1 /*
   2  * Copyright (c) 2003, 2023, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "asm/macroAssembler.hpp"
  28 #include "classfile/vmIntrinsics.hpp"
  29 #include "compiler/oopMap.hpp"
  30 #include "gc/shared/barrierSet.hpp"
  31 #include "gc/shared/barrierSetAssembler.hpp"
  32 #include "gc/shared/barrierSetNMethod.hpp"
  33 #include "gc/shared/gc_globals.hpp"
  34 #include "memory/universe.hpp"
  35 #include "prims/jvmtiExport.hpp"
  36 #include "prims/upcallLinker.hpp"
  37 #include "runtime/arguments.hpp"
  38 #include "runtime/javaThread.hpp"
  39 #include "runtime/sharedRuntime.hpp"
  40 #include "runtime/stubRoutines.hpp"
  41 #include "utilities/macros.hpp"
  42 #include "vmreg_x86.inline.hpp"
  43 #include "stubGenerator_x86_64.hpp"
  44 #ifdef COMPILER2
  45 #include "opto/runtime.hpp"
  46 #include "opto/c2_globals.hpp"
  47 #endif
  48 #if INCLUDE_JVMCI
  49 #include "jvmci/jvmci_globals.hpp"
  50 #endif
  51 #if INCLUDE_JFR
  52 #include "jfr/support/jfrIntrinsics.hpp"
  53 #endif
  54 
  55 // For a more detailed description of the stub routine structure
  56 // see the comment in stubRoutines.hpp
  57 
  58 #define __ _masm->
  59 #define TIMES_OOP (UseCompressedOops ? Address::times_4 : Address::times_8)
  60 
  61 #ifdef PRODUCT
  62 #define BLOCK_COMMENT(str) /* nothing */
  63 #else
  64 #define BLOCK_COMMENT(str) __ block_comment(str)
  65 #endif // PRODUCT
  66 
  67 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  68 
  69 //
  70 // Linux Arguments:
  71 //    c_rarg0:   call wrapper address                   address
  72 //    c_rarg1:   result                                 address
  73 //    c_rarg2:   result type                            BasicType
  74 //    c_rarg3:   method                                 Method*
  75 //    c_rarg4:   (interpreter) entry point              address
  76 //    c_rarg5:   parameters                             intptr_t*
  77 //    16(rbp): parameter size (in words)              int
  78 //    24(rbp): thread                                 Thread*
  79 //
  80 //     [ return_from_Java     ] <--- rsp
  81 //     [ argument word n      ]
  82 //      ...
  83 // -12 [ argument word 1      ]
  84 // -11 [ saved r15            ] <--- rsp_after_call
  85 // -10 [ saved r14            ]
  86 //  -9 [ saved r13            ]
  87 //  -8 [ saved r12            ]
  88 //  -7 [ saved rbx            ]
  89 //  -6 [ call wrapper         ]
  90 //  -5 [ result               ]
  91 //  -4 [ result type          ]
  92 //  -3 [ method               ]
  93 //  -2 [ entry point          ]
  94 //  -1 [ parameters           ]
  95 //   0 [ saved rbp            ] <--- rbp
  96 //   1 [ return address       ]
  97 //   2 [ parameter size       ]
  98 //   3 [ thread               ]
  99 //
 100 // Windows Arguments:
 101 //    c_rarg0:   call wrapper address                   address
 102 //    c_rarg1:   result                                 address
 103 //    c_rarg2:   result type                            BasicType
 104 //    c_rarg3:   method                                 Method*
 105 //    48(rbp): (interpreter) entry point              address
 106 //    56(rbp): parameters                             intptr_t*
 107 //    64(rbp): parameter size (in words)              int
 108 //    72(rbp): thread                                 Thread*
 109 //
 110 //     [ return_from_Java     ] <--- rsp
 111 //     [ argument word n      ]
 112 //      ...
 113 // -28 [ argument word 1      ]
 114 // -27 [ saved xmm15          ] <--- rsp after_call
 115 //     [ saved xmm7-xmm14     ]
 116 //  -9 [ saved xmm6           ] (each xmm register takes 2 slots)
 117 //  -7 [ saved r15            ]
 118 //  -6 [ saved r14            ]
 119 //  -5 [ saved r13            ]
 120 //  -4 [ saved r12            ]
 121 //  -3 [ saved rdi            ]
 122 //  -2 [ saved rsi            ]
 123 //  -1 [ saved rbx            ]
 124 //   0 [ saved rbp            ] <--- rbp
 125 //   1 [ return address       ]
 126 //   2 [ call wrapper         ]
 127 //   3 [ result               ]
 128 //   4 [ result type          ]
 129 //   5 [ method               ]
 130 //   6 [ entry point          ]
 131 //   7 [ parameters           ]
 132 //   8 [ parameter size       ]
 133 //   9 [ thread               ]
 134 //
 135 //    Windows reserves the callers stack space for arguments 1-4.
 136 //    We spill c_rarg0-c_rarg3 to this space.
 137 
 138 // Call stub stack layout word offsets from rbp
 139 #ifdef _WIN64
 140 enum call_stub_layout {
 141   xmm_save_first     = 6,  // save from xmm6
 142   xmm_save_last      = 15, // to xmm15
 143   xmm_save_base      = -9,
 144   rsp_after_call_off = xmm_save_base - 2 * (xmm_save_last - xmm_save_first), // -27
 145   r15_off            = -7,
 146   r14_off            = -6,
 147   r13_off            = -5,
 148   r12_off            = -4,
 149   rdi_off            = -3,
 150   rsi_off            = -2,
 151   rbx_off            = -1,
 152   rbp_off            =  0,
 153   retaddr_off        =  1,
 154   call_wrapper_off   =  2,
 155   result_off         =  3,
 156   result_type_off    =  4,
 157   method_off         =  5,
 158   entry_point_off    =  6,
 159   parameters_off     =  7,
 160   parameter_size_off =  8,
 161   thread_off         =  9
 162 };
 163 
 164 static Address xmm_save(int reg) {
 165   assert(reg >= xmm_save_first && reg <= xmm_save_last, "XMM register number out of range");
 166   return Address(rbp, (xmm_save_base - (reg - xmm_save_first) * 2) * wordSize);
 167 }
 168 #else // !_WIN64
 169 enum call_stub_layout {
 170   rsp_after_call_off = -12,
 171   mxcsr_off          = rsp_after_call_off,
 172   r15_off            = -11,
 173   r14_off            = -10,
 174   r13_off            = -9,
 175   r12_off            = -8,
 176   rbx_off            = -7,
 177   call_wrapper_off   = -6,
 178   result_off         = -5,
 179   result_type_off    = -4,
 180   method_off         = -3,
 181   entry_point_off    = -2,
 182   parameters_off     = -1,
 183   rbp_off            =  0,
 184   retaddr_off        =  1,
 185   parameter_size_off =  2,
 186   thread_off         =  3
 187 };
 188 #endif // _WIN64
 189 
 190 address StubGenerator::generate_call_stub(address& return_address) {
 191 
 192   assert((int)frame::entry_frame_after_call_words == -(int)rsp_after_call_off + 1 &&
 193          (int)frame::entry_frame_call_wrapper_offset == (int)call_wrapper_off,
 194          "adjust this code");
 195   StubCodeMark mark(this, "StubRoutines", "call_stub");
 196   address start = __ pc();
 197 
 198   // same as in generate_catch_exception()!
 199   const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
 200 
 201   const Address call_wrapper  (rbp, call_wrapper_off   * wordSize);
 202   const Address result        (rbp, result_off         * wordSize);
 203   const Address result_type   (rbp, result_type_off    * wordSize);
 204   const Address method        (rbp, method_off         * wordSize);
 205   const Address entry_point   (rbp, entry_point_off    * wordSize);
 206   const Address parameters    (rbp, parameters_off     * wordSize);
 207   const Address parameter_size(rbp, parameter_size_off * wordSize);
 208 
 209   // same as in generate_catch_exception()!
 210   const Address thread        (rbp, thread_off         * wordSize);
 211 
 212   const Address r15_save(rbp, r15_off * wordSize);
 213   const Address r14_save(rbp, r14_off * wordSize);
 214   const Address r13_save(rbp, r13_off * wordSize);
 215   const Address r12_save(rbp, r12_off * wordSize);
 216   const Address rbx_save(rbp, rbx_off * wordSize);
 217 
 218   // stub code
 219   __ enter();
 220   __ subptr(rsp, -rsp_after_call_off * wordSize);
 221 
 222   // save register parameters
 223 #ifndef _WIN64
 224   __ movptr(parameters,   c_rarg5); // parameters
 225   __ movptr(entry_point,  c_rarg4); // entry_point
 226 #endif
 227 
 228   __ movptr(method,       c_rarg3); // method
 229   __ movl(result_type,  c_rarg2);   // result type
 230   __ movptr(result,       c_rarg1); // result
 231   __ movptr(call_wrapper, c_rarg0); // call wrapper
 232 
 233   // save regs belonging to calling function
 234   __ movptr(rbx_save, rbx);
 235   __ movptr(r12_save, r12);
 236   __ movptr(r13_save, r13);
 237   __ movptr(r14_save, r14);
 238   __ movptr(r15_save, r15);
 239 
 240 #ifdef _WIN64
 241   int last_reg = 15;
 242   for (int i = xmm_save_first; i <= last_reg; i++) {
 243     __ movdqu(xmm_save(i), as_XMMRegister(i));
 244   }
 245 
 246   const Address rdi_save(rbp, rdi_off * wordSize);
 247   const Address rsi_save(rbp, rsi_off * wordSize);
 248 
 249   __ movptr(rsi_save, rsi);
 250   __ movptr(rdi_save, rdi);
 251 #else
 252   const Address mxcsr_save(rbp, mxcsr_off * wordSize);
 253   {
 254     Label skip_ldmx;
 255     __ stmxcsr(mxcsr_save);
 256     __ movl(rax, mxcsr_save);
 257     __ andl(rax, 0xFFC0); // Mask out any pending exceptions (only check control and mask bits)
 258     ExternalAddress mxcsr_std(StubRoutines::x86::addr_mxcsr_std());
 259     __ cmp32(rax, mxcsr_std, rscratch1);
 260     __ jcc(Assembler::equal, skip_ldmx);
 261     __ ldmxcsr(mxcsr_std, rscratch1);
 262     __ bind(skip_ldmx);
 263   }
 264 #endif
 265 
 266   // Load up thread register
 267   __ movptr(r15_thread, thread);
 268   __ reinit_heapbase();
 269 
 270 #ifdef ASSERT
 271   // make sure we have no pending exceptions
 272   {
 273     Label L;
 274     __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), NULL_WORD);
 275     __ jcc(Assembler::equal, L);
 276     __ stop("StubRoutines::call_stub: entered with pending exception");
 277     __ bind(L);
 278   }
 279 #endif
 280 
 281   // pass parameters if any
 282   BLOCK_COMMENT("pass parameters if any");
 283   Label parameters_done;
 284   __ movl(c_rarg3, parameter_size);
 285   __ testl(c_rarg3, c_rarg3);
 286   __ jcc(Assembler::zero, parameters_done);
 287 
 288   Label loop;
 289   __ movptr(c_rarg2, parameters);       // parameter pointer
 290   __ movl(c_rarg1, c_rarg3);            // parameter counter is in c_rarg1
 291   __ BIND(loop);
 292   __ movptr(rax, Address(c_rarg2, 0));// get parameter
 293   __ addptr(c_rarg2, wordSize);       // advance to next parameter
 294   __ decrementl(c_rarg1);             // decrement counter
 295   __ push(rax);                       // pass parameter
 296   __ jcc(Assembler::notZero, loop);
 297 
 298   // call Java function
 299   __ BIND(parameters_done);
 300   __ movptr(rbx, method);             // get Method*
 301   __ movptr(c_rarg1, entry_point);    // get entry_point
 302   __ mov(r13, rsp);                   // set sender sp
 303   BLOCK_COMMENT("call Java function");
 304   __ call(c_rarg1);
 305 
 306   BLOCK_COMMENT("call_stub_return_address:");
 307   return_address = __ pc();
 308 
 309   // store result depending on type (everything that is not
 310   // T_OBJECT, T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
 311   __ movptr(r13, result);
 312   Label is_long, is_float, is_double, check_prim, exit;
 313   __ movl(rbx, result_type);
 314   __ cmpl(rbx, T_OBJECT);
 315   __ jcc(Assembler::equal, check_prim);
 316   __ cmpl(rbx, T_LONG);
 317   __ jcc(Assembler::equal, is_long);
 318   __ cmpl(rbx, T_FLOAT);
 319   __ jcc(Assembler::equal, is_float);
 320   __ cmpl(rbx, T_DOUBLE);
 321   __ jcc(Assembler::equal, is_double);
 322 #ifdef ASSERT
 323   // make sure the type is INT
 324   {
 325     Label L;
 326     __ cmpl(rbx, T_INT);
 327     __ jcc(Assembler::equal, L);
 328     __ stop("StubRoutines::call_stub: unexpected result type");
 329     __ bind(L);
 330   }
 331 #endif
 332 
 333   // handle T_INT case
 334   __ movl(Address(r13, 0), rax);
 335 
 336   __ BIND(exit);
 337 
 338   // pop parameters
 339   __ lea(rsp, rsp_after_call);
 340 
 341 #ifdef ASSERT
 342   // verify that threads correspond
 343   {
 344    Label L1, L2, L3;
 345     __ cmpptr(r15_thread, thread);
 346     __ jcc(Assembler::equal, L1);
 347     __ stop("StubRoutines::call_stub: r15_thread is corrupted");
 348     __ bind(L1);
 349     __ get_thread(rbx);
 350     __ cmpptr(r15_thread, thread);
 351     __ jcc(Assembler::equal, L2);
 352     __ stop("StubRoutines::call_stub: r15_thread is modified by call");
 353     __ bind(L2);
 354     __ cmpptr(r15_thread, rbx);
 355     __ jcc(Assembler::equal, L3);
 356     __ stop("StubRoutines::call_stub: threads must correspond");
 357     __ bind(L3);
 358   }
 359 #endif
 360 
 361   __ pop_cont_fastpath();
 362 
 363   // restore regs belonging to calling function
 364 #ifdef _WIN64
 365   // emit the restores for xmm regs
 366   for (int i = xmm_save_first; i <= last_reg; i++) {
 367     __ movdqu(as_XMMRegister(i), xmm_save(i));
 368   }
 369 #endif
 370   __ movptr(r15, r15_save);
 371   __ movptr(r14, r14_save);
 372   __ movptr(r13, r13_save);
 373   __ movptr(r12, r12_save);
 374   __ movptr(rbx, rbx_save);
 375 
 376 #ifdef _WIN64
 377   __ movptr(rdi, rdi_save);
 378   __ movptr(rsi, rsi_save);
 379 #else
 380   __ ldmxcsr(mxcsr_save);
 381 #endif
 382 
 383   // restore rsp
 384   __ addptr(rsp, -rsp_after_call_off * wordSize);
 385 
 386   // return
 387   __ vzeroupper();
 388   __ pop(rbp);
 389   __ ret(0);
 390 
 391   // handle return types different from T_INT
 392   __ BIND(check_prim);
 393   if (InlineTypeReturnedAsFields) {
 394     // Check for scalarized return value
 395     __ testptr(rax, 1);
 396     __ jcc(Assembler::zero, is_long);
 397     // Load pack handler address
 398     __ andptr(rax, -2);
 399     __ movptr(rax, Address(rax, InstanceKlass::adr_inlineklass_fixed_block_offset()));
 400     __ movptr(rbx, Address(rax, InlineKlass::pack_handler_jobject_offset()));
 401     // Call pack handler to initialize the buffer
 402     __ call(rbx);
 403     __ jmp(exit);
 404   }
 405   __ BIND(is_long);
 406   __ movq(Address(r13, 0), rax);
 407   __ jmp(exit);
 408 
 409   __ BIND(is_float);
 410   __ movflt(Address(r13, 0), xmm0);
 411   __ jmp(exit);
 412 
 413   __ BIND(is_double);
 414   __ movdbl(Address(r13, 0), xmm0);
 415   __ jmp(exit);
 416 
 417   return start;
 418 }
 419 
 420 // Return point for a Java call if there's an exception thrown in
 421 // Java code.  The exception is caught and transformed into a
 422 // pending exception stored in JavaThread that can be tested from
 423 // within the VM.
 424 //
 425 // Note: Usually the parameters are removed by the callee. In case
 426 // of an exception crossing an activation frame boundary, that is
 427 // not the case if the callee is compiled code => need to setup the
 428 // rsp.
 429 //
 430 // rax: exception oop
 431 
 432 address StubGenerator::generate_catch_exception() {
 433   StubCodeMark mark(this, "StubRoutines", "catch_exception");
 434   address start = __ pc();
 435 
 436   // same as in generate_call_stub():
 437   const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
 438   const Address thread        (rbp, thread_off         * wordSize);
 439 
 440 #ifdef ASSERT
 441   // verify that threads correspond
 442   {
 443     Label L1, L2, L3;
 444     __ cmpptr(r15_thread, thread);
 445     __ jcc(Assembler::equal, L1);
 446     __ stop("StubRoutines::catch_exception: r15_thread is corrupted");
 447     __ bind(L1);
 448     __ get_thread(rbx);
 449     __ cmpptr(r15_thread, thread);
 450     __ jcc(Assembler::equal, L2);
 451     __ stop("StubRoutines::catch_exception: r15_thread is modified by call");
 452     __ bind(L2);
 453     __ cmpptr(r15_thread, rbx);
 454     __ jcc(Assembler::equal, L3);
 455     __ stop("StubRoutines::catch_exception: threads must correspond");
 456     __ bind(L3);
 457   }
 458 #endif
 459 
 460   // set pending exception
 461   __ verify_oop(rax);
 462 
 463   __ movptr(Address(r15_thread, Thread::pending_exception_offset()), rax);
 464   __ lea(rscratch1, ExternalAddress((address)__FILE__));
 465   __ movptr(Address(r15_thread, Thread::exception_file_offset()), rscratch1);
 466   __ movl(Address(r15_thread, Thread::exception_line_offset()), (int)  __LINE__);
 467 
 468   // complete return to VM
 469   assert(StubRoutines::_call_stub_return_address != nullptr,
 470          "_call_stub_return_address must have been generated before");
 471   __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address));
 472 
 473   return start;
 474 }
 475 
 476 // Continuation point for runtime calls returning with a pending
 477 // exception.  The pending exception check happened in the runtime
 478 // or native call stub.  The pending exception in Thread is
 479 // converted into a Java-level exception.
 480 //
 481 // Contract with Java-level exception handlers:
 482 // rax: exception
 483 // rdx: throwing pc
 484 //
 485 // NOTE: At entry of this stub, exception-pc must be on stack !!
 486 
 487 address StubGenerator::generate_forward_exception() {
 488   StubCodeMark mark(this, "StubRoutines", "forward exception");
 489   address start = __ pc();
 490 
 491   // Upon entry, the sp points to the return address returning into
 492   // Java (interpreted or compiled) code; i.e., the return address
 493   // becomes the throwing pc.
 494   //
 495   // Arguments pushed before the runtime call are still on the stack
 496   // but the exception handler will reset the stack pointer ->
 497   // ignore them.  A potential result in registers can be ignored as
 498   // well.
 499 
 500 #ifdef ASSERT
 501   // make sure this code is only executed if there is a pending exception
 502   {
 503     Label L;
 504     __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), NULL_WORD);
 505     __ jcc(Assembler::notEqual, L);
 506     __ stop("StubRoutines::forward exception: no pending exception (1)");
 507     __ bind(L);
 508   }
 509 #endif
 510 
 511   // compute exception handler into rbx
 512   __ movptr(c_rarg0, Address(rsp, 0));
 513   BLOCK_COMMENT("call exception_handler_for_return_address");
 514   __ call_VM_leaf(CAST_FROM_FN_PTR(address,
 515                        SharedRuntime::exception_handler_for_return_address),
 516                   r15_thread, c_rarg0);
 517   __ mov(rbx, rax);
 518 
 519   // setup rax & rdx, remove return address & clear pending exception
 520   __ pop(rdx);
 521   __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
 522   __ movptr(Address(r15_thread, Thread::pending_exception_offset()), NULL_WORD);
 523 
 524 #ifdef ASSERT
 525   // make sure exception is set
 526   {
 527     Label L;
 528     __ testptr(rax, rax);
 529     __ jcc(Assembler::notEqual, L);
 530     __ stop("StubRoutines::forward exception: no pending exception (2)");
 531     __ bind(L);
 532   }
 533 #endif
 534 
 535   // continue at exception handler (return address removed)
 536   // rax: exception
 537   // rbx: exception handler
 538   // rdx: throwing pc
 539   __ verify_oop(rax);
 540   __ jmp(rbx);
 541 
 542   return start;
 543 }
 544 
 545 // Support for intptr_t OrderAccess::fence()
 546 //
 547 // Arguments :
 548 //
 549 // Result:
 550 address StubGenerator::generate_orderaccess_fence() {
 551   StubCodeMark mark(this, "StubRoutines", "orderaccess_fence");
 552   address start = __ pc();
 553 
 554   __ membar(Assembler::StoreLoad);
 555   __ ret(0);
 556 
 557   return start;
 558 }
 559 
 560 
 561 // Support for intptr_t get_previous_sp()
 562 //
 563 // This routine is used to find the previous stack pointer for the
 564 // caller.
 565 address StubGenerator::generate_get_previous_sp() {
 566   StubCodeMark mark(this, "StubRoutines", "get_previous_sp");
 567   address start = __ pc();
 568 
 569   __ movptr(rax, rsp);
 570   __ addptr(rax, 8); // return address is at the top of the stack.
 571   __ ret(0);
 572 
 573   return start;
 574 }
 575 
 576 //----------------------------------------------------------------------------------------------------
 577 // Support for void verify_mxcsr()
 578 //
 579 // This routine is used with -Xcheck:jni to verify that native
 580 // JNI code does not return to Java code without restoring the
 581 // MXCSR register to our expected state.
