1 /*
   2  * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef CPU_X86_MACROASSEMBLER_X86_HPP
  26 #define CPU_X86_MACROASSEMBLER_X86_HPP
  27 
  28 #include "asm/assembler.hpp"
  29 #include "asm/register.hpp"
  30 #include "code/vmreg.inline.hpp"
  31 #include "compiler/oopMap.hpp"
  32 #include "utilities/macros.hpp"
  33 #include "runtime/signature.hpp"
  34 #include "runtime/vm_version.hpp"
  35 #include "utilities/checkedCast.hpp"
  36 
  37 class ciInlineKlass;
  38 
  39 // MacroAssembler extends Assembler by frequently used macros.
  40 //
  41 // Instructions for which a 'better' code sequence exists depending
  42 // on arguments should also go in here.
  43 
  44 class MacroAssembler: public Assembler {
  45   friend class LIR_Assembler;
  46   friend class Runtime1;      // as_Address()
  47 
  48  public:
  49   // Support for VM calls
  50   //
  51   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  52   // may customize this version by overriding it for its purposes (e.g., to save/restore
  53   // additional registers when doing a VM call).
  54 
  55   virtual void call_VM_leaf_base(
  56     address entry_point,               // the entry point
  57     int     number_of_arguments        // the number of arguments to pop after the call
  58   );
  59 
  60  protected:
  61   // This is the base routine called by the different versions of call_VM. The interpreter
  62   // may customize this version by overriding it for its purposes (e.g., to save/restore
  63   // additional registers when doing a VM call).
  64   //
  65   // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
  66   // returns the register which contains the thread upon return. If a thread register has been
  67   // specified, the return value will correspond to that register. If no last_java_sp is specified
  68   // (noreg) than rsp will be used instead.
  69   virtual void call_VM_base(           // returns the register containing the thread upon return
  70     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  71     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  72     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  73     address  entry_point,              // the entry point
  74     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  75     bool     check_exceptions          // whether to check for pending exceptions after return
  76   );
  77 
  78   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  79 
  80   // helpers for FPU flag access
  81   // tmp is a temporary register, if none is available use noreg
  82   void save_rax   (Register tmp);
  83   void restore_rax(Register tmp);
  84 
  85  public:
  86   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
  87 
  88  // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  89  // The implementation is only non-empty for the InterpreterMacroAssembler,
  90  // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  91  virtual void check_and_handle_popframe(Register java_thread);
  92  virtual void check_and_handle_earlyret(Register java_thread);
  93 
  94   Address as_Address(AddressLiteral adr);
  95   Address as_Address(ArrayAddress adr, Register rscratch);
  96 
  97   // Support for null-checks
  98   //
  99   // Generates code that causes a null OS exception if the content of reg is null.
 100   // If the accessed location is M[reg + offset] and the offset is known, provide the
 101   // offset. No explicit code generation is needed if the offset is within a certain
 102   // range (0 <= offset <= page_size).
 103 
 104   void null_check(Register reg, int offset = -1);
 105   static bool needs_explicit_null_check(intptr_t offset);
 106   static bool uses_implicit_null_check(void* address);
 107 
 108   // markWord tests, kills markWord reg
 109   void test_markword_is_inline_type(Register markword, Label& is_inline_type);
 110 
 111   // inlineKlass queries, kills temp_reg
 112   void test_klass_is_inline_type(Register klass, Register temp_reg, Label& is_inline_type);
 113   void test_klass_is_empty_inline_type(Register klass, Register temp_reg, Label& is_empty_inline_type);
 114   void test_oop_is_not_inline_type(Register object, Register tmp, Label& not_inline_type);
 115 
 116   // Get the default value oop for the given InlineKlass
 117   void get_default_value_oop(Register inline_klass, Register temp_reg, Register obj);
 118   // The empty value oop, for the given InlineKlass ("empty" as in no instance fields)
 119   // get_default_value_oop with extra assertion for empty inline klass
 120   void get_empty_inline_type_oop(Register inline_klass, Register temp_reg, Register obj);
 121 
 122   void test_field_is_null_free_inline_type(Register flags, Register temp_reg, Label& is_null_free);
 123   void test_field_is_not_null_free_inline_type(Register flags, Register temp_reg, Label& not_null_free);
 124   void test_field_is_flat(Register flags, Register temp_reg, Label& is_flat);
 125   void test_field_has_null_marker(Register flags, Register temp_reg, Label& has_null_marker);
 126 
 127   // Check oops for special arrays, i.e. flat arrays and/or null-free arrays
 128   void test_oop_prototype_bit(Register oop, Register temp_reg, int32_t test_bit, bool jmp_set, Label& jmp_label);
 129   void test_flat_array_oop(Register oop, Register temp_reg, Label& is_flat_array);
 130   void test_non_flat_array_oop(Register oop, Register temp_reg, Label& is_non_flat_array);
 131   void test_null_free_array_oop(Register oop, Register temp_reg, Label& is_null_free_array);
 132   void test_non_null_free_array_oop(Register oop, Register temp_reg, Label& is_non_null_free_array);
 133 
 134   // Check array klass layout helper for flat or null-free arrays...
 135   void test_flat_array_layout(Register lh, Label& is_flat_array);
 136   void test_non_flat_array_layout(Register lh, Label& is_non_flat_array);
 137 
 138   // Required platform-specific helpers for Label::patch_instructions.
 139   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
 140   void pd_patch_instruction(address branch, address target, const char* file, int line) {
 141     unsigned char op = branch[0];
 142     assert(op == 0xE8 /* call */ ||
 143         op == 0xE9 /* jmp */ ||
 144         op == 0xEB /* short jmp */ ||
 145         (op & 0xF0) == 0x70 /* short jcc */ ||
 146         (op == 0x0F && (branch[1] & 0xF0) == 0x80) /* jcc */ ||
 147         (op == 0xC7 && branch[1] == 0xF8) /* xbegin */,
 148         "Invalid opcode at patch point");
 149 
 150     if (op == 0xEB || (op & 0xF0) == 0x70) {
 151       // short offset operators (jmp and jcc)
 152       char* disp = (char*) &branch[1];
 153       int imm8 = checked_cast<int>(target - (address) &disp[1]);
 154       guarantee(this->is8bit(imm8), "Short forward jump exceeds 8-bit offset at %s:%d",
 155                 file == nullptr ? "<null>" : file, line);
 156       *disp = (char)imm8;
 157     } else {
 158       int* disp = (int*) &branch[(op == 0x0F || op == 0xC7)? 2: 1];
 159       int imm32 = checked_cast<int>(target - (address) &disp[1]);
 160       *disp = imm32;
 161     }
 162   }
 163 
 164   // The following 4 methods return the offset of the appropriate move instruction
 165 
 166   // Support for fast byte/short loading with zero extension (depending on particular CPU)
 167   int load_unsigned_byte(Register dst, Address src);
 168   int load_unsigned_short(Register dst, Address src);
 169 
 170   // Support for fast byte/short loading with sign extension (depending on particular CPU)
 171   int load_signed_byte(Register dst, Address src);
 172   int load_signed_short(Register dst, Address src);
 173 
 174   // Support for sign-extension (hi:lo = extend_sign(lo))
 175   void extend_sign(Register hi, Register lo);
 176 
 177   // Load and store values by size and signed-ness
 178   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
 179   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
 180 
 181   // Support for inc/dec with optimal instruction selection depending on value
 182 
 183   void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
 184   void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
 185   void increment(Address dst, int value = 1)  { LP64_ONLY(incrementq(dst, value)) NOT_LP64(incrementl(dst, value)) ; }
 186   void decrement(Address dst, int value = 1)  { LP64_ONLY(decrementq(dst, value)) NOT_LP64(decrementl(dst, value)) ; }
 187 
 188   void decrementl(Address dst, int value = 1);
 189   void decrementl(Register reg, int value = 1);
 190 
 191   void decrementq(Register reg, int value = 1);
 192   void decrementq(Address dst, int value = 1);
 193 
 194   void incrementl(Address dst, int value = 1);
 195   void incrementl(Register reg, int value = 1);
 196 
 197   void incrementq(Register reg, int value = 1);
 198   void incrementq(Address dst, int value = 1);
 199 
 200   void incrementl(AddressLiteral dst, Register rscratch = noreg);
 201   void incrementl(ArrayAddress   dst, Register rscratch);
 202 
 203   void incrementq(AddressLiteral dst, Register rscratch = noreg);
 204 
 205   // Support optimal SSE move instructions.
 206   void movflt(XMMRegister dst, XMMRegister src) {
 207     if (dst-> encoding() == src->encoding()) return;
 208     if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
 209     else                       { movss (dst, src); return; }
 210   }
 211   void movflt(XMMRegister dst, Address src) { movss(dst, src); }
 212   void movflt(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
 213   void movflt(Address dst, XMMRegister src) { movss(dst, src); }
 214 
 215   // Move with zero extension
 216   void movfltz(XMMRegister dst, XMMRegister src) { movss(dst, src); }
 217 
 218   void movdbl(XMMRegister dst, XMMRegister src) {
 219     if (dst-> encoding() == src->encoding()) return;
 220     if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
 221     else                       { movsd (dst, src); return; }
 222   }
 223 
 224   void movdbl(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
 225 
 226   void movdbl(XMMRegister dst, Address src) {
 227     if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
 228     else                         { movlpd(dst, src); return; }
 229   }
 230   void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
 231 
 232   void flt_to_flt16(Register dst, XMMRegister src, XMMRegister tmp) {
 233     // Use separate tmp XMM register because caller may
 234     // requires src XMM register to be unchanged (as in x86.ad).
 235     vcvtps2ph(tmp, src, 0x04, Assembler::AVX_128bit);
 236     movdl(dst, tmp);
 237     movswl(dst, dst);
 238   }
 239 
 240   void flt16_to_flt(XMMRegister dst, Register src) {
 241     movdl(dst, src);
 242     vcvtph2ps(dst, dst, Assembler::AVX_128bit);
 243   }
 244 
 245   // Alignment
 246   void align32();
 247   void align64();
 248   void align(uint modulus);
 249   void align(uint modulus, uint target);
 250 
 251   void post_call_nop();
 252   // A 5 byte nop that is safe for patching (see patch_verified_entry)
 253   void fat_nop();
 254 
 255   // Stack frame creation/removal
 256   void enter();
 257   void leave();
 258 
 259   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
 260   // The pointer will be loaded into the thread register.
 261   void get_thread(Register thread);
 262 
 263 #ifdef _LP64
 264   // Support for argument shuffling
 265 
 266   // bias in bytes
 267   void move32_64(VMRegPair src, VMRegPair dst, Register tmp = rax, int in_stk_bias = 0, int out_stk_bias = 0);
 268   void long_move(VMRegPair src, VMRegPair dst, Register tmp = rax, int in_stk_bias = 0, int out_stk_bias = 0);
 269   void float_move(VMRegPair src, VMRegPair dst, Register tmp = rax, int in_stk_bias = 0, int out_stk_bias = 0);
 270   void double_move(VMRegPair src, VMRegPair dst, Register tmp = rax, int in_stk_bias = 0, int out_stk_bias = 0);
 271   void move_ptr(VMRegPair src, VMRegPair dst);
 272   void object_move(OopMap* map,
 273                    int oop_handle_offset,
 274                    int framesize_in_slots,
 275                    VMRegPair src,
 276                    VMRegPair dst,
 277                    bool is_receiver,
 278                    int* receiver_offset);
 279 #endif // _LP64
 280 
 281   // Support for VM calls
 282   //
 283   // It is imperative that all calls into the VM are handled via the call_VM macros.
