1 /* 2 * Copyright (c) 2003, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/macroAssembler.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "code/compiledIC.hpp" 29 #include "code/debugInfoRec.hpp" 30 #include "code/nativeInst.hpp" 31 #include "code/vtableStubs.hpp" 32 #include "compiler/oopMap.hpp" 33 #include "gc/shared/gcLocker.hpp" 34 #include "gc/shared/barrierSet.hpp" 35 #include "gc/shared/barrierSetAssembler.hpp" 36 #include "interpreter/interpreter.hpp" 37 #include "logging/log.hpp" 38 #include "memory/resourceArea.hpp" 39 #include "oops/klass.inline.hpp" 40 #include "prims/methodHandles.hpp" 41 #include "runtime/jniHandles.hpp" 42 #include "runtime/safepointMechanism.hpp" 43 #include "runtime/sharedRuntime.hpp" 44 #include "runtime/signature.hpp" 45 #include "runtime/stubRoutines.hpp" 46 #include "runtime/timerTrace.hpp" 47 #include "runtime/vframeArray.hpp" 48 #include "runtime/vm_version.hpp" 49 #include "utilities/align.hpp" 50 #include "vmreg_x86.inline.hpp" 51 #ifdef COMPILER1 52 #include "c1/c1_Runtime1.hpp" 53 #endif 54 #ifdef COMPILER2 55 #include "opto/runtime.hpp" 56 #endif 57 58 #define __ masm-> 59 60 #ifdef PRODUCT 61 #define BLOCK_COMMENT(str) /* nothing */ 62 #else 63 #define BLOCK_COMMENT(str) __ block_comment(str) 64 #endif // PRODUCT 65 66 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size; 67 68 class RegisterSaver { 69 // Capture info about frame layout 70 #define DEF_XMM_OFFS(regnum) xmm ## regnum ## _off = xmm_off + (regnum)*16/BytesPerInt, xmm ## regnum ## H_off 71 enum layout { 72 fpu_state_off = 0, 73 fpu_state_end = fpu_state_off+FPUStateSizeInWords, 74 st0_off, st0H_off, 75 st1_off, st1H_off, 76 st2_off, st2H_off, 77 st3_off, st3H_off, 78 st4_off, st4H_off, 79 st5_off, st5H_off, 80 st6_off, st6H_off, 81 st7_off, st7H_off, 82 xmm_off, 83 DEF_XMM_OFFS(0), 84 DEF_XMM_OFFS(1), 85 DEF_XMM_OFFS(2), 86 DEF_XMM_OFFS(3), 87 DEF_XMM_OFFS(4), 88 DEF_XMM_OFFS(5), 89 DEF_XMM_OFFS(6), 90 DEF_XMM_OFFS(7), 91 flags_off = xmm7_off + 16/BytesPerInt + 1, // 16-byte stack alignment fill word 92 rdi_off, 93 rsi_off, 94 ignore_off, // extra copy of rbp, 95 rsp_off, 96 rbx_off, 97 rdx_off, 98 rcx_off, 99 rax_off, 100 // The frame sender code expects that rbp will be in the "natural" place and 101 // will override any oopMap setting for it. We must therefore force the layout 102 // so that it agrees with the frame sender code. 103 rbp_off, 104 return_off, // slot for return address 105 reg_save_size }; 106 enum { FPU_regs_live = flags_off - fpu_state_end }; 107 108 public: 109 110 static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, 111 int* total_frame_words, bool verify_fpu = true, bool save_vectors = false); 112 static void restore_live_registers(MacroAssembler* masm, bool restore_vectors = false); 113 114 static int rax_offset() { return rax_off; } 115 static int rbx_offset() { return rbx_off; } 116 117 // Offsets into the register save area 118 // Used by deoptimization when it is managing result register 119 // values on its own 120 121 static int raxOffset(void) { return rax_off; } 122 static int rdxOffset(void) { return rdx_off; } 123 static int rbxOffset(void) { return rbx_off; } 124 static int xmm0Offset(void) { return xmm0_off; } 125 // This really returns a slot in the fp save area, which one is not important 126 static int fpResultOffset(void) { return st0_off; } 127 128 // During deoptimization only the result register need to be restored 129 // all the other values have already been extracted. 130 131 static void restore_result_registers(MacroAssembler* masm); 132 133 }; 134 135 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, 136 int* total_frame_words, bool verify_fpu, bool save_vectors) { 137 int num_xmm_regs = XMMRegister::number_of_registers; 138 int ymm_bytes = num_xmm_regs * 16; 139 int zmm_bytes = num_xmm_regs * 32; 140 #ifdef COMPILER2 141 int opmask_state_bytes = KRegister::number_of_registers * 8; 142 if (save_vectors) { 143 assert(UseAVX > 0, "Vectors larger than 16 byte long are supported only with AVX"); 144 assert(MaxVectorSize <= 64, "Only up to 64 byte long vectors are supported"); 145 // Save upper half of YMM registers 146 int vect_bytes = ymm_bytes; 147 if (UseAVX > 2) { 148 // Save upper half of ZMM registers as well 149 vect_bytes += zmm_bytes; 150 additional_frame_words += opmask_state_bytes / wordSize; 151 } 152 additional_frame_words += vect_bytes / wordSize; 153 } 154 #else 155 assert(!save_vectors, "vectors are generated only by C2"); 156 #endif 157 int frame_size_in_bytes = (reg_save_size + additional_frame_words) * wordSize; 158 int frame_words = frame_size_in_bytes / wordSize; 159 *total_frame_words = frame_words; 160 161 assert(FPUStateSizeInWords == 27, "update stack layout"); 162 163 // save registers, fpu state, and flags 164 // We assume caller has already has return address slot on the stack 165 // We push epb twice in this sequence because we want the real rbp, 166 // to be under the return like a normal enter and we want to use pusha 167 // We push by hand instead of using push. 168 __ enter(); 169 __ pusha(); 170 __ pushf(); 171 __ subptr(rsp,FPU_regs_live*wordSize); // Push FPU registers space 172 __ push_FPU_state(); // Save FPU state & init 173 174 if (verify_fpu) { 175 // Some stubs may have non standard FPU control word settings so 176 // only check and reset the value when it required to be the 177 // standard value. The safepoint blob in particular can be used 178 // in methods which are using the 24 bit control word for 179 // optimized float math. 180 181 #ifdef ASSERT 182 // Make sure the control word has the expected value 183 Label ok; 184 __ cmpw(Address(rsp, 0), StubRoutines::x86::fpu_cntrl_wrd_std()); 185 __ jccb(Assembler::equal, ok); 186 __ stop("corrupted control word detected"); 187 __ bind(ok); 188 #endif 189 190 // Reset the control word to guard against exceptions being unmasked 191 // since fstp_d can cause FPU stack underflow exceptions. Write it 192 // into the on stack copy and then reload that to make sure that the 193 // current and future values are correct. 194 __ movw(Address(rsp, 0), StubRoutines::x86::fpu_cntrl_wrd_std()); 195 } 196 197 __ frstor(Address(rsp, 0)); 198 if (!verify_fpu) { 199 // Set the control word so that exceptions are masked for the 200 // following code. 201 __ fldcw(ExternalAddress(StubRoutines::x86::addr_fpu_cntrl_wrd_std())); 202 } 203 204 int off = st0_off; 205 int delta = st1_off - off; 206 207 // Save the FPU registers in de-opt-able form 208 for (int n = 0; n < FloatRegister::number_of_registers; n++) { 209 __ fstp_d(Address(rsp, off*wordSize)); 210 off += delta; 211 } 212 213 off = xmm0_off; 214 delta = xmm1_off - off; 215 if(UseSSE == 1) { 216 // Save the XMM state 217 for (int n = 0; n < num_xmm_regs; n++) { 218 __ movflt(Address(rsp, off*wordSize), as_XMMRegister(n)); 219 off += delta; 220 } 221 } else if(UseSSE >= 2) { 222 // Save whole 128bit (16 bytes) XMM registers 223 for (int n = 0; n < num_xmm_regs; n++) { 224 __ movdqu(Address(rsp, off*wordSize), as_XMMRegister(n)); 225 off += delta; 226 } 227 } 228 229 #ifdef COMPILER2 230 if (save_vectors) { 231 __ subptr(rsp, ymm_bytes); 232 // Save upper half of YMM registers 233 for (int n = 0; n < num_xmm_regs; n++) { 234 __ vextractf128_high(Address(rsp, n*16), as_XMMRegister(n)); 235 } 236 if (UseAVX > 2) { 237 __ subptr(rsp, zmm_bytes); 238 // Save upper half of ZMM registers 239 for (int n = 0; n < num_xmm_regs; n++) { 240 __ vextractf64x4_high(Address(rsp, n*32), as_XMMRegister(n)); 241 } 242 __ subptr(rsp, opmask_state_bytes); 243 // Save opmask registers 244 for (int n = 0; n < KRegister::number_of_registers; n++) { 245 __ kmov(Address(rsp, n*8), as_KRegister(n)); 246 } 247 } 248 } 249 #else 250 assert(!save_vectors, "vectors are generated only by C2"); 251 #endif 252 253 __ vzeroupper(); 254 255 // Set an oopmap for the call site. This oopmap will map all 256 // oop-registers and debug-info registers as callee-saved. This 257 // will allow deoptimization at this safepoint to find all possible 258 // debug-info recordings, as well as let GC find all oops. 259 260 OopMapSet *oop_maps = new OopMapSet(); 261 OopMap* map = new OopMap( frame_words, 0 ); 262 263 #define STACK_OFFSET(x) VMRegImpl::stack2reg((x) + additional_frame_words) 264 #define NEXTREG(x) (x)->as_VMReg()->next() 265 266 map->set_callee_saved(STACK_OFFSET(rax_off), rax->as_VMReg()); 267 map->set_callee_saved(STACK_OFFSET(rcx_off), rcx->as_VMReg()); 268 map->set_callee_saved(STACK_OFFSET(rdx_off), rdx->as_VMReg()); 269 map->set_callee_saved(STACK_OFFSET(rbx_off), rbx->as_VMReg()); 270 // rbp, location is known implicitly, no oopMap 271 map->set_callee_saved(STACK_OFFSET(rsi_off), rsi->as_VMReg()); 272 map->set_callee_saved(STACK_OFFSET(rdi_off), rdi->as_VMReg()); 273 274 // %%% This is really a waste but we'll keep things as they were for now for the upper component 275 off = st0_off; 276 delta = st1_off - off; 277 for (int n = 0; n < FloatRegister::number_of_registers; n++) { 278 FloatRegister freg_name = as_FloatRegister(n); 279 map->set_callee_saved(STACK_OFFSET(off), freg_name->as_VMReg()); 280 map->set_callee_saved(STACK_OFFSET(off+1), NEXTREG(freg_name)); 281 off += delta; 282 } 283 off = xmm0_off; 284 delta = xmm1_off - off; 285 for (int n = 0; n < num_xmm_regs; n++) { 286 XMMRegister xmm_name = as_XMMRegister(n); 287 map->set_callee_saved(STACK_OFFSET(off), xmm_name->as_VMReg()); 288 map->set_callee_saved(STACK_OFFSET(off+1), NEXTREG(xmm_name)); 289 off += delta; 290 } 291 #undef NEXTREG 292 #undef STACK_OFFSET 293 294 return map; 295 } 296 297 void RegisterSaver::restore_live_registers(MacroAssembler* masm, bool restore_vectors) { 298 int opmask_state_bytes = 0; 299 int additional_frame_bytes = 0; 300 int num_xmm_regs = XMMRegister::number_of_registers; 301 int ymm_bytes = num_xmm_regs * 16; 302 int zmm_bytes = num_xmm_regs * 32; 303 // Recover XMM & FPU state 304 #ifdef COMPILER2 305 if (restore_vectors) { 306 assert(UseAVX > 0, "Vectors larger than 16 byte long are supported only with AVX"); 307 assert(MaxVectorSize <= 64, "Only up to 64 byte long vectors are supported"); 308 // Save upper half of YMM registers 309 additional_frame_bytes = ymm_bytes; 310 if (UseAVX > 2) { 311 // Save upper half of ZMM registers as well 312 additional_frame_bytes += zmm_bytes; 313 opmask_state_bytes = KRegister::number_of_registers * 8; 314 additional_frame_bytes += opmask_state_bytes; 315 } 316 } 317 #else 318 assert(!restore_vectors, "vectors are generated only by C2"); 319 #endif 320 321 int off = xmm0_off; 322 int delta = xmm1_off - off; 323 324 __ vzeroupper(); 325 326 if (UseSSE == 1) { 327 // Restore XMM registers 328 assert(additional_frame_bytes == 0, ""); 329 for (int n = 0; n < num_xmm_regs; n++) { 330 __ movflt(as_XMMRegister(n), Address(rsp, off*wordSize)); 331 off += delta; 332 } 333 } else if (UseSSE >= 2) { 334 // Restore whole 128bit (16 bytes) XMM registers. Do this before restoring YMM and 335 // ZMM because the movdqu instruction zeros the upper part of the XMM register. 336 for (int n = 0; n < num_xmm_regs; n++) { 337 __ movdqu(as_XMMRegister(n), Address(rsp, off*wordSize+additional_frame_bytes)); 338 off += delta; 339 } 340 } 341 342 if (restore_vectors) { 343 off = additional_frame_bytes - ymm_bytes; 344 // Restore upper half of YMM registers. 345 for (int n = 0; n < num_xmm_regs; n++) { 346 __ vinsertf128_high(as_XMMRegister(n), Address(rsp, n*16+off)); 347 } 348 if (UseAVX > 2) { 349 // Restore upper half of ZMM registers. 350 off = opmask_state_bytes; 351 for (int n = 0; n < num_xmm_regs; n++) { 352 __ vinsertf64x4_high(as_XMMRegister(n), Address(rsp, n*32+off)); 353 } 354 for (int n = 0; n < KRegister::number_of_registers; n++) { 355 __ kmov(as_KRegister(n), Address(rsp, n*8)); 356 } 357 } 358 __ addptr(rsp, additional_frame_bytes); 359 } 360 361 __ pop_FPU_state(); 362 __ addptr(rsp, FPU_regs_live*wordSize); // Pop FPU registers 363 364 __ popf(); 365 __ popa(); 366 // Get the rbp, described implicitly by the frame sender code (no oopMap) 367 __ pop(rbp); 368 } 369 370 void RegisterSaver::restore_result_registers(MacroAssembler* masm) { 371 372 // Just restore result register. Only used by deoptimization. By 373 // now any callee save register that needs to be restore to a c2 374 // caller of the deoptee has been extracted into the vframeArray 375 // and will be stuffed into the c2i adapter we create for later 376 // restoration so only result registers need to be restored here. 377 // 378 379 __ frstor(Address(rsp, 0)); // Restore fpu state 380 381 // Recover XMM & FPU state 382 if( UseSSE == 1 ) { 383 __ movflt(xmm0, Address(rsp, xmm0_off*wordSize)); 384 } else if( UseSSE >= 2 ) { 385 __ movdbl(xmm0, Address(rsp, xmm0_off*wordSize)); 386 } 387 __ movptr(rax, Address(rsp, rax_off*wordSize)); 388 __ movptr(rdx, Address(rsp, rdx_off*wordSize)); 389 // Pop all of the register save are off the stack except the return address 390 __ addptr(rsp, return_off * wordSize); 391 } 392 393 // Is vector's size (in bytes) bigger than a size saved by default? 394 // 16 bytes XMM registers are saved by default using SSE2 movdqu instructions. 395 // Note, MaxVectorSize == 0 with UseSSE < 2 and vectors are not generated. 