1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "asm/assembler.hpp" 26 #include "asm/assembler.inline.hpp" 27 #include "code/aotCodeCache.hpp" 28 #include "code/compiledIC.hpp" 29 #include "compiler/compiler_globals.hpp" 30 #include "compiler/disassembler.hpp" 31 #include "crc32c.h" 32 #include "gc/shared/barrierSet.hpp" 33 #include "gc/shared/barrierSetAssembler.hpp" 34 #include "gc/shared/collectedHeap.inline.hpp" 35 #include "gc/shared/tlab_globals.hpp" 36 #include "interpreter/bytecodeHistogram.hpp" 37 #include "interpreter/interpreter.hpp" 38 #include "interpreter/interpreterRuntime.hpp" 39 #include "jvm.h" 40 #include "memory/resourceArea.hpp" 41 #include "memory/universe.hpp" 42 #include "oops/accessDecorators.hpp" 43 #include "oops/compressedKlass.inline.hpp" 44 #include "oops/compressedOops.inline.hpp" 45 #include "oops/klass.inline.hpp" 46 #include "prims/methodHandles.hpp" 47 #include "runtime/continuation.hpp" 48 #include "runtime/interfaceSupport.inline.hpp" 49 #include "runtime/javaThread.hpp" 50 #include "runtime/jniHandles.hpp" 51 #include "runtime/objectMonitor.hpp" 52 #include "runtime/os.hpp" 53 #include "runtime/safepoint.hpp" 54 #include "runtime/safepointMechanism.hpp" 55 #include "runtime/sharedRuntime.hpp" 56 #include "runtime/stubRoutines.hpp" 57 #include "utilities/checkedCast.hpp" 58 #include "utilities/macros.hpp" 59 60 #ifdef PRODUCT 61 #define BLOCK_COMMENT(str) /* nothing */ 62 #define STOP(error) stop(error) 63 #else 64 #define BLOCK_COMMENT(str) block_comment(str) 65 #define STOP(error) block_comment(error); stop(error) 66 #endif 67 68 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") 69 70 #ifdef ASSERT 71 bool AbstractAssembler::pd_check_instruction_mark() { return true; } 72 #endif 73 74 static const Assembler::Condition reverse[] = { 75 Assembler::noOverflow /* overflow = 0x0 */ , 76 Assembler::overflow /* noOverflow = 0x1 */ , 77 Assembler::aboveEqual /* carrySet = 0x2, below = 0x2 */ , 78 Assembler::below /* aboveEqual = 0x3, carryClear = 0x3 */ , 79 Assembler::notZero /* zero = 0x4, equal = 0x4 */ , 80 Assembler::zero /* notZero = 0x5, notEqual = 0x5 */ , 81 Assembler::above /* belowEqual = 0x6 */ , 82 Assembler::belowEqual /* above = 0x7 */ , 83 Assembler::positive /* negative = 0x8 */ , 84 Assembler::negative /* positive = 0x9 */ , 85 Assembler::noParity /* parity = 0xa */ , 86 Assembler::parity /* noParity = 0xb */ , 87 Assembler::greaterEqual /* less = 0xc */ , 88 Assembler::less /* greaterEqual = 0xd */ , 89 Assembler::greater /* lessEqual = 0xe */ , 90 Assembler::lessEqual /* greater = 0xf, */ 91 92 }; 93 94 95 // Implementation of MacroAssembler 96 97 Address MacroAssembler::as_Address(AddressLiteral adr) { 98 // amd64 always does this as a pc-rel 99 // we can be absolute or disp based on the instruction type 100 // jmp/call are displacements others are absolute 101 assert(!adr.is_lval(), "must be rval"); 102 assert(reachable(adr), "must be"); 103 return Address(checked_cast<int32_t>(adr.target() - pc()), adr.target(), adr.reloc()); 104 105 } 106 107 Address MacroAssembler::as_Address(ArrayAddress adr, Register rscratch) { 108 AddressLiteral base = adr.base(); 109 lea(rscratch, base); 110 Address index = adr.index(); 111 assert(index._disp == 0, "must not have disp"); // maybe it can? 112 Address array(rscratch, index._index, index._scale, index._disp); 113 return array; 114 } 115 116 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) { 117 Label L, E; 118 119 #ifdef _WIN64 120 // Windows always allocates space for it's register args 121 assert(num_args <= 4, "only register arguments supported"); 122 subq(rsp, frame::arg_reg_save_area_bytes); 123 #endif 124 125 // Align stack if necessary 126 testl(rsp, 15); 127 jcc(Assembler::zero, L); 128 129 subq(rsp, 8); 130 call(RuntimeAddress(entry_point)); 131 addq(rsp, 8); 132 jmp(E); 133 134 bind(L); 135 call(RuntimeAddress(entry_point)); 136 137 bind(E); 138 139 #ifdef _WIN64 140 // restore stack pointer 141 addq(rsp, frame::arg_reg_save_area_bytes); 142 #endif 143 } 144 145 void MacroAssembler::cmp64(Register src1, AddressLiteral src2, Register rscratch) { 146 assert(!src2.is_lval(), "should use cmpptr"); 147 assert(rscratch != noreg || always_reachable(src2), "missing"); 148 149 if (reachable(src2)) { 150 cmpq(src1, as_Address(src2)); 151 } else { 152 lea(rscratch, src2); 153 Assembler::cmpq(src1, Address(rscratch, 0)); 154 } 155 } 156 157 int MacroAssembler::corrected_idivq(Register reg) { 158 // Full implementation of Java ldiv and lrem; checks for special 159 // case as described in JVM spec., p.243 & p.271. The function 160 // returns the (pc) offset of the idivl instruction - may be needed 161 // for implicit exceptions. 162 // 163 // normal case special case 164 // 165 // input : rax: dividend min_long 166 // reg: divisor (may not be eax/edx) -1 167 // 168 // output: rax: quotient (= rax idiv reg) min_long 169 // rdx: remainder (= rax irem reg) 0 170 assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register"); 171 static const int64_t min_long = 0x8000000000000000; 172 Label normal_case, special_case; 173 174 // check for special case 175 cmp64(rax, ExternalAddress((address) &min_long), rdx /*rscratch*/); 176 jcc(Assembler::notEqual, normal_case); 177 xorl(rdx, rdx); // prepare rdx for possible special case (where 178 // remainder = 0) 179 cmpq(reg, -1); 180 jcc(Assembler::equal, special_case); 181 182 // handle normal case 183 bind(normal_case); 184 cdqq(); 185 int idivq_offset = offset(); 186 idivq(reg); 187 188 // normal and special case exit 189 bind(special_case); 190 191 return idivq_offset; 192 } 193 194 void MacroAssembler::decrementq(Register reg, int value) { 195 if (value == min_jint) { subq(reg, value); return; } 196 if (value < 0) { incrementq(reg, -value); return; } 197 if (value == 0) { ; return; } 198 if (value == 1 && UseIncDec) { decq(reg) ; return; } 199 /* else */ { subq(reg, value) ; return; } 200 } 201 202 void MacroAssembler::decrementq(Address dst, int value) { 203 if (value == min_jint) { subq(dst, value); return; } 204 if (value < 0) { incrementq(dst, -value); return; } 205 if (value == 0) { ; return; } 206 if (value == 1 && UseIncDec) { decq(dst) ; return; } 207 /* else */ { subq(dst, value) ; return; } 208 } 209 210 void MacroAssembler::incrementq(AddressLiteral dst, Register rscratch) { 211 assert(rscratch != noreg || always_reachable(dst), "missing"); 212 213 if (reachable(dst)) { 214 incrementq(as_Address(dst)); 215 } else { 216 lea(rscratch, dst); 217 incrementq(Address(rscratch, 0)); 218 } 219 } 220 221 void MacroAssembler::incrementq(Register reg, int value) { 222 if (value == min_jint) { addq(reg, value); return; } 223 if (value < 0) { decrementq(reg, -value); return; } 224 if (value == 0) { ; return; } 225 if (value == 1 && UseIncDec) { incq(reg) ; return; } 226 /* else */ { addq(reg, value) ; return; } 227 } 228 229 void MacroAssembler::incrementq(Address dst, int value) { 230 if (value == min_jint) { addq(dst, value); return; } 231 if (value < 0) { decrementq(dst, -value); return; } 232 if (value == 0) { ; return; } 233 if (value == 1 && UseIncDec) { incq(dst) ; return; } 234 /* else */ { addq(dst, value) ; return; } 235 } 236 237 // 32bit can do a case table jump in one instruction but we no longer allow the base 238 // to be installed in the Address class 239 void MacroAssembler::jump(ArrayAddress entry, Register rscratch) { 240 lea(rscratch, entry.base()); 241 Address dispatch = entry.index(); 242 assert(dispatch._base == noreg, "must be"); 243 dispatch._base = rscratch; 244 jmp(dispatch); 245 } 246 247 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) { 248 ShouldNotReachHere(); // 64bit doesn't use two regs 249 cmpq(x_lo, y_lo); 250 } 251 252 void MacroAssembler::lea(Register dst, AddressLiteral src) { 253 mov_literal64(dst, (intptr_t)src.target(), src.rspec()); 254 } 255 256 void MacroAssembler::lea(Address dst, AddressLiteral adr, Register rscratch) { 257 lea(rscratch, adr); 258 movptr(dst, rscratch); 259 } 260 261 void MacroAssembler::leave() { 262 // %%% is this really better? Why not on 32bit too? 263 emit_int8((unsigned char)0xC9); // LEAVE 264 } 265 266 void MacroAssembler::lneg(Register hi, Register lo) { 267 ShouldNotReachHere(); // 64bit doesn't use two regs 268 negq(lo); 269 } 270 271 void MacroAssembler::movoop(Register dst, jobject obj) { 272 mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate()); 273 } 274 275 void MacroAssembler::movoop(Address dst, jobject obj, Register rscratch) { 276 mov_literal64(rscratch, (intptr_t)obj, oop_Relocation::spec_for_immediate()); 277 movq(dst, rscratch); 278 } 279 280 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) { 281 mov_literal64(dst, (intptr_t)obj, metadata_Relocation::spec_for_immediate()); 282 } 283 284 void MacroAssembler::mov_metadata(Address dst, Metadata* obj, Register rscratch) { 285 mov_literal64(rscratch, (intptr_t)obj, metadata_Relocation::spec_for_immediate()); 286 movq(dst, rscratch); 287 } 288 289 void MacroAssembler::movptr(Register dst, AddressLiteral src) { 290 if (src.is_lval()) { 291 mov_literal64(dst, (intptr_t)src.target(), src.rspec()); 292 } else { 293 if (reachable(src)) { 294 movq(dst, as_Address(src)); 295 } else { 296 lea(dst, src); 297 movq(dst, Address(dst, 0)); 298 } 299 } 300 } 301 302 void MacroAssembler::movptr(ArrayAddress dst, Register src, Register rscratch) { 303 movq(as_Address(dst, rscratch), src); 304 } 305 306 void MacroAssembler::movptr(Register dst, ArrayAddress src) { 307 movq(dst, as_Address(src, dst /*rscratch*/)); 308 } 309 310 // src should NEVER be a real pointer. Use AddressLiteral for true pointers 311 void MacroAssembler::movptr(Address dst, intptr_t src, Register rscratch) { 312 if (is_simm32(src)) { 313 movptr(dst, checked_cast<int32_t>(src)); 314 } else { 315 mov64(rscratch, src); 316 movq(dst, rscratch); 317 } 318 } 319 320 void MacroAssembler::pushoop(jobject obj, Register rscratch) { 321 movoop(rscratch, obj); 322 push(rscratch); 323 } 324 325 void MacroAssembler::pushklass(Metadata* obj, Register rscratch) { 326 mov_metadata(rscratch, obj); 327 push(rscratch); 328 } 329 330 void MacroAssembler::pushptr(AddressLiteral src, Register rscratch) { 331 lea(rscratch, src); 332 if (src.is_lval()) { 333 push(rscratch); 334 } else { 335 pushq(Address(rscratch, 0)); 336 } 337 } 338 339 static void pass_arg0(MacroAssembler* masm, Register arg) { 340 if (c_rarg0 != arg ) { 341 masm->mov(c_rarg0, arg); 342 } 343 } 344 345 static void pass_arg1(MacroAssembler* masm, Register arg) { 346 if (c_rarg1 != arg ) { 347 masm->mov(c_rarg1, arg); 348 } 349 } 350 351 static void pass_arg2(MacroAssembler* masm, Register arg) { 352 if (c_rarg2 != arg ) { 353 masm->mov(c_rarg2, arg); 354 } 355 } 356 357 static void pass_arg3(MacroAssembler* masm, Register arg) { 358 if (c_rarg3 != arg ) { 359 masm->mov(c_rarg3, arg); 360 } 361 } 362 363 void MacroAssembler::stop(const char* msg) { 364 if (ShowMessageBoxOnError) { 365 address rip = pc(); 366 pusha(); // get regs on stack 367 lea(c_rarg1, InternalAddress(rip)); 368 movq(c_rarg2, rsp); // pass pointer to regs array 369 } 370 // Skip AOT caching C strings in scratch buffer. 371 const char* str = (code_section()->scratch_emit()) ? msg : AOTCodeCache::add_C_string(msg); 372 lea(c_rarg0, ExternalAddress((address) str)); 373 andq(rsp, -16); // align stack as required by ABI 374 call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64))); 375 hlt(); 376 } 377 378 void MacroAssembler::warn(const char* msg) { 379 push(rbp); 380 movq(rbp, rsp); 381 andq(rsp, -16); // align stack as required by push_CPU_state and call 382 push_CPU_state(); // keeps alignment at 16 bytes 383 384 #ifdef _WIN64 385 // Windows always allocates space for its register args 386 subq(rsp, frame::arg_reg_save_area_bytes); 387 #endif 388 lea(c_rarg0, ExternalAddress((address) msg)); 389 call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning))); 390 391 #ifdef _WIN64 392 // restore stack pointer 393 addq(rsp, frame::arg_reg_save_area_bytes); 394 #endif 395 pop_CPU_state(); 396 mov(rsp, rbp); 397 pop(rbp); 398 } 399 400 void MacroAssembler::print_state() { 401 address rip = pc(); 402 pusha(); // get regs on stack 403 push(rbp); 404 movq(rbp, rsp); 405 andq(rsp, -16); // align stack as required by push_CPU_state and call 406 push_CPU_state(); // keeps alignment at 16 bytes 407 408 lea(c_rarg0, InternalAddress(rip)); 409 lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array 410 call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1); 411 412 pop_CPU_state(); 413 mov(rsp, rbp); 414 pop(rbp); 415 popa(); 416 } 417 418 #ifndef PRODUCT 419 extern "C" void findpc(intptr_t x); 420 #endif 421 422 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) { 423 // In order to get locks to work, we need to fake a in_VM state 424 if (ShowMessageBoxOnError) { 425 JavaThread* thread = JavaThread::current(); 426 JavaThreadState saved_state = thread->thread_state(); 427 thread->set_thread_state(_thread_in_vm); 428 #ifndef PRODUCT 429 if (CountBytecodes || TraceBytecodes || StopInterpreterAt) { 430 ttyLocker ttyl; 431 BytecodeCounter::print(); 432 } 433 #endif 434 // To see where a verify_oop failed, get $ebx+40/X for this frame. 435 // XXX correct this offset for amd64 436 // This is the value of eip which points to where verify_oop will return. 437 if (os::message_box(msg, "Execution stopped, print registers?")) { 438 print_state64(pc, regs); 439 BREAKPOINT; 440 } 441 } 442 fatal("DEBUG MESSAGE: %s", msg); 443 } 444 445 void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) { 446 ttyLocker ttyl; 447 DebuggingContext debugging{}; 448 tty->print_cr("rip = 0x%016lx", (intptr_t)pc); 449 #ifndef PRODUCT 450 tty->cr(); 451 findpc(pc); 452 tty->cr(); 453 #endif 454 #define PRINT_REG(rax, value) \ 455 { tty->print("%s = ", #rax); os::print_location(tty, value); } 456 PRINT_REG(rax, regs[15]); 457 PRINT_REG(rbx, regs[12]); 458 PRINT_REG(rcx, regs[14]); 459 PRINT_REG(rdx, regs[13]); 460 PRINT_REG(rdi, regs[8]); 461 PRINT_REG(rsi, regs[9]); 462 PRINT_REG(rbp, regs[10]); 463 // rsp is actually not stored by pusha(), compute the old rsp from regs (rsp after pusha): regs + 16 = old rsp 464 PRINT_REG(rsp, (intptr_t)(®s[16])); 465 PRINT_REG(r8 , regs[7]); 466 PRINT_REG(r9 , regs[6]); 467 PRINT_REG(r10, regs[5]); 468 PRINT_REG(r11, regs[4]); 469 PRINT_REG(r12, regs[3]); 470 PRINT_REG(r13, regs[2]); 471 PRINT_REG(r14, regs[1]); 472 PRINT_REG(r15, regs[0]); 473 #undef PRINT_REG 474 // Print some words near the top of the stack. 475 int64_t* rsp = ®s[16]; 476 int64_t* dump_sp = rsp; 477 for (int col1 = 0; col1 < 8; col1++) { 478 tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp); 479 os::print_location(tty, *dump_sp++); 480 } 481 for (int row = 0; row < 25; row++) { 482 tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp); 483 for (int col = 0; col < 4; col++) { 484 tty->print(" 0x%016lx", (intptr_t)*dump_sp++); 485 } 486 tty->cr(); 487 } 488 // Print some instructions around pc: 489 Disassembler::decode((address)pc-64, (address)pc); 490 tty->print_cr("--------"); 491 Disassembler::decode((address)pc, (address)pc+32); 492 } 493 494 // The java_calling_convention describes stack locations as ideal slots on 495 // a frame with no abi restrictions. Since we must observe abi restrictions 496 // (like the placement of the register window) the slots must be biased by 497 // the following value. 498 static int reg2offset_in(VMReg r) { 499 // Account for saved rbp and return address 500 // This should really be in_preserve_stack_slots 501 return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size; 502 } 503 504 static int reg2offset_out(VMReg r) { 505 return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size; 506 } 507 508 // A long move 509 void MacroAssembler::long_move(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) { 510 511 // The calling conventions assures us that each VMregpair is either 512 // all really one physical register or adjacent stack slots. 513 514 if (src.is_single_phys_reg() ) { 515 if (dst.is_single_phys_reg()) { 516 if (dst.first() != src.first()) { 517 mov(dst.first()->as_Register(), src.first()->as_Register()); 518 } 519 } else { 520 assert(dst.is_single_reg(), "not a stack pair: (%s, %s), (%s, %s)", 521 src.first()->name(), src.second()->name(), dst.first()->name(), dst.second()->name()); 522 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_Register()); 523 } 524 } else if (dst.is_single_phys_reg()) { 525 assert(src.is_single_reg(), "not a stack pair"); 526 movq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 527 } else { 528 assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs"); 529 movq(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 530 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp); 531 } 532 } 533 534 // A double move 535 void MacroAssembler::double_move(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) { 536 537 // The calling conventions assures us that each VMregpair is either 538 // all really one physical register or adjacent stack slots. 539 540 if (src.is_single_phys_reg() ) { 541 if (dst.is_single_phys_reg()) { 542 // In theory these overlap but the ordering is such that this is likely a nop 543 if ( src.first() != dst.first()) { 544 movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister()); 545 } 546 } else { 547 assert(dst.is_single_reg(), "not a stack pair"); 548 movdbl(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_XMMRegister()); 549 } 550 } else if (dst.is_single_phys_reg()) { 551 assert(src.is_single_reg(), "not a stack pair"); 552 movdbl(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 553 } else { 554 assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs"); 555 movq(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 556 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp); 557 } 558 } 559 560 561 // A float arg may have to do float reg int reg conversion 562 void MacroAssembler::float_move(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) { 563 assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move"); 564 565 // The calling conventions assures us that each VMregpair is either 566 // all really one physical register or adjacent stack slots. 567 568 if (src.first()->is_stack()) { 569 if (dst.first()->is_stack()) { 570 movl(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 571 movptr(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp); 572 } else { 573 // stack to reg 574 assert(dst.first()->is_XMMRegister(), "only expect xmm registers as parameters"); 575 movflt(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 576 } 577 } else if (dst.first()->is_stack()) { 578 // reg to stack 579 assert(src.first()->is_XMMRegister(), "only expect xmm registers as parameters"); 580 movflt(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_XMMRegister()); 581 } else { 582 // reg to reg 583 // In theory these overlap but the ordering is such that this is likely a nop 584 if ( src.first() != dst.first()) { 585 movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister()); 586 } 587 } 588 } 589 590 // On 64 bit we will store integer like items to the stack as 591 // 64 bits items (x86_32/64 abi) even though java would only store 592 // 32bits for a parameter. On 32bit it will simply be 32 bits 593 // So this routine will do 32->32 on 32bit and 32->64 on 64bit 594 void MacroAssembler::move32_64(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) { 595 if (src.first()->is_stack()) { 596 if (dst.first()->is_stack()) { 597 // stack to stack 598 movslq(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 599 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp); 600 } else { 601 // stack to reg 602 movslq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 603 } 604 } else if (dst.first()->is_stack()) { 605 // reg to stack 606 // Do we really have to sign extend??? 607 // __ movslq(src.first()->as_Register(), src.first()->as_Register()); 608 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_Register()); 609 } else { 610 // Do we really have to sign extend??? 611 // __ movslq(dst.first()->as_Register(), src.first()->as_Register()); 612 if (dst.first() != src.first()) { 613 movq(dst.first()->as_Register(), src.first()->as_Register()); 614 } 615 } 616 } 617 618 void MacroAssembler::move_ptr(VMRegPair src, VMRegPair dst) { 619 if (src.first()->is_stack()) { 620 if (dst.first()->is_stack()) { 621 // stack to stack 622 movq(rax, Address(rbp, reg2offset_in(src.first()))); 623 movq(Address(rsp, reg2offset_out(dst.first())), rax); 624 } else { 625 // stack to reg 626 movq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first()))); 627 } 628 } else if (dst.first()->is_stack()) { 629 // reg to stack 630 movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register()); 631 } else { 632 if (dst.first() != src.first()) { 633 movq(dst.first()->as_Register(), src.first()->as_Register()); 634 } 635 } 636 } 637 638 // An oop arg. Must pass a handle not the oop itself 639 void MacroAssembler::object_move(OopMap* map, 640 int oop_handle_offset, 641 int framesize_in_slots, 642 VMRegPair src, 643 VMRegPair dst, 644 bool is_receiver, 645 int* receiver_offset) { 646 647 // must pass a handle. First figure out the location we use as a handle 648 649 Register rHandle = dst.first()->is_stack() ? rax : dst.first()->as_Register(); 650 651 // See if oop is null if it is we need no handle 652 653 if (src.first()->is_stack()) { 654 655 // Oop is already on the stack as an argument 656 int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots(); 657 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots)); 658 if (is_receiver) { 659 *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size; 660 } 661 662 cmpptr(Address(rbp, reg2offset_in(src.first())), NULL_WORD); 663 lea(rHandle, Address(rbp, reg2offset_in(src.first()))); 664 // conditionally move a null 665 cmovptr(Assembler::equal, rHandle, Address(rbp, reg2offset_in(src.first()))); 666 } else { 667 668 // Oop is in a register we must store it to the space we reserve 669 // on the stack for oop_handles and pass a handle if oop is non-null 670 671 const Register rOop = src.first()->as_Register(); 672 int oop_slot; 673 if (rOop == j_rarg0) 674 oop_slot = 0; 675 else if (rOop == j_rarg1) 676 oop_slot = 1; 677 else if (rOop == j_rarg2) 678 oop_slot = 2; 679 else if (rOop == j_rarg3) 680 oop_slot = 3; 681 else if (rOop == j_rarg4) 682 oop_slot = 4; 683 else { 684 assert(rOop == j_rarg5, "wrong register"); 685 oop_slot = 5; 686 } 687 688 oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset; 689 int offset = oop_slot*VMRegImpl::stack_slot_size; 690 691 map->set_oop(VMRegImpl::stack2reg(oop_slot)); 692 // Store oop in handle area, may be null 693 movptr(Address(rsp, offset), rOop); 694 if (is_receiver) { 695 *receiver_offset = offset; 696 } 697 698 cmpptr(rOop, NULL_WORD); 699 lea(rHandle, Address(rsp, offset)); 700 // conditionally move a null from the handle area where it was just stored 701 cmovptr(Assembler::equal, rHandle, Address(rsp, offset)); 702 } 703 704 // If arg is on the stack then place it otherwise it is already in correct reg. 705 if (dst.first()->is_stack()) { 706 movptr(Address(rsp, reg2offset_out(dst.first())), rHandle); 707 } 708 } 709 710 void MacroAssembler::addptr(Register dst, int32_t imm32) { 711 addq(dst, imm32); 712 } 713 714 void MacroAssembler::addptr(Register dst, Register src) { 715 addq(dst, src); 716 } 717 718 void MacroAssembler::addptr(Address dst, Register src) { 719 addq(dst, src); 720 } 721 722 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src, Register rscratch) { 723 assert(rscratch != noreg || always_reachable(src), "missing"); 724 725 if (reachable(src)) { 726 Assembler::addsd(dst, as_Address(src)); 727 } else { 728 lea(rscratch, src); 729 Assembler::addsd(dst, Address(rscratch, 0)); 730 } 731 } 732 733 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src, Register rscratch) { 734 assert(rscratch != noreg || always_reachable(src), "missing"); 735 736 if (reachable(src)) { 737 addss(dst, as_Address(src)); 738 } else { 739 lea(rscratch, src); 740 addss(dst, Address(rscratch, 0)); 741 } 742 } 743 744 void MacroAssembler::addpd(XMMRegister dst, AddressLiteral src, Register rscratch) { 745 assert(rscratch != noreg || always_reachable(src), "missing"); 746 747 if (reachable(src)) { 748 Assembler::addpd(dst, as_Address(src)); 749 } else { 750 lea(rscratch, src); 751 Assembler::addpd(dst, Address(rscratch, 0)); 752 } 753 } 754 755 // See 8273459. Function for ensuring 64-byte alignment, intended for stubs only. 756 // Stub code is generated once and never copied. 757 // NMethods can't use this because they get copied and we can't force alignment > 32 bytes. 758 void MacroAssembler::align64() { 759 align(64, (uint)(uintptr_t)pc()); 760 } 761 762 void MacroAssembler::align32() { 763 align(32, (uint)(uintptr_t)pc()); 764 } 765 766 void MacroAssembler::align(uint modulus) { 767 // 8273459: Ensure alignment is possible with current segment alignment 768 assert(modulus <= (uintx)CodeEntryAlignment, "Alignment must be <= CodeEntryAlignment"); 769 align(modulus, offset()); 770 } 771 772 void MacroAssembler::align(uint modulus, uint target) { 773 if (target % modulus != 0) { 774 nop(modulus - (target % modulus)); 775 } 776 } 777 778 void MacroAssembler::push_f(XMMRegister r) { 779 subptr(rsp, wordSize); 780 movflt(Address(rsp, 0), r); 781 } 782 783 void MacroAssembler::pop_f(XMMRegister r) { 784 movflt(r, Address(rsp, 0)); 785 addptr(rsp, wordSize); 786 } 787 788 void MacroAssembler::push_d(XMMRegister r) { 789 subptr(rsp, 2 * wordSize); 790 movdbl(Address(rsp, 0), r); 791 } 792 793 void MacroAssembler::pop_d(XMMRegister r) { 794 movdbl(r, Address(rsp, 0)); 795 addptr(rsp, 2 * Interpreter::stackElementSize); 796 } 797 798 void MacroAssembler::push_ppx(Register src) { 799 if (VM_Version::supports_apx_f()) { 800 pushp(src); 801 } else { 802 Assembler::push(src); 803 } 804 } 805 806 void MacroAssembler::pop_ppx(Register dst) { 807 if (VM_Version::supports_apx_f()) { 808 popp(dst); 809 } else { 810 Assembler::pop(dst); 811 } 812 } 813 814 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src, Register rscratch) { 815 // Used in sign-masking with aligned address. 816 assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes"); 817 assert(rscratch != noreg || always_reachable(src), "missing"); 818 819 if (UseAVX > 2 && 820 (!VM_Version::supports_avx512dq() || !VM_Version::supports_avx512vl()) && 821 (dst->encoding() >= 16)) { 822 vpand(dst, dst, src, AVX_512bit, rscratch); 823 } else if (reachable(src)) { 824 Assembler::andpd(dst, as_Address(src)); 825 } else { 826 lea(rscratch, src); 827 Assembler::andpd(dst, Address(rscratch, 0)); 828 } 829 } 830 831 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src, Register rscratch) { 832 // Used in sign-masking with aligned address. 833 assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes"); 834 assert(rscratch != noreg || always_reachable(src), "missing"); 835 836 if (reachable(src)) { 837 Assembler::andps(dst, as_Address(src)); 838 } else { 839 lea(rscratch, src); 840 Assembler::andps(dst, Address(rscratch, 0)); 841 } 842 } 843 844 void MacroAssembler::andptr(Register dst, int32_t imm32) { 845 andq(dst, imm32); 846 } 847 848 void MacroAssembler::andq(Register dst, AddressLiteral src, Register rscratch) { 849 assert(rscratch != noreg || always_reachable(src), "missing"); 850 851 if (reachable(src)) { 852 andq(dst, as_Address(src)); 853 } else { 854 lea(rscratch, src); 855 andq(dst, Address(rscratch, 0)); 856 } 857 } 858 859 void MacroAssembler::atomic_incl(Address counter_addr) { 860 lock(); 861 incrementl(counter_addr); 862 } 863 864 void MacroAssembler::atomic_incl(AddressLiteral counter_addr, Register rscratch) { 865 assert(rscratch != noreg || always_reachable(counter_addr), "missing"); 866 867 if (reachable(counter_addr)) { 868 atomic_incl(as_Address(counter_addr)); 869 } else { 870 lea(rscratch, counter_addr); 871 atomic_incl(Address(rscratch, 0)); 872 } 873 } 874 875 void MacroAssembler::atomic_incq(Address counter_addr) { 876 lock(); 877 incrementq(counter_addr); 878 } 879 880 void MacroAssembler::atomic_incq(AddressLiteral counter_addr, Register rscratch) { 881 assert(rscratch != noreg || always_reachable(counter_addr), "missing"); 882 883 if (reachable(counter_addr)) { 884 atomic_incq(as_Address(counter_addr)); 885 } else { 886 lea(rscratch, counter_addr); 887 atomic_incq(Address(rscratch, 0)); 888 } 889 } 890 891 // Writes to stack successive pages until offset reached to check for 892 // stack overflow + shadow pages. This clobbers tmp. 893 void MacroAssembler::bang_stack_size(Register size, Register tmp) { 894 movptr(tmp, rsp); 895 // Bang stack for total size given plus shadow page size. 896 // Bang one page at a time because large size can bang beyond yellow and 897 // red zones. 898 Label loop; 899 bind(loop); 900 movl(Address(tmp, (-(int)os::vm_page_size())), size ); 901 subptr(tmp, (int)os::vm_page_size()); 902 subl(size, (int)os::vm_page_size()); 903 jcc(Assembler::greater, loop); 904 905 // Bang down shadow pages too. 906 // At this point, (tmp-0) is the last address touched, so don't 907 // touch it again. (It was touched as (tmp-pagesize) but then tmp 908 // was post-decremented.) Skip this address by starting at i=1, and 909 // touch a few more pages below. N.B. It is important to touch all 910 // the way down including all pages in the shadow zone. 911 for (int i = 1; i < ((int)StackOverflow::stack_shadow_zone_size() / (int)os::vm_page_size()); i++) { 912 // this could be any sized move but this is can be a debugging crumb 913 // so the bigger the better. 914 movptr(Address(tmp, (-i*(int)os::vm_page_size())), size ); 915 } 916 } 917 918 void MacroAssembler::reserved_stack_check() { 919 // testing if reserved zone needs to be enabled 920 Label no_reserved_zone_enabling; 921 922 cmpptr(rsp, Address(r15_thread, JavaThread::reserved_stack_activation_offset())); 923 jcc(Assembler::below, no_reserved_zone_enabling); 924 925 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), r15_thread); 926 jump(RuntimeAddress(SharedRuntime::throw_delayed_StackOverflowError_entry())); 927 should_not_reach_here(); 928 929 bind(no_reserved_zone_enabling); 930 } 931 932 void MacroAssembler::c2bool(Register x) { 933 // implements x == 0 ? 0 : 1 934 // note: must only look at least-significant byte of x 935 // since C-style booleans are stored in one byte 936 // only! (was bug) 937 andl(x, 0xFF); 938 setb(Assembler::notZero, x); 939 } 940 941 // Wouldn't need if AddressLiteral version had new name 942 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) { 943 Assembler::call(L, rtype); 944 } 945 946 void MacroAssembler::call(Register entry) { 947 Assembler::call(entry); 948 } 949 950 void MacroAssembler::call(AddressLiteral entry, Register rscratch) { 951 assert(rscratch != noreg || always_reachable(entry), "missing"); 952 953 if (reachable(entry)) { 954 Assembler::call_literal(entry.target(), entry.rspec()); 955 } else { 956 lea(rscratch, entry); 957 Assembler::call(rscratch); 958 } 959 } 960 961 void MacroAssembler::ic_call(address entry, jint method_index) { 962 RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index); 963 // Needs full 64-bit immediate for later patching. 964 mov64(rax, (int64_t)Universe::non_oop_word()); 965 call(AddressLiteral(entry, rh)); 966 } 967 968 int MacroAssembler::ic_check_size() { 969 return UseCompactObjectHeaders ? 17 : 14; 970 } 971 972 int MacroAssembler::ic_check(int end_alignment) { 973 Register receiver = j_rarg0; 974 Register data = rax; 975 Register temp = rscratch1; 976 977 // The UEP of a code blob ensures that the VEP is padded. However, the padding of the UEP is placed 978 // before the inline cache check, so we don't have to execute any nop instructions when dispatching 979 // through the UEP, yet we can ensure that the VEP is aligned appropriately. That's why we align 980 // before the inline cache check here, and not after 981 align(end_alignment, offset() + ic_check_size()); 982 983 int uep_offset = offset(); 984 985 if (UseCompactObjectHeaders) { 986 load_narrow_klass_compact(temp, receiver); 987 cmpl(temp, Address(data, CompiledICData::speculated_klass_offset())); 988 } else if (UseCompressedClassPointers) { 989 movl(temp, Address(receiver, oopDesc::klass_offset_in_bytes())); 990 cmpl(temp, Address(data, CompiledICData::speculated_klass_offset())); 991 } else { 992 movptr(temp, Address(receiver, oopDesc::klass_offset_in_bytes())); 993 cmpptr(temp, Address(data, CompiledICData::speculated_klass_offset())); 994 } 995 996 // if inline cache check fails, then jump to runtime routine 997 jump_cc(Assembler::notEqual, RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 998 assert((offset() % end_alignment) == 0, "Misaligned verified entry point (%d, %d, %d)", uep_offset, offset(), end_alignment); 999 1000 return uep_offset; 1001 } 1002 1003 void MacroAssembler::emit_static_call_stub() { 1004 // Static stub relocation also tags the Method* in the code-stream. 1005 mov_metadata(rbx, (Metadata*) nullptr); // Method is zapped till fixup time. 1006 // This is recognized as unresolved by relocs/nativeinst/ic code. 1007 jump(RuntimeAddress(pc())); 1008 } 1009 1010 // Implementation of call_VM versions 1011 1012 void MacroAssembler::call_VM(Register oop_result, 1013 address entry_point, 1014 bool check_exceptions) { 1015 Label C, E; 1016 call(C, relocInfo::none); 1017 jmp(E); 1018 1019 bind(C); 1020 call_VM_helper(oop_result, entry_point, 0, check_exceptions); 1021 ret(0); 1022 1023 bind(E); 1024 } 1025 1026 void MacroAssembler::call_VM(Register oop_result, 1027 address entry_point, 1028 Register arg_1, 1029 bool check_exceptions) { 1030 Label C, E; 1031 call(C, relocInfo::none); 1032 jmp(E); 1033 1034 bind(C); 1035 pass_arg1(this, arg_1); 1036 call_VM_helper(oop_result, entry_point, 1, check_exceptions); 1037 ret(0); 1038 1039 bind(E); 1040 } 1041 1042 void MacroAssembler::call_VM(Register oop_result, 1043 address entry_point, 1044 Register arg_1, 1045 Register arg_2, 1046 bool check_exceptions) { 1047 Label C, E; 1048 call(C, relocInfo::none); 1049 jmp(E); 1050 1051 bind(C); 1052 1053 assert_different_registers(arg_1, c_rarg2); 1054 1055 pass_arg2(this, arg_2); 1056 pass_arg1(this, arg_1); 1057 call_VM_helper(oop_result, entry_point, 2, check_exceptions); 1058 ret(0); 1059 1060 bind(E); 1061 } 1062 1063 void MacroAssembler::call_VM(Register oop_result, 1064 address entry_point, 1065 Register arg_1, 1066 Register arg_2, 1067 Register arg_3, 1068 bool check_exceptions) { 1069 Label C, E; 1070 call(C, relocInfo::none); 1071 jmp(E); 1072 1073 bind(C); 1074 1075 assert_different_registers(arg_1, c_rarg2, c_rarg3); 1076 assert_different_registers(arg_2, c_rarg3); 1077 pass_arg3(this, arg_3); 1078 pass_arg2(this, arg_2); 1079 pass_arg1(this, arg_1); 1080 call_VM_helper(oop_result, entry_point, 3, check_exceptions); 1081 ret(0); 1082 1083 bind(E); 1084 } 1085 1086 void MacroAssembler::call_VM(Register oop_result, 1087 Register last_java_sp, 1088 address entry_point, 1089 int number_of_arguments, 1090 bool check_exceptions) { 1091 call_VM_base(oop_result, last_java_sp, entry_point, number_of_arguments, check_exceptions); 1092 } 1093 1094 void MacroAssembler::call_VM(Register oop_result, 1095 Register last_java_sp, 1096 address entry_point, 1097 Register arg_1, 1098 bool check_exceptions) { 1099 pass_arg1(this, arg_1); 1100 call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions); 1101 } 1102 1103 void MacroAssembler::call_VM(Register oop_result, 1104 Register last_java_sp, 1105 address entry_point, 1106 Register arg_1, 1107 Register arg_2, 1108 bool check_exceptions) { 1109 1110 assert_different_registers(arg_1, c_rarg2); 1111 pass_arg2(this, arg_2); 1112 pass_arg1(this, arg_1); 1113 call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions); 1114 } 1115 1116 void MacroAssembler::call_VM(Register oop_result, 1117 Register last_java_sp, 1118 address entry_point, 1119 Register arg_1, 1120 Register arg_2, 1121 Register arg_3, 1122 bool check_exceptions) { 1123 assert_different_registers(arg_1, c_rarg2, c_rarg3); 1124 assert_different_registers(arg_2, c_rarg3); 1125 pass_arg3(this, arg_3); 1126 pass_arg2(this, arg_2); 1127 pass_arg1(this, arg_1); 1128 call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions); 1129 } 1130 1131 void MacroAssembler::super_call_VM(Register oop_result, 1132 Register last_java_sp, 1133 address entry_point, 1134 int number_of_arguments, 1135 bool check_exceptions) { 1136 MacroAssembler::call_VM_base(oop_result, last_java_sp, entry_point, number_of_arguments, check_exceptions); 1137 } 1138 1139 void MacroAssembler::super_call_VM(Register oop_result, 1140 Register last_java_sp, 1141 address entry_point, 1142 Register arg_1, 1143 bool check_exceptions) { 1144 pass_arg1(this, arg_1); 1145 super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions); 1146 } 1147 1148 void MacroAssembler::super_call_VM(Register oop_result, 1149 Register last_java_sp, 1150 address entry_point, 1151 Register arg_1, 1152 Register arg_2, 1153 bool check_exceptions) { 1154 1155 assert_different_registers(arg_1, c_rarg2); 1156 pass_arg2(this, arg_2); 1157 pass_arg1(this, arg_1); 1158 super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions); 1159 } 1160 1161 void MacroAssembler::super_call_VM(Register oop_result, 1162 Register last_java_sp, 1163 address entry_point, 1164 Register arg_1, 1165 Register arg_2, 1166 Register arg_3, 1167 bool check_exceptions) { 1168 assert_different_registers(arg_1, c_rarg2, c_rarg3); 1169 assert_different_registers(arg_2, c_rarg3); 1170 pass_arg3(this, arg_3); 1171 pass_arg2(this, arg_2); 1172 pass_arg1(this, arg_1); 1173 super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions); 1174 } 1175 1176 void MacroAssembler::call_VM_base(Register oop_result, 1177 Register last_java_sp, 1178 address entry_point, 1179 int number_of_arguments, 1180 bool check_exceptions) { 1181 Register java_thread = r15_thread; 1182 1183 // determine last_java_sp register 1184 if (!last_java_sp->is_valid()) { 1185 last_java_sp = rsp; 1186 } 1187 // debugging support 1188 assert(number_of_arguments >= 0 , "cannot have negative number of arguments"); 1189 #ifdef ASSERT 1190 // TraceBytecodes does not use r12 but saves it over the call, so don't verify 1191 // r12 is the heapbase. 1192 if (UseCompressedOops && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?"); 1193 #endif // ASSERT 1194 1195 assert(java_thread != oop_result , "cannot use the same register for java_thread & oop_result"); 1196 assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp"); 1197 1198 // push java thread (becomes first argument of C function) 1199 1200 mov(c_rarg0, r15_thread); 1201 1202 // set last Java frame before call 1203 assert(last_java_sp != rbp, "can't use ebp/rbp"); 1204 1205 // Only interpreter should have to set fp 1206 set_last_Java_frame(last_java_sp, rbp, nullptr, rscratch1); 1207 1208 // do the call, remove parameters 1209 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments); 1210 1211 #ifdef ASSERT 1212 // Check that thread register is not clobbered. 1213 guarantee(java_thread != rax, "change this code"); 1214 push(rax); 1215 { Label L; 1216 get_thread_slow(rax); 1217 cmpptr(java_thread, rax); 1218 jcc(Assembler::equal, L); 1219 STOP("MacroAssembler::call_VM_base: java_thread not callee saved?"); 1220 bind(L); 1221 } 1222 pop(rax); 1223 #endif 1224 1225 // reset last Java frame 1226 // Only interpreter should have to clear fp 1227 reset_last_Java_frame(true); 1228 1229 // C++ interp handles this in the interpreter 1230 check_and_handle_popframe(); 1231 check_and_handle_earlyret(); 1232 1233 if (check_exceptions) { 1234 // check for pending exceptions (java_thread is set upon return) 1235 cmpptr(Address(r15_thread, Thread::pending_exception_offset()), NULL_WORD); 1236 // This used to conditionally jump to forward_exception however it is 1237 // possible if we relocate that the branch will not reach. So we must jump 1238 // around so we can always reach 1239 1240 Label ok; 1241 jcc(Assembler::equal, ok); 1242 jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 1243 bind(ok); 1244 } 1245 1246 // get oop result if there is one and reset the value in the thread 1247 if (oop_result->is_valid()) { 1248 get_vm_result_oop(oop_result); 1249 } 1250 } 1251 1252 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) { 1253 // Calculate the value for last_Java_sp somewhat subtle. 