 284   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 285   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 286 
 287 
 288   void call_VM(Register oop_result,
 289                address entry_point,
 290                bool check_exceptions = true);
 291   void call_VM(Register oop_result,
 292                address entry_point,
 293                Register arg_1,
 294                bool check_exceptions = true);
 295   void call_VM(Register oop_result,
 296                address entry_point,
 297                Register arg_1, Register arg_2,
 298                bool check_exceptions = true);
 299   void call_VM(Register oop_result,
 300                address entry_point,
 301                Register arg_1, Register arg_2, Register arg_3,
 302                bool check_exceptions = true);
 303 
 304   // Overloadings with last_Java_sp
 305   void call_VM(Register oop_result,
 306                Register last_java_sp,
 307                address entry_point,
 308                int number_of_arguments = 0,
 309                bool check_exceptions = true);
 310   void call_VM(Register oop_result,
 311                Register last_java_sp,
 312                address entry_point,
 313                Register arg_1, bool
 314                check_exceptions = true);
 315   void call_VM(Register oop_result,
 316                Register last_java_sp,
 317                address entry_point,
 318                Register arg_1, Register arg_2,
 319                bool check_exceptions = true);
 320   void call_VM(Register oop_result,
 321                Register last_java_sp,
 322                address entry_point,
 323                Register arg_1, Register arg_2, Register arg_3,
 324                bool check_exceptions = true);
 325 
 326   void get_vm_result  (Register oop_result, Register thread);
 327   void get_vm_result_2(Register metadata_result, Register thread);
 328 
 329   // These always tightly bind to MacroAssembler::call_VM_base
 330   // bypassing the virtual implementation
 331   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 332   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 333   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 334   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 335   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
 336 
 337   void call_VM_leaf0(address entry_point);
 338   void call_VM_leaf(address entry_point,
 339                     int number_of_arguments = 0);
 340   void call_VM_leaf(address entry_point,
 341                     Register arg_1);
 342   void call_VM_leaf(address entry_point,
 343                     Register arg_1, Register arg_2);
 344   void call_VM_leaf(address entry_point,
 345                     Register arg_1, Register arg_2, Register arg_3);
 346 
 347   void call_VM_leaf(address entry_point,
 348                     Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 349 
 350   // These always tightly bind to MacroAssembler::call_VM_leaf_base
 351   // bypassing the virtual implementation
 352   void super_call_VM_leaf(address entry_point);
 353   void super_call_VM_leaf(address entry_point, Register arg_1);
 354   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 355   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 356   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 357 
 358   // last Java Frame (fills frame anchor)
 359   void set_last_Java_frame(Register thread,
 360                            Register last_java_sp,
 361                            Register last_java_fp,
 362                            address  last_java_pc,
 363                            Register rscratch);
 364 
 365   // thread in the default location (r15_thread on 64bit)
 366   void set_last_Java_frame(Register last_java_sp,
 367                            Register last_java_fp,
 368                            address  last_java_pc,
 369                            Register rscratch);
 370 
 371   void reset_last_Java_frame(Register thread, bool clear_fp);
 372 
 373   // thread in the default location (r15_thread on 64bit)
 374   void reset_last_Java_frame(bool clear_fp);
 375 
 376   // jobjects
 377   void clear_jobject_tag(Register possibly_non_local);
 378   void resolve_jobject(Register value, Register thread, Register tmp);
 379   void resolve_global_jobject(Register value, Register thread, Register tmp);
 380 
 381   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
 382   void c2bool(Register x);
 383 
 384   // C++ bool manipulation
 385 
 386   void movbool(Register dst, Address src);
 387   void movbool(Address dst, bool boolconst);
 388   void movbool(Address dst, Register src);
 389   void testbool(Register dst);
 390 
 391   void resolve_oop_handle(Register result, Register tmp);
 392   void resolve_weak_handle(Register result, Register tmp);
 393   void load_mirror(Register mirror, Register method, Register tmp);
 394   void load_method_holder_cld(Register rresult, Register rmethod);
 395 
 396   void load_method_holder(Register holder, Register method);
 397 
 398   // oop manipulations
 399   void load_metadata(Register dst, Register src);
 400   void load_klass(Register dst, Register src, Register tmp);
 401   void store_klass(Register dst, Register src, Register tmp);
 402 
 403   void access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src,
 404                       Register tmp1, Register thread_tmp);
 405   void access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register val,
 406                        Register tmp1, Register tmp2, Register tmp3);
 407 
 408   void access_value_copy(DecoratorSet decorators, Register src, Register dst, Register inline_klass);
 409 
 410   // inline type data payload offsets...
 411   void first_field_offset(Register inline_klass, Register offset);
 412   void data_for_oop(Register oop, Register data, Register inline_klass);
 413   // get data payload ptr a flat value array at index, kills rcx and index
 414   void data_for_value_array_index(Register array, Register array_klass,
 415                                   Register index, Register data);
 416 
 417   void load_heap_oop(Register dst, Address src, Register tmp1 = noreg,
 418                      Register thread_tmp = noreg, DecoratorSet decorators = 0);
 419   void load_heap_oop_not_null(Register dst, Address src, Register tmp1 = noreg,
 420                               Register thread_tmp = noreg, DecoratorSet decorators = 0);
 421   void store_heap_oop(Address dst, Register val, Register tmp1 = noreg,
 422                       Register tmp2 = noreg, Register tmp3 = noreg, DecoratorSet decorators = 0);
 423 
 424   // Used for storing null. All other oop constants should be
 425   // stored using routines that take a jobject.
 426   void store_heap_oop_null(Address dst);
 427 
 428   void load_prototype_header(Register dst, Register src, Register tmp);
 429 
 430 #ifdef _LP64
 431   void store_klass_gap(Register dst, Register src);
 432 
 433   // This dummy is to prevent a call to store_heap_oop from
 434   // converting a zero (like null) into a Register by giving
 435   // the compiler two choices it can't resolve
 436 
 437   void store_heap_oop(Address dst, void* dummy);
 438 
 439   void encode_heap_oop(Register r);
 440   void decode_heap_oop(Register r);
 441   void encode_heap_oop_not_null(Register r);
 442   void decode_heap_oop_not_null(Register r);
 443   void encode_heap_oop_not_null(Register dst, Register src);
 444   void decode_heap_oop_not_null(Register dst, Register src);
 445 
 446   void set_narrow_oop(Register dst, jobject obj);
 447   void set_narrow_oop(Address dst, jobject obj);
 448   void cmp_narrow_oop(Register dst, jobject obj);
 449   void cmp_narrow_oop(Address dst, jobject obj);
 450 
 451   void encode_klass_not_null(Register r, Register tmp);
 452   void decode_klass_not_null(Register r, Register tmp);
 453   void encode_and_move_klass_not_null(Register dst, Register src);
 454   void decode_and_move_klass_not_null(Register dst, Register src);
 455   void set_narrow_klass(Register dst, Klass* k);
 456   void set_narrow_klass(Address dst, Klass* k);
 457   void cmp_narrow_klass(Register dst, Klass* k);
 458   void cmp_narrow_klass(Address dst, Klass* k);
 459 
 460   // if heap base register is used - reinit it with the correct value
 461   void reinit_heapbase();
 462 
 463   DEBUG_ONLY(void verify_heapbase(const char* msg);)
 464 
 465 #endif // _LP64
 466 
 467   // Int division/remainder for Java
 468   // (as idivl, but checks for special case as described in JVM spec.)
 469   // returns idivl instruction offset for implicit exception handling
 470   int corrected_idivl(Register reg);
 471 
 472   // Long division/remainder for Java
 473   // (as idivq, but checks for special case as described in JVM spec.)
 474   // returns idivq instruction offset for implicit exception handling
 475   int corrected_idivq(Register reg);
 476 
 477   void int3();
 478 
 479   // Long operation macros for a 32bit cpu
 480   // Long negation for Java
 481   void lneg(Register hi, Register lo);
 482 
 483   // Long multiplication for Java
 484   // (destroys contents of eax, ebx, ecx and edx)
 485   void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
 486 
 487   // Long shifts for Java
 488   // (semantics as described in JVM spec.)
 489   void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
 490   void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
 491 
 492   // Long compare for Java
 493   // (semantics as described in JVM spec.)
 494   void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
 495 
 496 
 497   // misc
 498 
 499   // Sign extension
 500   void sign_extend_short(Register reg);
 501   void sign_extend_byte(Register reg);
 502 
 503   // Division by power of 2, rounding towards 0
 504   void division_with_shift(Register reg, int shift_value);
 505 
 506 #ifndef _LP64
 507   // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
 508   //
 509   // CF (corresponds to C0) if x < y
 510   // PF (corresponds to C2) if unordered
 511   // ZF (corresponds to C3) if x = y
 512   //
 513   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 514   // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
 515   void fcmp(Register tmp);
 516   // Variant of the above which allows y to be further down the stack
 517   // and which only pops x and y if specified. If pop_right is
 518   // specified then pop_left must also be specified.
 519   void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
 520 
 521   // Floating-point comparison for Java
 522   // Compares the top-most stack entries on the FPU stack and stores the result in dst.
 523   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 524   // (semantics as described in JVM spec.)
 525   void fcmp2int(Register dst, bool unordered_is_less);
 526   // Variant of the above which allows y to be further down the stack
 527   // and which only pops x and y if specified. If pop_right is
 528   // specified then pop_left must also be specified.
 529   void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
 530 
 531   // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
 532   // tmp is a temporary register, if none is available use noreg
 533   void fremr(Register tmp);
 534 
 535   // only if +VerifyFPU
 536   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
 537 #endif // !LP64
 538 
 539   // dst = c = a * b + c
 540   void fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 541   void fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 542 
 543   void vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
 544   void vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
 545   void vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
 546   void vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
 547 
 548 
 549   // same as fcmp2int, but using SSE2
 550   void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 551   void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 552 
 553   // branch to L if FPU flag C2 is set/not set
 554   // tmp is a temporary register, if none is available use noreg
 555   void jC2 (Register tmp, Label& L);
 556   void jnC2(Register tmp, Label& L);
 557 
 558   // Load float value from 'address'. If UseSSE >= 1, the value is loaded into
 559   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 560   void load_float(Address src);
 561 
 562   // Store float value to 'address'. If UseSSE >= 1, the value is stored
 563   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 564   void store_float(Address dst);
 565 
 566   // Load double value from 'address'. If UseSSE >= 2, the value is loaded into
 567   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 568   void load_double(Address src);
 569 
 570   // Store double value to 'address'. If UseSSE >= 2, the value is stored
 571   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 572   void store_double(Address dst);
 573 
 574 #ifndef _LP64
 575   // Pop ST (ffree & fincstp combined)
 576   void fpop();
 577 
 578   void empty_FPU_stack();
 579 #endif // !_LP64
 580 
 581   void push_IU_state();
 582   void pop_IU_state();
 583 
 584   void push_FPU_state();
 585   void pop_FPU_state();
 586 
 587   void push_CPU_state();
 588   void pop_CPU_state();
 589 
 590   void push_cont_fastpath();
 591   void pop_cont_fastpath();
 592 
 593   void inc_held_monitor_count();
 594   void dec_held_monitor_count();
 595 
 596   DEBUG_ONLY(void stop_if_in_cont(Register cont_reg, const char* name);)
 597 
 598   // Round up to a power of two
 599   void round_to(Register reg, int modulus);
 600 
 601 private:
 602   // General purpose and XMM registers potentially clobbered by native code; there
 603   // is no need for FPU or AVX opmask related methods because C1/interpreter
 604   // - we save/restore FPU state as a whole always
 605   // - do not care about AVX-512 opmask
 606   static RegSet call_clobbered_gp_registers();
 607   static XMMRegSet call_clobbered_xmm_registers();
 608 
 609   void push_set(XMMRegSet set, int offset);
 610   void pop_set(XMMRegSet set, int offset);
 611 
 612 public:
 613   void push_set(RegSet set, int offset = -1);
 614   void pop_set(RegSet set, int offset = -1);
 615 
 616   // Push and pop everything that might be clobbered by a native
 617   // runtime call.
 618   // Only save the lower 64 bits of each vector register.
 619   // Additional registers can be excluded in a passed RegSet.
 620   void push_call_clobbered_registers_except(RegSet exclude, bool save_fpu = true);
 621   void pop_call_clobbered_registers_except(RegSet exclude, bool restore_fpu = true);
 622 
 623   void push_call_clobbered_registers(bool save_fpu = true) {
 624     push_call_clobbered_registers_except(RegSet(), save_fpu);
 625   }
 626   void pop_call_clobbered_registers(bool restore_fpu = true) {
 627     pop_call_clobbered_registers_except(RegSet(), restore_fpu);
 628   }
 629 
 630   // allocation
 631 
 632   // Object / value buffer allocation...
 633   // Allocate instance of klass, assumes klass initialized by caller
 634   // new_obj prefers to be rax
 635   // Kills t1 and t2, perserves klass, return allocation in new_obj (rsi on LP64)
 636   void allocate_instance(Register klass, Register new_obj,
 637                          Register t1, Register t2,
 638                          bool clear_fields, Label& alloc_failed);
 639 
 640   void tlab_allocate(
 641     Register thread,                   // Current thread
 642     Register obj,                      // result: pointer to object after successful allocation
 643     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 644     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 645     Register t1,                       // temp register
 646     Register t2,                       // temp register
 647     Label&   slow_case                 // continuation point if fast allocation fails
 648   );
 649   void zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp);
 650 
 651   // For field "index" within "klass", return inline_klass ...
