1 /*
   2  * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef CPU_X86_MACROASSEMBLER_X86_HPP
  26 #define CPU_X86_MACROASSEMBLER_X86_HPP
  27 
  28 #include "asm/assembler.hpp"
  29 #include "asm/register.hpp"
  30 #include "code/vmreg.inline.hpp"
  31 #include "compiler/oopMap.hpp"
  32 #include "utilities/macros.hpp"
  33 #include "runtime/signature.hpp"
  34 #include "runtime/vm_version.hpp"
  35 #include "utilities/checkedCast.hpp"
  36 
  37 class ciInlineKlass;
  38 
  39 // MacroAssembler extends Assembler by frequently used macros.
  40 //
  41 // Instructions for which a 'better' code sequence exists depending
  42 // on arguments should also go in here.
  43 
  44 class MacroAssembler: public Assembler {
  45   friend class LIR_Assembler;
  46   friend class Runtime1;      // as_Address()
  47 
  48  public:
  49   // Support for VM calls
  50   //
  51   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  52   // may customize this version by overriding it for its purposes (e.g., to save/restore
  53   // additional registers when doing a VM call).
  54 
  55   virtual void call_VM_leaf_base(
  56     address entry_point,               // the entry point
  57     int     number_of_arguments        // the number of arguments to pop after the call
  58   );
  59 
  60  protected:
  61   // This is the base routine called by the different versions of call_VM. The interpreter
  62   // may customize this version by overriding it for its purposes (e.g., to save/restore
  63   // additional registers when doing a VM call).
  64   //
  65   // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
  66   // returns the register which contains the thread upon return. If a thread register has been
  67   // specified, the return value will correspond to that register. If no last_java_sp is specified
  68   // (noreg) than rsp will be used instead.
  69   virtual void call_VM_base(           // returns the register containing the thread upon return
  70     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  71     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  72     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  73     address  entry_point,              // the entry point
  74     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  75     bool     check_exceptions          // whether to check for pending exceptions after return
  76   );
  77 
  78   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  79 
  80   // helpers for FPU flag access
  81   // tmp is a temporary register, if none is available use noreg
  82   void save_rax   (Register tmp);
  83   void restore_rax(Register tmp);
  84 
  85  public:
  86   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
  87 
  88  // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  89  // The implementation is only non-empty for the InterpreterMacroAssembler,
  90  // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  91  virtual void check_and_handle_popframe(Register java_thread);
  92  virtual void check_and_handle_earlyret(Register java_thread);
  93 
  94   Address as_Address(AddressLiteral adr);
  95   Address as_Address(ArrayAddress adr, Register rscratch);
  96 
  97   // Support for null-checks
  98   //
  99   // Generates code that causes a null OS exception if the content of reg is null.
 100   // If the accessed location is M[reg + offset] and the offset is known, provide the
 101   // offset. No explicit code generation is needed if the offset is within a certain
 102   // range (0 <= offset <= page_size).
 103 
 104   void null_check(Register reg, int offset = -1);
 105   static bool needs_explicit_null_check(intptr_t offset);
 106   static bool uses_implicit_null_check(void* address);
 107 
 108   // markWord tests, kills markWord reg
 109   void test_markword_is_inline_type(Register markword, Label& is_inline_type);
 110 
 111   // inlineKlass queries, kills temp_reg
 112   void test_klass_is_inline_type(Register klass, Register temp_reg, Label& is_inline_type);
 113   void test_klass_is_empty_inline_type(Register klass, Register temp_reg, Label& is_empty_inline_type);
 114   void test_oop_is_not_inline_type(Register object, Register tmp, Label& not_inline_type);
 115 
 116   // Get the default value oop for the given InlineKlass
 117   void get_default_value_oop(Register inline_klass, Register temp_reg, Register obj);
 118   // The empty value oop, for the given InlineKlass ("empty" as in no instance fields)
 119   // get_default_value_oop with extra assertion for empty inline klass
 120   void get_empty_inline_type_oop(Register inline_klass, Register temp_reg, Register obj);
 121 
 122   void test_field_is_null_free_inline_type(Register flags, Register temp_reg, Label& is_null_free);
 123   void test_field_is_not_null_free_inline_type(Register flags, Register temp_reg, Label& not_null_free);
 124   void test_field_is_flat(Register flags, Register temp_reg, Label& is_flat);
 125   void test_field_has_null_marker(Register flags, Register temp_reg, Label& has_null_marker);
 126 
 127   // Check oops for special arrays, i.e. flat arrays and/or null-free arrays
 128   void test_oop_prototype_bit(Register oop, Register temp_reg, int32_t test_bit, bool jmp_set, Label& jmp_label);
 129   void test_flat_array_oop(Register oop, Register temp_reg, Label& is_flat_array);
 130   void test_non_flat_array_oop(Register oop, Register temp_reg, Label& is_non_flat_array);
 131   void test_null_free_array_oop(Register oop, Register temp_reg, Label& is_null_free_array);
 132   void test_non_null_free_array_oop(Register oop, Register temp_reg, Label& is_non_null_free_array);
 133 
 134   // Check array klass layout helper for flat or null-free arrays...
 135   void test_flat_array_layout(Register lh, Label& is_flat_array);
 136   void test_non_flat_array_layout(Register lh, Label& is_non_flat_array);
 137 
 138   // Required platform-specific helpers for Label::patch_instructions.
 139   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
 140   void pd_patch_instruction(address branch, address target, const char* file, int line) {
 141     unsigned char op = branch[0];
 142     assert(op == 0xE8 /* call */ ||
 143         op == 0xE9 /* jmp */ ||
 144         op == 0xEB /* short jmp */ ||
 145         (op & 0xF0) == 0x70 /* short jcc */ ||
 146         (op == 0x0F && (branch[1] & 0xF0) == 0x80) /* jcc */ ||
 147         (op == 0xC7 && branch[1] == 0xF8) /* xbegin */,
 148         "Invalid opcode at patch point");
 149 
 150     if (op == 0xEB || (op & 0xF0) == 0x70) {
 151       // short offset operators (jmp and jcc)
 152       char* disp = (char*) &branch[1];
 153       int imm8 = checked_cast<int>(target - (address) &disp[1]);
 154       guarantee(this->is8bit(imm8), "Short forward jump exceeds 8-bit offset at %s:%d",
 155                 file == nullptr ? "<null>" : file, line);
 156       *disp = (char)imm8;
 157     } else {
 158       int* disp = (int*) &branch[(op == 0x0F || op == 0xC7)? 2: 1];
 159       int imm32 = checked_cast<int>(target - (address) &disp[1]);
 160       *disp = imm32;
 161     }
 162   }
 163 
 164   // The following 4 methods return the offset of the appropriate move instruction
 165 
 166   // Support for fast byte/short loading with zero extension (depending on particular CPU)
 167   int load_unsigned_byte(Register dst, Address src);
 168   int load_unsigned_short(Register dst, Address src);
 169 
 170   // Support for fast byte/short loading with sign extension (depending on particular CPU)
 171   int load_signed_byte(Register dst, Address src);
 172   int load_signed_short(Register dst, Address src);
 173 
 174   // Support for sign-extension (hi:lo = extend_sign(lo))
 175   void extend_sign(Register hi, Register lo);
 176 
 177   // Load and store values by size and signed-ness
 178   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
 179   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
 180 
 181   // Support for inc/dec with optimal instruction selection depending on value
 182 
 183   void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
 184   void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
 185   void increment(Address dst, int value = 1)  { LP64_ONLY(incrementq(dst, value)) NOT_LP64(incrementl(dst, value)) ; }
 186   void decrement(Address dst, int value = 1)  { LP64_ONLY(decrementq(dst, value)) NOT_LP64(decrementl(dst, value)) ; }
 187 
 188   void decrementl(Address dst, int value = 1);
 189   void decrementl(Register reg, int value = 1);
 190 
 191   void decrementq(Register reg, int value = 1);
 192   void decrementq(Address dst, int value = 1);
 193 
 194   void incrementl(Address dst, int value = 1);
 195   void incrementl(Register reg, int value = 1);
 196 
 197   void incrementq(Register reg, int value = 1);
 198   void incrementq(Address dst, int value = 1);
 199 
 200   void incrementl(AddressLiteral dst, Register rscratch = noreg);
 201   void incrementl(ArrayAddress   dst, Register rscratch);
 202 
 203   void incrementq(AddressLiteral dst, Register rscratch = noreg);
 204 
 205   // Support optimal SSE move instructions.
 206   void movflt(XMMRegister dst, XMMRegister src) {
 207     if (dst-> encoding() == src->encoding()) return;
 208     if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
 209     else                       { movss (dst, src); return; }
 210   }
 211   void movflt(XMMRegister dst, Address src) { movss(dst, src); }
 212   void movflt(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
 213   void movflt(Address dst, XMMRegister src) { movss(dst, src); }
 214 
 215   // Move with zero extension
 216   void movfltz(XMMRegister dst, XMMRegister src) { movss(dst, src); }
 217 
 218   void movdbl(XMMRegister dst, XMMRegister src) {
 219     if (dst-> encoding() == src->encoding()) return;
 220     if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
 221     else                       { movsd (dst, src); return; }
 222   }
 223 
 224   void movdbl(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
 225 
 226   void movdbl(XMMRegister dst, Address src) {
 227     if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
 228     else                         { movlpd(dst, src); return; }
 229   }
 230   void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
 231 
 232   void flt_to_flt16(Register dst, XMMRegister src, XMMRegister tmp) {
 233     // Use separate tmp XMM register because caller may
 234     // requires src XMM register to be unchanged (as in x86.ad).
 235     vcvtps2ph(tmp, src, 0x04, Assembler::AVX_128bit);
 236     movdl(dst, tmp);
 237     movswl(dst, dst);
 238   }
 239 
 240   void flt16_to_flt(XMMRegister dst, Register src) {
 241     movdl(dst, src);
 242     vcvtph2ps(dst, dst, Assembler::AVX_128bit);
 243   }
 244 
 245   // Alignment
 246   void align32();
 247   void align64();
 248   void align(uint modulus);
 249   void align(uint modulus, uint target);
 250 
 251   void post_call_nop();
 252   // A 5 byte nop that is safe for patching (see patch_verified_entry)
 253   void fat_nop();
 254 
 255   // Stack frame creation/removal
 256   void enter();
 257   void leave();
 258 
 259   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
 260   // The pointer will be loaded into the thread register.
 261   void get_thread(Register thread);
 262 
 263 #ifdef _LP64
 264   // Support for argument shuffling
 265 
 266   // bias in bytes
 267   void move32_64(VMRegPair src, VMRegPair dst, Register tmp = rax, int in_stk_bias = 0, int out_stk_bias = 0);
 268   void long_move(VMRegPair src, VMRegPair dst, Register tmp = rax, int in_stk_bias = 0, int out_stk_bias = 0);
 269   void float_move(VMRegPair src, VMRegPair dst, Register tmp = rax, int in_stk_bias = 0, int out_stk_bias = 0);
 270   void double_move(VMRegPair src, VMRegPair dst, Register tmp = rax, int in_stk_bias = 0, int out_stk_bias = 0);
 271   void move_ptr(VMRegPair src, VMRegPair dst);
 272   void object_move(OopMap* map,
 273                    int oop_handle_offset,
 274                    int framesize_in_slots,
 275                    VMRegPair src,
 276                    VMRegPair dst,
 277                    bool is_receiver,
 278                    int* receiver_offset);
 279 #endif // _LP64
 280 
 281   // Support for VM calls
 282   //
 283   // It is imperative that all calls into the VM are handled via the call_VM macros.
