1 /*
   2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef CPU_X86_MACROASSEMBLER_X86_HPP
  26 #define CPU_X86_MACROASSEMBLER_X86_HPP
  27 
  28 #include "asm/assembler.hpp"
  29 #include "asm/register.hpp"
  30 #include "code/vmreg.inline.hpp"
  31 #include "compiler/oopMap.hpp"
  32 #include "utilities/macros.hpp"
  33 #include "runtime/signature.hpp"
  34 #include "runtime/vm_version.hpp"
  35 #include "utilities/checkedCast.hpp"
  36 
  37 class ciInlineKlass;
  38 
  39 // MacroAssembler extends Assembler by frequently used macros.
  40 //
  41 // Instructions for which a 'better' code sequence exists depending
  42 // on arguments should also go in here.
  43 
  44 class MacroAssembler: public Assembler {
  45   friend class LIR_Assembler;
  46   friend class Runtime1;      // as_Address()
  47 
  48  public:
  49   // Support for VM calls
  50   //
  51   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  52   // may customize this version by overriding it for its purposes (e.g., to save/restore
  53   // additional registers when doing a VM call).
  54 
  55   virtual void call_VM_leaf_base(
  56     address entry_point,               // the entry point
  57     int     number_of_arguments        // the number of arguments to pop after the call
  58   );
  59 
  60  protected:
  61   // This is the base routine called by the different versions of call_VM. The interpreter
  62   // may customize this version by overriding it for its purposes (e.g., to save/restore
  63   // additional registers when doing a VM call).
  64   //
  65   // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
  66   // returns the register which contains the thread upon return. If a thread register has been
  67   // specified, the return value will correspond to that register. If no last_java_sp is specified
  68   // (noreg) than rsp will be used instead.
  69   virtual void call_VM_base(           // returns the register containing the thread upon return
  70     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  71     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  72     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  73     address  entry_point,              // the entry point
  74     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  75     bool     check_exceptions          // whether to check for pending exceptions after return
  76   );
  77 
  78   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  79 
  80   // helpers for FPU flag access
  81   // tmp is a temporary register, if none is available use noreg
  82   void save_rax   (Register tmp);
  83   void restore_rax(Register tmp);
  84 
  85  public:
  86   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
  87 
  88  // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  89  // The implementation is only non-empty for the InterpreterMacroAssembler,
  90  // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  91  virtual void check_and_handle_popframe(Register java_thread);
  92  virtual void check_and_handle_earlyret(Register java_thread);
  93 
  94   Address as_Address(AddressLiteral adr);
  95   Address as_Address(ArrayAddress adr, Register rscratch);
  96 
  97   // Support for null-checks
  98   //
  99   // Generates code that causes a null OS exception if the content of reg is null.
 100   // If the accessed location is M[reg + offset] and the offset is known, provide the
 101   // offset. No explicit code generation is needed if the offset is within a certain
 102   // range (0 <= offset <= page_size).
 103 
 104   void null_check(Register reg, int offset = -1);
 105   static bool needs_explicit_null_check(intptr_t offset);
 106   static bool uses_implicit_null_check(void* address);
 107 
 108   // markWord tests, kills markWord reg
 109   void test_markword_is_inline_type(Register markword, Label& is_inline_type);
 110 
 111   // inlineKlass queries, kills temp_reg
 112   void test_klass_is_inline_type(Register klass, Register temp_reg, Label& is_inline_type);
 113   void test_klass_is_empty_inline_type(Register klass, Register temp_reg, Label& is_empty_inline_type);
 114   void test_oop_is_not_inline_type(Register object, Register tmp, Label& not_inline_type);
 115 
 116   // Get the default value oop for the given InlineKlass
 117   void get_default_value_oop(Register inline_klass, Register temp_reg, Register obj);
 118   // The empty value oop, for the given InlineKlass ("empty" as in no instance fields)
 119   // get_default_value_oop with extra assertion for empty inline klass
 120   void get_empty_inline_type_oop(Register inline_klass, Register temp_reg, Register obj);
 121 
 122   void test_field_is_null_free_inline_type(Register flags, Register temp_reg, Label& is_null_free);
 123   void test_field_is_not_null_free_inline_type(Register flags, Register temp_reg, Label& not_null_free);
 124   void test_field_is_flat(Register flags, Register temp_reg, Label& is_flat);
 125   void test_field_has_null_marker(Register flags, Register temp_reg, Label& has_null_marker);
 126 
 127   // Check oops for special arrays, i.e. flat arrays and/or null-free arrays
 128   void test_oop_prototype_bit(Register oop, Register temp_reg, int32_t test_bit, bool jmp_set, Label& jmp_label);
 129   void test_flat_array_oop(Register oop, Register temp_reg, Label& is_flat_array);
 130   void test_non_flat_array_oop(Register oop, Register temp_reg, Label& is_non_flat_array);
 131   void test_null_free_array_oop(Register oop, Register temp_reg, Label& is_null_free_array);
 132   void test_non_null_free_array_oop(Register oop, Register temp_reg, Label& is_non_null_free_array);
 133 
 134   // Check array klass layout helper for flat or null-free arrays...
 135   void test_flat_array_layout(Register lh, Label& is_flat_array);
 136   void test_non_flat_array_layout(Register lh, Label& is_non_flat_array);
 137 
 138   // Required platform-specific helpers for Label::patch_instructions.
 139   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
 140   void pd_patch_instruction(address branch, address target, const char* file, int line) {
 141     unsigned char op = branch[0];
 142     assert(op == 0xE8 /* call */ ||
 143         op == 0xE9 /* jmp */ ||
 144         op == 0xEB /* short jmp */ ||
 145         (op & 0xF0) == 0x70 /* short jcc */ ||
 146         (op == 0x0F && (branch[1] & 0xF0) == 0x80) /* jcc */ ||
 147         (op == 0xC7 && branch[1] == 0xF8) /* xbegin */,
 148         "Invalid opcode at patch point");
 149 
 150     if (op == 0xEB || (op & 0xF0) == 0x70) {
 151       // short offset operators (jmp and jcc)
 152       char* disp = (char*) &branch[1];
 153       int imm8 = checked_cast<int>(target - (address) &disp[1]);
 154       guarantee(this->is8bit(imm8), "Short forward jump exceeds 8-bit offset at %s:%d",
 155                 file == nullptr ? "<null>" : file, line);
 156       *disp = (char)imm8;
 157     } else {
 158       int* disp = (int*) &branch[(op == 0x0F || op == 0xC7)? 2: 1];
 159       int imm32 = checked_cast<int>(target - (address) &disp[1]);
 160       *disp = imm32;
 161     }
 162   }
 163 
 164   // The following 4 methods return the offset of the appropriate move instruction
 165 
 166   // Support for fast byte/short loading with zero extension (depending on particular CPU)
 167   int load_unsigned_byte(Register dst, Address src);
 168   int load_unsigned_short(Register dst, Address src);
 169 
 170   // Support for fast byte/short loading with sign extension (depending on particular CPU)
 171   int load_signed_byte(Register dst, Address src);
 172   int load_signed_short(Register dst, Address src);
 173 
 174   // Support for sign-extension (hi:lo = extend_sign(lo))
 175   void extend_sign(Register hi, Register lo);
 176 
 177   // Load and store values by size and signed-ness
 178   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
 179   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
 180 
 181   // Support for inc/dec with optimal instruction selection depending on value
 182 
 183   void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
 184   void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
 185   void increment(Address dst, int value = 1)  { LP64_ONLY(incrementq(dst, value)) NOT_LP64(incrementl(dst, value)) ; }
 186   void decrement(Address dst, int value = 1)  { LP64_ONLY(decrementq(dst, value)) NOT_LP64(decrementl(dst, value)) ; }
 187 
 188   void decrementl(Address dst, int value = 1);
 189   void decrementl(Register reg, int value = 1);
 190 
 191   void decrementq(Register reg, int value = 1);
 192   void decrementq(Address dst, int value = 1);
 193 
 194   void incrementl(Address dst, int value = 1);
 195   void incrementl(Register reg, int value = 1);
 196 
 197   void incrementq(Register reg, int value = 1);
 198   void incrementq(Address dst, int value = 1);
 199 
 200   void incrementl(AddressLiteral dst, Register rscratch = noreg);
 201   void incrementl(ArrayAddress   dst, Register rscratch);
 202 
 203   void incrementq(AddressLiteral dst, Register rscratch = noreg);
 204 
 205   // Support optimal SSE move instructions.
 206   void movflt(XMMRegister dst, XMMRegister src) {
 207     if (dst-> encoding() == src->encoding()) return;
 208     if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
 209     else                       { movss (dst, src); return; }
 210   }
 211   void movflt(XMMRegister dst, Address src) { movss(dst, src); }
 212   void movflt(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
 213   void movflt(Address dst, XMMRegister src) { movss(dst, src); }
 214 
 215   // Move with zero extension
 216   void movfltz(XMMRegister dst, XMMRegister src) { movss(dst, src); }
 217 
 218   void movdbl(XMMRegister dst, XMMRegister src) {
 219     if (dst-> encoding() == src->encoding()) return;
 220     if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
 221     else                       { movsd (dst, src); return; }
 222   }
 223 
 224   void movdbl(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
 225 
 226   void movdbl(XMMRegister dst, Address src) {
 227     if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
 228     else                         { movlpd(dst, src); return; }
 229   }
 230   void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
 231 
 232   void flt_to_flt16(Register dst, XMMRegister src, XMMRegister tmp) {
 233     // Use separate tmp XMM register because caller may
 234     // requires src XMM register to be unchanged (as in x86.ad).
 235     vcvtps2ph(tmp, src, 0x04, Assembler::AVX_128bit);
 236     movdl(dst, tmp);
 237     movswl(dst, dst);
 238   }
 239 
 240   void flt16_to_flt(XMMRegister dst, Register src) {
 241     movdl(dst, src);
 242     vcvtph2ps(dst, dst, Assembler::AVX_128bit);
 243   }
 244 
 245   // Alignment
 246   void align32();
 247   void align64();
 248   void align(uint modulus);
 249   void align(uint modulus, uint target);
 250 
 251   void post_call_nop();
 252   // A 5 byte nop that is safe for patching (see patch_verified_entry)
 253   void fat_nop();
 254 
 255   // Stack frame creation/removal
 256   void enter();
 257   void leave();
 258 
 259   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
 260   // The pointer will be loaded into the thread register.
 261   void get_thread(Register thread);
 262 
 263 #ifdef _LP64
 264   // Support for argument shuffling
 265 
 266   // bias in bytes
 267   void move32_64(VMRegPair src, VMRegPair dst, Register tmp = rax, int in_stk_bias = 0, int out_stk_bias = 0);
 268   void long_move(VMRegPair src, VMRegPair dst, Register tmp = rax, int in_stk_bias = 0, int out_stk_bias = 0);
 269   void float_move(VMRegPair src, VMRegPair dst, Register tmp = rax, int in_stk_bias = 0, int out_stk_bias = 0);
 270   void double_move(VMRegPair src, VMRegPair dst, Register tmp = rax, int in_stk_bias = 0, int out_stk_bias = 0);
 271   void move_ptr(VMRegPair src, VMRegPair dst);
 272   void object_move(OopMap* map,
 273                    int oop_handle_offset,
 274                    int framesize_in_slots,
 275                    VMRegPair src,
 276                    VMRegPair dst,
 277                    bool is_receiver,
 278                    int* receiver_offset);
 279 #endif // _LP64
 280 
 281   // Support for VM calls
 282   //
 283   // It is imperative that all calls into the VM are handled via the call_VM macros.
