1 /* 2 * Copyright (c) 2003, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "asm/assembler.hpp" 26 #include "asm/macroAssembler.hpp" 27 #include "classfile/javaClasses.hpp" 28 #include "classfile/vmIntrinsics.hpp" 29 #include "compiler/oopMap.hpp" 30 #include "gc/shared/barrierSet.hpp" 31 #include "gc/shared/barrierSetAssembler.hpp" 32 #include "gc/shared/barrierSetNMethod.hpp" 33 #include "gc/shared/gc_globals.hpp" 34 #include "memory/universe.hpp" 35 #include "prims/jvmtiExport.hpp" 36 #include "prims/upcallLinker.hpp" 37 #include "runtime/arguments.hpp" 38 #include "runtime/continuationEntry.hpp" 39 #include "runtime/javaThread.hpp" 40 #include "runtime/sharedRuntime.hpp" 41 #include "runtime/stubRoutines.hpp" 42 #include "utilities/macros.hpp" 43 #include "vmreg_x86.inline.hpp" 44 #include "stubGenerator_x86_64.hpp" 45 #ifdef COMPILER2 46 #include "opto/runtime.hpp" 47 #include "opto/c2_globals.hpp" 48 #endif 49 #if INCLUDE_JVMCI 50 #include "jvmci/jvmci_globals.hpp" 51 #endif 52 53 // For a more detailed description of the stub routine structure 54 // see the comment in stubRoutines.hpp 55 56 #define __ _masm-> 57 #define TIMES_OOP (UseCompressedOops ? Address::times_4 : Address::times_8) 58 59 #ifdef PRODUCT 60 #define BLOCK_COMMENT(str) /* nothing */ 61 #else 62 #define BLOCK_COMMENT(str) __ block_comment(str) 63 #endif // PRODUCT 64 65 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") 66 67 // 68 // Linux Arguments: 69 // c_rarg0: call wrapper address address 70 // c_rarg1: result address 71 // c_rarg2: result type BasicType 72 // c_rarg3: method Method* 73 // c_rarg4: (interpreter) entry point address 74 // c_rarg5: parameters intptr_t* 75 // 16(rbp): parameter size (in words) int 76 // 24(rbp): thread Thread* 77 // 78 // [ return_from_Java ] <--- rsp 79 // [ argument word n ] 80 // ... 81 // -12 [ argument word 1 ] 82 // -11 [ saved r15 ] <--- rsp_after_call 83 // -10 [ saved r14 ] 84 // -9 [ saved r13 ] 85 // -8 [ saved r12 ] 86 // -7 [ saved rbx ] 87 // -6 [ call wrapper ] 88 // -5 [ result ] 89 // -4 [ result type ] 90 // -3 [ method ] 91 // -2 [ entry point ] 92 // -1 [ parameters ] 93 // 0 [ saved rbp ] <--- rbp 94 // 1 [ return address ] 95 // 2 [ parameter size ] 96 // 3 [ thread ] 97 // 98 // Windows Arguments: 99 // c_rarg0: call wrapper address address 100 // c_rarg1: result address 101 // c_rarg2: result type BasicType 102 // c_rarg3: method Method* 103 // 48(rbp): (interpreter) entry point address 104 // 56(rbp): parameters intptr_t* 105 // 64(rbp): parameter size (in words) int 106 // 72(rbp): thread Thread* 107 // 108 // [ return_from_Java ] <--- rsp 109 // [ argument word n ] 110 // ... 111 // -28 [ argument word 1 ] 112 // -27 [ saved xmm15 ] <--- rsp after_call 113 // [ saved xmm7-xmm14 ] 114 // -9 [ saved xmm6 ] (each xmm register takes 2 slots) 115 // -7 [ saved r15 ] 116 // -6 [ saved r14 ] 117 // -5 [ saved r13 ] 118 // -4 [ saved r12 ] 119 // -3 [ saved rdi ] 120 // -2 [ saved rsi ] 121 // -1 [ saved rbx ] 122 // 0 [ saved rbp ] <--- rbp 123 // 1 [ return address ] 124 // 2 [ call wrapper ] 125 // 3 [ result ] 126 // 4 [ result type ] 127 // 5 [ method ] 128 // 6 [ entry point ] 129 // 7 [ parameters ] 130 // 8 [ parameter size ] 131 // 9 [ thread ] 132 // 133 // Windows reserves the callers stack space for arguments 1-4. 134 // We spill c_rarg0-c_rarg3 to this space. 135 136 // Call stub stack layout word offsets from rbp 137 #ifdef _WIN64 138 enum call_stub_layout { 139 xmm_save_first = 6, // save from xmm6 140 xmm_save_last = 15, // to xmm15 141 xmm_save_base = -9, 142 rsp_after_call_off = xmm_save_base - 2 * (xmm_save_last - xmm_save_first), // -27 143 r15_off = -7, 144 r14_off = -6, 145 r13_off = -5, 146 r12_off = -4, 147 rdi_off = -3, 148 rsi_off = -2, 149 rbx_off = -1, 150 rbp_off = 0, 151 retaddr_off = 1, 152 call_wrapper_off = 2, 153 result_off = 3, 154 result_type_off = 4, 155 method_off = 5, 156 entry_point_off = 6, 157 parameters_off = 7, 158 parameter_size_off = 8, 159 thread_off = 9 160 }; 161 162 static Address xmm_save(int reg) { 163 assert(reg >= xmm_save_first && reg <= xmm_save_last, "XMM register number out of range"); 164 return Address(rbp, (xmm_save_base - (reg - xmm_save_first) * 2) * wordSize); 165 } 166 #else // !_WIN64 167 enum call_stub_layout { 168 rsp_after_call_off = -12, 169 mxcsr_off = rsp_after_call_off, 170 r15_off = -11, 171 r14_off = -10, 172 r13_off = -9, 173 r12_off = -8, 174 rbx_off = -7, 175 call_wrapper_off = -6, 176 result_off = -5, 177 result_type_off = -4, 178 method_off = -3, 179 entry_point_off = -2, 180 parameters_off = -1, 181 rbp_off = 0, 182 retaddr_off = 1, 183 parameter_size_off = 2, 184 thread_off = 3 185 }; 186 #endif // _WIN64 187 188 address StubGenerator::generate_call_stub(address& return_address) { 189 190 assert((int)frame::entry_frame_after_call_words == -(int)rsp_after_call_off + 1 && 191 (int)frame::entry_frame_call_wrapper_offset == (int)call_wrapper_off, 192 "adjust this code"); 193 StubGenStubId stub_id = StubGenStubId::call_stub_id; 194 StubCodeMark mark(this, stub_id); 195 address start = __ pc(); 196 197 // same as in generate_catch_exception()! 198 const Address rsp_after_call(rbp, rsp_after_call_off * wordSize); 199 200 const Address call_wrapper (rbp, call_wrapper_off * wordSize); 201 const Address result (rbp, result_off * wordSize); 202 const Address result_type (rbp, result_type_off * wordSize); 203 const Address method (rbp, method_off * wordSize); 204 const Address entry_point (rbp, entry_point_off * wordSize); 205 const Address parameters (rbp, parameters_off * wordSize); 206 const Address parameter_size(rbp, parameter_size_off * wordSize); 207 208 // same as in generate_catch_exception()! 209 const Address thread (rbp, thread_off * wordSize); 210 211 const Address r15_save(rbp, r15_off * wordSize); 212 const Address r14_save(rbp, r14_off * wordSize); 213 const Address r13_save(rbp, r13_off * wordSize); 214 const Address r12_save(rbp, r12_off * wordSize); 215 const Address rbx_save(rbp, rbx_off * wordSize); 216 217 // stub code 218 __ enter(); 219 __ subptr(rsp, -rsp_after_call_off * wordSize); 220 221 // save register parameters 222 #ifndef _WIN64 223 __ movptr(parameters, c_rarg5); // parameters 224 __ movptr(entry_point, c_rarg4); // entry_point 225 #endif 226 227 __ movptr(method, c_rarg3); // method 228 __ movl(result_type, c_rarg2); // result type 229 __ movptr(result, c_rarg1); // result 230 __ movptr(call_wrapper, c_rarg0); // call wrapper 231 232 // save regs belonging to calling function 233 __ movptr(rbx_save, rbx); 234 __ movptr(r12_save, r12); 235 __ movptr(r13_save, r13); 236 __ movptr(r14_save, r14); 237 __ movptr(r15_save, r15); 238 239 #ifdef _WIN64 240 int last_reg = 15; 241 for (int i = xmm_save_first; i <= last_reg; i++) { 242 __ movdqu(xmm_save(i), as_XMMRegister(i)); 243 } 244 245 const Address rdi_save(rbp, rdi_off * wordSize); 246 const Address rsi_save(rbp, rsi_off * wordSize); 247 248 __ movptr(rsi_save, rsi); 249 __ movptr(rdi_save, rdi); 250 #else 251 const Address mxcsr_save(rbp, mxcsr_off * wordSize); 252 { 253 Label skip_ldmx; 254 __ cmp32_mxcsr_std(mxcsr_save, rax, rscratch1); 255 __ jcc(Assembler::equal, skip_ldmx); 256 ExternalAddress mxcsr_std(StubRoutines::x86::addr_mxcsr_std()); 257 __ ldmxcsr(mxcsr_std, rscratch1); 258 __ bind(skip_ldmx); 259 } 260 #endif 261 262 // Load up thread register 263 __ movptr(r15_thread, thread); 264 __ reinit_heapbase(); 265 266 #ifdef ASSERT 267 // make sure we have no pending exceptions 268 { 269 Label L; 270 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), NULL_WORD); 271 __ jcc(Assembler::equal, L); 272 __ stop("StubRoutines::call_stub: entered with pending exception"); 273 __ bind(L); 274 } 275 #endif 276 277 // pass parameters if any 278 BLOCK_COMMENT("pass parameters if any"); 279 Label parameters_done; 280 __ movl(c_rarg3, parameter_size); 281 __ testl(c_rarg3, c_rarg3); 282 __ jcc(Assembler::zero, parameters_done); 283 284 Label loop; 285 __ movptr(c_rarg2, parameters); // parameter pointer 286 __ movl(c_rarg1, c_rarg3); // parameter counter is in c_rarg1 287 __ BIND(loop); 288 __ movptr(rax, Address(c_rarg2, 0));// get parameter 289 __ addptr(c_rarg2, wordSize); // advance to next parameter 290 __ decrementl(c_rarg1); // decrement counter 291 __ push(rax); // pass parameter 292 __ jcc(Assembler::notZero, loop); 293 294 // call Java function 295 __ BIND(parameters_done); 296 __ movptr(rbx, method); // get Method* 297 __ movptr(c_rarg1, entry_point); // get entry_point 298 __ mov(r13, rsp); // set sender sp 299 BLOCK_COMMENT("call Java function"); 300 __ call(c_rarg1); 301 302 BLOCK_COMMENT("call_stub_return_address:"); 303 return_address = __ pc(); 304 305 // store result depending on type (everything that is not 306 // T_OBJECT, T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT) 307 __ movptr(r13, result); 308 Label is_long, is_float, is_double, check_prim, exit; 309 __ movl(rbx, result_type); 310 __ cmpl(rbx, T_OBJECT); 311 __ jcc(Assembler::equal, check_prim); 312 __ cmpl(rbx, T_LONG); 313 __ jcc(Assembler::equal, is_long); 314 __ cmpl(rbx, T_FLOAT); 315 __ jcc(Assembler::equal, is_float); 316 __ cmpl(rbx, T_DOUBLE); 317 __ jcc(Assembler::equal, is_double); 318 #ifdef ASSERT 319 // make sure the type is INT 320 { 321 Label L; 322 __ cmpl(rbx, T_INT); 323 __ jcc(Assembler::equal, L); 324 __ stop("StubRoutines::call_stub: unexpected result type"); 325 __ bind(L); 326 } 327 #endif 328 329 // handle T_INT case 330 __ movl(Address(r13, 0), rax); 331 332 __ BIND(exit); 333 334 // pop parameters 335 __ lea(rsp, rsp_after_call); 336 337 #ifdef ASSERT 338 // verify that threads correspond 339 { 340 Label L1, L2, L3; 341 __ cmpptr(r15_thread, thread); 342 __ jcc(Assembler::equal, L1); 343 __ stop("StubRoutines::call_stub: r15_thread is corrupted"); 344 __ bind(L1); 345 __ get_thread(rbx); 346 __ cmpptr(r15_thread, thread); 347 __ jcc(Assembler::equal, L2); 348 __ stop("StubRoutines::call_stub: r15_thread is modified by call"); 349 __ bind(L2); 350 __ cmpptr(r15_thread, rbx); 351 __ jcc(Assembler::equal, L3); 352 __ stop("StubRoutines::call_stub: threads must correspond"); 353 __ bind(L3); 354 } 355 #endif 356 357 __ pop_cont_fastpath(); 358 359 // restore regs belonging to calling function 360 #ifdef _WIN64 361 // emit the restores for xmm regs 362 for (int i = xmm_save_first; i <= last_reg; i++) { 363 __ movdqu(as_XMMRegister(i), xmm_save(i)); 364 } 365 #endif 366 __ movptr(r15, r15_save); 367 __ movptr(r14, r14_save); 368 __ movptr(r13, r13_save); 369 __ movptr(r12, r12_save); 370 __ movptr(rbx, rbx_save); 371 372 #ifdef _WIN64 373 __ movptr(rdi, rdi_save); 374 __ movptr(rsi, rsi_save); 375 #else 376 __ ldmxcsr(mxcsr_save); 377 #endif 378 379 // restore rsp 380 __ addptr(rsp, -rsp_after_call_off * wordSize); 381 382 // return 383 __ vzeroupper(); 384 __ pop(rbp); 385 __ ret(0); 386 387 // handle return types different from T_INT 388 __ BIND(check_prim); 389 if (InlineTypeReturnedAsFields) { 390 // Check for scalarized return value 391 __ testptr(rax, 1); 392 __ jcc(Assembler::zero, is_long); 393 // Load pack handler address 394 __ andptr(rax, -2); 395 __ movptr(rax, Address(rax, InstanceKlass::adr_inlineklass_fixed_block_offset())); 396 __ movptr(rbx, Address(rax, InlineKlass::pack_handler_jobject_offset())); 397 // Call pack handler to initialize the buffer 398 __ call(rbx); 399 __ jmp(exit); 400 } 401 __ BIND(is_long); 402 __ movq(Address(r13, 0), rax); 403 __ jmp(exit); 404 405 __ BIND(is_float); 406 __ movflt(Address(r13, 0), xmm0); 407 __ jmp(exit); 408 409 __ BIND(is_double); 410 __ movdbl(Address(r13, 0), xmm0); 411 __ jmp(exit); 412 413 return start; 414 } 415 416 // Return point for a Java call if there's an exception thrown in 417 // Java code. The exception is caught and transformed into a 418 // pending exception stored in JavaThread that can be tested from 419 // within the VM. 420 // 421 // Note: Usually the parameters are removed by the callee. In case 422 // of an exception crossing an activation frame boundary, that is 423 // not the case if the callee is compiled code => need to setup the 424 // rsp. 425 // 426 // rax: exception oop 427 428 address StubGenerator::generate_catch_exception() { 429 StubGenStubId stub_id = StubGenStubId::catch_exception_id; 430 StubCodeMark mark(this, stub_id); 431 address start = __ pc(); 432 433 // same as in generate_call_stub(): 434 const Address rsp_after_call(rbp, rsp_after_call_off * wordSize); 435 const Address thread (rbp, thread_off * wordSize); 436 437 #ifdef ASSERT 438 // verify that threads correspond 439 { 440 Label L1, L2, L3; 441 __ cmpptr(r15_thread, thread); 442 __ jcc(Assembler::equal, L1); 443 __ stop("StubRoutines::catch_exception: r15_thread is corrupted"); 444 __ bind(L1); 445 __ get_thread(rbx); 446 __ cmpptr(r15_thread, thread); 447 __ jcc(Assembler::equal, L2); 448 __ stop("StubRoutines::catch_exception: r15_thread is modified by call"); 449 __ bind(L2); 450 __ cmpptr(r15_thread, rbx); 451 __ jcc(Assembler::equal, L3); 452 __ stop("StubRoutines::catch_exception: threads must correspond"); 453 __ bind(L3); 454 } 455 #endif 456 457 // set pending exception 458 __ verify_oop(rax); 459 460 __ movptr(Address(r15_thread, Thread::pending_exception_offset()), rax); 461 __ lea(rscratch1, ExternalAddress((address)__FILE__)); 462 __ movptr(Address(r15_thread, Thread::exception_file_offset()), rscratch1); 463 __ movl(Address(r15_thread, Thread::exception_line_offset()), (int) __LINE__); 464 465 // complete return to VM 466 assert(StubRoutines::_call_stub_return_address != nullptr, 467 "_call_stub_return_address must have been generated before"); 468 __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address)); 469 470 return start; 471 } 472 473 // Continuation point for runtime calls returning with a pending 474 // exception. The pending exception check happened in the runtime 475 // or native call stub. The pending exception in Thread is 476 // converted into a Java-level exception. 477 // 478 // Contract with Java-level exception handlers: 479 // rax: exception 480 // rdx: throwing pc 481 // 482 // NOTE: At entry of this stub, exception-pc must be on stack !! 483 484 address StubGenerator::generate_forward_exception() { 485 StubGenStubId stub_id = StubGenStubId::forward_exception_id; 486 StubCodeMark mark(this, stub_id); 487 address start = __ pc(); 488 489 // Upon entry, the sp points to the return address returning into 490 // Java (interpreted or compiled) code; i.e., the return address 491 // becomes the throwing pc. 492 // 493 // Arguments pushed before the runtime call are still on the stack 494 // but the exception handler will reset the stack pointer -> 495 // ignore them. A potential result in registers can be ignored as 496 // well. 497 498 #ifdef ASSERT 499 // make sure this code is only executed if there is a pending exception 500 { 501 Label L; 502 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), NULL_WORD); 503 __ jcc(Assembler::notEqual, L); 504 __ stop("StubRoutines::forward exception: no pending exception (1)"); 505 __ bind(L); 506 } 507 #endif 508 509 // compute exception handler into rbx 510 __ movptr(c_rarg0, Address(rsp, 0)); 511 BLOCK_COMMENT("call exception_handler_for_return_address"); 512 __ call_VM_leaf(CAST_FROM_FN_PTR(address, 513 SharedRuntime::exception_handler_for_return_address), 514 r15_thread, c_rarg0); 515 __ mov(rbx, rax); 516 517 // setup rax & rdx, remove return address & clear pending exception 518 __ pop(rdx); 519 __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset())); 520 __ movptr(Address(r15_thread, Thread::pending_exception_offset()), NULL_WORD); 521 522 #ifdef ASSERT 523 // make sure exception is set 524 { 525 Label L; 526 __ testptr(rax, rax); 527 __ jcc(Assembler::notEqual, L); 528 __ stop("StubRoutines::forward exception: no pending exception (2)"); 529 __ bind(L); 530 } 531 #endif 532 533 // continue at exception handler (return address removed) 534 // rax: exception 535 // rbx: exception handler 536 // rdx: throwing pc 537 __ verify_oop(rax); 538 __ jmp(rbx); 539 540 return start; 541 } 542 543 // Support for intptr_t OrderAccess::fence() 544 // 545 // Arguments : 546 // 547 // Result: 548 address StubGenerator::generate_orderaccess_fence() { 549 StubGenStubId stub_id = StubGenStubId::fence_id; 550 StubCodeMark mark(this, stub_id); 551 address start = __ pc(); 552 553 __ membar(Assembler::StoreLoad); 554 __ ret(0); 555 556 return start; 557 } 558 559 560 // Support for intptr_t get_previous_sp() 561 // 562 // This routine is used to find the previous stack pointer for the 563 // caller. 564 address StubGenerator::generate_get_previous_sp() { 565 StubGenStubId stub_id = StubGenStubId::get_previous_sp_id; 566 StubCodeMark mark(this, stub_id); 567 address start = __ pc(); 568 569 __ movptr(rax, rsp); 570 __ addptr(rax, 8); // return address is at the top of the stack. 571 __ ret(0); 572 573 return start; 574 } 575 576 //---------------------------------------------------------------------------------------------------- 577 // Support for void verify_mxcsr() 578 // 579 // This routine is used with -Xcheck:jni to verify that native 580 // JNI code does not return to Java code without restoring the 581 // MXCSR register to our expected state. 582 583 address StubGenerator::generate_verify_mxcsr() { 584 StubGenStubId stub_id = StubGenStubId::verify_mxcsr_id; 585 StubCodeMark mark(this, stub_id); 586 address start = __ pc(); 587 588 const Address mxcsr_save(rsp, 0); 589 590 if (CheckJNICalls) { 591 Label ok_ret; 592 ExternalAddress mxcsr_std(StubRoutines::x86::addr_mxcsr_std()); 593 __ push(rax); 594 __ subptr(rsp, wordSize); // allocate a temp location 595 __ cmp32_mxcsr_std(mxcsr_save, rax, rscratch1); 596 __ jcc(Assembler::equal, ok_ret); 597 598 __ warn("MXCSR changed by native JNI code, use -XX:+RestoreMXCSROnJNICall"); 599 600 __ ldmxcsr(mxcsr_std, rscratch1); 601 602 __ bind(ok_ret); 603 __ addptr(rsp, wordSize); 604 __ pop(rax); 605 } 606 607 __ ret(0); 608 609 return start; 610 } 611 612 address StubGenerator::generate_f2i_fixup() { 613 StubGenStubId stub_id = StubGenStubId::f2i_fixup_id; 614 StubCodeMark mark(this, stub_id); 615 Address inout(rsp, 5 * wordSize); // return address + 4 saves 616 617 address start = __ pc(); 618 619 Label L; 620 621 __ push(rax); 622 __ push(c_rarg3); 623 __ push(c_rarg2); 624 __ push(c_rarg1); 625 626 __ movl(rax, 0x7f800000); 627 __ xorl(c_rarg3, c_rarg3); 628 __ movl(c_rarg2, inout); 629 __ movl(c_rarg1, c_rarg2); 630 __ andl(c_rarg1, 0x7fffffff); 631 __ cmpl(rax, c_rarg1); // NaN? -> 0 632 __ jcc(Assembler::negative, L); 633 __ testl(c_rarg2, c_rarg2); // signed ? min_jint : max_jint 634 __ movl(c_rarg3, 0x80000000); 635 __ movl(rax, 0x7fffffff); 636 __ cmovl(Assembler::positive, c_rarg3, rax); 637 638 __ bind(L); 639 __ movptr(inout, c_rarg3); 640 641 __ pop(c_rarg1); 642 __ pop(c_rarg2); 643 __ pop(c_rarg3); 644 __ pop(rax); 645 646 __ ret(0); 647 648 return start; 649 } 650 651 address StubGenerator::generate_f2l_fixup() { 652 StubGenStubId stub_id = StubGenStubId::f2l_fixup_id; 653 StubCodeMark mark(this, stub_id); 654 Address inout(rsp, 5 * wordSize); // return address + 4 saves 655 address start = __ pc(); 656 657 Label L; 658 659 __ push(rax); 660 __ push(c_rarg3); 661 __ push(c_rarg2); 662 __ push(c_rarg1); 663 664 __ movl(rax, 0x7f800000); 665 __ xorl(c_rarg3, c_rarg3); 666 __ movl(c_rarg2, inout); 667 __ movl(c_rarg1, c_rarg2); 668 __ andl(c_rarg1, 0x7fffffff); 669 __ cmpl(rax, c_rarg1); // NaN? -> 0 670 __ jcc(Assembler::negative, L); 671 __ testl(c_rarg2, c_rarg2); // signed ? min_jlong : max_jlong 672 __ mov64(c_rarg3, 0x8000000000000000); 673 __ mov64(rax, 0x7fffffffffffffff); 674 __ cmov(Assembler::positive, c_rarg3, rax); 675 676 __ bind(L); 677 __ movptr(inout, c_rarg3); 678 679 __ pop(c_rarg1); 680 __ pop(c_rarg2); 681 __ pop(c_rarg3); 682 __ pop(rax); 683 684 __ ret(0); 685 686 return start; 687 } 688 689 address StubGenerator::generate_d2i_fixup() { 690 StubGenStubId stub_id = StubGenStubId::d2i_fixup_id; 691 StubCodeMark mark(this, stub_id); 692 Address inout(rsp, 6 * wordSize); // return address + 5 saves 693 694 address start = __ pc(); 695 696 Label L; 697 698 __ push(rax); 699 __ push(c_rarg3); 700 __ push(c_rarg2); 701 __ push(c_rarg1); 702 __ push(c_rarg0); 703 704 __ movl(rax, 0x7ff00000); 705 __ movq(c_rarg2, inout); 706 __ movl(c_rarg3, c_rarg2); 707 __ mov(c_rarg1, c_rarg2); 708 __ mov(c_rarg0, c_rarg2); 709 __ negl(c_rarg3); 710 __ shrptr(c_rarg1, 0x20); 711 __ orl(c_rarg3, c_rarg2); 712 __ andl(c_rarg1, 0x7fffffff); 713 __ xorl(c_rarg2, c_rarg2); 714 __ shrl(c_rarg3, 0x1f); 715 __ orl(c_rarg1, c_rarg3); 716 __ cmpl(rax, c_rarg1); 717 __ jcc(Assembler::negative, L); // NaN -> 0 718 __ testptr(c_rarg0, c_rarg0); // signed ? min_jint : max_jint 719 __ movl(c_rarg2, 0x80000000); 720 __ movl(rax, 0x7fffffff); 721 __ cmov(Assembler::positive, c_rarg2, rax); 722 723 __ bind(L); 724 __ movptr(inout, c_rarg2); 725 726 __ pop(c_rarg0); 727 __ pop(c_rarg1); 728 __ pop(c_rarg2); 729 __ pop(c_rarg3); 730 __ pop(rax); 731 732 __ ret(0); 