10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #ifndef _WINDOWS
26 #include "alloca.h"
27 #endif
28 #include "asm/macroAssembler.hpp"
29 #include "asm/macroAssembler.inline.hpp"
30 #include "code/aotCodeCache.hpp"
31 #include "code/compiledIC.hpp"
32 #include "code/debugInfoRec.hpp"
33 #include "code/nativeInst.hpp"
34 #include "code/vtableStubs.hpp"
35 #include "compiler/oopMap.hpp"
36 #include "gc/shared/collectedHeap.hpp"
37 #include "gc/shared/gcLocker.hpp"
38 #include "gc/shared/barrierSet.hpp"
39 #include "gc/shared/barrierSetAssembler.hpp"
40 #include "interpreter/interpreter.hpp"
41 #include "logging/log.hpp"
42 #include "memory/resourceArea.hpp"
43 #include "memory/universe.hpp"
44 #include "oops/klass.inline.hpp"
45 #include "oops/method.inline.hpp"
46 #include "prims/methodHandles.hpp"
47 #include "runtime/continuation.hpp"
48 #include "runtime/continuationEntry.inline.hpp"
49 #include "runtime/globals.hpp"
617 break;
618 case T_DOUBLE:
619 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
620 if (fp_args < Argument::n_float_register_parameters_j) {
621 regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
622 } else {
623 stk_args = align_up(stk_args, 2);
624 regs[i].set2(VMRegImpl::stack2reg(stk_args));
625 stk_args += 2;
626 }
627 break;
628 default:
629 ShouldNotReachHere();
630 break;
631 }
632 }
633
634 return stk_args;
635 }
636
637 // Patch the callers callsite with entry to compiled code if it exists.
638 static void patch_callers_callsite(MacroAssembler *masm) {
639 Label L;
640 __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), NULL_WORD);
641 __ jcc(Assembler::equal, L);
642
643 // Save the current stack pointer
644 __ mov(r13, rsp);
645 // Schedule the branch target address early.
646 // Call into the VM to patch the caller, then jump to compiled callee
647 // rax isn't live so capture return address while we easily can
648 __ movptr(rax, Address(rsp, 0));
649
650 // align stack so push_CPU_state doesn't fault
651 __ andptr(rsp, -(StackAlignmentInBytes));
652 __ push_CPU_state();
653 __ vzeroupper();
654 // VM needs caller's callsite
655 // VM needs target method
656 // This needs to be a long call since we will relocate this adapter to
659 // Allocate argument register save area
660 if (frame::arg_reg_save_area_bytes != 0) {
661 __ subptr(rsp, frame::arg_reg_save_area_bytes);
662 }
663 __ mov(c_rarg0, rbx);
664 __ mov(c_rarg1, rax);
665 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
666
667 // De-allocate argument register save area
668 if (frame::arg_reg_save_area_bytes != 0) {
669 __ addptr(rsp, frame::arg_reg_save_area_bytes);
670 }
671
672 __ vzeroupper();
673 __ pop_CPU_state();
674 // restore sp
675 __ mov(rsp, r13);
676 __ bind(L);
677 }
678
679 static void gen_c2i_adapter(MacroAssembler *masm,
680 int total_args_passed,
681 int comp_args_on_stack,
682 const BasicType *sig_bt,
683 const VMRegPair *regs,
684 Label& skip_fixup) {
685 // Before we get into the guts of the C2I adapter, see if we should be here
686 // at all. We've come from compiled code and are attempting to jump to the
687 // interpreter, which means the caller made a static call to get here
688 // (vcalls always get a compiled target if there is one). Check for a
689 // compiled target. If there is one, we need to patch the caller's call.
690 patch_callers_callsite(masm);
691
692 __ bind(skip_fixup);
693
694 // Since all args are passed on the stack, total_args_passed *
695 // Interpreter::stackElementSize is the space we need.
696
697 assert(total_args_passed >= 0, "total_args_passed is %d", total_args_passed);
698
699 int extraspace = (total_args_passed * Interpreter::stackElementSize);
700
701 // stack is aligned, keep it that way
702 // This is not currently needed or enforced by the interpreter, but
703 // we might as well conform to the ABI.
704 extraspace = align_up(extraspace, 2*wordSize);
705
706 // set senderSP value
707 __ lea(r13, Address(rsp, wordSize));
708
709 #ifdef ASSERT
710 __ check_stack_alignment(r13, "sender stack not aligned");
711 #endif
712 if (extraspace > 0) {
713 // Pop the return address
714 __ pop(rax);
715
716 __ subptr(rsp, extraspace);
717
718 // Push the return address
719 __ push(rax);
720
721 // Account for the return address location since we store it first rather
722 // than hold it in a register across all the shuffling
723 extraspace += wordSize;
724 }
725
726 #ifdef ASSERT
727 __ check_stack_alignment(rsp, "callee stack not aligned", wordSize, rax);
728 #endif
729
730 // Now write the args into the outgoing interpreter space
731 for (int i = 0; i < total_args_passed; i++) {
732 if (sig_bt[i] == T_VOID) {
733 assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
734 continue;
735 }
736
737 // offset to start parameters
738 int st_off = (total_args_passed - i) * Interpreter::stackElementSize;
739 int next_off = st_off - Interpreter::stackElementSize;
740
741 // Say 4 args:
742 // i st_off
743 // 0 32 T_LONG
744 // 1 24 T_VOID
745 // 2 16 T_OBJECT
746 // 3 8 T_BOOL
747 // - 0 return address
748 //
749 // However to make thing extra confusing. Because we can fit a long/double in
750 // a single slot on a 64 bt vm and it would be silly to break them up, the interpreter
751 // leaves one slot empty and only stores to a single slot. In this case the
752 // slot that is occupied is the T_VOID slot. See I said it was confusing.
753
754 VMReg r_1 = regs[i].first();
755 VMReg r_2 = regs[i].second();
756 if (!r_1->is_valid()) {
757 assert(!r_2->is_valid(), "");
758 continue;
759 }
760 if (r_1->is_stack()) {
761 // memory to memory use rax
762 int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
763 if (!r_2->is_valid()) {
764 // sign extend??
765 __ movl(rax, Address(rsp, ld_off));
766 __ movptr(Address(rsp, st_off), rax);
767
768 } else {
769
770 __ movq(rax, Address(rsp, ld_off));
771
772 // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
773 // T_DOUBLE and T_LONG use two slots in the interpreter
774 if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
775 // ld_off == LSW, ld_off+wordSize == MSW
776 // st_off == MSW, next_off == LSW
777 __ movq(Address(rsp, next_off), rax);
778 #ifdef ASSERT
779 // Overwrite the unused slot with known junk
780 __ mov64(rax, CONST64(0xdeadffffdeadaaaa));
781 __ movptr(Address(rsp, st_off), rax);
782 #endif /* ASSERT */
783 } else {
784 __ movq(Address(rsp, st_off), rax);
785 }
786 }
787 } else if (r_1->is_Register()) {
788 Register r = r_1->as_Register();
789 if (!r_2->is_valid()) {
790 // must be only an int (or less ) so move only 32bits to slot
791 // why not sign extend??
792 __ movl(Address(rsp, st_off), r);
793 } else {
794 // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
795 // T_DOUBLE and T_LONG use two slots in the interpreter
796 if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
797 // long/double in gpr
798 #ifdef ASSERT
799 // Overwrite the unused slot with known junk
800 __ mov64(rax, CONST64(0xdeadffffdeadaaab));
801 __ movptr(Address(rsp, st_off), rax);
802 #endif /* ASSERT */
803 __ movq(Address(rsp, next_off), r);
804 } else {
805 __ movptr(Address(rsp, st_off), r);
806 }
807 }
808 } else {
809 assert(r_1->is_XMMRegister(), "");
810 if (!r_2->is_valid()) {
811 // only a float use just part of the slot
812 __ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
813 } else {
814 #ifdef ASSERT
815 // Overwrite the unused slot with known junk
816 __ mov64(rax, CONST64(0xdeadffffdeadaaac));
817 __ movptr(Address(rsp, st_off), rax);
818 #endif /* ASSERT */
819 __ movdbl(Address(rsp, next_off), r_1->as_XMMRegister());
820 }
821 }
822 }
823
824 // Schedule the branch target address early.