 284   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 285   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 286 
 287 
 288   void call_VM(Register oop_result,
 289                address entry_point,
 290                bool check_exceptions = true);
 291   void call_VM(Register oop_result,
 292                address entry_point,
 293                Register arg_1,
 294                bool check_exceptions = true);
 295   void call_VM(Register oop_result,
 296                address entry_point,
 297                Register arg_1, Register arg_2,
 298                bool check_exceptions = true);
 299   void call_VM(Register oop_result,
 300                address entry_point,
 301                Register arg_1, Register arg_2, Register arg_3,
 302                bool check_exceptions = true);
 303 
 304   // Overloadings with last_Java_sp
 305   void call_VM(Register oop_result,
 306                Register last_java_sp,
 307                address entry_point,
 308                int number_of_arguments = 0,
 309                bool check_exceptions = true);
 310   void call_VM(Register oop_result,
 311                Register last_java_sp,
 312                address entry_point,
 313                Register arg_1, bool
 314                check_exceptions = true);
 315   void call_VM(Register oop_result,
 316                Register last_java_sp,
 317                address entry_point,
 318                Register arg_1, Register arg_2,
 319                bool check_exceptions = true);
 320   void call_VM(Register oop_result,
 321                Register last_java_sp,
 322                address entry_point,
 323                Register arg_1, Register arg_2, Register arg_3,
 324                bool check_exceptions = true);
 325 
 326   void get_vm_result  (Register oop_result, Register thread);
 327   void get_vm_result_2(Register metadata_result, Register thread);
 328 
 329   // These always tightly bind to MacroAssembler::call_VM_base
 330   // bypassing the virtual implementation
 331   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 332   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 333   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 334   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 335   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
 336 
 337   void call_VM_leaf0(address entry_point);
 338   void call_VM_leaf(address entry_point,
 339                     int number_of_arguments = 0);
 340   void call_VM_leaf(address entry_point,
 341                     Register arg_1);
 342   void call_VM_leaf(address entry_point,
 343                     Register arg_1, Register arg_2);
 344   void call_VM_leaf(address entry_point,
 345                     Register arg_1, Register arg_2, Register arg_3);
 346 
 347   void call_VM_leaf(address entry_point,
 348                     Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 349 
 350   // These always tightly bind to MacroAssembler::call_VM_leaf_base
 351   // bypassing the virtual implementation
 352   void super_call_VM_leaf(address entry_point);
 353   void super_call_VM_leaf(address entry_point, Register arg_1);
 354   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 355   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 356   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 357 
 358   // last Java Frame (fills frame anchor)
 359   void set_last_Java_frame(Register thread,
 360                            Register last_java_sp,
 361                            Register last_java_fp,
 362                            address  last_java_pc,
 363                            Register rscratch);
 364 
 365   // thread in the default location (r15_thread on 64bit)
 366   void set_last_Java_frame(Register last_java_sp,
 367                            Register last_java_fp,
 368                            address  last_java_pc,
 369                            Register rscratch);
 370 
 371   void reset_last_Java_frame(Register thread, bool clear_fp);
 372 
 373   // thread in the default location (r15_thread on 64bit)
 374   void reset_last_Java_frame(bool clear_fp);
 375 
 376   // jobjects
 377   void clear_jobject_tag(Register possibly_non_local);
 378   void resolve_jobject(Register value, Register thread, Register tmp);
 379   void resolve_global_jobject(Register value, Register thread, Register tmp);
 380 
 381   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
 382   void c2bool(Register x);
 383 
 384   // C++ bool manipulation
 385 
 386   void movbool(Register dst, Address src);
 387   void movbool(Address dst, bool boolconst);
 388   void movbool(Address dst, Register src);
 389   void testbool(Register dst);
 390 
 391   void resolve_oop_handle(Register result, Register tmp);
 392   void resolve_weak_handle(Register result, Register tmp);
 393   void load_mirror(Register mirror, Register method, Register tmp);
 394   void load_method_holder_cld(Register rresult, Register rmethod);
 395 
 396   void load_method_holder(Register holder, Register method);
 397 
 398   // oop manipulations
 399   void load_metadata(Register dst, Register src);
 400   void load_klass(Register dst, Register src, Register tmp);
 401   void store_klass(Register dst, Register src, Register tmp);
 402 
 403   void access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src,
 404                       Register tmp1, Register thread_tmp);
 405   void access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register val,
 406                        Register tmp1, Register tmp2, Register tmp3);
 407 
 408   void flat_field_copy(DecoratorSet decorators, Register src, Register dst, Register inline_layout_info);
 409 
 410   // inline type data payload offsets...
 411   void first_field_offset(Register inline_klass, Register offset);
 412   void data_for_oop(Register oop, Register data, Register inline_klass);
 413   // get data payload ptr a flat value array at index, kills rcx and index
 414   void data_for_value_array_index(Register array, Register array_klass,
 415                                   Register index, Register data);
 416 
 417   void load_heap_oop(Register dst, Address src, Register tmp1 = noreg,
 418                      Register thread_tmp = noreg, DecoratorSet decorators = 0);
 419   void load_heap_oop_not_null(Register dst, Address src, Register tmp1 = noreg,
 420                               Register thread_tmp = noreg, DecoratorSet decorators = 0);
 421   void store_heap_oop(Address dst, Register val, Register tmp1 = noreg,
 422                       Register tmp2 = noreg, Register tmp3 = noreg, DecoratorSet decorators = 0);
 423 
 424   // Used for storing null. All other oop constants should be
 425   // stored using routines that take a jobject.
 426   void store_heap_oop_null(Address dst);
 427 
 428   void load_prototype_header(Register dst, Register src, Register tmp);
 429 
 430 #ifdef _LP64
 431   void store_klass_gap(Register dst, Register src);
 432 
 433   // This dummy is to prevent a call to store_heap_oop from
 434   // converting a zero (like null) into a Register by giving
 435   // the compiler two choices it can't resolve
 436 
 437   void store_heap_oop(Address dst, void* dummy);
 438 
 439   void encode_heap_oop(Register r);
 440   void decode_heap_oop(Register r);
 441   void encode_heap_oop_not_null(Register r);
 442   void decode_heap_oop_not_null(Register r);
 443   void encode_heap_oop_not_null(Register dst, Register src);
 444   void decode_heap_oop_not_null(Register dst, Register src);
 445 
 446   void set_narrow_oop(Register dst, jobject obj);
 447   void set_narrow_oop(Address dst, jobject obj);
 448   void cmp_narrow_oop(Register dst, jobject obj);
 449   void cmp_narrow_oop(Address dst, jobject obj);
 450 
 451   void encode_klass_not_null(Register r, Register tmp);
 452   void decode_klass_not_null(Register r, Register tmp);
 453   void encode_and_move_klass_not_null(Register dst, Register src);
 454   void decode_and_move_klass_not_null(Register dst, Register src);
 455   void set_narrow_klass(Register dst, Klass* k);
 456   void set_narrow_klass(Address dst, Klass* k);
 457   void cmp_narrow_klass(Register dst, Klass* k);
 458   void cmp_narrow_klass(Address dst, Klass* k);
 459 
 460   // if heap base register is used - reinit it with the correct value
 461   void reinit_heapbase();
 462 
 463   DEBUG_ONLY(void verify_heapbase(const char* msg);)
 464 
 465 #endif // _LP64
 466 
 467   // Int division/remainder for Java
 468   // (as idivl, but checks for special case as described in JVM spec.)
 469   // returns idivl instruction offset for implicit exception handling
 470   int corrected_idivl(Register reg);
 471 
 472   // Long division/remainder for Java
 473   // (as idivq, but checks for special case as described in JVM spec.)
 474   // returns idivq instruction offset for implicit exception handling
 475   int corrected_idivq(Register reg);
 476 
 477   void int3();
 478 
 479   // Long operation macros for a 32bit cpu
 480   // Long negation for Java
 481   void lneg(Register hi, Register lo);
 482 
 483   // Long multiplication for Java
 484   // (destroys contents of eax, ebx, ecx and edx)
 485   void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
 486 
 487   // Long shifts for Java
 488   // (semantics as described in JVM spec.)
 489   void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
 490   void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
 491 
 492   // Long compare for Java
 493   // (semantics as described in JVM spec.)
 494   void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
 495 
 496 
 497   // misc
 498 
 499   // Sign extension
 500   void sign_extend_short(Register reg);
 501   void sign_extend_byte(Register reg);
 502 
 503   // Division by power of 2, rounding towards 0
 504   void division_with_shift(Register reg, int shift_value);
 505 
 506 #ifndef _LP64
 507   // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
 508   //
 509   // CF (corresponds to C0) if x < y
 510   // PF (corresponds to C2) if unordered
 511   // ZF (corresponds to C3) if x = y
 512   //
 513   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 514   // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
 515   void fcmp(Register tmp);
 516   // Variant of the above which allows y to be further down the stack
 517   // and which only pops x and y if specified. If pop_right is
 518   // specified then pop_left must also be specified.
 519   void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
 520 
 521   // Floating-point comparison for Java
 522   // Compares the top-most stack entries on the FPU stack and stores the result in dst.
 523   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 524   // (semantics as described in JVM spec.)
 525   void fcmp2int(Register dst, bool unordered_is_less);
 526   // Variant of the above which allows y to be further down the stack
 527   // and which only pops x and y if specified. If pop_right is
 528   // specified then pop_left must also be specified.
 529   void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
 530 
 531   // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
 532   // tmp is a temporary register, if none is available use noreg
 533   void fremr(Register tmp);
 534 
 535   // only if +VerifyFPU
 536   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
 537 #endif // !LP64
 538 
 539   // dst = c = a * b + c
 540   void fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 541   void fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 542 
 543   void vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
 544   void vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
 545   void vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
 546   void vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
 547 
 548 
 549   // same as fcmp2int, but using SSE2
 550   void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 551   void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 552 
 553   // branch to L if FPU flag C2 is set/not set
 554   // tmp is a temporary register, if none is available use noreg
 555   void jC2 (Register tmp, Label& L);
 556   void jnC2(Register tmp, Label& L);
 557 
 558   // Load float value from 'address'. If UseSSE >= 1, the value is loaded into
 559   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 560   void load_float(Address src);
 561 
 562   // Store float value to 'address'. If UseSSE >= 1, the value is stored
 563   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 564   void store_float(Address dst);
 565 
 566   // Load double value from 'address'. If UseSSE >= 2, the value is loaded into
 567   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 568   void load_double(Address src);
 569 
 570   // Store double value to 'address'. If UseSSE >= 2, the value is stored
 571   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 572   void store_double(Address dst);
 573 
 574 #ifndef _LP64
 575   // Pop ST (ffree & fincstp combined)
 576   void fpop();
 577 
 578   void empty_FPU_stack();
 579 #endif // !_LP64
 580 
 581   void push_IU_state();
 582   void pop_IU_state();
 583 
 584   void push_FPU_state();
 585   void pop_FPU_state();
 586 
 587   void push_CPU_state();
 588   void pop_CPU_state();
 589 
 590   void push_cont_fastpath();
 591   void pop_cont_fastpath();
 592 
 593   void inc_held_monitor_count();
 594   void dec_held_monitor_count();
 595 
 596   DEBUG_ONLY(void stop_if_in_cont(Register cont_reg, const char* name);)
 597 
 598   // Round up to a power of two
 599   void round_to(Register reg, int modulus);
 600 
 601 private:
 602   // General purpose and XMM registers potentially clobbered by native code; there
 603   // is no need for FPU or AVX opmask related methods because C1/interpreter
 604   // - we save/restore FPU state as a whole always
 605   // - do not care about AVX-512 opmask
 606   static RegSet call_clobbered_gp_registers();
 607   static XMMRegSet call_clobbered_xmm_registers();
 608 
 609   void push_set(XMMRegSet set, int offset);
 610   void pop_set(XMMRegSet set, int offset);
 611 
 612 public:
 613   void push_set(RegSet set, int offset = -1);
 614   void pop_set(RegSet set, int offset = -1);
 615 
 616   // Push and pop everything that might be clobbered by a native
 617   // runtime call.
 618   // Only save the lower 64 bits of each vector register.
 619   // Additional registers can be excluded in a passed RegSet.
 620   void push_call_clobbered_registers_except(RegSet exclude, bool save_fpu = true);
 621   void pop_call_clobbered_registers_except(RegSet exclude, bool restore_fpu = true);
 622 
 623   void push_call_clobbered_registers(bool save_fpu = true) {
 624     push_call_clobbered_registers_except(RegSet(), save_fpu);
 625   }
 626   void pop_call_clobbered_registers(bool restore_fpu = true) {
 627     pop_call_clobbered_registers_except(RegSet(), restore_fpu);
 628   }
 629 
 630   // allocation
 631 
 632   // Object / value buffer allocation...
 633   // Allocate instance of klass, assumes klass initialized by caller
 634   // new_obj prefers to be rax
 635   // Kills t1 and t2, perserves klass, return allocation in new_obj (rsi on LP64)
 636   void allocate_instance(Register klass, Register new_obj,
 637                          Register t1, Register t2,
 638                          bool clear_fields, Label& alloc_failed);
 639 
 640   void tlab_allocate(
 641     Register thread,                   // Current thread
 642     Register obj,                      // result: pointer to object after successful allocation
 643     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 644     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 645     Register t1,                       // temp register
 646     Register t2,                       // temp register
 647     Label&   slow_case                 // continuation point if fast allocation fails
 648   );
 649   void zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp);
 650 
 651   // For field "index" within "klass", return inline_klass ...
 652   void get_inline_type_field_klass(Register klass, Register index, Register inline_klass);
 653 
 654   void inline_layout_info(Register klass, Register index, Register layout_info);
 655 
 656   void population_count(Register dst, Register src, Register scratch1, Register scratch2);
 657 
 658   // interface method calling
 659   void lookup_interface_method(Register recv_klass,
 660                                Register intf_klass,
 661                                RegisterOrConstant itable_index,
 662                                Register method_result,
 663                                Register scan_temp,
 664                                Label& no_such_interface,
 665                                bool return_method = true);
 666 
 667   void lookup_interface_method_stub(Register recv_klass,
 668                                     Register holder_klass,
 669                                     Register resolved_klass,
 670                                     Register method_result,
 671                                     Register scan_temp,
 672                                     Register temp_reg2,
 673                                     Register receiver,
 674                                     int itable_index,
 675                                     Label& L_no_such_interface);
 676 
 677   // virtual method calling
 678   void lookup_virtual_method(Register recv_klass,
 679                              RegisterOrConstant vtable_index,
 680                              Register method_result);
 681 
 682   // Test sub_klass against super_klass, with fast and slow paths.
