1 /*
2 * Copyright (c) 2003, 2025, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "asm/macroAssembler.hpp"
26 #include "classfile/javaClasses.hpp"
27 #include "classfile/vmIntrinsics.hpp"
28 #include "compiler/oopMap.hpp"
29 #include "gc/shared/barrierSet.hpp"
30 #include "gc/shared/barrierSetAssembler.hpp"
31 #include "gc/shared/barrierSetNMethod.hpp"
32 #include "gc/shared/gc_globals.hpp"
33 #include "memory/universe.hpp"
34 #include "prims/jvmtiExport.hpp"
35 #include "prims/upcallLinker.hpp"
36 #include "runtime/arguments.hpp"
37 #include "runtime/continuationEntry.hpp"
38 #include "runtime/javaThread.hpp"
39 #include "runtime/sharedRuntime.hpp"
40 #include "runtime/stubRoutines.hpp"
41 #include "stubGenerator_x86_64.hpp"
42 #ifdef COMPILER2
43 #include "opto/runtime.hpp"
44 #include "opto/c2_globals.hpp"
45 #endif
46 #if INCLUDE_JVMCI
47 #include "jvmci/jvmci_globals.hpp"
48 #endif
49
50 // For a more detailed description of the stub routine structure
51 // see the comment in stubRoutines.hpp
52
53 #define __ _masm->
54 #define TIMES_OOP (UseCompressedOops ? Address::times_4 : Address::times_8)
55
56 #ifdef PRODUCT
57 #define BLOCK_COMMENT(str) /* nothing */
58 #else
59 #define BLOCK_COMMENT(str) __ block_comment(str)
60 #endif // PRODUCT
61
62 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
63
64 //
65 // Linux Arguments:
66 // c_rarg0: call wrapper address address
67 // c_rarg1: result address
68 // c_rarg2: result type BasicType
69 // c_rarg3: method Method*
70 // c_rarg4: (interpreter) entry point address
71 // c_rarg5: parameters intptr_t*
72 // 16(rbp): parameter size (in words) int
73 // 24(rbp): thread Thread*
74 //
75 // [ return_from_Java ] <--- rsp
76 // [ argument word n ]
77 // ...
78 // -12 [ argument word 1 ]
79 // -11 [ saved r15 ] <--- rsp_after_call
80 // -10 [ saved r14 ]
81 // -9 [ saved r13 ]
82 // -8 [ saved r12 ]
83 // -7 [ saved rbx ]
84 // -6 [ call wrapper ]
85 // -5 [ result ]
86 // -4 [ result type ]
87 // -3 [ method ]
88 // -2 [ entry point ]
89 // -1 [ parameters ]
90 // 0 [ saved rbp ] <--- rbp
91 // 1 [ return address ]
92 // 2 [ parameter size ]
93 // 3 [ thread ]
94 //
95 // Windows Arguments:
96 // c_rarg0: call wrapper address address
97 // c_rarg1: result address
98 // c_rarg2: result type BasicType
99 // c_rarg3: method Method*
100 // 48(rbp): (interpreter) entry point address
101 // 56(rbp): parameters intptr_t*
102 // 64(rbp): parameter size (in words) int
103 // 72(rbp): thread Thread*
104 //
105 // [ return_from_Java ] <--- rsp
106 // [ argument word n ]
107 // ...
108 // -28 [ argument word 1 ]
109 // -27 [ saved xmm15 ] <--- rsp after_call
110 // [ saved xmm7-xmm14 ]
111 // -9 [ saved xmm6 ] (each xmm register takes 2 slots)
112 // -7 [ saved r15 ]
113 // -6 [ saved r14 ]
114 // -5 [ saved r13 ]
115 // -4 [ saved r12 ]
116 // -3 [ saved rdi ]
117 // -2 [ saved rsi ]
118 // -1 [ saved rbx ]
119 // 0 [ saved rbp ] <--- rbp
120 // 1 [ return address ]
121 // 2 [ call wrapper ]
122 // 3 [ result ]
123 // 4 [ result type ]
124 // 5 [ method ]
125 // 6 [ entry point ]
126 // 7 [ parameters ]
127 // 8 [ parameter size ]
128 // 9 [ thread ]
129 //
130 // Windows reserves the callers stack space for arguments 1-4.
131 // We spill c_rarg0-c_rarg3 to this space.
132
133 // Call stub stack layout word offsets from rbp
134 #ifdef _WIN64
135 enum call_stub_layout {
136 xmm_save_first = 6, // save from xmm6
137 xmm_save_last = 15, // to xmm15
138 xmm_save_base = -9,
139 rsp_after_call_off = xmm_save_base - 2 * (xmm_save_last - xmm_save_first), // -27
140 r15_off = -7,
141 r14_off = -6,
142 r13_off = -5,
143 r12_off = -4,
144 rdi_off = -3,
145 rsi_off = -2,
146 rbx_off = -1,
147 rbp_off = 0,
148 retaddr_off = 1,
149 call_wrapper_off = 2,
150 result_off = 3,
151 result_type_off = 4,
152 method_off = 5,
153 entry_point_off = 6,
154 parameters_off = 7,
155 parameter_size_off = 8,
156 thread_off = 9
157 };
158
159 static Address xmm_save(int reg) {
160 assert(reg >= xmm_save_first && reg <= xmm_save_last, "XMM register number out of range");
161 return Address(rbp, (xmm_save_base - (reg - xmm_save_first) * 2) * wordSize);
162 }
163 #else // !_WIN64
164 enum call_stub_layout {
165 rsp_after_call_off = -12,
166 mxcsr_off = rsp_after_call_off,
167 r15_off = -11,
168 r14_off = -10,
169 r13_off = -9,
170 r12_off = -8,
171 rbx_off = -7,
172 call_wrapper_off = -6,
173 result_off = -5,
174 result_type_off = -4,
175 method_off = -3,
176 entry_point_off = -2,
177 parameters_off = -1,
178 rbp_off = 0,
179 retaddr_off = 1,
180 parameter_size_off = 2,
181 thread_off = 3
182 };
183 #endif // _WIN64
184
185 address StubGenerator::generate_call_stub(address& return_address) {
186
187 assert((int)frame::entry_frame_after_call_words == -(int)rsp_after_call_off + 1 &&
188 (int)frame::entry_frame_call_wrapper_offset == (int)call_wrapper_off,
189 "adjust this code");
190 StubId stub_id = StubId::stubgen_call_stub_id;
191 StubCodeMark mark(this, stub_id);
192 address start = __ pc();
193
194 // same as in generate_catch_exception()!
195 const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
196
197 const Address call_wrapper (rbp, call_wrapper_off * wordSize);
198 const Address result (rbp, result_off * wordSize);
199 const Address result_type (rbp, result_type_off * wordSize);
200 const Address method (rbp, method_off * wordSize);
201 const Address entry_point (rbp, entry_point_off * wordSize);
202 const Address parameters (rbp, parameters_off * wordSize);
203 const Address parameter_size(rbp, parameter_size_off * wordSize);
204
205 // same as in generate_catch_exception()!
206 const Address thread (rbp, thread_off * wordSize);
207
208 const Address r15_save(rbp, r15_off * wordSize);
209 const Address r14_save(rbp, r14_off * wordSize);
210 const Address r13_save(rbp, r13_off * wordSize);
211 const Address r12_save(rbp, r12_off * wordSize);
212 const Address rbx_save(rbp, rbx_off * wordSize);
213
214 // stub code
215 __ enter();
216 __ subptr(rsp, -rsp_after_call_off * wordSize);
217
218 // save register parameters
219 #ifndef _WIN64
220 __ movptr(parameters, c_rarg5); // parameters
221 __ movptr(entry_point, c_rarg4); // entry_point
222 #endif
223
224 __ movptr(method, c_rarg3); // method
225 __ movl(result_type, c_rarg2); // result type
226 __ movptr(result, c_rarg1); // result
227 __ movptr(call_wrapper, c_rarg0); // call wrapper
228
229 // save regs belonging to calling function
230 __ movptr(rbx_save, rbx);
231 __ movptr(r12_save, r12);
232 __ movptr(r13_save, r13);
233 __ movptr(r14_save, r14);
234 __ movptr(r15_save, r15);
235
236 #ifdef _WIN64
237 int last_reg = 15;
238 for (int i = xmm_save_first; i <= last_reg; i++) {
239 __ movdqu(xmm_save(i), as_XMMRegister(i));
240 }
241
242 const Address rdi_save(rbp, rdi_off * wordSize);
243 const Address rsi_save(rbp, rsi_off * wordSize);
244
245 __ movptr(rsi_save, rsi);
246 __ movptr(rdi_save, rdi);
247 #else
248 const Address mxcsr_save(rbp, mxcsr_off * wordSize);
249 {
250 Label skip_ldmx;
251 __ cmp32_mxcsr_std(mxcsr_save, rax, rscratch1);
252 __ jcc(Assembler::equal, skip_ldmx);
253 ExternalAddress mxcsr_std(StubRoutines::x86::addr_mxcsr_std());
254 __ ldmxcsr(mxcsr_std, rscratch1);
255 __ bind(skip_ldmx);
256 }
257 #endif
258
259 // Load up thread register
260 __ movptr(r15_thread, thread);
261 __ reinit_heapbase();
262
263 #ifdef ASSERT
264 // make sure we have no pending exceptions
265 {
266 Label L;
267 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), NULL_WORD);
268 __ jcc(Assembler::equal, L);
269 __ stop("StubRoutines::call_stub: entered with pending exception");
270 __ bind(L);
271 }
272 #endif
273
274 // pass parameters if any
275 BLOCK_COMMENT("pass parameters if any");
276 Label parameters_done;
277 __ movl(c_rarg3, parameter_size);
278 __ testl(c_rarg3, c_rarg3);
279 __ jcc(Assembler::zero, parameters_done);
280
281 Label loop;
282 __ movptr(c_rarg2, parameters); // parameter pointer
283 __ movl(c_rarg1, c_rarg3); // parameter counter is in c_rarg1
284 __ BIND(loop);
285 __ movptr(rax, Address(c_rarg2, 0));// get parameter
286 __ addptr(c_rarg2, wordSize); // advance to next parameter
287 __ decrementl(c_rarg1); // decrement counter
288 __ push(rax); // pass parameter
289 __ jcc(Assembler::notZero, loop);
290
291 // call Java function
292 __ BIND(parameters_done);
293 __ movptr(rbx, method); // get Method*
294 __ movptr(c_rarg1, entry_point); // get entry_point
295 __ mov(r13, rsp); // set sender sp
296 BLOCK_COMMENT("call Java function");
297 __ call(c_rarg1);
298
299 BLOCK_COMMENT("call_stub_return_address:");
300 return_address = __ pc();
301
302 // store result depending on type (everything that is not
303 // T_OBJECT, T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
304 __ movptr(c_rarg0, result);
305 Label is_long, is_float, is_double, exit;
306 __ movl(c_rarg1, result_type);
307 __ cmpl(c_rarg1, T_OBJECT);
308 __ jcc(Assembler::equal, is_long);
309 __ cmpl(c_rarg1, T_LONG);
310 __ jcc(Assembler::equal, is_long);
311 __ cmpl(c_rarg1, T_FLOAT);
312 __ jcc(Assembler::equal, is_float);
313 __ cmpl(c_rarg1, T_DOUBLE);
314 __ jcc(Assembler::equal, is_double);
315 #ifdef ASSERT
316 // make sure the type is INT
317 {
318 Label L;
319 __ cmpl(c_rarg1, T_INT);
320 __ jcc(Assembler::equal, L);
321 __ stop("StubRoutines::call_stub: unexpected result type");
322 __ bind(L);
323 }
324 #endif
325
326 // handle T_INT case
327 __ movl(Address(c_rarg0, 0), rax);
328
329 __ BIND(exit);
330
331 // pop parameters
332 __ lea(rsp, rsp_after_call);
333
334 #ifdef ASSERT
335 // verify that threads correspond
336 {
337 Label L1, L2, L3;
338 __ cmpptr(r15_thread, thread);
339 __ jcc(Assembler::equal, L1);
340 __ stop("StubRoutines::call_stub: r15_thread is corrupted");
341 __ bind(L1);
342 __ get_thread_slow(rbx);
343 __ cmpptr(r15_thread, thread);
344 __ jcc(Assembler::equal, L2);
345 __ stop("StubRoutines::call_stub: r15_thread is modified by call");
346 __ bind(L2);
347 __ cmpptr(r15_thread, rbx);
348 __ jcc(Assembler::equal, L3);
349 __ stop("StubRoutines::call_stub: threads must correspond");
350 __ bind(L3);
351 }
352 #endif
353
354 __ pop_cont_fastpath();
355
356 // restore regs belonging to calling function
357 #ifdef _WIN64
358 // emit the restores for xmm regs
359 for (int i = xmm_save_first; i <= last_reg; i++) {
360 __ movdqu(as_XMMRegister(i), xmm_save(i));
361 }
362 #endif
363 __ movptr(r15, r15_save);
364 __ movptr(r14, r14_save);
365 __ movptr(r13, r13_save);
366 __ movptr(r12, r12_save);
367 __ movptr(rbx, rbx_save);
368
369 #ifdef _WIN64
370 __ movptr(rdi, rdi_save);
371 __ movptr(rsi, rsi_save);
372 #else
373 __ ldmxcsr(mxcsr_save);
374 #endif
375
376 // restore rsp
377 __ addptr(rsp, -rsp_after_call_off * wordSize);
378
379 // return
380 __ vzeroupper();
381 __ pop(rbp);
382 __ ret(0);
383
384 // handle return types different from T_INT
385 __ BIND(is_long);
386 __ movq(Address(c_rarg0, 0), rax);
387 __ jmp(exit);
388
389 __ BIND(is_float);
390 __ movflt(Address(c_rarg0, 0), xmm0);
391 __ jmp(exit);
392
393 __ BIND(is_double);
394 __ movdbl(Address(c_rarg0, 0), xmm0);
395 __ jmp(exit);
396
397 return start;
398 }
399
400 // Return point for a Java call if there's an exception thrown in
401 // Java code. The exception is caught and transformed into a
402 // pending exception stored in JavaThread that can be tested from
403 // within the VM.
404 //
405 // Note: Usually the parameters are removed by the callee. In case
406 // of an exception crossing an activation frame boundary, that is
407 // not the case if the callee is compiled code => need to setup the
408 // rsp.
409 //
410 // rax: exception oop
411
412 address StubGenerator::generate_catch_exception() {
413 StubId stub_id = StubId::stubgen_catch_exception_id;
414 StubCodeMark mark(this, stub_id);
415 address start = __ pc();
416
417 // same as in generate_call_stub():
418 const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
419 const Address thread (rbp, thread_off * wordSize);
420
421 #ifdef ASSERT
422 // verify that threads correspond
423 {
424 Label L1, L2, L3;
425 __ cmpptr(r15_thread, thread);
426 __ jcc(Assembler::equal, L1);
427 __ stop("StubRoutines::catch_exception: r15_thread is corrupted");
428 __ bind(L1);
429 __ get_thread_slow(rbx);
430 __ cmpptr(r15_thread, thread);
431 __ jcc(Assembler::equal, L2);
432 __ stop("StubRoutines::catch_exception: r15_thread is modified by call");
433 __ bind(L2);
434 __ cmpptr(r15_thread, rbx);
435 __ jcc(Assembler::equal, L3);
436 __ stop("StubRoutines::catch_exception: threads must correspond");
437 __ bind(L3);
438 }
439 #endif
440
441 // set pending exception
442 __ verify_oop(rax);
443
444 __ movptr(Address(r15_thread, Thread::pending_exception_offset()), rax);
445 __ lea(rscratch1, ExternalAddress((address)__FILE__));
446 __ movptr(Address(r15_thread, Thread::exception_file_offset()), rscratch1);
447 __ movl(Address(r15_thread, Thread::exception_line_offset()), (int) __LINE__);
448
449 // complete return to VM
450 assert(StubRoutines::_call_stub_return_address != nullptr,
451 "_call_stub_return_address must have been generated before");
452 __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address));
453
454 return start;
455 }
456
457 // Continuation point for runtime calls returning with a pending
458 // exception. The pending exception check happened in the runtime
459 // or native call stub. The pending exception in Thread is
460 // converted into a Java-level exception.
461 //
462 // Contract with Java-level exception handlers:
463 // rax: exception
464 // rdx: throwing pc
465 //
466 // NOTE: At entry of this stub, exception-pc must be on stack !!
467
468 address StubGenerator::generate_forward_exception() {
469 StubId stub_id = StubId::stubgen_forward_exception_id;
470 StubCodeMark mark(this, stub_id);
471 address start = __ pc();
472
473 // Upon entry, the sp points to the return address returning into
474 // Java (interpreted or compiled) code; i.e., the return address
475 // becomes the throwing pc.
476 //
477 // Arguments pushed before the runtime call are still on the stack
478 // but the exception handler will reset the stack pointer ->
479 // ignore them. A potential result in registers can be ignored as
480 // well.
481
482 #ifdef ASSERT
483 // make sure this code is only executed if there is a pending exception
484 {
485 Label L;
486 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), NULL_WORD);
487 __ jcc(Assembler::notEqual, L);
488 __ stop("StubRoutines::forward exception: no pending exception (1)");
489 __ bind(L);
490 }
491 #endif
492
493 // compute exception handler into rbx
494 __ movptr(c_rarg0, Address(rsp, 0));
495 BLOCK_COMMENT("call exception_handler_for_return_address");
496 __ call_VM_leaf(CAST_FROM_FN_PTR(address,
497 SharedRuntime::exception_handler_for_return_address),
498 r15_thread, c_rarg0);
499 __ mov(rbx, rax);
500
501 // setup rax & rdx, remove return address & clear pending exception
502 __ pop(rdx);
503 __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
504 __ movptr(Address(r15_thread, Thread::pending_exception_offset()), NULL_WORD);
505
506 #ifdef ASSERT
507 // make sure exception is set
508 {
509 Label L;
510 __ testptr(rax, rax);
511 __ jcc(Assembler::notEqual, L);
512 __ stop("StubRoutines::forward exception: no pending exception (2)");
513 __ bind(L);
514 }
515 #endif
516
517 // continue at exception handler (return address removed)
518 // rax: exception
519 // rbx: exception handler
520 // rdx: throwing pc
521 __ verify_oop(rax);
522 __ jmp(rbx);
523
524 return start;
525 }
526
527 // Support for intptr_t OrderAccess::fence()
528 //
529 // Arguments :
530 //
531 // Result:
532 address StubGenerator::generate_orderaccess_fence() {
533 StubId stub_id = StubId::stubgen_fence_id;
534 StubCodeMark mark(this, stub_id);
535 address start = __ pc();
536
537 __ membar(Assembler::StoreLoad);
538 __ ret(0);
539
540 return start;
541 }
542
543
544 //----------------------------------------------------------------------------------------------------
545 // Support for void verify_mxcsr()
546 //
547 // This routine is used with -Xcheck:jni to verify that native
548 // JNI code does not return to Java code without restoring the
549 // MXCSR register to our expected state.
