1 /*
   2  * Copyright (c) 2003, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "asm/macroAssembler.hpp"
  26 #include "classfile/javaClasses.hpp"
  27 #include "classfile/vmIntrinsics.hpp"
  28 #include "compiler/oopMap.hpp"
  29 #include "gc/shared/barrierSet.hpp"
  30 #include "gc/shared/barrierSetAssembler.hpp"
  31 #include "gc/shared/barrierSetNMethod.hpp"
  32 #include "gc/shared/gc_globals.hpp"
  33 #include "memory/universe.hpp"
  34 #include "prims/jvmtiExport.hpp"
  35 #include "prims/upcallLinker.hpp"
  36 #include "runtime/arguments.hpp"
  37 #include "runtime/continuationEntry.hpp"
  38 #include "runtime/javaThread.hpp"
  39 #include "runtime/sharedRuntime.hpp"
  40 #include "runtime/stubRoutines.hpp"
  41 #include "stubGenerator_x86_64.hpp"
  42 #ifdef COMPILER2
  43 #include "opto/runtime.hpp"
  44 #include "opto/c2_globals.hpp"
  45 #endif
  46 #if INCLUDE_JVMCI
  47 #include "jvmci/jvmci_globals.hpp"
  48 #endif
  49 
  50 // For a more detailed description of the stub routine structure
  51 // see the comment in stubRoutines.hpp
  52 
  53 #define __ _masm->
  54 #define TIMES_OOP (UseCompressedOops ? Address::times_4 : Address::times_8)
  55 
  56 #ifdef PRODUCT
  57 #define BLOCK_COMMENT(str) /* nothing */
  58 #else
  59 #define BLOCK_COMMENT(str) __ block_comment(str)
  60 #endif // PRODUCT
  61 
  62 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  63 
  64 //
  65 // Linux Arguments:
  66 //    c_rarg0:   call wrapper address                   address
  67 //    c_rarg1:   result                                 address
  68 //    c_rarg2:   result type                            BasicType
  69 //    c_rarg3:   method                                 Method*
  70 //    c_rarg4:   (interpreter) entry point              address
  71 //    c_rarg5:   parameters                             intptr_t*
  72 //    16(rbp): parameter size (in words)              int
  73 //    24(rbp): thread                                 Thread*
  74 //
  75 //     [ return_from_Java     ] <--- rsp
  76 //     [ argument word n      ]
  77 //      ...
  78 // -12 [ argument word 1      ]
  79 // -11 [ saved r15            ] <--- rsp_after_call
  80 // -10 [ saved r14            ]
  81 //  -9 [ saved r13            ]
  82 //  -8 [ saved r12            ]
  83 //  -7 [ saved rbx            ]
  84 //  -6 [ call wrapper         ]
  85 //  -5 [ result               ]
  86 //  -4 [ result type          ]
  87 //  -3 [ method               ]
  88 //  -2 [ entry point          ]
  89 //  -1 [ parameters           ]
  90 //   0 [ saved rbp            ] <--- rbp
  91 //   1 [ return address       ]
  92 //   2 [ parameter size       ]
  93 //   3 [ thread               ]
  94 //
  95 // Windows Arguments:
  96 //    c_rarg0:   call wrapper address                   address
  97 //    c_rarg1:   result                                 address
  98 //    c_rarg2:   result type                            BasicType
  99 //    c_rarg3:   method                                 Method*
 100 //    48(rbp): (interpreter) entry point              address
 101 //    56(rbp): parameters                             intptr_t*
 102 //    64(rbp): parameter size (in words)              int
 103 //    72(rbp): thread                                 Thread*
 104 //
 105 //     [ return_from_Java     ] <--- rsp
 106 //     [ argument word n      ]
 107 //      ...
 108 // -28 [ argument word 1      ]
 109 // -27 [ saved xmm15          ] <--- rsp after_call
 110 //     [ saved xmm7-xmm14     ]
 111 //  -9 [ saved xmm6           ] (each xmm register takes 2 slots)
 112 //  -7 [ saved r15            ]
 113 //  -6 [ saved r14            ]
 114 //  -5 [ saved r13            ]
 115 //  -4 [ saved r12            ]
 116 //  -3 [ saved rdi            ]
 117 //  -2 [ saved rsi            ]
 118 //  -1 [ saved rbx            ]
 119 //   0 [ saved rbp            ] <--- rbp
 120 //   1 [ return address       ]
 121 //   2 [ call wrapper         ]
 122 //   3 [ result               ]
 123 //   4 [ result type          ]
 124 //   5 [ method               ]
 125 //   6 [ entry point          ]
 126 //   7 [ parameters           ]
 127 //   8 [ parameter size       ]
 128 //   9 [ thread               ]
 129 //
 130 //    Windows reserves the callers stack space for arguments 1-4.
 131 //    We spill c_rarg0-c_rarg3 to this space.
 132 
 133 // Call stub stack layout word offsets from rbp
 134 #ifdef _WIN64
 135 enum call_stub_layout {
 136   xmm_save_first     = 6,  // save from xmm6
 137   xmm_save_last      = 15, // to xmm15
 138   xmm_save_base      = -9,
 139   rsp_after_call_off = xmm_save_base - 2 * (xmm_save_last - xmm_save_first), // -27
 140   r15_off            = -7,
 141   r14_off            = -6,
 142   r13_off            = -5,
 143   r12_off            = -4,
 144   rdi_off            = -3,
 145   rsi_off            = -2,
 146   rbx_off            = -1,
 147   rbp_off            =  0,
 148   retaddr_off        =  1,
 149   call_wrapper_off   =  2,
 150   result_off         =  3,
 151   result_type_off    =  4,
 152   method_off         =  5,
 153   entry_point_off    =  6,
 154   parameters_off     =  7,
 155   parameter_size_off =  8,
 156   thread_off         =  9
 157 };
 158 
 159 static Address xmm_save(int reg) {
 160   assert(reg >= xmm_save_first && reg <= xmm_save_last, "XMM register number out of range");
 161   return Address(rbp, (xmm_save_base - (reg - xmm_save_first) * 2) * wordSize);
 162 }
 163 #else // !_WIN64
 164 enum call_stub_layout {
 165   rsp_after_call_off = -12,
 166   mxcsr_off          = rsp_after_call_off,
 167   r15_off            = -11,
 168   r14_off            = -10,
 169   r13_off            = -9,
 170   r12_off            = -8,
 171   rbx_off            = -7,
 172   call_wrapper_off   = -6,
 173   result_off         = -5,
 174   result_type_off    = -4,
 175   method_off         = -3,
 176   entry_point_off    = -2,
 177   parameters_off     = -1,
 178   rbp_off            =  0,
 179   retaddr_off        =  1,
 180   parameter_size_off =  2,
 181   thread_off         =  3
 182 };
 183 #endif // _WIN64
 184 
 185 address StubGenerator::generate_call_stub(address& return_address) {
 186 
 187   assert((int)frame::entry_frame_after_call_words == -(int)rsp_after_call_off + 1 &&
 188          (int)frame::entry_frame_call_wrapper_offset == (int)call_wrapper_off,
 189          "adjust this code");
 190   StubId stub_id = StubId::stubgen_call_stub_id;
 191   StubCodeMark mark(this, stub_id);
 192   address start = __ pc();
 193 
 194   // same as in generate_catch_exception()!
 195   const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
 196 
 197   const Address call_wrapper  (rbp, call_wrapper_off   * wordSize);
 198   const Address result        (rbp, result_off         * wordSize);
 199   const Address result_type   (rbp, result_type_off    * wordSize);
 200   const Address method        (rbp, method_off         * wordSize);
 201   const Address entry_point   (rbp, entry_point_off    * wordSize);
 202   const Address parameters    (rbp, parameters_off     * wordSize);
 203   const Address parameter_size(rbp, parameter_size_off * wordSize);
 204 
 205   // same as in generate_catch_exception()!
 206   const Address thread        (rbp, thread_off         * wordSize);
 207 
 208   const Address r15_save(rbp, r15_off * wordSize);
 209   const Address r14_save(rbp, r14_off * wordSize);
 210   const Address r13_save(rbp, r13_off * wordSize);
 211   const Address r12_save(rbp, r12_off * wordSize);
 212   const Address rbx_save(rbp, rbx_off * wordSize);
 213 
 214   // stub code
 215   __ enter();
 216   __ subptr(rsp, -rsp_after_call_off * wordSize);
 217 
 218   // save register parameters
 219 #ifndef _WIN64
 220   __ movptr(parameters,   c_rarg5); // parameters
 221   __ movptr(entry_point,  c_rarg4); // entry_point
 222 #endif
 223 
 224   __ movptr(method,       c_rarg3); // method
 225   __ movl(result_type,  c_rarg2);   // result type
 226   __ movptr(result,       c_rarg1); // result
 227   __ movptr(call_wrapper, c_rarg0); // call wrapper
 228 
 229   // save regs belonging to calling function
 230   __ movptr(rbx_save, rbx);
 231   __ movptr(r12_save, r12);
 232   __ movptr(r13_save, r13);
 233   __ movptr(r14_save, r14);
 234   __ movptr(r15_save, r15);
 235 
 236 #ifdef _WIN64
 237   int last_reg = 15;
 238   for (int i = xmm_save_first; i <= last_reg; i++) {
 239     __ movdqu(xmm_save(i), as_XMMRegister(i));
 240   }
 241 
 242   const Address rdi_save(rbp, rdi_off * wordSize);
 243   const Address rsi_save(rbp, rsi_off * wordSize);
 244 
 245   __ movptr(rsi_save, rsi);
 246   __ movptr(rdi_save, rdi);
 247 #else
 248   const Address mxcsr_save(rbp, mxcsr_off * wordSize);
 249   {
 250     Label skip_ldmx;
 251     __ cmp32_mxcsr_std(mxcsr_save, rax, rscratch1);
 252     __ jcc(Assembler::equal, skip_ldmx);
 253     ExternalAddress mxcsr_std(StubRoutines::x86::addr_mxcsr_std());
 254     __ ldmxcsr(mxcsr_std, rscratch1);
 255     __ bind(skip_ldmx);
 256   }
 257 #endif
 258 
 259   // Load up thread register
 260   __ movptr(r15_thread, thread);
 261   __ reinit_heapbase();
 262 
 263 #ifdef ASSERT
 264   // make sure we have no pending exceptions
 265   {
 266     Label L;
 267     __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), NULL_WORD);
 268     __ jcc(Assembler::equal, L);
 269     __ stop("StubRoutines::call_stub: entered with pending exception");
 270     __ bind(L);
 271   }
 272 #endif
 273 
 274   // pass parameters if any
 275   BLOCK_COMMENT("pass parameters if any");
 276   Label parameters_done;
 277   __ movl(c_rarg3, parameter_size);
 278   __ testl(c_rarg3, c_rarg3);
 279   __ jcc(Assembler::zero, parameters_done);
 280 
 281   Label loop;
 282   __ movptr(c_rarg2, parameters);       // parameter pointer
 283   __ movl(c_rarg1, c_rarg3);            // parameter counter is in c_rarg1
 284   __ BIND(loop);
 285   __ movptr(rax, Address(c_rarg2, 0));// get parameter
 286   __ addptr(c_rarg2, wordSize);       // advance to next parameter
 287   __ decrementl(c_rarg1);             // decrement counter
 288   __ push(rax);                       // pass parameter
 289   __ jcc(Assembler::notZero, loop);
 290 
 291   // call Java function
 292   __ BIND(parameters_done);
 293   __ movptr(rbx, method);             // get Method*
 294   __ movptr(c_rarg1, entry_point);    // get entry_point
 295   __ mov(r13, rsp);                   // set sender sp
 296   BLOCK_COMMENT("call Java function");
 297   __ call(c_rarg1);
 298 
 299   BLOCK_COMMENT("call_stub_return_address:");
 300   return_address = __ pc();
 301 
 302   // store result depending on type (everything that is not
 303   // T_OBJECT, T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
 304   __ movptr(c_rarg0, result);
 305   Label is_long, is_float, is_double, exit;
 306   __ movl(c_rarg1, result_type);
 307   __ cmpl(c_rarg1, T_OBJECT);
 308   __ jcc(Assembler::equal, is_long);
 309   __ cmpl(c_rarg1, T_LONG);
 310   __ jcc(Assembler::equal, is_long);
 311   __ cmpl(c_rarg1, T_FLOAT);
 312   __ jcc(Assembler::equal, is_float);
 313   __ cmpl(c_rarg1, T_DOUBLE);
 314   __ jcc(Assembler::equal, is_double);
 315 #ifdef ASSERT
 316   // make sure the type is INT
 317   {
 318     Label L;
 319     __ cmpl(c_rarg1, T_INT);
 320     __ jcc(Assembler::equal, L);
 321     __ stop("StubRoutines::call_stub: unexpected result type");
 322     __ bind(L);
 323   }
 324 #endif
 325 
 326   // handle T_INT case
 327   __ movl(Address(c_rarg0, 0), rax);
 328 
 329   __ BIND(exit);
 330 
 331   // pop parameters
 332   __ lea(rsp, rsp_after_call);
 333 
 334 #ifdef ASSERT
 335   // verify that threads correspond
 336   {
 337    Label L1, L2, L3;
 338     __ cmpptr(r15_thread, thread);
 339     __ jcc(Assembler::equal, L1);
 340     __ stop("StubRoutines::call_stub: r15_thread is corrupted");
 341     __ bind(L1);
 342     __ get_thread_slow(rbx);
 343     __ cmpptr(r15_thread, thread);
 344     __ jcc(Assembler::equal, L2);
 345     __ stop("StubRoutines::call_stub: r15_thread is modified by call");
 346     __ bind(L2);
 347     __ cmpptr(r15_thread, rbx);
 348     __ jcc(Assembler::equal, L3);
 349     __ stop("StubRoutines::call_stub: threads must correspond");
 350     __ bind(L3);
 351   }
 352 #endif
 353 
 354   __ pop_cont_fastpath();
 355 
 356   // restore regs belonging to calling function
 357 #ifdef _WIN64
 358   // emit the restores for xmm regs
 359   for (int i = xmm_save_first; i <= last_reg; i++) {
 360     __ movdqu(as_XMMRegister(i), xmm_save(i));
 361   }
 362 #endif
 363   __ movptr(r15, r15_save);
 364   __ movptr(r14, r14_save);
 365   __ movptr(r13, r13_save);
 366   __ movptr(r12, r12_save);
 367   __ movptr(rbx, rbx_save);
 368 
 369 #ifdef _WIN64
 370   __ movptr(rdi, rdi_save);
 371   __ movptr(rsi, rsi_save);
 372 #else
 373   __ ldmxcsr(mxcsr_save);
 374 #endif
 375 
 376   // restore rsp
 377   __ addptr(rsp, -rsp_after_call_off * wordSize);
 378 
 379   // return
 380   __ vzeroupper();
 381   __ pop(rbp);
 382   __ ret(0);
 383 
 384   // handle return types different from T_INT
 385   __ BIND(is_long);
 386   __ movq(Address(c_rarg0, 0), rax);
 387   __ jmp(exit);
 388 
 389   __ BIND(is_float);
 390   __ movflt(Address(c_rarg0, 0), xmm0);
 391   __ jmp(exit);
 392 
 393   __ BIND(is_double);
 394   __ movdbl(Address(c_rarg0, 0), xmm0);
 395   __ jmp(exit);
 396 
 397   return start;
 398 }
 399 
 400 // Return point for a Java call if there's an exception thrown in
 401 // Java code.  The exception is caught and transformed into a
 402 // pending exception stored in JavaThread that can be tested from
 403 // within the VM.
 404 //
 405 // Note: Usually the parameters are removed by the callee. In case
 406 // of an exception crossing an activation frame boundary, that is
 407 // not the case if the callee is compiled code => need to setup the
 408 // rsp.
 409 //
 410 // rax: exception oop
 411 
 412 address StubGenerator::generate_catch_exception() {
 413   StubId stub_id = StubId::stubgen_catch_exception_id;
 414   StubCodeMark mark(this, stub_id);
 415   address start = __ pc();
 416 
 417   // same as in generate_call_stub():
 418   const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
 419   const Address thread        (rbp, thread_off         * wordSize);
 420 
 421 #ifdef ASSERT
 422   // verify that threads correspond
 423   {
 424     Label L1, L2, L3;
 425     __ cmpptr(r15_thread, thread);
 426     __ jcc(Assembler::equal, L1);
 427     __ stop("StubRoutines::catch_exception: r15_thread is corrupted");
 428     __ bind(L1);
 429     __ get_thread_slow(rbx);
 430     __ cmpptr(r15_thread, thread);
 431     __ jcc(Assembler::equal, L2);
 432     __ stop("StubRoutines::catch_exception: r15_thread is modified by call");
 433     __ bind(L2);
 434     __ cmpptr(r15_thread, rbx);
 435     __ jcc(Assembler::equal, L3);
 436     __ stop("StubRoutines::catch_exception: threads must correspond");
 437     __ bind(L3);
 438   }
 439 #endif
 440 
 441   // set pending exception
 442   __ verify_oop(rax);
 443 
 444   __ movptr(Address(r15_thread, Thread::pending_exception_offset()), rax);
 445   __ lea(rscratch1, ExternalAddress((address)__FILE__));
 446   __ movptr(Address(r15_thread, Thread::exception_file_offset()), rscratch1);
 447   __ movl(Address(r15_thread, Thread::exception_line_offset()), (int)  __LINE__);
 448 
 449   // complete return to VM
 450   assert(StubRoutines::_call_stub_return_address != nullptr,
 451          "_call_stub_return_address must have been generated before");
 452   __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address));
 453 
 454   return start;
 455 }
 456 
 457 // Continuation point for runtime calls returning with a pending
 458 // exception.  The pending exception check happened in the runtime
 459 // or native call stub.  The pending exception in Thread is
 460 // converted into a Java-level exception.
 461 //
 462 // Contract with Java-level exception handlers:
 463 // rax: exception
 464 // rdx: throwing pc
 465 //
 466 // NOTE: At entry of this stub, exception-pc must be on stack !!
 467 
 468 address StubGenerator::generate_forward_exception() {
 469   StubId stub_id = StubId::stubgen_forward_exception_id;
 470   StubCodeMark mark(this, stub_id);
 471   address start = __ pc();
 472 
 473   // Upon entry, the sp points to the return address returning into
 474   // Java (interpreted or compiled) code; i.e., the return address
 475   // becomes the throwing pc.
 476   //
 477   // Arguments pushed before the runtime call are still on the stack
 478   // but the exception handler will reset the stack pointer ->
 479   // ignore them.  A potential result in registers can be ignored as
 480   // well.
 481 
 482 #ifdef ASSERT
 483   // make sure this code is only executed if there is a pending exception
 484   {
 485     Label L;
 486     __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), NULL_WORD);
 487     __ jcc(Assembler::notEqual, L);
 488     __ stop("StubRoutines::forward exception: no pending exception (1)");
 489     __ bind(L);
 490   }
 491 #endif
 492 
 493   // compute exception handler into rbx
 494   __ movptr(c_rarg0, Address(rsp, 0));
 495   BLOCK_COMMENT("call exception_handler_for_return_address");
 496   __ call_VM_leaf(CAST_FROM_FN_PTR(address,
 497                        SharedRuntime::exception_handler_for_return_address),
 498                   r15_thread, c_rarg0);
 499   __ mov(rbx, rax);
 500 
 501   // setup rax & rdx, remove return address & clear pending exception
 502   __ pop(rdx);
 503   __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
 504   __ movptr(Address(r15_thread, Thread::pending_exception_offset()), NULL_WORD);
 505 
 506 #ifdef ASSERT
 507   // make sure exception is set
 508   {
 509     Label L;
 510     __ testptr(rax, rax);
 511     __ jcc(Assembler::notEqual, L);
 512     __ stop("StubRoutines::forward exception: no pending exception (2)");
 513     __ bind(L);
 514   }
 515 #endif
 516 
 517   // continue at exception handler (return address removed)
 518   // rax: exception
 519   // rbx: exception handler
 520   // rdx: throwing pc
 521   __ verify_oop(rax);
 522   __ jmp(rbx);
 523 
 524   return start;
 525 }
 526 
 527 // Support for intptr_t OrderAccess::fence()
 528 //
 529 // Arguments :
 530 //
 531 // Result:
 532 address StubGenerator::generate_orderaccess_fence() {
 533   StubId stub_id = StubId::stubgen_fence_id;
 534   StubCodeMark mark(this, stub_id);
 535   address start = __ pc();
 536 
 537   __ membar(Assembler::StoreLoad);
 538   __ ret(0);
 539 
 540   return start;
 541 }
 542 
 543 
 544 //----------------------------------------------------------------------------------------------------
 545 // Support for void verify_mxcsr()
 546 //
 547 // This routine is used with -Xcheck:jni to verify that native
 548 // JNI code does not return to Java code without restoring the
 549 // MXCSR register to our expected state.
