1 /*
   2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef CPU_X86_MACROASSEMBLER_X86_HPP
  26 #define CPU_X86_MACROASSEMBLER_X86_HPP
  27 
  28 #include "asm/assembler.hpp"
  29 #include "asm/register.hpp"
  30 #include "code/vmreg.inline.hpp"
  31 #include "compiler/oopMap.hpp"
  32 #include "utilities/macros.hpp"
  33 #include "runtime/vm_version.hpp"
  34 #include "utilities/checkedCast.hpp"
  35 
  36 // MacroAssembler extends Assembler by frequently used macros.
  37 //
  38 // Instructions for which a 'better' code sequence exists depending
  39 // on arguments should also go in here.
  40 
  41 class MacroAssembler: public Assembler {
  42   friend class LIR_Assembler;
  43   friend class Runtime1;      // as_Address()
  44 
  45  public:
  46   // Support for VM calls
  47   //
  48   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  49   // may customize this version by overriding it for its purposes (e.g., to save/restore
  50   // additional registers when doing a VM call).
  51 
  52   virtual void call_VM_leaf_base(
  53     address entry_point,               // the entry point
  54     int     number_of_arguments        // the number of arguments to pop after the call
  55   );
  56 
  57  protected:
  58   // This is the base routine called by the different versions of call_VM. The interpreter
  59   // may customize this version by overriding it for its purposes (e.g., to save/restore
  60   // additional registers when doing a VM call).
  61   //
  62   // call_VM_base returns the register which contains the thread upon return.
  63   // If no last_java_sp is specified (noreg) than rsp will be used instead.
  64   virtual void call_VM_base(           // returns the register containing the thread upon return
  65     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  66     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  67     address  entry_point,              // the entry point
  68     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  69     bool     check_exceptions          // whether to check for pending exceptions after return
  70   );
  71 
  72   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  73 
  74  public:
  75   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
  76 
  77  // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  78  // The implementation is only non-empty for the InterpreterMacroAssembler,
  79  // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  80  virtual void check_and_handle_popframe();
  81  virtual void check_and_handle_earlyret();
  82 
  83   Address as_Address(AddressLiteral adr);
  84   Address as_Address(ArrayAddress adr, Register rscratch);
  85 
  86   // Support for null-checks
  87   //
  88   // Generates code that causes a null OS exception if the content of reg is null.
  89   // If the accessed location is M[reg + offset] and the offset is known, provide the
  90   // offset. No explicit code generation is needed if the offset is within a certain
  91   // range (0 <= offset <= page_size).
  92 
  93   void null_check(Register reg, int offset = -1);
  94   static bool needs_explicit_null_check(intptr_t offset);
  95   static bool uses_implicit_null_check(void* address);
  96 
  97   // Required platform-specific helpers for Label::patch_instructions.
  98   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
  99   void pd_patch_instruction(address branch, address target, const char* file, int line) {
 100     unsigned char op = branch[0];
 101     assert(op == 0xE8 /* call */ ||
 102         op == 0xE9 /* jmp */ ||
 103         op == 0xEB /* short jmp */ ||
 104         (op & 0xF0) == 0x70 /* short jcc */ ||
 105         (op == 0x0F && (branch[1] & 0xF0) == 0x80) /* jcc */ ||
 106         (op == 0xC7 && branch[1] == 0xF8) /* xbegin */ ||
 107         (op == 0x8D) /* lea */,
 108         "Invalid opcode at patch point");
 109 
 110     if (op == 0xEB || (op & 0xF0) == 0x70) {
 111       // short offset operators (jmp and jcc)
 112       char* disp = (char*) &branch[1];
 113       int imm8 = checked_cast<int>(target - (address) &disp[1]);
 114       guarantee(this->is8bit(imm8), "Short forward jump exceeds 8-bit offset at %s:%d",
 115                 file == nullptr ? "<null>" : file, line);
 116       *disp = (char)imm8;
 117     } else {
 118       int* disp = (int*) &branch[(op == 0x0F || op == 0xC7 || op == 0x8D) ? 2 : 1];
 119       int imm32 = checked_cast<int>(target - (address) &disp[1]);
 120       *disp = imm32;
 121     }
 122   }
 123 
 124   // The following 4 methods return the offset of the appropriate move instruction
 125 
 126   // Support for fast byte/short loading with zero extension (depending on particular CPU)
 127   int load_unsigned_byte(Register dst, Address src);
 128   int load_unsigned_short(Register dst, Address src);
 129 
 130   // Support for fast byte/short loading with sign extension (depending on particular CPU)
 131   int load_signed_byte(Register dst, Address src);
 132   int load_signed_short(Register dst, Address src);
 133 
 134   // Support for sign-extension (hi:lo = extend_sign(lo))
 135   void extend_sign(Register hi, Register lo);
 136 
 137   // Load and store values by size and signed-ness
 138   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
 139   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
 140 
 141   // Support for inc/dec with optimal instruction selection depending on value
 142 
 143   void increment(Register reg, int value = 1) { incrementq(reg, value); }
 144   void decrement(Register reg, int value = 1) { decrementq(reg, value); }
 145   void increment(Address dst, int value = 1)  { incrementq(dst, value); }
 146   void decrement(Address dst, int value = 1)  { decrementq(dst, value); }
 147 
 148   void decrementl(Address dst, int value = 1);
 149   void decrementl(Register reg, int value = 1);
 150 
 151   void decrementq(Register reg, int value = 1);
 152   void decrementq(Address dst, int value = 1);
 153 
 154   void incrementl(Address dst, int value = 1);
 155   void incrementl(Register reg, int value = 1);
 156 
 157   void incrementq(Register reg, int value = 1);
 158   void incrementq(Address dst, int value = 1);
 159 
 160   void incrementl(AddressLiteral dst, Register rscratch = noreg);
 161   void incrementl(ArrayAddress   dst, Register rscratch);
 162 
 163   void incrementq(AddressLiteral dst, Register rscratch = noreg);
 164 
 165   // Support optimal SSE move instructions.
 166   void movflt(XMMRegister dst, XMMRegister src) {
 167     if (dst-> encoding() == src->encoding()) return;
 168     if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
 169     else                       { movss (dst, src); return; }
 170   }
 171   void movflt(XMMRegister dst, Address src) { movss(dst, src); }
 172   void movflt(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
 173   void movflt(Address dst, XMMRegister src) { movss(dst, src); }
 174 
 175   // Move with zero extension
 176   void movfltz(XMMRegister dst, XMMRegister src) { movss(dst, src); }
 177 
 178   void movdbl(XMMRegister dst, XMMRegister src) {
 179     if (dst-> encoding() == src->encoding()) return;
 180     if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
 181     else                       { movsd (dst, src); return; }
 182   }
 183 
 184   void movdbl(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
 185 
 186   void movdbl(XMMRegister dst, Address src) {
 187     if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
 188     else                         { movlpd(dst, src); return; }
 189   }
 190   void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
 191 
 192   void flt_to_flt16(Register dst, XMMRegister src, XMMRegister tmp) {
 193     // Use separate tmp XMM register because caller may
 194     // requires src XMM register to be unchanged (as in x86.ad).
 195     vcvtps2ph(tmp, src, 0x04, Assembler::AVX_128bit);
 196     movdl(dst, tmp);
 197     movswl(dst, dst);
 198   }
 199 
 200   void flt16_to_flt(XMMRegister dst, Register src) {
 201     movdl(dst, src);
 202     vcvtph2ps(dst, dst, Assembler::AVX_128bit);
 203   }
 204 
 205   // Alignment
 206   void align32();
 207   void align64();
 208   void align(uint modulus);
 209   void align(uint modulus, uint target);
 210 
 211   void post_call_nop();
 212 
 213   // Stack frame creation/removal
 214   void enter();
 215   void leave();
 216 
 217   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information).
 218   // The pointer will be loaded into the thread register. This is a slow version that does native call.
 219   // Normally, JavaThread pointer is available in r15_thread, use that where possible.
 220   void get_thread_slow(Register thread);
 221 
 222   // Support for argument shuffling
 223 
 224   // bias in bytes
 225   void move32_64(VMRegPair src, VMRegPair dst, Register tmp = rax, int in_stk_bias = 0, int out_stk_bias = 0);
 226   void long_move(VMRegPair src, VMRegPair dst, Register tmp = rax, int in_stk_bias = 0, int out_stk_bias = 0);
 227   void float_move(VMRegPair src, VMRegPair dst, Register tmp = rax, int in_stk_bias = 0, int out_stk_bias = 0);
 228   void double_move(VMRegPair src, VMRegPair dst, Register tmp = rax, int in_stk_bias = 0, int out_stk_bias = 0);
 229   void move_ptr(VMRegPair src, VMRegPair dst);
 230   void object_move(OopMap* map,
 231                    int oop_handle_offset,
 232                    int framesize_in_slots,
 233                    VMRegPair src,
 234                    VMRegPair dst,
 235                    bool is_receiver,
 236                    int* receiver_offset);
 237 
 238   // Support for VM calls
 239   //
 240   // It is imperative that all calls into the VM are handled via the call_VM macros.
 241   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 242   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 243 
 244 
 245   void call_VM(Register oop_result,
 246                address entry_point,
 247                bool check_exceptions = true);
 248   void call_VM(Register oop_result,
 249                address entry_point,
 250                Register arg_1,
 251                bool check_exceptions = true);
 252   void call_VM(Register oop_result,
 253                address entry_point,
 254                Register arg_1, Register arg_2,
 255                bool check_exceptions = true);
 256   void call_VM(Register oop_result,
 257                address entry_point,
 258                Register arg_1, Register arg_2, Register arg_3,
 259                bool check_exceptions = true);
 260 
 261   // Overloadings with last_Java_sp
 262   void call_VM(Register oop_result,
 263                Register last_java_sp,
 264                address entry_point,
 265                int number_of_arguments = 0,
 266                bool check_exceptions = true);
 267   void call_VM(Register oop_result,
 268                Register last_java_sp,
 269                address entry_point,
 270                Register arg_1, bool
 271                check_exceptions = true);
 272   void call_VM(Register oop_result,
 273                Register last_java_sp,
 274                address entry_point,
 275                Register arg_1, Register arg_2,
 276                bool check_exceptions = true);
 277   void call_VM(Register oop_result,
 278                Register last_java_sp,
 279                address entry_point,
 280                Register arg_1, Register arg_2, Register arg_3,
 281                bool check_exceptions = true);
 282 
 283   void get_vm_result_oop(Register oop_result);
 284   void get_vm_result_metadata(Register metadata_result);
 285 
 286   // These always tightly bind to MacroAssembler::call_VM_base
 287   // bypassing the virtual implementation
 288   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 289   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 290   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 291   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 292   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
 293 
 294   void call_VM_leaf0(address entry_point);
 295   void call_VM_leaf(address entry_point,
 296                     int number_of_arguments = 0);
 297   void call_VM_leaf(address entry_point,
 298                     Register arg_1);
 299   void call_VM_leaf(address entry_point,
 300                     Register arg_1, Register arg_2);
 301   void call_VM_leaf(address entry_point,
 302                     Register arg_1, Register arg_2, Register arg_3);
 303 
 304   void call_VM_leaf(address entry_point,
 305                     Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 306 
 307   // These always tightly bind to MacroAssembler::call_VM_leaf_base
 308   // bypassing the virtual implementation
 309   void super_call_VM_leaf(address entry_point);
 310   void super_call_VM_leaf(address entry_point, Register arg_1);
 311   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 312   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 313   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 314 
 315   void set_last_Java_frame(Register last_java_sp,
 316                            Register last_java_fp,
 317                            address  last_java_pc,
 318                            Register rscratch);
 319 
 320   void set_last_Java_frame(Register last_java_sp,
 321                            Register last_java_fp,
 322                            Label &last_java_pc,
 323                            Register scratch);
 324 
 325   void reset_last_Java_frame(bool clear_fp);
 326 
 327   // jobjects
 328   void clear_jobject_tag(Register possibly_non_local);
 329   void resolve_jobject(Register value, Register tmp);
 330   void resolve_global_jobject(Register value, Register tmp);
 331 
 332   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
 333   void c2bool(Register x);
 334 
 335   // C++ bool manipulation
 336 
 337   void movbool(Register dst, Address src);
 338   void movbool(Address dst, bool boolconst);
 339   void movbool(Address dst, Register src);
 340   void testbool(Register dst);
 341 
 342   void resolve_oop_handle(Register result, Register tmp);
 343   void resolve_weak_handle(Register result, Register tmp);
 344   void load_mirror(Register mirror, Register method, Register tmp);
 345   void load_method_holder_cld(Register rresult, Register rmethod);
 346 
 347   void load_method_holder(Register holder, Register method);
 348 
 349   // oop manipulations
 350   void load_narrow_klass_compact(Register dst, Register src);
 351   void load_klass(Register dst, Register src, Register tmp);
 352   void store_klass(Register dst, Register src, Register tmp);
 353 
 354   // Compares the Klass pointer of an object to a given Klass (which might be narrow,
 355   // depending on UseCompressedClassPointers).