550
551 address StubGenerator::generate_verify_mxcsr() {
552 StubId stub_id = StubId::stubgen_verify_mxcsr_id;
553 StubCodeMark mark(this, stub_id);
554 address start = __ pc();
555
556 const Address mxcsr_save(rsp, 0);
557
558 if (CheckJNICalls) {
559 Label ok_ret;
560 ExternalAddress mxcsr_std(StubRoutines::x86::addr_mxcsr_std());
561 __ push_ppx(rax);
562 __ subptr(rsp, wordSize); // allocate a temp location
563 __ cmp32_mxcsr_std(mxcsr_save, rax, rscratch1);
564 __ jcc(Assembler::equal, ok_ret);
565
566 __ warn("MXCSR changed by native JNI code, use -XX:+RestoreMXCSROnJNICall");
567
568 __ ldmxcsr(mxcsr_std, rscratch1);
569
570 __ bind(ok_ret);
571 __ addptr(rsp, wordSize);
572 __ pop_ppx(rax);
573 }
574
575 __ ret(0);
576
577 return start;
578 }
579
580 address StubGenerator::generate_f2i_fixup() {
581 StubId stub_id = StubId::stubgen_f2i_fixup_id;
582 StubCodeMark mark(this, stub_id);
583 Address inout(rsp, 5 * wordSize); // return address + 4 saves
584
585 address start = __ pc();
586
587 Label L;
588
589 __ push_ppx(rax);
590 __ push_ppx(c_rarg3);
591 __ push_ppx(c_rarg2);
592 __ push_ppx(c_rarg1);
593
594 __ movl(rax, 0x7f800000);
595 __ xorl(c_rarg3, c_rarg3);
596 __ movl(c_rarg2, inout);
597 __ movl(c_rarg1, c_rarg2);
598 __ andl(c_rarg1, 0x7fffffff);
599 __ cmpl(rax, c_rarg1); // NaN? -> 0
600 __ jcc(Assembler::negative, L);
601 __ testl(c_rarg2, c_rarg2); // signed ? min_jint : max_jint
602 __ movl(c_rarg3, 0x80000000);
603 __ movl(rax, 0x7fffffff);
604 __ cmovl(Assembler::positive, c_rarg3, rax);
605
606 __ bind(L);
607 __ movptr(inout, c_rarg3);
608
609 __ pop_ppx(c_rarg1);
610 __ pop_ppx(c_rarg2);
611 __ pop_ppx(c_rarg3);
612 __ pop_ppx(rax);
613
614 __ ret(0);
615
616 return start;
617 }
618
619 address StubGenerator::generate_f2l_fixup() {
620 StubId stub_id = StubId::stubgen_f2l_fixup_id;
621 StubCodeMark mark(this, stub_id);
622 Address inout(rsp, 5 * wordSize); // return address + 4 saves
623 address start = __ pc();
624
625 Label L;
626
627 __ push_ppx(rax);
628 __ push_ppx(c_rarg3);
629 __ push_ppx(c_rarg2);
630 __ push_ppx(c_rarg1);
631
632 __ movl(rax, 0x7f800000);
633 __ xorl(c_rarg3, c_rarg3);
634 __ movl(c_rarg2, inout);
635 __ movl(c_rarg1, c_rarg2);
636 __ andl(c_rarg1, 0x7fffffff);
637 __ cmpl(rax, c_rarg1); // NaN? -> 0
638 __ jcc(Assembler::negative, L);
639 __ testl(c_rarg2, c_rarg2); // signed ? min_jlong : max_jlong
640 __ mov64(c_rarg3, 0x8000000000000000);
641 __ mov64(rax, 0x7fffffffffffffff);
642 __ cmov(Assembler::positive, c_rarg3, rax);
643
644 __ bind(L);
645 __ movptr(inout, c_rarg3);
646
647 __ pop_ppx(c_rarg1);
648 __ pop_ppx(c_rarg2);
649 __ pop_ppx(c_rarg3);
650 __ pop_ppx(rax);
651
652 __ ret(0);
653
654 return start;
655 }
656
657 address StubGenerator::generate_d2i_fixup() {
658 StubId stub_id = StubId::stubgen_d2i_fixup_id;
659 StubCodeMark mark(this, stub_id);
660 Address inout(rsp, 6 * wordSize); // return address + 5 saves
661
662 address start = __ pc();
663
664 Label L;
665
666 __ push_ppx(rax);
667 __ push_ppx(c_rarg3);
668 __ push_ppx(c_rarg2);
669 __ push_ppx(c_rarg1);
670 __ push_ppx(c_rarg0);
671
672 __ movl(rax, 0x7ff00000);
673 __ movq(c_rarg2, inout);
674 __ movl(c_rarg3, c_rarg2);
675 __ mov(c_rarg1, c_rarg2);
676 __ mov(c_rarg0, c_rarg2);
677 __ negl(c_rarg3);
678 __ shrptr(c_rarg1, 0x20);
679 __ orl(c_rarg3, c_rarg2);
680 __ andl(c_rarg1, 0x7fffffff);
681 __ xorl(c_rarg2, c_rarg2);
682 __ shrl(c_rarg3, 0x1f);
683 __ orl(c_rarg1, c_rarg3);
684 __ cmpl(rax, c_rarg1);
685 __ jcc(Assembler::negative, L); // NaN -> 0
686 __ testptr(c_rarg0, c_rarg0); // signed ? min_jint : max_jint
687 __ movl(c_rarg2, 0x80000000);
688 __ movl(rax, 0x7fffffff);
689 __ cmov(Assembler::positive, c_rarg2, rax);
690
691 __ bind(L);
692 __ movptr(inout, c_rarg2);
693
694 __ pop_ppx(c_rarg0);
695 __ pop_ppx(c_rarg1);
696 __ pop_ppx(c_rarg2);
697 __ pop_ppx(c_rarg3);
698 __ pop_ppx(rax);
699
700 __ ret(0);
701
702 return start;
703 }
704
705 address StubGenerator::generate_d2l_fixup() {
706 StubId stub_id = StubId::stubgen_d2l_fixup_id;
707 StubCodeMark mark(this, stub_id);
708 Address inout(rsp, 6 * wordSize); // return address + 5 saves
709
710 address start = __ pc();
711
712 Label L;
713
714 __ push_ppx(rax);
715 __ push_ppx(c_rarg3);
716 __ push_ppx(c_rarg2);
717 __ push_ppx(c_rarg1);
718 __ push_ppx(c_rarg0);
719
720 __ movl(rax, 0x7ff00000);
721 __ movq(c_rarg2, inout);
722 __ movl(c_rarg3, c_rarg2);
723 __ mov(c_rarg1, c_rarg2);
724 __ mov(c_rarg0, c_rarg2);
725 __ negl(c_rarg3);
726 __ shrptr(c_rarg1, 0x20);
727 __ orl(c_rarg3, c_rarg2);
728 __ andl(c_rarg1, 0x7fffffff);
729 __ xorl(c_rarg2, c_rarg2);
730 __ shrl(c_rarg3, 0x1f);
731 __ orl(c_rarg1, c_rarg3);
732 __ cmpl(rax, c_rarg1);
733 __ jcc(Assembler::negative, L); // NaN -> 0
734 __ testq(c_rarg0, c_rarg0); // signed ? min_jlong : max_jlong
735 __ mov64(c_rarg2, 0x8000000000000000);
736 __ mov64(rax, 0x7fffffffffffffff);
737 __ cmovq(Assembler::positive, c_rarg2, rax);
738
739 __ bind(L);
740 __ movq(inout, c_rarg2);
741
742 __ pop_ppx(c_rarg0);
743 __ pop_ppx(c_rarg1);
744 __ pop_ppx(c_rarg2);
745 __ pop_ppx(c_rarg3);
746 __ pop_ppx(rax);
747
748 __ ret(0);
749
750 return start;
751 }
752
753 address StubGenerator::generate_count_leading_zeros_lut() {
754 __ align64();
755 StubId stub_id = StubId::stubgen_vector_count_leading_zeros_lut_id;
756 StubCodeMark mark(this, stub_id);
757 address start = __ pc();
758
759 __ emit_data64(0x0101010102020304, relocInfo::none);
760 __ emit_data64(0x0000000000000000, relocInfo::none);
761 __ emit_data64(0x0101010102020304, relocInfo::none);
762 __ emit_data64(0x0000000000000000, relocInfo::none);
763 __ emit_data64(0x0101010102020304, relocInfo::none);
764 __ emit_data64(0x0000000000000000, relocInfo::none);
765 __ emit_data64(0x0101010102020304, relocInfo::none);
766 __ emit_data64(0x0000000000000000, relocInfo::none);
767
768 return start;
769 }
770
771 address StubGenerator::generate_popcount_avx_lut() {
772 __ align64();
773 StubId stub_id = StubId::stubgen_vector_popcount_lut_id;
774 StubCodeMark mark(this, stub_id);
775 address start = __ pc();
776
777 __ emit_data64(0x0302020102010100, relocInfo::none);
778 __ emit_data64(0x0403030203020201, relocInfo::none);
779 __ emit_data64(0x0302020102010100, relocInfo::none);
780 __ emit_data64(0x0403030203020201, relocInfo::none);
781 __ emit_data64(0x0302020102010100, relocInfo::none);
782 __ emit_data64(0x0403030203020201, relocInfo::none);
783 __ emit_data64(0x0302020102010100, relocInfo::none);
784 __ emit_data64(0x0403030203020201, relocInfo::none);
785
786 return start;
787 }
788
789 address StubGenerator::generate_iota_indices() {
790 __ align(CodeEntryAlignment);
791 StubId stub_id = StubId::stubgen_vector_iota_indices_id;
792 StubCodeMark mark(this, stub_id);
793 address start = __ pc();
794 // B
795 __ emit_data64(0x0706050403020100, relocInfo::none);
796 __ emit_data64(0x0F0E0D0C0B0A0908, relocInfo::none);
797 __ emit_data64(0x1716151413121110, relocInfo::none);
798 __ emit_data64(0x1F1E1D1C1B1A1918, relocInfo::none);
799 __ emit_data64(0x2726252423222120, relocInfo::none);
800 __ emit_data64(0x2F2E2D2C2B2A2928, relocInfo::none);
801 __ emit_data64(0x3736353433323130, relocInfo::none);
802 __ emit_data64(0x3F3E3D3C3B3A3938, relocInfo::none);
803 // W
804 __ emit_data64(0x0003000200010000, relocInfo::none);
805 __ emit_data64(0x0007000600050004, relocInfo::none);
806 __ emit_data64(0x000B000A00090008, relocInfo::none);
807 __ emit_data64(0x000F000E000D000C, relocInfo::none);
808 __ emit_data64(0x0013001200110010, relocInfo::none);
809 __ emit_data64(0x0017001600150014, relocInfo::none);
810 __ emit_data64(0x001B001A00190018, relocInfo::none);
811 __ emit_data64(0x001F001E001D001C, relocInfo::none);
812 // D
813 __ emit_data64(0x0000000100000000, relocInfo::none);
814 __ emit_data64(0x0000000300000002, relocInfo::none);
815 __ emit_data64(0x0000000500000004, relocInfo::none);
816 __ emit_data64(0x0000000700000006, relocInfo::none);
817 __ emit_data64(0x0000000900000008, relocInfo::none);
818 __ emit_data64(0x0000000B0000000A, relocInfo::none);
819 __ emit_data64(0x0000000D0000000C, relocInfo::none);
820 __ emit_data64(0x0000000F0000000E, relocInfo::none);
821 // Q
822 __ emit_data64(0x0000000000000000, relocInfo::none);
823 __ emit_data64(0x0000000000000001, relocInfo::none);
824 __ emit_data64(0x0000000000000002, relocInfo::none);
825 __ emit_data64(0x0000000000000003, relocInfo::none);
826 __ emit_data64(0x0000000000000004, relocInfo::none);
827 __ emit_data64(0x0000000000000005, relocInfo::none);
828 __ emit_data64(0x0000000000000006, relocInfo::none);
829 __ emit_data64(0x0000000000000007, relocInfo::none);
830 // D - FP
831 __ emit_data64(0x3F80000000000000, relocInfo::none); // 0.0f, 1.0f
832 __ emit_data64(0x4040000040000000, relocInfo::none); // 2.0f, 3.0f
833 __ emit_data64(0x40A0000040800000, relocInfo::none); // 4.0f, 5.0f
834 __ emit_data64(0x40E0000040C00000, relocInfo::none); // 6.0f, 7.0f
835 __ emit_data64(0x4110000041000000, relocInfo::none); // 8.0f, 9.0f
836 __ emit_data64(0x4130000041200000, relocInfo::none); // 10.0f, 11.0f
837 __ emit_data64(0x4150000041400000, relocInfo::none); // 12.0f, 13.0f
838 __ emit_data64(0x4170000041600000, relocInfo::none); // 14.0f, 15.0f
839 // Q - FP
840 __ emit_data64(0x0000000000000000, relocInfo::none); // 0.0d
841 __ emit_data64(0x3FF0000000000000, relocInfo::none); // 1.0d
842 __ emit_data64(0x4000000000000000, relocInfo::none); // 2.0d
843 __ emit_data64(0x4008000000000000, relocInfo::none); // 3.0d
844 __ emit_data64(0x4010000000000000, relocInfo::none); // 4.0d
845 __ emit_data64(0x4014000000000000, relocInfo::none); // 5.0d
846 __ emit_data64(0x4018000000000000, relocInfo::none); // 6.0d
847 __ emit_data64(0x401c000000000000, relocInfo::none); // 7.0d
848 return start;
849 }
850
851 address StubGenerator::generate_vector_reverse_bit_lut() {
852 __ align(CodeEntryAlignment);
853 StubId stub_id = StubId::stubgen_vector_reverse_bit_lut_id;
854 StubCodeMark mark(this, stub_id);
855 address start = __ pc();
856
857 __ emit_data64(0x0E060A020C040800, relocInfo::none);
858 __ emit_data64(0x0F070B030D050901, relocInfo::none);
859 __ emit_data64(0x0E060A020C040800, relocInfo::none);
860 __ emit_data64(0x0F070B030D050901, relocInfo::none);
861 __ emit_data64(0x0E060A020C040800, relocInfo::none);
862 __ emit_data64(0x0F070B030D050901, relocInfo::none);
863 __ emit_data64(0x0E060A020C040800, relocInfo::none);
864 __ emit_data64(0x0F070B030D050901, relocInfo::none);
865
866 return start;
867 }
868
869 address StubGenerator::generate_vector_reverse_byte_perm_mask_long() {
870 __ align(CodeEntryAlignment);
871 StubId stub_id = StubId::stubgen_vector_reverse_byte_perm_mask_long_id;
872 StubCodeMark mark(this, stub_id);
873 address start = __ pc();
874
875 __ emit_data64(0x0001020304050607, relocInfo::none);
876 __ emit_data64(0x08090A0B0C0D0E0F, relocInfo::none);
877 __ emit_data64(0x0001020304050607, relocInfo::none);
878 __ emit_data64(0x08090A0B0C0D0E0F, relocInfo::none);
879 __ emit_data64(0x0001020304050607, relocInfo::none);
880 __ emit_data64(0x08090A0B0C0D0E0F, relocInfo::none);
881 __ emit_data64(0x0001020304050607, relocInfo::none);
882 __ emit_data64(0x08090A0B0C0D0E0F, relocInfo::none);
883
884 return start;
885 }
886
887 address StubGenerator::generate_vector_reverse_byte_perm_mask_int() {
888 __ align(CodeEntryAlignment);
889 StubId stub_id = StubId::stubgen_vector_reverse_byte_perm_mask_int_id;
890 StubCodeMark mark(this, stub_id);
891 address start = __ pc();
892
893 __ emit_data64(0x0405060700010203, relocInfo::none);
894 __ emit_data64(0x0C0D0E0F08090A0B, relocInfo::none);
895 __ emit_data64(0x0405060700010203, relocInfo::none);
896 __ emit_data64(0x0C0D0E0F08090A0B, relocInfo::none);
897 __ emit_data64(0x0405060700010203, relocInfo::none);
898 __ emit_data64(0x0C0D0E0F08090A0B, relocInfo::none);
899 __ emit_data64(0x0405060700010203, relocInfo::none);
900 __ emit_data64(0x0C0D0E0F08090A0B, relocInfo::none);
901
902 return start;
903 }
904
905 address StubGenerator::generate_vector_reverse_byte_perm_mask_short() {
906 __ align(CodeEntryAlignment);
907 StubId stub_id = StubId::stubgen_vector_reverse_byte_perm_mask_short_id;
908 StubCodeMark mark(this, stub_id);
909 address start = __ pc();
910
911 __ emit_data64(0x0607040502030001, relocInfo::none);
912 __ emit_data64(0x0E0F0C0D0A0B0809, relocInfo::none);
913 __ emit_data64(0x0607040502030001, relocInfo::none);
914 __ emit_data64(0x0E0F0C0D0A0B0809, relocInfo::none);
915 __ emit_data64(0x0607040502030001, relocInfo::none);
916 __ emit_data64(0x0E0F0C0D0A0B0809, relocInfo::none);
917 __ emit_data64(0x0607040502030001, relocInfo::none);
918 __ emit_data64(0x0E0F0C0D0A0B0809, relocInfo::none);
919
920 return start;
921 }
922
923 address StubGenerator::generate_vector_byte_shuffle_mask() {
924 __ align(CodeEntryAlignment);
925 StubId stub_id = StubId::stubgen_vector_byte_shuffle_mask_id;
926 StubCodeMark mark(this, stub_id);
927 address start = __ pc();
928
929 __ emit_data64(0x7070707070707070, relocInfo::none);
930 __ emit_data64(0x7070707070707070, relocInfo::none);
931 __ emit_data64(0xF0F0F0F0F0F0F0F0, relocInfo::none);
932 __ emit_data64(0xF0F0F0F0F0F0F0F0, relocInfo::none);
933
934 return start;
935 }
936
937 address StubGenerator::generate_fp_mask(StubId stub_id, int64_t mask) {
938 __ align(CodeEntryAlignment);
939 StubCodeMark mark(this, stub_id);
940 address start = __ pc();
941
942 __ emit_data64( mask, relocInfo::none );
943 __ emit_data64( mask, relocInfo::none );
944
945 return start;
946 }
947
948 address StubGenerator::generate_compress_perm_table(StubId stub_id) {
949 int esize;
950 switch (stub_id) {
951 case StubId::stubgen_compress_perm_table32_id:
952 esize = 32;
953 break;
954 case StubId::stubgen_compress_perm_table64_id:
955 esize = 64;
956 break;
957 default:
958 ShouldNotReachHere();
959 }
960 __ align(CodeEntryAlignment);
961 StubCodeMark mark(this, stub_id);
962 address start = __ pc();
963 if (esize == 32) {
964 // Loop to generate 256 x 8 int compression permute index table. A row is
965 // accessed using 8 bit index computed using vector mask. An entry in
966 // a row holds either a valid permute index corresponding to set bit position
967 // or a -1 (default) value.
968 for (int mask = 0; mask < 256; mask++) {
969 int ctr = 0;
970 for (int j = 0; j < 8; j++) {
971 if (mask & (1 << j)) {
972 __ emit_data(j, relocInfo::none);
973 ctr++;
974 }
975 }
976 for (; ctr < 8; ctr++) {
977 __ emit_data(-1, relocInfo::none);
978 }
979 }
980 } else {
981 assert(esize == 64, "");
982 // Loop to generate 16 x 4 long compression permute index table. A row is
983 // accessed using 4 bit index computed using vector mask. An entry in
984 // a row holds either a valid permute index pair for a quadword corresponding
985 // to set bit position or a -1 (default) value.
986 for (int mask = 0; mask < 16; mask++) {
987 int ctr = 0;
988 for (int j = 0; j < 4; j++) {
989 if (mask & (1 << j)) {
990 __ emit_data(2 * j, relocInfo::none);
991 __ emit_data(2 * j + 1, relocInfo::none);
992 ctr++;
993 }
994 }
995 for (; ctr < 4; ctr++) {
996 __ emit_data64(-1L, relocInfo::none);
997 }
998 }
999 }
1000 return start;
1001 }
1002
1003 address StubGenerator::generate_expand_perm_table(StubId stub_id) {
1004 int esize;
1005 switch (stub_id) {
1006 case StubId::stubgen_expand_perm_table32_id:
1007 esize = 32;
1008 break;
1009 case StubId::stubgen_expand_perm_table64_id:
1010 esize = 64;
1011 break;
1012 default:
1013 ShouldNotReachHere();
1014 }
1015 __ align(CodeEntryAlignment);
1016 StubCodeMark mark(this, stub_id);
1017 address start = __ pc();
1018 if (esize == 32) {
1019 // Loop to generate 256 x 8 int expand permute index table. A row is accessed
1020 // using 8 bit index computed using vector mask. An entry in a row holds either
1021 // a valid permute index (starting from least significant lane) placed at poisition
1022 // corresponding to set bit position or a -1 (default) value.
1023 for (int mask = 0; mask < 256; mask++) {
1024 int ctr = 0;
1025 for (int j = 0; j < 8; j++) {
1026 if (mask & (1 << j)) {
1027 __ emit_data(ctr++, relocInfo::none);
1028 } else {
1029 __ emit_data(-1, relocInfo::none);
1030 }
1031 }
1032 }
1033 } else {
1034 assert(esize == 64, "");
1035 // Loop to generate 16 x 4 long expand permute index table. A row is accessed
1036 // using 4 bit index computed using vector mask. An entry in a row holds either
1037 // a valid doubleword permute index pair representing a quadword index (starting
1038 // from least significant lane) placed at poisition corresponding to set bit
1039 // position or a -1 (default) value.
1040 for (int mask = 0; mask < 16; mask++) {
1041 int ctr = 0;
1042 for (int j = 0; j < 4; j++) {
1043 if (mask & (1 << j)) {
1044 __ emit_data(2 * ctr, relocInfo::none);
1045 __ emit_data(2 * ctr + 1, relocInfo::none);
1046 ctr++;
1047 } else {
1048 __ emit_data64(-1L, relocInfo::none);
1049 }
1050 }
1051 }
1052 }
1053 return start;
1054 }
1055
1056 address StubGenerator::generate_vector_mask(StubId stub_id, int64_t mask) {
1057 __ align(CodeEntryAlignment);
1058 StubCodeMark mark(this, stub_id);
1059 address start = __ pc();
1060
1061 __ emit_data64(mask, relocInfo::none);
1062 __ emit_data64(mask, relocInfo::none);
1063 __ emit_data64(mask, relocInfo::none);
1064 __ emit_data64(mask, relocInfo::none);
1065 __ emit_data64(mask, relocInfo::none);
1066 __ emit_data64(mask, relocInfo::none);
1067 __ emit_data64(mask, relocInfo::none);
1068 __ emit_data64(mask, relocInfo::none);
1069
1070 return start;
1071 }
1072
1073 address StubGenerator::generate_vector_byte_perm_mask() {
1074 __ align(CodeEntryAlignment);
1075 StubId stub_id = StubId::stubgen_vector_byte_perm_mask_id;
1076 StubCodeMark mark(this, stub_id);
1077 address start = __ pc();
1078
1079 __ emit_data64(0x0000000000000001, relocInfo::none);
1080 __ emit_data64(0x0000000000000003, relocInfo::none);
1081 __ emit_data64(0x0000000000000005, relocInfo::none);
1082 __ emit_data64(0x0000000000000007, relocInfo::none);
1083 __ emit_data64(0x0000000000000000, relocInfo::none);
1084 __ emit_data64(0x0000000000000002, relocInfo::none);
1085 __ emit_data64(0x0000000000000004, relocInfo::none);
1086 __ emit_data64(0x0000000000000006, relocInfo::none);
1087
1088 return start;
1089 }
1090
1091 address StubGenerator::generate_vector_fp_mask(StubId stub_id, int64_t mask) {
1092 __ align(CodeEntryAlignment);
1093 StubCodeMark mark(this, stub_id);
1094 address start = __ pc();
1095
1096 __ emit_data64(mask, relocInfo::none);
1097 __ emit_data64(mask, relocInfo::none);
1098 __ emit_data64(mask, relocInfo::none);
1099 __ emit_data64(mask, relocInfo::none);
1100 __ emit_data64(mask, relocInfo::none);
1101 __ emit_data64(mask, relocInfo::none);
1102 __ emit_data64(mask, relocInfo::none);
1103 __ emit_data64(mask, relocInfo::none);
1104
1105 return start;
1106 }
1107
1108 address StubGenerator::generate_vector_custom_i32(StubId stub_id, Assembler::AvxVectorLen len,
1109 int32_t val0, int32_t val1, int32_t val2, int32_t val3,
1110 int32_t val4, int32_t val5, int32_t val6, int32_t val7,
1111 int32_t val8, int32_t val9, int32_t val10, int32_t val11,
1112 int32_t val12, int32_t val13, int32_t val14, int32_t val15) {
1113 __ align(CodeEntryAlignment);
1114 StubCodeMark mark(this, stub_id);
1115 address start = __ pc();
1116
1117 assert(len != Assembler::AVX_NoVec, "vector len must be specified");
1118 __ emit_data(val0, relocInfo::none, 0);
1119 __ emit_data(val1, relocInfo::none, 0);
1120 __ emit_data(val2, relocInfo::none, 0);
1121 __ emit_data(val3, relocInfo::none, 0);
1122 if (len >= Assembler::AVX_256bit) {
1123 __ emit_data(val4, relocInfo::none, 0);
1124 __ emit_data(val5, relocInfo::none, 0);
1125 __ emit_data(val6, relocInfo::none, 0);
1126 __ emit_data(val7, relocInfo::none, 0);
1127 if (len >= Assembler::AVX_512bit) {
1128 __ emit_data(val8, relocInfo::none, 0);
1129 __ emit_data(val9, relocInfo::none, 0);
1130 __ emit_data(val10, relocInfo::none, 0);
1131 __ emit_data(val11, relocInfo::none, 0);
1132 __ emit_data(val12, relocInfo::none, 0);
1133 __ emit_data(val13, relocInfo::none, 0);
1134 __ emit_data(val14, relocInfo::none, 0);
1135 __ emit_data(val15, relocInfo::none, 0);
1136 }
1137 }
1138 return start;
1139 }
1140
1141 // Non-destructive plausibility checks for oops
1142 //
1143 // Arguments:
1144 // all args on stack!
1145 //
1146 // Stack after saving c_rarg3:
1147 // [tos + 0]: saved c_rarg3
1148 // [tos + 1]: saved c_rarg2
1149 // [tos + 2]: saved r12 (several TemplateTable methods use it)
1150 // [tos + 3]: saved flags
1151 // [tos + 4]: return address
1152 // * [tos + 5]: error message (char*)
1153 // * [tos + 6]: object to verify (oop)
1154 // * [tos + 7]: saved rax - saved by caller and bashed
1155 // * [tos + 8]: saved r10 (rscratch1) - saved by caller
1156 // * = popped on exit
1157 address StubGenerator::generate_verify_oop() {
1158 StubId stub_id = StubId::stubgen_verify_oop_id;
1159 StubCodeMark mark(this, stub_id);
1160 address start = __ pc();
1161
1162 Label exit, error;
1163
1164 __ pushf();
1165 __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()), rscratch1);
1166
1167 __ push_ppx(r12);
1168
1169 // save c_rarg2 and c_rarg3
1170 __ push_ppx(c_rarg2);
1171 __ push_ppx(c_rarg3);
1172
1173 enum {
1174 // After previous pushes.
1175 oop_to_verify = 6 * wordSize,
1176 saved_rax = 7 * wordSize,
1177 saved_r10 = 8 * wordSize,
1178
1179 // Before the call to MacroAssembler::debug(), see below.
1180 return_addr = 16 * wordSize,
1181 error_msg = 17 * wordSize
1182 };
1183
1184 // get object
1185 __ movptr(rax, Address(rsp, oop_to_verify));
1186
1187 // make sure object is 'reasonable'
1188 __ testptr(rax, rax);
1189 __ jcc(Assembler::zero, exit); // if obj is null it is OK
1190
1191 BarrierSetAssembler* bs_asm = BarrierSet::barrier_set()->barrier_set_assembler();
1192 bs_asm->check_oop(_masm, rax, c_rarg2, c_rarg3, error);
1193
1194 // return if everything seems ok
1195 __ bind(exit);
1196 __ movptr(rax, Address(rsp, saved_rax)); // get saved rax back
1197 __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back
1198 __ pop_ppx(c_rarg3); // restore c_rarg3
1199 __ pop_ppx(c_rarg2); // restore c_rarg2
1200 __ pop_ppx(r12); // restore r12
1201 __ popf(); // restore flags
1202 __ ret(4 * wordSize); // pop caller saved stuff
1203
1204 // handle errors
1205 __ bind(error);
1206 __ movptr(rax, Address(rsp, saved_rax)); // get saved rax back
1207 __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back
1208 __ pop_ppx(c_rarg3); // get saved c_rarg3 back
1209 __ pop_ppx(c_rarg2); // get saved c_rarg2 back
1210 __ pop_ppx(r12); // get saved r12 back
1211 __ popf(); // get saved flags off stack --
1212 // will be ignored
1213
1214 __ pusha(); // push registers
1215 // (rip is already
1216 // already pushed)
1217 // debug(char* msg, int64_t pc, int64_t regs[])
1218 // We've popped the registers we'd saved (c_rarg3, c_rarg2 and flags), and
1219 // pushed all the registers, so now the stack looks like:
1220 // [tos + 0] 16 saved registers
1221 // [tos + 16] return address
1222 // * [tos + 17] error message (char*)
1223 // * [tos + 18] object to verify (oop)
1224 // * [tos + 19] saved rax - saved by caller and bashed
1225 // * [tos + 20] saved r10 (rscratch1) - saved by caller
1226 // * = popped on exit
1227
1228 __ movptr(c_rarg0, Address(rsp, error_msg)); // pass address of error message
1229 __ movptr(c_rarg1, Address(rsp, return_addr)); // pass return address
1230 __ movq(c_rarg2, rsp); // pass address of regs on stack
1231 __ mov(r12, rsp); // remember rsp
1232 __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
1233 __ andptr(rsp, -16); // align stack as required by ABI
1234 BLOCK_COMMENT("call MacroAssembler::debug");
1235 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
1236 __ hlt();
1237
1238 return start;
1239 }
1240
1241
1242 // Shuffle first three arg regs on Windows into Linux/Solaris locations.
