1 /*
   2  * Copyright (c) 2003, 2023, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "code/debugInfoRec.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/nativeInst.hpp"
  31 #include "code/vtableStubs.hpp"
  32 #include "compiler/oopMap.hpp"
  33 #include "gc/shared/gcLocker.hpp"
  34 #include "gc/shared/barrierSet.hpp"
  35 #include "gc/shared/barrierSetAssembler.hpp"
  36 #include "interpreter/interpreter.hpp"
  37 #include "logging/log.hpp"
  38 #include "memory/resourceArea.hpp"
  39 #include "oops/compiledICHolder.hpp"
  40 #include "oops/klass.inline.hpp"
  41 #include "prims/methodHandles.hpp"
  42 #include "runtime/jniHandles.hpp"
  43 #include "runtime/safepointMechanism.hpp"
  44 #include "runtime/sharedRuntime.hpp"
  45 #include "runtime/signature.hpp"
  46 #include "runtime/stubRoutines.hpp"
  47 #include "runtime/vframeArray.hpp"
  48 #include "runtime/vm_version.hpp"
  49 #include "utilities/align.hpp"
  50 #include "vmreg_x86.inline.hpp"
  51 #ifdef COMPILER1
  52 #include "c1/c1_Runtime1.hpp"
  53 #endif
  54 #ifdef COMPILER2
  55 #include "opto/runtime.hpp"
  56 #endif
  57 
  58 #define __ masm->
  59 
  60 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
  61 
  62 class RegisterSaver {
  63   // Capture info about frame layout
  64 #define DEF_XMM_OFFS(regnum) xmm ## regnum ## _off = xmm_off + (regnum)*16/BytesPerInt, xmm ## regnum ## H_off
  65   enum layout {
  66                 fpu_state_off = 0,
  67                 fpu_state_end = fpu_state_off+FPUStateSizeInWords,
  68                 st0_off, st0H_off,
  69                 st1_off, st1H_off,
  70                 st2_off, st2H_off,
  71                 st3_off, st3H_off,
  72                 st4_off, st4H_off,
  73                 st5_off, st5H_off,
  74                 st6_off, st6H_off,
  75                 st7_off, st7H_off,
  76                 xmm_off,
  77                 DEF_XMM_OFFS(0),
  78                 DEF_XMM_OFFS(1),
  79                 DEF_XMM_OFFS(2),
  80                 DEF_XMM_OFFS(3),
  81                 DEF_XMM_OFFS(4),
  82                 DEF_XMM_OFFS(5),
  83                 DEF_XMM_OFFS(6),
  84                 DEF_XMM_OFFS(7),
  85                 flags_off = xmm7_off + 16/BytesPerInt + 1, // 16-byte stack alignment fill word
  86                 rdi_off,
  87                 rsi_off,
  88                 ignore_off,  // extra copy of rbp,
  89                 rsp_off,
  90                 rbx_off,
  91                 rdx_off,
  92                 rcx_off,
  93                 rax_off,
  94                 // The frame sender code expects that rbp will be in the "natural" place and
  95                 // will override any oopMap setting for it. We must therefore force the layout
  96                 // so that it agrees with the frame sender code.
  97                 rbp_off,
  98                 return_off,      // slot for return address
  99                 reg_save_size };
 100   enum { FPU_regs_live = flags_off - fpu_state_end };
 101 
 102   public:
 103 
 104   static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words,
 105                                      int* total_frame_words, bool verify_fpu = true, bool save_vectors = false);
 106   static void restore_live_registers(MacroAssembler* masm, bool restore_vectors = false);
 107 
 108   static int rax_offset() { return rax_off; }
 109   static int rbx_offset() { return rbx_off; }
 110 
 111   // Offsets into the register save area
 112   // Used by deoptimization when it is managing result register
 113   // values on its own
 114 
 115   static int raxOffset(void) { return rax_off; }
 116   static int rdxOffset(void) { return rdx_off; }
 117   static int rbxOffset(void) { return rbx_off; }
 118   static int xmm0Offset(void) { return xmm0_off; }
 119   // This really returns a slot in the fp save area, which one is not important
 120   static int fpResultOffset(void) { return st0_off; }
 121 
 122   // During deoptimization only the result register need to be restored
 123   // all the other values have already been extracted.
 124 
 125   static void restore_result_registers(MacroAssembler* masm);
 126 
 127 };
 128 
 129 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words,
 130                                            int* total_frame_words, bool verify_fpu, bool save_vectors) {
 131   int num_xmm_regs = XMMRegister::number_of_registers;
 132   int ymm_bytes = num_xmm_regs * 16;
 133   int zmm_bytes = num_xmm_regs * 32;
 134 #ifdef COMPILER2
 135   int opmask_state_bytes = KRegister::number_of_registers * 8;
 136   if (save_vectors) {
 137     assert(UseAVX > 0, "Vectors larger than 16 byte long are supported only with AVX");
 138     assert(MaxVectorSize <= 64, "Only up to 64 byte long vectors are supported");
 139     // Save upper half of YMM registers
 140     int vect_bytes = ymm_bytes;
 141     if (UseAVX > 2) {
 142       // Save upper half of ZMM registers as well
 143       vect_bytes += zmm_bytes;
 144       additional_frame_words += opmask_state_bytes / wordSize;
 145     }
 146     additional_frame_words += vect_bytes / wordSize;
 147   }
 148 #else
 149   assert(!save_vectors, "vectors are generated only by C2");
 150 #endif
 151   int frame_size_in_bytes = (reg_save_size + additional_frame_words) * wordSize;
 152   int frame_words = frame_size_in_bytes / wordSize;
 153   *total_frame_words = frame_words;
 154 
 155   assert(FPUStateSizeInWords == 27, "update stack layout");
 156 
 157   // save registers, fpu state, and flags
 158   // We assume caller has already has return address slot on the stack
 159   // We push epb twice in this sequence because we want the real rbp,
 160   // to be under the return like a normal enter and we want to use pusha
 161   // We push by hand instead of using push.
 162   __ enter();
 163   __ pusha();
 164   __ pushf();
 165   __ subptr(rsp,FPU_regs_live*wordSize); // Push FPU registers space
 166   __ push_FPU_state();          // Save FPU state & init
 167 
 168   if (verify_fpu) {
 169     // Some stubs may have non standard FPU control word settings so
 170     // only check and reset the value when it required to be the
 171     // standard value.  The safepoint blob in particular can be used
 172     // in methods which are using the 24 bit control word for
 173     // optimized float math.
 174 
 175 #ifdef ASSERT
 176     // Make sure the control word has the expected value
 177     Label ok;
 178     __ cmpw(Address(rsp, 0), StubRoutines::x86::fpu_cntrl_wrd_std());
 179     __ jccb(Assembler::equal, ok);
 180     __ stop("corrupted control word detected");
 181     __ bind(ok);
 182 #endif
 183 
 184     // Reset the control word to guard against exceptions being unmasked
 185     // since fstp_d can cause FPU stack underflow exceptions.  Write it
 186     // into the on stack copy and then reload that to make sure that the
 187     // current and future values are correct.
 188     __ movw(Address(rsp, 0), StubRoutines::x86::fpu_cntrl_wrd_std());
 189   }
 190 
 191   __ frstor(Address(rsp, 0));
 192   if (!verify_fpu) {
 193     // Set the control word so that exceptions are masked for the
 194     // following code.
 195     __ fldcw(ExternalAddress(StubRoutines::x86::addr_fpu_cntrl_wrd_std()));
 196   }
 197 
 198   int off = st0_off;
 199   int delta = st1_off - off;
 200 
 201   // Save the FPU registers in de-opt-able form
 202   for (int n = 0; n < FloatRegister::number_of_registers; n++) {
 203     __ fstp_d(Address(rsp, off*wordSize));
 204     off += delta;
 205   }
 206 
 207   off = xmm0_off;
 208   delta = xmm1_off - off;
 209   if(UseSSE == 1) {
 210     // Save the XMM state
 211     for (int n = 0; n < num_xmm_regs; n++) {
 212       __ movflt(Address(rsp, off*wordSize), as_XMMRegister(n));
 213       off += delta;
 214     }
 215   } else if(UseSSE >= 2) {
 216     // Save whole 128bit (16 bytes) XMM registers
 217     for (int n = 0; n < num_xmm_regs; n++) {
 218       __ movdqu(Address(rsp, off*wordSize), as_XMMRegister(n));
 219       off += delta;
 220     }
 221   }
 222 
 223 #ifdef COMPILER2
 224   if (save_vectors) {
 225     __ subptr(rsp, ymm_bytes);
 226     // Save upper half of YMM registers
 227     for (int n = 0; n < num_xmm_regs; n++) {
 228       __ vextractf128_high(Address(rsp, n*16), as_XMMRegister(n));
 229     }
 230     if (UseAVX > 2) {
 231       __ subptr(rsp, zmm_bytes);
 232       // Save upper half of ZMM registers
 233       for (int n = 0; n < num_xmm_regs; n++) {
 234         __ vextractf64x4_high(Address(rsp, n*32), as_XMMRegister(n));
 235       }
 236       __ subptr(rsp, opmask_state_bytes);
 237       // Save opmask registers
 238       for (int n = 0; n < KRegister::number_of_registers; n++) {
 239         __ kmov(Address(rsp, n*8), as_KRegister(n));
 240       }
 241     }
 242   }
 243 #else
 244   assert(!save_vectors, "vectors are generated only by C2");
 245 #endif
 246 
 247   __ vzeroupper();
 248 
 249   // Set an oopmap for the call site.  This oopmap will map all
 250   // oop-registers and debug-info registers as callee-saved.  This
 251   // will allow deoptimization at this safepoint to find all possible
 252   // debug-info recordings, as well as let GC find all oops.
 253 
 254   OopMapSet *oop_maps = new OopMapSet();
 255   OopMap* map =  new OopMap( frame_words, 0 );
 256 
 257 #define STACK_OFFSET(x) VMRegImpl::stack2reg((x) + additional_frame_words)
 258 #define NEXTREG(x) (x)->as_VMReg()->next()
 259 
 260   map->set_callee_saved(STACK_OFFSET(rax_off), rax->as_VMReg());
 261   map->set_callee_saved(STACK_OFFSET(rcx_off), rcx->as_VMReg());
 262   map->set_callee_saved(STACK_OFFSET(rdx_off), rdx->as_VMReg());
 263   map->set_callee_saved(STACK_OFFSET(rbx_off), rbx->as_VMReg());
 264   // rbp, location is known implicitly, no oopMap
 265   map->set_callee_saved(STACK_OFFSET(rsi_off), rsi->as_VMReg());
 266   map->set_callee_saved(STACK_OFFSET(rdi_off), rdi->as_VMReg());
 267 
 268   // %%% This is really a waste but we'll keep things as they were for now for the upper component
 269   off = st0_off;
 270   delta = st1_off - off;
 271   for (int n = 0; n < FloatRegister::number_of_registers; n++) {
 272     FloatRegister freg_name = as_FloatRegister(n);
 273     map->set_callee_saved(STACK_OFFSET(off), freg_name->as_VMReg());
 274     map->set_callee_saved(STACK_OFFSET(off+1), NEXTREG(freg_name));
 275     off += delta;
 276   }
 277   off = xmm0_off;
 278   delta = xmm1_off - off;
 279   for (int n = 0; n < num_xmm_regs; n++) {
 280     XMMRegister xmm_name = as_XMMRegister(n);
 281     map->set_callee_saved(STACK_OFFSET(off), xmm_name->as_VMReg());
 282     map->set_callee_saved(STACK_OFFSET(off+1), NEXTREG(xmm_name));
 283     off += delta;
 284   }
 285 #undef NEXTREG
 286 #undef STACK_OFFSET
 287 
 288   return map;
 289 }
 290 
 291 void RegisterSaver::restore_live_registers(MacroAssembler* masm, bool restore_vectors) {
 292   int opmask_state_bytes = 0;
 293   int additional_frame_bytes = 0;
 294   int num_xmm_regs = XMMRegister::number_of_registers;
 295   int ymm_bytes = num_xmm_regs * 16;
 296   int zmm_bytes = num_xmm_regs * 32;
 297   // Recover XMM & FPU state
 298 #ifdef COMPILER2
 299   if (restore_vectors) {
 300     assert(UseAVX > 0, "Vectors larger than 16 byte long are supported only with AVX");
 301     assert(MaxVectorSize <= 64, "Only up to 64 byte long vectors are supported");
 302     // Save upper half of YMM registers
 303     additional_frame_bytes = ymm_bytes;
 304     if (UseAVX > 2) {
 305       // Save upper half of ZMM registers as well
 306       additional_frame_bytes += zmm_bytes;
 307       opmask_state_bytes = KRegister::number_of_registers * 8;
 308       additional_frame_bytes += opmask_state_bytes;
 309     }
 310   }
 311 #else
 312   assert(!restore_vectors, "vectors are generated only by C2");
 313 #endif
 314 
 315   int off = xmm0_off;
 316   int delta = xmm1_off - off;
 317 
 318   __ vzeroupper();
 319 
 320   if (UseSSE == 1) {
 321     // Restore XMM registers
 322     assert(additional_frame_bytes == 0, "");
 323     for (int n = 0; n < num_xmm_regs; n++) {
 324       __ movflt(as_XMMRegister(n), Address(rsp, off*wordSize));
 325       off += delta;
 326     }
 327   } else if (UseSSE >= 2) {
 328     // Restore whole 128bit (16 bytes) XMM registers. Do this before restoring YMM and
 329     // ZMM because the movdqu instruction zeros the upper part of the XMM register.
 330     for (int n = 0; n < num_xmm_regs; n++) {
 331       __ movdqu(as_XMMRegister(n), Address(rsp, off*wordSize+additional_frame_bytes));
 332       off += delta;
 333     }
 334   }
 335 
 336   if (restore_vectors) {
 337     off = additional_frame_bytes - ymm_bytes;
 338     // Restore upper half of YMM registers.
 339     for (int n = 0; n < num_xmm_regs; n++) {
 340       __ vinsertf128_high(as_XMMRegister(n), Address(rsp, n*16+off));
 341     }
 342     if (UseAVX > 2) {
 343       // Restore upper half of ZMM registers.
