1 /*
   2  * Copyright (c) 1997, 2022, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef CPU_X86_MACROASSEMBLER_X86_HPP
  26 #define CPU_X86_MACROASSEMBLER_X86_HPP
  27 
  28 #include "asm/assembler.hpp"
  29 #include "asm/register.hpp"
  30 #include "code/vmreg.inline.hpp"
  31 #include "compiler/oopMap.hpp"
  32 #include "utilities/macros.hpp"
  33 #include "runtime/rtmLocking.hpp"
  34 #include "runtime/signature.hpp"
  35 #include "runtime/vm_version.hpp"
  36 
  37 class ciInlineKlass;
  38 
  39 // MacroAssembler extends Assembler by frequently used macros.
  40 //
  41 // Instructions for which a 'better' code sequence exists depending
  42 // on arguments should also go in here.
  43 
  44 class MacroAssembler: public Assembler {
  45   friend class LIR_Assembler;
  46   friend class Runtime1;      // as_Address()
  47 
  48  public:
  49   // Support for VM calls
  50   //
  51   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  52   // may customize this version by overriding it for its purposes (e.g., to save/restore
  53   // additional registers when doing a VM call).
  54 
  55   virtual void call_VM_leaf_base(
  56     address entry_point,               // the entry point
  57     int     number_of_arguments        // the number of arguments to pop after the call
  58   );
  59 
  60  protected:
  61   // This is the base routine called by the different versions of call_VM. The interpreter
  62   // may customize this version by overriding it for its purposes (e.g., to save/restore
  63   // additional registers when doing a VM call).
  64   //
  65   // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
  66   // returns the register which contains the thread upon return. If a thread register has been
  67   // specified, the return value will correspond to that register. If no last_java_sp is specified
  68   // (noreg) than rsp will be used instead.
  69   virtual void call_VM_base(           // returns the register containing the thread upon return
  70     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  71     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  72     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  73     address  entry_point,              // the entry point
  74     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  75     bool     check_exceptions          // whether to check for pending exceptions after return
  76   );
  77 
  78   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  79 
  80   // helpers for FPU flag access
  81   // tmp is a temporary register, if none is available use noreg
  82   void save_rax   (Register tmp);
  83   void restore_rax(Register tmp);
  84 
  85  public:
  86   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
  87 
  88  // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  89  // The implementation is only non-empty for the InterpreterMacroAssembler,
  90  // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  91  virtual void check_and_handle_popframe(Register java_thread);
  92  virtual void check_and_handle_earlyret(Register java_thread);
  93 
  94   Address as_Address(AddressLiteral adr);
  95   Address as_Address(ArrayAddress adr, Register rscratch);
  96 
  97   // Support for NULL-checks
  98   //
  99   // Generates code that causes a NULL OS exception if the content of reg is NULL.
 100   // If the accessed location is M[reg + offset] and the offset is known, provide the
 101   // offset. No explicit code generation is needed if the offset is within a certain
 102   // range (0 <= offset <= page_size).
 103 
 104   void null_check(Register reg, int offset = -1);
 105   static bool needs_explicit_null_check(intptr_t offset);
 106   static bool uses_implicit_null_check(void* address);
 107 
 108   // markWord tests, kills markWord reg
 109   void test_markword_is_inline_type(Register markword, Label& is_inline_type);
 110 
 111   // inlineKlass queries, kills temp_reg
 112   void test_klass_is_inline_type(Register klass, Register temp_reg, Label& is_inline_type);
 113   void test_klass_is_empty_inline_type(Register klass, Register temp_reg, Label& is_empty_inline_type);
 114   void test_oop_is_not_inline_type(Register object, Register tmp, Label& not_inline_type);
 115 
 116   // Get the default value oop for the given InlineKlass
 117   void get_default_value_oop(Register inline_klass, Register temp_reg, Register obj);
 118   // The empty value oop, for the given InlineKlass ("empty" as in no instance fields)
 119   // get_default_value_oop with extra assertion for empty inline klass
 120   void get_empty_inline_type_oop(Register inline_klass, Register temp_reg, Register obj);
 121 
 122   void test_field_is_null_free_inline_type(Register flags, Register temp_reg, Label& is_null_free);
 123   void test_field_is_not_null_free_inline_type(Register flags, Register temp_reg, Label& not_null_free);
 124   void test_field_is_inlined(Register flags, Register temp_reg, Label& is_inlined);
 125 
 126   // Check oops for special arrays, i.e. flattened and/or null-free
 127   void test_oop_prototype_bit(Register oop, Register temp_reg, int32_t test_bit, bool jmp_set, Label& jmp_label);
 128   void test_flattened_array_oop(Register oop, Register temp_reg, Label&is_flattened_array);
 129   void test_non_flattened_array_oop(Register oop, Register temp_reg, Label&is_non_flattened_array);
 130   void test_null_free_array_oop(Register oop, Register temp_reg, Label&is_null_free_array);
 131   void test_non_null_free_array_oop(Register oop, Register temp_reg, Label&is_non_null_free_array);
 132 
 133   // Check array klass layout helper for flatten or null-free arrays...
 134   void test_flattened_array_layout(Register lh, Label& is_flattened_array);
 135   void test_non_flattened_array_layout(Register lh, Label& is_non_flattened_array);
 136   void test_null_free_array_layout(Register lh, Label& is_null_free_array);
 137   void test_non_null_free_array_layout(Register lh, Label& is_non_null_free_array);
 138 
 139   // Required platform-specific helpers for Label::patch_instructions.
 140   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
 141   void pd_patch_instruction(address branch, address target, const char* file, int line) {
 142     unsigned char op = branch[0];
 143     assert(op == 0xE8 /* call */ ||
 144         op == 0xE9 /* jmp */ ||
 145         op == 0xEB /* short jmp */ ||
 146         (op & 0xF0) == 0x70 /* short jcc */ ||
 147         op == 0x0F && (branch[1] & 0xF0) == 0x80 /* jcc */ ||
 148         op == 0xC7 && branch[1] == 0xF8 /* xbegin */,
 149         "Invalid opcode at patch point");
 150 
 151     if (op == 0xEB || (op & 0xF0) == 0x70) {
 152       // short offset operators (jmp and jcc)
 153       char* disp = (char*) &branch[1];
 154       int imm8 = target - (address) &disp[1];
 155       guarantee(this->is8bit(imm8), "Short forward jump exceeds 8-bit offset at %s:%d",
 156                 file == NULL ? "<NULL>" : file, line);
 157       *disp = imm8;
 158     } else {
 159       int* disp = (int*) &branch[(op == 0x0F || op == 0xC7)? 2: 1];
 160       int imm32 = target - (address) &disp[1];
 161       *disp = imm32;
 162     }
 163   }
 164 
 165   // The following 4 methods return the offset of the appropriate move instruction
 166 
 167   // Support for fast byte/short loading with zero extension (depending on particular CPU)
 168   int load_unsigned_byte(Register dst, Address src);
 169   int load_unsigned_short(Register dst, Address src);
 170 
 171   // Support for fast byte/short loading with sign extension (depending on particular CPU)
 172   int load_signed_byte(Register dst, Address src);
 173   int load_signed_short(Register dst, Address src);
 174 
 175   // Support for sign-extension (hi:lo = extend_sign(lo))
 176   void extend_sign(Register hi, Register lo);
 177 
 178   // Load and store values by size and signed-ness
 179   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
 180   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
 181 
 182   // Support for inc/dec with optimal instruction selection depending on value
 183 
 184   void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
 185   void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
 186 
 187   void decrementl(Address dst, int value = 1);
 188   void decrementl(Register reg, int value = 1);
 189 
 190   void decrementq(Register reg, int value = 1);
 191   void decrementq(Address dst, int value = 1);
 192 
 193   void incrementl(Address dst, int value = 1);
 194   void incrementl(Register reg, int value = 1);
 195 
 196   void incrementq(Register reg, int value = 1);
 197   void incrementq(Address dst, int value = 1);
 198 
 199   // Support optimal SSE move instructions.
 200   void movflt(XMMRegister dst, XMMRegister src) {
 201     if (dst-> encoding() == src->encoding()) return;
 202     if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
 203     else                       { movss (dst, src); return; }
 204   }
 205   void movflt(XMMRegister dst, Address src) { movss(dst, src); }
 206   void movflt(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
 207   void movflt(Address dst, XMMRegister src) { movss(dst, src); }
 208 
 209   // Move with zero extension
 210   void movfltz(XMMRegister dst, XMMRegister src) { movss(dst, src); }
 211 
 212   void movdbl(XMMRegister dst, XMMRegister src) {
 213     if (dst-> encoding() == src->encoding()) return;
 214     if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
 215     else                       { movsd (dst, src); return; }
 216   }
 217 
 218   void movdbl(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
 219 
 220   void movdbl(XMMRegister dst, Address src) {
 221     if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
 222     else                         { movlpd(dst, src); return; }
 223   }
 224   void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
 225 
 226   void incrementl(AddressLiteral dst, Register rscratch = noreg);
 227   void incrementl(ArrayAddress   dst, Register rscratch);
 228 
 229   void incrementq(AddressLiteral dst, Register rscratch = noreg);
 230 
 231   // Alignment
 232   void align32();
 233   void align64();
 234   void align(int modulus);
 235   void align(int modulus, int target);
 236 
 237   void post_call_nop();
 238   // A 5 byte nop that is safe for patching (see patch_verified_entry)
 239   void fat_nop();
 240 
 241   // Stack frame creation/removal
 242   void enter();
 243   void leave();
 244 
 245   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
 246   // The pointer will be loaded into the thread register.
 247   void get_thread(Register thread);
 248 
 249 #ifdef _LP64
 250   // Support for argument shuffling
 251 
 252   // bias in bytes
 253   void move32_64(VMRegPair src, VMRegPair dst, Register tmp = rax, int in_stk_bias = 0, int out_stk_bias = 0);
 254   void long_move(VMRegPair src, VMRegPair dst, Register tmp = rax, int in_stk_bias = 0, int out_stk_bias = 0);
 255   void float_move(VMRegPair src, VMRegPair dst, Register tmp = rax, int in_stk_bias = 0, int out_stk_bias = 0);
 256   void double_move(VMRegPair src, VMRegPair dst, Register tmp = rax, int in_stk_bias = 0, int out_stk_bias = 0);
 257   void move_ptr(VMRegPair src, VMRegPair dst);
 258   void object_move(OopMap* map,
 259                    int oop_handle_offset,
 260                    int framesize_in_slots,
 261                    VMRegPair src,
 262                    VMRegPair dst,
 263                    bool is_receiver,
 264                    int* receiver_offset);
 265 #endif // _LP64
 266 
 267   // Support for VM calls
 268   //
 269   // It is imperative that all calls into the VM are handled via the call_VM macros.