1254 // call_VM does an intermediate call which places a return address on 1255 // the stack just under the stack pointer as the user finished with it. 1256 // This allows use to retrieve last_Java_pc from last_Java_sp[-1]. 1257 1258 // We've pushed one address, correct last_Java_sp 1259 lea(rax, Address(rsp, wordSize)); 1260 1261 call_VM_base(oop_result, rax, entry_point, number_of_arguments, check_exceptions); 1262 } 1263 1264 // Use this method when MacroAssembler version of call_VM_leaf_base() should be called from Interpreter. 1265 void MacroAssembler::call_VM_leaf0(address entry_point) { 1266 MacroAssembler::call_VM_leaf_base(entry_point, 0); 1267 } 1268 1269 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) { 1270 call_VM_leaf_base(entry_point, number_of_arguments); 1271 } 1272 1273 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) { 1274 pass_arg0(this, arg_0); 1275 call_VM_leaf(entry_point, 1); 1276 } 1277 1278 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 1279 1280 assert_different_registers(arg_0, c_rarg1); 1281 pass_arg1(this, arg_1); 1282 pass_arg0(this, arg_0); 1283 call_VM_leaf(entry_point, 2); 1284 } 1285 1286 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) { 1287 assert_different_registers(arg_0, c_rarg1, c_rarg2); 1288 assert_different_registers(arg_1, c_rarg2); 1289 pass_arg2(this, arg_2); 1290 pass_arg1(this, arg_1); 1291 pass_arg0(this, arg_0); 1292 call_VM_leaf(entry_point, 3); 1293 } 1294 1295 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) { 1296 assert_different_registers(arg_0, c_rarg1, c_rarg2, c_rarg3); 1297 assert_different_registers(arg_1, c_rarg2, c_rarg3); 1298 assert_different_registers(arg_2, c_rarg3); 1299 pass_arg3(this, arg_3); 1300 pass_arg2(this, arg_2); 1301 pass_arg1(this, arg_1); 1302 pass_arg0(this, arg_0); 1303 call_VM_leaf(entry_point, 3); 1304 } 1305 1306 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) { 1307 pass_arg0(this, arg_0); 1308 MacroAssembler::call_VM_leaf_base(entry_point, 1); 1309 } 1310 1311 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 1312 assert_different_registers(arg_0, c_rarg1); 1313 pass_arg1(this, arg_1); 1314 pass_arg0(this, arg_0); 1315 MacroAssembler::call_VM_leaf_base(entry_point, 2); 1316 } 1317 1318 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) { 1319 assert_different_registers(arg_0, c_rarg1, c_rarg2); 1320 assert_different_registers(arg_1, c_rarg2); 1321 pass_arg2(this, arg_2); 1322 pass_arg1(this, arg_1); 1323 pass_arg0(this, arg_0); 1324 MacroAssembler::call_VM_leaf_base(entry_point, 3); 1325 } 1326 1327 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) { 1328 assert_different_registers(arg_0, c_rarg1, c_rarg2, c_rarg3); 1329 assert_different_registers(arg_1, c_rarg2, c_rarg3); 1330 assert_different_registers(arg_2, c_rarg3); 1331 pass_arg3(this, arg_3); 1332 pass_arg2(this, arg_2); 1333 pass_arg1(this, arg_1); 1334 pass_arg0(this, arg_0); 1335 MacroAssembler::call_VM_leaf_base(entry_point, 4); 1336 } 1337 1338 void MacroAssembler::get_vm_result_oop(Register oop_result) { 1339 movptr(oop_result, Address(r15_thread, JavaThread::vm_result_oop_offset())); 1340 movptr(Address(r15_thread, JavaThread::vm_result_oop_offset()), NULL_WORD); 1341 verify_oop_msg(oop_result, "broken oop in call_VM_base"); 1342 } 1343 1344 void MacroAssembler::get_vm_result_metadata(Register metadata_result) { 1345 movptr(metadata_result, Address(r15_thread, JavaThread::vm_result_metadata_offset())); 1346 movptr(Address(r15_thread, JavaThread::vm_result_metadata_offset()), NULL_WORD); 1347 } 1348 1349 void MacroAssembler::check_and_handle_earlyret() { 1350 } 1351 1352 void MacroAssembler::check_and_handle_popframe() { 1353 } 1354 1355 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm, Register rscratch) { 1356 assert(rscratch != noreg || always_reachable(src1), "missing"); 1357 1358 if (reachable(src1)) { 1359 cmpl(as_Address(src1), imm); 1360 } else { 1361 lea(rscratch, src1); 1362 cmpl(Address(rscratch, 0), imm); 1363 } 1364 } 1365 1366 void MacroAssembler::cmp32(Register src1, AddressLiteral src2, Register rscratch) { 1367 assert(!src2.is_lval(), "use cmpptr"); 1368 assert(rscratch != noreg || always_reachable(src2), "missing"); 1369 1370 if (reachable(src2)) { 1371 cmpl(src1, as_Address(src2)); 1372 } else { 1373 lea(rscratch, src2); 1374 cmpl(src1, Address(rscratch, 0)); 1375 } 1376 } 1377 1378 void MacroAssembler::cmp32(Register src1, int32_t imm) { 1379 Assembler::cmpl(src1, imm); 1380 } 1381 1382 void MacroAssembler::cmp32(Register src1, Address src2) { 1383 Assembler::cmpl(src1, src2); 1384 } 1385 1386 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) { 1387 ucomisd(opr1, opr2); 1388 1389 Label L; 1390 if (unordered_is_less) { 1391 movl(dst, -1); 1392 jcc(Assembler::parity, L); 1393 jcc(Assembler::below , L); 1394 movl(dst, 0); 1395 jcc(Assembler::equal , L); 1396 increment(dst); 1397 } else { // unordered is greater 1398 movl(dst, 1); 1399 jcc(Assembler::parity, L); 1400 jcc(Assembler::above , L); 1401 movl(dst, 0); 1402 jcc(Assembler::equal , L); 1403 decrementl(dst); 1404 } 1405 bind(L); 1406 } 1407 1408 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) { 1409 ucomiss(opr1, opr2); 1410 1411 Label L; 1412 if (unordered_is_less) { 1413 movl(dst, -1); 1414 jcc(Assembler::parity, L); 1415 jcc(Assembler::below , L); 1416 movl(dst, 0); 1417 jcc(Assembler::equal , L); 1418 increment(dst); 1419 } else { // unordered is greater 1420 movl(dst, 1); 1421 jcc(Assembler::parity, L); 1422 jcc(Assembler::above , L); 1423 movl(dst, 0); 1424 jcc(Assembler::equal , L); 1425 decrementl(dst); 1426 } 1427 bind(L); 1428 } 1429 1430 1431 void MacroAssembler::cmp8(AddressLiteral src1, int imm, Register rscratch) { 1432 assert(rscratch != noreg || always_reachable(src1), "missing"); 1433 1434 if (reachable(src1)) { 1435 cmpb(as_Address(src1), imm); 1436 } else { 1437 lea(rscratch, src1); 1438 cmpb(Address(rscratch, 0), imm); 1439 } 1440 } 1441 1442 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2, Register rscratch) { 1443 assert(rscratch != noreg || always_reachable(src2), "missing"); 1444 1445 if (src2.is_lval()) { 1446 movptr(rscratch, src2); 1447 Assembler::cmpq(src1, rscratch); 1448 } else if (reachable(src2)) { 1449 cmpq(src1, as_Address(src2)); 1450 } else { 1451 lea(rscratch, src2); 1452 Assembler::cmpq(src1, Address(rscratch, 0)); 1453 } 1454 } 1455 1456 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2, Register rscratch) { 1457 assert(src2.is_lval(), "not a mem-mem compare"); 1458 // moves src2's literal address 1459 movptr(rscratch, src2); 1460 Assembler::cmpq(src1, rscratch); 1461 } 1462 1463 void MacroAssembler::cmpoop(Register src1, Register src2) { 1464 cmpptr(src1, src2); 1465 } 1466 1467 void MacroAssembler::cmpoop(Register src1, Address src2) { 1468 cmpptr(src1, src2); 1469 } 1470 1471 void MacroAssembler::cmpoop(Register src1, jobject src2, Register rscratch) { 1472 movoop(rscratch, src2); 1473 cmpptr(src1, rscratch); 1474 } 1475 1476 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr, Register rscratch) { 1477 assert(rscratch != noreg || always_reachable(adr), "missing"); 1478 1479 if (reachable(adr)) { 1480 lock(); 1481 cmpxchgptr(reg, as_Address(adr)); 1482 } else { 1483 lea(rscratch, adr); 1484 lock(); 1485 cmpxchgptr(reg, Address(rscratch, 0)); 1486 } 1487 } 1488 1489 void MacroAssembler::cmpxchgptr(Register reg, Address adr) { 1490 cmpxchgq(reg, adr); 1491 } 1492 1493 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src, Register rscratch) { 1494 assert(rscratch != noreg || always_reachable(src), "missing"); 1495 1496 if (reachable(src)) { 1497 Assembler::comisd(dst, as_Address(src)); 1498 } else { 1499 lea(rscratch, src); 1500 Assembler::comisd(dst, Address(rscratch, 0)); 1501 } 1502 } 1503 1504 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src, Register rscratch) { 1505 assert(rscratch != noreg || always_reachable(src), "missing"); 1506 1507 if (reachable(src)) { 1508 Assembler::comiss(dst, as_Address(src)); 1509 } else { 1510 lea(rscratch, src); 1511 Assembler::comiss(dst, Address(rscratch, 0)); 1512 } 1513 } 1514 1515 1516 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr, Register rscratch) { 1517 assert(rscratch != noreg || always_reachable(counter_addr), "missing"); 1518 1519 Condition negated_cond = negate_condition(cond); 1520 Label L; 1521 jcc(negated_cond, L); 1522 pushf(); // Preserve flags 1523 atomic_incl(counter_addr, rscratch); 1524 popf(); 1525 bind(L); 1526 } 1527 1528 int MacroAssembler::corrected_idivl(Register reg) { 1529 // Full implementation of Java idiv and irem; checks for 1530 // special case as described in JVM spec., p.243 & p.271. 1531 // The function returns the (pc) offset of the idivl 1532 // instruction - may be needed for implicit exceptions. 1533 // 1534 // normal case special case 1535 // 1536 // input : rax,: dividend min_int 1537 // reg: divisor (may not be rax,/rdx) -1 1538 // 1539 // output: rax,: quotient (= rax, idiv reg) min_int 1540 // rdx: remainder (= rax, irem reg) 0 1541 assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register"); 1542 const int min_int = 0x80000000; 1543 Label normal_case, special_case; 1544 1545 // check for special case 1546 cmpl(rax, min_int); 1547 jcc(Assembler::notEqual, normal_case); 1548 xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0) 1549 cmpl(reg, -1); 1550 jcc(Assembler::equal, special_case); 1551 1552 // handle normal case 1553 bind(normal_case); 1554 cdql(); 1555 int idivl_offset = offset(); 1556 idivl(reg); 1557 1558 // normal and special case exit 1559 bind(special_case); 1560 1561 return idivl_offset; 1562 } 1563 1564 1565 1566 void MacroAssembler::decrementl(Register reg, int value) { 1567 if (value == min_jint) {subl(reg, value) ; return; } 1568 if (value < 0) { incrementl(reg, -value); return; } 1569 if (value == 0) { ; return; } 1570 if (value == 1 && UseIncDec) { decl(reg) ; return; } 1571 /* else */ { subl(reg, value) ; return; } 1572 } 1573 1574 void MacroAssembler::decrementl(Address dst, int value) { 1575 if (value == min_jint) {subl(dst, value) ; return; } 1576 if (value < 0) { incrementl(dst, -value); return; } 1577 if (value == 0) { ; return; } 1578 if (value == 1 && UseIncDec) { decl(dst) ; return; } 1579 /* else */ { subl(dst, value) ; return; } 1580 } 1581 1582 void MacroAssembler::division_with_shift (Register reg, int shift_value) { 1583 assert(shift_value > 0, "illegal shift value"); 1584 Label _is_positive; 1585 testl (reg, reg); 1586 jcc (Assembler::positive, _is_positive); 1587 int offset = (1 << shift_value) - 1 ; 1588 1589 if (offset == 1) { 1590 incrementl(reg); 1591 } else { 1592 addl(reg, offset); 1593 } 1594 1595 bind (_is_positive); 1596 sarl(reg, shift_value); 1597 } 1598 1599 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src, Register rscratch) { 1600 assert(rscratch != noreg || always_reachable(src), "missing"); 1601 1602 if (reachable(src)) { 1603 Assembler::divsd(dst, as_Address(src)); 1604 } else { 1605 lea(rscratch, src); 1606 Assembler::divsd(dst, Address(rscratch, 0)); 1607 } 1608 } 1609 1610 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src, Register rscratch) { 1611 assert(rscratch != noreg || always_reachable(src), "missing"); 1612 1613 if (reachable(src)) { 1614 Assembler::divss(dst, as_Address(src)); 1615 } else { 1616 lea(rscratch, src); 1617 Assembler::divss(dst, Address(rscratch, 0)); 1618 } 1619 } 1620 1621 void MacroAssembler::enter() { 1622 push(rbp); 1623 mov(rbp, rsp); 1624 } 1625 1626 void MacroAssembler::post_call_nop() { 1627 if (!Continuations::enabled()) { 1628 return; 1629 } 1630 InstructionMark im(this); 1631 relocate(post_call_nop_Relocation::spec()); 1632 InlineSkippedInstructionsCounter skipCounter(this); 1633 emit_int8((uint8_t)0x0f); 1634 emit_int8((uint8_t)0x1f); 1635 emit_int8((uint8_t)0x84); 1636 emit_int8((uint8_t)0x00); 1637 emit_int32(0x00); 1638 } 1639 1640 void MacroAssembler::mulpd(XMMRegister dst, AddressLiteral src, Register rscratch) { 1641 assert(rscratch != noreg || always_reachable(src), "missing"); 1642 if (reachable(src)) { 1643 Assembler::mulpd(dst, as_Address(src)); 1644 } else { 1645 lea(rscratch, src); 1646 Assembler::mulpd(dst, Address(rscratch, 0)); 1647 } 1648 } 1649 1650 // dst = c = a * b + c 1651 void MacroAssembler::fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) { 1652 Assembler::vfmadd231sd(c, a, b); 1653 if (dst != c) { 1654 movdbl(dst, c); 1655 } 1656 } 1657 1658 // dst = c = a * b + c 1659 void MacroAssembler::fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) { 1660 Assembler::vfmadd231ss(c, a, b); 1661 if (dst != c) { 1662 movflt(dst, c); 1663 } 1664 } 1665 1666 // dst = c = a * b + c 1667 void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) { 1668 Assembler::vfmadd231pd(c, a, b, vector_len); 1669 if (dst != c) { 1670 vmovdqu(dst, c); 1671 } 1672 } 1673 1674 // dst = c = a * b + c 1675 void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) { 1676 Assembler::vfmadd231ps(c, a, b, vector_len); 1677 if (dst != c) { 1678 vmovdqu(dst, c); 1679 } 1680 } 1681 1682 // dst = c = a * b + c 1683 void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) { 1684 Assembler::vfmadd231pd(c, a, b, vector_len); 1685 if (dst != c) { 1686 vmovdqu(dst, c); 1687 } 1688 } 1689 1690 // dst = c = a * b + c 1691 void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) { 1692 Assembler::vfmadd231ps(c, a, b, vector_len); 1693 if (dst != c) { 1694 vmovdqu(dst, c); 1695 } 1696 } 1697 1698 void MacroAssembler::incrementl(AddressLiteral dst, Register rscratch) { 1699 assert(rscratch != noreg || always_reachable(dst), "missing"); 1700 1701 if (reachable(dst)) { 1702 incrementl(as_Address(dst)); 1703 } else { 1704 lea(rscratch, dst); 1705 incrementl(Address(rscratch, 0)); 1706 } 1707 } 1708 1709 void MacroAssembler::incrementl(ArrayAddress dst, Register rscratch) { 1710 incrementl(as_Address(dst, rscratch)); 1711 } 1712 1713 void MacroAssembler::incrementl(Register reg, int value) { 1714 if (value == min_jint) {addl(reg, value) ; return; } 1715 if (value < 0) { decrementl(reg, -value); return; } 1716 if (value == 0) { ; return; } 1717 if (value == 1 && UseIncDec) { incl(reg) ; return; } 1718 /* else */ { addl(reg, value) ; return; } 1719 } 1720 1721 void MacroAssembler::incrementl(Address dst, int value) { 1722 if (value == min_jint) {addl(dst, value) ; return; } 1723 if (value < 0) { decrementl(dst, -value); return; } 1724 if (value == 0) { ; return; } 1725 if (value == 1 && UseIncDec) { incl(dst) ; return; } 1726 /* else */ { addl(dst, value) ; return; } 1727 } 1728 1729 void MacroAssembler::jump(AddressLiteral dst, Register rscratch) { 1730 assert(rscratch != noreg || always_reachable(dst), "missing"); 1731 assert(!dst.rspec().reloc()->is_data(), "should not use ExternalAddress for jump"); 1732 if (reachable(dst)) { 1733 jmp_literal(dst.target(), dst.rspec()); 1734 } else { 1735 lea(rscratch, dst); 1736 jmp(rscratch); 1737 } 1738 } 1739 1740 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst, Register rscratch) { 1741 assert(rscratch != noreg || always_reachable(dst), "missing"); 1742 assert(!dst.rspec().reloc()->is_data(), "should not use ExternalAddress for jump_cc"); 1743 if (reachable(dst)) { 1744 InstructionMark im(this); 1745 relocate(dst.reloc()); 1746 const int short_size = 2; 1747 const int long_size = 6; 1748 int offs = (intptr_t)dst.target() - ((intptr_t)pc()); 1749 if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) { 1750 // 0111 tttn #8-bit disp 1751 emit_int8(0x70 | cc); 1752 emit_int8((offs - short_size) & 0xFF); 1753 } else { 1754 // 0000 1111 1000 tttn #32-bit disp 1755 emit_int8(0x0F); 1756 emit_int8((unsigned char)(0x80 | cc)); 1757 emit_int32(offs - long_size); 1758 } 1759 } else { 1760 #ifdef ASSERT 1761 warning("reversing conditional branch"); 1762 #endif /* ASSERT */ 1763 Label skip; 1764 jccb(reverse[cc], skip); 1765 lea(rscratch, dst); 1766 Assembler::jmp(rscratch); 1767 bind(skip); 1768 } 1769 } 1770 1771 void MacroAssembler::cmp32_mxcsr_std(Address mxcsr_save, Register tmp, Register rscratch) { 1772 ExternalAddress mxcsr_std(StubRoutines::x86::addr_mxcsr_std()); 1773 assert(rscratch != noreg || always_reachable(mxcsr_std), "missing"); 1774 1775 stmxcsr(mxcsr_save); 1776 movl(tmp, mxcsr_save); 1777 if (EnableX86ECoreOpts) { 1778 // The mxcsr_std has status bits set for performance on ECore 1779 orl(tmp, 0x003f); 1780 } else { 1781 // Mask out status bits (only check control and mask bits) 1782 andl(tmp, 0xFFC0); 1783 } 1784 cmp32(tmp, mxcsr_std, rscratch); 1785 } 1786 1787 void MacroAssembler::ldmxcsr(AddressLiteral src, Register rscratch) { 1788 assert(rscratch != noreg || always_reachable(src), "missing"); 1789 1790 if (reachable(src)) { 1791 Assembler::ldmxcsr(as_Address(src)); 1792 } else { 1793 lea(rscratch, src); 1794 Assembler::ldmxcsr(Address(rscratch, 0)); 1795 } 1796 } 1797 1798 int MacroAssembler::load_signed_byte(Register dst, Address src) { 1799 int off = offset(); 1800 movsbl(dst, src); // movsxb 1801 return off; 1802 } 1803 1804 // Note: load_signed_short used to be called load_signed_word. 1805 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler 1806 // manual, which means 16 bits, that usage is found nowhere in HotSpot code. 1807 // The term "word" in HotSpot means a 32- or 64-bit machine word. 1808 int MacroAssembler::load_signed_short(Register dst, Address src) { 1809 // This is dubious to me since it seems safe to do a signed 16 => 64 bit 1810 // version but this is what 64bit has always done. This seems to imply 1811 // that users are only using 32bits worth. 1812 int off = offset(); 1813 movswl(dst, src); // movsxw 1814 return off; 1815 } 1816 1817 int MacroAssembler::load_unsigned_byte(Register dst, Address src) { 1818 // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16, 1819 // and "3.9 Partial Register Penalties", p. 22). 1820 int off = offset(); 1821 movzbl(dst, src); // movzxb 1822 return off; 1823 } 1824 1825 // Note: load_unsigned_short used to be called load_unsigned_word. 1826 int MacroAssembler::load_unsigned_short(Register dst, Address src) { 1827 // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16, 1828 // and "3.9 Partial Register Penalties", p. 22). 1829 int off = offset(); 1830 movzwl(dst, src); // movzxw 1831 return off; 1832 } 1833 1834 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) { 1835 switch (size_in_bytes) { 1836 case 8: movq(dst, src); break; 1837 case 4: movl(dst, src); break; 1838 case 2: is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break; 1839 case 1: is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break; 1840 default: ShouldNotReachHere(); 1841 } 1842 } 1843 1844 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) { 1845 switch (size_in_bytes) { 1846 case 8: movq(dst, src); break; 1847 case 4: movl(dst, src); break; 1848 case 2: movw(dst, src); break; 1849 case 1: movb(dst, src); break; 1850 default: ShouldNotReachHere(); 1851 } 1852 } 1853 1854 void MacroAssembler::mov32(AddressLiteral dst, Register src, Register rscratch) { 1855 assert(rscratch != noreg || always_reachable(dst), "missing"); 1856 1857 if (reachable(dst)) { 1858 movl(as_Address(dst), src); 1859 } else { 1860 lea(rscratch, dst); 1861 movl(Address(rscratch, 0), src); 1862 } 1863 } 1864 1865 void MacroAssembler::mov32(Register dst, AddressLiteral src) { 1866 if (reachable(src)) { 1867 movl(dst, as_Address(src)); 1868 } else { 1869 lea(dst, src); 1870 movl(dst, Address(dst, 0)); 1871 } 1872 } 1873 1874 // C++ bool manipulation 1875 1876 void MacroAssembler::movbool(Register dst, Address src) { 1877 if(sizeof(bool) == 1) 1878 movb(dst, src); 1879 else if(sizeof(bool) == 2) 1880 movw(dst, src); 1881 else if(sizeof(bool) == 4) 1882 movl(dst, src); 1883 else 1884 // unsupported 1885 ShouldNotReachHere(); 1886 } 1887 1888 void MacroAssembler::movbool(Address dst, bool boolconst) { 1889 if(sizeof(bool) == 1) 1890 movb(dst, (int) boolconst); 1891 else if(sizeof(bool) == 2) 1892 movw(dst, (int) boolconst); 1893 else if(sizeof(bool) == 4) 1894 movl(dst, (int) boolconst); 1895 else 1896 // unsupported 1897 ShouldNotReachHere(); 1898 } 1899 1900 void MacroAssembler::movbool(Address dst, Register src) { 1901 if(sizeof(bool) == 1) 1902 movb(dst, src); 1903 else if(sizeof(bool) == 2) 1904 movw(dst, src); 1905 else if(sizeof(bool) == 4) 1906 movl(dst, src); 1907 else 1908 // unsupported 1909 ShouldNotReachHere(); 1910 } 1911 1912 void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src, Register rscratch) { 1913 assert(rscratch != noreg || always_reachable(src), "missing"); 1914 1915 if (reachable(src)) { 1916 movdl(dst, as_Address(src)); 1917 } else { 1918 lea(rscratch, src); 1919 movdl(dst, Address(rscratch, 0)); 1920 } 1921 } 1922 1923 void MacroAssembler::movq(XMMRegister dst, AddressLiteral src, Register rscratch) { 1924 assert(rscratch != noreg || always_reachable(src), "missing"); 1925 1926 if (reachable(src)) { 1927 movq(dst, as_Address(src)); 1928 } else { 1929 lea(rscratch, src); 1930 movq(dst, Address(rscratch, 0)); 1931 } 1932 } 1933 1934 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src, Register rscratch) { 1935 assert(rscratch != noreg || always_reachable(src), "missing"); 1936 1937 if (reachable(src)) { 1938 if (UseXmmLoadAndClearUpper) { 1939 movsd (dst, as_Address(src)); 1940 } else { 1941 movlpd(dst, as_Address(src)); 1942 } 1943 } else { 1944 lea(rscratch, src); 1945 if (UseXmmLoadAndClearUpper) { 1946 movsd (dst, Address(rscratch, 0)); 1947 } else { 1948 movlpd(dst, Address(rscratch, 0)); 1949 } 1950 } 1951 } 1952 1953 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src, Register rscratch) { 1954 assert(rscratch != noreg || always_reachable(src), "missing"); 1955 1956 if (reachable(src)) { 1957 movss(dst, as_Address(src)); 1958 } else { 1959 lea(rscratch, src); 1960 movss(dst, Address(rscratch, 0)); 1961 } 1962 } 1963 1964 void MacroAssembler::movptr(Register dst, Register src) { 1965 movq(dst, src); 1966 } 1967 1968 void MacroAssembler::movptr(Register dst, Address src) { 1969 movq(dst, src); 1970 } 1971 1972 // src should NEVER be a real pointer. Use AddressLiteral for true pointers 1973 void MacroAssembler::movptr(Register dst, intptr_t src) { 1974 if (is_uimm32(src)) { 1975 movl(dst, checked_cast<uint32_t>(src)); 1976 } else if (is_simm32(src)) { 1977 movq(dst, checked_cast<int32_t>(src)); 1978 } else { 1979 mov64(dst, src); 1980 } 1981 } 1982 1983 void MacroAssembler::movptr(Address dst, Register src) { 1984 movq(dst, src); 1985 } 1986 1987 void MacroAssembler::movptr(Address dst, int32_t src) { 1988 movslq(dst, src); 1989 } 1990 1991 void MacroAssembler::movdqu(Address dst, XMMRegister src) { 1992 assert(((src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 1993 Assembler::movdqu(dst, src); 1994 } 1995 1996 void MacroAssembler::movdqu(XMMRegister dst, Address src) { 1997 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 1998 Assembler::movdqu(dst, src); 1999 } 2000 2001 void MacroAssembler::movdqu(XMMRegister dst, XMMRegister src) { 2002 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2003 Assembler::movdqu(dst, src); 2004 } 2005 2006 void MacroAssembler::movdqu(XMMRegister dst, AddressLiteral src, Register rscratch) { 2007 assert(rscratch != noreg || always_reachable(src), "missing"); 2008 2009 if (reachable(src)) { 2010 movdqu(dst, as_Address(src)); 2011 } else { 2012 lea(rscratch, src); 2013 movdqu(dst, Address(rscratch, 0)); 2014 } 2015 } 2016 2017 void MacroAssembler::vmovdqu(Address dst, XMMRegister src) { 2018 assert(((src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2019 Assembler::vmovdqu(dst, src); 2020 } 2021 2022 void MacroAssembler::vmovdqu(XMMRegister dst, Address src) { 2023 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2024 Assembler::vmovdqu(dst, src); 2025 } 2026 2027 void MacroAssembler::vmovdqu(XMMRegister dst, XMMRegister src) { 2028 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2029 Assembler::vmovdqu(dst, src); 2030 } 2031 2032 void MacroAssembler::vmovdqu(XMMRegister dst, AddressLiteral src, Register rscratch) { 2033 assert(rscratch != noreg || always_reachable(src), "missing"); 2034 2035 if (reachable(src)) { 2036 vmovdqu(dst, as_Address(src)); 2037 } 2038 else { 2039 lea(rscratch, src); 2040 vmovdqu(dst, Address(rscratch, 0)); 2041 } 2042 } 2043 2044 void MacroAssembler::vmovdqu(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 2045 assert(rscratch != noreg || always_reachable(src), "missing"); 2046 2047 if (vector_len == AVX_512bit) { 2048 evmovdquq(dst, src, AVX_512bit, rscratch); 2049 } else if (vector_len == AVX_256bit) { 2050 vmovdqu(dst, src, rscratch); 2051 } else { 2052 movdqu(dst, src, rscratch); 2053 } 2054 } 2055 2056 void MacroAssembler::vmovdqu(XMMRegister dst, XMMRegister src, int vector_len) { 2057 if (vector_len == AVX_512bit) { 2058 evmovdquq(dst, src, AVX_512bit); 2059 } else if (vector_len == AVX_256bit) { 2060 vmovdqu(dst, src); 2061 } else { 2062 movdqu(dst, src); 2063 } 2064 } 2065 2066 void MacroAssembler::vmovdqu(Address dst, XMMRegister src, int vector_len) { 2067 if (vector_len == AVX_512bit) { 2068 evmovdquq(dst, src, AVX_512bit); 2069 } else if (vector_len == AVX_256bit) { 2070 vmovdqu(dst, src); 2071 } else { 2072 movdqu(dst, src); 2073 } 2074 } 2075 2076 void MacroAssembler::vmovdqu(XMMRegister dst, Address src, int vector_len) { 2077 if (vector_len == AVX_512bit) { 2078 evmovdquq(dst, src, AVX_512bit); 2079 } else if (vector_len == AVX_256bit) { 2080 vmovdqu(dst, src); 2081 } else { 2082 movdqu(dst, src); 2083 } 2084 } 2085 2086 void MacroAssembler::vmovdqa(XMMRegister dst, AddressLiteral src, Register rscratch) { 2087 assert(rscratch != noreg || always_reachable(src), "missing"); 2088 2089 if (reachable(src)) { 2090 vmovdqa(dst, as_Address(src)); 2091 } 2092 else { 2093 lea(rscratch, src); 2094 vmovdqa(dst, Address(rscratch, 0)); 2095 } 2096 } 2097 2098 void MacroAssembler::vmovdqa(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 2099 assert(rscratch != noreg || always_reachable(src), "missing"); 2100 2101 if (vector_len == AVX_512bit) { 2102 evmovdqaq(dst, src, AVX_512bit, rscratch); 2103 } else if (vector_len == AVX_256bit) { 2104 vmovdqa(dst, src, rscratch); 2105 } else { 2106 movdqa(dst, src, rscratch); 2107 } 2108 } 2109 2110 void MacroAssembler::kmov(KRegister dst, Address src) { 2111 if (VM_Version::supports_avx512bw()) { 2112 kmovql(dst, src); 2113 } else { 2114 assert(VM_Version::supports_evex(), ""); 2115 kmovwl(dst, src); 2116 } 2117 } 2118 2119 void MacroAssembler::kmov(Address dst, KRegister src) { 2120 if (VM_Version::supports_avx512bw()) { 2121 kmovql(dst, src); 2122 } else { 2123 assert(VM_Version::supports_evex(), ""); 2124 kmovwl(dst, src); 2125 } 2126 } 2127 2128 void MacroAssembler::kmov(KRegister dst, KRegister src) { 2129 if (VM_Version::supports_avx512bw()) { 2130 kmovql(dst, src); 2131 } else { 2132 assert(VM_Version::supports_evex(), ""); 2133 kmovwl(dst, src); 2134 } 2135 } 2136 2137 void MacroAssembler::kmov(Register dst, KRegister src) { 2138 if (VM_Version::supports_avx512bw()) { 2139 kmovql(dst, src); 2140 } else { 2141 assert(VM_Version::supports_evex(), ""); 2142 kmovwl(dst, src); 2143 } 2144 } 2145 2146 void MacroAssembler::kmov(KRegister dst, Register src) { 2147 if (VM_Version::supports_avx512bw()) { 2148 kmovql(dst, src); 2149 } else { 2150 assert(VM_Version::supports_evex(), ""); 2151 kmovwl(dst, src); 2152 } 2153 } 2154 2155 void MacroAssembler::kmovql(KRegister dst, AddressLiteral src, Register rscratch) { 2156 assert(rscratch != noreg || always_reachable(src), "missing"); 2157 2158 if (reachable(src)) { 2159 kmovql(dst, as_Address(src)); 2160 } else { 2161 lea(rscratch, src); 2162 kmovql(dst, Address(rscratch, 0)); 2163 } 2164 } 2165 2166 void MacroAssembler::kmovwl(KRegister dst, AddressLiteral src, Register rscratch) { 2167 assert(rscratch != noreg || always_reachable(src), "missing"); 2168 2169 if (reachable(src)) { 2170 kmovwl(dst, as_Address(src)); 2171 } else { 2172 lea(rscratch, src); 2173 kmovwl(dst, Address(rscratch, 0)); 2174 } 2175 } 2176 2177 void MacroAssembler::evmovdqub(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, 2178 int vector_len, Register rscratch) { 2179 assert(rscratch != noreg || always_reachable(src), "missing"); 2180 2181 if (reachable(src)) { 2182 Assembler::evmovdqub(dst, mask, as_Address(src), merge, vector_len); 2183 } else { 2184 lea(rscratch, src); 2185 Assembler::evmovdqub(dst, mask, Address(rscratch, 0), merge, vector_len); 2186 } 2187 } 2188 2189 void MacroAssembler::evmovdquw(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, 2190 int vector_len, Register rscratch) { 2191 assert(rscratch != noreg || always_reachable(src), "missing"); 2192 2193 if (reachable(src)) { 2194 Assembler::evmovdquw(dst, mask, as_Address(src), merge, vector_len); 2195 } else { 2196 lea(rscratch, src); 2197 Assembler::evmovdquw(dst, mask, Address(rscratch, 0), merge, vector_len); 2198 } 2199 } 2200 2201 void MacroAssembler::evmovdqul(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch) { 2202 assert(rscratch != noreg || always_reachable(src), "missing"); 2203 2204 if (reachable(src)) { 2205 Assembler::evmovdqul(dst, mask, as_Address(src), merge, vector_len); 2206 } else { 2207 lea(rscratch, src); 2208 Assembler::evmovdqul(dst, mask, Address(rscratch, 0), merge, vector_len); 2209 } 2210 } 2211 2212 void MacroAssembler::evmovdquq(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch) { 2213 assert(rscratch != noreg || always_reachable(src), "missing"); 2214 2215 if (reachable(src)) { 2216 Assembler::evmovdquq(dst, mask, as_Address(src), merge, vector_len); 2217 } else { 2218 lea(rscratch, src); 2219 Assembler::evmovdquq(dst, mask, Address(rscratch, 0), merge, vector_len); 2220 } 2221 } 2222 2223 void MacroAssembler::evmovdquq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 2224 assert(rscratch != noreg || always_reachable(src), "missing"); 2225 2226 if (reachable(src)) { 2227 Assembler::evmovdquq(dst, as_Address(src), vector_len); 2228 } else { 2229 lea(rscratch, src); 2230 Assembler::evmovdquq(dst, Address(rscratch, 0), vector_len); 2231 } 2232 } 2233 2234 void MacroAssembler::evmovdqaq(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch) { 2235 assert(rscratch != noreg || always_reachable(src), "missing"); 2236 2237 if (reachable(src)) { 2238 Assembler::evmovdqaq(dst, mask, as_Address(src), merge, vector_len); 2239 } else { 2240 lea(rscratch, src); 2241 Assembler::evmovdqaq(dst, mask, Address(rscratch, 0), merge, vector_len); 2242 } 2243 } 2244 2245 void MacroAssembler::evmovdqaq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 2246 assert(rscratch != noreg || always_reachable(src), "missing"); 2247 2248 if (reachable(src)) { 2249 Assembler::evmovdqaq(dst, as_Address(src), vector_len); 2250 } else { 2251 lea(rscratch, src); 2252 Assembler::evmovdqaq(dst, Address(rscratch, 0), vector_len); 2253 } 2254 } 2255 2256 void MacroAssembler::movapd(XMMRegister dst, AddressLiteral src, Register rscratch) { 2257 assert(rscratch != noreg || always_reachable(src), "missing"); 2258 2259 if (reachable(src)) { 2260 Assembler::movapd(dst, as_Address(src)); 2261 } else { 2262 lea(rscratch, src); 2263 Assembler::movapd(dst, Address(rscratch, 0)); 2264 } 2265 } 2266 2267 void MacroAssembler::movdqa(XMMRegister dst, AddressLiteral src, Register rscratch) { 2268 assert(rscratch != noreg || always_reachable(src), "missing"); 2269 2270 if (reachable(src)) { 2271 Assembler::movdqa(dst, as_Address(src)); 2272 } else { 2273 lea(rscratch, src); 2274 Assembler::movdqa(dst, Address(rscratch, 0)); 2275 } 2276 } 2277 2278 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src, Register rscratch) { 2279 assert(rscratch != noreg || always_reachable(src), "missing"); 2280 2281 if (reachable(src)) { 2282 Assembler::movsd(dst, as_Address(src)); 2283 } else { 2284 lea(rscratch, src); 2285 Assembler::movsd(dst, Address(rscratch, 0)); 2286 } 2287 } 2288 2289 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src, Register rscratch) { 2290 assert(rscratch != noreg || always_reachable(src), "missing"); 2291 2292 if (reachable(src)) { 2293 Assembler::movss(dst, as_Address(src)); 2294 } else { 2295 lea(rscratch, src); 2296 Assembler::movss(dst, Address(rscratch, 0)); 2297 } 2298 } 2299 2300 void MacroAssembler::movddup(XMMRegister dst, AddressLiteral src, Register rscratch) { 2301 assert(rscratch != noreg || always_reachable(src), "missing"); 2302 2303 if (reachable(src)) { 2304 Assembler::movddup(dst, as_Address(src)); 2305 } else { 2306 lea(rscratch, src); 2307 Assembler::movddup(dst, Address(rscratch, 0)); 2308 } 2309 } 2310 2311 void MacroAssembler::vmovddup(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 2312 assert(rscratch != noreg || always_reachable(src), "missing"); 2313 2314 if (reachable(src)) { 2315 Assembler::vmovddup(dst, as_Address(src), vector_len); 2316 } else { 2317 lea(rscratch, src); 2318 Assembler::vmovddup(dst, Address(rscratch, 0), vector_len); 2319 } 2320 } 2321 2322 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src, Register rscratch) { 2323 assert(rscratch != noreg || always_reachable(src), "missing"); 2324 2325 if (reachable(src)) { 2326 Assembler::mulsd(dst, as_Address(src)); 2327 } else { 2328 lea(rscratch, src); 2329 Assembler::mulsd(dst, Address(rscratch, 0)); 2330 } 2331 } 2332 2333 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src, Register rscratch) { 2334 assert(rscratch != noreg || always_reachable(src), "missing"); 2335 2336 if (reachable(src)) { 2337 Assembler::mulss(dst, as_Address(src)); 2338 } else { 2339 lea(rscratch, src); 2340 Assembler::mulss(dst, Address(rscratch, 0)); 2341 } 2342 } 2343 2344 void MacroAssembler::null_check(Register reg, int offset) { 2345 if (needs_explicit_null_check(offset)) { 2346 // provoke OS null exception if reg is null by 2347 // accessing M[reg] w/o changing any (non-CC) registers 2348 // NOTE: cmpl is plenty here to provoke a segv 2349 cmpptr(rax, Address(reg, 0)); 2350 // Note: should probably use testl(rax, Address(reg, 0)); 2351 // may be shorter code (however, this version of 2352 // testl needs to be implemented first) 2353 } else { 2354 // nothing to do, (later) access of M[reg + offset] 2355 // will provoke OS null exception if reg is null 2356 } 2357 } 2358 2359 void MacroAssembler::os_breakpoint() { 2360 // instead of directly emitting a breakpoint, call os:breakpoint for better debugability 2361 // (e.g., MSVC can't call ps() otherwise) 2362 call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint))); 2363 } 2364 2365 void MacroAssembler::unimplemented(const char* what) { 2366 const char* buf = nullptr; 2367 { 2368 ResourceMark rm; 2369 stringStream ss; 2370 ss.print("unimplemented: %s", what); 2371 buf = code_string(ss.as_string()); 2372 } 2373 stop(buf); 2374 } 2375 2376 #define XSTATE_BV 0x200 2377 2378 void MacroAssembler::pop_CPU_state() { 2379 pop_FPU_state(); 2380 pop_IU_state(); 2381 } 2382 2383 void MacroAssembler::pop_FPU_state() { 2384 fxrstor(Address(rsp, 0)); 2385 addptr(rsp, FPUStateSizeInWords * wordSize); 2386 } 2387 2388 void MacroAssembler::pop_IU_state() { 2389 popa(); 2390 addq(rsp, 8); 2391 popf(); 2392 } 2393 2394 // Save Integer and Float state 2395 // Warning: Stack must be 16 byte aligned (64bit) 2396 void MacroAssembler::push_CPU_state() { 2397 push_IU_state(); 2398 push_FPU_state(); 2399 } 2400 2401 void MacroAssembler::push_FPU_state() { 2402 subptr(rsp, FPUStateSizeInWords * wordSize); 2403 fxsave(Address(rsp, 0)); 2404 } 2405 2406 void MacroAssembler::push_IU_state() { 2407 // Push flags first because pusha kills them 2408 pushf(); 2409 // Make sure rsp stays 16-byte aligned 2410 subq(rsp, 8); 2411 pusha(); 2412 } 2413 2414 void MacroAssembler::push_cont_fastpath() { 2415 if (!Continuations::enabled()) return; 2416 2417 Label L_done; 2418 cmpptr(rsp, Address(r15_thread, JavaThread::cont_fastpath_offset())); 2419 jccb(Assembler::belowEqual, L_done); 2420 movptr(Address(r15_thread, JavaThread::cont_fastpath_offset()), rsp); 2421 bind(L_done); 2422 } 2423 2424 void MacroAssembler::pop_cont_fastpath() { 2425 if (!Continuations::enabled()) return; 2426 2427 Label L_done; 2428 cmpptr(rsp, Address(r15_thread, JavaThread::cont_fastpath_offset())); 2429 jccb(Assembler::below, L_done); 2430 movptr(Address(r15_thread, JavaThread::cont_fastpath_offset()), 0); 2431 bind(L_done); 2432 } 2433 2434 #ifdef ASSERT 2435 void MacroAssembler::stop_if_in_cont(Register cont, const char* name) { 2436 Label no_cont; 2437 movptr(cont, Address(r15_thread, JavaThread::cont_entry_offset())); 2438 testl(cont, cont); 2439 jcc(Assembler::zero, no_cont); 2440 stop(name); 2441 bind(no_cont); 2442 } 2443 #endif 2444 2445 void MacroAssembler::reset_last_Java_frame(bool clear_fp) { // determine java_thread register 2446 // we must set sp to zero to clear frame 2447 movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD); 2448 // must clear fp, so that compiled frames are not confused; it is 2449 // possible that we need it only for debugging 2450 if (clear_fp) { 2451 movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD); 2452 } 2453 // Always clear the pc because it could have been set by make_walkable() 2454 movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD); 2455 vzeroupper(); 2456 } 2457 2458 void MacroAssembler::round_to(Register reg, int modulus) { 2459 addptr(reg, modulus - 1); 2460 andptr(reg, -modulus); 2461 } 2462 2463 void MacroAssembler::safepoint_poll(Label& slow_path, bool at_return, bool in_nmethod) { 2464 if (at_return) { 2465 // Note that when in_nmethod is set, the stack pointer is incremented before the poll. Therefore, 2466 // we may safely use rsp instead to perform the stack watermark check. 2467 cmpptr(in_nmethod ? rsp : rbp, Address(r15_thread, JavaThread::polling_word_offset())); 2468 jcc(Assembler::above, slow_path); 2469 return; 2470 } 2471 testb(Address(r15_thread, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit()); 2472 jcc(Assembler::notZero, slow_path); // handshake bit set implies poll 2473 } 2474 2475 // Calls to C land 2476 // 2477 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded 2478 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp 2479 // has to be reset to 0. This is required to allow proper stack traversal. 