 356   void cmp_klass(Register klass, Register obj, Register tmp);
 357 
 358   // Compares the Klass pointer of two objects obj1 and obj2. Result is in the condition flags.
 359   // Uses tmp1 and tmp2 as temporary registers.
 360   void cmp_klasses_from_objects(Register obj1, Register obj2, Register tmp1, Register tmp2);
 361 
 362   void access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src,
 363                       Register tmp1);
 364   void access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register val,
 365                        Register tmp1, Register tmp2, Register tmp3);
 366 
 367   void load_heap_oop(Register dst, Address src, Register tmp1 = noreg, DecoratorSet decorators = 0);
 368   void load_heap_oop_not_null(Register dst, Address src, Register tmp1 = noreg, DecoratorSet decorators = 0);
 369   void store_heap_oop(Address dst, Register val, Register tmp1 = noreg,
 370                       Register tmp2 = noreg, Register tmp3 = noreg, DecoratorSet decorators = 0);
 371 
 372   // Used for storing null. All other oop constants should be
 373   // stored using routines that take a jobject.
 374   void store_heap_oop_null(Address dst);
 375 
 376   void store_klass_gap(Register dst, Register src);
 377 
 378   // This dummy is to prevent a call to store_heap_oop from
 379   // converting a zero (like null) into a Register by giving
 380   // the compiler two choices it can't resolve
 381 
 382   void store_heap_oop(Address dst, void* dummy);
 383 
 384   void encode_heap_oop(Register r);
 385   void decode_heap_oop(Register r);
 386   void encode_heap_oop_not_null(Register r);
 387   void decode_heap_oop_not_null(Register r);
 388   void encode_heap_oop_not_null(Register dst, Register src);
 389   void decode_heap_oop_not_null(Register dst, Register src);
 390 
 391   void set_narrow_oop(Register dst, jobject obj);
 392   void set_narrow_oop(Address dst, jobject obj);
 393   void cmp_narrow_oop(Register dst, jobject obj);
 394   void cmp_narrow_oop(Address dst, jobject obj);
 395 
 396   void encode_klass_not_null(Register r, Register tmp);
 397   void decode_klass_not_null(Register r, Register tmp);
 398   void encode_and_move_klass_not_null(Register dst, Register src);
 399   void decode_and_move_klass_not_null(Register dst, Register src);
 400   void set_narrow_klass(Register dst, Klass* k);
 401   void set_narrow_klass(Address dst, Klass* k);
 402   void cmp_narrow_klass(Register dst, Klass* k);
 403   void cmp_narrow_klass(Address dst, Klass* k);
 404 
 405   // if heap base register is used - reinit it with the correct value
 406   void reinit_heapbase();
 407 
 408   DEBUG_ONLY(void verify_heapbase(const char* msg);)
 409 
 410   // Int division/remainder for Java
 411   // (as idivl, but checks for special case as described in JVM spec.)
 412   // returns idivl instruction offset for implicit exception handling
 413   int corrected_idivl(Register reg);
 414 
 415   // Long division/remainder for Java
 416   // (as idivq, but checks for special case as described in JVM spec.)
 417   // returns idivq instruction offset for implicit exception handling
 418   int corrected_idivq(Register reg);
 419 
 420   void int3();
 421 
 422   // Long operation macros for a 32bit cpu
 423   // Long negation for Java
 424   void lneg(Register hi, Register lo);
 425 
 426   // Long multiplication for Java
 427   // (destroys contents of eax, ebx, ecx and edx)
 428   void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
 429 
 430   // Long shifts for Java
 431   // (semantics as described in JVM spec.)
 432   void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
 433   void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
 434 
 435   // Long compare for Java
 436   // (semantics as described in JVM spec.)
 437   void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
 438 
 439 
 440   // misc
 441 
 442   // Sign extension
 443   void sign_extend_short(Register reg);
 444   void sign_extend_byte(Register reg);
 445 
 446   // Division by power of 2, rounding towards 0
 447   void division_with_shift(Register reg, int shift_value);
 448 
 449   // dst = c = a * b + c
 450   void fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 451   void fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 452 
 453   void vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
 454   void vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
 455   void vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
 456   void vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
 457 
 458 
 459   // same as fcmp2int, but using SSE2
 460   void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 461   void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 462 
 463   void push_IU_state();
 464   void pop_IU_state();
 465 
 466   void push_FPU_state();
 467   void pop_FPU_state();
 468 
 469   void push_CPU_state();
 470   void pop_CPU_state();
 471 
 472   void push_cont_fastpath();
 473   void pop_cont_fastpath();
 474 
 475   DEBUG_ONLY(void stop_if_in_cont(Register cont_reg, const char* name);)
 476 
 477   // Round up to a power of two
 478   void round_to(Register reg, int modulus);
 479 
 480 private:
 481   // General purpose and XMM registers potentially clobbered by native code; there
 482   // is no need for FPU or AVX opmask related methods because C1/interpreter
 483   // - we save/restore FPU state as a whole always
 484   // - do not care about AVX-512 opmask
 485   static RegSet call_clobbered_gp_registers();
 486   static XMMRegSet call_clobbered_xmm_registers();
 487 
 488   void push_set(XMMRegSet set, int offset);
 489   void pop_set(XMMRegSet set, int offset);
 490 
 491 public:
 492   void push_set(RegSet set, int offset = -1);
 493   void pop_set(RegSet set, int offset = -1);
 494 
 495   // Push and pop everything that might be clobbered by a native
 496   // runtime call.
 497   // Only save the lower 64 bits of each vector register.
 498   // Additional registers can be excluded in a passed RegSet.
 499   void push_call_clobbered_registers_except(RegSet exclude, bool save_fpu = true);
 500   void pop_call_clobbered_registers_except(RegSet exclude, bool restore_fpu = true);
 501 
 502   void push_call_clobbered_registers(bool save_fpu = true) {
 503     push_call_clobbered_registers_except(RegSet(), save_fpu);
 504   }
 505   void pop_call_clobbered_registers(bool restore_fpu = true) {
 506     pop_call_clobbered_registers_except(RegSet(), restore_fpu);
 507   }
 508 
 509   // allocation
 510   void tlab_allocate(
 511     Register obj,                      // result: pointer to object after successful allocation
 512     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 513     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 514     Register t1,                       // temp register
 515     Register t2,                       // temp register
 516     Label&   slow_case                 // continuation point if fast allocation fails
 517   );
 518   void zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp);
 519 
 520   void population_count(Register dst, Register src, Register scratch1, Register scratch2);
 521 
 522   // interface method calling
 523   void lookup_interface_method(Register recv_klass,
 524                                Register intf_klass,
 525                                RegisterOrConstant itable_index,
 526                                Register method_result,
 527                                Register scan_temp,
 528                                Label& no_such_interface,
 529                                bool return_method = true);
 530 
 531   void lookup_interface_method_stub(Register recv_klass,
 532                                     Register holder_klass,
 533                                     Register resolved_klass,
 534                                     Register method_result,
 535                                     Register scan_temp,
 536                                     Register temp_reg2,
 537                                     Register receiver,
 538                                     int itable_index,
 539                                     Label& L_no_such_interface);
 540 
 541   // virtual method calling
 542   void lookup_virtual_method(Register recv_klass,
 543                              RegisterOrConstant vtable_index,
 544                              Register method_result);
 545 
 546   // Test sub_klass against super_klass, with fast and slow paths.
 547 
 548   // The fast path produces a tri-state answer: yes / no / maybe-slow.
 549   // One of the three labels can be null, meaning take the fall-through.
 550   // If super_check_offset is -1, the value is loaded up from super_klass.
 551   // No registers are killed, except temp_reg.
 552   void check_klass_subtype_fast_path(Register sub_klass,
 553                                      Register super_klass,
 554                                      Register temp_reg,
 555                                      Label* L_success,
 556                                      Label* L_failure,
 557                                      Label* L_slow_path,
 558                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
 559 
 560   // The rest of the type check; must be wired to a corresponding fast path.
 561   // It does not repeat the fast path logic, so don't use it standalone.
 562   // The temp_reg and temp2_reg can be noreg, if no temps are available.
 563   // Updates the sub's secondary super cache as necessary.
 564   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
 565   void check_klass_subtype_slow_path(Register sub_klass,
 566                                      Register super_klass,
 567                                      Register temp_reg,
 568                                      Register temp2_reg,
 569                                      Label* L_success,
 570                                      Label* L_failure,
 571                                      bool set_cond_codes = false);
 572 
 573   // The 64-bit version, which may do a hashed subclass lookup.
 574   void check_klass_subtype_slow_path(Register sub_klass,
 575                                      Register super_klass,
 576                                      Register temp_reg,
 577                                      Register temp2_reg,
 578                                      Register temp3_reg,
 579                                      Register temp4_reg,
 580                                      Label* L_success,
 581                                      Label* L_failure);
 582 
 583   // Three parts of a hashed subclass lookup: a simple linear search,
 584   // a table lookup, and a fallback that does linear probing in the
 585   // event of a hash collision.
 586   void check_klass_subtype_slow_path_linear(Register sub_klass,
 587                                             Register super_klass,
 588                                             Register temp_reg,
 589                                             Register temp2_reg,
 590                                             Label* L_success,
 591                                             Label* L_failure,
 592                                             bool set_cond_codes = false);
 593   void check_klass_subtype_slow_path_table(Register sub_klass,
 594                                            Register super_klass,
 595                                            Register temp_reg,
 596                                            Register temp2_reg,
 597                                            Register temp3_reg,
 598                                            Register result_reg,
 599                                            Label* L_success,
 600                                            Label* L_failure);
 601   void hashed_check_klass_subtype_slow_path(Register sub_klass,
 602                                             Register super_klass,
 603                                             Register temp_reg,
 604                                             Label* L_success,
 605                                             Label* L_failure);
 606 
 607   // As above, but with a constant super_klass.
 608   // The result is in Register result, not the condition codes.
 609   void lookup_secondary_supers_table_const(Register sub_klass,
 610                                            Register super_klass,
 611                                            Register temp1,
 612                                            Register temp2,
 613                                            Register temp3,
 614                                            Register temp4,
 615                                            Register result,
 616                                            u1 super_klass_slot);
 617 
 618   using Assembler::salq;
 619   void salq(Register dest, Register count);
 620   using Assembler::rorq;
 621   void rorq(Register dest, Register count);
 622   void lookup_secondary_supers_table_var(Register sub_klass,
 623                                          Register super_klass,
 624                                          Register temp1,
 625                                          Register temp2,
 626                                          Register temp3,
 627                                          Register temp4,
 628                                          Register result);
 629 
 630   void lookup_secondary_supers_table_slow_path(Register r_super_klass,
 631                                                Register r_array_base,
 632                                                Register r_array_index,
 633                                                Register r_bitmap,
 634                                                Register temp1,
 635                                                Register temp2,
 636                                                Label* L_success,
 637                                                Label* L_failure = nullptr);
 638 
 639   void verify_secondary_supers_table(Register r_sub_klass,
 640                                      Register r_super_klass,
 641                                      Register expected,
 642                                      Register temp1,
 643                                      Register temp2,
 644                                      Register temp3);
 645 
 646   void repne_scanq(Register addr, Register value, Register count, Register limit,
 647                    Label* L_success,
 648                    Label* L_failure = nullptr);
 649 
 650   // If r is valid, return r.
