512bit); 8548 8549 addl(len, 128); 8550 jmp(L_fold_128_B_register); 8551 8552 // at this section of the code, there is 128 * x + y(0 <= y<128) bytes of buffer.The fold_128_B_loop 8553 // loop will fold 128B at a time until we have 128 + y Bytes of buffer 8554 8555 // fold 128B at a time.This section of the code folds 8 xmm registers in parallel 8556 bind(L_fold_128_B_loop); 8557 addl(pos, 128); 8558 fold512bit_crc32_avx512(xmm0, xmm10, xmm1, buf, pos, 0 * 64); 8559 fold512bit_crc32_avx512(xmm4, xmm10, xmm1, buf, pos, 1 * 64); 8560 8561 subl(len, 128); 8562 jcc(Assembler::greaterEqual, L_fold_128_B_loop); 8563 8564 addl(pos, 128); 8565 8566 // at this point, the buffer pointer is pointing at the last y Bytes of the buffer, where 0 <= y < 128 8567 // the 128B of folded data is in 8 of the xmm registers : xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7 8568 bind(L_fold_128_B_register); 8569 evmovdquq(xmm16, Address(table, 5 * 16), Assembler::AVX_512bit); // multiply by rk9-rk16 8570 evmovdquq(xmm11, Address(table, 9 * 16), Assembler::AVX_512bit); // multiply by rk17-rk20, rk1,rk2, 0,0 8571 evpclmulqdq(xmm1, xmm0, xmm16, 0x01, Assembler::AVX_512bit); 8572 evpclmulqdq(xmm2, xmm0, xmm16, 0x10, Assembler::AVX_512bit); 8573 // save last that has no multiplicand 8574 vextracti64x2(xmm7, xmm4, 3); 8575 8576 evpclmulqdq(xmm5, xmm4, xmm11, 0x01, Assembler::AVX_512bit); 8577 evpclmulqdq(xmm6, xmm4, xmm11, 0x10, Assembler::AVX_512bit); 8578 // Needed later in reduction loop 8579 movdqu(xmm10, Address(table, 1 * 16)); 8580 vpternlogq(xmm1, 0x96, xmm2, xmm5, Assembler::AVX_512bit); // xor ABC 8581 vpternlogq(xmm1, 0x96, xmm6, xmm7, Assembler::AVX_512bit); // xor ABC 8582 8583 // Swap 1,0,3,2 - 01 00 11 10 8584 evshufi64x2(xmm8, xmm1, xmm1, 0x4e, Assembler::AVX_512bit); 8585 evpxorq(xmm8, xmm8, xmm1, Assembler::AVX_256bit); 8586 vextracti128(xmm5, xmm8, 1); 8587 evpxorq(xmm7, xmm5, xmm8, Assembler::AVX_128bit); 8588 8589 // instead of 128, we add 128 - 16 to the loop counter to save 1 instruction from the loop 8590 // instead of a cmp instruction, we use the negative flag with the jl instruction 8591 addl(len, 128 - 16); 8592 jcc(Assembler::less, L_final_reduction_for_128); 8593 8594 bind(L_16B_reduction_loop); 8595 vpclmulqdq(xmm8, xmm7, xmm10, 0x01); 8596 vpclmulqdq(xmm7, xmm7, xmm10, 0x10); 8597 vpxor(xmm7, xmm7, xmm8, Assembler::AVX_128bit); 8598 movdqu(xmm0, Address(buf, pos, Address::times_1, 0 * 16)); 8599 vpxor(xmm7, xmm7, xmm0, Assembler::AVX_128bit); 8600 addl(pos, 16); 8601 subl(len, 16); 8602 jcc(Assembler::greaterEqual, L_16B_reduction_loop); 8603 8604 bind(L_final_reduction_for_128); 8605 addl(len, 16); 8606 jcc(Assembler::equal, L_128_done); 8607 8608 bind(L_get_last_two_xmms); 8609 movdqu(xmm2, xmm7); 8610 addl(pos, len); 8611 movdqu(xmm1, Address(buf, pos, Address::times_1, -16)); 8612 subl(pos, len); 8613 8614 // get rid of the extra data that was loaded before 8615 // load the shift constant 8616 lea(rax, ExternalAddress(StubRoutines::x86::shuf_table_crc32_avx512_addr())); 8617 movdqu(xmm0, Address(rax, len)); 8618 addl(rax, len); 8619 8620 vpshufb(xmm7, xmm7, xmm0, Assembler::AVX_128bit); 8621 //Change mask to 512 8622 vpxor(xmm0, xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_avx512_addr() + 2 * 16), Assembler::AVX_128bit, tmp2); 8623 vpshufb(xmm2, xmm2, xmm0, Assembler::AVX_128bit); 8624 8625 blendvpb(xmm2, xmm2, xmm1, xmm0, Assembler::AVX_128bit); 8626 vpclmulqdq(xmm8, xmm7, xmm10, 0x01); 8627 vpclmulqdq(xmm7, xmm7, xmm10, 0x10); 8628 vpxor(xmm7, xmm7, xmm8, Assembler::AVX_128bit); 8629 vpxor(xmm7, xmm7, xmm2, Assembler::AVX_128bit); 8630 8631 bind(L_128_done); 8632 // compute crc of a 128-bit value 8633 movdqu(xmm10, Address(table, 3 * 16)); 8634 movdqu(xmm0, xmm7); 8635 8636 // 64b fold 8637 vpclmulqdq(xmm7, xmm7, xmm10, 0x0); 8638 vpsrldq(xmm0, xmm0, 0x8, Assembler::AVX_128bit); 8639 vpxor(xmm7, xmm7, xmm0, Assembler::AVX_128bit); 8640 8641 // 32b fold 8642 movdqu(xmm0, xmm7); 8643 vpslldq(xmm7, xmm7, 0x4, Assembler::AVX_128bit); 8644 vpclmulqdq(xmm7, xmm7, xmm10, 0x10); 8645 vpxor(xmm7, xmm7, xmm0, Assembler::AVX_128bit); 8646 jmp(L_barrett); 8647 8648 bind(L_less_than_256); 8649 kernel_crc32_avx512_256B(crc, buf, len, table, pos, tmp1, tmp2, L_barrett, L_16B_reduction_loop, L_get_last_two_xmms, L_128_done, L_cleanup); 8650 8651 //barrett reduction 8652 bind(L_barrett); 8653 vpand(xmm7, xmm7, ExternalAddress(StubRoutines::x86::crc_by128_masks_avx512_addr() + 1 * 16), Assembler::AVX_128bit, tmp2); 8654 movdqu(xmm1, xmm7); 8655 movdqu(xmm2, xmm7); 8656 movdqu(xmm10, Address(table, 4 * 16)); 8657 8658 pclmulqdq(xmm7, xmm10, 0x0); 8659 pxor(xmm7, xmm2); 8660 vpand(xmm7, xmm7, ExternalAddress(StubRoutines::x86::crc_by128_masks_avx512_addr()), Assembler::AVX_128bit, tmp2); 8661 movdqu(xmm2, xmm7); 8662 pclmulqdq(xmm7, xmm10, 0x10); 8663 pxor(xmm7, xmm2); 8664 pxor(xmm7, xmm1); 8665 pextrd(crc, xmm7, 2); 8666 8667 bind(L_cleanup); 8668 addptr(rsp, 16 * 2 + 8); 8669 pop(r12); 8670 } 8671 8672 // S. Gueron / Information Processing Letters 112 (2012) 184 8673 // Algorithm 4: Computing carry-less multiplication using a precomputed lookup table. 8674 // Input: A 32 bit value B = [byte3, byte2, byte1, byte0]. 8675 // Output: the 64-bit carry-less product of B * CONST 8676 void MacroAssembler::crc32c_ipl_alg4(Register in, uint32_t n, 8677 Register tmp1, Register tmp2, Register tmp3) { 8678 lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr())); 8679 if (n > 0) { 8680 addq(tmp3, n * 256 * 8); 8681 } 8682 // Q1 = TABLEExt[n][B & 0xFF]; 8683 movl(tmp1, in); 8684 andl(tmp1, 0x000000FF); 8685 shll(tmp1, 3); 8686 addq(tmp1, tmp3); 8687 movq(tmp1, Address(tmp1, 0)); 8688 8689 // Q2 = TABLEExt[n][B >> 8 & 0xFF]; 8690 movl(tmp2, in); 8691 shrl(tmp2, 8); 8692 andl(tmp2, 0x000000FF); 8693 shll(tmp2, 3); 8694 addq(tmp2, tmp3); 8695 movq(tmp2, Address(tmp2, 0)); 8696 8697 shlq(tmp2, 8); 8698 xorq(tmp1, tmp2); 8699 8700 // Q3 = TABLEExt[n][B >> 16 & 0xFF]; 8701 movl(tmp2, in); 8702 shrl(tmp2, 16); 8703 andl(tmp2, 0x000000FF); 8704 shll(tmp2, 3); 8705 addq(tmp2, tmp3); 8706 movq(tmp2, Address(tmp2, 0)); 8707 8708 shlq(tmp2, 16); 8709 xorq(tmp1, tmp2); 8710 8711 // Q4 = TABLEExt[n][B >> 24 & 0xFF]; 8712 shrl(in, 24); 8713 andl(in, 0x000000FF); 8714 shll(in, 3); 8715 addq(in, tmp3); 8716 movq(in, Address(in, 0)); 8717 8718 shlq(in, 24); 8719 xorq(in, tmp1); 8720 // return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24; 8721 } 8722 8723 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1, 8724 Register in_out, 8725 uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported, 8726 XMMRegister w_xtmp2, 8727 Register tmp1, 8728 Register n_tmp2, Register n_tmp3) { 8729 if (is_pclmulqdq_supported) { 8730 movdl(w_xtmp1, in_out); // modified blindly 8731 8732 movl(tmp1, const_or_pre_comp_const_index); 8733 movdl(w_xtmp2, tmp1); 8734 pclmulqdq(w_xtmp1, w_xtmp2, 0); 8735 8736 movdq(in_out, w_xtmp1); 8737 } else { 8738 crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3); 8739 } 8740 } 8741 8742 // Recombination Alternative 2: No bit-reflections 8743 // T1 = (CRC_A * U1) << 1 8744 // T2 = (CRC_B * U2) << 1 8745 // C1 = T1 >> 32 8746 // C2 = T2 >> 32 8747 // T1 = T1 & 0xFFFFFFFF 8748 // T2 = T2 & 0xFFFFFFFF 8749 // T1 = CRC32(0, T1) 8750 // T2 = CRC32(0, T2) 8751 // C1 = C1 ^ T1 8752 // C2 = C2 ^ T2 8753 // CRC = C1 ^ C2 ^ CRC_C 8754 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2, 8755 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 8756 Register tmp1, Register tmp2, 8757 Register n_tmp3) { 8758 crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3); 8759 crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3); 8760 shlq(in_out, 1); 8761 movl(tmp1, in_out); 8762 shrq(in_out, 32); 8763 xorl(tmp2, tmp2); 8764 crc32(tmp2, tmp1, 4); 8765 xorl(in_out, tmp2); // we don't care about upper 32 bit contents here 8766 shlq(in1, 1); 8767 movl(tmp1, in1); 8768 shrq(in1, 32); 8769 xorl(tmp2, tmp2); 8770 crc32(tmp2, tmp1, 4); 8771 xorl(in1, tmp2); 8772 xorl(in_out, in1); 8773 xorl(in_out, in2); 8774 } 8775 8776 // Set N to predefined value 8777 // Subtract from a length of a buffer 8778 // execute in a loop: 8779 // CRC_A = 0xFFFFFFFF, CRC_B = 0, CRC_C = 0 8780 // for i = 1 to N do 8781 // CRC_A = CRC32(CRC_A, A[i]) 8782 // CRC_B = CRC32(CRC_B, B[i]) 8783 // CRC_C = CRC32(CRC_C, C[i]) 8784 // end for 8785 // Recombine 8786 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, 8787 Register in_out1, Register in_out2, Register in_out3, 8788 Register tmp1, Register tmp2, Register tmp3, 8789 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 8790 Register tmp4, Register tmp5, 8791 Register n_tmp6) { 8792 Label L_processPartitions; 8793 Label L_processPartition; 8794 Label L_exit; 8795 8796 bind(L_processPartitions); 8797 cmpl(in_out1, 3 * size); 8798 jcc(Assembler::less, L_exit); 8799 xorl(tmp1, tmp1); 8800 xorl(tmp2, tmp2); 8801 movq(tmp3, in_out2); 8802 addq(tmp3, size); 8803 8804 bind(L_processPartition); 8805 crc32(in_out3, Address(in_out2, 0), 8); 8806 crc32(tmp1, Address(in_out2, size), 8); 8807 crc32(tmp2, Address(in_out2, size * 2), 8); 8808 addq(in_out2, 8); 8809 cmpq(in_out2, tmp3); 8810 jcc(Assembler::less, L_processPartition); 8811 crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2, 8812 w_xtmp1, w_xtmp2, w_xtmp3, 8813 tmp4, tmp5, 8814 n_tmp6); 8815 addq(in_out2, 2 * size); 8816 subl(in_out1, 3 * size); 8817 jmp(L_processPartitions); 8818 8819 bind(L_exit); 8820 } 8821 8822 // Algorithm 2: Pipelined usage of the CRC32 instruction. 8823 // Input: A buffer I of L bytes. 8824 // Output: the CRC32C value of the buffer. 8825 // Notations: 8826 // Write L = 24N + r, with N = floor (L/24). 8827 // r = L mod 24 (0 <= r < 24). 8828 // Consider I as the concatenation of A|B|C|R, where A, B, C, each, 8829 // N quadwords, and R consists of r bytes. 8830 // A[j] = I [8j+7:8j], j= 0, 1, ..., N-1 8831 // B[j] = I [N + 8j+7:N + 8j], j= 0, 1, ..., N-1 8832 // C[j] = I [2N + 8j+7:2N + 8j], j= 0, 1, ..., N-1 8833 // if r > 0 R[j] = I [3N +j], j= 0, 1, ...,r-1 8834 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2, 8835 Register tmp1, Register tmp2, Register tmp3, 8836 Register tmp4, Register tmp5, Register tmp6, 8837 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 8838 bool is_pclmulqdq_supported) { 8839 uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS]; 8840 Label L_wordByWord; 8841 Label L_byteByByteProlog; 8842 Label L_byteByByte; 8843 Label L_exit; 8844 8845 if (is_pclmulqdq_supported ) { 8846 const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::crc32c_table_addr(); 8847 const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::crc32c_table_addr() + 1); 8848 8849 const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::crc32c_table_addr() + 2); 8850 const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::crc32c_table_addr() + 3); 8851 8852 const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::crc32c_table_addr() + 4); 8853 const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::crc32c_table_addr() + 5); 8854 assert((CRC32C_NUM_PRECOMPUTED_CONSTANTS - 1 ) == 5, "Checking whether you declared all of the constants based on the number of \"chunks\""); 8855 } else { 8856 const_or_pre_comp_const_index[0] = 1; 8857 const_or_pre_comp_const_index[1] = 0; 8858 8859 const_or_pre_comp_const_index[2] = 3; 8860 const_or_pre_comp_const_index[3] = 2; 8861 8862 const_or_pre_comp_const_index[4] = 5; 8863 const_or_pre_comp_const_index[5] = 4; 8864 } 8865 crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported, 8866 in2, in1, in_out, 8867 tmp1, tmp2, tmp3, 8868 w_xtmp1, w_xtmp2, w_xtmp3, 8869 tmp4, tmp5, 8870 tmp6); 8871 crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported, 8872 in2, in1, in_out, 8873 tmp1, tmp2, tmp3, 8874 w_xtmp1, w_xtmp2, w_xtmp3, 8875 tmp4, tmp5, 8876 tmp6); 8877 crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported, 8878 in2, in1, in_out, 8879 tmp1, tmp2, tmp3, 8880 w_xtmp1, w_xtmp2, w_xtmp3, 8881 tmp4, tmp5, 8882 tmp6); 8883 movl(tmp1, in2); 8884 andl(tmp1, 0x00000007); 8885 negl(tmp1); 8886 addl(tmp1, in2); 8887 addq(tmp1, in1); 8888 8889 cmpq(in1, tmp1); 8890 jccb(Assembler::greaterEqual, L_byteByByteProlog); 8891 align(16); 8892 BIND(L_wordByWord); 8893 crc32(in_out, Address(in1, 0), 8); 8894 addq(in1, 8); 8895 cmpq(in1, tmp1); 8896 jcc(Assembler::less, L_wordByWord); 8897 8898 BIND(L_byteByByteProlog); 8899 andl(in2, 0x00000007); 8900 movl(tmp2, 1); 8901 8902 cmpl(tmp2, in2); 8903 jccb(Assembler::greater, L_exit); 8904 BIND(L_byteByByte); 8905 crc32(in_out, Address(in1, 0), 1); 8906 incq(in1); 8907 incl(tmp2); 8908 cmpl(tmp2, in2); 8909 jcc(Assembler::lessEqual, L_byteByByte); 8910 8911 BIND(L_exit); 8912 } 8913 #undef BIND 8914 #undef BLOCK_COMMENT 8915 8916 // Compress char[] array to byte[]. 8917 // Intrinsic for java.lang.StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) 8918 // Return the array length if every element in array can be encoded, 8919 // otherwise, the index of first non-latin1 (> 0xff) character. 8920 // @IntrinsicCandidate 8921 // public static int compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) { 8922 // for (int i = 0; i < len; i++) { 8923 // char c = src[srcOff]; 8924 // if (c > 0xff) { 8925 // return i; // return index of non-latin1 char 8926 // } 8927 // dst[dstOff] = (byte)c; 8928 // srcOff++; 8929 // dstOff++; 8930 // } 8931 // return len; 8932 // } 8933 void MacroAssembler::char_array_compress(Register src, Register dst, Register len, 8934 XMMRegister tmp1Reg, XMMRegister tmp2Reg, 8935 XMMRegister tmp3Reg, XMMRegister tmp4Reg, 8936 Register tmp5, Register result, KRegister mask1, KRegister mask2) { 8937 Label copy_chars_loop, done, reset_sp, copy_tail; 8938 8939 // rsi: src 8940 // rdi: dst 8941 // rdx: len 8942 // rcx: tmp5 8943 // rax: result 8944 8945 // rsi holds start addr of source char[] to be compressed 8946 // rdi holds start addr of destination byte[] 8947 // rdx holds length 8948 8949 assert(len != result, ""); 8950 8951 // save length for return 8952 movl(result, len); 8953 8954 if ((AVX3Threshold == 0) && (UseAVX > 2) && // AVX512 8955 VM_Version::supports_avx512vlbw() && 8956 VM_Version::supports_bmi2()) { 8957 8958 Label copy_32_loop, copy_loop_tail, below_threshold, reset_for_copy_tail; 8959 8960 // alignment 8961 Label post_alignment; 8962 8963 // if length of the string is less than 32, handle it the old fashioned way 8964 testl(len, -32); 8965 jcc(Assembler::zero, below_threshold); 8966 8967 // First check whether a character is compressible ( <= 0xFF). 8968 // Create mask to test for Unicode chars inside zmm vector 8969 movl(tmp5, 0x00FF); 8970 evpbroadcastw(tmp2Reg, tmp5, Assembler::AVX_512bit); 8971 8972 testl(len, -64); 8973 jccb(Assembler::zero, post_alignment); 8974 8975 movl(tmp5, dst); 8976 andl(tmp5, (32 - 1)); 8977 negl(tmp5); 8978 andl(tmp5, (32 - 1)); 8979 8980 // bail out when there is nothing to be done 8981 testl(tmp5, 0xFFFFFFFF); 8982 jccb(Assembler::zero, post_alignment); 8983 8984 // ~(~0 << len), where len is the # of remaining elements to process 8985 movl(len, 0xFFFFFFFF); 8986 shlxl(len, len, tmp5); 8987 notl(len); 8988 kmovdl(mask2, len); 8989 movl(len, result); 8990 8991 evmovdquw(tmp1Reg, mask2, Address(src, 0), /*merge*/ false, Assembler::AVX_512bit); 8992 evpcmpw(mask1, mask2, tmp1Reg, tmp2Reg, Assembler::le, /*signed*/ false, Assembler::AVX_512bit); 8993 ktestd(mask1, mask2); 8994 jcc(Assembler::carryClear, copy_tail); 8995 8996 evpmovwb(Address(dst, 0), mask2, tmp1Reg, Assembler::AVX_512bit); 8997 8998 addptr(src, tmp5); 8999 addptr(src, tmp5); 9000 addptr(dst, tmp5); 9001 subl(len, tmp5); 9002 9003 bind(post_alignment); 9004 // end of alignment 9005 9006 movl(tmp5, len); 9007 andl(tmp5, (32 - 1)); // tail count (in chars) 9008 andl(len, ~(32 - 1)); // vector count (in chars) 9009 jccb(Assembler::zero, copy_loop_tail); 9010 9011 lea(src, Address(src, len, Address::times_2)); 9012 lea(dst, Address(dst, len, Address::times_1)); 9013 negptr(len); 9014 9015 bind(copy_32_loop); 9016 evmovdquw(tmp1Reg, Address(src, len, Address::times_2), Assembler::AVX_512bit); 9017 evpcmpuw(mask1, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit); 9018 kortestdl(mask1, mask1); 9019 jccb(Assembler::carryClear, reset_for_copy_tail); 9020 9021 // All elements in current processed chunk are valid candidates for 9022 // compression. Write a truncated byte elements to the memory. 