2480 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 2481 Register last_java_fp, 2482 address last_java_pc, 2483 Register rscratch) { 2484 vzeroupper(); 2485 // determine last_java_sp register 2486 if (!last_java_sp->is_valid()) { 2487 last_java_sp = rsp; 2488 } 2489 // last_java_fp is optional 2490 if (last_java_fp->is_valid()) { 2491 movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), last_java_fp); 2492 } 2493 // last_java_pc is optional 2494 if (last_java_pc != nullptr) { 2495 Address java_pc(r15_thread, 2496 JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()); 2497 lea(java_pc, InternalAddress(last_java_pc), rscratch); 2498 } 2499 movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp); 2500 } 2501 2502 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 2503 Register last_java_fp, 2504 Label &L, 2505 Register scratch) { 2506 lea(scratch, L); 2507 movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), scratch); 2508 set_last_Java_frame(last_java_sp, last_java_fp, nullptr, scratch); 2509 } 2510 2511 void MacroAssembler::shlptr(Register dst, int imm8) { 2512 shlq(dst, imm8); 2513 } 2514 2515 void MacroAssembler::shrptr(Register dst, int imm8) { 2516 shrq(dst, imm8); 2517 } 2518 2519 void MacroAssembler::sign_extend_byte(Register reg) { 2520 movsbl(reg, reg); // movsxb 2521 } 2522 2523 void MacroAssembler::sign_extend_short(Register reg) { 2524 movswl(reg, reg); // movsxw 2525 } 2526 2527 void MacroAssembler::testl(Address dst, int32_t imm32) { 2528 if (imm32 >= 0 && is8bit(imm32)) { 2529 testb(dst, imm32); 2530 } else { 2531 Assembler::testl(dst, imm32); 2532 } 2533 } 2534 2535 void MacroAssembler::testl(Register dst, int32_t imm32) { 2536 if (imm32 >= 0 && is8bit(imm32) && dst->has_byte_register()) { 2537 testb(dst, imm32); 2538 } else { 2539 Assembler::testl(dst, imm32); 2540 } 2541 } 2542 2543 void MacroAssembler::testl(Register dst, AddressLiteral src) { 2544 assert(always_reachable(src), "Address should be reachable"); 2545 testl(dst, as_Address(src)); 2546 } 2547 2548 void MacroAssembler::testq(Address dst, int32_t imm32) { 2549 if (imm32 >= 0) { 2550 testl(dst, imm32); 2551 } else { 2552 Assembler::testq(dst, imm32); 2553 } 2554 } 2555 2556 void MacroAssembler::testq(Register dst, int32_t imm32) { 2557 if (imm32 >= 0) { 2558 testl(dst, imm32); 2559 } else { 2560 Assembler::testq(dst, imm32); 2561 } 2562 } 2563 2564 void MacroAssembler::pcmpeqb(XMMRegister dst, XMMRegister src) { 2565 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 2566 Assembler::pcmpeqb(dst, src); 2567 } 2568 2569 void MacroAssembler::pcmpeqw(XMMRegister dst, XMMRegister src) { 2570 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 2571 Assembler::pcmpeqw(dst, src); 2572 } 2573 2574 void MacroAssembler::pcmpestri(XMMRegister dst, Address src, int imm8) { 2575 assert((dst->encoding() < 16),"XMM register should be 0-15"); 2576 Assembler::pcmpestri(dst, src, imm8); 2577 } 2578 2579 void MacroAssembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) { 2580 assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15"); 2581 Assembler::pcmpestri(dst, src, imm8); 2582 } 2583 2584 void MacroAssembler::pmovzxbw(XMMRegister dst, XMMRegister src) { 2585 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 2586 Assembler::pmovzxbw(dst, src); 2587 } 2588 2589 void MacroAssembler::pmovzxbw(XMMRegister dst, Address src) { 2590 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 2591 Assembler::pmovzxbw(dst, src); 2592 } 2593 2594 void MacroAssembler::pmovmskb(Register dst, XMMRegister src) { 2595 assert((src->encoding() < 16),"XMM register should be 0-15"); 2596 Assembler::pmovmskb(dst, src); 2597 } 2598 2599 void MacroAssembler::ptest(XMMRegister dst, XMMRegister src) { 2600 assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15"); 2601 Assembler::ptest(dst, src); 2602 } 2603 2604 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src, Register rscratch) { 2605 assert(rscratch != noreg || always_reachable(src), "missing"); 2606 2607 if (reachable(src)) { 2608 Assembler::sqrtss(dst, as_Address(src)); 2609 } else { 2610 lea(rscratch, src); 2611 Assembler::sqrtss(dst, Address(rscratch, 0)); 2612 } 2613 } 2614 2615 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src, Register rscratch) { 2616 assert(rscratch != noreg || always_reachable(src), "missing"); 2617 2618 if (reachable(src)) { 2619 Assembler::subsd(dst, as_Address(src)); 2620 } else { 2621 lea(rscratch, src); 2622 Assembler::subsd(dst, Address(rscratch, 0)); 2623 } 2624 } 2625 2626 void MacroAssembler::roundsd(XMMRegister dst, AddressLiteral src, int32_t rmode, Register rscratch) { 2627 assert(rscratch != noreg || always_reachable(src), "missing"); 2628 2629 if (reachable(src)) { 2630 Assembler::roundsd(dst, as_Address(src), rmode); 2631 } else { 2632 lea(rscratch, src); 2633 Assembler::roundsd(dst, Address(rscratch, 0), rmode); 2634 } 2635 } 2636 2637 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src, Register rscratch) { 2638 assert(rscratch != noreg || always_reachable(src), "missing"); 2639 2640 if (reachable(src)) { 2641 Assembler::subss(dst, as_Address(src)); 2642 } else { 2643 lea(rscratch, src); 2644 Assembler::subss(dst, Address(rscratch, 0)); 2645 } 2646 } 2647 2648 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src, Register rscratch) { 2649 assert(rscratch != noreg || always_reachable(src), "missing"); 2650 2651 if (reachable(src)) { 2652 Assembler::ucomisd(dst, as_Address(src)); 2653 } else { 2654 lea(rscratch, src); 2655 Assembler::ucomisd(dst, Address(rscratch, 0)); 2656 } 2657 } 2658 2659 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src, Register rscratch) { 2660 assert(rscratch != noreg || always_reachable(src), "missing"); 2661 2662 if (reachable(src)) { 2663 Assembler::ucomiss(dst, as_Address(src)); 2664 } else { 2665 lea(rscratch, src); 2666 Assembler::ucomiss(dst, Address(rscratch, 0)); 2667 } 2668 } 2669 2670 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src, Register rscratch) { 2671 assert(rscratch != noreg || always_reachable(src), "missing"); 2672 2673 // Used in sign-bit flipping with aligned address. 2674 assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes"); 2675 2676 if (UseAVX > 2 && 2677 (!VM_Version::supports_avx512dq() || !VM_Version::supports_avx512vl()) && 2678 (dst->encoding() >= 16)) { 2679 vpxor(dst, dst, src, Assembler::AVX_512bit, rscratch); 2680 } else if (reachable(src)) { 2681 Assembler::xorpd(dst, as_Address(src)); 2682 } else { 2683 lea(rscratch, src); 2684 Assembler::xorpd(dst, Address(rscratch, 0)); 2685 } 2686 } 2687 2688 void MacroAssembler::xorpd(XMMRegister dst, XMMRegister src) { 2689 if (UseAVX > 2 && 2690 (!VM_Version::supports_avx512dq() || !VM_Version::supports_avx512vl()) && 2691 ((dst->encoding() >= 16) || (src->encoding() >= 16))) { 2692 Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit); 2693 } else { 2694 Assembler::xorpd(dst, src); 2695 } 2696 } 2697 2698 void MacroAssembler::xorps(XMMRegister dst, XMMRegister src) { 2699 if (UseAVX > 2 && 2700 (!VM_Version::supports_avx512dq() || !VM_Version::supports_avx512vl()) && 2701 ((dst->encoding() >= 16) || (src->encoding() >= 16))) { 2702 Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit); 2703 } else { 2704 Assembler::xorps(dst, src); 2705 } 2706 } 2707 2708 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src, Register rscratch) { 2709 assert(rscratch != noreg || always_reachable(src), "missing"); 2710 2711 // Used in sign-bit flipping with aligned address. 2712 assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes"); 2713 2714 if (UseAVX > 2 && 2715 (!VM_Version::supports_avx512dq() || !VM_Version::supports_avx512vl()) && 2716 (dst->encoding() >= 16)) { 2717 vpxor(dst, dst, src, Assembler::AVX_512bit, rscratch); 2718 } else if (reachable(src)) { 2719 Assembler::xorps(dst, as_Address(src)); 2720 } else { 2721 lea(rscratch, src); 2722 Assembler::xorps(dst, Address(rscratch, 0)); 2723 } 2724 } 2725 2726 void MacroAssembler::pshufb(XMMRegister dst, AddressLiteral src, Register rscratch) { 2727 assert(rscratch != noreg || always_reachable(src), "missing"); 2728 2729 // Used in sign-bit flipping with aligned address. 2730 bool aligned_adr = (((intptr_t)src.target() & 15) == 0); 2731 assert((UseAVX > 0) || aligned_adr, "SSE mode requires address alignment 16 bytes"); 2732 if (reachable(src)) { 2733 Assembler::pshufb(dst, as_Address(src)); 2734 } else { 2735 lea(rscratch, src); 2736 Assembler::pshufb(dst, Address(rscratch, 0)); 2737 } 2738 } 2739 2740 // AVX 3-operands instructions 2741 2742 void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 2743 assert(rscratch != noreg || always_reachable(src), "missing"); 2744 2745 if (reachable(src)) { 2746 vaddsd(dst, nds, as_Address(src)); 2747 } else { 2748 lea(rscratch, src); 2749 vaddsd(dst, nds, Address(rscratch, 0)); 2750 } 2751 } 2752 2753 void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 2754 assert(rscratch != noreg || always_reachable(src), "missing"); 2755 2756 if (reachable(src)) { 2757 vaddss(dst, nds, as_Address(src)); 2758 } else { 2759 lea(rscratch, src); 2760 vaddss(dst, nds, Address(rscratch, 0)); 2761 } 2762 } 2763 2764 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 2765 assert(UseAVX > 0, "requires some form of AVX"); 2766 assert(rscratch != noreg || always_reachable(src), "missing"); 2767 2768 if (reachable(src)) { 2769 Assembler::vpaddb(dst, nds, as_Address(src), vector_len); 2770 } else { 2771 lea(rscratch, src); 2772 Assembler::vpaddb(dst, nds, Address(rscratch, 0), vector_len); 2773 } 2774 } 2775 2776 void MacroAssembler::vpaddd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 2777 assert(UseAVX > 0, "requires some form of AVX"); 2778 assert(rscratch != noreg || always_reachable(src), "missing"); 2779 2780 if (reachable(src)) { 2781 Assembler::vpaddd(dst, nds, as_Address(src), vector_len); 2782 } else { 2783 lea(rscratch, src); 2784 Assembler::vpaddd(dst, nds, Address(rscratch, 0), vector_len); 2785 } 2786 } 2787 2788 void MacroAssembler::vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len, Register rscratch) { 2789 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15"); 2790 assert(rscratch != noreg || always_reachable(negate_field), "missing"); 2791 2792 vandps(dst, nds, negate_field, vector_len, rscratch); 2793 } 2794 2795 void MacroAssembler::vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len, Register rscratch) { 2796 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15"); 2797 assert(rscratch != noreg || always_reachable(negate_field), "missing"); 2798 2799 vandpd(dst, nds, negate_field, vector_len, rscratch); 2800 } 2801 2802 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 2803 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 2804 Assembler::vpaddb(dst, nds, src, vector_len); 2805 } 2806 2807 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 2808 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 2809 Assembler::vpaddb(dst, nds, src, vector_len); 2810 } 2811 2812 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 2813 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 2814 Assembler::vpaddw(dst, nds, src, vector_len); 2815 } 2816 2817 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 2818 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 2819 Assembler::vpaddw(dst, nds, src, vector_len); 2820 } 2821 2822 void MacroAssembler::vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 2823 assert(rscratch != noreg || always_reachable(src), "missing"); 2824 2825 if (reachable(src)) { 2826 Assembler::vpand(dst, nds, as_Address(src), vector_len); 2827 } else { 2828 lea(rscratch, src); 2829 Assembler::vpand(dst, nds, Address(rscratch, 0), vector_len); 2830 } 2831 } 2832 2833 void MacroAssembler::vpbroadcastd(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 2834 assert(rscratch != noreg || always_reachable(src), "missing"); 2835 2836 if (reachable(src)) { 2837 Assembler::vpbroadcastd(dst, as_Address(src), vector_len); 2838 } else { 2839 lea(rscratch, src); 2840 Assembler::vpbroadcastd(dst, Address(rscratch, 0), vector_len); 2841 } 2842 } 2843 2844 void MacroAssembler::vbroadcasti128(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 2845 assert(rscratch != noreg || always_reachable(src), "missing"); 2846 2847 if (reachable(src)) { 2848 Assembler::vbroadcasti128(dst, as_Address(src), vector_len); 2849 } else { 2850 lea(rscratch, src); 2851 Assembler::vbroadcasti128(dst, Address(rscratch, 0), vector_len); 2852 } 2853 } 2854 2855 void MacroAssembler::vpbroadcastq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 2856 assert(rscratch != noreg || always_reachable(src), "missing"); 2857 2858 if (reachable(src)) { 2859 Assembler::vpbroadcastq(dst, as_Address(src), vector_len); 2860 } else { 2861 lea(rscratch, src); 2862 Assembler::vpbroadcastq(dst, Address(rscratch, 0), vector_len); 2863 } 2864 } 2865 2866 void MacroAssembler::vbroadcastsd(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 2867 assert(rscratch != noreg || always_reachable(src), "missing"); 2868 2869 if (reachable(src)) { 2870 Assembler::vbroadcastsd(dst, as_Address(src), vector_len); 2871 } else { 2872 lea(rscratch, src); 2873 Assembler::vbroadcastsd(dst, Address(rscratch, 0), vector_len); 2874 } 2875 } 2876 2877 void MacroAssembler::vbroadcastss(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 2878 assert(rscratch != noreg || always_reachable(src), "missing"); 2879 2880 if (reachable(src)) { 2881 Assembler::vbroadcastss(dst, as_Address(src), vector_len); 2882 } else { 2883 lea(rscratch, src); 2884 Assembler::vbroadcastss(dst, Address(rscratch, 0), vector_len); 2885 } 2886 } 2887 2888 // Vector float blend 2889 // vblendvps(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister mask, int vector_len, bool compute_mask = true, XMMRegister scratch = xnoreg) 2890 void MacroAssembler::vblendvps(XMMRegister dst, XMMRegister src1, XMMRegister src2, XMMRegister mask, int vector_len, bool compute_mask, XMMRegister scratch) { 2891 // WARN: Allow dst == (src1|src2), mask == scratch 2892 bool blend_emulation = EnableX86ECoreOpts && UseAVX > 1 && 2893 !(VM_Version::is_intel_darkmont() && (dst == src1)); // partially fixed on Darkmont 2894 bool scratch_available = scratch != xnoreg && scratch != src1 && scratch != src2 && scratch != dst; 2895 bool dst_available = dst != mask && (dst != src1 || dst != src2); 2896 if (blend_emulation && scratch_available && dst_available) { 2897 if (compute_mask) { 2898 vpsrad(scratch, mask, 32, vector_len); 2899 mask = scratch; 2900 } 2901 if (dst == src1) { 2902 vpandn(dst, mask, src1, vector_len); // if mask == 0, src1 2903 vpand (scratch, mask, src2, vector_len); // if mask == 1, src2 2904 } else { 2905 vpand (dst, mask, src2, vector_len); // if mask == 1, src2 2906 vpandn(scratch, mask, src1, vector_len); // if mask == 0, src1 2907 } 2908 vpor(dst, dst, scratch, vector_len); 2909 } else { 2910 Assembler::vblendvps(dst, src1, src2, mask, vector_len); 2911 } 2912 } 2913 2914 // vblendvpd(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister mask, int vector_len, bool compute_mask = true, XMMRegister scratch = xnoreg) 2915 void MacroAssembler::vblendvpd(XMMRegister dst, XMMRegister src1, XMMRegister src2, XMMRegister mask, int vector_len, bool compute_mask, XMMRegister scratch) { 2916 // WARN: Allow dst == (src1|src2), mask == scratch 2917 bool blend_emulation = EnableX86ECoreOpts && UseAVX > 1 && 2918 !(VM_Version::is_intel_darkmont() && (dst == src1)); // partially fixed on Darkmont 2919 bool scratch_available = scratch != xnoreg && scratch != src1 && scratch != src2 && scratch != dst && (!compute_mask || scratch != mask); 2920 bool dst_available = dst != mask && (dst != src1 || dst != src2); 2921 if (blend_emulation && scratch_available && dst_available) { 2922 if (compute_mask) { 2923 vpxor(scratch, scratch, scratch, vector_len); 2924 vpcmpgtq(scratch, scratch, mask, vector_len); 2925 mask = scratch; 2926 } 2927 if (dst == src1) { 2928 vpandn(dst, mask, src1, vector_len); // if mask == 0, src 2929 vpand (scratch, mask, src2, vector_len); // if mask == 1, src2 2930 } else { 2931 vpand (dst, mask, src2, vector_len); // if mask == 1, src2 2932 vpandn(scratch, mask, src1, vector_len); // if mask == 0, src 2933 } 2934 vpor(dst, dst, scratch, vector_len); 2935 } else { 2936 Assembler::vblendvpd(dst, src1, src2, mask, vector_len); 2937 } 2938 } 2939 2940 void MacroAssembler::vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 2941 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 2942 Assembler::vpcmpeqb(dst, nds, src, vector_len); 2943 } 2944 2945 void MacroAssembler::vpcmpeqb(XMMRegister dst, XMMRegister src1, Address src2, int vector_len) { 2946 assert(((dst->encoding() < 16 && src1->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 2947 Assembler::vpcmpeqb(dst, src1, src2, vector_len); 2948 } 2949 2950 void MacroAssembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 2951 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 2952 Assembler::vpcmpeqw(dst, nds, src, vector_len); 2953 } 2954 2955 void MacroAssembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 2956 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 2957 Assembler::vpcmpeqw(dst, nds, src, vector_len); 2958 } 2959 2960 void MacroAssembler::evpcmpeqd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 2961 assert(rscratch != noreg || always_reachable(src), "missing"); 2962 2963 if (reachable(src)) { 2964 Assembler::evpcmpeqd(kdst, mask, nds, as_Address(src), vector_len); 2965 } else { 2966 lea(rscratch, src); 2967 Assembler::evpcmpeqd(kdst, mask, nds, Address(rscratch, 0), vector_len); 2968 } 2969 } 2970 2971 void MacroAssembler::evpcmpd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, 2972 int comparison, bool is_signed, int vector_len, Register rscratch) { 2973 assert(rscratch != noreg || always_reachable(src), "missing"); 2974 2975 if (reachable(src)) { 2976 Assembler::evpcmpd(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len); 2977 } else { 2978 lea(rscratch, src); 2979 Assembler::evpcmpd(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len); 2980 } 2981 } 2982 2983 void MacroAssembler::evpcmpq(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, 2984 int comparison, bool is_signed, int vector_len, Register rscratch) { 2985 assert(rscratch != noreg || always_reachable(src), "missing"); 2986 2987 if (reachable(src)) { 2988 Assembler::evpcmpq(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len); 2989 } else { 2990 lea(rscratch, src); 2991 Assembler::evpcmpq(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len); 2992 } 2993 } 2994 2995 void MacroAssembler::evpcmpb(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, 2996 int comparison, bool is_signed, int vector_len, Register rscratch) { 2997 assert(rscratch != noreg || always_reachable(src), "missing"); 2998 2999 if (reachable(src)) { 3000 Assembler::evpcmpb(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len); 3001 } else { 3002 lea(rscratch, src); 3003 Assembler::evpcmpb(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len); 3004 } 3005 } 3006 3007 void MacroAssembler::evpcmpw(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, 3008 int comparison, bool is_signed, int vector_len, Register rscratch) { 3009 assert(rscratch != noreg || always_reachable(src), "missing"); 3010 3011 if (reachable(src)) { 3012 Assembler::evpcmpw(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len); 3013 } else { 3014 lea(rscratch, src); 3015 Assembler::evpcmpw(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len); 3016 } 3017 } 3018 3019 void MacroAssembler::vpcmpCC(XMMRegister dst, XMMRegister nds, XMMRegister src, int cond_encoding, Width width, int vector_len) { 3020 if (width == Assembler::Q) { 3021 Assembler::vpcmpCCq(dst, nds, src, cond_encoding, vector_len); 3022 } else { 3023 Assembler::vpcmpCCbwd(dst, nds, src, cond_encoding, vector_len); 3024 } 3025 } 3026 3027 void MacroAssembler::vpcmpCCW(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister xtmp, ComparisonPredicate cond, Width width, int vector_len) { 3028 int eq_cond_enc = 0x29; 3029 int gt_cond_enc = 0x37; 3030 if (width != Assembler::Q) { 3031 eq_cond_enc = 0x74 + width; 3032 gt_cond_enc = 0x64 + width; 3033 } 3034 switch (cond) { 3035 case eq: 3036 vpcmpCC(dst, nds, src, eq_cond_enc, width, vector_len); 3037 break; 3038 case neq: 3039 vpcmpCC(dst, nds, src, eq_cond_enc, width, vector_len); 3040 vallones(xtmp, vector_len); 3041 vpxor(dst, xtmp, dst, vector_len); 3042 break; 3043 case le: 3044 vpcmpCC(dst, nds, src, gt_cond_enc, width, vector_len); 3045 vallones(xtmp, vector_len); 3046 vpxor(dst, xtmp, dst, vector_len); 3047 break; 3048 case nlt: 3049 vpcmpCC(dst, src, nds, gt_cond_enc, width, vector_len); 3050 vallones(xtmp, vector_len); 3051 vpxor(dst, xtmp, dst, vector_len); 3052 break; 3053 case lt: 3054 vpcmpCC(dst, src, nds, gt_cond_enc, width, vector_len); 3055 break; 3056 case nle: 3057 vpcmpCC(dst, nds, src, gt_cond_enc, width, vector_len); 3058 break; 3059 default: 3060 assert(false, "Should not reach here"); 3061 } 3062 } 3063 3064 void MacroAssembler::vpmovzxbw(XMMRegister dst, Address src, int vector_len) { 3065 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3066 Assembler::vpmovzxbw(dst, src, vector_len); 3067 } 3068 3069 void MacroAssembler::vpmovmskb(Register dst, XMMRegister src, int vector_len) { 3070 assert((src->encoding() < 16),"XMM register should be 0-15"); 3071 Assembler::vpmovmskb(dst, src, vector_len); 3072 } 3073 3074 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3075 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3076 Assembler::vpmullw(dst, nds, src, vector_len); 3077 } 3078 3079 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 3080 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3081 Assembler::vpmullw(dst, nds, src, vector_len); 3082 } 3083 3084 void MacroAssembler::vpmulld(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3085 assert((UseAVX > 0), "AVX support is needed"); 3086 assert(rscratch != noreg || always_reachable(src), "missing"); 3087 3088 if (reachable(src)) { 3089 Assembler::vpmulld(dst, nds, as_Address(src), vector_len); 3090 } else { 3091 lea(rscratch, src); 3092 Assembler::vpmulld(dst, nds, Address(rscratch, 0), vector_len); 3093 } 3094 } 3095 3096 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3097 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3098 Assembler::vpsubb(dst, nds, src, vector_len); 3099 } 3100 3101 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 3102 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3103 Assembler::vpsubb(dst, nds, src, vector_len); 3104 } 3105 3106 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3107 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3108 Assembler::vpsubw(dst, nds, src, vector_len); 3109 } 3110 3111 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 3112 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3113 Assembler::vpsubw(dst, nds, src, vector_len); 3114 } 3115 3116 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) { 3117 assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3118 Assembler::vpsraw(dst, nds, shift, vector_len); 3119 } 3120 3121 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) { 3122 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3123 Assembler::vpsraw(dst, nds, shift, vector_len); 3124 } 3125 3126 void MacroAssembler::evpsraq(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) { 3127 assert(UseAVX > 2,""); 3128 if (!VM_Version::supports_avx512vl() && vector_len < 2) { 3129 vector_len = 2; 3130 } 3131 Assembler::evpsraq(dst, nds, shift, vector_len); 3132 } 3133 3134 void MacroAssembler::evpsraq(XMMRegister dst, XMMRegister nds, int shift, int vector_len) { 3135 assert(UseAVX > 2,""); 3136 if (!VM_Version::supports_avx512vl() && vector_len < 2) { 3137 vector_len = 2; 3138 } 3139 Assembler::evpsraq(dst, nds, shift, vector_len); 3140 } 3141 3142 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) { 3143 assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3144 Assembler::vpsrlw(dst, nds, shift, vector_len); 3145 } 3146 3147 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) { 3148 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3149 Assembler::vpsrlw(dst, nds, shift, vector_len); 3150 } 3151 3152 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) { 3153 assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3154 Assembler::vpsllw(dst, nds, shift, vector_len); 3155 } 3156 3157 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) { 3158 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3159 Assembler::vpsllw(dst, nds, shift, vector_len); 3160 } 3161 3162 void MacroAssembler::vptest(XMMRegister dst, XMMRegister src) { 3163 assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15"); 3164 Assembler::vptest(dst, src); 3165 } 3166 3167 void MacroAssembler::punpcklbw(XMMRegister dst, XMMRegister src) { 3168 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3169 Assembler::punpcklbw(dst, src); 3170 } 3171 3172 void MacroAssembler::pshufd(XMMRegister dst, Address src, int mode) { 3173 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 3174 Assembler::pshufd(dst, src, mode); 3175 } 3176 3177 void MacroAssembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) { 3178 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3179 Assembler::pshuflw(dst, src, mode); 3180 } 3181 3182 void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3183 assert(rscratch != noreg || always_reachable(src), "missing"); 3184 3185 if (reachable(src)) { 3186 vandpd(dst, nds, as_Address(src), vector_len); 3187 } else { 3188 lea(rscratch, src); 3189 vandpd(dst, nds, Address(rscratch, 0), vector_len); 3190 } 3191 } 3192 3193 void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3194 assert(rscratch != noreg || always_reachable(src), "missing"); 3195 3196 if (reachable(src)) { 3197 vandps(dst, nds, as_Address(src), vector_len); 3198 } else { 3199 lea(rscratch, src); 3200 vandps(dst, nds, Address(rscratch, 0), vector_len); 3201 } 3202 } 3203 3204 void MacroAssembler::evpord(XMMRegister dst, KRegister mask, XMMRegister nds, AddressLiteral src, 3205 bool merge, int vector_len, Register rscratch) { 3206 assert(rscratch != noreg || always_reachable(src), "missing"); 3207 3208 if (reachable(src)) { 3209 Assembler::evpord(dst, mask, nds, as_Address(src), merge, vector_len); 3210 } else { 3211 lea(rscratch, src); 3212 Assembler::evpord(dst, mask, nds, Address(rscratch, 0), merge, vector_len); 3213 } 3214 } 3215 3216 void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3217 assert(rscratch != noreg || always_reachable(src), "missing"); 3218 3219 if (reachable(src)) { 3220 vdivsd(dst, nds, as_Address(src)); 3221 } else { 3222 lea(rscratch, src); 3223 vdivsd(dst, nds, Address(rscratch, 0)); 3224 } 3225 } 3226 3227 void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3228 assert(rscratch != noreg || always_reachable(src), "missing"); 3229 3230 if (reachable(src)) { 3231 vdivss(dst, nds, as_Address(src)); 3232 } else { 3233 lea(rscratch, src); 3234 vdivss(dst, nds, Address(rscratch, 0)); 3235 } 3236 } 3237 3238 void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3239 assert(rscratch != noreg || always_reachable(src), "missing"); 3240 3241 if (reachable(src)) { 3242 vmulsd(dst, nds, as_Address(src)); 3243 } else { 3244 lea(rscratch, src); 3245 vmulsd(dst, nds, Address(rscratch, 0)); 3246 } 3247 } 3248 3249 void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3250 assert(rscratch != noreg || always_reachable(src), "missing"); 3251 3252 if (reachable(src)) { 3253 vmulss(dst, nds, as_Address(src)); 3254 } else { 3255 lea(rscratch, src); 3256 vmulss(dst, nds, Address(rscratch, 0)); 3257 } 3258 } 3259 3260 void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3261 assert(rscratch != noreg || always_reachable(src), "missing"); 3262 3263 if (reachable(src)) { 3264 vsubsd(dst, nds, as_Address(src)); 3265 } else { 3266 lea(rscratch, src); 3267 vsubsd(dst, nds, Address(rscratch, 0)); 3268 } 3269 } 3270 3271 void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3272 assert(rscratch != noreg || always_reachable(src), "missing"); 3273 3274 if (reachable(src)) { 3275 vsubss(dst, nds, as_Address(src)); 3276 } else { 3277 lea(rscratch, src); 3278 vsubss(dst, nds, Address(rscratch, 0)); 3279 } 3280 } 3281 3282 void MacroAssembler::vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3283 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15"); 3284 assert(rscratch != noreg || always_reachable(src), "missing"); 3285 3286 vxorps(dst, nds, src, Assembler::AVX_128bit, rscratch); 3287 } 3288 3289 void MacroAssembler::vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3290 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15"); 3291 assert(rscratch != noreg || always_reachable(src), "missing"); 3292 3293 vxorpd(dst, nds, src, Assembler::AVX_128bit, rscratch); 3294 } 3295 3296 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3297 assert(rscratch != noreg || always_reachable(src), "missing"); 3298 3299 if (reachable(src)) { 3300 vxorpd(dst, nds, as_Address(src), vector_len); 3301 } else { 3302 lea(rscratch, src); 3303 vxorpd(dst, nds, Address(rscratch, 0), vector_len); 3304 } 3305 } 3306 3307 void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3308 assert(rscratch != noreg || always_reachable(src), "missing"); 3309 3310 if (reachable(src)) { 3311 vxorps(dst, nds, as_Address(src), vector_len); 3312 } else { 3313 lea(rscratch, src); 3314 vxorps(dst, nds, Address(rscratch, 0), vector_len); 3315 } 3316 } 3317 3318 void MacroAssembler::vpxor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3319 assert(rscratch != noreg || always_reachable(src), "missing"); 3320 3321 if (UseAVX > 1 || (vector_len < 1)) { 3322 if (reachable(src)) { 3323 Assembler::vpxor(dst, nds, as_Address(src), vector_len); 3324 } else { 3325 lea(rscratch, src); 3326 Assembler::vpxor(dst, nds, Address(rscratch, 0), vector_len); 3327 } 3328 } else { 3329 MacroAssembler::vxorpd(dst, nds, src, vector_len, rscratch); 3330 } 3331 } 3332 3333 void MacroAssembler::vpermd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3334 assert(rscratch != noreg || always_reachable(src), "missing"); 3335 3336 if (reachable(src)) { 3337 Assembler::vpermd(dst, nds, as_Address(src), vector_len); 3338 } else { 3339 lea(rscratch, src); 3340 Assembler::vpermd(dst, nds, Address(rscratch, 0), vector_len); 3341 } 3342 } 3343 3344 void MacroAssembler::clear_jobject_tag(Register possibly_non_local) { 3345 const int32_t inverted_mask = ~static_cast<int32_t>(JNIHandles::tag_mask); 3346 STATIC_ASSERT(inverted_mask == -4); // otherwise check this code 3347 // The inverted mask is sign-extended 3348 andptr(possibly_non_local, inverted_mask); 3349 } 3350 3351 void MacroAssembler::resolve_jobject(Register value, 3352 Register tmp) { 3353 Register thread = r15_thread; 3354 assert_different_registers(value, thread, tmp); 3355 Label done, tagged, weak_tagged; 3356 testptr(value, value); 3357 jcc(Assembler::zero, done); // Use null as-is. 3358 testptr(value, JNIHandles::tag_mask); // Test for tag. 3359 jcc(Assembler::notZero, tagged); 3360 3361 // Resolve local handle 3362 access_load_at(T_OBJECT, IN_NATIVE | AS_RAW, value, Address(value, 0), tmp); 3363 verify_oop(value); 3364 jmp(done); 3365 3366 bind(tagged); 3367 testptr(value, JNIHandles::TypeTag::weak_global); // Test for weak tag. 3368 jcc(Assembler::notZero, weak_tagged); 3369 3370 // Resolve global handle 3371 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp); 3372 verify_oop(value); 3373 jmp(done); 3374 3375 bind(weak_tagged); 3376 // Resolve jweak. 3377 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, 3378 value, Address(value, -JNIHandles::TypeTag::weak_global), tmp); 3379 verify_oop(value); 3380 3381 bind(done); 3382 } 3383 3384 void MacroAssembler::resolve_global_jobject(Register value, 3385 Register tmp) { 3386 Register thread = r15_thread; 3387 assert_different_registers(value, thread, tmp); 3388 Label done; 3389 3390 testptr(value, value); 3391 jcc(Assembler::zero, done); // Use null as-is. 3392 3393 #ifdef ASSERT 3394 { 3395 Label valid_global_tag; 3396 testptr(value, JNIHandles::TypeTag::global); // Test for global tag. 3397 jcc(Assembler::notZero, valid_global_tag); 3398 stop("non global jobject using resolve_global_jobject"); 3399 bind(valid_global_tag); 3400 } 3401 #endif 3402 3403 // Resolve global handle 3404 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp); 3405 verify_oop(value); 3406 3407 bind(done); 3408 } 3409 3410 void MacroAssembler::subptr(Register dst, int32_t imm32) { 3411 subq(dst, imm32); 3412 } 3413 3414 // Force generation of a 4 byte immediate value even if it fits into 8bit 3415 void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) { 3416 subq_imm32(dst, imm32); 3417 } 3418 3419 void MacroAssembler::subptr(Register dst, Register src) { 3420 subq(dst, src); 3421 } 3422 3423 // C++ bool manipulation 3424 void MacroAssembler::testbool(Register dst) { 3425 if(sizeof(bool) == 1) 3426 testb(dst, 0xff); 3427 else if(sizeof(bool) == 2) { 3428 // testw implementation needed for two byte bools 3429 ShouldNotReachHere(); 3430 } else if(sizeof(bool) == 4) 3431 testl(dst, dst); 3432 else 3433 // unsupported 3434 ShouldNotReachHere(); 3435 } 3436 3437 void MacroAssembler::testptr(Register dst, Register src) { 3438 testq(dst, src); 3439 } 3440 3441 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes. 3442 void MacroAssembler::tlab_allocate(Register obj, 3443 Register var_size_in_bytes, 3444 int con_size_in_bytes, 3445 Register t1, 3446 Register t2, 3447 Label& slow_case) { 3448 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 3449 bs->tlab_allocate(this, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case); 3450 } 3451 3452 RegSet MacroAssembler::call_clobbered_gp_registers() { 3453 RegSet regs; 3454 regs += RegSet::of(rax, rcx, rdx); 3455 #ifndef _WINDOWS 3456 regs += RegSet::of(rsi, rdi); 3457 #endif 3458 regs += RegSet::range(r8, r11); 3459 if (UseAPX) { 3460 regs += RegSet::range(r16, as_Register(Register::number_of_registers - 1)); 3461 } 3462 return regs; 3463 } 3464 3465 XMMRegSet MacroAssembler::call_clobbered_xmm_registers() { 3466 int num_xmm_registers = XMMRegister::available_xmm_registers(); 3467 #if defined(_WINDOWS) 3468 XMMRegSet result = XMMRegSet::range(xmm0, xmm5); 3469 if (num_xmm_registers > 16) { 3470 result += XMMRegSet::range(xmm16, as_XMMRegister(num_xmm_registers - 1)); 3471 } 3472 return result; 3473 #else 3474 return XMMRegSet::range(xmm0, as_XMMRegister(num_xmm_registers - 1)); 3475 #endif 3476 } 3477 3478 // C1 only ever uses the first double/float of the XMM register. 3479 static int xmm_save_size() { return sizeof(double); } 3480 3481 static void save_xmm_register(MacroAssembler* masm, int offset, XMMRegister reg) { 3482 masm->movdbl(Address(rsp, offset), reg); 3483 } 3484 3485 static void restore_xmm_register(MacroAssembler* masm, int offset, XMMRegister reg) { 3486 masm->movdbl(reg, Address(rsp, offset)); 3487 } 3488 3489 static int register_section_sizes(RegSet gp_registers, XMMRegSet xmm_registers, 3490 bool save_fpu, int& gp_area_size, int& xmm_area_size) { 3491 3492 gp_area_size = align_up(gp_registers.size() * Register::max_slots_per_register * VMRegImpl::stack_slot_size, 3493 StackAlignmentInBytes); 3494 xmm_area_size = save_fpu ? xmm_registers.size() * xmm_save_size() : 0; 3495 3496 return gp_area_size + xmm_area_size; 3497 } 3498 3499 void MacroAssembler::push_call_clobbered_registers_except(RegSet exclude, bool save_fpu) { 3500 block_comment("push_call_clobbered_registers start"); 3501 // Regular registers 3502 RegSet gp_registers_to_push = call_clobbered_gp_registers() - exclude; 3503 3504 int gp_area_size; 3505 int xmm_area_size; 3506 int total_save_size = register_section_sizes(gp_registers_to_push, call_clobbered_xmm_registers(), save_fpu, 3507 gp_area_size, xmm_area_size); 3508 subptr(rsp, total_save_size); 3509 3510 push_set(gp_registers_to_push, 0); 3511 3512 if (save_fpu) { 3513 push_set(call_clobbered_xmm_registers(), gp_area_size); 3514 } 3515 3516 block_comment("push_call_clobbered_registers end"); 3517 } 3518 3519 void MacroAssembler::pop_call_clobbered_registers_except(RegSet exclude, bool restore_fpu) { 3520 block_comment("pop_call_clobbered_registers start"); 3521 3522 RegSet gp_registers_to_pop = call_clobbered_gp_registers() - exclude; 3523 3524 int gp_area_size; 3525 int xmm_area_size; 3526 int total_save_size = register_section_sizes(gp_registers_to_pop, call_clobbered_xmm_registers(), restore_fpu, 3527 gp_area_size, xmm_area_size); 3528 3529 if (restore_fpu) { 3530 pop_set(call_clobbered_xmm_registers(), gp_area_size); 3531 } 3532 3533 pop_set(gp_registers_to_pop, 0); 3534 3535 addptr(rsp, total_save_size); 3536 3537 vzeroupper(); 3538 3539 block_comment("pop_call_clobbered_registers end"); 3540 } 3541 3542 void MacroAssembler::push_set(XMMRegSet set, int offset) { 3543 assert(is_aligned(set.size() * xmm_save_size(), StackAlignmentInBytes), "must be"); 3544 int spill_offset = offset; 3545 3546 for (RegSetIterator<XMMRegister> it = set.begin(); *it != xnoreg; ++it) { 3547 save_xmm_register(this, spill_offset, *it); 3548 spill_offset += xmm_save_size(); 3549 } 3550 } 3551 3552 void MacroAssembler::pop_set(XMMRegSet set, int offset) { 3553 int restore_size = set.size() * xmm_save_size(); 3554 assert(is_aligned(restore_size, StackAlignmentInBytes), "must be"); 3555 3556 int restore_offset = offset + restore_size - xmm_save_size(); 3557 3558 for (ReverseRegSetIterator<XMMRegister> it = set.rbegin(); *it != xnoreg; ++it) { 3559 restore_xmm_register(this, restore_offset, *it); 3560 restore_offset -= xmm_save_size(); 3561 } 3562 } 3563 3564 void MacroAssembler::push_set(RegSet set, int offset) { 3565 int spill_offset; 3566 if (offset == -1) { 3567 int register_push_size = set.size() * Register::max_slots_per_register * VMRegImpl::stack_slot_size; 3568 int aligned_size = align_up(register_push_size, StackAlignmentInBytes); 3569 subptr(rsp, aligned_size); 3570 spill_offset = 0; 3571 } else { 3572 spill_offset = offset; 3573 } 3574 3575 for (RegSetIterator<Register> it = set.begin(); *it != noreg; ++it) { 3576 movptr(Address(rsp, spill_offset), *it); 3577 spill_offset += Register::max_slots_per_register * VMRegImpl::stack_slot_size; 3578 } 3579 } 3580 3581 void MacroAssembler::pop_set(RegSet set, int offset) { 3582 3583 int gp_reg_size = Register::max_slots_per_register * VMRegImpl::stack_slot_size; 3584 int restore_size = set.size() * gp_reg_size; 3585 int aligned_size = align_up(restore_size, StackAlignmentInBytes); 3586 3587 int restore_offset; 3588 if (offset == -1) { 3589 restore_offset = restore_size - gp_reg_size; 3590 } else { 3591 restore_offset = offset + restore_size - gp_reg_size; 3592 } 3593 for (ReverseRegSetIterator<Register> it = set.rbegin(); *it != noreg; ++it) { 3594 movptr(*it, Address(rsp, restore_offset)); 3595 restore_offset -= gp_reg_size; 3596 } 3597 3598 if (offset == -1) { 3599 addptr(rsp, aligned_size); 3600 } 3601 } 3602 3603 // Preserves the contents of address, destroys the contents length_in_bytes and temp. 3604 void MacroAssembler::zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp) { 3605 assert(address != length_in_bytes && address != temp && temp != length_in_bytes, "registers must be different"); 3606 assert((offset_in_bytes & (BytesPerWord - 1)) == 0, "offset must be a multiple of BytesPerWord"); 3607 Label done; 3608 3609 testptr(length_in_bytes, length_in_bytes); 3610 jcc(Assembler::zero, done); 3611 3612 // initialize topmost word, divide index by 2, check if odd and test if zero 3613 // note: for the remaining code to work, index must be a multiple of BytesPerWord 3614 #ifdef ASSERT 3615 { 3616 Label L; 3617 testptr(length_in_bytes, BytesPerWord - 1); 3618 jcc(Assembler::zero, L); 3619 stop("length must be a multiple of BytesPerWord"); 3620 bind(L); 3621 } 3622 #endif 3623 Register index = length_in_bytes; 3624 xorptr(temp, temp); // use _zero reg to clear memory (shorter code) 3625 if (UseIncDec) { 3626 shrptr(index, 3); // divide by 8/16 and set carry flag if bit 2 was set 3627 } else { 3628 shrptr(index, 2); // use 2 instructions to avoid partial flag stall 3629 shrptr(index, 1); 3630 } 3631 3632 // initialize remaining object fields: index is a multiple of 2 now 3633 { 3634 Label loop; 3635 bind(loop); 3636 movptr(Address(address, index, Address::times_8, offset_in_bytes - 1*BytesPerWord), temp); 3637 decrement(index); 3638 jcc(Assembler::notZero, loop); 3639 } 3640 3641 bind(done); 3642 } 3643 3644 // Look up the method for a megamorphic invokeinterface call. 3645 // The target method is determined by <intf_klass, itable_index>. 3646 // The receiver klass is in recv_klass. 3647 // On success, the result will be in method_result, and execution falls through. 3648 // On failure, execution transfers to the given label. 3649 void MacroAssembler::lookup_interface_method(Register recv_klass, 3650 Register intf_klass, 3651 RegisterOrConstant itable_index, 3652 Register method_result, 3653 Register scan_temp, 3654 Label& L_no_such_interface, 3655 bool return_method) { 3656 assert_different_registers(recv_klass, intf_klass, scan_temp); 3657 assert_different_registers(method_result, intf_klass, scan_temp); 3658 assert(recv_klass != method_result || !return_method, 3659 "recv_klass can be destroyed when method isn't needed"); 3660 3661 assert(itable_index.is_constant() || itable_index.as_register() == method_result, 3662 "caller must use same register for non-constant itable index as for method"); 3663 3664 // Compute start of first itableOffsetEntry (which is at the end of the vtable) 3665 int vtable_base = in_bytes(Klass::vtable_start_offset()); 3666 int itentry_off = in_bytes(itableMethodEntry::method_offset()); 3667 int scan_step = itableOffsetEntry::size() * wordSize; 3668 int vte_size = vtableEntry::size_in_bytes(); 3669 Address::ScaleFactor times_vte_scale = Address::times_ptr; 3670 assert(vte_size == wordSize, "else adjust times_vte_scale"); 3671 3672 movl(scan_temp, Address(recv_klass, Klass::vtable_length_offset())); 3673 3674 // Could store the aligned, prescaled offset in the klass. 3675 lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base)); 3676 3677 if (return_method) { 3678 // Adjust recv_klass by scaled itable_index, so we can free itable_index. 3679 assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below"); 3680 lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off)); 3681 } 3682 3683 // for (scan = klass->itable(); scan->interface() != nullptr; scan += scan_step) { 3684 // if (scan->interface() == intf) { 3685 // result = (klass + scan->offset() + itable_index); 3686 // } 3687 // } 3688 Label search, found_method; 3689 3690 for (int peel = 1; peel >= 0; peel--) { 3691 movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset())); 3692 cmpptr(intf_klass, method_result); 3693 3694 if (peel) { 3695 jccb(Assembler::equal, found_method); 3696 } else { 3697 jccb(Assembler::notEqual, search); 3698 // (invert the test to fall through to found_method...) 