 582 
 583 address StubGenerator::generate_verify_mxcsr() {
 584   StubCodeMark mark(this, "StubRoutines", "verify_mxcsr");
 585   address start = __ pc();
 586 
 587   const Address mxcsr_save(rsp, 0);
 588 
 589   if (CheckJNICalls) {
 590     Label ok_ret;
 591     ExternalAddress mxcsr_std(StubRoutines::x86::addr_mxcsr_std());
 592     __ push(rax);
 593     __ subptr(rsp, wordSize);      // allocate a temp location
 594     __ stmxcsr(mxcsr_save);
 595     __ movl(rax, mxcsr_save);
 596     __ andl(rax, 0xFFC0); // Mask out any pending exceptions (only check control and mask bits)
 597     __ cmp32(rax, mxcsr_std, rscratch1);
 598     __ jcc(Assembler::equal, ok_ret);
 599 
 600     __ warn("MXCSR changed by native JNI code, use -XX:+RestoreMXCSROnJNICall");
 601 
 602     __ ldmxcsr(mxcsr_std, rscratch1);
 603 
 604     __ bind(ok_ret);
 605     __ addptr(rsp, wordSize);
 606     __ pop(rax);
 607   }
 608 
 609   __ ret(0);
 610 
 611   return start;
 612 }
 613 
 614 address StubGenerator::generate_f2i_fixup() {
 615   StubCodeMark mark(this, "StubRoutines", "f2i_fixup");
 616   Address inout(rsp, 5 * wordSize); // return address + 4 saves
 617 
 618   address start = __ pc();
 619 
 620   Label L;
 621 
 622   __ push(rax);
 623   __ push(c_rarg3);
 624   __ push(c_rarg2);
 625   __ push(c_rarg1);
 626 
 627   __ movl(rax, 0x7f800000);
 628   __ xorl(c_rarg3, c_rarg3);
 629   __ movl(c_rarg2, inout);
 630   __ movl(c_rarg1, c_rarg2);
 631   __ andl(c_rarg1, 0x7fffffff);
 632   __ cmpl(rax, c_rarg1); // NaN? -> 0
 633   __ jcc(Assembler::negative, L);
 634   __ testl(c_rarg2, c_rarg2); // signed ? min_jint : max_jint
 635   __ movl(c_rarg3, 0x80000000);
 636   __ movl(rax, 0x7fffffff);
 637   __ cmovl(Assembler::positive, c_rarg3, rax);
 638 
 639   __ bind(L);
 640   __ movptr(inout, c_rarg3);
 641 
 642   __ pop(c_rarg1);
 643   __ pop(c_rarg2);
 644   __ pop(c_rarg3);
 645   __ pop(rax);
 646 
 647   __ ret(0);
 648 
 649   return start;
 650 }
 651 
 652 address StubGenerator::generate_f2l_fixup() {
 653   StubCodeMark mark(this, "StubRoutines", "f2l_fixup");
 654   Address inout(rsp, 5 * wordSize); // return address + 4 saves
 655   address start = __ pc();
 656 
 657   Label L;
 658 
 659   __ push(rax);
 660   __ push(c_rarg3);
 661   __ push(c_rarg2);
 662   __ push(c_rarg1);
 663 
 664   __ movl(rax, 0x7f800000);
 665   __ xorl(c_rarg3, c_rarg3);
 666   __ movl(c_rarg2, inout);
 667   __ movl(c_rarg1, c_rarg2);
 668   __ andl(c_rarg1, 0x7fffffff);
 669   __ cmpl(rax, c_rarg1); // NaN? -> 0
 670   __ jcc(Assembler::negative, L);
 671   __ testl(c_rarg2, c_rarg2); // signed ? min_jlong : max_jlong
 672   __ mov64(c_rarg3, 0x8000000000000000);
 673   __ mov64(rax, 0x7fffffffffffffff);
 674   __ cmov(Assembler::positive, c_rarg3, rax);
 675 
 676   __ bind(L);
 677   __ movptr(inout, c_rarg3);
 678 
 679   __ pop(c_rarg1);
 680   __ pop(c_rarg2);
 681   __ pop(c_rarg3);
 682   __ pop(rax);
 683 
 684   __ ret(0);
 685 
 686   return start;
 687 }
 688 
 689 address StubGenerator::generate_d2i_fixup() {
 690   StubCodeMark mark(this, "StubRoutines", "d2i_fixup");
 691   Address inout(rsp, 6 * wordSize); // return address + 5 saves
 692 
 693   address start = __ pc();
 694 
 695   Label L;
 696 
 697   __ push(rax);
 698   __ push(c_rarg3);
 699   __ push(c_rarg2);
 700   __ push(c_rarg1);
 701   __ push(c_rarg0);
 702 
 703   __ movl(rax, 0x7ff00000);
 704   __ movq(c_rarg2, inout);
 705   __ movl(c_rarg3, c_rarg2);
 706   __ mov(c_rarg1, c_rarg2);
 707   __ mov(c_rarg0, c_rarg2);
 708   __ negl(c_rarg3);
 709   __ shrptr(c_rarg1, 0x20);
 710   __ orl(c_rarg3, c_rarg2);
 711   __ andl(c_rarg1, 0x7fffffff);
 712   __ xorl(c_rarg2, c_rarg2);
 713   __ shrl(c_rarg3, 0x1f);
 714   __ orl(c_rarg1, c_rarg3);
 715   __ cmpl(rax, c_rarg1);
 716   __ jcc(Assembler::negative, L); // NaN -> 0
 717   __ testptr(c_rarg0, c_rarg0); // signed ? min_jint : max_jint
 718   __ movl(c_rarg2, 0x80000000);
 719   __ movl(rax, 0x7fffffff);
 720   __ cmov(Assembler::positive, c_rarg2, rax);
 721 
 722   __ bind(L);
 723   __ movptr(inout, c_rarg2);
 724 
 725   __ pop(c_rarg0);
 726   __ pop(c_rarg1);
 727   __ pop(c_rarg2);
 728   __ pop(c_rarg3);
 729   __ pop(rax);
 730 
 731   __ ret(0);
 732 
 733   return start;
 734 }
 735 
 736 address StubGenerator::generate_d2l_fixup() {
 737   StubCodeMark mark(this, "StubRoutines", "d2l_fixup");
 738   Address inout(rsp, 6 * wordSize); // return address + 5 saves
 739 
 740   address start = __ pc();
 741 
 742   Label L;
 743 
 744   __ push(rax);
 745   __ push(c_rarg3);
 746   __ push(c_rarg2);
 747   __ push(c_rarg1);
 748   __ push(c_rarg0);
 749 
 750   __ movl(rax, 0x7ff00000);
 751   __ movq(c_rarg2, inout);
 752   __ movl(c_rarg3, c_rarg2);
 753   __ mov(c_rarg1, c_rarg2);
 754   __ mov(c_rarg0, c_rarg2);
 755   __ negl(c_rarg3);
 756   __ shrptr(c_rarg1, 0x20);
 757   __ orl(c_rarg3, c_rarg2);
 758   __ andl(c_rarg1, 0x7fffffff);
 759   __ xorl(c_rarg2, c_rarg2);
 760   __ shrl(c_rarg3, 0x1f);
 761   __ orl(c_rarg1, c_rarg3);
 762   __ cmpl(rax, c_rarg1);
 763   __ jcc(Assembler::negative, L); // NaN -> 0
 764   __ testq(c_rarg0, c_rarg0); // signed ? min_jlong : max_jlong
 765   __ mov64(c_rarg2, 0x8000000000000000);
 766   __ mov64(rax, 0x7fffffffffffffff);
 767   __ cmovq(Assembler::positive, c_rarg2, rax);
 768 
 769   __ bind(L);
 770   __ movq(inout, c_rarg2);
 771 
 772   __ pop(c_rarg0);
 773   __ pop(c_rarg1);
 774   __ pop(c_rarg2);
 775   __ pop(c_rarg3);
 776   __ pop(rax);
 777 
 778   __ ret(0);
 779 
 780   return start;
 781 }
 782 
 783 address StubGenerator::generate_count_leading_zeros_lut(const char *stub_name) {
 784   __ align64();
 785   StubCodeMark mark(this, "StubRoutines", stub_name);
 786   address start = __ pc();
 787 
 788   __ emit_data64(0x0101010102020304, relocInfo::none);
 789   __ emit_data64(0x0000000000000000, relocInfo::none);
 790   __ emit_data64(0x0101010102020304, relocInfo::none);
 791   __ emit_data64(0x0000000000000000, relocInfo::none);
 792   __ emit_data64(0x0101010102020304, relocInfo::none);
 793   __ emit_data64(0x0000000000000000, relocInfo::none);
 794   __ emit_data64(0x0101010102020304, relocInfo::none);
 795   __ emit_data64(0x0000000000000000, relocInfo::none);
 796 
 797   return start;
 798 }
 799 
 800 address StubGenerator::generate_popcount_avx_lut(const char *stub_name) {
 801   __ align64();
 802   StubCodeMark mark(this, "StubRoutines", stub_name);
 803   address start = __ pc();
 804 
 805   __ emit_data64(0x0302020102010100, relocInfo::none);
 806   __ emit_data64(0x0403030203020201, relocInfo::none);
 807   __ emit_data64(0x0302020102010100, relocInfo::none);
 808   __ emit_data64(0x0403030203020201, relocInfo::none);
 809   __ emit_data64(0x0302020102010100, relocInfo::none);
 810   __ emit_data64(0x0403030203020201, relocInfo::none);
 811   __ emit_data64(0x0302020102010100, relocInfo::none);
 812   __ emit_data64(0x0403030203020201, relocInfo::none);
 813 
 814   return start;
 815 }
 816 
 817 address StubGenerator::generate_iota_indices(const char *stub_name) {
 818   __ align(CodeEntryAlignment);
 819   StubCodeMark mark(this, "StubRoutines", stub_name);
 820   address start = __ pc();
 821   // B
 822   __ emit_data64(0x0706050403020100, relocInfo::none);
 823   __ emit_data64(0x0F0E0D0C0B0A0908, relocInfo::none);
 824   __ emit_data64(0x1716151413121110, relocInfo::none);
 825   __ emit_data64(0x1F1E1D1C1B1A1918, relocInfo::none);
 826   __ emit_data64(0x2726252423222120, relocInfo::none);
 827   __ emit_data64(0x2F2E2D2C2B2A2928, relocInfo::none);
 828   __ emit_data64(0x3736353433323130, relocInfo::none);
 829   __ emit_data64(0x3F3E3D3C3B3A3938, relocInfo::none);
 830   // W
 831   __ emit_data64(0x0003000200010000, relocInfo::none);
 832   __ emit_data64(0x0007000600050004, relocInfo::none);
 833   __ emit_data64(0x000B000A00090008, relocInfo::none);
 834   __ emit_data64(0x000F000E000D000C, relocInfo::none);
 835   __ emit_data64(0x0013001200110010, relocInfo::none);
 836   __ emit_data64(0x0017001600150014, relocInfo::none);
 837   __ emit_data64(0x001B001A00190018, relocInfo::none);
 838   __ emit_data64(0x001F001E001D001C, relocInfo::none);
 839   // D
 840   __ emit_data64(0x0000000100000000, relocInfo::none);
 841   __ emit_data64(0x0000000300000002, relocInfo::none);
 842   __ emit_data64(0x0000000500000004, relocInfo::none);
 843   __ emit_data64(0x0000000700000006, relocInfo::none);
 844   __ emit_data64(0x0000000900000008, relocInfo::none);
 845   __ emit_data64(0x0000000B0000000A, relocInfo::none);
 846   __ emit_data64(0x0000000D0000000C, relocInfo::none);
 847   __ emit_data64(0x0000000F0000000E, relocInfo::none);
 848   // Q
 849   __ emit_data64(0x0000000000000000, relocInfo::none);
 850   __ emit_data64(0x0000000000000001, relocInfo::none);
 851   __ emit_data64(0x0000000000000002, relocInfo::none);
 852   __ emit_data64(0x0000000000000003, relocInfo::none);
 853   __ emit_data64(0x0000000000000004, relocInfo::none);
 854   __ emit_data64(0x0000000000000005, relocInfo::none);
 855   __ emit_data64(0x0000000000000006, relocInfo::none);
 856   __ emit_data64(0x0000000000000007, relocInfo::none);
 857   // D - FP
 858   __ emit_data64(0x3F80000000000000, relocInfo::none); // 0.0f, 1.0f
 859   __ emit_data64(0x4040000040000000, relocInfo::none); // 2.0f, 3.0f
 860   __ emit_data64(0x40A0000040800000, relocInfo::none); // 4.0f, 5.0f
 861   __ emit_data64(0x40E0000040C00000, relocInfo::none); // 6.0f, 7.0f
 862   __ emit_data64(0x4110000041000000, relocInfo::none); // 8.0f, 9.0f
 863   __ emit_data64(0x4130000041200000, relocInfo::none); // 10.0f, 11.0f
 864   __ emit_data64(0x4150000041400000, relocInfo::none); // 12.0f, 13.0f
 865   __ emit_data64(0x4170000041600000, relocInfo::none); // 14.0f, 15.0f
 866   // Q - FP
 867   __ emit_data64(0x0000000000000000, relocInfo::none); // 0.0d
 868   __ emit_data64(0x3FF0000000000000, relocInfo::none); // 1.0d
 869   __ emit_data64(0x4000000000000000, relocInfo::none); // 2.0d
 870   __ emit_data64(0x4008000000000000, relocInfo::none); // 3.0d
 871   __ emit_data64(0x4010000000000000, relocInfo::none); // 4.0d
 872   __ emit_data64(0x4014000000000000, relocInfo::none); // 5.0d
 873   __ emit_data64(0x4018000000000000, relocInfo::none); // 6.0d
 874   __ emit_data64(0x401c000000000000, relocInfo::none); // 7.0d
 875   return start;
 876 }
 877 
 878 address StubGenerator::generate_vector_reverse_bit_lut(const char *stub_name) {
 879   __ align(CodeEntryAlignment);
 880   StubCodeMark mark(this, "StubRoutines", stub_name);
 881   address start = __ pc();
 882 
 883   __ emit_data64(0x0E060A020C040800, relocInfo::none);
 884   __ emit_data64(0x0F070B030D050901, relocInfo::none);
 885   __ emit_data64(0x0E060A020C040800, relocInfo::none);
 886   __ emit_data64(0x0F070B030D050901, relocInfo::none);
 887   __ emit_data64(0x0E060A020C040800, relocInfo::none);
 888   __ emit_data64(0x0F070B030D050901, relocInfo::none);
 889   __ emit_data64(0x0E060A020C040800, relocInfo::none);
 890   __ emit_data64(0x0F070B030D050901, relocInfo::none);
 891 
 892   return start;
 893 }
 894 
 895 address StubGenerator::generate_vector_reverse_byte_perm_mask_long(const char *stub_name) {
 896   __ align(CodeEntryAlignment);
 897   StubCodeMark mark(this, "StubRoutines", stub_name);
 898   address start = __ pc();
 899 
 900   __ emit_data64(0x0001020304050607, relocInfo::none);
 901   __ emit_data64(0x08090A0B0C0D0E0F, relocInfo::none);
 902   __ emit_data64(0x0001020304050607, relocInfo::none);
 903   __ emit_data64(0x08090A0B0C0D0E0F, relocInfo::none);
 904   __ emit_data64(0x0001020304050607, relocInfo::none);
 905   __ emit_data64(0x08090A0B0C0D0E0F, relocInfo::none);
 906   __ emit_data64(0x0001020304050607, relocInfo::none);
 907   __ emit_data64(0x08090A0B0C0D0E0F, relocInfo::none);
 908 
 909   return start;
 910 }
 911 
 912 address StubGenerator::generate_vector_reverse_byte_perm_mask_int(const char *stub_name) {
 913   __ align(CodeEntryAlignment);
 914   StubCodeMark mark(this, "StubRoutines", stub_name);
 915   address start = __ pc();
 916 
 917   __ emit_data64(0x0405060700010203, relocInfo::none);
 918   __ emit_data64(0x0C0D0E0F08090A0B, relocInfo::none);
 919   __ emit_data64(0x0405060700010203, relocInfo::none);
 920   __ emit_data64(0x0C0D0E0F08090A0B, relocInfo::none);
 921   __ emit_data64(0x0405060700010203, relocInfo::none);
 922   __ emit_data64(0x0C0D0E0F08090A0B, relocInfo::none);
 923   __ emit_data64(0x0405060700010203, relocInfo::none);
 924   __ emit_data64(0x0C0D0E0F08090A0B, relocInfo::none);
 925 
 926   return start;
 927 }
 928 
 929 address StubGenerator::generate_vector_reverse_byte_perm_mask_short(const char *stub_name) {
 930   __ align(CodeEntryAlignment);
 931   StubCodeMark mark(this, "StubRoutines", stub_name);
 932   address start = __ pc();
 933 
 934   __ emit_data64(0x0607040502030001, relocInfo::none);
 935   __ emit_data64(0x0E0F0C0D0A0B0809, relocInfo::none);
 936   __ emit_data64(0x0607040502030001, relocInfo::none);
 937   __ emit_data64(0x0E0F0C0D0A0B0809, relocInfo::none);
 938   __ emit_data64(0x0607040502030001, relocInfo::none);
 939   __ emit_data64(0x0E0F0C0D0A0B0809, relocInfo::none);
 940   __ emit_data64(0x0607040502030001, relocInfo::none);
 941   __ emit_data64(0x0E0F0C0D0A0B0809, relocInfo::none);
 942 
 943   return start;
 944 }
 945 
 946 address StubGenerator::generate_vector_byte_shuffle_mask(const char *stub_name) {
 947   __ align(CodeEntryAlignment);
 948   StubCodeMark mark(this, "StubRoutines", stub_name);
 949   address start = __ pc();
 950 
 951   __ emit_data64(0x7070707070707070, relocInfo::none);
 952   __ emit_data64(0x7070707070707070, relocInfo::none);
 953   __ emit_data64(0xF0F0F0F0F0F0F0F0, relocInfo::none);
 954   __ emit_data64(0xF0F0F0F0F0F0F0F0, relocInfo::none);
 955 
 956   return start;
 957 }
 958 
 959 address StubGenerator::generate_fp_mask(const char *stub_name, int64_t mask) {
 960   __ align(CodeEntryAlignment);
 961   StubCodeMark mark(this, "StubRoutines", stub_name);
 962   address start = __ pc();
 963 
 964   __ emit_data64( mask, relocInfo::none );
 965   __ emit_data64( mask, relocInfo::none );
 966 
 967   return start;
 968 }
 969 
 970 address StubGenerator::generate_vector_mask(const char *stub_name, int64_t mask) {
 971   __ align(CodeEntryAlignment);
 972   StubCodeMark mark(this, "StubRoutines", stub_name);
 973   address start = __ pc();
 974 
 975   __ emit_data64(mask, relocInfo::none);
 976   __ emit_data64(mask, relocInfo::none);
 977   __ emit_data64(mask, relocInfo::none);
 978   __ emit_data64(mask, relocInfo::none);
 979   __ emit_data64(mask, relocInfo::none);
 980   __ emit_data64(mask, relocInfo::none);
 981   __ emit_data64(mask, relocInfo::none);
 982   __ emit_data64(mask, relocInfo::none);
 983 
 984   return start;
 985 }
 986 
 987 address StubGenerator::generate_vector_byte_perm_mask(const char *stub_name) {
 988   __ align(CodeEntryAlignment);
 989   StubCodeMark mark(this, "StubRoutines", stub_name);
 990   address start = __ pc();
 991 
 992   __ emit_data64(0x0000000000000001, relocInfo::none);
 993   __ emit_data64(0x0000000000000003, relocInfo::none);
 994   __ emit_data64(0x0000000000000005, relocInfo::none);
 995   __ emit_data64(0x0000000000000007, relocInfo::none);
 996   __ emit_data64(0x0000000000000000, relocInfo::none);
 997   __ emit_data64(0x0000000000000002, relocInfo::none);
 998   __ emit_data64(0x0000000000000004, relocInfo::none);
 999   __ emit_data64(0x0000000000000006, relocInfo::none);
1000 
1001   return start;
1002 }
1003 
1004 address StubGenerator::generate_vector_fp_mask(const char *stub_name, int64_t mask) {
1005   __ align(CodeEntryAlignment);
1006   StubCodeMark mark(this, "StubRoutines", stub_name);
1007   address start = __ pc();
1008 
1009   __ emit_data64(mask, relocInfo::none);
1010   __ emit_data64(mask, relocInfo::none);
1011   __ emit_data64(mask, relocInfo::none);
1012   __ emit_data64(mask, relocInfo::none);
1013   __ emit_data64(mask, relocInfo::none);
1014   __ emit_data64(mask, relocInfo::none);
1015   __ emit_data64(mask, relocInfo::none);
1016   __ emit_data64(mask, relocInfo::none);
1017 
1018   return start;
1019 }
1020 
1021 address StubGenerator::generate_vector_custom_i32(const char *stub_name, Assembler::AvxVectorLen len,
1022                                    int32_t val0, int32_t val1, int32_t val2, int32_t val3,
1023                                    int32_t val4, int32_t val5, int32_t val6, int32_t val7,
1024                                    int32_t val8, int32_t val9, int32_t val10, int32_t val11,
1025                                    int32_t val12, int32_t val13, int32_t val14, int32_t val15) {
1026   __ align(CodeEntryAlignment);
1027   StubCodeMark mark(this, "StubRoutines", stub_name);
1028   address start = __ pc();
1029 
1030   assert(len != Assembler::AVX_NoVec, "vector len must be specified");
1031   __ emit_data(val0, relocInfo::none, 0);
1032   __ emit_data(val1, relocInfo::none, 0);
1033   __ emit_data(val2, relocInfo::none, 0);
1034   __ emit_data(val3, relocInfo::none, 0);
1035   if (len >= Assembler::AVX_256bit) {
1036     __ emit_data(val4, relocInfo::none, 0);
1037     __ emit_data(val5, relocInfo::none, 0);
1038     __ emit_data(val6, relocInfo::none, 0);
1039     __ emit_data(val7, relocInfo::none, 0);
1040     if (len >= Assembler::AVX_512bit) {
1041       __ emit_data(val8, relocInfo::none, 0);
1042       __ emit_data(val9, relocInfo::none, 0);
1043       __ emit_data(val10, relocInfo::none, 0);
1044       __ emit_data(val11, relocInfo::none, 0);
1045       __ emit_data(val12, relocInfo::none, 0);
1046       __ emit_data(val13, relocInfo::none, 0);
1047       __ emit_data(val14, relocInfo::none, 0);
1048       __ emit_data(val15, relocInfo::none, 0);
1049     }
1050   }
1051   return start;
1052 }
1053 
1054 // Non-destructive plausibility checks for oops
1055 //
1056 // Arguments:
1057 //    all args on stack!
1058 //
1059 // Stack after saving c_rarg3:
1060 //    [tos + 0]: saved c_rarg3
1061 //    [tos + 1]: saved c_rarg2
1062 //    [tos + 2]: saved r12 (several TemplateTable methods use it)
1063 //    [tos + 3]: saved flags
1064 //    [tos + 4]: return address
1065 //  * [tos + 5]: error message (char*)
1066 //  * [tos + 6]: object to verify (oop)
1067 //  * [tos + 7]: saved rax - saved by caller and bashed
1068 //  * [tos + 8]: saved r10 (rscratch1) - saved by caller
1069 //  * = popped on exit
1070 address StubGenerator::generate_verify_oop() {
1071   StubCodeMark mark(this, "StubRoutines", "verify_oop");
1072   address start = __ pc();
1073 
1074   Label exit, error;
1075 
1076   __ pushf();
1077   __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()), rscratch1);
1078 
1079   __ push(r12);
1080 
1081   // save c_rarg2 and c_rarg3
1082   __ push(c_rarg2);
1083   __ push(c_rarg3);
1084 
1085   enum {
1086     // After previous pushes.
1087     oop_to_verify = 6 * wordSize,
1088     saved_rax     = 7 * wordSize,
1089     saved_r10     = 8 * wordSize,
1090 
1091     // Before the call to MacroAssembler::debug(), see below.
1092     return_addr   = 16 * wordSize,
1093     error_msg     = 17 * wordSize
1094   };
1095 
1096   // get object
1097   __ movptr(rax, Address(rsp, oop_to_verify));
1098 
1099   // make sure object is 'reasonable'
1100   __ testptr(rax, rax);
1101   __ jcc(Assembler::zero, exit); // if obj is null it is OK
1102 
1103    BarrierSetAssembler* bs_asm = BarrierSet::barrier_set()->barrier_set_assembler();
1104    bs_asm->check_oop(_masm, rax, c_rarg2, c_rarg3, error);
1105 
1106   // return if everything seems ok
1107   __ bind(exit);
1108   __ movptr(rax, Address(rsp, saved_rax));     // get saved rax back
1109   __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back
1110   __ pop(c_rarg3);                             // restore c_rarg3
1111   __ pop(c_rarg2);                             // restore c_rarg2
1112   __ pop(r12);                                 // restore r12
1113   __ popf();                                   // restore flags
1114   __ ret(4 * wordSize);                        // pop caller saved stuff
1115 
1116   // handle errors
1117   __ bind(error);
1118   __ movptr(rax, Address(rsp, saved_rax));     // get saved rax back
1119   __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back
1120   __ pop(c_rarg3);                             // get saved c_rarg3 back
1121   __ pop(c_rarg2);                             // get saved c_rarg2 back
1122   __ pop(r12);                                 // get saved r12 back
1123   __ popf();                                   // get saved flags off stack --
1124                                                // will be ignored
1125 
1126   __ pusha();                                  // push registers
1127                                                // (rip is already
1128                                                // already pushed)
1129   // debug(char* msg, int64_t pc, int64_t regs[])
1130   // We've popped the registers we'd saved (c_rarg3, c_rarg2 and flags), and
1131   // pushed all the registers, so now the stack looks like:
1132   //     [tos +  0] 16 saved registers
1133   //     [tos + 16] return address
1134   //   * [tos + 17] error message (char*)
1135   //   * [tos + 18] object to verify (oop)
1136   //   * [tos + 19] saved rax - saved by caller and bashed
1137   //   * [tos + 20] saved r10 (rscratch1) - saved by caller
1138   //   * = popped on exit
1139 
1140   __ movptr(c_rarg0, Address(rsp, error_msg));    // pass address of error message
1141   __ movptr(c_rarg1, Address(rsp, return_addr));  // pass return address
1142   __ movq(c_rarg2, rsp);                          // pass address of regs on stack
1143   __ mov(r12, rsp);                               // remember rsp
1144   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
1145   __ andptr(rsp, -16);                            // align stack as required by ABI
1146   BLOCK_COMMENT("call MacroAssembler::debug");
1147   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
1148   __ hlt();
1149 
1150   return start;
1151 }
1152 
1153 
1154 // Shuffle first three arg regs on Windows into Linux/Solaris locations.
1155 //
1156 // Outputs:
1157 //    rdi - rcx
1158 //    rsi - rdx
1159 //    rdx - r8
1160 //    rcx - r9
1161 //
1162 // Registers r9 and r10 are used to save rdi and rsi on Windows, which latter
1163 // are non-volatile.  r9 and r10 should not be used by the caller.
1164 //
1165 void StubGenerator::setup_arg_regs(int nargs) {
1166   const Register saved_rdi = r9;
1167   const Register saved_rsi = r10;
1168   assert(nargs == 3 || nargs == 4, "else fix");
1169 #ifdef _WIN64
1170   assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9,
1171          "unexpected argument registers");
1172   if (nargs == 4) {
1173     __ mov(rax, r9);  // r9 is also saved_rdi
1174   }
1175   __ movptr(saved_rdi, rdi);
1176   __ movptr(saved_rsi, rsi);
1177   __ mov(rdi, rcx); // c_rarg0
1178   __ mov(rsi, rdx); // c_rarg1
1179   __ mov(rdx, r8);  // c_rarg2
1180   if (nargs == 4) {
1181     __ mov(rcx, rax); // c_rarg3 (via rax)
1182   }
1183 #else
1184   assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx,
1185          "unexpected argument registers");
1186 #endif
1187   DEBUG_ONLY(_regs_in_thread = false;)
1188 }
1189 
1190 
1191 void StubGenerator::restore_arg_regs() {
1192   assert(!_regs_in_thread, "wrong call to restore_arg_regs");
1193   const Register saved_rdi = r9;
1194   const Register saved_rsi = r10;
1195 #ifdef _WIN64
1196   __ movptr(rdi, saved_rdi);
1197   __ movptr(rsi, saved_rsi);
1198 #endif
1199 }
1200 
1201 
1202 // This is used in places where r10 is a scratch register, and can
1203 // be adapted if r9 is needed also.