 284   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 285   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 286 
 287 
 288   void call_VM(Register oop_result,
 289                address entry_point,
 290                bool check_exceptions = true);
 291   void call_VM(Register oop_result,
 292                address entry_point,
 293                Register arg_1,
 294                bool check_exceptions = true);
 295   void call_VM(Register oop_result,
 296                address entry_point,
 297                Register arg_1, Register arg_2,
 298                bool check_exceptions = true);
 299   void call_VM(Register oop_result,
 300                address entry_point,
 301                Register arg_1, Register arg_2, Register arg_3,
 302                bool check_exceptions = true);
 303 
 304   // Overloadings with last_Java_sp
 305   void call_VM(Register oop_result,
 306                Register last_java_sp,
 307                address entry_point,
 308                int number_of_arguments = 0,
 309                bool check_exceptions = true);
 310   void call_VM(Register oop_result,
 311                Register last_java_sp,
 312                address entry_point,
 313                Register arg_1, bool
 314                check_exceptions = true);
 315   void call_VM(Register oop_result,
 316                Register last_java_sp,
 317                address entry_point,
 318                Register arg_1, Register arg_2,
 319                bool check_exceptions = true);
 320   void call_VM(Register oop_result,
 321                Register last_java_sp,
 322                address entry_point,
 323                Register arg_1, Register arg_2, Register arg_3,
 324                bool check_exceptions = true);
 325 
 326   void get_vm_result  (Register oop_result, Register thread);
 327   void get_vm_result_2(Register metadata_result, Register thread);
 328 
 329   // These always tightly bind to MacroAssembler::call_VM_base
 330   // bypassing the virtual implementation
 331   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 332   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 333   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 334   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 335   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
 336 
 337   void call_VM_leaf0(address entry_point);
 338   void call_VM_leaf(address entry_point,
 339                     int number_of_arguments = 0);
 340   void call_VM_leaf(address entry_point,
 341                     Register arg_1);
 342   void call_VM_leaf(address entry_point,
 343                     Register arg_1, Register arg_2);
 344   void call_VM_leaf(address entry_point,
 345                     Register arg_1, Register arg_2, Register arg_3);
 346 
 347   void call_VM_leaf(address entry_point,
 348                     Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 349 
 350   // These always tightly bind to MacroAssembler::call_VM_leaf_base
 351   // bypassing the virtual implementation
 352   void super_call_VM_leaf(address entry_point);
 353   void super_call_VM_leaf(address entry_point, Register arg_1);
 354   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 355   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 356   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 357 
 358   // last Java Frame (fills frame anchor)
 359   void set_last_Java_frame(Register thread,
 360                            Register last_java_sp,
 361                            Register last_java_fp,
 362                            address  last_java_pc,
 363                            Register rscratch);
 364 
 365   // thread in the default location (r15_thread on 64bit)
 366   void set_last_Java_frame(Register last_java_sp,
 367                            Register last_java_fp,
 368                            address  last_java_pc,
 369                            Register rscratch);
 370 
 371   void reset_last_Java_frame(Register thread, bool clear_fp);
 372 
 373   // thread in the default location (r15_thread on 64bit)
 374   void reset_last_Java_frame(bool clear_fp);
 375 
 376   // jobjects
 377   void clear_jobject_tag(Register possibly_non_local);
 378   void resolve_jobject(Register value, Register thread, Register tmp);
 379   void resolve_global_jobject(Register value, Register thread, Register tmp);
 380 
 381   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
 382   void c2bool(Register x);
 383 
 384   // C++ bool manipulation
 385 
 386   void movbool(Register dst, Address src);
 387   void movbool(Address dst, bool boolconst);
 388   void movbool(Address dst, Register src);
 389   void testbool(Register dst);
 390 
 391   void resolve_oop_handle(Register result, Register tmp);
 392   void resolve_weak_handle(Register result, Register tmp);
 393   void load_mirror(Register mirror, Register method, Register tmp);
 394   void load_method_holder_cld(Register rresult, Register rmethod);
 395 
 396   void load_method_holder(Register holder, Register method);
 397 
 398   // oop manipulations
 399   void load_metadata(Register dst, Register src);
 400   void load_klass(Register dst, Register src, Register tmp);
 401   void store_klass(Register dst, Register src, Register tmp);
 402 
 403   void access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src,
 404                       Register tmp1, Register thread_tmp);
 405   void access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register val,
 406                        Register tmp1, Register tmp2, Register tmp3);
 407 
 408   void access_value_copy(DecoratorSet decorators, Register src, Register dst, Register inline_klass);
 409   void flat_field_copy(DecoratorSet decorators, Register src, Register dst, Register inline_layout_info);
 410   // We probably need the following for arrays:    TODO FIXME
 411   // void flat_element_copy(DecoratorSet decorators, Register src, Register dst, Register array);
 412 
 413   // inline type data payload offsets...
 414   void first_field_offset(Register inline_klass, Register offset);
 415   void data_for_oop(Register oop, Register data, Register inline_klass);
 416   // get data payload ptr a flat value array at index, kills rcx and index
 417   void data_for_value_array_index(Register array, Register array_klass,
 418                                   Register index, Register data);
 419 
 420   void load_heap_oop(Register dst, Address src, Register tmp1 = noreg,
 421                      Register thread_tmp = noreg, DecoratorSet decorators = 0);
 422   void load_heap_oop_not_null(Register dst, Address src, Register tmp1 = noreg,
 423                               Register thread_tmp = noreg, DecoratorSet decorators = 0);
 424   void store_heap_oop(Address dst, Register val, Register tmp1 = noreg,
 425                       Register tmp2 = noreg, Register tmp3 = noreg, DecoratorSet decorators = 0);
 426 
 427   // Used for storing null. All other oop constants should be
 428   // stored using routines that take a jobject.
 429   void store_heap_oop_null(Address dst);
 430 
 431   void load_prototype_header(Register dst, Register src, Register tmp);
 432 
 433 #ifdef _LP64
 434   void store_klass_gap(Register dst, Register src);
 435 
 436   // This dummy is to prevent a call to store_heap_oop from
 437   // converting a zero (like null) into a Register by giving
 438   // the compiler two choices it can't resolve
 439 
 440   void store_heap_oop(Address dst, void* dummy);
 441 
 442   void encode_heap_oop(Register r);
 443   void decode_heap_oop(Register r);
 444   void encode_heap_oop_not_null(Register r);
 445   void decode_heap_oop_not_null(Register r);
 446   void encode_heap_oop_not_null(Register dst, Register src);
 447   void decode_heap_oop_not_null(Register dst, Register src);
 448 
 449   void set_narrow_oop(Register dst, jobject obj);
 450   void set_narrow_oop(Address dst, jobject obj);
 451   void cmp_narrow_oop(Register dst, jobject obj);
 452   void cmp_narrow_oop(Address dst, jobject obj);
 453 
 454   void encode_klass_not_null(Register r, Register tmp);
 455   void decode_klass_not_null(Register r, Register tmp);
 456   void encode_and_move_klass_not_null(Register dst, Register src);
 457   void decode_and_move_klass_not_null(Register dst, Register src);
 458   void set_narrow_klass(Register dst, Klass* k);
 459   void set_narrow_klass(Address dst, Klass* k);
 460   void cmp_narrow_klass(Register dst, Klass* k);
 461   void cmp_narrow_klass(Address dst, Klass* k);
 462 
 463   // if heap base register is used - reinit it with the correct value
 464   void reinit_heapbase();
 465 
 466   DEBUG_ONLY(void verify_heapbase(const char* msg);)
 467 
 468 #endif // _LP64
 469 
 470   // Int division/remainder for Java
 471   // (as idivl, but checks for special case as described in JVM spec.)
 472   // returns idivl instruction offset for implicit exception handling
 473   int corrected_idivl(Register reg);
 474 
 475   // Long division/remainder for Java
 476   // (as idivq, but checks for special case as described in JVM spec.)
 477   // returns idivq instruction offset for implicit exception handling
 478   int corrected_idivq(Register reg);
 479 
 480   void int3();
 481 
 482   // Long operation macros for a 32bit cpu
 483   // Long negation for Java
 484   void lneg(Register hi, Register lo);
 485 
 486   // Long multiplication for Java
 487   // (destroys contents of eax, ebx, ecx and edx)
 488   void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
 489 
 490   // Long shifts for Java
 491   // (semantics as described in JVM spec.)
 492   void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
 493   void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
 494 
 495   // Long compare for Java
 496   // (semantics as described in JVM spec.)
 497   void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
 498 
 499 
 500   // misc
 501 
 502   // Sign extension
 503   void sign_extend_short(Register reg);
 504   void sign_extend_byte(Register reg);
 505 
 506   // Division by power of 2, rounding towards 0
 507   void division_with_shift(Register reg, int shift_value);
 508 
 509 #ifndef _LP64
 510   // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
 511   //
 512   // CF (corresponds to C0) if x < y
 513   // PF (corresponds to C2) if unordered
 514   // ZF (corresponds to C3) if x = y
 515   //
 516   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 517   // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
 518   void fcmp(Register tmp);
 519   // Variant of the above which allows y to be further down the stack
 520   // and which only pops x and y if specified. If pop_right is
 521   // specified then pop_left must also be specified.
 522   void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
 523 
 524   // Floating-point comparison for Java
 525   // Compares the top-most stack entries on the FPU stack and stores the result in dst.
 526   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 527   // (semantics as described in JVM spec.)
 528   void fcmp2int(Register dst, bool unordered_is_less);
 529   // Variant of the above which allows y to be further down the stack
 530   // and which only pops x and y if specified. If pop_right is
 531   // specified then pop_left must also be specified.
 532   void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
 533 
 534   // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
 535   // tmp is a temporary register, if none is available use noreg
 536   void fremr(Register tmp);
 537 
 538   // only if +VerifyFPU
 539   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
 540 #endif // !LP64
 541 
 542   // dst = c = a * b + c
 543   void fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 544   void fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 545 
 546   void vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
 547   void vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
 548   void vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
 549   void vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
 550 
 551 
 552   // same as fcmp2int, but using SSE2
 553   void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 554   void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 555 
 556   // branch to L if FPU flag C2 is set/not set
 557   // tmp is a temporary register, if none is available use noreg
 558   void jC2 (Register tmp, Label& L);
 559   void jnC2(Register tmp, Label& L);
 560 
 561   // Load float value from 'address'. If UseSSE >= 1, the value is loaded into
 562   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 563   void load_float(Address src);
 564 
 565   // Store float value to 'address'. If UseSSE >= 1, the value is stored
 566   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 567   void store_float(Address dst);
 568 
 569   // Load double value from 'address'. If UseSSE >= 2, the value is loaded into
 570   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 571   void load_double(Address src);
 572 
 573   // Store double value to 'address'. If UseSSE >= 2, the value is stored
 574   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 575   void store_double(Address dst);
 576 
 577 #ifndef _LP64
 578   // Pop ST (ffree & fincstp combined)
 579   void fpop();
 580 
 581   void empty_FPU_stack();
 582 #endif // !_LP64
 583 
 584   void push_IU_state();
 585   void pop_IU_state();
 586 
 587   void push_FPU_state();
 588   void pop_FPU_state();
 589 
 590   void push_CPU_state();
 591   void pop_CPU_state();
 592 
 593   void push_cont_fastpath();
 594   void pop_cont_fastpath();
 595 
 596   void inc_held_monitor_count();
 597   void dec_held_monitor_count();
 598 
 599   DEBUG_ONLY(void stop_if_in_cont(Register cont_reg, const char* name);)
 600 
 601   // Round up to a power of two
 602   void round_to(Register reg, int modulus);
 603 
 604 private:
 605   // General purpose and XMM registers potentially clobbered by native code; there
 606   // is no need for FPU or AVX opmask related methods because C1/interpreter
 607   // - we save/restore FPU state as a whole always
 608   // - do not care about AVX-512 opmask
 609   static RegSet call_clobbered_gp_registers();
 610   static XMMRegSet call_clobbered_xmm_registers();
 611 
 612   void push_set(XMMRegSet set, int offset);
 613   void pop_set(XMMRegSet set, int offset);
 614 
 615 public:
 616   void push_set(RegSet set, int offset = -1);
 617   void pop_set(RegSet set, int offset = -1);
 618 
 619   // Push and pop everything that might be clobbered by a native
 620   // runtime call.
 621   // Only save the lower 64 bits of each vector register.
 622   // Additional registers can be excluded in a passed RegSet.
 623   void push_call_clobbered_registers_except(RegSet exclude, bool save_fpu = true);
 624   void pop_call_clobbered_registers_except(RegSet exclude, bool restore_fpu = true);
 625 
 626   void push_call_clobbered_registers(bool save_fpu = true) {
 627     push_call_clobbered_registers_except(RegSet(), save_fpu);
 628   }
 629   void pop_call_clobbered_registers(bool restore_fpu = true) {
 630     pop_call_clobbered_registers_except(RegSet(), restore_fpu);
 631   }
 632 
 633   // allocation
 634 
 635   // Object / value buffer allocation...
 636   // Allocate instance of klass, assumes klass initialized by caller
 637   // new_obj prefers to be rax
 638   // Kills t1 and t2, perserves klass, return allocation in new_obj (rsi on LP64)
 639   void allocate_instance(Register klass, Register new_obj,
 640                          Register t1, Register t2,
 641                          bool clear_fields, Label& alloc_failed);
 642 
 643   void tlab_allocate(
 644     Register thread,                   // Current thread
 645     Register obj,                      // result: pointer to object after successful allocation
 646     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 647     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 648     Register t1,                       // temp register
 649     Register t2,                       // temp register
 650     Label&   slow_case                 // continuation point if fast allocation fails
 651   );
 652   void zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp);
 653 
 654   // For field "index" within "klass", return inline_klass ...