3699 } 3700 3701 if (!peel) break; 3702 3703 bind(search); 3704 3705 // Check that the previous entry is non-null. A null entry means that 3706 // the receiver class doesn't implement the interface, and wasn't the 3707 // same as when the caller was compiled. 3708 testptr(method_result, method_result); 3709 jcc(Assembler::zero, L_no_such_interface); 3710 addptr(scan_temp, scan_step); 3711 } 3712 3713 bind(found_method); 3714 3715 if (return_method) { 3716 // Got a hit. 3717 movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset())); 3718 movptr(method_result, Address(recv_klass, scan_temp, Address::times_1)); 3719 } 3720 } 3721 3722 // Look up the method for a megamorphic invokeinterface call in a single pass over itable: 3723 // - check recv_klass (actual object class) is a subtype of resolved_klass from CompiledICData 3724 // - find a holder_klass (class that implements the method) vtable offset and get the method from vtable by index 3725 // The target method is determined by <holder_klass, itable_index>. 3726 // The receiver klass is in recv_klass. 3727 // On success, the result will be in method_result, and execution falls through. 3728 // On failure, execution transfers to the given label. 3729 void MacroAssembler::lookup_interface_method_stub(Register recv_klass, 3730 Register holder_klass, 3731 Register resolved_klass, 3732 Register method_result, 3733 Register scan_temp, 3734 Register temp_reg2, 3735 Register receiver, 3736 int itable_index, 3737 Label& L_no_such_interface) { 3738 assert_different_registers(recv_klass, method_result, holder_klass, resolved_klass, scan_temp, temp_reg2, receiver); 3739 Register temp_itbl_klass = method_result; 3740 Register temp_reg = (temp_reg2 == noreg ? recv_klass : temp_reg2); // reuse recv_klass register on 32-bit x86 impl 3741 3742 int vtable_base = in_bytes(Klass::vtable_start_offset()); 3743 int itentry_off = in_bytes(itableMethodEntry::method_offset()); 3744 int scan_step = itableOffsetEntry::size() * wordSize; 3745 int vte_size = vtableEntry::size_in_bytes(); 3746 int ioffset = in_bytes(itableOffsetEntry::interface_offset()); 3747 int ooffset = in_bytes(itableOffsetEntry::offset_offset()); 3748 Address::ScaleFactor times_vte_scale = Address::times_ptr; 3749 assert(vte_size == wordSize, "adjust times_vte_scale"); 3750 3751 Label L_loop_scan_resolved_entry, L_resolved_found, L_holder_found; 3752 3753 // temp_itbl_klass = recv_klass.itable[0] 3754 // scan_temp = &recv_klass.itable[0] + step 3755 movl(scan_temp, Address(recv_klass, Klass::vtable_length_offset())); 3756 movptr(temp_itbl_klass, Address(recv_klass, scan_temp, times_vte_scale, vtable_base + ioffset)); 3757 lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base + ioffset + scan_step)); 3758 xorptr(temp_reg, temp_reg); 3759 3760 // Initial checks: 3761 // - if (holder_klass != resolved_klass), go to "scan for resolved" 3762 // - if (itable[0] == 0), no such interface 3763 // - if (itable[0] == holder_klass), shortcut to "holder found" 3764 cmpptr(holder_klass, resolved_klass); 3765 jccb(Assembler::notEqual, L_loop_scan_resolved_entry); 3766 testptr(temp_itbl_klass, temp_itbl_klass); 3767 jccb(Assembler::zero, L_no_such_interface); 3768 cmpptr(holder_klass, temp_itbl_klass); 3769 jccb(Assembler::equal, L_holder_found); 3770 3771 // Loop: Look for holder_klass record in itable 3772 // do { 3773 // tmp = itable[index]; 3774 // index += step; 3775 // if (tmp == holder_klass) { 3776 // goto L_holder_found; // Found! 3777 // } 3778 // } while (tmp != 0); 3779 // goto L_no_such_interface // Not found. 3780 Label L_scan_holder; 3781 bind(L_scan_holder); 3782 movptr(temp_itbl_klass, Address(scan_temp, 0)); 3783 addptr(scan_temp, scan_step); 3784 cmpptr(holder_klass, temp_itbl_klass); 3785 jccb(Assembler::equal, L_holder_found); 3786 testptr(temp_itbl_klass, temp_itbl_klass); 3787 jccb(Assembler::notZero, L_scan_holder); 3788 3789 jmpb(L_no_such_interface); 3790 3791 // Loop: Look for resolved_class record in itable 3792 // do { 3793 // tmp = itable[index]; 3794 // index += step; 3795 // if (tmp == holder_klass) { 3796 // // Also check if we have met a holder klass 3797 // holder_tmp = itable[index-step-ioffset]; 3798 // } 3799 // if (tmp == resolved_klass) { 3800 // goto L_resolved_found; // Found! 3801 // } 3802 // } while (tmp != 0); 3803 // goto L_no_such_interface // Not found. 3804 // 3805 Label L_loop_scan_resolved; 3806 bind(L_loop_scan_resolved); 3807 movptr(temp_itbl_klass, Address(scan_temp, 0)); 3808 addptr(scan_temp, scan_step); 3809 bind(L_loop_scan_resolved_entry); 3810 cmpptr(holder_klass, temp_itbl_klass); 3811 cmovl(Assembler::equal, temp_reg, Address(scan_temp, ooffset - ioffset - scan_step)); 3812 cmpptr(resolved_klass, temp_itbl_klass); 3813 jccb(Assembler::equal, L_resolved_found); 3814 testptr(temp_itbl_klass, temp_itbl_klass); 3815 jccb(Assembler::notZero, L_loop_scan_resolved); 3816 3817 jmpb(L_no_such_interface); 3818 3819 Label L_ready; 3820 3821 // See if we already have a holder klass. If not, go and scan for it. 3822 bind(L_resolved_found); 3823 testptr(temp_reg, temp_reg); 3824 jccb(Assembler::zero, L_scan_holder); 3825 jmpb(L_ready); 3826 3827 bind(L_holder_found); 3828 movl(temp_reg, Address(scan_temp, ooffset - ioffset - scan_step)); 3829 3830 // Finally, temp_reg contains holder_klass vtable offset 3831 bind(L_ready); 3832 assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below"); 3833 if (temp_reg2 == noreg) { // recv_klass register is clobbered for 32-bit x86 impl 3834 load_klass(scan_temp, receiver, noreg); 3835 movptr(method_result, Address(scan_temp, temp_reg, Address::times_1, itable_index * wordSize + itentry_off)); 3836 } else { 3837 movptr(method_result, Address(recv_klass, temp_reg, Address::times_1, itable_index * wordSize + itentry_off)); 3838 } 3839 } 3840 3841 3842 // virtual method calling 3843 void MacroAssembler::lookup_virtual_method(Register recv_klass, 3844 RegisterOrConstant vtable_index, 3845 Register method_result) { 3846 const ByteSize base = Klass::vtable_start_offset(); 3847 assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below"); 3848 Address vtable_entry_addr(recv_klass, 3849 vtable_index, Address::times_ptr, 3850 base + vtableEntry::method_offset()); 3851 movptr(method_result, vtable_entry_addr); 3852 } 3853 3854 3855 void MacroAssembler::check_klass_subtype(Register sub_klass, 3856 Register super_klass, 3857 Register temp_reg, 3858 Label& L_success) { 3859 Label L_failure; 3860 check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg, &L_success, &L_failure, nullptr); 3861 check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, nullptr); 3862 bind(L_failure); 3863 } 3864 3865 3866 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass, 3867 Register super_klass, 3868 Register temp_reg, 3869 Label* L_success, 3870 Label* L_failure, 3871 Label* L_slow_path, 3872 RegisterOrConstant super_check_offset) { 3873 assert_different_registers(sub_klass, super_klass, temp_reg); 3874 bool must_load_sco = (super_check_offset.constant_or_zero() == -1); 3875 if (super_check_offset.is_register()) { 3876 assert_different_registers(sub_klass, super_klass, 3877 super_check_offset.as_register()); 3878 } else if (must_load_sco) { 3879 assert(temp_reg != noreg, "supply either a temp or a register offset"); 3880 } 3881 3882 Label L_fallthrough; 3883 int label_nulls = 0; 3884 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 3885 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 3886 if (L_slow_path == nullptr) { L_slow_path = &L_fallthrough; label_nulls++; } 3887 assert(label_nulls <= 1, "at most one null in the batch"); 3888 3889 int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); 3890 int sco_offset = in_bytes(Klass::super_check_offset_offset()); 3891 Address super_check_offset_addr(super_klass, sco_offset); 3892 3893 // Hacked jcc, which "knows" that L_fallthrough, at least, is in 3894 // range of a jccb. If this routine grows larger, reconsider at 3895 // least some of these. 3896 #define local_jcc(assembler_cond, label) \ 3897 if (&(label) == &L_fallthrough) jccb(assembler_cond, label); \ 3898 else jcc( assembler_cond, label) /*omit semi*/ 3899 3900 // Hacked jmp, which may only be used just before L_fallthrough. 3901 #define final_jmp(label) \ 3902 if (&(label) == &L_fallthrough) { /*do nothing*/ } \ 3903 else jmp(label) /*omit semi*/ 3904 3905 // If the pointers are equal, we are done (e.g., String[] elements). 3906 // This self-check enables sharing of secondary supertype arrays among 3907 // non-primary types such as array-of-interface. Otherwise, each such 3908 // type would need its own customized SSA. 3909 // We move this check to the front of the fast path because many 3910 // type checks are in fact trivially successful in this manner, 3911 // so we get a nicely predicted branch right at the start of the check. 3912 cmpptr(sub_klass, super_klass); 3913 local_jcc(Assembler::equal, *L_success); 3914 3915 // Check the supertype display: 3916 if (must_load_sco) { 3917 // Positive movl does right thing on LP64. 3918 movl(temp_reg, super_check_offset_addr); 3919 super_check_offset = RegisterOrConstant(temp_reg); 3920 } 3921 Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0); 3922 cmpptr(super_klass, super_check_addr); // load displayed supertype 3923 3924 // This check has worked decisively for primary supers. 3925 // Secondary supers are sought in the super_cache ('super_cache_addr'). 3926 // (Secondary supers are interfaces and very deeply nested subtypes.) 3927 // This works in the same check above because of a tricky aliasing 3928 // between the super_cache and the primary super display elements. 3929 // (The 'super_check_addr' can address either, as the case requires.) 3930 // Note that the cache is updated below if it does not help us find 3931 // what we need immediately. 3932 // So if it was a primary super, we can just fail immediately. 3933 // Otherwise, it's the slow path for us (no success at this point). 3934 3935 if (super_check_offset.is_register()) { 3936 local_jcc(Assembler::equal, *L_success); 3937 cmpl(super_check_offset.as_register(), sc_offset); 3938 if (L_failure == &L_fallthrough) { 3939 local_jcc(Assembler::equal, *L_slow_path); 3940 } else { 3941 local_jcc(Assembler::notEqual, *L_failure); 3942 final_jmp(*L_slow_path); 3943 } 3944 } else if (super_check_offset.as_constant() == sc_offset) { 3945 // Need a slow path; fast failure is impossible. 3946 if (L_slow_path == &L_fallthrough) { 3947 local_jcc(Assembler::equal, *L_success); 3948 } else { 3949 local_jcc(Assembler::notEqual, *L_slow_path); 3950 final_jmp(*L_success); 3951 } 3952 } else { 3953 // No slow path; it's a fast decision. 3954 if (L_failure == &L_fallthrough) { 3955 local_jcc(Assembler::equal, *L_success); 3956 } else { 3957 local_jcc(Assembler::notEqual, *L_failure); 3958 final_jmp(*L_success); 3959 } 3960 } 3961 3962 bind(L_fallthrough); 3963 3964 #undef local_jcc 3965 #undef final_jmp 3966 } 3967 3968 3969 void MacroAssembler::check_klass_subtype_slow_path_linear(Register sub_klass, 3970 Register super_klass, 3971 Register temp_reg, 3972 Register temp2_reg, 3973 Label* L_success, 3974 Label* L_failure, 3975 bool set_cond_codes) { 3976 assert_different_registers(sub_klass, super_klass, temp_reg); 3977 if (temp2_reg != noreg) 3978 assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg); 3979 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg) 3980 3981 Label L_fallthrough; 3982 int label_nulls = 0; 3983 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 3984 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 3985 assert(label_nulls <= 1, "at most one null in the batch"); 3986 3987 // a couple of useful fields in sub_klass: 3988 int ss_offset = in_bytes(Klass::secondary_supers_offset()); 3989 int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); 3990 Address secondary_supers_addr(sub_klass, ss_offset); 3991 Address super_cache_addr( sub_klass, sc_offset); 3992 3993 // Do a linear scan of the secondary super-klass chain. 3994 // This code is rarely used, so simplicity is a virtue here. 3995 // The repne_scan instruction uses fixed registers, which we must spill. 3996 // Don't worry too much about pre-existing connections with the input regs. 3997 3998 assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super) 3999 assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter) 4000 4001 // Get super_klass value into rax (even if it was in rdi or rcx). 4002 bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false; 4003 if (super_klass != rax) { 4004 if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; } 4005 mov(rax, super_klass); 4006 } 4007 if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; } 4008 if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; } 4009 4010 #ifndef PRODUCT 4011 uint* pst_counter = &SharedRuntime::_partial_subtype_ctr; 4012 ExternalAddress pst_counter_addr((address) pst_counter); 4013 lea(rcx, pst_counter_addr); 4014 incrementl(Address(rcx, 0)); 4015 #endif //PRODUCT 4016 4017 // We will consult the secondary-super array. 4018 movptr(rdi, secondary_supers_addr); 4019 // Load the array length. (Positive movl does right thing on LP64.) 4020 movl(rcx, Address(rdi, Array<Klass*>::length_offset_in_bytes())); 4021 // Skip to start of data. 4022 addptr(rdi, Array<Klass*>::base_offset_in_bytes()); 4023 4024 // Scan RCX words at [RDI] for an occurrence of RAX. 4025 // Set NZ/Z based on last compare. 4026 // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does 4027 // not change flags (only scas instruction which is repeated sets flags). 4028 // Set Z = 0 (not equal) before 'repne' to indicate that class was not found. 4029 4030 testptr(rax,rax); // Set Z = 0 4031 repne_scan(); 4032 4033 // Unspill the temp. registers: 4034 if (pushed_rdi) pop(rdi); 4035 if (pushed_rcx) pop(rcx); 4036 if (pushed_rax) pop(rax); 4037 4038 if (set_cond_codes) { 4039 // Special hack for the AD files: rdi is guaranteed non-zero. 4040 assert(!pushed_rdi, "rdi must be left non-null"); 4041 // Also, the condition codes are properly set Z/NZ on succeed/failure. 4042 } 4043 4044 if (L_failure == &L_fallthrough) 4045 jccb(Assembler::notEqual, *L_failure); 4046 else jcc(Assembler::notEqual, *L_failure); 4047 4048 // Success. Cache the super we found and proceed in triumph. 4049 movptr(super_cache_addr, super_klass); 4050 4051 if (L_success != &L_fallthrough) { 4052 jmp(*L_success); 4053 } 4054 4055 #undef IS_A_TEMP 4056 4057 bind(L_fallthrough); 4058 } 4059 4060 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass, 4061 Register super_klass, 4062 Register temp_reg, 4063 Register temp2_reg, 4064 Label* L_success, 4065 Label* L_failure, 4066 bool set_cond_codes) { 4067 assert(set_cond_codes == false, "must be false on 64-bit x86"); 4068 check_klass_subtype_slow_path 4069 (sub_klass, super_klass, temp_reg, temp2_reg, noreg, noreg, 4070 L_success, L_failure); 4071 } 4072 4073 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass, 4074 Register super_klass, 4075 Register temp_reg, 4076 Register temp2_reg, 4077 Register temp3_reg, 4078 Register temp4_reg, 4079 Label* L_success, 4080 Label* L_failure) { 4081 if (UseSecondarySupersTable) { 4082 check_klass_subtype_slow_path_table 4083 (sub_klass, super_klass, temp_reg, temp2_reg, temp3_reg, temp4_reg, 4084 L_success, L_failure); 4085 } else { 4086 check_klass_subtype_slow_path_linear 4087 (sub_klass, super_klass, temp_reg, temp2_reg, L_success, L_failure, /*set_cond_codes*/false); 4088 } 4089 } 4090 4091 Register MacroAssembler::allocate_if_noreg(Register r, 4092 RegSetIterator<Register> &available_regs, 4093 RegSet ®s_to_push) { 4094 if (!r->is_valid()) { 4095 r = *available_regs++; 4096 regs_to_push += r; 4097 } 4098 return r; 4099 } 4100 4101 void MacroAssembler::check_klass_subtype_slow_path_table(Register sub_klass, 4102 Register super_klass, 4103 Register temp_reg, 4104 Register temp2_reg, 4105 Register temp3_reg, 4106 Register result_reg, 4107 Label* L_success, 4108 Label* L_failure) { 4109 // NB! Callers may assume that, when temp2_reg is a valid register, 4110 // this code sets it to a nonzero value. 4111 bool temp2_reg_was_valid = temp2_reg->is_valid(); 4112 4113 RegSet temps = RegSet::of(temp_reg, temp2_reg, temp3_reg); 4114 4115 Label L_fallthrough; 4116 int label_nulls = 0; 4117 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 4118 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 4119 assert(label_nulls <= 1, "at most one null in the batch"); 4120 4121 BLOCK_COMMENT("check_klass_subtype_slow_path_table"); 4122 4123 RegSetIterator<Register> available_regs 4124 = (RegSet::of(rax, rcx, rdx, r8) + r9 + r10 + r11 + r12 - temps - sub_klass - super_klass).begin(); 4125 4126 RegSet pushed_regs; 4127 4128 temp_reg = allocate_if_noreg(temp_reg, available_regs, pushed_regs); 4129 temp2_reg = allocate_if_noreg(temp2_reg, available_regs, pushed_regs); 4130 temp3_reg = allocate_if_noreg(temp3_reg, available_regs, pushed_regs); 4131 result_reg = allocate_if_noreg(result_reg, available_regs, pushed_regs); 4132 Register temp4_reg = allocate_if_noreg(noreg, available_regs, pushed_regs); 4133 4134 assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, temp3_reg, result_reg); 4135 4136 { 4137 4138 int register_push_size = pushed_regs.size() * Register::max_slots_per_register * VMRegImpl::stack_slot_size; 4139 int aligned_size = align_up(register_push_size, StackAlignmentInBytes); 4140 subptr(rsp, aligned_size); 4141 push_set(pushed_regs, 0); 4142 4143 lookup_secondary_supers_table_var(sub_klass, 4144 super_klass, 4145 temp_reg, temp2_reg, temp3_reg, temp4_reg, result_reg); 4146 cmpq(result_reg, 0); 4147 4148 // Unspill the temp. registers: 4149 pop_set(pushed_regs, 0); 4150 // Increment SP but do not clobber flags. 4151 lea(rsp, Address(rsp, aligned_size)); 4152 } 4153 4154 if (temp2_reg_was_valid) { 4155 movq(temp2_reg, 1); 4156 } 4157 4158 jcc(Assembler::notEqual, *L_failure); 4159 4160 if (L_success != &L_fallthrough) { 4161 jmp(*L_success); 4162 } 4163 4164 bind(L_fallthrough); 4165 } 4166 4167 // population_count variant for running without the POPCNT 4168 // instruction, which was introduced with SSE4.2 in 2008. 4169 void MacroAssembler::population_count(Register dst, Register src, 4170 Register scratch1, Register scratch2) { 4171 assert_different_registers(src, scratch1, scratch2); 4172 if (UsePopCountInstruction) { 4173 Assembler::popcntq(dst, src); 4174 } else { 4175 assert_different_registers(src, scratch1, scratch2); 4176 assert_different_registers(dst, scratch1, scratch2); 4177 Label loop, done; 4178 4179 mov(scratch1, src); 4180 // dst = 0; 4181 // while(scratch1 != 0) { 4182 // dst++; 4183 // scratch1 &= (scratch1 - 1); 4184 // } 4185 xorl(dst, dst); 4186 testq(scratch1, scratch1); 4187 jccb(Assembler::equal, done); 4188 { 4189 bind(loop); 4190 incq(dst); 4191 movq(scratch2, scratch1); 4192 decq(scratch2); 4193 andq(scratch1, scratch2); 4194 jccb(Assembler::notEqual, loop); 4195 } 4196 bind(done); 4197 } 4198 #ifdef ASSERT 4199 mov64(scratch1, 0xCafeBabeDeadBeef); 4200 movq(scratch2, scratch1); 4201 #endif 4202 } 4203 4204 // Ensure that the inline code and the stub are using the same registers. 4205 #define LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS \ 4206 do { \ 4207 assert(r_super_klass == rax, "mismatch"); \ 4208 assert(r_array_base == rbx, "mismatch"); \ 4209 assert(r_array_length == rcx, "mismatch"); \ 4210 assert(r_array_index == rdx, "mismatch"); \ 4211 assert(r_sub_klass == rsi || r_sub_klass == noreg, "mismatch"); \ 4212 assert(r_bitmap == r11 || r_bitmap == noreg, "mismatch"); \ 4213 assert(result == rdi || result == noreg, "mismatch"); \ 4214 } while(0) 4215 4216 // Versions of salq and rorq that don't need count to be in rcx 4217 4218 void MacroAssembler::salq(Register dest, Register count) { 4219 if (count == rcx) { 4220 Assembler::salq(dest); 4221 } else { 4222 assert_different_registers(rcx, dest); 4223 xchgq(rcx, count); 4224 Assembler::salq(dest); 4225 xchgq(rcx, count); 4226 } 4227 } 4228 4229 void MacroAssembler::rorq(Register dest, Register count) { 4230 if (count == rcx) { 4231 Assembler::rorq(dest); 4232 } else { 4233 assert_different_registers(rcx, dest); 4234 xchgq(rcx, count); 4235 Assembler::rorq(dest); 4236 xchgq(rcx, count); 4237 } 4238 } 4239 4240 // Return true: we succeeded in generating this code 4241 // 4242 // At runtime, return 0 in result if r_super_klass is a superclass of 4243 // r_sub_klass, otherwise return nonzero. Use this if you know the 4244 // super_klass_slot of the class you're looking for. This is always 4245 // the case for instanceof and checkcast. 4246 void MacroAssembler::lookup_secondary_supers_table_const(Register r_sub_klass, 4247 Register r_super_klass, 4248 Register temp1, 4249 Register temp2, 4250 Register temp3, 4251 Register temp4, 4252 Register result, 4253 u1 super_klass_slot) { 4254 assert_different_registers(r_sub_klass, r_super_klass, temp1, temp2, temp3, temp4, result); 4255 4256 Label L_fallthrough, L_success, L_failure; 4257 4258 BLOCK_COMMENT("lookup_secondary_supers_table {"); 4259 4260 const Register 4261 r_array_index = temp1, 4262 r_array_length = temp2, 4263 r_array_base = temp3, 4264 r_bitmap = temp4; 4265 4266 LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS; 4267 4268 xorq(result, result); // = 0 4269 4270 movq(r_bitmap, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset())); 4271 movq(r_array_index, r_bitmap); 4272 4273 // First check the bitmap to see if super_klass might be present. If 4274 // the bit is zero, we are certain that super_klass is not one of 4275 // the secondary supers. 4276 u1 bit = super_klass_slot; 4277 { 4278 // NB: If the count in a x86 shift instruction is 0, the flags are 4279 // not affected, so we do a testq instead. 4280 int shift_count = Klass::SECONDARY_SUPERS_TABLE_MASK - bit; 4281 if (shift_count != 0) { 4282 salq(r_array_index, shift_count); 4283 } else { 4284 testq(r_array_index, r_array_index); 4285 } 4286 } 4287 // We test the MSB of r_array_index, i.e. its sign bit 4288 jcc(Assembler::positive, L_failure); 4289 4290 // Get the first array index that can contain super_klass into r_array_index. 4291 if (bit != 0) { 4292 population_count(r_array_index, r_array_index, temp2, temp3); 4293 } else { 4294 movl(r_array_index, 1); 4295 } 4296 // NB! r_array_index is off by 1. It is compensated by keeping r_array_base off by 1 word. 4297 4298 // We will consult the secondary-super array. 4299 movptr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 4300 4301 // We're asserting that the first word in an Array<Klass*> is the 4302 // length, and the second word is the first word of the data. If 4303 // that ever changes, r_array_base will have to be adjusted here. 4304 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "Adjust this code"); 4305 assert(Array<Klass*>::length_offset_in_bytes() == 0, "Adjust this code"); 4306 4307 cmpq(r_super_klass, Address(r_array_base, r_array_index, Address::times_8)); 4308 jccb(Assembler::equal, L_success); 4309 4310 // Is there another entry to check? Consult the bitmap. 4311 btq(r_bitmap, (bit + 1) & Klass::SECONDARY_SUPERS_TABLE_MASK); 4312 jccb(Assembler::carryClear, L_failure); 4313 4314 // Linear probe. Rotate the bitmap so that the next bit to test is 4315 // in Bit 1. 4316 if (bit != 0) { 4317 rorq(r_bitmap, bit); 4318 } 4319 4320 // Calls into the stub generated by lookup_secondary_supers_table_slow_path. 4321 // Arguments: r_super_klass, r_array_base, r_array_index, r_bitmap. 4322 // Kills: r_array_length. 4323 // Returns: result. 4324 call(RuntimeAddress(StubRoutines::lookup_secondary_supers_table_slow_path_stub())); 4325 // Result (0/1) is in rdi 4326 jmpb(L_fallthrough); 4327 4328 bind(L_failure); 4329 incq(result); // 0 => 1 4330 4331 bind(L_success); 4332 // result = 0; 4333 4334 bind(L_fallthrough); 4335 BLOCK_COMMENT("} lookup_secondary_supers_table"); 4336 4337 if (VerifySecondarySupers) { 4338 verify_secondary_supers_table(r_sub_klass, r_super_klass, result, 4339 temp1, temp2, temp3); 4340 } 4341 } 4342 4343 // At runtime, return 0 in result if r_super_klass is a superclass of 4344 // r_sub_klass, otherwise return nonzero. Use this version of 4345 // lookup_secondary_supers_table() if you don't know ahead of time 4346 // which superclass will be searched for. Used by interpreter and 4347 // runtime stubs. It is larger and has somewhat greater latency than 4348 // the version above, which takes a constant super_klass_slot. 4349 void MacroAssembler::lookup_secondary_supers_table_var(Register r_sub_klass, 4350 Register r_super_klass, 4351 Register temp1, 4352 Register temp2, 4353 Register temp3, 4354 Register temp4, 4355 Register result) { 4356 assert_different_registers(r_sub_klass, r_super_klass, temp1, temp2, temp3, temp4, result); 4357 assert_different_registers(r_sub_klass, r_super_klass, rcx); 4358 RegSet temps = RegSet::of(temp1, temp2, temp3, temp4); 4359 4360 Label L_fallthrough, L_success, L_failure; 4361 4362 BLOCK_COMMENT("lookup_secondary_supers_table {"); 4363 4364 RegSetIterator<Register> available_regs = (temps - rcx).begin(); 4365 4366 // FIXME. Once we are sure that all paths reaching this point really 4367 // do pass rcx as one of our temps we can get rid of the following 4368 // workaround. 4369 assert(temps.contains(rcx), "fix this code"); 4370 4371 // We prefer to have our shift count in rcx. If rcx is one of our 4372 // temps, use it for slot. If not, pick any of our temps. 4373 Register slot; 4374 if (!temps.contains(rcx)) { 4375 slot = *available_regs++; 4376 } else { 4377 slot = rcx; 4378 } 4379 4380 const Register r_array_index = *available_regs++; 4381 const Register r_bitmap = *available_regs++; 4382 4383 // The logic above guarantees this property, but we state it here. 4384 assert_different_registers(r_array_index, r_bitmap, rcx); 4385 4386 movq(r_bitmap, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset())); 4387 movq(r_array_index, r_bitmap); 4388 4389 // First check the bitmap to see if super_klass might be present. If 4390 // the bit is zero, we are certain that super_klass is not one of 4391 // the secondary supers. 4392 movb(slot, Address(r_super_klass, Klass::hash_slot_offset())); 4393 xorl(slot, (u1)(Klass::SECONDARY_SUPERS_TABLE_SIZE - 1)); // slot ^ 63 === 63 - slot (mod 64) 4394 salq(r_array_index, slot); 4395 4396 testq(r_array_index, r_array_index); 4397 // We test the MSB of r_array_index, i.e. its sign bit 4398 jcc(Assembler::positive, L_failure); 4399 4400 const Register r_array_base = *available_regs++; 4401 4402 // Get the first array index that can contain super_klass into r_array_index. 4403 // Note: Clobbers r_array_base and slot. 4404 population_count(r_array_index, r_array_index, /*temp2*/r_array_base, /*temp3*/slot); 4405 4406 // NB! r_array_index is off by 1. It is compensated by keeping r_array_base off by 1 word. 4407 4408 // We will consult the secondary-super array. 4409 movptr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 4410 4411 // We're asserting that the first word in an Array<Klass*> is the 4412 // length, and the second word is the first word of the data. If 4413 // that ever changes, r_array_base will have to be adjusted here. 4414 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "Adjust this code"); 4415 assert(Array<Klass*>::length_offset_in_bytes() == 0, "Adjust this code"); 4416 4417 cmpq(r_super_klass, Address(r_array_base, r_array_index, Address::times_8)); 4418 jccb(Assembler::equal, L_success); 4419 4420 // Restore slot to its true value 4421 movb(slot, Address(r_super_klass, Klass::hash_slot_offset())); 4422 4423 // Linear probe. Rotate the bitmap so that the next bit to test is 4424 // in Bit 1. 4425 rorq(r_bitmap, slot); 4426 4427 // Is there another entry to check? Consult the bitmap. 4428 btq(r_bitmap, 1); 4429 jccb(Assembler::carryClear, L_failure); 4430 4431 // Calls into the stub generated by lookup_secondary_supers_table_slow_path. 4432 // Arguments: r_super_klass, r_array_base, r_array_index, r_bitmap. 4433 // Kills: r_array_length. 4434 // Returns: result. 4435 lookup_secondary_supers_table_slow_path(r_super_klass, 4436 r_array_base, 4437 r_array_index, 4438 r_bitmap, 4439 /*temp1*/result, 4440 /*temp2*/slot, 4441 &L_success, 4442 nullptr); 4443 4444 bind(L_failure); 4445 movq(result, 1); 4446 jmpb(L_fallthrough); 4447 4448 bind(L_success); 4449 xorq(result, result); // = 0 4450 4451 bind(L_fallthrough); 4452 BLOCK_COMMENT("} lookup_secondary_supers_table"); 4453 4454 if (VerifySecondarySupers) { 4455 verify_secondary_supers_table(r_sub_klass, r_super_klass, result, 4456 temp1, temp2, temp3); 4457 } 4458 } 4459 4460 void MacroAssembler::repne_scanq(Register addr, Register value, Register count, Register limit, 4461 Label* L_success, Label* L_failure) { 4462 Label L_loop, L_fallthrough; 4463 { 4464 int label_nulls = 0; 4465 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 4466 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 4467 assert(label_nulls <= 1, "at most one null in the batch"); 4468 } 4469 bind(L_loop); 4470 cmpq(value, Address(addr, count, Address::times_8)); 4471 jcc(Assembler::equal, *L_success); 4472 addl(count, 1); 4473 cmpl(count, limit); 4474 jcc(Assembler::less, L_loop); 4475 4476 if (&L_fallthrough != L_failure) { 4477 jmp(*L_failure); 4478 } 4479 bind(L_fallthrough); 4480 } 4481 4482 // Called by code generated by check_klass_subtype_slow_path 4483 // above. This is called when there is a collision in the hashed 4484 // lookup in the secondary supers array. 4485 void MacroAssembler::lookup_secondary_supers_table_slow_path(Register r_super_klass, 4486 Register r_array_base, 4487 Register r_array_index, 4488 Register r_bitmap, 4489 Register temp1, 4490 Register temp2, 4491 Label* L_success, 4492 Label* L_failure) { 4493 assert_different_registers(r_super_klass, r_array_base, r_array_index, r_bitmap, temp1, temp2); 4494 4495 const Register 4496 r_array_length = temp1, 4497 r_sub_klass = noreg, 4498 result = noreg; 4499 4500 Label L_fallthrough; 4501 int label_nulls = 0; 4502 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 4503 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 4504 assert(label_nulls <= 1, "at most one null in the batch"); 4505 4506 // Load the array length. 4507 movl(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes())); 4508 // And adjust the array base to point to the data. 4509 // NB! Effectively increments current slot index by 1. 4510 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, ""); 4511 addptr(r_array_base, Array<Klass*>::base_offset_in_bytes()); 4512 4513 // Linear probe 4514 Label L_huge; 4515 4516 // The bitmap is full to bursting. 4517 // Implicit invariant: BITMAP_FULL implies (length > 0) 4518 cmpl(r_array_length, (int32_t)Klass::SECONDARY_SUPERS_TABLE_SIZE - 2); 4519 jcc(Assembler::greater, L_huge); 4520 4521 // NB! Our caller has checked bits 0 and 1 in the bitmap. The 4522 // current slot (at secondary_supers[r_array_index]) has not yet 4523 // been inspected, and r_array_index may be out of bounds if we 4524 // wrapped around the end of the array. 4525 4526 { // This is conventional linear probing, but instead of terminating 4527 // when a null entry is found in the table, we maintain a bitmap 4528 // in which a 0 indicates missing entries. 4529 // The check above guarantees there are 0s in the bitmap, so the loop 4530 // eventually terminates. 4531 4532 xorl(temp2, temp2); // = 0; 4533 4534 Label L_again; 4535 bind(L_again); 4536 4537 // Check for array wraparound. 4538 cmpl(r_array_index, r_array_length); 4539 cmovl(Assembler::greaterEqual, r_array_index, temp2); 4540 4541 cmpq(r_super_klass, Address(r_array_base, r_array_index, Address::times_8)); 4542 jcc(Assembler::equal, *L_success); 4543 4544 // If the next bit in bitmap is zero, we're done. 4545 btq(r_bitmap, 2); // look-ahead check (Bit 2); Bits 0 and 1 are tested by now 4546 jcc(Assembler::carryClear, *L_failure); 4547 4548 rorq(r_bitmap, 1); // Bits 1/2 => 0/1 4549 addl(r_array_index, 1); 4550 4551 jmp(L_again); 4552 } 4553 4554 { // Degenerate case: more than 64 secondary supers. 4555 // FIXME: We could do something smarter here, maybe a vectorized 4556 // comparison or a binary search, but is that worth any added 4557 // complexity? 4558 bind(L_huge); 4559 xorl(r_array_index, r_array_index); // = 0 4560 repne_scanq(r_array_base, r_super_klass, r_array_index, r_array_length, 4561 L_success, 4562 (&L_fallthrough != L_failure ? L_failure : nullptr)); 4563 4564 bind(L_fallthrough); 4565 } 4566 } 4567 4568 struct VerifyHelperArguments { 4569 Klass* _super; 4570 Klass* _sub; 4571 intptr_t _linear_result; 4572 intptr_t _table_result; 4573 }; 4574 4575 static void verify_secondary_supers_table_helper(const char* msg, VerifyHelperArguments* args) { 4576 Klass::on_secondary_supers_verification_failure(args->_super, 4577 args->_sub, 4578 args->_linear_result, 4579 args->_table_result, 4580 msg); 4581 } 4582 4583 // Make sure that the hashed lookup and a linear scan agree. 4584 void MacroAssembler::verify_secondary_supers_table(Register r_sub_klass, 4585 Register r_super_klass, 4586 Register result, 4587 Register temp1, 4588 Register temp2, 4589 Register temp3) { 4590 const Register 4591 r_array_index = temp1, 4592 r_array_length = temp2, 4593 r_array_base = temp3, 4594 r_bitmap = noreg; 4595 4596 BLOCK_COMMENT("verify_secondary_supers_table {"); 4597 4598 Label L_success, L_failure, L_check, L_done; 4599 4600 movptr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 4601 movl(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes())); 4602 // And adjust the array base to point to the data. 4603 addptr(r_array_base, Array<Klass*>::base_offset_in_bytes()); 4604 4605 testl(r_array_length, r_array_length); // array_length == 0? 4606 jcc(Assembler::zero, L_failure); 4607 4608 movl(r_array_index, 0); 4609 repne_scanq(r_array_base, r_super_klass, r_array_index, r_array_length, &L_success); 4610 // fall through to L_failure 4611 4612 const Register linear_result = r_array_index; // reuse temp1 4613 4614 bind(L_failure); // not present 4615 movl(linear_result, 1); 4616 jmp(L_check); 4617 4618 bind(L_success); // present 4619 movl(linear_result, 0); 4620 4621 bind(L_check); 4622 cmpl(linear_result, result); 4623 jcc(Assembler::equal, L_done); 4624 4625 { // To avoid calling convention issues, build a record on the stack 4626 // and pass the pointer to that instead. 4627 push(result); 4628 push(linear_result); 4629 push(r_sub_klass); 4630 push(r_super_klass); 4631 movptr(c_rarg1, rsp); 4632 movptr(c_rarg0, (uintptr_t) "mismatch"); 4633 call(RuntimeAddress(CAST_FROM_FN_PTR(address, verify_secondary_supers_table_helper))); 4634 should_not_reach_here(); 4635 } 4636 bind(L_done); 4637 4638 BLOCK_COMMENT("} verify_secondary_supers_table"); 4639 } 4640 4641 #undef LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS 4642 4643 void MacroAssembler::clinit_barrier(Register klass, Label* L_fast_path, Label* L_slow_path) { 4644 assert(L_fast_path != nullptr || L_slow_path != nullptr, "at least one is required"); 4645 4646 Label L_fallthrough; 4647 if (L_fast_path == nullptr) { 4648 L_fast_path = &L_fallthrough; 4649 } else if (L_slow_path == nullptr) { 4650 L_slow_path = &L_fallthrough; 4651 } 4652 4653 // Fast path check: class is fully initialized. 4654 // init_state needs acquire, but x86 is TSO, and so we are already good. 4655 cmpb(Address(klass, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized); 4656 jcc(Assembler::equal, *L_fast_path); 4657 4658 // Fast path check: current thread is initializer thread 4659 cmpptr(r15_thread, Address(klass, InstanceKlass::init_thread_offset())); 4660 if (L_slow_path == &L_fallthrough) { 4661 jcc(Assembler::equal, *L_fast_path); 4662 bind(*L_slow_path); 4663 } else if (L_fast_path == &L_fallthrough) { 4664 jcc(Assembler::notEqual, *L_slow_path); 4665 bind(*L_fast_path); 4666 } else { 4667 Unimplemented(); 4668 } 4669 } 4670 4671 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) { 4672 if (VM_Version::supports_cmov()) { 4673 cmovl(cc, dst, src); 4674 } else { 4675 Label L; 4676 jccb(negate_condition(cc), L); 4677 movl(dst, src); 4678 bind(L); 4679 } 4680 } 4681 4682 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) { 4683 if (VM_Version::supports_cmov()) { 4684 cmovl(cc, dst, src); 4685 } else { 4686 Label L; 4687 jccb(negate_condition(cc), L); 4688 movl(dst, src); 4689 bind(L); 4690 } 4691 } 4692 4693 void MacroAssembler::_verify_oop(Register reg, const char* s, const char* file, int line) { 4694 if (!VerifyOops) return; 4695 4696 BLOCK_COMMENT("verify_oop {"); 4697 push(rscratch1); 4698 push(rax); // save rax 4699 push(reg); // pass register argument 4700 4701 // Pass register number to verify_oop_subroutine 4702 const char* b = nullptr; 4703 { 4704 ResourceMark rm; 4705 stringStream ss; 4706 ss.print("verify_oop: %s: %s (%s:%d)", reg->name(), s, file, line); 4707 b = code_string(ss.as_string()); 4708 } 4709 AddressLiteral buffer((address) b, external_word_Relocation::spec_for_immediate()); 4710 pushptr(buffer.addr(), rscratch1); 4711 4712 // call indirectly to solve generation ordering problem 4713 movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address())); 4714 call(rax); 4715 // Caller pops the arguments (oop, message) and restores rax, r10 4716 BLOCK_COMMENT("} verify_oop"); 4717 } 4718 4719 void MacroAssembler::vallones(XMMRegister dst, int vector_len) { 4720 if (UseAVX > 2 && (vector_len == Assembler::AVX_512bit || VM_Version::supports_avx512vl())) { 4721 // Only pcmpeq has dependency breaking treatment (i.e the execution can begin without 4722 // waiting for the previous result on dst), not vpcmpeqd, so just use vpternlog 4723 vpternlogd(dst, 0xFF, dst, dst, vector_len); 4724 } else if (VM_Version::supports_avx()) { 4725 vpcmpeqd(dst, dst, dst, vector_len); 4726 } else { 4727 pcmpeqd(dst, dst); 4728 } 4729 } 4730 4731 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot, 4732 int extra_slot_offset) { 4733 // cf. TemplateTable::prepare_invoke(), if (load_receiver). 4734 int stackElementSize = Interpreter::stackElementSize; 4735 int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0); 4736 #ifdef ASSERT 4737 int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1); 4738 assert(offset1 - offset == stackElementSize, "correct arithmetic"); 4739 #endif 4740 Register scale_reg = noreg; 4741 Address::ScaleFactor scale_factor = Address::no_scale; 4742 if (arg_slot.is_constant()) { 4743 offset += arg_slot.as_constant() * stackElementSize; 4744 } else { 4745 scale_reg = arg_slot.as_register(); 4746 scale_factor = Address::times(stackElementSize); 4747 } 4748 offset += wordSize; // return PC is on stack 4749 return Address(rsp, scale_reg, scale_factor, offset); 4750 } 4751 4752 void MacroAssembler::_verify_oop_addr(Address addr, const char* s, const char* file, int line) { 4753 if (!VerifyOops) return; 4754 4755 push(rscratch1); 4756 push(rax); // save rax, 4757 // addr may contain rsp so we will have to adjust it based on the push 4758 // we just did (and on 64 bit we do two pushes) 4759 // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which 4760 // stores rax into addr which is backwards of what was intended. 4761 if (addr.uses(rsp)) { 4762 lea(rax, addr); 4763 pushptr(Address(rax, 2 * BytesPerWord)); 4764 } else { 4765 pushptr(addr); 4766 } 4767 4768 // Pass register number to verify_oop_subroutine 4769 const char* b = nullptr; 4770 { 4771 ResourceMark rm; 4772 stringStream ss; 4773 ss.print("verify_oop_addr: %s (%s:%d)", s, file, line); 4774 b = code_string(ss.as_string()); 4775 } 4776 AddressLiteral buffer((address) b, external_word_Relocation::spec_for_immediate()); 4777 pushptr(buffer.addr(), rscratch1); 4778 4779 // call indirectly to solve generation ordering problem 4780 movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address())); 4781 call(rax); 4782 // Caller pops the arguments (addr, message) and restores rax, r10. 