 683 
 684   // The fast path produces a tri-state answer: yes / no / maybe-slow.
 685   // One of the three labels can be null, meaning take the fall-through.
 686   // If super_check_offset is -1, the value is loaded up from super_klass.
 687   // No registers are killed, except temp_reg.
 688   void check_klass_subtype_fast_path(Register sub_klass,
 689                                      Register super_klass,
 690                                      Register temp_reg,
 691                                      Label* L_success,
 692                                      Label* L_failure,
 693                                      Label* L_slow_path,
 694                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
 695 
 696   // The rest of the type check; must be wired to a corresponding fast path.
 697   // It does not repeat the fast path logic, so don't use it standalone.
 698   // The temp_reg and temp2_reg can be noreg, if no temps are available.
 699   // Updates the sub's secondary super cache as necessary.
 700   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
 701   void check_klass_subtype_slow_path(Register sub_klass,
 702                                      Register super_klass,
 703                                      Register temp_reg,
 704                                      Register temp2_reg,
 705                                      Label* L_success,
 706                                      Label* L_failure,
 707                                      bool set_cond_codes = false);
 708 
 709 #ifdef _LP64
 710   // The 64-bit version, which may do a hashed subclass lookup.
 711   void check_klass_subtype_slow_path(Register sub_klass,
 712                                      Register super_klass,
 713                                      Register temp_reg,
 714                                      Register temp2_reg,
 715                                      Register temp3_reg,
 716                                      Register temp4_reg,
 717                                      Label* L_success,
 718                                      Label* L_failure);
 719 #endif
 720 
 721   // Three parts of a hashed subclass lookup: a simple linear search,
 722   // a table lookup, and a fallback that does linear probing in the
 723   // event of a hash collision.
 724   void check_klass_subtype_slow_path_linear(Register sub_klass,
 725                                             Register super_klass,
 726                                             Register temp_reg,
 727                                             Register temp2_reg,
 728                                             Label* L_success,
 729                                             Label* L_failure,
 730                                             bool set_cond_codes = false);
 731   void check_klass_subtype_slow_path_table(Register sub_klass,
 732                                            Register super_klass,
 733                                            Register temp_reg,
 734                                            Register temp2_reg,
 735                                            Register temp3_reg,
 736                                            Register result_reg,
 737                                            Label* L_success,
 738                                            Label* L_failure);
 739   void hashed_check_klass_subtype_slow_path(Register sub_klass,
 740                                             Register super_klass,
 741                                             Register temp_reg,
 742                                             Label* L_success,
 743                                             Label* L_failure);
 744 
 745   // As above, but with a constant super_klass.
 746   // The result is in Register result, not the condition codes.
 747   void lookup_secondary_supers_table_const(Register sub_klass,
 748                                            Register super_klass,
 749                                            Register temp1,
 750                                            Register temp2,
 751                                            Register temp3,
 752                                            Register temp4,
 753                                            Register result,
 754                                            u1 super_klass_slot);
 755 
 756 #ifdef _LP64
 757   using Assembler::salq;
 758   void salq(Register dest, Register count);
 759   using Assembler::rorq;
 760   void rorq(Register dest, Register count);
 761   void lookup_secondary_supers_table_var(Register sub_klass,
 762                                          Register super_klass,
 763                                          Register temp1,
 764                                          Register temp2,
 765                                          Register temp3,
 766                                          Register temp4,
 767                                          Register result);
 768 
 769   void lookup_secondary_supers_table_slow_path(Register r_super_klass,
 770                                                Register r_array_base,
 771                                                Register r_array_index,
 772                                                Register r_bitmap,
 773                                                Register temp1,
 774                                                Register temp2,
 775                                                Label* L_success,
 776                                                Label* L_failure = nullptr);
 777 
 778   void verify_secondary_supers_table(Register r_sub_klass,
 779                                      Register r_super_klass,
 780                                      Register expected,
 781                                      Register temp1,
 782                                      Register temp2,
 783                                      Register temp3);
 784 #endif
 785 
 786   void repne_scanq(Register addr, Register value, Register count, Register limit,
 787                    Label* L_success,
 788                    Label* L_failure = nullptr);
 789 
 790   // If r is valid, return r.
 791   // If r is invalid, remove a register r2 from available_regs, add r2
 792   // to regs_to_push, then return r2.
 793   Register allocate_if_noreg(const Register r,
 794                              RegSetIterator<Register> &available_regs,
 795                              RegSet &regs_to_push);
 796 
 797   // Simplified, combined version, good for typical uses.
 798   // Falls through on failure.
 799   void check_klass_subtype(Register sub_klass,
 800                            Register super_klass,
 801                            Register temp_reg,
 802                            Label& L_success);
 803 
 804   void clinit_barrier(Register klass,
 805                       Register thread,
 806                       Label* L_fast_path = nullptr,
 807                       Label* L_slow_path = nullptr);
 808 
 809   // method handles (JSR 292)
 810   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
 811 
 812   // Debugging
 813 
 814   // only if +VerifyOops
 815   void _verify_oop(Register reg, const char* s, const char* file, int line);
 816   void _verify_oop_addr(Address addr, const char* s, const char* file, int line);
 817 
 818   void _verify_oop_checked(Register reg, const char* s, const char* file, int line) {
 819     if (VerifyOops) {
 820       _verify_oop(reg, s, file, line);
 821     }
 822   }
 823   void _verify_oop_addr_checked(Address reg, const char* s, const char* file, int line) {
 824     if (VerifyOops) {
 825       _verify_oop_addr(reg, s, file, line);
 826     }
 827   }
 828 
 829   // TODO: verify method and klass metadata (compare against vptr?)
 830   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
 831   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
 832 
 833 #define verify_oop(reg) _verify_oop_checked(reg, "broken oop " #reg, __FILE__, __LINE__)
 834 #define verify_oop_msg(reg, msg) _verify_oop_checked(reg, "broken oop " #reg ", " #msg, __FILE__, __LINE__)
 835 #define verify_oop_addr(addr) _verify_oop_addr_checked(addr, "broken oop addr " #addr, __FILE__, __LINE__)
 836 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
 837 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
 838 
 839   // Verify or restore cpu control state after JNI call
 840   void restore_cpu_control_state_after_jni(Register rscratch);
 841 
 842   // prints msg, dumps registers and stops execution
 843   void stop(const char* msg);
 844 
 845   // prints msg and continues
 846   void warn(const char* msg);
 847 
 848   // dumps registers and other state
 849   void print_state();
 850 
 851   static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
 852   static void debug64(char* msg, int64_t pc, int64_t regs[]);
 853   static void print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip);
 854   static void print_state64(int64_t pc, int64_t regs[]);
 855 
 856   void os_breakpoint();
 857 
 858   void untested()                                { stop("untested"); }
 859 
 860   void unimplemented(const char* what = "");
 861 
 862   void should_not_reach_here()                   { stop("should not reach here"); }
 863 
 864   void print_CPU_state();
 865 
 866   // Stack overflow checking
 867   void bang_stack_with_offset(int offset) {
 868     // stack grows down, caller passes positive offset
 869     assert(offset > 0, "must bang with negative offset");
 870     movl(Address(rsp, (-offset)), rax);
 871   }
 872 
 873   // Writes to stack successive pages until offset reached to check for
 874   // stack overflow + shadow pages.  Also, clobbers tmp
 875   void bang_stack_size(Register size, Register tmp);
 876 
 877   // Check for reserved stack access in method being exited (for JIT)
 878   void reserved_stack_check();
 879 
 880   void safepoint_poll(Label& slow_path, Register thread_reg, bool at_return, bool in_nmethod);
 881 
 882   void verify_tlab();
 883 
 884   static Condition negate_condition(Condition cond);
 885 
 886   // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
 887   // operands. In general the names are modified to avoid hiding the instruction in Assembler
 888   // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
 889   // here in MacroAssembler. The major exception to this rule is call
 890 
 891   // Arithmetics
 892 
 893 
 894   void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
 895   void addptr(Address dst, Register src);
 896 
 897   void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
 898   void addptr(Register dst, int32_t src);
 899   void addptr(Register dst, Register src);
 900   void addptr(Register dst, RegisterOrConstant src) {
 901     if (src.is_constant()) addptr(dst, checked_cast<int>(src.as_constant()));
 902     else                   addptr(dst, src.as_register());
 903   }
 904 
 905   void andptr(Register dst, int32_t src);
 906   void andptr(Register dst, Register src) { LP64_ONLY(andq(dst, src)) NOT_LP64(andl(dst, src)) ; }
 907   void andptr(Register dst, Address src) { LP64_ONLY(andq(dst, src)) NOT_LP64(andl(dst, src)) ; }
 908 
 909 #ifdef _LP64
 910   using Assembler::andq;
 911   void andq(Register dst, AddressLiteral src, Register rscratch = noreg);
 912 #endif
 913 
 914   void cmp8(AddressLiteral src1, int imm, Register rscratch = noreg);
 915 
 916   // renamed to drag out the casting of address to int32_t/intptr_t
 917   void cmp32(Register src1, int32_t imm);
 918 
 919   void cmp32(AddressLiteral src1, int32_t imm, Register rscratch = noreg);
 920   // compare reg - mem, or reg - &mem
 921   void cmp32(Register src1, AddressLiteral src2, Register rscratch = noreg);
 922 
 923   void cmp32(Register src1, Address src2);
 924 
 925 #ifndef _LP64
 926   void cmpklass(Address dst, Metadata* obj);
 927   void cmpklass(Register dst, Metadata* obj);
 928   void cmpoop(Address dst, jobject obj);
 929 #endif // _LP64
 930 
 931   void cmpoop(Register src1, Register src2);
 932   void cmpoop(Register src1, Address src2);
 933   void cmpoop(Register dst, jobject obj, Register rscratch);
 934 
 935   // NOTE src2 must be the lval. This is NOT an mem-mem compare
 936   void cmpptr(Address src1, AddressLiteral src2, Register rscratch);
 937 
 938   void cmpptr(Register src1, AddressLiteral src2, Register rscratch = noreg);
 939 
 940   void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 941   void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 942   // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 943 
 944   void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 945   void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 946 
 947   // cmp64 to avoild hiding cmpq
 948   void cmp64(Register src1, AddressLiteral src, Register rscratch = noreg);
 949 
 950   void cmpxchgptr(Register reg, Address adr);
 951 
 952   void locked_cmpxchgptr(Register reg, AddressLiteral adr, Register rscratch = noreg);
 953 
 954   void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
 955   void imulptr(Register dst, Register src, int imm32) { LP64_ONLY(imulq(dst, src, imm32)) NOT_LP64(imull(dst, src, imm32)); }
 956 
 957 
 958   void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
 959 
 960   void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
 961 
 962   void shlptr(Register dst, int32_t shift);
 963   void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
 964 
 965   void shrptr(Register dst, int32_t shift);
 966   void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
 967 
 968   void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
 969   void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
 970 
 971   void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 972 
 973   void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 974   void subptr(Register dst, int32_t src);
 975   // Force generation of a 4 byte immediate value even if it fits into 8bit
 976   void subptr_imm32(Register dst, int32_t src);
 977   void subptr(Register dst, Register src);
 978   void subptr(Register dst, RegisterOrConstant src) {
 979     if (src.is_constant()) subptr(dst, (int) src.as_constant());
 980     else                   subptr(dst,       src.as_register());
 981   }
 982 
 983   void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 984   void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 985 
 986   void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 987   void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 988 
 989   void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
 990 
 991 
 992 
 993   // Helper functions for statistics gathering.
 994   // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
 995   void cond_inc32(Condition cond, AddressLiteral counter_addr, Register rscratch = noreg);
 996   // Unconditional atomic increment.
 997   void atomic_incl(Address counter_addr);
 998   void atomic_incl(AddressLiteral counter_addr, Register rscratch = noreg);
 999 #ifdef _LP64
1000   void atomic_incq(Address counter_addr);
1001   void atomic_incq(AddressLiteral counter_addr, Register rscratch = noreg);
1002 #endif
1003   void atomic_incptr(AddressLiteral counter_addr, Register rscratch = noreg) { LP64_ONLY(atomic_incq(counter_addr, rscratch)) NOT_LP64(atomic_incl(counter_addr, rscratch)) ; }
1004   void atomic_incptr(Address counter_addr) { LP64_ONLY(atomic_incq(counter_addr)) NOT_LP64(atomic_incl(counter_addr)) ; }
1005 
1006   void lea(Register dst, Address        adr) { Assembler::lea(dst, adr); }
1007   void lea(Register dst, AddressLiteral adr);
1008   void lea(Address  dst, AddressLiteral adr, Register rscratch);
1009 
1010   void leal32(Register dst, Address src) { leal(dst, src); }
1011 
1012   // Import other testl() methods from the parent class or else
1013   // they will be hidden by the following overriding declaration.
