1 /* 2 * Copyright (c) 2003, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/assembler.hpp" 27 #include "asm/macroAssembler.hpp" 28 #include "classfile/vmIntrinsics.hpp" 29 #include "compiler/oopMap.hpp" 30 #include "gc/shared/barrierSet.hpp" 31 #include "gc/shared/barrierSetAssembler.hpp" 32 #include "gc/shared/barrierSetNMethod.hpp" 33 #include "gc/shared/gc_globals.hpp" 34 #include "memory/universe.hpp" 35 #include "prims/jvmtiExport.hpp" 36 #include "runtime/arguments.hpp" 37 #include "runtime/javaThread.hpp" 38 #include "runtime/sharedRuntime.hpp" 39 #include "runtime/stubRoutines.hpp" 40 #include "utilities/macros.hpp" 41 #include "vmreg_x86.inline.hpp" 42 #include "stubGenerator_x86_64.hpp" 43 #ifdef COMPILER2 44 #include "opto/runtime.hpp" 45 #include "opto/c2_globals.hpp" 46 #endif 47 #if INCLUDE_JVMCI 48 #include "jvmci/jvmci_globals.hpp" 49 #endif 50 #if INCLUDE_JFR 51 #include "jfr/support/jfrIntrinsics.hpp" 52 #endif 53 54 // For a more detailed description of the stub routine structure 55 // see the comment in stubRoutines.hpp 56 57 #define __ _masm-> 58 #define TIMES_OOP (UseCompressedOops ? Address::times_4 : Address::times_8) 59 60 #ifdef PRODUCT 61 #define BLOCK_COMMENT(str) /* nothing */ 62 #else 63 #define BLOCK_COMMENT(str) __ block_comment(str) 64 #endif // PRODUCT 65 66 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") 67 68 // 69 // Linux Arguments: 70 // c_rarg0: call wrapper address address 71 // c_rarg1: result address 72 // c_rarg2: result type BasicType 73 // c_rarg3: method Method* 74 // c_rarg4: (interpreter) entry point address 75 // c_rarg5: parameters intptr_t* 76 // 16(rbp): parameter size (in words) int 77 // 24(rbp): thread Thread* 78 // 79 // [ return_from_Java ] <--- rsp 80 // [ argument word n ] 81 // ... 82 // -12 [ argument word 1 ] 83 // -11 [ saved r15 ] <--- rsp_after_call 84 // -10 [ saved r14 ] 85 // -9 [ saved r13 ] 86 // -8 [ saved r12 ] 87 // -7 [ saved rbx ] 88 // -6 [ call wrapper ] 89 // -5 [ result ] 90 // -4 [ result type ] 91 // -3 [ method ] 92 // -2 [ entry point ] 93 // -1 [ parameters ] 94 // 0 [ saved rbp ] <--- rbp 95 // 1 [ return address ] 96 // 2 [ parameter size ] 97 // 3 [ thread ] 98 // 99 // Windows Arguments: 100 // c_rarg0: call wrapper address address 101 // c_rarg1: result address 102 // c_rarg2: result type BasicType 103 // c_rarg3: method Method* 104 // 48(rbp): (interpreter) entry point address 105 // 56(rbp): parameters intptr_t* 106 // 64(rbp): parameter size (in words) int 107 // 72(rbp): thread Thread* 108 // 109 // [ return_from_Java ] <--- rsp 110 // [ argument word n ] 111 // ... 112 // -60 [ argument word 1 ] 113 // -59 [ saved xmm31 ] <--- rsp after_call 114 // [ saved xmm16-xmm30 ] (EVEX enabled, else the space is blank) 115 // -27 [ saved xmm15 ] 116 // [ saved xmm7-xmm14 ] 117 // -9 [ saved xmm6 ] (each xmm register takes 2 slots) 118 // -7 [ saved r15 ] 119 // -6 [ saved r14 ] 120 // -5 [ saved r13 ] 121 // -4 [ saved r12 ] 122 // -3 [ saved rdi ] 123 // -2 [ saved rsi ] 124 // -1 [ saved rbx ] 125 // 0 [ saved rbp ] <--- rbp 126 // 1 [ return address ] 127 // 2 [ call wrapper ] 128 // 3 [ result ] 129 // 4 [ result type ] 130 // 5 [ method ] 131 // 6 [ entry point ] 132 // 7 [ parameters ] 133 // 8 [ parameter size ] 134 // 9 [ thread ] 135 // 136 // Windows reserves the callers stack space for arguments 1-4. 