4783 } 4784 4785 void MacroAssembler::verify_tlab() { 4786 #ifdef ASSERT 4787 if (UseTLAB && VerifyOops) { 4788 Label next, ok; 4789 Register t1 = rsi; 4790 4791 push(t1); 4792 4793 movptr(t1, Address(r15_thread, in_bytes(JavaThread::tlab_top_offset()))); 4794 cmpptr(t1, Address(r15_thread, in_bytes(JavaThread::tlab_start_offset()))); 4795 jcc(Assembler::aboveEqual, next); 4796 STOP("assert(top >= start)"); 4797 should_not_reach_here(); 4798 4799 bind(next); 4800 movptr(t1, Address(r15_thread, in_bytes(JavaThread::tlab_end_offset()))); 4801 cmpptr(t1, Address(r15_thread, in_bytes(JavaThread::tlab_top_offset()))); 4802 jcc(Assembler::aboveEqual, ok); 4803 STOP("assert(top <= end)"); 4804 should_not_reach_here(); 4805 4806 bind(ok); 4807 pop(t1); 4808 } 4809 #endif 4810 } 4811 4812 class ControlWord { 4813 public: 4814 int32_t _value; 4815 4816 int rounding_control() const { return (_value >> 10) & 3 ; } 4817 int precision_control() const { return (_value >> 8) & 3 ; } 4818 bool precision() const { return ((_value >> 5) & 1) != 0; } 4819 bool underflow() const { return ((_value >> 4) & 1) != 0; } 4820 bool overflow() const { return ((_value >> 3) & 1) != 0; } 4821 bool zero_divide() const { return ((_value >> 2) & 1) != 0; } 4822 bool denormalized() const { return ((_value >> 1) & 1) != 0; } 4823 bool invalid() const { return ((_value >> 0) & 1) != 0; } 4824 4825 void print() const { 4826 // rounding control 4827 const char* rc; 4828 switch (rounding_control()) { 4829 case 0: rc = "round near"; break; 4830 case 1: rc = "round down"; break; 4831 case 2: rc = "round up "; break; 4832 case 3: rc = "chop "; break; 4833 default: 4834 rc = nullptr; // silence compiler warnings 4835 fatal("Unknown rounding control: %d", rounding_control()); 4836 }; 4837 // precision control 4838 const char* pc; 4839 switch (precision_control()) { 4840 case 0: pc = "24 bits "; break; 4841 case 1: pc = "reserved"; break; 4842 case 2: pc = "53 bits "; break; 4843 case 3: pc = "64 bits "; break; 4844 default: 4845 pc = nullptr; // silence compiler warnings 4846 fatal("Unknown precision control: %d", precision_control()); 4847 }; 4848 // flags 4849 char f[9]; 4850 f[0] = ' '; 4851 f[1] = ' '; 4852 f[2] = (precision ()) ? 'P' : 'p'; 4853 f[3] = (underflow ()) ? 'U' : 'u'; 4854 f[4] = (overflow ()) ? 'O' : 'o'; 4855 f[5] = (zero_divide ()) ? 'Z' : 'z'; 4856 f[6] = (denormalized()) ? 'D' : 'd'; 4857 f[7] = (invalid ()) ? 'I' : 'i'; 4858 f[8] = '\x0'; 4859 // output 4860 printf("%04x masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc); 4861 } 4862 4863 }; 4864 4865 class StatusWord { 4866 public: 4867 int32_t _value; 4868 4869 bool busy() const { return ((_value >> 15) & 1) != 0; } 4870 bool C3() const { return ((_value >> 14) & 1) != 0; } 4871 bool C2() const { return ((_value >> 10) & 1) != 0; } 4872 bool C1() const { return ((_value >> 9) & 1) != 0; } 4873 bool C0() const { return ((_value >> 8) & 1) != 0; } 4874 int top() const { return (_value >> 11) & 7 ; } 4875 bool error_status() const { return ((_value >> 7) & 1) != 0; } 4876 bool stack_fault() const { return ((_value >> 6) & 1) != 0; } 4877 bool precision() const { return ((_value >> 5) & 1) != 0; } 4878 bool underflow() const { return ((_value >> 4) & 1) != 0; } 4879 bool overflow() const { return ((_value >> 3) & 1) != 0; } 4880 bool zero_divide() const { return ((_value >> 2) & 1) != 0; } 4881 bool denormalized() const { return ((_value >> 1) & 1) != 0; } 4882 bool invalid() const { return ((_value >> 0) & 1) != 0; } 4883 4884 void print() const { 4885 // condition codes 4886 char c[5]; 4887 c[0] = (C3()) ? '3' : '-'; 4888 c[1] = (C2()) ? '2' : '-'; 4889 c[2] = (C1()) ? '1' : '-'; 4890 c[3] = (C0()) ? '0' : '-'; 4891 c[4] = '\x0'; 4892 // flags 4893 char f[9]; 4894 f[0] = (error_status()) ? 'E' : '-'; 4895 f[1] = (stack_fault ()) ? 'S' : '-'; 4896 f[2] = (precision ()) ? 'P' : '-'; 4897 f[3] = (underflow ()) ? 'U' : '-'; 4898 f[4] = (overflow ()) ? 'O' : '-'; 4899 f[5] = (zero_divide ()) ? 'Z' : '-'; 4900 f[6] = (denormalized()) ? 'D' : '-'; 4901 f[7] = (invalid ()) ? 'I' : '-'; 4902 f[8] = '\x0'; 4903 // output 4904 printf("%04x flags = %s, cc = %s, top = %d", _value & 0xFFFF, f, c, top()); 4905 } 4906 4907 }; 4908 4909 class TagWord { 4910 public: 4911 int32_t _value; 4912 4913 int tag_at(int i) const { return (_value >> (i*2)) & 3; } 4914 4915 void print() const { 4916 printf("%04x", _value & 0xFFFF); 4917 } 4918 4919 }; 4920 4921 class FPU_Register { 4922 public: 4923 int32_t _m0; 4924 int32_t _m1; 4925 int16_t _ex; 4926 4927 bool is_indefinite() const { 4928 return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0; 4929 } 4930 4931 void print() const { 4932 char sign = (_ex < 0) ? '-' : '+'; 4933 const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : " "; 4934 printf("%c%04hx.%08x%08x %s", sign, _ex, _m1, _m0, kind); 4935 }; 4936 4937 }; 4938 4939 class FPU_State { 4940 public: 4941 enum { 4942 register_size = 10, 4943 number_of_registers = 8, 4944 register_mask = 7 4945 }; 4946 4947 ControlWord _control_word; 4948 StatusWord _status_word; 4949 TagWord _tag_word; 4950 int32_t _error_offset; 4951 int32_t _error_selector; 4952 int32_t _data_offset; 4953 int32_t _data_selector; 4954 int8_t _register[register_size * number_of_registers]; 4955 4956 int tag_for_st(int i) const { return _tag_word.tag_at((_status_word.top() + i) & register_mask); } 4957 FPU_Register* st(int i) const { return (FPU_Register*)&_register[register_size * i]; } 4958 4959 const char* tag_as_string(int tag) const { 4960 switch (tag) { 4961 case 0: return "valid"; 4962 case 1: return "zero"; 4963 case 2: return "special"; 4964 case 3: return "empty"; 4965 } 4966 ShouldNotReachHere(); 4967 return nullptr; 4968 } 4969 4970 void print() const { 4971 // print computation registers 4972 { int t = _status_word.top(); 4973 for (int i = 0; i < number_of_registers; i++) { 4974 int j = (i - t) & register_mask; 4975 printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j); 4976 st(j)->print(); 4977 printf(" %s\n", tag_as_string(_tag_word.tag_at(i))); 4978 } 4979 } 4980 printf("\n"); 4981 // print control registers 4982 printf("ctrl = "); _control_word.print(); printf("\n"); 4983 printf("stat = "); _status_word .print(); printf("\n"); 4984 printf("tags = "); _tag_word .print(); printf("\n"); 4985 } 4986 4987 }; 4988 4989 class Flag_Register { 4990 public: 4991 int32_t _value; 4992 4993 bool overflow() const { return ((_value >> 11) & 1) != 0; } 4994 bool direction() const { return ((_value >> 10) & 1) != 0; } 4995 bool sign() const { return ((_value >> 7) & 1) != 0; } 4996 bool zero() const { return ((_value >> 6) & 1) != 0; } 4997 bool auxiliary_carry() const { return ((_value >> 4) & 1) != 0; } 4998 bool parity() const { return ((_value >> 2) & 1) != 0; } 4999 bool carry() const { return ((_value >> 0) & 1) != 0; } 5000 5001 void print() const { 5002 // flags 5003 char f[8]; 5004 f[0] = (overflow ()) ? 'O' : '-'; 5005 f[1] = (direction ()) ? 'D' : '-'; 5006 f[2] = (sign ()) ? 'S' : '-'; 5007 f[3] = (zero ()) ? 'Z' : '-'; 5008 f[4] = (auxiliary_carry()) ? 'A' : '-'; 5009 f[5] = (parity ()) ? 'P' : '-'; 5010 f[6] = (carry ()) ? 'C' : '-'; 5011 f[7] = '\x0'; 5012 // output 5013 printf("%08x flags = %s", _value, f); 5014 } 5015 5016 }; 5017 5018 class IU_Register { 5019 public: 5020 int32_t _value; 5021 5022 void print() const { 5023 printf("%08x %11d", _value, _value); 5024 } 5025 5026 }; 5027 5028 class IU_State { 5029 public: 5030 Flag_Register _eflags; 5031 IU_Register _rdi; 5032 IU_Register _rsi; 5033 IU_Register _rbp; 5034 IU_Register _rsp; 5035 IU_Register _rbx; 5036 IU_Register _rdx; 5037 IU_Register _rcx; 5038 IU_Register _rax; 5039 5040 void print() const { 5041 // computation registers 5042 printf("rax, = "); _rax.print(); printf("\n"); 5043 printf("rbx, = "); _rbx.print(); printf("\n"); 5044 printf("rcx = "); _rcx.print(); printf("\n"); 5045 printf("rdx = "); _rdx.print(); printf("\n"); 5046 printf("rdi = "); _rdi.print(); printf("\n"); 5047 printf("rsi = "); _rsi.print(); printf("\n"); 5048 printf("rbp, = "); _rbp.print(); printf("\n"); 5049 printf("rsp = "); _rsp.print(); printf("\n"); 5050 printf("\n"); 5051 // control registers 5052 printf("flgs = "); _eflags.print(); printf("\n"); 5053 } 5054 }; 5055 5056 5057 class CPU_State { 5058 public: 5059 FPU_State _fpu_state; 5060 IU_State _iu_state; 5061 5062 void print() const { 5063 printf("--------------------------------------------------\n"); 5064 _iu_state .print(); 5065 printf("\n"); 5066 _fpu_state.print(); 5067 printf("--------------------------------------------------\n"); 5068 } 5069 5070 }; 5071 5072 5073 static void _print_CPU_state(CPU_State* state) { 5074 state->print(); 5075 }; 5076 5077 5078 void MacroAssembler::print_CPU_state() { 5079 push_CPU_state(); 5080 push(rsp); // pass CPU state 5081 call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state))); 5082 addptr(rsp, wordSize); // discard argument 5083 pop_CPU_state(); 5084 } 5085 5086 void MacroAssembler::restore_cpu_control_state_after_jni(Register rscratch) { 5087 // Either restore the MXCSR register after returning from the JNI Call 5088 // or verify that it wasn't changed (with -Xcheck:jni flag). 5089 if (VM_Version::supports_sse()) { 5090 if (RestoreMXCSROnJNICalls) { 5091 ldmxcsr(ExternalAddress(StubRoutines::x86::addr_mxcsr_std()), rscratch); 5092 } else if (CheckJNICalls) { 5093 call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry())); 5094 } 5095 } 5096 // Clear upper bits of YMM registers to avoid SSE <-> AVX transition penalty. 5097 vzeroupper(); 5098 } 5099 5100 // ((OopHandle)result).resolve(); 5101 void MacroAssembler::resolve_oop_handle(Register result, Register tmp) { 5102 assert_different_registers(result, tmp); 5103 5104 // Only 64 bit platforms support GCs that require a tmp register 5105 // Only IN_HEAP loads require a thread_tmp register 5106 // OopHandle::resolve is an indirection like jobject. 5107 access_load_at(T_OBJECT, IN_NATIVE, 5108 result, Address(result, 0), tmp); 5109 } 5110 5111 // ((WeakHandle)result).resolve(); 5112 void MacroAssembler::resolve_weak_handle(Register rresult, Register rtmp) { 5113 assert_different_registers(rresult, rtmp); 5114 Label resolved; 5115 5116 // A null weak handle resolves to null. 5117 cmpptr(rresult, 0); 5118 jcc(Assembler::equal, resolved); 5119 5120 // Only 64 bit platforms support GCs that require a tmp register 5121 // Only IN_HEAP loads require a thread_tmp register 5122 // WeakHandle::resolve is an indirection like jweak. 5123 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, 5124 rresult, Address(rresult, 0), rtmp); 5125 bind(resolved); 5126 } 5127 5128 void MacroAssembler::load_mirror(Register mirror, Register method, Register tmp) { 5129 // get mirror 5130 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 5131 load_method_holder(mirror, method); 5132 movptr(mirror, Address(mirror, mirror_offset)); 5133 resolve_oop_handle(mirror, tmp); 5134 } 5135 5136 void MacroAssembler::load_method_holder_cld(Register rresult, Register rmethod) { 5137 load_method_holder(rresult, rmethod); 5138 movptr(rresult, Address(rresult, InstanceKlass::class_loader_data_offset())); 5139 } 5140 5141 void MacroAssembler::load_method_holder(Register holder, Register method) { 5142 movptr(holder, Address(method, Method::const_offset())); // ConstMethod* 5143 movptr(holder, Address(holder, ConstMethod::constants_offset())); // ConstantPool* 5144 movptr(holder, Address(holder, ConstantPool::pool_holder_offset())); // InstanceKlass* 5145 } 5146 5147 void MacroAssembler::load_narrow_klass_compact(Register dst, Register src) { 5148 assert(UseCompactObjectHeaders, "expect compact object headers"); 5149 movq(dst, Address(src, oopDesc::mark_offset_in_bytes())); 5150 shrq(dst, markWord::klass_shift); 5151 } 5152 5153 void MacroAssembler::load_klass(Register dst, Register src, Register tmp) { 5154 assert_different_registers(src, tmp); 5155 assert_different_registers(dst, tmp); 5156 5157 if (UseCompactObjectHeaders) { 5158 load_narrow_klass_compact(dst, src); 5159 decode_klass_not_null(dst, tmp); 5160 } else if (UseCompressedClassPointers) { 5161 movl(dst, Address(src, oopDesc::klass_offset_in_bytes())); 5162 decode_klass_not_null(dst, tmp); 5163 } else { 5164 movptr(dst, Address(src, oopDesc::klass_offset_in_bytes())); 5165 } 5166 } 5167 5168 void MacroAssembler::store_klass(Register dst, Register src, Register tmp) { 5169 assert(!UseCompactObjectHeaders, "not with compact headers"); 5170 assert_different_registers(src, tmp); 5171 assert_different_registers(dst, tmp); 5172 if (UseCompressedClassPointers) { 5173 encode_klass_not_null(src, tmp); 5174 movl(Address(dst, oopDesc::klass_offset_in_bytes()), src); 5175 } else { 5176 movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src); 5177 } 5178 } 5179 5180 void MacroAssembler::cmp_klass(Register klass, Register obj, Register tmp) { 5181 if (UseCompactObjectHeaders) { 5182 assert(tmp != noreg, "need tmp"); 5183 assert_different_registers(klass, obj, tmp); 5184 load_narrow_klass_compact(tmp, obj); 5185 cmpl(klass, tmp); 5186 } else if (UseCompressedClassPointers) { 5187 cmpl(klass, Address(obj, oopDesc::klass_offset_in_bytes())); 5188 } else { 5189 cmpptr(klass, Address(obj, oopDesc::klass_offset_in_bytes())); 5190 } 5191 } 5192 5193 void MacroAssembler::cmp_klasses_from_objects(Register obj1, Register obj2, Register tmp1, Register tmp2) { 5194 if (UseCompactObjectHeaders) { 5195 assert(tmp2 != noreg, "need tmp2"); 5196 assert_different_registers(obj1, obj2, tmp1, tmp2); 5197 load_narrow_klass_compact(tmp1, obj1); 5198 load_narrow_klass_compact(tmp2, obj2); 5199 cmpl(tmp1, tmp2); 5200 } else if (UseCompressedClassPointers) { 5201 movl(tmp1, Address(obj1, oopDesc::klass_offset_in_bytes())); 5202 cmpl(tmp1, Address(obj2, oopDesc::klass_offset_in_bytes())); 5203 } else { 5204 movptr(tmp1, Address(obj1, oopDesc::klass_offset_in_bytes())); 5205 cmpptr(tmp1, Address(obj2, oopDesc::klass_offset_in_bytes())); 5206 } 5207 } 5208 5209 void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src, 5210 Register tmp1) { 5211 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5212 decorators = AccessInternal::decorator_fixup(decorators, type); 5213 bool as_raw = (decorators & AS_RAW) != 0; 5214 if (as_raw) { 5215 bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1); 5216 } else { 5217 bs->load_at(this, decorators, type, dst, src, tmp1); 5218 } 5219 } 5220 5221 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register val, 5222 Register tmp1, Register tmp2, Register tmp3) { 5223 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5224 decorators = AccessInternal::decorator_fixup(decorators, type); 5225 bool as_raw = (decorators & AS_RAW) != 0; 5226 if (as_raw) { 5227 bs->BarrierSetAssembler::store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3); 5228 } else { 5229 bs->store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3); 5230 } 5231 } 5232 5233 void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1, DecoratorSet decorators) { 5234 access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1); 5235 } 5236 5237 // Doesn't do verification, generates fixed size code 5238 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1, DecoratorSet decorators) { 5239 access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL | decorators, dst, src, tmp1); 5240 } 5241 5242 void MacroAssembler::store_heap_oop(Address dst, Register val, Register tmp1, 5243 Register tmp2, Register tmp3, DecoratorSet decorators) { 5244 access_store_at(T_OBJECT, IN_HEAP | decorators, dst, val, tmp1, tmp2, tmp3); 5245 } 5246 5247 // Used for storing nulls. 5248 void MacroAssembler::store_heap_oop_null(Address dst) { 5249 access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg, noreg); 5250 } 5251 5252 void MacroAssembler::store_klass_gap(Register dst, Register src) { 5253 assert(!UseCompactObjectHeaders, "Don't use with compact headers"); 5254 if (UseCompressedClassPointers) { 5255 // Store to klass gap in destination 5256 movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src); 5257 } 5258 } 5259 5260 #ifdef ASSERT 5261 void MacroAssembler::verify_heapbase(const char* msg) { 5262 assert (UseCompressedOops, "should be compressed"); 5263 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5264 if (CheckCompressedOops) { 5265 Label ok; 5266 ExternalAddress src2(CompressedOops::base_addr()); 5267 const bool is_src2_reachable = reachable(src2); 5268 if (!is_src2_reachable) { 5269 push(rscratch1); // cmpptr trashes rscratch1 5270 } 5271 cmpptr(r12_heapbase, src2, rscratch1); 5272 jcc(Assembler::equal, ok); 5273 STOP(msg); 5274 bind(ok); 5275 if (!is_src2_reachable) { 5276 pop(rscratch1); 5277 } 5278 } 5279 } 5280 #endif 5281 5282 // Algorithm must match oop.inline.hpp encode_heap_oop. 5283 void MacroAssembler::encode_heap_oop(Register r) { 5284 #ifdef ASSERT 5285 verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?"); 5286 #endif 5287 verify_oop_msg(r, "broken oop in encode_heap_oop"); 5288 if (CompressedOops::base() == nullptr) { 5289 if (CompressedOops::shift() != 0) { 5290 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5291 shrq(r, LogMinObjAlignmentInBytes); 5292 } 5293 return; 5294 } 5295 testq(r, r); 5296 cmovq(Assembler::equal, r, r12_heapbase); 5297 subq(r, r12_heapbase); 5298 shrq(r, LogMinObjAlignmentInBytes); 5299 } 5300 5301 void MacroAssembler::encode_heap_oop_not_null(Register r) { 5302 #ifdef ASSERT 5303 verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?"); 5304 if (CheckCompressedOops) { 5305 Label ok; 5306 testq(r, r); 5307 jcc(Assembler::notEqual, ok); 5308 STOP("null oop passed to encode_heap_oop_not_null"); 5309 bind(ok); 5310 } 5311 #endif 5312 verify_oop_msg(r, "broken oop in encode_heap_oop_not_null"); 5313 if (CompressedOops::base() != nullptr) { 5314 subq(r, r12_heapbase); 5315 } 5316 if (CompressedOops::shift() != 0) { 5317 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5318 shrq(r, LogMinObjAlignmentInBytes); 5319 } 5320 } 5321 5322 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) { 5323 #ifdef ASSERT 5324 verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?"); 5325 if (CheckCompressedOops) { 5326 Label ok; 5327 testq(src, src); 5328 jcc(Assembler::notEqual, ok); 5329 STOP("null oop passed to encode_heap_oop_not_null2"); 5330 bind(ok); 5331 } 5332 #endif 5333 verify_oop_msg(src, "broken oop in encode_heap_oop_not_null2"); 5334 if (dst != src) { 5335 movq(dst, src); 5336 } 5337 if (CompressedOops::base() != nullptr) { 5338 subq(dst, r12_heapbase); 5339 } 5340 if (CompressedOops::shift() != 0) { 5341 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5342 shrq(dst, LogMinObjAlignmentInBytes); 5343 } 5344 } 5345 5346 void MacroAssembler::decode_heap_oop(Register r) { 5347 #ifdef ASSERT 5348 verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?"); 5349 #endif 5350 if (CompressedOops::base() == nullptr) { 5351 if (CompressedOops::shift() != 0) { 5352 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5353 shlq(r, LogMinObjAlignmentInBytes); 5354 } 5355 } else { 5356 Label done; 5357 shlq(r, LogMinObjAlignmentInBytes); 5358 jccb(Assembler::equal, done); 5359 addq(r, r12_heapbase); 5360 bind(done); 5361 } 5362 verify_oop_msg(r, "broken oop in decode_heap_oop"); 5363 } 5364 5365 void MacroAssembler::decode_heap_oop_not_null(Register r) { 5366 // Note: it will change flags 5367 assert (UseCompressedOops, "should only be used for compressed headers"); 5368 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5369 // Cannot assert, unverified entry point counts instructions (see .ad file) 5370 // vtableStubs also counts instructions in pd_code_size_limit. 5371 // Also do not verify_oop as this is called by verify_oop. 5372 if (CompressedOops::shift() != 0) { 5373 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5374 shlq(r, LogMinObjAlignmentInBytes); 5375 if (CompressedOops::base() != nullptr) { 5376 addq(r, r12_heapbase); 5377 } 5378 } else { 5379 assert (CompressedOops::base() == nullptr, "sanity"); 5380 } 5381 } 5382 5383 void MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) { 5384 // Note: it will change flags 5385 assert (UseCompressedOops, "should only be used for compressed headers"); 5386 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5387 // Cannot assert, unverified entry point counts instructions (see .ad file) 5388 // vtableStubs also counts instructions in pd_code_size_limit. 5389 // Also do not verify_oop as this is called by verify_oop. 5390 if (CompressedOops::shift() != 0) { 5391 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5392 if (LogMinObjAlignmentInBytes == Address::times_8) { 5393 leaq(dst, Address(r12_heapbase, src, Address::times_8, 0)); 5394 } else { 5395 if (dst != src) { 5396 movq(dst, src); 5397 } 5398 shlq(dst, LogMinObjAlignmentInBytes); 5399 if (CompressedOops::base() != nullptr) { 5400 addq(dst, r12_heapbase); 5401 } 5402 } 5403 } else { 5404 assert (CompressedOops::base() == nullptr, "sanity"); 5405 if (dst != src) { 5406 movq(dst, src); 5407 } 5408 } 5409 } 5410 5411 void MacroAssembler::encode_klass_not_null(Register r, Register tmp) { 5412 BLOCK_COMMENT("encode_klass_not_null {"); 5413 assert_different_registers(r, tmp); 5414 if (CompressedKlassPointers::base() != nullptr) { 5415 if (AOTCodeCache::is_on_for_dump()) { 5416 movptr(tmp, ExternalAddress(CompressedKlassPointers::base_addr())); 5417 } else { 5418 movptr(tmp, (intptr_t)CompressedKlassPointers::base()); 5419 } 5420 subq(r, tmp); 5421 } 5422 if (CompressedKlassPointers::shift() != 0) { 5423 shrq(r, CompressedKlassPointers::shift()); 5424 } 5425 BLOCK_COMMENT("} encode_klass_not_null"); 5426 } 5427 5428 void MacroAssembler::encode_and_move_klass_not_null(Register dst, Register src) { 5429 BLOCK_COMMENT("encode_and_move_klass_not_null {"); 5430 assert_different_registers(src, dst); 5431 if (CompressedKlassPointers::base() != nullptr) { 5432 movptr(dst, -(intptr_t)CompressedKlassPointers::base()); 5433 addq(dst, src); 5434 } else { 5435 movptr(dst, src); 5436 } 5437 if (CompressedKlassPointers::shift() != 0) { 5438 shrq(dst, CompressedKlassPointers::shift()); 5439 } 5440 BLOCK_COMMENT("} encode_and_move_klass_not_null"); 5441 } 5442 5443 void MacroAssembler::decode_klass_not_null(Register r, Register tmp) { 5444 BLOCK_COMMENT("decode_klass_not_null {"); 5445 assert_different_registers(r, tmp); 5446 // Note: it will change flags 5447 assert(UseCompressedClassPointers, "should only be used for compressed headers"); 5448 // Cannot assert, unverified entry point counts instructions (see .ad file) 5449 // vtableStubs also counts instructions in pd_code_size_limit. 5450 // Also do not verify_oop as this is called by verify_oop. 5451 if (CompressedKlassPointers::shift() != 0) { 5452 shlq(r, CompressedKlassPointers::shift()); 5453 } 5454 if (CompressedKlassPointers::base() != nullptr) { 5455 if (AOTCodeCache::is_on_for_dump()) { 5456 movptr(tmp, ExternalAddress(CompressedKlassPointers::base_addr())); 5457 } else { 5458 movptr(tmp, (intptr_t)CompressedKlassPointers::base()); 5459 } 5460 addq(r, tmp); 5461 } 5462 BLOCK_COMMENT("} decode_klass_not_null"); 5463 } 5464 5465 void MacroAssembler::decode_and_move_klass_not_null(Register dst, Register src) { 5466 BLOCK_COMMENT("decode_and_move_klass_not_null {"); 5467 assert_different_registers(src, dst); 5468 // Note: it will change flags 5469 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 5470 // Cannot assert, unverified entry point counts instructions (see .ad file) 5471 // vtableStubs also counts instructions in pd_code_size_limit. 5472 // Also do not verify_oop as this is called by verify_oop. 5473 5474 if (CompressedKlassPointers::base() == nullptr && 5475 CompressedKlassPointers::shift() == 0) { 5476 // The best case scenario is that there is no base or shift. Then it is already 5477 // a pointer that needs nothing but a register rename. 5478 movl(dst, src); 5479 } else { 5480 if (CompressedKlassPointers::shift() <= Address::times_8) { 5481 if (CompressedKlassPointers::base() != nullptr) { 5482 movptr(dst, (intptr_t)CompressedKlassPointers::base()); 5483 } else { 5484 xorq(dst, dst); 5485 } 5486 if (CompressedKlassPointers::shift() != 0) { 5487 assert(CompressedKlassPointers::shift() == Address::times_8, "klass not aligned on 64bits?"); 5488 leaq(dst, Address(dst, src, Address::times_8, 0)); 5489 } else { 5490 addq(dst, src); 5491 } 5492 } else { 5493 if (CompressedKlassPointers::base() != nullptr) { 5494 const intptr_t base_right_shifted = 5495 (intptr_t)CompressedKlassPointers::base() >> CompressedKlassPointers::shift(); 5496 movptr(dst, base_right_shifted); 5497 } else { 5498 xorq(dst, dst); 5499 } 5500 addq(dst, src); 5501 shlq(dst, CompressedKlassPointers::shift()); 5502 } 5503 } 5504 BLOCK_COMMENT("} decode_and_move_klass_not_null"); 5505 } 5506 5507 void MacroAssembler::set_narrow_oop(Register dst, jobject obj) { 5508 assert (UseCompressedOops, "should only be used for compressed headers"); 5509 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5510 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5511 int oop_index = oop_recorder()->find_index(obj); 5512 RelocationHolder rspec = oop_Relocation::spec(oop_index); 5513 mov_narrow_oop(dst, oop_index, rspec); 5514 } 5515 5516 void MacroAssembler::set_narrow_oop(Address dst, jobject obj) { 5517 assert (UseCompressedOops, "should only be used for compressed headers"); 5518 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5519 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5520 int oop_index = oop_recorder()->find_index(obj); 5521 RelocationHolder rspec = oop_Relocation::spec(oop_index); 5522 mov_narrow_oop(dst, oop_index, rspec); 5523 } 5524 5525 void MacroAssembler::set_narrow_klass(Register dst, Klass* k) { 5526 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 5527 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5528 int klass_index = oop_recorder()->find_index(k); 5529 RelocationHolder rspec = metadata_Relocation::spec(klass_index); 5530 mov_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec); 5531 } 5532 5533 void MacroAssembler::set_narrow_klass(Address dst, Klass* k) { 5534 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 5535 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5536 int klass_index = oop_recorder()->find_index(k); 5537 RelocationHolder rspec = metadata_Relocation::spec(klass_index); 5538 mov_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec); 5539 } 5540 5541 void MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) { 5542 assert (UseCompressedOops, "should only be used for compressed headers"); 5543 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5544 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5545 int oop_index = oop_recorder()->find_index(obj); 5546 RelocationHolder rspec = oop_Relocation::spec(oop_index); 5547 Assembler::cmp_narrow_oop(dst, oop_index, rspec); 5548 } 5549 5550 void MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) { 5551 assert (UseCompressedOops, "should only be used for compressed headers"); 5552 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5553 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5554 int oop_index = oop_recorder()->find_index(obj); 5555 RelocationHolder rspec = oop_Relocation::spec(oop_index); 5556 Assembler::cmp_narrow_oop(dst, oop_index, rspec); 5557 } 5558 5559 void MacroAssembler::cmp_narrow_klass(Register dst, Klass* k) { 5560 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 5561 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5562 int klass_index = oop_recorder()->find_index(k); 5563 RelocationHolder rspec = metadata_Relocation::spec(klass_index); 5564 Assembler::cmp_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec); 5565 } 5566 5567 void MacroAssembler::cmp_narrow_klass(Address dst, Klass* k) { 5568 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 5569 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5570 int klass_index = oop_recorder()->find_index(k); 5571 RelocationHolder rspec = metadata_Relocation::spec(klass_index); 5572 Assembler::cmp_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec); 5573 } 5574 5575 void MacroAssembler::reinit_heapbase() { 5576 if (UseCompressedOops) { 5577 if (Universe::heap() != nullptr) { 5578 if (CompressedOops::base() == nullptr) { 5579 MacroAssembler::xorptr(r12_heapbase, r12_heapbase); 5580 } else { 5581 mov64(r12_heapbase, (int64_t)CompressedOops::base()); 5582 } 5583 } else { 5584 movptr(r12_heapbase, ExternalAddress(CompressedOops::base_addr())); 5585 } 5586 } 5587 } 5588 5589 #if COMPILER2_OR_JVMCI 5590 5591 // clear memory of size 'cnt' qwords, starting at 'base' using XMM/YMM/ZMM registers 5592 void MacroAssembler::xmm_clear_mem(Register base, Register cnt, Register rtmp, XMMRegister xtmp, KRegister mask) { 5593 // cnt - number of qwords (8-byte words). 5594 // base - start address, qword aligned. 5595 Label L_zero_64_bytes, L_loop, L_sloop, L_tail, L_end; 5596 bool use64byteVector = (MaxVectorSize == 64) && (VM_Version::avx3_threshold() == 0); 5597 if (use64byteVector) { 5598 vpxor(xtmp, xtmp, xtmp, AVX_512bit); 5599 } else if (MaxVectorSize >= 32) { 5600 vpxor(xtmp, xtmp, xtmp, AVX_256bit); 5601 } else { 5602 pxor(xtmp, xtmp); 5603 } 5604 jmp(L_zero_64_bytes); 5605 5606 BIND(L_loop); 5607 if (MaxVectorSize >= 32) { 5608 fill64(base, 0, xtmp, use64byteVector); 5609 } else { 5610 movdqu(Address(base, 0), xtmp); 5611 movdqu(Address(base, 16), xtmp); 5612 movdqu(Address(base, 32), xtmp); 5613 movdqu(Address(base, 48), xtmp); 5614 } 5615 addptr(base, 64); 5616 5617 BIND(L_zero_64_bytes); 5618 subptr(cnt, 8); 5619 jccb(Assembler::greaterEqual, L_loop); 5620 5621 // Copy trailing 64 bytes 5622 if (use64byteVector) { 5623 addptr(cnt, 8); 5624 jccb(Assembler::equal, L_end); 5625 fill64_masked(3, base, 0, xtmp, mask, cnt, rtmp, true); 5626 jmp(L_end); 5627 } else { 5628 addptr(cnt, 4); 5629 jccb(Assembler::less, L_tail); 5630 if (MaxVectorSize >= 32) { 5631 vmovdqu(Address(base, 0), xtmp); 5632 } else { 5633 movdqu(Address(base, 0), xtmp); 5634 movdqu(Address(base, 16), xtmp); 5635 } 5636 } 5637 addptr(base, 32); 5638 subptr(cnt, 4); 5639 5640 BIND(L_tail); 5641 addptr(cnt, 4); 5642 jccb(Assembler::lessEqual, L_end); 5643 if (UseAVX > 2 && MaxVectorSize >= 32 && VM_Version::supports_avx512vl()) { 5644 fill32_masked(3, base, 0, xtmp, mask, cnt, rtmp); 5645 } else { 5646 decrement(cnt); 5647 5648 BIND(L_sloop); 5649 movq(Address(base, 0), xtmp); 5650 addptr(base, 8); 5651 decrement(cnt); 5652 jccb(Assembler::greaterEqual, L_sloop); 5653 } 5654 BIND(L_end); 5655 } 5656 5657 // Clearing constant sized memory using YMM/ZMM registers. 5658 void MacroAssembler::clear_mem(Register base, int cnt, Register rtmp, XMMRegister xtmp, KRegister mask) { 5659 assert(UseAVX > 2 && VM_Version::supports_avx512vl(), ""); 5660 bool use64byteVector = (MaxVectorSize > 32) && (VM_Version::avx3_threshold() == 0); 5661 5662 int vector64_count = (cnt & (~0x7)) >> 3; 5663 cnt = cnt & 0x7; 5664 const int fill64_per_loop = 4; 5665 const int max_unrolled_fill64 = 8; 5666 5667 // 64 byte initialization loop. 5668 vpxor(xtmp, xtmp, xtmp, use64byteVector ? AVX_512bit : AVX_256bit); 5669 int start64 = 0; 5670 if (vector64_count > max_unrolled_fill64) { 5671 Label LOOP; 5672 Register index = rtmp; 5673 5674 start64 = vector64_count - (vector64_count % fill64_per_loop); 5675 5676 movl(index, 0); 5677 BIND(LOOP); 5678 for (int i = 0; i < fill64_per_loop; i++) { 5679 fill64(Address(base, index, Address::times_1, i * 64), xtmp, use64byteVector); 5680 } 5681 addl(index, fill64_per_loop * 64); 5682 cmpl(index, start64 * 64); 5683 jccb(Assembler::less, LOOP); 5684 } 5685 for (int i = start64; i < vector64_count; i++) { 5686 fill64(base, i * 64, xtmp, use64byteVector); 5687 } 5688 5689 // Clear remaining 64 byte tail. 5690 int disp = vector64_count * 64; 5691 if (cnt) { 5692 switch (cnt) { 5693 case 1: 5694 movq(Address(base, disp), xtmp); 5695 break; 5696 case 2: 5697 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_128bit); 5698 break; 5699 case 3: 5700 movl(rtmp, 0x7); 5701 kmovwl(mask, rtmp); 5702 evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_256bit); 5703 break; 5704 case 4: 5705 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit); 5706 break; 5707 case 5: 5708 if (use64byteVector) { 5709 movl(rtmp, 0x1F); 5710 kmovwl(mask, rtmp); 5711 evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_512bit); 5712 } else { 5713 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit); 5714 movq(Address(base, disp + 32), xtmp); 5715 } 5716 break; 5717 case 6: 5718 if (use64byteVector) { 5719 movl(rtmp, 0x3F); 5720 kmovwl(mask, rtmp); 5721 evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_512bit); 5722 } else { 5723 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit); 5724 evmovdqu(T_LONG, k0, Address(base, disp + 32), xtmp, false, Assembler::AVX_128bit); 5725 } 5726 break; 5727 case 7: 5728 if (use64byteVector) { 5729 movl(rtmp, 0x7F); 5730 kmovwl(mask, rtmp); 5731 evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_512bit); 5732 } else { 5733 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit); 5734 movl(rtmp, 0x7); 5735 kmovwl(mask, rtmp); 5736 evmovdqu(T_LONG, mask, Address(base, disp + 32), xtmp, true, Assembler::AVX_256bit); 5737 } 5738 break; 5739 default: 5740 fatal("Unexpected length : %d\n",cnt); 5741 break; 5742 } 5743 } 5744 } 5745 5746 void MacroAssembler::clear_mem(Register base, Register cnt, Register tmp, XMMRegister xtmp, 5747 bool is_large, KRegister mask) { 5748 // cnt - number of qwords (8-byte words). 5749 // base - start address, qword aligned. 5750 // is_large - if optimizers know cnt is larger than InitArrayShortSize 5751 assert(base==rdi, "base register must be edi for rep stos"); 5752 assert(tmp==rax, "tmp register must be eax for rep stos"); 5753 assert(cnt==rcx, "cnt register must be ecx for rep stos"); 5754 assert(InitArrayShortSize % BytesPerLong == 0, 5755 "InitArrayShortSize should be the multiple of BytesPerLong"); 5756 5757 Label DONE; 5758 if (!is_large || !UseXMMForObjInit) { 5759 xorptr(tmp, tmp); 5760 } 5761 5762 if (!is_large) { 5763 Label LOOP, LONG; 5764 cmpptr(cnt, InitArrayShortSize/BytesPerLong); 5765 jccb(Assembler::greater, LONG); 5766 5767 decrement(cnt); 5768 jccb(Assembler::negative, DONE); // Zero length 5769 5770 // Use individual pointer-sized stores for small counts: 5771 BIND(LOOP); 5772 movptr(Address(base, cnt, Address::times_ptr), tmp); 5773 decrement(cnt); 5774 jccb(Assembler::greaterEqual, LOOP); 5775 jmpb(DONE); 5776 5777 BIND(LONG); 5778 } 5779 5780 // Use longer rep-prefixed ops for non-small counts: 5781 if (UseFastStosb) { 5782 shlptr(cnt, 3); // convert to number of bytes 5783 rep_stosb(); 5784 } else if (UseXMMForObjInit) { 5785 xmm_clear_mem(base, cnt, tmp, xtmp, mask); 5786 } else { 5787 rep_stos(); 5788 } 5789 5790 BIND(DONE); 5791 } 5792 5793 #endif //COMPILER2_OR_JVMCI 5794 5795 5796 void MacroAssembler::generate_fill(BasicType t, bool aligned, 5797 Register to, Register value, Register count, 5798 Register rtmp, XMMRegister xtmp) { 5799 ShortBranchVerifier sbv(this); 5800 assert_different_registers(to, value, count, rtmp); 5801 Label L_exit; 5802 Label L_fill_2_bytes, L_fill_4_bytes; 5803 5804 #if defined(COMPILER2) 5805 if(MaxVectorSize >=32 && 5806 VM_Version::supports_avx512vlbw() && 5807 VM_Version::supports_bmi2()) { 5808 generate_fill_avx3(t, to, value, count, rtmp, xtmp); 5809 return; 5810 } 5811 #endif 5812 5813 int shift = -1; 5814 switch (t) { 5815 case T_BYTE: 5816 shift = 2; 5817 break; 5818 case T_SHORT: 5819 shift = 1; 5820 break; 5821 case T_INT: 5822 shift = 0; 5823 break; 5824 default: ShouldNotReachHere(); 5825 } 5826 5827 if (t == T_BYTE) { 5828 andl(value, 0xff); 5829 movl(rtmp, value); 5830 shll(rtmp, 8); 5831 orl(value, rtmp); 5832 } 5833 if (t == T_SHORT) { 5834 andl(value, 0xffff); 5835 } 5836 if (t == T_BYTE || t == T_SHORT) { 5837 movl(rtmp, value); 5838 shll(rtmp, 16); 5839 orl(value, rtmp); 5840 } 5841 5842 cmpptr(count, 8 << shift); // Short arrays (< 32 bytes) fill by element 5843 jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp 5844 if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) { 5845 Label L_skip_align2; 5846 // align source address at 4 bytes address boundary 5847 if (t == T_BYTE) { 5848 Label L_skip_align1; 5849 // One byte misalignment happens only for byte arrays 5850 testptr(to, 1); 5851 jccb(Assembler::zero, L_skip_align1); 5852 movb(Address(to, 0), value); 5853 increment(to); 5854 decrement(count); 5855 BIND(L_skip_align1); 5856 } 5857 // Two bytes misalignment happens only for byte and short (char) arrays 5858 testptr(to, 2); 5859 jccb(Assembler::zero, L_skip_align2); 5860 movw(Address(to, 0), value); 5861 addptr(to, 2); 5862 subptr(count, 1<<(shift-1)); 5863 BIND(L_skip_align2); 5864 } 5865 { 5866 Label L_fill_32_bytes; 5867 if (!UseUnalignedLoadStores) { 5868 // align to 8 bytes, we know we are 4 byte aligned to start 5869 testptr(to, 4); 5870 jccb(Assembler::zero, L_fill_32_bytes); 5871 movl(Address(to, 0), value); 5872 addptr(to, 4); 5873 subptr(count, 1<<shift); 5874 } 5875 BIND(L_fill_32_bytes); 5876 { 5877 Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes; 5878 movdl(xtmp, value); 5879 if (UseAVX >= 2 && UseUnalignedLoadStores) { 5880 Label L_check_fill_32_bytes; 5881 if (UseAVX > 2) { 5882 // Fill 64-byte chunks 5883 Label L_fill_64_bytes_loop_avx3, L_check_fill_64_bytes_avx2; 5884 5885 // If number of bytes to fill < VM_Version::avx3_threshold(), perform fill using AVX2 5886 cmpptr(count, VM_Version::avx3_threshold()); 5887 jccb(Assembler::below, L_check_fill_64_bytes_avx2); 5888 5889 vpbroadcastd(xtmp, xtmp, Assembler::AVX_512bit); 5890 5891 subptr(count, 16 << shift); 5892 jccb(Assembler::less, L_check_fill_32_bytes); 5893 align(16); 5894 5895 BIND(L_fill_64_bytes_loop_avx3); 5896 evmovdqul(Address(to, 0), xtmp, Assembler::AVX_512bit); 5897 addptr(to, 64); 5898 subptr(count, 16 << shift); 5899 jcc(Assembler::greaterEqual, L_fill_64_bytes_loop_avx3); 5900 jmpb(L_check_fill_32_bytes); 5901 5902 BIND(L_check_fill_64_bytes_avx2); 5903 } 5904 // Fill 64-byte chunks 5905 vpbroadcastd(xtmp, xtmp, Assembler::AVX_256bit); 5906 5907 subptr(count, 16 << shift); 5908 jcc(Assembler::less, L_check_fill_32_bytes); 5909 5910 // align data for 64-byte chunks 5911 Label L_fill_64_bytes_loop, L_align_64_bytes_loop; 5912 if (EnableX86ECoreOpts) { 5913 // align 'big' arrays to cache lines to minimize split_stores 5914 cmpptr(count, 96 << shift); 5915 jcc(Assembler::below, L_fill_64_bytes_loop); 5916 5917 // Find the bytes needed for alignment 5918 movptr(rtmp, to); 5919 andptr(rtmp, 0x1c); 5920 jcc(Assembler::zero, L_fill_64_bytes_loop); 5921 negptr(rtmp); // number of bytes to fill 32-rtmp. it filled by 2 mov by 32 5922 addptr(rtmp, 32); 5923 shrptr(rtmp, 2 - shift);// get number of elements from bytes 5924 subptr(count, rtmp); // adjust count by number of elements 5925 5926 align(16); 5927 BIND(L_align_64_bytes_loop); 5928 movdl(Address(to, 0), xtmp); 5929 addptr(to, 4); 5930 subptr(rtmp, 1 << shift); 5931 jcc(Assembler::greater, L_align_64_bytes_loop); 5932 } 5933 5934 align(16); 5935 BIND(L_fill_64_bytes_loop); 5936 vmovdqu(Address(to, 0), xtmp); 5937 vmovdqu(Address(to, 32), xtmp); 5938 addptr(to, 64); 5939 subptr(count, 16 << shift); 5940 jcc(Assembler::greaterEqual, L_fill_64_bytes_loop); 5941 5942 align(16); 5943 BIND(L_check_fill_32_bytes); 5944 addptr(count, 8 << shift); 5945 jccb(Assembler::less, L_check_fill_8_bytes); 5946 vmovdqu(Address(to, 0), xtmp); 5947 addptr(to, 32); 5948 subptr(count, 8 << shift); 5949 5950 BIND(L_check_fill_8_bytes); 5951 // clean upper bits of YMM registers 5952 movdl(xtmp, value); 5953 pshufd(xtmp, xtmp, 0); 5954 } else { 5955 // Fill 32-byte chunks 5956 pshufd(xtmp, xtmp, 0); 5957 5958 subptr(count, 8 << shift); 5959 jcc(Assembler::less, L_check_fill_8_bytes); 5960 align(16); 5961 5962 BIND(L_fill_32_bytes_loop); 5963 5964 if (UseUnalignedLoadStores) { 5965 movdqu(Address(to, 0), xtmp); 5966 movdqu(Address(to, 16), xtmp); 5967 } else { 5968 movq(Address(to, 0), xtmp); 5969 movq(Address(to, 8), xtmp); 5970 movq(Address(to, 16), xtmp); 5971 movq(Address(to, 24), xtmp); 5972 } 5973 5974 addptr(to, 32); 5975 subptr(count, 8 << shift); 5976 jcc(Assembler::greaterEqual, L_fill_32_bytes_loop); 5977 5978 BIND(L_check_fill_8_bytes); 5979 } 5980 addptr(count, 8 << shift); 5981 jccb(Assembler::zero, L_exit); 5982 jmpb(L_fill_8_bytes); 5983 5984 // 5985 // length is too short, just fill qwords 5986 // 5987 align(16); 5988 BIND(L_fill_8_bytes_loop); 5989 movq(Address(to, 0), xtmp); 5990 addptr(to, 8); 5991 BIND(L_fill_8_bytes); 5992 subptr(count, 1 << (shift + 1)); 5993 jcc(Assembler::greaterEqual, L_fill_8_bytes_loop); 5994 } 5995 } 5996 5997 Label L_fill_4_bytes_loop; 5998 testl(count, 1 << shift); 5999 jccb(Assembler::zero, L_fill_2_bytes); 6000 6001 align(16); 6002 BIND(L_fill_4_bytes_loop); 6003 movl(Address(to, 0), value); 6004 addptr(to, 4); 6005 6006 BIND(L_fill_4_bytes); 6007 subptr(count, 1 << shift); 6008 jccb(Assembler::greaterEqual, L_fill_4_bytes_loop); 6009 6010 if (t == T_BYTE || t == T_SHORT) { 6011 Label L_fill_byte; 6012 BIND(L_fill_2_bytes); 6013 // fill trailing 2 bytes 6014 testl(count, 1<<(shift-1)); 6015 jccb(Assembler::zero, L_fill_byte); 6016 movw(Address(to, 0), value); 6017 if (t == T_BYTE) { 6018 addptr(to, 2); 6019 BIND(L_fill_byte); 6020 // fill trailing byte 6021 testl(count, 1); 6022 jccb(Assembler::zero, L_exit); 6023 movb(Address(to, 0), value); 6024 } else { 6025 BIND(L_fill_byte); 6026 } 6027 } else { 6028 BIND(L_fill_2_bytes); 6029 } 6030 BIND(L_exit); 6031 } 6032 6033 void MacroAssembler::evpbroadcast(BasicType type, XMMRegister dst, Register src, int vector_len) { 6034 switch(type) { 6035 case T_BYTE: 6036 case T_BOOLEAN: 6037 evpbroadcastb(dst, src, vector_len); 6038 break; 6039 case T_SHORT: 6040 case T_CHAR: 6041 evpbroadcastw(dst, src, vector_len); 6042 break; 6043 case T_INT: 6044 case T_FLOAT: 6045 evpbroadcastd(dst, src, vector_len); 6046 break; 6047 case T_LONG: 6048 case T_DOUBLE: 6049 evpbroadcastq(dst, src, vector_len); 6050 break; 6051 default: 6052 fatal("Unhandled type : %s", type2name(type)); 6053 break; 6054 } 6055 } 6056 6057 // Encode given char[]/byte[] to byte[] in ISO_8859_1 or ASCII 6058 // 6059 // @IntrinsicCandidate 6060 // int sun.nio.cs.ISO_8859_1.Encoder#encodeISOArray0( 6061 // char[] sa, int sp, byte[] da, int dp, int len) { 6062 // int i = 0; 6063 // for (; i < len; i++) { 6064 // char c = sa[sp++]; 6065 // if (c > '\u00FF') 6066 // break; 6067 // da[dp++] = (byte) c; 6068 // } 6069 // return i; 6070 // } 6071 // 6072 // @IntrinsicCandidate 6073 // int java.lang.StringCoding.encodeISOArray0( 6074 // byte[] sa, int sp, byte[] da, int dp, int len) { 6075 // int i = 0; 6076 // for (; i < len; i++) { 6077 // char c = StringUTF16.getChar(sa, sp++); 6078 // if (c > '\u00FF') 6079 // break; 6080 // da[dp++] = (byte) c; 6081 // } 6082 // return i; 6083 // } 6084 // 6085 // @IntrinsicCandidate 6086 // int java.lang.StringCoding.encodeAsciiArray0( 6087 // char[] sa, int sp, byte[] da, int dp, int len) { 6088 // int i = 0; 6089 // for (; i < len; i++) { 6090 // char c = sa[sp++]; 6091 // if (c >= '\u0080') 6092 // break; 6093 // da[dp++] = (byte) c; 6094 // } 6095 // return i; 6096 // } 6097 void MacroAssembler::encode_iso_array(Register src, Register dst, Register len, 6098 XMMRegister tmp1Reg, XMMRegister tmp2Reg, 6099 XMMRegister tmp3Reg, XMMRegister tmp4Reg, 6100 Register tmp5, Register result, bool ascii) { 6101 6102 // rsi: src 6103 // rdi: dst 6104 // rdx: len 6105 // rcx: tmp5 6106 // rax: result 6107 ShortBranchVerifier sbv(this); 6108 assert_different_registers(src, dst, len, tmp5, result); 6109 Label L_done, L_copy_1_char, L_copy_1_char_exit; 6110 6111 int mask = ascii ? 