 651   // If r is invalid, remove a register r2 from available_regs, add r2
 652   // to regs_to_push, then return r2.
 653   Register allocate_if_noreg(const Register r,
 654                              RegSetIterator<Register> &available_regs,
 655                              RegSet &regs_to_push);
 656 
 657   // Simplified, combined version, good for typical uses.
 658   // Falls through on failure.
 659   void check_klass_subtype(Register sub_klass,
 660                            Register super_klass,
 661                            Register temp_reg,
 662                            Label& L_success);
 663 
 664   void clinit_barrier(Register klass,
 665                       Label* L_fast_path = nullptr,
 666                       Label* L_slow_path = nullptr);
 667 
 668   // method handles (JSR 292)
 669   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
 670 
 671   // Debugging
 672 
 673   // only if +VerifyOops
 674   void _verify_oop(Register reg, const char* s, const char* file, int line);
 675   void _verify_oop_addr(Address addr, const char* s, const char* file, int line);
 676 
 677   void _verify_oop_checked(Register reg, const char* s, const char* file, int line) {
 678     if (VerifyOops) {
 679       _verify_oop(reg, s, file, line);
 680     }
 681   }
 682   void _verify_oop_addr_checked(Address reg, const char* s, const char* file, int line) {
 683     if (VerifyOops) {
 684       _verify_oop_addr(reg, s, file, line);
 685     }
 686   }
 687 
 688   // TODO: verify method and klass metadata (compare against vptr?)
 689   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
 690   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
 691 
 692 #define verify_oop(reg) _verify_oop_checked(reg, "broken oop " #reg, __FILE__, __LINE__)
 693 #define verify_oop_msg(reg, msg) _verify_oop_checked(reg, "broken oop " #reg ", " #msg, __FILE__, __LINE__)
 694 #define verify_oop_addr(addr) _verify_oop_addr_checked(addr, "broken oop addr " #addr, __FILE__, __LINE__)
 695 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
 696 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
 697 
 698   // Verify or restore cpu control state after JNI call
 699   void restore_cpu_control_state_after_jni(Register rscratch);
 700 
 701   // prints msg, dumps registers and stops execution
 702   void stop(const char* msg);
 703 
 704   // prints msg and continues
 705   void warn(const char* msg);
 706 
 707   // dumps registers and other state
 708   void print_state();
 709 
 710   static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
 711   static void debug64(char* msg, int64_t pc, int64_t regs[]);
 712   static void print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip);
 713   static void print_state64(int64_t pc, int64_t regs[]);
 714 
 715   void os_breakpoint();
 716 
 717   void untested()                                { stop("untested"); }
 718 
 719   void unimplemented(const char* what = "");
 720 
 721   void should_not_reach_here()                   { stop("should not reach here"); }
 722 
 723   void print_CPU_state();
 724 
 725   // Stack overflow checking
 726   void bang_stack_with_offset(int offset) {
 727     // stack grows down, caller passes positive offset
 728     assert(offset > 0, "must bang with negative offset");
 729     movl(Address(rsp, (-offset)), rax);
 730   }
 731 
 732   // Writes to stack successive pages until offset reached to check for
 733   // stack overflow + shadow pages.  Also, clobbers tmp
 734   void bang_stack_size(Register size, Register tmp);
 735 
 736   // Check for reserved stack access in method being exited (for JIT)
 737   void reserved_stack_check();
 738 
 739   void safepoint_poll(Label& slow_path, bool at_return, bool in_nmethod);
 740 
 741   void verify_tlab();
 742 
 743   static Condition negate_condition(Condition cond);
 744 
 745   // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
 746   // operands. In general the names are modified to avoid hiding the instruction in Assembler
 747   // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
 748   // here in MacroAssembler. The major exception to this rule is call
 749 
 750   // Arithmetics
 751 
 752 
 753   void addptr(Address dst, int32_t src) { addq(dst, src); }
 754   void addptr(Address dst, Register src);
 755 
 756   void addptr(Register dst, Address src) { addq(dst, src); }
 757   void addptr(Register dst, int32_t src);
 758   void addptr(Register dst, Register src);
 759   void addptr(Register dst, RegisterOrConstant src) {
 760     if (src.is_constant()) addptr(dst, checked_cast<int>(src.as_constant()));
 761     else                   addptr(dst, src.as_register());
 762   }
 763 
 764   void andptr(Register dst, int32_t src);
 765   void andptr(Register src1, Register src2) { andq(src1, src2); }
 766 
 767   using Assembler::andq;
 768   void andq(Register dst, AddressLiteral src, Register rscratch = noreg);
 769 
 770   void cmp8(AddressLiteral src1, int imm, Register rscratch = noreg);
 771 
 772   // renamed to drag out the casting of address to int32_t/intptr_t
 773   void cmp32(Register src1, int32_t imm);
 774 
 775   void cmp32(AddressLiteral src1, int32_t imm, Register rscratch = noreg);
 776   // compare reg - mem, or reg - &mem
 777   void cmp32(Register src1, AddressLiteral src2, Register rscratch = noreg);
 778 
 779   void cmp32(Register src1, Address src2);
 780 
 781   void cmpoop(Register src1, Register src2);
 782   void cmpoop(Register src1, Address src2);
 783   void cmpoop(Register dst, jobject obj, Register rscratch);
 784 
 785   // NOTE src2 must be the lval. This is NOT an mem-mem compare
 786   void cmpptr(Address src1, AddressLiteral src2, Register rscratch);
 787 
 788   void cmpptr(Register src1, AddressLiteral src2, Register rscratch = noreg);
 789 
 790   void cmpptr(Register src1, Register src2) { cmpq(src1, src2); }
 791   void cmpptr(Register src1, Address src2) { cmpq(src1, src2); }
 792 
 793   void cmpptr(Register src1, int32_t src2) { cmpq(src1, src2); }
 794   void cmpptr(Address src1, int32_t src2) { cmpq(src1, src2); }
 795 
 796   // cmp64 to avoild hiding cmpq
 797   void cmp64(Register src1, AddressLiteral src, Register rscratch = noreg);
 798 
 799   void cmpxchgptr(Register reg, Address adr);
 800 
 801   void locked_cmpxchgptr(Register reg, AddressLiteral adr, Register rscratch = noreg);
 802 
 803   void imulptr(Register dst, Register src) { imulq(dst, src); }
 804   void imulptr(Register dst, Register src, int imm32) { imulq(dst, src, imm32); }
 805 
 806 
 807   void negptr(Register dst) { negq(dst); }
 808 
 809   void notptr(Register dst) { notq(dst); }
 810 
 811   void shlptr(Register dst, int32_t shift);
 812   void shlptr(Register dst) { shlq(dst); }
 813 
 814   void shrptr(Register dst, int32_t shift);
 815   void shrptr(Register dst) { shrq(dst); }
 816 
 817   void sarptr(Register dst) { sarq(dst); }
 818   void sarptr(Register dst, int32_t src) { sarq(dst, src); }
 819 
 820   void subptr(Address dst, int32_t src) { subq(dst, src); }
 821 
 822   void subptr(Register dst, Address src) { subq(dst, src); }
 823   void subptr(Register dst, int32_t src);
 824   // Force generation of a 4 byte immediate value even if it fits into 8bit
 825   void subptr_imm32(Register dst, int32_t src);
 826   void subptr(Register dst, Register src);
 827   void subptr(Register dst, RegisterOrConstant src) {
 828     if (src.is_constant()) subptr(dst, (int) src.as_constant());
 829     else                   subptr(dst,       src.as_register());
 830   }
 831 
 832   void sbbptr(Address dst, int32_t src) { sbbq(dst, src); }
 833   void sbbptr(Register dst, int32_t src) { sbbq(dst, src); }
 834 
 835   void xchgptr(Register src1, Register src2) { xchgq(src1, src2); }
 836   void xchgptr(Register src1, Address src2) { xchgq(src1, src2); }
 837 
 838   void xaddptr(Address src1, Register src2) { xaddq(src1, src2); }
 839 
 840 
 841 
 842   // Helper functions for statistics gathering.
 843   // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
 844   void cond_inc32(Condition cond, AddressLiteral counter_addr, Register rscratch = noreg);
 845   // Unconditional atomic increment.
 846   void atomic_incl(Address counter_addr);
 847   void atomic_incl(AddressLiteral counter_addr, Register rscratch = noreg);
 848   void atomic_incq(Address counter_addr);
 849   void atomic_incq(AddressLiteral counter_addr, Register rscratch = noreg);
 850   void atomic_incptr(AddressLiteral counter_addr, Register rscratch = noreg) { atomic_incq(counter_addr, rscratch); }
 851   void atomic_incptr(Address counter_addr) { atomic_incq(counter_addr); }
 852 
 853   using Assembler::lea;
 854   void lea(Register dst, AddressLiteral adr);
 855   void lea(Address  dst, AddressLiteral adr, Register rscratch);
 856 
 857   void leal32(Register dst, Address src) { leal(dst, src); }
 858 
 859   // Import other testl() methods from the parent class or else
 860   // they will be hidden by the following overriding declaration.
 861   using Assembler::testl;
 862   void testl(Address dst, int32_t imm32);
 863   void testl(Register dst, int32_t imm32);
 864   void testl(Register dst, AddressLiteral src); // requires reachable address
 865   using Assembler::testq;
 866   void testq(Address dst, int32_t imm32);
 867   void testq(Register dst, int32_t imm32);
 868 
 869   void orptr(Register dst, Address src) { orq(dst, src); }
 870   void orptr(Register dst, Register src) { orq(dst, src); }
 871   void orptr(Register dst, int32_t src) { orq(dst, src); }
 872   void orptr(Address dst, int32_t imm32) { orq(dst, imm32); }
 873 
 874   void testptr(Register src, int32_t imm32) { testq(src, imm32); }
 875   void testptr(Register src1, Address src2) { testq(src1, src2); }
 876   void testptr(Address src, int32_t imm32) { testq(src, imm32); }
 877   void testptr(Register src1, Register src2);
 878 
 879   void xorptr(Register dst, Register src) { xorq(dst, src); }
 880   void xorptr(Register dst, Address src) { xorq(dst, src); }
 881 
 882   // Calls
 883 
 884   void call(Label& L, relocInfo::relocType rtype);
 885   void call(Register entry);
 886   void call(Address addr) { Assembler::call(addr); }
 887 
 888   // NOTE: this call transfers to the effective address of entry NOT
 889   // the address contained by entry. This is because this is more natural
 890   // for jumps/calls.
 891   void call(AddressLiteral entry, Register rscratch = rax);
 892 
 893   // Emit the CompiledIC call idiom
 894   void ic_call(address entry, jint method_index = 0);
 895   static int ic_check_size();
 896   int ic_check(int end_alignment);
 897 
 898   void emit_static_call_stub();
 899 
 900   // Jumps
 901 
 902   // NOTE: these jumps transfer to the effective address of dst NOT
 903   // the address contained by dst. This is because this is more natural
 904   // for jumps/calls.