733 734 return start; 735 } 736 737 address StubGenerator::generate_d2l_fixup() { 738 StubGenStubId stub_id = StubGenStubId::d2l_fixup_id; 739 StubCodeMark mark(this, stub_id); 740 Address inout(rsp, 6 * wordSize); // return address + 5 saves 741 742 address start = __ pc(); 743 744 Label L; 745 746 __ push(rax); 747 __ push(c_rarg3); 748 __ push(c_rarg2); 749 __ push(c_rarg1); 750 __ push(c_rarg0); 751 752 __ movl(rax, 0x7ff00000); 753 __ movq(c_rarg2, inout); 754 __ movl(c_rarg3, c_rarg2); 755 __ mov(c_rarg1, c_rarg2); 756 __ mov(c_rarg0, c_rarg2); 757 __ negl(c_rarg3); 758 __ shrptr(c_rarg1, 0x20); 759 __ orl(c_rarg3, c_rarg2); 760 __ andl(c_rarg1, 0x7fffffff); 761 __ xorl(c_rarg2, c_rarg2); 762 __ shrl(c_rarg3, 0x1f); 763 __ orl(c_rarg1, c_rarg3); 764 __ cmpl(rax, c_rarg1); 765 __ jcc(Assembler::negative, L); // NaN -> 0 766 __ testq(c_rarg0, c_rarg0); // signed ? min_jlong : max_jlong 767 __ mov64(c_rarg2, 0x8000000000000000); 768 __ mov64(rax, 0x7fffffffffffffff); 769 __ cmovq(Assembler::positive, c_rarg2, rax); 770 771 __ bind(L); 772 __ movq(inout, c_rarg2); 773 774 __ pop(c_rarg0); 775 __ pop(c_rarg1); 776 __ pop(c_rarg2); 777 __ pop(c_rarg3); 778 __ pop(rax); 779 780 __ ret(0); 781 782 return start; 783 } 784 785 address StubGenerator::generate_count_leading_zeros_lut() { 786 __ align64(); 787 StubGenStubId stub_id = StubGenStubId::vector_count_leading_zeros_lut_id; 788 StubCodeMark mark(this, stub_id); 789 address start = __ pc(); 790 791 __ emit_data64(0x0101010102020304, relocInfo::none); 792 __ emit_data64(0x0000000000000000, relocInfo::none); 793 __ emit_data64(0x0101010102020304, relocInfo::none); 794 __ emit_data64(0x0000000000000000, relocInfo::none); 795 __ emit_data64(0x0101010102020304, relocInfo::none); 796 __ emit_data64(0x0000000000000000, relocInfo::none); 797 __ emit_data64(0x0101010102020304, relocInfo::none); 798 __ emit_data64(0x0000000000000000, relocInfo::none); 799 800 return start; 801 } 802 803 address StubGenerator::generate_popcount_avx_lut() { 804 __ align64(); 805 StubGenStubId stub_id = StubGenStubId::vector_popcount_lut_id; 806 StubCodeMark mark(this, stub_id); 807 address start = __ pc(); 808 809 __ emit_data64(0x0302020102010100, relocInfo::none); 810 __ emit_data64(0x0403030203020201, relocInfo::none); 811 __ emit_data64(0x0302020102010100, relocInfo::none); 812 __ emit_data64(0x0403030203020201, relocInfo::none); 813 __ emit_data64(0x0302020102010100, relocInfo::none); 814 __ emit_data64(0x0403030203020201, relocInfo::none); 815 __ emit_data64(0x0302020102010100, relocInfo::none); 816 __ emit_data64(0x0403030203020201, relocInfo::none); 817 818 return start; 819 } 820 821 address StubGenerator::generate_iota_indices() { 822 __ align(CodeEntryAlignment); 823 StubGenStubId stub_id = StubGenStubId::vector_iota_indices_id; 824 StubCodeMark mark(this, stub_id); 825 address start = __ pc(); 826 // B 827 __ emit_data64(0x0706050403020100, relocInfo::none); 828 __ emit_data64(0x0F0E0D0C0B0A0908, relocInfo::none); 829 __ emit_data64(0x1716151413121110, relocInfo::none); 830 __ emit_data64(0x1F1E1D1C1B1A1918, relocInfo::none); 831 __ emit_data64(0x2726252423222120, relocInfo::none); 832 __ emit_data64(0x2F2E2D2C2B2A2928, relocInfo::none); 833 __ emit_data64(0x3736353433323130, relocInfo::none); 834 __ emit_data64(0x3F3E3D3C3B3A3938, relocInfo::none); 835 // W 836 __ emit_data64(0x0003000200010000, relocInfo::none); 837 __ emit_data64(0x0007000600050004, relocInfo::none); 838 __ emit_data64(0x000B000A00090008, relocInfo::none); 839 __ emit_data64(0x000F000E000D000C, relocInfo::none); 840 __ emit_data64(0x0013001200110010, relocInfo::none); 841 __ emit_data64(0x0017001600150014, relocInfo::none); 842 __ emit_data64(0x001B001A00190018, relocInfo::none); 843 __ emit_data64(0x001F001E001D001C, relocInfo::none); 844 // D 845 __ emit_data64(0x0000000100000000, relocInfo::none); 846 __ emit_data64(0x0000000300000002, relocInfo::none); 847 __ emit_data64(0x0000000500000004, relocInfo::none); 848 __ emit_data64(0x0000000700000006, relocInfo::none); 849 __ emit_data64(0x0000000900000008, relocInfo::none); 850 __ emit_data64(0x0000000B0000000A, relocInfo::none); 851 __ emit_data64(0x0000000D0000000C, relocInfo::none); 852 __ emit_data64(0x0000000F0000000E, relocInfo::none); 853 // Q 854 __ emit_data64(0x0000000000000000, relocInfo::none); 855 __ emit_data64(0x0000000000000001, relocInfo::none); 856 __ emit_data64(0x0000000000000002, relocInfo::none); 857 __ emit_data64(0x0000000000000003, relocInfo::none); 858 __ emit_data64(0x0000000000000004, relocInfo::none); 859 __ emit_data64(0x0000000000000005, relocInfo::none); 860 __ emit_data64(0x0000000000000006, relocInfo::none); 861 __ emit_data64(0x0000000000000007, relocInfo::none); 862 // D - FP 863 __ emit_data64(0x3F80000000000000, relocInfo::none); // 0.0f, 1.0f 864 __ emit_data64(0x4040000040000000, relocInfo::none); // 2.0f, 3.0f 865 __ emit_data64(0x40A0000040800000, relocInfo::none); // 4.0f, 5.0f 866 __ emit_data64(0x40E0000040C00000, relocInfo::none); // 6.0f, 7.0f 867 __ emit_data64(0x4110000041000000, relocInfo::none); // 8.0f, 9.0f 868 __ emit_data64(0x4130000041200000, relocInfo::none); // 10.0f, 11.0f 869 __ emit_data64(0x4150000041400000, relocInfo::none); // 12.0f, 13.0f 870 __ emit_data64(0x4170000041600000, relocInfo::none); // 14.0f, 15.0f 871 // Q - FP 872 __ emit_data64(0x0000000000000000, relocInfo::none); // 0.0d 873 __ emit_data64(0x3FF0000000000000, relocInfo::none); // 1.0d 874 __ emit_data64(0x4000000000000000, relocInfo::none); // 2.0d 875 __ emit_data64(0x4008000000000000, relocInfo::none); // 3.0d 876 __ emit_data64(0x4010000000000000, relocInfo::none); // 4.0d 877 __ emit_data64(0x4014000000000000, relocInfo::none); // 5.0d 878 __ emit_data64(0x4018000000000000, relocInfo::none); // 6.0d 879 __ emit_data64(0x401c000000000000, relocInfo::none); // 7.0d 880 return start; 881 } 882 883 address StubGenerator::generate_vector_reverse_bit_lut() { 884 __ align(CodeEntryAlignment); 885 StubGenStubId stub_id = StubGenStubId::vector_reverse_bit_lut_id; 886 StubCodeMark mark(this, stub_id); 887 address start = __ pc(); 888 889 __ emit_data64(0x0E060A020C040800, relocInfo::none); 890 __ emit_data64(0x0F070B030D050901, relocInfo::none); 891 __ emit_data64(0x0E060A020C040800, relocInfo::none); 892 __ emit_data64(0x0F070B030D050901, relocInfo::none); 893 __ emit_data64(0x0E060A020C040800, relocInfo::none); 894 __ emit_data64(0x0F070B030D050901, relocInfo::none); 895 __ emit_data64(0x0E060A020C040800, relocInfo::none); 896 __ emit_data64(0x0F070B030D050901, relocInfo::none); 897 898 return start; 899 } 900 901 address StubGenerator::generate_vector_reverse_byte_perm_mask_long() { 902 __ align(CodeEntryAlignment); 903 StubGenStubId stub_id = StubGenStubId::vector_reverse_byte_perm_mask_long_id; 904 StubCodeMark mark(this, stub_id); 905 address start = __ pc(); 906 907 __ emit_data64(0x0001020304050607, relocInfo::none); 908 __ emit_data64(0x08090A0B0C0D0E0F, relocInfo::none); 909 __ emit_data64(0x0001020304050607, relocInfo::none); 910 __ emit_data64(0x08090A0B0C0D0E0F, relocInfo::none); 911 __ emit_data64(0x0001020304050607, relocInfo::none); 912 __ emit_data64(0x08090A0B0C0D0E0F, relocInfo::none); 913 __ emit_data64(0x0001020304050607, relocInfo::none); 914 __ emit_data64(0x08090A0B0C0D0E0F, relocInfo::none); 915 916 return start; 917 } 918 919 address StubGenerator::generate_vector_reverse_byte_perm_mask_int() { 920 __ align(CodeEntryAlignment); 921 StubGenStubId stub_id = StubGenStubId::vector_reverse_byte_perm_mask_int_id; 922 StubCodeMark mark(this, stub_id); 923 address start = __ pc(); 924 925 __ emit_data64(0x0405060700010203, relocInfo::none); 926 __ emit_data64(0x0C0D0E0F08090A0B, relocInfo::none); 927 __ emit_data64(0x0405060700010203, relocInfo::none); 928 __ emit_data64(0x0C0D0E0F08090A0B, relocInfo::none); 929 __ emit_data64(0x0405060700010203, relocInfo::none); 930 __ emit_data64(0x0C0D0E0F08090A0B, relocInfo::none); 931 __ emit_data64(0x0405060700010203, relocInfo::none); 932 __ emit_data64(0x0C0D0E0F08090A0B, relocInfo::none); 933 934 return start; 935 } 936 937 address StubGenerator::generate_vector_reverse_byte_perm_mask_short() { 938 __ align(CodeEntryAlignment); 939 StubGenStubId stub_id = StubGenStubId::vector_reverse_byte_perm_mask_short_id; 940 StubCodeMark mark(this, stub_id); 941 address start = __ pc(); 942 943 __ emit_data64(0x0607040502030001, relocInfo::none); 944 __ emit_data64(0x0E0F0C0D0A0B0809, relocInfo::none); 945 __ emit_data64(0x0607040502030001, relocInfo::none); 946 __ emit_data64(0x0E0F0C0D0A0B0809, relocInfo::none); 947 __ emit_data64(0x0607040502030001, relocInfo::none); 948 __ emit_data64(0x0E0F0C0D0A0B0809, relocInfo::none); 949 __ emit_data64(0x0607040502030001, relocInfo::none); 950 __ emit_data64(0x0E0F0C0D0A0B0809, relocInfo::none); 951 952 return start; 953 } 954 955 address StubGenerator::generate_vector_byte_shuffle_mask() { 956 __ align(CodeEntryAlignment); 957 StubGenStubId stub_id = StubGenStubId::vector_byte_shuffle_mask_id; 958 StubCodeMark mark(this, stub_id); 959 address start = __ pc(); 960 961 __ emit_data64(0x7070707070707070, relocInfo::none); 962 __ emit_data64(0x7070707070707070, relocInfo::none); 963 __ emit_data64(0xF0F0F0F0F0F0F0F0, relocInfo::none); 964 __ emit_data64(0xF0F0F0F0F0F0F0F0, relocInfo::none); 965 966 return start; 967 } 968 969 address StubGenerator::generate_fp_mask(StubGenStubId stub_id, int64_t mask) { 970 __ align(CodeEntryAlignment); 971 StubCodeMark mark(this, stub_id); 972 address start = __ pc(); 973 974 __ emit_data64( mask, relocInfo::none ); 975 __ emit_data64( mask, relocInfo::none ); 976 977 return start; 978 } 979 980 address StubGenerator::generate_compress_perm_table(StubGenStubId stub_id) { 981 int esize; 982 switch (stub_id) { 983 case compress_perm_table32_id: 984 esize = 32; 985 break; 986 case compress_perm_table64_id: 987 esize = 64; 988 break; 989 default: 990 ShouldNotReachHere(); 991 } 992 __ align(CodeEntryAlignment); 993 StubCodeMark mark(this, stub_id); 994 address start = __ pc(); 995 if (esize == 32) { 996 // Loop to generate 256 x 8 int compression permute index table. A row is 997 // accessed using 8 bit index computed using vector mask. An entry in 998 // a row holds either a valid permute index corresponding to set bit position 999 // or a -1 (default) value. 1000 for (int mask = 0; mask < 256; mask++) { 1001 int ctr = 0; 1002 for (int j = 0; j < 8; j++) { 1003 if (mask & (1 << j)) { 1004 __ emit_data(j, relocInfo::none); 1005 ctr++; 1006 } 1007 } 1008 for (; ctr < 8; ctr++) { 1009 __ emit_data(-1, relocInfo::none); 1010 } 1011 } 1012 } else { 1013 assert(esize == 64, ""); 1014 // Loop to generate 16 x 4 long compression permute index table. A row is 1015 // accessed using 4 bit index computed using vector mask. An entry in 1016 // a row holds either a valid permute index pair for a quadword corresponding 1017 // to set bit position or a -1 (default) value. 1018 for (int mask = 0; mask < 16; mask++) { 1019 int ctr = 0; 1020 for (int j = 0; j < 4; j++) { 1021 if (mask & (1 << j)) { 1022 __ emit_data(2 * j, relocInfo::none); 1023 __ emit_data(2 * j + 1, relocInfo::none); 1024 ctr++; 1025 } 1026 } 1027 for (; ctr < 4; ctr++) { 1028 __ emit_data64(-1L, relocInfo::none); 1029 } 1030 } 1031 } 1032 return start; 1033 } 1034 1035 address StubGenerator::generate_expand_perm_table(StubGenStubId stub_id) { 1036 int esize; 1037 switch (stub_id) { 1038 case expand_perm_table32_id: 1039 esize = 32; 1040 break; 1041 case expand_perm_table64_id: 1042 esize = 64; 1043 break; 1044 default: 1045 ShouldNotReachHere(); 1046 } 1047 __ align(CodeEntryAlignment); 1048 StubCodeMark mark(this, stub_id); 1049 address start = __ pc(); 1050 if (esize == 32) { 1051 // Loop to generate 256 x 8 int expand permute index table. A row is accessed 1052 // using 8 bit index computed using vector mask. An entry in a row holds either 1053 // a valid permute index (starting from least significant lane) placed at poisition 1054 // corresponding to set bit position or a -1 (default) value. 1055 for (int mask = 0; mask < 256; mask++) { 1056 int ctr = 0; 1057 for (int j = 0; j < 8; j++) { 1058 if (mask & (1 << j)) { 1059 __ emit_data(ctr++, relocInfo::none); 1060 } else { 1061 __ emit_data(-1, relocInfo::none); 1062 } 1063 } 1064 } 1065 } else { 1066 assert(esize == 64, ""); 1067 // Loop to generate 16 x 4 long expand permute index table. A row is accessed 1068 // using 4 bit index computed using vector mask. An entry in a row holds either 1069 // a valid doubleword permute index pair representing a quadword index (starting 1070 // from least significant lane) placed at poisition corresponding to set bit 1071 // position or a -1 (default) value. 1072 for (int mask = 0; mask < 16; mask++) { 1073 int ctr = 0; 1074 for (int j = 0; j < 4; j++) { 1075 if (mask & (1 << j)) { 1076 __ emit_data(2 * ctr, relocInfo::none); 1077 __ emit_data(2 * ctr + 1, relocInfo::none); 1078 ctr++; 1079 } else { 1080 __ emit_data64(-1L, relocInfo::none); 1081 } 1082 } 1083 } 1084 } 1085 return start; 1086 } 1087 1088 address StubGenerator::generate_vector_mask(StubGenStubId stub_id, int64_t mask) { 1089 __ align(CodeEntryAlignment); 1090 StubCodeMark mark(this, stub_id); 1091 address start = __ pc(); 1092 1093 __ emit_data64(mask, relocInfo::none); 1094 __ emit_data64(mask, relocInfo::none); 1095 __ emit_data64(mask, relocInfo::none); 1096 __ emit_data64(mask, relocInfo::none); 1097 __ emit_data64(mask, relocInfo::none); 1098 __ emit_data64(mask, relocInfo::none); 1099 __ emit_data64(mask, relocInfo::none); 1100 __ emit_data64(mask, relocInfo::none); 1101 1102 return start; 1103 } 1104 1105 address StubGenerator::generate_vector_byte_perm_mask() { 1106 __ align(CodeEntryAlignment); 1107 StubGenStubId stub_id = StubGenStubId::vector_byte_perm_mask_id; 1108 StubCodeMark mark(this, stub_id); 1109 address start = __ pc(); 1110 1111 __ emit_data64(0x0000000000000001, relocInfo::none); 1112 __ emit_data64(0x0000000000000003, relocInfo::none); 1113 __ emit_data64(0x0000000000000005, relocInfo::none); 1114 __ emit_data64(0x0000000000000007, relocInfo::none); 1115 __ emit_data64(0x0000000000000000, relocInfo::none); 1116 __ emit_data64(0x0000000000000002, relocInfo::none); 1117 __ emit_data64(0x0000000000000004, relocInfo::none); 1118 __ emit_data64(0x0000000000000006, relocInfo::none); 1119 1120 return start; 1121 } 1122 1123 address StubGenerator::generate_vector_fp_mask(StubGenStubId stub_id, int64_t mask) { 1124 __ align(CodeEntryAlignment); 1125 StubCodeMark mark(this, stub_id); 1126 address start = __ pc(); 1127 1128 __ emit_data64(mask, relocInfo::none); 1129 __ emit_data64(mask, relocInfo::none); 1130 __ emit_data64(mask, relocInfo::none); 1131 __ emit_data64(mask, relocInfo::none); 1132 __ emit_data64(mask, relocInfo::none); 1133 __ emit_data64(mask, relocInfo::none); 1134 __ emit_data64(mask, relocInfo::none); 1135 __ emit_data64(mask, relocInfo::none); 1136 1137 return start; 1138 } 1139 1140 address StubGenerator::generate_vector_custom_i32(StubGenStubId stub_id, Assembler::AvxVectorLen len, 1141 int32_t val0, int32_t val1, int32_t val2, int32_t val3, 1142 int32_t val4, int32_t val5, int32_t val6, int32_t val7, 1143 int32_t val8, int32_t val9, int32_t val10, int32_t val11, 1144 int32_t val12, int32_t val13, int32_t val14, int32_t val15) { 1145 __ align(CodeEntryAlignment); 1146 StubCodeMark mark(this, stub_id); 1147 address start = __ pc(); 1148 1149 assert(len != Assembler::AVX_NoVec, "vector len must be specified"); 1150 __ emit_data(val0, relocInfo::none, 0); 1151 __ emit_data(val1, relocInfo::none, 0); 1152 __ emit_data(val2, relocInfo::none, 0); 1153 __ emit_data(val3, relocInfo::none, 0); 1154 if (len >= Assembler::AVX_256bit) { 1155 __ emit_data(val4, relocInfo::none, 0); 1156 __ emit_data(val5, relocInfo::none, 0); 1157 __ emit_data(val6, relocInfo::none, 0); 1158 __ emit_data(val7, relocInfo::none, 0); 1159 if (len >= Assembler::AVX_512bit) { 1160 __ emit_data(val8, relocInfo::none, 0); 1161 __ emit_data(val9, relocInfo::none, 0); 1162 __ emit_data(val10, relocInfo::none, 0); 1163 __ emit_data(val11, relocInfo::none, 0); 1164 __ emit_data(val12, relocInfo::none, 0); 1165 __ emit_data(val13, relocInfo::none, 0); 1166 __ emit_data(val14, relocInfo::none, 0); 1167 __ emit_data(val15, relocInfo::none, 0); 1168 } 1169 } 1170 return start; 1171 } 1172 1173 // Non-destructive plausibility checks for oops 1174 // 1175 // Arguments: 1176 // all args on stack! 1177 // 1178 // Stack after saving c_rarg3: 1179 // [tos + 0]: saved c_rarg3 1180 // [tos + 1]: saved c_rarg2 1181 // [tos + 2]: saved r12 (several TemplateTable methods use it) 1182 // [tos + 3]: saved flags 1183 // [tos + 4]: return address 1184 // * [tos + 5]: error message (char*) 1185 // * [tos + 6]: object to verify (oop) 1186 // * [tos + 7]: saved rax - saved by caller and bashed 1187 // * [tos + 8]: saved r10 (rscratch1) - saved by caller 1188 // * = popped on exit 1189 address StubGenerator::generate_verify_oop() { 1190 StubGenStubId stub_id = StubGenStubId::verify_oop_id; 1191 StubCodeMark mark(this, stub_id); 1192 address start = __ pc(); 1193 1194 Label exit, error; 1195 1196 __ pushf(); 1197 __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()), rscratch1); 1198 1199 __ push(r12); 1200 1201 // save c_rarg2 and c_rarg3 1202 __ push(c_rarg2); 1203 __ push(c_rarg3); 1204 1205 enum { 1206 // After previous pushes. 1207 oop_to_verify = 6 * wordSize, 1208 saved_rax = 7 * wordSize, 1209 saved_r10 = 8 * wordSize, 1210 1211 // Before the call to MacroAssembler::debug(), see below. 1212 return_addr = 16 * wordSize, 1213 error_msg = 17 * wordSize 1214 }; 1215 1216 // get object 1217 __ movptr(rax, Address(rsp, oop_to_verify)); 1218 1219 // make sure object is 'reasonable' 1220 __ testptr(rax, rax); 1221 __ jcc(Assembler::zero, exit); // if obj is null it is OK 1222 1223 BarrierSetAssembler* bs_asm = BarrierSet::barrier_set()->barrier_set_assembler(); 1224 bs_asm->check_oop(_masm, rax, c_rarg2, c_rarg3, error); 1225 1226 // return if everything seems ok 1227 __ bind(exit); 1228 __ movptr(rax, Address(rsp, saved_rax)); // get saved rax back 1229 __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back 1230 __ pop(c_rarg3); // restore c_rarg3 1231 __ pop(c_rarg2); // restore c_rarg2 1232 __ pop(r12); // restore r12 1233 __ popf(); // restore flags 1234 __ ret(4 * wordSize); // pop caller saved stuff 1235 1236 // handle errors 1237 __ bind(error); 1238 __ movptr(rax, Address(rsp, saved_rax)); // get saved rax back 1239 __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back 1240 __ pop(c_rarg3); // get saved c_rarg3 back 1241 __ pop(c_rarg2); // get saved c_rarg2 back 1242 __ pop(r12); // get saved r12 back 1243 __ popf(); // get saved flags off stack -- 1244 // will be ignored 1245 1246 __ pusha(); // push registers 1247 // (rip is already 1248 // already pushed) 1249 // debug(char* msg, int64_t pc, int64_t regs[]) 1250 // We've popped the registers we'd saved (c_rarg3, c_rarg2 and flags), and 1251 // pushed all the registers, so now the stack looks like: 1252 // [tos + 0] 16 saved registers 1253 // [tos + 16] return address 1254 // * [tos + 17] error message (char*) 1255 // * [tos + 18] object to verify (oop) 1256 // * [tos + 19] saved rax - saved by caller and bashed 1257 // * [tos + 20] saved r10 (rscratch1) - saved by caller 1258 // * = popped on exit 1259 1260 __ movptr(c_rarg0, Address(rsp, error_msg)); // pass address of error message 1261 __ movptr(c_rarg1, Address(rsp, return_addr)); // pass return address 1262 __ movq(c_rarg2, rsp); // pass address of regs on stack 1263 __ mov(r12, rsp); // remember rsp 1264 __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows 1265 __ andptr(rsp, -16); // align stack as required by ABI 1266 BLOCK_COMMENT("call MacroAssembler::debug"); 1267 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64))); 1268 __ hlt(); 1269 1270 return start; 1271 } 1272 1273 1274 // Shuffle first three arg regs on Windows into Linux/Solaris locations. 1275 // 1276 // Outputs: 1277 // rdi - rcx 1278 // rsi - rdx 1279 // rdx - r8 1280 // rcx - r9 1281 // 1282 // Registers r9 and r10 are used to save rdi and rsi on Windows, which latter 1283 // are non-volatile. r9 and r10 should not be used by the caller. 1284 // 1285 void StubGenerator::setup_arg_regs(int nargs) { 1286 const Register saved_rdi = r9; 1287 const Register saved_rsi = r10; 1288 assert(nargs == 3 || nargs == 4, "else fix"); 1289 #ifdef _WIN64 1290 assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9, 1291 "unexpected argument registers"); 1292 if (nargs == 4) { 1293 __ mov(rax, r9); // r9 is also saved_rdi 1294 } 1295 __ movptr(saved_rdi, rdi); 1296 __ movptr(saved_rsi, rsi); 1297 __ mov(rdi, rcx); // c_rarg0 1298 __ mov(rsi, rdx); // c_rarg1 1299 __ mov(rdx, r8); // c_rarg2 1300 if (nargs == 4) { 1301 __ mov(rcx, rax); // c_rarg3 (via rax) 1302 } 1303 #else 1304 assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx, 1305 "unexpected argument registers"); 1306 #endif 1307 DEBUG_ONLY(_regs_in_thread = false;) 1308 } 1309 1310 1311 void StubGenerator::restore_arg_regs() { 1312 assert(!