1014   using Assembler::testl;
1015   void testl(Address dst, int32_t imm32);
1016   void testl(Register dst, int32_t imm32);
1017   void testl(Register dst, AddressLiteral src); // requires reachable address
1018   using Assembler::testq;
1019   void testq(Address dst, int32_t imm32);
1020   void testq(Register dst, int32_t imm32);
1021 
1022   void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
1023   void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
1024   void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
1025   void orptr(Address dst, int32_t imm32) { LP64_ONLY(orq(dst, imm32)) NOT_LP64(orl(dst, imm32)); }
1026 
1027   void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
1028   void testptr(Register src1, Address src2) { LP64_ONLY(testq(src1, src2)) NOT_LP64(testl(src1, src2)); }
1029   void testptr(Address src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
1030   void testptr(Register src1, Register src2);
1031 
1032   void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
1033   void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
1034 
1035   // Calls
1036 
1037   void call(Label& L, relocInfo::relocType rtype);
1038   void call(Register entry);
1039   void call(Address addr) { Assembler::call(addr); }
1040 
1041   // NOTE: this call transfers to the effective address of entry NOT
1042   // the address contained by entry. This is because this is more natural
1043   // for jumps/calls.
1044   void call(AddressLiteral entry, Register rscratch = rax);
1045 
1046   // Emit the CompiledIC call idiom
1047   void ic_call(address entry, jint method_index = 0);
1048   static int ic_check_size();
1049   int ic_check(int end_alignment);
1050 
1051   void emit_static_call_stub();
1052 
1053   // Jumps
1054 
1055   // NOTE: these jumps transfer to the effective address of dst NOT
1056   // the address contained by dst. This is because this is more natural
1057   // for jumps/calls.
1058   void jump(AddressLiteral dst, Register rscratch = noreg);
1059 
1060   void jump_cc(Condition cc, AddressLiteral dst, Register rscratch = noreg);
1061 
1062   // 32bit can do a case table jump in one instruction but we no longer allow the base
1063   // to be installed in the Address class. This jump will transfer to the address
1064   // contained in the location described by entry (not the address of entry)
1065   void jump(ArrayAddress entry, Register rscratch);
1066 
1067   // Adding more natural conditional jump instructions
1068   void ALWAYSINLINE jo(Label& L, bool maybe_short = true) { jcc(Assembler::overflow, L, maybe_short); }
1069   void ALWAYSINLINE jno(Label& L, bool maybe_short = true) { jcc(Assembler::noOverflow, L, maybe_short); }
1070   void ALWAYSINLINE js(Label& L, bool maybe_short = true) { jcc(Assembler::negative, L, maybe_short); }
1071   void ALWAYSINLINE jns(Label& L, bool maybe_short = true) { jcc(Assembler::positive, L, maybe_short); }
1072   void ALWAYSINLINE je(Label& L, bool maybe_short = true) { jcc(Assembler::equal, L, maybe_short); }
1073   void ALWAYSINLINE jz(Label& L, bool maybe_short = true) { jcc(Assembler::zero, L, maybe_short); }
1074   void ALWAYSINLINE jne(Label& L, bool maybe_short = true) { jcc(Assembler::notEqual, L, maybe_short); }
1075   void ALWAYSINLINE jnz(Label& L, bool maybe_short = true) { jcc(Assembler::notZero, L, maybe_short); }
1076   void ALWAYSINLINE jb(Label& L, bool maybe_short = true) { jcc(Assembler::below, L, maybe_short); }
1077   void ALWAYSINLINE jnae(Label& L, bool maybe_short = true) { jcc(Assembler::below, L, maybe_short); }
1078   void ALWAYSINLINE jc(Label& L, bool maybe_short = true) { jcc(Assembler::carrySet, L, maybe_short); }
1079   void ALWAYSINLINE jnb(Label& L, bool maybe_short = true) { jcc(Assembler::aboveEqual, L, maybe_short); }
1080   void ALWAYSINLINE jae(Label& L, bool maybe_short = true) { jcc(Assembler::aboveEqual, L, maybe_short); }
1081   void ALWAYSINLINE jnc(Label& L, bool maybe_short = true) { jcc(Assembler::carryClear, L, maybe_short); }
1082   void ALWAYSINLINE jbe(Label& L, bool maybe_short = true) { jcc(Assembler::belowEqual, L, maybe_short); }
1083   void ALWAYSINLINE jna(Label& L, bool maybe_short = true) { jcc(Assembler::belowEqual, L, maybe_short); }
1084   void ALWAYSINLINE ja(Label& L, bool maybe_short = true) { jcc(Assembler::above, L, maybe_short); }
1085   void ALWAYSINLINE jnbe(Label& L, bool maybe_short = true) { jcc(Assembler::above, L, maybe_short); }
1086   void ALWAYSINLINE jl(Label& L, bool maybe_short = true) { jcc(Assembler::less, L, maybe_short); }
1087   void ALWAYSINLINE jnge(Label& L, bool maybe_short = true) { jcc(Assembler::less, L, maybe_short); }
1088   void ALWAYSINLINE jge(Label& L, bool maybe_short = true) { jcc(Assembler::greaterEqual, L, maybe_short); }
1089   void ALWAYSINLINE jnl(Label& L, bool maybe_short = true) { jcc(Assembler::greaterEqual, L, maybe_short); }
1090   void ALWAYSINLINE jle(Label& L, bool maybe_short = true) { jcc(Assembler::lessEqual, L, maybe_short); }
1091   void ALWAYSINLINE jng(Label& L, bool maybe_short = true) { jcc(Assembler::lessEqual, L, maybe_short); }
1092   void ALWAYSINLINE jg(Label& L, bool maybe_short = true) { jcc(Assembler::greater, L, maybe_short); }
1093   void ALWAYSINLINE jnle(Label& L, bool maybe_short = true) { jcc(Assembler::greater, L, maybe_short); }
1094   void ALWAYSINLINE jp(Label& L, bool maybe_short = true) { jcc(Assembler::parity, L, maybe_short); }
1095   void ALWAYSINLINE jpe(Label& L, bool maybe_short = true) { jcc(Assembler::parity, L, maybe_short); }
1096   void ALWAYSINLINE jnp(Label& L, bool maybe_short = true) { jcc(Assembler::noParity, L, maybe_short); }
1097   void ALWAYSINLINE jpo(Label& L, bool maybe_short = true) { jcc(Assembler::noParity, L, maybe_short); }
1098   // * No condition for this *  void ALWAYSINLINE jcxz(Label& L, bool maybe_short = true) { jcc(Assembler::cxz, L, maybe_short); }
1099   // * No condition for this *  void ALWAYSINLINE jecxz(Label& L, bool maybe_short = true) { jcc(Assembler::cxz, L, maybe_short); }
1100 
1101   // Short versions of the above
1102   void ALWAYSINLINE jo_b(Label& L) { jccb(Assembler::overflow, L); }
1103   void ALWAYSINLINE jno_b(Label& L) { jccb(Assembler::noOverflow, L); }
1104   void ALWAYSINLINE js_b(Label& L) { jccb(Assembler::negative, L); }
1105   void ALWAYSINLINE jns_b(Label& L) { jccb(Assembler::positive, L); }
1106   void ALWAYSINLINE je_b(Label& L) { jccb(Assembler::equal, L); }
1107   void ALWAYSINLINE jz_b(Label& L) { jccb(Assembler::zero, L); }
1108   void ALWAYSINLINE jne_b(Label& L) { jccb(Assembler::notEqual, L); }
1109   void ALWAYSINLINE jnz_b(Label& L) { jccb(Assembler::notZero, L); }
1110   void ALWAYSINLINE jb_b(Label& L) { jccb(Assembler::below, L); }
1111   void ALWAYSINLINE jnae_b(Label& L) { jccb(Assembler::below, L); }
1112   void ALWAYSINLINE jc_b(Label& L) { jccb(Assembler::carrySet, L); }
1113   void ALWAYSINLINE jnb_b(Label& L) { jccb(Assembler::aboveEqual, L); }
1114   void ALWAYSINLINE jae_b(Label& L) { jccb(Assembler::aboveEqual, L); }
1115   void ALWAYSINLINE jnc_b(Label& L) { jccb(Assembler::carryClear, L); }
1116   void ALWAYSINLINE jbe_b(Label& L) { jccb(Assembler::belowEqual, L); }
1117   void ALWAYSINLINE jna_b(Label& L) { jccb(Assembler::belowEqual, L); }
1118   void ALWAYSINLINE ja_b(Label& L) { jccb(Assembler::above, L); }
1119   void ALWAYSINLINE jnbe_b(Label& L) { jccb(Assembler::above, L); }
1120   void ALWAYSINLINE jl_b(Label& L) { jccb(Assembler::less, L); }
1121   void ALWAYSINLINE jnge_b(Label& L) { jccb(Assembler::less, L); }
1122   void ALWAYSINLINE jge_b(Label& L) { jccb(Assembler::greaterEqual, L); }
1123   void ALWAYSINLINE jnl_b(Label& L) { jccb(Assembler::greaterEqual, L); }
1124   void ALWAYSINLINE jle_b(Label& L) { jccb(Assembler::lessEqual, L); }
1125   void ALWAYSINLINE jng_b(Label& L) { jccb(Assembler::lessEqual, L); }
1126   void ALWAYSINLINE jg_b(Label& L) { jccb(Assembler::greater, L); }
1127   void ALWAYSINLINE jnle_b(Label& L) { jccb(Assembler::greater, L); }
1128   void ALWAYSINLINE jp_b(Label& L) { jccb(Assembler::parity, L); }
1129   void ALWAYSINLINE jpe_b(Label& L) { jccb(Assembler::parity, L); }
1130   void ALWAYSINLINE jnp_b(Label& L) { jccb(Assembler::noParity, L); }
1131   void ALWAYSINLINE jpo_b(Label& L) { jccb(Assembler::noParity, L); }
1132   // * No condition for this *  void ALWAYSINLINE jcxz_b(Label& L) { jccb(Assembler::cxz, L); }
1133   // * No condition for this *  void ALWAYSINLINE jecxz_b(Label& L) { jccb(Assembler::cxz, L); }
1134 
1135   // Floating
1136 
1137   void push_f(XMMRegister r);
1138   void pop_f(XMMRegister r);
1139   void push_d(XMMRegister r);
1140   void pop_d(XMMRegister r);
1141 
1142   void andpd(XMMRegister dst, XMMRegister    src) { Assembler::andpd(dst, src); }
1143   void andpd(XMMRegister dst, Address        src) { Assembler::andpd(dst, src); }
1144   void andpd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1145 
1146   void andps(XMMRegister dst, XMMRegister    src) { Assembler::andps(dst, src); }
1147   void andps(XMMRegister dst, Address        src) { Assembler::andps(dst, src); }
1148   void andps(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1149 
1150   void comiss(XMMRegister dst, XMMRegister    src) { Assembler::comiss(dst, src); }
1151   void comiss(XMMRegister dst, Address        src) { Assembler::comiss(dst, src); }
1152   void comiss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1153 
1154   void comisd(XMMRegister dst, XMMRegister    src) { Assembler::comisd(dst, src); }
1155   void comisd(XMMRegister dst, Address        src) { Assembler::comisd(dst, src); }
1156   void comisd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1157 
1158 #ifndef _LP64
1159   void fadd_s(Address        src) { Assembler::fadd_s(src); }
1160   void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
1161 
1162   void fldcw(Address        src) { Assembler::fldcw(src); }
1163   void fldcw(AddressLiteral src);
1164 
1165   void fld_s(int index)          { Assembler::fld_s(index); }
1166   void fld_s(Address        src) { Assembler::fld_s(src); }
1167   void fld_s(AddressLiteral src);
1168 
1169   void fld_d(Address        src) { Assembler::fld_d(src); }
1170   void fld_d(AddressLiteral src);
1171 
1172   void fld_x(Address        src) { Assembler::fld_x(src); }
1173   void fld_x(AddressLiteral src) { Assembler::fld_x(as_Address(src)); }
1174 
1175   void fmul_s(Address        src) { Assembler::fmul_s(src); }
1176   void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
1177 #endif // !_LP64
1178 
1179   void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
1180   void ldmxcsr(AddressLiteral src, Register rscratch = noreg);
1181 
1182 #ifdef _LP64
1183  private:
1184   void sha256_AVX2_one_round_compute(
1185     Register  reg_old_h,
1186     Register  reg_a,
1187     Register  reg_b,
1188     Register  reg_c,
1189     Register  reg_d,
1190     Register  reg_e,
1191     Register  reg_f,
1192     Register  reg_g,
1193     Register  reg_h,
1194     int iter);
1195   void sha256_AVX2_four_rounds_compute_first(int start);
1196   void sha256_AVX2_four_rounds_compute_last(int start);
1197   void sha256_AVX2_one_round_and_sched(
1198         XMMRegister xmm_0,     /* == ymm4 on 0, 1, 2, 3 iterations, then rotate 4 registers left on 4, 8, 12 iterations */
1199         XMMRegister xmm_1,     /* ymm5 */  /* full cycle is 16 iterations */
1200         XMMRegister xmm_2,     /* ymm6 */
1201         XMMRegister xmm_3,     /* ymm7 */
1202         Register    reg_a,      /* == eax on 0 iteration, then rotate 8 register right on each next iteration */
1203         Register    reg_b,      /* ebx */    /* full cycle is 8 iterations */
1204         Register    reg_c,      /* edi */
1205         Register    reg_d,      /* esi */
1206         Register    reg_e,      /* r8d */
1207         Register    reg_f,      /* r9d */
1208         Register    reg_g,      /* r10d */
1209         Register    reg_h,      /* r11d */
1210         int iter);
1211 
1212   void addm(int disp, Register r1, Register r2);
1213 
1214   void sha512_AVX2_one_round_compute(Register old_h, Register a, Register b, Register c, Register d,
1215                                      Register e, Register f, Register g, Register h, int iteration);
1216 
1217   void sha512_AVX2_one_round_and_schedule(XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1218                                           Register a, Register b, Register c, Register d, Register e, Register f,
1219                                           Register g, Register h, int iteration);
1220 
1221   void addmq(int disp, Register r1, Register r2);
1222  public:
1223   void sha256_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
1224                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
1225                    Register buf, Register state, Register ofs, Register limit, Register rsp,
1226                    bool multi_block, XMMRegister shuf_mask);
1227   void sha512_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
1228                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
1229                    Register buf, Register state, Register ofs, Register limit, Register rsp, bool multi_block,
1230                    XMMRegister shuf_mask);
1231   void sha512_update_ni_x1(Register arg_hash, Register arg_msg, Register ofs, Register limit, bool multi_block);
1232 #endif // _LP64
1233 