 652   void get_inline_type_field_klass(Register klass, Register index, Register inline_klass);
 653 
 654   void population_count(Register dst, Register src, Register scratch1, Register scratch2);
 655 
 656   // interface method calling
 657   void lookup_interface_method(Register recv_klass,
 658                                Register intf_klass,
 659                                RegisterOrConstant itable_index,
 660                                Register method_result,
 661                                Register scan_temp,
 662                                Label& no_such_interface,
 663                                bool return_method = true);
 664 
 665   void lookup_interface_method_stub(Register recv_klass,
 666                                     Register holder_klass,
 667                                     Register resolved_klass,
 668                                     Register method_result,
 669                                     Register scan_temp,
 670                                     Register temp_reg2,
 671                                     Register receiver,
 672                                     int itable_index,
 673                                     Label& L_no_such_interface);
 674 
 675   // virtual method calling
 676   void lookup_virtual_method(Register recv_klass,
 677                              RegisterOrConstant vtable_index,
 678                              Register method_result);
 679 
 680   // Test sub_klass against super_klass, with fast and slow paths.
 681 
 682   // The fast path produces a tri-state answer: yes / no / maybe-slow.
 683   // One of the three labels can be null, meaning take the fall-through.
 684   // If super_check_offset is -1, the value is loaded up from super_klass.
 685   // No registers are killed, except temp_reg.
 686   void check_klass_subtype_fast_path(Register sub_klass,
 687                                      Register super_klass,
 688                                      Register temp_reg,
 689                                      Label* L_success,
 690                                      Label* L_failure,
 691                                      Label* L_slow_path,
 692                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
 693 
 694   // The rest of the type check; must be wired to a corresponding fast path.
 695   // It does not repeat the fast path logic, so don't use it standalone.
 696   // The temp_reg and temp2_reg can be noreg, if no temps are available.
 697   // Updates the sub's secondary super cache as necessary.
 698   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
 699   void check_klass_subtype_slow_path(Register sub_klass,
 700                                      Register super_klass,
 701                                      Register temp_reg,
 702                                      Register temp2_reg,
 703                                      Label* L_success,
 704                                      Label* L_failure,
 705                                      bool set_cond_codes = false);
 706   void hashed_check_klass_subtype_slow_path(Register sub_klass,
 707                                      Register super_klass,
 708                                      Register temp_reg,
 709                                      Register temp2_reg,
 710                                      Label* L_success,
 711                                      Label* L_failure,
 712                                      bool set_cond_codes = false);
 713 
 714   // As above, but with a constant super_klass.
 715   // The result is in Register result, not the condition codes.
 716   void lookup_secondary_supers_table(Register sub_klass,
 717                                      Register super_klass,
 718                                      Register temp1,
 719                                      Register temp2,
 720                                      Register temp3,
 721                                      Register temp4,
 722                                      Register result,
 723                                      u1 super_klass_slot);
 724 
 725   void lookup_secondary_supers_table_slow_path(Register r_super_klass,
 726                                                Register r_array_base,
 727                                                Register r_array_index,
 728                                                Register r_bitmap,
 729                                                Register temp1,
 730                                                Register temp2,
 731                                                Label* L_success,
 732                                                Label* L_failure = nullptr);
 733 
 734   void verify_secondary_supers_table(Register r_sub_klass,
 735                                      Register r_super_klass,
 736                                      Register expected,
 737                                      Register temp1,
 738                                      Register temp2,
 739                                      Register temp3);
 740 
 741   void repne_scanq(Register addr, Register value, Register count, Register limit,
 742                    Label* L_success,
 743                    Label* L_failure = nullptr);
 744 
 745     // Simplified, combined version, good for typical uses.
 746   // Falls through on failure.
 747   void check_klass_subtype(Register sub_klass,
 748                            Register super_klass,
 749                            Register temp_reg,
 750                            Label& L_success);
 751 
 752   void clinit_barrier(Register klass,
 753                       Register thread,
 754                       Label* L_fast_path = nullptr,
 755                       Label* L_slow_path = nullptr);
 756 
 757   // method handles (JSR 292)
 758   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
 759 
 760   // Debugging
 761 
 762   // only if +VerifyOops
 763   void _verify_oop(Register reg, const char* s, const char* file, int line);
 764   void _verify_oop_addr(Address addr, const char* s, const char* file, int line);
 765 
 766   void _verify_oop_checked(Register reg, const char* s, const char* file, int line) {
 767     if (VerifyOops) {
 768       _verify_oop(reg, s, file, line);
 769     }
 770   }
 771   void _verify_oop_addr_checked(Address reg, const char* s, const char* file, int line) {
 772     if (VerifyOops) {
 773       _verify_oop_addr(reg, s, file, line);
 774     }
 775   }
 776 
 777   // TODO: verify method and klass metadata (compare against vptr?)
 778   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
 779   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
 780 
 781 #define verify_oop(reg) _verify_oop_checked(reg, "broken oop " #reg, __FILE__, __LINE__)
 782 #define verify_oop_msg(reg, msg) _verify_oop_checked(reg, "broken oop " #reg ", " #msg, __FILE__, __LINE__)
 783 #define verify_oop_addr(addr) _verify_oop_addr_checked(addr, "broken oop addr " #addr, __FILE__, __LINE__)
 784 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
 785 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
 786 
 787   // Verify or restore cpu control state after JNI call
 788   void restore_cpu_control_state_after_jni(Register rscratch);
 789 
 790   // prints msg, dumps registers and stops execution
 791   void stop(const char* msg);
 792 
 793   // prints msg and continues
 794   void warn(const char* msg);
 795 
 796   // dumps registers and other state
 797   void print_state();
 798 
 799   static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
 800   static void debug64(char* msg, int64_t pc, int64_t regs[]);
 801   static void print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip);
 802   static void print_state64(int64_t pc, int64_t regs[]);
 803 
 804   void os_breakpoint();
 805 
 806   void untested()                                { stop("untested"); }
 807 
 808   void unimplemented(const char* what = "");
 809 
 810   void should_not_reach_here()                   { stop("should not reach here"); }
 811 
 812   void print_CPU_state();
 813 
 814   // Stack overflow checking
 815   void bang_stack_with_offset(int offset) {
 816     // stack grows down, caller passes positive offset
 817     assert(offset > 0, "must bang with negative offset");
 818     movl(Address(rsp, (-offset)), rax);
 819   }
 820 
 821   // Writes to stack successive pages until offset reached to check for
 822   // stack overflow + shadow pages.  Also, clobbers tmp
 823   void bang_stack_size(Register size, Register tmp);
 824 
 825   // Check for reserved stack access in method being exited (for JIT)
 826   void reserved_stack_check();
 827 
 828   void safepoint_poll(Label& slow_path, Register thread_reg, bool at_return, bool in_nmethod);
 829 
 830   void verify_tlab();
 831 
 832   static Condition negate_condition(Condition cond);
 833 
 834   // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
 835   // operands. In general the names are modified to avoid hiding the instruction in Assembler
 836   // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
 837   // here in MacroAssembler. The major exception to this rule is call
 838 
 839   // Arithmetics
 840 
 841 
 842   void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
 843   void addptr(Address dst, Register src);
 844 
 845   void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
 846   void addptr(Register dst, int32_t src);
 847   void addptr(Register dst, Register src);
 848   void addptr(Register dst, RegisterOrConstant src) {
 849     if (src.is_constant()) addptr(dst, checked_cast<int>(src.as_constant()));
 850     else                   addptr(dst, src.as_register());
 851   }
 852 
 853   void andptr(Register dst, int32_t src);
 854   void andptr(Register dst, Register src) { LP64_ONLY(andq(dst, src)) NOT_LP64(andl(dst, src)) ; }
 855   void andptr(Register dst, Address src) { LP64_ONLY(andq(dst, src)) NOT_LP64(andl(dst, src)) ; }
 856 
 857 #ifdef _LP64
 858   using Assembler::andq;
 859   void andq(Register dst, AddressLiteral src, Register rscratch = noreg);
 860 #endif
 861 
 862   void cmp8(AddressLiteral src1, int imm, Register rscratch = noreg);
 863 
 864   // renamed to drag out the casting of address to int32_t/intptr_t
 865   void cmp32(Register src1, int32_t imm);
 866 
 867   void cmp32(AddressLiteral src1, int32_t imm, Register rscratch = noreg);
 868   // compare reg - mem, or reg - &mem
 869   void cmp32(Register src1, AddressLiteral src2, Register rscratch = noreg);
 870 
 871   void cmp32(Register src1, Address src2);
 872 
 873 #ifndef _LP64
 874   void cmpklass(Address dst, Metadata* obj);
 875   void cmpklass(Register dst, Metadata* obj);
 876   void cmpoop(Address dst, jobject obj);
 877 #endif // _LP64
 878 
 879   void cmpoop(Register src1, Register src2);
 880   void cmpoop(Register src1, Address src2);
 881   void cmpoop(Register dst, jobject obj, Register rscratch);
 882 
 883   // NOTE src2 must be the lval. This is NOT an mem-mem compare
 884   void cmpptr(Address src1, AddressLiteral src2, Register rscratch);
 885 
 886   void cmpptr(Register src1, AddressLiteral src2, Register rscratch = noreg);
 887 
 888   void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 889   void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 890   // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 891 
 892   void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 893   void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 894 
 895   // cmp64 to avoild hiding cmpq
 896   void cmp64(Register src1, AddressLiteral src, Register rscratch = noreg);
 897 
 898   void cmpxchgptr(Register reg, Address adr);
 899 
 900   void locked_cmpxchgptr(Register reg, AddressLiteral adr, Register rscratch = noreg);
 901 
 902   void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
 903   void imulptr(Register dst, Register src, int imm32) { LP64_ONLY(imulq(dst, src, imm32)) NOT_LP64(imull(dst, src, imm32)); }
 904 
 905 
 906   void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
 907 
 908   void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
 909 
 910   void shlptr(Register dst, int32_t shift);
 911   void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
 912 
 913   void shrptr(Register dst, int32_t shift);
 914   void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
 915 
 916   void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
 917   void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
 918 
 919   void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 920 
 921   void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 922   void subptr(Register dst, int32_t src);
 923   // Force generation of a 4 byte immediate value even if it fits into 8bit
 924   void subptr_imm32(Register dst, int32_t src);
 925   void subptr(Register dst, Register src);
 926   void subptr(Register dst, RegisterOrConstant src) {
 927     if (src.is_constant()) subptr(dst, (int) src.as_constant());
 928     else                   subptr(dst,       src.as_register());
 929   }
 930 
 931   void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 932   void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 933 
 934   void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 935   void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 936 
 937   void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
 938 
 939 
 940 
 941   // Helper functions for statistics gathering.
 942   // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
 943   void cond_inc32(Condition cond, AddressLiteral counter_addr, Register rscratch = noreg);
 944   // Unconditional atomic increment.
 945   void atomic_incl(Address counter_addr);
 946   void atomic_incl(AddressLiteral counter_addr, Register rscratch = noreg);
 947 #ifdef _LP64
 948   void atomic_incq(Address counter_addr);
 949   void atomic_incq(AddressLiteral counter_addr, Register rscratch = noreg);
 950 #endif
 951   void atomic_incptr(AddressLiteral counter_addr, Register rscratch = noreg) { LP64_ONLY(atomic_incq(counter_addr, rscratch)) NOT_LP64(atomic_incl(counter_addr, rscratch)) ; }
 952   void atomic_incptr(Address counter_addr) { LP64_ONLY(atomic_incq(counter_addr)) NOT_LP64(atomic_incl(counter_addr)) ; }
 953 
 954   void lea(Register dst, Address        adr) { Assembler::lea(dst, adr); }
 955   void lea(Register dst, AddressLiteral adr);
 956   void lea(Address  dst, AddressLiteral adr, Register rscratch);
 957 
 958   void leal32(Register dst, Address src) { leal(dst, src); }
 959 
 960   // Import other testl() methods from the parent class or else
 961   // they will be hidden by the following overriding declaration.
 962   using Assembler::testl;
 963   void testl(Address dst, int32_t imm32);
 964   void testl(Register dst, int32_t imm32);
 965   void testl(Register dst, AddressLiteral src); // requires reachable address
 966   using Assembler::testq;
 967   void testq(Address dst, int32_t imm32);
 968   void testq(Register dst, int32_t imm32);
 969 
 970   void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 971   void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 972   void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 973   void orptr(Address dst, int32_t imm32) { LP64_ONLY(orq(dst, imm32)) NOT_LP64(orl(dst, imm32)); }
 974 
 975   void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
 976   void testptr(Register src1, Address src2) { LP64_ONLY(testq(src1, src2)) NOT_LP64(testl(src1, src2)); }
 977   void testptr(Address src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
 978   void testptr(Register src1, Register src2);
 979 
 980   void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 981   void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 982 
 983   // Calls
 984 
 985   void call(Label& L, relocInfo::relocType rtype);
 986   void call(Register entry);
 987   void call(Address addr) { Assembler::call(addr); }
 988 
 989   // NOTE: this call transfers to the effective address of entry NOT
 990   // the address contained by entry. This is because this is more natural
 991   // for jumps/calls.