 270   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 271   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 272 
 273 
 274   void call_VM(Register oop_result,
 275                address entry_point,
 276                bool check_exceptions = true);
 277   void call_VM(Register oop_result,
 278                address entry_point,
 279                Register arg_1,
 280                bool check_exceptions = true);
 281   void call_VM(Register oop_result,
 282                address entry_point,
 283                Register arg_1, Register arg_2,
 284                bool check_exceptions = true);
 285   void call_VM(Register oop_result,
 286                address entry_point,
 287                Register arg_1, Register arg_2, Register arg_3,
 288                bool check_exceptions = true);
 289 
 290   // Overloadings with last_Java_sp
 291   void call_VM(Register oop_result,
 292                Register last_java_sp,
 293                address entry_point,
 294                int number_of_arguments = 0,
 295                bool check_exceptions = true);
 296   void call_VM(Register oop_result,
 297                Register last_java_sp,
 298                address entry_point,
 299                Register arg_1, bool
 300                check_exceptions = true);
 301   void call_VM(Register oop_result,
 302                Register last_java_sp,
 303                address entry_point,
 304                Register arg_1, Register arg_2,
 305                bool check_exceptions = true);
 306   void call_VM(Register oop_result,
 307                Register last_java_sp,
 308                address entry_point,
 309                Register arg_1, Register arg_2, Register arg_3,
 310                bool check_exceptions = true);
 311 
 312   void get_vm_result  (Register oop_result, Register thread);
 313   void get_vm_result_2(Register metadata_result, Register thread);
 314 
 315   // These always tightly bind to MacroAssembler::call_VM_base
 316   // bypassing the virtual implementation
 317   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 318   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 319   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 320   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 321   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
 322 
 323   void call_VM_leaf0(address entry_point);
 324   void call_VM_leaf(address entry_point,
 325                     int number_of_arguments = 0);
 326   void call_VM_leaf(address entry_point,
 327                     Register arg_1);
 328   void call_VM_leaf(address entry_point,
 329                     Register arg_1, Register arg_2);
 330   void call_VM_leaf(address entry_point,
 331                     Register arg_1, Register arg_2, Register arg_3);
 332 
 333   void call_VM_leaf(address entry_point,
 334                     Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 335 
 336   // These always tightly bind to MacroAssembler::call_VM_leaf_base
 337   // bypassing the virtual implementation
 338   void super_call_VM_leaf(address entry_point);
 339   void super_call_VM_leaf(address entry_point, Register arg_1);
 340   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 341   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 342   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 343 
 344   // last Java Frame (fills frame anchor)
 345   void set_last_Java_frame(Register thread,
 346                            Register last_java_sp,
 347                            Register last_java_fp,
 348                            address  last_java_pc,
 349                            Register rscratch);
 350 
 351   // thread in the default location (r15_thread on 64bit)
 352   void set_last_Java_frame(Register last_java_sp,
 353                            Register last_java_fp,
 354                            address  last_java_pc,
 355                            Register rscratch);
 356 
 357   void reset_last_Java_frame(Register thread, bool clear_fp);
 358 
 359   // thread in the default location (r15_thread on 64bit)
 360   void reset_last_Java_frame(bool clear_fp);
 361 
 362   // jobjects
 363   void clear_jweak_tag(Register possibly_jweak);
 364   void resolve_jobject(Register value, Register thread, Register tmp);
 365 
 366   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
 367   void c2bool(Register x);
 368 
 369   // C++ bool manipulation
 370 
 371   void movbool(Register dst, Address src);
 372   void movbool(Address dst, bool boolconst);
 373   void movbool(Address dst, Register src);
 374   void testbool(Register dst);
 375 
 376   void resolve_oop_handle(Register result, Register tmp);
 377   void resolve_weak_handle(Register result, Register tmp);
 378   void load_mirror(Register mirror, Register method, Register tmp);
 379   void load_method_holder_cld(Register rresult, Register rmethod);
 380 
 381   void load_method_holder(Register holder, Register method);
 382 
 383   // oop manipulations
 384   void load_metadata(Register dst, Register src);
 385   void load_klass(Register dst, Register src, Register tmp);
 386   void store_klass(Register dst, Register src, Register tmp);
 387 
 388   void access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src,
 389                       Register tmp1, Register thread_tmp);
 390   void access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register val,
 391                        Register tmp1, Register tmp2, Register tmp3);
 392 
 393   void access_value_copy(DecoratorSet decorators, Register src, Register dst, Register inline_klass);
 394 
 395   // inline type data payload offsets...
 396   void first_field_offset(Register inline_klass, Register offset);
 397   void data_for_oop(Register oop, Register data, Register inline_klass);
 398   // get data payload ptr a flat value array at index, kills rcx and index
 399   void data_for_value_array_index(Register array, Register array_klass,
 400                                   Register index, Register data);
 401 
 402 
 403   void load_heap_oop(Register dst, Address src, Register tmp1 = noreg,
 404                      Register thread_tmp = noreg, DecoratorSet decorators = 0);
 405   void load_heap_oop_not_null(Register dst, Address src, Register tmp1 = noreg,
 406                               Register thread_tmp = noreg, DecoratorSet decorators = 0);
 407   void store_heap_oop(Address dst, Register val, Register tmp1 = noreg,
 408                       Register tmp2 = noreg, Register tmp3 = noreg, DecoratorSet decorators = 0);
 409 
 410   // Used for storing NULL. All other oop constants should be
 411   // stored using routines that take a jobject.
 412   void store_heap_oop_null(Address dst);
 413 
 414   void load_prototype_header(Register dst, Register src, Register tmp);
 415 
 416 #ifdef _LP64
 417   void store_klass_gap(Register dst, Register src);
 418 
 419   // This dummy is to prevent a call to store_heap_oop from
 420   // converting a zero (like NULL) into a Register by giving
 421   // the compiler two choices it can't resolve
 422 
 423   void store_heap_oop(Address dst, void* dummy);
 424 
 425   void encode_heap_oop(Register r);
 426   void decode_heap_oop(Register r);
 427   void encode_heap_oop_not_null(Register r);
 428   void decode_heap_oop_not_null(Register r);
 429   void encode_heap_oop_not_null(Register dst, Register src);
 430   void decode_heap_oop_not_null(Register dst, Register src);
 431 
 432   void set_narrow_oop(Register dst, jobject obj);
 433   void set_narrow_oop(Address dst, jobject obj);
 434   void cmp_narrow_oop(Register dst, jobject obj);
 435   void cmp_narrow_oop(Address dst, jobject obj);
 436 
 437   void encode_klass_not_null(Register r, Register tmp);
 438   void decode_klass_not_null(Register r, Register tmp);
 439   void encode_and_move_klass_not_null(Register dst, Register src);
 440   void decode_and_move_klass_not_null(Register dst, Register src);
 441   void set_narrow_klass(Register dst, Klass* k);
 442   void set_narrow_klass(Address dst, Klass* k);
 443   void cmp_narrow_klass(Register dst, Klass* k);
 444   void cmp_narrow_klass(Address dst, Klass* k);
 445 
 446   // if heap base register is used - reinit it with the correct value
 447   void reinit_heapbase();
 448 
 449   DEBUG_ONLY(void verify_heapbase(const char* msg);)
 450 
 451 #endif // _LP64
 452 
 453   // Int division/remainder for Java
 454   // (as idivl, but checks for special case as described in JVM spec.)
 455   // returns idivl instruction offset for implicit exception handling
 456   int corrected_idivl(Register reg);
 457 
 458   // Long division/remainder for Java
 459   // (as idivq, but checks for special case as described in JVM spec.)
 460   // returns idivq instruction offset for implicit exception handling
 461   int corrected_idivq(Register reg);
 462 
 463   void int3();
 464 
 465   // Long operation macros for a 32bit cpu
 466   // Long negation for Java
 467   void lneg(Register hi, Register lo);
 468 
 469   // Long multiplication for Java
 470   // (destroys contents of eax, ebx, ecx and edx)
 471   void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
 472 
 473   // Long shifts for Java
 474   // (semantics as described in JVM spec.)
 475   void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
 476   void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
 477 
 478   // Long compare for Java
 479   // (semantics as described in JVM spec.)
 480   void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
 481 
 482 
 483   // misc
 484 
 485   // Sign extension
 486   void sign_extend_short(Register reg);
 487   void sign_extend_byte(Register reg);
 488 
 489   // Division by power of 2, rounding towards 0
 490   void division_with_shift(Register reg, int shift_value);
 491 
 492 #ifndef _LP64
 493   // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
 494   //
 495   // CF (corresponds to C0) if x < y
 496   // PF (corresponds to C2) if unordered
 497   // ZF (corresponds to C3) if x = y
 498   //
 499   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 500   // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
 501   void fcmp(Register tmp);
 502   // Variant of the above which allows y to be further down the stack
 503   // and which only pops x and y if specified. If pop_right is
 504   // specified then pop_left must also be specified.
 505   void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
 506 
 507   // Floating-point comparison for Java
 508   // Compares the top-most stack entries on the FPU stack and stores the result in dst.
 509   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 510   // (semantics as described in JVM spec.)
 511   void fcmp2int(Register dst, bool unordered_is_less);
 512   // Variant of the above which allows y to be further down the stack
 513   // and which only pops x and y if specified. If pop_right is
 514   // specified then pop_left must also be specified.
 515   void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
 516 
 517   // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
 518   // tmp is a temporary register, if none is available use noreg
 519   void fremr(Register tmp);
 520 
 521   // only if +VerifyFPU
 522   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
 523 #endif // !LP64
 524 
 525   // dst = c = a * b + c
 526   void fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 527   void fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 528 
 529   void vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
 530   void vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
 531   void vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
 532   void vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
 533 
 534 
 535   // same as fcmp2int, but using SSE2
 536   void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 537   void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 538 
 539   // branch to L if FPU flag C2 is set/not set
 540   // tmp is a temporary register, if none is available use noreg
 541   void jC2 (Register tmp, Label& L);
 542   void jnC2(Register tmp, Label& L);
 543 
 544   // Load float value from 'address'. If UseSSE >= 1, the value is loaded into
 545   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 546   void load_float(Address src);
 547 
 548   // Store float value to 'address'. If UseSSE >= 1, the value is stored
 549   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 550   void store_float(Address dst);
 551 
 552   // Load double value from 'address'. If UseSSE >= 2, the value is loaded into
 553   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 554   void load_double(Address src);
 555 
 556   // Store double value to 'address'. If UseSSE >= 2, the value is stored
 557   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 558   void store_double(Address dst);
 559 
 560 #ifndef _LP64
 561   // Pop ST (ffree & fincstp combined)
 562   void fpop();
 563 
 564   void empty_FPU_stack();
 565 #endif // !_LP64
 566 
 567   void push_IU_state();
 568   void pop_IU_state();
 569 
 570   void push_FPU_state();
 571   void pop_FPU_state();
 572 
 573   void push_CPU_state();
 574   void pop_CPU_state();
 575 
 576   void push_cont_fastpath();
 577   void pop_cont_fastpath();
 578 
 579   void inc_held_monitor_count();
 580   void dec_held_monitor_count();
 581 
 582   DEBUG_ONLY(void stop_if_in_cont(Register cont_reg, const char* name);)
 583 
 584   // Round up to a power of two
 585   void round_to(Register reg, int modulus);
 586 
 587 private:
 588   // General purpose and XMM registers potentially clobbered by native code; there
 589   // is no need for FPU or AVX opmask related methods because C1/interpreter
 590   // - we save/restore FPU state as a whole always
 591   // - do not care about AVX-512 opmask
 592   static RegSet call_clobbered_gp_registers();
 593   static XMMRegSet call_clobbered_xmm_registers();
 594 
 595   void push_set(XMMRegSet set, int offset);
 596   void pop_set(XMMRegSet set, int offset);
 597 
 598 public:
 599   void push_set(RegSet set, int offset = -1);
 600   void pop_set(RegSet set, int offset = -1);
 601 
 602   // Push and pop everything that might be clobbered by a native
 603   // runtime call.