 655   void get_inline_type_field_klass(Register klass, Register index, Register inline_klass);
 656 
 657   void inline_layout_info(Register klass, Register index, Register layout_info);
 658 
 659   void population_count(Register dst, Register src, Register scratch1, Register scratch2);
 660 
 661   // interface method calling
 662   void lookup_interface_method(Register recv_klass,
 663                                Register intf_klass,
 664                                RegisterOrConstant itable_index,
 665                                Register method_result,
 666                                Register scan_temp,
 667                                Label& no_such_interface,
 668                                bool return_method = true);
 669 
 670   void lookup_interface_method_stub(Register recv_klass,
 671                                     Register holder_klass,
 672                                     Register resolved_klass,
 673                                     Register method_result,
 674                                     Register scan_temp,
 675                                     Register temp_reg2,
 676                                     Register receiver,
 677                                     int itable_index,
 678                                     Label& L_no_such_interface);
 679 
 680   // virtual method calling
 681   void lookup_virtual_method(Register recv_klass,
 682                              RegisterOrConstant vtable_index,
 683                              Register method_result);
 684 
 685   // Test sub_klass against super_klass, with fast and slow paths.
 686 
 687   // The fast path produces a tri-state answer: yes / no / maybe-slow.
 688   // One of the three labels can be null, meaning take the fall-through.
 689   // If super_check_offset is -1, the value is loaded up from super_klass.
 690   // No registers are killed, except temp_reg.
 691   void check_klass_subtype_fast_path(Register sub_klass,
 692                                      Register super_klass,
 693                                      Register temp_reg,
 694                                      Label* L_success,
 695                                      Label* L_failure,
 696                                      Label* L_slow_path,
 697                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
 698 
 699   // The rest of the type check; must be wired to a corresponding fast path.
 700   // It does not repeat the fast path logic, so don't use it standalone.
 701   // The temp_reg and temp2_reg can be noreg, if no temps are available.
 702   // Updates the sub's secondary super cache as necessary.
 703   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
 704   void check_klass_subtype_slow_path(Register sub_klass,
 705                                      Register super_klass,
 706                                      Register temp_reg,
 707                                      Register temp2_reg,
 708                                      Label* L_success,
 709                                      Label* L_failure,
 710                                      bool set_cond_codes = false);
 711   void hashed_check_klass_subtype_slow_path(Register sub_klass,
 712                                      Register super_klass,
 713                                      Register temp_reg,
 714                                      Register temp2_reg,
 715                                      Label* L_success,
 716                                      Label* L_failure,
 717                                      bool set_cond_codes = false);
 718 
 719   // As above, but with a constant super_klass.
 720   // The result is in Register result, not the condition codes.
 721   void lookup_secondary_supers_table(Register sub_klass,
 722                                      Register super_klass,
 723                                      Register temp1,
 724                                      Register temp2,
 725                                      Register temp3,
 726                                      Register temp4,
 727                                      Register result,
 728                                      u1 super_klass_slot);
 729 
 730   void lookup_secondary_supers_table_slow_path(Register r_super_klass,
 731                                                Register r_array_base,
 732                                                Register r_array_index,
 733                                                Register r_bitmap,
 734                                                Register temp1,
 735                                                Register temp2,
 736                                                Label* L_success,
 737                                                Label* L_failure = nullptr);
 738 
 739   void verify_secondary_supers_table(Register r_sub_klass,
 740                                      Register r_super_klass,
 741                                      Register expected,
 742                                      Register temp1,
 743                                      Register temp2,
 744                                      Register temp3);
 745 
 746   void repne_scanq(Register addr, Register value, Register count, Register limit,
 747                    Label* L_success,
 748                    Label* L_failure = nullptr);
 749 
 750     // Simplified, combined version, good for typical uses.
 751   // Falls through on failure.
 752   void check_klass_subtype(Register sub_klass,
 753                            Register super_klass,
 754                            Register temp_reg,
 755                            Label& L_success);
 756 
 757   void clinit_barrier(Register klass,
 758                       Register thread,
 759                       Label* L_fast_path = nullptr,
 760                       Label* L_slow_path = nullptr);
 761 
 762   // method handles (JSR 292)
 763   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
 764 
 765   // Debugging
 766 
 767   // only if +VerifyOops
 768   void _verify_oop(Register reg, const char* s, const char* file, int line);
 769   void _verify_oop_addr(Address addr, const char* s, const char* file, int line);
 770 
 771   void _verify_oop_checked(Register reg, const char* s, const char* file, int line) {
 772     if (VerifyOops) {
 773       _verify_oop(reg, s, file, line);
 774     }
 775   }
 776   void _verify_oop_addr_checked(Address reg, const char* s, const char* file, int line) {
 777     if (VerifyOops) {
 778       _verify_oop_addr(reg, s, file, line);
 779     }
 780   }
 781 
 782   // TODO: verify method and klass metadata (compare against vptr?)
 783   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
 784   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
 785 
 786 #define verify_oop(reg) _verify_oop_checked(reg, "broken oop " #reg, __FILE__, __LINE__)
 787 #define verify_oop_msg(reg, msg) _verify_oop_checked(reg, "broken oop " #reg ", " #msg, __FILE__, __LINE__)
 788 #define verify_oop_addr(addr) _verify_oop_addr_checked(addr, "broken oop addr " #addr, __FILE__, __LINE__)
 789 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
 790 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
 791 
 792   // Verify or restore cpu control state after JNI call
 793   void restore_cpu_control_state_after_jni(Register rscratch);
 794 
 795   // prints msg, dumps registers and stops execution
 796   void stop(const char* msg);
 797 
 798   // prints msg and continues
 799   void warn(const char* msg);
 800 
 801   // dumps registers and other state
 802   void print_state();
 803 
 804   static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
 805   static void debug64(char* msg, int64_t pc, int64_t regs[]);
 806   static void print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip);
 807   static void print_state64(int64_t pc, int64_t regs[]);
 808 
 809   void os_breakpoint();
 810 
 811   void untested()                                { stop("untested"); }
 812 
 813   void unimplemented(const char* what = "");
 814 
 815   void should_not_reach_here()                   { stop("should not reach here"); }
 816 
 817   void print_CPU_state();
 818 
 819   // Stack overflow checking
 820   void bang_stack_with_offset(int offset) {
 821     // stack grows down, caller passes positive offset
 822     assert(offset > 0, "must bang with negative offset");
 823     movl(Address(rsp, (-offset)), rax);
 824   }
 825 
 826   // Writes to stack successive pages until offset reached to check for
 827   // stack overflow + shadow pages.  Also, clobbers tmp
 828   void bang_stack_size(Register size, Register tmp);
 829 
 830   // Check for reserved stack access in method being exited (for JIT)
 831   void reserved_stack_check();
 832 
 833   void safepoint_poll(Label& slow_path, Register thread_reg, bool at_return, bool in_nmethod);
 834 
 835   void verify_tlab();
 836 
 837   static Condition negate_condition(Condition cond);
 838 
 839   // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
 840   // operands. In general the names are modified to avoid hiding the instruction in Assembler
 841   // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
 842   // here in MacroAssembler. The major exception to this rule is call
 843 
 844   // Arithmetics
 845 
 846 
 847   void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
 848   void addptr(Address dst, Register src);
 849 
 850   void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
 851   void addptr(Register dst, int32_t src);
 852   void addptr(Register dst, Register src);
 853   void addptr(Register dst, RegisterOrConstant src) {
 854     if (src.is_constant()) addptr(dst, checked_cast<int>(src.as_constant()));
 855     else                   addptr(dst, src.as_register());
 856   }
 857 
 858   void andptr(Register dst, int32_t src);
 859   void andptr(Register dst, Register src) { LP64_ONLY(andq(dst, src)) NOT_LP64(andl(dst, src)) ; }
 860   void andptr(Register dst, Address src) { LP64_ONLY(andq(dst, src)) NOT_LP64(andl(dst, src)) ; }
 861 
 862 #ifdef _LP64
 863   using Assembler::andq;
 864   void andq(Register dst, AddressLiteral src, Register rscratch = noreg);
 865 #endif
 866 
 867   void cmp8(AddressLiteral src1, int imm, Register rscratch = noreg);
 868 
 869   // renamed to drag out the casting of address to int32_t/intptr_t
 870   void cmp32(Register src1, int32_t imm);
 871 
 872   void cmp32(AddressLiteral src1, int32_t imm, Register rscratch = noreg);
 873   // compare reg - mem, or reg - &mem
 874   void cmp32(Register src1, AddressLiteral src2, Register rscratch = noreg);
 875 
 876   void cmp32(Register src1, Address src2);
 877 
 878 #ifndef _LP64
 879   void cmpklass(Address dst, Metadata* obj);
 880   void cmpklass(Register dst, Metadata* obj);
 881   void cmpoop(Address dst, jobject obj);
 882 #endif // _LP64
 883 
 884   void cmpoop(Register src1, Register src2);
 885   void cmpoop(Register src1, Address src2);
 886   void cmpoop(Register dst, jobject obj, Register rscratch);
 887 
 888   // NOTE src2 must be the lval. This is NOT an mem-mem compare
 889   void cmpptr(Address src1, AddressLiteral src2, Register rscratch);
 890 
 891   void cmpptr(Register src1, AddressLiteral src2, Register rscratch = noreg);
 892 
 893   void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 894   void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 895   // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 896 
 897   void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 898   void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 899 
 900   // cmp64 to avoild hiding cmpq
 901   void cmp64(Register src1, AddressLiteral src, Register rscratch = noreg);
 902 
 903   void cmpxchgptr(Register reg, Address adr);
 904 
 905   void locked_cmpxchgptr(Register reg, AddressLiteral adr, Register rscratch = noreg);
 906 
 907   void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
 908   void imulptr(Register dst, Register src, int imm32) { LP64_ONLY(imulq(dst, src, imm32)) NOT_LP64(imull(dst, src, imm32)); }
 909 
 910 
 911   void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
 912 
 913   void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
 914 
 915   void shlptr(Register dst, int32_t shift);
 916   void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
 917 
 918   void shrptr(Register dst, int32_t shift);
 919   void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
 920 
 921   void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
 922   void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
 923 
 924   void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 925 
 926   void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 927   void subptr(Register dst, int32_t src);
 928   // Force generation of a 4 byte immediate value even if it fits into 8bit
 929   void subptr_imm32(Register dst, int32_t src);
 930   void subptr(Register dst, Register src);
 931   void subptr(Register dst, RegisterOrConstant src) {
 932     if (src.is_constant()) subptr(dst, (int) src.as_constant());
 933     else                   subptr(dst,       src.as_register());
 934   }
 935 
 936   void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 937   void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 938 
 939   void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 940   void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 941 
 942   void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
 943 
 944 
 945 
 946   // Helper functions for statistics gathering.
 947   // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
 948   void cond_inc32(Condition cond, AddressLiteral counter_addr, Register rscratch = noreg);
 949   // Unconditional atomic increment.
 950   void atomic_incl(Address counter_addr);
 951   void atomic_incl(AddressLiteral counter_addr, Register rscratch = noreg);
 952 #ifdef _LP64
 953   void atomic_incq(Address counter_addr);
 954   void atomic_incq(AddressLiteral counter_addr, Register rscratch = noreg);
 955 #endif
 956   void atomic_incptr(AddressLiteral counter_addr, Register rscratch = noreg) { LP64_ONLY(atomic_incq(counter_addr, rscratch)) NOT_LP64(atomic_incl(counter_addr, rscratch)) ; }
 957   void atomic_incptr(Address counter_addr) { LP64_ONLY(atomic_incq(counter_addr)) NOT_LP64(atomic_incl(counter_addr)) ; }
 958 
 959   void lea(Register dst, Address        adr) { Assembler::lea(dst, adr); }
 960   void lea(Register dst, AddressLiteral adr);
 961   void lea(Address  dst, AddressLiteral adr, Register rscratch);
 962 
 963   void leal32(Register dst, Address src) { leal(dst, src); }
 964 
 965   // Import other testl() methods from the parent class or else
 966   // they will be hidden by the following overriding declaration.
 967   using Assembler::testl;
 968   void testl(Address dst, int32_t imm32);
 969   void testl(Register dst, int32_t imm32);
 970   void testl(Register dst, AddressLiteral src); // requires reachable address
 971   using Assembler::testq;
 972   void testq(Address dst, int32_t imm32);
 973   void testq(Register dst, int32_t imm32);
 974 
 975   void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 976   void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 977   void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 978   void orptr(Address dst, int32_t imm32) { LP64_ONLY(orq(dst, imm32)) NOT_LP64(orl(dst, imm32)); }
 979 
 980   void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
 981   void testptr(Register src1, Address src2) { LP64_ONLY(testq(src1, src2)) NOT_LP64(testl(src1, src2)); }
 982   void testptr(Address src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
 983   void testptr(Register src1, Register src2);
 984 
 985   void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 986   void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 987 
 988   // Calls
 989 
 990   void call(Label& L, relocInfo::relocType rtype);
 991   void call(Register entry);
 992   void call(Address addr) { Assembler::call(addr); }
 993 
 994   // NOTE: this call transfers to the effective address of entry NOT
 995   // the address contained by entry. This is because this is more natural
 996   // for jumps/calls.