 344       off = opmask_state_bytes;
 345       for (int n = 0; n < num_xmm_regs; n++) {
 346         __ vinsertf64x4_high(as_XMMRegister(n), Address(rsp, n*32+off));
 347       }
 348       for (int n = 0; n < KRegister::number_of_registers; n++) {
 349         __ kmov(as_KRegister(n), Address(rsp, n*8));
 350       }
 351     }
 352     __ addptr(rsp, additional_frame_bytes);
 353   }
 354 
 355   __ pop_FPU_state();
 356   __ addptr(rsp, FPU_regs_live*wordSize); // Pop FPU registers
 357 
 358   __ popf();
 359   __ popa();
 360   // Get the rbp, described implicitly by the frame sender code (no oopMap)
 361   __ pop(rbp);
 362 }
 363 
 364 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
 365 
 366   // Just restore result register. Only used by deoptimization. By
 367   // now any callee save register that needs to be restore to a c2
 368   // caller of the deoptee has been extracted into the vframeArray
 369   // and will be stuffed into the c2i adapter we create for later
 370   // restoration so only result registers need to be restored here.
 371   //
 372 
 373   __ frstor(Address(rsp, 0));      // Restore fpu state
 374 
 375   // Recover XMM & FPU state
 376   if( UseSSE == 1 ) {
 377     __ movflt(xmm0, Address(rsp, xmm0_off*wordSize));
 378   } else if( UseSSE >= 2 ) {
 379     __ movdbl(xmm0, Address(rsp, xmm0_off*wordSize));
 380   }
 381   __ movptr(rax, Address(rsp, rax_off*wordSize));
 382   __ movptr(rdx, Address(rsp, rdx_off*wordSize));
 383   // Pop all of the register save are off the stack except the return address
 384   __ addptr(rsp, return_off * wordSize);
 385 }
 386 
 387 // Is vector's size (in bytes) bigger than a size saved by default?
 388 // 16 bytes XMM registers are saved by default using SSE2 movdqu instructions.
 389 // Note, MaxVectorSize == 0 with UseSSE < 2 and vectors are not generated.
 390 bool SharedRuntime::is_wide_vector(int size) {
 391   return size > 16;
 392 }
 393 
 394 // The java_calling_convention describes stack locations as ideal slots on
 395 // a frame with no abi restrictions. Since we must observe abi restrictions
 396 // (like the placement of the register window) the slots must be biased by
 397 // the following value.
 398 static int reg2offset_in(VMReg r) {
 399   // Account for saved rbp, and return address
 400   // This should really be in_preserve_stack_slots
 401   return (r->reg2stack() + 2) * VMRegImpl::stack_slot_size;
 402 }
 403 
 404 static int reg2offset_out(VMReg r) {
 405   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
 406 }
 407 
 408 // ---------------------------------------------------------------------------
 409 // Read the array of BasicTypes from a signature, and compute where the
 410 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte
 411 // quantities.  Values less than SharedInfo::stack0 are registers, those above
 412 // refer to 4-byte stack slots.  All stack slots are based off of the stack pointer
 413 // as framesizes are fixed.
 414 // VMRegImpl::stack0 refers to the first slot 0(sp).
 415 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.
 416 // Register up to Register::number_of_registers are the 32-bit
 417 // integer registers.
 418 
 419 // Pass first two oop/int args in registers ECX and EDX.
 420 // Pass first two float/double args in registers XMM0 and XMM1.
 421 // Doubles have precedence, so if you pass a mix of floats and doubles
 422 // the doubles will grab the registers before the floats will.
 423 
 424 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
 425 // either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
 426 // units regardless of build. Of course for i486 there is no 64 bit build
 427 
 428 
 429 // ---------------------------------------------------------------------------
 430 // The compiled Java calling convention.
 431 // Pass first two oop/int args in registers ECX and EDX.
 432 // Pass first two float/double args in registers XMM0 and XMM1.
 433 // Doubles have precedence, so if you pass a mix of floats and doubles
 434 // the doubles will grab the registers before the floats will.
 435 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
 436                                            VMRegPair *regs,
 437                                            int total_args_passed) {
 438   uint    stack = 0;          // Starting stack position for args on stack
 439 
 440 
 441   // Pass first two oop/int args in registers ECX and EDX.
 442   uint reg_arg0 = 9999;
 443   uint reg_arg1 = 9999;
 444 
 445   // Pass first two float/double args in registers XMM0 and XMM1.
 446   // Doubles have precedence, so if you pass a mix of floats and doubles
 447   // the doubles will grab the registers before the floats will.
 448   // CNC - TURNED OFF FOR non-SSE.
 449   //       On Intel we have to round all doubles (and most floats) at
 450   //       call sites by storing to the stack in any case.
 451   // UseSSE=0 ==> Don't Use ==> 9999+0
 452   // UseSSE=1 ==> Floats only ==> 9999+1
 453   // UseSSE>=2 ==> Floats or doubles ==> 9999+2
 454   enum { fltarg_dontuse = 9999+0, fltarg_float_only = 9999+1, fltarg_flt_dbl = 9999+2 };
 455   uint fargs = (UseSSE>=2) ? 2 : UseSSE;
 456   uint freg_arg0 = 9999+fargs;
 457   uint freg_arg1 = 9999+fargs;
 458 
 459   // Pass doubles & longs aligned on the stack.  First count stack slots for doubles
 460   int i;
 461   for( i = 0; i < total_args_passed; i++) {
 462     if( sig_bt[i] == T_DOUBLE ) {
 463       // first 2 doubles go in registers
 464       if( freg_arg0 == fltarg_flt_dbl ) freg_arg0 = i;
 465       else if( freg_arg1 == fltarg_flt_dbl ) freg_arg1 = i;
 466       else // Else double is passed low on the stack to be aligned.
 467         stack += 2;
 468     } else if( sig_bt[i] == T_LONG ) {
 469       stack += 2;
 470     }
 471   }
 472   int dstack = 0;             // Separate counter for placing doubles
 473 
 474   // Now pick where all else goes.
 475   for( i = 0; i < total_args_passed; i++) {
 476     // From the type and the argument number (count) compute the location
 477     switch( sig_bt[i] ) {
 478     case T_SHORT:
 479     case T_CHAR:
 480     case T_BYTE:
 481     case T_BOOLEAN:
 482     case T_INT:
 483     case T_ARRAY:
 484     case T_OBJECT:
 485     case T_ADDRESS:
 486       if( reg_arg0 == 9999 )  {
 487         reg_arg0 = i;
 488         regs[i].set1(rcx->as_VMReg());
 489       } else if( reg_arg1 == 9999 )  {
 490         reg_arg1 = i;
 491         regs[i].set1(rdx->as_VMReg());
 492       } else {
 493         regs[i].set1(VMRegImpl::stack2reg(stack++));
 494       }
 495       break;
 496     case T_FLOAT:
 497       if( freg_arg0 == fltarg_flt_dbl || freg_arg0 == fltarg_float_only ) {
 498         freg_arg0 = i;
 499         regs[i].set1(xmm0->as_VMReg());
 500       } else if( freg_arg1 == fltarg_flt_dbl || freg_arg1 == fltarg_float_only ) {
 501         freg_arg1 = i;
 502         regs[i].set1(xmm1->as_VMReg());
 503       } else {
 504         regs[i].set1(VMRegImpl::stack2reg(stack++));
 505       }
 506       break;
 507     case T_LONG:
 508       assert((i + 1) < total_args_passed && sig_bt[i+1] == T_VOID, "missing Half" );
 509       regs[i].set2(VMRegImpl::stack2reg(dstack));
 510       dstack += 2;
 511       break;
 512     case T_DOUBLE:
 513       assert((i + 1) < total_args_passed && sig_bt[i+1] == T_VOID, "missing Half" );
 514       if( freg_arg0 == (uint)i ) {
 515         regs[i].set2(xmm0->as_VMReg());
 516       } else if( freg_arg1 == (uint)i ) {
 517         regs[i].set2(xmm1->as_VMReg());
 518       } else {
 519         regs[i].set2(VMRegImpl::stack2reg(dstack));
 520         dstack += 2;
 521       }
 522       break;
 523     case T_VOID: regs[i].set_bad(); break;
 524       break;
 525     default:
 526       ShouldNotReachHere();
 527       break;
 528     }
 529   }
 530 
 531   // return value can be odd number of VMRegImpl stack slots make multiple of 2
 532   return align_up(stack, 2);
 533 }
 534 
 535 const uint SharedRuntime::java_return_convention_max_int = 1;
 536 const uint SharedRuntime::java_return_convention_max_float = 1;
 537 int SharedRuntime::java_return_convention(const BasicType *sig_bt,
 538                                           VMRegPair *regs,
 539                                           int total_args_passed) {
 540   Unimplemented();
 541   return 0;
 542 }
 543 
 544 // Patch the callers callsite with entry to compiled code if it exists.
 545 static void patch_callers_callsite(MacroAssembler *masm) {
 546   Label L;
 547   __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), NULL_WORD);
 548   __ jcc(Assembler::equal, L);
 549   // Schedule the branch target address early.
 550   // Call into the VM to patch the caller, then jump to compiled callee
 551   // rax, isn't live so capture return address while we easily can
 552   __ movptr(rax, Address(rsp, 0));
 553   __ pusha();
 554   __ pushf();
 555 
 556   if (UseSSE == 1) {
 557     __ subptr(rsp, 2*wordSize);
 558     __ movflt(Address(rsp, 0), xmm0);
 559     __ movflt(Address(rsp, wordSize), xmm1);
 560   }
 561   if (UseSSE >= 2) {
 562     __ subptr(rsp, 4*wordSize);
 563     __ movdbl(Address(rsp, 0), xmm0);
 564     __ movdbl(Address(rsp, 2*wordSize), xmm1);
 565   }
 566 #ifdef COMPILER2
 567   // C2 may leave the stack dirty if not in SSE2+ mode
 568   if (UseSSE >= 2) {
 569     __ verify_FPU(0, "c2i transition should have clean FPU stack");
 570   } else {
 571     __ empty_FPU_stack();
 572   }
 573 #endif /* COMPILER2 */
 574 
 575   // VM needs caller's callsite
 576   __ push(rax);
 577   // VM needs target method
 578   __ push(rbx);
 579   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
 580   __ addptr(rsp, 2*wordSize);
 581 
 582   if (UseSSE == 1) {
 583     __ movflt(xmm0, Address(rsp, 0));
 584     __ movflt(xmm1, Address(rsp, wordSize));
 585     __ addptr(rsp, 2*wordSize);
 586   }
 587   if (UseSSE >= 2) {
 588     __ movdbl(xmm0, Address(rsp, 0));
 589     __ movdbl(xmm1, Address(rsp, 2*wordSize));
 590     __ addptr(rsp, 4*wordSize);
 591   }
 592 
 593   __ popf();
 594   __ popa();
 595   __ bind(L);
 596 }
 597 
 598 
 599 static void move_c2i_double(MacroAssembler *masm, XMMRegister r, int st_off) {
 600   int next_off = st_off - Interpreter::stackElementSize;
 601   __ movdbl(Address(rsp, next_off), r);
 602 }
 603 
 604 static void gen_c2i_adapter(MacroAssembler *masm,
 605                             const GrowableArray<SigEntry>& sig_extended,
 606                             const VMRegPair *regs,
 607                             Label& skip_fixup,
 608                             address start,
 609                             OopMapSet*& oop_maps,
 610                             int& frame_complete,
 611                             int& frame_size_in_words) {
 612   // Before we get into the guts of the C2I adapter, see if we should be here
 613   // at all.  We've come from compiled code and are attempting to jump to the
 614   // interpreter, which means the caller made a static call to get here
 615   // (vcalls always get a compiled target if there is one).  Check for a
 616   // compiled target.  If there is one, we need to patch the caller's call.
 617   patch_callers_callsite(masm);
 618 
 619   __ bind(skip_fixup);
 620 
 621 #ifdef COMPILER2
 622   // C2 may leave the stack dirty if not in SSE2+ mode
 623   if (UseSSE >= 2) {
 624     __ verify_FPU(0, "c2i transition should have clean FPU stack");
 625   } else {
 626     __ empty_FPU_stack();
 627   }
 628 #endif /* COMPILER2 */
 629 
 630   // Since all args are passed on the stack, total_args_passed * interpreter_
 631   // stack_element_size  is the
 632   // space we need.
 633   int extraspace = sig_extended.length() * Interpreter::stackElementSize;
 634 
 635   // Get return address
 636   __ pop(rax);
 637 
 638   // set senderSP value
 639   __ movptr(rsi, rsp);
 640 
 641   __ subptr(rsp, extraspace);
 642 
 643   // Now write the args into the outgoing interpreter space
 644   for (int i = 0; i < sig_extended.length(); i++) {
 645     if (sig_extended.at(i)._bt == T_VOID) {
 646       assert(i > 0 && (sig_extended.at(i-1)._bt == T_LONG || sig_extended.at(i-1)._bt == T_DOUBLE), "missing half");
 647       continue;
 648     }
 649 
 650     // st_off points to lowest address on stack.
 651     int st_off = ((sig_extended.length() - 1) - i) * Interpreter::stackElementSize;
 652     int next_off = st_off - Interpreter::stackElementSize;
 653 
 654     // Say 4 args:
 655     // i   st_off
 656     // 0   12 T_LONG
 657     // 1    8 T_VOID
 658     // 2    4 T_OBJECT
 659     // 3    0 T_BOOL
 660     VMReg r_1 = regs[i].first();
 661     VMReg r_2 = regs[i].second();
 662     if (!r_1->is_valid()) {
 663       assert(!r_2->is_valid(), "");
 664       continue;
 665     }
 666 
 667     if (r_1->is_stack()) {
 668       // memory to memory use fpu stack top
 669       int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
 670 
 671       if (!r_2->is_valid()) {
 672         __ movl(rdi, Address(rsp, ld_off));
 673         __ movptr(Address(rsp, st_off), rdi);
 674       } else {
 675 
 676         // ld_off == LSW, ld_off+VMRegImpl::stack_slot_size == MSW
 677         // st_off == MSW, st_off-wordSize == LSW
 678 
 679         __ movptr(rdi, Address(rsp, ld_off));
 680         __ movptr(Address(rsp, next_off), rdi);
 681         __ movptr(rdi, Address(rsp, ld_off + wordSize));
 682         __ movptr(Address(rsp, st_off), rdi);
 683       }
 684     } else if (r_1->is_Register()) {
 685       Register r = r_1->as_Register();
 686       if (!r_2->is_valid()) {
 687         __ movl(Address(rsp, st_off), r);
 688       } else {
 689         // long/double in gpr
 690         ShouldNotReachHere();
 691       }
 692     } else {
 693       assert(r_1->is_XMMRegister(), "");
 694       if (!r_2->is_valid()) {
 695         __ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
 696       } else {
 697         assert(sig_extended.at(i)._bt == T_DOUBLE || sig_extended.at(i)._bt == T_LONG, "wrong type");
 698         move_c2i_double(masm, r_1->as_XMMRegister(), st_off);
 699       }
 700     }
 701   }
 702 
 703   // Schedule the branch target address early.