825 __ movptr(rcx, Address(rbx, in_bytes(Method::interpreter_entry_offset())));
826 __ jmp(rcx);
827 }
828
829 void SharedRuntime::gen_i2c_adapter(MacroAssembler *masm,
830 int total_args_passed,
831 int comp_args_on_stack,
832 const BasicType *sig_bt,
833 const VMRegPair *regs) {
834
835 // Note: r13 contains the senderSP on entry. We must preserve it since
836 // we may do a i2c -> c2i transition if we lose a race where compiled
837 // code goes non-entrant while we get args ready.
838 // In addition we use r13 to locate all the interpreter args as
839 // we must align the stack to 16 bytes on an i2c entry else we
840 // lose alignment we expect in all compiled code and register
841 // save code can segv when fxsave instructions find improperly
842 // aligned stack pointer.
843
844 // Adapters can be frameless because they do not require the caller
845 // to perform additional cleanup work, such as correcting the stack pointer.
846 // An i2c adapter is frameless because the *caller* frame, which is interpreted,
847 // routinely repairs its own stack pointer (from interpreter_frame_last_sp),
848 // even if a callee has modified the stack pointer.
849 // A c2i adapter is frameless because the *callee* frame, which is interpreted,
850 // routinely repairs its caller's stack pointer (from sender_sp, which is set
851 // up via the senderSP register).
852 // In other words, if *either* the caller or callee is interpreted, we can
868 // Convert 4-byte c2 stack slots to words.
869 int comp_words_on_stack = align_up(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
870
871 if (comp_args_on_stack) {
872 __ subptr(rsp, comp_words_on_stack * wordSize);
873 }
874
875 // Ensure compiled code always sees stack at proper alignment
876 __ andptr(rsp, -16);
877
878 // push the return address and misalign the stack that youngest frame always sees
879 // as far as the placement of the call instruction
880 __ push(rax);
881
882 // Put saved SP in another register
883 const Register saved_sp = rax;
884 __ movptr(saved_sp, r11);
885
886 // Will jump to the compiled code just as if compiled code was doing it.
887 // Pre-load the register-jump target early, to schedule it better.
888 __ movptr(r11, Address(rbx, in_bytes(Method::from_compiled_offset())));
889
890 #if INCLUDE_JVMCI
891 if (EnableJVMCI) {
892 // check if this call should be routed towards a specific entry point
893 __ cmpptr(Address(r15_thread, in_bytes(JavaThread::jvmci_alternate_call_target_offset())), 0);
894 Label no_alternative_target;
895 __ jcc(Assembler::equal, no_alternative_target);
896 __ movptr(r11, Address(r15_thread, in_bytes(JavaThread::jvmci_alternate_call_target_offset())));
897 __ movptr(Address(r15_thread, in_bytes(JavaThread::jvmci_alternate_call_target_offset())), 0);
898 __ bind(no_alternative_target);
899 }
900 #endif // INCLUDE_JVMCI
901
902 // Now generate the shuffle code. Pick up all register args and move the
903 // rest through the floating point stack top.
904 for (int i = 0; i < total_args_passed; i++) {
905 if (sig_bt[i] == T_VOID) {
906 // Longs and doubles are passed in native word order, but misaligned
907 // in the 32-bit build.
908 assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
909 continue;
910 }
911
912 // Pick up 0, 1 or 2 words from SP+offset.
913
914 assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
915 "scrambled load targets?");
916 // Load in argument order going down.
917 int ld_off = (total_args_passed - i)*Interpreter::stackElementSize;
918 // Point to interpreter value (vs. tag)
919 int next_off = ld_off - Interpreter::stackElementSize;
920 //
921 //
922 //
923 VMReg r_1 = regs[i].first();
924 VMReg r_2 = regs[i].second();
925 if (!r_1->is_valid()) {
926 assert(!r_2->is_valid(), "");
927 continue;
928 }
930 // Convert stack slot to an SP offset (+ wordSize to account for return address )
931 int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
932
933 // We can use r13 as a temp here because compiled code doesn't need r13 as an input
934 // and if we end up going thru a c2i because of a miss a reasonable value of r13
935 // will be generated.
936 if (!r_2->is_valid()) {
937 // sign extend???
938 __ movl(r13, Address(saved_sp, ld_off));
939 __ movptr(Address(rsp, st_off), r13);
940 } else {
941 //
942 // We are using two optoregs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
943 // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
944 // So we must adjust where to pick up the data to match the interpreter.
945 //
946 // Interpreter local[n] == MSW, local[n+1] == LSW however locals
947 // are accessed as negative so LSW is at LOW address
948
949 // ld_off is MSW so get LSW
950 const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
951 next_off : ld_off;
952 __ movq(r13, Address(saved_sp, offset));
953 // st_off is LSW (i.e. reg.first())
954 __ movq(Address(rsp, st_off), r13);
955 }
956 } else if (r_1->is_Register()) { // Register argument
957 Register r = r_1->as_Register();
958 assert(r != rax, "must be different");
959 if (r_2->is_valid()) {
960 //
961 // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
962 // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
963 // So we must adjust where to pick up the data to match the interpreter.
964
965 const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
966 next_off : ld_off;
967
968 // this can be a misaligned move
969 __ movq(r, Address(saved_sp, offset));
970 } else {
971 // sign extend and use a full word?
972 __ movl(r, Address(saved_sp, ld_off));
973 }
974 } else {
975 if (!r_2->is_valid()) {
976 __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off));
977 } else {
978 __ movdbl(r_1->as_XMMRegister(), Address(saved_sp, next_off));
979 }
980 }
981 }
982
983 __ push_cont_fastpath(); // Set JavaThread::_cont_fastpath to the sp of the oldest interpreted frame we know about
984
985 // 6243940 We might end up in handle_wrong_method if
986 // the callee is deoptimized as we race thru here. If that
987 // happens we don't want to take a safepoint because the
988 // caller frame will look interpreted and arguments are now
989 // "compiled" so it is much better to make this transition
990 // invisible to the stack walking code. Unfortunately if
991 // we try and find the callee by normal means a safepoint
992 // is possible. So we stash the desired callee in the thread
993 // and the vm will find there should this case occur.
994
995 __ movptr(Address(r15_thread, JavaThread::callee_target_offset()), rbx);
996
997 // put Method* where a c2i would expect should we end up there
998 // only needed because eof c2 resolve stubs return Method* as a result in
999 // rax
1000 __ mov(rax, rbx);
1001 __ jmp(r11);
1002 }
1003
1004 // ---------------------------------------------------------------
1005 void SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
1006 int total_args_passed,
1007 int comp_args_on_stack,
1008 const BasicType *sig_bt,
1009 const VMRegPair *regs,
1010 AdapterHandlerEntry* handler) {
1011 address i2c_entry = __ pc();
1012
1013 gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
1014
1015 // -------------------------------------------------------------------------
1016 // Generate a C2I adapter. On entry we know rbx holds the Method* during calls
1017 // to the interpreter. The args start out packed in the compiled layout. They
1018 // need to be unpacked into the interpreter layout. This will almost always
1019 // require some stack space. We grow the current (compiled) stack, then repack
1020 // the args. We finally end in a jump to the generic interpreter entry point.
1021 // On exit from the interpreter, the interpreter will restore our SP (lest the
1022 // compiled code, which relies solely on SP and not RBP, get sick).
1023
1024 address c2i_unverified_entry = __ pc();
1025 Label skip_fixup;
1026
1027 Register data = rax;
1028 Register receiver = j_rarg0;
1029 Register temp = rbx;
1030
1031 {
1032 __ ic_check(1 /* end_alignment */);
1033 __ movptr(rbx, Address(data, CompiledICData::speculated_method_offset()));
1034 // Method might have been compiled since the call site was patched to
1035 // interpreted if that is the case treat it as a miss so we can get
1036 // the call site corrected.
