1 /*
   2  * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef CPU_X86_MACROASSEMBLER_X86_HPP
  26 #define CPU_X86_MACROASSEMBLER_X86_HPP
  27 
  28 #include "asm/assembler.hpp"
  29 #include "asm/register.hpp"
  30 #include "code/vmreg.inline.hpp"
  31 #include "compiler/oopMap.hpp"
  32 #include "utilities/macros.hpp"
  33 #include "runtime/vm_version.hpp"
  34 #include "utilities/checkedCast.hpp"
  35 
  36 // MacroAssembler extends Assembler by frequently used macros.
  37 //
  38 // Instructions for which a 'better' code sequence exists depending
  39 // on arguments should also go in here.
  40 
  41 class MacroAssembler: public Assembler {
  42   friend class LIR_Assembler;
  43   friend class Runtime1;      // as_Address()
  44 
  45  public:
  46   // Support for VM calls
  47   //
  48   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  49   // may customize this version by overriding it for its purposes (e.g., to save/restore
  50   // additional registers when doing a VM call).
  51 
  52   virtual void call_VM_leaf_base(
  53     address entry_point,               // the entry point
  54     int     number_of_arguments        // the number of arguments to pop after the call
  55   );
  56 
  57  protected:
  58   // This is the base routine called by the different versions of call_VM. The interpreter
  59   // may customize this version by overriding it for its purposes (e.g., to save/restore
  60   // additional registers when doing a VM call).
  61   //
  62   // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
  63   // returns the register which contains the thread upon return. If a thread register has been
  64   // specified, the return value will correspond to that register. If no last_java_sp is specified
  65   // (noreg) than rsp will be used instead.
  66   virtual void call_VM_base(           // returns the register containing the thread upon return
  67     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  68     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  69     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  70     address  entry_point,              // the entry point
  71     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  72     bool     check_exceptions          // whether to check for pending exceptions after return
  73   );
  74 
  75   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  76 
  77   // helpers for FPU flag access
  78   // tmp is a temporary register, if none is available use noreg
  79   void save_rax   (Register tmp);
  80   void restore_rax(Register tmp);
  81 
  82  public:
  83   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
  84 
  85  // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  86  // The implementation is only non-empty for the InterpreterMacroAssembler,
  87  // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  88  virtual void check_and_handle_popframe(Register java_thread);
  89  virtual void check_and_handle_earlyret(Register java_thread);
  90 
  91   Address as_Address(AddressLiteral adr);
  92   Address as_Address(ArrayAddress adr, Register rscratch);
  93 
  94   // Support for null-checks
  95   //
  96   // Generates code that causes a null OS exception if the content of reg is null.
  97   // If the accessed location is M[reg + offset] and the offset is known, provide the
  98   // offset. No explicit code generation is needed if the offset is within a certain
  99   // range (0 <= offset <= page_size).
 100 
 101   void null_check(Register reg, int offset = -1);
 102   static bool needs_explicit_null_check(intptr_t offset);
 103   static bool uses_implicit_null_check(void* address);
 104 
 105   // Required platform-specific helpers for Label::patch_instructions.
 106   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
 107   void pd_patch_instruction(address branch, address target, const char* file, int line) {
 108     unsigned char op = branch[0];
 109     assert(op == 0xE8 /* call */ ||
 110         op == 0xE9 /* jmp */ ||
 111         op == 0xEB /* short jmp */ ||
 112         (op & 0xF0) == 0x70 /* short jcc */ ||
 113         (op == 0x0F && (branch[1] & 0xF0) == 0x80) /* jcc */ ||
 114         (op == 0xC7 && branch[1] == 0xF8) /* xbegin */ ||
 115         (op == 0x8D) /* lea */,
 116         "Invalid opcode at patch point");
 117 
 118     if (op == 0xEB || (op & 0xF0) == 0x70) {
 119       // short offset operators (jmp and jcc)
 120       char* disp = (char*) &branch[1];
 121       int imm8 = checked_cast<int>(target - (address) &disp[1]);
 122       guarantee(this->is8bit(imm8), "Short forward jump exceeds 8-bit offset at %s:%d",
 123                 file == nullptr ? "<null>" : file, line);
 124       *disp = (char)imm8;
 125     } else {
 126       int* disp = (int*) &branch[(op == 0x0F || op == 0xC7 || op == 0x8D) ? 2 : 1];
 127       int imm32 = checked_cast<int>(target - (address) &disp[1]);
 128       *disp = imm32;
 129     }
 130   }
 131 
 132   // The following 4 methods return the offset of the appropriate move instruction
 133 
 134   // Support for fast byte/short loading with zero extension (depending on particular CPU)
 135   int load_unsigned_byte(Register dst, Address src);
 136   int load_unsigned_short(Register dst, Address src);
 137 
 138   // Support for fast byte/short loading with sign extension (depending on particular CPU)
 139   int load_signed_byte(Register dst, Address src);
 140   int load_signed_short(Register dst, Address src);
 141 
 142   // Support for sign-extension (hi:lo = extend_sign(lo))
 143   void extend_sign(Register hi, Register lo);
 144 
 145   // Load and store values by size and signed-ness
 146   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
 147   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
 148 
 149   // Support for inc/dec with optimal instruction selection depending on value
 150 
 151   void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
 152   void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
 153   void increment(Address dst, int value = 1)  { LP64_ONLY(incrementq(dst, value)) NOT_LP64(incrementl(dst, value)) ; }
 154   void decrement(Address dst, int value = 1)  { LP64_ONLY(decrementq(dst, value)) NOT_LP64(decrementl(dst, value)) ; }
 155 
 156   void decrementl(Address dst, int value = 1);
 157   void decrementl(Register reg, int value = 1);
 158 
 159   void decrementq(Register reg, int value = 1);
 160   void decrementq(Address dst, int value = 1);
 161 
 162   void incrementl(Address dst, int value = 1);
 163   void incrementl(Register reg, int value = 1);
 164 
 165   void incrementq(Register reg, int value = 1);
 166   void incrementq(Address dst, int value = 1);
 167 
 168   void incrementl(AddressLiteral dst, Register rscratch = noreg);
 169   void incrementl(ArrayAddress   dst, Register rscratch);
 170 
 171   void incrementq(AddressLiteral dst, Register rscratch = noreg);
 172 
 173   // Support optimal SSE move instructions.
 174   void movflt(XMMRegister dst, XMMRegister src) {
 175     if (dst-> encoding() == src->encoding()) return;
 176     if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
 177     else                       { movss (dst, src); return; }
 178   }
 179   void movflt(XMMRegister dst, Address src) { movss(dst, src); }
 180   void movflt(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
 181   void movflt(Address dst, XMMRegister src) { movss(dst, src); }
 182 
 183   // Move with zero extension
 184   void movfltz(XMMRegister dst, XMMRegister src) { movss(dst, src); }
 185 
 186   void movdbl(XMMRegister dst, XMMRegister src) {
 187     if (dst-> encoding() == src->encoding()) return;
 188     if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
 189     else                       { movsd (dst, src); return; }
 190   }
 191 
 192   void movdbl(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
 193 
 194   void movdbl(XMMRegister dst, Address src) {
 195     if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
 196     else                         { movlpd(dst, src); return; }
 197   }
 198   void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
 199 
 200   void flt_to_flt16(Register dst, XMMRegister src, XMMRegister tmp) {
 201     // Use separate tmp XMM register because caller may
 202     // requires src XMM register to be unchanged (as in x86.ad).
 203     vcvtps2ph(tmp, src, 0x04, Assembler::AVX_128bit);
 204     movdl(dst, tmp);
 205     movswl(dst, dst);
 206   }
 207 
 208   void flt16_to_flt(XMMRegister dst, Register src) {
 209     movdl(dst, src);
 210     vcvtph2ps(dst, dst, Assembler::AVX_128bit);
 211   }
 212 
 213   // Alignment
 214   void align32();
 215   void align64();
 216   void align(uint modulus);
 217   void align(uint modulus, uint target);
 218 
 219   void post_call_nop();
 220   // A 5 byte nop that is safe for patching (see patch_verified_entry)
 221   void fat_nop();
 222 
 223   // Stack frame creation/removal
 224   void enter();
 225   void leave();
 226 
 227   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
 228   // The pointer will be loaded into the thread register.
 229   void get_thread(Register thread);
 230 
 231 #ifdef _LP64
 232   // Support for argument shuffling
 233 
 234   // bias in bytes
 235   void move32_64(VMRegPair src, VMRegPair dst, Register tmp = rax, int in_stk_bias = 0, int out_stk_bias = 0);
 236   void long_move(VMRegPair src, VMRegPair dst, Register tmp = rax, int in_stk_bias = 0, int out_stk_bias = 0);
 237   void float_move(VMRegPair src, VMRegPair dst, Register tmp = rax, int in_stk_bias = 0, int out_stk_bias = 0);
 238   void double_move(VMRegPair src, VMRegPair dst, Register tmp = rax, int in_stk_bias = 0, int out_stk_bias = 0);
 239   void move_ptr(VMRegPair src, VMRegPair dst);
 240   void object_move(OopMap* map,
 241                    int oop_handle_offset,
 242                    int framesize_in_slots,
 243                    VMRegPair src,
 244                    VMRegPair dst,
 245                    bool is_receiver,
 246                    int* receiver_offset);
 247 #endif // _LP64
 248 
 249   // Support for VM calls
 250   //
 251   // It is imperative that all calls into the VM are handled via the call_VM macros.
 252   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 253   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 254 
 255 
 256   void call_VM(Register oop_result,
 257                address entry_point,
 258                bool check_exceptions = true);
 259   void call_VM(Register oop_result,
 260                address entry_point,
 261                Register arg_1,
 262                bool check_exceptions = true);
 263   void call_VM(Register oop_result,
 264                address entry_point,
 265                Register arg_1, Register arg_2,
 266                bool check_exceptions = true);
 267   void call_VM(Register oop_result,
 268                address entry_point,
 269                Register arg_1, Register arg_2, Register arg_3,
 270                bool check_exceptions = true);
 271 
 272   // Overloadings with last_Java_sp
 273   void call_VM(Register oop_result,
 274                Register last_java_sp,
 275                address entry_point,
 276                int number_of_arguments = 0,
 277                bool check_exceptions = true);
 278   void call_VM(Register oop_result,
 279                Register last_java_sp,
 280                address entry_point,
 281                Register arg_1, bool
 282                check_exceptions = true);
 283   void call_VM(Register oop_result,
 284                Register last_java_sp,
 285                address entry_point,
 286                Register arg_1, Register arg_2,
 287                bool check_exceptions = true);
 288   void call_VM(Register oop_result,
 289                Register last_java_sp,
 290                address entry_point,
 291                Register arg_1, Register arg_2, Register arg_3,
 292                bool check_exceptions = true);
 293 
 294   void get_vm_result  (Register oop_result, Register thread);
 295   void get_vm_result_2(Register metadata_result, Register thread);
 296 
 297   // These always tightly bind to MacroAssembler::call_VM_base
 298   // bypassing the virtual implementation
 299   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 300   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 301   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 302   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 303   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
 304 
 305   void call_VM_leaf0(address entry_point);
 306   void call_VM_leaf(address entry_point,
 307                     int number_of_arguments = 0);
 308   void call_VM_leaf(address entry_point,
 309                     Register arg_1);
 310   void call_VM_leaf(address entry_point,
 311                     Register arg_1, Register arg_2);
 312   void call_VM_leaf(address entry_point,
 313                     Register arg_1, Register arg_2, Register arg_3);
 314 
 315   void call_VM_leaf(address entry_point,
 316                     Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 317 
 318   // These always tightly bind to MacroAssembler::call_VM_leaf_base
 319   // bypassing the virtual implementation
 320   void super_call_VM_leaf(address entry_point);
 321   void super_call_VM_leaf(address entry_point, Register arg_1);
 322   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 323   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 324   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 325 
 326   // last Java Frame (fills frame anchor)
 327   void set_last_Java_frame(Register thread,
 328                            Register last_java_sp,
 329                            Register last_java_fp,
 330                            address  last_java_pc,
 331                            Register rscratch);
 332 
 333   // thread in the default location (r15_thread on 64bit)
 334   void set_last_Java_frame(Register last_java_sp,
 335                            Register last_java_fp,
 336                            address  last_java_pc,
 337                            Register rscratch);
 338 
 339 #ifdef _LP64
 340   void set_last_Java_frame(Register last_java_sp,
 341                            Register last_java_fp,
 342                            Label &last_java_pc,
 343                            Register scratch);
 344 #endif
 345 
 346   void reset_last_Java_frame(Register thread, bool clear_fp);
 347 
 348   // thread in the default location (r15_thread on 64bit)
 349   void reset_last_Java_frame(bool clear_fp);
 350 
 351   // jobjects
 352   void clear_jobject_tag(Register possibly_non_local);
 353   void resolve_jobject(Register value, Register thread, Register tmp);
 354   void resolve_global_jobject(Register value, Register thread, Register tmp);
 355 
 356   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
 357   void c2bool(Register x);
 358 
 359   // C++ bool manipulation
 360 
 361   void movbool(Register dst, Address src);
 362   void movbool(Address dst, bool boolconst);
 363   void movbool(Address dst, Register src);
 364   void testbool(Register dst);
 365 
 366   void resolve_oop_handle(Register result, Register tmp);
 367   void resolve_weak_handle(Register result, Register tmp);
 368   void load_mirror(Register mirror, Register method, Register tmp);
 369   void load_method_holder_cld(Register rresult, Register rmethod);
 370 
 371   void load_method_holder(Register holder, Register method);
 372 
 373   // oop manipulations
 374 #ifdef _LP64
 375   void load_narrow_klass_compact(Register dst, Register src);
 376 #endif
 377   void load_klass(Register dst, Register src, Register tmp);
 378   void store_klass(Register dst, Register src, Register tmp);
 379 
 380   // Compares the Klass pointer of an object to a given Klass (which might be narrow,
 381   // depending on UseCompressedClassPointers).