 704   __ movptr(rcx, Address(rbx, in_bytes(Method::interpreter_entry_offset())));
 705   // And repush original return address
 706   __ push(rax);
 707   __ jmp(rcx);
 708 }
 709 
 710 
 711 static void move_i2c_double(MacroAssembler *masm, XMMRegister r, Register saved_sp, int ld_off) {
 712   int next_val_off = ld_off - Interpreter::stackElementSize;
 713   __ movdbl(r, Address(saved_sp, next_val_off));
 714 }
 715 
 716 static void range_check(MacroAssembler* masm, Register pc_reg, Register temp_reg,
 717                         address code_start, address code_end,
 718                         Label& L_ok) {
 719   Label L_fail;
 720   __ lea(temp_reg, ExternalAddress(code_start));
 721   __ cmpptr(pc_reg, temp_reg);
 722   __ jcc(Assembler::belowEqual, L_fail);
 723   __ lea(temp_reg, ExternalAddress(code_end));
 724   __ cmpptr(pc_reg, temp_reg);
 725   __ jcc(Assembler::below, L_ok);
 726   __ bind(L_fail);
 727 }
 728 
 729 void SharedRuntime::gen_i2c_adapter(MacroAssembler *masm,
 730                                     int comp_args_on_stack,
 731                                     const GrowableArray<SigEntry>& sig_extended,
 732                                     const VMRegPair *regs) {
 733 
 734   // Note: rsi contains the senderSP on entry. We must preserve it since
 735   // we may do a i2c -> c2i transition if we lose a race where compiled
 736   // code goes non-entrant while we get args ready.
 737 
 738   // Adapters can be frameless because they do not require the caller
 739   // to perform additional cleanup work, such as correcting the stack pointer.
 740   // An i2c adapter is frameless because the *caller* frame, which is interpreted,
 741   // routinely repairs its own stack pointer (from interpreter_frame_last_sp),
 742   // even if a callee has modified the stack pointer.
 743   // A c2i adapter is frameless because the *callee* frame, which is interpreted,
 744   // routinely repairs its caller's stack pointer (from sender_sp, which is set
 745   // up via the senderSP register).
 746   // In other words, if *either* the caller or callee is interpreted, we can
 747   // get the stack pointer repaired after a call.
 748   // This is why c2i and i2c adapters cannot be indefinitely composed.
 749   // In particular, if a c2i adapter were to somehow call an i2c adapter,
 750   // both caller and callee would be compiled methods, and neither would
 751   // clean up the stack pointer changes performed by the two adapters.
 752   // If this happens, control eventually transfers back to the compiled
 753   // caller, but with an uncorrected stack, causing delayed havoc.
 754 
 755   // Pick up the return address
 756   __ movptr(rax, Address(rsp, 0));
 757 
 758   if (VerifyAdapterCalls &&
 759       (Interpreter::code() != nullptr || StubRoutines::final_stubs_code() != nullptr)) {
 760     // So, let's test for cascading c2i/i2c adapters right now.
 761     //  assert(Interpreter::contains($return_addr) ||
 762     //         StubRoutines::contains($return_addr),
 763     //         "i2c adapter must return to an interpreter frame");
 764     __ block_comment("verify_i2c { ");
 765     Label L_ok;
 766     if (Interpreter::code() != nullptr) {
 767       range_check(masm, rax, rdi,
 768                   Interpreter::code()->code_start(), Interpreter::code()->code_end(),
 769                   L_ok);
 770     }
 771     if (StubRoutines::initial_stubs_code() != nullptr) {
 772       range_check(masm, rax, rdi,
 773                   StubRoutines::initial_stubs_code()->code_begin(),
 774                   StubRoutines::initial_stubs_code()->code_end(),
 775                   L_ok);
 776     }
 777     if (StubRoutines::final_stubs_code() != nullptr) {
 778       range_check(masm, rax, rdi,
 779                   StubRoutines::final_stubs_code()->code_begin(),
 780                   StubRoutines::final_stubs_code()->code_end(),
 781                   L_ok);
 782     }
 783     const char* msg = "i2c adapter must return to an interpreter frame";
 784     __ block_comment(msg);
 785     __ stop(msg);
 786     __ bind(L_ok);
 787     __ block_comment("} verify_i2ce ");
 788   }
 789 
 790   // Must preserve original SP for loading incoming arguments because
 791   // we need to align the outgoing SP for compiled code.
 792   __ movptr(rdi, rsp);
 793 
 794   // Cut-out for having no stack args.  Since up to 2 int/oop args are passed
 795   // in registers, we will occasionally have no stack args.
 796   int comp_words_on_stack = 0;
 797   if (comp_args_on_stack) {
 798     // Sig words on the stack are greater-than VMRegImpl::stack0.  Those in
 799     // registers are below.  By subtracting stack0, we either get a negative
 800     // number (all values in registers) or the maximum stack slot accessed.
 801     // int comp_args_on_stack = VMRegImpl::reg2stack(max_arg);
 802     // Convert 4-byte stack slots to words.
 803     comp_words_on_stack = align_up(comp_args_on_stack*4, wordSize)>>LogBytesPerWord;
 804     // Round up to miminum stack alignment, in wordSize
 805     comp_words_on_stack = align_up(comp_words_on_stack, 2);
 806     __ subptr(rsp, comp_words_on_stack * wordSize);
 807   }
 808 
 809   // Align the outgoing SP
 810   __ andptr(rsp, -(StackAlignmentInBytes));
 811 
 812   // push the return address on the stack (note that pushing, rather
 813   // than storing it, yields the correct frame alignment for the callee)
 814   __ push(rax);
 815 
 816   // Put saved SP in another register
 817   const Register saved_sp = rax;
 818   __ movptr(saved_sp, rdi);
 819 
 820 
 821   // Will jump to the compiled code just as if compiled code was doing it.
 822   // Pre-load the register-jump target early, to schedule it better.
 823   __ movptr(rdi, Address(rbx, in_bytes(Method::from_compiled_offset())));
 824 
 825   // Now generate the shuffle code.  Pick up all register args and move the
 826   // rest through the floating point stack top.
 827   for (int i = 0; i < sig_extended.length(); i++) {
 828     if (sig_extended.at(i)._bt == T_VOID) {
 829       // Longs and doubles are passed in native word order, but misaligned
 830       // in the 32-bit build.
 831       assert(i > 0 && (sig_extended.at(i-1)._bt == T_LONG || sig_extended.at(i-1)._bt == T_DOUBLE), "missing half");
 832       continue;
 833     }
 834 
 835     // Pick up 0, 1 or 2 words from SP+offset.
 836 
 837     assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
 838             "scrambled load targets?");
 839     // Load in argument order going down.
 840     int ld_off = (sig_extended.length() - i) * Interpreter::stackElementSize;
 841     // Point to interpreter value (vs. tag)
 842     int next_off = ld_off - Interpreter::stackElementSize;
 843     //
 844     //
 845     //
 846     VMReg r_1 = regs[i].first();
 847     VMReg r_2 = regs[i].second();
 848     if (!r_1->is_valid()) {
 849       assert(!r_2->is_valid(), "");
 850       continue;
 851     }
 852     if (r_1->is_stack()) {
 853       // Convert stack slot to an SP offset (+ wordSize to account for return address )
 854       int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
 855 
 856       // We can use rsi as a temp here because compiled code doesn't need rsi as an input
 857       // and if we end up going thru a c2i because of a miss a reasonable value of rsi
 858       // we be generated.
 859       if (!r_2->is_valid()) {
 860         // __ fld_s(Address(saved_sp, ld_off));
 861         // __ fstp_s(Address(rsp, st_off));
 862         __ movl(rsi, Address(saved_sp, ld_off));
 863         __ movptr(Address(rsp, st_off), rsi);
 864       } else {
 865         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
 866         // are accessed as negative so LSW is at LOW address
 867 
 868         // ld_off is MSW so get LSW
 869         // st_off is LSW (i.e. reg.first())
 870         // __ fld_d(Address(saved_sp, next_off));
 871         // __ fstp_d(Address(rsp, st_off));
 872         //
 873         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
 874         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
 875         // So we must adjust where to pick up the data to match the interpreter.
 876         //
 877         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
 878         // are accessed as negative so LSW is at LOW address
 879 
 880         // ld_off is MSW so get LSW
 881         __ movptr(rsi, Address(saved_sp, next_off));
 882         __ movptr(Address(rsp, st_off), rsi);
 883         __ movptr(rsi, Address(saved_sp, ld_off));
 884         __ movptr(Address(rsp, st_off + wordSize), rsi);
 885       }
 886     } else if (r_1->is_Register()) {  // Register argument
 887       Register r = r_1->as_Register();
 888       assert(r != rax, "must be different");
 889       if (r_2->is_valid()) {
 890         //
 891         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
 892         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
 893         // So we must adjust where to pick up the data to match the interpreter.
 894 
 895         // this can be a misaligned move
 896         __ movptr(r, Address(saved_sp, next_off));
 897         assert(r_2->as_Register() != rax, "need another temporary register");
 898         // Remember r_1 is low address (and LSB on x86)
 899         // So r_2 gets loaded from high address regardless of the platform
 900         __ movptr(r_2->as_Register(), Address(saved_sp, ld_off));
 901       } else {
 902         __ movl(r, Address(saved_sp, ld_off));
 903       }
 904     } else {
 905       assert(r_1->is_XMMRegister(), "");
 906       if (!r_2->is_valid()) {
 907         __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off));
 908       } else {
 909         move_i2c_double(masm, r_1->as_XMMRegister(), saved_sp, ld_off);
 910       }
 911     }
 912   }
 913 
 914   // 6243940 We might end up in handle_wrong_method if
 915   // the callee is deoptimized as we race thru here. If that
 916   // happens we don't want to take a safepoint because the
 917   // caller frame will look interpreted and arguments are now
 918   // "compiled" so it is much better to make this transition
 919   // invisible to the stack walking code. Unfortunately if
 920   // we try and find the callee by normal means a safepoint
 921   // is possible. So we stash the desired callee in the thread
 922   // and the vm will find there should this case occur.
 923 
 924   __ get_thread(rax);
 925   __ movptr(Address(rax, JavaThread::callee_target_offset()), rbx);
 926 
 927   // move Method* to rax, in case we end up in an c2i adapter.
 928   // the c2i adapters expect Method* in rax, (c2) because c2's
 929   // resolve stubs return the result (the method) in rax,.
 930   // I'd love to fix this.
 931   __ mov(rax, rbx);
 932 
 933   __ jmp(rdi);
 934 }
 935 
 936 // ---------------------------------------------------------------
 937 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
 938                                                             int comp_args_on_stack,
 939                                                             const GrowableArray<SigEntry>& sig_extended,
 940                                                             const VMRegPair *regs,
 941                                                             AdapterFingerPrint* fingerprint,
 942                                                             AdapterBlob*& new_adapter) {
 943   address i2c_entry = __ pc();
 944 
 945   gen_i2c_adapter(masm, comp_args_on_stack, sig_extended, regs);
 946 
 947   // -------------------------------------------------------------------------
 948   // Generate a C2I adapter.  On entry we know rbx, holds the Method* during calls
 949   // to the interpreter.  The args start out packed in the compiled layout.  They
 950   // need to be unpacked into the interpreter layout.  This will almost always
 951   // require some stack space.  We grow the current (compiled) stack, then repack
 952   // the args.  We  finally end in a jump to the generic interpreter entry point.
 953   // On exit from the interpreter, the interpreter will restore our SP (lest the
 954   // compiled code, which relies solely on SP and not EBP, get sick).
 955 
 956   address c2i_unverified_entry = __ pc();
 957   Label skip_fixup;
 958 
 959   Register holder = rax;
 960   Register receiver = rcx;
 961   Register temp = rbx;
 962 
 963   {
 964 
 965     Label missed;
 966     __ movptr(temp, Address(receiver, oopDesc::klass_offset_in_bytes()));
 967     __ cmpptr(temp, Address(holder, CompiledICHolder::holder_klass_offset()));
 968     __ movptr(rbx, Address(holder, CompiledICHolder::holder_metadata_offset()));
 969     __ jcc(Assembler::notEqual, missed);
 970     // Method might have been compiled since the call site was patched to
 971     // interpreted if that is the case treat it as a miss so we can get
 972     // the call site corrected.
 973     __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), NULL_WORD);
 974     __ jcc(Assembler::equal, skip_fixup);
 975 
 976     __ bind(missed);
 977     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
 978   }
 979 
 980   address c2i_entry = __ pc();
 981 
 982   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
 983   bs->c2i_entry_barrier(masm);
 984 
 985   OopMapSet* oop_maps = nullptr;
 986   int frame_complete = CodeOffsets::frame_never_safe;
 987   int frame_size_in_words = 0;
 988   gen_c2i_adapter(masm, sig_extended, regs, skip_fixup, i2c_entry, oop_maps, frame_complete, frame_size_in_words);
 989 
 990   new_adapter = AdapterBlob::create(masm->code(), frame_complete, frame_size_in_words, oop_maps);
 991   return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
 992 }
 993 
 994 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
 995                                          VMRegPair *regs,
 996                                          int total_args_passed) {
 997 
 998 // We return the amount of VMRegImpl stack slots we need to reserve for all
 999 // the arguments NOT counting out_preserve_stack_slots.