1234   void fast_md5(Register buf, Address state, Address ofs, Address limit,
1235                 bool multi_block);
1236 
1237   void fast_sha1(XMMRegister abcd, XMMRegister e0, XMMRegister e1, XMMRegister msg0,
1238                  XMMRegister msg1, XMMRegister msg2, XMMRegister msg3, XMMRegister shuf_mask,
1239                  Register buf, Register state, Register ofs, Register limit, Register rsp,
1240                  bool multi_block);
1241 
1242 #ifdef _LP64
1243   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
1244                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
1245                    Register buf, Register state, Register ofs, Register limit, Register rsp,
1246                    bool multi_block, XMMRegister shuf_mask);
1247 #else
1248   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
1249                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
1250                    Register buf, Register state, Register ofs, Register limit, Register rsp,
1251                    bool multi_block);
1252 #endif
1253 
1254   void fast_exp(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1255                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1256                 Register rax, Register rcx, Register rdx, Register tmp);
1257 
1258 #ifndef _LP64
1259  private:
1260   // Initialized in macroAssembler_x86_constants.cpp
1261   static address ONES;
1262   static address L_2IL0FLOATPACKET_0;
1263   static address PI4_INV;
1264   static address PI4X3;
1265   static address PI4X4;
1266 
1267  public:
1268   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1269                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1270                 Register rax, Register rcx, Register rdx, Register tmp1);
1271 
1272   void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1273                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1274                 Register rax, Register rcx, Register rdx, Register tmp);
1275 
1276   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
1277                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
1278                 Register rdx, Register tmp);
1279 
1280   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1281                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1282                 Register rax, Register rbx, Register rdx);
1283 
1284   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1285                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1286                 Register rax, Register rcx, Register rdx, Register tmp);
1287 
1288   void libm_sincos_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1289                         Register edx, Register ebx, Register esi, Register edi,
1290                         Register ebp, Register esp);
1291 
1292   void libm_reduce_pi04l(Register eax, Register ecx, Register edx, Register ebx,
1293                          Register esi, Register edi, Register ebp, Register esp);
1294 
1295   void libm_tancot_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1296                         Register edx, Register ebx, Register esi, Register edi,
1297                         Register ebp, Register esp);
1298 
1299   void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1300                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1301                 Register rax, Register rcx, Register rdx, Register tmp);
1302 #endif // !_LP64
1303 
1304 private:
1305 
1306   // these are private because users should be doing movflt/movdbl
1307 
1308   void movss(Address     dst, XMMRegister    src) { Assembler::movss(dst, src); }
1309   void movss(XMMRegister dst, XMMRegister    src) { Assembler::movss(dst, src); }
1310   void movss(XMMRegister dst, Address        src) { Assembler::movss(dst, src); }
1311   void movss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1312 
1313   void movlpd(XMMRegister dst, Address        src) {Assembler::movlpd(dst, src); }
1314   void movlpd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1315 
1316 public:
1317 
1318   void addsd(XMMRegister dst, XMMRegister    src) { Assembler::addsd(dst, src); }
1319   void addsd(XMMRegister dst, Address        src) { Assembler::addsd(dst, src); }
1320   void addsd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1321 
1322   void addss(XMMRegister dst, XMMRegister    src) { Assembler::addss(dst, src); }
1323   void addss(XMMRegister dst, Address        src) { Assembler::addss(dst, src); }
1324   void addss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1325 
1326   void addpd(XMMRegister dst, XMMRegister    src) { Assembler::addpd(dst, src); }
1327   void addpd(XMMRegister dst, Address        src) { Assembler::addpd(dst, src); }
1328   void addpd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1329 
1330   using Assembler::vbroadcasti128;
1331   void vbroadcasti128(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1332 
1333   using Assembler::vbroadcastsd;
1334   void vbroadcastsd(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1335 
1336   using Assembler::vbroadcastss;
1337   void vbroadcastss(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1338 
1339   // Vector float blend
1340   void vblendvps(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister mask, int vector_len, bool compute_mask = true, XMMRegister scratch = xnoreg);
1341   void vblendvpd(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister mask, int vector_len, bool compute_mask = true, XMMRegister scratch = xnoreg);
1342 
1343   void divsd(XMMRegister dst, XMMRegister    src) { Assembler::divsd(dst, src); }
1344   void divsd(XMMRegister dst, Address        src) { Assembler::divsd(dst, src); }
1345   void divsd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1346 
1347   void divss(XMMRegister dst, XMMRegister    src) { Assembler::divss(dst, src); }
1348   void divss(XMMRegister dst, Address        src) { Assembler::divss(dst, src); }
1349   void divss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1350 
1351   // Move Unaligned Double Quadword
1352   void movdqu(Address     dst, XMMRegister    src);
1353   void movdqu(XMMRegister dst, XMMRegister    src);
1354   void movdqu(XMMRegister dst, Address        src);
1355   void movdqu(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1356 
1357   void kmovwl(Register  dst, KRegister      src) { Assembler::kmovwl(dst, src); }
1358   void kmovwl(Address   dst, KRegister      src) { Assembler::kmovwl(dst, src); }
1359   void kmovwl(KRegister dst, KRegister      src) { Assembler::kmovwl(dst, src); }
1360   void kmovwl(KRegister dst, Register       src) { Assembler::kmovwl(dst, src); }
1361   void kmovwl(KRegister dst, Address        src) { Assembler::kmovwl(dst, src); }
1362   void kmovwl(KRegister dst, AddressLiteral src, Register rscratch = noreg);
1363 
1364   void kmovql(KRegister dst, KRegister      src) { Assembler::kmovql(dst, src); }
1365   void kmovql(KRegister dst, Register       src) { Assembler::kmovql(dst, src); }
1366   void kmovql(Register  dst, KRegister      src) { Assembler::kmovql(dst, src); }
1367   void kmovql(KRegister dst, Address        src) { Assembler::kmovql(dst, src); }
1368   void kmovql(Address   dst, KRegister      src) { Assembler::kmovql(dst, src); }
1369   void kmovql(KRegister dst, AddressLiteral src, Register rscratch = noreg);
1370 
1371   // Safe move operation, lowers down to 16bit moves for targets supporting
1372   // AVX512F feature and 64bit moves for targets supporting AVX512BW feature.
1373   void kmov(Address  dst, KRegister src);
1374   void kmov(KRegister dst, Address src);
1375   void kmov(KRegister dst, KRegister src);
1376   void kmov(Register dst, KRegister src);
1377   void kmov(KRegister dst, Register src);
1378 
1379   using Assembler::movddup;
1380   void movddup(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1381 
1382   using Assembler::vmovddup;
1383   void vmovddup(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1384 
1385   // AVX Unaligned forms
1386   void vmovdqu(Address     dst, XMMRegister    src);
1387   void vmovdqu(XMMRegister dst, Address        src);
1388   void vmovdqu(XMMRegister dst, XMMRegister    src);
1389   void vmovdqu(XMMRegister dst, AddressLiteral src,                 Register rscratch = noreg);
1390   void vmovdqu(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1391 
1392   // AVX512 Unaligned
1393   void evmovdqu(BasicType type, KRegister kmask, Address     dst, XMMRegister src, bool merge, int vector_len);
1394   void evmovdqu(BasicType type, KRegister kmask, XMMRegister dst, Address     src, bool merge, int vector_len);
1395   void evmovdqu(BasicType type, KRegister kmask, XMMRegister dst, XMMRegister src, bool merge, int vector_len);
1396 
1397   void evmovdqub(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::evmovdqub(dst, src, vector_len); }
1398   void evmovdqub(XMMRegister dst, Address     src, int vector_len) { Assembler::evmovdqub(dst, src, vector_len); }
1399 
1400   void evmovdqub(XMMRegister dst, KRegister mask, XMMRegister src, bool merge, int vector_len) {
1401     if (dst->encoding() != src->encoding() || mask != k0)  {
1402       Assembler::evmovdqub(dst, mask, src, merge, vector_len);
1403     }
1404   }
1405   void evmovdqub(Address     dst, KRegister mask, XMMRegister    src, bool merge, int vector_len) { Assembler::evmovdqub(dst, mask, src, merge, vector_len); }
1406   void evmovdqub(XMMRegister dst, KRegister mask, Address        src, bool merge, int vector_len) { Assembler::evmovdqub(dst, mask, src, merge, vector_len); }
1407   void evmovdqub(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg);
1408 
1409   void evmovdquw(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::evmovdquw(dst, src, vector_len); }
1410   void evmovdquw(Address     dst, XMMRegister src, int vector_len) { Assembler::evmovdquw(dst, src, vector_len); }
1411   void evmovdquw(XMMRegister dst, Address     src, int vector_len) { Assembler::evmovdquw(dst, src, vector_len); }
1412 
1413   void evmovdquw(XMMRegister dst, KRegister mask, XMMRegister src, bool merge, int vector_len) {
1414     if (dst->encoding() != src->encoding() || mask != k0) {
1415       Assembler::evmovdquw(dst, mask, src, merge, vector_len);
1416     }
1417   }
1418   void evmovdquw(XMMRegister dst, KRegister mask, Address        src, bool merge, int vector_len) { Assembler::evmovdquw(dst, mask, src, merge, vector_len); }
1419   void evmovdquw(Address     dst, KRegister mask, XMMRegister    src, bool merge, int vector_len) { Assembler::evmovdquw(dst, mask, src, merge, vector_len); }
1420   void evmovdquw(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg);
1421 
1422   void evmovdqul(XMMRegister dst, XMMRegister src, int vector_len) {
1423      if (dst->encoding() != src->encoding()) {
1424        Assembler::evmovdqul(dst, src, vector_len);
1425      }
1426   }
1427   void evmovdqul(Address     dst, XMMRegister src, int vector_len) { Assembler::evmovdqul(dst, src, vector_len); }
1428   void evmovdqul(XMMRegister dst, Address     src, int vector_len) { Assembler::evmovdqul(dst, src, vector_len); }
1429 
1430   void evmovdqul(XMMRegister dst, KRegister mask, XMMRegister src, bool merge, int vector_len) {
1431     if (dst->encoding() != src->encoding() || mask != k0)  {
1432       Assembler::evmovdqul(dst, mask, src, merge, vector_len);
1433     }
1434   }
1435   void evmovdqul(Address     dst, KRegister mask, XMMRegister    src, bool merge, int vector_len) { Assembler::evmovdqul(dst, mask, src, merge, vector_len); }
1436   void evmovdqul(XMMRegister dst, KRegister mask, Address        src, bool merge, int vector_len) { Assembler::evmovdqul(dst, mask, src, merge, vector_len); }
1437   void evmovdqul(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg);
1438 
1439   void evmovdquq(XMMRegister dst, XMMRegister src, int vector_len) {
1440     if (dst->encoding() != src->encoding()) {
1441       Assembler::evmovdquq(dst, src, vector_len);
1442     }
1443   }
1444   void evmovdquq(XMMRegister dst, Address        src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); }
1445   void evmovdquq(Address     dst, XMMRegister    src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); }
1446   void evmovdquq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1447 
1448   void evmovdquq(XMMRegister dst, KRegister mask, XMMRegister src, bool merge, int vector_len) {
1449     if (dst->encoding() != src->encoding() || mask != k0) {
1450       Assembler::evmovdquq(dst, mask, src, merge, vector_len);
1451     }
1452   }
1453   void evmovdquq(Address     dst, KRegister mask, XMMRegister    src, bool merge, int vector_len) { Assembler::evmovdquq(dst, mask, src, merge, vector_len); }
1454   void evmovdquq(XMMRegister dst, KRegister mask, Address        src, bool merge, int vector_len) { Assembler::evmovdquq(dst, mask, src, merge, vector_len); }
1455   void evmovdquq(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg);
1456 
1457   // Move Aligned Double Quadword
1458   void movdqa(XMMRegister dst, XMMRegister    src) { Assembler::movdqa(dst, src); }
1459   void movdqa(XMMRegister dst, Address        src) { Assembler::movdqa(dst, src); }
1460   void movdqa(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1461 
1462   void movsd(Address     dst, XMMRegister    src) { Assembler::movsd(dst, src); }
1463   void movsd(XMMRegister dst, XMMRegister    src) { Assembler::movsd(dst, src); }
