1 /*
   2  * Copyright (c) 2003, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "code/compiledIC.hpp"
  29 #include "code/debugInfoRec.hpp"
  30 #include "code/nativeInst.hpp"
  31 #include "code/vtableStubs.hpp"
  32 #include "compiler/oopMap.hpp"
  33 #include "gc/shared/gcLocker.hpp"
  34 #include "gc/shared/barrierSet.hpp"
  35 #include "gc/shared/barrierSetAssembler.hpp"
  36 #include "interpreter/interpreter.hpp"
  37 #include "logging/log.hpp"
  38 #include "memory/resourceArea.hpp"
  39 #include "oops/klass.inline.hpp"
  40 #include "prims/methodHandles.hpp"
  41 #include "runtime/jniHandles.hpp"
  42 #include "runtime/safepointMechanism.hpp"
  43 #include "runtime/sharedRuntime.hpp"
  44 #include "runtime/signature.hpp"
  45 #include "runtime/stubRoutines.hpp"
  46 #include "runtime/timerTrace.hpp"
  47 #include "runtime/vframeArray.hpp"
  48 #include "runtime/vm_version.hpp"
  49 #include "utilities/align.hpp"
  50 #include "vmreg_x86.inline.hpp"
  51 #ifdef COMPILER1
  52 #include "c1/c1_Runtime1.hpp"
  53 #endif
  54 #ifdef COMPILER2
  55 #include "opto/runtime.hpp"
  56 #endif
  57 
  58 #define __ masm->
  59 
  60 #ifdef PRODUCT
  61 #define BLOCK_COMMENT(str) /* nothing */
  62 #else
  63 #define BLOCK_COMMENT(str) __ block_comment(str)
  64 #endif // PRODUCT
  65 
  66 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
  67 
  68 class RegisterSaver {
  69   // Capture info about frame layout
  70 #define DEF_XMM_OFFS(regnum) xmm ## regnum ## _off = xmm_off + (regnum)*16/BytesPerInt, xmm ## regnum ## H_off
  71   enum layout {
  72                 fpu_state_off = 0,
  73                 fpu_state_end = fpu_state_off+FPUStateSizeInWords,
  74                 st0_off, st0H_off,
  75                 st1_off, st1H_off,
  76                 st2_off, st2H_off,
  77                 st3_off, st3H_off,
  78                 st4_off, st4H_off,
  79                 st5_off, st5H_off,
  80                 st6_off, st6H_off,
  81                 st7_off, st7H_off,
  82                 xmm_off,
  83                 DEF_XMM_OFFS(0),
  84                 DEF_XMM_OFFS(1),
  85                 DEF_XMM_OFFS(2),
  86                 DEF_XMM_OFFS(3),
  87                 DEF_XMM_OFFS(4),
  88                 DEF_XMM_OFFS(5),
  89                 DEF_XMM_OFFS(6),
  90                 DEF_XMM_OFFS(7),
  91                 flags_off = xmm7_off + 16/BytesPerInt + 1, // 16-byte stack alignment fill word
  92                 rdi_off,
  93                 rsi_off,
  94                 ignore_off,  // extra copy of rbp,
  95                 rsp_off,
  96                 rbx_off,
  97                 rdx_off,
  98                 rcx_off,
  99                 rax_off,
 100                 // The frame sender code expects that rbp will be in the "natural" place and
 101                 // will override any oopMap setting for it. We must therefore force the layout
 102                 // so that it agrees with the frame sender code.
 103                 rbp_off,
 104                 return_off,      // slot for return address
 105                 reg_save_size };
 106   enum { FPU_regs_live = flags_off - fpu_state_end };
 107 
 108   public:
 109 
 110   static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words,
 111                                      int* total_frame_words, bool verify_fpu = true, bool save_vectors = false);
 112   static void restore_live_registers(MacroAssembler* masm, bool restore_vectors = false);
 113 
 114   static int rax_offset() { return rax_off; }
 115   static int rbx_offset() { return rbx_off; }
 116 
 117   // Offsets into the register save area
 118   // Used by deoptimization when it is managing result register
 119   // values on its own
 120 
 121   static int raxOffset(void) { return rax_off; }
 122   static int rdxOffset(void) { return rdx_off; }
 123   static int rbxOffset(void) { return rbx_off; }
 124   static int xmm0Offset(void) { return xmm0_off; }
 125   // This really returns a slot in the fp save area, which one is not important
 126   static int fpResultOffset(void) { return st0_off; }
 127 
 128   // During deoptimization only the result register need to be restored
 129   // all the other values have already been extracted.
 130 
 131   static void restore_result_registers(MacroAssembler* masm);
 132 
 133 };
 134 
 135 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words,
 136                                            int* total_frame_words, bool verify_fpu, bool save_vectors) {
 137   int num_xmm_regs = XMMRegister::number_of_registers;
 138   int ymm_bytes = num_xmm_regs * 16;
 139   int zmm_bytes = num_xmm_regs * 32;
 140 #ifdef COMPILER2
 141   int opmask_state_bytes = KRegister::number_of_registers * 8;
 142   if (save_vectors) {
 143     assert(UseAVX > 0, "Vectors larger than 16 byte long are supported only with AVX");
 144     assert(MaxVectorSize <= 64, "Only up to 64 byte long vectors are supported");
 145     // Save upper half of YMM registers
 146     int vect_bytes = ymm_bytes;
 147     if (UseAVX > 2) {
 148       // Save upper half of ZMM registers as well
 149       vect_bytes += zmm_bytes;
 150       additional_frame_words += opmask_state_bytes / wordSize;
 151     }
 152     additional_frame_words += vect_bytes / wordSize;
 153   }
 154 #else
 155   assert(!save_vectors, "vectors are generated only by C2");
 156 #endif
 157   int frame_size_in_bytes = (reg_save_size + additional_frame_words) * wordSize;
 158   int frame_words = frame_size_in_bytes / wordSize;
 159   *total_frame_words = frame_words;
 160 
 161   assert(FPUStateSizeInWords == 27, "update stack layout");
 162 
 163   // save registers, fpu state, and flags
 164   // We assume caller has already has return address slot on the stack
 165   // We push epb twice in this sequence because we want the real rbp,
 166   // to be under the return like a normal enter and we want to use pusha
 167   // We push by hand instead of using push.
 168   __ enter();
 169   __ pusha();
 170   __ pushf();
 171   __ subptr(rsp,FPU_regs_live*wordSize); // Push FPU registers space
 172   __ push_FPU_state();          // Save FPU state & init
 173 
 174   if (verify_fpu) {
 175     // Some stubs may have non standard FPU control word settings so
 176     // only check and reset the value when it required to be the
 177     // standard value.  The safepoint blob in particular can be used
 178     // in methods which are using the 24 bit control word for
 179     // optimized float math.
 180 
 181 #ifdef ASSERT
 182     // Make sure the control word has the expected value
 183     Label ok;
 184     __ cmpw(Address(rsp, 0), StubRoutines::x86::fpu_cntrl_wrd_std());
 185     __ jccb(Assembler::equal, ok);
 186     __ stop("corrupted control word detected");
 187     __ bind(ok);
 188 #endif
 189 
 190     // Reset the control word to guard against exceptions being unmasked
 191     // since fstp_d can cause FPU stack underflow exceptions.  Write it
 192     // into the on stack copy and then reload that to make sure that the
 193     // current and future values are correct.
 194     __ movw(Address(rsp, 0), StubRoutines::x86::fpu_cntrl_wrd_std());
 195   }
 196 
 197   __ frstor(Address(rsp, 0));
 198   if (!verify_fpu) {
 199     // Set the control word so that exceptions are masked for the
 200     // following code.
 201     __ fldcw(ExternalAddress(StubRoutines::x86::addr_fpu_cntrl_wrd_std()));
 202   }
 203 
 204   int off = st0_off;
 205   int delta = st1_off - off;
 206 
 207   // Save the FPU registers in de-opt-able form
 208   for (int n = 0; n < FloatRegister::number_of_registers; n++) {
 209     __ fstp_d(Address(rsp, off*wordSize));
 210     off += delta;
 211   }
 212 
 213   off = xmm0_off;
 214   delta = xmm1_off - off;
 215   if(UseSSE == 1) {
 216     // Save the XMM state
 217     for (int n = 0; n < num_xmm_regs; n++) {
 218       __ movflt(Address(rsp, off*wordSize), as_XMMRegister(n));
 219       off += delta;
 220     }
 221   } else if(UseSSE >= 2) {
 222     // Save whole 128bit (16 bytes) XMM registers
 223     for (int n = 0; n < num_xmm_regs; n++) {
 224       __ movdqu(Address(rsp, off*wordSize), as_XMMRegister(n));
 225       off += delta;
 226     }
 227   }
 228 
 229 #ifdef COMPILER2
 230   if (save_vectors) {
 231     __ subptr(rsp, ymm_bytes);
 232     // Save upper half of YMM registers
 233     for (int n = 0; n < num_xmm_regs; n++) {
 234       __ vextractf128_high(Address(rsp, n*16), as_XMMRegister(n));
 235     }
 236     if (UseAVX > 2) {
 237       __ subptr(rsp, zmm_bytes);
 238       // Save upper half of ZMM registers
 239       for (int n = 0; n < num_xmm_regs; n++) {
 240         __ vextractf64x4_high(Address(rsp, n*32), as_XMMRegister(n));
 241       }
 242       __ subptr(rsp, opmask_state_bytes);
 243       // Save opmask registers
 244       for (int n = 0; n < KRegister::number_of_registers; n++) {
 245         __ kmov(Address(rsp, n*8), as_KRegister(n));
 246       }
 247     }
 248   }
 249 #else
 250   assert(!save_vectors, "vectors are generated only by C2");
 251 #endif
 252 
 253   __ vzeroupper();
 254 
 255   // Set an oopmap for the call site.  This oopmap will map all
 256   // oop-registers and debug-info registers as callee-saved.  This
 257   // will allow deoptimization at this safepoint to find all possible
 258   // debug-info recordings, as well as let GC find all oops.
 259 
 260   OopMapSet *oop_maps = new OopMapSet();
 261   OopMap* map =  new OopMap( frame_words, 0 );
 262 
 263 #define STACK_OFFSET(x) VMRegImpl::stack2reg((x) + additional_frame_words)
 264 #define NEXTREG(x) (x)->as_VMReg()->next()
 265 
 266   map->set_callee_saved(STACK_OFFSET(rax_off), rax->as_VMReg());
 267   map->set_callee_saved(STACK_OFFSET(rcx_off), rcx->as_VMReg());
 268   map->set_callee_saved(STACK_OFFSET(rdx_off), rdx->as_VMReg());
 269   map->set_callee_saved(STACK_OFFSET(rbx_off), rbx->as_VMReg());
 270   // rbp, location is known implicitly, no oopMap
 271   map->set_callee_saved(STACK_OFFSET(rsi_off), rsi->as_VMReg());
 272   map->set_callee_saved(STACK_OFFSET(rdi_off), rdi->as_VMReg());
 273 
 274   // %%% This is really a waste but we'll keep things as they were for now for the upper component
 275   off = st0_off;
 276   delta = st1_off - off;
 277   for (int n = 0; n < FloatRegister::number_of_registers; n++) {
 278     FloatRegister freg_name = as_FloatRegister(n);
 279     map->set_callee_saved(STACK_OFFSET(off), freg_name->as_VMReg());
 280     map->set_callee_saved(STACK_OFFSET(off+1), NEXTREG(freg_name));
 281     off += delta;
 282   }
 283   off = xmm0_off;
 284   delta = xmm1_off - off;
 285   for (int n = 0; n < num_xmm_regs; n++) {
 286     XMMRegister xmm_name = as_XMMRegister(n);
 287     map->set_callee_saved(STACK_OFFSET(off), xmm_name->as_VMReg());
 288     map->set_callee_saved(STACK_OFFSET(off+1), NEXTREG(xmm_name));
 289     off += delta;
 290   }
 291 #undef NEXTREG
 292 #undef STACK_OFFSET
 293 
 294   return map;
 295 }
 296 
 297 void RegisterSaver::restore_live_registers(MacroAssembler* masm, bool restore_vectors) {
 298   int opmask_state_bytes = 0;
 299   int additional_frame_bytes = 0;
 300   int num_xmm_regs = XMMRegister::number_of_registers;
 301   int ymm_bytes = num_xmm_regs * 16;
 302   int zmm_bytes = num_xmm_regs * 32;
 303   // Recover XMM & FPU state
 304 #ifdef COMPILER2
 305   if (restore_vectors) {
 306     assert(UseAVX > 0, "Vectors larger than 16 byte long are supported only with AVX");
 307     assert(MaxVectorSize <= 64, "Only up to 64 byte long vectors are supported");
 308     // Save upper half of YMM registers
 309     additional_frame_bytes = ymm_bytes;
 310     if (UseAVX > 2) {
 311       // Save upper half of ZMM registers as well
 312       additional_frame_bytes += zmm_bytes;
 313       opmask_state_bytes = KRegister::number_of_registers * 8;
 314       additional_frame_bytes += opmask_state_bytes;
 315     }
 316   }
 317 #else
 318   assert(!restore_vectors, "vectors are generated only by C2");
 319 #endif
 320 
 321   int off = xmm0_off;
 322   int delta = xmm1_off - off;
 323 
 324   __ vzeroupper();
 325 
 326   if (UseSSE == 1) {
 327     // Restore XMM registers
 328     assert(additional_frame_bytes == 0, "");
 329     for (int n = 0; n < num_xmm_regs; n++) {
 330       __ movflt(as_XMMRegister(n), Address(rsp, off*wordSize));
 331       off += delta;
 332     }
 333   } else if (UseSSE >= 2) {
 334     // Restore whole 128bit (16 bytes) XMM registers. Do this before restoring YMM and
 335     // ZMM because the movdqu instruction zeros the upper part of the XMM register.
 336     for (int n = 0; n < num_xmm_regs; n++) {
 337       __ movdqu(as_XMMRegister(n), Address(rsp, off*wordSize+additional_frame_bytes));
 338       off += delta;
 339     }
 340   }
 341 
 342   if (restore_vectors) {
 343     off = additional_frame_bytes - ymm_bytes;
 344     // Restore upper half of YMM registers.