1037 __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), NULL_WORD);
1038 __ jcc(Assembler::equal, skip_fixup);
1039 __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
1040 }
1041
1042 address c2i_entry = __ pc();
1043
1044 // Class initialization barrier for static methods
1045 address c2i_no_clinit_check_entry = nullptr;
1046 if (VM_Version::supports_fast_class_init_checks()) {
1047 Label L_skip_barrier;
1048 Register method = rbx;
1049
1050 { // Bypass the barrier for non-static methods
1051 Register flags = rscratch1;
1052 __ load_unsigned_short(flags, Address(method, Method::access_flags_offset()));
1053 __ testl(flags, JVM_ACC_STATIC);
1054 __ jcc(Assembler::zero, L_skip_barrier); // non-static
1055 }
1056
1057 Register klass = rscratch1;
1058 __ load_method_holder(klass, method);
1059 __ clinit_barrier(klass, &L_skip_barrier /*L_fast_path*/);
1060
1061 __ jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); // slow path
1062
1063 __ bind(L_skip_barrier);
1064 c2i_no_clinit_check_entry = __ pc();
1065 }
1066
1067 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
1068 bs->c2i_entry_barrier(masm);
1069
1070 gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
1071
1072 handler->set_entry_points(i2c_entry, c2i_entry, c2i_unverified_entry, c2i_no_clinit_check_entry);
1073 return;
1074 }
1075
1076 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
1077 VMRegPair *regs,
1078 int total_args_passed) {
1079
1080 // We return the amount of VMRegImpl stack slots we need to reserve for all
1081 // the arguments NOT counting out_preserve_stack_slots.
1082
1083 // NOTE: These arrays will have to change when c1 is ported
1084 #ifdef _WIN64
1085 static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
1086 c_rarg0, c_rarg1, c_rarg2, c_rarg3
1087 };
1088 static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
1089 c_farg0, c_farg1, c_farg2, c_farg3
1090 };
1091 #else
1092 static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
1093 c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, c_rarg5
2185 const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
2186
2187 // Get the handle (the 2nd argument)
2188 __ mov(oop_handle_reg, c_rarg1);
2189
2190 // Get address of the box
2191
2192 __ lea(lock_reg, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
2193
2194 // Load the oop from the handle
2195 __ movptr(obj_reg, Address(oop_handle_reg, 0));
2196
2197 if (LockingMode == LM_MONITOR) {
2198 __ jmp(slow_path_lock);
2199 } else if (LockingMode == LM_LEGACY) {
2200 // Load immediate 1 into swap_reg %rax
2201 __ movl(swap_reg, 1);
2202
2203 // Load (object->mark() | 1) into swap_reg %rax
2204 __ orptr(swap_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
2205
2206 // Save (object->mark() | 1) into BasicLock's displaced header
2207 __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
2208
2209 // src -> dest iff dest == rax else rax <- dest
2210 __ lock();
2211 __ cmpxchgptr(lock_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
2212 __ jcc(Assembler::equal, count_mon);
2213
2214 // Hmm should this move to the slow path code area???
2215
2216 // Test if the oopMark is an obvious stack pointer, i.e.,
2217 // 1) (mark & 3) == 0, and
2218 // 2) rsp <= mark < mark + os::pagesize()
2219 // These 3 tests can be done by evaluating the following
2220 // expression: ((mark - rsp) & (3 - os::vm_page_size())),
2221 // assuming both stack pointer and pagesize have their
2222 // least significant 2 bits clear.
2223 // NOTE: the oopMark is in swap_reg %rax as the result of cmpxchg
2224
3612 julong *scratch = (julong *)alloca(total_allocation);
3613
3614 // Local scratch arrays
3615 julong
3616 *a = scratch + 0 * longwords,
3617 *n = scratch + 1 * longwords,
3618 *m = scratch + 2 * longwords;
3619
3620 reverse_words((julong *)a_ints, a, longwords);
3621 reverse_words((julong *)n_ints, n, longwords);
3622
3623 if (len >= MONTGOMERY_SQUARING_THRESHOLD) {
3624 ::montgomery_square(a, n, m, (julong)inv, longwords);
3625 } else {
3626 ::montgomery_multiply(a, a, n, m, (julong)inv, longwords);
3627 }
3628
3629 reverse_words(m, (julong *)m_ints, longwords);
3630 }
3631
3632 #if INCLUDE_JFR
3633
3634 // For c2: c_rarg0 is junk, call to runtime to write a checkpoint.
3635 // It returns a jobject handle to the event writer.
3636 // The handle is dereferenced and the return value is the event writer oop.
3637 RuntimeStub* SharedRuntime::generate_jfr_write_checkpoint() {
3638 enum layout {
3639 rbp_off,
3640 rbpH_off,
3641 return_off,
3642 return_off2,
3643 framesize // inclusive of return address
3644 };
3645
3646 const char* name = SharedRuntime::stub_name(SharedStubId::jfr_write_checkpoint_id);
3647 CodeBuffer code(name, 1024, 64);
3648 MacroAssembler* masm = new MacroAssembler(&code);
3649 address start = __ pc();
3650
3651 __ enter();
3704 __ reset_last_Java_frame(true);
3705
3706 __ leave();
3707 __ ret(0);
3708
3709 OopMapSet* oop_maps = new OopMapSet();
3710 OopMap* map = new OopMap(framesize, 1);
3711 oop_maps->add_gc_map(frame_complete, map);
3712
3713 RuntimeStub* stub =
3714 RuntimeStub::new_runtime_stub(name,
3715 &code,
3716 frame_complete,
3717 (framesize >> (LogBytesPerWord - LogBytesPerInt)),
3718 oop_maps,
3719 false);
3720 return stub;
3721 }
3722
3723 #endif // INCLUDE_JFR
3724
|
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #ifndef _WINDOWS
26 #include "alloca.h"
27 #endif
28 #include "asm/macroAssembler.hpp"
29 #include "asm/macroAssembler.inline.hpp"
30 #include "classfile/symbolTable.hpp"
31 #include "code/aotCodeCache.hpp"
32 #include "code/compiledIC.hpp"
33 #include "code/debugInfoRec.hpp"
34 #include "code/nativeInst.hpp"
35 #include "code/vtableStubs.hpp"
36 #include "compiler/oopMap.hpp"
37 #include "gc/shared/collectedHeap.hpp"
38 #include "gc/shared/gcLocker.hpp"
39 #include "gc/shared/barrierSet.hpp"
40 #include "gc/shared/barrierSetAssembler.hpp"
41 #include "interpreter/interpreter.hpp"
42 #include "logging/log.hpp"
43 #include "memory/resourceArea.hpp"
44 #include "memory/universe.hpp"
45 #include "oops/klass.inline.hpp"
46 #include "oops/method.inline.hpp"
47 #include "prims/methodHandles.hpp"
48 #include "runtime/continuation.hpp"
49 #include "runtime/continuationEntry.inline.hpp"
50 #include "runtime/globals.hpp"
618 break;
619 case T_DOUBLE:
620 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
621 if (fp_args < Argument::n_float_register_parameters_j) {
622 regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
623 } else {
624 stk_args = align_up(stk_args, 2);
625 regs[i].set2(VMRegImpl::stack2reg(stk_args));
626 stk_args += 2;
627 }
628 break;
629 default:
630 ShouldNotReachHere();
631 break;
632 }
633 }
634
635 return stk_args;
636 }
637
638 // Same as java_calling_convention() but for multiple return
639 // values. There's no way to store them on the stack so if we don't
640 // have enough registers, multiple values can't be returned.
641 const uint SharedRuntime::java_return_convention_max_int = Argument::n_int_register_parameters_j+1;
642 const uint SharedRuntime::java_return_convention_max_float = Argument::n_float_register_parameters_j;
643 int SharedRuntime::java_return_convention(const BasicType *sig_bt,
644 VMRegPair *regs,
645 int total_args_passed) {
646 // Create the mapping between argument positions and
647 // registers.
