1 /*
   2  * Copyright (c) 2003, 2022, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "asm/macroAssembler.hpp"
  28 #include "classfile/vmIntrinsics.hpp"
  29 #include "compiler/oopMap.hpp"
  30 #include "gc/shared/barrierSet.hpp"
  31 #include "gc/shared/barrierSetAssembler.hpp"
  32 #include "gc/shared/barrierSetNMethod.hpp"
  33 #include "gc/shared/gc_globals.hpp"
  34 #include "memory/universe.hpp"
  35 #include "prims/jvmtiExport.hpp"
  36 #include "runtime/arguments.hpp"
  37 #include "runtime/javaThread.hpp"
  38 #include "runtime/sharedRuntime.hpp"
  39 #include "runtime/stubRoutines.hpp"
  40 #include "utilities/macros.hpp"
  41 #include "vmreg_x86.inline.hpp"
  42 #include "stubGenerator_x86_64.hpp"
  43 #ifdef COMPILER2
  44 #include "opto/runtime.hpp"
  45 #include "opto/c2_globals.hpp"
  46 #endif
  47 #if INCLUDE_JVMCI
  48 #include "jvmci/jvmci_globals.hpp"
  49 #endif
  50 #if INCLUDE_ZGC
  51 #include "gc/z/zThreadLocalData.hpp"
  52 #endif
  53 #if INCLUDE_JFR
  54 #include "jfr/support/jfrIntrinsics.hpp"
  55 #endif
  56 
  57 // For a more detailed description of the stub routine structure
  58 // see the comment in stubRoutines.hpp
  59 
  60 #define __ _masm->
  61 #define TIMES_OOP (UseCompressedOops ? Address::times_4 : Address::times_8)
  62 
  63 #ifdef PRODUCT
  64 #define BLOCK_COMMENT(str) /* nothing */
  65 #else
  66 #define BLOCK_COMMENT(str) __ block_comment(str)
  67 #endif // PRODUCT
  68 
  69 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  70 
  71 //
  72 // Linux Arguments:
  73 //    c_rarg0:   call wrapper address                   address
  74 //    c_rarg1:   result                                 address
  75 //    c_rarg2:   result type                            BasicType
  76 //    c_rarg3:   method                                 Method*
  77 //    c_rarg4:   (interpreter) entry point              address
  78 //    c_rarg5:   parameters                             intptr_t*
  79 //    16(rbp): parameter size (in words)              int
  80 //    24(rbp): thread                                 Thread*
  81 //
  82 //     [ return_from_Java     ] <--- rsp
  83 //     [ argument word n      ]
  84 //      ...
  85 // -12 [ argument word 1      ]
  86 // -11 [ saved r15            ] <--- rsp_after_call
  87 // -10 [ saved r14            ]
  88 //  -9 [ saved r13            ]
  89 //  -8 [ saved r12            ]
  90 //  -7 [ saved rbx            ]
  91 //  -6 [ call wrapper         ]
  92 //  -5 [ result               ]
  93 //  -4 [ result type          ]
  94 //  -3 [ method               ]
  95 //  -2 [ entry point          ]
  96 //  -1 [ parameters           ]
  97 //   0 [ saved rbp            ] <--- rbp
  98 //   1 [ return address       ]
  99 //   2 [ parameter size       ]
 100 //   3 [ thread               ]
 101 //
 102 // Windows Arguments:
 103 //    c_rarg0:   call wrapper address                   address
 104 //    c_rarg1:   result                                 address
 105 //    c_rarg2:   result type                            BasicType
 106 //    c_rarg3:   method                                 Method*
 107 //    48(rbp): (interpreter) entry point              address
 108 //    56(rbp): parameters                             intptr_t*
 109 //    64(rbp): parameter size (in words)              int
 110 //    72(rbp): thread                                 Thread*
 111 //
 112 //     [ return_from_Java     ] <--- rsp
 113 //     [ argument word n      ]
 114 //      ...
 115 // -60 [ argument word 1      ]
 116 // -59 [ saved xmm31          ] <--- rsp after_call
 117 //     [ saved xmm16-xmm30    ] (EVEX enabled, else the space is blank)
 118 // -27 [ saved xmm15          ]
 119 //     [ saved xmm7-xmm14     ]
 120 //  -9 [ saved xmm6           ] (each xmm register takes 2 slots)
 121 //  -7 [ saved r15            ]
 122 //  -6 [ saved r14            ]
 123 //  -5 [ saved r13            ]
 124 //  -4 [ saved r12            ]
 125 //  -3 [ saved rdi            ]
 126 //  -2 [ saved rsi            ]
 127 //  -1 [ saved rbx            ]
 128 //   0 [ saved rbp            ] <--- rbp
 129 //   1 [ return address       ]
 130 //   2 [ call wrapper         ]
 131 //   3 [ result               ]
 132 //   4 [ result type          ]
 133 //   5 [ method               ]
 134 //   6 [ entry point          ]
 135 //   7 [ parameters           ]
 136 //   8 [ parameter size       ]
 137 //   9 [ thread               ]
 138 //
 139 //    Windows reserves the callers stack space for arguments 1-4.
 140 //    We spill c_rarg0-c_rarg3 to this space.
 141 
 142 // Call stub stack layout word offsets from rbp
 143 #ifdef _WIN64
 144 enum call_stub_layout {
 145   xmm_save_first     = 6,  // save from xmm6
 146   xmm_save_last      = 31, // to xmm31
 147   xmm_save_base      = -9,
 148   rsp_after_call_off = xmm_save_base - 2 * (xmm_save_last - xmm_save_first), // -27
 149   r15_off            = -7,
 150   r14_off            = -6,
 151   r13_off            = -5,
 152   r12_off            = -4,
 153   rdi_off            = -3,
 154   rsi_off            = -2,
 155   rbx_off            = -1,
 156   rbp_off            =  0,
 157   retaddr_off        =  1,
 158   call_wrapper_off   =  2,
 159   result_off         =  3,
 160   result_type_off    =  4,
 161   method_off         =  5,
 162   entry_point_off    =  6,
 163   parameters_off     =  7,
 164   parameter_size_off =  8,
 165   thread_off         =  9
 166 };
 167 
 168 static Address xmm_save(int reg) {
 169   assert(reg >= xmm_save_first && reg <= xmm_save_last, "XMM register number out of range");
 170   return Address(rbp, (xmm_save_base - (reg - xmm_save_first) * 2) * wordSize);
 171 }
 172 #else // !_WIN64
 173 enum call_stub_layout {
 174   rsp_after_call_off = -12,
 175   mxcsr_off          = rsp_after_call_off,
 176   r15_off            = -11,
 177   r14_off            = -10,
 178   r13_off            = -9,
 179   r12_off            = -8,
 180   rbx_off            = -7,
 181   call_wrapper_off   = -6,
 182   result_off         = -5,
 183   result_type_off    = -4,
 184   method_off         = -3,
 185   entry_point_off    = -2,
 186   parameters_off     = -1,
 187   rbp_off            =  0,
 188   retaddr_off        =  1,
 189   parameter_size_off =  2,
 190   thread_off         =  3
 191 };
 192 #endif // _WIN64
 193 
 194 address StubGenerator::generate_call_stub(address& return_address) {
 195 
 196   assert((int)frame::entry_frame_after_call_words == -(int)rsp_after_call_off + 1 &&
 197          (int)frame::entry_frame_call_wrapper_offset == (int)call_wrapper_off,
 198          "adjust this code");
 199   StubCodeMark mark(this, "StubRoutines", "call_stub");
 200   address start = __ pc();
 201 
 202   // same as in generate_catch_exception()!
 203   const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
 204 
 205   const Address call_wrapper  (rbp, call_wrapper_off   * wordSize);
 206   const Address result        (rbp, result_off         * wordSize);
 207   const Address result_type   (rbp, result_type_off    * wordSize);
 208   const Address method        (rbp, method_off         * wordSize);
 209   const Address entry_point   (rbp, entry_point_off    * wordSize);
 210   const Address parameters    (rbp, parameters_off     * wordSize);
 211   const Address parameter_size(rbp, parameter_size_off * wordSize);
 212 
 213   // same as in generate_catch_exception()!
 214   const Address thread        (rbp, thread_off         * wordSize);
 215 
 216   const Address r15_save(rbp, r15_off * wordSize);
 217   const Address r14_save(rbp, r14_off * wordSize);
 218   const Address r13_save(rbp, r13_off * wordSize);
 219   const Address r12_save(rbp, r12_off * wordSize);
 220   const Address rbx_save(rbp, rbx_off * wordSize);
 221 
 222   // stub code
 223   __ enter();
 224   __ subptr(rsp, -rsp_after_call_off * wordSize);
 225 
 226   // save register parameters
 227 #ifndef _WIN64
 228   __ movptr(parameters,   c_rarg5); // parameters
 229   __ movptr(entry_point,  c_rarg4); // entry_point
 230 #endif
 231 
 232   __ movptr(method,       c_rarg3); // method
 233   __ movl(result_type,  c_rarg2);   // result type
 234   __ movptr(result,       c_rarg1); // result
 235   __ movptr(call_wrapper, c_rarg0); // call wrapper
 236 
 237   // save regs belonging to calling function
 238   __ movptr(rbx_save, rbx);
 239   __ movptr(r12_save, r12);
 240   __ movptr(r13_save, r13);
 241   __ movptr(r14_save, r14);
 242   __ movptr(r15_save, r15);
 243 
 244 #ifdef _WIN64
 245   int last_reg = 15;
 246   if (UseAVX > 2) {
 247     last_reg = 31;
 248   }
 249   if (VM_Version::supports_evex()) {
 250     for (int i = xmm_save_first; i <= last_reg; i++) {
 251       __ vextractf32x4(xmm_save(i), as_XMMRegister(i), 0);
 252     }
 253   } else {
 254     for (int i = xmm_save_first; i <= last_reg; i++) {
 255       __ movdqu(xmm_save(i), as_XMMRegister(i));
 256     }
 257   }
 258 
 259   const Address rdi_save(rbp, rdi_off * wordSize);
 260   const Address rsi_save(rbp, rsi_off * wordSize);
 261 
 262   __ movptr(rsi_save, rsi);
 263   __ movptr(rdi_save, rdi);
 264 #else
 265   const Address mxcsr_save(rbp, mxcsr_off * wordSize);
 266   {
 267     Label skip_ldmx;
 268     __ stmxcsr(mxcsr_save);
 269     __ movl(rax, mxcsr_save);
 270     __ andl(rax, 0xFFC0); // Mask out any pending exceptions (only check control and mask bits)
 271     ExternalAddress mxcsr_std(StubRoutines::x86::addr_mxcsr_std());
 272     __ cmp32(rax, mxcsr_std, rscratch1);
 273     __ jcc(Assembler::equal, skip_ldmx);
 274     __ ldmxcsr(mxcsr_std, rscratch1);
 275     __ bind(skip_ldmx);
 276   }
 277 #endif
 278 
 279   // Load up thread register
 280   __ movptr(r15_thread, thread);
 281   __ reinit_heapbase();
 282 
 283 #ifdef ASSERT
 284   // make sure we have no pending exceptions
 285   {
 286     Label L;
 287     __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), NULL_WORD);
 288     __ jcc(Assembler::equal, L);
 289     __ stop("StubRoutines::call_stub: entered with pending exception");
 290     __ bind(L);
 291   }
 292 #endif
 293 
 294   // pass parameters if any
 295   BLOCK_COMMENT("pass parameters if any");
 296   Label parameters_done;
 297   __ movl(c_rarg3, parameter_size);
 298   __ testl(c_rarg3, c_rarg3);
 299   __ jcc(Assembler::zero, parameters_done);
 300 
 301   Label loop;
 302   __ movptr(c_rarg2, parameters);       // parameter pointer
 303   __ movl(c_rarg1, c_rarg3);            // parameter counter is in c_rarg1
 304   __ BIND(loop);
 305   __ movptr(rax, Address(c_rarg2, 0));// get parameter
 306   __ addptr(c_rarg2, wordSize);       // advance to next parameter
 307   __ decrementl(c_rarg1);             // decrement counter
 308   __ push(rax);                       // pass parameter
 309   __ jcc(Assembler::notZero, loop);
 310 
 311   // call Java function
 312   __ BIND(parameters_done);
 313   __ movptr(rbx, method);             // get Method*
 314   __ movptr(c_rarg1, entry_point);    // get entry_point
 315   __ mov(r13, rsp);                   // set sender sp
 316   BLOCK_COMMENT("call Java function");
 317   __ call(c_rarg1);
 318 
 319   BLOCK_COMMENT("call_stub_return_address:");
 320   return_address = __ pc();
 321 
 322   // store result depending on type (everything that is not
 323   // T_OBJECT, T_PRIMITIVE_OBJECT, T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
 324   __ movptr(r13, result);
 325   Label is_long, is_float, is_double, check_prim, exit;
 326   __ movl(rbx, result_type);
 327   __ cmpl(rbx, T_OBJECT);
 328   __ jcc(Assembler::equal, check_prim);
 329   __ cmpl(rbx, T_PRIMITIVE_OBJECT);
 330   __ jcc(Assembler::equal, check_prim);
 331   __ cmpl(rbx, T_LONG);
 332   __ jcc(Assembler::equal, is_long);
 333   __ cmpl(rbx, T_FLOAT);
 334   __ jcc(Assembler::equal, is_float);
 335   __ cmpl(rbx, T_DOUBLE);
 336   __ jcc(Assembler::equal, is_double);
 337 
 338   // handle T_INT case
 339   __ movl(Address(r13, 0), rax);
 340 
 341   __ BIND(exit);
 342 
 343   // pop parameters
 344   __ lea(rsp, rsp_after_call);
 345 
 346 #ifdef ASSERT
 347   // verify that threads correspond
 348   {
 349    Label L1, L2, L3;
 350     __ cmpptr(r15_thread, thread);
 351     __ jcc(Assembler::equal, L1);
 352     __ stop("StubRoutines::call_stub: r15_thread is corrupted");
 353     __ bind(L1);
 354     __ get_thread(rbx);
 355     __ cmpptr(r15_thread, thread);
 356     __ jcc(Assembler::equal, L2);
 357     __ stop("StubRoutines::call_stub: r15_thread is modified by call");
 358     __ bind(L2);
 359     __ cmpptr(r15_thread, rbx);
 360     __ jcc(Assembler::equal, L3);
 361     __ stop("StubRoutines::call_stub: threads must correspond");
 362     __ bind(L3);
 363   }
 364 #endif
 365 
 366   __ pop_cont_fastpath();
 367 
 368   // restore regs belonging to calling function
 369 #ifdef _WIN64
 370   // emit the restores for xmm regs
 371   if (VM_Version::supports_evex()) {
 372     for (int i = xmm_save_first; i <= last_reg; i++) {
 373       __ vinsertf32x4(as_XMMRegister(i), as_XMMRegister(i), xmm_save(i), 0);
 374     }
 375   } else {
 376     for (int i = xmm_save_first; i <= last_reg; i++) {
 377       __ movdqu(as_XMMRegister(i), xmm_save(i));
 378     }
 379   }
 380 #endif
 381   __ movptr(r15, r15_save);
 382   __ movptr(r14, r14_save);
 383   __ movptr(r13, r13_save);
 384   __ movptr(r12, r12_save);
 385   __ movptr(rbx, rbx_save);
 386 
 387 #ifdef _WIN64
 388   __ movptr(rdi, rdi_save);
 389   __ movptr(rsi, rsi_save);
 390 #else
 391   __ ldmxcsr(mxcsr_save);
 392 #endif
 393 
 394   // restore rsp
 395   __ addptr(rsp, -rsp_after_call_off * wordSize);
 396 
 397   // return
 398   __ vzeroupper();
 399   __ pop(rbp);
 400   __ ret(0);
 401 
 402   // handle return types different from T_INT
 403   __ BIND(check_prim);
 404   if (InlineTypeReturnedAsFields) {
 405     // Check for scalarized return value
 406     __ testptr(rax, 1);
 407     __ jcc(Assembler::zero, is_long);
 408     // Load pack handler address
 409     __ andptr(rax, -2);
 410     __ movptr(rax, Address(rax, InstanceKlass::adr_inlineklass_fixed_block_offset()));
 411     __ movptr(rbx, Address(rax, InlineKlass::pack_handler_jobject_offset()));
 412     // Call pack handler to initialize the buffer
 413     __ call(rbx);
 414     __ jmp(exit);
 415   }
 416   __ BIND(is_long);
 417   __ movq(Address(r13, 0), rax);
 418   __ jmp(exit);
 419 
 420   __ BIND(is_float);
 421   __ movflt(Address(r13, 0), xmm0);
 422   __ jmp(exit);
 423 
 424   __ BIND(is_double);
 425   __ movdbl(Address(r13, 0), xmm0);
 426   __ jmp(exit);
 427 
 428   return start;
 429 }
 430 
 431 // Return point for a Java call if there's an exception thrown in
 432 // Java code.  The exception is caught and transformed into a
 433 // pending exception stored in JavaThread that can be tested from
 434 // within the VM.
 435 //
 436 // Note: Usually the parameters are removed by the callee. In case
 437 // of an exception crossing an activation frame boundary, that is
 438 // not the case if the callee is compiled code => need to setup the
 439 // rsp.
 440 //
 441 // rax: exception oop
 442 
 443 address StubGenerator::generate_catch_exception() {
 444   StubCodeMark mark(this, "StubRoutines", "catch_exception");
 445   address start = __ pc();
 446 
 447   // same as in generate_call_stub():
 448   const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
 449   const Address thread        (rbp, thread_off         * wordSize);
 450 
 451 #ifdef ASSERT
 452   // verify that threads correspond
 453   {
 454     Label L1, L2, L3;
 455     __ cmpptr(r15_thread, thread);
 456     __ jcc(Assembler::equal, L1);
 457     __ stop("StubRoutines::catch_exception: r15_thread is corrupted");
 458     __ bind(L1);
 459     __ get_thread(rbx);
 460     __ cmpptr(r15_thread, thread);
 461     __ jcc(Assembler::equal, L2);
 462     __ stop("StubRoutines::catch_exception: r15_thread is modified by call");
 463     __ bind(L2);
 464     __ cmpptr(r15_thread, rbx);
 465     __ jcc(Assembler::equal, L3);
 466     __ stop("StubRoutines::catch_exception: threads must correspond");
 467     __ bind(L3);
 468   }
 469 #endif
 470 
 471   // set pending exception
 472   __ verify_oop(rax);
 473 
 474   __ movptr(Address(r15_thread, Thread::pending_exception_offset()), rax);
 475   __ lea(rscratch1, ExternalAddress((address)__FILE__));
 476   __ movptr(Address(r15_thread, Thread::exception_file_offset()), rscratch1);
 477   __ movl(Address(r15_thread, Thread::exception_line_offset()), (int)  __LINE__);
 478 
 479   // complete return to VM
 480   assert(StubRoutines::_call_stub_return_address != NULL,
 481          "_call_stub_return_address must have been generated before");
 482   __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address));
 483 
 484   return start;
 485 }
 486 
 487 // Continuation point for runtime calls returning with a pending
 488 // exception.  The pending exception check happened in the runtime
 489 // or native call stub.  The pending exception in Thread is
 490 // converted into a Java-level exception.
 491 //
 492 // Contract with Java-level exception handlers:
 493 // rax: exception
 494 // rdx: throwing pc
 495 //
 496 // NOTE: At entry of this stub, exception-pc must be on stack !!
 497 
 498 address StubGenerator::generate_forward_exception() {
 499   StubCodeMark mark(this, "StubRoutines", "forward exception");
 500   address start = __ pc();
 501 
 502   // Upon entry, the sp points to the return address returning into
 503   // Java (interpreted or compiled) code; i.e., the return address
 504   // becomes the throwing pc.
 505   //
 506   // Arguments pushed before the runtime call are still on the stack
 507   // but the exception handler will reset the stack pointer ->
 508   // ignore them.  A potential result in registers can be ignored as
 509   // well.
 510 
 511 #ifdef ASSERT
 512   // make sure this code is only executed if there is a pending exception
 513   {
 514     Label L;
 515     __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), NULL_WORD);
 516     __ jcc(Assembler::notEqual, L);
 517     __ stop("StubRoutines::forward exception: no pending exception (1)");
 518     __ bind(L);
 519   }
 520 #endif
 521 
 522   // compute exception handler into rbx
 523   __ movptr(c_rarg0, Address(rsp, 0));
 524   BLOCK_COMMENT("call exception_handler_for_return_address");
 525   __ call_VM_leaf(CAST_FROM_FN_PTR(address,
 526                        SharedRuntime::exception_handler_for_return_address),
 527                   r15_thread, c_rarg0);
 528   __ mov(rbx, rax);
 529 
 530   // setup rax & rdx, remove return address & clear pending exception
 531   __ pop(rdx);
 532   __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
 533   __ movptr(Address(r15_thread, Thread::pending_exception_offset()), NULL_WORD);
 534 
 535 #ifdef ASSERT
 536   // make sure exception is set
 537   {
 538     Label L;
 539     __ testptr(rax, rax);
 540     __ jcc(Assembler::notEqual, L);
 541     __ stop("StubRoutines::forward exception: no pending exception (2)");
 542     __ bind(L);
 543   }
 544 #endif
 545 
 546   // continue at exception handler (return address removed)
 547   // rax: exception
 548   // rbx: exception handler
 549   // rdx: throwing pc
 550   __ verify_oop(rax);
 551   __ jmp(rbx);
 552 
 553   return start;
 554 }
 555 
 556 // Support for intptr_t OrderAccess::fence()
 557 //
 558 // Arguments :
 559 //
 560 // Result:
 561 address StubGenerator::generate_orderaccess_fence() {
 562   StubCodeMark mark(this, "StubRoutines", "orderaccess_fence");
 563   address start = __ pc();
 564 
 565   __ membar(Assembler::StoreLoad);
 566   __ ret(0);
 567 
 568   return start;
 569 }
 570 
 571 
 572 // Support for intptr_t get_previous_sp()
 573 //
 574 // This routine is used to find the previous stack pointer for the
 575 // caller.
 576 address StubGenerator::generate_get_previous_sp() {
 577   StubCodeMark mark(this, "StubRoutines", "get_previous_sp");
 578   address start = __ pc();
 579 
 580   __ movptr(rax, rsp);
 581   __ addptr(rax, 8); // return address is at the top of the stack.
 582   __ ret(0);
 583 
 584   return start;
 585 }
 586 
 587 //----------------------------------------------------------------------------------------------------
 588 // Support for void verify_mxcsr()
 589 //
 590 // This routine is used with -Xcheck:jni to verify that native
 591 // JNI code does not return to Java code without restoring the
 592 // MXCSR register to our expected state.