 382   void cmp_klass(Register klass, Register obj, Register tmp);
 383 
 384   // Compares the Klass pointer of two objects obj1 and obj2. Result is in the condition flags.
 385   // Uses tmp1 and tmp2 as temporary registers.
 386   void cmp_klasses_from_objects(Register obj1, Register obj2, Register tmp1, Register tmp2);
 387 
 388   void access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src,
 389                       Register tmp1, Register thread_tmp);
 390   void access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register val,
 391                        Register tmp1, Register tmp2, Register tmp3);
 392 
 393   void load_heap_oop(Register dst, Address src, Register tmp1 = noreg,
 394                      Register thread_tmp = noreg, DecoratorSet decorators = 0);
 395   void load_heap_oop_not_null(Register dst, Address src, Register tmp1 = noreg,
 396                               Register thread_tmp = noreg, DecoratorSet decorators = 0);
 397   void store_heap_oop(Address dst, Register val, Register tmp1 = noreg,
 398                       Register tmp2 = noreg, Register tmp3 = noreg, DecoratorSet decorators = 0);
 399 
 400   // Used for storing null. All other oop constants should be
 401   // stored using routines that take a jobject.
 402   void store_heap_oop_null(Address dst);
 403 
 404 #ifdef _LP64
 405   void store_klass_gap(Register dst, Register src);
 406 
 407   // This dummy is to prevent a call to store_heap_oop from
 408   // converting a zero (like null) into a Register by giving
 409   // the compiler two choices it can't resolve
 410 
 411   void store_heap_oop(Address dst, void* dummy);
 412 
 413   void encode_heap_oop(Register r);
 414   void decode_heap_oop(Register r);
 415   void encode_heap_oop_not_null(Register r);
 416   void decode_heap_oop_not_null(Register r);
 417   void encode_heap_oop_not_null(Register dst, Register src);
 418   void decode_heap_oop_not_null(Register dst, Register src);
 419 
 420   void set_narrow_oop(Register dst, jobject obj);
 421   void set_narrow_oop(Address dst, jobject obj);
 422   void cmp_narrow_oop(Register dst, jobject obj);
 423   void cmp_narrow_oop(Address dst, jobject obj);
 424 
 425   void encode_klass_not_null(Register r, Register tmp);
 426   void decode_klass_not_null(Register r, Register tmp);
 427   void encode_and_move_klass_not_null(Register dst, Register src);
 428   void decode_and_move_klass_not_null(Register dst, Register src);
 429   void set_narrow_klass(Register dst, Klass* k);
 430   void set_narrow_klass(Address dst, Klass* k);
 431   void cmp_narrow_klass(Register dst, Klass* k);
 432   void cmp_narrow_klass(Address dst, Klass* k);
 433 
 434   // if heap base register is used - reinit it with the correct value
 435   void reinit_heapbase();
 436 
 437   DEBUG_ONLY(void verify_heapbase(const char* msg);)
 438 
 439 #endif // _LP64
 440 
 441   // Int division/remainder for Java
 442   // (as idivl, but checks for special case as described in JVM spec.)
 443   // returns idivl instruction offset for implicit exception handling
 444   int corrected_idivl(Register reg);
 445 
 446   // Long division/remainder for Java
 447   // (as idivq, but checks for special case as described in JVM spec.)
 448   // returns idivq instruction offset for implicit exception handling
 449   int corrected_idivq(Register reg);
 450 
 451   void int3();
 452 
 453   // Long operation macros for a 32bit cpu
 454   // Long negation for Java
 455   void lneg(Register hi, Register lo);
 456 
 457   // Long multiplication for Java
 458   // (destroys contents of eax, ebx, ecx and edx)
 459   void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
 460 
 461   // Long shifts for Java
 462   // (semantics as described in JVM spec.)
 463   void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
 464   void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
 465 
 466   // Long compare for Java
 467   // (semantics as described in JVM spec.)
 468   void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
 469 
 470 
 471   // misc
 472 
 473   // Sign extension
 474   void sign_extend_short(Register reg);
 475   void sign_extend_byte(Register reg);
 476 
 477   // Division by power of 2, rounding towards 0
 478   void division_with_shift(Register reg, int shift_value);
 479 
 480 #ifndef _LP64
 481   // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
 482   //
 483   // CF (corresponds to C0) if x < y
 484   // PF (corresponds to C2) if unordered
 485   // ZF (corresponds to C3) if x = y
 486   //
 487   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 488   // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
 489   void fcmp(Register tmp);
 490   // Variant of the above which allows y to be further down the stack
 491   // and which only pops x and y if specified. If pop_right is
 492   // specified then pop_left must also be specified.
 493   void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
 494 
 495   // Floating-point comparison for Java
 496   // Compares the top-most stack entries on the FPU stack and stores the result in dst.
 497   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 498   // (semantics as described in JVM spec.)
 499   void fcmp2int(Register dst, bool unordered_is_less);
 500   // Variant of the above which allows y to be further down the stack
 501   // and which only pops x and y if specified. If pop_right is
 502   // specified then pop_left must also be specified.
 503   void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
 504 
 505   // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
 506   // tmp is a temporary register, if none is available use noreg
 507   void fremr(Register tmp);
 508 
 509   // only if +VerifyFPU
 510   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
 511 #endif // !LP64
 512 
 513   // dst = c = a * b + c
 514   void fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 515   void fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 516 
 517   void vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
 518   void vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
 519   void vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
 520   void vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
 521 
 522 
 523   // same as fcmp2int, but using SSE2
 524   void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 525   void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 526 
 527   // branch to L if FPU flag C2 is set/not set
 528   // tmp is a temporary register, if none is available use noreg
 529   void jC2 (Register tmp, Label& L);
 530   void jnC2(Register tmp, Label& L);
 531 
 532   // Load float value from 'address'. If UseSSE >= 1, the value is loaded into
 533   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 534   void load_float(Address src);
 535 
 536   // Store float value to 'address'. If UseSSE >= 1, the value is stored
 537   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 538   void store_float(Address dst);
 539 
 540   // Load double value from 'address'. If UseSSE >= 2, the value is loaded into
 541   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 542   void load_double(Address src);
 543 
 544   // Store double value to 'address'. If UseSSE >= 2, the value is stored
 545   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 546   void store_double(Address dst);
 547 
 548 #ifndef _LP64
 549   // Pop ST (ffree & fincstp combined)
 550   void fpop();
 551 
 552   void empty_FPU_stack();
 553 #endif // !_LP64
 554 
 555   void push_IU_state();
 556   void pop_IU_state();
 557 
 558   void push_FPU_state();
 559   void pop_FPU_state();
 560 
 561   void push_CPU_state();
 562   void pop_CPU_state();
 563 
 564   void push_cont_fastpath();
 565   void pop_cont_fastpath();
 566 
 567   void inc_held_monitor_count();
 568   void dec_held_monitor_count();
 569 
 570   DEBUG_ONLY(void stop_if_in_cont(Register cont_reg, const char* name);)
 571 
 572   // Round up to a power of two
 573   void round_to(Register reg, int modulus);
 574 
 575 private:
 576   // General purpose and XMM registers potentially clobbered by native code; there
 577   // is no need for FPU or AVX opmask related methods because C1/interpreter
 578   // - we save/restore FPU state as a whole always
 579   // - do not care about AVX-512 opmask
 580   static RegSet call_clobbered_gp_registers();
 581   static XMMRegSet call_clobbered_xmm_registers();
 582 
 583   void push_set(XMMRegSet set, int offset);
 584   void pop_set(XMMRegSet set, int offset);
 585 
 586 public:
 587   void push_set(RegSet set, int offset = -1);
 588   void pop_set(RegSet set, int offset = -1);
 589 
 590   // Push and pop everything that might be clobbered by a native
 591   // runtime call.
 592   // Only save the lower 64 bits of each vector register.
 593   // Additional registers can be excluded in a passed RegSet.
 594   void push_call_clobbered_registers_except(RegSet exclude, bool save_fpu = true);
 595   void pop_call_clobbered_registers_except(RegSet exclude, bool restore_fpu = true);
 596 
 597   void push_call_clobbered_registers(bool save_fpu = true) {
 598     push_call_clobbered_registers_except(RegSet(), save_fpu);
 599   }
 600   void pop_call_clobbered_registers(bool restore_fpu = true) {
 601     pop_call_clobbered_registers_except(RegSet(), restore_fpu);
 602   }
 603 
 604   // allocation
 605   void tlab_allocate(
 606     Register thread,                   // Current thread
 607     Register obj,                      // result: pointer to object after successful allocation
 608     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 609     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 610     Register t1,                       // temp register
 611     Register t2,                       // temp register
 612     Label&   slow_case                 // continuation point if fast allocation fails
 613   );
 614   void zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp);
 615 
 616   void population_count(Register dst, Register src, Register scratch1, Register scratch2);
 617 
 618   // interface method calling
 619   void lookup_interface_method(Register recv_klass,
 620                                Register intf_klass,
 621                                RegisterOrConstant itable_index,
 622                                Register method_result,
 623                                Register scan_temp,
 624                                Label& no_such_interface,
 625                                bool return_method = true);
 626 
 627   void lookup_interface_method_stub(Register recv_klass,
 628                                     Register holder_klass,
 629                                     Register resolved_klass,
 630                                     Register method_result,
 631                                     Register scan_temp,
 632                                     Register temp_reg2,
 633                                     Register receiver,
 634                                     int itable_index,
 635                                     Label& L_no_such_interface);
 636 
 637   // virtual method calling
 638   void lookup_virtual_method(Register recv_klass,
 639                              RegisterOrConstant vtable_index,
 640                              Register method_result);
 641 
 642   // Test sub_klass against super_klass, with fast and slow paths.
 643 
 644   // The fast path produces a tri-state answer: yes / no / maybe-slow.
 645   // One of the three labels can be null, meaning take the fall-through.
 646   // If super_check_offset is -1, the value is loaded up from super_klass.
 647   // No registers are killed, except temp_reg.
 648   void check_klass_subtype_fast_path(Register sub_klass,
 649                                      Register super_klass,
 650                                      Register temp_reg,
 651                                      Label* L_success,
 652                                      Label* L_failure,
 653                                      Label* L_slow_path,
 654                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
 655 
 656   // The rest of the type check; must be wired to a corresponding fast path.
 657   // It does not repeat the fast path logic, so don't use it standalone.
 658   // The temp_reg and temp2_reg can be noreg, if no temps are available.
 659   // Updates the sub's secondary super cache as necessary.
 660   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
 661   void check_klass_subtype_slow_path(Register sub_klass,
 662                                      Register super_klass,
 663                                      Register temp_reg,
 664                                      Register temp2_reg,
 665                                      Label* L_success,
 666                                      Label* L_failure,
 667                                      bool set_cond_codes = false);
 668 
 669 #ifdef _LP64
 670   // The 64-bit version, which may do a hashed subclass lookup.