1204 void StubGenerator::setup_arg_regs_using_thread(int nargs) {
1205   const Register saved_r15 = r9;
1206   assert(nargs == 3 || nargs == 4, "else fix");
1207 #ifdef _WIN64
1208   if (nargs == 4) {
1209     __ mov(rax, r9);       // r9 is also saved_r15
1210   }
1211   __ mov(saved_r15, r15);  // r15 is callee saved and needs to be restored
1212   __ get_thread(r15_thread);
1213   assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9,
1214          "unexpected argument registers");
1215   __ movptr(Address(r15_thread, in_bytes(JavaThread::windows_saved_rdi_offset())), rdi);
1216   __ movptr(Address(r15_thread, in_bytes(JavaThread::windows_saved_rsi_offset())), rsi);
1217 
1218   __ mov(rdi, rcx); // c_rarg0
1219   __ mov(rsi, rdx); // c_rarg1
1220   __ mov(rdx, r8);  // c_rarg2
1221   if (nargs == 4) {
1222     __ mov(rcx, rax); // c_rarg3 (via rax)
1223   }
1224 #else
1225   assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx,
1226          "unexpected argument registers");
1227 #endif
1228   DEBUG_ONLY(_regs_in_thread = true;)
1229 }
1230 
1231 
1232 void StubGenerator::restore_arg_regs_using_thread() {
1233   assert(_regs_in_thread, "wrong call to restore_arg_regs");
1234   const Register saved_r15 = r9;
1235 #ifdef _WIN64
1236   __ get_thread(r15_thread);
1237   __ movptr(rsi, Address(r15_thread, in_bytes(JavaThread::windows_saved_rsi_offset())));
1238   __ movptr(rdi, Address(r15_thread, in_bytes(JavaThread::windows_saved_rdi_offset())));
1239   __ mov(r15, saved_r15);  // r15 is callee saved and needs to be restored
1240 #endif
1241 }
1242 
1243 
1244 void StubGenerator::setup_argument_regs(BasicType type) {
1245   if (type == T_BYTE || type == T_SHORT) {
1246     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1247                       // r9 and r10 may be used to save non-volatile registers
1248   } else {
1249     setup_arg_regs_using_thread(); // from => rdi, to => rsi, count => rdx
1250                                    // r9 is used to save r15_thread
1251   }
1252 }
1253 
1254 
1255 void StubGenerator::restore_argument_regs(BasicType type) {
1256   if (type == T_BYTE || type == T_SHORT) {
1257     restore_arg_regs();
1258   } else {
1259     restore_arg_regs_using_thread();
1260   }
1261 }
1262 
1263 address StubGenerator::generate_data_cache_writeback() {
1264   const Register src        = c_rarg0;  // source address
1265 
1266   __ align(CodeEntryAlignment);
1267 
1268   StubCodeMark mark(this, "StubRoutines", "_data_cache_writeback");
1269 
1270   address start = __ pc();
1271 
1272   __ enter();
1273   __ cache_wb(Address(src, 0));
1274   __ leave();
1275   __ ret(0);
1276 
1277   return start;
1278 }
1279 
1280 address StubGenerator::generate_data_cache_writeback_sync() {
1281   const Register is_pre    = c_rarg0;  // pre or post sync
1282 
1283   __ align(CodeEntryAlignment);
1284 
1285   StubCodeMark mark(this, "StubRoutines", "_data_cache_writeback_sync");
1286 
1287   // pre wbsync is a no-op
1288   // post wbsync translates to an sfence
1289 
1290   Label skip;
1291   address start = __ pc();
1292 
1293   __ enter();
1294   __ cmpl(is_pre, 0);
1295   __ jcc(Assembler::notEqual, skip);
1296   __ cache_wbsync(false);
1297   __ bind(skip);
1298   __ leave();
1299   __ ret(0);
1300 
1301   return start;
1302 }
1303 
1304 // ofs and limit are use for multi-block byte array.
1305 // int com.sun.security.provider.MD5.implCompress(byte[] b, int ofs)
1306 address StubGenerator::generate_md5_implCompress(bool multi_block, const char *name) {
1307   __ align(CodeEntryAlignment);
1308   StubCodeMark mark(this, "StubRoutines", name);
1309   address start = __ pc();
1310 
1311   const Register buf_param = r15;
1312   const Address state_param(rsp, 0 * wordSize);
1313   const Address ofs_param  (rsp, 1 * wordSize    );
1314   const Address limit_param(rsp, 1 * wordSize + 4);
1315 
1316   __ enter();
1317   __ push(rbx);
1318   __ push(rdi);
1319   __ push(rsi);
1320   __ push(r15);
1321   __ subptr(rsp, 2 * wordSize);
1322 
1323   __ movptr(buf_param, c_rarg0);
1324   __ movptr(state_param, c_rarg1);
1325   if (multi_block) {
1326     __ movl(ofs_param, c_rarg2);
1327     __ movl(limit_param, c_rarg3);
1328   }
1329   __ fast_md5(buf_param, state_param, ofs_param, limit_param, multi_block);
1330 
1331   __ addptr(rsp, 2 * wordSize);
1332   __ pop(r15);
1333   __ pop(rsi);
1334   __ pop(rdi);
1335   __ pop(rbx);
1336   __ leave();
1337   __ ret(0);
1338 
1339   return start;
1340 }
1341 
1342 address StubGenerator::generate_upper_word_mask() {
1343   __ align64();
1344   StubCodeMark mark(this, "StubRoutines", "upper_word_mask");
1345   address start = __ pc();
1346 
1347   __ emit_data64(0x0000000000000000, relocInfo::none);
1348   __ emit_data64(0xFFFFFFFF00000000, relocInfo::none);
1349 
1350   return start;
1351 }
1352 
1353 address StubGenerator::generate_shuffle_byte_flip_mask() {
1354   __ align64();
1355   StubCodeMark mark(this, "StubRoutines", "shuffle_byte_flip_mask");
1356   address start = __ pc();
1357 
1358   __ emit_data64(0x08090a0b0c0d0e0f, relocInfo::none);
1359   __ emit_data64(0x0001020304050607, relocInfo::none);
1360 
1361   return start;
1362 }
1363 
1364 // ofs and limit are use for multi-block byte array.
1365 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
1366 address StubGenerator::generate_sha1_implCompress(bool multi_block, const char *name) {
1367   __ align(CodeEntryAlignment);
1368   StubCodeMark mark(this, "StubRoutines", name);
1369   address start = __ pc();
1370 
1371   Register buf = c_rarg0;
1372   Register state = c_rarg1;
1373   Register ofs = c_rarg2;
1374   Register limit = c_rarg3;
1375 
1376   const XMMRegister abcd = xmm0;
1377   const XMMRegister e0 = xmm1;
1378   const XMMRegister e1 = xmm2;
1379   const XMMRegister msg0 = xmm3;
1380 
1381   const XMMRegister msg1 = xmm4;
1382   const XMMRegister msg2 = xmm5;
1383   const XMMRegister msg3 = xmm6;
1384   const XMMRegister shuf_mask = xmm7;
1385 
1386   __ enter();
1387 
1388   __ subptr(rsp, 4 * wordSize);
1389 
1390   __ fast_sha1(abcd, e0, e1, msg0, msg1, msg2, msg3, shuf_mask,
1391     buf, state, ofs, limit, rsp, multi_block);
1392 
1393   __ addptr(rsp, 4 * wordSize);
1394 
1395   __ leave();
1396   __ ret(0);
1397 
1398   return start;
1399 }
1400 
1401 address StubGenerator::generate_pshuffle_byte_flip_mask() {
1402   __ align64();
1403   StubCodeMark mark(this, "StubRoutines", "pshuffle_byte_flip_mask");
1404   address start = __ pc();
1405 
1406   __ emit_data64(0x0405060700010203, relocInfo::none);
1407   __ emit_data64(0x0c0d0e0f08090a0b, relocInfo::none);
1408 
1409   if (VM_Version::supports_avx2()) {
1410     __ emit_data64(0x0405060700010203, relocInfo::none); // second copy
1411     __ emit_data64(0x0c0d0e0f08090a0b, relocInfo::none);
1412     // _SHUF_00BA
1413     __ emit_data64(0x0b0a090803020100, relocInfo::none);
1414     __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none);
1415     __ emit_data64(0x0b0a090803020100, relocInfo::none);
1416     __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none);
1417     // _SHUF_DC00
1418     __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none);
1419     __ emit_data64(0x0b0a090803020100, relocInfo::none);
1420     __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none);
1421     __ emit_data64(0x0b0a090803020100, relocInfo::none);
1422   }
1423 
1424   return start;
1425 }
1426 
1427 //Mask for byte-swapping a couple of qwords in an XMM register using (v)pshufb.
1428 address StubGenerator::generate_pshuffle_byte_flip_mask_sha512() {
1429   __ align32();
1430   StubCodeMark mark(this, "StubRoutines", "pshuffle_byte_flip_mask_sha512");
1431   address start = __ pc();
1432 
1433   if (VM_Version::supports_avx2()) {
1434     __ emit_data64(0x0001020304050607, relocInfo::none); // PSHUFFLE_BYTE_FLIP_MASK
1435     __ emit_data64(0x08090a0b0c0d0e0f, relocInfo::none);
1436     __ emit_data64(0x1011121314151617, relocInfo::none);
1437     __ emit_data64(0x18191a1b1c1d1e1f, relocInfo::none);
1438     __ emit_data64(0x0000000000000000, relocInfo::none); //MASK_YMM_LO
1439     __ emit_data64(0x0000000000000000, relocInfo::none);
1440     __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none);
1441     __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none);
1442   }
1443 
1444   return start;
1445 }
1446 
1447 // ofs and limit are use for multi-block byte array.
1448 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
1449 address StubGenerator::generate_sha256_implCompress(bool multi_block, const char *name) {
1450   assert(VM_Version::supports_sha() || VM_Version::supports_avx2(), "");
1451   __ align(CodeEntryAlignment);
1452   StubCodeMark mark(this, "StubRoutines", name);
1453   address start = __ pc();
1454 
1455   Register buf = c_rarg0;
1456   Register state = c_rarg1;
1457   Register ofs = c_rarg2;
1458   Register limit = c_rarg3;
1459 
1460   const XMMRegister msg = xmm0;
1461   const XMMRegister state0 = xmm1;
1462   const XMMRegister state1 = xmm2;
1463   const XMMRegister msgtmp0 = xmm3;
1464 
1465   const XMMRegister msgtmp1 = xmm4;
1466   const XMMRegister msgtmp2 = xmm5;
1467   const XMMRegister msgtmp3 = xmm6;
1468   const XMMRegister msgtmp4 = xmm7;
1469 
1470   const XMMRegister shuf_mask = xmm8;
1471 
1472   __ enter();
1473 
1474   __ subptr(rsp, 4 * wordSize);
1475 
1476   if (VM_Version::supports_sha()) {
1477     __ fast_sha256(msg, state0, state1, msgtmp0, msgtmp1, msgtmp2, msgtmp3, msgtmp4,
1478       buf, state, ofs, limit, rsp, multi_block, shuf_mask);
1479   } else if (VM_Version::supports_avx2()) {
1480     __ sha256_AVX2(msg, state0, state1, msgtmp0, msgtmp1, msgtmp2, msgtmp3, msgtmp4,
1481       buf, state, ofs, limit, rsp, multi_block, shuf_mask);
1482   }
1483   __ addptr(rsp, 4 * wordSize);
1484   __ vzeroupper();
1485   __ leave();
1486   __ ret(0);
1487 
1488   return start;
1489 }
1490 
1491 address StubGenerator::generate_sha512_implCompress(bool multi_block, const char *name) {
1492   assert(VM_Version::supports_avx2(), "");
1493   assert(VM_Version::supports_bmi2(), "");
1494   __ align(CodeEntryAlignment);
1495   StubCodeMark mark(this, "StubRoutines", name);
1496   address start = __ pc();
1497 
1498   Register buf = c_rarg0;
1499   Register state = c_rarg1;
1500   Register ofs = c_rarg2;
1501   Register limit = c_rarg3;
1502 
1503   const XMMRegister msg = xmm0;
1504   const XMMRegister state0 = xmm1;
1505   const XMMRegister state1 = xmm2;
1506   const XMMRegister msgtmp0 = xmm3;
1507   const XMMRegister msgtmp1 = xmm4;
1508   const XMMRegister msgtmp2 = xmm5;
1509   const XMMRegister msgtmp3 = xmm6;
1510   const XMMRegister msgtmp4 = xmm7;
1511 
1512   const XMMRegister shuf_mask = xmm8;
1513 
1514   __ enter();
1515 
1516   __ sha512_AVX2(msg, state0, state1, msgtmp0, msgtmp1, msgtmp2, msgtmp3, msgtmp4,
1517   buf, state, ofs, limit, rsp, multi_block, shuf_mask);
1518 
1519   __ vzeroupper();
1520   __ leave();
1521   __ ret(0);
1522 
1523   return start;
1524 }
1525 
1526 address StubGenerator::base64_shuffle_addr() {
1527   __ align64();
1528   StubCodeMark mark(this, "StubRoutines", "shuffle_base64");
1529   address start = __ pc();
1530 
1531   assert(((unsigned long long)start & 0x3f) == 0,
1532          "Alignment problem (0x%08llx)", (unsigned long long)start);
1533   __ emit_data64(0x0405030401020001, relocInfo::none);
1534   __ emit_data64(0x0a0b090a07080607, relocInfo::none);
1535   __ emit_data64(0x10110f100d0e0c0d, relocInfo::none);
1536   __ emit_data64(0x1617151613141213, relocInfo::none);
1537   __ emit_data64(0x1c1d1b1c191a1819, relocInfo::none);
1538   __ emit_data64(0x222321221f201e1f, relocInfo::none);
1539   __ emit_data64(0x2829272825262425, relocInfo::none);
1540   __ emit_data64(0x2e2f2d2e2b2c2a2b, relocInfo::none);
1541 
1542   return start;
1543 }
1544 
1545 address StubGenerator::base64_avx2_shuffle_addr() {
1546   __ align32();
1547   StubCodeMark mark(this, "StubRoutines", "avx2_shuffle_base64");
1548   address start = __ pc();
1549 
1550   __ emit_data64(0x0809070805060405, relocInfo::none);
1551   __ emit_data64(0x0e0f0d0e0b0c0a0b, relocInfo::none);
1552   __ emit_data64(0x0405030401020001, relocInfo::none);
1553   __ emit_data64(0x0a0b090a07080607, relocInfo::none);
1554 
1555   return start;
1556 }
1557 
1558 address StubGenerator::base64_avx2_input_mask_addr() {
1559   __ align32();
1560   StubCodeMark mark(this, "StubRoutines", "avx2_input_mask_base64");
1561   address start = __ pc();
1562 
1563   __ emit_data64(0x8000000000000000, relocInfo::none);
1564   __ emit_data64(0x8000000080000000, relocInfo::none);
1565   __ emit_data64(0x8000000080000000, relocInfo::none);
1566   __ emit_data64(0x8000000080000000, relocInfo::none);
1567 
1568   return start;
1569 }
1570 
1571 address StubGenerator::base64_avx2_lut_addr() {
1572   __ align32();
1573   StubCodeMark mark(this, "StubRoutines", "avx2_lut_base64");
1574   address start = __ pc();
1575 
1576   __ emit_data64(0xfcfcfcfcfcfc4741, relocInfo::none);
1577   __ emit_data64(0x0000f0edfcfcfcfc, relocInfo::none);
1578   __ emit_data64(0xfcfcfcfcfcfc4741, relocInfo::none);
1579   __ emit_data64(0x0000f0edfcfcfcfc, relocInfo::none);
1580 
1581   // URL LUT
1582   __ emit_data64(0xfcfcfcfcfcfc4741, relocInfo::none);
1583   __ emit_data64(0x000020effcfcfcfc, relocInfo::none);
1584   __ emit_data64(0xfcfcfcfcfcfc4741, relocInfo::none);
1585   __ emit_data64(0x000020effcfcfcfc, relocInfo::none);
1586 
1587   return start;
1588 }
1589 
1590 address StubGenerator::base64_encoding_table_addr() {
1591   __ align64();
1592   StubCodeMark mark(this, "StubRoutines", "encoding_table_base64");
1593   address start = __ pc();
1594 
1595   assert(((unsigned long long)start & 0x3f) == 0, "Alignment problem (0x%08llx)", (unsigned long long)start);
1596   __ emit_data64(0x4847464544434241, relocInfo::none);
1597   __ emit_data64(0x504f4e4d4c4b4a49, relocInfo::none);
1598   __ emit_data64(0x5857565554535251, relocInfo::none);
1599   __ emit_data64(0x6665646362615a59, relocInfo::none);
1600   __ emit_data64(0x6e6d6c6b6a696867, relocInfo::none);
1601   __ emit_data64(0x767574737271706f, relocInfo::none);
1602   __ emit_data64(0x333231307a797877, relocInfo::none);
1603   __ emit_data64(0x2f2b393837363534, relocInfo::none);
1604 
1605   // URL table
1606   __ emit_data64(0x4847464544434241, relocInfo::none);
1607   __ emit_data64(0x504f4e4d4c4b4a49, relocInfo::none);
1608   __ emit_data64(0x5857565554535251, relocInfo::none);
1609   __ emit_data64(0x6665646362615a59, relocInfo::none);
1610   __ emit_data64(0x6e6d6c6b6a696867, relocInfo::none);
1611   __ emit_data64(0x767574737271706f, relocInfo::none);
1612   __ emit_data64(0x333231307a797877, relocInfo::none);
1613   __ emit_data64(0x5f2d393837363534, relocInfo::none);
1614 
1615   return start;
1616 }
1617 
1618 // Code for generating Base64 encoding.
1619 // Intrinsic function prototype in Base64.java:
1620 // private void encodeBlock(byte[] src, int sp, int sl, byte[] dst, int dp,
1621 // boolean isURL) {
1622 address StubGenerator::generate_base64_encodeBlock()
1623 {
1624   __ align(CodeEntryAlignment);
1625   StubCodeMark mark(this, "StubRoutines", "implEncode");
1626   address start = __ pc();
1627 
1628   __ enter();
1629 
1630   // Save callee-saved registers before using them
1631   __ push(r12);
1632   __ push(r13);
1633   __ push(r14);
1634   __ push(r15);
1635 
1636   // arguments
1637   const Register source = c_rarg0;       // Source Array
1638   const Register start_offset = c_rarg1; // start offset
1639   const Register end_offset = c_rarg2;   // end offset
1640   const Register dest = c_rarg3;   // destination array
1641 
1642 #ifndef _WIN64
1643   const Register dp = c_rarg4;    // Position for writing to dest array
1644   const Register isURL = c_rarg5; // Base64 or URL character set
1645 #else
1646   const Address dp_mem(rbp, 6 * wordSize); // length is on stack on Win64
1647   const Address isURL_mem(rbp, 7 * wordSize);
1648   const Register isURL = r10; // pick the volatile windows register
1649   const Register dp = r12;
1650   __ movl(dp, dp_mem);
1651   __ movl(isURL, isURL_mem);
1652 #endif
1653 
1654   const Register length = r14;
1655   const Register encode_table = r13;
1656   Label L_process3, L_exit, L_processdata, L_vbmiLoop, L_not512, L_32byteLoop;
1657 
1658   // calculate length from offsets
1659   __ movl(length, end_offset);
1660   __ subl(length, start_offset);
1661   __ jcc(Assembler::lessEqual, L_exit);
1662 
1663   // Code for 512-bit VBMI encoding.  Encodes 48 input bytes into 64
1664   // output bytes. We read 64 input bytes and ignore the last 16, so be
1665   // sure not to read past the end of the input buffer.
1666   if (VM_Version::supports_avx512_vbmi()) {
1667     __ cmpl(length, 64); // Do not overrun input buffer.
1668     __ jcc(Assembler::below, L_not512);
1669 
1670     __ shll(isURL, 6); // index into decode table based on isURL
1671     __ lea(encode_table, ExternalAddress(StubRoutines::x86::base64_encoding_table_addr()));
1672     __ addptr(encode_table, isURL);
1673     __ shrl(isURL, 6); // restore isURL
1674 
1675     __ mov64(rax, 0x3036242a1016040aull); // Shifts
1676     __ evmovdquq(xmm3, ExternalAddress(StubRoutines::x86::base64_shuffle_addr()), Assembler::AVX_512bit, r15);
1677     __ evmovdquq(xmm2, Address(encode_table, 0), Assembler::AVX_512bit);
1678     __ evpbroadcastq(xmm1, rax, Assembler::AVX_512bit);
1679 
1680     __ align32();
1681     __ BIND(L_vbmiLoop);
1682 
1683     __ vpermb(xmm0, xmm3, Address(source, start_offset), Assembler::AVX_512bit);
1684     __ subl(length, 48);
1685 
1686     // Put the input bytes into the proper lanes for writing, then
1687     // encode them.
1688     __ evpmultishiftqb(xmm0, xmm1, xmm0, Assembler::AVX_512bit);
1689     __ vpermb(xmm0, xmm0, xmm2, Assembler::AVX_512bit);
1690 
1691     // Write to destination
1692     __ evmovdquq(Address(dest, dp), xmm0, Assembler::AVX_512bit);
1693 
1694     __ addptr(dest, 64);
1695     __ addptr(source, 48);
1696     __ cmpl(length, 64);
1697     __ jcc(Assembler::aboveEqual, L_vbmiLoop);
1698 
1699     __ vzeroupper();
1700   }
1701 
1702   __ BIND(L_not512);
1703   if (VM_Version::supports_avx2()) {
1704     /*
1705     ** This AVX2 encoder is based off the paper at:
1706     **      https://dl.acm.org/doi/10.1145/3132709
1707     **
1708     ** We use AVX2 SIMD instructions to encode 24 bytes into 32
1709     ** output bytes.
1710     **
1711     */
1712     // Lengths under 32 bytes are done with scalar routine
1713     __ cmpl(length, 31);
1714     __ jcc(Assembler::belowEqual, L_process3);
1715 
1716     // Set up supporting constant table data
1717     __ vmovdqu(xmm9, ExternalAddress(StubRoutines::x86::base64_avx2_shuffle_addr()), rax);
1718     // 6-bit mask for 2nd and 4th (and multiples) 6-bit values
1719     __ movl(rax, 0x0fc0fc00);
1720     __ movdl(xmm8, rax);
1721     __ vmovdqu(xmm1, ExternalAddress(StubRoutines::x86::base64_avx2_input_mask_addr()), rax);
1722     __ vpbroadcastd(xmm8, xmm8, Assembler::AVX_256bit);
1723 
1724     // Multiplication constant for "shifting" right by 6 and 10
1725     // bits
1726     __ movl(rax, 0x04000040);
1727 
1728     __ subl(length, 24);
1729     __ movdl(xmm7, rax);
1730     __ vpbroadcastd(xmm7, xmm7, Assembler::AVX_256bit);
1731 
1732     // For the first load, we mask off reading of the first 4
1733     // bytes into the register. This is so we can get 4 3-byte
1734     // chunks into each lane of the register, avoiding having to
1735     // handle end conditions.  We then shuffle these bytes into a
1736     // specific order so that manipulation is easier.
1737     //
1738     // The initial read loads the XMM register like this:
1739     //
1740     // Lower 128-bit lane:
1741     // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
1742     // | XX | XX | XX | XX | A0 | A1 | A2 | B0 | B1 | B2 | C0 | C1
1743     // | C2 | D0 | D1 | D2 |
1744     // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
1745     //
1746     // Upper 128-bit lane:
1747     // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
1748     // | E0 | E1 | E2 | F0 | F1 | F2 | G0 | G1 | G2 | H0 | H1 | H2
1749     // | XX | XX | XX | XX |
1750     // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
1751     //
1752     // Where A0 is the first input byte, B0 is the fourth, etc.
1753     // The alphabetical significance denotes the 3 bytes to be
1754     // consumed and encoded into 4 bytes.
1755     //
1756     // We then shuffle the register so each 32-bit word contains
1757     // the sequence:
1758     //    A1 A0 A2 A1, B1, B0, B2, B1, etc.
1759     // Each of these byte sequences are then manipulated into 4
1760     // 6-bit values ready for encoding.
1761     //
1762     // If we focus on one set of 3-byte chunks, changing the
1763     // nomenclature such that A0 => a, A1 => b, and A2 => c, we
1764     // shuffle such that each 24-bit chunk contains:
1765     //
1766     // b7 b6 b5 b4 b3 b2 b1 b0 | a7 a6 a5 a4 a3 a2 a1 a0 | c7 c6
1767     // c5 c4 c3 c2 c1 c0 | b7 b6 b5 b4 b3 b2 b1 b0
1768     // Explain this step.
1769     // b3 b2 b1 b0 c5 c4 c3 c2 | c1 c0 d5 d4 d3 d2 d1 d0 | a5 a4
1770     // a3 a2 a1 a0 b5 b4 | b3 b2 b1 b0 c5 c4 c3 c2
1771     //
1772     // W first and off all but bits 4-9 and 16-21 (c5..c0 and
1773     // a5..a0) and shift them using a vector multiplication
1774     // operation (vpmulhuw) which effectively shifts c right by 6
1775     // bits and a right by 10 bits.  We similarly mask bits 10-15
1776     // (d5..d0) and 22-27 (b5..b0) and shift them left by 8 and 4
1777     // bits respectively.  This is done using vpmullw.  We end up
1778     // with 4 6-bit values, thus splitting the 3 input bytes,
1779     // ready for encoding:
1780     //    0 0 d5..d0 0 0 c5..c0 0 0 b5..b0 0 0 a5..a0
1781     //
1782     // For translation, we recognize that there are 5 distinct
1783     // ranges of legal Base64 characters as below:
1784     //
1785     //   +-------------+-------------+------------+
1786     //   | 6-bit value | ASCII range |   offset   |
1787     //   +-------------+-------------+------------+
1788     //   |    0..25    |    A..Z     |     65     |
1789     //   |   26..51    |    a..z     |     71     |
1790     //   |   52..61    |    0..9     |     -4     |
1791     //   |     62      |   + or -    | -19 or -17 |
1792     //   |     63      |   / or _    | -16 or 32  |
1793     //   +-------------+-------------+------------+
1794     //
1795     // We note that vpshufb does a parallel lookup in a
1796     // destination register using the lower 4 bits of bytes from a
1797     // source register.  If we use a saturated subtraction and
1798     // subtract 51 from each 6-bit value, bytes from [0,51]
1799     // saturate to 0, and [52,63] map to a range of [1,12].  We
1800     // distinguish the [0,25] and [26,51] ranges by assigning a
1801     // value of 13 for all 6-bit values less than 26.  We end up
1802     // with:
1803     //
1804     //   +-------------+-------------+------------+
1805     //   | 6-bit value |   Reduced   |   offset   |
1806     //   +-------------+-------------+------------+
1807     //   |    0..25    |     13      |     65     |
1808     //   |   26..51    |      0      |     71     |
1809     //   |   52..61    |    0..9     |     -4     |
1810     //   |     62      |     11      | -19 or -17 |
1811     //   |     63      |     12      | -16 or 32  |
1812     //   +-------------+-------------+------------+
1813     //
1814     // We then use a final vpshufb to add the appropriate offset,
1815     // translating the bytes.