648 static const Register INT_ArgReg[java_return_convention_max_int] = {
649 rax, j_rarg5, j_rarg4, j_rarg3, j_rarg2, j_rarg1, j_rarg0
650 };
651 static const XMMRegister FP_ArgReg[java_return_convention_max_float] = {
652 j_farg0, j_farg1, j_farg2, j_farg3,
653 j_farg4, j_farg5, j_farg6, j_farg7
654 };
655
656
657 uint int_args = 0;
658 uint fp_args = 0;
659
660 for (int i = 0; i < total_args_passed; i++) {
661 switch (sig_bt[i]) {
662 case T_BOOLEAN:
663 case T_CHAR:
664 case T_BYTE:
665 case T_SHORT:
666 case T_INT:
667 if (int_args < Argument::n_int_register_parameters_j+1) {
668 regs[i].set1(INT_ArgReg[int_args]->as_VMReg());
669 int_args++;
670 } else {
671 return -1;
672 }
673 break;
674 case T_VOID:
675 // halves of T_LONG or T_DOUBLE
676 assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
677 regs[i].set_bad();
678 break;
679 case T_LONG:
680 assert(sig_bt[i + 1] == T_VOID, "expecting half");
681 // fall through
682 case T_OBJECT:
683 case T_ARRAY:
684 case T_ADDRESS:
685 case T_METADATA:
686 if (int_args < Argument::n_int_register_parameters_j+1) {
687 regs[i].set2(INT_ArgReg[int_args]->as_VMReg());
688 int_args++;
689 } else {
690 return -1;
691 }
692 break;
693 case T_FLOAT:
694 if (fp_args < Argument::n_float_register_parameters_j) {
695 regs[i].set1(FP_ArgReg[fp_args]->as_VMReg());
696 fp_args++;
697 } else {
698 return -1;
699 }
700 break;
701 case T_DOUBLE:
702 assert(sig_bt[i + 1] == T_VOID, "expecting half");
703 if (fp_args < Argument::n_float_register_parameters_j) {
704 regs[i].set2(FP_ArgReg[fp_args]->as_VMReg());
705 fp_args++;
706 } else {
707 return -1;
708 }
709 break;
710 default:
711 ShouldNotReachHere();
712 break;
713 }
714 }
715
716 return int_args + fp_args;
717 }
718
719 // Patch the callers callsite with entry to compiled code if it exists.
720 static void patch_callers_callsite(MacroAssembler *masm) {
721 Label L;
722 __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), NULL_WORD);
723 __ jcc(Assembler::equal, L);
724
725 // Save the current stack pointer
726 __ mov(r13, rsp);
727 // Schedule the branch target address early.
728 // Call into the VM to patch the caller, then jump to compiled callee
729 // rax isn't live so capture return address while we easily can
730 __ movptr(rax, Address(rsp, 0));
731
732 // align stack so push_CPU_state doesn't fault
733 __ andptr(rsp, -(StackAlignmentInBytes));
734 __ push_CPU_state();
735 __ vzeroupper();
736 // VM needs caller's callsite
737 // VM needs target method
738 // This needs to be a long call since we will relocate this adapter to
741 // Allocate argument register save area
742 if (frame::arg_reg_save_area_bytes != 0) {
743 __ subptr(rsp, frame::arg_reg_save_area_bytes);
744 }
745 __ mov(c_rarg0, rbx);
746 __ mov(c_rarg1, rax);
747 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
748
749 // De-allocate argument register save area
750 if (frame::arg_reg_save_area_bytes != 0) {
751 __ addptr(rsp, frame::arg_reg_save_area_bytes);
752 }
753
754 __ vzeroupper();
755 __ pop_CPU_state();
756 // restore sp
757 __ mov(rsp, r13);
758 __ bind(L);
759 }
760
761 // For each inline type argument, sig includes the list of fields of
762 // the inline type. This utility function computes the number of
763 // arguments for the call if inline types are passed by reference (the
764 // calling convention the interpreter expects).
765 static int compute_total_args_passed_int(const GrowableArray<SigEntry>* sig_extended) {
766 int total_args_passed = 0;
767 if (InlineTypePassFieldsAsArgs) {
768 for (int i = 0; i < sig_extended->length(); i++) {
769 BasicType bt = sig_extended->at(i)._bt;
770 if (bt == T_METADATA) {
771 // In sig_extended, an inline type argument starts with:
772 // T_METADATA, followed by the types of the fields of the
773 // inline type and T_VOID to mark the end of the value
774 // type. Inline types are flattened so, for instance, in the
775 // case of an inline type with an int field and an inline type
776 // field that itself has 2 fields, an int and a long:
777 // T_METADATA T_INT T_METADATA T_INT T_LONG T_VOID (second
778 // slot for the T_LONG) T_VOID (inner inline type) T_VOID
779 // (outer inline type)
780 total_args_passed++;
781 int vt = 1;
782 do {
783 i++;
784 BasicType bt = sig_extended->at(i)._bt;
785 BasicType prev_bt = sig_extended->at(i-1)._bt;
786 if (bt == T_METADATA) {
787 vt++;
788 } else if (bt == T_VOID &&
789 prev_bt != T_LONG &&
790 prev_bt != T_DOUBLE) {
791 vt--;
792 }
793 } while (vt != 0);
794 } else {
795 total_args_passed++;
796 }
797 }
798 } else {
799 total_args_passed = sig_extended->length();
800 }
801 return total_args_passed;
802 }
803
804
805 static void gen_c2i_adapter_helper(MacroAssembler* masm,
806 BasicType bt,
807 BasicType prev_bt,
808 size_t size_in_bytes,
809 const VMRegPair& reg_pair,
810 const Address& to,
811 int extraspace,
812 bool is_oop) {
813 if (bt == T_VOID) {
814 assert(prev_bt == T_LONG || prev_bt == T_DOUBLE, "missing half");
815 return;
816 }
817
818 // Say 4 args:
819 // i st_off
820 // 0 32 T_LONG
821 // 1 24 T_VOID
822 // 2 16 T_OBJECT
823 // 3 8 T_BOOL
824 // - 0 return address
825 //
826 // However to make thing extra confusing. Because we can fit a long/double in
827 // a single slot on a 64 bt vm and it would be silly to break them up, the interpreter
828 // leaves one slot empty and only stores to a single slot. In this case the
829 // slot that is occupied is the T_VOID slot. See I said it was confusing.
