1 /*
2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #ifndef CPU_X86_MACROASSEMBLER_X86_HPP
26 #define CPU_X86_MACROASSEMBLER_X86_HPP
27
28 #include "asm/assembler.hpp"
29 #include "asm/register.hpp"
30 #include "code/vmreg.inline.hpp"
31 #include "compiler/oopMap.hpp"
32 #include "utilities/macros.hpp"
33 #include "runtime/vm_version.hpp"
34 #include "utilities/checkedCast.hpp"
35
36 // MacroAssembler extends Assembler by frequently used macros.
37 //
38 // Instructions for which a 'better' code sequence exists depending
39 // on arguments should also go in here.
40
41 class MacroAssembler: public Assembler {
42 friend class LIR_Assembler;
43 friend class Runtime1; // as_Address()
44
45 public:
46 // Support for VM calls
47 //
48 // This is the base routine called by the different versions of call_VM_leaf. The interpreter
49 // may customize this version by overriding it for its purposes (e.g., to save/restore
50 // additional registers when doing a VM call).
51
52 virtual void call_VM_leaf_base(
53 address entry_point, // the entry point
54 int number_of_arguments // the number of arguments to pop after the call
55 );
56
57 protected:
58 // This is the base routine called by the different versions of call_VM. The interpreter
59 // may customize this version by overriding it for its purposes (e.g., to save/restore
60 // additional registers when doing a VM call).
61 //
62 // call_VM_base returns the register which contains the thread upon return.
63 // If no last_java_sp is specified (noreg) than rsp will be used instead.
64 virtual void call_VM_base( // returns the register containing the thread upon return
65 Register oop_result, // where an oop-result ends up if any; use noreg otherwise
66 Register last_java_sp, // to set up last_Java_frame in stubs; use noreg otherwise
67 address entry_point, // the entry point
68 int number_of_arguments, // the number of arguments (w/o thread) to pop after the call
69 bool check_exceptions // whether to check for pending exceptions after return
70 );
71
72 void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
73
74 public:
75 MacroAssembler(CodeBuffer* code) : Assembler(code) {}
76
77 // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
78 // The implementation is only non-empty for the InterpreterMacroAssembler,
79 // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
80 virtual void check_and_handle_popframe();
81 virtual void check_and_handle_earlyret();
82
83 Address as_Address(AddressLiteral adr);
84 Address as_Address(ArrayAddress adr, Register rscratch);
85
86 // Support for null-checks
87 //
88 // Generates code that causes a null OS exception if the content of reg is null.
89 // If the accessed location is M[reg + offset] and the offset is known, provide the
90 // offset. No explicit code generation is needed if the offset is within a certain
91 // range (0 <= offset <= page_size).
92
93 void null_check(Register reg, int offset = -1);
94 static bool needs_explicit_null_check(intptr_t offset);
95 static bool uses_implicit_null_check(void* address);
96
97 // Required platform-specific helpers for Label::patch_instructions.
98 // They _shadow_ the declarations in AbstractAssembler, which are undefined.
99 void pd_patch_instruction(address branch, address target, const char* file, int line) {
100 unsigned char op = branch[0];
101 assert(op == 0xE8 /* call */ ||
102 op == 0xE9 /* jmp */ ||
103 op == 0xEB /* short jmp */ ||
104 (op & 0xF0) == 0x70 /* short jcc */ ||
105 (op == 0x0F && (branch[1] & 0xF0) == 0x80) /* jcc */ ||
106 (op == 0xC7 && branch[1] == 0xF8) /* xbegin */ ||
107 (op == 0x8D) /* lea */,
108 "Invalid opcode at patch point");
109
110 if (op == 0xEB || (op & 0xF0) == 0x70) {
111 // short offset operators (jmp and jcc)
112 char* disp = (char*) &branch[1];
113 int imm8 = checked_cast<int>(target - (address) &disp[1]);
114 guarantee(this->is8bit(imm8), "Short forward jump exceeds 8-bit offset at %s:%d",
115 file == nullptr ? "<null>" : file, line);
116 *disp = (char)imm8;
117 } else {
118 int* disp = (int*) &branch[(op == 0x0F || op == 0xC7 || op == 0x8D) ? 2 : 1];
119 int imm32 = checked_cast<int>(target - (address) &disp[1]);
120 *disp = imm32;
121 }
122 }
123
124 // The following 4 methods return the offset of the appropriate move instruction
125
126 // Support for fast byte/short loading with zero extension (depending on particular CPU)
127 int load_unsigned_byte(Register dst, Address src);
128 int load_unsigned_short(Register dst, Address src);
129
130 // Support for fast byte/short loading with sign extension (depending on particular CPU)
131 int load_signed_byte(Register dst, Address src);
132 int load_signed_short(Register dst, Address src);
133
134 // Support for sign-extension (hi:lo = extend_sign(lo))
135 void extend_sign(Register hi, Register lo);
136
137 // Load and store values by size and signed-ness
138 void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
139 void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
140
141 // Support for inc/dec with optimal instruction selection depending on value
142
143 void increment(Register reg, int value = 1) { incrementq(reg, value); }
144 void decrement(Register reg, int value = 1) { decrementq(reg, value); }
145 void increment(Address dst, int value = 1) { incrementq(dst, value); }
146 void decrement(Address dst, int value = 1) { decrementq(dst, value); }
147
148 void decrementl(Address dst, int value = 1);
149 void decrementl(Register reg, int value = 1);
150
151 void decrementq(Register reg, int value = 1);
152 void decrementq(Address dst, int value = 1);
153
154 void incrementl(Address dst, int value = 1);
155 void incrementl(Register reg, int value = 1);
156
157 void incrementq(Register reg, int value = 1);
158 void incrementq(Address dst, int value = 1);
159
160 void incrementl(AddressLiteral dst, Register rscratch = noreg);
161 void incrementl(ArrayAddress dst, Register rscratch);
162
163 void incrementq(AddressLiteral dst, Register rscratch = noreg);
164
165 // Support optimal SSE move instructions.
166 void movflt(XMMRegister dst, XMMRegister src) {
167 if (dst-> encoding() == src->encoding()) return;
168 if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
169 else { movss (dst, src); return; }
170 }
171 void movflt(XMMRegister dst, Address src) { movss(dst, src); }
172 void movflt(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
173 void movflt(Address dst, XMMRegister src) { movss(dst, src); }
174
175 // Move with zero extension
176 void movfltz(XMMRegister dst, XMMRegister src) { movss(dst, src); }
177
178 void movdbl(XMMRegister dst, XMMRegister src) {
179 if (dst-> encoding() == src->encoding()) return;
180 if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
181 else { movsd (dst, src); return; }
182 }
183
184 void movdbl(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
185
186 void movdbl(XMMRegister dst, Address src) {
187 if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
188 else { movlpd(dst, src); return; }
189 }
190 void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
191
192 void flt_to_flt16(Register dst, XMMRegister src, XMMRegister tmp) {
193 // Use separate tmp XMM register because caller may
194 // requires src XMM register to be unchanged (as in x86.ad).
195 vcvtps2ph(tmp, src, 0x04, Assembler::AVX_128bit);
196 movdl(dst, tmp);
197 movswl(dst, dst);
198 }
199
200 void flt16_to_flt(XMMRegister dst, Register src) {
201 movdl(dst, src);
202 vcvtph2ps(dst, dst, Assembler::AVX_128bit);
203 }
204
205 // Alignment
206 void align32();
207 void align64();
208 void align(uint modulus);
209 void align(uint modulus, uint target);
210
211 void post_call_nop();
212
213 // Stack frame creation/removal
214 void enter();
215 void leave();
216
217 // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information).
218 // The pointer will be loaded into the thread register. This is a slow version that does native call.
219 // Normally, JavaThread pointer is available in r15_thread, use that where possible.
220 void get_thread_slow(Register thread);
221
222 // Support for argument shuffling
223
224 // bias in bytes
225 void move32_64(VMRegPair src, VMRegPair dst, Register tmp = rax, int in_stk_bias = 0, int out_stk_bias = 0);
226 void long_move(VMRegPair src, VMRegPair dst, Register tmp = rax, int in_stk_bias = 0, int out_stk_bias = 0);
227 void float_move(VMRegPair src, VMRegPair dst, Register tmp = rax, int in_stk_bias = 0, int out_stk_bias = 0);
228 void double_move(VMRegPair src, VMRegPair dst, Register tmp = rax, int in_stk_bias = 0, int out_stk_bias = 0);
229 void move_ptr(VMRegPair src, VMRegPair dst);
230 void object_move(OopMap* map,
231 int oop_handle_offset,
232 int framesize_in_slots,
233 VMRegPair src,
234 VMRegPair dst,
235 bool is_receiver,
236 int* receiver_offset);
237
238 // Support for VM calls
239 //
240 // It is imperative that all calls into the VM are handled via the call_VM macros.
241 // They make sure that the stack linkage is setup correctly. call_VM's correspond
242 // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
243
244
245 void call_VM(Register oop_result,
246 address entry_point,
247 bool check_exceptions = true);
248 void call_VM(Register oop_result,
249 address entry_point,
250 Register arg_1,
251 bool check_exceptions = true);
252 void call_VM(Register oop_result,
253 address entry_point,
254 Register arg_1, Register arg_2,
255 bool check_exceptions = true);
256 void call_VM(Register oop_result,
257 address entry_point,
258 Register arg_1, Register arg_2, Register arg_3,
259 bool check_exceptions = true);
260
261 // Overloadings with last_Java_sp
262 void call_VM(Register oop_result,
263 Register last_java_sp,
264 address entry_point,
265 int number_of_arguments = 0,
266 bool check_exceptions = true);
267 void call_VM(Register oop_result,
268 Register last_java_sp,
269 address entry_point,
270 Register arg_1, bool
271 check_exceptions = true);
272 void call_VM(Register oop_result,
273 Register last_java_sp,
274 address entry_point,
275 Register arg_1, Register arg_2,
276 bool check_exceptions = true);
277 void call_VM(Register oop_result,
278 Register last_java_sp,
279 address entry_point,
280 Register arg_1, Register arg_2, Register arg_3,
281 bool check_exceptions = true);
282
283 void get_vm_result_oop(Register oop_result);
284 void get_vm_result_metadata(Register metadata_result);
285
286 // These always tightly bind to MacroAssembler::call_VM_base
287 // bypassing the virtual implementation
288 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
289 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
290 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
291 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
292 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
293
294 void call_VM_leaf0(address entry_point);
295 void call_VM_leaf(address entry_point,
296 int number_of_arguments = 0);
297 void call_VM_leaf(address entry_point,
298 Register arg_1);
299 void call_VM_leaf(address entry_point,
300 Register arg_1, Register arg_2);
301 void call_VM_leaf(address entry_point,
302 Register arg_1, Register arg_2, Register arg_3);
303
304 void call_VM_leaf(address entry_point,
305 Register arg_1, Register arg_2, Register arg_3, Register arg_4);
306
307 // These always tightly bind to MacroAssembler::call_VM_leaf_base
308 // bypassing the virtual implementation
309 void super_call_VM_leaf(address entry_point);
310 void super_call_VM_leaf(address entry_point, Register arg_1);
311 void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
312 void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
313 void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
314
315 void set_last_Java_frame(Register last_java_sp,
316 Register last_java_fp,
317 address last_java_pc,
318 Register rscratch);
319
320 void set_last_Java_frame(Register last_java_sp,
321 Register last_java_fp,
322 Label &last_java_pc,
323 Register scratch);
324
325 void reset_last_Java_frame(bool clear_fp);
326
327 // jobjects
328 void clear_jobject_tag(Register possibly_non_local);
329 void resolve_jobject(Register value, Register tmp);
330 void resolve_global_jobject(Register value, Register tmp);
331
332 // C 'boolean' to Java boolean: x == 0 ? 0 : 1
333 void c2bool(Register x);
334
335 // C++ bool manipulation
336
337 void movbool(Register dst, Address src);
338 void movbool(Address dst, bool boolconst);
339 void movbool(Address dst, Register src);
340 void testbool(Register dst);
341
342 void resolve_oop_handle(Register result, Register tmp);
343 void resolve_weak_handle(Register result, Register tmp);
344 void load_mirror(Register mirror, Register method, Register tmp);
345 void load_method_holder_cld(Register rresult, Register rmethod);
346
347 void load_method_holder(Register holder, Register method);
348
349 // oop manipulations
350 void load_narrow_klass_compact(Register dst, Register src);
351 void load_klass(Register dst, Register src, Register tmp);
352 void store_klass(Register dst, Register src, Register tmp);
353
354 // Compares the Klass pointer of an object to a given Klass (which might be narrow,
355 // depending on UseCompressedClassPointers).