 992   void call(AddressLiteral entry, Register rscratch = rax);
 993 
 994   // Emit the CompiledIC call idiom
 995   void ic_call(address entry, jint method_index = 0);
 996   static int ic_check_size();
 997   int ic_check(int end_alignment);
 998 
 999   void emit_static_call_stub();
1000 
1001   // Jumps
1002 
1003   // NOTE: these jumps transfer to the effective address of dst NOT
1004   // the address contained by dst. This is because this is more natural
1005   // for jumps/calls.
1006   void jump(AddressLiteral dst, Register rscratch = noreg);
1007 
1008   void jump_cc(Condition cc, AddressLiteral dst, Register rscratch = noreg);
1009 
1010   // 32bit can do a case table jump in one instruction but we no longer allow the base
1011   // to be installed in the Address class. This jump will transfer to the address
1012   // contained in the location described by entry (not the address of entry)
1013   void jump(ArrayAddress entry, Register rscratch);
1014 
1015   // Adding more natural conditional jump instructions
1016   void ALWAYSINLINE jo(Label& L, bool maybe_short = true) { jcc(Assembler::overflow, L, maybe_short); }
1017   void ALWAYSINLINE jno(Label& L, bool maybe_short = true) { jcc(Assembler::noOverflow, L, maybe_short); }
1018   void ALWAYSINLINE js(Label& L, bool maybe_short = true) { jcc(Assembler::negative, L, maybe_short); }
1019   void ALWAYSINLINE jns(Label& L, bool maybe_short = true) { jcc(Assembler::positive, L, maybe_short); }
1020   void ALWAYSINLINE je(Label& L, bool maybe_short = true) { jcc(Assembler::equal, L, maybe_short); }
1021   void ALWAYSINLINE jz(Label& L, bool maybe_short = true) { jcc(Assembler::zero, L, maybe_short); }
1022   void ALWAYSINLINE jne(Label& L, bool maybe_short = true) { jcc(Assembler::notEqual, L, maybe_short); }
1023   void ALWAYSINLINE jnz(Label& L, bool maybe_short = true) { jcc(Assembler::notZero, L, maybe_short); }
1024   void ALWAYSINLINE jb(Label& L, bool maybe_short = true) { jcc(Assembler::below, L, maybe_short); }
1025   void ALWAYSINLINE jnae(Label& L, bool maybe_short = true) { jcc(Assembler::below, L, maybe_short); }
1026   void ALWAYSINLINE jc(Label& L, bool maybe_short = true) { jcc(Assembler::carrySet, L, maybe_short); }
1027   void ALWAYSINLINE jnb(Label& L, bool maybe_short = true) { jcc(Assembler::aboveEqual, L, maybe_short); }
1028   void ALWAYSINLINE jae(Label& L, bool maybe_short = true) { jcc(Assembler::aboveEqual, L, maybe_short); }
1029   void ALWAYSINLINE jnc(Label& L, bool maybe_short = true) { jcc(Assembler::carryClear, L, maybe_short); }
1030   void ALWAYSINLINE jbe(Label& L, bool maybe_short = true) { jcc(Assembler::belowEqual, L, maybe_short); }
1031   void ALWAYSINLINE jna(Label& L, bool maybe_short = true) { jcc(Assembler::belowEqual, L, maybe_short); }
1032   void ALWAYSINLINE ja(Label& L, bool maybe_short = true) { jcc(Assembler::above, L, maybe_short); }
1033   void ALWAYSINLINE jnbe(Label& L, bool maybe_short = true) { jcc(Assembler::above, L, maybe_short); }
1034   void ALWAYSINLINE jl(Label& L, bool maybe_short = true) { jcc(Assembler::less, L, maybe_short); }
1035   void ALWAYSINLINE jnge(Label& L, bool maybe_short = true) { jcc(Assembler::less, L, maybe_short); }
1036   void ALWAYSINLINE jge(Label& L, bool maybe_short = true) { jcc(Assembler::greaterEqual, L, maybe_short); }
1037   void ALWAYSINLINE jnl(Label& L, bool maybe_short = true) { jcc(Assembler::greaterEqual, L, maybe_short); }
1038   void ALWAYSINLINE jle(Label& L, bool maybe_short = true) { jcc(Assembler::lessEqual, L, maybe_short); }
1039   void ALWAYSINLINE jng(Label& L, bool maybe_short = true) { jcc(Assembler::lessEqual, L, maybe_short); }
1040   void ALWAYSINLINE jg(Label& L, bool maybe_short = true) { jcc(Assembler::greater, L, maybe_short); }
1041   void ALWAYSINLINE jnle(Label& L, bool maybe_short = true) { jcc(Assembler::greater, L, maybe_short); }
1042   void ALWAYSINLINE jp(Label& L, bool maybe_short = true) { jcc(Assembler::parity, L, maybe_short); }
1043   void ALWAYSINLINE jpe(Label& L, bool maybe_short = true) { jcc(Assembler::parity, L, maybe_short); }
1044   void ALWAYSINLINE jnp(Label& L, bool maybe_short = true) { jcc(Assembler::noParity, L, maybe_short); }
1045   void ALWAYSINLINE jpo(Label& L, bool maybe_short = true) { jcc(Assembler::noParity, L, maybe_short); }
1046   // * No condition for this *  void ALWAYSINLINE jcxz(Label& L, bool maybe_short = true) { jcc(Assembler::cxz, L, maybe_short); }
1047   // * No condition for this *  void ALWAYSINLINE jecxz(Label& L, bool maybe_short = true) { jcc(Assembler::cxz, L, maybe_short); }
1048 
1049   // Short versions of the above
1050   void ALWAYSINLINE jo_b(Label& L) { jccb(Assembler::overflow, L); }
1051   void ALWAYSINLINE jno_b(Label& L) { jccb(Assembler::noOverflow, L); }
1052   void ALWAYSINLINE js_b(Label& L) { jccb(Assembler::negative, L); }
1053   void ALWAYSINLINE jns_b(Label& L) { jccb(Assembler::positive, L); }
1054   void ALWAYSINLINE je_b(Label& L) { jccb(Assembler::equal, L); }
1055   void ALWAYSINLINE jz_b(Label& L) { jccb(Assembler::zero, L); }
1056   void ALWAYSINLINE jne_b(Label& L) { jccb(Assembler::notEqual, L); }
1057   void ALWAYSINLINE jnz_b(Label& L) { jccb(Assembler::notZero, L); }
1058   void ALWAYSINLINE jb_b(Label& L) { jccb(Assembler::below, L); }
1059   void ALWAYSINLINE jnae_b(Label& L) { jccb(Assembler::below, L); }
1060   void ALWAYSINLINE jc_b(Label& L) { jccb(Assembler::carrySet, L); }
1061   void ALWAYSINLINE jnb_b(Label& L) { jccb(Assembler::aboveEqual, L); }
1062   void ALWAYSINLINE jae_b(Label& L) { jccb(Assembler::aboveEqual, L); }
1063   void ALWAYSINLINE jnc_b(Label& L) { jccb(Assembler::carryClear, L); }
1064   void ALWAYSINLINE jbe_b(Label& L) { jccb(Assembler::belowEqual, L); }
1065   void ALWAYSINLINE jna_b(Label& L) { jccb(Assembler::belowEqual, L); }
1066   void ALWAYSINLINE ja_b(Label& L) { jccb(Assembler::above, L); }
1067   void ALWAYSINLINE jnbe_b(Label& L) { jccb(Assembler::above, L); }
1068   void ALWAYSINLINE jl_b(Label& L) { jccb(Assembler::less, L); }
1069   void ALWAYSINLINE jnge_b(Label& L) { jccb(Assembler::less, L); }
1070   void ALWAYSINLINE jge_b(Label& L) { jccb(Assembler::greaterEqual, L); }
1071   void ALWAYSINLINE jnl_b(Label& L) { jccb(Assembler::greaterEqual, L); }
1072   void ALWAYSINLINE jle_b(Label& L) { jccb(Assembler::lessEqual, L); }
1073   void ALWAYSINLINE jng_b(Label& L) { jccb(Assembler::lessEqual, L); }
1074   void ALWAYSINLINE jg_b(Label& L) { jccb(Assembler::greater, L); }
1075   void ALWAYSINLINE jnle_b(Label& L) { jccb(Assembler::greater, L); }
1076   void ALWAYSINLINE jp_b(Label& L) { jccb(Assembler::parity, L); }
1077   void ALWAYSINLINE jpe_b(Label& L) { jccb(Assembler::parity, L); }
1078   void ALWAYSINLINE jnp_b(Label& L) { jccb(Assembler::noParity, L); }
1079   void ALWAYSINLINE jpo_b(Label& L) { jccb(Assembler::noParity, L); }
1080   // * No condition for this *  void ALWAYSINLINE jcxz_b(Label& L) { jccb(Assembler::cxz, L); }
1081   // * No condition for this *  void ALWAYSINLINE jecxz_b(Label& L) { jccb(Assembler::cxz, L); }
1082 
1083   // Floating
1084 
1085   void push_f(XMMRegister r);
1086   void pop_f(XMMRegister r);
1087   void push_d(XMMRegister r);
1088   void pop_d(XMMRegister r);
1089 
1090   void andpd(XMMRegister dst, XMMRegister    src) { Assembler::andpd(dst, src); }
1091   void andpd(XMMRegister dst, Address        src) { Assembler::andpd(dst, src); }
1092   void andpd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1093 
1094   void andps(XMMRegister dst, XMMRegister    src) { Assembler::andps(dst, src); }
1095   void andps(XMMRegister dst, Address        src) { Assembler::andps(dst, src); }
1096   void andps(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1097 
1098   void comiss(XMMRegister dst, XMMRegister    src) { Assembler::comiss(dst, src); }
1099   void comiss(XMMRegister dst, Address        src) { Assembler::comiss(dst, src); }
1100   void comiss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1101 
1102   void comisd(XMMRegister dst, XMMRegister    src) { Assembler::comisd(dst, src); }
1103   void comisd(XMMRegister dst, Address        src) { Assembler::comisd(dst, src); }
1104   void comisd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1105 
1106 #ifndef _LP64
1107   void fadd_s(Address        src) { Assembler::fadd_s(src); }
1108   void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
1109 
1110   void fldcw(Address        src) { Assembler::fldcw(src); }
1111   void fldcw(AddressLiteral src);
1112 
1113   void fld_s(int index)          { Assembler::fld_s(index); }
1114   void fld_s(Address        src) { Assembler::fld_s(src); }
1115   void fld_s(AddressLiteral src);
1116 
1117   void fld_d(Address        src) { Assembler::fld_d(src); }
1118   void fld_d(AddressLiteral src);
1119 
1120   void fld_x(Address        src) { Assembler::fld_x(src); }
1121   void fld_x(AddressLiteral src) { Assembler::fld_x(as_Address(src)); }
1122 
1123   void fmul_s(Address        src) { Assembler::fmul_s(src); }
1124   void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
1125 #endif // !_LP64
1126 
1127   void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
1128   void ldmxcsr(AddressLiteral src, Register rscratch = noreg);
1129 
1130 #ifdef _LP64
1131  private:
1132   void sha256_AVX2_one_round_compute(
1133     Register  reg_old_h,
1134     Register  reg_a,
1135     Register  reg_b,
1136     Register  reg_c,
1137     Register  reg_d,
1138     Register  reg_e,
1139     Register  reg_f,
1140     Register  reg_g,
1141     Register  reg_h,
1142     int iter);
1143   void sha256_AVX2_four_rounds_compute_first(int start);
1144   void sha256_AVX2_four_rounds_compute_last(int start);
1145   void sha256_AVX2_one_round_and_sched(
1146         XMMRegister xmm_0,     /* == ymm4 on 0, 1, 2, 3 iterations, then rotate 4 registers left on 4, 8, 12 iterations */
1147         XMMRegister xmm_1,     /* ymm5 */  /* full cycle is 16 iterations */
1148         XMMRegister xmm_2,     /* ymm6 */
1149         XMMRegister xmm_3,     /* ymm7 */
1150         Register    reg_a,      /* == eax on 0 iteration, then rotate 8 register right on each next iteration */
1151         Register    reg_b,      /* ebx */    /* full cycle is 8 iterations */
1152         Register    reg_c,      /* edi */
1153         Register    reg_d,      /* esi */
1154         Register    reg_e,      /* r8d */
1155         Register    reg_f,      /* r9d */
1156         Register    reg_g,      /* r10d */
1157         Register    reg_h,      /* r11d */
1158         int iter);
1159 
1160   void addm(int disp, Register r1, Register r2);
1161 
1162   void sha512_AVX2_one_round_compute(Register old_h, Register a, Register b, Register c, Register d,
1163                                      Register e, Register f, Register g, Register h, int iteration);
1164 
1165   void sha512_AVX2_one_round_and_schedule(XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1166                                           Register a, Register b, Register c, Register d, Register e, Register f,
1167                                           Register g, Register h, int iteration);
1168 
1169   void addmq(int disp, Register r1, Register r2);
1170  public:
1171   void sha256_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
1172                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
1173                    Register buf, Register state, Register ofs, Register limit, Register rsp,
1174                    bool multi_block, XMMRegister shuf_mask);
1175   void sha512_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
1176                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
1177                    Register buf, Register state, Register ofs, Register limit, Register rsp, bool multi_block,
1178                    XMMRegister shuf_mask);
1179 #endif // _LP64
1180 
1181   void fast_md5(Register buf, Address state, Address ofs, Address limit,
1182                 bool multi_block);
1183 
1184   void fast_sha1(XMMRegister abcd, XMMRegister e0, XMMRegister e1, XMMRegister msg0,
1185                  XMMRegister msg1, XMMRegister msg2, XMMRegister msg3, XMMRegister shuf_mask,
1186                  Register buf, Register state, Register ofs, Register limit, Register rsp,
1187                  bool multi_block);
1188 
1189 #ifdef _LP64
1190   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
1191                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
1192                    Register buf, Register state, Register ofs, Register limit, Register rsp,
1193                    bool multi_block, XMMRegister shuf_mask);
1194 #else
1195   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
1196                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