 550 
 551 address StubGenerator::generate_verify_mxcsr() {
 552   StubId stub_id = StubId::stubgen_verify_mxcsr_id;
 553   StubCodeMark mark(this, stub_id);
 554   address start = __ pc();
 555 
 556   const Address mxcsr_save(rsp, 0);
 557 
 558   if (CheckJNICalls) {
 559     Label ok_ret;
 560     ExternalAddress mxcsr_std(StubRoutines::x86::addr_mxcsr_std());
 561     __ push_ppx(rax);
 562     __ subptr(rsp, wordSize);      // allocate a temp location
 563     __ cmp32_mxcsr_std(mxcsr_save, rax, rscratch1);
 564     __ jcc(Assembler::equal, ok_ret);
 565 
 566     __ warn("MXCSR changed by native JNI code, use -XX:+RestoreMXCSROnJNICall");
 567 
 568     __ ldmxcsr(mxcsr_std, rscratch1);
 569 
 570     __ bind(ok_ret);
 571     __ addptr(rsp, wordSize);
 572     __ pop_ppx(rax);
 573   }
 574 
 575   __ ret(0);
 576 
 577   return start;
 578 }
 579 
 580 address StubGenerator::generate_f2i_fixup() {
 581   StubId stub_id = StubId::stubgen_f2i_fixup_id;
 582   StubCodeMark mark(this, stub_id);
 583   Address inout(rsp, 5 * wordSize); // return address + 4 saves
 584 
 585   address start = __ pc();
 586 
 587   Label L;
 588 
 589   __ push_ppx(rax);
 590   __ push_ppx(c_rarg3);
 591   __ push_ppx(c_rarg2);
 592   __ push_ppx(c_rarg1);
 593 
 594   __ movl(rax, 0x7f800000);
 595   __ xorl(c_rarg3, c_rarg3);
 596   __ movl(c_rarg2, inout);
 597   __ movl(c_rarg1, c_rarg2);
 598   __ andl(c_rarg1, 0x7fffffff);
 599   __ cmpl(rax, c_rarg1); // NaN? -> 0
 600   __ jcc(Assembler::negative, L);
 601   __ testl(c_rarg2, c_rarg2); // signed ? min_jint : max_jint
 602   __ movl(c_rarg3, 0x80000000);
 603   __ movl(rax, 0x7fffffff);
 604   __ cmovl(Assembler::positive, c_rarg3, rax);
 605 
 606   __ bind(L);
 607   __ movptr(inout, c_rarg3);
 608 
 609   __ pop_ppx(c_rarg1);
 610   __ pop_ppx(c_rarg2);
 611   __ pop_ppx(c_rarg3);
 612   __ pop_ppx(rax);
 613 
 614   __ ret(0);
 615 
 616   return start;
 617 }
 618 
 619 address StubGenerator::generate_f2l_fixup() {
 620   StubId stub_id = StubId::stubgen_f2l_fixup_id;
 621   StubCodeMark mark(this, stub_id);
 622   Address inout(rsp, 5 * wordSize); // return address + 4 saves
 623   address start = __ pc();
 624 
 625   Label L;
 626 
 627   __ push_ppx(rax);
 628   __ push_ppx(c_rarg3);
 629   __ push_ppx(c_rarg2);
 630   __ push_ppx(c_rarg1);
 631 
 632   __ movl(rax, 0x7f800000);
 633   __ xorl(c_rarg3, c_rarg3);
 634   __ movl(c_rarg2, inout);
 635   __ movl(c_rarg1, c_rarg2);
 636   __ andl(c_rarg1, 0x7fffffff);
 637   __ cmpl(rax, c_rarg1); // NaN? -> 0
 638   __ jcc(Assembler::negative, L);
 639   __ testl(c_rarg2, c_rarg2); // signed ? min_jlong : max_jlong
 640   __ mov64(c_rarg3, 0x8000000000000000);
 641   __ mov64(rax, 0x7fffffffffffffff);
 642   __ cmov(Assembler::positive, c_rarg3, rax);
 643 
 644   __ bind(L);
 645   __ movptr(inout, c_rarg3);
 646 
 647   __ pop_ppx(c_rarg1);
 648   __ pop_ppx(c_rarg2);
 649   __ pop_ppx(c_rarg3);
 650   __ pop_ppx(rax);
 651 
 652   __ ret(0);
 653 
 654   return start;
 655 }
 656 
 657 address StubGenerator::generate_d2i_fixup() {
 658   StubId stub_id = StubId::stubgen_d2i_fixup_id;
 659   StubCodeMark mark(this, stub_id);
 660   Address inout(rsp, 6 * wordSize); // return address + 5 saves
 661 
 662   address start = __ pc();
 663 
 664   Label L;
 665 
 666   __ push_ppx(rax);
 667   __ push_ppx(c_rarg3);
 668   __ push_ppx(c_rarg2);
 669   __ push_ppx(c_rarg1);
 670   __ push_ppx(c_rarg0);
 671 
 672   __ movl(rax, 0x7ff00000);
 673   __ movq(c_rarg2, inout);
 674   __ movl(c_rarg3, c_rarg2);
 675   __ mov(c_rarg1, c_rarg2);
 676   __ mov(c_rarg0, c_rarg2);
 677   __ negl(c_rarg3);
 678   __ shrptr(c_rarg1, 0x20);
 679   __ orl(c_rarg3, c_rarg2);
 680   __ andl(c_rarg1, 0x7fffffff);
 681   __ xorl(c_rarg2, c_rarg2);
 682   __ shrl(c_rarg3, 0x1f);
 683   __ orl(c_rarg1, c_rarg3);
 684   __ cmpl(rax, c_rarg1);
 685   __ jcc(Assembler::negative, L); // NaN -> 0
 686   __ testptr(c_rarg0, c_rarg0); // signed ? min_jint : max_jint
 687   __ movl(c_rarg2, 0x80000000);
 688   __ movl(rax, 0x7fffffff);
 689   __ cmov(Assembler::positive, c_rarg2, rax);
 690 
 691   __ bind(L);
 692   __ movptr(inout, c_rarg2);
 693 
 694   __ pop_ppx(c_rarg0);
 695   __ pop_ppx(c_rarg1);
 696   __ pop_ppx(c_rarg2);
 697   __ pop_ppx(c_rarg3);
 698   __ pop_ppx(rax);
 699 
 700   __ ret(0);
 701 
 702   return start;
 703 }
 704 
 705 address StubGenerator::generate_d2l_fixup() {
 706   StubId stub_id = StubId::stubgen_d2l_fixup_id;
 707   StubCodeMark mark(this, stub_id);
 708   Address inout(rsp, 6 * wordSize); // return address + 5 saves
 709 
 710   address start = __ pc();
 711 
 712   Label L;
 713 
 714   __ push_ppx(rax);
 715   __ push_ppx(c_rarg3);
 716   __ push_ppx(c_rarg2);
 717   __ push_ppx(c_rarg1);
 718   __ push_ppx(c_rarg0);
 719 
 720   __ movl(rax, 0x7ff00000);
 721   __ movq(c_rarg2, inout);
 722   __ movl(c_rarg3, c_rarg2);
 723   __ mov(c_rarg1, c_rarg2);
 724   __ mov(c_rarg0, c_rarg2);
 725   __ negl(c_rarg3);
 726   __ shrptr(c_rarg1, 0x20);
 727   __ orl(c_rarg3, c_rarg2);
 728   __ andl(c_rarg1, 0x7fffffff);
 729   __ xorl(c_rarg2, c_rarg2);
 730   __ shrl(c_rarg3, 0x1f);
 731   __ orl(c_rarg1, c_rarg3);
 732   __ cmpl(rax, c_rarg1);
 733   __ jcc(Assembler::negative, L); // NaN -> 0
 734   __ testq(c_rarg0, c_rarg0); // signed ? min_jlong : max_jlong
 735   __ mov64(c_rarg2, 0x8000000000000000);
 736   __ mov64(rax, 0x7fffffffffffffff);
 737   __ cmovq(Assembler::positive, c_rarg2, rax);
 738 
 739   __ bind(L);
 740   __ movq(inout, c_rarg2);
 741 
 742   __ pop_ppx(c_rarg0);
 743   __ pop_ppx(c_rarg1);
 744   __ pop_ppx(c_rarg2);
 745   __ pop_ppx(c_rarg3);
 746   __ pop_ppx(rax);
 747 
 748   __ ret(0);
 749 
 750   return start;
 751 }
 752 
 753 address StubGenerator::generate_count_leading_zeros_lut() {
 754   __ align64();
 755   StubId stub_id = StubId::stubgen_vector_count_leading_zeros_lut_id;
 756   StubCodeMark mark(this, stub_id);
 757   address start = __ pc();
 758 
 759   __ emit_data64(0x0101010102020304, relocInfo::none);
 760   __ emit_data64(0x0000000000000000, relocInfo::none);
 761   __ emit_data64(0x0101010102020304, relocInfo::none);
 762   __ emit_data64(0x0000000000000000, relocInfo::none);
 763   __ emit_data64(0x0101010102020304, relocInfo::none);
 764   __ emit_data64(0x0000000000000000, relocInfo::none);
 765   __ emit_data64(0x0101010102020304, relocInfo::none);
 766   __ emit_data64(0x0000000000000000, relocInfo::none);
 767 
 768   return start;
 769 }
 770 
 771 address StubGenerator::generate_popcount_avx_lut() {
 772   __ align64();
 773   StubId stub_id = StubId::stubgen_vector_popcount_lut_id;
 774   StubCodeMark mark(this, stub_id);
 775   address start = __ pc();
 776 
 777   __ emit_data64(0x0302020102010100, relocInfo::none);
 778   __ emit_data64(0x0403030203020201, relocInfo::none);
 779   __ emit_data64(0x0302020102010100, relocInfo::none);
 780   __ emit_data64(0x0403030203020201, relocInfo::none);
 781   __ emit_data64(0x0302020102010100, relocInfo::none);
 782   __ emit_data64(0x0403030203020201, relocInfo::none);
 783   __ emit_data64(0x0302020102010100, relocInfo::none);
 784   __ emit_data64(0x0403030203020201, relocInfo::none);
 785 
 786   return start;
 787 }
 788 
 789 address StubGenerator::generate_iota_indices() {
 790   __ align(CodeEntryAlignment);
 791   StubId stub_id = StubId::stubgen_vector_iota_indices_id;
 792   StubCodeMark mark(this, stub_id);
 793   address start = __ pc();
 794   // B
 795   __ emit_data64(0x0706050403020100, relocInfo::none);
 796   __ emit_data64(0x0F0E0D0C0B0A0908, relocInfo::none);
 797   __ emit_data64(0x1716151413121110, relocInfo::none);
 798   __ emit_data64(0x1F1E1D1C1B1A1918, relocInfo::none);
 799   __ emit_data64(0x2726252423222120, relocInfo::none);
 800   __ emit_data64(0x2F2E2D2C2B2A2928, relocInfo::none);
 801   __ emit_data64(0x3736353433323130, relocInfo::none);
 802   __ emit_data64(0x3F3E3D3C3B3A3938, relocInfo::none);
 803   // W
 804   __ emit_data64(0x0003000200010000, relocInfo::none);
 805   __ emit_data64(0x0007000600050004, relocInfo::none);
 806   __ emit_data64(0x000B000A00090008, relocInfo::none);
 807   __ emit_data64(0x000F000E000D000C, relocInfo::none);
 808   __ emit_data64(0x0013001200110010, relocInfo::none);
 809   __ emit_data64(0x0017001600150014, relocInfo::none);
 810   __ emit_data64(0x001B001A00190018, relocInfo::none);
 811   __ emit_data64(0x001F001E001D001C, relocInfo::none);
 812   // D
 813   __ emit_data64(0x0000000100000000, relocInfo::none);
 814   __ emit_data64(0x0000000300000002, relocInfo::none);
 815   __ emit_data64(0x0000000500000004, relocInfo::none);
 816   __ emit_data64(0x0000000700000006, relocInfo::none);
 817   __ emit_data64(0x0000000900000008, relocInfo::none);
 818   __ emit_data64(0x0000000B0000000A, relocInfo::none);
 819   __ emit_data64(0x0000000D0000000C, relocInfo::none);
 820   __ emit_data64(0x0000000F0000000E, relocInfo::none);
 821   // Q
 822   __ emit_data64(0x0000000000000000, relocInfo::none);
 823   __ emit_data64(0x0000000000000001, relocInfo::none);
 824   __ emit_data64(0x0000000000000002, relocInfo::none);
 825   __ emit_data64(0x0000000000000003, relocInfo::none);
 826   __ emit_data64(0x0000000000000004, relocInfo::none);
 827   __ emit_data64(0x0000000000000005, relocInfo::none);
 828   __ emit_data64(0x0000000000000006, relocInfo::none);
 829   __ emit_data64(0x0000000000000007, relocInfo::none);
 830   // D - FP
 831   __ emit_data64(0x3F80000000000000, relocInfo::none); // 0.0f, 1.0f
 832   __ emit_data64(0x4040000040000000, relocInfo::none); // 2.0f, 3.0f
 833   __ emit_data64(0x40A0000040800000, relocInfo::none); // 4.0f, 5.0f
 834   __ emit_data64(0x40E0000040C00000, relocInfo::none); // 6.0f, 7.0f
 835   __ emit_data64(0x4110000041000000, relocInfo::none); // 8.0f, 9.0f
 836   __ emit_data64(0x4130000041200000, relocInfo::none); // 10.0f, 11.0f
 837   __ emit_data64(0x4150000041400000, relocInfo::none); // 12.0f, 13.0f
 838   __ emit_data64(0x4170000041600000, relocInfo::none); // 14.0f, 15.0f
 839   // Q - FP
 840   __ emit_data64(0x0000000000000000, relocInfo::none); // 0.0d
 841   __ emit_data64(0x3FF0000000000000, relocInfo::none); // 1.0d
 842   __ emit_data64(0x4000000000000000, relocInfo::none); // 2.0d
 843   __ emit_data64(0x4008000000000000, relocInfo::none); // 3.0d
 844   __ emit_data64(0x4010000000000000, relocInfo::none); // 4.0d
 845   __ emit_data64(0x4014000000000000, relocInfo::none); // 5.0d
 846   __ emit_data64(0x4018000000000000, relocInfo::none); // 6.0d
 847   __ emit_data64(0x401c000000000000, relocInfo::none); // 7.0d
 848   return start;
 849 }
 850 
 851 address StubGenerator::generate_vector_reverse_bit_lut() {
 852   __ align(CodeEntryAlignment);
 853   StubId stub_id = StubId::stubgen_vector_reverse_bit_lut_id;
 854   StubCodeMark mark(this, stub_id);
 855   address start = __ pc();
 856 
 857   __ emit_data64(0x0E060A020C040800, relocInfo::none);
 858   __ emit_data64(0x0F070B030D050901, relocInfo::none);
 859   __ emit_data64(0x0E060A020C040800, relocInfo::none);
 860   __ emit_data64(0x0F070B030D050901, relocInfo::none);
 861   __ emit_data64(0x0E060A020C040800, relocInfo::none);
 862   __ emit_data64(0x0F070B030D050901, relocInfo::none);
 863   __ emit_data64(0x0E060A020C040800, relocInfo::none);
 864   __ emit_data64(0x0F070B030D050901, relocInfo::none);
 865 
 866   return start;
 867 }
 868 
 869 address StubGenerator::generate_vector_reverse_byte_perm_mask_long() {
 870   __ align(CodeEntryAlignment);
 871   StubId stub_id = StubId::stubgen_vector_reverse_byte_perm_mask_long_id;
 872   StubCodeMark mark(this, stub_id);
 873   address start = __ pc();
 874 
 875   __ emit_data64(0x0001020304050607, relocInfo::none);
 876   __ emit_data64(0x08090A0B0C0D0E0F, relocInfo::none);
 877   __ emit_data64(0x0001020304050607, relocInfo::none);
 878   __ emit_data64(0x08090A0B0C0D0E0F, relocInfo::none);
 879   __ emit_data64(0x0001020304050607, relocInfo::none);
 880   __ emit_data64(0x08090A0B0C0D0E0F, relocInfo::none);
 881   __ emit_data64(0x0001020304050607, relocInfo::none);
 882   __ emit_data64(0x08090A0B0C0D0E0F, relocInfo::none);
 883 
 884   return start;
 885 }
 886 
 887 address StubGenerator::generate_vector_reverse_byte_perm_mask_int() {
 888   __ align(CodeEntryAlignment);
 889   StubId stub_id = StubId::stubgen_vector_reverse_byte_perm_mask_int_id;
 890   StubCodeMark mark(this, stub_id);
 891   address start = __ pc();
 892 
 893   __ emit_data64(0x0405060700010203, relocInfo::none);
 894   __ emit_data64(0x0C0D0E0F08090A0B, relocInfo::none);
 895   __ emit_data64(0x0405060700010203, relocInfo::none);
 896   __ emit_data64(0x0C0D0E0F08090A0B, relocInfo::none);
 897   __ emit_data64(0x0405060700010203, relocInfo::none);
 898   __ emit_data64(0x0C0D0E0F08090A0B, relocInfo::none);
 899   __ emit_data64(0x0405060700010203, relocInfo::none);
 900   __ emit_data64(0x0C0D0E0F08090A0B, relocInfo::none);
 901 
 902   return start;
 903 }
 904 
 905 address StubGenerator::generate_vector_reverse_byte_perm_mask_short() {
 906   __ align(CodeEntryAlignment);
 907   StubId stub_id = StubId::stubgen_vector_reverse_byte_perm_mask_short_id;
 908   StubCodeMark mark(this, stub_id);
 909   address start = __ pc();
 910 
 911   __ emit_data64(0x0607040502030001, relocInfo::none);
 912   __ emit_data64(0x0E0F0C0D0A0B0809, relocInfo::none);
 913   __ emit_data64(0x0607040502030001, relocInfo::none);
 914   __ emit_data64(0x0E0F0C0D0A0B0809, relocInfo::none);
 915   __ emit_data64(0x0607040502030001, relocInfo::none);
 916   __ emit_data64(0x0E0F0C0D0A0B0809, relocInfo::none);
 917   __ emit_data64(0x0607040502030001, relocInfo::none);
 918   __ emit_data64(0x0E0F0C0D0A0B0809, relocInfo::none);
 919 
 920   return start;
 921 }
 922 
 923 address StubGenerator::generate_vector_byte_shuffle_mask() {
 924   __ align(CodeEntryAlignment);
 925   StubId stub_id = StubId::stubgen_vector_byte_shuffle_mask_id;
 926   StubCodeMark mark(this, stub_id);
 927   address start = __ pc();
 928 
 929   __ emit_data64(0x7070707070707070, relocInfo::none);
 930   __ emit_data64(0x7070707070707070, relocInfo::none);
 931   __ emit_data64(0xF0F0F0F0F0F0F0F0, relocInfo::none);
 932   __ emit_data64(0xF0F0F0F0F0F0F0F0, relocInfo::none);
 933 
 934   return start;
 935 }
 936 
 937 address StubGenerator::generate_fp_mask(StubId stub_id, int64_t mask) {
 938   __ align(CodeEntryAlignment);
 939   StubCodeMark mark(this, stub_id);
 940   address start = __ pc();
 941 
 942   __ emit_data64( mask, relocInfo::none );
 943   __ emit_data64( mask, relocInfo::none );
 944 
 945   return start;
 946 }
 947 
 948 address StubGenerator::generate_compress_perm_table(StubId stub_id) {
 949   int esize;
 950   switch (stub_id) {
 951   case StubId::stubgen_compress_perm_table32_id:
 952     esize = 32;
 953     break;
 954   case StubId::stubgen_compress_perm_table64_id:
 955     esize = 64;
 956     break;
 957   default:
 958     ShouldNotReachHere();
 959   }
 960   __ align(CodeEntryAlignment);
 961   StubCodeMark mark(this, stub_id);
 962   address start = __ pc();
 963   if (esize == 32) {
 964     // Loop to generate 256 x 8 int compression permute index table. A row is
 965     // accessed using 8 bit index computed using vector mask. An entry in
 966     // a row holds either a valid permute index corresponding to set bit position
 967     // or a -1 (default) value.
 968     for (int mask = 0; mask < 256; mask++) {
 969       int ctr = 0;
 970       for (int j = 0; j < 8; j++) {
 971         if (mask & (1 << j)) {
 972           __ emit_data(j, relocInfo::none);
 973           ctr++;
 974         }
 975       }
 976       for (; ctr < 8; ctr++) {
 977         __ emit_data(-1, relocInfo::none);
 978       }
 979     }
 980   } else {
 981     assert(esize == 64, "");
 982     // Loop to generate 16 x 4 long compression permute index table. A row is
 983     // accessed using 4 bit index computed using vector mask. An entry in
 984     // a row holds either a valid permute index pair for a quadword corresponding
 985     // to set bit position or a -1 (default) value.
 986     for (int mask = 0; mask < 16; mask++) {
 987       int ctr = 0;
 988       for (int j = 0; j < 4; j++) {
 989         if (mask & (1 << j)) {
 990           __ emit_data(2 * j, relocInfo::none);
 991           __ emit_data(2 * j + 1, relocInfo::none);
 992           ctr++;
 993         }
 994       }
 995       for (; ctr < 4; ctr++) {
 996         __ emit_data64(-1L, relocInfo::none);
 997       }
 998     }
 999   }
1000   return start;
1001 }
1002 
1003 address StubGenerator::generate_expand_perm_table(StubId stub_id) {
1004   int esize;
1005   switch (stub_id) {
1006   case StubId::stubgen_expand_perm_table32_id:
1007     esize = 32;
1008     break;
1009   case StubId::stubgen_expand_perm_table64_id:
1010     esize = 64;
1011     break;
1012   default:
1013     ShouldNotReachHere();
1014   }
1015   __ align(CodeEntryAlignment);
1016   StubCodeMark mark(this, stub_id);
1017   address start = __ pc();
1018   if (esize == 32) {
1019     // Loop to generate 256 x 8 int expand permute index table. A row is accessed
1020     // using 8 bit index computed using vector mask. An entry in a row holds either
1021     // a valid permute index (starting from least significant lane) placed at poisition
1022     // corresponding to set bit position or a -1 (default) value.
1023     for (int mask = 0; mask < 256; mask++) {
1024       int ctr = 0;
1025       for (int j = 0; j < 8; j++) {
1026         if (mask & (1 << j)) {
1027           __ emit_data(ctr++, relocInfo::none);
1028         } else {
1029           __ emit_data(-1, relocInfo::none);
1030         }
1031       }
1032     }
1033   } else {
1034     assert(esize == 64, "");
1035     // Loop to generate 16 x 4 long expand permute index table. A row is accessed
1036     // using 4 bit index computed using vector mask. An entry in a row holds either
1037     // a valid doubleword permute index pair representing a quadword index (starting
1038     // from least significant lane) placed at poisition corresponding to set bit
1039     // position or a -1 (default) value.
1040     for (int mask = 0; mask < 16; mask++) {
1041       int ctr = 0;
1042       for (int j = 0; j < 4; j++) {
1043         if (mask & (1 << j)) {
1044           __ emit_data(2 * ctr, relocInfo::none);
1045           __ emit_data(2 * ctr + 1, relocInfo::none);
1046           ctr++;
1047         } else {
1048           __ emit_data64(-1L, relocInfo::none);
1049         }
1050       }
1051     }
1052   }
1053   return start;
1054 }
1055 
1056 address StubGenerator::generate_vector_mask(StubId stub_id, int64_t mask) {
1057   __ align(CodeEntryAlignment);
1058   StubCodeMark mark(this, stub_id);
1059   address start = __ pc();
1060 
1061   __ emit_data64(mask, relocInfo::none);
1062   __ emit_data64(mask, relocInfo::none);
1063   __ emit_data64(mask, relocInfo::none);
1064   __ emit_data64(mask, relocInfo::none);
1065   __ emit_data64(mask, relocInfo::none);
1066   __ emit_data64(mask, relocInfo::none);
1067   __ emit_data64(mask, relocInfo::none);
1068   __ emit_data64(mask, relocInfo::none);
1069 
1070   return start;
1071 }
1072 
1073 address StubGenerator::generate_vector_byte_perm_mask() {
1074   __ align(CodeEntryAlignment);
1075   StubId stub_id = StubId::stubgen_vector_byte_perm_mask_id;
1076   StubCodeMark mark(this, stub_id);
1077   address start = __ pc();
1078 
1079   __ emit_data64(0x0000000000000001, relocInfo::none);
1080   __ emit_data64(0x0000000000000003, relocInfo::none);
1081   __ emit_data64(0x0000000000000005, relocInfo::none);
1082   __ emit_data64(0x0000000000000007, relocInfo::none);
1083   __ emit_data64(0x0000000000000000, relocInfo::none);
1084   __ emit_data64(0x0000000000000002, relocInfo::none);
1085   __ emit_data64(0x0000000000000004, relocInfo::none);
1086   __ emit_data64(0x0000000000000006, relocInfo::none);
1087 
1088   return start;
1089 }
1090 
1091 address StubGenerator::generate_vector_fp_mask(StubId stub_id, int64_t mask) {
1092   __ align(CodeEntryAlignment);
1093   StubCodeMark mark(this, stub_id);
1094   address start = __ pc();
1095 
1096   __ emit_data64(mask, relocInfo::none);
1097   __ emit_data64(mask, relocInfo::none);
1098   __ emit_data64(mask, relocInfo::none);
1099   __ emit_data64(mask, relocInfo::none);
1100   __ emit_data64(mask, relocInfo::none);
1101   __ emit_data64(mask, relocInfo::none);
1102   __ emit_data64(mask, relocInfo::none);
1103   __ emit_data64(mask, relocInfo::none);
1104 
1105   return start;
1106 }
1107 
1108 address StubGenerator::generate_vector_custom_i32(StubId stub_id, Assembler::AvxVectorLen len,
1109                                    int32_t val0, int32_t val1, int32_t val2, int32_t val3,
1110                                    int32_t val4, int32_t val5, int32_t val6, int32_t val7,
1111                                    int32_t val8, int32_t val9, int32_t val10, int32_t val11,
1112                                    int32_t val12, int32_t val13, int32_t val14, int32_t val15) {
1113   __ align(CodeEntryAlignment);
1114   StubCodeMark mark(this, stub_id);
1115   address start = __ pc();
1116 
1117   assert(len != Assembler::AVX_NoVec, "vector len must be specified");
1118   __ emit_data(val0, relocInfo::none, 0);
1119   __ emit_data(val1, relocInfo::none, 0);
1120   __ emit_data(val2, relocInfo::none, 0);
1121   __ emit_data(val3, relocInfo::none, 0);
1122   if (len >= Assembler::AVX_256bit) {
1123     __ emit_data(val4, relocInfo::none, 0);
1124     __ emit_data(val5, relocInfo::none, 0);
1125     __ emit_data(val6, relocInfo::none, 0);
1126     __ emit_data(val7, relocInfo::none, 0);
1127     if (len >= Assembler::AVX_512bit) {
1128       __ emit_data(val8, relocInfo::none, 0);
1129       __ emit_data(val9, relocInfo::none, 0);
1130       __ emit_data(val10, relocInfo::none, 0);
1131       __ emit_data(val11, relocInfo::none, 0);
1132       __ emit_data(val12, relocInfo::none, 0);
1133       __ emit_data(val13, relocInfo::none, 0);
1134       __ emit_data(val14, relocInfo::none, 0);
1135       __ emit_data(val15, relocInfo::none, 0);
1136     }
1137   }
1138   return start;
1139 }
1140 
1141 // Non-destructive plausibility checks for oops
1142 //
1143 // Arguments:
1144 //    all args on stack!
1145 //
1146 // Stack after saving c_rarg3:
1147 //    [tos + 0]: saved c_rarg3
1148 //    [tos + 1]: saved c_rarg2
1149 //    [tos + 2]: saved r12 (several TemplateTable methods use it)
1150 //    [tos + 3]: saved flags
1151 //    [tos + 4]: return address
1152 //  * [tos + 5]: error message (char*)
1153 //  * [tos + 6]: object to verify (oop)
1154 //  * [tos + 7]: saved rax - saved by caller and bashed
1155 //  * [tos + 8]: saved r10 (rscratch1) - saved by caller
1156 //  * = popped on exit
1157 address StubGenerator::generate_verify_oop() {
1158   StubId stub_id = StubId::stubgen_verify_oop_id;
1159   StubCodeMark mark(this, stub_id);
1160   address start = __ pc();
1161 
1162   Label exit, error;
1163 
1164   __ pushf();
1165   __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()), rscratch1);
1166 
1167   __ push_ppx(r12);
1168 
1169   // save c_rarg2 and c_rarg3
1170   __ push_ppx(c_rarg2);
1171   __ push_ppx(c_rarg3);
1172 
1173   enum {
1174     // After previous pushes.
1175     oop_to_verify = 6 * wordSize,
1176     saved_rax     = 7 * wordSize,
1177     saved_r10     = 8 * wordSize,
1178 
1179     // Before the call to MacroAssembler::debug(), see below.