 593 
 594 address StubGenerator::generate_verify_mxcsr() {
 595   StubCodeMark mark(this, "StubRoutines", "verify_mxcsr");
 596   address start = __ pc();
 597 
 598   const Address mxcsr_save(rsp, 0);
 599 
 600   if (CheckJNICalls) {
 601     Label ok_ret;
 602     ExternalAddress mxcsr_std(StubRoutines::x86::addr_mxcsr_std());
 603     __ push(rax);
 604     __ subptr(rsp, wordSize);      // allocate a temp location
 605     __ stmxcsr(mxcsr_save);
 606     __ movl(rax, mxcsr_save);
 607     __ andl(rax, 0xFFC0); // Mask out any pending exceptions (only check control and mask bits)
 608     __ cmp32(rax, mxcsr_std, rscratch1);
 609     __ jcc(Assembler::equal, ok_ret);
 610 
 611     __ warn("MXCSR changed by native JNI code, use -XX:+RestoreMXCSROnJNICall");
 612 
 613     __ ldmxcsr(mxcsr_std, rscratch1);
 614 
 615     __ bind(ok_ret);
 616     __ addptr(rsp, wordSize);
 617     __ pop(rax);
 618   }
 619 
 620   __ ret(0);
 621 
 622   return start;
 623 }
 624 
 625 address StubGenerator::generate_f2i_fixup() {
 626   StubCodeMark mark(this, "StubRoutines", "f2i_fixup");
 627   Address inout(rsp, 5 * wordSize); // return address + 4 saves
 628 
 629   address start = __ pc();
 630 
 631   Label L;
 632 
 633   __ push(rax);
 634   __ push(c_rarg3);
 635   __ push(c_rarg2);
 636   __ push(c_rarg1);
 637 
 638   __ movl(rax, 0x7f800000);
 639   __ xorl(c_rarg3, c_rarg3);
 640   __ movl(c_rarg2, inout);
 641   __ movl(c_rarg1, c_rarg2);
 642   __ andl(c_rarg1, 0x7fffffff);
 643   __ cmpl(rax, c_rarg1); // NaN? -> 0
 644   __ jcc(Assembler::negative, L);
 645   __ testl(c_rarg2, c_rarg2); // signed ? min_jint : max_jint
 646   __ movl(c_rarg3, 0x80000000);
 647   __ movl(rax, 0x7fffffff);
 648   __ cmovl(Assembler::positive, c_rarg3, rax);
 649 
 650   __ bind(L);
 651   __ movptr(inout, c_rarg3);
 652 
 653   __ pop(c_rarg1);
 654   __ pop(c_rarg2);
 655   __ pop(c_rarg3);
 656   __ pop(rax);
 657 
 658   __ ret(0);
 659 
 660   return start;
 661 }
 662 
 663 address StubGenerator::generate_f2l_fixup() {
 664   StubCodeMark mark(this, "StubRoutines", "f2l_fixup");
 665   Address inout(rsp, 5 * wordSize); // return address + 4 saves
 666   address start = __ pc();
 667 
 668   Label L;
 669 
 670   __ push(rax);
 671   __ push(c_rarg3);
 672   __ push(c_rarg2);
 673   __ push(c_rarg1);
 674 
 675   __ movl(rax, 0x7f800000);
 676   __ xorl(c_rarg3, c_rarg3);
 677   __ movl(c_rarg2, inout);
 678   __ movl(c_rarg1, c_rarg2);
 679   __ andl(c_rarg1, 0x7fffffff);
 680   __ cmpl(rax, c_rarg1); // NaN? -> 0
 681   __ jcc(Assembler::negative, L);
 682   __ testl(c_rarg2, c_rarg2); // signed ? min_jlong : max_jlong
 683   __ mov64(c_rarg3, 0x8000000000000000);
 684   __ mov64(rax, 0x7fffffffffffffff);
 685   __ cmov(Assembler::positive, c_rarg3, rax);
 686 
 687   __ bind(L);
 688   __ movptr(inout, c_rarg3);
 689 
 690   __ pop(c_rarg1);
 691   __ pop(c_rarg2);
 692   __ pop(c_rarg3);
 693   __ pop(rax);
 694 
 695   __ ret(0);
 696 
 697   return start;
 698 }
 699 
 700 address StubGenerator::generate_d2i_fixup() {
 701   StubCodeMark mark(this, "StubRoutines", "d2i_fixup");
 702   Address inout(rsp, 6 * wordSize); // return address + 5 saves
 703 
 704   address start = __ pc();
 705 
 706   Label L;
 707 
 708   __ push(rax);
 709   __ push(c_rarg3);
 710   __ push(c_rarg2);
 711   __ push(c_rarg1);
 712   __ push(c_rarg0);
 713 
 714   __ movl(rax, 0x7ff00000);
 715   __ movq(c_rarg2, inout);
 716   __ movl(c_rarg3, c_rarg2);
 717   __ mov(c_rarg1, c_rarg2);
 718   __ mov(c_rarg0, c_rarg2);
 719   __ negl(c_rarg3);
 720   __ shrptr(c_rarg1, 0x20);
 721   __ orl(c_rarg3, c_rarg2);
 722   __ andl(c_rarg1, 0x7fffffff);
 723   __ xorl(c_rarg2, c_rarg2);
 724   __ shrl(c_rarg3, 0x1f);
 725   __ orl(c_rarg1, c_rarg3);
 726   __ cmpl(rax, c_rarg1);
 727   __ jcc(Assembler::negative, L); // NaN -> 0
 728   __ testptr(c_rarg0, c_rarg0); // signed ? min_jint : max_jint
 729   __ movl(c_rarg2, 0x80000000);
 730   __ movl(rax, 0x7fffffff);
 731   __ cmov(Assembler::positive, c_rarg2, rax);
 732 
 733   __ bind(L);
 734   __ movptr(inout, c_rarg2);
 735 
 736   __ pop(c_rarg0);
 737   __ pop(c_rarg1);
 738   __ pop(c_rarg2);
 739   __ pop(c_rarg3);
 740   __ pop(rax);
 741 
 742   __ ret(0);
 743 
 744   return start;
 745 }
 746 
 747 address StubGenerator::generate_d2l_fixup() {
 748   StubCodeMark mark(this, "StubRoutines", "d2l_fixup");
 749   Address inout(rsp, 6 * wordSize); // return address + 5 saves
 750 
 751   address start = __ pc();
 752 
 753   Label L;
 754 
 755   __ push(rax);
 756   __ push(c_rarg3);
 757   __ push(c_rarg2);
 758   __ push(c_rarg1);
 759   __ push(c_rarg0);
 760 
 761   __ movl(rax, 0x7ff00000);
 762   __ movq(c_rarg2, inout);
 763   __ movl(c_rarg3, c_rarg2);
 764   __ mov(c_rarg1, c_rarg2);
 765   __ mov(c_rarg0, c_rarg2);
 766   __ negl(c_rarg3);
 767   __ shrptr(c_rarg1, 0x20);
 768   __ orl(c_rarg3, c_rarg2);
 769   __ andl(c_rarg1, 0x7fffffff);
 770   __ xorl(c_rarg2, c_rarg2);
 771   __ shrl(c_rarg3, 0x1f);
 772   __ orl(c_rarg1, c_rarg3);
 773   __ cmpl(rax, c_rarg1);
 774   __ jcc(Assembler::negative, L); // NaN -> 0
 775   __ testq(c_rarg0, c_rarg0); // signed ? min_jlong : max_jlong
 776   __ mov64(c_rarg2, 0x8000000000000000);
 777   __ mov64(rax, 0x7fffffffffffffff);
 778   __ cmovq(Assembler::positive, c_rarg2, rax);
 779 
 780   __ bind(L);
 781   __ movq(inout, c_rarg2);
 782 
 783   __ pop(c_rarg0);
 784   __ pop(c_rarg1);
 785   __ pop(c_rarg2);
 786   __ pop(c_rarg3);
 787   __ pop(rax);
 788 
 789   __ ret(0);
 790 
 791   return start;
 792 }
 793 
 794 address StubGenerator::generate_count_leading_zeros_lut(const char *stub_name) {
 795   __ align64();
 796   StubCodeMark mark(this, "StubRoutines", stub_name);
 797   address start = __ pc();
 798 
 799   __ emit_data64(0x0101010102020304, relocInfo::none);
 800   __ emit_data64(0x0000000000000000, relocInfo::none);
 801   __ emit_data64(0x0101010102020304, relocInfo::none);
 802   __ emit_data64(0x0000000000000000, relocInfo::none);
 803   __ emit_data64(0x0101010102020304, relocInfo::none);
 804   __ emit_data64(0x0000000000000000, relocInfo::none);
 805   __ emit_data64(0x0101010102020304, relocInfo::none);
 806   __ emit_data64(0x0000000000000000, relocInfo::none);
 807 
 808   return start;
 809 }
 810 
 811 address StubGenerator::generate_popcount_avx_lut(const char *stub_name) {
 812   __ align64();
 813   StubCodeMark mark(this, "StubRoutines", stub_name);
 814   address start = __ pc();
 815 
 816   __ emit_data64(0x0302020102010100, relocInfo::none);
 817   __ emit_data64(0x0403030203020201, relocInfo::none);
 818   __ emit_data64(0x0302020102010100, relocInfo::none);
 819   __ emit_data64(0x0403030203020201, relocInfo::none);
 820   __ emit_data64(0x0302020102010100, relocInfo::none);
 821   __ emit_data64(0x0403030203020201, relocInfo::none);
 822   __ emit_data64(0x0302020102010100, relocInfo::none);
 823   __ emit_data64(0x0403030203020201, relocInfo::none);
 824 
 825   return start;
 826 }
 827 
 828 address StubGenerator::generate_iota_indices(const char *stub_name) {
 829   __ align(CodeEntryAlignment);
 830   StubCodeMark mark(this, "StubRoutines", stub_name);
 831   address start = __ pc();
 832   // B
 833   __ emit_data64(0x0706050403020100, relocInfo::none);
 834   __ emit_data64(0x0F0E0D0C0B0A0908, relocInfo::none);
 835   __ emit_data64(0x1716151413121110, relocInfo::none);
 836   __ emit_data64(0x1F1E1D1C1B1A1918, relocInfo::none);
 837   __ emit_data64(0x2726252423222120, relocInfo::none);
 838   __ emit_data64(0x2F2E2D2C2B2A2928, relocInfo::none);
 839   __ emit_data64(0x3736353433323130, relocInfo::none);
 840   __ emit_data64(0x3F3E3D3C3B3A3938, relocInfo::none);
 841   // W
 842   __ emit_data64(0x0003000200010000, relocInfo::none);
 843   __ emit_data64(0x0007000600050004, relocInfo::none);
 844   __ emit_data64(0x000B000A00090008, relocInfo::none);
 845   __ emit_data64(0x000F000E000D000C, relocInfo::none);
 846   __ emit_data64(0x0013001200110010, relocInfo::none);
 847   __ emit_data64(0x0017001600150014, relocInfo::none);
 848   __ emit_data64(0x001B001A00190018, relocInfo::none);
 849   __ emit_data64(0x001F001E001D001C, relocInfo::none);
 850   // D
 851   __ emit_data64(0x0000000100000000, relocInfo::none);
 852   __ emit_data64(0x0000000300000002, relocInfo::none);
 853   __ emit_data64(0x0000000500000004, relocInfo::none);
 854   __ emit_data64(0x0000000700000006, relocInfo::none);
 855   __ emit_data64(0x0000000900000008, relocInfo::none);
 856   __ emit_data64(0x0000000B0000000A, relocInfo::none);
 857   __ emit_data64(0x0000000D0000000C, relocInfo::none);
 858   __ emit_data64(0x0000000F0000000E, relocInfo::none);
 859   // Q
 860   __ emit_data64(0x0000000000000000, relocInfo::none);
 861   __ emit_data64(0x0000000000000001, relocInfo::none);
 862   __ emit_data64(0x0000000000000002, relocInfo::none);
 863   __ emit_data64(0x0000000000000003, relocInfo::none);
 864   __ emit_data64(0x0000000000000004, relocInfo::none);
 865   __ emit_data64(0x0000000000000005, relocInfo::none);
 866   __ emit_data64(0x0000000000000006, relocInfo::none);
 867   __ emit_data64(0x0000000000000007, relocInfo::none);
 868   // D - FP
 869   __ emit_data64(0x3F80000000000000, relocInfo::none); // 0.0f, 1.0f
 870   __ emit_data64(0x4040000040000000, relocInfo::none); // 2.0f, 3.0f
 871   __ emit_data64(0x40A0000040800000, relocInfo::none); // 4.0f, 5.0f
 872   __ emit_data64(0x40E0000040C00000, relocInfo::none); // 6.0f, 7.0f
 873   __ emit_data64(0x4110000041000000, relocInfo::none); // 8.0f, 9.0f
 874   __ emit_data64(0x4130000041200000, relocInfo::none); // 10.0f, 11.0f
 875   __ emit_data64(0x4150000041400000, relocInfo::none); // 12.0f, 13.0f
 876   __ emit_data64(0x4170000041600000, relocInfo::none); // 14.0f, 15.0f
 877   // Q - FP
 878   __ emit_data64(0x0000000000000000, relocInfo::none); // 0.0d
 879   __ emit_data64(0x3FF0000000000000, relocInfo::none); // 1.0d
 880   __ emit_data64(0x4000000000000000, relocInfo::none); // 2.0d
 881   __ emit_data64(0x4008000000000000, relocInfo::none); // 3.0d
 882   __ emit_data64(0x4010000000000000, relocInfo::none); // 4.0d
 883   __ emit_data64(0x4014000000000000, relocInfo::none); // 5.0d
 884   __ emit_data64(0x4018000000000000, relocInfo::none); // 6.0d
 885   __ emit_data64(0x401c000000000000, relocInfo::none); // 7.0d
 886   return start;
 887 }
 888 
 889 address StubGenerator::generate_vector_reverse_bit_lut(const char *stub_name) {
 890   __ align(CodeEntryAlignment);
 891   StubCodeMark mark(this, "StubRoutines", stub_name);
 892   address start = __ pc();
 893 
 894   __ emit_data64(0x0E060A020C040800, relocInfo::none);
 895   __ emit_data64(0x0F070B030D050901, relocInfo::none);
 896   __ emit_data64(0x0E060A020C040800, relocInfo::none);
 897   __ emit_data64(0x0F070B030D050901, relocInfo::none);
 898   __ emit_data64(0x0E060A020C040800, relocInfo::none);
 899   __ emit_data64(0x0F070B030D050901, relocInfo::none);
 900   __ emit_data64(0x0E060A020C040800, relocInfo::none);
 901   __ emit_data64(0x0F070B030D050901, relocInfo::none);
 902 
 903   return start;
 904 }
 905 
 906 address StubGenerator::generate_vector_reverse_byte_perm_mask_long(const char *stub_name) {
 907   __ align(CodeEntryAlignment);
 908   StubCodeMark mark(this, "StubRoutines", stub_name);
 909   address start = __ pc();
 910 
 911   __ emit_data64(0x0001020304050607, relocInfo::none);
 912   __ emit_data64(0x08090A0B0C0D0E0F, relocInfo::none);
 913   __ emit_data64(0x0001020304050607, relocInfo::none);
 914   __ emit_data64(0x08090A0B0C0D0E0F, relocInfo::none);
 915   __ emit_data64(0x0001020304050607, relocInfo::none);
 916   __ emit_data64(0x08090A0B0C0D0E0F, relocInfo::none);
 917   __ emit_data64(0x0001020304050607, relocInfo::none);
 918   __ emit_data64(0x08090A0B0C0D0E0F, relocInfo::none);
 919 
 920   return start;
 921 }
 922 
 923 address StubGenerator::generate_vector_reverse_byte_perm_mask_int(const char *stub_name) {
 924   __ align(CodeEntryAlignment);
 925   StubCodeMark mark(this, "StubRoutines", stub_name);
 926   address start = __ pc();
 927 
 928   __ emit_data64(0x0405060700010203, relocInfo::none);
 929   __ emit_data64(0x0C0D0E0F08090A0B, relocInfo::none);
 930   __ emit_data64(0x0405060700010203, relocInfo::none);
 931   __ emit_data64(0x0C0D0E0F08090A0B, relocInfo::none);
 932   __ emit_data64(0x0405060700010203, relocInfo::none);
 933   __ emit_data64(0x0C0D0E0F08090A0B, relocInfo::none);
 934   __ emit_data64(0x0405060700010203, relocInfo::none);
 935   __ emit_data64(0x0C0D0E0F08090A0B, relocInfo::none);
 936 
 937   return start;
 938 }
 939 
 940 address StubGenerator::generate_vector_reverse_byte_perm_mask_short(const char *stub_name) {
 941   __ align(CodeEntryAlignment);
 942   StubCodeMark mark(this, "StubRoutines", stub_name);
 943   address start = __ pc();
 944 
 945   __ emit_data64(0x0607040502030001, relocInfo::none);
 946   __ emit_data64(0x0E0F0C0D0A0B0809, relocInfo::none);
 947   __ emit_data64(0x0607040502030001, relocInfo::none);
 948   __ emit_data64(0x0E0F0C0D0A0B0809, relocInfo::none);
 949   __ emit_data64(0x0607040502030001, relocInfo::none);
 950   __ emit_data64(0x0E0F0C0D0A0B0809, relocInfo::none);
 951   __ emit_data64(0x0607040502030001, relocInfo::none);
 952   __ emit_data64(0x0E0F0C0D0A0B0809, relocInfo::none);
 953 
 954   return start;
 955 }
 956 
 957 address StubGenerator::generate_vector_byte_shuffle_mask(const char *stub_name) {
 958   __ align(CodeEntryAlignment);
 959   StubCodeMark mark(this, "StubRoutines", stub_name);
 960   address start = __ pc();
 961 
 962   __ emit_data64(0x7070707070707070, relocInfo::none);
 963   __ emit_data64(0x7070707070707070, relocInfo::none);
 964   __ emit_data64(0xF0F0F0F0F0F0F0F0, relocInfo::none);
 965   __ emit_data64(0xF0F0F0F0F0F0F0F0, relocInfo::none);
 966 
 967   return start;
 968 }
 969 
 970 address StubGenerator::generate_fp_mask(const char *stub_name, int64_t mask) {
 971   __ align(CodeEntryAlignment);
 972   StubCodeMark mark(this, "StubRoutines", stub_name);
 973   address start = __ pc();
 974 
 975   __ emit_data64( mask, relocInfo::none );
 976   __ emit_data64( mask, relocInfo::none );
 977 
 978   return start;
 979 }
 980 
 981 address StubGenerator::generate_vector_mask(const char *stub_name, int64_t mask) {
 982   __ align(CodeEntryAlignment);
 983   StubCodeMark mark(this, "StubRoutines", stub_name);
 984   address start = __ pc();
 985 
 986   __ emit_data64(mask, relocInfo::none);
 987   __ emit_data64(mask, relocInfo::none);
 988   __ emit_data64(mask, relocInfo::none);
 989   __ emit_data64(mask, relocInfo::none);
 990   __ emit_data64(mask, relocInfo::none);
 991   __ emit_data64(mask, relocInfo::none);
 992   __ emit_data64(mask, relocInfo::none);
 993   __ emit_data64(mask, relocInfo::none);
 994 
 995   return start;
 996 }
 997 
 998 address StubGenerator::generate_vector_byte_perm_mask(const char *stub_name) {
 999   __ align(CodeEntryAlignment);
1000   StubCodeMark mark(this, "StubRoutines", stub_name);
1001   address start = __ pc();
1002 
1003   __ emit_data64(0x0000000000000001, relocInfo::none);
1004   __ emit_data64(0x0000000000000003, relocInfo::none);
1005   __ emit_data64(0x0000000000000005, relocInfo::none);
1006   __ emit_data64(0x0000000000000007, relocInfo::none);
1007   __ emit_data64(0x0000000000000000, relocInfo::none);
1008   __ emit_data64(0x0000000000000002, relocInfo::none);
1009   __ emit_data64(0x0000000000000004, relocInfo::none);
1010   __ emit_data64(0x0000000000000006, relocInfo::none);
1011 
1012   return start;
1013 }
1014 
1015 address StubGenerator::generate_vector_fp_mask(const char *stub_name, int64_t mask) {
1016   __ align(CodeEntryAlignment);
1017   StubCodeMark mark(this, "StubRoutines", stub_name);
1018   address start = __ pc();
1019 
1020   __ emit_data64(mask, relocInfo::none);
1021   __ emit_data64(mask, relocInfo::none);
1022   __ emit_data64(mask, relocInfo::none);
1023   __ emit_data64(mask, relocInfo::none);
1024   __ emit_data64(mask, relocInfo::none);
1025   __ emit_data64(mask, relocInfo::none);
1026   __ emit_data64(mask, relocInfo::none);
1027   __ emit_data64(mask, relocInfo::none);
1028 
1029   return start;
1030 }
1031 
1032 address StubGenerator::generate_vector_custom_i32(const char *stub_name, Assembler::AvxVectorLen len,
1033                                    int32_t val0, int32_t val1, int32_t val2, int32_t val3,
1034                                    int32_t val4, int32_t val5, int32_t val6, int32_t val7,
1035                                    int32_t val8, int32_t val9, int32_t val10, int32_t val11,
1036                                    int32_t val12, int32_t val13, int32_t val14, int32_t val15) {
1037   __ align(CodeEntryAlignment);
1038   StubCodeMark mark(this, "StubRoutines", stub_name);
1039   address start = __ pc();
1040 
1041   assert(len != Assembler::AVX_NoVec, "vector len must be specified");
1042   __ emit_data(val0, relocInfo::none, 0);
1043   __ emit_data(val1, relocInfo::none, 0);
1044   __ emit_data(val2, relocInfo::none, 0);
1045   __ emit_data(val3, relocInfo::none, 0);
1046   if (len >= Assembler::AVX_256bit) {
1047     __ emit_data(val4, relocInfo::none, 0);
1048     __ emit_data(val5, relocInfo::none, 0);
1049     __ emit_data(val6, relocInfo::none, 0);
1050     __ emit_data(val7, relocInfo::none, 0);
1051     if (len >= Assembler::AVX_512bit) {
1052       __ emit_data(val8, relocInfo::none, 0);
1053       __ emit_data(val9, relocInfo::none, 0);
1054       __ emit_data(val10, relocInfo::none, 0);
1055       __ emit_data(val11, relocInfo::none, 0);
1056       __ emit_data(val12, relocInfo::none, 0);
1057       __ emit_data(val13, relocInfo::none, 0);
1058       __ emit_data(val14, relocInfo::none, 0);
1059       __ emit_data(val15, relocInfo::none, 0);
1060     }
1061   }
1062   return start;
1063 }
1064 
1065 // Non-destructive plausibility checks for oops
1066 //
1067 // Arguments:
1068 //    all args on stack!
1069 //
1070 // Stack after saving c_rarg3:
1071 //    [tos + 0]: saved c_rarg3
1072 //    [tos + 1]: saved c_rarg2
1073 //    [tos + 2]: saved r12 (several TemplateTable methods use it)
1074 //    [tos + 3]: saved flags
1075 //    [tos + 4]: return address
1076 //  * [tos + 5]: error message (char*)
1077 //  * [tos + 6]: object to verify (oop)
1078 //  * [tos + 7]: saved rax - saved by caller and bashed
1079 //  * [tos + 8]: saved r10 (rscratch1) - saved by caller
1080 //  * = popped on exit
1081 address StubGenerator::generate_verify_oop() {
1082   StubCodeMark mark(this, "StubRoutines", "verify_oop");
1083   address start = __ pc();
1084 
1085   Label exit, error;
1086 
1087   __ pushf();
1088   __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()), rscratch1);
1089 
1090   __ push(r12);
1091 
1092   // save c_rarg2 and c_rarg3
1093   __ push(c_rarg2);
1094   __ push(c_rarg3);
1095 
1096   enum {
1097     // After previous pushes.
1098     oop_to_verify = 6 * wordSize,
1099     saved_rax     = 7 * wordSize,
1100     saved_r10     = 8 * wordSize,
1101 
1102     // Before the call to MacroAssembler::debug(), see below.
1103     return_addr   = 16 * wordSize,
1104     error_msg     = 17 * wordSize
1105   };
1106 
1107   // get object
1108   __ movptr(rax, Address(rsp, oop_to_verify));
1109 
1110   // make sure object is 'reasonable'
1111   __ testptr(rax, rax);
1112   __ jcc(Assembler::zero, exit); // if obj is NULL it is OK
1113 
1114 #if INCLUDE_ZGC
1115   if (UseZGC) {
1116     // Check if metadata bits indicate a bad oop
1117     __ testptr(rax, Address(r15_thread, ZThreadLocalData::address_bad_mask_offset()));
1118     __ jcc(Assembler::notZero, error);
1119   }
1120 #endif
1121 
1122   // Check if the oop is in the right area of memory
1123   __ movptr(c_rarg2, rax);
1124   __ movptr(c_rarg3, (intptr_t) Universe::verify_oop_mask());
1125   __ andptr(c_rarg2, c_rarg3);
1126   __ movptr(c_rarg3, (intptr_t) Universe::verify_oop_bits());
1127   __ cmpptr(c_rarg2, c_rarg3);
1128   __ jcc(Assembler::notZero, error);
1129 
1130   // make sure klass is 'reasonable', which is not zero.
