1 /*
    2  * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved.
    3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
    4  *
    5  * This code is free software; you can redistribute it and/or modify it
    6  * under the terms of the GNU General Public License version 2 only, as
    7  * published by the Free Software Foundation.
    8  *
    9  * This code is distributed in the hope that it will be useful, but WITHOUT
   10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
   11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
   12  * version 2 for more details (a copy is included in the LICENSE file that
   13  * accompanied this code).
   14  *
   15  * You should have received a copy of the GNU General Public License version
   16  * 2 along with this work; if not, write to the Free Software Foundation,
   17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
   18  *
   19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
   20  * or visit www.oracle.com if you need additional information or have any
   21  * questions.
   22  *
   23  */
   24 
   25 #include "precompiled.hpp"
   26 #include "asm/assembler.hpp"
   27 #include "asm/assembler.inline.hpp"
   28 #include "code/compiledIC.hpp"
   29 #include "compiler/compiler_globals.hpp"
   30 #include "compiler/disassembler.hpp"

   31 #include "crc32c.h"
   32 #include "gc/shared/barrierSet.hpp"
   33 #include "gc/shared/barrierSetAssembler.hpp"
   34 #include "gc/shared/collectedHeap.inline.hpp"
   35 #include "gc/shared/tlab_globals.hpp"
   36 #include "interpreter/bytecodeHistogram.hpp"
   37 #include "interpreter/interpreter.hpp"
   38 #include "jvm.h"
   39 #include "memory/resourceArea.hpp"
   40 #include "memory/universe.hpp"
   41 #include "oops/accessDecorators.hpp"
   42 #include "oops/compressedKlass.inline.hpp"
   43 #include "oops/compressedOops.inline.hpp"
   44 #include "oops/klass.inline.hpp"

   45 #include "prims/methodHandles.hpp"
   46 #include "runtime/continuation.hpp"
   47 #include "runtime/interfaceSupport.inline.hpp"
   48 #include "runtime/javaThread.hpp"
   49 #include "runtime/jniHandles.hpp"
   50 #include "runtime/objectMonitor.hpp"
   51 #include "runtime/os.hpp"
   52 #include "runtime/safepoint.hpp"
   53 #include "runtime/safepointMechanism.hpp"
   54 #include "runtime/sharedRuntime.hpp"

   55 #include "runtime/stubRoutines.hpp"
   56 #include "utilities/checkedCast.hpp"
   57 #include "utilities/macros.hpp"




   58 
   59 #ifdef PRODUCT
   60 #define BLOCK_COMMENT(str) /* nothing */
   61 #define STOP(error) stop(error)
   62 #else
   63 #define BLOCK_COMMENT(str) block_comment(str)
   64 #define STOP(error) block_comment(error); stop(error)
   65 #endif
   66 
   67 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
   68 
   69 #ifdef ASSERT
   70 bool AbstractAssembler::pd_check_instruction_mark() { return true; }
   71 #endif
   72 
   73 static const Assembler::Condition reverse[] = {
   74     Assembler::noOverflow     /* overflow      = 0x0 */ ,
   75     Assembler::overflow       /* noOverflow    = 0x1 */ ,
   76     Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
   77     Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
   78     Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
   79     Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
   80     Assembler::above          /* belowEqual    = 0x6 */ ,
   81     Assembler::belowEqual     /* above         = 0x7 */ ,
   82     Assembler::positive       /* negative      = 0x8 */ ,
   83     Assembler::negative       /* positive      = 0x9 */ ,
   84     Assembler::noParity       /* parity        = 0xa */ ,
   85     Assembler::parity         /* noParity      = 0xb */ ,
   86     Assembler::greaterEqual   /* less          = 0xc */ ,
   87     Assembler::less           /* greaterEqual  = 0xd */ ,
   88     Assembler::greater        /* lessEqual     = 0xe */ ,
   89     Assembler::lessEqual      /* greater       = 0xf, */
   90 
   91 };
   92 
   93 
   94 // Implementation of MacroAssembler
   95 
   96 // First all the versions that have distinct versions depending on 32/64 bit
   97 // Unless the difference is trivial (1 line or so).
   98 
   99 #ifndef _LP64
  100 
  101 // 32bit versions
  102 
  103 Address MacroAssembler::as_Address(AddressLiteral adr) {
  104   return Address(adr.target(), adr.rspec());
  105 }
  106 
  107 Address MacroAssembler::as_Address(ArrayAddress adr, Register rscratch) {
  108   assert(rscratch == noreg, "");
  109   return Address::make_array(adr);
  110 }
  111 
  112 void MacroAssembler::call_VM_leaf_base(address entry_point,
  113                                        int number_of_arguments) {
  114   call(RuntimeAddress(entry_point));
  115   increment(rsp, number_of_arguments * wordSize);
  116 }
  117 
  118 void MacroAssembler::cmpklass(Address src1, Metadata* obj) {
  119   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
  120 }
  121 
  122 
  123 void MacroAssembler::cmpklass(Register src1, Metadata* obj) {
  124   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
  125 }
  126 
  127 void MacroAssembler::cmpoop(Address src1, jobject obj) {
  128   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
  129 }
  130 
  131 void MacroAssembler::cmpoop(Register src1, jobject obj, Register rscratch) {
  132   assert(rscratch == noreg, "redundant");
  133   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
  134 }
  135 
  136 void MacroAssembler::extend_sign(Register hi, Register lo) {
  137   // According to Intel Doc. AP-526, "Integer Divide", p.18.
  138   if (VM_Version::is_P6() && hi == rdx && lo == rax) {
  139     cdql();
  140   } else {
  141     movl(hi, lo);
  142     sarl(hi, 31);
  143   }
  144 }
  145 
  146 void MacroAssembler::jC2(Register tmp, Label& L) {
  147   // set parity bit if FPU flag C2 is set (via rax)
  148   save_rax(tmp);
  149   fwait(); fnstsw_ax();
  150   sahf();
  151   restore_rax(tmp);
  152   // branch
  153   jcc(Assembler::parity, L);
  154 }
  155 
  156 void MacroAssembler::jnC2(Register tmp, Label& L) {
  157   // set parity bit if FPU flag C2 is set (via rax)
  158   save_rax(tmp);
  159   fwait(); fnstsw_ax();
  160   sahf();
  161   restore_rax(tmp);
  162   // branch
  163   jcc(Assembler::noParity, L);
  164 }
  165 
  166 // 32bit can do a case table jump in one instruction but we no longer allow the base
  167 // to be installed in the Address class
  168 void MacroAssembler::jump(ArrayAddress entry, Register rscratch) {
  169   assert(rscratch == noreg, "not needed");
  170   jmp(as_Address(entry, noreg));
  171 }
  172 
  173 // Note: y_lo will be destroyed
  174 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
  175   // Long compare for Java (semantics as described in JVM spec.)
  176   Label high, low, done;
  177 
  178   cmpl(x_hi, y_hi);
  179   jcc(Assembler::less, low);
  180   jcc(Assembler::greater, high);
  181   // x_hi is the return register
  182   xorl(x_hi, x_hi);
  183   cmpl(x_lo, y_lo);
  184   jcc(Assembler::below, low);
  185   jcc(Assembler::equal, done);
  186 
  187   bind(high);
  188   xorl(x_hi, x_hi);
  189   increment(x_hi);
  190   jmp(done);
  191 
  192   bind(low);
  193   xorl(x_hi, x_hi);
  194   decrementl(x_hi);
  195 
  196   bind(done);
  197 }
  198 
  199 void MacroAssembler::lea(Register dst, AddressLiteral src) {
  200   mov_literal32(dst, (int32_t)src.target(), src.rspec());
  201 }
  202 
  203 void MacroAssembler::lea(Address dst, AddressLiteral adr, Register rscratch) {
  204   assert(rscratch == noreg, "not needed");
  205 
  206   // leal(dst, as_Address(adr));
  207   // see note in movl as to why we must use a move
  208   mov_literal32(dst, (int32_t)adr.target(), adr.rspec());
  209 }
  210 
  211 void MacroAssembler::leave() {
  212   mov(rsp, rbp);
  213   pop(rbp);
  214 }
  215 
  216 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
  217   // Multiplication of two Java long values stored on the stack
  218   // as illustrated below. Result is in rdx:rax.
  219   //
  220   // rsp ---> [  ??  ] \               \
  221   //            ....    | y_rsp_offset  |
  222   //          [ y_lo ] /  (in bytes)    | x_rsp_offset
  223   //          [ y_hi ]                  | (in bytes)
  224   //            ....                    |
  225   //          [ x_lo ]                 /
  226   //          [ x_hi ]
  227   //            ....
  228   //
  229   // Basic idea: lo(result) = lo(x_lo * y_lo)
  230   //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
  231   Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
  232   Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
  233   Label quick;
  234   // load x_hi, y_hi and check if quick
  235   // multiplication is possible
  236   movl(rbx, x_hi);
  237   movl(rcx, y_hi);
  238   movl(rax, rbx);
  239   orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
  240   jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
  241   // do full multiplication
  242   // 1st step
  243   mull(y_lo);                                    // x_hi * y_lo
  244   movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
  245   // 2nd step
  246   movl(rax, x_lo);
  247   mull(rcx);                                     // x_lo * y_hi
  248   addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
  249   // 3rd step
  250   bind(quick);                                   // note: rbx, = 0 if quick multiply!
  251   movl(rax, x_lo);
  252   mull(y_lo);                                    // x_lo * y_lo
  253   addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
  254 }
  255 
  256 void MacroAssembler::lneg(Register hi, Register lo) {
  257   negl(lo);
  258   adcl(hi, 0);
  259   negl(hi);
  260 }
  261 
  262 void MacroAssembler::lshl(Register hi, Register lo) {
  263   // Java shift left long support (semantics as described in JVM spec., p.305)
  264   // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
  265   // shift value is in rcx !
  266   assert(hi != rcx, "must not use rcx");
  267   assert(lo != rcx, "must not use rcx");
  268   const Register s = rcx;                        // shift count
  269   const int      n = BitsPerWord;
  270   Label L;
  271   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
  272   cmpl(s, n);                                    // if (s < n)
  273   jcc(Assembler::less, L);                       // else (s >= n)
  274   movl(hi, lo);                                  // x := x << n
  275   xorl(lo, lo);
  276   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
  277   bind(L);                                       // s (mod n) < n
  278   shldl(hi, lo);                                 // x := x << s
  279   shll(lo);
  280 }
  281 
  282 
  283 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
  284   // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
  285   // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
  286   assert(hi != rcx, "must not use rcx");
  287   assert(lo != rcx, "must not use rcx");
  288   const Register s = rcx;                        // shift count
  289   const int      n = BitsPerWord;
  290   Label L;
  291   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
  292   cmpl(s, n);                                    // if (s < n)
  293   jcc(Assembler::less, L);                       // else (s >= n)
  294   movl(lo, hi);                                  // x := x >> n
  295   if (sign_extension) sarl(hi, 31);
  296   else                xorl(hi, hi);
  297   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
  298   bind(L);                                       // s (mod n) < n
  299   shrdl(lo, hi);                                 // x := x >> s
  300   if (sign_extension) sarl(hi);
  301   else                shrl(hi);
  302 }
  303 
  304 void MacroAssembler::movoop(Register dst, jobject obj) {
  305   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
  306 }
  307 
  308 void MacroAssembler::movoop(Address dst, jobject obj, Register rscratch) {
  309   assert(rscratch == noreg, "redundant");
  310   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
  311 }
  312 
  313 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
  314   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
  315 }
  316 
  317 void MacroAssembler::mov_metadata(Address dst, Metadata* obj, Register rscratch) {
  318   assert(rscratch == noreg, "redundant");
  319   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
  320 }
  321 
  322 void MacroAssembler::movptr(Register dst, AddressLiteral src) {
  323   if (src.is_lval()) {
  324     mov_literal32(dst, (intptr_t)src.target(), src.rspec());
  325   } else {
  326     movl(dst, as_Address(src));
  327   }
  328 }
  329 
  330 void MacroAssembler::movptr(ArrayAddress dst, Register src, Register rscratch) {
  331   assert(rscratch == noreg, "redundant");
  332   movl(as_Address(dst, noreg), src);
  333 }
  334 
  335 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
  336   movl(dst, as_Address(src, noreg));
  337 }
  338 
  339 void MacroAssembler::movptr(Address dst, intptr_t src, Register rscratch) {
  340   assert(rscratch == noreg, "redundant");
  341   movl(dst, src);
  342 }
  343 
  344 void MacroAssembler::pushoop(jobject obj, Register rscratch) {
  345   assert(rscratch == noreg, "redundant");
  346   push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
  347 }
  348 
  349 void MacroAssembler::pushklass(Metadata* obj, Register rscratch) {
  350   assert(rscratch == noreg, "redundant");
  351   push_literal32((int32_t)obj, metadata_Relocation::spec_for_immediate());
  352 }
  353 
  354 void MacroAssembler::pushptr(AddressLiteral src, Register rscratch) {
  355   assert(rscratch == noreg, "redundant");
  356   if (src.is_lval()) {
  357     push_literal32((int32_t)src.target(), src.rspec());
  358   } else {
  359     pushl(as_Address(src));
  360   }
  361 }
  362 
  363 static void pass_arg0(MacroAssembler* masm, Register arg) {
  364   masm->push(arg);
  365 }
  366 
  367 static void pass_arg1(MacroAssembler* masm, Register arg) {
  368   masm->push(arg);
  369 }
  370 
  371 static void pass_arg2(MacroAssembler* masm, Register arg) {
  372   masm->push(arg);
  373 }
  374 
  375 static void pass_arg3(MacroAssembler* masm, Register arg) {
  376   masm->push(arg);
  377 }
  378 
  379 #ifndef PRODUCT
  380 extern "C" void findpc(intptr_t x);
  381 #endif
  382 
  383 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
  384   // In order to get locks to work, we need to fake a in_VM state
  385   JavaThread* thread = JavaThread::current();
  386   JavaThreadState saved_state = thread->thread_state();
  387   thread->set_thread_state(_thread_in_vm);
  388   if (ShowMessageBoxOnError) {
  389     JavaThread* thread = JavaThread::current();
  390     JavaThreadState saved_state = thread->thread_state();
  391     thread->set_thread_state(_thread_in_vm);
  392     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
  393       ttyLocker ttyl;
  394       BytecodeCounter::print();
  395     }
  396     // To see where a verify_oop failed, get $ebx+40/X for this frame.
  397     // This is the value of eip which points to where verify_oop will return.
  398     if (os::message_box(msg, "Execution stopped, print registers?")) {
  399       print_state32(rdi, rsi, rbp, rsp, rbx, rdx, rcx, rax, eip);
  400       BREAKPOINT;
  401     }
  402   }
  403   fatal("DEBUG MESSAGE: %s", msg);
  404 }
  405 
  406 void MacroAssembler::print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip) {
  407   ttyLocker ttyl;
  408   DebuggingContext debugging{};
  409   tty->print_cr("eip = 0x%08x", eip);
  410 #ifndef PRODUCT
  411   if ((WizardMode || Verbose) && PrintMiscellaneous) {
  412     tty->cr();
  413     findpc(eip);
  414     tty->cr();
  415   }
  416 #endif
  417 #define PRINT_REG(rax) \
  418   { tty->print("%s = ", #rax); os::print_location(tty, rax); }
  419   PRINT_REG(rax);
  420   PRINT_REG(rbx);
  421   PRINT_REG(rcx);
  422   PRINT_REG(rdx);
  423   PRINT_REG(rdi);
  424   PRINT_REG(rsi);
  425   PRINT_REG(rbp);
  426   PRINT_REG(rsp);
  427 #undef PRINT_REG
  428   // Print some words near top of staack.
  429   int* dump_sp = (int*) rsp;
  430   for (int col1 = 0; col1 < 8; col1++) {
  431     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
  432     os::print_location(tty, *dump_sp++);
  433   }
  434   for (int row = 0; row < 16; row++) {
  435     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
  436     for (int col = 0; col < 8; col++) {
  437       tty->print(" 0x%08x", *dump_sp++);
  438     }
  439     tty->cr();
  440   }
  441   // Print some instructions around pc:
  442   Disassembler::decode((address)eip-64, (address)eip);
  443   tty->print_cr("--------");
  444   Disassembler::decode((address)eip, (address)eip+32);
  445 }
  446 
  447 void MacroAssembler::stop(const char* msg) {
  448   // push address of message
  449   ExternalAddress message((address)msg);
  450   pushptr(message.addr(), noreg);
  451   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
  452   pusha();                                            // push registers
  453   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
  454   hlt();
  455 }
  456 
  457 void MacroAssembler::warn(const char* msg) {
  458   push_CPU_state();
  459 
  460   // push address of message
  461   ExternalAddress message((address)msg);
  462   pushptr(message.addr(), noreg);
  463 
  464   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
  465   addl(rsp, wordSize);       // discard argument
  466   pop_CPU_state();
  467 }
  468 
  469 void MacroAssembler::print_state() {
  470   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
  471   pusha();                                            // push registers
  472 
  473   push_CPU_state();
  474   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::print_state32)));
  475   pop_CPU_state();
  476 
  477   popa();
  478   addl(rsp, wordSize);
  479 }
  480 
  481 #else // _LP64
  482 
  483 // 64 bit versions
  484 
  485 Address MacroAssembler::as_Address(AddressLiteral adr) {
  486   // amd64 always does this as a pc-rel
  487   // we can be absolute or disp based on the instruction type
  488   // jmp/call are displacements others are absolute
  489   assert(!adr.is_lval(), "must be rval");
  490   assert(reachable(adr), "must be");
  491   return Address(checked_cast<int32_t>(adr.target() - pc()), adr.target(), adr.reloc());
  492 
  493 }
  494 
  495 Address MacroAssembler::as_Address(ArrayAddress adr, Register rscratch) {
  496   AddressLiteral base = adr.base();
  497   lea(rscratch, base);
  498   Address index = adr.index();
  499   assert(index._disp == 0, "must not have disp"); // maybe it can?
  500   Address array(rscratch, index._index, index._scale, index._disp);
  501   return array;
  502 }
  503 
  504 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
  505   Label L, E;
  506 
  507 #ifdef _WIN64
  508   // Windows always allocates space for it's register args
  509   assert(num_args <= 4, "only register arguments supported");
  510   subq(rsp,  frame::arg_reg_save_area_bytes);
  511 #endif
  512 
  513   // Align stack if necessary
  514   testl(rsp, 15);
  515   jcc(Assembler::zero, L);
  516 
  517   subq(rsp, 8);
  518   call(RuntimeAddress(entry_point));
  519   addq(rsp, 8);
  520   jmp(E);
  521 
  522   bind(L);
  523   call(RuntimeAddress(entry_point));
  524 
  525   bind(E);
  526 
  527 #ifdef _WIN64
  528   // restore stack pointer
  529   addq(rsp, frame::arg_reg_save_area_bytes);
  530 #endif
  531 
  532 }
  533 
  534 void MacroAssembler::cmp64(Register src1, AddressLiteral src2, Register rscratch) {
  535   assert(!src2.is_lval(), "should use cmpptr");
  536   assert(rscratch != noreg || always_reachable(src2), "missing");
  537 
  538   if (reachable(src2)) {
  539     cmpq(src1, as_Address(src2));
  540   } else {
  541     lea(rscratch, src2);
  542     Assembler::cmpq(src1, Address(rscratch, 0));
  543   }
  544 }
  545 
  546 int MacroAssembler::corrected_idivq(Register reg) {
  547   // Full implementation of Java ldiv and lrem; checks for special
  548   // case as described in JVM spec., p.243 & p.271.  The function
  549   // returns the (pc) offset of the idivl instruction - may be needed
  550   // for implicit exceptions.
  551   //
  552   //         normal case                           special case
  553   //
  554   // input : rax: dividend                         min_long
  555   //         reg: divisor   (may not be eax/edx)   -1
  556   //
  557   // output: rax: quotient  (= rax idiv reg)       min_long
  558   //         rdx: remainder (= rax irem reg)       0
  559   assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
  560   static const int64_t min_long = 0x8000000000000000;
  561   Label normal_case, special_case;
  562 
  563   // check for special case
  564   cmp64(rax, ExternalAddress((address) &min_long), rdx /*rscratch*/);
  565   jcc(Assembler::notEqual, normal_case);
  566   xorl(rdx, rdx); // prepare rdx for possible special case (where
  567                   // remainder = 0)
  568   cmpq(reg, -1);
  569   jcc(Assembler::equal, special_case);
  570 
  571   // handle normal case
  572   bind(normal_case);
  573   cdqq();
  574   int idivq_offset = offset();
  575   idivq(reg);
  576 
  577   // normal and special case exit
  578   bind(special_case);
  579 
  580   return idivq_offset;
  581 }
  582 
  583 void MacroAssembler::decrementq(Register reg, int value) {
  584   if (value == min_jint) { subq(reg, value); return; }
  585   if (value <  0) { incrementq(reg, -value); return; }
  586   if (value == 0) {                        ; return; }
  587   if (value == 1 && UseIncDec) { decq(reg) ; return; }
  588   /* else */      { subq(reg, value)       ; return; }
  589 }
  590 
  591 void MacroAssembler::decrementq(Address dst, int value) {
  592   if (value == min_jint) { subq(dst, value); return; }
  593   if (value <  0) { incrementq(dst, -value); return; }
  594   if (value == 0) {                        ; return; }
  595   if (value == 1 && UseIncDec) { decq(dst) ; return; }
  596   /* else */      { subq(dst, value)       ; return; }
  597 }
  598 
  599 void MacroAssembler::incrementq(AddressLiteral dst, Register rscratch) {
  600   assert(rscratch != noreg || always_reachable(dst), "missing");
  601 
  602   if (reachable(dst)) {
  603     incrementq(as_Address(dst));
  604   } else {
  605     lea(rscratch, dst);
  606     incrementq(Address(rscratch, 0));
  607   }
  608 }
  609 
  610 void MacroAssembler::incrementq(Register reg, int value) {
  611   if (value == min_jint) { addq(reg, value); return; }
  612   if (value <  0) { decrementq(reg, -value); return; }
  613   if (value == 0) {                        ; return; }
  614   if (value == 1 && UseIncDec) { incq(reg) ; return; }
  615   /* else */      { addq(reg, value)       ; return; }
  616 }
  617 
  618 void MacroAssembler::incrementq(Address dst, int value) {
  619   if (value == min_jint) { addq(dst, value); return; }
  620   if (value <  0) { decrementq(dst, -value); return; }
  621   if (value == 0) {                        ; return; }
  622   if (value == 1 && UseIncDec) { incq(dst) ; return; }
  623   /* else */      { addq(dst, value)       ; return; }
  624 }
  625 
  626 // 32bit can do a case table jump in one instruction but we no longer allow the base
  627 // to be installed in the Address class
  628 void MacroAssembler::jump(ArrayAddress entry, Register rscratch) {
  629   lea(rscratch, entry.base());
  630   Address dispatch = entry.index();
  631   assert(dispatch._base == noreg, "must be");
  632   dispatch._base = rscratch;
  633   jmp(dispatch);
  634 }
  635 
  636 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
  637   ShouldNotReachHere(); // 64bit doesn't use two regs
  638   cmpq(x_lo, y_lo);
  639 }
  640 
  641 void MacroAssembler::lea(Register dst, AddressLiteral src) {
  642   mov_literal64(dst, (intptr_t)src.target(), src.rspec());
  643 }
  644 
  645 void MacroAssembler::lea(Address dst, AddressLiteral adr, Register rscratch) {
  646   lea(rscratch, adr);
  647   movptr(dst, rscratch);
  648 }
  649 
  650 void MacroAssembler::leave() {
  651   // %%% is this really better? Why not on 32bit too?
  652   emit_int8((unsigned char)0xC9); // LEAVE
  653 }
  654 
  655 void MacroAssembler::lneg(Register hi, Register lo) {
  656   ShouldNotReachHere(); // 64bit doesn't use two regs
  657   negq(lo);
  658 }
  659 
  660 void MacroAssembler::movoop(Register dst, jobject obj) {
  661   mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
  662 }
  663 
  664 void MacroAssembler::movoop(Address dst, jobject obj, Register rscratch) {
  665   mov_literal64(rscratch, (intptr_t)obj, oop_Relocation::spec_for_immediate());
  666   movq(dst, rscratch);
  667 }
  668 
  669 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
  670   mov_literal64(dst, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
  671 }
  672 
  673 void MacroAssembler::mov_metadata(Address dst, Metadata* obj, Register rscratch) {
  674   mov_literal64(rscratch, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
  675   movq(dst, rscratch);
  676 }
  677 
  678 void MacroAssembler::movptr(Register dst, AddressLiteral src) {
  679   if (src.is_lval()) {
  680     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
  681   } else {
  682     if (reachable(src)) {
  683       movq(dst, as_Address(src));
  684     } else {
  685       lea(dst, src);
  686       movq(dst, Address(dst, 0));
  687     }
  688   }
  689 }
  690 
  691 void MacroAssembler::movptr(ArrayAddress dst, Register src, Register rscratch) {
  692   movq(as_Address(dst, rscratch), src);
  693 }
  694 
  695 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
  696   movq(dst, as_Address(src, dst /*rscratch*/));
  697 }
  698 
  699 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
  700 void MacroAssembler::movptr(Address dst, intptr_t src, Register rscratch) {
  701   if (is_simm32(src)) {
  702     movptr(dst, checked_cast<int32_t>(src));
  703   } else {
  704     mov64(rscratch, src);
  705     movq(dst, rscratch);
  706   }
  707 }
  708 
  709 void MacroAssembler::pushoop(jobject obj, Register rscratch) {
  710   movoop(rscratch, obj);
  711   push(rscratch);
  712 }
  713 
  714 void MacroAssembler::pushklass(Metadata* obj, Register rscratch) {
  715   mov_metadata(rscratch, obj);
  716   push(rscratch);
  717 }
  718 
  719 void MacroAssembler::pushptr(AddressLiteral src, Register rscratch) {
  720   lea(rscratch, src);
  721   if (src.is_lval()) {
  722     push(rscratch);
  723   } else {
  724     pushq(Address(rscratch, 0));
  725   }
  726 }
  727 
  728 void MacroAssembler::reset_last_Java_frame(bool clear_fp) {
  729   reset_last_Java_frame(r15_thread, clear_fp);
  730 }
  731 
  732 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
  733                                          Register last_java_fp,
  734                                          address  last_java_pc,
  735                                          Register rscratch) {
  736   set_last_Java_frame(r15_thread, last_java_sp, last_java_fp, last_java_pc, rscratch);
  737 }
  738 
  739 static void pass_arg0(MacroAssembler* masm, Register arg) {
  740   if (c_rarg0 != arg ) {
  741     masm->mov(c_rarg0, arg);
  742   }
  743 }
  744 
  745 static void pass_arg1(MacroAssembler* masm, Register arg) {
  746   if (c_rarg1 != arg ) {
  747     masm->mov(c_rarg1, arg);
  748   }
  749 }
  750 
  751 static void pass_arg2(MacroAssembler* masm, Register arg) {
  752   if (c_rarg2 != arg ) {
  753     masm->mov(c_rarg2, arg);
  754   }
  755 }
  756 
  757 static void pass_arg3(MacroAssembler* masm, Register arg) {
  758   if (c_rarg3 != arg ) {
  759     masm->mov(c_rarg3, arg);
  760   }
  761 }
  762 
  763 void MacroAssembler::stop(const char* msg) {
  764   if (ShowMessageBoxOnError) {
  765     address rip = pc();
  766     pusha(); // get regs on stack
  767     lea(c_rarg1, InternalAddress(rip));
  768     movq(c_rarg2, rsp); // pass pointer to regs array
  769   }
  770   lea(c_rarg0, ExternalAddress((address) msg));
  771   andq(rsp, -16); // align stack as required by ABI
  772   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
  773   hlt();
  774 }
  775 
  776 void MacroAssembler::warn(const char* msg) {
  777   push(rbp);
  778   movq(rbp, rsp);
  779   andq(rsp, -16);     // align stack as required by push_CPU_state and call
  780   push_CPU_state();   // keeps alignment at 16 bytes
  781 
  782   lea(c_rarg0, ExternalAddress((address) msg));
  783   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
  784 
  785   pop_CPU_state();
  786   mov(rsp, rbp);
  787   pop(rbp);
  788 }
  789 
  790 void MacroAssembler::print_state() {
  791   address rip = pc();
  792   pusha();            // get regs on stack
  793   push(rbp);
  794   movq(rbp, rsp);
  795   andq(rsp, -16);     // align stack as required by push_CPU_state and call
  796   push_CPU_state();   // keeps alignment at 16 bytes
  797 
  798   lea(c_rarg0, InternalAddress(rip));
  799   lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array
  800   call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1);
  801 
  802   pop_CPU_state();
  803   mov(rsp, rbp);
  804   pop(rbp);
  805   popa();
  806 }
  807 
  808 #ifndef PRODUCT
  809 extern "C" void findpc(intptr_t x);
  810 #endif
  811 
  812 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
  813   // In order to get locks to work, we need to fake a in_VM state
  814   if (ShowMessageBoxOnError) {
  815     JavaThread* thread = JavaThread::current();
  816     JavaThreadState saved_state = thread->thread_state();
  817     thread->set_thread_state(_thread_in_vm);
  818 #ifndef PRODUCT
  819     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
  820       ttyLocker ttyl;
  821       BytecodeCounter::print();
  822     }
  823 #endif
  824     // To see where a verify_oop failed, get $ebx+40/X for this frame.
  825     // XXX correct this offset for amd64
  826     // This is the value of eip which points to where verify_oop will return.
  827     if (os::message_box(msg, "Execution stopped, print registers?")) {
  828       print_state64(pc, regs);
  829       BREAKPOINT;
  830     }
  831   }
  832   fatal("DEBUG MESSAGE: %s", msg);
  833 }
  834 
  835 void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) {
  836   ttyLocker ttyl;
  837   DebuggingContext debugging{};
  838   tty->print_cr("rip = 0x%016lx", (intptr_t)pc);
  839 #ifndef PRODUCT
  840   tty->cr();
  841   findpc(pc);
  842   tty->cr();
  843 #endif
  844 #define PRINT_REG(rax, value) \
  845   { tty->print("%s = ", #rax); os::print_location(tty, value); }
  846   PRINT_REG(rax, regs[15]);
  847   PRINT_REG(rbx, regs[12]);
  848   PRINT_REG(rcx, regs[14]);
  849   PRINT_REG(rdx, regs[13]);
  850   PRINT_REG(rdi, regs[8]);
  851   PRINT_REG(rsi, regs[9]);
  852   PRINT_REG(rbp, regs[10]);
  853   // rsp is actually not stored by pusha(), compute the old rsp from regs (rsp after pusha): regs + 16 = old rsp
  854   PRINT_REG(rsp, (intptr_t)(&regs[16]));
  855   PRINT_REG(r8 , regs[7]);
  856   PRINT_REG(r9 , regs[6]);
  857   PRINT_REG(r10, regs[5]);
  858   PRINT_REG(r11, regs[4]);
  859   PRINT_REG(r12, regs[3]);
  860   PRINT_REG(r13, regs[2]);
  861   PRINT_REG(r14, regs[1]);
  862   PRINT_REG(r15, regs[0]);
  863 #undef PRINT_REG
  864   // Print some words near the top of the stack.
  865   int64_t* rsp = &regs[16];
  866   int64_t* dump_sp = rsp;
  867   for (int col1 = 0; col1 < 8; col1++) {
  868     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
  869     os::print_location(tty, *dump_sp++);
  870   }
  871   for (int row = 0; row < 25; row++) {
  872     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
  873     for (int col = 0; col < 4; col++) {
  874       tty->print(" 0x%016lx", (intptr_t)*dump_sp++);
  875     }
  876     tty->cr();
  877   }
  878   // Print some instructions around pc:
  879   Disassembler::decode((address)pc-64, (address)pc);
  880   tty->print_cr("--------");
  881   Disassembler::decode((address)pc, (address)pc+32);
  882 }
  883 
  884 // The java_calling_convention describes stack locations as ideal slots on
  885 // a frame with no abi restrictions. Since we must observe abi restrictions
  886 // (like the placement of the register window) the slots must be biased by
  887 // the following value.
  888 static int reg2offset_in(VMReg r) {
  889   // Account for saved rbp and return address
  890   // This should really be in_preserve_stack_slots
  891   return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size;
  892 }
  893 
  894 static int reg2offset_out(VMReg r) {
  895   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
  896 }
  897 
  898 // A long move
  899 void MacroAssembler::long_move(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) {
  900 
  901   // The calling conventions assures us that each VMregpair is either
  902   // all really one physical register or adjacent stack slots.
  903 
  904   if (src.is_single_phys_reg() ) {
  905     if (dst.is_single_phys_reg()) {
  906       if (dst.first() != src.first()) {
  907         mov(dst.first()->as_Register(), src.first()->as_Register());
  908       }
  909     } else {
  910       assert(dst.is_single_reg(), "not a stack pair: (%s, %s), (%s, %s)",
  911              src.first()->name(), src.second()->name(), dst.first()->name(), dst.second()->name());
  912       movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_Register());
  913     }
  914   } else if (dst.is_single_phys_reg()) {
  915     assert(src.is_single_reg(),  "not a stack pair");
  916     movq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias));
  917   } else {
  918     assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
  919     movq(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias));
  920     movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp);
  921   }
  922 }
  923 
  924 // A double move
  925 void MacroAssembler::double_move(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) {
  926 
  927   // The calling conventions assures us that each VMregpair is either
  928   // all really one physical register or adjacent stack slots.
  929 
  930   if (src.is_single_phys_reg() ) {
  931     if (dst.is_single_phys_reg()) {
  932       // In theory these overlap but the ordering is such that this is likely a nop
  933       if ( src.first() != dst.first()) {
  934         movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister());
  935       }
  936     } else {
  937       assert(dst.is_single_reg(), "not a stack pair");
  938       movdbl(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_XMMRegister());
  939     }
  940   } else if (dst.is_single_phys_reg()) {
  941     assert(src.is_single_reg(),  "not a stack pair");
  942     movdbl(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias));
  943   } else {
  944     assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
  945     movq(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias));
  946     movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp);
  947   }
  948 }
  949 
  950 
  951 // A float arg may have to do float reg int reg conversion
  952 void MacroAssembler::float_move(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) {
  953   assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
  954 
  955   // The calling conventions assures us that each VMregpair is either
  956   // all really one physical register or adjacent stack slots.
  957 
  958   if (src.first()->is_stack()) {
  959     if (dst.first()->is_stack()) {
  960       movl(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias));
  961       movptr(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp);
  962     } else {
  963       // stack to reg
  964       assert(dst.first()->is_XMMRegister(), "only expect xmm registers as parameters");
  965       movflt(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias));
  966     }
  967   } else if (dst.first()->is_stack()) {
  968     // reg to stack
  969     assert(src.first()->is_XMMRegister(), "only expect xmm registers as parameters");
  970     movflt(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_XMMRegister());
  971   } else {
  972     // reg to reg
  973     // In theory these overlap but the ordering is such that this is likely a nop
  974     if ( src.first() != dst.first()) {
  975       movdbl(dst.first()->as_XMMRegister(),  src.first()->as_XMMRegister());
  976     }
  977   }
  978 }
  979 
  980 // On 64 bit we will store integer like items to the stack as
  981 // 64 bits items (x86_32/64 abi) even though java would only store
  982 // 32bits for a parameter. On 32bit it will simply be 32 bits
  983 // So this routine will do 32->32 on 32bit and 32->64 on 64bit
  984 void MacroAssembler::move32_64(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) {
  985   if (src.first()->is_stack()) {
  986     if (dst.first()->is_stack()) {
  987       // stack to stack
  988       movslq(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias));
  989       movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp);
  990     } else {
  991       // stack to reg
  992       movslq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias));
  993     }
  994   } else if (dst.first()->is_stack()) {
  995     // reg to stack
  996     // Do we really have to sign extend???
  997     // __ movslq(src.first()->as_Register(), src.first()->as_Register());
  998     movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_Register());
  999   } else {
 1000     // Do we really have to sign extend???
 1001     // __ movslq(dst.first()->as_Register(), src.first()->as_Register());
 1002     if (dst.first() != src.first()) {
 1003       movq(dst.first()->as_Register(), src.first()->as_Register());
 1004     }
 1005   }
 1006 }
 1007 
 1008 void MacroAssembler::move_ptr(VMRegPair src, VMRegPair dst) {
 1009   if (src.first()->is_stack()) {
 1010     if (dst.first()->is_stack()) {
 1011       // stack to stack
 1012       movq(rax, Address(rbp, reg2offset_in(src.first())));
 1013       movq(Address(rsp, reg2offset_out(dst.first())), rax);
 1014     } else {
 1015       // stack to reg
 1016       movq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
 1017     }
 1018   } else if (dst.first()->is_stack()) {
 1019     // reg to stack
 1020     movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
 1021   } else {
 1022     if (dst.first() != src.first()) {
 1023       movq(dst.first()->as_Register(), src.first()->as_Register());
 1024     }
 1025   }
 1026 }
 1027 
 1028 // An oop arg. Must pass a handle not the oop itself
 1029 void MacroAssembler::object_move(OopMap* map,
 1030                         int oop_handle_offset,
 1031                         int framesize_in_slots,
 1032                         VMRegPair src,
 1033                         VMRegPair dst,
 1034                         bool is_receiver,
 1035                         int* receiver_offset) {
 1036 
 1037   // must pass a handle. First figure out the location we use as a handle
 1038 
 1039   Register rHandle = dst.first()->is_stack() ? rax : dst.first()->as_Register();
 1040 
 1041   // See if oop is null if it is we need no handle
 1042 
 1043   if (src.first()->is_stack()) {
 1044 
 1045     // Oop is already on the stack as an argument
 1046     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
 1047     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
 1048     if (is_receiver) {
 1049       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
 1050     }
 1051 
 1052     cmpptr(Address(rbp, reg2offset_in(src.first())), NULL_WORD);
 1053     lea(rHandle, Address(rbp, reg2offset_in(src.first())));
 1054     // conditionally move a null
 1055     cmovptr(Assembler::equal, rHandle, Address(rbp, reg2offset_in(src.first())));
 1056   } else {
 1057 
 1058     // Oop is in a register we must store it to the space we reserve
 1059     // on the stack for oop_handles and pass a handle if oop is non-null
 1060 
 1061     const Register rOop = src.first()->as_Register();
 1062     int oop_slot;
 1063     if (rOop == j_rarg0)
 1064       oop_slot = 0;
 1065     else if (rOop == j_rarg1)
 1066       oop_slot = 1;
 1067     else if (rOop == j_rarg2)
 1068       oop_slot = 2;
 1069     else if (rOop == j_rarg3)
 1070       oop_slot = 3;
 1071     else if (rOop == j_rarg4)
 1072       oop_slot = 4;
 1073     else {
 1074       assert(rOop == j_rarg5, "wrong register");
 1075       oop_slot = 5;
 1076     }
 1077 
 1078     oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset;
 1079     int offset = oop_slot*VMRegImpl::stack_slot_size;
 1080 
 1081     map->set_oop(VMRegImpl::stack2reg(oop_slot));
 1082     // Store oop in handle area, may be null
 1083     movptr(Address(rsp, offset), rOop);
 1084     if (is_receiver) {
 1085       *receiver_offset = offset;
 1086     }
 1087 
 1088     cmpptr(rOop, NULL_WORD);
 1089     lea(rHandle, Address(rsp, offset));
 1090     // conditionally move a null from the handle area where it was just stored
 1091     cmovptr(Assembler::equal, rHandle, Address(rsp, offset));
 1092   }
 1093 
 1094   // If arg is on the stack then place it otherwise it is already in correct reg.
 1095   if (dst.first()->is_stack()) {
 1096     movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
 1097   }
 1098 }
 1099 
 1100 #endif // _LP64
 1101 
 1102 // Now versions that are common to 32/64 bit
 1103 
 1104 void MacroAssembler::addptr(Register dst, int32_t imm32) {
 1105   LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
 1106 }
 1107 
 1108 void MacroAssembler::addptr(Register dst, Register src) {
 1109   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 1110 }
 1111 
 1112 void MacroAssembler::addptr(Address dst, Register src) {
 1113   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 1114 }
 1115 
 1116 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src, Register rscratch) {
 1117   assert(rscratch != noreg || always_reachable(src), "missing");
 1118 
 1119   if (reachable(src)) {
 1120     Assembler::addsd(dst, as_Address(src));
 1121   } else {
 1122     lea(rscratch, src);
 1123     Assembler::addsd(dst, Address(rscratch, 0));
 1124   }
 1125 }
 1126 
 1127 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src, Register rscratch) {
 1128   assert(rscratch != noreg || always_reachable(src), "missing");
 1129 
 1130   if (reachable(src)) {
 1131     addss(dst, as_Address(src));
 1132   } else {
 1133     lea(rscratch, src);
 1134     addss(dst, Address(rscratch, 0));
 1135   }
 1136 }
 1137 
 1138 void MacroAssembler::addpd(XMMRegister dst, AddressLiteral src, Register rscratch) {
 1139   assert(rscratch != noreg || always_reachable(src), "missing");
 1140 
 1141   if (reachable(src)) {
 1142     Assembler::addpd(dst, as_Address(src));
 1143   } else {
 1144     lea(rscratch, src);
 1145     Assembler::addpd(dst, Address(rscratch, 0));
 1146   }
 1147 }
 1148 
 1149 // See 8273459.  Function for ensuring 64-byte alignment, intended for stubs only.
 1150 // Stub code is generated once and never copied.
 1151 // NMethods can't use this because they get copied and we can't force alignment > 32 bytes.
 1152 void MacroAssembler::align64() {
 1153   align(64, (uint)(uintptr_t)pc());
 1154 }
 1155 
 1156 void MacroAssembler::align32() {
 1157   align(32, (uint)(uintptr_t)pc());
 1158 }
 1159 
 1160 void MacroAssembler::align(uint modulus) {
 1161   // 8273459: Ensure alignment is possible with current segment alignment
 1162   assert(modulus <= (uintx)CodeEntryAlignment, "Alignment must be <= CodeEntryAlignment");
 1163   align(modulus, offset());
 1164 }
 1165 
 1166 void MacroAssembler::align(uint modulus, uint target) {
 1167   if (target % modulus != 0) {
 1168     nop(modulus - (target % modulus));
 1169   }
 1170 }
 1171 
 1172 void MacroAssembler::push_f(XMMRegister r) {
 1173   subptr(rsp, wordSize);
 1174   movflt(Address(rsp, 0), r);
 1175 }
 1176 
 1177 void MacroAssembler::pop_f(XMMRegister r) {
 1178   movflt(r, Address(rsp, 0));
 1179   addptr(rsp, wordSize);
 1180 }
 1181 
 1182 void MacroAssembler::push_d(XMMRegister r) {
 1183   subptr(rsp, 2 * wordSize);
 1184   movdbl(Address(rsp, 0), r);
 1185 }
 1186 
 1187 void MacroAssembler::pop_d(XMMRegister r) {
 1188   movdbl(r, Address(rsp, 0));
 1189   addptr(rsp, 2 * Interpreter::stackElementSize);
 1190 }
 1191 
 1192 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src, Register rscratch) {
 1193   // Used in sign-masking with aligned address.
 1194   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
 1195   assert(rscratch != noreg || always_reachable(src), "missing");
 1196 
 1197   if (reachable(src)) {
 1198     Assembler::andpd(dst, as_Address(src));
 1199   } else {
 1200     lea(rscratch, src);
 1201     Assembler::andpd(dst, Address(rscratch, 0));
 1202   }
 1203 }
 1204 
 1205 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src, Register rscratch) {
 1206   // Used in sign-masking with aligned address.
 1207   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
 1208   assert(rscratch != noreg || always_reachable(src), "missing");
 1209 
 1210   if (reachable(src)) {
 1211     Assembler::andps(dst, as_Address(src));
 1212   } else {
 1213     lea(rscratch, src);
 1214     Assembler::andps(dst, Address(rscratch, 0));
 1215   }
 1216 }
 1217 
 1218 void MacroAssembler::andptr(Register dst, int32_t imm32) {
 1219   LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
 1220 }
 1221 
 1222 #ifdef _LP64
 1223 void MacroAssembler::andq(Register dst, AddressLiteral src, Register rscratch) {
 1224   assert(rscratch != noreg || always_reachable(src), "missing");
 1225 
 1226   if (reachable(src)) {
 1227     andq(dst, as_Address(src));
 1228   } else {
 1229     lea(rscratch, src);
 1230     andq(dst, Address(rscratch, 0));
 1231   }
 1232 }
 1233 #endif
 1234 
 1235 void MacroAssembler::atomic_incl(Address counter_addr) {
 1236   lock();
 1237   incrementl(counter_addr);
 1238 }
 1239 
 1240 void MacroAssembler::atomic_incl(AddressLiteral counter_addr, Register rscratch) {
 1241   assert(rscratch != noreg || always_reachable(counter_addr), "missing");
 1242 
 1243   if (reachable(counter_addr)) {
 1244     atomic_incl(as_Address(counter_addr));
 1245   } else {
 1246     lea(rscratch, counter_addr);
 1247     atomic_incl(Address(rscratch, 0));
 1248   }
 1249 }
 1250 
 1251 #ifdef _LP64
 1252 void MacroAssembler::atomic_incq(Address counter_addr) {
 1253   lock();
 1254   incrementq(counter_addr);
 1255 }
 1256 
 1257 void MacroAssembler::atomic_incq(AddressLiteral counter_addr, Register rscratch) {
 1258   assert(rscratch != noreg || always_reachable(counter_addr), "missing");
 1259 
 1260   if (reachable(counter_addr)) {
 1261     atomic_incq(as_Address(counter_addr));
 1262   } else {
 1263     lea(rscratch, counter_addr);
 1264     atomic_incq(Address(rscratch, 0));
 1265   }
 1266 }
 1267 #endif
 1268 
 1269 // Writes to stack successive pages until offset reached to check for
 1270 // stack overflow + shadow pages.  This clobbers tmp.
 1271 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
 1272   movptr(tmp, rsp);
 1273   // Bang stack for total size given plus shadow page size.
 1274   // Bang one page at a time because large size can bang beyond yellow and
 1275   // red zones.
 1276   Label loop;
 1277   bind(loop);
 1278   movl(Address(tmp, (-(int)os::vm_page_size())), size );
 1279   subptr(tmp, (int)os::vm_page_size());
 1280   subl(size, (int)os::vm_page_size());
 1281   jcc(Assembler::greater, loop);
 1282 
 1283   // Bang down shadow pages too.
 1284   // At this point, (tmp-0) is the last address touched, so don't
 1285   // touch it again.  (It was touched as (tmp-pagesize) but then tmp
 1286   // was post-decremented.)  Skip this address by starting at i=1, and
 1287   // touch a few more pages below.  N.B.  It is important to touch all
 1288   // the way down including all pages in the shadow zone.
 1289   for (int i = 1; i < ((int)StackOverflow::stack_shadow_zone_size() / (int)os::vm_page_size()); i++) {
 1290     // this could be any sized move but this is can be a debugging crumb
 1291     // so the bigger the better.
 1292     movptr(Address(tmp, (-i*(int)os::vm_page_size())), size );
 1293   }
 1294 }
 1295 
 1296 void MacroAssembler::reserved_stack_check() {
 1297   // testing if reserved zone needs to be enabled
 1298   Label no_reserved_zone_enabling;
 1299   Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread);
 1300   NOT_LP64(get_thread(rsi);)
 1301 
 1302   cmpptr(rsp, Address(thread, JavaThread::reserved_stack_activation_offset()));
 1303   jcc(Assembler::below, no_reserved_zone_enabling);
 1304 
 1305   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), thread);
 1306   jump(RuntimeAddress(SharedRuntime::throw_delayed_StackOverflowError_entry()));
 1307   should_not_reach_here();
 1308 
 1309   bind(no_reserved_zone_enabling);
 1310 }
 1311 
 1312 void MacroAssembler::c2bool(Register x) {
 1313   // implements x == 0 ? 0 : 1
 1314   // note: must only look at least-significant byte of x
 1315   //       since C-style booleans are stored in one byte
 1316   //       only! (was bug)
 1317   andl(x, 0xFF);
 1318   setb(Assembler::notZero, x);
 1319 }
 1320 
 1321 // Wouldn't need if AddressLiteral version had new name
 1322 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
 1323   Assembler::call(L, rtype);
 1324 }
 1325 
 1326 void MacroAssembler::call(Register entry) {
 1327   Assembler::call(entry);
 1328 }
 1329 
 1330 void MacroAssembler::call(AddressLiteral entry, Register rscratch) {
 1331   assert(rscratch != noreg || always_reachable(entry), "missing");
 1332 
 1333   if (reachable(entry)) {
 1334     Assembler::call_literal(entry.target(), entry.rspec());
 1335   } else {
 1336     lea(rscratch, entry);
 1337     Assembler::call(rscratch);
 1338   }
 1339 }
 1340 
 1341 void MacroAssembler::ic_call(address entry, jint method_index) {
 1342   RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index);
 1343 #ifdef _LP64
 1344   // Needs full 64-bit immediate for later patching.
 1345   mov64(rax, (int64_t)Universe::non_oop_word());
 1346 #else
 1347   movptr(rax, (intptr_t)Universe::non_oop_word());
 1348 #endif
 1349   call(AddressLiteral(entry, rh));
 1350 }
 1351 
 1352 int MacroAssembler::ic_check_size() {
 1353   return LP64_ONLY(14) NOT_LP64(12);
 1354 }
 1355 
 1356 int MacroAssembler::ic_check(int end_alignment) {
 1357   Register receiver = LP64_ONLY(j_rarg0) NOT_LP64(rcx);
 1358   Register data = rax;
 1359   Register temp = LP64_ONLY(rscratch1) NOT_LP64(rbx);
 1360 
 1361   // The UEP of a code blob ensures that the VEP is padded. However, the padding of the UEP is placed
 1362   // before the inline cache check, so we don't have to execute any nop instructions when dispatching
 1363   // through the UEP, yet we can ensure that the VEP is aligned appropriately. That's why we align
 1364   // before the inline cache check here, and not after
 1365   align(end_alignment, offset() + ic_check_size());
 1366 
 1367   int uep_offset = offset();
 1368 
 1369   if (UseCompressedClassPointers) {
 1370     movl(temp, Address(receiver, oopDesc::klass_offset_in_bytes()));
 1371     cmpl(temp, Address(data, CompiledICData::speculated_klass_offset()));
 1372   } else {
 1373     movptr(temp, Address(receiver, oopDesc::klass_offset_in_bytes()));
 1374     cmpptr(temp, Address(data, CompiledICData::speculated_klass_offset()));
 1375   }
 1376 
 1377   // if inline cache check fails, then jump to runtime routine
 1378   jump_cc(Assembler::notEqual, RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
 1379   assert((offset() % end_alignment) == 0, "Misaligned verified entry point");
 1380 
 1381   return uep_offset;
 1382 }
 1383 
 1384 void MacroAssembler::emit_static_call_stub() {
 1385   // Static stub relocation also tags the Method* in the code-stream.
 1386   mov_metadata(rbx, (Metadata*) nullptr);  // Method is zapped till fixup time.
 1387   // This is recognized as unresolved by relocs/nativeinst/ic code.
 1388   jump(RuntimeAddress(pc()));
 1389 }
 1390 
 1391 // Implementation of call_VM versions
 1392 
 1393 void MacroAssembler::call_VM(Register oop_result,
 1394                              address entry_point,
 1395                              bool check_exceptions) {
 1396   Label C, E;
 1397   call(C, relocInfo::none);
 1398   jmp(E);
 1399 
 1400   bind(C);
 1401   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
 1402   ret(0);
 1403 
 1404   bind(E);
 1405 }
 1406 
 1407 void MacroAssembler::call_VM(Register oop_result,
 1408                              address entry_point,
 1409                              Register arg_1,
 1410                              bool check_exceptions) {
 1411   Label C, E;
 1412   call(C, relocInfo::none);
 1413   jmp(E);
 1414 
 1415   bind(C);
 1416   pass_arg1(this, arg_1);
 1417   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
 1418   ret(0);
 1419 
 1420   bind(E);
 1421 }
 1422 
 1423 void MacroAssembler::call_VM(Register oop_result,
 1424                              address entry_point,
 1425                              Register arg_1,
 1426                              Register arg_2,
 1427                              bool check_exceptions) {
 1428   Label C, E;
 1429   call(C, relocInfo::none);
 1430   jmp(E);
 1431 
 1432   bind(C);
 1433 
 1434   LP64_ONLY(assert_different_registers(arg_1, c_rarg2));
 1435 
 1436   pass_arg2(this, arg_2);
 1437   pass_arg1(this, arg_1);
 1438   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
 1439   ret(0);
 1440 
 1441   bind(E);
 1442 }
 1443 
 1444 void MacroAssembler::call_VM(Register oop_result,
 1445                              address entry_point,
 1446                              Register arg_1,
 1447                              Register arg_2,
 1448                              Register arg_3,
 1449                              bool check_exceptions) {
 1450   Label C, E;
 1451   call(C, relocInfo::none);
 1452   jmp(E);
 1453 
 1454   bind(C);
 1455 
 1456   LP64_ONLY(assert_different_registers(arg_1, c_rarg2, c_rarg3));
 1457   LP64_ONLY(assert_different_registers(arg_2, c_rarg3));
 1458   pass_arg3(this, arg_3);
 1459   pass_arg2(this, arg_2);
 1460   pass_arg1(this, arg_1);
 1461   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
 1462   ret(0);
 1463 
 1464   bind(E);
 1465 }
 1466 
 1467 void MacroAssembler::call_VM(Register oop_result,
 1468                              Register last_java_sp,
 1469                              address entry_point,
 1470                              int number_of_arguments,
 1471                              bool check_exceptions) {
 1472   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
 1473   call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
 1474 }
 1475 
 1476 void MacroAssembler::call_VM(Register oop_result,
 1477                              Register last_java_sp,
 1478                              address entry_point,
 1479                              Register arg_1,
 1480                              bool check_exceptions) {
 1481   pass_arg1(this, arg_1);
 1482   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
 1483 }
 1484 
 1485 void MacroAssembler::call_VM(Register oop_result,
 1486                              Register last_java_sp,
 1487                              address entry_point,
 1488                              Register arg_1,
 1489                              Register arg_2,
 1490                              bool check_exceptions) {
 1491 
 1492   LP64_ONLY(assert_different_registers(arg_1, c_rarg2));
 1493   pass_arg2(this, arg_2);
 1494   pass_arg1(this, arg_1);
 1495   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
 1496 }
 1497 
 1498 void MacroAssembler::call_VM(Register oop_result,
 1499                              Register last_java_sp,
 1500                              address entry_point,
 1501                              Register arg_1,
 1502                              Register arg_2,
 1503                              Register arg_3,
 1504                              bool check_exceptions) {
 1505   LP64_ONLY(assert_different_registers(arg_1, c_rarg2, c_rarg3));
 1506   LP64_ONLY(assert_different_registers(arg_2, c_rarg3));
 1507   pass_arg3(this, arg_3);
 1508   pass_arg2(this, arg_2);
 1509   pass_arg1(this, arg_1);
 1510   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
 1511 }
 1512 
 1513 void MacroAssembler::super_call_VM(Register oop_result,
 1514                                    Register last_java_sp,
 1515                                    address entry_point,
 1516                                    int number_of_arguments,
 1517                                    bool check_exceptions) {
 1518   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
 1519   MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
 1520 }
 1521 
 1522 void MacroAssembler::super_call_VM(Register oop_result,
 1523                                    Register last_java_sp,
 1524                                    address entry_point,
 1525                                    Register arg_1,
 1526                                    bool check_exceptions) {
 1527   pass_arg1(this, arg_1);
 1528   super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
 1529 }
 1530 
 1531 void MacroAssembler::super_call_VM(Register oop_result,
 1532                                    Register last_java_sp,
 1533                                    address entry_point,
 1534                                    Register arg_1,
 1535                                    Register arg_2,
 1536                                    bool check_exceptions) {
 1537 
 1538   LP64_ONLY(assert_different_registers(arg_1, c_rarg2));
 1539   pass_arg2(this, arg_2);
 1540   pass_arg1(this, arg_1);
 1541   super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
 1542 }
 1543 
 1544 void MacroAssembler::super_call_VM(Register oop_result,
 1545                                    Register last_java_sp,
 1546                                    address entry_point,
 1547                                    Register arg_1,
 1548                                    Register arg_2,
 1549                                    Register arg_3,
 1550                                    bool check_exceptions) {
 1551   LP64_ONLY(assert_different_registers(arg_1, c_rarg2, c_rarg3));
 1552   LP64_ONLY(assert_different_registers(arg_2, c_rarg3));
 1553   pass_arg3(this, arg_3);
 1554   pass_arg2(this, arg_2);
 1555   pass_arg1(this, arg_1);
 1556   super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
 1557 }
 1558 
 1559 void MacroAssembler::call_VM_base(Register oop_result,
 1560                                   Register java_thread,
 1561                                   Register last_java_sp,
 1562                                   address  entry_point,
 1563                                   int      number_of_arguments,
 1564                                   bool     check_exceptions) {
 1565   // determine java_thread register
 1566   if (!java_thread->is_valid()) {
 1567 #ifdef _LP64
 1568     java_thread = r15_thread;
 1569 #else
 1570     java_thread = rdi;
 1571     get_thread(java_thread);
 1572 #endif // LP64
 1573   }
 1574   // determine last_java_sp register
 1575   if (!last_java_sp->is_valid()) {
 1576     last_java_sp = rsp;
 1577   }
 1578   // debugging support
 1579   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
 1580   LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
 1581 #ifdef ASSERT
 1582   // TraceBytecodes does not use r12 but saves it over the call, so don't verify
 1583   // r12 is the heapbase.
 1584   LP64_ONLY(if (UseCompressedOops && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");)
 1585 #endif // ASSERT
 1586 
 1587   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
 1588   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
 1589 
 1590   // push java thread (becomes first argument of C function)
 1591 
 1592   NOT_LP64(push(java_thread); number_of_arguments++);
 1593   LP64_ONLY(mov(c_rarg0, r15_thread));
 1594 
 1595   // set last Java frame before call
 1596   assert(last_java_sp != rbp, "can't use ebp/rbp");
 1597 
 1598   // Only interpreter should have to set fp
 1599   set_last_Java_frame(java_thread, last_java_sp, rbp, nullptr, rscratch1);
 1600 
 1601   // do the call, remove parameters
 1602   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
 1603 
 1604   // restore the thread (cannot use the pushed argument since arguments
 1605   // may be overwritten by C code generated by an optimizing compiler);
 1606   // however can use the register value directly if it is callee saved.
 1607   if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
 1608     // rdi & rsi (also r15) are callee saved -> nothing to do
 1609 #ifdef ASSERT
 1610     guarantee(java_thread != rax, "change this code");
 1611     push(rax);
 1612     { Label L;
 1613       get_thread(rax);
 1614       cmpptr(java_thread, rax);
 1615       jcc(Assembler::equal, L);
 1616       STOP("MacroAssembler::call_VM_base: rdi not callee saved?");
 1617       bind(L);
 1618     }
 1619     pop(rax);
 1620 #endif
 1621   } else {
 1622     get_thread(java_thread);
 1623   }
 1624   // reset last Java frame
 1625   // Only interpreter should have to clear fp
 1626   reset_last_Java_frame(java_thread, true);
 1627 
 1628    // C++ interp handles this in the interpreter
 1629   check_and_handle_popframe(java_thread);
 1630   check_and_handle_earlyret(java_thread);
 1631 
 1632   if (check_exceptions) {
 1633     // check for pending exceptions (java_thread is set upon return)
 1634     cmpptr(Address(java_thread, Thread::pending_exception_offset()), NULL_WORD);
 1635 #ifndef _LP64
 1636     jump_cc(Assembler::notEqual,
 1637             RuntimeAddress(StubRoutines::forward_exception_entry()));
 1638 #else
 1639     // This used to conditionally jump to forward_exception however it is
 1640     // possible if we relocate that the branch will not reach. So we must jump
 1641     // around so we can always reach
 1642 
 1643     Label ok;
 1644     jcc(Assembler::equal, ok);
 1645     jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
 1646     bind(ok);
 1647 #endif // LP64
 1648   }
 1649 
 1650   // get oop result if there is one and reset the value in the thread
 1651   if (oop_result->is_valid()) {
 1652     get_vm_result(oop_result, java_thread);
 1653   }
 1654 }
 1655 
 1656 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
 1657 
 1658   // Calculate the value for last_Java_sp
 1659   // somewhat subtle. call_VM does an intermediate call
 1660   // which places a return address on the stack just under the
 1661   // stack pointer as the user finished with it. This allows
 1662   // use to retrieve last_Java_pc from last_Java_sp[-1].
 1663   // On 32bit we then have to push additional args on the stack to accomplish
 1664   // the actual requested call. On 64bit call_VM only can use register args
 1665   // so the only extra space is the return address that call_VM created.
 1666   // This hopefully explains the calculations here.
 1667 
 1668 #ifdef _LP64
 1669   // We've pushed one address, correct last_Java_sp
 1670   lea(rax, Address(rsp, wordSize));
 1671 #else
 1672   lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
 1673 #endif // LP64
 1674 
 1675   call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
 1676 
 1677 }
 1678 
 1679 // Use this method when MacroAssembler version of call_VM_leaf_base() should be called from Interpreter.
 1680 void MacroAssembler::call_VM_leaf0(address entry_point) {
 1681   MacroAssembler::call_VM_leaf_base(entry_point, 0);
 1682 }
 1683 
 1684 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
 1685   call_VM_leaf_base(entry_point, number_of_arguments);
 1686 }
 1687 
 1688 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
 1689   pass_arg0(this, arg_0);
 1690   call_VM_leaf(entry_point, 1);
 1691 }
 1692 
 1693 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
 1694 
 1695   LP64_ONLY(assert_different_registers(arg_0, c_rarg1));
 1696   pass_arg1(this, arg_1);
 1697   pass_arg0(this, arg_0);
 1698   call_VM_leaf(entry_point, 2);
 1699 }
 1700 
 1701 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
 1702   LP64_ONLY(assert_different_registers(arg_0, c_rarg1, c_rarg2));
 1703   LP64_ONLY(assert_different_registers(arg_1, c_rarg2));
 1704   pass_arg2(this, arg_2);
 1705   pass_arg1(this, arg_1);
 1706   pass_arg0(this, arg_0);
 1707   call_VM_leaf(entry_point, 3);
 1708 }
 1709 
 1710 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
 1711   LP64_ONLY(assert_different_registers(arg_0, c_rarg1, c_rarg2, c_rarg3));
 1712   LP64_ONLY(assert_different_registers(arg_1, c_rarg2, c_rarg3));
 1713   LP64_ONLY(assert_different_registers(arg_2, c_rarg3));
 1714   pass_arg3(this, arg_3);
 1715   pass_arg2(this, arg_2);
 1716   pass_arg1(this, arg_1);
 1717   pass_arg0(this, arg_0);
 1718   call_VM_leaf(entry_point, 3);
 1719 }
 1720 