1243 //
1244 // Outputs:
1245 // rdi - rcx
1246 // rsi - rdx
1247 // rdx - r8
1248 // rcx - r9
1249 //
1250 // Registers r9 and r10 are used to save rdi and rsi on Windows, which latter
1251 // are non-volatile. r9 and r10 should not be used by the caller.
1252 //
1253 void StubGenerator::setup_arg_regs(int nargs) {
1254 const Register saved_rdi = r9;
1255 const Register saved_rsi = r10;
1256 assert(nargs == 3 || nargs == 4, "else fix");
1257 #ifdef _WIN64
1258 assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9,
1259 "unexpected argument registers");
1260 if (nargs == 4) {
1261 __ mov(rax, r9); // r9 is also saved_rdi
1262 }
1263 __ movptr(saved_rdi, rdi);
1264 __ movptr(saved_rsi, rsi);
1265 __ mov(rdi, rcx); // c_rarg0
1266 __ mov(rsi, rdx); // c_rarg1
1267 __ mov(rdx, r8); // c_rarg2
1268 if (nargs == 4) {
1269 __ mov(rcx, rax); // c_rarg3 (via rax)
1270 }
1271 #else
1272 assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx,
1273 "unexpected argument registers");
1274 #endif
1275 DEBUG_ONLY(_regs_in_thread = false;)
1276 }
1277
1278
1279 void StubGenerator::restore_arg_regs() {
1280 assert(!_regs_in_thread, "wrong call to restore_arg_regs");
1281 const Register saved_rdi = r9;
1282 const Register saved_rsi = r10;
1283 #ifdef _WIN64
1284 __ movptr(rdi, saved_rdi);
1285 __ movptr(rsi, saved_rsi);
1286 #endif
1287 }
1288
1289
1290 // This is used in places where r10 is a scratch register, and can
1291 // be adapted if r9 is needed also.
1292 void StubGenerator::setup_arg_regs_using_thread(int nargs) {
1293 const Register saved_r15 = r9;
1294 assert(nargs == 3 || nargs == 4, "else fix");
1295 #ifdef _WIN64
1296 if (nargs == 4) {
1297 __ mov(rax, r9); // r9 is also saved_r15
1298 }
1299 __ mov(saved_r15, r15); // r15 is callee saved and needs to be restored
1300 __ get_thread_slow(r15_thread);
1301 assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9,
1302 "unexpected argument registers");
1303 __ movptr(Address(r15_thread, in_bytes(JavaThread::windows_saved_rdi_offset())), rdi);
1304 __ movptr(Address(r15_thread, in_bytes(JavaThread::windows_saved_rsi_offset())), rsi);
1305
1306 __ mov(rdi, rcx); // c_rarg0
1307 __ mov(rsi, rdx); // c_rarg1
1308 __ mov(rdx, r8); // c_rarg2
1309 if (nargs == 4) {
1310 __ mov(rcx, rax); // c_rarg3 (via rax)
1311 }
1312 #else
1313 assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx,
1314 "unexpected argument registers");
1315 #endif
1316 DEBUG_ONLY(_regs_in_thread = true;)
1317 }
1318
1319
1320 void StubGenerator::restore_arg_regs_using_thread() {
1321 assert(_regs_in_thread, "wrong call to restore_arg_regs");
1322 const Register saved_r15 = r9;
1323 #ifdef _WIN64
1324 __ get_thread_slow(r15_thread);
1325 __ movptr(rsi, Address(r15_thread, in_bytes(JavaThread::windows_saved_rsi_offset())));
1326 __ movptr(rdi, Address(r15_thread, in_bytes(JavaThread::windows_saved_rdi_offset())));
1327 __ mov(r15, saved_r15); // r15 is callee saved and needs to be restored
1328 #endif
1329 }
1330
1331
1332 void StubGenerator::setup_argument_regs(BasicType type) {
1333 if (type == T_BYTE || type == T_SHORT) {
1334 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1335 // r9 and r10 may be used to save non-volatile registers
1336 } else {
1337 setup_arg_regs_using_thread(); // from => rdi, to => rsi, count => rdx
1338 // r9 is used to save r15_thread
1339 }
1340 }
1341
1342
1343 void StubGenerator::restore_argument_regs(BasicType type) {
1344 if (type == T_BYTE || type == T_SHORT) {
1345 restore_arg_regs();
1346 } else {
1347 restore_arg_regs_using_thread();
1348 }
1349 }
1350
1351 address StubGenerator::generate_data_cache_writeback() {
1352 const Register src = c_rarg0; // source address
1353
1354 __ align(CodeEntryAlignment);
1355
1356 StubId stub_id = StubId::stubgen_data_cache_writeback_id;
1357 StubCodeMark mark(this, stub_id);
1358
1359 address start = __ pc();
1360
1361 __ enter();
1362 __ cache_wb(Address(src, 0));
1363 __ leave();
1364 __ ret(0);
1365
1366 return start;
1367 }
1368
1369 address StubGenerator::generate_data_cache_writeback_sync() {
1370 const Register is_pre = c_rarg0; // pre or post sync
1371
1372 __ align(CodeEntryAlignment);
1373
1374 StubId stub_id = StubId::stubgen_data_cache_writeback_sync_id;
1375 StubCodeMark mark(this, stub_id);
1376
1377 // pre wbsync is a no-op
1378 // post wbsync translates to an sfence
1379
1380 Label skip;
1381 address start = __ pc();
1382
1383 __ enter();
1384 __ cmpl(is_pre, 0);
1385 __ jcc(Assembler::notEqual, skip);
1386 __ cache_wbsync(false);
1387 __ bind(skip);
1388 __ leave();
1389 __ ret(0);
1390
1391 return start;
1392 }
1393
1394 // ofs and limit are use for multi-block byte array.
1395 // int com.sun.security.provider.MD5.implCompress(byte[] b, int ofs)
1396 address StubGenerator::generate_md5_implCompress(StubId stub_id) {
1397 bool multi_block;
1398 switch (stub_id) {
1399 case StubId::stubgen_md5_implCompress_id:
1400 multi_block = false;
1401 break;
1402 case StubId::stubgen_md5_implCompressMB_id:
1403 multi_block = true;
1404 break;
1405 default:
1406 ShouldNotReachHere();
1407 }
1408 __ align(CodeEntryAlignment);
1409 StubCodeMark mark(this, stub_id);
1410 address start = __ pc();
1411
1412 const Register buf_param = r15;
1413 const Address state_param(rsp, 0 * wordSize);
1414 const Address ofs_param (rsp, 1 * wordSize );
1415 const Address limit_param(rsp, 1 * wordSize + 4);
1416
1417 __ enter();
1418 __ push_ppx(rbx);
1419 __ push_ppx(rdi);
1420 __ push_ppx(rsi);
1421 __ push_ppx(r15);
1422 __ subptr(rsp, 2 * wordSize);
1423
1424 __ movptr(buf_param, c_rarg0);
1425 __ movptr(state_param, c_rarg1);
1426 if (multi_block) {
1427 __ movl(ofs_param, c_rarg2);
1428 __ movl(limit_param, c_rarg3);
1429 }
1430 __ fast_md5(buf_param, state_param, ofs_param, limit_param, multi_block);
1431
1432 __ addptr(rsp, 2 * wordSize);
1433 __ pop_ppx(r15);
1434 __ pop_ppx(rsi);
1435 __ pop_ppx(rdi);
1436 __ pop_ppx(rbx);
1437 __ leave();
1438 __ ret(0);
1439
1440 return start;
1441 }
1442
1443 address StubGenerator::generate_upper_word_mask() {
1444 __ align64();
1445 StubId stub_id = StubId::stubgen_upper_word_mask_id;
1446 StubCodeMark mark(this, stub_id);
1447 address start = __ pc();
1448
1449 __ emit_data64(0x0000000000000000, relocInfo::none);
1450 __ emit_data64(0xFFFFFFFF00000000, relocInfo::none);
1451
1452 return start;
1453 }
1454
1455 address StubGenerator::generate_shuffle_byte_flip_mask() {
1456 __ align64();
1457 StubId stub_id = StubId::stubgen_shuffle_byte_flip_mask_id;
1458 StubCodeMark mark(this, stub_id);
1459 address start = __ pc();
1460
1461 __ emit_data64(0x08090a0b0c0d0e0f, relocInfo::none);
1462 __ emit_data64(0x0001020304050607, relocInfo::none);
1463
1464 return start;
1465 }
1466
1467 // ofs and limit are use for multi-block byte array.
1468 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
1469 address StubGenerator::generate_sha1_implCompress(StubId stub_id) {
1470 bool multi_block;
1471 switch (stub_id) {
1472 case StubId::stubgen_sha1_implCompress_id:
1473 multi_block = false;
1474 break;
1475 case StubId::stubgen_sha1_implCompressMB_id:
1476 multi_block = true;
1477 break;
1478 default:
1479 ShouldNotReachHere();
1480 }
1481 __ align(CodeEntryAlignment);
1482 StubCodeMark mark(this, stub_id);
1483 address start = __ pc();
1484
1485 Register buf = c_rarg0;
1486 Register state = c_rarg1;
1487 Register ofs = c_rarg2;
1488 Register limit = c_rarg3;
1489
1490 const XMMRegister abcd = xmm0;
1491 const XMMRegister e0 = xmm1;
1492 const XMMRegister e1 = xmm2;
1493 const XMMRegister msg0 = xmm3;
1494
1495 const XMMRegister msg1 = xmm4;
1496 const XMMRegister msg2 = xmm5;
1497 const XMMRegister msg3 = xmm6;
1498 const XMMRegister shuf_mask = xmm7;
1499
1500 __ enter();
1501
1502 __ subptr(rsp, 4 * wordSize);
1503
1504 __ fast_sha1(abcd, e0, e1, msg0, msg1, msg2, msg3, shuf_mask,
1505 buf, state, ofs, limit, rsp, multi_block);
1506
1507 __ addptr(rsp, 4 * wordSize);
1508
1509 __ leave();
1510 __ ret(0);
1511
1512 return start;
1513 }
1514
1515 address StubGenerator::generate_pshuffle_byte_flip_mask() {
1516 __ align64();
1517 StubId stub_id = StubId::stubgen_pshuffle_byte_flip_mask_id;
1518 StubCodeMark mark(this, stub_id);
1519 address start = __ pc();
1520
1521 __ emit_data64(0x0405060700010203, relocInfo::none);
1522 __ emit_data64(0x0c0d0e0f08090a0b, relocInfo::none);
1523
1524 if (VM_Version::supports_avx2()) {
1525 __ emit_data64(0x0405060700010203, relocInfo::none); // second copy
1526 __ emit_data64(0x0c0d0e0f08090a0b, relocInfo::none);
1527 // _SHUF_00BA
1528 __ emit_data64(0x0b0a090803020100, relocInfo::none);
1529 __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none);
1530 __ emit_data64(0x0b0a090803020100, relocInfo::none);
1531 __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none);
1532 // _SHUF_DC00
1533 __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none);
1534 __ emit_data64(0x0b0a090803020100, relocInfo::none);
1535 __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none);
1536 __ emit_data64(0x0b0a090803020100, relocInfo::none);
1537 }
1538
1539 return start;
1540 }
1541
1542 //Mask for byte-swapping a couple of qwords in an XMM register using (v)pshufb.
1543 address StubGenerator::generate_pshuffle_byte_flip_mask_sha512() {
1544 __ align32();
1545 StubId stub_id = StubId::stubgen_pshuffle_byte_flip_mask_sha512_id;
1546 StubCodeMark mark(this, stub_id);
1547 address start = __ pc();
1548
1549 if (VM_Version::supports_avx2()) {
1550 __ emit_data64(0x0001020304050607, relocInfo::none); // PSHUFFLE_BYTE_FLIP_MASK
1551 __ emit_data64(0x08090a0b0c0d0e0f, relocInfo::none);
1552 __ emit_data64(0x1011121314151617, relocInfo::none);
1553 __ emit_data64(0x18191a1b1c1d1e1f, relocInfo::none);
1554 __ emit_data64(0x0000000000000000, relocInfo::none); //MASK_YMM_LO
1555 __ emit_data64(0x0000000000000000, relocInfo::none);
1556 __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none);
1557 __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none);
1558 }
1559
1560 return start;
1561 }
1562
1563 // ofs and limit are use for multi-block byte array.
1564 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
1565 address StubGenerator::generate_sha256_implCompress(StubId stub_id) {
1566 bool multi_block;
1567 switch (stub_id) {
1568 case StubId::stubgen_sha256_implCompress_id:
1569 multi_block = false;
1570 break;
1571 case StubId::stubgen_sha256_implCompressMB_id:
1572 multi_block = true;
1573 break;
1574 default:
1575 ShouldNotReachHere();
1576 }
1577 assert(VM_Version::supports_sha() || VM_Version::supports_avx2(), "");
1578 __ align(CodeEntryAlignment);
1579 StubCodeMark mark(this, stub_id);
1580 address start = __ pc();
1581
1582 Register buf = c_rarg0;
1583 Register state = c_rarg1;
1584 Register ofs = c_rarg2;
1585 Register limit = c_rarg3;
1586
1587 const XMMRegister msg = xmm0;
1588 const XMMRegister state0 = xmm1;
1589 const XMMRegister state1 = xmm2;
1590 const XMMRegister msgtmp0 = xmm3;
1591
1592 const XMMRegister msgtmp1 = xmm4;
1593 const XMMRegister msgtmp2 = xmm5;
1594 const XMMRegister msgtmp3 = xmm6;
1595 const XMMRegister msgtmp4 = xmm7;
1596
1597 const XMMRegister shuf_mask = xmm8;
1598
1599 __ enter();
1600
1601 __ subptr(rsp, 4 * wordSize);
1602
1603 if (VM_Version::supports_sha()) {
1604 __ fast_sha256(msg, state0, state1, msgtmp0, msgtmp1, msgtmp2, msgtmp3, msgtmp4,
1605 buf, state, ofs, limit, rsp, multi_block, shuf_mask);
1606 } else if (VM_Version::supports_avx2()) {
1607 __ sha256_AVX2(msg, state0, state1, msgtmp0, msgtmp1, msgtmp2, msgtmp3, msgtmp4,
1608 buf, state, ofs, limit, rsp, multi_block, shuf_mask);
1609 }
1610 __ addptr(rsp, 4 * wordSize);
1611 __ vzeroupper();
1612 __ leave();
1613 __ ret(0);
1614
1615 return start;
1616 }
1617
1618 address StubGenerator::generate_sha512_implCompress(StubId stub_id) {
1619 bool multi_block;
1620 switch (stub_id) {
1621 case StubId::stubgen_sha512_implCompress_id:
1622 multi_block = false;
1623 break;
1624 case StubId::stubgen_sha512_implCompressMB_id:
1625 multi_block = true;
1626 break;
1627 default:
1628 ShouldNotReachHere();
1629 }
1630 assert(VM_Version::supports_avx2(), "");
1631 assert(VM_Version::supports_bmi2() || VM_Version::supports_sha512(), "");
1632 __ align(CodeEntryAlignment);
1633 StubCodeMark mark(this, stub_id);
1634 address start = __ pc();
1635
1636 Register buf = c_rarg0;
1637 Register state = c_rarg1;
1638 Register ofs = c_rarg2;
1639 Register limit = c_rarg3;
1640
1641 __ enter();
1642
1643 if (VM_Version::supports_sha512()) {
1644 __ sha512_update_ni_x1(state, buf, ofs, limit, multi_block);
1645 } else {
1646 const XMMRegister msg = xmm0;
1647 const XMMRegister state0 = xmm1;
1648 const XMMRegister state1 = xmm2;
1649 const XMMRegister msgtmp0 = xmm3;
1650 const XMMRegister msgtmp1 = xmm4;
1651 const XMMRegister msgtmp2 = xmm5;
1652 const XMMRegister msgtmp3 = xmm6;
1653 const XMMRegister msgtmp4 = xmm7;
1654
1655 const XMMRegister shuf_mask = xmm8;
1656 __ sha512_AVX2(msg, state0, state1, msgtmp0, msgtmp1, msgtmp2, msgtmp3, msgtmp4,
1657 buf, state, ofs, limit, rsp, multi_block, shuf_mask);
1658 }
1659 __ vzeroupper();
1660 __ leave();
1661 __ ret(0);
1662
1663 return start;
1664 }
1665
1666 address StubGenerator::base64_shuffle_addr() {
1667 __ align64();
1668 StubId stub_id = StubId::stubgen_shuffle_base64_id;
1669 StubCodeMark mark(this, stub_id);
1670 address start = __ pc();
1671
1672 assert(((unsigned long long)start & 0x3f) == 0,
1673 "Alignment problem (0x%08llx)", (unsigned long long)start);
1674 __ emit_data64(0x0405030401020001, relocInfo::none);
1675 __ emit_data64(0x0a0b090a07080607, relocInfo::none);
1676 __ emit_data64(0x10110f100d0e0c0d, relocInfo::none);
1677 __ emit_data64(0x1617151613141213, relocInfo::none);
1678 __ emit_data64(0x1c1d1b1c191a1819, relocInfo::none);
1679 __ emit_data64(0x222321221f201e1f, relocInfo::none);
1680 __ emit_data64(0x2829272825262425, relocInfo::none);
1681 __ emit_data64(0x2e2f2d2e2b2c2a2b, relocInfo::none);
1682
1683 return start;
1684 }
1685
1686 address StubGenerator::base64_avx2_shuffle_addr() {
1687 __ align32();
1688 StubId stub_id = StubId::stubgen_avx2_shuffle_base64_id;
1689 StubCodeMark mark(this, stub_id);
1690 address start = __ pc();
1691
1692 __ emit_data64(0x0809070805060405, relocInfo::none);
1693 __ emit_data64(0x0e0f0d0e0b0c0a0b, relocInfo::none);
1694 __ emit_data64(0x0405030401020001, relocInfo::none);
1695 __ emit_data64(0x0a0b090a07080607, relocInfo::none);
1696
1697 return start;
1698 }
1699
1700 address StubGenerator::base64_avx2_input_mask_addr() {
1701 __ align32();
1702 StubId stub_id = StubId::stubgen_avx2_input_mask_base64_id;
1703 StubCodeMark mark(this, stub_id);
1704 address start = __ pc();
1705
1706 __ emit_data64(0x8000000000000000, relocInfo::none);
1707 __ emit_data64(0x8000000080000000, relocInfo::none);
1708 __ emit_data64(0x8000000080000000, relocInfo::none);
1709 __ emit_data64(0x8000000080000000, relocInfo::none);
1710
1711 return start;
1712 }
1713
1714 address StubGenerator::base64_avx2_lut_addr() {
1715 __ align32();
1716 StubId stub_id = StubId::stubgen_avx2_lut_base64_id;
1717 StubCodeMark mark(this, stub_id);
1718 address start = __ pc();
1719
1720 __ emit_data64(0xfcfcfcfcfcfc4741, relocInfo::none);
1721 __ emit_data64(0x0000f0edfcfcfcfc, relocInfo::none);
1722 __ emit_data64(0xfcfcfcfcfcfc4741, relocInfo::none);
1723 __ emit_data64(0x0000f0edfcfcfcfc, relocInfo::none);
1724
1725 // URL LUT
1726 __ emit_data64(0xfcfcfcfcfcfc4741, relocInfo::none);
1727 __ emit_data64(0x000020effcfcfcfc, relocInfo::none);
1728 __ emit_data64(0xfcfcfcfcfcfc4741, relocInfo::none);
1729 __ emit_data64(0x000020effcfcfcfc, relocInfo::none);
1730
1731 return start;
1732 }
1733
1734 address StubGenerator::base64_encoding_table_addr() {
1735 __ align64();
1736 StubId stub_id = StubId::stubgen_encoding_table_base64_id;
1737 StubCodeMark mark(this, stub_id);
1738 address start = __ pc();
1739
1740 assert(((unsigned long long)start & 0x3f) == 0, "Alignment problem (0x%08llx)", (unsigned long long)start);
1741 __ emit_data64(0x4847464544434241, relocInfo::none);
1742 __ emit_data64(0x504f4e4d4c4b4a49, relocInfo::none);
1743 __ emit_data64(0x5857565554535251, relocInfo::none);
1744 __ emit_data64(0x6665646362615a59, relocInfo::none);
1745 __ emit_data64(0x6e6d6c6b6a696867, relocInfo::none);
1746 __ emit_data64(0x767574737271706f, relocInfo::none);
1747 __ emit_data64(0x333231307a797877, relocInfo::none);
1748 __ emit_data64(0x2f2b393837363534, relocInfo::none);
1749
1750 // URL table
1751 __ emit_data64(0x4847464544434241, relocInfo::none);
1752 __ emit_data64(0x504f4e4d4c4b4a49, relocInfo::none);
1753 __ emit_data64(0x5857565554535251, relocInfo::none);
1754 __ emit_data64(0x6665646362615a59, relocInfo::none);
1755 __ emit_data64(0x6e6d6c6b6a696867, relocInfo::none);
1756 __ emit_data64(0x767574737271706f, relocInfo::none);
1757 __ emit_data64(0x333231307a797877, relocInfo::none);
1758 __ emit_data64(0x5f2d393837363534, relocInfo::none);
1759
1760 return start;
1761 }
1762
1763 // Code for generating Base64 encoding.
1764 // Intrinsic function prototype in Base64.java:
1765 // private void encodeBlock(byte[] src, int sp, int sl, byte[] dst, int dp,
1766 // boolean isURL) {
1767 address StubGenerator::generate_base64_encodeBlock()
1768 {
1769 __ align(CodeEntryAlignment);
1770 StubId stub_id = StubId::stubgen_base64_encodeBlock_id;
1771 StubCodeMark mark(this, stub_id);
1772 address start = __ pc();
1773
1774 __ enter();
1775
1776 // Save callee-saved registers before using them
1777 __ push_ppx(r12);
1778 __ push_ppx(r13);
1779 __ push_ppx(r14);
1780 __ push_ppx(r15);
1781
1782 // arguments
1783 const Register source = c_rarg0; // Source Array
1784 const Register start_offset = c_rarg1; // start offset
1785 const Register end_offset = c_rarg2; // end offset
1786 const Register dest = c_rarg3; // destination array
1787
1788 #ifndef _WIN64
1789 const Register dp = c_rarg4; // Position for writing to dest array
1790 const Register isURL = c_rarg5; // Base64 or URL character set
1791 #else
1792 const Address dp_mem(rbp, 6 * wordSize); // length is on stack on Win64
1793 const Address isURL_mem(rbp, 7 * wordSize);
1794 const Register isURL = r10; // pick the volatile windows register
1795 const Register dp = r12;
1796 __ movl(dp, dp_mem);
1797 __ movl(isURL, isURL_mem);
1798 #endif
1799
1800 const Register length = r14;
1801 const Register encode_table = r13;
1802 Label L_process3, L_exit, L_processdata, L_vbmiLoop, L_not512, L_32byteLoop;
1803
1804 // calculate length from offsets
1805 __ movl(length, end_offset);
1806 __ subl(length, start_offset);
1807 __ jcc(Assembler::lessEqual, L_exit);
1808
1809 // Code for 512-bit VBMI encoding. Encodes 48 input bytes into 64
1810 // output bytes. We read 64 input bytes and ignore the last 16, so be
1811 // sure not to read past the end of the input buffer.
1812 if (VM_Version::supports_avx512_vbmi()) {
1813 __ cmpl(length, 64); // Do not overrun input buffer.