1131   __ load_klass(rax, rax, rscratch1);  // get klass
1132   __ testptr(rax, rax);
1133   __ jcc(Assembler::zero, error); // if klass is NULL it is broken
1134 
1135   // return if everything seems ok
1136   __ bind(exit);
1137   __ movptr(rax, Address(rsp, saved_rax));     // get saved rax back
1138   __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back
1139   __ pop(c_rarg3);                             // restore c_rarg3
1140   __ pop(c_rarg2);                             // restore c_rarg2
1141   __ pop(r12);                                 // restore r12
1142   __ popf();                                   // restore flags
1143   __ ret(4 * wordSize);                        // pop caller saved stuff
1144 
1145   // handle errors
1146   __ bind(error);
1147   __ movptr(rax, Address(rsp, saved_rax));     // get saved rax back
1148   __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back
1149   __ pop(c_rarg3);                             // get saved c_rarg3 back
1150   __ pop(c_rarg2);                             // get saved c_rarg2 back
1151   __ pop(r12);                                 // get saved r12 back
1152   __ popf();                                   // get saved flags off stack --
1153                                                // will be ignored
1154 
1155   __ pusha();                                  // push registers
1156                                                // (rip is already
1157                                                // already pushed)
1158   // debug(char* msg, int64_t pc, int64_t regs[])
1159   // We've popped the registers we'd saved (c_rarg3, c_rarg2 and flags), and
1160   // pushed all the registers, so now the stack looks like:
1161   //     [tos +  0] 16 saved registers
1162   //     [tos + 16] return address
1163   //   * [tos + 17] error message (char*)
1164   //   * [tos + 18] object to verify (oop)
1165   //   * [tos + 19] saved rax - saved by caller and bashed
1166   //   * [tos + 20] saved r10 (rscratch1) - saved by caller
1167   //   * = popped on exit
1168 
1169   __ movptr(c_rarg0, Address(rsp, error_msg));    // pass address of error message
1170   __ movptr(c_rarg1, Address(rsp, return_addr));  // pass return address
1171   __ movq(c_rarg2, rsp);                          // pass address of regs on stack
1172   __ mov(r12, rsp);                               // remember rsp
1173   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
1174   __ andptr(rsp, -16);                            // align stack as required by ABI
1175   BLOCK_COMMENT("call MacroAssembler::debug");
1176   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
1177   __ hlt();
1178 
1179   return start;
1180 }
1181 
1182 
1183 // Shuffle first three arg regs on Windows into Linux/Solaris locations.
1184 //
1185 // Outputs:
1186 //    rdi - rcx
1187 //    rsi - rdx
1188 //    rdx - r8
1189 //    rcx - r9
1190 //
1191 // Registers r9 and r10 are used to save rdi and rsi on Windows, which latter
1192 // are non-volatile.  r9 and r10 should not be used by the caller.
1193 //
1194 void StubGenerator::setup_arg_regs(int nargs) {
1195   const Register saved_rdi = r9;
1196   const Register saved_rsi = r10;
1197   assert(nargs == 3 || nargs == 4, "else fix");
1198 #ifdef _WIN64
1199   assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9,
1200          "unexpected argument registers");
1201   if (nargs >= 4)
1202     __ mov(rax, r9);  // r9 is also saved_rdi
1203   __ movptr(saved_rdi, rdi);
1204   __ movptr(saved_rsi, rsi);
1205   __ mov(rdi, rcx); // c_rarg0
1206   __ mov(rsi, rdx); // c_rarg1
1207   __ mov(rdx, r8);  // c_rarg2
1208   if (nargs >= 4)
1209     __ mov(rcx, rax); // c_rarg3 (via rax)
1210 #else
1211   assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx,
1212          "unexpected argument registers");
1213 #endif
1214   DEBUG_ONLY(_regs_in_thread = false;)
1215 }
1216 
1217 
1218 void StubGenerator::restore_arg_regs() {
1219   assert(!_regs_in_thread, "wrong call to restore_arg_regs");
1220   const Register saved_rdi = r9;
1221   const Register saved_rsi = r10;
1222 #ifdef _WIN64
1223   __ movptr(rdi, saved_rdi);
1224   __ movptr(rsi, saved_rsi);
1225 #endif
1226 }
1227 
1228 
1229 // This is used in places where r10 is a scratch register, and can
1230 // be adapted if r9 is needed also.
1231 void StubGenerator::setup_arg_regs_using_thread() {
1232   const Register saved_r15 = r9;
1233 #ifdef _WIN64
1234   __ mov(saved_r15, r15);  // r15 is callee saved and needs to be restored
1235   __ get_thread(r15_thread);
1236   assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9,
1237          "unexpected argument registers");
1238   __ movptr(Address(r15_thread, in_bytes(JavaThread::windows_saved_rdi_offset())), rdi);
1239   __ movptr(Address(r15_thread, in_bytes(JavaThread::windows_saved_rsi_offset())), rsi);
1240 
1241   __ mov(rdi, rcx); // c_rarg0
1242   __ mov(rsi, rdx); // c_rarg1
1243   __ mov(rdx, r8);  // c_rarg2
1244 #else
1245   assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx,
1246          "unexpected argument registers");
1247 #endif
1248   DEBUG_ONLY(_regs_in_thread = true;)
1249 }
1250 
1251 
1252 void StubGenerator::restore_arg_regs_using_thread() {
1253   assert(_regs_in_thread, "wrong call to restore_arg_regs");
1254   const Register saved_r15 = r9;
1255 #ifdef _WIN64
1256   __ get_thread(r15_thread);
1257   __ movptr(rsi, Address(r15_thread, in_bytes(JavaThread::windows_saved_rsi_offset())));
1258   __ movptr(rdi, Address(r15_thread, in_bytes(JavaThread::windows_saved_rdi_offset())));
1259   __ mov(r15, saved_r15);  // r15 is callee saved and needs to be restored
1260 #endif
1261 }
1262 
1263 
1264 void StubGenerator::setup_argument_regs(BasicType type) {
1265   if (type == T_BYTE || type == T_SHORT) {
1266     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1267                       // r9 and r10 may be used to save non-volatile registers
1268   } else {
1269     setup_arg_regs_using_thread(); // from => rdi, to => rsi, count => rdx
1270                                    // r9 is used to save r15_thread
1271   }
1272 }
1273 
1274 
1275 void StubGenerator::restore_argument_regs(BasicType type) {
1276   if (type == T_BYTE || type == T_SHORT) {
1277     restore_arg_regs();
1278   } else {
1279     restore_arg_regs_using_thread();
1280   }
1281 }
1282 
1283 address StubGenerator::generate_data_cache_writeback() {
1284   const Register src        = c_rarg0;  // source address
1285 
1286   __ align(CodeEntryAlignment);
1287 
1288   StubCodeMark mark(this, "StubRoutines", "_data_cache_writeback");
1289 
1290   address start = __ pc();
1291 
1292   __ enter();
1293   __ cache_wb(Address(src, 0));
1294   __ leave();
1295   __ ret(0);
1296 
1297   return start;
1298 }
1299 
1300 address StubGenerator::generate_data_cache_writeback_sync() {
1301   const Register is_pre    = c_rarg0;  // pre or post sync
1302 
1303   __ align(CodeEntryAlignment);
1304 
1305   StubCodeMark mark(this, "StubRoutines", "_data_cache_writeback_sync");
1306 
1307   // pre wbsync is a no-op
1308   // post wbsync translates to an sfence
1309 
1310   Label skip;
1311   address start = __ pc();
1312 
1313   __ enter();
1314   __ cmpl(is_pre, 0);
1315   __ jcc(Assembler::notEqual, skip);
1316   __ cache_wbsync(false);
1317   __ bind(skip);
1318   __ leave();
1319   __ ret(0);
1320 
1321   return start;
1322 }
1323 
1324 // ofs and limit are use for multi-block byte array.
1325 // int com.sun.security.provider.MD5.implCompress(byte[] b, int ofs)
1326 address StubGenerator::generate_md5_implCompress(bool multi_block, const char *name) {
1327   __ align(CodeEntryAlignment);
1328   StubCodeMark mark(this, "StubRoutines", name);
1329   address start = __ pc();
1330 
1331   const Register buf_param = r15;
1332   const Address state_param(rsp, 0 * wordSize);
1333   const Address ofs_param  (rsp, 1 * wordSize    );
1334   const Address limit_param(rsp, 1 * wordSize + 4);
1335 
1336   __ enter();
1337   __ push(rbx);
1338   __ push(rdi);
1339   __ push(rsi);
1340   __ push(r15);
1341   __ subptr(rsp, 2 * wordSize);
1342 
1343   __ movptr(buf_param, c_rarg0);
1344   __ movptr(state_param, c_rarg1);
1345   if (multi_block) {
1346     __ movl(ofs_param, c_rarg2);
1347     __ movl(limit_param, c_rarg3);
1348   }
1349   __ fast_md5(buf_param, state_param, ofs_param, limit_param, multi_block);
1350 
1351   __ addptr(rsp, 2 * wordSize);
1352   __ pop(r15);
1353   __ pop(rsi);
1354   __ pop(rdi);
1355   __ pop(rbx);
1356   __ leave();
1357   __ ret(0);
1358 
1359   return start;
1360 }
1361 
1362 address StubGenerator::generate_upper_word_mask() {
1363   __ align64();
1364   StubCodeMark mark(this, "StubRoutines", "upper_word_mask");
1365   address start = __ pc();
1366 
1367   __ emit_data64(0x0000000000000000, relocInfo::none);
1368   __ emit_data64(0xFFFFFFFF00000000, relocInfo::none);
1369 
1370   return start;
1371 }
1372 
1373 address StubGenerator::generate_shuffle_byte_flip_mask() {
1374   __ align64();
1375   StubCodeMark mark(this, "StubRoutines", "shuffle_byte_flip_mask");
1376   address start = __ pc();
1377 
1378   __ emit_data64(0x08090a0b0c0d0e0f, relocInfo::none);
1379   __ emit_data64(0x0001020304050607, relocInfo::none);
1380 
1381   return start;
1382 }
1383 
1384 // ofs and limit are use for multi-block byte array.
1385 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
1386 address StubGenerator::generate_sha1_implCompress(bool multi_block, const char *name) {
1387   __ align(CodeEntryAlignment);
1388   StubCodeMark mark(this, "StubRoutines", name);
1389   address start = __ pc();
1390 
1391   Register buf = c_rarg0;
1392   Register state = c_rarg1;
1393   Register ofs = c_rarg2;
1394   Register limit = c_rarg3;
1395 
1396   const XMMRegister abcd = xmm0;
1397   const XMMRegister e0 = xmm1;
1398   const XMMRegister e1 = xmm2;
1399   const XMMRegister msg0 = xmm3;
1400 
1401   const XMMRegister msg1 = xmm4;
1402   const XMMRegister msg2 = xmm5;
1403   const XMMRegister msg3 = xmm6;
1404   const XMMRegister shuf_mask = xmm7;
1405 
1406   __ enter();
1407 
1408   __ subptr(rsp, 4 * wordSize);
1409 
1410   __ fast_sha1(abcd, e0, e1, msg0, msg1, msg2, msg3, shuf_mask,
1411     buf, state, ofs, limit, rsp, multi_block);
1412 
1413   __ addptr(rsp, 4 * wordSize);
1414 
1415   __ leave();
1416   __ ret(0);
1417 
1418   return start;
1419 }
1420 
1421 address StubGenerator::generate_pshuffle_byte_flip_mask() {
1422   __ align64();
1423   StubCodeMark mark(this, "StubRoutines", "pshuffle_byte_flip_mask");
1424   address start = __ pc();
1425 
1426   __ emit_data64(0x0405060700010203, relocInfo::none);
1427   __ emit_data64(0x0c0d0e0f08090a0b, relocInfo::none);
1428 
1429   if (VM_Version::supports_avx2()) {
1430     __ emit_data64(0x0405060700010203, relocInfo::none); // second copy
1431     __ emit_data64(0x0c0d0e0f08090a0b, relocInfo::none);
1432     // _SHUF_00BA
1433     __ emit_data64(0x0b0a090803020100, relocInfo::none);
1434     __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none);
1435     __ emit_data64(0x0b0a090803020100, relocInfo::none);
1436     __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none);
1437     // _SHUF_DC00
1438     __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none);
1439     __ emit_data64(0x0b0a090803020100, relocInfo::none);
1440     __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none);
1441     __ emit_data64(0x0b0a090803020100, relocInfo::none);
1442   }
1443 
1444   return start;
1445 }
1446 
1447 //Mask for byte-swapping a couple of qwords in an XMM register using (v)pshufb.
1448 address StubGenerator::generate_pshuffle_byte_flip_mask_sha512() {
1449   __ align32();
1450   StubCodeMark mark(this, "StubRoutines", "pshuffle_byte_flip_mask_sha512");
1451   address start = __ pc();
1452 
1453   if (VM_Version::supports_avx2()) {
1454     __ emit_data64(0x0001020304050607, relocInfo::none); // PSHUFFLE_BYTE_FLIP_MASK
1455     __ emit_data64(0x08090a0b0c0d0e0f, relocInfo::none);
1456     __ emit_data64(0x1011121314151617, relocInfo::none);
1457     __ emit_data64(0x18191a1b1c1d1e1f, relocInfo::none);
1458     __ emit_data64(0x0000000000000000, relocInfo::none); //MASK_YMM_LO
1459     __ emit_data64(0x0000000000000000, relocInfo::none);
1460     __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none);
1461     __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none);
1462   }
1463 
1464   return start;
1465 }
1466 
1467 // ofs and limit are use for multi-block byte array.
1468 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
1469 address StubGenerator::generate_sha256_implCompress(bool multi_block, const char *name) {
1470   assert(VM_Version::supports_sha() || VM_Version::supports_avx2(), "");
1471   __ align(CodeEntryAlignment);
1472   StubCodeMark mark(this, "StubRoutines", name);
1473   address start = __ pc();
1474 
1475   Register buf = c_rarg0;
1476   Register state = c_rarg1;
1477   Register ofs = c_rarg2;
1478   Register limit = c_rarg3;
1479 
1480   const XMMRegister msg = xmm0;
1481   const XMMRegister state0 = xmm1;
1482   const XMMRegister state1 = xmm2;
1483   const XMMRegister msgtmp0 = xmm3;
1484 
1485   const XMMRegister msgtmp1 = xmm4;
1486   const XMMRegister msgtmp2 = xmm5;
1487   const XMMRegister msgtmp3 = xmm6;
1488   const XMMRegister msgtmp4 = xmm7;
1489 
1490   const XMMRegister shuf_mask = xmm8;
1491 
1492   __ enter();
1493 
1494   __ subptr(rsp, 4 * wordSize);
1495 
1496   if (VM_Version::supports_sha()) {
1497     __ fast_sha256(msg, state0, state1, msgtmp0, msgtmp1, msgtmp2, msgtmp3, msgtmp4,
1498       buf, state, ofs, limit, rsp, multi_block, shuf_mask);
1499   } else if (VM_Version::supports_avx2()) {
1500     __ sha256_AVX2(msg, state0, state1, msgtmp0, msgtmp1, msgtmp2, msgtmp3, msgtmp4,
1501       buf, state, ofs, limit, rsp, multi_block, shuf_mask);
1502   }
1503   __ addptr(rsp, 4 * wordSize);
1504   __ vzeroupper();
1505   __ leave();
1506   __ ret(0);
1507 
1508   return start;
1509 }
1510 
1511 address StubGenerator::generate_sha512_implCompress(bool multi_block, const char *name) {
1512   assert(VM_Version::supports_avx2(), "");
1513   assert(VM_Version::supports_bmi2(), "");
1514   __ align(CodeEntryAlignment);
1515   StubCodeMark mark(this, "StubRoutines", name);
1516   address start = __ pc();
1517 
1518   Register buf = c_rarg0;
1519   Register state = c_rarg1;
1520   Register ofs = c_rarg2;
1521   Register limit = c_rarg3;
1522 
1523   const XMMRegister msg = xmm0;
1524   const XMMRegister state0 = xmm1;
1525   const XMMRegister state1 = xmm2;
1526   const XMMRegister msgtmp0 = xmm3;
1527   const XMMRegister msgtmp1 = xmm4;
1528   const XMMRegister msgtmp2 = xmm5;
1529   const XMMRegister msgtmp3 = xmm6;
1530   const XMMRegister msgtmp4 = xmm7;
1531 
1532   const XMMRegister shuf_mask = xmm8;
1533 
1534   __ enter();
1535 
1536   __ sha512_AVX2(msg, state0, state1, msgtmp0, msgtmp1, msgtmp2, msgtmp3, msgtmp4,
1537   buf, state, ofs, limit, rsp, multi_block, shuf_mask);
1538 
1539   __ vzeroupper();
1540   __ leave();
1541   __ ret(0);
1542 
1543   return start;
1544 }
1545 
1546 address StubGenerator::base64_shuffle_addr() {
1547   __ align64();
1548   StubCodeMark mark(this, "StubRoutines", "shuffle_base64");
1549   address start = __ pc();
1550 
1551   assert(((unsigned long long)start & 0x3f) == 0,
1552          "Alignment problem (0x%08llx)", (unsigned long long)start);
1553   __ emit_data64(0x0405030401020001, relocInfo::none);
1554   __ emit_data64(0x0a0b090a07080607, relocInfo::none);
1555   __ emit_data64(0x10110f100d0e0c0d, relocInfo::none);
1556   __ emit_data64(0x1617151613141213, relocInfo::none);
1557   __ emit_data64(0x1c1d1b1c191a1819, relocInfo::none);
1558   __ emit_data64(0x222321221f201e1f, relocInfo::none);
1559   __ emit_data64(0x2829272825262425, relocInfo::none);
1560   __ emit_data64(0x2e2f2d2e2b2c2a2b, relocInfo::none);
1561 
1562   return start;
1563 }
1564 
1565 address StubGenerator::base64_avx2_shuffle_addr() {
1566   __ align32();
1567   StubCodeMark mark(this, "StubRoutines", "avx2_shuffle_base64");
1568   address start = __ pc();
1569 
1570   __ emit_data64(0x0809070805060405, relocInfo::none);
1571   __ emit_data64(0x0e0f0d0e0b0c0a0b, relocInfo::none);
1572   __ emit_data64(0x0405030401020001, relocInfo::none);
1573   __ emit_data64(0x0a0b090a07080607, relocInfo::none);
1574 
1575   return start;
1576 }
1577 
1578 address StubGenerator::base64_avx2_input_mask_addr() {
1579   __ align32();
1580   StubCodeMark mark(this, "StubRoutines", "avx2_input_mask_base64");
1581   address start = __ pc();
1582 
1583   __ emit_data64(0x8000000000000000, relocInfo::none);
1584   __ emit_data64(0x8000000080000000, relocInfo::none);
1585   __ emit_data64(0x8000000080000000, relocInfo::none);
1586   __ emit_data64(0x8000000080000000, relocInfo::none);
1587 
1588   return start;
1589 }
1590 
1591 address StubGenerator::base64_avx2_lut_addr() {
1592   __ align32();
1593   StubCodeMark mark(this, "StubRoutines", "avx2_lut_base64");
1594   address start = __ pc();
1595 
1596   __ emit_data64(0xfcfcfcfcfcfc4741, relocInfo::none);
1597   __ emit_data64(0x0000f0edfcfcfcfc, relocInfo::none);
1598   __ emit_data64(0xfcfcfcfcfcfc4741, relocInfo::none);
1599   __ emit_data64(0x0000f0edfcfcfcfc, relocInfo::none);
1600 
1601   // URL LUT
1602   __ emit_data64(0xfcfcfcfcfcfc4741, relocInfo::none);
1603   __ emit_data64(0x000020effcfcfcfc, relocInfo::none);
1604   __ emit_data64(0xfcfcfcfcfcfc4741, relocInfo::none);
1605   __ emit_data64(0x000020effcfcfcfc, relocInfo::none);
1606 
1607   return start;
1608 }
1609 
1610 address StubGenerator::base64_encoding_table_addr() {
1611   __ align64();
1612   StubCodeMark mark(this, "StubRoutines", "encoding_table_base64");
1613   address start = __ pc();
1614 
1615   assert(((unsigned long long)start & 0x3f) == 0, "Alignment problem (0x%08llx)", (unsigned long long)start);
1616   __ emit_data64(0x4847464544434241, relocInfo::none);
1617   __ emit_data64(0x504f4e4d4c4b4a49, relocInfo::none);
1618   __ emit_data64(0x5857565554535251, relocInfo::none);
1619   __ emit_data64(0x6665646362615a59, relocInfo::none);
1620   __ emit_data64(0x6e6d6c6b6a696867, relocInfo::none);
1621   __ emit_data64(0x767574737271706f, relocInfo::none);
1622   __ emit_data64(0x333231307a797877, relocInfo::none);
1623   __ emit_data64(0x2f2b393837363534, relocInfo::none);
1624 
1625   // URL table
1626   __ emit_data64(0x4847464544434241, relocInfo::none);
1627   __ emit_data64(0x504f4e4d4c4b4a49, relocInfo::none);
1628   __ emit_data64(0x5857565554535251, relocInfo::none);
1629   __ emit_data64(0x6665646362615a59, relocInfo::none);
1630   __ emit_data64(0x6e6d6c6b6a696867, relocInfo::none);
1631   __ emit_data64(0x767574737271706f, relocInfo::none);
1632   __ emit_data64(0x333231307a797877, relocInfo::none);
1633   __ emit_data64(0x5f2d393837363534, relocInfo::none);
1634 
1635   return start;
1636 }
1637 
1638 // Code for generating Base64 encoding.
1639 // Intrinsic function prototype in Base64.java:
1640 // private void encodeBlock(byte[] src, int sp, int sl, byte[] dst, int dp,
1641 // boolean isURL) {
1642 address StubGenerator::generate_base64_encodeBlock()
1643 {
1644   __ align(CodeEntryAlignment);
1645   StubCodeMark mark(this, "StubRoutines", "implEncode");
1646   address start = __ pc();
1647 
1648   __ enter();
1649 
1650   // Save callee-saved registers before using them
1651   __ push(r12);
1652   __ push(r13);
1653   __ push(r14);
1654   __ push(r15);
1655 
1656   // arguments
1657   const Register source = c_rarg0;       // Source Array
1658   const Register start_offset = c_rarg1; // start offset
1659   const Register end_offset = c_rarg2;   // end offset
1660   const Register dest = c_rarg3;   // destination array
1661 
1662 #ifndef _WIN64
1663   const Register dp = c_rarg4;    // Position for writing to dest array
1664   const Register isURL = c_rarg5; // Base64 or URL character set
1665 #else
1666   const Address dp_mem(rbp, 6 * wordSize); // length is on stack on Win64
1667   const Address isURL_mem(rbp, 7 * wordSize);
1668   const Register isURL = r10; // pick the volatile windows register
1669   const Register dp = r12;
1670   __ movl(dp, dp_mem);
1671   __ movl(isURL, isURL_mem);
1672 #endif
1673 
1674   const Register length = r14;
1675   const Register encode_table = r13;
1676   Label L_process3, L_exit, L_processdata, L_vbmiLoop, L_not512, L_32byteLoop;
1677 
1678   // calculate length from offsets
1679   __ movl(length, end_offset);
1680   __ subl(length, start_offset);
1681   __ cmpl(length, 0);
1682   __ jcc(Assembler::lessEqual, L_exit);
1683 
1684   // Code for 512-bit VBMI encoding.  Encodes 48 input bytes into 64
1685   // output bytes. We read 64 input bytes and ignore the last 16, so be
1686   // sure not to read past the end of the input buffer.
1687   if (VM_Version::supports_avx512_vbmi()) {
1688     __ cmpl(length, 64); // Do not overrun input buffer.