_regs_in_thread, "wrong call to restore_arg_regs"); 1313 const Register saved_rdi = r9; 1314 const Register saved_rsi = r10; 1315 #ifdef _WIN64 1316 __ movptr(rdi, saved_rdi); 1317 __ movptr(rsi, saved_rsi); 1318 #endif 1319 } 1320 1321 1322 // This is used in places where r10 is a scratch register, and can 1323 // be adapted if r9 is needed also. 1324 void StubGenerator::setup_arg_regs_using_thread(int nargs) { 1325 const Register saved_r15 = r9; 1326 assert(nargs == 3 || nargs == 4, "else fix"); 1327 #ifdef _WIN64 1328 if (nargs == 4) { 1329 __ mov(rax, r9); // r9 is also saved_r15 1330 } 1331 __ mov(saved_r15, r15); // r15 is callee saved and needs to be restored 1332 __ get_thread(r15_thread); 1333 assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9, 1334 "unexpected argument registers"); 1335 __ movptr(Address(r15_thread, in_bytes(JavaThread::windows_saved_rdi_offset())), rdi); 1336 __ movptr(Address(r15_thread, in_bytes(JavaThread::windows_saved_rsi_offset())), rsi); 1337 1338 __ mov(rdi, rcx); // c_rarg0 1339 __ mov(rsi, rdx); // c_rarg1 1340 __ mov(rdx, r8); // c_rarg2 1341 if (nargs == 4) { 1342 __ mov(rcx, rax); // c_rarg3 (via rax) 1343 } 1344 #else 1345 assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx, 1346 "unexpected argument registers"); 1347 #endif 1348 DEBUG_ONLY(_regs_in_thread = true;) 1349 } 1350 1351 1352 void StubGenerator::restore_arg_regs_using_thread() { 1353 assert(_regs_in_thread, "wrong call to restore_arg_regs"); 1354 const Register saved_r15 = r9; 1355 #ifdef _WIN64 1356 __ get_thread(r15_thread); 1357 __ movptr(rsi, Address(r15_thread, in_bytes(JavaThread::windows_saved_rsi_offset()))); 1358 __ movptr(rdi, Address(r15_thread, in_bytes(JavaThread::windows_saved_rdi_offset()))); 1359 __ mov(r15, saved_r15); // r15 is callee saved and needs to be restored 1360 #endif 1361 } 1362 1363 1364 void StubGenerator::setup_argument_regs(BasicType type) { 1365 if (type == T_BYTE || type == T_SHORT) { 1366 setup_arg_regs(); // from => rdi, to => rsi, count => rdx 1367 // r9 and r10 may be used to save non-volatile registers 1368 } else { 1369 setup_arg_regs_using_thread(); // from => rdi, to => rsi, count => rdx 1370 // r9 is used to save r15_thread 1371 } 1372 } 1373 1374 1375 void StubGenerator::restore_argument_regs(BasicType type) { 1376 if (type == T_BYTE || type == T_SHORT) { 1377 restore_arg_regs(); 1378 } else { 1379 restore_arg_regs_using_thread(); 1380 } 1381 } 1382 1383 address StubGenerator::generate_data_cache_writeback() { 1384 const Register src = c_rarg0; // source address 1385 1386 __ align(CodeEntryAlignment); 1387 1388 StubGenStubId stub_id = StubGenStubId::data_cache_writeback_id; 1389 StubCodeMark mark(this, stub_id); 1390 1391 address start = __ pc(); 1392 1393 __ enter(); 1394 __ cache_wb(Address(src, 0)); 1395 __ leave(); 1396 __ ret(0); 1397 1398 return start; 1399 } 1400 1401 address StubGenerator::generate_data_cache_writeback_sync() { 1402 const Register is_pre = c_rarg0; // pre or post sync 1403 1404 __ align(CodeEntryAlignment); 1405 1406 StubGenStubId stub_id = StubGenStubId::data_cache_writeback_sync_id; 1407 StubCodeMark mark(this, stub_id); 1408 1409 // pre wbsync is a no-op 1410 // post wbsync translates to an sfence 1411 1412 Label skip; 1413 address start = __ pc(); 1414 1415 __ enter(); 1416 __ cmpl(is_pre, 0); 1417 __ jcc(Assembler::notEqual, skip); 1418 __ cache_wbsync(false); 1419 __ bind(skip); 1420 __ leave(); 1421 __ ret(0); 1422 1423 return start; 1424 } 1425 1426 // ofs and limit are use for multi-block byte array. 1427 // int com.sun.security.provider.MD5.implCompress(byte[] b, int ofs) 1428 address StubGenerator::generate_md5_implCompress(StubGenStubId stub_id) { 1429 bool multi_block; 1430 switch (stub_id) { 1431 case md5_implCompress_id: 1432 multi_block = false; 1433 break; 1434 case md5_implCompressMB_id: 1435 multi_block = true; 1436 break; 1437 default: 1438 ShouldNotReachHere(); 1439 } 1440 __ align(CodeEntryAlignment); 1441 StubCodeMark mark(this, stub_id); 1442 address start = __ pc(); 1443 1444 const Register buf_param = r15; 1445 const Address state_param(rsp, 0 * wordSize); 1446 const Address ofs_param (rsp, 1 * wordSize ); 1447 const Address limit_param(rsp, 1 * wordSize + 4); 1448 1449 __ enter(); 1450 __ push(rbx); 1451 __ push(rdi); 1452 __ push(rsi); 1453 __ push(r15); 1454 __ subptr(rsp, 2 * wordSize); 1455 1456 __ movptr(buf_param, c_rarg0); 1457 __ movptr(state_param, c_rarg1); 1458 if (multi_block) { 1459 __ movl(ofs_param, c_rarg2); 1460 __ movl(limit_param, c_rarg3); 1461 } 1462 __ fast_md5(buf_param, state_param, ofs_param, limit_param, multi_block); 1463 1464 __ addptr(rsp, 2 * wordSize); 1465 __ pop(r15); 1466 __ pop(rsi); 1467 __ pop(rdi); 1468 __ pop(rbx); 1469 __ leave(); 1470 __ ret(0); 1471 1472 return start; 1473 } 1474 1475 address StubGenerator::generate_upper_word_mask() { 1476 __ align64(); 1477 StubGenStubId stub_id = StubGenStubId::upper_word_mask_id; 1478 StubCodeMark mark(this, stub_id); 1479 address start = __ pc(); 1480 1481 __ emit_data64(0x0000000000000000, relocInfo::none); 1482 __ emit_data64(0xFFFFFFFF00000000, relocInfo::none); 1483 1484 return start; 1485 } 1486 1487 address StubGenerator::generate_shuffle_byte_flip_mask() { 1488 __ align64(); 1489 StubGenStubId stub_id = StubGenStubId::shuffle_byte_flip_mask_id; 1490 StubCodeMark mark(this, stub_id); 1491 address start = __ pc(); 1492 1493 __ emit_data64(0x08090a0b0c0d0e0f, relocInfo::none); 1494 __ emit_data64(0x0001020304050607, relocInfo::none); 1495 1496 return start; 1497 } 1498 1499 // ofs and limit are use for multi-block byte array. 1500 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit) 1501 address StubGenerator::generate_sha1_implCompress(StubGenStubId stub_id) { 1502 bool multi_block; 1503 switch (stub_id) { 1504 case sha1_implCompress_id: 1505 multi_block = false; 1506 break; 1507 case sha1_implCompressMB_id: 1508 multi_block = true; 1509 break; 1510 default: 1511 ShouldNotReachHere(); 1512 } 1513 __ align(CodeEntryAlignment); 1514 StubCodeMark mark(this, stub_id); 1515 address start = __ pc(); 1516 1517 Register buf = c_rarg0; 1518 Register state = c_rarg1; 1519 Register ofs = c_rarg2; 1520 Register limit = c_rarg3; 1521 1522 const XMMRegister abcd = xmm0; 1523 const XMMRegister e0 = xmm1; 1524 const XMMRegister e1 = xmm2; 1525 const XMMRegister msg0 = xmm3; 1526 1527 const XMMRegister msg1 = xmm4; 1528 const XMMRegister msg2 = xmm5; 1529 const XMMRegister msg3 = xmm6; 1530 const XMMRegister shuf_mask = xmm7; 1531 1532 __ enter(); 1533 1534 __ subptr(rsp, 4 * wordSize); 1535 1536 __ fast_sha1(abcd, e0, e1, msg0, msg1, msg2, msg3, shuf_mask, 1537 buf, state, ofs, limit, rsp, multi_block); 1538 1539 __ addptr(rsp, 4 * wordSize); 1540 1541 __ leave(); 1542 __ ret(0); 1543 1544 return start; 1545 } 1546 1547 address StubGenerator::generate_pshuffle_byte_flip_mask() { 1548 __ align64(); 1549 StubGenStubId stub_id = StubGenStubId::pshuffle_byte_flip_mask_id; 1550 StubCodeMark mark(this, stub_id); 1551 address start = __ pc(); 1552 1553 __ emit_data64(0x0405060700010203, relocInfo::none); 1554 __ emit_data64(0x0c0d0e0f08090a0b, relocInfo::none); 1555 1556 if (VM_Version::supports_avx2()) { 1557 __ emit_data64(0x0405060700010203, relocInfo::none); // second copy 1558 __ emit_data64(0x0c0d0e0f08090a0b, relocInfo::none); 1559 // _SHUF_00BA 1560 __ emit_data64(0x0b0a090803020100, relocInfo::none); 1561 __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none); 1562 __ emit_data64(0x0b0a090803020100, relocInfo::none); 1563 __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none); 1564 // _SHUF_DC00 1565 __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none); 1566 __ emit_data64(0x0b0a090803020100, relocInfo::none); 1567 __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none); 1568 __ emit_data64(0x0b0a090803020100, relocInfo::none); 1569 } 1570 1571 return start; 1572 } 1573 1574 //Mask for byte-swapping a couple of qwords in an XMM register using (v)pshufb. 1575 address StubGenerator::generate_pshuffle_byte_flip_mask_sha512() { 1576 __ align32(); 1577 StubGenStubId stub_id = StubGenStubId::pshuffle_byte_flip_mask_sha512_id; 1578 StubCodeMark mark(this, stub_id); 1579 address start = __ pc(); 1580 1581 if (VM_Version::supports_avx2()) { 1582 __ emit_data64(0x0001020304050607, relocInfo::none); // PSHUFFLE_BYTE_FLIP_MASK 1583 __ emit_data64(0x08090a0b0c0d0e0f, relocInfo::none); 1584 __ emit_data64(0x1011121314151617, relocInfo::none); 1585 __ emit_data64(0x18191a1b1c1d1e1f, relocInfo::none); 1586 __ emit_data64(0x0000000000000000, relocInfo::none); //MASK_YMM_LO 1587 __ emit_data64(0x0000000000000000, relocInfo::none); 1588 __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none); 1589 __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none); 1590 } 1591 1592 return start; 1593 } 1594 1595 // ofs and limit are use for multi-block byte array. 1596 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit) 1597 address StubGenerator::generate_sha256_implCompress(StubGenStubId stub_id) { 1598 bool multi_block; 1599 switch (stub_id) { 1600 case sha256_implCompress_id: 1601 multi_block = false; 1602 break; 1603 case sha256_implCompressMB_id: 1604 multi_block = true; 1605 break; 1606 default: 1607 ShouldNotReachHere(); 1608 } 1609 assert(VM_Version::supports_sha() || VM_Version::supports_avx2(), ""); 1610 __ align(CodeEntryAlignment); 1611 StubCodeMark mark(this, stub_id); 1612 address start = __ pc(); 1613 1614 Register buf = c_rarg0; 1615 Register state = c_rarg1; 1616 Register ofs = c_rarg2; 1617 Register limit = c_rarg3; 1618 1619 const XMMRegister msg = xmm0; 1620 const XMMRegister state0 = xmm1; 1621 const XMMRegister state1 = xmm2; 1622 const XMMRegister msgtmp0 = xmm3; 1623 1624 const XMMRegister msgtmp1 = xmm4; 1625 const XMMRegister msgtmp2 = xmm5; 1626 const XMMRegister msgtmp3 = xmm6; 1627 const XMMRegister msgtmp4 = xmm7; 1628 1629 const XMMRegister shuf_mask = xmm8; 1630 1631 __ enter(); 1632 1633 __ subptr(rsp, 4 * wordSize); 1634 1635 if (VM_Version::supports_sha()) { 1636 __ fast_sha256(msg, state0, state1, msgtmp0, msgtmp1, msgtmp2, msgtmp3, msgtmp4, 1637 buf, state, ofs, limit, rsp, multi_block, shuf_mask); 1638 } else if (VM_Version::supports_avx2()) { 1639 __ sha256_AVX2(msg, state0, state1, msgtmp0, msgtmp1, msgtmp2, msgtmp3, msgtmp4, 1640 buf, state, ofs, limit, rsp, multi_block, shuf_mask); 1641 } 1642 __ addptr(rsp, 4 * wordSize); 1643 __ vzeroupper(); 1644 __ leave(); 1645 __ ret(0); 1646 1647 return start; 1648 } 1649 1650 address StubGenerator::generate_sha512_implCompress(StubGenStubId stub_id) { 1651 bool multi_block; 1652 switch (stub_id) { 1653 case sha512_implCompress_id: 1654 multi_block = false; 1655 break; 1656 case sha512_implCompressMB_id: 1657 multi_block = true; 1658 break; 1659 default: 1660 ShouldNotReachHere(); 1661 } 1662 assert(VM_Version::supports_avx2(), ""); 1663 assert(VM_Version::supports_bmi2() || VM_Version::supports_sha512(), ""); 1664 __ align(CodeEntryAlignment); 1665 StubCodeMark mark(this, stub_id); 1666 address start = __ pc(); 1667 1668 Register buf = c_rarg0; 1669 Register state = c_rarg1; 1670 Register ofs = c_rarg2; 1671 Register limit = c_rarg3; 1672 1673 __ enter(); 1674 1675 if (VM_Version::supports_sha512()) { 1676 __ sha512_update_ni_x1(state, buf, ofs, limit, multi_block); 1677 } else { 1678 const XMMRegister msg = xmm0; 1679 const XMMRegister state0 = xmm1; 1680 const XMMRegister state1 = xmm2; 1681 const XMMRegister msgtmp0 = xmm3; 1682 const XMMRegister msgtmp1 = xmm4; 1683 const XMMRegister msgtmp2 = xmm5; 1684 const XMMRegister msgtmp3 = xmm6; 1685 const XMMRegister msgtmp4 = xmm7; 1686 1687 const XMMRegister shuf_mask = xmm8; 1688 __ sha512_AVX2(msg, state0, state1, msgtmp0, msgtmp1, msgtmp2, msgtmp3, msgtmp4, 1689 buf, state, ofs, limit, rsp, multi_block, shuf_mask); 1690 } 1691 __ vzeroupper(); 1692 __ leave(); 1693 __ ret(0); 1694 1695 return start; 1696 } 1697 1698 address StubGenerator::base64_shuffle_addr() { 1699 __ align64(); 1700 StubGenStubId stub_id = StubGenStubId::shuffle_base64_id; 1701 StubCodeMark mark(this, stub_id); 1702 address start = __ pc(); 1703 1704 assert(((unsigned long long)start & 0x3f) == 0, 1705 "Alignment problem (0x%08llx)", (unsigned long long)start); 1706 __ emit_data64(0x0405030401020001, relocInfo::none); 1707 __ emit_data64(0x0a0b090a07080607, relocInfo::none); 1708 __ emit_data64(0x10110f100d0e0c0d, relocInfo::none); 1709 __ emit_data64(0x1617151613141213, relocInfo::none); 1710 __ emit_data64(0x1c1d1b1c191a1819, relocInfo::none); 1711 __ emit_data64(0x222321221f201e1f, relocInfo::none); 1712 __ emit_data64(0x2829272825262425, relocInfo::none); 1713 __ emit_data64(0x2e2f2d2e2b2c2a2b, relocInfo::none); 1714 1715 return start; 1716 } 1717 1718 address StubGenerator::base64_avx2_shuffle_addr() { 1719 __ align32(); 1720 StubGenStubId stub_id = StubGenStubId::avx2_shuffle_base64_id; 1721 StubCodeMark mark(this, stub_id); 1722 address start = __ pc(); 1723 1724 __ emit_data64(0x0809070805060405, relocInfo::none); 1725 __ emit_data64(0x0e0f0d0e0b0c0a0b, relocInfo::none); 1726 __ emit_data64(0x0405030401020001, relocInfo::none); 1727 __ emit_data64(0x0a0b090a07080607, relocInfo::none); 1728 1729 return start; 1730 } 1731 1732 address StubGenerator::base64_avx2_input_mask_addr() { 1733 __ align32(); 1734 StubGenStubId stub_id = StubGenStubId::avx2_input_mask_base64_id; 1735 StubCodeMark mark(this, stub_id); 1736 address start = __ pc(); 1737 1738 __ emit_data64(0x8000000000000000, relocInfo::none); 1739 __ emit_data64(0x8000000080000000, relocInfo::none); 1740 __ emit_data64(0x8000000080000000, relocInfo::none); 1741 __ emit_data64(0x8000000080000000, relocInfo::none); 1742 1743 return start; 1744 } 1745 1746 address StubGenerator::base64_avx2_lut_addr() { 1747 __ align32(); 1748 StubGenStubId stub_id = StubGenStubId::avx2_lut_base64_id; 1749 StubCodeMark mark(this, stub_id); 1750 address start = __ pc(); 1751 1752 __ emit_data64(0xfcfcfcfcfcfc4741, relocInfo::none); 1753 __ emit_data64(0x0000f0edfcfcfcfc, relocInfo::none); 1754 __ emit_data64(0xfcfcfcfcfcfc4741, relocInfo::none); 1755 __ emit_data64(0x0000f0edfcfcfcfc, relocInfo::none); 1756 1757 // URL LUT 1758 __ emit_data64(0xfcfcfcfcfcfc4741, relocInfo::none); 1759 __ emit_data64(0x000020effcfcfcfc, relocInfo::none); 1760 __ emit_data64(0xfcfcfcfcfcfc4741, relocInfo::none); 1761 __ emit_data64(0x000020effcfcfcfc, relocInfo::none); 1762 1763 return start; 1764 } 1765 1766 address StubGenerator::base64_encoding_table_addr() { 1767 __ align64(); 1768 StubGenStubId stub_id = StubGenStubId::encoding_table_base64_id; 1769 StubCodeMark mark(this, stub_id); 1770 address start = __ pc(); 1771 1772 assert(((unsigned long long)start & 0x3f) == 0, "Alignment problem (0x%08llx)", (unsigned long long)start); 1773 __ emit_data64(0x4847464544434241, relocInfo::none); 1774 __ emit_data64(0x504f4e4d4c4b4a49, relocInfo::none); 1775 __ emit_data64(0x5857565554535251, relocInfo::none); 1776 __ emit_data64(0x6665646362615a59, relocInfo::none); 1777 __ emit_data64(0x6e6d6c6b6a696867, relocInfo::none); 1778 __ emit_data64(0x767574737271706f, relocInfo::none); 1779 __ emit_data64(0x333231307a797877, relocInfo::none); 1780 __ emit_data64(0x2f2b393837363534, relocInfo::none); 1781 1782 // URL table 1783 __ emit_data64(0x4847464544434241, relocInfo::none); 1784 __ emit_data64(0x504f4e4d4c4b4a49, relocInfo::none); 1785 __ emit_data64(0x5857565554535251, relocInfo::none); 1786 __ emit_data64(0x6665646362615a59, relocInfo::none); 1787 __ emit_data64(0x6e6d6c6b6a696867, relocInfo::none); 1788 __ emit_data64(0x767574737271706f, relocInfo::none); 1789 __ emit_data64(0x333231307a797877, relocInfo::none); 1790 __ emit_data64(0x5f2d393837363534, relocInfo::none); 1791 1792 return start; 1793 } 1794 1795 // Code for generating Base64 encoding. 1796 // Intrinsic function prototype in Base64.java: 1797 // private void encodeBlock(byte[] src, int sp, int sl, byte[] dst, int dp, 1798 // boolean isURL) { 1799 address StubGenerator::generate_base64_encodeBlock() 1800 { 1801 __ align(CodeEntryAlignment); 1802 StubGenStubId stub_id = StubGenStubId::base64_encodeBlock_id; 1803 StubCodeMark mark(this, stub_id); 1804 address start = __ pc(); 1805 1806 __ enter(); 1807 1808 // Save callee-saved registers before using them 1809 __ push(r12); 1810 __ push(r13); 1811 __ push(r14); 1812 __ push(r15); 1813 1814 // arguments 1815 const Register source = c_rarg0; // Source Array 1816 const Register start_offset = c_rarg1; // start offset 1817 const Register end_offset = c_rarg2; // end offset 1818 const Register dest = c_rarg3; // destination array 1819 1820 #ifndef _WIN64 1821 const Register dp = c_rarg4; // Position for writing to dest array 1822 const Register isURL = c_rarg5; // Base64 or URL character set 1823 #else 1824 const Address dp_mem(rbp, 6 * wordSize); // length is on stack on Win64 1825 const Address isURL_mem(rbp, 7 * wordSize); 1826 const Register isURL = r10; // pick the volatile windows register 1827 const Register dp = r12; 1828 __ movl(dp, dp_mem); 1829 __ movl(isURL, isURL_mem); 1830 #endif 1831 1832 const Register length = r14; 1833 const Register encode_table = r13; 1834 Label L_process3, L_exit, L_processdata, L_vbmiLoop, L_not512, L_32byteLoop; 1835 1836 // calculate length from offsets 1837 __ movl(length, end_offset); 1838 __ subl(length, start_offset); 1839 __ jcc(Assembler::lessEqual, L_exit); 1840 1841 // Code for 512-bit VBMI encoding. Encodes 48 input bytes into 64 1842 // output bytes. We read 64 input bytes and ignore the last 16, so be 1843 // sure not to read past the end of the input buffer. 1844 if (VM_Version::supports_avx512_vbmi()) { 1845 __ cmpl(length, 64); // Do not overrun input buffer. 1846 __ jcc(Assembler::below, L_not512); 1847 1848 __ shll(isURL, 6); // index into decode table based on isURL 1849 __ lea(encode_table, ExternalAddress(StubRoutines::x86::base64_encoding_table_addr())); 1850 __ addptr(encode_table, isURL); 1851 __ shrl(isURL, 6); // restore isURL 1852 1853 __ mov64(rax, 0x3036242a1016040aull); // Shifts 1854 __ evmovdquq(xmm3, ExternalAddress(StubRoutines::x86::base64_shuffle_addr()), Assembler::AVX_512bit, r15); 1855 __ evmovdquq(xmm2, Address(encode_table, 0), Assembler::AVX_512bit); 1856 __ evpbroadcastq(xmm1, rax, Assembler::AVX_512bit); 1857 1858 __ align32(); 1859 __ BIND(L_vbmiLoop); 1860 1861 __ vpermb(xmm0, xmm3, Address(source, start_offset), Assembler::AVX_512bit); 1862 __ subl(length, 48); 1863 1864 // Put the input bytes into the proper lanes for writing, then 1865 // encode them. 1866 __ evpmultishiftqb(xmm0, xmm1, xmm0, Assembler::AVX_512bit); 1867 __ vpermb(xmm0, xmm0, xmm2, Assembler::AVX_512bit); 1868 1869 // Write to destination 1870 __ evmovdquq(Address(dest, dp), xmm0, Assembler::AVX_512bit); 1871 1872 __ addptr(dest, 64); 1873 __ addptr(source, 48); 1874 __ cmpl(length, 64); 1875 __ jcc(Assembler::aboveEqual, L_vbmiLoop); 1876 1877 __ vzeroupper(); 1878 } 1879 1880 __ BIND(L_not512); 1881 if (VM_Version::supports_avx2()) { 1882 /* 1883 ** This AVX2 encoder is based off the paper at: 1884 ** https://dl.acm.org/doi/10.1145/3132709 1885 ** 1886 ** We use AVX2 SIMD instructions to encode 24 bytes into 32 1887 ** output bytes. 1888 ** 1889 */ 1890 // Lengths under 32 bytes are done with scalar routine 1891 __ cmpl(length, 31); 1892 __ jcc(Assembler::belowEqual, L_process3); 1893 1894 // Set up supporting constant table data 1895 __ vmovdqu(xmm9, ExternalAddress(StubRoutines::x86::base64_avx2_shuffle_addr()), rax); 1896 // 6-bit mask for 2nd and 4th (and multiples) 6-bit values 1897 __ movl(rax, 0x0fc0fc00); 1898 __ movdl(xmm8, rax); 1899 __ vmovdqu(xmm1, ExternalAddress(StubRoutines::x86::base64_avx2_input_mask_addr()), rax); 1900 __ vpbroadcastd(xmm8, xmm8, Assembler::AVX_256bit); 1901 1902 // Multiplication constant for "shifting" right by 6 and 10 1903 // bits 1904 __ movl(rax, 0x04000040); 1905 1906 __ subl(length, 24); 1907 __ movdl(xmm7, rax); 1908 __ vpbroadcastd(xmm7, xmm7, Assembler::AVX_256bit); 1909 1910 // For the first load, we mask off reading of the first 4 1911 // bytes into the register. This is so we can get 4 3-byte 1912 // chunks into each lane of the register, avoiding having to 1913 // handle end conditions. We then shuffle these bytes into a 1914 // specific order so that manipulation is easier. 1915 // 1916 // The initial read loads the XMM register like this: 1917 // 1918 // Lower 128-bit lane: 1919 // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+ 1920 // | XX | XX | XX | XX | A0 | A1 | A2 | B0 | B1 | B2 | C0 | C1 1921 // | C2 | D0 | D1 | D2 | 1922 // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+ 1923 // 1924 // Upper 128-bit lane: 1925 // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+ 1926 // | E0 | E1 | E2 | F0 | F1 | F2 | G0 | G1 | G2 | H0 | H1 | H2 1927 // | XX | XX | XX | XX | 1928 // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+ 1929 // 1930 // Where A0 is the first input byte, B0 is the fourth, etc. 1931 // The alphabetical significance denotes the 3 bytes to be 1932 // consumed and encoded into 4 bytes. 