396 bool SharedRuntime::is_wide_vector(int size) { 397 return size > 16; 398 } 399 400 // The java_calling_convention describes stack locations as ideal slots on 401 // a frame with no abi restrictions. Since we must observe abi restrictions 402 // (like the placement of the register window) the slots must be biased by 403 // the following value. 404 static int reg2offset_in(VMReg r) { 405 // Account for saved rbp, and return address 406 // This should really be in_preserve_stack_slots 407 return (r->reg2stack() + 2) * VMRegImpl::stack_slot_size; 408 } 409 410 static int reg2offset_out(VMReg r) { 411 return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size; 412 } 413 414 // --------------------------------------------------------------------------- 415 // Read the array of BasicTypes from a signature, and compute where the 416 // arguments should go. Values in the VMRegPair regs array refer to 4-byte 417 // quantities. Values less than SharedInfo::stack0 are registers, those above 418 // refer to 4-byte stack slots. All stack slots are based off of the stack pointer 419 // as framesizes are fixed. 420 // VMRegImpl::stack0 refers to the first slot 0(sp). 421 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher. 422 // Register up to Register::number_of_registers are the 32-bit 423 // integer registers. 424 425 // Pass first two oop/int args in registers ECX and EDX. 426 // Pass first two float/double args in registers XMM0 and XMM1. 427 // Doubles have precedence, so if you pass a mix of floats and doubles 428 // the doubles will grab the registers before the floats will. 429 430 // Note: the INPUTS in sig_bt are in units of Java argument words, which are 431 // either 32-bit or 64-bit depending on the build. The OUTPUTS are in 32-bit 432 // units regardless of build. Of course for i486 there is no 64 bit build 433 434 435 // --------------------------------------------------------------------------- 436 // The compiled Java calling convention. 437 // Pass first two oop/int args in registers ECX and EDX. 438 // Pass first two float/double args in registers XMM0 and XMM1. 439 // Doubles have precedence, so if you pass a mix of floats and doubles 440 // the doubles will grab the registers before the floats will. 441 int SharedRuntime::java_calling_convention(const BasicType *sig_bt, 442 VMRegPair *regs, 443 int total_args_passed) { 444 uint stack = 0; // Starting stack position for args on stack 445 446 447 // Pass first two oop/int args in registers ECX and EDX. 448 uint reg_arg0 = 9999; 449 uint reg_arg1 = 9999; 450 451 // Pass first two float/double args in registers XMM0 and XMM1. 452 // Doubles have precedence, so if you pass a mix of floats and doubles 453 // the doubles will grab the registers before the floats will. 454 // CNC - TURNED OFF FOR non-SSE. 455 // On Intel we have to round all doubles (and most floats) at 456 // call sites by storing to the stack in any case. 457 // UseSSE=0 ==> Don't Use ==> 9999+0 458 // UseSSE=1 ==> Floats only ==> 9999+1 459 // UseSSE>=2 ==> Floats or doubles ==> 9999+2 460 enum { fltarg_dontuse = 9999+0, fltarg_float_only = 9999+1, fltarg_flt_dbl = 9999+2 }; 461 uint fargs = (UseSSE>=2) ? 2 : UseSSE; 462 uint freg_arg0 = 9999+fargs; 463 uint freg_arg1 = 9999+fargs; 464 465 // Pass doubles & longs aligned on the stack. First count stack slots for doubles 466 int i; 467 for( i = 0; i < total_args_passed; i++) { 468 if( sig_bt[i] == T_DOUBLE ) { 469 // first 2 doubles go in registers 470 if( freg_arg0 == fltarg_flt_dbl ) freg_arg0 = i; 471 else if( freg_arg1 == fltarg_flt_dbl ) freg_arg1 = i; 472 else // Else double is passed low on the stack to be aligned. 473 stack += 2; 474 } else if( sig_bt[i] == T_LONG ) { 475 stack += 2; 476 } 477 } 478 int dstack = 0; // Separate counter for placing doubles 479 480 // Now pick where all else goes. 481 for( i = 0; i < total_args_passed; i++) { 482 // From the type and the argument number (count) compute the location 483 switch( sig_bt[i] ) { 484 case T_SHORT: 485 case T_CHAR: 486 case T_BYTE: 487 case T_BOOLEAN: 488 case T_INT: 489 case T_ARRAY: 490 case T_OBJECT: 491 case T_ADDRESS: 492 if( reg_arg0 == 9999 ) { 493 reg_arg0 = i; 494 regs[i].set1(rcx->as_VMReg()); 495 } else if( reg_arg1 == 9999 ) { 496 reg_arg1 = i; 497 regs[i].set1(rdx->as_VMReg()); 498 } else { 499 regs[i].set1(VMRegImpl::stack2reg(stack++)); 500 } 501 break; 502 case T_FLOAT: 503 if( freg_arg0 == fltarg_flt_dbl || freg_arg0 == fltarg_float_only ) { 504 freg_arg0 = i; 505 regs[i].set1(xmm0->as_VMReg()); 506 } else if( freg_arg1 == fltarg_flt_dbl || freg_arg1 == fltarg_float_only ) { 507 freg_arg1 = i; 508 regs[i].set1(xmm1->as_VMReg()); 509 } else { 510 regs[i].set1(VMRegImpl::stack2reg(stack++)); 511 } 512 break; 513 case T_LONG: 514 assert((i + 1) < total_args_passed && sig_bt[i+1] == T_VOID, "missing Half" ); 515 regs[i].set2(VMRegImpl::stack2reg(dstack)); 516 dstack += 2; 517 break; 518 case T_DOUBLE: 519 assert((i + 1) < total_args_passed && sig_bt[i+1] == T_VOID, "missing Half" ); 520 if( freg_arg0 == (uint)i ) { 521 regs[i].set2(xmm0->as_VMReg()); 522 } else if( freg_arg1 == (uint)i ) { 523 regs[i].set2(xmm1->as_VMReg()); 524 } else { 525 regs[i].set2(VMRegImpl::stack2reg(dstack)); 526 dstack += 2; 527 } 528 break; 529 case T_VOID: regs[i].set_bad(); break; 530 break; 531 default: 532 ShouldNotReachHere(); 533 break; 534 } 535 } 536 537 return stack; 538 } 539 540 const uint SharedRuntime::java_return_convention_max_int = 1; 541 const uint SharedRuntime::java_return_convention_max_float = 1; 542 int SharedRuntime::java_return_convention(const BasicType *sig_bt, 543 VMRegPair *regs, 544 int total_args_passed) { 545 Unimplemented(); 546 return 0; 547 } 548 549 // Patch the callers callsite with entry to compiled code if it exists. 550 static void patch_callers_callsite(MacroAssembler *masm) { 551 Label L; 552 __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), NULL_WORD); 553 __ jcc(Assembler::equal, L); 554 // Schedule the branch target address early. 555 // Call into the VM to patch the caller, then jump to compiled callee 556 // rax, isn't live so capture return address while we easily can 557 __ movptr(rax, Address(rsp, 0)); 558 __ pusha(); 559 __ pushf(); 560 561 if (UseSSE == 1) { 562 __ subptr(rsp, 2*wordSize); 563 __ movflt(Address(rsp, 0), xmm0); 564 __ movflt(Address(rsp, wordSize), xmm1); 565 } 566 if (UseSSE >= 2) { 567 __ subptr(rsp, 4*wordSize); 568 __ movdbl(Address(rsp, 0), xmm0); 569 __ movdbl(Address(rsp, 2*wordSize), xmm1); 570 } 571 #ifdef COMPILER2 572 // C2 may leave the stack dirty if not in SSE2+ mode 573 if (UseSSE >= 2) { 574 __ verify_FPU(0, "c2i transition should have clean FPU stack"); 575 } else { 576 __ empty_FPU_stack(); 577 } 578 #endif /* COMPILER2 */ 579 580 // VM needs caller's callsite 581 __ push(rax); 582 // VM needs target method 583 __ push(rbx); 584 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite))); 585 __ addptr(rsp, 2*wordSize); 586 587 if (UseSSE == 1) { 588 __ movflt(xmm0, Address(rsp, 0)); 589 __ movflt(xmm1, Address(rsp, wordSize)); 590 __ addptr(rsp, 2*wordSize); 591 } 592 if (UseSSE >= 2) { 593 __ movdbl(xmm0, Address(rsp, 0)); 594 __ movdbl(xmm1, Address(rsp, 2*wordSize)); 595 __ addptr(rsp, 4*wordSize); 596 } 597 598 __ popf(); 599 __ popa(); 600 __ bind(L); 601 } 602 603 604 static void move_c2i_double(MacroAssembler *masm, XMMRegister r, int st_off) { 605 int next_off = st_off - Interpreter::stackElementSize; 606 __ movdbl(Address(rsp, next_off), r); 607 } 608 609 static void gen_c2i_adapter(MacroAssembler *masm, 610 const GrowableArray<SigEntry>& sig_extended, 611 const VMRegPair *regs, 612 Label& skip_fixup, 613 address start, 614 OopMapSet*& oop_maps, 615 int& frame_complete, 616 int& frame_size_in_words) { 617 // Before we get into the guts of the C2I adapter, see if we should be here 618 // at all. We've come from compiled code and are attempting to jump to the 619 // interpreter, which means the caller made a static call to get here 620 // (vcalls always get a compiled target if there is one). Check for a 621 // compiled target. If there is one, we need to patch the caller's call. 622 patch_callers_callsite(masm); 623 624 __ bind(skip_fixup); 625 626 #ifdef COMPILER2 627 // C2 may leave the stack dirty if not in SSE2+ mode 628 if (UseSSE >= 2) { 629 __ verify_FPU(0, "c2i transition should have clean FPU stack"); 630 } else { 631 __ empty_FPU_stack(); 632 } 633 #endif /* COMPILER2 */ 634 635 // Since all args are passed on the stack, total_args_passed * interpreter_ 636 // stack_element_size is the 637 // space we need. 638 int extraspace = sig_extended.length() * Interpreter::stackElementSize; 639 640 // Get return address 641 __ pop(rax); 642 643 // set senderSP value 644 __ movptr(rsi, rsp); 645 646 __ subptr(rsp, extraspace); 647 648 // Now write the args into the outgoing interpreter space 649 for (int i = 0; i < sig_extended.length(); i++) { 650 if (sig_extended.at(i)._bt == T_VOID) { 651 assert(i > 0 && (sig_extended.at(i-1)._bt == T_LONG || sig_extended.at(i-1)._bt == T_DOUBLE), "missing half"); 652 continue; 653 } 654 655 // st_off points to lowest address on stack. 656 int st_off = ((sig_extended.length() - 1) - i) * Interpreter::stackElementSize; 657 int next_off = st_off - Interpreter::stackElementSize; 658 659 // Say 4 args: 660 // i st_off 661 // 0 12 T_LONG 662 // 1 8 T_VOID 663 // 2 4 T_OBJECT 664 // 3 0 T_BOOL 665 VMReg r_1 = regs[i].first(); 666 VMReg r_2 = regs[i].second(); 667 if (!r_1->is_valid()) { 668 assert(!r_2->is_valid(), ""); 669 continue; 670 } 671 672 if (r_1->is_stack()) { 673 // memory to memory use fpu stack top 674 int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace; 675 676 if (!r_2->is_valid()) { 677 __ movl(rdi, Address(rsp, ld_off)); 678 __ movptr(Address(rsp, st_off), rdi); 679 } else { 680 681 // ld_off == LSW, ld_off+VMRegImpl::stack_slot_size == MSW 682 // st_off == MSW, st_off-wordSize == LSW 683 684 __ movptr(rdi, Address(rsp, ld_off)); 685 __ movptr(Address(rsp, next_off), rdi); 686 __ movptr(rdi, Address(rsp, ld_off + wordSize)); 687 __ movptr(Address(rsp, st_off), rdi); 688 } 689 } else if (r_1->is_Register()) { 690 Register r = r_1->as_Register(); 691 if (!r_2->is_valid()) { 692 __ movl(Address(rsp, st_off), r); 693 } else { 694 // long/double in gpr 695 ShouldNotReachHere(); 696 } 697 } else { 698 assert(r_1->is_XMMRegister(), ""); 699 if (!r_2->is_valid()) { 700 __ movflt(Address(rsp, st_off), r_1->as_XMMRegister()); 701 } else { 702 assert(sig_extended.at(i)._bt == T_DOUBLE || sig_extended.at(i)._bt == T_LONG, "wrong type"); 703 move_c2i_double(masm, r_1->as_XMMRegister(), st_off); 704 } 705 } 706 } 707 708 // Schedule the branch target address early. 709 __ movptr(rcx, Address(rbx, in_bytes(Method::interpreter_entry_offset()))); 710 // And repush original return address 711 __ push(rax); 712 __ jmp(rcx); 713 } 714 715 716 static void move_i2c_double(MacroAssembler *masm, XMMRegister r, Register saved_sp, int ld_off) { 717 int next_val_off = ld_off - Interpreter::stackElementSize; 718 __ movdbl(r, Address(saved_sp, next_val_off)); 719 } 720 721 static void range_check(MacroAssembler* masm, Register pc_reg, Register temp_reg, 722 address code_start, address code_end, 723 Label& L_ok) { 724 Label L_fail; 725 __ lea(temp_reg, AddressLiteral(code_start, relocInfo::none)); 726 __ cmpptr(pc_reg, temp_reg); 727 __ jcc(Assembler::belowEqual, L_fail); 728 __ lea(temp_reg, AddressLiteral(code_end, relocInfo::none)); 729 __ cmpptr(pc_reg, temp_reg); 730 __ jcc(Assembler::below, L_ok); 731 __ bind(L_fail); 732 } 733 734 void SharedRuntime::gen_i2c_adapter(MacroAssembler *masm, 735 int comp_args_on_stack, 736 const GrowableArray<SigEntry>& sig_extended, 737 const VMRegPair *regs) { 738 739 // Note: rsi contains the senderSP on entry. We must preserve it since 740 // we may do a i2c -> c2i transition if we lose a race where compiled 741 // code goes non-entrant while we get args ready. 742 743 // Adapters can be frameless because they do not require the caller 744 // to perform additional cleanup work, such as correcting the stack pointer. 745 // An i2c adapter is frameless because the *caller* frame, which is interpreted, 746 // routinely repairs its own stack pointer (from interpreter_frame_last_sp), 747 // even if a callee has modified the stack pointer. 748 // A c2i adapter is frameless because the *callee* frame, which is interpreted, 749 // routinely repairs its caller's stack pointer (from sender_sp, which is set 750 // up via the senderSP register). 751 // In other words, if *either* the caller or callee is interpreted, we can 752 // get the stack pointer repaired after a call. 753 // This is why c2i and i2c adapters cannot be indefinitely composed. 754 // In particular, if a c2i adapter were to somehow call an i2c adapter, 755 // both caller and callee would be compiled methods, and neither would 756 // clean up the stack pointer changes performed by the two adapters. 757 // If this happens, control eventually transfers back to the compiled 758 // caller, but with an uncorrected stack, causing delayed havoc. 