1000 
1001   uint    stack = 0;        // All arguments on stack
1002 
1003   for( int i = 0; i < total_args_passed; i++) {
1004     // From the type and the argument number (count) compute the location
1005     switch( sig_bt[i] ) {
1006     case T_BOOLEAN:
1007     case T_CHAR:
1008     case T_FLOAT:
1009     case T_BYTE:
1010     case T_SHORT:
1011     case T_INT:
1012     case T_OBJECT:
1013     case T_ARRAY:
1014     case T_ADDRESS:
1015     case T_METADATA:
1016       regs[i].set1(VMRegImpl::stack2reg(stack++));
1017       break;
1018     case T_LONG:
1019     case T_DOUBLE: // The stack numbering is reversed from Java
1020       // Since C arguments do not get reversed, the ordering for
1021       // doubles on the stack must be opposite the Java convention
1022       assert((i + 1) < total_args_passed && sig_bt[i+1] == T_VOID, "missing Half" );
1023       regs[i].set2(VMRegImpl::stack2reg(stack));
1024       stack += 2;
1025       break;
1026     case T_VOID: regs[i].set_bad(); break;
1027     default:
1028       ShouldNotReachHere();
1029       break;
1030     }
1031   }
1032   return stack;
1033 }
1034 
1035 int SharedRuntime::vector_calling_convention(VMRegPair *regs,
1036                                              uint num_bits,
1037                                              uint total_args_passed) {
1038   Unimplemented();
1039   return 0;
1040 }
1041 
1042 // A simple move of integer like type
1043 static void simple_move32(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1044   if (src.first()->is_stack()) {
1045     if (dst.first()->is_stack()) {
1046       // stack to stack
1047       // __ ld(FP, reg2offset(src.first()), L5);
1048       // __ st(L5, SP, reg2offset(dst.first()));
1049       __ movl2ptr(rax, Address(rbp, reg2offset_in(src.first())));
1050       __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1051     } else {
1052       // stack to reg
1053       __ movl2ptr(dst.first()->as_Register(),  Address(rbp, reg2offset_in(src.first())));
1054     }
1055   } else if (dst.first()->is_stack()) {
1056     // reg to stack
1057     // no need to sign extend on 64bit
1058     __ movptr(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
1059   } else {
1060     if (dst.first() != src.first()) {
1061       __ mov(dst.first()->as_Register(), src.first()->as_Register());
1062     }
1063   }
1064 }
1065 
1066 // An oop arg. Must pass a handle not the oop itself
1067 static void object_move(MacroAssembler* masm,
1068                         OopMap* map,
1069                         int oop_handle_offset,
1070                         int framesize_in_slots,
1071                         VMRegPair src,
1072                         VMRegPair dst,
1073                         bool is_receiver,
1074                         int* receiver_offset) {
1075 
1076   // Because of the calling conventions we know that src can be a
1077   // register or a stack location. dst can only be a stack location.
1078 
1079   assert(dst.first()->is_stack(), "must be stack");
1080   // must pass a handle. First figure out the location we use as a handle
1081 
1082   if (src.first()->is_stack()) {
1083     // Oop is already on the stack as an argument
1084     Register rHandle = rax;
1085     Label nil;
1086     __ xorptr(rHandle, rHandle);
1087     __ cmpptr(Address(rbp, reg2offset_in(src.first())), NULL_WORD);
1088     __ jcc(Assembler::equal, nil);
1089     __ lea(rHandle, Address(rbp, reg2offset_in(src.first())));
1090     __ bind(nil);
1091     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
1092 
1093     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1094     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
1095     if (is_receiver) {
1096       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
1097     }
1098   } else {
1099     // Oop is in a register we must store it to the space we reserve
1100     // on the stack for oop_handles
1101     const Register rOop = src.first()->as_Register();
1102     const Register rHandle = rax;
1103     int oop_slot = (rOop == rcx ? 0 : 1) * VMRegImpl::slots_per_word + oop_handle_offset;
1104     int offset = oop_slot*VMRegImpl::stack_slot_size;
1105     Label skip;
1106     __ movptr(Address(rsp, offset), rOop);
1107     map->set_oop(VMRegImpl::stack2reg(oop_slot));
1108     __ xorptr(rHandle, rHandle);
1109     __ cmpptr(rOop, NULL_WORD);
1110     __ jcc(Assembler::equal, skip);
1111     __ lea(rHandle, Address(rsp, offset));
1112     __ bind(skip);
1113     // Store the handle parameter
1114     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
1115     if (is_receiver) {
1116       *receiver_offset = offset;
1117     }
1118   }
1119 }
1120 
1121 // A float arg may have to do float reg int reg conversion
1122 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1123   assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
1124 
1125   // Because of the calling convention we know that src is either a stack location
1126   // or an xmm register. dst can only be a stack location.
1127 
1128   assert(dst.first()->is_stack() && ( src.first()->is_stack() || src.first()->is_XMMRegister()), "bad parameters");
1129 
1130   if (src.first()->is_stack()) {
1131     __ movl(rax, Address(rbp, reg2offset_in(src.first())));
1132     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1133   } else {
1134     // reg to stack
1135     __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1136   }
1137 }
1138 
1139 // A long move
1140 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1141 
1142   // The only legal possibility for a long_move VMRegPair is:
1143   // 1: two stack slots (possibly unaligned)
1144   // as neither the java  or C calling convention will use registers
1145   // for longs.
1146 
1147   if (src.first()->is_stack() && dst.first()->is_stack()) {
1148     assert(src.second()->is_stack() && dst.second()->is_stack(), "must be all stack");
1149     __ movptr(rax, Address(rbp, reg2offset_in(src.first())));
1150     __ movptr(rbx, Address(rbp, reg2offset_in(src.second())));
1151     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1152     __ movptr(Address(rsp, reg2offset_out(dst.second())), rbx);
1153   } else {
1154     ShouldNotReachHere();
1155   }
1156 }
1157 
1158 // A double move
1159 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1160 
1161   // The only legal possibilities for a double_move VMRegPair are:
1162   // The painful thing here is that like long_move a VMRegPair might be
1163 
1164   // Because of the calling convention we know that src is either
1165   //   1: a single physical register (xmm registers only)
1166   //   2: two stack slots (possibly unaligned)
1167   // dst can only be a pair of stack slots.
1168 
1169   assert(dst.first()->is_stack() && (src.first()->is_XMMRegister() || src.first()->is_stack()), "bad args");
1170 
1171   if (src.first()->is_stack()) {
1172     // source is all stack
1173     __ movptr(rax, Address(rbp, reg2offset_in(src.first())));
1174     __ movptr(rbx, Address(rbp, reg2offset_in(src.second())));
1175     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1176     __ movptr(Address(rsp, reg2offset_out(dst.second())), rbx);
1177   } else {
1178     // reg to stack
1179     // No worries about stack alignment
1180     __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1181   }
1182 }
1183 
1184 
1185 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1186   // We always ignore the frame_slots arg and just use the space just below frame pointer
1187   // which by this time is free to use
1188   switch (ret_type) {
1189   case T_FLOAT:
1190     __ fstp_s(Address(rbp, -wordSize));
1191     break;
1192   case T_DOUBLE:
1193     __ fstp_d(Address(rbp, -2*wordSize));
1194     break;
1195   case T_VOID:  break;
1196   case T_LONG:
1197     __ movptr(Address(rbp, -wordSize), rax);
1198     __ movptr(Address(rbp, -2*wordSize), rdx);
1199     break;
1200   default: {
1201     __ movptr(Address(rbp, -wordSize), rax);
1202     }
1203   }
1204 }
1205 
1206 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1207   // We always ignore the frame_slots arg and just use the space just below frame pointer
1208   // which by this time is free to use
1209   switch (ret_type) {
1210   case T_FLOAT:
1211     __ fld_s(Address(rbp, -wordSize));
1212     break;
1213   case T_DOUBLE:
1214     __ fld_d(Address(rbp, -2*wordSize));
1215     break;
1216   case T_LONG:
1217     __ movptr(rax, Address(rbp, -wordSize));
1218     __ movptr(rdx, Address(rbp, -2*wordSize));
1219     break;
1220   case T_VOID:  break;
1221   default: {
1222     __ movptr(rax, Address(rbp, -wordSize));
1223     }
1224   }
1225 }
1226 
1227 static void verify_oop_args(MacroAssembler* masm,
1228                             const methodHandle& method,
1229                             const BasicType* sig_bt,
1230                             const VMRegPair* regs) {
1231   Register temp_reg = rbx;  // not part of any compiled calling seq
1232   if (VerifyOops) {
1233     for (int i = 0; i < method->size_of_parameters(); i++) {
1234       if (is_reference_type(sig_bt[i])) {
1235         VMReg r = regs[i].first();
1236         assert(r->is_valid(), "bad oop arg");
1237         if (r->is_stack()) {
1238           __ movptr(temp_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1239           __ verify_oop(temp_reg);
1240         } else {
1241           __ verify_oop(r->as_Register());
1242         }
1243       }
1244     }
1245   }
1246 }
1247 
1248 static void gen_special_dispatch(MacroAssembler* masm,
1249                                  const methodHandle& method,
1250                                  const BasicType* sig_bt,
1251                                  const VMRegPair* regs) {
1252   verify_oop_args(masm, method, sig_bt, regs);
1253   vmIntrinsics::ID iid = method->intrinsic_id();
1254 
1255   // Now write the args into the outgoing interpreter space
1256   bool     has_receiver   = false;
1257   Register receiver_reg   = noreg;
1258   int      member_arg_pos = -1;
1259   Register member_reg     = noreg;
1260   int      ref_kind       = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
1261   if (ref_kind != 0) {
1262     member_arg_pos = method->size_of_parameters() - 1;  // trailing MemberName argument
1263     member_reg = rbx;  // known to be free at this point
1264     has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
1265   } else if (iid == vmIntrinsics::_invokeBasic) {
1266     has_receiver = true;
1267   } else {
1268     fatal("unexpected intrinsic id %d", vmIntrinsics::as_int(iid));
1269   }
1270 
1271   if (member_reg != noreg) {
1272     // Load the member_arg into register, if necessary.
1273     SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
1274     VMReg r = regs[member_arg_pos].first();
1275     if (r->is_stack()) {
1276       __ movptr(member_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1277     } else {
1278       // no data motion is needed
1279       member_reg = r->as_Register();
1280     }
1281   }
1282 
1283   if (has_receiver) {
1284     // Make sure the receiver is loaded into a register.
1285     assert(method->size_of_parameters() > 0, "oob");
1286     assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
1287     VMReg r = regs[0].first();
1288     assert(r->is_valid(), "bad receiver arg");
1289     if (r->is_stack()) {
1290       // Porting note:  This assumes that compiled calling conventions always
1291       // pass the receiver oop in a register.  If this is not true on some
1292       // platform, pick a temp and load the receiver from stack.
1293       fatal("receiver always in a register");
1294       receiver_reg = rcx;  // known to be free at this point
1295       __ movptr(receiver_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1296     } else {
1297       // no data motion is needed
1298       receiver_reg = r->as_Register();
1299     }
1300   }
1301 
1302   // Figure out which address we are really jumping to:
1303   MethodHandles::generate_method_handle_dispatch(masm, iid,
1304                                                  receiver_reg, member_reg, /*for_compiler_entry:*/ true);
1305 }
1306 
1307 // ---------------------------------------------------------------------------
1308 // Generate a native wrapper for a given method.  The method takes arguments
1309 // in the Java compiled code convention, marshals them to the native
1310 // convention (handlizes oops, etc), transitions to native, makes the call,
1311 // returns to java state (possibly blocking), unhandlizes any result and
1312 // returns.
1313 //
1314 // Critical native functions are a shorthand for the use of
1315 // GetPrimtiveArrayCritical and disallow the use of any other JNI
1316 // functions.  The wrapper is expected to unpack the arguments before
1317 // passing them to the callee. Critical native functions leave the state _in_Java,
1318 // since they cannot stop for GC.
1319 // Some other parts of JNI setup are skipped like the tear down of the JNI handle
1320 // block and the check for pending exceptions it's impossible for them
1321 // to be thrown.
1322 //
1323 //
1324 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
1325                                                 const methodHandle& method,
1326                                                 int compile_id,
1327                                                 BasicType* in_sig_bt,
1328                                                 VMRegPair* in_regs,
1329                                                 BasicType ret_type) {
1330   if (method->is_method_handle_intrinsic()) {
1331     vmIntrinsics::ID iid = method->intrinsic_id();
1332     intptr_t start = (intptr_t)__ pc();
1333     int vep_offset = ((intptr_t)__ pc()) - start;
1334     gen_special_dispatch(masm,
1335                          method,
1336                          in_sig_bt,
1337                          in_regs);
1338     int frame_complete = ((intptr_t)__ pc()) - start;  // not complete, period
1339     __ flush();
1340     int stack_slots = SharedRuntime::out_preserve_stack_slots();  // no out slots at all, actually
1341     return nmethod::new_native_nmethod(method,
1342                                        compile_id,
1343                                        masm->code(),
1344                                        vep_offset,
1345                                        frame_complete,
1346                                        stack_slots / VMRegImpl::slots_per_word,
1347                                        in_ByteSize(-1),
1348                                        in_ByteSize(-1),
1349                                        (OopMapSet*)nullptr);
1350   }
1351   address native_func = method->native_function();
1352   assert(native_func != nullptr, "must have function");
1353 
1354   // An OopMap for lock (and class if static)
1355   OopMapSet *oop_maps = new OopMapSet();
1356 
1357   // We have received a description of where all the java arg are located
1358   // on entry to the wrapper. We need to convert these args to where
1359   // the jni function will expect them. To figure out where they go
1360   // we convert the java signature to a C signature by inserting
1361   // the hidden arguments as arg[0] and possibly arg[1] (static method)
1362 
1363   const int total_in_args = method->size_of_parameters();
1364   int  total_c_args       = total_in_args + (method->is_static() ? 2 : 1);
1365 
1366   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
1367   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
1368   BasicType* in_elem_bt = nullptr;
1369 
1370   int argc = 0;
1371   out_sig_bt[argc++] = T_ADDRESS;
1372   if (method->is_static()) {
1373     out_sig_bt[argc++] = T_OBJECT;
1374   }
1375 
1376   for (int i = 0; i < total_in_args ; i++ ) {
1377     out_sig_bt[argc++] = in_sig_bt[i];
1378   }
1379 
1380   // Now figure out where the args must be stored and how much stack space
1381   // they require.