1933 // 1934 // We then shuffle the register so each 32-bit word contains 1935 // the sequence: 1936 // A1 A0 A2 A1, B1, B0, B2, B1, etc. 1937 // Each of these byte sequences are then manipulated into 4 1938 // 6-bit values ready for encoding. 1939 // 1940 // If we focus on one set of 3-byte chunks, changing the 1941 // nomenclature such that A0 => a, A1 => b, and A2 => c, we 1942 // shuffle such that each 24-bit chunk contains: 1943 // 1944 // b7 b6 b5 b4 b3 b2 b1 b0 | a7 a6 a5 a4 a3 a2 a1 a0 | c7 c6 1945 // c5 c4 c3 c2 c1 c0 | b7 b6 b5 b4 b3 b2 b1 b0 1946 // Explain this step. 1947 // b3 b2 b1 b0 c5 c4 c3 c2 | c1 c0 d5 d4 d3 d2 d1 d0 | a5 a4 1948 // a3 a2 a1 a0 b5 b4 | b3 b2 b1 b0 c5 c4 c3 c2 1949 // 1950 // W first and off all but bits 4-9 and 16-21 (c5..c0 and 1951 // a5..a0) and shift them using a vector multiplication 1952 // operation (vpmulhuw) which effectively shifts c right by 6 1953 // bits and a right by 10 bits. We similarly mask bits 10-15 1954 // (d5..d0) and 22-27 (b5..b0) and shift them left by 8 and 4 1955 // bits respectively. This is done using vpmullw. We end up 1956 // with 4 6-bit values, thus splitting the 3 input bytes, 1957 // ready for encoding: 1958 // 0 0 d5..d0 0 0 c5..c0 0 0 b5..b0 0 0 a5..a0 1959 // 1960 // For translation, we recognize that there are 5 distinct 1961 // ranges of legal Base64 characters as below: 1962 // 1963 // +-------------+-------------+------------+ 1964 // | 6-bit value | ASCII range | offset | 1965 // +-------------+-------------+------------+ 1966 // | 0..25 | A..Z | 65 | 1967 // | 26..51 | a..z | 71 | 1968 // | 52..61 | 0..9 | -4 | 1969 // | 62 | + or - | -19 or -17 | 1970 // | 63 | / or _ | -16 or 32 | 1971 // +-------------+-------------+------------+ 1972 // 1973 // We note that vpshufb does a parallel lookup in a 1974 // destination register using the lower 4 bits of bytes from a 1975 // source register. If we use a saturated subtraction and 1976 // subtract 51 from each 6-bit value, bytes from [0,51] 1977 // saturate to 0, and [52,63] map to a range of [1,12]. We 1978 // distinguish the [0,25] and [26,51] ranges by assigning a 1979 // value of 13 for all 6-bit values less than 26. We end up 1980 // with: 1981 // 1982 // +-------------+-------------+------------+ 1983 // | 6-bit value | Reduced | offset | 1984 // +-------------+-------------+------------+ 1985 // | 0..25 | 13 | 65 | 1986 // | 26..51 | 0 | 71 | 1987 // | 52..61 | 0..9 | -4 | 1988 // | 62 | 11 | -19 or -17 | 1989 // | 63 | 12 | -16 or 32 | 1990 // +-------------+-------------+------------+ 1991 // 1992 // We then use a final vpshufb to add the appropriate offset, 1993 // translating the bytes. 1994 // 1995 // Load input bytes - only 28 bytes. Mask the first load to 1996 // not load into the full register. 1997 __ vpmaskmovd(xmm1, xmm1, Address(source, start_offset, Address::times_1, -4), Assembler::AVX_256bit); 1998 1999 // Move 3-byte chunks of input (12 bytes) into 16 bytes, 2000 // ordering by: 2001 // 1, 0, 2, 1; 4, 3, 5, 4; etc. This groups 6-bit chunks 2002 // for easy masking 2003 __ vpshufb(xmm1, xmm1, xmm9, Assembler::AVX_256bit); 2004 2005 __ addl(start_offset, 24); 2006 2007 // Load masking register for first and third (and multiples) 2008 // 6-bit values. 2009 __ movl(rax, 0x003f03f0); 2010 __ movdl(xmm6, rax); 2011 __ vpbroadcastd(xmm6, xmm6, Assembler::AVX_256bit); 2012 // Multiplication constant for "shifting" left by 4 and 8 bits 2013 __ movl(rax, 0x01000010); 2014 __ movdl(xmm5, rax); 2015 __ vpbroadcastd(xmm5, xmm5, Assembler::AVX_256bit); 2016 2017 // Isolate 6-bit chunks of interest 2018 __ vpand(xmm0, xmm8, xmm1, Assembler::AVX_256bit); 2019 2020 // Load constants for encoding 2021 __ movl(rax, 0x19191919); 2022 __ movdl(xmm3, rax); 2023 __ vpbroadcastd(xmm3, xmm3, Assembler::AVX_256bit); 2024 __ movl(rax, 0x33333333); 2025 __ movdl(xmm4, rax); 2026 __ vpbroadcastd(xmm4, xmm4, Assembler::AVX_256bit); 2027 2028 // Shift output bytes 0 and 2 into proper lanes 2029 __ vpmulhuw(xmm2, xmm0, xmm7, Assembler::AVX_256bit); 2030 2031 // Mask and shift output bytes 1 and 3 into proper lanes and 2032 // combine 2033 __ vpand(xmm0, xmm6, xmm1, Assembler::AVX_256bit); 2034 __ vpmullw(xmm0, xmm5, xmm0, Assembler::AVX_256bit); 2035 __ vpor(xmm0, xmm0, xmm2, Assembler::AVX_256bit); 2036 2037 // Find out which are 0..25. This indicates which input 2038 // values fall in the range of 'A'-'Z', which require an 2039 // additional offset (see comments above) 2040 __ vpcmpgtb(xmm2, xmm0, xmm3, Assembler::AVX_256bit); 2041 __ vpsubusb(xmm1, xmm0, xmm4, Assembler::AVX_256bit); 2042 __ vpsubb(xmm1, xmm1, xmm2, Assembler::AVX_256bit); 2043 2044 // Load the proper lookup table 2045 __ lea(r11, ExternalAddress(StubRoutines::x86::base64_avx2_lut_addr())); 2046 __ movl(r15, isURL); 2047 __ shll(r15, 5); 2048 __ vmovdqu(xmm2, Address(r11, r15)); 2049 2050 // Shuffle the offsets based on the range calculation done 2051 // above. This allows us to add the correct offset to the 2052 // 6-bit value corresponding to the range documented above. 2053 __ vpshufb(xmm1, xmm2, xmm1, Assembler::AVX_256bit); 2054 __ vpaddb(xmm0, xmm1, xmm0, Assembler::AVX_256bit); 2055 2056 // Store the encoded bytes 2057 __ vmovdqu(Address(dest, dp), xmm0); 2058 __ addl(dp, 32); 2059 2060 __ cmpl(length, 31); 2061 __ jcc(Assembler::belowEqual, L_process3); 2062 2063 __ align32(); 2064 __ BIND(L_32byteLoop); 2065 2066 // Get next 32 bytes 2067 __ vmovdqu(xmm1, Address(source, start_offset, Address::times_1, -4)); 2068 2069 __ subl(length, 24); 2070 __ addl(start_offset, 24); 2071 2072 // This logic is identical to the above, with only constant 2073 // register loads removed. Shuffle the input, mask off 6-bit 2074 // chunks, shift them into place, then add the offset to 2075 // encode. 2076 __ vpshufb(xmm1, xmm1, xmm9, Assembler::AVX_256bit); 2077 2078 __ vpand(xmm0, xmm8, xmm1, Assembler::AVX_256bit); 2079 __ vpmulhuw(xmm10, xmm0, xmm7, Assembler::AVX_256bit); 2080 __ vpand(xmm0, xmm6, xmm1, Assembler::AVX_256bit); 2081 __ vpmullw(xmm0, xmm5, xmm0, Assembler::AVX_256bit); 2082 __ vpor(xmm0, xmm0, xmm10, Assembler::AVX_256bit); 2083 __ vpcmpgtb(xmm10, xmm0, xmm3, Assembler::AVX_256bit); 2084 __ vpsubusb(xmm1, xmm0, xmm4, Assembler::AVX_256bit); 2085 __ vpsubb(xmm1, xmm1, xmm10, Assembler::AVX_256bit); 2086 __ vpshufb(xmm1, xmm2, xmm1, Assembler::AVX_256bit); 2087 __ vpaddb(xmm0, xmm1, xmm0, Assembler::AVX_256bit); 2088 2089 // Store the encoded bytes 2090 __ vmovdqu(Address(dest, dp), xmm0); 2091 __ addl(dp, 32); 2092 2093 __ cmpl(length, 31); 2094 __ jcc(Assembler::above, L_32byteLoop); 2095 2096 __ BIND(L_process3); 2097 __ vzeroupper(); 2098 } else { 2099 __ BIND(L_process3); 2100 } 2101 2102 __ cmpl(length, 3); 2103 __ jcc(Assembler::below, L_exit); 2104 2105 // Load the encoding table based on isURL 2106 __ lea(r11, ExternalAddress(StubRoutines::x86::base64_encoding_table_addr())); 2107 __ movl(r15, isURL); 2108 __ shll(r15, 6); 2109 __ addptr(r11, r15); 2110 2111 __ BIND(L_processdata); 2112 2113 // Load 3 bytes 2114 __ load_unsigned_byte(r15, Address(source, start_offset)); 2115 __ load_unsigned_byte(r10, Address(source, start_offset, Address::times_1, 1)); 2116 __ load_unsigned_byte(r13, Address(source, start_offset, Address::times_1, 2)); 2117 2118 // Build a 32-bit word with bytes 1, 2, 0, 1 2119 __ movl(rax, r10); 2120 __ shll(r10, 24); 2121 __ orl(rax, r10); 2122 2123 __ subl(length, 3); 2124 2125 __ shll(r15, 8); 2126 __ shll(r13, 16); 2127 __ orl(rax, r15); 2128 2129 __ addl(start_offset, 3); 2130 2131 __ orl(rax, r13); 2132 // At this point, rax contains | byte1 | byte2 | byte0 | byte1 2133 // r13 has byte2 << 16 - need low-order 6 bits to translate. 2134 // This translated byte is the fourth output byte. 2135 __ shrl(r13, 16); 2136 __ andl(r13, 0x3f); 2137 2138 // The high-order 6 bits of r15 (byte0) is translated. 2139 // The translated byte is the first output byte. 2140 __ shrl(r15, 10); 2141 2142 __ load_unsigned_byte(r13, Address(r11, r13)); 2143 __ load_unsigned_byte(r15, Address(r11, r15)); 2144 2145 __ movb(Address(dest, dp, Address::times_1, 3), r13); 2146 2147 // Extract high-order 4 bits of byte1 and low-order 2 bits of byte0. 2148 // This translated byte is the second output byte. 2149 __ shrl(rax, 4); 2150 __ movl(r10, rax); 2151 __ andl(rax, 0x3f); 2152 2153 __ movb(Address(dest, dp, Address::times_1, 0), r15); 2154 2155 __ load_unsigned_byte(rax, Address(r11, rax)); 2156 2157 // Extract low-order 2 bits of byte1 and high-order 4 bits of byte2. 2158 // This translated byte is the third output byte. 2159 __ shrl(r10, 18); 2160 __ andl(r10, 0x3f); 2161 2162 __ load_unsigned_byte(r10, Address(r11, r10)); 2163 2164 __ movb(Address(dest, dp, Address::times_1, 1), rax); 2165 __ movb(Address(dest, dp, Address::times_1, 2), r10); 2166 2167 __ addl(dp, 4); 2168 __ cmpl(length, 3); 2169 __ jcc(Assembler::aboveEqual, L_processdata); 2170 2171 __ BIND(L_exit); 2172 __ pop(r15); 2173 __ pop(r14); 2174 __ pop(r13); 2175 __ pop(r12); 2176 __ leave(); 2177 __ ret(0); 2178 2179 return start; 2180 } 2181 2182 // base64 AVX512vbmi tables 2183 address StubGenerator::base64_vbmi_lookup_lo_addr() { 2184 __ align64(); 2185 StubGenStubId stub_id = StubGenStubId::lookup_lo_base64_id; 2186 StubCodeMark mark(this, stub_id); 2187 address start = __ pc(); 2188 2189 assert(((unsigned long long)start & 0x3f) == 0, 2190 "Alignment problem (0x%08llx)", (unsigned long long)start); 2191 __ emit_data64(0x8080808080808080, relocInfo::none); 2192 __ emit_data64(0x8080808080808080, relocInfo::none); 2193 __ emit_data64(0x8080808080808080, relocInfo::none); 2194 __ emit_data64(0x8080808080808080, relocInfo::none); 2195 __ emit_data64(0x8080808080808080, relocInfo::none); 2196 __ emit_data64(0x3f8080803e808080, relocInfo::none); 2197 __ emit_data64(0x3b3a393837363534, relocInfo::none); 2198 __ emit_data64(0x8080808080803d3c, relocInfo::none); 2199 2200 return start; 2201 } 2202 2203 address StubGenerator::base64_vbmi_lookup_hi_addr() { 2204 __ align64(); 2205 StubGenStubId stub_id = StubGenStubId::lookup_hi_base64_id; 2206 StubCodeMark mark(this, stub_id); 2207 address start = __ pc(); 2208 2209 assert(((unsigned long long)start & 0x3f) == 0, 2210 "Alignment problem (0x%08llx)", (unsigned long long)start); 2211 __ emit_data64(0x0605040302010080, relocInfo::none); 2212 __ emit_data64(0x0e0d0c0b0a090807, relocInfo::none); 2213 __ emit_data64(0x161514131211100f, relocInfo::none); 2214 __ emit_data64(0x8080808080191817, relocInfo::none); 2215 __ emit_data64(0x201f1e1d1c1b1a80, relocInfo::none); 2216 __ emit_data64(0x2827262524232221, relocInfo::none); 2217 __ emit_data64(0x302f2e2d2c2b2a29, relocInfo::none); 2218 __ emit_data64(0x8080808080333231, relocInfo::none); 2219 2220 return start; 2221 } 2222 address StubGenerator::base64_vbmi_lookup_lo_url_addr() { 2223 __ align64(); 2224 StubGenStubId stub_id = StubGenStubId::lookup_lo_base64url_id; 2225 StubCodeMark mark(this, stub_id); 2226 address start = __ pc(); 2227 2228 assert(((unsigned long long)start & 0x3f) == 0, 2229 "Alignment problem (0x%08llx)", (unsigned long long)start); 2230 __ emit_data64(0x8080808080808080, relocInfo::none); 2231 __ emit_data64(0x8080808080808080, relocInfo::none); 2232 __ emit_data64(0x8080808080808080, relocInfo::none); 2233 __ emit_data64(0x8080808080808080, relocInfo::none); 2234 __ emit_data64(0x8080808080808080, relocInfo::none); 2235 __ emit_data64(0x80803e8080808080, relocInfo::none); 2236 __ emit_data64(0x3b3a393837363534, relocInfo::none); 2237 __ emit_data64(0x8080808080803d3c, relocInfo::none); 2238 2239 return start; 2240 } 2241 2242 address StubGenerator::base64_vbmi_lookup_hi_url_addr() { 2243 __ align64(); 2244 StubGenStubId stub_id = StubGenStubId::lookup_hi_base64url_id; 2245 StubCodeMark mark(this, stub_id); 2246 address start = __ pc(); 2247 2248 assert(((unsigned long long)start & 0x3f) == 0, 2249 "Alignment problem (0x%08llx)", (unsigned long long)start); 2250 __ emit_data64(0x0605040302010080, relocInfo::none); 2251 __ emit_data64(0x0e0d0c0b0a090807, relocInfo::none); 2252 __ emit_data64(0x161514131211100f, relocInfo::none); 2253 __ emit_data64(0x3f80808080191817, relocInfo::none); 2254 __ emit_data64(0x201f1e1d1c1b1a80, relocInfo::none); 2255 __ emit_data64(0x2827262524232221, relocInfo::none); 2256 __ emit_data64(0x302f2e2d2c2b2a29, relocInfo::none); 2257 __ emit_data64(0x8080808080333231, relocInfo::none); 2258 2259 return start; 2260 } 2261 2262 address StubGenerator::base64_vbmi_pack_vec_addr() { 2263 __ align64(); 2264 StubGenStubId stub_id = StubGenStubId::pack_vec_base64_id; 2265 StubCodeMark mark(this, stub_id); 2266 address start = __ pc(); 2267 2268 assert(((unsigned long long)start & 0x3f) == 0, 2269 "Alignment problem (0x%08llx)", (unsigned long long)start); 2270 __ emit_data64(0x090a040506000102, relocInfo::none); 2271 __ emit_data64(0x161011120c0d0e08, relocInfo::none); 2272 __ emit_data64(0x1c1d1e18191a1415, relocInfo::none); 2273 __ emit_data64(0x292a242526202122, relocInfo::none); 2274 __ emit_data64(0x363031322c2d2e28, relocInfo::none); 2275 __ emit_data64(0x3c3d3e38393a3435, relocInfo::none); 2276 __ emit_data64(0x0000000000000000, relocInfo::none); 2277 __ emit_data64(0x0000000000000000, relocInfo::none); 2278 2279 return start; 2280 } 2281 2282 address StubGenerator::base64_vbmi_join_0_1_addr() { 2283 __ align64(); 2284 StubGenStubId stub_id = StubGenStubId::join_0_1_base64_id; 2285 StubCodeMark mark(this, stub_id); 2286 address start = __ pc(); 2287 2288 assert(((unsigned long long)start & 0x3f) == 0, 2289 "Alignment problem (0x%08llx)", (unsigned long long)start); 2290 __ emit_data64(0x090a040506000102, relocInfo::none); 2291 __ emit_data64(0x161011120c0d0e08, relocInfo::none); 2292 __ emit_data64(0x1c1d1e18191a1415, relocInfo::none); 2293 __ emit_data64(0x292a242526202122, relocInfo::none); 2294 __ emit_data64(0x363031322c2d2e28, relocInfo::none); 2295 __ emit_data64(0x3c3d3e38393a3435, relocInfo::none); 2296 __ emit_data64(0x494a444546404142, relocInfo::none); 2297 __ emit_data64(0x565051524c4d4e48, relocInfo::none); 2298 2299 return start; 2300 } 2301 2302 address StubGenerator::base64_vbmi_join_1_2_addr() { 2303 __ align64(); 2304 StubGenStubId stub_id = StubGenStubId::join_1_2_base64_id; 2305 StubCodeMark mark(this, stub_id); 2306 address start = __ pc(); 2307 2308 assert(((unsigned long long)start & 0x3f) == 0, 2309 "Alignment problem (0x%08llx)", (unsigned long long)start); 2310 __ emit_data64(0x1c1d1e18191a1415, relocInfo::none); 2311 __ emit_data64(0x292a242526202122, relocInfo::none); 2312 __ emit_data64(0x363031322c2d2e28, relocInfo::none); 2313 __ emit_data64(0x3c3d3e38393a3435, relocInfo::none); 2314 __ emit_data64(0x494a444546404142, relocInfo::none); 2315 __ emit_data64(0x565051524c4d4e48, relocInfo::none); 2316 __ emit_data64(0x5c5d5e58595a5455, relocInfo::none); 2317 __ emit_data64(0x696a646566606162, relocInfo::none); 2318 2319 return start; 2320 } 2321 2322 address StubGenerator::base64_vbmi_join_2_3_addr() { 2323 __ align64(); 2324 StubGenStubId stub_id = StubGenStubId::join_2_3_base64_id; 2325 StubCodeMark mark(this, stub_id); 2326 address start = __ pc(); 2327 2328 assert(((unsigned long long)start & 0x3f) == 0, 2329 "Alignment problem (0x%08llx)", (unsigned long long)start); 2330 __ emit_data64(0x363031322c2d2e28, relocInfo::none); 2331 __ emit_data64(0x3c3d3e38393a3435, relocInfo::none); 2332 __ emit_data64(0x494a444546404142, relocInfo::none); 2333 __ emit_data64(0x565051524c4d4e48, relocInfo::none); 2334 __ emit_data64(0x5c5d5e58595a5455, relocInfo::none); 2335 __ emit_data64(0x696a646566606162, relocInfo::none); 2336 __ emit_data64(0x767071726c6d6e68, relocInfo::none); 2337 __ emit_data64(0x7c7d7e78797a7475, relocInfo::none); 2338 2339 return start; 2340 } 2341 2342 address StubGenerator::base64_AVX2_decode_tables_addr() { 2343 __ align64(); 2344 StubGenStubId stub_id = StubGenStubId::avx2_decode_tables_base64_id; 2345 StubCodeMark mark(this, stub_id); 2346 address start = __ pc(); 2347 2348 assert(((unsigned long long)start & 0x3f) == 0, 2349 "Alignment problem (0x%08llx)", (unsigned long long)start); 2350 __ emit_data(0x2f2f2f2f, relocInfo::none, 0); 2351 __ emit_data(0x5f5f5f5f, relocInfo::none, 0); // for URL 2352 2353 __ emit_data(0xffffffff, relocInfo::none, 0); 2354 __ emit_data(0xfcfcfcfc, relocInfo::none, 0); // for URL 2355 2356 // Permute table 2357 __ emit_data64(0x0000000100000000, relocInfo::none); 2358 __ emit_data64(0x0000000400000002, relocInfo::none); 2359 __ emit_data64(0x0000000600000005, relocInfo::none); 2360 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2361 2362 // Shuffle table 2363 __ emit_data64(0x090a040506000102, relocInfo::none); 2364 __ emit_data64(0xffffffff0c0d0e08, relocInfo::none); 2365 __ emit_data64(0x090a040506000102, relocInfo::none); 2366 __ emit_data64(0xffffffff0c0d0e08, relocInfo::none); 2367 2368 // merge table 2369 __ emit_data(0x01400140, relocInfo::none, 0); 2370 2371 // merge multiplier 2372 __ emit_data(0x00011000, relocInfo::none, 0); 2373 2374 return start; 2375 } 2376 2377 address StubGenerator::base64_AVX2_decode_LUT_tables_addr() { 2378 __ align64(); 2379 StubGenStubId stub_id = StubGenStubId::avx2_decode_lut_tables_base64_id; 2380 StubCodeMark mark(this, stub_id); 2381 address start = __ pc(); 2382 2383 assert(((unsigned long long)start & 0x3f) == 0, 2384 "Alignment problem (0x%08llx)", (unsigned long long)start); 2385 // lut_lo 2386 __ emit_data64(0x1111111111111115, relocInfo::none); 2387 __ emit_data64(0x1a1b1b1b1a131111, relocInfo::none); 2388 __ emit_data64(0x1111111111111115, relocInfo::none); 2389 __ emit_data64(0x1a1b1b1b1a131111, relocInfo::none); 2390 2391 // lut_roll 2392 __ emit_data64(0xb9b9bfbf04131000, relocInfo::none); 2393 __ emit_data64(0x0000000000000000, relocInfo::none); 2394 __ emit_data64(0xb9b9bfbf04131000, relocInfo::none); 2395 __ emit_data64(0x0000000000000000, relocInfo::none); 2396 2397 // lut_lo URL 2398 __ emit_data64(0x1111111111111115, relocInfo::none); 2399 __ emit_data64(0x1b1b1a1b1b131111, relocInfo::none); 2400 __ emit_data64(0x1111111111111115, relocInfo::none); 2401 __ emit_data64(0x1b1b1a1b1b131111, relocInfo::none); 2402 2403 // lut_roll URL 2404 __ emit_data64(0xb9b9bfbf0411e000, relocInfo::none); 2405 __ emit_data64(0x0000000000000000, relocInfo::none); 2406 __ emit_data64(0xb9b9bfbf0411e000, relocInfo::none); 2407 __ emit_data64(0x0000000000000000, relocInfo::none); 2408 2409 // lut_hi 2410 __ emit_data64(0x0804080402011010, relocInfo::none); 2411 __ emit_data64(0x1010101010101010, relocInfo::none); 2412 __ emit_data64(0x0804080402011010, relocInfo::none); 2413 __ emit_data64(0x1010101010101010, relocInfo::none); 2414 2415 return start; 2416 } 2417 2418 address StubGenerator::base64_decoding_table_addr() { 2419 StubGenStubId stub_id = StubGenStubId::decoding_table_base64_id; 2420 StubCodeMark mark(this, stub_id); 2421 address start = __ pc(); 2422 2423 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2424 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2425 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2426 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2427 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2428 __ emit_data64(0x3fffffff3effffff, relocInfo::none); 2429 __ emit_data64(0x3b3a393837363534, relocInfo::none); 2430 __ emit_data64(0xffffffffffff3d3c, relocInfo::none); 2431 __ emit_data64(0x06050403020100ff, relocInfo::none); 2432 __ emit_data64(0x0e0d0c0b0a090807, relocInfo::none); 2433 __ emit_data64(0x161514131211100f, relocInfo::none); 2434 __ emit_data64(0xffffffffff191817, relocInfo::none); 2435 __ emit_data64(0x201f1e1d1c1b1aff, relocInfo::none); 2436 __ emit_data64(0x2827262524232221, relocInfo::none); 2437 __ emit_data64(0x302f2e2d2c2b2a29, relocInfo::none); 2438 __ emit_data64(0xffffffffff333231, relocInfo::none); 2439 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2440 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2441 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2442 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2443 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2444 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2445 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2446 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2447 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2448 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2449 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2450 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2451 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2452 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2453 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2454 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2455 2456 // URL table 2457 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2458 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2459 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2460 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2461 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2462 __ emit_data64(0xffff3effffffffff, relocInfo::none); 2463 __ emit_data64(0x3b3a393837363534, relocInfo::none); 2464 __ emit_data64(0xffffffffffff3d3c, relocInfo::none); 2465 __ emit_data64(0x06050403020100ff, relocInfo::none); 2466 __ emit_data64(0x0e0d0c0b0a090807, relocInfo::none); 2467 __ emit_data64(0x161514131211100f, relocInfo::none); 2468 __ emit_data64(0x3fffffffff191817, relocInfo::none); 2469 __ emit_data64(0x201f1e1d1c1b1aff, relocInfo::none); 2470 __ emit_data64(0x2827262524232221, relocInfo::none); 2471 __ emit_data64(0x302f2e2d2c2b2a29, relocInfo::none); 2472 __ emit_data64(0xffffffffff333231, relocInfo::none); 2473 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2474 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2475 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2476 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2477 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2478 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2479 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2480 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2481 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2482 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2483 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2484 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2485 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2486 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2487 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2488 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2489 2490 return start; 2491 } 2492 2493 2494 // Code for generating Base64 decoding. 