 905   void jump(AddressLiteral dst, Register rscratch = noreg);
 906 
 907   void jump_cc(Condition cc, AddressLiteral dst, Register rscratch = noreg);
 908 
 909   // 32bit can do a case table jump in one instruction but we no longer allow the base
 910   // to be installed in the Address class. This jump will transfer to the address
 911   // contained in the location described by entry (not the address of entry)
 912   void jump(ArrayAddress entry, Register rscratch);
 913 
 914   // Adding more natural conditional jump instructions
 915   void ALWAYSINLINE jo(Label& L, bool maybe_short = true) { jcc(Assembler::overflow, L, maybe_short); }
 916   void ALWAYSINLINE jno(Label& L, bool maybe_short = true) { jcc(Assembler::noOverflow, L, maybe_short); }
 917   void ALWAYSINLINE js(Label& L, bool maybe_short = true) { jcc(Assembler::negative, L, maybe_short); }
 918   void ALWAYSINLINE jns(Label& L, bool maybe_short = true) { jcc(Assembler::positive, L, maybe_short); }
 919   void ALWAYSINLINE je(Label& L, bool maybe_short = true) { jcc(Assembler::equal, L, maybe_short); }
 920   void ALWAYSINLINE jz(Label& L, bool maybe_short = true) { jcc(Assembler::zero, L, maybe_short); }
 921   void ALWAYSINLINE jne(Label& L, bool maybe_short = true) { jcc(Assembler::notEqual, L, maybe_short); }
 922   void ALWAYSINLINE jnz(Label& L, bool maybe_short = true) { jcc(Assembler::notZero, L, maybe_short); }
 923   void ALWAYSINLINE jb(Label& L, bool maybe_short = true) { jcc(Assembler::below, L, maybe_short); }
 924   void ALWAYSINLINE jnae(Label& L, bool maybe_short = true) { jcc(Assembler::below, L, maybe_short); }
 925   void ALWAYSINLINE jc(Label& L, bool maybe_short = true) { jcc(Assembler::carrySet, L, maybe_short); }
 926   void ALWAYSINLINE jnb(Label& L, bool maybe_short = true) { jcc(Assembler::aboveEqual, L, maybe_short); }
 927   void ALWAYSINLINE jae(Label& L, bool maybe_short = true) { jcc(Assembler::aboveEqual, L, maybe_short); }
 928   void ALWAYSINLINE jnc(Label& L, bool maybe_short = true) { jcc(Assembler::carryClear, L, maybe_short); }
 929   void ALWAYSINLINE jbe(Label& L, bool maybe_short = true) { jcc(Assembler::belowEqual, L, maybe_short); }
 930   void ALWAYSINLINE jna(Label& L, bool maybe_short = true) { jcc(Assembler::belowEqual, L, maybe_short); }
 931   void ALWAYSINLINE ja(Label& L, bool maybe_short = true) { jcc(Assembler::above, L, maybe_short); }
 932   void ALWAYSINLINE jnbe(Label& L, bool maybe_short = true) { jcc(Assembler::above, L, maybe_short); }
 933   void ALWAYSINLINE jl(Label& L, bool maybe_short = true) { jcc(Assembler::less, L, maybe_short); }
 934   void ALWAYSINLINE jnge(Label& L, bool maybe_short = true) { jcc(Assembler::less, L, maybe_short); }
 935   void ALWAYSINLINE jge(Label& L, bool maybe_short = true) { jcc(Assembler::greaterEqual, L, maybe_short); }
 936   void ALWAYSINLINE jnl(Label& L, bool maybe_short = true) { jcc(Assembler::greaterEqual, L, maybe_short); }
 937   void ALWAYSINLINE jle(Label& L, bool maybe_short = true) { jcc(Assembler::lessEqual, L, maybe_short); }
 938   void ALWAYSINLINE jng(Label& L, bool maybe_short = true) { jcc(Assembler::lessEqual, L, maybe_short); }
 939   void ALWAYSINLINE jg(Label& L, bool maybe_short = true) { jcc(Assembler::greater, L, maybe_short); }
 940   void ALWAYSINLINE jnle(Label& L, bool maybe_short = true) { jcc(Assembler::greater, L, maybe_short); }
 941   void ALWAYSINLINE jp(Label& L, bool maybe_short = true) { jcc(Assembler::parity, L, maybe_short); }
 942   void ALWAYSINLINE jpe(Label& L, bool maybe_short = true) { jcc(Assembler::parity, L, maybe_short); }
 943   void ALWAYSINLINE jnp(Label& L, bool maybe_short = true) { jcc(Assembler::noParity, L, maybe_short); }
 944   void ALWAYSINLINE jpo(Label& L, bool maybe_short = true) { jcc(Assembler::noParity, L, maybe_short); }
 945   // * No condition for this *  void ALWAYSINLINE jcxz(Label& L, bool maybe_short = true) { jcc(Assembler::cxz, L, maybe_short); }
 946   // * No condition for this *  void ALWAYSINLINE jecxz(Label& L, bool maybe_short = true) { jcc(Assembler::cxz, L, maybe_short); }
 947 
 948   // Short versions of the above
 949   void ALWAYSINLINE jo_b(Label& L) { jccb(Assembler::overflow, L); }
 950   void ALWAYSINLINE jno_b(Label& L) { jccb(Assembler::noOverflow, L); }
 951   void ALWAYSINLINE js_b(Label& L) { jccb(Assembler::negative, L); }
 952   void ALWAYSINLINE jns_b(Label& L) { jccb(Assembler::positive, L); }
 953   void ALWAYSINLINE je_b(Label& L) { jccb(Assembler::equal, L); }
 954   void ALWAYSINLINE jz_b(Label& L) { jccb(Assembler::zero, L); }
 955   void ALWAYSINLINE jne_b(Label& L) { jccb(Assembler::notEqual, L); }
 956   void ALWAYSINLINE jnz_b(Label& L) { jccb(Assembler::notZero, L); }
 957   void ALWAYSINLINE jb_b(Label& L) { jccb(Assembler::below, L); }
 958   void ALWAYSINLINE jnae_b(Label& L) { jccb(Assembler::below, L); }
 959   void ALWAYSINLINE jc_b(Label& L) { jccb(Assembler::carrySet, L); }
 960   void ALWAYSINLINE jnb_b(Label& L) { jccb(Assembler::aboveEqual, L); }
 961   void ALWAYSINLINE jae_b(Label& L) { jccb(Assembler::aboveEqual, L); }
 962   void ALWAYSINLINE jnc_b(Label& L) { jccb(Assembler::carryClear, L); }
 963   void ALWAYSINLINE jbe_b(Label& L) { jccb(Assembler::belowEqual, L); }
 964   void ALWAYSINLINE jna_b(Label& L) { jccb(Assembler::belowEqual, L); }
 965   void ALWAYSINLINE ja_b(Label& L) { jccb(Assembler::above, L); }
 966   void ALWAYSINLINE jnbe_b(Label& L) { jccb(Assembler::above, L); }
 967   void ALWAYSINLINE jl_b(Label& L) { jccb(Assembler::less, L); }
 968   void ALWAYSINLINE jnge_b(Label& L) { jccb(Assembler::less, L); }
 969   void ALWAYSINLINE jge_b(Label& L) { jccb(Assembler::greaterEqual, L); }
 970   void ALWAYSINLINE jnl_b(Label& L) { jccb(Assembler::greaterEqual, L); }
 971   void ALWAYSINLINE jle_b(Label& L) { jccb(Assembler::lessEqual, L); }
 972   void ALWAYSINLINE jng_b(Label& L) { jccb(Assembler::lessEqual, L); }
 973   void ALWAYSINLINE jg_b(Label& L) { jccb(Assembler::greater, L); }
 974   void ALWAYSINLINE jnle_b(Label& L) { jccb(Assembler::greater, L); }
 975   void ALWAYSINLINE jp_b(Label& L) { jccb(Assembler::parity, L); }
 976   void ALWAYSINLINE jpe_b(Label& L) { jccb(Assembler::parity, L); }
 977   void ALWAYSINLINE jnp_b(Label& L) { jccb(Assembler::noParity, L); }
 978   void ALWAYSINLINE jpo_b(Label& L) { jccb(Assembler::noParity, L); }
 979   // * No condition for this *  void ALWAYSINLINE jcxz_b(Label& L) { jccb(Assembler::cxz, L); }
 980   // * No condition for this *  void ALWAYSINLINE jecxz_b(Label& L) { jccb(Assembler::cxz, L); }
 981 
 982   // Floating
 983 
 984   void push_f(XMMRegister r);
 985   void pop_f(XMMRegister r);
 986   void push_d(XMMRegister r);
 987   void pop_d(XMMRegister r);
 988 
 989   void push_ppx(Register src);
 990   void pop_ppx(Register dst);
 991 
 992   void andpd(XMMRegister dst, XMMRegister    src) { Assembler::andpd(dst, src); }
 993   void andpd(XMMRegister dst, Address        src) { Assembler::andpd(dst, src); }
 994   void andpd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
 995 
 996   void andnpd(XMMRegister dst, XMMRegister src) { Assembler::andnpd(dst, src); }
 997 
 998   void andps(XMMRegister dst, XMMRegister    src) { Assembler::andps(dst, src); }
 999   void andps(XMMRegister dst, Address        src) { Assembler::andps(dst, src); }
1000   void andps(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1001 
1002   void comiss(XMMRegister dst, XMMRegister    src) { Assembler::comiss(dst, src); }
1003   void comiss(XMMRegister dst, Address        src) { Assembler::comiss(dst, src); }
1004   void comiss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1005 
1006   void comisd(XMMRegister dst, XMMRegister    src) { Assembler::comisd(dst, src); }
1007   void comisd(XMMRegister dst, Address        src) { Assembler::comisd(dst, src); }
1008   void comisd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1009 
1010   void orpd(XMMRegister dst, XMMRegister src) { Assembler::orpd(dst, src); }
1011 
1012   void cmp32_mxcsr_std(Address mxcsr_save, Register tmp, Register rscratch = noreg);
1013   void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
1014   void ldmxcsr(AddressLiteral src, Register rscratch = noreg);
1015 
1016  private:
1017   void sha256_AVX2_one_round_compute(
1018     Register  reg_old_h,
1019     Register  reg_a,
1020     Register  reg_b,
1021     Register  reg_c,
1022     Register  reg_d,
1023     Register  reg_e,
1024     Register  reg_f,
1025     Register  reg_g,
1026     Register  reg_h,
1027     int iter);
1028   void sha256_AVX2_four_rounds_compute_first(int start);
1029   void sha256_AVX2_four_rounds_compute_last(int start);
1030   void sha256_AVX2_one_round_and_sched(
1031         XMMRegister xmm_0,     /* == ymm4 on 0, 1, 2, 3 iterations, then rotate 4 registers left on 4, 8, 12 iterations */
1032         XMMRegister xmm_1,     /* ymm5 */  /* full cycle is 16 iterations */
1033         XMMRegister xmm_2,     /* ymm6 */
1034         XMMRegister xmm_3,     /* ymm7 */
1035         Register    reg_a,      /* == eax on 0 iteration, then rotate 8 register right on each next iteration */
1036         Register    reg_b,      /* ebx */    /* full cycle is 8 iterations */
1037         Register    reg_c,      /* edi */
1038         Register    reg_d,      /* esi */
1039         Register    reg_e,      /* r8d */
1040         Register    reg_f,      /* r9d */
1041         Register    reg_g,      /* r10d */
1042         Register    reg_h,      /* r11d */
1043         int iter);
1044 
1045   void addm(int disp, Register r1, Register r2);
1046 
1047   void sha512_AVX2_one_round_compute(Register old_h, Register a, Register b, Register c, Register d,
1048                                      Register e, Register f, Register g, Register h, int iteration);
1049 
1050   void sha512_AVX2_one_round_and_schedule(XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1051                                           Register a, Register b, Register c, Register d, Register e, Register f,
1052                                           Register g, Register h, int iteration);
1053 
1054   void addmq(int disp, Register r1, Register r2);
1055  public:
1056   void sha256_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
1057                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
1058                    Register buf, Register state, Register ofs, Register limit, Register rsp,
1059                    bool multi_block, XMMRegister shuf_mask);
1060   void sha512_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
1061                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
1062                    Register buf, Register state, Register ofs, Register limit, Register rsp, bool multi_block,
1063                    XMMRegister shuf_mask);
1064   void sha512_update_ni_x1(Register arg_hash, Register arg_msg, Register ofs, Register limit, bool multi_block);
1065 
1066   void fast_md5(Register buf, Address state, Address ofs, Address limit,
1067                 bool multi_block);
1068 
1069   void fast_sha1(XMMRegister abcd, XMMRegister e0, XMMRegister e1, XMMRegister msg0,
1070                  XMMRegister msg1, XMMRegister msg2, XMMRegister msg3, XMMRegister shuf_mask,
1071                  Register buf, Register state, Register ofs, Register limit, Register rsp,
1072                  bool multi_block);
1073 
1074   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
1075                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
1076                    Register buf, Register state, Register ofs, Register limit, Register rsp,
1077                    bool multi_block, XMMRegister shuf_mask);
1078 
1079   void fast_exp(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1080                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1081                 Register rax, Register rcx, Register rdx, Register tmp);
1082 
1083 private:
1084 
1085   // these are private because users should be doing movflt/movdbl
1086 
1087   void movss(Address     dst, XMMRegister    src) { Assembler::movss(dst, src); }
1088   void movss(XMMRegister dst, XMMRegister    src) { Assembler::movss(dst, src); }
1089   void movss(XMMRegister dst, Address        src) { Assembler::movss(dst, src); }
1090   void movss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1091 
1092   void movlpd(XMMRegister dst, Address        src) {Assembler::movlpd(dst, src); }