830
831 bool wide = (size_in_bytes == wordSize);
832 VMReg r_1 = reg_pair.first();
833 VMReg r_2 = reg_pair.second();
834 assert(r_2->is_valid() == wide, "invalid size");
835 if (!r_1->is_valid()) {
836 assert(!r_2->is_valid(), "must be invalid");
837 return;
838 }
839
840 if (!r_1->is_XMMRegister()) {
841 Register val = rax;
842 if (r_1->is_stack()) {
843 int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
844 __ load_sized_value(val, Address(rsp, ld_off), size_in_bytes, /* is_signed */ false);
845 } else {
846 val = r_1->as_Register();
847 }
848 assert_different_registers(to.base(), val, rscratch1);
849 if (is_oop) {
850 __ push(r13);
851 __ push(rbx);
852 __ store_heap_oop(to, val, rscratch1, r13, rbx, IN_HEAP | ACCESS_WRITE | IS_DEST_UNINITIALIZED);
853 __ pop(rbx);
854 __ pop(r13);
855 } else {
856 __ store_sized_value(to, val, size_in_bytes);
857 }
858 } else {
859 if (wide) {
860 __ movdbl(to, r_1->as_XMMRegister());
861 } else {
862 __ movflt(to, r_1->as_XMMRegister());
863 }
864 }
865 }
866
867 static void gen_c2i_adapter(MacroAssembler *masm,
868 const GrowableArray<SigEntry>* sig_extended,
869 const VMRegPair *regs,
870 bool requires_clinit_barrier,
871 address& c2i_no_clinit_check_entry,
872 Label& skip_fixup,
873 address start,
874 OopMapSet* oop_maps,
875 int& frame_complete,
876 int& frame_size_in_words,
877 bool alloc_inline_receiver) {
878 if (requires_clinit_barrier && VM_Version::supports_fast_class_init_checks()) {
879 Label L_skip_barrier;
880 Register method = rbx;
881
882 { // Bypass the barrier for non-static methods
883 Register flags = rscratch1;
884 __ load_unsigned_short(flags, Address(method, Method::access_flags_offset()));
885 __ testl(flags, JVM_ACC_STATIC);
886 __ jcc(Assembler::zero, L_skip_barrier); // non-static
887 }
888
889 Register klass = rscratch1;
890 __ load_method_holder(klass, method);
891 __ clinit_barrier(klass, &L_skip_barrier /*L_fast_path*/);
892
893 __ jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); // slow path
894
895 __ bind(L_skip_barrier);
896 c2i_no_clinit_check_entry = __ pc();
897 }
898
899 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
900 bs->c2i_entry_barrier(masm);
901
902 // Before we get into the guts of the C2I adapter, see if we should be here
903 // at all. We've come from compiled code and are attempting to jump to the
904 // interpreter, which means the caller made a static call to get here
905 // (vcalls always get a compiled target if there is one). Check for a
906 // compiled target. If there is one, we need to patch the caller's call.
907 patch_callers_callsite(masm);
908
909 __ bind(skip_fixup);
910
911 if (InlineTypePassFieldsAsArgs) {
912 // Is there an inline type argument?
913 bool has_inline_argument = false;
914 for (int i = 0; i < sig_extended->length() && !has_inline_argument; i++) {
915 has_inline_argument = (sig_extended->at(i)._bt == T_METADATA);
916 }
917 if (has_inline_argument) {
918 // There is at least an inline type argument: we're coming from
919 // compiled code so we have no buffers to back the inline types.
920 // Allocate the buffers here with a runtime call.
921 OopMap* map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words, /*save_vectors*/ false);
922
923 frame_complete = __ offset();
924
925 __ set_last_Java_frame(noreg, noreg, nullptr, rscratch1);
926
927 __ mov(c_rarg0, r15_thread);
928 __ mov(c_rarg1, rbx);
929 __ mov64(c_rarg2, (int64_t)alloc_inline_receiver);
930 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::allocate_inline_types)));
931
932 oop_maps->add_gc_map((int)(__ pc() - start), map);
933 __ reset_last_Java_frame(false);
934
935 RegisterSaver::restore_live_registers(masm);
936
937 Label no_exception;
938 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), NULL_WORD);
939 __ jcc(Assembler::equal, no_exception);
940
941 __ movptr(Address(r15_thread, JavaThread::vm_result_oop_offset()), NULL_WORD);
942 __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
943 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
944
945 __ bind(no_exception);
946
947 // We get an array of objects from the runtime call
948 __ get_vm_result_oop(rscratch2); // Use rscratch2 (r11) as temporary because rscratch1 (r10) is trashed by movptr()
949 __ get_vm_result_metadata(rbx); // TODO: required to keep the callee Method live?
950 }
951 }
952
953 // Since all args are passed on the stack, total_args_passed *
954 // Interpreter::stackElementSize is the space we need.
955 int total_args_passed = compute_total_args_passed_int(sig_extended);
956 assert(total_args_passed >= 0, "total_args_passed is %d", total_args_passed);
957
958 int extraspace = (total_args_passed * Interpreter::stackElementSize);
959
960 // stack is aligned, keep it that way
961 // This is not currently needed or enforced by the interpreter, but
962 // we might as well conform to the ABI.
963 extraspace = align_up(extraspace, 2*wordSize);
964
965 // set senderSP value
966 __ lea(r13, Address(rsp, wordSize));
967
968 #ifdef ASSERT
969 __ check_stack_alignment(r13, "sender stack not aligned");
970 #endif
971 if (extraspace > 0) {
972 // Pop the return address
973 __ pop(rax);
974
975 __ subptr(rsp, extraspace);
976
977 // Push the return address
978 __ push(rax);
979
980 // Account for the return address location since we store it first rather
981 // than hold it in a register across all the shuffling
982 extraspace += wordSize;
983 }
984
985 #ifdef ASSERT
986 __ check_stack_alignment(rsp, "callee stack not aligned", wordSize, rax);
987 #endif
988
989 // Now write the args into the outgoing interpreter space
990
991 // next_arg_comp is the next argument from the compiler point of
992 // view (inline type fields are passed in registers/on the stack). In
993 // sig_extended, an inline type argument starts with: T_METADATA,
994 // followed by the types of the fields of the inline type and T_VOID
995 // to mark the end of the inline type. ignored counts the number of
996 // T_METADATA/T_VOID. next_vt_arg is the next inline type argument:
997 // used to get the buffer for that argument from the pool of buffers
998 // we allocated above and want to pass to the
999 // interpreter. next_arg_int is the next argument from the
1000 // interpreter point of view (inline types are passed by reference).
1001 for (int next_arg_comp = 0, ignored = 0, next_vt_arg = 0, next_arg_int = 0;
1002 next_arg_comp < sig_extended->length(); next_arg_comp++) {
1003 assert(ignored <= next_arg_comp, "shouldn't skip over more slots than there are arguments");
1004 assert(next_arg_int <= total_args_passed, "more arguments for the interpreter than expected?");
1005 BasicType bt = sig_extended->at(next_arg_comp)._bt;
1006 int st_off = (total_args_passed - next_arg_int) * Interpreter::stackElementSize;
1007 if (!InlineTypePassFieldsAsArgs || bt != T_METADATA) {
1008 int next_off = st_off - Interpreter::stackElementSize;
1009 const int offset = (bt == T_LONG || bt == T_DOUBLE) ? next_off : st_off;
1010 const VMRegPair reg_pair = regs[next_arg_comp-ignored];
1011 size_t size_in_bytes = reg_pair.second()->is_valid() ? 8 : 4;
1012 gen_c2i_adapter_helper(masm, bt, next_arg_comp > 0 ? sig_extended->at(next_arg_comp-1)._bt : T_ILLEGAL,
1013 size_in_bytes, reg_pair, Address(rsp, offset), extraspace, false);
1014 next_arg_int++;
1015 #ifdef ASSERT
1016 if (bt == T_LONG || bt == T_DOUBLE) {
1017 // Overwrite the unused slot with known junk
1018 __ mov64(rax, CONST64(0xdeadffffdeadaaaa));
1019 __ movptr(Address(rsp, st_off), rax);
1020 }
1021 #endif /* ASSERT */
1022 } else {
1023 ignored++;
1024 // get the buffer from the just allocated pool of buffers
1025 int index = arrayOopDesc::base_offset_in_bytes(T_OBJECT) + next_vt_arg * type2aelembytes(T_OBJECT);
1026 __ load_heap_oop(r14, Address(rscratch2, index));
1027 next_vt_arg++; next_arg_int++;
1028 int vt = 1;
1029 // write fields we get from compiled code in registers/stack
1030 // slots to the buffer: we know we are done with that inline type
1031 // argument when we hit the T_VOID that acts as an end of inline
1032 // type delimiter for this inline type. Inline types are flattened
1033 // so we might encounter embedded inline types. Each entry in
1034 // sig_extended contains a field offset in the buffer.