1689     __ jcc(Assembler::below, L_not512);
1690 
1691     __ shll(isURL, 6); // index into decode table based on isURL
1692     __ lea(encode_table, ExternalAddress(StubRoutines::x86::base64_encoding_table_addr()));
1693     __ addptr(encode_table, isURL);
1694     __ shrl(isURL, 6); // restore isURL
1695 
1696     __ mov64(rax, 0x3036242a1016040aull); // Shifts
1697     __ evmovdquq(xmm3, ExternalAddress(StubRoutines::x86::base64_shuffle_addr()), Assembler::AVX_512bit, r15);
1698     __ evmovdquq(xmm2, Address(encode_table, 0), Assembler::AVX_512bit);
1699     __ evpbroadcastq(xmm1, rax, Assembler::AVX_512bit);
1700 
1701     __ align32();
1702     __ BIND(L_vbmiLoop);
1703 
1704     __ vpermb(xmm0, xmm3, Address(source, start_offset), Assembler::AVX_512bit);
1705     __ subl(length, 48);
1706 
1707     // Put the input bytes into the proper lanes for writing, then
1708     // encode them.
1709     __ evpmultishiftqb(xmm0, xmm1, xmm0, Assembler::AVX_512bit);
1710     __ vpermb(xmm0, xmm0, xmm2, Assembler::AVX_512bit);
1711 
1712     // Write to destination
1713     __ evmovdquq(Address(dest, dp), xmm0, Assembler::AVX_512bit);
1714 
1715     __ addptr(dest, 64);
1716     __ addptr(source, 48);
1717     __ cmpl(length, 64);
1718     __ jcc(Assembler::aboveEqual, L_vbmiLoop);
1719 
1720     __ vzeroupper();
1721   }
1722 
1723   __ BIND(L_not512);
1724   if (VM_Version::supports_avx2()
1725       && VM_Version::supports_avx512vlbw()) {
1726     /*
1727     ** This AVX2 encoder is based off the paper at:
1728     **      https://dl.acm.org/doi/10.1145/3132709
1729     **
1730     ** We use AVX2 SIMD instructions to encode 24 bytes into 32
1731     ** output bytes.
1732     **
1733     */
1734     // Lengths under 32 bytes are done with scalar routine
1735     __ cmpl(length, 31);
1736     __ jcc(Assembler::belowEqual, L_process3);
1737 
1738     // Set up supporting constant table data
1739     __ vmovdqu(xmm9, ExternalAddress(StubRoutines::x86::base64_avx2_shuffle_addr()), rax);
1740     // 6-bit mask for 2nd and 4th (and multiples) 6-bit values
1741     __ movl(rax, 0x0fc0fc00);
1742     __ vmovdqu(xmm1, ExternalAddress(StubRoutines::x86::base64_avx2_input_mask_addr()), rax);
1743     __ evpbroadcastd(xmm8, rax, Assembler::AVX_256bit);
1744 
1745     // Multiplication constant for "shifting" right by 6 and 10
1746     // bits
1747     __ movl(rax, 0x04000040);
1748 
1749     __ subl(length, 24);
1750     __ evpbroadcastd(xmm7, rax, Assembler::AVX_256bit);
1751 
1752     // For the first load, we mask off reading of the first 4
1753     // bytes into the register. This is so we can get 4 3-byte
1754     // chunks into each lane of the register, avoiding having to
1755     // handle end conditions.  We then shuffle these bytes into a
1756     // specific order so that manipulation is easier.
1757     //
1758     // The initial read loads the XMM register like this:
1759     //
1760     // Lower 128-bit lane:
1761     // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
1762     // | XX | XX | XX | XX | A0 | A1 | A2 | B0 | B1 | B2 | C0 | C1
1763     // | C2 | D0 | D1 | D2 |
1764     // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
1765     //
1766     // Upper 128-bit lane:
1767     // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
1768     // | E0 | E1 | E2 | F0 | F1 | F2 | G0 | G1 | G2 | H0 | H1 | H2
1769     // | XX | XX | XX | XX |
1770     // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
1771     //
1772     // Where A0 is the first input byte, B0 is the fourth, etc.
1773     // The alphabetical significance denotes the 3 bytes to be
1774     // consumed and encoded into 4 bytes.
1775     //
1776     // We then shuffle the register so each 32-bit word contains
1777     // the sequence:
1778     //    A1 A0 A2 A1, B1, B0, B2, B1, etc.
1779     // Each of these byte sequences are then manipulated into 4
1780     // 6-bit values ready for encoding.
1781     //
1782     // If we focus on one set of 3-byte chunks, changing the
1783     // nomenclature such that A0 => a, A1 => b, and A2 => c, we
1784     // shuffle such that each 24-bit chunk contains:
1785     //
1786     // b7 b6 b5 b4 b3 b2 b1 b0 | a7 a6 a5 a4 a3 a2 a1 a0 | c7 c6
1787     // c5 c4 c3 c2 c1 c0 | b7 b6 b5 b4 b3 b2 b1 b0
1788     // Explain this step.
1789     // b3 b2 b1 b0 c5 c4 c3 c2 | c1 c0 d5 d4 d3 d2 d1 d0 | a5 a4
1790     // a3 a2 a1 a0 b5 b4 | b3 b2 b1 b0 c5 c4 c3 c2
1791     //
1792     // W first and off all but bits 4-9 and 16-21 (c5..c0 and
1793     // a5..a0) and shift them using a vector multiplication
1794     // operation (vpmulhuw) which effectively shifts c right by 6
1795     // bits and a right by 10 bits.  We similarly mask bits 10-15
1796     // (d5..d0) and 22-27 (b5..b0) and shift them left by 8 and 4
1797     // bits respectively.  This is done using vpmullw.  We end up
1798     // with 4 6-bit values, thus splitting the 3 input bytes,
1799     // ready for encoding:
1800     //    0 0 d5..d0 0 0 c5..c0 0 0 b5..b0 0 0 a5..a0
1801     //
1802     // For translation, we recognize that there are 5 distinct
1803     // ranges of legal Base64 characters as below:
1804     //
1805     //   +-------------+-------------+------------+
1806     //   | 6-bit value | ASCII range |   offset   |
1807     //   +-------------+-------------+------------+
1808     //   |    0..25    |    A..Z     |     65     |
1809     //   |   26..51    |    a..z     |     71     |
1810     //   |   52..61    |    0..9     |     -4     |
1811     //   |     62      |   + or -    | -19 or -17 |
1812     //   |     63      |   / or _    | -16 or 32  |
1813     //   +-------------+-------------+------------+
1814     //
1815     // We note that vpshufb does a parallel lookup in a
1816     // destination register using the lower 4 bits of bytes from a
1817     // source register.  If we use a saturated subtraction and
1818     // subtract 51 from each 6-bit value, bytes from [0,51]
1819     // saturate to 0, and [52,63] map to a range of [1,12].  We
1820     // distinguish the [0,25] and [26,51] ranges by assigning a
1821     // value of 13 for all 6-bit values less than 26.  We end up
1822     // with:
1823     //
1824     //   +-------------+-------------+------------+
1825     //   | 6-bit value |   Reduced   |   offset   |
1826     //   +-------------+-------------+------------+
1827     //   |    0..25    |     13      |     65     |
1828     //   |   26..51    |      0      |     71     |
1829     //   |   52..61    |    0..9     |     -4     |
1830     //   |     62      |     11      | -19 or -17 |
1831     //   |     63      |     12      | -16 or 32  |
1832     //   +-------------+-------------+------------+
1833     //
1834     // We then use a final vpshufb to add the appropriate offset,
1835     // translating the bytes.
1836     //
1837     // Load input bytes - only 28 bytes.  Mask the first load to
1838     // not load into the full register.
1839     __ vpmaskmovd(xmm1, xmm1, Address(source, start_offset, Address::times_1, -4), Assembler::AVX_256bit);
1840 
1841     // Move 3-byte chunks of input (12 bytes) into 16 bytes,
1842     // ordering by:
1843     //   1, 0, 2, 1; 4, 3, 5, 4; etc.  This groups 6-bit chunks
1844     //   for easy masking
1845     __ vpshufb(xmm1, xmm1, xmm9, Assembler::AVX_256bit);
1846 
1847     __ addl(start_offset, 24);
1848 
1849     // Load masking register for first and third (and multiples)
1850     // 6-bit values.
1851     __ movl(rax, 0x003f03f0);
1852     __ evpbroadcastd(xmm6, rax, Assembler::AVX_256bit);
1853     // Multiplication constant for "shifting" left by 4 and 8 bits
1854     __ movl(rax, 0x01000010);
1855     __ evpbroadcastd(xmm5, rax, Assembler::AVX_256bit);
1856 
1857     // Isolate 6-bit chunks of interest
1858     __ vpand(xmm0, xmm8, xmm1, Assembler::AVX_256bit);
1859 
1860     // Load constants for encoding
1861     __ movl(rax, 0x19191919);
1862     __ evpbroadcastd(xmm3, rax, Assembler::AVX_256bit);
1863     __ movl(rax, 0x33333333);
1864     __ evpbroadcastd(xmm4, rax, Assembler::AVX_256bit);
1865 
1866     // Shift output bytes 0 and 2 into proper lanes
1867     __ vpmulhuw(xmm2, xmm0, xmm7, Assembler::AVX_256bit);
1868 
1869     // Mask and shift output bytes 1 and 3 into proper lanes and
1870     // combine
1871     __ vpand(xmm0, xmm6, xmm1, Assembler::AVX_256bit);
1872     __ vpmullw(xmm0, xmm5, xmm0, Assembler::AVX_256bit);
1873     __ vpor(xmm0, xmm0, xmm2, Assembler::AVX_256bit);
1874 
1875     // Find out which are 0..25.  This indicates which input
1876     // values fall in the range of 'A'-'Z', which require an
1877     // additional offset (see comments above)
1878     __ vpcmpgtb(xmm2, xmm0, xmm3, Assembler::AVX_256bit);
1879     __ vpsubusb(xmm1, xmm0, xmm4, Assembler::AVX_256bit);
1880     __ vpsubb(xmm1, xmm1, xmm2, Assembler::AVX_256bit);
1881 
1882     // Load the proper lookup table
1883     __ lea(r11, ExternalAddress(StubRoutines::x86::base64_avx2_lut_addr()));
1884     __ movl(r15, isURL);
1885     __ shll(r15, 5);
1886     __ vmovdqu(xmm2, Address(r11, r15));
1887 
1888     // Shuffle the offsets based on the range calculation done
1889     // above. This allows us to add the correct offset to the
1890     // 6-bit value corresponding to the range documented above.
1891     __ vpshufb(xmm1, xmm2, xmm1, Assembler::AVX_256bit);
1892     __ vpaddb(xmm0, xmm1, xmm0, Assembler::AVX_256bit);
1893 
1894     // Store the encoded bytes
1895     __ vmovdqu(Address(dest, dp), xmm0);
1896     __ addl(dp, 32);
1897 
1898     __ cmpl(length, 31);
1899     __ jcc(Assembler::belowEqual, L_process3);
1900 
1901     __ align32();
1902     __ BIND(L_32byteLoop);
1903 
1904     // Get next 32 bytes
1905     __ vmovdqu(xmm1, Address(source, start_offset, Address::times_1, -4));
1906 
1907     __ subl(length, 24);
1908     __ addl(start_offset, 24);
1909 
1910     // This logic is identical to the above, with only constant
1911     // register loads removed.  Shuffle the input, mask off 6-bit
1912     // chunks, shift them into place, then add the offset to
1913     // encode.
1914     __ vpshufb(xmm1, xmm1, xmm9, Assembler::AVX_256bit);
1915 
1916     __ vpand(xmm0, xmm8, xmm1, Assembler::AVX_256bit);
1917     __ vpmulhuw(xmm10, xmm0, xmm7, Assembler::AVX_256bit);
1918     __ vpand(xmm0, xmm6, xmm1, Assembler::AVX_256bit);
1919     __ vpmullw(xmm0, xmm5, xmm0, Assembler::AVX_256bit);
1920     __ vpor(xmm0, xmm0, xmm10, Assembler::AVX_256bit);
1921     __ vpcmpgtb(xmm10, xmm0, xmm3, Assembler::AVX_256bit);
1922     __ vpsubusb(xmm1, xmm0, xmm4, Assembler::AVX_256bit);
1923     __ vpsubb(xmm1, xmm1, xmm10, Assembler::AVX_256bit);
1924     __ vpshufb(xmm1, xmm2, xmm1, Assembler::AVX_256bit);
1925     __ vpaddb(xmm0, xmm1, xmm0, Assembler::AVX_256bit);
1926 
1927     // Store the encoded bytes
1928     __ vmovdqu(Address(dest, dp), xmm0);
1929     __ addl(dp, 32);
1930 
1931     __ cmpl(length, 31);
1932     __ jcc(Assembler::above, L_32byteLoop);
1933 
1934     __ BIND(L_process3);
1935     __ vzeroupper();
1936   } else {
1937     __ BIND(L_process3);
1938   }
1939 
1940   __ cmpl(length, 3);
1941   __ jcc(Assembler::below, L_exit);
1942 
1943   // Load the encoding table based on isURL
1944   __ lea(r11, ExternalAddress(StubRoutines::x86::base64_encoding_table_addr()));
1945   __ movl(r15, isURL);
1946   __ shll(r15, 6);
1947   __ addptr(r11, r15);
1948 
1949   __ BIND(L_processdata);
1950 
1951   // Load 3 bytes
1952   __ load_unsigned_byte(r15, Address(source, start_offset));
1953   __ load_unsigned_byte(r10, Address(source, start_offset, Address::times_1, 1));
1954   __ load_unsigned_byte(r13, Address(source, start_offset, Address::times_1, 2));
1955 
1956   // Build a 32-bit word with bytes 1, 2, 0, 1
1957   __ movl(rax, r10);
1958   __ shll(r10, 24);
1959   __ orl(rax, r10);
1960 
1961   __ subl(length, 3);
1962 
1963   __ shll(r15, 8);
1964   __ shll(r13, 16);
1965   __ orl(rax, r15);
1966 
1967   __ addl(start_offset, 3);
1968 
1969   __ orl(rax, r13);
1970   // At this point, rax contains | byte1 | byte2 | byte0 | byte1
1971   // r13 has byte2 << 16 - need low-order 6 bits to translate.
1972   // This translated byte is the fourth output byte.
1973   __ shrl(r13, 16);
1974   __ andl(r13, 0x3f);
1975 
1976   // The high-order 6 bits of r15 (byte0) is translated.
1977   // The translated byte is the first output byte.
1978   __ shrl(r15, 10);
1979 
1980   __ load_unsigned_byte(r13, Address(r11, r13));
1981   __ load_unsigned_byte(r15, Address(r11, r15));
1982 
1983   __ movb(Address(dest, dp, Address::times_1, 3), r13);
1984 
1985   // Extract high-order 4 bits of byte1 and low-order 2 bits of byte0.
1986   // This translated byte is the second output byte.
1987   __ shrl(rax, 4);
1988   __ movl(r10, rax);
1989   __ andl(rax, 0x3f);
1990 
1991   __ movb(Address(dest, dp, Address::times_1, 0), r15);
1992 
1993   __ load_unsigned_byte(rax, Address(r11, rax));
1994 
1995   // Extract low-order 2 bits of byte1 and high-order 4 bits of byte2.
1996   // This translated byte is the third output byte.
1997   __ shrl(r10, 18);
1998   __ andl(r10, 0x3f);
1999 
2000   __ load_unsigned_byte(r10, Address(r11, r10));
2001 
2002   __ movb(Address(dest, dp, Address::times_1, 1), rax);
2003   __ movb(Address(dest, dp, Address::times_1, 2), r10);
2004 
2005   __ addl(dp, 4);
2006   __ cmpl(length, 3);
2007   __ jcc(Assembler::aboveEqual, L_processdata);
2008 
2009   __ BIND(L_exit);
2010   __ pop(r15);
2011   __ pop(r14);
2012   __ pop(r13);
2013   __ pop(r12);
2014   __ leave();
2015   __ ret(0);
2016 
2017   return start;
2018 }
2019 
2020 // base64 AVX512vbmi tables
2021 address StubGenerator::base64_vbmi_lookup_lo_addr() {
2022   __ align64();
2023   StubCodeMark mark(this, "StubRoutines", "lookup_lo_base64");
2024   address start = __ pc();
2025 
2026   assert(((unsigned long long)start & 0x3f) == 0,
2027          "Alignment problem (0x%08llx)", (unsigned long long)start);
2028   __ emit_data64(0x8080808080808080, relocInfo::none);
2029   __ emit_data64(0x8080808080808080, relocInfo::none);
2030   __ emit_data64(0x8080808080808080, relocInfo::none);
2031   __ emit_data64(0x8080808080808080, relocInfo::none);
2032   __ emit_data64(0x8080808080808080, relocInfo::none);
2033   __ emit_data64(0x3f8080803e808080, relocInfo::none);
2034   __ emit_data64(0x3b3a393837363534, relocInfo::none);
2035   __ emit_data64(0x8080808080803d3c, relocInfo::none);
2036 
2037   return start;
2038 }
2039 
2040 address StubGenerator::base64_vbmi_lookup_hi_addr() {
2041   __ align64();
2042   StubCodeMark mark(this, "StubRoutines", "lookup_hi_base64");
2043   address start = __ pc();
2044 
2045   assert(((unsigned long long)start & 0x3f) == 0,
2046          "Alignment problem (0x%08llx)", (unsigned long long)start);
2047   __ emit_data64(0x0605040302010080, relocInfo::none);
2048   __ emit_data64(0x0e0d0c0b0a090807, relocInfo::none);
2049   __ emit_data64(0x161514131211100f, relocInfo::none);
2050   __ emit_data64(0x8080808080191817, relocInfo::none);
2051   __ emit_data64(0x201f1e1d1c1b1a80, relocInfo::none);
2052   __ emit_data64(0x2827262524232221, relocInfo::none);
2053   __ emit_data64(0x302f2e2d2c2b2a29, relocInfo::none);
2054   __ emit_data64(0x8080808080333231, relocInfo::none);
2055 
2056   return start;
2057 }
2058 address StubGenerator::base64_vbmi_lookup_lo_url_addr() {
2059   __ align64();
2060   StubCodeMark mark(this, "StubRoutines", "lookup_lo_base64url");
2061   address start = __ pc();
2062 
2063   assert(((unsigned long long)start & 0x3f) == 0,
2064          "Alignment problem (0x%08llx)", (unsigned long long)start);
2065   __ emit_data64(0x8080808080808080, relocInfo::none);
2066   __ emit_data64(0x8080808080808080, relocInfo::none);
2067   __ emit_data64(0x8080808080808080, relocInfo::none);
2068   __ emit_data64(0x8080808080808080, relocInfo::none);
2069   __ emit_data64(0x8080808080808080, relocInfo::none);
2070   __ emit_data64(0x80803e8080808080, relocInfo::none);
2071   __ emit_data64(0x3b3a393837363534, relocInfo::none);
2072   __ emit_data64(0x8080808080803d3c, relocInfo::none);
2073 
2074   return start;
2075 }
2076 
2077 address StubGenerator::base64_vbmi_lookup_hi_url_addr() {
2078   __ align64();
2079   StubCodeMark mark(this, "StubRoutines", "lookup_hi_base64url");
2080   address start = __ pc();
2081 
2082   assert(((unsigned long long)start & 0x3f) == 0,
2083          "Alignment problem (0x%08llx)", (unsigned long long)start);
2084   __ emit_data64(0x0605040302010080, relocInfo::none);
2085   __ emit_data64(0x0e0d0c0b0a090807, relocInfo::none);
2086   __ emit_data64(0x161514131211100f, relocInfo::none);
2087   __ emit_data64(0x3f80808080191817, relocInfo::none);
2088   __ emit_data64(0x201f1e1d1c1b1a80, relocInfo::none);
2089   __ emit_data64(0x2827262524232221, relocInfo::none);
2090   __ emit_data64(0x302f2e2d2c2b2a29, relocInfo::none);
2091   __ emit_data64(0x8080808080333231, relocInfo::none);
2092 
2093   return start;
2094 }
2095 
2096 address StubGenerator::base64_vbmi_pack_vec_addr() {
2097   __ align64();
2098   StubCodeMark mark(this, "StubRoutines", "pack_vec_base64");
2099   address start = __ pc();
2100 
2101   assert(((unsigned long long)start & 0x3f) == 0,
2102          "Alignment problem (0x%08llx)", (unsigned long long)start);
2103   __ emit_data64(0x090a040506000102, relocInfo::none);
2104   __ emit_data64(0x161011120c0d0e08, relocInfo::none);
2105   __ emit_data64(0x1c1d1e18191a1415, relocInfo::none);
2106   __ emit_data64(0x292a242526202122, relocInfo::none);
2107   __ emit_data64(0x363031322c2d2e28, relocInfo::none);
2108   __ emit_data64(0x3c3d3e38393a3435, relocInfo::none);
2109   __ emit_data64(0x0000000000000000, relocInfo::none);
2110   __ emit_data64(0x0000000000000000, relocInfo::none);
2111 
2112   return start;
2113 }
2114 
2115 address StubGenerator::base64_vbmi_join_0_1_addr() {
2116   __ align64();
2117   StubCodeMark mark(this, "StubRoutines", "join_0_1_base64");
2118   address start = __ pc();
2119 
2120   assert(((unsigned long long)start & 0x3f) == 0,
2121          "Alignment problem (0x%08llx)", (unsigned long long)start);
2122   __ emit_data64(0x090a040506000102, relocInfo::none);
2123   __ emit_data64(0x161011120c0d0e08, relocInfo::none);
2124   __ emit_data64(0x1c1d1e18191a1415, relocInfo::none);
2125   __ emit_data64(0x292a242526202122, relocInfo::none);
2126   __ emit_data64(0x363031322c2d2e28, relocInfo::none);
2127   __ emit_data64(0x3c3d3e38393a3435, relocInfo::none);
2128   __ emit_data64(0x494a444546404142, relocInfo::none);
2129   __ emit_data64(0x565051524c4d4e48, relocInfo::none);
2130 
2131   return start;
2132 }
2133 
2134 address StubGenerator::base64_vbmi_join_1_2_addr() {
2135   __ align64();
2136   StubCodeMark mark(this, "StubRoutines", "join_1_2_base64");
2137   address start = __ pc();
2138 
2139   assert(((unsigned long long)start & 0x3f) == 0,
2140          "Alignment problem (0x%08llx)", (unsigned long long)start);
2141   __ emit_data64(0x1c1d1e18191a1415, relocInfo::none);
2142   __ emit_data64(0x292a242526202122, relocInfo::none);
2143   __ emit_data64(0x363031322c2d2e28, relocInfo::none);
2144   __ emit_data64(0x3c3d3e38393a3435, relocInfo::none);
2145   __ emit_data64(0x494a444546404142, relocInfo::none);
2146   __ emit_data64(0x565051524c4d4e48, relocInfo::none);
2147   __ emit_data64(0x5c5d5e58595a5455, relocInfo::none);
2148   __ emit_data64(0x696a646566606162, relocInfo::none);
2149 
2150   return start;
2151 }
2152 
2153 address StubGenerator::base64_vbmi_join_2_3_addr() {
2154   __ align64();
2155   StubCodeMark mark(this, "StubRoutines", "join_2_3_base64");
2156   address start = __ pc();
2157 
2158   assert(((unsigned long long)start & 0x3f) == 0,
2159          "Alignment problem (0x%08llx)", (unsigned long long)start);
2160   __ emit_data64(0x363031322c2d2e28, relocInfo::none);
2161   __ emit_data64(0x3c3d3e38393a3435, relocInfo::none);
2162   __ emit_data64(0x494a444546404142, relocInfo::none);
2163   __ emit_data64(0x565051524c4d4e48, relocInfo::none);
2164   __ emit_data64(0x5c5d5e58595a5455, relocInfo::none);
2165   __ emit_data64(0x696a646566606162, relocInfo::none);
2166   __ emit_data64(0x767071726c6d6e68, relocInfo::none);
2167   __ emit_data64(0x7c7d7e78797a7475, relocInfo::none);
2168 
2169   return start;
2170 }
2171 
2172 address StubGenerator::base64_decoding_table_addr() {
2173   StubCodeMark mark(this, "StubRoutines", "decoding_table_base64");
2174   address start = __ pc();
2175 
2176   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2177   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2178   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2179   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2180   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2181   __ emit_data64(0x3fffffff3effffff, relocInfo::none);
2182   __ emit_data64(0x3b3a393837363534, relocInfo::none);
2183   __ emit_data64(0xffffffffffff3d3c, relocInfo::none);
2184   __ emit_data64(0x06050403020100ff, relocInfo::none);
2185   __ emit_data64(0x0e0d0c0b0a090807, relocInfo::none);
2186   __ emit_data64(0x161514131211100f, relocInfo::none);
2187   __ emit_data64(0xffffffffff191817, relocInfo::none);
2188   __ emit_data64(0x201f1e1d1c1b1aff, relocInfo::none);
2189   __ emit_data64(0x2827262524232221, relocInfo::none);
2190   __ emit_data64(0x302f2e2d2c2b2a29, relocInfo::none);
2191   __ emit_data64(0xffffffffff333231, relocInfo::none);
2192   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2193   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2194   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2195   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2196   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2197   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2198   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2199   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2200   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2201   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2202   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2203   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2204   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2205   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2206   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2207   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2208 
2209   // URL table
2210   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2211   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2212   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2213   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2214   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2215   __ emit_data64(0xffff3effffffffff, relocInfo::none);
2216   __ emit_data64(0x3b3a393837363534, relocInfo::none);
2217   __ emit_data64(0xffffffffffff3d3c, relocInfo::none);
2218   __ emit_data64(0x06050403020100ff, relocInfo::none);
2219   __ emit_data64(0x0e0d0c0b0a090807, relocInfo::none);
2220   __ emit_data64(0x161514131211100f, relocInfo::none);
2221   __ emit_data64(0x3fffffffff191817, relocInfo::none);
2222   __ emit_data64(0x201f1e1d1c1b1aff, relocInfo::none);
2223   __ emit_data64(0x2827262524232221, relocInfo::none);
2224   __ emit_data64(0x302f2e2d2c2b2a29, relocInfo::none);
2225   __ emit_data64(0xffffffffff333231, relocInfo::none);
2226   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2227   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2228   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2229   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2230   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2231   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2232   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2233   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2234   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2235   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2236   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2237   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2238   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2239   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2240   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2241   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2242 
2243   return start;
2244 }
2245 
2246 
2247 // Code for generating Base64 decoding.