 1721 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
 1722   pass_arg0(this, arg_0);
 1723   MacroAssembler::call_VM_leaf_base(entry_point, 1);
 1724 }
 1725 
 1726 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
 1727   LP64_ONLY(assert_different_registers(arg_0, c_rarg1));
 1728   pass_arg1(this, arg_1);
 1729   pass_arg0(this, arg_0);
 1730   MacroAssembler::call_VM_leaf_base(entry_point, 2);
 1731 }
 1732 
 1733 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
 1734   LP64_ONLY(assert_different_registers(arg_0, c_rarg1, c_rarg2));
 1735   LP64_ONLY(assert_different_registers(arg_1, c_rarg2));
 1736   pass_arg2(this, arg_2);
 1737   pass_arg1(this, arg_1);
 1738   pass_arg0(this, arg_0);
 1739   MacroAssembler::call_VM_leaf_base(entry_point, 3);
 1740 }
 1741 
 1742 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
 1743   LP64_ONLY(assert_different_registers(arg_0, c_rarg1, c_rarg2, c_rarg3));
 1744   LP64_ONLY(assert_different_registers(arg_1, c_rarg2, c_rarg3));
 1745   LP64_ONLY(assert_different_registers(arg_2, c_rarg3));
 1746   pass_arg3(this, arg_3);
 1747   pass_arg2(this, arg_2);
 1748   pass_arg1(this, arg_1);
 1749   pass_arg0(this, arg_0);
 1750   MacroAssembler::call_VM_leaf_base(entry_point, 4);
 1751 }
 1752 
 1753 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) {
 1754   movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
 1755   movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
 1756   verify_oop_msg(oop_result, "broken oop in call_VM_base");
 1757 }
 1758 
 1759 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) {
 1760   movptr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset()));
 1761   movptr(Address(java_thread, JavaThread::vm_result_2_offset()), NULL_WORD);
 1762 }
 1763 
 1764 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
 1765 }
 1766 
 1767 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
 1768 }
 1769 
 1770 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm, Register rscratch) {
 1771   assert(rscratch != noreg || always_reachable(src1), "missing");
 1772 
 1773   if (reachable(src1)) {
 1774     cmpl(as_Address(src1), imm);
 1775   } else {
 1776     lea(rscratch, src1);
 1777     cmpl(Address(rscratch, 0), imm);
 1778   }
 1779 }
 1780 
 1781 void MacroAssembler::cmp32(Register src1, AddressLiteral src2, Register rscratch) {
 1782   assert(!src2.is_lval(), "use cmpptr");
 1783   assert(rscratch != noreg || always_reachable(src2), "missing");
 1784 
 1785   if (reachable(src2)) {
 1786     cmpl(src1, as_Address(src2));
 1787   } else {
 1788     lea(rscratch, src2);
 1789     cmpl(src1, Address(rscratch, 0));
 1790   }
 1791 }
 1792 
 1793 void MacroAssembler::cmp32(Register src1, int32_t imm) {
 1794   Assembler::cmpl(src1, imm);
 1795 }
 1796 
 1797 void MacroAssembler::cmp32(Register src1, Address src2) {
 1798   Assembler::cmpl(src1, src2);
 1799 }
 1800 
 1801 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
 1802   ucomisd(opr1, opr2);
 1803 
 1804   Label L;
 1805   if (unordered_is_less) {
 1806     movl(dst, -1);
 1807     jcc(Assembler::parity, L);
 1808     jcc(Assembler::below , L);
 1809     movl(dst, 0);
 1810     jcc(Assembler::equal , L);
 1811     increment(dst);
 1812   } else { // unordered is greater
 1813     movl(dst, 1);
 1814     jcc(Assembler::parity, L);
 1815     jcc(Assembler::above , L);
 1816     movl(dst, 0);
 1817     jcc(Assembler::equal , L);
 1818     decrementl(dst);
 1819   }
 1820   bind(L);
 1821 }
 1822 
 1823 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
 1824   ucomiss(opr1, opr2);
 1825 
 1826   Label L;
 1827   if (unordered_is_less) {
 1828     movl(dst, -1);
 1829     jcc(Assembler::parity, L);
 1830     jcc(Assembler::below , L);
 1831     movl(dst, 0);
 1832     jcc(Assembler::equal , L);
 1833     increment(dst);
 1834   } else { // unordered is greater
 1835     movl(dst, 1);
 1836     jcc(Assembler::parity, L);
 1837     jcc(Assembler::above , L);
 1838     movl(dst, 0);
 1839     jcc(Assembler::equal , L);
 1840     decrementl(dst);
 1841   }
 1842   bind(L);
 1843 }
 1844 
 1845 
 1846 void MacroAssembler::cmp8(AddressLiteral src1, int imm, Register rscratch) {
 1847   assert(rscratch != noreg || always_reachable(src1), "missing");
 1848 
 1849   if (reachable(src1)) {
 1850     cmpb(as_Address(src1), imm);
 1851   } else {
 1852     lea(rscratch, src1);
 1853     cmpb(Address(rscratch, 0), imm);
 1854   }
 1855 }
 1856 
 1857 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2, Register rscratch) {
 1858 #ifdef _LP64
 1859   assert(rscratch != noreg || always_reachable(src2), "missing");
 1860 
 1861   if (src2.is_lval()) {
 1862     movptr(rscratch, src2);
 1863     Assembler::cmpq(src1, rscratch);
 1864   } else if (reachable(src2)) {
 1865     cmpq(src1, as_Address(src2));
 1866   } else {
 1867     lea(rscratch, src2);
 1868     Assembler::cmpq(src1, Address(rscratch, 0));
 1869   }
 1870 #else
 1871   assert(rscratch == noreg, "not needed");
 1872   if (src2.is_lval()) {
 1873     cmp_literal32(src1, (int32_t)src2.target(), src2.rspec());
 1874   } else {
 1875     cmpl(src1, as_Address(src2));
 1876   }
 1877 #endif // _LP64
 1878 }
 1879 
 1880 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2, Register rscratch) {
 1881   assert(src2.is_lval(), "not a mem-mem compare");
 1882 #ifdef _LP64
 1883   // moves src2's literal address
 1884   movptr(rscratch, src2);
 1885   Assembler::cmpq(src1, rscratch);
 1886 #else
 1887   assert(rscratch == noreg, "not needed");
 1888   cmp_literal32(src1, (int32_t)src2.target(), src2.rspec());
 1889 #endif // _LP64
 1890 }
 1891 
 1892 void MacroAssembler::cmpoop(Register src1, Register src2) {
 1893   cmpptr(src1, src2);
 1894 }
 1895 
 1896 void MacroAssembler::cmpoop(Register src1, Address src2) {
 1897   cmpptr(src1, src2);
 1898 }
 1899 
 1900 #ifdef _LP64
 1901 void MacroAssembler::cmpoop(Register src1, jobject src2, Register rscratch) {
 1902   movoop(rscratch, src2);
 1903   cmpptr(src1, rscratch);
 1904 }
 1905 #endif
 1906 
 1907 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr, Register rscratch) {
 1908   assert(rscratch != noreg || always_reachable(adr), "missing");
 1909 
 1910   if (reachable(adr)) {
 1911     lock();
 1912     cmpxchgptr(reg, as_Address(adr));
 1913   } else {
 1914     lea(rscratch, adr);
 1915     lock();
 1916     cmpxchgptr(reg, Address(rscratch, 0));
 1917   }
 1918 }
 1919 
 1920 void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
 1921   LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
 1922 }
 1923 
 1924 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src, Register rscratch) {
 1925   assert(rscratch != noreg || always_reachable(src), "missing");
 1926 
 1927   if (reachable(src)) {
 1928     Assembler::comisd(dst, as_Address(src));
 1929   } else {
 1930     lea(rscratch, src);
 1931     Assembler::comisd(dst, Address(rscratch, 0));
 1932   }
 1933 }
 1934 
 1935 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src, Register rscratch) {
 1936   assert(rscratch != noreg || always_reachable(src), "missing");
 1937 
 1938   if (reachable(src)) {
 1939     Assembler::comiss(dst, as_Address(src));
 1940   } else {
 1941     lea(rscratch, src);
 1942     Assembler::comiss(dst, Address(rscratch, 0));
 1943   }
 1944 }
 1945 
 1946 
 1947 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr, Register rscratch) {
 1948   assert(rscratch != noreg || always_reachable(counter_addr), "missing");
 1949 
 1950   Condition negated_cond = negate_condition(cond);
 1951   Label L;
 1952   jcc(negated_cond, L);
 1953   pushf(); // Preserve flags
 1954   atomic_incl(counter_addr, rscratch);
 1955   popf();
 1956   bind(L);
 1957 }
 1958 
 1959 int MacroAssembler::corrected_idivl(Register reg) {
 1960   // Full implementation of Java idiv and irem; checks for
 1961   // special case as described in JVM spec., p.243 & p.271.
 1962   // The function returns the (pc) offset of the idivl
 1963   // instruction - may be needed for implicit exceptions.
 1964   //
 1965   //         normal case                           special case
 1966   //
 1967   // input : rax,: dividend                         min_int
 1968   //         reg: divisor   (may not be rax,/rdx)   -1
 1969   //
 1970   // output: rax,: quotient  (= rax, idiv reg)       min_int
 1971   //         rdx: remainder (= rax, irem reg)       0
 1972   assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
 1973   const int min_int = 0x80000000;
 1974   Label normal_case, special_case;
 1975 
 1976   // check for special case
 1977   cmpl(rax, min_int);
 1978   jcc(Assembler::notEqual, normal_case);
 1979   xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
 1980   cmpl(reg, -1);
 1981   jcc(Assembler::equal, special_case);
 1982 
 1983   // handle normal case
 1984   bind(normal_case);
 1985   cdql();
 1986   int idivl_offset = offset();
 1987   idivl(reg);
 1988 
 1989   // normal and special case exit
 1990   bind(special_case);
 1991 
 1992   return idivl_offset;
 1993 }
 1994 
 1995 
 1996 
 1997 void MacroAssembler::decrementl(Register reg, int value) {
 1998   if (value == min_jint) {subl(reg, value) ; return; }
 1999   if (value <  0) { incrementl(reg, -value); return; }
 2000   if (value == 0) {                        ; return; }
 2001   if (value == 1 && UseIncDec) { decl(reg) ; return; }
 2002   /* else */      { subl(reg, value)       ; return; }
 2003 }
 2004 
 2005 void MacroAssembler::decrementl(Address dst, int value) {
 2006   if (value == min_jint) {subl(dst, value) ; return; }
 2007   if (value <  0) { incrementl(dst, -value); return; }
 2008   if (value == 0) {                        ; return; }
 2009   if (value == 1 && UseIncDec) { decl(dst) ; return; }
 2010   /* else */      { subl(dst, value)       ; return; }
 2011 }
 2012 
 2013 void MacroAssembler::division_with_shift (Register reg, int shift_value) {
 2014   assert(shift_value > 0, "illegal shift value");
 2015   Label _is_positive;
 2016   testl (reg, reg);
 2017   jcc (Assembler::positive, _is_positive);
 2018   int offset = (1 << shift_value) - 1 ;
 2019 
 2020   if (offset == 1) {
 2021     incrementl(reg);
 2022   } else {
 2023     addl(reg, offset);
 2024   }
 2025 
 2026   bind (_is_positive);
 2027   sarl(reg, shift_value);
 2028 }
 2029 
 2030 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2031   assert(rscratch != noreg || always_reachable(src), "missing");
 2032 
 2033   if (reachable(src)) {
 2034     Assembler::divsd(dst, as_Address(src));
 2035   } else {
 2036     lea(rscratch, src);
 2037     Assembler::divsd(dst, Address(rscratch, 0));
 2038   }
 2039 }
 2040 
 2041 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2042   assert(rscratch != noreg || always_reachable(src), "missing");
 2043 
 2044   if (reachable(src)) {
 2045     Assembler::divss(dst, as_Address(src));
 2046   } else {
 2047     lea(rscratch, src);
 2048     Assembler::divss(dst, Address(rscratch, 0));
 2049   }
 2050 }
 2051 
 2052 void MacroAssembler::enter() {
 2053   push(rbp);
 2054   mov(rbp, rsp);
 2055 }
 2056 
 2057 void MacroAssembler::post_call_nop() {
 2058   if (!Continuations::enabled()) {
 2059     return;
 2060   }
 2061   InstructionMark im(this);
 2062   relocate(post_call_nop_Relocation::spec());
 2063   InlineSkippedInstructionsCounter skipCounter(this);
 2064   emit_int8((uint8_t)0x0f);
 2065   emit_int8((uint8_t)0x1f);
 2066   emit_int8((uint8_t)0x84);
 2067   emit_int8((uint8_t)0x00);
 2068   emit_int32(0x00);
 2069 }
 2070 
 2071 // A 5 byte nop that is safe for patching (see patch_verified_entry)
 2072 void MacroAssembler::fat_nop() {
 2073   if (UseAddressNop) {
 2074     addr_nop_5();
 2075   } else {
 2076     emit_int8((uint8_t)0x26); // es:
 2077     emit_int8((uint8_t)0x2e); // cs:
 2078     emit_int8((uint8_t)0x64); // fs:
 2079     emit_int8((uint8_t)0x65); // gs:
 2080     emit_int8((uint8_t)0x90);
 2081   }
 2082 }
 2083 
 2084 #ifndef _LP64
 2085 void MacroAssembler::fcmp(Register tmp) {
 2086   fcmp(tmp, 1, true, true);
 2087 }
 2088 
 2089 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
 2090   assert(!pop_right || pop_left, "usage error");
 2091   if (VM_Version::supports_cmov()) {
 2092     assert(tmp == noreg, "unneeded temp");
 2093     if (pop_left) {
 2094       fucomip(index);
 2095     } else {
 2096       fucomi(index);
 2097     }
 2098     if (pop_right) {
 2099       fpop();
 2100     }
 2101   } else {
 2102     assert(tmp != noreg, "need temp");
 2103     if (pop_left) {
 2104       if (pop_right) {
 2105         fcompp();
 2106       } else {
 2107         fcomp(index);
 2108       }
 2109     } else {
 2110       fcom(index);
 2111     }
 2112     // convert FPU condition into eflags condition via rax,
 2113     save_rax(tmp);
 2114     fwait(); fnstsw_ax();
 2115     sahf();
 2116     restore_rax(tmp);
 2117   }
 2118   // condition codes set as follows:
 2119   //
 2120   // CF (corresponds to C0) if x < y
 2121   // PF (corresponds to C2) if unordered
 2122   // ZF (corresponds to C3) if x = y
 2123 }
 2124 
 2125 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
 2126   fcmp2int(dst, unordered_is_less, 1, true, true);
 2127 }
 2128 
 2129 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
 2130   fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
 2131   Label L;
 2132   if (unordered_is_less) {
 2133     movl(dst, -1);
 2134     jcc(Assembler::parity, L);
 2135     jcc(Assembler::below , L);
 2136     movl(dst, 0);
 2137     jcc(Assembler::equal , L);
 2138     increment(dst);
 2139   } else { // unordered is greater
 2140     movl(dst, 1);
 2141     jcc(Assembler::parity, L);
 2142     jcc(Assembler::above , L);
 2143     movl(dst, 0);
 2144     jcc(Assembler::equal , L);
 2145     decrementl(dst);
 2146   }
 2147   bind(L);
 2148 }
 2149 
 2150 void MacroAssembler::fld_d(AddressLiteral src) {
 2151   fld_d(as_Address(src));
 2152 }
 2153 
 2154 void MacroAssembler::fld_s(AddressLiteral src) {
 2155   fld_s(as_Address(src));
 2156 }
 2157 
 2158 void MacroAssembler::fldcw(AddressLiteral src) {
 2159   fldcw(as_Address(src));
 2160 }
 2161 
 2162 void MacroAssembler::fpop() {
 2163   ffree();
 2164   fincstp();
 2165 }
 2166 
 2167 void MacroAssembler::fremr(Register tmp) {
 2168   save_rax(tmp);
 2169   { Label L;
 2170     bind(L);
 2171     fprem();
 2172     fwait(); fnstsw_ax();
 2173     sahf();
 2174     jcc(Assembler::parity, L);
 2175   }
 2176   restore_rax(tmp);
 2177   // Result is in ST0.
 2178   // Note: fxch & fpop to get rid of ST1
 2179   // (otherwise FPU stack could overflow eventually)
 2180   fxch(1);
 2181   fpop();
 2182 }
 2183 
 2184 void MacroAssembler::empty_FPU_stack() {
 2185   if (VM_Version::supports_mmx()) {
 2186     emms();
 2187   } else {
 2188     for (int i = 8; i-- > 0; ) ffree(i);
 2189   }
 2190 }
 2191 #endif // !LP64
 2192 
 2193 void MacroAssembler::mulpd(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2194   assert(rscratch != noreg || always_reachable(src), "missing");
 2195   if (reachable(src)) {
 2196     Assembler::mulpd(dst, as_Address(src));
 2197   } else {
 2198     lea(rscratch, src);
 2199     Assembler::mulpd(dst, Address(rscratch, 0));
 2200   }
 2201 }
 2202 
 2203 void MacroAssembler::load_float(Address src) {
 2204 #ifdef _LP64
 2205   movflt(xmm0, src);
 2206 #else
 2207   if (UseSSE >= 1) {
 2208     movflt(xmm0, src);
 2209   } else {
 2210     fld_s(src);
 2211   }
 2212 #endif // LP64
 2213 }
 2214 
 2215 void MacroAssembler::store_float(Address dst) {
 2216 #ifdef _LP64
 2217   movflt(dst, xmm0);
 2218 #else
 2219   if (UseSSE >= 1) {
 2220     movflt(dst, xmm0);
 2221   } else {
 2222     fstp_s(dst);
 2223   }
 2224 #endif // LP64
 2225 }
 2226 
 2227 void MacroAssembler::load_double(Address src) {
 2228 #ifdef _LP64
 2229   movdbl(xmm0, src);
 2230 #else
 2231   if (UseSSE >= 2) {
 2232     movdbl(xmm0, src);
 2233   } else {
 2234     fld_d(src);
 2235   }
 2236 #endif // LP64
 2237 }
 2238 
 2239 void MacroAssembler::store_double(Address dst) {
 2240 #ifdef _LP64
 2241   movdbl(dst, xmm0);
 2242 #else
 2243   if (UseSSE >= 2) {
 2244     movdbl(dst, xmm0);
 2245   } else {
 2246     fstp_d(dst);
 2247   }
 2248 #endif // LP64
 2249 }
 2250 
 2251 // dst = c = a * b + c
 2252 void MacroAssembler::fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) {
 2253   Assembler::vfmadd231sd(c, a, b);
 2254   if (dst != c) {
 2255     movdbl(dst, c);
 2256   }
 2257 }
 2258 
 2259 // dst = c = a * b + c
 2260 void MacroAssembler::fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) {
 2261   Assembler::vfmadd231ss(c, a, b);
 2262   if (dst != c) {
 2263     movflt(dst, c);
 2264   }
 2265 }
 2266 
 2267 // dst = c = a * b + c
 2268 void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) {
 2269   Assembler::vfmadd231pd(c, a, b, vector_len);
 2270   if (dst != c) {
 2271     vmovdqu(dst, c);
 2272   }
 2273 }
 2274 
 2275 // dst = c = a * b + c
 2276 void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) {
 2277   Assembler::vfmadd231ps(c, a, b, vector_len);
 2278   if (dst != c) {
 2279     vmovdqu(dst, c);
 2280   }
 2281 }
 2282 
 2283 // dst = c = a * b + c
 2284 void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) {
 2285   Assembler::vfmadd231pd(c, a, b, vector_len);
 2286   if (dst != c) {
 2287     vmovdqu(dst, c);
 2288   }
 2289 }
 2290 
 2291 // dst = c = a * b + c
 2292 void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) {
 2293   Assembler::vfmadd231ps(c, a, b, vector_len);
 2294   if (dst != c) {
 2295     vmovdqu(dst, c);
 2296   }
 2297 }
 2298 
 2299 void MacroAssembler::incrementl(AddressLiteral dst, Register rscratch) {
 2300   assert(rscratch != noreg || always_reachable(dst), "missing");
 2301 
 2302   if (reachable(dst)) {
 2303     incrementl(as_Address(dst));
 2304   } else {
 2305     lea(rscratch, dst);
 2306     incrementl(Address(rscratch, 0));
 2307   }
 2308 }
 2309 
 2310 void MacroAssembler::incrementl(ArrayAddress dst, Register rscratch) {
 2311   incrementl(as_Address(dst, rscratch));
 2312 }
 2313 
 2314 void MacroAssembler::incrementl(Register reg, int value) {
 2315   if (value == min_jint) {addl(reg, value) ; return; }
 2316   if (value <  0) { decrementl(reg, -value); return; }
 2317   if (value == 0) {                        ; return; }
 2318   if (value == 1 && UseIncDec) { incl(reg) ; return; }
 2319   /* else */      { addl(reg, value)       ; return; }
 2320 }
 2321 
 2322 void MacroAssembler::incrementl(Address dst, int value) {
 2323   if (value == min_jint) {addl(dst, value) ; return; }
 2324   if (value <  0) { decrementl(dst, -value); return; }
 2325   if (value == 0) {                        ; return; }
 2326   if (value == 1 && UseIncDec) { incl(dst) ; return; }
 2327   /* else */      { addl(dst, value)       ; return; }
 2328 }
 2329 
 2330 void MacroAssembler::jump(AddressLiteral dst, Register rscratch) {
 2331   assert(rscratch != noreg || always_reachable(dst), "missing");
 2332   assert(!dst.rspec().reloc()->is_data(), "should not use ExternalAddress for jump");
 2333   if (reachable(dst)) {
 2334     jmp_literal(dst.target(), dst.rspec());
 2335   } else {
 2336     lea(rscratch, dst);
 2337     jmp(rscratch);
 2338   }
 2339 }
 2340 
 2341 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst, Register rscratch) {
 2342   assert(rscratch != noreg || always_reachable(dst), "missing");
 2343   assert(!dst.rspec().reloc()->is_data(), "should not use ExternalAddress for jump_cc");
 2344   if (reachable(dst)) {
 2345     InstructionMark im(this);
 2346     relocate(dst.reloc());
 2347     const int short_size = 2;
 2348     const int long_size = 6;
 2349     int offs = (intptr_t)dst.target() - ((intptr_t)pc());
 2350     if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
 2351       // 0111 tttn #8-bit disp
 2352       emit_int8(0x70 | cc);
 2353       emit_int8((offs - short_size) & 0xFF);
 2354     } else {
 2355       // 0000 1111 1000 tttn #32-bit disp
 2356       emit_int8(0x0F);
 2357       emit_int8((unsigned char)(0x80 | cc));
 2358       emit_int32(offs - long_size);
 2359     }
 2360   } else {
 2361 #ifdef ASSERT
 2362     warning("reversing conditional branch");
 2363 #endif /* ASSERT */
 2364     Label skip;
 2365     jccb(reverse[cc], skip);
 2366     lea(rscratch, dst);
 2367     Assembler::jmp(rscratch);
 2368     bind(skip);
 2369   }
 2370 }
 2371 
 2372 void MacroAssembler::ldmxcsr(AddressLiteral src, Register rscratch) {
 2373   assert(rscratch != noreg || always_reachable(src), "missing");
 2374 
 2375   if (reachable(src)) {
 2376     Assembler::ldmxcsr(as_Address(src));
 2377   } else {
 2378     lea(rscratch, src);
 2379     Assembler::ldmxcsr(Address(rscratch, 0));
 2380   }
 2381 }
 2382 
 2383 int MacroAssembler::load_signed_byte(Register dst, Address src) {
 2384   int off;
 2385   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
 2386     off = offset();
 2387     movsbl(dst, src); // movsxb
 2388   } else {
 2389     off = load_unsigned_byte(dst, src);
 2390     shll(dst, 24);
 2391     sarl(dst, 24);
 2392   }
 2393   return off;
 2394 }
 2395 
 2396 // Note: load_signed_short used to be called load_signed_word.
 2397 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler
 2398 // manual, which means 16 bits, that usage is found nowhere in HotSpot code.
 2399 // The term "word" in HotSpot means a 32- or 64-bit machine word.
 2400 int MacroAssembler::load_signed_short(Register dst, Address src) {
 2401   int off;
 2402   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
 2403     // This is dubious to me since it seems safe to do a signed 16 => 64 bit
 2404     // version but this is what 64bit has always done. This seems to imply
 2405     // that users are only using 32bits worth.
 2406     off = offset();
 2407     movswl(dst, src); // movsxw
 2408   } else {
 2409     off = load_unsigned_short(dst, src);
 2410     shll(dst, 16);
 2411     sarl(dst, 16);
 2412   }
 2413   return off;
 2414 }
 2415 
 2416 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
 2417   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
 2418   // and "3.9 Partial Register Penalties", p. 22).
 2419   int off;
 2420   if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
 2421     off = offset();
 2422     movzbl(dst, src); // movzxb
 2423   } else {
 2424     xorl(dst, dst);
 2425     off = offset();
 2426     movb(dst, src);
 2427   }
 2428   return off;
 2429 }
 2430 
 2431 // Note: load_unsigned_short used to be called load_unsigned_word.
 2432 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
 2433   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
 2434   // and "3.9 Partial Register Penalties", p. 22).
 2435   int off;
 2436   if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
 2437     off = offset();
 2438     movzwl(dst, src); // movzxw
 2439   } else {
 2440     xorl(dst, dst);
 2441     off = offset();
 2442     movw(dst, src);
 2443   }
 2444   return off;
 2445 }
 2446 
 2447 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
 2448   switch (size_in_bytes) {
 2449 #ifndef _LP64
 2450   case  8:
 2451     assert(dst2 != noreg, "second dest register required");
 2452     movl(dst,  src);
 2453     movl(dst2, src.plus_disp(BytesPerInt));
 2454     break;
 2455 #else
 2456   case  8:  movq(dst, src); break;
 2457 #endif
 2458   case  4:  movl(dst, src); break;
 2459   case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
 2460   case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
 2461   default:  ShouldNotReachHere();
 2462   }
 2463 }
 2464 
 2465 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
 2466   switch (size_in_bytes) {
 2467 #ifndef _LP64
 2468   case  8:
 2469     assert(src2 != noreg, "second source register required");
 2470     movl(dst,                        src);
 2471     movl(dst.plus_disp(BytesPerInt), src2);
 2472     break;
 2473 #else
 2474   case  8:  movq(dst, src); break;
 2475 #endif
 2476   case  4:  movl(dst, src); break;
 2477   case  2:  movw(dst, src); break;
 2478   case  1:  movb(dst, src); break;
 2479   default:  ShouldNotReachHere();
 2480   }
 2481 }
 2482 
 2483 void MacroAssembler::mov32(AddressLiteral dst, Register src, Register rscratch) {
 2484   assert(rscratch != noreg || always_reachable(dst), "missing");
 2485 
 2486   if (reachable(dst)) {
 2487     movl(as_Address(dst), src);
 2488   } else {
 2489     lea(rscratch, dst);
 2490     movl(Address(rscratch, 0), src);
 2491   }
 2492 }
 2493 
 2494 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
 2495   if (reachable(src)) {
 2496     movl(dst, as_Address(src));
 2497   } else {
 2498     lea(dst, src);
 2499     movl(dst, Address(dst, 0));
 2500   }
 2501 }
 2502 
 2503 // C++ bool manipulation
 2504 
 2505 void MacroAssembler::movbool(Register dst, Address src) {
 2506   if(sizeof(bool) == 1)
 2507     movb(dst, src);
 2508   else if(sizeof(bool) == 2)
 2509     movw(dst, src);
 2510   else if(sizeof(bool) == 4)
 2511     movl(dst, src);
 2512   else
 2513     // unsupported
 2514     ShouldNotReachHere();
 2515 }
 2516 
 2517 void MacroAssembler::movbool(Address dst, bool boolconst) {
 2518   if(sizeof(bool) == 1)
 2519     movb(dst, (int) boolconst);
 2520   else if(sizeof(bool) == 2)
 2521     movw(dst, (int) boolconst);
 2522   else if(sizeof(bool) == 4)
 2523     movl(dst, (int) boolconst);
 2524   else
 2525     // unsupported
 2526     ShouldNotReachHere();
 2527 }
 2528 
 2529 void MacroAssembler::movbool(Address dst, Register src) {
 2530   if(sizeof(bool) == 1)
 2531     movb(dst, src);
 2532   else if(sizeof(bool) == 2)
 2533     movw(dst, src);
 2534   else if(sizeof(bool) == 4)
 2535     movl(dst, src);
 2536   else
 2537     // unsupported
 2538     ShouldNotReachHere();
 2539 }
 2540 
 2541 void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2542   assert(rscratch != noreg || always_reachable(src), "missing");
 2543 
 2544   if (reachable(src)) {
 2545     movdl(dst, as_Address(src));
 2546   } else {
 2547     lea(rscratch, src);
 2548     movdl(dst, Address(rscratch, 0));
 2549   }
 2550 }
 2551 
 2552 void MacroAssembler::movq(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2553   assert(rscratch != noreg || always_reachable(src), "missing");
 2554 
 2555   if (reachable(src)) {
 2556     movq(dst, as_Address(src));
 2557   } else {
 2558     lea(rscratch, src);
 2559     movq(dst, Address(rscratch, 0));
 2560   }
 2561 }
 2562 
 2563 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2564   assert(rscratch != noreg || always_reachable(src), "missing");
 2565 
 2566   if (reachable(src)) {
 2567     if (UseXmmLoadAndClearUpper) {
 2568       movsd (dst, as_Address(src));
 2569     } else {
 2570       movlpd(dst, as_Address(src));
 2571     }
 2572   } else {
 2573     lea(rscratch, src);
 2574     if (UseXmmLoadAndClearUpper) {
 2575       movsd (dst, Address(rscratch, 0));
 2576     } else {
 2577       movlpd(dst, Address(rscratch, 0));
 2578     }
 2579   }
 2580 }
 2581 
 2582 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2583   assert(rscratch != noreg || always_reachable(src), "missing");
 2584 
 2585   if (reachable(src)) {
 2586     movss(dst, as_Address(src));
 2587   } else {
 2588     lea(rscratch, src);
 2589     movss(dst, Address(rscratch, 0));
 2590   }
 2591 }
 2592 
 2593 void MacroAssembler::movptr(Register dst, Register src) {
 2594   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
 2595 }
 2596 
 2597 void MacroAssembler::movptr(Register dst, Address src) {
 2598   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
 2599 }
 2600 
 2601 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 2602 void MacroAssembler::movptr(Register dst, intptr_t src) {
 2603 #ifdef _LP64
 2604   if (is_uimm32(src)) {
 2605     movl(dst, checked_cast<uint32_t>(src));
 2606   } else if (is_simm32(src)) {
 2607     movq(dst, checked_cast<int32_t>(src));
 2608   } else {
 2609     mov64(dst, src);
 2610   }
 2611 #else
 2612   movl(dst, src);
 2613 #endif
 2614 }
 2615 
 2616 void MacroAssembler::movptr(Address dst, Register src) {
 2617   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
 2618 }
 2619 
 2620 void MacroAssembler::movptr(Address dst, int32_t src) {
 2621   LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src));
 2622 }
 2623 
 2624 void MacroAssembler::movdqu(Address dst, XMMRegister src) {
 2625   assert(((src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
 2626   Assembler::movdqu(dst, src);
 2627 }
 2628 
 2629 void MacroAssembler::movdqu(XMMRegister dst, Address src) {
 2630   assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
 2631   Assembler::movdqu(dst, src);
 2632 }
 2633 
 2634 void MacroAssembler::movdqu(XMMRegister dst, XMMRegister src) {
 2635   assert(((dst->encoding() < 16  && src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
 2636   Assembler::movdqu(dst, src);
 2637 }
 2638 
 2639 void MacroAssembler::movdqu(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2640   assert(rscratch != noreg || always_reachable(src), "missing");
 2641 
 2642   if (reachable(src)) {
 2643     movdqu(dst, as_Address(src));
 2644   } else {
 2645     lea(rscratch, src);
 2646     movdqu(dst, Address(rscratch, 0));
 2647   }
 2648 }
 2649 
 2650 void MacroAssembler::vmovdqu(Address dst, XMMRegister src) {
 2651   assert(((src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
 2652   Assembler::vmovdqu(dst, src);
 2653 }
 2654 
 2655 void MacroAssembler::vmovdqu(XMMRegister dst, Address src) {
 2656   assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
 2657   Assembler::vmovdqu(dst, src);
 2658 }
 2659 
 2660 void MacroAssembler::vmovdqu(XMMRegister dst, XMMRegister src) {
 2661   assert(((dst->encoding() < 16  && src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
 2662   Assembler::vmovdqu(dst, src);
 2663 }
 2664 
 2665 void MacroAssembler::vmovdqu(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2666   assert(rscratch != noreg || always_reachable(src), "missing");
 2667 
 2668   if (reachable(src)) {
 2669     vmovdqu(dst, as_Address(src));
 2670   }
 2671   else {
 2672     lea(rscratch, src);
 2673     vmovdqu(dst, Address(rscratch, 0));
 2674   }
 2675 }
 2676 
 2677 void MacroAssembler::vmovdqu(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
 2678   assert(rscratch != noreg || always_reachable(src), "missing");
 2679 
 2680   if (vector_len == AVX_512bit) {
 2681     evmovdquq(dst, src, AVX_512bit, rscratch);
 2682   } else if (vector_len == AVX_256bit) {
 2683     vmovdqu(dst, src, rscratch);
 2684   } else {
 2685     movdqu(dst, src, rscratch);
 2686   }
 2687 }
 2688 
 2689 void MacroAssembler::kmov(KRegister dst, Address src) {
 2690   if (VM_Version::supports_avx512bw()) {
 2691     kmovql(dst, src);
 2692   } else {
 2693     assert(VM_Version::supports_evex(), "");
 2694     kmovwl(dst, src);
 2695   }
 2696 }
 2697 
 2698 void MacroAssembler::kmov(Address dst, KRegister src) {
 2699   if (VM_Version::supports_avx512bw()) {
 2700     kmovql(dst, src);
 2701   } else {
 2702     assert(VM_Version::supports_evex(), "");
 2703     kmovwl(dst, src);
 2704   }
 2705 }
 2706 
 2707 void MacroAssembler::kmov(KRegister dst, KRegister src) {
 2708   if (VM_Version::supports_avx512bw()) {
 2709     kmovql(dst, src);
 2710   } else {
 2711     assert(VM_Version::supports_evex(), "");
 2712     kmovwl(dst, src);
 2713   }
 2714 }
 2715 
 2716 void MacroAssembler::kmov(Register dst, KRegister src) {
 2717   if (VM_Version::supports_avx512bw()) {
 2718     kmovql(dst, src);
 2719   } else {
 2720     assert(VM_Version::supports_evex(), "");
 2721     kmovwl(dst, src);
 2722   }
 2723 }
 2724 
 2725 void MacroAssembler::kmov(KRegister dst, Register src) {
 2726   if (VM_Version::supports_avx512bw()) {
 2727     kmovql(dst, src);
 2728   } else {
 2729     assert(VM_Version::supports_evex(), "");
 2730     kmovwl(dst, src);
 2731   }
 2732 }
 2733 
 2734 void MacroAssembler::kmovql(KRegister dst, AddressLiteral src, Register rscratch) {
 2735   assert(rscratch != noreg || always_reachable(src), "missing");
 2736 
 2737   if (reachable(src)) {
 2738     kmovql(dst, as_Address(src));
 2739   } else {
 2740     lea(rscratch, src);
 2741     kmovql(dst, Address(rscratch, 0));
 2742   }
 2743 }
 2744 
 2745 void MacroAssembler::kmovwl(KRegister dst, AddressLiteral src, Register rscratch) {
 2746   assert(rscratch != noreg || always_reachable(src), "missing");
 2747 
 2748   if (reachable(src)) {
 2749     kmovwl(dst, as_Address(src));
 2750   } else {
 2751     lea(rscratch, src);
 2752     kmovwl(dst, Address(rscratch, 0));
 2753   }
 2754 }
 2755 
 2756 void MacroAssembler::evmovdqub(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge,
 2757                                int vector_len, Register rscratch) {
 2758   assert(rscratch != noreg || always_reachable(src), "missing");
 2759 
 2760   if (reachable(src)) {
 2761     Assembler::evmovdqub(dst, mask, as_Address(src), merge, vector_len);
 2762   } else {
 2763     lea(rscratch, src);
 2764     Assembler::evmovdqub(dst, mask, Address(rscratch, 0), merge, vector_len);
 2765   }
 2766 }
 2767 
 2768 void MacroAssembler::evmovdquw(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge,
 2769                                int vector_len, Register rscratch) {
 2770   assert(rscratch != noreg || always_reachable(src), "missing");
 2771 
 2772   if (reachable(src)) {
 2773     Assembler::evmovdquw(dst, mask, as_Address(src), merge, vector_len);
 2774   } else {
 2775     lea(rscratch, src);
 2776     Assembler::evmovdquw(dst, mask, Address(rscratch, 0), merge, vector_len);
 2777   }
 2778 }
 2779 
 2780 void MacroAssembler::evmovdqul(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch) {
 2781   assert(rscratch != noreg || always_reachable(src), "missing");
 2782 
 2783   if (reachable(src)) {
 2784     Assembler::evmovdqul(dst, mask, as_Address(src), merge, vector_len);
 2785   } else {
 2786     lea(rscratch, src);
 2787     Assembler::evmovdqul(dst, mask, Address(rscratch, 0), merge, vector_len);
 2788   }
 2789 }
 2790 
 2791 void MacroAssembler::evmovdquq(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch) {
 2792   assert(rscratch != noreg || always_reachable(src), "missing");
 2793 
 2794   if (reachable(src)) {
 2795     Assembler::evmovdquq(dst, mask, as_Address(src), merge, vector_len);
 2796   } else {
 2797     lea(rscratch, src);
 2798     Assembler::evmovdquq(dst, mask, Address(rscratch, 0), merge, vector_len);
 2799   }
 2800 }
 2801 
 2802 void MacroAssembler::evmovdquq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
 2803   assert(rscratch != noreg || always_reachable(src), "missing");
 2804 
 2805   if (reachable(src)) {
 2806     Assembler::evmovdquq(dst, as_Address(src), vector_len);
 2807   } else {
 2808     lea(rscratch, src);
 2809     Assembler::evmovdquq(dst, Address(rscratch, 0), vector_len);
 2810   }
 2811 }
 2812 
 2813 void MacroAssembler::movdqa(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2814   assert(rscratch != noreg || always_reachable(src), "missing");
 2815 
 2816   if (reachable(src)) {
 2817     Assembler::movdqa(dst, as_Address(src));
 2818   } else {
 2819     lea(rscratch, src);
 2820     Assembler::movdqa(dst, Address(rscratch, 0));
 2821   }
 2822 }
 2823 
 2824 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2825   assert(rscratch != noreg || always_reachable(src), "missing");
 2826 
 2827   if (reachable(src)) {
 2828     Assembler::movsd(dst, as_Address(src));
 2829   } else {
 2830     lea(rscratch, src);
 2831     Assembler::movsd(dst, Address(rscratch, 0));
 2832   }
 2833 }
 2834 
 2835 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2836   assert(rscratch != noreg || always_reachable(src), "missing");
 2837 
 2838   if (reachable(src)) {
 2839     Assembler::movss(dst, as_Address(src));
 2840   } else {
 2841     lea(rscratch, src);
 2842     Assembler::movss(dst, Address(rscratch, 0));
 2843   }
 2844 }
 2845 
 2846 void MacroAssembler::movddup(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2847   assert(rscratch != noreg || always_reachable(src), "missing");
 2848 
 2849   if (reachable(src)) {
 2850     Assembler::movddup(dst, as_Address(src));
 2851   } else {
 2852     lea(rscratch, src);
 2853     Assembler::movddup(dst, Address(rscratch, 0));
 2854   }
 2855 }
 2856 
 2857 void MacroAssembler::vmovddup(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
 2858   assert(rscratch != noreg || always_reachable(src), "missing");
 2859 
 2860   if (reachable(src)) {
 2861     Assembler::vmovddup(dst, as_Address(src), vector_len);
 2862   } else {
 2863     lea(rscratch, src);
 2864     Assembler::vmovddup(dst, Address(rscratch, 0), vector_len);
 2865   }
 2866 }
 2867 
 2868 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2869   assert(rscratch != noreg || always_reachable(src), "missing");
 2870 
 2871   if (reachable(src)) {
 2872     Assembler::mulsd(dst, as_Address(src));
 2873   } else {
 2874     lea(rscratch, src);
 2875     Assembler::mulsd(dst, Address(rscratch, 0));
 2876   }
 2877 }
 2878 
 2879 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2880   assert(rscratch != noreg || always_reachable(src), "missing");
 2881 
 2882   if (reachable(src)) {
 2883     Assembler::mulss(dst, as_Address(src));
 2884   } else {
 2885     lea(rscratch, src);
 2886     Assembler::mulss(dst, Address(rscratch, 0));
 2887   }
 2888 }
 2889 
 2890 void MacroAssembler::null_check(Register reg, int offset) {
 2891   if (needs_explicit_null_check(offset)) {
 2892     // provoke OS null exception if reg is null by
 2893     // accessing M[reg] w/o changing any (non-CC) registers
 2894     // NOTE: cmpl is plenty here to provoke a segv
 2895     cmpptr(rax, Address(reg, 0));
 2896     // Note: should probably use testl(rax, Address(reg, 0));
 2897     //       may be shorter code (however, this version of
 2898     //       testl needs to be implemented first)
 2899   } else {
 2900     // nothing to do, (later) access of M[reg + offset]
 2901     // will provoke OS null exception if reg is null
 2902   }
 2903 }
 2904 





























































































