1035 Label L_null;
1036 do {
1037 next_arg_comp++;
1038 BasicType bt = sig_extended->at(next_arg_comp)._bt;
1039 BasicType prev_bt = sig_extended->at(next_arg_comp-1)._bt;
1040 if (bt == T_METADATA) {
1041 vt++;
1042 ignored++;
1043 } else if (bt == T_VOID &&
1044 prev_bt != T_LONG &&
1045 prev_bt != T_DOUBLE) {
1046 vt--;
1047 ignored++;
1048 } else {
1049 int off = sig_extended->at(next_arg_comp)._offset;
1050 if (off == -1) {
1051 // Nullable inline type argument, emit null check
1052 VMReg reg = regs[next_arg_comp-ignored].first();
1053 Label L_notNull;
1054 if (reg->is_stack()) {
1055 int ld_off = reg->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
1056 __ testb(Address(rsp, ld_off), 1);
1057 } else {
1058 __ testb(reg->as_Register(), 1);
1059 }
1060 __ jcc(Assembler::notZero, L_notNull);
1061 __ movptr(Address(rsp, st_off), 0);
1062 __ jmp(L_null);
1063 __ bind(L_notNull);
1064 continue;
1065 }
1066 assert(off > 0, "offset in object should be positive");
1067 size_t size_in_bytes = is_java_primitive(bt) ? type2aelembytes(bt) : wordSize;
1068 bool is_oop = is_reference_type(bt);
1069 gen_c2i_adapter_helper(masm, bt, next_arg_comp > 0 ? sig_extended->at(next_arg_comp-1)._bt : T_ILLEGAL,
1070 size_in_bytes, regs[next_arg_comp-ignored], Address(r14, off), extraspace, is_oop);
1071 }
1072 } while (vt != 0);
1073 // pass the buffer to the interpreter
1074 __ movptr(Address(rsp, st_off), r14);
1075 __ bind(L_null);
1076 }
1077 }
1078
1079 // Schedule the branch target address early.
1080 __ movptr(rcx, Address(rbx, in_bytes(Method::interpreter_entry_offset())));
1081 __ jmp(rcx);
1082 }
1083
1084 void SharedRuntime::gen_i2c_adapter(MacroAssembler *masm,
1085 int comp_args_on_stack,
1086 const GrowableArray<SigEntry>* sig,
1087 const VMRegPair *regs) {
1088
1089 // Note: r13 contains the senderSP on entry. We must preserve it since
1090 // we may do a i2c -> c2i transition if we lose a race where compiled
1091 // code goes non-entrant while we get args ready.
1092 // In addition we use r13 to locate all the interpreter args as
1093 // we must align the stack to 16 bytes on an i2c entry else we
1094 // lose alignment we expect in all compiled code and register
1095 // save code can segv when fxsave instructions find improperly
1096 // aligned stack pointer.
1097
1098 // Adapters can be frameless because they do not require the caller
1099 // to perform additional cleanup work, such as correcting the stack pointer.
1100 // An i2c adapter is frameless because the *caller* frame, which is interpreted,
1101 // routinely repairs its own stack pointer (from interpreter_frame_last_sp),
1102 // even if a callee has modified the stack pointer.
1103 // A c2i adapter is frameless because the *callee* frame, which is interpreted,
1104 // routinely repairs its caller's stack pointer (from sender_sp, which is set
1105 // up via the senderSP register).
1106 // In other words, if *either* the caller or callee is interpreted, we can
1122 // Convert 4-byte c2 stack slots to words.
1123 int comp_words_on_stack = align_up(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
1124
1125 if (comp_args_on_stack) {
1126 __ subptr(rsp, comp_words_on_stack * wordSize);
1127 }
1128
1129 // Ensure compiled code always sees stack at proper alignment
1130 __ andptr(rsp, -16);
1131
1132 // push the return address and misalign the stack that youngest frame always sees
1133 // as far as the placement of the call instruction
1134 __ push(rax);
1135
1136 // Put saved SP in another register
1137 const Register saved_sp = rax;
1138 __ movptr(saved_sp, r11);
1139
1140 // Will jump to the compiled code just as if compiled code was doing it.
1141 // Pre-load the register-jump target early, to schedule it better.
1142 __ movptr(r11, Address(rbx, in_bytes(Method::from_compiled_inline_offset())));
1143
1144 #if INCLUDE_JVMCI
1145 if (EnableJVMCI) {
1146 // check if this call should be routed towards a specific entry point
1147 __ cmpptr(Address(r15_thread, in_bytes(JavaThread::jvmci_alternate_call_target_offset())), 0);
1148 Label no_alternative_target;
1149 __ jcc(Assembler::equal, no_alternative_target);
1150 __ movptr(r11, Address(r15_thread, in_bytes(JavaThread::jvmci_alternate_call_target_offset())));
1151 __ movptr(Address(r15_thread, in_bytes(JavaThread::jvmci_alternate_call_target_offset())), 0);
1152 __ bind(no_alternative_target);
1153 }
1154 #endif // INCLUDE_JVMCI
1155
1156 int total_args_passed = sig->length();
1157
1158 // Now generate the shuffle code. Pick up all register args and move the
1159 // rest through the floating point stack top.
1160 for (int i = 0; i < total_args_passed; i++) {
1161 BasicType bt = sig->at(i)._bt;
1162 if (bt == T_VOID) {
1163 // Longs and doubles are passed in native word order, but misaligned
1164 // in the 32-bit build.
1165 BasicType prev_bt = (i > 0) ? sig->at(i-1)._bt : T_ILLEGAL;
1166 assert(i > 0 && (prev_bt == T_LONG || prev_bt == T_DOUBLE), "missing half");
1167 continue;
1168 }
1169
1170 // Pick up 0, 1 or 2 words from SP+offset.
1171
1172 assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
1173 "scrambled load targets?");
1174 // Load in argument order going down.
1175 int ld_off = (total_args_passed - i)*Interpreter::stackElementSize;
1176 // Point to interpreter value (vs. tag)
1177 int next_off = ld_off - Interpreter::stackElementSize;
1178 //
1179 //
1180 //
1181 VMReg r_1 = regs[i].first();
1182 VMReg r_2 = regs[i].second();
1183 if (!r_1->is_valid()) {
1184 assert(!r_2->is_valid(), "");
1185 continue;
1186 }
1188 // Convert stack slot to an SP offset (+ wordSize to account for return address )
1189 int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
1190
1191 // We can use r13 as a temp here because compiled code doesn't need r13 as an input
1192 // and if we end up going thru a c2i because of a miss a reasonable value of r13
1193 // will be generated.
1194 if (!r_2->is_valid()) {
1195 // sign extend???
1196 __ movl(r13, Address(saved_sp, ld_off));
1197 __ movptr(Address(rsp, st_off), r13);
1198 } else {
1199 //
1200 // We are using two optoregs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
1201 // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
1202 // So we must adjust where to pick up the data to match the interpreter.
1203 //
1204 // Interpreter local[n] == MSW, local[n+1] == LSW however locals
1205 // are accessed as negative so LSW is at LOW address
1206
1207 // ld_off is MSW so get LSW
1208 const int offset = (bt==T_LONG||bt==T_DOUBLE)?
1209 next_off : ld_off;
1210 __ movq(r13, Address(saved_sp, offset));
1211 // st_off is LSW (i.e. reg.first())
1212 __ movq(Address(rsp, st_off), r13);
1213 }
1214 } else if (r_1->is_Register()) { // Register argument
1215 Register r = r_1->as_Register();
1216 assert(r != rax, "must be different");
1217 if (r_2->is_valid()) {
1218 //
1219 // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
1220 // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
1221 // So we must adjust where to pick up the data to match the interpreter.
1222
1223 const int offset = (bt==T_LONG||bt==T_DOUBLE)?
1224 next_off : ld_off;
1225
1226 // this can be a misaligned move
1227 __ movq(r, Address(saved_sp, offset));
1228 } else {
1229 // sign extend and use a full word?