1814 __ jcc(Assembler::below, L_not512);
1815
1816 __ shll(isURL, 6); // index into decode table based on isURL
1817 __ lea(encode_table, ExternalAddress(StubRoutines::x86::base64_encoding_table_addr()));
1818 __ addptr(encode_table, isURL);
1819 __ shrl(isURL, 6); // restore isURL
1820
1821 __ mov64(rax, 0x3036242a1016040aull); // Shifts
1822 __ evmovdquq(xmm3, ExternalAddress(StubRoutines::x86::base64_shuffle_addr()), Assembler::AVX_512bit, r15);
1823 __ evmovdquq(xmm2, Address(encode_table, 0), Assembler::AVX_512bit);
1824 __ evpbroadcastq(xmm1, rax, Assembler::AVX_512bit);
1825
1826 __ align32();
1827 __ BIND(L_vbmiLoop);
1828
1829 __ vpermb(xmm0, xmm3, Address(source, start_offset), Assembler::AVX_512bit);
1830 __ subl(length, 48);
1831
1832 // Put the input bytes into the proper lanes for writing, then
1833 // encode them.
1834 __ evpmultishiftqb(xmm0, xmm1, xmm0, Assembler::AVX_512bit);
1835 __ vpermb(xmm0, xmm0, xmm2, Assembler::AVX_512bit);
1836
1837 // Write to destination
1838 __ evmovdquq(Address(dest, dp), xmm0, Assembler::AVX_512bit);
1839
1840 __ addptr(dest, 64);
1841 __ addptr(source, 48);
1842 __ cmpl(length, 64);
1843 __ jcc(Assembler::aboveEqual, L_vbmiLoop);
1844
1845 __ vzeroupper();
1846 }
1847
1848 __ BIND(L_not512);
1849 if (VM_Version::supports_avx2()) {
1850 /*
1851 ** This AVX2 encoder is based off the paper at:
1852 ** https://dl.acm.org/doi/10.1145/3132709
1853 **
1854 ** We use AVX2 SIMD instructions to encode 24 bytes into 32
1855 ** output bytes.
1856 **
1857 */
1858 // Lengths under 32 bytes are done with scalar routine
1859 __ cmpl(length, 31);
1860 __ jcc(Assembler::belowEqual, L_process3);
1861
1862 // Set up supporting constant table data
1863 __ vmovdqu(xmm9, ExternalAddress(StubRoutines::x86::base64_avx2_shuffle_addr()), rax);
1864 // 6-bit mask for 2nd and 4th (and multiples) 6-bit values
1865 __ movl(rax, 0x0fc0fc00);
1866 __ movdl(xmm8, rax);
1867 __ vmovdqu(xmm1, ExternalAddress(StubRoutines::x86::base64_avx2_input_mask_addr()), rax);
1868 __ vpbroadcastd(xmm8, xmm8, Assembler::AVX_256bit);
1869
1870 // Multiplication constant for "shifting" right by 6 and 10
1871 // bits
1872 __ movl(rax, 0x04000040);
1873
1874 __ subl(length, 24);
1875 __ movdl(xmm7, rax);
1876 __ vpbroadcastd(xmm7, xmm7, Assembler::AVX_256bit);
1877
1878 // For the first load, we mask off reading of the first 4
1879 // bytes into the register. This is so we can get 4 3-byte
1880 // chunks into each lane of the register, avoiding having to
1881 // handle end conditions. We then shuffle these bytes into a
1882 // specific order so that manipulation is easier.
1883 //
1884 // The initial read loads the XMM register like this:
1885 //
1886 // Lower 128-bit lane:
1887 // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
1888 // | XX | XX | XX | XX | A0 | A1 | A2 | B0 | B1 | B2 | C0 | C1
1889 // | C2 | D0 | D1 | D2 |
1890 // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
1891 //
1892 // Upper 128-bit lane:
1893 // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
1894 // | E0 | E1 | E2 | F0 | F1 | F2 | G0 | G1 | G2 | H0 | H1 | H2
1895 // | XX | XX | XX | XX |
1896 // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
1897 //
1898 // Where A0 is the first input byte, B0 is the fourth, etc.
1899 // The alphabetical significance denotes the 3 bytes to be
1900 // consumed and encoded into 4 bytes.
1901 //
1902 // We then shuffle the register so each 32-bit word contains
1903 // the sequence:
1904 // A1 A0 A2 A1, B1, B0, B2, B1, etc.
1905 // Each of these byte sequences are then manipulated into 4
1906 // 6-bit values ready for encoding.
1907 //
1908 // If we focus on one set of 3-byte chunks, changing the
1909 // nomenclature such that A0 => a, A1 => b, and A2 => c, we
1910 // shuffle such that each 24-bit chunk contains:
1911 //
1912 // b7 b6 b5 b4 b3 b2 b1 b0 | a7 a6 a5 a4 a3 a2 a1 a0 | c7 c6
1913 // c5 c4 c3 c2 c1 c0 | b7 b6 b5 b4 b3 b2 b1 b0
1914 // Explain this step.
1915 // b3 b2 b1 b0 c5 c4 c3 c2 | c1 c0 d5 d4 d3 d2 d1 d0 | a5 a4
1916 // a3 a2 a1 a0 b5 b4 | b3 b2 b1 b0 c5 c4 c3 c2
1917 //
1918 // W first and off all but bits 4-9 and 16-21 (c5..c0 and
1919 // a5..a0) and shift them using a vector multiplication
1920 // operation (vpmulhuw) which effectively shifts c right by 6
1921 // bits and a right by 10 bits. We similarly mask bits 10-15
1922 // (d5..d0) and 22-27 (b5..b0) and shift them left by 8 and 4
1923 // bits respectively. This is done using vpmullw. We end up
1924 // with 4 6-bit values, thus splitting the 3 input bytes,
1925 // ready for encoding:
1926 // 0 0 d5..d0 0 0 c5..c0 0 0 b5..b0 0 0 a5..a0
1927 //
1928 // For translation, we recognize that there are 5 distinct
1929 // ranges of legal Base64 characters as below:
1930 //
1931 // +-------------+-------------+------------+
1932 // | 6-bit value | ASCII range | offset |
1933 // +-------------+-------------+------------+
1934 // | 0..25 | A..Z | 65 |
1935 // | 26..51 | a..z | 71 |
1936 // | 52..61 | 0..9 | -4 |
1937 // | 62 | + or - | -19 or -17 |
1938 // | 63 | / or _ | -16 or 32 |
1939 // +-------------+-------------+------------+
1940 //
1941 // We note that vpshufb does a parallel lookup in a
1942 // destination register using the lower 4 bits of bytes from a
1943 // source register. If we use a saturated subtraction and
1944 // subtract 51 from each 6-bit value, bytes from [0,51]
1945 // saturate to 0, and [52,63] map to a range of [1,12]. We
1946 // distinguish the [0,25] and [26,51] ranges by assigning a
1947 // value of 13 for all 6-bit values less than 26. We end up
1948 // with:
1949 //
1950 // +-------------+-------------+------------+
1951 // | 6-bit value | Reduced | offset |
1952 // +-------------+-------------+------------+
1953 // | 0..25 | 13 | 65 |
1954 // | 26..51 | 0 | 71 |
1955 // | 52..61 | 0..9 | -4 |
1956 // | 62 | 11 | -19 or -17 |
1957 // | 63 | 12 | -16 or 32 |
1958 // +-------------+-------------+------------+
1959 //
1960 // We then use a final vpshufb to add the appropriate offset,
1961 // translating the bytes.
1962 //
1963 // Load input bytes - only 28 bytes. Mask the first load to
1964 // not load into the full register.
1965 __ vpmaskmovd(xmm1, xmm1, Address(source, start_offset, Address::times_1, -4), Assembler::AVX_256bit);
1966
1967 // Move 3-byte chunks of input (12 bytes) into 16 bytes,
1968 // ordering by:
1969 // 1, 0, 2, 1; 4, 3, 5, 4; etc. This groups 6-bit chunks
1970 // for easy masking
1971 __ vpshufb(xmm1, xmm1, xmm9, Assembler::AVX_256bit);
1972
1973 __ addl(start_offset, 24);
1974
1975 // Load masking register for first and third (and multiples)
1976 // 6-bit values.
1977 __ movl(rax, 0x003f03f0);
1978 __ movdl(xmm6, rax);
1979 __ vpbroadcastd(xmm6, xmm6, Assembler::AVX_256bit);
1980 // Multiplication constant for "shifting" left by 4 and 8 bits
1981 __ movl(rax, 0x01000010);
1982 __ movdl(xmm5, rax);
1983 __ vpbroadcastd(xmm5, xmm5, Assembler::AVX_256bit);
1984
1985 // Isolate 6-bit chunks of interest
1986 __ vpand(xmm0, xmm8, xmm1, Assembler::AVX_256bit);
1987
1988 // Load constants for encoding
1989 __ movl(rax, 0x19191919);
1990 __ movdl(xmm3, rax);
1991 __ vpbroadcastd(xmm3, xmm3, Assembler::AVX_256bit);
1992 __ movl(rax, 0x33333333);
1993 __ movdl(xmm4, rax);
1994 __ vpbroadcastd(xmm4, xmm4, Assembler::AVX_256bit);
1995
1996 // Shift output bytes 0 and 2 into proper lanes
1997 __ vpmulhuw(xmm2, xmm0, xmm7, Assembler::AVX_256bit);
1998
1999 // Mask and shift output bytes 1 and 3 into proper lanes and
2000 // combine
2001 __ vpand(xmm0, xmm6, xmm1, Assembler::AVX_256bit);
2002 __ vpmullw(xmm0, xmm5, xmm0, Assembler::AVX_256bit);
2003 __ vpor(xmm0, xmm0, xmm2, Assembler::AVX_256bit);
2004
2005 // Find out which are 0..25. This indicates which input
2006 // values fall in the range of 'A'-'Z', which require an
2007 // additional offset (see comments above)
2008 __ vpcmpgtb(xmm2, xmm0, xmm3, Assembler::AVX_256bit);
2009 __ vpsubusb(xmm1, xmm0, xmm4, Assembler::AVX_256bit);
2010 __ vpsubb(xmm1, xmm1, xmm2, Assembler::AVX_256bit);
2011
2012 // Load the proper lookup table
2013 __ lea(r11, ExternalAddress(StubRoutines::x86::base64_avx2_lut_addr()));
2014 __ movl(r15, isURL);
2015 __ shll(r15, 5);
2016 __ vmovdqu(xmm2, Address(r11, r15));
2017
2018 // Shuffle the offsets based on the range calculation done
2019 // above. This allows us to add the correct offset to the
2020 // 6-bit value corresponding to the range documented above.
2021 __ vpshufb(xmm1, xmm2, xmm1, Assembler::AVX_256bit);
2022 __ vpaddb(xmm0, xmm1, xmm0, Assembler::AVX_256bit);
2023
2024 // Store the encoded bytes
2025 __ vmovdqu(Address(dest, dp), xmm0);
2026 __ addl(dp, 32);
2027
2028 __ cmpl(length, 31);
2029 __ jcc(Assembler::belowEqual, L_process3);
2030
2031 __ align32();
2032 __ BIND(L_32byteLoop);
2033
2034 // Get next 32 bytes
2035 __ vmovdqu(xmm1, Address(source, start_offset, Address::times_1, -4));
2036
2037 __ subl(length, 24);
2038 __ addl(start_offset, 24);
2039
2040 // This logic is identical to the above, with only constant
2041 // register loads removed. Shuffle the input, mask off 6-bit
2042 // chunks, shift them into place, then add the offset to
2043 // encode.
2044 __ vpshufb(xmm1, xmm1, xmm9, Assembler::AVX_256bit);
2045
2046 __ vpand(xmm0, xmm8, xmm1, Assembler::AVX_256bit);
2047 __ vpmulhuw(xmm10, xmm0, xmm7, Assembler::AVX_256bit);
2048 __ vpand(xmm0, xmm6, xmm1, Assembler::AVX_256bit);
2049 __ vpmullw(xmm0, xmm5, xmm0, Assembler::AVX_256bit);
2050 __ vpor(xmm0, xmm0, xmm10, Assembler::AVX_256bit);
2051 __ vpcmpgtb(xmm10, xmm0, xmm3, Assembler::AVX_256bit);
2052 __ vpsubusb(xmm1, xmm0, xmm4, Assembler::AVX_256bit);
2053 __ vpsubb(xmm1, xmm1, xmm10, Assembler::AVX_256bit);
2054 __ vpshufb(xmm1, xmm2, xmm1, Assembler::AVX_256bit);
2055 __ vpaddb(xmm0, xmm1, xmm0, Assembler::AVX_256bit);
2056
2057 // Store the encoded bytes
2058 __ vmovdqu(Address(dest, dp), xmm0);
2059 __ addl(dp, 32);
2060
2061 __ cmpl(length, 31);
2062 __ jcc(Assembler::above, L_32byteLoop);
2063
2064 __ BIND(L_process3);
2065 __ vzeroupper();
2066 } else {
2067 __ BIND(L_process3);
2068 }
2069
2070 __ cmpl(length, 3);
2071 __ jcc(Assembler::below, L_exit);
2072
2073 // Load the encoding table based on isURL
2074 __ lea(r11, ExternalAddress(StubRoutines::x86::base64_encoding_table_addr()));
2075 __ movl(r15, isURL);
2076 __ shll(r15, 6);
2077 __ addptr(r11, r15);
2078
2079 __ BIND(L_processdata);
2080
2081 // Load 3 bytes
2082 __ load_unsigned_byte(r15, Address(source, start_offset));
2083 __ load_unsigned_byte(r10, Address(source, start_offset, Address::times_1, 1));
2084 __ load_unsigned_byte(r13, Address(source, start_offset, Address::times_1, 2));
2085
2086 // Build a 32-bit word with bytes 1, 2, 0, 1
2087 __ movl(rax, r10);
2088 __ shll(r10, 24);
2089 __ orl(rax, r10);
2090
2091 __ subl(length, 3);
2092
2093 __ shll(r15, 8);
2094 __ shll(r13, 16);
2095 __ orl(rax, r15);
2096
2097 __ addl(start_offset, 3);
2098
2099 __ orl(rax, r13);
2100 // At this point, rax contains | byte1 | byte2 | byte0 | byte1
2101 // r13 has byte2 << 16 - need low-order 6 bits to translate.
2102 // This translated byte is the fourth output byte.
2103 __ shrl(r13, 16);
2104 __ andl(r13, 0x3f);
2105
2106 // The high-order 6 bits of r15 (byte0) is translated.
2107 // The translated byte is the first output byte.
2108 __ shrl(r15, 10);
2109
2110 __ load_unsigned_byte(r13, Address(r11, r13));
2111 __ load_unsigned_byte(r15, Address(r11, r15));
2112
2113 __ movb(Address(dest, dp, Address::times_1, 3), r13);
2114
2115 // Extract high-order 4 bits of byte1 and low-order 2 bits of byte0.
2116 // This translated byte is the second output byte.
2117 __ shrl(rax, 4);
2118 __ movl(r10, rax);
2119 __ andl(rax, 0x3f);
2120
2121 __ movb(Address(dest, dp, Address::times_1, 0), r15);
2122
2123 __ load_unsigned_byte(rax, Address(r11, rax));
2124
2125 // Extract low-order 2 bits of byte1 and high-order 4 bits of byte2.
2126 // This translated byte is the third output byte.
2127 __ shrl(r10, 18);
2128 __ andl(r10, 0x3f);
2129
2130 __ load_unsigned_byte(r10, Address(r11, r10));
2131
2132 __ movb(Address(dest, dp, Address::times_1, 1), rax);
2133 __ movb(Address(dest, dp, Address::times_1, 2), r10);
2134
2135 __ addl(dp, 4);
2136 __ cmpl(length, 3);
2137 __ jcc(Assembler::aboveEqual, L_processdata);
2138
2139 __ BIND(L_exit);
2140 __ pop_ppx(r15);
2141 __ pop_ppx(r14);
2142 __ pop_ppx(r13);
2143 __ pop_ppx(r12);
2144 __ leave();
2145 __ ret(0);
2146
2147 return start;
2148 }
2149
2150 // base64 AVX512vbmi tables
2151 address StubGenerator::base64_vbmi_lookup_lo_addr() {
2152 __ align64();
2153 StubId stub_id = StubId::stubgen_lookup_lo_base64_id;
2154 StubCodeMark mark(this, stub_id);
2155 address start = __ pc();
2156
2157 assert(((unsigned long long)start & 0x3f) == 0,
2158 "Alignment problem (0x%08llx)", (unsigned long long)start);
2159 __ emit_data64(0x8080808080808080, relocInfo::none);
2160 __ emit_data64(0x8080808080808080, relocInfo::none);
2161 __ emit_data64(0x8080808080808080, relocInfo::none);
2162 __ emit_data64(0x8080808080808080, relocInfo::none);
2163 __ emit_data64(0x8080808080808080, relocInfo::none);
2164 __ emit_data64(0x3f8080803e808080, relocInfo::none);
2165 __ emit_data64(0x3b3a393837363534, relocInfo::none);
2166 __ emit_data64(0x8080808080803d3c, relocInfo::none);
2167
2168 return start;
2169 }
2170
2171 address StubGenerator::base64_vbmi_lookup_hi_addr() {
2172 __ align64();
2173 StubId stub_id = StubId::stubgen_lookup_hi_base64_id;
2174 StubCodeMark mark(this, stub_id);
2175 address start = __ pc();
2176
2177 assert(((unsigned long long)start & 0x3f) == 0,
2178 "Alignment problem (0x%08llx)", (unsigned long long)start);
2179 __ emit_data64(0x0605040302010080, relocInfo::none);
2180 __ emit_data64(0x0e0d0c0b0a090807, relocInfo::none);
2181 __ emit_data64(0x161514131211100f, relocInfo::none);
2182 __ emit_data64(0x8080808080191817, relocInfo::none);
2183 __ emit_data64(0x201f1e1d1c1b1a80, relocInfo::none);
2184 __ emit_data64(0x2827262524232221, relocInfo::none);
2185 __ emit_data64(0x302f2e2d2c2b2a29, relocInfo::none);
2186 __ emit_data64(0x8080808080333231, relocInfo::none);
2187
2188 return start;
2189 }
2190 address StubGenerator::base64_vbmi_lookup_lo_url_addr() {
2191 __ align64();
2192 StubId stub_id = StubId::stubgen_lookup_lo_base64url_id;
2193 StubCodeMark mark(this, stub_id);
2194 address start = __ pc();
2195
2196 assert(((unsigned long long)start & 0x3f) == 0,
2197 "Alignment problem (0x%08llx)", (unsigned long long)start);
2198 __ emit_data64(0x8080808080808080, relocInfo::none);
2199 __ emit_data64(0x8080808080808080, relocInfo::none);
2200 __ emit_data64(0x8080808080808080, relocInfo::none);
2201 __ emit_data64(0x8080808080808080, relocInfo::none);
2202 __ emit_data64(0x8080808080808080, relocInfo::none);
2203 __ emit_data64(0x80803e8080808080, relocInfo::none);
2204 __ emit_data64(0x3b3a393837363534, relocInfo::none);
2205 __ emit_data64(0x8080808080803d3c, relocInfo::none);
2206
2207 return start;
2208 }
2209
2210 address StubGenerator::base64_vbmi_lookup_hi_url_addr() {
2211 __ align64();
2212 StubId stub_id = StubId::stubgen_lookup_hi_base64url_id;
2213 StubCodeMark mark(this, stub_id);
2214 address start = __ pc();
2215
2216 assert(((unsigned long long)start & 0x3f) == 0,
2217 "Alignment problem (0x%08llx)", (unsigned long long)start);
2218 __ emit_data64(0x0605040302010080, relocInfo::none);
2219 __ emit_data64(0x0e0d0c0b0a090807, relocInfo::none);
2220 __ emit_data64(0x161514131211100f, relocInfo::none);
2221 __ emit_data64(0x3f80808080191817, relocInfo::none);
2222 __ emit_data64(0x201f1e1d1c1b1a80, relocInfo::none);
2223 __ emit_data64(0x2827262524232221, relocInfo::none);
2224 __ emit_data64(0x302f2e2d2c2b2a29, relocInfo::none);
2225 __ emit_data64(0x8080808080333231, relocInfo::none);
2226
2227 return start;
2228 }
2229
2230 address StubGenerator::base64_vbmi_pack_vec_addr() {
2231 __ align64();
2232 StubId stub_id = StubId::stubgen_pack_vec_base64_id;
2233 StubCodeMark mark(this, stub_id);
2234 address start = __ pc();
2235
2236 assert(((unsigned long long)start & 0x3f) == 0,
2237 "Alignment problem (0x%08llx)", (unsigned long long)start);
2238 __ emit_data64(0x090a040506000102, relocInfo::none);
2239 __ emit_data64(0x161011120c0d0e08, relocInfo::none);
2240 __ emit_data64(0x1c1d1e18191a1415, relocInfo::none);
2241 __ emit_data64(0x292a242526202122, relocInfo::none);
2242 __ emit_data64(0x363031322c2d2e28, relocInfo::none);
2243 __ emit_data64(0x3c3d3e38393a3435, relocInfo::none);
2244 __ emit_data64(0x0000000000000000, relocInfo::none);
2245 __ emit_data64(0x0000000000000000, relocInfo::none);
2246
2247 return start;
2248 }
2249
2250 address StubGenerator::base64_vbmi_join_0_1_addr() {
2251 __ align64();
2252 StubId stub_id = StubId::stubgen_join_0_1_base64_id;
2253 StubCodeMark mark(this, stub_id);
2254 address start = __ pc();
2255
2256 assert(((unsigned long long)start & 0x3f) == 0,
2257 "Alignment problem (0x%08llx)", (unsigned long long)start);
2258 __ emit_data64(0x090a040506000102, relocInfo::none);
2259 __ emit_data64(0x161011120c0d0e08, relocInfo::none);
2260 __ emit_data64(0x1c1d1e18191a1415, relocInfo::none);
2261 __ emit_data64(0x292a242526202122, relocInfo::none);
2262 __ emit_data64(0x363031322c2d2e28, relocInfo::none);
2263 __ emit_data64(0x3c3d3e38393a3435, relocInfo::none);
2264 __ emit_data64(0x494a444546404142, relocInfo::none);
2265 __ emit_data64(0x565051524c4d4e48, relocInfo::none);
2266
2267 return start;
2268 }
2269
2270 address StubGenerator::base64_vbmi_join_1_2_addr() {
2271 __ align64();
2272 StubId stub_id = StubId::stubgen_join_1_2_base64_id;
2273 StubCodeMark mark(this, stub_id);
2274 address start = __ pc();
2275
2276 assert(((unsigned long long)start & 0x3f) == 0,
2277 "Alignment problem (0x%08llx)", (unsigned long long)start);
2278 __ emit_data64(0x1c1d1e18191a1415, relocInfo::none);
2279 __ emit_data64(0x292a242526202122, relocInfo::none);
2280 __ emit_data64(0x363031322c2d2e28, relocInfo::none);
2281 __ emit_data64(0x3c3d3e38393a3435, relocInfo::none);
2282 __ emit_data64(0x494a444546404142, relocInfo::none);
2283 __ emit_data64(0x565051524c4d4e48, relocInfo::none);
2284 __ emit_data64(0x5c5d5e58595a5455, relocInfo::none);
2285 __ emit_data64(0x696a646566606162, relocInfo::none);
2286
2287 return start;
2288 }
2289
2290 address StubGenerator::base64_vbmi_join_2_3_addr() {
2291 __ align64();
2292 StubId stub_id = StubId::stubgen_join_2_3_base64_id;
2293 StubCodeMark mark(this, stub_id);
2294 address start = __ pc();
2295
2296 assert(((unsigned long long)start & 0x3f) == 0,
2297 "Alignment problem (0x%08llx)", (unsigned long long)start);
2298 __ emit_data64(0x363031322c2d2e28, relocInfo::none);
2299 __ emit_data64(0x3c3d3e38393a3435, relocInfo::none);
2300 __ emit_data64(0x494a444546404142, relocInfo::none);
2301 __ emit_data64(0x565051524c4d4e48, relocInfo::none);
2302 __ emit_data64(0x5c5d5e58595a5455, relocInfo::none);
2303 __ emit_data64(0x696a646566606162, relocInfo::none);
2304 __ emit_data64(0x767071726c6d6e68, relocInfo::none);
2305 __ emit_data64(0x7c7d7e78797a7475, relocInfo::none);
2306
2307 return start;
2308 }
2309
2310 address StubGenerator::base64_AVX2_decode_tables_addr() {
2311 __ align64();
2312 StubId stub_id = StubId::stubgen_avx2_decode_tables_base64_id;
2313 StubCodeMark mark(this, stub_id);
2314 address start = __ pc();
2315
2316 assert(((unsigned long long)start & 0x3f) == 0,
2317 "Alignment problem (0x%08llx)", (unsigned long long)start);
2318 __ emit_data(0x2f2f2f2f, relocInfo::none, 0);
2319 __ emit_data(0x5f5f5f5f, relocInfo::none, 0); // for URL
2320
2321 __ emit_data(0xffffffff, relocInfo::none, 0);
2322 __ emit_data(0xfcfcfcfc, relocInfo::none, 0); // for URL
2323
2324 // Permute table
2325 __ emit_data64(0x0000000100000000, relocInfo::none);
2326 __ emit_data64(0x0000000400000002, relocInfo::none);
2327 __ emit_data64(0x0000000600000005, relocInfo::none);
2328 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2329
2330 // Shuffle table
2331 __ emit_data64(0x090a040506000102, relocInfo::none);
2332 __ emit_data64(0xffffffff0c0d0e08, relocInfo::none);
2333 __ emit_data64(0x090a040506000102, relocInfo::none);
2334 __ emit_data64(0xffffffff0c0d0e08, relocInfo::none);
2335
2336 // merge table
2337 __ emit_data(0x01400140, relocInfo::none, 0);
2338
2339 // merge multiplier
2340 __ emit_data(0x00011000, relocInfo::none, 0);
2341
2342 return start;
2343 }
2344
2345 address StubGenerator::base64_AVX2_decode_LUT_tables_addr() {
2346 __ align64();
2347 StubId stub_id = StubId::stubgen_avx2_decode_lut_tables_base64_id;
2348 StubCodeMark mark(this, stub_id);
2349 address start = __ pc();
2350
2351 assert(((unsigned long long)start & 0x3f) == 0,
2352 "Alignment problem (0x%08llx)", (unsigned long long)start);
2353 // lut_lo
2354 __ emit_data64(0x1111111111111115, relocInfo::none);
2355 __ emit_data64(0x1a1b1b1b1a131111, relocInfo::none);
2356 __ emit_data64(0x1111111111111115, relocInfo::none);
2357 __ emit_data64(0x1a1b1b1b1a131111, relocInfo::none);
2358
2359 // lut_roll
2360 __ emit_data64(0xb9b9bfbf04131000, relocInfo::none);
2361 __ emit_data64(0x0000000000000000, relocInfo::none);
2362 __ emit_data64(0xb9b9bfbf04131000, relocInfo::none);
2363 __ emit_data64(0x0000000000000000, relocInfo::none);
2364
2365 // lut_lo URL
2366 __ emit_data64(0x1111111111111115, relocInfo::none);
2367 __ emit_data64(0x1b1b1a1b1b131111, relocInfo::none);
2368 __ emit_data64(0x1111111111111115, relocInfo::none);
2369 __ emit_data64(0x1b1b1a1b1b131111, relocInfo::none);
2370
2371 // lut_roll URL
2372 __ emit_data64(0xb9b9bfbf0411e000, relocInfo::none);
2373 __ emit_data64(0x0000000000000000, relocInfo::none);
2374 __ emit_data64(0xb9b9bfbf0411e000, relocInfo::none);
2375 __ emit_data64(0x0000000000000000, relocInfo::none);
2376
2377 // lut_hi
2378 __ emit_data64(0x0804080402011010, relocInfo::none);
2379 __ emit_data64(0x1010101010101010, relocInfo::none);
2380 __ emit_data64(0x0804080402011010, relocInfo::none);
2381 __ emit_data64(0x1010101010101010, relocInfo::none);
2382
2383 return start;
2384 }
2385
2386 address StubGenerator::base64_decoding_table_addr() {
2387 StubId stub_id = StubId::stubgen_decoding_table_base64_id;
2388 StubCodeMark mark(this, stub_id);
2389 address start = __ pc();
2390
2391 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2392 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2393 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2394 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2395 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2396 __ emit_data64(0x3fffffff3effffff, relocInfo::none);
2397 __ emit_data64(0x3b3a393837363534, relocInfo::none);
2398 __ emit_data64(0xffffffffffff3d3c, relocInfo::none);
2399 __ emit_data64(0x06050403020100ff, relocInfo::none);
2400 __ emit_data64(0x0e0d0c0b0a090807, relocInfo::none);
2401 __ emit_data64(0x161514131211100f, relocInfo::none);
2402 __ emit_data64(0xffffffffff191817, relocInfo::none);
2403 __ emit_data64(0x201f1e1d1c1b1aff, relocInfo::none);
2404 __ emit_data64(0x2827262524232221, relocInfo::none);
2405 __ emit_data64(0x302f2e2d2c2b2a29, relocInfo::none);
2406 __ emit_data64(0xffffffffff333231, relocInfo::none);
2407 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2408 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2409 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2410 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2411 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2412 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2413 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2414 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2415 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2416 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2417 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2418 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2419 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2420 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2421 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2422 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2423
2424 // URL table
2425 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2426 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2427 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2428 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2429 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2430 __ emit_data64(0xffff3effffffffff, relocInfo::none);
2431 __ emit_data64(0x3b3a393837363534, relocInfo::none);
2432 __ emit_data64(0xffffffffffff3d3c, relocInfo::none);
2433 __ emit_data64(0x06050403020100ff, relocInfo::none);
2434 __ emit_data64(0x0e0d0c0b0a090807, relocInfo::none);
2435 __ emit_data64(0x161514131211100f, relocInfo::none);
2436 __ emit_data64(0x3fffffffff191817, relocInfo::none);
2437 __ emit_data64(0x201f1e1d1c1b1aff, relocInfo::none);
2438 __ emit_data64(0x2827262524232221, relocInfo::none);
2439 __ emit_data64(0x302f2e2d2c2b2a29, relocInfo::none);
2440 __ emit_data64(0xffffffffff333231, relocInfo::none);
2441 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2442 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2443 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2444 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2445 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2446 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2447 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2448 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2449 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2450 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2451 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2452 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2453 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2454 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2455 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2456 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2457
2458 return start;
2459 }
2460
2461
2462 // Code for generating Base64 decoding.