1197                    Register buf, Register state, Register ofs, Register limit, Register rsp,
1198                    bool multi_block);
1199 #endif
1200 
1201   void fast_exp(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1202                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1203                 Register rax, Register rcx, Register rdx, Register tmp);
1204 
1205 #ifndef _LP64
1206  private:
1207   // Initialized in macroAssembler_x86_constants.cpp
1208   static address ONES;
1209   static address L_2IL0FLOATPACKET_0;
1210   static address PI4_INV;
1211   static address PI4X3;
1212   static address PI4X4;
1213 
1214  public:
1215   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1216                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1217                 Register rax, Register rcx, Register rdx, Register tmp1);
1218 
1219   void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1220                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1221                 Register rax, Register rcx, Register rdx, Register tmp);
1222 
1223   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
1224                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
1225                 Register rdx, Register tmp);
1226 
1227   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1228                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1229                 Register rax, Register rbx, Register rdx);
1230 
1231   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1232                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1233                 Register rax, Register rcx, Register rdx, Register tmp);
1234 
1235   void libm_sincos_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1236                         Register edx, Register ebx, Register esi, Register edi,
1237                         Register ebp, Register esp);
1238 
1239   void libm_reduce_pi04l(Register eax, Register ecx, Register edx, Register ebx,
1240                          Register esi, Register edi, Register ebp, Register esp);
1241 
1242   void libm_tancot_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1243                         Register edx, Register ebx, Register esi, Register edi,
1244                         Register ebp, Register esp);
1245 
1246   void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1247                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1248                 Register rax, Register rcx, Register rdx, Register tmp);
1249 #endif // !_LP64
1250 
1251 private:
1252 
1253   // these are private because users should be doing movflt/movdbl
1254 
1255   void movss(Address     dst, XMMRegister    src) { Assembler::movss(dst, src); }
1256   void movss(XMMRegister dst, XMMRegister    src) { Assembler::movss(dst, src); }
1257   void movss(XMMRegister dst, Address        src) { Assembler::movss(dst, src); }
1258   void movss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1259 
1260   void movlpd(XMMRegister dst, Address        src) {Assembler::movlpd(dst, src); }
1261   void movlpd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1262 
1263 public:
1264 
1265   void addsd(XMMRegister dst, XMMRegister    src) { Assembler::addsd(dst, src); }
1266   void addsd(XMMRegister dst, Address        src) { Assembler::addsd(dst, src); }
1267   void addsd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1268 
1269   void addss(XMMRegister dst, XMMRegister    src) { Assembler::addss(dst, src); }
1270   void addss(XMMRegister dst, Address        src) { Assembler::addss(dst, src); }
1271   void addss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1272 
1273   void addpd(XMMRegister dst, XMMRegister    src) { Assembler::addpd(dst, src); }
1274   void addpd(XMMRegister dst, Address        src) { Assembler::addpd(dst, src); }
1275   void addpd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1276 
1277   using Assembler::vbroadcastsd;
1278   void vbroadcastsd(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1279 
1280   using Assembler::vbroadcastss;
1281   void vbroadcastss(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1282 
1283   // Vector float blend
1284   void vblendvps(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister mask, int vector_len, bool compute_mask = true, XMMRegister scratch = xnoreg);
1285   void vblendvpd(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister mask, int vector_len, bool compute_mask = true, XMMRegister scratch = xnoreg);
1286 
1287   void divsd(XMMRegister dst, XMMRegister    src) { Assembler::divsd(dst, src); }
1288   void divsd(XMMRegister dst, Address        src) { Assembler::divsd(dst, src); }
1289   void divsd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1290 
1291   void divss(XMMRegister dst, XMMRegister    src) { Assembler::divss(dst, src); }
1292   void divss(XMMRegister dst, Address        src) { Assembler::divss(dst, src); }
1293   void divss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1294 
1295   // Move Unaligned Double Quadword
1296   void movdqu(Address     dst, XMMRegister    src);
1297   void movdqu(XMMRegister dst, XMMRegister    src);
1298   void movdqu(XMMRegister dst, Address        src);
1299   void movdqu(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1300 
1301   void kmovwl(Register  dst, KRegister      src) { Assembler::kmovwl(dst, src); }
1302   void kmovwl(Address   dst, KRegister      src) { Assembler::kmovwl(dst, src); }
1303   void kmovwl(KRegister dst, KRegister      src) { Assembler::kmovwl(dst, src); }
1304   void kmovwl(KRegister dst, Register       src) { Assembler::kmovwl(dst, src); }
1305   void kmovwl(KRegister dst, Address        src) { Assembler::kmovwl(dst, src); }
1306   void kmovwl(KRegister dst, AddressLiteral src, Register rscratch = noreg);
1307 
1308   void kmovql(KRegister dst, KRegister      src) { Assembler::kmovql(dst, src); }
1309   void kmovql(KRegister dst, Register       src) { Assembler::kmovql(dst, src); }
1310   void kmovql(Register  dst, KRegister      src) { Assembler::kmovql(dst, src); }
1311   void kmovql(KRegister dst, Address        src) { Assembler::kmovql(dst, src); }
1312   void kmovql(Address   dst, KRegister      src) { Assembler::kmovql(dst, src); }
1313   void kmovql(KRegister dst, AddressLiteral src, Register rscratch = noreg);
1314 
1315   // Safe move operation, lowers down to 16bit moves for targets supporting
1316   // AVX512F feature and 64bit moves for targets supporting AVX512BW feature.
1317   void kmov(Address  dst, KRegister src);
1318   void kmov(KRegister dst, Address src);
1319   void kmov(KRegister dst, KRegister src);
1320   void kmov(Register dst, KRegister src);
1321   void kmov(KRegister dst, Register src);
1322 
1323   using Assembler::movddup;
1324   void movddup(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1325 
1326   using Assembler::vmovddup;
1327   void vmovddup(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1328 
1329   // AVX Unaligned forms
1330   void vmovdqu(Address     dst, XMMRegister    src);
1331   void vmovdqu(XMMRegister dst, Address        src);
1332   void vmovdqu(XMMRegister dst, XMMRegister    src);
1333   void vmovdqu(XMMRegister dst, AddressLiteral src,                 Register rscratch = noreg);
1334   void vmovdqu(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1335 
1336   // AVX512 Unaligned
1337   void evmovdqu(BasicType type, KRegister kmask, Address     dst, XMMRegister src, bool merge, int vector_len);
1338   void evmovdqu(BasicType type, KRegister kmask, XMMRegister dst, Address     src, bool merge, int vector_len);
1339 
1340   void evmovdqub(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::evmovdqub(dst, src, vector_len); }
1341   void evmovdqub(XMMRegister dst, Address     src, int vector_len) { Assembler::evmovdqub(dst, src, vector_len); }
1342 
1343   void evmovdqub(XMMRegister dst, KRegister mask, XMMRegister src, bool merge, int vector_len) {
1344     if (dst->encoding() != src->encoding() || mask != k0)  {
1345       Assembler::evmovdqub(dst, mask, src, merge, vector_len);
1346     }
1347   }
1348   void evmovdqub(Address     dst, KRegister mask, XMMRegister    src, bool merge, int vector_len) { Assembler::evmovdqub(dst, mask, src, merge, vector_len); }
1349   void evmovdqub(XMMRegister dst, KRegister mask, Address        src, bool merge, int vector_len) { Assembler::evmovdqub(dst, mask, src, merge, vector_len); }
1350   void evmovdqub(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg);
1351 
1352   void evmovdquw(Address     dst, XMMRegister src, int vector_len) { Assembler::evmovdquw(dst, src, vector_len); }
1353   void evmovdquw(XMMRegister dst, Address     src, int vector_len) { Assembler::evmovdquw(dst, src, vector_len); }
1354 
1355   void evmovdquw(XMMRegister dst, KRegister mask, XMMRegister src, bool merge, int vector_len) {
1356     if (dst->encoding() != src->encoding() || mask != k0) {
1357       Assembler::evmovdquw(dst, mask, src, merge, vector_len);
1358     }
1359   }
1360   void evmovdquw(XMMRegister dst, KRegister mask, Address        src, bool merge, int vector_len) { Assembler::evmovdquw(dst, mask, src, merge, vector_len); }
1361   void evmovdquw(Address     dst, KRegister mask, XMMRegister    src, bool merge, int vector_len) { Assembler::evmovdquw(dst, mask, src, merge, vector_len); }
1362   void evmovdquw(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg);
1363 
1364   void evmovdqul(XMMRegister dst, XMMRegister src, int vector_len) {
1365      if (dst->encoding() != src->encoding()) {
1366        Assembler::evmovdqul(dst, src, vector_len);
1367      }
1368   }
1369   void evmovdqul(Address     dst, XMMRegister src, int vector_len) { Assembler::evmovdqul(dst, src, vector_len); }
1370   void evmovdqul(XMMRegister dst, Address     src, int vector_len) { Assembler::evmovdqul(dst, src, vector_len); }
1371 
1372   void evmovdqul(XMMRegister dst, KRegister mask, XMMRegister src, bool merge, int vector_len) {
1373     if (dst->encoding() != src->encoding() || mask != k0)  {
1374       Assembler::evmovdqul(dst, mask, src, merge, vector_len);
1375     }
1376   }
1377   void evmovdqul(Address     dst, KRegister mask, XMMRegister    src, bool merge, int vector_len) { Assembler::evmovdqul(dst, mask, src, merge, vector_len); }
1378   void evmovdqul(XMMRegister dst, KRegister mask, Address        src, bool merge, int vector_len) { Assembler::evmovdqul(dst, mask, src, merge, vector_len); }
1379   void evmovdqul(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg);
1380 
1381   void evmovdquq(XMMRegister dst, XMMRegister src, int vector_len) {
1382     if (dst->encoding() != src->encoding()) {
1383       Assembler::evmovdquq(dst, src, vector_len);
1384     }
1385   }
1386   void evmovdquq(XMMRegister dst, Address        src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); }
1387   void evmovdquq(Address     dst, XMMRegister    src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); }
1388   void evmovdquq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1389 
1390   void evmovdquq(XMMRegister dst, KRegister mask, XMMRegister src, bool merge, int vector_len) {
1391     if (dst->encoding() != src->encoding() || mask != k0) {
1392       Assembler::evmovdquq(dst, mask, src, merge, vector_len);
1393     }
1394   }
1395   void evmovdquq(Address     dst, KRegister mask, XMMRegister    src, bool merge, int vector_len) { Assembler::evmovdquq(dst, mask, src, merge, vector_len); }
1396   void evmovdquq(XMMRegister dst, KRegister mask, Address        src, bool merge, int vector_len) { Assembler::evmovdquq(dst, mask, src, merge, vector_len); }
1397   void evmovdquq(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg);
1398 
1399   // Move Aligned Double Quadword
1400   void movdqa(XMMRegister dst, XMMRegister    src) { Assembler::movdqa(dst, src); }
1401   void movdqa(XMMRegister dst, Address        src) { Assembler::movdqa(dst, src); }
1402   void movdqa(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1403 
1404   void movsd(Address     dst, XMMRegister    src) { Assembler::movsd(dst, src); }
1405   void movsd(XMMRegister dst, XMMRegister    src) { Assembler::movsd(dst, src); }
1406   void movsd(XMMRegister dst, Address        src) { Assembler::movsd(dst, src); }
1407   void movsd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1408 
1409   void mulpd(XMMRegister dst, XMMRegister    src) { Assembler::mulpd(dst, src); }
1410   void mulpd(XMMRegister dst, Address        src) { Assembler::mulpd(dst, src); }
1411   void mulpd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1412 
1413   void mulsd(XMMRegister dst, XMMRegister    src) { Assembler::mulsd(dst, src); }
1414   void mulsd(XMMRegister dst, Address        src) { Assembler::mulsd(dst, src); }