1230 __ movl(r, Address(saved_sp, ld_off));
1231 }
1232 } else {
1233 if (!r_2->is_valid()) {
1234 __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off));
1235 } else {
1236 __ movdbl(r_1->as_XMMRegister(), Address(saved_sp, next_off));
1237 }
1238 }
1239 }
1240
1241 __ push_cont_fastpath(); // Set JavaThread::_cont_fastpath to the sp of the oldest interpreted frame we know about
1242
1243 // 6243940 We might end up in handle_wrong_method if
1244 // the callee is deoptimized as we race thru here. If that
1245 // happens we don't want to take a safepoint because the
1246 // caller frame will look interpreted and arguments are now
1247 // "compiled" so it is much better to make this transition
1248 // invisible to the stack walking code. Unfortunately if
1249 // we try and find the callee by normal means a safepoint
1250 // is possible. So we stash the desired callee in the thread
1251 // and the vm will find there should this case occur.
1252
1253 __ movptr(Address(r15_thread, JavaThread::callee_target_offset()), rbx);
1254
1255 // put Method* where a c2i would expect should we end up there
1256 // only needed because of c2 resolve stubs return Method* as a result in
1257 // rax
1258 __ mov(rax, rbx);
1259 __ jmp(r11);
1260 }
1261
1262 static void gen_inline_cache_check(MacroAssembler *masm, Label& skip_fixup) {
1263 Register data = rax;
1264 __ ic_check(1 /* end_alignment */);
1265 __ movptr(rbx, Address(data, CompiledICData::speculated_method_offset()));
1266
1267 // Method might have been compiled since the call site was patched to
1268 // interpreted if that is the case treat it as a miss so we can get
1269 // the call site corrected.
1270 __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), NULL_WORD);
1271 __ jcc(Assembler::equal, skip_fixup);
1272 __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
1273 }
1274
1275 // ---------------------------------------------------------------
1276 void SharedRuntime::generate_i2c2i_adapters(MacroAssembler* masm,
1277 int comp_args_on_stack,
1278 const GrowableArray<SigEntry>* sig,
1279 const VMRegPair* regs,
1280 const GrowableArray<SigEntry>* sig_cc,
1281 const VMRegPair* regs_cc,
1282 const GrowableArray<SigEntry>* sig_cc_ro,
1283 const VMRegPair* regs_cc_ro,
1284 AdapterHandlerEntry* handler,
1285 AdapterBlob*& new_adapter,
1286 bool allocate_code_blob) {
1287 address i2c_entry = __ pc();
1288 gen_i2c_adapter(masm, comp_args_on_stack, sig, regs);
1289
1290 // -------------------------------------------------------------------------
1291 // Generate a C2I adapter. On entry we know rbx holds the Method* during calls
1292 // to the interpreter. The args start out packed in the compiled layout. They
1293 // need to be unpacked into the interpreter layout. This will almost always
1294 // require some stack space. We grow the current (compiled) stack, then repack
1295 // the args. We finally end in a jump to the generic interpreter entry point.
1296 // On exit from the interpreter, the interpreter will restore our SP (lest the
1297 // compiled code, which relies solely on SP and not RBP, get sick).
1298
1299 address c2i_unverified_entry = __ pc();
1300 address c2i_unverified_inline_entry = __ pc();
1301 Label skip_fixup;
1302
1303 gen_inline_cache_check(masm, skip_fixup);
1304
1305 OopMapSet* oop_maps = new OopMapSet();
1306 int frame_complete = CodeOffsets::frame_never_safe;
1307 int frame_size_in_words = 0;
1308
1309 // Scalarized c2i adapter with non-scalarized receiver (i.e., don't pack receiver)
1310 address c2i_no_clinit_check_entry = nullptr;
1311 address c2i_inline_ro_entry = __ pc();
1312 if (regs_cc != regs_cc_ro) {
1313 // No class init barrier needed because method is guaranteed to be non-static
1314 gen_c2i_adapter(masm, sig_cc_ro, regs_cc_ro, /* requires_clinit_barrier = */ false, c2i_no_clinit_check_entry,
1315 skip_fixup, i2c_entry, oop_maps, frame_complete, frame_size_in_words, /* alloc_inline_receiver = */ false);
1316 skip_fixup.reset();
1317 }
1318
1319 // Scalarized c2i adapter
1320 address c2i_entry = __ pc();
1321 address c2i_inline_entry = __ pc();
1322 gen_c2i_adapter(masm, sig_cc, regs_cc, /* requires_clinit_barrier = */ true, c2i_no_clinit_check_entry,
1323 skip_fixup, i2c_entry, oop_maps, frame_complete, frame_size_in_words, /* alloc_inline_receiver = */ true);
1324
1325 // Non-scalarized c2i adapter
1326 if (regs != regs_cc) {
1327 c2i_unverified_inline_entry = __ pc();
1328 Label inline_entry_skip_fixup;
1329 gen_inline_cache_check(masm, inline_entry_skip_fixup);
1330
1331 c2i_inline_entry = __ pc();
1332 gen_c2i_adapter(masm, sig, regs, /* requires_clinit_barrier = */ true, c2i_no_clinit_check_entry,
1333 inline_entry_skip_fixup, i2c_entry, oop_maps, frame_complete, frame_size_in_words, /* alloc_inline_receiver = */ false);
1334 }
1335
1336 // The c2i adapters might safepoint and trigger a GC. The caller must make sure that
1337 // the GC knows about the location of oop argument locations passed to the c2i adapter.
1338 if (allocate_code_blob) {
1339 bool caller_must_gc_arguments = (regs != regs_cc);
1340 new_adapter = AdapterBlob::create(masm->code(), frame_complete, frame_size_in_words, oop_maps, caller_must_gc_arguments);
1341 }
1342
1343 handler->set_entry_points(i2c_entry, c2i_entry, c2i_inline_entry, c2i_inline_ro_entry, c2i_unverified_entry,
1344 c2i_unverified_inline_entry, c2i_no_clinit_check_entry);
1345 }
1346
1347 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
1348 VMRegPair *regs,
1349 int total_args_passed) {
1350
1351 // We return the amount of VMRegImpl stack slots we need to reserve for all
1352 // the arguments NOT counting out_preserve_stack_slots.
1353
1354 // NOTE: These arrays will have to change when c1 is ported
1355 #ifdef _WIN64
1356 static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
1357 c_rarg0, c_rarg1, c_rarg2, c_rarg3
1358 };
1359 static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
1360 c_farg0, c_farg1, c_farg2, c_farg3
1361 };
1362 #else
1363 static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
1364 c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, c_rarg5
2456 const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
2457
2458 // Get the handle (the 2nd argument)
2459 __ mov(oop_handle_reg, c_rarg1);
2460
2461 // Get address of the box
2462
2463 __ lea(lock_reg, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
2464
2465 // Load the oop from the handle
2466 __ movptr(obj_reg, Address(oop_handle_reg, 0));
2467
2468 if (LockingMode == LM_MONITOR) {
2469 __ jmp(slow_path_lock);
2470 } else if (LockingMode == LM_LEGACY) {
2471 // Load immediate 1 into swap_reg %rax
2472 __ movl(swap_reg, 1);
2473
2474 // Load (object->mark() | 1) into swap_reg %rax
2475 __ orptr(swap_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
2476 if (EnableValhalla) {
2477 // Mask inline_type bit such that we go to the slow path if object is an inline type
2478 __ andptr(swap_reg, ~((int) markWord::inline_type_bit_in_place));
2479 }
2480
2481 // Save (object->mark() | 1) into BasicLock's displaced header
2482 __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
2483
2484 // src -> dest iff dest == rax else rax <- dest
2485 __ lock();
2486 __ cmpxchgptr(lock_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
2487 __ jcc(Assembler::equal, count_mon);
2488
2489 // Hmm should this move to the slow path code area???
2490
2491 // Test if the oopMark is an obvious stack pointer, i.e.,
2492 // 1) (mark & 3) == 0, and
2493 // 2) rsp <= mark < mark + os::pagesize()
2494 // These 3 tests can be done by evaluating the following
2495 // expression: ((mark - rsp) & (3 - os::vm_page_size())),
2496 // assuming both stack pointer and pagesize have their
2497 // least significant 2 bits clear.