 997   void call(AddressLiteral entry, Register rscratch = rax);
 998 
 999   // Emit the CompiledIC call idiom
1000   void ic_call(address entry, jint method_index = 0);
1001   static int ic_check_size();
1002   int ic_check(int end_alignment);
1003 
1004   void emit_static_call_stub();
1005 
1006   // Jumps
1007 
1008   // NOTE: these jumps transfer to the effective address of dst NOT
1009   // the address contained by dst. This is because this is more natural
1010   // for jumps/calls.
1011   void jump(AddressLiteral dst, Register rscratch = noreg);
1012 
1013   void jump_cc(Condition cc, AddressLiteral dst, Register rscratch = noreg);
1014 
1015   // 32bit can do a case table jump in one instruction but we no longer allow the base
1016   // to be installed in the Address class. This jump will transfer to the address
1017   // contained in the location described by entry (not the address of entry)
1018   void jump(ArrayAddress entry, Register rscratch);
1019 
1020   // Adding more natural conditional jump instructions
1021   void ALWAYSINLINE jo(Label& L, bool maybe_short = true) { jcc(Assembler::overflow, L, maybe_short); }
1022   void ALWAYSINLINE jno(Label& L, bool maybe_short = true) { jcc(Assembler::noOverflow, L, maybe_short); }
1023   void ALWAYSINLINE js(Label& L, bool maybe_short = true) { jcc(Assembler::negative, L, maybe_short); }
1024   void ALWAYSINLINE jns(Label& L, bool maybe_short = true) { jcc(Assembler::positive, L, maybe_short); }
1025   void ALWAYSINLINE je(Label& L, bool maybe_short = true) { jcc(Assembler::equal, L, maybe_short); }
1026   void ALWAYSINLINE jz(Label& L, bool maybe_short = true) { jcc(Assembler::zero, L, maybe_short); }
1027   void ALWAYSINLINE jne(Label& L, bool maybe_short = true) { jcc(Assembler::notEqual, L, maybe_short); }
1028   void ALWAYSINLINE jnz(Label& L, bool maybe_short = true) { jcc(Assembler::notZero, L, maybe_short); }
1029   void ALWAYSINLINE jb(Label& L, bool maybe_short = true) { jcc(Assembler::below, L, maybe_short); }
1030   void ALWAYSINLINE jnae(Label& L, bool maybe_short = true) { jcc(Assembler::below, L, maybe_short); }
1031   void ALWAYSINLINE jc(Label& L, bool maybe_short = true) { jcc(Assembler::carrySet, L, maybe_short); }
1032   void ALWAYSINLINE jnb(Label& L, bool maybe_short = true) { jcc(Assembler::aboveEqual, L, maybe_short); }
1033   void ALWAYSINLINE jae(Label& L, bool maybe_short = true) { jcc(Assembler::aboveEqual, L, maybe_short); }
1034   void ALWAYSINLINE jnc(Label& L, bool maybe_short = true) { jcc(Assembler::carryClear, L, maybe_short); }
1035   void ALWAYSINLINE jbe(Label& L, bool maybe_short = true) { jcc(Assembler::belowEqual, L, maybe_short); }
1036   void ALWAYSINLINE jna(Label& L, bool maybe_short = true) { jcc(Assembler::belowEqual, L, maybe_short); }
1037   void ALWAYSINLINE ja(Label& L, bool maybe_short = true) { jcc(Assembler::above, L, maybe_short); }
1038   void ALWAYSINLINE jnbe(Label& L, bool maybe_short = true) { jcc(Assembler::above, L, maybe_short); }
1039   void ALWAYSINLINE jl(Label& L, bool maybe_short = true) { jcc(Assembler::less, L, maybe_short); }
1040   void ALWAYSINLINE jnge(Label& L, bool maybe_short = true) { jcc(Assembler::less, L, maybe_short); }
1041   void ALWAYSINLINE jge(Label& L, bool maybe_short = true) { jcc(Assembler::greaterEqual, L, maybe_short); }
1042   void ALWAYSINLINE jnl(Label& L, bool maybe_short = true) { jcc(Assembler::greaterEqual, L, maybe_short); }
1043   void ALWAYSINLINE jle(Label& L, bool maybe_short = true) { jcc(Assembler::lessEqual, L, maybe_short); }
1044   void ALWAYSINLINE jng(Label& L, bool maybe_short = true) { jcc(Assembler::lessEqual, L, maybe_short); }
1045   void ALWAYSINLINE jg(Label& L, bool maybe_short = true) { jcc(Assembler::greater, L, maybe_short); }
1046   void ALWAYSINLINE jnle(Label& L, bool maybe_short = true) { jcc(Assembler::greater, L, maybe_short); }
1047   void ALWAYSINLINE jp(Label& L, bool maybe_short = true) { jcc(Assembler::parity, L, maybe_short); }
1048   void ALWAYSINLINE jpe(Label& L, bool maybe_short = true) { jcc(Assembler::parity, L, maybe_short); }
1049   void ALWAYSINLINE jnp(Label& L, bool maybe_short = true) { jcc(Assembler::noParity, L, maybe_short); }
1050   void ALWAYSINLINE jpo(Label& L, bool maybe_short = true) { jcc(Assembler::noParity, L, maybe_short); }
1051   // * No condition for this *  void ALWAYSINLINE jcxz(Label& L, bool maybe_short = true) { jcc(Assembler::cxz, L, maybe_short); }
1052   // * No condition for this *  void ALWAYSINLINE jecxz(Label& L, bool maybe_short = true) { jcc(Assembler::cxz, L, maybe_short); }
1053 
1054   // Short versions of the above
1055   void ALWAYSINLINE jo_b(Label& L) { jccb(Assembler::overflow, L); }
1056   void ALWAYSINLINE jno_b(Label& L) { jccb(Assembler::noOverflow, L); }
1057   void ALWAYSINLINE js_b(Label& L) { jccb(Assembler::negative, L); }
1058   void ALWAYSINLINE jns_b(Label& L) { jccb(Assembler::positive, L); }
1059   void ALWAYSINLINE je_b(Label& L) { jccb(Assembler::equal, L); }
1060   void ALWAYSINLINE jz_b(Label& L) { jccb(Assembler::zero, L); }
1061   void ALWAYSINLINE jne_b(Label& L) { jccb(Assembler::notEqual, L); }
1062   void ALWAYSINLINE jnz_b(Label& L) { jccb(Assembler::notZero, L); }
1063   void ALWAYSINLINE jb_b(Label& L) { jccb(Assembler::below, L); }
1064   void ALWAYSINLINE jnae_b(Label& L) { jccb(Assembler::below, L); }
1065   void ALWAYSINLINE jc_b(Label& L) { jccb(Assembler::carrySet, L); }
1066   void ALWAYSINLINE jnb_b(Label& L) { jccb(Assembler::aboveEqual, L); }
1067   void ALWAYSINLINE jae_b(Label& L) { jccb(Assembler::aboveEqual, L); }
1068   void ALWAYSINLINE jnc_b(Label& L) { jccb(Assembler::carryClear, L); }
1069   void ALWAYSINLINE jbe_b(Label& L) { jccb(Assembler::belowEqual, L); }
1070   void ALWAYSINLINE jna_b(Label& L) { jccb(Assembler::belowEqual, L); }
1071   void ALWAYSINLINE ja_b(Label& L) { jccb(Assembler::above, L); }
1072   void ALWAYSINLINE jnbe_b(Label& L) { jccb(Assembler::above, L); }
1073   void ALWAYSINLINE jl_b(Label& L) { jccb(Assembler::less, L); }
1074   void ALWAYSINLINE jnge_b(Label& L) { jccb(Assembler::less, L); }
1075   void ALWAYSINLINE jge_b(Label& L) { jccb(Assembler::greaterEqual, L); }
1076   void ALWAYSINLINE jnl_b(Label& L) { jccb(Assembler::greaterEqual, L); }
1077   void ALWAYSINLINE jle_b(Label& L) { jccb(Assembler::lessEqual, L); }
1078   void ALWAYSINLINE jng_b(Label& L) { jccb(Assembler::lessEqual, L); }
1079   void ALWAYSINLINE jg_b(Label& L) { jccb(Assembler::greater, L); }
1080   void ALWAYSINLINE jnle_b(Label& L) { jccb(Assembler::greater, L); }
1081   void ALWAYSINLINE jp_b(Label& L) { jccb(Assembler::parity, L); }
1082   void ALWAYSINLINE jpe_b(Label& L) { jccb(Assembler::parity, L); }
1083   void ALWAYSINLINE jnp_b(Label& L) { jccb(Assembler::noParity, L); }
1084   void ALWAYSINLINE jpo_b(Label& L) { jccb(Assembler::noParity, L); }
1085   // * No condition for this *  void ALWAYSINLINE jcxz_b(Label& L) { jccb(Assembler::cxz, L); }
1086   // * No condition for this *  void ALWAYSINLINE jecxz_b(Label& L) { jccb(Assembler::cxz, L); }
1087 
1088   // Floating
1089 
1090   void push_f(XMMRegister r);
1091   void pop_f(XMMRegister r);
1092   void push_d(XMMRegister r);
1093   void pop_d(XMMRegister r);
1094 
1095   void andpd(XMMRegister dst, XMMRegister    src) { Assembler::andpd(dst, src); }
1096   void andpd(XMMRegister dst, Address        src) { Assembler::andpd(dst, src); }
1097   void andpd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1098 
1099   void andps(XMMRegister dst, XMMRegister    src) { Assembler::andps(dst, src); }
1100   void andps(XMMRegister dst, Address        src) { Assembler::andps(dst, src); }
1101   void andps(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1102 
1103   void comiss(XMMRegister dst, XMMRegister    src) { Assembler::comiss(dst, src); }
1104   void comiss(XMMRegister dst, Address        src) { Assembler::comiss(dst, src); }
1105   void comiss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1106 
1107   void comisd(XMMRegister dst, XMMRegister    src) { Assembler::comisd(dst, src); }
1108   void comisd(XMMRegister dst, Address        src) { Assembler::comisd(dst, src); }
1109   void comisd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1110 
1111 #ifndef _LP64
1112   void fadd_s(Address        src) { Assembler::fadd_s(src); }
1113   void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
1114 
1115   void fldcw(Address        src) { Assembler::fldcw(src); }
1116   void fldcw(AddressLiteral src);
1117 
1118   void fld_s(int index)          { Assembler::fld_s(index); }
1119   void fld_s(Address        src) { Assembler::fld_s(src); }
1120   void fld_s(AddressLiteral src);
1121 
1122   void fld_d(Address        src) { Assembler::fld_d(src); }
1123   void fld_d(AddressLiteral src);
1124 
1125   void fld_x(Address        src) { Assembler::fld_x(src); }
1126   void fld_x(AddressLiteral src) { Assembler::fld_x(as_Address(src)); }
1127 
1128   void fmul_s(Address        src) { Assembler::fmul_s(src); }
1129   void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
1130 #endif // !_LP64
1131 
1132   void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
1133   void ldmxcsr(AddressLiteral src, Register rscratch = noreg);
1134 
1135 #ifdef _LP64
1136  private:
1137   void sha256_AVX2_one_round_compute(
1138     Register  reg_old_h,
1139     Register  reg_a,
1140     Register  reg_b,
1141     Register  reg_c,
1142     Register  reg_d,
1143     Register  reg_e,
1144     Register  reg_f,
1145     Register  reg_g,
1146     Register  reg_h,
1147     int iter);
1148   void sha256_AVX2_four_rounds_compute_first(int start);
1149   void sha256_AVX2_four_rounds_compute_last(int start);
1150   void sha256_AVX2_one_round_and_sched(
1151         XMMRegister xmm_0,     /* == ymm4 on 0, 1, 2, 3 iterations, then rotate 4 registers left on 4, 8, 12 iterations */
1152         XMMRegister xmm_1,     /* ymm5 */  /* full cycle is 16 iterations */
1153         XMMRegister xmm_2,     /* ymm6 */
1154         XMMRegister xmm_3,     /* ymm7 */
1155         Register    reg_a,      /* == eax on 0 iteration, then rotate 8 register right on each next iteration */
1156         Register    reg_b,      /* ebx */    /* full cycle is 8 iterations */
1157         Register    reg_c,      /* edi */
1158         Register    reg_d,      /* esi */
1159         Register    reg_e,      /* r8d */
1160         Register    reg_f,      /* r9d */
1161         Register    reg_g,      /* r10d */
1162         Register    reg_h,      /* r11d */
1163         int iter);
1164 
1165   void addm(int disp, Register r1, Register r2);
1166 
1167   void sha512_AVX2_one_round_compute(Register old_h, Register a, Register b, Register c, Register d,
1168                                      Register e, Register f, Register g, Register h, int iteration);
1169 
1170   void sha512_AVX2_one_round_and_schedule(XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1171                                           Register a, Register b, Register c, Register d, Register e, Register f,
1172                                           Register g, Register h, int iteration);
1173 
1174   void addmq(int disp, Register r1, Register r2);
1175  public:
1176   void sha256_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
1177                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
1178                    Register buf, Register state, Register ofs, Register limit, Register rsp,
1179                    bool multi_block, XMMRegister shuf_mask);
1180   void sha512_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
1181                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
1182                    Register buf, Register state, Register ofs, Register limit, Register rsp, bool multi_block,
1183                    XMMRegister shuf_mask);
1184 #endif // _LP64
1185 
1186   void fast_md5(Register buf, Address state, Address ofs, Address limit,
1187                 bool multi_block);
1188 
1189   void fast_sha1(XMMRegister abcd, XMMRegister e0, XMMRegister e1, XMMRegister msg0,
1190                  XMMRegister msg1, XMMRegister msg2, XMMRegister msg3, XMMRegister shuf_mask,
1191                  Register buf, Register state, Register ofs, Register limit, Register rsp,
1192                  bool multi_block);
1193 
1194 #ifdef _LP64
1195   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
1196                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
1197                    Register buf, Register state, Register ofs, Register limit, Register rsp,
1198                    bool multi_block, XMMRegister shuf_mask);
1199 #else
1200   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
1201                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