0xff80ff80 : 0xff00ff00; 6112 int short_mask = ascii ? 0xff80 : 0xff00; 6113 6114 // set result 6115 xorl(result, result); 6116 // check for zero length 6117 testl(len, len); 6118 jcc(Assembler::zero, L_done); 6119 6120 movl(result, len); 6121 6122 // Setup pointers 6123 lea(src, Address(src, len, Address::times_2)); // char[] 6124 lea(dst, Address(dst, len, Address::times_1)); // byte[] 6125 negptr(len); 6126 6127 if (UseSSE42Intrinsics || UseAVX >= 2) { 6128 Label L_copy_8_chars, L_copy_8_chars_exit; 6129 Label L_chars_16_check, L_copy_16_chars, L_copy_16_chars_exit; 6130 6131 if (UseAVX >= 2) { 6132 Label L_chars_32_check, L_copy_32_chars, L_copy_32_chars_exit; 6133 movl(tmp5, mask); // create mask to test for Unicode or non-ASCII chars in vector 6134 movdl(tmp1Reg, tmp5); 6135 vpbroadcastd(tmp1Reg, tmp1Reg, Assembler::AVX_256bit); 6136 jmp(L_chars_32_check); 6137 6138 bind(L_copy_32_chars); 6139 vmovdqu(tmp3Reg, Address(src, len, Address::times_2, -64)); 6140 vmovdqu(tmp4Reg, Address(src, len, Address::times_2, -32)); 6141 vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1); 6142 vptest(tmp2Reg, tmp1Reg); // check for Unicode or non-ASCII chars in vector 6143 jccb(Assembler::notZero, L_copy_32_chars_exit); 6144 vpackuswb(tmp3Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1); 6145 vpermq(tmp4Reg, tmp3Reg, 0xD8, /* vector_len */ 1); 6146 vmovdqu(Address(dst, len, Address::times_1, -32), tmp4Reg); 6147 6148 bind(L_chars_32_check); 6149 addptr(len, 32); 6150 jcc(Assembler::lessEqual, L_copy_32_chars); 6151 6152 bind(L_copy_32_chars_exit); 6153 subptr(len, 16); 6154 jccb(Assembler::greater, L_copy_16_chars_exit); 6155 6156 } else if (UseSSE42Intrinsics) { 6157 movl(tmp5, mask); // create mask to test for Unicode or non-ASCII chars in vector 6158 movdl(tmp1Reg, tmp5); 6159 pshufd(tmp1Reg, tmp1Reg, 0); 6160 jmpb(L_chars_16_check); 6161 } 6162 6163 bind(L_copy_16_chars); 6164 if (UseAVX >= 2) { 6165 vmovdqu(tmp2Reg, Address(src, len, Address::times_2, -32)); 6166 vptest(tmp2Reg, tmp1Reg); 6167 jcc(Assembler::notZero, L_copy_16_chars_exit); 6168 vpackuswb(tmp2Reg, tmp2Reg, tmp1Reg, /* vector_len */ 1); 6169 vpermq(tmp3Reg, tmp2Reg, 0xD8, /* vector_len */ 1); 6170 } else { 6171 if (UseAVX > 0) { 6172 movdqu(tmp3Reg, Address(src, len, Address::times_2, -32)); 6173 movdqu(tmp4Reg, Address(src, len, Address::times_2, -16)); 6174 vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 0); 6175 } else { 6176 movdqu(tmp3Reg, Address(src, len, Address::times_2, -32)); 6177 por(tmp2Reg, tmp3Reg); 6178 movdqu(tmp4Reg, Address(src, len, Address::times_2, -16)); 6179 por(tmp2Reg, tmp4Reg); 6180 } 6181 ptest(tmp2Reg, tmp1Reg); // check for Unicode or non-ASCII chars in vector 6182 jccb(Assembler::notZero, L_copy_16_chars_exit); 6183 packuswb(tmp3Reg, tmp4Reg); 6184 } 6185 movdqu(Address(dst, len, Address::times_1, -16), tmp3Reg); 6186 6187 bind(L_chars_16_check); 6188 addptr(len, 16); 6189 jcc(Assembler::lessEqual, L_copy_16_chars); 6190 6191 bind(L_copy_16_chars_exit); 6192 if (UseAVX >= 2) { 6193 // clean upper bits of YMM registers 6194 vpxor(tmp2Reg, tmp2Reg); 6195 vpxor(tmp3Reg, tmp3Reg); 6196 vpxor(tmp4Reg, tmp4Reg); 6197 movdl(tmp1Reg, tmp5); 6198 pshufd(tmp1Reg, tmp1Reg, 0); 6199 } 6200 subptr(len, 8); 6201 jccb(Assembler::greater, L_copy_8_chars_exit); 6202 6203 bind(L_copy_8_chars); 6204 movdqu(tmp3Reg, Address(src, len, Address::times_2, -16)); 6205 ptest(tmp3Reg, tmp1Reg); 6206 jccb(Assembler::notZero, L_copy_8_chars_exit); 6207 packuswb(tmp3Reg, tmp1Reg); 6208 movq(Address(dst, len, Address::times_1, -8), tmp3Reg); 6209 addptr(len, 8); 6210 jccb(Assembler::lessEqual, L_copy_8_chars); 6211 6212 bind(L_copy_8_chars_exit); 6213 subptr(len, 8); 6214 jccb(Assembler::zero, L_done); 6215 } 6216 6217 bind(L_copy_1_char); 6218 load_unsigned_short(tmp5, Address(src, len, Address::times_2, 0)); 6219 testl(tmp5, short_mask); // check if Unicode or non-ASCII char 6220 jccb(Assembler::notZero, L_copy_1_char_exit); 6221 movb(Address(dst, len, Address::times_1, 0), tmp5); 6222 addptr(len, 1); 6223 jccb(Assembler::less, L_copy_1_char); 6224 6225 bind(L_copy_1_char_exit); 6226 addptr(result, len); // len is negative count of not processed elements 6227 6228 bind(L_done); 6229 } 6230 6231 /** 6232 * Helper for multiply_to_len(). 6233 */ 6234 void MacroAssembler::add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) { 6235 addq(dest_lo, src1); 6236 adcq(dest_hi, 0); 6237 addq(dest_lo, src2); 6238 adcq(dest_hi, 0); 6239 } 6240 6241 /** 6242 * Multiply 64 bit by 64 bit first loop. 6243 */ 6244 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart, 6245 Register y, Register y_idx, Register z, 6246 Register carry, Register product, 6247 Register idx, Register kdx) { 6248 // 6249 // jlong carry, x[], y[], z[]; 6250 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 6251 // huge_128 product = y[idx] * x[xstart] + carry; 6252 // z[kdx] = (jlong)product; 6253 // carry = (jlong)(product >>> 64); 6254 // } 6255 // z[xstart] = carry; 6256 // 6257 6258 Label L_first_loop, L_first_loop_exit; 6259 Label L_one_x, L_one_y, L_multiply; 6260 6261 decrementl(xstart); 6262 jcc(Assembler::negative, L_one_x); 6263 6264 movq(x_xstart, Address(x, xstart, Address::times_4, 0)); 6265 rorq(x_xstart, 32); // convert big-endian to little-endian 6266 6267 bind(L_first_loop); 6268 decrementl(idx); 6269 jcc(Assembler::negative, L_first_loop_exit); 6270 decrementl(idx); 6271 jcc(Assembler::negative, L_one_y); 6272 movq(y_idx, Address(y, idx, Address::times_4, 0)); 6273 rorq(y_idx, 32); // convert big-endian to little-endian 6274 bind(L_multiply); 6275 movq(product, x_xstart); 6276 mulq(y_idx); // product(rax) * y_idx -> rdx:rax 6277 addq(product, carry); 6278 adcq(rdx, 0); 6279 subl(kdx, 2); 6280 movl(Address(z, kdx, Address::times_4, 4), product); 6281 shrq(product, 32); 6282 movl(Address(z, kdx, Address::times_4, 0), product); 6283 movq(carry, rdx); 6284 jmp(L_first_loop); 6285 6286 bind(L_one_y); 6287 movl(y_idx, Address(y, 0)); 6288 jmp(L_multiply); 6289 6290 bind(L_one_x); 6291 movl(x_xstart, Address(x, 0)); 6292 jmp(L_first_loop); 6293 6294 bind(L_first_loop_exit); 6295 } 6296 6297 /** 6298 * Multiply 64 bit by 64 bit and add 128 bit. 6299 */ 6300 void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y, Register z, 6301 Register yz_idx, Register idx, 6302 Register carry, Register product, int offset) { 6303 // huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry; 6304 // z[kdx] = (jlong)product; 6305 6306 movq(yz_idx, Address(y, idx, Address::times_4, offset)); 6307 rorq(yz_idx, 32); // convert big-endian to little-endian 6308 movq(product, x_xstart); 6309 mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax) 6310 movq(yz_idx, Address(z, idx, Address::times_4, offset)); 6311 rorq(yz_idx, 32); // convert big-endian to little-endian 6312 6313 add2_with_carry(rdx, product, carry, yz_idx); 6314 6315 movl(Address(z, idx, Address::times_4, offset+4), product); 6316 shrq(product, 32); 6317 movl(Address(z, idx, Address::times_4, offset), product); 6318 6319 } 6320 6321 /** 6322 * Multiply 128 bit by 128 bit. Unrolled inner loop. 6323 */ 6324 void MacroAssembler::multiply_128_x_128_loop(Register x_xstart, Register y, Register z, 6325 Register yz_idx, Register idx, Register jdx, 6326 Register carry, Register product, 6327 Register carry2) { 6328 // jlong carry, x[], y[], z[]; 6329 // int kdx = ystart+1; 6330 // for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop 6331 // huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry; 6332 // z[kdx+idx+1] = (jlong)product; 6333 // jlong carry2 = (jlong)(product >>> 64); 6334 // product = (y[idx] * x_xstart) + z[kdx+idx] + carry2; 6335 // z[kdx+idx] = (jlong)product; 6336 // carry = (jlong)(product >>> 64); 6337 // } 6338 // idx += 2; 6339 // if (idx > 0) { 6340 // product = (y[idx] * x_xstart) + z[kdx+idx] + carry; 6341 // z[kdx+idx] = (jlong)product; 6342 // carry = (jlong)(product >>> 64); 6343 // } 6344 // 6345 6346 Label L_third_loop, L_third_loop_exit, L_post_third_loop_done; 6347 6348 movl(jdx, idx); 6349 andl(jdx, 0xFFFFFFFC); 6350 shrl(jdx, 2); 6351 6352 bind(L_third_loop); 6353 subl(jdx, 1); 6354 jcc(Assembler::negative, L_third_loop_exit); 6355 subl(idx, 4); 6356 6357 multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 8); 6358 movq(carry2, rdx); 6359 6360 multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product, 0); 6361 movq(carry, rdx); 6362 jmp(L_third_loop); 6363 6364 bind (L_third_loop_exit); 6365 6366 andl (idx, 0x3); 6367 jcc(Assembler::zero, L_post_third_loop_done); 6368 6369 Label L_check_1; 6370 subl(idx, 2); 6371 jcc(Assembler::negative, L_check_1); 6372 6373 multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 0); 6374 movq(carry, rdx); 6375 6376 bind (L_check_1); 6377 addl (idx, 0x2); 6378 andl (idx, 0x1); 6379 subl(idx, 1); 6380 jcc(Assembler::negative, L_post_third_loop_done); 6381 6382 movl(yz_idx, Address(y, idx, Address::times_4, 0)); 6383 movq(product, x_xstart); 6384 mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax) 6385 movl(yz_idx, Address(z, idx, Address::times_4, 0)); 6386 6387 add2_with_carry(rdx, product, yz_idx, carry); 6388 6389 movl(Address(z, idx, Address::times_4, 0), product); 6390 shrq(product, 32); 6391 6392 shlq(rdx, 32); 6393 orq(product, rdx); 6394 movq(carry, product); 6395 6396 bind(L_post_third_loop_done); 6397 } 6398 6399 /** 6400 * Multiply 128 bit by 128 bit using BMI2. Unrolled inner loop. 6401 * 6402 */ 6403 void MacroAssembler::multiply_128_x_128_bmi2_loop(Register y, Register z, 6404 Register carry, Register carry2, 6405 Register idx, Register jdx, 6406 Register yz_idx1, Register yz_idx2, 6407 Register tmp, Register tmp3, Register tmp4) { 6408 assert(UseBMI2Instructions, "should be used only when BMI2 is available"); 6409 6410 // jlong carry, x[], y[], z[]; 6411 // int kdx = ystart+1; 6412 // for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop 6413 // huge_128 tmp3 = (y[idx+1] * rdx) + z[kdx+idx+1] + carry; 6414 // jlong carry2 = (jlong)(tmp3 >>> 64); 6415 // huge_128 tmp4 = (y[idx] * rdx) + z[kdx+idx] + carry2; 6416 // carry = (jlong)(tmp4 >>> 64); 6417 // z[kdx+idx+1] = (jlong)tmp3; 6418 // z[kdx+idx] = (jlong)tmp4; 6419 // } 6420 // idx += 2; 6421 // if (idx > 0) { 6422 // yz_idx1 = (y[idx] * rdx) + z[kdx+idx] + carry; 6423 // z[kdx+idx] = (jlong)yz_idx1; 6424 // carry = (jlong)(yz_idx1 >>> 64); 6425 // } 6426 // 6427 6428 Label L_third_loop, L_third_loop_exit, L_post_third_loop_done; 6429 6430 movl(jdx, idx); 6431 andl(jdx, 0xFFFFFFFC); 6432 shrl(jdx, 2); 6433 6434 bind(L_third_loop); 6435 subl(jdx, 1); 6436 jcc(Assembler::negative, L_third_loop_exit); 6437 subl(idx, 4); 6438 6439 movq(yz_idx1, Address(y, idx, Address::times_4, 8)); 6440 rorxq(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian 6441 movq(yz_idx2, Address(y, idx, Address::times_4, 0)); 6442 rorxq(yz_idx2, yz_idx2, 32); 6443 6444 mulxq(tmp4, tmp3, yz_idx1); // yz_idx1 * rdx -> tmp4:tmp3 6445 mulxq(carry2, tmp, yz_idx2); // yz_idx2 * rdx -> carry2:tmp 6446 6447 movq(yz_idx1, Address(z, idx, Address::times_4, 8)); 6448 rorxq(yz_idx1, yz_idx1, 32); 6449 movq(yz_idx2, Address(z, idx, Address::times_4, 0)); 6450 rorxq(yz_idx2, yz_idx2, 32); 6451 6452 if (VM_Version::supports_adx()) { 6453 adcxq(tmp3, carry); 6454 adoxq(tmp3, yz_idx1); 6455 6456 adcxq(tmp4, tmp); 6457 adoxq(tmp4, yz_idx2); 6458 6459 movl(carry, 0); // does not affect flags 6460 adcxq(carry2, carry); 6461 adoxq(carry2, carry); 6462 } else { 6463 add2_with_carry(tmp4, tmp3, carry, yz_idx1); 6464 add2_with_carry(carry2, tmp4, tmp, yz_idx2); 6465 } 6466 movq(carry, carry2); 6467 6468 movl(Address(z, idx, Address::times_4, 12), tmp3); 6469 shrq(tmp3, 32); 6470 movl(Address(z, idx, Address::times_4, 8), tmp3); 6471 6472 movl(Address(z, idx, Address::times_4, 4), tmp4); 6473 shrq(tmp4, 32); 6474 movl(Address(z, idx, Address::times_4, 0), tmp4); 6475 6476 jmp(L_third_loop); 6477 6478 bind (L_third_loop_exit); 6479 6480 andl (idx, 0x3); 6481 jcc(Assembler::zero, L_post_third_loop_done); 6482 6483 Label L_check_1; 6484 subl(idx, 2); 6485 jcc(Assembler::negative, L_check_1); 6486 6487 movq(yz_idx1, Address(y, idx, Address::times_4, 0)); 6488 rorxq(yz_idx1, yz_idx1, 32); 6489 mulxq(tmp4, tmp3, yz_idx1); // yz_idx1 * rdx -> tmp4:tmp3 6490 movq(yz_idx2, Address(z, idx, Address::times_4, 0)); 6491 rorxq(yz_idx2, yz_idx2, 32); 6492 6493 add2_with_carry(tmp4, tmp3, carry, yz_idx2); 6494 6495 movl(Address(z, idx, Address::times_4, 4), tmp3); 6496 shrq(tmp3, 32); 6497 movl(Address(z, idx, Address::times_4, 0), tmp3); 6498 movq(carry, tmp4); 6499 6500 bind (L_check_1); 6501 addl (idx, 0x2); 6502 andl (idx, 0x1); 6503 subl(idx, 1); 6504 jcc(Assembler::negative, L_post_third_loop_done); 6505 movl(tmp4, Address(y, idx, Address::times_4, 0)); 6506 mulxq(carry2, tmp3, tmp4); // tmp4 * rdx -> carry2:tmp3 6507 movl(tmp4, Address(z, idx, Address::times_4, 0)); 6508 6509 add2_with_carry(carry2, tmp3, tmp4, carry); 6510 6511 movl(Address(z, idx, Address::times_4, 0), tmp3); 6512 shrq(tmp3, 32); 6513 6514 shlq(carry2, 32); 6515 orq(tmp3, carry2); 6516 movq(carry, tmp3); 6517 6518 bind(L_post_third_loop_done); 6519 } 6520 6521 /** 6522 * Code for BigInteger::multiplyToLen() intrinsic. 6523 * 6524 * rdi: x 6525 * rax: xlen 6526 * rsi: y 6527 * rcx: ylen 6528 * r8: z 6529 * r11: tmp0 6530 * r12: tmp1 6531 * r13: tmp2 6532 * r14: tmp3 6533 * r15: tmp4 6534 * rbx: tmp5 6535 * 6536 */ 6537 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register tmp0, 6538 Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5) { 6539 ShortBranchVerifier sbv(this); 6540 assert_different_registers(x, xlen, y, ylen, z, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, rdx); 6541 6542 push(tmp0); 6543 push(tmp1); 6544 push(tmp2); 6545 push(tmp3); 6546 push(tmp4); 6547 push(tmp5); 6548 6549 push(xlen); 6550 6551 const Register idx = tmp1; 6552 const Register kdx = tmp2; 6553 const Register xstart = tmp3; 6554 6555 const Register y_idx = tmp4; 6556 const Register carry = tmp5; 6557 const Register product = xlen; 6558 const Register x_xstart = tmp0; 6559 6560 // First Loop. 6561 // 6562 // final static long LONG_MASK = 0xffffffffL; 6563 // int xstart = xlen - 1; 6564 // int ystart = ylen - 1; 6565 // long carry = 0; 6566 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 6567 // long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry; 6568 // z[kdx] = (int)product; 6569 // carry = product >>> 32; 6570 // } 6571 // z[xstart] = (int)carry; 6572 // 6573 6574 movl(idx, ylen); // idx = ylen; 6575 lea(kdx, Address(xlen, ylen)); // kdx = xlen+ylen; 6576 xorq(carry, carry); // carry = 0; 6577 6578 Label L_done; 6579 6580 movl(xstart, xlen); 6581 decrementl(xstart); 6582 jcc(Assembler::negative, L_done); 6583 6584 multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx); 6585 6586 Label L_second_loop; 6587 testl(kdx, kdx); 6588 jcc(Assembler::zero, L_second_loop); 6589 6590 Label L_carry; 6591 subl(kdx, 1); 6592 jcc(Assembler::zero, L_carry); 6593 6594 movl(Address(z, kdx, Address::times_4, 0), carry); 6595 shrq(carry, 32); 6596 subl(kdx, 1); 6597 6598 bind(L_carry); 6599 movl(Address(z, kdx, Address::times_4, 0), carry); 6600 6601 // Second and third (nested) loops. 6602 // 6603 // for (int i = xstart-1; i >= 0; i--) { // Second loop 6604 // carry = 0; 6605 // for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop 6606 // long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) + 6607 // (z[k] & LONG_MASK) + carry; 6608 // z[k] = (int)product; 6609 // carry = product >>> 32; 6610 // } 6611 // z[i] = (int)carry; 6612 // } 6613 // 6614 // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx 6615 6616 const Register jdx = tmp1; 6617 6618 bind(L_second_loop); 6619 xorl(carry, carry); // carry = 0; 6620 movl(jdx, ylen); // j = ystart+1 6621 6622 subl(xstart, 1); // i = xstart-1; 6623 jcc(Assembler::negative, L_done); 6624 6625 push (z); 6626 6627 Label L_last_x; 6628 lea(z, Address(z, xstart, Address::times_4, 4)); // z = z + k - j 6629 subl(xstart, 1); // i = xstart-1; 6630 jcc(Assembler::negative, L_last_x); 6631 6632 if (UseBMI2Instructions) { 6633 movq(rdx, Address(x, xstart, Address::times_4, 0)); 6634 rorxq(rdx, rdx, 32); // convert big-endian to little-endian 6635 } else { 6636 movq(x_xstart, Address(x, xstart, Address::times_4, 0)); 6637 rorq(x_xstart, 32); // convert big-endian to little-endian 6638 } 6639 6640 Label L_third_loop_prologue; 6641 bind(L_third_loop_prologue); 6642 6643 push (x); 6644 push (xstart); 6645 push (ylen); 6646 6647 6648 if (UseBMI2Instructions) { 6649 multiply_128_x_128_bmi2_loop(y, z, carry, x, jdx, ylen, product, tmp2, x_xstart, tmp3, tmp4); 6650 } else { // !UseBMI2Instructions 6651 multiply_128_x_128_loop(x_xstart, y, z, y_idx, jdx, ylen, carry, product, x); 6652 } 6653 6654 pop(ylen); 6655 pop(xlen); 6656 pop(x); 6657 pop(z); 6658 6659 movl(tmp3, xlen); 6660 addl(tmp3, 1); 6661 movl(Address(z, tmp3, Address::times_4, 0), carry); 6662 subl(tmp3, 1); 6663 jccb(Assembler::negative, L_done); 6664 6665 shrq(carry, 32); 6666 movl(Address(z, tmp3, Address::times_4, 0), carry); 6667 jmp(L_second_loop); 6668 6669 // Next infrequent code is moved outside loops. 6670 bind(L_last_x); 6671 if (UseBMI2Instructions) { 6672 movl(rdx, Address(x, 0)); 6673 } else { 6674 movl(x_xstart, Address(x, 0)); 6675 } 6676 jmp(L_third_loop_prologue); 6677 6678 bind(L_done); 6679 6680 pop(xlen); 6681 6682 pop(tmp5); 6683 pop(tmp4); 6684 pop(tmp3); 6685 pop(tmp2); 6686 pop(tmp1); 6687 pop(tmp0); 6688 } 6689 6690 void MacroAssembler::vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale, 6691 Register result, Register tmp1, Register tmp2, XMMRegister rymm0, XMMRegister rymm1, XMMRegister rymm2){ 6692 assert(UseSSE42Intrinsics, "SSE4.2 must be enabled."); 6693 Label VECTOR16_LOOP, VECTOR8_LOOP, VECTOR4_LOOP; 6694 Label VECTOR8_TAIL, VECTOR4_TAIL; 6695 Label VECTOR32_NOT_EQUAL, VECTOR16_NOT_EQUAL, VECTOR8_NOT_EQUAL, VECTOR4_NOT_EQUAL; 6696 Label SAME_TILL_END, DONE; 6697 Label BYTES_LOOP, BYTES_TAIL, BYTES_NOT_EQUAL; 6698 6699 //scale is in rcx in both Win64 and Unix 6700 ShortBranchVerifier sbv(this); 6701 6702 shlq(length); 6703 xorq(result, result); 6704 6705 if ((AVX3Threshold == 0) && (UseAVX > 2) && 6706 VM_Version::supports_avx512vlbw()) { 6707 Label VECTOR64_LOOP, VECTOR64_NOT_EQUAL, VECTOR32_TAIL; 6708 6709 cmpq(length, 64); 6710 jcc(Assembler::less, VECTOR32_TAIL); 6711 6712 movq(tmp1, length); 6713 andq(tmp1, 0x3F); // tail count 6714 andq(length, ~(0x3F)); //vector count 6715 6716 bind(VECTOR64_LOOP); 6717 // AVX512 code to compare 64 byte vectors. 6718 evmovdqub(rymm0, Address(obja, result), Assembler::AVX_512bit); 6719 evpcmpeqb(k7, rymm0, Address(objb, result), Assembler::AVX_512bit); 6720 kortestql(k7, k7); 6721 jcc(Assembler::aboveEqual, VECTOR64_NOT_EQUAL); // mismatch 6722 addq(result, 64); 6723 subq(length, 64); 6724 jccb(Assembler::notZero, VECTOR64_LOOP); 6725 6726 //bind(VECTOR64_TAIL); 6727 testq(tmp1, tmp1); 6728 jcc(Assembler::zero, SAME_TILL_END); 6729 6730 //bind(VECTOR64_TAIL); 6731 // AVX512 code to compare up to 63 byte vectors. 6732 mov64(tmp2, 0xFFFFFFFFFFFFFFFF); 6733 shlxq(tmp2, tmp2, tmp1); 6734 notq(tmp2); 6735 kmovql(k3, tmp2); 6736 6737 evmovdqub(rymm0, k3, Address(obja, result), false, Assembler::AVX_512bit); 6738 evpcmpeqb(k7, k3, rymm0, Address(objb, result), Assembler::AVX_512bit); 6739 6740 ktestql(k7, k3); 6741 jcc(Assembler::below, SAME_TILL_END); // not mismatch 6742 6743 bind(VECTOR64_NOT_EQUAL); 6744 kmovql(tmp1, k7); 6745 notq(tmp1); 6746 tzcntq(tmp1, tmp1); 6747 addq(result, tmp1); 6748 shrq(result); 6749 jmp(DONE); 6750 bind(VECTOR32_TAIL); 6751 } 6752 6753 cmpq(length, 8); 6754 jcc(Assembler::equal, VECTOR8_LOOP); 6755 jcc(Assembler::less, VECTOR4_TAIL); 6756 6757 if (UseAVX >= 2) { 6758 Label VECTOR16_TAIL, VECTOR32_LOOP; 6759 6760 cmpq(length, 16); 6761 jcc(Assembler::equal, VECTOR16_LOOP); 6762 jcc(Assembler::less, VECTOR8_LOOP); 6763 6764 cmpq(length, 32); 6765 jccb(Assembler::less, VECTOR16_TAIL); 6766 6767 subq(length, 32); 6768 bind(VECTOR32_LOOP); 6769 vmovdqu(rymm0, Address(obja, result)); 6770 vmovdqu(rymm1, Address(objb, result)); 6771 vpxor(rymm2, rymm0, rymm1, Assembler::AVX_256bit); 6772 vptest(rymm2, rymm2); 6773 jcc(Assembler::notZero, VECTOR32_NOT_EQUAL);//mismatch found 6774 addq(result, 32); 6775 subq(length, 32); 6776 jcc(Assembler::greaterEqual, VECTOR32_LOOP); 6777 addq(length, 32); 6778 jcc(Assembler::equal, SAME_TILL_END); 6779 //falling through if less than 32 bytes left //close the branch here. 6780 6781 bind(VECTOR16_TAIL); 6782 cmpq(length, 16); 6783 jccb(Assembler::less, VECTOR8_TAIL); 6784 bind(VECTOR16_LOOP); 6785 movdqu(rymm0, Address(obja, result)); 6786 movdqu(rymm1, Address(objb, result)); 6787 vpxor(rymm2, rymm0, rymm1, Assembler::AVX_128bit); 6788 ptest(rymm2, rymm2); 6789 jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found 6790 addq(result, 16); 6791 subq(length, 16); 6792 jcc(Assembler::equal, SAME_TILL_END); 6793 //falling through if less than 16 bytes left 6794 } else {//regular intrinsics 6795 6796 cmpq(length, 16); 6797 jccb(Assembler::less, VECTOR8_TAIL); 6798 6799 subq(length, 16); 6800 bind(VECTOR16_LOOP); 6801 movdqu(rymm0, Address(obja, result)); 6802 movdqu(rymm1, Address(objb, result)); 6803 pxor(rymm0, rymm1); 6804 ptest(rymm0, rymm0); 6805 jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found 6806 addq(result, 16); 6807 subq(length, 16); 6808 jccb(Assembler::greaterEqual, VECTOR16_LOOP); 6809 addq(length, 16); 6810 jcc(Assembler::equal, SAME_TILL_END); 6811 //falling through if less than 16 bytes left 6812 } 6813 6814 bind(VECTOR8_TAIL); 6815 cmpq(length, 8); 6816 jccb(Assembler::less, VECTOR4_TAIL); 6817 bind(VECTOR8_LOOP); 6818 movq(tmp1, Address(obja, result)); 6819 movq(tmp2, Address(objb, result)); 6820 xorq(tmp1, tmp2); 6821 testq(tmp1, tmp1); 6822 jcc(Assembler::notZero, VECTOR8_NOT_EQUAL);//mismatch found 6823 addq(result, 8); 6824 subq(length, 8); 6825 jcc(Assembler::equal, SAME_TILL_END); 6826 //falling through if less than 8 bytes left 6827 6828 bind(VECTOR4_TAIL); 6829 cmpq(length, 4); 6830 jccb(Assembler::less, BYTES_TAIL); 6831 bind(VECTOR4_LOOP); 6832 movl(tmp1, Address(obja, result)); 6833 xorl(tmp1, Address(objb, result)); 6834 testl(tmp1, tmp1); 6835 jcc(Assembler::notZero, VECTOR4_NOT_EQUAL);//mismatch found 6836 addq(result, 4); 6837 subq(length, 4); 6838 jcc(Assembler::equal, SAME_TILL_END); 6839 //falling through if less than 4 bytes left 6840 6841 bind(BYTES_TAIL); 6842 bind(BYTES_LOOP); 6843 load_unsigned_byte(tmp1, Address(obja, result)); 6844 load_unsigned_byte(tmp2, Address(objb, result)); 6845 xorl(tmp1, tmp2); 6846 testl(tmp1, tmp1); 6847 jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found 6848 decq(length); 6849 jcc(Assembler::zero, SAME_TILL_END); 6850 incq(result); 6851 load_unsigned_byte(tmp1, Address(obja, result)); 6852 load_unsigned_byte(tmp2, Address(objb, result)); 6853 xorl(tmp1, tmp2); 6854 testl(tmp1, tmp1); 6855 jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found 6856 decq(length); 6857 jcc(Assembler::zero, SAME_TILL_END); 6858 incq(result); 6859 load_unsigned_byte(tmp1, Address(obja, result)); 6860 load_unsigned_byte(tmp2, Address(objb, result)); 6861 xorl(tmp1, tmp2); 6862 testl(tmp1, tmp1); 6863 jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found 6864 jmp(SAME_TILL_END); 6865 6866 if (UseAVX >= 2) { 6867 bind(VECTOR32_NOT_EQUAL); 6868 vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_256bit); 6869 vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_256bit); 6870 vpxor(rymm0, rymm0, rymm2, Assembler::AVX_256bit); 6871 vpmovmskb(tmp1, rymm0); 6872 bsfq(tmp1, tmp1); 6873 addq(result, tmp1); 6874 shrq(result); 6875 jmp(DONE); 6876 } 6877 6878 bind(VECTOR16_NOT_EQUAL); 6879 if (UseAVX >= 2) { 6880 vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_128bit); 6881 vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_128bit); 6882 pxor(rymm0, rymm2); 6883 } else { 6884 pcmpeqb(rymm2, rymm2); 6885 pxor(rymm0, rymm1); 6886 pcmpeqb(rymm0, rymm1); 6887 pxor(rymm0, rymm2); 6888 } 6889 pmovmskb(tmp1, rymm0); 6890 bsfq(tmp1, tmp1); 6891 addq(result, tmp1); 6892 shrq(result); 6893 jmpb(DONE); 6894 6895 bind(VECTOR8_NOT_EQUAL); 6896 bind(VECTOR4_NOT_EQUAL); 6897 bsfq(tmp1, tmp1); 6898 shrq(tmp1, 3); 6899 addq(result, tmp1); 6900 bind(BYTES_NOT_EQUAL); 6901 shrq(result); 6902 jmpb(DONE); 6903 6904 bind(SAME_TILL_END); 6905 mov64(result, -1); 6906 6907 bind(DONE); 6908 } 6909 6910 //Helper functions for square_to_len() 6911 6912 /** 6913 * Store the squares of x[], right shifted one bit (divided by 2) into z[] 6914 * Preserves x and z and modifies rest of the registers. 6915 */ 6916 void MacroAssembler::square_rshift(Register x, Register xlen, Register z, Register tmp1, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) { 6917 // Perform square and right shift by 1 6918 // Handle odd xlen case first, then for even xlen do the following 6919 // jlong carry = 0; 6920 // for (int j=0, i=0; j < xlen; j+=2, i+=4) { 6921 // huge_128 product = x[j:j+1] * x[j:j+1]; 6922 // z[i:i+1] = (carry << 63) | (jlong)(product >>> 65); 6923 // z[i+2:i+3] = (jlong)(product >>> 1); 6924 // carry = (jlong)product; 6925 // } 6926 6927 xorq(tmp5, tmp5); // carry 6928 xorq(rdxReg, rdxReg); 6929 xorl(tmp1, tmp1); // index for x 6930 xorl(tmp4, tmp4); // index for z 6931 6932 Label L_first_loop, L_first_loop_exit; 6933 6934 testl(xlen, 1); 6935 jccb(Assembler::zero, L_first_loop); //jump if xlen is even 6936 6937 // Square and right shift by 1 the odd element using 32 bit multiply 6938 movl(raxReg, Address(x, tmp1, Address::times_4, 0)); 6939 imulq(raxReg, raxReg); 6940 shrq(raxReg, 1); 6941 adcq(tmp5, 0); 6942 movq(Address(z, tmp4, Address::times_4, 0), raxReg); 6943 incrementl(tmp1); 6944 addl(tmp4, 2); 6945 6946 // Square and right shift by 1 the rest using 64 bit multiply 6947 bind(L_first_loop); 6948 cmpptr(tmp1, xlen); 6949 jccb(Assembler::equal, L_first_loop_exit); 6950 6951 // Square 6952 movq(raxReg, Address(x, tmp1, Address::times_4, 0)); 6953 rorq(raxReg, 32); // convert big-endian to little-endian 6954 mulq(raxReg); // 64-bit multiply rax * rax -> rdx:rax 6955 6956 // Right shift by 1 and save carry 6957 shrq(tmp5, 1); // rdx:rax:tmp5 = (tmp5:rdx:rax) >>> 1 6958 rcrq(rdxReg, 1); 6959 rcrq(raxReg, 1); 6960 adcq(tmp5, 0); 6961 6962 // Store result in z 6963 movq(Address(z, tmp4, Address::times_4, 0), rdxReg); 6964 movq(Address(z, tmp4, Address::times_4, 8), raxReg); 6965 6966 // Update indices for x and z 6967 addl(tmp1, 2); 6968 addl(tmp4, 4); 6969 jmp(L_first_loop); 6970 6971 bind(L_first_loop_exit); 6972 } 6973 6974 6975 /** 6976 * Perform the following multiply add operation using BMI2 instructions 6977 * carry:sum = sum + op1*op2 + carry 6978 * op2 should be in rdx 6979 * op2 is preserved, all other registers are modified 6980 */ 6981 void MacroAssembler::multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry, Register tmp2) { 6982 // assert op2 is rdx 6983 mulxq(tmp2, op1, op1); // op1 * op2 -> tmp2:op1 6984 addq(sum, carry); 6985 adcq(tmp2, 0); 6986 addq(sum, op1); 6987 adcq(tmp2, 0); 6988 movq(carry, tmp2); 6989 } 6990 6991 /** 6992 * Perform the following multiply add operation: 6993 * carry:sum = sum + op1*op2 + carry 6994 * Preserves op1, op2 and modifies rest of registers 6995 */ 6996 void MacroAssembler::multiply_add_64(Register sum, Register op1, Register op2, Register carry, Register rdxReg, Register raxReg) { 6997 // rdx:rax = op1 * op2 6998 movq(raxReg, op2); 6999 mulq(op1); 7000 7001 // rdx:rax = sum + carry + rdx:rax 7002 addq(sum, carry); 7003 adcq(rdxReg, 0); 7004 addq(sum, raxReg); 7005 adcq(rdxReg, 0); 7006 7007 // carry:sum = rdx:sum 7008 movq(carry, rdxReg); 7009 } 7010 7011 /** 7012 * Add 64 bit long carry into z[] with carry propagation. 7013 * Preserves z and carry register values and modifies rest of registers. 7014 * 7015 */ 7016 void MacroAssembler::add_one_64(Register z, Register zlen, Register carry, Register tmp1) { 7017 Label L_fourth_loop, L_fourth_loop_exit; 7018 7019 movl(tmp1, 1); 7020 subl(zlen, 2); 7021 addq(Address(z, zlen, Address::times_4, 0), carry); 7022 7023 bind(L_fourth_loop); 7024 jccb(Assembler::carryClear, L_fourth_loop_exit); 7025 subl(zlen, 2); 7026 jccb(Assembler::negative, L_fourth_loop_exit); 7027 addq(Address(z, zlen, Address::times_4, 0), tmp1); 7028 jmp(L_fourth_loop); 7029 bind(L_fourth_loop_exit); 7030 } 7031 7032 /** 7033 * Shift z[] left by 1 bit. 7034 * Preserves x, len, z and zlen registers and modifies rest of the registers. 7035 * 7036 */ 7037 void MacroAssembler::lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4) { 7038 7039 Label L_fifth_loop, L_fifth_loop_exit; 7040 7041 // Fifth loop 7042 // Perform primitiveLeftShift(z, zlen, 1) 7043 7044 const Register prev_carry = tmp1; 7045 const Register new_carry = tmp4; 7046 const Register value = tmp2; 7047 const Register zidx = tmp3; 7048 7049 // int zidx, carry; 7050 // long value; 7051 // carry = 0; 7052 // for (zidx = zlen-2; zidx >=0; zidx -= 2) { 7053 // (carry:value) = (z[i] << 1) | carry ; 7054 // z[i] = value; 7055 // } 7056 7057 movl(zidx, zlen); 7058 xorl(prev_carry, prev_carry); // clear carry flag and prev_carry register 7059 7060 bind(L_fifth_loop); 7061 decl(zidx); // Use decl to preserve carry flag 7062 decl(zidx); 7063 jccb(Assembler::negative, L_fifth_loop_exit); 7064 7065 if (UseBMI2Instructions) { 7066 movq(value, Address(z, zidx, Address::times_4, 0)); 7067 rclq(value, 1); 7068 rorxq(value, value, 32); 7069 movq(Address(z, zidx, Address::times_4, 0), value); // Store back in big endian form 7070 } 7071 else { 7072 // clear new_carry 7073 xorl(new_carry, new_carry); 7074 7075 // Shift z[i] by 1, or in previous carry and save new carry 7076 movq(value, Address(z, zidx, Address::times_4, 0)); 7077 shlq(value, 1); 7078 adcl(new_carry, 0); 7079 7080 orq(value, prev_carry); 7081 rorq(value, 0x20); 7082 movq(Address(z, zidx, Address::times_4, 0), value); // Store back in big endian form 7083 7084 // Set previous carry = new carry 7085 movl(prev_carry, new_carry); 7086 } 7087 jmp(L_fifth_loop); 7088 7089 bind(L_fifth_loop_exit); 7090 } 7091 7092 7093 /** 7094 * Code for BigInteger::squareToLen() intrinsic 7095 * 7096 * rdi: x 7097 * rsi: len 7098 * r8: z 7099 * rcx: zlen 7100 * r12: tmp1 7101 * r13: tmp2 7102 * r14: tmp3 7103 * r15: tmp4 7104 * rbx: tmp5 7105 * 7106 */ 7107 void MacroAssembler::square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) { 7108 7109 Label L_second_loop, L_second_loop_exit, L_third_loop, L_third_loop_exit, L_last_x, L_multiply; 7110 push(tmp1); 7111 push(tmp2); 7112 push(tmp3); 7113 push(tmp4); 7114 push(tmp5); 7115 7116 // First loop 7117 // Store the squares, right shifted one bit (i.e., divided by 2). 7118 square_rshift(x, len, z, tmp1, tmp3, tmp4, tmp5, rdxReg, raxReg); 7119 7120 // Add in off-diagonal sums. 7121 // 7122 // Second, third (nested) and fourth loops. 7123 // zlen +=2; 7124 // for (int xidx=len-2,zidx=zlen-4; xidx > 0; xidx-=2,zidx-=4) { 7125 // carry = 0; 7126 // long op2 = x[xidx:xidx+1]; 7127 // for (int j=xidx-2,k=zidx; j >= 0; j-=2) { 7128 // k -= 2; 7129 // long op1 = x[j:j+1]; 7130 // long sum = z[k:k+1]; 7131 // carry:sum = multiply_add_64(sum, op1, op2, carry, tmp_regs); 7132 // z[k:k+1] = sum; 7133 // } 7134 // add_one_64(z, k, carry, tmp_regs); 7135 // } 7136 7137 const Register carry = tmp5; 7138 const Register sum = tmp3; 7139 const Register op1 = tmp4; 7140 Register op2 = tmp2; 7141 7142 push(zlen); 7143 push(len); 7144 addl(zlen,2); 7145 bind(L_second_loop); 7146 xorq(carry, carry); 7147 subl(zlen, 4); 7148 subl(len, 2); 7149 push(zlen); 7150 push(len); 7151 cmpl(len, 0); 7152 jccb(Assembler::lessEqual, L_second_loop_exit); 7153 7154 // Multiply an array by one 64 bit long. 7155 if (UseBMI2Instructions) { 7156 op2 = rdxReg; 7157 movq(op2, Address(x, len, Address::times_4, 0)); 7158 rorxq(op2, op2, 32); 7159 } 7160 else { 7161 movq(op2, Address(x, len, Address::times_4, 0)); 7162 rorq(op2, 32); 7163 } 7164 7165 bind(L_third_loop); 7166 decrementl(len); 7167 jccb(Assembler::negative, L_third_loop_exit); 7168 decrementl(len); 7169 jccb(Assembler::negative, L_last_x); 7170 7171 movq(op1, Address(x, len, Address::times_4, 0)); 7172 rorq(op1, 32); 7173 7174 bind(L_multiply); 7175 subl(zlen, 2); 7176 movq(sum, Address(z, zlen, Address::times_4, 0)); 7177 7178 // Multiply 64 bit by 64 bit and add 64 bits lower half and upper 64 bits as carry. 7179 if (UseBMI2Instructions) { 7180 multiply_add_64_bmi2(sum, op1, op2, carry, tmp2); 7181 } 7182 else { 7183 multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg); 7184 } 7185 7186 movq(Address(z, zlen, Address::times_4, 0), sum); 7187 7188 jmp(L_third_loop); 7189 bind(L_third_loop_exit); 7190 7191 // Fourth loop 7192 // Add 64 bit long carry into z with carry propagation. 7193 // Uses offsetted zlen. 7194 add_one_64(z, zlen, carry, tmp1); 7195 7196 pop(len); 7197 pop(zlen); 7198 jmp(L_second_loop); 7199 7200 // Next infrequent code is moved outside loops. 7201 bind(L_last_x); 7202 movl(op1, Address(x, 0)); 7203 jmp(L_multiply); 7204 7205 bind(L_second_loop_exit); 7206 pop(len); 7207 pop(zlen); 7208 pop(len); 7209 pop(zlen); 7210 7211 // Fifth loop 7212 // Shift z left 1 bit. 7213 lshift_by_1(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4); 7214 7215 // z[zlen-1] |= x[len-1] & 1; 7216 movl(tmp3, Address(x, len, Address::times_4, -4)); 7217 andl(tmp3, 1); 7218 orl(Address(z, zlen, Address::times_4, -4), tmp3); 7219 7220 pop(tmp5); 7221 pop(tmp4); 7222 pop(tmp3); 7223 pop(tmp2); 7224 pop(tmp1); 7225 } 7226 7227 /** 7228 * Helper function for mul_add() 7229 * Multiply the in[] by int k and add to out[] starting at offset offs using 7230 * 128 bit by 32 bit multiply and return the carry in tmp5. 7231 * Only quad int aligned length of in[] is operated on in this function. 7232 * k is in rdxReg for BMI2Instructions, for others it is in tmp2. 7233 * This function preserves out, in and k registers. 7234 * len and offset point to the appropriate index in "in" & "out" correspondingly 7235 * tmp5 has the carry. 7236 * other registers are temporary and are modified. 7237 * 7238 */ 7239 void MacroAssembler::mul_add_128_x_32_loop(Register out, Register in, 7240 Register offset, Register len, Register tmp1, Register tmp2, Register tmp3, 7241 Register tmp4, Register tmp5, Register rdxReg, Register raxReg) { 7242 7243 Label L_first_loop, L_first_loop_exit; 7244 7245 movl(tmp1, len); 7246 shrl(tmp1, 2); 7247 7248 bind(L_first_loop); 7249 subl(tmp1, 1); 7250 jccb(Assembler::negative, L_first_loop_exit); 7251 7252 subl(len, 4); 7253 subl(offset, 4); 7254 7255 Register op2 = tmp2; 7256 const Register sum = tmp3; 7257 const Register op1 = tmp4; 7258 const Register carry = tmp5; 7259 7260 if (UseBMI2Instructions) { 7261 op2 = rdxReg; 7262 } 7263 7264 movq(op1, Address(in, len, Address::times_4, 8)); 7265 rorq(op1, 32); 7266 movq(sum, Address(out, offset, Address::times_4, 8)); 7267 rorq(sum, 32); 7268 if (UseBMI2Instructions) { 7269 multiply_add_64_bmi2(sum, op1, op2, carry, raxReg); 7270 } 7271 else { 7272 multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg); 7273 } 7274 // Store back in big endian from little endian 7275 rorq(sum, 0x20); 7276 movq(Address(out, offset, Address::times_4, 8), sum); 7277 7278 movq(op1, Address(in, len, Address::times_4, 0)); 7279 rorq(op1, 32); 7280 movq(sum, Address(out, offset, Address::times_4, 0)); 7281 rorq(sum, 32); 7282 if (UseBMI2Instructions) { 7283 multiply_add_64_bmi2(sum, op1, op2, carry, raxReg); 7284 } 7285 else { 7286 multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg); 7287 } 7288 // Store back in big endian from little endian 7289 rorq(sum, 0x20); 7290 movq(Address(out, offset, Address::times_4, 0), sum); 7291 7292 jmp(L_first_loop); 7293 bind(L_first_loop_exit); 7294 } 7295 7296 /** 7297 * Code for BigInteger::mulAdd() intrinsic 7298 * 7299 * rdi: out 7300 * rsi: in 7301 * r11: offs (out.length - offset) 7302 * rcx: len 7303 * r8: k 7304 * r12: tmp1 7305 * r13: tmp2 7306 * r14: tmp3 7307 * r15: tmp4 7308 * rbx: tmp5 7309 * Multiply the in[] by word k and add to out[], return the carry in rax 7310 */ 7311 void MacroAssembler::mul_add(Register out, Register in, Register offs, 7312 Register len, Register k, Register tmp1, Register tmp2, Register tmp3, 7313 Register tmp4, Register tmp5, Register rdxReg, Register raxReg) { 7314 7315 Label L_carry, L_last_in, L_done; 7316 7317 // carry = 0; 7318 // for (int j=len-1; j >= 0; j--) { 7319 // long product = (in[j] & LONG_MASK) * kLong + 7320 // (out[offs] & LONG_MASK) + carry; 7321 // out[offs--] = (int)product; 7322 // carry = product >>> 32; 7323 // } 7324 // 7325 push(tmp1); 7326 push(tmp2); 7327 push(tmp3); 7328 push(tmp4); 7329 push(tmp5); 7330 7331 Register op2 = tmp2; 7332 const Register sum = tmp3; 7333 const Register op1 = tmp4; 7334 const Register carry = tmp5; 7335 7336 if (UseBMI2Instructions) { 7337 op2 = rdxReg; 7338 movl(op2, k); 7339 } 7340 else { 7341 movl(op2, k); 7342 } 7343 7344 xorq(carry, carry); 7345 7346 //First loop 7347 7348 //Multiply in[] by k in a 4 way unrolled loop using 128 bit by 32 bit multiply 7349 //The carry is in tmp5 7350 mul_add_128_x_32_loop(out, in, offs, len, tmp1, tmp2, tmp3, tmp4, tmp5, rdxReg, raxReg); 7351 7352 //Multiply the trailing in[] entry using 64 bit by 32 bit, if any 7353 decrementl(len); 7354 jccb(Assembler::negative, L_carry); 7355 decrementl(len); 7356 jccb(Assembler::negative, L_last_in); 7357 7358 movq(op1, Address(in, len, Address::times_4, 0)); 7359 rorq(op1, 32); 7360 7361 subl(offs, 2); 7362 movq(sum, Address(out, offs, Address::times_4, 0)); 7363 rorq(sum, 32); 7364 7365 if (UseBMI2Instructions) { 7366 multiply_add_64_bmi2(sum, op1, op2, carry, raxReg); 7367 } 7368 else { 7369 multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg); 7370 } 7371 7372 // Store back in big endian from little endian 7373 rorq(sum, 0x20); 7374 movq(Address(out, offs, Address::times_4, 0), sum); 7375 7376 testl(len, len); 7377 jccb(Assembler::zero, L_carry); 7378 7379 //Multiply the last in[] entry, if any 7380 bind(L_last_in); 7381 movl(op1, Address(in, 0)); 7382 movl(sum, Address(out, offs, Address::times_4, -4)); 7383 7384 movl(raxReg, k); 7385 mull(op1); //tmp4 * eax -> edx:eax 7386 addl(sum, carry); 7387 adcl(rdxReg, 0); 7388 addl(sum, raxReg); 7389 adcl(rdxReg, 0); 7390 movl(carry, rdxReg); 7391 7392 movl(Address(out, offs, Address::times_4, -4), sum); 7393 7394 bind(L_carry); 7395 //return tmp5/carry as carry in rax 7396 movl(rax, carry); 7397 7398 bind(L_done); 7399 pop(tmp5); 7400 pop(tmp4); 7401 pop(tmp3); 7402 pop(tmp2); 7403 pop(tmp1); 7404 } 7405 7406 /** 7407 * Emits code to update CRC-32 with a byte value according to constants in table 7408 * 7409 * @param [in,out]crc Register containing the crc. 7410 * @param [in]val Register containing the byte to fold into the CRC. 7411 * @param [in]table Register containing the table of crc constants. 