1382   int out_arg_slots;
1383   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
1384 
1385   // Compute framesize for the wrapper.  We need to handlize all oops in
1386   // registers a max of 2 on x86.
1387 
1388   // Calculate the total number of stack slots we will need.
1389 
1390   // First count the abi requirement plus all of the outgoing args
1391   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
1392 
1393   // Now the space for the inbound oop handle area
1394   int total_save_slots = 2 * VMRegImpl::slots_per_word; // 2 arguments passed in registers
1395 
1396   int oop_handle_offset = stack_slots;
1397   stack_slots += total_save_slots;
1398 
1399   // Now any space we need for handlizing a klass if static method
1400 
1401   int klass_slot_offset = 0;
1402   int klass_offset = -1;
1403   int lock_slot_offset = 0;
1404   bool is_static = false;
1405 
1406   if (method->is_static()) {
1407     klass_slot_offset = stack_slots;
1408     stack_slots += VMRegImpl::slots_per_word;
1409     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
1410     is_static = true;
1411   }
1412 
1413   // Plus a lock if needed
1414 
1415   if (method->is_synchronized()) {
1416     lock_slot_offset = stack_slots;
1417     stack_slots += VMRegImpl::slots_per_word;
1418   }
1419 
1420   // Now a place (+2) to save return values or temp during shuffling
1421   // + 2 for return address (which we own) and saved rbp,
1422   stack_slots += 4;
1423 
1424   // Ok The space we have allocated will look like:
1425   //
1426   //
1427   // FP-> |                     |
1428   //      |---------------------|
1429   //      | 2 slots for moves   |
1430   //      |---------------------|
1431   //      | lock box (if sync)  |
1432   //      |---------------------| <- lock_slot_offset  (-lock_slot_rbp_offset)
1433   //      | klass (if static)   |
1434   //      |---------------------| <- klass_slot_offset
1435   //      | oopHandle area      |
1436   //      |---------------------| <- oop_handle_offset (a max of 2 registers)
1437   //      | outbound memory     |
1438   //      | based arguments     |
1439   //      |                     |
1440   //      |---------------------|
1441   //      |                     |
1442   // SP-> | out_preserved_slots |
1443   //
1444   //
1445   // ****************************************************************************
1446   // WARNING - on Windows Java Natives use pascal calling convention and pop the
1447   // arguments off of the stack after the jni call. Before the call we can use
1448   // instructions that are SP relative. After the jni call we switch to FP
1449   // relative instructions instead of re-adjusting the stack on windows.
1450   // ****************************************************************************
1451 
1452 
1453   // Now compute actual number of stack words we need rounding to make
1454   // stack properly aligned.
1455   stack_slots = align_up(stack_slots, StackAlignmentInSlots);
1456 
1457   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
1458 
1459   intptr_t start = (intptr_t)__ pc();
1460 
1461   // First thing make an ic check to see if we should even be here
1462 
1463   // We are free to use all registers as temps without saving them and
1464   // restoring them except rbp. rbp is the only callee save register
1465   // as far as the interpreter and the compiler(s) are concerned.
1466 
1467 
1468   const Register ic_reg = rax;
1469   const Register receiver = rcx;
1470   Label hit;
1471   Label exception_pending;
1472 
1473   __ verify_oop(receiver);
1474   __ cmpptr(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
1475   __ jcc(Assembler::equal, hit);
1476 
1477   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
1478 
1479   // verified entry must be aligned for code patching.
1480   // and the first 5 bytes must be in the same cache line
1481   // if we align at 8 then we will be sure 5 bytes are in the same line
1482   __ align(8);
1483 
1484   __ bind(hit);
1485 
1486   int vep_offset = ((intptr_t)__ pc()) - start;
1487 
1488 #ifdef COMPILER1
1489   // For Object.hashCode, System.identityHashCode try to pull hashCode from object header if available.
1490   if ((InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) || (method->intrinsic_id() == vmIntrinsics::_identityHashCode)) {
1491     inline_check_hashcode_from_object_header(masm, method, rcx /*obj_reg*/, rax /*result*/);
1492    }
1493 #endif // COMPILER1
1494 
1495   // The instruction at the verified entry point must be 5 bytes or longer
1496   // because it can be patched on the fly by make_non_entrant. The stack bang
1497   // instruction fits that requirement.
1498 
1499   // Generate stack overflow check
1500   __ bang_stack_with_offset((int)StackOverflow::stack_shadow_zone_size());
1501 
1502   // Generate a new frame for the wrapper.
1503   __ enter();
1504   // -2 because return address is already present and so is saved rbp
1505   __ subptr(rsp, stack_size - 2*wordSize);
1506 
1507 
1508   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
1509   bs->nmethod_entry_barrier(masm, nullptr /* slow_path */, nullptr /* continuation */);
1510 
1511   // Frame is now completed as far as size and linkage.
1512   int frame_complete = ((intptr_t)__ pc()) - start;
1513 
1514   if (UseRTMLocking) {
1515     // Abort RTM transaction before calling JNI
1516     // because critical section will be large and will be
1517     // aborted anyway. Also nmethod could be deoptimized.
1518     __ xabort(0);
1519   }
1520 
1521   // Calculate the difference between rsp and rbp,. We need to know it
1522   // after the native call because on windows Java Natives will pop
1523   // the arguments and it is painful to do rsp relative addressing
1524   // in a platform independent way. So after the call we switch to
1525   // rbp, relative addressing.
1526 
1527   int fp_adjustment = stack_size - 2*wordSize;
1528 
1529 #ifdef COMPILER2
1530   // C2 may leave the stack dirty if not in SSE2+ mode
1531   if (UseSSE >= 2) {
1532     __ verify_FPU(0, "c2i transition should have clean FPU stack");
1533   } else {
1534     __ empty_FPU_stack();
1535   }
1536 #endif /* COMPILER2 */
1537 
1538   // Compute the rbp, offset for any slots used after the jni call
1539 
1540   int lock_slot_rbp_offset = (lock_slot_offset*VMRegImpl::stack_slot_size) - fp_adjustment;
1541 
1542   // We use rdi as a thread pointer because it is callee save and
1543   // if we load it once it is usable thru the entire wrapper
1544   const Register thread = rdi;
1545 
1546    // We use rsi as the oop handle for the receiver/klass
1547    // It is callee save so it survives the call to native
1548 
1549    const Register oop_handle_reg = rsi;
1550 
1551    __ get_thread(thread);
1552 
1553   //
1554   // We immediately shuffle the arguments so that any vm call we have to
1555   // make from here on out (sync slow path, jvmti, etc.) we will have
1556   // captured the oops from our caller and have a valid oopMap for
1557   // them.
1558 
1559   // -----------------
1560   // The Grand Shuffle
1561   //
1562   // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
1563   // and, if static, the class mirror instead of a receiver.  This pretty much
1564   // guarantees that register layout will not match (and x86 doesn't use reg
1565   // parms though amd does).  Since the native abi doesn't use register args
1566   // and the java conventions does we don't have to worry about collisions.
1567   // All of our moved are reg->stack or stack->stack.
1568   // We ignore the extra arguments during the shuffle and handle them at the
1569   // last moment. The shuffle is described by the two calling convention
1570   // vectors we have in our possession. We simply walk the java vector to
1571   // get the source locations and the c vector to get the destinations.
1572 
1573   int c_arg = method->is_static() ? 2 : 1;
1574 
1575   // Record rsp-based slot for receiver on stack for non-static methods
1576   int receiver_offset = -1;
1577 
1578   // This is a trick. We double the stack slots so we can claim
1579   // the oops in the caller's frame. Since we are sure to have
1580   // more args than the caller doubling is enough to make
1581   // sure we can capture all the incoming oop args from the
1582   // caller.
1583   //
1584   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1585 
1586   // Mark location of rbp,
1587   // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, rbp->as_VMReg());
1588 
1589   // We know that we only have args in at most two integer registers (rcx, rdx). So rax, rbx
1590   // Are free to temporaries if we have to do  stack to steck moves.
1591   // All inbound args are referenced based on rbp, and all outbound args via rsp.
1592 
1593   for (int i = 0; i < total_in_args ; i++, c_arg++ ) {
1594     switch (in_sig_bt[i]) {
1595       case T_ARRAY:
1596       case T_OBJECT:
1597         object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
1598                     ((i == 0) && (!is_static)),
1599                     &receiver_offset);
1600         break;
1601       case T_VOID:
1602         break;
1603 
1604       case T_FLOAT:
1605         float_move(masm, in_regs[i], out_regs[c_arg]);
1606           break;
1607 
1608       case T_DOUBLE:
1609         assert( i + 1 < total_in_args &&
1610                 in_sig_bt[i + 1] == T_VOID &&
1611                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
1612         double_move(masm, in_regs[i], out_regs[c_arg]);
1613         break;
1614 
1615       case T_LONG :
1616         long_move(masm, in_regs[i], out_regs[c_arg]);
1617         break;
1618 
1619       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
1620 
1621       default:
1622         simple_move32(masm, in_regs[i], out_regs[c_arg]);
1623     }
1624   }
1625 
1626   // Pre-load a static method's oop into rsi.  Used both by locking code and
1627   // the normal JNI call code.
1628   if (method->is_static()) {
1629 
1630     //  load opp into a register
1631     __ movoop(oop_handle_reg, JNIHandles::make_local(method->method_holder()->java_mirror()));
1632 
1633     // Now handlize the static class mirror it's known not-null.
1634     __ movptr(Address(rsp, klass_offset), oop_handle_reg);
1635     map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
1636 
1637     // Now get the handle
1638     __ lea(oop_handle_reg, Address(rsp, klass_offset));
1639     // store the klass handle as second argument
1640     __ movptr(Address(rsp, wordSize), oop_handle_reg);
1641   }
1642 
1643   // Change state to native (we save the return address in the thread, since it might not
1644   // be pushed on the stack when we do a stack traversal). It is enough that the pc()
1645   // points into the right code segment. It does not have to be the correct return pc.
1646   // We use the same pc/oopMap repeatedly when we call out
1647 
1648   intptr_t the_pc = (intptr_t) __ pc();
1649   oop_maps->add_gc_map(the_pc - start, map);
1650 
1651   __ set_last_Java_frame(thread, rsp, noreg, (address)the_pc, noreg);
1652 
1653 
1654   // We have all of the arguments setup at this point. We must not touch any register
1655   // argument registers at this point (what if we save/restore them there are no oop?
1656 
1657   {
1658     SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0, noreg);
1659     __ mov_metadata(rax, method());
1660     __ call_VM_leaf(
1661          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
1662          thread, rax);
1663   }
1664 
1665   // RedefineClasses() tracing support for obsolete method entry
1666   if (log_is_enabled(Trace, redefine, class, obsolete)) {
1667     __ mov_metadata(rax, method());
1668     __ call_VM_leaf(
1669          CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1670          thread, rax);
1671   }
1672 
1673   // These are register definitions we need for locking/unlocking
1674   const Register swap_reg = rax;  // Must use rax, for cmpxchg instruction
1675   const Register obj_reg  = rcx;  // Will contain the oop
1676   const Register lock_reg = rdx;  // Address of compiler lock object (BasicLock)
1677 
1678   Label slow_path_lock;
1679   Label lock_done;
1680 
1681   // Lock a synchronized method
1682   if (method->is_synchronized()) {
1683     Label count_mon;
1684 
1685     const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
1686 
1687     // Get the handle (the 2nd argument)
1688     __ movptr(oop_handle_reg, Address(rsp, wordSize));
1689 
1690     // Get address of the box
1691 
1692     __ lea(lock_reg, Address(rbp, lock_slot_rbp_offset));
1693 
1694     // Load the oop from the handle
1695     __ movptr(obj_reg, Address(oop_handle_reg, 0));
1696 
1697     if (LockingMode == LM_MONITOR) {
1698       __ jmp(slow_path_lock);
1699     } else if (LockingMode == LM_LEGACY) {
1700       // Load immediate 1 into swap_reg %rax,
1701       __ movptr(swap_reg, 1);
1702 
1703       // Load (object->mark() | 1) into swap_reg %rax,
1704       __ orptr(swap_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1705 
1706       // Save (object->mark() | 1) into BasicLock's displaced header
1707       __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
1708 
1709       // src -> dest iff dest == rax, else rax, <- dest
1710       // *obj_reg = lock_reg iff *obj_reg == rax, else rax, = *(obj_reg)
1711       __ lock();
1712       __ cmpxchgptr(lock_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1713       __ jcc(Assembler::equal, count_mon);
1714 
1715       // Test if the oopMark is an obvious stack pointer, i.e.,
1716       //  1) (mark & 3) == 0, and
1717       //  2) rsp <= mark < mark + os::pagesize()
1718       // These 3 tests can be done by evaluating the following
1719       // expression: ((mark - rsp) & (3 - os::vm_page_size())),
1720       // assuming both stack pointer and pagesize have their
1721       // least significant 2 bits clear.
1722       // NOTE: the oopMark is in swap_reg %rax, as the result of cmpxchg
1723 
1724       __ subptr(swap_reg, rsp);
1725       __ andptr(swap_reg, 3 - (int)os::vm_page_size());
1726 
1727       // Save the test result, for recursive case, the result is zero
1728       __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
1729       __ jcc(Assembler::notEqual, slow_path_lock);
1730     } else {
1731       assert(LockingMode == LM_LIGHTWEIGHT, "must be");
1732       // Load object header
1733       __ movptr(swap_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1734       __ lightweight_lock(obj_reg, swap_reg, thread, lock_reg, slow_path_lock);
1735     }
1736     __ bind(count_mon);
1737     __ inc_held_monitor_count();
1738 
1739     // Slow path will re-enter here
1740     __ bind(lock_done);
1741   }
1742 
1743 
1744   // Finally just about ready to make the JNI call
1745 
1746   // get JNIEnv* which is first argument to native
1747   __ lea(rdx, Address(thread, in_bytes(JavaThread::jni_environment_offset())));
1748   __ movptr(Address(rsp, 0), rdx);
1749 
1750   // Now set thread in native
1751   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native);
1752 
1753   __ call(RuntimeAddress(native_func));
1754 
1755   // Verify or restore cpu control state after JNI call
1756   __ restore_cpu_control_state_after_jni(noreg);
1757 
1758   // WARNING - on Windows Java Natives use pascal calling convention and pop the
1759   // arguments off of the stack. We could just re-adjust the stack pointer here
1760   // and continue to do SP relative addressing but we instead switch to FP
1761   // relative addressing.