1202                    Register buf, Register state, Register ofs, Register limit, Register rsp,
1203                    bool multi_block);
1204 #endif
1205 
1206   void fast_exp(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1207                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1208                 Register rax, Register rcx, Register rdx, Register tmp);
1209 
1210 #ifndef _LP64
1211  private:
1212   // Initialized in macroAssembler_x86_constants.cpp
1213   static address ONES;
1214   static address L_2IL0FLOATPACKET_0;
1215   static address PI4_INV;
1216   static address PI4X3;
1217   static address PI4X4;
1218 
1219  public:
1220   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1221                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1222                 Register rax, Register rcx, Register rdx, Register tmp1);
1223 
1224   void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1225                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1226                 Register rax, Register rcx, Register rdx, Register tmp);
1227 
1228   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
1229                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
1230                 Register rdx, Register tmp);
1231 
1232   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1233                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1234                 Register rax, Register rbx, Register rdx);
1235 
1236   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1237                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1238                 Register rax, Register rcx, Register rdx, Register tmp);
1239 
1240   void libm_sincos_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1241                         Register edx, Register ebx, Register esi, Register edi,
1242                         Register ebp, Register esp);
1243 
1244   void libm_reduce_pi04l(Register eax, Register ecx, Register edx, Register ebx,
1245                          Register esi, Register edi, Register ebp, Register esp);
1246 
1247   void libm_tancot_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1248                         Register edx, Register ebx, Register esi, Register edi,
1249                         Register ebp, Register esp);
1250 
1251   void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1252                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1253                 Register rax, Register rcx, Register rdx, Register tmp);
1254 #endif // !_LP64
1255 
1256 private:
1257 
1258   // these are private because users should be doing movflt/movdbl
1259 
1260   void movss(Address     dst, XMMRegister    src) { Assembler::movss(dst, src); }
1261   void movss(XMMRegister dst, XMMRegister    src) { Assembler::movss(dst, src); }
1262   void movss(XMMRegister dst, Address        src) { Assembler::movss(dst, src); }
1263   void movss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1264 
1265   void movlpd(XMMRegister dst, Address        src) {Assembler::movlpd(dst, src); }
1266   void movlpd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1267 
1268 public:
1269 
1270   void addsd(XMMRegister dst, XMMRegister    src) { Assembler::addsd(dst, src); }
1271   void addsd(XMMRegister dst, Address        src) { Assembler::addsd(dst, src); }
1272   void addsd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1273 
1274   void addss(XMMRegister dst, XMMRegister    src) { Assembler::addss(dst, src); }
1275   void addss(XMMRegister dst, Address        src) { Assembler::addss(dst, src); }
1276   void addss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1277 
1278   void addpd(XMMRegister dst, XMMRegister    src) { Assembler::addpd(dst, src); }
1279   void addpd(XMMRegister dst, Address        src) { Assembler::addpd(dst, src); }
1280   void addpd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1281 
1282   using Assembler::vbroadcastsd;
1283   void vbroadcastsd(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1284 
1285   using Assembler::vbroadcastss;
1286   void vbroadcastss(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1287 
1288   // Vector float blend
1289   void vblendvps(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister mask, int vector_len, bool compute_mask = true, XMMRegister scratch = xnoreg);
1290   void vblendvpd(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister mask, int vector_len, bool compute_mask = true, XMMRegister scratch = xnoreg);
1291 
1292   void divsd(XMMRegister dst, XMMRegister    src) { Assembler::divsd(dst, src); }
1293   void divsd(XMMRegister dst, Address        src) { Assembler::divsd(dst, src); }
1294   void divsd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1295 
1296   void divss(XMMRegister dst, XMMRegister    src) { Assembler::divss(dst, src); }
1297   void divss(XMMRegister dst, Address        src) { Assembler::divss(dst, src); }
1298   void divss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1299 
1300   // Move Unaligned Double Quadword
1301   void movdqu(Address     dst, XMMRegister    src);
1302   void movdqu(XMMRegister dst, XMMRegister    src);
1303   void movdqu(XMMRegister dst, Address        src);
1304   void movdqu(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1305 
1306   void kmovwl(Register  dst, KRegister      src) { Assembler::kmovwl(dst, src); }
1307   void kmovwl(Address   dst, KRegister      src) { Assembler::kmovwl(dst, src); }
1308   void kmovwl(KRegister dst, KRegister      src) { Assembler::kmovwl(dst, src); }
1309   void kmovwl(KRegister dst, Register       src) { Assembler::kmovwl(dst, src); }
1310   void kmovwl(KRegister dst, Address        src) { Assembler::kmovwl(dst, src); }
1311   void kmovwl(KRegister dst, AddressLiteral src, Register rscratch = noreg);
1312 
1313   void kmovql(KRegister dst, KRegister      src) { Assembler::kmovql(dst, src); }
1314   void kmovql(KRegister dst, Register       src) { Assembler::kmovql(dst, src); }
1315   void kmovql(Register  dst, KRegister      src) { Assembler::kmovql(dst, src); }
1316   void kmovql(KRegister dst, Address        src) { Assembler::kmovql(dst, src); }
1317   void kmovql(Address   dst, KRegister      src) { Assembler::kmovql(dst, src); }
1318   void kmovql(KRegister dst, AddressLiteral src, Register rscratch = noreg);
1319 
1320   // Safe move operation, lowers down to 16bit moves for targets supporting
1321   // AVX512F feature and 64bit moves for targets supporting AVX512BW feature.
1322   void kmov(Address  dst, KRegister src);
1323   void kmov(KRegister dst, Address src);
1324   void kmov(KRegister dst, KRegister src);
1325   void kmov(Register dst, KRegister src);
1326   void kmov(KRegister dst, Register src);
1327 
1328   using Assembler::movddup;
1329   void movddup(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1330 
1331   using Assembler::vmovddup;
1332   void vmovddup(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1333 
1334   // AVX Unaligned forms
1335   void vmovdqu(Address     dst, XMMRegister    src);
1336   void vmovdqu(XMMRegister dst, Address        src);
1337   void vmovdqu(XMMRegister dst, XMMRegister    src);
1338   void vmovdqu(XMMRegister dst, AddressLiteral src,                 Register rscratch = noreg);
1339   void vmovdqu(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1340 
1341   // AVX512 Unaligned
1342   void evmovdqu(BasicType type, KRegister kmask, Address     dst, XMMRegister src, bool merge, int vector_len);
1343   void evmovdqu(BasicType type, KRegister kmask, XMMRegister dst, Address     src, bool merge, int vector_len);
1344 
1345   void evmovdqub(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::evmovdqub(dst, src, vector_len); }
1346   void evmovdqub(XMMRegister dst, Address     src, int vector_len) { Assembler::evmovdqub(dst, src, vector_len); }
1347 
1348   void evmovdqub(XMMRegister dst, KRegister mask, XMMRegister src, bool merge, int vector_len) {
1349     if (dst->encoding() != src->encoding() || mask != k0)  {
1350       Assembler::evmovdqub(dst, mask, src, merge, vector_len);
1351     }
1352   }
1353   void evmovdqub(Address     dst, KRegister mask, XMMRegister    src, bool merge, int vector_len) { Assembler::evmovdqub(dst, mask, src, merge, vector_len); }
1354   void evmovdqub(XMMRegister dst, KRegister mask, Address        src, bool merge, int vector_len) { Assembler::evmovdqub(dst, mask, src, merge, vector_len); }
1355   void evmovdqub(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg);
1356 
1357   void evmovdquw(Address     dst, XMMRegister src, int vector_len) { Assembler::evmovdquw(dst, src, vector_len); }
1358   void evmovdquw(XMMRegister dst, Address     src, int vector_len) { Assembler::evmovdquw(dst, src, vector_len); }
1359 
1360   void evmovdquw(XMMRegister dst, KRegister mask, XMMRegister src, bool merge, int vector_len) {
1361     if (dst->encoding() != src->encoding() || mask != k0) {
1362       Assembler::evmovdquw(dst, mask, src, merge, vector_len);
1363     }
1364   }
1365   void evmovdquw(XMMRegister dst, KRegister mask, Address        src, bool merge, int vector_len) { Assembler::evmovdquw(dst, mask, src, merge, vector_len); }
1366   void evmovdquw(Address     dst, KRegister mask, XMMRegister    src, bool merge, int vector_len) { Assembler::evmovdquw(dst, mask, src, merge, vector_len); }
1367   void evmovdquw(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg);
1368 
1369   void evmovdqul(XMMRegister dst, XMMRegister src, int vector_len) {
1370      if (dst->encoding() != src->encoding()) {
1371        Assembler::evmovdqul(dst, src, vector_len);
1372      }
1373   }
1374   void evmovdqul(Address     dst, XMMRegister src, int vector_len) { Assembler::evmovdqul(dst, src, vector_len); }
1375   void evmovdqul(XMMRegister dst, Address     src, int vector_len) { Assembler::evmovdqul(dst, src, vector_len); }
1376 
1377   void evmovdqul(XMMRegister dst, KRegister mask, XMMRegister src, bool merge, int vector_len) {
1378     if (dst->encoding() != src->encoding() || mask != k0)  {
1379       Assembler::evmovdqul(dst, mask, src, merge, vector_len);
1380     }
1381   }
1382   void evmovdqul(Address     dst, KRegister mask, XMMRegister    src, bool merge, int vector_len) { Assembler::evmovdqul(dst, mask, src, merge, vector_len); }
1383   void evmovdqul(XMMRegister dst, KRegister mask, Address        src, bool merge, int vector_len) { Assembler::evmovdqul(dst, mask, src, merge, vector_len); }
1384   void evmovdqul(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg);
1385 
1386   void evmovdquq(XMMRegister dst, XMMRegister src, int vector_len) {
1387     if (dst->encoding() != src->encoding()) {
1388       Assembler::evmovdquq(dst, src, vector_len);
1389     }
1390   }
1391   void evmovdquq(XMMRegister dst, Address        src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); }
1392   void evmovdquq(Address     dst, XMMRegister    src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); }
1393   void evmovdquq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1394 
1395   void evmovdquq(XMMRegister dst, KRegister mask, XMMRegister src, bool merge, int vector_len) {
1396     if (dst->encoding() != src->encoding() || mask != k0) {
1397       Assembler::evmovdquq(dst, mask, src, merge, vector_len);
1398     }
1399   }
1400   void evmovdquq(Address     dst, KRegister mask, XMMRegister    src, bool merge, int vector_len) { Assembler::evmovdquq(dst, mask, src, merge, vector_len); }
1401   void evmovdquq(XMMRegister dst, KRegister mask, Address        src, bool merge, int vector_len) { Assembler::evmovdquq(dst, mask, src, merge, vector_len); }
1402   void evmovdquq(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg);
1403 
1404   // Move Aligned Double Quadword
1405   void movdqa(XMMRegister dst, XMMRegister    src) { Assembler::movdqa(dst, src); }
1406   void movdqa(XMMRegister dst, Address        src) { Assembler::movdqa(dst, src); }
1407   void movdqa(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1408 
1409   void movsd(Address     dst, XMMRegister    src) { Assembler::movsd(dst, src); }
1410   void movsd(XMMRegister dst, XMMRegister    src) { Assembler::movsd(dst, src); }
1411   void movsd(XMMRegister dst, Address        src) { Assembler::movsd(dst, src); }
1412   void movsd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1413 
1414   void mulpd(XMMRegister dst, XMMRegister    src) { Assembler::mulpd(dst, src); }
1415   void mulpd(XMMRegister dst, Address        src) { Assembler::mulpd(dst, src); }
1416   void mulpd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1417 
1418   void mulsd(XMMRegister dst, XMMRegister    src) { Assembler::mulsd(dst, src); }
1419   void mulsd(XMMRegister dst, Address        src) { Assembler::mulsd(dst, src); }