1180     return_addr   = 16 * wordSize,
1181     error_msg     = 17 * wordSize
1182   };
1183 
1184   // get object
1185   __ movptr(rax, Address(rsp, oop_to_verify));
1186 
1187   // make sure object is 'reasonable'
1188   __ testptr(rax, rax);
1189   __ jcc(Assembler::zero, exit); // if obj is null it is OK
1190 
1191    BarrierSetAssembler* bs_asm = BarrierSet::barrier_set()->barrier_set_assembler();
1192    bs_asm->check_oop(_masm, rax, c_rarg2, c_rarg3, error);
1193 
1194   // return if everything seems ok
1195   __ bind(exit);
1196   __ movptr(rax, Address(rsp, saved_rax));     // get saved rax back
1197   __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back
1198   __ pop_ppx(c_rarg3);           // restore c_rarg3
1199   __ pop_ppx(c_rarg2);           // restore c_rarg2
1200   __ pop_ppx(r12);               // restore r12
1201   __ popf();                                   // restore flags
1202   __ ret(4 * wordSize);                        // pop caller saved stuff
1203 
1204   // handle errors
1205   __ bind(error);
1206   __ movptr(rax, Address(rsp, saved_rax));     // get saved rax back
1207   __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back
1208   __ pop_ppx(c_rarg3);           // get saved c_rarg3 back
1209   __ pop_ppx(c_rarg2);           // get saved c_rarg2 back
1210   __ pop_ppx(r12);               // get saved r12 back
1211   __ popf();                                   // get saved flags off stack --
1212                                                // will be ignored
1213 
1214   __ pusha();                                  // push registers
1215                                                // (rip is already
1216                                                // already pushed)
1217   // debug(char* msg, int64_t pc, int64_t regs[])
1218   // We've popped the registers we'd saved (c_rarg3, c_rarg2 and flags), and
1219   // pushed all the registers, so now the stack looks like:
1220   //     [tos +  0] 16 saved registers
1221   //     [tos + 16] return address
1222   //   * [tos + 17] error message (char*)
1223   //   * [tos + 18] object to verify (oop)
1224   //   * [tos + 19] saved rax - saved by caller and bashed
1225   //   * [tos + 20] saved r10 (rscratch1) - saved by caller
1226   //   * = popped on exit
1227 
1228   __ movptr(c_rarg0, Address(rsp, error_msg));    // pass address of error message
1229   __ movptr(c_rarg1, Address(rsp, return_addr));  // pass return address
1230   __ movq(c_rarg2, rsp);                          // pass address of regs on stack
1231   __ mov(r12, rsp);                               // remember rsp
1232   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
1233   __ andptr(rsp, -16);                            // align stack as required by ABI
1234   BLOCK_COMMENT("call MacroAssembler::debug");
1235   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
1236   __ hlt();
1237 
1238   return start;
1239 }
1240 
1241 
1242 // Shuffle first three arg regs on Windows into Linux/Solaris locations.
1243 //
1244 // Outputs:
1245 //    rdi - rcx
1246 //    rsi - rdx
1247 //    rdx - r8
1248 //    rcx - r9
1249 //
1250 // Registers r9 and r10 are used to save rdi and rsi on Windows, which latter
1251 // are non-volatile.  r9 and r10 should not be used by the caller.
1252 //
1253 void StubGenerator::setup_arg_regs(int nargs) {
1254   const Register saved_rdi = r9;
1255   const Register saved_rsi = r10;
1256   assert(nargs == 3 || nargs == 4, "else fix");
1257 #ifdef _WIN64
1258   assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9,
1259          "unexpected argument registers");
1260   if (nargs == 4) {
1261     __ mov(rax, r9);  // r9 is also saved_rdi
1262   }
1263   __ movptr(saved_rdi, rdi);
1264   __ movptr(saved_rsi, rsi);
1265   __ mov(rdi, rcx); // c_rarg0
1266   __ mov(rsi, rdx); // c_rarg1
1267   __ mov(rdx, r8);  // c_rarg2
1268   if (nargs == 4) {
1269     __ mov(rcx, rax); // c_rarg3 (via rax)
1270   }
1271 #else
1272   assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx,
1273          "unexpected argument registers");
1274 #endif
1275   DEBUG_ONLY(_regs_in_thread = false;)
1276 }
1277 
1278 
1279 void StubGenerator::restore_arg_regs() {
1280   assert(!_regs_in_thread, "wrong call to restore_arg_regs");
1281   const Register saved_rdi = r9;
1282   const Register saved_rsi = r10;
1283 #ifdef _WIN64
1284   __ movptr(rdi, saved_rdi);
1285   __ movptr(rsi, saved_rsi);
1286 #endif
1287 }
1288 
1289 
1290 // This is used in places where r10 is a scratch register, and can
1291 // be adapted if r9 is needed also.
1292 void StubGenerator::setup_arg_regs_using_thread(int nargs) {
1293   const Register saved_r15 = r9;
1294   assert(nargs == 3 || nargs == 4, "else fix");
1295 #ifdef _WIN64
1296   if (nargs == 4) {
1297     __ mov(rax, r9);       // r9 is also saved_r15
1298   }
1299   __ mov(saved_r15, r15);  // r15 is callee saved and needs to be restored
1300   __ get_thread_slow(r15_thread);
1301   assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9,
1302          "unexpected argument registers");
1303   __ movptr(Address(r15_thread, in_bytes(JavaThread::windows_saved_rdi_offset())), rdi);
1304   __ movptr(Address(r15_thread, in_bytes(JavaThread::windows_saved_rsi_offset())), rsi);
1305 
1306   __ mov(rdi, rcx); // c_rarg0
1307   __ mov(rsi, rdx); // c_rarg1
1308   __ mov(rdx, r8);  // c_rarg2
1309   if (nargs == 4) {
1310     __ mov(rcx, rax); // c_rarg3 (via rax)
1311   }
1312 #else
1313   assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx,
1314          "unexpected argument registers");
1315 #endif
1316   DEBUG_ONLY(_regs_in_thread = true;)
1317 }
1318 
1319 
1320 void StubGenerator::restore_arg_regs_using_thread() {
1321   assert(_regs_in_thread, "wrong call to restore_arg_regs");
1322   const Register saved_r15 = r9;
1323 #ifdef _WIN64
1324   __ get_thread_slow(r15_thread);
1325   __ movptr(rsi, Address(r15_thread, in_bytes(JavaThread::windows_saved_rsi_offset())));
1326   __ movptr(rdi, Address(r15_thread, in_bytes(JavaThread::windows_saved_rdi_offset())));
1327   __ mov(r15, saved_r15);  // r15 is callee saved and needs to be restored
1328 #endif
1329 }
1330 
1331 
1332 void StubGenerator::setup_argument_regs(BasicType type) {
1333   if (type == T_BYTE || type == T_SHORT) {
1334     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1335                       // r9 and r10 may be used to save non-volatile registers
1336   } else {
1337     setup_arg_regs_using_thread(); // from => rdi, to => rsi, count => rdx
1338                                    // r9 is used to save r15_thread
1339   }
1340 }
1341 
1342 
1343 void StubGenerator::restore_argument_regs(BasicType type) {
1344   if (type == T_BYTE || type == T_SHORT) {
1345     restore_arg_regs();
1346   } else {
1347     restore_arg_regs_using_thread();
1348   }
1349 }
1350 
1351 address StubGenerator::generate_data_cache_writeback() {
1352   const Register src        = c_rarg0;  // source address
1353 
1354   __ align(CodeEntryAlignment);
1355 
1356   StubId stub_id = StubId::stubgen_data_cache_writeback_id;
1357   StubCodeMark mark(this, stub_id);
1358 
1359   address start = __ pc();
1360 
1361   __ enter();
1362   __ cache_wb(Address(src, 0));
1363   __ leave();
1364   __ ret(0);
1365 
1366   return start;
1367 }
1368 
1369 address StubGenerator::generate_data_cache_writeback_sync() {
1370   const Register is_pre    = c_rarg0;  // pre or post sync
1371 
1372   __ align(CodeEntryAlignment);
1373 
1374   StubId stub_id = StubId::stubgen_data_cache_writeback_sync_id;
1375   StubCodeMark mark(this, stub_id);
1376 
1377   // pre wbsync is a no-op
1378   // post wbsync translates to an sfence
1379 
1380   Label skip;
1381   address start = __ pc();
1382 
1383   __ enter();
1384   __ cmpl(is_pre, 0);
1385   __ jcc(Assembler::notEqual, skip);
1386   __ cache_wbsync(false);
1387   __ bind(skip);
1388   __ leave();
1389   __ ret(0);
1390 
1391   return start;
1392 }
1393 
1394 // ofs and limit are use for multi-block byte array.
1395 // int com.sun.security.provider.MD5.implCompress(byte[] b, int ofs)
1396 address StubGenerator::generate_md5_implCompress(StubId stub_id) {
1397   bool multi_block;
1398   switch (stub_id) {
1399   case StubId::stubgen_md5_implCompress_id:
1400     multi_block = false;
1401     break;
1402   case StubId::stubgen_md5_implCompressMB_id:
1403     multi_block = true;
1404     break;
1405   default:
1406     ShouldNotReachHere();
1407   }
1408   __ align(CodeEntryAlignment);
1409   StubCodeMark mark(this, stub_id);
1410   address start = __ pc();
1411 
1412   const Register buf_param = r15;
1413   const Address state_param(rsp, 0 * wordSize);
1414   const Address ofs_param  (rsp, 1 * wordSize    );
1415   const Address limit_param(rsp, 1 * wordSize + 4);
1416 
1417   __ enter();
1418   __ push_ppx(rbx);
1419   __ push_ppx(rdi);
1420   __ push_ppx(rsi);
1421   __ push_ppx(r15);
1422   __ subptr(rsp, 2 * wordSize);
1423 
1424   __ movptr(buf_param, c_rarg0);
1425   __ movptr(state_param, c_rarg1);
1426   if (multi_block) {
1427     __ movl(ofs_param, c_rarg2);
1428     __ movl(limit_param, c_rarg3);
1429   }
1430   __ fast_md5(buf_param, state_param, ofs_param, limit_param, multi_block);
1431 
1432   __ addptr(rsp, 2 * wordSize);
1433   __ pop_ppx(r15);
1434   __ pop_ppx(rsi);
1435   __ pop_ppx(rdi);
1436   __ pop_ppx(rbx);
1437   __ leave();
1438   __ ret(0);
1439 
1440   return start;
1441 }
1442 
1443 address StubGenerator::generate_upper_word_mask() {
1444   __ align64();
1445   StubId stub_id = StubId::stubgen_upper_word_mask_id;
1446   StubCodeMark mark(this, stub_id);
1447   address start = __ pc();
1448 
1449   __ emit_data64(0x0000000000000000, relocInfo::none);
1450   __ emit_data64(0xFFFFFFFF00000000, relocInfo::none);
1451 
1452   return start;
1453 }
1454 
1455 address StubGenerator::generate_shuffle_byte_flip_mask() {
1456   __ align64();
1457   StubId stub_id = StubId::stubgen_shuffle_byte_flip_mask_id;
1458   StubCodeMark mark(this, stub_id);
1459   address start = __ pc();
1460 
1461   __ emit_data64(0x08090a0b0c0d0e0f, relocInfo::none);
1462   __ emit_data64(0x0001020304050607, relocInfo::none);
1463 
1464   return start;
1465 }
1466 
1467 // ofs and limit are use for multi-block byte array.
1468 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
1469 address StubGenerator::generate_sha1_implCompress(StubId stub_id) {
1470   bool multi_block;
1471   switch (stub_id) {
1472   case StubId::stubgen_sha1_implCompress_id:
1473     multi_block = false;
1474     break;
1475   case StubId::stubgen_sha1_implCompressMB_id:
1476     multi_block = true;
1477     break;
1478   default:
1479     ShouldNotReachHere();
1480   }
1481   __ align(CodeEntryAlignment);
1482   StubCodeMark mark(this, stub_id);
1483   address start = __ pc();
1484 
1485   Register buf = c_rarg0;
1486   Register state = c_rarg1;
1487   Register ofs = c_rarg2;
1488   Register limit = c_rarg3;
1489 
1490   const XMMRegister abcd = xmm0;
1491   const XMMRegister e0 = xmm1;
1492   const XMMRegister e1 = xmm2;
1493   const XMMRegister msg0 = xmm3;
1494 
1495   const XMMRegister msg1 = xmm4;
1496   const XMMRegister msg2 = xmm5;
1497   const XMMRegister msg3 = xmm6;
1498   const XMMRegister shuf_mask = xmm7;
1499 
1500   __ enter();
1501 
1502   __ subptr(rsp, 4 * wordSize);
1503 
1504   __ fast_sha1(abcd, e0, e1, msg0, msg1, msg2, msg3, shuf_mask,
1505     buf, state, ofs, limit, rsp, multi_block);
1506 
1507   __ addptr(rsp, 4 * wordSize);
1508 
1509   __ leave();
1510   __ ret(0);
1511 
1512   return start;
1513 }
1514 
1515 address StubGenerator::generate_pshuffle_byte_flip_mask() {
1516   __ align64();
1517   StubId stub_id = StubId::stubgen_pshuffle_byte_flip_mask_id;
1518   StubCodeMark mark(this, stub_id);
1519   address start = __ pc();
1520 
1521   __ emit_data64(0x0405060700010203, relocInfo::none);
1522   __ emit_data64(0x0c0d0e0f08090a0b, relocInfo::none);
1523 
1524   if (VM_Version::supports_avx2()) {
1525     __ emit_data64(0x0405060700010203, relocInfo::none); // second copy
1526     __ emit_data64(0x0c0d0e0f08090a0b, relocInfo::none);
1527     // _SHUF_00BA
1528     __ emit_data64(0x0b0a090803020100, relocInfo::none);
1529     __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none);
1530     __ emit_data64(0x0b0a090803020100, relocInfo::none);
1531     __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none);
1532     // _SHUF_DC00
1533     __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none);
1534     __ emit_data64(0x0b0a090803020100, relocInfo::none);
1535     __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none);
1536     __ emit_data64(0x0b0a090803020100, relocInfo::none);
1537   }
1538 
1539   return start;
1540 }
1541 
1542 //Mask for byte-swapping a couple of qwords in an XMM register using (v)pshufb.
1543 address StubGenerator::generate_pshuffle_byte_flip_mask_sha512() {
1544   __ align32();
1545   StubId stub_id = StubId::stubgen_pshuffle_byte_flip_mask_sha512_id;
1546   StubCodeMark mark(this, stub_id);
1547   address start = __ pc();
1548 
1549   if (VM_Version::supports_avx2()) {
1550     __ emit_data64(0x0001020304050607, relocInfo::none); // PSHUFFLE_BYTE_FLIP_MASK
1551     __ emit_data64(0x08090a0b0c0d0e0f, relocInfo::none);
1552     __ emit_data64(0x1011121314151617, relocInfo::none);
1553     __ emit_data64(0x18191a1b1c1d1e1f, relocInfo::none);
1554     __ emit_data64(0x0000000000000000, relocInfo::none); //MASK_YMM_LO
1555     __ emit_data64(0x0000000000000000, relocInfo::none);
1556     __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none);
1557     __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none);
1558   }
1559 
1560   return start;
1561 }
1562 
1563 // ofs and limit are use for multi-block byte array.
1564 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
1565 address StubGenerator::generate_sha256_implCompress(StubId stub_id) {
1566   bool multi_block;
1567   switch (stub_id) {
1568   case StubId::stubgen_sha256_implCompress_id:
1569     multi_block = false;
1570     break;
1571   case StubId::stubgen_sha256_implCompressMB_id:
1572     multi_block = true;
1573     break;
1574   default:
1575     ShouldNotReachHere();
1576   }
1577   assert(VM_Version::supports_sha() || VM_Version::supports_avx2(), "");
1578   __ align(CodeEntryAlignment);
1579   StubCodeMark mark(this, stub_id);
1580   address start = __ pc();
1581 
1582   Register buf = c_rarg0;
1583   Register state = c_rarg1;
1584   Register ofs = c_rarg2;
1585   Register limit = c_rarg3;
1586 
1587   const XMMRegister msg = xmm0;
1588   const XMMRegister state0 = xmm1;
1589   const XMMRegister state1 = xmm2;
1590   const XMMRegister msgtmp0 = xmm3;
1591 
1592   const XMMRegister msgtmp1 = xmm4;
1593   const XMMRegister msgtmp2 = xmm5;
1594   const XMMRegister msgtmp3 = xmm6;
1595   const XMMRegister msgtmp4 = xmm7;
1596 
1597   const XMMRegister shuf_mask = xmm8;
1598 
1599   __ enter();
1600 
1601   __ subptr(rsp, 4 * wordSize);
1602 
1603   if (VM_Version::supports_sha()) {
1604     __ fast_sha256(msg, state0, state1, msgtmp0, msgtmp1, msgtmp2, msgtmp3, msgtmp4,
1605       buf, state, ofs, limit, rsp, multi_block, shuf_mask);
1606   } else if (VM_Version::supports_avx2()) {
1607     __ sha256_AVX2(msg, state0, state1, msgtmp0, msgtmp1, msgtmp2, msgtmp3, msgtmp4,
1608       buf, state, ofs, limit, rsp, multi_block, shuf_mask);
1609   }
1610   __ addptr(rsp, 4 * wordSize);
1611   __ vzeroupper();
1612   __ leave();
1613   __ ret(0);
1614 
1615   return start;
1616 }
1617 
1618 address StubGenerator::generate_sha512_implCompress(StubId stub_id) {
1619   bool multi_block;
1620   switch (stub_id) {
1621   case StubId::stubgen_sha512_implCompress_id:
1622     multi_block = false;
1623     break;
1624   case StubId::stubgen_sha512_implCompressMB_id:
1625     multi_block = true;
1626     break;
1627   default:
1628     ShouldNotReachHere();
1629   }
1630   assert(VM_Version::supports_avx2(), "");
1631   assert(VM_Version::supports_bmi2() || VM_Version::supports_sha512(), "");
1632   __ align(CodeEntryAlignment);
1633   StubCodeMark mark(this, stub_id);
1634   address start = __ pc();
1635 
1636   Register buf = c_rarg0;
1637   Register state = c_rarg1;
1638   Register ofs = c_rarg2;
1639   Register limit = c_rarg3;
1640 
1641   __ enter();
1642 
1643   if (VM_Version::supports_sha512()) {
1644       __ sha512_update_ni_x1(state, buf, ofs, limit, multi_block);
1645   } else {
1646     const XMMRegister msg = xmm0;
1647     const XMMRegister state0 = xmm1;
1648     const XMMRegister state1 = xmm2;
1649     const XMMRegister msgtmp0 = xmm3;
1650     const XMMRegister msgtmp1 = xmm4;
1651     const XMMRegister msgtmp2 = xmm5;
1652     const XMMRegister msgtmp3 = xmm6;
1653     const XMMRegister msgtmp4 = xmm7;
1654 
1655     const XMMRegister shuf_mask = xmm8;
1656     __ sha512_AVX2(msg, state0, state1, msgtmp0, msgtmp1, msgtmp2, msgtmp3, msgtmp4,
1657       buf, state, ofs, limit, rsp, multi_block, shuf_mask);
1658   }
1659   __ vzeroupper();
1660   __ leave();
1661   __ ret(0);
1662 
1663   return start;
1664 }
1665 
1666 address StubGenerator::base64_shuffle_addr() {
1667   __ align64();
1668   StubId stub_id = StubId::stubgen_shuffle_base64_id;
1669   StubCodeMark mark(this, stub_id);
1670   address start = __ pc();
1671 
1672   assert(((unsigned long long)start & 0x3f) == 0,
1673          "Alignment problem (0x%08llx)", (unsigned long long)start);
1674   __ emit_data64(0x0405030401020001, relocInfo::none);
1675   __ emit_data64(0x0a0b090a07080607, relocInfo::none);
1676   __ emit_data64(0x10110f100d0e0c0d, relocInfo::none);
1677   __ emit_data64(0x1617151613141213, relocInfo::none);
1678   __ emit_data64(0x1c1d1b1c191a1819, relocInfo::none);
1679   __ emit_data64(0x222321221f201e1f, relocInfo::none);
1680   __ emit_data64(0x2829272825262425, relocInfo::none);
1681   __ emit_data64(0x2e2f2d2e2b2c2a2b, relocInfo::none);
1682 
1683   return start;
1684 }
1685 
1686 address StubGenerator::base64_avx2_shuffle_addr() {
1687   __ align32();
1688   StubId stub_id = StubId::stubgen_avx2_shuffle_base64_id;
1689   StubCodeMark mark(this, stub_id);
1690   address start = __ pc();
1691 
1692   __ emit_data64(0x0809070805060405, relocInfo::none);
1693   __ emit_data64(0x0e0f0d0e0b0c0a0b, relocInfo::none);
1694   __ emit_data64(0x0405030401020001, relocInfo::none);
1695   __ emit_data64(0x0a0b090a07080607, relocInfo::none);
1696 
1697   return start;
1698 }
1699 
1700 address StubGenerator::base64_avx2_input_mask_addr() {
1701   __ align32();
1702   StubId stub_id = StubId::stubgen_avx2_input_mask_base64_id;
1703   StubCodeMark mark(this, stub_id);
1704   address start = __ pc();
1705 
1706   __ emit_data64(0x8000000000000000, relocInfo::none);
1707   __ emit_data64(0x8000000080000000, relocInfo::none);
1708   __ emit_data64(0x8000000080000000, relocInfo::none);
1709   __ emit_data64(0x8000000080000000, relocInfo::none);
1710 
1711   return start;
1712 }
1713 
1714 address StubGenerator::base64_avx2_lut_addr() {
1715   __ align32();
1716   StubId stub_id = StubId::stubgen_avx2_lut_base64_id;
1717   StubCodeMark mark(this, stub_id);
1718   address start = __ pc();
1719 
1720   __ emit_data64(0xfcfcfcfcfcfc4741, relocInfo::none);
1721   __ emit_data64(0x0000f0edfcfcfcfc, relocInfo::none);
1722   __ emit_data64(0xfcfcfcfcfcfc4741, relocInfo::none);
1723   __ emit_data64(0x0000f0edfcfcfcfc, relocInfo::none);
1724 
1725   // URL LUT
1726   __ emit_data64(0xfcfcfcfcfcfc4741, relocInfo::none);
1727   __ emit_data64(0x000020effcfcfcfc, relocInfo::none);
1728   __ emit_data64(0xfcfcfcfcfcfc4741, relocInfo::none);
1729   __ emit_data64(0x000020effcfcfcfc, relocInfo::none);
1730 
1731   return start;
1732 }
1733 
1734 address StubGenerator::base64_encoding_table_addr() {
1735   __ align64();
1736   StubId stub_id = StubId::stubgen_encoding_table_base64_id;
1737   StubCodeMark mark(this, stub_id);
1738   address start = __ pc();
1739 
1740   assert(((unsigned long long)start & 0x3f) == 0, "Alignment problem (0x%08llx)", (unsigned long long)start);
1741   __ emit_data64(0x4847464544434241, relocInfo::none);
1742   __ emit_data64(0x504f4e4d4c4b4a49, relocInfo::none);
1743   __ emit_data64(0x5857565554535251, relocInfo::none);
1744   __ emit_data64(0x6665646362615a59, relocInfo::none);
1745   __ emit_data64(0x6e6d6c6b6a696867, relocInfo::none);
1746   __ emit_data64(0x767574737271706f, relocInfo::none);
1747   __ emit_data64(0x333231307a797877, relocInfo::none);
1748   __ emit_data64(0x2f2b393837363534, relocInfo::none);
1749 
1750   // URL table
1751   __ emit_data64(0x4847464544434241, relocInfo::none);
1752   __ emit_data64(0x504f4e4d4c4b4a49, relocInfo::none);
1753   __ emit_data64(0x5857565554535251, relocInfo::none);
1754   __ emit_data64(0x6665646362615a59, relocInfo::none);
1755   __ emit_data64(0x6e6d6c6b6a696867, relocInfo::none);
1756   __ emit_data64(0x767574737271706f, relocInfo::none);
1757   __ emit_data64(0x333231307a797877, relocInfo::none);
1758   __ emit_data64(0x5f2d393837363534, relocInfo::none);
1759 
1760   return start;
1761 }
1762 
1763 // Code for generating Base64 encoding.