356 void cmp_klass(Register klass, Register obj, Register tmp);
357
358 // Compares the Klass pointer of two objects obj1 and obj2. Result is in the condition flags.
359 // Uses tmp1 and tmp2 as temporary registers.
360 void cmp_klasses_from_objects(Register obj1, Register obj2, Register tmp1, Register tmp2);
361
362 void access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src,
363 Register tmp1);
364 void access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register val,
365 Register tmp1, Register tmp2, Register tmp3);
366
367 void load_heap_oop(Register dst, Address src, Register tmp1 = noreg, DecoratorSet decorators = 0);
368 void load_heap_oop_not_null(Register dst, Address src, Register tmp1 = noreg, DecoratorSet decorators = 0);
369 void store_heap_oop(Address dst, Register val, Register tmp1 = noreg,
370 Register tmp2 = noreg, Register tmp3 = noreg, DecoratorSet decorators = 0);
371
372 // Used for storing null. All other oop constants should be
373 // stored using routines that take a jobject.
374 void store_heap_oop_null(Address dst);
375
376 void store_klass_gap(Register dst, Register src);
377
378 // This dummy is to prevent a call to store_heap_oop from
379 // converting a zero (like null) into a Register by giving
380 // the compiler two choices it can't resolve
381
382 void store_heap_oop(Address dst, void* dummy);
383
384 void encode_heap_oop(Register r);
385 void decode_heap_oop(Register r);
386 void encode_heap_oop_not_null(Register r);
387 void decode_heap_oop_not_null(Register r);
388 void encode_heap_oop_not_null(Register dst, Register src);
389 void decode_heap_oop_not_null(Register dst, Register src);
390
391 void set_narrow_oop(Register dst, jobject obj);
392 void set_narrow_oop(Address dst, jobject obj);
393 void cmp_narrow_oop(Register dst, jobject obj);
394 void cmp_narrow_oop(Address dst, jobject obj);
395
396 void encode_klass_not_null(Register r, Register tmp);
397 void decode_klass_not_null(Register r, Register tmp);
398 void encode_and_move_klass_not_null(Register dst, Register src);
399 void decode_and_move_klass_not_null(Register dst, Register src);
400 void set_narrow_klass(Register dst, Klass* k);
401 void set_narrow_klass(Address dst, Klass* k);
402 void cmp_narrow_klass(Register dst, Klass* k);
403 void cmp_narrow_klass(Address dst, Klass* k);
404
405 // if heap base register is used - reinit it with the correct value
406 void reinit_heapbase();
407
408 DEBUG_ONLY(void verify_heapbase(const char* msg);)
409
410 // Int division/remainder for Java
411 // (as idivl, but checks for special case as described in JVM spec.)
412 // returns idivl instruction offset for implicit exception handling
413 int corrected_idivl(Register reg);
414
415 // Long division/remainder for Java
416 // (as idivq, but checks for special case as described in JVM spec.)
417 // returns idivq instruction offset for implicit exception handling
418 int corrected_idivq(Register reg);
419
420 void int3();
421
422 // Long operation macros for a 32bit cpu
423 // Long negation for Java
424 void lneg(Register hi, Register lo);
425
426 // Long multiplication for Java
427 // (destroys contents of eax, ebx, ecx and edx)
428 void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
429
430 // Long shifts for Java
431 // (semantics as described in JVM spec.)
432 void lshl(Register hi, Register lo); // hi:lo << (rcx & 0x3f)
433 void lshr(Register hi, Register lo, bool sign_extension = false); // hi:lo >> (rcx & 0x3f)
434
435 // Long compare for Java
436 // (semantics as described in JVM spec.)
437 void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
438
439
440 // misc
441
442 // Sign extension
443 void sign_extend_short(Register reg);
444 void sign_extend_byte(Register reg);
445
446 // Division by power of 2, rounding towards 0
447 void division_with_shift(Register reg, int shift_value);
448
449 // dst = c = a * b + c
450 void fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
451 void fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
452
453 void vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
454 void vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
455 void vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
456 void vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
457
458
459 // same as fcmp2int, but using SSE2
460 void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
461 void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
462
463 void push_IU_state();
464 void pop_IU_state();
465
466 void push_FPU_state();
467 void pop_FPU_state();
468
469 void push_CPU_state();
470 void pop_CPU_state();
471
472 void push_cont_fastpath();
473 void pop_cont_fastpath();
474
475 DEBUG_ONLY(void stop_if_in_cont(Register cont_reg, const char* name);)
476
477 // Round up to a power of two
478 void round_to(Register reg, int modulus);
479
480 private:
481 // General purpose and XMM registers potentially clobbered by native code; there
482 // is no need for FPU or AVX opmask related methods because C1/interpreter
483 // - we save/restore FPU state as a whole always
484 // - do not care about AVX-512 opmask
485 static RegSet call_clobbered_gp_registers();
486 static XMMRegSet call_clobbered_xmm_registers();
487
488 void push_set(XMMRegSet set, int offset);
489 void pop_set(XMMRegSet set, int offset);
490
491 public:
492 void push_set(RegSet set, int offset = -1);
493 void pop_set(RegSet set, int offset = -1);
494
495 // Push and pop everything that might be clobbered by a native
496 // runtime call.
497 // Only save the lower 64 bits of each vector register.
498 // Additional registers can be excluded in a passed RegSet.
499 void push_call_clobbered_registers_except(RegSet exclude, bool save_fpu = true);
500 void pop_call_clobbered_registers_except(RegSet exclude, bool restore_fpu = true);
501
502 void push_call_clobbered_registers(bool save_fpu = true) {
503 push_call_clobbered_registers_except(RegSet(), save_fpu);
504 }
505 void pop_call_clobbered_registers(bool restore_fpu = true) {
506 pop_call_clobbered_registers_except(RegSet(), restore_fpu);
507 }
508
509 // allocation
510 void tlab_allocate(
511 Register obj, // result: pointer to object after successful allocation
512 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
513 int con_size_in_bytes, // object size in bytes if known at compile time
514 Register t1, // temp register
515 Register t2, // temp register
516 Label& slow_case // continuation point if fast allocation fails
517 );
518 void zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp);
519
520 void population_count(Register dst, Register src, Register scratch1, Register scratch2);
521
522 // interface method calling
523 void lookup_interface_method(Register recv_klass,
524 Register intf_klass,
525 RegisterOrConstant itable_index,
526 Register method_result,
527 Register scan_temp,
528 Label& no_such_interface,
529 bool return_method = true);
530
531 void lookup_interface_method_stub(Register recv_klass,
532 Register holder_klass,
533 Register resolved_klass,
534 Register method_result,
535 Register scan_temp,
536 Register temp_reg2,
537 Register receiver,
538 int itable_index,
539 Label& L_no_such_interface);
540
541 // virtual method calling
542 void lookup_virtual_method(Register recv_klass,
543 RegisterOrConstant vtable_index,
544 Register method_result);
545
546 // Test sub_klass against super_klass, with fast and slow paths.
547
548 // The fast path produces a tri-state answer: yes / no / maybe-slow.
549 // One of the three labels can be null, meaning take the fall-through.
550 // If super_check_offset is -1, the value is loaded up from super_klass.
551 // No registers are killed, except temp_reg.
552 void check_klass_subtype_fast_path(Register sub_klass,
553 Register super_klass,
554 Register temp_reg,
555 Label* L_success,
556 Label* L_failure,
557 Label* L_slow_path,
558 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
559
560 // The rest of the type check; must be wired to a corresponding fast path.
561 // It does not repeat the fast path logic, so don't use it standalone.
562 // The temp_reg and temp2_reg can be noreg, if no temps are available.
563 // Updates the sub's secondary super cache as necessary.
564 // If set_cond_codes, condition codes will be Z on success, NZ on failure.
565 void check_klass_subtype_slow_path(Register sub_klass,
566 Register super_klass,
567 Register temp_reg,
568 Register temp2_reg,
569 Label* L_success,
570 Label* L_failure,
571 bool set_cond_codes = false);
572
573 // The 64-bit version, which may do a hashed subclass lookup.
574 void check_klass_subtype_slow_path(Register sub_klass,
575 Register super_klass,
576 Register temp_reg,
577 Register temp2_reg,
578 Register temp3_reg,
579 Register temp4_reg,
580 Label* L_success,
581 Label* L_failure);
582
583 // Three parts of a hashed subclass lookup: a simple linear search,
584 // a table lookup, and a fallback that does linear probing in the
585 // event of a hash collision.
586 void check_klass_subtype_slow_path_linear(Register sub_klass,
587 Register super_klass,
588 Register temp_reg,
589 Register temp2_reg,
590 Label* L_success,
591 Label* L_failure,
592 bool set_cond_codes = false);
593 void check_klass_subtype_slow_path_table(Register sub_klass,
594 Register super_klass,
595 Register temp_reg,
596 Register temp2_reg,
597 Register temp3_reg,
598 Register result_reg,
599 Label* L_success,
600 Label* L_failure);
601 void hashed_check_klass_subtype_slow_path(Register sub_klass,
602 Register super_klass,
603 Register temp_reg,
604 Label* L_success,
605 Label* L_failure);
606
607 // As above, but with a constant super_klass.
608 // The result is in Register result, not the condition codes.