1464   void movsd(XMMRegister dst, Address        src) { Assembler::movsd(dst, src); }
1465   void movsd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1466 
1467   void mulpd(XMMRegister dst, XMMRegister    src) { Assembler::mulpd(dst, src); }
1468   void mulpd(XMMRegister dst, Address        src) { Assembler::mulpd(dst, src); }
1469   void mulpd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1470 
1471   void mulsd(XMMRegister dst, XMMRegister    src) { Assembler::mulsd(dst, src); }
1472   void mulsd(XMMRegister dst, Address        src) { Assembler::mulsd(dst, src); }
1473   void mulsd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1474 
1475   void mulss(XMMRegister dst, XMMRegister    src) { Assembler::mulss(dst, src); }
1476   void mulss(XMMRegister dst, Address        src) { Assembler::mulss(dst, src); }
1477   void mulss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1478 
1479   // Carry-Less Multiplication Quadword
1480   void pclmulldq(XMMRegister dst, XMMRegister src) {
1481     // 0x00 - multiply lower 64 bits [0:63]
1482     Assembler::pclmulqdq(dst, src, 0x00);
1483   }
1484   void pclmulhdq(XMMRegister dst, XMMRegister src) {
1485     // 0x11 - multiply upper 64 bits [64:127]
1486     Assembler::pclmulqdq(dst, src, 0x11);
1487   }
1488 
1489   void pcmpeqb(XMMRegister dst, XMMRegister src);
1490   void pcmpeqw(XMMRegister dst, XMMRegister src);
1491 
1492   void pcmpestri(XMMRegister dst, Address src, int imm8);
1493   void pcmpestri(XMMRegister dst, XMMRegister src, int imm8);
1494 
1495   void pmovzxbw(XMMRegister dst, XMMRegister src);
1496   void pmovzxbw(XMMRegister dst, Address src);
1497 
1498   void pmovmskb(Register dst, XMMRegister src);
1499 
1500   void ptest(XMMRegister dst, XMMRegister src);
1501 
1502   void roundsd(XMMRegister dst, XMMRegister    src, int32_t rmode) { Assembler::roundsd(dst, src, rmode); }
1503   void roundsd(XMMRegister dst, Address        src, int32_t rmode) { Assembler::roundsd(dst, src, rmode); }
1504   void roundsd(XMMRegister dst, AddressLiteral src, int32_t rmode, Register rscratch = noreg);
1505 
1506   void sqrtss(XMMRegister dst, XMMRegister     src) { Assembler::sqrtss(dst, src); }
1507   void sqrtss(XMMRegister dst, Address         src) { Assembler::sqrtss(dst, src); }
1508   void sqrtss(XMMRegister dst, AddressLiteral  src, Register rscratch = noreg);
1509 
1510   void subsd(XMMRegister dst, XMMRegister    src) { Assembler::subsd(dst, src); }
1511   void subsd(XMMRegister dst, Address        src) { Assembler::subsd(dst, src); }
1512   void subsd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1513 
1514   void subss(XMMRegister dst, XMMRegister    src) { Assembler::subss(dst, src); }
1515   void subss(XMMRegister dst, Address        src) { Assembler::subss(dst, src); }
1516   void subss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1517 
1518   void ucomiss(XMMRegister dst, XMMRegister    src) { Assembler::ucomiss(dst, src); }
1519   void ucomiss(XMMRegister dst, Address        src) { Assembler::ucomiss(dst, src); }
1520   void ucomiss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1521 
1522   void ucomisd(XMMRegister dst, XMMRegister    src) { Assembler::ucomisd(dst, src); }
1523   void ucomisd(XMMRegister dst, Address        src) { Assembler::ucomisd(dst, src); }
1524   void ucomisd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1525 
1526   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
1527   void xorpd(XMMRegister dst, XMMRegister    src);
1528   void xorpd(XMMRegister dst, Address        src) { Assembler::xorpd(dst, src); }
1529   void xorpd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1530 
1531   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
1532   void xorps(XMMRegister dst, XMMRegister    src);
1533   void xorps(XMMRegister dst, Address        src) { Assembler::xorps(dst, src); }
1534   void xorps(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1535 
1536   // Shuffle Bytes
1537   void pshufb(XMMRegister dst, XMMRegister    src) { Assembler::pshufb(dst, src); }
1538   void pshufb(XMMRegister dst, Address        src) { Assembler::pshufb(dst, src); }
1539   void pshufb(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1540   // AVX 3-operands instructions
1541 
1542   void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister    src) { Assembler::vaddsd(dst, nds, src); }
1543   void vaddsd(XMMRegister dst, XMMRegister nds, Address        src) { Assembler::vaddsd(dst, nds, src); }
1544   void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1545 
1546   void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister    src) { Assembler::vaddss(dst, nds, src); }
1547   void vaddss(XMMRegister dst, XMMRegister nds, Address        src) { Assembler::vaddss(dst, nds, src); }
1548   void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1549 
1550   void vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len, Register rscratch = noreg);
1551   void vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len, Register rscratch = noreg);
1552 
1553   void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len);
1554   void vpaddb(XMMRegister dst, XMMRegister nds, Address        src, int vector_len);
1555   void vpaddb(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1556 
1557   void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1558   void vpaddw(XMMRegister dst, XMMRegister nds, Address     src, int vector_len);
1559 
1560   void vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len) { Assembler::vpaddd(dst, nds, src, vector_len); }
1561   void vpaddd(XMMRegister dst, XMMRegister nds, Address        src, int vector_len) { Assembler::vpaddd(dst, nds, src, vector_len); }
1562   void vpaddd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1563 
1564   void vpand(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1565   void vpand(XMMRegister dst, XMMRegister nds, Address        src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1566   void vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1567 
1568   using Assembler::vpbroadcastd;
1569   void vpbroadcastd(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1570 
1571   using Assembler::vpbroadcastq;
1572   void vpbroadcastq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1573 
1574   void vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1575   void vpcmpeqb(XMMRegister dst, XMMRegister src1, Address src2, int vector_len);
1576 
1577   void vpcmpeqw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1578   void vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1579   void evpcmpeqd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1580 
1581   // Vector compares
1582   void evpcmpd(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister    src, int comparison, bool is_signed, int vector_len) {
1583     Assembler::evpcmpd(kdst, mask, nds, src, comparison, is_signed, vector_len);
1584   }
1585   void evpcmpd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int comparison, bool is_signed, int vector_len, Register rscratch = noreg);
1586 
1587   void evpcmpq(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister    src, int comparison, bool is_signed, int vector_len) {
1588     Assembler::evpcmpq(kdst, mask, nds, src, comparison, is_signed, vector_len);
1589   }
1590   void evpcmpq(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int comparison, bool is_signed, int vector_len, Register rscratch = noreg);
1591 
1592   void evpcmpb(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister    src, int comparison, bool is_signed, int vector_len) {
1593     Assembler::evpcmpb(kdst, mask, nds, src, comparison, is_signed, vector_len);
1594   }
1595   void evpcmpb(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int comparison, bool is_signed, int vector_len, Register rscratch = noreg);
1596 
1597   void evpcmpw(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister    src, int comparison, bool is_signed, int vector_len) {
1598     Assembler::evpcmpw(kdst, mask, nds, src, comparison, is_signed, vector_len);
1599   }
1600   void evpcmpw(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int comparison, bool is_signed, int vector_len, Register rscratch = noreg);
1601 
1602   void evpbroadcast(BasicType type, XMMRegister dst, Register src, int vector_len);
1603 
1604   // Emit comparison instruction for the specified comparison predicate.
1605   void vpcmpCCW(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister xtmp, ComparisonPredicate cond, Width width, int vector_len);
1606   void vpcmpCC(XMMRegister dst, XMMRegister nds, XMMRegister src, int cond_encoding, Width width, int vector_len);
1607 
1608   void vpmovzxbw(XMMRegister dst, Address     src, int vector_len);
1609   void vpmovzxbw(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::vpmovzxbw(dst, src, vector_len); }
1610 
1611   void vpmovmskb(Register dst, XMMRegister src, int vector_len = Assembler::AVX_256bit);
1612 
1613   void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1614   void vpmullw(XMMRegister dst, XMMRegister nds, Address     src, int vector_len);
1615 
1616   void vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len) { Assembler::vpmulld(dst, nds, src, vector_len); }
1617   void vpmulld(XMMRegister dst, XMMRegister nds, Address        src, int vector_len) { Assembler::vpmulld(dst, nds, src, vector_len); }
1618   void vpmulld(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1619 
1620   void vpmuldq(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len) { Assembler::vpmuldq(dst, nds, src, vector_len); }
1621 
1622   void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1623   void vpsubb(XMMRegister dst, XMMRegister nds, Address     src, int vector_len);
1624 
1625   void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1626   void vpsubw(XMMRegister dst, XMMRegister nds, Address     src, int vector_len);
1627 
1628   void vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1629   void vpsraw(XMMRegister dst, XMMRegister nds, int         shift, int vector_len);
1630 
1631   void evpsrad(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1632   void evpsrad(XMMRegister dst, XMMRegister nds, int         shift, int vector_len);
1633 
1634   void evpsraq(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1635   void evpsraq(XMMRegister dst, XMMRegister nds, int         shift, int vector_len);
1636 
1637   using Assembler::evpsllw;
1638   void evpsllw(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1639     if (!is_varshift) {
1640       Assembler::evpsllw(dst, mask, nds, src, merge, vector_len);
1641     } else {
1642       Assembler::evpsllvw(dst, mask, nds, src, merge, vector_len);
1643     }
1644   }
1645   void evpslld(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1646     if (!is_varshift) {
1647       Assembler::evpslld(dst, mask, nds, src, merge, vector_len);
1648     } else {
1649       Assembler::evpsllvd(dst, mask, nds, src, merge, vector_len);
1650     }
1651   }
1652   void evpsllq(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1653     if (!is_varshift) {
1654       Assembler::evpsllq(dst, mask, nds, src, merge, vector_len);
1655     } else {
1656       Assembler::evpsllvq(dst, mask, nds, src, merge, vector_len);
1657     }
1658   }
1659   void evpsrlw(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1660     if (!is_varshift) {
1661       Assembler::evpsrlw(dst, mask, nds, src, merge, vector_len);
1662     } else {
1663       Assembler::evpsrlvw(dst, mask, nds, src, merge, vector_len);
1664     }
1665   }
1666   void evpsrld(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1667     if (!is_varshift) {
1668       Assembler::evpsrld(dst, mask, nds, src, merge, vector_len);
1669     } else {
1670       Assembler::evpsrlvd(dst, mask, nds, src, merge, vector_len);
1671     }
1672   }
1673 
1674   using Assembler::evpsrlq;
1675   void evpsrlq(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1676     if (!is_varshift) {
1677       Assembler::evpsrlq(dst, mask, nds, src, merge, vector_len);
1678     } else {
1679       Assembler::evpsrlvq(dst, mask, nds, src, merge, vector_len);
1680     }
1681   }
1682   using Assembler::evpsraw;
1683   void evpsraw(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1684     if (!is_varshift) {
1685       Assembler::evpsraw(dst, mask, nds, src, merge, vector_len);
1686     } else {
1687       Assembler::evpsravw(dst, mask, nds, src, merge, vector_len);
1688     }
1689   }
1690   using Assembler::evpsrad;
1691   void evpsrad(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1692     if (!is_varshift) {
1693       Assembler::evpsrad(dst, mask, nds, src, merge, vector_len);
1694     } else {
1695       Assembler::evpsravd(dst, mask, nds, src, merge, vector_len);
1696     }
1697   }
1698   using Assembler::evpsraq;
1699   void evpsraq(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1700     if (!is_varshift) {
1701       Assembler::evpsraq(dst, mask, nds, src, merge, vector_len);
1702     } else {
1703       Assembler::evpsravq(dst, mask, nds, src, merge, vector_len);
1704     }
1705   }
1706 
1707   void evpmins(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len);
1708   void evpmaxs(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len);
1709   void evpmins(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len);
1710   void evpmaxs(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len);
1711 