759 760 // Pick up the return address 761 __ movptr(rax, Address(rsp, 0)); 762 763 if (VerifyAdapterCalls && 764 (Interpreter::code() != nullptr || StubRoutines::final_stubs_code() != nullptr)) { 765 // So, let's test for cascading c2i/i2c adapters right now. 766 // assert(Interpreter::contains($return_addr) || 767 // StubRoutines::contains($return_addr), 768 // "i2c adapter must return to an interpreter frame"); 769 __ block_comment("verify_i2c { "); 770 Label L_ok; 771 if (Interpreter::code() != nullptr) { 772 range_check(masm, rax, rdi, 773 Interpreter::code()->code_start(), Interpreter::code()->code_end(), 774 L_ok); 775 } 776 if (StubRoutines::initial_stubs_code() != nullptr) { 777 range_check(masm, rax, rdi, 778 StubRoutines::initial_stubs_code()->code_begin(), 779 StubRoutines::initial_stubs_code()->code_end(), 780 L_ok); 781 } 782 if (StubRoutines::final_stubs_code() != nullptr) { 783 range_check(masm, rax, rdi, 784 StubRoutines::final_stubs_code()->code_begin(), 785 StubRoutines::final_stubs_code()->code_end(), 786 L_ok); 787 } 788 const char* msg = "i2c adapter must return to an interpreter frame"; 789 __ block_comment(msg); 790 __ stop(msg); 791 __ bind(L_ok); 792 __ block_comment("} verify_i2ce "); 793 } 794 795 // Must preserve original SP for loading incoming arguments because 796 // we need to align the outgoing SP for compiled code. 797 __ movptr(rdi, rsp); 798 799 // Cut-out for having no stack args. Since up to 2 int/oop args are passed 800 // in registers, we will occasionally have no stack args. 801 int comp_words_on_stack = 0; 802 if (comp_args_on_stack) { 803 // Sig words on the stack are greater-than VMRegImpl::stack0. Those in 804 // registers are below. By subtracting stack0, we either get a negative 805 // number (all values in registers) or the maximum stack slot accessed. 806 // int comp_args_on_stack = VMRegImpl::reg2stack(max_arg); 807 // Convert 4-byte stack slots to words. 808 comp_words_on_stack = align_up(comp_args_on_stack*4, wordSize)>>LogBytesPerWord; 809 // Round up to miminum stack alignment, in wordSize 810 comp_words_on_stack = align_up(comp_words_on_stack, 2); 811 __ subptr(rsp, comp_words_on_stack * wordSize); 812 } 813 814 // Align the outgoing SP 815 __ andptr(rsp, -(StackAlignmentInBytes)); 816 817 // push the return address on the stack (note that pushing, rather 818 // than storing it, yields the correct frame alignment for the callee) 819 __ push(rax); 820 821 // Put saved SP in another register 822 const Register saved_sp = rax; 823 __ movptr(saved_sp, rdi); 824 825 826 // Will jump to the compiled code just as if compiled code was doing it. 827 // Pre-load the register-jump target early, to schedule it better. 828 __ movptr(rdi, Address(rbx, in_bytes(Method::from_compiled_offset()))); 829 830 // Now generate the shuffle code. Pick up all register args and move the 831 // rest through the floating point stack top. 832 for (int i = 0; i < sig_extended.length(); i++) { 833 if (sig_extended.at(i)._bt == T_VOID) { 834 // Longs and doubles are passed in native word order, but misaligned 835 // in the 32-bit build. 836 assert(i > 0 && (sig_extended.at(i-1)._bt == T_LONG || sig_extended.at(i-1)._bt == T_DOUBLE), "missing half"); 837 continue; 838 } 839 840 // Pick up 0, 1 or 2 words from SP+offset. 841 842 assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(), 843 "scrambled load targets?"); 844 // Load in argument order going down. 845 int ld_off = (sig_extended.length() - i) * Interpreter::stackElementSize; 846 // Point to interpreter value (vs. tag) 847 int next_off = ld_off - Interpreter::stackElementSize; 848 // 849 // 850 // 851 VMReg r_1 = regs[i].first(); 852 VMReg r_2 = regs[i].second(); 853 if (!r_1->is_valid()) { 854 assert(!r_2->is_valid(), ""); 855 continue; 856 } 857 if (r_1->is_stack()) { 858 // Convert stack slot to an SP offset (+ wordSize to account for return address ) 859 int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize; 860 861 // We can use rsi as a temp here because compiled code doesn't need rsi as an input 862 // and if we end up going thru a c2i because of a miss a reasonable value of rsi 863 // we be generated. 864 if (!r_2->is_valid()) { 865 // __ fld_s(Address(saved_sp, ld_off)); 866 // __ fstp_s(Address(rsp, st_off)); 867 __ movl(rsi, Address(saved_sp, ld_off)); 868 __ movptr(Address(rsp, st_off), rsi); 869 } else { 870 // Interpreter local[n] == MSW, local[n+1] == LSW however locals 871 // are accessed as negative so LSW is at LOW address 872 873 // ld_off is MSW so get LSW 874 // st_off is LSW (i.e. reg.first()) 875 // __ fld_d(Address(saved_sp, next_off)); 876 // __ fstp_d(Address(rsp, st_off)); 877 // 878 // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE 879 // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case 880 // So we must adjust where to pick up the data to match the interpreter. 881 // 882 // Interpreter local[n] == MSW, local[n+1] == LSW however locals 883 // are accessed as negative so LSW is at LOW address 884 885 // ld_off is MSW so get LSW 886 __ movptr(rsi, Address(saved_sp, next_off)); 887 __ movptr(Address(rsp, st_off), rsi); 888 __ movptr(rsi, Address(saved_sp, ld_off)); 889 __ movptr(Address(rsp, st_off + wordSize), rsi); 890 } 891 } else if (r_1->is_Register()) { // Register argument 892 Register r = r_1->as_Register(); 893 assert(r != rax, "must be different"); 894 if (r_2->is_valid()) { 895 // 896 // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE 897 // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case 898 // So we must adjust where to pick up the data to match the interpreter. 899 900 // this can be a misaligned move 901 __ movptr(r, Address(saved_sp, next_off)); 902 assert(r_2->as_Register() != rax, "need another temporary register"); 903 // Remember r_1 is low address (and LSB on x86) 904 // So r_2 gets loaded from high address regardless of the platform 905 __ movptr(r_2->as_Register(), Address(saved_sp, ld_off)); 906 } else { 907 __ movl(r, Address(saved_sp, ld_off)); 908 } 909 } else { 910 assert(r_1->is_XMMRegister(), ""); 911 if (!r_2->is_valid()) { 912 __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off)); 913 } else { 914 move_i2c_double(masm, r_1->as_XMMRegister(), saved_sp, ld_off); 915 } 916 } 917 } 918 919 // 6243940 We might end up in handle_wrong_method if 920 // the callee is deoptimized as we race thru here. If that 921 // happens we don't want to take a safepoint because the 922 // caller frame will look interpreted and arguments are now 923 // "compiled" so it is much better to make this transition 924 // invisible to the stack walking code. Unfortunately if 925 // we try and find the callee by normal means a safepoint 926 // is possible. So we stash the desired callee in the thread 927 // and the vm will find there should this case occur. 928 929 __ get_thread(rax); 930 __ movptr(Address(rax, JavaThread::callee_target_offset()), rbx); 931 932 // move Method* to rax, in case we end up in an c2i adapter. 933 // the c2i adapters expect Method* in rax, (c2) because c2's 934 // resolve stubs return the result (the method) in rax,. 935 // I'd love to fix this. 936 __ mov(rax, rbx); 937 938 __ jmp(rdi); 939 } 940 941 // --------------------------------------------------------------- 942 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm, 943 int comp_args_on_stack, 944 const GrowableArray<SigEntry>& sig_extended, 945 const VMRegPair *regs, 946 AdapterFingerPrint* fingerprint, 947 AdapterBlob*& new_adapter) { 948 address i2c_entry = __ pc(); 949 950 gen_i2c_adapter(masm, comp_args_on_stack, sig_extended, regs); 951 952 // ------------------------------------------------------------------------- 953 // Generate a C2I adapter. On entry we know rbx, holds the Method* during calls 954 // to the interpreter. The args start out packed in the compiled layout. They 955 // need to be unpacked into the interpreter layout. This will almost always 956 // require some stack space. We grow the current (compiled) stack, then repack 957 // the args. We finally end in a jump to the generic interpreter entry point. 958 // On exit from the interpreter, the interpreter will restore our SP (lest the 959 // compiled code, which relies solely on SP and not EBP, get sick). 960 961 address c2i_unverified_entry = __ pc(); 962 Label skip_fixup; 963 964 Register data = rax; 965 Register receiver = rcx; 966 Register temp = rbx; 967 968 { 969 __ ic_check(1 /* end_alignment */); 970 __ movptr(rbx, Address(data, CompiledICData::speculated_method_offset())); 971 // Method might have been compiled since the call site was patched to 972 // interpreted if that is the case treat it as a miss so we can get 973 // the call site corrected. 974 __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), NULL_WORD); 975 __ jcc(Assembler::equal, skip_fixup); 976 } 977 978 address c2i_entry = __ pc(); 979 980 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 981 bs->c2i_entry_barrier(masm); 982 983 OopMapSet* oop_maps = nullptr; 984 int frame_complete = CodeOffsets::frame_never_safe; 985 int frame_size_in_words = 0; 986 gen_c2i_adapter(masm, sig_extended, regs, skip_fixup, i2c_entry, oop_maps, frame_complete, frame_size_in_words); 987 988 new_adapter = AdapterBlob::create(masm->code(), frame_complete, frame_size_in_words, oop_maps); 989 return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry); 990 } 991 992 int SharedRuntime::c_calling_convention(const BasicType *sig_bt, 993 VMRegPair *regs, 994 int total_args_passed) { 995 996 // We return the amount of VMRegImpl stack slots we need to reserve for all 997 // the arguments NOT counting out_preserve_stack_slots. 998 999 uint stack = 0; // All arguments on stack 1000 1001 for( int i = 0; i < total_args_passed; i++) { 1002 // From the type and the argument number (count) compute the location 1003 switch( sig_bt[i] ) { 1004 case T_BOOLEAN: 1005 case T_CHAR: 1006 case T_FLOAT: 1007 case T_BYTE: 1008 case T_SHORT: 1009 case T_INT: 1010 case T_OBJECT: 1011 case T_ARRAY: 1012 case T_ADDRESS: 1013 case T_METADATA: 1014 regs[i].set1(VMRegImpl::stack2reg(stack++)); 1015 break; 1016 case T_LONG: 1017 case T_DOUBLE: // The stack numbering is reversed from Java 1018 // Since C arguments do not get reversed, the ordering for 1019 // doubles on the stack must be opposite the Java convention 1020 assert((i + 1) < total_args_passed && sig_bt[i+1] == T_VOID, "missing Half" ); 1021 regs[i].set2(VMRegImpl::stack2reg(stack)); 1022 stack += 2; 1023 break; 1024 case T_VOID: regs[i].set_bad(); break; 1025 default: 1026 ShouldNotReachHere(); 1027 break; 1028 } 1029 } 1030 return stack; 1031 } 1032 1033 int SharedRuntime::vector_calling_convention(VMRegPair *regs, 1034 uint num_bits, 1035 uint total_args_passed) { 1036 Unimplemented(); 1037 return 0; 1038 } 1039 1040 // A simple move of integer like type 1041 static void simple_move32(MacroAssembler* masm, VMRegPair src, VMRegPair dst) { 1042 if (src.first()->is_stack()) { 1043 if (dst.first()->is_stack()) { 1044 // stack to stack 1045 // __ ld(FP, reg2offset(src.first()), L5); 1046 // __ st(L5, SP, reg2offset(dst.first())); 1047 __ movl2ptr(rax, Address(rbp, reg2offset_in(src.first()))); 1048 __ movptr(Address(rsp, reg2offset_out(dst.first())), rax); 1049 } else { 1050 // stack to reg 1051 __ movl2ptr(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first()))); 1052 } 1053 } else if (dst.first()->is_stack()) { 1054 // reg to stack 1055 // no need to sign extend on 64bit 1056 __ movptr(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register()); 1057 } else { 1058 if (dst.first() != src.first()) { 1059 __ mov(dst.first()->as_Register(), src.first()->as_Register()); 1060 } 1061 } 1062 } 1063 1064 // An oop arg. Must pass a handle not the oop itself 1065 static void object_move(MacroAssembler* masm, 1066 OopMap* map, 1067 int oop_handle_offset, 1068 int framesize_in_slots, 1069 VMRegPair src, 1070 VMRegPair dst, 1071 bool is_receiver, 1072 int* receiver_offset) { 1073 1074 // Because of the calling conventions we know that src can be a 1075 // register or a stack location. dst can only be a stack location. 1076 1077 assert(dst.first()->is_stack(), "must be stack"); 1078 // must pass a handle. First figure out the location we use as a handle 1079 1080 if (src.first()->is_stack()) { 1081 // Oop is already on the stack as an argument 1082 Register rHandle = rax; 1083 Label nil; 1084 __ xorptr(rHandle, rHandle); 1085 __ cmpptr(Address(rbp, reg2offset_in(src.first())), NULL_WORD); 1086 __ jcc(Assembler::equal, nil); 1087 __ lea(rHandle, Address(rbp, reg2offset_in(src.first()))); 1088 __ bind(nil); 1089 __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle); 1090 1091 int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots(); 1092 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots)); 1093 if (is_receiver) { 1094 *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size; 1095 } 1096 } else { 1097 // Oop is in a register we must store it to the space we reserve 1098 // on the stack for oop_handles 1099 const Register rOop = src.first()->as_Register(); 1100 const Register rHandle = rax; 1101 int oop_slot = (rOop == rcx ? 