1762 
1763   // Unpack native results.
1764   switch (ret_type) {
1765   case T_BOOLEAN: __ c2bool(rax);            break;
1766   case T_CHAR   : __ andptr(rax, 0xFFFF);    break;
1767   case T_BYTE   : __ sign_extend_byte (rax); break;
1768   case T_SHORT  : __ sign_extend_short(rax); break;
1769   case T_INT    : /* nothing to do */        break;
1770   case T_DOUBLE :
1771   case T_FLOAT  :
1772     // Result is in st0 we'll save as needed
1773     break;
1774   case T_ARRAY:                 // Really a handle
1775   case T_OBJECT:                // Really a handle
1776       break; // can't de-handlize until after safepoint check
1777   case T_VOID: break;
1778   case T_LONG: break;
1779   default       : ShouldNotReachHere();
1780   }
1781 
1782   Label after_transition;
1783 
1784   // Switch thread to "native transition" state before reading the synchronization state.
1785   // This additional state is necessary because reading and testing the synchronization
1786   // state is not atomic w.r.t. GC, as this scenario demonstrates:
1787   //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
1788   //     VM thread changes sync state to synchronizing and suspends threads for GC.
1789   //     Thread A is resumed to finish this native method, but doesn't block here since it
1790   //     didn't see any synchronization is progress, and escapes.
1791   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
1792 
1793   // Force this write out before the read below
1794   if (!UseSystemMemoryBarrier) {
1795     __ membar(Assembler::Membar_mask_bits(
1796               Assembler::LoadLoad | Assembler::LoadStore |
1797               Assembler::StoreLoad | Assembler::StoreStore));
1798   }
1799 
1800   if (AlwaysRestoreFPU) {
1801     // Make sure the control word is correct.
1802     __ fldcw(ExternalAddress(StubRoutines::x86::addr_fpu_cntrl_wrd_std()));
1803   }
1804 
1805   // check for safepoint operation in progress and/or pending suspend requests
1806   { Label Continue, slow_path;
1807 
1808     __ safepoint_poll(slow_path, thread, true /* at_return */, false /* in_nmethod */);
1809 
1810     __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0);
1811     __ jcc(Assembler::equal, Continue);
1812     __ bind(slow_path);
1813 
1814     // Don't use call_VM as it will see a possible pending exception and forward it
1815     // and never return here preventing us from clearing _last_native_pc down below.
1816     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
1817     // preserved and correspond to the bcp/locals pointers. So we do a runtime call
1818     // by hand.
1819     //
1820     __ vzeroupper();
1821 
1822     save_native_result(masm, ret_type, stack_slots);
1823     __ push(thread);
1824     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address,
1825                                               JavaThread::check_special_condition_for_native_trans)));
1826     __ increment(rsp, wordSize);
1827     // Restore any method result value
1828     restore_native_result(masm, ret_type, stack_slots);
1829     __ bind(Continue);
1830   }
1831 
1832   // change thread state
1833   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java);
1834   __ bind(after_transition);
1835 
1836   Label reguard;
1837   Label reguard_done;
1838   __ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), StackOverflow::stack_guard_yellow_reserved_disabled);
1839   __ jcc(Assembler::equal, reguard);
1840 
1841   // slow path reguard  re-enters here
1842   __ bind(reguard_done);
1843 
1844   // Handle possible exception (will unlock if necessary)
1845 
1846   // native result if any is live
1847 
1848   // Unlock
1849   Label slow_path_unlock;
1850   Label unlock_done;
1851   if (method->is_synchronized()) {
1852 
1853     Label fast_done;
1854 
1855     // Get locked oop from the handle we passed to jni
1856     __ movptr(obj_reg, Address(oop_handle_reg, 0));
1857 
1858     if (LockingMode == LM_LEGACY) {
1859       Label not_recur;
1860       // Simple recursive lock?
1861       __ cmpptr(Address(rbp, lock_slot_rbp_offset), NULL_WORD);
1862       __ jcc(Assembler::notEqual, not_recur);
1863       __ dec_held_monitor_count();
1864       __ jmpb(fast_done);
1865       __ bind(not_recur);
1866     }
1867 
1868     // Must save rax, if it is live now because cmpxchg must use it
1869     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
1870       save_native_result(masm, ret_type, stack_slots);
1871     }
1872 
1873     if (LockingMode == LM_MONITOR) {
1874       __ jmp(slow_path_unlock);
1875     } else if (LockingMode == LM_LEGACY) {
1876       //  get old displaced header
1877       __ movptr(rbx, Address(rbp, lock_slot_rbp_offset));
1878 
1879       // get address of the stack lock
1880       __ lea(rax, Address(rbp, lock_slot_rbp_offset));
1881 
1882       // Atomic swap old header if oop still contains the stack lock
1883       // src -> dest iff dest == rax, else rax, <- dest
1884       // *obj_reg = rbx, iff *obj_reg == rax, else rax, = *(obj_reg)
1885       __ lock();
1886       __ cmpxchgptr(rbx, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1887       __ jcc(Assembler::notEqual, slow_path_unlock);
1888       __ dec_held_monitor_count();
1889     } else {
1890       assert(LockingMode == LM_LIGHTWEIGHT, "must be");
1891       __ movptr(swap_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1892       __ andptr(swap_reg, ~(int32_t)markWord::lock_mask_in_place);
1893       __ lightweight_unlock(obj_reg, swap_reg, lock_reg, slow_path_unlock);
1894       __ dec_held_monitor_count();
1895     }
1896 
1897     // slow path re-enters here
1898     __ bind(unlock_done);
1899     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
1900       restore_native_result(masm, ret_type, stack_slots);
1901     }
1902 
1903     __ bind(fast_done);
1904   }
1905 
1906   {
1907     SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0, noreg);
1908     // Tell dtrace about this method exit
1909     save_native_result(masm, ret_type, stack_slots);
1910     __ mov_metadata(rax, method());
1911     __ call_VM_leaf(
1912          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
1913          thread, rax);
1914     restore_native_result(masm, ret_type, stack_slots);
1915   }
1916 
1917   // We can finally stop using that last_Java_frame we setup ages ago
1918 
1919   __ reset_last_Java_frame(thread, false);
1920 
1921   // Unbox oop result, e.g. JNIHandles::resolve value.
1922   if (is_reference_type(ret_type)) {
1923     __ resolve_jobject(rax /* value */,
1924                        thread /* thread */,
1925                        rcx /* tmp */);
1926   }
1927 
1928   if (CheckJNICalls) {
1929     // clear_pending_jni_exception_check
1930     __ movptr(Address(thread, JavaThread::pending_jni_exception_check_fn_offset()), NULL_WORD);
1931   }
1932 
1933   // reset handle block
1934   __ movptr(rcx, Address(thread, JavaThread::active_handles_offset()));
1935   __ movl(Address(rcx, JNIHandleBlock::top_offset()), NULL_WORD);
1936 
1937   // Any exception pending?
1938   __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD);
1939   __ jcc(Assembler::notEqual, exception_pending);
1940 
1941   // no exception, we're almost done
1942 
1943   // check that only result value is on FPU stack
1944   __ verify_FPU(ret_type == T_FLOAT || ret_type == T_DOUBLE ? 1 : 0, "native_wrapper normal exit");
1945 
1946   // Fixup floating pointer results so that result looks like a return from a compiled method
1947   if (ret_type == T_FLOAT) {
1948     if (UseSSE >= 1) {
1949       // Pop st0 and store as float and reload into xmm register
1950       __ fstp_s(Address(rbp, -4));
1951       __ movflt(xmm0, Address(rbp, -4));
1952     }
1953   } else if (ret_type == T_DOUBLE) {
1954     if (UseSSE >= 2) {
1955       // Pop st0 and store as double and reload into xmm register
1956       __ fstp_d(Address(rbp, -8));
1957       __ movdbl(xmm0, Address(rbp, -8));
1958     }
1959   }
1960 
1961   // Return
1962 
1963   __ leave();
1964   __ ret(0);
1965 
1966   // Unexpected paths are out of line and go here
1967 
1968   // Slow path locking & unlocking
1969   if (method->is_synchronized()) {
1970 
1971     // BEGIN Slow path lock
1972 
1973     __ bind(slow_path_lock);
1974 
1975     // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
1976     // args are (oop obj, BasicLock* lock, JavaThread* thread)
1977     __ push(thread);
1978     __ push(lock_reg);
1979     __ push(obj_reg);
1980     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C)));
1981     __ addptr(rsp, 3*wordSize);
1982 
1983 #ifdef ASSERT
1984     { Label L;
1985     __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD);
1986     __ jcc(Assembler::equal, L);
1987     __ stop("no pending exception allowed on exit from monitorenter");
1988     __ bind(L);
1989     }
1990 #endif
1991     __ jmp(lock_done);
1992 
1993     // END Slow path lock
1994 
1995     // BEGIN Slow path unlock
1996     __ bind(slow_path_unlock);
1997     __ vzeroupper();
1998     // Slow path unlock
1999 
2000     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
2001       save_native_result(masm, ret_type, stack_slots);
2002     }
2003     // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
2004 
2005     __ pushptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
2006     __ movptr(Address(thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD);
2007 
2008 
2009     // should be a peal
2010     // +wordSize because of the push above
2011     // args are (oop obj, BasicLock* lock, JavaThread* thread)
2012     __ push(thread);
2013     __ lea(rax, Address(rbp, lock_slot_rbp_offset));
2014     __ push(rax);
2015 
2016     __ push(obj_reg);
2017     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
2018     __ addptr(rsp, 3*wordSize);
2019 #ifdef ASSERT
2020     {
2021       Label L;
2022       __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD);
2023       __ jcc(Assembler::equal, L);
2024       __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
2025       __ bind(L);
2026     }
2027 #endif /* ASSERT */
2028 
2029     __ popptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
2030 
2031     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
2032       restore_native_result(masm, ret_type, stack_slots);
2033     }
2034     __ jmp(unlock_done);
2035     // END Slow path unlock
2036 
2037   }
2038 
2039   // SLOW PATH Reguard the stack if needed
2040 
2041   __ bind(reguard);
2042   __ vzeroupper();
2043   save_native_result(masm, ret_type, stack_slots);
2044   {
2045     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
2046   }
2047   restore_native_result(masm, ret_type, stack_slots);
2048   __ jmp(reguard_done);
2049 
2050 
2051   // BEGIN EXCEPTION PROCESSING
2052 
2053   // Forward  the exception
2054   __ bind(exception_pending);
2055 
2056   // remove possible return value from FPU register stack
2057   __ empty_FPU_stack();
2058 
2059   // pop our frame
2060   __ leave();
2061   // and forward the exception
2062   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2063 
2064   __ flush();
2065 
2066   nmethod *nm = nmethod::new_native_nmethod(method,
2067                                             compile_id,
2068                                             masm->code(),
2069                                             vep_offset,
2070                                             frame_complete,
2071                                             stack_slots / VMRegImpl::slots_per_word,
2072                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
2073                                             in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
2074                                             oop_maps);
2075 
2076   return nm;
2077 
2078 }
2079 
2080 // this function returns the adjust size (in number of words) to a c2i adapter
2081 // activation for use during deoptimization
2082 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
2083   return (callee_locals - callee_parameters) * Interpreter::stackElementWords;
2084 }
2085 
2086 
2087 // Number of stack slots between incoming argument block and the start of
2088 // a new frame.  The PROLOG must add this many slots to the stack.  The
2089 // EPILOG must remove this many slots.  Intel needs one slot for
2090 // return address and one for rbp, (must save rbp)
2091 uint SharedRuntime::in_preserve_stack_slots() {
2092   return 2+VerifyStackAtCalls;
2093 }
2094 
2095 uint SharedRuntime::out_preserve_stack_slots() {
2096   return 0;
2097 }
2098 
2099 //------------------------------generate_deopt_blob----------------------------
2100 void SharedRuntime::generate_deopt_blob() {
2101   // allocate space for the code
2102   ResourceMark rm;
2103   // setup code generation tools
2104   // note: the buffer code size must account for StackShadowPages=50
2105   CodeBuffer   buffer("deopt_blob", 1536, 1024);
2106   MacroAssembler* masm = new MacroAssembler(&buffer);
2107   int frame_size_in_words;
2108   OopMap* map = nullptr;
2109   // Account for the extra args we place on the stack
2110   // by the time we call fetch_unroll_info
2111   const int additional_words = 2; // deopt kind, thread
2112 
2113   OopMapSet *oop_maps = new OopMapSet();
2114 
2115   // -------------
2116   // This code enters when returning to a de-optimized nmethod.  A return
2117   // address has been pushed on the stack, and return values are in
2118   // registers.
2119   // If we are doing a normal deopt then we were called from the patched
2120   // nmethod from the point we returned to the nmethod. So the return
2121   // address on the stack is wrong by NativeCall::instruction_size
2122   // We will adjust the value to it looks like we have the original return
2123   // address on the stack (like when we eagerly deoptimized).
2124   // In the case of an exception pending with deoptimized then we enter
2125   // with a return address on the stack that points after the call we patched
2126   // into the exception handler. We have the following register state:
2127   //    rax,: exception
2128   //    rbx,: exception handler
2129   //    rdx: throwing pc
2130   // So in this case we simply jam rdx into the useless return address and
2131   // the stack looks just like we want.
2132   //
2133   // At this point we need to de-opt.  We save the argument return
2134   // registers.  We call the first C routine, fetch_unroll_info().  This
2135   // routine captures the return values and returns a structure which
2136   // describes the current frame size and the sizes of all replacement frames.
2137   // The current frame is compiled code and may contain many inlined
2138   // functions, each with their own JVM state.  We pop the current frame, then
2139   // push all the new frames.  Then we call the C routine unpack_frames() to
2140   // populate these frames.  Finally unpack_frames() returns us the new target
2141   // address.  Notice that callee-save registers are BLOWN here; they have
2142   // already been captured in the vframeArray at the time the return PC was
2143   // patched.