609 void lookup_secondary_supers_table_const(Register sub_klass,
610 Register super_klass,
611 Register temp1,
612 Register temp2,
613 Register temp3,
614 Register temp4,
615 Register result,
616 u1 super_klass_slot);
617
618 using Assembler::salq;
619 void salq(Register dest, Register count);
620 using Assembler::rorq;
621 void rorq(Register dest, Register count);
622 void lookup_secondary_supers_table_var(Register sub_klass,
623 Register super_klass,
624 Register temp1,
625 Register temp2,
626 Register temp3,
627 Register temp4,
628 Register result);
629
630 void lookup_secondary_supers_table_slow_path(Register r_super_klass,
631 Register r_array_base,
632 Register r_array_index,
633 Register r_bitmap,
634 Register temp1,
635 Register temp2,
636 Label* L_success,
637 Label* L_failure = nullptr);
638
639 void verify_secondary_supers_table(Register r_sub_klass,
640 Register r_super_klass,
641 Register expected,
642 Register temp1,
643 Register temp2,
644 Register temp3);
645
646 void repne_scanq(Register addr, Register value, Register count, Register limit,
647 Label* L_success,
648 Label* L_failure = nullptr);
649
650 // If r is valid, return r.
651 // If r is invalid, remove a register r2 from available_regs, add r2
652 // to regs_to_push, then return r2.
653 Register allocate_if_noreg(const Register r,
654 RegSetIterator<Register> &available_regs,
655 RegSet ®s_to_push);
656
657 // Simplified, combined version, good for typical uses.
658 // Falls through on failure.
659 void check_klass_subtype(Register sub_klass,
660 Register super_klass,
661 Register temp_reg,
662 Label& L_success);
663
664 void clinit_barrier(Register klass,
665 Label* L_fast_path = nullptr,
666 Label* L_slow_path = nullptr);
667
668 // method handles (JSR 292)
669 Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
670
671 void profile_receiver_type(Register recv, Register mdp, int mdp_offset);
672
673 // Debugging
674
675 // only if +VerifyOops
676 void _verify_oop(Register reg, const char* s, const char* file, int line);
677 void _verify_oop_addr(Address addr, const char* s, const char* file, int line);
678
679 void _verify_oop_checked(Register reg, const char* s, const char* file, int line) {
680 if (VerifyOops) {
681 _verify_oop(reg, s, file, line);
682 }
683 }
684 void _verify_oop_addr_checked(Address reg, const char* s, const char* file, int line) {
685 if (VerifyOops) {
686 _verify_oop_addr(reg, s, file, line);
687 }
688 }
689
690 // TODO: verify method and klass metadata (compare against vptr?)
691 void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
692 void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
693
694 #define verify_oop(reg) _verify_oop_checked(reg, "broken oop " #reg, __FILE__, __LINE__)
695 #define verify_oop_msg(reg, msg) _verify_oop_checked(reg, "broken oop " #reg ", " #msg, __FILE__, __LINE__)
696 #define verify_oop_addr(addr) _verify_oop_addr_checked(addr, "broken oop addr " #addr, __FILE__, __LINE__)
697 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
698 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
699
700 // Verify or restore cpu control state after JNI call
701 void restore_cpu_control_state_after_jni(Register rscratch);
702
703 // prints msg, dumps registers and stops execution
704 void stop(const char* msg);
705
706 // prints msg and continues
707 void warn(const char* msg);
708
709 // dumps registers and other state
710 void print_state();
711
712 static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
713 static void debug64(char* msg, int64_t pc, int64_t regs[]);
714 static void print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip);
715 static void print_state64(int64_t pc, int64_t regs[]);
716
717 void os_breakpoint();
718
719 void untested() { stop("untested"); }
720
721 void unimplemented(const char* what = "");
722
723 void should_not_reach_here() { stop("should not reach here"); }
724
725 void print_CPU_state();
726
727 // Stack overflow checking
728 void bang_stack_with_offset(int offset) {
729 // stack grows down, caller passes positive offset
730 assert(offset > 0, "must bang with negative offset");
731 movl(Address(rsp, (-offset)), rax);
732 }
733
734 // Writes to stack successive pages until offset reached to check for
735 // stack overflow + shadow pages. Also, clobbers tmp
736 void bang_stack_size(Register size, Register tmp);
737
738 // Check for reserved stack access in method being exited (for JIT)
739 void reserved_stack_check();
740
741 void safepoint_poll(Label& slow_path, bool at_return, bool in_nmethod);
742
743 void verify_tlab();
744
745 static Condition negate_condition(Condition cond);
746
747 // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
748 // operands. In general the names are modified to avoid hiding the instruction in Assembler
749 // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
750 // here in MacroAssembler. The major exception to this rule is call
751
752 // Arithmetics
753
754
755 void addptr(Address dst, int32_t src) { addq(dst, src); }
756 void addptr(Address dst, Register src);
757
758 void addptr(Register dst, Address src) { addq(dst, src); }
759 void addptr(Register dst, int32_t src);
760 void addptr(Register dst, Register src);
761 void addptr(Register dst, RegisterOrConstant src) {
762 if (src.is_constant()) addptr(dst, checked_cast<int>(src.as_constant()));
763 else addptr(dst, src.as_register());
764 }
765
766 void andptr(Register dst, int32_t src);
767 void andptr(Register src1, Register src2) { andq(src1, src2); }
768
769 using Assembler::andq;
770 void andq(Register dst, AddressLiteral src, Register rscratch = noreg);
771
772 void cmp8(AddressLiteral src1, int imm, Register rscratch = noreg);
773
774 // renamed to drag out the casting of address to int32_t/intptr_t
775 void cmp32(Register src1, int32_t imm);
776
777 void cmp32(AddressLiteral src1, int32_t imm, Register rscratch = noreg);
778 // compare reg - mem, or reg - &mem
779 void cmp32(Register src1, AddressLiteral src2, Register rscratch = noreg);
780
781 void cmp32(Register src1, Address src2);
782
783 void cmpoop(Register src1, Register src2);
784 void cmpoop(Register src1, Address src2);
785 void cmpoop(Register dst, jobject obj, Register rscratch);
786
787 // NOTE src2 must be the lval. This is NOT an mem-mem compare
788 void cmpptr(Address src1, AddressLiteral src2, Register rscratch);
789
790 void cmpptr(Register src1, AddressLiteral src2, Register rscratch = noreg);
791
792 void cmpptr(Register src1, Register src2) { cmpq(src1, src2); }
793 void cmpptr(Register src1, Address src2) { cmpq(src1, src2); }
794
795 void cmpptr(Register src1, int32_t src2) { cmpq(src1, src2); }
796 void cmpptr(Address src1, int32_t src2) { cmpq(src1, src2); }
797
798 // cmp64 to avoild hiding cmpq
799 void cmp64(Register src1, AddressLiteral src, Register rscratch = noreg);
800
801 void cmpxchgptr(Register reg, Address adr);
802
803 void locked_cmpxchgptr(Register reg, AddressLiteral adr, Register rscratch = noreg);
804
805 void imulptr(Register dst, Register src) { imulq(dst, src); }
806 void imulptr(Register dst, Register src, int imm32) { imulq(dst, src, imm32); }
807
808
809 void negptr(Register dst) { negq(dst); }
810
811 void notptr(Register dst) { notq(dst); }
812
813 void shlptr(Register dst, int32_t shift);
814 void shlptr(Register dst) { shlq(dst); }
815
816 void shrptr(Register dst, int32_t shift);
817 void shrptr(Register dst) { shrq(dst); }
818
819 void sarptr(Register dst) { sarq(dst); }
820 void sarptr(Register dst, int32_t src) { sarq(dst, src); }
821
822 void subptr(Address dst, int32_t src) { subq(dst, src); }
823
824 void subptr(Register dst, Address src) { subq(dst, src); }
825 void subptr(Register dst, int32_t src);
826 // Force generation of a 4 byte immediate value even if it fits into 8bit
827 void subptr_imm32(Register dst, int32_t src);
828 void subptr(Register dst, Register src);
829 void subptr(Register dst, RegisterOrConstant src) {
830 if (src.is_constant()) subptr(dst, (int) src.as_constant());
831 else subptr(dst, src.as_register());
832 }
833
834 void sbbptr(Address dst, int32_t src) { sbbq(dst, src); }
835 void sbbptr(Register dst, int32_t src) { sbbq(dst, src); }
836
837 void xchgptr(Register src1, Register src2) { xchgq(src1, src2); }
838 void xchgptr(Register src1, Address src2) { xchgq(src1, src2); }
839
840 void xaddptr(Address src1, Register src2) { xaddq(src1, src2); }
841
842
843
844 // Helper functions for statistics gathering.
845 // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
846 void cond_inc32(Condition cond, AddressLiteral counter_addr, Register rscratch = noreg);
847 // Unconditional atomic increment.
848 void atomic_incl(Address counter_addr);
849 void atomic_incl(AddressLiteral counter_addr, Register rscratch = noreg);
850 void atomic_incq(Address counter_addr);
851 void atomic_incq(AddressLiteral counter_addr, Register rscratch = noreg);
852 void atomic_incptr(AddressLiteral counter_addr, Register rscratch = noreg) { atomic_incq(counter_addr, rscratch); }
853 void atomic_incptr(Address counter_addr) { atomic_incq(counter_addr); }
854
855 using Assembler::lea;
856 void lea(Register dst, AddressLiteral adr);
857 void lea(Address dst, AddressLiteral adr, Register rscratch);
858
859 void leal32(Register dst, Address src) { leal(dst, src); }
860
861 // Import other testl() methods from the parent class or else
862 // they will be hidden by the following overriding declaration.
863 using Assembler::testl;
864 void testl(Address dst, int32_t imm32);
865 void testl(Register dst, int32_t imm32);
866 void testl(Register dst, AddressLiteral src); // requires reachable address
867 using Assembler::testq;
868 void testq(Address dst, int32_t imm32);
869 void testq(Register dst, int32_t imm32);
870
871 void orptr(Register dst, Address src) { orq(dst, src); }
872 void orptr(Register dst, Register src) { orq(dst, src); }
873 void orptr(Register dst, int32_t src) { orq(dst, src); }
874 void orptr(Address dst, int32_t imm32) { orq(dst, imm32); }
875
876 void testptr(Register src, int32_t imm32) { testq(src, imm32); }
877 void testptr(Register src1, Address src2) { testq(src1, src2); }
878 void testptr(Address src, int32_t imm32) { testq(src, imm32); }
879 void testptr(Register src1, Register src2);
880
881 void xorptr(Register dst, Register src) { xorq(dst, src); }
882 void xorptr(Register dst, Address src) { xorq(dst, src); }
883
884 // Calls
885
886 void call(Label& L, relocInfo::relocType rtype);
887 void call(Register entry);
888 void call(Address addr) { Assembler::call(addr); }
889
890 // NOTE: this call transfers to the effective address of entry NOT
891 // the address contained by entry. This is because this is more natural
892 // for jumps/calls.
893 void call(AddressLiteral entry, Register rscratch = rax);
894
895 // Emit the CompiledIC call idiom
896 void ic_call(address entry, jint method_index = 0);
897 static int ic_check_size();
898 int ic_check(int end_alignment);
899
900 void emit_static_call_stub();
901
902 // Jumps
903
904 // NOTE: these jumps transfer to the effective address of dst NOT
905 // the address contained by dst. This is because this is more natural
906 // for jumps/calls.