 345     for (int n = 0; n < num_xmm_regs; n++) {
 346       __ vinsertf128_high(as_XMMRegister(n), Address(rsp, n*16+off));
 347     }
 348     if (UseAVX > 2) {
 349       // Restore upper half of ZMM registers.
 350       off = opmask_state_bytes;
 351       for (int n = 0; n < num_xmm_regs; n++) {
 352         __ vinsertf64x4_high(as_XMMRegister(n), Address(rsp, n*32+off));
 353       }
 354       for (int n = 0; n < KRegister::number_of_registers; n++) {
 355         __ kmov(as_KRegister(n), Address(rsp, n*8));
 356       }
 357     }
 358     __ addptr(rsp, additional_frame_bytes);
 359   }
 360 
 361   __ pop_FPU_state();
 362   __ addptr(rsp, FPU_regs_live*wordSize); // Pop FPU registers
 363 
 364   __ popf();
 365   __ popa();
 366   // Get the rbp, described implicitly by the frame sender code (no oopMap)
 367   __ pop(rbp);
 368 }
 369 
 370 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
 371 
 372   // Just restore result register. Only used by deoptimization. By
 373   // now any callee save register that needs to be restore to a c2
 374   // caller of the deoptee has been extracted into the vframeArray
 375   // and will be stuffed into the c2i adapter we create for later
 376   // restoration so only result registers need to be restored here.
 377   //
 378 
 379   __ frstor(Address(rsp, 0));      // Restore fpu state
 380 
 381   // Recover XMM & FPU state
 382   if( UseSSE == 1 ) {
 383     __ movflt(xmm0, Address(rsp, xmm0_off*wordSize));
 384   } else if( UseSSE >= 2 ) {
 385     __ movdbl(xmm0, Address(rsp, xmm0_off*wordSize));
 386   }
 387   __ movptr(rax, Address(rsp, rax_off*wordSize));
 388   __ movptr(rdx, Address(rsp, rdx_off*wordSize));
 389   // Pop all of the register save are off the stack except the return address
 390   __ addptr(rsp, return_off * wordSize);
 391 }
 392 
 393 // Is vector's size (in bytes) bigger than a size saved by default?
 394 // 16 bytes XMM registers are saved by default using SSE2 movdqu instructions.
 395 // Note, MaxVectorSize == 0 with UseSSE < 2 and vectors are not generated.
 396 bool SharedRuntime::is_wide_vector(int size) {
 397   return size > 16;
 398 }
 399 
 400 // The java_calling_convention describes stack locations as ideal slots on
 401 // a frame with no abi restrictions. Since we must observe abi restrictions
 402 // (like the placement of the register window) the slots must be biased by
 403 // the following value.
 404 static int reg2offset_in(VMReg r) {
 405   // Account for saved rbp, and return address
 406   // This should really be in_preserve_stack_slots
 407   return (r->reg2stack() + 2) * VMRegImpl::stack_slot_size;
 408 }
 409 
 410 static int reg2offset_out(VMReg r) {
 411   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
 412 }
 413 
 414 // ---------------------------------------------------------------------------
 415 // Read the array of BasicTypes from a signature, and compute where the
 416 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte
 417 // quantities.  Values less than SharedInfo::stack0 are registers, those above
 418 // refer to 4-byte stack slots.  All stack slots are based off of the stack pointer
 419 // as framesizes are fixed.
 420 // VMRegImpl::stack0 refers to the first slot 0(sp).
 421 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.
 422 // Register up to Register::number_of_registers are the 32-bit
 423 // integer registers.
 424 
 425 // Pass first two oop/int args in registers ECX and EDX.
 426 // Pass first two float/double args in registers XMM0 and XMM1.
 427 // Doubles have precedence, so if you pass a mix of floats and doubles
 428 // the doubles will grab the registers before the floats will.
 429 
 430 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
 431 // either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
 432 // units regardless of build. Of course for i486 there is no 64 bit build
 433 
 434 
 435 // ---------------------------------------------------------------------------
 436 // The compiled Java calling convention.
 437 // Pass first two oop/int args in registers ECX and EDX.
 438 // Pass first two float/double args in registers XMM0 and XMM1.
 439 // Doubles have precedence, so if you pass a mix of floats and doubles
 440 // the doubles will grab the registers before the floats will.
 441 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
 442                                            VMRegPair *regs,
 443                                            int total_args_passed) {
 444   uint    stack = 0;          // Starting stack position for args on stack
 445 
 446 
 447   // Pass first two oop/int args in registers ECX and EDX.
 448   uint reg_arg0 = 9999;
 449   uint reg_arg1 = 9999;
 450 
 451   // Pass first two float/double args in registers XMM0 and XMM1.
 452   // Doubles have precedence, so if you pass a mix of floats and doubles
 453   // the doubles will grab the registers before the floats will.
 454   // CNC - TURNED OFF FOR non-SSE.
 455   //       On Intel we have to round all doubles (and most floats) at
 456   //       call sites by storing to the stack in any case.
 457   // UseSSE=0 ==> Don't Use ==> 9999+0
 458   // UseSSE=1 ==> Floats only ==> 9999+1
 459   // UseSSE>=2 ==> Floats or doubles ==> 9999+2
 460   enum { fltarg_dontuse = 9999+0, fltarg_float_only = 9999+1, fltarg_flt_dbl = 9999+2 };
 461   uint fargs = (UseSSE>=2) ? 2 : UseSSE;
 462   uint freg_arg0 = 9999+fargs;
 463   uint freg_arg1 = 9999+fargs;
 464 
 465   // Pass doubles & longs aligned on the stack.  First count stack slots for doubles
 466   int i;
 467   for( i = 0; i < total_args_passed; i++) {
 468     if( sig_bt[i] == T_DOUBLE ) {
 469       // first 2 doubles go in registers
 470       if( freg_arg0 == fltarg_flt_dbl ) freg_arg0 = i;
 471       else if( freg_arg1 == fltarg_flt_dbl ) freg_arg1 = i;
 472       else // Else double is passed low on the stack to be aligned.
 473         stack += 2;
 474     } else if( sig_bt[i] == T_LONG ) {
 475       stack += 2;
 476     }
 477   }
 478   int dstack = 0;             // Separate counter for placing doubles
 479 
 480   // Now pick where all else goes.
 481   for( i = 0; i < total_args_passed; i++) {
 482     // From the type and the argument number (count) compute the location
 483     switch( sig_bt[i] ) {
 484     case T_SHORT:
 485     case T_CHAR:
 486     case T_BYTE:
 487     case T_BOOLEAN:
 488     case T_INT:
 489     case T_ARRAY:
 490     case T_OBJECT:
 491     case T_ADDRESS:
 492       if( reg_arg0 == 9999 )  {
 493         reg_arg0 = i;
 494         regs[i].set1(rcx->as_VMReg());
 495       } else if( reg_arg1 == 9999 )  {
 496         reg_arg1 = i;
 497         regs[i].set1(rdx->as_VMReg());
 498       } else {
 499         regs[i].set1(VMRegImpl::stack2reg(stack++));
 500       }
 501       break;
 502     case T_FLOAT:
 503       if( freg_arg0 == fltarg_flt_dbl || freg_arg0 == fltarg_float_only ) {
 504         freg_arg0 = i;
 505         regs[i].set1(xmm0->as_VMReg());
 506       } else if( freg_arg1 == fltarg_flt_dbl || freg_arg1 == fltarg_float_only ) {
 507         freg_arg1 = i;
 508         regs[i].set1(xmm1->as_VMReg());
 509       } else {
 510         regs[i].set1(VMRegImpl::stack2reg(stack++));
 511       }
 512       break;
 513     case T_LONG:
 514       assert((i + 1) < total_args_passed && sig_bt[i+1] == T_VOID, "missing Half" );
 515       regs[i].set2(VMRegImpl::stack2reg(dstack));
 516       dstack += 2;
 517       break;
 518     case T_DOUBLE:
 519       assert((i + 1) < total_args_passed && sig_bt[i+1] == T_VOID, "missing Half" );
 520       if( freg_arg0 == (uint)i ) {
 521         regs[i].set2(xmm0->as_VMReg());
 522       } else if( freg_arg1 == (uint)i ) {
 523         regs[i].set2(xmm1->as_VMReg());
 524       } else {
 525         regs[i].set2(VMRegImpl::stack2reg(dstack));
 526         dstack += 2;
 527       }
 528       break;
 529     case T_VOID: regs[i].set_bad(); break;
 530       break;
 531     default:
 532       ShouldNotReachHere();
 533       break;
 534     }
 535   }
 536 
 537   return stack;
 538 }
 539 
 540 // Patch the callers callsite with entry to compiled code if it exists.
 541 static void patch_callers_callsite(MacroAssembler *masm) {
 542   Label L;
 543   __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), NULL_WORD);
 544   __ jcc(Assembler::equal, L);
 545   // Schedule the branch target address early.
 546   // Call into the VM to patch the caller, then jump to compiled callee
 547   // rax, isn't live so capture return address while we easily can
 548   __ movptr(rax, Address(rsp, 0));
 549   __ pusha();
 550   __ pushf();
 551 
 552   if (UseSSE == 1) {
 553     __ subptr(rsp, 2*wordSize);
 554     __ movflt(Address(rsp, 0), xmm0);
 555     __ movflt(Address(rsp, wordSize), xmm1);
 556   }
 557   if (UseSSE >= 2) {
 558     __ subptr(rsp, 4*wordSize);
 559     __ movdbl(Address(rsp, 0), xmm0);
 560     __ movdbl(Address(rsp, 2*wordSize), xmm1);
 561   }
 562 #ifdef COMPILER2
 563   // C2 may leave the stack dirty if not in SSE2+ mode
 564   if (UseSSE >= 2) {
 565     __ verify_FPU(0, "c2i transition should have clean FPU stack");
 566   } else {
 567     __ empty_FPU_stack();
 568   }
 569 #endif /* COMPILER2 */
 570 
 571   // VM needs caller's callsite
 572   __ push(rax);
 573   // VM needs target method
 574   __ push(rbx);
 575   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
 576   __ addptr(rsp, 2*wordSize);
 577 
 578   if (UseSSE == 1) {
 579     __ movflt(xmm0, Address(rsp, 0));
 580     __ movflt(xmm1, Address(rsp, wordSize));
 581     __ addptr(rsp, 2*wordSize);
 582   }
 583   if (UseSSE >= 2) {
 584     __ movdbl(xmm0, Address(rsp, 0));
 585     __ movdbl(xmm1, Address(rsp, 2*wordSize));
 586     __ addptr(rsp, 4*wordSize);
 587   }
 588 
 589   __ popf();
 590   __ popa();
 591   __ bind(L);
 592 }
 593 
 594 
 595 static void move_c2i_double(MacroAssembler *masm, XMMRegister r, int st_off) {
 596   int next_off = st_off - Interpreter::stackElementSize;
 597   __ movdbl(Address(rsp, next_off), r);
 598 }
 599 
 600 static void gen_c2i_adapter(MacroAssembler *masm,
 601                             int total_args_passed,
 602                             int comp_args_on_stack,
 603                             const BasicType *sig_bt,
 604                             const VMRegPair *regs,
 605                             Label& skip_fixup) {
 606   // Before we get into the guts of the C2I adapter, see if we should be here
 607   // at all.  We've come from compiled code and are attempting to jump to the
 608   // interpreter, which means the caller made a static call to get here
 609   // (vcalls always get a compiled target if there is one).  Check for a
 610   // compiled target.  If there is one, we need to patch the caller's call.
 611   patch_callers_callsite(masm);
 612 
 613   __ bind(skip_fixup);
 614 
 615 #ifdef COMPILER2
 616   // C2 may leave the stack dirty if not in SSE2+ mode
 617   if (UseSSE >= 2) {
 618     __ verify_FPU(0, "c2i transition should have clean FPU stack");
 619   } else {
 620     __ empty_FPU_stack();
 621   }
 622 #endif /* COMPILER2 */
 623 
 624   // Since all args are passed on the stack, total_args_passed * interpreter_
 625   // stack_element_size  is the
 626   // space we need.
 627   int extraspace = total_args_passed * Interpreter::stackElementSize;
 628 
 629   // Get return address
 630   __ pop(rax);
 631 
 632   // set senderSP value
 633   __ movptr(rsi, rsp);
 634 
 635   __ subptr(rsp, extraspace);
 636 
 637   // Now write the args into the outgoing interpreter space
 638   for (int i = 0; i < total_args_passed; i++) {
 639     if (sig_bt[i] == T_VOID) {
 640       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
 641       continue;
 642     }
 643 
 644     // st_off points to lowest address on stack.
 645     int st_off = ((total_args_passed - 1) - i) * Interpreter::stackElementSize;
 646     int next_off = st_off - Interpreter::stackElementSize;
 647 
 648     // Say 4 args:
 649     // i   st_off
 650     // 0   12 T_LONG
 651     // 1    8 T_VOID
 652     // 2    4 T_OBJECT
 653     // 3    0 T_BOOL
 654     VMReg r_1 = regs[i].first();
 655     VMReg r_2 = regs[i].second();
 656     if (!r_1->is_valid()) {
 657       assert(!r_2->is_valid(), "");
 658       continue;
 659     }
 660 
 661     if (r_1->is_stack()) {
 662       // memory to memory use fpu stack top
 663       int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
 664 
 665       if (!r_2->is_valid()) {
 666         __ movl(rdi, Address(rsp, ld_off));
 667         __ movptr(Address(rsp, st_off), rdi);
 668       } else {
 669 
 670         // ld_off == LSW, ld_off+VMRegImpl::stack_slot_size == MSW
 671         // st_off == MSW, st_off-wordSize == LSW
 672 
 673         __ movptr(rdi, Address(rsp, ld_off));
 674         __ movptr(Address(rsp, next_off), rdi);
 675         __ movptr(rdi, Address(rsp, ld_off + wordSize));
 676         __ movptr(Address(rsp, st_off), rdi);
 677       }
 678     } else if (r_1->is_Register()) {
 679       Register r = r_1->as_Register();
 680       if (!r_2->is_valid()) {
 681         __ movl(Address(rsp, st_off), r);
 682       } else {
 683         // long/double in gpr
 684         ShouldNotReachHere();
 685       }
 686     } else {
 687       assert(r_1->is_XMMRegister(), "");
 688       if (!r_2->is_valid()) {
 689         __ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
 690       } else {
 691         assert(sig_bt[i] == T_DOUBLE || sig_bt[i] == T_LONG, "wrong type");
 692         move_c2i_double(masm, r_1->as_XMMRegister(), st_off);
 693       }
 694     }
 695   }
 696 
 697   // Schedule the branch target address early.