 604   // Only save the lower 64 bits of each vector register.
 605   // Additional registers can be excluded in a passed RegSet.
 606   void push_call_clobbered_registers_except(RegSet exclude, bool save_fpu = true);
 607   void pop_call_clobbered_registers_except(RegSet exclude, bool restore_fpu = true);
 608 
 609   void push_call_clobbered_registers(bool save_fpu = true) {
 610     push_call_clobbered_registers_except(RegSet(), save_fpu);
 611   }
 612   void pop_call_clobbered_registers(bool restore_fpu = true) {
 613     pop_call_clobbered_registers_except(RegSet(), restore_fpu);
 614   }
 615 
 616   // allocation
 617 
 618   // Object / value buffer allocation...
 619   // Allocate instance of klass, assumes klass initialized by caller
 620   // new_obj prefers to be rax
 621   // Kills t1 and t2, perserves klass, return allocation in new_obj (rsi on LP64)
 622   void allocate_instance(Register klass, Register new_obj,
 623                          Register t1, Register t2,
 624                          bool clear_fields, Label& alloc_failed);
 625 
 626   void tlab_allocate(
 627     Register thread,                   // Current thread
 628     Register obj,                      // result: pointer to object after successful allocation
 629     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 630     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 631     Register t1,                       // temp register
 632     Register t2,                       // temp register
 633     Label&   slow_case                 // continuation point if fast allocation fails
 634   );
 635   void zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp);
 636 
 637   // For field "index" within "klass", return inline_klass ...
 638   void get_inline_type_field_klass(Register klass, Register index, Register inline_klass);
 639 
 640   // interface method calling
 641   void lookup_interface_method(Register recv_klass,
 642                                Register intf_klass,
 643                                RegisterOrConstant itable_index,
 644                                Register method_result,
 645                                Register scan_temp,
 646                                Label& no_such_interface,
 647                                bool return_method = true);
 648 
 649   // virtual method calling
 650   void lookup_virtual_method(Register recv_klass,
 651                              RegisterOrConstant vtable_index,
 652                              Register method_result);
 653 
 654   // Test sub_klass against super_klass, with fast and slow paths.
 655 
 656   // The fast path produces a tri-state answer: yes / no / maybe-slow.
 657   // One of the three labels can be NULL, meaning take the fall-through.
 658   // If super_check_offset is -1, the value is loaded up from super_klass.
 659   // No registers are killed, except temp_reg.
 660   void check_klass_subtype_fast_path(Register sub_klass,
 661                                      Register super_klass,
 662                                      Register temp_reg,
 663                                      Label* L_success,
 664                                      Label* L_failure,
 665                                      Label* L_slow_path,
 666                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
 667 
 668   // The rest of the type check; must be wired to a corresponding fast path.
 669   // It does not repeat the fast path logic, so don't use it standalone.
 670   // The temp_reg and temp2_reg can be noreg, if no temps are available.
 671   // Updates the sub's secondary super cache as necessary.
 672   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
 673   void check_klass_subtype_slow_path(Register sub_klass,
 674                                      Register super_klass,
 675                                      Register temp_reg,
 676                                      Register temp2_reg,
 677                                      Label* L_success,
 678                                      Label* L_failure,
 679                                      bool set_cond_codes = false);
 680 
 681   // Simplified, combined version, good for typical uses.
 682   // Falls through on failure.
 683   void check_klass_subtype(Register sub_klass,
 684                            Register super_klass,
 685                            Register temp_reg,
 686                            Label& L_success);
 687 
 688   void clinit_barrier(Register klass,
 689                       Register thread,
 690                       Label* L_fast_path = NULL,
 691                       Label* L_slow_path = NULL);
 692 
 693   // method handles (JSR 292)
 694   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
 695 
 696   // Debugging
 697 
 698   // only if +VerifyOops
 699   void _verify_oop(Register reg, const char* s, const char* file, int line);
 700   void _verify_oop_addr(Address addr, const char* s, const char* file, int line);
 701 
 702   void _verify_oop_checked(Register reg, const char* s, const char* file, int line) {
 703     if (VerifyOops) {
 704       _verify_oop(reg, s, file, line);
 705     }
 706   }
 707   void _verify_oop_addr_checked(Address reg, const char* s, const char* file, int line) {
 708     if (VerifyOops) {
 709       _verify_oop_addr(reg, s, file, line);
 710     }
 711   }
 712 
 713   // TODO: verify method and klass metadata (compare against vptr?)
 714   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
 715   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
 716 
 717 #define verify_oop(reg) _verify_oop_checked(reg, "broken oop " #reg, __FILE__, __LINE__)
 718 #define verify_oop_msg(reg, msg) _verify_oop_checked(reg, "broken oop " #reg ", " #msg, __FILE__, __LINE__)
 719 #define verify_oop_addr(addr) _verify_oop_addr_checked(addr, "broken oop addr " #addr, __FILE__, __LINE__)
 720 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
 721 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
 722 
 723   // Verify or restore cpu control state after JNI call
 724   void restore_cpu_control_state_after_jni(Register rscratch);
 725 
 726   // prints msg, dumps registers and stops execution
 727   void stop(const char* msg);
 728 
 729   // prints msg and continues
 730   void warn(const char* msg);
 731 
 732   // dumps registers and other state
 733   void print_state();
 734 
 735   static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
 736   static void debug64(char* msg, int64_t pc, int64_t regs[]);
 737   static void print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip);
 738   static void print_state64(int64_t pc, int64_t regs[]);
 739 
 740   void os_breakpoint();
 741 
 742   void untested()                                { stop("untested"); }
 743 
 744   void unimplemented(const char* what = "");
 745 
 746   void should_not_reach_here()                   { stop("should not reach here"); }
 747 
 748   void print_CPU_state();
 749 
 750   // Stack overflow checking
 751   void bang_stack_with_offset(int offset) {
 752     // stack grows down, caller passes positive offset
 753     assert(offset > 0, "must bang with negative offset");
 754     movl(Address(rsp, (-offset)), rax);
 755   }
 756 
 757   // Writes to stack successive pages until offset reached to check for
 758   // stack overflow + shadow pages.  Also, clobbers tmp
 759   void bang_stack_size(Register size, Register tmp);
 760 
 761   // Check for reserved stack access in method being exited (for JIT)
 762   void reserved_stack_check();
 763 
 764   void safepoint_poll(Label& slow_path, Register thread_reg, bool at_return, bool in_nmethod);
 765 
 766   void verify_tlab();
 767 
 768   static Condition negate_condition(Condition cond);
 769 
 770   // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
 771   // operands. In general the names are modified to avoid hiding the instruction in Assembler
 772   // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
 773   // here in MacroAssembler. The major exception to this rule is call
 774 
 775   // Arithmetics
 776 
 777 
 778   void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
 779   void addptr(Address dst, Register src);
 780 
 781   void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
 782   void addptr(Register dst, int32_t src);
 783   void addptr(Register dst, Register src);
 784   void addptr(Register dst, RegisterOrConstant src) {
 785     if (src.is_constant()) addptr(dst, src.as_constant());
 786     else                   addptr(dst, src.as_register());
 787   }
 788 
 789   void andptr(Register dst, int32_t src);
 790   void andptr(Register dst, Register src) { LP64_ONLY(andq(dst, src)) NOT_LP64(andl(dst, src)) ; }
 791   void andptr(Register dst, Address src) { LP64_ONLY(andq(dst, src)) NOT_LP64(andl(dst, src)) ; }
 792 
 793 #ifdef _LP64
 794   using Assembler::andq;
 795   void andq(Register dst, AddressLiteral src, Register rscratch = noreg);
 796 #endif
 797 
 798   void cmp8(AddressLiteral src1, int imm, Register rscratch = noreg);
 799 
 800   // renamed to drag out the casting of address to int32_t/intptr_t
 801   void cmp32(Register src1, int32_t imm);
 802 
 803   void cmp32(AddressLiteral src1, int32_t imm, Register rscratch = noreg);
 804   // compare reg - mem, or reg - &mem
 805   void cmp32(Register src1, AddressLiteral src2, Register rscratch = noreg);
 806 
 807   void cmp32(Register src1, Address src2);
 808 
 809 #ifndef _LP64
 810   void cmpklass(Address dst, Metadata* obj);
 811   void cmpklass(Register dst, Metadata* obj);
 812   void cmpoop(Address dst, jobject obj);
 813 #endif // _LP64
 814 
 815   void cmpoop(Register src1, Register src2);
 816   void cmpoop(Register src1, Address src2);
 817   void cmpoop(Register dst, jobject obj, Register rscratch);
 818 
 819   // NOTE src2 must be the lval. This is NOT an mem-mem compare
 820   void cmpptr(Address src1, AddressLiteral src2, Register rscratch);
 821 
 822   void cmpptr(Register src1, AddressLiteral src2, Register rscratch = noreg);
 823 
 824   void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 825   void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 826   // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 827 
 828   void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 829   void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 830 
 831   // cmp64 to avoild hiding cmpq
 832   void cmp64(Register src1, AddressLiteral src, Register rscratch = noreg);
 833 
 834   void cmpxchgptr(Register reg, Address adr);
 835 
 836   void locked_cmpxchgptr(Register reg, AddressLiteral adr, Register rscratch = noreg);
 837 
 838   void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
 839   void imulptr(Register dst, Register src, int imm32) { LP64_ONLY(imulq(dst, src, imm32)) NOT_LP64(imull(dst, src, imm32)); }
 840 
 841 
 842   void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
 843 
 844   void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
 845 
 846   void shlptr(Register dst, int32_t shift);
 847   void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
 848 
 849   void shrptr(Register dst, int32_t shift);
 850   void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
 851 
 852   void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
 853   void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
 854 
 855   void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 856 
 857   void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 858   void subptr(Register dst, int32_t src);
 859   // Force generation of a 4 byte immediate value even if it fits into 8bit
 860   void subptr_imm32(Register dst, int32_t src);
 861   void subptr(Register dst, Register src);
 862   void subptr(Register dst, RegisterOrConstant src) {
 863     if (src.is_constant()) subptr(dst, (int) src.as_constant());
 864     else                   subptr(dst,       src.as_register());
 865   }
 866 
 867   void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 868   void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 869 
 870   void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 871   void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 872 
 873   void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
 874 
 875 
 876 
 877   // Helper functions for statistics gathering.
 878   // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
 879   void cond_inc32(Condition cond, AddressLiteral counter_addr, Register rscratch = noreg);
 880   // Unconditional atomic increment.