907 void jump(AddressLiteral dst, Register rscratch = noreg);
908
909 void jump_cc(Condition cc, AddressLiteral dst, Register rscratch = noreg);
910
911 // 32bit can do a case table jump in one instruction but we no longer allow the base
912 // to be installed in the Address class. This jump will transfer to the address
913 // contained in the location described by entry (not the address of entry)
914 void jump(ArrayAddress entry, Register rscratch);
915
916 // Adding more natural conditional jump instructions
917 void ALWAYSINLINE jo(Label& L, bool maybe_short = true) { jcc(Assembler::overflow, L, maybe_short); }
918 void ALWAYSINLINE jno(Label& L, bool maybe_short = true) { jcc(Assembler::noOverflow, L, maybe_short); }
919 void ALWAYSINLINE js(Label& L, bool maybe_short = true) { jcc(Assembler::negative, L, maybe_short); }
920 void ALWAYSINLINE jns(Label& L, bool maybe_short = true) { jcc(Assembler::positive, L, maybe_short); }
921 void ALWAYSINLINE je(Label& L, bool maybe_short = true) { jcc(Assembler::equal, L, maybe_short); }
922 void ALWAYSINLINE jz(Label& L, bool maybe_short = true) { jcc(Assembler::zero, L, maybe_short); }
923 void ALWAYSINLINE jne(Label& L, bool maybe_short = true) { jcc(Assembler::notEqual, L, maybe_short); }
924 void ALWAYSINLINE jnz(Label& L, bool maybe_short = true) { jcc(Assembler::notZero, L, maybe_short); }
925 void ALWAYSINLINE jb(Label& L, bool maybe_short = true) { jcc(Assembler::below, L, maybe_short); }
926 void ALWAYSINLINE jnae(Label& L, bool maybe_short = true) { jcc(Assembler::below, L, maybe_short); }
927 void ALWAYSINLINE jc(Label& L, bool maybe_short = true) { jcc(Assembler::carrySet, L, maybe_short); }
928 void ALWAYSINLINE jnb(Label& L, bool maybe_short = true) { jcc(Assembler::aboveEqual, L, maybe_short); }
929 void ALWAYSINLINE jae(Label& L, bool maybe_short = true) { jcc(Assembler::aboveEqual, L, maybe_short); }
930 void ALWAYSINLINE jnc(Label& L, bool maybe_short = true) { jcc(Assembler::carryClear, L, maybe_short); }
931 void ALWAYSINLINE jbe(Label& L, bool maybe_short = true) { jcc(Assembler::belowEqual, L, maybe_short); }
932 void ALWAYSINLINE jna(Label& L, bool maybe_short = true) { jcc(Assembler::belowEqual, L, maybe_short); }
933 void ALWAYSINLINE ja(Label& L, bool maybe_short = true) { jcc(Assembler::above, L, maybe_short); }
934 void ALWAYSINLINE jnbe(Label& L, bool maybe_short = true) { jcc(Assembler::above, L, maybe_short); }
935 void ALWAYSINLINE jl(Label& L, bool maybe_short = true) { jcc(Assembler::less, L, maybe_short); }
936 void ALWAYSINLINE jnge(Label& L, bool maybe_short = true) { jcc(Assembler::less, L, maybe_short); }
937 void ALWAYSINLINE jge(Label& L, bool maybe_short = true) { jcc(Assembler::greaterEqual, L, maybe_short); }
938 void ALWAYSINLINE jnl(Label& L, bool maybe_short = true) { jcc(Assembler::greaterEqual, L, maybe_short); }
939 void ALWAYSINLINE jle(Label& L, bool maybe_short = true) { jcc(Assembler::lessEqual, L, maybe_short); }
940 void ALWAYSINLINE jng(Label& L, bool maybe_short = true) { jcc(Assembler::lessEqual, L, maybe_short); }
941 void ALWAYSINLINE jg(Label& L, bool maybe_short = true) { jcc(Assembler::greater, L, maybe_short); }
942 void ALWAYSINLINE jnle(Label& L, bool maybe_short = true) { jcc(Assembler::greater, L, maybe_short); }
943 void ALWAYSINLINE jp(Label& L, bool maybe_short = true) { jcc(Assembler::parity, L, maybe_short); }
944 void ALWAYSINLINE jpe(Label& L, bool maybe_short = true) { jcc(Assembler::parity, L, maybe_short); }
945 void ALWAYSINLINE jnp(Label& L, bool maybe_short = true) { jcc(Assembler::noParity, L, maybe_short); }
946 void ALWAYSINLINE jpo(Label& L, bool maybe_short = true) { jcc(Assembler::noParity, L, maybe_short); }
947 // * No condition for this * void ALWAYSINLINE jcxz(Label& L, bool maybe_short = true) { jcc(Assembler::cxz, L, maybe_short); }
948 // * No condition for this * void ALWAYSINLINE jecxz(Label& L, bool maybe_short = true) { jcc(Assembler::cxz, L, maybe_short); }
949
950 // Short versions of the above
951 void ALWAYSINLINE jo_b(Label& L) { jccb(Assembler::overflow, L); }
952 void ALWAYSINLINE jno_b(Label& L) { jccb(Assembler::noOverflow, L); }
953 void ALWAYSINLINE js_b(Label& L) { jccb(Assembler::negative, L); }
954 void ALWAYSINLINE jns_b(Label& L) { jccb(Assembler::positive, L); }
955 void ALWAYSINLINE je_b(Label& L) { jccb(Assembler::equal, L); }
956 void ALWAYSINLINE jz_b(Label& L) { jccb(Assembler::zero, L); }
957 void ALWAYSINLINE jne_b(Label& L) { jccb(Assembler::notEqual, L); }
958 void ALWAYSINLINE jnz_b(Label& L) { jccb(Assembler::notZero, L); }
959 void ALWAYSINLINE jb_b(Label& L) { jccb(Assembler::below, L); }
960 void ALWAYSINLINE jnae_b(Label& L) { jccb(Assembler::below, L); }
961 void ALWAYSINLINE jc_b(Label& L) { jccb(Assembler::carrySet, L); }
962 void ALWAYSINLINE jnb_b(Label& L) { jccb(Assembler::aboveEqual, L); }
963 void ALWAYSINLINE jae_b(Label& L) { jccb(Assembler::aboveEqual, L); }
964 void ALWAYSINLINE jnc_b(Label& L) { jccb(Assembler::carryClear, L); }
965 void ALWAYSINLINE jbe_b(Label& L) { jccb(Assembler::belowEqual, L); }
966 void ALWAYSINLINE jna_b(Label& L) { jccb(Assembler::belowEqual, L); }
967 void ALWAYSINLINE ja_b(Label& L) { jccb(Assembler::above, L); }
968 void ALWAYSINLINE jnbe_b(Label& L) { jccb(Assembler::above, L); }
969 void ALWAYSINLINE jl_b(Label& L) { jccb(Assembler::less, L); }
970 void ALWAYSINLINE jnge_b(Label& L) { jccb(Assembler::less, L); }
971 void ALWAYSINLINE jge_b(Label& L) { jccb(Assembler::greaterEqual, L); }
972 void ALWAYSINLINE jnl_b(Label& L) { jccb(Assembler::greaterEqual, L); }
973 void ALWAYSINLINE jle_b(Label& L) { jccb(Assembler::lessEqual, L); }
974 void ALWAYSINLINE jng_b(Label& L) { jccb(Assembler::lessEqual, L); }
975 void ALWAYSINLINE jg_b(Label& L) { jccb(Assembler::greater, L); }
976 void ALWAYSINLINE jnle_b(Label& L) { jccb(Assembler::greater, L); }
977 void ALWAYSINLINE jp_b(Label& L) { jccb(Assembler::parity, L); }
978 void ALWAYSINLINE jpe_b(Label& L) { jccb(Assembler::parity, L); }
979 void ALWAYSINLINE jnp_b(Label& L) { jccb(Assembler::noParity, L); }
980 void ALWAYSINLINE jpo_b(Label& L) { jccb(Assembler::noParity, L); }
981 // * No condition for this * void ALWAYSINLINE jcxz_b(Label& L) { jccb(Assembler::cxz, L); }
982 // * No condition for this * void ALWAYSINLINE jecxz_b(Label& L) { jccb(Assembler::cxz, L); }
983
984 // Floating
985
986 void push_f(XMMRegister r);
987 void pop_f(XMMRegister r);
988 void push_d(XMMRegister r);
989 void pop_d(XMMRegister r);
990
991 void push_ppx(Register src);
992 void pop_ppx(Register dst);
993
994 void andpd(XMMRegister dst, XMMRegister src) { Assembler::andpd(dst, src); }
995 void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
996 void andpd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
997
998 void andnpd(XMMRegister dst, XMMRegister src) { Assembler::andnpd(dst, src); }
999
1000 void andps(XMMRegister dst, XMMRegister src) { Assembler::andps(dst, src); }
1001 void andps(XMMRegister dst, Address src) { Assembler::andps(dst, src); }
1002 void andps(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1003
1004 void comiss(XMMRegister dst, XMMRegister src) { Assembler::comiss(dst, src); }
1005 void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
1006 void comiss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1007
1008 void comisd(XMMRegister dst, XMMRegister src) { Assembler::comisd(dst, src); }
1009 void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
1010 void comisd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1011
1012 void orpd(XMMRegister dst, XMMRegister src) { Assembler::orpd(dst, src); }
1013
1014 void cmp32_mxcsr_std(Address mxcsr_save, Register tmp, Register rscratch = noreg);
1015 void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
1016 void ldmxcsr(AddressLiteral src, Register rscratch = noreg);
1017
1018 private:
1019 void sha256_AVX2_one_round_compute(
1020 Register reg_old_h,
1021 Register reg_a,
1022 Register reg_b,
1023 Register reg_c,
1024 Register reg_d,
1025 Register reg_e,
1026 Register reg_f,
1027 Register reg_g,
1028 Register reg_h,
1029 int iter);
1030 void sha256_AVX2_four_rounds_compute_first(int start);
1031 void sha256_AVX2_four_rounds_compute_last(int start);
1032 void sha256_AVX2_one_round_and_sched(
1033 XMMRegister xmm_0, /* == ymm4 on 0, 1, 2, 3 iterations, then rotate 4 registers left on 4, 8, 12 iterations */
1034 XMMRegister xmm_1, /* ymm5 */ /* full cycle is 16 iterations */
1035 XMMRegister xmm_2, /* ymm6 */
1036 XMMRegister xmm_3, /* ymm7 */
1037 Register reg_a, /* == eax on 0 iteration, then rotate 8 register right on each next iteration */
1038 Register reg_b, /* ebx */ /* full cycle is 8 iterations */
1039 Register reg_c, /* edi */
1040 Register reg_d, /* esi */
1041 Register reg_e, /* r8d */
1042 Register reg_f, /* r9d */
1043 Register reg_g, /* r10d */
1044 Register reg_h, /* r11d */
1045 int iter);
1046
1047 void addm(int disp, Register r1, Register r2);
1048
1049 void sha512_AVX2_one_round_compute(Register old_h, Register a, Register b, Register c, Register d,
1050 Register e, Register f, Register g, Register h, int iteration);
1051
1052 void sha512_AVX2_one_round_and_schedule(XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1053 Register a, Register b, Register c, Register d, Register e, Register f,
1054 Register g, Register h, int iteration);
1055
1056 void addmq(int disp, Register r1, Register r2);
1057 public:
1058 void sha256_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
1059 XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
1060 Register buf, Register state, Register ofs, Register limit, Register rsp,
1061 bool multi_block, XMMRegister shuf_mask);
1062 void sha512_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
1063 XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
1064 Register buf, Register state, Register ofs, Register limit, Register rsp, bool multi_block,
1065 XMMRegister shuf_mask);
1066 void sha512_update_ni_x1(Register arg_hash, Register arg_msg, Register ofs, Register limit, bool multi_block);
1067
1068 void fast_md5(Register buf, Address state, Address ofs, Address limit,
1069 bool multi_block);
1070
1071 void fast_sha1(XMMRegister abcd, XMMRegister e0, XMMRegister e1, XMMRegister msg0,
1072 XMMRegister msg1, XMMRegister msg2, XMMRegister msg3, XMMRegister shuf_mask,
1073 Register buf, Register state, Register ofs, Register limit, Register rsp,
1074 bool multi_block);
1075
1076 void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
1077 XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
1078 Register buf, Register state, Register ofs, Register limit, Register rsp,
1079 bool multi_block, XMMRegister shuf_mask);
1080
1081 void fast_exp(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1082 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1083 Register rax, Register rcx, Register rdx, Register tmp);
1084
1085 private:
1086
1087 // these are private because users should be doing movflt/movdbl
1088
1089 void movss(Address dst, XMMRegister src) { Assembler::movss(dst, src); }
1090 void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
1091 void movss(XMMRegister dst, Address src) { Assembler::movss(dst, src); }
1092 void movss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1093
1094 void movlpd(XMMRegister dst, Address src) {Assembler::movlpd(dst, src); }