137 // We spill c_rarg0-c_rarg3 to this space. 138 139 // Call stub stack layout word offsets from rbp 140 #ifdef _WIN64 141 enum call_stub_layout { 142 xmm_save_first = 6, // save from xmm6 143 xmm_save_last = 31, // to xmm31 144 xmm_save_base = -9, 145 rsp_after_call_off = xmm_save_base - 2 * (xmm_save_last - xmm_save_first), // -27 146 r15_off = -7, 147 r14_off = -6, 148 r13_off = -5, 149 r12_off = -4, 150 rdi_off = -3, 151 rsi_off = -2, 152 rbx_off = -1, 153 rbp_off = 0, 154 retaddr_off = 1, 155 call_wrapper_off = 2, 156 result_off = 3, 157 result_type_off = 4, 158 method_off = 5, 159 entry_point_off = 6, 160 parameters_off = 7, 161 parameter_size_off = 8, 162 thread_off = 9 163 }; 164 165 static Address xmm_save(int reg) { 166 assert(reg >= xmm_save_first && reg <= xmm_save_last, "XMM register number out of range"); 167 return Address(rbp, (xmm_save_base - (reg - xmm_save_first) * 2) * wordSize); 168 } 169 #else // !_WIN64 170 enum call_stub_layout { 171 rsp_after_call_off = -12, 172 mxcsr_off = rsp_after_call_off, 173 r15_off = -11, 174 r14_off = -10, 175 r13_off = -9, 176 r12_off = -8, 177 rbx_off = -7, 178 call_wrapper_off = -6, 179 result_off = -5, 180 result_type_off = -4, 181 method_off = -3, 182 entry_point_off = -2, 183 parameters_off = -1, 184 rbp_off = 0, 185 retaddr_off = 1, 186 parameter_size_off = 2, 187 thread_off = 3 188 }; 189 #endif // _WIN64 190 191 address StubGenerator::generate_call_stub(address& return_address) { 192 193 assert((int)frame::entry_frame_after_call_words == -(int)rsp_after_call_off + 1 && 194 (int)frame::entry_frame_call_wrapper_offset == (int)call_wrapper_off, 195 "adjust this code"); 196 StubCodeMark mark(this, "StubRoutines", "call_stub"); 197 address start = __ pc(); 198 199 // same as in generate_catch_exception()! 200 const Address rsp_after_call(rbp, rsp_after_call_off * wordSize); 201 202 const Address call_wrapper (rbp, call_wrapper_off * wordSize); 203 const Address result (rbp, result_off * wordSize); 204 const Address result_type (rbp, result_type_off * wordSize); 205 const Address method (rbp, method_off * wordSize); 206 const Address entry_point (rbp, entry_point_off * wordSize); 207 const Address parameters (rbp, parameters_off * wordSize); 208 const Address parameter_size(rbp, parameter_size_off * wordSize); 209 210 // same as in generate_catch_exception()! 211 const Address thread (rbp, thread_off * wordSize); 212 213 const Address r15_save(rbp, r15_off * wordSize); 214 const Address r14_save(rbp, r14_off * wordSize); 215 const Address r13_save(rbp, r13_off * wordSize); 216 const Address r12_save(rbp, r12_off * wordSize); 217 const Address rbx_save(rbp, rbx_off * wordSize); 218 219 // stub code 220 __ enter(); 221 __ subptr(rsp, -rsp_after_call_off * wordSize); 222 223 // save register parameters 224 #ifndef _WIN64 225 __ movptr(parameters, c_rarg5); // parameters 226 __ movptr(entry_point, c_rarg4); // entry_point 