1420   void mulsd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1421 
1422   void mulss(XMMRegister dst, XMMRegister    src) { Assembler::mulss(dst, src); }
1423   void mulss(XMMRegister dst, Address        src) { Assembler::mulss(dst, src); }
1424   void mulss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1425 
1426   // Carry-Less Multiplication Quadword
1427   void pclmulldq(XMMRegister dst, XMMRegister src) {
1428     // 0x00 - multiply lower 64 bits [0:63]
1429     Assembler::pclmulqdq(dst, src, 0x00);
1430   }
1431   void pclmulhdq(XMMRegister dst, XMMRegister src) {
1432     // 0x11 - multiply upper 64 bits [64:127]
1433     Assembler::pclmulqdq(dst, src, 0x11);
1434   }
1435 
1436   void pcmpeqb(XMMRegister dst, XMMRegister src);
1437   void pcmpeqw(XMMRegister dst, XMMRegister src);
1438 
1439   void pcmpestri(XMMRegister dst, Address src, int imm8);
1440   void pcmpestri(XMMRegister dst, XMMRegister src, int imm8);
1441 
1442   void pmovzxbw(XMMRegister dst, XMMRegister src);
1443   void pmovzxbw(XMMRegister dst, Address src);
1444 
1445   void pmovmskb(Register dst, XMMRegister src);
1446 
1447   void ptest(XMMRegister dst, XMMRegister src);
1448 
1449   void roundsd(XMMRegister dst, XMMRegister    src, int32_t rmode) { Assembler::roundsd(dst, src, rmode); }
1450   void roundsd(XMMRegister dst, Address        src, int32_t rmode) { Assembler::roundsd(dst, src, rmode); }
1451   void roundsd(XMMRegister dst, AddressLiteral src, int32_t rmode, Register rscratch = noreg);
1452 
1453   void sqrtss(XMMRegister dst, XMMRegister     src) { Assembler::sqrtss(dst, src); }
1454   void sqrtss(XMMRegister dst, Address         src) { Assembler::sqrtss(dst, src); }
1455   void sqrtss(XMMRegister dst, AddressLiteral  src, Register rscratch = noreg);
1456 
1457   void subsd(XMMRegister dst, XMMRegister    src) { Assembler::subsd(dst, src); }
1458   void subsd(XMMRegister dst, Address        src) { Assembler::subsd(dst, src); }
1459   void subsd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1460 
1461   void subss(XMMRegister dst, XMMRegister    src) { Assembler::subss(dst, src); }
1462   void subss(XMMRegister dst, Address        src) { Assembler::subss(dst, src); }
1463   void subss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1464 
1465   void ucomiss(XMMRegister dst, XMMRegister    src) { Assembler::ucomiss(dst, src); }
1466   void ucomiss(XMMRegister dst, Address        src) { Assembler::ucomiss(dst, src); }
1467   void ucomiss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1468 
1469   void ucomisd(XMMRegister dst, XMMRegister    src) { Assembler::ucomisd(dst, src); }
1470   void ucomisd(XMMRegister dst, Address        src) { Assembler::ucomisd(dst, src); }
1471   void ucomisd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1472 
1473   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
1474   void xorpd(XMMRegister dst, XMMRegister    src);
1475   void xorpd(XMMRegister dst, Address        src) { Assembler::xorpd(dst, src); }
1476   void xorpd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1477 
1478   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
1479   void xorps(XMMRegister dst, XMMRegister    src);
1480   void xorps(XMMRegister dst, Address        src) { Assembler::xorps(dst, src); }
1481   void xorps(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1482 
1483   // Shuffle Bytes
1484   void pshufb(XMMRegister dst, XMMRegister    src) { Assembler::pshufb(dst, src); }
1485   void pshufb(XMMRegister dst, Address        src) { Assembler::pshufb(dst, src); }
1486   void pshufb(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1487   // AVX 3-operands instructions
1488 
1489   void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister    src) { Assembler::vaddsd(dst, nds, src); }
1490   void vaddsd(XMMRegister dst, XMMRegister nds, Address        src) { Assembler::vaddsd(dst, nds, src); }
1491   void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1492 
1493   void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister    src) { Assembler::vaddss(dst, nds, src); }
1494   void vaddss(XMMRegister dst, XMMRegister nds, Address        src) { Assembler::vaddss(dst, nds, src); }
1495   void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1496 
1497   void vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len, Register rscratch = noreg);
1498   void vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len, Register rscratch = noreg);
1499 
1500   void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len);
1501   void vpaddb(XMMRegister dst, XMMRegister nds, Address        src, int vector_len);
1502   void vpaddb(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1503 
1504   void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1505   void vpaddw(XMMRegister dst, XMMRegister nds, Address     src, int vector_len);
1506 
1507   void vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len) { Assembler::vpaddd(dst, nds, src, vector_len); }
1508   void vpaddd(XMMRegister dst, XMMRegister nds, Address        src, int vector_len) { Assembler::vpaddd(dst, nds, src, vector_len); }
1509   void vpaddd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1510 
1511   void vpand(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1512   void vpand(XMMRegister dst, XMMRegister nds, Address        src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1513   void vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1514 
1515   using Assembler::vpbroadcastd;
1516   void vpbroadcastd(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1517 
1518   using Assembler::vpbroadcastq;
1519   void vpbroadcastq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1520 
1521   void vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1522   void vpcmpeqb(XMMRegister dst, XMMRegister src1, Address src2, int vector_len);
1523 
1524   void vpcmpeqw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1525   void vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1526   void evpcmpeqd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1527 
1528   // Vector compares
1529   void evpcmpd(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister    src, int comparison, bool is_signed, int vector_len) {
1530     Assembler::evpcmpd(kdst, mask, nds, src, comparison, is_signed, vector_len);
1531   }
1532   void evpcmpd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int comparison, bool is_signed, int vector_len, Register rscratch = noreg);
1533 
1534   void evpcmpq(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister    src, int comparison, bool is_signed, int vector_len) {
1535     Assembler::evpcmpq(kdst, mask, nds, src, comparison, is_signed, vector_len);
1536   }
1537   void evpcmpq(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int comparison, bool is_signed, int vector_len, Register rscratch = noreg);
1538 
1539   void evpcmpb(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister    src, int comparison, bool is_signed, int vector_len) {
1540     Assembler::evpcmpb(kdst, mask, nds, src, comparison, is_signed, vector_len);
1541   }
1542   void evpcmpb(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int comparison, bool is_signed, int vector_len, Register rscratch = noreg);
1543 
1544   void evpcmpw(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister    src, int comparison, bool is_signed, int vector_len) {
1545     Assembler::evpcmpw(kdst, mask, nds, src, comparison, is_signed, vector_len);
1546   }
1547   void evpcmpw(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int comparison, bool is_signed, int vector_len, Register rscratch = noreg);
1548 
1549   void evpbroadcast(BasicType type, XMMRegister dst, Register src, int vector_len);
1550 
1551   // Emit comparison instruction for the specified comparison predicate.
1552   void vpcmpCCW(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister xtmp, ComparisonPredicate cond, Width width, int vector_len);
1553   void vpcmpCC(XMMRegister dst, XMMRegister nds, XMMRegister src, int cond_encoding, Width width, int vector_len);
1554 
1555   void vpmovzxbw(XMMRegister dst, Address     src, int vector_len);
1556   void vpmovzxbw(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::vpmovzxbw(dst, src, vector_len); }
1557 
1558   void vpmovmskb(Register dst, XMMRegister src, int vector_len = Assembler::AVX_256bit);
1559 
1560   void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1561   void vpmullw(XMMRegister dst, XMMRegister nds, Address     src, int vector_len);
1562 
1563   void vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len) { Assembler::vpmulld(dst, nds, src, vector_len); }
1564   void vpmulld(XMMRegister dst, XMMRegister nds, Address        src, int vector_len) { Assembler::vpmulld(dst, nds, src, vector_len); }
1565   void vpmulld(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1566 
1567   void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1568   void vpsubb(XMMRegister dst, XMMRegister nds, Address     src, int vector_len);
1569 
1570   void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1571   void vpsubw(XMMRegister dst, XMMRegister nds, Address     src, int vector_len);
1572 
1573   void vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1574   void vpsraw(XMMRegister dst, XMMRegister nds, int         shift, int vector_len);
1575 
1576   void evpsraq(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1577   void evpsraq(XMMRegister dst, XMMRegister nds, int         shift, int vector_len);
1578 
1579   void evpsllw(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1580     if (!is_varshift) {
1581       Assembler::evpsllw(dst, mask, nds, src, merge, vector_len);
1582     } else {
1583       Assembler::evpsllvw(dst, mask, nds, src, merge, vector_len);
1584     }
1585   }
1586   void evpslld(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1587     if (!is_varshift) {
1588       Assembler::evpslld(dst, mask, nds, src, merge, vector_len);
1589     } else {
1590       Assembler::evpsllvd(dst, mask, nds, src, merge, vector_len);
1591     }
1592   }
1593   void evpsllq(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1594     if (!is_varshift) {
1595       Assembler::evpsllq(dst, mask, nds, src, merge, vector_len);
1596     } else {
1597       Assembler::evpsllvq(dst, mask, nds, src, merge, vector_len);
1598     }
1599   }
1600   void evpsrlw(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1601     if (!is_varshift) {
1602       Assembler::evpsrlw(dst, mask, nds, src, merge, vector_len);
1603     } else {
1604       Assembler::evpsrlvw(dst, mask, nds, src, merge, vector_len);
1605     }
1606   }
1607   void evpsrld(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1608     if (!is_varshift) {
1609       Assembler::evpsrld(dst, mask, nds, src, merge, vector_len);
1610     } else {
1611       Assembler::evpsrlvd(dst, mask, nds, src, merge, vector_len);
1612     }
1613   }
1614 
1615   using Assembler::evpsrlq;
1616   void evpsrlq(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1617     if (!is_varshift) {
1618       Assembler::evpsrlq(dst, mask, nds, src, merge, vector_len);
1619     } else {
1620       Assembler::evpsrlvq(dst, mask, nds, src, merge, vector_len);
1621     }
1622   }
1623   void evpsraw(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1624     if (!is_varshift) {
1625       Assembler::evpsraw(dst, mask, nds, src, merge, vector_len);
1626     } else {
1627       Assembler::evpsravw(dst, mask, nds, src, merge, vector_len);
1628     }
1629   }
1630   void evpsrad(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1631     if (!is_varshift) {
1632       Assembler::evpsrad(dst, mask, nds, src, merge, vector_len);
1633     } else {
1634       Assembler::evpsravd(dst, mask, nds, src, merge, vector_len);
1635     }
1636   }
1637   using Assembler::evpsraq;
1638   void evpsraq(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1639     if (!is_varshift) {
1640       Assembler::evpsraq(dst, mask, nds, src, merge, vector_len);
1641     } else {
1642       Assembler::evpsravq(dst, mask, nds, src, merge, vector_len);
1643     }
1644   }
1645 
1646   void evpmins(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len);
1647   void evpmaxs(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len);
1648   void evpmins(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len);
1649   void evpmaxs(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len);
1650 
1651   void vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1652   void vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1653 
1654   void vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1655   void vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1656 
1657   void vptest(XMMRegister dst, XMMRegister src);