1095 void movlpd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1096
1097 public:
1098
1099 void addsd(XMMRegister dst, XMMRegister src) { Assembler::addsd(dst, src); }
1100 void addsd(XMMRegister dst, Address src) { Assembler::addsd(dst, src); }
1101 void addsd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1102
1103 void addss(XMMRegister dst, XMMRegister src) { Assembler::addss(dst, src); }
1104 void addss(XMMRegister dst, Address src) { Assembler::addss(dst, src); }
1105 void addss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1106
1107 void addpd(XMMRegister dst, XMMRegister src) { Assembler::addpd(dst, src); }
1108 void addpd(XMMRegister dst, Address src) { Assembler::addpd(dst, src); }
1109 void addpd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1110
1111 using Assembler::vbroadcasti128;
1112 void vbroadcasti128(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1113
1114 using Assembler::vbroadcastsd;
1115 void vbroadcastsd(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1116
1117 using Assembler::vbroadcastss;
1118 void vbroadcastss(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1119
1120 // Vector float blend
1121 void vblendvps(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister mask, int vector_len, bool compute_mask = true, XMMRegister scratch = xnoreg);
1122 void vblendvpd(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister mask, int vector_len, bool compute_mask = true, XMMRegister scratch = xnoreg);
1123
1124 void divsd(XMMRegister dst, XMMRegister src) { Assembler::divsd(dst, src); }
1125 void divsd(XMMRegister dst, Address src) { Assembler::divsd(dst, src); }
1126 void divsd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1127
1128 void divss(XMMRegister dst, XMMRegister src) { Assembler::divss(dst, src); }
1129 void divss(XMMRegister dst, Address src) { Assembler::divss(dst, src); }
1130 void divss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1131
1132 // Move Unaligned Double Quadword
1133 void movdqu(Address dst, XMMRegister src);
1134 void movdqu(XMMRegister dst, XMMRegister src);
1135 void movdqu(XMMRegister dst, Address src);
1136 void movdqu(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1137
1138 void kmovwl(Register dst, KRegister src) { Assembler::kmovwl(dst, src); }
1139 void kmovwl(Address dst, KRegister src) { Assembler::kmovwl(dst, src); }
1140 void kmovwl(KRegister dst, KRegister src) { Assembler::kmovwl(dst, src); }
1141 void kmovwl(KRegister dst, Register src) { Assembler::kmovwl(dst, src); }
1142 void kmovwl(KRegister dst, Address src) { Assembler::kmovwl(dst, src); }
1143 void kmovwl(KRegister dst, AddressLiteral src, Register rscratch = noreg);
1144
1145 void kmovql(KRegister dst, KRegister src) { Assembler::kmovql(dst, src); }
1146 void kmovql(KRegister dst, Register src) { Assembler::kmovql(dst, src); }
1147 void kmovql(Register dst, KRegister src) { Assembler::kmovql(dst, src); }
1148 void kmovql(KRegister dst, Address src) { Assembler::kmovql(dst, src); }
1149 void kmovql(Address dst, KRegister src) { Assembler::kmovql(dst, src); }
1150 void kmovql(KRegister dst, AddressLiteral src, Register rscratch = noreg);
1151
1152 // Safe move operation, lowers down to 16bit moves for targets supporting
1153 // AVX512F feature and 64bit moves for targets supporting AVX512BW feature.
1154 void kmov(Address dst, KRegister src);
1155 void kmov(KRegister dst, Address src);
1156 void kmov(KRegister dst, KRegister src);
1157 void kmov(Register dst, KRegister src);
1158 void kmov(KRegister dst, Register src);
1159
1160 using Assembler::movddup;
1161 void movddup(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1162
1163 using Assembler::vmovddup;
1164 void vmovddup(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1165
1166 // AVX Unaligned forms
1167 void vmovdqu(Address dst, XMMRegister src);
1168 void vmovdqu(XMMRegister dst, Address src);
1169 void vmovdqu(XMMRegister dst, XMMRegister src);
1170 void vmovdqu(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1171 void vmovdqu(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1172 void vmovdqu(XMMRegister dst, XMMRegister src, int vector_len);
1173 void vmovdqu(XMMRegister dst, Address src, int vector_len);
1174 void vmovdqu(Address dst, XMMRegister src, int vector_len);
1175
1176 // AVX Aligned forms
1177 using Assembler::vmovdqa;
1178 void vmovdqa(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1179 void vmovdqa(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1180
1181 // AVX512 Unaligned
1182 void evmovdqu(BasicType type, KRegister kmask, Address dst, XMMRegister src, bool merge, int vector_len);
1183 void evmovdqu(BasicType type, KRegister kmask, XMMRegister dst, Address src, bool merge, int vector_len);
1184 void evmovdqu(BasicType type, KRegister kmask, XMMRegister dst, XMMRegister src, bool merge, int vector_len);
1185
1186 void evmovdqub(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::evmovdqub(dst, src, vector_len); }
1187 void evmovdqub(XMMRegister dst, Address src, int vector_len) { Assembler::evmovdqub(dst, src, vector_len); }
1188
1189 void evmovdqub(XMMRegister dst, KRegister mask, XMMRegister src, bool merge, int vector_len) {
1190 if (dst->encoding() != src->encoding() || mask != k0) {
1191 Assembler::evmovdqub(dst, mask, src, merge, vector_len);
1192 }
1193 }
1194 void evmovdqub(Address dst, KRegister mask, XMMRegister src, bool merge, int vector_len) { Assembler::evmovdqub(dst, mask, src, merge, vector_len); }
1195 void evmovdqub(XMMRegister dst, KRegister mask, Address src, bool merge, int vector_len) { Assembler::evmovdqub(dst, mask, src, merge, vector_len); }
1196 void evmovdqub(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg);
1197
1198 void evmovdquw(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::evmovdquw(dst, src, vector_len); }
1199 void evmovdquw(Address dst, XMMRegister src, int vector_len) { Assembler::evmovdquw(dst, src, vector_len); }
1200 void evmovdquw(XMMRegister dst, Address src, int vector_len) { Assembler::evmovdquw(dst, src, vector_len); }
1201
1202 void evmovdquw(XMMRegister dst, KRegister mask, XMMRegister src, bool merge, int vector_len) {
1203 if (dst->encoding() != src->encoding() || mask != k0) {
1204 Assembler::evmovdquw(dst, mask, src, merge, vector_len);
1205 }
1206 }
1207 void evmovdquw(XMMRegister dst, KRegister mask, Address src, bool merge, int vector_len) { Assembler::evmovdquw(dst, mask, src, merge, vector_len); }
1208 void evmovdquw(Address dst, KRegister mask, XMMRegister src, bool merge, int vector_len) { Assembler::evmovdquw(dst, mask, src, merge, vector_len); }
1209 void evmovdquw(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg);
1210
1211 void evmovdqul(XMMRegister dst, XMMRegister src, int vector_len) {
1212 if (dst->encoding() != src->encoding()) {
1213 Assembler::evmovdqul(dst, src, vector_len);
1214 }
1215 }
1216 void evmovdqul(Address dst, XMMRegister src, int vector_len) { Assembler::evmovdqul(dst, src, vector_len); }
1217 void evmovdqul(XMMRegister dst, Address src, int vector_len) { Assembler::evmovdqul(dst, src, vector_len); }
1218
1219 void evmovdqul(XMMRegister dst, KRegister mask, XMMRegister src, bool merge, int vector_len) {
1220 if (dst->encoding() != src->encoding() || mask != k0) {
1221 Assembler::evmovdqul(dst, mask, src, merge, vector_len);
1222 }
1223 }
1224 void evmovdqul(Address dst, KRegister mask, XMMRegister src, bool merge, int vector_len) { Assembler::evmovdqul(dst, mask, src, merge, vector_len); }
1225 void evmovdqul(XMMRegister dst, KRegister mask, Address src, bool merge, int vector_len) { Assembler::evmovdqul(dst, mask, src, merge, vector_len); }
1226 void evmovdqul(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg);
1227
1228 void evmovdquq(XMMRegister dst, XMMRegister src, int vector_len) {
1229 if (dst->encoding() != src->encoding()) {
1230 Assembler::evmovdquq(dst, src, vector_len);
1231 }
1232 }
1233 void evmovdquq(XMMRegister dst, Address src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); }
1234 void evmovdquq(Address dst, XMMRegister src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); }
1235 void evmovdquq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1236 void evmovdqaq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1237
1238 void evmovdquq(XMMRegister dst, KRegister mask, XMMRegister src, bool merge, int vector_len) {
1239 if (dst->encoding() != src->encoding() || mask != k0) {
1240 Assembler::evmovdquq(dst, mask, src, merge, vector_len);
1241 }
1242 }
1243 void evmovdquq(Address dst, KRegister mask, XMMRegister src, bool merge, int vector_len) { Assembler::evmovdquq(dst, mask, src, merge, vector_len); }
1244 void evmovdquq(XMMRegister dst, KRegister mask, Address src, bool merge, int vector_len) { Assembler::evmovdquq(dst, mask, src, merge, vector_len); }
1245 void evmovdquq(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg);
1246 void evmovdqaq(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg);
1247
1248 using Assembler::movapd;
1249 void movapd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1250
1251 // Move Aligned Double Quadword
1252 void movdqa(XMMRegister dst, XMMRegister src) { Assembler::movdqa(dst, src); }
1253 void movdqa(XMMRegister dst, Address src) { Assembler::movdqa(dst, src); }
1254 void movdqa(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1255
1256 void movsd(Address dst, XMMRegister src) { Assembler::movsd(dst, src); }
1257 void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
1258 void movsd(XMMRegister dst, Address src) { Assembler::movsd(dst, src); }
1259 void movsd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1260
1261 void mulpd(XMMRegister dst, XMMRegister src) { Assembler::mulpd(dst, src); }
1262 void mulpd(XMMRegister dst, Address src) { Assembler::mulpd(dst, src); }
1263 void mulpd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1264
1265 void mulsd(XMMRegister dst, XMMRegister src) { Assembler::mulsd(dst, src); }
1266 void mulsd(XMMRegister dst, Address src) { Assembler::mulsd(dst, src); }
1267 void mulsd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1268
1269 void mulss(XMMRegister dst, XMMRegister src) { Assembler::mulss(dst, src); }
1270 void mulss(XMMRegister dst, Address src) { Assembler::mulss(dst, src); }
1271 void mulss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1272
1273 // Carry-Less Multiplication Quadword
1274 void pclmulldq(XMMRegister dst, XMMRegister src) {
1275 // 0x00 - multiply lower 64 bits [0:63]
1276 Assembler::pclmulqdq(dst, src, 0x00);
1277 }
1278 void pclmulhdq(XMMRegister dst, XMMRegister src) {
1279 // 0x11 - multiply upper 64 bits [64:127]
1280 Assembler::pclmulqdq(dst, src, 0x11);
1281 }
1282
1283 void pcmpeqb(XMMRegister dst, XMMRegister src);
1284 void pcmpeqw(XMMRegister dst, XMMRegister src);
1285
1286 void pcmpestri(XMMRegister dst, Address src, int imm8);
1287 void pcmpestri(XMMRegister dst, XMMRegister src, int imm8);
1288
1289 void pmovzxbw(XMMRegister dst, XMMRegister src);
1290 void pmovzxbw(XMMRegister dst, Address src);
1291
1292 void pmovmskb(Register dst, XMMRegister src);
1293
1294 void ptest(XMMRegister dst, XMMRegister src);
1295
1296 void roundsd(XMMRegister dst, XMMRegister src, int32_t rmode) { Assembler::roundsd(dst, src, rmode); }