227 #endif 228 229 __ movptr(method, c_rarg3); // method 230 __ movl(result_type, c_rarg2); // result type 231 __ movptr(result, c_rarg1); // result 232 __ movptr(call_wrapper, c_rarg0); // call wrapper 233 234 // save regs belonging to calling function 235 __ movptr(rbx_save, rbx); 236 __ movptr(r12_save, r12); 237 __ movptr(r13_save, r13); 238 __ movptr(r14_save, r14); 239 __ movptr(r15_save, r15); 240 241 #ifdef _WIN64 242 int last_reg = 15; 243 if (UseAVX > 2) { 244 last_reg = 31; 245 } 246 if (VM_Version::supports_evex()) { 247 for (int i = xmm_save_first; i <= last_reg; i++) { 248 __ vextractf32x4(xmm_save(i), as_XMMRegister(i), 0); 249 } 250 } else { 251 for (int i = xmm_save_first; i <= last_reg; i++) { 252 __ movdqu(xmm_save(i), as_XMMRegister(i)); 253 } 254 } 255 256 const Address rdi_save(rbp, rdi_off * wordSize); 257 const Address rsi_save(rbp, rsi_off * wordSize); 258 259 __ movptr(rsi_save, rsi); 260 __ movptr(rdi_save, rdi); 261 #else 262 const Address mxcsr_save(rbp, mxcsr_off * wordSize); 263 { 264 Label skip_ldmx; 265 __ stmxcsr(mxcsr_save); 266 __ movl(rax, mxcsr_save); 267 __ andl(rax, 0xFFC0); // Mask out any pending exceptions (only check control and mask bits) 268 ExternalAddress mxcsr_std(StubRoutines::x86::addr_mxcsr_std()); 269 __ cmp32(rax, mxcsr_std, rscratch1); 270 __ jcc(Assembler::equal, skip_ldmx); 271 __ ldmxcsr(mxcsr_std, rscratch1); 272 __ bind(skip_ldmx); 273 } 274 #endif 275 276 // Load up thread register 277 __ movptr(r15_thread, thread); 278 __ reinit_heapbase(); 279 280 #ifdef ASSERT 281 // make sure we have no pending exceptions 282 { 283 Label L; 284 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), NULL_WORD); 285 __ jcc(Assembler::equal, L); 286 __ stop("StubRoutines::call_stub: entered with pending exception"); 287 __ bind(L); 288 } 289 #endif 290 291 // pass parameters if any 292 BLOCK_COMMENT("pass parameters if any"); 293 Label parameters_done; 294 __ movl(c_rarg3, parameter_size); 295 __ testl(c_rarg3, c_rarg3); 296 __ jcc(Assembler::zero, parameters_done); 297 298 Label loop; 299 __ movptr(c_rarg2, parameters); // parameter pointer 300 __ movl(c_rarg1, c_rarg3); // parameter counter is in c_rarg1 301 __ BIND(loop); 302 __ movptr(rax, Address(c_rarg2, 0));// get parameter 303 __ addptr(c_rarg2, wordSize); // advance to next parameter 304 __ decrementl(c_rarg1); // decrement counter 305 __ push(rax); // pass parameter 306 __ jcc(Assembler::notZero, loop); 307 308 // call Java function 309 __ BIND(parameters_done); 310 __ movptr(rbx, method); // get Method* 311 __ movptr(c_rarg1, entry_point); // get entry_point 312 __ mov(r13, rsp); // set sender sp 313 BLOCK_COMMENT("call Java function"); 314 __ call(c_rarg1); 315 316 BLOCK_COMMENT("call_stub_return_address:"); 317 return_address = __ pc(); 318 319 // store result depending on type (everything that is not 320 // T_OBJECT, T_PRIMITIVE_OBJECT, T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT) 321 __ movptr(r13, result); 322 Label is_long, is_float, is_double, check_prim, exit; 323 __ movl(rbx, result_type); 324 __ cmpl(rbx, T_OBJECT); 325 __ jcc(Assembler::equal, check_prim); 326 __ cmpl(rbx, T_PRIMITIVE_OBJECT); 327 __ jcc(Assembler::equal, check_prim); 328 __ cmpl(rbx, T_LONG); 329 __ jcc(Assembler::equal, is_long); 330 __ cmpl(rbx, T_FLOAT); 331 __ jcc(Assembler::equal, is_float); 332 __ cmpl(rbx, T_DOUBLE); 333 __ jcc(Assembler::equal, is_double); 334 #ifdef ASSERT 335 // make sure the type is INT 336 { 337 Label L; 338 __ cmpl(rbx, T_INT); 339 __ jcc(Assembler::equal, L); 340 __ stop("StubRoutines::call_stub: unexpected result type"); 341 __ bind(L); 342 } 343 #endif 344 345 // handle T_INT case 346 __ movl(Address(r13, 0), rax); 347 348 __ BIND(exit); 349 350 // pop parameters 351 __ lea(rsp, rsp_after_call); 352 353 #ifdef ASSERT 354 // verify that threads correspond 355 { 356 Label L1, L2, L3; 357 __ cmpptr(r15_thread, thread); 358 __ jcc(Assembler::equal, L1); 359 __ stop("StubRoutines::call_stub: r15_thread is corrupted"); 360 __ bind(L1); 361 __ get_thread(rbx); 362 __ cmpptr(r15_thread, thread); 363 __ jcc(Assembler::equal, L2); 364 __ stop("StubRoutines::call_stub: r15_thread is modified by call"); 365 __ bind(L2); 366 __ cmpptr(r15_thread, rbx); 367 __ jcc(Assembler::equal, L3); 368 __ stop("StubRoutines::call_stub: threads must correspond"); 369 __ bind(L3); 370 } 371 #endif 372 373 __ pop_cont_fastpath(); 374 375 // restore regs belonging to calling function 376 #ifdef _WIN64 377 // emit the restores for xmm regs 378 if (VM_Version::supports_evex()) { 379 for (int i = xmm_save_first; i <= last_reg; i++) { 380 __ vinsertf32x4(as_XMMRegister(i), as_XMMRegister(i), xmm_save(i), 0); 381 } 382 } else { 383 for (int i = xmm_save_first; i <= last_reg; i++) { 384 __ movdqu(as_XMMRegister(i), xmm_save(i)); 385 } 386 } 387 #endif 388 __ movptr(r15, r15_save); 389 __ movptr(r14, r14_save); 390 __ movptr(r13, r13_save); 391 __ movptr(r12, r12_save); 392 __ movptr(rbx, rbx_save); 393 394 #ifdef _WIN64 395 __ movptr(rdi, rdi_save); 396 __ movptr(rsi, rsi_save); 397 #else 398 __ ldmxcsr(mxcsr_save); 399 #endif 400 401 // restore rsp 402 __ addptr(rsp, -rsp_after_call_off * wordSize); 403 404 // return 405 __ vzeroupper(); 406 __ pop(rbp); 407 __ ret(0); 408 409 // handle return types different from T_INT 410 __ BIND(check_prim); 411 if (InlineTypeReturnedAsFields) { 412 // Check for scalarized return value 413 __ testptr(rax, 1); 414 __ jcc(Assembler::zero, is_long); 415 // Load pack handler address 416 __ andptr(rax, -2); 417 __ movptr(rax, Address(rax, InstanceKlass::adr_inlineklass_fixed_block_offset())); 418 __ movptr(rbx, Address(rax, InlineKlass::pack_handler_jobject_offset())); 419 // Call pack handler to initialize the buffer 420 __ call(rbx); 421 __ jmp(exit); 422 } 423 __ BIND(is_long); 424 __ movq(Address(r13, 0), rax); 425 __ jmp(exit); 426 427 __ BIND(is_float); 428 __ movflt(Address(r13, 0), xmm0); 429 __ jmp(exit); 430 431 __ BIND(is_double); 432 __ movdbl(Address(r13, 0), xmm0); 433 __ jmp(exit); 434 435 return start; 436 } 437 438 // Return point for a Java call if there's an exception thrown in 439 // Java code. The exception is caught and transformed into a 440 // pending exception stored in JavaThread that can be tested from 441 // within the VM. 