1816     //
1817     // Load input bytes - only 28 bytes.  Mask the first load to
1818     // not load into the full register.
1819     __ vpmaskmovd(xmm1, xmm1, Address(source, start_offset, Address::times_1, -4), Assembler::AVX_256bit);
1820 
1821     // Move 3-byte chunks of input (12 bytes) into 16 bytes,
1822     // ordering by:
1823     //   1, 0, 2, 1; 4, 3, 5, 4; etc.  This groups 6-bit chunks
1824     //   for easy masking
1825     __ vpshufb(xmm1, xmm1, xmm9, Assembler::AVX_256bit);
1826 
1827     __ addl(start_offset, 24);
1828 
1829     // Load masking register for first and third (and multiples)
1830     // 6-bit values.
1831     __ movl(rax, 0x003f03f0);
1832     __ movdl(xmm6, rax);
1833     __ vpbroadcastd(xmm6, xmm6, Assembler::AVX_256bit);
1834     // Multiplication constant for "shifting" left by 4 and 8 bits
1835     __ movl(rax, 0x01000010);
1836     __ movdl(xmm5, rax);
1837     __ vpbroadcastd(xmm5, xmm5, Assembler::AVX_256bit);
1838 
1839     // Isolate 6-bit chunks of interest
1840     __ vpand(xmm0, xmm8, xmm1, Assembler::AVX_256bit);
1841 
1842     // Load constants for encoding
1843     __ movl(rax, 0x19191919);
1844     __ movdl(xmm3, rax);
1845     __ vpbroadcastd(xmm3, xmm3, Assembler::AVX_256bit);
1846     __ movl(rax, 0x33333333);
1847     __ movdl(xmm4, rax);
1848     __ vpbroadcastd(xmm4, xmm4, Assembler::AVX_256bit);
1849 
1850     // Shift output bytes 0 and 2 into proper lanes
1851     __ vpmulhuw(xmm2, xmm0, xmm7, Assembler::AVX_256bit);
1852 
1853     // Mask and shift output bytes 1 and 3 into proper lanes and
1854     // combine
1855     __ vpand(xmm0, xmm6, xmm1, Assembler::AVX_256bit);
1856     __ vpmullw(xmm0, xmm5, xmm0, Assembler::AVX_256bit);
1857     __ vpor(xmm0, xmm0, xmm2, Assembler::AVX_256bit);
1858 
1859     // Find out which are 0..25.  This indicates which input
1860     // values fall in the range of 'A'-'Z', which require an
1861     // additional offset (see comments above)
1862     __ vpcmpgtb(xmm2, xmm0, xmm3, Assembler::AVX_256bit);
1863     __ vpsubusb(xmm1, xmm0, xmm4, Assembler::AVX_256bit);
1864     __ vpsubb(xmm1, xmm1, xmm2, Assembler::AVX_256bit);
1865 
1866     // Load the proper lookup table
1867     __ lea(r11, ExternalAddress(StubRoutines::x86::base64_avx2_lut_addr()));
1868     __ movl(r15, isURL);
1869     __ shll(r15, 5);
1870     __ vmovdqu(xmm2, Address(r11, r15));
1871 
1872     // Shuffle the offsets based on the range calculation done
1873     // above. This allows us to add the correct offset to the
1874     // 6-bit value corresponding to the range documented above.
1875     __ vpshufb(xmm1, xmm2, xmm1, Assembler::AVX_256bit);
1876     __ vpaddb(xmm0, xmm1, xmm0, Assembler::AVX_256bit);
1877 
1878     // Store the encoded bytes
1879     __ vmovdqu(Address(dest, dp), xmm0);
1880     __ addl(dp, 32);
1881 
1882     __ cmpl(length, 31);
1883     __ jcc(Assembler::belowEqual, L_process3);
1884 
1885     __ align32();
1886     __ BIND(L_32byteLoop);
1887 
1888     // Get next 32 bytes
1889     __ vmovdqu(xmm1, Address(source, start_offset, Address::times_1, -4));
1890 
1891     __ subl(length, 24);
1892     __ addl(start_offset, 24);
1893 
1894     // This logic is identical to the above, with only constant
1895     // register loads removed.  Shuffle the input, mask off 6-bit
1896     // chunks, shift them into place, then add the offset to
1897     // encode.
1898     __ vpshufb(xmm1, xmm1, xmm9, Assembler::AVX_256bit);
1899 
1900     __ vpand(xmm0, xmm8, xmm1, Assembler::AVX_256bit);
1901     __ vpmulhuw(xmm10, xmm0, xmm7, Assembler::AVX_256bit);
1902     __ vpand(xmm0, xmm6, xmm1, Assembler::AVX_256bit);
1903     __ vpmullw(xmm0, xmm5, xmm0, Assembler::AVX_256bit);
1904     __ vpor(xmm0, xmm0, xmm10, Assembler::AVX_256bit);
1905     __ vpcmpgtb(xmm10, xmm0, xmm3, Assembler::AVX_256bit);
1906     __ vpsubusb(xmm1, xmm0, xmm4, Assembler::AVX_256bit);
1907     __ vpsubb(xmm1, xmm1, xmm10, Assembler::AVX_256bit);
1908     __ vpshufb(xmm1, xmm2, xmm1, Assembler::AVX_256bit);
1909     __ vpaddb(xmm0, xmm1, xmm0, Assembler::AVX_256bit);
1910 
1911     // Store the encoded bytes
1912     __ vmovdqu(Address(dest, dp), xmm0);
1913     __ addl(dp, 32);
1914 
1915     __ cmpl(length, 31);
1916     __ jcc(Assembler::above, L_32byteLoop);
1917 
1918     __ BIND(L_process3);
1919     __ vzeroupper();
1920   } else {
1921     __ BIND(L_process3);
1922   }
1923 
1924   __ cmpl(length, 3);
1925   __ jcc(Assembler::below, L_exit);
1926 
1927   // Load the encoding table based on isURL
1928   __ lea(r11, ExternalAddress(StubRoutines::x86::base64_encoding_table_addr()));
1929   __ movl(r15, isURL);
1930   __ shll(r15, 6);
1931   __ addptr(r11, r15);
1932 
1933   __ BIND(L_processdata);
1934 
1935   // Load 3 bytes
1936   __ load_unsigned_byte(r15, Address(source, start_offset));
1937   __ load_unsigned_byte(r10, Address(source, start_offset, Address::times_1, 1));
1938   __ load_unsigned_byte(r13, Address(source, start_offset, Address::times_1, 2));
1939 
1940   // Build a 32-bit word with bytes 1, 2, 0, 1
1941   __ movl(rax, r10);
1942   __ shll(r10, 24);
1943   __ orl(rax, r10);
1944 
1945   __ subl(length, 3);
1946 
1947   __ shll(r15, 8);
1948   __ shll(r13, 16);
1949   __ orl(rax, r15);
1950 
1951   __ addl(start_offset, 3);
1952 
1953   __ orl(rax, r13);
1954   // At this point, rax contains | byte1 | byte2 | byte0 | byte1
1955   // r13 has byte2 << 16 - need low-order 6 bits to translate.
1956   // This translated byte is the fourth output byte.
1957   __ shrl(r13, 16);
1958   __ andl(r13, 0x3f);
1959 
1960   // The high-order 6 bits of r15 (byte0) is translated.
1961   // The translated byte is the first output byte.
1962   __ shrl(r15, 10);
1963 
1964   __ load_unsigned_byte(r13, Address(r11, r13));
1965   __ load_unsigned_byte(r15, Address(r11, r15));
1966 
1967   __ movb(Address(dest, dp, Address::times_1, 3), r13);
1968 
1969   // Extract high-order 4 bits of byte1 and low-order 2 bits of byte0.
1970   // This translated byte is the second output byte.
1971   __ shrl(rax, 4);
1972   __ movl(r10, rax);
1973   __ andl(rax, 0x3f);
1974 
1975   __ movb(Address(dest, dp, Address::times_1, 0), r15);
1976 
1977   __ load_unsigned_byte(rax, Address(r11, rax));
1978 
1979   // Extract low-order 2 bits of byte1 and high-order 4 bits of byte2.
1980   // This translated byte is the third output byte.
1981   __ shrl(r10, 18);
1982   __ andl(r10, 0x3f);
1983 
1984   __ load_unsigned_byte(r10, Address(r11, r10));
1985 
1986   __ movb(Address(dest, dp, Address::times_1, 1), rax);
1987   __ movb(Address(dest, dp, Address::times_1, 2), r10);
1988 
1989   __ addl(dp, 4);
1990   __ cmpl(length, 3);
1991   __ jcc(Assembler::aboveEqual, L_processdata);
1992 
1993   __ BIND(L_exit);
1994   __ pop(r15);
1995   __ pop(r14);
1996   __ pop(r13);
1997   __ pop(r12);
1998   __ leave();
1999   __ ret(0);
2000 
2001   return start;
2002 }
2003 
2004 // base64 AVX512vbmi tables
2005 address StubGenerator::base64_vbmi_lookup_lo_addr() {
2006   __ align64();
2007   StubCodeMark mark(this, "StubRoutines", "lookup_lo_base64");
2008   address start = __ pc();
2009 
2010   assert(((unsigned long long)start & 0x3f) == 0,
2011          "Alignment problem (0x%08llx)", (unsigned long long)start);
2012   __ emit_data64(0x8080808080808080, relocInfo::none);
2013   __ emit_data64(0x8080808080808080, relocInfo::none);
2014   __ emit_data64(0x8080808080808080, relocInfo::none);
2015   __ emit_data64(0x8080808080808080, relocInfo::none);
2016   __ emit_data64(0x8080808080808080, relocInfo::none);
2017   __ emit_data64(0x3f8080803e808080, relocInfo::none);
2018   __ emit_data64(0x3b3a393837363534, relocInfo::none);
2019   __ emit_data64(0x8080808080803d3c, relocInfo::none);
2020 
2021   return start;
2022 }
2023 
2024 address StubGenerator::base64_vbmi_lookup_hi_addr() {
2025   __ align64();
2026   StubCodeMark mark(this, "StubRoutines", "lookup_hi_base64");
2027   address start = __ pc();
2028 
2029   assert(((unsigned long long)start & 0x3f) == 0,
2030          "Alignment problem (0x%08llx)", (unsigned long long)start);
2031   __ emit_data64(0x0605040302010080, relocInfo::none);
2032   __ emit_data64(0x0e0d0c0b0a090807, relocInfo::none);
2033   __ emit_data64(0x161514131211100f, relocInfo::none);
2034   __ emit_data64(0x8080808080191817, relocInfo::none);
2035   __ emit_data64(0x201f1e1d1c1b1a80, relocInfo::none);
2036   __ emit_data64(0x2827262524232221, relocInfo::none);
2037   __ emit_data64(0x302f2e2d2c2b2a29, relocInfo::none);
2038   __ emit_data64(0x8080808080333231, relocInfo::none);
2039 
2040   return start;
2041 }
2042 address StubGenerator::base64_vbmi_lookup_lo_url_addr() {
2043   __ align64();
2044   StubCodeMark mark(this, "StubRoutines", "lookup_lo_base64url");
2045   address start = __ pc();
2046 
2047   assert(((unsigned long long)start & 0x3f) == 0,
2048          "Alignment problem (0x%08llx)", (unsigned long long)start);
2049   __ emit_data64(0x8080808080808080, relocInfo::none);
2050   __ emit_data64(0x8080808080808080, relocInfo::none);
2051   __ emit_data64(0x8080808080808080, relocInfo::none);
2052   __ emit_data64(0x8080808080808080, relocInfo::none);
2053   __ emit_data64(0x8080808080808080, relocInfo::none);
2054   __ emit_data64(0x80803e8080808080, relocInfo::none);
2055   __ emit_data64(0x3b3a393837363534, relocInfo::none);
2056   __ emit_data64(0x8080808080803d3c, relocInfo::none);
2057 
2058   return start;
2059 }
2060 
2061 address StubGenerator::base64_vbmi_lookup_hi_url_addr() {
2062   __ align64();
2063   StubCodeMark mark(this, "StubRoutines", "lookup_hi_base64url");
2064   address start = __ pc();
2065 
2066   assert(((unsigned long long)start & 0x3f) == 0,
2067          "Alignment problem (0x%08llx)", (unsigned long long)start);
2068   __ emit_data64(0x0605040302010080, relocInfo::none);
2069   __ emit_data64(0x0e0d0c0b0a090807, relocInfo::none);
2070   __ emit_data64(0x161514131211100f, relocInfo::none);
2071   __ emit_data64(0x3f80808080191817, relocInfo::none);
2072   __ emit_data64(0x201f1e1d1c1b1a80, relocInfo::none);
2073   __ emit_data64(0x2827262524232221, relocInfo::none);
2074   __ emit_data64(0x302f2e2d2c2b2a29, relocInfo::none);
2075   __ emit_data64(0x8080808080333231, relocInfo::none);
2076 
2077   return start;
2078 }
2079 
2080 address StubGenerator::base64_vbmi_pack_vec_addr() {
2081   __ align64();
2082   StubCodeMark mark(this, "StubRoutines", "pack_vec_base64");
2083   address start = __ pc();
2084 
2085   assert(((unsigned long long)start & 0x3f) == 0,
2086          "Alignment problem (0x%08llx)", (unsigned long long)start);
2087   __ emit_data64(0x090a040506000102, relocInfo::none);
2088   __ emit_data64(0x161011120c0d0e08, relocInfo::none);
2089   __ emit_data64(0x1c1d1e18191a1415, relocInfo::none);
2090   __ emit_data64(0x292a242526202122, relocInfo::none);
2091   __ emit_data64(0x363031322c2d2e28, relocInfo::none);
2092   __ emit_data64(0x3c3d3e38393a3435, relocInfo::none);
2093   __ emit_data64(0x0000000000000000, relocInfo::none);
2094   __ emit_data64(0x0000000000000000, relocInfo::none);
2095 
2096   return start;
2097 }
2098 
2099 address StubGenerator::base64_vbmi_join_0_1_addr() {
2100   __ align64();
2101   StubCodeMark mark(this, "StubRoutines", "join_0_1_base64");
2102   address start = __ pc();
2103 
2104   assert(((unsigned long long)start & 0x3f) == 0,
2105          "Alignment problem (0x%08llx)", (unsigned long long)start);
2106   __ emit_data64(0x090a040506000102, relocInfo::none);
2107   __ emit_data64(0x161011120c0d0e08, relocInfo::none);
2108   __ emit_data64(0x1c1d1e18191a1415, relocInfo::none);
2109   __ emit_data64(0x292a242526202122, relocInfo::none);
2110   __ emit_data64(0x363031322c2d2e28, relocInfo::none);
2111   __ emit_data64(0x3c3d3e38393a3435, relocInfo::none);
2112   __ emit_data64(0x494a444546404142, relocInfo::none);
2113   __ emit_data64(0x565051524c4d4e48, relocInfo::none);
2114 
2115   return start;
2116 }
2117 
2118 address StubGenerator::base64_vbmi_join_1_2_addr() {
2119   __ align64();
2120   StubCodeMark mark(this, "StubRoutines", "join_1_2_base64");
2121   address start = __ pc();
2122 
2123   assert(((unsigned long long)start & 0x3f) == 0,
2124          "Alignment problem (0x%08llx)", (unsigned long long)start);
2125   __ emit_data64(0x1c1d1e18191a1415, relocInfo::none);
2126   __ emit_data64(0x292a242526202122, relocInfo::none);
2127   __ emit_data64(0x363031322c2d2e28, relocInfo::none);
2128   __ emit_data64(0x3c3d3e38393a3435, relocInfo::none);
2129   __ emit_data64(0x494a444546404142, relocInfo::none);
2130   __ emit_data64(0x565051524c4d4e48, relocInfo::none);
2131   __ emit_data64(0x5c5d5e58595a5455, relocInfo::none);
2132   __ emit_data64(0x696a646566606162, relocInfo::none);
2133 
2134   return start;
2135 }
2136 
2137 address StubGenerator::base64_vbmi_join_2_3_addr() {
2138   __ align64();
2139   StubCodeMark mark(this, "StubRoutines", "join_2_3_base64");
2140   address start = __ pc();
2141 
2142   assert(((unsigned long long)start & 0x3f) == 0,
2143          "Alignment problem (0x%08llx)", (unsigned long long)start);
2144   __ emit_data64(0x363031322c2d2e28, relocInfo::none);
2145   __ emit_data64(0x3c3d3e38393a3435, relocInfo::none);
2146   __ emit_data64(0x494a444546404142, relocInfo::none);
2147   __ emit_data64(0x565051524c4d4e48, relocInfo::none);
2148   __ emit_data64(0x5c5d5e58595a5455, relocInfo::none);
2149   __ emit_data64(0x696a646566606162, relocInfo::none);
2150   __ emit_data64(0x767071726c6d6e68, relocInfo::none);
2151   __ emit_data64(0x7c7d7e78797a7475, relocInfo::none);
2152 
2153   return start;
2154 }
2155 
2156 address StubGenerator::base64_AVX2_decode_tables_addr() {
2157   __ align64();
2158   StubCodeMark mark(this, "StubRoutines", "AVX2_tables_base64");
2159   address start = __ pc();
2160 
2161   assert(((unsigned long long)start & 0x3f) == 0,
2162          "Alignment problem (0x%08llx)", (unsigned long long)start);
2163   __ emit_data(0x2f2f2f2f, relocInfo::none, 0);
2164   __ emit_data(0x5f5f5f5f, relocInfo::none, 0);  // for URL
2165 
2166   __ emit_data(0xffffffff, relocInfo::none, 0);
2167   __ emit_data(0xfcfcfcfc, relocInfo::none, 0);  // for URL
2168 
2169   // Permute table
2170   __ emit_data64(0x0000000100000000, relocInfo::none);
2171   __ emit_data64(0x0000000400000002, relocInfo::none);
2172   __ emit_data64(0x0000000600000005, relocInfo::none);
2173   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2174 
2175   // Shuffle table
2176   __ emit_data64(0x090a040506000102, relocInfo::none);
2177   __ emit_data64(0xffffffff0c0d0e08, relocInfo::none);
2178   __ emit_data64(0x090a040506000102, relocInfo::none);
2179   __ emit_data64(0xffffffff0c0d0e08, relocInfo::none);
2180 
2181   // merge table
2182   __ emit_data(0x01400140, relocInfo::none, 0);
2183 
2184   // merge multiplier
2185   __ emit_data(0x00011000, relocInfo::none, 0);
2186 
2187   return start;
2188 }
2189 
2190 address StubGenerator::base64_AVX2_decode_LUT_tables_addr() {
2191   __ align64();
2192   StubCodeMark mark(this, "StubRoutines", "AVX2_tables_URL_base64");
2193   address start = __ pc();
2194 
2195   assert(((unsigned long long)start & 0x3f) == 0,
2196          "Alignment problem (0x%08llx)", (unsigned long long)start);
2197   // lut_lo
2198   __ emit_data64(0x1111111111111115, relocInfo::none);
2199   __ emit_data64(0x1a1b1b1b1a131111, relocInfo::none);
2200   __ emit_data64(0x1111111111111115, relocInfo::none);
2201   __ emit_data64(0x1a1b1b1b1a131111, relocInfo::none);
2202 
2203   // lut_roll
2204   __ emit_data64(0xb9b9bfbf04131000, relocInfo::none);
2205   __ emit_data64(0x0000000000000000, relocInfo::none);
2206   __ emit_data64(0xb9b9bfbf04131000, relocInfo::none);
2207   __ emit_data64(0x0000000000000000, relocInfo::none);
2208 
2209   // lut_lo URL
2210   __ emit_data64(0x1111111111111115, relocInfo::none);
2211   __ emit_data64(0x1b1b1a1b1b131111, relocInfo::none);
2212   __ emit_data64(0x1111111111111115, relocInfo::none);
2213   __ emit_data64(0x1b1b1a1b1b131111, relocInfo::none);
2214 
2215   // lut_roll URL
2216   __ emit_data64(0xb9b9bfbf0411e000, relocInfo::none);
2217   __ emit_data64(0x0000000000000000, relocInfo::none);
2218   __ emit_data64(0xb9b9bfbf0411e000, relocInfo::none);
2219   __ emit_data64(0x0000000000000000, relocInfo::none);
2220 
2221   // lut_hi
2222   __ emit_data64(0x0804080402011010, relocInfo::none);
2223   __ emit_data64(0x1010101010101010, relocInfo::none);
2224   __ emit_data64(0x0804080402011010, relocInfo::none);
2225   __ emit_data64(0x1010101010101010, relocInfo::none);
2226 
2227   return start;
2228 }
2229 
2230 address StubGenerator::base64_decoding_table_addr() {
2231   StubCodeMark mark(this, "StubRoutines", "decoding_table_base64");
2232   address start = __ pc();
2233 
2234   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2235   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2236   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2237   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2238   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2239   __ emit_data64(0x3fffffff3effffff, relocInfo::none);
2240   __ emit_data64(0x3b3a393837363534, relocInfo::none);
2241   __ emit_data64(0xffffffffffff3d3c, relocInfo::none);
2242   __ emit_data64(0x06050403020100ff, relocInfo::none);
2243   __ emit_data64(0x0e0d0c0b0a090807, relocInfo::none);
2244   __ emit_data64(0x161514131211100f, relocInfo::none);
2245   __ emit_data64(0xffffffffff191817, relocInfo::none);
2246   __ emit_data64(0x201f1e1d1c1b1aff, relocInfo::none);
2247   __ emit_data64(0x2827262524232221, relocInfo::none);
2248   __ emit_data64(0x302f2e2d2c2b2a29, relocInfo::none);
2249   __ emit_data64(0xffffffffff333231, relocInfo::none);
2250   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2251   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2252   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2253   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2254   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2255   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2256   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2257   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2258   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2259   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2260   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2261   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2262   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2263   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2264   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2265   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2266 
2267   // URL table
2268   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2269   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2270   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2271   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2272   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2273   __ emit_data64(0xffff3effffffffff, relocInfo::none);
2274   __ emit_data64(0x3b3a393837363534, relocInfo::none);
2275   __ emit_data64(0xffffffffffff3d3c, relocInfo::none);
2276   __ emit_data64(0x06050403020100ff, relocInfo::none);
2277   __ emit_data64(0x0e0d0c0b0a090807, relocInfo::none);
2278   __ emit_data64(0x161514131211100f, relocInfo::none);
2279   __ emit_data64(0x3fffffffff191817, relocInfo::none);
2280   __ emit_data64(0x201f1e1d1c1b1aff, relocInfo::none);
2281   __ emit_data64(0x2827262524232221, relocInfo::none);
2282   __ emit_data64(0x302f2e2d2c2b2a29, relocInfo::none);
2283   __ emit_data64(0xffffffffff333231, relocInfo::none);
2284   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2285   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2286   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2287   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2288   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2289   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2290   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2291   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2292   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2293   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2294   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2295   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2296   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2297   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2298   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2299   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2300 
2301   return start;
2302 }
2303 
2304 
2305 // Code for generating Base64 decoding.
2306 //
2307 // Based on the article (and associated code) from https://arxiv.org/abs/1910.05109.