 698   __ movptr(rcx, Address(rbx, in_bytes(Method::interpreter_entry_offset())));
 699   // And repush original return address
 700   __ push(rax);
 701   __ jmp(rcx);
 702 }
 703 
 704 
 705 static void move_i2c_double(MacroAssembler *masm, XMMRegister r, Register saved_sp, int ld_off) {
 706   int next_val_off = ld_off - Interpreter::stackElementSize;
 707   __ movdbl(r, Address(saved_sp, next_val_off));
 708 }
 709 
 710 static void range_check(MacroAssembler* masm, Register pc_reg, Register temp_reg,
 711                         address code_start, address code_end,
 712                         Label& L_ok) {
 713   Label L_fail;
 714   __ lea(temp_reg, AddressLiteral(code_start, relocInfo::none));
 715   __ cmpptr(pc_reg, temp_reg);
 716   __ jcc(Assembler::belowEqual, L_fail);
 717   __ lea(temp_reg, AddressLiteral(code_end, relocInfo::none));
 718   __ cmpptr(pc_reg, temp_reg);
 719   __ jcc(Assembler::below, L_ok);
 720   __ bind(L_fail);
 721 }
 722 
 723 void SharedRuntime::gen_i2c_adapter(MacroAssembler *masm,
 724                                     int total_args_passed,
 725                                     int comp_args_on_stack,
 726                                     const BasicType *sig_bt,
 727                                     const VMRegPair *regs) {
 728   // Note: rsi contains the senderSP on entry. We must preserve it since
 729   // we may do a i2c -> c2i transition if we lose a race where compiled
 730   // code goes non-entrant while we get args ready.
 731 
 732   // Adapters can be frameless because they do not require the caller
 733   // to perform additional cleanup work, such as correcting the stack pointer.
 734   // An i2c adapter is frameless because the *caller* frame, which is interpreted,
 735   // routinely repairs its own stack pointer (from interpreter_frame_last_sp),
 736   // even if a callee has modified the stack pointer.
 737   // A c2i adapter is frameless because the *callee* frame, which is interpreted,
 738   // routinely repairs its caller's stack pointer (from sender_sp, which is set
 739   // up via the senderSP register).
 740   // In other words, if *either* the caller or callee is interpreted, we can
 741   // get the stack pointer repaired after a call.
 742   // This is why c2i and i2c adapters cannot be indefinitely composed.
 743   // In particular, if a c2i adapter were to somehow call an i2c adapter,
 744   // both caller and callee would be compiled methods, and neither would
 745   // clean up the stack pointer changes performed by the two adapters.
 746   // If this happens, control eventually transfers back to the compiled
 747   // caller, but with an uncorrected stack, causing delayed havoc.
 748 
 749   // Pick up the return address
 750   __ movptr(rax, Address(rsp, 0));
 751 
 752   if (VerifyAdapterCalls &&
 753       (Interpreter::code() != nullptr || StubRoutines::final_stubs_code() != nullptr)) {
 754     // So, let's test for cascading c2i/i2c adapters right now.
 755     //  assert(Interpreter::contains($return_addr) ||
 756     //         StubRoutines::contains($return_addr),
 757     //         "i2c adapter must return to an interpreter frame");
 758     __ block_comment("verify_i2c { ");
 759     Label L_ok;
 760     if (Interpreter::code() != nullptr) {
 761       range_check(masm, rax, rdi,
 762                   Interpreter::code()->code_start(), Interpreter::code()->code_end(),
 763                   L_ok);
 764     }
 765     if (StubRoutines::initial_stubs_code() != nullptr) {
 766       range_check(masm, rax, rdi,
 767                   StubRoutines::initial_stubs_code()->code_begin(),
 768                   StubRoutines::initial_stubs_code()->code_end(),
 769                   L_ok);
 770     }
 771     if (StubRoutines::final_stubs_code() != nullptr) {
 772       range_check(masm, rax, rdi,
 773                   StubRoutines::final_stubs_code()->code_begin(),
 774                   StubRoutines::final_stubs_code()->code_end(),
 775                   L_ok);
 776     }
 777     const char* msg = "i2c adapter must return to an interpreter frame";
 778     __ block_comment(msg);
 779     __ stop(msg);
 780     __ bind(L_ok);
 781     __ block_comment("} verify_i2ce ");
 782   }
 783 
 784   // Must preserve original SP for loading incoming arguments because
 785   // we need to align the outgoing SP for compiled code.
 786   __ movptr(rdi, rsp);
 787 
 788   // Cut-out for having no stack args.  Since up to 2 int/oop args are passed
 789   // in registers, we will occasionally have no stack args.
 790   int comp_words_on_stack = 0;
 791   if (comp_args_on_stack) {
 792     // Sig words on the stack are greater-than VMRegImpl::stack0.  Those in
 793     // registers are below.  By subtracting stack0, we either get a negative
 794     // number (all values in registers) or the maximum stack slot accessed.
 795     // int comp_args_on_stack = VMRegImpl::reg2stack(max_arg);
 796     // Convert 4-byte stack slots to words.
 797     comp_words_on_stack = align_up(comp_args_on_stack*4, wordSize)>>LogBytesPerWord;
 798     // Round up to miminum stack alignment, in wordSize
 799     comp_words_on_stack = align_up(comp_words_on_stack, 2);
 800     __ subptr(rsp, comp_words_on_stack * wordSize);
 801   }
 802 
 803   // Align the outgoing SP
 804   __ andptr(rsp, -(StackAlignmentInBytes));
 805 
 806   // push the return address on the stack (note that pushing, rather
 807   // than storing it, yields the correct frame alignment for the callee)
 808   __ push(rax);
 809 
 810   // Put saved SP in another register
 811   const Register saved_sp = rax;
 812   __ movptr(saved_sp, rdi);
 813 
 814 
 815   // Will jump to the compiled code just as if compiled code was doing it.
 816   // Pre-load the register-jump target early, to schedule it better.
 817   __ movptr(rdi, Address(rbx, in_bytes(Method::from_compiled_offset())));
 818 
 819   // Now generate the shuffle code.  Pick up all register args and move the
 820   // rest through the floating point stack top.
 821   for (int i = 0; i < total_args_passed; i++) {
 822     if (sig_bt[i] == T_VOID) {
 823       // Longs and doubles are passed in native word order, but misaligned
 824       // in the 32-bit build.
 825       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
 826       continue;
 827     }
 828 
 829     // Pick up 0, 1 or 2 words from SP+offset.
 830 
 831     assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
 832             "scrambled load targets?");
 833     // Load in argument order going down.
 834     int ld_off = (total_args_passed - i) * Interpreter::stackElementSize;
 835     // Point to interpreter value (vs. tag)
 836     int next_off = ld_off - Interpreter::stackElementSize;
 837     //
 838     //
 839     //
 840     VMReg r_1 = regs[i].first();
 841     VMReg r_2 = regs[i].second();
 842     if (!r_1->is_valid()) {
 843       assert(!r_2->is_valid(), "");
 844       continue;
 845     }
 846     if (r_1->is_stack()) {
 847       // Convert stack slot to an SP offset (+ wordSize to account for return address )
 848       int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
 849 
 850       // We can use rsi as a temp here because compiled code doesn't need rsi as an input
 851       // and if we end up going thru a c2i because of a miss a reasonable value of rsi
 852       // we be generated.
 853       if (!r_2->is_valid()) {
 854         // __ fld_s(Address(saved_sp, ld_off));
 855         // __ fstp_s(Address(rsp, st_off));
 856         __ movl(rsi, Address(saved_sp, ld_off));
 857         __ movptr(Address(rsp, st_off), rsi);
 858       } else {
 859         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
 860         // are accessed as negative so LSW is at LOW address
 861 
 862         // ld_off is MSW so get LSW
 863         // st_off is LSW (i.e. reg.first())
 864         // __ fld_d(Address(saved_sp, next_off));
 865         // __ fstp_d(Address(rsp, st_off));
 866         //
 867         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
 868         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
 869         // So we must adjust where to pick up the data to match the interpreter.
 870         //
 871         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
 872         // are accessed as negative so LSW is at LOW address
 873 
 874         // ld_off is MSW so get LSW
 875         __ movptr(rsi, Address(saved_sp, next_off));
 876         __ movptr(Address(rsp, st_off), rsi);
 877         __ movptr(rsi, Address(saved_sp, ld_off));
 878         __ movptr(Address(rsp, st_off + wordSize), rsi);
 879       }
 880     } else if (r_1->is_Register()) {  // Register argument
 881       Register r = r_1->as_Register();
 882       assert(r != rax, "must be different");
 883       if (r_2->is_valid()) {
 884         //
 885         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
 886         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
 887         // So we must adjust where to pick up the data to match the interpreter.
 888 
 889         // this can be a misaligned move
 890         __ movptr(r, Address(saved_sp, next_off));
 891         assert(r_2->as_Register() != rax, "need another temporary register");
 892         // Remember r_1 is low address (and LSB on x86)
 893         // So r_2 gets loaded from high address regardless of the platform
 894         __ movptr(r_2->as_Register(), Address(saved_sp, ld_off));
 895       } else {
 896         __ movl(r, Address(saved_sp, ld_off));
 897       }
 898     } else {
 899       assert(r_1->is_XMMRegister(), "");
 900       if (!r_2->is_valid()) {
 901         __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off));
 902       } else {
 903         move_i2c_double(masm, r_1->as_XMMRegister(), saved_sp, ld_off);
 904       }
 905     }
 906   }
 907 
 908   // 6243940 We might end up in handle_wrong_method if
 909   // the callee is deoptimized as we race thru here. If that
 910   // happens we don't want to take a safepoint because the
 911   // caller frame will look interpreted and arguments are now
 912   // "compiled" so it is much better to make this transition
 913   // invisible to the stack walking code. Unfortunately if
 914   // we try and find the callee by normal means a safepoint
 915   // is possible. So we stash the desired callee in the thread
 916   // and the vm will find there should this case occur.
 917 
 918   __ get_thread(rax);
 919   __ movptr(Address(rax, JavaThread::callee_target_offset()), rbx);
 920 
 921   // move Method* to rax, in case we end up in an c2i adapter.
 922   // the c2i adapters expect Method* in rax, (c2) because c2's
 923   // resolve stubs return the result (the method) in rax,.
 924   // I'd love to fix this.
 925   __ mov(rax, rbx);
 926 
 927   __ jmp(rdi);
 928 }
 929 
 930 // ---------------------------------------------------------------
 931 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
 932                                                             int total_args_passed,
 933                                                             int comp_args_on_stack,
 934                                                             const BasicType *sig_bt,
 935                                                             const VMRegPair *regs,
 936                                                             AdapterFingerPrint* fingerprint) {
 937   address i2c_entry = __ pc();
 938 
 939   gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
 940 
 941   // -------------------------------------------------------------------------
 942   // Generate a C2I adapter.  On entry we know rbx, holds the Method* during calls
 943   // to the interpreter.  The args start out packed in the compiled layout.  They
 944   // need to be unpacked into the interpreter layout.  This will almost always
 945   // require some stack space.  We grow the current (compiled) stack, then repack
 946   // the args.  We  finally end in a jump to the generic interpreter entry point.
 947   // On exit from the interpreter, the interpreter will restore our SP (lest the
 948   // compiled code, which relies solely on SP and not EBP, get sick).
 949 
 950   address c2i_unverified_entry = __ pc();
 951   Label skip_fixup;
 952 
 953   Register data = rax;
 954   Register receiver = rcx;
 955   Register temp = rbx;
 956 
 957   {
 958     __ ic_check(1 /* end_alignment */);
 959     __ movptr(rbx, Address(data, CompiledICData::speculated_method_offset()));
 960     // Method might have been compiled since the call site was patched to
 961     // interpreted if that is the case treat it as a miss so we can get
 962     // the call site corrected.
 963     __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), NULL_WORD);
 964     __ jcc(Assembler::equal, skip_fixup);
 965   }
 966 
 967   address c2i_entry = __ pc();
 968 
 969   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
 970   bs->c2i_entry_barrier(masm);
 971 
 972   gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
 973 
 974   return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
 975 }
 976 
 977 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
 978                                          VMRegPair *regs,
 979                                          int total_args_passed) {
 980 
 981 // We return the amount of VMRegImpl stack slots we need to reserve for all
 982 // the arguments NOT counting out_preserve_stack_slots.