442 // 443 // Note: Usually the parameters are removed by the callee. In case 444 // of an exception crossing an activation frame boundary, that is 445 // not the case if the callee is compiled code => need to setup the 446 // rsp. 447 // 448 // rax: exception oop 449 450 address StubGenerator::generate_catch_exception() { 451 StubCodeMark mark(this, "StubRoutines", "catch_exception"); 452 address start = __ pc(); 453 454 // same as in generate_call_stub(): 455 const Address rsp_after_call(rbp, rsp_after_call_off * wordSize); 456 const Address thread (rbp, thread_off * wordSize); 457 458 #ifdef ASSERT 459 // verify that threads correspond 460 { 461 Label L1, L2, L3; 462 __ cmpptr(r15_thread, thread); 463 __ jcc(Assembler::equal, L1); 464 __ stop("StubRoutines::catch_exception: r15_thread is corrupted"); 465 __ bind(L1); 466 __ get_thread(rbx); 467 __ cmpptr(r15_thread, thread); 468 __ jcc(Assembler::equal, L2); 469 __ stop("StubRoutines::catch_exception: r15_thread is modified by call"); 470 __ bind(L2); 471 __ cmpptr(r15_thread, rbx); 472 __ jcc(Assembler::equal, L3); 473 __ stop("StubRoutines::catch_exception: threads must correspond"); 474 __ bind(L3); 475 } 476 #endif 477 478 // set pending exception 479 __ verify_oop(rax); 480 481 __ movptr(Address(r15_thread, Thread::pending_exception_offset()), rax); 482 __ lea(rscratch1, ExternalAddress((address)__FILE__)); 483 __ movptr(Address(r15_thread, Thread::exception_file_offset()), rscratch1); 484 __ movl(Address(r15_thread, Thread::exception_line_offset()), (int) __LINE__); 485 486 // complete return to VM 487 assert(StubRoutines::_call_stub_return_address != nullptr, 488 "_call_stub_return_address must have been generated before"); 489 __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address)); 490 491 return start; 492 } 493 494 // Continuation point for runtime calls returning with a pending 495 // exception. The pending exception check happened in the runtime 496 // or native call stub. The pending exception in Thread is 497 // converted into a Java-level exception. 498 // 499 // Contract with Java-level exception handlers: 500 // rax: exception 501 // rdx: throwing pc 502 // 503 // NOTE: At entry of this stub, exception-pc must be on stack !! 504 505 address StubGenerator::generate_forward_exception() { 506 StubCodeMark mark(this, "StubRoutines", "forward exception"); 507 address start = __ pc(); 508 509 // Upon entry, the sp points to the return address returning into 510 // Java (interpreted or compiled) code; i.e., the return address 511 // becomes the throwing pc. 512 // 513 // Arguments pushed before the runtime call are still on the stack 514 // but the exception handler will reset the stack pointer -> 515 // ignore them. A potential result in registers can be ignored as 516 // well. 517 518 #ifdef ASSERT 519 // make sure this code is only executed if there is a pending exception 520 { 521 Label L; 522 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), NULL_WORD); 523 __ jcc(Assembler::notEqual, L); 524 __ stop("StubRoutines::forward exception: no pending exception (1)"); 525 __ bind(L); 526 } 527 #endif 528 529 // compute exception handler into rbx 530 __ movptr(c_rarg0, Address(rsp, 0)); 531 BLOCK_COMMENT("call exception_handler_for_return_address"); 532 __ call_VM_leaf(CAST_FROM_FN_PTR(address, 533 SharedRuntime::exception_handler_for_return_address), 534 r15_thread, c_rarg0); 535 __ mov(rbx, rax); 536 537 // setup rax & rdx, remove return address & clear pending exception 538 __ pop(rdx); 539 __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset())); 540 __ movptr(Address(r15_thread, Thread::pending_exception_offset()), NULL_WORD); 541 542 #ifdef ASSERT 543 // make sure exception is set 544 { 545 Label L; 546 __ testptr(rax, rax); 547 __ jcc(Assembler::notEqual, L); 548 __ stop("StubRoutines::forward exception: no pending exception (2)"); 549 __ bind(L); 550 } 551 #endif 552 553 // continue at exception handler (return address removed) 554 // rax: exception 555 // rbx: exception handler 556 // rdx: throwing pc 557 __ verify_oop(rax); 558 __ jmp(rbx); 559 560 return start; 561 } 562 563 // Support for intptr_t OrderAccess::fence() 564 // 565 // Arguments : 566 // 567 // Result: 568 address StubGenerator::generate_orderaccess_fence() { 569 StubCodeMark mark(this, "StubRoutines", "orderaccess_fence"); 570 address start = __ pc(); 571 572 __ membar(Assembler::StoreLoad); 573 __ ret(0); 574 575 return start; 576 } 577 578 579 // Support for intptr_t get_previous_sp() 580 // 581 // This routine is used to find the previous stack pointer for the 582 // caller. 583 address StubGenerator::generate_get_previous_sp() { 584 StubCodeMark mark(this, "StubRoutines", "get_previous_sp"); 585 address start = __ pc(); 586 587 __ movptr(rax, rsp); 588 __ addptr(rax, 8); // return address is at the top of the stack. 589 __ ret(0); 590 591 return start; 592 } 593 594 //---------------------------------------------------------------------------------------------------- 595 // Support for void verify_mxcsr() 596 // 597 // This routine is used with -Xcheck:jni to verify that native 598 // JNI code does not return to Java code without restoring the 599 // MXCSR register to our expected state. 600 601 address StubGenerator::generate_verify_mxcsr() { 602 StubCodeMark mark(this, "StubRoutines", "verify_mxcsr"); 603 address start = __ pc(); 604 605 const Address mxcsr_save(rsp, 0); 606 607 if (CheckJNICalls) { 608 Label ok_ret; 609 ExternalAddress mxcsr_std(StubRoutines::x86::addr_mxcsr_std()); 610 __ push(rax); 611 __ subptr(rsp, wordSize); // allocate a temp location 612 __ stmxcsr(mxcsr_save); 613 __ movl(rax, mxcsr_save); 614 __ andl(rax, 0xFFC0); // Mask out any pending exceptions (only check control and mask bits) 615 __ cmp32(rax, mxcsr_std, rscratch1); 616 __ jcc(Assembler::equal, ok_ret); 617 618 __ warn("MXCSR changed by native JNI code, use -XX:+RestoreMXCSROnJNICall"); 619 620 __ ldmxcsr(mxcsr_std, rscratch1); 621 622 __ bind(ok_ret); 623 __ addptr(rsp, wordSize); 624 __ pop(rax); 625 } 626 627 __ ret(0); 628 629 return start; 630 } 631 632 address StubGenerator::generate_f2i_fixup() { 633 StubCodeMark mark(this, "StubRoutines", "f2i_fixup"); 634 Address inout(rsp, 5 * wordSize); // return address + 4 saves 635 