9023 evpmovwb(Address(dst, len, Address::times_1), tmp1Reg, Assembler::AVX_512bit); 9024 addptr(len, 32); 9025 jccb(Assembler::notZero, copy_32_loop); 9026 9027 bind(copy_loop_tail); 9028 // bail out when there is nothing to be done 9029 testl(tmp5, 0xFFFFFFFF); 9030 jcc(Assembler::zero, done); 9031 9032 movl(len, tmp5); 9033 9034 // ~(~0 << len), where len is the # of remaining elements to process 9035 movl(tmp5, 0xFFFFFFFF); 9036 shlxl(tmp5, tmp5, len); 9037 notl(tmp5); 9038 9039 kmovdl(mask2, tmp5); 9040 9041 evmovdquw(tmp1Reg, mask2, Address(src, 0), /*merge*/ false, Assembler::AVX_512bit); 9042 evpcmpw(mask1, mask2, tmp1Reg, tmp2Reg, Assembler::le, /*signed*/ false, Assembler::AVX_512bit); 9043 ktestd(mask1, mask2); 9044 jcc(Assembler::carryClear, copy_tail); 9045 9046 evpmovwb(Address(dst, 0), mask2, tmp1Reg, Assembler::AVX_512bit); 9047 jmp(done); 9048 9049 bind(reset_for_copy_tail); 9050 lea(src, Address(src, tmp5, Address::times_2)); 9051 lea(dst, Address(dst, tmp5, Address::times_1)); 9052 subptr(len, tmp5); 9053 jmp(copy_chars_loop); 9054 9055 bind(below_threshold); 9056 } 9057 9058 if (UseSSE42Intrinsics) { 9059 Label copy_32_loop, copy_16, copy_tail_sse, reset_for_copy_tail; 9060 9061 // vectored compression 9062 testl(len, 0xfffffff8); 9063 jcc(Assembler::zero, copy_tail); 9064 9065 movl(tmp5, 0xff00ff00); // create mask to test for Unicode chars in vectors 9066 movdl(tmp1Reg, tmp5); 9067 pshufd(tmp1Reg, tmp1Reg, 0); // store Unicode mask in tmp1Reg 9068 9069 andl(len, 0xfffffff0); 9070 jccb(Assembler::zero, copy_16); 9071 9072 // compress 16 chars per iter 9073 pxor(tmp4Reg, tmp4Reg); 9074 9075 lea(src, Address(src, len, Address::times_2)); 9076 lea(dst, Address(dst, len, Address::times_1)); 9077 negptr(len); 9078 9079 bind(copy_32_loop); 9080 movdqu(tmp2Reg, Address(src, len, Address::times_2)); // load 1st 8 characters 9081 por(tmp4Reg, tmp2Reg); 9082 movdqu(tmp3Reg, Address(src, len, Address::times_2, 16)); // load next 8 characters 9083 por(tmp4Reg, tmp3Reg); 9084 ptest(tmp4Reg, tmp1Reg); // check for Unicode chars in next vector 9085 jccb(Assembler::notZero, reset_for_copy_tail); 9086 packuswb(tmp2Reg, tmp3Reg); // only ASCII chars; compress each to 1 byte 9087 movdqu(Address(dst, len, Address::times_1), tmp2Reg); 9088 addptr(len, 16); 9089 jccb(Assembler::notZero, copy_32_loop); 9090 9091 // compress next vector of 8 chars (if any) 9092 bind(copy_16); 9093 // len = 0 9094 testl(result, 0x00000008); // check if there's a block of 8 chars to compress 9095 jccb(Assembler::zero, copy_tail_sse); 9096 9097 pxor(tmp3Reg, tmp3Reg); 9098 9099 movdqu(tmp2Reg, Address(src, 0)); 9100 ptest(tmp2Reg, tmp1Reg); // check for Unicode chars in vector 9101 jccb(Assembler::notZero, reset_for_copy_tail); 9102 packuswb(tmp2Reg, tmp3Reg); // only LATIN1 chars; compress each to 1 byte 9103 movq(Address(dst, 0), tmp2Reg); 9104 addptr(src, 16); 9105 addptr(dst, 8); 9106 jmpb(copy_tail_sse); 9107 9108 bind(reset_for_copy_tail); 9109 movl(tmp5, result); 9110 andl(tmp5, 0x0000000f); 9111 lea(src, Address(src, tmp5, Address::times_2)); 9112 lea(dst, Address(dst, tmp5, Address::times_1)); 9113 subptr(len, tmp5); 9114 jmpb(copy_chars_loop); 9115 9116 bind(copy_tail_sse); 9117 movl(len, result); 9118 andl(len, 0x00000007); // tail count (in chars) 9119 } 9120 // compress 1 char per iter 9121 bind(copy_tail); 9122 testl(len, len); 9123 jccb(Assembler::zero, done); 9124 lea(src, Address(src, len, Address::times_2)); 9125 lea(dst, Address(dst, len, Address::times_1)); 9126 negptr(len); 9127 9128 bind(copy_chars_loop); 9129 load_unsigned_short(tmp5, Address(src, len, Address::times_2)); 9130 testl(tmp5, 0xff00); // check if Unicode char 9131 jccb(Assembler::notZero, reset_sp); 9132 movb(Address(dst, len, Address::times_1), tmp5); // ASCII char; compress to 1 byte 9133 increment(len); 9134 jccb(Assembler::notZero, copy_chars_loop); 9135 9136 // add len then return (len will be zero if compress succeeded, otherwise negative) 9137 bind(reset_sp); 9138 addl(result, len); 9139 9140 bind(done); 9141 } 9142 9143 // Inflate byte[] array to char[]. 9144 // ..\jdk\src\java.base\share\classes\java\lang\StringLatin1.java 9145 // @IntrinsicCandidate 9146 // private static void inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) { 9147 // for (int i = 0; i < len; i++) { 9148 // dst[dstOff++] = (char)(src[srcOff++] & 0xff); 9149 // } 9150 // } 9151 void MacroAssembler::byte_array_inflate(Register src, Register dst, Register len, 9152 XMMRegister tmp1, Register tmp2, KRegister mask) { 9153 Label copy_chars_loop, done, below_threshold, avx3_threshold; 9154 // rsi: src 9155 // rdi: dst 9156 // rdx: len 9157 // rcx: tmp2 9158 9159 // rsi holds start addr of source byte[] to be inflated 9160 // rdi holds start addr of destination char[] 9161 // rdx holds length 9162 assert_different_registers(src, dst, len, tmp2); 9163 movl(tmp2, len); 9164 if ((UseAVX > 2) && // AVX512 9165 VM_Version::supports_avx512vlbw() && 9166 VM_Version::supports_bmi2()) { 9167 9168 Label copy_32_loop, copy_tail; 9169 Register tmp3_aliased = len; 9170 9171 // if length of the string is less than 16, handle it in an old fashioned way 9172 testl(len, -16); 9173 jcc(Assembler::zero, below_threshold); 9174 9175 testl(len, -1 * AVX3Threshold); 9176 jcc(Assembler::zero, avx3_threshold); 9177 9178 // In order to use only one arithmetic operation for the main loop we use 9179 // this pre-calculation 9180 andl(tmp2, (32 - 1)); // tail count (in chars), 32 element wide loop 9181 andl(len, -32); // vector count 9182 jccb(Assembler::zero, copy_tail); 9183 9184 lea(src, Address(src, len, Address::times_1)); 9185 lea(dst, Address(dst, len, Address::times_2)); 9186 negptr(len); 9187 9188 9189 // inflate 32 chars per iter 9190 bind(copy_32_loop); 9191 vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_512bit); 9192 evmovdquw(Address(dst, len, Address::times_2), tmp1, Assembler::AVX_512bit); 9193 addptr(len, 32); 9194 jcc(Assembler::notZero, copy_32_loop); 9195 9196 bind(copy_tail); 9197 // bail out when there is nothing to be done 9198 testl(tmp2, -1); // we don't destroy the contents of tmp2 here 9199 jcc(Assembler::zero, done); 9200 9201 // ~(~0 << length), where length is the # of remaining elements to process 9202 movl(tmp3_aliased, -1); 9203 shlxl(tmp3_aliased, tmp3_aliased, tmp2); 9204 notl(tmp3_aliased); 9205 kmovdl(mask, tmp3_aliased); 9206 evpmovzxbw(tmp1, mask, Address(src, 0), Assembler::AVX_512bit); 9207 evmovdquw(Address(dst, 0), mask, tmp1, /*merge*/ true, Assembler::AVX_512bit); 9208 9209 jmp(done); 9210 bind(avx3_threshold); 9211 } 9212 if (UseSSE42Intrinsics) { 9213 Label copy_16_loop, copy_8_loop, copy_bytes, copy_new_tail, copy_tail; 9214 9215 if (UseAVX > 1) { 9216 andl(tmp2, (16 - 1)); 9217 andl(len, -16); 9218 jccb(Assembler::zero, copy_new_tail); 9219 } else { 9220 andl(tmp2, 0x00000007); // tail count (in chars) 9221 andl(len, 0xfffffff8); // vector count (in chars) 9222 jccb(Assembler::zero, copy_tail); 9223 } 9224 9225 // vectored inflation 9226 lea(src, Address(src, len, Address::times_1)); 9227 lea(dst, Address(dst, len, Address::times_2)); 9228 negptr(len); 9229 9230 if (UseAVX > 1) { 9231 bind(copy_16_loop); 9232 vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_256bit); 9233 vmovdqu(Address(dst, len, Address::times_2), tmp1); 9234 addptr(len, 16); 9235 jcc(Assembler::notZero, copy_16_loop); 9236 9237 bind(below_threshold); 9238 bind(copy_new_tail); 9239 movl(len, tmp2); 9240 andl(tmp2, 0x00000007); 9241 andl(len, 0xFFFFFFF8); 9242 jccb(Assembler::zero, copy_tail); 9243 9244 pmovzxbw(tmp1, Address(src, 0)); 9245 movdqu(Address(dst, 0), tmp1); 9246 addptr(src, 8); 9247 addptr(dst, 2 * 8); 9248 9249 jmp(copy_tail, true); 9250 } 9251 9252 // inflate 8 chars per iter 9253 bind(copy_8_loop); 9254 pmovzxbw(tmp1, Address(src, len, Address::times_1)); // unpack to 8 words 9255 movdqu(Address(dst, len, Address::times_2), tmp1); 9256 addptr(len, 8); 9257 jcc(Assembler::notZero, copy_8_loop); 