 983 
 984   uint    stack = 0;        // All arguments on stack
 985 
 986   for( int i = 0; i < total_args_passed; i++) {
 987     // From the type and the argument number (count) compute the location
 988     switch( sig_bt[i] ) {
 989     case T_BOOLEAN:
 990     case T_CHAR:
 991     case T_FLOAT:
 992     case T_BYTE:
 993     case T_SHORT:
 994     case T_INT:
 995     case T_OBJECT:
 996     case T_ARRAY:
 997     case T_ADDRESS:
 998     case T_METADATA:
 999       regs[i].set1(VMRegImpl::stack2reg(stack++));
1000       break;
1001     case T_LONG:
1002     case T_DOUBLE: // The stack numbering is reversed from Java
1003       // Since C arguments do not get reversed, the ordering for
1004       // doubles on the stack must be opposite the Java convention
1005       assert((i + 1) < total_args_passed && sig_bt[i+1] == T_VOID, "missing Half" );
1006       regs[i].set2(VMRegImpl::stack2reg(stack));
1007       stack += 2;
1008       break;
1009     case T_VOID: regs[i].set_bad(); break;
1010     default:
1011       ShouldNotReachHere();
1012       break;
1013     }
1014   }
1015   return stack;
1016 }
1017 
1018 int SharedRuntime::vector_calling_convention(VMRegPair *regs,
1019                                              uint num_bits,
1020                                              uint total_args_passed) {
1021   Unimplemented();
1022   return 0;
1023 }
1024 
1025 // A simple move of integer like type
1026 static void simple_move32(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1027   if (src.first()->is_stack()) {
1028     if (dst.first()->is_stack()) {
1029       // stack to stack
1030       // __ ld(FP, reg2offset(src.first()), L5);
1031       // __ st(L5, SP, reg2offset(dst.first()));
1032       __ movl2ptr(rax, Address(rbp, reg2offset_in(src.first())));
1033       __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1034     } else {
1035       // stack to reg
1036       __ movl2ptr(dst.first()->as_Register(),  Address(rbp, reg2offset_in(src.first())));
1037     }
1038   } else if (dst.first()->is_stack()) {
1039     // reg to stack
1040     // no need to sign extend on 64bit
1041     __ movptr(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
1042   } else {
1043     if (dst.first() != src.first()) {
1044       __ mov(dst.first()->as_Register(), src.first()->as_Register());
1045     }
1046   }
1047 }
1048 
1049 // An oop arg. Must pass a handle not the oop itself
1050 static void object_move(MacroAssembler* masm,
1051                         OopMap* map,
1052                         int oop_handle_offset,
1053                         int framesize_in_slots,
1054                         VMRegPair src,
1055                         VMRegPair dst,
1056                         bool is_receiver,
1057                         int* receiver_offset) {
1058 
1059   // Because of the calling conventions we know that src can be a
1060   // register or a stack location. dst can only be a stack location.
1061 
1062   assert(dst.first()->is_stack(), "must be stack");
1063   // must pass a handle. First figure out the location we use as a handle
1064 
1065   if (src.first()->is_stack()) {
1066     // Oop is already on the stack as an argument
1067     Register rHandle = rax;
1068     Label nil;
1069     __ xorptr(rHandle, rHandle);
1070     __ cmpptr(Address(rbp, reg2offset_in(src.first())), NULL_WORD);
1071     __ jcc(Assembler::equal, nil);
1072     __ lea(rHandle, Address(rbp, reg2offset_in(src.first())));
1073     __ bind(nil);
1074     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
1075 
1076     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1077     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
1078     if (is_receiver) {
1079       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
1080     }
1081   } else {
1082     // Oop is in a register we must store it to the space we reserve
1083     // on the stack for oop_handles
1084     const Register rOop = src.first()->as_Register();
1085     const Register rHandle = rax;
1086     int oop_slot = (rOop == rcx ? 0 : 1) * VMRegImpl::slots_per_word + oop_handle_offset;
1087     int offset = oop_slot*VMRegImpl::stack_slot_size;
1088     Label skip;
1089     __ movptr(Address(rsp, offset), rOop);
1090     map->set_oop(VMRegImpl::stack2reg(oop_slot));
1091     __ xorptr(rHandle, rHandle);
1092     __ cmpptr(rOop, NULL_WORD);
1093     __ jcc(Assembler::equal, skip);
1094     __ lea(rHandle, Address(rsp, offset));
1095     __ bind(skip);
1096     // Store the handle parameter
1097     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
1098     if (is_receiver) {
1099       *receiver_offset = offset;
1100     }
1101   }
1102 }
1103 
1104 // A float arg may have to do float reg int reg conversion
1105 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1106   assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
1107 
1108   // Because of the calling convention we know that src is either a stack location
1109   // or an xmm register. dst can only be a stack location.
1110 
1111   assert(dst.first()->is_stack() && ( src.first()->is_stack() || src.first()->is_XMMRegister()), "bad parameters");
1112 
1113   if (src.first()->is_stack()) {
1114     __ movl(rax, Address(rbp, reg2offset_in(src.first())));
1115     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1116   } else {
1117     // reg to stack
1118     __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1119   }
1120 }
1121 
1122 // A long move
1123 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1124 
1125   // The only legal possibility for a long_move VMRegPair is:
1126   // 1: two stack slots (possibly unaligned)
1127   // as neither the java  or C calling convention will use registers
1128   // for longs.
1129 
1130   if (src.first()->is_stack() && dst.first()->is_stack()) {
1131     assert(src.second()->is_stack() && dst.second()->is_stack(), "must be all stack");
1132     __ movptr(rax, Address(rbp, reg2offset_in(src.first())));
1133     __ movptr(rbx, Address(rbp, reg2offset_in(src.second())));
1134     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1135     __ movptr(Address(rsp, reg2offset_out(dst.second())), rbx);
1136   } else {
1137     ShouldNotReachHere();
1138   }
1139 }
1140 
1141 // A double move
1142 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1143 
1144   // The only legal possibilities for a double_move VMRegPair are:
1145   // The painful thing here is that like long_move a VMRegPair might be
1146 
1147   // Because of the calling convention we know that src is either
1148   //   1: a single physical register (xmm registers only)
1149   //   2: two stack slots (possibly unaligned)
1150   // dst can only be a pair of stack slots.
1151 
1152   assert(dst.first()->is_stack() && (src.first()->is_XMMRegister() || src.first()->is_stack()), "bad args");
1153 
1154   if (src.first()->is_stack()) {
1155     // source is all stack
1156     __ movptr(rax, Address(rbp, reg2offset_in(src.first())));
1157     __ movptr(rbx, Address(rbp, reg2offset_in(src.second())));
1158     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1159     __ movptr(Address(rsp, reg2offset_out(dst.second())), rbx);
1160   } else {
1161     // reg to stack
1162     // No worries about stack alignment
1163     __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1164   }
1165 }
1166 
1167 
1168 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1169   // We always ignore the frame_slots arg and just use the space just below frame pointer
1170   // which by this time is free to use
1171   switch (ret_type) {
1172   case T_FLOAT:
1173     __ fstp_s(Address(rbp, -wordSize));
1174     break;
1175   case T_DOUBLE:
1176     __ fstp_d(Address(rbp, -2*wordSize));
1177     break;
1178   case T_VOID:  break;
1179   case T_LONG:
1180     __ movptr(Address(rbp, -wordSize), rax);
1181     __ movptr(Address(rbp, -2*wordSize), rdx);
1182     break;
1183   default: {
1184     __ movptr(Address(rbp, -wordSize), rax);
1185     }
1186   }
1187 }
1188 
1189 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1190   // We always ignore the frame_slots arg and just use the space just below frame pointer
1191   // which by this time is free to use
1192   switch (ret_type) {
1193   case T_FLOAT:
1194     __ fld_s(Address(rbp, -wordSize));
1195     break;
1196   case T_DOUBLE:
1197     __ fld_d(Address(rbp, -2*wordSize));
1198     break;
1199   case T_LONG:
1200     __ movptr(rax, Address(rbp, -wordSize));
1201     __ movptr(rdx, Address(rbp, -2*wordSize));
1202     break;
1203   case T_VOID:  break;
1204   default: {
1205     __ movptr(rax, Address(rbp, -wordSize));
1206     }
1207   }
1208 }
1209 
1210 static void verify_oop_args(MacroAssembler* masm,
1211                             const methodHandle& method,
1212                             const BasicType* sig_bt,
1213                             const VMRegPair* regs) {
1214   Register temp_reg = rbx;  // not part of any compiled calling seq
1215   if (VerifyOops) {
1216     for (int i = 0; i < method->size_of_parameters(); i++) {
1217       if (is_reference_type(sig_bt[i])) {
1218         VMReg r = regs[i].first();
1219         assert(r->is_valid(), "bad oop arg");
1220         if (r->is_stack()) {
1221           __ movptr(temp_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1222           __ verify_oop(temp_reg);
1223         } else {
1224           __ verify_oop(r->as_Register());
1225         }
1226       }
1227     }
1228   }
1229 }
1230 
1231 static void gen_special_dispatch(MacroAssembler* masm,
1232                                  const methodHandle& method,
1233                                  const BasicType* sig_bt,
1234                                  const VMRegPair* regs) {
1235   verify_oop_args(masm, method, sig_bt, regs);
1236   vmIntrinsics::ID iid = method->intrinsic_id();
1237 
1238   // Now write the args into the outgoing interpreter space
1239   bool     has_receiver   = false;
1240   Register receiver_reg   = noreg;
1241   int      member_arg_pos = -1;
1242   Register member_reg     = noreg;
1243   int      ref_kind       = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
1244   if (ref_kind != 0) {
1245     member_arg_pos = method->size_of_parameters() - 1;  // trailing MemberName argument
1246     member_reg = rbx;  // known to be free at this point
1247     has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
1248   } else if (iid == vmIntrinsics::_invokeBasic) {
1249     has_receiver = true;
1250   } else {
1251     fatal("unexpected intrinsic id %d", vmIntrinsics::as_int(iid));
1252   }
1253 
1254   if (member_reg != noreg) {
1255     // Load the member_arg into register, if necessary.
1256     SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
1257     VMReg r = regs[member_arg_pos].first();
1258     if (r->is_stack()) {
1259       __ movptr(member_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1260     } else {
1261       // no data motion is needed
1262       member_reg = r->as_Register();
1263     }
1264   }
1265 
1266   if (has_receiver) {
1267     // Make sure the receiver is loaded into a register.
1268     assert(method->size_of_parameters() > 0, "oob");
1269     assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
1270     VMReg r = regs[0].first();
1271     assert(r->is_valid(), "bad receiver arg");
1272     if (r->is_stack()) {
1273       // Porting note:  This assumes that compiled calling conventions always
1274       // pass the receiver oop in a register.  If this is not true on some
1275       // platform, pick a temp and load the receiver from stack.
1276       fatal("receiver always in a register");
1277       receiver_reg = rcx;  // known to be free at this point
1278       __ movptr(receiver_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1279     } else {
1280       // no data motion is needed
1281       receiver_reg = r->as_Register();
1282     }
1283   }
1284 
1285   // Figure out which address we are really jumping to:
1286   MethodHandles::generate_method_handle_dispatch(masm, iid,
1287                                                  receiver_reg, member_reg, /*for_compiler_entry:*/ true);
1288 }
1289 
1290 // ---------------------------------------------------------------------------
1291 // Generate a native wrapper for a given method.  The method takes arguments
1292 // in the Java compiled code convention, marshals them to the native
1293 // convention (handlizes oops, etc), transitions to native, makes the call,
1294 // returns to java state (possibly blocking), unhandlizes any result and
1295 // returns.
1296 //
1297 // Critical native functions are a shorthand for the use of
1298 // GetPrimtiveArrayCritical and disallow the use of any other JNI
1299 // functions.  The wrapper is expected to unpack the arguments before
1300 // passing them to the callee. Critical native functions leave the state _in_Java,
1301 // since they cannot stop for GC.
1302 // Some other parts of JNI setup are skipped like the tear down of the JNI handle
1303 // block and the check for pending exceptions it's impossible for them
1304 // to be thrown.
1305 //
1306 //
1307 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
1308                                                 const methodHandle& method,
1309                                                 int compile_id,
1310                                                 BasicType* in_sig_bt,
1311                                                 VMRegPair* in_regs,
1312                                                 BasicType ret_type) {
1313   if (method->is_method_handle_intrinsic()) {
1314     vmIntrinsics::ID iid = method->intrinsic_id();
1315     intptr_t start = (intptr_t)__ pc();
1316     int vep_offset = ((intptr_t)__ pc()) - start;
1317     gen_special_dispatch(masm,
1318                          method,
1319                          in_sig_bt,
1320                          in_regs);
1321     int frame_complete = ((intptr_t)__ pc()) - start;  // not complete, period
1322     __ flush();
1323     int stack_slots = SharedRuntime::out_preserve_stack_slots();  // no out slots at all, actually
1324     return nmethod::new_native_nmethod(method,
1325                                        compile_id,
1326                                        masm->code(),
1327                                        vep_offset,
1328                                        frame_complete,
1329                                        stack_slots / VMRegImpl::slots_per_word,
1330                                        in_ByteSize(-1),
1331                                        in_ByteSize(-1),
1332                                        (OopMapSet*)nullptr);
1333   }
1334   address native_func = method->native_function();
1335   assert(native_func != nullptr, "must have function");
1336 
1337   // An OopMap for lock (and class if static)
1338   OopMapSet *oop_maps = new OopMapSet();
1339 
1340   // We have received a description of where all the java arg are located
1341   // on entry to the wrapper. We need to convert these args to where
1342   // the jni function will expect them. To figure out where they go
1343   // we convert the java signature to a C signature by inserting
1344   // the hidden arguments as arg[0] and possibly arg[1] (static method)
1345 
1346   const int total_in_args = method->size_of_parameters();
1347   int  total_c_args       = total_in_args + (method->is_static() ? 2 : 1);
1348 
1349   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
1350   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
1351   BasicType* in_elem_bt = nullptr;
1352 
1353   int argc = 0;
1354   out_sig_bt[argc++] = T_ADDRESS;
1355   if (method->is_static()) {
1356     out_sig_bt[argc++] = T_OBJECT;
1357   }
1358 
1359   for (int i = 0; i < total_in_args ; i++ ) {
1360     out_sig_bt[argc++] = in_sig_bt[i];
1361   }
1362 
1363   // Now figure out where the args must be stored and how much stack space
1364   // they require.
1365   int out_arg_slots;
1366   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
1367 
1368   // Compute framesize for the wrapper.  We need to handlize all oops in
1369   // registers a max of 2 on x86.
1370 
1371   // Calculate the total number of stack slots we will need.