2144   address start = __ pc();
2145   Label cont;
2146 
2147   // Prolog for non exception case!
2148 
2149   // Save everything in sight.
2150 
2151   map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
2152   // Normal deoptimization
2153   __ push(Deoptimization::Unpack_deopt);
2154   __ jmp(cont);
2155 
2156   int reexecute_offset = __ pc() - start;
2157 
2158   // Reexecute case
2159   // return address is the pc describes what bci to do re-execute at
2160 
2161   // No need to update map as each call to save_live_registers will produce identical oopmap
2162   (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
2163 
2164   __ push(Deoptimization::Unpack_reexecute);
2165   __ jmp(cont);
2166 
2167   int exception_offset = __ pc() - start;
2168 
2169   // Prolog for exception case
2170 
2171   // all registers are dead at this entry point, except for rax, and
2172   // rdx which contain the exception oop and exception pc
2173   // respectively.  Set them in TLS and fall thru to the
2174   // unpack_with_exception_in_tls entry point.
2175 
2176   __ get_thread(rdi);
2177   __ movptr(Address(rdi, JavaThread::exception_pc_offset()), rdx);
2178   __ movptr(Address(rdi, JavaThread::exception_oop_offset()), rax);
2179 
2180   int exception_in_tls_offset = __ pc() - start;
2181 
2182   // new implementation because exception oop is now passed in JavaThread
2183 
2184   // Prolog for exception case
2185   // All registers must be preserved because they might be used by LinearScan
2186   // Exceptiop oop and throwing PC are passed in JavaThread
2187   // tos: stack at point of call to method that threw the exception (i.e. only
2188   // args are on the stack, no return address)
2189 
2190   // make room on stack for the return address
2191   // It will be patched later with the throwing pc. The correct value is not
2192   // available now because loading it from memory would destroy registers.
2193   __ push(0);
2194 
2195   // Save everything in sight.
2196 
2197   // No need to update map as each call to save_live_registers will produce identical oopmap
2198   (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
2199 
2200   // Now it is safe to overwrite any register
2201 
2202   // store the correct deoptimization type
2203   __ push(Deoptimization::Unpack_exception);
2204 
2205   // load throwing pc from JavaThread and patch it as the return address
2206   // of the current frame. Then clear the field in JavaThread
2207   __ get_thread(rdi);
2208   __ movptr(rdx, Address(rdi, JavaThread::exception_pc_offset()));
2209   __ movptr(Address(rbp, wordSize), rdx);
2210   __ movptr(Address(rdi, JavaThread::exception_pc_offset()), NULL_WORD);
2211 
2212 #ifdef ASSERT
2213   // verify that there is really an exception oop in JavaThread
2214   __ movptr(rax, Address(rdi, JavaThread::exception_oop_offset()));
2215   __ verify_oop(rax);
2216 
2217   // verify that there is no pending exception
2218   Label no_pending_exception;
2219   __ movptr(rax, Address(rdi, Thread::pending_exception_offset()));
2220   __ testptr(rax, rax);
2221   __ jcc(Assembler::zero, no_pending_exception);
2222   __ stop("must not have pending exception here");
2223   __ bind(no_pending_exception);
2224 #endif
2225 
2226   __ bind(cont);
2227 
2228   // Compiled code leaves the floating point stack dirty, empty it.
2229   __ empty_FPU_stack();
2230 
2231 
2232   // Call C code.  Need thread and this frame, but NOT official VM entry
2233   // crud.  We cannot block on this call, no GC can happen.
2234   __ get_thread(rcx);
2235   __ push(rcx);
2236   // fetch_unroll_info needs to call last_java_frame()
2237   __ set_last_Java_frame(rcx, noreg, noreg, nullptr, noreg);
2238 
2239   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
2240 
2241   // Need to have an oopmap that tells fetch_unroll_info where to
2242   // find any register it might need.
2243 
2244   oop_maps->add_gc_map( __ pc()-start, map);
2245 
2246   // Discard args to fetch_unroll_info
2247   __ pop(rcx);
2248   __ pop(rcx);
2249 
2250   __ get_thread(rcx);
2251   __ reset_last_Java_frame(rcx, false);
2252 
2253   // Load UnrollBlock into EDI
2254   __ mov(rdi, rax);
2255 
2256   // Move the unpack kind to a safe place in the UnrollBlock because
2257   // we are very short of registers
2258 
2259   Address unpack_kind(rdi, Deoptimization::UnrollBlock::unpack_kind_offset());
2260   // retrieve the deopt kind from the UnrollBlock.
2261   __ movl(rax, unpack_kind);
2262 
2263    Label noException;
2264   __ cmpl(rax, Deoptimization::Unpack_exception);   // Was exception pending?
2265   __ jcc(Assembler::notEqual, noException);
2266   __ movptr(rax, Address(rcx, JavaThread::exception_oop_offset()));
2267   __ movptr(rdx, Address(rcx, JavaThread::exception_pc_offset()));
2268   __ movptr(Address(rcx, JavaThread::exception_oop_offset()), NULL_WORD);
2269   __ movptr(Address(rcx, JavaThread::exception_pc_offset()), NULL_WORD);
2270 
2271   __ verify_oop(rax);
2272 
2273   // Overwrite the result registers with the exception results.
2274   __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
2275   __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
2276 
2277   __ bind(noException);
2278 
2279   // Stack is back to only having register save data on the stack.
2280   // Now restore the result registers. Everything else is either dead or captured
2281   // in the vframeArray.
2282 
2283   RegisterSaver::restore_result_registers(masm);
2284 
2285   // Non standard control word may be leaked out through a safepoint blob, and we can
2286   // deopt at a poll point with the non standard control word. However, we should make
2287   // sure the control word is correct after restore_result_registers.
2288   __ fldcw(ExternalAddress(StubRoutines::x86::addr_fpu_cntrl_wrd_std()));
2289 
2290   // All of the register save area has been popped of the stack. Only the
2291   // return address remains.
2292 
2293   // Pop all the frames we must move/replace.
2294   //
2295   // Frame picture (youngest to oldest)
2296   // 1: self-frame (no frame link)
2297   // 2: deopting frame  (no frame link)
2298   // 3: caller of deopting frame (could be compiled/interpreted).
2299   //
2300   // Note: by leaving the return address of self-frame on the stack
2301   // and using the size of frame 2 to adjust the stack
2302   // when we are done the return to frame 3 will still be on the stack.
2303 
2304   // Pop deoptimized frame
2305   __ addptr(rsp, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset()));
2306 
2307   // sp should be pointing at the return address to the caller (3)
2308 
2309   // Pick up the initial fp we should save
2310   // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved)
2311   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset()));
2312 
2313 #ifdef ASSERT
2314   // Compilers generate code that bang the stack by as much as the
2315   // interpreter would need. So this stack banging should never
2316   // trigger a fault. Verify that it does not on non product builds.
2317   __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset()));
2318   __ bang_stack_size(rbx, rcx);
2319 #endif
2320 
2321   // Load array of frame pcs into ECX
2322   __ movptr(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset()));
2323 
2324   __ pop(rsi); // trash the old pc
2325 
2326   // Load array of frame sizes into ESI
2327   __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset()));
2328 
2329   Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset());
2330 
2331   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset()));
2332   __ movl(counter, rbx);
2333 
2334   // Now adjust the caller's stack to make up for the extra locals
2335   // but record the original sp so that we can save it in the skeletal interpreter
2336   // frame and the stack walking of interpreter_sender will get the unextended sp
2337   // value and not the "real" sp value.
2338 
2339   Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset());
2340   __ movptr(sp_temp, rsp);
2341   __ movl2ptr(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset()));
2342   __ subptr(rsp, rbx);
2343 
2344   // Push interpreter frames in a loop
2345   Label loop;
2346   __ bind(loop);
2347   __ movptr(rbx, Address(rsi, 0));      // Load frame size
2348   __ subptr(rbx, 2*wordSize);           // we'll push pc and rbp, by hand
2349   __ pushptr(Address(rcx, 0));          // save return address
2350   __ enter();                           // save old & set new rbp,
2351   __ subptr(rsp, rbx);                  // Prolog!
2352   __ movptr(rbx, sp_temp);              // sender's sp
2353   // This value is corrected by layout_activation_impl
2354   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
2355   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
2356   __ movptr(sp_temp, rsp);              // pass to next frame
2357   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
2358   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
2359   __ decrementl(counter);             // decrement counter
2360   __ jcc(Assembler::notZero, loop);
2361   __ pushptr(Address(rcx, 0));          // save final return address
2362 
2363   // Re-push self-frame
2364   __ enter();                           // save old & set new rbp,
2365 
2366   //  Return address and rbp, are in place
2367   // We'll push additional args later. Just allocate a full sized
2368   // register save area
2369   __ subptr(rsp, (frame_size_in_words-additional_words - 2) * wordSize);
2370 
2371   // Restore frame locals after moving the frame
2372   __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
2373   __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
2374   __ fstp_d(Address(rsp, RegisterSaver::fpResultOffset()*wordSize));   // Pop float stack and store in local
2375   if( UseSSE>=2 ) __ movdbl(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
2376   if( UseSSE==1 ) __ movflt(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
2377 
2378   // Set up the args to unpack_frame
2379 
2380   __ pushl(unpack_kind);                     // get the unpack_kind value
2381   __ get_thread(rcx);
2382   __ push(rcx);
2383 
2384   // set last_Java_sp, last_Java_fp
2385   __ set_last_Java_frame(rcx, noreg, rbp, nullptr, noreg);
2386 
2387   // Call C code.  Need thread but NOT official VM entry
2388   // crud.  We cannot block on this call, no GC can happen.  Call should
2389   // restore return values to their stack-slots with the new SP.
2390   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
2391   // Set an oopmap for the call site
2392   oop_maps->add_gc_map( __ pc()-start, new OopMap( frame_size_in_words, 0 ));
2393 
2394   // rax, contains the return result type
2395   __ push(rax);
2396 
2397   __ get_thread(rcx);
2398   __ reset_last_Java_frame(rcx, false);
2399 
2400   // Collect return values
2401   __ movptr(rax,Address(rsp, (RegisterSaver::raxOffset() + additional_words + 1)*wordSize));
2402   __ movptr(rdx,Address(rsp, (RegisterSaver::rdxOffset() + additional_words + 1)*wordSize));
2403 
2404   // Clear floating point stack before returning to interpreter
2405   __ empty_FPU_stack();
2406 
2407   // Check if we should push the float or double return value.
2408   Label results_done, yes_double_value;
2409   __ cmpl(Address(rsp, 0), T_DOUBLE);
2410   __ jcc (Assembler::zero, yes_double_value);
2411   __ cmpl(Address(rsp, 0), T_FLOAT);
2412   __ jcc (Assembler::notZero, results_done);
2413 
2414   // return float value as expected by interpreter
2415   if( UseSSE>=1 ) __ movflt(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
2416   else            __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
2417   __ jmp(results_done);
2418 
2419   // return double value as expected by interpreter
2420   __ bind(yes_double_value);
2421   if( UseSSE>=2 ) __ movdbl(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
2422   else            __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
2423 
2424   __ bind(results_done);
2425 
2426   // Pop self-frame.
2427   __ leave();                              // Epilog!
2428 
2429   // Jump to interpreter
2430   __ ret(0);
2431 
2432   // -------------
2433   // make sure all code is generated
2434   masm->flush();
2435 
2436   _deopt_blob = DeoptimizationBlob::create( &buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
2437   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
2438 }
2439 
2440 
2441 #ifdef COMPILER2
2442 //------------------------------generate_uncommon_trap_blob--------------------
2443 void SharedRuntime::generate_uncommon_trap_blob() {
2444   // allocate space for the code
2445   ResourceMark rm;
2446   // setup code generation tools
2447   CodeBuffer   buffer("uncommon_trap_blob", 512, 512);
2448   MacroAssembler* masm = new MacroAssembler(&buffer);
2449 
2450   enum frame_layout {
2451     arg0_off,      // thread                     sp + 0 // Arg location for
2452     arg1_off,      // unloaded_class_index       sp + 1 // calling C
2453     arg2_off,      // exec_mode                  sp + 2
2454     // The frame sender code expects that rbp will be in the "natural" place and
2455     // will override any oopMap setting for it. We must therefore force the layout
2456     // so that it agrees with the frame sender code.
2457     rbp_off,       // callee saved register      sp + 3
2458     return_off,    // slot for return address    sp + 4
2459     framesize
2460   };
2461 
2462   address start = __ pc();
2463 
2464   if (UseRTMLocking) {
2465     // Abort RTM transaction before possible nmethod deoptimization.
2466     __ xabort(0);
2467   }
2468 
2469   // Push self-frame.
2470   __ subptr(rsp, return_off*wordSize);     // Epilog!
2471 
2472   // rbp, is an implicitly saved callee saved register (i.e. the calling
2473   // convention will save restore it in prolog/epilog) Other than that
2474   // there are no callee save registers no that adapter frames are gone.
2475   __ movptr(Address(rsp, rbp_off*wordSize), rbp);
2476 
2477   // Clear the floating point exception stack
2478   __ empty_FPU_stack();
2479 
2480   // set last_Java_sp
2481   __ get_thread(rdx);
2482   __ set_last_Java_frame(rdx, noreg, noreg, nullptr, noreg);
2483 
2484   // Call C code.  Need thread but NOT official VM entry
2485   // crud.  We cannot block on this call, no GC can happen.  Call should
2486   // capture callee-saved registers as well as return values.