 671   void check_klass_subtype_slow_path(Register sub_klass,
 672                                      Register super_klass,
 673                                      Register temp_reg,
 674                                      Register temp2_reg,
 675                                      Register temp3_reg,
 676                                      Register temp4_reg,
 677                                      Label* L_success,
 678                                      Label* L_failure);
 679 #endif
 680 
 681   // Three parts of a hashed subclass lookup: a simple linear search,
 682   // a table lookup, and a fallback that does linear probing in the
 683   // event of a hash collision.
 684   void check_klass_subtype_slow_path_linear(Register sub_klass,
 685                                             Register super_klass,
 686                                             Register temp_reg,
 687                                             Register temp2_reg,
 688                                             Label* L_success,
 689                                             Label* L_failure,
 690                                             bool set_cond_codes = false);
 691   void check_klass_subtype_slow_path_table(Register sub_klass,
 692                                            Register super_klass,
 693                                            Register temp_reg,
 694                                            Register temp2_reg,
 695                                            Register temp3_reg,
 696                                            Register result_reg,
 697                                            Label* L_success,
 698                                            Label* L_failure);
 699   void hashed_check_klass_subtype_slow_path(Register sub_klass,
 700                                             Register super_klass,
 701                                             Register temp_reg,
 702                                             Label* L_success,
 703                                             Label* L_failure);
 704 
 705   // As above, but with a constant super_klass.
 706   // The result is in Register result, not the condition codes.
 707   void lookup_secondary_supers_table_const(Register sub_klass,
 708                                            Register super_klass,
 709                                            Register temp1,
 710                                            Register temp2,
 711                                            Register temp3,
 712                                            Register temp4,
 713                                            Register result,
 714                                            u1 super_klass_slot);
 715 
 716 #ifdef _LP64
 717   using Assembler::salq;
 718   void salq(Register dest, Register count);
 719   using Assembler::rorq;
 720   void rorq(Register dest, Register count);
 721   void lookup_secondary_supers_table_var(Register sub_klass,
 722                                          Register super_klass,
 723                                          Register temp1,
 724                                          Register temp2,
 725                                          Register temp3,
 726                                          Register temp4,
 727                                          Register result);
 728 
 729   void lookup_secondary_supers_table_slow_path(Register r_super_klass,
 730                                                Register r_array_base,
 731                                                Register r_array_index,
 732                                                Register r_bitmap,
 733                                                Register temp1,
 734                                                Register temp2,
 735                                                Label* L_success,
 736                                                Label* L_failure = nullptr);
 737 
 738   void verify_secondary_supers_table(Register r_sub_klass,
 739                                      Register r_super_klass,
 740                                      Register expected,
 741                                      Register temp1,
 742                                      Register temp2,
 743                                      Register temp3);
 744 #endif
 745 
 746   void repne_scanq(Register addr, Register value, Register count, Register limit,
 747                    Label* L_success,
 748                    Label* L_failure = nullptr);
 749 
 750   // If r is valid, return r.
 751   // If r is invalid, remove a register r2 from available_regs, add r2
 752   // to regs_to_push, then return r2.
 753   Register allocate_if_noreg(const Register r,
 754                              RegSetIterator<Register> &available_regs,
 755                              RegSet &regs_to_push);
 756 
 757   // Simplified, combined version, good for typical uses.
 758   // Falls through on failure.
 759   void check_klass_subtype(Register sub_klass,
 760                            Register super_klass,
 761                            Register temp_reg,
 762                            Label& L_success);
 763 
 764   void clinit_barrier(Register klass,
 765                       Register thread,
 766                       Label* L_fast_path = nullptr,
 767                       Label* L_slow_path = nullptr);
 768 
 769   // method handles (JSR 292)
 770   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
 771 
 772   // Debugging
 773 
 774   // only if +VerifyOops
 775   void _verify_oop(Register reg, const char* s, const char* file, int line);
 776   void _verify_oop_addr(Address addr, const char* s, const char* file, int line);
 777 
 778   void _verify_oop_checked(Register reg, const char* s, const char* file, int line) {
 779     if (VerifyOops) {
 780       _verify_oop(reg, s, file, line);
 781     }
 782   }
 783   void _verify_oop_addr_checked(Address reg, const char* s, const char* file, int line) {
 784     if (VerifyOops) {
 785       _verify_oop_addr(reg, s, file, line);
 786     }
 787   }
 788 
 789   // TODO: verify method and klass metadata (compare against vptr?)
 790   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
 791   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
 792 
 793 #define verify_oop(reg) _verify_oop_checked(reg, "broken oop " #reg, __FILE__, __LINE__)
 794 #define verify_oop_msg(reg, msg) _verify_oop_checked(reg, "broken oop " #reg ", " #msg, __FILE__, __LINE__)
 795 #define verify_oop_addr(addr) _verify_oop_addr_checked(addr, "broken oop addr " #addr, __FILE__, __LINE__)
 796 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
 797 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
 798 
 799   // Verify or restore cpu control state after JNI call
 800   void restore_cpu_control_state_after_jni(Register rscratch);
 801 
 802   // prints msg, dumps registers and stops execution
 803   void stop(const char* msg);
 804 
 805   // prints msg and continues
 806   void warn(const char* msg);
 807 
 808   // dumps registers and other state
 809   void print_state();
 810 
 811   static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
 812   static void debug64(char* msg, int64_t pc, int64_t regs[]);
 813   static void print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip);
 814   static void print_state64(int64_t pc, int64_t regs[]);
 815 
 816   void os_breakpoint();
 817 
 818   void untested()                                { stop("untested"); }
 819 
 820   void unimplemented(const char* what = "");
 821 
 822   void should_not_reach_here()                   { stop("should not reach here"); }
 823 
 824   void print_CPU_state();
 825 
 826   // Stack overflow checking
 827   void bang_stack_with_offset(int offset) {
 828     // stack grows down, caller passes positive offset
 829     assert(offset > 0, "must bang with negative offset");
 830     movl(Address(rsp, (-offset)), rax);
 831   }
 832 
 833   // Writes to stack successive pages until offset reached to check for
 834   // stack overflow + shadow pages.  Also, clobbers tmp
 835   void bang_stack_size(Register size, Register tmp);
 836 
 837   // Check for reserved stack access in method being exited (for JIT)
 838   void reserved_stack_check();
 839 
 840   void safepoint_poll(Label& slow_path, Register thread_reg, bool at_return, bool in_nmethod);
 841 
 842   void verify_tlab();
 843 
 844   static Condition negate_condition(Condition cond);
 845 
 846   // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
 847   // operands. In general the names are modified to avoid hiding the instruction in Assembler
 848   // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
 849   // here in MacroAssembler. The major exception to this rule is call
 850 
 851   // Arithmetics
 852 
 853 
 854   void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
 855   void addptr(Address dst, Register src);
 856 
 857   void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
 858   void addptr(Register dst, int32_t src);
 859   void addptr(Register dst, Register src);
 860   void addptr(Register dst, RegisterOrConstant src) {
 861     if (src.is_constant()) addptr(dst, checked_cast<int>(src.as_constant()));
 862     else                   addptr(dst, src.as_register());
 863   }
 864 
 865   void andptr(Register dst, int32_t src);
 866   void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
 867 
 868 #ifdef _LP64
 869   using Assembler::andq;
 870   void andq(Register dst, AddressLiteral src, Register rscratch = noreg);
 871 #endif
 872 
 873   void cmp8(AddressLiteral src1, int imm, Register rscratch = noreg);
 874 
 875   // renamed to drag out the casting of address to int32_t/intptr_t
 876   void cmp32(Register src1, int32_t imm);
 877 
 878   void cmp32(AddressLiteral src1, int32_t imm, Register rscratch = noreg);
 879   // compare reg - mem, or reg - &mem
 880   void cmp32(Register src1, AddressLiteral src2, Register rscratch = noreg);
 881 
 882   void cmp32(Register src1, Address src2);
 883 
 884 #ifndef _LP64
 885   void cmpklass(Address dst, Metadata* obj);
 886   void cmpklass(Register dst, Metadata* obj);
 887   void cmpoop(Address dst, jobject obj);
 888 #endif // _LP64
 889 
 890   void cmpoop(Register src1, Register src2);
 891   void cmpoop(Register src1, Address src2);
 892   void cmpoop(Register dst, jobject obj, Register rscratch);
 893 
 894   // NOTE src2 must be the lval. This is NOT an mem-mem compare
 895   void cmpptr(Address src1, AddressLiteral src2, Register rscratch);
 896 
 897   void cmpptr(Register src1, AddressLiteral src2, Register rscratch = noreg);
 898 
 899   void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 900   void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 901   // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 902 
 903   void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 904   void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 905 
 906   // cmp64 to avoild hiding cmpq
 907   void cmp64(Register src1, AddressLiteral src, Register rscratch = noreg);
 908 
 909   void cmpxchgptr(Register reg, Address adr);
 910 
 911   void locked_cmpxchgptr(Register reg, AddressLiteral adr, Register rscratch = noreg);
 912 
 913   void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
 914   void imulptr(Register dst, Register src, int imm32) { LP64_ONLY(imulq(dst, src, imm32)) NOT_LP64(imull(dst, src, imm32)); }
 915 
 916 
 917   void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
 918 
 919   void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
 920 
 921   void shlptr(Register dst, int32_t shift);
 922   void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
 923 
 924   void shrptr(Register dst, int32_t shift);
 925   void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
 926 
 927   void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
 928   void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
 929 
 930   void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 931 
 932   void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 933   void subptr(Register dst, int32_t src);
 934   // Force generation of a 4 byte immediate value even if it fits into 8bit
 935   void subptr_imm32(Register dst, int32_t src);
 936   void subptr(Register dst, Register src);
 937   void subptr(Register dst, RegisterOrConstant src) {
 938     if (src.is_constant()) subptr(dst, (int) src.as_constant());
 939     else                   subptr(dst,       src.as_register());
 940   }
 941 
 942   void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 943   void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 944 
 945   void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 946   void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 947 
 948   void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
 949 
 950 
 951 
 952   // Helper functions for statistics gathering.
 953   // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
 954   void cond_inc32(Condition cond, AddressLiteral counter_addr, Register rscratch = noreg);
 955   // Unconditional atomic increment.
 956   void atomic_incl(Address counter_addr);
 957   void atomic_incl(AddressLiteral counter_addr, Register rscratch = noreg);
 958 #ifdef _LP64
 959   void atomic_incq(Address counter_addr);
 960   void atomic_incq(AddressLiteral counter_addr, Register rscratch = noreg);
 961 #endif
 962   void atomic_incptr(AddressLiteral counter_addr, Register rscratch = noreg) { LP64_ONLY(atomic_incq(counter_addr, rscratch)) NOT_LP64(atomic_incl(counter_addr, rscratch)) ; }
 963   void atomic_incptr(Address counter_addr) { LP64_ONLY(atomic_incq(counter_addr)) NOT_LP64(atomic_incl(counter_addr)) ; }
 964 
 965   using Assembler::lea;
 966   void lea(Register dst, AddressLiteral adr);
 967   void lea(Address  dst, AddressLiteral adr, Register rscratch);
 968 
 969   void leal32(Register dst, Address src) { leal(dst, src); }
 970 
 971   // Import other testl() methods from the parent class or else
 972   // they will be hidden by the following overriding declaration.
 973   using Assembler::testl;
 974   void testl(Address dst, int32_t imm32);
 975   void testl(Register dst, int32_t imm32);
 976   void testl(Register dst, AddressLiteral src); // requires reachable address
 977   using Assembler::testq;
 978   void testq(Address dst, int32_t imm32);
 979   void testq(Register dst, int32_t imm32);
 980 
 981   void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 982   void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 983   void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 984   void orptr(Address dst, int32_t imm32) { LP64_ONLY(orq(dst, imm32)) NOT_LP64(orl(dst, imm32)); }
 985 
 986   void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
 987   void testptr(Register src1, Address src2) { LP64_ONLY(testq(src1, src2)) NOT_LP64(testl(src1, src2)); }
 988   void testptr(Address src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
 989   void testptr(Register src1, Register src2);
 990 
 991   void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 992   void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 993 
 994   // Calls
 995 
 996   void call(Label& L, relocInfo::relocType rtype);
 997   void call(Register entry);
 998   void call(Address addr) { Assembler::call(addr); }
 999 
1000   // NOTE: this call transfers to the effective address of entry NOT
1001   // the address contained by entry. This is because this is more natural
1002   // for jumps/calls.
1003   void call(AddressLiteral entry, Register rscratch = rax);
1004 
1005   // Emit the CompiledIC call idiom
1006   void ic_call(address entry, jint method_index = 0);
1007   static int ic_check_size();
1008   int ic_check(int end_alignment);
1009 
1010   void emit_static_call_stub();
1011 
1012   // Jumps
1013 
1014   // NOTE: these jumps transfer to the effective address of dst NOT
1015   // the address contained by dst. This is because this is more natural
1016   // for jumps/calls.