1764 // Intrinsic function prototype in Base64.java:
1765 // private void encodeBlock(byte[] src, int sp, int sl, byte[] dst, int dp,
1766 // boolean isURL) {
1767 address StubGenerator::generate_base64_encodeBlock()
1768 {
1769   __ align(CodeEntryAlignment);
1770   StubId stub_id = StubId::stubgen_base64_encodeBlock_id;
1771   StubCodeMark mark(this, stub_id);
1772   address start = __ pc();
1773 
1774   __ enter();
1775 
1776   // Save callee-saved registers before using them
1777   __ push_ppx(r12);
1778   __ push_ppx(r13);
1779   __ push_ppx(r14);
1780   __ push_ppx(r15);
1781 
1782   // arguments
1783   const Register source = c_rarg0;       // Source Array
1784   const Register start_offset = c_rarg1; // start offset
1785   const Register end_offset = c_rarg2;   // end offset
1786   const Register dest = c_rarg3;   // destination array
1787 
1788 #ifndef _WIN64
1789   const Register dp = c_rarg4;    // Position for writing to dest array
1790   const Register isURL = c_rarg5; // Base64 or URL character set
1791 #else
1792   const Address dp_mem(rbp, 6 * wordSize); // length is on stack on Win64
1793   const Address isURL_mem(rbp, 7 * wordSize);
1794   const Register isURL = r10; // pick the volatile windows register
1795   const Register dp = r12;
1796   __ movl(dp, dp_mem);
1797   __ movl(isURL, isURL_mem);
1798 #endif
1799 
1800   const Register length = r14;
1801   const Register encode_table = r13;
1802   Label L_process3, L_exit, L_processdata, L_vbmiLoop, L_not512, L_32byteLoop;
1803 
1804   // calculate length from offsets
1805   __ movl(length, end_offset);
1806   __ subl(length, start_offset);
1807   __ jcc(Assembler::lessEqual, L_exit);
1808 
1809   // Code for 512-bit VBMI encoding.  Encodes 48 input bytes into 64
1810   // output bytes. We read 64 input bytes and ignore the last 16, so be
1811   // sure not to read past the end of the input buffer.
1812   if (VM_Version::supports_avx512_vbmi()) {
1813     __ cmpl(length, 64); // Do not overrun input buffer.
1814     __ jcc(Assembler::below, L_not512);
1815 
1816     __ shll(isURL, 6); // index into decode table based on isURL
1817     __ lea(encode_table, ExternalAddress(StubRoutines::x86::base64_encoding_table_addr()));
1818     __ addptr(encode_table, isURL);
1819     __ shrl(isURL, 6); // restore isURL
1820 
1821     __ mov64(rax, 0x3036242a1016040aull); // Shifts
1822     __ evmovdquq(xmm3, ExternalAddress(StubRoutines::x86::base64_shuffle_addr()), Assembler::AVX_512bit, r15);
1823     __ evmovdquq(xmm2, Address(encode_table, 0), Assembler::AVX_512bit);
1824     __ evpbroadcastq(xmm1, rax, Assembler::AVX_512bit);
1825 
1826     __ align32();
1827     __ BIND(L_vbmiLoop);
1828 
1829     __ vpermb(xmm0, xmm3, Address(source, start_offset), Assembler::AVX_512bit);
1830     __ subl(length, 48);
1831 
1832     // Put the input bytes into the proper lanes for writing, then
1833     // encode them.
1834     __ evpmultishiftqb(xmm0, xmm1, xmm0, Assembler::AVX_512bit);
1835     __ vpermb(xmm0, xmm0, xmm2, Assembler::AVX_512bit);
1836 
1837     // Write to destination
1838     __ evmovdquq(Address(dest, dp), xmm0, Assembler::AVX_512bit);
1839 
1840     __ addptr(dest, 64);
1841     __ addptr(source, 48);
1842     __ cmpl(length, 64);
1843     __ jcc(Assembler::aboveEqual, L_vbmiLoop);
1844 
1845     __ vzeroupper();
1846   }
1847 
1848   __ BIND(L_not512);
1849   if (VM_Version::supports_avx2()) {
1850     /*
1851     ** This AVX2 encoder is based off the paper at:
1852     **      https://dl.acm.org/doi/10.1145/3132709
1853     **
1854     ** We use AVX2 SIMD instructions to encode 24 bytes into 32
1855     ** output bytes.
1856     **
1857     */
1858     // Lengths under 32 bytes are done with scalar routine
1859     __ cmpl(length, 31);
1860     __ jcc(Assembler::belowEqual, L_process3);
1861 
1862     // Set up supporting constant table data
1863     __ vmovdqu(xmm9, ExternalAddress(StubRoutines::x86::base64_avx2_shuffle_addr()), rax);
1864     // 6-bit mask for 2nd and 4th (and multiples) 6-bit values
1865     __ movl(rax, 0x0fc0fc00);
1866     __ movdl(xmm8, rax);
1867     __ vmovdqu(xmm1, ExternalAddress(StubRoutines::x86::base64_avx2_input_mask_addr()), rax);
1868     __ vpbroadcastd(xmm8, xmm8, Assembler::AVX_256bit);
1869 
1870     // Multiplication constant for "shifting" right by 6 and 10
1871     // bits
1872     __ movl(rax, 0x04000040);
1873 
1874     __ subl(length, 24);
1875     __ movdl(xmm7, rax);
1876     __ vpbroadcastd(xmm7, xmm7, Assembler::AVX_256bit);
1877 
1878     // For the first load, we mask off reading of the first 4
1879     // bytes into the register. This is so we can get 4 3-byte
1880     // chunks into each lane of the register, avoiding having to
1881     // handle end conditions.  We then shuffle these bytes into a
1882     // specific order so that manipulation is easier.
1883     //
1884     // The initial read loads the XMM register like this:
1885     //
1886     // Lower 128-bit lane:
1887     // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
1888     // | XX | XX | XX | XX | A0 | A1 | A2 | B0 | B1 | B2 | C0 | C1
1889     // | C2 | D0 | D1 | D2 |
1890     // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
1891     //
1892     // Upper 128-bit lane:
1893     // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
1894     // | E0 | E1 | E2 | F0 | F1 | F2 | G0 | G1 | G2 | H0 | H1 | H2
1895     // | XX | XX | XX | XX |
1896     // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
1897     //
1898     // Where A0 is the first input byte, B0 is the fourth, etc.
1899     // The alphabetical significance denotes the 3 bytes to be
1900     // consumed and encoded into 4 bytes.
1901     //
1902     // We then shuffle the register so each 32-bit word contains
1903     // the sequence:
1904     //    A1 A0 A2 A1, B1, B0, B2, B1, etc.
1905     // Each of these byte sequences are then manipulated into 4
1906     // 6-bit values ready for encoding.
1907     //
1908     // If we focus on one set of 3-byte chunks, changing the
1909     // nomenclature such that A0 => a, A1 => b, and A2 => c, we
1910     // shuffle such that each 24-bit chunk contains:
1911     //
1912     // b7 b6 b5 b4 b3 b2 b1 b0 | a7 a6 a5 a4 a3 a2 a1 a0 | c7 c6
1913     // c5 c4 c3 c2 c1 c0 | b7 b6 b5 b4 b3 b2 b1 b0
1914     // Explain this step.
1915     // b3 b2 b1 b0 c5 c4 c3 c2 | c1 c0 d5 d4 d3 d2 d1 d0 | a5 a4
1916     // a3 a2 a1 a0 b5 b4 | b3 b2 b1 b0 c5 c4 c3 c2
1917     //
1918     // W first and off all but bits 4-9 and 16-21 (c5..c0 and
1919     // a5..a0) and shift them using a vector multiplication
1920     // operation (vpmulhuw) which effectively shifts c right by 6
1921     // bits and a right by 10 bits.  We similarly mask bits 10-15
1922     // (d5..d0) and 22-27 (b5..b0) and shift them left by 8 and 4
1923     // bits respectively.  This is done using vpmullw.  We end up
1924     // with 4 6-bit values, thus splitting the 3 input bytes,
1925     // ready for encoding:
1926     //    0 0 d5..d0 0 0 c5..c0 0 0 b5..b0 0 0 a5..a0
1927     //
1928     // For translation, we recognize that there are 5 distinct
1929     // ranges of legal Base64 characters as below:
1930     //
1931     //   +-------------+-------------+------------+
1932     //   | 6-bit value | ASCII range |   offset   |
1933     //   +-------------+-------------+------------+
1934     //   |    0..25    |    A..Z     |     65     |
1935     //   |   26..51    |    a..z     |     71     |
1936     //   |   52..61    |    0..9     |     -4     |
1937     //   |     62      |   + or -    | -19 or -17 |
1938     //   |     63      |   / or _    | -16 or 32  |
1939     //   +-------------+-------------+------------+
1940     //
1941     // We note that vpshufb does a parallel lookup in a
1942     // destination register using the lower 4 bits of bytes from a
1943     // source register.  If we use a saturated subtraction and
1944     // subtract 51 from each 6-bit value, bytes from [0,51]
1945     // saturate to 0, and [52,63] map to a range of [1,12].  We
1946     // distinguish the [0,25] and [26,51] ranges by assigning a
1947     // value of 13 for all 6-bit values less than 26.  We end up
1948     // with:
1949     //
1950     //   +-------------+-------------+------------+
1951     //   | 6-bit value |   Reduced   |   offset   |
1952     //   +-------------+-------------+------------+
1953     //   |    0..25    |     13      |     65     |
1954     //   |   26..51    |      0      |     71     |
1955     //   |   52..61    |    0..9     |     -4     |
1956     //   |     62      |     11      | -19 or -17 |
1957     //   |     63      |     12      | -16 or 32  |
1958     //   +-------------+-------------+------------+
1959     //
1960     // We then use a final vpshufb to add the appropriate offset,
1961     // translating the bytes.
1962     //
1963     // Load input bytes - only 28 bytes.  Mask the first load to
1964     // not load into the full register.
1965     __ vpmaskmovd(xmm1, xmm1, Address(source, start_offset, Address::times_1, -4), Assembler::AVX_256bit);
1966 
1967     // Move 3-byte chunks of input (12 bytes) into 16 bytes,
1968     // ordering by:
1969     //   1, 0, 2, 1; 4, 3, 5, 4; etc.  This groups 6-bit chunks
1970     //   for easy masking
1971     __ vpshufb(xmm1, xmm1, xmm9, Assembler::AVX_256bit);
1972 
1973     __ addl(start_offset, 24);
1974 
1975     // Load masking register for first and third (and multiples)
1976     // 6-bit values.
1977     __ movl(rax, 0x003f03f0);
1978     __ movdl(xmm6, rax);
1979     __ vpbroadcastd(xmm6, xmm6, Assembler::AVX_256bit);
1980     // Multiplication constant for "shifting" left by 4 and 8 bits
1981     __ movl(rax, 0x01000010);
1982     __ movdl(xmm5, rax);
1983     __ vpbroadcastd(xmm5, xmm5, Assembler::AVX_256bit);
1984 
1985     // Isolate 6-bit chunks of interest
1986     __ vpand(xmm0, xmm8, xmm1, Assembler::AVX_256bit);
1987 
1988     // Load constants for encoding
1989     __ movl(rax, 0x19191919);
1990     __ movdl(xmm3, rax);
1991     __ vpbroadcastd(xmm3, xmm3, Assembler::AVX_256bit);
1992     __ movl(rax, 0x33333333);
1993     __ movdl(xmm4, rax);
1994     __ vpbroadcastd(xmm4, xmm4, Assembler::AVX_256bit);
1995 
1996     // Shift output bytes 0 and 2 into proper lanes
1997     __ vpmulhuw(xmm2, xmm0, xmm7, Assembler::AVX_256bit);
1998 
1999     // Mask and shift output bytes 1 and 3 into proper lanes and
2000     // combine
2001     __ vpand(xmm0, xmm6, xmm1, Assembler::AVX_256bit);
2002     __ vpmullw(xmm0, xmm5, xmm0, Assembler::AVX_256bit);
2003     __ vpor(xmm0, xmm0, xmm2, Assembler::AVX_256bit);
2004 
2005     // Find out which are 0..25.  This indicates which input
2006     // values fall in the range of 'A'-'Z', which require an
2007     // additional offset (see comments above)
2008     __ vpcmpgtb(xmm2, xmm0, xmm3, Assembler::AVX_256bit);
2009     __ vpsubusb(xmm1, xmm0, xmm4, Assembler::AVX_256bit);
2010     __ vpsubb(xmm1, xmm1, xmm2, Assembler::AVX_256bit);
2011 
2012     // Load the proper lookup table
2013     __ lea(r11, ExternalAddress(StubRoutines::x86::base64_avx2_lut_addr()));
2014     __ movl(r15, isURL);
2015     __ shll(r15, 5);
2016     __ vmovdqu(xmm2, Address(r11, r15));
2017 
2018     // Shuffle the offsets based on the range calculation done
2019     // above. This allows us to add the correct offset to the
2020     // 6-bit value corresponding to the range documented above.
2021     __ vpshufb(xmm1, xmm2, xmm1, Assembler::AVX_256bit);
2022     __ vpaddb(xmm0, xmm1, xmm0, Assembler::AVX_256bit);
2023 
2024     // Store the encoded bytes
2025     __ vmovdqu(Address(dest, dp), xmm0);
2026     __ addl(dp, 32);
2027 
2028     __ cmpl(length, 31);
2029     __ jcc(Assembler::belowEqual, L_process3);
2030 
2031     __ align32();
2032     __ BIND(L_32byteLoop);
2033 
2034     // Get next 32 bytes
2035     __ vmovdqu(xmm1, Address(source, start_offset, Address::times_1, -4));
2036 
2037     __ subl(length, 24);
2038     __ addl(start_offset, 24);
2039 
2040     // This logic is identical to the above, with only constant
2041     // register loads removed.  Shuffle the input, mask off 6-bit
2042     // chunks, shift them into place, then add the offset to
2043     // encode.
2044     __ vpshufb(xmm1, xmm1, xmm9, Assembler::AVX_256bit);
2045 
2046     __ vpand(xmm0, xmm8, xmm1, Assembler::AVX_256bit);
2047     __ vpmulhuw(xmm10, xmm0, xmm7, Assembler::AVX_256bit);
2048     __ vpand(xmm0, xmm6, xmm1, Assembler::AVX_256bit);
2049     __ vpmullw(xmm0, xmm5, xmm0, Assembler::AVX_256bit);
2050     __ vpor(xmm0, xmm0, xmm10, Assembler::AVX_256bit);
2051     __ vpcmpgtb(xmm10, xmm0, xmm3, Assembler::AVX_256bit);
2052     __ vpsubusb(xmm1, xmm0, xmm4, Assembler::AVX_256bit);
2053     __ vpsubb(xmm1, xmm1, xmm10, Assembler::AVX_256bit);
2054     __ vpshufb(xmm1, xmm2, xmm1, Assembler::AVX_256bit);
2055     __ vpaddb(xmm0, xmm1, xmm0, Assembler::AVX_256bit);
2056 
2057     // Store the encoded bytes
2058     __ vmovdqu(Address(dest, dp), xmm0);
2059     __ addl(dp, 32);
2060 
2061     __ cmpl(length, 31);
2062     __ jcc(Assembler::above, L_32byteLoop);
2063 
2064     __ BIND(L_process3);
2065     __ vzeroupper();
2066   } else {
2067     __ BIND(L_process3);
2068   }
2069 
2070   __ cmpl(length, 3);
2071   __ jcc(Assembler::below, L_exit);
2072 
2073   // Load the encoding table based on isURL
2074   __ lea(r11, ExternalAddress(StubRoutines::x86::base64_encoding_table_addr()));
2075   __ movl(r15, isURL);
2076   __ shll(r15, 6);
2077   __ addptr(r11, r15);
2078 
2079   __ BIND(L_processdata);
2080 
2081   // Load 3 bytes
2082   __ load_unsigned_byte(r15, Address(source, start_offset));
2083   __ load_unsigned_byte(r10, Address(source, start_offset, Address::times_1, 1));
2084   __ load_unsigned_byte(r13, Address(source, start_offset, Address::times_1, 2));
2085 
2086   // Build a 32-bit word with bytes 1, 2, 0, 1
2087   __ movl(rax, r10);
2088   __ shll(r10, 24);
2089   __ orl(rax, r10);
2090 
2091   __ subl(length, 3);
2092 
2093   __ shll(r15, 8);
2094   __ shll(r13, 16);
2095   __ orl(rax, r15);
2096 
2097   __ addl(start_offset, 3);
2098 
2099   __ orl(rax, r13);
2100   // At this point, rax contains | byte1 | byte2 | byte0 | byte1
2101   // r13 has byte2 << 16 - need low-order 6 bits to translate.
2102   // This translated byte is the fourth output byte.
2103   __ shrl(r13, 16);
2104   __ andl(r13, 0x3f);
2105 
2106   // The high-order 6 bits of r15 (byte0) is translated.
2107   // The translated byte is the first output byte.
2108   __ shrl(r15, 10);
2109 
2110   __ load_unsigned_byte(r13, Address(r11, r13));
2111   __ load_unsigned_byte(r15, Address(r11, r15));
2112 
2113   __ movb(Address(dest, dp, Address::times_1, 3), r13);
2114 
2115   // Extract high-order 4 bits of byte1 and low-order 2 bits of byte0.
2116   // This translated byte is the second output byte.
2117   __ shrl(rax, 4);
2118   __ movl(r10, rax);
2119   __ andl(rax, 0x3f);
2120 
2121   __ movb(Address(dest, dp, Address::times_1, 0), r15);
2122 
2123   __ load_unsigned_byte(rax, Address(r11, rax));
2124 
2125   // Extract low-order 2 bits of byte1 and high-order 4 bits of byte2.
2126   // This translated byte is the third output byte.
2127   __ shrl(r10, 18);
2128   __ andl(r10, 0x3f);
2129 
2130   __ load_unsigned_byte(r10, Address(r11, r10));
2131 
2132   __ movb(Address(dest, dp, Address::times_1, 1), rax);
2133   __ movb(Address(dest, dp, Address::times_1, 2), r10);
2134 
2135   __ addl(dp, 4);
2136   __ cmpl(length, 3);
2137   __ jcc(Assembler::aboveEqual, L_processdata);
2138 
2139   __ BIND(L_exit);
2140   __ pop_ppx(r15);
2141   __ pop_ppx(r14);
2142   __ pop_ppx(r13);
2143   __ pop_ppx(r12);
2144   __ leave();
2145   __ ret(0);
2146 
2147   return start;
2148 }
2149 
2150 // base64 AVX512vbmi tables
2151 address StubGenerator::base64_vbmi_lookup_lo_addr() {
2152   __ align64();
2153   StubId stub_id = StubId::stubgen_lookup_lo_base64_id;
2154   StubCodeMark mark(this, stub_id);
2155   address start = __ pc();
2156 
2157   assert(((unsigned long long)start & 0x3f) == 0,
2158          "Alignment problem (0x%08llx)", (unsigned long long)start);
2159   __ emit_data64(0x8080808080808080, relocInfo::none);
2160   __ emit_data64(0x8080808080808080, relocInfo::none);
2161   __ emit_data64(0x8080808080808080, relocInfo::none);
2162   __ emit_data64(0x8080808080808080, relocInfo::none);
2163   __ emit_data64(0x8080808080808080, relocInfo::none);
2164   __ emit_data64(0x3f8080803e808080, relocInfo::none);
2165   __ emit_data64(0x3b3a393837363534, relocInfo::none);
2166   __ emit_data64(0x8080808080803d3c, relocInfo::none);
2167 
2168   return start;
2169 }
2170 
2171 address StubGenerator::base64_vbmi_lookup_hi_addr() {
2172   __ align64();
2173   StubId stub_id = StubId::stubgen_lookup_hi_base64_id;
2174   StubCodeMark mark(this, stub_id);
2175   address start = __ pc();
2176 
2177   assert(((unsigned long long)start & 0x3f) == 0,
2178          "Alignment problem (0x%08llx)", (unsigned long long)start);
2179   __ emit_data64(0x0605040302010080, relocInfo::none);
2180   __ emit_data64(0x0e0d0c0b0a090807, relocInfo::none);
2181   __ emit_data64(0x161514131211100f, relocInfo::none);
2182   __ emit_data64(0x8080808080191817, relocInfo::none);
2183   __ emit_data64(0x201f1e1d1c1b1a80, relocInfo::none);
2184   __ emit_data64(0x2827262524232221, relocInfo::none);
2185   __ emit_data64(0x302f2e2d2c2b2a29, relocInfo::none);
2186   __ emit_data64(0x8080808080333231, relocInfo::none);
2187 
2188   return start;
2189 }
2190 address StubGenerator::base64_vbmi_lookup_lo_url_addr() {
2191   __ align64();
2192   StubId stub_id = StubId::stubgen_lookup_lo_base64url_id;
2193   StubCodeMark mark(this, stub_id);
2194   address start = __ pc();
2195 
2196   assert(((unsigned long long)start & 0x3f) == 0,
2197          "Alignment problem (0x%08llx)", (unsigned long long)start);
2198   __ emit_data64(0x8080808080808080, relocInfo::none);
2199   __ emit_data64(0x8080808080808080, relocInfo::none);
2200   __ emit_data64(0x8080808080808080, relocInfo::none);
2201   __ emit_data64(0x8080808080808080, relocInfo::none);
2202   __ emit_data64(0x8080808080808080, relocInfo::none);
2203   __ emit_data64(0x80803e8080808080, relocInfo::none);
2204   __ emit_data64(0x3b3a393837363534, relocInfo::none);
2205   __ emit_data64(0x8080808080803d3c, relocInfo::none);
2206 
2207   return start;
2208 }
2209 
2210 address StubGenerator::base64_vbmi_lookup_hi_url_addr() {
2211   __ align64();
2212   StubId stub_id = StubId::stubgen_lookup_hi_base64url_id;
2213   StubCodeMark mark(this, stub_id);
2214   address start = __ pc();
2215 
2216   assert(((unsigned long long)start & 0x3f) == 0,
2217          "Alignment problem (0x%08llx)", (unsigned long long)start);
2218   __ emit_data64(0x0605040302010080, relocInfo::none);
2219   __ emit_data64(0x0e0d0c0b0a090807, relocInfo::none);
2220   __ emit_data64(0x161514131211100f, relocInfo::none);
2221   __ emit_data64(0x3f80808080191817, relocInfo::none);
2222   __ emit_data64(0x201f1e1d1c1b1a80, relocInfo::none);
2223   __ emit_data64(0x2827262524232221, relocInfo::none);
2224   __ emit_data64(0x302f2e2d2c2b2a29, relocInfo::none);
2225   __ emit_data64(0x8080808080333231, relocInfo::none);
2226 
2227   return start;
2228 }
2229 
2230 address StubGenerator::base64_vbmi_pack_vec_addr() {
2231   __ align64();
2232   StubId stub_id = StubId::stubgen_pack_vec_base64_id;
2233   StubCodeMark mark(this, stub_id);
2234   address start = __ pc();
2235 
2236   assert(((unsigned long long)start & 0x3f) == 0,
2237          "Alignment problem (0x%08llx)", (unsigned long long)start);
2238   __ emit_data64(0x090a040506000102, relocInfo::none);
2239   __ emit_data64(0x161011120c0d0e08, relocInfo::none);
2240   __ emit_data64(0x1c1d1e18191a1415, relocInfo::none);
2241   __ emit_data64(0x292a242526202122, relocInfo::none);
2242   __ emit_data64(0x363031322c2d2e28, relocInfo::none);
2243   __ emit_data64(0x3c3d3e38393a3435, relocInfo::none);
2244   __ emit_data64(0x0000000000000000, relocInfo::none);
2245   __ emit_data64(0x0000000000000000, relocInfo::none);
2246 
2247   return start;
2248 }
2249 
2250 address StubGenerator::base64_vbmi_join_0_1_addr() {
2251   __ align64();
2252   StubId stub_id = StubId::stubgen_join_0_1_base64_id;
2253   StubCodeMark mark(this, stub_id);
2254   address start = __ pc();
2255 
2256   assert(((unsigned long long)start & 0x3f) == 0,
2257          "Alignment problem (0x%08llx)", (unsigned long long)start);
2258   __ emit_data64(0x090a040506000102, relocInfo::none);
2259   __ emit_data64(0x161011120c0d0e08, relocInfo::none);
2260   __ emit_data64(0x1c1d1e18191a1415, relocInfo::none);
2261   __ emit_data64(0x292a242526202122, relocInfo::none);
2262   __ emit_data64(0x363031322c2d2e28, relocInfo::none);
2263   __ emit_data64(0x3c3d3e38393a3435, relocInfo::none);
2264   __ emit_data64(0x494a444546404142, relocInfo::none);
2265   __ emit_data64(0x565051524c4d4e48, relocInfo::none);
2266 
2267   return start;
2268 }
2269 
2270 address StubGenerator::base64_vbmi_join_1_2_addr() {
2271   __ align64();
2272   StubId stub_id = StubId::stubgen_join_1_2_base64_id;
2273   StubCodeMark mark(this, stub_id);
2274   address start = __ pc();
2275 
2276   assert(((unsigned long long)start & 0x3f) == 0,
2277          "Alignment problem (0x%08llx)", (unsigned long long)start);
2278   __ emit_data64(0x1c1d1e18191a1415, relocInfo::none);
2279   __ emit_data64(0x292a242526202122, relocInfo::none);
2280   __ emit_data64(0x363031322c2d2e28, relocInfo::none);
2281   __ emit_data64(0x3c3d3e38393a3435, relocInfo::none);
2282   __ emit_data64(0x494a444546404142, relocInfo::none);
2283   __ emit_data64(0x565051524c4d4e48, relocInfo::none);
2284   __ emit_data64(0x5c5d5e58595a5455, relocInfo::none);
2285   __ emit_data64(0x696a646566606162, relocInfo::none);
2286 
2287   return start;
2288 }
2289 
2290 address StubGenerator::base64_vbmi_join_2_3_addr() {
2291   __ align64();
2292   StubId stub_id = StubId::stubgen_join_2_3_base64_id;
2293   StubCodeMark mark(this, stub_id);