1297 void roundsd(XMMRegister dst, Address src, int32_t rmode) { Assembler::roundsd(dst, src, rmode); }
1298 void roundsd(XMMRegister dst, AddressLiteral src, int32_t rmode, Register rscratch = noreg);
1299
1300 void sqrtss(XMMRegister dst, XMMRegister src) { Assembler::sqrtss(dst, src); }
1301 void sqrtss(XMMRegister dst, Address src) { Assembler::sqrtss(dst, src); }
1302 void sqrtss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1303
1304 void subsd(XMMRegister dst, XMMRegister src) { Assembler::subsd(dst, src); }
1305 void subsd(XMMRegister dst, Address src) { Assembler::subsd(dst, src); }
1306 void subsd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1307
1308 void subss(XMMRegister dst, XMMRegister src) { Assembler::subss(dst, src); }
1309 void subss(XMMRegister dst, Address src) { Assembler::subss(dst, src); }
1310 void subss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1311
1312 void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
1313 void ucomiss(XMMRegister dst, Address src) { Assembler::ucomiss(dst, src); }
1314 void ucomiss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1315
1316 void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
1317 void ucomisd(XMMRegister dst, Address src) { Assembler::ucomisd(dst, src); }
1318 void ucomisd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1319
1320 // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
1321 void xorpd(XMMRegister dst, XMMRegister src);
1322 void xorpd(XMMRegister dst, Address src) { Assembler::xorpd(dst, src); }
1323 void xorpd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1324
1325 // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
1326 void xorps(XMMRegister dst, XMMRegister src);
1327 void xorps(XMMRegister dst, Address src) { Assembler::xorps(dst, src); }
1328 void xorps(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1329
1330 // Shuffle Bytes
1331 void pshufb(XMMRegister dst, XMMRegister src) { Assembler::pshufb(dst, src); }
1332 void pshufb(XMMRegister dst, Address src) { Assembler::pshufb(dst, src); }
1333 void pshufb(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1334 // AVX 3-operands instructions
1335
1336 void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddsd(dst, nds, src); }
1337 void vaddsd(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vaddsd(dst, nds, src); }
1338 void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1339
1340 void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddss(dst, nds, src); }
1341 void vaddss(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vaddss(dst, nds, src); }
1342 void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1343
1344 void vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len, Register rscratch = noreg);
1345 void vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len, Register rscratch = noreg);
1346
1347 void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1348 void vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1349 void vpaddb(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1350
1351 void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1352 void vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1353
1354 void vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vpaddd(dst, nds, src, vector_len); }
1355 void vpaddd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vpaddd(dst, nds, src, vector_len); }
1356 void vpaddd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1357
1358 void vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1359 void vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1360 void vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1361
1362 using Assembler::vpbroadcastd;
1363 void vpbroadcastd(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1364
1365 using Assembler::vpbroadcastq;
1366 void vpbroadcastq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1367
1368 void vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1369 void vpcmpeqb(XMMRegister dst, XMMRegister src1, Address src2, int vector_len);
1370
1371 void vpcmpeqw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1372 void vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1373 using Assembler::evpcmpeqd;
1374 void evpcmpeqd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1375
1376 // Vector compares
1377 void evpcmpd(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister src, int comparison, bool is_signed, int vector_len) {
1378 Assembler::evpcmpd(kdst, mask, nds, src, comparison, is_signed, vector_len);
1379 }
1380 void evpcmpd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int comparison, bool is_signed, int vector_len, Register rscratch = noreg);
1381
1382 void evpcmpq(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister src, int comparison, bool is_signed, int vector_len) {
1383 Assembler::evpcmpq(kdst, mask, nds, src, comparison, is_signed, vector_len);
1384 }
1385 void evpcmpq(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int comparison, bool is_signed, int vector_len, Register rscratch = noreg);
1386
1387 void evpcmpb(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister src, int comparison, bool is_signed, int vector_len) {
1388 Assembler::evpcmpb(kdst, mask, nds, src, comparison, is_signed, vector_len);
1389 }
1390 void evpcmpb(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int comparison, bool is_signed, int vector_len, Register rscratch = noreg);
1391
1392 void evpcmpw(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister src, int comparison, bool is_signed, int vector_len) {
1393 Assembler::evpcmpw(kdst, mask, nds, src, comparison, is_signed, vector_len);
1394 }
1395 void evpcmpw(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int comparison, bool is_signed, int vector_len, Register rscratch = noreg);
1396
1397 void evpbroadcast(BasicType type, XMMRegister dst, Register src, int vector_len);
1398
1399 // Emit comparison instruction for the specified comparison predicate.
1400 void vpcmpCCW(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister xtmp, ComparisonPredicate cond, Width width, int vector_len);
1401 void vpcmpCC(XMMRegister dst, XMMRegister nds, XMMRegister src, int cond_encoding, Width width, int vector_len);
1402
1403 void vpmovzxbw(XMMRegister dst, Address src, int vector_len);
1404 void vpmovzxbw(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::vpmovzxbw(dst, src, vector_len); }
1405
1406 void vpmovmskb(Register dst, XMMRegister src, int vector_len = Assembler::AVX_256bit);
1407
1408 void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1409 void vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1410
1411 void vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vpmulld(dst, nds, src, vector_len); }
1412 void vpmulld(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vpmulld(dst, nds, src, vector_len); }
1413 void vpmulld(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1414
1415 void vpmuldq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vpmuldq(dst, nds, src, vector_len); }
1416
1417 void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1418 void vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1419
1420 void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1421 void vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1422
1423 void vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1424 void vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1425
1426 void evpsrad(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1427 void evpsrad(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1428
1429 void evpsraq(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1430 void evpsraq(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1431
1432 using Assembler::evpsllw;
1433 void evpsllw(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1434 if (!is_varshift) {
1435 Assembler::evpsllw(dst, mask, nds, src, merge, vector_len);
1436 } else {
1437 Assembler::evpsllvw(dst, mask, nds, src, merge, vector_len);
1438 }
1439 }
1440 void evpslld(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1441 if (!is_varshift) {
1442 Assembler::evpslld(dst, mask, nds, src, merge, vector_len);
1443 } else {
1444 Assembler::evpsllvd(dst, mask, nds, src, merge, vector_len);
1445 }
1446 }
1447 void evpsllq(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1448 if (!is_varshift) {
1449 Assembler::evpsllq(dst, mask, nds, src, merge, vector_len);
1450 } else {
1451 Assembler::evpsllvq(dst, mask, nds, src, merge, vector_len);
1452 }
1453 }
1454 void evpsrlw(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1455 if (!is_varshift) {
1456 Assembler::evpsrlw(dst, mask, nds, src, merge, vector_len);
1457 } else {
1458 Assembler::evpsrlvw(dst, mask, nds, src, merge, vector_len);
1459 }
1460 }
1461 void evpsrld(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1462 if (!is_varshift) {
1463 Assembler::evpsrld(dst, mask, nds, src, merge, vector_len);
1464 } else {
1465 Assembler::evpsrlvd(dst, mask, nds, src, merge, vector_len);
1466 }
1467 }
1468
1469 using Assembler::evpsrlq;
1470 void evpsrlq(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1471 if (!is_varshift) {
1472 Assembler::evpsrlq(dst, mask, nds, src, merge, vector_len);
1473 } else {
1474 Assembler::evpsrlvq(dst, mask, nds, src, merge, vector_len);
1475 }
1476 }
1477 using Assembler::evpsraw;
1478 void evpsraw(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1479 if (!is_varshift) {
1480 Assembler::evpsraw(dst, mask, nds, src, merge, vector_len);
1481 } else {
1482 Assembler::evpsravw(dst, mask, nds, src, merge, vector_len);
1483 }
1484 }
1485 using Assembler::evpsrad;
1486 void evpsrad(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1487 if (!is_varshift) {
1488 Assembler::evpsrad(dst, mask, nds, src, merge, vector_len);
1489 } else {
1490 Assembler::evpsravd(dst, mask, nds, src, merge, vector_len);
1491 }
1492 }
1493 using Assembler::evpsraq;
1494 void evpsraq(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1495 if (!is_varshift) {
1496 Assembler::evpsraq(dst, mask, nds, src, merge, vector_len);
1497 } else {
1498 Assembler::evpsravq(dst, mask, nds, src, merge, vector_len);
1499 }
1500 }
1501
1502 void evpmins(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len);
1503 void evpmaxs(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len);
1504 void evpmins(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len);
1505 void evpmaxs(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len);
1506
1507 void evpminu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len);
1508 void evpmaxu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len);
1509 void evpminu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len);
1510 void evpmaxu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len);
1511
1512 void vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1513 void vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1514
1515 void vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1516 void vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1517
1518 void vptest(XMMRegister dst, XMMRegister src);
1519 void vptest(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::vptest(dst, src, vector_len); }
1520
1521 void punpcklbw(XMMRegister dst, XMMRegister src);