2463 //
2464 // Based on the article (and associated code) from https://arxiv.org/abs/1910.05109.
2465 //
2466 // Intrinsic function prototype in Base64.java:
2467 // private void decodeBlock(byte[] src, int sp, int sl, byte[] dst, int dp, boolean isURL, isMIME) {
2468 address StubGenerator::generate_base64_decodeBlock() {
2469 __ align(CodeEntryAlignment);
2470 StubId stub_id = StubId::stubgen_base64_decodeBlock_id;
2471 StubCodeMark mark(this, stub_id);
2472 address start = __ pc();
2473
2474 __ enter();
2475
2476 // Save callee-saved registers before using them
2477 __ push_ppx(r12);
2478 __ push_ppx(r13);
2479 __ push_ppx(r14);
2480 __ push_ppx(r15);
2481 __ push_ppx(rbx);
2482
2483 // arguments
2484 const Register source = c_rarg0; // Source Array
2485 const Register start_offset = c_rarg1; // start offset
2486 const Register end_offset = c_rarg2; // end offset
2487 const Register dest = c_rarg3; // destination array
2488 const Register isMIME = rbx;
2489
2490 #ifndef _WIN64
2491 const Register dp = c_rarg4; // Position for writing to dest array
2492 const Register isURL = c_rarg5;// Base64 or URL character set
2493 __ movl(isMIME, Address(rbp, 2 * wordSize));
2494 #else
2495 const Address dp_mem(rbp, 6 * wordSize); // length is on stack on Win64
2496 const Address isURL_mem(rbp, 7 * wordSize);
2497 const Register isURL = r10; // pick the volatile windows register
2498 const Register dp = r12;
2499 __ movl(dp, dp_mem);
2500 __ movl(isURL, isURL_mem);
2501 __ movl(isMIME, Address(rbp, 8 * wordSize));
2502 #endif
2503
2504 const XMMRegister lookup_lo = xmm5;
2505 const XMMRegister lookup_hi = xmm6;
2506 const XMMRegister errorvec = xmm7;
2507 const XMMRegister pack16_op = xmm9;
2508 const XMMRegister pack32_op = xmm8;
2509 const XMMRegister input0 = xmm3;
2510 const XMMRegister input1 = xmm20;
2511 const XMMRegister input2 = xmm21;
2512 const XMMRegister input3 = xmm19;
2513 const XMMRegister join01 = xmm12;
2514 const XMMRegister join12 = xmm11;
2515 const XMMRegister join23 = xmm10;
2516 const XMMRegister translated0 = xmm2;
2517 const XMMRegister translated1 = xmm1;
2518 const XMMRegister translated2 = xmm0;
2519 const XMMRegister translated3 = xmm4;
2520
2521 const XMMRegister merged0 = xmm2;
2522 const XMMRegister merged1 = xmm1;
2523 const XMMRegister merged2 = xmm0;
2524 const XMMRegister merged3 = xmm4;
2525 const XMMRegister merge_ab_bc0 = xmm2;
2526 const XMMRegister merge_ab_bc1 = xmm1;
2527 const XMMRegister merge_ab_bc2 = xmm0;
2528 const XMMRegister merge_ab_bc3 = xmm4;
2529
2530 const XMMRegister pack24bits = xmm4;
2531
2532 const Register length = r14;
2533 const Register output_size = r13;
2534 const Register output_mask = r15;
2535 const KRegister input_mask = k1;
2536
2537 const XMMRegister input_initial_valid_b64 = xmm0;
2538 const XMMRegister tmp = xmm10;
2539 const XMMRegister mask = xmm0;
2540 const XMMRegister invalid_b64 = xmm1;
2541
2542 Label L_process256, L_process64, L_process64Loop, L_exit, L_processdata, L_loadURL;
2543 Label L_continue, L_finalBit, L_padding, L_donePadding, L_bruteForce;
2544 Label L_forceLoop, L_bottomLoop, L_checkMIME, L_exit_no_vzero, L_lastChunk;
2545
2546 // calculate length from offsets
2547 __ movl(length, end_offset);
2548 __ subl(length, start_offset);
2549 __ push_ppx(dest); // Save for return value calc
2550
2551 // If AVX512 VBMI not supported, just compile non-AVX code
2552 if(VM_Version::supports_avx512_vbmi() &&
2553 VM_Version::supports_avx512bw()) {
2554 __ cmpl(length, 31); // 32-bytes is break-even for AVX-512
2555 __ jcc(Assembler::lessEqual, L_lastChunk);
2556
2557 __ cmpl(isMIME, 0);
2558 __ jcc(Assembler::notEqual, L_lastChunk);
2559
2560 // Load lookup tables based on isURL
2561 __ cmpl(isURL, 0);
2562 __ jcc(Assembler::notZero, L_loadURL);
2563
2564 __ evmovdquq(lookup_lo, ExternalAddress(StubRoutines::x86::base64_vbmi_lookup_lo_addr()), Assembler::AVX_512bit, r13);
2565 __ evmovdquq(lookup_hi, ExternalAddress(StubRoutines::x86::base64_vbmi_lookup_hi_addr()), Assembler::AVX_512bit, r13);
2566
2567 __ BIND(L_continue);
2568
2569 __ movl(r15, 0x01400140);
2570 __ evpbroadcastd(pack16_op, r15, Assembler::AVX_512bit);
2571
2572 __ movl(r15, 0x00011000);
2573 __ evpbroadcastd(pack32_op, r15, Assembler::AVX_512bit);
2574
2575 __ cmpl(length, 0xff);
2576 __ jcc(Assembler::lessEqual, L_process64);
2577
2578 // load masks required for decoding data
2579 __ BIND(L_processdata);
2580 __ evmovdquq(join01, ExternalAddress(StubRoutines::x86::base64_vbmi_join_0_1_addr()), Assembler::AVX_512bit,r13);
2581 __ evmovdquq(join12, ExternalAddress(StubRoutines::x86::base64_vbmi_join_1_2_addr()), Assembler::AVX_512bit, r13);
2582 __ evmovdquq(join23, ExternalAddress(StubRoutines::x86::base64_vbmi_join_2_3_addr()), Assembler::AVX_512bit, r13);
2583
2584 __ align32();
2585 __ BIND(L_process256);
2586 // Grab input data
2587 __ evmovdquq(input0, Address(source, start_offset, Address::times_1, 0x00), Assembler::AVX_512bit);
2588 __ evmovdquq(input1, Address(source, start_offset, Address::times_1, 0x40), Assembler::AVX_512bit);
2589 __ evmovdquq(input2, Address(source, start_offset, Address::times_1, 0x80), Assembler::AVX_512bit);
2590 __ evmovdquq(input3, Address(source, start_offset, Address::times_1, 0xc0), Assembler::AVX_512bit);
2591
2592 // Copy the low part of the lookup table into the destination of the permutation
2593 __ evmovdquq(translated0, lookup_lo, Assembler::AVX_512bit);
2594 __ evmovdquq(translated1, lookup_lo, Assembler::AVX_512bit);
2595 __ evmovdquq(translated2, lookup_lo, Assembler::AVX_512bit);
2596 __ evmovdquq(translated3, lookup_lo, Assembler::AVX_512bit);
2597
2598 // Translate the base64 input into "decoded" bytes
2599 __ evpermt2b(translated0, input0, lookup_hi, Assembler::AVX_512bit);
2600 __ evpermt2b(translated1, input1, lookup_hi, Assembler::AVX_512bit);
2601 __ evpermt2b(translated2, input2, lookup_hi, Assembler::AVX_512bit);
2602 __ evpermt2b(translated3, input3, lookup_hi, Assembler::AVX_512bit);
2603
2604 // OR all of the translations together to check for errors (high-order bit of byte set)
2605 __ vpternlogd(input0, 0xfe, input1, input2, Assembler::AVX_512bit);
2606
2607 __ vpternlogd(input3, 0xfe, translated0, translated1, Assembler::AVX_512bit);
2608 __ vpternlogd(input0, 0xfe, translated2, translated3, Assembler::AVX_512bit);
2609 __ vpor(errorvec, input3, input0, Assembler::AVX_512bit);
2610
2611 // Check if there was an error - if so, try 64-byte chunks
2612 __ evpmovb2m(k3, errorvec, Assembler::AVX_512bit);
2613 __ kortestql(k3, k3);
2614 __ jcc(Assembler::notZero, L_process64);
2615
2616 // The merging and shuffling happens here
2617 // We multiply each byte pair [00dddddd | 00cccccc | 00bbbbbb | 00aaaaaa]
2618 // Multiply [00cccccc] by 2^6 added to [00dddddd] to get [0000cccc | ccdddddd]
2619 // The pack16_op is a vector of 0x01400140, so multiply D by 1 and C by 0x40
2620 __ vpmaddubsw(merge_ab_bc0, translated0, pack16_op, Assembler::AVX_512bit);
2621 __ vpmaddubsw(merge_ab_bc1, translated1, pack16_op, Assembler::AVX_512bit);
2622 __ vpmaddubsw(merge_ab_bc2, translated2, pack16_op, Assembler::AVX_512bit);
2623 __ vpmaddubsw(merge_ab_bc3, translated3, pack16_op, Assembler::AVX_512bit);
2624
2625 // Now do the same with packed 16-bit values.
2626 // We start with [0000cccc | ccdddddd | 0000aaaa | aabbbbbb]
2627 // pack32_op is 0x00011000 (2^12, 1), so this multiplies [0000aaaa | aabbbbbb] by 2^12
2628 // and adds [0000cccc | ccdddddd] to yield [00000000 | aaaaaabb | bbbbcccc | ccdddddd]
2629 __ vpmaddwd(merged0, merge_ab_bc0, pack32_op, Assembler::AVX_512bit);
2630 __ vpmaddwd(merged1, merge_ab_bc1, pack32_op, Assembler::AVX_512bit);
2631 __ vpmaddwd(merged2, merge_ab_bc2, pack32_op, Assembler::AVX_512bit);
2632 __ vpmaddwd(merged3, merge_ab_bc3, pack32_op, Assembler::AVX_512bit);
2633
2634 // The join vectors specify which byte from which vector goes into the outputs
2635 // One of every 4 bytes in the extended vector is zero, so we pack them into their
2636 // final positions in the register for storing (256 bytes in, 192 bytes out)
2637 __ evpermt2b(merged0, join01, merged1, Assembler::AVX_512bit);
2638 __ evpermt2b(merged1, join12, merged2, Assembler::AVX_512bit);
2639 __ evpermt2b(merged2, join23, merged3, Assembler::AVX_512bit);
2640
2641 // Store result
2642 __ evmovdquq(Address(dest, dp, Address::times_1, 0x00), merged0, Assembler::AVX_512bit);
2643 __ evmovdquq(Address(dest, dp, Address::times_1, 0x40), merged1, Assembler::AVX_512bit);
2644 __ evmovdquq(Address(dest, dp, Address::times_1, 0x80), merged2, Assembler::AVX_512bit);
2645
2646 __ addptr(source, 0x100);
2647 __ addptr(dest, 0xc0);
2648 __ subl(length, 0x100);
2649 __ cmpl(length, 64 * 4);
2650 __ jcc(Assembler::greaterEqual, L_process256);
2651
2652 // At this point, we've decoded 64 * 4 * n bytes.
2653 // The remaining length will be <= 64 * 4 - 1.
2654 // UNLESS there was an error decoding the first 256-byte chunk. In this
2655 // case, the length will be arbitrarily long.
2656 //
2657 // Note that this will be the path for MIME-encoded strings.
2658
2659 __ BIND(L_process64);
2660
2661 __ evmovdquq(pack24bits, ExternalAddress(StubRoutines::x86::base64_vbmi_pack_vec_addr()), Assembler::AVX_512bit, r13);
2662
2663 __ cmpl(length, 63);
2664 __ jcc(Assembler::lessEqual, L_finalBit);
2665
2666 __ mov64(rax, 0x0000ffffffffffff);
2667 __ kmovql(k2, rax);
2668
2669 __ align32();
2670 __ BIND(L_process64Loop);
2671
2672 // Handle first 64-byte block
2673
2674 __ evmovdquq(input0, Address(source, start_offset), Assembler::AVX_512bit);
2675 __ evmovdquq(translated0, lookup_lo, Assembler::AVX_512bit);
2676 __ evpermt2b(translated0, input0, lookup_hi, Assembler::AVX_512bit);
2677
2678 __ vpor(errorvec, translated0, input0, Assembler::AVX_512bit);
2679
2680 // Check for error and bomb out before updating dest
2681 __ evpmovb2m(k3, errorvec, Assembler::AVX_512bit);
2682 __ kortestql(k3, k3);
2683 __ jcc(Assembler::notZero, L_exit);
2684
2685 // Pack output register, selecting correct byte ordering
2686 __ vpmaddubsw(merge_ab_bc0, translated0, pack16_op, Assembler::AVX_512bit);
2687 __ vpmaddwd(merged0, merge_ab_bc0, pack32_op, Assembler::AVX_512bit);
2688 __ vpermb(merged0, pack24bits, merged0, Assembler::AVX_512bit);
2689
2690 __ evmovdqub(Address(dest, dp), k2, merged0, true, Assembler::AVX_512bit);
2691
2692 __ subl(length, 64);
2693 __ addptr(source, 64);
2694 __ addptr(dest, 48);
2695
2696 __ cmpl(length, 64);
2697 __ jcc(Assembler::greaterEqual, L_process64Loop);
2698
2699 __ cmpl(length, 0);
2700 __ jcc(Assembler::lessEqual, L_exit);
2701
2702 __ BIND(L_finalBit);
2703 // Now have 1 to 63 bytes left to decode
2704
2705 // I was going to let Java take care of the final fragment
2706 // however it will repeatedly call this routine for every 4 bytes
2707 // of input data, so handle the rest here.
2708 __ movq(rax, -1);
2709 __ bzhiq(rax, rax, length); // Input mask in rax
2710
2711 __ movl(output_size, length);
2712 __ shrl(output_size, 2); // Find (len / 4) * 3 (output length)
2713 __ lea(output_size, Address(output_size, output_size, Address::times_2, 0));
2714 // output_size in r13
2715
2716 // Strip pad characters, if any, and adjust length and mask
2717 __ addq(length, start_offset);
2718 __ cmpb(Address(source, length, Address::times_1, -1), '=');
2719 __ jcc(Assembler::equal, L_padding);
2720
2721 __ BIND(L_donePadding);
2722 __ subq(length, start_offset);
2723
2724 // Output size is (64 - output_size), output mask is (all 1s >> output_size).
2725 __ kmovql(input_mask, rax);
2726 __ movq(output_mask, -1);
2727 __ bzhiq(output_mask, output_mask, output_size);
2728
2729 // Load initial input with all valid base64 characters. Will be used
2730 // in merging source bytes to avoid masking when determining if an error occurred.
2731 __ movl(rax, 0x61616161);
2732 __ evpbroadcastd(input_initial_valid_b64, rax, Assembler::AVX_512bit);
2733
2734 // A register containing all invalid base64 decoded values
2735 __ movl(rax, 0x80808080);
2736 __ evpbroadcastd(invalid_b64, rax, Assembler::AVX_512bit);
2737
2738 // input_mask is in k1
2739 // output_size is in r13
2740 // output_mask is in r15
2741 // zmm0 - free
2742 // zmm1 - 0x00011000
2743 // zmm2 - 0x01400140
2744 // zmm3 - errorvec
2745 // zmm4 - pack vector
2746 // zmm5 - lookup_lo
2747 // zmm6 - lookup_hi
2748 // zmm7 - errorvec
2749 // zmm8 - 0x61616161
2750 // zmm9 - 0x80808080
2751
2752 // Load only the bytes from source, merging into our "fully-valid" register
2753 __ evmovdqub(input_initial_valid_b64, input_mask, Address(source, start_offset, Address::times_1, 0x0), true, Assembler::AVX_512bit);
2754
2755 // Decode all bytes within our merged input
2756 __ evmovdquq(tmp, lookup_lo, Assembler::AVX_512bit);
2757 __ evpermt2b(tmp, input_initial_valid_b64, lookup_hi, Assembler::AVX_512bit);
2758 __ evporq(mask, tmp, input_initial_valid_b64, Assembler::AVX_512bit);
2759
2760 // Check for error. Compare (decoded | initial) to all invalid.
2761 // If any bytes have their high-order bit set, then we have an error.
2762 __ evptestmb(k2, mask, invalid_b64, Assembler::AVX_512bit);
2763 __ kortestql(k2, k2);
2764
2765 // If we have an error, use the brute force loop to decode what we can (4-byte chunks).
2766 __ jcc(Assembler::notZero, L_bruteForce);
2767
2768 // Shuffle output bytes
2769 __ vpmaddubsw(tmp, tmp, pack16_op, Assembler::AVX_512bit);
2770 __ vpmaddwd(tmp, tmp, pack32_op, Assembler::AVX_512bit);
2771
2772 __ vpermb(tmp, pack24bits, tmp, Assembler::AVX_512bit);
2773 __ kmovql(k1, output_mask);
2774 __ evmovdqub(Address(dest, dp), k1, tmp, true, Assembler::AVX_512bit);
2775
2776 __ addptr(dest, output_size);
2777
2778 __ BIND(L_exit);
2779 __ vzeroupper();
2780 __ pop_ppx(rax); // Get original dest value
2781 __ subptr(dest, rax); // Number of bytes converted
2782 __ movptr(rax, dest);
2783 __ pop_ppx(rbx);
2784 __ pop_ppx(r15);
2785 __ pop_ppx(r14);
2786 __ pop_ppx(r13);
2787 __ pop_ppx(r12);
2788 __ leave();
2789 __ ret(0);
2790
2791 __ BIND(L_loadURL);
2792 __ evmovdquq(lookup_lo, ExternalAddress(StubRoutines::x86::base64_vbmi_lookup_lo_url_addr()), Assembler::AVX_512bit, r13);
2793 __ evmovdquq(lookup_hi, ExternalAddress(StubRoutines::x86::base64_vbmi_lookup_hi_url_addr()), Assembler::AVX_512bit, r13);
2794 __ jmp(L_continue);
2795
2796 __ BIND(L_padding);
2797 __ decrementq(output_size, 1);
2798 __ shrq(rax, 1);
2799
2800 __ cmpb(Address(source, length, Address::times_1, -2), '=');
2801 __ jcc(Assembler::notEqual, L_donePadding);
2802
2803 __ decrementq(output_size, 1);
2804 __ shrq(rax, 1);
2805 __ jmp(L_donePadding);
2806
2807 __ align32();
2808 __ BIND(L_bruteForce);
2809 } // End of if(avx512_vbmi)
2810
2811 if (VM_Version::supports_avx2()) {
2812 Label L_tailProc, L_topLoop, L_enterLoop;
2813
2814 __ cmpl(isMIME, 0);
2815 __ jcc(Assembler::notEqual, L_lastChunk);
2816
2817 // Check for buffer too small (for algorithm)
2818 __ subl(length, 0x2c);
2819 __ jcc(Assembler::less, L_tailProc);
2820
2821 __ shll(isURL, 2);
2822
2823 // Algorithm adapted from https://arxiv.org/abs/1704.00605, "Faster Base64
2824 // Encoding and Decoding using AVX2 Instructions". URL modifications added.