0 : 1) * VMRegImpl::slots_per_word + oop_handle_offset; 1102 int offset = oop_slot*VMRegImpl::stack_slot_size; 1103 Label skip; 1104 __ movptr(Address(rsp, offset), rOop); 1105 map->set_oop(VMRegImpl::stack2reg(oop_slot)); 1106 __ xorptr(rHandle, rHandle); 1107 __ cmpptr(rOop, NULL_WORD); 1108 __ jcc(Assembler::equal, skip); 1109 __ lea(rHandle, Address(rsp, offset)); 1110 __ bind(skip); 1111 // Store the handle parameter 1112 __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle); 1113 if (is_receiver) { 1114 *receiver_offset = offset; 1115 } 1116 } 1117 } 1118 1119 // A float arg may have to do float reg int reg conversion 1120 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) { 1121 assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move"); 1122 1123 // Because of the calling convention we know that src is either a stack location 1124 // or an xmm register. dst can only be a stack location. 1125 1126 assert(dst.first()->is_stack() && ( src.first()->is_stack() || src.first()->is_XMMRegister()), "bad parameters"); 1127 1128 if (src.first()->is_stack()) { 1129 __ movl(rax, Address(rbp, reg2offset_in(src.first()))); 1130 __ movptr(Address(rsp, reg2offset_out(dst.first())), rax); 1131 } else { 1132 // reg to stack 1133 __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister()); 1134 } 1135 } 1136 1137 // A long move 1138 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) { 1139 1140 // The only legal possibility for a long_move VMRegPair is: 1141 // 1: two stack slots (possibly unaligned) 1142 // as neither the java or C calling convention will use registers 1143 // for longs. 1144 1145 if (src.first()->is_stack() && dst.first()->is_stack()) { 1146 assert(src.second()->is_stack() && dst.second()->is_stack(), "must be all stack"); 1147 __ movptr(rax, Address(rbp, reg2offset_in(src.first()))); 1148 __ movptr(rbx, Address(rbp, reg2offset_in(src.second()))); 1149 __ movptr(Address(rsp, reg2offset_out(dst.first())), rax); 1150 __ movptr(Address(rsp, reg2offset_out(dst.second())), rbx); 1151 } else { 1152 ShouldNotReachHere(); 1153 } 1154 } 1155 1156 // A double move 1157 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) { 1158 1159 // The only legal possibilities for a double_move VMRegPair are: 1160 // The painful thing here is that like long_move a VMRegPair might be 1161 1162 // Because of the calling convention we know that src is either 1163 // 1: a single physical register (xmm registers only) 1164 // 2: two stack slots (possibly unaligned) 1165 // dst can only be a pair of stack slots. 1166 1167 assert(dst.first()->is_stack() && (src.first()->is_XMMRegister() || src.first()->is_stack()), "bad args"); 1168 1169 if (src.first()->is_stack()) { 1170 // source is all stack 1171 __ movptr(rax, Address(rbp, reg2offset_in(src.first()))); 1172 __ movptr(rbx, Address(rbp, reg2offset_in(src.second()))); 1173 __ movptr(Address(rsp, reg2offset_out(dst.first())), rax); 1174 __ movptr(Address(rsp, reg2offset_out(dst.second())), rbx); 1175 } else { 1176 // reg to stack 1177 // No worries about stack alignment 1178 __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister()); 1179 } 1180 } 1181 1182 1183 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) { 1184 // We always ignore the frame_slots arg and just use the space just below frame pointer 1185 // which by this time is free to use 1186 switch (ret_type) { 1187 case T_FLOAT: 1188 __ fstp_s(Address(rbp, -wordSize)); 1189 break; 1190 case T_DOUBLE: 1191 __ fstp_d(Address(rbp, -2*wordSize)); 1192 break; 1193 case T_VOID: break; 1194 case T_LONG: 1195 __ movptr(Address(rbp, -wordSize), rax); 1196 __ movptr(Address(rbp, -2*wordSize), rdx); 1197 break; 1198 default: { 1199 __ movptr(Address(rbp, -wordSize), rax); 1200 } 1201 } 1202 } 1203 1204 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) { 1205 // We always ignore the frame_slots arg and just use the space just below frame pointer 1206 // which by this time is free to use 1207 switch (ret_type) { 1208 case T_FLOAT: 1209 __ fld_s(Address(rbp, -wordSize)); 1210 break; 1211 case T_DOUBLE: 1212 __ fld_d(Address(rbp, -2*wordSize)); 1213 break; 1214 case T_LONG: 1215 __ movptr(rax, Address(rbp, -wordSize)); 1216 __ movptr(rdx, Address(rbp, -2*wordSize)); 1217 break; 1218 case T_VOID: break; 1219 default: { 1220 __ movptr(rax, Address(rbp, -wordSize)); 1221 } 1222 } 1223 } 1224 1225 static void verify_oop_args(MacroAssembler* masm, 1226 const methodHandle& method, 1227 const BasicType* sig_bt, 1228 const VMRegPair* regs) { 1229 Register temp_reg = rbx; // not part of any compiled calling seq 1230 if (VerifyOops) { 1231 for (int i = 0; i < method->size_of_parameters(); i++) { 1232 if (is_reference_type(sig_bt[i])) { 1233 VMReg r = regs[i].first(); 1234 assert(r->is_valid(), "bad oop arg"); 1235 if (r->is_stack()) { 1236 __ movptr(temp_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize)); 1237 __ verify_oop(temp_reg); 1238 } else { 1239 __ verify_oop(r->as_Register()); 1240 } 1241 } 1242 } 1243 } 1244 } 1245 1246 static void gen_special_dispatch(MacroAssembler* masm, 1247 const methodHandle& method, 1248 const BasicType* sig_bt, 1249 const VMRegPair* regs) { 1250 verify_oop_args(masm, method, sig_bt, regs); 1251 vmIntrinsics::ID iid = method->intrinsic_id(); 1252 1253 // Now write the args into the outgoing interpreter space 1254 bool has_receiver = false; 1255 Register receiver_reg = noreg; 1256 int member_arg_pos = -1; 1257 Register member_reg = noreg; 1258 int ref_kind = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid); 1259 if (ref_kind != 0) { 1260 member_arg_pos = method->size_of_parameters() - 1; // trailing MemberName argument 1261 member_reg = rbx; // known to be free at this point 1262 has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind); 1263 } else if (iid == vmIntrinsics::_invokeBasic) { 1264 has_receiver = true; 1265 } else { 1266 fatal("unexpected intrinsic id %d", vmIntrinsics::as_int(iid)); 1267 } 1268 1269 if (member_reg != noreg) { 1270 // Load the member_arg into register, if necessary. 1271 SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs); 1272 VMReg r = regs[member_arg_pos].first(); 1273 if (r->is_stack()) { 1274 __ movptr(member_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize)); 1275 } else { 1276 // no data motion is needed 1277 member_reg = r->as_Register(); 1278 } 1279 } 1280 1281 if (has_receiver) { 1282 // Make sure the receiver is loaded into a register. 1283 assert(method->size_of_parameters() > 0, "oob"); 1284 assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object"); 1285 VMReg r = regs[0].first(); 1286 assert(r->is_valid(), "bad receiver arg"); 1287 if (r->is_stack()) { 1288 // Porting note: This assumes that compiled calling conventions always 1289 // pass the receiver oop in a register. If this is not true on some 1290 // platform, pick a temp and load the receiver from stack. 1291 fatal("receiver always in a register"); 1292 receiver_reg = rcx; // known to be free at this point 1293 __ movptr(receiver_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize)); 1294 } else { 1295 // no data motion is needed 1296 receiver_reg = r->as_Register(); 1297 } 1298 } 1299 1300 // Figure out which address we are really jumping to: 1301 MethodHandles::generate_method_handle_dispatch(masm, iid, 1302 receiver_reg, member_reg, /*for_compiler_entry:*/ true); 1303 } 1304 1305 // --------------------------------------------------------------------------- 1306 // Generate a native wrapper for a given method. The method takes arguments 1307 // in the Java compiled code convention, marshals them to the native 1308 // convention (handlizes oops, etc), transitions to native, makes the call, 1309 // returns to java state (possibly blocking), unhandlizes any result and 1310 // returns. 1311 // 1312 // Critical native functions are a shorthand for the use of 1313 // GetPrimtiveArrayCritical and disallow the use of any other JNI 1314 // functions. The wrapper is expected to unpack the arguments before 1315 // passing them to the callee. Critical native functions leave the state _in_Java, 1316 // since they cannot stop for GC. 1317 // Some other parts of JNI setup are skipped like the tear down of the JNI handle 1318 // block and the check for pending exceptions it's impossible for them 1319 // to be thrown. 1320 // 1321 // 1322 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm, 1323 const methodHandle& method, 1324 int compile_id, 1325 BasicType* in_sig_bt, 1326 VMRegPair* in_regs, 1327 BasicType ret_type) { 1328 if (method->is_method_handle_intrinsic()) { 1329 vmIntrinsics::ID iid = method->intrinsic_id(); 1330 intptr_t start = (intptr_t)__ pc(); 1331 int vep_offset = ((intptr_t)__ pc()) - start; 1332 gen_special_dispatch(masm, 1333 method, 1334 in_sig_bt, 1335 in_regs); 1336 int frame_complete = ((intptr_t)__ pc()) - start; // not complete, period 1337 __ flush(); 1338 int stack_slots = SharedRuntime::out_preserve_stack_slots(); // no out slots at all, actually 1339 return nmethod::new_native_nmethod(method, 1340 compile_id, 1341 masm->code(), 1342 vep_offset, 1343 frame_complete, 1344 stack_slots / VMRegImpl::slots_per_word, 1345 in_ByteSize(-1), 1346 in_ByteSize(-1), 1347 (OopMapSet*)nullptr); 1348 } 1349 address native_func = method->native_function(); 1350 assert(native_func != nullptr, "must have function"); 1351 1352 // An OopMap for lock (and class if static) 1353 OopMapSet *oop_maps = new OopMapSet(); 1354 1355 // We have received a description of where all the java arg are located 1356 // on entry to the wrapper. We need to convert these args to where 1357 // the jni function will expect them. To figure out where they go 1358 // we convert the java signature to a C signature by inserting 1359 // the hidden arguments as arg[0] and possibly arg[1] (static method) 1360 1361 const int total_in_args = method->size_of_parameters(); 1362 int total_c_args = total_in_args + (method->is_static() ? 2 : 1); 1363 1364 BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args); 1365 VMRegPair* out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args); 1366 BasicType* in_elem_bt = nullptr; 1367 1368 int argc = 0; 1369 out_sig_bt[argc++] = T_ADDRESS; 1370 if (method->is_static()) { 1371 out_sig_bt[argc++] = T_OBJECT; 1372 } 1373 1374 for (int i = 0; i < total_in_args ; i++ ) { 1375 out_sig_bt[argc++] = in_sig_bt[i]; 1376 } 1377 1378 // Now figure out where the args must be stored and how much stack space 1379 // they require. 1380 int out_arg_slots; 1381 out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args); 1382 1383 // Compute framesize for the wrapper. We need to handlize all oops in 1384 // registers a max of 2 on x86. 1385 1386 // Calculate the total number of stack slots we will need. 1387 1388 // First count the abi requirement plus all of the outgoing args 1389 int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots; 1390 1391 // Now the space for the inbound oop handle area 1392 int total_save_slots = 2 * VMRegImpl::slots_per_word; // 2 arguments passed in registers 1393 1394 int oop_handle_offset = stack_slots; 1395 stack_slots += total_save_slots; 1396 1397 // Now any space we need for handlizing a klass if static method 1398 1399 int klass_slot_offset = 0; 1400 int klass_offset = -1; 1401 int lock_slot_offset = 0; 1402 bool is_static = false; 1403 1404 if (method->is_static()) { 1405 klass_slot_offset = stack_slots; 1406 stack_slots += VMRegImpl::slots_per_word; 1407 klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size; 1408 is_static = true; 1409 } 1410 1411 // Plus a lock if needed 1412 1413 if (method->is_synchronized()) { 1414 lock_slot_offset = stack_slots; 1415 stack_slots += VMRegImpl::slots_per_word; 1416 } 1417 1418 // Now a place (+2) to save return values or temp during shuffling 1419 // + 2 for return address (which we own) and saved rbp, 1420 stack_slots += 4; 1421 1422 // Ok The space we have allocated will look like: 1423 // 1424 // 1425 // FP-> | | 1426 // |---------------------| 1427 // | 2 slots for moves | 1428 // |---------------------| 1429 // | lock box (if sync) | 1430 // |---------------------| <- lock_slot_offset (-lock_slot_rbp_offset) 1431 // | klass (if static) | 1432 // |---------------------| <- klass_slot_offset 1433 // | oopHandle area | 1434 // |---------------------| <- oop_handle_offset (a max of 2 registers) 1435 // | outbound memory | 1436 // | based arguments | 1437 // | | 1438 // |---------------------| 1439 // | | 1440 // SP-> | out_preserved_slots | 1441 // 1442 // 1443 // **************************************************************************** 1444 // WARNING - on Windows Java Natives use pascal calling convention and pop the 1445 // arguments off of the stack after the jni call. Before the call we can use 1446 // instructions that are SP relative. After the jni call we switch to FP 1447 // relative instructions instead of re-adjusting the stack on windows. 1448 // **************************************************************************** 1449 1450 1451 // Now compute actual number of stack words we need rounding to make 1452 // stack properly aligned. 1453 stack_slots = align_up(stack_slots, StackAlignmentInSlots); 1454 1455 int stack_size = stack_slots * VMRegImpl::stack_slot_size; 1456 1457 intptr_t start = (intptr_t)__ pc(); 1458 1459 // First thing make an ic check to see if we should even be here 1460 1461 // We are free to use all registers as temps without saving them and 1462 // restoring them except rbp. rbp is the only callee save register 1463 // as far as the interpreter and the compiler(s) are concerned. 1464 1465 1466 const Register receiver = rcx; 1467 Label exception_pending; 1468 1469 __ verify_oop(receiver); 1470 // verified entry must be aligned for code patching. 