 2905 void MacroAssembler::os_breakpoint() {
 2906   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
 2907   // (e.g., MSVC can't call ps() otherwise)
 2908   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
 2909 }
 2910 
 2911 void MacroAssembler::unimplemented(const char* what) {
 2912   const char* buf = nullptr;
 2913   {
 2914     ResourceMark rm;
 2915     stringStream ss;
 2916     ss.print("unimplemented: %s", what);
 2917     buf = code_string(ss.as_string());
 2918   }
 2919   stop(buf);
 2920 }
 2921 
 2922 #ifdef _LP64
 2923 #define XSTATE_BV 0x200
 2924 #endif
 2925 
 2926 void MacroAssembler::pop_CPU_state() {
 2927   pop_FPU_state();
 2928   pop_IU_state();
 2929 }
 2930 
 2931 void MacroAssembler::pop_FPU_state() {
 2932 #ifndef _LP64
 2933   frstor(Address(rsp, 0));
 2934 #else
 2935   fxrstor(Address(rsp, 0));
 2936 #endif
 2937   addptr(rsp, FPUStateSizeInWords * wordSize);
 2938 }
 2939 
 2940 void MacroAssembler::pop_IU_state() {
 2941   popa();
 2942   LP64_ONLY(addq(rsp, 8));
 2943   popf();
 2944 }
 2945 
 2946 // Save Integer and Float state
 2947 // Warning: Stack must be 16 byte aligned (64bit)
 2948 void MacroAssembler::push_CPU_state() {
 2949   push_IU_state();
 2950   push_FPU_state();
 2951 }
 2952 
 2953 void MacroAssembler::push_FPU_state() {
 2954   subptr(rsp, FPUStateSizeInWords * wordSize);
 2955 #ifndef _LP64
 2956   fnsave(Address(rsp, 0));
 2957   fwait();
 2958 #else
 2959   fxsave(Address(rsp, 0));
 2960 #endif // LP64
 2961 }
 2962 
 2963 void MacroAssembler::push_IU_state() {
 2964   // Push flags first because pusha kills them
 2965   pushf();
 2966   // Make sure rsp stays 16-byte aligned
 2967   LP64_ONLY(subq(rsp, 8));
 2968   pusha();
 2969 }
 2970 
 2971 void MacroAssembler::push_cont_fastpath() {
 2972   if (!Continuations::enabled()) return;
 2973 
 2974 #ifndef _LP64
 2975   Register rthread = rax;
 2976   Register rrealsp = rbx;
 2977   push(rthread);
 2978   push(rrealsp);
 2979 
 2980   get_thread(rthread);
 2981 
 2982   // The code below wants the original RSP.
 2983   // Move it back after the pushes above.
 2984   movptr(rrealsp, rsp);
 2985   addptr(rrealsp, 2*wordSize);
 2986 #else
 2987   Register rthread = r15_thread;
 2988   Register rrealsp = rsp;
 2989 #endif
 2990 
 2991   Label done;
 2992   cmpptr(rrealsp, Address(rthread, JavaThread::cont_fastpath_offset()));
 2993   jccb(Assembler::belowEqual, done);
 2994   movptr(Address(rthread, JavaThread::cont_fastpath_offset()), rrealsp);
 2995   bind(done);
 2996 
 2997 #ifndef _LP64
 2998   pop(rrealsp);
 2999   pop(rthread);
 3000 #endif
 3001 }
 3002 
 3003 void MacroAssembler::pop_cont_fastpath() {
 3004   if (!Continuations::enabled()) return;
 3005 
 3006 #ifndef _LP64
 3007   Register rthread = rax;
 3008   Register rrealsp = rbx;
 3009   push(rthread);
 3010   push(rrealsp);
 3011 
 3012   get_thread(rthread);
 3013 
 3014   // The code below wants the original RSP.
 3015   // Move it back after the pushes above.
 3016   movptr(rrealsp, rsp);
 3017   addptr(rrealsp, 2*wordSize);
 3018 #else
 3019   Register rthread = r15_thread;
 3020   Register rrealsp = rsp;
 3021 #endif
 3022 
 3023   Label done;
 3024   cmpptr(rrealsp, Address(rthread, JavaThread::cont_fastpath_offset()));
 3025   jccb(Assembler::below, done);
 3026   movptr(Address(rthread, JavaThread::cont_fastpath_offset()), 0);
 3027   bind(done);
 3028 
 3029 #ifndef _LP64
 3030   pop(rrealsp);
 3031   pop(rthread);
 3032 #endif
 3033 }
 3034 
 3035 void MacroAssembler::inc_held_monitor_count() {
 3036 #ifndef _LP64
 3037   Register thread = rax;
 3038   push(thread);
 3039   get_thread(thread);
 3040   incrementl(Address(thread, JavaThread::held_monitor_count_offset()));
 3041   pop(thread);
 3042 #else // LP64
 3043   incrementq(Address(r15_thread, JavaThread::held_monitor_count_offset()));
 3044 #endif
 3045 }
 3046 
 3047 void MacroAssembler::dec_held_monitor_count() {
 3048 #ifndef _LP64
 3049   Register thread = rax;
 3050   push(thread);
 3051   get_thread(thread);
 3052   decrementl(Address(thread, JavaThread::held_monitor_count_offset()));
 3053   pop(thread);
 3054 #else // LP64
 3055   decrementq(Address(r15_thread, JavaThread::held_monitor_count_offset()));
 3056 #endif
 3057 }
 3058 
 3059 #ifdef ASSERT
 3060 void MacroAssembler::stop_if_in_cont(Register cont, const char* name) {
 3061 #ifdef _LP64
 3062   Label no_cont;
 3063   movptr(cont, Address(r15_thread, JavaThread::cont_entry_offset()));
 3064   testl(cont, cont);
 3065   jcc(Assembler::zero, no_cont);
 3066   stop(name);
 3067   bind(no_cont);
 3068 #else
 3069   Unimplemented();
 3070 #endif
 3071 }
 3072 #endif
 3073 
 3074 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp) { // determine java_thread register
 3075   if (!java_thread->is_valid()) {
 3076     java_thread = rdi;
 3077     get_thread(java_thread);
 3078   }
 3079   // we must set sp to zero to clear frame
 3080   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
 3081   // must clear fp, so that compiled frames are not confused; it is
 3082   // possible that we need it only for debugging
 3083   if (clear_fp) {
 3084     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
 3085   }
 3086   // Always clear the pc because it could have been set by make_walkable()
 3087   movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
 3088   vzeroupper();
 3089 }
 3090 
 3091 void MacroAssembler::restore_rax(Register tmp) {
 3092   if (tmp == noreg) pop(rax);
 3093   else if (tmp != rax) mov(rax, tmp);
 3094 }
 3095 
 3096 void MacroAssembler::round_to(Register reg, int modulus) {
 3097   addptr(reg, modulus - 1);
 3098   andptr(reg, -modulus);
 3099 }
 3100 
 3101 void MacroAssembler::save_rax(Register tmp) {
 3102   if (tmp == noreg) push(rax);
 3103   else if (tmp != rax) mov(tmp, rax);
 3104 }
 3105 
 3106 void MacroAssembler::safepoint_poll(Label& slow_path, Register thread_reg, bool at_return, bool in_nmethod) {
 3107   if (at_return) {
 3108     // Note that when in_nmethod is set, the stack pointer is incremented before the poll. Therefore,
 3109     // we may safely use rsp instead to perform the stack watermark check.
 3110     cmpptr(in_nmethod ? rsp : rbp, Address(thread_reg, JavaThread::polling_word_offset()));
 3111     jcc(Assembler::above, slow_path);
 3112     return;
 3113   }
 3114   testb(Address(thread_reg, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit());
 3115   jcc(Assembler::notZero, slow_path); // handshake bit set implies poll
 3116 }
 3117 
 3118 // Calls to C land
 3119 //
 3120 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
 3121 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
 3122 // has to be reset to 0. This is required to allow proper stack traversal.
 3123 void MacroAssembler::set_last_Java_frame(Register java_thread,
 3124                                          Register last_java_sp,
 3125                                          Register last_java_fp,
 3126                                          address  last_java_pc,
 3127                                          Register rscratch) {
 3128   vzeroupper();
 3129   // determine java_thread register
 3130   if (!java_thread->is_valid()) {
 3131     java_thread = rdi;
 3132     get_thread(java_thread);
 3133   }
 3134   // determine last_java_sp register
 3135   if (!last_java_sp->is_valid()) {
 3136     last_java_sp = rsp;
 3137   }
 3138   // last_java_fp is optional
 3139   if (last_java_fp->is_valid()) {
 3140     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
 3141   }
 3142   // last_java_pc is optional
 3143   if (last_java_pc != nullptr) {
 3144     Address java_pc(java_thread,
 3145                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
 3146     lea(java_pc, InternalAddress(last_java_pc), rscratch);
 3147   }
 3148   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
 3149 }
 3150 
 3151 void MacroAssembler::shlptr(Register dst, int imm8) {
 3152   LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
 3153 }
 3154 
 3155 void MacroAssembler::shrptr(Register dst, int imm8) {
 3156   LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
 3157 }
 3158 
 3159 void MacroAssembler::sign_extend_byte(Register reg) {
 3160   if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
 3161     movsbl(reg, reg); // movsxb
 3162   } else {
 3163     shll(reg, 24);
 3164     sarl(reg, 24);
 3165   }
 3166 }
 3167 
 3168 void MacroAssembler::sign_extend_short(Register reg) {
 3169   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
 3170     movswl(reg, reg); // movsxw
 3171   } else {
 3172     shll(reg, 16);
 3173     sarl(reg, 16);
 3174   }
 3175 }
 3176 
 3177 void MacroAssembler::testl(Address dst, int32_t imm32) {
 3178   if (imm32 >= 0 && is8bit(imm32)) {
 3179     testb(dst, imm32);
 3180   } else {
 3181     Assembler::testl(dst, imm32);
 3182   }
 3183 }
 3184 
 3185 void MacroAssembler::testl(Register dst, int32_t imm32) {
 3186   if (imm32 >= 0 && is8bit(imm32) && dst->has_byte_register()) {
 3187     testb(dst, imm32);
 3188   } else {
 3189     Assembler::testl(dst, imm32);
 3190   }
 3191 }
 3192 
 3193 void MacroAssembler::testl(Register dst, AddressLiteral src) {
 3194   assert(always_reachable(src), "Address should be reachable");
 3195   testl(dst, as_Address(src));
 3196 }
 3197 
 3198 #ifdef _LP64
 3199 
 3200 void MacroAssembler::testq(Address dst, int32_t imm32) {
 3201   if (imm32 >= 0) {
 3202     testl(dst, imm32);
 3203   } else {
 3204     Assembler::testq(dst, imm32);
 3205   }
 3206 }
 3207 
 3208 void MacroAssembler::testq(Register dst, int32_t imm32) {
 3209   if (imm32 >= 0) {
 3210     testl(dst, imm32);
 3211   } else {
 3212     Assembler::testq(dst, imm32);
 3213   }
 3214 }
 3215 
 3216 #endif
 3217 
 3218 void MacroAssembler::pcmpeqb(XMMRegister dst, XMMRegister src) {
 3219   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3220   Assembler::pcmpeqb(dst, src);
 3221 }
 3222 
 3223 void MacroAssembler::pcmpeqw(XMMRegister dst, XMMRegister src) {
 3224   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3225   Assembler::pcmpeqw(dst, src);
 3226 }
 3227 
 3228 void MacroAssembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
 3229   assert((dst->encoding() < 16),"XMM register should be 0-15");
 3230   Assembler::pcmpestri(dst, src, imm8);
 3231 }
 3232 
 3233 void MacroAssembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
 3234   assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15");
 3235   Assembler::pcmpestri(dst, src, imm8);
 3236 }
 3237 
 3238 void MacroAssembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
 3239   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3240   Assembler::pmovzxbw(dst, src);
 3241 }
 3242 
 3243 void MacroAssembler::pmovzxbw(XMMRegister dst, Address src) {
 3244   assert(((dst->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3245   Assembler::pmovzxbw(dst, src);
 3246 }
 3247 
 3248 void MacroAssembler::pmovmskb(Register dst, XMMRegister src) {
 3249   assert((src->encoding() < 16),"XMM register should be 0-15");
 3250   Assembler::pmovmskb(dst, src);
 3251 }
 3252 
 3253 void MacroAssembler::ptest(XMMRegister dst, XMMRegister src) {
 3254   assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15");
 3255   Assembler::ptest(dst, src);
 3256 }
 3257 
 3258 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src, Register rscratch) {
 3259   assert(rscratch != noreg || always_reachable(src), "missing");
 3260 
 3261   if (reachable(src)) {
 3262     Assembler::sqrtss(dst, as_Address(src));
 3263   } else {
 3264     lea(rscratch, src);
 3265     Assembler::sqrtss(dst, Address(rscratch, 0));
 3266   }
 3267 }
 3268 
 3269 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src, Register rscratch) {
 3270   assert(rscratch != noreg || always_reachable(src), "missing");
 3271 
 3272   if (reachable(src)) {
 3273     Assembler::subsd(dst, as_Address(src));
 3274   } else {
 3275     lea(rscratch, src);
 3276     Assembler::subsd(dst, Address(rscratch, 0));
 3277   }
 3278 }
 3279 
 3280 void MacroAssembler::roundsd(XMMRegister dst, AddressLiteral src, int32_t rmode, Register rscratch) {
 3281   assert(rscratch != noreg || always_reachable(src), "missing");
 3282 
 3283   if (reachable(src)) {
 3284     Assembler::roundsd(dst, as_Address(src), rmode);
 3285   } else {
 3286     lea(rscratch, src);
 3287     Assembler::roundsd(dst, Address(rscratch, 0), rmode);
 3288   }
 3289 }
 3290 
 3291 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src, Register rscratch) {
 3292   assert(rscratch != noreg || always_reachable(src), "missing");
 3293 
 3294   if (reachable(src)) {
 3295     Assembler::subss(dst, as_Address(src));
 3296   } else {
 3297     lea(rscratch, src);
 3298     Assembler::subss(dst, Address(rscratch, 0));
 3299   }
 3300 }
 3301 
 3302 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src, Register rscratch) {
 3303   assert(rscratch != noreg || always_reachable(src), "missing");
 3304 
 3305   if (reachable(src)) {
 3306     Assembler::ucomisd(dst, as_Address(src));
 3307   } else {
 3308     lea(rscratch, src);
 3309     Assembler::ucomisd(dst, Address(rscratch, 0));
 3310   }
 3311 }
 3312 
 3313 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src, Register rscratch) {
 3314   assert(rscratch != noreg || always_reachable(src), "missing");
 3315 
 3316   if (reachable(src)) {
 3317     Assembler::ucomiss(dst, as_Address(src));
 3318   } else {
 3319     lea(rscratch, src);
 3320     Assembler::ucomiss(dst, Address(rscratch, 0));
 3321   }
 3322 }
 3323 
 3324 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src, Register rscratch) {
 3325   assert(rscratch != noreg || always_reachable(src), "missing");
 3326 
 3327   // Used in sign-bit flipping with aligned address.
 3328   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
 3329   if (reachable(src)) {
 3330     Assembler::xorpd(dst, as_Address(src));
 3331   } else {
 3332     lea(rscratch, src);
 3333     Assembler::xorpd(dst, Address(rscratch, 0));
 3334   }
 3335 }
 3336 
 3337 void MacroAssembler::xorpd(XMMRegister dst, XMMRegister src) {
 3338   if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) {
 3339     Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit);
 3340   }
 3341   else {
 3342     Assembler::xorpd(dst, src);
 3343   }
 3344 }
 3345 
 3346 void MacroAssembler::xorps(XMMRegister dst, XMMRegister src) {
 3347   if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) {
 3348     Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit);
 3349   } else {
 3350     Assembler::xorps(dst, src);
 3351   }
 3352 }
 3353 
 3354 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src, Register rscratch) {
 3355   assert(rscratch != noreg || always_reachable(src), "missing");
 3356 
 3357   // Used in sign-bit flipping with aligned address.
 3358   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
 3359   if (reachable(src)) {
 3360     Assembler::xorps(dst, as_Address(src));
 3361   } else {
 3362     lea(rscratch, src);
 3363     Assembler::xorps(dst, Address(rscratch, 0));
 3364   }
 3365 }
 3366 
 3367 void MacroAssembler::pshufb(XMMRegister dst, AddressLiteral src, Register rscratch) {
 3368   assert(rscratch != noreg || always_reachable(src), "missing");
 3369 
 3370   // Used in sign-bit flipping with aligned address.
 3371   bool aligned_adr = (((intptr_t)src.target() & 15) == 0);
 3372   assert((UseAVX > 0) || aligned_adr, "SSE mode requires address alignment 16 bytes");
 3373   if (reachable(src)) {
 3374     Assembler::pshufb(dst, as_Address(src));
 3375   } else {
 3376     lea(rscratch, src);
 3377     Assembler::pshufb(dst, Address(rscratch, 0));
 3378   }
 3379 }
 3380 
 3381 // AVX 3-operands instructions
 3382 
 3383 void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
 3384   assert(rscratch != noreg || always_reachable(src), "missing");
 3385 
 3386   if (reachable(src)) {
 3387     vaddsd(dst, nds, as_Address(src));
 3388   } else {
 3389     lea(rscratch, src);
 3390     vaddsd(dst, nds, Address(rscratch, 0));
 3391   }
 3392 }
 3393 
 3394 void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
 3395   assert(rscratch != noreg || always_reachable(src), "missing");
 3396 
 3397   if (reachable(src)) {
 3398     vaddss(dst, nds, as_Address(src));
 3399   } else {
 3400     lea(rscratch, src);
 3401     vaddss(dst, nds, Address(rscratch, 0));
 3402   }
 3403 }
 3404 
 3405 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
 3406   assert(UseAVX > 0, "requires some form of AVX");
 3407   assert(rscratch != noreg || always_reachable(src), "missing");
 3408 
 3409   if (reachable(src)) {
 3410     Assembler::vpaddb(dst, nds, as_Address(src), vector_len);
 3411   } else {
 3412     lea(rscratch, src);
 3413     Assembler::vpaddb(dst, nds, Address(rscratch, 0), vector_len);
 3414   }
 3415 }
 3416 
 3417 void MacroAssembler::vpaddd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
 3418   assert(UseAVX > 0, "requires some form of AVX");
 3419   assert(rscratch != noreg || always_reachable(src), "missing");
 3420 
 3421   if (reachable(src)) {
 3422     Assembler::vpaddd(dst, nds, as_Address(src), vector_len);
 3423   } else {
 3424     lea(rscratch, src);
 3425     Assembler::vpaddd(dst, nds, Address(rscratch, 0), vector_len);
 3426   }
 3427 }
 3428 
 3429 void MacroAssembler::vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len, Register rscratch) {
 3430   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15");
 3431   assert(rscratch != noreg || always_reachable(negate_field), "missing");
 3432 
 3433   vandps(dst, nds, negate_field, vector_len, rscratch);
 3434 }
 3435 
 3436 void MacroAssembler::vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len, Register rscratch) {
 3437   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15");
 3438   assert(rscratch != noreg || always_reachable(negate_field), "missing");
 3439 
 3440   vandpd(dst, nds, negate_field, vector_len, rscratch);
 3441 }
 3442 
 3443 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
 3444   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3445   Assembler::vpaddb(dst, nds, src, vector_len);
 3446 }
 3447 
 3448 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
 3449   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3450   Assembler::vpaddb(dst, nds, src, vector_len);
 3451 }
 3452 
 3453 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
 3454   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3455   Assembler::vpaddw(dst, nds, src, vector_len);
 3456 }
 3457 
 3458 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
 3459   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3460   Assembler::vpaddw(dst, nds, src, vector_len);
 3461 }
 3462 
 3463 void MacroAssembler::vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
 3464   assert(rscratch != noreg || always_reachable(src), "missing");
 3465 
 3466   if (reachable(src)) {
 3467     Assembler::vpand(dst, nds, as_Address(src), vector_len);
 3468   } else {
 3469     lea(rscratch, src);
 3470     Assembler::vpand(dst, nds, Address(rscratch, 0), vector_len);
 3471   }
 3472 }
 3473 
 3474 void MacroAssembler::vpbroadcastd(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
 3475   assert(rscratch != noreg || always_reachable(src), "missing");
 3476 
 3477   if (reachable(src)) {
 3478     Assembler::vpbroadcastd(dst, as_Address(src), vector_len);
 3479   } else {
 3480     lea(rscratch, src);
 3481     Assembler::vpbroadcastd(dst, Address(rscratch, 0), vector_len);
 3482   }
 3483 }
 3484 
 3485 void MacroAssembler::vpbroadcastq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
 3486   assert(rscratch != noreg || always_reachable(src), "missing");
 3487 
 3488   if (reachable(src)) {
 3489     Assembler::vpbroadcastq(dst, as_Address(src), vector_len);
 3490   } else {
 3491     lea(rscratch, src);
 3492     Assembler::vpbroadcastq(dst, Address(rscratch, 0), vector_len);
 3493   }
 3494 }
 3495 
 3496 void MacroAssembler::vbroadcastsd(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
 3497   assert(rscratch != noreg || always_reachable(src), "missing");
 3498 
 3499   if (reachable(src)) {
 3500     Assembler::vbroadcastsd(dst, as_Address(src), vector_len);
 3501   } else {
 3502     lea(rscratch, src);
 3503     Assembler::vbroadcastsd(dst, Address(rscratch, 0), vector_len);
 3504   }
 3505 }
 3506 
 3507 void MacroAssembler::vbroadcastss(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
 3508   assert(rscratch != noreg || always_reachable(src), "missing");
 3509 
 3510   if (reachable(src)) {
 3511     Assembler::vbroadcastss(dst, as_Address(src), vector_len);
 3512   } else {
 3513     lea(rscratch, src);
 3514     Assembler::vbroadcastss(dst, Address(rscratch, 0), vector_len);
 3515   }
 3516 }
 3517 
 3518 // Vector float blend
 3519 // vblendvps(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister mask, int vector_len, bool compute_mask = true, XMMRegister scratch = xnoreg)
 3520 void MacroAssembler::vblendvps(XMMRegister dst, XMMRegister src1, XMMRegister src2, XMMRegister mask, int vector_len, bool compute_mask, XMMRegister scratch) {
 3521   // WARN: Allow dst == (src1|src2), mask == scratch
 3522   bool blend_emulation = EnableX86ECoreOpts && UseAVX > 1;
 3523   bool scratch_available = scratch != xnoreg && scratch != src1 && scratch != src2 && scratch != dst;
 3524   bool dst_available = dst != mask && (dst != src1 || dst != src2);
 3525   if (blend_emulation && scratch_available && dst_available) {
 3526     if (compute_mask) {
 3527       vpsrad(scratch, mask, 32, vector_len);
 3528       mask = scratch;
 3529     }
 3530     if (dst == src1) {
 3531       vpandn(dst,     mask, src1, vector_len); // if mask == 0, src1
 3532       vpand (scratch, mask, src2, vector_len); // if mask == 1, src2
 3533     } else {
 3534       vpand (dst,     mask, src2, vector_len); // if mask == 1, src2
 3535       vpandn(scratch, mask, src1, vector_len); // if mask == 0, src1
 3536     }
 3537     vpor(dst, dst, scratch, vector_len);
 3538   } else {
 3539     Assembler::vblendvps(dst, src1, src2, mask, vector_len);
 3540   }
 3541 }
 3542 
 3543 // vblendvpd(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister mask, int vector_len, bool compute_mask = true, XMMRegister scratch = xnoreg)
 3544 void MacroAssembler::vblendvpd(XMMRegister dst, XMMRegister src1, XMMRegister src2, XMMRegister mask, int vector_len, bool compute_mask, XMMRegister scratch) {
 3545   // WARN: Allow dst == (src1|src2), mask == scratch
 3546   bool blend_emulation = EnableX86ECoreOpts && UseAVX > 1;
 3547   bool scratch_available = scratch != xnoreg && scratch != src1 && scratch != src2 && scratch != dst && (!compute_mask || scratch != mask);
 3548   bool dst_available = dst != mask && (dst != src1 || dst != src2);
 3549   if (blend_emulation && scratch_available && dst_available) {
 3550     if (compute_mask) {
 3551       vpxor(scratch, scratch, scratch, vector_len);
 3552       vpcmpgtq(scratch, scratch, mask, vector_len);
 3553       mask = scratch;
 3554     }
 3555     if (dst == src1) {
 3556       vpandn(dst,     mask, src1, vector_len); // if mask == 0, src
 3557       vpand (scratch, mask, src2, vector_len); // if mask == 1, src2
 3558     } else {
 3559       vpand (dst,     mask, src2, vector_len); // if mask == 1, src2
 3560       vpandn(scratch, mask, src1, vector_len); // if mask == 0, src
 3561     }
 3562     vpor(dst, dst, scratch, vector_len);
 3563   } else {
 3564     Assembler::vblendvpd(dst, src1, src2, mask, vector_len);
 3565   }
 3566 }
 3567 
 3568 void MacroAssembler::vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
 3569   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3570   Assembler::vpcmpeqb(dst, nds, src, vector_len);
 3571 }
 3572 
 3573 void MacroAssembler::vpcmpeqb(XMMRegister dst, XMMRegister src1, Address src2, int vector_len) {
 3574   assert(((dst->encoding() < 16 && src1->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3575   Assembler::vpcmpeqb(dst, src1, src2, vector_len);
 3576 }
 3577 
 3578 void MacroAssembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
 3579   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3580   Assembler::vpcmpeqw(dst, nds, src, vector_len);
 3581 }
 3582 
 3583 void MacroAssembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
 3584   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3585   Assembler::vpcmpeqw(dst, nds, src, vector_len);
 3586 }
 3587 
 3588 void MacroAssembler::evpcmpeqd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
 3589   assert(rscratch != noreg || always_reachable(src), "missing");
 3590 
 3591   if (reachable(src)) {
 3592     Assembler::evpcmpeqd(kdst, mask, nds, as_Address(src), vector_len);
 3593   } else {
 3594     lea(rscratch, src);
 3595     Assembler::evpcmpeqd(kdst, mask, nds, Address(rscratch, 0), vector_len);
 3596   }
 3597 }
 3598 
 3599 void MacroAssembler::evpcmpd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src,
 3600                              int comparison, bool is_signed, int vector_len, Register rscratch) {
 3601   assert(rscratch != noreg || always_reachable(src), "missing");
 3602 
 3603   if (reachable(src)) {
 3604     Assembler::evpcmpd(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len);
 3605   } else {
 3606     lea(rscratch, src);
 3607     Assembler::evpcmpd(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len);
 3608   }
 3609 }
 3610 
 3611 void MacroAssembler::evpcmpq(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src,
 3612                              int comparison, bool is_signed, int vector_len, Register rscratch) {
 3613   assert(rscratch != noreg || always_reachable(src), "missing");
 3614 
 3615   if (reachable(src)) {
 3616     Assembler::evpcmpq(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len);
 3617   } else {
 3618     lea(rscratch, src);
 3619     Assembler::evpcmpq(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len);
 3620   }
 3621 }
 3622 
 3623 void MacroAssembler::evpcmpb(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src,
 3624                              int comparison, bool is_signed, int vector_len, Register rscratch) {
 3625   assert(rscratch != noreg || always_reachable(src), "missing");
 3626 
 3627   if (reachable(src)) {
 3628     Assembler::evpcmpb(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len);
 3629   } else {
 3630     lea(rscratch, src);
 3631     Assembler::evpcmpb(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len);
 3632   }
 3633 }
 3634 
 3635 void MacroAssembler::evpcmpw(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src,
 3636                              int comparison, bool is_signed, int vector_len, Register rscratch) {
 3637   assert(rscratch != noreg || always_reachable(src), "missing");
 3638 
 3639   if (reachable(src)) {
 3640     Assembler::evpcmpw(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len);
 3641   } else {
 3642     lea(rscratch, src);
 3643     Assembler::evpcmpw(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len);
 3644   }
 3645 }
 3646 
 3647 void MacroAssembler::vpcmpCC(XMMRegister dst, XMMRegister nds, XMMRegister src, int cond_encoding, Width width, int vector_len) {
 3648   if (width == Assembler::Q) {
 3649     Assembler::vpcmpCCq(dst, nds, src, cond_encoding, vector_len);
 3650   } else {
 3651     Assembler::vpcmpCCbwd(dst, nds, src, cond_encoding, vector_len);
 3652   }
 3653 }
 3654 
 3655 void MacroAssembler::vpcmpCCW(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister xtmp, ComparisonPredicate cond, Width width, int vector_len) {
 3656   int eq_cond_enc = 0x29;
 3657   int gt_cond_enc = 0x37;
 3658   if (width != Assembler::Q) {
 3659     eq_cond_enc = 0x74 + width;
 3660     gt_cond_enc = 0x64 + width;
 3661   }
 3662   switch (cond) {
 3663   case eq:
 3664     vpcmpCC(dst, nds, src, eq_cond_enc, width, vector_len);
 3665     break;
 3666   case neq:
 3667     vpcmpCC(dst, nds, src, eq_cond_enc, width, vector_len);
 3668     vallones(xtmp, vector_len);
 3669     vpxor(dst, xtmp, dst, vector_len);
 3670     break;
 3671   case le:
 3672     vpcmpCC(dst, nds, src, gt_cond_enc, width, vector_len);
 3673     vallones(xtmp, vector_len);
 3674     vpxor(dst, xtmp, dst, vector_len);
 3675     break;
 3676   case nlt:
 3677     vpcmpCC(dst, src, nds, gt_cond_enc, width, vector_len);
 3678     vallones(xtmp, vector_len);
 3679     vpxor(dst, xtmp, dst, vector_len);
 3680     break;
 3681   case lt:
 3682     vpcmpCC(dst, src, nds, gt_cond_enc, width, vector_len);
 3683     break;
 3684   case nle:
 3685     vpcmpCC(dst, nds, src, gt_cond_enc, width, vector_len);
 3686     break;
 3687   default:
 3688     assert(false, "Should not reach here");
 3689   }
 3690 }
 3691 
 3692 void MacroAssembler::vpmovzxbw(XMMRegister dst, Address src, int vector_len) {
 3693   assert(((dst->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3694   Assembler::vpmovzxbw(dst, src, vector_len);
 3695 }
 3696 
 3697 void MacroAssembler::vpmovmskb(Register dst, XMMRegister src, int vector_len) {
 3698   assert((src->encoding() < 16),"XMM register should be 0-15");
 3699   Assembler::vpmovmskb(dst, src, vector_len);
 3700 }
 3701 
 3702 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
 3703   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3704   Assembler::vpmullw(dst, nds, src, vector_len);
 3705 }
 3706 
 3707 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
 3708   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3709   Assembler::vpmullw(dst, nds, src, vector_len);
 3710 }
 3711 
 3712 void MacroAssembler::vpmulld(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
 3713   assert((UseAVX > 0), "AVX support is needed");
 3714   assert(rscratch != noreg || always_reachable(src), "missing");
 3715 
 3716   if (reachable(src)) {
 3717     Assembler::vpmulld(dst, nds, as_Address(src), vector_len);
 3718   } else {
 3719     lea(rscratch, src);
 3720     Assembler::vpmulld(dst, nds, Address(rscratch, 0), vector_len);
 3721   }
 3722 }
 3723 
 3724 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
 3725   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3726   Assembler::vpsubb(dst, nds, src, vector_len);
 3727 }
 3728 
 3729 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
 3730   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3731   Assembler::vpsubb(dst, nds, src, vector_len);
 3732 }
 3733 
 3734 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
 3735   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3736   Assembler::vpsubw(dst, nds, src, vector_len);
 3737 }
 3738 
 3739 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
 3740   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3741   Assembler::vpsubw(dst, nds, src, vector_len);
 3742 }
 3743 
 3744 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
 3745   assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3746   Assembler::vpsraw(dst, nds, shift, vector_len);
 3747 }
 3748 
 3749 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
 3750   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3751   Assembler::vpsraw(dst, nds, shift, vector_len);
 3752 }
 3753 
 3754 void MacroAssembler::evpsraq(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
 3755   assert(UseAVX > 2,"");
 3756   if (!VM_Version::supports_avx512vl() && vector_len < 2) {
 3757      vector_len = 2;
 3758   }
 3759   Assembler::evpsraq(dst, nds, shift, vector_len);
 3760 }
 3761 
 3762 void MacroAssembler::evpsraq(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
 3763   assert(UseAVX > 2,"");
 3764   if (!VM_Version::supports_avx512vl() && vector_len < 2) {
 3765      vector_len = 2;
 3766   }
 3767   Assembler::evpsraq(dst, nds, shift, vector_len);
 3768 }
 3769 
 3770 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
 3771   assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3772   Assembler::vpsrlw(dst, nds, shift, vector_len);
 3773 }
 3774 
 3775 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
 3776   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3777   Assembler::vpsrlw(dst, nds, shift, vector_len);
 3778 }
 3779 
 3780 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
 3781   assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3782   Assembler::vpsllw(dst, nds, shift, vector_len);
 3783 }
 3784 
 3785 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
 3786   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3787   Assembler::vpsllw(dst, nds, shift, vector_len);
 3788 }
 3789 
 3790 void MacroAssembler::vptest(XMMRegister dst, XMMRegister src) {
 3791   assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15");
 3792   Assembler::vptest(dst, src);
 3793 }
 3794 
 3795 void MacroAssembler::punpcklbw(XMMRegister dst, XMMRegister src) {
 3796   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3797   Assembler::punpcklbw(dst, src);
 3798 }
 3799 
 3800 void MacroAssembler::pshufd(XMMRegister dst, Address src, int mode) {
 3801   assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
 3802   Assembler::pshufd(dst, src, mode);
 3803 }
 3804 
 3805 void MacroAssembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
 3806   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3807   Assembler::pshuflw(dst, src, mode);
 3808 }
 3809 
 3810 void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
 3811   assert(rscratch != noreg || always_reachable(src), "missing");
 3812 
 3813   if (reachable(src)) {
 3814     vandpd(dst, nds, as_Address(src), vector_len);
 3815   } else {
 3816     lea(rscratch, src);
 3817     vandpd(dst, nds, Address(rscratch, 0), vector_len);
 3818   }
 3819 }
 3820 
 3821 void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
 3822   assert(rscratch != noreg || always_reachable(src), "missing");
 3823 
 3824   if (reachable(src)) {
 3825     vandps(dst, nds, as_Address(src), vector_len);
 3826   } else {
 3827     lea(rscratch, src);
 3828     vandps(dst, nds, Address(rscratch, 0), vector_len);
 3829   }
 3830 }
 3831 
 3832 void MacroAssembler::evpord(XMMRegister dst, KRegister mask, XMMRegister nds, AddressLiteral src,
 3833                             bool merge, int vector_len, Register rscratch) {
 3834   assert(rscratch != noreg || always_reachable(src), "missing");
 3835 
 3836   if (reachable(src)) {
 3837     Assembler::evpord(dst, mask, nds, as_Address(src), merge, vector_len);
 3838   } else {
 3839     lea(rscratch, src);
 3840     Assembler::evpord(dst, mask, nds, Address(rscratch, 0), merge, vector_len);
 3841   }
 3842 }
 3843 
 3844 void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
 3845   assert(rscratch != noreg || always_reachable(src), "missing");
 3846 
 3847   if (reachable(src)) {
 3848     vdivsd(dst, nds, as_Address(src));
 3849   } else {
 3850     lea(rscratch, src);
 3851     vdivsd(dst, nds, Address(rscratch, 0));
 3852   }
 3853 }
 3854 
 3855 void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
 3856   assert(rscratch != noreg || always_reachable(src), "missing");
 3857 
 3858   if (reachable(src)) {
 3859     vdivss(dst, nds, as_Address(src));
 3860   } else {
 3861     lea(rscratch, src);
 3862     vdivss(dst, nds, Address(rscratch, 0));
 3863   }
 3864 }
 3865 
 3866 void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
 3867   assert(rscratch != noreg || always_reachable(src), "missing");
 3868 
 3869   if (reachable(src)) {
 3870     vmulsd(dst, nds, as_Address(src));
 3871   } else {
 3872     lea(rscratch, src);
 3873     vmulsd(dst, nds, Address(rscratch, 0));
 3874   }
 3875 }
 3876 
 3877 void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
 3878   assert(rscratch != noreg || always_reachable(src), "missing");
 3879 
 3880   if (reachable(src)) {
 3881     vmulss(dst, nds, as_Address(src));
 3882   } else {
 3883     lea(rscratch, src);
 3884     vmulss(dst, nds, Address(rscratch, 0));
 3885   }
 3886 }
 3887 
 3888 void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
 3889   assert(rscratch != noreg || always_reachable(src), "missing");
 3890 
 3891   if (reachable(src)) {
 3892     vsubsd(dst, nds, as_Address(src));
 3893   } else {
 3894     lea(rscratch, src);
 3895     vsubsd(dst, nds, Address(rscratch, 0));
 3896   }
 3897 }
 3898 
 3899 void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
 3900   assert(rscratch != noreg || always_reachable(src), "missing");
 3901 
 3902   if (reachable(src)) {
 3903     vsubss(dst, nds, as_Address(src));
 3904   } else {
 3905     lea(rscratch, src);
 3906     vsubss(dst, nds, Address(rscratch, 0));
 3907   }
 3908 }
 3909 
 3910 void MacroAssembler::vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
 3911   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15");
 3912   assert(rscratch != noreg || always_reachable(src), "missing");
 3913 
 3914   vxorps(dst, nds, src, Assembler::AVX_128bit, rscratch);
 3915 }
 3916 
 3917 void MacroAssembler::vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
 3918   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15");
 3919   assert(rscratch != noreg || always_reachable(src), "missing");
 3920 
 3921   vxorpd(dst, nds, src, Assembler::AVX_128bit, rscratch);
 3922 }
 3923 
 3924 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
 3925   assert(rscratch != noreg || always_reachable(src), "missing");
 3926 
 3927   if (reachable(src)) {
 3928     vxorpd(dst, nds, as_Address(src), vector_len);
 3929   } else {
 3930     lea(rscratch, src);
 3931     vxorpd(dst, nds, Address(rscratch, 0), vector_len);
 3932   }
 3933 }
 3934 
 3935 void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
 3936   assert(rscratch != noreg || always_reachable(src), "missing");
 3937 
 3938   if (reachable(src)) {
 3939     vxorps(dst, nds, as_Address(src), vector_len);
 3940   } else {
 3941     lea(rscratch, src);
 3942     vxorps(dst, nds, Address(rscratch, 0), vector_len);
 3943   }
 3944 }
 3945 
 3946 void MacroAssembler::vpxor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
 3947   assert(rscratch != noreg || always_reachable(src), "missing");
 3948 
 3949   if (UseAVX > 1 || (vector_len < 1)) {
 3950     if (reachable(src)) {
 3951       Assembler::vpxor(dst, nds, as_Address(src), vector_len);
 3952     } else {
 3953       lea(rscratch, src);
 3954       Assembler::vpxor(dst, nds, Address(rscratch, 0), vector_len);
 3955     }
 3956   } else {
 3957     MacroAssembler::vxorpd(dst, nds, src, vector_len, rscratch);
 3958   }
 3959 }
 3960 
 3961 void MacroAssembler::vpermd(XMMRegister dst,  XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
 3962   assert(rscratch != noreg || always_reachable(src), "missing");
 3963 
 3964   if (reachable(src)) {
 3965     Assembler::vpermd(dst, nds, as_Address(src), vector_len);
 3966   } else {
 3967     lea(rscratch, src);
 3968     Assembler::vpermd(dst, nds, Address(rscratch, 0), vector_len);
 3969   }
 3970 }
 3971 
 3972 void MacroAssembler::clear_jobject_tag(Register possibly_non_local) {
 3973   const int32_t inverted_mask = ~static_cast<int32_t>(JNIHandles::tag_mask);
 3974   STATIC_ASSERT(inverted_mask == -4); // otherwise check this code
 3975   // The inverted mask is sign-extended
 3976   andptr(possibly_non_local, inverted_mask);
 3977 }
 3978 
 3979 void MacroAssembler::resolve_jobject(Register value,
 3980                                      Register thread,
 3981                                      Register tmp) {
 3982   assert_different_registers(value, thread, tmp);
 3983   Label done, tagged, weak_tagged;
 3984   testptr(value, value);
 3985   jcc(Assembler::zero, done);           // Use null as-is.
 3986   testptr(value, JNIHandles::tag_mask); // Test for tag.
 3987   jcc(Assembler::notZero, tagged);
 3988 
 3989   // Resolve local handle
 3990   access_load_at(T_OBJECT, IN_NATIVE | AS_RAW, value, Address(value, 0), tmp, thread);
 3991   verify_oop(value);
 3992   jmp(done);
 3993 
 3994   bind(tagged);
 3995   testptr(value, JNIHandles::TypeTag::weak_global); // Test for weak tag.
 3996   jcc(Assembler::notZero, weak_tagged);
 3997 
 3998   // Resolve global handle
 3999   access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp, thread);
 4000   verify_oop(value);
 4001   jmp(done);
 4002 
 4003   bind(weak_tagged);
 4004   // Resolve jweak.
 4005   access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF,
 4006                  value, Address(value, -JNIHandles::TypeTag::weak_global), tmp, thread);
 4007   verify_oop(value);
 4008 
 4009   bind(done);
 4010 }
 4011 
 4012 void MacroAssembler::resolve_global_jobject(Register value,
 4013                                             Register thread,
 4014                                             Register tmp) {
 4015   assert_different_registers(value, thread, tmp);
 4016   Label done;
 4017 
 4018   testptr(value, value);
 4019   jcc(Assembler::zero, done);           // Use null as-is.
 4020 
 4021 #ifdef ASSERT
 4022   {
 4023     Label valid_global_tag;
 4024     testptr(value, JNIHandles::TypeTag::global); // Test for global tag.
 4025     jcc(Assembler::notZero, valid_global_tag);
 4026     stop("non global jobject using resolve_global_jobject");
 4027     bind(valid_global_tag);
 4028   }
 4029 #endif
 4030 
 4031   // Resolve global handle
 4032   access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp, thread);
 4033   verify_oop(value);
 4034 
 4035   bind(done);
 4036 }
 4037 
 4038 void MacroAssembler::subptr(Register dst, int32_t imm32) {
 4039   LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
 4040 }
 4041 
 4042 // Force generation of a 4 byte immediate value even if it fits into 8bit
 4043 void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) {
 4044   LP64_ONLY(subq_imm32(dst, imm32)) NOT_LP64(subl_imm32(dst, imm32));
 4045 }
 4046 
 4047 void MacroAssembler::subptr(Register dst, Register src) {
 4048   LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
 4049 }
 4050 
 4051 // C++ bool manipulation
 4052 void MacroAssembler::testbool(Register dst) {
 4053   if(sizeof(bool) == 1)
 4054     testb(dst, 0xff);
 4055   else if(sizeof(bool) == 2) {
 4056     // testw implementation needed for two byte bools
 4057     ShouldNotReachHere();
 4058   } else if(sizeof(bool) == 4)
 4059     testl(dst, dst);
 4060   else
 4061     // unsupported
 4062     ShouldNotReachHere();
 4063 }
 4064 
 4065 void MacroAssembler::testptr(Register dst, Register src) {
 4066   LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
 4067 }
 4068 


















































































































 4069 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
 4070 void MacroAssembler::tlab_allocate(Register thread, Register obj,
 4071                                    Register var_size_in_bytes,
 4072                                    int con_size_in_bytes,
 4073                                    Register t1,
 4074                                    Register t2,
 4075                                    Label& slow_case) {
 4076   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
 4077   bs->tlab_allocate(this, thread, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case);
 4078 }
 4079 
 4080 RegSet MacroAssembler::call_clobbered_gp_registers() {
 4081   RegSet regs;
 4082 #ifdef _LP64
 4083   regs += RegSet::of(rax, rcx, rdx);
 4084 #ifndef WINDOWS
 4085   regs += RegSet::of(rsi, rdi);
 4086 #endif
 4087   regs += RegSet::range(r8, r11);
 4088 #else
 4089   regs += RegSet::of(rax, rcx, rdx);
 4090 #endif
 4091 #ifdef _LP64
 4092   if (UseAPX) {
 4093     regs += RegSet::range(r16, as_Register(Register::number_of_registers - 1));
 4094   }
 4095 #endif
 4096   return regs;
 4097 }
 4098 
 4099 XMMRegSet MacroAssembler::call_clobbered_xmm_registers() {
 4100   int num_xmm_registers = XMMRegister::available_xmm_registers();
 4101 #if defined(WINDOWS) && defined(_LP64)
 4102   XMMRegSet result = XMMRegSet::range(xmm0, xmm5);
 4103   if (num_xmm_registers > 16) {
 4104      result += XMMRegSet::range(xmm16, as_XMMRegister(num_xmm_registers - 1));
 4105   }
 4106   return result;
 4107 #else
 4108   return XMMRegSet::range(xmm0, as_XMMRegister(num_xmm_registers - 1));
 4109 #endif
 4110 }
 4111 
 4112 static int FPUSaveAreaSize = align_up(108, StackAlignmentInBytes); // 108 bytes needed for FPU state by fsave/frstor
 4113 
 4114 #ifndef _LP64
 4115 static bool use_x87_registers() { return UseSSE < 2; }
 4116 #endif
 4117 static bool use_xmm_registers() { return UseSSE >= 1; }
 4118 
 4119 // C1 only ever uses the first double/float of the XMM register.
 4120 static int xmm_save_size() { return UseSSE >= 2 ? sizeof(double) : sizeof(float); }
 4121 
 4122 static void save_xmm_register(MacroAssembler* masm, int offset, XMMRegister reg) {
 4123   if (UseSSE == 1) {
 4124     masm->movflt(Address(rsp, offset), reg);
 4125   } else {
 4126     masm->movdbl(Address(rsp, offset), reg);
 4127   }
 4128 }
 4129 
 4130 static void restore_xmm_register(MacroAssembler* masm, int offset, XMMRegister reg) {
 4131   if (UseSSE == 1) {
 4132     masm->movflt(reg, Address(rsp, offset));
 4133   } else {
 4134     masm->movdbl(reg, Address(rsp, offset));
 4135   }
 4136 }
 4137 
 4138 static int register_section_sizes(RegSet gp_registers, XMMRegSet xmm_registers,
 4139                                   bool save_fpu, int& gp_area_size,
 4140                                   int& fp_area_size, int& xmm_area_size) {
 4141 
 4142   gp_area_size = align_up(gp_registers.size() * Register::max_slots_per_register * VMRegImpl::stack_slot_size,
 4143                          StackAlignmentInBytes);
 4144 #ifdef _LP64
 4145   fp_area_size = 0;
 4146 #else
 4147   fp_area_size = (save_fpu && use_x87_registers()) ? FPUSaveAreaSize : 0;
 4148 #endif
 4149   xmm_area_size = (save_fpu && use_xmm_registers()) ? xmm_registers.size() * xmm_save_size() : 0;
 4150 
 4151   return gp_area_size + fp_area_size + xmm_area_size;
 4152 }
 4153 
 4154 void MacroAssembler::push_call_clobbered_registers_except(RegSet exclude, bool save_fpu) {
 4155   block_comment("push_call_clobbered_registers start");
 4156   // Regular registers
 4157   RegSet gp_registers_to_push = call_clobbered_gp_registers() - exclude;
 4158 
 4159   int gp_area_size;
 4160   int fp_area_size;
 4161   int xmm_area_size;
 4162   int total_save_size = register_section_sizes(gp_registers_to_push, call_clobbered_xmm_registers(), save_fpu,
 4163                                                gp_area_size, fp_area_size, xmm_area_size);
 4164   subptr(rsp, total_save_size);
 4165 
 4166   push_set(gp_registers_to_push, 0);
 4167 
 4168 #ifndef _LP64
 4169   if (save_fpu && use_x87_registers()) {
 4170     fnsave(Address(rsp, gp_area_size));
 4171     fwait();
 4172   }
 4173 #endif
 4174   if (save_fpu && use_xmm_registers()) {
 4175     push_set(call_clobbered_xmm_registers(), gp_area_size + fp_area_size);
 4176   }
 4177 
 4178   block_comment("push_call_clobbered_registers end");
 4179 }
 4180 
 4181 void MacroAssembler::pop_call_clobbered_registers_except(RegSet exclude, bool restore_fpu) {
 4182   block_comment("pop_call_clobbered_registers start");
 4183 
 4184   RegSet gp_registers_to_pop = call_clobbered_gp_registers() - exclude;
 4185 
 4186   int gp_area_size;
 4187   int fp_area_size;
 4188   int xmm_area_size;
 4189   int total_save_size = register_section_sizes(gp_registers_to_pop, call_clobbered_xmm_registers(), restore_fpu,
 4190                                                gp_area_size, fp_area_size, xmm_area_size);
 4191 
 4192   if (restore_fpu && use_xmm_registers()) {
 4193     pop_set(call_clobbered_xmm_registers(), gp_area_size + fp_area_size);
 4194   }
 4195 #ifndef _LP64
 4196   if (restore_fpu && use_x87_registers()) {
 4197     frstor(Address(rsp, gp_area_size));
 4198   }
 4199 #endif
 4200 
 4201   pop_set(gp_registers_to_pop, 0);
 4202 
 4203   addptr(rsp, total_save_size);
 4204 
 4205   vzeroupper();
 4206 
 4207   block_comment("pop_call_clobbered_registers end");
 4208 }
 4209 
 4210 void MacroAssembler::push_set(XMMRegSet set, int offset) {
 4211   assert(is_aligned(set.size() * xmm_save_size(), StackAlignmentInBytes), "must be");
 4212   int spill_offset = offset;
 4213 
 4214   for (RegSetIterator<XMMRegister> it = set.begin(); *it != xnoreg; ++it) {
 4215     save_xmm_register(this, spill_offset, *it);
 4216     spill_offset += xmm_save_size();
 4217   }
 4218 }
 4219 
 4220 void MacroAssembler::pop_set(XMMRegSet set, int offset) {
 4221   int restore_size = set.size() * xmm_save_size();
 4222   assert(is_aligned(restore_size, StackAlignmentInBytes), "must be");
 4223 
 4224   int restore_offset = offset + restore_size - xmm_save_size();
 4225 
 4226   for (ReverseRegSetIterator<XMMRegister> it = set.rbegin(); *it != xnoreg; ++it) {
 4227     restore_xmm_register(this, restore_offset, *it);
 4228     restore_offset -= xmm_save_size();
 4229   }
 4230 }
 4231 
 4232 void MacroAssembler::push_set(RegSet set, int offset) {
 4233   int spill_offset;
 4234   if (offset == -1) {
 4235     int register_push_size = set.size() * Register::max_slots_per_register * VMRegImpl::stack_slot_size;
 4236     int aligned_size = align_up(register_push_size, StackAlignmentInBytes);
 4237     subptr(rsp, aligned_size);
 4238     spill_offset = 0;
 4239   } else {
 4240     spill_offset = offset;
 4241   }
 4242 
 4243   for (RegSetIterator<Register> it = set.begin(); *it != noreg; ++it) {
 4244     movptr(Address(rsp, spill_offset), *it);
 4245     spill_offset += Register::max_slots_per_register * VMRegImpl::stack_slot_size;
 4246   }
 4247 }
 4248 
 4249 void MacroAssembler::pop_set(RegSet set, int offset) {
 4250 
 4251   int gp_reg_size = Register::max_slots_per_register * VMRegImpl::stack_slot_size;
 4252   int restore_size = set.size() * gp_reg_size;
 4253   int aligned_size = align_up(restore_size, StackAlignmentInBytes);
 4254 
 4255   int restore_offset;
 4256   if (offset == -1) {
 4257     restore_offset = restore_size - gp_reg_size;
 4258   } else {
 4259     restore_offset = offset + restore_size - gp_reg_size;
 4260   }
 4261   for (ReverseRegSetIterator<Register> it = set.rbegin(); *it != noreg; ++it) {
 4262     movptr(*it, Address(rsp, restore_offset));
 4263     restore_offset -= gp_reg_size;
 4264   }
 4265 
 4266   if (offset == -1) {
 4267     addptr(rsp, aligned_size);
 4268   }
 4269 }
 4270 
 4271 // Preserves the contents of address, destroys the contents length_in_bytes and temp.
 4272 void MacroAssembler::zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp) {
 4273   assert(address != length_in_bytes && address != temp && temp != length_in_bytes, "registers must be different");
 4274   assert((offset_in_bytes & (BytesPerWord - 1)) == 0, "offset must be a multiple of BytesPerWord");
 4275   Label done;
 4276 
 4277   testptr(length_in_bytes, length_in_bytes);
 4278   jcc(Assembler::zero, done);
 4279 
 4280   // initialize topmost word, divide index by 2, check if odd and test if zero
 4281   // note: for the remaining code to work, index must be a multiple of BytesPerWord
 4282 #ifdef ASSERT
 4283   {
 4284     Label L;
 4285     testptr(length_in_bytes, BytesPerWord - 1);
 4286     jcc(Assembler::zero, L);
 4287     stop("length must be a multiple of BytesPerWord");
 4288     bind(L);
 4289   }
 4290 #endif
 4291   Register index = length_in_bytes;
 4292   xorptr(temp, temp);    // use _zero reg to clear memory (shorter code)
 4293   if (UseIncDec) {
 4294     shrptr(index, 3);  // divide by 8/16 and set carry flag if bit 2 was set
 4295   } else {
 4296     shrptr(index, 2);  // use 2 instructions to avoid partial flag stall
 4297     shrptr(index, 1);
 4298   }
 4299 #ifndef _LP64
 4300   // index could have not been a multiple of 8 (i.e., bit 2 was set)
 4301   {
 4302     Label even;
 4303     // note: if index was a multiple of 8, then it cannot
 4304     //       be 0 now otherwise it must have been 0 before
 4305     //       => if it is even, we don't need to check for 0 again
 4306     jcc(Assembler::carryClear, even);
 4307     // clear topmost word (no jump would be needed if conditional assignment worked here)
 4308     movptr(Address(address, index, Address::times_8, offset_in_bytes - 0*BytesPerWord), temp);
 4309     // index could be 0 now, must check again
 4310     jcc(Assembler::zero, done);
 4311     bind(even);
 4312   }
 4313 #endif // !_LP64
 4314   // initialize remaining object fields: index is a multiple of 2 now
 4315   {
 4316     Label loop;
 4317     bind(loop);
 4318     movptr(Address(address, index, Address::times_8, offset_in_bytes - 1*BytesPerWord), temp);
 4319     NOT_LP64(movptr(Address(address, index, Address::times_8, offset_in_bytes - 2*BytesPerWord), temp);)
 4320     decrement(index);
 4321     jcc(Assembler::notZero, loop);
 4322   }
 4323 
 4324   bind(done);
 4325 }
 4326 


















