1017   void jump(AddressLiteral dst, Register rscratch = noreg);
1018 
1019   void jump_cc(Condition cc, AddressLiteral dst, Register rscratch = noreg);
1020 
1021   // 32bit can do a case table jump in one instruction but we no longer allow the base
1022   // to be installed in the Address class. This jump will transfer to the address
1023   // contained in the location described by entry (not the address of entry)
1024   void jump(ArrayAddress entry, Register rscratch);
1025 
1026   // Adding more natural conditional jump instructions
1027   void ALWAYSINLINE jo(Label& L, bool maybe_short = true) { jcc(Assembler::overflow, L, maybe_short); }
1028   void ALWAYSINLINE jno(Label& L, bool maybe_short = true) { jcc(Assembler::noOverflow, L, maybe_short); }
1029   void ALWAYSINLINE js(Label& L, bool maybe_short = true) { jcc(Assembler::negative, L, maybe_short); }
1030   void ALWAYSINLINE jns(Label& L, bool maybe_short = true) { jcc(Assembler::positive, L, maybe_short); }
1031   void ALWAYSINLINE je(Label& L, bool maybe_short = true) { jcc(Assembler::equal, L, maybe_short); }
1032   void ALWAYSINLINE jz(Label& L, bool maybe_short = true) { jcc(Assembler::zero, L, maybe_short); }
1033   void ALWAYSINLINE jne(Label& L, bool maybe_short = true) { jcc(Assembler::notEqual, L, maybe_short); }
1034   void ALWAYSINLINE jnz(Label& L, bool maybe_short = true) { jcc(Assembler::notZero, L, maybe_short); }
1035   void ALWAYSINLINE jb(Label& L, bool maybe_short = true) { jcc(Assembler::below, L, maybe_short); }
1036   void ALWAYSINLINE jnae(Label& L, bool maybe_short = true) { jcc(Assembler::below, L, maybe_short); }
1037   void ALWAYSINLINE jc(Label& L, bool maybe_short = true) { jcc(Assembler::carrySet, L, maybe_short); }
1038   void ALWAYSINLINE jnb(Label& L, bool maybe_short = true) { jcc(Assembler::aboveEqual, L, maybe_short); }
1039   void ALWAYSINLINE jae(Label& L, bool maybe_short = true) { jcc(Assembler::aboveEqual, L, maybe_short); }
1040   void ALWAYSINLINE jnc(Label& L, bool maybe_short = true) { jcc(Assembler::carryClear, L, maybe_short); }
1041   void ALWAYSINLINE jbe(Label& L, bool maybe_short = true) { jcc(Assembler::belowEqual, L, maybe_short); }
1042   void ALWAYSINLINE jna(Label& L, bool maybe_short = true) { jcc(Assembler::belowEqual, L, maybe_short); }
1043   void ALWAYSINLINE ja(Label& L, bool maybe_short = true) { jcc(Assembler::above, L, maybe_short); }
1044   void ALWAYSINLINE jnbe(Label& L, bool maybe_short = true) { jcc(Assembler::above, L, maybe_short); }
1045   void ALWAYSINLINE jl(Label& L, bool maybe_short = true) { jcc(Assembler::less, L, maybe_short); }
1046   void ALWAYSINLINE jnge(Label& L, bool maybe_short = true) { jcc(Assembler::less, L, maybe_short); }
1047   void ALWAYSINLINE jge(Label& L, bool maybe_short = true) { jcc(Assembler::greaterEqual, L, maybe_short); }
1048   void ALWAYSINLINE jnl(Label& L, bool maybe_short = true) { jcc(Assembler::greaterEqual, L, maybe_short); }
1049   void ALWAYSINLINE jle(Label& L, bool maybe_short = true) { jcc(Assembler::lessEqual, L, maybe_short); }
1050   void ALWAYSINLINE jng(Label& L, bool maybe_short = true) { jcc(Assembler::lessEqual, L, maybe_short); }
1051   void ALWAYSINLINE jg(Label& L, bool maybe_short = true) { jcc(Assembler::greater, L, maybe_short); }
1052   void ALWAYSINLINE jnle(Label& L, bool maybe_short = true) { jcc(Assembler::greater, L, maybe_short); }
1053   void ALWAYSINLINE jp(Label& L, bool maybe_short = true) { jcc(Assembler::parity, L, maybe_short); }
1054   void ALWAYSINLINE jpe(Label& L, bool maybe_short = true) { jcc(Assembler::parity, L, maybe_short); }
1055   void ALWAYSINLINE jnp(Label& L, bool maybe_short = true) { jcc(Assembler::noParity, L, maybe_short); }
1056   void ALWAYSINLINE jpo(Label& L, bool maybe_short = true) { jcc(Assembler::noParity, L, maybe_short); }
1057   // * No condition for this *  void ALWAYSINLINE jcxz(Label& L, bool maybe_short = true) { jcc(Assembler::cxz, L, maybe_short); }
1058   // * No condition for this *  void ALWAYSINLINE jecxz(Label& L, bool maybe_short = true) { jcc(Assembler::cxz, L, maybe_short); }
1059 
1060   // Short versions of the above
1061   void ALWAYSINLINE jo_b(Label& L) { jccb(Assembler::overflow, L); }
1062   void ALWAYSINLINE jno_b(Label& L) { jccb(Assembler::noOverflow, L); }
1063   void ALWAYSINLINE js_b(Label& L) { jccb(Assembler::negative, L); }
1064   void ALWAYSINLINE jns_b(Label& L) { jccb(Assembler::positive, L); }
1065   void ALWAYSINLINE je_b(Label& L) { jccb(Assembler::equal, L); }
1066   void ALWAYSINLINE jz_b(Label& L) { jccb(Assembler::zero, L); }
1067   void ALWAYSINLINE jne_b(Label& L) { jccb(Assembler::notEqual, L); }
1068   void ALWAYSINLINE jnz_b(Label& L) { jccb(Assembler::notZero, L); }
1069   void ALWAYSINLINE jb_b(Label& L) { jccb(Assembler::below, L); }
1070   void ALWAYSINLINE jnae_b(Label& L) { jccb(Assembler::below, L); }
1071   void ALWAYSINLINE jc_b(Label& L) { jccb(Assembler::carrySet, L); }
1072   void ALWAYSINLINE jnb_b(Label& L) { jccb(Assembler::aboveEqual, L); }
1073   void ALWAYSINLINE jae_b(Label& L) { jccb(Assembler::aboveEqual, L); }
1074   void ALWAYSINLINE jnc_b(Label& L) { jccb(Assembler::carryClear, L); }
1075   void ALWAYSINLINE jbe_b(Label& L) { jccb(Assembler::belowEqual, L); }
1076   void ALWAYSINLINE jna_b(Label& L) { jccb(Assembler::belowEqual, L); }
1077   void ALWAYSINLINE ja_b(Label& L) { jccb(Assembler::above, L); }
1078   void ALWAYSINLINE jnbe_b(Label& L) { jccb(Assembler::above, L); }
1079   void ALWAYSINLINE jl_b(Label& L) { jccb(Assembler::less, L); }
1080   void ALWAYSINLINE jnge_b(Label& L) { jccb(Assembler::less, L); }
1081   void ALWAYSINLINE jge_b(Label& L) { jccb(Assembler::greaterEqual, L); }
1082   void ALWAYSINLINE jnl_b(Label& L) { jccb(Assembler::greaterEqual, L); }
1083   void ALWAYSINLINE jle_b(Label& L) { jccb(Assembler::lessEqual, L); }
1084   void ALWAYSINLINE jng_b(Label& L) { jccb(Assembler::lessEqual, L); }
1085   void ALWAYSINLINE jg_b(Label& L) { jccb(Assembler::greater, L); }
1086   void ALWAYSINLINE jnle_b(Label& L) { jccb(Assembler::greater, L); }
1087   void ALWAYSINLINE jp_b(Label& L) { jccb(Assembler::parity, L); }
1088   void ALWAYSINLINE jpe_b(Label& L) { jccb(Assembler::parity, L); }
1089   void ALWAYSINLINE jnp_b(Label& L) { jccb(Assembler::noParity, L); }
1090   void ALWAYSINLINE jpo_b(Label& L) { jccb(Assembler::noParity, L); }
1091   // * No condition for this *  void ALWAYSINLINE jcxz_b(Label& L) { jccb(Assembler::cxz, L); }
1092   // * No condition for this *  void ALWAYSINLINE jecxz_b(Label& L) { jccb(Assembler::cxz, L); }
1093 
1094   // Floating
1095 
1096   void push_f(XMMRegister r);
1097   void pop_f(XMMRegister r);
1098   void push_d(XMMRegister r);
1099   void pop_d(XMMRegister r);
1100 
1101   void andpd(XMMRegister dst, XMMRegister    src) { Assembler::andpd(dst, src); }
1102   void andpd(XMMRegister dst, Address        src) { Assembler::andpd(dst, src); }
1103   void andpd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1104 
1105   void andps(XMMRegister dst, XMMRegister    src) { Assembler::andps(dst, src); }
1106   void andps(XMMRegister dst, Address        src) { Assembler::andps(dst, src); }
1107   void andps(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1108 
1109   void comiss(XMMRegister dst, XMMRegister    src) { Assembler::comiss(dst, src); }
1110   void comiss(XMMRegister dst, Address        src) { Assembler::comiss(dst, src); }
1111   void comiss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1112 
1113   void comisd(XMMRegister dst, XMMRegister    src) { Assembler::comisd(dst, src); }
1114   void comisd(XMMRegister dst, Address        src) { Assembler::comisd(dst, src); }
1115   void comisd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1116 
1117 #ifndef _LP64
1118   void fadd_s(Address        src) { Assembler::fadd_s(src); }
1119   void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
1120 
1121   void fldcw(Address        src) { Assembler::fldcw(src); }
1122   void fldcw(AddressLiteral src);
1123 
1124   void fld_s(int index)          { Assembler::fld_s(index); }
1125   void fld_s(Address        src) { Assembler::fld_s(src); }
1126   void fld_s(AddressLiteral src);
1127 
1128   void fld_d(Address        src) { Assembler::fld_d(src); }
1129   void fld_d(AddressLiteral src);
1130 
1131   void fld_x(Address        src) { Assembler::fld_x(src); }
1132   void fld_x(AddressLiteral src) { Assembler::fld_x(as_Address(src)); }
1133 
1134   void fmul_s(Address        src) { Assembler::fmul_s(src); }
1135   void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
1136 #endif // !_LP64
1137 
1138   void cmp32_mxcsr_std(Address mxcsr_save, Register tmp, Register rscratch = noreg);
1139   void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
1140   void ldmxcsr(AddressLiteral src, Register rscratch = noreg);
1141 
1142 #ifdef _LP64
1143  private:
1144   void sha256_AVX2_one_round_compute(
1145     Register  reg_old_h,
1146     Register  reg_a,
1147     Register  reg_b,
1148     Register  reg_c,
1149     Register  reg_d,
1150     Register  reg_e,
1151     Register  reg_f,
1152     Register  reg_g,
1153     Register  reg_h,
1154     int iter);
1155   void sha256_AVX2_four_rounds_compute_first(int start);
1156   void sha256_AVX2_four_rounds_compute_last(int start);
1157   void sha256_AVX2_one_round_and_sched(
1158         XMMRegister xmm_0,     /* == ymm4 on 0, 1, 2, 3 iterations, then rotate 4 registers left on 4, 8, 12 iterations */
1159         XMMRegister xmm_1,     /* ymm5 */  /* full cycle is 16 iterations */
1160         XMMRegister xmm_2,     /* ymm6 */
1161         XMMRegister xmm_3,     /* ymm7 */
1162         Register    reg_a,      /* == eax on 0 iteration, then rotate 8 register right on each next iteration */
1163         Register    reg_b,      /* ebx */    /* full cycle is 8 iterations */
1164         Register    reg_c,      /* edi */
1165         Register    reg_d,      /* esi */
1166         Register    reg_e,      /* r8d */
1167         Register    reg_f,      /* r9d */
1168         Register    reg_g,      /* r10d */
1169         Register    reg_h,      /* r11d */
1170         int iter);
1171 
1172   void addm(int disp, Register r1, Register r2);
1173 
1174   void sha512_AVX2_one_round_compute(Register old_h, Register a, Register b, Register c, Register d,
1175                                      Register e, Register f, Register g, Register h, int iteration);
1176 
1177   void sha512_AVX2_one_round_and_schedule(XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1178                                           Register a, Register b, Register c, Register d, Register e, Register f,
1179                                           Register g, Register h, int iteration);
1180 
1181   void addmq(int disp, Register r1, Register r2);
1182  public:
1183   void sha256_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
1184                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
1185                    Register buf, Register state, Register ofs, Register limit, Register rsp,
1186                    bool multi_block, XMMRegister shuf_mask);
1187   void sha512_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
1188                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
1189                    Register buf, Register state, Register ofs, Register limit, Register rsp, bool multi_block,
1190                    XMMRegister shuf_mask);
1191   void sha512_update_ni_x1(Register arg_hash, Register arg_msg, Register ofs, Register limit, bool multi_block);
1192 #endif // _LP64
1193 
1194   void fast_md5(Register buf, Address state, Address ofs, Address limit,
1195                 bool multi_block);
1196 
1197   void fast_sha1(XMMRegister abcd, XMMRegister e0, XMMRegister e1, XMMRegister msg0,
1198                  XMMRegister msg1, XMMRegister msg2, XMMRegister msg3, XMMRegister shuf_mask,
1199                  Register buf, Register state, Register ofs, Register limit, Register rsp,
1200                  bool multi_block);
1201 
1202 #ifdef _LP64
1203   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
1204                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
1205                    Register buf, Register state, Register ofs, Register limit, Register rsp,
1206                    bool multi_block, XMMRegister shuf_mask);
1207 #else
1208   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
1209                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
1210                    Register buf, Register state, Register ofs, Register limit, Register rsp,
1211                    bool multi_block);
1212 #endif
1213 
1214   void fast_exp(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1215                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1216                 Register rax, Register rcx, Register rdx, Register tmp);
1217 
1218 #ifndef _LP64
1219  private:
1220   // Initialized in macroAssembler_x86_constants.cpp
1221   static address ONES;
1222   static address L_2IL0FLOATPACKET_0;
1223   static address PI4_INV;
1224   static address PI4X3;
1225   static address PI4X4;
1226 
1227  public:
1228   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1229                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1230                 Register rax, Register rcx, Register rdx, Register tmp1);
1231 
1232   void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1233                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1234                 Register rax, Register rcx, Register rdx, Register tmp);
1235 
1236   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
1237                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
1238                 Register rdx, Register tmp);
1239 
1240   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1241                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1242                 Register rax, Register rbx, Register rdx);
1243 
1244   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1245                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1246                 Register rax, Register rcx, Register rdx, Register tmp);
1247 
1248   void libm_sincos_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1249                         Register edx, Register ebx, Register esi, Register edi,
1250                         Register ebp, Register esp);
1251 
1252   void libm_reduce_pi04l(Register eax, Register ecx, Register edx, Register ebx,
1253                          Register esi, Register edi, Register ebp, Register esp);
1254 
1255   void libm_tancot_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1256                         Register edx, Register ebx, Register esi, Register edi,
1257                         Register ebp, Register esp);
1258 
1259   void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1260                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1261                 Register rax, Register rcx, Register rdx, Register tmp);
1262 #endif // !_LP64
1263 
1264 private:
1265 
1266   // these are private because users should be doing movflt/movdbl
1267 
1268   void movss(Address     dst, XMMRegister    src) { Assembler::movss(dst, src); }
1269   void movss(XMMRegister dst, XMMRegister    src) { Assembler::movss(dst, src); }
1270   void movss(XMMRegister dst, Address        src) { Assembler::movss(dst, src); }
1271   void movss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1272 
1273   void movlpd(XMMRegister dst, Address        src) {Assembler::movlpd(dst, src); }
1274   void movlpd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1275 
1276 public:
1277 
1278   void addsd(XMMRegister dst, XMMRegister    src) { Assembler::addsd(dst, src); }
1279   void addsd(XMMRegister dst, Address        src) { Assembler::addsd(dst, src); }
1280   void addsd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1281 
1282   void addss(XMMRegister dst, XMMRegister    src) { Assembler::addss(dst, src); }
1283   void addss(XMMRegister dst, Address        src) { Assembler::addss(dst, src); }
1284   void addss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1285 
1286   void addpd(XMMRegister dst, XMMRegister    src) { Assembler::addpd(dst, src); }
1287   void addpd(XMMRegister dst, Address        src) { Assembler::addpd(dst, src); }
1288   void addpd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1289 
1290   using Assembler::vbroadcasti128;
1291   void vbroadcasti128(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1292 
1293   using Assembler::vbroadcastsd;
1294   void vbroadcastsd(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1295 
1296   using Assembler::vbroadcastss;
1297   void vbroadcastss(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1298 
1299   // Vector float blend
1300   void vblendvps(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister mask, int vector_len, bool compute_mask = true, XMMRegister scratch = xnoreg);
1301   void vblendvpd(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister mask, int vector_len, bool compute_mask = true, XMMRegister scratch = xnoreg);
1302 
1303   void divsd(XMMRegister dst, XMMRegister    src) { Assembler::divsd(dst, src); }
1304   void divsd(XMMRegister dst, Address        src) { Assembler::divsd(dst, src); }
1305   void divsd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1306 
1307   void divss(XMMRegister dst, XMMRegister    src) { Assembler::divss(dst, src); }
1308   void divss(XMMRegister dst, Address        src) { Assembler::divss(dst, src); }
1309   void divss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1310 
1311   // Move Unaligned Double Quadword
1312   void movdqu(Address     dst, XMMRegister    src);
1313   void movdqu(XMMRegister dst, XMMRegister    src);
1314   void movdqu(XMMRegister dst, Address        src);
1315   void movdqu(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1316 
1317   void kmovwl(Register  dst, KRegister      src) { Assembler::kmovwl(dst, src); }
1318   void kmovwl(Address   dst, KRegister      src) { Assembler::kmovwl(dst, src); }
1319   void kmovwl(KRegister dst, KRegister      src) { Assembler::kmovwl(dst, src); }
1320   void kmovwl(KRegister dst, Register       src) { Assembler::kmovwl(dst, src); }
1321   void kmovwl(KRegister dst, Address        src) { Assembler::kmovwl(dst, src); }
1322   void kmovwl(KRegister dst, AddressLiteral src, Register rscratch = noreg);
1323 
1324   void kmovql(KRegister dst, KRegister      src) { Assembler::kmovql(dst, src); }
1325   void kmovql(KRegister dst, Register       src) { Assembler::kmovql(dst, src); }
1326   void kmovql(Register  dst, KRegister      src) { Assembler::kmovql(dst, src); }
1327   void kmovql(KRegister dst, Address        src) { Assembler::kmovql(dst, src); }
1328   void kmovql(Address   dst, KRegister      src) { Assembler::kmovql(dst, src); }
1329   void kmovql(KRegister dst, AddressLiteral src, Register rscratch = noreg);
1330 
1331   // Safe move operation, lowers down to 16bit moves for targets supporting
1332   // AVX512F feature and 64bit moves for targets supporting AVX512BW feature.
1333   void kmov(Address  dst, KRegister src);
1334   void kmov(KRegister dst, Address src);
1335   void kmov(KRegister dst, KRegister src);
1336   void kmov(Register dst, KRegister src);
1337   void kmov(KRegister dst, Register src);
1338 
1339   using Assembler::movddup;
1340   void movddup(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1341 
1342   using Assembler::vmovddup;
1343   void vmovddup(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1344 
1345   // AVX Unaligned forms
1346   void vmovdqu(Address     dst, XMMRegister    src);
1347   void vmovdqu(XMMRegister dst, Address        src);
1348   void vmovdqu(XMMRegister dst, XMMRegister    src);
1349   void vmovdqu(XMMRegister dst, AddressLiteral src,                 Register rscratch = noreg);
1350   void vmovdqu(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1351   void vmovdqu(XMMRegister dst, XMMRegister    src, int vector_len);
1352   void vmovdqu(XMMRegister dst, Address        src, int vector_len);
1353   void vmovdqu(Address     dst, XMMRegister    src, int vector_len);
1354 
1355   // AVX Aligned forms
1356   using Assembler::vmovdqa;
1357   void vmovdqa(XMMRegister dst, AddressLiteral src,                 Register rscratch = noreg);
1358   void vmovdqa(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1359 
1360   // AVX512 Unaligned
1361   void evmovdqu(BasicType type, KRegister kmask, Address     dst, XMMRegister src, bool merge, int vector_len);
1362   void evmovdqu(BasicType type, KRegister kmask, XMMRegister dst, Address     src, bool merge, int vector_len);
1363   void evmovdqu(BasicType type, KRegister kmask, XMMRegister dst, XMMRegister src, bool merge, int vector_len);
1364 
1365   void evmovdqub(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::evmovdqub(dst, src, vector_len); }
1366   void evmovdqub(XMMRegister dst, Address     src, int vector_len) { Assembler::evmovdqub(dst, src, vector_len); }
1367 
1368   void evmovdqub(XMMRegister dst, KRegister mask, XMMRegister src, bool merge, int vector_len) {
1369     if (dst->encoding() != src->encoding() || mask != k0)  {
1370       Assembler::evmovdqub(dst, mask, src, merge, vector_len);
1371     }
1372   }
1373   void evmovdqub(Address     dst, KRegister mask, XMMRegister    src, bool merge, int vector_len) { Assembler::evmovdqub(dst, mask, src, merge, vector_len); }
1374   void evmovdqub(XMMRegister dst, KRegister mask, Address        src, bool merge, int vector_len) { Assembler::evmovdqub(dst, mask, src, merge, vector_len); }
1375   void evmovdqub(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg);
1376 
1377   void evmovdquw(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::evmovdquw(dst, src, vector_len); }
1378   void evmovdquw(Address     dst, XMMRegister src, int vector_len) { Assembler::evmovdquw(dst, src, vector_len); }
1379   void evmovdquw(XMMRegister dst, Address     src, int vector_len) { Assembler::evmovdquw(dst, src, vector_len); }
1380 
1381   void evmovdquw(XMMRegister dst, KRegister mask, XMMRegister src, bool merge, int vector_len) {
1382     if (dst->encoding() != src->encoding() || mask != k0) {
1383       Assembler::evmovdquw(dst, mask, src, merge, vector_len);
1384     }
1385   }
1386   void evmovdquw(XMMRegister dst, KRegister mask, Address        src, bool merge, int vector_len) { Assembler::evmovdquw(dst, mask, src, merge, vector_len); }
1387   void evmovdquw(Address     dst, KRegister mask, XMMRegister    src, bool merge, int vector_len) { Assembler::evmovdquw(dst, mask, src, merge, vector_len); }
1388   void evmovdquw(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg);
1389 
1390   void evmovdqul(XMMRegister dst, XMMRegister src, int vector_len) {
1391      if (dst->encoding() != src->encoding()) {
1392        Assembler::evmovdqul(dst, src, vector_len);
1393      }
1394   }
1395   void evmovdqul(Address     dst, XMMRegister src, int vector_len) { Assembler::evmovdqul(dst, src, vector_len); }
1396   void evmovdqul(XMMRegister dst, Address     src, int vector_len) { Assembler::evmovdqul(dst, src, vector_len); }
1397 
1398   void evmovdqul(XMMRegister dst, KRegister mask, XMMRegister src, bool merge, int vector_len) {
1399     if (dst->encoding() != src->encoding() || mask != k0)  {
1400       Assembler::evmovdqul(dst, mask, src, merge, vector_len);
1401     }
1402   }
1403   void evmovdqul(Address     dst, KRegister mask, XMMRegister    src, bool merge, int vector_len) { Assembler::evmovdqul(dst, mask, src, merge, vector_len); }
1404   void evmovdqul(XMMRegister dst, KRegister mask, Address        src, bool merge, int vector_len) { Assembler::evmovdqul(dst, mask, src, merge, vector_len); }
1405   void evmovdqul(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg);
1406 
1407   void evmovdquq(XMMRegister dst, XMMRegister src, int vector_len) {
1408     if (dst->encoding() != src->encoding()) {
1409       Assembler::evmovdquq(dst, src, vector_len);
1410     }
1411   }
1412   void evmovdquq(XMMRegister dst, Address        src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); }
1413   void evmovdquq(Address     dst, XMMRegister    src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); }
1414   void evmovdquq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1415   void evmovdqaq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1416 
1417   void evmovdquq(XMMRegister dst, KRegister mask, XMMRegister src, bool merge, int vector_len) {
1418     if (dst->encoding() != src->encoding() || mask != k0) {
1419       Assembler::evmovdquq(dst, mask, src, merge, vector_len);
1420     }
1421   }
1422   void evmovdquq(Address     dst, KRegister mask, XMMRegister    src, bool merge, int vector_len) { Assembler::evmovdquq(dst, mask, src, merge, vector_len); }
1423   void evmovdquq(XMMRegister dst, KRegister mask, Address        src, bool merge, int vector_len) { Assembler::evmovdquq(dst, mask, src, merge, vector_len); }
1424   void evmovdquq(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg);
1425   void evmovdqaq(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg);
1426 
1427   // Move Aligned Double Quadword
1428   void movdqa(XMMRegister dst, XMMRegister    src) { Assembler::movdqa(dst, src); }
1429   void movdqa(XMMRegister dst, Address        src) { Assembler::movdqa(dst, src); }
1430   void movdqa(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1431 
1432   void movsd(Address     dst, XMMRegister    src) { Assembler::movsd(dst, src); }
1433   void movsd(XMMRegister dst, XMMRegister    src) { Assembler::movsd(dst, src); }
1434   void movsd(XMMRegister dst, Address        src) { Assembler::movsd(dst, src); }
1435   void movsd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1436 
1437   void mulpd(XMMRegister dst, XMMRegister    src) { Assembler::mulpd(dst, src); }
1438   void mulpd(XMMRegister dst, Address        src) { Assembler::mulpd(dst, src); }
1439   void mulpd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1440 
1441   void mulsd(XMMRegister dst, XMMRegister    src) { Assembler::mulsd(dst, src); }
1442   void mulsd(XMMRegister dst, Address        src) { Assembler::mulsd(dst, src); }
1443   void mulsd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1444 