1471 __ ic_check(8 /* end_alignment */); 1472 1473 int vep_offset = ((intptr_t)__ pc()) - start; 1474 1475 #ifdef COMPILER1 1476 // For Object.hashCode, System.identityHashCode try to pull hashCode from object header if available. 1477 if ((InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) || (method->intrinsic_id() == vmIntrinsics::_identityHashCode)) { 1478 inline_check_hashcode_from_object_header(masm, method, rcx /*obj_reg*/, rax /*result*/); 1479 } 1480 #endif // COMPILER1 1481 1482 // The instruction at the verified entry point must be 5 bytes or longer 1483 // because it can be patched on the fly by make_non_entrant. The stack bang 1484 // instruction fits that requirement. 1485 1486 // Generate stack overflow check 1487 __ bang_stack_with_offset((int)StackOverflow::stack_shadow_zone_size()); 1488 1489 // Generate a new frame for the wrapper. 1490 __ enter(); 1491 // -2 because return address is already present and so is saved rbp 1492 __ subptr(rsp, stack_size - 2*wordSize); 1493 1494 1495 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 1496 bs->nmethod_entry_barrier(masm, nullptr /* slow_path */, nullptr /* continuation */); 1497 1498 // Frame is now completed as far as size and linkage. 1499 int frame_complete = ((intptr_t)__ pc()) - start; 1500 1501 // Calculate the difference between rsp and rbp,. We need to know it 1502 // after the native call because on windows Java Natives will pop 1503 // the arguments and it is painful to do rsp relative addressing 1504 // in a platform independent way. So after the call we switch to 1505 // rbp, relative addressing. 1506 1507 int fp_adjustment = stack_size - 2*wordSize; 1508 1509 #ifdef COMPILER2 1510 // C2 may leave the stack dirty if not in SSE2+ mode 1511 if (UseSSE >= 2) { 1512 __ verify_FPU(0, "c2i transition should have clean FPU stack"); 1513 } else { 1514 __ empty_FPU_stack(); 1515 } 1516 #endif /* COMPILER2 */ 1517 1518 // Compute the rbp, offset for any slots used after the jni call 1519 1520 int lock_slot_rbp_offset = (lock_slot_offset*VMRegImpl::stack_slot_size) - fp_adjustment; 1521 1522 // We use rdi as a thread pointer because it is callee save and 1523 // if we load it once it is usable thru the entire wrapper 1524 const Register thread = rdi; 1525 1526 // We use rsi as the oop handle for the receiver/klass 1527 // It is callee save so it survives the call to native 1528 1529 const Register oop_handle_reg = rsi; 1530 1531 __ get_thread(thread); 1532 1533 // 1534 // We immediately shuffle the arguments so that any vm call we have to 1535 // make from here on out (sync slow path, jvmti, etc.) we will have 1536 // captured the oops from our caller and have a valid oopMap for 1537 // them. 1538 1539 // ----------------- 1540 // The Grand Shuffle 1541 // 1542 // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv* 1543 // and, if static, the class mirror instead of a receiver. This pretty much 1544 // guarantees that register layout will not match (and x86 doesn't use reg 1545 // parms though amd does). Since the native abi doesn't use register args 1546 // and the java conventions does we don't have to worry about collisions. 1547 // All of our moved are reg->stack or stack->stack. 1548 // We ignore the extra arguments during the shuffle and handle them at the 1549 // last moment. The shuffle is described by the two calling convention 1550 // vectors we have in our possession. We simply walk the java vector to 1551 // get the source locations and the c vector to get the destinations. 1552 1553 int c_arg = method->is_static() ? 2 : 1; 1554 1555 // Record rsp-based slot for receiver on stack for non-static methods 1556 int receiver_offset = -1; 1557 1558 // This is a trick. We double the stack slots so we can claim 1559 // the oops in the caller's frame. Since we are sure to have 1560 // more args than the caller doubling is enough to make 1561 // sure we can capture all the incoming oop args from the 1562 // caller. 1563 // 1564 OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/); 1565 1566 // Mark location of rbp, 1567 // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, rbp->as_VMReg()); 1568 1569 // We know that we only have args in at most two integer registers (rcx, rdx). So rax, rbx 1570 // Are free to temporaries if we have to do stack to steck moves. 1571 // All inbound args are referenced based on rbp, and all outbound args via rsp. 1572 1573 for (int i = 0; i < total_in_args ; i++, c_arg++ ) { 1574 switch (in_sig_bt[i]) { 1575 case T_ARRAY: 1576 case T_OBJECT: 1577 object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg], 1578 ((i == 0) && (!is_static)), 1579 &receiver_offset); 1580 break; 1581 case T_VOID: 1582 break; 1583 1584 case T_FLOAT: 1585 float_move(masm, in_regs[i], out_regs[c_arg]); 1586 break; 1587 1588 case T_DOUBLE: 1589 assert( i + 1 < total_in_args && 1590 in_sig_bt[i + 1] == T_VOID && 1591 out_sig_bt[c_arg+1] == T_VOID, "bad arg list"); 1592 double_move(masm, in_regs[i], out_regs[c_arg]); 1593 break; 1594 1595 case T_LONG : 1596 long_move(masm, in_regs[i], out_regs[c_arg]); 1597 break; 1598 1599 case T_ADDRESS: assert(false, "found T_ADDRESS in java args"); 1600 1601 default: 1602 simple_move32(masm, in_regs[i], out_regs[c_arg]); 1603 } 1604 } 1605 1606 // Pre-load a static method's oop into rsi. Used both by locking code and 1607 // the normal JNI call code. 1608 if (method->is_static()) { 1609 1610 // load opp into a register 1611 __ movoop(oop_handle_reg, JNIHandles::make_local(method->method_holder()->java_mirror())); 1612 1613 // Now handlize the static class mirror it's known not-null. 1614 __ movptr(Address(rsp, klass_offset), oop_handle_reg); 1615 map->set_oop(VMRegImpl::stack2reg(klass_slot_offset)); 1616 1617 // Now get the handle 1618 __ lea(oop_handle_reg, Address(rsp, klass_offset)); 1619 // store the klass handle as second argument 1620 __ movptr(Address(rsp, wordSize), oop_handle_reg); 1621 } 1622 1623 // Change state to native (we save the return address in the thread, since it might not 1624 // be pushed on the stack when we do a stack traversal). It is enough that the pc() 1625 // points into the right code segment. It does not have to be the correct return pc. 1626 // We use the same pc/oopMap repeatedly when we call out 1627 1628 intptr_t the_pc = (intptr_t) __ pc(); 1629 oop_maps->add_gc_map(the_pc - start, map); 1630 1631 __ set_last_Java_frame(thread, rsp, noreg, (address)the_pc, noreg); 1632 1633 1634 // We have all of the arguments setup at this point. We must not touch any register 1635 // argument registers at this point (what if we save/restore them there are no oop? 1636 1637 if (DTraceMethodProbes) { 1638 __ mov_metadata(rax, method()); 1639 __ call_VM_leaf( 1640 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), 1641 thread, rax); 1642 } 1643 1644 // RedefineClasses() tracing support for obsolete method entry 1645 if (log_is_enabled(Trace, redefine, class, obsolete)) { 1646 __ mov_metadata(rax, method()); 1647 __ call_VM_leaf( 1648 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), 1649 thread, rax); 1650 } 1651 1652 // These are register definitions we need for locking/unlocking 1653 const Register swap_reg = rax; // Must use rax, for cmpxchg instruction 1654 const Register obj_reg = rcx; // Will contain the oop 1655 const Register lock_reg = rdx; // Address of compiler lock object (BasicLock) 1656 1657 Label slow_path_lock; 1658 Label lock_done; 1659 1660 // Lock a synchronized method 1661 if (method->is_synchronized()) { 1662 Label count_mon; 1663 1664 const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes(); 1665 1666 // Get the handle (the 2nd argument) 1667 __ movptr(oop_handle_reg, Address(rsp, wordSize)); 1668 1669 // Get address of the box 1670 1671 __ lea(lock_reg, Address(rbp, lock_slot_rbp_offset)); 1672 1673 // Load the oop from the handle 1674 __ movptr(obj_reg, Address(oop_handle_reg, 0)); 1675 1676 if (LockingMode == LM_MONITOR) { 1677 __ jmp(slow_path_lock); 1678 } else if (LockingMode == LM_LEGACY) { 1679 // Load immediate 1 into swap_reg %rax, 1680 __ movptr(swap_reg, 1); 1681 1682 // Load (object->mark() | 1) into swap_reg %rax, 1683 __ orptr(swap_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 1684 1685 // Save (object->mark() | 1) into BasicLock's displaced header 1686 __ movptr(Address(lock_reg, mark_word_offset), swap_reg); 1687 1688 // src -> dest iff dest == rax, else rax, <- dest 1689 // *obj_reg = lock_reg iff *obj_reg == rax, else rax, = *(obj_reg) 1690 __ lock(); 1691 __ cmpxchgptr(lock_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 1692 __ jcc(Assembler::equal, count_mon); 1693 1694 // Test if the oopMark is an obvious stack pointer, i.e., 1695 // 1) (mark & 3) == 0, and 1696 // 2) rsp <= mark < mark + os::pagesize() 1697 // These 3 tests can be done by evaluating the following 1698 // expression: ((mark - rsp) & (3 - os::vm_page_size())), 1699 // assuming both stack pointer and pagesize have their 1700 // least significant 2 bits clear. 1701 // NOTE: the oopMark is in swap_reg %rax, as the result of cmpxchg 1702 1703 __ subptr(swap_reg, rsp); 1704 __ andptr(swap_reg, 3 - (int)os::vm_page_size()); 1705 1706 // Save the test result, for recursive case, the result is zero 1707 __ movptr(Address(lock_reg, mark_word_offset), swap_reg); 1708 __ jcc(Assembler::notEqual, slow_path_lock); 1709 } else { 1710 assert(LockingMode == LM_LIGHTWEIGHT, "must be"); 1711 // Lacking registers and thread on x86_32. Always take slow path. 1712 __ jmp(slow_path_lock); 1713 } 1714 __ bind(count_mon); 1715 __ inc_held_monitor_count(); 1716 1717 // Slow path will re-enter here 1718 __ bind(lock_done); 1719 } 1720 1721 1722 // Finally just about ready to make the JNI call 1723 1724 // get JNIEnv* which is first argument to native 1725 __ lea(rdx, Address(thread, in_bytes(JavaThread::jni_environment_offset()))); 1726 __ movptr(Address(rsp, 0), rdx); 1727 1728 // Now set thread in native 1729 __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native); 1730 1731 __ call(RuntimeAddress(native_func)); 1732 1733 // Verify or restore cpu control state after JNI call 1734 __ restore_cpu_control_state_after_jni(noreg); 1735 1736 // WARNING - on Windows Java Natives use pascal calling convention and pop the 1737 // arguments off of the stack. We could just re-adjust the stack pointer here 1738 // and continue to do SP relative addressing but we instead switch to FP 1739 // relative addressing. 1740 1741 // Unpack native results. 1742 switch (ret_type) { 1743 case T_BOOLEAN: __ c2bool(rax); break; 1744 case T_CHAR : __ andptr(rax, 0xFFFF); break; 1745 case T_BYTE : __ sign_extend_byte (rax); break; 1746 case T_SHORT : __ sign_extend_short(rax); break; 1747 case T_INT : /* nothing to do */ break; 1748 case T_DOUBLE : 1749 case T_FLOAT : 1750 // Result is in st0 we'll save as needed 1751 break; 1752 case T_ARRAY: // Really a handle 1753 case T_OBJECT: // Really a handle 1754 break; // can't de-handlize until after safepoint check 1755 case T_VOID: break; 1756 case T_LONG: break; 1757 default : ShouldNotReachHere(); 1758 } 1759 1760 Label after_transition; 1761 1762 // Switch thread to "native transition" state before reading the synchronization state. 1763 // This additional state is necessary because reading and testing the synchronization 1764 // state is not atomic w.r.t. GC, as this scenario demonstrates: 1765 // Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted. 1766 // VM thread changes sync state to synchronizing and suspends threads for GC. 1767 // Thread A is resumed to finish this native method, but doesn't block here since it 1768 // didn't see any synchronization is progress, and escapes. 1769 __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans); 1770 1771 // Force this write out before the read below 1772 if (!UseSystemMemoryBarrier) { 1773 __ membar(Assembler::Membar_mask_bits( 1774 Assembler::LoadLoad | Assembler::LoadStore | 1775 Assembler::StoreLoad | Assembler::StoreStore)); 1776 } 1777 1778 if (AlwaysRestoreFPU) { 1779 // Make sure the control word is correct. 1780 __ fldcw(ExternalAddress(StubRoutines::x86::addr_fpu_cntrl_wrd_std())); 1781 } 1782 1783 // check for safepoint operation in progress and/or pending suspend requests 1784 { Label Continue, slow_path; 1785 1786 __ safepoint_poll(slow_path, thread, true /* at_return */, false /* in_nmethod */); 1787 1788 __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0); 1789 __ jcc(Assembler::equal, Continue); 1790 __ bind(slow_path); 1791 1792 // Don't use call_VM as it will see a possible pending exception and forward it 1793 // and never return here preventing us from clearing _last_native_pc down below. 