2308 //
2309 // Intrinsic function prototype in Base64.java:
2310 // private void decodeBlock(byte[] src, int sp, int sl, byte[] dst, int dp, boolean isURL, isMIME) {
2311 address StubGenerator::generate_base64_decodeBlock() {
2312   __ align(CodeEntryAlignment);
2313   StubCodeMark mark(this, "StubRoutines", "implDecode");
2314   address start = __ pc();
2315 
2316   __ enter();
2317 
2318   // Save callee-saved registers before using them
2319   __ push(r12);
2320   __ push(r13);
2321   __ push(r14);
2322   __ push(r15);
2323   __ push(rbx);
2324 
2325   // arguments
2326   const Register source = c_rarg0; // Source Array
2327   const Register start_offset = c_rarg1; // start offset
2328   const Register end_offset = c_rarg2; // end offset
2329   const Register dest = c_rarg3; // destination array
2330   const Register isMIME = rbx;
2331 
2332 #ifndef _WIN64
2333   const Register dp = c_rarg4;  // Position for writing to dest array
2334   const Register isURL = c_rarg5;// Base64 or URL character set
2335   __ movl(isMIME, Address(rbp, 2 * wordSize));
2336 #else
2337   const Address  dp_mem(rbp, 6 * wordSize);  // length is on stack on Win64
2338   const Address isURL_mem(rbp, 7 * wordSize);
2339   const Register isURL = r10;      // pick the volatile windows register
2340   const Register dp = r12;
2341   __ movl(dp, dp_mem);
2342   __ movl(isURL, isURL_mem);
2343   __ movl(isMIME, Address(rbp, 8 * wordSize));
2344 #endif
2345 
2346   const XMMRegister lookup_lo = xmm5;
2347   const XMMRegister lookup_hi = xmm6;
2348   const XMMRegister errorvec = xmm7;
2349   const XMMRegister pack16_op = xmm9;
2350   const XMMRegister pack32_op = xmm8;
2351   const XMMRegister input0 = xmm3;
2352   const XMMRegister input1 = xmm20;
2353   const XMMRegister input2 = xmm21;
2354   const XMMRegister input3 = xmm19;
2355   const XMMRegister join01 = xmm12;
2356   const XMMRegister join12 = xmm11;
2357   const XMMRegister join23 = xmm10;
2358   const XMMRegister translated0 = xmm2;
2359   const XMMRegister translated1 = xmm1;
2360   const XMMRegister translated2 = xmm0;
2361   const XMMRegister translated3 = xmm4;
2362 
2363   const XMMRegister merged0 = xmm2;
2364   const XMMRegister merged1 = xmm1;
2365   const XMMRegister merged2 = xmm0;
2366   const XMMRegister merged3 = xmm4;
2367   const XMMRegister merge_ab_bc0 = xmm2;
2368   const XMMRegister merge_ab_bc1 = xmm1;
2369   const XMMRegister merge_ab_bc2 = xmm0;
2370   const XMMRegister merge_ab_bc3 = xmm4;
2371 
2372   const XMMRegister pack24bits = xmm4;
2373 
2374   const Register length = r14;
2375   const Register output_size = r13;
2376   const Register output_mask = r15;
2377   const KRegister input_mask = k1;
2378 
2379   const XMMRegister input_initial_valid_b64 = xmm0;
2380   const XMMRegister tmp = xmm10;
2381   const XMMRegister mask = xmm0;
2382   const XMMRegister invalid_b64 = xmm1;
2383 
2384   Label L_process256, L_process64, L_process64Loop, L_exit, L_processdata, L_loadURL;
2385   Label L_continue, L_finalBit, L_padding, L_donePadding, L_bruteForce;
2386   Label L_forceLoop, L_bottomLoop, L_checkMIME, L_exit_no_vzero, L_lastChunk;
2387 
2388   // calculate length from offsets
2389   __ movl(length, end_offset);
2390   __ subl(length, start_offset);
2391   __ push(dest);          // Save for return value calc
2392 
2393   // If AVX512 VBMI not supported, just compile non-AVX code
2394   if(VM_Version::supports_avx512_vbmi() &&
2395      VM_Version::supports_avx512bw()) {
2396     __ cmpl(length, 31);     // 32-bytes is break-even for AVX-512
2397     __ jcc(Assembler::lessEqual, L_lastChunk);
2398 
2399     __ cmpl(isMIME, 0);
2400     __ jcc(Assembler::notEqual, L_lastChunk);
2401 
2402     // Load lookup tables based on isURL
2403     __ cmpl(isURL, 0);
2404     __ jcc(Assembler::notZero, L_loadURL);
2405 
2406     __ evmovdquq(lookup_lo, ExternalAddress(StubRoutines::x86::base64_vbmi_lookup_lo_addr()), Assembler::AVX_512bit, r13);
2407     __ evmovdquq(lookup_hi, ExternalAddress(StubRoutines::x86::base64_vbmi_lookup_hi_addr()), Assembler::AVX_512bit, r13);
2408 
2409     __ BIND(L_continue);
2410 
2411     __ movl(r15, 0x01400140);
2412     __ evpbroadcastd(pack16_op, r15, Assembler::AVX_512bit);
2413 
2414     __ movl(r15, 0x00011000);
2415     __ evpbroadcastd(pack32_op, r15, Assembler::AVX_512bit);
2416 
2417     __ cmpl(length, 0xff);
2418     __ jcc(Assembler::lessEqual, L_process64);
2419 
2420     // load masks required for decoding data
2421     __ BIND(L_processdata);
2422     __ evmovdquq(join01, ExternalAddress(StubRoutines::x86::base64_vbmi_join_0_1_addr()), Assembler::AVX_512bit,r13);
2423     __ evmovdquq(join12, ExternalAddress(StubRoutines::x86::base64_vbmi_join_1_2_addr()), Assembler::AVX_512bit, r13);
2424     __ evmovdquq(join23, ExternalAddress(StubRoutines::x86::base64_vbmi_join_2_3_addr()), Assembler::AVX_512bit, r13);
2425 
2426     __ align32();
2427     __ BIND(L_process256);
2428     // Grab input data
2429     __ evmovdquq(input0, Address(source, start_offset, Address::times_1, 0x00), Assembler::AVX_512bit);
2430     __ evmovdquq(input1, Address(source, start_offset, Address::times_1, 0x40), Assembler::AVX_512bit);
2431     __ evmovdquq(input2, Address(source, start_offset, Address::times_1, 0x80), Assembler::AVX_512bit);
2432     __ evmovdquq(input3, Address(source, start_offset, Address::times_1, 0xc0), Assembler::AVX_512bit);
2433 
2434     // Copy the low part of the lookup table into the destination of the permutation
2435     __ evmovdquq(translated0, lookup_lo, Assembler::AVX_512bit);
2436     __ evmovdquq(translated1, lookup_lo, Assembler::AVX_512bit);
2437     __ evmovdquq(translated2, lookup_lo, Assembler::AVX_512bit);
2438     __ evmovdquq(translated3, lookup_lo, Assembler::AVX_512bit);
2439 
2440     // Translate the base64 input into "decoded" bytes
2441     __ evpermt2b(translated0, input0, lookup_hi, Assembler::AVX_512bit);
2442     __ evpermt2b(translated1, input1, lookup_hi, Assembler::AVX_512bit);
2443     __ evpermt2b(translated2, input2, lookup_hi, Assembler::AVX_512bit);
2444     __ evpermt2b(translated3, input3, lookup_hi, Assembler::AVX_512bit);
2445 
2446     // OR all of the translations together to check for errors (high-order bit of byte set)
2447     __ vpternlogd(input0, 0xfe, input1, input2, Assembler::AVX_512bit);
2448 
2449     __ vpternlogd(input3, 0xfe, translated0, translated1, Assembler::AVX_512bit);
2450     __ vpternlogd(input0, 0xfe, translated2, translated3, Assembler::AVX_512bit);
2451     __ vpor(errorvec, input3, input0, Assembler::AVX_512bit);
2452 
2453     // Check if there was an error - if so, try 64-byte chunks
2454     __ evpmovb2m(k3, errorvec, Assembler::AVX_512bit);
2455     __ kortestql(k3, k3);
2456     __ jcc(Assembler::notZero, L_process64);
2457 
2458     // The merging and shuffling happens here
2459     // We multiply each byte pair [00dddddd | 00cccccc | 00bbbbbb | 00aaaaaa]
2460     // Multiply [00cccccc] by 2^6 added to [00dddddd] to get [0000cccc | ccdddddd]
2461     // The pack16_op is a vector of 0x01400140, so multiply D by 1 and C by 0x40
2462     __ vpmaddubsw(merge_ab_bc0, translated0, pack16_op, Assembler::AVX_512bit);
2463     __ vpmaddubsw(merge_ab_bc1, translated1, pack16_op, Assembler::AVX_512bit);
2464     __ vpmaddubsw(merge_ab_bc2, translated2, pack16_op, Assembler::AVX_512bit);
2465     __ vpmaddubsw(merge_ab_bc3, translated3, pack16_op, Assembler::AVX_512bit);
2466 
2467     // Now do the same with packed 16-bit values.
2468     // We start with [0000cccc | ccdddddd | 0000aaaa | aabbbbbb]
2469     // pack32_op is 0x00011000 (2^12, 1), so this multiplies [0000aaaa | aabbbbbb] by 2^12
2470     // and adds [0000cccc | ccdddddd] to yield [00000000 | aaaaaabb | bbbbcccc | ccdddddd]
2471     __ vpmaddwd(merged0, merge_ab_bc0, pack32_op, Assembler::AVX_512bit);
2472     __ vpmaddwd(merged1, merge_ab_bc1, pack32_op, Assembler::AVX_512bit);
2473     __ vpmaddwd(merged2, merge_ab_bc2, pack32_op, Assembler::AVX_512bit);
2474     __ vpmaddwd(merged3, merge_ab_bc3, pack32_op, Assembler::AVX_512bit);
2475 
2476     // The join vectors specify which byte from which vector goes into the outputs
2477     // One of every 4 bytes in the extended vector is zero, so we pack them into their
2478     // final positions in the register for storing (256 bytes in, 192 bytes out)
2479     __ evpermt2b(merged0, join01, merged1, Assembler::AVX_512bit);
2480     __ evpermt2b(merged1, join12, merged2, Assembler::AVX_512bit);
2481     __ evpermt2b(merged2, join23, merged3, Assembler::AVX_512bit);
2482 
2483     // Store result
2484     __ evmovdquq(Address(dest, dp, Address::times_1, 0x00), merged0, Assembler::AVX_512bit);
2485     __ evmovdquq(Address(dest, dp, Address::times_1, 0x40), merged1, Assembler::AVX_512bit);
2486     __ evmovdquq(Address(dest, dp, Address::times_1, 0x80), merged2, Assembler::AVX_512bit);
2487 
2488     __ addptr(source, 0x100);
2489     __ addptr(dest, 0xc0);
2490     __ subl(length, 0x100);
2491     __ cmpl(length, 64 * 4);
2492     __ jcc(Assembler::greaterEqual, L_process256);
2493 
2494     // At this point, we've decoded 64 * 4 * n bytes.
2495     // The remaining length will be <= 64 * 4 - 1.
2496     // UNLESS there was an error decoding the first 256-byte chunk.  In this
2497     // case, the length will be arbitrarily long.
2498     //
2499     // Note that this will be the path for MIME-encoded strings.
2500 
2501     __ BIND(L_process64);
2502 
2503     __ evmovdquq(pack24bits, ExternalAddress(StubRoutines::x86::base64_vbmi_pack_vec_addr()), Assembler::AVX_512bit, r13);
2504 
2505     __ cmpl(length, 63);
2506     __ jcc(Assembler::lessEqual, L_finalBit);
2507 
2508     __ mov64(rax, 0x0000ffffffffffff);
2509     __ kmovql(k2, rax);
2510 
2511     __ align32();
2512     __ BIND(L_process64Loop);
2513 
2514     // Handle first 64-byte block
2515 
2516     __ evmovdquq(input0, Address(source, start_offset), Assembler::AVX_512bit);
2517     __ evmovdquq(translated0, lookup_lo, Assembler::AVX_512bit);
2518     __ evpermt2b(translated0, input0, lookup_hi, Assembler::AVX_512bit);
2519 
2520     __ vpor(errorvec, translated0, input0, Assembler::AVX_512bit);
2521 
2522     // Check for error and bomb out before updating dest
2523     __ evpmovb2m(k3, errorvec, Assembler::AVX_512bit);
2524     __ kortestql(k3, k3);
2525     __ jcc(Assembler::notZero, L_exit);
2526 
2527     // Pack output register, selecting correct byte ordering
2528     __ vpmaddubsw(merge_ab_bc0, translated0, pack16_op, Assembler::AVX_512bit);
2529     __ vpmaddwd(merged0, merge_ab_bc0, pack32_op, Assembler::AVX_512bit);
2530     __ vpermb(merged0, pack24bits, merged0, Assembler::AVX_512bit);
2531 
2532     __ evmovdqub(Address(dest, dp), k2, merged0, true, Assembler::AVX_512bit);
2533 
2534     __ subl(length, 64);
2535     __ addptr(source, 64);
2536     __ addptr(dest, 48);
2537 
2538     __ cmpl(length, 64);
2539     __ jcc(Assembler::greaterEqual, L_process64Loop);
2540 
2541     __ cmpl(length, 0);
2542     __ jcc(Assembler::lessEqual, L_exit);
2543 
2544     __ BIND(L_finalBit);
2545     // Now have 1 to 63 bytes left to decode
2546 
2547     // I was going to let Java take care of the final fragment
2548     // however it will repeatedly call this routine for every 4 bytes
2549     // of input data, so handle the rest here.
2550     __ movq(rax, -1);
2551     __ bzhiq(rax, rax, length);    // Input mask in rax
2552 
2553     __ movl(output_size, length);
2554     __ shrl(output_size, 2);   // Find (len / 4) * 3 (output length)
2555     __ lea(output_size, Address(output_size, output_size, Address::times_2, 0));
2556     // output_size in r13
2557 
2558     // Strip pad characters, if any, and adjust length and mask
2559     __ cmpb(Address(source, length, Address::times_1, -1), '=');
2560     __ jcc(Assembler::equal, L_padding);
2561 
2562     __ BIND(L_donePadding);
2563 
2564     // Output size is (64 - output_size), output mask is (all 1s >> output_size).
2565     __ kmovql(input_mask, rax);
2566     __ movq(output_mask, -1);
2567     __ bzhiq(output_mask, output_mask, output_size);
2568 
2569     // Load initial input with all valid base64 characters.  Will be used
2570     // in merging source bytes to avoid masking when determining if an error occurred.
2571     __ movl(rax, 0x61616161);
2572     __ evpbroadcastd(input_initial_valid_b64, rax, Assembler::AVX_512bit);
2573 
2574     // A register containing all invalid base64 decoded values
2575     __ movl(rax, 0x80808080);
2576     __ evpbroadcastd(invalid_b64, rax, Assembler::AVX_512bit);
2577 
2578     // input_mask is in k1
2579     // output_size is in r13
2580     // output_mask is in r15
2581     // zmm0 - free
2582     // zmm1 - 0x00011000
2583     // zmm2 - 0x01400140
2584     // zmm3 - errorvec
2585     // zmm4 - pack vector
2586     // zmm5 - lookup_lo
2587     // zmm6 - lookup_hi
2588     // zmm7 - errorvec
2589     // zmm8 - 0x61616161
2590     // zmm9 - 0x80808080
2591 
2592     // Load only the bytes from source, merging into our "fully-valid" register
2593     __ evmovdqub(input_initial_valid_b64, input_mask, Address(source, start_offset, Address::times_1, 0x0), true, Assembler::AVX_512bit);
2594 
2595     // Decode all bytes within our merged input
2596     __ evmovdquq(tmp, lookup_lo, Assembler::AVX_512bit);
2597     __ evpermt2b(tmp, input_initial_valid_b64, lookup_hi, Assembler::AVX_512bit);
2598     __ evporq(mask, tmp, input_initial_valid_b64, Assembler::AVX_512bit);
2599 
2600     // Check for error.  Compare (decoded | initial) to all invalid.
2601     // If any bytes have their high-order bit set, then we have an error.
2602     __ evptestmb(k2, mask, invalid_b64, Assembler::AVX_512bit);
2603     __ kortestql(k2, k2);
2604 
2605     // If we have an error, use the brute force loop to decode what we can (4-byte chunks).
2606     __ jcc(Assembler::notZero, L_bruteForce);
2607 
2608     // Shuffle output bytes
2609     __ vpmaddubsw(tmp, tmp, pack16_op, Assembler::AVX_512bit);
2610     __ vpmaddwd(tmp, tmp, pack32_op, Assembler::AVX_512bit);
2611 
2612     __ vpermb(tmp, pack24bits, tmp, Assembler::AVX_512bit);
2613     __ kmovql(k1, output_mask);
2614     __ evmovdqub(Address(dest, dp), k1, tmp, true, Assembler::AVX_512bit);
2615 
2616     __ addptr(dest, output_size);
2617 
2618     __ BIND(L_exit);
2619     __ vzeroupper();
2620     __ pop(rax);             // Get original dest value
2621     __ subptr(dest, rax);      // Number of bytes converted
2622     __ movptr(rax, dest);
2623     __ pop(rbx);
2624     __ pop(r15);
2625     __ pop(r14);
2626     __ pop(r13);
2627     __ pop(r12);
2628     __ leave();
2629     __ ret(0);
2630 
2631     __ BIND(L_loadURL);
2632     __ evmovdquq(lookup_lo, ExternalAddress(StubRoutines::x86::base64_vbmi_lookup_lo_url_addr()), Assembler::AVX_512bit, r13);
2633     __ evmovdquq(lookup_hi, ExternalAddress(StubRoutines::x86::base64_vbmi_lookup_hi_url_addr()), Assembler::AVX_512bit, r13);
2634     __ jmp(L_continue);
2635 
2636     __ BIND(L_padding);
2637     __ decrementq(output_size, 1);
2638     __ shrq(rax, 1);
2639 
2640     __ cmpb(Address(source, length, Address::times_1, -2), '=');
2641     __ jcc(Assembler::notEqual, L_donePadding);
2642 
2643     __ decrementq(output_size, 1);
2644     __ shrq(rax, 1);
2645     __ jmp(L_donePadding);
2646 
2647     __ align32();
2648     __ BIND(L_bruteForce);
2649   }   // End of if(avx512_vbmi)
2650 
2651   if (VM_Version::supports_avx2()) {
2652     Label L_tailProc, L_topLoop, L_enterLoop;
2653 
2654     __ cmpl(isMIME, 0);
2655     __ jcc(Assembler::notEqual, L_lastChunk);
2656 
2657     // Check for buffer too small (for algorithm)
2658     __ subl(length, 0x2c);
2659     __ jcc(Assembler::less, L_tailProc);
2660 
2661     __ shll(isURL, 2);
2662 
2663     // Algorithm adapted from https://arxiv.org/abs/1704.00605, "Faster Base64
2664     // Encoding and Decoding using AVX2 Instructions".  URL modifications added.
2665 
2666     // Set up constants
2667     __ lea(r13, ExternalAddress(StubRoutines::x86::base64_AVX2_decode_tables_addr()));
2668     __ vpbroadcastd(xmm4, Address(r13, isURL, Address::times_1), Assembler::AVX_256bit);  // 2F or 5F
2669     __ vpbroadcastd(xmm10, Address(r13, isURL, Address::times_1, 0x08), Assembler::AVX_256bit);  // -1 or -4
2670     __ vmovdqu(xmm12, Address(r13, 0x10));  // permute
2671     __ vmovdqu(xmm13, Address(r13, 0x30)); // shuffle
2672     __ vpbroadcastd(xmm7, Address(r13, 0x50), Assembler::AVX_256bit);  // merge
2673     __ vpbroadcastd(xmm6, Address(r13, 0x54), Assembler::AVX_256bit);  // merge mult
2674 
2675     __ lea(r13, ExternalAddress(StubRoutines::x86::base64_AVX2_decode_LUT_tables_addr()));
2676     __ shll(isURL, 4);
2677     __ vmovdqu(xmm11, Address(r13, isURL, Address::times_1, 0x00));  // lut_lo
2678     __ vmovdqu(xmm8, Address(r13, isURL, Address::times_1, 0x20)); // lut_roll
2679     __ shrl(isURL, 6);  // restore isURL
2680     __ vmovdqu(xmm9, Address(r13, 0x80));  // lut_hi
2681     __ jmp(L_enterLoop);
2682 
2683     __ align32();
2684     __ bind(L_topLoop);
2685     // Add in the offset value (roll) to get 6-bit out values
2686     __ vpaddb(xmm0, xmm0, xmm2, Assembler::AVX_256bit);
2687     // Merge and permute the output bits into appropriate output byte lanes
2688     __ vpmaddubsw(xmm0, xmm0, xmm7, Assembler::AVX_256bit);
2689     __ vpmaddwd(xmm0, xmm0, xmm6, Assembler::AVX_256bit);
2690     __ vpshufb(xmm0, xmm0, xmm13, Assembler::AVX_256bit);
2691     __ vpermd(xmm0, xmm12, xmm0, Assembler::AVX_256bit);
2692     // Store the output bytes
2693     __ vmovdqu(Address(dest, dp, Address::times_1, 0), xmm0);
2694     __ addptr(source, 0x20);
2695     __ addptr(dest, 0x18);
2696     __ subl(length, 0x20);
2697     __ jcc(Assembler::less, L_tailProc);
2698 
2699     __ bind(L_enterLoop);
2700 
2701     // Load in encoded string (32 bytes)
2702     __ vmovdqu(xmm2, Address(source, start_offset, Address::times_1, 0x0));
2703     // Extract the high nibble for indexing into the lut tables.  High 4 bits are don't care.
2704     __ vpsrld(xmm1, xmm2, 0x4, Assembler::AVX_256bit);
2705     __ vpand(xmm1, xmm4, xmm1, Assembler::AVX_256bit);
2706     // Extract the low nibble. 5F/2F will isolate the low-order 4 bits.  High 4 bits are don't care.
2707     __ vpand(xmm3, xmm2, xmm4, Assembler::AVX_256bit);
2708     // Check for special-case (0x2F or 0x5F (URL))
2709     __ vpcmpeqb(xmm0, xmm4, xmm2, Assembler::AVX_256bit);
2710     // Get the bitset based on the low nibble.  vpshufb uses low-order 4 bits only.
2711     __ vpshufb(xmm3, xmm11, xmm3, Assembler::AVX_256bit);
2712     // Get the bit value of the high nibble
2713     __ vpshufb(xmm5, xmm9, xmm1, Assembler::AVX_256bit);
2714     // Make sure 2F / 5F shows as valid
2715     __ vpandn(xmm3, xmm0, xmm3, Assembler::AVX_256bit);
2716     // Make adjustment for roll index.  For non-URL, this is a no-op,
2717     // for URL, this adjusts by -4.  This is to properly index the
2718     // roll value for 2F / 5F.
2719     __ vpand(xmm0, xmm0, xmm10, Assembler::AVX_256bit);
2720     // If the and of the two is non-zero, we have an invalid input character
2721     __ vptest(xmm3, xmm5);
2722     // Extract the "roll" value - value to add to the input to get 6-bit out value
2723     __ vpaddb(xmm0, xmm0, xmm1, Assembler::AVX_256bit); // Handle 2F / 5F
2724     __ vpshufb(xmm0, xmm8, xmm0, Assembler::AVX_256bit);
2725     __ jcc(Assembler::equal, L_topLoop);  // Fall through on error
2726 
2727     __ bind(L_tailProc);
2728 
2729     __ addl(length, 0x2c);
2730 
2731     __ vzeroupper();
2732   }
2733 
2734   // Use non-AVX code to decode 4-byte chunks into 3 bytes of output
2735 
2736   // Register state (Linux):
2737   // r12-15 - saved on stack
2738   // rdi - src
2739   // rsi - sp
2740   // rdx - sl
2741   // rcx - dst
2742   // r8 - dp
2743   // r9 - isURL
2744 
2745   // Register state (Windows):
2746   // r12-15 - saved on stack
2747   // rcx - src
2748   // rdx - sp
2749   // r8 - sl
2750   // r9 - dst
2751   // r12 - dp
2752   // r10 - isURL
2753 
2754   // Registers (common):
2755   // length (r14) - bytes in src
2756 
2757   const Register decode_table = r11;
2758   const Register out_byte_count = rbx;
2759   const Register byte1 = r13;
2760   const Register byte2 = r15;
2761   const Register byte3 = WIN64_ONLY(r8) NOT_WIN64(rdx);
2762   const Register byte4 = WIN64_ONLY(r10) NOT_WIN64(r9);
2763 
2764   __ bind(L_lastChunk);
2765 
2766   __ shrl(length, 2);    // Multiple of 4 bytes only - length is # 4-byte chunks
2767   __ cmpl(length, 0);
2768   __ jcc(Assembler::lessEqual, L_exit_no_vzero);
2769 
2770   __ shll(isURL, 8);    // index into decode table based on isURL
2771   __ lea(decode_table, ExternalAddress(StubRoutines::x86::base64_decoding_table_addr()));
2772   __ addptr(decode_table, isURL);
2773 
2774   __ jmp(L_bottomLoop);
2775 
2776   __ align32();
2777   __ BIND(L_forceLoop);
2778   __ shll(byte1, 18);
2779   __ shll(byte2, 12);
2780   __ shll(byte3, 6);
2781   __ orl(byte1, byte2);
2782   __ orl(byte1, byte3);
2783   __ orl(byte1, byte4);
2784 
2785   __ addptr(source, 4);
2786 
2787   __ movb(Address(dest, dp, Address::times_1, 2), byte1);
2788   __ shrl(byte1, 8);
2789   __ movb(Address(dest, dp, Address::times_1, 1), byte1);
2790   __ shrl(byte1, 8);
2791   __ movb(Address(dest, dp, Address::times_1, 0), byte1);
2792 
2793   __ addptr(dest, 3);
2794   __ decrementl(length, 1);
2795   __ jcc(Assembler::zero, L_exit_no_vzero);
2796 
2797   __ BIND(L_bottomLoop);
2798   __ load_unsigned_byte(byte1, Address(source, start_offset, Address::times_1, 0x00));
2799   __ load_unsigned_byte(byte2, Address(source, start_offset, Address::times_1, 0x01));
2800   __ load_signed_byte(byte1, Address(decode_table, byte1));
2801   __ load_signed_byte(byte2, Address(decode_table, byte2));
2802   __ load_unsigned_byte(byte3, Address(source, start_offset, Address::times_1, 0x02));
2803   __ load_unsigned_byte(byte4, Address(source, start_offset, Address::times_1, 0x03));
2804   __ load_signed_byte(byte3, Address(decode_table, byte3));
2805   __ load_signed_byte(byte4, Address(decode_table, byte4));
2806 
2807   __ mov(rax, byte1);
2808   __ orl(rax, byte2);
2809   __ orl(rax, byte3);
2810   __ orl(rax, byte4);
2811   __ jcc(Assembler::positive, L_forceLoop);
2812 
2813   __ BIND(L_exit_no_vzero);
2814   __ pop(rax);             // Get original dest value
2815   __ subptr(dest, rax);      // Number of bytes converted
2816   __ movptr(rax, dest);
2817   __ pop(rbx);
2818   __ pop(r15);
2819   __ pop(r14);
2820   __ pop(r13);
2821   __ pop(r12);
2822   __ leave();
2823   __ ret(0);
2824 
2825   return start;
2826 }
2827 
2828 
2829 /**
2830  *  Arguments:
2831  *
2832  * Inputs:
2833  *   c_rarg0   - int crc
2834  *   c_rarg1   - byte* buf
2835  *   c_rarg2   - int length
2836  *
2837  * Output:
2838  *       rax   - int crc result
2839  */
2840 address StubGenerator::generate_updateBytesCRC32() {
2841   assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions");
2842 
2843   __ align(CodeEntryAlignment);
2844   StubCodeMark mark(this, "StubRoutines", "updateBytesCRC32");
2845 
2846   address start = __ pc();
2847 
2848   // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
2849   // Unix:  rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
2850   // rscratch1: r10
2851   const Register crc   = c_rarg0;  // crc
2852   const Register buf   = c_rarg1;  // source java byte array address
2853   const Register len   = c_rarg2;  // length
2854   const Register table = c_rarg3;  // crc_table address (reuse register)
2855   const Register tmp1   = r11;
2856   const Register tmp2   = r10;
2857   assert_different_registers(crc, buf, len, table, tmp1, tmp2, rax);
2858 
2859   BLOCK_COMMENT("Entry:");
2860   __ enter(); // required for proper stackwalking of RuntimeStub frame
2861 
2862   if (VM_Version::supports_sse4_1() && VM_Version::supports_avx512_vpclmulqdq() &&
2863       VM_Version::supports_avx512bw() &&
2864       VM_Version::supports_avx512vl()) {
2865       // The constants used in the CRC32 algorithm requires the 1's compliment of the initial crc value.