2487   __ movptr(Address(rsp, arg0_off*wordSize), rdx);
2488   // argument already in ECX
2489   __ movl(Address(rsp, arg1_off*wordSize),rcx);
2490   __ movl(Address(rsp, arg2_off*wordSize), Deoptimization::Unpack_uncommon_trap);
2491   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
2492 
2493   // Set an oopmap for the call site
2494   OopMapSet *oop_maps = new OopMapSet();
2495   OopMap* map =  new OopMap( framesize, 0 );
2496   // No oopMap for rbp, it is known implicitly
2497 
2498   oop_maps->add_gc_map( __ pc()-start, map);
2499 
2500   __ get_thread(rcx);
2501 
2502   __ reset_last_Java_frame(rcx, false);
2503 
2504   // Load UnrollBlock into EDI
2505   __ movptr(rdi, rax);
2506 
2507 #ifdef ASSERT
2508   { Label L;
2509     __ cmpptr(Address(rdi, Deoptimization::UnrollBlock::unpack_kind_offset()),
2510             (int32_t)Deoptimization::Unpack_uncommon_trap);
2511     __ jcc(Assembler::equal, L);
2512     __ stop("SharedRuntime::generate_uncommon_trap_blob: expected Unpack_uncommon_trap");
2513     __ bind(L);
2514   }
2515 #endif
2516 
2517   // Pop all the frames we must move/replace.
2518   //
2519   // Frame picture (youngest to oldest)
2520   // 1: self-frame (no frame link)
2521   // 2: deopting frame  (no frame link)
2522   // 3: caller of deopting frame (could be compiled/interpreted).
2523 
2524   // Pop self-frame.  We have no frame, and must rely only on EAX and ESP.
2525   __ addptr(rsp,(framesize-1)*wordSize);     // Epilog!
2526 
2527   // Pop deoptimized frame
2528   __ movl2ptr(rcx, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset()));
2529   __ addptr(rsp, rcx);
2530 
2531   // sp should be pointing at the return address to the caller (3)
2532 
2533   // Pick up the initial fp we should save
2534   // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved)
2535   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset()));
2536 
2537 #ifdef ASSERT
2538   // Compilers generate code that bang the stack by as much as the
2539   // interpreter would need. So this stack banging should never
2540   // trigger a fault. Verify that it does not on non product builds.
2541   __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset()));
2542   __ bang_stack_size(rbx, rcx);
2543 #endif
2544 
2545   // Load array of frame pcs into ECX
2546   __ movl(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset()));
2547 
2548   __ pop(rsi); // trash the pc
2549 
2550   // Load array of frame sizes into ESI
2551   __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset()));
2552 
2553   Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset());
2554 
2555   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset()));
2556   __ movl(counter, rbx);
2557 
2558   // Now adjust the caller's stack to make up for the extra locals
2559   // but record the original sp so that we can save it in the skeletal interpreter
2560   // frame and the stack walking of interpreter_sender will get the unextended sp
2561   // value and not the "real" sp value.
2562 
2563   Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset());
2564   __ movptr(sp_temp, rsp);
2565   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset()));
2566   __ subptr(rsp, rbx);
2567 
2568   // Push interpreter frames in a loop
2569   Label loop;
2570   __ bind(loop);
2571   __ movptr(rbx, Address(rsi, 0));      // Load frame size
2572   __ subptr(rbx, 2*wordSize);           // we'll push pc and rbp, by hand
2573   __ pushptr(Address(rcx, 0));          // save return address
2574   __ enter();                           // save old & set new rbp,
2575   __ subptr(rsp, rbx);                  // Prolog!
2576   __ movptr(rbx, sp_temp);              // sender's sp
2577   // This value is corrected by layout_activation_impl
2578   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD );
2579   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
2580   __ movptr(sp_temp, rsp);              // pass to next frame
2581   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
2582   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
2583   __ decrementl(counter);             // decrement counter
2584   __ jcc(Assembler::notZero, loop);
2585   __ pushptr(Address(rcx, 0));            // save final return address
2586 
2587   // Re-push self-frame
2588   __ enter();                           // save old & set new rbp,
2589   __ subptr(rsp, (framesize-2) * wordSize);   // Prolog!
2590 
2591 
2592   // set last_Java_sp, last_Java_fp
2593   __ get_thread(rdi);
2594   __ set_last_Java_frame(rdi, noreg, rbp, nullptr, noreg);
2595 
2596   // Call C code.  Need thread but NOT official VM entry
2597   // crud.  We cannot block on this call, no GC can happen.  Call should
2598   // restore return values to their stack-slots with the new SP.
2599   __ movptr(Address(rsp,arg0_off*wordSize),rdi);
2600   __ movl(Address(rsp,arg1_off*wordSize), Deoptimization::Unpack_uncommon_trap);
2601   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
2602   // Set an oopmap for the call site
2603   oop_maps->add_gc_map( __ pc()-start, new OopMap( framesize, 0 ) );
2604 
2605   __ get_thread(rdi);
2606   __ reset_last_Java_frame(rdi, true);
2607 
2608   // Pop self-frame.
2609   __ leave();     // Epilog!
2610 
2611   // Jump to interpreter
2612   __ ret(0);
2613 
2614   // -------------
2615   // make sure all code is generated
2616   masm->flush();
2617 
2618    _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, oop_maps, framesize);
2619 }
2620 #endif // COMPILER2
2621 
2622 //------------------------------generate_handler_blob------
2623 //
2624 // Generate a special Compile2Runtime blob that saves all registers,
2625 // setup oopmap, and calls safepoint code to stop the compiled code for
2626 // a safepoint.
2627 //
2628 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) {
2629 
2630   // Account for thread arg in our frame
2631   const int additional_words = 1;
2632   int frame_size_in_words;
2633 
2634   assert (StubRoutines::forward_exception_entry() != nullptr, "must be generated before");
2635 
2636   ResourceMark rm;
2637   OopMapSet *oop_maps = new OopMapSet();
2638   OopMap* map;
2639 
2640   // allocate space for the code
2641   // setup code generation tools
2642   CodeBuffer   buffer("handler_blob", 2048, 1024);
2643   MacroAssembler* masm = new MacroAssembler(&buffer);
2644 
2645   const Register java_thread = rdi; // callee-saved for VC++
2646   address start   = __ pc();
2647   address call_pc = nullptr;
2648   bool cause_return = (poll_type == POLL_AT_RETURN);
2649   bool save_vectors = (poll_type == POLL_AT_VECTOR_LOOP);
2650 
2651   if (UseRTMLocking) {
2652     // Abort RTM transaction before calling runtime
2653     // because critical section will be large and will be
2654     // aborted anyway. Also nmethod could be deoptimized.
2655     __ xabort(0);
2656   }
2657 
2658   // If cause_return is true we are at a poll_return and there is
2659   // the return address on the stack to the caller on the nmethod
2660   // that is safepoint. We can leave this return on the stack and
2661   // effectively complete the return and safepoint in the caller.
2662   // Otherwise we push space for a return address that the safepoint
2663   // handler will install later to make the stack walking sensible.
2664   if (!cause_return)
2665     __ push(rbx);  // Make room for return address (or push it again)
2666 
2667   map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false, save_vectors);
2668 
2669   // The following is basically a call_VM. However, we need the precise
2670   // address of the call in order to generate an oopmap. Hence, we do all the
2671   // work ourselves.
2672 
2673   // Push thread argument and setup last_Java_sp
2674   __ get_thread(java_thread);
2675   __ push(java_thread);
2676   __ set_last_Java_frame(java_thread, noreg, noreg, nullptr, noreg);
2677 
2678   // if this was not a poll_return then we need to correct the return address now.
2679   if (!cause_return) {
2680     // Get the return pc saved by the signal handler and stash it in its appropriate place on the stack.
2681     // Additionally, rbx is a callee saved register and we can look at it later to determine
2682     // if someone changed the return address for us!
2683     __ movptr(rbx, Address(java_thread, JavaThread::saved_exception_pc_offset()));
2684     __ movptr(Address(rbp, wordSize), rbx);
2685   }
2686 
2687   // do the call
2688   __ call(RuntimeAddress(call_ptr));
2689 
2690   // Set an oopmap for the call site.  This oopmap will map all
2691   // oop-registers and debug-info registers as callee-saved.  This
2692   // will allow deoptimization at this safepoint to find all possible
2693   // debug-info recordings, as well as let GC find all oops.
2694 
2695   oop_maps->add_gc_map( __ pc() - start, map);
2696 
2697   // Discard arg
2698   __ pop(rcx);
2699 
2700   Label noException;
2701 
2702   // Clear last_Java_sp again
2703   __ get_thread(java_thread);
2704   __ reset_last_Java_frame(java_thread, false);
2705 
2706   __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), NULL_WORD);
2707   __ jcc(Assembler::equal, noException);
2708 
2709   // Exception pending
2710   RegisterSaver::restore_live_registers(masm, save_vectors);
2711 
2712   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2713 
2714   __ bind(noException);
2715 
2716   Label no_adjust, bail, not_special;
2717   if (!cause_return) {
2718     // If our stashed return pc was modified by the runtime we avoid touching it
2719     __ cmpptr(rbx, Address(rbp, wordSize));
2720     __ jccb(Assembler::notEqual, no_adjust);
2721 
2722     // Skip over the poll instruction.
2723     // See NativeInstruction::is_safepoint_poll()
2724     // Possible encodings:
2725     //      85 00       test   %eax,(%rax)
2726     //      85 01       test   %eax,(%rcx)
2727     //      85 02       test   %eax,(%rdx)
2728     //      85 03       test   %eax,(%rbx)
2729     //      85 06       test   %eax,(%rsi)
2730     //      85 07       test   %eax,(%rdi)
2731     //
2732     //      85 04 24    test   %eax,(%rsp)
2733     //      85 45 00    test   %eax,0x0(%rbp)
2734 
2735 #ifdef ASSERT
2736     __ movptr(rax, rbx); // remember where 0x85 should be, for verification below
2737 #endif
2738     // rsp/rbp base encoding takes 3 bytes with the following register values:
2739     // rsp 0x04
2740     // rbp 0x05
2741     __ movzbl(rcx, Address(rbx, 1));
2742     __ andptr(rcx, 0x07); // looking for 0x04 .. 0x05
2743     __ subptr(rcx, 4);    // looking for 0x00 .. 0x01
2744     __ cmpptr(rcx, 1);
2745     __ jcc(Assembler::above, not_special);
2746     __ addptr(rbx, 1);
2747     __ bind(not_special);
2748 #ifdef ASSERT
2749     // Verify the correct encoding of the poll we're about to skip.
2750     __ cmpb(Address(rax, 0), NativeTstRegMem::instruction_code_memXregl);
2751     __ jcc(Assembler::notEqual, bail);
2752     // Mask out the modrm bits
2753     __ testb(Address(rax, 1), NativeTstRegMem::modrm_mask);
2754     // rax encodes to 0, so if the bits are nonzero it's incorrect
2755     __ jcc(Assembler::notZero, bail);
2756 #endif
2757     // Adjust return pc forward to step over the safepoint poll instruction
2758     __ addptr(rbx, 2);
2759     __ movptr(Address(rbp, wordSize), rbx);
2760   }
2761 
2762   __ bind(no_adjust);
2763   // Normal exit, register restoring and exit
2764   RegisterSaver::restore_live_registers(masm, save_vectors);
2765 
2766   __ ret(0);
2767 
2768 #ifdef ASSERT
2769   __ bind(bail);
2770   __ stop("Attempting to adjust pc to skip safepoint poll but the return point is not what we expected");
2771 #endif
2772 
2773   // make sure all code is generated
2774   masm->flush();
2775 
2776   // Fill-out other meta info
2777   return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
2778 }
2779 
2780 //
2781 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
2782 //
2783 // Generate a stub that calls into vm to find out the proper destination
2784 // of a java call. All the argument registers are live at this point
2785 // but since this is generic code we don't know what they are and the caller
2786 // must do any gc of the args.
2787 //
2788 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
2789   assert (StubRoutines::forward_exception_entry() != nullptr, "must be generated before");
2790 
2791   // allocate space for the code
2792   ResourceMark rm;
2793 
2794   CodeBuffer buffer(name, 1000, 512);
2795   MacroAssembler* masm                = new MacroAssembler(&buffer);
2796 
2797   int frame_size_words;
2798   enum frame_layout {
2799                 thread_off,
2800                 extra_words };
2801 
2802   OopMapSet *oop_maps = new OopMapSet();
2803   OopMap* map = nullptr;
2804 
2805   int start = __ offset();
2806 
2807   map = RegisterSaver::save_live_registers(masm, extra_words, &frame_size_words);
2808 
2809   int frame_complete = __ offset();
2810 
2811   const Register thread = rdi;
2812   __ get_thread(rdi);
2813 
2814   __ push(thread);
2815   __ set_last_Java_frame(thread, noreg, rbp, nullptr, noreg);
2816 
2817   __ call(RuntimeAddress(destination));
2818 
2819 
2820   // Set an oopmap for the call site.
2821   // We need this not only for callee-saved registers, but also for volatile
2822   // registers that the compiler might be keeping live across a safepoint.
2823 
2824   oop_maps->add_gc_map( __ offset() - start, map);
2825 
2826   // rax, contains the address we are going to jump to assuming no exception got installed
2827 
2828   __ addptr(rsp, wordSize);
2829 
2830   // clear last_Java_sp
2831   __ reset_last_Java_frame(thread, true);
2832   // check for pending exceptions
2833   Label pending;
2834   __ cmpptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD);
2835   __ jcc(Assembler::notEqual, pending);
2836 
2837   // get the returned Method*
2838   __ get_vm_result_2(rbx, thread);
2839   __ movptr(Address(rsp, RegisterSaver::rbx_offset() * wordSize), rbx);
2840 
2841   __ movptr(Address(rsp, RegisterSaver::rax_offset() * wordSize), rax);
2842 
2843   RegisterSaver::restore_live_registers(masm);
2844 
2845   // We are back to the original state on entry and ready to go.
2846 
2847   __ jmp(rax);
2848 
2849   // Pending exception after the safepoint
2850 
2851   __ bind(pending);
2852 
2853   RegisterSaver::restore_live_registers(masm);
2854 
2855   // exception pending => remove activation and forward to exception handler
2856 
2857   __ get_thread(thread);
2858   __ movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
2859   __ movptr(rax, Address(thread, Thread::pending_exception_offset()));
2860   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2861 
2862   // -------------
2863   // make sure all code is generated
2864   masm->flush();
2865 
2866   // return the  blob
2867   // frame_size_words or bytes??
2868   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true);
2869 }
2870 
2871 BufferedInlineTypeBlob* SharedRuntime::generate_buffered_inline_type_adapter(const InlineKlass* vk) {
2872   Unimplemented();
2873   return nullptr;
2874 }