636 address start = __ pc(); 637 638 Label L; 639 640 __ push(rax); 641 __ push(c_rarg3); 642 __ push(c_rarg2); 643 __ push(c_rarg1); 644 645 __ movl(rax, 0x7f800000); 646 __ xorl(c_rarg3, c_rarg3); 647 __ movl(c_rarg2, inout); 648 __ movl(c_rarg1, c_rarg2); 649 __ andl(c_rarg1, 0x7fffffff); 650 __ cmpl(rax, c_rarg1); // NaN? -> 0 651 __ jcc(Assembler::negative, L); 652 __ testl(c_rarg2, c_rarg2); // signed ? min_jint : max_jint 653 __ movl(c_rarg3, 0x80000000); 654 __ movl(rax, 0x7fffffff); 655 __ cmovl(Assembler::positive, c_rarg3, rax); 656 657 __ bind(L); 658 __ movptr(inout, c_rarg3); 659 660 __ pop(c_rarg1); 661 __ pop(c_rarg2); 662 __ pop(c_rarg3); 663 __ pop(rax); 664 665 __ ret(0); 666 667 return start; 668 } 669 670 address StubGenerator::generate_f2l_fixup() { 671 StubCodeMark mark(this, "StubRoutines", "f2l_fixup"); 672 Address inout(rsp, 5 * wordSize); // return address + 4 saves 673 address start = __ pc(); 674 675 Label L; 676 677 __ push(rax); 678 __ push(c_rarg3); 679 __ push(c_rarg2); 680 __ push(c_rarg1); 681 682 __ movl(rax, 0x7f800000); 683 __ xorl(c_rarg3, c_rarg3); 684 __ movl(c_rarg2, inout); 685 __ movl(c_rarg1, c_rarg2); 686 __ andl(c_rarg1, 0x7fffffff); 687 __ cmpl(rax, c_rarg1); // NaN? -> 0 688 __ jcc(Assembler::negative, L); 689 __ testl(c_rarg2, c_rarg2); // signed ? min_jlong : max_jlong 690 __ mov64(c_rarg3, 0x8000000000000000); 691 __ mov64(rax, 0x7fffffffffffffff); 692 __ cmov(Assembler::positive, c_rarg3, rax); 693 694 __ bind(L); 695 __ movptr(inout, c_rarg3); 696 697 __ pop(c_rarg1); 698 __ pop(c_rarg2); 699 __ pop(c_rarg3); 700 __ pop(rax); 701 702 __ ret(0); 703 704 return start; 705 } 706 707 address StubGenerator::generate_d2i_fixup() { 708 StubCodeMark mark(this, "StubRoutines", "d2i_fixup"); 709 Address inout(rsp, 6 * wordSize); // return address + 5 saves 710 711 address start = __ pc(); 712 713 Label L; 714 715 __ push(rax); 716 __ push(c_rarg3); 717 __ push(c_rarg2); 718 __ push(c_rarg1); 719 __ push(c_rarg0); 720 721 __ movl(rax, 0x7ff00000); 722 __ movq(c_rarg2, inout); 723 __ movl(c_rarg3, c_rarg2); 724 __ mov(c_rarg1, c_rarg2); 725 __ mov(c_rarg0, c_rarg2); 726 __ negl(c_rarg3); 727 __ shrptr(c_rarg1, 0x20); 728 __ orl(c_rarg3, c_rarg2); 729 __ andl(c_rarg1, 0x7fffffff); 730 __ xorl(c_rarg2, c_rarg2); 731 __ shrl(c_rarg3, 0x1f); 732 __ orl(c_rarg1, c_rarg3); 733 __ cmpl(rax, c_rarg1); 734 __ jcc(Assembler::negative, L); // NaN -> 0 735 __ testptr(c_rarg0, c_rarg0); // signed ? min_jint : max_jint 736 __ movl(c_rarg2, 0x80000000); 737 __ movl(rax, 0x7fffffff); 738 __ cmov(Assembler::positive, c_rarg2, rax); 739 740 __ bind(L); 741 __ movptr(inout, c_rarg2); 742 743 __ pop(c_rarg0); 744 __ pop(c_rarg1); 745 __ pop(c_rarg2); 746 __ pop(c_rarg3); 747 __ pop(rax); 748 749 __ ret(0); 750 751 return start; 752 } 753 754 address StubGenerator::generate_d2l_fixup() { 755 StubCodeMark mark(this, "StubRoutines", "d2l_fixup"); 756 Address inout(rsp, 6 * wordSize); // return address + 5 saves 757 758 address start = __ pc(); 759 760 Label L; 761 762 __ push(rax); 763 __ push(c_rarg3); 764 __ push(c_rarg2); 765 __ push(c_rarg1); 766 __ push(c_rarg0); 767 