1372 
1373   // First count the abi requirement plus all of the outgoing args
1374   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
1375 
1376   // Now the space for the inbound oop handle area
1377   int total_save_slots = 2 * VMRegImpl::slots_per_word; // 2 arguments passed in registers
1378 
1379   int oop_handle_offset = stack_slots;
1380   stack_slots += total_save_slots;
1381 
1382   // Now any space we need for handlizing a klass if static method
1383 
1384   int klass_slot_offset = 0;
1385   int klass_offset = -1;
1386   int lock_slot_offset = 0;
1387   bool is_static = false;
1388 
1389   if (method->is_static()) {
1390     klass_slot_offset = stack_slots;
1391     stack_slots += VMRegImpl::slots_per_word;
1392     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
1393     is_static = true;
1394   }
1395 
1396   // Plus a lock if needed
1397 
1398   if (method->is_synchronized()) {
1399     lock_slot_offset = stack_slots;
1400     stack_slots += VMRegImpl::slots_per_word;
1401   }
1402 
1403   // Now a place (+2) to save return values or temp during shuffling
1404   // + 2 for return address (which we own) and saved rbp,
1405   stack_slots += 4;
1406 
1407   // Ok The space we have allocated will look like:
1408   //
1409   //
1410   // FP-> |                     |
1411   //      |---------------------|
1412   //      | 2 slots for moves   |
1413   //      |---------------------|
1414   //      | lock box (if sync)  |
1415   //      |---------------------| <- lock_slot_offset  (-lock_slot_rbp_offset)
1416   //      | klass (if static)   |
1417   //      |---------------------| <- klass_slot_offset
1418   //      | oopHandle area      |
1419   //      |---------------------| <- oop_handle_offset (a max of 2 registers)
1420   //      | outbound memory     |
1421   //      | based arguments     |
1422   //      |                     |
1423   //      |---------------------|
1424   //      |                     |
1425   // SP-> | out_preserved_slots |
1426   //
1427   //
1428   // ****************************************************************************
1429   // WARNING - on Windows Java Natives use pascal calling convention and pop the
1430   // arguments off of the stack after the jni call. Before the call we can use
1431   // instructions that are SP relative. After the jni call we switch to FP
1432   // relative instructions instead of re-adjusting the stack on windows.
1433   // ****************************************************************************
1434 
1435 
1436   // Now compute actual number of stack words we need rounding to make
1437   // stack properly aligned.
1438   stack_slots = align_up(stack_slots, StackAlignmentInSlots);
1439 
1440   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
1441 
1442   intptr_t start = (intptr_t)__ pc();
1443 
1444   // First thing make an ic check to see if we should even be here
1445 
1446   // We are free to use all registers as temps without saving them and
1447   // restoring them except rbp. rbp is the only callee save register
1448   // as far as the interpreter and the compiler(s) are concerned.
1449 
1450 
1451   const Register receiver = rcx;
1452   Label exception_pending;
1453 
1454   __ verify_oop(receiver);
1455   // verified entry must be aligned for code patching.
1456   __ ic_check(8 /* end_alignment */);
1457 
1458   int vep_offset = ((intptr_t)__ pc()) - start;
1459 
1460 #ifdef COMPILER1
1461   // For Object.hashCode, System.identityHashCode try to pull hashCode from object header if available.
1462   if ((InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) || (method->intrinsic_id() == vmIntrinsics::_identityHashCode)) {
1463     inline_check_hashcode_from_object_header(masm, method, rcx /*obj_reg*/, rax /*result*/);
1464    }
1465 #endif // COMPILER1
1466 
1467   // The instruction at the verified entry point must be 5 bytes or longer
1468   // because it can be patched on the fly by make_non_entrant. The stack bang
1469   // instruction fits that requirement.
1470 
1471   // Generate stack overflow check
1472   __ bang_stack_with_offset((int)StackOverflow::stack_shadow_zone_size());
1473 
1474   // Generate a new frame for the wrapper.
1475   __ enter();
1476   // -2 because return address is already present and so is saved rbp
1477   __ subptr(rsp, stack_size - 2*wordSize);
1478 
1479 
1480   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
1481   bs->nmethod_entry_barrier(masm, nullptr /* slow_path */, nullptr /* continuation */);
1482 
1483   // Frame is now completed as far as size and linkage.
1484   int frame_complete = ((intptr_t)__ pc()) - start;
1485 
1486   // Calculate the difference between rsp and rbp,. We need to know it
1487   // after the native call because on windows Java Natives will pop
1488   // the arguments and it is painful to do rsp relative addressing
1489   // in a platform independent way. So after the call we switch to
1490   // rbp, relative addressing.
1491 
1492   int fp_adjustment = stack_size - 2*wordSize;
1493 
1494 #ifdef COMPILER2
1495   // C2 may leave the stack dirty if not in SSE2+ mode
1496   if (UseSSE >= 2) {
1497     __ verify_FPU(0, "c2i transition should have clean FPU stack");
1498   } else {
1499     __ empty_FPU_stack();
1500   }
1501 #endif /* COMPILER2 */
1502 
1503   // Compute the rbp, offset for any slots used after the jni call
1504 
1505   int lock_slot_rbp_offset = (lock_slot_offset*VMRegImpl::stack_slot_size) - fp_adjustment;
1506 
1507   // We use rdi as a thread pointer because it is callee save and
1508   // if we load it once it is usable thru the entire wrapper
1509   const Register thread = rdi;
1510 
1511    // We use rsi as the oop handle for the receiver/klass
1512    // It is callee save so it survives the call to native
1513 
1514    const Register oop_handle_reg = rsi;
1515 
1516    __ get_thread(thread);
1517 
1518   //
1519   // We immediately shuffle the arguments so that any vm call we have to
1520   // make from here on out (sync slow path, jvmti, etc.) we will have
1521   // captured the oops from our caller and have a valid oopMap for
1522   // them.
1523 
1524   // -----------------
1525   // The Grand Shuffle
1526   //
1527   // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
1528   // and, if static, the class mirror instead of a receiver.  This pretty much
1529   // guarantees that register layout will not match (and x86 doesn't use reg
1530   // parms though amd does).  Since the native abi doesn't use register args
1531   // and the java conventions does we don't have to worry about collisions.
1532   // All of our moved are reg->stack or stack->stack.
1533   // We ignore the extra arguments during the shuffle and handle them at the
1534   // last moment. The shuffle is described by the two calling convention
1535   // vectors we have in our possession. We simply walk the java vector to
1536   // get the source locations and the c vector to get the destinations.
1537 
1538   int c_arg = method->is_static() ? 2 : 1;
1539 
1540   // Record rsp-based slot for receiver on stack for non-static methods
1541   int receiver_offset = -1;
1542 
1543   // This is a trick. We double the stack slots so we can claim
1544   // the oops in the caller's frame. Since we are sure to have
1545   // more args than the caller doubling is enough to make
1546   // sure we can capture all the incoming oop args from the
1547   // caller.
1548   //
1549   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1550 
1551   // Mark location of rbp,
1552   // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, rbp->as_VMReg());
1553 
1554   // We know that we only have args in at most two integer registers (rcx, rdx). So rax, rbx
1555   // Are free to temporaries if we have to do  stack to steck moves.
1556   // All inbound args are referenced based on rbp, and all outbound args via rsp.
1557 
1558   for (int i = 0; i < total_in_args ; i++, c_arg++ ) {
1559     switch (in_sig_bt[i]) {
1560       case T_ARRAY:
1561       case T_OBJECT:
1562         object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
1563                     ((i == 0) && (!is_static)),
1564                     &receiver_offset);
1565         break;
1566       case T_VOID:
1567         break;
1568 
1569       case T_FLOAT:
1570         float_move(masm, in_regs[i], out_regs[c_arg]);
1571           break;
1572 
1573       case T_DOUBLE:
1574         assert( i + 1 < total_in_args &&
1575                 in_sig_bt[i + 1] == T_VOID &&
1576                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
1577         double_move(masm, in_regs[i], out_regs[c_arg]);
1578         break;
1579 
1580       case T_LONG :
1581         long_move(masm, in_regs[i], out_regs[c_arg]);
1582         break;
1583 
1584       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
1585 
1586       default:
1587         simple_move32(masm, in_regs[i], out_regs[c_arg]);
1588     }
1589   }
1590 
1591   // Pre-load a static method's oop into rsi.  Used both by locking code and
1592   // the normal JNI call code.
1593   if (method->is_static()) {
1594 
1595     //  load opp into a register
1596     __ movoop(oop_handle_reg, JNIHandles::make_local(method->method_holder()->java_mirror()));
1597 
1598     // Now handlize the static class mirror it's known not-null.
1599     __ movptr(Address(rsp, klass_offset), oop_handle_reg);
1600     map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
1601 
1602     // Now get the handle
1603     __ lea(oop_handle_reg, Address(rsp, klass_offset));
1604     // store the klass handle as second argument
1605     __ movptr(Address(rsp, wordSize), oop_handle_reg);
1606   }
1607 
1608   // Change state to native (we save the return address in the thread, since it might not
1609   // be pushed on the stack when we do a stack traversal). It is enough that the pc()
1610   // points into the right code segment. It does not have to be the correct return pc.
1611   // We use the same pc/oopMap repeatedly when we call out
1612 
1613   intptr_t the_pc = (intptr_t) __ pc();
1614   oop_maps->add_gc_map(the_pc - start, map);
1615 
1616   __ set_last_Java_frame(thread, rsp, noreg, (address)the_pc, noreg);
1617 
1618 
1619   // We have all of the arguments setup at this point. We must not touch any register
1620   // argument registers at this point (what if we save/restore them there are no oop?
1621 
1622   if (DTraceMethodProbes) {
1623     __ mov_metadata(rax, method());
1624     __ call_VM_leaf(
1625          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
1626          thread, rax);
1627   }
1628 
1629   // RedefineClasses() tracing support for obsolete method entry
1630   if (log_is_enabled(Trace, redefine, class, obsolete)) {
1631     __ mov_metadata(rax, method());
1632     __ call_VM_leaf(
1633          CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1634          thread, rax);
1635   }
1636 
1637   // These are register definitions we need for locking/unlocking
1638   const Register swap_reg = rax;  // Must use rax, for cmpxchg instruction
1639   const Register obj_reg  = rcx;  // Will contain the oop
1640   const Register lock_reg = rdx;  // Address of compiler lock object (BasicLock)
1641 
1642   Label slow_path_lock;
1643   Label lock_done;
1644 
1645   // Lock a synchronized method
1646   if (method->is_synchronized()) {
1647     Label count_mon;
1648 
1649     const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
1650 
1651     // Get the handle (the 2nd argument)
1652     __ movptr(oop_handle_reg, Address(rsp, wordSize));
1653 
1654     // Get address of the box
1655 
1656     __ lea(lock_reg, Address(rbp, lock_slot_rbp_offset));
1657 
1658     // Load the oop from the handle
1659     __ movptr(obj_reg, Address(oop_handle_reg, 0));
1660 
1661     if (LockingMode == LM_MONITOR) {
1662       __ jmp(slow_path_lock);
1663     } else if (LockingMode == LM_LEGACY) {
1664       // Load immediate 1 into swap_reg %rax,
1665       __ movptr(swap_reg, 1);
1666 
1667       // Load (object->mark() | 1) into swap_reg %rax,
1668       __ orptr(swap_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1669 
1670       // Save (object->mark() | 1) into BasicLock's displaced header
1671       __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
1672 
1673       // src -> dest iff dest == rax, else rax, <- dest
1674       // *obj_reg = lock_reg iff *obj_reg == rax, else rax, = *(obj_reg)
1675       __ lock();
1676       __ cmpxchgptr(lock_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1677       __ jcc(Assembler::equal, count_mon);
1678 
1679       // Test if the oopMark is an obvious stack pointer, i.e.,
1680       //  1) (mark & 3) == 0, and
1681       //  2) rsp <= mark < mark + os::pagesize()
1682       // These 3 tests can be done by evaluating the following
1683       // expression: ((mark - rsp) & (3 - os::vm_page_size())),
1684       // assuming both stack pointer and pagesize have their
1685       // least significant 2 bits clear.
1686       // NOTE: the oopMark is in swap_reg %rax, as the result of cmpxchg
1687 
1688       __ subptr(swap_reg, rsp);
1689       __ andptr(swap_reg, 3 - (int)os::vm_page_size());
1690 
1691       // Save the test result, for recursive case, the result is zero
1692       __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
1693       __ jcc(Assembler::notEqual, slow_path_lock);
1694     } else {
1695       assert(LockingMode == LM_LIGHTWEIGHT, "must be");
1696       // Lacking registers and thread on x86_32. Always take slow path.
1697       __ jmp(slow_path_lock);
1698     }
1699     __ bind(count_mon);
1700     __ inc_held_monitor_count();
1701 
1702     // Slow path will re-enter here
1703     __ bind(lock_done);
1704   }
1705 
1706 
1707   // Finally just about ready to make the JNI call
1708 
1709   // get JNIEnv* which is first argument to native
1710   __ lea(rdx, Address(thread, in_bytes(JavaThread::jni_environment_offset())));
1711   __ movptr(Address(rsp, 0), rdx);
1712 
1713   // Now set thread in native
1714   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native);
1715 
1716   __ call(RuntimeAddress(native_func));
1717 
1718   // Verify or restore cpu control state after JNI call
1719   __ restore_cpu_control_state_after_jni(noreg);
1720 
1721   // WARNING - on Windows Java Natives use pascal calling convention and pop the
1722   // arguments off of the stack. We could just re-adjust the stack pointer here
1723   // and continue to do SP relative addressing but we instead switch to FP
1724   // relative addressing.
1725 
1726   // Unpack native results.
1727   switch (ret_type) {
1728   case T_BOOLEAN: __ c2bool(rax);            break;
1729   case T_CHAR   : __ andptr(rax, 0xFFFF);    break;
1730   case T_BYTE   : __ sign_extend_byte (rax); break;
1731   case T_SHORT  : __ sign_extend_short(rax); break;
1732   case T_INT    : /* nothing to do */        break;
1733   case T_DOUBLE :
1734   case T_FLOAT  :
1735     // Result is in st0 we'll save as needed
1736     break;
1737   case T_ARRAY:                 // Really a handle
1738   case T_OBJECT:                // Really a handle
1739       break; // can't de-handlize until after safepoint check
1740   case T_VOID: break;
1741   case T_LONG: break;
1742   default       : ShouldNotReachHere();
1743   }
1744 
1745   Label after_transition;
1746 
1747   // Switch thread to "native transition" state before reading the synchronization state.
1748   // This additional state is necessary because reading and testing the synchronization
1749   // state is not atomic w.r.t. GC, as this scenario demonstrates:
1750   //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
1751   //     VM thread changes sync state to synchronizing and suspends threads for GC.
1752   //     Thread A is resumed to finish this native method, but doesn't block here since it
1753   //     didn't see any synchronization is progress, and escapes.