 881   void atomic_incl(Address counter_addr);
 882   void atomic_incl(AddressLiteral counter_addr, Register rscratch = noreg);
 883 #ifdef _LP64
 884   void atomic_incq(Address counter_addr);
 885   void atomic_incq(AddressLiteral counter_addr, Register rscratch = noreg);
 886 #endif
 887   void atomic_incptr(AddressLiteral counter_addr, Register rscratch = noreg) { LP64_ONLY(atomic_incq(counter_addr, rscratch)) NOT_LP64(atomic_incl(counter_addr, rscratch)) ; }
 888   void atomic_incptr(Address counter_addr) { LP64_ONLY(atomic_incq(counter_addr)) NOT_LP64(atomic_incl(counter_addr)) ; }
 889 
 890   void lea(Register dst, Address        adr) { Assembler::lea(dst, adr); }
 891   void lea(Register dst, AddressLiteral adr);
 892   void lea(Address  dst, AddressLiteral adr, Register rscratch);
 893 
 894   void leal32(Register dst, Address src) { leal(dst, src); }
 895 
 896   // Import other testl() methods from the parent class or else
 897   // they will be hidden by the following overriding declaration.
 898   using Assembler::testl;
 899   void testl(Address dst, int32_t imm32);
 900   void testl(Register dst, int32_t imm32);
 901   void testl(Register dst, AddressLiteral src); // requires reachable address
 902   using Assembler::testq;
 903   void testq(Address dst, int32_t imm32);
 904   void testq(Register dst, int32_t imm32);
 905 
 906   void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 907   void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 908   void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 909   void orptr(Address dst, int32_t imm32) { LP64_ONLY(orq(dst, imm32)) NOT_LP64(orl(dst, imm32)); }
 910 
 911   void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
 912   void testptr(Register src1, Address src2) { LP64_ONLY(testq(src1, src2)) NOT_LP64(testl(src1, src2)); }
 913   void testptr(Register src1, Register src2);
 914 
 915   void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 916   void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 917 
 918   // Calls
 919 
 920   void call(Label& L, relocInfo::relocType rtype);
 921   void call(Register entry);
 922   void call(Address addr) { Assembler::call(addr); }
 923 
 924   // NOTE: this call transfers to the effective address of entry NOT
 925   // the address contained by entry. This is because this is more natural
 926   // for jumps/calls.
 927   void call(AddressLiteral entry, Register rscratch = rax);
 928 
 929   // Emit the CompiledIC call idiom
 930   void ic_call(address entry, jint method_index = 0);
 931 
 932   void emit_static_call_stub();
 933 
 934   // Jumps
 935 
 936   // NOTE: these jumps transfer to the effective address of dst NOT
 937   // the address contained by dst. This is because this is more natural
 938   // for jumps/calls.
 939   void jump(AddressLiteral dst, Register rscratch = noreg);
 940 
 941   void jump_cc(Condition cc, AddressLiteral dst, Register rscratch = noreg);
 942 
 943   // 32bit can do a case table jump in one instruction but we no longer allow the base
 944   // to be installed in the Address class. This jump will transfer to the address
 945   // contained in the location described by entry (not the address of entry)
 946   void jump(ArrayAddress entry, Register rscratch);
 947 
 948   // Floating
 949 
 950   void push_f(XMMRegister r);
 951   void pop_f(XMMRegister r);
 952   void push_d(XMMRegister r);
 953   void pop_d(XMMRegister r);
 954 
 955   void andpd(XMMRegister dst, XMMRegister    src) { Assembler::andpd(dst, src); }
 956   void andpd(XMMRegister dst, Address        src) { Assembler::andpd(dst, src); }
 957   void andpd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
 958 
 959   void andps(XMMRegister dst, XMMRegister    src) { Assembler::andps(dst, src); }
 960   void andps(XMMRegister dst, Address        src) { Assembler::andps(dst, src); }
 961   void andps(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
 962 
 963   void comiss(XMMRegister dst, XMMRegister    src) { Assembler::comiss(dst, src); }
 964   void comiss(XMMRegister dst, Address        src) { Assembler::comiss(dst, src); }
 965   void comiss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
 966 
 967   void comisd(XMMRegister dst, XMMRegister    src) { Assembler::comisd(dst, src); }
 968   void comisd(XMMRegister dst, Address        src) { Assembler::comisd(dst, src); }
 969   void comisd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
 970 
 971 #ifndef _LP64
 972   void fadd_s(Address        src) { Assembler::fadd_s(src); }
 973   void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
 974 
 975   void fldcw(Address        src) { Assembler::fldcw(src); }
 976   void fldcw(AddressLiteral src);
 977 
 978   void fld_s(int index)          { Assembler::fld_s(index); }
 979   void fld_s(Address        src) { Assembler::fld_s(src); }
 980   void fld_s(AddressLiteral src);
 981 
 982   void fld_d(Address        src) { Assembler::fld_d(src); }
 983   void fld_d(AddressLiteral src);
 984 
 985   void fld_x(Address        src) { Assembler::fld_x(src); }
 986   void fld_x(AddressLiteral src) { Assembler::fld_x(as_Address(src)); }
 987 
 988   void fmul_s(Address        src) { Assembler::fmul_s(src); }
 989   void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
 990 #endif // !_LP64
 991 
 992   void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
 993   void ldmxcsr(AddressLiteral src, Register rscratch = noreg);
 994 
 995 #ifdef _LP64
 996  private:
 997   void sha256_AVX2_one_round_compute(
 998     Register  reg_old_h,
 999     Register  reg_a,
1000     Register  reg_b,
1001     Register  reg_c,
1002     Register  reg_d,
1003     Register  reg_e,
1004     Register  reg_f,
1005     Register  reg_g,
1006     Register  reg_h,
1007     int iter);
1008   void sha256_AVX2_four_rounds_compute_first(int start);
1009   void sha256_AVX2_four_rounds_compute_last(int start);
1010   void sha256_AVX2_one_round_and_sched(
1011         XMMRegister xmm_0,     /* == ymm4 on 0, 1, 2, 3 iterations, then rotate 4 registers left on 4, 8, 12 iterations */
1012         XMMRegister xmm_1,     /* ymm5 */  /* full cycle is 16 iterations */
1013         XMMRegister xmm_2,     /* ymm6 */
1014         XMMRegister xmm_3,     /* ymm7 */
1015         Register    reg_a,      /* == eax on 0 iteration, then rotate 8 register right on each next iteration */
1016         Register    reg_b,      /* ebx */    /* full cycle is 8 iterations */
1017         Register    reg_c,      /* edi */
1018         Register    reg_d,      /* esi */
1019         Register    reg_e,      /* r8d */
1020         Register    reg_f,      /* r9d */
1021         Register    reg_g,      /* r10d */
1022         Register    reg_h,      /* r11d */
1023         int iter);
1024 
1025   void addm(int disp, Register r1, Register r2);
1026 
1027   void sha512_AVX2_one_round_compute(Register old_h, Register a, Register b, Register c, Register d,
1028                                      Register e, Register f, Register g, Register h, int iteration);
1029 
1030   void sha512_AVX2_one_round_and_schedule(XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1031                                           Register a, Register b, Register c, Register d, Register e, Register f,
1032                                           Register g, Register h, int iteration);
1033 
1034   void addmq(int disp, Register r1, Register r2);
1035  public:
1036   void sha256_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
1037                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
1038                    Register buf, Register state, Register ofs, Register limit, Register rsp,
1039                    bool multi_block, XMMRegister shuf_mask);
1040   void sha512_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
1041                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
1042                    Register buf, Register state, Register ofs, Register limit, Register rsp, bool multi_block,
1043                    XMMRegister shuf_mask);
1044 #endif // _LP64
1045 
1046   void fast_md5(Register buf, Address state, Address ofs, Address limit,
1047                 bool multi_block);
1048 
1049   void fast_sha1(XMMRegister abcd, XMMRegister e0, XMMRegister e1, XMMRegister msg0,
1050                  XMMRegister msg1, XMMRegister msg2, XMMRegister msg3, XMMRegister shuf_mask,
1051                  Register buf, Register state, Register ofs, Register limit, Register rsp,
1052                  bool multi_block);
1053 
1054 #ifdef _LP64
1055   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
1056                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
1057                    Register buf, Register state, Register ofs, Register limit, Register rsp,
1058                    bool multi_block, XMMRegister shuf_mask);
1059 #else
1060   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
1061                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
1062                    Register buf, Register state, Register ofs, Register limit, Register rsp,
1063                    bool multi_block);
1064 #endif
1065 
1066   void fast_exp(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1067                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1068                 Register rax, Register rcx, Register rdx, Register tmp);
1069 
1070 #ifndef _LP64
1071  private:
1072   // Initialized in macroAssembler_x86_constants.cpp
1073   static address ONES;
1074   static address L_2IL0FLOATPACKET_0;
1075   static address PI4_INV;
1076   static address PI4X3;
1077   static address PI4X4;
1078 
1079  public:
1080   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1081                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1082                 Register rax, Register rcx, Register rdx, Register tmp1);
1083 
1084   void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1085                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1086                 Register rax, Register rcx, Register rdx, Register tmp);
1087 
1088   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
1089                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
1090                 Register rdx, Register tmp);
1091 
1092   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1093                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1094                 Register rax, Register rbx, Register rdx);
1095 
1096   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1097                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1098                 Register rax, Register rcx, Register rdx, Register tmp);
1099 
1100   void libm_sincos_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1101                         Register edx, Register ebx, Register esi, Register edi,
1102                         Register ebp, Register esp);
1103 
1104   void libm_reduce_pi04l(Register eax, Register ecx, Register edx, Register ebx,
1105                          Register esi, Register edi, Register ebp, Register esp);
1106 
1107   void libm_tancot_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1108                         Register edx, Register ebx, Register esi, Register edi,
1109                         Register ebp, Register esp);
1110 
1111   void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1112                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1113                 Register rax, Register rcx, Register rdx, Register tmp);
1114 #endif // !_LP64
1115 
1116 private:
1117 
1118   // these are private because users should be doing movflt/movdbl
1119 
1120   void movss(Address     dst, XMMRegister    src) { Assembler::movss(dst, src); }
1121   void movss(XMMRegister dst, XMMRegister    src) { Assembler::movss(dst, src); }
1122   void movss(XMMRegister dst, Address        src) { Assembler::movss(dst, src); }
1123   void movss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1124 
1125   void movlpd(XMMRegister dst, Address        src) {Assembler::movlpd(dst, src); }
1126   void movlpd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1127 
1128 public:
1129 
1130   void addsd(XMMRegister dst, XMMRegister    src) { Assembler::addsd(dst, src); }
1131   void addsd(XMMRegister dst, Address        src) { Assembler::addsd(dst, src); }
1132   void addsd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1133 
1134   void addss(XMMRegister dst, XMMRegister    src) { Assembler::addss(dst, src); }
1135   void addss(XMMRegister dst, Address        src) { Assembler::addss(dst, src); }
1136   void addss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1137 
1138   void addpd(XMMRegister dst, XMMRegister    src) { Assembler::addpd(dst, src); }
1139   void addpd(XMMRegister dst, Address        src) { Assembler::addpd(dst, src); }
1140   void addpd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1141 
1142   using Assembler::vbroadcastsd;
1143   void vbroadcastsd(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1144 
1145   using Assembler::vbroadcastss;
1146   void vbroadcastss(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1147 
1148   void divsd(XMMRegister dst, XMMRegister    src) { Assembler::divsd(dst, src); }
1149   void divsd(XMMRegister dst, Address        src) { Assembler::divsd(dst, src); }
1150   void divsd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1151 
1152   void divss(XMMRegister dst, XMMRegister    src) { Assembler::divss(dst, src); }
1153   void divss(XMMRegister dst, Address        src) { Assembler::divss(dst, src); }
1154   void divss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1155 
1156   // Move Unaligned Double Quadword
1157   void movdqu(Address     dst, XMMRegister    src);
1158   void movdqu(XMMRegister dst, XMMRegister    src);
1159   void movdqu(XMMRegister dst, Address        src);
1160   void movdqu(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1161 
1162   void kmovwl(Register  dst, KRegister      src) { Assembler::kmovwl(dst, src); }
1163   void kmovwl(Address   dst, KRegister      src) { Assembler::kmovwl(dst, src); }
1164   void kmovwl(KRegister dst, KRegister      src) { Assembler::kmovwl(dst, src); }
1165   void kmovwl(KRegister dst, Register       src) { Assembler::kmovwl(dst, src); }
1166   void kmovwl(KRegister dst, Address        src) { Assembler::kmovwl(dst, src); }
1167   void kmovwl(KRegister dst, AddressLiteral src, Register rscratch = noreg);
1168 
1169   void kmovql(KRegister dst, KRegister      src) { Assembler::kmovql(dst, src); }
1170   void kmovql(KRegister dst, Register       src) { Assembler::kmovql(dst, src); }
1171   void kmovql(Register  dst, KRegister      src) { Assembler::kmovql(dst, src); }
1172   void kmovql(KRegister dst, Address        src) { Assembler::kmovql(dst, src); }
1173   void kmovql(Address   dst, KRegister      src) { Assembler::kmovql(dst, src); }
1174   void kmovql(KRegister dst, AddressLiteral src, Register rscratch = noreg);
1175 
1176   // Safe move operation, lowers down to 16bit moves for targets supporting
1177   // AVX512F feature and 64bit moves for targets supporting AVX512BW feature.