1794 // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are 1795 // preserved and correspond to the bcp/locals pointers. So we do a runtime call 1796 // by hand. 1797 // 1798 __ vzeroupper(); 1799 1800 save_native_result(masm, ret_type, stack_slots); 1801 __ push(thread); 1802 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, 1803 JavaThread::check_special_condition_for_native_trans))); 1804 __ increment(rsp, wordSize); 1805 // Restore any method result value 1806 restore_native_result(masm, ret_type, stack_slots); 1807 __ bind(Continue); 1808 } 1809 1810 // change thread state 1811 __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java); 1812 __ bind(after_transition); 1813 1814 Label reguard; 1815 Label reguard_done; 1816 __ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), StackOverflow::stack_guard_yellow_reserved_disabled); 1817 __ jcc(Assembler::equal, reguard); 1818 1819 // slow path reguard re-enters here 1820 __ bind(reguard_done); 1821 1822 // Handle possible exception (will unlock if necessary) 1823 1824 // native result if any is live 1825 1826 // Unlock 1827 Label slow_path_unlock; 1828 Label unlock_done; 1829 if (method->is_synchronized()) { 1830 1831 Label fast_done; 1832 1833 // Get locked oop from the handle we passed to jni 1834 __ movptr(obj_reg, Address(oop_handle_reg, 0)); 1835 1836 if (LockingMode == LM_LEGACY) { 1837 Label not_recur; 1838 // Simple recursive lock? 1839 __ cmpptr(Address(rbp, lock_slot_rbp_offset), NULL_WORD); 1840 __ jcc(Assembler::notEqual, not_recur); 1841 __ dec_held_monitor_count(); 1842 __ jmpb(fast_done); 1843 __ bind(not_recur); 1844 } 1845 1846 // Must save rax, if it is live now because cmpxchg must use it 1847 if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) { 1848 save_native_result(masm, ret_type, stack_slots); 1849 } 1850 1851 if (LockingMode == LM_MONITOR) { 1852 __ jmp(slow_path_unlock); 1853 } else if (LockingMode == LM_LEGACY) { 1854 // get old displaced header 1855 __ movptr(rbx, Address(rbp, lock_slot_rbp_offset)); 1856 1857 // get address of the stack lock 1858 __ lea(rax, Address(rbp, lock_slot_rbp_offset)); 1859 1860 // Atomic swap old header if oop still contains the stack lock 1861 // src -> dest iff dest == rax, else rax, <- dest 1862 // *obj_reg = rbx, iff *obj_reg == rax, else rax, = *(obj_reg) 1863 __ lock(); 1864 __ cmpxchgptr(rbx, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 1865 __ jcc(Assembler::notEqual, slow_path_unlock); 1866 __ dec_held_monitor_count(); 1867 } else { 1868 assert(LockingMode == LM_LIGHTWEIGHT, "must be"); 1869 __ lightweight_unlock(obj_reg, swap_reg, thread, lock_reg, slow_path_unlock); 1870 __ dec_held_monitor_count(); 1871 } 1872 1873 // slow path re-enters here 1874 __ bind(unlock_done); 1875 if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) { 1876 restore_native_result(masm, ret_type, stack_slots); 1877 } 1878 1879 __ bind(fast_done); 1880 } 1881 1882 if (DTraceMethodProbes) { 1883 // Tell dtrace about this method exit 1884 save_native_result(masm, ret_type, stack_slots); 1885 __ mov_metadata(rax, method()); 1886 __ call_VM_leaf( 1887 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), 1888 thread, rax); 1889 restore_native_result(masm, ret_type, stack_slots); 1890 } 1891 1892 // We can finally stop using that last_Java_frame we setup ages ago 1893 1894 __ reset_last_Java_frame(thread, false); 1895 1896 // Unbox oop result, e.g. JNIHandles::resolve value. 1897 if (is_reference_type(ret_type)) { 1898 __ resolve_jobject(rax /* value */, 1899 thread /* thread */, 1900 rcx /* tmp */); 1901 } 1902 1903 if (CheckJNICalls) { 1904 // clear_pending_jni_exception_check 1905 __ movptr(Address(thread, JavaThread::pending_jni_exception_check_fn_offset()), NULL_WORD); 1906 } 1907 1908 // reset handle block 1909 __ movptr(rcx, Address(thread, JavaThread::active_handles_offset())); 1910 __ movl(Address(rcx, JNIHandleBlock::top_offset()), NULL_WORD); 1911 1912 // Any exception pending? 1913 __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD); 1914 __ jcc(Assembler::notEqual, exception_pending); 1915 1916 // no exception, we're almost done 1917 1918 // check that only result value is on FPU stack 1919 __ verify_FPU(ret_type == T_FLOAT || ret_type == T_DOUBLE ? 1 : 0, "native_wrapper normal exit"); 1920 1921 // Fixup floating pointer results so that result looks like a return from a compiled method 1922 if (ret_type == T_FLOAT) { 1923 if (UseSSE >= 1) { 1924 // Pop st0 and store as float and reload into xmm register 1925 __ fstp_s(Address(rbp, -4)); 1926 __ movflt(xmm0, Address(rbp, -4)); 1927 } 1928 } else if (ret_type == T_DOUBLE) { 1929 if (UseSSE >= 2) { 1930 // Pop st0 and store as double and reload into xmm register 1931 __ fstp_d(Address(rbp, -8)); 1932 __ movdbl(xmm0, Address(rbp, -8)); 1933 } 1934 } 1935 1936 // Return 1937 1938 __ leave(); 1939 __ ret(0); 1940 1941 // Unexpected paths are out of line and go here 1942 1943 // Slow path locking & unlocking 1944 if (method->is_synchronized()) { 1945 1946 // BEGIN Slow path lock 1947 1948 __ bind(slow_path_lock); 1949 1950 // has last_Java_frame setup. No exceptions so do vanilla call not call_VM 1951 // args are (oop obj, BasicLock* lock, JavaThread* thread) 1952 __ push(thread); 1953 __ push(lock_reg); 1954 __ push(obj_reg); 1955 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C))); 1956 __ addptr(rsp, 3*wordSize); 1957 1958 #ifdef ASSERT 1959 { Label L; 1960 __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD); 1961 __ jcc(Assembler::equal, L); 1962 __ stop("no pending exception allowed on exit from monitorenter"); 1963 __ bind(L); 1964 } 1965 #endif 1966 __ jmp(lock_done); 1967 1968 // END Slow path lock 1969 1970 // BEGIN Slow path unlock 1971 __ bind(slow_path_unlock); 1972 __ vzeroupper(); 1973 // Slow path unlock 1974 1975 if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) { 1976 save_native_result(masm, ret_type, stack_slots); 1977 } 1978 // Save pending exception around call to VM (which contains an EXCEPTION_MARK) 1979 1980 __ pushptr(Address(thread, in_bytes(Thread::pending_exception_offset()))); 1981 __ movptr(Address(thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD); 1982 1983 1984 // should be a peal 1985 // +wordSize because of the push above 1986 // args are (oop obj, BasicLock* lock, JavaThread* thread) 1987 __ push(thread); 1988 __ lea(rax, Address(rbp, lock_slot_rbp_offset)); 1989 __ push(rax); 1990 1991 __ push(obj_reg); 1992 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C))); 1993 __ addptr(rsp, 3*wordSize); 1994 #ifdef ASSERT 1995 { 1996 Label L; 1997 __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD); 1998 __ jcc(Assembler::equal, L); 1999 __ stop("no pending exception allowed on exit complete_monitor_unlocking_C"); 2000 __ bind(L); 2001 } 2002 #endif /* ASSERT */ 2003 2004 __ popptr(Address(thread, in_bytes(Thread::pending_exception_offset()))); 2005 2006 if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) { 2007 restore_native_result(masm, ret_type, stack_slots); 2008 } 2009 __ jmp(unlock_done); 2010 // END Slow path unlock 2011 2012 } 2013 2014 // SLOW PATH Reguard the stack if needed 2015 2016 __ bind(reguard); 2017 __ vzeroupper(); 2018 save_native_result(masm, ret_type, stack_slots); 2019 { 2020 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages))); 2021 } 2022 restore_native_result(masm, ret_type, stack_slots); 2023 __ jmp(reguard_done); 2024 2025 2026 // BEGIN EXCEPTION PROCESSING 2027 2028 // Forward the exception 2029 __ bind(exception_pending); 2030 2031 // remove possible return value from FPU register stack 2032 __ empty_FPU_stack(); 2033 2034 // pop our frame 2035 __ leave(); 2036 // and forward the exception 2037 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 2038 2039 __ flush(); 2040 2041 nmethod *nm = nmethod::new_native_nmethod(method, 2042 compile_id, 2043 masm->code(), 2044 vep_offset, 2045 frame_complete, 2046 stack_slots / VMRegImpl::slots_per_word, 2047 (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)), 2048 in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size), 2049 oop_maps); 2050 2051 return nm; 2052 2053 } 2054 2055 // this function returns the adjust size (in number of words) to a c2i adapter 2056 // activation for use during deoptimization 2057 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) { 2058 return (callee_locals - callee_parameters) * Interpreter::stackElementWords; 2059 } 2060 2061 2062 // Number of stack slots between incoming argument block and the start of 2063 // a new frame. The PROLOG must add this many slots to the stack. The 2064 // EPILOG must remove this many slots. Intel needs one slot for 2065 // return address and one for rbp, (must save rbp) 2066 uint SharedRuntime::in_preserve_stack_slots() { 2067 return 2+VerifyStackAtCalls; 2068 } 2069 2070 uint SharedRuntime::out_preserve_stack_slots() { 2071 return 0; 2072 } 2073 2074 //------------------------------generate_deopt_blob---------------------------- 2075 void SharedRuntime::generate_deopt_blob() { 2076 // allocate space for the code 2077 ResourceMark rm; 2078 // setup code generation tools 2079 // note: the buffer code size must account for StackShadowPages=50 2080 const char* name = SharedRuntime::stub_name(SharedStubId::deopt_id); 2081 CodeBuffer buffer(name, 1536, 1024); 2082 MacroAssembler* masm = new MacroAssembler(&buffer); 2083 int frame_size_in_words; 2084 OopMap* map = nullptr; 2085 // Account for the extra args we place on the stack 2086 // by the time we call fetch_unroll_info 2087 const int additional_words = 2; // deopt kind, thread 2088 2089 OopMapSet *oop_maps = new OopMapSet(); 2090 2091 // ------------- 2092 // This code enters when returning to a de-optimized nmethod. A return 2093 // address has been pushed on the stack, and return values are in 2094 // registers. 2095 // If we are doing a normal deopt then we were called from the patched 2096 // nmethod from the point we returned to the nmethod. So the return 2097 // address on the stack is wrong by NativeCall::instruction_size 2098 // We will adjust the value to it looks like we have the original return 2099 // address on the stack (like when we eagerly deoptimized). 2100 // In the case of an exception pending with deoptimized then we enter 2101 // with a return address on the stack that points after the call we patched 2102 // into the exception handler. We have the following register state: 2103 // rax,: exception 2104 // rbx,: exception handler 2105 // rdx: throwing pc 2106 // So in this case we simply jam rdx into the useless return address and 2107 // the stack looks just like we want. 2108 // 2109 // At this point we need to de-opt. We save the argument return 2110 // registers. We call the first C routine, fetch_unroll_info(). This 2111 // routine captures the return values and returns a structure which 2112 // describes the current frame size and the sizes of all replacement frames. 2113 // The current frame is compiled code and may contain many inlined 2114 // functions, each with their own JVM state. We pop the current frame, then 2115 // push all the new frames. Then we call the C routine unpack_frames() to 2116 // populate these frames. Finally unpack_frames() returns us the new target 2117 // address. Notice that callee-save registers are BLOWN here; they have 2118 // already been captured in the vframeArray at the time the return PC was 2119 // patched. 2120 address start = __ pc(); 2121 Label cont; 2122 2123 // Prolog for non exception case! 2124 2125 // Save everything in sight. 2126 2127 map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false); 2128 // Normal deoptimization 2129 __ push(Deoptimization::Unpack_deopt); 2130 __ jmp(cont); 2131 2132 int reexecute_offset = __ pc() - start; 2133 2134 // Reexecute case 2135 // return address is the pc describes what bci to do re-execute at 2136 2137 // No need to update map as each call to save_live_registers will produce identical oopmap 2138 (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false); 2139 2140 __ push(Deoptimization::Unpack_reexecute); 2141 __ jmp(cont); 2142 2143 int exception_offset = __ pc() - start; 2144 2145 // Prolog for exception case 2146 2147 // all registers are dead at this entry point, except for rax, and 2148 // rdx which contain the exception oop and exception pc 2149 // respectively. Set them in TLS and fall thru to the 2150 // unpack_with_exception_in_tls entry point. 2151 2152 __ get_thread(rdi); 2153 __ movptr(Address(rdi, JavaThread::exception_pc_offset()), rdx); 2154 __ movptr(Address(rdi, JavaThread::exception_oop_offset()), rax); 2155 2156 int exception_in_tls_offset = __ pc() - start; 2157 2158 // new implementation because exception oop is now passed in JavaThread 2159 2160 // Prolog for exception case 2161 // All registers must be preserved because they might be used by LinearScan 2162 // Exceptiop oop and throwing PC are passed in JavaThread 2163 // tos: stack at point of call to method that threw the exception (i.e. only 2164 // args are on the stack, no return address) 2165 2166 // make room on stack for the return address 2167 // It will be patched later with the throwing pc. The correct value is not 2168 // available now because loading it from memory would destroy registers. 2169 __ push(0); 2170 2171 // Save everything in sight. 