 4327 // Look up the method for a megamorphic invokeinterface call.
 4328 // The target method is determined by <intf_klass, itable_index>.
 4329 // The receiver klass is in recv_klass.
 4330 // On success, the result will be in method_result, and execution falls through.
 4331 // On failure, execution transfers to the given label.
 4332 void MacroAssembler::lookup_interface_method(Register recv_klass,
 4333                                              Register intf_klass,
 4334                                              RegisterOrConstant itable_index,
 4335                                              Register method_result,
 4336                                              Register scan_temp,
 4337                                              Label& L_no_such_interface,
 4338                                              bool return_method) {
 4339   assert_different_registers(recv_klass, intf_klass, scan_temp);
 4340   assert_different_registers(method_result, intf_klass, scan_temp);
 4341   assert(recv_klass != method_result || !return_method,
 4342          "recv_klass can be destroyed when method isn't needed");
 4343 
 4344   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
 4345          "caller must use same register for non-constant itable index as for method");
 4346 
 4347   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
 4348   int vtable_base = in_bytes(Klass::vtable_start_offset());
 4349   int itentry_off = in_bytes(itableMethodEntry::method_offset());
 4350   int scan_step   = itableOffsetEntry::size() * wordSize;
 4351   int vte_size    = vtableEntry::size_in_bytes();
 4352   Address::ScaleFactor times_vte_scale = Address::times_ptr;
 4353   assert(vte_size == wordSize, "else adjust times_vte_scale");
 4354 
 4355   movl(scan_temp, Address(recv_klass, Klass::vtable_length_offset()));
 4356 
 4357   // Could store the aligned, prescaled offset in the klass.
 4358   lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
 4359 
 4360   if (return_method) {
 4361     // Adjust recv_klass by scaled itable_index, so we can free itable_index.
 4362     assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
 4363     lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
 4364   }
 4365 
 4366   // for (scan = klass->itable(); scan->interface() != nullptr; scan += scan_step) {
 4367   //   if (scan->interface() == intf) {
 4368   //     result = (klass + scan->offset() + itable_index);
 4369   //   }
 4370   // }
 4371   Label search, found_method;
 4372 
 4373   for (int peel = 1; peel >= 0; peel--) {
 4374     movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset()));
 4375     cmpptr(intf_klass, method_result);
 4376 
 4377     if (peel) {
 4378       jccb(Assembler::equal, found_method);
 4379     } else {
 4380       jccb(Assembler::notEqual, search);
 4381       // (invert the test to fall through to found_method...)
 4382     }
 4383 
 4384     if (!peel)  break;
 4385 
 4386     bind(search);
 4387 
 4388     // Check that the previous entry is non-null.  A null entry means that
 4389     // the receiver class doesn't implement the interface, and wasn't the
 4390     // same as when the caller was compiled.
 4391     testptr(method_result, method_result);
 4392     jcc(Assembler::zero, L_no_such_interface);
 4393     addptr(scan_temp, scan_step);
 4394   }
 4395 
 4396   bind(found_method);
 4397 
 4398   if (return_method) {
 4399     // Got a hit.
 4400     movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset()));
 4401     movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
 4402   }
 4403 }
 4404 
 4405 // Look up the method for a megamorphic invokeinterface call in a single pass over itable:
 4406 // - check recv_klass (actual object class) is a subtype of resolved_klass from CompiledICData
 4407 // - find a holder_klass (class that implements the method) vtable offset and get the method from vtable by index
 4408 // The target method is determined by <holder_klass, itable_index>.
 4409 // The receiver klass is in recv_klass.
 4410 // On success, the result will be in method_result, and execution falls through.
 4411 // On failure, execution transfers to the given label.
 4412 void MacroAssembler::lookup_interface_method_stub(Register recv_klass,
 4413                                                   Register holder_klass,
 4414                                                   Register resolved_klass,
 4415                                                   Register method_result,
 4416                                                   Register scan_temp,
 4417                                                   Register temp_reg2,
 4418                                                   Register receiver,
 4419                                                   int itable_index,
 4420                                                   Label& L_no_such_interface) {
 4421   assert_different_registers(recv_klass, method_result, holder_klass, resolved_klass, scan_temp, temp_reg2, receiver);
 4422   Register temp_itbl_klass = method_result;
 4423   Register temp_reg = (temp_reg2 == noreg ? recv_klass : temp_reg2); // reuse recv_klass register on 32-bit x86 impl
 4424 
 4425   int vtable_base = in_bytes(Klass::vtable_start_offset());
 4426   int itentry_off = in_bytes(itableMethodEntry::method_offset());
 4427   int scan_step = itableOffsetEntry::size() * wordSize;
 4428   int vte_size = vtableEntry::size_in_bytes();
 4429   int ioffset = in_bytes(itableOffsetEntry::interface_offset());
 4430   int ooffset = in_bytes(itableOffsetEntry::offset_offset());
 4431   Address::ScaleFactor times_vte_scale = Address::times_ptr;
 4432   assert(vte_size == wordSize, "adjust times_vte_scale");
 4433 
 4434   Label L_loop_scan_resolved_entry, L_resolved_found, L_holder_found;
 4435 
 4436   // temp_itbl_klass = recv_klass.itable[0]
 4437   // scan_temp = &recv_klass.itable[0] + step
 4438   movl(scan_temp, Address(recv_klass, Klass::vtable_length_offset()));
 4439   movptr(temp_itbl_klass, Address(recv_klass, scan_temp, times_vte_scale, vtable_base + ioffset));
 4440   lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base + ioffset + scan_step));
 4441   xorptr(temp_reg, temp_reg);
 4442 
 4443   // Initial checks:
 4444   //   - if (holder_klass != resolved_klass), go to "scan for resolved"
 4445   //   - if (itable[0] == 0), no such interface
 4446   //   - if (itable[0] == holder_klass), shortcut to "holder found"
 4447   cmpptr(holder_klass, resolved_klass);
 4448   jccb(Assembler::notEqual, L_loop_scan_resolved_entry);
 4449   testptr(temp_itbl_klass, temp_itbl_klass);
 4450   jccb(Assembler::zero, L_no_such_interface);
 4451   cmpptr(holder_klass, temp_itbl_klass);
 4452   jccb(Assembler::equal, L_holder_found);
 4453 
 4454   // Loop: Look for holder_klass record in itable
 4455   //   do {
 4456   //     tmp = itable[index];
 4457   //     index += step;
 4458   //     if (tmp == holder_klass) {
 4459   //       goto L_holder_found; // Found!
 4460   //     }
 4461   //   } while (tmp != 0);
 4462   //   goto L_no_such_interface // Not found.
 4463   Label L_scan_holder;
 4464   bind(L_scan_holder);
 4465     movptr(temp_itbl_klass, Address(scan_temp, 0));
 4466     addptr(scan_temp, scan_step);
 4467     cmpptr(holder_klass, temp_itbl_klass);
 4468     jccb(Assembler::equal, L_holder_found);
 4469     testptr(temp_itbl_klass, temp_itbl_klass);
 4470     jccb(Assembler::notZero, L_scan_holder);
 4471 
 4472   jmpb(L_no_such_interface);
 4473 
 4474   // Loop: Look for resolved_class record in itable
 4475   //   do {
 4476   //     tmp = itable[index];
 4477   //     index += step;
 4478   //     if (tmp == holder_klass) {
 4479   //        // Also check if we have met a holder klass
 4480   //        holder_tmp = itable[index-step-ioffset];
 4481   //     }
 4482   //     if (tmp == resolved_klass) {
 4483   //        goto L_resolved_found;  // Found!
 4484   //     }
 4485   //   } while (tmp != 0);
 4486   //   goto L_no_such_interface // Not found.
 4487   //
 4488   Label L_loop_scan_resolved;
 4489   bind(L_loop_scan_resolved);
 4490     movptr(temp_itbl_klass, Address(scan_temp, 0));
 4491     addptr(scan_temp, scan_step);
 4492     bind(L_loop_scan_resolved_entry);
 4493     cmpptr(holder_klass, temp_itbl_klass);
 4494     cmovl(Assembler::equal, temp_reg, Address(scan_temp, ooffset - ioffset - scan_step));
 4495     cmpptr(resolved_klass, temp_itbl_klass);
 4496     jccb(Assembler::equal, L_resolved_found);
 4497     testptr(temp_itbl_klass, temp_itbl_klass);
 4498     jccb(Assembler::notZero, L_loop_scan_resolved);
 4499 
 4500   jmpb(L_no_such_interface);
 4501 
 4502   Label L_ready;
 4503 
 4504   // See if we already have a holder klass. If not, go and scan for it.
 4505   bind(L_resolved_found);
 4506   testptr(temp_reg, temp_reg);
 4507   jccb(Assembler::zero, L_scan_holder);
 4508   jmpb(L_ready);
 4509 
 4510   bind(L_holder_found);
 4511   movl(temp_reg, Address(scan_temp, ooffset - ioffset - scan_step));
 4512 
 4513   // Finally, temp_reg contains holder_klass vtable offset
 4514   bind(L_ready);
 4515   assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
 4516   if (temp_reg2 == noreg) { // recv_klass register is clobbered for 32-bit x86 impl
 4517     load_klass(scan_temp, receiver, noreg);
 4518     movptr(method_result, Address(scan_temp, temp_reg, Address::times_1, itable_index * wordSize + itentry_off));
 4519   } else {
 4520     movptr(method_result, Address(recv_klass, temp_reg, Address::times_1, itable_index * wordSize + itentry_off));
 4521   }
 4522 }
 4523 
 4524 
 4525 // virtual method calling
 4526 void MacroAssembler::lookup_virtual_method(Register recv_klass,
 4527                                            RegisterOrConstant vtable_index,
 4528                                            Register method_result) {
 4529   const ByteSize base = Klass::vtable_start_offset();
 4530   assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below");
 4531   Address vtable_entry_addr(recv_klass,
 4532                             vtable_index, Address::times_ptr,
 4533                             base + vtableEntry::method_offset());
 4534   movptr(method_result, vtable_entry_addr);
 4535 }
 4536 
 4537 
 4538 void MacroAssembler::check_klass_subtype(Register sub_klass,
 4539                            Register super_klass,
 4540                            Register temp_reg,
 4541                            Label& L_success) {
 4542   Label L_failure;
 4543   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, nullptr);
 4544   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, nullptr);
 4545   bind(L_failure);
 4546 }
 4547 
 4548 
 4549 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
 4550                                                    Register super_klass,
 4551                                                    Register temp_reg,
 4552                                                    Label* L_success,
 4553                                                    Label* L_failure,
 4554                                                    Label* L_slow_path,
 4555                                         RegisterOrConstant super_check_offset) {
 4556   assert_different_registers(sub_klass, super_klass, temp_reg);
 4557   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
 4558   if (super_check_offset.is_register()) {
 4559     assert_different_registers(sub_klass, super_klass,
 4560                                super_check_offset.as_register());
 4561   } else if (must_load_sco) {
 4562     assert(temp_reg != noreg, "supply either a temp or a register offset");
 4563   }
 4564 
 4565   Label L_fallthrough;
 4566   int label_nulls = 0;
 4567   if (L_success == nullptr)   { L_success   = &L_fallthrough; label_nulls++; }
 4568   if (L_failure == nullptr)   { L_failure   = &L_fallthrough; label_nulls++; }
 4569   if (L_slow_path == nullptr) { L_slow_path = &L_fallthrough; label_nulls++; }
 4570   assert(label_nulls <= 1, "at most one null in the batch");
 4571 
 4572   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
 4573   int sco_offset = in_bytes(Klass::super_check_offset_offset());
 4574   Address super_check_offset_addr(super_klass, sco_offset);
 4575 
 4576   // Hacked jcc, which "knows" that L_fallthrough, at least, is in
 4577   // range of a jccb.  If this routine grows larger, reconsider at
 4578   // least some of these.
 4579 #define local_jcc(assembler_cond, label)                                \
 4580   if (&(label) == &L_fallthrough)  jccb(assembler_cond, label);         \
 4581   else                             jcc( assembler_cond, label) /*omit semi*/
 4582 
 4583   // Hacked jmp, which may only be used just before L_fallthrough.
 4584 #define final_jmp(label)                                                \
 4585   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
 4586   else                            jmp(label)                /*omit semi*/
 4587 
 4588   // If the pointers are equal, we are done (e.g., String[] elements).
 4589   // This self-check enables sharing of secondary supertype arrays among
 4590   // non-primary types such as array-of-interface.  Otherwise, each such
 4591   // type would need its own customized SSA.
 4592   // We move this check to the front of the fast path because many
 4593   // type checks are in fact trivially successful in this manner,
 4594   // so we get a nicely predicted branch right at the start of the check.
 4595   cmpptr(sub_klass, super_klass);
 4596   local_jcc(Assembler::equal, *L_success);
 4597 
 4598   // Check the supertype display:
 4599   if (must_load_sco) {
 4600     // Positive movl does right thing on LP64.
 4601     movl(temp_reg, super_check_offset_addr);
 4602     super_check_offset = RegisterOrConstant(temp_reg);
 4603   }
 4604   Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
 4605   cmpptr(super_klass, super_check_addr); // load displayed supertype
 4606 
 4607   // This check has worked decisively for primary supers.
 4608   // Secondary supers are sought in the super_cache ('super_cache_addr').
 4609   // (Secondary supers are interfaces and very deeply nested subtypes.)
 4610   // This works in the same check above because of a tricky aliasing
 4611   // between the super_cache and the primary super display elements.
 4612   // (The 'super_check_addr' can address either, as the case requires.)
 4613   // Note that the cache is updated below if it does not help us find
 4614   // what we need immediately.
 4615   // So if it was a primary super, we can just fail immediately.
 4616   // Otherwise, it's the slow path for us (no success at this point).
 4617 
 4618   if (super_check_offset.is_register()) {
 4619     local_jcc(Assembler::equal, *L_success);
 4620     cmpl(super_check_offset.as_register(), sc_offset);
 4621     if (L_failure == &L_fallthrough) {
 4622       local_jcc(Assembler::equal, *L_slow_path);
 4623     } else {
 4624       local_jcc(Assembler::notEqual, *L_failure);
 4625       final_jmp(*L_slow_path);
 4626     }
 4627   } else if (super_check_offset.as_constant() == sc_offset) {
 4628     // Need a slow path; fast failure is impossible.
 4629     if (L_slow_path == &L_fallthrough) {
 4630       local_jcc(Assembler::equal, *L_success);
 4631     } else {
 4632       local_jcc(Assembler::notEqual, *L_slow_path);
 4633       final_jmp(*L_success);
 4634     }
 4635   } else {
 4636     // No slow path; it's a fast decision.
 4637     if (L_failure == &L_fallthrough) {
 4638       local_jcc(Assembler::equal, *L_success);
 4639     } else {
 4640       local_jcc(Assembler::notEqual, *L_failure);
 4641       final_jmp(*L_success);
 4642     }
 4643   }
 4644 
 4645   bind(L_fallthrough);
 4646 
 4647 #undef local_jcc
 4648 #undef final_jmp
 4649 }
 4650 
 4651 
 4652 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
 4653                                                    Register super_klass,
 4654                                                    Register temp_reg,
 4655                                                    Register temp2_reg,
 4656                                                    Label* L_success,
 4657                                                    Label* L_failure,
 4658                                                    bool set_cond_codes) {
 4659   assert_different_registers(sub_klass, super_klass, temp_reg);
 4660   if (temp2_reg != noreg)
 4661     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
 4662 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
 4663 
 4664   Label L_fallthrough;
 4665   int label_nulls = 0;
 4666   if (L_success == nullptr)   { L_success   = &L_fallthrough; label_nulls++; }
 4667   if (L_failure == nullptr)   { L_failure   = &L_fallthrough; label_nulls++; }
 4668   assert(label_nulls <= 1, "at most one null in the batch");
 4669 
 4670   // a couple of useful fields in sub_klass:
 4671   int ss_offset = in_bytes(Klass::secondary_supers_offset());
 4672   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
 4673   Address secondary_supers_addr(sub_klass, ss_offset);
 4674   Address super_cache_addr(     sub_klass, sc_offset);
 4675 
 4676   // Do a linear scan of the secondary super-klass chain.
 4677   // This code is rarely used, so simplicity is a virtue here.
 4678   // The repne_scan instruction uses fixed registers, which we must spill.
 4679   // Don't worry too much about pre-existing connections with the input regs.
 4680 
 4681   assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
 4682   assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)
 4683 
 4684   // Get super_klass value into rax (even if it was in rdi or rcx).
 4685   bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
 4686   if (super_klass != rax) {
 4687     if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
 4688     mov(rax, super_klass);
 4689   }
 4690   if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
 4691   if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }
 4692 
 4693 #ifndef PRODUCT
 4694   uint* pst_counter = &SharedRuntime::_partial_subtype_ctr;
 4695   ExternalAddress pst_counter_addr((address) pst_counter);
 4696   NOT_LP64(  incrementl(pst_counter_addr) );
 4697   LP64_ONLY( lea(rcx, pst_counter_addr) );
 4698   LP64_ONLY( incrementl(Address(rcx, 0)) );
 4699 #endif //PRODUCT
 4700 
 4701   // We will consult the secondary-super array.
 4702   movptr(rdi, secondary_supers_addr);
 4703   // Load the array length.  (Positive movl does right thing on LP64.)
 4704   movl(rcx, Address(rdi, Array<Klass*>::length_offset_in_bytes()));
 4705   // Skip to start of data.
 4706   addptr(rdi, Array<Klass*>::base_offset_in_bytes());
 4707 
 4708   // Scan RCX words at [RDI] for an occurrence of RAX.
 4709   // Set NZ/Z based on last compare.
 4710   // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
 4711   // not change flags (only scas instruction which is repeated sets flags).
 4712   // Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
 4713 
 4714     testptr(rax,rax); // Set Z = 0
 4715     repne_scan();
 4716 
 4717   // Unspill the temp. registers:
 4718   if (pushed_rdi)  pop(rdi);
 4719   if (pushed_rcx)  pop(rcx);
 4720   if (pushed_rax)  pop(rax);
 4721 
 4722   if (set_cond_codes) {
 4723     // Special hack for the AD files:  rdi is guaranteed non-zero.
 4724     assert(!pushed_rdi, "rdi must be left non-null");
 4725     // Also, the condition codes are properly set Z/NZ on succeed/failure.
 4726   }
 4727 
 4728   if (L_failure == &L_fallthrough)
 4729         jccb(Assembler::notEqual, *L_failure);
 4730   else  jcc(Assembler::notEqual, *L_failure);
 4731 
 4732   // Success.  Cache the super we found and proceed in triumph.
 4733   movptr(super_cache_addr, super_klass);
 4734 
 4735   if (L_success != &L_fallthrough) {
 4736     jmp(*L_success);
 4737   }
 4738 
 4739 #undef IS_A_TEMP
 4740 
 4741   bind(L_fallthrough);
 4742 }
 4743 
 4744 #ifdef _LP64
 4745 
 4746 // population_count variant for running without the POPCNT
 4747 // instruction, which was introduced with SSE4.2 in 2008.
 4748 void MacroAssembler::population_count(Register dst, Register src,
 4749                                       Register scratch1, Register scratch2) {
 4750   assert_different_registers(src, scratch1, scratch2);
 4751   if (UsePopCountInstruction) {
 4752     Assembler::popcntq(dst, src);
 4753   } else {
 4754     assert_different_registers(src, scratch1, scratch2);
 4755     assert_different_registers(dst, scratch1, scratch2);
 4756     Label loop, done;
 4757 
 4758     mov(scratch1, src);
 4759     // dst = 0;
 4760     // while(scratch1 != 0) {
 4761     //   dst++;
 4762     //   scratch1 &= (scratch1 - 1);
 4763     // }
 4764     xorl(dst, dst);
 4765     testq(scratch1, scratch1);
 4766     jccb(Assembler::equal, done);
 4767     {
 4768       bind(loop);
 4769       incq(dst);
 4770       movq(scratch2, scratch1);
 4771       decq(scratch2);
 4772       andq(scratch1, scratch2);
 4773       jccb(Assembler::notEqual, loop);
 4774     }
 4775     bind(done);
 4776   }
 4777 }
 4778 
 4779 // Ensure that the inline code and the stub are using the same registers.
 4780 #define LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS                      \
 4781 do {                                                                 \
 4782   assert(r_super_klass  == rax, "mismatch");                         \
 4783   assert(r_array_base   == rbx, "mismatch");                         \
 4784   assert(r_array_length == rcx, "mismatch");                         \
 4785   assert(r_array_index  == rdx, "mismatch");                         \
 4786   assert(r_sub_klass    == rsi || r_sub_klass == noreg, "mismatch"); \
 4787   assert(r_bitmap       == r11 || r_bitmap    == noreg, "mismatch"); \
 4788   assert(result         == rdi || result      == noreg, "mismatch"); \
 4789 } while(0)
 4790 
 4791 void MacroAssembler::lookup_secondary_supers_table(Register r_sub_klass,
 4792                                                    Register r_super_klass,
 4793                                                    Register temp1,
 4794                                                    Register temp2,
 4795                                                    Register temp3,
 4796                                                    Register temp4,
 4797                                                    Register result,
 4798                                                    u1 super_klass_slot) {
 4799   assert_different_registers(r_sub_klass, r_super_klass, temp1, temp2, temp3, temp4, result);
 4800 
 4801   Label L_fallthrough, L_success, L_failure;
 4802 
 4803   BLOCK_COMMENT("lookup_secondary_supers_table {");
 4804 
 4805   const Register
 4806     r_array_index  = temp1,
 4807     r_array_length = temp2,
 4808     r_array_base   = temp3,
 4809     r_bitmap       = temp4;
 4810 
 4811   LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS;
 4812 
 4813   xorq(result, result); // = 0
 4814 
 4815   movq(r_bitmap, Address(r_sub_klass, Klass::bitmap_offset()));
 4816   movq(r_array_index, r_bitmap);
 4817 
 4818   // First check the bitmap to see if super_klass might be present. If
 4819   // the bit is zero, we are certain that super_klass is not one of
 4820   // the secondary supers.
 4821   u1 bit = super_klass_slot;
 4822   {
 4823     // NB: If the count in a x86 shift instruction is 0, the flags are
 4824     // not affected, so we do a testq instead.
 4825     int shift_count = Klass::SECONDARY_SUPERS_TABLE_MASK - bit;
 4826     if (shift_count != 0) {
 4827       salq(r_array_index, shift_count);
 4828     } else {
 4829       testq(r_array_index, r_array_index);
 4830     }
 4831   }
 4832   // We test the MSB of r_array_index, i.e. its sign bit
 4833   jcc(Assembler::positive, L_failure);
 4834 
 4835   // Get the first array index that can contain super_klass into r_array_index.
 4836   if (bit != 0) {
 4837     population_count(r_array_index, r_array_index, temp2, temp3);
 4838   } else {
 4839     movl(r_array_index, 1);
 4840   }
 4841   // NB! r_array_index is off by 1. It is compensated by keeping r_array_base off by 1 word.
 4842 
 4843   // We will consult the secondary-super array.
 4844   movptr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset())));
 4845 
 4846   // We're asserting that the first word in an Array<Klass*> is the
 4847   // length, and the second word is the first word of the data. If
 4848   // that ever changes, r_array_base will have to be adjusted here.
 4849   assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "Adjust this code");
 4850   assert(Array<Klass*>::length_offset_in_bytes() == 0, "Adjust this code");
 4851 
 4852   cmpq(r_super_klass, Address(r_array_base, r_array_index, Address::times_8));
 4853   jccb(Assembler::equal, L_success);
 4854 
 4855   // Is there another entry to check? Consult the bitmap.
 4856   btq(r_bitmap, (bit + 1) & Klass::SECONDARY_SUPERS_TABLE_MASK);
 4857   jccb(Assembler::carryClear, L_failure);
 4858 
 4859   // Linear probe. Rotate the bitmap so that the next bit to test is
 4860   // in Bit 1.
 4861   if (bit != 0) {
 4862     rorq(r_bitmap, bit);
 4863   }
 4864 
 4865   // Calls into the stub generated by lookup_secondary_supers_table_slow_path.
 4866   // Arguments: r_super_klass, r_array_base, r_array_index, r_bitmap.
 4867   // Kills: r_array_length.
 4868   // Returns: result.
 4869   call(RuntimeAddress(StubRoutines::lookup_secondary_supers_table_slow_path_stub()));
 4870   // Result (0/1) is in rdi
 4871   jmpb(L_fallthrough);
 4872 
 4873   bind(L_failure);
 4874   incq(result); // 0 => 1
 4875 
 4876   bind(L_success);
 4877   // result = 0;
 4878 
 4879   bind(L_fallthrough);
 4880   BLOCK_COMMENT("} lookup_secondary_supers_table");
 4881 
 4882   if (VerifySecondarySupers) {
 4883     verify_secondary_supers_table(r_sub_klass, r_super_klass, result,
 4884                                   temp1, temp2, temp3);
 4885   }
 4886 }
 4887 
 4888 void MacroAssembler::repne_scanq(Register addr, Register value, Register count, Register limit,
 4889                                  Label* L_success, Label* L_failure) {
 4890   Label L_loop, L_fallthrough;
 4891   {
 4892     int label_nulls = 0;
 4893     if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; }
 4894     if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; }
 4895     assert(label_nulls <= 1, "at most one null in the batch");
 4896   }
 4897   bind(L_loop);
 4898   cmpq(value, Address(addr, count, Address::times_8));
 4899   jcc(Assembler::equal, *L_success);
 4900   addl(count, 1);
 4901   cmpl(count, limit);
 4902   jcc(Assembler::less, L_loop);
 4903 
 4904   if (&L_fallthrough != L_failure) {
 4905     jmp(*L_failure);
 4906   }
 4907   bind(L_fallthrough);
 4908 }
 4909 
 4910 // Called by code generated by check_klass_subtype_slow_path
 4911 // above. This is called when there is a collision in the hashed
 4912 // lookup in the secondary supers array.
 4913 void MacroAssembler::lookup_secondary_supers_table_slow_path(Register r_super_klass,
 4914                                                              Register r_array_base,
 4915                                                              Register r_array_index,
 4916                                                              Register r_bitmap,
 4917                                                              Register temp1,
 4918                                                              Register temp2,
 4919                                                              Label* L_success,
 4920                                                              Label* L_failure) {
 4921   assert_different_registers(r_super_klass, r_array_base, r_array_index, r_bitmap, temp1, temp2);
 4922 
 4923   const Register
 4924     r_array_length = temp1,
 4925     r_sub_klass    = noreg,
 4926     result         = noreg;
 4927 
 4928   LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS;
 4929 
 4930   Label L_fallthrough;
 4931   int label_nulls = 0;
 4932   if (L_success == nullptr)   { L_success   = &L_fallthrough; label_nulls++; }
 4933   if (L_failure == nullptr)   { L_failure   = &L_fallthrough; label_nulls++; }
 4934   assert(label_nulls <= 1, "at most one null in the batch");
 4935 
 4936   // Load the array length.
 4937   movl(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes()));
 4938   // And adjust the array base to point to the data.
 4939   // NB! Effectively increments current slot index by 1.
 4940   assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "");
 4941   addptr(r_array_base, Array<Klass*>::base_offset_in_bytes());
 4942 
 4943   // Linear probe
 4944   Label L_huge;
 4945 
 4946   // The bitmap is full to bursting.
 4947   // Implicit invariant: BITMAP_FULL implies (length > 0)
 4948   cmpl(r_array_length, (int32_t)Klass::SECONDARY_SUPERS_TABLE_SIZE - 2);
 4949   jcc(Assembler::greater, L_huge);
 4950 
 4951   // NB! Our caller has checked bits 0 and 1 in the bitmap. The
 4952   // current slot (at secondary_supers[r_array_index]) has not yet
 4953   // been inspected, and r_array_index may be out of bounds if we
 4954   // wrapped around the end of the array.
 4955 
 4956   { // This is conventional linear probing, but instead of terminating
 4957     // when a null entry is found in the table, we maintain a bitmap
 4958     // in which a 0 indicates missing entries.
 4959     // The check above guarantees there are 0s in the bitmap, so the loop
 4960     // eventually terminates.
 4961 
 4962     xorl(temp2, temp2); // = 0;
 4963 
 4964     Label L_again;
 4965     bind(L_again);
 4966 
 4967     // Check for array wraparound.
 4968     cmpl(r_array_index, r_array_length);
 4969     cmovl(Assembler::greaterEqual, r_array_index, temp2);
 4970 
 4971     cmpq(r_super_klass, Address(r_array_base, r_array_index, Address::times_8));
 4972     jcc(Assembler::equal, *L_success);
 4973 
 4974     // If the next bit in bitmap is zero, we're done.
 4975     btq(r_bitmap, 2); // look-ahead check (Bit 2); Bits 0 and 1 are tested by now
 4976     jcc(Assembler::carryClear, *L_failure);
 4977 
 4978     rorq(r_bitmap, 1); // Bits 1/2 => 0/1
 4979     addl(r_array_index, 1);
 4980 
 4981     jmp(L_again);
 4982   }
 4983 
 4984   { // Degenerate case: more than 64 secondary supers.
 4985     // FIXME: We could do something smarter here, maybe a vectorized
 4986     // comparison or a binary search, but is that worth any added
 4987     // complexity?
 4988     bind(L_huge);
 4989     xorl(r_array_index, r_array_index); // = 0
 4990     repne_scanq(r_array_base, r_super_klass, r_array_index, r_array_length,
 4991                 L_success,
 4992                 (&L_fallthrough != L_failure ? L_failure : nullptr));
 4993 
 4994     bind(L_fallthrough);
 4995   }
 4996 }
 4997 
 4998 struct VerifyHelperArguments {
 4999   Klass* _super;
 5000   Klass* _sub;
 5001   intptr_t _linear_result;
 5002   intptr_t _table_result;
 5003 };
 5004 
 5005 static void verify_secondary_supers_table_helper(const char* msg, VerifyHelperArguments* args) {
 5006   Klass::on_secondary_supers_verification_failure(args->_super,
 5007                                                   args->_sub,
 5008                                                   args->_linear_result,
 5009                                                   args->_table_result,
 5010                                                   msg);
 5011 }
 5012 
 5013 // Make sure that the hashed lookup and a linear scan agree.
 5014 void MacroAssembler::verify_secondary_supers_table(Register r_sub_klass,
 5015                                                    Register r_super_klass,
 5016                                                    Register result,
 5017                                                    Register temp1,
 5018                                                    Register temp2,
 5019                                                    Register temp3) {
 5020   const Register
 5021       r_array_index  = temp1,
 5022       r_array_length = temp2,
 5023       r_array_base   = temp3,
 5024       r_bitmap       = noreg;
 5025 
 5026   LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS;
 5027 
 5028   BLOCK_COMMENT("verify_secondary_supers_table {");
 5029 
 5030   Label L_success, L_failure, L_check, L_done;
 5031 
 5032   movptr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset())));
 5033   movl(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes()));
 5034   // And adjust the array base to point to the data.
 5035   addptr(r_array_base, Array<Klass*>::base_offset_in_bytes());
 5036 
 5037   testl(r_array_length, r_array_length); // array_length == 0?
 5038   jcc(Assembler::zero, L_failure);
 5039 
 5040   movl(r_array_index, 0);
 5041   repne_scanq(r_array_base, r_super_klass, r_array_index, r_array_length, &L_success);
 5042   // fall through to L_failure
 5043 
 5044   const Register linear_result = r_array_index; // reuse temp1
 5045 
 5046   bind(L_failure); // not present
 5047   movl(linear_result, 1);
 5048   jmp(L_check);
 5049 
 5050   bind(L_success); // present
 5051   movl(linear_result, 0);
 5052 
 5053   bind(L_check);
 5054   cmpl(linear_result, result);
 5055   jcc(Assembler::equal, L_done);
 5056 
 5057   { // To avoid calling convention issues, build a record on the stack
 5058     // and pass the pointer to that instead.
 5059     push(result);
 5060     push(linear_result);
 5061     push(r_sub_klass);
 5062     push(r_super_klass);
 5063     movptr(c_rarg1, rsp);
 5064     movptr(c_rarg0, (uintptr_t) "mismatch");
 5065     call(RuntimeAddress(CAST_FROM_FN_PTR(address, verify_secondary_supers_table_helper)));
 5066     should_not_reach_here();
 5067   }
 5068   bind(L_done);
 5069 
 5070   BLOCK_COMMENT("} verify_secondary_supers_table");
 5071 }
 5072 
 5073 #undef LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS
 5074 
 5075 #endif // LP64
 5076 
 5077 void MacroAssembler::clinit_barrier(Register klass, Register thread, Label* L_fast_path, Label* L_slow_path) {
 5078   assert(L_fast_path != nullptr || L_slow_path != nullptr, "at least one is required");
 5079 
 5080   Label L_fallthrough;
 5081   if (L_fast_path == nullptr) {
 5082     L_fast_path = &L_fallthrough;
 5083   } else if (L_slow_path == nullptr) {
 5084     L_slow_path = &L_fallthrough;
 5085   }
 5086 
 5087   // Fast path check: class is fully initialized
 5088   cmpb(Address(klass, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized);
 5089   jcc(Assembler::equal, *L_fast_path);
 5090 
 5091   // Fast path check: current thread is initializer thread
 5092   cmpptr(thread, Address(klass, InstanceKlass::init_thread_offset()));
 5093   if (L_slow_path == &L_fallthrough) {
 5094     jcc(Assembler::equal, *L_fast_path);
 5095     bind(*L_slow_path);
 5096   } else if (L_fast_path == &L_fallthrough) {
 5097     jcc(Assembler::notEqual, *L_slow_path);
 5098     bind(*L_fast_path);
 5099   } else {
 5100     Unimplemented();
 5101   }
 5102 }
 5103 
 5104 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) {
 5105   if (VM_Version::supports_cmov()) {
 5106     cmovl(cc, dst, src);
 5107   } else {
 5108     Label L;
 5109     jccb(negate_condition(cc), L);
 5110     movl(dst, src);
 5111     bind(L);
 5112   }
 5113 }
 5114 
 5115 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) {
 5116   if (VM_Version::supports_cmov()) {
 5117     cmovl(cc, dst, src);
 5118   } else {
 5119     Label L;
 5120     jccb(negate_condition(cc), L);
 5121     movl(dst, src);
 5122     bind(L);
 5123   }
 5124 }
 5125 
 5126 void MacroAssembler::_verify_oop(Register reg, const char* s, const char* file, int line) {
 5127   if (!VerifyOops) return;




 5128 
 5129   BLOCK_COMMENT("verify_oop {");
 5130 #ifdef _LP64
 5131   push(rscratch1);
 5132 #endif
 5133   push(rax);                          // save rax
 5134   push(reg);                          // pass register argument
 5135 
 5136   // Pass register number to verify_oop_subroutine
 5137   const char* b = nullptr;
 5138   {
 5139     ResourceMark rm;
 5140     stringStream ss;
 5141     ss.print("verify_oop: %s: %s (%s:%d)", reg->name(), s, file, line);
 5142     b = code_string(ss.as_string());
 5143   }
 5144   AddressLiteral buffer((address) b, external_word_Relocation::spec_for_immediate());
 5145   pushptr(buffer.addr(), rscratch1);
 5146 
 5147   // call indirectly to solve generation ordering problem
 5148   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
 5149   call(rax);
 5150   // Caller pops the arguments (oop, message) and restores rax, r10
 5151   BLOCK_COMMENT("} verify_oop");
 5152 }
 5153 
 5154 void MacroAssembler::vallones(XMMRegister dst, int vector_len) {
 5155   if (UseAVX > 2 && (vector_len == Assembler::AVX_512bit || VM_Version::supports_avx512vl())) {
 5156     // Only pcmpeq has dependency breaking treatment (i.e the execution can begin without
 5157     // waiting for the previous result on dst), not vpcmpeqd, so just use vpternlog
 5158     vpternlogd(dst, 0xFF, dst, dst, vector_len);
 5159   } else if (VM_Version::supports_avx()) {
 5160     vpcmpeqd(dst, dst, dst, vector_len);
 5161   } else {
 5162     assert(VM_Version::supports_sse2(), "");
 5163     pcmpeqd(dst, dst);
 5164   }
 5165 }
 5166 
 5167 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
 5168                                          int extra_slot_offset) {
 5169   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
 5170   int stackElementSize = Interpreter::stackElementSize;
 5171   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
 5172 #ifdef ASSERT
 5173   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
 5174   assert(offset1 - offset == stackElementSize, "correct arithmetic");
 5175 #endif
 5176   Register             scale_reg    = noreg;
 5177   Address::ScaleFactor scale_factor = Address::no_scale;
 5178   if (arg_slot.is_constant()) {
 5179     offset += arg_slot.as_constant() * stackElementSize;
 5180   } else {
 5181     scale_reg    = arg_slot.as_register();
 5182     scale_factor = Address::times(stackElementSize);
 5183   }
 5184   offset += wordSize;           // return PC is on stack
 5185   return Address(rsp, scale_reg, scale_factor, offset);
 5186 }
 5187 
 5188 void MacroAssembler::_verify_oop_addr(Address addr, const char* s, const char* file, int line) {
 5189   if (!VerifyOops) return;




 5190 
 5191 #ifdef _LP64
 5192   push(rscratch1);
 5193 #endif
 5194   push(rax); // save rax,
 5195   // addr may contain rsp so we will have to adjust it based on the push
 5196   // we just did (and on 64 bit we do two pushes)
 5197   // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
 5198   // stores rax into addr which is backwards of what was intended.
 5199   if (addr.uses(rsp)) {
 5200     lea(rax, addr);
 5201     pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord));
 5202   } else {
 5203     pushptr(addr);
 5204   }
 5205 
 5206   // Pass register number to verify_oop_subroutine
 5207   const char* b = nullptr;
 5208   {
 5209     ResourceMark rm;
 5210     stringStream ss;
 5211     ss.print("verify_oop_addr: %s (%s:%d)", s, file, line);
 5212     b = code_string(ss.as_string());
 5213   }
 5214   AddressLiteral buffer((address) b, external_word_Relocation::spec_for_immediate());
 5215   pushptr(buffer.addr(), rscratch1);
 5216 
 5217   // call indirectly to solve generation ordering problem
 5218   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
 5219   call(rax);
 5220   // Caller pops the arguments (addr, message) and restores rax, r10.
 5221 }
 5222 
 5223 void MacroAssembler::verify_tlab() {
 5224 #ifdef ASSERT
 5225   if (UseTLAB && VerifyOops) {
 5226     Label next, ok;
 5227     Register t1 = rsi;
 5228     Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);
 5229 
 5230     push(t1);
 5231     NOT_LP64(push(thread_reg));
 5232     NOT_LP64(get_thread(thread_reg));
 5233 
 5234     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
 5235     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
 5236     jcc(Assembler::aboveEqual, next);
 5237     STOP("assert(top >= start)");
 5238     should_not_reach_here();
 5239 
 5240     bind(next);
 5241     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
 5242     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
 5243     jcc(Assembler::aboveEqual, ok);
 5244     STOP("assert(top <= end)");
 5245     should_not_reach_here();
 5246 
 5247     bind(ok);
 5248     NOT_LP64(pop(thread_reg));
 5249     pop(t1);
 5250   }
 5251 #endif
 5252 }
 5253 
 5254 class ControlWord {
 5255  public:
 5256   int32_t _value;
 5257 
 5258   int  rounding_control() const        { return  (_value >> 10) & 3      ; }
 5259   int  precision_control() const       { return  (_value >>  8) & 3      ; }
 5260   bool precision() const               { return ((_value >>  5) & 1) != 0; }
 5261   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
 5262   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
 5263   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
 5264   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
 5265   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
 5266 
 5267   void print() const {
 5268     // rounding control
 5269     const char* rc;
 5270     switch (rounding_control()) {
 5271       case 0: rc = "round near"; break;
 5272       case 1: rc = "round down"; break;
 5273       case 2: rc = "round up  "; break;
 5274       case 3: rc = "chop      "; break;
 5275       default:
 5276         rc = nullptr; // silence compiler warnings
 5277         fatal("Unknown rounding control: %d", rounding_control());
 5278     };
 5279     // precision control
 5280     const char* pc;
 5281     switch (precision_control()) {
 5282       case 0: pc = "24 bits "; break;
 5283       case 1: pc = "reserved"; break;
 5284       case 2: pc = "53 bits "; break;
 5285       case 3: pc = "64 bits "; break;
 5286       default:
 5287         pc = nullptr; // silence compiler warnings
 5288         fatal("Unknown precision control: %d", precision_control());
 5289     };
 5290     // flags
 5291     char f[9];
 5292     f[0] = ' ';
 5293     f[1] = ' ';
 5294     f[2] = (precision   ()) ? 'P' : 'p';
 5295     f[3] = (underflow   ()) ? 'U' : 'u';
 5296     f[4] = (overflow    ()) ? 'O' : 'o';
 5297     f[5] = (zero_divide ()) ? 'Z' : 'z';
 5298     f[6] = (denormalized()) ? 'D' : 'd';
 5299     f[7] = (invalid     ()) ? 'I' : 'i';
 5300     f[8] = '\x0';
 5301     // output
 5302     printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
 5303   }
 5304 
 5305 };
 5306 
 5307 class StatusWord {
 5308  public:
 5309   int32_t _value;
 5310 
 5311   bool busy() const                    { return ((_value >> 15) & 1) != 0; }
 5312   bool C3() const                      { return ((_value >> 14) & 1) != 0; }
 5313   bool C2() const                      { return ((_value >> 10) & 1) != 0; }
 5314   bool C1() const                      { return ((_value >>  9) & 1) != 0; }
 5315   bool C0() const                      { return ((_value >>  8) & 1) != 0; }
 5316   int  top() const                     { return  (_value >> 11) & 7      ; }
 5317   bool error_status() const            { return ((_value >>  7) & 1) != 0; }
 5318   bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
 5319   bool precision() const               { return ((_value >>  5) & 1) != 0; }
 5320   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
 5321   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
 5322   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
 5323   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
 5324   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
 5325 
 5326   void print() const {
 5327     // condition codes
 5328     char c[5];
 5329     c[0] = (C3()) ? '3' : '-';
 5330     c[1] = (C2()) ? '2' : '-';
 5331     c[2] = (C1()) ? '1' : '-';
 5332     c[3] = (C0()) ? '0' : '-';
 5333     c[4] = '\x0';
 5334     // flags
 5335     char f[9];
 5336     f[0] = (error_status()) ? 'E' : '-';
 5337     f[1] = (stack_fault ()) ? 'S' : '-';
 5338     f[2] = (precision   ()) ? 'P' : '-';
 5339     f[3] = (underflow   ()) ? 'U' : '-';
 5340     f[4] = (overflow    ()) ? 'O' : '-';
 5341     f[5] = (zero_divide ()) ? 'Z' : '-';
 5342     f[6] = (denormalized()) ? 'D' : '-';
 5343     f[7] = (invalid     ()) ? 'I' : '-';
 5344     f[8] = '\x0';
 5345     // output
 5346     printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
 5347   }
 5348 
 5349 };
 5350 
 5351 class TagWord {
 5352  public:
 5353   int32_t _value;
 5354 
 5355   int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
 5356 
 5357   void print() const {
 5358     printf("%04x", _value & 0xFFFF);
 5359   }
 5360 
 5361 };
 5362 
 5363 class FPU_Register {
 5364  public:
 5365   int32_t _m0;
 5366   int32_t _m1;
 5367   int16_t _ex;
 5368 
 5369   bool is_indefinite() const           {
 5370     return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
 5371   }
 5372 
 5373   void print() const {
 5374     char  sign = (_ex < 0) ? '-' : '+';
 5375     const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
 5376     printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
 5377   };
 5378 
 5379 };
 5380 
 5381 class FPU_State {
 5382  public:
 5383   enum {
 5384     register_size       = 10,
 5385     number_of_registers =  8,
 5386     register_mask       =  7
 5387   };
 5388 
 5389   ControlWord  _control_word;
 5390   StatusWord   _status_word;
 5391   TagWord      _tag_word;
 5392   int32_t      _error_offset;
 5393   int32_t      _error_selector;
 5394   int32_t      _data_offset;
 5395   int32_t      _data_selector;
 5396   int8_t       _register[register_size * number_of_registers];
 5397 
 5398   int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
 5399   FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }
 5400 
 5401   const char* tag_as_string(int tag) const {
 5402     switch (tag) {
 5403       case 0: return "valid";
 5404       case 1: return "zero";
 5405       case 2: return "special";
 5406       case 3: return "empty";
 5407     }
 5408     ShouldNotReachHere();
 5409     return nullptr;
 5410   }
 5411 
 5412   void print() const {
 5413     // print computation registers
 5414     { int t = _status_word.top();
 5415       for (int i = 0; i < number_of_registers; i++) {
 5416         int j = (i - t) & register_mask;
 5417         printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
 5418         st(j)->print();
 5419         printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
 5420       }
 5421     }
 5422     printf("\n");
 5423     // print control registers
 5424     printf("ctrl = "); _control_word.print(); printf("\n");
 5425     printf("stat = "); _status_word .print(); printf("\n");
 5426     printf("tags = "); _tag_word    .print(); printf("\n");
 5427   }
 5428 
 5429 };
 5430 
 5431 class Flag_Register {
 5432  public:
 5433   int32_t _value;
 5434 
 5435   bool overflow() const                { return ((_value >> 11) & 1) != 0; }
 5436   bool direction() const               { return ((_value >> 10) & 1) != 0; }
 5437   bool sign() const                    { return ((_value >>  7) & 1) != 0; }
 5438   bool zero() const                    { return ((_value >>  6) & 1) != 0; }
 5439   bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
 5440   bool parity() const                  { return ((_value >>  2) & 1) != 0; }
 5441   bool carry() const                   { return ((_value >>  0) & 1) != 0; }
 5442 
 5443   void print() const {
 5444     // flags
 5445     char f[8];
 5446     f[0] = (overflow       ()) ? 'O' : '-';
 5447     f[1] = (direction      ()) ? 'D' : '-';
 5448     f[2] = (sign           ()) ? 'S' : '-';
 5449     f[3] = (zero           ()) ? 'Z' : '-';
 5450     f[4] = (auxiliary_carry()) ? 'A' : '-';
 5451     f[5] = (parity         ()) ? 'P' : '-';
 5452     f[6] = (carry          ()) ? 'C' : '-';
 5453     f[7] = '\x0';
 5454     // output
 5455     printf("%08x  flags = %s", _value, f);
 5456   }
 5457 
 5458 };
 5459 
 5460 class IU_Register {
 5461  public:
 5462   int32_t _value;
 5463 
 5464   void print() const {
 5465     printf("%08x  %11d", _value, _value);
 5466   }
 5467 
 5468 };
 5469 
 5470 class IU_State {
 5471  public:
 5472   Flag_Register _eflags;
 5473   IU_Register   _rdi;
 5474   IU_Register   _rsi;
 5475   IU_Register   _rbp;
 5476   IU_Register   _rsp;
 5477   IU_Register   _rbx;
 5478   IU_Register   _rdx;
 5479   IU_Register   _rcx;
 5480   IU_Register   _rax;
 5481 
 5482   void print() const {
 5483     // computation registers
 5484     printf("rax,  = "); _rax.print(); printf("\n");
 5485     printf("rbx,  = "); _rbx.print(); printf("\n");
 5486     printf("rcx  = "); _rcx.print(); printf("\n");
 5487     printf("rdx  = "); _rdx.print(); printf("\n");
 5488     printf("rdi  = "); _rdi.print(); printf("\n");
 5489     printf("rsi  = "); _rsi.print(); printf("\n");
 5490     printf("rbp,  = "); _rbp.print(); printf("\n");
 5491     printf("rsp  = "); _rsp.print(); printf("\n");
 5492     printf("\n");
 5493     // control registers
 5494     printf("flgs = "); _eflags.print(); printf("\n");
 5495   }
 5496 };
 5497 
 5498 
 5499 class CPU_State {
 5500  public:
 5501   FPU_State _fpu_state;
 5502   IU_State  _iu_state;
 5503 
 5504   void print() const {
 5505     printf("--------------------------------------------------\n");
 5506     _iu_state .print();
 5507     printf("\n");
 5508     _fpu_state.print();
 5509     printf("--------------------------------------------------\n");
 5510   }
 5511 
 5512 };
 5513 
 5514 
 5515 static void _print_CPU_state(CPU_State* state) {
 5516   state->print();
 5517 };
 5518 
 5519 
 5520 void MacroAssembler::print_CPU_state() {
 5521   push_CPU_state();
 5522   push(rsp);                // pass CPU state
 5523   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
 5524   addptr(rsp, wordSize);       // discard argument
 5525   pop_CPU_state();
 5526 }
 5527 
 5528 
 5529 #ifndef _LP64
 5530 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
 5531   static int counter = 0;
 5532   FPU_State* fs = &state->_fpu_state;
 5533   counter++;
 5534   // For leaf calls, only verify that the top few elements remain empty.
 5535   // We only need 1 empty at the top for C2 code.
 5536   if( stack_depth < 0 ) {
 5537     if( fs->tag_for_st(7) != 3 ) {
 5538       printf("FPR7 not empty\n");
 5539       state->print();
 5540       assert(false, "error");
 5541       return false;
 5542     }
 5543     return true;                // All other stack states do not matter
 5544   }
 5545 
 5546   assert((fs->_control_word._value & 0xffff) == StubRoutines::x86::fpu_cntrl_wrd_std(),
 5547          "bad FPU control word");
 5548 
 5549   // compute stack depth
 5550   int i = 0;
 5551   while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
 5552   int d = i;
 5553   while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
 5554   // verify findings
 5555   if (i != FPU_State::number_of_registers) {
 5556     // stack not contiguous
 5557     printf("%s: stack not contiguous at ST%d\n", s, i);
 5558     state->print();
 5559     assert(false, "error");
 5560     return false;
 5561   }
 5562   // check if computed stack depth corresponds to expected stack depth
 5563   if (stack_depth < 0) {
 5564     // expected stack depth is -stack_depth or less
 5565     if (d > -stack_depth) {
 5566       // too many elements on the stack
 5567       printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
 5568       state->print();
 5569       assert(false, "error");
 5570       return false;
 5571     }
 5572   } else {
 5573     // expected stack depth is stack_depth
 5574     if (d != stack_depth) {
 5575       // wrong stack depth
 5576       printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
 5577       state->print();
 5578       assert(false, "error");
 5579       return false;
 5580     }
 5581   }
 5582   // everything is cool
 5583   return true;
 5584 }
 5585 
 5586 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
 5587   if (!VerifyFPU) return;
 5588   push_CPU_state();
 5589   push(rsp);                // pass CPU state
 5590   ExternalAddress msg((address) s);
 5591   // pass message string s
 5592   pushptr(msg.addr(), noreg);
 5593   push(stack_depth);        // pass stack depth
 5594   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
 5595   addptr(rsp, 3 * wordSize);   // discard arguments
 5596   // check for error
 5597   { Label L;
 5598     testl(rax, rax);
 5599     jcc(Assembler::notZero, L);
 5600     int3();                  // break if error condition
 5601     bind(L);
 5602   }
 5603   pop_CPU_state();
 5604 }
 5605 #endif // _LP64
 5606 
 5607 void MacroAssembler::restore_cpu_control_state_after_jni(Register rscratch) {
 5608   // Either restore the MXCSR register after returning from the JNI Call
 5609   // or verify that it wasn't changed (with -Xcheck:jni flag).
 5610   if (VM_Version::supports_sse()) {
 5611     if (RestoreMXCSROnJNICalls) {
 5612       ldmxcsr(ExternalAddress(StubRoutines::x86::addr_mxcsr_std()), rscratch);
 5613     } else if (CheckJNICalls) {
 5614       call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry()));
 5615     }
 5616   }
 5617   // Clear upper bits of YMM registers to avoid SSE <-> AVX transition penalty.
 5618   vzeroupper();
 5619 
 5620 #ifndef _LP64
 5621   // Either restore the x87 floating pointer control word after returning
 5622   // from the JNI call or verify that it wasn't changed.
 5623   if (CheckJNICalls) {
 5624     call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry()));
 5625   }
 5626 #endif // _LP64
 5627 }
 5628 
 5629 // ((OopHandle)result).resolve();
 5630 void MacroAssembler::resolve_oop_handle(Register result, Register tmp) {
 5631   assert_different_registers(result, tmp);
 5632 
 5633   // Only 64 bit platforms support GCs that require a tmp register
 5634   // Only IN_HEAP loads require a thread_tmp register
 5635   // OopHandle::resolve is an indirection like jobject.
 5636   access_load_at(T_OBJECT, IN_NATIVE,
 5637                  result, Address(result, 0), tmp, /*tmp_thread*/noreg);
 5638 }
 5639 
 5640 // ((WeakHandle)result).resolve();
 5641 void MacroAssembler::resolve_weak_handle(Register rresult, Register rtmp) {
 5642   assert_different_registers(rresult, rtmp);
 5643   Label resolved;
 5644 
 5645   // A null weak handle resolves to null.
 5646   cmpptr(rresult, 0);
 5647   jcc(Assembler::equal, resolved);
 5648 
 5649   // Only 64 bit platforms support GCs that require a tmp register
 5650   // Only IN_HEAP loads require a thread_tmp register
 5651   // WeakHandle::resolve is an indirection like jweak.
 5652   access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF,
 5653                  rresult, Address(rresult, 0), rtmp, /*tmp_thread*/noreg);
 5654   bind(resolved);
 5655 }
 5656 
 5657 void MacroAssembler::load_mirror(Register mirror, Register method, Register tmp) {
 5658   // get mirror
 5659   const int mirror_offset = in_bytes(Klass::java_mirror_offset());
 5660   load_method_holder(mirror, method);
 5661   movptr(mirror, Address(mirror, mirror_offset));
 5662   resolve_oop_handle(mirror, tmp);
 5663 }
 5664 
 5665 void MacroAssembler::load_method_holder_cld(Register rresult, Register rmethod) {
 5666   load_method_holder(rresult, rmethod);
 5667   movptr(rresult, Address(rresult, InstanceKlass::class_loader_data_offset()));
 5668 }
 5669 
 5670 void MacroAssembler::load_method_holder(Register holder, Register method) {
 5671   movptr(holder, Address(method, Method::const_offset()));                      // ConstMethod*
 5672   movptr(holder, Address(holder, ConstMethod::constants_offset()));             // ConstantPool*
 5673   movptr(holder, Address(holder, ConstantPool::pool_holder_offset()));          // InstanceKlass*
 5674 }
 5675 