1178   void kmov(Address  dst, KRegister src);
1179   void kmov(KRegister dst, Address src);
1180   void kmov(KRegister dst, KRegister src);
1181   void kmov(Register dst, KRegister src);
1182   void kmov(KRegister dst, Register src);
1183 
1184   using Assembler::movddup;
1185   void movddup(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1186 
1187   using Assembler::vmovddup;
1188   void vmovddup(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1189 
1190   // AVX Unaligned forms
1191   void vmovdqu(Address     dst, XMMRegister    src);
1192   void vmovdqu(XMMRegister dst, Address        src);
1193   void vmovdqu(XMMRegister dst, XMMRegister    src);
1194   void vmovdqu(XMMRegister dst, AddressLiteral src,                 Register rscratch = noreg);
1195   void vmovdqu(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1196 
1197   // AVX512 Unaligned
1198   void evmovdqu(BasicType type, KRegister kmask, Address     dst, XMMRegister src, bool merge, int vector_len);
1199   void evmovdqu(BasicType type, KRegister kmask, XMMRegister dst, Address     src, bool merge, int vector_len);
1200 
1201   void evmovdqub(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::evmovdqub(dst, src, vector_len); }
1202   void evmovdqub(XMMRegister dst, Address     src, int vector_len) { Assembler::evmovdqub(dst, src, vector_len); }
1203 
1204   void evmovdqub(XMMRegister dst, KRegister mask, XMMRegister src, bool merge, int vector_len) {
1205     if (dst->encoding() != src->encoding() || mask != k0)  {
1206       Assembler::evmovdqub(dst, mask, src, merge, vector_len);
1207     }
1208   }
1209   void evmovdqub(Address     dst, KRegister mask, XMMRegister    src, bool merge, int vector_len) { Assembler::evmovdqub(dst, mask, src, merge, vector_len); }
1210   void evmovdqub(XMMRegister dst, KRegister mask, Address        src, bool merge, int vector_len) { Assembler::evmovdqub(dst, mask, src, merge, vector_len); }
1211   void evmovdqub(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg);
1212 
1213   void evmovdquw(Address     dst, XMMRegister src, int vector_len) { Assembler::evmovdquw(dst, src, vector_len); }
1214   void evmovdquw(XMMRegister dst, Address     src, int vector_len) { Assembler::evmovdquw(dst, src, vector_len); }
1215 
1216   void evmovdquw(XMMRegister dst, KRegister mask, XMMRegister src, bool merge, int vector_len) {
1217     if (dst->encoding() != src->encoding() || mask != k0) {
1218       Assembler::evmovdquw(dst, mask, src, merge, vector_len);
1219     }
1220   }
1221   void evmovdquw(XMMRegister dst, KRegister mask, Address        src, bool merge, int vector_len) { Assembler::evmovdquw(dst, mask, src, merge, vector_len); }
1222   void evmovdquw(Address     dst, KRegister mask, XMMRegister    src, bool merge, int vector_len) { Assembler::evmovdquw(dst, mask, src, merge, vector_len); }
1223   void evmovdquw(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg);
1224 
1225   void evmovdqul(XMMRegister dst, XMMRegister src, int vector_len) {
1226      if (dst->encoding() != src->encoding()) {
1227        Assembler::evmovdqul(dst, src, vector_len);
1228      }
1229   }
1230   void evmovdqul(Address     dst, XMMRegister src, int vector_len) { Assembler::evmovdqul(dst, src, vector_len); }
1231   void evmovdqul(XMMRegister dst, Address     src, int vector_len) { Assembler::evmovdqul(dst, src, vector_len); }
1232 
1233   void evmovdqul(XMMRegister dst, KRegister mask, XMMRegister src, bool merge, int vector_len) {
1234     if (dst->encoding() != src->encoding() || mask != k0)  {
1235       Assembler::evmovdqul(dst, mask, src, merge, vector_len);
1236     }
1237   }
1238   void evmovdqul(Address     dst, KRegister mask, XMMRegister    src, bool merge, int vector_len) { Assembler::evmovdqul(dst, mask, src, merge, vector_len); }
1239   void evmovdqul(XMMRegister dst, KRegister mask, Address        src, bool merge, int vector_len) { Assembler::evmovdqul(dst, mask, src, merge, vector_len); }
1240   void evmovdqul(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg);
1241 
1242   void evmovdquq(XMMRegister dst, XMMRegister src, int vector_len) {
1243     if (dst->encoding() != src->encoding()) {
1244       Assembler::evmovdquq(dst, src, vector_len);
1245     }
1246   }
1247   void evmovdquq(XMMRegister dst, Address        src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); }
1248   void evmovdquq(Address     dst, XMMRegister    src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); }
1249   void evmovdquq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1250 
1251   void evmovdquq(XMMRegister dst, KRegister mask, XMMRegister src, bool merge, int vector_len) {
1252     if (dst->encoding() != src->encoding() || mask != k0) {
1253       Assembler::evmovdquq(dst, mask, src, merge, vector_len);
1254     }
1255   }
1256   void evmovdquq(Address     dst, KRegister mask, XMMRegister    src, bool merge, int vector_len) { Assembler::evmovdquq(dst, mask, src, merge, vector_len); }
1257   void evmovdquq(XMMRegister dst, KRegister mask, Address        src, bool merge, int vector_len) { Assembler::evmovdquq(dst, mask, src, merge, vector_len); }
1258   void evmovdquq(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg);
1259 
1260   // Move Aligned Double Quadword
1261   void movdqa(XMMRegister dst, XMMRegister    src) { Assembler::movdqa(dst, src); }
1262   void movdqa(XMMRegister dst, Address        src) { Assembler::movdqa(dst, src); }
1263   void movdqa(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1264 
1265   void movsd(Address     dst, XMMRegister    src) { Assembler::movsd(dst, src); }
1266   void movsd(XMMRegister dst, XMMRegister    src) { Assembler::movsd(dst, src); }
1267   void movsd(XMMRegister dst, Address        src) { Assembler::movsd(dst, src); }
1268   void movsd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1269 
1270   void mulpd(XMMRegister dst, XMMRegister    src) { Assembler::mulpd(dst, src); }
1271   void mulpd(XMMRegister dst, Address        src) { Assembler::mulpd(dst, src); }
1272   void mulpd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1273 
1274   void mulsd(XMMRegister dst, XMMRegister    src) { Assembler::mulsd(dst, src); }
1275   void mulsd(XMMRegister dst, Address        src) { Assembler::mulsd(dst, src); }
1276   void mulsd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1277 
1278   void mulss(XMMRegister dst, XMMRegister    src) { Assembler::mulss(dst, src); }
1279   void mulss(XMMRegister dst, Address        src) { Assembler::mulss(dst, src); }
1280   void mulss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1281 
1282   // Carry-Less Multiplication Quadword
1283   void pclmulldq(XMMRegister dst, XMMRegister src) {
1284     // 0x00 - multiply lower 64 bits [0:63]
1285     Assembler::pclmulqdq(dst, src, 0x00);
1286   }
1287   void pclmulhdq(XMMRegister dst, XMMRegister src) {
1288     // 0x11 - multiply upper 64 bits [64:127]
1289     Assembler::pclmulqdq(dst, src, 0x11);
1290   }
1291 
1292   void pcmpeqb(XMMRegister dst, XMMRegister src);
1293   void pcmpeqw(XMMRegister dst, XMMRegister src);
1294 
1295   void pcmpestri(XMMRegister dst, Address src, int imm8);
1296   void pcmpestri(XMMRegister dst, XMMRegister src, int imm8);
1297 
1298   void pmovzxbw(XMMRegister dst, XMMRegister src);
1299   void pmovzxbw(XMMRegister dst, Address src);
1300 
1301   void pmovmskb(Register dst, XMMRegister src);
1302 
1303   void ptest(XMMRegister dst, XMMRegister src);
1304 
1305   void roundsd(XMMRegister dst, XMMRegister    src, int32_t rmode) { Assembler::roundsd(dst, src, rmode); }
1306   void roundsd(XMMRegister dst, Address        src, int32_t rmode) { Assembler::roundsd(dst, src, rmode); }
1307   void roundsd(XMMRegister dst, AddressLiteral src, int32_t rmode, Register rscratch = noreg);
1308 
1309   void sqrtss(XMMRegister dst, XMMRegister     src) { Assembler::sqrtss(dst, src); }
1310   void sqrtss(XMMRegister dst, Address         src) { Assembler::sqrtss(dst, src); }
1311   void sqrtss(XMMRegister dst, AddressLiteral  src, Register rscratch = noreg);
1312 
1313   void subsd(XMMRegister dst, XMMRegister    src) { Assembler::subsd(dst, src); }
1314   void subsd(XMMRegister dst, Address        src) { Assembler::subsd(dst, src); }
1315   void subsd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1316 
1317   void subss(XMMRegister dst, XMMRegister    src) { Assembler::subss(dst, src); }
1318   void subss(XMMRegister dst, Address        src) { Assembler::subss(dst, src); }
1319   void subss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1320 
1321   void ucomiss(XMMRegister dst, XMMRegister    src) { Assembler::ucomiss(dst, src); }
1322   void ucomiss(XMMRegister dst, Address        src) { Assembler::ucomiss(dst, src); }
1323   void ucomiss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1324 
1325   void ucomisd(XMMRegister dst, XMMRegister    src) { Assembler::ucomisd(dst, src); }
1326   void ucomisd(XMMRegister dst, Address        src) { Assembler::ucomisd(dst, src); }
1327   void ucomisd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1328 
1329   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
1330   void xorpd(XMMRegister dst, XMMRegister    src);
1331   void xorpd(XMMRegister dst, Address        src) { Assembler::xorpd(dst, src); }
1332   void xorpd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1333 
1334   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
1335   void xorps(XMMRegister dst, XMMRegister    src);
1336   void xorps(XMMRegister dst, Address        src) { Assembler::xorps(dst, src); }
1337   void xorps(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1338 
1339   // Shuffle Bytes
1340   void pshufb(XMMRegister dst, XMMRegister    src) { Assembler::pshufb(dst, src); }
1341   void pshufb(XMMRegister dst, Address        src) { Assembler::pshufb(dst, src); }
1342   void pshufb(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1343   // AVX 3-operands instructions
1344 
1345   void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister    src) { Assembler::vaddsd(dst, nds, src); }
1346   void vaddsd(XMMRegister dst, XMMRegister nds, Address        src) { Assembler::vaddsd(dst, nds, src); }
1347   void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1348 
1349   void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister    src) { Assembler::vaddss(dst, nds, src); }
1350   void vaddss(XMMRegister dst, XMMRegister nds, Address        src) { Assembler::vaddss(dst, nds, src); }
1351   void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1352 
1353   void vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len, Register rscratch = noreg);
1354   void vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len, Register rscratch = noreg);
1355 
1356   void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len);
1357   void vpaddb(XMMRegister dst, XMMRegister nds, Address        src, int vector_len);
1358   void vpaddb(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1359 
1360   void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1361   void vpaddw(XMMRegister dst, XMMRegister nds, Address     src, int vector_len);
1362 
1363   void vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len) { Assembler::vpaddd(dst, nds, src, vector_len); }
1364   void vpaddd(XMMRegister dst, XMMRegister nds, Address        src, int vector_len) { Assembler::vpaddd(dst, nds, src, vector_len); }
1365   void vpaddd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1366 
1367   void vpand(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1368   void vpand(XMMRegister dst, XMMRegister nds, Address        src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1369   void vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1370 
1371   using Assembler::vpbroadcastd;