1093   void movlpd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1094 
1095 public:
1096 
1097   void addsd(XMMRegister dst, XMMRegister    src) { Assembler::addsd(dst, src); }
1098   void addsd(XMMRegister dst, Address        src) { Assembler::addsd(dst, src); }
1099   void addsd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1100 
1101   void addss(XMMRegister dst, XMMRegister    src) { Assembler::addss(dst, src); }
1102   void addss(XMMRegister dst, Address        src) { Assembler::addss(dst, src); }
1103   void addss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1104 
1105   void addpd(XMMRegister dst, XMMRegister    src) { Assembler::addpd(dst, src); }
1106   void addpd(XMMRegister dst, Address        src) { Assembler::addpd(dst, src); }
1107   void addpd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1108 
1109   using Assembler::vbroadcasti128;
1110   void vbroadcasti128(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1111 
1112   using Assembler::vbroadcastsd;
1113   void vbroadcastsd(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1114 
1115   using Assembler::vbroadcastss;
1116   void vbroadcastss(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1117 
1118   // Vector float blend
1119   void vblendvps(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister mask, int vector_len, bool compute_mask = true, XMMRegister scratch = xnoreg);
1120   void vblendvpd(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister mask, int vector_len, bool compute_mask = true, XMMRegister scratch = xnoreg);
1121 
1122   void divsd(XMMRegister dst, XMMRegister    src) { Assembler::divsd(dst, src); }
1123   void divsd(XMMRegister dst, Address        src) { Assembler::divsd(dst, src); }
1124   void divsd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1125 
1126   void divss(XMMRegister dst, XMMRegister    src) { Assembler::divss(dst, src); }
1127   void divss(XMMRegister dst, Address        src) { Assembler::divss(dst, src); }
1128   void divss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1129 
1130   // Move Unaligned Double Quadword
1131   void movdqu(Address     dst, XMMRegister    src);
1132   void movdqu(XMMRegister dst, XMMRegister    src);
1133   void movdqu(XMMRegister dst, Address        src);
1134   void movdqu(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1135 
1136   void kmovwl(Register  dst, KRegister      src) { Assembler::kmovwl(dst, src); }
1137   void kmovwl(Address   dst, KRegister      src) { Assembler::kmovwl(dst, src); }
1138   void kmovwl(KRegister dst, KRegister      src) { Assembler::kmovwl(dst, src); }
1139   void kmovwl(KRegister dst, Register       src) { Assembler::kmovwl(dst, src); }
1140   void kmovwl(KRegister dst, Address        src) { Assembler::kmovwl(dst, src); }
1141   void kmovwl(KRegister dst, AddressLiteral src, Register rscratch = noreg);
1142 
1143   void kmovql(KRegister dst, KRegister      src) { Assembler::kmovql(dst, src); }
1144   void kmovql(KRegister dst, Register       src) { Assembler::kmovql(dst, src); }
1145   void kmovql(Register  dst, KRegister      src) { Assembler::kmovql(dst, src); }
1146   void kmovql(KRegister dst, Address        src) { Assembler::kmovql(dst, src); }
1147   void kmovql(Address   dst, KRegister      src) { Assembler::kmovql(dst, src); }
1148   void kmovql(KRegister dst, AddressLiteral src, Register rscratch = noreg);
1149 
1150   // Safe move operation, lowers down to 16bit moves for targets supporting
1151   // AVX512F feature and 64bit moves for targets supporting AVX512BW feature.
1152   void kmov(Address  dst, KRegister src);
1153   void kmov(KRegister dst, Address src);
1154   void kmov(KRegister dst, KRegister src);
1155   void kmov(Register dst, KRegister src);
1156   void kmov(KRegister dst, Register src);
1157 
1158   using Assembler::movddup;
1159   void movddup(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1160 
1161   using Assembler::vmovddup;
1162   void vmovddup(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1163 
1164   // AVX Unaligned forms
1165   void vmovdqu(Address     dst, XMMRegister    src);
1166   void vmovdqu(XMMRegister dst, Address        src);
1167   void vmovdqu(XMMRegister dst, XMMRegister    src);
1168   void vmovdqu(XMMRegister dst, AddressLiteral src,                 Register rscratch = noreg);
1169   void vmovdqu(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1170   void vmovdqu(XMMRegister dst, XMMRegister    src, int vector_len);
1171   void vmovdqu(XMMRegister dst, Address        src, int vector_len);
1172   void vmovdqu(Address     dst, XMMRegister    src, int vector_len);
1173 
1174   // AVX Aligned forms
1175   using Assembler::vmovdqa;
1176   void vmovdqa(XMMRegister dst, AddressLiteral src,                 Register rscratch = noreg);
1177   void vmovdqa(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1178 
1179   // AVX512 Unaligned
1180   void evmovdqu(BasicType type, KRegister kmask, Address     dst, XMMRegister src, bool merge, int vector_len);
1181   void evmovdqu(BasicType type, KRegister kmask, XMMRegister dst, Address     src, bool merge, int vector_len);
1182   void evmovdqu(BasicType type, KRegister kmask, XMMRegister dst, XMMRegister src, bool merge, int vector_len);
1183 
1184   void evmovdqub(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::evmovdqub(dst, src, vector_len); }
1185   void evmovdqub(XMMRegister dst, Address     src, int vector_len) { Assembler::evmovdqub(dst, src, vector_len); }
1186 
1187   void evmovdqub(XMMRegister dst, KRegister mask, XMMRegister src, bool merge, int vector_len) {
1188     if (dst->encoding() != src->encoding() || mask != k0)  {
1189       Assembler::evmovdqub(dst, mask, src, merge, vector_len);
1190     }
1191   }
1192   void evmovdqub(Address     dst, KRegister mask, XMMRegister    src, bool merge, int vector_len) { Assembler::evmovdqub(dst, mask, src, merge, vector_len); }
1193   void evmovdqub(XMMRegister dst, KRegister mask, Address        src, bool merge, int vector_len) { Assembler::evmovdqub(dst, mask, src, merge, vector_len); }
1194   void evmovdqub(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg);
1195 
1196   void evmovdquw(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::evmovdquw(dst, src, vector_len); }
1197   void evmovdquw(Address     dst, XMMRegister src, int vector_len) { Assembler::evmovdquw(dst, src, vector_len); }
1198   void evmovdquw(XMMRegister dst, Address     src, int vector_len) { Assembler::evmovdquw(dst, src, vector_len); }
1199 
1200   void evmovdquw(XMMRegister dst, KRegister mask, XMMRegister src, bool merge, int vector_len) {
1201     if (dst->encoding() != src->encoding() || mask != k0) {
1202       Assembler::evmovdquw(dst, mask, src, merge, vector_len);
1203     }
1204   }
1205   void evmovdquw(XMMRegister dst, KRegister mask, Address        src, bool merge, int vector_len) { Assembler::evmovdquw(dst, mask, src, merge, vector_len); }
1206   void evmovdquw(Address     dst, KRegister mask, XMMRegister    src, bool merge, int vector_len) { Assembler::evmovdquw(dst, mask, src, merge, vector_len); }
1207   void evmovdquw(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg);
1208 
1209   void evmovdqul(XMMRegister dst, XMMRegister src, int vector_len) {
1210      if (dst->encoding() != src->encoding()) {
1211        Assembler::evmovdqul(dst, src, vector_len);
1212      }
1213   }
1214   void evmovdqul(Address     dst, XMMRegister src, int vector_len) { Assembler::evmovdqul(dst, src, vector_len); }
1215   void evmovdqul(XMMRegister dst, Address     src, int vector_len) { Assembler::evmovdqul(dst, src, vector_len); }
1216 
1217   void evmovdqul(XMMRegister dst, KRegister mask, XMMRegister src, bool merge, int vector_len) {
1218     if (dst->encoding() != src->encoding() || mask != k0)  {
1219       Assembler::evmovdqul(dst, mask, src, merge, vector_len);
1220     }
1221   }
1222   void evmovdqul(Address     dst, KRegister mask, XMMRegister    src, bool merge, int vector_len) { Assembler::evmovdqul(dst, mask, src, merge, vector_len); }
1223   void evmovdqul(XMMRegister dst, KRegister mask, Address        src, bool merge, int vector_len) { Assembler::evmovdqul(dst, mask, src, merge, vector_len); }
1224   void evmovdqul(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg);
1225 
1226   void evmovdquq(XMMRegister dst, XMMRegister src, int vector_len) {
1227     if (dst->encoding() != src->encoding()) {
1228       Assembler::evmovdquq(dst, src, vector_len);
1229     }
1230   }
1231   void evmovdquq(XMMRegister dst, Address        src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); }
1232   void evmovdquq(Address     dst, XMMRegister    src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); }
1233   void evmovdquq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1234   void evmovdqaq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1235 
1236   void evmovdquq(XMMRegister dst, KRegister mask, XMMRegister src, bool merge, int vector_len) {
1237     if (dst->encoding() != src->encoding() || mask != k0) {
1238       Assembler::evmovdquq(dst, mask, src, merge, vector_len);
1239     }
1240   }
1241   void evmovdquq(Address     dst, KRegister mask, XMMRegister    src, bool merge, int vector_len) { Assembler::evmovdquq(dst, mask, src, merge, vector_len); }
1242   void evmovdquq(XMMRegister dst, KRegister mask, Address        src, bool merge, int vector_len) { Assembler::evmovdquq(dst, mask, src, merge, vector_len); }
1243   void evmovdquq(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg);
1244   void evmovdqaq(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg);
1245 
1246   using Assembler::movapd;
1247   void movapd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1248 
1249   // Move Aligned Double Quadword
1250   void movdqa(XMMRegister dst, XMMRegister    src) { Assembler::movdqa(dst, src); }
1251   void movdqa(XMMRegister dst, Address        src) { Assembler::movdqa(dst, src); }
1252   void movdqa(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1253 
1254   void movsd(Address     dst, XMMRegister    src) { Assembler::movsd(dst, src); }
1255   void movsd(XMMRegister dst, XMMRegister    src) { Assembler::movsd(dst, src); }
1256   void movsd(XMMRegister dst, Address        src) { Assembler::movsd(dst, src); }
1257   void movsd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1258 
1259   void mulpd(XMMRegister dst, XMMRegister    src) { Assembler::mulpd(dst, src); }
1260   void mulpd(XMMRegister dst, Address        src) { Assembler::mulpd(dst, src); }
1261   void mulpd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1262 
1263   void mulsd(XMMRegister dst, XMMRegister    src) { Assembler::mulsd(dst, src); }
1264   void mulsd(XMMRegister dst, Address        src) { Assembler::mulsd(dst, src); }
1265   void mulsd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1266 
1267   void mulss(XMMRegister dst, XMMRegister    src) { Assembler::mulss(dst, src); }
1268   void mulss(XMMRegister dst, Address        src) { Assembler::mulss(dst, src); }
1269   void mulss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1270 
1271   // Carry-Less Multiplication Quadword
1272   void pclmulldq(XMMRegister dst, XMMRegister src) {
1273     // 0x00 - multiply lower 64 bits [0:63]
1274     Assembler::pclmulqdq(dst, src, 0x00);
1275   }
1276   void pclmulhdq(XMMRegister dst, XMMRegister src) {
1277     // 0x11 - multiply upper 64 bits [64:127]
1278     Assembler::pclmulqdq(dst, src, 0x11);
1279   }
1280 
1281   void pcmpeqb(XMMRegister dst, XMMRegister src);
1282   void pcmpeqw(XMMRegister dst, XMMRegister src);
1283 
1284   void pcmpestri(XMMRegister dst, Address src, int imm8);
1285   void pcmpestri(XMMRegister dst, XMMRegister src, int imm8);
1286 
1287   void pmovzxbw(XMMRegister dst, XMMRegister src);
1288   void pmovzxbw(XMMRegister dst, Address src);
1289 
1290   void pmovmskb(Register dst, XMMRegister src);
1291 
1292   void ptest(XMMRegister dst, XMMRegister src);
1293 
1294   void roundsd(XMMRegister dst, XMMRegister    src, int32_t rmode) { Assembler::roundsd(dst, src, rmode); }
1295   void roundsd(XMMRegister dst, Address        src, int32_t rmode) { Assembler::roundsd(dst, src, rmode); }
1296   void roundsd(XMMRegister dst, AddressLiteral src, int32_t rmode, Register rscratch = noreg);
1297 
1298   void sqrtss(XMMRegister dst, XMMRegister     src) { Assembler::sqrtss(dst, src); }