1754   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
1755 
1756   // Force this write out before the read below
1757   if (!UseSystemMemoryBarrier) {
1758     __ membar(Assembler::Membar_mask_bits(
1759               Assembler::LoadLoad | Assembler::LoadStore |
1760               Assembler::StoreLoad | Assembler::StoreStore));
1761   }
1762 
1763   if (AlwaysRestoreFPU) {
1764     // Make sure the control word is correct.
1765     __ fldcw(ExternalAddress(StubRoutines::x86::addr_fpu_cntrl_wrd_std()));
1766   }
1767 
1768   // check for safepoint operation in progress and/or pending suspend requests
1769   { Label Continue, slow_path;
1770 
1771     __ safepoint_poll(slow_path, thread, true /* at_return */, false /* in_nmethod */);
1772 
1773     __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0);
1774     __ jcc(Assembler::equal, Continue);
1775     __ bind(slow_path);
1776 
1777     // Don't use call_VM as it will see a possible pending exception and forward it
1778     // and never return here preventing us from clearing _last_native_pc down below.
1779     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
1780     // preserved and correspond to the bcp/locals pointers. So we do a runtime call
1781     // by hand.
1782     //
1783     __ vzeroupper();
1784 
1785     save_native_result(masm, ret_type, stack_slots);
1786     __ push(thread);
1787     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address,
1788                                               JavaThread::check_special_condition_for_native_trans)));
1789     __ increment(rsp, wordSize);
1790     // Restore any method result value
1791     restore_native_result(masm, ret_type, stack_slots);
1792     __ bind(Continue);
1793   }
1794 
1795   // change thread state
1796   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java);
1797   __ bind(after_transition);
1798 
1799   Label reguard;
1800   Label reguard_done;
1801   __ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), StackOverflow::stack_guard_yellow_reserved_disabled);
1802   __ jcc(Assembler::equal, reguard);
1803 
1804   // slow path reguard  re-enters here
1805   __ bind(reguard_done);
1806 
1807   // Handle possible exception (will unlock if necessary)
1808 
1809   // native result if any is live
1810 
1811   // Unlock
1812   Label slow_path_unlock;
1813   Label unlock_done;
1814   if (method->is_synchronized()) {
1815 
1816     Label fast_done;
1817 
1818     // Get locked oop from the handle we passed to jni
1819     __ movptr(obj_reg, Address(oop_handle_reg, 0));
1820 
1821     if (LockingMode == LM_LEGACY) {
1822       Label not_recur;
1823       // Simple recursive lock?
1824       __ cmpptr(Address(rbp, lock_slot_rbp_offset), NULL_WORD);
1825       __ jcc(Assembler::notEqual, not_recur);
1826       __ dec_held_monitor_count();
1827       __ jmpb(fast_done);
1828       __ bind(not_recur);
1829     }
1830 
1831     // Must save rax, if it is live now because cmpxchg must use it
1832     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
1833       save_native_result(masm, ret_type, stack_slots);
1834     }
1835 
1836     if (LockingMode == LM_MONITOR) {
1837       __ jmp(slow_path_unlock);
1838     } else if (LockingMode == LM_LEGACY) {
1839       //  get old displaced header
1840       __ movptr(rbx, Address(rbp, lock_slot_rbp_offset));
1841 
1842       // get address of the stack lock
1843       __ lea(rax, Address(rbp, lock_slot_rbp_offset));
1844 
1845       // Atomic swap old header if oop still contains the stack lock
1846       // src -> dest iff dest == rax, else rax, <- dest
1847       // *obj_reg = rbx, iff *obj_reg == rax, else rax, = *(obj_reg)
1848       __ lock();
1849       __ cmpxchgptr(rbx, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1850       __ jcc(Assembler::notEqual, slow_path_unlock);
1851       __ dec_held_monitor_count();
1852     } else {
1853       assert(LockingMode == LM_LIGHTWEIGHT, "must be");
1854       __ lightweight_unlock(obj_reg, swap_reg, thread, lock_reg, slow_path_unlock);
1855       __ dec_held_monitor_count();
1856     }
1857 
1858     // slow path re-enters here
1859     __ bind(unlock_done);
1860     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
1861       restore_native_result(masm, ret_type, stack_slots);
1862     }
1863 
1864     __ bind(fast_done);
1865   }
1866 
1867   if (DTraceMethodProbes) {
1868     // Tell dtrace about this method exit
1869     save_native_result(masm, ret_type, stack_slots);
1870     __ mov_metadata(rax, method());
1871     __ call_VM_leaf(
1872          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
1873          thread, rax);
1874     restore_native_result(masm, ret_type, stack_slots);
1875   }
1876 
1877   // We can finally stop using that last_Java_frame we setup ages ago
1878 
1879   __ reset_last_Java_frame(thread, false);
1880 
1881   // Unbox oop result, e.g. JNIHandles::resolve value.
1882   if (is_reference_type(ret_type)) {
1883     __ resolve_jobject(rax /* value */,
1884                        thread /* thread */,
1885                        rcx /* tmp */);
1886   }
1887 
1888   if (CheckJNICalls) {
1889     // clear_pending_jni_exception_check
1890     __ movptr(Address(thread, JavaThread::pending_jni_exception_check_fn_offset()), NULL_WORD);
1891   }
1892 
1893   // reset handle block
1894   __ movptr(rcx, Address(thread, JavaThread::active_handles_offset()));
1895   __ movl(Address(rcx, JNIHandleBlock::top_offset()), NULL_WORD);
1896 
1897   // Any exception pending?
1898   __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD);
1899   __ jcc(Assembler::notEqual, exception_pending);
1900 
1901   // no exception, we're almost done
1902 
1903   // check that only result value is on FPU stack
1904   __ verify_FPU(ret_type == T_FLOAT || ret_type == T_DOUBLE ? 1 : 0, "native_wrapper normal exit");
1905 
1906   // Fixup floating pointer results so that result looks like a return from a compiled method
1907   if (ret_type == T_FLOAT) {
1908     if (UseSSE >= 1) {
1909       // Pop st0 and store as float and reload into xmm register
1910       __ fstp_s(Address(rbp, -4));
1911       __ movflt(xmm0, Address(rbp, -4));
1912     }
1913   } else if (ret_type == T_DOUBLE) {
1914     if (UseSSE >= 2) {
1915       // Pop st0 and store as double and reload into xmm register
1916       __ fstp_d(Address(rbp, -8));
1917       __ movdbl(xmm0, Address(rbp, -8));
1918     }
1919   }
1920 
1921   // Return
1922 
1923   __ leave();
1924   __ ret(0);
1925 
1926   // Unexpected paths are out of line and go here
1927 
1928   // Slow path locking & unlocking
1929   if (method->is_synchronized()) {
1930 
1931     // BEGIN Slow path lock
1932 
1933     __ bind(slow_path_lock);
1934 
1935     // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
1936     // args are (oop obj, BasicLock* lock, JavaThread* thread)
1937     __ push(thread);
1938     __ push(lock_reg);
1939     __ push(obj_reg);
1940     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C)));
1941     __ addptr(rsp, 3*wordSize);
1942 
1943 #ifdef ASSERT
1944     { Label L;
1945     __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD);
1946     __ jcc(Assembler::equal, L);
1947     __ stop("no pending exception allowed on exit from monitorenter");
1948     __ bind(L);
1949     }
1950 #endif
1951     __ jmp(lock_done);
1952 
1953     // END Slow path lock
1954 
1955     // BEGIN Slow path unlock
1956     __ bind(slow_path_unlock);
1957     __ vzeroupper();
1958     // Slow path unlock
1959 
1960     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
1961       save_native_result(masm, ret_type, stack_slots);
1962     }
1963     // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
1964 
1965     __ pushptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
1966     __ movptr(Address(thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD);
1967 
1968 
1969     // should be a peal
1970     // +wordSize because of the push above
1971     // args are (oop obj, BasicLock* lock, JavaThread* thread)
1972     __ push(thread);
1973     __ lea(rax, Address(rbp, lock_slot_rbp_offset));
1974     __ push(rax);
1975 
1976     __ push(obj_reg);
1977     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
1978     __ addptr(rsp, 3*wordSize);
1979 #ifdef ASSERT
1980     {
1981       Label L;
1982       __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD);
1983       __ jcc(Assembler::equal, L);
1984       __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
1985       __ bind(L);
1986     }
1987 #endif /* ASSERT */
1988 
1989     __ popptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
1990 
1991     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
1992       restore_native_result(masm, ret_type, stack_slots);
1993     }
1994     __ jmp(unlock_done);
1995     // END Slow path unlock
1996 
1997   }
1998 
1999   // SLOW PATH Reguard the stack if needed
2000 
2001   __ bind(reguard);
2002   __ vzeroupper();
2003   save_native_result(masm, ret_type, stack_slots);
2004   {
2005     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
2006   }
2007   restore_native_result(masm, ret_type, stack_slots);
2008   __ jmp(reguard_done);
2009 
2010 
2011   // BEGIN EXCEPTION PROCESSING
2012 
2013   // Forward  the exception
2014   __ bind(exception_pending);
2015 
2016   // remove possible return value from FPU register stack
2017   __ empty_FPU_stack();
2018 
2019   // pop our frame
2020   __ leave();
2021   // and forward the exception
2022   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2023 
2024   __ flush();
2025 
2026   nmethod *nm = nmethod::new_native_nmethod(method,
2027                                             compile_id,
2028                                             masm->code(),
2029                                             vep_offset,
2030                                             frame_complete,
2031                                             stack_slots / VMRegImpl::slots_per_word,
2032                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
2033                                             in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
2034                                             oop_maps);
2035 
2036   return nm;
2037 
2038 }
2039 
2040 // this function returns the adjust size (in number of words) to a c2i adapter
2041 // activation for use during deoptimization
2042 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
2043   return (callee_locals - callee_parameters) * Interpreter::stackElementWords;
2044 }
2045 
2046 
2047 // Number of stack slots between incoming argument block and the start of
2048 // a new frame.  The PROLOG must add this many slots to the stack.  The
2049 // EPILOG must remove this many slots.  Intel needs one slot for
2050 // return address and one for rbp, (must save rbp)
2051 uint SharedRuntime::in_preserve_stack_slots() {
2052   return 2+VerifyStackAtCalls;
2053 }
2054 
2055 uint SharedRuntime::out_preserve_stack_slots() {
2056   return 0;
2057 }
2058 
2059 //------------------------------generate_deopt_blob----------------------------
2060 void SharedRuntime::generate_deopt_blob() {
2061   // allocate space for the code
2062   ResourceMark rm;
2063   // setup code generation tools
2064   // note: the buffer code size must account for StackShadowPages=50
2065   const char* name = SharedRuntime::stub_name(SharedStubId::deopt_id);
2066   CodeBuffer   buffer(name, 1536, 1024);
2067   MacroAssembler* masm = new MacroAssembler(&buffer);
2068   int frame_size_in_words;
2069   OopMap* map = nullptr;
2070   // Account for the extra args we place on the stack
2071   // by the time we call fetch_unroll_info
2072   const int additional_words = 2; // deopt kind, thread
2073 
2074   OopMapSet *oop_maps = new OopMapSet();
2075 
2076   // -------------
2077   // This code enters when returning to a de-optimized nmethod.  A return
2078   // address has been pushed on the stack, and return values are in
2079   // registers.
2080   // If we are doing a normal deopt then we were called from the patched
2081   // nmethod from the point we returned to the nmethod. So the return
2082   // address on the stack is wrong by NativeCall::instruction_size
2083   // We will adjust the value to it looks like we have the original return
2084   // address on the stack (like when we eagerly deoptimized).
2085   // In the case of an exception pending with deoptimized then we enter
2086   // with a return address on the stack that points after the call we patched
2087   // into the exception handler. We have the following register state:
2088   //    rax,: exception
2089   //    rbx,: exception handler
2090   //    rdx: throwing pc
2091   // So in this case we simply jam rdx into the useless return address and
2092   // the stack looks just like we want.
2093   //
2094   // At this point we need to de-opt.  We save the argument return
2095   // registers.  We call the first C routine, fetch_unroll_info().  This
2096   // routine captures the return values and returns a structure which
2097   // describes the current frame size and the sizes of all replacement frames.
2098   // The current frame is compiled code and may contain many inlined
2099   // functions, each with their own JVM state.  We pop the current frame, then
2100   // push all the new frames.  Then we call the C routine unpack_frames() to
2101   // populate these frames.  Finally unpack_frames() returns us the new target
2102   // address.  Notice that callee-save registers are BLOWN here; they have
2103   // already been captured in the vframeArray at the time the return PC was
2104   // patched.
2105   address start = __ pc();
2106   Label cont;
2107 
2108   // Prolog for non exception case!
2109 
2110   // Save everything in sight.
2111 
2112   map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
2113   // Normal deoptimization
2114   __ push(Deoptimization::Unpack_deopt);
2115   __ jmp(cont);
2116 
2117   int reexecute_offset = __ pc() - start;
2118 
2119   // Reexecute case
2120   // return address is the pc describes what bci to do re-execute at
2121 
2122   // No need to update map as each call to save_live_registers will produce identical oopmap
2123   (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
2124 
2125   __ push(Deoptimization::Unpack_reexecute);
2126   __ jmp(cont);
2127 
2128   int exception_offset = __ pc() - start;
2129 
2130   // Prolog for exception case
2131 
2132   // all registers are dead at this entry point, except for rax, and
2133   // rdx which contain the exception oop and exception pc
2134   // respectively.  Set them in TLS and fall thru to the
2135   // unpack_with_exception_in_tls entry point.
2136 
2137   __ get_thread(rdi);
2138   __ movptr(Address(rdi, JavaThread::exception_pc_offset()), rdx);
2139   __ movptr(Address(rdi, JavaThread::exception_oop_offset()), rax);
2140 
2141   int exception_in_tls_offset = __ pc() - start;
2142 
2143   // new implementation because exception oop is now passed in JavaThread
2144 
2145   // Prolog for exception case
2146   // All registers must be preserved because they might be used by LinearScan
2147   // Exceptiop oop and throwing PC are passed in JavaThread
2148   // tos: stack at point of call to method that threw the exception (i.e. only
2149   // args are on the stack, no return address)
2150 
2151   // make room on stack for the return address
2152   // It will be patched later with the throwing pc. The correct value is not
2153   // available now because loading it from memory would destroy registers.