1445   void mulss(XMMRegister dst, XMMRegister    src) { Assembler::mulss(dst, src); }
1446   void mulss(XMMRegister dst, Address        src) { Assembler::mulss(dst, src); }
1447   void mulss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1448 
1449   // Carry-Less Multiplication Quadword
1450   void pclmulldq(XMMRegister dst, XMMRegister src) {
1451     // 0x00 - multiply lower 64 bits [0:63]
1452     Assembler::pclmulqdq(dst, src, 0x00);
1453   }
1454   void pclmulhdq(XMMRegister dst, XMMRegister src) {
1455     // 0x11 - multiply upper 64 bits [64:127]
1456     Assembler::pclmulqdq(dst, src, 0x11);
1457   }
1458 
1459   void pcmpeqb(XMMRegister dst, XMMRegister src);
1460   void pcmpeqw(XMMRegister dst, XMMRegister src);
1461 
1462   void pcmpestri(XMMRegister dst, Address src, int imm8);
1463   void pcmpestri(XMMRegister dst, XMMRegister src, int imm8);
1464 
1465   void pmovzxbw(XMMRegister dst, XMMRegister src);
1466   void pmovzxbw(XMMRegister dst, Address src);
1467 
1468   void pmovmskb(Register dst, XMMRegister src);
1469 
1470   void ptest(XMMRegister dst, XMMRegister src);
1471 
1472   void roundsd(XMMRegister dst, XMMRegister    src, int32_t rmode) { Assembler::roundsd(dst, src, rmode); }
1473   void roundsd(XMMRegister dst, Address        src, int32_t rmode) { Assembler::roundsd(dst, src, rmode); }
1474   void roundsd(XMMRegister dst, AddressLiteral src, int32_t rmode, Register rscratch = noreg);
1475 
1476   void sqrtss(XMMRegister dst, XMMRegister     src) { Assembler::sqrtss(dst, src); }
1477   void sqrtss(XMMRegister dst, Address         src) { Assembler::sqrtss(dst, src); }
1478   void sqrtss(XMMRegister dst, AddressLiteral  src, Register rscratch = noreg);
1479 
1480   void subsd(XMMRegister dst, XMMRegister    src) { Assembler::subsd(dst, src); }
1481   void subsd(XMMRegister dst, Address        src) { Assembler::subsd(dst, src); }
1482   void subsd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1483 
1484   void subss(XMMRegister dst, XMMRegister    src) { Assembler::subss(dst, src); }
1485   void subss(XMMRegister dst, Address        src) { Assembler::subss(dst, src); }
1486   void subss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1487 
1488   void ucomiss(XMMRegister dst, XMMRegister    src) { Assembler::ucomiss(dst, src); }
1489   void ucomiss(XMMRegister dst, Address        src) { Assembler::ucomiss(dst, src); }
1490   void ucomiss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1491 
1492   void ucomisd(XMMRegister dst, XMMRegister    src) { Assembler::ucomisd(dst, src); }
1493   void ucomisd(XMMRegister dst, Address        src) { Assembler::ucomisd(dst, src); }
1494   void ucomisd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1495 
1496   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
1497   void xorpd(XMMRegister dst, XMMRegister    src);
1498   void xorpd(XMMRegister dst, Address        src) { Assembler::xorpd(dst, src); }
1499   void xorpd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1500 
1501   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
1502   void xorps(XMMRegister dst, XMMRegister    src);
1503   void xorps(XMMRegister dst, Address        src) { Assembler::xorps(dst, src); }
1504   void xorps(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1505 
1506   // Shuffle Bytes
1507   void pshufb(XMMRegister dst, XMMRegister    src) { Assembler::pshufb(dst, src); }
1508   void pshufb(XMMRegister dst, Address        src) { Assembler::pshufb(dst, src); }
1509   void pshufb(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1510   // AVX 3-operands instructions
1511 
1512   void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister    src) { Assembler::vaddsd(dst, nds, src); }
1513   void vaddsd(XMMRegister dst, XMMRegister nds, Address        src) { Assembler::vaddsd(dst, nds, src); }
1514   void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1515 
1516   void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister    src) { Assembler::vaddss(dst, nds, src); }
1517   void vaddss(XMMRegister dst, XMMRegister nds, Address        src) { Assembler::vaddss(dst, nds, src); }
1518   void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1519 
1520   void vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len, Register rscratch = noreg);
1521   void vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len, Register rscratch = noreg);
1522 
1523   void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len);
1524   void vpaddb(XMMRegister dst, XMMRegister nds, Address        src, int vector_len);
1525   void vpaddb(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1526 
1527   void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1528   void vpaddw(XMMRegister dst, XMMRegister nds, Address     src, int vector_len);
1529 
1530   void vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len) { Assembler::vpaddd(dst, nds, src, vector_len); }
1531   void vpaddd(XMMRegister dst, XMMRegister nds, Address        src, int vector_len) { Assembler::vpaddd(dst, nds, src, vector_len); }
1532   void vpaddd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1533 
1534   void vpand(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1535   void vpand(XMMRegister dst, XMMRegister nds, Address        src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1536   void vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1537 
1538   using Assembler::vpbroadcastd;
1539   void vpbroadcastd(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1540 
1541   using Assembler::vpbroadcastq;
1542   void vpbroadcastq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1543 
1544   void vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1545   void vpcmpeqb(XMMRegister dst, XMMRegister src1, Address src2, int vector_len);
1546 
1547   void vpcmpeqw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1548   void vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1549   void evpcmpeqd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1550 
1551   // Vector compares
1552   void evpcmpd(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister    src, int comparison, bool is_signed, int vector_len) {
1553     Assembler::evpcmpd(kdst, mask, nds, src, comparison, is_signed, vector_len);
1554   }
1555   void evpcmpd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int comparison, bool is_signed, int vector_len, Register rscratch = noreg);
1556 
1557   void evpcmpq(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister    src, int comparison, bool is_signed, int vector_len) {
1558     Assembler::evpcmpq(kdst, mask, nds, src, comparison, is_signed, vector_len);
1559   }
1560   void evpcmpq(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int comparison, bool is_signed, int vector_len, Register rscratch = noreg);
1561 
1562   void evpcmpb(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister    src, int comparison, bool is_signed, int vector_len) {
1563     Assembler::evpcmpb(kdst, mask, nds, src, comparison, is_signed, vector_len);
1564   }
1565   void evpcmpb(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int comparison, bool is_signed, int vector_len, Register rscratch = noreg);
1566 
1567   void evpcmpw(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister    src, int comparison, bool is_signed, int vector_len) {
1568     Assembler::evpcmpw(kdst, mask, nds, src, comparison, is_signed, vector_len);
1569   }
1570   void evpcmpw(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int comparison, bool is_signed, int vector_len, Register rscratch = noreg);
1571 
1572   void evpbroadcast(BasicType type, XMMRegister dst, Register src, int vector_len);
1573 
1574   // Emit comparison instruction for the specified comparison predicate.
1575   void vpcmpCCW(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister xtmp, ComparisonPredicate cond, Width width, int vector_len);
1576   void vpcmpCC(XMMRegister dst, XMMRegister nds, XMMRegister src, int cond_encoding, Width width, int vector_len);
1577 
1578   void vpmovzxbw(XMMRegister dst, Address     src, int vector_len);
1579   void vpmovzxbw(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::vpmovzxbw(dst, src, vector_len); }
1580 
1581   void vpmovmskb(Register dst, XMMRegister src, int vector_len = Assembler::AVX_256bit);
1582 
1583   void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1584   void vpmullw(XMMRegister dst, XMMRegister nds, Address     src, int vector_len);
1585 
1586   void vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len) { Assembler::vpmulld(dst, nds, src, vector_len); }
1587   void vpmulld(XMMRegister dst, XMMRegister nds, Address        src, int vector_len) { Assembler::vpmulld(dst, nds, src, vector_len); }
1588   void vpmulld(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1589 
1590   void vpmuldq(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len) { Assembler::vpmuldq(dst, nds, src, vector_len); }
1591 
1592   void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1593   void vpsubb(XMMRegister dst, XMMRegister nds, Address     src, int vector_len);
1594 
1595   void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1596   void vpsubw(XMMRegister dst, XMMRegister nds, Address     src, int vector_len);
1597 
1598   void vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1599   void vpsraw(XMMRegister dst, XMMRegister nds, int         shift, int vector_len);
1600 
1601   void evpsrad(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1602   void evpsrad(XMMRegister dst, XMMRegister nds, int         shift, int vector_len);
1603 
1604   void evpsraq(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1605   void evpsraq(XMMRegister dst, XMMRegister nds, int         shift, int vector_len);
1606 
1607   using Assembler::evpsllw;
1608   void evpsllw(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1609     if (!is_varshift) {
1610       Assembler::evpsllw(dst, mask, nds, src, merge, vector_len);
1611     } else {
1612       Assembler::evpsllvw(dst, mask, nds, src, merge, vector_len);
1613     }
1614   }
1615   void evpslld(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1616     if (!is_varshift) {
1617       Assembler::evpslld(dst, mask, nds, src, merge, vector_len);
1618     } else {
1619       Assembler::evpsllvd(dst, mask, nds, src, merge, vector_len);
1620     }
1621   }
1622   void evpsllq(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1623     if (!is_varshift) {
1624       Assembler::evpsllq(dst, mask, nds, src, merge, vector_len);
1625     } else {
1626       Assembler::evpsllvq(dst, mask, nds, src, merge, vector_len);
1627     }
1628   }
1629   void evpsrlw(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1630     if (!is_varshift) {
1631       Assembler::evpsrlw(dst, mask, nds, src, merge, vector_len);
1632     } else {
1633       Assembler::evpsrlvw(dst, mask, nds, src, merge, vector_len);
1634     }
1635   }
1636   void evpsrld(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1637     if (!is_varshift) {
1638       Assembler::evpsrld(dst, mask, nds, src, merge, vector_len);
1639     } else {
1640       Assembler::evpsrlvd(dst, mask, nds, src, merge, vector_len);
1641     }
1642   }
1643 
1644   using Assembler::evpsrlq;
1645   void evpsrlq(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1646     if (!is_varshift) {
1647       Assembler::evpsrlq(dst, mask, nds, src, merge, vector_len);
1648     } else {
1649       Assembler::evpsrlvq(dst, mask, nds, src, merge, vector_len);
1650     }
1651   }
1652   using Assembler::evpsraw;
1653   void evpsraw(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1654     if (!is_varshift) {
1655       Assembler::evpsraw(dst, mask, nds, src, merge, vector_len);
1656     } else {
1657       Assembler::evpsravw(dst, mask, nds, src, merge, vector_len);
1658     }
1659   }
1660   using Assembler::evpsrad;
1661   void evpsrad(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1662     if (!is_varshift) {
1663       Assembler::evpsrad(dst, mask, nds, src, merge, vector_len);
1664     } else {
1665       Assembler::evpsravd(dst, mask, nds, src, merge, vector_len);
1666     }
1667   }
1668   using Assembler::evpsraq;
1669   void evpsraq(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1670     if (!is_varshift) {
1671       Assembler::evpsraq(dst, mask, nds, src, merge, vector_len);
1672     } else {
1673       Assembler::evpsravq(dst, mask, nds, src, merge, vector_len);
1674     }
1675   }
1676 
1677   void evpmins(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len);
1678   void evpmaxs(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len);
1679   void evpmins(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len);
1680   void evpmaxs(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len);
1681 
1682   void evpminu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len);
1683   void evpmaxu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len);
1684   void evpminu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len);
1685   void evpmaxu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len);
1686 