1372   void vpbroadcastd(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1373 
1374   using Assembler::vpbroadcastq;
1375   void vpbroadcastq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1376 
1377   void vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1378 
1379   void vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1380   void evpcmpeqd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1381 
1382   // Vector compares
1383   void evpcmpd(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister    src, int comparison, bool is_signed, int vector_len) {
1384     Assembler::evpcmpd(kdst, mask, nds, src, comparison, is_signed, vector_len);
1385   }
1386   void evpcmpd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int comparison, bool is_signed, int vector_len, Register rscratch = noreg);
1387 
1388   void evpcmpq(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister    src, int comparison, bool is_signed, int vector_len) {
1389     Assembler::evpcmpq(kdst, mask, nds, src, comparison, is_signed, vector_len);
1390   }
1391   void evpcmpq(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int comparison, bool is_signed, int vector_len, Register rscratch = noreg);
1392 
1393   void evpcmpb(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister    src, int comparison, bool is_signed, int vector_len) {
1394     Assembler::evpcmpb(kdst, mask, nds, src, comparison, is_signed, vector_len);
1395   }
1396   void evpcmpb(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int comparison, bool is_signed, int vector_len, Register rscratch = noreg);
1397 
1398   void evpcmpw(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister    src, int comparison, bool is_signed, int vector_len) {
1399     Assembler::evpcmpw(kdst, mask, nds, src, comparison, is_signed, vector_len);
1400   }
1401   void evpcmpw(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int comparison, bool is_signed, int vector_len, Register rscratch = noreg);
1402 
1403   void evpbroadcast(BasicType type, XMMRegister dst, Register src, int vector_len);
1404 
1405   // Emit comparison instruction for the specified comparison predicate.
1406   void vpcmpCCW(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister xtmp, ComparisonPredicate cond, Width width, int vector_len);
1407   void vpcmpCC(XMMRegister dst, XMMRegister nds, XMMRegister src, int cond_encoding, Width width, int vector_len);
1408 
1409   void vpmovzxbw(XMMRegister dst, Address     src, int vector_len);
1410   void vpmovzxbw(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::vpmovzxbw(dst, src, vector_len); }
1411 
1412   void vpmovmskb(Register dst, XMMRegister src, int vector_len = Assembler::AVX_256bit);
1413 
1414   void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1415   void vpmullw(XMMRegister dst, XMMRegister nds, Address     src, int vector_len);
1416 
1417   void vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len) { Assembler::vpmulld(dst, nds, src, vector_len); }
1418   void vpmulld(XMMRegister dst, XMMRegister nds, Address        src, int vector_len) { Assembler::vpmulld(dst, nds, src, vector_len); }
1419   void vpmulld(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1420 
1421   void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1422   void vpsubb(XMMRegister dst, XMMRegister nds, Address     src, int vector_len);
1423 
1424   void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1425   void vpsubw(XMMRegister dst, XMMRegister nds, Address     src, int vector_len);
1426 
1427   void vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1428   void vpsraw(XMMRegister dst, XMMRegister nds, int         shift, int vector_len);
1429 
1430   void evpsraq(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1431   void evpsraq(XMMRegister dst, XMMRegister nds, int         shift, int vector_len);
1432 
1433   void evpsllw(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1434     if (!is_varshift) {
1435       Assembler::evpsllw(dst, mask, nds, src, merge, vector_len);
1436     } else {
1437       Assembler::evpsllvw(dst, mask, nds, src, merge, vector_len);
1438     }
1439   }
1440   void evpslld(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1441     if (!is_varshift) {
1442       Assembler::evpslld(dst, mask, nds, src, merge, vector_len);
1443     } else {
1444       Assembler::evpsllvd(dst, mask, nds, src, merge, vector_len);
1445     }
1446   }
1447   void evpsllq(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1448     if (!is_varshift) {
1449       Assembler::evpsllq(dst, mask, nds, src, merge, vector_len);
1450     } else {
1451       Assembler::evpsllvq(dst, mask, nds, src, merge, vector_len);
1452     }
1453   }
1454   void evpsrlw(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1455     if (!is_varshift) {
1456       Assembler::evpsrlw(dst, mask, nds, src, merge, vector_len);
1457     } else {
1458       Assembler::evpsrlvw(dst, mask, nds, src, merge, vector_len);
1459     }
1460   }
1461   void evpsrld(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1462     if (!is_varshift) {
1463       Assembler::evpsrld(dst, mask, nds, src, merge, vector_len);
1464     } else {
1465       Assembler::evpsrlvd(dst, mask, nds, src, merge, vector_len);
1466     }
1467   }
1468   void evpsrlq(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1469     if (!is_varshift) {
1470       Assembler::evpsrlq(dst, mask, nds, src, merge, vector_len);
1471     } else {
1472       Assembler::evpsrlvq(dst, mask, nds, src, merge, vector_len);
1473     }
1474   }
1475   void evpsraw(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1476     if (!is_varshift) {
1477       Assembler::evpsraw(dst, mask, nds, src, merge, vector_len);
1478     } else {
1479       Assembler::evpsravw(dst, mask, nds, src, merge, vector_len);
1480     }
1481   }
1482   void evpsrad(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1483     if (!is_varshift) {
1484       Assembler::evpsrad(dst, mask, nds, src, merge, vector_len);
1485     } else {
1486       Assembler::evpsravd(dst, mask, nds, src, merge, vector_len);
1487     }
1488   }
1489   void evpsraq(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1490     if (!is_varshift) {
1491       Assembler::evpsraq(dst, mask, nds, src, merge, vector_len);
1492     } else {
1493       Assembler::evpsravq(dst, mask, nds, src, merge, vector_len);
1494     }
1495   }
1496 
1497   void evpmins(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len);
1498   void evpmaxs(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len);
1499   void evpmins(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len);
1500   void evpmaxs(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len);
1501 
1502   void vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1503   void vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1504 
1505   void vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1506   void vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1507 
1508   void vptest(XMMRegister dst, XMMRegister src);
1509   void vptest(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::vptest(dst, src, vector_len); }
1510 
1511   void punpcklbw(XMMRegister dst, XMMRegister src);
1512   void punpcklbw(XMMRegister dst, Address src) { Assembler::punpcklbw(dst, src); }
1513 
1514   void pshufd(XMMRegister dst, Address src, int mode);
1515   void pshufd(XMMRegister dst, XMMRegister src, int mode) { Assembler::pshufd(dst, src, mode); }
1516 
1517   void pshuflw(XMMRegister dst, XMMRegister src, int mode);
1518   void pshuflw(XMMRegister dst, Address src, int mode) { Assembler::pshuflw(dst, src, mode); }
1519 
1520   void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len) { Assembler::vandpd(dst, nds, src, vector_len); }
1521   void vandpd(XMMRegister dst, XMMRegister nds, Address        src, int vector_len) { Assembler::vandpd(dst, nds, src, vector_len); }
1522   void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1523 
1524   void vandps(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len) { Assembler::vandps(dst, nds, src, vector_len); }
1525   void vandps(XMMRegister dst, XMMRegister nds, Address        src, int vector_len) { Assembler::vandps(dst, nds, src, vector_len); }
1526   void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1527 
1528   void evpord(XMMRegister dst, KRegister mask, XMMRegister nds, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg);
1529 
1530   void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister    src) { Assembler::vdivsd(dst, nds, src); }
1531   void vdivsd(XMMRegister dst, XMMRegister nds, Address        src) { Assembler::vdivsd(dst, nds, src); }
1532   void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1533 
1534   void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister    src) { Assembler::vdivss(dst, nds, src); }
1535   void vdivss(XMMRegister dst, XMMRegister nds, Address        src) { Assembler::vdivss(dst, nds, src); }
1536   void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1537 
1538   void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister    src) { Assembler::vmulsd(dst, nds, src); }
1539   void vmulsd(XMMRegister dst, XMMRegister nds, Address        src) { Assembler::vmulsd(dst, nds, src); }
1540   void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1541 
1542   void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister    src) { Assembler::vmulss(dst, nds, src); }
1543   void vmulss(XMMRegister dst, XMMRegister nds, Address        src) { Assembler::vmulss(dst, nds, src); }
1544   void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1545 
1546   void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister    src) { Assembler::vsubsd(dst, nds, src); }
1547   void vsubsd(XMMRegister dst, XMMRegister nds, Address        src) { Assembler::vsubsd(dst, nds, src); }
1548   void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1549 
1550   void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister    src) { Assembler::vsubss(dst, nds, src); }
1551   void vsubss(XMMRegister dst, XMMRegister nds, Address        src) { Assembler::vsubss(dst, nds, src); }
1552   void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1553 
1554   void vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1555   void vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1556 
1557   // AVX Vector instructions
1558 
1559   void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1560   void vxorpd(XMMRegister dst, XMMRegister nds, Address        src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1561   void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1562 
1563   void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1564   void vxorps(XMMRegister dst, XMMRegister nds, Address        src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1565   void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1566 
1567   void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1568     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1569       Assembler::vpxor(dst, nds, src, vector_len);
1570     else
1571       Assembler::vxorpd(dst, nds, src, vector_len);
1572   }
1573   void vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
1574     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1575       Assembler::vpxor(dst, nds, src, vector_len);
1576     else
1577       Assembler::vxorpd(dst, nds, src, vector_len);
1578   }
1579   void vpxor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1580 
1581   // Simple version for AVX2 256bit vectors
1582   void vpxor(XMMRegister dst, XMMRegister src) {
1583     assert(UseAVX >= 2, "Should be at least AVX2");
1584     Assembler::vpxor(dst, dst, src, AVX_256bit);
1585   }
1586   void vpxor(XMMRegister dst, Address src) {