1522 void punpcklbw(XMMRegister dst, Address src) { Assembler::punpcklbw(dst, src); }
1523
1524 void pshufd(XMMRegister dst, Address src, int mode);
1525 void pshufd(XMMRegister dst, XMMRegister src, int mode) { Assembler::pshufd(dst, src, mode); }
1526
1527 void pshuflw(XMMRegister dst, XMMRegister src, int mode);
1528 void pshuflw(XMMRegister dst, Address src, int mode) { Assembler::pshuflw(dst, src, mode); }
1529
1530 void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandpd(dst, nds, src, vector_len); }
1531 void vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vandpd(dst, nds, src, vector_len); }
1532 void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1533
1534 void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandps(dst, nds, src, vector_len); }
1535 void vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vandps(dst, nds, src, vector_len); }
1536 void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1537
1538 void evpord(XMMRegister dst, KRegister mask, XMMRegister nds, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg);
1539
1540 void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivsd(dst, nds, src); }
1541 void vdivsd(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vdivsd(dst, nds, src); }
1542 void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1543
1544 void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivss(dst, nds, src); }
1545 void vdivss(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vdivss(dst, nds, src); }
1546 void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1547
1548 void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulsd(dst, nds, src); }
1549 void vmulsd(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vmulsd(dst, nds, src); }
1550 void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1551
1552 void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulss(dst, nds, src); }
1553 void vmulss(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vmulss(dst, nds, src); }
1554 void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1555
1556 void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubsd(dst, nds, src); }
1557 void vsubsd(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vsubsd(dst, nds, src); }
1558 void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1559
1560 void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubss(dst, nds, src); }
1561 void vsubss(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vsubss(dst, nds, src); }
1562 void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1563
1564 void vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1565 void vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1566
1567 // AVX Vector instructions
1568
1569 void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1570 void vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1571 void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1572
1573 void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1574 void vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1575 void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1576
1577 void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1578 if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1579 Assembler::vpxor(dst, nds, src, vector_len);
1580 else
1581 Assembler::vxorpd(dst, nds, src, vector_len);
1582 }
1583 void vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
1584 if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1585 Assembler::vpxor(dst, nds, src, vector_len);
1586 else
1587 Assembler::vxorpd(dst, nds, src, vector_len);
1588 }
1589 void vpxor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1590
1591 // Simple version for AVX2 256bit vectors
1592 void vpxor(XMMRegister dst, XMMRegister src) {
1593 assert(UseAVX >= 2, "Should be at least AVX2");
1594 Assembler::vpxor(dst, dst, src, AVX_256bit);
1595 }
1596 void vpxor(XMMRegister dst, Address src) {
1597 assert(UseAVX >= 2, "Should be at least AVX2");
1598 Assembler::vpxor(dst, dst, src, AVX_256bit);
1599 }
1600
1601 void vpermd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vpermd(dst, nds, src, vector_len); }
1602 void vpermd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1603
1604 void vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
1605 if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1606 Assembler::vinserti32x4(dst, nds, src, imm8);
1607 } else if (UseAVX > 1) {
1608 // vinserti128 is available only in AVX2
1609 Assembler::vinserti128(dst, nds, src, imm8);
1610 } else {
1611 Assembler::vinsertf128(dst, nds, src, imm8);
1612 }
1613 }
1614
1615 void vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
1616 if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1617 Assembler::vinserti32x4(dst, nds, src, imm8);
1618 } else if (UseAVX > 1) {
1619 // vinserti128 is available only in AVX2
1620 Assembler::vinserti128(dst, nds, src, imm8);
1621 } else {
1622 Assembler::vinsertf128(dst, nds, src, imm8);
1623 }
1624 }
1625
1626 void vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
1627 if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1628 Assembler::vextracti32x4(dst, src, imm8);
1629 } else if (UseAVX > 1) {
1630 // vextracti128 is available only in AVX2
1631 Assembler::vextracti128(dst, src, imm8);
1632 } else {
1633 Assembler::vextractf128(dst, src, imm8);
1634 }
1635 }
1636
1637 void vextracti128(Address dst, XMMRegister src, uint8_t imm8) {
1638 if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1639 Assembler::vextracti32x4(dst, src, imm8);
1640 } else if (UseAVX > 1) {
1641 // vextracti128 is available only in AVX2
1642 Assembler::vextracti128(dst, src, imm8);
1643 } else {
1644 Assembler::vextractf128(dst, src, imm8);
1645 }
1646 }
1647
1648 // 128bit copy to/from high 128 bits of 256bit (YMM) vector registers
1649 void vinserti128_high(XMMRegister dst, XMMRegister src) {
1650 vinserti128(dst, dst, src, 1);
1651 }
1652 void vinserti128_high(XMMRegister dst, Address src) {
1653 vinserti128(dst, dst, src, 1);
1654 }
1655 void vextracti128_high(XMMRegister dst, XMMRegister src) {
1656 vextracti128(dst, src, 1);
1657 }
1658 void vextracti128_high(Address dst, XMMRegister src) {
1659 vextracti128(dst, src, 1);
1660 }
1661
1662 void vinsertf128_high(XMMRegister dst, XMMRegister src) {
1663 if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1664 Assembler::vinsertf32x4(dst, dst, src, 1);
1665 } else {
1666 Assembler::vinsertf128(dst, dst, src, 1);
1667 }
1668 }
1669
1670 void vinsertf128_high(XMMRegister dst, Address src) {
1671 if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1672 Assembler::vinsertf32x4(dst, dst, src, 1);
1673 } else {
1674 Assembler::vinsertf128(dst, dst, src, 1);
1675 }
1676 }
1677
1678 void vextractf128_high(XMMRegister dst, XMMRegister src) {
1679 if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1680 Assembler::vextractf32x4(dst, src, 1);
1681 } else {
1682 Assembler::vextractf128(dst, src, 1);
1683 }
1684 }
1685
1686 void vextractf128_high(Address dst, XMMRegister src) {
1687 if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1688 Assembler::vextractf32x4(dst, src, 1);
1689 } else {
1690 Assembler::vextractf128(dst, src, 1);
1691 }
1692 }
1693
1694 // 256bit copy to/from high 256 bits of 512bit (ZMM) vector registers
1695 void vinserti64x4_high(XMMRegister dst, XMMRegister src) {
1696 Assembler::vinserti64x4(dst, dst, src, 1);
1697 }
1698 void vinsertf64x4_high(XMMRegister dst, XMMRegister src) {
1699 Assembler::vinsertf64x4(dst, dst, src, 1);
1700 }
1701 void vextracti64x4_high(XMMRegister dst, XMMRegister src) {
1702 Assembler::vextracti64x4(dst, src, 1);
1703 }
1704 void vextractf64x4_high(XMMRegister dst, XMMRegister src) {
1705 Assembler::vextractf64x4(dst, src, 1);
1706 }
1707 void vextractf64x4_high(Address dst, XMMRegister src) {
1708 Assembler::vextractf64x4(dst, src, 1);
1709 }
1710 void vinsertf64x4_high(XMMRegister dst, Address src) {
1711 Assembler::vinsertf64x4(dst, dst, src, 1);
1712 }
1713
1714 // 128bit copy to/from low 128 bits of 256bit (YMM) vector registers
1715 void vinserti128_low(XMMRegister dst, XMMRegister src) {
1716 vinserti128(dst, dst, src, 0);
1717 }
1718 void vinserti128_low(XMMRegister dst, Address src) {
1719 vinserti128(dst, dst, src, 0);
1720 }
1721 void vextracti128_low(XMMRegister dst, XMMRegister src) {
1722 vextracti128(dst, src, 0);
1723 }
1724 void vextracti128_low(Address dst, XMMRegister src) {
1725 vextracti128(dst, src, 0);
1726 }
1727
1728 void vinsertf128_low(XMMRegister dst, XMMRegister src) {
1729 if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1730 Assembler::vinsertf32x4(dst, dst, src, 0);
1731 } else {
1732 Assembler::vinsertf128(dst, dst, src, 0);
1733 }
1734 }
1735
1736 void vinsertf128_low(XMMRegister dst, Address src) {
1737 if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1738 Assembler::vinsertf32x4(dst, dst, src, 0);
1739 } else {
1740 Assembler::vinsertf128(dst, dst, src, 0);
1741 }
1742 }
1743
1744 void vextractf128_low(XMMRegister dst, XMMRegister src) {
1745 if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1746 Assembler::vextractf32x4(dst, src, 0);
1747 } else {
1748 Assembler::vextractf128(dst, src, 0);
1749 }
1750 }
1751
1752 void vextractf128_low(Address dst, XMMRegister src) {
1753 if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1754 Assembler::vextractf32x4(dst, src, 0);
1755 } else {
1756 Assembler::vextractf128(dst, src, 0);
1757 }
1758 }
1759
1760 // 256bit copy to/from low 256 bits of 512bit (ZMM) vector registers
1761 void vinserti64x4_low(XMMRegister dst, XMMRegister src) {
1762 Assembler::vinserti64x4(dst, dst, src, 0);
1763 }
1764 void vinsertf64x4_low(XMMRegister dst, XMMRegister src) {
1765 Assembler::vinsertf64x4(dst, dst, src, 0);
1766 }
1767 void vextracti64x4_low(XMMRegister dst, XMMRegister src) {
1768 Assembler::vextracti64x4(dst, src, 0);
1769 }
1770 void vextractf64x4_low(XMMRegister dst, XMMRegister src) {
1771 Assembler::vextractf64x4(dst, src, 0);
1772 }
1773 void vextractf64x4_low(Address dst, XMMRegister src) {
1774 Assembler::vextractf64x4(dst, src, 0);
1775 }
1776 void vinsertf64x4_low(XMMRegister dst, Address src) {
1777 Assembler::vinsertf64x4(dst, dst, src, 0);
1778 }
1779
1780 // Carry-Less Multiplication Quadword
1781 void vpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1782 // 0x00 - multiply lower 64 bits [0:63]
1783 Assembler::vpclmulqdq(dst, nds, src, 0x00);
1784 }
1785 void vpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1786 // 0x11 - multiply upper 64 bits [64:127]
1787 Assembler::vpclmulqdq(dst, nds, src, 0x11);
1788 }
1789 void vpclmullqhqdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1790 // 0x10 - multiply nds[0:63] and src[64:127]
1791 Assembler::vpclmulqdq(dst, nds, src, 0x10);
1792 }
1793 void vpclmulhqlqdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1794 //0x01 - multiply nds[64:127] and src[0:63]
1795 Assembler::vpclmulqdq(dst, nds, src, 0x01);
1796 }
1797
1798 void evpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1799 // 0x00 - multiply lower 64 bits [0:63]
1800 Assembler::evpclmulqdq(dst, nds, src, 0x00, vector_len);
1801 }
1802 void evpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1803 // 0x11 - multiply upper 64 bits [64:127]
1804 Assembler::evpclmulqdq(dst, nds, src, 0x11, vector_len);
1805 }
1806
1807 // AVX-512 mask operations.