1687   void vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1688   void vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1689 
1690   void vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1691   void vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1692 
1693   void vptest(XMMRegister dst, XMMRegister src);
1694   void vptest(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::vptest(dst, src, vector_len); }
1695 
1696   void punpcklbw(XMMRegister dst, XMMRegister src);
1697   void punpcklbw(XMMRegister dst, Address src) { Assembler::punpcklbw(dst, src); }
1698 
1699   void pshufd(XMMRegister dst, Address src, int mode);
1700   void pshufd(XMMRegister dst, XMMRegister src, int mode) { Assembler::pshufd(dst, src, mode); }
1701 
1702   void pshuflw(XMMRegister dst, XMMRegister src, int mode);
1703   void pshuflw(XMMRegister dst, Address src, int mode) { Assembler::pshuflw(dst, src, mode); }
1704 
1705   void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len) { Assembler::vandpd(dst, nds, src, vector_len); }
1706   void vandpd(XMMRegister dst, XMMRegister nds, Address        src, int vector_len) { Assembler::vandpd(dst, nds, src, vector_len); }
1707   void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1708 
1709   void vandps(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len) { Assembler::vandps(dst, nds, src, vector_len); }
1710   void vandps(XMMRegister dst, XMMRegister nds, Address        src, int vector_len) { Assembler::vandps(dst, nds, src, vector_len); }
1711   void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1712 
1713   void evpord(XMMRegister dst, KRegister mask, XMMRegister nds, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg);
1714 
1715   void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister    src) { Assembler::vdivsd(dst, nds, src); }
1716   void vdivsd(XMMRegister dst, XMMRegister nds, Address        src) { Assembler::vdivsd(dst, nds, src); }
1717   void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1718 
1719   void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister    src) { Assembler::vdivss(dst, nds, src); }
1720   void vdivss(XMMRegister dst, XMMRegister nds, Address        src) { Assembler::vdivss(dst, nds, src); }
1721   void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1722 
1723   void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister    src) { Assembler::vmulsd(dst, nds, src); }
1724   void vmulsd(XMMRegister dst, XMMRegister nds, Address        src) { Assembler::vmulsd(dst, nds, src); }
1725   void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1726 
1727   void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister    src) { Assembler::vmulss(dst, nds, src); }
1728   void vmulss(XMMRegister dst, XMMRegister nds, Address        src) { Assembler::vmulss(dst, nds, src); }
1729   void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1730 
1731   void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister    src) { Assembler::vsubsd(dst, nds, src); }
1732   void vsubsd(XMMRegister dst, XMMRegister nds, Address        src) { Assembler::vsubsd(dst, nds, src); }
1733   void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1734 
1735   void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister    src) { Assembler::vsubss(dst, nds, src); }
1736   void vsubss(XMMRegister dst, XMMRegister nds, Address        src) { Assembler::vsubss(dst, nds, src); }
1737   void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1738 
1739   void vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1740   void vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1741 
1742   // AVX Vector instructions
1743 
1744   void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1745   void vxorpd(XMMRegister dst, XMMRegister nds, Address        src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1746   void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1747 
1748   void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1749   void vxorps(XMMRegister dst, XMMRegister nds, Address        src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1750   void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1751 
1752   void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1753     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1754       Assembler::vpxor(dst, nds, src, vector_len);
1755     else
1756       Assembler::vxorpd(dst, nds, src, vector_len);
1757   }
1758   void vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
1759     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1760       Assembler::vpxor(dst, nds, src, vector_len);
1761     else
1762       Assembler::vxorpd(dst, nds, src, vector_len);
1763   }
1764   void vpxor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1765 
1766   // Simple version for AVX2 256bit vectors
1767   void vpxor(XMMRegister dst, XMMRegister src) {
1768     assert(UseAVX >= 2, "Should be at least AVX2");
1769     Assembler::vpxor(dst, dst, src, AVX_256bit);
1770   }
1771   void vpxor(XMMRegister dst, Address src) {
1772     assert(UseAVX >= 2, "Should be at least AVX2");
1773     Assembler::vpxor(dst, dst, src, AVX_256bit);
1774   }
1775 
1776   void vpermd(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len) { Assembler::vpermd(dst, nds, src, vector_len); }
1777   void vpermd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1778 
1779   void vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
1780     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1781       Assembler::vinserti32x4(dst, nds, src, imm8);
1782     } else if (UseAVX > 1) {
1783       // vinserti128 is available only in AVX2
1784       Assembler::vinserti128(dst, nds, src, imm8);
1785     } else {
1786       Assembler::vinsertf128(dst, nds, src, imm8);
1787     }
1788   }
1789 
1790   void vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
1791     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1792       Assembler::vinserti32x4(dst, nds, src, imm8);
1793     } else if (UseAVX > 1) {
1794       // vinserti128 is available only in AVX2
1795       Assembler::vinserti128(dst, nds, src, imm8);
1796     } else {
1797       Assembler::vinsertf128(dst, nds, src, imm8);
1798     }
1799   }
1800 
1801   void vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
1802     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1803       Assembler::vextracti32x4(dst, src, imm8);
1804     } else if (UseAVX > 1) {
1805       // vextracti128 is available only in AVX2
1806       Assembler::vextracti128(dst, src, imm8);
1807     } else {
1808       Assembler::vextractf128(dst, src, imm8);
1809     }
1810   }
1811 
1812   void vextracti128(Address dst, XMMRegister src, uint8_t imm8) {
1813     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1814       Assembler::vextracti32x4(dst, src, imm8);
1815     } else if (UseAVX > 1) {
1816       // vextracti128 is available only in AVX2
1817       Assembler::vextracti128(dst, src, imm8);
1818     } else {
1819       Assembler::vextractf128(dst, src, imm8);
1820     }
1821   }
1822 
1823   // 128bit copy to/from high 128 bits of 256bit (YMM) vector registers
1824   void vinserti128_high(XMMRegister dst, XMMRegister src) {
1825     vinserti128(dst, dst, src, 1);
1826   }
1827   void vinserti128_high(XMMRegister dst, Address src) {
1828     vinserti128(dst, dst, src, 1);
1829   }
1830   void vextracti128_high(XMMRegister dst, XMMRegister src) {
1831     vextracti128(dst, src, 1);
1832   }
1833   void vextracti128_high(Address dst, XMMRegister src) {
1834     vextracti128(dst, src, 1);
1835   }
1836 
1837   void vinsertf128_high(XMMRegister dst, XMMRegister src) {
1838     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1839       Assembler::vinsertf32x4(dst, dst, src, 1);
1840     } else {
1841       Assembler::vinsertf128(dst, dst, src, 1);
1842     }
1843   }
1844 
1845   void vinsertf128_high(XMMRegister dst, Address src) {
1846     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1847       Assembler::vinsertf32x4(dst, dst, src, 1);
1848     } else {
1849       Assembler::vinsertf128(dst, dst, src, 1);
1850     }
1851   }
1852 
1853   void vextractf128_high(XMMRegister dst, XMMRegister src) {
1854     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1855       Assembler::vextractf32x4(dst, src, 1);
1856     } else {
1857       Assembler::vextractf128(dst, src, 1);
1858     }
1859   }
1860 
1861   void vextractf128_high(Address dst, XMMRegister src) {
1862     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1863       Assembler::vextractf32x4(dst, src, 1);
1864     } else {
1865       Assembler::vextractf128(dst, src, 1);
1866     }
1867   }
1868 
1869   // 256bit copy to/from high 256 bits of 512bit (ZMM) vector registers
1870   void vinserti64x4_high(XMMRegister dst, XMMRegister src) {
1871     Assembler::vinserti64x4(dst, dst, src, 1);
1872   }
1873   void vinsertf64x4_high(XMMRegister dst, XMMRegister src) {
1874     Assembler::vinsertf64x4(dst, dst, src, 1);
1875   }
1876   void vextracti64x4_high(XMMRegister dst, XMMRegister src) {
1877     Assembler::vextracti64x4(dst, src, 1);
1878   }
1879   void vextractf64x4_high(XMMRegister dst, XMMRegister src) {
1880     Assembler::vextractf64x4(dst, src, 1);
1881   }
1882   void vextractf64x4_high(Address dst, XMMRegister src) {
1883     Assembler::vextractf64x4(dst, src, 1);
1884   }
1885   void vinsertf64x4_high(XMMRegister dst, Address src) {
1886     Assembler::vinsertf64x4(dst, dst, src, 1);
1887   }
1888 
1889   // 128bit copy to/from low 128 bits of 256bit (YMM) vector registers
1890   void vinserti128_low(XMMRegister dst, XMMRegister src) {
1891     vinserti128(dst, dst, src, 0);
1892   }
1893   void vinserti128_low(XMMRegister dst, Address src) {
1894     vinserti128(dst, dst, src, 0);
1895   }
1896   void vextracti128_low(XMMRegister dst, XMMRegister src) {
1897     vextracti128(dst, src, 0);
1898   }
1899   void vextracti128_low(Address dst, XMMRegister src) {
1900     vextracti128(dst, src, 0);
1901   }
1902 
1903   void vinsertf128_low(XMMRegister dst, XMMRegister src) {
1904     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1905       Assembler::vinsertf32x4(dst, dst, src, 0);
1906     } else {
1907       Assembler::vinsertf128(dst, dst, src, 0);
1908     }
1909   }
1910 
1911   void vinsertf128_low(XMMRegister dst, Address src) {
1912     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1913       Assembler::vinsertf32x4(dst, dst, src, 0);
1914     } else {
1915       Assembler::vinsertf128(dst, dst, src, 0);
1916     }
1917   }
1918 
1919   void vextractf128_low(XMMRegister dst, XMMRegister src) {
1920     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1921       Assembler::vextractf32x4(dst, src, 0);
1922     } else {
1923       Assembler::vextractf128(dst, src, 0);
1924     }
1925   }
1926 
1927   void vextractf128_low(Address dst, XMMRegister src) {
1928     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1929       Assembler::vextractf32x4(dst, src, 0);
1930     } else {
1931       Assembler::vextractf128(dst, src, 0);
1932     }
1933   }
1934 
1935   // 256bit copy to/from low 256 bits of 512bit (ZMM) vector registers
1936   void vinserti64x4_low(XMMRegister dst, XMMRegister src) {
1937     Assembler::vinserti64x4(dst, dst, src, 0);
1938   }
1939   void vinsertf64x4_low(XMMRegister dst, XMMRegister src) {
1940     Assembler::vinsertf64x4(dst, dst, src, 0);
1941   }
1942   void vextracti64x4_low(XMMRegister dst, XMMRegister src) {
1943     Assembler::vextracti64x4(dst, src, 0);
1944   }
1945   void vextractf64x4_low(XMMRegister dst, XMMRegister src) {
1946     Assembler::vextractf64x4(dst, src, 0);
1947   }
1948   void vextractf64x4_low(Address dst, XMMRegister src) {
1949     Assembler::vextractf64x4(dst, src, 0);
1950   }
1951   void vinsertf64x4_low(XMMRegister dst, Address src) {
1952     Assembler::vinsertf64x4(dst, dst, src, 0);
1953   }
1954 
1955   // Carry-Less Multiplication Quadword
1956   void vpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1957     // 0x00 - multiply lower 64 bits [0:63]
1958     Assembler::vpclmulqdq(dst, nds, src, 0x00);
1959   }
1960   void vpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1961     // 0x11 - multiply upper 64 bits [64:127]
1962     Assembler::vpclmulqdq(dst, nds, src, 0x11);
1963   }
1964   void vpclmullqhqdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1965     // 0x10 - multiply nds[0:63] and src[64:127]
1966     Assembler::vpclmulqdq(dst, nds, src, 0x10);
1967   }
1968   void vpclmulhqlqdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1969     //0x01 - multiply nds[64:127] and src[0:63]
1970     Assembler::vpclmulqdq(dst, nds, src, 0x01);
1971   }
1972 
1973   void evpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1974     // 0x00 - multiply lower 64 bits [0:63]
1975     Assembler::evpclmulqdq(dst, nds, src, 0x00, vector_len);
1976   }
1977   void evpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1978     // 0x11 - multiply upper 64 bits [64:127]
1979     Assembler::evpclmulqdq(dst, nds, src, 0x11, vector_len);
1980   }
1981 
1982   // AVX-512 mask operations.