1712   void evpminu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len);
1713   void evpmaxu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len);
1714   void evpminu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len);
1715   void evpmaxu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len);
1716 
1717   void vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1718   void vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1719 
1720   void vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1721   void vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1722 
1723   void vptest(XMMRegister dst, XMMRegister src);
1724   void vptest(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::vptest(dst, src, vector_len); }
1725 
1726   void punpcklbw(XMMRegister dst, XMMRegister src);
1727   void punpcklbw(XMMRegister dst, Address src) { Assembler::punpcklbw(dst, src); }
1728 
1729   void pshufd(XMMRegister dst, Address src, int mode);
1730   void pshufd(XMMRegister dst, XMMRegister src, int mode) { Assembler::pshufd(dst, src, mode); }
1731 
1732   void pshuflw(XMMRegister dst, XMMRegister src, int mode);
1733   void pshuflw(XMMRegister dst, Address src, int mode) { Assembler::pshuflw(dst, src, mode); }
1734 
1735   void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len) { Assembler::vandpd(dst, nds, src, vector_len); }
1736   void vandpd(XMMRegister dst, XMMRegister nds, Address        src, int vector_len) { Assembler::vandpd(dst, nds, src, vector_len); }
1737   void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1738 
1739   void vandps(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len) { Assembler::vandps(dst, nds, src, vector_len); }
1740   void vandps(XMMRegister dst, XMMRegister nds, Address        src, int vector_len) { Assembler::vandps(dst, nds, src, vector_len); }
1741   void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1742 
1743   void evpord(XMMRegister dst, KRegister mask, XMMRegister nds, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg);
1744 
1745   void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister    src) { Assembler::vdivsd(dst, nds, src); }
1746   void vdivsd(XMMRegister dst, XMMRegister nds, Address        src) { Assembler::vdivsd(dst, nds, src); }
1747   void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1748 
1749   void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister    src) { Assembler::vdivss(dst, nds, src); }
1750   void vdivss(XMMRegister dst, XMMRegister nds, Address        src) { Assembler::vdivss(dst, nds, src); }
1751   void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1752 
1753   void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister    src) { Assembler::vmulsd(dst, nds, src); }
1754   void vmulsd(XMMRegister dst, XMMRegister nds, Address        src) { Assembler::vmulsd(dst, nds, src); }
1755   void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1756 
1757   void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister    src) { Assembler::vmulss(dst, nds, src); }
1758   void vmulss(XMMRegister dst, XMMRegister nds, Address        src) { Assembler::vmulss(dst, nds, src); }
1759   void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1760 
1761   void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister    src) { Assembler::vsubsd(dst, nds, src); }
1762   void vsubsd(XMMRegister dst, XMMRegister nds, Address        src) { Assembler::vsubsd(dst, nds, src); }
1763   void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1764 
1765   void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister    src) { Assembler::vsubss(dst, nds, src); }
1766   void vsubss(XMMRegister dst, XMMRegister nds, Address        src) { Assembler::vsubss(dst, nds, src); }
1767   void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1768 
1769   void vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1770   void vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1771 
1772   // AVX Vector instructions
1773 
1774   void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1775   void vxorpd(XMMRegister dst, XMMRegister nds, Address        src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1776   void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1777 
1778   void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1779   void vxorps(XMMRegister dst, XMMRegister nds, Address        src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1780   void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1781 
1782   void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1783     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1784       Assembler::vpxor(dst, nds, src, vector_len);
1785     else
1786       Assembler::vxorpd(dst, nds, src, vector_len);
1787   }
1788   void vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
1789     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1790       Assembler::vpxor(dst, nds, src, vector_len);
1791     else
1792       Assembler::vxorpd(dst, nds, src, vector_len);
1793   }
1794   void vpxor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1795 
1796   // Simple version for AVX2 256bit vectors
1797   void vpxor(XMMRegister dst, XMMRegister src) {
1798     assert(UseAVX >= 2, "Should be at least AVX2");
1799     Assembler::vpxor(dst, dst, src, AVX_256bit);
1800   }
1801   void vpxor(XMMRegister dst, Address src) {
1802     assert(UseAVX >= 2, "Should be at least AVX2");
1803     Assembler::vpxor(dst, dst, src, AVX_256bit);
1804   }
1805 
1806   void vpermd(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len) { Assembler::vpermd(dst, nds, src, vector_len); }
1807   void vpermd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1808 
1809   void vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
1810     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1811       Assembler::vinserti32x4(dst, nds, src, imm8);
1812     } else if (UseAVX > 1) {
1813       // vinserti128 is available only in AVX2
1814       Assembler::vinserti128(dst, nds, src, imm8);
1815     } else {
1816       Assembler::vinsertf128(dst, nds, src, imm8);
1817     }
1818   }
1819 
1820   void vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
1821     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1822       Assembler::vinserti32x4(dst, nds, src, imm8);
1823     } else if (UseAVX > 1) {
1824       // vinserti128 is available only in AVX2
1825       Assembler::vinserti128(dst, nds, src, imm8);
1826     } else {
1827       Assembler::vinsertf128(dst, nds, src, imm8);
1828     }
1829   }
1830 
1831   void vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
1832     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1833       Assembler::vextracti32x4(dst, src, imm8);
1834     } else if (UseAVX > 1) {
1835       // vextracti128 is available only in AVX2
1836       Assembler::vextracti128(dst, src, imm8);
1837     } else {
1838       Assembler::vextractf128(dst, src, imm8);
1839     }
1840   }
1841 
1842   void vextracti128(Address dst, XMMRegister src, uint8_t imm8) {
1843     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1844       Assembler::vextracti32x4(dst, src, imm8);
1845     } else if (UseAVX > 1) {
1846       // vextracti128 is available only in AVX2
1847       Assembler::vextracti128(dst, src, imm8);
1848     } else {
1849       Assembler::vextractf128(dst, src, imm8);
1850     }
1851   }
1852 
1853   // 128bit copy to/from high 128 bits of 256bit (YMM) vector registers
1854   void vinserti128_high(XMMRegister dst, XMMRegister src) {
1855     vinserti128(dst, dst, src, 1);
1856   }
1857   void vinserti128_high(XMMRegister dst, Address src) {
1858     vinserti128(dst, dst, src, 1);
1859   }
1860   void vextracti128_high(XMMRegister dst, XMMRegister src) {
1861     vextracti128(dst, src, 1);
1862   }
1863   void vextracti128_high(Address dst, XMMRegister src) {
1864     vextracti128(dst, src, 1);
1865   }
1866 
1867   void vinsertf128_high(XMMRegister dst, XMMRegister src) {
1868     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1869       Assembler::vinsertf32x4(dst, dst, src, 1);
1870     } else {
1871       Assembler::vinsertf128(dst, dst, src, 1);
1872     }
1873   }
1874 
1875   void vinsertf128_high(XMMRegister dst, Address src) {
1876     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1877       Assembler::vinsertf32x4(dst, dst, src, 1);
1878     } else {
1879       Assembler::vinsertf128(dst, dst, src, 1);
1880     }
1881   }
1882 
1883   void vextractf128_high(XMMRegister dst, XMMRegister src) {
1884     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1885       Assembler::vextractf32x4(dst, src, 1);
1886     } else {
1887       Assembler::vextractf128(dst, src, 1);
1888     }
1889   }
1890 
1891   void vextractf128_high(Address dst, XMMRegister src) {
1892     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1893       Assembler::vextractf32x4(dst, src, 1);
1894     } else {
1895       Assembler::vextractf128(dst, src, 1);
1896     }
1897   }
1898 
1899   // 256bit copy to/from high 256 bits of 512bit (ZMM) vector registers
1900   void vinserti64x4_high(XMMRegister dst, XMMRegister src) {
1901     Assembler::vinserti64x4(dst, dst, src, 1);
1902   }
1903   void vinsertf64x4_high(XMMRegister dst, XMMRegister src) {
1904     Assembler::vinsertf64x4(dst, dst, src, 1);
1905   }
1906   void vextracti64x4_high(XMMRegister dst, XMMRegister src) {
1907     Assembler::vextracti64x4(dst, src, 1);
1908   }
1909   void vextractf64x4_high(XMMRegister dst, XMMRegister src) {
1910     Assembler::vextractf64x4(dst, src, 1);
1911   }
1912   void vextractf64x4_high(Address dst, XMMRegister src) {
1913     Assembler::vextractf64x4(dst, src, 1);
1914   }
1915   void vinsertf64x4_high(XMMRegister dst, Address src) {
1916     Assembler::vinsertf64x4(dst, dst, src, 1);
1917   }
1918 
1919   // 128bit copy to/from low 128 bits of 256bit (YMM) vector registers
1920   void vinserti128_low(XMMRegister dst, XMMRegister src) {
1921     vinserti128(dst, dst, src, 0);
1922   }
1923   void vinserti128_low(XMMRegister dst, Address src) {
1924     vinserti128(dst, dst, src, 0);
1925   }
1926   void vextracti128_low(XMMRegister dst, XMMRegister src) {
1927     vextracti128(dst, src, 0);
1928   }
1929   void vextracti128_low(Address dst, XMMRegister src) {
1930     vextracti128(dst, src, 0);
1931   }
1932 
1933   void vinsertf128_low(XMMRegister dst, XMMRegister src) {
1934     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1935       Assembler::vinsertf32x4(dst, dst, src, 0);
1936     } else {
1937       Assembler::vinsertf128(dst, dst, src, 0);
1938     }
1939   }
1940 
1941   void vinsertf128_low(XMMRegister dst, Address src) {
1942     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1943       Assembler::vinsertf32x4(dst, dst, src, 0);
1944     } else {
1945       Assembler::vinsertf128(dst, dst, src, 0);
1946     }
1947   }
1948 
1949   void vextractf128_low(XMMRegister dst, XMMRegister src) {
1950     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1951       Assembler::vextractf32x4(dst, src, 0);
1952     } else {
1953       Assembler::vextractf128(dst, src, 0);
1954     }
1955   }
1956 
1957   void vextractf128_low(Address dst, XMMRegister src) {
1958     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1959       Assembler::vextractf32x4(dst, src, 0);
1960     } else {
1961       Assembler::vextractf128(dst, src, 0);
1962     }
1963   }
1964 
1965   // 256bit copy to/from low 256 bits of 512bit (ZMM) vector registers
1966   void vinserti64x4_low(XMMRegister dst, XMMRegister src) {
1967     Assembler::vinserti64x4(dst, dst, src, 0);
1968   }
1969   void vinsertf64x4_low(XMMRegister dst, XMMRegister src) {
1970     Assembler::vinsertf64x4(dst, dst, src, 0);
1971   }
1972   void vextracti64x4_low(XMMRegister dst, XMMRegister src) {
1973     Assembler::vextracti64x4(dst, src, 0);
1974   }
1975   void vextractf64x4_low(XMMRegister dst, XMMRegister src) {
1976     Assembler::vextractf64x4(dst, src, 0);
1977   }
1978   void vextractf64x4_low(Address dst, XMMRegister src) {
1979     Assembler::vextractf64x4(dst, src, 0);
1980   }
1981   void vinsertf64x4_low(XMMRegister dst, Address src) {
1982     Assembler::vinsertf64x4(dst, dst, src, 0);
1983   }
1984 
1985   // Carry-Less Multiplication Quadword
1986   void vpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1987     // 0x00 - multiply lower 64 bits [0:63]
1988     Assembler::vpclmulqdq(dst, nds, src, 0x00);
1989   }
1990   void vpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1991     // 0x11 - multiply upper 64 bits [64:127]
1992     Assembler::vpclmulqdq(dst, nds, src, 0x11);
1993   }
1994   void vpclmullqhqdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1995     // 0x10 - multiply nds[0:63] and src[64:127]
1996     Assembler::vpclmulqdq(dst, nds, src, 0x10);
1997   }
1998   void vpclmulhqlqdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1999     //0x01 - multiply nds[64:127] and src[0:63]
2000     Assembler::vpclmulqdq(dst, nds, src, 0x01);
2001   }
2002 
2003   void evpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
2004     // 0x00 - multiply lower 64 bits [0:63]
2005     Assembler::evpclmulqdq(dst, nds, src, 0x00, vector_len);
2006   }
2007   void evpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
2008     // 0x11 - multiply upper 64 bits [64:127]
2009     Assembler::evpclmulqdq(dst, nds, src, 0x11, vector_len);
2010   }
2011 
2012   // AVX-512 mask operations.