2248 //
2249 // Based on the article (and associated code) from https://arxiv.org/abs/1910.05109.
2250 //
2251 // Intrinsic function prototype in Base64.java:
2252 // private void decodeBlock(byte[] src, int sp, int sl, byte[] dst, int dp, boolean isURL, isMIME) {
2253 address StubGenerator::generate_base64_decodeBlock() {
2254   __ align(CodeEntryAlignment);
2255   StubCodeMark mark(this, "StubRoutines", "implDecode");
2256   address start = __ pc();
2257 
2258   __ enter();
2259 
2260   // Save callee-saved registers before using them
2261   __ push(r12);
2262   __ push(r13);
2263   __ push(r14);
2264   __ push(r15);
2265   __ push(rbx);
2266 
2267   // arguments
2268   const Register source = c_rarg0; // Source Array
2269   const Register start_offset = c_rarg1; // start offset
2270   const Register end_offset = c_rarg2; // end offset
2271   const Register dest = c_rarg3; // destination array
2272   const Register isMIME = rbx;
2273 
2274 #ifndef _WIN64
2275   const Register dp = c_rarg4;  // Position for writing to dest array
2276   const Register isURL = c_rarg5;// Base64 or URL character set
2277   __ movl(isMIME, Address(rbp, 2 * wordSize));
2278 #else
2279   const Address  dp_mem(rbp, 6 * wordSize);  // length is on stack on Win64
2280   const Address isURL_mem(rbp, 7 * wordSize);
2281   const Register isURL = r10;      // pick the volatile windows register
2282   const Register dp = r12;
2283   __ movl(dp, dp_mem);
2284   __ movl(isURL, isURL_mem);
2285   __ movl(isMIME, Address(rbp, 8 * wordSize));
2286 #endif
2287 
2288   const XMMRegister lookup_lo = xmm5;
2289   const XMMRegister lookup_hi = xmm6;
2290   const XMMRegister errorvec = xmm7;
2291   const XMMRegister pack16_op = xmm9;
2292   const XMMRegister pack32_op = xmm8;
2293   const XMMRegister input0 = xmm3;
2294   const XMMRegister input1 = xmm20;
2295   const XMMRegister input2 = xmm21;
2296   const XMMRegister input3 = xmm19;
2297   const XMMRegister join01 = xmm12;
2298   const XMMRegister join12 = xmm11;
2299   const XMMRegister join23 = xmm10;
2300   const XMMRegister translated0 = xmm2;
2301   const XMMRegister translated1 = xmm1;
2302   const XMMRegister translated2 = xmm0;
2303   const XMMRegister translated3 = xmm4;
2304 
2305   const XMMRegister merged0 = xmm2;
2306   const XMMRegister merged1 = xmm1;
2307   const XMMRegister merged2 = xmm0;
2308   const XMMRegister merged3 = xmm4;
2309   const XMMRegister merge_ab_bc0 = xmm2;
2310   const XMMRegister merge_ab_bc1 = xmm1;
2311   const XMMRegister merge_ab_bc2 = xmm0;
2312   const XMMRegister merge_ab_bc3 = xmm4;
2313 
2314   const XMMRegister pack24bits = xmm4;
2315 
2316   const Register length = r14;
2317   const Register output_size = r13;
2318   const Register output_mask = r15;
2319   const KRegister input_mask = k1;
2320 
2321   const XMMRegister input_initial_valid_b64 = xmm0;
2322   const XMMRegister tmp = xmm10;
2323   const XMMRegister mask = xmm0;
2324   const XMMRegister invalid_b64 = xmm1;
2325 
2326   Label L_process256, L_process64, L_process64Loop, L_exit, L_processdata, L_loadURL;
2327   Label L_continue, L_finalBit, L_padding, L_donePadding, L_bruteForce;
2328   Label L_forceLoop, L_bottomLoop, L_checkMIME, L_exit_no_vzero;
2329 
2330   // calculate length from offsets
2331   __ movl(length, end_offset);
2332   __ subl(length, start_offset);
2333   __ push(dest);          // Save for return value calc
2334 
2335   // If AVX512 VBMI not supported, just compile non-AVX code
2336   if(VM_Version::supports_avx512_vbmi() &&
2337      VM_Version::supports_avx512bw()) {
2338     __ cmpl(length, 128);     // 128-bytes is break-even for AVX-512
2339     __ jcc(Assembler::lessEqual, L_bruteForce);
2340 
2341     __ cmpl(isMIME, 0);
2342     __ jcc(Assembler::notEqual, L_bruteForce);
2343 
2344     // Load lookup tables based on isURL
2345     __ cmpl(isURL, 0);
2346     __ jcc(Assembler::notZero, L_loadURL);
2347 
2348     __ evmovdquq(lookup_lo, ExternalAddress(StubRoutines::x86::base64_vbmi_lookup_lo_addr()), Assembler::AVX_512bit, r13);
2349     __ evmovdquq(lookup_hi, ExternalAddress(StubRoutines::x86::base64_vbmi_lookup_hi_addr()), Assembler::AVX_512bit, r13);
2350 
2351     __ BIND(L_continue);
2352 
2353     __ movl(r15, 0x01400140);
2354     __ evpbroadcastd(pack16_op, r15, Assembler::AVX_512bit);
2355 
2356     __ movl(r15, 0x00011000);
2357     __ evpbroadcastd(pack32_op, r15, Assembler::AVX_512bit);
2358 
2359     __ cmpl(length, 0xff);
2360     __ jcc(Assembler::lessEqual, L_process64);
2361 
2362     // load masks required for decoding data
2363     __ BIND(L_processdata);
2364     __ evmovdquq(join01, ExternalAddress(StubRoutines::x86::base64_vbmi_join_0_1_addr()), Assembler::AVX_512bit,r13);
2365     __ evmovdquq(join12, ExternalAddress(StubRoutines::x86::base64_vbmi_join_1_2_addr()), Assembler::AVX_512bit, r13);
2366     __ evmovdquq(join23, ExternalAddress(StubRoutines::x86::base64_vbmi_join_2_3_addr()), Assembler::AVX_512bit, r13);
2367 
2368     __ align32();
2369     __ BIND(L_process256);
2370     // Grab input data
2371     __ evmovdquq(input0, Address(source, start_offset, Address::times_1, 0x00), Assembler::AVX_512bit);
2372     __ evmovdquq(input1, Address(source, start_offset, Address::times_1, 0x40), Assembler::AVX_512bit);
2373     __ evmovdquq(input2, Address(source, start_offset, Address::times_1, 0x80), Assembler::AVX_512bit);
2374     __ evmovdquq(input3, Address(source, start_offset, Address::times_1, 0xc0), Assembler::AVX_512bit);
2375 
2376     // Copy the low part of the lookup table into the destination of the permutation
2377     __ evmovdquq(translated0, lookup_lo, Assembler::AVX_512bit);
2378     __ evmovdquq(translated1, lookup_lo, Assembler::AVX_512bit);
2379     __ evmovdquq(translated2, lookup_lo, Assembler::AVX_512bit);
2380     __ evmovdquq(translated3, lookup_lo, Assembler::AVX_512bit);
2381 
2382     // Translate the base64 input into "decoded" bytes
2383     __ evpermt2b(translated0, input0, lookup_hi, Assembler::AVX_512bit);
2384     __ evpermt2b(translated1, input1, lookup_hi, Assembler::AVX_512bit);
2385     __ evpermt2b(translated2, input2, lookup_hi, Assembler::AVX_512bit);
2386     __ evpermt2b(translated3, input3, lookup_hi, Assembler::AVX_512bit);
2387 
2388     // OR all of the translations together to check for errors (high-order bit of byte set)
2389     __ vpternlogd(input0, 0xfe, input1, input2, Assembler::AVX_512bit);
2390 
2391     __ vpternlogd(input3, 0xfe, translated0, translated1, Assembler::AVX_512bit);
2392     __ vpternlogd(input0, 0xfe, translated2, translated3, Assembler::AVX_512bit);
2393     __ vpor(errorvec, input3, input0, Assembler::AVX_512bit);
2394 
2395     // Check if there was an error - if so, try 64-byte chunks
2396     __ evpmovb2m(k3, errorvec, Assembler::AVX_512bit);
2397     __ kortestql(k3, k3);
2398     __ jcc(Assembler::notZero, L_process64);
2399 
2400     // The merging and shuffling happens here
2401     // We multiply each byte pair [00dddddd | 00cccccc | 00bbbbbb | 00aaaaaa]
2402     // Multiply [00cccccc] by 2^6 added to [00dddddd] to get [0000cccc | ccdddddd]
2403     // The pack16_op is a vector of 0x01400140, so multiply D by 1 and C by 0x40
2404     __ vpmaddubsw(merge_ab_bc0, translated0, pack16_op, Assembler::AVX_512bit);
2405     __ vpmaddubsw(merge_ab_bc1, translated1, pack16_op, Assembler::AVX_512bit);
2406     __ vpmaddubsw(merge_ab_bc2, translated2, pack16_op, Assembler::AVX_512bit);
2407     __ vpmaddubsw(merge_ab_bc3, translated3, pack16_op, Assembler::AVX_512bit);
2408 
2409     // Now do the same with packed 16-bit values.
2410     // We start with [0000cccc | ccdddddd | 0000aaaa | aabbbbbb]
2411     // pack32_op is 0x00011000 (2^12, 1), so this multiplies [0000aaaa | aabbbbbb] by 2^12
2412     // and adds [0000cccc | ccdddddd] to yield [00000000 | aaaaaabb | bbbbcccc | ccdddddd]
2413     __ vpmaddwd(merged0, merge_ab_bc0, pack32_op, Assembler::AVX_512bit);
2414     __ vpmaddwd(merged1, merge_ab_bc1, pack32_op, Assembler::AVX_512bit);
2415     __ vpmaddwd(merged2, merge_ab_bc2, pack32_op, Assembler::AVX_512bit);
2416     __ vpmaddwd(merged3, merge_ab_bc3, pack32_op, Assembler::AVX_512bit);
2417 
2418     // The join vectors specify which byte from which vector goes into the outputs
2419     // One of every 4 bytes in the extended vector is zero, so we pack them into their
2420     // final positions in the register for storing (256 bytes in, 192 bytes out)
2421     __ evpermt2b(merged0, join01, merged1, Assembler::AVX_512bit);
2422     __ evpermt2b(merged1, join12, merged2, Assembler::AVX_512bit);
2423     __ evpermt2b(merged2, join23, merged3, Assembler::AVX_512bit);
2424 
2425     // Store result
2426     __ evmovdquq(Address(dest, dp, Address::times_1, 0x00), merged0, Assembler::AVX_512bit);
2427     __ evmovdquq(Address(dest, dp, Address::times_1, 0x40), merged1, Assembler::AVX_512bit);
2428     __ evmovdquq(Address(dest, dp, Address::times_1, 0x80), merged2, Assembler::AVX_512bit);
2429 
2430     __ addptr(source, 0x100);
2431     __ addptr(dest, 0xc0);
2432     __ subl(length, 0x100);
2433     __ cmpl(length, 64 * 4);
2434     __ jcc(Assembler::greaterEqual, L_process256);
2435 
2436     // At this point, we've decoded 64 * 4 * n bytes.
2437     // The remaining length will be <= 64 * 4 - 1.
2438     // UNLESS there was an error decoding the first 256-byte chunk.  In this
2439     // case, the length will be arbitrarily long.
2440     //
2441     // Note that this will be the path for MIME-encoded strings.
2442 
2443     __ BIND(L_process64);
2444 
2445     __ evmovdquq(pack24bits, ExternalAddress(StubRoutines::x86::base64_vbmi_pack_vec_addr()), Assembler::AVX_512bit, r13);
2446 
2447     __ cmpl(length, 63);
2448     __ jcc(Assembler::lessEqual, L_finalBit);
2449 
2450     __ mov64(rax, 0x0000ffffffffffff);
2451     __ kmovql(k2, rax);
2452 
2453     __ align32();
2454     __ BIND(L_process64Loop);
2455 
2456     // Handle first 64-byte block
2457 
2458     __ evmovdquq(input0, Address(source, start_offset), Assembler::AVX_512bit);
2459     __ evmovdquq(translated0, lookup_lo, Assembler::AVX_512bit);
2460     __ evpermt2b(translated0, input0, lookup_hi, Assembler::AVX_512bit);
2461 
2462     __ vpor(errorvec, translated0, input0, Assembler::AVX_512bit);
2463 
2464     // Check for error and bomb out before updating dest
2465     __ evpmovb2m(k3, errorvec, Assembler::AVX_512bit);
2466     __ kortestql(k3, k3);
2467     __ jcc(Assembler::notZero, L_exit);
2468 
2469     // Pack output register, selecting correct byte ordering
2470     __ vpmaddubsw(merge_ab_bc0, translated0, pack16_op, Assembler::AVX_512bit);
2471     __ vpmaddwd(merged0, merge_ab_bc0, pack32_op, Assembler::AVX_512bit);
2472     __ vpermb(merged0, pack24bits, merged0, Assembler::AVX_512bit);
2473 
2474     __ evmovdqub(Address(dest, dp), k2, merged0, true, Assembler::AVX_512bit);
2475 
2476     __ subl(length, 64);
2477     __ addptr(source, 64);
2478     __ addptr(dest, 48);
2479 
2480     __ cmpl(length, 64);
2481     __ jcc(Assembler::greaterEqual, L_process64Loop);
2482 
2483     __ cmpl(length, 0);
2484     __ jcc(Assembler::lessEqual, L_exit);
2485 
2486     __ BIND(L_finalBit);
2487     // Now have 1 to 63 bytes left to decode
2488 
2489     // I was going to let Java take care of the final fragment
2490     // however it will repeatedly call this routine for every 4 bytes
2491     // of input data, so handle the rest here.
2492     __ movq(rax, -1);
2493     __ bzhiq(rax, rax, length);    // Input mask in rax
2494 
2495     __ movl(output_size, length);
2496     __ shrl(output_size, 2);   // Find (len / 4) * 3 (output length)
2497     __ lea(output_size, Address(output_size, output_size, Address::times_2, 0));
2498     // output_size in r13
2499 
2500     // Strip pad characters, if any, and adjust length and mask
2501     __ cmpb(Address(source, length, Address::times_1, -1), '=');
2502     __ jcc(Assembler::equal, L_padding);
2503 
2504     __ BIND(L_donePadding);
2505 
2506     // Output size is (64 - output_size), output mask is (all 1s >> output_size).
2507     __ kmovql(input_mask, rax);
2508     __ movq(output_mask, -1);
2509     __ bzhiq(output_mask, output_mask, output_size);
2510 
2511     // Load initial input with all valid base64 characters.  Will be used
2512     // in merging source bytes to avoid masking when determining if an error occurred.
2513     __ movl(rax, 0x61616161);
2514     __ evpbroadcastd(input_initial_valid_b64, rax, Assembler::AVX_512bit);
2515 
2516     // A register containing all invalid base64 decoded values
2517     __ movl(rax, 0x80808080);
2518     __ evpbroadcastd(invalid_b64, rax, Assembler::AVX_512bit);
2519 
2520     // input_mask is in k1
2521     // output_size is in r13
2522     // output_mask is in r15
2523     // zmm0 - free
2524     // zmm1 - 0x00011000
2525     // zmm2 - 0x01400140
2526     // zmm3 - errorvec
2527     // zmm4 - pack vector
2528     // zmm5 - lookup_lo
2529     // zmm6 - lookup_hi
2530     // zmm7 - errorvec
2531     // zmm8 - 0x61616161
2532     // zmm9 - 0x80808080
2533 
2534     // Load only the bytes from source, merging into our "fully-valid" register
2535     __ evmovdqub(input_initial_valid_b64, input_mask, Address(source, start_offset, Address::times_1, 0x0), true, Assembler::AVX_512bit);
2536 
2537     // Decode all bytes within our merged input
2538     __ evmovdquq(tmp, lookup_lo, Assembler::AVX_512bit);
2539     __ evpermt2b(tmp, input_initial_valid_b64, lookup_hi, Assembler::AVX_512bit);
2540     __ evporq(mask, tmp, input_initial_valid_b64, Assembler::AVX_512bit);
2541 
2542     // Check for error.  Compare (decoded | initial) to all invalid.
2543     // If any bytes have their high-order bit set, then we have an error.
2544     __ evptestmb(k2, mask, invalid_b64, Assembler::AVX_512bit);
2545     __ kortestql(k2, k2);
2546 
2547     // If we have an error, use the brute force loop to decode what we can (4-byte chunks).
2548     __ jcc(Assembler::notZero, L_bruteForce);
2549 
2550     // Shuffle output bytes
2551     __ vpmaddubsw(tmp, tmp, pack16_op, Assembler::AVX_512bit);
2552     __ vpmaddwd(tmp, tmp, pack32_op, Assembler::AVX_512bit);
2553 
2554     __ vpermb(tmp, pack24bits, tmp, Assembler::AVX_512bit);
2555     __ kmovql(k1, output_mask);
2556     __ evmovdqub(Address(dest, dp), k1, tmp, true, Assembler::AVX_512bit);
2557 
2558     __ addptr(dest, output_size);
2559 
2560     __ BIND(L_exit);
2561     __ vzeroupper();
2562     __ pop(rax);             // Get original dest value
2563     __ subptr(dest, rax);      // Number of bytes converted
2564     __ movptr(rax, dest);
2565     __ pop(rbx);
2566     __ pop(r15);
2567     __ pop(r14);
2568     __ pop(r13);
2569     __ pop(r12);
2570     __ leave();
2571     __ ret(0);
2572 
2573     __ BIND(L_loadURL);
2574     __ evmovdquq(lookup_lo, ExternalAddress(StubRoutines::x86::base64_vbmi_lookup_lo_url_addr()), Assembler::AVX_512bit, r13);
2575     __ evmovdquq(lookup_hi, ExternalAddress(StubRoutines::x86::base64_vbmi_lookup_hi_url_addr()), Assembler::AVX_512bit, r13);
2576     __ jmp(L_continue);
2577 
2578     __ BIND(L_padding);
2579     __ decrementq(output_size, 1);
2580     __ shrq(rax, 1);
2581 
2582     __ cmpb(Address(source, length, Address::times_1, -2), '=');
2583     __ jcc(Assembler::notEqual, L_donePadding);
2584 
2585     __ decrementq(output_size, 1);
2586     __ shrq(rax, 1);
2587     __ jmp(L_donePadding);
2588 
2589     __ align32();
2590     __ BIND(L_bruteForce);
2591   }   // End of if(avx512_vbmi)
2592 
2593   // Use non-AVX code to decode 4-byte chunks into 3 bytes of output
2594 
2595   // Register state (Linux):
2596   // r12-15 - saved on stack
2597   // rdi - src
2598   // rsi - sp
2599   // rdx - sl
2600   // rcx - dst
2601   // r8 - dp
2602   // r9 - isURL
2603 
2604   // Register state (Windows):
2605   // r12-15 - saved on stack
2606   // rcx - src
2607   // rdx - sp
2608   // r8 - sl
2609   // r9 - dst
2610   // r12 - dp
2611   // r10 - isURL
2612 
2613   // Registers (common):
2614   // length (r14) - bytes in src
2615 
2616   const Register decode_table = r11;
2617   const Register out_byte_count = rbx;
2618   const Register byte1 = r13;
2619   const Register byte2 = r15;
2620   const Register byte3 = WIN64_ONLY(r8) NOT_WIN64(rdx);
2621   const Register byte4 = WIN64_ONLY(r10) NOT_WIN64(r9);
2622 
2623   __ shrl(length, 2);    // Multiple of 4 bytes only - length is # 4-byte chunks
2624   __ cmpl(length, 0);
2625   __ jcc(Assembler::lessEqual, L_exit_no_vzero);
2626 
2627   __ shll(isURL, 8);    // index into decode table based on isURL
2628   __ lea(decode_table, ExternalAddress(StubRoutines::x86::base64_decoding_table_addr()));
2629   __ addptr(decode_table, isURL);
2630 
2631   __ jmp(L_bottomLoop);
2632 
2633   __ align32();
2634   __ BIND(L_forceLoop);
2635   __ shll(byte1, 18);
2636   __ shll(byte2, 12);
2637   __ shll(byte3, 6);
2638   __ orl(byte1, byte2);
2639   __ orl(byte1, byte3);
2640   __ orl(byte1, byte4);
2641 
2642   __ addptr(source, 4);
2643 
2644   __ movb(Address(dest, dp, Address::times_1, 2), byte1);
2645   __ shrl(byte1, 8);
2646   __ movb(Address(dest, dp, Address::times_1, 1), byte1);
2647   __ shrl(byte1, 8);
2648   __ movb(Address(dest, dp, Address::times_1, 0), byte1);
2649 
2650   __ addptr(dest, 3);
2651   __ decrementl(length, 1);
2652   __ jcc(Assembler::zero, L_exit_no_vzero);
2653 
2654   __ BIND(L_bottomLoop);
2655   __ load_unsigned_byte(byte1, Address(source, start_offset, Address::times_1, 0x00));
2656   __ load_unsigned_byte(byte2, Address(source, start_offset, Address::times_1, 0x01));
2657   __ load_signed_byte(byte1, Address(decode_table, byte1));
2658   __ load_signed_byte(byte2, Address(decode_table, byte2));
2659   __ load_unsigned_byte(byte3, Address(source, start_offset, Address::times_1, 0x02));
2660   __ load_unsigned_byte(byte4, Address(source, start_offset, Address::times_1, 0x03));
2661   __ load_signed_byte(byte3, Address(decode_table, byte3));
2662   __ load_signed_byte(byte4, Address(decode_table, byte4));
2663 
2664   __ mov(rax, byte1);
2665   __ orl(rax, byte2);
2666   __ orl(rax, byte3);
2667   __ orl(rax, byte4);
2668   __ jcc(Assembler::positive, L_forceLoop);
2669 
2670   __ BIND(L_exit_no_vzero);
2671   __ pop(rax);             // Get original dest value
2672   __ subptr(dest, rax);      // Number of bytes converted
2673   __ movptr(rax, dest);
2674   __ pop(rbx);
2675   __ pop(r15);
2676   __ pop(r14);
2677   __ pop(r13);
2678   __ pop(r12);
2679   __ leave();
2680   __ ret(0);
2681 
2682   return start;
2683 }
2684 
2685 
2686 /**
2687  *  Arguments:
2688  *
2689  * Inputs:
2690  *   c_rarg0   - int crc
2691  *   c_rarg1   - byte* buf
2692  *   c_rarg2   - int length
2693  *
2694  * Output:
2695  *       rax   - int crc result
2696  */
2697 address StubGenerator::generate_updateBytesCRC32() {
2698   assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions");
2699 
2700   __ align(CodeEntryAlignment);
2701   StubCodeMark mark(this, "StubRoutines", "updateBytesCRC32");
2702 
2703   address start = __ pc();
2704 
2705   // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
2706   // Unix:  rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
2707   // rscratch1: r10
2708   const Register crc   = c_rarg0;  // crc
2709   const Register buf   = c_rarg1;  // source java byte array address
2710   const Register len   = c_rarg2;  // length
2711   const Register table = c_rarg3;  // crc_table address (reuse register)
2712   const Register tmp1   = r11;
2713   const Register tmp2   = r10;
2714   assert_different_registers(crc, buf, len, table, tmp1, tmp2, rax);
2715 
2716   BLOCK_COMMENT("Entry:");
2717   __ enter(); // required for proper stackwalking of RuntimeStub frame
2718 
2719   if (VM_Version::supports_sse4_1() && VM_Version::supports_avx512_vpclmulqdq() &&
2720       VM_Version::supports_avx512bw() &&
2721       VM_Version::supports_avx512vl()) {
2722       // The constants used in the CRC32 algorithm requires the 1's compliment of the initial crc value.