2294   address start = __ pc();
2295 
2296   assert(((unsigned long long)start & 0x3f) == 0,
2297          "Alignment problem (0x%08llx)", (unsigned long long)start);
2298   __ emit_data64(0x363031322c2d2e28, relocInfo::none);
2299   __ emit_data64(0x3c3d3e38393a3435, relocInfo::none);
2300   __ emit_data64(0x494a444546404142, relocInfo::none);
2301   __ emit_data64(0x565051524c4d4e48, relocInfo::none);
2302   __ emit_data64(0x5c5d5e58595a5455, relocInfo::none);
2303   __ emit_data64(0x696a646566606162, relocInfo::none);
2304   __ emit_data64(0x767071726c6d6e68, relocInfo::none);
2305   __ emit_data64(0x7c7d7e78797a7475, relocInfo::none);
2306 
2307   return start;
2308 }
2309 
2310 address StubGenerator::base64_AVX2_decode_tables_addr() {
2311   __ align64();
2312   StubId stub_id = StubId::stubgen_avx2_decode_tables_base64_id;
2313   StubCodeMark mark(this, stub_id);
2314   address start = __ pc();
2315 
2316   assert(((unsigned long long)start & 0x3f) == 0,
2317          "Alignment problem (0x%08llx)", (unsigned long long)start);
2318   __ emit_data(0x2f2f2f2f, relocInfo::none, 0);
2319   __ emit_data(0x5f5f5f5f, relocInfo::none, 0);  // for URL
2320 
2321   __ emit_data(0xffffffff, relocInfo::none, 0);
2322   __ emit_data(0xfcfcfcfc, relocInfo::none, 0);  // for URL
2323 
2324   // Permute table
2325   __ emit_data64(0x0000000100000000, relocInfo::none);
2326   __ emit_data64(0x0000000400000002, relocInfo::none);
2327   __ emit_data64(0x0000000600000005, relocInfo::none);
2328   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2329 
2330   // Shuffle table
2331   __ emit_data64(0x090a040506000102, relocInfo::none);
2332   __ emit_data64(0xffffffff0c0d0e08, relocInfo::none);
2333   __ emit_data64(0x090a040506000102, relocInfo::none);
2334   __ emit_data64(0xffffffff0c0d0e08, relocInfo::none);
2335 
2336   // merge table
2337   __ emit_data(0x01400140, relocInfo::none, 0);
2338 
2339   // merge multiplier
2340   __ emit_data(0x00011000, relocInfo::none, 0);
2341 
2342   return start;
2343 }
2344 
2345 address StubGenerator::base64_AVX2_decode_LUT_tables_addr() {
2346   __ align64();
2347   StubId stub_id = StubId::stubgen_avx2_decode_lut_tables_base64_id;
2348   StubCodeMark mark(this, stub_id);
2349   address start = __ pc();
2350 
2351   assert(((unsigned long long)start & 0x3f) == 0,
2352          "Alignment problem (0x%08llx)", (unsigned long long)start);
2353   // lut_lo
2354   __ emit_data64(0x1111111111111115, relocInfo::none);
2355   __ emit_data64(0x1a1b1b1b1a131111, relocInfo::none);
2356   __ emit_data64(0x1111111111111115, relocInfo::none);
2357   __ emit_data64(0x1a1b1b1b1a131111, relocInfo::none);
2358 
2359   // lut_roll
2360   __ emit_data64(0xb9b9bfbf04131000, relocInfo::none);
2361   __ emit_data64(0x0000000000000000, relocInfo::none);
2362   __ emit_data64(0xb9b9bfbf04131000, relocInfo::none);
2363   __ emit_data64(0x0000000000000000, relocInfo::none);
2364 
2365   // lut_lo URL
2366   __ emit_data64(0x1111111111111115, relocInfo::none);
2367   __ emit_data64(0x1b1b1a1b1b131111, relocInfo::none);
2368   __ emit_data64(0x1111111111111115, relocInfo::none);
2369   __ emit_data64(0x1b1b1a1b1b131111, relocInfo::none);
2370 
2371   // lut_roll URL
2372   __ emit_data64(0xb9b9bfbf0411e000, relocInfo::none);
2373   __ emit_data64(0x0000000000000000, relocInfo::none);
2374   __ emit_data64(0xb9b9bfbf0411e000, relocInfo::none);
2375   __ emit_data64(0x0000000000000000, relocInfo::none);
2376 
2377   // lut_hi
2378   __ emit_data64(0x0804080402011010, relocInfo::none);
2379   __ emit_data64(0x1010101010101010, relocInfo::none);
2380   __ emit_data64(0x0804080402011010, relocInfo::none);
2381   __ emit_data64(0x1010101010101010, relocInfo::none);
2382 
2383   return start;
2384 }
2385 
2386 address StubGenerator::base64_decoding_table_addr() {
2387   StubId stub_id = StubId::stubgen_decoding_table_base64_id;
2388   StubCodeMark mark(this, stub_id);
2389   address start = __ pc();
2390 
2391   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2392   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2393   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2394   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2395   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2396   __ emit_data64(0x3fffffff3effffff, relocInfo::none);
2397   __ emit_data64(0x3b3a393837363534, relocInfo::none);
2398   __ emit_data64(0xffffffffffff3d3c, relocInfo::none);
2399   __ emit_data64(0x06050403020100ff, relocInfo::none);
2400   __ emit_data64(0x0e0d0c0b0a090807, relocInfo::none);
2401   __ emit_data64(0x161514131211100f, relocInfo::none);
2402   __ emit_data64(0xffffffffff191817, relocInfo::none);
2403   __ emit_data64(0x201f1e1d1c1b1aff, relocInfo::none);
2404   __ emit_data64(0x2827262524232221, relocInfo::none);
2405   __ emit_data64(0x302f2e2d2c2b2a29, relocInfo::none);
2406   __ emit_data64(0xffffffffff333231, relocInfo::none);
2407   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2408   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2409   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2410   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2411   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2412   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2413   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2414   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2415   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2416   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2417   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2418   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2419   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2420   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2421   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2422   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2423 
2424   // URL table
2425   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2426   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2427   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2428   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2429   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2430   __ emit_data64(0xffff3effffffffff, relocInfo::none);
2431   __ emit_data64(0x3b3a393837363534, relocInfo::none);
2432   __ emit_data64(0xffffffffffff3d3c, relocInfo::none);
2433   __ emit_data64(0x06050403020100ff, relocInfo::none);
2434   __ emit_data64(0x0e0d0c0b0a090807, relocInfo::none);
2435   __ emit_data64(0x161514131211100f, relocInfo::none);
2436   __ emit_data64(0x3fffffffff191817, relocInfo::none);
2437   __ emit_data64(0x201f1e1d1c1b1aff, relocInfo::none);
2438   __ emit_data64(0x2827262524232221, relocInfo::none);
2439   __ emit_data64(0x302f2e2d2c2b2a29, relocInfo::none);
2440   __ emit_data64(0xffffffffff333231, relocInfo::none);
2441   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2442   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2443   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2444   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2445   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2446   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2447   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2448   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2449   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2450   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2451   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2452   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2453   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2454   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2455   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2456   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2457 
2458   return start;
2459 }
2460 
2461 
2462 // Code for generating Base64 decoding.
2463 //
2464 // Based on the article (and associated code) from https://arxiv.org/abs/1910.05109.
2465 //
2466 // Intrinsic function prototype in Base64.java:
2467 // private void decodeBlock(byte[] src, int sp, int sl, byte[] dst, int dp, boolean isURL, isMIME) {
2468 address StubGenerator::generate_base64_decodeBlock() {
2469   __ align(CodeEntryAlignment);
2470   StubId stub_id = StubId::stubgen_base64_decodeBlock_id;
2471   StubCodeMark mark(this, stub_id);
2472   address start = __ pc();
2473 
2474   __ enter();
2475 
2476   // Save callee-saved registers before using them
2477   __ push_ppx(r12);
2478   __ push_ppx(r13);
2479   __ push_ppx(r14);
2480   __ push_ppx(r15);
2481   __ push_ppx(rbx);
2482 
2483   // arguments
2484   const Register source = c_rarg0; // Source Array
2485   const Register start_offset = c_rarg1; // start offset
2486   const Register end_offset = c_rarg2; // end offset
2487   const Register dest = c_rarg3; // destination array
2488   const Register isMIME = rbx;
2489 
2490 #ifndef _WIN64
2491   const Register dp = c_rarg4;  // Position for writing to dest array
2492   const Register isURL = c_rarg5;// Base64 or URL character set
2493   __ movl(isMIME, Address(rbp, 2 * wordSize));
2494 #else
2495   const Address dp_mem(rbp, 6 * wordSize);  // length is on stack on Win64
2496   const Address isURL_mem(rbp, 7 * wordSize);
2497   const Register isURL = r10;      // pick the volatile windows register
2498   const Register dp = r12;
2499   __ movl(dp, dp_mem);
2500   __ movl(isURL, isURL_mem);
2501   __ movl(isMIME, Address(rbp, 8 * wordSize));
2502 #endif
2503 
2504   const XMMRegister lookup_lo = xmm5;
2505   const XMMRegister lookup_hi = xmm6;
2506   const XMMRegister errorvec = xmm7;
2507   const XMMRegister pack16_op = xmm9;
2508   const XMMRegister pack32_op = xmm8;
2509   const XMMRegister input0 = xmm3;
2510   const XMMRegister input1 = xmm20;
2511   const XMMRegister input2 = xmm21;
2512   const XMMRegister input3 = xmm19;
2513   const XMMRegister join01 = xmm12;
2514   const XMMRegister join12 = xmm11;
2515   const XMMRegister join23 = xmm10;
2516   const XMMRegister translated0 = xmm2;
2517   const XMMRegister translated1 = xmm1;
2518   const XMMRegister translated2 = xmm0;
2519   const XMMRegister translated3 = xmm4;
2520 
2521   const XMMRegister merged0 = xmm2;
2522   const XMMRegister merged1 = xmm1;
2523   const XMMRegister merged2 = xmm0;
2524   const XMMRegister merged3 = xmm4;
2525   const XMMRegister merge_ab_bc0 = xmm2;
2526   const XMMRegister merge_ab_bc1 = xmm1;
2527   const XMMRegister merge_ab_bc2 = xmm0;
2528   const XMMRegister merge_ab_bc3 = xmm4;
2529 
2530   const XMMRegister pack24bits = xmm4;
2531 
2532   const Register length = r14;
2533   const Register output_size = r13;
2534   const Register output_mask = r15;
2535   const KRegister input_mask = k1;
2536 
2537   const XMMRegister input_initial_valid_b64 = xmm0;
2538   const XMMRegister tmp = xmm10;
2539   const XMMRegister mask = xmm0;
2540   const XMMRegister invalid_b64 = xmm1;
2541 
2542   Label L_process256, L_process64, L_process64Loop, L_exit, L_processdata, L_loadURL;
2543   Label L_continue, L_finalBit, L_padding, L_donePadding, L_bruteForce;
2544   Label L_forceLoop, L_bottomLoop, L_checkMIME, L_exit_no_vzero, L_lastChunk;
2545 
2546   // calculate length from offsets
2547   __ movl(length, end_offset);
2548   __ subl(length, start_offset);
2549   __ push_ppx(dest);          // Save for return value calc
2550 
2551   // If AVX512 VBMI not supported, just compile non-AVX code
2552   if(VM_Version::supports_avx512_vbmi() &&
2553      VM_Version::supports_avx512bw()) {
2554     __ cmpl(length, 31);     // 32-bytes is break-even for AVX-512
2555     __ jcc(Assembler::lessEqual, L_lastChunk);
2556 
2557     __ cmpl(isMIME, 0);
2558     __ jcc(Assembler::notEqual, L_lastChunk);
2559 
2560     // Load lookup tables based on isURL
2561     __ cmpl(isURL, 0);
2562     __ jcc(Assembler::notZero, L_loadURL);
2563 
2564     __ evmovdquq(lookup_lo, ExternalAddress(StubRoutines::x86::base64_vbmi_lookup_lo_addr()), Assembler::AVX_512bit, r13);
2565     __ evmovdquq(lookup_hi, ExternalAddress(StubRoutines::x86::base64_vbmi_lookup_hi_addr()), Assembler::AVX_512bit, r13);
2566 
2567     __ BIND(L_continue);
2568 
2569     __ movl(r15, 0x01400140);
2570     __ evpbroadcastd(pack16_op, r15, Assembler::AVX_512bit);
2571 
2572     __ movl(r15, 0x00011000);
2573     __ evpbroadcastd(pack32_op, r15, Assembler::AVX_512bit);
2574 
2575     __ cmpl(length, 0xff);
2576     __ jcc(Assembler::lessEqual, L_process64);
2577 
2578     // load masks required for decoding data
2579     __ BIND(L_processdata);
2580     __ evmovdquq(join01, ExternalAddress(StubRoutines::x86::base64_vbmi_join_0_1_addr()), Assembler::AVX_512bit,r13);
2581     __ evmovdquq(join12, ExternalAddress(StubRoutines::x86::base64_vbmi_join_1_2_addr()), Assembler::AVX_512bit, r13);
2582     __ evmovdquq(join23, ExternalAddress(StubRoutines::x86::base64_vbmi_join_2_3_addr()), Assembler::AVX_512bit, r13);
2583 
2584     __ align32();
2585     __ BIND(L_process256);
2586     // Grab input data
2587     __ evmovdquq(input0, Address(source, start_offset, Address::times_1, 0x00), Assembler::AVX_512bit);
2588     __ evmovdquq(input1, Address(source, start_offset, Address::times_1, 0x40), Assembler::AVX_512bit);
2589     __ evmovdquq(input2, Address(source, start_offset, Address::times_1, 0x80), Assembler::AVX_512bit);
2590     __ evmovdquq(input3, Address(source, start_offset, Address::times_1, 0xc0), Assembler::AVX_512bit);
2591 
2592     // Copy the low part of the lookup table into the destination of the permutation
2593     __ evmovdquq(translated0, lookup_lo, Assembler::AVX_512bit);
2594     __ evmovdquq(translated1, lookup_lo, Assembler::AVX_512bit);
2595     __ evmovdquq(translated2, lookup_lo, Assembler::AVX_512bit);
2596     __ evmovdquq(translated3, lookup_lo, Assembler::AVX_512bit);
2597 
2598     // Translate the base64 input into "decoded" bytes
2599     __ evpermt2b(translated0, input0, lookup_hi, Assembler::AVX_512bit);
2600     __ evpermt2b(translated1, input1, lookup_hi, Assembler::AVX_512bit);
2601     __ evpermt2b(translated2, input2, lookup_hi, Assembler::AVX_512bit);
2602     __ evpermt2b(translated3, input3, lookup_hi, Assembler::AVX_512bit);
2603 
2604     // OR all of the translations together to check for errors (high-order bit of byte set)
2605     __ vpternlogd(input0, 0xfe, input1, input2, Assembler::AVX_512bit);
2606 
2607     __ vpternlogd(input3, 0xfe, translated0, translated1, Assembler::AVX_512bit);
2608     __ vpternlogd(input0, 0xfe, translated2, translated3, Assembler::AVX_512bit);
2609     __ vpor(errorvec, input3, input0, Assembler::AVX_512bit);
2610 
2611     // Check if there was an error - if so, try 64-byte chunks
2612     __ evpmovb2m(k3, errorvec, Assembler::AVX_512bit);
2613     __ kortestql(k3, k3);
2614     __ jcc(Assembler::notZero, L_process64);
2615 
2616     // The merging and shuffling happens here
2617     // We multiply each byte pair [00dddddd | 00cccccc | 00bbbbbb | 00aaaaaa]
2618     // Multiply [00cccccc] by 2^6 added to [00dddddd] to get [0000cccc | ccdddddd]
2619     // The pack16_op is a vector of 0x01400140, so multiply D by 1 and C by 0x40
2620     __ vpmaddubsw(merge_ab_bc0, translated0, pack16_op, Assembler::AVX_512bit);
2621     __ vpmaddubsw(merge_ab_bc1, translated1, pack16_op, Assembler::AVX_512bit);
2622     __ vpmaddubsw(merge_ab_bc2, translated2, pack16_op, Assembler::AVX_512bit);
2623     __ vpmaddubsw(merge_ab_bc3, translated3, pack16_op, Assembler::AVX_512bit);
2624 
2625     // Now do the same with packed 16-bit values.
2626     // We start with [0000cccc | ccdddddd | 0000aaaa | aabbbbbb]
2627     // pack32_op is 0x00011000 (2^12, 1), so this multiplies [0000aaaa | aabbbbbb] by 2^12
2628     // and adds [0000cccc | ccdddddd] to yield [00000000 | aaaaaabb | bbbbcccc | ccdddddd]
2629     __ vpmaddwd(merged0, merge_ab_bc0, pack32_op, Assembler::AVX_512bit);
2630     __ vpmaddwd(merged1, merge_ab_bc1, pack32_op, Assembler::AVX_512bit);
2631     __ vpmaddwd(merged2, merge_ab_bc2, pack32_op, Assembler::AVX_512bit);
2632     __ vpmaddwd(merged3, merge_ab_bc3, pack32_op, Assembler::AVX_512bit);
2633 
2634     // The join vectors specify which byte from which vector goes into the outputs
2635     // One of every 4 bytes in the extended vector is zero, so we pack them into their
2636     // final positions in the register for storing (256 bytes in, 192 bytes out)
2637     __ evpermt2b(merged0, join01, merged1, Assembler::AVX_512bit);
2638     __ evpermt2b(merged1, join12, merged2, Assembler::AVX_512bit);
2639     __ evpermt2b(merged2, join23, merged3, Assembler::AVX_512bit);
2640 
2641     // Store result
2642     __ evmovdquq(Address(dest, dp, Address::times_1, 0x00), merged0, Assembler::AVX_512bit);
2643     __ evmovdquq(Address(dest, dp, Address::times_1, 0x40), merged1, Assembler::AVX_512bit);
2644     __ evmovdquq(Address(dest, dp, Address::times_1, 0x80), merged2, Assembler::AVX_512bit);
2645 
2646     __ addptr(source, 0x100);
2647     __ addptr(dest, 0xc0);
2648     __ subl(length, 0x100);
2649     __ cmpl(length, 64 * 4);
2650     __ jcc(Assembler::greaterEqual, L_process256);
2651 
2652     // At this point, we've decoded 64 * 4 * n bytes.
2653     // The remaining length will be <= 64 * 4 - 1.
2654     // UNLESS there was an error decoding the first 256-byte chunk.  In this
2655     // case, the length will be arbitrarily long.
2656     //
2657     // Note that this will be the path for MIME-encoded strings.
2658 
2659     __ BIND(L_process64);
2660 
2661     __ evmovdquq(pack24bits, ExternalAddress(StubRoutines::x86::base64_vbmi_pack_vec_addr()), Assembler::AVX_512bit, r13);
2662 
2663     __ cmpl(length, 63);
2664     __ jcc(Assembler::lessEqual, L_finalBit);
2665 
2666     __ mov64(rax, 0x0000ffffffffffff);
2667     __ kmovql(k2, rax);
2668 
2669     __ align32();
2670     __ BIND(L_process64Loop);
2671 
2672     // Handle first 64-byte block
2673 
2674     __ evmovdquq(input0, Address(source, start_offset), Assembler::AVX_512bit);
2675     __ evmovdquq(translated0, lookup_lo, Assembler::AVX_512bit);
2676     __ evpermt2b(translated0, input0, lookup_hi, Assembler::AVX_512bit);
2677 
2678     __ vpor(errorvec, translated0, input0, Assembler::AVX_512bit);
2679 
2680     // Check for error and bomb out before updating dest
2681     __ evpmovb2m(k3, errorvec, Assembler::AVX_512bit);
2682     __ kortestql(k3, k3);
2683     __ jcc(Assembler::notZero, L_exit);
2684 
2685     // Pack output register, selecting correct byte ordering
2686     __ vpmaddubsw(merge_ab_bc0, translated0, pack16_op, Assembler::AVX_512bit);
2687     __ vpmaddwd(merged0, merge_ab_bc0, pack32_op, Assembler::AVX_512bit);
2688     __ vpermb(merged0, pack24bits, merged0, Assembler::AVX_512bit);
2689 
2690     __ evmovdqub(Address(dest, dp), k2, merged0, true, Assembler::AVX_512bit);
2691 
2692     __ subl(length, 64);
2693     __ addptr(source, 64);
2694     __ addptr(dest, 48);
2695 
2696     __ cmpl(length, 64);
2697     __ jcc(Assembler::greaterEqual, L_process64Loop);
2698 
2699     __ cmpl(length, 0);
2700     __ jcc(Assembler::lessEqual, L_exit);
2701 
2702     __ BIND(L_finalBit);
2703     // Now have 1 to 63 bytes left to decode
2704 
2705     // I was going to let Java take care of the final fragment
2706     // however it will repeatedly call this routine for every 4 bytes
2707     // of input data, so handle the rest here.
2708     __ movq(rax, -1);
2709     __ bzhiq(rax, rax, length);    // Input mask in rax
2710 
2711     __ movl(output_size, length);
2712     __ shrl(output_size, 2);   // Find (len / 4) * 3 (output length)
2713     __ lea(output_size, Address(output_size, output_size, Address::times_2, 0));
2714     // output_size in r13
2715 
2716     // Strip pad characters, if any, and adjust length and mask
2717     __ addq(length, start_offset);
2718     __ cmpb(Address(source, length, Address::times_1, -1), '=');
2719     __ jcc(Assembler::equal, L_padding);
2720 
2721     __ BIND(L_donePadding);
2722     __ subq(length, start_offset);
2723 
2724     // Output size is (64 - output_size), output mask is (all 1s >> output_size).
2725     __ kmovql(input_mask, rax);
2726     __ movq(output_mask, -1);
2727     __ bzhiq(output_mask, output_mask, output_size);
2728 
2729     // Load initial input with all valid base64 characters.  Will be used
2730     // in merging source bytes to avoid masking when determining if an error occurred.
2731     __ movl(rax, 0x61616161);
2732     __ evpbroadcastd(input_initial_valid_b64, rax, Assembler::AVX_512bit);
2733 
2734     // A register containing all invalid base64 decoded values
2735     __ movl(rax, 0x80808080);
2736     __ evpbroadcastd(invalid_b64, rax, Assembler::AVX_512bit);
2737 
2738     // input_mask is in k1
2739     // output_size is in r13
2740     // output_mask is in r15
2741     // zmm0 - free
2742     // zmm1 - 0x00011000
2743     // zmm2 - 0x01400140
2744     // zmm3 - errorvec
2745     // zmm4 - pack vector
2746     // zmm5 - lookup_lo
2747     // zmm6 - lookup_hi
2748     // zmm7 - errorvec
2749     // zmm8 - 0x61616161
2750     // zmm9 - 0x80808080
2751 
2752     // Load only the bytes from source, merging into our "fully-valid" register
2753     __ evmovdqub(input_initial_valid_b64, input_mask, Address(source, start_offset, Address::times_1, 0x0), true, Assembler::AVX_512bit);
2754 
2755     // Decode all bytes within our merged input
2756     __ evmovdquq(tmp, lookup_lo, Assembler::AVX_512bit);
2757     __ evpermt2b(tmp, input_initial_valid_b64, lookup_hi, Assembler::AVX_512bit);
2758     __ evporq(mask, tmp, input_initial_valid_b64, Assembler::AVX_512bit);
2759 
2760     // Check for error.  Compare (decoded | initial) to all invalid.
2761     // If any bytes have their high-order bit set, then we have an error.
2762     __ evptestmb(k2, mask, invalid_b64, Assembler::AVX_512bit);
2763     __ kortestql(k2, k2);
2764 
2765     // If we have an error, use the brute force loop to decode what we can (4-byte chunks).