1587     assert(UseAVX >= 2, "Should be at least AVX2");
1588     Assembler::vpxor(dst, dst, src, AVX_256bit);
1589   }
1590 
1591   void vpermd(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len) { Assembler::vpermd(dst, nds, src, vector_len); }
1592   void vpermd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1593 
1594   void vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
1595     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1596       Assembler::vinserti32x4(dst, nds, src, imm8);
1597     } else if (UseAVX > 1) {
1598       // vinserti128 is available only in AVX2
1599       Assembler::vinserti128(dst, nds, src, imm8);
1600     } else {
1601       Assembler::vinsertf128(dst, nds, src, imm8);
1602     }
1603   }
1604 
1605   void vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
1606     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1607       Assembler::vinserti32x4(dst, nds, src, imm8);
1608     } else if (UseAVX > 1) {
1609       // vinserti128 is available only in AVX2
1610       Assembler::vinserti128(dst, nds, src, imm8);
1611     } else {
1612       Assembler::vinsertf128(dst, nds, src, imm8);
1613     }
1614   }
1615 
1616   void vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
1617     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1618       Assembler::vextracti32x4(dst, src, imm8);
1619     } else if (UseAVX > 1) {
1620       // vextracti128 is available only in AVX2
1621       Assembler::vextracti128(dst, src, imm8);
1622     } else {
1623       Assembler::vextractf128(dst, src, imm8);
1624     }
1625   }
1626 
1627   void vextracti128(Address dst, XMMRegister src, uint8_t imm8) {
1628     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1629       Assembler::vextracti32x4(dst, src, imm8);
1630     } else if (UseAVX > 1) {
1631       // vextracti128 is available only in AVX2
1632       Assembler::vextracti128(dst, src, imm8);
1633     } else {
1634       Assembler::vextractf128(dst, src, imm8);
1635     }
1636   }
1637 
1638   // 128bit copy to/from high 128 bits of 256bit (YMM) vector registers
1639   void vinserti128_high(XMMRegister dst, XMMRegister src) {
1640     vinserti128(dst, dst, src, 1);
1641   }
1642   void vinserti128_high(XMMRegister dst, Address src) {
1643     vinserti128(dst, dst, src, 1);
1644   }
1645   void vextracti128_high(XMMRegister dst, XMMRegister src) {
1646     vextracti128(dst, src, 1);
1647   }
1648   void vextracti128_high(Address dst, XMMRegister src) {
1649     vextracti128(dst, src, 1);
1650   }
1651 
1652   void vinsertf128_high(XMMRegister dst, XMMRegister src) {
1653     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1654       Assembler::vinsertf32x4(dst, dst, src, 1);
1655     } else {
1656       Assembler::vinsertf128(dst, dst, src, 1);
1657     }
1658   }
1659 
1660   void vinsertf128_high(XMMRegister dst, Address src) {
1661     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1662       Assembler::vinsertf32x4(dst, dst, src, 1);
1663     } else {
1664       Assembler::vinsertf128(dst, dst, src, 1);
1665     }
1666   }
1667 
1668   void vextractf128_high(XMMRegister dst, XMMRegister src) {
1669     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1670       Assembler::vextractf32x4(dst, src, 1);
1671     } else {
1672       Assembler::vextractf128(dst, src, 1);
1673     }
1674   }
1675 
1676   void vextractf128_high(Address dst, XMMRegister src) {
1677     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1678       Assembler::vextractf32x4(dst, src, 1);
1679     } else {
1680       Assembler::vextractf128(dst, src, 1);
1681     }
1682   }
1683 
1684   // 256bit copy to/from high 256 bits of 512bit (ZMM) vector registers
1685   void vinserti64x4_high(XMMRegister dst, XMMRegister src) {
1686     Assembler::vinserti64x4(dst, dst, src, 1);
1687   }
1688   void vinsertf64x4_high(XMMRegister dst, XMMRegister src) {
1689     Assembler::vinsertf64x4(dst, dst, src, 1);
1690   }
1691   void vextracti64x4_high(XMMRegister dst, XMMRegister src) {
1692     Assembler::vextracti64x4(dst, src, 1);
1693   }
1694   void vextractf64x4_high(XMMRegister dst, XMMRegister src) {
1695     Assembler::vextractf64x4(dst, src, 1);
1696   }
1697   void vextractf64x4_high(Address dst, XMMRegister src) {
1698     Assembler::vextractf64x4(dst, src, 1);
1699   }
1700   void vinsertf64x4_high(XMMRegister dst, Address src) {
1701     Assembler::vinsertf64x4(dst, dst, src, 1);
1702   }
1703 
1704   // 128bit copy to/from low 128 bits of 256bit (YMM) vector registers
1705   void vinserti128_low(XMMRegister dst, XMMRegister src) {
1706     vinserti128(dst, dst, src, 0);
1707   }
1708   void vinserti128_low(XMMRegister dst, Address src) {
1709     vinserti128(dst, dst, src, 0);
1710   }
1711   void vextracti128_low(XMMRegister dst, XMMRegister src) {
1712     vextracti128(dst, src, 0);
1713   }
1714   void vextracti128_low(Address dst, XMMRegister src) {
1715     vextracti128(dst, src, 0);
1716   }
1717 
1718   void vinsertf128_low(XMMRegister dst, XMMRegister src) {
1719     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1720       Assembler::vinsertf32x4(dst, dst, src, 0);
1721     } else {
1722       Assembler::vinsertf128(dst, dst, src, 0);
1723     }
1724   }
1725 
1726   void vinsertf128_low(XMMRegister dst, Address src) {
1727     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1728       Assembler::vinsertf32x4(dst, dst, src, 0);
1729     } else {
1730       Assembler::vinsertf128(dst, dst, src, 0);
1731     }
1732   }
1733 
1734   void vextractf128_low(XMMRegister dst, XMMRegister src) {
1735     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1736       Assembler::vextractf32x4(dst, src, 0);
1737     } else {
1738       Assembler::vextractf128(dst, src, 0);
1739     }
1740   }
1741 
1742   void vextractf128_low(Address dst, XMMRegister src) {
1743     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1744       Assembler::vextractf32x4(dst, src, 0);
1745     } else {
1746       Assembler::vextractf128(dst, src, 0);
1747     }
1748   }
1749 
1750   // 256bit copy to/from low 256 bits of 512bit (ZMM) vector registers
1751   void vinserti64x4_low(XMMRegister dst, XMMRegister src) {
1752     Assembler::vinserti64x4(dst, dst, src, 0);
1753   }
1754   void vinsertf64x4_low(XMMRegister dst, XMMRegister src) {
1755     Assembler::vinsertf64x4(dst, dst, src, 0);
1756   }
1757   void vextracti64x4_low(XMMRegister dst, XMMRegister src) {
1758     Assembler::vextracti64x4(dst, src, 0);
1759   }
1760   void vextractf64x4_low(XMMRegister dst, XMMRegister src) {
1761     Assembler::vextractf64x4(dst, src, 0);
1762   }
1763   void vextractf64x4_low(Address dst, XMMRegister src) {
1764     Assembler::vextractf64x4(dst, src, 0);
1765   }
1766   void vinsertf64x4_low(XMMRegister dst, Address src) {
1767     Assembler::vinsertf64x4(dst, dst, src, 0);
1768   }
1769 
1770   // Carry-Less Multiplication Quadword
1771   void vpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1772     // 0x00 - multiply lower 64 bits [0:63]
1773     Assembler::vpclmulqdq(dst, nds, src, 0x00);
1774   }
1775   void vpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1776     // 0x11 - multiply upper 64 bits [64:127]
1777     Assembler::vpclmulqdq(dst, nds, src, 0x11);
1778   }
1779   void vpclmullqhqdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1780     // 0x10 - multiply nds[0:63] and src[64:127]
1781     Assembler::vpclmulqdq(dst, nds, src, 0x10);
1782   }
1783   void vpclmulhqlqdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1784     //0x01 - multiply nds[64:127] and src[0:63]
1785     Assembler::vpclmulqdq(dst, nds, src, 0x01);
1786   }
1787 
1788   void evpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1789     // 0x00 - multiply lower 64 bits [0:63]
1790     Assembler::evpclmulqdq(dst, nds, src, 0x00, vector_len);
1791   }
1792   void evpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1793     // 0x11 - multiply upper 64 bits [64:127]
1794     Assembler::evpclmulqdq(dst, nds, src, 0x11, vector_len);
1795   }
1796 
1797   // AVX-512 mask operations.
1798   void kand(BasicType etype, KRegister dst, KRegister src1, KRegister src2);
1799   void kor(BasicType type, KRegister dst, KRegister src1, KRegister src2);
1800   void knot(uint masklen, KRegister dst, KRegister src, KRegister ktmp = knoreg, Register rtmp = noreg);
1801   void kxor(BasicType type, KRegister dst, KRegister src1, KRegister src2);
1802   void kortest(uint masklen, KRegister src1, KRegister src2);
1803   void ktest(uint masklen, KRegister src1, KRegister src2);
1804 
1805   void evperm(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len);
1806   void evperm(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len);
1807 
1808   void evor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len);
1809   void evor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len);
1810 
1811   void evand(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len);
1812   void evand(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len);
1813 
1814   void evxor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len);
1815   void evxor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len);
1816 
1817   void evrold(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vlen_enc);
1818   void evrold(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src1, XMMRegister src2, bool merge, int vlen_enc);
1819   void evrord(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vlen_enc);
1820   void evrord(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src1, XMMRegister src2, bool merge, int vlen_enc);
1821 
1822   using Assembler::evpandq;
1823   void evpandq(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1824 
1825   using Assembler::evporq;
1826   void evporq(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1827 
1828   using Assembler::vpternlogq;
1829   void vpternlogq(XMMRegister dst, int imm8, XMMRegister src2, AddressLiteral src3, int vector_len, Register rscratch = noreg);
1830 
1831   void cmov32( Condition cc, Register dst, Address  src);
1832   void cmov32( Condition cc, Register dst, Register src);
1833 
1834   void cmov(   Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }
1835 
1836   void cmovptr(Condition cc, Register dst, Address  src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1837   void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1838 
1839   void movoop(Register dst, jobject obj);
1840   void movoop(Address  dst, jobject obj, Register rscratch);
1841 
1842   void mov_metadata(Register dst, Metadata* obj);
1843   void mov_metadata(Address  dst, Metadata* obj, Register rscratch);
1844 
1845   void movptr(Register     dst, Register       src);
1846   void movptr(Register     dst, Address        src);
1847   void movptr(Register     dst, AddressLiteral src);
1848   void movptr(Register     dst, ArrayAddress   src);
1849   void movptr(Register     dst, intptr_t       src);
1850   void movptr(Address      dst, Register       src);
1851   void movptr(Address      dst, int32_t        imm);
1852   void movptr(Address      dst, intptr_t       src, Register rscratch);
1853   void movptr(ArrayAddress dst, Register       src, Register rscratch);
1854 
1855   void movptr(Register dst, RegisterOrConstant src) {
1856     if (src.is_constant()) movptr(dst, src.as_constant());
1857     else                   movptr(dst, src.as_register());
1858   }
1859 
1860 
1861   // to avoid hiding movl
1862   void mov32(Register       dst, AddressLiteral src);
1863   void mov32(AddressLiteral dst, Register        src, Register rscratch = noreg);
1864 
1865   // Import other mov() methods from the parent class or else
1866   // they will be hidden by the following overriding declaration.