1658   void vptest(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::vptest(dst, src, vector_len); }
1659 
1660   void punpcklbw(XMMRegister dst, XMMRegister src);
1661   void punpcklbw(XMMRegister dst, Address src) { Assembler::punpcklbw(dst, src); }
1662 
1663   void pshufd(XMMRegister dst, Address src, int mode);
1664   void pshufd(XMMRegister dst, XMMRegister src, int mode) { Assembler::pshufd(dst, src, mode); }
1665 
1666   void pshuflw(XMMRegister dst, XMMRegister src, int mode);
1667   void pshuflw(XMMRegister dst, Address src, int mode) { Assembler::pshuflw(dst, src, mode); }
1668 
1669   void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len) { Assembler::vandpd(dst, nds, src, vector_len); }
1670   void vandpd(XMMRegister dst, XMMRegister nds, Address        src, int vector_len) { Assembler::vandpd(dst, nds, src, vector_len); }
1671   void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1672 
1673   void vandps(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len) { Assembler::vandps(dst, nds, src, vector_len); }
1674   void vandps(XMMRegister dst, XMMRegister nds, Address        src, int vector_len) { Assembler::vandps(dst, nds, src, vector_len); }
1675   void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1676 
1677   void evpord(XMMRegister dst, KRegister mask, XMMRegister nds, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg);
1678 
1679   void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister    src) { Assembler::vdivsd(dst, nds, src); }
1680   void vdivsd(XMMRegister dst, XMMRegister nds, Address        src) { Assembler::vdivsd(dst, nds, src); }
1681   void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1682 
1683   void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister    src) { Assembler::vdivss(dst, nds, src); }
1684   void vdivss(XMMRegister dst, XMMRegister nds, Address        src) { Assembler::vdivss(dst, nds, src); }
1685   void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1686 
1687   void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister    src) { Assembler::vmulsd(dst, nds, src); }
1688   void vmulsd(XMMRegister dst, XMMRegister nds, Address        src) { Assembler::vmulsd(dst, nds, src); }
1689   void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1690 
1691   void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister    src) { Assembler::vmulss(dst, nds, src); }
1692   void vmulss(XMMRegister dst, XMMRegister nds, Address        src) { Assembler::vmulss(dst, nds, src); }
1693   void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1694 
1695   void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister    src) { Assembler::vsubsd(dst, nds, src); }
1696   void vsubsd(XMMRegister dst, XMMRegister nds, Address        src) { Assembler::vsubsd(dst, nds, src); }
1697   void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1698 
1699   void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister    src) { Assembler::vsubss(dst, nds, src); }
1700   void vsubss(XMMRegister dst, XMMRegister nds, Address        src) { Assembler::vsubss(dst, nds, src); }
1701   void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1702 
1703   void vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1704   void vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1705 
1706   // AVX Vector instructions
1707 
1708   void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1709   void vxorpd(XMMRegister dst, XMMRegister nds, Address        src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1710   void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1711 
1712   void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1713   void vxorps(XMMRegister dst, XMMRegister nds, Address        src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1714   void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1715 
1716   void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1717     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1718       Assembler::vpxor(dst, nds, src, vector_len);
1719     else
1720       Assembler::vxorpd(dst, nds, src, vector_len);
1721   }
1722   void vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
1723     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1724       Assembler::vpxor(dst, nds, src, vector_len);
1725     else
1726       Assembler::vxorpd(dst, nds, src, vector_len);
1727   }
1728   void vpxor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1729 
1730   // Simple version for AVX2 256bit vectors
1731   void vpxor(XMMRegister dst, XMMRegister src) {
1732     assert(UseAVX >= 2, "Should be at least AVX2");
1733     Assembler::vpxor(dst, dst, src, AVX_256bit);
1734   }
1735   void vpxor(XMMRegister dst, Address src) {
1736     assert(UseAVX >= 2, "Should be at least AVX2");
1737     Assembler::vpxor(dst, dst, src, AVX_256bit);
1738   }
1739 
1740   void vpermd(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len) { Assembler::vpermd(dst, nds, src, vector_len); }
1741   void vpermd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1742 
1743   void vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
1744     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1745       Assembler::vinserti32x4(dst, nds, src, imm8);
1746     } else if (UseAVX > 1) {
1747       // vinserti128 is available only in AVX2
1748       Assembler::vinserti128(dst, nds, src, imm8);
1749     } else {
1750       Assembler::vinsertf128(dst, nds, src, imm8);
1751     }
1752   }
1753 
1754   void vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
1755     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1756       Assembler::vinserti32x4(dst, nds, src, imm8);
1757     } else if (UseAVX > 1) {
1758       // vinserti128 is available only in AVX2
1759       Assembler::vinserti128(dst, nds, src, imm8);
1760     } else {
1761       Assembler::vinsertf128(dst, nds, src, imm8);
1762     }
1763   }
1764 
1765   void vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
1766     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1767       Assembler::vextracti32x4(dst, src, imm8);
1768     } else if (UseAVX > 1) {
1769       // vextracti128 is available only in AVX2
1770       Assembler::vextracti128(dst, src, imm8);
1771     } else {
1772       Assembler::vextractf128(dst, src, imm8);
1773     }
1774   }
1775 
1776   void vextracti128(Address dst, XMMRegister src, uint8_t imm8) {
1777     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1778       Assembler::vextracti32x4(dst, src, imm8);
1779     } else if (UseAVX > 1) {
1780       // vextracti128 is available only in AVX2
1781       Assembler::vextracti128(dst, src, imm8);
1782     } else {
1783       Assembler::vextractf128(dst, src, imm8);
1784     }
1785   }
1786 
1787   // 128bit copy to/from high 128 bits of 256bit (YMM) vector registers
1788   void vinserti128_high(XMMRegister dst, XMMRegister src) {
1789     vinserti128(dst, dst, src, 1);
1790   }
1791   void vinserti128_high(XMMRegister dst, Address src) {
1792     vinserti128(dst, dst, src, 1);
1793   }
1794   void vextracti128_high(XMMRegister dst, XMMRegister src) {
1795     vextracti128(dst, src, 1);
1796   }
1797   void vextracti128_high(Address dst, XMMRegister src) {
1798     vextracti128(dst, src, 1);
1799   }
1800 
1801   void vinsertf128_high(XMMRegister dst, XMMRegister src) {
1802     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1803       Assembler::vinsertf32x4(dst, dst, src, 1);
1804     } else {
1805       Assembler::vinsertf128(dst, dst, src, 1);
1806     }
1807   }
1808 
1809   void vinsertf128_high(XMMRegister dst, Address src) {
1810     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1811       Assembler::vinsertf32x4(dst, dst, src, 1);
1812     } else {
1813       Assembler::vinsertf128(dst, dst, src, 1);
1814     }
1815   }
1816 
1817   void vextractf128_high(XMMRegister dst, XMMRegister src) {
1818     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1819       Assembler::vextractf32x4(dst, src, 1);
1820     } else {
1821       Assembler::vextractf128(dst, src, 1);
1822     }
1823   }
1824 
1825   void vextractf128_high(Address dst, XMMRegister src) {
1826     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1827       Assembler::vextractf32x4(dst, src, 1);
1828     } else {
1829       Assembler::vextractf128(dst, src, 1);
1830     }
1831   }
1832 
1833   // 256bit copy to/from high 256 bits of 512bit (ZMM) vector registers
1834   void vinserti64x4_high(XMMRegister dst, XMMRegister src) {
1835     Assembler::vinserti64x4(dst, dst, src, 1);
1836   }
1837   void vinsertf64x4_high(XMMRegister dst, XMMRegister src) {
1838     Assembler::vinsertf64x4(dst, dst, src, 1);
1839   }
1840   void vextracti64x4_high(XMMRegister dst, XMMRegister src) {
1841     Assembler::vextracti64x4(dst, src, 1);
1842   }
1843   void vextractf64x4_high(XMMRegister dst, XMMRegister src) {
1844     Assembler::vextractf64x4(dst, src, 1);
1845   }
1846   void vextractf64x4_high(Address dst, XMMRegister src) {
1847     Assembler::vextractf64x4(dst, src, 1);
1848   }
1849   void vinsertf64x4_high(XMMRegister dst, Address src) {
1850     Assembler::vinsertf64x4(dst, dst, src, 1);
1851   }
1852 
1853   // 128bit copy to/from low 128 bits of 256bit (YMM) vector registers
1854   void vinserti128_low(XMMRegister dst, XMMRegister src) {
1855     vinserti128(dst, dst, src, 0);
1856   }
1857   void vinserti128_low(XMMRegister dst, Address src) {
1858     vinserti128(dst, dst, src, 0);
1859   }
1860   void vextracti128_low(XMMRegister dst, XMMRegister src) {
1861     vextracti128(dst, src, 0);
1862   }
1863   void vextracti128_low(Address dst, XMMRegister src) {
1864     vextracti128(dst, src, 0);
1865   }
1866 
1867   void vinsertf128_low(XMMRegister dst, XMMRegister src) {
1868     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1869       Assembler::vinsertf32x4(dst, dst, src, 0);
1870     } else {
1871       Assembler::vinsertf128(dst, dst, src, 0);
1872     }
1873   }
1874 
1875   void vinsertf128_low(XMMRegister dst, Address src) {
1876     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1877       Assembler::vinsertf32x4(dst, dst, src, 0);
1878     } else {
1879       Assembler::vinsertf128(dst, dst, src, 0);
1880     }
1881   }
1882 
1883   void vextractf128_low(XMMRegister dst, XMMRegister src) {
1884     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1885       Assembler::vextractf32x4(dst, src, 0);
1886     } else {
1887       Assembler::vextractf128(dst, src, 0);
1888     }
1889   }
1890 
1891   void vextractf128_low(Address dst, XMMRegister src) {
1892     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1893       Assembler::vextractf32x4(dst, src, 0);
1894     } else {
1895       Assembler::vextractf128(dst, src, 0);
1896     }
1897   }
1898 
1899   // 256bit copy to/from low 256 bits of 512bit (ZMM) vector registers
1900   void vinserti64x4_low(XMMRegister dst, XMMRegister src) {
1901     Assembler::vinserti64x4(dst, dst, src, 0);
1902   }
1903   void vinsertf64x4_low(XMMRegister dst, XMMRegister src) {
1904     Assembler::vinsertf64x4(dst, dst, src, 0);
1905   }
1906   void vextracti64x4_low(XMMRegister dst, XMMRegister src) {
1907     Assembler::vextracti64x4(dst, src, 0);
1908   }
1909   void vextractf64x4_low(XMMRegister dst, XMMRegister src) {
1910     Assembler::vextractf64x4(dst, src, 0);
1911   }
1912   void vextractf64x4_low(Address dst, XMMRegister src) {
1913     Assembler::vextractf64x4(dst, src, 0);
1914   }
1915   void vinsertf64x4_low(XMMRegister dst, Address src) {
1916     Assembler::vinsertf64x4(dst, dst, src, 0);
1917   }
1918 
1919   // Carry-Less Multiplication Quadword
1920   void vpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1921     // 0x00 - multiply lower 64 bits [0:63]
1922     Assembler::vpclmulqdq(dst, nds, src, 0x00);
1923   }
1924   void vpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1925     // 0x11 - multiply upper 64 bits [64:127]
1926     Assembler::vpclmulqdq(dst, nds, src, 0x11);
1927   }
1928   void vpclmullqhqdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1929     // 0x10 - multiply nds[0:63] and src[64:127]
1930     Assembler::vpclmulqdq(dst, nds, src, 0x10);
1931   }
1932   void vpclmulhqlqdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1933     //0x01 - multiply nds[64:127] and src[0:63]
1934     Assembler::vpclmulqdq(dst, nds, src, 0x01);
1935   }
1936 
1937   void evpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1938     // 0x00 - multiply lower 64 bits [0:63]
1939     Assembler::evpclmulqdq(dst, nds, src, 0x00, vector_len);
1940   }
1941   void evpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1942     // 0x11 - multiply upper 64 bits [64:127]
1943     Assembler::evpclmulqdq(dst, nds, src, 0x11, vector_len);
1944   }
1945 
1946   // AVX-512 mask operations.