2866       // However, the constant table for CRC32-C assumes the original crc value.  Account for this
2867       // difference before calling and after returning.
2868     __ lea(table, ExternalAddress(StubRoutines::x86::crc_table_avx512_addr()));
2869     __ notl(crc);
2870     __ kernel_crc32_avx512(crc, buf, len, table, tmp1, tmp2);
2871     __ notl(crc);
2872   } else {
2873     __ kernel_crc32(crc, buf, len, table, tmp1);
2874   }
2875 
2876   __ movl(rax, crc);
2877   __ vzeroupper();
2878   __ leave(); // required for proper stackwalking of RuntimeStub frame
2879   __ ret(0);
2880 
2881   return start;
2882 }
2883 
2884 /**
2885 *  Arguments:
2886 *
2887 * Inputs:
2888 *   c_rarg0   - int crc
2889 *   c_rarg1   - byte* buf
2890 *   c_rarg2   - long length
2891 *   c_rarg3   - table_start - optional (present only when doing a library_call,
2892 *              not used by x86 algorithm)
2893 *
2894 * Output:
2895 *       rax   - int crc result
2896 */
2897 address StubGenerator::generate_updateBytesCRC32C(bool is_pclmulqdq_supported) {
2898   assert(UseCRC32CIntrinsics, "need SSE4_2");
2899   __ align(CodeEntryAlignment);
2900   StubCodeMark mark(this, "StubRoutines", "updateBytesCRC32C");
2901   address start = __ pc();
2902 
2903   //reg.arg        int#0        int#1        int#2        int#3        int#4        int#5        float regs
2904   //Windows        RCX          RDX          R8           R9           none         none         XMM0..XMM3
2905   //Lin / Sol      RDI          RSI          RDX          RCX          R8           R9           XMM0..XMM7
2906   const Register crc = c_rarg0;  // crc
2907   const Register buf = c_rarg1;  // source java byte array address
2908   const Register len = c_rarg2;  // length
2909   const Register a = rax;
2910   const Register j = r9;
2911   const Register k = r10;
2912   const Register l = r11;
2913 #ifdef _WIN64
2914   const Register y = rdi;
2915   const Register z = rsi;
2916 #else
2917   const Register y = rcx;
2918   const Register z = r8;
2919 #endif
2920   assert_different_registers(crc, buf, len, a, j, k, l, y, z);
2921 
2922   BLOCK_COMMENT("Entry:");
2923   __ enter(); // required for proper stackwalking of RuntimeStub frame
2924   Label L_continue;
2925 
2926   if (VM_Version::supports_sse4_1() && VM_Version::supports_avx512_vpclmulqdq() &&
2927       VM_Version::supports_avx512bw() &&
2928       VM_Version::supports_avx512vl()) {
2929     Label L_doSmall;
2930 
2931     __ cmpl(len, 384);
2932     __ jcc(Assembler::lessEqual, L_doSmall);
2933 
2934     __ lea(j, ExternalAddress(StubRoutines::x86::crc32c_table_avx512_addr()));
2935     __ kernel_crc32_avx512(crc, buf, len, j, l, k);
2936 
2937     __ jmp(L_continue);
2938 
2939     __ bind(L_doSmall);
2940   }
2941 #ifdef _WIN64
2942   __ push(y);
2943   __ push(z);
2944 #endif
2945   __ crc32c_ipl_alg2_alt2(crc, buf, len,
2946                           a, j, k,
2947                           l, y, z,
2948                           c_farg0, c_farg1, c_farg2,
2949                           is_pclmulqdq_supported);
2950 #ifdef _WIN64
2951   __ pop(z);
2952   __ pop(y);
2953 #endif
2954 
2955   __ bind(L_continue);
2956   __ movl(rax, crc);
2957   __ vzeroupper();
2958   __ leave(); // required for proper stackwalking of RuntimeStub frame
2959   __ ret(0);
2960 
2961   return start;
2962 }
2963 
2964 
2965 /**
2966  *  Arguments:
2967  *
2968  *  Input:
2969  *    c_rarg0   - x address
2970  *    c_rarg1   - x length
2971  *    c_rarg2   - y address
2972  *    c_rarg3   - y length
2973  * not Win64
2974  *    c_rarg4   - z address
2975  *    c_rarg5   - z length
2976  * Win64
2977  *    rsp+40    - z address
2978  *    rsp+48    - z length
2979  */
2980 address StubGenerator::generate_multiplyToLen() {
2981   __ align(CodeEntryAlignment);
2982   StubCodeMark mark(this, "StubRoutines", "multiplyToLen");
2983   address start = __ pc();
2984 
2985   // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
2986   // Unix:  rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
2987   const Register x     = rdi;
2988   const Register xlen  = rax;
2989   const Register y     = rsi;
2990   const Register ylen  = rcx;
2991   const Register z     = r8;
2992   const Register zlen  = r11;
2993 
2994   // Next registers will be saved on stack in multiply_to_len().
2995   const Register tmp1  = r12;
2996   const Register tmp2  = r13;
2997   const Register tmp3  = r14;
2998   const Register tmp4  = r15;
2999   const Register tmp5  = rbx;
3000 
3001   BLOCK_COMMENT("Entry:");
3002   __ enter(); // required for proper stackwalking of RuntimeStub frame
3003 
3004 #ifndef _WIN64
3005   __ movptr(zlen, r9); // Save r9 in r11 - zlen
3006 #endif
3007   setup_arg_regs(4); // x => rdi, xlen => rsi, y => rdx
3008                      // ylen => rcx, z => r8, zlen => r11
3009                      // r9 and r10 may be used to save non-volatile registers
3010 #ifdef _WIN64
3011   // last 2 arguments (#4, #5) are on stack on Win64
3012   __ movptr(z, Address(rsp, 6 * wordSize));
3013   __ movptr(zlen, Address(rsp, 7 * wordSize));
3014 #endif
3015 
3016   __ movptr(xlen, rsi);
3017   __ movptr(y,    rdx);
3018   __ multiply_to_len(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5);
3019 
3020   restore_arg_regs();
3021 
3022   __ leave(); // required for proper stackwalking of RuntimeStub frame
3023   __ ret(0);
3024 
3025   return start;
3026 }
3027 
3028 /**
3029 *  Arguments:
3030 *
3031 *  Input:
3032 *    c_rarg0   - obja     address
3033 *    c_rarg1   - objb     address
3034 *    c_rarg3   - length   length
3035 *    c_rarg4   - scale    log2_array_indxscale
3036 *
3037 *  Output:
3038 *        rax   - int >= mismatched index, < 0 bitwise complement of tail
3039 */
3040 address StubGenerator::generate_vectorizedMismatch() {
3041   __ align(CodeEntryAlignment);
3042   StubCodeMark mark(this, "StubRoutines", "vectorizedMismatch");
3043   address start = __ pc();
3044 
3045   BLOCK_COMMENT("Entry:");
3046   __ enter();
3047 
3048 #ifdef _WIN64  // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
3049   const Register scale = c_rarg0;  //rcx, will exchange with r9
3050   const Register objb = c_rarg1;   //rdx
3051   const Register length = c_rarg2; //r8
3052   const Register obja = c_rarg3;   //r9
3053   __ xchgq(obja, scale);  //now obja and scale contains the correct contents
3054 
3055   const Register tmp1 = r10;
3056   const Register tmp2 = r11;
3057 #endif
3058 #ifndef _WIN64 // Unix:  rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
3059   const Register obja = c_rarg0;   //U:rdi
3060   const Register objb = c_rarg1;   //U:rsi
3061   const Register length = c_rarg2; //U:rdx
3062   const Register scale = c_rarg3;  //U:rcx
3063   const Register tmp1 = r8;
3064   const Register tmp2 = r9;
3065 #endif
3066   const Register result = rax; //return value
3067   const XMMRegister vec0 = xmm0;
3068   const XMMRegister vec1 = xmm1;
3069   const XMMRegister vec2 = xmm2;
3070 
3071   __ vectorized_mismatch(obja, objb, length, scale, result, tmp1, tmp2, vec0, vec1, vec2);
3072 
3073   __ vzeroupper();
3074   __ leave();
3075   __ ret(0);
3076 
3077   return start;
3078 }
3079 
3080 /**
3081  *  Arguments:
3082  *
3083 //  Input:
3084 //    c_rarg0   - x address
3085 //    c_rarg1   - x length
3086 //    c_rarg2   - z address
3087 //    c_rarg3   - z length
3088  *
3089  */
3090 address StubGenerator::generate_squareToLen() {
3091 
3092   __ align(CodeEntryAlignment);
3093   StubCodeMark mark(this, "StubRoutines", "squareToLen");
3094   address start = __ pc();
3095 
3096   // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
3097   // Unix:  rdi, rsi, rdx, rcx (c_rarg0, c_rarg1, ...)
3098   const Register x      = rdi;
3099   const Register len    = rsi;
3100   const Register z      = r8;
3101   const Register zlen   = rcx;
3102 
3103  const Register tmp1      = r12;
3104  const Register tmp2      = r13;
3105  const Register tmp3      = r14;
3106  const Register tmp4      = r15;
3107  const Register tmp5      = rbx;
3108 
3109   BLOCK_COMMENT("Entry:");
3110   __ enter(); // required for proper stackwalking of RuntimeStub frame
3111 
3112   setup_arg_regs(4); // x => rdi, len => rsi, z => rdx
3113                      // zlen => rcx
3114                      // r9 and r10 may be used to save non-volatile registers
3115   __ movptr(r8, rdx);
3116   __ square_to_len(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, rdx, rax);
3117 
3118   restore_arg_regs();
3119 
3120   __ leave(); // required for proper stackwalking of RuntimeStub frame
3121   __ ret(0);
3122 
3123   return start;
3124 }
3125 
3126 address StubGenerator::generate_method_entry_barrier() {
3127   __ align(CodeEntryAlignment);
3128   StubCodeMark mark(this, "StubRoutines", "nmethod_entry_barrier");
3129   address start = __ pc();
3130 
3131   Label deoptimize_label;
3132 
3133   __ push(-1); // cookie, this is used for writing the new rsp when deoptimizing
3134 
3135   BLOCK_COMMENT("Entry:");
3136   __ enter(); // save rbp
3137 
3138   // save c_rarg0, because we want to use that value.
3139   // We could do without it but then we depend on the number of slots used by pusha
3140   __ push(c_rarg0);
3141 
3142   __ lea(c_rarg0, Address(rsp, wordSize * 3)); // 1 for cookie, 1 for rbp, 1 for c_rarg0 - this should be the return address
3143 
3144   __ pusha();
3145 
3146   // The method may have floats as arguments, and we must spill them before calling
3147   // the VM runtime.
3148   assert(Argument::n_float_register_parameters_j == 8, "Assumption");
3149   const int xmm_size = wordSize * 2;
3150   const int xmm_spill_size = xmm_size * Argument::n_float_register_parameters_j;
3151   __ subptr(rsp, xmm_spill_size);
3152   __ movdqu(Address(rsp, xmm_size * 7), xmm7);
3153   __ movdqu(Address(rsp, xmm_size * 6), xmm6);
3154   __ movdqu(Address(rsp, xmm_size * 5), xmm5);
3155   __ movdqu(Address(rsp, xmm_size * 4), xmm4);
3156   __ movdqu(Address(rsp, xmm_size * 3), xmm3);
3157   __ movdqu(Address(rsp, xmm_size * 2), xmm2);
3158   __ movdqu(Address(rsp, xmm_size * 1), xmm1);
3159   __ movdqu(Address(rsp, xmm_size * 0), xmm0);
3160 
3161   __ call_VM_leaf(CAST_FROM_FN_PTR(address, static_cast<int (*)(address*)>(BarrierSetNMethod::nmethod_stub_entry_barrier)), 1);
3162 
3163   __ movdqu(xmm0, Address(rsp, xmm_size * 0));
3164   __ movdqu(xmm1, Address(rsp, xmm_size * 1));
3165   __ movdqu(xmm2, Address(rsp, xmm_size * 2));
3166   __ movdqu(xmm3, Address(rsp, xmm_size * 3));
3167   __ movdqu(xmm4, Address(rsp, xmm_size * 4));
3168   __ movdqu(xmm5, Address(rsp, xmm_size * 5));
3169   __ movdqu(xmm6, Address(rsp, xmm_size * 6));
3170   __ movdqu(xmm7, Address(rsp, xmm_size * 7));
3171   __ addptr(rsp, xmm_spill_size);
3172 
3173   __ cmpl(rax, 1); // 1 means deoptimize
3174   __ jcc(Assembler::equal, deoptimize_label);
3175 
3176   __ popa();
3177   __ pop(c_rarg0);
3178 
3179   __ leave();
3180 
3181   __ addptr(rsp, 1 * wordSize); // cookie
3182   __ ret(0);
3183 
3184 
3185   __ BIND(deoptimize_label);
3186 
3187   __ popa();
3188   __ pop(c_rarg0);
3189 
3190   __ leave();
3191 
3192   // this can be taken out, but is good for verification purposes. getting a SIGSEGV
3193   // here while still having a correct stack is valuable
3194   __ testptr(rsp, Address(rsp, 0));
3195 
3196   __ movptr(rsp, Address(rsp, 0)); // new rsp was written in the barrier
3197   __ jmp(Address(rsp, -1 * wordSize)); // jmp target should be callers verified_entry_point
3198 
3199   return start;
3200 }
3201 
3202  /**
3203  *  Arguments:
3204  *
3205  *  Input:
3206  *    c_rarg0   - out address
3207  *    c_rarg1   - in address
3208  *    c_rarg2   - offset
3209  *    c_rarg3   - len
3210  * not Win64
3211  *    c_rarg4   - k
3212  * Win64
3213  *    rsp+40    - k
3214  */
3215 address StubGenerator::generate_mulAdd() {
3216   __ align(CodeEntryAlignment);
3217   StubCodeMark mark(this, "StubRoutines", "mulAdd");
3218   address start = __ pc();
3219 
3220   // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
3221   // Unix:  rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
3222   const Register out     = rdi;
3223   const Register in      = rsi;
3224   const Register offset  = r11;
3225   const Register len     = rcx;
3226   const Register k       = r8;
3227 
3228   // Next registers will be saved on stack in mul_add().
3229   const Register tmp1  = r12;
3230   const Register tmp2  = r13;
3231   const Register tmp3  = r14;
3232   const Register tmp4  = r15;
3233   const Register tmp5  = rbx;
3234 
3235   BLOCK_COMMENT("Entry:");
3236   __ enter(); // required for proper stackwalking of RuntimeStub frame
3237 
3238   setup_arg_regs(4); // out => rdi, in => rsi, offset => rdx
3239                      // len => rcx, k => r8
3240                      // r9 and r10 may be used to save non-volatile registers
3241 #ifdef _WIN64
3242   // last argument is on stack on Win64
3243   __ movl(k, Address(rsp, 6 * wordSize));
3244 #endif
3245   __ movptr(r11, rdx);  // move offset in rdx to offset(r11)
3246   __ mul_add(out, in, offset, len, k, tmp1, tmp2, tmp3, tmp4, tmp5, rdx, rax);
3247 
3248   restore_arg_regs();
3249 
3250   __ leave(); // required for proper stackwalking of RuntimeStub frame
3251   __ ret(0);
3252 
3253   return start;
3254 }
3255 
3256 address StubGenerator::generate_bigIntegerRightShift() {
3257   __ align(CodeEntryAlignment);
3258   StubCodeMark mark(this, "StubRoutines", "bigIntegerRightShiftWorker");
3259   address start = __ pc();
3260 
3261   Label Shift512Loop, ShiftTwo, ShiftTwoLoop, ShiftOne, Exit;
3262   // For Unix, the arguments are as follows: rdi, rsi, rdx, rcx, r8.
3263   const Register newArr = rdi;
3264   const Register oldArr = rsi;
3265   const Register newIdx = rdx;
3266   const Register shiftCount = rcx;  // It was intentional to have shiftCount in rcx since it is used implicitly for shift.
3267   const Register totalNumIter = r8;
3268 
3269   // For windows, we use r9 and r10 as temps to save rdi and rsi. Thus we cannot allocate them for our temps.
3270   // For everything else, we prefer using r9 and r10 since we do not have to save them before use.
3271   const Register tmp1 = r11;                    // Caller save.
3272   const Register tmp2 = rax;                    // Caller save.
3273   const Register tmp3 = WIN64_ONLY(r12) NOT_WIN64(r9);   // Windows: Callee save. Linux: Caller save.
3274   const Register tmp4 = WIN64_ONLY(r13) NOT_WIN64(r10);  // Windows: Callee save. Linux: Caller save.
3275   const Register tmp5 = r14;                    // Callee save.
3276   const Register tmp6 = r15;
3277 
3278   const XMMRegister x0 = xmm0;
3279   const XMMRegister x1 = xmm1;
3280   const XMMRegister x2 = xmm2;
3281 
3282   BLOCK_COMMENT("Entry:");
3283   __ enter(); // required for proper stackwalking of RuntimeStub frame
3284 
3285 #ifdef _WIN64
3286   setup_arg_regs(4);
3287   // For windows, since last argument is on stack, we need to move it to the appropriate register.
3288   __ movl(totalNumIter, Address(rsp, 6 * wordSize));
3289   // Save callee save registers.
3290   __ push(tmp3);
3291   __ push(tmp4);
3292 #endif
3293   __ push(tmp5);
3294 
3295   // Rename temps used throughout the code.
3296   const Register idx = tmp1;
3297   const Register nIdx = tmp2;
3298 
3299   __ xorl(idx, idx);
3300 
3301   // Start right shift from end of the array.
3302   // For example, if #iteration = 4 and newIdx = 1
3303   // then dest[4] = src[4] >> shiftCount  | src[3] <<< (shiftCount - 32)
3304   // if #iteration = 4 and newIdx = 0
3305   // then dest[3] = src[4] >> shiftCount  | src[3] <<< (shiftCount - 32)
3306   __ movl(idx, totalNumIter);
3307   __ movl(nIdx, idx);
3308   __ addl(nIdx, newIdx);
3309 
3310   // If vectorization is enabled, check if the number of iterations is at least 64
3311   // If not, then go to ShifTwo processing 2 iterations
3312   if (VM_Version::supports_avx512_vbmi2()) {
3313     __ cmpptr(totalNumIter, (AVX3Threshold/64));
3314     __ jcc(Assembler::less, ShiftTwo);
3315 
3316     if (AVX3Threshold < 16 * 64) {
3317       __ cmpl(totalNumIter, 16);
3318       __ jcc(Assembler::less, ShiftTwo);
3319     }
3320     __ evpbroadcastd(x0, shiftCount, Assembler::AVX_512bit);
3321     __ subl(idx, 16);
3322     __ subl(nIdx, 16);
3323     __ BIND(Shift512Loop);
3324     __ evmovdqul(x2, Address(oldArr, idx, Address::times_4, 4), Assembler::AVX_512bit);
3325     __ evmovdqul(x1, Address(oldArr, idx, Address::times_4), Assembler::AVX_512bit);
3326     __ vpshrdvd(x2, x1, x0, Assembler::AVX_512bit);
3327     __ evmovdqul(Address(newArr, nIdx, Address::times_4), x2, Assembler::AVX_512bit);
3328     __ subl(nIdx, 16);
3329     __ subl(idx, 16);
3330     __ jcc(Assembler::greaterEqual, Shift512Loop);
3331     __ addl(idx, 16);
3332     __ addl(nIdx, 16);
3333   }
3334   __ BIND(ShiftTwo);
3335   __ cmpl(idx, 2);
3336   __ jcc(Assembler::less, ShiftOne);
3337   __ subl(idx, 2);
3338   __ subl(nIdx, 2);
3339   __ BIND(ShiftTwoLoop);
3340   __ movl(tmp5, Address(oldArr, idx, Address::times_4, 8));
3341   __ movl(tmp4, Address(oldArr, idx, Address::times_4, 4));
3342   __ movl(tmp3, Address(oldArr, idx, Address::times_4));
3343   __ shrdl(tmp5, tmp4);
3344   __ shrdl(tmp4, tmp3);
3345   __ movl(Address(newArr, nIdx, Address::times_4, 4), tmp5);
3346   __ movl(Address(newArr, nIdx, Address::times_4), tmp4);
3347   __ subl(nIdx, 2);
3348   __ subl(idx, 2);
3349   __ jcc(Assembler::greaterEqual, ShiftTwoLoop);
3350   __ addl(idx, 2);
3351   __ addl(nIdx, 2);
3352 
3353   // Do the last iteration
3354   __ BIND(ShiftOne);
3355   __ cmpl(idx, 1);
3356   __ jcc(Assembler::less, Exit);
3357   __ subl(idx, 1);
3358   __ subl(nIdx, 1);
3359   __ movl(tmp4, Address(oldArr, idx, Address::times_4, 4));
3360   __ movl(tmp3, Address(oldArr, idx, Address::times_4));
3361   __ shrdl(tmp4, tmp3);
3362   __ movl(Address(newArr, nIdx, Address::times_4), tmp4);
3363   __ BIND(Exit);
3364   __ vzeroupper();
3365   // Restore callee save registers.
3366   __ pop(tmp5);
3367 #ifdef _WIN64
3368   __ pop(tmp4);
3369   __ pop(tmp3);
3370   restore_arg_regs();
3371 #endif
3372   __ leave(); // required for proper stackwalking of RuntimeStub frame
3373   __ ret(0);
3374 
3375   return start;
3376 }
3377 
3378  /**
3379  *  Arguments:
3380  *
3381  *  Input:
3382  *    c_rarg0   - newArr address
3383  *    c_rarg1   - oldArr address
3384  *    c_rarg2   - newIdx
3385  *    c_rarg3   - shiftCount
3386  * not Win64
3387  *    c_rarg4   - numIter
3388  * Win64
3389  *    rsp40    - numIter
3390  */
3391 address StubGenerator::generate_bigIntegerLeftShift() {
3392   __ align(CodeEntryAlignment);
3393   StubCodeMark mark(this,  "StubRoutines", "bigIntegerLeftShiftWorker");
3394   address start = __ pc();
3395 
3396   Label Shift512Loop, ShiftTwo, ShiftTwoLoop, ShiftOne, Exit;
3397   // For Unix, the arguments are as follows: rdi, rsi, rdx, rcx, r8.
3398   const Register newArr = rdi;
3399   const Register oldArr = rsi;
3400   const Register newIdx = rdx;
3401   const Register shiftCount = rcx;  // It was intentional to have shiftCount in rcx since it is used implicitly for shift.
3402   const Register totalNumIter = r8;
3403   // For windows, we use r9 and r10 as temps to save rdi and rsi. Thus we cannot allocate them for our temps.
3404   // For everything else, we prefer using r9 and r10 since we do not have to save them before use.
3405   const Register tmp1 = r11;                    // Caller save.
3406   const Register tmp2 = rax;                    // Caller save.
3407   const Register tmp3 = WIN64_ONLY(r12) NOT_WIN64(r9);   // Windows: Callee save. Linux: Caller save.
3408   const Register tmp4 = WIN64_ONLY(r13) NOT_WIN64(r10);  // Windows: Callee save. Linux: Caller save.
3409   const Register tmp5 = r14;                    // Callee save.
3410 
3411   const XMMRegister x0 = xmm0;
3412   const XMMRegister x1 = xmm1;
3413   const XMMRegister x2 = xmm2;
3414   BLOCK_COMMENT("Entry:");
3415   __ enter(); // required for proper stackwalking of RuntimeStub frame
3416 
3417 #ifdef _WIN64
3418   setup_arg_regs(4);
3419   // For windows, since last argument is on stack, we need to move it to the appropriate register.
3420   __ movl(totalNumIter, Address(rsp, 6 * wordSize));
3421   // Save callee save registers.
3422   __ push(tmp3);
3423   __ push(tmp4);
3424 #endif
3425   __ push(tmp5);
3426 
3427   // Rename temps used throughout the code
3428   const Register idx = tmp1;
3429   const Register numIterTmp = tmp2;
3430 
3431   // Start idx from zero.
3432   __ xorl(idx, idx);
3433   // Compute interior pointer for new array. We do this so that we can use same index for both old and new arrays.
3434   __ lea(newArr, Address(newArr, newIdx, Address::times_4));
3435   __ movl(numIterTmp, totalNumIter);
3436 
3437   // If vectorization is enabled, check if the number of iterations is at least 64
3438   // If not, then go to ShiftTwo shifting two numbers at a time
3439   if (VM_Version::supports_avx512_vbmi2()) {
3440     __ cmpl(totalNumIter, (AVX3Threshold/64));
3441     __ jcc(Assembler::less, ShiftTwo);
3442 
3443     if (AVX3Threshold < 16 * 64) {
3444       __ cmpl(totalNumIter, 16);
3445       __ jcc(Assembler::less, ShiftTwo);
3446     }
3447     __ evpbroadcastd(x0, shiftCount, Assembler::AVX_512bit);
3448     __ subl(numIterTmp, 16);
3449     __ BIND(Shift512Loop);
3450     __ evmovdqul(x1, Address(oldArr, idx, Address::times_4), Assembler::AVX_512bit);
3451     __ evmovdqul(x2, Address(oldArr, idx, Address::times_4, 0x4), Assembler::AVX_512bit);
3452     __ vpshldvd(x1, x2, x0, Assembler::AVX_512bit);
3453     __ evmovdqul(Address(newArr, idx, Address::times_4), x1, Assembler::AVX_512bit);
3454     __ addl(idx, 16);
3455     __ subl(numIterTmp, 16);
3456     __ jcc(Assembler::greaterEqual, Shift512Loop);
3457     __ addl(numIterTmp, 16);
3458   }
3459   __ BIND(ShiftTwo);
3460   __ cmpl(totalNumIter, 1);
3461   __ jcc(Assembler::less, Exit);
3462   __ movl(tmp3, Address(oldArr, idx, Address::times_4));
3463   __ subl(numIterTmp, 2);
3464   __ jcc(Assembler::less, ShiftOne);
3465 
3466   __ BIND(ShiftTwoLoop);
3467   __ movl(tmp4, Address(oldArr, idx, Address::times_4, 0x4));
3468   __ movl(tmp5, Address(oldArr, idx, Address::times_4, 0x8));
3469   __ shldl(tmp3, tmp4);
3470   __ shldl(tmp4, tmp5);
3471   __ movl(Address(newArr, idx, Address::times_4), tmp3);
3472   __ movl(Address(newArr, idx, Address::times_4, 0x4), tmp4);
3473   __ movl(tmp3, tmp5);
3474   __ addl(idx, 2);
3475   __ subl(numIterTmp, 2);
3476   __ jcc(Assembler::greaterEqual, ShiftTwoLoop);
3477 
3478   // Do the last iteration
3479   __ BIND(ShiftOne);
3480   __ addl(numIterTmp, 2);
3481   __ cmpl(numIterTmp, 1);
3482   __ jcc(Assembler::less, Exit);
3483   __ movl(tmp4, Address(oldArr, idx, Address::times_4, 0x4));
3484   __ shldl(tmp3, tmp4);
3485   __ movl(Address(newArr, idx, Address::times_4), tmp3);
3486 
3487   __ BIND(Exit);
3488   __ vzeroupper();
3489   // Restore callee save registers.