2495 // 2496 // Based on the article (and associated code) from https://arxiv.org/abs/1910.05109. 2497 // 2498 // Intrinsic function prototype in Base64.java: 2499 // private void decodeBlock(byte[] src, int sp, int sl, byte[] dst, int dp, boolean isURL, isMIME) { 2500 address StubGenerator::generate_base64_decodeBlock() { 2501 __ align(CodeEntryAlignment); 2502 StubGenStubId stub_id = StubGenStubId::base64_decodeBlock_id; 2503 StubCodeMark mark(this, stub_id); 2504 address start = __ pc(); 2505 2506 __ enter(); 2507 2508 // Save callee-saved registers before using them 2509 __ push(r12); 2510 __ push(r13); 2511 __ push(r14); 2512 __ push(r15); 2513 __ push(rbx); 2514 2515 // arguments 2516 const Register source = c_rarg0; // Source Array 2517 const Register start_offset = c_rarg1; // start offset 2518 const Register end_offset = c_rarg2; // end offset 2519 const Register dest = c_rarg3; // destination array 2520 const Register isMIME = rbx; 2521 2522 #ifndef _WIN64 2523 const Register dp = c_rarg4; // Position for writing to dest array 2524 const Register isURL = c_rarg5;// Base64 or URL character set 2525 __ movl(isMIME, Address(rbp, 2 * wordSize)); 2526 #else 2527 const Address dp_mem(rbp, 6 * wordSize); // length is on stack on Win64 2528 const Address isURL_mem(rbp, 7 * wordSize); 2529 const Register isURL = r10; // pick the volatile windows register 2530 const Register dp = r12; 2531 __ movl(dp, dp_mem); 2532 __ movl(isURL, isURL_mem); 2533 __ movl(isMIME, Address(rbp, 8 * wordSize)); 2534 #endif 2535 2536 const XMMRegister lookup_lo = xmm5; 2537 const XMMRegister lookup_hi = xmm6; 2538 const XMMRegister errorvec = xmm7; 2539 const XMMRegister pack16_op = xmm9; 2540 const XMMRegister pack32_op = xmm8; 2541 const XMMRegister input0 = xmm3; 2542 const XMMRegister input1 = xmm20; 2543 const XMMRegister input2 = xmm21; 2544 const XMMRegister input3 = xmm19; 2545 const XMMRegister join01 = xmm12; 2546 const XMMRegister join12 = xmm11; 2547 const XMMRegister join23 = xmm10; 2548 const XMMRegister translated0 = xmm2; 2549 const XMMRegister translated1 = xmm1; 2550 const XMMRegister translated2 = xmm0; 2551 const XMMRegister translated3 = xmm4; 2552 2553 const XMMRegister merged0 = xmm2; 2554 const XMMRegister merged1 = xmm1; 2555 const XMMRegister merged2 = xmm0; 2556 const XMMRegister merged3 = xmm4; 2557 const XMMRegister merge_ab_bc0 = xmm2; 2558 const XMMRegister merge_ab_bc1 = xmm1; 2559 const XMMRegister merge_ab_bc2 = xmm0; 2560 const XMMRegister merge_ab_bc3 = xmm4; 2561 2562 const XMMRegister pack24bits = xmm4; 2563 2564 const Register length = r14; 2565 const Register output_size = r13; 2566 const Register output_mask = r15; 2567 const KRegister input_mask = k1; 2568 2569 const XMMRegister input_initial_valid_b64 = xmm0; 2570 const XMMRegister tmp = xmm10; 2571 const XMMRegister mask = xmm0; 2572 const XMMRegister invalid_b64 = xmm1; 2573 2574 Label L_process256, L_process64, L_process64Loop, L_exit, L_processdata, L_loadURL; 2575 Label L_continue, L_finalBit, L_padding, L_donePadding, L_bruteForce; 2576 Label L_forceLoop, L_bottomLoop, L_checkMIME, L_exit_no_vzero, L_lastChunk; 2577 2578 // calculate length from offsets 2579 __ movl(length, end_offset); 2580 __ subl(length, start_offset); 2581 __ push(dest); // Save for return value calc 2582 2583 // If AVX512 VBMI not supported, just compile non-AVX code 2584 if(VM_Version::supports_avx512_vbmi() && 2585 VM_Version::supports_avx512bw()) { 2586 __ cmpl(length, 31); // 32-bytes is break-even for AVX-512 2587 __ jcc(Assembler::lessEqual, L_lastChunk); 2588 2589 __ cmpl(isMIME, 0); 2590 __ jcc(Assembler::notEqual, L_lastChunk); 2591 2592 // Load lookup tables based on isURL 2593 __ cmpl(isURL, 0); 2594 __ jcc(Assembler::notZero, L_loadURL); 2595 2596 __ evmovdquq(lookup_lo, ExternalAddress(StubRoutines::x86::base64_vbmi_lookup_lo_addr()), Assembler::AVX_512bit, r13); 2597 __ evmovdquq(lookup_hi, ExternalAddress(StubRoutines::x86::base64_vbmi_lookup_hi_addr()), Assembler::AVX_512bit, r13); 2598 2599 __ BIND(L_continue); 2600 2601 __ movl(r15, 0x01400140); 2602 __ evpbroadcastd(pack16_op, r15, Assembler::AVX_512bit); 2603 2604 __ movl(r15, 0x00011000); 2605 __ evpbroadcastd(pack32_op, r15, Assembler::AVX_512bit); 2606 2607 __ cmpl(length, 0xff); 2608 __ jcc(Assembler::lessEqual, L_process64); 2609 2610 // load masks required for decoding data 2611 __ BIND(L_processdata); 2612 __ evmovdquq(join01, ExternalAddress(StubRoutines::x86::base64_vbmi_join_0_1_addr()), Assembler::AVX_512bit,r13); 2613 __ evmovdquq(join12, ExternalAddress(StubRoutines::x86::base64_vbmi_join_1_2_addr()), Assembler::AVX_512bit, r13); 2614 __ evmovdquq(join23, ExternalAddress(StubRoutines::x86::base64_vbmi_join_2_3_addr()), Assembler::AVX_512bit, r13); 2615 2616 __ align32(); 2617 __ BIND(L_process256); 2618 // Grab input data 2619 __ evmovdquq(input0, Address(source, start_offset, Address::times_1, 0x00), Assembler::AVX_512bit); 2620 __ evmovdquq(input1, Address(source, start_offset, Address::times_1, 0x40), Assembler::AVX_512bit); 2621 __ evmovdquq(input2, Address(source, start_offset, Address::times_1, 0x80), Assembler::AVX_512bit); 2622 __ evmovdquq(input3, Address(source, start_offset, Address::times_1, 0xc0), Assembler::AVX_512bit); 2623 2624 // Copy the low part of the lookup table into the destination of the permutation 2625 __ evmovdquq(translated0, lookup_lo, Assembler::AVX_512bit); 2626 __ evmovdquq(translated1, lookup_lo, Assembler::AVX_512bit); 2627 __ evmovdquq(translated2, lookup_lo, Assembler::AVX_512bit); 2628 __ evmovdquq(translated3, lookup_lo, Assembler::AVX_512bit); 2629 2630 // Translate the base64 input into "decoded" bytes 2631 __ evpermt2b(translated0, input0, lookup_hi, Assembler::AVX_512bit); 2632 __ evpermt2b(translated1, input1, lookup_hi, Assembler::AVX_512bit); 2633 __ evpermt2b(translated2, input2, lookup_hi, Assembler::AVX_512bit); 2634 __ evpermt2b(translated3, input3, lookup_hi, Assembler::AVX_512bit); 2635 2636 // OR all of the translations together to check for errors (high-order bit of byte set) 2637 __ vpternlogd(input0, 0xfe, input1, input2, Assembler::AVX_512bit); 2638 2639 __ vpternlogd(input3, 0xfe, translated0, translated1, Assembler::AVX_512bit); 2640 __ vpternlogd(input0, 0xfe, translated2, translated3, Assembler::AVX_512bit); 2641 __ vpor(errorvec, input3, input0, Assembler::AVX_512bit); 2642 2643 // Check if there was an error - if so, try 64-byte chunks 2644 __ evpmovb2m(k3, errorvec, Assembler::AVX_512bit); 2645 __ kortestql(k3, k3); 2646 __ jcc(Assembler::notZero, L_process64); 2647 2648 // The merging and shuffling happens here 2649 // We multiply each byte pair [00dddddd | 00cccccc | 00bbbbbb | 00aaaaaa] 2650 // Multiply [00cccccc] by 2^6 added to [00dddddd] to get [0000cccc | ccdddddd] 2651 // The pack16_op is a vector of 0x01400140, so multiply D by 1 and C by 0x40 2652 __ vpmaddubsw(merge_ab_bc0, translated0, pack16_op, Assembler::AVX_512bit); 2653 __ vpmaddubsw(merge_ab_bc1, translated1, pack16_op, Assembler::AVX_512bit); 2654 __ vpmaddubsw(merge_ab_bc2, translated2, pack16_op, Assembler::AVX_512bit); 2655 __ vpmaddubsw(merge_ab_bc3, translated3, pack16_op, Assembler::AVX_512bit); 2656 2657 // Now do the same with packed 16-bit values. 2658 // We start with [0000cccc | ccdddddd | 0000aaaa | aabbbbbb] 2659 // pack32_op is 0x00011000 (2^12, 1), so this multiplies [0000aaaa | aabbbbbb] by 2^12 2660 // and adds [0000cccc | ccdddddd] to yield [00000000 | aaaaaabb | bbbbcccc | ccdddddd] 2661 __ vpmaddwd(merged0, merge_ab_bc0, pack32_op, Assembler::AVX_512bit); 2662 __ vpmaddwd(merged1, merge_ab_bc1, pack32_op, Assembler::AVX_512bit); 2663 __ vpmaddwd(merged2, merge_ab_bc2, pack32_op, Assembler::AVX_512bit); 2664 __ vpmaddwd(merged3, merge_ab_bc3, pack32_op, Assembler::AVX_512bit); 2665 2666 // The join vectors specify which byte from which vector goes into the outputs 2667 // One of every 4 bytes in the extended vector is zero, so we pack them into their 2668 // final positions in the register for storing (256 bytes in, 192 bytes out) 2669 __ evpermt2b(merged0, join01, merged1, Assembler::AVX_512bit); 2670 __ evpermt2b(merged1, join12, merged2, Assembler::AVX_512bit); 2671 __ evpermt2b(merged2, join23, merged3, Assembler::AVX_512bit); 2672 2673 // Store result 2674 __ evmovdquq(Address(dest, dp, Address::times_1, 0x00), merged0, Assembler::AVX_512bit); 2675 __ evmovdquq(Address(dest, dp, Address::times_1, 0x40), merged1, Assembler::AVX_512bit); 2676 __ evmovdquq(Address(dest, dp, Address::times_1, 0x80), merged2, Assembler::AVX_512bit); 2677 2678 __ addptr(source, 0x100); 2679 __ addptr(dest, 0xc0); 2680 __ subl(length, 0x100); 2681 __ cmpl(length, 64 * 4); 2682 __ jcc(Assembler::greaterEqual, L_process256); 2683 2684 // At this point, we've decoded 64 * 4 * n bytes. 2685 // The remaining length will be <= 64 * 4 - 1. 2686 // UNLESS there was an error decoding the first 256-byte chunk. In this 2687 // case, the length will be arbitrarily long. 2688 // 2689 // Note that this will be the path for MIME-encoded strings. 2690 2691 __ BIND(L_process64); 2692 2693 __ evmovdquq(pack24bits, ExternalAddress(StubRoutines::x86::base64_vbmi_pack_vec_addr()), Assembler::AVX_512bit, r13); 2694 2695 __ cmpl(length, 63); 2696 __ jcc(Assembler::lessEqual, L_finalBit); 2697 2698 __ mov64(rax, 0x0000ffffffffffff); 2699 __ kmovql(k2, rax); 2700 2701 __ align32(); 2702 __ BIND(L_process64Loop); 2703 2704 // Handle first 64-byte block 2705 2706 __ evmovdquq(input0, Address(source, start_offset), Assembler::AVX_512bit); 2707 __ evmovdquq(translated0, lookup_lo, Assembler::AVX_512bit); 2708 __ evpermt2b(translated0, input0, lookup_hi, Assembler::AVX_512bit); 2709 2710 __ vpor(errorvec, translated0, input0, Assembler::AVX_512bit); 2711 2712 // Check for error and bomb out before updating dest 2713 __ evpmovb2m(k3, errorvec, Assembler::AVX_512bit); 2714 __ kortestql(k3, k3); 2715 __ jcc(Assembler::notZero, L_exit); 2716 2717 // Pack output register, selecting correct byte ordering 2718 __ vpmaddubsw(merge_ab_bc0, translated0, pack16_op, Assembler::AVX_512bit); 2719 __ vpmaddwd(merged0, merge_ab_bc0, pack32_op, Assembler::AVX_512bit); 2720 __ vpermb(merged0, pack24bits, merged0, Assembler::AVX_512bit); 2721 2722 __ evmovdqub(Address(dest, dp), k2, merged0, true, Assembler::AVX_512bit); 2723 2724 __ subl(length, 64); 2725 __ addptr(source, 64); 2726 __ addptr(dest, 48); 2727 2728 __ cmpl(length, 64); 2729 __ jcc(Assembler::greaterEqual, L_process64Loop); 2730 2731 __ cmpl(length, 0); 2732 __ jcc(Assembler::lessEqual, L_exit); 2733 2734 __ BIND(L_finalBit); 2735 // Now have 1 to 63 bytes left to decode 2736 2737 // I was going to let Java take care of the final fragment 2738 // however it will repeatedly call this routine for every 4 bytes 2739 // of input data, so handle the rest here. 2740 __ movq(rax, -1); 2741 __ bzhiq(rax, rax, length); // Input mask in rax 2742 2743 __ movl(output_size, length); 2744 __ shrl(output_size, 2); // Find (len / 4) * 3 (output length) 2745 __ lea(output_size, Address(output_size, output_size, Address::times_2, 0)); 2746 // output_size in r13 2747 2748 // Strip pad characters, if any, and adjust length and mask 2749 __ addq(length, start_offset); 2750 __ cmpb(Address(source, length, Address::times_1, -1), '='); 2751 __ jcc(Assembler::equal, L_padding); 2752 2753 __ BIND(L_donePadding); 2754 __ subq(length, start_offset); 2755 2756 // Output size is (64 - output_size), output mask is (all 1s >> output_size). 2757 __ kmovql(input_mask, rax); 2758 __ movq(output_mask, -1); 2759 __ bzhiq(output_mask, output_mask, output_size); 2760 2761 // Load initial input with all valid base64 characters. Will be used 2762 // in merging source bytes to avoid masking when determining if an error occurred. 2763 __ movl(rax, 0x61616161); 2764 __ evpbroadcastd(input_initial_valid_b64, rax, Assembler::AVX_512bit); 2765 2766 // A register containing all invalid base64 decoded values 2767 __ movl(rax, 0x80808080); 2768 __ evpbroadcastd(invalid_b64, rax, Assembler::AVX_512bit); 2769 2770 // input_mask is in k1 2771 // output_size is in r13 2772 // output_mask is in r15 2773 // zmm0 - free 2774 // zmm1 - 0x00011000 2775 // zmm2 - 0x01400140 2776 // zmm3 - errorvec 2777 // zmm4 - pack vector 2778 // zmm5 - lookup_lo 2779 // zmm6 - lookup_hi 2780 // zmm7 - errorvec 2781 // zmm8 - 0x61616161 2782 // zmm9 - 0x80808080 2783 2784 // Load only the bytes from source, merging into our "fully-valid" register 2785 __ evmovdqub(input_initial_valid_b64, input_mask, Address(source, start_offset, Address::times_1, 0x0), true, Assembler::AVX_512bit); 2786 2787 // Decode all bytes within our merged input 2788 __ evmovdquq(tmp, lookup_lo, Assembler::AVX_512bit); 2789 __ evpermt2b(tmp, input_initial_valid_b64, lookup_hi, Assembler::AVX_512bit); 2790 __ evporq(mask, tmp, input_initial_valid_b64, Assembler::AVX_512bit); 2791 2792 // Check for error. Compare (decoded | initial) to all invalid. 2793 // If any bytes have their high-order bit set, then we have an error. 2794 __ evptestmb(k2, mask, invalid_b64, Assembler::AVX_512bit); 2795 __ kortestql(k2, k2); 2796 2797 // If we have an error, use the brute force loop to decode what we can (4-byte chunks). 2798 __ jcc(Assembler::notZero, L_bruteForce); 2799 2800 // Shuffle output bytes 2801 __ vpmaddubsw(tmp, tmp, pack16_op, Assembler::AVX_512bit); 2802 __ vpmaddwd(tmp, tmp, pack32_op, Assembler::AVX_512bit); 2803 2804 __ vpermb(tmp, pack24bits, tmp, Assembler::AVX_512bit); 2805 __ kmovql(k1, output_mask); 2806 __ evmovdqub(Address(dest, dp), k1, tmp, true, Assembler::AVX_512bit); 2807 2808 __ addptr(dest, output_size); 2809 2810 __ BIND(L_exit); 2811 __ vzeroupper(); 2812 __ pop(rax); // Get original dest value 2813 __ subptr(dest, rax); // Number of bytes converted 2814 __ movptr(rax, dest); 2815 __ pop(rbx); 2816 __ pop(r15); 2817 __ pop(r14); 2818 __ pop(r13); 2819 __ pop(r12); 2820 __ leave(); 2821 __ ret(0); 2822 2823 __ BIND(L_loadURL); 2824 __ evmovdquq(lookup_lo, ExternalAddress(StubRoutines::x86::base64_vbmi_lookup_lo_url_addr()), Assembler::AVX_512bit, r13); 2825 __ evmovdquq(lookup_hi, ExternalAddress(StubRoutines::x86::base64_vbmi_lookup_hi_url_addr()), Assembler::AVX_512bit, r13); 2826 __ jmp(L_continue); 2827 2828 __ BIND(L_padding); 2829 __ decrementq(output_size, 1); 2830 __ shrq(rax, 1); 2831 2832 __ cmpb(Address(source, length, Address::times_1, -2), '='); 2833 __ jcc(Assembler::notEqual, L_donePadding); 2834 2835 __ decrementq(output_size, 1); 2836 __ shrq(rax, 1); 2837 __ jmp(L_donePadding); 2838 2839 __ align32(); 2840 __ BIND(L_bruteForce); 2841 } // End of if(avx512_vbmi) 2842 2843 if (VM_Version::supports_avx2()) { 2844 Label L_tailProc, L_topLoop, L_enterLoop; 2845 2846 __ cmpl(isMIME, 0); 2847 __ jcc(Assembler::notEqual, L_lastChunk); 2848 2849 // Check for buffer too small (for algorithm) 2850 __ subl(length, 0x2c); 2851 __ jcc(Assembler::less, L_tailProc); 2852 2853 __ shll(isURL, 2); 2854 2855 // Algorithm adapted from https://arxiv.org/abs/1704.00605, "Faster Base64 2856 // Encoding and Decoding using AVX2 Instructions". URL modifications added. 2857 2858 // Set up constants 2859 __ lea(r13, ExternalAddress(StubRoutines::x86::base64_AVX2_decode_tables_addr())); 2860 __ vpbroadcastd(xmm4, Address(r13, isURL, Address::times_1), Assembler::AVX_256bit); // 2F or 5F 2861 __ vpbroadcastd(xmm10, Address(r13, isURL, Address::times_1, 0x08), Assembler::AVX_256bit); // -1 or -4 2862 __ vmovdqu(xmm12, Address(r13, 0x10)); // permute 2863 __ vmovdqu(xmm13, Address(r13, 0x30)); // shuffle 2864 __ vpbroadcastd(xmm7, Address(r13, 0x50), Assembler::AVX_256bit); // merge 2865 __ vpbroadcastd(xmm6, Address(r13, 0x54), Assembler::AVX_256bit); // merge mult 2866 2867 __ lea(r13, ExternalAddress(StubRoutines::x86::base64_AVX2_decode_LUT_tables_addr())); 2868 __ shll(isURL, 4); 2869 __ vmovdqu(xmm11, Address(r13, isURL, Address::times_1, 0x00)); // lut_lo 2870 __ vmovdqu(xmm8, Address(r13, isURL, Address::times_1, 0x20)); // lut_roll 2871 __ shrl(isURL, 6); // restore isURL 2872 __ vmovdqu(xmm9, Address(r13, 0x80)); // lut_hi 2873 __ jmp(L_enterLoop); 2874 2875 __ align32(); 2876 __ bind(L_topLoop); 2877 // Add in the offset value (roll) to get 6-bit out values 2878 __ vpaddb(xmm0, xmm0, xmm2, Assembler::AVX_256bit); 2879 // Merge and permute the output bits into appropriate output byte lanes 2880 __ vpmaddubsw(xmm0, xmm0, xmm7, Assembler::AVX_256bit); 2881 __ vpmaddwd(xmm0, xmm0, xmm6, Assembler::AVX_256bit); 2882 __ vpshufb(xmm0, xmm0, xmm13, Assembler::AVX_256bit); 2883 __ vpermd(xmm0, xmm12, xmm0, Assembler::AVX_256bit); 2884 // Store the output bytes 2885 __ vmovdqu(Address(dest, dp, Address::times_1, 0), xmm0); 2886 __ addptr(source, 0x20); 2887 __ addptr(dest, 0x18); 2888 __ subl(length, 0x20); 2889 __ jcc(Assembler::less, L_tailProc); 2890 2891 __ bind(L_enterLoop); 2892 2893 // Load in encoded string (32 bytes) 2894 __ vmovdqu(xmm2, Address(source, start_offset, Address::times_1, 0x0)); 2895 // Extract the high nibble for indexing into the lut tables. High 4 bits are don't care. 2896 __ vpsrld(xmm1, xmm2, 0x4, Assembler::AVX_256bit); 2897 __ vpand(xmm1, xmm4, xmm1, Assembler::AVX_256bit); 2898 // Extract the low nibble. 