2723       // However, the constant table for CRC32-C assumes the original crc value.  Account for this
2724       // difference before calling and after returning.
2725     __ lea(table, ExternalAddress(StubRoutines::x86::crc_table_avx512_addr()));
2726     __ notl(crc);
2727     __ kernel_crc32_avx512(crc, buf, len, table, tmp1, tmp2);
2728     __ notl(crc);
2729   } else {
2730     __ kernel_crc32(crc, buf, len, table, tmp1);
2731   }
2732 
2733   __ movl(rax, crc);
2734   __ vzeroupper();
2735   __ leave(); // required for proper stackwalking of RuntimeStub frame
2736   __ ret(0);
2737 
2738   return start;
2739 }
2740 
2741 /**
2742 *  Arguments:
2743 *
2744 * Inputs:
2745 *   c_rarg0   - int crc
2746 *   c_rarg1   - byte* buf
2747 *   c_rarg2   - long length
2748 *   c_rarg3   - table_start - optional (present only when doing a library_call,
2749 *              not used by x86 algorithm)
2750 *
2751 * Output:
2752 *       rax   - int crc result
2753 */
2754 address StubGenerator::generate_updateBytesCRC32C(bool is_pclmulqdq_supported) {
2755   assert(UseCRC32CIntrinsics, "need SSE4_2");
2756   __ align(CodeEntryAlignment);
2757   StubCodeMark mark(this, "StubRoutines", "updateBytesCRC32C");
2758   address start = __ pc();
2759 
2760   //reg.arg        int#0        int#1        int#2        int#3        int#4        int#5        float regs
2761   //Windows        RCX          RDX          R8           R9           none         none         XMM0..XMM3
2762   //Lin / Sol      RDI          RSI          RDX          RCX          R8           R9           XMM0..XMM7
2763   const Register crc = c_rarg0;  // crc
2764   const Register buf = c_rarg1;  // source java byte array address
2765   const Register len = c_rarg2;  // length
2766   const Register a = rax;
2767   const Register j = r9;
2768   const Register k = r10;
2769   const Register l = r11;
2770 #ifdef _WIN64
2771   const Register y = rdi;
2772   const Register z = rsi;
2773 #else
2774   const Register y = rcx;
2775   const Register z = r8;
2776 #endif
2777   assert_different_registers(crc, buf, len, a, j, k, l, y, z);
2778 
2779   BLOCK_COMMENT("Entry:");
2780   __ enter(); // required for proper stackwalking of RuntimeStub frame
2781   if (VM_Version::supports_sse4_1() && VM_Version::supports_avx512_vpclmulqdq() &&
2782       VM_Version::supports_avx512bw() &&
2783       VM_Version::supports_avx512vl()) {
2784     __ lea(j, ExternalAddress(StubRoutines::x86::crc32c_table_avx512_addr()));
2785     __ kernel_crc32_avx512(crc, buf, len, j, l, k);
2786   } else {
2787 #ifdef _WIN64
2788     __ push(y);
2789     __ push(z);
2790 #endif
2791     __ crc32c_ipl_alg2_alt2(crc, buf, len,
2792                             a, j, k,
2793                             l, y, z,
2794                             c_farg0, c_farg1, c_farg2,
2795                             is_pclmulqdq_supported);
2796 #ifdef _WIN64
2797     __ pop(z);
2798     __ pop(y);
2799 #endif
2800   }
2801   __ movl(rax, crc);
2802   __ vzeroupper();
2803   __ leave(); // required for proper stackwalking of RuntimeStub frame
2804   __ ret(0);
2805 
2806   return start;
2807 }
2808 
2809 
2810 /**
2811  *  Arguments:
2812  *
2813  *  Input:
2814  *    c_rarg0   - x address
2815  *    c_rarg1   - x length
2816  *    c_rarg2   - y address
2817  *    c_rarg3   - y length
2818  * not Win64
2819  *    c_rarg4   - z address
2820  *    c_rarg5   - z length
2821  * Win64
2822  *    rsp+40    - z address
2823  *    rsp+48    - z length
2824  */
2825 address StubGenerator::generate_multiplyToLen() {
2826   __ align(CodeEntryAlignment);
2827   StubCodeMark mark(this, "StubRoutines", "multiplyToLen");
2828   address start = __ pc();
2829 
2830   // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
2831   // Unix:  rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
2832   const Register x     = rdi;
2833   const Register xlen  = rax;
2834   const Register y     = rsi;
2835   const Register ylen  = rcx;
2836   const Register z     = r8;
2837   const Register zlen  = r11;
2838 
2839   // Next registers will be saved on stack in multiply_to_len().
2840   const Register tmp1  = r12;
2841   const Register tmp2  = r13;
2842   const Register tmp3  = r14;
2843   const Register tmp4  = r15;
2844   const Register tmp5  = rbx;
2845 
2846   BLOCK_COMMENT("Entry:");
2847   __ enter(); // required for proper stackwalking of RuntimeStub frame
2848 
2849 #ifndef _WIN64
2850   __ movptr(zlen, r9); // Save r9 in r11 - zlen
2851 #endif
2852   setup_arg_regs(4); // x => rdi, xlen => rsi, y => rdx
2853                      // ylen => rcx, z => r8, zlen => r11
2854                      // r9 and r10 may be used to save non-volatile registers
2855 #ifdef _WIN64
2856   // last 2 arguments (#4, #5) are on stack on Win64
2857   __ movptr(z, Address(rsp, 6 * wordSize));
2858   __ movptr(zlen, Address(rsp, 7 * wordSize));
2859 #endif
2860 
2861   __ movptr(xlen, rsi);
2862   __ movptr(y,    rdx);
2863   __ multiply_to_len(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5);
2864 
2865   restore_arg_regs();
2866 
2867   __ leave(); // required for proper stackwalking of RuntimeStub frame
2868   __ ret(0);
2869 
2870   return start;
2871 }
2872 
2873 /**
2874 *  Arguments:
2875 *
2876 *  Input:
2877 *    c_rarg0   - obja     address
2878 *    c_rarg1   - objb     address
2879 *    c_rarg3   - length   length
2880 *    c_rarg4   - scale    log2_array_indxscale
2881 *
2882 *  Output:
2883 *        rax   - int >= mismatched index, < 0 bitwise complement of tail
2884 */
2885 address StubGenerator::generate_vectorizedMismatch() {
2886   __ align(CodeEntryAlignment);
2887   StubCodeMark mark(this, "StubRoutines", "vectorizedMismatch");
2888   address start = __ pc();
2889 
2890   BLOCK_COMMENT("Entry:");
2891   __ enter();
2892 
2893 #ifdef _WIN64  // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
2894   const Register scale = c_rarg0;  //rcx, will exchange with r9
2895   const Register objb = c_rarg1;   //rdx
2896   const Register length = c_rarg2; //r8
2897   const Register obja = c_rarg3;   //r9
2898   __ xchgq(obja, scale);  //now obja and scale contains the correct contents
2899 
2900   const Register tmp1 = r10;
2901   const Register tmp2 = r11;
2902 #endif
2903 #ifndef _WIN64 // Unix:  rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
2904   const Register obja = c_rarg0;   //U:rdi
2905   const Register objb = c_rarg1;   //U:rsi
2906   const Register length = c_rarg2; //U:rdx
2907   const Register scale = c_rarg3;  //U:rcx
2908   const Register tmp1 = r8;
2909   const Register tmp2 = r9;
2910 #endif
2911   const Register result = rax; //return value
2912   const XMMRegister vec0 = xmm0;
2913   const XMMRegister vec1 = xmm1;
2914   const XMMRegister vec2 = xmm2;
2915 
2916   __ vectorized_mismatch(obja, objb, length, scale, result, tmp1, tmp2, vec0, vec1, vec2);
2917 
2918   __ vzeroupper();
2919   __ leave();
2920   __ ret(0);
2921 
2922   return start;
2923 }
2924 
2925 /**
2926  *  Arguments:
2927  *
2928 //  Input:
2929 //    c_rarg0   - x address
2930 //    c_rarg1   - x length
2931 //    c_rarg2   - z address
2932 //    c_rarg3   - z length
2933  *
2934  */
2935 address StubGenerator::generate_squareToLen() {
2936 
2937   __ align(CodeEntryAlignment);
2938   StubCodeMark mark(this, "StubRoutines", "squareToLen");
2939   address start = __ pc();
2940 
2941   // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
2942   // Unix:  rdi, rsi, rdx, rcx (c_rarg0, c_rarg1, ...)
2943   const Register x      = rdi;
2944   const Register len    = rsi;
2945   const Register z      = r8;
2946   const Register zlen   = rcx;
2947 
2948  const Register tmp1      = r12;
2949  const Register tmp2      = r13;
2950  const Register tmp3      = r14;
2951  const Register tmp4      = r15;
2952  const Register tmp5      = rbx;
2953 
2954   BLOCK_COMMENT("Entry:");
2955   __ enter(); // required for proper stackwalking of RuntimeStub frame
2956 
2957   setup_arg_regs(4); // x => rdi, len => rsi, z => rdx
2958                      // zlen => rcx
2959                      // r9 and r10 may be used to save non-volatile registers
2960   __ movptr(r8, rdx);
2961   __ square_to_len(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, rdx, rax);
2962 
2963   restore_arg_regs();
2964 
2965   __ leave(); // required for proper stackwalking of RuntimeStub frame
2966   __ ret(0);
2967 
2968   return start;
2969 }
2970 
2971 address StubGenerator::generate_method_entry_barrier() {
2972   __ align(CodeEntryAlignment);
2973   StubCodeMark mark(this, "StubRoutines", "nmethod_entry_barrier");
2974   address start = __ pc();
2975 
2976   Label deoptimize_label;
2977 
2978   __ push(-1); // cookie, this is used for writing the new rsp when deoptimizing
2979 
2980   BLOCK_COMMENT("Entry:");
2981   __ enter(); // save rbp
2982 
2983   // save c_rarg0, because we want to use that value.
2984   // We could do without it but then we depend on the number of slots used by pusha
2985   __ push(c_rarg0);
2986 
2987   __ lea(c_rarg0, Address(rsp, wordSize * 3)); // 1 for cookie, 1 for rbp, 1 for c_rarg0 - this should be the return address
2988 
2989   __ pusha();
2990 
2991   // The method may have floats as arguments, and we must spill them before calling
2992   // the VM runtime.
2993   assert(Argument::n_float_register_parameters_j == 8, "Assumption");
2994   const int xmm_size = wordSize * 2;
2995   const int xmm_spill_size = xmm_size * Argument::n_float_register_parameters_j;
2996   __ subptr(rsp, xmm_spill_size);
2997   __ movdqu(Address(rsp, xmm_size * 7), xmm7);
2998   __ movdqu(Address(rsp, xmm_size * 6), xmm6);
2999   __ movdqu(Address(rsp, xmm_size * 5), xmm5);
3000   __ movdqu(Address(rsp, xmm_size * 4), xmm4);
3001   __ movdqu(Address(rsp, xmm_size * 3), xmm3);
3002   __ movdqu(Address(rsp, xmm_size * 2), xmm2);
3003   __ movdqu(Address(rsp, xmm_size * 1), xmm1);
3004   __ movdqu(Address(rsp, xmm_size * 0), xmm0);
3005 
3006   __ call_VM_leaf(CAST_FROM_FN_PTR(address, static_cast<int (*)(address*)>(BarrierSetNMethod::nmethod_stub_entry_barrier)), 1);
3007 
3008   __ movdqu(xmm0, Address(rsp, xmm_size * 0));
3009   __ movdqu(xmm1, Address(rsp, xmm_size * 1));
3010   __ movdqu(xmm2, Address(rsp, xmm_size * 2));
3011   __ movdqu(xmm3, Address(rsp, xmm_size * 3));
3012   __ movdqu(xmm4, Address(rsp, xmm_size * 4));
3013   __ movdqu(xmm5, Address(rsp, xmm_size * 5));
3014   __ movdqu(xmm6, Address(rsp, xmm_size * 6));
3015   __ movdqu(xmm7, Address(rsp, xmm_size * 7));
3016   __ addptr(rsp, xmm_spill_size);
3017 
3018   __ cmpl(rax, 1); // 1 means deoptimize
3019   __ jcc(Assembler::equal, deoptimize_label);
3020 
3021   __ popa();
3022   __ pop(c_rarg0);
3023 
3024   __ leave();
3025 
3026   __ addptr(rsp, 1 * wordSize); // cookie
3027   __ ret(0);
3028 
3029 
3030   __ BIND(deoptimize_label);
3031 
3032   __ popa();
3033   __ pop(c_rarg0);
3034 
3035   __ leave();
3036 
3037   // this can be taken out, but is good for verification purposes. getting a SIGSEGV
3038   // here while still having a correct stack is valuable
3039   __ testptr(rsp, Address(rsp, 0));
3040 
3041   __ movptr(rsp, Address(rsp, 0)); // new rsp was written in the barrier
3042   __ jmp(Address(rsp, -1 * wordSize)); // jmp target should be callers verified_entry_point
3043 
3044   return start;
3045 }
3046 
3047  /**
3048  *  Arguments:
3049  *
3050  *  Input:
3051  *    c_rarg0   - out address
3052  *    c_rarg1   - in address
3053  *    c_rarg2   - offset
3054  *    c_rarg3   - len
3055  * not Win64
3056  *    c_rarg4   - k
3057  * Win64
3058  *    rsp+40    - k
3059  */
3060 address StubGenerator::generate_mulAdd() {
3061   __ align(CodeEntryAlignment);
3062   StubCodeMark mark(this, "StubRoutines", "mulAdd");
3063   address start = __ pc();
3064 
3065   // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
3066   // Unix:  rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
3067   const Register out     = rdi;
3068   const Register in      = rsi;
3069   const Register offset  = r11;
3070   const Register len     = rcx;
3071   const Register k       = r8;
3072 
3073   // Next registers will be saved on stack in mul_add().
3074   const Register tmp1  = r12;
3075   const Register tmp2  = r13;
3076   const Register tmp3  = r14;
3077   const Register tmp4  = r15;
3078   const Register tmp5  = rbx;
3079 
3080   BLOCK_COMMENT("Entry:");
3081   __ enter(); // required for proper stackwalking of RuntimeStub frame
3082 
3083   setup_arg_regs(4); // out => rdi, in => rsi, offset => rdx
3084                      // len => rcx, k => r8
3085                      // r9 and r10 may be used to save non-volatile registers
3086 #ifdef _WIN64
3087   // last argument is on stack on Win64
3088   __ movl(k, Address(rsp, 6 * wordSize));
3089 #endif
3090   __ movptr(r11, rdx);  // move offset in rdx to offset(r11)
3091   __ mul_add(out, in, offset, len, k, tmp1, tmp2, tmp3, tmp4, tmp5, rdx, rax);
3092 
3093   restore_arg_regs();
3094 
3095   __ leave(); // required for proper stackwalking of RuntimeStub frame
3096   __ ret(0);
3097 
3098   return start;
3099 }
3100 
3101 address StubGenerator::generate_bigIntegerRightShift() {
3102   __ align(CodeEntryAlignment);
3103   StubCodeMark mark(this, "StubRoutines", "bigIntegerRightShiftWorker");
3104   address start = __ pc();
3105 
3106   Label Shift512Loop, ShiftTwo, ShiftTwoLoop, ShiftOne, Exit;
3107   // For Unix, the arguments are as follows: rdi, rsi, rdx, rcx, r8.
3108   const Register newArr = rdi;
3109   const Register oldArr = rsi;
3110   const Register newIdx = rdx;
3111   const Register shiftCount = rcx;  // It was intentional to have shiftCount in rcx since it is used implicitly for shift.
3112   const Register totalNumIter = r8;
3113 
3114   // For windows, we use r9 and r10 as temps to save rdi and rsi. Thus we cannot allocate them for our temps.
3115   // For everything else, we prefer using r9 and r10 since we do not have to save them before use.
3116   const Register tmp1 = r11;                    // Caller save.
3117   const Register tmp2 = rax;                    // Caller save.
3118   const Register tmp3 = WIN64_ONLY(r12) NOT_WIN64(r9);   // Windows: Callee save. Linux: Caller save.
3119   const Register tmp4 = WIN64_ONLY(r13) NOT_WIN64(r10);  // Windows: Callee save. Linux: Caller save.
3120   const Register tmp5 = r14;                    // Callee save.
3121   const Register tmp6 = r15;
3122 
3123   const XMMRegister x0 = xmm0;
3124   const XMMRegister x1 = xmm1;
3125   const XMMRegister x2 = xmm2;
3126 
3127   BLOCK_COMMENT("Entry:");
3128   __ enter(); // required for proper stackwalking of RuntimeStub frame
3129 
3130 #ifdef _WIN64
3131   setup_arg_regs(4);
3132   // For windows, since last argument is on stack, we need to move it to the appropriate register.
3133   __ movl(totalNumIter, Address(rsp, 6 * wordSize));
3134   // Save callee save registers.
3135   __ push(tmp3);
3136   __ push(tmp4);
3137 #endif
3138   __ push(tmp5);
3139 
3140   // Rename temps used throughout the code.
3141   const Register idx = tmp1;
3142   const Register nIdx = tmp2;
3143 
3144   __ xorl(idx, idx);
3145 
3146   // Start right shift from end of the array.
3147   // For example, if #iteration = 4 and newIdx = 1
3148   // then dest[4] = src[4] >> shiftCount  | src[3] <<< (shiftCount - 32)
3149   // if #iteration = 4 and newIdx = 0
3150   // then dest[3] = src[4] >> shiftCount  | src[3] <<< (shiftCount - 32)
3151   __ movl(idx, totalNumIter);
3152   __ movl(nIdx, idx);
3153   __ addl(nIdx, newIdx);
3154 
3155   // If vectorization is enabled, check if the number of iterations is at least 64
3156   // If not, then go to ShifTwo processing 2 iterations
3157   if (VM_Version::supports_avx512_vbmi2()) {
3158     __ cmpptr(totalNumIter, (AVX3Threshold/64));
3159     __ jcc(Assembler::less, ShiftTwo);
3160 
3161     if (AVX3Threshold < 16 * 64) {
3162       __ cmpl(totalNumIter, 16);
3163       __ jcc(Assembler::less, ShiftTwo);
3164     }
3165     __ evpbroadcastd(x0, shiftCount, Assembler::AVX_512bit);
3166     __ subl(idx, 16);
3167     __ subl(nIdx, 16);
3168     __ BIND(Shift512Loop);
3169     __ evmovdqul(x2, Address(oldArr, idx, Address::times_4, 4), Assembler::AVX_512bit);
3170     __ evmovdqul(x1, Address(oldArr, idx, Address::times_4), Assembler::AVX_512bit);
3171     __ vpshrdvd(x2, x1, x0, Assembler::AVX_512bit);
3172     __ evmovdqul(Address(newArr, nIdx, Address::times_4), x2, Assembler::AVX_512bit);
3173     __ subl(nIdx, 16);
3174     __ subl(idx, 16);
3175     __ jcc(Assembler::greaterEqual, Shift512Loop);
3176     __ addl(idx, 16);
3177     __ addl(nIdx, 16);
3178   }
3179   __ BIND(ShiftTwo);
3180   __ cmpl(idx, 2);
3181   __ jcc(Assembler::less, ShiftOne);
3182   __ subl(idx, 2);
3183   __ subl(nIdx, 2);
3184   __ BIND(ShiftTwoLoop);
3185   __ movl(tmp5, Address(oldArr, idx, Address::times_4, 8));
3186   __ movl(tmp4, Address(oldArr, idx, Address::times_4, 4));
3187   __ movl(tmp3, Address(oldArr, idx, Address::times_4));
3188   __ shrdl(tmp5, tmp4);
3189   __ shrdl(tmp4, tmp3);
3190   __ movl(Address(newArr, nIdx, Address::times_4, 4), tmp5);
3191   __ movl(Address(newArr, nIdx, Address::times_4), tmp4);
3192   __ subl(nIdx, 2);
3193   __ subl(idx, 2);
3194   __ jcc(Assembler::greaterEqual, ShiftTwoLoop);
3195   __ addl(idx, 2);
3196   __ addl(nIdx, 2);
3197 
3198   // Do the last iteration
3199   __ BIND(ShiftOne);
3200   __ cmpl(idx, 1);
3201   __ jcc(Assembler::less, Exit);
3202   __ subl(idx, 1);
3203   __ subl(nIdx, 1);
3204   __ movl(tmp4, Address(oldArr, idx, Address::times_4, 4));
3205   __ movl(tmp3, Address(oldArr, idx, Address::times_4));
3206   __ shrdl(tmp4, tmp3);
3207   __ movl(Address(newArr, nIdx, Address::times_4), tmp4);
3208   __ BIND(Exit);
3209   __ vzeroupper();
3210   // Restore callee save registers.
3211   __ pop(tmp5);
3212 #ifdef _WIN64
3213   __ pop(tmp4);
3214   __ pop(tmp3);
3215   restore_arg_regs();
3216 #endif
3217   __ leave(); // required for proper stackwalking of RuntimeStub frame
3218   __ ret(0);
3219 
3220   return start;
3221 }
3222 
3223  /**
3224  *  Arguments:
3225  *
3226  *  Input:
3227  *    c_rarg0   - newArr address
3228  *    c_rarg1   - oldArr address
3229  *    c_rarg2   - newIdx
3230  *    c_rarg3   - shiftCount
3231  * not Win64
3232  *    c_rarg4   - numIter
3233  * Win64
3234  *    rsp40    - numIter
3235  */
3236 address StubGenerator::generate_bigIntegerLeftShift() {
3237   __ align(CodeEntryAlignment);
3238   StubCodeMark mark(this,  "StubRoutines", "bigIntegerLeftShiftWorker");
3239   address start = __ pc();
3240 
3241   Label Shift512Loop, ShiftTwo, ShiftTwoLoop, ShiftOne, Exit;
3242   // For Unix, the arguments are as follows: rdi, rsi, rdx, rcx, r8.
3243   const Register newArr = rdi;
3244   const Register oldArr = rsi;
3245   const Register newIdx = rdx;
3246   const Register shiftCount = rcx;  // It was intentional to have shiftCount in rcx since it is used implicitly for shift.
3247   const Register totalNumIter = r8;
3248   // For windows, we use r9 and r10 as temps to save rdi and rsi. Thus we cannot allocate them for our temps.