2172 2173 // No need to update map as each call to save_live_registers will produce identical oopmap 2174 (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false); 2175 2176 // Now it is safe to overwrite any register 2177 2178 // store the correct deoptimization type 2179 __ push(Deoptimization::Unpack_exception); 2180 2181 // load throwing pc from JavaThread and patch it as the return address 2182 // of the current frame. Then clear the field in JavaThread 2183 __ get_thread(rdi); 2184 __ movptr(rdx, Address(rdi, JavaThread::exception_pc_offset())); 2185 __ movptr(Address(rbp, wordSize), rdx); 2186 __ movptr(Address(rdi, JavaThread::exception_pc_offset()), NULL_WORD); 2187 2188 #ifdef ASSERT 2189 // verify that there is really an exception oop in JavaThread 2190 __ movptr(rax, Address(rdi, JavaThread::exception_oop_offset())); 2191 __ verify_oop(rax); 2192 2193 // verify that there is no pending exception 2194 Label no_pending_exception; 2195 __ movptr(rax, Address(rdi, Thread::pending_exception_offset())); 2196 __ testptr(rax, rax); 2197 __ jcc(Assembler::zero, no_pending_exception); 2198 __ stop("must not have pending exception here"); 2199 __ bind(no_pending_exception); 2200 #endif 2201 2202 __ bind(cont); 2203 2204 // Compiled code leaves the floating point stack dirty, empty it. 2205 __ empty_FPU_stack(); 2206 2207 2208 // Call C code. Need thread and this frame, but NOT official VM entry 2209 // crud. We cannot block on this call, no GC can happen. 2210 __ get_thread(rcx); 2211 __ push(rcx); 2212 // fetch_unroll_info needs to call last_java_frame() 2213 __ set_last_Java_frame(rcx, noreg, noreg, nullptr, noreg); 2214 2215 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info))); 2216 2217 // Need to have an oopmap that tells fetch_unroll_info where to 2218 // find any register it might need. 2219 2220 oop_maps->add_gc_map( __ pc()-start, map); 2221 2222 // Discard args to fetch_unroll_info 2223 __ pop(rcx); 2224 __ pop(rcx); 2225 2226 __ get_thread(rcx); 2227 __ reset_last_Java_frame(rcx, false); 2228 2229 // Load UnrollBlock into EDI 2230 __ mov(rdi, rax); 2231 2232 // Move the unpack kind to a safe place in the UnrollBlock because 2233 // we are very short of registers 2234 2235 Address unpack_kind(rdi, Deoptimization::UnrollBlock::unpack_kind_offset()); 2236 // retrieve the deopt kind from the UnrollBlock. 2237 __ movl(rax, unpack_kind); 2238 2239 Label noException; 2240 __ cmpl(rax, Deoptimization::Unpack_exception); // Was exception pending? 2241 __ jcc(Assembler::notEqual, noException); 2242 __ movptr(rax, Address(rcx, JavaThread::exception_oop_offset())); 2243 __ movptr(rdx, Address(rcx, JavaThread::exception_pc_offset())); 2244 __ movptr(Address(rcx, JavaThread::exception_oop_offset()), NULL_WORD); 2245 __ movptr(Address(rcx, JavaThread::exception_pc_offset()), NULL_WORD); 2246 2247 __ verify_oop(rax); 2248 2249 // Overwrite the result registers with the exception results. 2250 __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax); 2251 __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx); 2252 2253 __ bind(noException); 2254 2255 // Stack is back to only having register save data on the stack. 2256 // Now restore the result registers. Everything else is either dead or captured 2257 // in the vframeArray. 2258 2259 RegisterSaver::restore_result_registers(masm); 2260 2261 // Non standard control word may be leaked out through a safepoint blob, and we can 2262 // deopt at a poll point with the non standard control word. However, we should make 2263 // sure the control word is correct after restore_result_registers. 2264 __ fldcw(ExternalAddress(StubRoutines::x86::addr_fpu_cntrl_wrd_std())); 2265 2266 // All of the register save area has been popped of the stack. Only the 2267 // return address remains. 2268 2269 // Pop all the frames we must move/replace. 2270 // 2271 // Frame picture (youngest to oldest) 2272 // 1: self-frame (no frame link) 2273 // 2: deopting frame (no frame link) 2274 // 3: caller of deopting frame (could be compiled/interpreted). 2275 // 2276 // Note: by leaving the return address of self-frame on the stack 2277 // and using the size of frame 2 to adjust the stack 2278 // when we are done the return to frame 3 will still be on the stack. 2279 2280 // Pop deoptimized frame 2281 __ addptr(rsp, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset())); 2282 2283 // sp should be pointing at the return address to the caller (3) 2284 2285 // Pick up the initial fp we should save 2286 // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved) 2287 __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset())); 2288 2289 #ifdef ASSERT 2290 // Compilers generate code that bang the stack by as much as the 2291 // interpreter would need. So this stack banging should never 2292 // trigger a fault. Verify that it does not on non product builds. 2293 __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset())); 2294 __ bang_stack_size(rbx, rcx); 2295 #endif 2296 2297 // Load array of frame pcs into ECX 2298 __ movptr(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset())); 2299 2300 __ pop(rsi); // trash the old pc 2301 2302 // Load array of frame sizes into ESI 2303 __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset())); 2304 2305 Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset()); 2306 2307 __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset())); 2308 __ movl(counter, rbx); 2309 2310 // Now adjust the caller's stack to make up for the extra locals 2311 // but record the original sp so that we can save it in the skeletal interpreter 2312 // frame and the stack walking of interpreter_sender will get the unextended sp 2313 // value and not the "real" sp value. 2314 2315 Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset()); 2316 __ movptr(sp_temp, rsp); 2317 __ movl2ptr(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset())); 2318 __ subptr(rsp, rbx); 2319 2320 // Push interpreter frames in a loop 2321 Label loop; 2322 __ bind(loop); 2323 __ movptr(rbx, Address(rsi, 0)); // Load frame size 2324 __ subptr(rbx, 2*wordSize); // we'll push pc and rbp, by hand 2325 __ pushptr(Address(rcx, 0)); // save return address 2326 __ enter(); // save old & set new rbp, 2327 __ subptr(rsp, rbx); // Prolog! 2328 __ movptr(rbx, sp_temp); // sender's sp 2329 // This value is corrected by layout_activation_impl 2330 __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD); 2331 __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable 2332 __ movptr(sp_temp, rsp); // pass to next frame 2333 __ addptr(rsi, wordSize); // Bump array pointer (sizes) 2334 __ addptr(rcx, wordSize); // Bump array pointer (pcs) 2335 __ decrementl(counter); // decrement counter 2336 __ jcc(Assembler::notZero, loop); 2337 __ pushptr(Address(rcx, 0)); // save final return address 2338 2339 // Re-push self-frame 2340 __ enter(); // save old & set new rbp, 2341 2342 // Return address and rbp, are in place 2343 // We'll push additional args later. Just allocate a full sized 2344 // register save area 2345 __ subptr(rsp, (frame_size_in_words-additional_words - 2) * wordSize); 2346 2347 // Restore frame locals after moving the frame 2348 __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax); 2349 __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx); 2350 __ fstp_d(Address(rsp, RegisterSaver::fpResultOffset()*wordSize)); // Pop float stack and store in local 2351 if( UseSSE>=2 ) __ movdbl(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0); 2352 if( UseSSE==1 ) __ movflt(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0); 2353 2354 // Set up the args to unpack_frame 2355 2356 __ pushl(unpack_kind); // get the unpack_kind value 2357 __ get_thread(rcx); 2358 __ push(rcx); 2359 2360 // set last_Java_sp, last_Java_fp 2361 __ set_last_Java_frame(rcx, noreg, rbp, nullptr, noreg); 2362 2363 // Call C code. Need thread but NOT official VM entry 2364 // crud. We cannot block on this call, no GC can happen. Call should 2365 // restore return values to their stack-slots with the new SP. 2366 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames))); 2367 // Set an oopmap for the call site 2368 oop_maps->add_gc_map( __ pc()-start, new OopMap( frame_size_in_words, 0 )); 2369 2370 // rax, contains the return result type 2371 __ push(rax); 2372 2373 __ get_thread(rcx); 2374 __ reset_last_Java_frame(rcx, false); 2375 2376 // Collect return values 2377 __ movptr(rax,Address(rsp, (RegisterSaver::raxOffset() + additional_words + 1)*wordSize)); 2378 __ movptr(rdx,Address(rsp, (RegisterSaver::rdxOffset() + additional_words + 1)*wordSize)); 2379 2380 // Clear floating point stack before returning to interpreter 2381 __ empty_FPU_stack(); 2382 2383 // Check if we should push the float or double return value. 2384 Label results_done, yes_double_value; 2385 __ cmpl(Address(rsp, 0), T_DOUBLE); 2386 __ jcc (Assembler::zero, yes_double_value); 2387 __ cmpl(Address(rsp, 0), T_FLOAT); 2388 __ jcc (Assembler::notZero, results_done); 2389 2390 // return float value as expected by interpreter 2391 if( UseSSE>=1 ) __ movflt(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize)); 2392 else __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize)); 2393 __ jmp(results_done); 2394 2395 // return double value as expected by interpreter 2396 __ bind(yes_double_value); 2397 if( UseSSE>=2 ) __ movdbl(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize)); 2398 else __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize)); 2399 2400 __ bind(results_done); 2401 2402 // Pop self-frame. 2403 __ leave(); // Epilog! 2404 2405 // Jump to interpreter 2406 __ ret(0); 2407 2408 // ------------- 2409 // make sure all code is generated 2410 masm->flush(); 2411 2412 _deopt_blob = DeoptimizationBlob::create( &buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words); 2413 _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset); 2414 } 2415 2416 //------------------------------generate_handler_blob------ 2417 // 2418 // Generate a special Compile2Runtime blob that saves all registers, 2419 // setup oopmap, and calls safepoint code to stop the compiled code for 2420 // a safepoint. 2421 // 2422 SafepointBlob* SharedRuntime::generate_handler_blob(SharedStubId id, address call_ptr) { 2423 2424 // Account for thread arg in our frame 2425 const int additional_words = 1; 2426 int frame_size_in_words; 2427 2428 assert (StubRoutines::forward_exception_entry() != nullptr, "must be generated before"); 2429 assert(is_polling_page_id(id), "expected a polling page stub id"); 2430 2431 ResourceMark rm; 2432 OopMapSet *oop_maps = new OopMapSet(); 2433 OopMap* map; 2434 2435 // allocate space for the code 2436 // setup code generation tools 2437 const char* name = SharedRuntime::stub_name(id); 2438 CodeBuffer buffer(name, 2048, 1024); 2439 MacroAssembler* masm = new MacroAssembler(&buffer); 2440 2441 const Register java_thread = rdi; // callee-saved for VC++ 2442 address start = __ pc(); 2443 address call_pc = nullptr; 2444 bool cause_return = (id == SharedStubId::polling_page_return_handler_id); 2445 bool save_vectors = (id == SharedStubId::polling_page_vectors_safepoint_handler_id); 2446 2447 // If cause_return is true we are at a poll_return and there is 2448 // the return address on the stack to the caller on the nmethod 2449 // that is safepoint. We can leave this return on the stack and 2450 // effectively complete the return and safepoint in the caller. 2451 // Otherwise we push space for a return address that the safepoint 2452 // handler will install later to make the stack walking sensible. 2453 if (!cause_return) 2454 __ push(rbx); // Make room for return address (or push it again) 2455 2456 map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false, save_vectors); 2457 2458 // The following is basically a call_VM. However, we need the precise 2459 // address of the call in order to generate an oopmap. Hence, we do all the 2460 // work ourselves. 2461 2462 // Push thread argument and setup last_Java_sp 2463 __ get_thread(java_thread); 2464 __ push(java_thread); 2465 __ set_last_Java_frame(java_thread, noreg, noreg, nullptr, noreg); 2466 2467 // if this was not a poll_return then we need to correct the return address now. 2468 if (!cause_return) { 2469 // Get the return pc saved by the signal handler and stash it in its appropriate place on the stack. 2470 // Additionally, rbx is a callee saved register and we can look at it later to determine 2471 // if someone changed the return address for us! 2472 __ movptr(rbx, Address(java_thread, JavaThread::saved_exception_pc_offset())); 2473 __ movptr(Address(rbp, wordSize), rbx); 2474 } 2475 2476 // do the call 2477 __ call(RuntimeAddress(call_ptr)); 2478 2479 // Set an oopmap for the call site. This oopmap will map all 2480 // oop-registers and debug-info registers as callee-saved. This 2481 // will allow deoptimization at this safepoint to find all possible 2482 // debug-info recordings, as well as let GC find all oops. 2483 2484 oop_maps->add_gc_map( __ pc() - start, map); 2485 2486 // Discard arg 2487 __ pop(rcx); 2488 2489 Label noException; 2490 2491 // Clear last_Java_sp again 2492 __ get_thread(java_thread); 2493 __ reset_last_Java_frame(java_thread, false); 2494 2495 __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), NULL_WORD); 2496 __ jcc(Assembler::equal, noException); 2497 2498 // Exception pending 2499 RegisterSaver::restore_live_registers(masm, save_vectors); 2500 2501 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 2502 2503 __ bind(noException); 2504 2505 Label no_adjust, bail, not_special; 2506 if (!cause_return) { 2507 // If our stashed return pc was modified by the runtime we avoid touching it 2508 __ cmpptr(rbx, Address(rbp, wordSize)); 2509 __ jccb(Assembler::notEqual, no_adjust); 2510 2511 // Skip over the poll instruction. 