7412 * 7413 * uint32_t crc; 7414 * val = crc_table[(val ^ crc) & 0xFF]; 7415 * crc = val ^ (crc >> 8); 7416 * 7417 */ 7418 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) { 7419 xorl(val, crc); 7420 andl(val, 0xFF); 7421 shrl(crc, 8); // unsigned shift 7422 xorl(crc, Address(table, val, Address::times_4, 0)); 7423 } 7424 7425 /** 7426 * Fold 128-bit data chunk 7427 */ 7428 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) { 7429 if (UseAVX > 0) { 7430 vpclmulhdq(xtmp, xK, xcrc); // [123:64] 7431 vpclmulldq(xcrc, xK, xcrc); // [63:0] 7432 vpxor(xcrc, xcrc, Address(buf, offset), 0 /* vector_len */); 7433 pxor(xcrc, xtmp); 7434 } else { 7435 movdqa(xtmp, xcrc); 7436 pclmulhdq(xtmp, xK); // [123:64] 7437 pclmulldq(xcrc, xK); // [63:0] 7438 pxor(xcrc, xtmp); 7439 movdqu(xtmp, Address(buf, offset)); 7440 pxor(xcrc, xtmp); 7441 } 7442 } 7443 7444 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf) { 7445 if (UseAVX > 0) { 7446 vpclmulhdq(xtmp, xK, xcrc); 7447 vpclmulldq(xcrc, xK, xcrc); 7448 pxor(xcrc, xbuf); 7449 pxor(xcrc, xtmp); 7450 } else { 7451 movdqa(xtmp, xcrc); 7452 pclmulhdq(xtmp, xK); 7453 pclmulldq(xcrc, xK); 7454 pxor(xcrc, xbuf); 7455 pxor(xcrc, xtmp); 7456 } 7457 } 7458 7459 /** 7460 * 8-bit folds to compute 32-bit CRC 7461 * 7462 * uint64_t xcrc; 7463 * timesXtoThe32[xcrc & 0xFF] ^ (xcrc >> 8); 7464 */ 7465 void MacroAssembler::fold_8bit_crc32(XMMRegister xcrc, Register table, XMMRegister xtmp, Register tmp) { 7466 movdl(tmp, xcrc); 7467 andl(tmp, 0xFF); 7468 movdl(xtmp, Address(table, tmp, Address::times_4, 0)); 7469 psrldq(xcrc, 1); // unsigned shift one byte 7470 pxor(xcrc, xtmp); 7471 } 7472 7473 /** 7474 * uint32_t crc; 7475 * timesXtoThe32[crc & 0xFF] ^ (crc >> 8); 7476 */ 7477 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) { 7478 movl(tmp, crc); 7479 andl(tmp, 0xFF); 7480 shrl(crc, 8); 7481 xorl(crc, Address(table, tmp, Address::times_4, 0)); 7482 } 7483 7484 /** 7485 * @param crc register containing existing CRC (32-bit) 7486 * @param buf register pointing to input byte buffer (byte*) 7487 * @param len register containing number of bytes 7488 * @param table register that will contain address of CRC table 7489 * @param tmp scratch register 7490 */ 7491 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp) { 7492 assert_different_registers(crc, buf, len, table, tmp, rax); 7493 7494 Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned; 7495 Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop; 7496 7497 // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge 7498 // context for the registers used, where all instructions below are using 128-bit mode 7499 // On EVEX without VL and BW, these instructions will all be AVX. 7500 lea(table, ExternalAddress(StubRoutines::crc_table_addr())); 7501 notl(crc); // ~crc 7502 cmpl(len, 16); 7503 jcc(Assembler::less, L_tail); 7504 7505 // Align buffer to 16 bytes 7506 movl(tmp, buf); 7507 andl(tmp, 0xF); 7508 jccb(Assembler::zero, L_aligned); 7509 subl(tmp, 16); 7510 addl(len, tmp); 7511 7512 align(4); 7513 BIND(L_align_loop); 7514 movsbl(rax, Address(buf, 0)); // load byte with sign extension 7515 update_byte_crc32(crc, rax, table); 7516 increment(buf); 7517 incrementl(tmp); 7518 jccb(Assembler::less, L_align_loop); 7519 7520 BIND(L_aligned); 7521 movl(tmp, len); // save 7522 shrl(len, 4); 7523 jcc(Assembler::zero, L_tail_restore); 7524 7525 // Fold crc into first bytes of vector 7526 movdqa(xmm1, Address(buf, 0)); 7527 movdl(rax, xmm1); 7528 xorl(crc, rax); 7529 if (VM_Version::supports_sse4_1()) { 7530 pinsrd(xmm1, crc, 0); 7531 } else { 7532 pinsrw(xmm1, crc, 0); 7533 shrl(crc, 16); 7534 pinsrw(xmm1, crc, 1); 7535 } 7536 addptr(buf, 16); 7537 subl(len, 4); // len > 0 7538 jcc(Assembler::less, L_fold_tail); 7539 7540 movdqa(xmm2, Address(buf, 0)); 7541 movdqa(xmm3, Address(buf, 16)); 7542 movdqa(xmm4, Address(buf, 32)); 7543 addptr(buf, 48); 7544 subl(len, 3); 7545 jcc(Assembler::lessEqual, L_fold_512b); 7546 7547 // Fold total 512 bits of polynomial on each iteration, 7548 // 128 bits per each of 4 parallel streams. 7549 movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32), rscratch1); 7550 7551 align32(); 7552 BIND(L_fold_512b_loop); 7553 fold_128bit_crc32(xmm1, xmm0, xmm5, buf, 0); 7554 fold_128bit_crc32(xmm2, xmm0, xmm5, buf, 16); 7555 fold_128bit_crc32(xmm3, xmm0, xmm5, buf, 32); 7556 fold_128bit_crc32(xmm4, xmm0, xmm5, buf, 48); 7557 addptr(buf, 64); 7558 subl(len, 4); 7559 jcc(Assembler::greater, L_fold_512b_loop); 7560 7561 // Fold 512 bits to 128 bits. 7562 BIND(L_fold_512b); 7563 movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16), rscratch1); 7564 fold_128bit_crc32(xmm1, xmm0, xmm5, xmm2); 7565 fold_128bit_crc32(xmm1, xmm0, xmm5, xmm3); 7566 fold_128bit_crc32(xmm1, xmm0, xmm5, xmm4); 7567 7568 // Fold the rest of 128 bits data chunks 7569 BIND(L_fold_tail); 7570 addl(len, 3); 7571 jccb(Assembler::lessEqual, L_fold_128b); 7572 movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16), rscratch1); 7573 7574 BIND(L_fold_tail_loop); 7575 fold_128bit_crc32(xmm1, xmm0, xmm5, buf, 0); 7576 addptr(buf, 16); 7577 decrementl(len); 7578 jccb(Assembler::greater, L_fold_tail_loop); 7579 7580 // Fold 128 bits in xmm1 down into 32 bits in crc register. 7581 BIND(L_fold_128b); 7582 movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr()), rscratch1); 7583 if (UseAVX > 0) { 7584 vpclmulqdq(xmm2, xmm0, xmm1, 0x1); 7585 vpand(xmm3, xmm0, xmm2, 0 /* vector_len */); 7586 vpclmulqdq(xmm0, xmm0, xmm3, 0x1); 7587 } else { 7588 movdqa(xmm2, xmm0); 7589 pclmulqdq(xmm2, xmm1, 0x1); 7590 movdqa(xmm3, xmm0); 7591 pand(xmm3, xmm2); 7592 pclmulqdq(xmm0, xmm3, 0x1); 7593 } 7594 psrldq(xmm1, 8); 7595 psrldq(xmm2, 4); 7596 pxor(xmm0, xmm1); 7597 pxor(xmm0, xmm2); 7598 7599 // 8 8-bit folds to compute 32-bit CRC. 7600 for (int j = 0; j < 4; j++) { 7601 fold_8bit_crc32(xmm0, table, xmm1, rax); 7602 } 7603 movdl(crc, xmm0); // mov 32 bits to general register 7604 for (int j = 0; j < 4; j++) { 7605 fold_8bit_crc32(crc, table, rax); 7606 } 7607 7608 BIND(L_tail_restore); 7609 movl(len, tmp); // restore 7610 BIND(L_tail); 7611 andl(len, 0xf); 7612 jccb(Assembler::zero, L_exit); 7613 7614 // Fold the rest of bytes 7615 align(4); 7616 BIND(L_tail_loop); 7617 movsbl(rax, Address(buf, 0)); // load byte with sign extension 7618 update_byte_crc32(crc, rax, table); 7619 increment(buf); 7620 decrementl(len); 7621 jccb(Assembler::greater, L_tail_loop); 7622 7623 BIND(L_exit); 7624 notl(crc); // ~c 7625 } 7626 7627 // Helper function for AVX 512 CRC32 7628 // Fold 512-bit data chunks 7629 void MacroAssembler::fold512bit_crc32_avx512(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, 7630 Register pos, int offset) { 7631 evmovdquq(xmm3, Address(buf, pos, Address::times_1, offset), Assembler::AVX_512bit); 7632 evpclmulqdq(xtmp, xcrc, xK, 0x10, Assembler::AVX_512bit); // [123:64] 7633 evpclmulqdq(xmm2, xcrc, xK, 0x01, Assembler::AVX_512bit); // [63:0] 7634 evpxorq(xcrc, xtmp, xmm2, Assembler::AVX_512bit /* vector_len */); 7635 evpxorq(xcrc, xcrc, xmm3, Assembler::AVX_512bit /* vector_len */); 7636 } 7637 7638 // Helper function for AVX 512 CRC32 7639 // Compute CRC32 for < 256B buffers 7640 void MacroAssembler::kernel_crc32_avx512_256B(Register crc, Register buf, Register len, Register table, Register pos, 7641 Register tmp1, Register tmp2, Label& L_barrett, Label& L_16B_reduction_loop, 7642 Label& L_get_last_two_xmms, Label& L_128_done, Label& L_cleanup) { 7643 7644 Label L_less_than_32, L_exact_16_left, L_less_than_16_left; 7645 Label L_less_than_8_left, L_less_than_4_left, L_less_than_2_left, L_zero_left; 7646 Label L_only_less_than_4, L_only_less_than_3, L_only_less_than_2; 7647 7648 // check if there is enough buffer to be able to fold 16B at a time 7649 cmpl(len, 32); 7650 jcc(Assembler::less, L_less_than_32); 7651 7652 // if there is, load the constants 7653 movdqu(xmm10, Address(table, 1 * 16)); //rk1 and rk2 in xmm10 7654 movdl(xmm0, crc); // get the initial crc value 7655 movdqu(xmm7, Address(buf, pos, Address::times_1, 0 * 16)); //load the plaintext 7656 pxor(xmm7, xmm0); 7657 7658 // update the buffer pointer 7659 addl(pos, 16); 7660 //update the counter.subtract 32 instead of 16 to save one instruction from the loop 7661 subl(len, 32); 7662 jmp(L_16B_reduction_loop); 7663 7664 bind(L_less_than_32); 7665 //mov initial crc to the return value. this is necessary for zero - length buffers. 7666 movl(rax, crc); 7667 testl(len, len); 7668 jcc(Assembler::equal, L_cleanup); 7669 7670 movdl(xmm0, crc); //get the initial crc value 7671 7672 cmpl(len, 16); 7673 jcc(Assembler::equal, L_exact_16_left); 7674 jcc(Assembler::less, L_less_than_16_left); 7675 7676 movdqu(xmm7, Address(buf, pos, Address::times_1, 0 * 16)); //load the plaintext 7677 pxor(xmm7, xmm0); //xor the initial crc value 7678 addl(pos, 16); 7679 subl(len, 16); 7680 movdqu(xmm10, Address(table, 1 * 16)); // rk1 and rk2 in xmm10 7681 jmp(L_get_last_two_xmms); 7682 7683 bind(L_less_than_16_left); 7684 //use stack space to load data less than 16 bytes, zero - out the 16B in memory first. 7685 pxor(xmm1, xmm1); 7686 movptr(tmp1, rsp); 7687 movdqu(Address(tmp1, 0 * 16), xmm1); 7688 7689 cmpl(len, 4); 7690 jcc(Assembler::less, L_only_less_than_4); 7691 7692 //backup the counter value 7693 movl(tmp2, len); 7694 cmpl(len, 8); 7695 jcc(Assembler::less, L_less_than_8_left); 7696 7697 //load 8 Bytes 7698 movq(rax, Address(buf, pos, Address::times_1, 0 * 16)); 7699 movq(Address(tmp1, 0 * 16), rax); 7700 addptr(tmp1, 8); 7701 subl(len, 8); 7702 addl(pos, 8); 7703 7704 bind(L_less_than_8_left); 7705 cmpl(len, 4); 7706 jcc(Assembler::less, L_less_than_4_left); 7707 7708 //load 4 Bytes 7709 movl(rax, Address(buf, pos, Address::times_1, 0)); 7710 movl(Address(tmp1, 0 * 16), rax); 7711 addptr(tmp1, 4); 7712 subl(len, 4); 7713 addl(pos, 4); 7714 7715 bind(L_less_than_4_left); 7716 cmpl(len, 2); 7717 jcc(Assembler::less, L_less_than_2_left); 7718 7719 // load 2 Bytes 7720 movw(rax, Address(buf, pos, Address::times_1, 0)); 7721 movl(Address(tmp1, 0 * 16), rax); 7722 addptr(tmp1, 2); 7723 subl(len, 2); 7724 addl(pos, 2); 7725 7726 bind(L_less_than_2_left); 7727 cmpl(len, 1); 7728 jcc(Assembler::less, L_zero_left); 7729 7730 // load 1 Byte 7731 movb(rax, Address(buf, pos, Address::times_1, 0)); 7732 movb(Address(tmp1, 0 * 16), rax); 7733 7734 bind(L_zero_left); 7735 movdqu(xmm7, Address(rsp, 0)); 7736 pxor(xmm7, xmm0); //xor the initial crc value 7737 7738 lea(rax, ExternalAddress(StubRoutines::x86::shuf_table_crc32_avx512_addr())); 7739 movdqu(xmm0, Address(rax, tmp2)); 7740 pshufb(xmm7, xmm0); 7741 jmp(L_128_done); 7742 7743 bind(L_exact_16_left); 7744 movdqu(xmm7, Address(buf, pos, Address::times_1, 0)); 7745 pxor(xmm7, xmm0); //xor the initial crc value 7746 jmp(L_128_done); 7747 7748 bind(L_only_less_than_4); 7749 cmpl(len, 3); 7750 jcc(Assembler::less, L_only_less_than_3); 7751 7752 // load 3 Bytes 7753 movb(rax, Address(buf, pos, Address::times_1, 0)); 7754 movb(Address(tmp1, 0), rax); 7755 7756 movb(rax, Address(buf, pos, Address::times_1, 1)); 7757 movb(Address(tmp1, 1), rax); 7758 7759 movb(rax, Address(buf, pos, Address::times_1, 2)); 7760 movb(Address(tmp1, 2), rax); 7761 7762 movdqu(xmm7, Address(rsp, 0)); 7763 pxor(xmm7, xmm0); //xor the initial crc value 7764 7765 pslldq(xmm7, 0x5); 7766 jmp(L_barrett); 7767 bind(L_only_less_than_3); 7768 cmpl(len, 2); 7769 jcc(Assembler::less, L_only_less_than_2); 7770 7771 // load 2 Bytes 7772 movb(rax, Address(buf, pos, Address::times_1, 0)); 7773 movb(Address(tmp1, 0), rax); 7774 7775 movb(rax, Address(buf, pos, Address::times_1, 1)); 7776 movb(Address(tmp1, 1), rax); 7777 7778 movdqu(xmm7, Address(rsp, 0)); 7779 pxor(xmm7, xmm0); //xor the initial crc value 7780 7781 pslldq(xmm7, 0x6); 7782 jmp(L_barrett); 7783 7784 bind(L_only_less_than_2); 7785 //load 1 Byte 7786 movb(rax, Address(buf, pos, Address::times_1, 0)); 7787 movb(Address(tmp1, 0), rax); 7788 7789 movdqu(xmm7, Address(rsp, 0)); 7790 pxor(xmm7, xmm0); //xor the initial crc value 7791 7792 pslldq(xmm7, 0x7); 7793 } 7794 7795 /** 7796 * Compute CRC32 using AVX512 instructions 7797 * param crc register containing existing CRC (32-bit) 7798 * param buf register pointing to input byte buffer (byte*) 7799 * param len register containing number of bytes 7800 * param table address of crc or crc32c table 7801 * param tmp1 scratch register 7802 * param tmp2 scratch register 7803 * return rax result register 7804 * 7805 * This routine is identical for crc32c with the exception of the precomputed constant 7806 * table which will be passed as the table argument. The calculation steps are 7807 * the same for both variants. 7808 */ 7809 void MacroAssembler::kernel_crc32_avx512(Register crc, Register buf, Register len, Register table, Register tmp1, Register tmp2) { 7810 assert_different_registers(crc, buf, len, table, tmp1, tmp2, rax, r12); 7811 7812 Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned; 7813 Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop; 7814 Label L_less_than_256, L_fold_128_B_loop, L_fold_256_B_loop; 7815 Label L_fold_128_B_register, L_final_reduction_for_128, L_16B_reduction_loop; 7816 Label L_128_done, L_get_last_two_xmms, L_barrett, L_cleanup; 7817 7818 const Register pos = r12; 7819 push(r12); 7820 subptr(rsp, 16 * 2 + 8); 7821 7822 // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge 7823 // context for the registers used, where all instructions below are using 128-bit mode 7824 // On EVEX without VL and BW, these instructions will all be AVX. 7825 movl(pos, 0); 7826 7827 // check if smaller than 256B 7828 cmpl(len, 256); 7829 jcc(Assembler::less, L_less_than_256); 7830 7831 // load the initial crc value 7832 movdl(xmm10, crc); 7833 7834 // receive the initial 64B data, xor the initial crc value 7835 evmovdquq(xmm0, Address(buf, pos, Address::times_1, 0 * 64), Assembler::AVX_512bit); 7836 evmovdquq(xmm4, Address(buf, pos, Address::times_1, 1 * 64), Assembler::AVX_512bit); 7837 evpxorq(xmm0, xmm0, xmm10, Assembler::AVX_512bit); 7838 evbroadcasti32x4(xmm10, Address(table, 2 * 16), Assembler::AVX_512bit); //zmm10 has rk3 and rk4 7839 7840 subl(len, 256); 7841 cmpl(len, 256); 7842 jcc(Assembler::less, L_fold_128_B_loop); 7843 7844 evmovdquq(xmm7, Address(buf, pos, Address::times_1, 2 * 64), Assembler::AVX_512bit); 7845 evmovdquq(xmm8, Address(buf, pos, Address::times_1, 3 * 64), Assembler::AVX_512bit); 7846 evbroadcasti32x4(xmm16, Address(table, 0 * 16), Assembler::AVX_512bit); //zmm16 has rk-1 and rk-2 7847 subl(len, 256); 7848 7849 bind(L_fold_256_B_loop); 7850 addl(pos, 256); 7851 fold512bit_crc32_avx512(xmm0, xmm16, xmm1, buf, pos, 0 * 64); 7852 fold512bit_crc32_avx512(xmm4, xmm16, xmm1, buf, pos, 1 * 64); 7853 fold512bit_crc32_avx512(xmm7, xmm16, xmm1, buf, pos, 2 * 64); 7854 fold512bit_crc32_avx512(xmm8, xmm16, xmm1, buf, pos, 3 * 64); 7855 7856 subl(len, 256); 7857 jcc(Assembler::greaterEqual, L_fold_256_B_loop); 7858 7859 // Fold 256 into 128 7860 addl(pos, 256); 7861 evpclmulqdq(xmm1, xmm0, xmm10, 0x01, Assembler::AVX_512bit); 7862 evpclmulqdq(xmm2, xmm0, xmm10, 0x10, Assembler::AVX_512bit); 7863 vpternlogq(xmm7, 0x96, xmm1, xmm2, Assembler::AVX_512bit); // xor ABC 7864 7865 evpclmulqdq(xmm5, xmm4, xmm10, 0x01, Assembler::AVX_512bit); 7866 evpclmulqdq(xmm6, xmm4, xmm10, 0x10, Assembler::AVX_512bit); 7867 vpternlogq(xmm8, 0x96, xmm5, xmm6, Assembler::AVX_512bit); // xor ABC 7868 7869 evmovdquq(xmm0, xmm7, Assembler::AVX_512bit); 7870 evmovdquq(xmm4, xmm8, Assembler::AVX_512bit); 7871 7872 addl(len, 128); 7873 jmp(L_fold_128_B_register); 7874 7875 // at this section of the code, there is 128 * x + y(0 <= y<128) bytes of buffer.The fold_128_B_loop 7876 // loop will fold 128B at a time until we have 128 + y Bytes of buffer 7877 7878 // fold 128B at a time.This section of the code folds 8 xmm registers in parallel 7879 bind(L_fold_128_B_loop); 7880 addl(pos, 128); 7881 fold512bit_crc32_avx512(xmm0, xmm10, xmm1, buf, pos, 0 * 64); 7882 fold512bit_crc32_avx512(xmm4, xmm10, xmm1, buf, pos, 1 * 64); 7883 7884 subl(len, 128); 7885 jcc(Assembler::greaterEqual, L_fold_128_B_loop); 7886 7887 addl(pos, 128); 7888 7889 // at this point, the buffer pointer is pointing at the last y Bytes of the buffer, where 0 <= y < 128 7890 // the 128B of folded data is in 8 of the xmm registers : xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7 7891 bind(L_fold_128_B_register); 7892 evmovdquq(xmm16, Address(table, 5 * 16), Assembler::AVX_512bit); // multiply by rk9-rk16 7893 evmovdquq(xmm11, Address(table, 9 * 16), Assembler::AVX_512bit); // multiply by rk17-rk20, rk1,rk2, 0,0 7894 evpclmulqdq(xmm1, xmm0, xmm16, 0x01, Assembler::AVX_512bit); 7895 evpclmulqdq(xmm2, xmm0, xmm16, 0x10, Assembler::AVX_512bit); 7896 // save last that has no multiplicand 7897 vextracti64x2(xmm7, xmm4, 3); 7898 7899 evpclmulqdq(xmm5, xmm4, xmm11, 0x01, Assembler::AVX_512bit); 7900 evpclmulqdq(xmm6, xmm4, xmm11, 0x10, Assembler::AVX_512bit); 7901 // Needed later in reduction loop 7902 movdqu(xmm10, Address(table, 1 * 16)); 7903 vpternlogq(xmm1, 0x96, xmm2, xmm5, Assembler::AVX_512bit); // xor ABC 7904 vpternlogq(xmm1, 0x96, xmm6, xmm7, Assembler::AVX_512bit); // xor ABC 7905 7906 // Swap 1,0,3,2 - 01 00 11 10 7907 evshufi64x2(xmm8, xmm1, xmm1, 0x4e, Assembler::AVX_512bit); 7908 evpxorq(xmm8, xmm8, xmm1, Assembler::AVX_256bit); 7909 vextracti128(xmm5, xmm8, 1); 7910 evpxorq(xmm7, xmm5, xmm8, Assembler::AVX_128bit); 7911 7912 // instead of 128, we add 128 - 16 to the loop counter to save 1 instruction from the loop 7913 // instead of a cmp instruction, we use the negative flag with the jl instruction 7914 addl(len, 128 - 16); 7915 jcc(Assembler::less, L_final_reduction_for_128); 7916 7917 bind(L_16B_reduction_loop); 7918 vpclmulqdq(xmm8, xmm7, xmm10, 0x01); 7919 vpclmulqdq(xmm7, xmm7, xmm10, 0x10); 7920 vpxor(xmm7, xmm7, xmm8, Assembler::AVX_128bit); 7921 movdqu(xmm0, Address(buf, pos, Address::times_1, 0 * 16)); 7922 vpxor(xmm7, xmm7, xmm0, Assembler::AVX_128bit); 7923 addl(pos, 16); 7924 subl(len, 16); 7925 jcc(Assembler::greaterEqual, L_16B_reduction_loop); 7926 7927 bind(L_final_reduction_for_128); 7928 addl(len, 16); 7929 jcc(Assembler::equal, L_128_done); 7930 7931 bind(L_get_last_two_xmms); 7932 movdqu(xmm2, xmm7); 7933 addl(pos, len); 7934 movdqu(xmm1, Address(buf, pos, Address::times_1, -16)); 7935 subl(pos, len); 7936 7937 // get rid of the extra data that was loaded before 7938 // load the shift constant 7939 lea(rax, ExternalAddress(StubRoutines::x86::shuf_table_crc32_avx512_addr())); 7940 movdqu(xmm0, Address(rax, len)); 7941 addl(rax, len); 7942 7943 vpshufb(xmm7, xmm7, xmm0, Assembler::AVX_128bit); 7944 //Change mask to 512 7945 vpxor(xmm0, xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_avx512_addr() + 2 * 16), Assembler::AVX_128bit, tmp2); 7946 vpshufb(xmm2, xmm2, xmm0, Assembler::AVX_128bit); 7947 7948 blendvpb(xmm2, xmm2, xmm1, xmm0, Assembler::AVX_128bit); 7949 vpclmulqdq(xmm8, xmm7, xmm10, 0x01); 7950 vpclmulqdq(xmm7, xmm7, xmm10, 0x10); 7951 vpxor(xmm7, xmm7, xmm8, Assembler::AVX_128bit); 7952 vpxor(xmm7, xmm7, xmm2, Assembler::AVX_128bit); 7953 7954 bind(L_128_done); 7955 // compute crc of a 128-bit value 7956 movdqu(xmm10, Address(table, 3 * 16)); 7957 movdqu(xmm0, xmm7); 7958 7959 // 64b fold 7960 vpclmulqdq(xmm7, xmm7, xmm10, 0x0); 7961 vpsrldq(xmm0, xmm0, 0x8, Assembler::AVX_128bit); 7962 vpxor(xmm7, xmm7, xmm0, Assembler::AVX_128bit); 7963 7964 // 32b fold 7965 movdqu(xmm0, xmm7); 7966 vpslldq(xmm7, xmm7, 0x4, Assembler::AVX_128bit); 7967 vpclmulqdq(xmm7, xmm7, xmm10, 0x10); 7968 vpxor(xmm7, xmm7, xmm0, Assembler::AVX_128bit); 7969 jmp(L_barrett); 7970 7971 bind(L_less_than_256); 7972 kernel_crc32_avx512_256B(crc, buf, len, table, pos, tmp1, tmp2, L_barrett, L_16B_reduction_loop, L_get_last_two_xmms, L_128_done, L_cleanup); 7973 7974 //barrett reduction 7975 bind(L_barrett); 7976 vpand(xmm7, xmm7, ExternalAddress(StubRoutines::x86::crc_by128_masks_avx512_addr() + 1 * 16), Assembler::AVX_128bit, tmp2); 7977 movdqu(xmm1, xmm7); 7978 movdqu(xmm2, xmm7); 7979 movdqu(xmm10, Address(table, 4 * 16)); 7980 7981 pclmulqdq(xmm7, xmm10, 0x0); 7982 pxor(xmm7, xmm2); 7983 vpand(xmm7, xmm7, ExternalAddress(StubRoutines::x86::crc_by128_masks_avx512_addr()), Assembler::AVX_128bit, tmp2); 7984 movdqu(xmm2, xmm7); 7985 pclmulqdq(xmm7, xmm10, 0x10); 7986 pxor(xmm7, xmm2); 7987 pxor(xmm7, xmm1); 7988 pextrd(crc, xmm7, 2); 7989 7990 bind(L_cleanup); 7991 addptr(rsp, 16 * 2 + 8); 7992 pop(r12); 7993 } 7994 7995 // S. Gueron / Information Processing Letters 112 (2012) 184 7996 // Algorithm 4: Computing carry-less multiplication using a precomputed lookup table. 7997 // Input: A 32 bit value B = [byte3, byte2, byte1, byte0]. 7998 // Output: the 64-bit carry-less product of B * CONST 7999 void MacroAssembler::crc32c_ipl_alg4(Register in, uint32_t n, 8000 Register tmp1, Register tmp2, Register tmp3) { 8001 lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr())); 8002 if (n > 0) { 8003 addq(tmp3, n * 256 * 8); 8004 } 8005 // Q1 = TABLEExt[n][B & 0xFF]; 8006 movl(tmp1, in); 8007 andl(tmp1, 0x000000FF); 8008 shll(tmp1, 3); 8009 addq(tmp1, tmp3); 8010 movq(tmp1, Address(tmp1, 0)); 8011 8012 // Q2 = TABLEExt[n][B >> 8 & 0xFF]; 8013 movl(tmp2, in); 8014 shrl(tmp2, 8); 8015 andl(tmp2, 0x000000FF); 8016 shll(tmp2, 3); 8017 addq(tmp2, tmp3); 8018 movq(tmp2, Address(tmp2, 0)); 8019 8020 shlq(tmp2, 8); 8021 xorq(tmp1, tmp2); 8022 8023 // Q3 = TABLEExt[n][B >> 16 & 0xFF]; 8024 movl(tmp2, in); 8025 shrl(tmp2, 16); 8026 andl(tmp2, 0x000000FF); 8027 shll(tmp2, 3); 8028 addq(tmp2, tmp3); 8029 movq(tmp2, Address(tmp2, 0)); 8030 8031 shlq(tmp2, 16); 8032 xorq(tmp1, tmp2); 8033 8034 // Q4 = TABLEExt[n][B >> 24 & 0xFF]; 8035 shrl(in, 24); 8036 andl(in, 0x000000FF); 8037 shll(in, 3); 8038 addq(in, tmp3); 8039 movq(in, Address(in, 0)); 8040 8041 shlq(in, 24); 8042 xorq(in, tmp1); 8043 // return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24; 8044 } 8045 8046 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1, 8047 Register in_out, 8048 uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported, 8049 XMMRegister w_xtmp2, 8050 Register tmp1, 8051 Register n_tmp2, Register n_tmp3) { 8052 if (is_pclmulqdq_supported) { 8053 movdl(w_xtmp1, in_out); // modified blindly 8054 8055 movl(tmp1, const_or_pre_comp_const_index); 8056 movdl(w_xtmp2, tmp1); 8057 pclmulqdq(w_xtmp1, w_xtmp2, 0); 8058 8059 movdq(in_out, w_xtmp1); 8060 } else { 8061 crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3); 8062 } 8063 } 8064 8065 // Recombination Alternative 2: No bit-reflections 8066 // T1 = (CRC_A * U1) << 1 8067 // T2 = (CRC_B * U2) << 1 8068 // C1 = T1 >> 32 8069 // C2 = T2 >> 32 8070 // T1 = T1 & 0xFFFFFFFF 8071 // T2 = T2 & 0xFFFFFFFF 8072 // T1 = CRC32(0, T1) 8073 // T2 = CRC32(0, T2) 8074 // C1 = C1 ^ T1 8075 // C2 = C2 ^ T2 8076 // CRC = C1 ^ C2 ^ CRC_C 8077 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2, 8078 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 8079 Register tmp1, Register tmp2, 8080 Register n_tmp3) { 8081 crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3); 8082 crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3); 8083 shlq(in_out, 1); 8084 movl(tmp1, in_out); 8085 shrq(in_out, 32); 8086 xorl(tmp2, tmp2); 8087 crc32(tmp2, tmp1, 4); 8088 xorl(in_out, tmp2); // we don't care about upper 32 bit contents here 8089 shlq(in1, 1); 8090 movl(tmp1, in1); 8091 shrq(in1, 32); 8092 xorl(tmp2, tmp2); 8093 crc32(tmp2, tmp1, 4); 8094 xorl(in1, tmp2); 8095 xorl(in_out, in1); 8096 xorl(in_out, in2); 8097 } 8098 8099 // Set N to predefined value 8100 // Subtract from a length of a buffer 8101 // execute in a loop: 8102 // CRC_A = 0xFFFFFFFF, CRC_B = 0, CRC_C = 0 8103 // for i = 1 to N do 8104 // CRC_A = CRC32(CRC_A, A[i]) 8105 // CRC_B = CRC32(CRC_B, B[i]) 8106 // CRC_C = CRC32(CRC_C, C[i]) 8107 // end for 8108 // Recombine 8109 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, 8110 Register in_out1, Register in_out2, Register in_out3, 8111 Register tmp1, Register tmp2, Register tmp3, 8112 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 8113 Register tmp4, Register tmp5, 8114 Register n_tmp6) { 8115 Label L_processPartitions; 8116 Label L_processPartition; 8117 Label L_exit; 8118 8119 bind(L_processPartitions); 8120 cmpl(in_out1, 3 * size); 8121 jcc(Assembler::less, L_exit); 8122 xorl(tmp1, tmp1); 8123 xorl(tmp2, tmp2); 8124 movq(tmp3, in_out2); 8125 addq(tmp3, size); 8126 8127 bind(L_processPartition); 8128 crc32(in_out3, Address(in_out2, 0), 8); 8129 crc32(tmp1, Address(in_out2, size), 8); 8130 crc32(tmp2, Address(in_out2, size * 2), 8); 8131 addq(in_out2, 8); 8132 cmpq(in_out2, tmp3); 8133 jcc(Assembler::less, L_processPartition); 8134 crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2, 8135 w_xtmp1, w_xtmp2, w_xtmp3, 8136 tmp4, tmp5, 8137 n_tmp6); 8138 addq(in_out2, 2 * size); 8139 subl(in_out1, 3 * size); 8140 jmp(L_processPartitions); 8141 8142 bind(L_exit); 8143 } 8144 8145 // Algorithm 2: Pipelined usage of the CRC32 instruction. 8146 // Input: A buffer I of L bytes. 8147 // Output: the CRC32C value of the buffer. 8148 // Notations: 8149 // Write L = 24N + r, with N = floor (L/24). 8150 // r = L mod 24 (0 <= r < 24). 8151 // Consider I as the concatenation of A|B|C|R, where A, B, C, each, 8152 // N quadwords, and R consists of r bytes. 8153 // A[j] = I [8j+7:8j], j= 0, 1, ..., N-1 8154 // B[j] = I [N + 8j+7:N + 8j], j= 0, 1, ..., N-1 8155 // C[j] = I [2N + 8j+7:2N + 8j], j= 0, 1, ..., N-1 8156 // if r > 0 R[j] = I [3N +j], j= 0, 1, ...,r-1 8157 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2, 8158 Register tmp1, Register tmp2, Register tmp3, 8159 Register tmp4, Register tmp5, Register tmp6, 8160 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 8161 bool is_pclmulqdq_supported) { 8162 uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS]; 8163 Label L_wordByWord; 8164 Label L_byteByByteProlog; 8165 Label L_byteByByte; 8166 Label L_exit; 8167 8168 if (is_pclmulqdq_supported ) { 8169 const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::crc32c_table_addr(); 8170 const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::crc32c_table_addr() + 1); 8171 8172 const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::crc32c_table_addr() + 2); 8173 const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::crc32c_table_addr() + 3); 8174 8175 const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::crc32c_table_addr() + 4); 8176 const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::crc32c_table_addr() + 5); 8177 assert((CRC32C_NUM_PRECOMPUTED_CONSTANTS - 1 ) == 5, "Checking whether you declared all of the constants based on the number of \"chunks\""); 8178 } else { 8179 const_or_pre_comp_const_index[0] = 1; 8180 const_or_pre_comp_const_index[1] = 0; 8181 8182 const_or_pre_comp_const_index[2] = 3; 8183 const_or_pre_comp_const_index[3] = 2; 8184 8185 const_or_pre_comp_const_index[4] = 5; 8186 const_or_pre_comp_const_index[5] = 4; 8187 } 8188 crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported, 8189 in2, in1, in_out, 8190 tmp1, tmp2, tmp3, 8191 w_xtmp1, w_xtmp2, w_xtmp3, 8192 tmp4, tmp5, 8193 tmp6); 8194 crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported, 8195 in2, in1, in_out, 8196 tmp1, tmp2, tmp3, 8197 w_xtmp1, w_xtmp2, w_xtmp3, 8198 tmp4, tmp5, 8199 tmp6); 8200 crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported, 8201 in2, in1, in_out, 8202 tmp1, tmp2, tmp3, 8203 w_xtmp1, w_xtmp2, w_xtmp3, 8204 tmp4, tmp5, 8205 tmp6); 8206 movl(tmp1, in2); 8207 andl(tmp1, 0x00000007); 8208 negl(tmp1); 8209 addl(tmp1, in2); 8210 addq(tmp1, in1); 8211 8212 cmpq(in1, tmp1); 8213 jccb(Assembler::greaterEqual, L_byteByByteProlog); 8214 align(16); 8215 BIND(L_wordByWord); 8216 crc32(in_out, Address(in1, 0), 8); 8217 addq(in1, 8); 8218 cmpq(in1, tmp1); 8219 jcc(Assembler::less, L_wordByWord); 8220 8221 BIND(L_byteByByteProlog); 8222 andl(in2, 0x00000007); 8223 movl(tmp2, 1); 8224 8225 cmpl(tmp2, in2); 8226 jccb(Assembler::greater, L_exit); 8227 BIND(L_byteByByte); 8228 crc32(in_out, Address(in1, 0), 1); 8229 incq(in1); 8230 incl(tmp2); 8231 cmpl(tmp2, in2); 8232 jcc(Assembler::lessEqual, L_byteByByte); 8233 8234 BIND(L_exit); 8235 } 8236 #undef BIND 8237 #undef BLOCK_COMMENT 8238 8239 // Compress char[] array to byte[]. 8240 // Intrinsic for java.lang.StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) 8241 // Return the array length if every element in array can be encoded, 8242 // otherwise, the index of first non-latin1 (> 0xff) character. 8243 // @IntrinsicCandidate 8244 // public static int compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) { 8245 // for (int i = 0; i < len; i++) { 8246 // char c = src[srcOff]; 8247 // if (c > 0xff) { 8248 // return i; // return index of non-latin1 char 8249 // } 8250 // dst[dstOff] = (byte)c; 8251 // srcOff++; 8252 // dstOff++; 8253 // } 8254 // return len; 8255 // } 8256 void MacroAssembler::char_array_compress(Register src, Register dst, Register len, 8257 XMMRegister tmp1Reg, XMMRegister tmp2Reg, 8258 XMMRegister tmp3Reg, XMMRegister tmp4Reg, 8259 Register tmp5, Register result, KRegister mask1, KRegister mask2) { 8260 Label copy_chars_loop, done, reset_sp, copy_tail; 8261 8262 // rsi: src 8263 // rdi: dst 8264 // rdx: len 8265 // rcx: tmp5 8266 // rax: result 8267 8268 // rsi holds start addr of source char[] to be compressed 8269 // rdi holds start addr of destination byte[] 8270 // rdx holds length 8271 8272 assert(len != result, ""); 8273 8274 // save length for return 8275 movl(result, len); 8276 8277 if ((AVX3Threshold == 0) && (UseAVX > 2) && // AVX512 8278 VM_Version::supports_avx512vlbw() && 8279 VM_Version::supports_bmi2()) { 8280 8281 Label copy_32_loop, copy_loop_tail, below_threshold, reset_for_copy_tail; 8282 8283 // alignment 8284 Label post_alignment; 8285 8286 // if length of the string is less than 32, handle it the old fashioned way 8287 testl(len, -32); 8288 jcc(Assembler::zero, below_threshold); 8289 8290 // First check whether a character is compressible ( <= 0xFF). 8291 // Create mask to test for Unicode chars inside zmm vector 8292 movl(tmp5, 0x00FF); 8293 evpbroadcastw(tmp2Reg, tmp5, Assembler::AVX_512bit); 8294 8295 testl(len, -64); 8296 jccb(Assembler::zero, post_alignment); 8297 8298 movl(tmp5, dst); 8299 andl(tmp5, (32 - 1)); 8300 negl(tmp5); 8301 andl(tmp5, (32 - 1)); 8302 8303 // bail out when there is nothing to be done 8304 testl(tmp5, 0xFFFFFFFF); 8305 jccb(Assembler::zero, post_alignment); 8306 8307 // ~(~0 << len), where len is the # of remaining elements to process 8308 movl(len, 0xFFFFFFFF); 8309 shlxl(len, len, tmp5); 8310 notl(len); 8311 kmovdl(mask2, len); 8312 movl(len, result); 8313 8314 evmovdquw(tmp1Reg, mask2, Address(src, 0), /*merge*/ false, Assembler::AVX_512bit); 8315 evpcmpw(mask1, mask2, tmp1Reg, tmp2Reg, Assembler::le, /*signed*/ false, Assembler::AVX_512bit); 8316 ktestd(mask1, mask2); 8317 jcc(Assembler::carryClear, copy_tail); 8318 8319 evpmovwb(Address(dst, 0), mask2, tmp1Reg, Assembler::AVX_512bit); 8320 8321 addptr(src, tmp5); 8322 addptr(src, tmp5); 8323 addptr(dst, tmp5); 8324 subl(len, tmp5); 8325 8326 bind(post_alignment); 8327 // end of alignment 8328 8329 movl(tmp5, len); 8330 andl(tmp5, (32 - 1)); // tail count (in chars) 8331 andl(len, ~(32 - 1)); // vector count (in chars) 8332 jccb(Assembler::zero, copy_loop_tail); 8333 8334 lea(src, Address(src, len, Address::times_2)); 8335 lea(dst, Address(dst, len, Address::times_1)); 8336 negptr(len); 8337 8338 bind(copy_32_loop); 8339 evmovdquw(tmp1Reg, Address(src, len, Address::times_2), Assembler::AVX_512bit); 8340 evpcmpuw(mask1, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit); 8341 kortestdl(mask1, mask1); 8342 jccb(Assembler::carryClear, reset_for_copy_tail); 8343 8344 // All elements in current processed chunk are valid candidates for 8345 // compression. Write a truncated byte elements to the memory. 8346 evpmovwb(Address(dst, len, Address::times_1), tmp1Reg, Assembler::AVX_512bit); 8347 addptr(len, 32); 8348 jccb(Assembler::notZero, copy_32_loop); 8349 8350 bind(copy_loop_tail); 8351 // bail out when there is nothing to be done 8352 testl(tmp5, 0xFFFFFFFF); 8353 jcc(Assembler::zero, done); 8354 8355 movl(len, tmp5); 8356 8357 // ~(~0 << len), where len is the # of remaining elements to process 8358 movl(tmp5, 0xFFFFFFFF); 8359 shlxl(tmp5, tmp5, len); 8360 notl(tmp5); 8361 8362 kmovdl(mask2, tmp5); 8363 8364 evmovdquw(tmp1Reg, mask2, Address(src, 0), /*merge*/ false, Assembler::AVX_512bit); 8365 evpcmpw(mask1, mask2, tmp1Reg, tmp2Reg, Assembler::le, /*signed*/ false, Assembler::AVX_512bit); 8366 ktestd(mask1, mask2); 8367 jcc(Assembler::carryClear, copy_tail); 8368 8369 evpmovwb(Address(dst, 0), mask2, tmp1Reg, Assembler::AVX_512bit); 8370 jmp(done); 8371 8372 bind(reset_for_copy_tail); 8373 lea(src, Address(src, tmp5, Address::times_2)); 8374 lea(dst, Address(dst, tmp5, Address::times_1)); 8375 subptr(len, tmp5); 8376 jmp(copy_chars_loop); 8377 8378 bind(below_threshold); 8379 } 8380 8381 if (UseSSE42Intrinsics) { 8382 Label copy_32_loop, copy_16, copy_tail_sse, reset_for_copy_tail; 8383 8384 // vectored compression 8385 testl(len, 0xfffffff8); 8386 jcc(Assembler::zero, copy_tail); 8387 8388 movl(tmp5, 0xff00ff00); // create mask to test for Unicode chars in vectors 8389 movdl(tmp1Reg, tmp5); 8390 pshufd(tmp1Reg, tmp1Reg, 0); // store Unicode mask in tmp1Reg 8391 8392 andl(len, 0xfffffff0); 8393 jccb(Assembler::zero, copy_16); 8394 8395 // compress 16 chars per iter 8396 pxor(tmp4Reg, tmp4Reg); 8397 8398 lea(src, Address(src, len, Address::times_2)); 8399 lea(dst, Address(dst, len, Address::times_1)); 8400 negptr(len); 8401 8402 bind(copy_32_loop); 8403 movdqu(tmp2Reg, Address(src, len, Address::times_2)); // load 1st 8 characters 8404 por(tmp4Reg, tmp2Reg); 8405 movdqu(tmp3Reg, Address(src, len, Address::times_2, 16)); // load next 8 characters 8406 por(tmp4Reg, tmp3Reg); 8407 ptest(tmp4Reg, tmp1Reg); // check for Unicode chars in next vector 8408 jccb(Assembler::notZero, reset_for_copy_tail); 8409 packuswb(tmp2Reg, tmp3Reg); // only ASCII chars; compress each to 1 byte 8410 movdqu(Address(dst, len, Address::times_1), tmp2Reg); 8411 addptr(len, 16); 8412 jccb(Assembler::notZero, copy_32_loop); 8413 8414 // compress next vector of 8 chars (if any) 8415 bind(copy_16); 8416 // len = 0 8417 testl(result, 0x00000008); // check if there's a block of 8 chars to compress 8418 jccb(Assembler::zero, copy_tail_sse); 8419 8420 pxor(tmp3Reg, tmp3Reg); 8421 8422 movdqu(tmp2Reg, Address(src, 0)); 8423 ptest(tmp2Reg, tmp1Reg); // check for Unicode chars in vector 8424 jccb(Assembler::notZero, reset_for_copy_tail); 8425 packuswb(tmp2Reg, tmp3Reg); // only LATIN1 chars; compress each to 1 byte 8426 movq(Address(dst, 0), tmp2Reg); 8427 addptr(src, 16); 8428 addptr(dst, 8); 8429 jmpb(copy_tail_sse); 8430 8431 bind(reset_for_copy_tail); 8432 movl(tmp5, result); 8433 andl(tmp5, 0x0000000f); 8434 lea(src, Address(src, tmp5, Address::times_2)); 8435 lea(dst, Address(dst, tmp5, Address::times_1)); 8436 subptr(len, tmp5); 8437 jmpb(copy_chars_loop); 8438 8439 bind(copy_tail_sse); 8440 movl(len, result); 8441 andl(len, 0x00000007); // tail count (in chars) 8442 } 8443 // compress 1 char per iter 8444 bind(copy_tail); 8445 testl(len, len); 8446 jccb(Assembler::zero, done); 8447 lea(src, Address(src, len, Address::times_2)); 8448 lea(dst, Address(dst, len, Address::times_1)); 8449 negptr(len); 8450 8451 bind(copy_chars_loop); 8452 load_unsigned_short(tmp5, Address(src, len, Address::times_2)); 8453 testl(tmp5, 0xff00); // check if Unicode char 8454 jccb(Assembler::notZero, reset_sp); 8455 movb(Address(dst, len, Address::times_1), tmp5); // ASCII char; compress to 1 byte 8456 increment(len); 8457 jccb(Assembler::notZero, copy_chars_loop); 8458 8459 // add len then return (len will be zero if compress succeeded, otherwise negative) 8460 bind(reset_sp); 8461 addl(result, len); 8462 8463 bind(done); 8464 } 8465 8466 // Inflate byte[] array to char[]. 8467 // ..