 5676 void MacroAssembler::load_klass(Register dst, Register src, Register tmp) {
 5677   assert_different_registers(src, tmp);
 5678   assert_different_registers(dst, tmp);
 5679 #ifdef _LP64
 5680   if (UseCompressedClassPointers) {
 5681     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
 5682     decode_klass_not_null(dst, tmp);
 5683   } else
 5684 #endif
 5685     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));





 5686 }
 5687 
 5688 void MacroAssembler::store_klass(Register dst, Register src, Register tmp) {
 5689   assert_different_registers(src, tmp);
 5690   assert_different_registers(dst, tmp);
 5691 #ifdef _LP64
 5692   if (UseCompressedClassPointers) {
 5693     encode_klass_not_null(src, tmp);
 5694     movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
 5695   } else
 5696 #endif
 5697     movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
 5698 }
 5699 
 5700 void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src,
 5701                                     Register tmp1, Register thread_tmp) {
 5702   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
 5703   decorators = AccessInternal::decorator_fixup(decorators, type);
 5704   bool as_raw = (decorators & AS_RAW) != 0;
 5705   if (as_raw) {
 5706     bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1, thread_tmp);
 5707   } else {
 5708     bs->load_at(this, decorators, type, dst, src, tmp1, thread_tmp);
 5709   }
 5710 }
 5711 
 5712 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register val,
 5713                                      Register tmp1, Register tmp2, Register tmp3) {
 5714   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
 5715   decorators = AccessInternal::decorator_fixup(decorators, type);
 5716   bool as_raw = (decorators & AS_RAW) != 0;
 5717   if (as_raw) {
 5718     bs->BarrierSetAssembler::store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3);
 5719   } else {
 5720     bs->store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3);
 5721   }
 5722 }
 5723 








































 5724 void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1,
 5725                                    Register thread_tmp, DecoratorSet decorators) {
 5726   access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, thread_tmp);
 5727 }
 5728 
 5729 // Doesn't do verification, generates fixed size code
 5730 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1,
 5731                                             Register thread_tmp, DecoratorSet decorators) {
 5732   access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL | decorators, dst, src, tmp1, thread_tmp);
 5733 }
 5734 
 5735 void MacroAssembler::store_heap_oop(Address dst, Register val, Register tmp1,
 5736                                     Register tmp2, Register tmp3, DecoratorSet decorators) {
 5737   access_store_at(T_OBJECT, IN_HEAP | decorators, dst, val, tmp1, tmp2, tmp3);
 5738 }
 5739 
 5740 // Used for storing nulls.
 5741 void MacroAssembler::store_heap_oop_null(Address dst) {
 5742   access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg, noreg);
 5743 }
 5744 
 5745 #ifdef _LP64
 5746 void MacroAssembler::store_klass_gap(Register dst, Register src) {
 5747   if (UseCompressedClassPointers) {
 5748     // Store to klass gap in destination
 5749     movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
 5750   }
 5751 }
 5752 
 5753 #ifdef ASSERT
 5754 void MacroAssembler::verify_heapbase(const char* msg) {
 5755   assert (UseCompressedOops, "should be compressed");
 5756   assert (Universe::heap() != nullptr, "java heap should be initialized");
 5757   if (CheckCompressedOops) {
 5758     Label ok;
 5759     ExternalAddress src2(CompressedOops::ptrs_base_addr());
 5760     const bool is_src2_reachable = reachable(src2);
 5761     if (!is_src2_reachable) {
 5762       push(rscratch1);  // cmpptr trashes rscratch1
 5763     }
 5764     cmpptr(r12_heapbase, src2, rscratch1);
 5765     jcc(Assembler::equal, ok);
 5766     STOP(msg);
 5767     bind(ok);
 5768     if (!is_src2_reachable) {
 5769       pop(rscratch1);
 5770     }
 5771   }
 5772 }
 5773 #endif
 5774 
 5775 // Algorithm must match oop.inline.hpp encode_heap_oop.
 5776 void MacroAssembler::encode_heap_oop(Register r) {
 5777 #ifdef ASSERT
 5778   verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
 5779 #endif
 5780   verify_oop_msg(r, "broken oop in encode_heap_oop");
 5781   if (CompressedOops::base() == nullptr) {
 5782     if (CompressedOops::shift() != 0) {
 5783       assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
 5784       shrq(r, LogMinObjAlignmentInBytes);
 5785     }
 5786     return;
 5787   }
 5788   testq(r, r);
 5789   cmovq(Assembler::equal, r, r12_heapbase);
 5790   subq(r, r12_heapbase);
 5791   shrq(r, LogMinObjAlignmentInBytes);
 5792 }
 5793 
 5794 void MacroAssembler::encode_heap_oop_not_null(Register r) {
 5795 #ifdef ASSERT
 5796   verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
 5797   if (CheckCompressedOops) {
 5798     Label ok;
 5799     testq(r, r);
 5800     jcc(Assembler::notEqual, ok);
 5801     STOP("null oop passed to encode_heap_oop_not_null");
 5802     bind(ok);
 5803   }
 5804 #endif
 5805   verify_oop_msg(r, "broken oop in encode_heap_oop_not_null");
 5806   if (CompressedOops::base() != nullptr) {
 5807     subq(r, r12_heapbase);
 5808   }
 5809   if (CompressedOops::shift() != 0) {
 5810     assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
 5811     shrq(r, LogMinObjAlignmentInBytes);
 5812   }
 5813 }
 5814 
 5815 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
 5816 #ifdef ASSERT
 5817   verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
 5818   if (CheckCompressedOops) {
 5819     Label ok;
 5820     testq(src, src);
 5821     jcc(Assembler::notEqual, ok);
 5822     STOP("null oop passed to encode_heap_oop_not_null2");
 5823     bind(ok);
 5824   }
 5825 #endif
 5826   verify_oop_msg(src, "broken oop in encode_heap_oop_not_null2");
 5827   if (dst != src) {
 5828     movq(dst, src);
 5829   }
 5830   if (CompressedOops::base() != nullptr) {
 5831     subq(dst, r12_heapbase);
 5832   }
 5833   if (CompressedOops::shift() != 0) {
 5834     assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
 5835     shrq(dst, LogMinObjAlignmentInBytes);
 5836   }
 5837 }
 5838 
 5839 void  MacroAssembler::decode_heap_oop(Register r) {
 5840 #ifdef ASSERT
 5841   verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
 5842 #endif
 5843   if (CompressedOops::base() == nullptr) {
 5844     if (CompressedOops::shift() != 0) {
 5845       assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
 5846       shlq(r, LogMinObjAlignmentInBytes);
 5847     }
 5848   } else {
 5849     Label done;
 5850     shlq(r, LogMinObjAlignmentInBytes);
 5851     jccb(Assembler::equal, done);
 5852     addq(r, r12_heapbase);
 5853     bind(done);
 5854   }
 5855   verify_oop_msg(r, "broken oop in decode_heap_oop");
 5856 }
 5857 
 5858 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
 5859   // Note: it will change flags
 5860   assert (UseCompressedOops, "should only be used for compressed headers");
 5861   assert (Universe::heap() != nullptr, "java heap should be initialized");
 5862   // Cannot assert, unverified entry point counts instructions (see .ad file)
 5863   // vtableStubs also counts instructions in pd_code_size_limit.
 5864   // Also do not verify_oop as this is called by verify_oop.
 5865   if (CompressedOops::shift() != 0) {
 5866     assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
 5867     shlq(r, LogMinObjAlignmentInBytes);
 5868     if (CompressedOops::base() != nullptr) {
 5869       addq(r, r12_heapbase);
 5870     }
 5871   } else {
 5872     assert (CompressedOops::base() == nullptr, "sanity");
 5873   }
 5874 }
 5875 
 5876 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
 5877   // Note: it will change flags
 5878   assert (UseCompressedOops, "should only be used for compressed headers");
 5879   assert (Universe::heap() != nullptr, "java heap should be initialized");
 5880   // Cannot assert, unverified entry point counts instructions (see .ad file)
 5881   // vtableStubs also counts instructions in pd_code_size_limit.
 5882   // Also do not verify_oop as this is called by verify_oop.
 5883   if (CompressedOops::shift() != 0) {
 5884     assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
 5885     if (LogMinObjAlignmentInBytes == Address::times_8) {
 5886       leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
 5887     } else {
 5888       if (dst != src) {
 5889         movq(dst, src);
 5890       }
 5891       shlq(dst, LogMinObjAlignmentInBytes);
 5892       if (CompressedOops::base() != nullptr) {
 5893         addq(dst, r12_heapbase);
 5894       }
 5895     }
 5896   } else {
 5897     assert (CompressedOops::base() == nullptr, "sanity");
 5898     if (dst != src) {
 5899       movq(dst, src);
 5900     }
 5901   }
 5902 }
 5903 
 5904 void MacroAssembler::encode_klass_not_null(Register r, Register tmp) {
 5905   assert_different_registers(r, tmp);
 5906   if (CompressedKlassPointers::base() != nullptr) {
 5907     mov64(tmp, (int64_t)CompressedKlassPointers::base());
 5908     subq(r, tmp);
 5909   }
 5910   if (CompressedKlassPointers::shift() != 0) {
 5911     assert (LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong");
 5912     shrq(r, LogKlassAlignmentInBytes);
 5913   }
 5914 }
 5915 
 5916 void MacroAssembler::encode_and_move_klass_not_null(Register dst, Register src) {
 5917   assert_different_registers(src, dst);
 5918   if (CompressedKlassPointers::base() != nullptr) {
 5919     mov64(dst, -(int64_t)CompressedKlassPointers::base());
 5920     addq(dst, src);
 5921   } else {
 5922     movptr(dst, src);
 5923   }
 5924   if (CompressedKlassPointers::shift() != 0) {
 5925     assert (LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong");
 5926     shrq(dst, LogKlassAlignmentInBytes);
 5927   }
 5928 }
 5929 
 5930 void  MacroAssembler::decode_klass_not_null(Register r, Register tmp) {
 5931   assert_different_registers(r, tmp);
 5932   // Note: it will change flags
 5933   assert(UseCompressedClassPointers, "should only be used for compressed headers");
 5934   // Cannot assert, unverified entry point counts instructions (see .ad file)
 5935   // vtableStubs also counts instructions in pd_code_size_limit.
 5936   // Also do not verify_oop as this is called by verify_oop.
 5937   if (CompressedKlassPointers::shift() != 0) {
 5938     assert(LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong");
 5939     shlq(r, LogKlassAlignmentInBytes);
 5940   }
 5941   if (CompressedKlassPointers::base() != nullptr) {
 5942     mov64(tmp, (int64_t)CompressedKlassPointers::base());
 5943     addq(r, tmp);
 5944   }
 5945 }
 5946 
 5947 void  MacroAssembler::decode_and_move_klass_not_null(Register dst, Register src) {
 5948   assert_different_registers(src, dst);
 5949   // Note: it will change flags
 5950   assert (UseCompressedClassPointers, "should only be used for compressed headers");
 5951   // Cannot assert, unverified entry point counts instructions (see .ad file)
 5952   // vtableStubs also counts instructions in pd_code_size_limit.
 5953   // Also do not verify_oop as this is called by verify_oop.
 5954 
 5955   if (CompressedKlassPointers::base() == nullptr &&
 5956       CompressedKlassPointers::shift() == 0) {
 5957     // The best case scenario is that there is no base or shift. Then it is already
 5958     // a pointer that needs nothing but a register rename.
 5959     movl(dst, src);
 5960   } else {
 5961     if (CompressedKlassPointers::base() != nullptr) {
 5962       mov64(dst, (int64_t)CompressedKlassPointers::base());
 5963     } else {
 5964       xorq(dst, dst);
 5965     }
 5966     if (CompressedKlassPointers::shift() != 0) {
 5967       assert(LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong");
 5968       assert(LogKlassAlignmentInBytes == Address::times_8, "klass not aligned on 64bits?");
 5969       leaq(dst, Address(dst, src, Address::times_8, 0));
 5970     } else {
 5971       addq(dst, src);
 5972     }
 5973   }
 5974 }
 5975 
 5976 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
 5977   assert (UseCompressedOops, "should only be used for compressed headers");
 5978   assert (Universe::heap() != nullptr, "java heap should be initialized");
 5979   assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder");
 5980   int oop_index = oop_recorder()->find_index(obj);
 5981   RelocationHolder rspec = oop_Relocation::spec(oop_index);
 5982   mov_narrow_oop(dst, oop_index, rspec);
 5983 }
 5984 
 5985 void  MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
 5986   assert (UseCompressedOops, "should only be used for compressed headers");
 5987   assert (Universe::heap() != nullptr, "java heap should be initialized");
 5988   assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder");
 5989   int oop_index = oop_recorder()->find_index(obj);
 5990   RelocationHolder rspec = oop_Relocation::spec(oop_index);
 5991   mov_narrow_oop(dst, oop_index, rspec);
 5992 }
 5993 
 5994 void  MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
 5995   assert (UseCompressedClassPointers, "should only be used for compressed headers");
 5996   assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder");
 5997   int klass_index = oop_recorder()->find_index(k);
 5998   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
 5999   mov_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec);
 6000 }
 6001 
 6002 void  MacroAssembler::set_narrow_klass(Address dst, Klass* k) {
 6003   assert (UseCompressedClassPointers, "should only be used for compressed headers");
 6004   assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder");
 6005   int klass_index = oop_recorder()->find_index(k);
 6006   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
 6007   mov_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec);
 6008 }
 6009 
 6010 void  MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
 6011   assert (UseCompressedOops, "should only be used for compressed headers");
 6012   assert (Universe::heap() != nullptr, "java heap should be initialized");
 6013   assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder");
 6014   int oop_index = oop_recorder()->find_index(obj);
 6015   RelocationHolder rspec = oop_Relocation::spec(oop_index);
 6016   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
 6017 }
 6018 
 6019 void  MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
 6020   assert (UseCompressedOops, "should only be used for compressed headers");
 6021   assert (Universe::heap() != nullptr, "java heap should be initialized");
 6022   assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder");
 6023   int oop_index = oop_recorder()->find_index(obj);
 6024   RelocationHolder rspec = oop_Relocation::spec(oop_index);
 6025   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
 6026 }
 6027 
 6028 void  MacroAssembler::cmp_narrow_klass(Register dst, Klass* k) {
 6029   assert (UseCompressedClassPointers, "should only be used for compressed headers");
 6030   assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder");
 6031   int klass_index = oop_recorder()->find_index(k);
 6032   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
 6033   Assembler::cmp_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec);
 6034 }
 6035 
 6036 void  MacroAssembler::cmp_narrow_klass(Address dst, Klass* k) {
 6037   assert (UseCompressedClassPointers, "should only be used for compressed headers");
 6038   assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder");
 6039   int klass_index = oop_recorder()->find_index(k);
 6040   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
 6041   Assembler::cmp_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec);
 6042 }
 6043 
 6044 void MacroAssembler::reinit_heapbase() {
 6045   if (UseCompressedOops) {
 6046     if (Universe::heap() != nullptr) {
 6047       if (CompressedOops::base() == nullptr) {
 6048         MacroAssembler::xorptr(r12_heapbase, r12_heapbase);
 6049       } else {
 6050         mov64(r12_heapbase, (int64_t)CompressedOops::ptrs_base());
 6051       }
 6052     } else {
 6053       movptr(r12_heapbase, ExternalAddress(CompressedOops::ptrs_base_addr()));
 6054     }
 6055   }
 6056 }
 6057 
 6058 #endif // _LP64
 6059 
 6060 #if COMPILER2_OR_JVMCI
 6061 
 6062 // clear memory of size 'cnt' qwords, starting at 'base' using XMM/YMM/ZMM registers
 6063 void MacroAssembler::xmm_clear_mem(Register base, Register cnt, Register rtmp, XMMRegister xtmp, KRegister mask) {
 6064   // cnt - number of qwords (8-byte words).
 6065   // base - start address, qword aligned.
 6066   Label L_zero_64_bytes, L_loop, L_sloop, L_tail, L_end;
 6067   bool use64byteVector = (MaxVectorSize == 64) && (VM_Version::avx3_threshold() == 0);
 6068   if (use64byteVector) {
 6069     vpxor(xtmp, xtmp, xtmp, AVX_512bit);
 6070   } else if (MaxVectorSize >= 32) {
 6071     vpxor(xtmp, xtmp, xtmp, AVX_256bit);


 6072   } else {
 6073     pxor(xtmp, xtmp);

 6074   }
 6075   jmp(L_zero_64_bytes);
 6076 
 6077   BIND(L_loop);
 6078   if (MaxVectorSize >= 32) {
 6079     fill64(base, 0, xtmp, use64byteVector);
 6080   } else {
 6081     movdqu(Address(base,  0), xtmp);
 6082     movdqu(Address(base, 16), xtmp);
 6083     movdqu(Address(base, 32), xtmp);
 6084     movdqu(Address(base, 48), xtmp);
 6085   }
 6086   addptr(base, 64);
 6087 
 6088   BIND(L_zero_64_bytes);
 6089   subptr(cnt, 8);
 6090   jccb(Assembler::greaterEqual, L_loop);
 6091 
 6092   // Copy trailing 64 bytes
 6093   if (use64byteVector) {
 6094     addptr(cnt, 8);
 6095     jccb(Assembler::equal, L_end);
 6096     fill64_masked(3, base, 0, xtmp, mask, cnt, rtmp, true);
 6097     jmp(L_end);
 6098   } else {
 6099     addptr(cnt, 4);
 6100     jccb(Assembler::less, L_tail);
 6101     if (MaxVectorSize >= 32) {
 6102       vmovdqu(Address(base, 0), xtmp);
 6103     } else {
 6104       movdqu(Address(base,  0), xtmp);
 6105       movdqu(Address(base, 16), xtmp);
 6106     }
 6107   }
 6108   addptr(base, 32);
 6109   subptr(cnt, 4);
 6110 
 6111   BIND(L_tail);
 6112   addptr(cnt, 4);
 6113   jccb(Assembler::lessEqual, L_end);
 6114   if (UseAVX > 2 && MaxVectorSize >= 32 && VM_Version::supports_avx512vl()) {
 6115     fill32_masked(3, base, 0, xtmp, mask, cnt, rtmp);
 6116   } else {
 6117     decrement(cnt);
 6118 
 6119     BIND(L_sloop);
 6120     movq(Address(base, 0), xtmp);
 6121     addptr(base, 8);
 6122     decrement(cnt);
 6123     jccb(Assembler::greaterEqual, L_sloop);
 6124   }
 6125   BIND(L_end);
 6126 }
 6127 
















































































































































































































































































































































































