5F/2F will isolate the low-order 4 bits. High 4 bits are don't care. 2899 __ vpand(xmm3, xmm2, xmm4, Assembler::AVX_256bit); 2900 // Check for special-case (0x2F or 0x5F (URL)) 2901 __ vpcmpeqb(xmm0, xmm4, xmm2, Assembler::AVX_256bit); 2902 // Get the bitset based on the low nibble. vpshufb uses low-order 4 bits only. 2903 __ vpshufb(xmm3, xmm11, xmm3, Assembler::AVX_256bit); 2904 // Get the bit value of the high nibble 2905 __ vpshufb(xmm5, xmm9, xmm1, Assembler::AVX_256bit); 2906 // Make sure 2F / 5F shows as valid 2907 __ vpandn(xmm3, xmm0, xmm3, Assembler::AVX_256bit); 2908 // Make adjustment for roll index. For non-URL, this is a no-op, 2909 // for URL, this adjusts by -4. This is to properly index the 2910 // roll value for 2F / 5F. 2911 __ vpand(xmm0, xmm0, xmm10, Assembler::AVX_256bit); 2912 // If the and of the two is non-zero, we have an invalid input character 2913 __ vptest(xmm3, xmm5); 2914 // Extract the "roll" value - value to add to the input to get 6-bit out value 2915 __ vpaddb(xmm0, xmm0, xmm1, Assembler::AVX_256bit); // Handle 2F / 5F 2916 __ vpshufb(xmm0, xmm8, xmm0, Assembler::AVX_256bit); 2917 __ jcc(Assembler::equal, L_topLoop); // Fall through on error 2918 2919 __ bind(L_tailProc); 2920 2921 __ addl(length, 0x2c); 2922 2923 __ vzeroupper(); 2924 } 2925 2926 // Use non-AVX code to decode 4-byte chunks into 3 bytes of output 2927 2928 // Register state (Linux): 2929 // r12-15 - saved on stack 2930 // rdi - src 2931 // rsi - sp 2932 // rdx - sl 2933 // rcx - dst 2934 // r8 - dp 2935 // r9 - isURL 2936 2937 // Register state (Windows): 2938 // r12-15 - saved on stack 2939 // rcx - src 2940 // rdx - sp 2941 // r8 - sl 2942 // r9 - dst 2943 // r12 - dp 2944 // r10 - isURL 2945 2946 // Registers (common): 2947 // length (r14) - bytes in src 2948 2949 const Register decode_table = r11; 2950 const Register out_byte_count = rbx; 2951 const Register byte1 = r13; 2952 const Register byte2 = r15; 2953 const Register byte3 = WIN64_ONLY(r8) NOT_WIN64(rdx); 2954 const Register byte4 = WIN64_ONLY(r10) NOT_WIN64(r9); 2955 2956 __ bind(L_lastChunk); 2957 2958 __ shrl(length, 2); // Multiple of 4 bytes only - length is # 4-byte chunks 2959 __ cmpl(length, 0); 2960 __ jcc(Assembler::lessEqual, L_exit_no_vzero); 2961 2962 __ shll(isURL, 8); // index into decode table based on isURL 2963 __ lea(decode_table, ExternalAddress(StubRoutines::x86::base64_decoding_table_addr())); 2964 __ addptr(decode_table, isURL); 2965 2966 __ jmp(L_bottomLoop); 2967 2968 __ align32(); 2969 __ BIND(L_forceLoop); 2970 __ shll(byte1, 18); 2971 __ shll(byte2, 12); 2972 __ shll(byte3, 6); 2973 __ orl(byte1, byte2); 2974 __ orl(byte1, byte3); 2975 __ orl(byte1, byte4); 2976 2977 __ addptr(source, 4); 2978 2979 __ movb(Address(dest, dp, Address::times_1, 2), byte1); 2980 __ shrl(byte1, 8); 2981 __ movb(Address(dest, dp, Address::times_1, 1), byte1); 2982 __ shrl(byte1, 8); 2983 __ movb(Address(dest, dp, Address::times_1, 0), byte1); 2984 2985 __ addptr(dest, 3); 2986 __ decrementl(length, 1); 2987 __ jcc(Assembler::zero, L_exit_no_vzero); 2988 2989 __ BIND(L_bottomLoop); 2990 __ load_unsigned_byte(byte1, Address(source, start_offset, Address::times_1, 0x00)); 2991 __ load_unsigned_byte(byte2, Address(source, start_offset, Address::times_1, 0x01)); 2992 __ load_signed_byte(byte1, Address(decode_table, byte1)); 2993 __ load_signed_byte(byte2, Address(decode_table, byte2)); 2994 __ load_unsigned_byte(byte3, Address(source, start_offset, Address::times_1, 0x02)); 2995 __ load_unsigned_byte(byte4, Address(source, start_offset, Address::times_1, 0x03)); 2996 __ load_signed_byte(byte3, Address(decode_table, byte3)); 2997 __ load_signed_byte(byte4, Address(decode_table, byte4)); 2998 2999 __ mov(rax, byte1); 3000 __ orl(rax, byte2); 3001 __ orl(rax, byte3); 3002 __ orl(rax, byte4); 3003 __ jcc(Assembler::positive, L_forceLoop); 3004 3005 __ BIND(L_exit_no_vzero); 3006 __ pop(rax); // Get original dest value 3007 __ subptr(dest, rax); // Number of bytes converted 3008 __ movptr(rax, dest); 3009 __ pop(rbx); 3010 __ pop(r15); 3011 __ pop(r14); 3012 __ pop(r13); 3013 __ pop(r12); 3014 __ leave(); 3015 __ ret(0); 3016 3017 return start; 3018 } 3019 3020 3021 /** 3022 * Arguments: 3023 * 3024 * Inputs: 3025 * c_rarg0 - int crc 3026 * c_rarg1 - byte* buf 3027 * c_rarg2 - int length 3028 * 3029 * Output: 3030 * rax - int crc result 3031 */ 3032 address StubGenerator::generate_updateBytesCRC32() { 3033 assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions"); 3034 3035 __ align(CodeEntryAlignment); 3036 StubGenStubId stub_id = StubGenStubId::updateBytesCRC32_id; 3037 StubCodeMark mark(this, stub_id); 3038 3039 address start = __ pc(); 3040 3041 // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...) 3042 // Unix: rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...) 3043 // rscratch1: r10 3044 const Register crc = c_rarg0; // crc 3045 const Register buf = c_rarg1; // source java byte array address 3046 const Register len = c_rarg2; // length 3047 const Register table = c_rarg3; // crc_table address (reuse register) 3048 const Register tmp1 = r11; 3049 const Register tmp2 = r10; 3050 assert_different_registers(crc, buf, len, table, tmp1, tmp2, rax); 3051 3052 BLOCK_COMMENT("Entry:"); 3053 __ enter(); // required for proper stackwalking of RuntimeStub frame 3054 3055 if (VM_Version::supports_sse4_1() && VM_Version::supports_avx512_vpclmulqdq() && 3056 VM_Version::supports_avx512bw() && 3057 VM_Version::supports_avx512vl()) { 3058 // The constants used in the CRC32 algorithm requires the 1's compliment of the initial crc value. 3059 // However, the constant table for CRC32-C assumes the original crc value. Account for this 3060 // difference before calling and after returning. 3061 __ lea(table, ExternalAddress(StubRoutines::x86::crc_table_avx512_addr())); 3062 __ notl(crc); 3063 __ kernel_crc32_avx512(crc, buf, len, table, tmp1, tmp2); 3064 __ notl(crc); 3065 } else { 3066 __ kernel_crc32(crc, buf, len, table, tmp1); 3067 } 3068 3069 __ movl(rax, crc); 3070 __ vzeroupper(); 3071 __ leave(); // required for proper stackwalking of RuntimeStub frame 3072 __ ret(0); 3073 3074 return start; 3075 } 3076 3077 /** 3078 * Arguments: 3079 * 3080 * Inputs: 3081 * c_rarg0 - int crc 3082 * c_rarg1 - byte* buf 3083 * c_rarg2 - long length 3084 * c_rarg3 - table_start - optional (present only when doing a library_call, 3085 * not used by x86 algorithm) 3086 * 3087 * Output: 3088 * rax - int crc result 3089 */ 3090 address StubGenerator::generate_updateBytesCRC32C(bool is_pclmulqdq_supported) { 3091 assert(UseCRC32CIntrinsics, "need SSE4_2"); 3092 __ align(CodeEntryAlignment); 3093 StubGenStubId stub_id = StubGenStubId::updateBytesCRC32C_id; 3094 StubCodeMark mark(this, stub_id); 3095 address start = __ pc(); 3096 3097 //reg.arg int#0 int#1 int#2 int#3 int#4 int#5 float regs 3098 //Windows RCX RDX R8 R9 none none XMM0..XMM3 3099 //Lin / Sol RDI RSI RDX RCX R8 R9 XMM0..XMM7 3100 const Register crc = c_rarg0; // crc 3101 const Register buf = c_rarg1; // source java byte array address 3102 const Register len = c_rarg2; // length 3103 const Register a = rax; 3104 const Register j = r9; 3105 const Register k = r10; 3106 const Register l = r11; 3107 #ifdef _WIN64 3108 const Register y = rdi; 3109 const Register z = rsi; 3110 #else 3111 const Register y = rcx; 3112 const Register z = r8; 3113 #endif 3114 assert_different_registers(crc, buf, len, a, j, k, l, y, z); 3115 3116 BLOCK_COMMENT("Entry:"); 3117 __ enter(); // required for proper stackwalking of RuntimeStub frame 3118 Label L_continue; 3119 3120 if (VM_Version::supports_sse4_1() && VM_Version::supports_avx512_vpclmulqdq() && 3121 VM_Version::supports_avx512bw() && 3122 VM_Version::supports_avx512vl()) { 3123 Label L_doSmall; 3124 3125 __ cmpl(len, 384); 3126 __ jcc(Assembler::lessEqual, L_doSmall); 3127 3128 __ lea(j, ExternalAddress(StubRoutines::x86::crc32c_table_avx512_addr())); 3129 __ kernel_crc32_avx512(crc, buf, len, j, l, k); 3130 3131 __ jmp(L_continue); 3132 3133 __ bind(L_doSmall); 3134 } 3135 #ifdef _WIN64 3136 __ push(y); 3137 __ push(z); 3138 #endif 3139 __ crc32c_ipl_alg2_alt2(crc, buf, len, 3140 a, j, k, 3141 l, y, z, 3142 c_farg0, c_farg1, c_farg2, 3143 is_pclmulqdq_supported); 3144 #ifdef _WIN64 3145 __ pop(z); 3146 __ pop(y); 3147 #endif 3148 3149 __ bind(L_continue); 3150 __ movl(rax, crc); 3151 __ vzeroupper(); 3152 __ leave(); // required for proper stackwalking of RuntimeStub frame 3153 __ ret(0); 3154 3155 return start; 3156 } 3157 3158 3159 /** 3160 * Arguments: 3161 * 3162 * Input: 3163 * c_rarg0 - x address 3164 * c_rarg1 - x length 3165 * c_rarg2 - y address 3166 * c_rarg3 - y length 3167 * not Win64 3168 * c_rarg4 - z address 3169 * Win64 3170 * rsp+40 - z address 3171 */ 3172 address StubGenerator::generate_multiplyToLen() { 3173 __ align(CodeEntryAlignment); 3174 StubGenStubId stub_id = StubGenStubId::multiplyToLen_id; 3175 StubCodeMark mark(this, stub_id); 3176 address start = __ pc(); 3177 3178 // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...) 3179 // Unix: rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...) 3180 const Register x = rdi; 3181 const Register xlen = rax; 3182 const Register y = rsi; 3183 const Register ylen = rcx; 3184 const Register z = r8; 3185 3186 // Next registers will be saved on stack in multiply_to_len(). 3187 const Register tmp0 = r11; 3188 const Register tmp1 = r12; 3189 const Register tmp2 = r13; 3190 const Register tmp3 = r14; 3191 const Register tmp4 = r15; 3192 const Register tmp5 = rbx; 3193 3194 BLOCK_COMMENT("Entry:"); 3195 __ enter(); // required for proper stackwalking of RuntimeStub frame 3196 3197 setup_arg_regs(4); // x => rdi, xlen => rsi, y => rdx 3198 // ylen => rcx, z => r8 3199 // r9 and r10 may be used to save non-volatile registers 3200 #ifdef _WIN64 3201 // last argument (#4) is on stack on Win64 3202 __ movptr(z, Address(rsp, 6 * wordSize)); 3203 #endif 3204 3205 __ movptr(xlen, rsi); 3206 __ movptr(y, rdx); 3207 __ multiply_to_len(x, xlen, y, ylen, z, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5); 3208 3209 restore_arg_regs(); 3210 3211 __ leave(); // required for proper stackwalking of RuntimeStub frame 3212 __ ret(0); 3213 3214 return start; 3215 } 3216 3217 /** 3218 * Arguments: 3219 * 3220 * Input: 3221 * c_rarg0 - obja address 3222 * c_rarg1 - objb address 3223 * c_rarg3 - length length 3224 * c_rarg4 - scale log2_array_indxscale 3225 * 3226 * Output: 3227 * rax - int >= mismatched index, < 0 bitwise complement of tail 3228 */ 3229 address StubGenerator::generate_vectorizedMismatch() { 3230 __ align(CodeEntryAlignment); 3231 StubGenStubId stub_id = StubGenStubId::vectorizedMismatch_id; 3232 StubCodeMark mark(this, stub_id); 3233 address start = __ pc(); 3234 3235 BLOCK_COMMENT("Entry:"); 3236 __ enter(); 3237 3238 #ifdef _WIN64 // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...) 3239 const Register scale = c_rarg0; //rcx, will exchange with r9 3240 const Register objb = c_rarg1; //rdx 3241 const Register length = c_rarg2; //r8 3242 const Register obja = c_rarg3; //r9 3243 __ xchgq(obja, scale); //now obja and scale contains the correct contents 3244 3245 const Register tmp1 = r10; 3246 const Register tmp2 = r11; 3247 #endif 3248 #ifndef _WIN64 // Unix: rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...) 3249 const Register obja = c_rarg0; //U:rdi 3250 const Register objb = c_rarg1; //U:rsi 3251 const Register length = c_rarg2; //U:rdx 3252 const Register scale = c_rarg3; //U:rcx 3253 const Register tmp1 = r8; 3254 const Register tmp2 = r9; 3255 #endif 3256 const Register result = rax; //return value 3257 const XMMRegister vec0 = xmm0; 3258 const XMMRegister vec1 = xmm1; 3259 const XMMRegister vec2 = xmm2; 3260 3261 __ vectorized_mismatch(obja, objb, length, scale, result, tmp1, tmp2, vec0, vec1, vec2); 3262 3263 __ vzeroupper(); 3264 __ leave(); 3265 __ ret(0); 3266 3267 return start; 3268 } 3269 3270 /** 3271 * Arguments: 3272 * 3273 // Input: 3274 // c_rarg0 - x address 3275 // c_rarg1 - x length 3276 // c_rarg2 - z address 3277 // c_rarg3 - z length 3278 * 3279 */ 3280 address StubGenerator::generate_squareToLen() { 3281 3282 __ align(CodeEntryAlignment); 3283 StubGenStubId stub_id = StubGenStubId::squareToLen_id; 3284 StubCodeMark mark(this, stub_id); 3285 address start = __ pc(); 3286 3287 // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...) 3288 // Unix: rdi, rsi, rdx, rcx (c_rarg0, c_rarg1, ...) 3289 const Register x = rdi; 3290 const Register len = rsi; 3291 const Register z = r8; 3292 const Register zlen = rcx; 3293 3294 const Register tmp1 = r12; 3295 const Register tmp2 = r13; 3296 const Register tmp3 = r14; 3297 const Register tmp4 = r15; 3298 const Register tmp5 = rbx; 3299 3300 BLOCK_COMMENT("Entry:"); 3301 __ enter(); // required for proper stackwalking of RuntimeStub frame 3302 3303 setup_arg_regs(4); // x => rdi, len => rsi, z => rdx 3304 // zlen => rcx 3305 // r9 and r10 may be used to save non-volatile registers 3306 __ movptr(r8, rdx); 3307 __ square_to_len(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, rdx, rax); 3308 3309 restore_arg_regs(); 3310 3311 __ leave(); // required for proper stackwalking of RuntimeStub frame 3312 __ ret(0); 3313 3314 return start; 3315 } 3316 3317 address StubGenerator::generate_method_entry_barrier() { 3318 __ align(CodeEntryAlignment); 3319 StubGenStubId stub_id = StubGenStubId::method_entry_barrier_id; 3320 StubCodeMark mark(this, stub_id); 3321 address start = __ pc(); 3322 3323 Label deoptimize_label; 3324 3325 __ push(-1); // cookie, this is used for writing the new rsp when deoptimizing 3326 3327 BLOCK_COMMENT("Entry:"); 3328 __ enter(); // save rbp 3329 3330 // save c_rarg0, because we want to use that value. 3331 // We could do without it but then we depend on the number of slots used by pusha 3332 __ push(c_rarg0); 3333 3334 __ lea(c_rarg0, Address(rsp, wordSize * 3)); // 1 for cookie, 1 for rbp, 1 for c_rarg0 - this should be the return address 3335 3336 __ pusha(); 3337 3338 // The method may have floats as arguments, and we must spill them before calling 3339 // the VM runtime. 3340 assert(Argument::n_float_register_parameters_j == 8, "Assumption"); 3341 const int xmm_size = wordSize * 2; 3342 const int xmm_spill_size = xmm_size * Argument::n_float_register_parameters_j; 3343 __ subptr(rsp, xmm_spill_size); 3344 __ movdqu(Address(rsp, xmm_size * 7), xmm7); 3345 __ movdqu(Address(rsp, xmm_size * 6), xmm6); 3346 __ movdqu(Address(rsp, xmm_size * 5), xmm5); 3347 __ movdqu(Address(rsp, xmm_size * 4), xmm4); 3348 __ movdqu(Address(rsp, xmm_size * 3), xmm3); 3349 __ movdqu(Address(rsp, xmm_size * 2), xmm2); 3350 __ movdqu(Address(rsp, xmm_size * 1), xmm1); 3351 __ movdqu(Address(rsp, xmm_size * 0), xmm0); 3352 3353 __ call_VM_leaf(CAST_FROM_FN_PTR(address, static_cast<int (*)(address*)>(BarrierSetNMethod::nmethod_stub_entry_barrier)), 1); 3354 3355 __ movdqu(xmm0, Address(rsp, xmm_size * 0)); 3356 __ movdqu(xmm1, Address(rsp, xmm_size * 1)); 3357 __ movdqu(xmm2, Address(rsp, xmm_size * 2)); 3358 __ movdqu(xmm3, Address(rsp, xmm_size * 3)); 3359 __ movdqu(xmm4, Address(rsp, xmm_size * 4)); 3360 __ movdqu(xmm5, Address(rsp, xmm_size * 5)); 3361 __ movdqu(xmm6, Address(rsp, xmm_size * 6)); 3362 __ movdqu(xmm7, Address(rsp, xmm_size * 7)); 3363 __ addptr(rsp, xmm_spill_size); 3364 3365 __ cmpl(rax, 1); // 1 means deoptimize 3366 __ jcc(Assembler::equal, deoptimize_label); 3367 3368 __ popa(); 3369 __ pop(c_rarg0); 3370 3371 __ leave(); 3372 3373 __ addptr(rsp, 1 * wordSize); // cookie 3374 __ ret(0); 3375 3376 3377 __ BIND(deoptimize_label); 3378 3379 __ popa(); 3380 __ pop(c_rarg0); 3381 3382 __ leave(); 3383 3384 // this can be taken out, but is good for verification purposes. getting a SIGSEGV 3385 // here while still having a correct stack is valuable 3386 __ testptr(rsp, Address(rsp, 0)); 3387 3388 __ movptr(rsp, Address(rsp, 0)); // new rsp was written in the barrier 3389 __ jmp(Address(rsp, -1 * wordSize)); // jmp target should be callers verified_entry_point 3390 3391 return start; 3392 } 3393 3394 /** 3395 * Arguments: 3396 * 3397 * Input: 3398 * c_rarg0 - out address 3399 * c_rarg1 - in address 3400 * c_rarg2 - offset 3401 * c_rarg3 - len 3402 * not Win64 3403 * c_rarg4 - k 3404 * Win64 3405 * rsp+40 - k 3406 */ 3407 address StubGenerator::generate_mulAdd() { 3408 __ align(CodeEntryAlignment); 3409 StubGenStubId stub_id = StubGenStubId::mulAdd_id; 3410 StubCodeMark mark(this, stub_id); 3411 address start = __ pc(); 3412 3413 // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...) 3414 // Unix: rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...) 3415 const Register out = rdi; 3416 const Register in = rsi; 3417 const Register offset = r11; 3418 const Register len = rcx; 3419 const Register k = r8; 3420 3421 // Next registers will be saved on stack in mul_add(). 3422 const Register tmp1 = r12; 3423 const Register tmp2 = r13; 3424 const Register tmp3 = r14; 3425 const Register tmp4 = r15; 3426 const Register tmp5 = rbx; 3427 3428 BLOCK_COMMENT("Entry:"); 3429 __ enter(); // required for proper stackwalking of RuntimeStub frame 3430 3431 setup_arg_regs(4); // out => rdi, in => rsi, offset => rdx 3432 // len => rcx, k => r8 3433 // r9 and r10 may be used to save non-volatile registers 3434 #ifdef _WIN64 3435 // last argument is on stack on Win64 3436 __ movl(k, Address(rsp, 6 * wordSize)); 3437 #endif 3438 __ movptr(r11, rdx); // move offset in rdx to offset(r11) 3439 __ mul_add(out, in, offset, len, k, tmp1, tmp2, tmp3, tmp4, tmp5, rdx, rax); 3440 3441 restore_arg_regs(); 3442 3443 __ leave(); // required for proper stackwalking of RuntimeStub frame 3444 __ ret(0); 3445 3446 return start; 3447 } 3448 3449 address StubGenerator::generate_bigIntegerRightShift() { 3450 __ align(CodeEntryAlignment); 3451 StubGenStubId stub_id = StubGenStubId::bigIntegerRightShiftWorker_id; 3452 StubCodeMark mark(this, stub_id); 3453 address start = __ pc(); 3454 3455 Label Shift512Loop, ShiftTwo, ShiftTwoLoop, ShiftOne, Exit; 3456 // For Unix, the arguments are as follows: rdi, rsi, rdx, rcx, r8. 3457 const Register newArr = rdi; 3458 const Register oldArr = rsi; 3459 const Register newIdx = rdx; 3460 const Register shiftCount = rcx; // It was intentional to have shiftCount in rcx since it is used implicitly for shift. 3461 const Register totalNumIter = r8; 3462 3463 // For windows, we use r9 and r10 as temps to save rdi and rsi. Thus we cannot allocate them for our temps. 3464 // For everything else, we prefer using r9 and r10 since we do not have to save them before use. 3465 const Register tmp1 = r11; // Caller save. 3466 const Register tmp2 = rax; // Caller save. 3467 const Register tmp3 = WIN64_ONLY(r12) NOT_WIN64(r9); // Windows: Callee save. Linux: Caller save. 3468 const Register tmp4 = WIN64_ONLY(r13) NOT_WIN64(r10); // Windows: Callee save. Linux: Caller save. 3469 const Register tmp5 = r14; // Callee save. 3470 const Register tmp6 = r15; 3471 3472 const XMMRegister x0 = xmm0; 3473 const XMMRegister x1 = xmm1; 3474 const XMMRegister x2 = xmm2; 3475 3476 BLOCK_COMMENT("Entry:"); 3477 __ enter(); // required for proper stackwalking of RuntimeStub frame 3478 3479 #ifdef _WIN64 3480 setup_arg_regs(4); 3481 // For windows, since last argument is on stack, we need to move it to the appropriate register. 3482 __ movl(totalNumIter, Address(rsp, 6 * wordSize)); 3483 // Save callee save registers. 3484 __ push(tmp3); 3485 __ push(tmp4); 3486 #endif 3487 __ push(tmp5); 3488 3489 // Rename temps used throughout the code. 3490 const Register idx = tmp1; 3491 const Register nIdx = tmp2; 3492 3493 __ xorl(idx, idx); 3494 3495 // Start right shift from end of the array. 3496 // For example, if #iteration = 4 and newIdx = 1 3497 // then dest[4] = src[4] >> shiftCount | src[3] <<< (shiftCount - 32) 3498 // if #iteration = 4 and newIdx = 0 3499 // then dest[3] = src[4] >> shiftCount | src[3] <<< (shiftCount - 32) 3500 __ movl(idx, totalNumIter); 3501 __ movl(nIdx, idx); 3502 __ addl(nIdx, newIdx); 3503 3504 // If vectorization is enabled, check if the number of iterations is at least 64 3505 // If not, then go to ShifTwo processing 2 iterations 3506 if (VM_Version::supports_avx512_vbmi2()) { 3507 __ cmpptr(totalNumIter, (AVX3Threshold/64)); 3508 __ jcc(Assembler::less, ShiftTwo); 3509 3510 if (AVX3Threshold < 16 * 64) { 3511 __ cmpl(totalNumIter, 16); 3512 __ jcc(Assembler::less, ShiftTwo); 3513 } 3514 __ evpbroadcastd(x0, shiftCount, Assembler::AVX_512bit); 3515 __ subl(idx, 16); 3516 __ subl(nIdx, 16); 3517 __ BIND(Shift512Loop); 3518 __ evmovdqul(x2, Address(oldArr, idx, Address::times_4, 4), Assembler::AVX_512bit); 3519 __ evmovdqul(x1, Address(oldArr, idx, Address::times_4), Assembler::AVX_512bit); 3520 __ vpshrdvd(x2, x1, x0, Assembler::AVX_512bit); 3521 __ evmovdqul(Address(newArr, nIdx, Address::times_4), x2, Assembler::AVX_512bit); 3522 __ subl(nIdx, 16); 3523 __ subl(idx, 16); 3524 __ jcc(Assembler::greaterEqual, Shift512Loop); 3525 __ addl(idx, 16); 3526 __ addl(nIdx, 16); 3527 } 3528 __ BIND(ShiftTwo); 3529 __ cmpl(idx, 2); 3530 __ jcc(Assembler::less, ShiftOne); 3531 __ subl(idx, 2); 3532 __ subl(nIdx, 2); 3533 __ BIND(ShiftTwoLoop); 3534 __ movl(tmp5, Address(oldArr, idx, Address::times_4, 8)); 3535 __ movl(tmp4, Address(oldArr, idx, Address::times_4, 4)); 3536 __ movl(tmp3, Address(oldArr, idx, Address::times_4)); 3537 __ shrdl(tmp5, tmp4); 3538 __ shrdl(tmp4, tmp3); 3539 __ movl(Address(newArr, nIdx, Address::times_4, 4), tmp5); 3540 __ movl(Address(newArr, nIdx, Address::times_4), tmp4); 3541 __ subl(nIdx, 2); 3542 __ subl(idx, 2); 3543 __ jcc(Assembler::greaterEqual, ShiftTwoLoop); 3544 __ addl(idx, 2); 3545 __ addl(nIdx, 2); 3546 3547 // Do the last iteration 3548 __ BIND(ShiftOne); 3549 __ cmpl(idx, 1); 3550 __ jcc(Assembler::less, Exit); 3551 __ subl(idx, 1); 3552 __ subl(nIdx, 1); 3553 __ movl(tmp4, Address(oldArr, idx, Address::times_4, 4)); 3554 __ movl(tmp3, Address(oldArr, idx, Address::times_4)); 3555 __ shrdl(tmp4, tmp3); 3556 __ movl(Address(newArr, nIdx, Address::times_4), tmp4); 3557 __ BIND(Exit); 3558 __ vzeroupper(); 3559 // Restore callee save registers. 3560 __ pop(tmp5); 3561 #ifdef _WIN64 3562 __ pop(tmp4); 3563 __ pop(tmp3); 3564 restore_arg_regs(); 3565 #endif 3566 __ leave(); // required for proper stackwalking of RuntimeStub frame 3567 __ ret(0); 3568 3569 return start; 3570 } 3571 3572 /** 3573 * Arguments: 3574 * 3575 * Input: 3576 * c_rarg0 - newArr address 3577 * c_rarg1 - oldArr address 3578 * c_rarg2 - newIdx 3579 * c_rarg3 - shiftCount 3580 * not Win64 3581 * c_rarg4 - numIter 3582 * Win64 3583 * rsp40 - numIter 3584 */ 3585 address StubGenerator::generate_bigIntegerLeftShift() { 3586 __ align(CodeEntryAlignment); 3587 StubGenStubId stub_id = StubGenStubId::bigIntegerLeftShiftWorker_id; 3588 StubCodeMark mark(this, stub_id); 3589 address start = __ pc(); 3590 3591 Label Shift512Loop, ShiftTwo, ShiftTwoLoop, ShiftOne, Exit; 3592 // For Unix, the arguments are as follows: rdi, rsi, rdx, rcx, r8. 3593 const Register newArr = rdi; 3594 const Register oldArr = rsi; 3595 const Register newIdx = rdx; 3596 const Register shiftCount = rcx; // It was intentional to have shiftCount in rcx since it is used implicitly for shift. 