9258 9259 bind(copy_tail); 9260 movl(len, tmp2); 9261 9262 cmpl(len, 4); 9263 jccb(Assembler::less, copy_bytes); 9264 9265 movdl(tmp1, Address(src, 0)); // load 4 byte chars 9266 pmovzxbw(tmp1, tmp1); 9267 movq(Address(dst, 0), tmp1); 9268 subptr(len, 4); 9269 addptr(src, 4); 9270 addptr(dst, 8); 9271 9272 bind(copy_bytes); 9273 } else { 9274 bind(below_threshold); 9275 } 9276 9277 testl(len, len); 9278 jccb(Assembler::zero, done); 9279 lea(src, Address(src, len, Address::times_1)); 9280 lea(dst, Address(dst, len, Address::times_2)); 9281 negptr(len); 9282 9283 // inflate 1 char per iter 9284 bind(copy_chars_loop); 9285 load_unsigned_byte(tmp2, Address(src, len, Address::times_1)); // load byte char 9286 movw(Address(dst, len, Address::times_2), tmp2); // inflate byte char to word 9287 increment(len); 9288 jcc(Assembler::notZero, copy_chars_loop); 9289 9290 bind(done); 9291 } 9292 9293 void MacroAssembler::evmovdqu(BasicType type, KRegister kmask, XMMRegister dst, XMMRegister src, bool merge, int vector_len) { 9294 switch(type) { 9295 case T_BYTE: 9296 case T_BOOLEAN: 9297 evmovdqub(dst, kmask, src, merge, vector_len); 9298 break; 9299 case T_CHAR: 9300 case T_SHORT: 9301 evmovdquw(dst, kmask, src, merge, vector_len); 9302 break; 9303 case T_INT: 9304 case T_FLOAT: 9305 evmovdqul(dst, kmask, src, merge, vector_len); 9306 break; 9307 case T_LONG: 9308 case T_DOUBLE: 9309 evmovdquq(dst, kmask, src, merge, vector_len); 9310 break; 9311 default: 9312 fatal("Unexpected type argument %s", type2name(type)); 9313 break; 9314 } 9315 } 9316 9317 9318 void MacroAssembler::evmovdqu(BasicType type, KRegister kmask, XMMRegister dst, Address src, bool merge, int vector_len) { 9319 switch(type) { 9320 case T_BYTE: 9321 case T_BOOLEAN: 9322 evmovdqub(dst, kmask, src, merge, vector_len); 9323 break; 9324 case T_CHAR: 9325 case T_SHORT: 9326 evmovdquw(dst, kmask, src, merge, vector_len); 9327 break; 9328 case T_INT: 9329 case T_FLOAT: 9330 evmovdqul(dst, kmask, src, merge, vector_len); 9331 break; 9332 case T_LONG: 9333 case T_DOUBLE: 9334 evmovdquq(dst, kmask, src, merge, vector_len); 9335 break; 9336 default: 9337 fatal("Unexpected type argument %s", type2name(type)); 9338 break; 9339 } 9340 } 9341 9342 void MacroAssembler::evmovdqu(BasicType type, KRegister kmask, Address dst, XMMRegister src, bool merge, int vector_len) { 9343 switch(type) { 9344 case T_BYTE: 9345 case T_BOOLEAN: 9346 evmovdqub(dst, kmask, src, merge, vector_len); 9347 break; 9348 case T_CHAR: 9349 case T_SHORT: 9350 evmovdquw(dst, kmask, src, merge, vector_len); 9351 break; 9352 case T_INT: 9353 case T_FLOAT: 9354 evmovdqul(dst, kmask, src, merge, vector_len); 9355 break; 9356 case T_LONG: 9357 case T_DOUBLE: 9358 evmovdquq(dst, kmask, src, merge, vector_len); 9359 break; 9360 default: 9361 fatal("Unexpected type argument %s", type2name(type)); 9362 break; 9363 } 9364 } 9365 9366 void MacroAssembler::knot(uint masklen, KRegister dst, KRegister src, KRegister ktmp, Register rtmp) { 9367 switch(masklen) { 9368 case 2: 9369 knotbl(dst, src); 9370 movl(rtmp, 3); 9371 kmovbl(ktmp, rtmp); 9372 kandbl(dst, ktmp, dst); 9373 break; 9374 case 4: 9375 knotbl(dst, src); 9376 movl(rtmp, 15); 9377 kmovbl(ktmp, rtmp); 9378 kandbl(dst, ktmp, dst); 9379 break; 9380 case 8: 9381 knotbl(dst, src); 9382 break; 9383 case 16: 9384 knotwl(dst, src); 9385 break; 9386 case 32: 9387 knotdl(dst, src); 9388 break; 9389 case 64: 9390 knotql(dst, src); 9391 break; 9392 default: 9393 fatal("Unexpected vector length %d", masklen); 9394 break; 9395 } 9396 } 9397 9398 void MacroAssembler::kand(BasicType type, KRegister dst, KRegister src1, KRegister src2) { 9399 switch(type) { 9400 case T_BOOLEAN: 9401 case T_BYTE: 9402 kandbl(dst, src1, src2); 9403 break; 9404 case T_CHAR: 9405 case T_SHORT: 9406 kandwl(dst, src1, src2); 9407 break; 9408 case T_INT: 9409 case T_FLOAT: 9410 kanddl(dst, src1, src2); 9411 break; 9412 case T_LONG: 9413 case T_DOUBLE: 9414 kandql(dst, src1, src2); 9415 break; 9416 default: 9417 fatal("Unexpected type argument %s", type2name(type)); 9418 break; 9419 } 9420 } 9421 9422 void MacroAssembler::kor(BasicType type, KRegister dst, KRegister src1, KRegister src2) { 9423 switch(type) { 9424 case T_BOOLEAN: 9425 case T_BYTE: 9426 korbl(dst, src1, src2); 9427 break; 9428 case T_CHAR: 9429 case T_SHORT: 9430 korwl(dst, src1, src2); 9431 break; 9432 case T_INT: 9433 case T_FLOAT: 9434 kordl(dst, src1, src2); 9435 break; 9436 case T_LONG: 9437 case T_DOUBLE: 9438 korql(dst, src1, src2); 9439 break; 9440 default: 9441 fatal("Unexpected type argument %s", type2name(type)); 9442 break; 9443 } 9444 } 9445 9446 void MacroAssembler::kxor(BasicType type, KRegister dst, KRegister src1, KRegister src2) { 9447 switch(type) { 9448 case T_BOOLEAN: 9449 case T_BYTE: 9450 kxorbl(dst, src1, src2); 9451 break; 9452 case T_CHAR: 9453 case T_SHORT: 9454 kxorwl(dst, src1, src2); 9455 break; 9456 case T_INT: 9457 case T_FLOAT: 9458 kxordl(dst, src1, src2); 9459 break; 9460 case T_LONG: 9461 case T_DOUBLE: 9462 kxorql(dst, src1, src2); 9463 break; 9464 default: 9465 fatal("Unexpected type argument %s", type2name(type)); 9466 break; 9467 } 9468 } 9469 9470 void MacroAssembler::evperm(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 9471 switch(type) { 9472 case T_BOOLEAN: 9473 case T_BYTE: 9474 evpermb(dst, mask, nds, src, merge, vector_len); break; 9475 case T_CHAR: 9476 case T_SHORT: 9477 evpermw(dst, mask, nds, src, merge, vector_len); break; 9478 case T_INT: 9479 case T_FLOAT: 9480 evpermd(dst, mask, nds, src, merge, vector_len); break; 9481 case T_LONG: 9482 case T_DOUBLE: 9483 evpermq(dst, mask, nds, src, merge, vector_len); break; 9484 default: 9485 fatal("Unexpected type argument %s", type2name(type)); break; 9486 } 9487 } 9488 9489 void MacroAssembler::evperm(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 9490 switch(type) { 9491 case T_BOOLEAN: 9492 case T_BYTE: 9493 evpermb(dst, mask, nds, src, merge, vector_len); break; 9494 case T_CHAR: 9495 case T_SHORT: 9496 evpermw(dst, mask, nds, src, merge, vector_len); break; 9497 case T_INT: 9498 case T_FLOAT: 9499 evpermd(dst, mask, nds, src, merge, vector_len); break; 9500 case T_LONG: 9501 case T_DOUBLE: 9502 evpermq(dst, mask, nds, src, merge, vector_len); break; 9503 default: 9504 fatal("Unexpected type argument %s", type2name(type)); break; 9505 } 9506 } 9507 9508 void MacroAssembler::evpminu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 9509 switch(type) { 9510 case T_BYTE: 9511 evpminub(dst, mask, nds, src, merge, vector_len); break; 9512 case T_SHORT: 9513 evpminuw(dst, mask, nds, src, merge, vector_len); break; 9514 case T_INT: 9515 evpminud(dst, mask, nds, src, merge, vector_len); break; 9516 case T_LONG: 9517 evpminuq(dst, mask, nds, src, merge, vector_len); break; 9518 default: 9519 fatal("Unexpected type argument %s", type2name(type)); break; 9520 } 9521 } 9522 9523 void MacroAssembler::evpmaxu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 9524 switch(type) { 9525 case T_BYTE: 9526 evpmaxub(dst, mask, nds, src, merge, vector_len); break; 9527 case T_SHORT: 9528 evpmaxuw(dst, mask, nds, src, merge, vector_len); break; 9529 case T_INT: 9530 evpmaxud(dst, mask, nds, src, merge, vector_len); break; 9531 case T_LONG: 9532 evpmaxuq(dst, mask, nds, src, merge, vector_len); break; 9533 default: 9534 fatal("Unexpected type argument %s", type2name(type)); break; 9535 } 9536 } 9537 9538 void MacroAssembler::evpminu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 9539 switch(type) { 9540 case T_BYTE: 9541 evpminub(dst, mask, nds, src, merge, vector_len); break; 9542 case T_SHORT: 9543 evpminuw(dst, mask, nds, src, merge, vector_len); break; 9544 case T_INT: 9545 evpminud(dst, mask, nds, src, merge, vector_len); break; 9546 case T_LONG: 9547 evpminuq(dst, mask, nds, src, merge, vector_len); break; 9548 default: 9549 fatal("Unexpected type argument %s", type2name(type)); break; 9550 } 9551 } 9552 9553 void MacroAssembler::evpmaxu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 9554 switch(type) { 9555 case T_BYTE: 9556 evpmaxub(dst, mask, nds, src, merge, vector_len); break; 9557 case T_SHORT: 