3490   __ pop(tmp5);
3491 #ifdef _WIN64
3492   __ pop(tmp4);
3493   __ pop(tmp3);
3494   restore_arg_regs();
3495 #endif
3496   __ leave(); // required for proper stackwalking of RuntimeStub frame
3497   __ ret(0);
3498 
3499   return start;
3500 }
3501 
3502 void StubGenerator::generate_libm_stubs() {
3503   if (UseLibmIntrinsic && InlineIntrinsics) {
3504     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dsin)) {
3505       StubRoutines::_dsin = generate_libmSin(); // from stubGenerator_x86_64_sin.cpp
3506     }
3507     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dcos)) {
3508       StubRoutines::_dcos = generate_libmCos(); // from stubGenerator_x86_64_cos.cpp
3509     }
3510     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dtan)) {
3511       StubRoutines::_dtan = generate_libmTan(); // from stubGenerator_x86_64_tan.cpp
3512     }
3513     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dexp)) {
3514       StubRoutines::_dexp = generate_libmExp(); // from stubGenerator_x86_64_exp.cpp
3515     }
3516     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dpow)) {
3517       StubRoutines::_dpow = generate_libmPow(); // from stubGenerator_x86_64_pow.cpp
3518     }
3519     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dlog)) {
3520       StubRoutines::_dlog = generate_libmLog(); // from stubGenerator_x86_64_log.cpp
3521     }
3522     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dlog10)) {
3523       StubRoutines::_dlog10 = generate_libmLog10(); // from stubGenerator_x86_64_log.cpp
3524     }
3525   }
3526 }
3527 
3528 /**
3529 *  Arguments:
3530 *
3531 *  Input:
3532 *    c_rarg0   - float16  jshort
3533 *
3534 *  Output:
3535 *       xmm0   - float
3536 */
3537 address StubGenerator::generate_float16ToFloat() {
3538   StubCodeMark mark(this, "StubRoutines", "float16ToFloat");
3539 
3540   address start = __ pc();
3541 
3542   BLOCK_COMMENT("Entry:");
3543   // No need for RuntimeStub frame since it is called only during JIT compilation
3544 
3545   // Load value into xmm0 and convert
3546   __ flt16_to_flt(xmm0, c_rarg0);
3547 
3548   __ ret(0);
3549 
3550   return start;
3551 }
3552 
3553 /**
3554 *  Arguments:
3555 *
3556 *  Input:
3557 *       xmm0   - float
3558 *
3559 *  Output:
3560 *        rax   - float16  jshort
3561 */
3562 address StubGenerator::generate_floatToFloat16() {
3563   StubCodeMark mark(this, "StubRoutines", "floatToFloat16");
3564 
3565   address start = __ pc();
3566 
3567   BLOCK_COMMENT("Entry:");
3568   // No need for RuntimeStub frame since it is called only during JIT compilation
3569 
3570   // Convert and put result into rax
3571   __ flt_to_flt16(rax, xmm0, xmm1);
3572 
3573   __ ret(0);
3574 
3575   return start;
3576 }
3577 
3578 address StubGenerator::generate_cont_thaw(const char* label, Continuation::thaw_kind kind) {
3579   if (!Continuations::enabled()) return nullptr;
3580 
3581   bool return_barrier = Continuation::is_thaw_return_barrier(kind);
3582   bool return_barrier_exception = Continuation::is_thaw_return_barrier_exception(kind);
3583 
3584   StubCodeMark mark(this, "StubRoutines", label);
3585   address start = __ pc();
3586 
3587   // TODO: Handle Valhalla return types. May require generating different return barriers.
3588 
3589   if (!return_barrier) {
3590     // Pop return address. If we don't do this, we get a drift,
3591     // where the bottom-most frozen frame continuously grows.
3592     __ pop(c_rarg3);
3593   } else {
3594     __ movptr(rsp, Address(r15_thread, JavaThread::cont_entry_offset()));
3595   }
3596 
3597 #ifdef ASSERT
3598   {
3599     Label L_good_sp;
3600     __ cmpptr(rsp, Address(r15_thread, JavaThread::cont_entry_offset()));
3601     __ jcc(Assembler::equal, L_good_sp);
3602     __ stop("Incorrect rsp at thaw entry");
3603     __ BIND(L_good_sp);
3604   }
3605 #endif // ASSERT
3606 
3607   if (return_barrier) {
3608     // Preserve possible return value from a method returning to the return barrier.
3609     __ push(rax);
3610     __ push_d(xmm0);
3611   }
3612 
3613   __ movptr(c_rarg0, r15_thread);
3614   __ movptr(c_rarg1, (return_barrier ? 1 : 0));
3615   __ call_VM_leaf(CAST_FROM_FN_PTR(address, Continuation::prepare_thaw), 2);
3616   __ movptr(rbx, rax);
3617 
3618   if (return_barrier) {
3619     // Restore return value from a method returning to the return barrier.
3620     // No safepoint in the call to thaw, so even an oop return value should be OK.
3621     __ pop_d(xmm0);
3622     __ pop(rax);
3623   }
3624 
3625 #ifdef ASSERT
3626   {
3627     Label L_good_sp;
3628     __ cmpptr(rsp, Address(r15_thread, JavaThread::cont_entry_offset()));
3629     __ jcc(Assembler::equal, L_good_sp);
3630     __ stop("Incorrect rsp after prepare thaw");
3631     __ BIND(L_good_sp);
3632   }
3633 #endif // ASSERT
3634 
3635   // rbx contains the size of the frames to thaw, 0 if overflow or no more frames
3636   Label L_thaw_success;
3637   __ testptr(rbx, rbx);
3638   __ jccb(Assembler::notZero, L_thaw_success);
3639   __ jump(ExternalAddress(StubRoutines::throw_StackOverflowError_entry()));
3640   __ bind(L_thaw_success);
3641 
3642   // Make room for the thawed frames and align the stack.
3643   __ subptr(rsp, rbx);
3644   __ andptr(rsp, -StackAlignmentInBytes);
3645 
3646   if (return_barrier) {
3647     // Preserve possible return value from a method returning to the return barrier. (Again.)
3648     __ push(rax);
3649     __ push_d(xmm0);
3650   }
3651 
3652   // If we want, we can templatize thaw by kind, and have three different entries.
3653   __ movptr(c_rarg0, r15_thread);
3654   __ movptr(c_rarg1, kind);
3655   __ call_VM_leaf(Continuation::thaw_entry(), 2);
3656   __ movptr(rbx, rax);
3657 
3658   if (return_barrier) {
3659     // Restore return value from a method returning to the return barrier. (Again.)
3660     // No safepoint in the call to thaw, so even an oop return value should be OK.
3661     __ pop_d(xmm0);
3662     __ pop(rax);
3663   } else {
3664     // Return 0 (success) from doYield.
3665     __ xorptr(rax, rax);
3666   }
3667 
3668   // After thawing, rbx is the SP of the yielding frame.
3669   // Move there, and then to saved RBP slot.
3670   __ movptr(rsp, rbx);
3671   __ subptr(rsp, 2*wordSize);
3672 
3673   if (return_barrier_exception) {
3674     __ movptr(c_rarg0, r15_thread);
3675     __ movptr(c_rarg1, Address(rsp, wordSize)); // return address
3676 
3677     // rax still holds the original exception oop, save it before the call
3678     __ push(rax);
3679 
3680     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), 2);
3681     __ movptr(rbx, rax);
3682 
3683     // Continue at exception handler:
3684     //   rax: exception oop
3685     //   rbx: exception handler
3686     //   rdx: exception pc
3687     __ pop(rax);
3688     __ verify_oop(rax);
3689     __ pop(rbp); // pop out RBP here too
3690     __ pop(rdx);
3691     __ jmp(rbx);
3692   } else {
3693     // We are "returning" into the topmost thawed frame; see Thaw::push_return_frame
3694     __ pop(rbp);
3695     __ ret(0);
3696   }
3697 
3698   return start;
3699 }
3700 
3701 address StubGenerator::generate_cont_thaw() {
3702   return generate_cont_thaw("Cont thaw", Continuation::thaw_top);
3703 }
3704 
3705 // TODO: will probably need multiple return barriers depending on return type
3706 
3707 address StubGenerator::generate_cont_returnBarrier() {
3708   return generate_cont_thaw("Cont thaw return barrier", Continuation::thaw_return_barrier);
3709 }
3710 
3711 address StubGenerator::generate_cont_returnBarrier_exception() {
3712   return generate_cont_thaw("Cont thaw return barrier exception", Continuation::thaw_return_barrier_exception);
3713 }
3714 
3715 #if INCLUDE_JFR
3716 
3717 // For c2: c_rarg0 is junk, call to runtime to write a checkpoint.
3718 // It returns a jobject handle to the event writer.
3719 // The handle is dereferenced and the return value is the event writer oop.
3720 RuntimeStub* StubGenerator::generate_jfr_write_checkpoint() {
3721   enum layout {
3722     rbp_off,
3723     rbpH_off,
3724     return_off,
3725     return_off2,
3726     framesize // inclusive of return address
3727   };
3728 
3729   CodeBuffer code("jfr_write_checkpoint", 1024, 64);
3730   MacroAssembler* _masm = new MacroAssembler(&code);
3731   address start = __ pc();
3732 
3733   __ enter();
3734   address the_pc = __ pc();
3735 
3736   int frame_complete = the_pc - start;
3737 
3738   __ set_last_Java_frame(rsp, rbp, the_pc, rscratch1);
3739   __ movptr(c_rarg0, r15_thread);
3740   __ call_VM_leaf(CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::write_checkpoint), 1);
3741   __ reset_last_Java_frame(true);
3742 
3743   // rax is jobject handle result, unpack and process it through a barrier.
3744   __ resolve_global_jobject(rax, r15_thread, c_rarg0);
3745 
3746   __ leave();
3747   __ ret(0);
3748 
3749   OopMapSet* oop_maps = new OopMapSet();
3750   OopMap* map = new OopMap(framesize, 1);
3751   oop_maps->add_gc_map(frame_complete, map);
3752 
3753   RuntimeStub* stub =
3754     RuntimeStub::new_runtime_stub(code.name(),
3755                                   &code,
3756                                   frame_complete,
3757                                   (framesize >> (LogBytesPerWord - LogBytesPerInt)),
3758                                   oop_maps,
3759                                   false);
3760   return stub;
3761 }
3762 
3763 // For c2: call to return a leased buffer.
3764 RuntimeStub* StubGenerator::generate_jfr_return_lease() {
3765   enum layout {
3766     rbp_off,
3767     rbpH_off,
3768     return_off,
3769     return_off2,
3770     framesize // inclusive of return address
3771   };
3772 
3773   CodeBuffer code("jfr_return_lease", 1024, 64);
3774   MacroAssembler* _masm = new MacroAssembler(&code);
3775   address start = __ pc();
3776 
3777   __ enter();
3778   address the_pc = __ pc();
3779 
3780   int frame_complete = the_pc - start;
3781 
3782   __ set_last_Java_frame(rsp, rbp, the_pc, rscratch2);
3783   __ movptr(c_rarg0, r15_thread);
3784   __ call_VM_leaf(CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::return_lease), 1);
3785   __ reset_last_Java_frame(true);
3786 
3787   __ leave();
3788   __ ret(0);
3789 
3790   OopMapSet* oop_maps = new OopMapSet();
3791   OopMap* map = new OopMap(framesize, 1);
3792   oop_maps->add_gc_map(frame_complete, map);
3793 
3794   RuntimeStub* stub =
3795     RuntimeStub::new_runtime_stub(code.name(),
3796                                   &code,
3797                                   frame_complete,
3798                                   (framesize >> (LogBytesPerWord - LogBytesPerInt)),
3799                                   oop_maps,
3800                                   false);
3801   return stub;
3802 }
3803 
3804 #endif // INCLUDE_JFR
3805 
3806 // Continuation point for throwing of implicit exceptions that are
3807 // not handled in the current activation. Fabricates an exception
3808 // oop and initiates normal exception dispatching in this
3809 // frame. Since we need to preserve callee-saved values (currently
3810 // only for C2, but done for C1 as well) we need a callee-saved oop
3811 // map and therefore have to make these stubs into RuntimeStubs
3812 // rather than BufferBlobs.  If the compiler needs all registers to
3813 // be preserved between the fault point and the exception handler
3814 // then it must assume responsibility for that in
3815 // AbstractCompiler::continuation_for_implicit_null_exception or
3816 // continuation_for_implicit_division_by_zero_exception. All other
3817 // implicit exceptions (e.g., NullPointerException or
3818 // AbstractMethodError on entry) are either at call sites or
3819 // otherwise assume that stack unwinding will be initiated, so
3820 // caller saved registers were assumed volatile in the compiler.
3821 address StubGenerator::generate_throw_exception(const char* name,
3822                                                 address runtime_entry,
3823                                                 Register arg1,
3824                                                 Register arg2) {
3825   // Information about frame layout at time of blocking runtime call.
3826   // Note that we only have to preserve callee-saved registers since
3827   // the compilers are responsible for supplying a continuation point
3828   // if they expect all registers to be preserved.
3829   enum layout {
3830     rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt,
3831     rbp_off2,
3832     return_off,
3833     return_off2,
3834     framesize // inclusive of return address
3835   };
3836 
3837   int insts_size = 512;
3838   int locs_size  = 64;
3839 
3840   CodeBuffer code(name, insts_size, locs_size);
3841   OopMapSet* oop_maps  = new OopMapSet();
3842   MacroAssembler* _masm = new MacroAssembler(&code);
3843 
3844   address start = __ pc();
3845 
3846   // This is an inlined and slightly modified version of call_VM
3847   // which has the ability to fetch the return PC out of
3848   // thread-local storage and also sets up last_Java_sp slightly
3849   // differently than the real call_VM
3850 
3851   __ enter(); // required for proper stackwalking of RuntimeStub frame
3852 
3853   assert(is_even(framesize/2), "sp not 16-byte aligned");
3854 
3855   // return address and rbp are already in place
3856   __ subptr(rsp, (framesize-4) << LogBytesPerInt); // prolog
3857 
3858   int frame_complete = __ pc() - start;
3859 
3860   // Set up last_Java_sp and last_Java_fp
3861   address the_pc = __ pc();
3862   __ set_last_Java_frame(rsp, rbp, the_pc, rscratch1);
3863   __ andptr(rsp, -(StackAlignmentInBytes));    // Align stack
3864 
3865   // Call runtime
3866   if (arg1 != noreg) {
3867     assert(arg2 != c_rarg1, "clobbered");
3868     __ movptr(c_rarg1, arg1);
3869   }
3870   if (arg2 != noreg) {
3871     __ movptr(c_rarg2, arg2);
3872   }
3873   __ movptr(c_rarg0, r15_thread);
3874   BLOCK_COMMENT("call runtime_entry");
3875   __ call(RuntimeAddress(runtime_entry));
3876 
3877   // Generate oop map
3878   OopMap* map = new OopMap(framesize, 0);
3879 
3880   oop_maps->add_gc_map(the_pc - start, map);
3881 
3882   __ reset_last_Java_frame(true);
3883 
3884   __ leave(); // required for proper stackwalking of RuntimeStub frame
3885 
3886   // check for pending exceptions
3887 #ifdef ASSERT
3888   Label L;
3889   __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), NULL_WORD);
3890   __ jcc(Assembler::notEqual, L);
3891   __ should_not_reach_here();
3892   __ bind(L);
3893 #endif // ASSERT
3894   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3895 
3896 
3897   // codeBlob framesize is in words (not VMRegImpl::slot_size)
3898   RuntimeStub* stub =
3899     RuntimeStub::new_runtime_stub(name,
3900                                   &code,
3901                                   frame_complete,
3902                                   (framesize >> (LogBytesPerWord - LogBytesPerInt)),
3903                                   oop_maps, false);
3904   return stub->entry_point();
3905 }
3906 
3907 // exception handler for upcall stubs
3908 address StubGenerator::generate_upcall_stub_exception_handler() {
3909   StubCodeMark mark(this, "StubRoutines", "upcall stub exception handler");
3910   address start = __ pc();
3911 
3912   // native caller has no idea how to handle exceptions
3913   // we just crash here. Up to callee to catch exceptions.
3914   __ verify_oop(rax);
3915   __ vzeroupper();
3916   __ mov(c_rarg0, rax);
3917   __ andptr(rsp, -StackAlignmentInBytes); // align stack as required by ABI
3918   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
3919   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, UpcallLinker::handle_uncaught_exception)));
3920   __ should_not_reach_here();
3921 
3922   return start;
3923 }
3924 
3925 void StubGenerator::create_control_words() {
3926   // Round to nearest, 64-bit mode, exceptions masked, flags specialized
3927   StubRoutines::x86::_mxcsr_std = EnableX86ECoreOpts ? 0x1FBF : 0x1F80;
3928   // Round to zero, 64-bit mode, exceptions masked, flags specialized
3929   StubRoutines::x86::_mxcsr_rz = EnableX86ECoreOpts ? 0x7FBF : 0x7F80;
3930 }
3931 
3932 // Initialization
3933 void StubGenerator::generate_initial_stubs() {
3934   // Generates all stubs and initializes the entry points
3935 
3936   // This platform-specific settings are needed by generate_call_stub()
3937   create_control_words();
3938 
3939   // Initialize table for unsafe copy memeory check.
3940   if (UnsafeCopyMemory::_table == nullptr) {
3941     UnsafeCopyMemory::create_table(16);
3942   }
3943 
3944   // entry points that exist in all platforms Note: This is code
3945   // that could be shared among different platforms - however the
3946   // benefit seems to be smaller than the disadvantage of having a
3947   // much more complicated generator structure. See also comment in
3948   // stubRoutines.hpp.
3949 
3950   StubRoutines::_forward_exception_entry = generate_forward_exception();
3951 
3952   // Generate these first because they are called from other stubs
3953   if (InlineTypeReturnedAsFields) {
3954     StubRoutines::_load_inline_type_fields_in_regs =
3955       generate_return_value_stub(CAST_FROM_FN_PTR(address, SharedRuntime::load_inline_type_fields_in_regs),
3956                                  "load_inline_type_fields_in_regs", false);
3957     StubRoutines::_store_inline_type_fields_to_buf =
3958       generate_return_value_stub(CAST_FROM_FN_PTR(address, SharedRuntime::store_inline_type_fields_to_buf),
3959                                  "store_inline_type_fields_to_buf", true);
3960   }
3961 
3962   StubRoutines::_call_stub_entry =
3963     generate_call_stub(StubRoutines::_call_stub_return_address);
3964 
3965   // is referenced by megamorphic call
3966   StubRoutines::_catch_exception_entry = generate_catch_exception();
3967 
3968   // atomic calls
3969   StubRoutines::_fence_entry                = generate_orderaccess_fence();
3970 
3971   // platform dependent
3972   StubRoutines::x86::_get_previous_sp_entry = generate_get_previous_sp();
3973 
3974   StubRoutines::x86::_verify_mxcsr_entry    = generate_verify_mxcsr();
3975 
3976   StubRoutines::x86::_f2i_fixup             = generate_f2i_fixup();
3977   StubRoutines::x86::_f2l_fixup             = generate_f2l_fixup();
3978   StubRoutines::x86::_d2i_fixup             = generate_d2i_fixup();
3979   StubRoutines::x86::_d2l_fixup             = generate_d2l_fixup();
3980 
3981   StubRoutines::x86::_float_sign_mask       = generate_fp_mask("float_sign_mask",  0x7FFFFFFF7FFFFFFF);
3982   StubRoutines::x86::_float_sign_flip       = generate_fp_mask("float_sign_flip",  0x8000000080000000);
3983   StubRoutines::x86::_double_sign_mask      = generate_fp_mask("double_sign_mask", 0x7FFFFFFFFFFFFFFF);
3984   StubRoutines::x86::_double_sign_flip      = generate_fp_mask("double_sign_flip", 0x8000000000000000);
3985 
3986   // Build this early so it's available for the interpreter.
3987   StubRoutines::_throw_StackOverflowError_entry =
3988     generate_throw_exception("StackOverflowError throw_exception",
3989                              CAST_FROM_FN_PTR(address,
3990                                               SharedRuntime::
3991                                               throw_StackOverflowError));
3992   StubRoutines::_throw_delayed_StackOverflowError_entry =
3993     generate_throw_exception("delayed StackOverflowError throw_exception",
3994                              CAST_FROM_FN_PTR(address,
3995                                               SharedRuntime::
3996                                               throw_delayed_StackOverflowError));
3997   if (UseCRC32Intrinsics) {
3998     // set table address before stub generation which use it
3999     StubRoutines::_crc_table_adr = (address)StubRoutines::x86::_crc_table;
4000     StubRoutines::_updateBytesCRC32 = generate_updateBytesCRC32();
4001   }
4002 
4003   if (UseCRC32CIntrinsics) {
4004     bool supports_clmul = VM_Version::supports_clmul();
4005     StubRoutines::x86::generate_CRC32C_table(supports_clmul);
4006     StubRoutines::_crc32c_table_addr = (address)StubRoutines::x86::_crc32c_table;
4007     StubRoutines::_updateBytesCRC32C = generate_updateBytesCRC32C(supports_clmul);
4008   }
4009 
4010   if (VM_Version::supports_float16()) {
4011     // For results consistency both intrinsics should be enabled.
4012     // vmIntrinsics checks InlineIntrinsics flag, no need to check it here.
4013     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_float16ToFloat) &&
4014         vmIntrinsics::is_intrinsic_available(vmIntrinsics::_floatToFloat16)) {
4015       StubRoutines::_hf2f = generate_float16ToFloat();
4016       StubRoutines::_f2hf = generate_floatToFloat16();
4017     }
4018   }
4019 
4020   generate_libm_stubs();
4021 
4022   StubRoutines::_fmod = generate_libmFmod(); // from stubGenerator_x86_64_fmod.cpp
4023 }
4024 
4025 // Call here from the interpreter or compiled code to either load
4026 // multiple returned values from the inline type instance being
4027 // returned to registers or to store returned values to a newly
4028 // allocated inline type instance.
4029 // Register is a class, but it would be assigned numerical value.
4030 // "0" is assigned for xmm0. Thus we need to ignore -Wnonnull.
4031 PRAGMA_DIAG_PUSH
4032 PRAGMA_NONNULL_IGNORED
4033 address StubGenerator::generate_return_value_stub(address destination, const char* name, bool has_res) {
4034   // We need to save all registers the calling convention may use so
4035   // the runtime calls read or update those registers. This needs to
4036   // be in sync with SharedRuntime::java_return_convention().