2825
2826 // Set up constants
2827 __ lea(r13, ExternalAddress(StubRoutines::x86::base64_AVX2_decode_tables_addr()));
2828 __ vpbroadcastd(xmm4, Address(r13, isURL, Address::times_1), Assembler::AVX_256bit); // 2F or 5F
2829 __ vpbroadcastd(xmm10, Address(r13, isURL, Address::times_1, 0x08), Assembler::AVX_256bit); // -1 or -4
2830 __ vmovdqu(xmm12, Address(r13, 0x10)); // permute
2831 __ vmovdqu(xmm13, Address(r13, 0x30)); // shuffle
2832 __ vpbroadcastd(xmm7, Address(r13, 0x50), Assembler::AVX_256bit); // merge
2833 __ vpbroadcastd(xmm6, Address(r13, 0x54), Assembler::AVX_256bit); // merge mult
2834
2835 __ lea(r13, ExternalAddress(StubRoutines::x86::base64_AVX2_decode_LUT_tables_addr()));
2836 __ shll(isURL, 4);
2837 __ vmovdqu(xmm11, Address(r13, isURL, Address::times_1, 0x00)); // lut_lo
2838 __ vmovdqu(xmm8, Address(r13, isURL, Address::times_1, 0x20)); // lut_roll
2839 __ shrl(isURL, 6); // restore isURL
2840 __ vmovdqu(xmm9, Address(r13, 0x80)); // lut_hi
2841 __ jmp(L_enterLoop);
2842
2843 __ align32();
2844 __ bind(L_topLoop);
2845 // Add in the offset value (roll) to get 6-bit out values
2846 __ vpaddb(xmm0, xmm0, xmm2, Assembler::AVX_256bit);
2847 // Merge and permute the output bits into appropriate output byte lanes
2848 __ vpmaddubsw(xmm0, xmm0, xmm7, Assembler::AVX_256bit);
2849 __ vpmaddwd(xmm0, xmm0, xmm6, Assembler::AVX_256bit);
2850 __ vpshufb(xmm0, xmm0, xmm13, Assembler::AVX_256bit);
2851 __ vpermd(xmm0, xmm12, xmm0, Assembler::AVX_256bit);
2852 // Store the output bytes
2853 __ vmovdqu(Address(dest, dp, Address::times_1, 0), xmm0);
2854 __ addptr(source, 0x20);
2855 __ addptr(dest, 0x18);
2856 __ subl(length, 0x20);
2857 __ jcc(Assembler::less, L_tailProc);
2858
2859 __ bind(L_enterLoop);
2860
2861 // Load in encoded string (32 bytes)
2862 __ vmovdqu(xmm2, Address(source, start_offset, Address::times_1, 0x0));
2863 // Extract the high nibble for indexing into the lut tables. High 4 bits are don't care.
2864 __ vpsrld(xmm1, xmm2, 0x4, Assembler::AVX_256bit);
2865 __ vpand(xmm1, xmm4, xmm1, Assembler::AVX_256bit);
2866 // Extract the low nibble. 5F/2F will isolate the low-order 4 bits. High 4 bits are don't care.
2867 __ vpand(xmm3, xmm2, xmm4, Assembler::AVX_256bit);
2868 // Check for special-case (0x2F or 0x5F (URL))
2869 __ vpcmpeqb(xmm0, xmm4, xmm2, Assembler::AVX_256bit);
2870 // Get the bitset based on the low nibble. vpshufb uses low-order 4 bits only.
2871 __ vpshufb(xmm3, xmm11, xmm3, Assembler::AVX_256bit);
2872 // Get the bit value of the high nibble
2873 __ vpshufb(xmm5, xmm9, xmm1, Assembler::AVX_256bit);
2874 // Make sure 2F / 5F shows as valid
2875 __ vpandn(xmm3, xmm0, xmm3, Assembler::AVX_256bit);
2876 // Make adjustment for roll index. For non-URL, this is a no-op,
2877 // for URL, this adjusts by -4. This is to properly index the
2878 // roll value for 2F / 5F.
2879 __ vpand(xmm0, xmm0, xmm10, Assembler::AVX_256bit);
2880 // If the and of the two is non-zero, we have an invalid input character
2881 __ vptest(xmm3, xmm5);
2882 // Extract the "roll" value - value to add to the input to get 6-bit out value
2883 __ vpaddb(xmm0, xmm0, xmm1, Assembler::AVX_256bit); // Handle 2F / 5F
2884 __ vpshufb(xmm0, xmm8, xmm0, Assembler::AVX_256bit);
2885 __ jcc(Assembler::equal, L_topLoop); // Fall through on error
2886
2887 __ bind(L_tailProc);
2888
2889 __ addl(length, 0x2c);
2890
2891 __ vzeroupper();
2892 }
2893
2894 // Use non-AVX code to decode 4-byte chunks into 3 bytes of output
2895
2896 // Register state (Linux):
2897 // r12-15 - saved on stack
2898 // rdi - src
2899 // rsi - sp
2900 // rdx - sl
2901 // rcx - dst
2902 // r8 - dp
2903 // r9 - isURL
2904
2905 // Register state (Windows):
2906 // r12-15 - saved on stack
2907 // rcx - src
2908 // rdx - sp
2909 // r8 - sl
2910 // r9 - dst
2911 // r12 - dp
2912 // r10 - isURL
2913
2914 // Registers (common):
2915 // length (r14) - bytes in src
2916
2917 const Register decode_table = r11;
2918 const Register out_byte_count = rbx;
2919 const Register byte1 = r13;
2920 const Register byte2 = r15;
2921 const Register byte3 = WIN64_ONLY(r8) NOT_WIN64(rdx);
2922 const Register byte4 = WIN64_ONLY(r10) NOT_WIN64(r9);
2923
2924 __ bind(L_lastChunk);
2925
2926 __ shrl(length, 2); // Multiple of 4 bytes only - length is # 4-byte chunks
2927 __ cmpl(length, 0);
2928 __ jcc(Assembler::lessEqual, L_exit_no_vzero);
2929
2930 __ shll(isURL, 8); // index into decode table based on isURL
2931 __ lea(decode_table, ExternalAddress(StubRoutines::x86::base64_decoding_table_addr()));
2932 __ addptr(decode_table, isURL);
2933
2934 __ jmp(L_bottomLoop);
2935
2936 __ align32();
2937 __ BIND(L_forceLoop);
2938 __ shll(byte1, 18);
2939 __ shll(byte2, 12);
2940 __ shll(byte3, 6);
2941 __ orl(byte1, byte2);
2942 __ orl(byte1, byte3);
2943 __ orl(byte1, byte4);
2944
2945 __ addptr(source, 4);
2946
2947 __ movb(Address(dest, dp, Address::times_1, 2), byte1);
2948 __ shrl(byte1, 8);
2949 __ movb(Address(dest, dp, Address::times_1, 1), byte1);
2950 __ shrl(byte1, 8);
2951 __ movb(Address(dest, dp, Address::times_1, 0), byte1);
2952
2953 __ addptr(dest, 3);
2954 __ decrementl(length, 1);
2955 __ jcc(Assembler::zero, L_exit_no_vzero);
2956
2957 __ BIND(L_bottomLoop);
2958 __ load_unsigned_byte(byte1, Address(source, start_offset, Address::times_1, 0x00));
2959 __ load_unsigned_byte(byte2, Address(source, start_offset, Address::times_1, 0x01));
2960 __ load_signed_byte(byte1, Address(decode_table, byte1));
2961 __ load_signed_byte(byte2, Address(decode_table, byte2));
2962 __ load_unsigned_byte(byte3, Address(source, start_offset, Address::times_1, 0x02));
2963 __ load_unsigned_byte(byte4, Address(source, start_offset, Address::times_1, 0x03));
2964 __ load_signed_byte(byte3, Address(decode_table, byte3));
2965 __ load_signed_byte(byte4, Address(decode_table, byte4));
2966
2967 __ mov(rax, byte1);
2968 __ orl(rax, byte2);
2969 __ orl(rax, byte3);
2970 __ orl(rax, byte4);
2971 __ jcc(Assembler::positive, L_forceLoop);
2972
2973 __ BIND(L_exit_no_vzero);
2974 __ pop_ppx(rax); // Get original dest value
2975 __ subptr(dest, rax); // Number of bytes converted
2976 __ movptr(rax, dest);
2977 __ pop_ppx(rbx);
2978 __ pop_ppx(r15);
2979 __ pop_ppx(r14);
2980 __ pop_ppx(r13);
2981 __ pop_ppx(r12);
2982 __ leave();
2983 __ ret(0);
2984
2985 return start;
2986 }
2987
2988
2989 /**
2990 * Arguments:
2991 *
2992 * Inputs:
2993 * c_rarg0 - int crc
2994 * c_rarg1 - byte* buf
2995 * c_rarg2 - int length
2996 *
2997 * Output:
2998 * rax - int crc result
2999 */
3000 address StubGenerator::generate_updateBytesCRC32() {
3001 assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions");
3002
3003 __ align(CodeEntryAlignment);
3004 StubId stub_id = StubId::stubgen_updateBytesCRC32_id;
3005 StubCodeMark mark(this, stub_id);
3006
3007 address start = __ pc();
3008
3009 // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
3010 // Unix: rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
3011 // rscratch1: r10
3012 const Register crc = c_rarg0; // crc
3013 const Register buf = c_rarg1; // source java byte array address
3014 const Register len = c_rarg2; // length
3015 const Register table = c_rarg3; // crc_table address (reuse register)
3016 const Register tmp1 = r11;
3017 const Register tmp2 = r10;
3018 assert_different_registers(crc, buf, len, table, tmp1, tmp2, rax);
3019
3020 BLOCK_COMMENT("Entry:");
3021 __ enter(); // required for proper stackwalking of RuntimeStub frame
3022
3023 if (VM_Version::supports_sse4_1() && VM_Version::supports_avx512_vpclmulqdq() &&
3024 VM_Version::supports_avx512bw() &&
3025 VM_Version::supports_avx512vl()) {
3026 // The constants used in the CRC32 algorithm requires the 1's compliment of the initial crc value.
3027 // However, the constant table for CRC32-C assumes the original crc value. Account for this
3028 // difference before calling and after returning.
3029 __ lea(table, ExternalAddress(StubRoutines::x86::crc_table_avx512_addr()));
3030 __ notl(crc);
3031 __ kernel_crc32_avx512(crc, buf, len, table, tmp1, tmp2);
3032 __ notl(crc);
3033 } else {
3034 __ kernel_crc32(crc, buf, len, table, tmp1);
3035 }
3036
3037 __ movl(rax, crc);
3038 __ vzeroupper();
3039 __ leave(); // required for proper stackwalking of RuntimeStub frame
3040 __ ret(0);
3041
3042 return start;
3043 }
3044
3045 /**
3046 * Arguments:
3047 *
3048 * Inputs:
3049 * c_rarg0 - int crc
3050 * c_rarg1 - byte* buf
3051 * c_rarg2 - long length
3052 * c_rarg3 - table_start - optional (present only when doing a library_call,
3053 * not used by x86 algorithm)
3054 *
3055 * Output:
3056 * rax - int crc result
3057 */
3058 address StubGenerator::generate_updateBytesCRC32C(bool is_pclmulqdq_supported) {
3059 assert(UseCRC32CIntrinsics, "need SSE4_2");
3060 __ align(CodeEntryAlignment);
3061 StubId stub_id = StubId::stubgen_updateBytesCRC32C_id;
3062 StubCodeMark mark(this, stub_id);
3063 address start = __ pc();
3064
3065 //reg.arg int#0 int#1 int#2 int#3 int#4 int#5 float regs
3066 //Windows RCX RDX R8 R9 none none XMM0..XMM3
3067 //Lin / Sol RDI RSI RDX RCX R8 R9 XMM0..XMM7
3068 const Register crc = c_rarg0; // crc
3069 const Register buf = c_rarg1; // source java byte array address
3070 const Register len = c_rarg2; // length
3071 const Register a = rax;
3072 const Register j = r9;
3073 const Register k = r10;
3074 const Register l = r11;
3075 #ifdef _WIN64
3076 const Register y = rdi;
3077 const Register z = rsi;
3078 #else
3079 const Register y = rcx;
3080 const Register z = r8;
3081 #endif
3082 assert_different_registers(crc, buf, len, a, j, k, l, y, z);
3083
3084 BLOCK_COMMENT("Entry:");
3085 __ enter(); // required for proper stackwalking of RuntimeStub frame
3086 Label L_continue;
3087
3088 if (VM_Version::supports_sse4_1() && VM_Version::supports_avx512_vpclmulqdq() &&
3089 VM_Version::supports_avx512bw() &&
3090 VM_Version::supports_avx512vl()) {
3091 Label L_doSmall;
3092
3093 __ cmpl(len, 384);
3094 __ jcc(Assembler::lessEqual, L_doSmall);
3095
3096 __ lea(j, ExternalAddress(StubRoutines::x86::crc32c_table_avx512_addr()));
3097 __ kernel_crc32_avx512(crc, buf, len, j, l, k);
3098
3099 __ jmp(L_continue);
3100
3101 __ bind(L_doSmall);
3102 }
3103 #ifdef _WIN64
3104 __ push_ppx(y);
3105 __ push_ppx(z);
3106 #endif
3107 __ crc32c_ipl_alg2_alt2(crc, buf, len,
3108 a, j, k,
3109 l, y, z,
3110 c_farg0, c_farg1, c_farg2,
3111 is_pclmulqdq_supported);
3112 #ifdef _WIN64
3113 __ pop_ppx(z);
3114 __ pop_ppx(y);
3115 #endif
3116
3117 __ bind(L_continue);
3118 __ movl(rax, crc);
3119 __ vzeroupper();
3120 __ leave(); // required for proper stackwalking of RuntimeStub frame
3121 __ ret(0);
3122
3123 return start;
3124 }
3125
3126
3127 /**
3128 * Arguments:
3129 *
3130 * Input:
3131 * c_rarg0 - x address
3132 * c_rarg1 - x length
3133 * c_rarg2 - y address
3134 * c_rarg3 - y length
3135 * not Win64
3136 * c_rarg4 - z address
3137 * Win64
3138 * rsp+40 - z address
3139 */
3140 address StubGenerator::generate_multiplyToLen() {
3141 __ align(CodeEntryAlignment);
3142 StubId stub_id = StubId::stubgen_multiplyToLen_id;
3143 StubCodeMark mark(this, stub_id);
3144 address start = __ pc();
3145
3146 // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
3147 // Unix: rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
3148 const Register x = rdi;
3149 const Register xlen = rax;
3150 const Register y = rsi;
3151 const Register ylen = rcx;
3152 const Register z = r8;
3153
3154 // Next registers will be saved on stack in multiply_to_len().
3155 const Register tmp0 = r11;
3156 const Register tmp1 = r12;
3157 const Register tmp2 = r13;
3158 const Register tmp3 = r14;
3159 const Register tmp4 = r15;
3160 const Register tmp5 = rbx;
3161
3162 BLOCK_COMMENT("Entry:");
3163 __ enter(); // required for proper stackwalking of RuntimeStub frame
3164
3165 setup_arg_regs(4); // x => rdi, xlen => rsi, y => rdx
3166 // ylen => rcx, z => r8
3167 // r9 and r10 may be used to save non-volatile registers
3168 #ifdef _WIN64
3169 // last argument (#4) is on stack on Win64
3170 __ movptr(z, Address(rsp, 6 * wordSize));
3171 #endif
3172
3173 __ movptr(xlen, rsi);
3174 __ movptr(y, rdx);
3175 __ multiply_to_len(x, xlen, y, ylen, z, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5);
3176
3177 restore_arg_regs();
3178
3179 __ leave(); // required for proper stackwalking of RuntimeStub frame
3180 __ ret(0);
3181
3182 return start;
3183 }
3184
3185 /**
3186 * Arguments:
3187 *
3188 * Input:
3189 * c_rarg0 - obja address
3190 * c_rarg1 - objb address
3191 * c_rarg3 - length length
3192 * c_rarg4 - scale log2_array_indxscale
3193 *
3194 * Output:
3195 * rax - int >= mismatched index, < 0 bitwise complement of tail
3196 */
3197 address StubGenerator::generate_vectorizedMismatch() {
3198 __ align(CodeEntryAlignment);
3199 StubId stub_id = StubId::stubgen_vectorizedMismatch_id;
3200 StubCodeMark mark(this, stub_id);
3201 address start = __ pc();
3202
3203 BLOCK_COMMENT("Entry:");
3204 __ enter();
3205
3206 #ifdef _WIN64 // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
3207 const Register scale = c_rarg0; //rcx, will exchange with r9
3208 const Register objb = c_rarg1; //rdx
3209 const Register length = c_rarg2; //r8
3210 const Register obja = c_rarg3; //r9
3211 __ xchgq(obja, scale); //now obja and scale contains the correct contents
3212
3213 const Register tmp1 = r10;
3214 const Register tmp2 = r11;
3215 #endif
3216 #ifndef _WIN64 // Unix: rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
3217 const Register obja = c_rarg0; //U:rdi
3218 const Register objb = c_rarg1; //U:rsi
3219 const Register length = c_rarg2; //U:rdx
3220 const Register scale = c_rarg3; //U:rcx
3221 const Register tmp1 = r8;
3222 const Register tmp2 = r9;
3223 #endif
3224 const Register result = rax; //return value
3225 const XMMRegister vec0 = xmm0;
3226 const XMMRegister vec1 = xmm1;
3227 const XMMRegister vec2 = xmm2;
3228
3229 __ vectorized_mismatch(obja, objb, length, scale, result, tmp1, tmp2, vec0, vec1, vec2);
3230
3231 __ vzeroupper();
3232 __ leave();
3233 __ ret(0);
3234
3235 return start;
3236 }
3237
3238 /**
3239 * Arguments:
3240 *
3241 // Input:
3242 // c_rarg0 - x address
3243 // c_rarg1 - x length
3244 // c_rarg2 - z address
3245 // c_rarg3 - z length
3246 *
3247 */
3248 address StubGenerator::generate_squareToLen() {
3249
3250 __ align(CodeEntryAlignment);
3251 StubId stub_id = StubId::stubgen_squareToLen_id;
3252 StubCodeMark mark(this, stub_id);
3253 address start = __ pc();
3254
3255 // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
3256 // Unix: rdi, rsi, rdx, rcx (c_rarg0, c_rarg1, ...)
3257 const Register x = rdi;
3258 const Register len = rsi;
3259 const Register z = r8;
3260 const Register zlen = rcx;
3261
3262 const Register tmp1 = r12;
3263 const Register tmp2 = r13;
3264 const Register tmp3 = r14;
3265 const Register tmp4 = r15;
3266 const Register tmp5 = rbx;
3267
3268 BLOCK_COMMENT("Entry:");
3269 __ enter(); // required for proper stackwalking of RuntimeStub frame
3270
3271 setup_arg_regs(4); // x => rdi, len => rsi, z => rdx
3272 // zlen => rcx
3273 // r9 and r10 may be used to save non-volatile registers
3274 __ movptr(r8, rdx);
3275 __ square_to_len(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, rdx, rax);
3276
3277 restore_arg_regs();
3278
3279 __ leave(); // required for proper stackwalking of RuntimeStub frame
3280 __ ret(0);
3281
3282 return start;
3283 }
3284
3285 address StubGenerator::generate_method_entry_barrier() {
3286 __ align(CodeEntryAlignment);
3287 StubId stub_id = StubId::stubgen_method_entry_barrier_id;
3288 StubCodeMark mark(this, stub_id);
3289 address start = __ pc();
3290
3291 Label deoptimize_label;
3292
3293 __ push(-1); // cookie, this is used for writing the new rsp when deoptimizing
3294
3295 BLOCK_COMMENT("Entry:");
3296 __ enter(); // save rbp
3297
3298 // save c_rarg0, because we want to use that value.
3299 // We could do without it but then we depend on the number of slots used by pusha
3300 __ push_ppx(c_rarg0);
3301
3302 __ lea(c_rarg0, Address(rsp, wordSize * 3)); // 1 for cookie, 1 for rbp, 1 for c_rarg0 - this should be the return address
3303
3304 __ pusha();
3305
3306 // The method may have floats as arguments, and we must spill them before calling
3307 // the VM runtime.
3308 assert(Argument::n_float_register_parameters_j == 8, "Assumption");
3309 const int xmm_size = wordSize * 2;
3310 const int xmm_spill_size = xmm_size * Argument::n_float_register_parameters_j;
3311 __ subptr(rsp, xmm_spill_size);
3312 __ movdqu(Address(rsp, xmm_size * 7), xmm7);
3313 __ movdqu(Address(rsp, xmm_size * 6), xmm6);
3314 __ movdqu(Address(rsp, xmm_size * 5), xmm5);
3315 __ movdqu(Address(rsp, xmm_size * 4), xmm4);
3316 __ movdqu(Address(rsp, xmm_size * 3), xmm3);
3317 __ movdqu(Address(rsp, xmm_size * 2), xmm2);
3318 __ movdqu(Address(rsp, xmm_size * 1), xmm1);
3319 __ movdqu(Address(rsp, xmm_size * 0), xmm0);
3320
3321 __ call_VM_leaf(CAST_FROM_FN_PTR(address, static_cast<int (*)(address*)>(BarrierSetNMethod::nmethod_stub_entry_barrier)), 1);
3322
3323 __ movdqu(xmm0, Address(rsp, xmm_size * 0));
3324 __ movdqu(xmm1, Address(rsp, xmm_size * 1));
3325 __ movdqu(xmm2, Address(rsp, xmm_size * 2));
3326 __ movdqu(xmm3, Address(rsp, xmm_size * 3));
3327 __ movdqu(xmm4, Address(rsp, xmm_size * 4));
3328 __ movdqu(xmm5, Address(rsp, xmm_size * 5));
3329 __ movdqu(xmm6, Address(rsp, xmm_size * 6));
3330 __ movdqu(xmm7, Address(rsp, xmm_size * 7));
3331 __ addptr(rsp, xmm_spill_size);
3332
3333 __ cmpl(rax, 1); // 1 means deoptimize
3334 __ jcc(Assembler::equal, deoptimize_label);
3335
3336 __ popa();
3337 __ pop_ppx(c_rarg0);
3338
3339 __ leave();
3340
3341 __ addptr(rsp, 1 * wordSize); // cookie
3342 __ ret(0);
3343
3344
3345 __ BIND(deoptimize_label);
3346
3347 __ popa();
3348 __ pop_ppx(c_rarg0);
3349
3350 __ leave();
3351
3352 // this can be taken out, but is good for verification purposes. getting a SIGSEGV
3353 // here while still having a correct stack is valuable
3354 __ testptr(rsp, Address(rsp, 0));
3355
3356 __ movptr(rsp, Address(rsp, 0)); // new rsp was written in the barrier
3357 __ jmp(Address(rsp, -1 * wordSize)); // jmp target should be callers verified_entry_point
3358
3359 return start;
3360 }
3361
3362 /**
3363 * Arguments:
3364 *
3365 * Input:
3366 * c_rarg0 - out address
3367 * c_rarg1 - in address
3368 * c_rarg2 - offset
3369 * c_rarg3 - len
3370 * not Win64
3371 * c_rarg4 - k
3372 * Win64
3373 * rsp+40 - k
3374 */
3375 address StubGenerator::generate_mulAdd() {
3376 __ align(CodeEntryAlignment);
3377 StubId stub_id = StubId::stubgen_mulAdd_id;
3378 StubCodeMark mark(this, stub_id);
3379 address start = __ pc();
3380
3381 // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
3382 // Unix: rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
3383 const Register out = rdi;
3384 const Register in = rsi;
3385 const Register offset = r11;
3386 const Register len = rcx;
3387 const Register k = r8;
3388
3389 // Next registers will be saved on stack in mul_add().