1983   void kand(BasicType etype, KRegister dst, KRegister src1, KRegister src2);
1984   void kor(BasicType type, KRegister dst, KRegister src1, KRegister src2);
1985   void knot(uint masklen, KRegister dst, KRegister src, KRegister ktmp = knoreg, Register rtmp = noreg);
1986   void kxor(BasicType type, KRegister dst, KRegister src1, KRegister src2);
1987   void kortest(uint masklen, KRegister src1, KRegister src2);
1988   void ktest(uint masklen, KRegister src1, KRegister src2);
1989 
1990   void evperm(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len);
1991   void evperm(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len);
1992 
1993   void evor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len);
1994   void evor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len);
1995 
1996   void evand(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len);
1997   void evand(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len);
1998 
1999   void evxor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len);
2000   void evxor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len);
2001 
2002   void evrold(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vlen_enc);
2003   void evrold(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src1, XMMRegister src2, bool merge, int vlen_enc);
2004   void evrord(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vlen_enc);
2005   void evrord(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src1, XMMRegister src2, bool merge, int vlen_enc);
2006 
2007   using Assembler::evpandq;
2008   void evpandq(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
2009 
2010   using Assembler::evpaddq;
2011   void evpaddq(XMMRegister dst, KRegister mask, XMMRegister nds, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg);
2012 
2013   using Assembler::evporq;
2014   void evporq(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
2015 
2016   using Assembler::vpshufb;
2017   void vpshufb(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
2018 
2019   using Assembler::vpor;
2020   void vpor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
2021 
2022   using Assembler::vpternlogq;
2023   void vpternlogq(XMMRegister dst, int imm8, XMMRegister src2, AddressLiteral src3, int vector_len, Register rscratch = noreg);
2024 
2025   void cmov32( Condition cc, Register dst, Address  src);
2026   void cmov32( Condition cc, Register dst, Register src);
2027 
2028   void cmov(   Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }
2029 
2030   void cmovptr(Condition cc, Register dst, Address  src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
2031   void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
2032 
2033   void movoop(Register dst, jobject obj);
2034   void movoop(Address  dst, jobject obj, Register rscratch);
2035 
2036   void mov_metadata(Register dst, Metadata* obj);
2037   void mov_metadata(Address  dst, Metadata* obj, Register rscratch);
2038 
2039   void movptr(Register     dst, Register       src);
2040   void movptr(Register     dst, Address        src);
2041   void movptr(Register     dst, AddressLiteral src);
2042   void movptr(Register     dst, ArrayAddress   src);
2043   void movptr(Register     dst, intptr_t       src);
2044   void movptr(Address      dst, Register       src);
2045   void movptr(Address      dst, int32_t        imm);
2046   void movptr(Address      dst, intptr_t       src, Register rscratch);
2047   void movptr(ArrayAddress dst, Register       src, Register rscratch);
2048 
2049   void movptr(Register dst, RegisterOrConstant src) {
2050     if (src.is_constant()) movptr(dst, src.as_constant());
2051     else                   movptr(dst, src.as_register());
2052   }
2053 
2054 
2055   // to avoid hiding movl
2056   void mov32(Register       dst, AddressLiteral src);
2057   void mov32(AddressLiteral dst, Register        src, Register rscratch = noreg);
2058 
2059   // Import other mov() methods from the parent class or else
2060   // they will be hidden by the following overriding declaration.
2061   using Assembler::movdl;
2062   void movdl(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
2063 
2064   using Assembler::movq;
2065   void movq(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
2066 
2067   // Can push value or effective address
2068   void pushptr(AddressLiteral src, Register rscratch);
2069 
2070   void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
2071   void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
2072 
2073   void pushoop(jobject obj, Register rscratch);
2074   void pushklass(Metadata* obj, Register rscratch);
2075 
2076   // sign extend as need a l to ptr sized element
2077   void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
2078   void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
2079 
2080 
2081  public:
2082   // clear memory of size 'cnt' qwords, starting at 'base';
2083   // if 'is_large' is set, do not try to produce short loop
2084   void clear_mem(Register base, Register cnt, Register rtmp, XMMRegister xtmp, bool is_large, KRegister mask=knoreg);
2085 
2086   // clear memory initialization sequence for constant size;
2087   void clear_mem(Register base, int cnt, Register rtmp, XMMRegister xtmp, KRegister mask=knoreg);
2088 
2089   // clear memory of size 'cnt' qwords, starting at 'base' using XMM/YMM registers
2090   void xmm_clear_mem(Register base, Register cnt, Register rtmp, XMMRegister xtmp, KRegister mask=knoreg);
2091 
2092   // Fill primitive arrays
2093   void generate_fill(BasicType t, bool aligned,
2094                      Register to, Register value, Register count,
2095                      Register rtmp, XMMRegister xtmp);
2096 
2097   void encode_iso_array(Register src, Register dst, Register len,
2098                         XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
2099                         XMMRegister tmp4, Register tmp5, Register result, bool ascii);
2100 
2101 #ifdef _LP64
2102   void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2);
2103   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
2104                              Register y, Register y_idx, Register z,
2105                              Register carry, Register product,
2106                              Register idx, Register kdx);
2107   void multiply_add_128_x_128(Register x_xstart, Register y, Register z,
2108                               Register yz_idx, Register idx,
2109                               Register carry, Register product, int offset);
2110   void multiply_128_x_128_bmi2_loop(Register y, Register z,
2111                                     Register carry, Register carry2,
2112                                     Register idx, Register jdx,
2113                                     Register yz_idx1, Register yz_idx2,
2114                                     Register tmp, Register tmp3, Register tmp4);
2115   void multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
2116                                Register yz_idx, Register idx, Register jdx,
2117                                Register carry, Register product,
2118                                Register carry2);
2119   void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register tmp0,
2120                        Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5);
2121   void square_rshift(Register x, Register len, Register z, Register tmp1, Register tmp3,
2122                      Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
2123   void multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry,
2124                             Register tmp2);
2125   void multiply_add_64(Register sum, Register op1, Register op2, Register carry,
2126                        Register rdxReg, Register raxReg);
2127   void add_one_64(Register z, Register zlen, Register carry, Register tmp1);
2128   void lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
2129                        Register tmp3, Register tmp4);
2130   void square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
2131                      Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
2132 
2133   void mul_add_128_x_32_loop(Register out, Register in, Register offset, Register len, Register tmp1,
2134                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
2135                Register raxReg);
2136   void mul_add(Register out, Register in, Register offset, Register len, Register k, Register tmp1,
2137                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
2138                Register raxReg);
2139   void vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
2140                            Register result, Register tmp1, Register tmp2,
2141                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3);
2142 #endif
2143 
2144   // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
2145   void update_byte_crc32(Register crc, Register val, Register table);
2146   void kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp);
2147 
2148 
2149 #ifdef _LP64
2150   void kernel_crc32_avx512(Register crc, Register buf, Register len, Register table, Register tmp1, Register tmp2);
2151   void kernel_crc32_avx512_256B(Register crc, Register buf, Register len, Register key, Register pos,
2152                                 Register tmp1, Register tmp2, Label& L_barrett, Label& L_16B_reduction_loop,
2153                                 Label& L_get_last_two_xmms, Label& L_128_done, Label& L_cleanup);
2154 #endif // _LP64
2155 
2156   // CRC32C code for java.util.zip.CRC32C::updateBytes() intrinsic
2157   // Note on a naming convention:
2158   // Prefix w = register only used on a Westmere+ architecture
2159   // Prefix n = register only used on a Nehalem architecture
2160 #ifdef _LP64
2161   void crc32c_ipl_alg4(Register in_out, uint32_t n,
2162                        Register tmp1, Register tmp2, Register tmp3);
2163 #else
2164   void crc32c_ipl_alg4(Register in_out, uint32_t n,
2165                        Register tmp1, Register tmp2, Register tmp3,
2166                        XMMRegister xtmp1, XMMRegister xtmp2);
2167 #endif
2168   void crc32c_pclmulqdq(XMMRegister w_xtmp1,
2169                         Register in_out,
2170                         uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
2171                         XMMRegister w_xtmp2,
2172                         Register tmp1,
2173                         Register n_tmp2, Register n_tmp3);
2174   void crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
2175                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
2176                        Register tmp1, Register tmp2,
2177                        Register n_tmp3);
2178   void crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
2179                          Register in_out1, Register in_out2, Register in_out3,
2180                          Register tmp1, Register tmp2, Register tmp3,
2181                          XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
2182                          Register tmp4, Register tmp5,
2183                          Register n_tmp6);
2184   void crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
2185                             Register tmp1, Register tmp2, Register tmp3,
2186                             Register tmp4, Register tmp5, Register tmp6,
2187                             XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
2188                             bool is_pclmulqdq_supported);
2189   // Fold 128-bit data chunk
2190   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
2191   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf);
2192 #ifdef _LP64
2193   // Fold 512-bit data chunk
2194   void fold512bit_crc32_avx512(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, Register pos, int offset);
2195 #endif // _LP64
2196   // Fold 8-bit data
2197   void fold_8bit_crc32(Register crc, Register table, Register tmp);
2198   void fold_8bit_crc32(XMMRegister crc, Register table, XMMRegister xtmp, Register tmp);
2199 
2200   // Compress char[] array to byte[].
2201   void char_array_compress(Register src, Register dst, Register len,
2202                            XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
2203                            XMMRegister tmp4, Register tmp5, Register result,
2204                            KRegister mask1 = knoreg, KRegister mask2 = knoreg);
2205 
2206   // Inflate byte[] array to char[].
2207   void byte_array_inflate(Register src, Register dst, Register len,
2208                           XMMRegister tmp1, Register tmp2, KRegister mask = knoreg);
2209 
2210   void fill_masked(BasicType bt, Address dst, XMMRegister xmm, KRegister mask,
2211                    Register length, Register temp, int vec_enc);
2212 
2213   void fill64_masked(uint shift, Register dst, int disp,
2214                          XMMRegister xmm, KRegister mask, Register length,
2215                          Register temp, bool use64byteVector = false);
2216 
2217   void fill32_masked(uint shift, Register dst, int disp,
2218                          XMMRegister xmm, KRegister mask, Register length,
2219                          Register temp);
2220 
2221   void fill32(Address dst, XMMRegister xmm);
2222 
2223   void fill32(Register dst, int disp, XMMRegister xmm);
2224 
2225   void fill64(Address dst, XMMRegister xmm, bool use64byteVector = false);
2226 
2227   void fill64(Register dst, int dis, XMMRegister xmm, bool use64byteVector = false);
2228 
2229 #ifdef _LP64
2230   void convert_f2i(Register dst, XMMRegister src);
2231   void convert_d2i(Register dst, XMMRegister src);
2232   void convert_f2l(Register dst, XMMRegister src);
2233   void convert_d2l(Register dst, XMMRegister src);
2234   void round_double(Register dst, XMMRegister src, Register rtmp, Register rcx);
2235   void round_float(Register dst, XMMRegister src, Register rtmp, Register rcx);
2236 
2237   void cache_wb(Address line);
2238   void cache_wbsync(bool is_pre);
2239 
2240 #ifdef COMPILER2_OR_JVMCI
2241   void generate_fill_avx3(BasicType type, Register to, Register value,
2242                           Register count, Register rtmp, XMMRegister xtmp);
2243 #endif // COMPILER2_OR_JVMCI
2244 #endif // _LP64
2245 
2246   void vallones(XMMRegister dst, int vector_len);
2247 
2248   void check_stack_alignment(Register sp, const char* msg, unsigned bias = 0, Register tmp = noreg);
2249 
2250   void lightweight_lock(Register basic_lock, Register obj, Register reg_rax, Register thread, Register tmp, Label& slow);
2251   void lightweight_unlock(Register obj, Register reg_rax, Register thread, Register tmp, Label& slow);
2252 
2253 #ifdef _LP64
2254   void save_legacy_gprs();
2255   void restore_legacy_gprs();
2256   void setcc(Assembler::Condition comparison, Register dst);
2257 #endif
2258 };
2259 
2260 #endif // CPU_X86_MACROASSEMBLER_X86_HPP