2766     __ jcc(Assembler::notZero, L_bruteForce);
2767 
2768     // Shuffle output bytes
2769     __ vpmaddubsw(tmp, tmp, pack16_op, Assembler::AVX_512bit);
2770     __ vpmaddwd(tmp, tmp, pack32_op, Assembler::AVX_512bit);
2771 
2772     __ vpermb(tmp, pack24bits, tmp, Assembler::AVX_512bit);
2773     __ kmovql(k1, output_mask);
2774     __ evmovdqub(Address(dest, dp), k1, tmp, true, Assembler::AVX_512bit);
2775 
2776     __ addptr(dest, output_size);
2777 
2778     __ BIND(L_exit);
2779     __ vzeroupper();
2780     __ pop_ppx(rax);             // Get original dest value
2781     __ subptr(dest, rax);      // Number of bytes converted
2782     __ movptr(rax, dest);
2783     __ pop_ppx(rbx);
2784     __ pop_ppx(r15);
2785     __ pop_ppx(r14);
2786     __ pop_ppx(r13);
2787     __ pop_ppx(r12);
2788     __ leave();
2789     __ ret(0);
2790 
2791     __ BIND(L_loadURL);
2792     __ evmovdquq(lookup_lo, ExternalAddress(StubRoutines::x86::base64_vbmi_lookup_lo_url_addr()), Assembler::AVX_512bit, r13);
2793     __ evmovdquq(lookup_hi, ExternalAddress(StubRoutines::x86::base64_vbmi_lookup_hi_url_addr()), Assembler::AVX_512bit, r13);
2794     __ jmp(L_continue);
2795 
2796     __ BIND(L_padding);
2797     __ decrementq(output_size, 1);
2798     __ shrq(rax, 1);
2799 
2800     __ cmpb(Address(source, length, Address::times_1, -2), '=');
2801     __ jcc(Assembler::notEqual, L_donePadding);
2802 
2803     __ decrementq(output_size, 1);
2804     __ shrq(rax, 1);
2805     __ jmp(L_donePadding);
2806 
2807     __ align32();
2808     __ BIND(L_bruteForce);
2809   }   // End of if(avx512_vbmi)
2810 
2811   if (VM_Version::supports_avx2()) {
2812     Label L_tailProc, L_topLoop, L_enterLoop;
2813 
2814     __ cmpl(isMIME, 0);
2815     __ jcc(Assembler::notEqual, L_lastChunk);
2816 
2817     // Check for buffer too small (for algorithm)
2818     __ subl(length, 0x2c);
2819     __ jcc(Assembler::less, L_tailProc);
2820 
2821     __ shll(isURL, 2);
2822 
2823     // Algorithm adapted from https://arxiv.org/abs/1704.00605, "Faster Base64
2824     // Encoding and Decoding using AVX2 Instructions".  URL modifications added.
2825 
2826     // Set up constants
2827     __ lea(r13, ExternalAddress(StubRoutines::x86::base64_AVX2_decode_tables_addr()));
2828     __ vpbroadcastd(xmm4, Address(r13, isURL, Address::times_1), Assembler::AVX_256bit);  // 2F or 5F
2829     __ vpbroadcastd(xmm10, Address(r13, isURL, Address::times_1, 0x08), Assembler::AVX_256bit);  // -1 or -4
2830     __ vmovdqu(xmm12, Address(r13, 0x10));  // permute
2831     __ vmovdqu(xmm13, Address(r13, 0x30)); // shuffle
2832     __ vpbroadcastd(xmm7, Address(r13, 0x50), Assembler::AVX_256bit);  // merge
2833     __ vpbroadcastd(xmm6, Address(r13, 0x54), Assembler::AVX_256bit);  // merge mult
2834 
2835     __ lea(r13, ExternalAddress(StubRoutines::x86::base64_AVX2_decode_LUT_tables_addr()));
2836     __ shll(isURL, 4);
2837     __ vmovdqu(xmm11, Address(r13, isURL, Address::times_1, 0x00));  // lut_lo
2838     __ vmovdqu(xmm8, Address(r13, isURL, Address::times_1, 0x20)); // lut_roll
2839     __ shrl(isURL, 6);  // restore isURL
2840     __ vmovdqu(xmm9, Address(r13, 0x80));  // lut_hi
2841     __ jmp(L_enterLoop);
2842 
2843     __ align32();
2844     __ bind(L_topLoop);
2845     // Add in the offset value (roll) to get 6-bit out values
2846     __ vpaddb(xmm0, xmm0, xmm2, Assembler::AVX_256bit);
2847     // Merge and permute the output bits into appropriate output byte lanes
2848     __ vpmaddubsw(xmm0, xmm0, xmm7, Assembler::AVX_256bit);
2849     __ vpmaddwd(xmm0, xmm0, xmm6, Assembler::AVX_256bit);
2850     __ vpshufb(xmm0, xmm0, xmm13, Assembler::AVX_256bit);
2851     __ vpermd(xmm0, xmm12, xmm0, Assembler::AVX_256bit);
2852     // Store the output bytes
2853     __ vmovdqu(Address(dest, dp, Address::times_1, 0), xmm0);
2854     __ addptr(source, 0x20);
2855     __ addptr(dest, 0x18);
2856     __ subl(length, 0x20);
2857     __ jcc(Assembler::less, L_tailProc);
2858 
2859     __ bind(L_enterLoop);
2860 
2861     // Load in encoded string (32 bytes)
2862     __ vmovdqu(xmm2, Address(source, start_offset, Address::times_1, 0x0));
2863     // Extract the high nibble for indexing into the lut tables.  High 4 bits are don't care.
2864     __ vpsrld(xmm1, xmm2, 0x4, Assembler::AVX_256bit);
2865     __ vpand(xmm1, xmm4, xmm1, Assembler::AVX_256bit);
2866     // Extract the low nibble. 5F/2F will isolate the low-order 4 bits.  High 4 bits are don't care.
2867     __ vpand(xmm3, xmm2, xmm4, Assembler::AVX_256bit);
2868     // Check for special-case (0x2F or 0x5F (URL))
2869     __ vpcmpeqb(xmm0, xmm4, xmm2, Assembler::AVX_256bit);
2870     // Get the bitset based on the low nibble.  vpshufb uses low-order 4 bits only.
2871     __ vpshufb(xmm3, xmm11, xmm3, Assembler::AVX_256bit);
2872     // Get the bit value of the high nibble
2873     __ vpshufb(xmm5, xmm9, xmm1, Assembler::AVX_256bit);
2874     // Make sure 2F / 5F shows as valid
2875     __ vpandn(xmm3, xmm0, xmm3, Assembler::AVX_256bit);
2876     // Make adjustment for roll index.  For non-URL, this is a no-op,
2877     // for URL, this adjusts by -4.  This is to properly index the
2878     // roll value for 2F / 5F.
2879     __ vpand(xmm0, xmm0, xmm10, Assembler::AVX_256bit);
2880     // If the and of the two is non-zero, we have an invalid input character
2881     __ vptest(xmm3, xmm5);
2882     // Extract the "roll" value - value to add to the input to get 6-bit out value
2883     __ vpaddb(xmm0, xmm0, xmm1, Assembler::AVX_256bit); // Handle 2F / 5F
2884     __ vpshufb(xmm0, xmm8, xmm0, Assembler::AVX_256bit);
2885     __ jcc(Assembler::equal, L_topLoop);  // Fall through on error
2886 
2887     __ bind(L_tailProc);
2888 
2889     __ addl(length, 0x2c);
2890 
2891     __ vzeroupper();
2892   }
2893 
2894   // Use non-AVX code to decode 4-byte chunks into 3 bytes of output
2895 
2896   // Register state (Linux):
2897   // r12-15 - saved on stack
2898   // rdi - src
2899   // rsi - sp
2900   // rdx - sl
2901   // rcx - dst
2902   // r8 - dp
2903   // r9 - isURL
2904 
2905   // Register state (Windows):
2906   // r12-15 - saved on stack
2907   // rcx - src
2908   // rdx - sp
2909   // r8 - sl
2910   // r9 - dst
2911   // r12 - dp
2912   // r10 - isURL
2913 
2914   // Registers (common):
2915   // length (r14) - bytes in src
2916 
2917   const Register decode_table = r11;
2918   const Register out_byte_count = rbx;
2919   const Register byte1 = r13;
2920   const Register byte2 = r15;
2921   const Register byte3 = WIN64_ONLY(r8) NOT_WIN64(rdx);
2922   const Register byte4 = WIN64_ONLY(r10) NOT_WIN64(r9);
2923 
2924   __ bind(L_lastChunk);
2925 
2926   __ shrl(length, 2);    // Multiple of 4 bytes only - length is # 4-byte chunks
2927   __ cmpl(length, 0);
2928   __ jcc(Assembler::lessEqual, L_exit_no_vzero);
2929 
2930   __ shll(isURL, 8);    // index into decode table based on isURL
2931   __ lea(decode_table, ExternalAddress(StubRoutines::x86::base64_decoding_table_addr()));
2932   __ addptr(decode_table, isURL);
2933 
2934   __ jmp(L_bottomLoop);
2935 
2936   __ align32();
2937   __ BIND(L_forceLoop);
2938   __ shll(byte1, 18);
2939   __ shll(byte2, 12);
2940   __ shll(byte3, 6);
2941   __ orl(byte1, byte2);
2942   __ orl(byte1, byte3);
2943   __ orl(byte1, byte4);
2944 
2945   __ addptr(source, 4);
2946 
2947   __ movb(Address(dest, dp, Address::times_1, 2), byte1);
2948   __ shrl(byte1, 8);
2949   __ movb(Address(dest, dp, Address::times_1, 1), byte1);
2950   __ shrl(byte1, 8);
2951   __ movb(Address(dest, dp, Address::times_1, 0), byte1);
2952 
2953   __ addptr(dest, 3);
2954   __ decrementl(length, 1);
2955   __ jcc(Assembler::zero, L_exit_no_vzero);
2956 
2957   __ BIND(L_bottomLoop);
2958   __ load_unsigned_byte(byte1, Address(source, start_offset, Address::times_1, 0x00));
2959   __ load_unsigned_byte(byte2, Address(source, start_offset, Address::times_1, 0x01));
2960   __ load_signed_byte(byte1, Address(decode_table, byte1));
2961   __ load_signed_byte(byte2, Address(decode_table, byte2));
2962   __ load_unsigned_byte(byte3, Address(source, start_offset, Address::times_1, 0x02));
2963   __ load_unsigned_byte(byte4, Address(source, start_offset, Address::times_1, 0x03));
2964   __ load_signed_byte(byte3, Address(decode_table, byte3));
2965   __ load_signed_byte(byte4, Address(decode_table, byte4));
2966 
2967   __ mov(rax, byte1);
2968   __ orl(rax, byte2);
2969   __ orl(rax, byte3);
2970   __ orl(rax, byte4);
2971   __ jcc(Assembler::positive, L_forceLoop);
2972 
2973   __ BIND(L_exit_no_vzero);
2974   __ pop_ppx(rax);             // Get original dest value
2975   __ subptr(dest, rax);                      // Number of bytes converted
2976   __ movptr(rax, dest);
2977   __ pop_ppx(rbx);
2978   __ pop_ppx(r15);
2979   __ pop_ppx(r14);
2980   __ pop_ppx(r13);
2981   __ pop_ppx(r12);
2982   __ leave();
2983   __ ret(0);
2984 
2985   return start;
2986 }
2987 
2988 
2989 /**
2990  *  Arguments:
2991  *
2992  * Inputs:
2993  *   c_rarg0   - int crc
2994  *   c_rarg1   - byte* buf
2995  *   c_rarg2   - int length
2996  *
2997  * Output:
2998  *       rax   - int crc result
2999  */
3000 address StubGenerator::generate_updateBytesCRC32() {
3001   assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions");
3002 
3003   __ align(CodeEntryAlignment);
3004   StubId stub_id = StubId::stubgen_updateBytesCRC32_id;
3005   StubCodeMark mark(this, stub_id);
3006 
3007   address start = __ pc();
3008 
3009   // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
3010   // Unix:  rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
3011   // rscratch1: r10
3012   const Register crc   = c_rarg0;  // crc
3013   const Register buf   = c_rarg1;  // source java byte array address
3014   const Register len   = c_rarg2;  // length
3015   const Register table = c_rarg3;  // crc_table address (reuse register)
3016   const Register tmp1   = r11;
3017   const Register tmp2   = r10;
3018   assert_different_registers(crc, buf, len, table, tmp1, tmp2, rax);
3019 
3020   BLOCK_COMMENT("Entry:");
3021   __ enter(); // required for proper stackwalking of RuntimeStub frame
3022 
3023   if (VM_Version::supports_sse4_1() && VM_Version::supports_avx512_vpclmulqdq() &&
3024       VM_Version::supports_avx512bw() &&
3025       VM_Version::supports_avx512vl()) {
3026       // The constants used in the CRC32 algorithm requires the 1's compliment of the initial crc value.
3027       // However, the constant table for CRC32-C assumes the original crc value.  Account for this
3028       // difference before calling and after returning.
3029     __ lea(table, ExternalAddress(StubRoutines::x86::crc_table_avx512_addr()));
3030     __ notl(crc);
3031     __ kernel_crc32_avx512(crc, buf, len, table, tmp1, tmp2);
3032     __ notl(crc);
3033   } else {
3034     __ kernel_crc32(crc, buf, len, table, tmp1);
3035   }
3036 
3037   __ movl(rax, crc);
3038   __ vzeroupper();
3039   __ leave(); // required for proper stackwalking of RuntimeStub frame
3040   __ ret(0);
3041 
3042   return start;
3043 }
3044 
3045 /**
3046 *  Arguments:
3047 *
3048 * Inputs:
3049 *   c_rarg0   - int crc
3050 *   c_rarg1   - byte* buf
3051 *   c_rarg2   - long length
3052 *   c_rarg3   - table_start - optional (present only when doing a library_call,
3053 *              not used by x86 algorithm)
3054 *
3055 * Output:
3056 *       rax   - int crc result
3057 */
3058 address StubGenerator::generate_updateBytesCRC32C(bool is_pclmulqdq_supported) {
3059   assert(UseCRC32CIntrinsics, "need SSE4_2");
3060   __ align(CodeEntryAlignment);
3061   StubId stub_id = StubId::stubgen_updateBytesCRC32C_id;
3062   StubCodeMark mark(this, stub_id);
3063   address start = __ pc();
3064 
3065   //reg.arg        int#0        int#1        int#2        int#3        int#4        int#5        float regs
3066   //Windows        RCX          RDX          R8           R9           none         none         XMM0..XMM3
3067   //Lin / Sol      RDI          RSI          RDX          RCX          R8           R9           XMM0..XMM7
3068   const Register crc = c_rarg0;  // crc
3069   const Register buf = c_rarg1;  // source java byte array address
3070   const Register len = c_rarg2;  // length
3071   const Register a = rax;
3072   const Register j = r9;
3073   const Register k = r10;
3074   const Register l = r11;
3075 #ifdef _WIN64
3076   const Register y = rdi;
3077   const Register z = rsi;
3078 #else
3079   const Register y = rcx;
3080   const Register z = r8;
3081 #endif
3082   assert_different_registers(crc, buf, len, a, j, k, l, y, z);
3083 
3084   BLOCK_COMMENT("Entry:");
3085   __ enter(); // required for proper stackwalking of RuntimeStub frame
3086   Label L_continue;
3087 
3088   if (VM_Version::supports_sse4_1() && VM_Version::supports_avx512_vpclmulqdq() &&
3089       VM_Version::supports_avx512bw() &&
3090       VM_Version::supports_avx512vl()) {
3091     Label L_doSmall;
3092 
3093     __ cmpl(len, 384);
3094     __ jcc(Assembler::lessEqual, L_doSmall);
3095 
3096     __ lea(j, ExternalAddress(StubRoutines::x86::crc32c_table_avx512_addr()));
3097     __ kernel_crc32_avx512(crc, buf, len, j, l, k);
3098 
3099     __ jmp(L_continue);
3100 
3101     __ bind(L_doSmall);
3102   }
3103 #ifdef _WIN64
3104   __ push_ppx(y);
3105   __ push_ppx(z);
3106 #endif
3107   __ crc32c_ipl_alg2_alt2(crc, buf, len,
3108                           a, j, k,
3109                           l, y, z,
3110                           c_farg0, c_farg1, c_farg2,
3111                           is_pclmulqdq_supported);
3112 #ifdef _WIN64
3113   __ pop_ppx(z);
3114   __ pop_ppx(y);
3115 #endif
3116 
3117   __ bind(L_continue);
3118   __ movl(rax, crc);
3119   __ vzeroupper();
3120   __ leave(); // required for proper stackwalking of RuntimeStub frame
3121   __ ret(0);
3122 
3123   return start;
3124 }
3125 
3126 
3127 /**
3128  *  Arguments:
3129  *
3130  *  Input:
3131  *    c_rarg0   - x address
3132  *    c_rarg1   - x length
3133  *    c_rarg2   - y address
3134  *    c_rarg3   - y length
3135  * not Win64
3136  *    c_rarg4   - z address
3137  * Win64
3138  *    rsp+40    - z address
3139  */
3140 address StubGenerator::generate_multiplyToLen() {
3141   __ align(CodeEntryAlignment);
3142   StubId stub_id = StubId::stubgen_multiplyToLen_id;
3143   StubCodeMark mark(this, stub_id);
3144   address start = __ pc();
3145 
3146   // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
3147   // Unix:  rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
3148   const Register x     = rdi;
3149   const Register xlen  = rax;
3150   const Register y     = rsi;
3151   const Register ylen  = rcx;
3152   const Register z     = r8;
3153 
3154   // Next registers will be saved on stack in multiply_to_len().
3155   const Register tmp0  = r11;
3156   const Register tmp1  = r12;
3157   const Register tmp2  = r13;
3158   const Register tmp3  = r14;
3159   const Register tmp4  = r15;
3160   const Register tmp5  = rbx;
3161 
3162   BLOCK_COMMENT("Entry:");
3163   __ enter(); // required for proper stackwalking of RuntimeStub frame
3164 
3165   setup_arg_regs(4); // x => rdi, xlen => rsi, y => rdx
3166                      // ylen => rcx, z => r8
3167                      // r9 and r10 may be used to save non-volatile registers
3168 #ifdef _WIN64
3169   // last argument (#4) is on stack on Win64
3170   __ movptr(z, Address(rsp, 6 * wordSize));
3171 #endif
3172 
3173   __ movptr(xlen, rsi);
3174   __ movptr(y,    rdx);
3175   __ multiply_to_len(x, xlen, y, ylen, z, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5);
3176 
3177   restore_arg_regs();
3178 
3179   __ leave(); // required for proper stackwalking of RuntimeStub frame
3180   __ ret(0);
3181 
3182   return start;
3183 }
3184 
3185 /**
3186 *  Arguments:
3187 *
3188 *  Input:
3189 *    c_rarg0   - obja     address
3190 *    c_rarg1   - objb     address
3191 *    c_rarg3   - length   length
3192 *    c_rarg4   - scale    log2_array_indxscale
3193 *
3194 *  Output:
3195 *        rax   - int >= mismatched index, < 0 bitwise complement of tail
3196 */
3197 address StubGenerator::generate_vectorizedMismatch() {
3198   __ align(CodeEntryAlignment);
3199   StubId stub_id = StubId::stubgen_vectorizedMismatch_id;
3200   StubCodeMark mark(this, stub_id);
3201   address start = __ pc();
3202 
3203   BLOCK_COMMENT("Entry:");
3204   __ enter();
3205 
3206 #ifdef _WIN64  // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
3207   const Register scale = c_rarg0;  //rcx, will exchange with r9
3208   const Register objb = c_rarg1;   //rdx
3209   const Register length = c_rarg2; //r8
3210   const Register obja = c_rarg3;   //r9
3211   __ xchgq(obja, scale);  //now obja and scale contains the correct contents
3212 
3213   const Register tmp1 = r10;
3214   const Register tmp2 = r11;
3215 #endif
3216 #ifndef _WIN64 // Unix:  rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
3217   const Register obja = c_rarg0;   //U:rdi
3218   const Register objb = c_rarg1;   //U:rsi
3219   const Register length = c_rarg2; //U:rdx
3220   const Register scale = c_rarg3;  //U:rcx
3221   const Register tmp1 = r8;
3222   const Register tmp2 = r9;
3223 #endif
3224   const Register result = rax; //return value
3225   const XMMRegister vec0 = xmm0;
3226   const XMMRegister vec1 = xmm1;
3227   const XMMRegister vec2 = xmm2;
3228 
3229   __ vectorized_mismatch(obja, objb, length, scale, result, tmp1, tmp2, vec0, vec1, vec2);
3230 
3231   __ vzeroupper();
3232   __ leave();
3233   __ ret(0);
3234 
3235   return start;
3236 }
3237 
3238 /**
3239  *  Arguments:
3240  *
3241 //  Input:
3242 //    c_rarg0   - x address
3243 //    c_rarg1   - x length
3244 //    c_rarg2   - z address
3245 //    c_rarg3   - z length
3246  *
3247  */
3248 address StubGenerator::generate_squareToLen() {
3249 
3250   __ align(CodeEntryAlignment);
3251   StubId stub_id = StubId::stubgen_squareToLen_id;
3252   StubCodeMark mark(this, stub_id);
3253   address start = __ pc();
3254 
3255   // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
3256   // Unix:  rdi, rsi, rdx, rcx (c_rarg0, c_rarg1, ...)
3257   const Register x      = rdi;
3258   const Register len    = rsi;
3259   const Register z      = r8;
3260   const Register zlen   = rcx;
3261 
3262  const Register tmp1      = r12;
3263  const Register tmp2      = r13;
3264  const Register tmp3      = r14;
3265  const Register tmp4      = r15;
3266  const Register tmp5      = rbx;
3267 
3268   BLOCK_COMMENT("Entry:");
3269   __ enter(); // required for proper stackwalking of RuntimeStub frame
3270 
3271   setup_arg_regs(4); // x => rdi, len => rsi, z => rdx
3272                      // zlen => rcx
3273                      // r9 and r10 may be used to save non-volatile registers
3274   __ movptr(r8, rdx);
3275   __ square_to_len(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, rdx, rax);
3276 
3277   restore_arg_regs();
3278 
3279   __ leave(); // required for proper stackwalking of RuntimeStub frame
3280   __ ret(0);
3281 
3282   return start;
3283 }
3284 
3285 address StubGenerator::generate_method_entry_barrier() {
3286   __ align(CodeEntryAlignment);
3287   StubId stub_id = StubId::stubgen_method_entry_barrier_id;
3288   StubCodeMark mark(this, stub_id);
3289   address start = __ pc();
3290 
3291   Label deoptimize_label;
3292 
3293   __ push(-1); // cookie, this is used for writing the new rsp when deoptimizing
3294 
3295   BLOCK_COMMENT("Entry:");
3296   __ enter(); // save rbp
3297 
3298   // save c_rarg0, because we want to use that value.
3299   // We could do without it but then we depend on the number of slots used by pusha
3300   __ push_ppx(c_rarg0);
3301 
3302   __ lea(c_rarg0, Address(rsp, wordSize * 3)); // 1 for cookie, 1 for rbp, 1 for c_rarg0 - this should be the return address
3303 
3304   __ pusha();
3305 
3306   // The method may have floats as arguments, and we must spill them before calling
3307   // the VM runtime.
3308   assert(Argument::n_float_register_parameters_j == 8, "Assumption");
3309   const int xmm_size = wordSize * 2;
3310   const int xmm_spill_size = xmm_size * Argument::n_float_register_parameters_j;
3311   __ subptr(rsp, xmm_spill_size);
3312   __ movdqu(Address(rsp, xmm_size * 7), xmm7);
3313   __ movdqu(Address(rsp, xmm_size * 6), xmm6);
3314   __ movdqu(Address(rsp, xmm_size * 5), xmm5);
3315   __ movdqu(Address(rsp, xmm_size * 4), xmm4);
3316   __ movdqu(Address(rsp, xmm_size * 3), xmm3);
3317   __ movdqu(Address(rsp, xmm_size * 2), xmm2);
3318   __ movdqu(Address(rsp, xmm_size * 1), xmm1);
3319   __ movdqu(Address(rsp, xmm_size * 0), xmm0);
3320 
3321   __ call_VM_leaf(CAST_FROM_FN_PTR(address, static_cast<int (*)(address*)>(BarrierSetNMethod::nmethod_stub_entry_barrier)), 1);
3322 
3323   __ movdqu(xmm0, Address(rsp, xmm_size * 0));
3324   __ movdqu(xmm1, Address(rsp, xmm_size * 1));
3325   __ movdqu(xmm2, Address(rsp, xmm_size * 2));
3326   __ movdqu(xmm3, Address(rsp, xmm_size * 3));
3327   __ movdqu(xmm4, Address(rsp, xmm_size * 4));
3328   __ movdqu(xmm5, Address(rsp, xmm_size * 5));
3329   __ movdqu(xmm6, Address(rsp, xmm_size * 6));
3330   __ movdqu(xmm7, Address(rsp, xmm_size * 7));
3331   __ addptr(rsp, xmm_spill_size);
3332 
3333   __ cmpl(rax, 1); // 1 means deoptimize
3334   __ jcc(Assembler::equal, deoptimize_label);
3335 
3336   __ popa();
3337   __ pop_ppx(c_rarg0);
3338 
3339   __ leave();
3340 
3341   __ addptr(rsp, 1 * wordSize); // cookie
3342   __ ret(0);
3343 
3344 
3345   __ BIND(deoptimize_label);
3346 
3347   __ popa();
3348   __ pop_ppx(c_rarg0);
3349 
3350   __ leave();
3351 
3352   // this can be taken out, but is good for verification purposes. getting a SIGSEGV
3353   // here while still having a correct stack is valuable
3354   __ testptr(rsp, Address(rsp, 0));
3355 
3356   __ movptr(rsp, Address(rsp, 0)); // new rsp was written in the barrier
3357   __ jmp(Address(rsp, -1 * wordSize)); // jmp target should be callers verified_entry_point
3358 
3359   return start;
3360 }
3361 
3362  /**
3363  *  Arguments:
3364  *
3365  *  Input:
3366  *    c_rarg0   - out address
3367  *    c_rarg1   - in address
3368  *    c_rarg2   - offset
3369  *    c_rarg3   - len
3370  * not Win64
3371  *    c_rarg4   - k
3372  * Win64
3373  *    rsp+40    - k
3374  */
3375 address StubGenerator::generate_mulAdd() {
3376   __ align(CodeEntryAlignment);
3377   StubId stub_id = StubId::stubgen_mulAdd_id;
3378   StubCodeMark mark(this, stub_id);
3379   address start = __ pc();
3380 
3381   // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
3382   // Unix:  rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
3383   const Register out     = rdi;
3384   const Register in      = rsi;
3385   const Register offset  = r11;
3386   const Register len     = rcx;
3387   const Register k       = r8;
3388 
3389   // Next registers will be saved on stack in mul_add().