3390 const Register tmp1 = r12;
3391 const Register tmp2 = r13;
3392 const Register tmp3 = r14;
3393 const Register tmp4 = r15;
3394 const Register tmp5 = rbx;
3395
3396 BLOCK_COMMENT("Entry:");
3397 __ enter(); // required for proper stackwalking of RuntimeStub frame
3398
3399 setup_arg_regs(4); // out => rdi, in => rsi, offset => rdx
3400 // len => rcx, k => r8
3401 // r9 and r10 may be used to save non-volatile registers
3402 #ifdef _WIN64
3403 // last argument is on stack on Win64
3404 __ movl(k, Address(rsp, 6 * wordSize));
3405 #endif
3406 __ movptr(r11, rdx); // move offset in rdx to offset(r11)
3407 __ mul_add(out, in, offset, len, k, tmp1, tmp2, tmp3, tmp4, tmp5, rdx, rax);
3408
3409 restore_arg_regs();
3410
3411 __ leave(); // required for proper stackwalking of RuntimeStub frame
3412 __ ret(0);
3413
3414 return start;
3415 }
3416
3417 address StubGenerator::generate_bigIntegerRightShift() {
3418 __ align(CodeEntryAlignment);
3419 StubId stub_id = StubId::stubgen_bigIntegerRightShiftWorker_id;
3420 StubCodeMark mark(this, stub_id);
3421 address start = __ pc();
3422
3423 Label Shift512Loop, ShiftTwo, ShiftTwoLoop, ShiftOne, Exit;
3424 // For Unix, the arguments are as follows: rdi, rsi, rdx, rcx, r8.
3425 const Register newArr = rdi;
3426 const Register oldArr = rsi;
3427 const Register newIdx = rdx;
3428 const Register shiftCount = rcx; // It was intentional to have shiftCount in rcx since it is used implicitly for shift.
3429 const Register totalNumIter = r8;
3430
3431 // For windows, we use r9 and r10 as temps to save rdi and rsi. Thus we cannot allocate them for our temps.
3432 // For everything else, we prefer using r9 and r10 since we do not have to save them before use.
3433 const Register tmp1 = r11; // Caller save.
3434 const Register tmp2 = rax; // Caller save.
3435 const Register tmp3 = WIN64_ONLY(r12) NOT_WIN64(r9); // Windows: Callee save. Linux: Caller save.
3436 const Register tmp4 = WIN64_ONLY(r13) NOT_WIN64(r10); // Windows: Callee save. Linux: Caller save.
3437 const Register tmp5 = r14; // Callee save.
3438 const Register tmp6 = r15;
3439
3440 const XMMRegister x0 = xmm0;
3441 const XMMRegister x1 = xmm1;
3442 const XMMRegister x2 = xmm2;
3443
3444 BLOCK_COMMENT("Entry:");
3445 __ enter(); // required for proper stackwalking of RuntimeStub frame
3446
3447 #ifdef _WIN64
3448 setup_arg_regs(4);
3449 // For windows, since last argument is on stack, we need to move it to the appropriate register.
3450 __ movl(totalNumIter, Address(rsp, 6 * wordSize));
3451 // Save callee save registers.
3452 __ push_ppx(tmp3);
3453 __ push_ppx(tmp4);
3454 #endif
3455 __ push_ppx(tmp5);
3456
3457 // Rename temps used throughout the code.
3458 const Register idx = tmp1;
3459 const Register nIdx = tmp2;
3460
3461 __ xorl(idx, idx);
3462
3463 // Start right shift from end of the array.
3464 // For example, if #iteration = 4 and newIdx = 1
3465 // then dest[4] = src[4] >> shiftCount | src[3] <<< (shiftCount - 32)
3466 // if #iteration = 4 and newIdx = 0
3467 // then dest[3] = src[4] >> shiftCount | src[3] <<< (shiftCount - 32)
3468 __ movl(idx, totalNumIter);
3469 __ movl(nIdx, idx);
3470 __ addl(nIdx, newIdx);
3471
3472 // If vectorization is enabled, check if the number of iterations is at least 64
3473 // If not, then go to ShifTwo processing 2 iterations
3474 if (VM_Version::supports_avx512_vbmi2()) {
3475 __ cmpptr(totalNumIter, (AVX3Threshold/64));
3476 __ jcc(Assembler::less, ShiftTwo);
3477
3478 if (AVX3Threshold < 16 * 64) {
3479 __ cmpl(totalNumIter, 16);
3480 __ jcc(Assembler::less, ShiftTwo);
3481 }
3482 __ evpbroadcastd(x0, shiftCount, Assembler::AVX_512bit);
3483 __ subl(idx, 16);
3484 __ subl(nIdx, 16);
3485 __ BIND(Shift512Loop);
3486 __ evmovdqul(x2, Address(oldArr, idx, Address::times_4, 4), Assembler::AVX_512bit);
3487 __ evmovdqul(x1, Address(oldArr, idx, Address::times_4), Assembler::AVX_512bit);
3488 __ vpshrdvd(x2, x1, x0, Assembler::AVX_512bit);
3489 __ evmovdqul(Address(newArr, nIdx, Address::times_4), x2, Assembler::AVX_512bit);
3490 __ subl(nIdx, 16);
3491 __ subl(idx, 16);
3492 __ jcc(Assembler::greaterEqual, Shift512Loop);
3493 __ addl(idx, 16);
3494 __ addl(nIdx, 16);
3495 }
3496 __ BIND(ShiftTwo);
3497 __ cmpl(idx, 2);
3498 __ jcc(Assembler::less, ShiftOne);
3499 __ subl(idx, 2);
3500 __ subl(nIdx, 2);
3501 __ BIND(ShiftTwoLoop);
3502 __ movl(tmp5, Address(oldArr, idx, Address::times_4, 8));
3503 __ movl(tmp4, Address(oldArr, idx, Address::times_4, 4));
3504 __ movl(tmp3, Address(oldArr, idx, Address::times_4));
3505 __ shrdl(tmp5, tmp4);
3506 __ shrdl(tmp4, tmp3);
3507 __ movl(Address(newArr, nIdx, Address::times_4, 4), tmp5);
3508 __ movl(Address(newArr, nIdx, Address::times_4), tmp4);
3509 __ subl(nIdx, 2);
3510 __ subl(idx, 2);
3511 __ jcc(Assembler::greaterEqual, ShiftTwoLoop);
3512 __ addl(idx, 2);
3513 __ addl(nIdx, 2);
3514
3515 // Do the last iteration
3516 __ BIND(ShiftOne);
3517 __ cmpl(idx, 1);
3518 __ jcc(Assembler::less, Exit);
3519 __ subl(idx, 1);
3520 __ subl(nIdx, 1);
3521 __ movl(tmp4, Address(oldArr, idx, Address::times_4, 4));
3522 __ movl(tmp3, Address(oldArr, idx, Address::times_4));
3523 __ shrdl(tmp4, tmp3);
3524 __ movl(Address(newArr, nIdx, Address::times_4), tmp4);
3525 __ BIND(Exit);
3526 __ vzeroupper();
3527 // Restore callee save registers.
3528 __ pop_ppx(tmp5);
3529 #ifdef _WIN64
3530 __ pop_ppx(tmp4);
3531 __ pop_ppx(tmp3);
3532 restore_arg_regs();
3533 #endif
3534 __ leave(); // required for proper stackwalking of RuntimeStub frame
3535 __ ret(0);
3536
3537 return start;
3538 }
3539
3540 /**
3541 * Arguments:
3542 *
3543 * Input:
3544 * c_rarg0 - newArr address
3545 * c_rarg1 - oldArr address
3546 * c_rarg2 - newIdx
3547 * c_rarg3 - shiftCount
3548 * not Win64
3549 * c_rarg4 - numIter
3550 * Win64
3551 * rsp40 - numIter
3552 */
3553 address StubGenerator::generate_bigIntegerLeftShift() {
3554 __ align(CodeEntryAlignment);
3555 StubId stub_id = StubId::stubgen_bigIntegerLeftShiftWorker_id;
3556 StubCodeMark mark(this, stub_id);
3557 address start = __ pc();
3558
3559 Label Shift512Loop, ShiftTwo, ShiftTwoLoop, ShiftOne, Exit;
3560 // For Unix, the arguments are as follows: rdi, rsi, rdx, rcx, r8.
3561 const Register newArr = rdi;
3562 const Register oldArr = rsi;
3563 const Register newIdx = rdx;
3564 const Register shiftCount = rcx; // It was intentional to have shiftCount in rcx since it is used implicitly for shift.
3565 const Register totalNumIter = r8;
3566 // For windows, we use r9 and r10 as temps to save rdi and rsi. Thus we cannot allocate them for our temps.
3567 // For everything else, we prefer using r9 and r10 since we do not have to save them before use.
3568 const Register tmp1 = r11; // Caller save.
3569 const Register tmp2 = rax; // Caller save.
3570 const Register tmp3 = WIN64_ONLY(r12) NOT_WIN64(r9); // Windows: Callee save. Linux: Caller save.
3571 const Register tmp4 = WIN64_ONLY(r13) NOT_WIN64(r10); // Windows: Callee save. Linux: Caller save.
3572 const Register tmp5 = r14; // Callee save.
3573
3574 const XMMRegister x0 = xmm0;
3575 const XMMRegister x1 = xmm1;
3576 const XMMRegister x2 = xmm2;
3577 BLOCK_COMMENT("Entry:");
3578 __ enter(); // required for proper stackwalking of RuntimeStub frame
3579
3580 #ifdef _WIN64
3581 setup_arg_regs(4);
3582 // For windows, since last argument is on stack, we need to move it to the appropriate register.
3583 __ movl(totalNumIter, Address(rsp, 6 * wordSize));
3584 // Save callee save registers.
3585 __ push_ppx(tmp3);
3586 __ push_ppx(tmp4);
3587 #endif
3588 __ push_ppx(tmp5);
3589
3590 // Rename temps used throughout the code
3591 const Register idx = tmp1;
3592 const Register numIterTmp = tmp2;
3593
3594 // Start idx from zero.
3595 __ xorl(idx, idx);
3596 // Compute interior pointer for new array. We do this so that we can use same index for both old and new arrays.
3597 __ lea(newArr, Address(newArr, newIdx, Address::times_4));
3598 __ movl(numIterTmp, totalNumIter);
3599
3600 // If vectorization is enabled, check if the number of iterations is at least 64
3601 // If not, then go to ShiftTwo shifting two numbers at a time
3602 if (VM_Version::supports_avx512_vbmi2()) {
3603 __ cmpl(totalNumIter, (AVX3Threshold/64));
3604 __ jcc(Assembler::less, ShiftTwo);
3605
3606 if (AVX3Threshold < 16 * 64) {
3607 __ cmpl(totalNumIter, 16);
3608 __ jcc(Assembler::less, ShiftTwo);
3609 }
3610 __ evpbroadcastd(x0, shiftCount, Assembler::AVX_512bit);
3611 __ subl(numIterTmp, 16);
3612 __ BIND(Shift512Loop);
3613 __ evmovdqul(x1, Address(oldArr, idx, Address::times_4), Assembler::AVX_512bit);
3614 __ evmovdqul(x2, Address(oldArr, idx, Address::times_4, 0x4), Assembler::AVX_512bit);
3615 __ vpshldvd(x1, x2, x0, Assembler::AVX_512bit);
3616 __ evmovdqul(Address(newArr, idx, Address::times_4), x1, Assembler::AVX_512bit);
3617 __ addl(idx, 16);
3618 __ subl(numIterTmp, 16);
3619 __ jcc(Assembler::greaterEqual, Shift512Loop);
3620 __ addl(numIterTmp, 16);
3621 }
3622 __ BIND(ShiftTwo);
3623 __ cmpl(totalNumIter, 1);
3624 __ jcc(Assembler::less, Exit);
3625 __ movl(tmp3, Address(oldArr, idx, Address::times_4));
3626 __ subl(numIterTmp, 2);
3627 __ jcc(Assembler::less, ShiftOne);
3628
3629 __ BIND(ShiftTwoLoop);
3630 __ movl(tmp4, Address(oldArr, idx, Address::times_4, 0x4));
3631 __ movl(tmp5, Address(oldArr, idx, Address::times_4, 0x8));
3632 __ shldl(tmp3, tmp4);
3633 __ shldl(tmp4, tmp5);
3634 __ movl(Address(newArr, idx, Address::times_4), tmp3);
3635 __ movl(Address(newArr, idx, Address::times_4, 0x4), tmp4);
3636 __ movl(tmp3, tmp5);
3637 __ addl(idx, 2);
3638 __ subl(numIterTmp, 2);
3639 __ jcc(Assembler::greaterEqual, ShiftTwoLoop);
3640
3641 // Do the last iteration
3642 __ BIND(ShiftOne);
3643 __ addl(numIterTmp, 2);
3644 __ cmpl(numIterTmp, 1);
3645 __ jcc(Assembler::less, Exit);
3646 __ movl(tmp4, Address(oldArr, idx, Address::times_4, 0x4));
3647 __ shldl(tmp3, tmp4);
3648 __ movl(Address(newArr, idx, Address::times_4), tmp3);
3649
3650 __ BIND(Exit);
3651 __ vzeroupper();
3652 // Restore callee save registers.
3653 __ pop_ppx(tmp5);
3654 #ifdef _WIN64
3655 __ pop_ppx(tmp4);
3656 __ pop_ppx(tmp3);
3657 restore_arg_regs();
3658 #endif
3659 __ leave(); // required for proper stackwalking of RuntimeStub frame
3660 __ ret(0);
3661
3662 return start;
3663 }
3664
3665 void StubGenerator::generate_libm_stubs() {
3666 if (UseLibmIntrinsic && InlineIntrinsics) {
3667 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dsin)) {
3668 StubRoutines::_dsin = generate_libmSin(); // from stubGenerator_x86_64_sin.cpp
3669 }
3670 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dcos)) {
3671 StubRoutines::_dcos = generate_libmCos(); // from stubGenerator_x86_64_cos.cpp
3672 }
3673 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dtan)) {
3674 StubRoutines::_dtan = generate_libmTan(); // from stubGenerator_x86_64_tan.cpp
3675 }
3676 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dsinh)) {
3677 StubRoutines::_dsinh = generate_libmSinh(); // from stubGenerator_x86_64_sinh.cpp
3678 }
3679 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dtanh)) {
3680 StubRoutines::_dtanh = generate_libmTanh(); // from stubGenerator_x86_64_tanh.cpp
3681 }
3682 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dcbrt)) {
3683 StubRoutines::_dcbrt = generate_libmCbrt(); // from stubGenerator_x86_64_cbrt.cpp
3684 }
3685 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dexp)) {
3686 StubRoutines::_dexp = generate_libmExp(); // from stubGenerator_x86_64_exp.cpp
3687 }
3688 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dpow)) {
3689 StubRoutines::_dpow = generate_libmPow(); // from stubGenerator_x86_64_pow.cpp
3690 }
3691 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dlog)) {
3692 StubRoutines::_dlog = generate_libmLog(); // from stubGenerator_x86_64_log.cpp
3693 }
3694 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dlog10)) {
3695 StubRoutines::_dlog10 = generate_libmLog10(); // from stubGenerator_x86_64_log.cpp
3696 }
3697 }
3698 }
3699
3700 /**
3701 * Arguments:
3702 *
3703 * Input:
3704 * c_rarg0 - float16 jshort
3705 *
3706 * Output:
3707 * xmm0 - float
3708 */
3709 address StubGenerator::generate_float16ToFloat() {
3710 StubId stub_id = StubId::stubgen_hf2f_id;
3711 StubCodeMark mark(this, stub_id);
3712
3713 address start = __ pc();
3714
3715 BLOCK_COMMENT("Entry:");
3716 // No need for RuntimeStub frame since it is called only during JIT compilation
3717
3718 // Load value into xmm0 and convert
3719 __ flt16_to_flt(xmm0, c_rarg0);
3720
3721 __ ret(0);
3722
3723 return start;
3724 }
3725
3726 /**
3727 * Arguments:
3728 *
3729 * Input:
3730 * xmm0 - float
3731 *
3732 * Output:
3733 * rax - float16 jshort
3734 */
3735 address StubGenerator::generate_floatToFloat16() {
3736 StubId stub_id = StubId::stubgen_f2hf_id;
3737 StubCodeMark mark(this, stub_id);
3738
3739 address start = __ pc();
3740
3741 BLOCK_COMMENT("Entry:");
3742 // No need for RuntimeStub frame since it is called only during JIT compilation
3743
3744 // Convert and put result into rax
3745 __ flt_to_flt16(rax, xmm0, xmm1);
3746
3747 __ ret(0);
3748
3749 return start;
3750 }
3751
3752 address StubGenerator::generate_cont_thaw(StubId stub_id) {
3753 if (!Continuations::enabled()) return nullptr;
3754
3755 bool return_barrier;
3756 bool return_barrier_exception;
3757 Continuation::thaw_kind kind;
3758
3759 switch (stub_id) {
3760 case StubId::stubgen_cont_thaw_id:
3761 return_barrier = false;
3762 return_barrier_exception = false;
3763 kind = Continuation::thaw_top;
3764 break;
3765 case StubId::stubgen_cont_returnBarrier_id:
3766 return_barrier = true;
3767 return_barrier_exception = false;
3768 kind = Continuation::thaw_return_barrier;
3769 break;
3770 case StubId::stubgen_cont_returnBarrierExc_id:
3771 return_barrier = true;
3772 return_barrier_exception = true;
3773 kind = Continuation::thaw_return_barrier_exception;
3774 break;
3775 default:
3776 ShouldNotReachHere();
3777 }
3778 StubCodeMark mark(this, stub_id);
3779 address start = __ pc();
3780
3781 // TODO: Handle Valhalla return types. May require generating different return barriers.
3782
3783 if (!return_barrier) {
3784 // Pop return address. If we don't do this, we get a drift,
3785 // where the bottom-most frozen frame continuously grows.
3786 __ pop(c_rarg3);
3787 } else {
3788 __ movptr(rsp, Address(r15_thread, JavaThread::cont_entry_offset()));
3789 }
3790
3791 #ifdef ASSERT
3792 {
3793 Label L_good_sp;
3794 __ cmpptr(rsp, Address(r15_thread, JavaThread::cont_entry_offset()));
3795 __ jcc(Assembler::equal, L_good_sp);
3796 __ stop("Incorrect rsp at thaw entry");
3797 __ BIND(L_good_sp);
3798 }
3799 #endif // ASSERT
3800
3801 if (return_barrier) {
3802 // Preserve possible return value from a method returning to the return barrier.
3803 __ push_ppx(rax);
3804 __ push_d(xmm0);
3805 }
3806
3807 __ movptr(c_rarg0, r15_thread);
3808 __ movptr(c_rarg1, (return_barrier ? 1 : 0));
3809 __ call_VM_leaf(CAST_FROM_FN_PTR(address, Continuation::prepare_thaw), 2);
3810 __ movptr(rbx, rax);
3811
3812 if (return_barrier) {
3813 // Restore return value from a method returning to the return barrier.
3814 // No safepoint in the call to thaw, so even an oop return value should be OK.
3815 __ pop_d(xmm0);
3816 __ pop_ppx(rax);
3817 }
3818
3819 #ifdef ASSERT
3820 {
3821 Label L_good_sp;
3822 __ cmpptr(rsp, Address(r15_thread, JavaThread::cont_entry_offset()));
3823 __ jcc(Assembler::equal, L_good_sp);
3824 __ stop("Incorrect rsp after prepare thaw");
3825 __ BIND(L_good_sp);
3826 }
3827 #endif // ASSERT
3828
3829 // rbx contains the size of the frames to thaw, 0 if overflow or no more frames
3830 Label L_thaw_success;
3831 __ testptr(rbx, rbx);
3832 __ jccb(Assembler::notZero, L_thaw_success);
3833 __ jump(RuntimeAddress(SharedRuntime::throw_StackOverflowError_entry()));
3834 __ bind(L_thaw_success);
3835
3836 // Make room for the thawed frames and align the stack.
3837 __ subptr(rsp, rbx);
3838 __ andptr(rsp, -StackAlignmentInBytes);
3839
3840 if (return_barrier) {
3841 // Preserve possible return value from a method returning to the return barrier. (Again.)
3842 __ push_ppx(rax);
3843 __ push_d(xmm0);
3844 }
3845
3846 // If we want, we can templatize thaw by kind, and have three different entries.
3847 __ movptr(c_rarg0, r15_thread);
3848 __ movptr(c_rarg1, kind);
3849 __ call_VM_leaf(Continuation::thaw_entry(), 2);
3850 __ movptr(rbx, rax);
3851
3852 if (return_barrier) {
3853 // Restore return value from a method returning to the return barrier. (Again.)
3854 // No safepoint in the call to thaw, so even an oop return value should be OK.
3855 __ pop_d(xmm0);
3856 __ pop_ppx(rax);
3857 } else {
3858 // Return 0 (success) from doYield.
3859 __ xorptr(rax, rax);
3860 }
3861
3862 // After thawing, rbx is the SP of the yielding frame.
3863 // Move there, and then to saved RBP slot.
3864 __ movptr(rsp, rbx);
3865 __ subptr(rsp, 2*wordSize);
3866
3867 if (return_barrier_exception) {
3868 __ movptr(c_rarg0, r15_thread);
3869 __ movptr(c_rarg1, Address(rsp, wordSize)); // return address
3870
3871 // rax still holds the original exception oop, save it before the call
3872 __ push_ppx(rax);
3873
3874 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), 2);
3875 __ movptr(rbx, rax);
3876
3877 // Continue at exception handler:
3878 // rax: exception oop
3879 // rbx: exception handler
3880 // rdx: exception pc
3881 __ pop_ppx(rax);
3882 __ verify_oop(rax);
3883 __ pop(rbp); // pop out RBP here too
3884 __ pop(rdx);
3885 __ jmp(rbx);
3886 } else {
3887 // We are "returning" into the topmost thawed frame; see Thaw::push_return_frame
3888 __ pop(rbp);
3889 __ ret(0);
3890 }
3891
3892 return start;
3893 }
3894
3895 address StubGenerator::generate_cont_thaw() {
3896 return generate_cont_thaw(StubId::stubgen_cont_thaw_id);
3897 }
3898
3899 // TODO: will probably need multiple return barriers depending on return type
3900
3901 address StubGenerator::generate_cont_returnBarrier() {
3902 return generate_cont_thaw(StubId::stubgen_cont_returnBarrier_id);
3903 }
3904
3905 address StubGenerator::generate_cont_returnBarrier_exception() {
3906 return generate_cont_thaw(StubId::stubgen_cont_returnBarrierExc_id);
3907 }
3908
3909 address StubGenerator::generate_cont_preempt_stub() {
3910 if (!Continuations::enabled()) return nullptr;
3911 StubId stub_id = StubId::stubgen_cont_preempt_id;
3912 StubCodeMark mark(this, stub_id);
3913 address start = __ pc();
3914
3915 __ reset_last_Java_frame(true);
3916
3917 // Set rsp to enterSpecial frame, i.e. remove all frames copied into the heap.
3918 __ movptr(rsp, Address(r15_thread, JavaThread::cont_entry_offset()));
3919
3920 Label preemption_cancelled;
3921 __ movbool(rscratch1, Address(r15_thread, JavaThread::preemption_cancelled_offset()));
3922 __ testbool(rscratch1);
3923 __ jcc(Assembler::notZero, preemption_cancelled);
3924
3925 // Remove enterSpecial frame from the stack and return to Continuation.run() to unmount.