3597 const Register totalNumIter = r8; 3598 // For windows, we use r9 and r10 as temps to save rdi and rsi. Thus we cannot allocate them for our temps. 3599 // For everything else, we prefer using r9 and r10 since we do not have to save them before use. 3600 const Register tmp1 = r11; // Caller save. 3601 const Register tmp2 = rax; // Caller save. 3602 const Register tmp3 = WIN64_ONLY(r12) NOT_WIN64(r9); // Windows: Callee save. Linux: Caller save. 3603 const Register tmp4 = WIN64_ONLY(r13) NOT_WIN64(r10); // Windows: Callee save. Linux: Caller save. 3604 const Register tmp5 = r14; // Callee save. 3605 3606 const XMMRegister x0 = xmm0; 3607 const XMMRegister x1 = xmm1; 3608 const XMMRegister x2 = xmm2; 3609 BLOCK_COMMENT("Entry:"); 3610 __ enter(); // required for proper stackwalking of RuntimeStub frame 3611 3612 #ifdef _WIN64 3613 setup_arg_regs(4); 3614 // For windows, since last argument is on stack, we need to move it to the appropriate register. 3615 __ movl(totalNumIter, Address(rsp, 6 * wordSize)); 3616 // Save callee save registers. 3617 __ push(tmp3); 3618 __ push(tmp4); 3619 #endif 3620 __ push(tmp5); 3621 3622 // Rename temps used throughout the code 3623 const Register idx = tmp1; 3624 const Register numIterTmp = tmp2; 3625 3626 // Start idx from zero. 3627 __ xorl(idx, idx); 3628 // Compute interior pointer for new array. We do this so that we can use same index for both old and new arrays. 3629 __ lea(newArr, Address(newArr, newIdx, Address::times_4)); 3630 __ movl(numIterTmp, totalNumIter); 3631 3632 // If vectorization is enabled, check if the number of iterations is at least 64 3633 // If not, then go to ShiftTwo shifting two numbers at a time 3634 if (VM_Version::supports_avx512_vbmi2()) { 3635 __ cmpl(totalNumIter, (AVX3Threshold/64)); 3636 __ jcc(Assembler::less, ShiftTwo); 3637 3638 if (AVX3Threshold < 16 * 64) { 3639 __ cmpl(totalNumIter, 16); 3640 __ jcc(Assembler::less, ShiftTwo); 3641 } 3642 __ evpbroadcastd(x0, shiftCount, Assembler::AVX_512bit); 3643 __ subl(numIterTmp, 16); 3644 __ BIND(Shift512Loop); 3645 __ evmovdqul(x1, Address(oldArr, idx, Address::times_4), Assembler::AVX_512bit); 3646 __ evmovdqul(x2, Address(oldArr, idx, Address::times_4, 0x4), Assembler::AVX_512bit); 3647 __ vpshldvd(x1, x2, x0, Assembler::AVX_512bit); 3648 __ evmovdqul(Address(newArr, idx, Address::times_4), x1, Assembler::AVX_512bit); 3649 __ addl(idx, 16); 3650 __ subl(numIterTmp, 16); 3651 __ jcc(Assembler::greaterEqual, Shift512Loop); 3652 __ addl(numIterTmp, 16); 3653 } 3654 __ BIND(ShiftTwo); 3655 __ cmpl(totalNumIter, 1); 3656 __ jcc(Assembler::less, Exit); 3657 __ movl(tmp3, Address(oldArr, idx, Address::times_4)); 3658 __ subl(numIterTmp, 2); 3659 __ jcc(Assembler::less, ShiftOne); 3660 3661 __ BIND(ShiftTwoLoop); 3662 __ movl(tmp4, Address(oldArr, idx, Address::times_4, 0x4)); 3663 __ movl(tmp5, Address(oldArr, idx, Address::times_4, 0x8)); 3664 __ shldl(tmp3, tmp4); 3665 __ shldl(tmp4, tmp5); 3666 __ movl(Address(newArr, idx, Address::times_4), tmp3); 3667 __ movl(Address(newArr, idx, Address::times_4, 0x4), tmp4); 3668 __ movl(tmp3, tmp5); 3669 __ addl(idx, 2); 3670 __ subl(numIterTmp, 2); 3671 __ jcc(Assembler::greaterEqual, ShiftTwoLoop); 3672 3673 // Do the last iteration 3674 __ BIND(ShiftOne); 3675 __ addl(numIterTmp, 2); 3676 __ cmpl(numIterTmp, 1); 3677 __ jcc(Assembler::less, Exit); 3678 __ movl(tmp4, Address(oldArr, idx, Address::times_4, 0x4)); 3679 __ shldl(tmp3, tmp4); 3680 __ movl(Address(newArr, idx, Address::times_4), tmp3); 3681 3682 __ BIND(Exit); 3683 __ vzeroupper(); 3684 // Restore callee save registers. 3685 __ pop(tmp5); 3686 #ifdef _WIN64 3687 __ pop(tmp4); 3688 __ pop(tmp3); 3689 restore_arg_regs(); 3690 #endif 3691 __ leave(); // required for proper stackwalking of RuntimeStub frame 3692 __ ret(0); 3693 3694 return start; 3695 } 3696 3697 void StubGenerator::generate_libm_stubs() { 3698 if (UseLibmIntrinsic && InlineIntrinsics) { 3699 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dsin)) { 3700 StubRoutines::_dsin = generate_libmSin(); // from stubGenerator_x86_64_sin.cpp 3701 } 3702 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dcos)) { 3703 StubRoutines::_dcos = generate_libmCos(); // from stubGenerator_x86_64_cos.cpp 3704 } 3705 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dtan)) { 3706 StubRoutines::_dtan = generate_libmTan(); // from stubGenerator_x86_64_tan.cpp 3707 } 3708 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dtanh)) { 3709 StubRoutines::_dtanh = generate_libmTanh(); // from stubGenerator_x86_64_tanh.cpp 3710 } 3711 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dexp)) { 3712 StubRoutines::_dexp = generate_libmExp(); // from stubGenerator_x86_64_exp.cpp 3713 } 3714 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dpow)) { 3715 StubRoutines::_dpow = generate_libmPow(); // from stubGenerator_x86_64_pow.cpp 3716 } 3717 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dlog)) { 3718 StubRoutines::_dlog = generate_libmLog(); // from stubGenerator_x86_64_log.cpp 3719 } 3720 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dlog10)) { 3721 StubRoutines::_dlog10 = generate_libmLog10(); // from stubGenerator_x86_64_log.cpp 3722 } 3723 } 3724 } 3725 3726 /** 3727 * Arguments: 3728 * 3729 * Input: 3730 * c_rarg0 - float16 jshort 3731 * 3732 * Output: 3733 * xmm0 - float 3734 */ 3735 address StubGenerator::generate_float16ToFloat() { 3736 StubGenStubId stub_id = StubGenStubId::hf2f_id; 3737 StubCodeMark mark(this, stub_id); 3738 3739 address start = __ pc(); 3740 3741 BLOCK_COMMENT("Entry:"); 3742 // No need for RuntimeStub frame since it is called only during JIT compilation 3743 3744 // Load value into xmm0 and convert 3745 __ flt16_to_flt(xmm0, c_rarg0); 3746 3747 __ ret(0); 3748 3749 return start; 3750 } 3751 3752 /** 3753 * Arguments: 3754 * 3755 * Input: 3756 * xmm0 - float 3757 * 3758 * Output: 3759 * rax - float16 jshort 3760 */ 3761 address StubGenerator::generate_floatToFloat16() { 3762 StubGenStubId stub_id = StubGenStubId::f2hf_id; 3763 StubCodeMark mark(this, stub_id); 3764 3765 address start = __ pc(); 3766 3767 BLOCK_COMMENT("Entry:"); 3768 // No need for RuntimeStub frame since it is called only during JIT compilation 3769 3770 // Convert and put result into rax 3771 __ flt_to_flt16(rax, xmm0, xmm1); 3772 3773 __ ret(0); 3774 3775 return start; 3776 } 3777 3778 address StubGenerator::generate_cont_thaw(StubGenStubId stub_id) { 3779 if (!Continuations::enabled()) return nullptr; 3780 3781 bool return_barrier; 3782 bool return_barrier_exception; 3783 Continuation::thaw_kind kind; 3784 3785 switch (stub_id) { 3786 case cont_thaw_id: 3787 return_barrier = false; 3788 return_barrier_exception = false; 3789 kind = Continuation::thaw_top; 3790 break; 3791 case cont_returnBarrier_id: 3792 return_barrier = true; 3793 return_barrier_exception = false; 3794 kind = Continuation::thaw_return_barrier; 3795 break; 3796 case cont_returnBarrierExc_id: 3797 return_barrier = true; 3798 return_barrier_exception = true; 3799 kind = Continuation::thaw_return_barrier_exception; 3800 break; 3801 default: 3802 ShouldNotReachHere(); 3803 } 3804 StubCodeMark mark(this, stub_id); 3805 address start = __ pc(); 3806 3807 // TODO: Handle Valhalla return types. May require generating different return barriers. 3808 3809 if (!return_barrier) { 3810 // Pop return address. If we don't do this, we get a drift, 3811 // where the bottom-most frozen frame continuously grows. 3812 __ pop(c_rarg3); 3813 } else { 3814 __ movptr(rsp, Address(r15_thread, JavaThread::cont_entry_offset())); 3815 } 3816 3817 #ifdef ASSERT 3818 { 3819 Label L_good_sp; 3820 __ cmpptr(rsp, Address(r15_thread, JavaThread::cont_entry_offset())); 3821 __ jcc(Assembler::equal, L_good_sp); 3822 __ stop("Incorrect rsp at thaw entry"); 3823 __ BIND(L_good_sp); 3824 } 3825 #endif // ASSERT 3826 3827 if (return_barrier) { 3828 // Preserve possible return value from a method returning to the return barrier. 3829 __ push(rax); 3830 __ push_d(xmm0); 3831 } 3832 3833 __ movptr(c_rarg0, r15_thread); 3834 __ movptr(c_rarg1, (return_barrier ? 1 : 0)); 3835 __ call_VM_leaf(CAST_FROM_FN_PTR(address, Continuation::prepare_thaw), 2); 3836 __ movptr(rbx, rax); 3837 3838 if (return_barrier) { 3839 // Restore return value from a method returning to the return barrier. 3840 // No safepoint in the call to thaw, so even an oop return value should be OK. 3841 __ pop_d(xmm0); 3842 __ pop(rax); 3843 } 3844 3845 #ifdef ASSERT 3846 { 3847 Label L_good_sp; 3848 __ cmpptr(rsp, Address(r15_thread, JavaThread::cont_entry_offset())); 3849 __ jcc(Assembler::equal, L_good_sp); 3850 __ stop("Incorrect rsp after prepare thaw"); 3851 __ BIND(L_good_sp); 3852 } 3853 #endif // ASSERT 3854 3855 // rbx contains the size of the frames to thaw, 0 if overflow or no more frames 3856 Label L_thaw_success; 3857 __ testptr(rbx, rbx); 3858 __ jccb(Assembler::notZero, L_thaw_success); 3859 __ jump(RuntimeAddress(SharedRuntime::throw_StackOverflowError_entry())); 3860 __ bind(L_thaw_success); 3861 3862 // Make room for the thawed frames and align the stack. 3863 __ subptr(rsp, rbx); 3864 __ andptr(rsp, -StackAlignmentInBytes); 3865 3866 if (return_barrier) { 3867 // Preserve possible return value from a method returning to the return barrier. (Again.) 3868 __ push(rax); 3869 __ push_d(xmm0); 3870 } 3871 3872 // If we want, we can templatize thaw by kind, and have three different entries. 3873 __ movptr(c_rarg0, r15_thread); 3874 __ movptr(c_rarg1, kind); 3875 __ call_VM_leaf(Continuation::thaw_entry(), 2); 3876 __ movptr(rbx, rax); 3877 3878 if (return_barrier) { 3879 // Restore return value from a method returning to the return barrier. (Again.) 3880 // No safepoint in the call to thaw, so even an oop return value should be OK. 3881 __ pop_d(xmm0); 3882 __ pop(rax); 3883 } else { 3884 // Return 0 (success) from doYield. 3885 __ xorptr(rax, rax); 3886 } 3887 3888 // After thawing, rbx is the SP of the yielding frame. 3889 // Move there, and then to saved RBP slot. 3890 __ movptr(rsp, rbx); 3891 __ subptr(rsp, 2*wordSize); 3892 3893 if (return_barrier_exception) { 3894 __ movptr(c_rarg0, r15_thread); 3895 __ movptr(c_rarg1, Address(rsp, wordSize)); // return address 3896 3897 // rax still holds the original exception oop, save it before the call 3898 __ push(rax); 3899 3900 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), 2); 3901 __ movptr(rbx, rax); 3902 3903 // Continue at exception handler: 3904 // rax: exception oop 3905 // rbx: exception handler 3906 // rdx: exception pc 3907 __ pop(rax); 3908 __ verify_oop(rax); 3909 __ pop(rbp); // pop out RBP here too 3910 __ pop(rdx); 3911 __ jmp(rbx); 3912 } else { 3913 // We are "returning" into the topmost thawed frame; see Thaw::push_return_frame 3914 __ pop(rbp); 3915 __ ret(0); 3916 } 3917 3918 return start; 3919 } 3920 3921 address StubGenerator::generate_cont_thaw() { 3922 return generate_cont_thaw(StubGenStubId::cont_thaw_id); 3923 } 3924 3925 // TODO: will probably need multiple return barriers depending on return type 3926 3927 address StubGenerator::generate_cont_returnBarrier() { 3928 return generate_cont_thaw(StubGenStubId::cont_returnBarrier_id); 3929 } 3930 3931 address StubGenerator::generate_cont_returnBarrier_exception() { 3932 return generate_cont_thaw(StubGenStubId::cont_returnBarrierExc_id); 3933 } 3934 3935 address StubGenerator::generate_cont_preempt_stub() { 3936 if (!Continuations::enabled()) return nullptr; 3937 StubGenStubId stub_id = StubGenStubId::cont_preempt_id; 3938 StubCodeMark mark(this, stub_id); 3939 address start = __ pc(); 3940 3941 __ reset_last_Java_frame(true); 3942 3943 // Set rsp to enterSpecial frame, i.e. remove all frames copied into the heap. 3944 __ movptr(rsp, Address(r15_thread, JavaThread::cont_entry_offset())); 3945 3946 Label preemption_cancelled; 3947 __ movbool(rscratch1, Address(r15_thread, JavaThread::preemption_cancelled_offset())); 3948 __ testbool(rscratch1); 3949 __ jcc(Assembler::notZero, preemption_cancelled); 3950 3951 // Remove enterSpecial frame from the stack and return to Continuation.run() to unmount. 3952 SharedRuntime::continuation_enter_cleanup(_masm); 3953 __ pop(rbp); 3954 __ ret(0); 3955 3956 // We acquired the monitor after freezing the frames so call thaw to continue execution. 3957 __ bind(preemption_cancelled); 3958 __ movbool(Address(r15_thread, JavaThread::preemption_cancelled_offset()), false); 3959 __ lea(rbp, Address(rsp, checked_cast<int32_t>(ContinuationEntry::size()))); 3960 __ movptr(rscratch1, ExternalAddress(ContinuationEntry::thaw_call_pc_address())); 3961 __ jmp(rscratch1); 3962 3963 return start; 3964 } 3965 3966 // exception handler for upcall stubs 3967 address StubGenerator::generate_upcall_stub_exception_handler() { 3968 StubGenStubId stub_id = StubGenStubId::upcall_stub_exception_handler_id; 3969 StubCodeMark mark(this, stub_id); 3970 address start = __ pc(); 3971 3972 // native caller has no idea how to handle exceptions 3973 // we just crash here. Up to callee to catch exceptions. 3974 __ verify_oop(rax); 3975 __ vzeroupper(); 3976 __ mov(c_rarg0, rax); 3977 __ andptr(rsp, -StackAlignmentInBytes); // align stack as required by ABI 3978 __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows 3979 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, UpcallLinker::handle_uncaught_exception))); 3980 __ should_not_reach_here(); 3981 3982 return start; 3983 } 3984 3985 // load Method* target of MethodHandle 3986 // j_rarg0 = jobject receiver 3987 // rbx = result 3988 address StubGenerator::generate_upcall_stub_load_target() { 3989 StubGenStubId stub_id = StubGenStubId::upcall_stub_load_target_id; 3990 StubCodeMark mark(this, stub_id); 3991 address start = __ pc(); 3992 3993 __ resolve_global_jobject(j_rarg0, r15_thread, rscratch1); 3994 // Load target method from receiver 3995 __ load_heap_oop(rbx, Address(j_rarg0, java_lang_invoke_MethodHandle::form_offset()), rscratch1); 3996 __ load_heap_oop(rbx, Address(rbx, java_lang_invoke_LambdaForm::vmentry_offset()), rscratch1); 3997 __ load_heap_oop(rbx, Address(rbx, java_lang_invoke_MemberName::method_offset()), rscratch1); 3998 __ access_load_at(T_ADDRESS, IN_HEAP, rbx, 3999 Address(rbx, java_lang_invoke_ResolvedMethodName::vmtarget_offset()), 4000 noreg, noreg); 4001 __ movptr(Address(r15_thread, JavaThread::callee_target_offset()), rbx); // just in case callee is deoptimized 4002 4003 __ ret(0); 4004 4005 return start; 4006 } 4007 4008 void StubGenerator::generate_lookup_secondary_supers_table_stub() { 4009 StubGenStubId stub_id = StubGenStubId::lookup_secondary_supers_table_id; 4010 StubCodeMark mark(this, stub_id); 4011 4012 const Register 4013 r_super_klass = rax, 4014 r_sub_klass = rsi, 4015 result = rdi; 4016 4017 for (int slot = 0; slot < Klass::SECONDARY_SUPERS_TABLE_SIZE; slot++) { 4018 StubRoutines::_lookup_secondary_supers_table_stubs[slot] = __ pc(); 4019 __ lookup_secondary_supers_table_const(r_sub_klass, r_super_klass, 4020 rdx, rcx, rbx, r11, // temps 4021 result, 4022 slot); 4023 __ ret(0); 4024 } 4025 } 4026 4027 // Slow path implementation for UseSecondarySupersTable. 4028 address StubGenerator::generate_lookup_secondary_supers_table_slow_path_stub() { 4029 StubGenStubId stub_id = StubGenStubId::lookup_secondary_supers_table_slow_path_id; 4030 StubCodeMark mark(this, stub_id); 4031 4032 address start = __ pc(); 4033 4034 const Register 4035 r_super_klass = rax, 4036 r_array_base = rbx, 4037 r_array_index = rdx, 4038 r_sub_klass = rsi, 4039 r_bitmap = r11, 4040 result = rdi; 4041 4042 Label L_success; 4043 __ lookup_secondary_supers_table_slow_path(r_super_klass, r_array_base, r_array_index, r_bitmap, 4044 rcx, rdi, // temps 4045 &L_success); 4046 // bind(L_failure); 4047 __ movl(result, 1); 4048 __ ret(0); 4049 4050 __ bind(L_success); 4051 __ movl(result, 0); 4052 __ ret(0); 4053 4054 return start; 4055 } 4056 4057 void StubGenerator::create_control_words() { 4058 // Round to nearest, 64-bit mode, exceptions masked, flags specialized 4059 StubRoutines::x86::_mxcsr_std = EnableX86ECoreOpts ? 0x1FBF : 0x1F80; 4060 // Round to zero, 64-bit mode, exceptions masked, flags specialized 4061 StubRoutines::x86::_mxcsr_rz = EnableX86ECoreOpts ? 0x7FBF : 0x7F80; 4062 } 4063 4064 // Initialization 4065 void StubGenerator::generate_initial_stubs() { 4066 // Generates all stubs and initializes the entry points 4067 4068 // This platform-specific settings are needed by generate_call_stub() 4069 create_control_words(); 4070 4071 // Initialize table for unsafe copy memeory check. 4072 if (UnsafeMemoryAccess::_table == nullptr) { 4073 UnsafeMemoryAccess::create_table(16 + 4); // 16 for copyMemory; 4 for setMemory 4074 } 4075 4076 // entry points that exist in all platforms Note: This is code 4077 // that could be shared among different platforms - however the 4078 // benefit seems to be smaller than the disadvantage of having a 4079 // much more complicated generator structure. See also comment in 4080 // stubRoutines.hpp. 4081 4082 StubRoutines::_forward_exception_entry = generate_forward_exception(); 4083 4084 // Generate these first because they are called from other stubs 4085 if (InlineTypeReturnedAsFields) { 4086 StubRoutines::_load_inline_type_fields_in_regs = 4087 generate_return_value_stub(CAST_FROM_FN_PTR(address, SharedRuntime::load_inline_type_fields_in_regs), 4088 "load_inline_type_fields_in_regs", false); 4089 StubRoutines::_store_inline_type_fields_to_buf = 4090 generate_return_value_stub(CAST_FROM_FN_PTR(address, SharedRuntime::store_inline_type_fields_to_buf), 4091 "store_inline_type_fields_to_buf", true); 4092 } 4093 4094 StubRoutines::_call_stub_entry = 4095 generate_call_stub(StubRoutines::_call_stub_return_address); 4096 4097 // is referenced by megamorphic call 4098 StubRoutines::_catch_exception_entry = generate_catch_exception(); 4099 4100 // atomic calls 4101 StubRoutines::_fence_entry = generate_orderaccess_fence(); 4102 4103 // platform dependent 4104 StubRoutines::x86::_get_previous_sp_entry = generate_get_previous_sp(); 4105 4106 StubRoutines::x86::_verify_mxcsr_entry = generate_verify_mxcsr(); 4107 4108 StubRoutines::x86::_f2i_fixup = generate_f2i_fixup(); 4109 StubRoutines::x86::_f2l_fixup = generate_f2l_fixup(); 4110 StubRoutines::x86::_d2i_fixup = generate_d2i_fixup(); 4111 StubRoutines::x86::_d2l_fixup = generate_d2l_fixup(); 4112 4113 StubRoutines::x86::_float_sign_mask = generate_fp_mask(StubGenStubId::float_sign_mask_id, 0x7FFFFFFF7FFFFFFF); 4114 StubRoutines::x86::_float_sign_flip = generate_fp_mask(StubGenStubId::float_sign_flip_id, 0x8000000080000000); 4115 StubRoutines::x86::_double_sign_mask = generate_fp_mask(StubGenStubId::double_sign_mask_id, 0x7FFFFFFFFFFFFFFF); 4116 StubRoutines::x86::_double_sign_flip = generate_fp_mask(StubGenStubId::double_sign_flip_id, 0x8000000000000000); 4117 4118 if (UseCRC32Intrinsics) { 4119 // set table address before stub generation which use it 4120 StubRoutines::_crc_table_adr = (address)StubRoutines::x86::_crc_table; 4121 StubRoutines::_updateBytesCRC32 = generate_updateBytesCRC32(); 4122 } 4123 4124 if (UseCRC32CIntrinsics) { 4125 bool supports_clmul = VM_Version::supports_clmul(); 4126 StubRoutines::x86::generate_CRC32C_table(supports_clmul); 4127 StubRoutines::_crc32c_table_addr = (address)StubRoutines::x86::_crc32c_table; 4128 StubRoutines::_updateBytesCRC32C = generate_updateBytesCRC32C(supports_clmul); 4129 } 4130 4131 if (VM_Version::supports_float16()) { 4132 // For results consistency both intrinsics should be enabled. 4133 // vmIntrinsics checks InlineIntrinsics flag, no need to check it here. 4134 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_float16ToFloat) && 4135 vmIntrinsics::is_intrinsic_available(vmIntrinsics::_floatToFloat16)) { 4136 StubRoutines::_hf2f = generate_float16ToFloat(); 4137 StubRoutines::_f2hf = generate_floatToFloat16(); 4138 } 4139 } 4140 4141 generate_libm_stubs(); 4142 4143 StubRoutines::_fmod = generate_libmFmod(); // from stubGenerator_x86_64_fmod.cpp 4144 } 4145 4146 // Call here from the interpreter or compiled code to either load 4147 // multiple returned values from the inline type instance being 4148 // returned to registers or to store returned values to a newly 4149 // allocated inline type instance. 4150 // Register is a class, but it would be assigned numerical value. 4151 // "0" is assigned for xmm0. Thus we need to ignore -Wnonnull. 4152 PRAGMA_DIAG_PUSH 4153 PRAGMA_NONNULL_IGNORED 4154 address StubGenerator::generate_return_value_stub(address destination, const char* name, bool has_res) { 4155 // We need to save all registers the calling convention may use so 4156 // the runtime calls read or update those registers. This needs to 4157 // be in sync with SharedRuntime::java_return_convention(). 