\jdk\src\java.base\share\classes\java\lang\StringLatin1.java 8468 // @IntrinsicCandidate 8469 // private static void inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) { 8470 // for (int i = 0; i < len; i++) { 8471 // dst[dstOff++] = (char)(src[srcOff++] & 0xff); 8472 // } 8473 // } 8474 void MacroAssembler::byte_array_inflate(Register src, Register dst, Register len, 8475 XMMRegister tmp1, Register tmp2, KRegister mask) { 8476 Label copy_chars_loop, done, below_threshold, avx3_threshold; 8477 // rsi: src 8478 // rdi: dst 8479 // rdx: len 8480 // rcx: tmp2 8481 8482 // rsi holds start addr of source byte[] to be inflated 8483 // rdi holds start addr of destination char[] 8484 // rdx holds length 8485 assert_different_registers(src, dst, len, tmp2); 8486 movl(tmp2, len); 8487 if ((UseAVX > 2) && // AVX512 8488 VM_Version::supports_avx512vlbw() && 8489 VM_Version::supports_bmi2()) { 8490 8491 Label copy_32_loop, copy_tail; 8492 Register tmp3_aliased = len; 8493 8494 // if length of the string is less than 16, handle it in an old fashioned way 8495 testl(len, -16); 8496 jcc(Assembler::zero, below_threshold); 8497 8498 testl(len, -1 * AVX3Threshold); 8499 jcc(Assembler::zero, avx3_threshold); 8500 8501 // In order to use only one arithmetic operation for the main loop we use 8502 // this pre-calculation 8503 andl(tmp2, (32 - 1)); // tail count (in chars), 32 element wide loop 8504 andl(len, -32); // vector count 8505 jccb(Assembler::zero, copy_tail); 8506 8507 lea(src, Address(src, len, Address::times_1)); 8508 lea(dst, Address(dst, len, Address::times_2)); 8509 negptr(len); 8510 8511 8512 // inflate 32 chars per iter 8513 bind(copy_32_loop); 8514 vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_512bit); 8515 evmovdquw(Address(dst, len, Address::times_2), tmp1, Assembler::AVX_512bit); 8516 addptr(len, 32); 8517 jcc(Assembler::notZero, copy_32_loop); 8518 8519 bind(copy_tail); 8520 // bail out when there is nothing to be done 8521 testl(tmp2, -1); // we don't destroy the contents of tmp2 here 8522 jcc(Assembler::zero, done); 8523 8524 // ~(~0 << length), where length is the # of remaining elements to process 8525 movl(tmp3_aliased, -1); 8526 shlxl(tmp3_aliased, tmp3_aliased, tmp2); 8527 notl(tmp3_aliased); 8528 kmovdl(mask, tmp3_aliased); 8529 evpmovzxbw(tmp1, mask, Address(src, 0), Assembler::AVX_512bit); 8530 evmovdquw(Address(dst, 0), mask, tmp1, /*merge*/ true, Assembler::AVX_512bit); 8531 8532 jmp(done); 8533 bind(avx3_threshold); 8534 } 8535 if (UseSSE42Intrinsics) { 8536 Label copy_16_loop, copy_8_loop, copy_bytes, copy_new_tail, copy_tail; 8537 8538 if (UseAVX > 1) { 8539 andl(tmp2, (16 - 1)); 8540 andl(len, -16); 8541 jccb(Assembler::zero, copy_new_tail); 8542 } else { 8543 andl(tmp2, 0x00000007); // tail count (in chars) 8544 andl(len, 0xfffffff8); // vector count (in chars) 8545 jccb(Assembler::zero, copy_tail); 8546 } 8547 8548 // vectored inflation 8549 lea(src, Address(src, len, Address::times_1)); 8550 lea(dst, Address(dst, len, Address::times_2)); 8551 negptr(len); 8552 8553 if (UseAVX > 1) { 8554 bind(copy_16_loop); 8555 vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_256bit); 8556 vmovdqu(Address(dst, len, Address::times_2), tmp1); 8557 addptr(len, 16); 8558 jcc(Assembler::notZero, copy_16_loop); 8559 8560 bind(below_threshold); 8561 bind(copy_new_tail); 8562 movl(len, tmp2); 8563 andl(tmp2, 0x00000007); 8564 andl(len, 0xFFFFFFF8); 8565 jccb(Assembler::zero, copy_tail); 8566 8567 pmovzxbw(tmp1, Address(src, 0)); 8568 movdqu(Address(dst, 0), tmp1); 8569 addptr(src, 8); 8570 addptr(dst, 2 * 8); 8571 8572 jmp(copy_tail, true); 8573 } 8574 8575 // inflate 8 chars per iter 8576 bind(copy_8_loop); 8577 pmovzxbw(tmp1, Address(src, len, Address::times_1)); // unpack to 8 words 8578 movdqu(Address(dst, len, Address::times_2), tmp1); 8579 addptr(len, 8); 8580 jcc(Assembler::notZero, copy_8_loop); 8581 8582 bind(copy_tail); 8583 movl(len, tmp2); 8584 8585 cmpl(len, 4); 8586 jccb(Assembler::less, copy_bytes); 8587 8588 movdl(tmp1, Address(src, 0)); // load 4 byte chars 8589 pmovzxbw(tmp1, tmp1); 8590 movq(Address(dst, 0), tmp1); 8591 subptr(len, 4); 8592 addptr(src, 4); 8593 addptr(dst, 8); 8594 8595 bind(copy_bytes); 8596 } else { 8597 bind(below_threshold); 8598 } 8599 8600 testl(len, len); 8601 jccb(Assembler::zero, done); 8602 lea(src, Address(src, len, Address::times_1)); 8603 lea(dst, Address(dst, len, Address::times_2)); 8604 negptr(len); 8605 8606 // inflate 1 char per iter 8607 bind(copy_chars_loop); 8608 load_unsigned_byte(tmp2, Address(src, len, Address::times_1)); // load byte char 8609 movw(Address(dst, len, Address::times_2), tmp2); // inflate byte char to word 8610 increment(len); 8611 jcc(Assembler::notZero, copy_chars_loop); 8612 8613 bind(done); 8614 } 8615 8616 void MacroAssembler::evmovdqu(BasicType type, KRegister kmask, XMMRegister dst, XMMRegister src, bool merge, int vector_len) { 8617 switch(type) { 8618 case T_BYTE: 8619 case T_BOOLEAN: 8620 evmovdqub(dst, kmask, src, merge, vector_len); 8621 break; 8622 case T_CHAR: 8623 case T_SHORT: 8624 evmovdquw(dst, kmask, src, merge, vector_len); 8625 break; 8626 case T_INT: 8627 case T_FLOAT: 8628 evmovdqul(dst, kmask, src, merge, vector_len); 8629 break; 8630 case T_LONG: 8631 case T_DOUBLE: 8632 evmovdquq(dst, kmask, src, merge, vector_len); 8633 break; 8634 default: 8635 fatal("Unexpected type argument %s", type2name(type)); 8636 break; 8637 } 8638 } 8639 8640 8641 void MacroAssembler::evmovdqu(BasicType type, KRegister kmask, XMMRegister dst, Address src, bool merge, int vector_len) { 8642 switch(type) { 8643 case T_BYTE: 8644 case T_BOOLEAN: 8645 evmovdqub(dst, kmask, src, merge, vector_len); 8646 break; 8647 case T_CHAR: 8648 case T_SHORT: 8649 evmovdquw(dst, kmask, src, merge, vector_len); 8650 break; 8651 case T_INT: 8652 case T_FLOAT: 8653 evmovdqul(dst, kmask, src, merge, vector_len); 8654 break; 8655 case T_LONG: 8656 case T_DOUBLE: 8657 evmovdquq(dst, kmask, src, merge, vector_len); 8658 break; 8659 default: 8660 fatal("Unexpected type argument %s", type2name(type)); 8661 break; 8662 } 8663 } 8664 8665 void MacroAssembler::evmovdqu(BasicType type, KRegister kmask, Address dst, XMMRegister src, bool merge, int vector_len) { 8666 switch(type) { 8667 case T_BYTE: 8668 case T_BOOLEAN: 8669 evmovdqub(dst, kmask, src, merge, vector_len); 8670 break; 8671 case T_CHAR: 8672 case T_SHORT: 8673 evmovdquw(dst, kmask, src, merge, vector_len); 8674 break; 8675 case T_INT: 8676 case T_FLOAT: 8677 evmovdqul(dst, kmask, src, merge, vector_len); 8678 break; 8679 case T_LONG: 8680 case T_DOUBLE: 8681 evmovdquq(dst, kmask, src, merge, vector_len); 8682 break; 8683 default: 8684 fatal("Unexpected type argument %s", type2name(type)); 8685 break; 8686 } 8687 } 8688 8689 void MacroAssembler::knot(uint masklen, KRegister dst, KRegister src, KRegister ktmp, Register rtmp) { 8690 switch(masklen) { 8691 case 2: 8692 knotbl(dst, src); 8693 movl(rtmp, 3); 8694 kmovbl(ktmp, rtmp); 8695 kandbl(dst, ktmp, dst); 8696 break; 8697 case 4: 8698 knotbl(dst, src); 8699 movl(rtmp, 15); 8700 kmovbl(ktmp, rtmp); 8701 kandbl(dst, ktmp, dst); 8702 break; 8703 case 8: 8704 knotbl(dst, src); 8705 break; 8706 case 16: 8707 knotwl(dst, src); 8708 break; 8709 case 32: 8710 knotdl(dst, src); 8711 break; 8712 case 64: 8713 knotql(dst, src); 8714 break; 8715 default: 8716 fatal("Unexpected vector length %d", masklen); 8717 break; 8718 } 8719 } 8720 8721 void MacroAssembler::kand(BasicType type, KRegister dst, KRegister src1, KRegister src2) { 8722 switch(type) { 8723 case T_BOOLEAN: 8724 case T_BYTE: 8725 kandbl(dst, src1, src2); 8726 break; 8727 case T_CHAR: 8728 case T_SHORT: 8729 kandwl(dst, src1, src2); 8730 break; 8731 case T_INT: 8732 case T_FLOAT: 8733 kanddl(dst, src1, src2); 8734 break; 8735 case T_LONG: 8736 case T_DOUBLE: 8737 kandql(dst, src1, src2); 8738 break; 8739 default: 8740 fatal("Unexpected type argument %s", type2name(type)); 8741 break; 8742 } 8743 } 8744 8745 void MacroAssembler::kor(BasicType type, KRegister dst, KRegister src1, KRegister src2) { 8746 switch(type) { 8747 case T_BOOLEAN: 8748 case T_BYTE: 8749 korbl(dst, src1, src2); 8750 break; 8751 case T_CHAR: 8752 case T_SHORT: 8753 korwl(dst, src1, src2); 8754 break; 8755 case T_INT: 8756 case T_FLOAT: 8757 kordl(dst, src1, src2); 8758 break; 8759 case T_LONG: 8760 case T_DOUBLE: 8761 korql(dst, src1, src2); 8762 break; 8763 default: 8764 fatal("Unexpected type argument %s", type2name(type)); 8765 break; 8766 } 8767 } 8768 8769 void MacroAssembler::kxor(BasicType type, KRegister dst, KRegister src1, KRegister src2) { 8770 switch(type) { 8771 case T_BOOLEAN: 8772 case T_BYTE: 8773 kxorbl(dst, src1, src2); 8774 break; 8775 case T_CHAR: 8776 case T_SHORT: 8777 kxorwl(dst, src1, src2); 8778 break; 8779 case T_INT: 8780 case T_FLOAT: 8781 kxordl(dst, src1, src2); 8782 break; 8783 case T_LONG: 8784 case T_DOUBLE: 8785 kxorql(dst, src1, src2); 8786 break; 8787 default: 8788 fatal("Unexpected type argument %s", type2name(type)); 8789 break; 8790 } 8791 } 8792 8793 void MacroAssembler::evperm(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 8794 switch(type) { 8795 case T_BOOLEAN: 8796 case T_BYTE: 8797 evpermb(dst, mask, nds, src, merge, vector_len); break; 8798 case T_CHAR: 8799 case T_SHORT: 8800 evpermw(dst, mask, nds, src, merge, vector_len); break; 8801 case T_INT: 8802 case T_FLOAT: 8803 evpermd(dst, mask, nds, src, merge, vector_len); break; 8804 case T_LONG: 8805 case T_DOUBLE: 8806 evpermq(dst, mask, nds, src, merge, vector_len); break; 8807 default: 8808 fatal("Unexpected type argument %s", type2name(type)); break; 8809 } 8810 } 8811 8812 void MacroAssembler::evperm(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 8813 switch(type) { 8814 case T_BOOLEAN: 8815 case T_BYTE: 8816 evpermb(dst, mask, nds, src, merge, vector_len); break; 8817 case T_CHAR: 8818 case T_SHORT: 8819 evpermw(dst, mask, nds, src, merge, vector_len); break; 8820 case T_INT: 8821 case T_FLOAT: 8822 evpermd(dst, mask, nds, src, merge, vector_len); break; 8823 case T_LONG: 8824 case T_DOUBLE: 8825 evpermq(dst, mask, nds, src, merge, vector_len); break; 8826 default: 8827 fatal("Unexpected type argument %s", type2name(type)); break; 8828 } 8829 } 8830 8831 void MacroAssembler::evpminu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 8832 switch(type) { 8833 case T_BYTE: 8834 evpminub(dst, mask, nds, src, merge, vector_len); break; 8835 case T_SHORT: 8836 evpminuw(dst, mask, nds, src, merge, vector_len); break; 8837 case T_INT: 8838 evpminud(dst, mask, nds, src, merge, vector_len); break; 8839 case T_LONG: 8840 evpminuq(dst, mask, nds, src, merge, vector_len); break; 8841 default: 8842 fatal("Unexpected type argument %s", type2name(type)); break; 8843 } 8844 } 8845 8846 void MacroAssembler::evpmaxu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 8847 switch(type) { 8848 case T_BYTE: 8849 evpmaxub(dst, mask, nds, src, merge, vector_len); break; 8850 case T_SHORT: 8851 evpmaxuw(dst, mask, nds, src, merge, vector_len); break; 8852 case T_INT: 8853 evpmaxud(dst, mask, nds, src, merge, vector_len); break; 8854 case T_LONG: 8855 evpmaxuq(dst, mask, nds, src, merge, vector_len); break; 8856 default: 8857 fatal("Unexpected type argument %s", type2name(type)); break; 8858 } 8859 } 8860 8861 void MacroAssembler::evpminu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 8862 switch(type) { 8863 case T_BYTE: 8864 evpminub(dst, mask, nds, src, merge, vector_len); break; 8865 case T_SHORT: 8866 evpminuw(dst, mask, nds, src, merge, vector_len); break; 8867 case T_INT: 8868 evpminud(dst, mask, nds, src, merge, vector_len); break; 8869 case T_LONG: 8870 evpminuq(dst, mask, nds, src, merge, vector_len); break; 8871 default: 8872 fatal("Unexpected type argument %s", type2name(type)); break; 8873 } 8874 } 8875 8876 void MacroAssembler::evpmaxu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 8877 switch(type) { 8878 case T_BYTE: 8879 evpmaxub(dst, mask, nds, src, merge, vector_len); break; 8880 case T_SHORT: 8881 evpmaxuw(dst, mask, nds, src, merge, vector_len); break; 8882 case T_INT: 8883 evpmaxud(dst, mask, nds, src, merge, vector_len); break; 8884 case T_LONG: 8885 evpmaxuq(dst, mask, nds, src, merge, vector_len); break; 8886 default: 8887 fatal("Unexpected type argument %s", type2name(type)); break; 8888 } 8889 } 8890 8891 void MacroAssembler::evpmins(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 8892 switch(type) { 8893 case T_BYTE: 8894 evpminsb(dst, mask, nds, src, merge, vector_len); break; 8895 case T_SHORT: 8896 evpminsw(dst, mask, nds, src, merge, vector_len); break; 8897 case T_INT: 8898 evpminsd(dst, mask, nds, src, merge, vector_len); break; 8899 case T_LONG: 8900 evpminsq(dst, mask, nds, src, merge, vector_len); break; 8901 case T_FLOAT: 8902 evminmaxps(dst, mask, nds, src, merge, AVX10_2_MINMAX_MIN_COMPARE_SIGN, vector_len); break; 8903 case T_DOUBLE: 8904 evminmaxpd(dst, mask, nds, src, merge, AVX10_2_MINMAX_MIN_COMPARE_SIGN, vector_len); break; 8905 default: 8906 fatal("Unexpected type argument %s", type2name(type)); break; 8907 } 8908 } 8909 8910 void MacroAssembler::evpmaxs(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 8911 switch(type) { 8912 case T_BYTE: 8913 evpmaxsb(dst, mask, nds, src, merge, vector_len); break; 8914 case T_SHORT: 8915 evpmaxsw(dst, mask, nds, src, merge, vector_len); break; 8916 case T_INT: 8917 evpmaxsd(dst, mask, nds, src, merge, vector_len); break; 8918 case T_LONG: 8919 evpmaxsq(dst, mask, nds, src, merge, vector_len); break; 8920 case T_FLOAT: 8921 evminmaxps(dst, mask, nds, src, merge, AVX10_2_MINMAX_MAX_COMPARE_SIGN, vector_len); break; 8922 case T_DOUBLE: 8923 evminmaxpd(dst, mask, nds, src, merge, AVX10_2_MINMAX_MAX_COMPARE_SIGN, vector_len); break; 8924 default: 8925 fatal("Unexpected type argument %s", type2name(type)); break; 8926 } 8927 } 8928 8929 void MacroAssembler::evpmins(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 8930 switch(type) { 8931 case T_BYTE: 8932 evpminsb(dst, mask, nds, src, merge, vector_len); break; 8933 case T_SHORT: 8934 evpminsw(dst, mask, nds, src, merge, vector_len); break; 8935 case T_INT: 8936 evpminsd(dst, mask, nds, src, merge, vector_len); break; 8937 case T_LONG: 8938 evpminsq(dst, mask, nds, src, merge, vector_len); break; 8939 case T_FLOAT: 8940 evminmaxps(dst, mask, nds, src, merge, AVX10_2_MINMAX_MIN_COMPARE_SIGN, vector_len); break; 8941 case T_DOUBLE: 8942 evminmaxpd(dst, mask, nds, src, merge, AVX10_2_MINMAX_MIN_COMPARE_SIGN, vector_len); break; 8943 default: 8944 fatal("Unexpected type argument %s", type2name(type)); break; 8945 } 8946 } 8947 8948 void MacroAssembler::evpmaxs(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 8949 switch(type) { 8950 case T_BYTE: 8951 evpmaxsb(dst, mask, nds, src, merge, vector_len); break; 8952 case T_SHORT: 8953 evpmaxsw(dst, mask, nds, src, merge, vector_len); break; 8954 case T_INT: 8955 evpmaxsd(dst, mask, nds, src, merge, vector_len); break; 8956 case T_LONG: 8957 evpmaxsq(dst, mask, nds, src, merge, vector_len); break; 8958 case T_FLOAT: 8959 evminmaxps(dst, mask, nds, src, merge, AVX10_2_MINMAX_MAX_COMPARE_SIGN, vector_len); break; 8960 case T_DOUBLE: 8961 evminmaxps(dst, mask, nds, src, merge, AVX10_2_MINMAX_MAX_COMPARE_SIGN, vector_len); break; 8962 default: 8963 fatal("Unexpected type argument %s", type2name(type)); break; 8964 } 8965 } 8966 8967 void MacroAssembler::evxor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 8968 switch(type) { 8969 case T_INT: 8970 evpxord(dst, mask, nds, src, merge, vector_len); break; 8971 case T_LONG: 8972 evpxorq(dst, mask, nds, src, merge, vector_len); break; 8973 default: 8974 fatal("Unexpected type argument %s", type2name(type)); break; 8975 } 8976 } 8977 8978 void MacroAssembler::evxor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 8979 switch(type) { 8980 case T_INT: 8981 evpxord(dst, mask, nds, src, merge, vector_len); break; 8982 case T_LONG: 8983 evpxorq(dst, mask, nds, src, merge, vector_len); break; 8984 default: 8985 fatal("Unexpected type argument %s", type2name(type)); break; 8986 } 8987 } 8988 8989 void MacroAssembler::evor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 8990 switch(type) { 8991 case T_INT: 8992 Assembler::evpord(dst, mask, nds, src, merge, vector_len); break; 8993 case T_LONG: 8994 evporq(dst, mask, nds, src, merge, vector_len); break; 8995 default: 8996 fatal("Unexpected type argument %s", type2name(type)); break; 8997 } 8998 } 8999 9000 void MacroAssembler::evor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 9001 switch(type) { 9002 case T_INT: 9003 Assembler::evpord(dst, mask, nds, src, merge, vector_len); break; 9004 case T_LONG: 9005 evporq(dst, mask, nds, src, merge, vector_len); break; 9006 default: 9007 fatal("Unexpected type argument %s", type2name(type)); break; 9008 } 9009 } 9010 9011 void MacroAssembler::evand(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 9012 switch(type) { 9013 case T_INT: 9014 evpandd(dst, mask, nds, src, merge, vector_len); break; 9015 case T_LONG: 9016 evpandq(dst, mask, nds, src, merge, vector_len); break; 9017 default: 9018 fatal("Unexpected type argument %s", type2name(type)); break; 9019 } 9020 } 9021 9022 void MacroAssembler::evand(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 9023 switch(type) { 9024 case T_INT: 9025 evpandd(dst, mask, nds, src, merge, vector_len); break; 9026 case T_LONG: 9027 evpandq(dst, mask, nds, src, merge, vector_len); break; 9028 default: 9029 fatal("Unexpected type argument %s", type2name(type)); break; 9030 } 9031 } 9032 9033 void MacroAssembler::kortest(uint masklen, KRegister src1, KRegister src2) { 9034 switch(masklen) { 9035 case 8: 9036 kortestbl(src1, src2); 9037 break; 9038 case 16: 9039 kortestwl(src1, src2); 9040 break; 9041 case 32: 9042 kortestdl(src1, src2); 9043 break; 9044 case 64: 9045 kortestql(src1, src2); 9046 break; 9047 default: 9048 fatal("Unexpected mask length %d", masklen); 9049 break; 9050 } 9051 } 9052 9053 9054 void MacroAssembler::ktest(uint masklen, KRegister src1, KRegister src2) { 9055 switch(masklen) { 9056 case 8: 9057 ktestbl(src1, src2); 9058 break; 9059 case 16: 9060 ktestwl(src1, src2); 9061 break; 9062 case 32: 9063 ktestdl(src1, src2); 9064 break; 9065 case 64: 9066 ktestql(src1, src2); 9067 break; 9068 default: 9069 fatal("Unexpected mask length %d", masklen); 9070 break; 9071 } 9072 } 9073 9074 void MacroAssembler::evrold(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vlen_enc) { 9075 switch(type) { 9076 case T_INT: 9077 evprold(dst, mask, src, shift, merge, vlen_enc); break; 9078 case T_LONG: 9079 evprolq(dst, mask, src, shift, merge, vlen_enc); break; 9080 default: 9081 fatal("Unexpected type argument %s", type2name(type)); break; 9082 break; 9083 } 9084 } 9085 9086 void MacroAssembler::evrord(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vlen_enc) { 9087 switch(type) { 9088 case T_INT: 9089 evprord(dst, mask, src, shift, merge, vlen_enc); break; 9090 case T_LONG: 9091 evprorq(dst, mask, src, shift, merge, vlen_enc); break; 9092 default: 9093 fatal("Unexpected type argument %s", type2name(type)); break; 9094 } 9095 } 9096 9097 void MacroAssembler::evrold(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src1, XMMRegister src2, bool merge, int vlen_enc) { 9098 switch(type) { 9099 case T_INT: 9100 evprolvd(dst, mask, src1, src2, merge, vlen_enc); break; 9101 case T_LONG: 9102 evprolvq(dst, mask, src1, src2, merge, vlen_enc); break; 9103 default: 9104 fatal("Unexpected type argument %s", type2name(type)); break; 9105 } 9106 } 9107 9108 void MacroAssembler::evrord(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src1, XMMRegister src2, bool merge, int vlen_enc) { 9109 switch(type) { 9110 case T_INT: 9111 evprorvd(dst, mask, src1, src2, merge, vlen_enc); break; 9112 case T_LONG: 9113 evprorvq(dst, mask, src1, src2, merge, vlen_enc); break; 9114 default: 9115 fatal("Unexpected type argument %s", type2name(type)); break; 9116 } 9117 } 9118 9119 void MacroAssembler::evpandq(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 9120 assert(rscratch != noreg || always_reachable(src), "missing"); 9121 9122 if (reachable(src)) { 9123 evpandq(dst, nds, as_Address(src), vector_len); 9124 } else { 9125 lea(rscratch, src); 9126 evpandq(dst, nds, Address(rscratch, 0), vector_len); 9127 } 9128 } 9129 9130 void MacroAssembler::evpaddq(XMMRegister dst, KRegister mask, XMMRegister nds, AddressLiteral src, bool merge, int vector_len, Register rscratch) { 9131 assert(rscratch != noreg || always_reachable(src), "missing"); 9132 9133 if (reachable(src)) { 9134 Assembler::evpaddq(dst, mask, nds, as_Address(src), merge, vector_len); 9135 } else { 9136 lea(rscratch, src); 9137 Assembler::evpaddq(dst, mask, nds, Address(rscratch, 0), merge, vector_len); 9138 } 9139 } 9140 9141 void MacroAssembler::evporq(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 9142 assert(rscratch != noreg || always_reachable(src), "missing"); 9143 9144 if (reachable(src)) { 9145 evporq(dst, nds, as_Address(src), vector_len); 9146 } else { 9147 lea(rscratch, src); 9148 evporq(dst, nds, Address(rscratch, 0), vector_len); 9149 } 9150 } 9151 9152 void MacroAssembler::vpshufb(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 9153 assert(rscratch != noreg || always_reachable(src), "missing"); 9154 9155 if (reachable(src)) { 9156 vpshufb(dst, nds, as_Address(src), vector_len); 9157 } else { 9158 lea(rscratch, src); 9159 vpshufb(dst, nds, Address(rscratch, 0), vector_len); 9160 } 9161 } 9162 9163 void MacroAssembler::vpor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 9164 assert(rscratch != noreg || always_reachable(src), "missing"); 9165 9166 if (reachable(src)) { 9167 Assembler::vpor(dst, nds, as_Address(src), vector_len); 9168 } else { 9169 lea(rscratch, src); 9170 Assembler::vpor(dst, nds, Address(rscratch, 0), vector_len); 9171 } 9172 } 9173 9174 void MacroAssembler::vpternlogq(XMMRegister dst, int imm8, XMMRegister src2, AddressLiteral src3, int vector_len, Register rscratch) { 9175 assert(rscratch != noreg || always_reachable(src3), "missing"); 9176 9177 if (reachable(src3)) { 9178 vpternlogq(dst, imm8, src2, as_Address(src3), vector_len); 9179 } else { 9180 lea(rscratch, src3); 9181 vpternlogq(dst, imm8, src2, Address(rscratch, 0), vector_len); 9182 } 9183 } 9184 9185 #if COMPILER2_OR_JVMCI 9186 9187 void MacroAssembler::fill_masked(BasicType bt, Address dst, XMMRegister xmm, KRegister mask, 9188 Register length, Register temp, int vec_enc) { 9189 // Computing mask for predicated vector store. 9190 movptr(temp, -1); 9191 bzhiq(temp, temp, length); 9192 kmov(mask, temp); 9193 evmovdqu(bt, mask, dst, xmm, true, vec_enc); 9194 } 9195 9196 // Set memory operation for length "less than" 64 bytes. 9197 void MacroAssembler::fill64_masked(uint shift, Register dst, int disp, 9198 XMMRegister xmm, KRegister mask, Register length, 9199 Register temp, bool use64byteVector) { 9200 assert(MaxVectorSize >= 32, "vector length should be >= 32"); 9201 const BasicType type[] = { T_BYTE, T_SHORT, T_INT, T_LONG}; 9202 if (!use64byteVector) { 9203 fill32(dst, disp, xmm); 9204 subptr(length, 32 >> shift); 9205 fill32_masked(shift, dst, disp + 32, xmm, mask, length, temp); 9206 } else { 9207 assert(MaxVectorSize == 64, "vector length != 64"); 9208 fill_masked(type[shift], Address(dst, disp), xmm, mask, length, temp, Assembler::AVX_512bit); 9209 } 9210 } 9211 9212 9213 void MacroAssembler::fill32_masked(uint shift, Register dst, int disp, 9214 XMMRegister xmm, KRegister mask, Register length, 9215 Register temp) { 9216 assert(MaxVectorSize >= 32, "vector length should be >= 32"); 9217 const BasicType type[] = { T_BYTE, T_SHORT, T_INT, T_LONG}; 9218 fill_masked(type[shift], Address(dst, disp), xmm, mask, length, temp, Assembler::AVX_256bit); 9219 } 9220 9221 9222 void MacroAssembler::fill32(Address dst, XMMRegister xmm) { 9223 assert(MaxVectorSize >= 32, "vector length should be >= 32"); 9224 vmovdqu(dst, xmm); 9225 } 9226 9227 void MacroAssembler::fill32(Register dst, int disp, XMMRegister xmm) { 9228 fill32(Address(dst, disp), xmm); 9229 } 9230 9231 void MacroAssembler::fill64(Address dst, XMMRegister xmm, bool use64byteVector) { 9232 assert(MaxVectorSize >= 32, "vector length should be >= 32"); 9233 if (!use64byteVector) { 9234 fill32(dst, xmm); 9235 fill32(dst.plus_disp(32), xmm); 9236 } else { 9237 evmovdquq(dst, xmm, Assembler::AVX_512bit); 9238 } 9239 } 9240 9241 void MacroAssembler::fill64(Register dst, int disp, XMMRegister xmm, bool use64byteVector) { 9242 fill64(Address(dst, disp), xmm, use64byteVector); 9243 } 9244 9245 void MacroAssembler::generate_fill_avx3(BasicType type, Register to, Register value, 9246 Register count, Register rtmp, XMMRegister xtmp) { 9247 Label L_exit; 9248 Label L_fill_start; 9249 Label L_fill_64_bytes; 9250 Label L_fill_96_bytes; 9251 Label L_fill_128_bytes; 9252 Label L_fill_128_bytes_loop; 9253 Label L_fill_128_loop_header; 9254 Label L_fill_128_bytes_loop_header; 9255 Label L_fill_128_bytes_loop_pre_header; 9256 Label L_fill_zmm_sequence; 9257 9258 int shift = -1; 9259 int avx3threshold = VM_Version::avx3_threshold(); 9260 switch(type) { 9261 case T_BYTE: shift = 0; 9262 break; 9263 case T_SHORT: shift = 1; 9264 break; 9265 case T_INT: shift = 2; 9266 break; 9267 /* Uncomment when LONG fill stubs are supported. 9268 case T_LONG: shift = 3; 9269 break; 9270 */ 9271 default: 9272 fatal("Unhandled type: %s\n", type2name(type)); 9273 } 9274 9275 if ((avx3threshold != 0) || (MaxVectorSize == 32)) { 9276 9277 if (MaxVectorSize == 64) { 9278 cmpq(count, avx3threshold >> shift); 9279 jcc(Assembler::greater, L_fill_zmm_sequence); 9280 } 9281 9282 evpbroadcast(type, xtmp, value, Assembler::AVX_256bit); 9283 9284 bind(L_fill_start); 9285 9286 cmpq(count, 32 >> shift); 9287 jccb(Assembler::greater, L_fill_64_bytes); 9288 fill32_masked(shift, to, 0, xtmp, k2, count, rtmp); 9289 jmp(L_exit); 9290 9291 bind(L_fill_64_bytes); 9292 cmpq(count, 64 >> shift); 9293 jccb(Assembler::greater, L_fill_96_bytes); 9294 fill64_masked(shift, to, 0, xtmp, k2, count, rtmp); 9295 jmp(L_exit); 9296 9297 bind(L_fill_96_bytes); 9298 cmpq(count, 96 >> shift); 9299 jccb(Assembler::greater, L_fill_128_bytes); 9300 fill64(to, 0, xtmp); 9301 subq(count, 64 >> shift); 9302 fill32_masked(shift, to, 64, xtmp, k2, count, rtmp); 9303 jmp(L_exit); 9304 9305 bind(L_fill_128_bytes); 9306 cmpq(count, 128 >> shift); 9307 jccb(Assembler::greater, L_fill_128_bytes_loop_pre_header); 9308 fill64(to, 0, xtmp); 9309 fill32(to, 64, xtmp); 9310 subq(count, 96 >> shift); 9311 fill32_masked(shift, to, 96, xtmp, k2, count, rtmp); 9312 jmp(L_exit); 9313 9314 bind(L_fill_128_bytes_loop_pre_header); 9315 { 9316 mov(rtmp, to); 9317 andq(rtmp, 31); 9318 jccb(Assembler::zero, L_fill_128_bytes_loop_header); 9319 negq(rtmp); 9320 addq(rtmp, 32); 9321 mov64(r8, -1L); 9322 bzhiq(r8, r8, rtmp); 9323 kmovql(k2, r8); 9324 evmovdqu(T_BYTE, k2, Address(to, 0), xtmp, true, Assembler::AVX_256bit); 9325 addq(to, rtmp); 9326 shrq(rtmp, shift); 9327 subq(count, rtmp); 9328 } 9329 9330 cmpq(count, 128 >> shift); 9331 jcc(Assembler::less, L_fill_start); 9332 9333 bind(L_fill_128_bytes_loop_header); 9334 subq(count, 128 >> shift); 9335 9336 align32(); 9337 bind(L_fill_128_bytes_loop); 9338 fill64(to, 0, xtmp); 9339 fill64(to, 64, xtmp); 9340 addq(to, 128); 9341 subq(count, 128 >> shift); 9342 jccb(Assembler::greaterEqual, L_fill_128_bytes_loop); 9343 9344 addq(count, 128 >> shift); 9345 jcc(Assembler::zero, L_exit); 9346 jmp(L_fill_start); 9347 } 9348 9349 if (MaxVectorSize == 64) { 9350 // Sequence using 64 byte ZMM register. 9351 Label L_fill_128_bytes_zmm; 9352 Label L_fill_192_bytes_zmm; 9353 Label L_fill_192_bytes_loop_zmm; 9354 Label L_fill_192_bytes_loop_header_zmm; 9355 Label L_fill_192_bytes_loop_pre_header_zmm; 9356 Label L_fill_start_zmm_sequence; 9357 9358 bind(L_fill_zmm_sequence); 9359 evpbroadcast(type, xtmp, value, Assembler::AVX_512bit); 9360 9361 bind(L_fill_start_zmm_sequence); 9362 cmpq(count, 64 >> shift); 9363 jccb(Assembler::greater, L_fill_128_bytes_zmm); 9364 fill64_masked(shift, to, 0, xtmp, k2, count, rtmp, true); 9365 jmp(L_exit); 9366 9367 bind(L_fill_128_bytes_zmm); 9368 cmpq(count, 128 >> shift); 9369 jccb(Assembler::greater, L_fill_192_bytes_zmm); 9370 fill64(to, 0, xtmp, true); 9371 subq(count, 64 >> shift); 9372 fill64_masked(shift, to, 64, xtmp, k2, count, rtmp, true); 9373 jmp(L_exit); 9374 9375 bind(L_fill_192_bytes_zmm); 9376 cmpq(count, 192 >> shift); 9377 jccb(Assembler::greater, L_fill_192_bytes_loop_pre_header_zmm); 9378 fill64(to, 0, xtmp, true); 9379 fill64(to, 64, xtmp, true); 9380 subq(count, 128 >> shift); 9381 fill64_masked(shift, to, 128, xtmp, k2, count, rtmp, true); 9382 jmp(L_exit); 9383 9384 bind(L_fill_192_bytes_loop_pre_header_zmm); 9385 { 9386 movq(rtmp, to); 9387 andq(rtmp, 63); 9388 jccb(Assembler::zero, L_fill_192_bytes_loop_header_zmm); 9389 negq(rtmp); 9390 addq(rtmp, 64); 9391 mov64(r8, -1L); 9392 bzhiq(r8, r8, rtmp); 9393 kmovql(k2, r8); 9394 evmovdqu(T_BYTE, k2, Address(to, 0), xtmp, true, Assembler::AVX_512bit); 9395 addq(to, rtmp); 9396 shrq(rtmp, shift); 9397 subq(count, rtmp); 9398 } 9399 9400 cmpq(count, 192 >> shift); 9401 jcc(Assembler::less, L_fill_start_zmm_sequence); 9402 9403 bind(L_fill_192_bytes_loop_header_zmm); 9404 subq(count, 192 >> shift); 9405 9406 align32(); 9407 bind(L_fill_192_bytes_loop_zmm); 9408 fill64(to, 0, xtmp, true); 9409 fill64(to, 64, xtmp, true); 9410 fill64(to, 128, xtmp, true); 9411 addq(to, 192); 9412 subq(count, 192 >> shift); 9413 jccb(Assembler::greaterEqual, L_fill_192_bytes_loop_zmm); 9414 9415 addq(count, 192 >> shift); 9416 jcc(Assembler::zero, L_exit); 9417 jmp(L_fill_start_zmm_sequence); 9418 } 9419 bind(L_exit); 9420 } 9421 #endif //COMPILER2_OR_JVMCI 9422 9423 9424 void MacroAssembler::convert_f2i(Register dst, XMMRegister src) { 9425 Label done; 9426 cvttss2sil(dst, src); 9427 // Conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub 9428 cmpl(dst, 0x80000000); // float_sign_flip 9429 jccb(Assembler::notEqual, done); 9430 subptr(rsp, 8); 9431 movflt(Address(rsp, 0), src); 9432 call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::f2i_fixup()))); 9433 pop(dst); 9434 bind(done); 9435 } 9436 9437 void MacroAssembler::convert_d2i(Register dst, XMMRegister src) { 9438 Label done; 9439 cvttsd2sil(dst, src); 9440 // Conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub 9441 cmpl(dst, 0x80000000); // float_sign_flip 9442 jccb(Assembler::notEqual, done); 9443 subptr(rsp, 8); 9444 movdbl(Address(rsp, 0), src); 9445 call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::d2i_fixup()))); 9446 pop(dst); 9447 bind(done); 9448 } 9449 9450 void MacroAssembler::convert_f2l(Register dst, XMMRegister src) { 9451 Label done; 9452 cvttss2siq(dst, src); 9453 cmp64(dst, ExternalAddress((address) StubRoutines::x86::double_sign_flip())); 9454 jccb(Assembler::notEqual, done); 9455 subptr(rsp, 8); 9456 movflt(Address(rsp, 0), src); 9457 call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::f2l_fixup()))); 9458 pop(dst); 9459 bind(done); 9460 } 9461 9462 void MacroAssembler::round_float(Register dst, XMMRegister src, Register rtmp, Register rcx) { 9463 // Following code is line by line assembly translation rounding algorithm. 9464 // Please refer to java.lang.Math.round(float) algorithm for details. 9465 const int32_t FloatConsts_EXP_BIT_MASK = 0x7F800000; 9466 const int32_t FloatConsts_SIGNIFICAND_WIDTH = 24; 9467 const int32_t FloatConsts_EXP_BIAS = 127; 9468 const int32_t FloatConsts_SIGNIF_BIT_MASK = 0x007FFFFF; 9469 const int32_t MINUS_32 = 0xFFFFFFE0; 9470 Label L_special_case, L_block1, L_exit; 9471 movl(rtmp, FloatConsts_EXP_BIT_MASK); 9472 movdl(dst, src); 9473 andl(dst, rtmp); 9474 sarl(dst, FloatConsts_SIGNIFICAND_WIDTH - 1); 9475 movl(rtmp, FloatConsts_SIGNIFICAND_WIDTH - 2 + FloatConsts_EXP_BIAS); 9476 subl(rtmp, dst); 9477 movl(rcx, rtmp); 9478 movl(dst, MINUS_32); 9479 testl(rtmp, dst); 9480 jccb(Assembler::notEqual, L_special_case); 9481 movdl(dst, src); 9482 andl(dst, FloatConsts_SIGNIF_BIT_MASK); 9483 orl(dst, FloatConsts_SIGNIF_BIT_MASK + 1); 9484 movdl(rtmp, src); 9485 testl(rtmp, rtmp); 9486 jccb(Assembler::greaterEqual, L_block1); 9487 negl(dst); 9488 bind(L_block1); 9489 sarl(dst); 9490 addl(dst, 0x1); 9491 sarl(dst, 0x1); 9492 jmp(L_exit); 9493 bind(L_special_case); 9494 convert_f2i(dst, src); 9495 bind(L_exit); 9496 } 9497 9498 void MacroAssembler::round_double(Register dst, XMMRegister src, Register rtmp, Register rcx) { 9499 // Following code is line by line assembly translation rounding algorithm. 9500 // Please refer to java.lang.Math.round(double) algorithm for details. 9501 const int64_t DoubleConsts_EXP_BIT_MASK = 0x7FF0000000000000L; 9502 const int64_t DoubleConsts_SIGNIFICAND_WIDTH = 53; 9503 const int64_t DoubleConsts_EXP_BIAS = 1023; 9504 const int64_t DoubleConsts_SIGNIF_BIT_MASK = 0x000FFFFFFFFFFFFFL; 9505 const int64_t MINUS_64 = 0xFFFFFFFFFFFFFFC0L; 9506 Label L_special_case, L_block1, L_exit; 9507 mov64(rtmp, DoubleConsts_EXP_BIT_MASK); 9508 movq(dst, src); 9509 andq(dst, rtmp); 9510 sarq(dst, DoubleConsts_SIGNIFICAND_WIDTH - 1); 9511 mov64(rtmp, DoubleConsts_SIGNIFICAND_WIDTH - 2 + DoubleConsts_EXP_BIAS); 9512 subq(rtmp, dst); 9513 movq(rcx, rtmp); 9514 mov64(dst, MINUS_64); 9515 testq(rtmp, dst); 9516 jccb(Assembler::notEqual, L_special_case); 9517 movq(dst, src); 9518 mov64(rtmp, DoubleConsts_SIGNIF_BIT_MASK); 9519 andq(dst, rtmp); 9520 mov64(rtmp, DoubleConsts_SIGNIF_BIT_MASK + 1); 9521 orq(dst, rtmp); 9522 movq(rtmp, src); 9523 testq(rtmp, rtmp); 9524 jccb(Assembler::greaterEqual, L_block1); 9525 negq(dst); 9526 bind(L_block1); 9527 sarq(dst); 9528 addq(dst, 0x1); 9529 sarq(dst, 0x1); 9530 jmp(L_exit); 9531 bind(L_special_case); 9532 convert_d2l(dst, src); 9533 bind(L_exit); 9534 } 9535 9536 void MacroAssembler::convert_d2l(Register dst, XMMRegister src) { 9537 Label done; 9538 cvttsd2siq(dst, src); 9539 cmp64(dst, ExternalAddress((address) StubRoutines::x86::double_sign_flip())); 9540 jccb(Assembler::notEqual, done); 9541 subptr(rsp, 8); 9542 movdbl(Address(rsp, 0), src); 9543 call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::d2l_fixup()))); 9544 pop(dst); 9545 bind(done); 9546 } 9547 9548 void MacroAssembler::cache_wb(Address line) 9549 { 9550 // 64 bit cpus always support clflush 9551 assert(VM_Version::supports_clflush(), "clflush should be available"); 9552 bool optimized = VM_Version::supports_clflushopt(); 9553 bool no_evict = VM_Version::supports_clwb(); 9554 9555 // prefer clwb (writeback without evict) otherwise 9556 // prefer clflushopt (potentially parallel writeback with evict) 9557 // otherwise fallback on clflush (serial writeback with evict) 9558 9559 if (optimized) { 9560 if (no_evict) { 9561 clwb(line); 9562 } else { 9563 clflushopt(line); 9564 } 9565 } else { 9566 // no need for fence when using CLFLUSH 9567 clflush(line); 9568 } 9569 } 9570 9571 void MacroAssembler::cache_wbsync(bool is_pre) 9572 { 9573 assert(VM_Version::supports_clflush(), "clflush should be available"); 9574 bool optimized = VM_Version::supports_clflushopt(); 9575 bool no_evict = VM_Version::supports_clwb(); 9576 9577 // pick the correct implementation 9578 9579 if (!is_pre && (optimized || no_evict)) { 9580 // need an sfence for post flush when using clflushopt or clwb 9581 // otherwise no no need for any synchroniaztion 9582 9583 sfence(); 9584 } 9585 } 9586 9587 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) { 9588 switch (cond) { 9589 // Note some conditions are synonyms for others 9590 case Assembler::zero: return Assembler::notZero; 9591 case Assembler::notZero: return Assembler::zero; 9592 case Assembler::less: return Assembler::greaterEqual; 9593 case Assembler::lessEqual: return Assembler::greater; 9594 case Assembler::greater: return Assembler::lessEqual; 9595 case Assembler::greaterEqual: return Assembler::less; 9596 case Assembler::below: return Assembler::aboveEqual; 9597 case Assembler::belowEqual: return Assembler::above; 9598 case Assembler::above: return Assembler::belowEqual; 9599 case Assembler::aboveEqual: return Assembler::below; 9600 case Assembler::overflow: return Assembler::noOverflow; 9601 case Assembler::noOverflow: return Assembler::overflow; 9602 case Assembler::negative: return Assembler::positive; 9603 case Assembler::positive: return Assembler::negative; 9604 case Assembler::parity: return Assembler::noParity; 9605 case Assembler::noParity: return Assembler::parity; 9606 } 9607 ShouldNotReachHere(); return Assembler::overflow; 9608 } 9609 9610 // This is simply a call to Thread::current() 9611 void MacroAssembler::get_thread_slow(Register thread) { 9612 if (thread != rax) { 9613 push(rax); 9614 } 9615 push(rdi); 9616 push(rsi); 9617 push(rdx); 9618 push(rcx); 9619 push(r8); 9620 push(r9); 9621 push(r10); 9622 push(r11); 9623 9624 MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, Thread::current), 0); 9625 9626 pop(r11); 9627 pop(r10); 9628 pop(r9); 9629 pop(r8); 9630 pop(rcx); 9631 pop(rdx); 9632 pop(rsi); 9633 pop(rdi); 9634 if (thread != rax) { 9635 mov(thread, rax); 9636 pop(rax); 9637 } 9638 } 9639 9640 void MacroAssembler::check_stack_alignment(Register sp, const char* msg, unsigned bias, Register tmp) { 9641 Label L_stack_ok; 9642 if (bias == 0) { 9643 testptr(sp, 2 * wordSize - 1); 9644 } else { 9645 // lea(tmp, Address(rsp, bias); 9646 mov(tmp, sp); 9647 addptr(tmp, bias); 9648 testptr(tmp, 2 * wordSize - 1); 9649 } 9650 jcc(Assembler::equal, L_stack_ok); 9651 block_comment(msg); 9652 stop(msg); 9653 bind(L_stack_ok); 9654 } 9655 9656 // Implements fast-locking. 9657 // 9658 // obj: the object to be locked 9659 // reg_rax: rax 9660 // thread: the thread which attempts to lock obj 9661 // tmp: a temporary register 9662 void MacroAssembler::fast_lock(Register basic_lock, Register obj, Register reg_rax, Register tmp, Label& slow) { 9663 Register thread = r15_thread; 9664 9665 assert(reg_rax == rax, ""); 9666 assert_different_registers(basic_lock, obj, reg_rax, thread, tmp); 9667 9668 Label push; 9669 const Register top = tmp; 9670 9671 // Preload the markWord. It is important that this is the first 9672 // instruction emitted as it is part of C1's null check semantics. 9673 movptr(reg_rax, Address(obj, oopDesc::mark_offset_in_bytes())); 9674 9675 if (UseObjectMonitorTable) { 9676 // Clear cache in case fast locking succeeds or we need to take the slow-path. 9677 movptr(Address(basic_lock, BasicObjectLock::lock_offset() + in_ByteSize((BasicLock::object_monitor_cache_offset_in_bytes()))), 0); 9678 } 9679 9680 if (DiagnoseSyncOnValueBasedClasses != 0) { 9681 load_klass(tmp, obj, rscratch1); 9682 testb(Address(tmp, Klass::misc_flags_offset()), KlassFlags::_misc_is_value_based_class); 9683 jcc(Assembler::notZero, slow); 9684 } 9685 9686 // Load top. 9687 movl(top, Address(thread, JavaThread::lock_stack_top_offset())); 9688 9689 // Check if the lock-stack is full. 9690 cmpl(top, LockStack::end_offset()); 9691 jcc(Assembler::greaterEqual, slow); 9692 9693 // Check for recursion. 9694 cmpptr(obj, Address(thread, top, Address::times_1, -oopSize)); 9695 jcc(Assembler::equal, push); 9696 9697 // Check header for monitor (0b10). 9698 testptr(reg_rax, markWord::monitor_value); 9699 jcc(Assembler::notZero, slow); 9700 9701 // Try to lock. Transition lock bits 0b01 => 0b00 9702 movptr(tmp, reg_rax); 9703 andptr(tmp, ~(int32_t)markWord::unlocked_value); 9704 orptr(reg_rax, markWord::unlocked_value); 9705 lock(); cmpxchgptr(tmp, Address(obj, oopDesc::mark_offset_in_bytes())); 9706 jcc(Assembler::notEqual, slow); 9707 9708 // Restore top, CAS clobbers register. 9709 movl(top, Address(thread, JavaThread::lock_stack_top_offset())); 9710 9711 bind(push); 9712 // After successful lock, push object on lock-stack. 9713 movptr(Address(thread, top), obj); 9714 incrementl(top, oopSize); 9715 movl(Address(thread, JavaThread::lock_stack_top_offset()), top); 9716 } 9717 9718 // Implements fast-unlocking. 9719 // 9720 // obj: the object to be unlocked 9721 // reg_rax: rax 9722 // thread: the thread 9723 // tmp: a temporary register 9724 void MacroAssembler::fast_unlock(Register obj, Register reg_rax, Register tmp, Label& slow) { 9725 Register thread = r15_thread; 9726 9727 assert(reg_rax == rax, ""); 9728 assert_different_registers(obj, reg_rax, thread, tmp); 9729 9730 Label unlocked, push_and_slow; 9731 const Register top = tmp; 9732 9733 // Check if obj is top of lock-stack. 9734 movl(top, Address(thread, JavaThread::lock_stack_top_offset())); 9735 cmpptr(obj, Address(thread, top, Address::times_1, -oopSize)); 9736 jcc(Assembler::notEqual, slow); 9737 9738 // Pop lock-stack. 9739 DEBUG_ONLY(movptr(Address(thread, top, Address::times_1, -oopSize), 0);) 9740 subl(Address(thread, JavaThread::lock_stack_top_offset()), oopSize); 9741 9742 // Check if recursive. 9743 cmpptr(obj, Address(thread, top, Address::times_1, -2 * oopSize)); 9744 jcc(Assembler::equal, unlocked); 9745 9746 // Not recursive. Check header for monitor (0b10). 9747 movptr(reg_rax, Address(obj, oopDesc::mark_offset_in_bytes())); 9748 testptr(reg_rax, markWord::monitor_value); 9749 jcc(Assembler::notZero, push_and_slow); 9750 9751 #ifdef ASSERT 9752 // Check header not unlocked (0b01). 9753 Label not_unlocked; 9754 testptr(reg_rax, markWord::unlocked_value); 9755 jcc(Assembler::zero, not_unlocked); 9756 stop("fast_unlock already unlocked"); 9757 bind(not_unlocked); 9758 #endif 9759 9760 // Try to unlock. Transition lock bits 0b00 => 0b01 9761 movptr(tmp, reg_rax); 9762 orptr(tmp, markWord::unlocked_value); 9763 lock(); cmpxchgptr(tmp, Address(obj, oopDesc::mark_offset_in_bytes())); 9764 jcc(Assembler::equal, unlocked); 9765 9766 bind(push_and_slow); 9767 // Restore lock-stack and handle the unlock in runtime. 9768 #ifdef ASSERT 9769 movl(top, Address(thread, JavaThread::lock_stack_top_offset())); 9770 movptr(Address(thread, top), obj); 9771 #endif 9772 addl(Address(thread, JavaThread::lock_stack_top_offset()), oopSize); 9773 jmp(slow); 9774 9775 bind(unlocked); 9776 } 9777 9778 // Saves legacy GPRs state on stack. 9779 void MacroAssembler::save_legacy_gprs() { 9780 subq(rsp, 16 * wordSize); 9781 movq(Address(rsp, 15 * wordSize), rax); 9782 movq(Address(rsp, 14 * wordSize), rcx); 9783 movq(Address(rsp, 13 * wordSize), rdx); 9784 movq(Address(rsp, 12 * wordSize), rbx); 9785 movq(Address(rsp, 10 * wordSize), rbp); 9786 movq(Address(rsp, 9 * wordSize), rsi); 9787 movq(Address(rsp, 8 * wordSize), rdi); 9788 movq(Address(rsp, 7 * wordSize), r8); 9789 movq(Address(rsp, 6 * wordSize), r9); 9790 movq(Address(rsp, 5 * wordSize), r10); 9791 movq(Address(rsp, 4 * wordSize), r11); 9792 movq(Address(rsp, 3 * wordSize), r12); 9793 movq(Address(rsp, 2 * wordSize), r13); 9794 movq(Address(rsp, wordSize), r14); 9795 movq(Address(rsp, 0), r15); 9796 } 9797 9798 // Resotres back legacy GPRs state from stack. 9799 void MacroAssembler::restore_legacy_gprs() { 9800 movq(r15, Address(rsp, 0)); 9801 movq(r14, Address(rsp, wordSize)); 9802 movq(r13, Address(rsp, 2 * wordSize)); 9803 movq(r12, Address(rsp, 3 * wordSize)); 9804 movq(r11, Address(rsp, 4 * wordSize)); 9805 movq(r10, Address(rsp, 5 * wordSize)); 9806 movq(r9, Address(rsp, 6 * wordSize)); 9807 movq(r8, Address(rsp, 7 * wordSize)); 9808 movq(rdi, Address(rsp, 8 * wordSize)); 9809 movq(rsi, Address(rsp, 9 * wordSize)); 9810 movq(rbp, Address(rsp, 10 * wordSize)); 9811 movq(rbx, Address(rsp, 12 * wordSize)); 9812 movq(rdx, Address(rsp, 13 * wordSize)); 9813 movq(rcx, Address(rsp, 14 * wordSize)); 9814 movq(rax, Address(rsp, 15 * wordSize)); 9815 addq(rsp, 16 * wordSize); 9816 } 9817 9818 void MacroAssembler::setcc(Assembler::Condition comparison, Register dst) { 9819 if (VM_Version::supports_apx_f()) { 9820 esetzucc(comparison, dst); 9821 } else { 9822 setb(comparison, dst); 9823 movzbl(dst, dst); 9824 } 9825 } --- EOF ---