 6128 // Clearing constant sized memory using YMM/ZMM registers.
 6129 void MacroAssembler::clear_mem(Register base, int cnt, Register rtmp, XMMRegister xtmp, KRegister mask) {
 6130   assert(UseAVX > 2 && VM_Version::supports_avx512vl(), "");
 6131   bool use64byteVector = (MaxVectorSize > 32) && (VM_Version::avx3_threshold() == 0);
 6132 
 6133   int vector64_count = (cnt & (~0x7)) >> 3;
 6134   cnt = cnt & 0x7;
 6135   const int fill64_per_loop = 4;
 6136   const int max_unrolled_fill64 = 8;
 6137 
 6138   // 64 byte initialization loop.
 6139   vpxor(xtmp, xtmp, xtmp, use64byteVector ? AVX_512bit : AVX_256bit);
 6140   int start64 = 0;
 6141   if (vector64_count > max_unrolled_fill64) {
 6142     Label LOOP;
 6143     Register index = rtmp;
 6144 
 6145     start64 = vector64_count - (vector64_count % fill64_per_loop);
 6146 
 6147     movl(index, 0);
 6148     BIND(LOOP);
 6149     for (int i = 0; i < fill64_per_loop; i++) {
 6150       fill64(Address(base, index, Address::times_1, i * 64), xtmp, use64byteVector);
 6151     }
 6152     addl(index, fill64_per_loop * 64);
 6153     cmpl(index, start64 * 64);
 6154     jccb(Assembler::less, LOOP);
 6155   }
 6156   for (int i = start64; i < vector64_count; i++) {
 6157     fill64(base, i * 64, xtmp, use64byteVector);
 6158   }
 6159 
 6160   // Clear remaining 64 byte tail.
 6161   int disp = vector64_count * 64;
 6162   if (cnt) {
 6163     switch (cnt) {
 6164       case 1:
 6165         movq(Address(base, disp), xtmp);
 6166         break;
 6167       case 2:
 6168         evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_128bit);
 6169         break;
 6170       case 3:
 6171         movl(rtmp, 0x7);
 6172         kmovwl(mask, rtmp);
 6173         evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_256bit);
 6174         break;
 6175       case 4:
 6176         evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit);
 6177         break;
 6178       case 5:
 6179         if (use64byteVector) {
 6180           movl(rtmp, 0x1F);
 6181           kmovwl(mask, rtmp);
 6182           evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_512bit);
 6183         } else {
 6184           evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit);
 6185           movq(Address(base, disp + 32), xtmp);
 6186         }
 6187         break;
 6188       case 6:
 6189         if (use64byteVector) {
 6190           movl(rtmp, 0x3F);
 6191           kmovwl(mask, rtmp);
 6192           evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_512bit);
 6193         } else {
 6194           evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit);
 6195           evmovdqu(T_LONG, k0, Address(base, disp + 32), xtmp, false, Assembler::AVX_128bit);
 6196         }
 6197         break;
 6198       case 7:
 6199         if (use64byteVector) {
 6200           movl(rtmp, 0x7F);
 6201           kmovwl(mask, rtmp);
 6202           evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_512bit);
 6203         } else {
 6204           evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit);
 6205           movl(rtmp, 0x7);
 6206           kmovwl(mask, rtmp);
 6207           evmovdqu(T_LONG, mask, Address(base, disp + 32), xtmp, true, Assembler::AVX_256bit);
 6208         }
 6209         break;
 6210       default:
 6211         fatal("Unexpected length : %d\n",cnt);
 6212         break;
 6213     }
 6214   }
 6215 }
 6216 
 6217 void MacroAssembler::clear_mem(Register base, Register cnt, Register tmp, XMMRegister xtmp,
 6218                                bool is_large, KRegister mask) {
 6219   // cnt      - number of qwords (8-byte words).
 6220   // base     - start address, qword aligned.
 6221   // is_large - if optimizers know cnt is larger than InitArrayShortSize
 6222   assert(base==rdi, "base register must be edi for rep stos");
 6223   assert(tmp==rax,   "tmp register must be eax for rep stos");
 6224   assert(cnt==rcx,   "cnt register must be ecx for rep stos");
 6225   assert(InitArrayShortSize % BytesPerLong == 0,
 6226     "InitArrayShortSize should be the multiple of BytesPerLong");
 6227 
 6228   Label DONE;
 6229   if (!is_large || !UseXMMForObjInit) {
 6230     xorptr(tmp, tmp);
 6231   }
 6232 
 6233   if (!is_large) {
 6234     Label LOOP, LONG;
 6235     cmpptr(cnt, InitArrayShortSize/BytesPerLong);
 6236     jccb(Assembler::greater, LONG);
 6237 
 6238     NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM
 6239 
 6240     decrement(cnt);
 6241     jccb(Assembler::negative, DONE); // Zero length
 6242 
 6243     // Use individual pointer-sized stores for small counts:
 6244     BIND(LOOP);
 6245     movptr(Address(base, cnt, Address::times_ptr), tmp);
 6246     decrement(cnt);
 6247     jccb(Assembler::greaterEqual, LOOP);
 6248     jmpb(DONE);
 6249 
 6250     BIND(LONG);
 6251   }
 6252 
 6253   // Use longer rep-prefixed ops for non-small counts:
 6254   if (UseFastStosb) {
 6255     shlptr(cnt, 3); // convert to number of bytes
 6256     rep_stosb();
 6257   } else if (UseXMMForObjInit) {
 6258     xmm_clear_mem(base, cnt, tmp, xtmp, mask);
 6259   } else {
 6260     NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM
 6261     rep_stos();
 6262   }
 6263 
 6264   BIND(DONE);
 6265 }
 6266 
 6267 #endif //COMPILER2_OR_JVMCI
 6268 
 6269 
 6270 void MacroAssembler::generate_fill(BasicType t, bool aligned,
 6271                                    Register to, Register value, Register count,
 6272                                    Register rtmp, XMMRegister xtmp) {
 6273   ShortBranchVerifier sbv(this);
 6274   assert_different_registers(to, value, count, rtmp);
 6275   Label L_exit;
 6276   Label L_fill_2_bytes, L_fill_4_bytes;
 6277 
 6278 #if defined(COMPILER2) && defined(_LP64)
 6279   if(MaxVectorSize >=32 &&
 6280      VM_Version::supports_avx512vlbw() &&
 6281      VM_Version::supports_bmi2()) {
 6282     generate_fill_avx3(t, to, value, count, rtmp, xtmp);
 6283     return;
 6284   }
 6285 #endif
 6286 
 6287   int shift = -1;
 6288   switch (t) {
 6289     case T_BYTE:
 6290       shift = 2;
 6291       break;
 6292     case T_SHORT:
 6293       shift = 1;
 6294       break;
 6295     case T_INT:
 6296       shift = 0;
 6297       break;
 6298     default: ShouldNotReachHere();
 6299   }
 6300 
 6301   if (t == T_BYTE) {
 6302     andl(value, 0xff);
 6303     movl(rtmp, value);
 6304     shll(rtmp, 8);
 6305     orl(value, rtmp);
 6306   }
 6307   if (t == T_SHORT) {
 6308     andl(value, 0xffff);
 6309   }
 6310   if (t == T_BYTE || t == T_SHORT) {
 6311     movl(rtmp, value);
 6312     shll(rtmp, 16);
 6313     orl(value, rtmp);
 6314   }
 6315 
 6316   cmpptr(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
 6317   jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp
 6318   if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
 6319     Label L_skip_align2;
 6320     // align source address at 4 bytes address boundary
 6321     if (t == T_BYTE) {
 6322       Label L_skip_align1;
 6323       // One byte misalignment happens only for byte arrays
 6324       testptr(to, 1);
 6325       jccb(Assembler::zero, L_skip_align1);
 6326       movb(Address(to, 0), value);
 6327       increment(to);
 6328       decrement(count);
 6329       BIND(L_skip_align1);
 6330     }
 6331     // Two bytes misalignment happens only for byte and short (char) arrays
 6332     testptr(to, 2);
 6333     jccb(Assembler::zero, L_skip_align2);
 6334     movw(Address(to, 0), value);
 6335     addptr(to, 2);
 6336     subptr(count, 1<<(shift-1));
 6337     BIND(L_skip_align2);
 6338   }
 6339   if (UseSSE < 2) {
 6340     Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
 6341     // Fill 32-byte chunks
 6342     subptr(count, 8 << shift);
 6343     jcc(Assembler::less, L_check_fill_8_bytes);
 6344     align(16);
 6345 
 6346     BIND(L_fill_32_bytes_loop);
 6347 
 6348     for (int i = 0; i < 32; i += 4) {
 6349       movl(Address(to, i), value);
 6350     }
 6351 
 6352     addptr(to, 32);
 6353     subptr(count, 8 << shift);
 6354     jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
 6355     BIND(L_check_fill_8_bytes);
 6356     addptr(count, 8 << shift);
 6357     jccb(Assembler::zero, L_exit);
 6358     jmpb(L_fill_8_bytes);
 6359 
 6360     //
 6361     // length is too short, just fill qwords
 6362     //
 6363     BIND(L_fill_8_bytes_loop);
 6364     movl(Address(to, 0), value);
 6365     movl(Address(to, 4), value);
 6366     addptr(to, 8);
 6367     BIND(L_fill_8_bytes);
 6368     subptr(count, 1 << (shift + 1));
 6369     jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
 6370     // fall through to fill 4 bytes
 6371   } else {
 6372     Label L_fill_32_bytes;
 6373     if (!UseUnalignedLoadStores) {
 6374       // align to 8 bytes, we know we are 4 byte aligned to start
 6375       testptr(to, 4);
 6376       jccb(Assembler::zero, L_fill_32_bytes);
 6377       movl(Address(to, 0), value);
 6378       addptr(to, 4);
 6379       subptr(count, 1<<shift);
 6380     }
 6381     BIND(L_fill_32_bytes);
 6382     {
 6383       assert( UseSSE >= 2, "supported cpu only" );
 6384       Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
 6385       movdl(xtmp, value);
 6386       if (UseAVX >= 2 && UseUnalignedLoadStores) {
 6387         Label L_check_fill_32_bytes;
 6388         if (UseAVX > 2) {
 6389           // Fill 64-byte chunks
 6390           Label L_fill_64_bytes_loop_avx3, L_check_fill_64_bytes_avx2;
 6391 
 6392           // If number of bytes to fill < VM_Version::avx3_threshold(), perform fill using AVX2
 6393           cmpptr(count, VM_Version::avx3_threshold());
 6394           jccb(Assembler::below, L_check_fill_64_bytes_avx2);
 6395 
 6396           vpbroadcastd(xtmp, xtmp, Assembler::AVX_512bit);
 6397 
 6398           subptr(count, 16 << shift);
 6399           jccb(Assembler::less, L_check_fill_32_bytes);
 6400           align(16);
 6401 
 6402           BIND(L_fill_64_bytes_loop_avx3);
 6403           evmovdqul(Address(to, 0), xtmp, Assembler::AVX_512bit);
 6404           addptr(to, 64);
 6405           subptr(count, 16 << shift);
 6406           jcc(Assembler::greaterEqual, L_fill_64_bytes_loop_avx3);
 6407           jmpb(L_check_fill_32_bytes);
 6408 
 6409           BIND(L_check_fill_64_bytes_avx2);
 6410         }
 6411         // Fill 64-byte chunks
 6412         Label L_fill_64_bytes_loop;
 6413         vpbroadcastd(xtmp, xtmp, Assembler::AVX_256bit);
 6414 
 6415         subptr(count, 16 << shift);
 6416         jcc(Assembler::less, L_check_fill_32_bytes);
 6417         align(16);
 6418 
 6419         BIND(L_fill_64_bytes_loop);
 6420         vmovdqu(Address(to, 0), xtmp);
 6421         vmovdqu(Address(to, 32), xtmp);
 6422         addptr(to, 64);
 6423         subptr(count, 16 << shift);
 6424         jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
 6425 
 6426         BIND(L_check_fill_32_bytes);
 6427         addptr(count, 8 << shift);
 6428         jccb(Assembler::less, L_check_fill_8_bytes);
 6429         vmovdqu(Address(to, 0), xtmp);
 6430         addptr(to, 32);
 6431         subptr(count, 8 << shift);
 6432 
 6433         BIND(L_check_fill_8_bytes);
 6434         // clean upper bits of YMM registers
 6435         movdl(xtmp, value);
 6436         pshufd(xtmp, xtmp, 0);
 6437       } else {
 6438         // Fill 32-byte chunks
 6439         pshufd(xtmp, xtmp, 0);
 6440 
 6441         subptr(count, 8 << shift);
 6442         jcc(Assembler::less, L_check_fill_8_bytes);
 6443         align(16);
 6444 
 6445         BIND(L_fill_32_bytes_loop);
 6446 
 6447         if (UseUnalignedLoadStores) {
 6448           movdqu(Address(to, 0), xtmp);
 6449           movdqu(Address(to, 16), xtmp);
 6450         } else {
 6451           movq(Address(to, 0), xtmp);
 6452           movq(Address(to, 8), xtmp);
 6453           movq(Address(to, 16), xtmp);
 6454           movq(Address(to, 24), xtmp);
 6455         }
 6456 
 6457         addptr(to, 32);
 6458         subptr(count, 8 << shift);
 6459         jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
 6460 
 6461         BIND(L_check_fill_8_bytes);
 6462       }
 6463       addptr(count, 8 << shift);
 6464       jccb(Assembler::zero, L_exit);
 6465       jmpb(L_fill_8_bytes);
 6466 
 6467       //
 6468       // length is too short, just fill qwords
 6469       //
 6470       BIND(L_fill_8_bytes_loop);
 6471       movq(Address(to, 0), xtmp);
 6472       addptr(to, 8);
 6473       BIND(L_fill_8_bytes);
 6474       subptr(count, 1 << (shift + 1));
 6475       jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
 6476     }
 6477   }
 6478   // fill trailing 4 bytes
 6479   BIND(L_fill_4_bytes);
 6480   testl(count, 1<<shift);
 6481   jccb(Assembler::zero, L_fill_2_bytes);
 6482   movl(Address(to, 0), value);
 6483   if (t == T_BYTE || t == T_SHORT) {
 6484     Label L_fill_byte;
 6485     addptr(to, 4);
 6486     BIND(L_fill_2_bytes);
 6487     // fill trailing 2 bytes
 6488     testl(count, 1<<(shift-1));
 6489     jccb(Assembler::zero, L_fill_byte);
 6490     movw(Address(to, 0), value);
 6491     if (t == T_BYTE) {
 6492       addptr(to, 2);
 6493       BIND(L_fill_byte);
 6494       // fill trailing byte
 6495       testl(count, 1);
 6496       jccb(Assembler::zero, L_exit);
 6497       movb(Address(to, 0), value);
 6498     } else {
 6499       BIND(L_fill_byte);
 6500     }
 6501   } else {
 6502     BIND(L_fill_2_bytes);
 6503   }
 6504   BIND(L_exit);
 6505 }
 6506 
 6507 void MacroAssembler::evpbroadcast(BasicType type, XMMRegister dst, Register src, int vector_len) {
 6508   switch(type) {
 6509     case T_BYTE:
 6510     case T_BOOLEAN:
 6511       evpbroadcastb(dst, src, vector_len);
 6512       break;
 6513     case T_SHORT:
 6514     case T_CHAR:
 6515       evpbroadcastw(dst, src, vector_len);
 6516       break;
 6517     case T_INT:
 6518     case T_FLOAT:
 6519       evpbroadcastd(dst, src, vector_len);
 6520       break;
 6521     case T_LONG:
 6522     case T_DOUBLE:
 6523       evpbroadcastq(dst, src, vector_len);
 6524       break;
 6525     default:
 6526       fatal("Unhandled type : %s", type2name(type));
 6527       break;
 6528   }
 6529 }
 6530 
 6531 // encode char[] to byte[] in ISO_8859_1 or ASCII
 6532    //@IntrinsicCandidate
 6533    //private static int implEncodeISOArray(byte[] sa, int sp,
 6534    //byte[] da, int dp, int len) {
 6535    //  int i = 0;
 6536    //  for (; i < len; i++) {
 6537    //    char c = StringUTF16.getChar(sa, sp++);
 6538    //    if (c > '\u00FF')
 6539    //      break;
 6540    //    da[dp++] = (byte)c;
 6541    //  }
 6542    //  return i;
 6543    //}
 6544    //
 6545    //@IntrinsicCandidate
 6546    //private static int implEncodeAsciiArray(char[] sa, int sp,
 6547    //    byte[] da, int dp, int len) {
 6548    //  int i = 0;
 6549    //  for (; i < len; i++) {
 6550    //    char c = sa[sp++];
 6551    //    if (c >= '\u0080')
 6552    //      break;
 6553    //    da[dp++] = (byte)c;
 6554    //  }
 6555    //  return i;
 6556    //}
 6557 void MacroAssembler::encode_iso_array(Register src, Register dst, Register len,
 6558   XMMRegister tmp1Reg, XMMRegister tmp2Reg,
 6559   XMMRegister tmp3Reg, XMMRegister tmp4Reg,
 6560   Register tmp5, Register result, bool ascii) {
 6561 
 6562   // rsi: src
 6563   // rdi: dst
 6564   // rdx: len
 6565   // rcx: tmp5
 6566   // rax: result
 6567   ShortBranchVerifier sbv(this);
 6568   assert_different_registers(src, dst, len, tmp5, result);
 6569   Label L_done, L_copy_1_char, L_copy_1_char_exit;
 6570 
 6571   int mask = ascii ? 0xff80ff80 : 0xff00ff00;
 6572   int short_mask = ascii ? 0xff80 : 0xff00;
 6573 
 6574   // set result
 6575   xorl(result, result);
 6576   // check for zero length
 6577   testl(len, len);
 6578   jcc(Assembler::zero, L_done);
 6579 
 6580   movl(result, len);
 6581 
 6582   // Setup pointers
 6583   lea(src, Address(src, len, Address::times_2)); // char[]
 6584   lea(dst, Address(dst, len, Address::times_1)); // byte[]
 6585   negptr(len);
 6586 
 6587   if (UseSSE42Intrinsics || UseAVX >= 2) {
 6588     Label L_copy_8_chars, L_copy_8_chars_exit;
 6589     Label L_chars_16_check, L_copy_16_chars, L_copy_16_chars_exit;
 6590 
 6591     if (UseAVX >= 2) {
 6592       Label L_chars_32_check, L_copy_32_chars, L_copy_32_chars_exit;
 6593       movl(tmp5, mask);   // create mask to test for Unicode or non-ASCII chars in vector
 6594       movdl(tmp1Reg, tmp5);
 6595       vpbroadcastd(tmp1Reg, tmp1Reg, Assembler::AVX_256bit);
 6596       jmp(L_chars_32_check);
 6597 
 6598       bind(L_copy_32_chars);
 6599       vmovdqu(tmp3Reg, Address(src, len, Address::times_2, -64));
 6600       vmovdqu(tmp4Reg, Address(src, len, Address::times_2, -32));
 6601       vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
 6602       vptest(tmp2Reg, tmp1Reg);       // check for Unicode or non-ASCII chars in vector
 6603       jccb(Assembler::notZero, L_copy_32_chars_exit);
 6604       vpackuswb(tmp3Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
 6605       vpermq(tmp4Reg, tmp3Reg, 0xD8, /* vector_len */ 1);
 6606       vmovdqu(Address(dst, len, Address::times_1, -32), tmp4Reg);
 6607 
 6608       bind(L_chars_32_check);
 6609       addptr(len, 32);
 6610       jcc(Assembler::lessEqual, L_copy_32_chars);
 6611 
 6612       bind(L_copy_32_chars_exit);
 6613       subptr(len, 16);
 6614       jccb(Assembler::greater, L_copy_16_chars_exit);
 6615 
 6616     } else if (UseSSE42Intrinsics) {
 6617       movl(tmp5, mask);   // create mask to test for Unicode or non-ASCII chars in vector
 6618       movdl(tmp1Reg, tmp5);
 6619       pshufd(tmp1Reg, tmp1Reg, 0);
 6620       jmpb(L_chars_16_check);
 6621     }
 6622 
 6623     bind(L_copy_16_chars);
 6624     if (UseAVX >= 2) {
 6625       vmovdqu(tmp2Reg, Address(src, len, Address::times_2, -32));
 6626       vptest(tmp2Reg, tmp1Reg);
 6627       jcc(Assembler::notZero, L_copy_16_chars_exit);
 6628       vpackuswb(tmp2Reg, tmp2Reg, tmp1Reg, /* vector_len */ 1);
 6629       vpermq(tmp3Reg, tmp2Reg, 0xD8, /* vector_len */ 1);
 6630     } else {
 6631       if (UseAVX > 0) {
 6632         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
 6633         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
 6634         vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 0);
 6635       } else {
 6636         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
 6637         por(tmp2Reg, tmp3Reg);
 6638         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
 6639         por(tmp2Reg, tmp4Reg);
 6640       }
 6641       ptest(tmp2Reg, tmp1Reg);       // check for Unicode or non-ASCII chars in vector
 6642       jccb(Assembler::notZero, L_copy_16_chars_exit);
 6643       packuswb(tmp3Reg, tmp4Reg);
 6644     }
 6645     movdqu(Address(dst, len, Address::times_1, -16), tmp3Reg);
 6646 
 6647     bind(L_chars_16_check);
 6648     addptr(len, 16);
 6649     jcc(Assembler::lessEqual, L_copy_16_chars);
 6650 
 6651     bind(L_copy_16_chars_exit);
 6652     if (UseAVX >= 2) {
 6653       // clean upper bits of YMM registers
 6654       vpxor(tmp2Reg, tmp2Reg);
 6655       vpxor(tmp3Reg, tmp3Reg);
 6656       vpxor(tmp4Reg, tmp4Reg);
 6657       movdl(tmp1Reg, tmp5);
 6658       pshufd(tmp1Reg, tmp1Reg, 0);
 6659     }
 6660     subptr(len, 8);
 6661     jccb(Assembler::greater, L_copy_8_chars_exit);
 6662 
 6663     bind(L_copy_8_chars);
 6664     movdqu(tmp3Reg, Address(src, len, Address::times_2, -16));
 6665     ptest(tmp3Reg, tmp1Reg);
 6666     jccb(Assembler::notZero, L_copy_8_chars_exit);
 6667     packuswb(tmp3Reg, tmp1Reg);
 6668     movq(Address(dst, len, Address::times_1, -8), tmp3Reg);
 6669     addptr(len, 8);
 6670     jccb(Assembler::lessEqual, L_copy_8_chars);
 6671 
 6672     bind(L_copy_8_chars_exit);
 6673     subptr(len, 8);
 6674     jccb(Assembler::zero, L_done);
 6675   }
 6676 
 6677   bind(L_copy_1_char);
 6678   load_unsigned_short(tmp5, Address(src, len, Address::times_2, 0));
 6679   testl(tmp5, short_mask);      // check if Unicode or non-ASCII char
 6680   jccb(Assembler::notZero, L_copy_1_char_exit);
 6681   movb(Address(dst, len, Address::times_1, 0), tmp5);
 6682   addptr(len, 1);
 6683   jccb(Assembler::less, L_copy_1_char);
 6684 
 6685   bind(L_copy_1_char_exit);
 6686   addptr(result, len); // len is negative count of not processed elements
 6687 
 6688   bind(L_done);
 6689 }
 6690 
 6691 #ifdef _LP64
 6692 /**
 6693  * Helper for multiply_to_len().
 6694  */
 6695 void MacroAssembler::add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
 6696   addq(dest_lo, src1);
 6697   adcq(dest_hi, 0);
 6698   addq(dest_lo, src2);
 6699   adcq(dest_hi, 0);
 6700 }
 6701 
 6702 /**
 6703  * Multiply 64 bit by 64 bit first loop.
 6704  */
 6705 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
 6706                                            Register y, Register y_idx, Register z,
 6707                                            Register carry, Register product,
 6708                                            Register idx, Register kdx) {
 6709   //
 6710   //  jlong carry, x[], y[], z[];
 6711   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
 6712   //    huge_128 product = y[idx] * x[xstart] + carry;
 6713   //    z[kdx] = (jlong)product;
 6714   //    carry  = (jlong)(product >>> 64);
 6715   //  }
 6716   //  z[xstart] = carry;
 6717   //
 6718 
 6719   Label L_first_loop, L_first_loop_exit;
 6720   Label L_one_x, L_one_y, L_multiply;
 6721 
 6722   decrementl(xstart);
 6723   jcc(Assembler::negative, L_one_x);
 6724 
 6725   movq(x_xstart, Address(x, xstart, Address::times_4,  0));
 6726   rorq(x_xstart, 32); // convert big-endian to little-endian
 6727 
 6728   bind(L_first_loop);
 6729   decrementl(idx);
 6730   jcc(Assembler::negative, L_first_loop_exit);
 6731   decrementl(idx);
 6732   jcc(Assembler::negative, L_one_y);
 6733   movq(y_idx, Address(y, idx, Address::times_4,  0));
 6734   rorq(y_idx, 32); // convert big-endian to little-endian
 6735   bind(L_multiply);
 6736   movq(product, x_xstart);
 6737   mulq(y_idx); // product(rax) * y_idx -> rdx:rax
 6738   addq(product, carry);
 6739   adcq(rdx, 0);
 6740   subl(kdx, 2);
 6741   movl(Address(z, kdx, Address::times_4,  4), product);
 6742   shrq(product, 32);
 6743   movl(Address(z, kdx, Address::times_4,  0), product);
 6744   movq(carry, rdx);
 6745   jmp(L_first_loop);
 6746 
 6747   bind(L_one_y);
 6748   movl(y_idx, Address(y,  0));
 6749   jmp(L_multiply);
 6750 
 6751   bind(L_one_x);
 6752   movl(x_xstart, Address(x,  0));
 6753   jmp(L_first_loop);
 6754 
 6755   bind(L_first_loop_exit);
 6756 }
 6757 
 6758 /**
 6759  * Multiply 64 bit by 64 bit and add 128 bit.
 6760  */
 6761 void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y, Register z,
 6762                                             Register yz_idx, Register idx,
 6763                                             Register carry, Register product, int offset) {
 6764   //     huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry;
 6765   //     z[kdx] = (jlong)product;
 6766 
 6767   movq(yz_idx, Address(y, idx, Address::times_4,  offset));
 6768   rorq(yz_idx, 32); // convert big-endian to little-endian
 6769   movq(product, x_xstart);
 6770   mulq(yz_idx);     // product(rax) * yz_idx -> rdx:product(rax)
 6771   movq(yz_idx, Address(z, idx, Address::times_4,  offset));
 6772   rorq(yz_idx, 32); // convert big-endian to little-endian
 6773 
 6774   add2_with_carry(rdx, product, carry, yz_idx);
 6775 
 6776   movl(Address(z, idx, Address::times_4,  offset+4), product);
 6777   shrq(product, 32);
 6778   movl(Address(z, idx, Address::times_4,  offset), product);
 6779 
 6780 }
 6781 
 6782 /**
 6783  * Multiply 128 bit by 128 bit. Unrolled inner loop.
 6784  */
 6785 void MacroAssembler::multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
 6786                                              Register yz_idx, Register idx, Register jdx,
 6787                                              Register carry, Register product,
 6788                                              Register carry2) {
 6789   //   jlong carry, x[], y[], z[];
 6790   //   int kdx = ystart+1;
 6791   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
 6792   //     huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry;
 6793   //     z[kdx+idx+1] = (jlong)product;
 6794   //     jlong carry2  = (jlong)(product >>> 64);
 6795   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry2;
 6796   //     z[kdx+idx] = (jlong)product;
 6797   //     carry  = (jlong)(product >>> 64);
 6798   //   }
 6799   //   idx += 2;
 6800   //   if (idx > 0) {
 6801   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry;
 6802   //     z[kdx+idx] = (jlong)product;
 6803   //     carry  = (jlong)(product >>> 64);
 6804   //   }
 6805   //
 6806 
 6807   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
 6808 
 6809   movl(jdx, idx);
 6810   andl(jdx, 0xFFFFFFFC);
 6811   shrl(jdx, 2);
 6812 
 6813   bind(L_third_loop);
 6814   subl(jdx, 1);
 6815   jcc(Assembler::negative, L_third_loop_exit);
 6816   subl(idx, 4);
 6817 
 6818   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 8);
 6819   movq(carry2, rdx);
 6820 
 6821   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product, 0);
 6822   movq(carry, rdx);
 6823   jmp(L_third_loop);
 6824 
 6825   bind (L_third_loop_exit);
 6826 
 6827   andl (idx, 0x3);
 6828   jcc(Assembler::zero, L_post_third_loop_done);
 6829 
 6830   Label L_check_1;
 6831   subl(idx, 2);
 6832   jcc(Assembler::negative, L_check_1);
 6833 
 6834   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 0);
 6835   movq(carry, rdx);
 6836 
 6837   bind (L_check_1);
 6838   addl (idx, 0x2);
 6839   andl (idx, 0x1);
 6840   subl(idx, 1);
 6841   jcc(Assembler::negative, L_post_third_loop_done);
 6842 
 6843   movl(yz_idx, Address(y, idx, Address::times_4,  0));
 6844   movq(product, x_xstart);
 6845   mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax)
 6846   movl(yz_idx, Address(z, idx, Address::times_4,  0));
 6847 
 6848   add2_with_carry(rdx, product, yz_idx, carry);
 6849 
 6850   movl(Address(z, idx, Address::times_4,  0), product);
 6851   shrq(product, 32);
 6852 
 6853   shlq(rdx, 32);
 6854   orq(product, rdx);
 6855   movq(carry, product);
 6856 
 6857   bind(L_post_third_loop_done);
 6858 }
 6859 
 6860 /**
 6861  * Multiply 128 bit by 128 bit using BMI2. Unrolled inner loop.
 6862  *
 6863  */
 6864 void MacroAssembler::multiply_128_x_128_bmi2_loop(Register y, Register z,
 6865                                                   Register carry, Register carry2,
 6866                                                   Register idx, Register jdx,
 6867                                                   Register yz_idx1, Register yz_idx2,
 6868                                                   Register tmp, Register tmp3, Register tmp4) {
 6869   assert(UseBMI2Instructions, "should be used only when BMI2 is available");
 6870 
 6871   //   jlong carry, x[], y[], z[];
 6872   //   int kdx = ystart+1;
 6873   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
 6874   //     huge_128 tmp3 = (y[idx+1] * rdx) + z[kdx+idx+1] + carry;
 6875   //     jlong carry2  = (jlong)(tmp3 >>> 64);
 6876   //     huge_128 tmp4 = (y[idx]   * rdx) + z[kdx+idx] + carry2;
 6877   //     carry  = (jlong)(tmp4 >>> 64);
 6878   //     z[kdx+idx+1] = (jlong)tmp3;
 6879   //     z[kdx+idx] = (jlong)tmp4;
 6880   //   }
 6881   //   idx += 2;
 6882   //   if (idx > 0) {
 6883   //     yz_idx1 = (y[idx] * rdx) + z[kdx+idx] + carry;
 6884   //     z[kdx+idx] = (jlong)yz_idx1;
 6885   //     carry  = (jlong)(yz_idx1 >>> 64);
 6886   //   }
 6887   //
 6888 
 6889   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
 6890 
 6891   movl(jdx, idx);
 6892   andl(jdx, 0xFFFFFFFC);
 6893   shrl(jdx, 2);
 6894 
 6895   bind(L_third_loop);
 6896   subl(jdx, 1);
 6897   jcc(Assembler::negative, L_third_loop_exit);
 6898   subl(idx, 4);
 6899 
 6900   movq(yz_idx1,  Address(y, idx, Address::times_4,  8));
 6901   rorxq(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian
 6902   movq(yz_idx2, Address(y, idx, Address::times_4,  0));
 6903   rorxq(yz_idx2, yz_idx2, 32);
 6904 
 6905   mulxq(tmp4, tmp3, yz_idx1);  //  yz_idx1 * rdx -> tmp4:tmp3
 6906   mulxq(carry2, tmp, yz_idx2); //  yz_idx2 * rdx -> carry2:tmp
 6907 
 6908   movq(yz_idx1,  Address(z, idx, Address::times_4,  8));
 6909   rorxq(yz_idx1, yz_idx1, 32);
 6910   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
 6911   rorxq(yz_idx2, yz_idx2, 32);
 6912 
 6913   if (VM_Version::supports_adx()) {
 6914     adcxq(tmp3, carry);
 6915     adoxq(tmp3, yz_idx1);
 6916 
 6917     adcxq(tmp4, tmp);
 6918     adoxq(tmp4, yz_idx2);
 6919 
 6920     movl(carry, 0); // does not affect flags
 6921     adcxq(carry2, carry);
 6922     adoxq(carry2, carry);
 6923   } else {
 6924     add2_with_carry(tmp4, tmp3, carry, yz_idx1);
 6925     add2_with_carry(carry2, tmp4, tmp, yz_idx2);
 6926   }
 6927   movq(carry, carry2);
 6928 
 6929   movl(Address(z, idx, Address::times_4, 12), tmp3);
 6930   shrq(tmp3, 32);
 6931   movl(Address(z, idx, Address::times_4,  8), tmp3);
 6932 
 6933   movl(Address(z, idx, Address::times_4,  4), tmp4);
 6934   shrq(tmp4, 32);
 6935   movl(Address(z, idx, Address::times_4,  0), tmp4);
 6936 
 6937   jmp(L_third_loop);
 6938 
 6939   bind (L_third_loop_exit);
 6940 
 6941   andl (idx, 0x3);
 6942   jcc(Assembler::zero, L_post_third_loop_done);
 6943 
 6944   Label L_check_1;
 6945   subl(idx, 2);
 6946   jcc(Assembler::negative, L_check_1);
 6947 
 6948   movq(yz_idx1, Address(y, idx, Address::times_4,  0));
 6949   rorxq(yz_idx1, yz_idx1, 32);
 6950   mulxq(tmp4, tmp3, yz_idx1); //  yz_idx1 * rdx -> tmp4:tmp3
 6951   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
 6952   rorxq(yz_idx2, yz_idx2, 32);
 6953 
 6954   add2_with_carry(tmp4, tmp3, carry, yz_idx2);
 6955 
 6956   movl(Address(z, idx, Address::times_4,  4), tmp3);
 6957   shrq(tmp3, 32);
 6958   movl(Address(z, idx, Address::times_4,  0), tmp3);
 6959   movq(carry, tmp4);
 6960 
 6961   bind (L_check_1);
 6962   addl (idx, 0x2);
 6963   andl (idx, 0x1);
 6964   subl(idx, 1);
 6965   jcc(Assembler::negative, L_post_third_loop_done);
 6966   movl(tmp4, Address(y, idx, Address::times_4,  0));
 6967   mulxq(carry2, tmp3, tmp4);  //  tmp4 * rdx -> carry2:tmp3
 6968   movl(tmp4, Address(z, idx, Address::times_4,  0));
 6969 
 6970   add2_with_carry(carry2, tmp3, tmp4, carry);
 6971 
 6972   movl(Address(z, idx, Address::times_4,  0), tmp3);
 6973   shrq(tmp3, 32);
 6974 
 6975   shlq(carry2, 32);
 6976   orq(tmp3, carry2);
 6977   movq(carry, tmp3);
 6978 
 6979   bind(L_post_third_loop_done);
 6980 }
 6981 
 6982 /**
 6983  * Code for BigInteger::multiplyToLen() intrinsic.
 6984  *
 6985  * rdi: x
 6986  * rax: xlen
 6987  * rsi: y
 6988  * rcx: ylen
 6989  * r8:  z
 6990  * r11: tmp0
 6991  * r12: tmp1
 6992  * r13: tmp2
 6993  * r14: tmp3
 6994  * r15: tmp4
 6995  * rbx: tmp5
 6996  *
 6997  */
 6998 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register tmp0,
 6999                                      Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5) {
 7000   ShortBranchVerifier sbv(this);
 7001   assert_different_registers(x, xlen, y, ylen, z, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, rdx);
 7002 
 7003   push(tmp0);
 7004   push(tmp1);
 7005   push(tmp2);
 7006   push(tmp3);
 7007   push(tmp4);
 7008   push(tmp5);
 7009 
 7010   push(xlen);
 7011 
 7012   const Register idx = tmp1;
 7013   const Register kdx = tmp2;
 7014   const Register xstart = tmp3;
 7015 
 7016   const Register y_idx = tmp4;
 7017   const Register carry = tmp5;
 7018   const Register product  = xlen;
 7019   const Register x_xstart = tmp0;
 7020 
 7021   // First Loop.
 7022   //
 7023   //  final static long LONG_MASK = 0xffffffffL;
 7024   //  int xstart = xlen - 1;
 7025   //  int ystart = ylen - 1;
 7026   //  long carry = 0;
 7027   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
 7028   //    long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
 7029   //    z[kdx] = (int)product;
 7030   //    carry = product >>> 32;
 7031   //  }
 7032   //  z[xstart] = (int)carry;
 7033   //
 7034 
 7035   movl(idx, ylen);               // idx = ylen;
 7036   lea(kdx, Address(xlen, ylen)); // kdx = xlen+ylen;
 7037   xorq(carry, carry);            // carry = 0;
 7038 
 7039   Label L_done;
 7040 
 7041   movl(xstart, xlen);
 7042   decrementl(xstart);
 7043   jcc(Assembler::negative, L_done);
 7044 
 7045   multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx);
 7046 
 7047   Label L_second_loop;
 7048   testl(kdx, kdx);
 7049   jcc(Assembler::zero, L_second_loop);
 7050 
 7051   Label L_carry;
 7052   subl(kdx, 1);
 7053   jcc(Assembler::zero, L_carry);
 7054 
 7055   movl(Address(z, kdx, Address::times_4,  0), carry);
 7056   shrq(carry, 32);
 7057   subl(kdx, 1);
 7058 
 7059   bind(L_carry);
 7060   movl(Address(z, kdx, Address::times_4,  0), carry);
 7061 
 7062   // Second and third (nested) loops.
 7063   //
 7064   // for (int i = xstart-1; i >= 0; i--) { // Second loop
 7065   //   carry = 0;
 7066   //   for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
 7067   //     long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
 7068   //                    (z[k] & LONG_MASK) + carry;
 7069   //     z[k] = (int)product;
 7070   //     carry = product >>> 32;
 7071   //   }
 7072   //   z[i] = (int)carry;
 7073   // }
 7074   //
 7075   // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx
 7076 
 7077   const Register jdx = tmp1;
 7078 
 7079   bind(L_second_loop);
 7080   xorl(carry, carry);    // carry = 0;
 7081   movl(jdx, ylen);       // j = ystart+1
 7082 
 7083   subl(xstart, 1);       // i = xstart-1;
 7084   jcc(Assembler::negative, L_done);
 7085 
 7086   push (z);
 7087 
 7088   Label L_last_x;
 7089   lea(z, Address(z, xstart, Address::times_4, 4)); // z = z + k - j
 7090   subl(xstart, 1);       // i = xstart-1;
 7091   jcc(Assembler::negative, L_last_x);
 7092 
 7093   if (UseBMI2Instructions) {
 7094     movq(rdx,  Address(x, xstart, Address::times_4,  0));
 7095     rorxq(rdx, rdx, 32); // convert big-endian to little-endian
 7096   } else {
 7097     movq(x_xstart, Address(x, xstart, Address::times_4,  0));
 7098     rorq(x_xstart, 32);  // convert big-endian to little-endian
 7099   }
 7100 
 7101   Label L_third_loop_prologue;
 7102   bind(L_third_loop_prologue);
 7103 
 7104   push (x);
 7105   push (xstart);
 7106   push (ylen);
 7107 
 7108 
 7109   if (UseBMI2Instructions) {
 7110     multiply_128_x_128_bmi2_loop(y, z, carry, x, jdx, ylen, product, tmp2, x_xstart, tmp3, tmp4);
 7111   } else { // !UseBMI2Instructions
 7112     multiply_128_x_128_loop(x_xstart, y, z, y_idx, jdx, ylen, carry, product, x);
 7113   }
 7114 
 7115   pop(ylen);
 7116   pop(xlen);
 7117   pop(x);
 7118   pop(z);
 7119 
 7120   movl(tmp3, xlen);
 7121   addl(tmp3, 1);
 7122   movl(Address(z, tmp3, Address::times_4,  0), carry);
 7123   subl(tmp3, 1);
 7124   jccb(Assembler::negative, L_done);
 7125 
 7126   shrq(carry, 32);
 7127   movl(Address(z, tmp3, Address::times_4,  0), carry);
 7128   jmp(L_second_loop);
 7129 
 7130   // Next infrequent code is moved outside loops.
 7131   bind(L_last_x);
 7132   if (UseBMI2Instructions) {
 7133     movl(rdx, Address(x,  0));
 7134   } else {
 7135     movl(x_xstart, Address(x,  0));
 7136   }
 7137   jmp(L_third_loop_prologue);
 7138 
 7139   bind(L_done);
 7140 
 7141   pop(xlen);
 7142 
 7143   pop(tmp5);
 7144   pop(tmp4);
 7145   pop(tmp3);
 7146   pop(tmp2);
 7147   pop(tmp1);
 7148   pop(tmp0);
 7149 }
 7150 
 7151 void MacroAssembler::vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
 7152   Register result, Register tmp1, Register tmp2, XMMRegister rymm0, XMMRegister rymm1, XMMRegister rymm2){
 7153   assert(UseSSE42Intrinsics, "SSE4.2 must be enabled.");
 7154   Label VECTOR16_LOOP, VECTOR8_LOOP, VECTOR4_LOOP;
 7155   Label VECTOR8_TAIL, VECTOR4_TAIL;
 7156   Label VECTOR32_NOT_EQUAL, VECTOR16_NOT_EQUAL, VECTOR8_NOT_EQUAL, VECTOR4_NOT_EQUAL;
 7157   Label SAME_TILL_END, DONE;
 7158   Label BYTES_LOOP, BYTES_TAIL, BYTES_NOT_EQUAL;
 7159 
 7160   //scale is in rcx in both Win64 and Unix
 7161   ShortBranchVerifier sbv(this);
 7162 
 7163   shlq(length);
 7164   xorq(result, result);
 7165 
 7166   if ((AVX3Threshold == 0) && (UseAVX > 2) &&
 7167       VM_Version::supports_avx512vlbw()) {
 7168     Label VECTOR64_LOOP, VECTOR64_NOT_EQUAL, VECTOR32_TAIL;
 7169 
 7170     cmpq(length, 64);
 7171     jcc(Assembler::less, VECTOR32_TAIL);
 7172 
 7173     movq(tmp1, length);
 7174     andq(tmp1, 0x3F);      // tail count
 7175     andq(length, ~(0x3F)); //vector count
 7176 
 7177     bind(VECTOR64_LOOP);
 7178     // AVX512 code to compare 64 byte vectors.
 7179     evmovdqub(rymm0, Address(obja, result), Assembler::AVX_512bit);
 7180     evpcmpeqb(k7, rymm0, Address(objb, result), Assembler::AVX_512bit);
 7181     kortestql(k7, k7);
 7182     jcc(Assembler::aboveEqual, VECTOR64_NOT_EQUAL);     // mismatch
 7183     addq(result, 64);
 7184     subq(length, 64);
 7185     jccb(Assembler::notZero, VECTOR64_LOOP);
 7186 
 7187     //bind(VECTOR64_TAIL);
 7188     testq(tmp1, tmp1);
 7189     jcc(Assembler::zero, SAME_TILL_END);
 7190 
 7191     //bind(VECTOR64_TAIL);
 7192     // AVX512 code to compare up to 63 byte vectors.
 7193     mov64(tmp2, 0xFFFFFFFFFFFFFFFF);
 7194     shlxq(tmp2, tmp2, tmp1);
 7195     notq(tmp2);
 7196     kmovql(k3, tmp2);
 7197 
 7198     evmovdqub(rymm0, k3, Address(obja, result), false, Assembler::AVX_512bit);
 7199     evpcmpeqb(k7, k3, rymm0, Address(objb, result), Assembler::AVX_512bit);
 7200 
 7201     ktestql(k7, k3);
 7202     jcc(Assembler::below, SAME_TILL_END);     // not mismatch
 7203 
 7204     bind(VECTOR64_NOT_EQUAL);
 7205     kmovql(tmp1, k7);
 7206     notq(tmp1);
 7207     tzcntq(tmp1, tmp1);
 7208     addq(result, tmp1);
 7209     shrq(result);
 7210     jmp(DONE);
 7211     bind(VECTOR32_TAIL);
 7212   }
 7213 
 7214   cmpq(length, 8);
 7215   jcc(Assembler::equal, VECTOR8_LOOP);
 7216   jcc(Assembler::less, VECTOR4_TAIL);
 7217 
 7218   if (UseAVX >= 2) {
 7219     Label VECTOR16_TAIL, VECTOR32_LOOP;
 7220 
 7221     cmpq(length, 16);
 7222     jcc(Assembler::equal, VECTOR16_LOOP);
 7223     jcc(Assembler::less, VECTOR8_LOOP);
 7224 
 7225     cmpq(length, 32);
 7226     jccb(Assembler::less, VECTOR16_TAIL);
 7227 
 7228     subq(length, 32);
 7229     bind(VECTOR32_LOOP);
 7230     vmovdqu(rymm0, Address(obja, result));
 7231     vmovdqu(rymm1, Address(objb, result));
 7232     vpxor(rymm2, rymm0, rymm1, Assembler::AVX_256bit);
 7233     vptest(rymm2, rymm2);
 7234     jcc(Assembler::notZero, VECTOR32_NOT_EQUAL);//mismatch found
 7235     addq(result, 32);
 7236     subq(length, 32);
 7237     jcc(Assembler::greaterEqual, VECTOR32_LOOP);
 7238     addq(length, 32);
 7239     jcc(Assembler::equal, SAME_TILL_END);
 7240     //falling through if less than 32 bytes left //close the branch here.
 7241 
 7242     bind(VECTOR16_TAIL);
 7243     cmpq(length, 16);
 7244     jccb(Assembler::less, VECTOR8_TAIL);
 7245     bind(VECTOR16_LOOP);
 7246     movdqu(rymm0, Address(obja, result));
 7247     movdqu(rymm1, Address(objb, result));
 7248     vpxor(rymm2, rymm0, rymm1, Assembler::AVX_128bit);
 7249     ptest(rymm2, rymm2);
 7250     jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found
 7251     addq(result, 16);
 7252     subq(length, 16);
 7253     jcc(Assembler::equal, SAME_TILL_END);
 7254     //falling through if less than 16 bytes left
 7255   } else {//regular intrinsics
 7256 
 7257     cmpq(length, 16);
 7258     jccb(Assembler::less, VECTOR8_TAIL);
 7259 
 7260     subq(length, 16);
 7261     bind(VECTOR16_LOOP);
 7262     movdqu(rymm0, Address(obja, result));
 7263     movdqu(rymm1, Address(objb, result));
 7264     pxor(rymm0, rymm1);
 7265     ptest(rymm0, rymm0);
 7266     jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found
 7267     addq(result, 16);
 7268     subq(length, 16);
 7269     jccb(Assembler::greaterEqual, VECTOR16_LOOP);
 7270     addq(length, 16);
 7271     jcc(Assembler::equal, SAME_TILL_END);
 7272     //falling through if less than 16 bytes left
 7273   }
 7274 
 7275   bind(VECTOR8_TAIL);
 7276   cmpq(length, 8);
 7277   jccb(Assembler::less, VECTOR4_TAIL);
 7278   bind(VECTOR8_LOOP);
 7279   movq(tmp1, Address(obja, result));
 7280   movq(tmp2, Address(objb, result));
 7281   xorq(tmp1, tmp2);
 7282   testq(tmp1, tmp1);
 7283   jcc(Assembler::notZero, VECTOR8_NOT_EQUAL);//mismatch found
 7284   addq(result, 8);
 7285   subq(length, 8);
 7286   jcc(Assembler::equal, SAME_TILL_END);
 7287   //falling through if less than 8 bytes left
 7288 
 7289   bind(VECTOR4_TAIL);
 7290   cmpq(length, 4);
 7291   jccb(Assembler::less, BYTES_TAIL);
 7292   bind(VECTOR4_LOOP);
 7293   movl(tmp1, Address(obja, result));
 7294   xorl(tmp1, Address(objb, result));
 7295   testl(tmp1, tmp1);
 7296   jcc(Assembler::notZero, VECTOR4_NOT_EQUAL);//mismatch found
 7297   addq(result, 4);
 7298   subq(length, 4);
 7299   jcc(Assembler::equal, SAME_TILL_END);
 7300   //falling through if less than 4 bytes left
 7301 
 7302   bind(BYTES_TAIL);
 7303   bind(BYTES_LOOP);
 7304   load_unsigned_byte(tmp1, Address(obja, result));
 7305   load_unsigned_byte(tmp2, Address(objb, result));
 7306   xorl(tmp1, tmp2);
 7307   testl(tmp1, tmp1);
 7308   jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
 7309   decq(length);
 7310   jcc(Assembler::zero, SAME_TILL_END);
 7311   incq(result);
 7312   load_unsigned_byte(tmp1, Address(obja, result));
 7313   load_unsigned_byte(tmp2, Address(objb, result));
 7314   xorl(tmp1, tmp2);
 7315   testl(tmp1, tmp1);
 7316   jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
 7317   decq(length);
 7318   jcc(Assembler::zero, SAME_TILL_END);
 7319   incq(result);
 7320   load_unsigned_byte(tmp1, Address(obja, result));
 7321   load_unsigned_byte(tmp2, Address(objb, result));
 7322   xorl(tmp1, tmp2);
 7323   testl(tmp1, tmp1);
 7324   jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
 7325   jmp(SAME_TILL_END);
 7326 
 7327   if (UseAVX >= 2) {
 7328     bind(VECTOR32_NOT_EQUAL);
 7329     vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_256bit);
 7330     vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_256bit);
 7331     vpxor(rymm0, rymm0, rymm2, Assembler::AVX_256bit);
 7332     vpmovmskb(tmp1, rymm0);
 7333     bsfq(tmp1, tmp1);
 7334     addq(result, tmp1);
 7335     shrq(result);
 7336     jmp(DONE);
 7337   }
 7338 
 7339   bind(VECTOR16_NOT_EQUAL);
 7340   if (UseAVX >= 2) {
 7341     vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_128bit);
 7342     vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_128bit);
 7343     pxor(rymm0, rymm2);
 7344   } else {
 7345     pcmpeqb(rymm2, rymm2);
 7346     pxor(rymm0, rymm1);
 7347     pcmpeqb(rymm0, rymm1);
 7348     pxor(rymm0, rymm2);
 7349   }
 7350   pmovmskb(tmp1, rymm0);
 7351   bsfq(tmp1, tmp1);
 7352   addq(result, tmp1);
 7353   shrq(result);
 7354   jmpb(DONE);
 7355 
 7356   bind(VECTOR8_NOT_EQUAL);
 7357   bind(VECTOR4_NOT_EQUAL);
 7358   bsfq(tmp1, tmp1);
 7359   shrq(tmp1, 3);
 7360   addq(result, tmp1);
 7361   bind(BYTES_NOT_EQUAL);
 7362   shrq(result);
 7363   jmpb(DONE);
 7364 
 7365   bind(SAME_TILL_END);
 7366   mov64(result, -1);
 7367 
 7368   bind(DONE);
 7369 }
 7370 
 7371 //Helper functions for square_to_len()
 7372 
 7373 /**
 7374  * Store the squares of x[], right shifted one bit (divided by 2) into z[]
 7375  * Preserves x and z and modifies rest of the registers.
 7376  */
 7377 void MacroAssembler::square_rshift(Register x, Register xlen, Register z, Register tmp1, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
 7378   // Perform square and right shift by 1
 7379   // Handle odd xlen case first, then for even xlen do the following
 7380   // jlong carry = 0;
 7381   // for (int j=0, i=0; j < xlen; j+=2, i+=4) {
 7382   //     huge_128 product = x[j:j+1] * x[j:j+1];
 7383   //     z[i:i+1] = (carry << 63) | (jlong)(product >>> 65);
 7384   //     z[i+2:i+3] = (jlong)(product >>> 1);
 7385   //     carry = (jlong)product;
 7386   // }
 7387 
 7388   xorq(tmp5, tmp5);     // carry
 7389   xorq(rdxReg, rdxReg);
 7390   xorl(tmp1, tmp1);     // index for x
 7391   xorl(tmp4, tmp4);     // index for z
 7392 
 7393   Label L_first_loop, L_first_loop_exit;
 7394 
 7395   testl(xlen, 1);
 7396   jccb(Assembler::zero, L_first_loop); //jump if xlen is even
 7397 
 7398   // Square and right shift by 1 the odd element using 32 bit multiply
 7399   movl(raxReg, Address(x, tmp1, Address::times_4, 0));
 7400   imulq(raxReg, raxReg);
 7401   shrq(raxReg, 1);
 7402   adcq(tmp5, 0);
 7403   movq(Address(z, tmp4, Address::times_4, 0), raxReg);
 7404   incrementl(tmp1);
 7405   addl(tmp4, 2);
 7406 
 7407   // Square and  right shift by 1 the rest using 64 bit multiply
 7408   bind(L_first_loop);
 7409   cmpptr(tmp1, xlen);
 7410   jccb(Assembler::equal, L_first_loop_exit);
 7411 
 7412   // Square
 7413   movq(raxReg, Address(x, tmp1, Address::times_4,  0));
 7414   rorq(raxReg, 32);    // convert big-endian to little-endian
 7415   mulq(raxReg);        // 64-bit multiply rax * rax -> rdx:rax
 7416 
 7417   // Right shift by 1 and save carry
 7418   shrq(tmp5, 1);       // rdx:rax:tmp5 = (tmp5:rdx:rax) >>> 1
 7419   rcrq(rdxReg, 1);
 7420   rcrq(raxReg, 1);
 7421   adcq(tmp5, 0);
 7422 
 7423   // Store result in z
 7424   movq(Address(z, tmp4, Address::times_4, 0), rdxReg);
 7425   movq(Address(z, tmp4, Address::times_4, 8), raxReg);
 7426 
 7427   // Update indices for x and z
 7428   addl(tmp1, 2);
 7429   addl(tmp4, 4);
 7430   jmp(L_first_loop);
 7431 
 7432   bind(L_first_loop_exit);
 7433 }
 7434 
 7435 
 7436 /**
 7437  * Perform the following multiply add operation using BMI2 instructions
 7438  * carry:sum = sum + op1*op2 + carry
 7439  * op2 should be in rdx
 7440  * op2 is preserved, all other registers are modified
 7441  */
 7442 void MacroAssembler::multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry, Register tmp2) {
 7443   // assert op2 is rdx
 7444   mulxq(tmp2, op1, op1);  //  op1 * op2 -> tmp2:op1
 7445   addq(sum, carry);
 7446   adcq(tmp2, 0);
 7447   addq(sum, op1);
 7448   adcq(tmp2, 0);
 7449   movq(carry, tmp2);
 7450 }
 7451 
 7452 /**
 7453  * Perform the following multiply add operation:
 7454  * carry:sum = sum + op1*op2 + carry
 7455  * Preserves op1, op2 and modifies rest of registers
 7456  */
 7457 void MacroAssembler::multiply_add_64(Register sum, Register op1, Register op2, Register carry, Register rdxReg, Register raxReg) {
 7458   // rdx:rax = op1 * op2
 7459   movq(raxReg, op2);
 7460   mulq(op1);
 7461 
 7462   //  rdx:rax = sum + carry + rdx:rax
 7463   addq(sum, carry);
 7464   adcq(rdxReg, 0);
 7465   addq(sum, raxReg);
 7466   adcq(rdxReg, 0);
 7467 
 7468   // carry:sum = rdx:sum
 7469   movq(carry, rdxReg);
 7470 }
 7471 
 7472 /**
 7473  * Add 64 bit long carry into z[] with carry propagation.
 7474  * Preserves z and carry register values and modifies rest of registers.
 7475  *
 7476  */
 7477 void MacroAssembler::add_one_64(Register z, Register zlen, Register carry, Register tmp1) {
 7478   Label L_fourth_loop, L_fourth_loop_exit;
 7479 
 7480   movl(tmp1, 1);
 7481   subl(zlen, 2);
 7482   addq(Address(z, zlen, Address::times_4, 0), carry);
 7483 
 7484   bind(L_fourth_loop);
 7485   jccb(Assembler::carryClear, L_fourth_loop_exit);
 7486   subl(zlen, 2);
 7487   jccb(Assembler::negative, L_fourth_loop_exit);
 7488   addq(Address(z, zlen, Address::times_4, 0), tmp1);
 7489   jmp(L_fourth_loop);
 7490   bind(L_fourth_loop_exit);
 7491 }
 7492 
 7493 /**
 7494  * Shift z[] left by 1 bit.
 7495  * Preserves x, len, z and zlen registers and modifies rest of the registers.
 7496  *
 7497  */
 7498 void MacroAssembler::lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4) {
 7499 
 7500   Label L_fifth_loop, L_fifth_loop_exit;
 7501 
 7502   // Fifth loop
 7503   // Perform primitiveLeftShift(z, zlen, 1)
 7504 
 7505   const Register prev_carry = tmp1;
 7506   const Register new_carry = tmp4;
 7507   const Register value = tmp2;
 7508   const Register zidx = tmp3;
 7509 
 7510   // int zidx, carry;
 7511   // long value;
 7512   // carry = 0;
 7513   // for (zidx = zlen-2; zidx >=0; zidx -= 2) {
 7514   //    (carry:value)  = (z[i] << 1) | carry ;
 7515   //    z[i] = value;
 7516   // }
 7517 
 7518   movl(zidx, zlen);
 7519   xorl(prev_carry, prev_carry); // clear carry flag and prev_carry register
 7520 
 7521   bind(L_fifth_loop);
 7522   decl(zidx);  // Use decl to preserve carry flag
 7523   decl(zidx);
 7524   jccb(Assembler::negative, L_fifth_loop_exit);
 7525 
 7526   if (UseBMI2Instructions) {
 7527      movq(value, Address(z, zidx, Address::times_4, 0));
 7528      rclq(value, 1);
 7529      rorxq(value, value, 32);
 7530      movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
 7531   }
 7532   else {
 7533     // clear new_carry
 7534     xorl(new_carry, new_carry);
 7535 
 7536     // Shift z[i] by 1, or in previous carry and save new carry
 7537     movq(value, Address(z, zidx, Address::times_4, 0));
 7538     shlq(value, 1);
 7539     adcl(new_carry, 0);
 7540 
 7541     orq(value, prev_carry);
 7542     rorq(value, 0x20);
 7543     movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
 7544 
 7545     // Set previous carry = new carry
 7546     movl(prev_carry, new_carry);
 7547   }
 7548   jmp(L_fifth_loop);
 7549 
 7550   bind(L_fifth_loop_exit);
 7551 }
 7552 
 7553 
 7554 /**
 7555  * Code for BigInteger::squareToLen() intrinsic
 7556  *
 7557  * rdi: x
 7558  * rsi: len
 7559  * r8:  z
 7560  * rcx: zlen
 7561  * r12: tmp1
 7562  * r13: tmp2
 7563  * r14: tmp3
 7564  * r15: tmp4
 7565  * rbx: tmp5
 7566  *
 7567  */
 7568 void MacroAssembler::square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
 7569 
 7570   Label L_second_loop, L_second_loop_exit, L_third_loop, L_third_loop_exit, L_last_x, L_multiply;
 7571   push(tmp1);
 7572   push(tmp2);
 7573   push(tmp3);
 7574   push(tmp4);
 7575   push(tmp5);
 7576 
 7577   // First loop
 7578   // Store the squares, right shifted one bit (i.e., divided by 2).
 7579   square_rshift(x, len, z, tmp1, tmp3, tmp4, tmp5, rdxReg, raxReg);
 7580 
 7581   // Add in off-diagonal sums.
 7582   //
 7583   // Second, third (nested) and fourth loops.
 7584   // zlen +=2;
 7585   // for (int xidx=len-2,zidx=zlen-4; xidx > 0; xidx-=2,zidx-=4) {
 7586   //    carry = 0;
 7587   //    long op2 = x[xidx:xidx+1];
 7588   //    for (int j=xidx-2,k=zidx; j >= 0; j-=2) {
 7589   //       k -= 2;
 7590   //       long op1 = x[j:j+1];
 7591   //       long sum = z[k:k+1];
 7592   //       carry:sum = multiply_add_64(sum, op1, op2, carry, tmp_regs);
 7593   //       z[k:k+1] = sum;
 7594   //    }
 7595   //    add_one_64(z, k, carry, tmp_regs);
 7596   // }
 7597 
 7598   const Register carry = tmp5;
 7599   const Register sum = tmp3;
 7600   const Register op1 = tmp4;
 7601   Register op2 = tmp2;
 7602 
 7603   push(zlen);
 7604   push(len);
 7605   addl(zlen,2);
 7606   bind(L_second_loop);
 7607   xorq(carry, carry);
 7608   subl(zlen, 4);
 7609   subl(len, 2);
 7610   push(zlen);
 7611   push(len);
 7612   cmpl(len, 0);
 7613   jccb(Assembler::lessEqual, L_second_loop_exit);
 7614 
 7615   // Multiply an array by one 64 bit long.
 7616   if (UseBMI2Instructions) {
 7617     op2 = rdxReg;
 7618     movq(op2, Address(x, len, Address::times_4,  0));
 7619     rorxq(op2, op2, 32);
 7620   }
 7621   else {
 7622     movq(op2, Address(x, len, Address::times_4,  0));
 7623     rorq(op2, 32);
 7624   }
 7625 
 7626   bind(L_third_loop);
 7627   decrementl(len);
 7628   jccb(Assembler::negative, L_third_loop_exit);
 7629   decrementl(len);
 7630   jccb(Assembler::negative, L_last_x);
 7631 
 7632   movq(op1, Address(x, len, Address::times_4,  0));
 7633   rorq(op1, 32);
 7634 
 7635   bind(L_multiply);
 7636   subl(zlen, 2);
 7637   movq(sum, Address(z, zlen, Address::times_4,  0));
 7638 
 7639   // Multiply 64 bit by 64 bit and add 64 bits lower half and upper 64 bits as carry.
 7640   if (UseBMI2Instructions) {
 7641     multiply_add_64_bmi2(sum, op1, op2, carry, tmp2);
 7642   }
 7643   else {
 7644     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
 7645   }
 7646 
 7647   movq(Address(z, zlen, Address::times_4, 0), sum);
 7648 
 7649   jmp(L_third_loop);
 7650   bind(L_third_loop_exit);
 7651 
 7652   // Fourth loop
 7653   // Add 64 bit long carry into z with carry propagation.
 7654   // Uses offsetted zlen.
 7655   add_one_64(z, zlen, carry, tmp1);
 7656 
 7657   pop(len);
 7658   pop(zlen);
 7659   jmp(L_second_loop);
 7660 
 7661   // Next infrequent code is moved outside loops.
 7662   bind(L_last_x);
 7663   movl(op1, Address(x, 0));
 7664   jmp(L_multiply);
 7665 
 7666   bind(L_second_loop_exit);
 7667   pop(len);
 7668   pop(zlen);
 7669   pop(len);
 7670   pop(zlen);
 7671 
 7672   // Fifth loop
 7673   // Shift z left 1 bit.
 7674   lshift_by_1(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4);
 7675 
 7676   // z[zlen-1] |= x[len-1] & 1;
 7677   movl(tmp3, Address(x, len, Address::times_4, -4));
 7678   andl(tmp3, 1);
 7679   orl(Address(z, zlen, Address::times_4,  -4), tmp3);
 7680 
 7681   pop(tmp5);
 7682   pop(tmp4);
 7683   pop(tmp3);
 7684   pop(tmp2);
 7685   pop(tmp1);
 7686 }
 7687 
 7688 /**
 7689  * Helper function for mul_add()
 7690  * Multiply the in[] by int k and add to out[] starting at offset offs using
 7691  * 128 bit by 32 bit multiply and return the carry in tmp5.
 7692  * Only quad int aligned length of in[] is operated on in this function.
 7693  * k is in rdxReg for BMI2Instructions, for others it is in tmp2.
 7694  * This function preserves out, in and k registers.
 7695  * len and offset point to the appropriate index in "in" & "out" correspondingly
 7696  * tmp5 has the carry.
 7697  * other registers are temporary and are modified.
 7698  *
 7699  */
 7700 void MacroAssembler::mul_add_128_x_32_loop(Register out, Register in,
 7701   Register offset, Register len, Register tmp1, Register tmp2, Register tmp3,
 7702   Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
 7703 
 7704   Label L_first_loop, L_first_loop_exit;
 7705 
 7706   movl(tmp1, len);
 7707   shrl(tmp1, 2);
 7708 
 7709   bind(L_first_loop);
 7710   subl(tmp1, 1);
 7711   jccb(Assembler::negative, L_first_loop_exit);
 7712 
 7713   subl(len, 4);
 7714   subl(offset, 4);
 7715 
 7716   Register op2 = tmp2;
 7717   const Register sum = tmp3;
 7718   const Register op1 = tmp4;
 7719   const Register carry = tmp5;
 7720 
 7721   if (UseBMI2Instructions) {
 7722     op2 = rdxReg;
 7723   }
 7724 
 7725   movq(op1, Address(in, len, Address::times_4,  8));
 7726   rorq(op1, 32);
 7727   movq(sum, Address(out, offset, Address::times_4,  8));
 7728   rorq(sum, 32);
 7729   if (UseBMI2Instructions) {
 7730     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
 7731   }
 7732   else {
 7733     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
 7734   }
 7735   // Store back in big endian from little endian
 7736   rorq(sum, 0x20);
 7737   movq(Address(out, offset, Address::times_4,  8), sum);
 7738 
 7739   movq(op1, Address(in, len, Address::times_4,  0));
 7740   rorq(op1, 32);
 7741   movq(sum, Address(out, offset, Address::times_4,  0));
 7742   rorq(sum, 32);
 7743   if (UseBMI2Instructions) {
 7744     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
 7745   }
 7746   else {
 7747     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
 7748   }
 7749   // Store back in big endian from little endian
 7750   rorq(sum, 0x20);
 7751   movq(Address(out, offset, Address::times_4,  0), sum);
 7752 
 7753   jmp(L_first_loop);
 7754   bind(L_first_loop_exit);
 7755 }
 7756 
 7757 /**
 7758  * Code for BigInteger::mulAdd() intrinsic
 7759  *
 7760  * rdi: out
 7761  * rsi: in
 7762  * r11: offs (out.length - offset)
 7763  * rcx: len
 7764  * r8:  k
 7765  * r12: tmp1
 7766  * r13: tmp2
 7767  * r14: tmp3
 7768  * r15: tmp4
 7769  * rbx: tmp5
 7770  * Multiply the in[] by word k and add to out[], return the carry in rax
 7771  */
 7772 void MacroAssembler::mul_add(Register out, Register in, Register offs,
 7773    Register len, Register k, Register tmp1, Register tmp2, Register tmp3,
 7774    Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
 7775 
 7776   Label L_carry, L_last_in, L_done;
 7777 
 7778 // carry = 0;
 7779 // for (int j=len-1; j >= 0; j--) {
 7780 //    long product = (in[j] & LONG_MASK) * kLong +
 7781 //                   (out[offs] & LONG_MASK) + carry;
 7782 //    out[offs--] = (int)product;
 7783 //    carry = product >>> 32;
 7784 // }
 7785 //
 7786   push(tmp1);
 7787   push(tmp2);
 7788   push(tmp3);
 7789   push(tmp4);
 7790   push(tmp5);
 7791 
 7792   Register op2 = tmp2;
 7793   const Register sum = tmp3;
 7794   const Register op1 = tmp4;
 7795   const Register carry =  tmp5;
 7796 
 7797   if (UseBMI2Instructions) {
 7798     op2 = rdxReg;
 7799     movl(op2, k);
 7800   }
 7801   else {
 7802     movl(op2, k);
 7803   }
 7804 
 7805   xorq(carry, carry);
 7806 
 7807   //First loop
 7808 
 7809   //Multiply in[] by k in a 4 way unrolled loop using 128 bit by 32 bit multiply
 7810   //The carry is in tmp5
 7811   mul_add_128_x_32_loop(out, in, offs, len, tmp1, tmp2, tmp3, tmp4, tmp5, rdxReg, raxReg);
 7812 
 7813   //Multiply the trailing in[] entry using 64 bit by 32 bit, if any
 7814   decrementl(len);
 7815   jccb(Assembler::negative, L_carry);
 7816   decrementl(len);
 7817   jccb(Assembler::negative, L_last_in);
 7818 
 7819   movq(op1, Address(in, len, Address::times_4,  0));
 7820   rorq(op1, 32);
 7821 
 7822   subl(offs, 2);
 7823   movq(sum, Address(out, offs, Address::times_4,  0));
 7824   rorq(sum, 32);
 7825 
 7826   if (UseBMI2Instructions) {
 7827     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
 7828   }
 7829   else {
 7830     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
 7831   }
 7832 
 7833   // Store back in big endian from little endian
 7834   rorq(sum, 0x20);
 7835   movq(Address(out, offs, Address::times_4,  0), sum);
 7836 
 7837   testl(len, len);
 7838   jccb(Assembler::zero, L_carry);
 7839 
 7840   //Multiply the last in[] entry, if any
 7841   bind(L_last_in);
 7842   movl(op1, Address(in, 0));
 7843   movl(sum, Address(out, offs, Address::times_4,  -4));
 7844 
 7845   movl(raxReg, k);
 7846   mull(op1); //tmp4 * eax -> edx:eax
 7847   addl(sum, carry);
 7848   adcl(rdxReg, 0);
 7849   addl(sum, raxReg);
 7850   adcl(rdxReg, 0);
 7851   movl(carry, rdxReg);
 7852 
 7853   movl(Address(out, offs, Address::times_4,  -4), sum);
 7854 
 7855   bind(L_carry);
 7856   //return tmp5/carry as carry in rax
 7857   movl(rax, carry);
 7858 
 7859   bind(L_done);
 7860   pop(tmp5);
 7861   pop(tmp4);
 7862   pop(tmp3);
 7863   pop(tmp2);
 7864   pop(tmp1);
 7865 }
 7866 #endif
 7867 
 7868 /**
 7869  * Emits code to update CRC-32 with a byte value according to constants in table
 7870  *
 7871  * @param [in,out]crc   Register containing the crc.
 7872  * @param [in]val       Register containing the byte to fold into the CRC.
 7873  * @param [in]table     Register containing the table of crc constants.
 7874  *
 7875  * uint32_t crc;
 7876  * val = crc_table[(val ^ crc) & 0xFF];
 7877  * crc = val ^ (crc >> 8);
 7878  *
 7879  */
 7880 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
 7881   xorl(val, crc);
 7882   andl(val, 0xFF);
 7883   shrl(crc, 8); // unsigned shift
 7884   xorl(crc, Address(table, val, Address::times_4, 0));
 7885 }
 7886 
 7887 /**
 7888  * Fold 128-bit data chunk
 7889  */
 7890 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) {
 7891   if (UseAVX > 0) {
 7892     vpclmulhdq(xtmp, xK, xcrc); // [123:64]
 7893     vpclmulldq(xcrc, xK, xcrc); // [63:0]
 7894     vpxor(xcrc, xcrc, Address(buf, offset), 0 /* vector_len */);
 7895     pxor(xcrc, xtmp);
 7896   } else {
 7897     movdqa(xtmp, xcrc);
 7898     pclmulhdq(xtmp, xK);   // [123:64]
 7899     pclmulldq(xcrc, xK);   // [63:0]
 7900     pxor(xcrc, xtmp);
 7901     movdqu(xtmp, Address(buf, offset));
 7902     pxor(xcrc, xtmp);
 7903   }
 7904 }
 7905 
 7906 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf) {
 7907   if (UseAVX > 0) {
 7908     vpclmulhdq(xtmp, xK, xcrc);
 7909     vpclmulldq(xcrc, xK, xcrc);
 7910     pxor(xcrc, xbuf);
 7911     pxor(xcrc, xtmp);
 7912   } else {
 7913     movdqa(xtmp, xcrc);
 7914     pclmulhdq(xtmp, xK);
 7915     pclmulldq(xcrc, xK);
 7916     pxor(xcrc, xbuf);
 7917     pxor(xcrc, xtmp);
 7918   }
 7919 }
 7920 
 7921 /**
 7922  * 8-bit folds to compute 32-bit CRC
 7923  *
 7924  * uint64_t xcrc;
 7925  * timesXtoThe32[xcrc & 0xFF] ^ (xcrc >> 8);
 7926  */
 7927 void MacroAssembler::fold_8bit_crc32(XMMRegister xcrc, Register table, XMMRegister xtmp, Register tmp) {
 7928   movdl(tmp, xcrc);
 7929   andl(tmp, 0xFF);
 7930   movdl(xtmp, Address(table, tmp, Address::times_4, 0));
 7931   psrldq(xcrc, 1); // unsigned shift one byte
 7932   pxor(xcrc, xtmp);
 7933 }
 7934 
 7935 /**
 7936  * uint32_t crc;
 7937  * timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
 7938  */
 7939 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) {
 7940   movl(tmp, crc);
 7941   andl(tmp, 0xFF);
 7942   shrl(crc, 8);
 7943   xorl(crc, Address(table, tmp, Address::times_4, 0));
 7944 }
 7945 
 7946 /**
 7947  * @param crc   register containing existing CRC (32-bit)
 7948  * @param buf   register pointing to input byte buffer (byte*)
 7949  * @param len   register containing number of bytes
 7950  * @param table register that will contain address of CRC table
 7951  * @param tmp   scratch register
 7952  */
 7953 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp) {
 7954   assert_different_registers(crc, buf, len, table, tmp, rax);
 7955 
 7956   Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned;
 7957   Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop;
 7958 
 7959   // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge
 7960   // context for the registers used, where all instructions below are using 128-bit mode
 7961   // On EVEX without VL and BW, these instructions will all be AVX.
 7962   lea(table, ExternalAddress(StubRoutines::crc_table_addr()));
 7963   notl(crc); // ~crc
 7964   cmpl(len, 16);
 7965   jcc(Assembler::less, L_tail);
 7966 
 7967   // Align buffer to 16 bytes
 7968   movl(tmp, buf);
 7969   andl(tmp, 0xF);
 7970   jccb(Assembler::zero, L_aligned);
 7971   subl(tmp,  16);
 7972   addl(len, tmp);
 7973 
 7974   align(4);
 7975   BIND(L_align_loop);
 7976   movsbl(rax, Address(buf, 0)); // load byte with sign extension
 7977   update_byte_crc32(crc, rax, table);
 7978   increment(buf);
 7979   incrementl(tmp);
 7980   jccb(Assembler::less, L_align_loop);
 7981 
 7982   BIND(L_aligned);
 7983   movl(tmp, len); // save
 7984   shrl(len, 4);
 7985   jcc(Assembler::zero, L_tail_restore);
 7986 
 7987   // Fold crc into first bytes of vector
 7988   movdqa(xmm1, Address(buf, 0));
 7989   movdl(rax, xmm1);
 7990   xorl(crc, rax);
 7991   if (VM_Version::supports_sse4_1()) {
 7992     pinsrd(xmm1, crc, 0);
 7993   } else {
 7994     pinsrw(xmm1, crc, 0);
 7995     shrl(crc, 16);
 7996     pinsrw(xmm1, crc, 1);
 7997   }
 7998   addptr(buf, 16);
 7999   subl(len, 4); // len > 0
 8000   jcc(Assembler::less, L_fold_tail);
 8001 
 8002   movdqa(xmm2, Address(buf,  0));
 8003   movdqa(xmm3, Address(buf, 16));
 8004   movdqa(xmm4, Address(buf, 32));
 8005   addptr(buf, 48);
 8006   subl(len, 3);
 8007   jcc(Assembler::lessEqual, L_fold_512b);
 8008 
 8009   // Fold total 512 bits of polynomial on each iteration,
 8010   // 128 bits per each of 4 parallel streams.
 8011   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32), rscratch1);
 8012 
 8013   align32();
 8014   BIND(L_fold_512b_loop);
 8015   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
 8016   fold_128bit_crc32(xmm2, xmm0, xmm5, buf, 16);
 8017   fold_128bit_crc32(xmm3, xmm0, xmm5, buf, 32);
 8018   fold_128bit_crc32(xmm4, xmm0, xmm5, buf, 48);
 8019   addptr(buf, 64);
 8020   subl(len, 4);
 8021   jcc(Assembler::greater, L_fold_512b_loop);
 8022 
 8023   // Fold 512 bits to 128 bits.
 8024   BIND(L_fold_512b);
 8025   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16), rscratch1);
 8026   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm2);
 8027   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm3);
 8028   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm4);
 8029 
 8030   // Fold the rest of 128 bits data chunks
 8031   BIND(L_fold_tail);
 8032   addl(len, 3);
 8033   jccb(Assembler::lessEqual, L_fold_128b);
 8034   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16), rscratch1);
 8035 
 8036   BIND(L_fold_tail_loop);
 8037   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
 8038   addptr(buf, 16);
 8039   decrementl(len);
 8040   jccb(Assembler::greater, L_fold_tail_loop);
 8041 
 8042   // Fold 128 bits in xmm1 down into 32 bits in crc register.
 8043   BIND(L_fold_128b);
 8044   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr()), rscratch1);
 8045   if (UseAVX > 0) {
 8046     vpclmulqdq(xmm2, xmm0, xmm1, 0x1);
 8047     vpand(xmm3, xmm0, xmm2, 0 /* vector_len */);
 8048     vpclmulqdq(xmm0, xmm0, xmm3, 0x1);
 8049   } else {
 8050     movdqa(xmm2, xmm0);
 8051     pclmulqdq(xmm2, xmm1, 0x1);
 8052     movdqa(xmm3, xmm0);
 8053     pand(xmm3, xmm2);
 8054     pclmulqdq(xmm0, xmm3, 0x1);
 8055   }
 8056   psrldq(xmm1, 8);
 8057   psrldq(xmm2, 4);
 8058   pxor(xmm0, xmm1);
 8059   pxor(xmm0, xmm2);
 8060 
 8061   // 8 8-bit folds to compute 32-bit CRC.
 8062   for (int j = 0; j < 4; j++) {
 8063     fold_8bit_crc32(xmm0, table, xmm1, rax);
 8064   }
 8065   movdl(crc, xmm0); // mov 32 bits to general register
 8066   for (int j = 0; j < 4; j++) {
 8067     fold_8bit_crc32(crc, table, rax);
 8068   }
 8069 
 8070   BIND(L_tail_restore);
 8071   movl(len, tmp); // restore
 8072   BIND(L_tail);
 8073   andl(len, 0xf);
 8074   jccb(Assembler::zero, L_exit);
 8075 
 8076   // Fold the rest of bytes
 8077   align(4);
 8078   BIND(L_tail_loop);
 8079   movsbl(rax, Address(buf, 0)); // load byte with sign extension
 8080   update_byte_crc32(crc, rax, table);
 8081   increment(buf);
 8082   decrementl(len);
 8083   jccb(Assembler::greater, L_tail_loop);
 8084 
 8085   BIND(L_exit);
 8086   notl(crc); // ~c
 8087 }
 8088 
 8089 #ifdef _LP64
 8090 // Helper function for AVX 512 CRC32
 8091 // Fold 512-bit data chunks
 8092 void MacroAssembler::fold512bit_crc32_avx512(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf,
 8093                                              Register pos, int offset) {
 8094   evmovdquq(xmm3, Address(buf, pos, Address::times_1, offset), Assembler::AVX_512bit);
 8095   evpclmulqdq(xtmp, xcrc, xK, 0x10, Assembler::AVX_512bit); // [123:64]
 8096   evpclmulqdq(xmm2, xcrc, xK, 0x01, Assembler::AVX_512bit); // [63:0]
 8097   evpxorq(xcrc, xtmp, xmm2, Assembler::AVX_512bit /* vector_len */);
 8098   evpxorq(xcrc, xcrc, xmm3, Assembler::AVX_512bit /* vector_len */);
 8099 }
 8100 
 8101 // Helper function for AVX 512 CRC32
 8102 // Compute CRC32 for < 256B buffers
 8103 void MacroAssembler::kernel_crc32_avx512_256B(Register crc, Register buf, Register len, Register table, Register pos,
 8104                                               Register tmp1, Register tmp2, Label& L_barrett, Label& L_16B_reduction_loop,
 8105                                               Label& L_get_last_two_xmms, Label& L_128_done, Label& L_cleanup) {
 8106 
 8107   Label L_less_than_32, L_exact_16_left, L_less_than_16_left;
 8108   Label L_less_than_8_left, L_less_than_4_left, L_less_than_2_left, L_zero_left;
 8109   Label L_only_less_than_4, L_only_less_than_3, L_only_less_than_2;
 8110 
 8111   // check if there is enough buffer to be able to fold 16B at a time
 8112   cmpl(len, 32);
 8113   jcc(Assembler::less, L_less_than_32);
 8114 
 8115   // if there is, load the constants
 8116   movdqu(xmm10, Address(table, 1 * 16));    //rk1 and rk2 in xmm10
 8117   movdl(xmm0, crc);                        // get the initial crc value
 8118   movdqu(xmm7, Address(buf, pos, Address::times_1, 0 * 16)); //load the plaintext
 8119   pxor(xmm7, xmm0);
 8120 
 8121   // update the buffer pointer
 8122   addl(pos, 16);
 8123   //update the counter.subtract 32 instead of 16 to save one instruction from the loop
 8124   subl(len, 32);
 8125   jmp(L_16B_reduction_loop);
 8126 
 8127   bind(L_less_than_32);
 8128   //mov initial crc to the return value. this is necessary for zero - length buffers.
 8129   movl(rax, crc);
 8130   testl(len, len);
 8131   jcc(Assembler::equal, L_cleanup);
 8132 
 8133   movdl(xmm0, crc);                        //get the initial crc value
 8134 
 8135   cmpl(len, 16);
 8136   jcc(Assembler::equal, L_exact_16_left);
 8137   jcc(Assembler::less, L_less_than_16_left);
 8138 
 8139   movdqu(xmm7, Address(buf, pos, Address::times_1, 0 * 16)); //load the plaintext
 8140   pxor(xmm7, xmm0);                       //xor the initial crc value
 8141   addl(pos, 16);
 8142   subl(len, 16);
 8143   movdqu(xmm10, Address(table, 1 * 16));    // rk1 and rk2 in xmm10
 8144   jmp(L_get_last_two_xmms);
 8145 
 8146   bind(L_less_than_16_left);
 8147   //use stack space to load data less than 16 bytes, zero - out the 16B in memory first.
 8148   pxor(xmm1, xmm1);
 8149   movptr(tmp1, rsp);
 8150   movdqu(Address(tmp1, 0 * 16), xmm1);
 8151 
 8152   cmpl(len, 4);
 8153   jcc(Assembler::less, L_only_less_than_4);
 8154 
 8155   //backup the counter value
 8156   movl(tmp2, len);
 8157   cmpl(len, 8);
 8158   jcc(Assembler::less, L_less_than_8_left);
 8159 
 8160   //load 8 Bytes
 8161   movq(rax, Address(buf, pos, Address::times_1, 0 * 16));
 8162   movq(Address(tmp1, 0 * 16), rax);
 8163   addptr(tmp1, 8);
 8164   subl(len, 8);
 8165   addl(pos, 8);
 8166 
 8167   bind(L_less_than_8_left);
 8168   cmpl(len, 4);
 8169   jcc(Assembler::less, L_less_than_4_left);
 8170 
 8171   //load 4 Bytes
 8172   movl(rax, Address(buf, pos, Address::times_1, 0));
 8173   movl(Address(tmp1, 0 * 16), rax);
 8174   addptr(tmp1, 4);
 8175   subl(len, 4);
 8176   addl(pos, 4);
 8177 
 8178   bind(L_less_than_4_left);
 8179   cmpl(len, 2);
 8180   jcc(Assembler::less, L_less_than_2_left);
 8181 
 8182   // load 2 Bytes
 8183   movw(rax, Address(buf, pos, Address::times_1, 0));
 8184   movl(Address(tmp1, 0 * 16), rax);
 8185   addptr(tmp1, 2);
 8186   subl(len, 2);
 8187   addl(pos, 2);
 8188 
 8189   bind(L_less_than_2_left);
 8190   cmpl(len, 1);
 8191   jcc(Assembler::less, L_zero_left);
 8192 
 8193   // load 1 Byte
 8194   movb(rax, Address(buf, pos, Address::times_1, 0));
 8195   movb(Address(tmp1, 0 * 16), rax);
 8196 
 8197   bind(L_zero_left);
 8198   movdqu(xmm7, Address(rsp, 0));
 8199   pxor(xmm7, xmm0);                       //xor the initial crc value
 8200 
 8201   lea(rax, ExternalAddress(StubRoutines::x86::shuf_table_crc32_avx512_addr()));
 8202   movdqu(xmm0, Address(rax, tmp2));
 8203   pshufb(xmm7, xmm0);
 8204   jmp(L_128_done);
 8205 
 8206   bind(L_exact_16_left);
 8207   movdqu(xmm7, Address(buf, pos, Address::times_1, 0));
 8208   pxor(xmm7, xmm0);                       //xor the initial crc value
 8209   jmp(L_128_done);
 8210 
 8211   bind(L_only_less_than_4);
 8212   cmpl(len, 3);
 8213   jcc(Assembler::less, L_only_less_than_3);
 8214 
 8215   // load 3 Bytes
 8216   movb(rax, Address(buf, pos, Address::times_1, 0));
 8217   movb(Address(tmp1, 0), rax);
 8218 
 8219   movb(rax, Address(buf, pos, Address::times_1, 1));
 8220   movb(Address(tmp1, 1), rax);
 8221 
 8222   movb(rax, Address(buf, pos, Address::times_1, 2));
 8223   movb(Address(tmp1, 2), rax);
 8224 
 8225   movdqu(xmm7, Address(rsp, 0));
 8226   pxor(xmm7, xmm0);                     //xor the initial crc value
 8227 
 8228   pslldq(xmm7, 0x5);
 8229   jmp(L_barrett);
 8230   bind(L_only_less_than_3);
 8231   cmpl(len, 2);
 8232   jcc(Assembler::less, L_only_less_than_2);
 8233 
 8234   // load 2 Bytes
 8235   movb(rax, Address(buf, pos, Address::times_1, 0));
 8236   movb(Address(tmp1, 0), rax);
 8237 
 8238   movb(rax, Address(buf, pos, Address::times_1, 1));
 8239   movb(Address(tmp1, 1), rax);
 8240 
 8241   movdqu(xmm7, Address(rsp, 0));
 8242   pxor(xmm7, xmm0);                     //xor the initial crc value
 8243 
 8244   pslldq(xmm7, 0x6);
 8245   jmp(L_barrett);
 8246 
 8247   bind(L_only_less_than_2);
 8248   //load 1 Byte
 8249   movb(rax, Address(buf, pos, Address::times_1, 0));
 8250   movb(Address(tmp1, 0), rax);
 8251 
 8252   movdqu(xmm7, Address(rsp, 0));
 8253   pxor(xmm7, xmm0);                     //xor the initial crc value
 8254 
 8255   pslldq(xmm7, 0x7);
 8256 }
 8257 
 8258 /**
 8259 * Compute CRC32 using AVX512 instructions
 8260 * param crc   register containing existing CRC (32-bit)
 8261 * param buf   register pointing to input byte buffer (byte*)
 8262 * param len   register containing number of bytes
 8263 * param table address of crc or crc32c table
 8264 * param tmp1  scratch register
 8265 * param tmp2  scratch register
 8266 * return rax  result register
 8267 *
 8268 * This routine is identical for crc32c with the exception of the precomputed constant
 8269 * table which will be passed as the table argument.  The calculation steps are
 8270 * the same for both variants.
 8271 */
 8272 void MacroAssembler::kernel_crc32_avx512(Register crc, Register buf, Register len, Register table, Register tmp1, Register tmp2) {
 8273   assert_different_registers(crc, buf, len, table, tmp1, tmp2, rax, r12);
 8274 
 8275   Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned;
 8276   Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop;
 8277   Label L_less_than_256, L_fold_128_B_loop, L_fold_256_B_loop;
 8278   Label L_fold_128_B_register, L_final_reduction_for_128, L_16B_reduction_loop;
 8279   Label L_128_done, L_get_last_two_xmms, L_barrett, L_cleanup;
 8280 
 8281   const Register pos = r12;
 8282   push(r12);
 8283   subptr(rsp, 16 * 2 + 8);
 8284 
 8285   // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge
 8286   // context for the registers used, where all instructions below are using 128-bit mode
 8287   // On EVEX without VL and BW, these instructions will all be AVX.
 8288   movl(pos, 0);
 8289 
 8290   // check if smaller than 256B
 8291   cmpl(len, 256);
 8292   jcc(Assembler::less, L_less_than_256);
 8293 