9558 evpmaxuw(dst, mask, nds, src, merge, vector_len); break; 9559 case T_INT: 9560 evpmaxud(dst, mask, nds, src, merge, vector_len); break; 9561 case T_LONG: 9562 evpmaxuq(dst, mask, nds, src, merge, vector_len); break; 9563 default: 9564 fatal("Unexpected type argument %s", type2name(type)); break; 9565 } 9566 } 9567 9568 void MacroAssembler::evpmins(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 9569 switch(type) { 9570 case T_BYTE: 9571 evpminsb(dst, mask, nds, src, merge, vector_len); break; 9572 case T_SHORT: 9573 evpminsw(dst, mask, nds, src, merge, vector_len); break; 9574 case T_INT: 9575 evpminsd(dst, mask, nds, src, merge, vector_len); break; 9576 case T_LONG: 9577 evpminsq(dst, mask, nds, src, merge, vector_len); break; 9578 case T_FLOAT: 9579 evminmaxps(dst, mask, nds, src, merge, AVX10_MINMAX_MIN_COMPARE_SIGN, vector_len); break; 9580 case T_DOUBLE: 9581 evminmaxpd(dst, mask, nds, src, merge, AVX10_MINMAX_MIN_COMPARE_SIGN, vector_len); break; 9582 default: 9583 fatal("Unexpected type argument %s", type2name(type)); break; 9584 } 9585 } 9586 9587 void MacroAssembler::evpmaxs(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 9588 switch(type) { 9589 case T_BYTE: 9590 evpmaxsb(dst, mask, nds, src, merge, vector_len); break; 9591 case T_SHORT: 9592 evpmaxsw(dst, mask, nds, src, merge, vector_len); break; 9593 case T_INT: 9594 evpmaxsd(dst, mask, nds, src, merge, vector_len); break; 9595 case T_LONG: 9596 evpmaxsq(dst, mask, nds, src, merge, vector_len); break; 9597 case T_FLOAT: 9598 evminmaxps(dst, mask, nds, src, merge, AVX10_MINMAX_MAX_COMPARE_SIGN, vector_len); break; 9599 case T_DOUBLE: 9600 evminmaxpd(dst, mask, nds, src, merge, AVX10_MINMAX_MAX_COMPARE_SIGN, vector_len); break; 9601 default: 9602 fatal("Unexpected type argument %s", type2name(type)); break; 9603 } 9604 } 9605 9606 void MacroAssembler::evpmins(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 9607 switch(type) { 9608 case T_BYTE: 9609 evpminsb(dst, mask, nds, src, merge, vector_len); break; 9610 case T_SHORT: 9611 evpminsw(dst, mask, nds, src, merge, vector_len); break; 9612 case T_INT: 9613 evpminsd(dst, mask, nds, src, merge, vector_len); break; 9614 case T_LONG: 9615 evpminsq(dst, mask, nds, src, merge, vector_len); break; 9616 case T_FLOAT: 9617 evminmaxps(dst, mask, nds, src, merge, AVX10_MINMAX_MIN_COMPARE_SIGN, vector_len); break; 9618 case T_DOUBLE: 9619 evminmaxpd(dst, mask, nds, src, merge, AVX10_MINMAX_MIN_COMPARE_SIGN, vector_len); break; 9620 default: 9621 fatal("Unexpected type argument %s", type2name(type)); break; 9622 } 9623 } 9624 9625 void MacroAssembler::evpmaxs(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 9626 switch(type) { 9627 case T_BYTE: 9628 evpmaxsb(dst, mask, nds, src, merge, vector_len); break; 9629 case T_SHORT: 9630 evpmaxsw(dst, mask, nds, src, merge, vector_len); break; 9631 case T_INT: 9632 evpmaxsd(dst, mask, nds, src, merge, vector_len); break; 9633 case T_LONG: 9634 evpmaxsq(dst, mask, nds, src, merge, vector_len); break; 9635 case T_FLOAT: 9636 evminmaxps(dst, mask, nds, src, merge, AVX10_MINMAX_MAX_COMPARE_SIGN, vector_len); break; 9637 case T_DOUBLE: 9638 evminmaxps(dst, mask, nds, src, merge, AVX10_MINMAX_MAX_COMPARE_SIGN, vector_len); break; 9639 default: 9640 fatal("Unexpected type argument %s", type2name(type)); break; 9641 } 9642 } 9643 9644 void MacroAssembler::evxor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 9645 switch(type) { 9646 case T_INT: 9647 evpxord(dst, mask, nds, src, merge, vector_len); break; 9648 case T_LONG: 9649 evpxorq(dst, mask, nds, src, merge, vector_len); break; 9650 default: 9651 fatal("Unexpected type argument %s", type2name(type)); break; 9652 } 9653 } 9654 9655 void MacroAssembler::evxor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 9656 switch(type) { 9657 case T_INT: 9658 evpxord(dst, mask, nds, src, merge, vector_len); break; 9659 case T_LONG: 9660 evpxorq(dst, mask, nds, src, merge, vector_len); break; 9661 default: 9662 fatal("Unexpected type argument %s", type2name(type)); break; 9663 } 9664 } 9665 9666 void MacroAssembler::evor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 9667 switch(type) { 9668 case T_INT: 9669 Assembler::evpord(dst, mask, nds, src, merge, vector_len); break; 9670 case T_LONG: 9671 evporq(dst, mask, nds, src, merge, vector_len); break; 9672 default: 9673 fatal("Unexpected type argument %s", type2name(type)); break; 9674 } 9675 } 9676 9677 void MacroAssembler::evor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 9678 switch(type) { 9679 case T_INT: 9680 Assembler::evpord(dst, mask, nds, src, merge, vector_len); break; 9681 case T_LONG: 9682 evporq(dst, mask, nds, src, merge, vector_len); break; 9683 default: 9684 fatal("Unexpected type argument %s", type2name(type)); break; 9685 } 9686 } 9687 9688 void MacroAssembler::evand(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 9689 switch(type) { 9690 case T_INT: 9691 evpandd(dst, mask, nds, src, merge, vector_len); break; 9692 case T_LONG: 9693 evpandq(dst, mask, nds, src, merge, vector_len); break; 9694 default: 9695 fatal("Unexpected type argument %s", type2name(type)); break; 9696 } 9697 } 9698 9699 void MacroAssembler::evand(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 9700 switch(type) { 9701 case T_INT: 9702 evpandd(dst, mask, nds, src, merge, vector_len); break; 9703 case T_LONG: 9704 evpandq(dst, mask, nds, src, merge, vector_len); break; 9705 default: 9706 fatal("Unexpected type argument %s", type2name(type)); break; 9707 } 9708 } 9709 9710 void MacroAssembler::kortest(uint masklen, KRegister src1, KRegister src2) { 9711 switch(masklen) { 9712 case 8: 9713 kortestbl(src1, src2); 9714 break; 9715 case 16: 9716 kortestwl(src1, src2); 9717 break; 9718 case 32: 9719 kortestdl(src1, src2); 9720 break; 9721 case 64: 9722 kortestql(src1, src2); 9723 break; 9724 default: 9725 fatal("Unexpected mask length %d", masklen); 9726 break; 9727 } 9728 } 9729 9730 9731 void MacroAssembler::ktest(uint masklen, KRegister src1, KRegister src2) { 9732 switch(masklen) { 9733 case 8: 9734 ktestbl(src1, src2); 9735 break; 9736 case 16: 9737 ktestwl(src1, src2); 9738 break; 9739 case 32: 9740 ktestdl(src1, src2); 9741 break; 9742 case 64: 9743 ktestql(src1, src2); 9744 break; 9745 default: 9746 fatal("Unexpected mask length %d", masklen); 9747 break; 9748 } 9749 } 9750 9751 void MacroAssembler::evrold(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vlen_enc) { 9752 switch(type) { 9753 case T_INT: 9754 evprold(dst, mask, src, shift, merge, vlen_enc); break; 9755 case T_LONG: 9756 evprolq(dst, mask, src, shift, merge, vlen_enc); break; 9757 default: 9758 fatal("Unexpected type argument %s", type2name(type)); break; 9759 break; 9760 } 9761 } 9762 9763 void MacroAssembler::evrord(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vlen_enc) { 9764 switch(type) { 9765 case T_INT: 9766 evprord(dst, mask, src, shift, merge, vlen_enc); break; 9767 case T_LONG: 9768 evprorq(dst, mask, src, shift, merge, vlen_enc); break; 9769 default: 9770 fatal("Unexpected type argument %s", type2name(type)); break; 9771 } 9772 } 9773 9774 void MacroAssembler::evrold(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src1, XMMRegister src2, bool merge, int vlen_enc) { 9775 switch(type) { 9776 case T_INT: 9777 evprolvd(dst, mask, src1, src2, merge, vlen_enc); break; 9778 case T_LONG: 9779 evprolvq(dst, mask, src1, src2, merge, vlen_enc); break; 9780 default: 9781 fatal("Unexpected type argument %s", type2name(type)); break; 9782 } 9783 } 9784 9785 void MacroAssembler::evrord(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src1, XMMRegister src2, bool merge, int vlen_enc) { 9786 switch(type) { 9787 case T_INT: 9788 evprorvd(dst, mask, src1, src2, merge, vlen_enc); break; 9789 case T_LONG: 9790 evprorvq(dst, mask, src1, src2, merge, vlen_enc); break; 9791 default: 9792 fatal("Unexpected type argument %s", type2name(type)); break; 9793 } 9794 } 9795 9796 void MacroAssembler::evpandq(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 9797 assert(rscratch != noreg || always_reachable(src), "missing"); 9798 9799 if (reachable(src)) { 