1299   void sqrtss(XMMRegister dst, Address         src) { Assembler::sqrtss(dst, src); }
1300   void sqrtss(XMMRegister dst, AddressLiteral  src, Register rscratch = noreg);
1301 
1302   void subsd(XMMRegister dst, XMMRegister    src) { Assembler::subsd(dst, src); }
1303   void subsd(XMMRegister dst, Address        src) { Assembler::subsd(dst, src); }
1304   void subsd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1305 
1306   void subss(XMMRegister dst, XMMRegister    src) { Assembler::subss(dst, src); }
1307   void subss(XMMRegister dst, Address        src) { Assembler::subss(dst, src); }
1308   void subss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1309 
1310   void ucomiss(XMMRegister dst, XMMRegister    src) { Assembler::ucomiss(dst, src); }
1311   void ucomiss(XMMRegister dst, Address        src) { Assembler::ucomiss(dst, src); }
1312   void ucomiss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1313 
1314   void ucomisd(XMMRegister dst, XMMRegister    src) { Assembler::ucomisd(dst, src); }
1315   void ucomisd(XMMRegister dst, Address        src) { Assembler::ucomisd(dst, src); }
1316   void ucomisd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1317 
1318   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
1319   void xorpd(XMMRegister dst, XMMRegister    src);
1320   void xorpd(XMMRegister dst, Address        src) { Assembler::xorpd(dst, src); }
1321   void xorpd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1322 
1323   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
1324   void xorps(XMMRegister dst, XMMRegister    src);
1325   void xorps(XMMRegister dst, Address        src) { Assembler::xorps(dst, src); }
1326   void xorps(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1327 
1328   // Shuffle Bytes
1329   void pshufb(XMMRegister dst, XMMRegister    src) { Assembler::pshufb(dst, src); }
1330   void pshufb(XMMRegister dst, Address        src) { Assembler::pshufb(dst, src); }
1331   void pshufb(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1332   // AVX 3-operands instructions
1333 
1334   void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister    src) { Assembler::vaddsd(dst, nds, src); }
1335   void vaddsd(XMMRegister dst, XMMRegister nds, Address        src) { Assembler::vaddsd(dst, nds, src); }
1336   void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1337 
1338   void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister    src) { Assembler::vaddss(dst, nds, src); }
1339   void vaddss(XMMRegister dst, XMMRegister nds, Address        src) { Assembler::vaddss(dst, nds, src); }
1340   void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1341 
1342   void vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len, Register rscratch = noreg);
1343   void vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len, Register rscratch = noreg);
1344 
1345   void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len);
1346   void vpaddb(XMMRegister dst, XMMRegister nds, Address        src, int vector_len);
1347   void vpaddb(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1348 
1349   void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1350   void vpaddw(XMMRegister dst, XMMRegister nds, Address     src, int vector_len);
1351 
1352   void vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len) { Assembler::vpaddd(dst, nds, src, vector_len); }
1353   void vpaddd(XMMRegister dst, XMMRegister nds, Address        src, int vector_len) { Assembler::vpaddd(dst, nds, src, vector_len); }
1354   void vpaddd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1355 
1356   void vpand(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1357   void vpand(XMMRegister dst, XMMRegister nds, Address        src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1358   void vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1359 
1360   using Assembler::vpbroadcastd;
1361   void vpbroadcastd(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1362 
1363   using Assembler::vpbroadcastq;
1364   void vpbroadcastq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1365 
1366   void vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1367   void vpcmpeqb(XMMRegister dst, XMMRegister src1, Address src2, int vector_len);
1368 
1369   void vpcmpeqw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1370   void vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1371   using Assembler::evpcmpeqd;
1372   void evpcmpeqd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1373 
1374   // Vector compares
1375   void evpcmpd(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister    src, int comparison, bool is_signed, int vector_len) {
1376     Assembler::evpcmpd(kdst, mask, nds, src, comparison, is_signed, vector_len);
1377   }
1378   void evpcmpd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int comparison, bool is_signed, int vector_len, Register rscratch = noreg);
1379 
1380   void evpcmpq(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister    src, int comparison, bool is_signed, int vector_len) {
1381     Assembler::evpcmpq(kdst, mask, nds, src, comparison, is_signed, vector_len);
1382   }
1383   void evpcmpq(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int comparison, bool is_signed, int vector_len, Register rscratch = noreg);
1384 
1385   void evpcmpb(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister    src, int comparison, bool is_signed, int vector_len) {
1386     Assembler::evpcmpb(kdst, mask, nds, src, comparison, is_signed, vector_len);
1387   }
1388   void evpcmpb(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int comparison, bool is_signed, int vector_len, Register rscratch = noreg);
1389 
1390   void evpcmpw(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister    src, int comparison, bool is_signed, int vector_len) {
1391     Assembler::evpcmpw(kdst, mask, nds, src, comparison, is_signed, vector_len);
1392   }
1393   void evpcmpw(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int comparison, bool is_signed, int vector_len, Register rscratch = noreg);
1394 
1395   void evpbroadcast(BasicType type, XMMRegister dst, Register src, int vector_len);
1396 
1397   // Emit comparison instruction for the specified comparison predicate.
1398   void vpcmpCCW(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister xtmp, ComparisonPredicate cond, Width width, int vector_len);
1399   void vpcmpCC(XMMRegister dst, XMMRegister nds, XMMRegister src, int cond_encoding, Width width, int vector_len);
1400 
1401   void vpmovzxbw(XMMRegister dst, Address     src, int vector_len);
1402   void vpmovzxbw(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::vpmovzxbw(dst, src, vector_len); }
1403 
1404   void vpmovmskb(Register dst, XMMRegister src, int vector_len = Assembler::AVX_256bit);
1405 
1406   void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1407   void vpmullw(XMMRegister dst, XMMRegister nds, Address     src, int vector_len);
1408 
1409   void vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len) { Assembler::vpmulld(dst, nds, src, vector_len); }
1410   void vpmulld(XMMRegister dst, XMMRegister nds, Address        src, int vector_len) { Assembler::vpmulld(dst, nds, src, vector_len); }
1411   void vpmulld(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1412 
1413   void vpmuldq(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len) { Assembler::vpmuldq(dst, nds, src, vector_len); }
1414 
1415   void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1416   void vpsubb(XMMRegister dst, XMMRegister nds, Address     src, int vector_len);
1417 
1418   void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1419   void vpsubw(XMMRegister dst, XMMRegister nds, Address     src, int vector_len);
1420 
1421   void vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1422   void vpsraw(XMMRegister dst, XMMRegister nds, int         shift, int vector_len);
1423 
1424   void evpsrad(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1425   void evpsrad(XMMRegister dst, XMMRegister nds, int         shift, int vector_len);
1426 
1427   void evpsraq(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1428   void evpsraq(XMMRegister dst, XMMRegister nds, int         shift, int vector_len);
1429 
1430   using Assembler::evpsllw;
1431   void evpsllw(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1432     if (!is_varshift) {
1433       Assembler::evpsllw(dst, mask, nds, src, merge, vector_len);
1434     } else {
1435       Assembler::evpsllvw(dst, mask, nds, src, merge, vector_len);
1436     }
1437   }
1438   void evpslld(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1439     if (!is_varshift) {
1440       Assembler::evpslld(dst, mask, nds, src, merge, vector_len);
1441     } else {
1442       Assembler::evpsllvd(dst, mask, nds, src, merge, vector_len);
1443     }
1444   }
1445   void evpsllq(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1446     if (!is_varshift) {
1447       Assembler::evpsllq(dst, mask, nds, src, merge, vector_len);
1448     } else {
1449       Assembler::evpsllvq(dst, mask, nds, src, merge, vector_len);
1450     }
1451   }
1452   void evpsrlw(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1453     if (!is_varshift) {
1454       Assembler::evpsrlw(dst, mask, nds, src, merge, vector_len);
1455     } else {
1456       Assembler::evpsrlvw(dst, mask, nds, src, merge, vector_len);
1457     }
1458   }
1459   void evpsrld(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1460     if (!is_varshift) {
1461       Assembler::evpsrld(dst, mask, nds, src, merge, vector_len);
1462     } else {
1463       Assembler::evpsrlvd(dst, mask, nds, src, merge, vector_len);
1464     }
1465   }
1466 
1467   using Assembler::evpsrlq;
1468   void evpsrlq(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1469     if (!is_varshift) {
1470       Assembler::evpsrlq(dst, mask, nds, src, merge, vector_len);
1471     } else {
1472       Assembler::evpsrlvq(dst, mask, nds, src, merge, vector_len);
1473     }
1474   }
1475   using Assembler::evpsraw;
1476   void evpsraw(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1477     if (!is_varshift) {
1478       Assembler::evpsraw(dst, mask, nds, src, merge, vector_len);
1479     } else {
1480       Assembler::evpsravw(dst, mask, nds, src, merge, vector_len);
1481     }
1482   }
1483   using Assembler::evpsrad;
1484   void evpsrad(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1485     if (!is_varshift) {
1486       Assembler::evpsrad(dst, mask, nds, src, merge, vector_len);
1487     } else {
1488       Assembler::evpsravd(dst, mask, nds, src, merge, vector_len);
1489     }
1490   }
1491   using Assembler::evpsraq;
1492   void evpsraq(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1493     if (!is_varshift) {
1494       Assembler::evpsraq(dst, mask, nds, src, merge, vector_len);
1495     } else {
1496       Assembler::evpsravq(dst, mask, nds, src, merge, vector_len);
1497     }
1498   }
1499 
1500   void evpmins(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len);
1501   void evpmaxs(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len);
1502   void evpmins(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len);
1503   void evpmaxs(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len);
1504 
1505   void evpminu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len);
1506   void evpmaxu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len);
1507   void evpminu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len);
1508   void evpmaxu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len);
1509 
1510   void vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1511   void vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1512 
1513   void vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1514   void vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1515 
1516   void vptest(XMMRegister dst, XMMRegister src);
1517   void vptest(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::vptest(dst, src, vector_len); }
1518 
1519   void punpcklbw(XMMRegister dst, XMMRegister src);
1520   void punpcklbw(XMMRegister dst, Address src) { Assembler::punpcklbw(dst, src); }
1521 
1522   void pshufd(XMMRegister dst, Address src, int mode);
1523   void pshufd(XMMRegister dst, XMMRegister src, int mode) { Assembler::pshufd(dst, src, mode); }