2154   __ push(0);
2155 
2156   // Save everything in sight.
2157 
2158   // No need to update map as each call to save_live_registers will produce identical oopmap
2159   (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
2160 
2161   // Now it is safe to overwrite any register
2162 
2163   // store the correct deoptimization type
2164   __ push(Deoptimization::Unpack_exception);
2165 
2166   // load throwing pc from JavaThread and patch it as the return address
2167   // of the current frame. Then clear the field in JavaThread
2168   __ get_thread(rdi);
2169   __ movptr(rdx, Address(rdi, JavaThread::exception_pc_offset()));
2170   __ movptr(Address(rbp, wordSize), rdx);
2171   __ movptr(Address(rdi, JavaThread::exception_pc_offset()), NULL_WORD);
2172 
2173 #ifdef ASSERT
2174   // verify that there is really an exception oop in JavaThread
2175   __ movptr(rax, Address(rdi, JavaThread::exception_oop_offset()));
2176   __ verify_oop(rax);
2177 
2178   // verify that there is no pending exception
2179   Label no_pending_exception;
2180   __ movptr(rax, Address(rdi, Thread::pending_exception_offset()));
2181   __ testptr(rax, rax);
2182   __ jcc(Assembler::zero, no_pending_exception);
2183   __ stop("must not have pending exception here");
2184   __ bind(no_pending_exception);
2185 #endif
2186 
2187   __ bind(cont);
2188 
2189   // Compiled code leaves the floating point stack dirty, empty it.
2190   __ empty_FPU_stack();
2191 
2192 
2193   // Call C code.  Need thread and this frame, but NOT official VM entry
2194   // crud.  We cannot block on this call, no GC can happen.
2195   __ get_thread(rcx);
2196   __ push(rcx);
2197   // fetch_unroll_info needs to call last_java_frame()
2198   __ set_last_Java_frame(rcx, noreg, noreg, nullptr, noreg);
2199 
2200   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
2201 
2202   // Need to have an oopmap that tells fetch_unroll_info where to
2203   // find any register it might need.
2204 
2205   oop_maps->add_gc_map( __ pc()-start, map);
2206 
2207   // Discard args to fetch_unroll_info
2208   __ pop(rcx);
2209   __ pop(rcx);
2210 
2211   __ get_thread(rcx);
2212   __ reset_last_Java_frame(rcx, false);
2213 
2214   // Load UnrollBlock into EDI
2215   __ mov(rdi, rax);
2216 
2217   // Move the unpack kind to a safe place in the UnrollBlock because
2218   // we are very short of registers
2219 
2220   Address unpack_kind(rdi, Deoptimization::UnrollBlock::unpack_kind_offset());
2221   // retrieve the deopt kind from the UnrollBlock.
2222   __ movl(rax, unpack_kind);
2223 
2224    Label noException;
2225   __ cmpl(rax, Deoptimization::Unpack_exception);   // Was exception pending?
2226   __ jcc(Assembler::notEqual, noException);
2227   __ movptr(rax, Address(rcx, JavaThread::exception_oop_offset()));
2228   __ movptr(rdx, Address(rcx, JavaThread::exception_pc_offset()));
2229   __ movptr(Address(rcx, JavaThread::exception_oop_offset()), NULL_WORD);
2230   __ movptr(Address(rcx, JavaThread::exception_pc_offset()), NULL_WORD);
2231 
2232   __ verify_oop(rax);
2233 
2234   // Overwrite the result registers with the exception results.
2235   __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
2236   __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
2237 
2238   __ bind(noException);
2239 
2240   // Stack is back to only having register save data on the stack.
2241   // Now restore the result registers. Everything else is either dead or captured
2242   // in the vframeArray.
2243 
2244   RegisterSaver::restore_result_registers(masm);
2245 
2246   // Non standard control word may be leaked out through a safepoint blob, and we can
2247   // deopt at a poll point with the non standard control word. However, we should make
2248   // sure the control word is correct after restore_result_registers.
2249   __ fldcw(ExternalAddress(StubRoutines::x86::addr_fpu_cntrl_wrd_std()));
2250 
2251   // All of the register save area has been popped of the stack. Only the
2252   // return address remains.
2253 
2254   // Pop all the frames we must move/replace.
2255   //
2256   // Frame picture (youngest to oldest)
2257   // 1: self-frame (no frame link)
2258   // 2: deopting frame  (no frame link)
2259   // 3: caller of deopting frame (could be compiled/interpreted).
2260   //
2261   // Note: by leaving the return address of self-frame on the stack
2262   // and using the size of frame 2 to adjust the stack
2263   // when we are done the return to frame 3 will still be on the stack.
2264 
2265   // Pop deoptimized frame
2266   __ addptr(rsp, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset()));
2267 
2268   // sp should be pointing at the return address to the caller (3)
2269 
2270   // Pick up the initial fp we should save
2271   // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved)
2272   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset()));
2273 
2274 #ifdef ASSERT
2275   // Compilers generate code that bang the stack by as much as the
2276   // interpreter would need. So this stack banging should never
2277   // trigger a fault. Verify that it does not on non product builds.
2278   __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset()));
2279   __ bang_stack_size(rbx, rcx);
2280 #endif
2281 
2282   // Load array of frame pcs into ECX
2283   __ movptr(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset()));
2284 
2285   __ pop(rsi); // trash the old pc
2286 
2287   // Load array of frame sizes into ESI
2288   __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset()));
2289 
2290   Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset());
2291 
2292   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset()));
2293   __ movl(counter, rbx);
2294 
2295   // Now adjust the caller's stack to make up for the extra locals
2296   // but record the original sp so that we can save it in the skeletal interpreter
2297   // frame and the stack walking of interpreter_sender will get the unextended sp
2298   // value and not the "real" sp value.
2299 
2300   Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset());
2301   __ movptr(sp_temp, rsp);
2302   __ movl2ptr(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset()));
2303   __ subptr(rsp, rbx);
2304 
2305   // Push interpreter frames in a loop
2306   Label loop;
2307   __ bind(loop);
2308   __ movptr(rbx, Address(rsi, 0));      // Load frame size
2309   __ subptr(rbx, 2*wordSize);           // we'll push pc and rbp, by hand
2310   __ pushptr(Address(rcx, 0));          // save return address
2311   __ enter();                           // save old & set new rbp,
2312   __ subptr(rsp, rbx);                  // Prolog!
2313   __ movptr(rbx, sp_temp);              // sender's sp
2314   // This value is corrected by layout_activation_impl
2315   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
2316   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
2317   __ movptr(sp_temp, rsp);              // pass to next frame
2318   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
2319   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
2320   __ decrementl(counter);             // decrement counter
2321   __ jcc(Assembler::notZero, loop);
2322   __ pushptr(Address(rcx, 0));          // save final return address
2323 
2324   // Re-push self-frame
2325   __ enter();                           // save old & set new rbp,
2326 
2327   //  Return address and rbp, are in place
2328   // We'll push additional args later. Just allocate a full sized
2329   // register save area
2330   __ subptr(rsp, (frame_size_in_words-additional_words - 2) * wordSize);
2331 
2332   // Restore frame locals after moving the frame
2333   __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
2334   __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
2335   __ fstp_d(Address(rsp, RegisterSaver::fpResultOffset()*wordSize));   // Pop float stack and store in local
2336   if( UseSSE>=2 ) __ movdbl(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
2337   if( UseSSE==1 ) __ movflt(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
2338 
2339   // Set up the args to unpack_frame
2340 
2341   __ pushl(unpack_kind);                     // get the unpack_kind value
2342   __ get_thread(rcx);
2343   __ push(rcx);
2344 
2345   // set last_Java_sp, last_Java_fp
2346   __ set_last_Java_frame(rcx, noreg, rbp, nullptr, noreg);
2347 
2348   // Call C code.  Need thread but NOT official VM entry
2349   // crud.  We cannot block on this call, no GC can happen.  Call should
2350   // restore return values to their stack-slots with the new SP.
2351   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
2352   // Set an oopmap for the call site
2353   oop_maps->add_gc_map( __ pc()-start, new OopMap( frame_size_in_words, 0 ));
2354 
2355   // rax, contains the return result type
2356   __ push(rax);
2357 
2358   __ get_thread(rcx);
2359   __ reset_last_Java_frame(rcx, false);
2360 
2361   // Collect return values
2362   __ movptr(rax,Address(rsp, (RegisterSaver::raxOffset() + additional_words + 1)*wordSize));
2363   __ movptr(rdx,Address(rsp, (RegisterSaver::rdxOffset() + additional_words + 1)*wordSize));
2364 
2365   // Clear floating point stack before returning to interpreter
2366   __ empty_FPU_stack();
2367 
2368   // Check if we should push the float or double return value.
2369   Label results_done, yes_double_value;
2370   __ cmpl(Address(rsp, 0), T_DOUBLE);
2371   __ jcc (Assembler::zero, yes_double_value);
2372   __ cmpl(Address(rsp, 0), T_FLOAT);
2373   __ jcc (Assembler::notZero, results_done);
2374 
2375   // return float value as expected by interpreter
2376   if( UseSSE>=1 ) __ movflt(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
2377   else            __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
2378   __ jmp(results_done);
2379 
2380   // return double value as expected by interpreter
2381   __ bind(yes_double_value);
2382   if( UseSSE>=2 ) __ movdbl(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
2383   else            __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
2384 
2385   __ bind(results_done);
2386 
2387   // Pop self-frame.
2388   __ leave();                              // Epilog!
2389 
2390   // Jump to interpreter
2391   __ ret(0);
2392 
2393   // -------------
2394   // make sure all code is generated
2395   masm->flush();
2396 
2397   _deopt_blob = DeoptimizationBlob::create( &buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
2398   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
2399 }
2400 
2401 //------------------------------generate_handler_blob------
2402 //
2403 // Generate a special Compile2Runtime blob that saves all registers,
2404 // setup oopmap, and calls safepoint code to stop the compiled code for
2405 // a safepoint.
2406 //
2407 SafepointBlob* SharedRuntime::generate_handler_blob(SharedStubId id, address call_ptr) {
2408 
2409   // Account for thread arg in our frame
2410   const int additional_words = 1;
2411   int frame_size_in_words;
2412 
2413   assert (StubRoutines::forward_exception_entry() != nullptr, "must be generated before");
2414   assert(is_polling_page_id(id), "expected a polling page stub id");
2415 
2416   ResourceMark rm;
2417   OopMapSet *oop_maps = new OopMapSet();
2418   OopMap* map;
2419 
2420   // allocate space for the code
2421   // setup code generation tools
2422   const char* name = SharedRuntime::stub_name(id);
2423   CodeBuffer   buffer(name, 2048, 1024);
2424   MacroAssembler* masm = new MacroAssembler(&buffer);
2425 
2426   const Register java_thread = rdi; // callee-saved for VC++
2427   address start   = __ pc();
2428   address call_pc = nullptr;
2429   bool cause_return = (id == SharedStubId::polling_page_return_handler_id);
2430   bool save_vectors = (id == SharedStubId::polling_page_vectors_safepoint_handler_id);
2431 
2432   // If cause_return is true we are at a poll_return and there is
2433   // the return address on the stack to the caller on the nmethod
2434   // that is safepoint. We can leave this return on the stack and
2435   // effectively complete the return and safepoint in the caller.
2436   // Otherwise we push space for a return address that the safepoint
2437   // handler will install later to make the stack walking sensible.
2438   if (!cause_return)
2439     __ push(rbx);  // Make room for return address (or push it again)
2440 
2441   map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false, save_vectors);
2442 
2443   // The following is basically a call_VM. However, we need the precise
2444   // address of the call in order to generate an oopmap. Hence, we do all the
2445   // work ourselves.
2446 
2447   // Push thread argument and setup last_Java_sp
2448   __ get_thread(java_thread);
2449   __ push(java_thread);
2450   __ set_last_Java_frame(java_thread, noreg, noreg, nullptr, noreg);
2451 
2452   // if this was not a poll_return then we need to correct the return address now.
2453   if (!cause_return) {
2454     // Get the return pc saved by the signal handler and stash it in its appropriate place on the stack.
2455     // Additionally, rbx is a callee saved register and we can look at it later to determine
2456     // if someone changed the return address for us!
2457     __ movptr(rbx, Address(java_thread, JavaThread::saved_exception_pc_offset()));
2458     __ movptr(Address(rbp, wordSize), rbx);
2459   }
2460 
2461   // do the call
2462   __ call(RuntimeAddress(call_ptr));
2463 
2464   // Set an oopmap for the call site.  This oopmap will map all
2465   // oop-registers and debug-info registers as callee-saved.  This
2466   // will allow deoptimization at this safepoint to find all possible
2467   // debug-info recordings, as well as let GC find all oops.
2468 
2469   oop_maps->add_gc_map( __ pc() - start, map);
2470 
2471   // Discard arg
2472   __ pop(rcx);
2473 
2474   Label noException;
2475 
2476   // Clear last_Java_sp again
2477   __ get_thread(java_thread);
2478   __ reset_last_Java_frame(java_thread, false);
2479 
2480   __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), NULL_WORD);
2481   __ jcc(Assembler::equal, noException);
2482 
2483   // Exception pending
2484   RegisterSaver::restore_live_registers(masm, save_vectors);
2485 
2486   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2487 
2488   __ bind(noException);
2489 
2490   Label no_adjust, bail, not_special;
2491   if (!cause_return) {
2492     // If our stashed return pc was modified by the runtime we avoid touching it
2493     __ cmpptr(rbx, Address(rbp, wordSize));
2494     __ jccb(Assembler::notEqual, no_adjust);
2495 
2496     // Skip over the poll instruction.