1415   void mulsd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1416 
1417   void mulss(XMMRegister dst, XMMRegister    src) { Assembler::mulss(dst, src); }
1418   void mulss(XMMRegister dst, Address        src) { Assembler::mulss(dst, src); }
1419   void mulss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1420 
1421   // Carry-Less Multiplication Quadword
1422   void pclmulldq(XMMRegister dst, XMMRegister src) {
1423     // 0x00 - multiply lower 64 bits [0:63]
1424     Assembler::pclmulqdq(dst, src, 0x00);
1425   }
1426   void pclmulhdq(XMMRegister dst, XMMRegister src) {
1427     // 0x11 - multiply upper 64 bits [64:127]
1428     Assembler::pclmulqdq(dst, src, 0x11);
1429   }
1430 
1431   void pcmpeqb(XMMRegister dst, XMMRegister src);
1432   void pcmpeqw(XMMRegister dst, XMMRegister src);
1433 
1434   void pcmpestri(XMMRegister dst, Address src, int imm8);
1435   void pcmpestri(XMMRegister dst, XMMRegister src, int imm8);
1436 
1437   void pmovzxbw(XMMRegister dst, XMMRegister src);
1438   void pmovzxbw(XMMRegister dst, Address src);
1439 
1440   void pmovmskb(Register dst, XMMRegister src);
1441 
1442   void ptest(XMMRegister dst, XMMRegister src);
1443 
1444   void roundsd(XMMRegister dst, XMMRegister    src, int32_t rmode) { Assembler::roundsd(dst, src, rmode); }
1445   void roundsd(XMMRegister dst, Address        src, int32_t rmode) { Assembler::roundsd(dst, src, rmode); }
1446   void roundsd(XMMRegister dst, AddressLiteral src, int32_t rmode, Register rscratch = noreg);
1447 
1448   void sqrtss(XMMRegister dst, XMMRegister     src) { Assembler::sqrtss(dst, src); }
1449   void sqrtss(XMMRegister dst, Address         src) { Assembler::sqrtss(dst, src); }
1450   void sqrtss(XMMRegister dst, AddressLiteral  src, Register rscratch = noreg);
1451 
1452   void subsd(XMMRegister dst, XMMRegister    src) { Assembler::subsd(dst, src); }
1453   void subsd(XMMRegister dst, Address        src) { Assembler::subsd(dst, src); }
1454   void subsd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1455 
1456   void subss(XMMRegister dst, XMMRegister    src) { Assembler::subss(dst, src); }
1457   void subss(XMMRegister dst, Address        src) { Assembler::subss(dst, src); }
1458   void subss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1459 
1460   void ucomiss(XMMRegister dst, XMMRegister    src) { Assembler::ucomiss(dst, src); }
1461   void ucomiss(XMMRegister dst, Address        src) { Assembler::ucomiss(dst, src); }
1462   void ucomiss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1463 
1464   void ucomisd(XMMRegister dst, XMMRegister    src) { Assembler::ucomisd(dst, src); }
1465   void ucomisd(XMMRegister dst, Address        src) { Assembler::ucomisd(dst, src); }
1466   void ucomisd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1467 
1468   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
1469   void xorpd(XMMRegister dst, XMMRegister    src);
1470   void xorpd(XMMRegister dst, Address        src) { Assembler::xorpd(dst, src); }
1471   void xorpd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1472 
1473   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
1474   void xorps(XMMRegister dst, XMMRegister    src);
1475   void xorps(XMMRegister dst, Address        src) { Assembler::xorps(dst, src); }
1476   void xorps(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1477 
1478   // Shuffle Bytes
1479   void pshufb(XMMRegister dst, XMMRegister    src) { Assembler::pshufb(dst, src); }
1480   void pshufb(XMMRegister dst, Address        src) { Assembler::pshufb(dst, src); }
1481   void pshufb(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1482   // AVX 3-operands instructions
1483 
1484   void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister    src) { Assembler::vaddsd(dst, nds, src); }
1485   void vaddsd(XMMRegister dst, XMMRegister nds, Address        src) { Assembler::vaddsd(dst, nds, src); }
1486   void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1487 
1488   void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister    src) { Assembler::vaddss(dst, nds, src); }
1489   void vaddss(XMMRegister dst, XMMRegister nds, Address        src) { Assembler::vaddss(dst, nds, src); }
1490   void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1491 
1492   void vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len, Register rscratch = noreg);
1493   void vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len, Register rscratch = noreg);
1494 
1495   void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len);
1496   void vpaddb(XMMRegister dst, XMMRegister nds, Address        src, int vector_len);
1497   void vpaddb(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1498 
1499   void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1500   void vpaddw(XMMRegister dst, XMMRegister nds, Address     src, int vector_len);
1501 
1502   void vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len) { Assembler::vpaddd(dst, nds, src, vector_len); }
1503   void vpaddd(XMMRegister dst, XMMRegister nds, Address        src, int vector_len) { Assembler::vpaddd(dst, nds, src, vector_len); }
1504   void vpaddd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1505 
1506   void vpand(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1507   void vpand(XMMRegister dst, XMMRegister nds, Address        src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1508   void vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1509 
1510   using Assembler::vpbroadcastd;
1511   void vpbroadcastd(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1512 
1513   using Assembler::vpbroadcastq;
1514   void vpbroadcastq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1515 
1516   void vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1517   void vpcmpeqb(XMMRegister dst, XMMRegister src1, Address src2, int vector_len);
1518 
1519   void vpcmpeqw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1520   void vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1521   void evpcmpeqd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1522 
1523   // Vector compares
1524   void evpcmpd(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister    src, int comparison, bool is_signed, int vector_len) {
1525     Assembler::evpcmpd(kdst, mask, nds, src, comparison, is_signed, vector_len);
1526   }
1527   void evpcmpd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int comparison, bool is_signed, int vector_len, Register rscratch = noreg);
1528 
1529   void evpcmpq(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister    src, int comparison, bool is_signed, int vector_len) {
1530     Assembler::evpcmpq(kdst, mask, nds, src, comparison, is_signed, vector_len);
1531   }
1532   void evpcmpq(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int comparison, bool is_signed, int vector_len, Register rscratch = noreg);
1533 
1534   void evpcmpb(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister    src, int comparison, bool is_signed, int vector_len) {
1535     Assembler::evpcmpb(kdst, mask, nds, src, comparison, is_signed, vector_len);
1536   }
1537   void evpcmpb(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int comparison, bool is_signed, int vector_len, Register rscratch = noreg);
1538 
1539   void evpcmpw(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister    src, int comparison, bool is_signed, int vector_len) {
1540     Assembler::evpcmpw(kdst, mask, nds, src, comparison, is_signed, vector_len);
1541   }
1542   void evpcmpw(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int comparison, bool is_signed, int vector_len, Register rscratch = noreg);
1543 
1544   void evpbroadcast(BasicType type, XMMRegister dst, Register src, int vector_len);
1545 
1546   // Emit comparison instruction for the specified comparison predicate.
1547   void vpcmpCCW(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister xtmp, ComparisonPredicate cond, Width width, int vector_len);
1548   void vpcmpCC(XMMRegister dst, XMMRegister nds, XMMRegister src, int cond_encoding, Width width, int vector_len);
1549 
1550   void vpmovzxbw(XMMRegister dst, Address     src, int vector_len);
1551   void vpmovzxbw(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::vpmovzxbw(dst, src, vector_len); }
1552 
1553   void vpmovmskb(Register dst, XMMRegister src, int vector_len = Assembler::AVX_256bit);
1554 
1555   void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1556   void vpmullw(XMMRegister dst, XMMRegister nds, Address     src, int vector_len);
1557 
1558   void vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len) { Assembler::vpmulld(dst, nds, src, vector_len); }
1559   void vpmulld(XMMRegister dst, XMMRegister nds, Address        src, int vector_len) { Assembler::vpmulld(dst, nds, src, vector_len); }
1560   void vpmulld(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1561 
1562   void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1563   void vpsubb(XMMRegister dst, XMMRegister nds, Address     src, int vector_len);
1564 
1565   void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1566   void vpsubw(XMMRegister dst, XMMRegister nds, Address     src, int vector_len);
1567 
1568   void vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1569   void vpsraw(XMMRegister dst, XMMRegister nds, int         shift, int vector_len);
1570 
1571   void evpsraq(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1572   void evpsraq(XMMRegister dst, XMMRegister nds, int         shift, int vector_len);
1573 
1574   void evpsllw(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1575     if (!is_varshift) {
1576       Assembler::evpsllw(dst, mask, nds, src, merge, vector_len);
1577     } else {
1578       Assembler::evpsllvw(dst, mask, nds, src, merge, vector_len);
1579     }
1580   }
1581   void evpslld(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1582     if (!is_varshift) {
1583       Assembler::evpslld(dst, mask, nds, src, merge, vector_len);
1584     } else {
1585       Assembler::evpsllvd(dst, mask, nds, src, merge, vector_len);
1586     }
1587   }
1588   void evpsllq(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1589     if (!is_varshift) {
1590       Assembler::evpsllq(dst, mask, nds, src, merge, vector_len);
1591     } else {
1592       Assembler::evpsllvq(dst, mask, nds, src, merge, vector_len);
1593     }
1594   }
1595   void evpsrlw(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1596     if (!is_varshift) {
1597       Assembler::evpsrlw(dst, mask, nds, src, merge, vector_len);
1598     } else {
1599       Assembler::evpsrlvw(dst, mask, nds, src, merge, vector_len);
1600     }
1601   }
1602   void evpsrld(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1603     if (!is_varshift) {
1604       Assembler::evpsrld(dst, mask, nds, src, merge, vector_len);
1605     } else {
1606       Assembler::evpsrlvd(dst, mask, nds, src, merge, vector_len);
1607     }
1608   }
1609 
1610   using Assembler::evpsrlq;
1611   void evpsrlq(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1612     if (!is_varshift) {
1613       Assembler::evpsrlq(dst, mask, nds, src, merge, vector_len);
1614     } else {
1615       Assembler::evpsrlvq(dst, mask, nds, src, merge, vector_len);
1616     }
1617   }
1618   void evpsraw(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1619     if (!is_varshift) {
1620       Assembler::evpsraw(dst, mask, nds, src, merge, vector_len);
1621     } else {
1622       Assembler::evpsravw(dst, mask, nds, src, merge, vector_len);
1623     }
1624   }
1625   void evpsrad(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1626     if (!is_varshift) {
1627       Assembler::evpsrad(dst, mask, nds, src, merge, vector_len);
1628     } else {
1629       Assembler::evpsravd(dst, mask, nds, src, merge, vector_len);
1630     }
1631   }
1632   using Assembler::evpsraq;
1633   void evpsraq(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1634     if (!is_varshift) {
1635       Assembler::evpsraq(dst, mask, nds, src, merge, vector_len);
1636     } else {
1637       Assembler::evpsravq(dst, mask, nds, src, merge, vector_len);
1638     }
1639   }
1640 
1641   void evpmins(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len);
1642   void evpmaxs(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len);
1643   void evpmins(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len);
1644   void evpmaxs(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len);
1645 
1646   void vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1647   void vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1648 
1649   void vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1650   void vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1651 
1652   void vptest(XMMRegister dst, XMMRegister src);