9800 evpandq(dst, nds, as_Address(src), vector_len); 9801 } else { 9802 lea(rscratch, src); 9803 evpandq(dst, nds, Address(rscratch, 0), vector_len); 9804 } 9805 } 9806 9807 void MacroAssembler::evpaddq(XMMRegister dst, KRegister mask, XMMRegister nds, AddressLiteral src, bool merge, int vector_len, Register rscratch) { 9808 assert(rscratch != noreg || always_reachable(src), "missing"); 9809 9810 if (reachable(src)) { 9811 Assembler::evpaddq(dst, mask, nds, as_Address(src), merge, vector_len); 9812 } else { 9813 lea(rscratch, src); 9814 Assembler::evpaddq(dst, mask, nds, Address(rscratch, 0), merge, vector_len); 9815 } 9816 } 9817 9818 void MacroAssembler::evporq(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 9819 assert(rscratch != noreg || always_reachable(src), "missing"); 9820 9821 if (reachable(src)) { 9822 evporq(dst, nds, as_Address(src), vector_len); 9823 } else { 9824 lea(rscratch, src); 9825 evporq(dst, nds, Address(rscratch, 0), vector_len); 9826 } 9827 } 9828 9829 void MacroAssembler::vpshufb(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 9830 assert(rscratch != noreg || always_reachable(src), "missing"); 9831 9832 if (reachable(src)) { 9833 vpshufb(dst, nds, as_Address(src), vector_len); 9834 } else { 9835 lea(rscratch, src); 9836 vpshufb(dst, nds, Address(rscratch, 0), vector_len); 9837 } 9838 } 9839 9840 void MacroAssembler::vpor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 9841 assert(rscratch != noreg || always_reachable(src), "missing"); 9842 9843 if (reachable(src)) { 9844 Assembler::vpor(dst, nds, as_Address(src), vector_len); 9845 } else { 9846 lea(rscratch, src); 9847 Assembler::vpor(dst, nds, Address(rscratch, 0), vector_len); 9848 } 9849 } 9850 9851 void MacroAssembler::vpternlogq(XMMRegister dst, int imm8, XMMRegister src2, AddressLiteral src3, int vector_len, Register rscratch) { 9852 assert(rscratch != noreg || always_reachable(src3), "missing"); 9853 9854 if (reachable(src3)) { 9855 vpternlogq(dst, imm8, src2, as_Address(src3), vector_len); 9856 } else { 9857 lea(rscratch, src3); 9858 vpternlogq(dst, imm8, src2, Address(rscratch, 0), vector_len); 9859 } 9860 } 9861 9862 #if COMPILER2_OR_JVMCI 9863 9864 void MacroAssembler::fill_masked(BasicType bt, Address dst, XMMRegister xmm, KRegister mask, 9865 Register length, Register temp, int vec_enc) { 9866 // Computing mask for predicated vector store. 9867 movptr(temp, -1); 9868 bzhiq(temp, temp, length); 9869 kmov(mask, temp); 9870 evmovdqu(bt, mask, dst, xmm, true, vec_enc); 9871 } 9872 9873 // Set memory operation for length "less than" 64 bytes. 9874 void MacroAssembler::fill64_masked(uint shift, Register dst, int disp, 9875 XMMRegister xmm, KRegister mask, Register length, 9876 Register temp, bool use64byteVector) { 9877 assert(MaxVectorSize >= 32, "vector length should be >= 32"); 9878 const BasicType type[] = { T_BYTE, T_SHORT, T_INT, T_LONG}; 9879 if (!use64byteVector) { 9880 fill32(dst, disp, xmm); 9881 subptr(length, 32 >> shift); 9882 fill32_masked(shift, dst, disp + 32, xmm, mask, length, temp); 9883 } else { 9884 assert(MaxVectorSize == 64, "vector length != 64"); 9885 fill_masked(type[shift], Address(dst, disp), xmm, mask, length, temp, Assembler::AVX_512bit); 9886 } 9887 } 9888 9889 9890 void MacroAssembler::fill32_masked(uint shift, Register dst, int disp, 9891 XMMRegister xmm, KRegister mask, Register length, 9892 Register temp) { 9893 assert(MaxVectorSize >= 32, "vector length should be >= 32"); 9894 const BasicType type[] = { T_BYTE, T_SHORT, T_INT, T_LONG}; 9895 fill_masked(type[shift], Address(dst, disp), xmm, mask, length, temp, Assembler::AVX_256bit); 9896 } 9897 9898 9899 void MacroAssembler::fill32(Address dst, XMMRegister xmm) { 9900 assert(MaxVectorSize >= 32, "vector length should be >= 32"); 9901 vmovdqu(dst, xmm); 9902 } 9903 9904 void MacroAssembler::fill32(Register dst, int disp, XMMRegister xmm) { 9905 fill32(Address(dst, disp), xmm); 9906 } 9907 9908 void MacroAssembler::fill64(Address dst, XMMRegister xmm, bool use64byteVector) { 9909 assert(MaxVectorSize >= 32, "vector length should be >= 32"); 9910 if (!use64byteVector) { 9911 fill32(dst, xmm); 9912 fill32(dst.plus_disp(32), xmm); 9913 } else { 9914 evmovdquq(dst, xmm, Assembler::AVX_512bit); 9915 } 9916 } 9917 9918 void MacroAssembler::fill64(Register dst, int disp, XMMRegister xmm, bool use64byteVector) { 9919 fill64(Address(dst, disp), xmm, use64byteVector); 9920 } 9921 9922 void MacroAssembler::generate_fill_avx3(BasicType type, Register to, Register value, 9923 Register count, Register rtmp, XMMRegister xtmp) { 9924 Label L_exit; 9925 Label L_fill_start; 9926 Label L_fill_64_bytes; 9927 Label L_fill_96_bytes; 9928 Label L_fill_128_bytes; 9929 Label L_fill_128_bytes_loop; 9930 Label L_fill_128_loop_header; 9931 Label L_fill_128_bytes_loop_header; 9932 Label L_fill_128_bytes_loop_pre_header; 9933 Label L_fill_zmm_sequence; 9934 9935 int shift = -1; 9936 int avx3threshold = VM_Version::avx3_threshold(); 9937 switch(type) { 9938 case T_BYTE: shift = 0; 9939 break; 9940 case T_SHORT: shift = 1; 9941 break; 9942 case T_INT: shift = 2; 9943 break; 9944 /* Uncomment when LONG fill stubs are supported. 9945 case T_LONG: shift = 3; 9946 break; 9947 */ 9948 default: 9949 fatal("Unhandled type: %s\n", type2name(type)); 9950 } 9951 9952 if ((avx3threshold != 0) || (MaxVectorSize == 32)) { 9953 9954 if (MaxVectorSize == 64) { 9955 cmpq(count, avx3threshold >> shift); 9956 jcc(Assembler::greater, L_fill_zmm_sequence); 9957 } 9958 9959 evpbroadcast(type, xtmp, value, Assembler::AVX_256bit); 9960 9961 bind(L_fill_start); 9962 9963 cmpq(count, 32 >> shift); 9964 jccb(Assembler::greater, L_fill_64_bytes); 9965 fill32_masked(shift, to, 0, xtmp, k2, count, rtmp); 9966 jmp(L_exit); 9967 9968 bind(L_fill_64_bytes); 9969 cmpq(count, 64 >> shift); 9970 jccb(Assembler::greater, L_fill_96_bytes); 9971 fill64_masked(shift, to, 0, xtmp, k2, count, rtmp); 9972 jmp(L_exit); 9973 9974 bind(L_fill_96_bytes); 9975 cmpq(count, 96 >> shift); 9976 jccb(Assembler::greater, L_fill_128_bytes); 9977 fill64(to, 0, xtmp); 9978 subq(count, 64 >> shift); 9979 fill32_masked(shift, to, 64, xtmp, k2, count, rtmp); 9980 jmp(L_exit); 9981 9982 bind(L_fill_128_bytes); 9983 cmpq(count, 128 >> shift); 9984 jccb(Assembler::greater, L_fill_128_bytes_loop_pre_header); 9985 fill64(to, 0, xtmp); 9986 fill32(to, 64, xtmp); 9987 subq(count, 96 >> shift); 9988 fill32_masked(shift, to, 96, xtmp, k2, count, rtmp); 9989 jmp(L_exit); 9990 9991 bind(L_fill_128_bytes_loop_pre_header); 9992 { 9993 mov(rtmp, to); 9994 andq(rtmp, 31); 9995 jccb(Assembler::zero, L_fill_128_bytes_loop_header); 9996 negq(rtmp); 9997 addq(rtmp, 32); 9998 mov64(r8, -1L); 9999 bzhiq(r8, r8, rtmp); 10000 kmovql(k2, r8); 10001 evmovdqu(T_BYTE, k2, Address(to, 0), xtmp, true, Assembler::AVX_256bit); 10002 addq(to, rtmp); 10003 shrq(rtmp, shift); 10004 subq(count, rtmp); 10005 } 10006 10007 cmpq(count, 128 >> shift); 10008 jcc(Assembler::less, L_fill_start); 10009 10010 bind(L_fill_128_bytes_loop_header); 10011 subq(count, 128 >> shift); 10012 10013 align32(); 10014 bind(L_fill_128_bytes_loop); 10015 fill64(to, 0, xtmp); 10016 fill64(to, 64, xtmp); 10017 addq(to, 128); 10018 subq(count, 128 >> shift); 10019 jccb(Assembler::greaterEqual, L_fill_128_bytes_loop); 10020 10021 addq(count, 128 >> shift); 10022 jcc(Assembler::zero, L_exit); 10023 jmp(L_fill_start); 10024 } 10025 10026 if (MaxVectorSize == 64) { 10027 // Sequence using 64 byte ZMM register. 