3249   // For everything else, we prefer using r9 and r10 since we do not have to save them before use.
3250   const Register tmp1 = r11;                    // Caller save.
3251   const Register tmp2 = rax;                    // Caller save.
3252   const Register tmp3 = WIN64_ONLY(r12) NOT_WIN64(r9);   // Windows: Callee save. Linux: Caller save.
3253   const Register tmp4 = WIN64_ONLY(r13) NOT_WIN64(r10);  // Windows: Callee save. Linux: Caller save.
3254   const Register tmp5 = r14;                    // Callee save.
3255 
3256   const XMMRegister x0 = xmm0;
3257   const XMMRegister x1 = xmm1;
3258   const XMMRegister x2 = xmm2;
3259   BLOCK_COMMENT("Entry:");
3260   __ enter(); // required for proper stackwalking of RuntimeStub frame
3261 
3262 #ifdef _WIN64
3263   setup_arg_regs(4);
3264   // For windows, since last argument is on stack, we need to move it to the appropriate register.
3265   __ movl(totalNumIter, Address(rsp, 6 * wordSize));
3266   // Save callee save registers.
3267   __ push(tmp3);
3268   __ push(tmp4);
3269 #endif
3270   __ push(tmp5);
3271 
3272   // Rename temps used throughout the code
3273   const Register idx = tmp1;
3274   const Register numIterTmp = tmp2;
3275 
3276   // Start idx from zero.
3277   __ xorl(idx, idx);
3278   // Compute interior pointer for new array. We do this so that we can use same index for both old and new arrays.
3279   __ lea(newArr, Address(newArr, newIdx, Address::times_4));
3280   __ movl(numIterTmp, totalNumIter);
3281 
3282   // If vectorization is enabled, check if the number of iterations is at least 64
3283   // If not, then go to ShiftTwo shifting two numbers at a time
3284   if (VM_Version::supports_avx512_vbmi2()) {
3285     __ cmpl(totalNumIter, (AVX3Threshold/64));
3286     __ jcc(Assembler::less, ShiftTwo);
3287 
3288     if (AVX3Threshold < 16 * 64) {
3289       __ cmpl(totalNumIter, 16);
3290       __ jcc(Assembler::less, ShiftTwo);
3291     }
3292     __ evpbroadcastd(x0, shiftCount, Assembler::AVX_512bit);
3293     __ subl(numIterTmp, 16);
3294     __ BIND(Shift512Loop);
3295     __ evmovdqul(x1, Address(oldArr, idx, Address::times_4), Assembler::AVX_512bit);
3296     __ evmovdqul(x2, Address(oldArr, idx, Address::times_4, 0x4), Assembler::AVX_512bit);
3297     __ vpshldvd(x1, x2, x0, Assembler::AVX_512bit);
3298     __ evmovdqul(Address(newArr, idx, Address::times_4), x1, Assembler::AVX_512bit);
3299     __ addl(idx, 16);
3300     __ subl(numIterTmp, 16);
3301     __ jcc(Assembler::greaterEqual, Shift512Loop);
3302     __ addl(numIterTmp, 16);
3303   }
3304   __ BIND(ShiftTwo);
3305   __ cmpl(totalNumIter, 1);
3306   __ jcc(Assembler::less, Exit);
3307   __ movl(tmp3, Address(oldArr, idx, Address::times_4));
3308   __ subl(numIterTmp, 2);
3309   __ jcc(Assembler::less, ShiftOne);
3310 
3311   __ BIND(ShiftTwoLoop);
3312   __ movl(tmp4, Address(oldArr, idx, Address::times_4, 0x4));
3313   __ movl(tmp5, Address(oldArr, idx, Address::times_4, 0x8));
3314   __ shldl(tmp3, tmp4);
3315   __ shldl(tmp4, tmp5);
3316   __ movl(Address(newArr, idx, Address::times_4), tmp3);
3317   __ movl(Address(newArr, idx, Address::times_4, 0x4), tmp4);
3318   __ movl(tmp3, tmp5);
3319   __ addl(idx, 2);
3320   __ subl(numIterTmp, 2);
3321   __ jcc(Assembler::greaterEqual, ShiftTwoLoop);
3322 
3323   // Do the last iteration
3324   __ BIND(ShiftOne);
3325   __ addl(numIterTmp, 2);
3326   __ cmpl(numIterTmp, 1);
3327   __ jcc(Assembler::less, Exit);
3328   __ movl(tmp4, Address(oldArr, idx, Address::times_4, 0x4));
3329   __ shldl(tmp3, tmp4);
3330   __ movl(Address(newArr, idx, Address::times_4), tmp3);
3331 
3332   __ BIND(Exit);
3333   __ vzeroupper();
3334   // Restore callee save registers.
3335   __ pop(tmp5);
3336 #ifdef _WIN64
3337   __ pop(tmp4);
3338   __ pop(tmp3);
3339   restore_arg_regs();
3340 #endif
3341   __ leave(); // required for proper stackwalking of RuntimeStub frame
3342   __ ret(0);
3343 
3344   return start;
3345 }
3346 
3347 void StubGenerator::generate_libm_stubs() {
3348   if (UseLibmIntrinsic && InlineIntrinsics) {
3349     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dsin)) {
3350       StubRoutines::_dsin = generate_libmSin(); // from stubGenerator_x86_64_sin.cpp
3351     }
3352     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dcos)) {
3353       StubRoutines::_dcos = generate_libmCos(); // from stubGenerator_x86_64_cos.cpp
3354     }
3355     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dtan)) {
3356       StubRoutines::_dtan = generate_libmTan(); // from stubGenerator_x86_64_tan.cpp
3357     }
3358     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dexp)) {
3359       StubRoutines::_dexp = generate_libmExp(); // from stubGenerator_x86_64_exp.cpp
3360     }
3361     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dpow)) {
3362       StubRoutines::_dpow = generate_libmPow(); // from stubGenerator_x86_64_pow.cpp
3363     }
3364     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dlog)) {
3365       StubRoutines::_dlog = generate_libmLog(); // from stubGenerator_x86_64_log.cpp
3366     }
3367     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dlog10)) {
3368       StubRoutines::_dlog10 = generate_libmLog10(); // from stubGenerator_x86_64_log.cpp
3369     }
3370   }
3371 }
3372 
3373 
3374 address StubGenerator::generate_cont_thaw(const char* label, Continuation::thaw_kind kind) {
3375   if (!Continuations::enabled()) return nullptr;
3376 
3377   bool return_barrier = Continuation::is_thaw_return_barrier(kind);
3378   bool return_barrier_exception = Continuation::is_thaw_return_barrier_exception(kind);
3379 
3380   StubCodeMark mark(this, "StubRoutines", label);
3381   address start = __ pc();
3382 
3383   // TODO: Handle Valhalla return types. May require generating different return barriers.
3384 
3385   if (!return_barrier) {
3386     // Pop return address. If we don't do this, we get a drift,
3387     // where the bottom-most frozen frame continuously grows.
3388     __ pop(c_rarg3);
3389   } else {
3390     __ movptr(rsp, Address(r15_thread, JavaThread::cont_entry_offset()));
3391   }
3392 
3393 #ifdef ASSERT
3394   {
3395     Label L_good_sp;
3396     __ cmpptr(rsp, Address(r15_thread, JavaThread::cont_entry_offset()));
3397     __ jcc(Assembler::equal, L_good_sp);
3398     __ stop("Incorrect rsp at thaw entry");
3399     __ BIND(L_good_sp);
3400   }
3401 #endif // ASSERT
3402 
3403   if (return_barrier) {
3404     // Preserve possible return value from a method returning to the return barrier.
3405     __ push(rax);
3406     __ push_d(xmm0);
3407   }
3408 
3409   __ movptr(c_rarg0, r15_thread);
3410   __ movptr(c_rarg1, (return_barrier ? 1 : 0));
3411   __ call_VM_leaf(CAST_FROM_FN_PTR(address, Continuation::prepare_thaw), 2);
3412   __ movptr(rbx, rax);
3413 
3414   if (return_barrier) {
3415     // Restore return value from a method returning to the return barrier.
3416     // No safepoint in the call to thaw, so even an oop return value should be OK.
3417     __ pop_d(xmm0);
3418     __ pop(rax);
3419   }
3420 
3421 #ifdef ASSERT
3422   {
3423     Label L_good_sp;
3424     __ cmpptr(rsp, Address(r15_thread, JavaThread::cont_entry_offset()));
3425     __ jcc(Assembler::equal, L_good_sp);
3426     __ stop("Incorrect rsp after prepare thaw");
3427     __ BIND(L_good_sp);
3428   }
3429 #endif // ASSERT
3430 
3431   // rbx contains the size of the frames to thaw, 0 if overflow or no more frames
3432   Label L_thaw_success;
3433   __ testptr(rbx, rbx);
3434   __ jccb(Assembler::notZero, L_thaw_success);
3435   __ jump(ExternalAddress(StubRoutines::throw_StackOverflowError_entry()));
3436   __ bind(L_thaw_success);
3437 
3438   // Make room for the thawed frames and align the stack.
3439   __ subptr(rsp, rbx);
3440   __ andptr(rsp, -StackAlignmentInBytes);
3441 
3442   if (return_barrier) {
3443     // Preserve possible return value from a method returning to the return barrier. (Again.)
3444     __ push(rax);
3445     __ push_d(xmm0);
3446   }
3447 
3448   // If we want, we can templatize thaw by kind, and have three different entries.
3449   __ movptr(c_rarg0, r15_thread);
3450   __ movptr(c_rarg1, kind);
3451   __ call_VM_leaf(Continuation::thaw_entry(), 2);
3452   __ movptr(rbx, rax);
3453 
3454   if (return_barrier) {
3455     // Restore return value from a method returning to the return barrier. (Again.)
3456     // No safepoint in the call to thaw, so even an oop return value should be OK.
3457     __ pop_d(xmm0);
3458     __ pop(rax);
3459   } else {
3460     // Return 0 (success) from doYield.
3461     __ xorptr(rax, rax);
3462   }
3463 
3464   // After thawing, rbx is the SP of the yielding frame.
3465   // Move there, and then to saved RBP slot.
3466   __ movptr(rsp, rbx);
3467   __ subptr(rsp, 2*wordSize);
3468 
3469   if (return_barrier_exception) {
3470     __ movptr(c_rarg0, r15_thread);
3471     __ movptr(c_rarg1, Address(rsp, wordSize)); // return address
3472 
3473     // rax still holds the original exception oop, save it before the call
3474     __ push(rax);
3475 
3476     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), 2);
3477     __ movptr(rbx, rax);
3478 
3479     // Continue at exception handler:
3480     //   rax: exception oop
3481     //   rbx: exception handler
3482     //   rdx: exception pc
3483     __ pop(rax);
3484     __ verify_oop(rax);
3485     __ pop(rbp); // pop out RBP here too
3486     __ pop(rdx);
3487     __ jmp(rbx);
3488   } else {
3489     // We are "returning" into the topmost thawed frame; see Thaw::push_return_frame
3490     __ pop(rbp);
3491     __ ret(0);
3492   }
3493 
3494   return start;
3495 }
3496 
3497 address StubGenerator::generate_cont_thaw() {
3498   return generate_cont_thaw("Cont thaw", Continuation::thaw_top);
3499 }
3500 
3501 // TODO: will probably need multiple return barriers depending on return type
3502 
3503 address StubGenerator::generate_cont_returnBarrier() {
3504   return generate_cont_thaw("Cont thaw return barrier", Continuation::thaw_return_barrier);
3505 }
3506 
3507 address StubGenerator::generate_cont_returnBarrier_exception() {
3508   return generate_cont_thaw("Cont thaw return barrier exception", Continuation::thaw_return_barrier_exception);
3509 }
3510 
3511 #if INCLUDE_JFR
3512 
3513 // For c2: c_rarg0 is junk, call to runtime to write a checkpoint.
3514 // It returns a jobject handle to the event writer.
3515 // The handle is dereferenced and the return value is the event writer oop.
3516 RuntimeStub* StubGenerator::generate_jfr_write_checkpoint() {
3517   enum layout {
3518     rbp_off,
3519     rbpH_off,
3520     return_off,
3521     return_off2,
3522     framesize // inclusive of return address
3523   };
3524 
3525   CodeBuffer code("jfr_write_checkpoint", 512, 64);
3526   MacroAssembler* _masm = new MacroAssembler(&code);
3527   address start = __ pc();
3528 
3529   __ enter();
3530   address the_pc = __ pc();
3531 
3532   int frame_complete = the_pc - start;
3533 
3534   __ set_last_Java_frame(rsp, rbp, the_pc, rscratch1);
3535   __ movptr(c_rarg0, r15_thread);
3536   __ call_VM_leaf(CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::write_checkpoint), 1);
3537   __ reset_last_Java_frame(true);
3538 
3539   // rax is jobject handle result, unpack and process it through a barrier.
3540   Label L_null_jobject;
3541   __ testptr(rax, rax);
3542   __ jcc(Assembler::zero, L_null_jobject);
3543 
3544   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
3545   bs->load_at(_masm, ACCESS_READ | IN_NATIVE, T_OBJECT, rax, Address(rax, 0), c_rarg0, r15_thread);
3546 
3547   __ bind(L_null_jobject);
3548 
3549   __ leave();
3550   __ ret(0);
3551 
3552   OopMapSet* oop_maps = new OopMapSet();
3553   OopMap* map = new OopMap(framesize, 1);
3554   oop_maps->add_gc_map(frame_complete, map);
3555 
3556   RuntimeStub* stub =
3557     RuntimeStub::new_runtime_stub(code.name(),
3558                                   &code,
3559                                   frame_complete,
3560                                   (framesize >> (LogBytesPerWord - LogBytesPerInt)),
3561                                   oop_maps,
3562                                   false);
3563   return stub;
3564 }
3565 
3566 #endif // INCLUDE_JFR
3567 
3568 // Continuation point for throwing of implicit exceptions that are
3569 // not handled in the current activation. Fabricates an exception
3570 // oop and initiates normal exception dispatching in this
3571 // frame. Since we need to preserve callee-saved values (currently
3572 // only for C2, but done for C1 as well) we need a callee-saved oop
3573 // map and therefore have to make these stubs into RuntimeStubs
3574 // rather than BufferBlobs.  If the compiler needs all registers to
3575 // be preserved between the fault point and the exception handler
3576 // then it must assume responsibility for that in
3577 // AbstractCompiler::continuation_for_implicit_null_exception or
3578 // continuation_for_implicit_division_by_zero_exception. All other
3579 // implicit exceptions (e.g., NullPointerException or
3580 // AbstractMethodError on entry) are either at call sites or
3581 // otherwise assume that stack unwinding will be initiated, so
3582 // caller saved registers were assumed volatile in the compiler.
3583 address StubGenerator::generate_throw_exception(const char* name,
3584                                                 address runtime_entry,
3585                                                 Register arg1,
3586                                                 Register arg2) {
3587   // Information about frame layout at time of blocking runtime call.
3588   // Note that we only have to preserve callee-saved registers since
3589   // the compilers are responsible for supplying a continuation point
3590   // if they expect all registers to be preserved.
3591   enum layout {
3592     rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt,
3593     rbp_off2,
3594     return_off,
3595     return_off2,
3596     framesize // inclusive of return address
3597   };
3598 
3599   int insts_size = 512;
3600   int locs_size  = 64;
3601 
3602   CodeBuffer code(name, insts_size, locs_size);
3603   OopMapSet* oop_maps  = new OopMapSet();
3604   MacroAssembler* _masm = new MacroAssembler(&code);
3605 
3606   address start = __ pc();
3607 
3608   // This is an inlined and slightly modified version of call_VM
3609   // which has the ability to fetch the return PC out of
3610   // thread-local storage and also sets up last_Java_sp slightly
3611   // differently than the real call_VM
3612 
3613   __ enter(); // required for proper stackwalking of RuntimeStub frame
3614 
3615   assert(is_even(framesize/2), "sp not 16-byte aligned");
3616 
3617   // return address and rbp are already in place
3618   __ subptr(rsp, (framesize-4) << LogBytesPerInt); // prolog
3619 
3620   int frame_complete = __ pc() - start;
3621 
3622   // Set up last_Java_sp and last_Java_fp
3623   address the_pc = __ pc();
3624   __ set_last_Java_frame(rsp, rbp, the_pc, rscratch1);
3625   __ andptr(rsp, -(StackAlignmentInBytes));    // Align stack
3626 
3627   // Call runtime
3628   if (arg1 != noreg) {
3629     assert(arg2 != c_rarg1, "clobbered");
3630     __ movptr(c_rarg1, arg1);
3631   }
3632   if (arg2 != noreg) {
3633     __ movptr(c_rarg2, arg2);
3634   }
3635   __ movptr(c_rarg0, r15_thread);
3636   BLOCK_COMMENT("call runtime_entry");
3637   __ call(RuntimeAddress(runtime_entry));
3638 
3639   // Generate oop map
3640   OopMap* map = new OopMap(framesize, 0);
3641 
3642   oop_maps->add_gc_map(the_pc - start, map);
3643 
3644   __ reset_last_Java_frame(true);
3645 
3646   __ leave(); // required for proper stackwalking of RuntimeStub frame
3647 
3648   // check for pending exceptions
3649 #ifdef ASSERT
3650   Label L;
3651   __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), NULL_WORD);
3652   __ jcc(Assembler::notEqual, L);
3653   __ should_not_reach_here();
3654   __ bind(L);
3655 #endif // ASSERT
3656   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3657 
3658 
3659   // codeBlob framesize is in words (not VMRegImpl::slot_size)
3660   RuntimeStub* stub =
3661     RuntimeStub::new_runtime_stub(name,
3662                                   &code,
3663                                   frame_complete,
3664                                   (framesize >> (LogBytesPerWord - LogBytesPerInt)),
3665                                   oop_maps, false);
3666   return stub->entry_point();
3667 }
3668 
3669 void StubGenerator::create_control_words() {
3670   // Round to nearest, 64-bit mode, exceptions masked
3671   StubRoutines::x86::_mxcsr_std = 0x1F80;
3672 }
3673 
3674 // Initialization
3675 void StubGenerator::generate_initial() {
3676   // Generates all stubs and initializes the entry points
3677 
3678   // This platform-specific settings are needed by generate_call_stub()
3679   create_control_words();
3680 
3681   // entry points that exist in all platforms Note: This is code
3682   // that could be shared among different platforms - however the
3683   // benefit seems to be smaller than the disadvantage of having a
3684   // much more complicated generator structure. See also comment in
3685   // stubRoutines.hpp.
3686 
3687   StubRoutines::_forward_exception_entry = generate_forward_exception();
3688 
3689   // Generate these first because they are called from other stubs
3690   if (InlineTypeReturnedAsFields) {
3691     StubRoutines::_load_inline_type_fields_in_regs =
3692       generate_return_value_stub(CAST_FROM_FN_PTR(address, SharedRuntime::load_inline_type_fields_in_regs),
3693                                  "load_inline_type_fields_in_regs", false);
3694     StubRoutines::_store_inline_type_fields_to_buf =
3695       generate_return_value_stub(CAST_FROM_FN_PTR(address, SharedRuntime::store_inline_type_fields_to_buf),
3696                                  "store_inline_type_fields_to_buf", true);
3697   }
3698 
3699   StubRoutines::_call_stub_entry =
3700     generate_call_stub(StubRoutines::_call_stub_return_address);
3701 
3702   // is referenced by megamorphic call
3703   StubRoutines::_catch_exception_entry = generate_catch_exception();
3704 
3705   // atomic calls
3706   StubRoutines::_fence_entry                = generate_orderaccess_fence();
3707 
3708   // platform dependent
3709   StubRoutines::x86::_get_previous_sp_entry = generate_get_previous_sp();
3710 
3711   StubRoutines::x86::_verify_mxcsr_entry    = generate_verify_mxcsr();
3712 
3713   StubRoutines::x86::_f2i_fixup             = generate_f2i_fixup();
3714   StubRoutines::x86::_f2l_fixup             = generate_f2l_fixup();
3715   StubRoutines::x86::_d2i_fixup             = generate_d2i_fixup();
3716   StubRoutines::x86::_d2l_fixup             = generate_d2l_fixup();
3717 
3718   StubRoutines::x86::_float_sign_mask       = generate_fp_mask("float_sign_mask",  0x7FFFFFFF7FFFFFFF);
3719   StubRoutines::x86::_float_sign_flip       = generate_fp_mask("float_sign_flip",  0x8000000080000000);
3720   StubRoutines::x86::_double_sign_mask      = generate_fp_mask("double_sign_mask", 0x7FFFFFFFFFFFFFFF);
3721   StubRoutines::x86::_double_sign_flip      = generate_fp_mask("double_sign_flip", 0x8000000000000000);
3722 
3723   // Build this early so it's available for the interpreter.
3724   StubRoutines::_throw_StackOverflowError_entry =
3725     generate_throw_exception("StackOverflowError throw_exception",
3726                              CAST_FROM_FN_PTR(address,
3727                                               SharedRuntime::
3728                                               throw_StackOverflowError));
3729   StubRoutines::_throw_delayed_StackOverflowError_entry =
3730     generate_throw_exception("delayed StackOverflowError throw_exception",
3731                              CAST_FROM_FN_PTR(address,
3732                                               SharedRuntime::
3733                                               throw_delayed_StackOverflowError));
3734   if (UseCRC32Intrinsics) {
3735     // set table address before stub generation which use it
3736     StubRoutines::_crc_table_adr = (address)StubRoutines::x86::_crc_table;
3737     StubRoutines::_updateBytesCRC32 = generate_updateBytesCRC32();
3738   }
3739 
3740   if (UsePolyIntrinsics) {
3741     StubRoutines::_poly1305_processBlocks = generate_poly1305_processBlocks();
3742   }
3743 
3744   if (UseCRC32CIntrinsics) {
3745     bool supports_clmul = VM_Version::supports_clmul();
3746     StubRoutines::x86::generate_CRC32C_table(supports_clmul);
3747     StubRoutines::_crc32c_table_addr = (address)StubRoutines::x86::_crc32c_table;
3748     StubRoutines::_updateBytesCRC32C = generate_updateBytesCRC32C(supports_clmul);
3749   }
3750 
3751   if (UseAdler32Intrinsics) {
3752      StubRoutines::_updateBytesAdler32 = generate_updateBytesAdler32();
3753   }
3754 
3755   generate_libm_stubs();
3756 }
3757 
3758 // Call here from the interpreter or compiled code to either load
3759 // multiple returned values from the inline type instance being
3760 // returned to registers or to store returned values to a newly
3761 // allocated inline type instance.
3762 // Register is a class, but it would be assigned numerical value.
3763 // "0" is assigned for xmm0. Thus we need to ignore -Wnonnull.
3764 PRAGMA_DIAG_PUSH
3765 PRAGMA_NONNULL_IGNORED
3766 address StubGenerator::generate_return_value_stub(address destination, const char* name, bool has_res) {
3767   // We need to save all registers the calling convention may use so
3768   // the runtime calls read or update those registers. This needs to
3769   // be in sync with SharedRuntime::java_return_convention().