2498 // NOTE: the oopMark is in swap_reg %rax as the result of cmpxchg
2499
3887 julong *scratch = (julong *)alloca(total_allocation);
3888
3889 // Local scratch arrays
3890 julong
3891 *a = scratch + 0 * longwords,
3892 *n = scratch + 1 * longwords,
3893 *m = scratch + 2 * longwords;
3894
3895 reverse_words((julong *)a_ints, a, longwords);
3896 reverse_words((julong *)n_ints, n, longwords);
3897
3898 if (len >= MONTGOMERY_SQUARING_THRESHOLD) {
3899 ::montgomery_square(a, n, m, (julong)inv, longwords);
3900 } else {
3901 ::montgomery_multiply(a, a, n, m, (julong)inv, longwords);
3902 }
3903
3904 reverse_words(m, (julong *)m_ints, longwords);
3905 }
3906
3907 BufferedInlineTypeBlob* SharedRuntime::generate_buffered_inline_type_adapter(const InlineKlass* vk) {
3908 BufferBlob* buf = BufferBlob::create("inline types pack/unpack", 16 * K);
3909 CodeBuffer buffer(buf);
3910 short buffer_locs[20];
3911 buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
3912 sizeof(buffer_locs)/sizeof(relocInfo));
3913
3914 MacroAssembler* masm = new MacroAssembler(&buffer);
3915
3916 const Array<SigEntry>* sig_vk = vk->extended_sig();
3917 const Array<VMRegPair>* regs = vk->return_regs();
3918
3919 int pack_fields_jobject_off = __ offset();
3920 // Resolve pre-allocated buffer from JNI handle.
3921 // We cannot do this in generate_call_stub() because it requires GC code to be initialized.
3922 __ movptr(rax, Address(r13, 0));
3923 __ resolve_jobject(rax /* value */,
3924 r12 /* tmp */);
3925 __ movptr(Address(r13, 0), rax);
3926
3927 int pack_fields_off = __ offset();
3928
3929 int j = 1;
3930 for (int i = 0; i < sig_vk->length(); i++) {
3931 BasicType bt = sig_vk->at(i)._bt;
3932 if (bt == T_METADATA) {
3933 continue;
3934 }
3935 if (bt == T_VOID) {
3936 if (sig_vk->at(i-1)._bt == T_LONG ||
3937 sig_vk->at(i-1)._bt == T_DOUBLE) {
3938 j++;
3939 }
3940 continue;
3941 }
3942 int off = sig_vk->at(i)._offset;
3943 assert(off > 0, "offset in object should be positive");
3944 VMRegPair pair = regs->at(j);
3945 VMReg r_1 = pair.first();
3946 VMReg r_2 = pair.second();
3947 Address to(rax, off);
3948 if (bt == T_FLOAT) {
3949 __ movflt(to, r_1->as_XMMRegister());
3950 } else if (bt == T_DOUBLE) {
3951 __ movdbl(to, r_1->as_XMMRegister());
3952 } else {
3953 Register val = r_1->as_Register();
3954 assert_different_registers(to.base(), val, r14, r13, rbx, rscratch1);
3955 if (is_reference_type(bt)) {
3956 __ store_heap_oop(to, val, r14, r13, rbx, IN_HEAP | ACCESS_WRITE | IS_DEST_UNINITIALIZED);
3957 } else {
3958 __ store_sized_value(to, r_1->as_Register(), type2aelembytes(bt));
3959 }
3960 }
3961 j++;
3962 }
3963 assert(j == regs->length(), "missed a field?");
3964 if (vk->has_nullable_atomic_layout()) {
3965 // Set the null marker
3966 __ movb(Address(rax, vk->null_marker_offset()), 1);
3967 }
3968 __ ret(0);
3969
3970 int unpack_fields_off = __ offset();
3971
3972 Label skip;
3973 Label not_null;
3974 __ testptr(rax, rax);
3975 __ jcc(Assembler::notZero, not_null);
3976
3977 // Return value is null. Zero oop registers to make the GC happy.
3978 j = 1;
3979 for (int i = 0; i < sig_vk->length(); i++) {
3980 BasicType bt = sig_vk->at(i)._bt;
3981 if (bt == T_METADATA) {
3982 continue;
3983 }
3984 if (bt == T_VOID) {
3985 if (sig_vk->at(i-1)._bt == T_LONG ||
3986 sig_vk->at(i-1)._bt == T_DOUBLE) {
3987 j++;
3988 }
3989 continue;
3990 }
3991 if (bt == T_OBJECT || bt == T_ARRAY) {
3992 VMRegPair pair = regs->at(j);
3993 VMReg r_1 = pair.first();
3994 __ xorq(r_1->as_Register(), r_1->as_Register());
3995 }
3996 j++;
3997 }
3998 __ jmp(skip);
3999 __ bind(not_null);
4000
4001 j = 1;
4002 for (int i = 0; i < sig_vk->length(); i++) {
4003 BasicType bt = sig_vk->at(i)._bt;
4004 if (bt == T_METADATA) {
4005 continue;
4006 }
4007 if (bt == T_VOID) {
4008 if (sig_vk->at(i-1)._bt == T_LONG ||
4009 sig_vk->at(i-1)._bt == T_DOUBLE) {
4010 j++;
4011 }
4012 continue;
4013 }
4014 int off = sig_vk->at(i)._offset;
4015 assert(off > 0, "offset in object should be positive");
4016 VMRegPair pair = regs->at(j);
4017 VMReg r_1 = pair.first();
4018 VMReg r_2 = pair.second();
4019 Address from(rax, off);
4020 if (bt == T_FLOAT) {
4021 __ movflt(r_1->as_XMMRegister(), from);
4022 } else if (bt == T_DOUBLE) {
4023 __ movdbl(r_1->as_XMMRegister(), from);
4024 } else if (bt == T_OBJECT || bt == T_ARRAY) {
4025 assert_different_registers(rax, r_1->as_Register());
4026 __ load_heap_oop(r_1->as_Register(), from);
4027 } else {
4028 assert(is_java_primitive(bt), "unexpected basic type");
4029 assert_different_registers(rax, r_1->as_Register());
4030 size_t size_in_bytes = type2aelembytes(bt);
4031 __ load_sized_value(r_1->as_Register(), from, size_in_bytes, bt != T_CHAR && bt != T_BOOLEAN);
4032 }
4033 j++;
4034 }
4035 assert(j == regs->length(), "missed a field?");
4036
4037 __ bind(skip);
4038 __ ret(0);
4039
4040 __ flush();
4041
4042 return BufferedInlineTypeBlob::create(&buffer, pack_fields_off, pack_fields_jobject_off, unpack_fields_off);
4043 }
4044
4045 #if INCLUDE_JFR
4046
4047 // For c2: c_rarg0 is junk, call to runtime to write a checkpoint.
4048 // It returns a jobject handle to the event writer.
4049 // The handle is dereferenced and the return value is the event writer oop.
4050 RuntimeStub* SharedRuntime::generate_jfr_write_checkpoint() {
4051 enum layout {
4052 rbp_off,
4053 rbpH_off,
4054 return_off,
4055 return_off2,
4056 framesize // inclusive of return address
4057 };
4058
4059 const char* name = SharedRuntime::stub_name(SharedStubId::jfr_write_checkpoint_id);
4060 CodeBuffer code(name, 1024, 64);
4061 MacroAssembler* masm = new MacroAssembler(&code);
4062 address start = __ pc();
4063
4064 __ enter();
4117 __ reset_last_Java_frame(true);
4118
4119 __ leave();
4120 __ ret(0);
4121
4122 OopMapSet* oop_maps = new OopMapSet();
4123 OopMap* map = new OopMap(framesize, 1);
4124 oop_maps->add_gc_map(frame_complete, map);
4125
4126 RuntimeStub* stub =
4127 RuntimeStub::new_runtime_stub(name,
4128 &code,
4129 frame_complete,
4130 (framesize >> (LogBytesPerWord - LogBytesPerInt)),
4131 oop_maps,
4132 false);
4133 return stub;
4134 }
4135
4136 #endif // INCLUDE_JFR
|