2497     // See NativeInstruction::is_safepoint_poll()
2498     // Possible encodings:
2499     //      85 00       test   %eax,(%rax)
2500     //      85 01       test   %eax,(%rcx)
2501     //      85 02       test   %eax,(%rdx)
2502     //      85 03       test   %eax,(%rbx)
2503     //      85 06       test   %eax,(%rsi)
2504     //      85 07       test   %eax,(%rdi)
2505     //
2506     //      85 04 24    test   %eax,(%rsp)
2507     //      85 45 00    test   %eax,0x0(%rbp)
2508 
2509 #ifdef ASSERT
2510     __ movptr(rax, rbx); // remember where 0x85 should be, for verification below
2511 #endif
2512     // rsp/rbp base encoding takes 3 bytes with the following register values:
2513     // rsp 0x04
2514     // rbp 0x05
2515     __ movzbl(rcx, Address(rbx, 1));
2516     __ andptr(rcx, 0x07); // looking for 0x04 .. 0x05
2517     __ subptr(rcx, 4);    // looking for 0x00 .. 0x01
2518     __ cmpptr(rcx, 1);
2519     __ jcc(Assembler::above, not_special);
2520     __ addptr(rbx, 1);
2521     __ bind(not_special);
2522 #ifdef ASSERT
2523     // Verify the correct encoding of the poll we're about to skip.
2524     __ cmpb(Address(rax, 0), NativeTstRegMem::instruction_code_memXregl);
2525     __ jcc(Assembler::notEqual, bail);
2526     // Mask out the modrm bits
2527     __ testb(Address(rax, 1), NativeTstRegMem::modrm_mask);
2528     // rax encodes to 0, so if the bits are nonzero it's incorrect
2529     __ jcc(Assembler::notZero, bail);
2530 #endif
2531     // Adjust return pc forward to step over the safepoint poll instruction
2532     __ addptr(rbx, 2);
2533     __ movptr(Address(rbp, wordSize), rbx);
2534   }
2535 
2536   __ bind(no_adjust);
2537   // Normal exit, register restoring and exit
2538   RegisterSaver::restore_live_registers(masm, save_vectors);
2539 
2540   __ ret(0);
2541 
2542 #ifdef ASSERT
2543   __ bind(bail);
2544   __ stop("Attempting to adjust pc to skip safepoint poll but the return point is not what we expected");
2545 #endif
2546 
2547   // make sure all code is generated
2548   masm->flush();
2549 
2550   // Fill-out other meta info
2551   return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
2552 }
2553 
2554 //
2555 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
2556 //
2557 // Generate a stub that calls into vm to find out the proper destination
2558 // of a java call. All the argument registers are live at this point
2559 // but since this is generic code we don't know what they are and the caller
2560 // must do any gc of the args.
2561 //
2562 RuntimeStub* SharedRuntime::generate_resolve_blob(SharedStubId id, address destination) {
2563   assert (StubRoutines::forward_exception_entry() != nullptr, "must be generated before");
2564   assert(is_resolve_id(id), "expected a resolve stub id");
2565 
2566   // allocate space for the code
2567   ResourceMark rm;
2568 
2569   const char* name = SharedRuntime::stub_name(id);
2570   CodeBuffer buffer(name, 1000, 512);
2571   MacroAssembler* masm                = new MacroAssembler(&buffer);
2572 
2573   int frame_size_words;
2574   enum frame_layout {
2575                 thread_off,
2576                 extra_words };
2577 
2578   OopMapSet *oop_maps = new OopMapSet();
2579   OopMap* map = nullptr;
2580 
2581   int start = __ offset();
2582 
2583   map = RegisterSaver::save_live_registers(masm, extra_words, &frame_size_words);
2584 
2585   int frame_complete = __ offset();
2586 
2587   const Register thread = rdi;
2588   __ get_thread(rdi);
2589 
2590   __ push(thread);
2591   __ set_last_Java_frame(thread, noreg, rbp, nullptr, noreg);
2592 
2593   __ call(RuntimeAddress(destination));
2594 
2595 
2596   // Set an oopmap for the call site.
2597   // We need this not only for callee-saved registers, but also for volatile
2598   // registers that the compiler might be keeping live across a safepoint.
2599 
2600   oop_maps->add_gc_map( __ offset() - start, map);
2601 
2602   // rax, contains the address we are going to jump to assuming no exception got installed
2603 
2604   __ addptr(rsp, wordSize);
2605 
2606   // clear last_Java_sp
2607   __ reset_last_Java_frame(thread, true);
2608   // check for pending exceptions
2609   Label pending;
2610   __ cmpptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD);
2611   __ jcc(Assembler::notEqual, pending);
2612 
2613   // get the returned Method*
2614   __ get_vm_result_2(rbx, thread);
2615   __ movptr(Address(rsp, RegisterSaver::rbx_offset() * wordSize), rbx);
2616 
2617   __ movptr(Address(rsp, RegisterSaver::rax_offset() * wordSize), rax);
2618 
2619   RegisterSaver::restore_live_registers(masm);
2620 
2621   // We are back to the original state on entry and ready to go.
2622 
2623   __ jmp(rax);
2624 
2625   // Pending exception after the safepoint
2626 
2627   __ bind(pending);
2628 
2629   RegisterSaver::restore_live_registers(masm);
2630 
2631   // exception pending => remove activation and forward to exception handler
2632 
2633   __ get_thread(thread);
2634   __ movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
2635   __ movptr(rax, Address(thread, Thread::pending_exception_offset()));
2636   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2637 
2638   // -------------
2639   // make sure all code is generated
2640   masm->flush();
2641 
2642   // return the  blob
2643   // frame_size_words or bytes??
2644   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true);
2645 }
2646 
2647   //------------------------------------------------------------------------------------------------------------------------
2648   // Continuation point for throwing of implicit exceptions that are not handled in
2649   // the current activation. Fabricates an exception oop and initiates normal
2650   // exception dispatching in this frame.
2651   //
2652   // Previously the compiler (c2) allowed for callee save registers on Java calls.
2653   // This is no longer true after adapter frames were removed but could possibly
2654   // be brought back in the future if the interpreter code was reworked and it
2655   // was deemed worthwhile. The comment below was left to describe what must
2656   // happen here if callee saves were resurrected. As it stands now this stub
2657   // could actually be a vanilla BufferBlob and have now oopMap at all.
2658   // Since it doesn't make much difference we've chosen to leave it the
2659   // way it was in the callee save days and keep the comment.
2660 
2661   // If we need to preserve callee-saved values we need a callee-saved oop map and
2662   // therefore have to make these stubs into RuntimeStubs rather than BufferBlobs.
2663   // If the compiler needs all registers to be preserved between the fault
2664   // point and the exception handler then it must assume responsibility for that in
2665   // AbstractCompiler::continuation_for_implicit_null_exception or
2666   // continuation_for_implicit_division_by_zero_exception. All other implicit
2667   // exceptions (e.g., NullPointerException or AbstractMethodError on entry) are
2668   // either at call sites or otherwise assume that stack unwinding will be initiated,
2669   // so caller saved registers were assumed volatile in the compiler.
2670 RuntimeStub* SharedRuntime::generate_throw_exception(SharedStubId id, address runtime_entry) {
2671   assert(is_throw_id(id), "expected a throw stub id");
2672 
2673   const char* name = SharedRuntime::stub_name(id);
2674 
2675   // Information about frame layout at time of blocking runtime call.
2676   // Note that we only have to preserve callee-saved registers since
2677   // the compilers are responsible for supplying a continuation point
2678   // if they expect all registers to be preserved.
2679   enum layout {
2680     thread_off,    // last_java_sp
2681     arg1_off,
2682     arg2_off,
2683     rbp_off,       // callee saved register
2684     ret_pc,
2685     framesize
2686   };
2687 
2688   int insts_size = 256;
2689   int locs_size  = 32;
2690 
2691   ResourceMark rm;
2692   const char* timer_msg = "SharedRuntime generate_throw_exception";
2693   TraceTime timer(timer_msg, TRACETIME_LOG(Info, startuptime));
2694 
2695   CodeBuffer code(name, insts_size, locs_size);
2696   OopMapSet* oop_maps  = new OopMapSet();
2697   MacroAssembler* masm = new MacroAssembler(&code);
2698 
2699   address start = __ pc();
2700 
2701   // This is an inlined and slightly modified version of call_VM
2702   // which has the ability to fetch the return PC out of
2703   // thread-local storage and also sets up last_Java_sp slightly
2704   // differently than the real call_VM
2705   Register java_thread = rbx;
2706   __ get_thread(java_thread);
2707 
2708   __ enter(); // required for proper stackwalking of RuntimeStub frame
2709 
2710   // pc and rbp, already pushed
2711   __ subptr(rsp, (framesize-2) * wordSize); // prolog
2712 
2713   // Frame is now completed as far as size and linkage.
2714 
2715   int frame_complete = __ pc() - start;
2716 
2717   // push java thread (becomes first argument of C function)
2718   __ movptr(Address(rsp, thread_off * wordSize), java_thread);
2719   // Set up last_Java_sp and last_Java_fp
2720   __ set_last_Java_frame(java_thread, rsp, rbp, nullptr, noreg);
2721 
2722   // Call runtime
2723   BLOCK_COMMENT("call runtime_entry");
2724   __ call(RuntimeAddress(runtime_entry));
2725   // Generate oop map
2726   OopMap* map =  new OopMap(framesize, 0);
2727   oop_maps->add_gc_map(__ pc() - start, map);
2728 
2729   // restore the thread (cannot use the pushed argument since arguments
2730   // may be overwritten by C code generated by an optimizing compiler);
2731   // however can use the register value directly if it is callee saved.
2732   __ get_thread(java_thread);
2733 
2734   __ reset_last_Java_frame(java_thread, true);
2735 
2736   __ leave(); // required for proper stackwalking of RuntimeStub frame
2737 
2738   // check for pending exceptions
2739 #ifdef ASSERT
2740   Label L;
2741   __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), NULL_WORD);
2742   __ jcc(Assembler::notEqual, L);
2743   __ should_not_reach_here();
2744   __ bind(L);
2745 #endif /* ASSERT */
2746   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2747 
2748 
2749   RuntimeStub* stub = RuntimeStub::new_runtime_stub(name, &code, frame_complete, framesize, oop_maps, false);
2750   return stub;
2751 }
2752 
2753 #if INCLUDE_JFR
2754 
2755 static void jfr_prologue(address the_pc, MacroAssembler* masm) {
2756   Register java_thread = rdi;
2757   __ get_thread(java_thread);
2758   __ set_last_Java_frame(java_thread, rsp, rbp, the_pc, noreg);
2759   __ movptr(Address(rsp, 0), java_thread);
2760 }
2761 
2762 // The handle is dereferenced through a load barrier.
2763 static void jfr_epilogue(MacroAssembler* masm) {
2764   Register java_thread = rdi;
2765   __ get_thread(java_thread);
2766   __ reset_last_Java_frame(java_thread, true);
2767 }
2768 
2769 // For c2: c_rarg0 is junk, call to runtime to write a checkpoint.
2770 // It returns a jobject handle to the event writer.
2771 // The handle is dereferenced and the return value is the event writer oop.
2772 RuntimeStub* SharedRuntime::generate_jfr_write_checkpoint() {
2773   enum layout {
2774     FPUState_off         = 0,
2775     rbp_off              = FPUStateSizeInWords,
2776     rdi_off,
2777     rsi_off,
2778     rcx_off,
2779     rbx_off,
2780     saved_argument_off,
2781     saved_argument_off2, // 2nd half of double
2782     framesize
2783   };
2784 
2785   int insts_size = 1024;
2786   int locs_size = 64;
2787   const char* name = SharedRuntime::stub_name(SharedStubId::jfr_write_checkpoint_id);
2788   CodeBuffer code(name, insts_size, locs_size);
2789   OopMapSet* oop_maps = new OopMapSet();
2790   MacroAssembler* masm = new MacroAssembler(&code);
2791 
2792   address start = __ pc();
2793   __ enter();
2794   int frame_complete = __ pc() - start;
2795   address the_pc = __ pc();
2796   jfr_prologue(the_pc, masm);
2797   __ call_VM_leaf(CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::write_checkpoint), 1);
2798   jfr_epilogue(masm);
2799   __ resolve_global_jobject(rax, rdi, rdx);
2800   __ leave();
2801   __ ret(0);
2802 
2803   OopMap* map = new OopMap(framesize, 1); // rbp
2804   oop_maps->add_gc_map(the_pc - start, map);
2805 
2806   RuntimeStub* stub = // codeBlob framesize is in words (not VMRegImpl::slot_size)
2807     RuntimeStub::new_runtime_stub(name, &code, frame_complete,
2808                                   (framesize >> (LogBytesPerWord - LogBytesPerInt)),
2809                                   oop_maps, false);
2810   return stub;
2811 }
2812 
2813 // For c2: call to return a leased buffer.
2814 RuntimeStub* SharedRuntime::generate_jfr_return_lease() {
2815   enum layout {
2816     FPUState_off = 0,
2817     rbp_off = FPUStateSizeInWords,
2818     rdi_off,
2819     rsi_off,
2820     rcx_off,
2821     rbx_off,
2822     saved_argument_off,
2823     saved_argument_off2, // 2nd half of double
2824     framesize
2825   };
2826 
2827   int insts_size = 1024;
2828   int locs_size = 64;
2829   const char* name = SharedRuntime::stub_name(SharedStubId::jfr_return_lease_id);
2830   CodeBuffer code(name, insts_size, locs_size);
2831   OopMapSet* oop_maps = new OopMapSet();
2832   MacroAssembler* masm = new MacroAssembler(&code);
2833 
2834   address start = __ pc();
2835   __ enter();
2836   int frame_complete = __ pc() - start;
2837   address the_pc = __ pc();
2838   jfr_prologue(the_pc, masm);
2839   __ call_VM_leaf(CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::return_lease), 1);
2840   jfr_epilogue(masm);
2841   __ leave();
2842   __ ret(0);
2843 
2844   OopMap* map = new OopMap(framesize, 1); // rbp
2845   oop_maps->add_gc_map(the_pc - start, map);
2846 
2847   RuntimeStub* stub = // codeBlob framesize is in words (not VMRegImpl::slot_size)
2848     RuntimeStub::new_runtime_stub(name, &code, frame_complete,
2849                                   (framesize >> (LogBytesPerWord - LogBytesPerInt)),
2850                                   oop_maps, false);
2851   return stub;
2852 }
2853 
2854 #endif // INCLUDE_JFR