1524 
1525   void pshuflw(XMMRegister dst, XMMRegister src, int mode);
1526   void pshuflw(XMMRegister dst, Address src, int mode) { Assembler::pshuflw(dst, src, mode); }
1527 
1528   void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len) { Assembler::vandpd(dst, nds, src, vector_len); }
1529   void vandpd(XMMRegister dst, XMMRegister nds, Address        src, int vector_len) { Assembler::vandpd(dst, nds, src, vector_len); }
1530   void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1531 
1532   void vandps(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len) { Assembler::vandps(dst, nds, src, vector_len); }
1533   void vandps(XMMRegister dst, XMMRegister nds, Address        src, int vector_len) { Assembler::vandps(dst, nds, src, vector_len); }
1534   void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1535 
1536   void evpord(XMMRegister dst, KRegister mask, XMMRegister nds, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg);
1537 
1538   void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister    src) { Assembler::vdivsd(dst, nds, src); }
1539   void vdivsd(XMMRegister dst, XMMRegister nds, Address        src) { Assembler::vdivsd(dst, nds, src); }
1540   void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1541 
1542   void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister    src) { Assembler::vdivss(dst, nds, src); }
1543   void vdivss(XMMRegister dst, XMMRegister nds, Address        src) { Assembler::vdivss(dst, nds, src); }
1544   void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1545 
1546   void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister    src) { Assembler::vmulsd(dst, nds, src); }
1547   void vmulsd(XMMRegister dst, XMMRegister nds, Address        src) { Assembler::vmulsd(dst, nds, src); }
1548   void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1549 
1550   void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister    src) { Assembler::vmulss(dst, nds, src); }
1551   void vmulss(XMMRegister dst, XMMRegister nds, Address        src) { Assembler::vmulss(dst, nds, src); }
1552   void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1553 
1554   void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister    src) { Assembler::vsubsd(dst, nds, src); }
1555   void vsubsd(XMMRegister dst, XMMRegister nds, Address        src) { Assembler::vsubsd(dst, nds, src); }
1556   void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1557 
1558   void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister    src) { Assembler::vsubss(dst, nds, src); }
1559   void vsubss(XMMRegister dst, XMMRegister nds, Address        src) { Assembler::vsubss(dst, nds, src); }
1560   void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1561 
1562   void vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1563   void vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1564 
1565   // AVX Vector instructions
1566 
1567   void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1568   void vxorpd(XMMRegister dst, XMMRegister nds, Address        src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1569   void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1570 
1571   void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1572   void vxorps(XMMRegister dst, XMMRegister nds, Address        src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1573   void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1574 
1575   void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1576     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1577       Assembler::vpxor(dst, nds, src, vector_len);
1578     else
1579       Assembler::vxorpd(dst, nds, src, vector_len);
1580   }
1581   void vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
1582     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1583       Assembler::vpxor(dst, nds, src, vector_len);
1584     else
1585       Assembler::vxorpd(dst, nds, src, vector_len);
1586   }
1587   void vpxor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1588 
1589   // Simple version for AVX2 256bit vectors
1590   void vpxor(XMMRegister dst, XMMRegister src) {
1591     assert(UseAVX >= 2, "Should be at least AVX2");
1592     Assembler::vpxor(dst, dst, src, AVX_256bit);
1593   }
1594   void vpxor(XMMRegister dst, Address src) {
1595     assert(UseAVX >= 2, "Should be at least AVX2");
1596     Assembler::vpxor(dst, dst, src, AVX_256bit);
1597   }
1598 
1599   void vpermd(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len) { Assembler::vpermd(dst, nds, src, vector_len); }
1600   void vpermd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1601 
1602   void vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
1603     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1604       Assembler::vinserti32x4(dst, nds, src, imm8);
1605     } else if (UseAVX > 1) {
1606       // vinserti128 is available only in AVX2
1607       Assembler::vinserti128(dst, nds, src, imm8);
1608     } else {
1609       Assembler::vinsertf128(dst, nds, src, imm8);
1610     }
1611   }
1612 
1613   void vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
1614     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1615       Assembler::vinserti32x4(dst, nds, src, imm8);
1616     } else if (UseAVX > 1) {
1617       // vinserti128 is available only in AVX2
1618       Assembler::vinserti128(dst, nds, src, imm8);
1619     } else {
1620       Assembler::vinsertf128(dst, nds, src, imm8);
1621     }
1622   }
1623 
1624   void vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
1625     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1626       Assembler::vextracti32x4(dst, src, imm8);
1627     } else if (UseAVX > 1) {
1628       // vextracti128 is available only in AVX2
1629       Assembler::vextracti128(dst, src, imm8);
1630     } else {
1631       Assembler::vextractf128(dst, src, imm8);
1632     }
1633   }
1634 
1635   void vextracti128(Address dst, XMMRegister src, uint8_t imm8) {
1636     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1637       Assembler::vextracti32x4(dst, src, imm8);
1638     } else if (UseAVX > 1) {
1639       // vextracti128 is available only in AVX2
1640       Assembler::vextracti128(dst, src, imm8);
1641     } else {
1642       Assembler::vextractf128(dst, src, imm8);
1643     }
1644   }
1645 
1646   // 128bit copy to/from high 128 bits of 256bit (YMM) vector registers
1647   void vinserti128_high(XMMRegister dst, XMMRegister src) {
1648     vinserti128(dst, dst, src, 1);
1649   }
1650   void vinserti128_high(XMMRegister dst, Address src) {
1651     vinserti128(dst, dst, src, 1);
1652   }
1653   void vextracti128_high(XMMRegister dst, XMMRegister src) {
1654     vextracti128(dst, src, 1);
1655   }
1656   void vextracti128_high(Address dst, XMMRegister src) {
1657     vextracti128(dst, src, 1);
1658   }
1659 
1660   void vinsertf128_high(XMMRegister dst, XMMRegister src) {
1661     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1662       Assembler::vinsertf32x4(dst, dst, src, 1);
1663     } else {
1664       Assembler::vinsertf128(dst, dst, src, 1);
1665     }
1666   }
1667 
1668   void vinsertf128_high(XMMRegister dst, Address src) {
1669     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1670       Assembler::vinsertf32x4(dst, dst, src, 1);
1671     } else {
1672       Assembler::vinsertf128(dst, dst, src, 1);
1673     }
1674   }
1675 
1676   void vextractf128_high(XMMRegister dst, XMMRegister src) {
1677     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1678       Assembler::vextractf32x4(dst, src, 1);
1679     } else {
1680       Assembler::vextractf128(dst, src, 1);
1681     }
1682   }
1683 
1684   void vextractf128_high(Address dst, XMMRegister src) {
1685     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1686       Assembler::vextractf32x4(dst, src, 1);
1687     } else {
1688       Assembler::vextractf128(dst, src, 1);
1689     }
1690   }
1691 
1692   // 256bit copy to/from high 256 bits of 512bit (ZMM) vector registers
1693   void vinserti64x4_high(XMMRegister dst, XMMRegister src) {
1694     Assembler::vinserti64x4(dst, dst, src, 1);
1695   }
1696   void vinsertf64x4_high(XMMRegister dst, XMMRegister src) {
1697     Assembler::vinsertf64x4(dst, dst, src, 1);
1698   }
1699   void vextracti64x4_high(XMMRegister dst, XMMRegister src) {
1700     Assembler::vextracti64x4(dst, src, 1);
1701   }
1702   void vextractf64x4_high(XMMRegister dst, XMMRegister src) {
1703     Assembler::vextractf64x4(dst, src, 1);
1704   }
1705   void vextractf64x4_high(Address dst, XMMRegister src) {
1706     Assembler::vextractf64x4(dst, src, 1);
1707   }
1708   void vinsertf64x4_high(XMMRegister dst, Address src) {
1709     Assembler::vinsertf64x4(dst, dst, src, 1);
1710   }
1711 
1712   // 128bit copy to/from low 128 bits of 256bit (YMM) vector registers
1713   void vinserti128_low(XMMRegister dst, XMMRegister src) {
1714     vinserti128(dst, dst, src, 0);
1715   }
1716   void vinserti128_low(XMMRegister dst, Address src) {
1717     vinserti128(dst, dst, src, 0);
1718   }
1719   void vextracti128_low(XMMRegister dst, XMMRegister src) {
1720     vextracti128(dst, src, 0);
1721   }
1722   void vextracti128_low(Address dst, XMMRegister src) {
1723     vextracti128(dst, src, 0);
1724   }
1725 
1726   void vinsertf128_low(XMMRegister dst, XMMRegister src) {
1727     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1728       Assembler::vinsertf32x4(dst, dst, src, 0);
1729     } else {
1730       Assembler::vinsertf128(dst, dst, src, 0);
1731     }
1732   }
1733 
1734   void vinsertf128_low(XMMRegister dst, Address src) {
1735     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1736       Assembler::vinsertf32x4(dst, dst, src, 0);
1737     } else {
1738       Assembler::vinsertf128(dst, dst, src, 0);
1739     }
1740   }
1741 
1742   void vextractf128_low(XMMRegister dst, XMMRegister src) {
1743     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1744       Assembler::vextractf32x4(dst, src, 0);
1745     } else {
1746       Assembler::vextractf128(dst, src, 0);
1747     }
1748   }
1749 
1750   void vextractf128_low(Address dst, XMMRegister src) {
1751     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1752       Assembler::vextractf32x4(dst, src, 0);
1753     } else {
1754       Assembler::vextractf128(dst, src, 0);
1755     }
1756   }
1757 
1758   // 256bit copy to/from low 256 bits of 512bit (ZMM) vector registers
1759   void vinserti64x4_low(XMMRegister dst, XMMRegister src) {
1760     Assembler::vinserti64x4(dst, dst, src, 0);
1761   }
1762   void vinsertf64x4_low(XMMRegister dst, XMMRegister src) {
1763     Assembler::vinsertf64x4(dst, dst, src, 0);
1764   }
1765   void vextracti64x4_low(XMMRegister dst, XMMRegister src) {
1766     Assembler::vextracti64x4(dst, src, 0);
1767   }
1768   void vextractf64x4_low(XMMRegister dst, XMMRegister src) {
1769     Assembler::vextractf64x4(dst, src, 0);
1770   }
1771   void vextractf64x4_low(Address dst, XMMRegister src) {
1772     Assembler::vextractf64x4(dst, src, 0);
1773   }
1774   void vinsertf64x4_low(XMMRegister dst, Address src) {
1775     Assembler::vinsertf64x4(dst, dst, src, 0);
1776   }
1777 
1778   // Carry-Less Multiplication Quadword
1779   void vpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1780     // 0x00 - multiply lower 64 bits [0:63]
1781     Assembler::vpclmulqdq(dst, nds, src, 0x00);
1782   }
1783   void vpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1784     // 0x11 - multiply upper 64 bits [64:127]
1785     Assembler::vpclmulqdq(dst, nds, src, 0x11);
1786   }
1787   void vpclmullqhqdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1788     // 0x10 - multiply nds[0:63] and src[64:127]
1789     Assembler::vpclmulqdq(dst, nds, src, 0x10);
1790   }
1791   void vpclmulhqlqdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1792     //0x01 - multiply nds[64:127] and src[0:63]
1793     Assembler::vpclmulqdq(dst, nds, src, 0x01);
1794   }
1795 
1796   void evpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1797     // 0x00 - multiply lower 64 bits [0:63]
1798     Assembler::evpclmulqdq(dst, nds, src, 0x00, vector_len);
1799   }
1800   void evpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1801     // 0x11 - multiply upper 64 bits [64:127]
1802     Assembler::evpclmulqdq(dst, nds, src, 0x11, vector_len);
1803   }
1804 
1805   // AVX-512 mask operations.