 8294   // load the initial crc value
 8295   movdl(xmm10, crc);
 8296 
 8297   // receive the initial 64B data, xor the initial crc value
 8298   evmovdquq(xmm0, Address(buf, pos, Address::times_1, 0 * 64), Assembler::AVX_512bit);
 8299   evmovdquq(xmm4, Address(buf, pos, Address::times_1, 1 * 64), Assembler::AVX_512bit);
 8300   evpxorq(xmm0, xmm0, xmm10, Assembler::AVX_512bit);
 8301   evbroadcasti32x4(xmm10, Address(table, 2 * 16), Assembler::AVX_512bit); //zmm10 has rk3 and rk4
 8302 
 8303   subl(len, 256);
 8304   cmpl(len, 256);
 8305   jcc(Assembler::less, L_fold_128_B_loop);
 8306 
 8307   evmovdquq(xmm7, Address(buf, pos, Address::times_1, 2 * 64), Assembler::AVX_512bit);
 8308   evmovdquq(xmm8, Address(buf, pos, Address::times_1, 3 * 64), Assembler::AVX_512bit);
 8309   evbroadcasti32x4(xmm16, Address(table, 0 * 16), Assembler::AVX_512bit); //zmm16 has rk-1 and rk-2
 8310   subl(len, 256);
 8311 
 8312   bind(L_fold_256_B_loop);
 8313   addl(pos, 256);
 8314   fold512bit_crc32_avx512(xmm0, xmm16, xmm1, buf, pos, 0 * 64);
 8315   fold512bit_crc32_avx512(xmm4, xmm16, xmm1, buf, pos, 1 * 64);
 8316   fold512bit_crc32_avx512(xmm7, xmm16, xmm1, buf, pos, 2 * 64);
 8317   fold512bit_crc32_avx512(xmm8, xmm16, xmm1, buf, pos, 3 * 64);
 8318 
 8319   subl(len, 256);
 8320   jcc(Assembler::greaterEqual, L_fold_256_B_loop);
 8321 
 8322   // Fold 256 into 128
 8323   addl(pos, 256);
 8324   evpclmulqdq(xmm1, xmm0, xmm10, 0x01, Assembler::AVX_512bit);
 8325   evpclmulqdq(xmm2, xmm0, xmm10, 0x10, Assembler::AVX_512bit);
 8326   vpternlogq(xmm7, 0x96, xmm1, xmm2, Assembler::AVX_512bit); // xor ABC
 8327 
 8328   evpclmulqdq(xmm5, xmm4, xmm10, 0x01, Assembler::AVX_512bit);
 8329   evpclmulqdq(xmm6, xmm4, xmm10, 0x10, Assembler::AVX_512bit);
 8330   vpternlogq(xmm8, 0x96, xmm5, xmm6, Assembler::AVX_512bit); // xor ABC
 8331 
 8332   evmovdquq(xmm0, xmm7, Assembler::AVX_512bit);
 8333   evmovdquq(xmm4, xmm8, Assembler::AVX_512bit);
 8334 
 8335   addl(len, 128);
 8336   jmp(L_fold_128_B_register);
 8337 
 8338   // at this section of the code, there is 128 * x + y(0 <= y<128) bytes of buffer.The fold_128_B_loop
 8339   // loop will fold 128B at a time until we have 128 + y Bytes of buffer
 8340 
 8341   // fold 128B at a time.This section of the code folds 8 xmm registers in parallel
 8342   bind(L_fold_128_B_loop);
 8343   addl(pos, 128);
 8344   fold512bit_crc32_avx512(xmm0, xmm10, xmm1, buf, pos, 0 * 64);
 8345   fold512bit_crc32_avx512(xmm4, xmm10, xmm1, buf, pos, 1 * 64);
 8346 
 8347   subl(len, 128);
 8348   jcc(Assembler::greaterEqual, L_fold_128_B_loop);
 8349 
 8350   addl(pos, 128);
 8351 
 8352   // at this point, the buffer pointer is pointing at the last y Bytes of the buffer, where 0 <= y < 128
 8353   // the 128B of folded data is in 8 of the xmm registers : xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7
 8354   bind(L_fold_128_B_register);
 8355   evmovdquq(xmm16, Address(table, 5 * 16), Assembler::AVX_512bit); // multiply by rk9-rk16
 8356   evmovdquq(xmm11, Address(table, 9 * 16), Assembler::AVX_512bit); // multiply by rk17-rk20, rk1,rk2, 0,0
 8357   evpclmulqdq(xmm1, xmm0, xmm16, 0x01, Assembler::AVX_512bit);
 8358   evpclmulqdq(xmm2, xmm0, xmm16, 0x10, Assembler::AVX_512bit);
 8359   // save last that has no multiplicand
 8360   vextracti64x2(xmm7, xmm4, 3);
 8361 
 8362   evpclmulqdq(xmm5, xmm4, xmm11, 0x01, Assembler::AVX_512bit);
 8363   evpclmulqdq(xmm6, xmm4, xmm11, 0x10, Assembler::AVX_512bit);
 8364   // Needed later in reduction loop
 8365   movdqu(xmm10, Address(table, 1 * 16));
 8366   vpternlogq(xmm1, 0x96, xmm2, xmm5, Assembler::AVX_512bit); // xor ABC
 8367   vpternlogq(xmm1, 0x96, xmm6, xmm7, Assembler::AVX_512bit); // xor ABC
 8368 
 8369   // Swap 1,0,3,2 - 01 00 11 10
 8370   evshufi64x2(xmm8, xmm1, xmm1, 0x4e, Assembler::AVX_512bit);
 8371   evpxorq(xmm8, xmm8, xmm1, Assembler::AVX_256bit);
 8372   vextracti128(xmm5, xmm8, 1);
 8373   evpxorq(xmm7, xmm5, xmm8, Assembler::AVX_128bit);
 8374 
 8375   // instead of 128, we add 128 - 16 to the loop counter to save 1 instruction from the loop
 8376   // instead of a cmp instruction, we use the negative flag with the jl instruction
 8377   addl(len, 128 - 16);
 8378   jcc(Assembler::less, L_final_reduction_for_128);
 8379 
 8380   bind(L_16B_reduction_loop);
 8381   vpclmulqdq(xmm8, xmm7, xmm10, 0x01);
 8382   vpclmulqdq(xmm7, xmm7, xmm10, 0x10);
 8383   vpxor(xmm7, xmm7, xmm8, Assembler::AVX_128bit);
 8384   movdqu(xmm0, Address(buf, pos, Address::times_1, 0 * 16));
 8385   vpxor(xmm7, xmm7, xmm0, Assembler::AVX_128bit);
 8386   addl(pos, 16);
 8387   subl(len, 16);
 8388   jcc(Assembler::greaterEqual, L_16B_reduction_loop);
 8389 
 8390   bind(L_final_reduction_for_128);
 8391   addl(len, 16);
 8392   jcc(Assembler::equal, L_128_done);
 8393 
 8394   bind(L_get_last_two_xmms);
 8395   movdqu(xmm2, xmm7);
 8396   addl(pos, len);
 8397   movdqu(xmm1, Address(buf, pos, Address::times_1, -16));
 8398   subl(pos, len);
 8399 
 8400   // get rid of the extra data that was loaded before
 8401   // load the shift constant
 8402   lea(rax, ExternalAddress(StubRoutines::x86::shuf_table_crc32_avx512_addr()));
 8403   movdqu(xmm0, Address(rax, len));
 8404   addl(rax, len);
 8405 
 8406   vpshufb(xmm7, xmm7, xmm0, Assembler::AVX_128bit);
 8407   //Change mask to 512
 8408   vpxor(xmm0, xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_avx512_addr() + 2 * 16), Assembler::AVX_128bit, tmp2);
 8409   vpshufb(xmm2, xmm2, xmm0, Assembler::AVX_128bit);
 8410 
 8411   blendvpb(xmm2, xmm2, xmm1, xmm0, Assembler::AVX_128bit);
 8412   vpclmulqdq(xmm8, xmm7, xmm10, 0x01);
 8413   vpclmulqdq(xmm7, xmm7, xmm10, 0x10);
 8414   vpxor(xmm7, xmm7, xmm8, Assembler::AVX_128bit);
 8415   vpxor(xmm7, xmm7, xmm2, Assembler::AVX_128bit);
 8416 
 8417   bind(L_128_done);
 8418   // compute crc of a 128-bit value
 8419   movdqu(xmm10, Address(table, 3 * 16));
 8420   movdqu(xmm0, xmm7);
 8421 
 8422   // 64b fold
 8423   vpclmulqdq(xmm7, xmm7, xmm10, 0x0);
 8424   vpsrldq(xmm0, xmm0, 0x8, Assembler::AVX_128bit);
 8425   vpxor(xmm7, xmm7, xmm0, Assembler::AVX_128bit);
 8426 
 8427   // 32b fold
 8428   movdqu(xmm0, xmm7);
 8429   vpslldq(xmm7, xmm7, 0x4, Assembler::AVX_128bit);
 8430   vpclmulqdq(xmm7, xmm7, xmm10, 0x10);
 8431   vpxor(xmm7, xmm7, xmm0, Assembler::AVX_128bit);
 8432   jmp(L_barrett);
 8433 
 8434   bind(L_less_than_256);
 8435   kernel_crc32_avx512_256B(crc, buf, len, table, pos, tmp1, tmp2, L_barrett, L_16B_reduction_loop, L_get_last_two_xmms, L_128_done, L_cleanup);
 8436 
 8437   //barrett reduction
 8438   bind(L_barrett);
 8439   vpand(xmm7, xmm7, ExternalAddress(StubRoutines::x86::crc_by128_masks_avx512_addr() + 1 * 16), Assembler::AVX_128bit, tmp2);
 8440   movdqu(xmm1, xmm7);
 8441   movdqu(xmm2, xmm7);
 8442   movdqu(xmm10, Address(table, 4 * 16));
 8443 
 8444   pclmulqdq(xmm7, xmm10, 0x0);
 8445   pxor(xmm7, xmm2);
 8446   vpand(xmm7, xmm7, ExternalAddress(StubRoutines::x86::crc_by128_masks_avx512_addr()), Assembler::AVX_128bit, tmp2);
 8447   movdqu(xmm2, xmm7);
 8448   pclmulqdq(xmm7, xmm10, 0x10);
 8449   pxor(xmm7, xmm2);
 8450   pxor(xmm7, xmm1);
 8451   pextrd(crc, xmm7, 2);
 8452 
 8453   bind(L_cleanup);
 8454   addptr(rsp, 16 * 2 + 8);
 8455   pop(r12);
 8456 }
 8457 
 8458 // S. Gueron / Information Processing Letters 112 (2012) 184
 8459 // Algorithm 4: Computing carry-less multiplication using a precomputed lookup table.
 8460 // Input: A 32 bit value B = [byte3, byte2, byte1, byte0].
 8461 // Output: the 64-bit carry-less product of B * CONST
 8462 void MacroAssembler::crc32c_ipl_alg4(Register in, uint32_t n,
 8463                                      Register tmp1, Register tmp2, Register tmp3) {
 8464   lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr()));
 8465   if (n > 0) {
 8466     addq(tmp3, n * 256 * 8);
 8467   }
 8468   //    Q1 = TABLEExt[n][B & 0xFF];
 8469   movl(tmp1, in);
 8470   andl(tmp1, 0x000000FF);
 8471   shll(tmp1, 3);
 8472   addq(tmp1, tmp3);
 8473   movq(tmp1, Address(tmp1, 0));
 8474 
 8475   //    Q2 = TABLEExt[n][B >> 8 & 0xFF];
 8476   movl(tmp2, in);
 8477   shrl(tmp2, 8);
 8478   andl(tmp2, 0x000000FF);
 8479   shll(tmp2, 3);
 8480   addq(tmp2, tmp3);
 8481   movq(tmp2, Address(tmp2, 0));
 8482 
 8483   shlq(tmp2, 8);
 8484   xorq(tmp1, tmp2);
 8485 
 8486   //    Q3 = TABLEExt[n][B >> 16 & 0xFF];
 8487   movl(tmp2, in);
 8488   shrl(tmp2, 16);
 8489   andl(tmp2, 0x000000FF);
 8490   shll(tmp2, 3);
 8491   addq(tmp2, tmp3);
 8492   movq(tmp2, Address(tmp2, 0));
 8493 
 8494   shlq(tmp2, 16);
 8495   xorq(tmp1, tmp2);
 8496 
 8497   //    Q4 = TABLEExt[n][B >> 24 & 0xFF];
 8498   shrl(in, 24);
 8499   andl(in, 0x000000FF);
 8500   shll(in, 3);
 8501   addq(in, tmp3);
 8502   movq(in, Address(in, 0));
 8503 
 8504   shlq(in, 24);
 8505   xorq(in, tmp1);
 8506   //    return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24;
 8507 }
 8508 
 8509 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1,
 8510                                       Register in_out,
 8511                                       uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
 8512                                       XMMRegister w_xtmp2,
 8513                                       Register tmp1,
 8514                                       Register n_tmp2, Register n_tmp3) {
 8515   if (is_pclmulqdq_supported) {
 8516     movdl(w_xtmp1, in_out); // modified blindly
 8517 
 8518     movl(tmp1, const_or_pre_comp_const_index);
 8519     movdl(w_xtmp2, tmp1);
 8520     pclmulqdq(w_xtmp1, w_xtmp2, 0);
 8521 
 8522     movdq(in_out, w_xtmp1);
 8523   } else {
 8524     crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3);
 8525   }
 8526 }
 8527 
 8528 // Recombination Alternative 2: No bit-reflections
 8529 // T1 = (CRC_A * U1) << 1
 8530 // T2 = (CRC_B * U2) << 1
 8531 // C1 = T1 >> 32
 8532 // C2 = T2 >> 32
 8533 // T1 = T1 & 0xFFFFFFFF
 8534 // T2 = T2 & 0xFFFFFFFF
 8535 // T1 = CRC32(0, T1)
 8536 // T2 = CRC32(0, T2)
 8537 // C1 = C1 ^ T1
 8538 // C2 = C2 ^ T2
 8539 // CRC = C1 ^ C2 ^ CRC_C
 8540 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
 8541                                      XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
 8542                                      Register tmp1, Register tmp2,
 8543                                      Register n_tmp3) {
 8544   crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
 8545   crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
 8546   shlq(in_out, 1);
 8547   movl(tmp1, in_out);
 8548   shrq(in_out, 32);
 8549   xorl(tmp2, tmp2);
 8550   crc32(tmp2, tmp1, 4);
 8551   xorl(in_out, tmp2); // we don't care about upper 32 bit contents here
 8552   shlq(in1, 1);
 8553   movl(tmp1, in1);
 8554   shrq(in1, 32);
 8555   xorl(tmp2, tmp2);
 8556   crc32(tmp2, tmp1, 4);
 8557   xorl(in1, tmp2);
 8558   xorl(in_out, in1);
 8559   xorl(in_out, in2);
 8560 }
 8561 
 8562 // Set N to predefined value
 8563 // Subtract from a length of a buffer
 8564 // execute in a loop:
 8565 // CRC_A = 0xFFFFFFFF, CRC_B = 0, CRC_C = 0
 8566 // for i = 1 to N do
 8567 //  CRC_A = CRC32(CRC_A, A[i])
 8568 //  CRC_B = CRC32(CRC_B, B[i])
 8569 //  CRC_C = CRC32(CRC_C, C[i])
 8570 // end for
 8571 // Recombine
 8572 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
 8573                                        Register in_out1, Register in_out2, Register in_out3,
 8574                                        Register tmp1, Register tmp2, Register tmp3,
 8575                                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
 8576                                        Register tmp4, Register tmp5,
 8577                                        Register n_tmp6) {
 8578   Label L_processPartitions;
 8579   Label L_processPartition;
 8580   Label L_exit;
 8581 
 8582   bind(L_processPartitions);
 8583   cmpl(in_out1, 3 * size);
 8584   jcc(Assembler::less, L_exit);
 8585     xorl(tmp1, tmp1);
 8586     xorl(tmp2, tmp2);
 8587     movq(tmp3, in_out2);
 8588     addq(tmp3, size);
 8589 
 8590     bind(L_processPartition);
 8591       crc32(in_out3, Address(in_out2, 0), 8);
 8592       crc32(tmp1, Address(in_out2, size), 8);
 8593       crc32(tmp2, Address(in_out2, size * 2), 8);
 8594       addq(in_out2, 8);
 8595       cmpq(in_out2, tmp3);
 8596       jcc(Assembler::less, L_processPartition);
 8597     crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2,
 8598             w_xtmp1, w_xtmp2, w_xtmp3,
 8599             tmp4, tmp5,
 8600             n_tmp6);
 8601     addq(in_out2, 2 * size);
 8602     subl(in_out1, 3 * size);
 8603     jmp(L_processPartitions);
 8604 
 8605   bind(L_exit);
 8606 }
 8607 #else
 8608 void MacroAssembler::crc32c_ipl_alg4(Register in_out, uint32_t n,
 8609                                      Register tmp1, Register tmp2, Register tmp3,
 8610                                      XMMRegister xtmp1, XMMRegister xtmp2) {
 8611   lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr()));
 8612   if (n > 0) {
 8613     addl(tmp3, n * 256 * 8);
 8614   }
 8615   //    Q1 = TABLEExt[n][B & 0xFF];
 8616   movl(tmp1, in_out);
 8617   andl(tmp1, 0x000000FF);
 8618   shll(tmp1, 3);
 8619   addl(tmp1, tmp3);
 8620   movq(xtmp1, Address(tmp1, 0));
 8621 
 8622   //    Q2 = TABLEExt[n][B >> 8 & 0xFF];
 8623   movl(tmp2, in_out);
 8624   shrl(tmp2, 8);
 8625   andl(tmp2, 0x000000FF);
 8626   shll(tmp2, 3);
 8627   addl(tmp2, tmp3);
 8628   movq(xtmp2, Address(tmp2, 0));
 8629 
 8630   psllq(xtmp2, 8);
 8631   pxor(xtmp1, xtmp2);
 8632 
 8633   //    Q3 = TABLEExt[n][B >> 16 & 0xFF];
 8634   movl(tmp2, in_out);
 8635   shrl(tmp2, 16);
 8636   andl(tmp2, 0x000000FF);
 8637   shll(tmp2, 3);
 8638   addl(tmp2, tmp3);
 8639   movq(xtmp2, Address(tmp2, 0));
 8640 
 8641   psllq(xtmp2, 16);
 8642   pxor(xtmp1, xtmp2);
 8643 
 8644   //    Q4 = TABLEExt[n][B >> 24 & 0xFF];
 8645   shrl(in_out, 24);
 8646   andl(in_out, 0x000000FF);
 8647   shll(in_out, 3);
 8648   addl(in_out, tmp3);
 8649   movq(xtmp2, Address(in_out, 0));
 8650 
 8651   psllq(xtmp2, 24);
 8652   pxor(xtmp1, xtmp2); // Result in CXMM
 8653   //    return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24;
 8654 }
 8655 
 8656 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1,
 8657                                       Register in_out,
 8658                                       uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
 8659                                       XMMRegister w_xtmp2,
 8660                                       Register tmp1,
 8661                                       Register n_tmp2, Register n_tmp3) {
 8662   if (is_pclmulqdq_supported) {
 8663     movdl(w_xtmp1, in_out);
 8664 
 8665     movl(tmp1, const_or_pre_comp_const_index);
 8666     movdl(w_xtmp2, tmp1);
 8667     pclmulqdq(w_xtmp1, w_xtmp2, 0);
 8668     // Keep result in XMM since GPR is 32 bit in length
 8669   } else {
 8670     crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3, w_xtmp1, w_xtmp2);
 8671   }
 8672 }
 8673 
 8674 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
 8675                                      XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
 8676                                      Register tmp1, Register tmp2,
 8677                                      Register n_tmp3) {
 8678   crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
 8679   crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
 8680 
 8681   psllq(w_xtmp1, 1);
 8682   movdl(tmp1, w_xtmp1);
 8683   psrlq(w_xtmp1, 32);
 8684   movdl(in_out, w_xtmp1);
 8685 
 8686   xorl(tmp2, tmp2);
 8687   crc32(tmp2, tmp1, 4);
 8688   xorl(in_out, tmp2);
 8689 
 8690   psllq(w_xtmp2, 1);
 8691   movdl(tmp1, w_xtmp2);
 8692   psrlq(w_xtmp2, 32);
 8693   movdl(in1, w_xtmp2);
 8694 
 8695   xorl(tmp2, tmp2);
 8696   crc32(tmp2, tmp1, 4);
 8697   xorl(in1, tmp2);
 8698   xorl(in_out, in1);
 8699   xorl(in_out, in2);
 8700 }
 8701 
 8702 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
 8703                                        Register in_out1, Register in_out2, Register in_out3,
 8704                                        Register tmp1, Register tmp2, Register tmp3,
 8705                                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
 8706                                        Register tmp4, Register tmp5,
 8707                                        Register n_tmp6) {
 8708   Label L_processPartitions;
 8709   Label L_processPartition;
 8710   Label L_exit;
 8711 
 8712   bind(L_processPartitions);
 8713   cmpl(in_out1, 3 * size);
 8714   jcc(Assembler::less, L_exit);
 8715     xorl(tmp1, tmp1);
 8716     xorl(tmp2, tmp2);
 8717     movl(tmp3, in_out2);
 8718     addl(tmp3, size);
 8719 
 8720     bind(L_processPartition);
 8721       crc32(in_out3, Address(in_out2, 0), 4);
 8722       crc32(tmp1, Address(in_out2, size), 4);
 8723       crc32(tmp2, Address(in_out2, size*2), 4);
 8724       crc32(in_out3, Address(in_out2, 0+4), 4);
 8725       crc32(tmp1, Address(in_out2, size+4), 4);
 8726       crc32(tmp2, Address(in_out2, size*2+4), 4);
 8727       addl(in_out2, 8);
 8728       cmpl(in_out2, tmp3);
 8729       jcc(Assembler::less, L_processPartition);
 8730 
 8731         push(tmp3);
 8732         push(in_out1);
 8733         push(in_out2);
 8734         tmp4 = tmp3;
 8735         tmp5 = in_out1;
 8736         n_tmp6 = in_out2;
 8737 
 8738       crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2,
 8739             w_xtmp1, w_xtmp2, w_xtmp3,
 8740             tmp4, tmp5,
 8741             n_tmp6);
 8742 
 8743         pop(in_out2);
 8744         pop(in_out1);
 8745         pop(tmp3);
 8746 
 8747     addl(in_out2, 2 * size);
 8748     subl(in_out1, 3 * size);
 8749     jmp(L_processPartitions);
 8750 
 8751   bind(L_exit);
 8752 }
 8753 #endif //LP64
 8754 
 8755 #ifdef _LP64
 8756 // Algorithm 2: Pipelined usage of the CRC32 instruction.
 8757 // Input: A buffer I of L bytes.
 8758 // Output: the CRC32C value of the buffer.
 8759 // Notations:
 8760 // Write L = 24N + r, with N = floor (L/24).
 8761 // r = L mod 24 (0 <= r < 24).
 8762 // Consider I as the concatenation of A|B|C|R, where A, B, C, each,
 8763 // N quadwords, and R consists of r bytes.
 8764 // A[j] = I [8j+7:8j], j= 0, 1, ..., N-1
 8765 // B[j] = I [N + 8j+7:N + 8j], j= 0, 1, ..., N-1
 8766 // C[j] = I [2N + 8j+7:2N + 8j], j= 0, 1, ..., N-1
 8767 // if r > 0 R[j] = I [3N +j], j= 0, 1, ...,r-1
 8768 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
 8769                                           Register tmp1, Register tmp2, Register tmp3,
 8770                                           Register tmp4, Register tmp5, Register tmp6,
 8771                                           XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
 8772                                           bool is_pclmulqdq_supported) {
 8773   uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS];
 8774   Label L_wordByWord;
 8775   Label L_byteByByteProlog;
 8776   Label L_byteByByte;
 8777   Label L_exit;
 8778 
 8779   if (is_pclmulqdq_supported ) {
 8780     const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr;
 8781     const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr+1);
 8782 
 8783     const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2);
 8784     const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3);
 8785 
 8786     const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4);
 8787     const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5);
 8788     assert((CRC32C_NUM_PRECOMPUTED_CONSTANTS - 1 ) == 5, "Checking whether you declared all of the constants based on the number of \"chunks\"");
 8789   } else {
 8790     const_or_pre_comp_const_index[0] = 1;
 8791     const_or_pre_comp_const_index[1] = 0;
 8792 
 8793     const_or_pre_comp_const_index[2] = 3;
 8794     const_or_pre_comp_const_index[3] = 2;
 8795 
 8796     const_or_pre_comp_const_index[4] = 5;
 8797     const_or_pre_comp_const_index[5] = 4;
 8798    }
 8799   crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported,
 8800                     in2, in1, in_out,
 8801                     tmp1, tmp2, tmp3,
 8802                     w_xtmp1, w_xtmp2, w_xtmp3,
 8803                     tmp4, tmp5,
 8804                     tmp6);
 8805   crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported,
 8806                     in2, in1, in_out,
 8807                     tmp1, tmp2, tmp3,
 8808                     w_xtmp1, w_xtmp2, w_xtmp3,
 8809                     tmp4, tmp5,
 8810                     tmp6);
 8811   crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported,
 8812                     in2, in1, in_out,
 8813                     tmp1, tmp2, tmp3,
 8814                     w_xtmp1, w_xtmp2, w_xtmp3,
 8815                     tmp4, tmp5,
 8816                     tmp6);
 8817   movl(tmp1, in2);
 8818   andl(tmp1, 0x00000007);
 8819   negl(tmp1);
 8820   addl(tmp1, in2);
 8821   addq(tmp1, in1);
 8822 
 8823   cmpq(in1, tmp1);
 8824   jccb(Assembler::greaterEqual, L_byteByByteProlog);
 8825   align(16);
 8826   BIND(L_wordByWord);
 8827     crc32(in_out, Address(in1, 0), 8);
 8828     addq(in1, 8);
 8829     cmpq(in1, tmp1);
 8830     jcc(Assembler::less, L_wordByWord);
 8831 
 8832   BIND(L_byteByByteProlog);
 8833   andl(in2, 0x00000007);
 8834   movl(tmp2, 1);
 8835 
 8836   cmpl(tmp2, in2);
 8837   jccb(Assembler::greater, L_exit);
 8838   BIND(L_byteByByte);
 8839     crc32(in_out, Address(in1, 0), 1);
 8840     incq(in1);
 8841     incl(tmp2);
 8842     cmpl(tmp2, in2);
 8843     jcc(Assembler::lessEqual, L_byteByByte);
 8844 
 8845   BIND(L_exit);
 8846 }
 8847 #else
 8848 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
 8849                                           Register tmp1, Register  tmp2, Register tmp3,
 8850                                           Register tmp4, Register  tmp5, Register tmp6,
 8851                                           XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
 8852                                           bool is_pclmulqdq_supported) {
 8853   uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS];
 8854   Label L_wordByWord;
 8855   Label L_byteByByteProlog;
 8856   Label L_byteByByte;
 8857   Label L_exit;
 8858 
 8859   if (is_pclmulqdq_supported) {
 8860     const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr;
 8861     const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 1);
 8862 
 8863     const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2);
 8864     const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3);
 8865 
 8866     const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4);
 8867     const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5);
 8868   } else {
 8869     const_or_pre_comp_const_index[0] = 1;
 8870     const_or_pre_comp_const_index[1] = 0;
 8871 
 8872     const_or_pre_comp_const_index[2] = 3;
 8873     const_or_pre_comp_const_index[3] = 2;
 8874 
 8875     const_or_pre_comp_const_index[4] = 5;
 8876     const_or_pre_comp_const_index[5] = 4;
 8877   }
 8878   crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported,
 8879                     in2, in1, in_out,
 8880                     tmp1, tmp2, tmp3,
 8881                     w_xtmp1, w_xtmp2, w_xtmp3,
 8882                     tmp4, tmp5,
 8883                     tmp6);
 8884   crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported,
 8885                     in2, in1, in_out,
 8886                     tmp1, tmp2, tmp3,
 8887                     w_xtmp1, w_xtmp2, w_xtmp3,
 8888                     tmp4, tmp5,
 8889                     tmp6);
 8890   crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported,
 8891                     in2, in1, in_out,
 8892                     tmp1, tmp2, tmp3,
 8893                     w_xtmp1, w_xtmp2, w_xtmp3,
 8894                     tmp4, tmp5,
 8895                     tmp6);
 8896   movl(tmp1, in2);
 8897   andl(tmp1, 0x00000007);
 8898   negl(tmp1);
 8899   addl(tmp1, in2);
 8900   addl(tmp1, in1);
 8901 
 8902   BIND(L_wordByWord);
 8903   cmpl(in1, tmp1);
 8904   jcc(Assembler::greaterEqual, L_byteByByteProlog);
 8905     crc32(in_out, Address(in1,0), 4);
 8906     addl(in1, 4);
 8907     jmp(L_wordByWord);
 8908 
 8909   BIND(L_byteByByteProlog);
 8910   andl(in2, 0x00000007);
 8911   movl(tmp2, 1);
 8912 
 8913   BIND(L_byteByByte);
 8914   cmpl(tmp2, in2);
 8915   jccb(Assembler::greater, L_exit);
 8916     movb(tmp1, Address(in1, 0));
 8917     crc32(in_out, tmp1, 1);
 8918     incl(in1);
 8919     incl(tmp2);
 8920     jmp(L_byteByByte);
 8921 
 8922   BIND(L_exit);
 8923 }
 8924 #endif // LP64
 8925 #undef BIND
 8926 #undef BLOCK_COMMENT
 8927 
 8928 // Compress char[] array to byte[].
 8929 // Intrinsic for java.lang.StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len)
 8930 // Return the array length if every element in array can be encoded,
 8931 // otherwise, the index of first non-latin1 (> 0xff) character.
 8932 //   @IntrinsicCandidate
 8933 //   public static int compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) {
 8934 //     for (int i = 0; i < len; i++) {
 8935 //       char c = src[srcOff];
 8936 //       if (c > 0xff) {
 8937 //           return i;  // return index of non-latin1 char
 8938 //       }
 8939 //       dst[dstOff] = (byte)c;
 8940 //       srcOff++;
 8941 //       dstOff++;
 8942 //     }
 8943 //     return len;
 8944 //   }
 8945 void MacroAssembler::char_array_compress(Register src, Register dst, Register len,
 8946   XMMRegister tmp1Reg, XMMRegister tmp2Reg,
 8947   XMMRegister tmp3Reg, XMMRegister tmp4Reg,
 8948   Register tmp5, Register result, KRegister mask1, KRegister mask2) {
 8949   Label copy_chars_loop, done, reset_sp, copy_tail;
 8950 
 8951   // rsi: src
 8952   // rdi: dst
 8953   // rdx: len
 8954   // rcx: tmp5
 8955   // rax: result
 8956 
 8957   // rsi holds start addr of source char[] to be compressed
 8958   // rdi holds start addr of destination byte[]
 8959   // rdx holds length
 8960 
 8961   assert(len != result, "");
 8962 
 8963   // save length for return
 8964   movl(result, len);
 8965 
 8966   if ((AVX3Threshold == 0) && (UseAVX > 2) && // AVX512
 8967     VM_Version::supports_avx512vlbw() &&
 8968     VM_Version::supports_bmi2()) {
 8969 
 8970     Label copy_32_loop, copy_loop_tail, below_threshold, reset_for_copy_tail;
 8971 
 8972     // alignment
 8973     Label post_alignment;
 8974 
 8975     // if length of the string is less than 32, handle it the old fashioned way
 8976     testl(len, -32);
 8977     jcc(Assembler::zero, below_threshold);
 8978 
 8979     // First check whether a character is compressible ( <= 0xFF).
 8980     // Create mask to test for Unicode chars inside zmm vector
 8981     movl(tmp5, 0x00FF);
 8982     evpbroadcastw(tmp2Reg, tmp5, Assembler::AVX_512bit);
 8983 
 8984     testl(len, -64);
 8985     jccb(Assembler::zero, post_alignment);
 8986 
 8987     movl(tmp5, dst);
 8988     andl(tmp5, (32 - 1));
 8989     negl(tmp5);
 8990     andl(tmp5, (32 - 1));
 8991 
 8992     // bail out when there is nothing to be done
 8993     testl(tmp5, 0xFFFFFFFF);
 8994     jccb(Assembler::zero, post_alignment);
 8995 
 8996     // ~(~0 << len), where len is the # of remaining elements to process
 8997     movl(len, 0xFFFFFFFF);
 8998     shlxl(len, len, tmp5);
 8999     notl(len);
 9000     kmovdl(mask2, len);
 9001     movl(len, result);
 9002 
 9003     evmovdquw(tmp1Reg, mask2, Address(src, 0), /*merge*/ false, Assembler::AVX_512bit);
 9004     evpcmpw(mask1, mask2, tmp1Reg, tmp2Reg, Assembler::le, /*signed*/ false, Assembler::AVX_512bit);
 9005     ktestd(mask1, mask2);
 9006     jcc(Assembler::carryClear, copy_tail);
 9007 
 9008     evpmovwb(Address(dst, 0), mask2, tmp1Reg, Assembler::AVX_512bit);
 9009 
 9010     addptr(src, tmp5);
 9011     addptr(src, tmp5);
 9012     addptr(dst, tmp5);
 9013     subl(len, tmp5);
 9014 
 9015     bind(post_alignment);
 9016     // end of alignment
 9017 
 9018     movl(tmp5, len);
 9019     andl(tmp5, (32 - 1));    // tail count (in chars)
 9020     andl(len, ~(32 - 1));    // vector count (in chars)
 9021     jccb(Assembler::zero, copy_loop_tail);
 9022 
 9023     lea(src, Address(src, len, Address::times_2));
 9024     lea(dst, Address(dst, len, Address::times_1));
 9025     negptr(len);
 9026 
 9027     bind(copy_32_loop);
 9028     evmovdquw(tmp1Reg, Address(src, len, Address::times_2), Assembler::AVX_512bit);
 9029     evpcmpuw(mask1, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
 9030     kortestdl(mask1, mask1);
 9031     jccb(Assembler::carryClear, reset_for_copy_tail);
 9032 
 9033     // All elements in current processed chunk are valid candidates for
 9034     // compression. Write a truncated byte elements to the memory.
 9035     evpmovwb(Address(dst, len, Address::times_1), tmp1Reg, Assembler::AVX_512bit);
 9036     addptr(len, 32);
 9037     jccb(Assembler::notZero, copy_32_loop);
 9038 
 9039     bind(copy_loop_tail);
 9040     // bail out when there is nothing to be done
 9041     testl(tmp5, 0xFFFFFFFF);
 9042     jcc(Assembler::zero, done);
 9043 
 9044     movl(len, tmp5);
 9045 
 9046     // ~(~0 << len), where len is the # of remaining elements to process
 9047     movl(tmp5, 0xFFFFFFFF);
 9048     shlxl(tmp5, tmp5, len);
 9049     notl(tmp5);
 9050 
 9051     kmovdl(mask2, tmp5);
 9052 
 9053     evmovdquw(tmp1Reg, mask2, Address(src, 0), /*merge*/ false, Assembler::AVX_512bit);
 9054     evpcmpw(mask1, mask2, tmp1Reg, tmp2Reg, Assembler::le, /*signed*/ false, Assembler::AVX_512bit);
 9055     ktestd(mask1, mask2);
 9056     jcc(Assembler::carryClear, copy_tail);
 9057 
 9058     evpmovwb(Address(dst, 0), mask2, tmp1Reg, Assembler::AVX_512bit);
 9059     jmp(done);
 9060 
 9061     bind(reset_for_copy_tail);
 9062     lea(src, Address(src, tmp5, Address::times_2));
 9063     lea(dst, Address(dst, tmp5, Address::times_1));
 9064     subptr(len, tmp5);
 9065     jmp(copy_chars_loop);
 9066 
 9067     bind(below_threshold);
 9068   }
 9069 
 9070   if (UseSSE42Intrinsics) {
 9071     Label copy_32_loop, copy_16, copy_tail_sse, reset_for_copy_tail;
 9072 
 9073     // vectored compression
 9074     testl(len, 0xfffffff8);
 9075     jcc(Assembler::zero, copy_tail);
 9076 
 9077     movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vectors
 9078     movdl(tmp1Reg, tmp5);
 9079     pshufd(tmp1Reg, tmp1Reg, 0);   // store Unicode mask in tmp1Reg
 9080 
 9081     andl(len, 0xfffffff0);
 9082     jccb(Assembler::zero, copy_16);
 9083 
 9084     // compress 16 chars per iter
 9085     pxor(tmp4Reg, tmp4Reg);
 9086 
 9087     lea(src, Address(src, len, Address::times_2));
 9088     lea(dst, Address(dst, len, Address::times_1));
 9089     negptr(len);
 9090 
 9091     bind(copy_32_loop);
 9092     movdqu(tmp2Reg, Address(src, len, Address::times_2));     // load 1st 8 characters
 9093     por(tmp4Reg, tmp2Reg);
 9094     movdqu(tmp3Reg, Address(src, len, Address::times_2, 16)); // load next 8 characters
 9095     por(tmp4Reg, tmp3Reg);
 9096     ptest(tmp4Reg, tmp1Reg);       // check for Unicode chars in next vector
 9097     jccb(Assembler::notZero, reset_for_copy_tail);
 9098     packuswb(tmp2Reg, tmp3Reg);    // only ASCII chars; compress each to 1 byte
 9099     movdqu(Address(dst, len, Address::times_1), tmp2Reg);
 9100     addptr(len, 16);
 9101     jccb(Assembler::notZero, copy_32_loop);
 9102 
 9103     // compress next vector of 8 chars (if any)
 9104     bind(copy_16);
 9105     // len = 0
 9106     testl(result, 0x00000008);     // check if there's a block of 8 chars to compress
 9107     jccb(Assembler::zero, copy_tail_sse);
 9108 
 9109     pxor(tmp3Reg, tmp3Reg);
 9110 
 9111     movdqu(tmp2Reg, Address(src, 0));
 9112     ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in vector
 9113     jccb(Assembler::notZero, reset_for_copy_tail);
 9114     packuswb(tmp2Reg, tmp3Reg);    // only LATIN1 chars; compress each to 1 byte
 9115     movq(Address(dst, 0), tmp2Reg);
 9116     addptr(src, 16);
 9117     addptr(dst, 8);
 9118     jmpb(copy_tail_sse);
 9119 
 9120     bind(reset_for_copy_tail);
 9121     movl(tmp5, result);
 9122     andl(tmp5, 0x0000000f);
 9123     lea(src, Address(src, tmp5, Address::times_2));
 9124     lea(dst, Address(dst, tmp5, Address::times_1));
 9125     subptr(len, tmp5);
 9126     jmpb(copy_chars_loop);
 9127 
 9128     bind(copy_tail_sse);
 9129     movl(len, result);
 9130     andl(len, 0x00000007);    // tail count (in chars)
 9131   }
 9132   // compress 1 char per iter
 9133   bind(copy_tail);
 9134   testl(len, len);
 9135   jccb(Assembler::zero, done);
 9136   lea(src, Address(src, len, Address::times_2));
 9137   lea(dst, Address(dst, len, Address::times_1));
 9138   negptr(len);
 9139 
 9140   bind(copy_chars_loop);
 9141   load_unsigned_short(tmp5, Address(src, len, Address::times_2));
 9142   testl(tmp5, 0xff00);      // check if Unicode char
 9143   jccb(Assembler::notZero, reset_sp);
 9144   movb(Address(dst, len, Address::times_1), tmp5);  // ASCII char; compress to 1 byte
 9145   increment(len);
 9146   jccb(Assembler::notZero, copy_chars_loop);
 9147 
 9148   // add len then return (len will be zero if compress succeeded, otherwise negative)
 9149   bind(reset_sp);
 9150   addl(result, len);
 9151 
 9152   bind(done);
 9153 }
 9154 
 9155 // Inflate byte[] array to char[].
 9156 //   ..\jdk\src\java.base\share\classes\java\lang\StringLatin1.java
 9157 //   @IntrinsicCandidate
 9158 //   private static void inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) {
 9159 //     for (int i = 0; i < len; i++) {
 9160 //       dst[dstOff++] = (char)(src[srcOff++] & 0xff);
 9161 //     }
 9162 //   }
 9163 void MacroAssembler::byte_array_inflate(Register src, Register dst, Register len,
 9164   XMMRegister tmp1, Register tmp2, KRegister mask) {
 9165   Label copy_chars_loop, done, below_threshold, avx3_threshold;
 9166   // rsi: src
 9167   // rdi: dst
 9168   // rdx: len
 9169   // rcx: tmp2
 9170 
 9171   // rsi holds start addr of source byte[] to be inflated
 9172   // rdi holds start addr of destination char[]
 9173   // rdx holds length
 9174   assert_different_registers(src, dst, len, tmp2);
 9175   movl(tmp2, len);
 9176   if ((UseAVX > 2) && // AVX512
 9177     VM_Version::supports_avx512vlbw() &&
 9178     VM_Version::supports_bmi2()) {
 9179 
 9180     Label copy_32_loop, copy_tail;
 9181     Register tmp3_aliased = len;
 9182 
 9183     // if length of the string is less than 16, handle it in an old fashioned way
 9184     testl(len, -16);
 9185     jcc(Assembler::zero, below_threshold);
 9186 
 9187     testl(len, -1 * AVX3Threshold);
 9188     jcc(Assembler::zero, avx3_threshold);
 9189 
 9190     // In order to use only one arithmetic operation for the main loop we use
 9191     // this pre-calculation
 9192     andl(tmp2, (32 - 1)); // tail count (in chars), 32 element wide loop
 9193     andl(len, -32);     // vector count
 9194     jccb(Assembler::zero, copy_tail);
 9195 
 9196     lea(src, Address(src, len, Address::times_1));
 9197     lea(dst, Address(dst, len, Address::times_2));
 9198     negptr(len);
 9199 
 9200 
 9201     // inflate 32 chars per iter
 9202     bind(copy_32_loop);
 9203     vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_512bit);
 9204     evmovdquw(Address(dst, len, Address::times_2), tmp1, Assembler::AVX_512bit);
 9205     addptr(len, 32);
 9206     jcc(Assembler::notZero, copy_32_loop);
 9207 
 9208     bind(copy_tail);
 9209     // bail out when there is nothing to be done
 9210     testl(tmp2, -1); // we don't destroy the contents of tmp2 here
 9211     jcc(Assembler::zero, done);
 9212 
 9213     // ~(~0 << length), where length is the # of remaining elements to process
 9214     movl(tmp3_aliased, -1);
 9215     shlxl(tmp3_aliased, tmp3_aliased, tmp2);
 9216     notl(tmp3_aliased);
 9217     kmovdl(mask, tmp3_aliased);
 9218     evpmovzxbw(tmp1, mask, Address(src, 0), Assembler::AVX_512bit);
 9219     evmovdquw(Address(dst, 0), mask, tmp1, /*merge*/ true, Assembler::AVX_512bit);
 9220 
 9221     jmp(done);
 9222     bind(avx3_threshold);
 9223   }
 9224   if (UseSSE42Intrinsics) {
 9225     Label copy_16_loop, copy_8_loop, copy_bytes, copy_new_tail, copy_tail;
 9226 
 9227     if (UseAVX > 1) {
 9228       andl(tmp2, (16 - 1));
 9229       andl(len, -16);
 9230       jccb(Assembler::zero, copy_new_tail);
 9231     } else {
 9232       andl(tmp2, 0x00000007);   // tail count (in chars)
 9233       andl(len, 0xfffffff8);    // vector count (in chars)
 9234       jccb(Assembler::zero, copy_tail);
 9235     }
 9236 
 9237     // vectored inflation
 9238     lea(src, Address(src, len, Address::times_1));
 9239     lea(dst, Address(dst, len, Address::times_2));
 9240     negptr(len);
 9241 
 9242     if (UseAVX > 1) {
 9243       bind(copy_16_loop);
 9244       vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_256bit);
 9245       vmovdqu(Address(dst, len, Address::times_2), tmp1);
 9246       addptr(len, 16);
 9247       jcc(Assembler::notZero, copy_16_loop);
 9248 
 9249       bind(below_threshold);
 9250       bind(copy_new_tail);
 9251       movl(len, tmp2);
 9252       andl(tmp2, 0x00000007);
 9253       andl(len, 0xFFFFFFF8);
 9254       jccb(Assembler::zero, copy_tail);
 9255 
 9256       pmovzxbw(tmp1, Address(src, 0));
 9257       movdqu(Address(dst, 0), tmp1);
 9258       addptr(src, 8);
 9259       addptr(dst, 2 * 8);
 9260 
 9261       jmp(copy_tail, true);
 9262     }
 9263 
 9264     // inflate 8 chars per iter
 9265     bind(copy_8_loop);
 9266     pmovzxbw(tmp1, Address(src, len, Address::times_1));  // unpack to 8 words
 9267     movdqu(Address(dst, len, Address::times_2), tmp1);
 9268     addptr(len, 8);
 9269     jcc(Assembler::notZero, copy_8_loop);
 9270 
 9271     bind(copy_tail);
 9272     movl(len, tmp2);
 9273 
 9274     cmpl(len, 4);
 9275     jccb(Assembler::less, copy_bytes);
 9276 
 9277     movdl(tmp1, Address(src, 0));  // load 4 byte chars
 9278     pmovzxbw(tmp1, tmp1);
 9279     movq(Address(dst, 0), tmp1);
 9280     subptr(len, 4);
 9281     addptr(src, 4);
 9282     addptr(dst, 8);
 9283 
 9284     bind(copy_bytes);
 9285   } else {
 9286     bind(below_threshold);
 9287   }
 9288 
 9289   testl(len, len);
 9290   jccb(Assembler::zero, done);
 9291   lea(src, Address(src, len, Address::times_1));
 9292   lea(dst, Address(dst, len, Address::times_2));
 9293   negptr(len);
 9294 
 9295   // inflate 1 char per iter
 9296   bind(copy_chars_loop);
 9297   load_unsigned_byte(tmp2, Address(src, len, Address::times_1));  // load byte char
 9298   movw(Address(dst, len, Address::times_2), tmp2);  // inflate byte char to word
 9299   increment(len);
 9300   jcc(Assembler::notZero, copy_chars_loop);
 9301 
 9302   bind(done);
 9303 }
 9304 
 9305 
 9306 void MacroAssembler::evmovdqu(BasicType type, KRegister kmask, XMMRegister dst, Address src, bool merge, int vector_len) {
 9307   switch(type) {
 9308     case T_BYTE:
 9309     case T_BOOLEAN:
 9310       evmovdqub(dst, kmask, src, merge, vector_len);
 9311       break;
 9312     case T_CHAR:
 9313     case T_SHORT:
 9314       evmovdquw(dst, kmask, src, merge, vector_len);
 9315       break;
 9316     case T_INT:
 9317     case T_FLOAT:
 9318       evmovdqul(dst, kmask, src, merge, vector_len);
 9319       break;
 9320     case T_LONG:
 9321     case T_DOUBLE:
 9322       evmovdquq(dst, kmask, src, merge, vector_len);
 9323       break;
 9324     default:
 9325       fatal("Unexpected type argument %s", type2name(type));
 9326       break;
 9327   }
 9328 }
 9329 
 9330 void MacroAssembler::evmovdqu(BasicType type, KRegister kmask, Address dst, XMMRegister src, bool merge, int vector_len) {
 9331   switch(type) {
 9332     case T_BYTE:
 9333     case T_BOOLEAN:
 9334       evmovdqub(dst, kmask, src, merge, vector_len);
 9335       break;
 9336     case T_CHAR:
 9337     case T_SHORT:
 9338       evmovdquw(dst, kmask, src, merge, vector_len);
 9339       break;
 9340     case T_INT:
 9341     case T_FLOAT:
 9342       evmovdqul(dst, kmask, src, merge, vector_len);
 9343       break;
 9344     case T_LONG:
 9345     case T_DOUBLE:
 9346       evmovdquq(dst, kmask, src, merge, vector_len);
 9347       break;
 9348     default:
 9349       fatal("Unexpected type argument %s", type2name(type));
 9350       break;
 9351   }
 9352 }
 9353 
 9354 void MacroAssembler::knot(uint masklen, KRegister dst, KRegister src, KRegister ktmp, Register rtmp) {
 9355   switch(masklen) {
 9356     case 2:
 9357        knotbl(dst, src);
 9358        movl(rtmp, 3);
 9359        kmovbl(ktmp, rtmp);
 9360        kandbl(dst, ktmp, dst);
 9361        break;
 9362     case 4:
 9363        knotbl(dst, src);
 9364        movl(rtmp, 15);
 9365        kmovbl(ktmp, rtmp);
 9366        kandbl(dst, ktmp, dst);
 9367        break;
 9368     case 8:
 9369        knotbl(dst, src);
 9370        break;
 9371     case 16:
 9372        knotwl(dst, src);
 9373        break;
 9374     case 32:
 9375        knotdl(dst, src);
 9376        break;
 9377     case 64:
 9378        knotql(dst, src);
 9379        break;
 9380     default:
 9381       fatal("Unexpected vector length %d", masklen);
 9382       break;
 9383   }
 9384 }
 9385 
 9386 void MacroAssembler::kand(BasicType type, KRegister dst, KRegister src1, KRegister src2) {
 9387   switch(type) {
 9388     case T_BOOLEAN:
 9389     case T_BYTE:
 9390        kandbl(dst, src1, src2);
 9391        break;
 9392     case T_CHAR:
 9393     case T_SHORT:
 9394        kandwl(dst, src1, src2);
 9395        break;
 9396     case T_INT:
 9397     case T_FLOAT:
 9398        kanddl(dst, src1, src2);
 9399        break;
 9400     case T_LONG:
 9401     case T_DOUBLE:
 9402        kandql(dst, src1, src2);
 9403        break;
 9404     default:
 9405       fatal("Unexpected type argument %s", type2name(type));
 9406       break;
 9407   }
 9408 }
 9409 
 9410 void MacroAssembler::kor(BasicType type, KRegister dst, KRegister src1, KRegister src2) {
 9411   switch(type) {
 9412     case T_BOOLEAN:
 9413     case T_BYTE:
 9414        korbl(dst, src1, src2);
 9415        break;
 9416     case T_CHAR:
 9417     case T_SHORT:
 9418        korwl(dst, src1, src2);
 9419        break;
 9420     case T_INT:
 9421     case T_FLOAT:
 9422        kordl(dst, src1, src2);
 9423        break;
 9424     case T_LONG:
 9425     case T_DOUBLE:
 9426        korql(dst, src1, src2);
 9427        break;
 9428     default:
 9429       fatal("Unexpected type argument %s", type2name(type));
 9430       break;
 9431   }
 9432 }
 9433 
 9434 void MacroAssembler::kxor(BasicType type, KRegister dst, KRegister src1, KRegister src2) {
 9435   switch(type) {
 9436     case T_BOOLEAN:
 9437     case T_BYTE:
 9438        kxorbl(dst, src1, src2);
 9439        break;
 9440     case T_CHAR:
 9441     case T_SHORT:
 9442        kxorwl(dst, src1, src2);
 9443        break;
 9444     case T_INT:
 9445     case T_FLOAT:
 9446        kxordl(dst, src1, src2);
 9447        break;
 9448     case T_LONG:
 9449     case T_DOUBLE:
 9450        kxorql(dst, src1, src2);
 9451        break;
 9452     default:
 9453       fatal("Unexpected type argument %s", type2name(type));
 9454       break;
 9455   }
 9456 }
 9457 
 9458 void MacroAssembler::evperm(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) {
 9459   switch(type) {
 9460     case T_BOOLEAN:
 9461     case T_BYTE:
 9462       evpermb(dst, mask, nds, src, merge, vector_len); break;
 9463     case T_CHAR:
 9464     case T_SHORT:
 9465       evpermw(dst, mask, nds, src, merge, vector_len); break;
 9466     case T_INT:
 9467     case T_FLOAT:
 9468       evpermd(dst, mask, nds, src, merge, vector_len); break;
 9469     case T_LONG:
 9470     case T_DOUBLE:
 9471       evpermq(dst, mask, nds, src, merge, vector_len); break;
 9472     default:
 9473       fatal("Unexpected type argument %s", type2name(type)); break;
 9474   }
 9475 }
 9476 
 9477 void MacroAssembler::evperm(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) {
 9478   switch(type) {
 9479     case T_BOOLEAN:
 9480     case T_BYTE:
 9481       evpermb(dst, mask, nds, src, merge, vector_len); break;
 9482     case T_CHAR:
 9483     case T_SHORT:
 9484       evpermw(dst, mask, nds, src, merge, vector_len); break;
 9485     case T_INT:
 9486     case T_FLOAT:
 9487       evpermd(dst, mask, nds, src, merge, vector_len); break;
 9488     case T_LONG:
 9489     case T_DOUBLE:
 9490       evpermq(dst, mask, nds, src, merge, vector_len); break;
 9491     default:
 9492       fatal("Unexpected type argument %s", type2name(type)); break;
 9493   }
 9494 }
 9495 
 9496 void MacroAssembler::evpmins(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) {
 9497   switch(type) {
 9498     case T_BYTE:
 9499       evpminsb(dst, mask, nds, src, merge, vector_len); break;
 9500     case T_SHORT:
 9501       evpminsw(dst, mask, nds, src, merge, vector_len); break;
 9502     case T_INT:
 9503       evpminsd(dst, mask, nds, src, merge, vector_len); break;
 9504     case T_LONG:
 9505       evpminsq(dst, mask, nds, src, merge, vector_len); break;
 9506     default:
 9507       fatal("Unexpected type argument %s", type2name(type)); break;
 9508   }
 9509 }
 9510 
 9511 void MacroAssembler::evpmaxs(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) {
 9512   switch(type) {
 9513     case T_BYTE:
 9514       evpmaxsb(dst, mask, nds, src, merge, vector_len); break;
 9515     case T_SHORT:
 9516       evpmaxsw(dst, mask, nds, src, merge, vector_len); break;
 9517     case T_INT:
 9518       evpmaxsd(dst, mask, nds, src, merge, vector_len); break;
 9519     case T_LONG:
 9520       evpmaxsq(dst, mask, nds, src, merge, vector_len); break;
 9521     default:
 9522       fatal("Unexpected type argument %s", type2name(type)); break;
 9523   }
 9524 }
 9525 
 9526 void MacroAssembler::evpmins(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) {
 9527   switch(type) {
 9528     case T_BYTE:
 9529       evpminsb(dst, mask, nds, src, merge, vector_len); break;
 9530     case T_SHORT:
 9531       evpminsw(dst, mask, nds, src, merge, vector_len); break;
 9532     case T_INT:
 9533       evpminsd(dst, mask, nds, src, merge, vector_len); break;
 9534     case T_LONG:
 9535       evpminsq(dst, mask, nds, src, merge, vector_len); break;
 9536     default:
 9537       fatal("Unexpected type argument %s", type2name(type)); break;
 9538   }
 9539 }
 9540 
 9541 void MacroAssembler::evpmaxs(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) {
 9542   switch(type) {
 9543     case T_BYTE:
 9544       evpmaxsb(dst, mask, nds, src, merge, vector_len); break;
 9545     case T_SHORT:
 9546       evpmaxsw(dst, mask, nds, src, merge, vector_len); break;
 9547     case T_INT:
 9548       evpmaxsd(dst, mask, nds, src, merge, vector_len); break;
 9549     case T_LONG:
 9550       evpmaxsq(dst, mask, nds, src, merge, vector_len); break;
 9551     default:
 9552       fatal("Unexpected type argument %s", type2name(type)); break;
 9553   }
 9554 }
 9555 
 9556 void MacroAssembler::evxor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) {
 9557   switch(type) {
 9558     case T_INT:
 9559       evpxord(dst, mask, nds, src, merge, vector_len); break;
 9560     case T_LONG:
 9561       evpxorq(dst, mask, nds, src, merge, vector_len); break;
 9562     default:
 9563       fatal("Unexpected type argument %s", type2name(type)); break;
 9564   }
 9565 }
 9566 
 9567 void MacroAssembler::evxor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) {
 9568   switch(type) {
 9569     case T_INT:
 9570       evpxord(dst, mask, nds, src, merge, vector_len); break;
 9571     case T_LONG:
 9572       evpxorq(dst, mask, nds, src, merge, vector_len); break;
 9573     default:
 9574       fatal("Unexpected type argument %s", type2name(type)); break;
 9575   }
 9576 }
 9577 
 9578 void MacroAssembler::evor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) {
 9579   switch(type) {
 9580     case T_INT:
 9581       Assembler::evpord(dst, mask, nds, src, merge, vector_len); break;
 9582     case T_LONG:
 9583       evporq(dst, mask, nds, src, merge, vector_len); break;
 9584     default:
 9585       fatal("Unexpected type argument %s", type2name(type)); break;
 9586   }
 9587 }
 9588 
 9589 void MacroAssembler::evor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) {
 9590   switch(type) {
 9591     case T_INT:
 9592       Assembler::evpord(dst, mask, nds, src, merge, vector_len); break;
 9593     case T_LONG:
 9594       evporq(dst, mask, nds, src, merge, vector_len); break;
 9595     default:
 9596       fatal("Unexpected type argument %s", type2name(type)); break;
 9597   }
 9598 }
 9599 
 9600 void MacroAssembler::evand(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) {
 9601   switch(type) {
 9602     case T_INT:
 9603       evpandd(dst, mask, nds, src, merge, vector_len); break;
 9604     case T_LONG:
 9605       evpandq(dst, mask, nds, src, merge, vector_len); break;
 9606     default:
 9607       fatal("Unexpected type argument %s", type2name(type)); break;
 9608   }
 9609 }
 9610 
 9611 void MacroAssembler::evand(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) {
 9612   switch(type) {
 9613     case T_INT:
 9614       evpandd(dst, mask, nds, src, merge, vector_len); break;
 9615     case T_LONG:
 9616       evpandq(dst, mask, nds, src, merge, vector_len); break;
 9617     default:
 9618       fatal("Unexpected type argument %s", type2name(type)); break;
 9619   }
 9620 }
 9621 
 9622 void MacroAssembler::kortest(uint masklen, KRegister src1, KRegister src2) {
 9623   switch(masklen) {
 9624     case 8:
 9625        kortestbl(src1, src2);
 9626        break;
 9627     case 16:
 9628        kortestwl(src1, src2);
 9629        break;
 9630     case 32:
 9631        kortestdl(src1, src2);
 9632        break;
 9633     case 64:
 9634        kortestql(src1, src2);
 9635        break;
 9636     default:
 9637       fatal("Unexpected mask length %d", masklen);
 9638       break;
 9639   }
 9640 }
 9641 
 9642 
 9643 void MacroAssembler::ktest(uint masklen, KRegister src1, KRegister src2) {
 9644   switch(masklen)  {
 9645     case 8:
 9646        ktestbl(src1, src2);
 9647        break;
 9648     case 16:
 9649        ktestwl(src1, src2);
 9650        break;
 9651     case 32:
 9652        ktestdl(src1, src2);
 9653        break;
 9654     case 64:
 9655        ktestql(src1, src2);
 9656        break;
 9657     default:
 9658       fatal("Unexpected mask length %d", masklen);
 9659       break;
 9660   }
 9661 }
 9662 
 9663 void MacroAssembler::evrold(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vlen_enc) {
 9664   switch(type) {
 9665     case T_INT:
 9666       evprold(dst, mask, src, shift, merge, vlen_enc); break;
 9667     case T_LONG:
 9668       evprolq(dst, mask, src, shift, merge, vlen_enc); break;
 9669     default:
 9670       fatal("Unexpected type argument %s", type2name(type)); break;
 9671       break;
 9672   }
 9673 }
 9674 
 9675 void MacroAssembler::evrord(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vlen_enc) {
 9676   switch(type) {
 9677     case T_INT:
 9678       evprord(dst, mask, src, shift, merge, vlen_enc); break;
 9679     case T_LONG:
 9680       evprorq(dst, mask, src, shift, merge, vlen_enc); break;
 9681     default:
 9682       fatal("Unexpected type argument %s", type2name(type)); break;
 9683   }
 9684 }
 9685 
 9686 void MacroAssembler::evrold(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src1, XMMRegister src2, bool merge, int vlen_enc) {
 9687   switch(type) {
 9688     case T_INT:
 9689       evprolvd(dst, mask, src1, src2, merge, vlen_enc); break;
 9690     case T_LONG:
 9691       evprolvq(dst, mask, src1, src2, merge, vlen_enc); break;
 9692     default:
 9693       fatal("Unexpected type argument %s", type2name(type)); break;
 9694   }
 9695 }
 9696 
 9697 void MacroAssembler::evrord(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src1, XMMRegister src2, bool merge, int vlen_enc) {
 9698   switch(type) {
 9699     case T_INT:
 9700       evprorvd(dst, mask, src1, src2, merge, vlen_enc); break;
 9701     case T_LONG:
 9702       evprorvq(dst, mask, src1, src2, merge, vlen_enc); break;
 9703     default:
 9704       fatal("Unexpected type argument %s", type2name(type)); break;
 9705   }
 9706 }
 9707 
 9708 void MacroAssembler::evpandq(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
 9709   assert(rscratch != noreg || always_reachable(src), "missing");
 9710 
 9711   if (reachable(src)) {
 9712     evpandq(dst, nds, as_Address(src), vector_len);
 9713   } else {
 9714     lea(rscratch, src);
 9715     evpandq(dst, nds, Address(rscratch, 0), vector_len);
 9716   }
 9717 }
 9718 
 9719 void MacroAssembler::evpaddq(XMMRegister dst, KRegister mask, XMMRegister nds, AddressLiteral src, bool merge, int vector_len, Register rscratch) {
 9720   assert(rscratch != noreg || always_reachable(src), "missing");
 9721 
 9722   if (reachable(src)) {
 9723     Assembler::evpaddq(dst, mask, nds, as_Address(src), merge, vector_len);
 9724   } else {
 9725     lea(rscratch, src);
 9726     Assembler::evpaddq(dst, mask, nds, Address(rscratch, 0), merge, vector_len);
 9727   }
 9728 }
 9729 
 9730 void MacroAssembler::evporq(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
 9731   assert(rscratch != noreg || always_reachable(src), "missing");
 9732 
 9733   if (reachable(src)) {
 9734     evporq(dst, nds, as_Address(src), vector_len);
 9735   } else {
 9736     lea(rscratch, src);
 9737     evporq(dst, nds, Address(rscratch, 0), vector_len);
 9738   }
 9739 }
 9740 
 9741 void MacroAssembler::vpshufb(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
 9742   assert(rscratch != noreg || always_reachable(src), "missing");
 9743 
 9744   if (reachable(src)) {
 9745     vpshufb(dst, nds, as_Address(src), vector_len);
 9746   } else {
 9747     lea(rscratch, src);
 9748     vpshufb(dst, nds, Address(rscratch, 0), vector_len);
 9749   }
 9750 }
 9751 
 9752 void MacroAssembler::vpor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
 9753   assert(rscratch != noreg || always_reachable(src), "missing");
 9754 
 9755   if (reachable(src)) {
 9756     Assembler::vpor(dst, nds, as_Address(src), vector_len);
 9757   } else {
 9758     lea(rscratch, src);
 9759     Assembler::vpor(dst, nds, Address(rscratch, 0), vector_len);
 9760   }
 9761 }
 9762 
 9763 void MacroAssembler::vpternlogq(XMMRegister dst, int imm8, XMMRegister src2, AddressLiteral src3, int vector_len, Register rscratch) {
 9764   assert(rscratch != noreg || always_reachable(src3), "missing");
 9765 
 9766   if (reachable(src3)) {
 9767     vpternlogq(dst, imm8, src2, as_Address(src3), vector_len);
 9768   } else {
 9769     lea(rscratch, src3);
 9770     vpternlogq(dst, imm8, src2, Address(rscratch, 0), vector_len);
 9771   }
 9772 }
 9773 
 9774 #if COMPILER2_OR_JVMCI
 9775 
 9776 void MacroAssembler::fill_masked(BasicType bt, Address dst, XMMRegister xmm, KRegister mask,
 9777                                  Register length, Register temp, int vec_enc) {
 9778   // Computing mask for predicated vector store.
 9779   movptr(temp, -1);
 9780   bzhiq(temp, temp, length);
 9781   kmov(mask, temp);
 9782   evmovdqu(bt, mask, dst, xmm, true, vec_enc);
 9783 }
 9784 
 9785 // Set memory operation for length "less than" 64 bytes.
 9786 void MacroAssembler::fill64_masked(uint shift, Register dst, int disp,
 9787                                        XMMRegister xmm, KRegister mask, Register length,
 9788                                        Register temp, bool use64byteVector) {
 9789   assert(MaxVectorSize >= 32, "vector length should be >= 32");
 9790   const BasicType type[] = { T_BYTE, T_SHORT, T_INT, T_LONG};
 9791   if (!use64byteVector) {
 9792     fill32(dst, disp, xmm);
 9793     subptr(length, 32 >> shift);
 9794     fill32_masked(shift, dst, disp + 32, xmm, mask, length, temp);
 9795   } else {
 9796     assert(MaxVectorSize == 64, "vector length != 64");
 9797     fill_masked(type[shift], Address(dst, disp), xmm, mask, length, temp, Assembler::AVX_512bit);
 9798   }
 9799 }
 9800 
 9801 
 9802 void MacroAssembler::fill32_masked(uint shift, Register dst, int disp,
 9803                                        XMMRegister xmm, KRegister mask, Register length,
 9804                                        Register temp) {
 9805   assert(MaxVectorSize >= 32, "vector length should be >= 32");
 9806   const BasicType type[] = { T_BYTE, T_SHORT, T_INT, T_LONG};
 9807   fill_masked(type[shift], Address(dst, disp), xmm, mask, length, temp, Assembler::AVX_256bit);
 9808 }
 9809 
 9810 
 9811 void MacroAssembler::fill32(Address dst, XMMRegister xmm) {
 9812   assert(MaxVectorSize >= 32, "vector length should be >= 32");
 9813   vmovdqu(dst, xmm);
 9814 }
 9815 
 9816 void MacroAssembler::fill32(Register dst, int disp, XMMRegister xmm) {
 9817   fill32(Address(dst, disp), xmm);
 9818 }
 9819 
 9820 void MacroAssembler::fill64(Address dst, XMMRegister xmm, bool use64byteVector) {
 9821   assert(MaxVectorSize >= 32, "vector length should be >= 32");
 9822   if (!use64byteVector) {
 9823     fill32(dst, xmm);
 9824     fill32(dst.plus_disp(32), xmm);
 9825   } else {
 9826     evmovdquq(dst, xmm, Assembler::AVX_512bit);
 9827   }
 9828 }
 9829 
 9830 void MacroAssembler::fill64(Register dst, int disp, XMMRegister xmm, bool use64byteVector) {
 9831   fill64(Address(dst, disp), xmm, use64byteVector);
 9832 }
 9833 
 9834 #ifdef _LP64
 9835 void MacroAssembler::generate_fill_avx3(BasicType type, Register to, Register value,
 9836                                         Register count, Register rtmp, XMMRegister xtmp) {
 9837   Label L_exit;
 9838   Label L_fill_start;
 9839   Label L_fill_64_bytes;
 9840   Label L_fill_96_bytes;
 9841   Label L_fill_128_bytes;
 9842   Label L_fill_128_bytes_loop;
 9843   Label L_fill_128_loop_header;
 9844   Label L_fill_128_bytes_loop_header;
 9845   Label L_fill_128_bytes_loop_pre_header;
 9846   Label L_fill_zmm_sequence;
 9847 
 9848   int shift = -1;
 9849   int avx3threshold = VM_Version::avx3_threshold();
 9850   switch(type) {
 9851     case T_BYTE:  shift = 0;
 9852       break;
 9853     case T_SHORT: shift = 1;
 9854       break;
 9855     case T_INT:   shift = 2;
 9856       break;
 9857     /* Uncomment when LONG fill stubs are supported.
 9858     case T_LONG:  shift = 3;
 9859       break;
 9860     */
 9861     default:
 9862       fatal("Unhandled type: %s\n", type2name(type));
 9863   }
 9864 
 9865   if ((avx3threshold != 0)  || (MaxVectorSize == 32)) {
 9866 
 9867     if (MaxVectorSize == 64) {
 9868       cmpq(count, avx3threshold >> shift);
 9869       jcc(Assembler::greater, L_fill_zmm_sequence);
 9870     }
 9871 
 9872     evpbroadcast(type, xtmp, value, Assembler::AVX_256bit);
 9873 
 9874     bind(L_fill_start);
 9875 
 9876     cmpq(count, 32 >> shift);
 9877     jccb(Assembler::greater, L_fill_64_bytes);
 9878     fill32_masked(shift, to, 0, xtmp, k2, count, rtmp);
 9879     jmp(L_exit);
 9880 
 9881     bind(L_fill_64_bytes);
 9882     cmpq(count, 64 >> shift);
 9883     jccb(Assembler::greater, L_fill_96_bytes);
 9884     fill64_masked(shift, to, 0, xtmp, k2, count, rtmp);
 9885     jmp(L_exit);
 9886 
 9887     bind(L_fill_96_bytes);
 9888     cmpq(count, 96 >> shift);
 9889     jccb(Assembler::greater, L_fill_128_bytes);
 9890     fill64(to, 0, xtmp);
 9891     subq(count, 64 >> shift);
 9892     fill32_masked(shift, to, 64, xtmp, k2, count, rtmp);
 9893     jmp(L_exit);
 9894 
 9895     bind(L_fill_128_bytes);
 9896     cmpq(count, 128 >> shift);
 9897     jccb(Assembler::greater, L_fill_128_bytes_loop_pre_header);
 9898     fill64(to, 0, xtmp);
 9899     fill32(to, 64, xtmp);
 9900     subq(count, 96 >> shift);
 9901     fill32_masked(shift, to, 96, xtmp, k2, count, rtmp);
 9902     jmp(L_exit);
 9903 
 9904     bind(L_fill_128_bytes_loop_pre_header);
 9905     {
 9906       mov(rtmp, to);
 9907       andq(rtmp, 31);
 9908       jccb(Assembler::zero, L_fill_128_bytes_loop_header);
 9909       negq(rtmp);
 9910       addq(rtmp, 32);
 9911       mov64(r8, -1L);
 9912       bzhiq(r8, r8, rtmp);
 9913       kmovql(k2, r8);
 9914       evmovdqu(T_BYTE, k2, Address(to, 0), xtmp, true, Assembler::AVX_256bit);
 9915       addq(to, rtmp);
 9916       shrq(rtmp, shift);
 9917       subq(count, rtmp);
 9918     }
 9919 
 9920     cmpq(count, 128 >> shift);
 9921     jcc(Assembler::less, L_fill_start);
 9922 
 9923     bind(L_fill_128_bytes_loop_header);
 9924     subq(count, 128 >> shift);
 9925 
 9926     align32();
 9927     bind(L_fill_128_bytes_loop);
 9928       fill64(to, 0, xtmp);
 9929       fill64(to, 64, xtmp);
 9930       addq(to, 128);
 9931       subq(count, 128 >> shift);
 9932       jccb(Assembler::greaterEqual, L_fill_128_bytes_loop);
 9933 
 9934     addq(count, 128 >> shift);
 9935     jcc(Assembler::zero, L_exit);
 9936     jmp(L_fill_start);
 9937   }
 9938 
 9939   if (MaxVectorSize == 64) {
 9940     // Sequence using 64 byte ZMM register.
 9941     Label L_fill_128_bytes_zmm;
 9942     Label L_fill_192_bytes_zmm;
 9943     Label L_fill_192_bytes_loop_zmm;
 9944     Label L_fill_192_bytes_loop_header_zmm;
 9945     Label L_fill_192_bytes_loop_pre_header_zmm;
 9946     Label L_fill_start_zmm_sequence;
 9947 
 9948     bind(L_fill_zmm_sequence);
 9949     evpbroadcast(type, xtmp, value, Assembler::AVX_512bit);
 9950 
 9951     bind(L_fill_start_zmm_sequence);
 9952     cmpq(count, 64 >> shift);
 9953     jccb(Assembler::greater, L_fill_128_bytes_zmm);
 9954     fill64_masked(shift, to, 0, xtmp, k2, count, rtmp, true);
 9955     jmp(L_exit);
 9956 
 9957     bind(L_fill_128_bytes_zmm);
 9958     cmpq(count, 128 >> shift);
 9959     jccb(Assembler::greater, L_fill_192_bytes_zmm);
 9960     fill64(to, 0, xtmp, true);
 9961     subq(count, 64 >> shift);
 9962     fill64_masked(shift, to, 64, xtmp, k2, count, rtmp, true);
 9963     jmp(L_exit);
 9964 
 9965     bind(L_fill_192_bytes_zmm);
 9966     cmpq(count, 192 >> shift);
 9967     jccb(Assembler::greater, L_fill_192_bytes_loop_pre_header_zmm);
 9968     fill64(to, 0, xtmp, true);
 9969     fill64(to, 64, xtmp, true);
 9970     subq(count, 128 >> shift);
 9971     fill64_masked(shift, to, 128, xtmp, k2, count, rtmp, true);
 9972     jmp(L_exit);
 9973 
 9974     bind(L_fill_192_bytes_loop_pre_header_zmm);
 9975     {
 9976       movq(rtmp, to);
 9977       andq(rtmp, 63);
 9978       jccb(Assembler::zero, L_fill_192_bytes_loop_header_zmm);
 9979       negq(rtmp);
 9980       addq(rtmp, 64);
 9981       mov64(r8, -1L);
 9982       bzhiq(r8, r8, rtmp);
 9983       kmovql(k2, r8);
 9984       evmovdqu(T_BYTE, k2, Address(to, 0), xtmp, true, Assembler::AVX_512bit);
 9985       addq(to, rtmp);
 9986       shrq(rtmp, shift);
 9987       subq(count, rtmp);
 9988     }
 9989 
 9990     cmpq(count, 192 >> shift);
 9991     jcc(Assembler::less, L_fill_start_zmm_sequence);
 9992 
 9993     bind(L_fill_192_bytes_loop_header_zmm);
 9994     subq(count, 192 >> shift);
 9995 
 9996     align32();
 9997     bind(L_fill_192_bytes_loop_zmm);
 9998       fill64(to, 0, xtmp, true);
 9999       fill64(to, 64, xtmp, true);
10000       fill64(to, 128, xtmp, true);
10001       addq(to, 192);
10002       subq(count, 192 >> shift);
10003       jccb(Assembler::greaterEqual, L_fill_192_bytes_loop_zmm);
10004 
10005     addq(count, 192 >> shift);
10006     jcc(Assembler::zero, L_exit);
10007     jmp(L_fill_start_zmm_sequence);
10008   }
10009   bind(L_exit);
10010 }
10011 #endif
10012 #endif //COMPILER2_OR_JVMCI
10013 
10014 
10015 #ifdef _LP64
10016 void MacroAssembler::convert_f2i(Register dst, XMMRegister src) {
10017   Label done;
10018   cvttss2sil(dst, src);
10019   // Conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
10020   cmpl(dst, 0x80000000); // float_sign_flip
10021   jccb(Assembler::notEqual, done);
10022   subptr(rsp, 8);
10023   movflt(Address(rsp, 0), src);
10024   call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::f2i_fixup())));
10025   pop(dst);
10026   bind(done);
10027 }
10028 
10029 void MacroAssembler::convert_d2i(Register dst, XMMRegister src) {
10030   Label done;
10031   cvttsd2sil(dst, src);
10032   // Conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
10033   cmpl(dst, 0x80000000); // float_sign_flip
10034   jccb(Assembler::notEqual, done);
10035   subptr(rsp, 8);
10036   movdbl(Address(rsp, 0), src);
10037   call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::d2i_fixup())));
10038   pop(dst);
10039   bind(done);
10040 }
10041 
10042 void MacroAssembler::convert_f2l(Register dst, XMMRegister src) {
10043   Label done;
10044   cvttss2siq(dst, src);
10045   cmp64(dst, ExternalAddress((address) StubRoutines::x86::double_sign_flip()));
10046   jccb(Assembler::notEqual, done);
10047   subptr(rsp, 8);
10048   movflt(Address(rsp, 0), src);
10049   call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::f2l_fixup())));
10050   pop(dst);
10051   bind(done);
10052 }
10053 
10054 void MacroAssembler::round_float(Register dst, XMMRegister src, Register rtmp, Register rcx) {
10055   // Following code is line by line assembly translation rounding algorithm.
10056   // Please refer to java.lang.Math.round(float) algorithm for details.
10057   const int32_t FloatConsts_EXP_BIT_MASK = 0x7F800000;
10058   const int32_t FloatConsts_SIGNIFICAND_WIDTH = 24;
10059   const int32_t FloatConsts_EXP_BIAS = 127;
10060   const int32_t FloatConsts_SIGNIF_BIT_MASK = 0x007FFFFF;
10061   const int32_t MINUS_32 = 0xFFFFFFE0;
10062   Label L_special_case, L_block1, L_exit;
10063   movl(rtmp, FloatConsts_EXP_BIT_MASK);
10064   movdl(dst, src);
10065   andl(dst, rtmp);
10066   sarl(dst, FloatConsts_SIGNIFICAND_WIDTH - 1);
10067   movl(rtmp, FloatConsts_SIGNIFICAND_WIDTH - 2 + FloatConsts_EXP_BIAS);
10068   subl(rtmp, dst);
10069   movl(rcx, rtmp);
10070   movl(dst, MINUS_32);
10071   testl(rtmp, dst);
10072   jccb(Assembler::notEqual, L_special_case);
10073   movdl(dst, src);
10074   andl(dst, FloatConsts_SIGNIF_BIT_MASK);
10075   orl(dst, FloatConsts_SIGNIF_BIT_MASK + 1);
10076   movdl(rtmp, src);
10077   testl(rtmp, rtmp);
10078   jccb(Assembler::greaterEqual, L_block1);
10079   negl(dst);
10080   bind(L_block1);
10081   sarl(dst);
10082   addl(dst, 0x1);
10083   sarl(dst, 0x1);
10084   jmp(L_exit);
10085   bind(L_special_case);
10086   convert_f2i(dst, src);
10087   bind(L_exit);
10088 }
10089 
10090 void MacroAssembler::round_double(Register dst, XMMRegister src, Register rtmp, Register rcx) {
10091   // Following code is line by line assembly translation rounding algorithm.
10092   // Please refer to java.lang.Math.round(double) algorithm for details.
10093   const int64_t DoubleConsts_EXP_BIT_MASK = 0x7FF0000000000000L;
10094   const int64_t DoubleConsts_SIGNIFICAND_WIDTH = 53;
10095   const int64_t DoubleConsts_EXP_BIAS = 1023;
10096   const int64_t DoubleConsts_SIGNIF_BIT_MASK = 0x000FFFFFFFFFFFFFL;
10097   const int64_t MINUS_64 = 0xFFFFFFFFFFFFFFC0L;
10098   Label L_special_case, L_block1, L_exit;
10099   mov64(rtmp, DoubleConsts_EXP_BIT_MASK);
10100   movq(dst, src);
10101   andq(dst, rtmp);
10102   sarq(dst, DoubleConsts_SIGNIFICAND_WIDTH - 1);
10103   mov64(rtmp, DoubleConsts_SIGNIFICAND_WIDTH - 2 + DoubleConsts_EXP_BIAS);
10104   subq(rtmp, dst);
10105   movq(rcx, rtmp);
10106   mov64(dst, MINUS_64);
10107   testq(rtmp, dst);
10108   jccb(Assembler::notEqual, L_special_case);
10109   movq(dst, src);
10110   mov64(rtmp, DoubleConsts_SIGNIF_BIT_MASK);
10111   andq(dst, rtmp);
10112   mov64(rtmp, DoubleConsts_SIGNIF_BIT_MASK + 1);
10113   orq(dst, rtmp);
10114   movq(rtmp, src);
10115   testq(rtmp, rtmp);
10116   jccb(Assembler::greaterEqual, L_block1);
10117   negq(dst);
10118   bind(L_block1);
10119   sarq(dst);
10120   addq(dst, 0x1);
10121   sarq(dst, 0x1);
10122   jmp(L_exit);
10123   bind(L_special_case);
10124   convert_d2l(dst, src);
10125   bind(L_exit);
10126 }
10127 
10128 void MacroAssembler::convert_d2l(Register dst, XMMRegister src) {
10129   Label done;
10130   cvttsd2siq(dst, src);
10131   cmp64(dst, ExternalAddress((address) StubRoutines::x86::double_sign_flip()));
10132   jccb(Assembler::notEqual, done);
10133   subptr(rsp, 8);
10134   movdbl(Address(rsp, 0), src);
10135   call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::d2l_fixup())));
10136   pop(dst);
10137   bind(done);
10138 }
10139 
10140 void MacroAssembler::cache_wb(Address line)
10141 {
10142   // 64 bit cpus always support clflush
10143   assert(VM_Version::supports_clflush(), "clflush should be available");
10144   bool optimized = VM_Version::supports_clflushopt();
10145   bool no_evict = VM_Version::supports_clwb();
10146 
10147   // prefer clwb (writeback without evict) otherwise
10148   // prefer clflushopt (potentially parallel writeback with evict)
10149   // otherwise fallback on clflush (serial writeback with evict)
10150 
10151   if (optimized) {
10152     if (no_evict) {
10153       clwb(line);
10154     } else {
10155       clflushopt(line);
10156     }
10157   } else {
10158     // no need for fence when using CLFLUSH
10159     clflush(line);
10160   }
10161 }
10162 
10163 void MacroAssembler::cache_wbsync(bool is_pre)
10164 {
10165   assert(VM_Version::supports_clflush(), "clflush should be available");
10166   bool optimized = VM_Version::supports_clflushopt();
10167   bool no_evict = VM_Version::supports_clwb();
10168 
10169   // pick the correct implementation
10170 
10171   if (!is_pre && (optimized || no_evict)) {
10172     // need an sfence for post flush when using clflushopt or clwb
10173     // otherwise no no need for any synchroniaztion
10174 
10175     sfence();
10176   }
10177 }
10178 
10179 #endif // _LP64
10180 
10181 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
10182   switch (cond) {
10183     // Note some conditions are synonyms for others
10184     case Assembler::zero:         return Assembler::notZero;
10185     case Assembler::notZero:      return Assembler::zero;
10186     case Assembler::less:         return Assembler::greaterEqual;
10187     case Assembler::lessEqual:    return Assembler::greater;
10188     case Assembler::greater:      return Assembler::lessEqual;
10189     case Assembler::greaterEqual: return Assembler::less;
10190     case Assembler::below:        return Assembler::aboveEqual;
10191     case Assembler::belowEqual:   return Assembler::above;
10192     case Assembler::above:        return Assembler::belowEqual;
10193     case Assembler::aboveEqual:   return Assembler::below;
10194     case Assembler::overflow:     return Assembler::noOverflow;
10195     case Assembler::noOverflow:   return Assembler::overflow;
10196     case Assembler::negative:     return Assembler::positive;
10197     case Assembler::positive:     return Assembler::negative;
10198     case Assembler::parity:       return Assembler::noParity;
10199     case Assembler::noParity:     return Assembler::parity;
10200   }
10201   ShouldNotReachHere(); return Assembler::overflow;
10202 }
10203 
10204 SkipIfEqual::SkipIfEqual(
10205     MacroAssembler* masm, const bool* flag_addr, bool value, Register rscratch) {
10206   _masm = masm;
10207   _masm->cmp8(ExternalAddress((address)flag_addr), value, rscratch);
10208   _masm->jcc(Assembler::equal, _label);
10209 }
10210 
10211 SkipIfEqual::~SkipIfEqual() {
10212   _masm->bind(_label);
10213 }
10214 
10215 // 32-bit Windows has its own fast-path implementation
10216 // of get_thread
10217 #if !defined(WIN32) || defined(_LP64)
10218 
10219 // This is simply a call to Thread::current()
10220 void MacroAssembler::get_thread(Register thread) {
10221   if (thread != rax) {
10222     push(rax);
10223   }
10224   LP64_ONLY(push(rdi);)
10225   LP64_ONLY(push(rsi);)
10226   push(rdx);
10227   push(rcx);
10228 #ifdef _LP64
10229   push(r8);
10230   push(r9);
10231   push(r10);
10232   push(r11);
10233 #endif
10234 
10235   MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, Thread::current), 0);
10236 
10237 #ifdef _LP64
10238   pop(r11);
10239   pop(r10);
10240   pop(r9);
10241   pop(r8);
10242 #endif
10243   pop(rcx);
10244   pop(rdx);
10245   LP64_ONLY(pop(rsi);)
10246   LP64_ONLY(pop(rdi);)
10247   if (thread != rax) {
10248     mov(thread, rax);
10249     pop(rax);
10250   }
10251 }
10252 
10253 
10254 #endif // !WIN32 || _LP64
10255 
10256 void MacroAssembler::check_stack_alignment(Register sp, const char* msg, unsigned bias, Register tmp) {
10257   Label L_stack_ok;
10258   if (bias == 0) {
10259     testptr(sp, 2 * wordSize - 1);
10260   } else {
10261     // lea(tmp, Address(rsp, bias);
10262     mov(tmp, sp);
10263     addptr(tmp, bias);
10264     testptr(tmp, 2 * wordSize - 1);
10265   }
10266   jcc(Assembler::equal, L_stack_ok);
10267   block_comment(msg);
10268   stop(msg);
10269   bind(L_stack_ok);
10270 }
10271 
10272 // Implements lightweight-locking.
10273 //
10274 // obj: the object to be locked
10275 // reg_rax: rax
10276 // thread: the thread which attempts to lock obj
10277 // tmp: a temporary register
10278 void MacroAssembler::lightweight_lock(Register basic_lock, Register obj, Register reg_rax, Register thread, Register tmp, Label& slow) {
10279   assert(reg_rax == rax, "");
10280   assert_different_registers(basic_lock, obj, reg_rax, thread, tmp);
10281 
10282   Label push;
10283   const Register top = tmp;
10284 
10285   // Preload the markWord. It is important that this is the first
10286   // instruction emitted as it is part of C1's null check semantics.
10287   movptr(reg_rax, Address(obj, oopDesc::mark_offset_in_bytes()));
10288 
10289   if (UseObjectMonitorTable) {
10290     // Clear cache in case fast locking succeeds.
10291     movptr(Address(basic_lock, BasicObjectLock::lock_offset() + in_ByteSize((BasicLock::object_monitor_cache_offset_in_bytes()))), 0);
10292   }
10293 
10294   // Load top.
10295   movl(top, Address(thread, JavaThread::lock_stack_top_offset()));
10296 
10297   // Check if the lock-stack is full.
10298   cmpl(top, LockStack::end_offset());
10299   jcc(Assembler::greaterEqual, slow);
10300 
10301   // Check for recursion.
10302   cmpptr(obj, Address(thread, top, Address::times_1, -oopSize));
10303   jcc(Assembler::equal, push);
10304 
10305   // Check header for monitor (0b10).
10306   testptr(reg_rax, markWord::monitor_value);
10307   jcc(Assembler::notZero, slow);
10308 
10309   // Try to lock. Transition lock bits 0b01 => 0b00
10310   movptr(tmp, reg_rax);
10311   andptr(tmp, ~(int32_t)markWord::unlocked_value);
10312   orptr(reg_rax, markWord::unlocked_value);