1867   using Assembler::movdl;
1868   void movdl(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1869 
1870   using Assembler::movq;
1871   void movq(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1872 
1873   // Can push value or effective address
1874   void pushptr(AddressLiteral src, Register rscratch);
1875 
1876   void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
1877   void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
1878 
1879   void pushoop(jobject obj, Register rscratch);
1880   void pushklass(Metadata* obj, Register rscratch);
1881 
1882   // sign extend as need a l to ptr sized element
1883   void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
1884   void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
1885 
1886 
1887  public:
1888   // Inline type specific methods
1889   #include "asm/macroAssembler_common.hpp"
1890 
1891   int store_inline_type_fields_to_buf(ciInlineKlass* vk, bool from_interpreter = true);
1892   bool move_helper(VMReg from, VMReg to, BasicType bt, RegState reg_state[]);
1893   bool unpack_inline_helper(const GrowableArray<SigEntry>* sig, int& sig_index,
1894                             VMReg from, int& from_index, VMRegPair* to, int to_count, int& to_index,
1895                             RegState reg_state[]);
1896   bool pack_inline_helper(const GrowableArray<SigEntry>* sig, int& sig_index, int vtarg_index,
1897                           VMRegPair* from, int from_count, int& from_index, VMReg to,
1898                           RegState reg_state[], Register val_array);
1899   int extend_stack_for_inline_args(int args_on_stack);
1900   void remove_frame(int initial_framesize, bool needs_stack_repair);
1901   VMReg spill_reg_for(VMReg reg);
1902 
1903   // clear memory of size 'cnt' qwords, starting at 'base';
1904   // if 'is_large' is set, do not try to produce short loop
1905   void clear_mem(Register base, Register cnt, Register val, XMMRegister xtmp, bool is_large, bool word_copy_only, KRegister mask=knoreg);
1906 
1907   // clear memory initialization sequence for constant size;
1908   void clear_mem(Register base, int cnt, Register rtmp, XMMRegister xtmp, KRegister mask=knoreg);
1909 
1910   // clear memory of size 'cnt' qwords, starting at 'base' using XMM/YMM registers
1911   void xmm_clear_mem(Register base, Register cnt, Register rtmp, XMMRegister xtmp, KRegister mask=knoreg);
1912 
1913   // Fill primitive arrays
1914   void generate_fill(BasicType t, bool aligned,
1915                      Register to, Register value, Register count,
1916                      Register rtmp, XMMRegister xtmp);
1917 
1918   void encode_iso_array(Register src, Register dst, Register len,
1919                         XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1920                         XMMRegister tmp4, Register tmp5, Register result, bool ascii);
1921 
1922 #ifdef _LP64
1923   void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2);
1924   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
1925                              Register y, Register y_idx, Register z,
1926                              Register carry, Register product,
1927                              Register idx, Register kdx);
1928   void multiply_add_128_x_128(Register x_xstart, Register y, Register z,
1929                               Register yz_idx, Register idx,
1930                               Register carry, Register product, int offset);
1931   void multiply_128_x_128_bmi2_loop(Register y, Register z,
1932                                     Register carry, Register carry2,
1933                                     Register idx, Register jdx,
1934                                     Register yz_idx1, Register yz_idx2,
1935                                     Register tmp, Register tmp3, Register tmp4);
1936   void multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
1937                                Register yz_idx, Register idx, Register jdx,
1938                                Register carry, Register product,
1939                                Register carry2);
1940   void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
1941                        Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5);
1942   void square_rshift(Register x, Register len, Register z, Register tmp1, Register tmp3,
1943                      Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1944   void multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry,
1945                             Register tmp2);
1946   void multiply_add_64(Register sum, Register op1, Register op2, Register carry,
1947                        Register rdxReg, Register raxReg);
1948   void add_one_64(Register z, Register zlen, Register carry, Register tmp1);
1949   void lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1950                        Register tmp3, Register tmp4);
1951   void square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1952                      Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1953 
1954   void mul_add_128_x_32_loop(Register out, Register in, Register offset, Register len, Register tmp1,
1955                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1956                Register raxReg);
1957   void mul_add(Register out, Register in, Register offset, Register len, Register k, Register tmp1,
1958                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1959                Register raxReg);
1960   void vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
1961                            Register result, Register tmp1, Register tmp2,
1962                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3);
1963 #endif
1964 
1965   // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
1966   void update_byte_crc32(Register crc, Register val, Register table);
1967   void kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp);
1968 
1969 
1970 #ifdef _LP64
1971   void kernel_crc32_avx512(Register crc, Register buf, Register len, Register table, Register tmp1, Register tmp2);
1972   void kernel_crc32_avx512_256B(Register crc, Register buf, Register len, Register key, Register pos,
1973                                 Register tmp1, Register tmp2, Label& L_barrett, Label& L_16B_reduction_loop,
1974                                 Label& L_get_last_two_xmms, Label& L_128_done, Label& L_cleanup);
1975 #endif // _LP64
1976 
1977   // CRC32C code for java.util.zip.CRC32C::updateBytes() intrinsic
1978   // Note on a naming convention:
1979   // Prefix w = register only used on a Westmere+ architecture
1980   // Prefix n = register only used on a Nehalem architecture
1981 #ifdef _LP64
1982   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1983                        Register tmp1, Register tmp2, Register tmp3);
1984 #else
1985   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1986                        Register tmp1, Register tmp2, Register tmp3,
1987                        XMMRegister xtmp1, XMMRegister xtmp2);
1988 #endif
1989   void crc32c_pclmulqdq(XMMRegister w_xtmp1,
1990                         Register in_out,
1991                         uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
1992                         XMMRegister w_xtmp2,
1993                         Register tmp1,
1994                         Register n_tmp2, Register n_tmp3);
1995   void crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
1996                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1997                        Register tmp1, Register tmp2,
1998                        Register n_tmp3);
1999   void crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
2000                          Register in_out1, Register in_out2, Register in_out3,
2001                          Register tmp1, Register tmp2, Register tmp3,
2002                          XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
2003                          Register tmp4, Register tmp5,
2004                          Register n_tmp6);
2005   void crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
2006                             Register tmp1, Register tmp2, Register tmp3,
2007                             Register tmp4, Register tmp5, Register tmp6,
2008                             XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
2009                             bool is_pclmulqdq_supported);
2010   // Fold 128-bit data chunk
2011   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
2012   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf);
2013 #ifdef _LP64
2014   // Fold 512-bit data chunk
2015   void fold512bit_crc32_avx512(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, Register pos, int offset);
2016 #endif // _LP64
2017   // Fold 8-bit data
2018   void fold_8bit_crc32(Register crc, Register table, Register tmp);
2019   void fold_8bit_crc32(XMMRegister crc, Register table, XMMRegister xtmp, Register tmp);
2020 
2021   // Compress char[] array to byte[].
2022   void char_array_compress(Register src, Register dst, Register len,
2023                            XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
2024                            XMMRegister tmp4, Register tmp5, Register result,
2025                            KRegister mask1 = knoreg, KRegister mask2 = knoreg);
2026 
2027   // Inflate byte[] array to char[].
2028   void byte_array_inflate(Register src, Register dst, Register len,
2029                           XMMRegister tmp1, Register tmp2, KRegister mask = knoreg);
2030 
2031   void fill_masked(BasicType bt, Address dst, XMMRegister xmm, KRegister mask,
2032                    Register length, Register temp, int vec_enc);
2033 
2034   void fill64_masked(uint shift, Register dst, int disp,
2035                          XMMRegister xmm, KRegister mask, Register length,
2036                          Register temp, bool use64byteVector = false);
2037 
2038   void fill32_masked(uint shift, Register dst, int disp,
2039                          XMMRegister xmm, KRegister mask, Register length,
2040                          Register temp);
2041 
2042   void fill32(Address dst, XMMRegister xmm);
2043 
2044   void fill32(Register dst, int disp, XMMRegister xmm);
2045 
2046   void fill64(Address dst, XMMRegister xmm, bool use64byteVector = false);
2047 
2048   void fill64(Register dst, int dis, XMMRegister xmm, bool use64byteVector = false);
2049 
2050 #ifdef _LP64
2051   void convert_f2i(Register dst, XMMRegister src);
2052   void convert_d2i(Register dst, XMMRegister src);
2053   void convert_f2l(Register dst, XMMRegister src);
2054   void convert_d2l(Register dst, XMMRegister src);
2055   void round_double(Register dst, XMMRegister src, Register rtmp, Register rcx);
2056   void round_float(Register dst, XMMRegister src, Register rtmp, Register rcx);
2057 
2058   void cache_wb(Address line);
2059   void cache_wbsync(bool is_pre);
2060 
2061 #ifdef COMPILER2_OR_JVMCI
2062   void generate_fill_avx3(BasicType type, Register to, Register value,
2063                           Register count, Register rtmp, XMMRegister xtmp);
2064 #endif // COMPILER2_OR_JVMCI
2065 #endif // _LP64
2066 
2067   void vallones(XMMRegister dst, int vector_len);
2068 
2069   void check_stack_alignment(Register sp, const char* msg, unsigned bias = 0, Register tmp = noreg);
2070 
2071 };
2072 
2073 /**
2074  * class SkipIfEqual:
2075  *
2076  * Instantiating this class will result in assembly code being output that will
2077  * jump around any code emitted between the creation of the instance and it's
2078  * automatic destruction at the end of a scope block, depending on the value of
2079  * the flag passed to the constructor, which will be checked at run-time.
2080  */
2081 class SkipIfEqual {
2082  private:
2083   MacroAssembler* _masm;
2084   Label _label;
2085 
2086  public:
2087    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value, Register rscratch);
2088    ~SkipIfEqual();
2089 };
2090 
2091 #endif // CPU_X86_MACROASSEMBLER_X86_HPP