1653   void vptest(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::vptest(dst, src, vector_len); }
1654 
1655   void punpcklbw(XMMRegister dst, XMMRegister src);
1656   void punpcklbw(XMMRegister dst, Address src) { Assembler::punpcklbw(dst, src); }
1657 
1658   void pshufd(XMMRegister dst, Address src, int mode);
1659   void pshufd(XMMRegister dst, XMMRegister src, int mode) { Assembler::pshufd(dst, src, mode); }
1660 
1661   void pshuflw(XMMRegister dst, XMMRegister src, int mode);
1662   void pshuflw(XMMRegister dst, Address src, int mode) { Assembler::pshuflw(dst, src, mode); }
1663 
1664   void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len) { Assembler::vandpd(dst, nds, src, vector_len); }
1665   void vandpd(XMMRegister dst, XMMRegister nds, Address        src, int vector_len) { Assembler::vandpd(dst, nds, src, vector_len); }
1666   void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1667 
1668   void vandps(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len) { Assembler::vandps(dst, nds, src, vector_len); }
1669   void vandps(XMMRegister dst, XMMRegister nds, Address        src, int vector_len) { Assembler::vandps(dst, nds, src, vector_len); }
1670   void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1671 
1672   void evpord(XMMRegister dst, KRegister mask, XMMRegister nds, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg);
1673 
1674   void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister    src) { Assembler::vdivsd(dst, nds, src); }
1675   void vdivsd(XMMRegister dst, XMMRegister nds, Address        src) { Assembler::vdivsd(dst, nds, src); }
1676   void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1677 
1678   void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister    src) { Assembler::vdivss(dst, nds, src); }
1679   void vdivss(XMMRegister dst, XMMRegister nds, Address        src) { Assembler::vdivss(dst, nds, src); }
1680   void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1681 
1682   void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister    src) { Assembler::vmulsd(dst, nds, src); }
1683   void vmulsd(XMMRegister dst, XMMRegister nds, Address        src) { Assembler::vmulsd(dst, nds, src); }
1684   void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1685 
1686   void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister    src) { Assembler::vmulss(dst, nds, src); }
1687   void vmulss(XMMRegister dst, XMMRegister nds, Address        src) { Assembler::vmulss(dst, nds, src); }
1688   void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1689 
1690   void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister    src) { Assembler::vsubsd(dst, nds, src); }
1691   void vsubsd(XMMRegister dst, XMMRegister nds, Address        src) { Assembler::vsubsd(dst, nds, src); }
1692   void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1693 
1694   void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister    src) { Assembler::vsubss(dst, nds, src); }
1695   void vsubss(XMMRegister dst, XMMRegister nds, Address        src) { Assembler::vsubss(dst, nds, src); }
1696   void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1697 
1698   void vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1699   void vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1700 
1701   // AVX Vector instructions
1702 
1703   void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1704   void vxorpd(XMMRegister dst, XMMRegister nds, Address        src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1705   void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1706 
1707   void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1708   void vxorps(XMMRegister dst, XMMRegister nds, Address        src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1709   void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1710 
1711   void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1712     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1713       Assembler::vpxor(dst, nds, src, vector_len);
1714     else
1715       Assembler::vxorpd(dst, nds, src, vector_len);
1716   }
1717   void vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
1718     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1719       Assembler::vpxor(dst, nds, src, vector_len);
1720     else
1721       Assembler::vxorpd(dst, nds, src, vector_len);
1722   }
1723   void vpxor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1724 
1725   // Simple version for AVX2 256bit vectors
1726   void vpxor(XMMRegister dst, XMMRegister src) {
1727     assert(UseAVX >= 2, "Should be at least AVX2");
1728     Assembler::vpxor(dst, dst, src, AVX_256bit);
1729   }
1730   void vpxor(XMMRegister dst, Address src) {
1731     assert(UseAVX >= 2, "Should be at least AVX2");
1732     Assembler::vpxor(dst, dst, src, AVX_256bit);
1733   }
1734 
1735   void vpermd(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len) { Assembler::vpermd(dst, nds, src, vector_len); }
1736   void vpermd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1737 
1738   void vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
1739     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1740       Assembler::vinserti32x4(dst, nds, src, imm8);
1741     } else if (UseAVX > 1) {
1742       // vinserti128 is available only in AVX2
1743       Assembler::vinserti128(dst, nds, src, imm8);
1744     } else {
1745       Assembler::vinsertf128(dst, nds, src, imm8);
1746     }
1747   }
1748 
1749   void vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
1750     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1751       Assembler::vinserti32x4(dst, nds, src, imm8);
1752     } else if (UseAVX > 1) {
1753       // vinserti128 is available only in AVX2
1754       Assembler::vinserti128(dst, nds, src, imm8);
1755     } else {
1756       Assembler::vinsertf128(dst, nds, src, imm8);
1757     }
1758   }
1759 
1760   void vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
1761     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1762       Assembler::vextracti32x4(dst, src, imm8);
1763     } else if (UseAVX > 1) {
1764       // vextracti128 is available only in AVX2
1765       Assembler::vextracti128(dst, src, imm8);
1766     } else {
1767       Assembler::vextractf128(dst, src, imm8);
1768     }
1769   }
1770 
1771   void vextracti128(Address dst, XMMRegister src, uint8_t imm8) {
1772     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1773       Assembler::vextracti32x4(dst, src, imm8);
1774     } else if (UseAVX > 1) {
1775       // vextracti128 is available only in AVX2
1776       Assembler::vextracti128(dst, src, imm8);
1777     } else {
1778       Assembler::vextractf128(dst, src, imm8);
1779     }
1780   }
1781 
1782   // 128bit copy to/from high 128 bits of 256bit (YMM) vector registers
1783   void vinserti128_high(XMMRegister dst, XMMRegister src) {
1784     vinserti128(dst, dst, src, 1);
1785   }
1786   void vinserti128_high(XMMRegister dst, Address src) {
1787     vinserti128(dst, dst, src, 1);
1788   }
1789   void vextracti128_high(XMMRegister dst, XMMRegister src) {
1790     vextracti128(dst, src, 1);
1791   }
1792   void vextracti128_high(Address dst, XMMRegister src) {
1793     vextracti128(dst, src, 1);
1794   }
1795 
1796   void vinsertf128_high(XMMRegister dst, XMMRegister src) {
1797     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1798       Assembler::vinsertf32x4(dst, dst, src, 1);
1799     } else {
1800       Assembler::vinsertf128(dst, dst, src, 1);
1801     }
1802   }
1803 
1804   void vinsertf128_high(XMMRegister dst, Address src) {
1805     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1806       Assembler::vinsertf32x4(dst, dst, src, 1);
1807     } else {
1808       Assembler::vinsertf128(dst, dst, src, 1);
1809     }
1810   }
1811 
1812   void vextractf128_high(XMMRegister dst, XMMRegister src) {
1813     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1814       Assembler::vextractf32x4(dst, src, 1);
1815     } else {
1816       Assembler::vextractf128(dst, src, 1);
1817     }
1818   }
1819 
1820   void vextractf128_high(Address dst, XMMRegister src) {
1821     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1822       Assembler::vextractf32x4(dst, src, 1);
1823     } else {
1824       Assembler::vextractf128(dst, src, 1);
1825     }
1826   }
1827 
1828   // 256bit copy to/from high 256 bits of 512bit (ZMM) vector registers
1829   void vinserti64x4_high(XMMRegister dst, XMMRegister src) {
1830     Assembler::vinserti64x4(dst, dst, src, 1);
1831   }
1832   void vinsertf64x4_high(XMMRegister dst, XMMRegister src) {
1833     Assembler::vinsertf64x4(dst, dst, src, 1);
1834   }
1835   void vextracti64x4_high(XMMRegister dst, XMMRegister src) {
1836     Assembler::vextracti64x4(dst, src, 1);
1837   }
1838   void vextractf64x4_high(XMMRegister dst, XMMRegister src) {
1839     Assembler::vextractf64x4(dst, src, 1);
1840   }
1841   void vextractf64x4_high(Address dst, XMMRegister src) {
1842     Assembler::vextractf64x4(dst, src, 1);
1843   }
1844   void vinsertf64x4_high(XMMRegister dst, Address src) {
1845     Assembler::vinsertf64x4(dst, dst, src, 1);
1846   }
1847 
1848   // 128bit copy to/from low 128 bits of 256bit (YMM) vector registers
1849   void vinserti128_low(XMMRegister dst, XMMRegister src) {
1850     vinserti128(dst, dst, src, 0);
1851   }
1852   void vinserti128_low(XMMRegister dst, Address src) {
1853     vinserti128(dst, dst, src, 0);
1854   }
1855   void vextracti128_low(XMMRegister dst, XMMRegister src) {
1856     vextracti128(dst, src, 0);
1857   }
1858   void vextracti128_low(Address dst, XMMRegister src) {
1859     vextracti128(dst, src, 0);
1860   }
1861 
1862   void vinsertf128_low(XMMRegister dst, XMMRegister src) {
1863     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1864       Assembler::vinsertf32x4(dst, dst, src, 0);
1865     } else {
1866       Assembler::vinsertf128(dst, dst, src, 0);
1867     }
1868   }
1869 
1870   void vinsertf128_low(XMMRegister dst, Address src) {
1871     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1872       Assembler::vinsertf32x4(dst, dst, src, 0);
1873     } else {
1874       Assembler::vinsertf128(dst, dst, src, 0);
1875     }
1876   }
1877 
1878   void vextractf128_low(XMMRegister dst, XMMRegister src) {
1879     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1880       Assembler::vextractf32x4(dst, src, 0);
1881     } else {
1882       Assembler::vextractf128(dst, src, 0);
1883     }
1884   }
1885 
1886   void vextractf128_low(Address dst, XMMRegister src) {
1887     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1888       Assembler::vextractf32x4(dst, src, 0);
1889     } else {
1890       Assembler::vextractf128(dst, src, 0);
1891     }
1892   }
1893 
1894   // 256bit copy to/from low 256 bits of 512bit (ZMM) vector registers
1895   void vinserti64x4_low(XMMRegister dst, XMMRegister src) {
1896     Assembler::vinserti64x4(dst, dst, src, 0);
1897   }
1898   void vinsertf64x4_low(XMMRegister dst, XMMRegister src) {
1899     Assembler::vinsertf64x4(dst, dst, src, 0);
1900   }
1901   void vextracti64x4_low(XMMRegister dst, XMMRegister src) {
1902     Assembler::vextracti64x4(dst, src, 0);
1903   }
1904   void vextractf64x4_low(XMMRegister dst, XMMRegister src) {
1905     Assembler::vextractf64x4(dst, src, 0);
1906   }
1907   void vextractf64x4_low(Address dst, XMMRegister src) {
1908     Assembler::vextractf64x4(dst, src, 0);
1909   }
1910   void vinsertf64x4_low(XMMRegister dst, Address src) {
1911     Assembler::vinsertf64x4(dst, dst, src, 0);
1912   }
1913 
1914   // Carry-Less Multiplication Quadword
1915   void vpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1916     // 0x00 - multiply lower 64 bits [0:63]
1917     Assembler::vpclmulqdq(dst, nds, src, 0x00);
1918   }
1919   void vpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1920     // 0x11 - multiply upper 64 bits [64:127]
1921     Assembler::vpclmulqdq(dst, nds, src, 0x11);
1922   }
1923   void vpclmullqhqdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1924     // 0x10 - multiply nds[0:63] and src[64:127]
1925     Assembler::vpclmulqdq(dst, nds, src, 0x10);
1926   }
1927   void vpclmulhqlqdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1928     //0x01 - multiply nds[64:127] and src[0:63]
1929     Assembler::vpclmulqdq(dst, nds, src, 0x01);
1930   }
1931 
1932   void evpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1933     // 0x00 - multiply lower 64 bits [0:63]
1934     Assembler::evpclmulqdq(dst, nds, src, 0x00, vector_len);
1935   }
1936   void evpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1937     // 0x11 - multiply upper 64 bits [64:127]
1938     Assembler::evpclmulqdq(dst, nds, src, 0x11, vector_len);
1939   }
1940 
1941   // AVX-512 mask operations.