1806   void kand(BasicType etype, KRegister dst, KRegister src1, KRegister src2);
1807   void kor(BasicType type, KRegister dst, KRegister src1, KRegister src2);
1808   void knot(uint masklen, KRegister dst, KRegister src, KRegister ktmp = knoreg, Register rtmp = noreg);
1809   void kxor(BasicType type, KRegister dst, KRegister src1, KRegister src2);
1810   void kortest(uint masklen, KRegister src1, KRegister src2);
1811   void ktest(uint masklen, KRegister src1, KRegister src2);
1812 
1813   void evperm(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len);
1814   void evperm(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len);
1815 
1816   void evor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len);
1817   void evor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len);
1818 
1819   void evand(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len);
1820   void evand(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len);
1821 
1822   void evxor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len);
1823   void evxor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len);
1824 
1825   void evrold(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vlen_enc);
1826   void evrold(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src1, XMMRegister src2, bool merge, int vlen_enc);
1827   void evrord(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vlen_enc);
1828   void evrord(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src1, XMMRegister src2, bool merge, int vlen_enc);
1829 
1830   using Assembler::evpandq;
1831   void evpandq(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1832 
1833   using Assembler::evpaddq;
1834   void evpaddq(XMMRegister dst, KRegister mask, XMMRegister nds, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg);
1835 
1836   using Assembler::evporq;
1837   void evporq(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1838 
1839   using Assembler::vpshufb;
1840   void vpshufb(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1841 
1842   using Assembler::vpor;
1843   void vpor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1844 
1845   using Assembler::vpternlogq;
1846   void vpternlogq(XMMRegister dst, int imm8, XMMRegister src2, AddressLiteral src3, int vector_len, Register rscratch = noreg);
1847 
1848   void cmov32( Condition cc, Register dst, Address  src);
1849   void cmov32( Condition cc, Register dst, Register src);
1850 
1851   void cmov(   Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }
1852 
1853   void cmovptr(Condition cc, Register dst, Address  src) { cmovq(cc, dst, src); }
1854   void cmovptr(Condition cc, Register dst, Register src) { cmovq(cc, dst, src); }
1855 
1856   void movoop(Register dst, jobject obj);
1857   void movoop(Address  dst, jobject obj, Register rscratch);
1858 
1859   void mov_metadata(Register dst, Metadata* obj);
1860   void mov_metadata(Address  dst, Metadata* obj, Register rscratch);
1861 
1862   void movptr(Register     dst, Register       src);
1863   void movptr(Register     dst, Address        src);
1864   void movptr(Register     dst, AddressLiteral src);
1865   void movptr(Register     dst, ArrayAddress   src);
1866   void movptr(Register     dst, intptr_t       src);
1867   void movptr(Address      dst, Register       src);
1868   void movptr(Address      dst, int32_t        imm);
1869   void movptr(Address      dst, intptr_t       src, Register rscratch);
1870   void movptr(ArrayAddress dst, Register       src, Register rscratch);
1871 
1872   void movptr(Register dst, RegisterOrConstant src) {
1873     if (src.is_constant()) movptr(dst, src.as_constant());
1874     else                   movptr(dst, src.as_register());
1875   }
1876 
1877 
1878   // to avoid hiding movl
1879   void mov32(Register       dst, AddressLiteral src);
1880   void mov32(AddressLiteral dst, Register        src, Register rscratch = noreg);
1881 
1882   // Import other mov() methods from the parent class or else
1883   // they will be hidden by the following overriding declaration.
1884   using Assembler::movdl;
1885   void movdl(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1886 
1887   using Assembler::movq;
1888   void movq(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1889 
1890   // Can push value or effective address
1891   void pushptr(AddressLiteral src, Register rscratch);
1892 
1893   void pushptr(Address src) { pushq(src); }
1894   void popptr(Address src) { popq(src); }
1895 
1896   void pushoop(jobject obj, Register rscratch);
1897   void pushklass(Metadata* obj, Register rscratch);
1898 
1899   // sign extend as need a l to ptr sized element
1900   void movl2ptr(Register dst, Address src) { movslq(dst, src); }
1901   void movl2ptr(Register dst, Register src) { movslq(dst, src); }
1902 
1903 
1904  public:
1905   // clear memory of size 'cnt' qwords, starting at 'base';
1906   // if 'is_large' is set, do not try to produce short loop
1907   void clear_mem(Register base, Register cnt, Register rtmp, XMMRegister xtmp, bool is_large, KRegister mask=knoreg);
1908 
1909   // clear memory initialization sequence for constant size;
1910   void clear_mem(Register base, int cnt, Register rtmp, XMMRegister xtmp, KRegister mask=knoreg);
1911 
1912   // clear memory of size 'cnt' qwords, starting at 'base' using XMM/YMM registers
1913   void xmm_clear_mem(Register base, Register cnt, Register rtmp, XMMRegister xtmp, KRegister mask=knoreg);
1914 
1915   // Fill primitive arrays
1916   void generate_fill(BasicType t, bool aligned,
1917                      Register to, Register value, Register count,
1918                      Register rtmp, XMMRegister xtmp);
1919 
1920   void encode_iso_array(Register src, Register dst, Register len,
1921                         XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1922                         XMMRegister tmp4, Register tmp5, Register result, bool ascii);
1923 
1924   void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2);
1925   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
1926                              Register y, Register y_idx, Register z,
1927                              Register carry, Register product,
1928                              Register idx, Register kdx);
1929   void multiply_add_128_x_128(Register x_xstart, Register y, Register z,
1930                               Register yz_idx, Register idx,
1931                               Register carry, Register product, int offset);
1932   void multiply_128_x_128_bmi2_loop(Register y, Register z,
1933                                     Register carry, Register carry2,
1934                                     Register idx, Register jdx,
1935                                     Register yz_idx1, Register yz_idx2,
1936                                     Register tmp, Register tmp3, Register tmp4);
1937   void multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
1938                                Register yz_idx, Register idx, Register jdx,
1939                                Register carry, Register product,
1940                                Register carry2);
1941   void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register tmp0,
1942                        Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5);
1943   void square_rshift(Register x, Register len, Register z, Register tmp1, Register tmp3,
1944                      Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1945   void multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry,
1946                             Register tmp2);
1947   void multiply_add_64(Register sum, Register op1, Register op2, Register carry,
1948                        Register rdxReg, Register raxReg);
1949   void add_one_64(Register z, Register zlen, Register carry, Register tmp1);
1950   void lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1951                        Register tmp3, Register tmp4);
1952   void square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1953                      Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1954 
1955   void mul_add_128_x_32_loop(Register out, Register in, Register offset, Register len, Register tmp1,
1956                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1957                Register raxReg);
1958   void mul_add(Register out, Register in, Register offset, Register len, Register k, Register tmp1,
1959                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1960                Register raxReg);
1961   void vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
1962                            Register result, Register tmp1, Register tmp2,
1963                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3);
1964 
1965   // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
1966   void update_byte_crc32(Register crc, Register val, Register table);
1967   void kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp);
1968 
1969   void kernel_crc32_avx512(Register crc, Register buf, Register len, Register table, Register tmp1, Register tmp2);
1970   void kernel_crc32_avx512_256B(Register crc, Register buf, Register len, Register key, Register pos,
1971                                 Register tmp1, Register tmp2, Label& L_barrett, Label& L_16B_reduction_loop,
1972                                 Label& L_get_last_two_xmms, Label& L_128_done, Label& L_cleanup);
1973 
1974   // CRC32C code for java.util.zip.CRC32C::updateBytes() intrinsic
1975   // Note on a naming convention:
1976   // Prefix w = register only used on a Westmere+ architecture
1977   // Prefix n = register only used on a Nehalem architecture
1978   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1979                        Register tmp1, Register tmp2, Register tmp3);
1980   void crc32c_pclmulqdq(XMMRegister w_xtmp1,
1981                         Register in_out,
1982                         uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
1983                         XMMRegister w_xtmp2,
1984                         Register tmp1,
1985                         Register n_tmp2, Register n_tmp3);
1986   void crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
1987                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1988                        Register tmp1, Register tmp2,
1989                        Register n_tmp3);
1990   void crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
1991                          Register in_out1, Register in_out2, Register in_out3,
1992                          Register tmp1, Register tmp2, Register tmp3,
1993                          XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1994                          Register tmp4, Register tmp5,
1995                          Register n_tmp6);
1996   void crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
1997                             Register tmp1, Register tmp2, Register tmp3,
1998                             Register tmp4, Register tmp5, Register tmp6,
1999                             XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
2000                             bool is_pclmulqdq_supported);
2001   // Fold 128-bit data chunk
2002   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
2003   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf);
2004   // Fold 512-bit data chunk
2005   void fold512bit_crc32_avx512(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, Register pos, int offset);
2006   // Fold 8-bit data
2007   void fold_8bit_crc32(Register crc, Register table, Register tmp);
2008   void fold_8bit_crc32(XMMRegister crc, Register table, XMMRegister xtmp, Register tmp);
2009 
2010   // Compress char[] array to byte[].
2011   void char_array_compress(Register src, Register dst, Register len,
2012                            XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
2013                            XMMRegister tmp4, Register tmp5, Register result,
2014                            KRegister mask1 = knoreg, KRegister mask2 = knoreg);
2015 
2016   // Inflate byte[] array to char[].
2017   void byte_array_inflate(Register src, Register dst, Register len,
2018                           XMMRegister tmp1, Register tmp2, KRegister mask = knoreg);
2019 
2020   void fill_masked(BasicType bt, Address dst, XMMRegister xmm, KRegister mask,
2021                    Register length, Register temp, int vec_enc);
2022 
2023   void fill64_masked(uint shift, Register dst, int disp,
2024                          XMMRegister xmm, KRegister mask, Register length,
2025                          Register temp, bool use64byteVector = false);
2026 
2027   void fill32_masked(uint shift, Register dst, int disp,
2028                          XMMRegister xmm, KRegister mask, Register length,
2029                          Register temp);
2030 
2031   void fill32(Address dst, XMMRegister xmm);
2032 
2033   void fill32(Register dst, int disp, XMMRegister xmm);
2034 
2035   void fill64(Address dst, XMMRegister xmm, bool use64byteVector = false);
2036 
2037   void fill64(Register dst, int dis, XMMRegister xmm, bool use64byteVector = false);
2038 
2039   void convert_f2i(Register dst, XMMRegister src);
2040   void convert_d2i(Register dst, XMMRegister src);
2041   void convert_f2l(Register dst, XMMRegister src);
2042   void convert_d2l(Register dst, XMMRegister src);
2043   void round_double(Register dst, XMMRegister src, Register rtmp, Register rcx);
2044   void round_float(Register dst, XMMRegister src, Register rtmp, Register rcx);
2045 
2046   void cache_wb(Address line);
2047   void cache_wbsync(bool is_pre);
2048 
2049 #ifdef COMPILER2_OR_JVMCI
2050   void generate_fill_avx3(BasicType type, Register to, Register value,
2051                           Register count, Register rtmp, XMMRegister xtmp);
2052 #endif // COMPILER2_OR_JVMCI
2053 
2054   void vallones(XMMRegister dst, int vector_len);
2055 
2056   void check_stack_alignment(Register sp, const char* msg, unsigned bias = 0, Register tmp = noreg);
2057 
2058   void fast_lock(Register basic_lock, Register obj, Register reg_rax, Register tmp, Label& slow);
2059   void fast_unlock(Register obj, Register reg_rax, Register tmp, Label& slow);
2060 
2061   void save_legacy_gprs();
2062   void restore_legacy_gprs();
2063   void setcc(Assembler::Condition comparison, Register dst);
2064 };
2065 
2066 #endif // CPU_X86_MACROASSEMBLER_X86_HPP