3926 SharedRuntime::continuation_enter_cleanup(_masm);
3927 __ pop(rbp);
3928 __ ret(0);
3929
3930 // We acquired the monitor after freezing the frames so call thaw to continue execution.
3931 __ bind(preemption_cancelled);
3932 __ movbool(Address(r15_thread, JavaThread::preemption_cancelled_offset()), false);
3933 __ lea(rbp, Address(rsp, checked_cast<int32_t>(ContinuationEntry::size())));
3934 __ movptr(rscratch1, ExternalAddress(ContinuationEntry::thaw_call_pc_address()));
3935 __ jmp(rscratch1);
3936
3937 return start;
3938 }
3939
3940 // exception handler for upcall stubs
3941 address StubGenerator::generate_upcall_stub_exception_handler() {
3942 StubId stub_id = StubId::stubgen_upcall_stub_exception_handler_id;
3943 StubCodeMark mark(this, stub_id);
3944 address start = __ pc();
3945
3946 // native caller has no idea how to handle exceptions
3947 // we just crash here. Up to callee to catch exceptions.
3948 __ verify_oop(rax);
3949 __ vzeroupper();
3950 __ mov(c_rarg0, rax);
3951 __ andptr(rsp, -StackAlignmentInBytes); // align stack as required by ABI
3952 __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
3953 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, UpcallLinker::handle_uncaught_exception)));
3954 __ should_not_reach_here();
3955
3956 return start;
3957 }
3958
3959 // load Method* target of MethodHandle
3960 // j_rarg0 = jobject receiver
3961 // rbx = result
3962 address StubGenerator::generate_upcall_stub_load_target() {
3963 StubId stub_id = StubId::stubgen_upcall_stub_load_target_id;
3964 StubCodeMark mark(this, stub_id);
3965 address start = __ pc();
3966
3967 __ resolve_global_jobject(j_rarg0, rscratch1);
3968 // Load target method from receiver
3969 __ load_heap_oop(rbx, Address(j_rarg0, java_lang_invoke_MethodHandle::form_offset()), rscratch1);
3970 __ load_heap_oop(rbx, Address(rbx, java_lang_invoke_LambdaForm::vmentry_offset()), rscratch1);
3971 __ load_heap_oop(rbx, Address(rbx, java_lang_invoke_MemberName::method_offset()), rscratch1);
3972 __ access_load_at(T_ADDRESS, IN_HEAP, rbx,
3973 Address(rbx, java_lang_invoke_ResolvedMethodName::vmtarget_offset()),
3974 noreg);
3975 __ movptr(Address(r15_thread, JavaThread::callee_target_offset()), rbx); // just in case callee is deoptimized
3976
3977 __ ret(0);
3978
3979 return start;
3980 }
3981
3982 void StubGenerator::generate_lookup_secondary_supers_table_stub() {
3983 StubId stub_id = StubId::stubgen_lookup_secondary_supers_table_id;
3984 StubCodeMark mark(this, stub_id);
3985
3986 const Register
3987 r_super_klass = rax,
3988 r_sub_klass = rsi,
3989 result = rdi;
3990
3991 for (int slot = 0; slot < Klass::SECONDARY_SUPERS_TABLE_SIZE; slot++) {
3992 StubRoutines::_lookup_secondary_supers_table_stubs[slot] = __ pc();
3993 __ lookup_secondary_supers_table_const(r_sub_klass, r_super_klass,
3994 rdx, rcx, rbx, r11, // temps
3995 result,
3996 slot);
3997 __ ret(0);
3998 }
3999 }
4000
4001 // Slow path implementation for UseSecondarySupersTable.
4002 address StubGenerator::generate_lookup_secondary_supers_table_slow_path_stub() {
4003 StubId stub_id = StubId::stubgen_lookup_secondary_supers_table_slow_path_id;
4004 StubCodeMark mark(this, stub_id);
4005
4006 address start = __ pc();
4007
4008 const Register
4009 r_super_klass = rax,
4010 r_array_base = rbx,
4011 r_array_index = rdx,
4012 r_sub_klass = rsi,
4013 r_bitmap = r11,
4014 result = rdi;
4015
4016 Label L_success;
4017 __ lookup_secondary_supers_table_slow_path(r_super_klass, r_array_base, r_array_index, r_bitmap,
4018 rcx, rdi, // temps
4019 &L_success);
4020 // bind(L_failure);
4021 __ movl(result, 1);
4022 __ ret(0);
4023
4024 __ bind(L_success);
4025 __ movl(result, 0);
4026 __ ret(0);
4027
4028 return start;
4029 }
4030
4031 void StubGenerator::create_control_words() {
4032 // Round to nearest, 64-bit mode, exceptions masked, flags specialized
4033 StubRoutines::x86::_mxcsr_std = EnableX86ECoreOpts ? 0x1FBF : 0x1F80;
4034 // Round to zero, 64-bit mode, exceptions masked, flags specialized
4035 StubRoutines::x86::_mxcsr_rz = EnableX86ECoreOpts ? 0x7FBF : 0x7F80;
4036 }
4037
4038 // Initialization
4039 void StubGenerator::generate_preuniverse_stubs() {
4040 // atomic calls
4041 StubRoutines::_fence_entry = generate_orderaccess_fence();
4042 }
4043
4044 void StubGenerator::generate_initial_stubs() {
4045 // Generates all stubs and initializes the entry points
4046
4047 // This platform-specific settings are needed by generate_call_stub()
4048 create_control_words();
4049
4050 // Initialize table for unsafe copy memeory check.
4051 if (UnsafeMemoryAccess::_table == nullptr) {
4052 UnsafeMemoryAccess::create_table(16 + 4); // 16 for copyMemory; 4 for setMemory
4053 }
4054
4055 // entry points that exist in all platforms Note: This is code
4056 // that could be shared among different platforms - however the
4057 // benefit seems to be smaller than the disadvantage of having a
4058 // much more complicated generator structure. See also comment in
4059 // stubRoutines.hpp.
4060
4061 StubRoutines::_forward_exception_entry = generate_forward_exception();
4062
4063 StubRoutines::_call_stub_entry =
4064 generate_call_stub(StubRoutines::_call_stub_return_address);
4065
4066 // is referenced by megamorphic call
4067 StubRoutines::_catch_exception_entry = generate_catch_exception();
4068
4069 // platform dependent
4070 StubRoutines::x86::_verify_mxcsr_entry = generate_verify_mxcsr();
4071
4072 StubRoutines::x86::_f2i_fixup = generate_f2i_fixup();
4073 StubRoutines::x86::_f2l_fixup = generate_f2l_fixup();
4074 StubRoutines::x86::_d2i_fixup = generate_d2i_fixup();
4075 StubRoutines::x86::_d2l_fixup = generate_d2l_fixup();
4076
4077 StubRoutines::x86::_float_sign_mask = generate_fp_mask(StubId::stubgen_float_sign_mask_id, 0x7FFFFFFF7FFFFFFF);
4078 StubRoutines::x86::_float_sign_flip = generate_fp_mask(StubId::stubgen_float_sign_flip_id, 0x8000000080000000);
4079 StubRoutines::x86::_double_sign_mask = generate_fp_mask(StubId::stubgen_double_sign_mask_id, 0x7FFFFFFFFFFFFFFF);
4080 StubRoutines::x86::_double_sign_flip = generate_fp_mask(StubId::stubgen_double_sign_flip_id, 0x8000000000000000);
4081
4082 if (UseCRC32Intrinsics) {
4083 StubRoutines::_updateBytesCRC32 = generate_updateBytesCRC32();
4084 }
4085
4086 if (UseCRC32CIntrinsics) {
4087 bool supports_clmul = VM_Version::supports_clmul();
4088 StubRoutines::_updateBytesCRC32C = generate_updateBytesCRC32C(supports_clmul);
4089 }
4090
4091 if (VM_Version::supports_float16()) {
4092 // For results consistency both intrinsics should be enabled.
4093 // vmIntrinsics checks InlineIntrinsics flag, no need to check it here.
4094 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_float16ToFloat) &&
4095 vmIntrinsics::is_intrinsic_available(vmIntrinsics::_floatToFloat16)) {
4096 StubRoutines::_hf2f = generate_float16ToFloat();
4097 StubRoutines::_f2hf = generate_floatToFloat16();
4098 }
4099 }
4100
4101 generate_libm_stubs();
4102
4103 StubRoutines::_fmod = generate_libmFmod(); // from stubGenerator_x86_64_fmod.cpp
4104 }
4105
4106 void StubGenerator::generate_continuation_stubs() {
4107 // Continuation stubs:
4108 StubRoutines::_cont_thaw = generate_cont_thaw();
4109 StubRoutines::_cont_returnBarrier = generate_cont_returnBarrier();
4110 StubRoutines::_cont_returnBarrierExc = generate_cont_returnBarrier_exception();
4111 StubRoutines::_cont_preempt_stub = generate_cont_preempt_stub();
4112 }
4113
4114 void StubGenerator::generate_final_stubs() {
4115 // Generates the rest of stubs and initializes the entry points
4116
4117 // support for verify_oop (must happen after universe_init)
4118 if (VerifyOops) {
4119 StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop();
4120 }
4121
4122 // arraycopy stubs used by compilers
4123 generate_arraycopy_stubs();
4124
4125 StubRoutines::_method_entry_barrier = generate_method_entry_barrier();
4126
4127 #ifdef COMPILER2
4128 if (UseSecondarySupersTable) {
4129 StubRoutines::_lookup_secondary_supers_table_slow_path_stub = generate_lookup_secondary_supers_table_slow_path_stub();
4130 if (! InlineSecondarySupersTest) {
4131 generate_lookup_secondary_supers_table_stub();
4132 }
4133 }
4134 #endif // COMPILER2
4135
4136 if (UseVectorizedMismatchIntrinsic) {
4137 StubRoutines::_vectorizedMismatch = generate_vectorizedMismatch();
4138 }
4139
4140 StubRoutines::_upcall_stub_exception_handler = generate_upcall_stub_exception_handler();
4141 StubRoutines::_upcall_stub_load_target = generate_upcall_stub_load_target();
4142 }
4143
4144 void StubGenerator::generate_compiler_stubs() {
4145 #if COMPILER2_OR_JVMCI
4146
4147 // Entry points that are C2 compiler specific.
4148
4149 StubRoutines::x86::_vector_float_sign_mask = generate_vector_mask(StubId::stubgen_vector_float_sign_mask_id, 0x7FFFFFFF7FFFFFFF);
4150 StubRoutines::x86::_vector_float_sign_flip = generate_vector_mask(StubId::stubgen_vector_float_sign_flip_id, 0x8000000080000000);
4151 StubRoutines::x86::_vector_double_sign_mask = generate_vector_mask(StubId::stubgen_vector_double_sign_mask_id, 0x7FFFFFFFFFFFFFFF);
4152 StubRoutines::x86::_vector_double_sign_flip = generate_vector_mask(StubId::stubgen_vector_double_sign_flip_id, 0x8000000000000000);
4153 StubRoutines::x86::_vector_all_bits_set = generate_vector_mask(StubId::stubgen_vector_all_bits_set_id, 0xFFFFFFFFFFFFFFFF);
4154 StubRoutines::x86::_vector_int_mask_cmp_bits = generate_vector_mask(StubId::stubgen_vector_int_mask_cmp_bits_id, 0x0000000100000001);
4155 StubRoutines::x86::_vector_short_to_byte_mask = generate_vector_mask(StubId::stubgen_vector_short_to_byte_mask_id, 0x00ff00ff00ff00ff);
4156 StubRoutines::x86::_vector_byte_perm_mask = generate_vector_byte_perm_mask();
4157 StubRoutines::x86::_vector_int_to_byte_mask = generate_vector_mask(StubId::stubgen_vector_int_to_byte_mask_id, 0x000000ff000000ff);
4158 StubRoutines::x86::_vector_int_to_short_mask = generate_vector_mask(StubId::stubgen_vector_int_to_short_mask_id, 0x0000ffff0000ffff);
4159 StubRoutines::x86::_vector_32_bit_mask = generate_vector_custom_i32(StubId::stubgen_vector_32_bit_mask_id, Assembler::AVX_512bit,
4160 0xFFFFFFFF, 0, 0, 0);
4161 StubRoutines::x86::_vector_64_bit_mask = generate_vector_custom_i32(StubId::stubgen_vector_64_bit_mask_id, Assembler::AVX_512bit,
4162 0xFFFFFFFF, 0xFFFFFFFF, 0, 0);
4163 StubRoutines::x86::_vector_int_shuffle_mask = generate_vector_mask(StubId::stubgen_vector_int_shuffle_mask_id, 0x0302010003020100);
4164 StubRoutines::x86::_vector_byte_shuffle_mask = generate_vector_byte_shuffle_mask();
4165 StubRoutines::x86::_vector_short_shuffle_mask = generate_vector_mask(StubId::stubgen_vector_short_shuffle_mask_id, 0x0100010001000100);
4166 StubRoutines::x86::_vector_long_shuffle_mask = generate_vector_mask(StubId::stubgen_vector_long_shuffle_mask_id, 0x0000000100000000);
4167 StubRoutines::x86::_vector_long_sign_mask = generate_vector_mask(StubId::stubgen_vector_long_sign_mask_id, 0x8000000000000000);
4168 StubRoutines::x86::_vector_iota_indices = generate_iota_indices();
4169 StubRoutines::x86::_vector_count_leading_zeros_lut = generate_count_leading_zeros_lut();
4170 StubRoutines::x86::_vector_reverse_bit_lut = generate_vector_reverse_bit_lut();
4171 StubRoutines::x86::_vector_reverse_byte_perm_mask_long = generate_vector_reverse_byte_perm_mask_long();
4172 StubRoutines::x86::_vector_reverse_byte_perm_mask_int = generate_vector_reverse_byte_perm_mask_int();
4173 StubRoutines::x86::_vector_reverse_byte_perm_mask_short = generate_vector_reverse_byte_perm_mask_short();
4174
4175 if (VM_Version::supports_avx2() && !VM_Version::supports_avx512vl()) {
4176 StubRoutines::x86::_compress_perm_table32 = generate_compress_perm_table(StubId::stubgen_compress_perm_table32_id);
4177 StubRoutines::x86::_compress_perm_table64 = generate_compress_perm_table(StubId::stubgen_compress_perm_table64_id);
4178 StubRoutines::x86::_expand_perm_table32 = generate_expand_perm_table(StubId::stubgen_expand_perm_table32_id);
4179 StubRoutines::x86::_expand_perm_table64 = generate_expand_perm_table(StubId::stubgen_expand_perm_table64_id);
4180 }
4181
4182 if (VM_Version::supports_avx2() && !VM_Version::supports_avx512_vpopcntdq()) {
4183 // lut implementation influenced by counting 1s algorithm from section 5-1 of Hackers' Delight.
4184 StubRoutines::x86::_vector_popcount_lut = generate_popcount_avx_lut();
4185 }
4186
4187 generate_aes_stubs();
4188
4189 generate_ghash_stubs();
4190
4191 generate_chacha_stubs();
4192
4193 generate_kyber_stubs();
4194
4195 generate_dilithium_stubs();
4196
4197 generate_sha3_stubs();
4198
4199 // data cache line writeback
4200 StubRoutines::_data_cache_writeback = generate_data_cache_writeback();
4201 StubRoutines::_data_cache_writeback_sync = generate_data_cache_writeback_sync();
4202
4203 #ifdef COMPILER2
4204 if ((UseAVX == 2) && EnableX86ECoreOpts) {
4205 generate_string_indexof(StubRoutines::_string_indexof_array);
4206 }
4207 #endif
4208
4209 if (UseAdler32Intrinsics) {
4210 StubRoutines::_updateBytesAdler32 = generate_updateBytesAdler32();
4211 }
4212
4213 if (UsePoly1305Intrinsics) {
4214 StubRoutines::_poly1305_processBlocks = generate_poly1305_processBlocks();
4215 }
4216
4217 if (UseIntPolyIntrinsics) {
4218 StubRoutines::_intpoly_montgomeryMult_P256 = generate_intpoly_montgomeryMult_P256();
4219 StubRoutines::_intpoly_assign = generate_intpoly_assign();
4220 }
4221
4222 if (UseMD5Intrinsics) {
4223 StubRoutines::_md5_implCompress = generate_md5_implCompress(StubId::stubgen_md5_implCompress_id);
4224 StubRoutines::_md5_implCompressMB = generate_md5_implCompress(StubId::stubgen_md5_implCompressMB_id);
4225 }
4226
4227 if (UseSHA1Intrinsics) {
4228 StubRoutines::x86::_upper_word_mask_addr = generate_upper_word_mask();
4229 StubRoutines::x86::_shuffle_byte_flip_mask_addr = generate_shuffle_byte_flip_mask();
4230 StubRoutines::_sha1_implCompress = generate_sha1_implCompress(StubId::stubgen_sha1_implCompress_id);
4231 StubRoutines::_sha1_implCompressMB = generate_sha1_implCompress(StubId::stubgen_sha1_implCompressMB_id);
4232 }
4233
4234 if (UseSHA256Intrinsics) {
4235 StubRoutines::x86::_k256_adr = (address)StubRoutines::x86::_k256;
4236 char* dst = (char*)StubRoutines::x86::_k256_W;
4237 char* src = (char*)StubRoutines::x86::_k256;
4238 for (int ii = 0; ii < 16; ++ii) {
4239 memcpy(dst + 32 * ii, src + 16 * ii, 16);
4240 memcpy(dst + 32 * ii + 16, src + 16 * ii, 16);
4241 }
4242 StubRoutines::x86::_k256_W_adr = (address)StubRoutines::x86::_k256_W;
4243 StubRoutines::x86::_pshuffle_byte_flip_mask_addr = generate_pshuffle_byte_flip_mask();
4244 StubRoutines::_sha256_implCompress = generate_sha256_implCompress(StubId::stubgen_sha256_implCompress_id);
4245 StubRoutines::_sha256_implCompressMB = generate_sha256_implCompress(StubId::stubgen_sha256_implCompressMB_id);
4246 }
4247
4248 if (UseSHA512Intrinsics) {
4249 StubRoutines::x86::_k512_W_addr = (address)StubRoutines::x86::_k512_W;
4250 StubRoutines::x86::_pshuffle_byte_flip_mask_addr_sha512 = generate_pshuffle_byte_flip_mask_sha512();
4251 StubRoutines::_sha512_implCompress = generate_sha512_implCompress(StubId::stubgen_sha512_implCompress_id);
4252 StubRoutines::_sha512_implCompressMB = generate_sha512_implCompress(StubId::stubgen_sha512_implCompressMB_id);
4253 }
4254
4255 if (UseBASE64Intrinsics) {
4256 if(VM_Version::supports_avx2()) {
4257 StubRoutines::x86::_avx2_shuffle_base64 = base64_avx2_shuffle_addr();
4258 StubRoutines::x86::_avx2_input_mask_base64 = base64_avx2_input_mask_addr();
4259 StubRoutines::x86::_avx2_lut_base64 = base64_avx2_lut_addr();
4260 StubRoutines::x86::_avx2_decode_tables_base64 = base64_AVX2_decode_tables_addr();
4261 StubRoutines::x86::_avx2_decode_lut_tables_base64 = base64_AVX2_decode_LUT_tables_addr();
4262 }
4263 StubRoutines::x86::_encoding_table_base64 = base64_encoding_table_addr();
4264 if (VM_Version::supports_avx512_vbmi()) {
4265 StubRoutines::x86::_shuffle_base64 = base64_shuffle_addr();
4266 StubRoutines::x86::_lookup_lo_base64 = base64_vbmi_lookup_lo_addr();
4267 StubRoutines::x86::_lookup_hi_base64 = base64_vbmi_lookup_hi_addr();
4268 StubRoutines::x86::_lookup_lo_base64url = base64_vbmi_lookup_lo_url_addr();
4269 StubRoutines::x86::_lookup_hi_base64url = base64_vbmi_lookup_hi_url_addr();
4270 StubRoutines::x86::_pack_vec_base64 = base64_vbmi_pack_vec_addr();
4271 StubRoutines::x86::_join_0_1_base64 = base64_vbmi_join_0_1_addr();
4272 StubRoutines::x86::_join_1_2_base64 = base64_vbmi_join_1_2_addr();
4273 StubRoutines::x86::_join_2_3_base64 = base64_vbmi_join_2_3_addr();
4274 }
4275 StubRoutines::x86::_decoding_table_base64 = base64_decoding_table_addr();
4276 StubRoutines::_base64_encodeBlock = generate_base64_encodeBlock();
4277 StubRoutines::_base64_decodeBlock = generate_base64_decodeBlock();
4278 }
4279
4280 #ifdef COMPILER2
4281 if (UseMultiplyToLenIntrinsic) {
4282 StubRoutines::_multiplyToLen = generate_multiplyToLen();
4283 }
4284 if (UseSquareToLenIntrinsic) {
4285 StubRoutines::_squareToLen = generate_squareToLen();
4286 }
4287 if (UseMulAddIntrinsic) {
4288 StubRoutines::_mulAdd = generate_mulAdd();
4289 }
4290 if (VM_Version::supports_avx512_vbmi2()) {
4291 StubRoutines::_bigIntegerRightShiftWorker = generate_bigIntegerRightShift();
4292 StubRoutines::_bigIntegerLeftShiftWorker = generate_bigIntegerLeftShift();
4293 }
4294 if (UseMontgomeryMultiplyIntrinsic) {
4295 StubRoutines::_montgomeryMultiply
4296 = CAST_FROM_FN_PTR(address, SharedRuntime::montgomery_multiply);
4297 }
4298 if (UseMontgomerySquareIntrinsic) {
4299 StubRoutines::_montgomerySquare
4300 = CAST_FROM_FN_PTR(address, SharedRuntime::montgomery_square);
4301 }
4302
4303 // Load x86_64_sort library on supported hardware to enable SIMD sort and partition intrinsics
4304
4305 if (VM_Version::supports_avx512dq() || VM_Version::supports_avx2()) {
4306 void *libsimdsort = nullptr;
4307 char ebuf_[1024];
4308 char dll_name_simd_sort[JVM_MAXPATHLEN];
4309 if (os::dll_locate_lib(dll_name_simd_sort, sizeof(dll_name_simd_sort), Arguments::get_dll_dir(), "simdsort")) {
4310 libsimdsort = os::dll_load(dll_name_simd_sort, ebuf_, sizeof ebuf_);
4311 }
4312 // Get addresses for SIMD sort and partition routines
4313 if (libsimdsort != nullptr) {
4314 log_info(library)("Loaded library %s, handle " INTPTR_FORMAT, JNI_LIB_PREFIX "simdsort" JNI_LIB_SUFFIX, p2i(libsimdsort));
4315
4316 os::snprintf_checked(ebuf_, sizeof(ebuf_), VM_Version::supports_avx512_simd_sort() ? "avx512_sort" : "avx2_sort");
4317 StubRoutines::_array_sort = (address)os::dll_lookup(libsimdsort, ebuf_);
4318
4319 os::snprintf_checked(ebuf_, sizeof(ebuf_), VM_Version::supports_avx512_simd_sort() ? "avx512_partition" : "avx2_partition");
4320 StubRoutines::_array_partition = (address)os::dll_lookup(libsimdsort, ebuf_);
4321 }
4322 }
4323
4324 #endif // COMPILER2
4325 #endif // COMPILER2_OR_JVMCI
4326 }
4327
4328 StubGenerator::StubGenerator(CodeBuffer* code, BlobId blob_id) : StubCodeGenerator(code, blob_id) {
4329 switch(blob_id) {
4330 case BlobId::stubgen_preuniverse_id:
4331 generate_preuniverse_stubs();
4332 break;
4333 case BlobId::stubgen_initial_id:
4334 generate_initial_stubs();
4335 break;
4336 case BlobId::stubgen_continuation_id:
4337 generate_continuation_stubs();
4338 break;
4339 case BlobId::stubgen_compiler_id:
4340 generate_compiler_stubs();
4341 break;
4342 case BlobId::stubgen_final_id:
4343 generate_final_stubs();
4344 break;
4345 default:
4346 fatal("unexpected blob id: %s", StubInfo::name(blob_id));
4347 break;
4348 };
4349 }
4350
4351 void StubGenerator_generate(CodeBuffer* code, BlobId blob_id) {
4352 StubGenerator g(code, blob_id);
4353 }
4354
4355 #undef __