10028 Label L_fill_128_bytes_zmm; 10029 Label L_fill_192_bytes_zmm; 10030 Label L_fill_192_bytes_loop_zmm; 10031 Label L_fill_192_bytes_loop_header_zmm; 10032 Label L_fill_192_bytes_loop_pre_header_zmm; 10033 Label L_fill_start_zmm_sequence; 10034 10035 bind(L_fill_zmm_sequence); 10036 evpbroadcast(type, xtmp, value, Assembler::AVX_512bit); 10037 10038 bind(L_fill_start_zmm_sequence); 10039 cmpq(count, 64 >> shift); 10040 jccb(Assembler::greater, L_fill_128_bytes_zmm); 10041 fill64_masked(shift, to, 0, xtmp, k2, count, rtmp, true); 10042 jmp(L_exit); 10043 10044 bind(L_fill_128_bytes_zmm); 10045 cmpq(count, 128 >> shift); 10046 jccb(Assembler::greater, L_fill_192_bytes_zmm); 10047 fill64(to, 0, xtmp, true); 10048 subq(count, 64 >> shift); 10049 fill64_masked(shift, to, 64, xtmp, k2, count, rtmp, true); 10050 jmp(L_exit); 10051 10052 bind(L_fill_192_bytes_zmm); 10053 cmpq(count, 192 >> shift); 10054 jccb(Assembler::greater, L_fill_192_bytes_loop_pre_header_zmm); 10055 fill64(to, 0, xtmp, true); 10056 fill64(to, 64, xtmp, true); 10057 subq(count, 128 >> shift); 10058 fill64_masked(shift, to, 128, xtmp, k2, count, rtmp, true); 10059 jmp(L_exit); 10060 10061 bind(L_fill_192_bytes_loop_pre_header_zmm); 10062 { 10063 movq(rtmp, to); 10064 andq(rtmp, 63); 10065 jccb(Assembler::zero, L_fill_192_bytes_loop_header_zmm); 10066 negq(rtmp); 10067 addq(rtmp, 64); 10068 mov64(r8, -1L); 10069 bzhiq(r8, r8, rtmp); 10070 kmovql(k2, r8); 10071 evmovdqu(T_BYTE, k2, Address(to, 0), xtmp, true, Assembler::AVX_512bit); 10072 addq(to, rtmp); 10073 shrq(rtmp, shift); 10074 subq(count, rtmp); 10075 } 10076 10077 cmpq(count, 192 >> shift); 10078 jcc(Assembler::less, L_fill_start_zmm_sequence); 10079 10080 bind(L_fill_192_bytes_loop_header_zmm); 10081 subq(count, 192 >> shift); 10082 10083 align32(); 10084 bind(L_fill_192_bytes_loop_zmm); 10085 fill64(to, 0, xtmp, true); 10086 fill64(to, 64, xtmp, true); 10087 fill64(to, 128, xtmp, true); 10088 addq(to, 192); 10089 subq(count, 192 >> shift); 10090 jccb(Assembler::greaterEqual, L_fill_192_bytes_loop_zmm); 10091 10092 addq(count, 192 >> shift); 10093 jcc(Assembler::zero, L_exit); 10094 jmp(L_fill_start_zmm_sequence); 10095 } 10096 bind(L_exit); 10097 } 10098 #endif //COMPILER2_OR_JVMCI 10099 10100 10101 void MacroAssembler::convert_f2i(Register dst, XMMRegister src) { 10102 Label done; 10103 cvttss2sil(dst, src); 10104 // Conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub 10105 cmpl(dst, 0x80000000); // float_sign_flip 10106 jccb(Assembler::notEqual, done); 10107 subptr(rsp, 8); 10108 movflt(Address(rsp, 0), src); 10109 call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::f2i_fixup()))); 10110 pop(dst); 10111 bind(done); 10112 } 10113 10114 void MacroAssembler::convert_d2i(Register dst, XMMRegister src) { 10115 Label done; 10116 cvttsd2sil(dst, src); 10117 // Conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub 10118 cmpl(dst, 0x80000000); // float_sign_flip 10119 jccb(Assembler::notEqual, done); 10120 subptr(rsp, 8); 10121 movdbl(Address(rsp, 0), src); 10122 call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::d2i_fixup()))); 10123 pop(dst); 10124 bind(done); 10125 } 10126 10127 void MacroAssembler::convert_f2l(Register dst, XMMRegister src) { 10128 Label done; 10129 cvttss2siq(dst, src); 10130 cmp64(dst, ExternalAddress((address) StubRoutines::x86::double_sign_flip())); 10131 jccb(Assembler::notEqual, done); 10132 subptr(rsp, 8); 10133 movflt(Address(rsp, 0), src); 10134 call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::f2l_fixup()))); 10135 pop(dst); 10136 bind(done); 10137 } 10138 10139 void MacroAssembler::round_float(Register dst, XMMRegister src, Register rtmp, Register rcx) { 10140 // Following code is line by line assembly translation rounding algorithm. 10141 // Please refer to java.lang.Math.round(float) algorithm for details. 10142 const int32_t FloatConsts_EXP_BIT_MASK = 0x7F800000; 10143 const int32_t FloatConsts_SIGNIFICAND_WIDTH = 24; 10144 const int32_t FloatConsts_EXP_BIAS = 127; 10145 const int32_t FloatConsts_SIGNIF_BIT_MASK = 0x007FFFFF; 10146 const int32_t MINUS_32 = 0xFFFFFFE0; 10147 Label L_special_case, L_block1, L_exit; 10148 movl(rtmp, FloatConsts_EXP_BIT_MASK); 10149 movdl(dst, src); 10150 andl(dst, rtmp); 10151 sarl(dst, FloatConsts_SIGNIFICAND_WIDTH - 1); 10152 movl(rtmp, FloatConsts_SIGNIFICAND_WIDTH - 2 + FloatConsts_EXP_BIAS); 10153 subl(rtmp, dst); 10154 movl(rcx, rtmp); 10155 movl(dst, MINUS_32); 10156 testl(rtmp, dst); 10157 jccb(Assembler::notEqual, L_special_case); 10158 movdl(dst, src); 10159 andl(dst, FloatConsts_SIGNIF_BIT_MASK); 10160 orl(dst, FloatConsts_SIGNIF_BIT_MASK + 1); 10161 movdl(rtmp, src); 10162 testl(rtmp, rtmp); 10163 jccb(Assembler::greaterEqual, L_block1); 10164 negl(dst); 10165 bind(L_block1); 10166 sarl(dst); 10167 addl(dst, 0x1); 10168 sarl(dst, 0x1); 10169 jmp(L_exit); 10170 bind(L_special_case); 10171 convert_f2i(dst, src); 10172 bind(L_exit); 10173 } 10174 10175 void MacroAssembler::round_double(Register dst, XMMRegister src, Register rtmp, Register rcx) { 10176 // Following code is line by line assembly translation rounding algorithm. 10177 // Please refer to java.lang.Math.round(double) algorithm for details. 10178 const int64_t DoubleConsts_EXP_BIT_MASK = 0x7FF0000000000000L; 10179 const int64_t DoubleConsts_SIGNIFICAND_WIDTH = 53; 10180 const int64_t DoubleConsts_EXP_BIAS = 1023; 10181 const int64_t DoubleConsts_SIGNIF_BIT_MASK = 0x000FFFFFFFFFFFFFL; 10182 const int64_t MINUS_64 = 0xFFFFFFFFFFFFFFC0L; 10183 Label L_special_case, L_block1, L_exit; 10184 mov64(rtmp, DoubleConsts_EXP_BIT_MASK); 10185 movq(dst, src); 10186 andq(dst, rtmp); 10187 sarq(dst, DoubleConsts_SIGNIFICAND_WIDTH - 1); 10188 mov64(rtmp, DoubleConsts_SIGNIFICAND_WIDTH - 2 + DoubleConsts_EXP_BIAS); 10189 subq(rtmp, dst); 10190 movq(rcx, rtmp); 10191 mov64(dst, MINUS_64); 10192 testq(rtmp, dst); 10193 jccb(Assembler::notEqual, L_special_case); 10194 movq(dst, src); 10195 mov64(rtmp, DoubleConsts_SIGNIF_BIT_MASK); 10196 andq(dst, rtmp); 10197 mov64(rtmp, DoubleConsts_SIGNIF_BIT_MASK + 1); 10198 orq(dst, rtmp); 10199 movq(rtmp, src); 10200 testq(rtmp, rtmp); 10201 jccb(Assembler::greaterEqual, L_block1); 10202 negq(dst); 10203 bind(L_block1); 10204 sarq(dst); 10205 addq(dst, 0x1); 10206 sarq(dst, 0x1); 10207 jmp(L_exit); 10208 bind(L_special_case); 10209 convert_d2l(dst, src); 10210 bind(L_exit); 10211 } 10212 10213 void MacroAssembler::convert_d2l(Register dst, XMMRegister src) { 10214 Label done; 10215 cvttsd2siq(dst, src); 10216 cmp64(dst, ExternalAddress((address) StubRoutines::x86::double_sign_flip())); 10217 jccb(Assembler::notEqual, done); 10218 subptr(rsp, 8); 10219 movdbl(Address(rsp, 0), src); 10220 call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::d2l_fixup()))); 10221 pop(dst); 10222 bind(done); 10223 } 10224 10225 void MacroAssembler::cache_wb(Address line) 10226 { 10227 // 64 bit cpus always support clflush 10228 assert(VM_Version::supports_clflush(), "clflush should be available"); 10229 bool optimized = VM_Version::supports_clflushopt(); 10230 bool no_evict = VM_Version::supports_clwb(); 10231 10232 // prefer clwb (writeback without evict) otherwise 10233 // prefer clflushopt (potentially parallel writeback with evict) 10234 // otherwise fallback on clflush (serial writeback with evict) 10235 10236 if (optimized) { 10237 if (no_evict) { 10238 clwb(line); 10239 } else { 10240 clflushopt(line); 10241 } 10242 } else { 10243 // no need for fence when using CLFLUSH 10244 clflush(line); 10245 } 10246 } 10247 10248 void MacroAssembler::cache_wbsync(bool is_pre) 10249 { 10250 assert(VM_Version::supports_clflush(), "clflush should be available"); 10251 bool optimized = VM_Version::supports_clflushopt(); 10252 bool no_evict = VM_Version::supports_clwb(); 10253 10254 // pick the correct implementation 10255 10256 if (!is_pre && (optimized || no_evict)) { 10257 // need an sfence for post flush when using clflushopt or clwb 10258 // otherwise no no need for any synchroniaztion 10259 10260 sfence(); 10261 } 10262 } 10263 10264 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) { 10265 switch (cond) { 10266 // Note some conditions are synonyms for others 10267 case Assembler::zero: return Assembler::notZero; 10268 case Assembler::notZero: return Assembler::zero; 10269 case Assembler::less: return Assembler::greaterEqual; 10270 case Assembler::lessEqual: return Assembler::greater; 10271 case Assembler::greater: return Assembler::lessEqual; 10272 case Assembler::greaterEqual: return Assembler::less; 10273 case Assembler::below: return Assembler::aboveEqual; 10274 case Assembler::belowEqual: return Assembler::above; 10275 case Assembler::above: return Assembler::belowEqual; 10276 case Assembler::aboveEqual: return Assembler::below; 10277 case Assembler::overflow: return Assembler::noOverflow; 10278 case Assembler::noOverflow: return Assembler::overflow; 10279 case Assembler::negative: return Assembler::positive; 10280 case Assembler::positive: return Assembler::negative; 10281 case Assembler::parity: return Assembler::noParity; 10282 case Assembler::noParity: return Assembler::parity; 10283 } 10284 ShouldNotReachHere(); return Assembler::overflow; 10285 } 10286 10287 // This is simply a call to Thread::current() 10288 void MacroAssembler::get_thread_slow(Register thread) { 10289 if (thread != rax) { 10290 push(rax); 10291 } 10292 push(rdi); 10293 push(rsi); 10294 push(rdx); 10295 push(rcx); 10296 push(r8); 10297 push(r9); 10298 push(r10); 10299 push(r11); 10300 10301 MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, Thread::current), 0); 10302 10303 pop(r11); 10304 pop(r10); 10305 pop(r9); 10306 pop(r8); 10307 pop(rcx); 10308 pop(rdx); 10309 pop(rsi); 10310 pop(rdi); 10311 if (thread != rax) { 10312 mov(thread, rax); 10313 pop(rax); 10314 } 10315 } 10316 10317 void MacroAssembler::check_stack_alignment(Register sp, const char* msg, unsigned bias, Register tmp) { 10318 Label L_stack_ok; 10319 if (bias == 0) { 10320 testptr(sp, 2 * wordSize - 1); 10321 } else { 10322 // lea(tmp, Address(rsp, bias); 10323 mov(tmp, sp); 10324 addptr(tmp, bias); 10325 testptr(tmp, 2 * wordSize - 1); 10326 } 10327 jcc(Assembler::equal, L_stack_ok); 10328 block_comment(msg); 10329 stop(msg); 10330 bind(L_stack_ok); 10331 } 10332 10333 // Implements lightweight-locking. 10334 // 10335 // obj: the object to be locked 10336 // reg_rax: rax 10337 // thread: the thread which attempts to lock obj 10338 // tmp: a temporary register 10339 void MacroAssembler::lightweight_lock(Register basic_lock, Register obj, Register reg_rax, Register tmp, Label& slow) { 10340 Register thread = r15_thread; 10341 10342 assert(reg_rax == rax, ""); 10343 assert_different_registers(basic_lock, obj, reg_rax, thread, tmp); 10344 10345 Label push; 10346 const Register top = tmp; 10347 10348 // Preload the markWord. It is important that this is the first 10349 // instruction emitted as it is part of C1's null check semantics. 10350 movptr(reg_rax, Address(obj, oopDesc::mark_offset_in_bytes())); 10351 10352 if (UseObjectMonitorTable) { 10353 // Clear cache in case fast locking succeeds or we need to take the slow-path. 10354 movptr(Address(basic_lock, BasicObjectLock::lock_offset() + in_ByteSize((BasicLock::object_monitor_cache_offset_in_bytes()))), 0); 10355 } 10356 10357 if (DiagnoseSyncOnValueBasedClasses != 0) { 10358 load_klass(tmp, obj, rscratch1); 10359 testb(Address(tmp, Klass::misc_flags_offset()), KlassFlags::_misc_is_value_based_class); 10360 jcc(Assembler::notZero, slow); 10361 } 10362 10363 // Load top. 10364 movl(top, Address(thread, JavaThread::lock_stack_top_offset())); 10365 10366 // Check if the lock-stack is full. 10367 cmpl(top, LockStack::end_offset()); 10368 jcc(Assembler::greaterEqual, slow); 10369 10370 // Check for recursion. 10371 cmpptr(obj, Address(thread, top, Address::times_1, -oopSize)); 10372 jcc(Assembler::equal, push); 10373 10374 // Check header for monitor (0b10). 10375 testptr(reg_rax, markWord::monitor_value); 10376 jcc(Assembler::notZero, slow); 10377 10378 // Try to lock. Transition lock bits 0b01 => 0b00 10379 movptr(tmp, reg_rax); 10380 andptr(tmp, ~(int32_t)markWord::unlocked_value); 10381 orptr(reg_rax, markWord::unlocked_value); 10382 if (EnableValhalla) { 10383 // Mask inline_type bit such that we go to the slow path if object is an inline type 10384 andptr(reg_rax, ~((int) markWord::inline_type_bit_in_place)); 10385 } 10386 lock(); cmpxchgptr(tmp, Address(obj, oopDesc::mark_offset_in_bytes())); 10387 jcc(Assembler::notEqual, slow); 10388 10389 // Restore top, CAS clobbers register. 10390 movl(top, Address(thread, JavaThread::lock_stack_top_offset())); 10391 10392 bind(push); 10393 // After successful lock, push object on lock-stack. 10394 movptr(Address(thread, top), obj); 10395 incrementl(top, oopSize); 10396 movl(Address(thread, JavaThread::lock_stack_top_offset()), top); 10397 } 10398 10399 // Implements lightweight-unlocking. 10400 // 10401 // obj: the object to be unlocked 10402 // reg_rax: rax 10403 // thread: the thread 10404 // tmp: a temporary register 10405 void MacroAssembler::lightweight_unlock(Register obj, Register reg_rax, Register tmp, Label& slow) { 10406 Register thread = r15_thread; 10407 10408 assert(reg_rax == rax, ""); 10409 assert_different_registers(obj, reg_rax, thread, tmp); 10410 10411 Label unlocked, push_and_slow; 10412 const Register top = tmp; 10413 10414 // Check if obj is top of lock-stack. 10415 movl(top, Address(thread, JavaThread::lock_stack_top_offset())); 10416 cmpptr(obj, Address(thread, top, Address::times_1, -oopSize)); 10417 jcc(Assembler::notEqual, slow); 10418 10419 // Pop lock-stack. 10420 DEBUG_ONLY(movptr(Address(thread, top, Address::times_1, -oopSize), 0);) 10421 subl(Address(thread, JavaThread::lock_stack_top_offset()), oopSize); 10422 10423 // Check if recursive. 10424 cmpptr(obj, Address(thread, top, Address::times_1, -2 * oopSize)); 10425 jcc(Assembler::equal, unlocked); 10426 10427 // Not recursive. Check header for monitor (0b10). 10428 movptr(reg_rax, Address(obj, oopDesc::mark_offset_in_bytes())); 10429 testptr(reg_rax, markWord::monitor_value); 10430 jcc(Assembler::notZero, push_and_slow); 10431 10432 #ifdef ASSERT 10433 // Check header not unlocked (0b01). 10434 Label not_unlocked; 10435 testptr(reg_rax, markWord::unlocked_value); 10436 jcc(Assembler::zero, not_unlocked); 10437 stop("lightweight_unlock already unlocked"); 10438 bind(not_unlocked); 10439 #endif 10440 10441 // Try to unlock. Transition lock bits 0b00 => 0b01 10442 movptr(tmp, reg_rax); 10443 orptr(tmp, markWord::unlocked_value); 10444 lock(); cmpxchgptr(tmp, Address(obj, oopDesc::mark_offset_in_bytes())); 10445 jcc(Assembler::equal, unlocked); 10446 10447 bind(push_and_slow); 10448 // Restore lock-stack and handle the unlock in runtime. 10449 #ifdef ASSERT 10450 movl(top, Address(thread, JavaThread::lock_stack_top_offset())); 10451 movptr(Address(thread, top), obj); 10452 #endif 10453 addl(Address(thread, JavaThread::lock_stack_top_offset()), oopSize); 10454 jmp(slow); 10455 10456 bind(unlocked); 10457 } 10458 10459 // Saves legacy GPRs state on stack. 10460 void MacroAssembler::save_legacy_gprs() { 10461 subq(rsp, 16 * wordSize); 10462 movq(Address(rsp, 15 * wordSize), rax); 10463 movq(Address(rsp, 14 * wordSize), rcx); 10464 movq(Address(rsp, 13 * wordSize), rdx); 10465 movq(Address(rsp, 12 * wordSize), rbx); 10466 movq(Address(rsp, 10 * wordSize), rbp); 10467 movq(Address(rsp, 9 * wordSize), rsi); 10468 movq(Address(rsp, 8 * wordSize), rdi); 10469 movq(Address(rsp, 7 * wordSize), r8); 10470 movq(Address(rsp, 6 * wordSize), r9); 10471 movq(Address(rsp, 5 * wordSize), r10); 10472 movq(Address(rsp, 4 * wordSize), r11); 10473 movq(Address(rsp, 3 * wordSize), r12); 10474 movq(Address(rsp, 2 * wordSize), r13); 10475 movq(Address(rsp, wordSize), r14); 10476 movq(Address(rsp, 0), r15); 10477 } 10478 10479 // Resotres back legacy GPRs state from stack. 10480 void MacroAssembler::restore_legacy_gprs() { 10481 movq(r15, Address(rsp, 0)); 10482 movq(r14, Address(rsp, wordSize)); 10483 movq(r13, Address(rsp, 2 * wordSize)); 10484 movq(r12, Address(rsp, 3 * wordSize)); 10485 movq(r11, Address(rsp, 4 * wordSize)); 10486 movq(r10, Address(rsp, 5 * wordSize)); 10487 movq(r9, Address(rsp, 6 * wordSize)); 10488 movq(r8, Address(rsp, 7 * wordSize)); 10489 movq(rdi, Address(rsp, 8 * wordSize)); 10490 movq(rsi, Address(rsp, 9 * wordSize)); 10491 movq(rbp, Address(rsp, 10 * wordSize)); 10492 movq(rbx, Address(rsp, 12 * wordSize)); 10493 movq(rdx, Address(rsp, 13 * wordSize)); 10494 movq(rcx, Address(rsp, 14 * wordSize)); 10495 movq(rax, Address(rsp, 15 * wordSize)); 10496 addq(rsp, 16 * wordSize); 10497 } 10498 10499 void MacroAssembler::setcc(Assembler::Condition comparison, Register dst) { 10500 if (VM_Version::supports_apx_f()) { 10501 esetzucc(comparison, dst); 10502 } else { 10503 setb(comparison, dst); 10504 movzbl(dst, dst); 10505 } 10506 }