2013   void kand(BasicType etype, KRegister dst, KRegister src1, KRegister src2);
2014   void kor(BasicType type, KRegister dst, KRegister src1, KRegister src2);
2015   void knot(uint masklen, KRegister dst, KRegister src, KRegister ktmp = knoreg, Register rtmp = noreg);
2016   void kxor(BasicType type, KRegister dst, KRegister src1, KRegister src2);
2017   void kortest(uint masklen, KRegister src1, KRegister src2);
2018   void ktest(uint masklen, KRegister src1, KRegister src2);
2019 
2020   void evperm(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len);
2021   void evperm(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len);
2022 
2023   void evor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len);
2024   void evor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len);
2025 
2026   void evand(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len);
2027   void evand(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len);
2028 
2029   void evxor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len);
2030   void evxor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len);
2031 
2032   void evrold(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vlen_enc);
2033   void evrold(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src1, XMMRegister src2, bool merge, int vlen_enc);
2034   void evrord(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vlen_enc);
2035   void evrord(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src1, XMMRegister src2, bool merge, int vlen_enc);
2036 
2037   using Assembler::evpandq;
2038   void evpandq(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
2039 
2040   using Assembler::evpaddq;
2041   void evpaddq(XMMRegister dst, KRegister mask, XMMRegister nds, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg);
2042 
2043   using Assembler::evporq;
2044   void evporq(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
2045 
2046   using Assembler::vpshufb;
2047   void vpshufb(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
2048 
2049   using Assembler::vpor;
2050   void vpor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
2051 
2052   using Assembler::vpternlogq;
2053   void vpternlogq(XMMRegister dst, int imm8, XMMRegister src2, AddressLiteral src3, int vector_len, Register rscratch = noreg);
2054 
2055   void cmov32( Condition cc, Register dst, Address  src);
2056   void cmov32( Condition cc, Register dst, Register src);
2057 
2058   void cmov(   Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }
2059 
2060   void cmovptr(Condition cc, Register dst, Address  src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
2061   void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
2062 
2063   void movoop(Register dst, jobject obj);
2064   void movoop(Address  dst, jobject obj, Register rscratch);
2065 
2066   void mov_metadata(Register dst, Metadata* obj);
2067   void mov_metadata(Address  dst, Metadata* obj, Register rscratch);
2068 
2069   void movptr(Register     dst, Register       src);
2070   void movptr(Register     dst, Address        src);
2071   void movptr(Register     dst, AddressLiteral src);
2072   void movptr(Register     dst, ArrayAddress   src);
2073   void movptr(Register     dst, intptr_t       src);
2074   void movptr(Address      dst, Register       src);
2075   void movptr(Address      dst, int32_t        imm);
2076   void movptr(Address      dst, intptr_t       src, Register rscratch);
2077   void movptr(ArrayAddress dst, Register       src, Register rscratch);
2078 
2079   void movptr(Register dst, RegisterOrConstant src) {
2080     if (src.is_constant()) movptr(dst, src.as_constant());
2081     else                   movptr(dst, src.as_register());
2082   }
2083 
2084 
2085   // to avoid hiding movl
2086   void mov32(Register       dst, AddressLiteral src);
2087   void mov32(AddressLiteral dst, Register        src, Register rscratch = noreg);
2088 
2089   // Import other mov() methods from the parent class or else
2090   // they will be hidden by the following overriding declaration.
2091   using Assembler::movdl;
2092   void movdl(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
2093 
2094   using Assembler::movq;
2095   void movq(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
2096 
2097   // Can push value or effective address
2098   void pushptr(AddressLiteral src, Register rscratch);
2099 
2100   void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
2101   void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
2102 
2103   void pushoop(jobject obj, Register rscratch);
2104   void pushklass(Metadata* obj, Register rscratch);
2105 
2106   // sign extend as need a l to ptr sized element
2107   void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
2108   void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
2109 
2110 
2111  public:
2112   // Inline type specific methods
2113   #include "asm/macroAssembler_common.hpp"
2114 
2115   int store_inline_type_fields_to_buf(ciInlineKlass* vk, bool from_interpreter = true);
2116   bool move_helper(VMReg from, VMReg to, BasicType bt, RegState reg_state[]);
2117   bool unpack_inline_helper(const GrowableArray<SigEntry>* sig, int& sig_index,
2118                             VMReg from, int& from_index, VMRegPair* to, int to_count, int& to_index,
2119                             RegState reg_state[]);
2120   bool pack_inline_helper(const GrowableArray<SigEntry>* sig, int& sig_index, int vtarg_index,
2121                           VMRegPair* from, int from_count, int& from_index, VMReg to,
2122                           RegState reg_state[], Register val_array);
2123   int extend_stack_for_inline_args(int args_on_stack);
2124   void remove_frame(int initial_framesize, bool needs_stack_repair);
2125   VMReg spill_reg_for(VMReg reg);
2126 
2127   // clear memory of size 'cnt' qwords, starting at 'base';
2128   // if 'is_large' is set, do not try to produce short loop
2129   void clear_mem(Register base, Register cnt, Register val, XMMRegister xtmp, bool is_large, bool word_copy_only, KRegister mask=knoreg);
2130 
2131   // clear memory initialization sequence for constant size;
2132   void clear_mem(Register base, int cnt, Register rtmp, XMMRegister xtmp, KRegister mask=knoreg);
2133 
2134   // clear memory of size 'cnt' qwords, starting at 'base' using XMM/YMM registers
2135   void xmm_clear_mem(Register base, Register cnt, Register rtmp, XMMRegister xtmp, KRegister mask=knoreg);
2136 
2137   // Fill primitive arrays
2138   void generate_fill(BasicType t, bool aligned,
2139                      Register to, Register value, Register count,
2140                      Register rtmp, XMMRegister xtmp);
2141 
2142   void encode_iso_array(Register src, Register dst, Register len,
2143                         XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
2144                         XMMRegister tmp4, Register tmp5, Register result, bool ascii);
2145 
2146 #ifdef _LP64
2147   void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2);
2148   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
2149                              Register y, Register y_idx, Register z,
2150                              Register carry, Register product,
2151                              Register idx, Register kdx);
2152   void multiply_add_128_x_128(Register x_xstart, Register y, Register z,
2153                               Register yz_idx, Register idx,
2154                               Register carry, Register product, int offset);
2155   void multiply_128_x_128_bmi2_loop(Register y, Register z,
2156                                     Register carry, Register carry2,
2157                                     Register idx, Register jdx,
2158                                     Register yz_idx1, Register yz_idx2,
2159                                     Register tmp, Register tmp3, Register tmp4);
2160   void multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
2161                                Register yz_idx, Register idx, Register jdx,
2162                                Register carry, Register product,
2163                                Register carry2);
2164   void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register tmp0,
2165                        Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5);
2166   void square_rshift(Register x, Register len, Register z, Register tmp1, Register tmp3,
2167                      Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
2168   void multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry,
2169                             Register tmp2);
2170   void multiply_add_64(Register sum, Register op1, Register op2, Register carry,
2171                        Register rdxReg, Register raxReg);
2172   void add_one_64(Register z, Register zlen, Register carry, Register tmp1);
2173   void lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
2174                        Register tmp3, Register tmp4);
2175   void square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
2176                      Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
2177 
2178   void mul_add_128_x_32_loop(Register out, Register in, Register offset, Register len, Register tmp1,
2179                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
2180                Register raxReg);
2181   void mul_add(Register out, Register in, Register offset, Register len, Register k, Register tmp1,
2182                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
2183                Register raxReg);
2184   void vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
2185                            Register result, Register tmp1, Register tmp2,
2186                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3);
2187 #endif
2188 
2189   // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
2190   void update_byte_crc32(Register crc, Register val, Register table);
2191   void kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp);
2192 
2193 
2194 #ifdef _LP64
2195   void kernel_crc32_avx512(Register crc, Register buf, Register len, Register table, Register tmp1, Register tmp2);
2196   void kernel_crc32_avx512_256B(Register crc, Register buf, Register len, Register key, Register pos,
2197                                 Register tmp1, Register tmp2, Label& L_barrett, Label& L_16B_reduction_loop,
2198                                 Label& L_get_last_two_xmms, Label& L_128_done, Label& L_cleanup);
2199 #endif // _LP64
2200 
2201   // CRC32C code for java.util.zip.CRC32C::updateBytes() intrinsic
2202   // Note on a naming convention:
2203   // Prefix w = register only used on a Westmere+ architecture
2204   // Prefix n = register only used on a Nehalem architecture
2205 #ifdef _LP64
2206   void crc32c_ipl_alg4(Register in_out, uint32_t n,
2207                        Register tmp1, Register tmp2, Register tmp3);
2208 #else
2209   void crc32c_ipl_alg4(Register in_out, uint32_t n,
2210                        Register tmp1, Register tmp2, Register tmp3,
2211                        XMMRegister xtmp1, XMMRegister xtmp2);
2212 #endif
2213   void crc32c_pclmulqdq(XMMRegister w_xtmp1,
2214                         Register in_out,
2215                         uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
2216                         XMMRegister w_xtmp2,
2217                         Register tmp1,
2218                         Register n_tmp2, Register n_tmp3);
2219   void crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
2220                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
2221                        Register tmp1, Register tmp2,
2222                        Register n_tmp3);
2223   void crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
2224                          Register in_out1, Register in_out2, Register in_out3,
2225                          Register tmp1, Register tmp2, Register tmp3,
2226                          XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
2227                          Register tmp4, Register tmp5,
2228                          Register n_tmp6);
2229   void crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
2230                             Register tmp1, Register tmp2, Register tmp3,
2231                             Register tmp4, Register tmp5, Register tmp6,
2232                             XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
2233                             bool is_pclmulqdq_supported);
2234   // Fold 128-bit data chunk
2235   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
2236   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf);
2237 #ifdef _LP64
2238   // Fold 512-bit data chunk
2239   void fold512bit_crc32_avx512(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, Register pos, int offset);
2240 #endif // _LP64
2241   // Fold 8-bit data
2242   void fold_8bit_crc32(Register crc, Register table, Register tmp);
2243   void fold_8bit_crc32(XMMRegister crc, Register table, XMMRegister xtmp, Register tmp);
2244 
2245   // Compress char[] array to byte[].
2246   void char_array_compress(Register src, Register dst, Register len,
2247                            XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
2248                            XMMRegister tmp4, Register tmp5, Register result,
2249                            KRegister mask1 = knoreg, KRegister mask2 = knoreg);
2250 
2251   // Inflate byte[] array to char[].
2252   void byte_array_inflate(Register src, Register dst, Register len,
2253                           XMMRegister tmp1, Register tmp2, KRegister mask = knoreg);
2254 
2255   void fill_masked(BasicType bt, Address dst, XMMRegister xmm, KRegister mask,
2256                    Register length, Register temp, int vec_enc);
2257 
2258   void fill64_masked(uint shift, Register dst, int disp,
2259                          XMMRegister xmm, KRegister mask, Register length,
2260                          Register temp, bool use64byteVector = false);
2261 
2262   void fill32_masked(uint shift, Register dst, int disp,
2263                          XMMRegister xmm, KRegister mask, Register length,
2264                          Register temp);
2265 
2266   void fill32(Address dst, XMMRegister xmm);
2267 
2268   void fill32(Register dst, int disp, XMMRegister xmm);
2269 
2270   void fill64(Address dst, XMMRegister xmm, bool use64byteVector = false);
2271 
2272   void fill64(Register dst, int dis, XMMRegister xmm, bool use64byteVector = false);
2273 
2274 #ifdef _LP64
2275   void convert_f2i(Register dst, XMMRegister src);
2276   void convert_d2i(Register dst, XMMRegister src);
2277   void convert_f2l(Register dst, XMMRegister src);
2278   void convert_d2l(Register dst, XMMRegister src);
2279   void round_double(Register dst, XMMRegister src, Register rtmp, Register rcx);
2280   void round_float(Register dst, XMMRegister src, Register rtmp, Register rcx);
2281 
2282   void cache_wb(Address line);
2283   void cache_wbsync(bool is_pre);
2284 
2285 #ifdef COMPILER2_OR_JVMCI
2286   void generate_fill_avx3(BasicType type, Register to, Register value,
2287                           Register count, Register rtmp, XMMRegister xtmp);
2288 #endif // COMPILER2_OR_JVMCI
2289 #endif // _LP64
2290 
2291   void vallones(XMMRegister dst, int vector_len);
2292 
2293   void check_stack_alignment(Register sp, const char* msg, unsigned bias = 0, Register tmp = noreg);
2294 
2295   void lightweight_lock(Register basic_lock, Register obj, Register reg_rax, Register thread, Register tmp, Label& slow);
2296   void lightweight_unlock(Register obj, Register reg_rax, Register thread, Register tmp, Label& slow);
2297 
2298 #ifdef _LP64
2299   void save_legacy_gprs();
2300   void restore_legacy_gprs();
2301   void setcc(Assembler::Condition comparison, Register dst);
2302 #endif
2303 };
2304 
2305 #endif // CPU_X86_MACROASSEMBLER_X86_HPP