4158 enum layout { 4159 pad_off = frame::arg_reg_save_area_bytes/BytesPerInt, pad_off_2, 4160 rax_off, rax_off_2, 4161 j_rarg5_off, j_rarg5_2, 4162 j_rarg4_off, j_rarg4_2, 4163 j_rarg3_off, j_rarg3_2, 4164 j_rarg2_off, j_rarg2_2, 4165 j_rarg1_off, j_rarg1_2, 4166 j_rarg0_off, j_rarg0_2, 4167 j_farg0_off, j_farg0_2, 4168 j_farg1_off, j_farg1_2, 4169 j_farg2_off, j_farg2_2, 4170 j_farg3_off, j_farg3_2, 4171 j_farg4_off, j_farg4_2, 4172 j_farg5_off, j_farg5_2, 4173 j_farg6_off, j_farg6_2, 4174 j_farg7_off, j_farg7_2, 4175 rbp_off, rbp_off_2, 4176 return_off, return_off_2, 4177 4178 framesize 4179 }; 4180 4181 CodeBuffer buffer(name, 1000, 512); 4182 MacroAssembler* _masm = new MacroAssembler(&buffer); 4183 4184 int frame_size_in_bytes = align_up(framesize*BytesPerInt, 16); 4185 assert(frame_size_in_bytes == framesize*BytesPerInt, "misaligned"); 4186 int frame_size_in_slots = frame_size_in_bytes / BytesPerInt; 4187 int frame_size_in_words = frame_size_in_bytes / wordSize; 4188 4189 OopMapSet *oop_maps = new OopMapSet(); 4190 OopMap* map = new OopMap(frame_size_in_slots, 0); 4191 4192 map->set_callee_saved(VMRegImpl::stack2reg(rax_off), rax->as_VMReg()); 4193 map->set_callee_saved(VMRegImpl::stack2reg(j_rarg5_off), j_rarg5->as_VMReg()); 4194 map->set_callee_saved(VMRegImpl::stack2reg(j_rarg4_off), j_rarg4->as_VMReg()); 4195 map->set_callee_saved(VMRegImpl::stack2reg(j_rarg3_off), j_rarg3->as_VMReg()); 4196 map->set_callee_saved(VMRegImpl::stack2reg(j_rarg2_off), j_rarg2->as_VMReg()); 4197 map->set_callee_saved(VMRegImpl::stack2reg(j_rarg1_off), j_rarg1->as_VMReg()); 4198 map->set_callee_saved(VMRegImpl::stack2reg(j_rarg0_off), j_rarg0->as_VMReg()); 4199 map->set_callee_saved(VMRegImpl::stack2reg(j_farg0_off), j_farg0->as_VMReg()); 4200 map->set_callee_saved(VMRegImpl::stack2reg(j_farg1_off), j_farg1->as_VMReg()); 4201 map->set_callee_saved(VMRegImpl::stack2reg(j_farg2_off), j_farg2->as_VMReg()); 4202 map->set_callee_saved(VMRegImpl::stack2reg(j_farg3_off), j_farg3->as_VMReg()); 4203 map->set_callee_saved(VMRegImpl::stack2reg(j_farg4_off), j_farg4->as_VMReg()); 4204 map->set_callee_saved(VMRegImpl::stack2reg(j_farg5_off), j_farg5->as_VMReg()); 4205 map->set_callee_saved(VMRegImpl::stack2reg(j_farg6_off), j_farg6->as_VMReg()); 4206 map->set_callee_saved(VMRegImpl::stack2reg(j_farg7_off), j_farg7->as_VMReg()); 4207 4208 int start = __ offset(); 4209 4210 __ subptr(rsp, frame_size_in_bytes - 8 /* return address*/); 4211 4212 __ movptr(Address(rsp, rbp_off * BytesPerInt), rbp); 4213 __ movdbl(Address(rsp, j_farg7_off * BytesPerInt), j_farg7); 4214 __ movdbl(Address(rsp, j_farg6_off * BytesPerInt), j_farg6); 4215 __ movdbl(Address(rsp, j_farg5_off * BytesPerInt), j_farg5); 4216 __ movdbl(Address(rsp, j_farg4_off * BytesPerInt), j_farg4); 4217 __ movdbl(Address(rsp, j_farg3_off * BytesPerInt), j_farg3); 4218 __ movdbl(Address(rsp, j_farg2_off * BytesPerInt), j_farg2); 4219 __ movdbl(Address(rsp, j_farg1_off * BytesPerInt), j_farg1); 4220 __ movdbl(Address(rsp, j_farg0_off * BytesPerInt), j_farg0); 4221 4222 __ movptr(Address(rsp, j_rarg0_off * BytesPerInt), j_rarg0); 4223 __ movptr(Address(rsp, j_rarg1_off * BytesPerInt), j_rarg1); 4224 __ movptr(Address(rsp, j_rarg2_off * BytesPerInt), j_rarg2); 4225 __ movptr(Address(rsp, j_rarg3_off * BytesPerInt), j_rarg3); 4226 __ movptr(Address(rsp, j_rarg4_off * BytesPerInt), j_rarg4); 4227 __ movptr(Address(rsp, j_rarg5_off * BytesPerInt), j_rarg5); 4228 __ movptr(Address(rsp, rax_off * BytesPerInt), rax); 4229 4230 int frame_complete = __ offset(); 4231 4232 __ set_last_Java_frame(noreg, noreg, nullptr, rscratch1); 4233 4234 __ mov(c_rarg0, r15_thread); 4235 __ mov(c_rarg1, rax); 4236 4237 __ call(RuntimeAddress(destination)); 4238 4239 // Set an oopmap for the call site. 4240 4241 oop_maps->add_gc_map( __ offset() - start, map); 4242 4243 // clear last_Java_sp 4244 __ reset_last_Java_frame(false); 4245 4246 __ movptr(rbp, Address(rsp, rbp_off * BytesPerInt)); 4247 __ movdbl(j_farg7, Address(rsp, j_farg7_off * BytesPerInt)); 4248 __ movdbl(j_farg6, Address(rsp, j_farg6_off * BytesPerInt)); 4249 __ movdbl(j_farg5, Address(rsp, j_farg5_off * BytesPerInt)); 4250 __ movdbl(j_farg4, Address(rsp, j_farg4_off * BytesPerInt)); 4251 __ movdbl(j_farg3, Address(rsp, j_farg3_off * BytesPerInt)); 4252 __ movdbl(j_farg2, Address(rsp, j_farg2_off * BytesPerInt)); 4253 __ movdbl(j_farg1, Address(rsp, j_farg1_off * BytesPerInt)); 4254 __ movdbl(j_farg0, Address(rsp, j_farg0_off * BytesPerInt)); 4255 4256 __ movptr(j_rarg0, Address(rsp, j_rarg0_off * BytesPerInt)); 4257 __ movptr(j_rarg1, Address(rsp, j_rarg1_off * BytesPerInt)); 4258 __ movptr(j_rarg2, Address(rsp, j_rarg2_off * BytesPerInt)); 4259 __ movptr(j_rarg3, Address(rsp, j_rarg3_off * BytesPerInt)); 4260 __ movptr(j_rarg4, Address(rsp, j_rarg4_off * BytesPerInt)); 4261 __ movptr(j_rarg5, Address(rsp, j_rarg5_off * BytesPerInt)); 4262 __ movptr(rax, Address(rsp, rax_off * BytesPerInt)); 4263 4264 __ addptr(rsp, frame_size_in_bytes-8); 4265 4266 // check for pending exceptions 4267 Label pending; 4268 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD); 4269 __ jcc(Assembler::notEqual, pending); 4270 4271 if (has_res) { 4272 __ get_vm_result(rax, r15_thread); 4273 } 4274 4275 __ ret(0); 4276 4277 __ bind(pending); 4278 4279 __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset())); 4280 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 4281 4282 // ------------- 4283 // make sure all code is generated 4284 _masm->flush(); 4285 4286 RuntimeStub* stub = RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_words, oop_maps, false); 4287 return stub->entry_point(); 4288 } 4289 4290 void StubGenerator::generate_continuation_stubs() { 4291 // Continuation stubs: 4292 StubRoutines::_cont_thaw = generate_cont_thaw(); 4293 StubRoutines::_cont_returnBarrier = generate_cont_returnBarrier(); 4294 StubRoutines::_cont_returnBarrierExc = generate_cont_returnBarrier_exception(); 4295 StubRoutines::_cont_preempt_stub = generate_cont_preempt_stub(); 4296 } 4297 4298 void StubGenerator::generate_final_stubs() { 4299 // Generates the rest of stubs and initializes the entry points 4300 4301 // support for verify_oop (must happen after universe_init) 4302 if (VerifyOops) { 4303 StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop(); 4304 } 4305 4306 // arraycopy stubs used by compilers 4307 generate_arraycopy_stubs(); 4308 4309 StubRoutines::_method_entry_barrier = generate_method_entry_barrier(); 4310 4311 #ifdef COMPILER2 4312 if (UseSecondarySupersTable) { 4313 StubRoutines::_lookup_secondary_supers_table_slow_path_stub = generate_lookup_secondary_supers_table_slow_path_stub(); 4314 if (! InlineSecondarySupersTest) { 4315 generate_lookup_secondary_supers_table_stub(); 4316 } 4317 } 4318 #endif // COMPILER2 4319 4320 if (UseVectorizedMismatchIntrinsic) { 4321 StubRoutines::_vectorizedMismatch = generate_vectorizedMismatch(); 4322 } 4323 4324 StubRoutines::_upcall_stub_exception_handler = generate_upcall_stub_exception_handler(); 4325 StubRoutines::_upcall_stub_load_target = generate_upcall_stub_load_target(); 4326 } 4327 4328 void StubGenerator::generate_compiler_stubs() { 4329 #if COMPILER2_OR_JVMCI 4330 4331 // Entry points that are C2 compiler specific. 4332 4333 StubRoutines::x86::_vector_float_sign_mask = generate_vector_mask(StubGenStubId::vector_float_sign_mask_id, 0x7FFFFFFF7FFFFFFF); 4334 StubRoutines::x86::_vector_float_sign_flip = generate_vector_mask(StubGenStubId::vector_float_sign_flip_id, 0x8000000080000000); 4335 StubRoutines::x86::_vector_double_sign_mask = generate_vector_mask(StubGenStubId::vector_double_sign_mask_id, 0x7FFFFFFFFFFFFFFF); 4336 StubRoutines::x86::_vector_double_sign_flip = generate_vector_mask(StubGenStubId::vector_double_sign_flip_id, 0x8000000000000000); 4337 StubRoutines::x86::_vector_all_bits_set = generate_vector_mask(StubGenStubId::vector_all_bits_set_id, 0xFFFFFFFFFFFFFFFF); 4338 StubRoutines::x86::_vector_int_mask_cmp_bits = generate_vector_mask(StubGenStubId::vector_int_mask_cmp_bits_id, 0x0000000100000001); 4339 StubRoutines::x86::_vector_short_to_byte_mask = generate_vector_mask(StubGenStubId::vector_short_to_byte_mask_id, 0x00ff00ff00ff00ff); 4340 StubRoutines::x86::_vector_byte_perm_mask = generate_vector_byte_perm_mask(); 4341 StubRoutines::x86::_vector_int_to_byte_mask = generate_vector_mask(StubGenStubId::vector_int_to_byte_mask_id, 0x000000ff000000ff); 4342 StubRoutines::x86::_vector_int_to_short_mask = generate_vector_mask(StubGenStubId::vector_int_to_short_mask_id, 0x0000ffff0000ffff); 4343 StubRoutines::x86::_vector_32_bit_mask = generate_vector_custom_i32(StubGenStubId::vector_32_bit_mask_id, Assembler::AVX_512bit, 4344 0xFFFFFFFF, 0, 0, 0); 4345 StubRoutines::x86::_vector_64_bit_mask = generate_vector_custom_i32(StubGenStubId::vector_64_bit_mask_id, Assembler::AVX_512bit, 4346 0xFFFFFFFF, 0xFFFFFFFF, 0, 0); 4347 StubRoutines::x86::_vector_int_shuffle_mask = generate_vector_mask(StubGenStubId::vector_int_shuffle_mask_id, 0x0302010003020100); 4348 StubRoutines::x86::_vector_byte_shuffle_mask = generate_vector_byte_shuffle_mask(); 4349 StubRoutines::x86::_vector_short_shuffle_mask = generate_vector_mask(StubGenStubId::vector_short_shuffle_mask_id, 0x0100010001000100); 4350 StubRoutines::x86::_vector_long_shuffle_mask = generate_vector_mask(StubGenStubId::vector_long_shuffle_mask_id, 0x0000000100000000); 4351 StubRoutines::x86::_vector_long_sign_mask = generate_vector_mask(StubGenStubId::vector_long_sign_mask_id, 0x8000000000000000); 4352 StubRoutines::x86::_vector_iota_indices = generate_iota_indices(); 4353 StubRoutines::x86::_vector_count_leading_zeros_lut = generate_count_leading_zeros_lut(); 4354 StubRoutines::x86::_vector_reverse_bit_lut = generate_vector_reverse_bit_lut(); 4355 StubRoutines::x86::_vector_reverse_byte_perm_mask_long = generate_vector_reverse_byte_perm_mask_long(); 4356 StubRoutines::x86::_vector_reverse_byte_perm_mask_int = generate_vector_reverse_byte_perm_mask_int(); 4357 StubRoutines::x86::_vector_reverse_byte_perm_mask_short = generate_vector_reverse_byte_perm_mask_short(); 4358 4359 if (VM_Version::supports_avx2() && !VM_Version::supports_avx512vl()) { 4360 StubRoutines::x86::_compress_perm_table32 = generate_compress_perm_table(StubGenStubId::compress_perm_table32_id); 4361 StubRoutines::x86::_compress_perm_table64 = generate_compress_perm_table(StubGenStubId::compress_perm_table64_id); 4362 StubRoutines::x86::_expand_perm_table32 = generate_expand_perm_table(StubGenStubId::expand_perm_table32_id); 4363 StubRoutines::x86::_expand_perm_table64 = generate_expand_perm_table(StubGenStubId::expand_perm_table64_id); 4364 } 4365 4366 if (VM_Version::supports_avx2() && !VM_Version::supports_avx512_vpopcntdq()) { 4367 // lut implementation influenced by counting 1s algorithm from section 5-1 of Hackers' Delight. 4368 StubRoutines::x86::_vector_popcount_lut = generate_popcount_avx_lut(); 4369 } 4370 4371 generate_aes_stubs(); 4372 4373 generate_ghash_stubs(); 4374 4375 generate_chacha_stubs(); 4376 4377 generate_sha3_stubs(); 4378 4379 // data cache line writeback 4380 StubRoutines::_data_cache_writeback = generate_data_cache_writeback(); 4381 StubRoutines::_data_cache_writeback_sync = generate_data_cache_writeback_sync(); 4382 4383 #ifdef COMPILER2 4384 if ((UseAVX == 2) && EnableX86ECoreOpts) { 4385 generate_string_indexof(StubRoutines::_string_indexof_array); 4386 } 4387 #endif 4388 4389 if (UseAdler32Intrinsics) { 4390 StubRoutines::_updateBytesAdler32 = generate_updateBytesAdler32(); 4391 } 4392 4393 if (UsePoly1305Intrinsics) { 4394 StubRoutines::_poly1305_processBlocks = generate_poly1305_processBlocks(); 4395 } 4396 4397 if (UseIntPolyIntrinsics) { 4398 StubRoutines::_intpoly_montgomeryMult_P256 = generate_intpoly_montgomeryMult_P256(); 4399 StubRoutines::_intpoly_assign = generate_intpoly_assign(); 4400 } 4401 4402 if (UseMD5Intrinsics) { 4403 StubRoutines::_md5_implCompress = generate_md5_implCompress(StubGenStubId::md5_implCompress_id); 4404 StubRoutines::_md5_implCompressMB = generate_md5_implCompress(StubGenStubId::md5_implCompressMB_id); 4405 } 4406 4407 if (UseSHA1Intrinsics) { 4408 StubRoutines::x86::_upper_word_mask_addr = generate_upper_word_mask(); 4409 StubRoutines::x86::_shuffle_byte_flip_mask_addr = generate_shuffle_byte_flip_mask(); 4410 StubRoutines::_sha1_implCompress = generate_sha1_implCompress(StubGenStubId::sha1_implCompress_id); 4411 StubRoutines::_sha1_implCompressMB = generate_sha1_implCompress(StubGenStubId::sha1_implCompressMB_id); 4412 } 4413 4414 if (UseSHA256Intrinsics) { 4415 StubRoutines::x86::_k256_adr = (address)StubRoutines::x86::_k256; 4416 char* dst = (char*)StubRoutines::x86::_k256_W; 4417 char* src = (char*)StubRoutines::x86::_k256; 4418 for (int ii = 0; ii < 16; ++ii) { 4419 memcpy(dst + 32 * ii, src + 16 * ii, 16); 4420 memcpy(dst + 32 * ii + 16, src + 16 * ii, 16); 4421 } 4422 StubRoutines::x86::_k256_W_adr = (address)StubRoutines::x86::_k256_W; 4423 StubRoutines::x86::_pshuffle_byte_flip_mask_addr = generate_pshuffle_byte_flip_mask(); 4424 StubRoutines::_sha256_implCompress = generate_sha256_implCompress(StubGenStubId::sha256_implCompress_id); 4425 StubRoutines::_sha256_implCompressMB = generate_sha256_implCompress(StubGenStubId::sha256_implCompressMB_id); 4426 } 4427 4428 if (UseSHA512Intrinsics) { 4429 StubRoutines::x86::_k512_W_addr = (address)StubRoutines::x86::_k512_W; 4430 StubRoutines::x86::_pshuffle_byte_flip_mask_addr_sha512 = generate_pshuffle_byte_flip_mask_sha512(); 4431 StubRoutines::_sha512_implCompress = generate_sha512_implCompress(StubGenStubId::sha512_implCompress_id); 4432 StubRoutines::_sha512_implCompressMB = generate_sha512_implCompress(StubGenStubId::sha512_implCompressMB_id); 4433 } 4434 4435 if (UseBASE64Intrinsics) { 4436 if(VM_Version::supports_avx2()) { 4437 StubRoutines::x86::_avx2_shuffle_base64 = base64_avx2_shuffle_addr(); 4438 StubRoutines::x86::_avx2_input_mask_base64 = base64_avx2_input_mask_addr(); 4439 StubRoutines::x86::_avx2_lut_base64 = base64_avx2_lut_addr(); 4440 StubRoutines::x86::_avx2_decode_tables_base64 = base64_AVX2_decode_tables_addr(); 4441 StubRoutines::x86::_avx2_decode_lut_tables_base64 = base64_AVX2_decode_LUT_tables_addr(); 4442 } 4443 StubRoutines::x86::_encoding_table_base64 = base64_encoding_table_addr(); 4444 if (VM_Version::supports_avx512_vbmi()) { 4445 StubRoutines::x86::_shuffle_base64 = base64_shuffle_addr(); 4446 StubRoutines::x86::_lookup_lo_base64 = base64_vbmi_lookup_lo_addr(); 4447 StubRoutines::x86::_lookup_hi_base64 = base64_vbmi_lookup_hi_addr(); 4448 StubRoutines::x86::_lookup_lo_base64url = base64_vbmi_lookup_lo_url_addr(); 4449 StubRoutines::x86::_lookup_hi_base64url = base64_vbmi_lookup_hi_url_addr(); 4450 StubRoutines::x86::_pack_vec_base64 = base64_vbmi_pack_vec_addr(); 4451 StubRoutines::x86::_join_0_1_base64 = base64_vbmi_join_0_1_addr(); 4452 StubRoutines::x86::_join_1_2_base64 = base64_vbmi_join_1_2_addr(); 4453 StubRoutines::x86::_join_2_3_base64 = base64_vbmi_join_2_3_addr(); 4454 } 4455 StubRoutines::x86::_decoding_table_base64 = base64_decoding_table_addr(); 4456 StubRoutines::_base64_encodeBlock = generate_base64_encodeBlock(); 4457 StubRoutines::_base64_decodeBlock = generate_base64_decodeBlock(); 4458 } 4459 4460 #ifdef COMPILER2 4461 if (UseMultiplyToLenIntrinsic) { 4462 StubRoutines::_multiplyToLen = generate_multiplyToLen(); 4463 } 4464 if (UseSquareToLenIntrinsic) { 4465 StubRoutines::_squareToLen = generate_squareToLen(); 4466 } 4467 if (UseMulAddIntrinsic) { 4468 StubRoutines::_mulAdd = generate_mulAdd(); 4469 } 4470 if (VM_Version::supports_avx512_vbmi2()) { 4471 StubRoutines::_bigIntegerRightShiftWorker = generate_bigIntegerRightShift(); 4472 StubRoutines::_bigIntegerLeftShiftWorker = generate_bigIntegerLeftShift(); 4473 } 4474 if (UseMontgomeryMultiplyIntrinsic) { 4475 StubRoutines::_montgomeryMultiply 4476 = CAST_FROM_FN_PTR(address, SharedRuntime::montgomery_multiply); 4477 } 4478 if (UseMontgomerySquareIntrinsic) { 4479 StubRoutines::_montgomerySquare 4480 = CAST_FROM_FN_PTR(address, SharedRuntime::montgomery_square); 4481 } 4482 4483 // Load x86_64_sort library on supported hardware to enable SIMD sort and partition intrinsics 4484 4485 if (VM_Version::supports_avx512dq() || VM_Version::supports_avx2()) { 4486 void *libsimdsort = nullptr; 4487 char ebuf_[1024]; 4488 char dll_name_simd_sort[JVM_MAXPATHLEN]; 4489 if (os::dll_locate_lib(dll_name_simd_sort, sizeof(dll_name_simd_sort), Arguments::get_dll_dir(), "simdsort")) { 4490 libsimdsort = os::dll_load(dll_name_simd_sort, ebuf_, sizeof ebuf_); 4491 } 4492 // Get addresses for SIMD sort and partition routines 4493 if (libsimdsort != nullptr) { 4494 log_info(library)("Loaded library %s, handle " INTPTR_FORMAT, JNI_LIB_PREFIX "simdsort" JNI_LIB_SUFFIX, p2i(libsimdsort)); 4495 4496 snprintf(ebuf_, sizeof(ebuf_), VM_Version::supports_avx512_simd_sort() ? "avx512_sort" : "avx2_sort"); 4497 StubRoutines::_array_sort = (address)os::dll_lookup(libsimdsort, ebuf_); 4498 4499 snprintf(ebuf_, sizeof(ebuf_), VM_Version::supports_avx512_simd_sort() ? "avx512_partition" : "avx2_partition"); 4500 StubRoutines::_array_partition = (address)os::dll_lookup(libsimdsort, ebuf_); 4501 } 4502 } 4503 4504 // Get svml stub routine addresses 4505 void *libjsvml = nullptr; 4506 char ebuf[1024]; 4507 char dll_name[JVM_MAXPATHLEN]; 4508 if (os::dll_locate_lib(dll_name, sizeof(dll_name), Arguments::get_dll_dir(), "jsvml")) { 4509 libjsvml = os::dll_load(dll_name, ebuf, sizeof ebuf); 4510 } 4511 if (libjsvml != nullptr) { 4512 // SVML method naming convention 4513 // All the methods are named as __jsvml_op<T><N>_ha_<VV> 4514 // Where: 4515 // ha stands for high accuracy 4516 // <T> is optional to indicate float/double 4517 // Set to f for vector float operation 4518 // Omitted for vector double operation 4519 // <N> is the number of elements in the vector 4520 // 1, 2, 4, 8, 16 4521 // e.g. 128 bit float vector has 4 float elements 4522 // <VV> indicates the avx/sse level: 4523 // z0 is AVX512, l9 is AVX2, e9 is AVX1 and ex is for SSE2 4524 // e.g. __jsvml_expf16_ha_z0 is the method for computing 16 element vector float exp using AVX 512 insns 4525 // __jsvml_exp8_ha_z0 is the method for computing 8 element vector double exp using AVX 512 insns 4526 4527 log_info(library)("Loaded library %s, handle " INTPTR_FORMAT, JNI_LIB_PREFIX "jsvml" JNI_LIB_SUFFIX, p2i(libjsvml)); 4528 if (UseAVX > 2) { 4529 for (int op = 0; op < VectorSupport::NUM_VECTOR_OP_MATH; op++) { 4530 int vop = VectorSupport::VECTOR_OP_MATH_START + op; 4531 if ((!VM_Version::supports_avx512dq()) && 4532 (vop == VectorSupport::VECTOR_OP_LOG || vop == VectorSupport::VECTOR_OP_LOG10 || vop == VectorSupport::VECTOR_OP_POW)) { 4533 continue; 4534 } 4535 snprintf(ebuf, sizeof(ebuf), "__jsvml_%sf16_ha_z0", VectorSupport::mathname[op]); 4536 StubRoutines::_vector_f_math[VectorSupport::VEC_SIZE_512][op] = (address)os::dll_lookup(libjsvml, ebuf); 4537 4538 snprintf(ebuf, sizeof(ebuf), "__jsvml_%s8_ha_z0", VectorSupport::mathname[op]); 4539 StubRoutines::_vector_d_math[VectorSupport::VEC_SIZE_512][op] = (address)os::dll_lookup(libjsvml, ebuf); 4540 } 4541 } 4542 const char* avx_sse_str = (UseAVX >= 2) ? "l9" : ((UseAVX == 1) ? "e9" : "ex"); 4543 for (int op = 0; op < VectorSupport::NUM_VECTOR_OP_MATH; op++) { 4544 int vop = VectorSupport::VECTOR_OP_MATH_START + op; 4545 if (vop == VectorSupport::VECTOR_OP_POW) { 4546 continue; 4547 } 4548 snprintf(ebuf, sizeof(ebuf), "__jsvml_%sf4_ha_%s", VectorSupport::mathname[op], avx_sse_str); 4549 StubRoutines::_vector_f_math[VectorSupport::VEC_SIZE_64][op] = (address)os::dll_lookup(libjsvml, ebuf); 4550 4551 snprintf(ebuf, sizeof(ebuf), "__jsvml_%sf4_ha_%s", VectorSupport::mathname[op], avx_sse_str); 4552 StubRoutines::_vector_f_math[VectorSupport::VEC_SIZE_128][op] = (address)os::dll_lookup(libjsvml, ebuf); 4553 4554 snprintf(ebuf, sizeof(ebuf), "__jsvml_%sf8_ha_%s", VectorSupport::mathname[op], avx_sse_str); 4555 StubRoutines::_vector_f_math[VectorSupport::VEC_SIZE_256][op] = (address)os::dll_lookup(libjsvml, ebuf); 4556 4557 snprintf(ebuf, sizeof(ebuf), "__jsvml_%s1_ha_%s", VectorSupport::mathname[op], avx_sse_str); 4558 StubRoutines::_vector_d_math[VectorSupport::VEC_SIZE_64][op] = (address)os::dll_lookup(libjsvml, ebuf); 4559 4560 snprintf(ebuf, sizeof(ebuf), "__jsvml_%s2_ha_%s", VectorSupport::mathname[op], avx_sse_str); 4561 StubRoutines::_vector_d_math[VectorSupport::VEC_SIZE_128][op] = (address)os::dll_lookup(libjsvml, ebuf); 4562 4563 snprintf(ebuf, sizeof(ebuf), "__jsvml_%s4_ha_%s", VectorSupport::mathname[op], avx_sse_str); 4564 StubRoutines::_vector_d_math[VectorSupport::VEC_SIZE_256][op] = (address)os::dll_lookup(libjsvml, ebuf); 4565 } 4566 } 4567 4568 #endif // COMPILER2 4569 #endif // COMPILER2_OR_JVMCI 4570 } 4571 4572 StubGenerator::StubGenerator(CodeBuffer* code, StubGenBlobId blob_id) : StubCodeGenerator(code, blob_id) { 4573 switch(blob_id) { 4574 case initial_id: 4575 generate_initial_stubs(); 4576 break; 4577 case continuation_id: 4578 generate_continuation_stubs(); 4579 break; 4580 case compiler_id: 4581 generate_compiler_stubs(); 4582 break; 4583 case final_id: 4584 generate_final_stubs(); 4585 break; 4586 default: 4587 fatal("unexpected blob id: %d", blob_id); 4588 break; 4589 }; 4590 } 4591 4592 void StubGenerator_generate(CodeBuffer* code, StubGenBlobId blob_id) { 4593 StubGenerator g(code, blob_id); 4594 } 4595 4596 #undef __