2512 // See NativeInstruction::is_safepoint_poll() 2513 // Possible encodings: 2514 // 85 00 test %eax,(%rax) 2515 // 85 01 test %eax,(%rcx) 2516 // 85 02 test %eax,(%rdx) 2517 // 85 03 test %eax,(%rbx) 2518 // 85 06 test %eax,(%rsi) 2519 // 85 07 test %eax,(%rdi) 2520 // 2521 // 85 04 24 test %eax,(%rsp) 2522 // 85 45 00 test %eax,0x0(%rbp) 2523 2524 #ifdef ASSERT 2525 __ movptr(rax, rbx); // remember where 0x85 should be, for verification below 2526 #endif 2527 // rsp/rbp base encoding takes 3 bytes with the following register values: 2528 // rsp 0x04 2529 // rbp 0x05 2530 __ movzbl(rcx, Address(rbx, 1)); 2531 __ andptr(rcx, 0x07); // looking for 0x04 .. 0x05 2532 __ subptr(rcx, 4); // looking for 0x00 .. 0x01 2533 __ cmpptr(rcx, 1); 2534 __ jcc(Assembler::above, not_special); 2535 __ addptr(rbx, 1); 2536 __ bind(not_special); 2537 #ifdef ASSERT 2538 // Verify the correct encoding of the poll we're about to skip. 2539 __ cmpb(Address(rax, 0), NativeTstRegMem::instruction_code_memXregl); 2540 __ jcc(Assembler::notEqual, bail); 2541 // Mask out the modrm bits 2542 __ testb(Address(rax, 1), NativeTstRegMem::modrm_mask); 2543 // rax encodes to 0, so if the bits are nonzero it's incorrect 2544 __ jcc(Assembler::notZero, bail); 2545 #endif 2546 // Adjust return pc forward to step over the safepoint poll instruction 2547 __ addptr(rbx, 2); 2548 __ movptr(Address(rbp, wordSize), rbx); 2549 } 2550 2551 __ bind(no_adjust); 2552 // Normal exit, register restoring and exit 2553 RegisterSaver::restore_live_registers(masm, save_vectors); 2554 2555 __ ret(0); 2556 2557 #ifdef ASSERT 2558 __ bind(bail); 2559 __ stop("Attempting to adjust pc to skip safepoint poll but the return point is not what we expected"); 2560 #endif 2561 2562 // make sure all code is generated 2563 masm->flush(); 2564 2565 // Fill-out other meta info 2566 return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words); 2567 } 2568 2569 // 2570 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss 2571 // 2572 // Generate a stub that calls into vm to find out the proper destination 2573 // of a java call. All the argument registers are live at this point 2574 // but since this is generic code we don't know what they are and the caller 2575 // must do any gc of the args. 2576 // 2577 RuntimeStub* SharedRuntime::generate_resolve_blob(SharedStubId id, address destination) { 2578 assert (StubRoutines::forward_exception_entry() != nullptr, "must be generated before"); 2579 assert(is_resolve_id(id), "expected a resolve stub id"); 2580 2581 // allocate space for the code 2582 ResourceMark rm; 2583 2584 const char* name = SharedRuntime::stub_name(id); 2585 CodeBuffer buffer(name, 1000, 512); 2586 MacroAssembler* masm = new MacroAssembler(&buffer); 2587 2588 int frame_size_words; 2589 enum frame_layout { 2590 thread_off, 2591 extra_words }; 2592 2593 OopMapSet *oop_maps = new OopMapSet(); 2594 OopMap* map = nullptr; 2595 2596 int start = __ offset(); 2597 2598 map = RegisterSaver::save_live_registers(masm, extra_words, &frame_size_words); 2599 2600 int frame_complete = __ offset(); 2601 2602 const Register thread = rdi; 2603 __ get_thread(rdi); 2604 2605 __ push(thread); 2606 __ set_last_Java_frame(thread, noreg, rbp, nullptr, noreg); 2607 2608 __ call(RuntimeAddress(destination)); 2609 2610 2611 // Set an oopmap for the call site. 2612 // We need this not only for callee-saved registers, but also for volatile 2613 // registers that the compiler might be keeping live across a safepoint. 2614 2615 oop_maps->add_gc_map( __ offset() - start, map); 2616 2617 // rax, contains the address we are going to jump to assuming no exception got installed 2618 2619 __ addptr(rsp, wordSize); 2620 2621 // clear last_Java_sp 2622 __ reset_last_Java_frame(thread, true); 2623 // check for pending exceptions 2624 Label pending; 2625 __ cmpptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD); 2626 __ jcc(Assembler::notEqual, pending); 2627 2628 // get the returned Method* 2629 __ get_vm_result_2(rbx, thread); 2630 __ movptr(Address(rsp, RegisterSaver::rbx_offset() * wordSize), rbx); 2631 2632 __ movptr(Address(rsp, RegisterSaver::rax_offset() * wordSize), rax); 2633 2634 RegisterSaver::restore_live_registers(masm); 2635 2636 // We are back to the original state on entry and ready to go. 2637 2638 __ jmp(rax); 2639 2640 // Pending exception after the safepoint 2641 2642 __ bind(pending); 2643 2644 RegisterSaver::restore_live_registers(masm); 2645 2646 // exception pending => remove activation and forward to exception handler 2647 2648 __ get_thread(thread); 2649 __ movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD); 2650 __ movptr(rax, Address(thread, Thread::pending_exception_offset())); 2651 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 2652 2653 // ------------- 2654 // make sure all code is generated 2655 masm->flush(); 2656 2657 // return the blob 2658 // frame_size_words or bytes?? 2659 return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true); 2660 } 2661 2662 BufferedInlineTypeBlob* SharedRuntime::generate_buffered_inline_type_adapter(const InlineKlass* vk) { 2663 Unimplemented(); 2664 return nullptr; 2665 } 2666 2667 //------------------------------------------------------------------------------------------------------------------------ 2668 // Continuation point for throwing of implicit exceptions that are not handled in 2669 // the current activation. Fabricates an exception oop and initiates normal 2670 // exception dispatching in this frame. 2671 // 2672 // Previously the compiler (c2) allowed for callee save registers on Java calls. 2673 // This is no longer true after adapter frames were removed but could possibly 2674 // be brought back in the future if the interpreter code was reworked and it 2675 // was deemed worthwhile. The comment below was left to describe what must 2676 // happen here if callee saves were resurrected. As it stands now this stub 2677 // could actually be a vanilla BufferBlob and have now oopMap at all. 2678 // Since it doesn't make much difference we've chosen to leave it the 2679 // way it was in the callee save days and keep the comment. 2680 2681 // If we need to preserve callee-saved values we need a callee-saved oop map and 2682 // therefore have to make these stubs into RuntimeStubs rather than BufferBlobs. 2683 // If the compiler needs all registers to be preserved between the fault 2684 // point and the exception handler then it must assume responsibility for that in 2685 // AbstractCompiler::continuation_for_implicit_null_exception or 2686 // continuation_for_implicit_division_by_zero_exception. All other implicit 2687 // exceptions (e.g., NullPointerException or AbstractMethodError on entry) are 2688 // either at call sites or otherwise assume that stack unwinding will be initiated, 2689 // so caller saved registers were assumed volatile in the compiler. 2690 RuntimeStub* SharedRuntime::generate_throw_exception(SharedStubId id, address runtime_entry) { 2691 assert(is_throw_id(id), "expected a throw stub id"); 2692 2693 const char* name = SharedRuntime::stub_name(id); 2694 2695 // Information about frame layout at time of blocking runtime call. 2696 // Note that we only have to preserve callee-saved registers since 2697 // the compilers are responsible for supplying a continuation point 2698 // if they expect all registers to be preserved. 2699 enum layout { 2700 thread_off, // last_java_sp 2701 arg1_off, 2702 arg2_off, 2703 rbp_off, // callee saved register 2704 ret_pc, 2705 framesize 2706 }; 2707 2708 int insts_size = 256; 2709 int locs_size = 32; 2710 2711 ResourceMark rm; 2712 const char* timer_msg = "SharedRuntime generate_throw_exception"; 2713 TraceTime timer(timer_msg, TRACETIME_LOG(Info, startuptime)); 2714 2715 CodeBuffer code(name, insts_size, locs_size); 2716 OopMapSet* oop_maps = new OopMapSet(); 2717 MacroAssembler* masm = new MacroAssembler(&code); 2718 2719 address start = __ pc(); 2720 2721 // This is an inlined and slightly modified version of call_VM 2722 // which has the ability to fetch the return PC out of 2723 // thread-local storage and also sets up last_Java_sp slightly 2724 // differently than the real call_VM 2725 Register java_thread = rbx; 2726 __ get_thread(java_thread); 2727 2728 __ enter(); // required for proper stackwalking of RuntimeStub frame 2729 2730 // pc and rbp, already pushed 2731 __ subptr(rsp, (framesize-2) * wordSize); // prolog 2732 2733 // Frame is now completed as far as size and linkage. 2734 2735 int frame_complete = __ pc() - start; 2736 2737 // push java thread (becomes first argument of C function) 2738 __ movptr(Address(rsp, thread_off * wordSize), java_thread); 2739 // Set up last_Java_sp and last_Java_fp 2740 __ set_last_Java_frame(java_thread, rsp, rbp, nullptr, noreg); 2741 2742 // Call runtime 2743 BLOCK_COMMENT("call runtime_entry"); 2744 __ call(RuntimeAddress(runtime_entry)); 2745 // Generate oop map 2746 OopMap* map = new OopMap(framesize, 0); 2747 oop_maps->add_gc_map(__ pc() - start, map); 2748 2749 // restore the thread (cannot use the pushed argument since arguments 2750 // may be overwritten by C code generated by an optimizing compiler); 2751 // however can use the register value directly if it is callee saved. 2752 __ get_thread(java_thread); 2753 2754 __ reset_last_Java_frame(java_thread, true); 2755 2756 __ leave(); // required for proper stackwalking of RuntimeStub frame 2757 2758 // check for pending exceptions 2759 #ifdef ASSERT 2760 Label L; 2761 __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), NULL_WORD); 2762 __ jcc(Assembler::notEqual, L); 2763 __ should_not_reach_here(); 2764 __ bind(L); 2765 #endif /* ASSERT */ 2766 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 2767 2768 2769 RuntimeStub* stub = RuntimeStub::new_runtime_stub(name, &code, frame_complete, framesize, oop_maps, false); 2770 return stub; 2771 } 2772 2773 #if INCLUDE_JFR 2774 2775 static void jfr_prologue(address the_pc, MacroAssembler* masm) { 2776 Register java_thread = rdi; 2777 __ get_thread(java_thread); 2778 __ set_last_Java_frame(java_thread, rsp, rbp, the_pc, noreg); 2779 __ movptr(Address(rsp, 0), java_thread); 2780 } 2781 2782 // The handle is dereferenced through a load barrier. 2783 static void jfr_epilogue(MacroAssembler* masm) { 2784 Register java_thread = rdi; 2785 __ get_thread(java_thread); 2786 __ reset_last_Java_frame(java_thread, true); 2787 } 2788 2789 // For c2: c_rarg0 is junk, call to runtime to write a checkpoint. 2790 // It returns a jobject handle to the event writer. 2791 // The handle is dereferenced and the return value is the event writer oop. 2792 RuntimeStub* SharedRuntime::generate_jfr_write_checkpoint() { 2793 enum layout { 2794 FPUState_off = 0, 2795 rbp_off = FPUStateSizeInWords, 2796 rdi_off, 2797 rsi_off, 2798 rcx_off, 2799 rbx_off, 2800 saved_argument_off, 2801 saved_argument_off2, // 2nd half of double 2802 framesize 2803 }; 2804 2805 int insts_size = 1024; 2806 int locs_size = 64; 2807 const char* name = SharedRuntime::stub_name(SharedStubId::jfr_write_checkpoint_id); 2808 CodeBuffer code(name, insts_size, locs_size); 2809 OopMapSet* oop_maps = new OopMapSet(); 2810 MacroAssembler* masm = new MacroAssembler(&code); 2811 2812 address start = __ pc(); 2813 __ enter(); 2814 int frame_complete = __ pc() - start; 2815 address the_pc = __ pc(); 2816 jfr_prologue(the_pc, masm); 2817 __ call_VM_leaf(CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::write_checkpoint), 1); 2818 jfr_epilogue(masm); 2819 __ resolve_global_jobject(rax, rdi, rdx); 2820 __ leave(); 2821 __ ret(0); 2822 2823 OopMap* map = new OopMap(framesize, 1); // rbp 2824 oop_maps->add_gc_map(the_pc - start, map); 2825 2826 RuntimeStub* stub = // codeBlob framesize is in words (not VMRegImpl::slot_size) 2827 RuntimeStub::new_runtime_stub(name, &code, frame_complete, 2828 (framesize >> (LogBytesPerWord - LogBytesPerInt)), 2829 oop_maps, false); 2830 return stub; 2831 } 2832 2833 // For c2: call to return a leased buffer. 2834 RuntimeStub* SharedRuntime::generate_jfr_return_lease() { 2835 enum layout { 2836 FPUState_off = 0, 2837 rbp_off = FPUStateSizeInWords, 2838 rdi_off, 2839 rsi_off, 2840 rcx_off, 2841 rbx_off, 2842 saved_argument_off, 2843 saved_argument_off2, // 2nd half of double 2844 framesize 2845 }; 2846 2847 int insts_size = 1024; 2848 int locs_size = 64; 2849 const char* name = SharedRuntime::stub_name(SharedStubId::jfr_return_lease_id); 2850 CodeBuffer code(name, insts_size, locs_size); 2851 OopMapSet* oop_maps = new OopMapSet(); 2852 MacroAssembler* masm = new MacroAssembler(&code); 2853 2854 address start = __ pc(); 2855 __ enter(); 2856 int frame_complete = __ pc() - start; 2857 address the_pc = __ pc(); 2858 jfr_prologue(the_pc, masm); 2859 __ call_VM_leaf(CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::return_lease), 1); 2860 jfr_epilogue(masm); 2861 __ leave(); 2862 __ ret(0); 2863 2864 OopMap* map = new OopMap(framesize, 1); // rbp 2865 oop_maps->add_gc_map(the_pc - start, map); 2866 2867 RuntimeStub* stub = // codeBlob framesize is in words (not VMRegImpl::slot_size) 2868 RuntimeStub::new_runtime_stub(name, &code, frame_complete, 2869 (framesize >> (LogBytesPerWord - LogBytesPerInt)), 2870 oop_maps, false); 2871 return stub; 2872 } 2873 2874 #endif // INCLUDE_JFR