3390   const Register tmp1  = r12;
3391   const Register tmp2  = r13;
3392   const Register tmp3  = r14;
3393   const Register tmp4  = r15;
3394   const Register tmp5  = rbx;
3395 
3396   BLOCK_COMMENT("Entry:");
3397   __ enter(); // required for proper stackwalking of RuntimeStub frame
3398 
3399   setup_arg_regs(4); // out => rdi, in => rsi, offset => rdx
3400                      // len => rcx, k => r8
3401                      // r9 and r10 may be used to save non-volatile registers
3402 #ifdef _WIN64
3403   // last argument is on stack on Win64
3404   __ movl(k, Address(rsp, 6 * wordSize));
3405 #endif
3406   __ movptr(r11, rdx);  // move offset in rdx to offset(r11)
3407   __ mul_add(out, in, offset, len, k, tmp1, tmp2, tmp3, tmp4, tmp5, rdx, rax);
3408 
3409   restore_arg_regs();
3410 
3411   __ leave(); // required for proper stackwalking of RuntimeStub frame
3412   __ ret(0);
3413 
3414   return start;
3415 }
3416 
3417 address StubGenerator::generate_bigIntegerRightShift() {
3418   __ align(CodeEntryAlignment);
3419   StubId stub_id = StubId::stubgen_bigIntegerRightShiftWorker_id;
3420   StubCodeMark mark(this, stub_id);
3421   address start = __ pc();
3422 
3423   Label Shift512Loop, ShiftTwo, ShiftTwoLoop, ShiftOne, Exit;
3424   // For Unix, the arguments are as follows: rdi, rsi, rdx, rcx, r8.
3425   const Register newArr = rdi;
3426   const Register oldArr = rsi;
3427   const Register newIdx = rdx;
3428   const Register shiftCount = rcx;  // It was intentional to have shiftCount in rcx since it is used implicitly for shift.
3429   const Register totalNumIter = r8;
3430 
3431   // For windows, we use r9 and r10 as temps to save rdi and rsi. Thus we cannot allocate them for our temps.
3432   // For everything else, we prefer using r9 and r10 since we do not have to save them before use.
3433   const Register tmp1 = r11;                    // Caller save.
3434   const Register tmp2 = rax;                    // Caller save.
3435   const Register tmp3 = WIN64_ONLY(r12) NOT_WIN64(r9);   // Windows: Callee save. Linux: Caller save.
3436   const Register tmp4 = WIN64_ONLY(r13) NOT_WIN64(r10);  // Windows: Callee save. Linux: Caller save.
3437   const Register tmp5 = r14;                    // Callee save.
3438   const Register tmp6 = r15;
3439 
3440   const XMMRegister x0 = xmm0;
3441   const XMMRegister x1 = xmm1;
3442   const XMMRegister x2 = xmm2;
3443 
3444   BLOCK_COMMENT("Entry:");
3445   __ enter(); // required for proper stackwalking of RuntimeStub frame
3446 
3447 #ifdef _WIN64
3448   setup_arg_regs(4);
3449   // For windows, since last argument is on stack, we need to move it to the appropriate register.
3450   __ movl(totalNumIter, Address(rsp, 6 * wordSize));
3451   // Save callee save registers.
3452   __ push_ppx(tmp3);
3453   __ push_ppx(tmp4);
3454 #endif
3455   __ push_ppx(tmp5);
3456 
3457   // Rename temps used throughout the code.
3458   const Register idx = tmp1;
3459   const Register nIdx = tmp2;
3460 
3461   __ xorl(idx, idx);
3462 
3463   // Start right shift from end of the array.
3464   // For example, if #iteration = 4 and newIdx = 1
3465   // then dest[4] = src[4] >> shiftCount  | src[3] <<< (shiftCount - 32)
3466   // if #iteration = 4 and newIdx = 0
3467   // then dest[3] = src[4] >> shiftCount  | src[3] <<< (shiftCount - 32)
3468   __ movl(idx, totalNumIter);
3469   __ movl(nIdx, idx);
3470   __ addl(nIdx, newIdx);
3471 
3472   // If vectorization is enabled, check if the number of iterations is at least 64
3473   // If not, then go to ShifTwo processing 2 iterations
3474   if (VM_Version::supports_avx512_vbmi2()) {
3475     __ cmpptr(totalNumIter, (AVX3Threshold/64));
3476     __ jcc(Assembler::less, ShiftTwo);
3477 
3478     if (AVX3Threshold < 16 * 64) {
3479       __ cmpl(totalNumIter, 16);
3480       __ jcc(Assembler::less, ShiftTwo);
3481     }
3482     __ evpbroadcastd(x0, shiftCount, Assembler::AVX_512bit);
3483     __ subl(idx, 16);
3484     __ subl(nIdx, 16);
3485     __ BIND(Shift512Loop);
3486     __ evmovdqul(x2, Address(oldArr, idx, Address::times_4, 4), Assembler::AVX_512bit);
3487     __ evmovdqul(x1, Address(oldArr, idx, Address::times_4), Assembler::AVX_512bit);
3488     __ vpshrdvd(x2, x1, x0, Assembler::AVX_512bit);
3489     __ evmovdqul(Address(newArr, nIdx, Address::times_4), x2, Assembler::AVX_512bit);
3490     __ subl(nIdx, 16);
3491     __ subl(idx, 16);
3492     __ jcc(Assembler::greaterEqual, Shift512Loop);
3493     __ addl(idx, 16);
3494     __ addl(nIdx, 16);
3495   }
3496   __ BIND(ShiftTwo);
3497   __ cmpl(idx, 2);
3498   __ jcc(Assembler::less, ShiftOne);
3499   __ subl(idx, 2);
3500   __ subl(nIdx, 2);
3501   __ BIND(ShiftTwoLoop);
3502   __ movl(tmp5, Address(oldArr, idx, Address::times_4, 8));
3503   __ movl(tmp4, Address(oldArr, idx, Address::times_4, 4));
3504   __ movl(tmp3, Address(oldArr, idx, Address::times_4));
3505   __ shrdl(tmp5, tmp4);
3506   __ shrdl(tmp4, tmp3);
3507   __ movl(Address(newArr, nIdx, Address::times_4, 4), tmp5);
3508   __ movl(Address(newArr, nIdx, Address::times_4), tmp4);
3509   __ subl(nIdx, 2);
3510   __ subl(idx, 2);
3511   __ jcc(Assembler::greaterEqual, ShiftTwoLoop);
3512   __ addl(idx, 2);
3513   __ addl(nIdx, 2);
3514 
3515   // Do the last iteration
3516   __ BIND(ShiftOne);
3517   __ cmpl(idx, 1);
3518   __ jcc(Assembler::less, Exit);
3519   __ subl(idx, 1);
3520   __ subl(nIdx, 1);
3521   __ movl(tmp4, Address(oldArr, idx, Address::times_4, 4));
3522   __ movl(tmp3, Address(oldArr, idx, Address::times_4));
3523   __ shrdl(tmp4, tmp3);
3524   __ movl(Address(newArr, nIdx, Address::times_4), tmp4);
3525   __ BIND(Exit);
3526   __ vzeroupper();
3527   // Restore callee save registers.
3528   __ pop_ppx(tmp5);
3529 #ifdef _WIN64
3530   __ pop_ppx(tmp4);
3531   __ pop_ppx(tmp3);
3532   restore_arg_regs();
3533 #endif
3534   __ leave(); // required for proper stackwalking of RuntimeStub frame
3535   __ ret(0);
3536 
3537   return start;
3538 }
3539 
3540  /**
3541  *  Arguments:
3542  *
3543  *  Input:
3544  *    c_rarg0   - newArr address
3545  *    c_rarg1   - oldArr address
3546  *    c_rarg2   - newIdx
3547  *    c_rarg3   - shiftCount
3548  * not Win64
3549  *    c_rarg4   - numIter
3550  * Win64
3551  *    rsp40    - numIter
3552  */
3553 address StubGenerator::generate_bigIntegerLeftShift() {
3554   __ align(CodeEntryAlignment);
3555   StubId stub_id = StubId::stubgen_bigIntegerLeftShiftWorker_id;
3556   StubCodeMark mark(this, stub_id);
3557   address start = __ pc();
3558 
3559   Label Shift512Loop, ShiftTwo, ShiftTwoLoop, ShiftOne, Exit;
3560   // For Unix, the arguments are as follows: rdi, rsi, rdx, rcx, r8.
3561   const Register newArr = rdi;
3562   const Register oldArr = rsi;
3563   const Register newIdx = rdx;
3564   const Register shiftCount = rcx;  // It was intentional to have shiftCount in rcx since it is used implicitly for shift.
3565   const Register totalNumIter = r8;
3566   // For windows, we use r9 and r10 as temps to save rdi and rsi. Thus we cannot allocate them for our temps.
3567   // For everything else, we prefer using r9 and r10 since we do not have to save them before use.
3568   const Register tmp1 = r11;                    // Caller save.
3569   const Register tmp2 = rax;                    // Caller save.
3570   const Register tmp3 = WIN64_ONLY(r12) NOT_WIN64(r9);   // Windows: Callee save. Linux: Caller save.
3571   const Register tmp4 = WIN64_ONLY(r13) NOT_WIN64(r10);  // Windows: Callee save. Linux: Caller save.
3572   const Register tmp5 = r14;                    // Callee save.
3573 
3574   const XMMRegister x0 = xmm0;
3575   const XMMRegister x1 = xmm1;
3576   const XMMRegister x2 = xmm2;
3577   BLOCK_COMMENT("Entry:");
3578   __ enter(); // required for proper stackwalking of RuntimeStub frame
3579 
3580 #ifdef _WIN64
3581   setup_arg_regs(4);
3582   // For windows, since last argument is on stack, we need to move it to the appropriate register.
3583   __ movl(totalNumIter, Address(rsp, 6 * wordSize));
3584   // Save callee save registers.
3585   __ push_ppx(tmp3);
3586   __ push_ppx(tmp4);
3587 #endif
3588   __ push_ppx(tmp5);
3589 
3590   // Rename temps used throughout the code
3591   const Register idx = tmp1;
3592   const Register numIterTmp = tmp2;
3593 
3594   // Start idx from zero.
3595   __ xorl(idx, idx);
3596   // Compute interior pointer for new array. We do this so that we can use same index for both old and new arrays.
3597   __ lea(newArr, Address(newArr, newIdx, Address::times_4));
3598   __ movl(numIterTmp, totalNumIter);
3599 
3600   // If vectorization is enabled, check if the number of iterations is at least 64
3601   // If not, then go to ShiftTwo shifting two numbers at a time
3602   if (VM_Version::supports_avx512_vbmi2()) {
3603     __ cmpl(totalNumIter, (AVX3Threshold/64));
3604     __ jcc(Assembler::less, ShiftTwo);
3605 
3606     if (AVX3Threshold < 16 * 64) {
3607       __ cmpl(totalNumIter, 16);
3608       __ jcc(Assembler::less, ShiftTwo);
3609     }
3610     __ evpbroadcastd(x0, shiftCount, Assembler::AVX_512bit);
3611     __ subl(numIterTmp, 16);
3612     __ BIND(Shift512Loop);
3613     __ evmovdqul(x1, Address(oldArr, idx, Address::times_4), Assembler::AVX_512bit);
3614     __ evmovdqul(x2, Address(oldArr, idx, Address::times_4, 0x4), Assembler::AVX_512bit);
3615     __ vpshldvd(x1, x2, x0, Assembler::AVX_512bit);
3616     __ evmovdqul(Address(newArr, idx, Address::times_4), x1, Assembler::AVX_512bit);
3617     __ addl(idx, 16);
3618     __ subl(numIterTmp, 16);
3619     __ jcc(Assembler::greaterEqual, Shift512Loop);
3620     __ addl(numIterTmp, 16);
3621   }
3622   __ BIND(ShiftTwo);
3623   __ cmpl(totalNumIter, 1);
3624   __ jcc(Assembler::less, Exit);
3625   __ movl(tmp3, Address(oldArr, idx, Address::times_4));
3626   __ subl(numIterTmp, 2);
3627   __ jcc(Assembler::less, ShiftOne);
3628 
3629   __ BIND(ShiftTwoLoop);
3630   __ movl(tmp4, Address(oldArr, idx, Address::times_4, 0x4));
3631   __ movl(tmp5, Address(oldArr, idx, Address::times_4, 0x8));
3632   __ shldl(tmp3, tmp4);
3633   __ shldl(tmp4, tmp5);
3634   __ movl(Address(newArr, idx, Address::times_4), tmp3);
3635   __ movl(Address(newArr, idx, Address::times_4, 0x4), tmp4);
3636   __ movl(tmp3, tmp5);
3637   __ addl(idx, 2);
3638   __ subl(numIterTmp, 2);
3639   __ jcc(Assembler::greaterEqual, ShiftTwoLoop);
3640 
3641   // Do the last iteration
3642   __ BIND(ShiftOne);
3643   __ addl(numIterTmp, 2);
3644   __ cmpl(numIterTmp, 1);
3645   __ jcc(Assembler::less, Exit);
3646   __ movl(tmp4, Address(oldArr, idx, Address::times_4, 0x4));
3647   __ shldl(tmp3, tmp4);
3648   __ movl(Address(newArr, idx, Address::times_4), tmp3);
3649 
3650   __ BIND(Exit);
3651   __ vzeroupper();
3652   // Restore callee save registers.
3653   __ pop_ppx(tmp5);
3654 #ifdef _WIN64
3655   __ pop_ppx(tmp4);
3656   __ pop_ppx(tmp3);
3657   restore_arg_regs();
3658 #endif
3659   __ leave(); // required for proper stackwalking of RuntimeStub frame
3660   __ ret(0);
3661 
3662   return start;
3663 }
3664 
3665 void StubGenerator::generate_libm_stubs() {
3666   if (UseLibmIntrinsic && InlineIntrinsics) {
3667     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dsin)) {
3668       StubRoutines::_dsin = generate_libmSin(); // from stubGenerator_x86_64_sin.cpp
3669     }
3670     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dcos)) {
3671       StubRoutines::_dcos = generate_libmCos(); // from stubGenerator_x86_64_cos.cpp
3672     }
3673     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dtan)) {
3674       StubRoutines::_dtan = generate_libmTan(); // from stubGenerator_x86_64_tan.cpp
3675     }
3676     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dsinh)) {
3677       StubRoutines::_dsinh = generate_libmSinh(); // from stubGenerator_x86_64_sinh.cpp
3678     }
3679     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dtanh)) {
3680       StubRoutines::_dtanh = generate_libmTanh(); // from stubGenerator_x86_64_tanh.cpp
3681     }
3682     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dcbrt)) {
3683       StubRoutines::_dcbrt = generate_libmCbrt(); // from stubGenerator_x86_64_cbrt.cpp
3684     }
3685     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dexp)) {
3686       StubRoutines::_dexp = generate_libmExp(); // from stubGenerator_x86_64_exp.cpp
3687     }
3688     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dpow)) {
3689       StubRoutines::_dpow = generate_libmPow(); // from stubGenerator_x86_64_pow.cpp
3690     }
3691     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dlog)) {
3692       StubRoutines::_dlog = generate_libmLog(); // from stubGenerator_x86_64_log.cpp
3693     }
3694     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dlog10)) {
3695       StubRoutines::_dlog10 = generate_libmLog10(); // from stubGenerator_x86_64_log.cpp
3696     }
3697   }
3698 }
3699 
3700 /**
3701 *  Arguments:
3702 *
3703 *  Input:
3704 *    c_rarg0   - float16  jshort
3705 *
3706 *  Output:
3707 *       xmm0   - float
3708 */
3709 address StubGenerator::generate_float16ToFloat() {
3710   StubId stub_id = StubId::stubgen_hf2f_id;
3711   StubCodeMark mark(this, stub_id);
3712 
3713   address start = __ pc();
3714 
3715   BLOCK_COMMENT("Entry:");
3716   // No need for RuntimeStub frame since it is called only during JIT compilation
3717 
3718   // Load value into xmm0 and convert
3719   __ flt16_to_flt(xmm0, c_rarg0);
3720 
3721   __ ret(0);
3722 
3723   return start;
3724 }
3725 
3726 /**
3727 *  Arguments:
3728 *
3729 *  Input:
3730 *       xmm0   - float
3731 *
3732 *  Output:
3733 *        rax   - float16  jshort
3734 */
3735 address StubGenerator::generate_floatToFloat16() {
3736   StubId stub_id = StubId::stubgen_f2hf_id;
3737   StubCodeMark mark(this, stub_id);
3738 
3739   address start = __ pc();
3740 
3741   BLOCK_COMMENT("Entry:");
3742   // No need for RuntimeStub frame since it is called only during JIT compilation
3743 
3744   // Convert and put result into rax
3745   __ flt_to_flt16(rax, xmm0, xmm1);
3746 
3747   __ ret(0);
3748 
3749   return start;
3750 }
3751 
3752 address StubGenerator::generate_cont_thaw(StubId stub_id) {
3753   if (!Continuations::enabled()) return nullptr;
3754 
3755   bool return_barrier;
3756   bool return_barrier_exception;
3757   Continuation::thaw_kind kind;
3758 
3759   switch (stub_id) {
3760   case StubId::stubgen_cont_thaw_id:
3761     return_barrier = false;
3762     return_barrier_exception = false;
3763     kind = Continuation::thaw_top;
3764     break;
3765   case StubId::stubgen_cont_returnBarrier_id:
3766     return_barrier = true;
3767     return_barrier_exception = false;
3768     kind = Continuation::thaw_return_barrier;
3769     break;
3770   case StubId::stubgen_cont_returnBarrierExc_id:
3771     return_barrier = true;
3772     return_barrier_exception = true;
3773     kind = Continuation::thaw_return_barrier_exception;
3774     break;
3775   default:
3776     ShouldNotReachHere();
3777   }
3778   StubCodeMark mark(this, stub_id);
3779   address start = __ pc();
3780 
3781   // TODO: Handle Valhalla return types. May require generating different return barriers.
3782 
3783   if (!return_barrier) {
3784     // Pop return address. If we don't do this, we get a drift,
3785     // where the bottom-most frozen frame continuously grows.
3786     __ pop(c_rarg3);
3787   } else {
3788     __ movptr(rsp, Address(r15_thread, JavaThread::cont_entry_offset()));
3789   }
3790 
3791 #ifdef ASSERT
3792   {
3793     Label L_good_sp;
3794     __ cmpptr(rsp, Address(r15_thread, JavaThread::cont_entry_offset()));
3795     __ jcc(Assembler::equal, L_good_sp);
3796     __ stop("Incorrect rsp at thaw entry");
3797     __ BIND(L_good_sp);
3798   }
3799 #endif // ASSERT
3800 
3801   if (return_barrier) {
3802     // Preserve possible return value from a method returning to the return barrier.
3803     __ push_ppx(rax);
3804     __ push_d(xmm0);
3805   }
3806 
3807   __ movptr(c_rarg0, r15_thread);
3808   __ movptr(c_rarg1, (return_barrier ? 1 : 0));
3809   __ call_VM_leaf(CAST_FROM_FN_PTR(address, Continuation::prepare_thaw), 2);
3810   __ movptr(rbx, rax);
3811 
3812   if (return_barrier) {
3813     // Restore return value from a method returning to the return barrier.
3814     // No safepoint in the call to thaw, so even an oop return value should be OK.
3815     __ pop_d(xmm0);
3816     __ pop_ppx(rax);
3817   }
3818 
3819 #ifdef ASSERT
3820   {
3821     Label L_good_sp;
3822     __ cmpptr(rsp, Address(r15_thread, JavaThread::cont_entry_offset()));
3823     __ jcc(Assembler::equal, L_good_sp);
3824     __ stop("Incorrect rsp after prepare thaw");
3825     __ BIND(L_good_sp);
3826   }
3827 #endif // ASSERT
3828 
3829   // rbx contains the size of the frames to thaw, 0 if overflow or no more frames
3830   Label L_thaw_success;
3831   __ testptr(rbx, rbx);
3832   __ jccb(Assembler::notZero, L_thaw_success);
3833   __ jump(RuntimeAddress(SharedRuntime::throw_StackOverflowError_entry()));
3834   __ bind(L_thaw_success);
3835 
3836   // Make room for the thawed frames and align the stack.
3837   __ subptr(rsp, rbx);
3838   __ andptr(rsp, -StackAlignmentInBytes);
3839 
3840   if (return_barrier) {
3841     // Preserve possible return value from a method returning to the return barrier. (Again.)
3842     __ push_ppx(rax);
3843     __ push_d(xmm0);
3844   }
3845 
3846   // If we want, we can templatize thaw by kind, and have three different entries.
3847   __ movptr(c_rarg0, r15_thread);
3848   __ movptr(c_rarg1, kind);
3849   __ call_VM_leaf(Continuation::thaw_entry(), 2);
3850   __ movptr(rbx, rax);
3851 
3852   if (return_barrier) {
3853     // Restore return value from a method returning to the return barrier. (Again.)
3854     // No safepoint in the call to thaw, so even an oop return value should be OK.
3855     __ pop_d(xmm0);
3856     __ pop_ppx(rax);
3857   } else {
3858     // Return 0 (success) from doYield.
3859     __ xorptr(rax, rax);
3860   }
3861 
3862   // After thawing, rbx is the SP of the yielding frame.
3863   // Move there, and then to saved RBP slot.
3864   __ movptr(rsp, rbx);
3865   __ subptr(rsp, 2*wordSize);
3866 
3867   if (return_barrier_exception) {
3868     __ movptr(c_rarg0, r15_thread);
3869     __ movptr(c_rarg1, Address(rsp, wordSize)); // return address
3870 
3871     // rax still holds the original exception oop, save it before the call
3872     __ push_ppx(rax);
3873 
3874     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), 2);
3875     __ movptr(rbx, rax);
3876 
3877     // Continue at exception handler:
3878     //   rax: exception oop
3879     //   rbx: exception handler
3880     //   rdx: exception pc
3881     __ pop_ppx(rax);
3882     __ verify_oop(rax);
3883     __ pop(rbp); // pop out RBP here too
3884     __ pop(rdx);
3885     __ jmp(rbx);
3886   } else {
3887     // We are "returning" into the topmost thawed frame; see Thaw::push_return_frame
3888     __ pop(rbp);
3889     __ ret(0);
3890   }
3891 
3892   return start;
3893 }
3894 
3895 address StubGenerator::generate_cont_thaw() {
3896   return generate_cont_thaw(StubId::stubgen_cont_thaw_id);
3897 }
3898 
3899 // TODO: will probably need multiple return barriers depending on return type
3900 
3901 address StubGenerator::generate_cont_returnBarrier() {
3902   return generate_cont_thaw(StubId::stubgen_cont_returnBarrier_id);
3903 }
3904 
3905 address StubGenerator::generate_cont_returnBarrier_exception() {
3906   return generate_cont_thaw(StubId::stubgen_cont_returnBarrierExc_id);
3907 }
3908 
3909 address StubGenerator::generate_cont_preempt_stub() {
3910   if (!Continuations::enabled()) return nullptr;
3911   StubId stub_id = StubId::stubgen_cont_preempt_id;
3912   StubCodeMark mark(this, stub_id);
3913   address start = __ pc();
3914 
3915   __ reset_last_Java_frame(true);
3916 
3917   // Set rsp to enterSpecial frame, i.e. remove all frames copied into the heap.