1947   void kand(BasicType etype, KRegister dst, KRegister src1, KRegister src2);
1948   void kor(BasicType type, KRegister dst, KRegister src1, KRegister src2);
1949   void knot(uint masklen, KRegister dst, KRegister src, KRegister ktmp = knoreg, Register rtmp = noreg);
1950   void kxor(BasicType type, KRegister dst, KRegister src1, KRegister src2);
1951   void kortest(uint masklen, KRegister src1, KRegister src2);
1952   void ktest(uint masklen, KRegister src1, KRegister src2);
1953 
1954   void evperm(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len);
1955   void evperm(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len);
1956 
1957   void evor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len);
1958   void evor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len);
1959 
1960   void evand(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len);
1961   void evand(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len);
1962 
1963   void evxor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len);
1964   void evxor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len);
1965 
1966   void evrold(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vlen_enc);
1967   void evrold(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src1, XMMRegister src2, bool merge, int vlen_enc);
1968   void evrord(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vlen_enc);
1969   void evrord(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src1, XMMRegister src2, bool merge, int vlen_enc);
1970 
1971   using Assembler::evpandq;
1972   void evpandq(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1973 
1974   using Assembler::evpaddq;
1975   void evpaddq(XMMRegister dst, KRegister mask, XMMRegister nds, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg);
1976 
1977   using Assembler::evporq;
1978   void evporq(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1979 
1980   using Assembler::vpshufb;
1981   void vpshufb(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1982 
1983   using Assembler::vpor;
1984   void vpor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1985 
1986   using Assembler::vpternlogq;
1987   void vpternlogq(XMMRegister dst, int imm8, XMMRegister src2, AddressLiteral src3, int vector_len, Register rscratch = noreg);
1988 
1989   void cmov32( Condition cc, Register dst, Address  src);
1990   void cmov32( Condition cc, Register dst, Register src);
1991 
1992   void cmov(   Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }
1993 
1994   void cmovptr(Condition cc, Register dst, Address  src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1995   void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1996 
1997   void movoop(Register dst, jobject obj);
1998   void movoop(Address  dst, jobject obj, Register rscratch);
1999 
2000   void mov_metadata(Register dst, Metadata* obj);
2001   void mov_metadata(Address  dst, Metadata* obj, Register rscratch);
2002 
2003   void movptr(Register     dst, Register       src);
2004   void movptr(Register     dst, Address        src);
2005   void movptr(Register     dst, AddressLiteral src);
2006   void movptr(Register     dst, ArrayAddress   src);
2007   void movptr(Register     dst, intptr_t       src);
2008   void movptr(Address      dst, Register       src);
2009   void movptr(Address      dst, int32_t        imm);
2010   void movptr(Address      dst, intptr_t       src, Register rscratch);
2011   void movptr(ArrayAddress dst, Register       src, Register rscratch);
2012 
2013   void movptr(Register dst, RegisterOrConstant src) {
2014     if (src.is_constant()) movptr(dst, src.as_constant());
2015     else                   movptr(dst, src.as_register());
2016   }
2017 
2018 
2019   // to avoid hiding movl
2020   void mov32(Register       dst, AddressLiteral src);
2021   void mov32(AddressLiteral dst, Register        src, Register rscratch = noreg);
2022 
2023   // Import other mov() methods from the parent class or else
2024   // they will be hidden by the following overriding declaration.
2025   using Assembler::movdl;
2026   void movdl(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
2027 
2028   using Assembler::movq;
2029   void movq(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
2030 
2031   // Can push value or effective address
2032   void pushptr(AddressLiteral src, Register rscratch);
2033 
2034   void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
2035   void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
2036 
2037   void pushoop(jobject obj, Register rscratch);
2038   void pushklass(Metadata* obj, Register rscratch);
2039 
2040   // sign extend as need a l to ptr sized element
2041   void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
2042   void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
2043 
2044 
2045  public:
2046   // Inline type specific methods
2047   #include "asm/macroAssembler_common.hpp"
2048 
2049   int store_inline_type_fields_to_buf(ciInlineKlass* vk, bool from_interpreter = true);
2050   bool move_helper(VMReg from, VMReg to, BasicType bt, RegState reg_state[]);
2051   bool unpack_inline_helper(const GrowableArray<SigEntry>* sig, int& sig_index,
2052                             VMReg from, int& from_index, VMRegPair* to, int to_count, int& to_index,
2053                             RegState reg_state[]);
2054   bool pack_inline_helper(const GrowableArray<SigEntry>* sig, int& sig_index, int vtarg_index,
2055                           VMRegPair* from, int from_count, int& from_index, VMReg to,
2056                           RegState reg_state[], Register val_array);
2057   int extend_stack_for_inline_args(int args_on_stack);
2058   void remove_frame(int initial_framesize, bool needs_stack_repair);
2059   VMReg spill_reg_for(VMReg reg);
2060 
2061   // clear memory of size 'cnt' qwords, starting at 'base';
2062   // if 'is_large' is set, do not try to produce short loop
2063   void clear_mem(Register base, Register cnt, Register val, XMMRegister xtmp, bool is_large, bool word_copy_only, KRegister mask=knoreg);
2064 
2065   // clear memory initialization sequence for constant size;
2066   void clear_mem(Register base, int cnt, Register rtmp, XMMRegister xtmp, KRegister mask=knoreg);
2067 
2068   // clear memory of size 'cnt' qwords, starting at 'base' using XMM/YMM registers
2069   void xmm_clear_mem(Register base, Register cnt, Register rtmp, XMMRegister xtmp, KRegister mask=knoreg);
2070 
2071   // Fill primitive arrays
2072   void generate_fill(BasicType t, bool aligned,
2073                      Register to, Register value, Register count,
2074                      Register rtmp, XMMRegister xtmp);
2075 
2076   void encode_iso_array(Register src, Register dst, Register len,
2077                         XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
2078                         XMMRegister tmp4, Register tmp5, Register result, bool ascii);
2079 
2080 #ifdef _LP64
2081   void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2);
2082   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
2083                              Register y, Register y_idx, Register z,
2084                              Register carry, Register product,
2085                              Register idx, Register kdx);
2086   void multiply_add_128_x_128(Register x_xstart, Register y, Register z,
2087                               Register yz_idx, Register idx,
2088                               Register carry, Register product, int offset);
2089   void multiply_128_x_128_bmi2_loop(Register y, Register z,
2090                                     Register carry, Register carry2,
2091                                     Register idx, Register jdx,
2092                                     Register yz_idx1, Register yz_idx2,
2093                                     Register tmp, Register tmp3, Register tmp4);
2094   void multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
2095                                Register yz_idx, Register idx, Register jdx,
2096                                Register carry, Register product,
2097                                Register carry2);
2098   void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register tmp0,
2099                        Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5);
2100   void square_rshift(Register x, Register len, Register z, Register tmp1, Register tmp3,
2101                      Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
2102   void multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry,
2103                             Register tmp2);
2104   void multiply_add_64(Register sum, Register op1, Register op2, Register carry,
2105                        Register rdxReg, Register raxReg);
2106   void add_one_64(Register z, Register zlen, Register carry, Register tmp1);
2107   void lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
2108                        Register tmp3, Register tmp4);
2109   void square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
2110                      Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
2111 
2112   void mul_add_128_x_32_loop(Register out, Register in, Register offset, Register len, Register tmp1,
2113                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
2114                Register raxReg);
2115   void mul_add(Register out, Register in, Register offset, Register len, Register k, Register tmp1,
2116                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
2117                Register raxReg);
2118   void vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
2119                            Register result, Register tmp1, Register tmp2,
2120                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3);
2121 #endif
2122 
2123   // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
2124   void update_byte_crc32(Register crc, Register val, Register table);
2125   void kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp);
2126 
2127 
2128 #ifdef _LP64
2129   void kernel_crc32_avx512(Register crc, Register buf, Register len, Register table, Register tmp1, Register tmp2);
2130   void kernel_crc32_avx512_256B(Register crc, Register buf, Register len, Register key, Register pos,
2131                                 Register tmp1, Register tmp2, Label& L_barrett, Label& L_16B_reduction_loop,
2132                                 Label& L_get_last_two_xmms, Label& L_128_done, Label& L_cleanup);
2133 #endif // _LP64
2134 
2135   // CRC32C code for java.util.zip.CRC32C::updateBytes() intrinsic
2136   // Note on a naming convention:
2137   // Prefix w = register only used on a Westmere+ architecture
2138   // Prefix n = register only used on a Nehalem architecture
2139 #ifdef _LP64
2140   void crc32c_ipl_alg4(Register in_out, uint32_t n,
2141                        Register tmp1, Register tmp2, Register tmp3);
2142 #else
2143   void crc32c_ipl_alg4(Register in_out, uint32_t n,
2144                        Register tmp1, Register tmp2, Register tmp3,
2145                        XMMRegister xtmp1, XMMRegister xtmp2);
2146 #endif
2147   void crc32c_pclmulqdq(XMMRegister w_xtmp1,
2148                         Register in_out,
2149                         uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
2150                         XMMRegister w_xtmp2,
2151                         Register tmp1,
2152                         Register n_tmp2, Register n_tmp3);
2153   void crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
2154                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
2155                        Register tmp1, Register tmp2,
2156                        Register n_tmp3);
2157   void crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
2158                          Register in_out1, Register in_out2, Register in_out3,
2159                          Register tmp1, Register tmp2, Register tmp3,
2160                          XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
2161                          Register tmp4, Register tmp5,
2162                          Register n_tmp6);
2163   void crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
2164                             Register tmp1, Register tmp2, Register tmp3,
2165                             Register tmp4, Register tmp5, Register tmp6,
2166                             XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
2167                             bool is_pclmulqdq_supported);
2168   // Fold 128-bit data chunk
2169   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
2170   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf);
2171 #ifdef _LP64
2172   // Fold 512-bit data chunk
2173   void fold512bit_crc32_avx512(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, Register pos, int offset);
2174 #endif // _LP64
2175   // Fold 8-bit data
2176   void fold_8bit_crc32(Register crc, Register table, Register tmp);
2177   void fold_8bit_crc32(XMMRegister crc, Register table, XMMRegister xtmp, Register tmp);
2178 
2179   // Compress char[] array to byte[].
2180   void char_array_compress(Register src, Register dst, Register len,
2181                            XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
2182                            XMMRegister tmp4, Register tmp5, Register result,
2183                            KRegister mask1 = knoreg, KRegister mask2 = knoreg);
2184 
2185   // Inflate byte[] array to char[].
2186   void byte_array_inflate(Register src, Register dst, Register len,
2187                           XMMRegister tmp1, Register tmp2, KRegister mask = knoreg);
2188 
2189   void fill_masked(BasicType bt, Address dst, XMMRegister xmm, KRegister mask,
2190                    Register length, Register temp, int vec_enc);
2191 
2192   void fill64_masked(uint shift, Register dst, int disp,
2193                          XMMRegister xmm, KRegister mask, Register length,
2194                          Register temp, bool use64byteVector = false);
2195 
2196   void fill32_masked(uint shift, Register dst, int disp,
2197                          XMMRegister xmm, KRegister mask, Register length,
2198                          Register temp);
2199 
2200   void fill32(Address dst, XMMRegister xmm);
2201 
2202   void fill32(Register dst, int disp, XMMRegister xmm);
2203 
2204   void fill64(Address dst, XMMRegister xmm, bool use64byteVector = false);
2205 
2206   void fill64(Register dst, int dis, XMMRegister xmm, bool use64byteVector = false);
2207 
2208 #ifdef _LP64
2209   void convert_f2i(Register dst, XMMRegister src);
2210   void convert_d2i(Register dst, XMMRegister src);
2211   void convert_f2l(Register dst, XMMRegister src);
2212   void convert_d2l(Register dst, XMMRegister src);
2213   void round_double(Register dst, XMMRegister src, Register rtmp, Register rcx);
2214   void round_float(Register dst, XMMRegister src, Register rtmp, Register rcx);
2215 
2216   void cache_wb(Address line);
2217   void cache_wbsync(bool is_pre);
2218 
2219 #ifdef COMPILER2_OR_JVMCI
2220   void generate_fill_avx3(BasicType type, Register to, Register value,
2221                           Register count, Register rtmp, XMMRegister xtmp);
2222 #endif // COMPILER2_OR_JVMCI
2223 #endif // _LP64
2224 
2225   void vallones(XMMRegister dst, int vector_len);
2226 
2227   void check_stack_alignment(Register sp, const char* msg, unsigned bias = 0, Register tmp = noreg);
2228 
2229   void lightweight_lock(Register basic_lock, Register obj, Register reg_rax, Register thread, Register tmp, Label& slow);
2230   void lightweight_unlock(Register obj, Register reg_rax, Register thread, Register tmp, Label& slow);
2231 
2232 #ifdef _LP64
2233   void save_legacy_gprs();
2234   void restore_legacy_gprs();
2235   void setcc(Assembler::Condition comparison, Register dst);
2236 #endif
2237 };
2238 
2239 /**
2240  * class SkipIfEqual:
2241  *
2242  * Instantiating this class will result in assembly code being output that will
2243  * jump around any code emitted between the creation of the instance and it's
2244  * automatic destruction at the end of a scope block, depending on the value of
2245  * the flag passed to the constructor, which will be checked at run-time.
2246  */
2247 class SkipIfEqual {
2248  private:
2249   MacroAssembler* _masm;
2250   Label _label;
2251 
2252  public:
2253    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value, Register rscratch);
2254    ~SkipIfEqual();
2255 };
2256 
2257 #endif // CPU_X86_MACROASSEMBLER_X86_HPP