3770   enum layout {
3771     pad_off = frame::arg_reg_save_area_bytes/BytesPerInt, pad_off_2,
3772     rax_off, rax_off_2,
3773     j_rarg5_off, j_rarg5_2,
3774     j_rarg4_off, j_rarg4_2,
3775     j_rarg3_off, j_rarg3_2,
3776     j_rarg2_off, j_rarg2_2,
3777     j_rarg1_off, j_rarg1_2,
3778     j_rarg0_off, j_rarg0_2,
3779     j_farg0_off, j_farg0_2,
3780     j_farg1_off, j_farg1_2,
3781     j_farg2_off, j_farg2_2,
3782     j_farg3_off, j_farg3_2,
3783     j_farg4_off, j_farg4_2,
3784     j_farg5_off, j_farg5_2,
3785     j_farg6_off, j_farg6_2,
3786     j_farg7_off, j_farg7_2,
3787     rbp_off, rbp_off_2,
3788     return_off, return_off_2,
3789 
3790     framesize
3791   };
3792 
3793   CodeBuffer buffer(name, 1000, 512);
3794   MacroAssembler* _masm = new MacroAssembler(&buffer);
3795 
3796   int frame_size_in_bytes = align_up(framesize*BytesPerInt, 16);
3797   assert(frame_size_in_bytes == framesize*BytesPerInt, "misaligned");
3798   int frame_size_in_slots = frame_size_in_bytes / BytesPerInt;
3799   int frame_size_in_words = frame_size_in_bytes / wordSize;
3800 
3801   OopMapSet *oop_maps = new OopMapSet();
3802   OopMap* map = new OopMap(frame_size_in_slots, 0);
3803 
3804   map->set_callee_saved(VMRegImpl::stack2reg(rax_off), rax->as_VMReg());
3805   map->set_callee_saved(VMRegImpl::stack2reg(j_rarg5_off), j_rarg5->as_VMReg());
3806   map->set_callee_saved(VMRegImpl::stack2reg(j_rarg4_off), j_rarg4->as_VMReg());
3807   map->set_callee_saved(VMRegImpl::stack2reg(j_rarg3_off), j_rarg3->as_VMReg());
3808   map->set_callee_saved(VMRegImpl::stack2reg(j_rarg2_off), j_rarg2->as_VMReg());
3809   map->set_callee_saved(VMRegImpl::stack2reg(j_rarg1_off), j_rarg1->as_VMReg());
3810   map->set_callee_saved(VMRegImpl::stack2reg(j_rarg0_off), j_rarg0->as_VMReg());
3811   map->set_callee_saved(VMRegImpl::stack2reg(j_farg0_off), j_farg0->as_VMReg());
3812   map->set_callee_saved(VMRegImpl::stack2reg(j_farg1_off), j_farg1->as_VMReg());
3813   map->set_callee_saved(VMRegImpl::stack2reg(j_farg2_off), j_farg2->as_VMReg());
3814   map->set_callee_saved(VMRegImpl::stack2reg(j_farg3_off), j_farg3->as_VMReg());
3815   map->set_callee_saved(VMRegImpl::stack2reg(j_farg4_off), j_farg4->as_VMReg());
3816   map->set_callee_saved(VMRegImpl::stack2reg(j_farg5_off), j_farg5->as_VMReg());
3817   map->set_callee_saved(VMRegImpl::stack2reg(j_farg6_off), j_farg6->as_VMReg());
3818   map->set_callee_saved(VMRegImpl::stack2reg(j_farg7_off), j_farg7->as_VMReg());
3819 
3820   int start = __ offset();
3821 
3822   __ subptr(rsp, frame_size_in_bytes - 8 /* return address*/);
3823 
3824   __ movptr(Address(rsp, rbp_off * BytesPerInt), rbp);
3825   __ movdbl(Address(rsp, j_farg7_off * BytesPerInt), j_farg7);
3826   __ movdbl(Address(rsp, j_farg6_off * BytesPerInt), j_farg6);
3827   __ movdbl(Address(rsp, j_farg5_off * BytesPerInt), j_farg5);
3828   __ movdbl(Address(rsp, j_farg4_off * BytesPerInt), j_farg4);
3829   __ movdbl(Address(rsp, j_farg3_off * BytesPerInt), j_farg3);
3830   __ movdbl(Address(rsp, j_farg2_off * BytesPerInt), j_farg2);
3831   __ movdbl(Address(rsp, j_farg1_off * BytesPerInt), j_farg1);
3832   __ movdbl(Address(rsp, j_farg0_off * BytesPerInt), j_farg0);
3833 
3834   __ movptr(Address(rsp, j_rarg0_off * BytesPerInt), j_rarg0);
3835   __ movptr(Address(rsp, j_rarg1_off * BytesPerInt), j_rarg1);
3836   __ movptr(Address(rsp, j_rarg2_off * BytesPerInt), j_rarg2);
3837   __ movptr(Address(rsp, j_rarg3_off * BytesPerInt), j_rarg3);
3838   __ movptr(Address(rsp, j_rarg4_off * BytesPerInt), j_rarg4);
3839   __ movptr(Address(rsp, j_rarg5_off * BytesPerInt), j_rarg5);
3840   __ movptr(Address(rsp, rax_off * BytesPerInt), rax);
3841 
3842   int frame_complete = __ offset();
3843 
3844   __ set_last_Java_frame(noreg, noreg, NULL, rscratch1);
3845 
3846   __ mov(c_rarg0, r15_thread);
3847   __ mov(c_rarg1, rax);
3848 
3849   __ call(RuntimeAddress(destination));
3850 
3851   // Set an oopmap for the call site.
3852 
3853   oop_maps->add_gc_map( __ offset() - start, map);
3854 
3855   // clear last_Java_sp
3856   __ reset_last_Java_frame(false);
3857 
3858   __ movptr(rbp, Address(rsp, rbp_off * BytesPerInt));
3859   __ movdbl(j_farg7, Address(rsp, j_farg7_off * BytesPerInt));
3860   __ movdbl(j_farg6, Address(rsp, j_farg6_off * BytesPerInt));
3861   __ movdbl(j_farg5, Address(rsp, j_farg5_off * BytesPerInt));
3862   __ movdbl(j_farg4, Address(rsp, j_farg4_off * BytesPerInt));
3863   __ movdbl(j_farg3, Address(rsp, j_farg3_off * BytesPerInt));
3864   __ movdbl(j_farg2, Address(rsp, j_farg2_off * BytesPerInt));
3865   __ movdbl(j_farg1, Address(rsp, j_farg1_off * BytesPerInt));
3866   __ movdbl(j_farg0, Address(rsp, j_farg0_off * BytesPerInt));
3867 
3868   __ movptr(j_rarg0, Address(rsp, j_rarg0_off * BytesPerInt));
3869   __ movptr(j_rarg1, Address(rsp, j_rarg1_off * BytesPerInt));
3870   __ movptr(j_rarg2, Address(rsp, j_rarg2_off * BytesPerInt));
3871   __ movptr(j_rarg3, Address(rsp, j_rarg3_off * BytesPerInt));
3872   __ movptr(j_rarg4, Address(rsp, j_rarg4_off * BytesPerInt));
3873   __ movptr(j_rarg5, Address(rsp, j_rarg5_off * BytesPerInt));
3874   __ movptr(rax, Address(rsp, rax_off * BytesPerInt));
3875 
3876   __ addptr(rsp, frame_size_in_bytes-8);
3877 
3878   // check for pending exceptions
3879   Label pending;
3880   __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
3881   __ jcc(Assembler::notEqual, pending);
3882 
3883   if (has_res) {
3884     __ get_vm_result(rax, r15_thread);
3885   }
3886 
3887   __ ret(0);
3888 
3889   __ bind(pending);
3890 
3891   __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
3892   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3893 
3894   // -------------
3895   // make sure all code is generated
3896   _masm->flush();
3897 
3898   RuntimeStub* stub = RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_words, oop_maps, false);
3899   return stub->entry_point();
3900 }
3901 
3902 void StubGenerator::generate_phase1() {
3903   // Continuation stubs:
3904   StubRoutines::_cont_thaw          = generate_cont_thaw();
3905   StubRoutines::_cont_returnBarrier = generate_cont_returnBarrier();
3906   StubRoutines::_cont_returnBarrierExc = generate_cont_returnBarrier_exception();
3907 
3908   JFR_ONLY(StubRoutines::_jfr_write_checkpoint_stub = generate_jfr_write_checkpoint();)
3909   JFR_ONLY(StubRoutines::_jfr_write_checkpoint = StubRoutines::_jfr_write_checkpoint_stub->entry_point();)
3910 }
3911 
3912 void StubGenerator::generate_all() {
3913   // Generates all stubs and initializes the entry points
3914 
3915   // These entry points require SharedInfo::stack0 to be set up in
3916   // non-core builds and need to be relocatable, so they each
3917   // fabricate a RuntimeStub internally.
3918   StubRoutines::_throw_AbstractMethodError_entry =
3919     generate_throw_exception("AbstractMethodError throw_exception",
3920                              CAST_FROM_FN_PTR(address,
3921                                               SharedRuntime::
3922                                               throw_AbstractMethodError));
3923 
3924   StubRoutines::_throw_IncompatibleClassChangeError_entry =
3925     generate_throw_exception("IncompatibleClassChangeError throw_exception",
3926                              CAST_FROM_FN_PTR(address,
3927                                               SharedRuntime::
3928                                               throw_IncompatibleClassChangeError));
3929 
3930   StubRoutines::_throw_NullPointerException_at_call_entry =
3931     generate_throw_exception("NullPointerException at call throw_exception",
3932                              CAST_FROM_FN_PTR(address,
3933                                               SharedRuntime::
3934                                               throw_NullPointerException_at_call));
3935 
3936   // entry points that are platform specific
3937   StubRoutines::x86::_vector_float_sign_mask = generate_vector_mask("vector_float_sign_mask", 0x7FFFFFFF7FFFFFFF);
3938   StubRoutines::x86::_vector_float_sign_flip = generate_vector_mask("vector_float_sign_flip", 0x8000000080000000);
3939   StubRoutines::x86::_vector_double_sign_mask = generate_vector_mask("vector_double_sign_mask", 0x7FFFFFFFFFFFFFFF);
3940   StubRoutines::x86::_vector_double_sign_flip = generate_vector_mask("vector_double_sign_flip", 0x8000000000000000);
3941   StubRoutines::x86::_vector_all_bits_set = generate_vector_mask("vector_all_bits_set", 0xFFFFFFFFFFFFFFFF);
3942   StubRoutines::x86::_vector_int_mask_cmp_bits = generate_vector_mask("vector_int_mask_cmp_bits", 0x0000000100000001);
3943   StubRoutines::x86::_vector_short_to_byte_mask = generate_vector_mask("vector_short_to_byte_mask", 0x00ff00ff00ff00ff);
3944   StubRoutines::x86::_vector_byte_perm_mask = generate_vector_byte_perm_mask("vector_byte_perm_mask");
3945   StubRoutines::x86::_vector_int_to_byte_mask = generate_vector_mask("vector_int_to_byte_mask", 0x000000ff000000ff);
3946   StubRoutines::x86::_vector_int_to_short_mask = generate_vector_mask("vector_int_to_short_mask", 0x0000ffff0000ffff);
3947   StubRoutines::x86::_vector_32_bit_mask = generate_vector_custom_i32("vector_32_bit_mask", Assembler::AVX_512bit,
3948                                                                       0xFFFFFFFF, 0, 0, 0);
3949   StubRoutines::x86::_vector_64_bit_mask = generate_vector_custom_i32("vector_64_bit_mask", Assembler::AVX_512bit,
3950                                                                       0xFFFFFFFF, 0xFFFFFFFF, 0, 0);
3951   StubRoutines::x86::_vector_int_shuffle_mask = generate_vector_mask("vector_int_shuffle_mask", 0x0302010003020100);
3952   StubRoutines::x86::_vector_byte_shuffle_mask = generate_vector_byte_shuffle_mask("vector_byte_shuffle_mask");
3953   StubRoutines::x86::_vector_short_shuffle_mask = generate_vector_mask("vector_short_shuffle_mask", 0x0100010001000100);
3954   StubRoutines::x86::_vector_long_shuffle_mask = generate_vector_mask("vector_long_shuffle_mask", 0x0000000100000000);
3955   StubRoutines::x86::_vector_long_sign_mask = generate_vector_mask("vector_long_sign_mask", 0x8000000000000000);
3956   StubRoutines::x86::_vector_iota_indices = generate_iota_indices("iota_indices");
3957   StubRoutines::x86::_vector_count_leading_zeros_lut = generate_count_leading_zeros_lut("count_leading_zeros_lut");
3958   StubRoutines::x86::_vector_reverse_bit_lut = generate_vector_reverse_bit_lut("reverse_bit_lut");
3959   StubRoutines::x86::_vector_reverse_byte_perm_mask_long = generate_vector_reverse_byte_perm_mask_long("perm_mask_long");
3960   StubRoutines::x86::_vector_reverse_byte_perm_mask_int = generate_vector_reverse_byte_perm_mask_int("perm_mask_int");
3961   StubRoutines::x86::_vector_reverse_byte_perm_mask_short = generate_vector_reverse_byte_perm_mask_short("perm_mask_short");
3962 
3963   if (VM_Version::supports_avx2() && !VM_Version::supports_avx512_vpopcntdq()) {
3964     // lut implementation influenced by counting 1s algorithm from section 5-1 of Hackers' Delight.
3965     StubRoutines::x86::_vector_popcount_lut = generate_popcount_avx_lut("popcount_lut");
3966   }
3967 
3968   // support for verify_oop (must happen after universe_init)
3969   if (VerifyOops) {
3970     StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop();
3971   }
3972 
3973   // data cache line writeback
3974   StubRoutines::_data_cache_writeback = generate_data_cache_writeback();
3975   StubRoutines::_data_cache_writeback_sync = generate_data_cache_writeback_sync();
3976 
3977   // arraycopy stubs used by compilers
3978   generate_arraycopy_stubs();
3979 
3980   generate_aes_stubs();
3981 
3982   generate_ghash_stubs();
3983 
3984   generate_chacha_stubs();
3985 
3986   if (UseMD5Intrinsics) {
3987     StubRoutines::_md5_implCompress = generate_md5_implCompress(false, "md5_implCompress");
3988     StubRoutines::_md5_implCompressMB = generate_md5_implCompress(true, "md5_implCompressMB");
3989   }
3990   if (UseSHA1Intrinsics) {
3991     StubRoutines::x86::_upper_word_mask_addr = generate_upper_word_mask();
3992     StubRoutines::x86::_shuffle_byte_flip_mask_addr = generate_shuffle_byte_flip_mask();
3993     StubRoutines::_sha1_implCompress = generate_sha1_implCompress(false, "sha1_implCompress");
3994     StubRoutines::_sha1_implCompressMB = generate_sha1_implCompress(true, "sha1_implCompressMB");
3995   }
3996   if (UseSHA256Intrinsics) {
3997     StubRoutines::x86::_k256_adr = (address)StubRoutines::x86::_k256;
3998     char* dst = (char*)StubRoutines::x86::_k256_W;
3999     char* src = (char*)StubRoutines::x86::_k256;
4000     for (int ii = 0; ii < 16; ++ii) {
4001       memcpy(dst + 32 * ii,      src + 16 * ii, 16);
4002       memcpy(dst + 32 * ii + 16, src + 16 * ii, 16);
4003     }
4004     StubRoutines::x86::_k256_W_adr = (address)StubRoutines::x86::_k256_W;
4005     StubRoutines::x86::_pshuffle_byte_flip_mask_addr = generate_pshuffle_byte_flip_mask();
4006     StubRoutines::_sha256_implCompress = generate_sha256_implCompress(false, "sha256_implCompress");
4007     StubRoutines::_sha256_implCompressMB = generate_sha256_implCompress(true, "sha256_implCompressMB");
4008   }
4009   if (UseSHA512Intrinsics) {
4010     StubRoutines::x86::_k512_W_addr = (address)StubRoutines::x86::_k512_W;
4011     StubRoutines::x86::_pshuffle_byte_flip_mask_addr_sha512 = generate_pshuffle_byte_flip_mask_sha512();
4012     StubRoutines::_sha512_implCompress = generate_sha512_implCompress(false, "sha512_implCompress");
4013     StubRoutines::_sha512_implCompressMB = generate_sha512_implCompress(true, "sha512_implCompressMB");
4014   }
4015 
4016   if (UseBASE64Intrinsics) {
4017     if(VM_Version::supports_avx2() &&
4018        VM_Version::supports_avx512bw() &&
4019        VM_Version::supports_avx512vl()) {
4020       StubRoutines::x86::_avx2_shuffle_base64 = base64_avx2_shuffle_addr();
4021       StubRoutines::x86::_avx2_input_mask_base64 = base64_avx2_input_mask_addr();
4022       StubRoutines::x86::_avx2_lut_base64 = base64_avx2_lut_addr();
4023     }
4024     StubRoutines::x86::_encoding_table_base64 = base64_encoding_table_addr();
4025     if (VM_Version::supports_avx512_vbmi()) {
4026       StubRoutines::x86::_shuffle_base64 = base64_shuffle_addr();
4027       StubRoutines::x86::_lookup_lo_base64 = base64_vbmi_lookup_lo_addr();
4028       StubRoutines::x86::_lookup_hi_base64 = base64_vbmi_lookup_hi_addr();
4029       StubRoutines::x86::_lookup_lo_base64url = base64_vbmi_lookup_lo_url_addr();
4030       StubRoutines::x86::_lookup_hi_base64url = base64_vbmi_lookup_hi_url_addr();
4031       StubRoutines::x86::_pack_vec_base64 = base64_vbmi_pack_vec_addr();
4032       StubRoutines::x86::_join_0_1_base64 = base64_vbmi_join_0_1_addr();
4033       StubRoutines::x86::_join_1_2_base64 = base64_vbmi_join_1_2_addr();
4034       StubRoutines::x86::_join_2_3_base64 = base64_vbmi_join_2_3_addr();
4035     }
4036     StubRoutines::x86::_decoding_table_base64 = base64_decoding_table_addr();
4037     StubRoutines::_base64_encodeBlock = generate_base64_encodeBlock();
4038     StubRoutines::_base64_decodeBlock = generate_base64_decodeBlock();
4039   }
4040 
4041   BarrierSetNMethod* bs_nm = BarrierSet::barrier_set()->barrier_set_nmethod();
4042   if (bs_nm != NULL) {
4043     StubRoutines::x86::_method_entry_barrier = generate_method_entry_barrier();
4044   }
4045 #ifdef COMPILER2
4046   if (UseMultiplyToLenIntrinsic) {
4047     StubRoutines::_multiplyToLen = generate_multiplyToLen();
4048   }
4049   if (UseSquareToLenIntrinsic) {
4050     StubRoutines::_squareToLen = generate_squareToLen();
4051   }
4052   if (UseMulAddIntrinsic) {
4053     StubRoutines::_mulAdd = generate_mulAdd();
4054   }
4055   if (VM_Version::supports_avx512_vbmi2()) {
4056     StubRoutines::_bigIntegerRightShiftWorker = generate_bigIntegerRightShift();
4057     StubRoutines::_bigIntegerLeftShiftWorker = generate_bigIntegerLeftShift();
4058   }
4059   if (UseMontgomeryMultiplyIntrinsic) {
4060     StubRoutines::_montgomeryMultiply
4061       = CAST_FROM_FN_PTR(address, SharedRuntime::montgomery_multiply);
4062   }
4063   if (UseMontgomerySquareIntrinsic) {
4064     StubRoutines::_montgomerySquare
4065       = CAST_FROM_FN_PTR(address, SharedRuntime::montgomery_square);
4066   }
4067 
4068   // Get svml stub routine addresses
4069   void *libjsvml = NULL;
4070   char ebuf[1024];
4071   char dll_name[JVM_MAXPATHLEN];
4072   if (os::dll_locate_lib(dll_name, sizeof(dll_name), Arguments::get_dll_dir(), "jsvml")) {
4073     libjsvml = os::dll_load(dll_name, ebuf, sizeof ebuf);
4074   }
4075   if (libjsvml != NULL) {
4076     // SVML method naming convention
4077     //   All the methods are named as __jsvml_op<T><N>_ha_<VV>
4078     //   Where:
4079     //      ha stands for high accuracy
4080     //      <T> is optional to indicate float/double
4081     //              Set to f for vector float operation
4082     //              Omitted for vector double operation
4083     //      <N> is the number of elements in the vector
4084     //              1, 2, 4, 8, 16
4085     //              e.g. 128 bit float vector has 4 float elements
4086     //      <VV> indicates the avx/sse level:
4087     //              z0 is AVX512, l9 is AVX2, e9 is AVX1 and ex is for SSE2
4088     //      e.g. __jsvml_expf16_ha_z0 is the method for computing 16 element vector float exp using AVX 512 insns
4089     //           __jsvml_exp8_ha_z0 is the method for computing 8 element vector double exp using AVX 512 insns
4090 
4091     log_info(library)("Loaded library %s, handle " INTPTR_FORMAT, JNI_LIB_PREFIX "jsvml" JNI_LIB_SUFFIX, p2i(libjsvml));
4092     if (UseAVX > 2) {
4093       for (int op = 0; op < VectorSupport::NUM_SVML_OP; op++) {
4094         int vop = VectorSupport::VECTOR_OP_SVML_START + op;
4095         if ((!VM_Version::supports_avx512dq()) &&
4096             (vop == VectorSupport::VECTOR_OP_LOG || vop == VectorSupport::VECTOR_OP_LOG10 || vop == VectorSupport::VECTOR_OP_POW)) {
4097           continue;
4098         }
4099         snprintf(ebuf, sizeof(ebuf), "__jsvml_%sf16_ha_z0", VectorSupport::svmlname[op]);
4100         StubRoutines::_vector_f_math[VectorSupport::VEC_SIZE_512][op] = (address)os::dll_lookup(libjsvml, ebuf);
4101 
4102         snprintf(ebuf, sizeof(ebuf), "__jsvml_%s8_ha_z0", VectorSupport::svmlname[op]);
4103         StubRoutines::_vector_d_math[VectorSupport::VEC_SIZE_512][op] = (address)os::dll_lookup(libjsvml, ebuf);
4104       }
4105     }
4106     const char* avx_sse_str = (UseAVX >= 2) ? "l9" : ((UseAVX == 1) ? "e9" : "ex");
4107     for (int op = 0; op < VectorSupport::NUM_SVML_OP; op++) {
4108       int vop = VectorSupport::VECTOR_OP_SVML_START + op;
4109       if (vop == VectorSupport::VECTOR_OP_POW) {
4110         continue;
4111       }
4112       snprintf(ebuf, sizeof(ebuf), "__jsvml_%sf4_ha_%s", VectorSupport::svmlname[op], avx_sse_str);
4113       StubRoutines::_vector_f_math[VectorSupport::VEC_SIZE_64][op] = (address)os::dll_lookup(libjsvml, ebuf);
4114 
4115       snprintf(ebuf, sizeof(ebuf), "__jsvml_%sf4_ha_%s", VectorSupport::svmlname[op], avx_sse_str);
4116       StubRoutines::_vector_f_math[VectorSupport::VEC_SIZE_128][op] = (address)os::dll_lookup(libjsvml, ebuf);
4117 
4118       snprintf(ebuf, sizeof(ebuf), "__jsvml_%sf8_ha_%s", VectorSupport::svmlname[op], avx_sse_str);
4119       StubRoutines::_vector_f_math[VectorSupport::VEC_SIZE_256][op] = (address)os::dll_lookup(libjsvml, ebuf);
4120 
4121       snprintf(ebuf, sizeof(ebuf), "__jsvml_%s1_ha_%s", VectorSupport::svmlname[op], avx_sse_str);
4122       StubRoutines::_vector_d_math[VectorSupport::VEC_SIZE_64][op] = (address)os::dll_lookup(libjsvml, ebuf);
4123 
4124       snprintf(ebuf, sizeof(ebuf), "__jsvml_%s2_ha_%s", VectorSupport::svmlname[op], avx_sse_str);
4125       StubRoutines::_vector_d_math[VectorSupport::VEC_SIZE_128][op] = (address)os::dll_lookup(libjsvml, ebuf);
4126 
4127       snprintf(ebuf, sizeof(ebuf), "__jsvml_%s4_ha_%s", VectorSupport::svmlname[op], avx_sse_str);
4128       StubRoutines::_vector_d_math[VectorSupport::VEC_SIZE_256][op] = (address)os::dll_lookup(libjsvml, ebuf);
4129     }
4130   }
4131 #endif // COMPILER2
4132 
4133   if (UseVectorizedMismatchIntrinsic) {
4134     StubRoutines::_vectorizedMismatch = generate_vectorizedMismatch();
4135   }
4136 }
4137 
4138 void StubGenerator_generate(CodeBuffer* code, int phase) {
4139   if (UnsafeCopyMemory::_table == NULL) {
4140     UnsafeCopyMemory::create_table(16);
4141   }
4142   StubGenerator g(code, phase);
4143 }
4144 
4145 #undef __