10313   lock(); cmpxchgptr(tmp, Address(obj, oopDesc::mark_offset_in_bytes()));
10314   jcc(Assembler::notEqual, slow);
10315 
10316   // Restore top, CAS clobbers register.
10317   movl(top, Address(thread, JavaThread::lock_stack_top_offset()));
10318 
10319   bind(push);
10320   // After successful lock, push object on lock-stack.
10321   movptr(Address(thread, top), obj);
10322   incrementl(top, oopSize);
10323   movl(Address(thread, JavaThread::lock_stack_top_offset()), top);
10324 }
10325 
10326 // Implements lightweight-unlocking.
10327 //
10328 // obj: the object to be unlocked
10329 // reg_rax: rax
10330 // thread: the thread
10331 // tmp: a temporary register
10332 void MacroAssembler::lightweight_unlock(Register obj, Register reg_rax, Register thread, Register tmp, Label& slow) {
10333   assert(reg_rax == rax, "");
10334   assert_different_registers(obj, reg_rax, thread, tmp);
10335 
10336   Label unlocked, push_and_slow;
10337   const Register top = tmp;
10338 
10339   // Check if obj is top of lock-stack.
10340   movl(top, Address(thread, JavaThread::lock_stack_top_offset()));
10341   cmpptr(obj, Address(thread, top, Address::times_1, -oopSize));
10342   jcc(Assembler::notEqual, slow);
10343 
10344   // Pop lock-stack.
10345   DEBUG_ONLY(movptr(Address(thread, top, Address::times_1, -oopSize), 0);)
10346   subl(Address(thread, JavaThread::lock_stack_top_offset()), oopSize);
10347 
10348   // Check if recursive.
10349   cmpptr(obj, Address(thread, top, Address::times_1, -2 * oopSize));
10350   jcc(Assembler::equal, unlocked);
10351 
10352   // Not recursive. Check header for monitor (0b10).
10353   movptr(reg_rax, Address(obj, oopDesc::mark_offset_in_bytes()));
10354   testptr(reg_rax, markWord::monitor_value);
10355   jcc(Assembler::notZero, push_and_slow);
10356 
10357 #ifdef ASSERT
10358   // Check header not unlocked (0b01).
10359   Label not_unlocked;
10360   testptr(reg_rax, markWord::unlocked_value);
10361   jcc(Assembler::zero, not_unlocked);
10362   stop("lightweight_unlock already unlocked");
10363   bind(not_unlocked);
10364 #endif
10365 
10366   // Try to unlock. Transition lock bits 0b00 => 0b01
10367   movptr(tmp, reg_rax);
10368   orptr(tmp, markWord::unlocked_value);
10369   lock(); cmpxchgptr(tmp, Address(obj, oopDesc::mark_offset_in_bytes()));
10370   jcc(Assembler::equal, unlocked);
10371 
10372   bind(push_and_slow);
10373   // Restore lock-stack and handle the unlock in runtime.
10374 #ifdef ASSERT
10375   movl(top, Address(thread, JavaThread::lock_stack_top_offset()));
10376   movptr(Address(thread, top), obj);
10377 #endif
10378   addl(Address(thread, JavaThread::lock_stack_top_offset()), oopSize);
10379   jmp(slow);
10380 
10381   bind(unlocked);
10382 }
10383 
10384 #ifdef _LP64
10385 // Saves legacy GPRs state on stack.
10386 void MacroAssembler::save_legacy_gprs() {
10387   subq(rsp, 16 * wordSize);
10388   movq(Address(rsp, 15 * wordSize), rax);
10389   movq(Address(rsp, 14 * wordSize), rcx);
10390   movq(Address(rsp, 13 * wordSize), rdx);
10391   movq(Address(rsp, 12 * wordSize), rbx);
10392   movq(Address(rsp, 10 * wordSize), rbp);
10393   movq(Address(rsp, 9 * wordSize), rsi);
10394   movq(Address(rsp, 8 * wordSize), rdi);
10395   movq(Address(rsp, 7 * wordSize), r8);
10396   movq(Address(rsp, 6 * wordSize), r9);
10397   movq(Address(rsp, 5 * wordSize), r10);
10398   movq(Address(rsp, 4 * wordSize), r11);
10399   movq(Address(rsp, 3 * wordSize), r12);
10400   movq(Address(rsp, 2 * wordSize), r13);
10401   movq(Address(rsp, wordSize), r14);
10402   movq(Address(rsp, 0), r15);
10403 }
10404 
10405 // Resotres back legacy GPRs state from stack.
10406 void MacroAssembler::restore_legacy_gprs() {
10407   movq(r15, Address(rsp, 0));
10408   movq(r14, Address(rsp, wordSize));
10409   movq(r13, Address(rsp, 2 * wordSize));
10410   movq(r12, Address(rsp, 3 * wordSize));
10411   movq(r11, Address(rsp, 4 * wordSize));
10412   movq(r10, Address(rsp, 5 * wordSize));
10413   movq(r9,  Address(rsp, 6 * wordSize));
10414   movq(r8,  Address(rsp, 7 * wordSize));
10415   movq(rdi, Address(rsp, 8 * wordSize));
10416   movq(rsi, Address(rsp, 9 * wordSize));
10417   movq(rbp, Address(rsp, 10 * wordSize));
10418   movq(rbx, Address(rsp, 12 * wordSize));
10419   movq(rdx, Address(rsp, 13 * wordSize));
10420   movq(rcx, Address(rsp, 14 * wordSize));
10421   movq(rax, Address(rsp, 15 * wordSize));
10422   addq(rsp, 16 * wordSize);
10423 }
10424 #endif
--- EOF ---