1942   void kand(BasicType etype, KRegister dst, KRegister src1, KRegister src2);
1943   void kor(BasicType type, KRegister dst, KRegister src1, KRegister src2);
1944   void knot(uint masklen, KRegister dst, KRegister src, KRegister ktmp = knoreg, Register rtmp = noreg);
1945   void kxor(BasicType type, KRegister dst, KRegister src1, KRegister src2);
1946   void kortest(uint masklen, KRegister src1, KRegister src2);
1947   void ktest(uint masklen, KRegister src1, KRegister src2);
1948 
1949   void evperm(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len);
1950   void evperm(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len);
1951 
1952   void evor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len);
1953   void evor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len);
1954 
1955   void evand(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len);
1956   void evand(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len);
1957 
1958   void evxor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len);
1959   void evxor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len);
1960 
1961   void evrold(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vlen_enc);
1962   void evrold(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src1, XMMRegister src2, bool merge, int vlen_enc);
1963   void evrord(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vlen_enc);
1964   void evrord(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src1, XMMRegister src2, bool merge, int vlen_enc);
1965 
1966   using Assembler::evpandq;
1967   void evpandq(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1968 
1969   using Assembler::evpaddq;
1970   void evpaddq(XMMRegister dst, KRegister mask, XMMRegister nds, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg);
1971 
1972   using Assembler::evporq;
1973   void evporq(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1974 
1975   using Assembler::vpshufb;
1976   void vpshufb(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1977 
1978   using Assembler::vpor;
1979   void vpor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1980 
1981   using Assembler::vpternlogq;
1982   void vpternlogq(XMMRegister dst, int imm8, XMMRegister src2, AddressLiteral src3, int vector_len, Register rscratch = noreg);
1983 
1984   void cmov32( Condition cc, Register dst, Address  src);
1985   void cmov32( Condition cc, Register dst, Register src);
1986 
1987   void cmov(   Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }
1988 
1989   void cmovptr(Condition cc, Register dst, Address  src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1990   void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1991 
1992   void movoop(Register dst, jobject obj);
1993   void movoop(Address  dst, jobject obj, Register rscratch);
1994 
1995   void mov_metadata(Register dst, Metadata* obj);
1996   void mov_metadata(Address  dst, Metadata* obj, Register rscratch);
1997 
1998   void movptr(Register     dst, Register       src);
1999   void movptr(Register     dst, Address        src);
2000   void movptr(Register     dst, AddressLiteral src);
2001   void movptr(Register     dst, ArrayAddress   src);
2002   void movptr(Register     dst, intptr_t       src);
2003   void movptr(Address      dst, Register       src);
2004   void movptr(Address      dst, int32_t        imm);
2005   void movptr(Address      dst, intptr_t       src, Register rscratch);
2006   void movptr(ArrayAddress dst, Register       src, Register rscratch);
2007 
2008   void movptr(Register dst, RegisterOrConstant src) {
2009     if (src.is_constant()) movptr(dst, src.as_constant());
2010     else                   movptr(dst, src.as_register());
2011   }
2012 
2013 
2014   // to avoid hiding movl
2015   void mov32(Register       dst, AddressLiteral src);
2016   void mov32(AddressLiteral dst, Register        src, Register rscratch = noreg);
2017 
2018   // Import other mov() methods from the parent class or else
2019   // they will be hidden by the following overriding declaration.
2020   using Assembler::movdl;
2021   void movdl(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
2022 
2023   using Assembler::movq;
2024   void movq(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
2025 
2026   // Can push value or effective address
2027   void pushptr(AddressLiteral src, Register rscratch);
2028 
2029   void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
2030   void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
2031 
2032   void pushoop(jobject obj, Register rscratch);
2033   void pushklass(Metadata* obj, Register rscratch);
2034 
2035   // sign extend as need a l to ptr sized element
2036   void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
2037   void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
2038 
2039 
2040  public:
2041   // Inline type specific methods
2042   #include "asm/macroAssembler_common.hpp"
2043 
2044   int store_inline_type_fields_to_buf(ciInlineKlass* vk, bool from_interpreter = true);
2045   bool move_helper(VMReg from, VMReg to, BasicType bt, RegState reg_state[]);
2046   bool unpack_inline_helper(const GrowableArray<SigEntry>* sig, int& sig_index,
2047                             VMReg from, int& from_index, VMRegPair* to, int to_count, int& to_index,
2048                             RegState reg_state[]);
2049   bool pack_inline_helper(const GrowableArray<SigEntry>* sig, int& sig_index, int vtarg_index,
2050                           VMRegPair* from, int from_count, int& from_index, VMReg to,
2051                           RegState reg_state[], Register val_array);
2052   int extend_stack_for_inline_args(int args_on_stack);
2053   void remove_frame(int initial_framesize, bool needs_stack_repair);
2054   VMReg spill_reg_for(VMReg reg);
2055 
2056   // clear memory of size 'cnt' qwords, starting at 'base';
2057   // if 'is_large' is set, do not try to produce short loop
2058   void clear_mem(Register base, Register cnt, Register val, XMMRegister xtmp, bool is_large, bool word_copy_only, KRegister mask=knoreg);
2059 
2060   // clear memory initialization sequence for constant size;
2061   void clear_mem(Register base, int cnt, Register rtmp, XMMRegister xtmp, KRegister mask=knoreg);
2062 
2063   // clear memory of size 'cnt' qwords, starting at 'base' using XMM/YMM registers
2064   void xmm_clear_mem(Register base, Register cnt, Register rtmp, XMMRegister xtmp, KRegister mask=knoreg);
2065 
2066   // Fill primitive arrays
2067   void generate_fill(BasicType t, bool aligned,
2068                      Register to, Register value, Register count,
2069                      Register rtmp, XMMRegister xtmp);
2070 
2071   void encode_iso_array(Register src, Register dst, Register len,
2072                         XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
2073                         XMMRegister tmp4, Register tmp5, Register result, bool ascii);
2074 
2075 #ifdef _LP64
2076   void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2);
2077   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
2078                              Register y, Register y_idx, Register z,
2079                              Register carry, Register product,
2080                              Register idx, Register kdx);
2081   void multiply_add_128_x_128(Register x_xstart, Register y, Register z,
2082                               Register yz_idx, Register idx,
2083                               Register carry, Register product, int offset);
2084   void multiply_128_x_128_bmi2_loop(Register y, Register z,
2085                                     Register carry, Register carry2,
2086                                     Register idx, Register jdx,
2087                                     Register yz_idx1, Register yz_idx2,
2088                                     Register tmp, Register tmp3, Register tmp4);
2089   void multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
2090                                Register yz_idx, Register idx, Register jdx,
2091                                Register carry, Register product,
2092                                Register carry2);
2093   void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register tmp0,
2094                        Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5);
2095   void square_rshift(Register x, Register len, Register z, Register tmp1, Register tmp3,
2096                      Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
2097   void multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry,
2098                             Register tmp2);
2099   void multiply_add_64(Register sum, Register op1, Register op2, Register carry,
2100                        Register rdxReg, Register raxReg);
2101   void add_one_64(Register z, Register zlen, Register carry, Register tmp1);
2102   void lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
2103                        Register tmp3, Register tmp4);
2104   void square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
2105                      Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
2106 
2107   void mul_add_128_x_32_loop(Register out, Register in, Register offset, Register len, Register tmp1,
2108                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
2109                Register raxReg);
2110   void mul_add(Register out, Register in, Register offset, Register len, Register k, Register tmp1,
2111                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
2112                Register raxReg);
2113   void vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
2114                            Register result, Register tmp1, Register tmp2,
2115                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3);
2116 #endif
2117 
2118   // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
2119   void update_byte_crc32(Register crc, Register val, Register table);
2120   void kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp);
2121 
2122 
2123 #ifdef _LP64
2124   void kernel_crc32_avx512(Register crc, Register buf, Register len, Register table, Register tmp1, Register tmp2);
2125   void kernel_crc32_avx512_256B(Register crc, Register buf, Register len, Register key, Register pos,
2126                                 Register tmp1, Register tmp2, Label& L_barrett, Label& L_16B_reduction_loop,
2127                                 Label& L_get_last_two_xmms, Label& L_128_done, Label& L_cleanup);
2128 #endif // _LP64
2129 
2130   // CRC32C code for java.util.zip.CRC32C::updateBytes() intrinsic
2131   // Note on a naming convention:
2132   // Prefix w = register only used on a Westmere+ architecture
2133   // Prefix n = register only used on a Nehalem architecture
2134 #ifdef _LP64
2135   void crc32c_ipl_alg4(Register in_out, uint32_t n,
2136                        Register tmp1, Register tmp2, Register tmp3);
2137 #else
2138   void crc32c_ipl_alg4(Register in_out, uint32_t n,
2139                        Register tmp1, Register tmp2, Register tmp3,
2140                        XMMRegister xtmp1, XMMRegister xtmp2);
2141 #endif
2142   void crc32c_pclmulqdq(XMMRegister w_xtmp1,
2143                         Register in_out,
2144                         uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
2145                         XMMRegister w_xtmp2,
2146                         Register tmp1,
2147                         Register n_tmp2, Register n_tmp3);
2148   void crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
2149                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
2150                        Register tmp1, Register tmp2,
2151                        Register n_tmp3);
2152   void crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
2153                          Register in_out1, Register in_out2, Register in_out3,
2154                          Register tmp1, Register tmp2, Register tmp3,
2155                          XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
2156                          Register tmp4, Register tmp5,
2157                          Register n_tmp6);
2158   void crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
2159                             Register tmp1, Register tmp2, Register tmp3,
2160                             Register tmp4, Register tmp5, Register tmp6,
2161                             XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
2162                             bool is_pclmulqdq_supported);
2163   // Fold 128-bit data chunk
2164   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
2165   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf);
2166 #ifdef _LP64
2167   // Fold 512-bit data chunk
2168   void fold512bit_crc32_avx512(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, Register pos, int offset);
2169 #endif // _LP64
2170   // Fold 8-bit data
2171   void fold_8bit_crc32(Register crc, Register table, Register tmp);
2172   void fold_8bit_crc32(XMMRegister crc, Register table, XMMRegister xtmp, Register tmp);
2173 
2174   // Compress char[] array to byte[].
2175   void char_array_compress(Register src, Register dst, Register len,
2176                            XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
2177                            XMMRegister tmp4, Register tmp5, Register result,
2178                            KRegister mask1 = knoreg, KRegister mask2 = knoreg);
2179 
2180   // Inflate byte[] array to char[].
2181   void byte_array_inflate(Register src, Register dst, Register len,
2182                           XMMRegister tmp1, Register tmp2, KRegister mask = knoreg);
2183 
2184   void fill_masked(BasicType bt, Address dst, XMMRegister xmm, KRegister mask,
2185                    Register length, Register temp, int vec_enc);
2186 
2187   void fill64_masked(uint shift, Register dst, int disp,
2188                          XMMRegister xmm, KRegister mask, Register length,
2189                          Register temp, bool use64byteVector = false);
2190 
2191   void fill32_masked(uint shift, Register dst, int disp,
2192                          XMMRegister xmm, KRegister mask, Register length,
2193                          Register temp);
2194 
2195   void fill32(Address dst, XMMRegister xmm);
2196 
2197   void fill32(Register dst, int disp, XMMRegister xmm);
2198 
2199   void fill64(Address dst, XMMRegister xmm, bool use64byteVector = false);
2200 
2201   void fill64(Register dst, int dis, XMMRegister xmm, bool use64byteVector = false);
2202 
2203 #ifdef _LP64
2204   void convert_f2i(Register dst, XMMRegister src);
2205   void convert_d2i(Register dst, XMMRegister src);
2206   void convert_f2l(Register dst, XMMRegister src);
2207   void convert_d2l(Register dst, XMMRegister src);
2208   void round_double(Register dst, XMMRegister src, Register rtmp, Register rcx);
2209   void round_float(Register dst, XMMRegister src, Register rtmp, Register rcx);
2210 
2211   void cache_wb(Address line);
2212   void cache_wbsync(bool is_pre);
2213 
2214 #ifdef COMPILER2_OR_JVMCI
2215   void generate_fill_avx3(BasicType type, Register to, Register value,
2216                           Register count, Register rtmp, XMMRegister xtmp);
2217 #endif // COMPILER2_OR_JVMCI
2218 #endif // _LP64
2219 
2220   void vallones(XMMRegister dst, int vector_len);
2221 
2222   void check_stack_alignment(Register sp, const char* msg, unsigned bias = 0, Register tmp = noreg);
2223 
2224   void lightweight_lock(Register basic_lock, Register obj, Register reg_rax, Register thread, Register tmp, Label& slow);
2225   void lightweight_unlock(Register obj, Register reg_rax, Register thread, Register tmp, Label& slow);
2226 
2227 #ifdef _LP64
2228   void save_legacy_gprs();
2229   void restore_legacy_gprs();
2230 #endif
2231 };
2232 
2233 /**
2234  * class SkipIfEqual:
2235  *
2236  * Instantiating this class will result in assembly code being output that will
2237  * jump around any code emitted between the creation of the instance and it's
2238  * automatic destruction at the end of a scope block, depending on the value of
2239  * the flag passed to the constructor, which will be checked at run-time.
2240  */
2241 class SkipIfEqual {
2242  private:
2243   MacroAssembler* _masm;
2244   Label _label;
2245 
2246  public:
2247    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value, Register rscratch);
2248    ~SkipIfEqual();
2249 };
2250 
2251 #endif // CPU_X86_MACROASSEMBLER_X86_HPP