3918   __ movptr(rsp, Address(r15_thread, JavaThread::cont_entry_offset()));
3919 
3920   Label preemption_cancelled;
3921   __ movbool(rscratch1, Address(r15_thread, JavaThread::preemption_cancelled_offset()));
3922   __ testbool(rscratch1);
3923   __ jcc(Assembler::notZero, preemption_cancelled);
3924 
3925   // Remove enterSpecial frame from the stack and return to Continuation.run() to unmount.
3926   SharedRuntime::continuation_enter_cleanup(_masm);
3927   __ pop(rbp);
3928   __ ret(0);
3929 
3930   // We acquired the monitor after freezing the frames so call thaw to continue execution.
3931   __ bind(preemption_cancelled);
3932   __ movbool(Address(r15_thread, JavaThread::preemption_cancelled_offset()), false);
3933   __ lea(rbp, Address(rsp, checked_cast<int32_t>(ContinuationEntry::size())));
3934   __ movptr(rscratch1, ExternalAddress(ContinuationEntry::thaw_call_pc_address()));
3935   __ jmp(rscratch1);
3936 
3937   return start;
3938 }
3939 
3940 // exception handler for upcall stubs
3941 address StubGenerator::generate_upcall_stub_exception_handler() {
3942   StubId stub_id = StubId::stubgen_upcall_stub_exception_handler_id;
3943   StubCodeMark mark(this, stub_id);
3944   address start = __ pc();
3945 
3946   // native caller has no idea how to handle exceptions
3947   // we just crash here. Up to callee to catch exceptions.
3948   __ verify_oop(rax);
3949   __ vzeroupper();
3950   __ mov(c_rarg0, rax);
3951   __ andptr(rsp, -StackAlignmentInBytes); // align stack as required by ABI
3952   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
3953   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, UpcallLinker::handle_uncaught_exception)));
3954   __ should_not_reach_here();
3955 
3956   return start;
3957 }
3958 
3959 // load Method* target of MethodHandle
3960 // j_rarg0 = jobject receiver
3961 // rbx = result
3962 address StubGenerator::generate_upcall_stub_load_target() {
3963   StubId stub_id = StubId::stubgen_upcall_stub_load_target_id;
3964   StubCodeMark mark(this, stub_id);
3965   address start = __ pc();
3966 
3967   __ resolve_global_jobject(j_rarg0, rscratch1);
3968     // Load target method from receiver
3969   __ load_heap_oop(rbx, Address(j_rarg0, java_lang_invoke_MethodHandle::form_offset()), rscratch1);
3970   __ load_heap_oop(rbx, Address(rbx, java_lang_invoke_LambdaForm::vmentry_offset()), rscratch1);
3971   __ load_heap_oop(rbx, Address(rbx, java_lang_invoke_MemberName::method_offset()), rscratch1);
3972   __ access_load_at(T_ADDRESS, IN_HEAP, rbx,
3973                     Address(rbx, java_lang_invoke_ResolvedMethodName::vmtarget_offset()),
3974                     noreg);
3975   __ movptr(Address(r15_thread, JavaThread::callee_target_offset()), rbx); // just in case callee is deoptimized
3976 
3977   __ ret(0);
3978 
3979   return start;
3980 }
3981 
3982 void StubGenerator::generate_lookup_secondary_supers_table_stub() {
3983   StubId stub_id = StubId::stubgen_lookup_secondary_supers_table_id;
3984   StubCodeMark mark(this, stub_id);
3985 
3986   const Register
3987       r_super_klass = rax,
3988       r_sub_klass   = rsi,
3989       result        = rdi;
3990 
3991   for (int slot = 0; slot < Klass::SECONDARY_SUPERS_TABLE_SIZE; slot++) {
3992     StubRoutines::_lookup_secondary_supers_table_stubs[slot] = __ pc();
3993     __ lookup_secondary_supers_table_const(r_sub_klass, r_super_klass,
3994                                            rdx, rcx, rbx, r11, // temps
3995                                            result,
3996                                            slot);
3997     __ ret(0);
3998   }
3999 }
4000 
4001 // Slow path implementation for UseSecondarySupersTable.
4002 address StubGenerator::generate_lookup_secondary_supers_table_slow_path_stub() {
4003   StubId stub_id = StubId::stubgen_lookup_secondary_supers_table_slow_path_id;
4004   StubCodeMark mark(this, stub_id);
4005 
4006   address start = __ pc();
4007 
4008   const Register
4009       r_super_klass  = rax,
4010       r_array_base   = rbx,
4011       r_array_index  = rdx,
4012       r_sub_klass    = rsi,
4013       r_bitmap       = r11,
4014       result         = rdi;
4015 
4016   Label L_success;
4017   __ lookup_secondary_supers_table_slow_path(r_super_klass, r_array_base, r_array_index, r_bitmap,
4018                                              rcx, rdi, // temps
4019                                              &L_success);
4020   // bind(L_failure);
4021   __ movl(result, 1);
4022   __ ret(0);
4023 
4024   __ bind(L_success);
4025   __ movl(result, 0);
4026   __ ret(0);
4027 
4028   return start;
4029 }
4030 
4031 void StubGenerator::create_control_words() {
4032   // Round to nearest, 64-bit mode, exceptions masked, flags specialized
4033   StubRoutines::x86::_mxcsr_std = EnableX86ECoreOpts ? 0x1FBF : 0x1F80;
4034   // Round to zero, 64-bit mode, exceptions masked, flags specialized
4035   StubRoutines::x86::_mxcsr_rz = EnableX86ECoreOpts ? 0x7FBF : 0x7F80;
4036 }
4037 
4038 // Initialization
4039 void StubGenerator::generate_preuniverse_stubs() {
4040   // atomic calls
4041   StubRoutines::_fence_entry                = generate_orderaccess_fence();
4042 }
4043 
4044 void StubGenerator::generate_initial_stubs() {
4045   // Generates all stubs and initializes the entry points
4046 
4047   // This platform-specific settings are needed by generate_call_stub()
4048   create_control_words();
4049 
4050   // Initialize table for unsafe copy memeory check.
4051   if (UnsafeMemoryAccess::_table == nullptr) {
4052     UnsafeMemoryAccess::create_table(16 + 4); // 16 for copyMemory; 4 for setMemory
4053   }
4054 
4055   // entry points that exist in all platforms Note: This is code
4056   // that could be shared among different platforms - however the
4057   // benefit seems to be smaller than the disadvantage of having a
4058   // much more complicated generator structure. See also comment in
4059   // stubRoutines.hpp.
4060 
4061   StubRoutines::_forward_exception_entry = generate_forward_exception();
4062 
4063   StubRoutines::_call_stub_entry =
4064     generate_call_stub(StubRoutines::_call_stub_return_address);
4065 
4066   // is referenced by megamorphic call
4067   StubRoutines::_catch_exception_entry = generate_catch_exception();
4068 
4069   // platform dependent
4070   StubRoutines::x86::_verify_mxcsr_entry    = generate_verify_mxcsr();
4071 
4072   StubRoutines::x86::_f2i_fixup             = generate_f2i_fixup();
4073   StubRoutines::x86::_f2l_fixup             = generate_f2l_fixup();
4074   StubRoutines::x86::_d2i_fixup             = generate_d2i_fixup();
4075   StubRoutines::x86::_d2l_fixup             = generate_d2l_fixup();
4076 
4077   StubRoutines::x86::_float_sign_mask       = generate_fp_mask(StubId::stubgen_float_sign_mask_id,  0x7FFFFFFF7FFFFFFF);
4078   StubRoutines::x86::_float_sign_flip       = generate_fp_mask(StubId::stubgen_float_sign_flip_id,  0x8000000080000000);
4079   StubRoutines::x86::_double_sign_mask      = generate_fp_mask(StubId::stubgen_double_sign_mask_id, 0x7FFFFFFFFFFFFFFF);
4080   StubRoutines::x86::_double_sign_flip      = generate_fp_mask(StubId::stubgen_double_sign_flip_id, 0x8000000000000000);
4081 
4082   if (UseCRC32Intrinsics) {
4083     StubRoutines::_updateBytesCRC32 = generate_updateBytesCRC32();
4084   }
4085 
4086   if (UseCRC32CIntrinsics) {
4087     bool supports_clmul = VM_Version::supports_clmul();
4088     StubRoutines::_updateBytesCRC32C = generate_updateBytesCRC32C(supports_clmul);
4089   }
4090 
4091   if (VM_Version::supports_float16()) {
4092     // For results consistency both intrinsics should be enabled.
4093     // vmIntrinsics checks InlineIntrinsics flag, no need to check it here.
4094     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_float16ToFloat) &&
4095         vmIntrinsics::is_intrinsic_available(vmIntrinsics::_floatToFloat16)) {
4096       StubRoutines::_hf2f = generate_float16ToFloat();
4097       StubRoutines::_f2hf = generate_floatToFloat16();
4098     }
4099   }
4100 
4101   generate_libm_stubs();
4102 
4103   StubRoutines::_fmod = generate_libmFmod(); // from stubGenerator_x86_64_fmod.cpp
4104 }
4105 
4106 void StubGenerator::generate_continuation_stubs() {
4107   // Continuation stubs:
4108   StubRoutines::_cont_thaw          = generate_cont_thaw();
4109   StubRoutines::_cont_returnBarrier = generate_cont_returnBarrier();
4110   StubRoutines::_cont_returnBarrierExc = generate_cont_returnBarrier_exception();
4111   StubRoutines::_cont_preempt_stub = generate_cont_preempt_stub();
4112 }
4113 
4114 void StubGenerator::generate_final_stubs() {
4115   // Generates the rest of stubs and initializes the entry points
4116 
4117   // support for verify_oop (must happen after universe_init)
4118   if (VerifyOops) {
4119     StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop();
4120   }
4121 
4122   // arraycopy stubs used by compilers
4123   generate_arraycopy_stubs();
4124 
4125   StubRoutines::_method_entry_barrier = generate_method_entry_barrier();
4126 
4127 #ifdef COMPILER2
4128   if (UseSecondarySupersTable) {
4129     StubRoutines::_lookup_secondary_supers_table_slow_path_stub = generate_lookup_secondary_supers_table_slow_path_stub();
4130     if (! InlineSecondarySupersTest) {
4131       generate_lookup_secondary_supers_table_stub();
4132     }
4133   }
4134 #endif // COMPILER2
4135 
4136   if (UseVectorizedMismatchIntrinsic) {
4137     StubRoutines::_vectorizedMismatch = generate_vectorizedMismatch();
4138   }
4139 
4140   StubRoutines::_upcall_stub_exception_handler = generate_upcall_stub_exception_handler();
4141   StubRoutines::_upcall_stub_load_target = generate_upcall_stub_load_target();
4142 }
4143 
4144 void StubGenerator::generate_compiler_stubs() {
4145 #if COMPILER2_OR_JVMCI
4146 
4147   // Entry points that are C2 compiler specific.
4148 
4149   StubRoutines::x86::_vector_float_sign_mask = generate_vector_mask(StubId::stubgen_vector_float_sign_mask_id, 0x7FFFFFFF7FFFFFFF);
4150   StubRoutines::x86::_vector_float_sign_flip = generate_vector_mask(StubId::stubgen_vector_float_sign_flip_id, 0x8000000080000000);
4151   StubRoutines::x86::_vector_double_sign_mask = generate_vector_mask(StubId::stubgen_vector_double_sign_mask_id, 0x7FFFFFFFFFFFFFFF);
4152   StubRoutines::x86::_vector_double_sign_flip = generate_vector_mask(StubId::stubgen_vector_double_sign_flip_id, 0x8000000000000000);
4153   StubRoutines::x86::_vector_all_bits_set = generate_vector_mask(StubId::stubgen_vector_all_bits_set_id, 0xFFFFFFFFFFFFFFFF);
4154   StubRoutines::x86::_vector_int_mask_cmp_bits = generate_vector_mask(StubId::stubgen_vector_int_mask_cmp_bits_id, 0x0000000100000001);
4155   StubRoutines::x86::_vector_short_to_byte_mask = generate_vector_mask(StubId::stubgen_vector_short_to_byte_mask_id, 0x00ff00ff00ff00ff);
4156   StubRoutines::x86::_vector_byte_perm_mask = generate_vector_byte_perm_mask();
4157   StubRoutines::x86::_vector_int_to_byte_mask = generate_vector_mask(StubId::stubgen_vector_int_to_byte_mask_id, 0x000000ff000000ff);
4158   StubRoutines::x86::_vector_int_to_short_mask = generate_vector_mask(StubId::stubgen_vector_int_to_short_mask_id, 0x0000ffff0000ffff);
4159   StubRoutines::x86::_vector_32_bit_mask = generate_vector_custom_i32(StubId::stubgen_vector_32_bit_mask_id, Assembler::AVX_512bit,
4160                                                                       0xFFFFFFFF, 0, 0, 0);
4161   StubRoutines::x86::_vector_64_bit_mask = generate_vector_custom_i32(StubId::stubgen_vector_64_bit_mask_id, Assembler::AVX_512bit,
4162                                                                       0xFFFFFFFF, 0xFFFFFFFF, 0, 0);
4163   StubRoutines::x86::_vector_int_shuffle_mask = generate_vector_mask(StubId::stubgen_vector_int_shuffle_mask_id, 0x0302010003020100);
4164   StubRoutines::x86::_vector_byte_shuffle_mask = generate_vector_byte_shuffle_mask();
4165   StubRoutines::x86::_vector_short_shuffle_mask = generate_vector_mask(StubId::stubgen_vector_short_shuffle_mask_id, 0x0100010001000100);
4166   StubRoutines::x86::_vector_long_shuffle_mask = generate_vector_mask(StubId::stubgen_vector_long_shuffle_mask_id, 0x0000000100000000);
4167   StubRoutines::x86::_vector_long_sign_mask = generate_vector_mask(StubId::stubgen_vector_long_sign_mask_id, 0x8000000000000000);
4168   StubRoutines::x86::_vector_iota_indices = generate_iota_indices();
4169   StubRoutines::x86::_vector_count_leading_zeros_lut = generate_count_leading_zeros_lut();
4170   StubRoutines::x86::_vector_reverse_bit_lut = generate_vector_reverse_bit_lut();
4171   StubRoutines::x86::_vector_reverse_byte_perm_mask_long = generate_vector_reverse_byte_perm_mask_long();
4172   StubRoutines::x86::_vector_reverse_byte_perm_mask_int = generate_vector_reverse_byte_perm_mask_int();
4173   StubRoutines::x86::_vector_reverse_byte_perm_mask_short = generate_vector_reverse_byte_perm_mask_short();
4174 
4175   if (VM_Version::supports_avx2() && !VM_Version::supports_avx512vl()) {
4176     StubRoutines::x86::_compress_perm_table32 = generate_compress_perm_table(StubId::stubgen_compress_perm_table32_id);
4177     StubRoutines::x86::_compress_perm_table64 = generate_compress_perm_table(StubId::stubgen_compress_perm_table64_id);
4178     StubRoutines::x86::_expand_perm_table32 = generate_expand_perm_table(StubId::stubgen_expand_perm_table32_id);
4179     StubRoutines::x86::_expand_perm_table64 = generate_expand_perm_table(StubId::stubgen_expand_perm_table64_id);
4180   }
4181 
4182   if (VM_Version::supports_avx2() && !VM_Version::supports_avx512_vpopcntdq()) {
4183     // lut implementation influenced by counting 1s algorithm from section 5-1 of Hackers' Delight.
4184     StubRoutines::x86::_vector_popcount_lut = generate_popcount_avx_lut();
4185   }
4186 
4187   generate_aes_stubs();
4188 
4189   generate_ghash_stubs();
4190 
4191   generate_chacha_stubs();
4192 
4193   generate_kyber_stubs();
4194 
4195   generate_dilithium_stubs();
4196 
4197   generate_sha3_stubs();
4198 
4199   // data cache line writeback
4200   StubRoutines::_data_cache_writeback = generate_data_cache_writeback();
4201   StubRoutines::_data_cache_writeback_sync = generate_data_cache_writeback_sync();
4202 
4203 #ifdef COMPILER2
4204   if ((UseAVX == 2) && EnableX86ECoreOpts) {
4205     generate_string_indexof(StubRoutines::_string_indexof_array);
4206   }
4207 #endif
4208 
4209   if (UseAdler32Intrinsics) {
4210      StubRoutines::_updateBytesAdler32 = generate_updateBytesAdler32();
4211   }
4212 
4213   if (UsePoly1305Intrinsics) {
4214     StubRoutines::_poly1305_processBlocks = generate_poly1305_processBlocks();
4215   }
4216 
4217   if (UseIntPolyIntrinsics) {
4218     StubRoutines::_intpoly_montgomeryMult_P256 = generate_intpoly_montgomeryMult_P256();
4219     StubRoutines::_intpoly_assign = generate_intpoly_assign();
4220   }
4221 
4222   if (UseMD5Intrinsics) {
4223     StubRoutines::_md5_implCompress = generate_md5_implCompress(StubId::stubgen_md5_implCompress_id);
4224     StubRoutines::_md5_implCompressMB = generate_md5_implCompress(StubId::stubgen_md5_implCompressMB_id);
4225   }
4226 
4227   if (UseSHA1Intrinsics) {
4228     StubRoutines::x86::_upper_word_mask_addr = generate_upper_word_mask();
4229     StubRoutines::x86::_shuffle_byte_flip_mask_addr = generate_shuffle_byte_flip_mask();
4230     StubRoutines::_sha1_implCompress = generate_sha1_implCompress(StubId::stubgen_sha1_implCompress_id);
4231     StubRoutines::_sha1_implCompressMB = generate_sha1_implCompress(StubId::stubgen_sha1_implCompressMB_id);
4232   }
4233 
4234   if (UseSHA256Intrinsics) {
4235     StubRoutines::x86::_k256_adr = (address)StubRoutines::x86::_k256;
4236     char* dst = (char*)StubRoutines::x86::_k256_W;
4237     char* src = (char*)StubRoutines::x86::_k256;
4238     for (int ii = 0; ii < 16; ++ii) {
4239       memcpy(dst + 32 * ii,      src + 16 * ii, 16);
4240       memcpy(dst + 32 * ii + 16, src + 16 * ii, 16);
4241     }
4242     StubRoutines::x86::_k256_W_adr = (address)StubRoutines::x86::_k256_W;
4243     StubRoutines::x86::_pshuffle_byte_flip_mask_addr = generate_pshuffle_byte_flip_mask();
4244     StubRoutines::_sha256_implCompress = generate_sha256_implCompress(StubId::stubgen_sha256_implCompress_id);
4245     StubRoutines::_sha256_implCompressMB = generate_sha256_implCompress(StubId::stubgen_sha256_implCompressMB_id);
4246   }
4247 
4248   if (UseSHA512Intrinsics) {
4249     StubRoutines::x86::_k512_W_addr = (address)StubRoutines::x86::_k512_W;
4250     StubRoutines::x86::_pshuffle_byte_flip_mask_addr_sha512 = generate_pshuffle_byte_flip_mask_sha512();
4251     StubRoutines::_sha512_implCompress = generate_sha512_implCompress(StubId::stubgen_sha512_implCompress_id);
4252     StubRoutines::_sha512_implCompressMB = generate_sha512_implCompress(StubId::stubgen_sha512_implCompressMB_id);
4253   }
4254 
4255   if (UseBASE64Intrinsics) {
4256     if(VM_Version::supports_avx2()) {
4257       StubRoutines::x86::_avx2_shuffle_base64 = base64_avx2_shuffle_addr();
4258       StubRoutines::x86::_avx2_input_mask_base64 = base64_avx2_input_mask_addr();
4259       StubRoutines::x86::_avx2_lut_base64 = base64_avx2_lut_addr();
4260       StubRoutines::x86::_avx2_decode_tables_base64 = base64_AVX2_decode_tables_addr();
4261       StubRoutines::x86::_avx2_decode_lut_tables_base64 = base64_AVX2_decode_LUT_tables_addr();
4262     }
4263     StubRoutines::x86::_encoding_table_base64 = base64_encoding_table_addr();
4264     if (VM_Version::supports_avx512_vbmi()) {
4265       StubRoutines::x86::_shuffle_base64 = base64_shuffle_addr();
4266       StubRoutines::x86::_lookup_lo_base64 = base64_vbmi_lookup_lo_addr();
4267       StubRoutines::x86::_lookup_hi_base64 = base64_vbmi_lookup_hi_addr();
4268       StubRoutines::x86::_lookup_lo_base64url = base64_vbmi_lookup_lo_url_addr();
4269       StubRoutines::x86::_lookup_hi_base64url = base64_vbmi_lookup_hi_url_addr();
4270       StubRoutines::x86::_pack_vec_base64 = base64_vbmi_pack_vec_addr();
4271       StubRoutines::x86::_join_0_1_base64 = base64_vbmi_join_0_1_addr();
4272       StubRoutines::x86::_join_1_2_base64 = base64_vbmi_join_1_2_addr();
4273       StubRoutines::x86::_join_2_3_base64 = base64_vbmi_join_2_3_addr();
4274     }
4275     StubRoutines::x86::_decoding_table_base64 = base64_decoding_table_addr();
4276     StubRoutines::_base64_encodeBlock = generate_base64_encodeBlock();
4277     StubRoutines::_base64_decodeBlock = generate_base64_decodeBlock();
4278   }
4279 
4280 #ifdef COMPILER2
4281   if (UseMultiplyToLenIntrinsic) {
4282     StubRoutines::_multiplyToLen = generate_multiplyToLen();
4283   }
4284   if (UseSquareToLenIntrinsic) {
4285     StubRoutines::_squareToLen = generate_squareToLen();
4286   }
4287   if (UseMulAddIntrinsic) {
4288     StubRoutines::_mulAdd = generate_mulAdd();
4289   }
4290   if (VM_Version::supports_avx512_vbmi2()) {
4291     StubRoutines::_bigIntegerRightShiftWorker = generate_bigIntegerRightShift();
4292     StubRoutines::_bigIntegerLeftShiftWorker = generate_bigIntegerLeftShift();
4293   }
4294   if (UseMontgomeryMultiplyIntrinsic) {
4295     StubRoutines::_montgomeryMultiply
4296       = CAST_FROM_FN_PTR(address, SharedRuntime::montgomery_multiply);
4297   }
4298   if (UseMontgomerySquareIntrinsic) {
4299     StubRoutines::_montgomerySquare
4300       = CAST_FROM_FN_PTR(address, SharedRuntime::montgomery_square);
4301   }
4302 
4303   // Load x86_64_sort library on supported hardware to enable SIMD sort and partition intrinsics
4304 
4305   if (VM_Version::supports_avx512dq() || VM_Version::supports_avx2()) {
4306     void *libsimdsort = nullptr;
4307     char ebuf_[1024];
4308     char dll_name_simd_sort[JVM_MAXPATHLEN];
4309     if (os::dll_locate_lib(dll_name_simd_sort, sizeof(dll_name_simd_sort), Arguments::get_dll_dir(), "simdsort")) {
4310       libsimdsort = os::dll_load(dll_name_simd_sort, ebuf_, sizeof ebuf_);
4311     }
4312     // Get addresses for SIMD sort and partition routines
4313     if (libsimdsort != nullptr) {
4314       log_info(library)("Loaded library %s, handle " INTPTR_FORMAT, JNI_LIB_PREFIX "simdsort" JNI_LIB_SUFFIX, p2i(libsimdsort));
4315 
4316       os::snprintf_checked(ebuf_, sizeof(ebuf_), VM_Version::supports_avx512_simd_sort() ? "avx512_sort" : "avx2_sort");
4317       StubRoutines::_array_sort = (address)os::dll_lookup(libsimdsort, ebuf_);
4318 
4319       os::snprintf_checked(ebuf_, sizeof(ebuf_), VM_Version::supports_avx512_simd_sort() ? "avx512_partition" : "avx2_partition");
4320       StubRoutines::_array_partition = (address)os::dll_lookup(libsimdsort, ebuf_);
4321     }
4322   }
4323 
4324 #endif // COMPILER2
4325 #endif // COMPILER2_OR_JVMCI
4326 }
4327 
4328 StubGenerator::StubGenerator(CodeBuffer* code, BlobId blob_id) : StubCodeGenerator(code, blob_id) {
4329   switch(blob_id) {
4330   case BlobId::stubgen_preuniverse_id:
4331     generate_preuniverse_stubs();
4332     break;
4333   case BlobId::stubgen_initial_id:
4334     generate_initial_stubs();
4335     break;
4336   case BlobId::stubgen_continuation_id:
4337     generate_continuation_stubs();
4338     break;
4339   case BlobId::stubgen_compiler_id:
4340     generate_compiler_stubs();
4341     break;
4342   case BlobId::stubgen_final_id:
4343     generate_final_stubs();
4344     break;
4345   default:
4346     fatal("unexpected blob id: %s", StubInfo::name(blob_id));
4347     break;
4348   };
4349 }
4350 
4351 void StubGenerator_generate(CodeBuffer* code, BlobId blob_id) {
4352   StubGenerator g(code, blob_id);
4353 }
4354 
4355 #undef __