1808 void kand(BasicType etype, KRegister dst, KRegister src1, KRegister src2);
1809 void kor(BasicType type, KRegister dst, KRegister src1, KRegister src2);
1810 void knot(uint masklen, KRegister dst, KRegister src, KRegister ktmp = knoreg, Register rtmp = noreg);
1811 void kxor(BasicType type, KRegister dst, KRegister src1, KRegister src2);
1812 void kortest(uint masklen, KRegister src1, KRegister src2);
1813 void ktest(uint masklen, KRegister src1, KRegister src2);
1814
1815 void evperm(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len);
1816 void evperm(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len);
1817
1818 void evor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len);
1819 void evor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len);
1820
1821 void evand(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len);
1822 void evand(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len);
1823
1824 void evxor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len);
1825 void evxor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len);
1826
1827 void evrold(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vlen_enc);
1828 void evrold(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src1, XMMRegister src2, bool merge, int vlen_enc);
1829 void evrord(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vlen_enc);
1830 void evrord(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src1, XMMRegister src2, bool merge, int vlen_enc);
1831
1832 using Assembler::evpandq;
1833 void evpandq(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1834
1835 using Assembler::evpaddq;
1836 void evpaddq(XMMRegister dst, KRegister mask, XMMRegister nds, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg);
1837
1838 using Assembler::evporq;
1839 void evporq(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1840
1841 using Assembler::vpshufb;
1842 void vpshufb(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1843
1844 using Assembler::vpor;
1845 void vpor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1846
1847 using Assembler::vpternlogq;
1848 void vpternlogq(XMMRegister dst, int imm8, XMMRegister src2, AddressLiteral src3, int vector_len, Register rscratch = noreg);
1849
1850 void cmov32( Condition cc, Register dst, Address src);
1851 void cmov32( Condition cc, Register dst, Register src);
1852
1853 void cmov( Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }
1854
1855 void cmovptr(Condition cc, Register dst, Address src) { cmovq(cc, dst, src); }
1856 void cmovptr(Condition cc, Register dst, Register src) { cmovq(cc, dst, src); }
1857
1858 void movoop(Register dst, jobject obj);
1859 void movoop(Address dst, jobject obj, Register rscratch);
1860
1861 void mov_metadata(Register dst, Metadata* obj);
1862 void mov_metadata(Address dst, Metadata* obj, Register rscratch);
1863
1864 void movptr(Register dst, Register src);
1865 void movptr(Register dst, Address src);
1866 void movptr(Register dst, AddressLiteral src);
1867 void movptr(Register dst, ArrayAddress src);
1868 void movptr(Register dst, intptr_t src);
1869 void movptr(Address dst, Register src);
1870 void movptr(Address dst, int32_t imm);
1871 void movptr(Address dst, intptr_t src, Register rscratch);
1872 void movptr(ArrayAddress dst, Register src, Register rscratch);
1873
1874 void movptr(Register dst, RegisterOrConstant src) {
1875 if (src.is_constant()) movptr(dst, src.as_constant());
1876 else movptr(dst, src.as_register());
1877 }
1878
1879
1880 // to avoid hiding movl
1881 void mov32(Register dst, AddressLiteral src);
1882 void mov32(AddressLiteral dst, Register src, Register rscratch = noreg);
1883
1884 // Import other mov() methods from the parent class or else
1885 // they will be hidden by the following overriding declaration.
1886 using Assembler::movdl;
1887 void movdl(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1888
1889 using Assembler::movq;
1890 void movq(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1891
1892 // Can push value or effective address
1893 void pushptr(AddressLiteral src, Register rscratch);
1894
1895 void pushptr(Address src) { pushq(src); }
1896 void popptr(Address src) { popq(src); }
1897
1898 void pushoop(jobject obj, Register rscratch);
1899 void pushklass(Metadata* obj, Register rscratch);
1900
1901 // sign extend as need a l to ptr sized element
1902 void movl2ptr(Register dst, Address src) { movslq(dst, src); }
1903 void movl2ptr(Register dst, Register src) { movslq(dst, src); }
1904
1905
1906 public:
1907 // clear memory of size 'cnt' qwords, starting at 'base';
1908 // if 'is_large' is set, do not try to produce short loop
1909 void clear_mem(Register base, Register cnt, Register rtmp, XMMRegister xtmp, bool is_large, KRegister mask=knoreg);
1910
1911 // clear memory initialization sequence for constant size;
1912 void clear_mem(Register base, int cnt, Register rtmp, XMMRegister xtmp, KRegister mask=knoreg);
1913
1914 // clear memory of size 'cnt' qwords, starting at 'base' using XMM/YMM registers
1915 void xmm_clear_mem(Register base, Register cnt, Register rtmp, XMMRegister xtmp, KRegister mask=knoreg);
1916
1917 // Fill primitive arrays
1918 void generate_fill(BasicType t, bool aligned,
1919 Register to, Register value, Register count,
1920 Register rtmp, XMMRegister xtmp);
1921
1922 void encode_iso_array(Register src, Register dst, Register len,
1923 XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1924 XMMRegister tmp4, Register tmp5, Register result, bool ascii);
1925
1926 void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2);
1927 void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
1928 Register y, Register y_idx, Register z,
1929 Register carry, Register product,
1930 Register idx, Register kdx);
1931 void multiply_add_128_x_128(Register x_xstart, Register y, Register z,
1932 Register yz_idx, Register idx,
1933 Register carry, Register product, int offset);
1934 void multiply_128_x_128_bmi2_loop(Register y, Register z,
1935 Register carry, Register carry2,
1936 Register idx, Register jdx,
1937 Register yz_idx1, Register yz_idx2,
1938 Register tmp, Register tmp3, Register tmp4);
1939 void multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
1940 Register yz_idx, Register idx, Register jdx,
1941 Register carry, Register product,
1942 Register carry2);
1943 void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register tmp0,
1944 Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5);
1945 void square_rshift(Register x, Register len, Register z, Register tmp1, Register tmp3,
1946 Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1947 void multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry,
1948 Register tmp2);
1949 void multiply_add_64(Register sum, Register op1, Register op2, Register carry,
1950 Register rdxReg, Register raxReg);
1951 void add_one_64(Register z, Register zlen, Register carry, Register tmp1);
1952 void lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1953 Register tmp3, Register tmp4);
1954 void square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1955 Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1956
1957 void mul_add_128_x_32_loop(Register out, Register in, Register offset, Register len, Register tmp1,
1958 Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1959 Register raxReg);
1960 void mul_add(Register out, Register in, Register offset, Register len, Register k, Register tmp1,
1961 Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1962 Register raxReg);
1963 void vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
1964 Register result, Register tmp1, Register tmp2,
1965 XMMRegister vec1, XMMRegister vec2, XMMRegister vec3);
1966
1967 // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
1968 void update_byte_crc32(Register crc, Register val, Register table);
1969 void kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp);
1970
1971 void kernel_crc32_avx512(Register crc, Register buf, Register len, Register table, Register tmp1, Register tmp2);
1972 void kernel_crc32_avx512_256B(Register crc, Register buf, Register len, Register key, Register pos,
1973 Register tmp1, Register tmp2, Label& L_barrett, Label& L_16B_reduction_loop,
1974 Label& L_get_last_two_xmms, Label& L_128_done, Label& L_cleanup);
1975
1976 // CRC32C code for java.util.zip.CRC32C::updateBytes() intrinsic
1977 // Note on a naming convention:
1978 // Prefix w = register only used on a Westmere+ architecture
1979 // Prefix n = register only used on a Nehalem architecture
1980 void crc32c_ipl_alg4(Register in_out, uint32_t n,
1981 Register tmp1, Register tmp2, Register tmp3);
1982 void crc32c_pclmulqdq(XMMRegister w_xtmp1,
1983 Register in_out,
1984 uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
1985 XMMRegister w_xtmp2,
1986 Register tmp1,
1987 Register n_tmp2, Register n_tmp3);
1988 void crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
1989 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1990 Register tmp1, Register tmp2,
1991 Register n_tmp3);
1992 void crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
1993 Register in_out1, Register in_out2, Register in_out3,
1994 Register tmp1, Register tmp2, Register tmp3,
1995 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1996 Register tmp4, Register tmp5,
1997 Register n_tmp6);
1998 void crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
1999 Register tmp1, Register tmp2, Register tmp3,
2000 Register tmp4, Register tmp5, Register tmp6,
2001 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
2002 bool is_pclmulqdq_supported);
2003 // Fold 128-bit data chunk
2004 void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
2005 void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf);
2006 // Fold 512-bit data chunk
2007 void fold512bit_crc32_avx512(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, Register pos, int offset);
2008 // Fold 8-bit data
2009 void fold_8bit_crc32(Register crc, Register table, Register tmp);
2010 void fold_8bit_crc32(XMMRegister crc, Register table, XMMRegister xtmp, Register tmp);
2011
2012 // Compress char[] array to byte[].
2013 void char_array_compress(Register src, Register dst, Register len,
2014 XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
2015 XMMRegister tmp4, Register tmp5, Register result,
2016 KRegister mask1 = knoreg, KRegister mask2 = knoreg);
2017
2018 // Inflate byte[] array to char[].
2019 void byte_array_inflate(Register src, Register dst, Register len,
2020 XMMRegister tmp1, Register tmp2, KRegister mask = knoreg);
2021
2022 void fill_masked(BasicType bt, Address dst, XMMRegister xmm, KRegister mask,
2023 Register length, Register temp, int vec_enc);
2024
2025 void fill64_masked(uint shift, Register dst, int disp,
2026 XMMRegister xmm, KRegister mask, Register length,
2027 Register temp, bool use64byteVector = false);
2028
2029 void fill32_masked(uint shift, Register dst, int disp,
2030 XMMRegister xmm, KRegister mask, Register length,
2031 Register temp);
2032
2033 void fill32(Address dst, XMMRegister xmm);
2034
2035 void fill32(Register dst, int disp, XMMRegister xmm);
2036
2037 void fill64(Address dst, XMMRegister xmm, bool use64byteVector = false);
2038
2039 void fill64(Register dst, int dis, XMMRegister xmm, bool use64byteVector = false);
2040
2041 void convert_f2i(Register dst, XMMRegister src);
2042 void convert_d2i(Register dst, XMMRegister src);
2043 void convert_f2l(Register dst, XMMRegister src);
2044 void convert_d2l(Register dst, XMMRegister src);
2045 void round_double(Register dst, XMMRegister src, Register rtmp, Register rcx);
2046 void round_float(Register dst, XMMRegister src, Register rtmp, Register rcx);
2047
2048 void cache_wb(Address line);
2049 void cache_wbsync(bool is_pre);
2050
2051 #ifdef COMPILER2_OR_JVMCI
2052 void generate_fill_avx3(BasicType type, Register to, Register value,
2053 Register count, Register rtmp, XMMRegister xtmp);
2054 #endif // COMPILER2_OR_JVMCI
2055
2056 void vallones(XMMRegister dst, int vector_len);
2057
2058 void check_stack_alignment(Register sp, const char* msg, unsigned bias = 0, Register tmp = noreg);
2059
2060 void fast_lock(Register basic_lock, Register obj, Register reg_rax, Register tmp, Label& slow);
2061 void fast_unlock(Register obj, Register reg_rax, Register tmp, Label& slow);
2062
2063 void save_legacy_gprs();
2064 void restore_legacy_gprs();
2065 void setcc(Assembler::Condition comparison, Register dst);
2066 };
2067
2068 #endif // CPU_X86_MACROASSEMBLER_X86_HPP