4037   enum layout {
4038     pad_off = frame::arg_reg_save_area_bytes/BytesPerInt, pad_off_2,
4039     rax_off, rax_off_2,
4040     j_rarg5_off, j_rarg5_2,
4041     j_rarg4_off, j_rarg4_2,
4042     j_rarg3_off, j_rarg3_2,
4043     j_rarg2_off, j_rarg2_2,
4044     j_rarg1_off, j_rarg1_2,
4045     j_rarg0_off, j_rarg0_2,
4046     j_farg0_off, j_farg0_2,
4047     j_farg1_off, j_farg1_2,
4048     j_farg2_off, j_farg2_2,
4049     j_farg3_off, j_farg3_2,
4050     j_farg4_off, j_farg4_2,
4051     j_farg5_off, j_farg5_2,
4052     j_farg6_off, j_farg6_2,
4053     j_farg7_off, j_farg7_2,
4054     rbp_off, rbp_off_2,
4055     return_off, return_off_2,
4056 
4057     framesize
4058   };
4059 
4060   CodeBuffer buffer(name, 1000, 512);
4061   MacroAssembler* _masm = new MacroAssembler(&buffer);
4062 
4063   int frame_size_in_bytes = align_up(framesize*BytesPerInt, 16);
4064   assert(frame_size_in_bytes == framesize*BytesPerInt, "misaligned");
4065   int frame_size_in_slots = frame_size_in_bytes / BytesPerInt;
4066   int frame_size_in_words = frame_size_in_bytes / wordSize;
4067 
4068   OopMapSet *oop_maps = new OopMapSet();
4069   OopMap* map = new OopMap(frame_size_in_slots, 0);
4070 
4071   map->set_callee_saved(VMRegImpl::stack2reg(rax_off), rax->as_VMReg());
4072   map->set_callee_saved(VMRegImpl::stack2reg(j_rarg5_off), j_rarg5->as_VMReg());
4073   map->set_callee_saved(VMRegImpl::stack2reg(j_rarg4_off), j_rarg4->as_VMReg());
4074   map->set_callee_saved(VMRegImpl::stack2reg(j_rarg3_off), j_rarg3->as_VMReg());
4075   map->set_callee_saved(VMRegImpl::stack2reg(j_rarg2_off), j_rarg2->as_VMReg());
4076   map->set_callee_saved(VMRegImpl::stack2reg(j_rarg1_off), j_rarg1->as_VMReg());
4077   map->set_callee_saved(VMRegImpl::stack2reg(j_rarg0_off), j_rarg0->as_VMReg());
4078   map->set_callee_saved(VMRegImpl::stack2reg(j_farg0_off), j_farg0->as_VMReg());
4079   map->set_callee_saved(VMRegImpl::stack2reg(j_farg1_off), j_farg1->as_VMReg());
4080   map->set_callee_saved(VMRegImpl::stack2reg(j_farg2_off), j_farg2->as_VMReg());
4081   map->set_callee_saved(VMRegImpl::stack2reg(j_farg3_off), j_farg3->as_VMReg());
4082   map->set_callee_saved(VMRegImpl::stack2reg(j_farg4_off), j_farg4->as_VMReg());
4083   map->set_callee_saved(VMRegImpl::stack2reg(j_farg5_off), j_farg5->as_VMReg());
4084   map->set_callee_saved(VMRegImpl::stack2reg(j_farg6_off), j_farg6->as_VMReg());
4085   map->set_callee_saved(VMRegImpl::stack2reg(j_farg7_off), j_farg7->as_VMReg());
4086 
4087   int start = __ offset();
4088 
4089   __ subptr(rsp, frame_size_in_bytes - 8 /* return address*/);
4090 
4091   __ movptr(Address(rsp, rbp_off * BytesPerInt), rbp);
4092   __ movdbl(Address(rsp, j_farg7_off * BytesPerInt), j_farg7);
4093   __ movdbl(Address(rsp, j_farg6_off * BytesPerInt), j_farg6);
4094   __ movdbl(Address(rsp, j_farg5_off * BytesPerInt), j_farg5);
4095   __ movdbl(Address(rsp, j_farg4_off * BytesPerInt), j_farg4);
4096   __ movdbl(Address(rsp, j_farg3_off * BytesPerInt), j_farg3);
4097   __ movdbl(Address(rsp, j_farg2_off * BytesPerInt), j_farg2);
4098   __ movdbl(Address(rsp, j_farg1_off * BytesPerInt), j_farg1);
4099   __ movdbl(Address(rsp, j_farg0_off * BytesPerInt), j_farg0);
4100 
4101   __ movptr(Address(rsp, j_rarg0_off * BytesPerInt), j_rarg0);
4102   __ movptr(Address(rsp, j_rarg1_off * BytesPerInt), j_rarg1);
4103   __ movptr(Address(rsp, j_rarg2_off * BytesPerInt), j_rarg2);
4104   __ movptr(Address(rsp, j_rarg3_off * BytesPerInt), j_rarg3);
4105   __ movptr(Address(rsp, j_rarg4_off * BytesPerInt), j_rarg4);
4106   __ movptr(Address(rsp, j_rarg5_off * BytesPerInt), j_rarg5);
4107   __ movptr(Address(rsp, rax_off * BytesPerInt), rax);
4108 
4109   int frame_complete = __ offset();
4110 
4111   __ set_last_Java_frame(noreg, noreg, nullptr, rscratch1);
4112 
4113   __ mov(c_rarg0, r15_thread);
4114   __ mov(c_rarg1, rax);
4115 
4116   __ call(RuntimeAddress(destination));
4117 
4118   // Set an oopmap for the call site.
4119 
4120   oop_maps->add_gc_map( __ offset() - start, map);
4121 
4122   // clear last_Java_sp
4123   __ reset_last_Java_frame(false);
4124 
4125   __ movptr(rbp, Address(rsp, rbp_off * BytesPerInt));
4126   __ movdbl(j_farg7, Address(rsp, j_farg7_off * BytesPerInt));
4127   __ movdbl(j_farg6, Address(rsp, j_farg6_off * BytesPerInt));
4128   __ movdbl(j_farg5, Address(rsp, j_farg5_off * BytesPerInt));
4129   __ movdbl(j_farg4, Address(rsp, j_farg4_off * BytesPerInt));
4130   __ movdbl(j_farg3, Address(rsp, j_farg3_off * BytesPerInt));
4131   __ movdbl(j_farg2, Address(rsp, j_farg2_off * BytesPerInt));
4132   __ movdbl(j_farg1, Address(rsp, j_farg1_off * BytesPerInt));
4133   __ movdbl(j_farg0, Address(rsp, j_farg0_off * BytesPerInt));
4134 
4135   __ movptr(j_rarg0, Address(rsp, j_rarg0_off * BytesPerInt));
4136   __ movptr(j_rarg1, Address(rsp, j_rarg1_off * BytesPerInt));
4137   __ movptr(j_rarg2, Address(rsp, j_rarg2_off * BytesPerInt));
4138   __ movptr(j_rarg3, Address(rsp, j_rarg3_off * BytesPerInt));
4139   __ movptr(j_rarg4, Address(rsp, j_rarg4_off * BytesPerInt));
4140   __ movptr(j_rarg5, Address(rsp, j_rarg5_off * BytesPerInt));
4141   __ movptr(rax, Address(rsp, rax_off * BytesPerInt));
4142 
4143   __ addptr(rsp, frame_size_in_bytes-8);
4144 
4145   // check for pending exceptions
4146   Label pending;
4147   __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
4148   __ jcc(Assembler::notEqual, pending);
4149 
4150   if (has_res) {
4151     __ get_vm_result(rax, r15_thread);
4152   }
4153 
4154   __ ret(0);
4155 
4156   __ bind(pending);
4157 
4158   __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
4159   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
4160 
4161   // -------------
4162   // make sure all code is generated
4163   _masm->flush();
4164 
4165   RuntimeStub* stub = RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_words, oop_maps, false);
4166   return stub->entry_point();
4167 }
4168 
4169 void StubGenerator::generate_continuation_stubs() {
4170   // Continuation stubs:
4171   StubRoutines::_cont_thaw          = generate_cont_thaw();
4172   StubRoutines::_cont_returnBarrier = generate_cont_returnBarrier();
4173   StubRoutines::_cont_returnBarrierExc = generate_cont_returnBarrier_exception();
4174 
4175   JFR_ONLY(generate_jfr_stubs();)
4176 }
4177 
4178 #if INCLUDE_JFR
4179 void StubGenerator::generate_jfr_stubs() {
4180   StubRoutines::_jfr_write_checkpoint_stub = generate_jfr_write_checkpoint();
4181   StubRoutines::_jfr_write_checkpoint = StubRoutines::_jfr_write_checkpoint_stub->entry_point();
4182   StubRoutines::_jfr_return_lease_stub = generate_jfr_return_lease();
4183   StubRoutines::_jfr_return_lease = StubRoutines::_jfr_return_lease_stub->entry_point();
4184 }
4185 #endif
4186 
4187 void StubGenerator::generate_final_stubs() {
4188   // Generates the rest of stubs and initializes the entry points
4189 
4190   // These entry points require SharedInfo::stack0 to be set up in
4191   // non-core builds and need to be relocatable, so they each
4192   // fabricate a RuntimeStub internally.
4193   StubRoutines::_throw_AbstractMethodError_entry =
4194     generate_throw_exception("AbstractMethodError throw_exception",
4195                              CAST_FROM_FN_PTR(address,
4196                                               SharedRuntime::
4197                                               throw_AbstractMethodError));
4198 
4199   StubRoutines::_throw_IncompatibleClassChangeError_entry =
4200     generate_throw_exception("IncompatibleClassChangeError throw_exception",
4201                              CAST_FROM_FN_PTR(address,
4202                                               SharedRuntime::
4203                                               throw_IncompatibleClassChangeError));
4204 
4205   StubRoutines::_throw_NullPointerException_at_call_entry =
4206     generate_throw_exception("NullPointerException at call throw_exception",
4207                              CAST_FROM_FN_PTR(address,
4208                                               SharedRuntime::
4209                                               throw_NullPointerException_at_call));
4210 
4211   // support for verify_oop (must happen after universe_init)
4212   if (VerifyOops) {
4213     StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop();
4214   }
4215 
4216   // data cache line writeback
4217   StubRoutines::_data_cache_writeback = generate_data_cache_writeback();
4218   StubRoutines::_data_cache_writeback_sync = generate_data_cache_writeback_sync();
4219 
4220   // arraycopy stubs used by compilers
4221   generate_arraycopy_stubs();
4222 
4223   BarrierSetNMethod* bs_nm = BarrierSet::barrier_set()->barrier_set_nmethod();
4224   if (bs_nm != nullptr) {
4225     StubRoutines::_method_entry_barrier = generate_method_entry_barrier();
4226   }
4227 
4228   if (UseVectorizedMismatchIntrinsic) {
4229     StubRoutines::_vectorizedMismatch = generate_vectorizedMismatch();
4230   }
4231 
4232   StubRoutines::_upcall_stub_exception_handler = generate_upcall_stub_exception_handler();
4233 }
4234 
4235 void StubGenerator::generate_compiler_stubs() {
4236 #if COMPILER2_OR_JVMCI
4237 
4238   // Entry points that are C2 compiler specific.
4239 
4240   StubRoutines::x86::_vector_float_sign_mask = generate_vector_mask("vector_float_sign_mask", 0x7FFFFFFF7FFFFFFF);
4241   StubRoutines::x86::_vector_float_sign_flip = generate_vector_mask("vector_float_sign_flip", 0x8000000080000000);
4242   StubRoutines::x86::_vector_double_sign_mask = generate_vector_mask("vector_double_sign_mask", 0x7FFFFFFFFFFFFFFF);
4243   StubRoutines::x86::_vector_double_sign_flip = generate_vector_mask("vector_double_sign_flip", 0x8000000000000000);
4244   StubRoutines::x86::_vector_all_bits_set = generate_vector_mask("vector_all_bits_set", 0xFFFFFFFFFFFFFFFF);
4245   StubRoutines::x86::_vector_int_mask_cmp_bits = generate_vector_mask("vector_int_mask_cmp_bits", 0x0000000100000001);
4246   StubRoutines::x86::_vector_short_to_byte_mask = generate_vector_mask("vector_short_to_byte_mask", 0x00ff00ff00ff00ff);
4247   StubRoutines::x86::_vector_byte_perm_mask = generate_vector_byte_perm_mask("vector_byte_perm_mask");
4248   StubRoutines::x86::_vector_int_to_byte_mask = generate_vector_mask("vector_int_to_byte_mask", 0x000000ff000000ff);
4249   StubRoutines::x86::_vector_int_to_short_mask = generate_vector_mask("vector_int_to_short_mask", 0x0000ffff0000ffff);
4250   StubRoutines::x86::_vector_32_bit_mask = generate_vector_custom_i32("vector_32_bit_mask", Assembler::AVX_512bit,
4251                                                                       0xFFFFFFFF, 0, 0, 0);
4252   StubRoutines::x86::_vector_64_bit_mask = generate_vector_custom_i32("vector_64_bit_mask", Assembler::AVX_512bit,
4253                                                                       0xFFFFFFFF, 0xFFFFFFFF, 0, 0);
4254   StubRoutines::x86::_vector_int_shuffle_mask = generate_vector_mask("vector_int_shuffle_mask", 0x0302010003020100);
4255   StubRoutines::x86::_vector_byte_shuffle_mask = generate_vector_byte_shuffle_mask("vector_byte_shuffle_mask");
4256   StubRoutines::x86::_vector_short_shuffle_mask = generate_vector_mask("vector_short_shuffle_mask", 0x0100010001000100);
4257   StubRoutines::x86::_vector_long_shuffle_mask = generate_vector_mask("vector_long_shuffle_mask", 0x0000000100000000);
4258   StubRoutines::x86::_vector_long_sign_mask = generate_vector_mask("vector_long_sign_mask", 0x8000000000000000);
4259   StubRoutines::x86::_vector_iota_indices = generate_iota_indices("iota_indices");
4260   StubRoutines::x86::_vector_count_leading_zeros_lut = generate_count_leading_zeros_lut("count_leading_zeros_lut");
4261   StubRoutines::x86::_vector_reverse_bit_lut = generate_vector_reverse_bit_lut("reverse_bit_lut");
4262   StubRoutines::x86::_vector_reverse_byte_perm_mask_long = generate_vector_reverse_byte_perm_mask_long("perm_mask_long");
4263   StubRoutines::x86::_vector_reverse_byte_perm_mask_int = generate_vector_reverse_byte_perm_mask_int("perm_mask_int");
4264   StubRoutines::x86::_vector_reverse_byte_perm_mask_short = generate_vector_reverse_byte_perm_mask_short("perm_mask_short");
4265 
4266   if (VM_Version::supports_avx2() && !VM_Version::supports_avx512_vpopcntdq()) {
4267     // lut implementation influenced by counting 1s algorithm from section 5-1 of Hackers' Delight.
4268     StubRoutines::x86::_vector_popcount_lut = generate_popcount_avx_lut("popcount_lut");
4269   }
4270 
4271   generate_aes_stubs();
4272 
4273   generate_ghash_stubs();
4274 
4275   generate_chacha_stubs();
4276 
4277   if (UseAdler32Intrinsics) {
4278      StubRoutines::_updateBytesAdler32 = generate_updateBytesAdler32();
4279   }
4280 
4281   if (UsePoly1305Intrinsics) {
4282     StubRoutines::_poly1305_processBlocks = generate_poly1305_processBlocks();
4283   }
4284 
4285   if (UseMD5Intrinsics) {
4286     StubRoutines::_md5_implCompress = generate_md5_implCompress(false, "md5_implCompress");
4287     StubRoutines::_md5_implCompressMB = generate_md5_implCompress(true, "md5_implCompressMB");
4288   }
4289 
4290   if (UseSHA1Intrinsics) {
4291     StubRoutines::x86::_upper_word_mask_addr = generate_upper_word_mask();
4292     StubRoutines::x86::_shuffle_byte_flip_mask_addr = generate_shuffle_byte_flip_mask();
4293     StubRoutines::_sha1_implCompress = generate_sha1_implCompress(false, "sha1_implCompress");
4294     StubRoutines::_sha1_implCompressMB = generate_sha1_implCompress(true, "sha1_implCompressMB");
4295   }
4296 
4297   if (UseSHA256Intrinsics) {
4298     StubRoutines::x86::_k256_adr = (address)StubRoutines::x86::_k256;
4299     char* dst = (char*)StubRoutines::x86::_k256_W;
4300     char* src = (char*)StubRoutines::x86::_k256;
4301     for (int ii = 0; ii < 16; ++ii) {
4302       memcpy(dst + 32 * ii,      src + 16 * ii, 16);
4303       memcpy(dst + 32 * ii + 16, src + 16 * ii, 16);
4304     }
4305     StubRoutines::x86::_k256_W_adr = (address)StubRoutines::x86::_k256_W;
4306     StubRoutines::x86::_pshuffle_byte_flip_mask_addr = generate_pshuffle_byte_flip_mask();
4307     StubRoutines::_sha256_implCompress = generate_sha256_implCompress(false, "sha256_implCompress");
4308     StubRoutines::_sha256_implCompressMB = generate_sha256_implCompress(true, "sha256_implCompressMB");
4309   }
4310 
4311   if (UseSHA512Intrinsics) {
4312     StubRoutines::x86::_k512_W_addr = (address)StubRoutines::x86::_k512_W;
4313     StubRoutines::x86::_pshuffle_byte_flip_mask_addr_sha512 = generate_pshuffle_byte_flip_mask_sha512();
4314     StubRoutines::_sha512_implCompress = generate_sha512_implCompress(false, "sha512_implCompress");
4315     StubRoutines::_sha512_implCompressMB = generate_sha512_implCompress(true, "sha512_implCompressMB");
4316   }
4317 
4318   if (UseBASE64Intrinsics) {
4319     if(VM_Version::supports_avx2()) {
4320       StubRoutines::x86::_avx2_shuffle_base64 = base64_avx2_shuffle_addr();
4321       StubRoutines::x86::_avx2_input_mask_base64 = base64_avx2_input_mask_addr();
4322       StubRoutines::x86::_avx2_lut_base64 = base64_avx2_lut_addr();
4323       StubRoutines::x86::_avx2_decode_tables_base64 = base64_AVX2_decode_tables_addr();
4324       StubRoutines::x86::_avx2_decode_lut_tables_base64 = base64_AVX2_decode_LUT_tables_addr();
4325     }
4326     StubRoutines::x86::_encoding_table_base64 = base64_encoding_table_addr();
4327     if (VM_Version::supports_avx512_vbmi()) {
4328       StubRoutines::x86::_shuffle_base64 = base64_shuffle_addr();
4329       StubRoutines::x86::_lookup_lo_base64 = base64_vbmi_lookup_lo_addr();
4330       StubRoutines::x86::_lookup_hi_base64 = base64_vbmi_lookup_hi_addr();
4331       StubRoutines::x86::_lookup_lo_base64url = base64_vbmi_lookup_lo_url_addr();
4332       StubRoutines::x86::_lookup_hi_base64url = base64_vbmi_lookup_hi_url_addr();
4333       StubRoutines::x86::_pack_vec_base64 = base64_vbmi_pack_vec_addr();
4334       StubRoutines::x86::_join_0_1_base64 = base64_vbmi_join_0_1_addr();
4335       StubRoutines::x86::_join_1_2_base64 = base64_vbmi_join_1_2_addr();
4336       StubRoutines::x86::_join_2_3_base64 = base64_vbmi_join_2_3_addr();
4337     }
4338     StubRoutines::x86::_decoding_table_base64 = base64_decoding_table_addr();
4339     StubRoutines::_base64_encodeBlock = generate_base64_encodeBlock();
4340     StubRoutines::_base64_decodeBlock = generate_base64_decodeBlock();
4341   }
4342 
4343 #ifdef COMPILER2
4344   if (UseMultiplyToLenIntrinsic) {
4345     StubRoutines::_multiplyToLen = generate_multiplyToLen();
4346   }
4347   if (UseSquareToLenIntrinsic) {
4348     StubRoutines::_squareToLen = generate_squareToLen();
4349   }
4350   if (UseMulAddIntrinsic) {
4351     StubRoutines::_mulAdd = generate_mulAdd();
4352   }
4353   if (VM_Version::supports_avx512_vbmi2()) {
4354     StubRoutines::_bigIntegerRightShiftWorker = generate_bigIntegerRightShift();
4355     StubRoutines::_bigIntegerLeftShiftWorker = generate_bigIntegerLeftShift();
4356   }
4357   if (UseMontgomeryMultiplyIntrinsic) {
4358     StubRoutines::_montgomeryMultiply
4359       = CAST_FROM_FN_PTR(address, SharedRuntime::montgomery_multiply);
4360   }
4361   if (UseMontgomerySquareIntrinsic) {
4362     StubRoutines::_montgomerySquare
4363       = CAST_FROM_FN_PTR(address, SharedRuntime::montgomery_square);
4364   }
4365 
4366   // Load x86_64_sort library on supported hardware to enable avx512 sort and partition intrinsics
4367   if (VM_Version::is_intel() && VM_Version::supports_avx512dq()) {
4368     void *libsimdsort = nullptr;
4369     char ebuf_[1024];
4370     char dll_name_simd_sort[JVM_MAXPATHLEN];
4371     if (os::dll_locate_lib(dll_name_simd_sort, sizeof(dll_name_simd_sort), Arguments::get_dll_dir(), "simdsort")) {
4372       libsimdsort = os::dll_load(dll_name_simd_sort, ebuf_, sizeof ebuf_);
4373     }
4374     // Get addresses for avx512 sort and partition routines
4375     if (libsimdsort != nullptr) {
4376       log_info(library)("Loaded library %s, handle " INTPTR_FORMAT, JNI_LIB_PREFIX "simdsort" JNI_LIB_SUFFIX, p2i(libsimdsort));
4377 
4378       snprintf(ebuf_, sizeof(ebuf_), "avx512_sort");
4379       StubRoutines::_array_sort = (address)os::dll_lookup(libsimdsort, ebuf_);
4380 
4381       snprintf(ebuf_, sizeof(ebuf_), "avx512_partition");
4382       StubRoutines::_array_partition = (address)os::dll_lookup(libsimdsort, ebuf_);
4383     }
4384   }
4385 
4386   // Get svml stub routine addresses
4387   void *libjsvml = nullptr;
4388   char ebuf[1024];
4389   char dll_name[JVM_MAXPATHLEN];
4390   if (os::dll_locate_lib(dll_name, sizeof(dll_name), Arguments::get_dll_dir(), "jsvml")) {
4391     libjsvml = os::dll_load(dll_name, ebuf, sizeof ebuf);
4392   }
4393   if (libjsvml != nullptr) {
4394     // SVML method naming convention
4395     //   All the methods are named as __jsvml_op<T><N>_ha_<VV>
4396     //   Where:
4397     //      ha stands for high accuracy
4398     //      <T> is optional to indicate float/double
4399     //              Set to f for vector float operation
4400     //              Omitted for vector double operation
4401     //      <N> is the number of elements in the vector
4402     //              1, 2, 4, 8, 16
4403     //              e.g. 128 bit float vector has 4 float elements
4404     //      <VV> indicates the avx/sse level:
4405     //              z0 is AVX512, l9 is AVX2, e9 is AVX1 and ex is for SSE2
4406     //      e.g. __jsvml_expf16_ha_z0 is the method for computing 16 element vector float exp using AVX 512 insns
4407     //           __jsvml_exp8_ha_z0 is the method for computing 8 element vector double exp using AVX 512 insns
4408 
4409     log_info(library)("Loaded library %s, handle " INTPTR_FORMAT, JNI_LIB_PREFIX "jsvml" JNI_LIB_SUFFIX, p2i(libjsvml));
4410     if (UseAVX > 2) {
4411       for (int op = 0; op < VectorSupport::NUM_SVML_OP; op++) {
4412         int vop = VectorSupport::VECTOR_OP_SVML_START + op;
4413         if ((!VM_Version::supports_avx512dq()) &&
4414             (vop == VectorSupport::VECTOR_OP_LOG || vop == VectorSupport::VECTOR_OP_LOG10 || vop == VectorSupport::VECTOR_OP_POW)) {
4415           continue;
4416         }
4417         snprintf(ebuf, sizeof(ebuf), "__jsvml_%sf16_ha_z0", VectorSupport::svmlname[op]);
4418         StubRoutines::_vector_f_math[VectorSupport::VEC_SIZE_512][op] = (address)os::dll_lookup(libjsvml, ebuf);
4419 
4420         snprintf(ebuf, sizeof(ebuf), "__jsvml_%s8_ha_z0", VectorSupport::svmlname[op]);
4421         StubRoutines::_vector_d_math[VectorSupport::VEC_SIZE_512][op] = (address)os::dll_lookup(libjsvml, ebuf);
4422       }
4423     }
4424     const char* avx_sse_str = (UseAVX >= 2) ? "l9" : ((UseAVX == 1) ? "e9" : "ex");
4425     for (int op = 0; op < VectorSupport::NUM_SVML_OP; op++) {
4426       int vop = VectorSupport::VECTOR_OP_SVML_START + op;
4427       if (vop == VectorSupport::VECTOR_OP_POW) {
4428         continue;
4429       }
4430       snprintf(ebuf, sizeof(ebuf), "__jsvml_%sf4_ha_%s", VectorSupport::svmlname[op], avx_sse_str);
4431       StubRoutines::_vector_f_math[VectorSupport::VEC_SIZE_64][op] = (address)os::dll_lookup(libjsvml, ebuf);
4432 
4433       snprintf(ebuf, sizeof(ebuf), "__jsvml_%sf4_ha_%s", VectorSupport::svmlname[op], avx_sse_str);
4434       StubRoutines::_vector_f_math[VectorSupport::VEC_SIZE_128][op] = (address)os::dll_lookup(libjsvml, ebuf);
4435 
4436       snprintf(ebuf, sizeof(ebuf), "__jsvml_%sf8_ha_%s", VectorSupport::svmlname[op], avx_sse_str);
4437       StubRoutines::_vector_f_math[VectorSupport::VEC_SIZE_256][op] = (address)os::dll_lookup(libjsvml, ebuf);
4438 
4439       snprintf(ebuf, sizeof(ebuf), "__jsvml_%s1_ha_%s", VectorSupport::svmlname[op], avx_sse_str);
4440       StubRoutines::_vector_d_math[VectorSupport::VEC_SIZE_64][op] = (address)os::dll_lookup(libjsvml, ebuf);
4441 
4442       snprintf(ebuf, sizeof(ebuf), "__jsvml_%s2_ha_%s", VectorSupport::svmlname[op], avx_sse_str);
4443       StubRoutines::_vector_d_math[VectorSupport::VEC_SIZE_128][op] = (address)os::dll_lookup(libjsvml, ebuf);
4444 
4445       snprintf(ebuf, sizeof(ebuf), "__jsvml_%s4_ha_%s", VectorSupport::svmlname[op], avx_sse_str);
4446       StubRoutines::_vector_d_math[VectorSupport::VEC_SIZE_256][op] = (address)os::dll_lookup(libjsvml, ebuf);
4447     }
4448   }
4449 #endif // COMPILER2
4450 #endif // COMPILER2_OR_JVMCI
4451 }
4452 
4453 StubGenerator::StubGenerator(CodeBuffer* code, StubsKind kind) : StubCodeGenerator(code) {
4454     DEBUG_ONLY( _regs_in_thread = false; )
4455     switch(kind) {
4456     case Initial_stubs:
4457       generate_initial_stubs();
4458       break;
4459      case Continuation_stubs:
4460       generate_continuation_stubs();
4461       break;
4462     case Compiler_stubs:
4463       generate_compiler_stubs();
4464       break;
4465     case Final_stubs:
4466       generate_final_stubs();
4467       break;
4468     default:
4469       fatal("unexpected stubs kind: %d", kind);
4470       break;
4471     };
4472 }
4473 
4474 void StubGenerator_generate(CodeBuffer* code, StubCodeGenerator::StubsKind kind) {
4475   StubGenerator g(code, kind);
4476 }
4477 
4478 #undef __