768 __ movl(rax, 0x7ff00000); 769 __ movq(c_rarg2, inout); 770 __ movl(c_rarg3, c_rarg2); 771 __ mov(c_rarg1, c_rarg2); 772 __ mov(c_rarg0, c_rarg2); 773 __ negl(c_rarg3); 774 __ shrptr(c_rarg1, 0x20); 775 __ orl(c_rarg3, c_rarg2); 776 __ andl(c_rarg1, 0x7fffffff); 777 __ xorl(c_rarg2, c_rarg2); 778 __ shrl(c_rarg3, 0x1f); 779 __ orl(c_rarg1, c_rarg3); 780 __ cmpl(rax, c_rarg1); 781 __ jcc(Assembler::negative, L); // NaN -> 0 782 __ testq(c_rarg0, c_rarg0); // signed ? min_jlong : max_jlong 783 __ mov64(c_rarg2, 0x8000000000000000); 784 __ mov64(rax, 0x7fffffffffffffff); 785 __ cmovq(Assembler::positive, c_rarg2, rax); 786 787 __ bind(L); 788 __ movq(inout, c_rarg2); 789 790 __ pop(c_rarg0); 791 __ pop(c_rarg1); 792 __ pop(c_rarg2); 793 __ pop(c_rarg3); 794 __ pop(rax); 795 796 __ ret(0); 797 798 return start; 799 } 800 801 address StubGenerator::generate_count_leading_zeros_lut(const char *stub_name) { 802 __ align64(); 803 StubCodeMark mark(this, "StubRoutines", stub_name); 804 address start = __ pc(); 805 806 __ emit_data64(0x0101010102020304, relocInfo::none); 807 __ emit_data64(0x0000000000000000, relocInfo::none); 808 __ emit_data64(0x0101010102020304, relocInfo::none); 809 __ emit_data64(0x0000000000000000, relocInfo::none); 810 __ emit_data64(0x0101010102020304, relocInfo::none); 811 __ emit_data64(0x0000000000000000, relocInfo::none); 812 __ emit_data64(0x0101010102020304, relocInfo::none); 813 __ emit_data64(0x0000000000000000, relocInfo::none); 814 815 return start; 816 } 817 818 address StubGenerator::generate_popcount_avx_lut(const char *stub_name) { 819 __ align64(); 820 StubCodeMark mark(this, "StubRoutines", stub_name); 821 address start = __ pc(); 822 823 __ emit_data64(0x0302020102010100, relocInfo::none); 824 __ emit_data64(0x0403030203020201, relocInfo::none); 825 __ emit_data64(0x0302020102010100, relocInfo::none); 826 __ emit_data64(0x0403030203020201, relocInfo::none); 827 __ emit_data64(0x0302020102010100, relocInfo::none); 828 __ emit_data64(0x0403030203020201, relocInfo::none); 829 __ emit_data64(0x0302020102010100, relocInfo::none); 830 __ emit_data64(0x0403030203020201, relocInfo::none); 831 832 return start; 833 } 834 835 address StubGenerator::generate_iota_indices(const char *stub_name) { 836 __ align(CodeEntryAlignment); 837 StubCodeMark mark(this, "StubRoutines", stub_name); 838 address start = __ pc(); 839 // B 840 __ emit_data64(0x0706050403020100, relocInfo::none); 841 __ emit_data64(0x0F0E0D0C0B0A0908, relocInfo::none); 842 __ emit_data64(0x1716151413121110, relocInfo::none); 843 __ emit_data64(0x1F1E1D1C1B1A1918, relocInfo::none); 844 __ emit_data64(0x2726252423222120, relocInfo::none); 845 __ emit_data64(0x2F2E2D2C2B2A2928, relocInfo::none); 846 __ emit_data64(0x3736353433323130, relocInfo::none); 847 __ emit_data64(0x3F3E3D3C3B3A3938, relocInfo::none); 848 // W 849 __ emit_data64(0x0003000200010000, relocInfo::none); 850 __ emit_data64(0x0007000600050004, relocInfo::none); 851 __ emit_data64(0x000B000A00090008, relocInfo::none); 852 __ emit_data64(0x000F000E000D000C, relocInfo::none); 853 __ emit_data64(0x0013001200110010, relocInfo::none); 854 __ emit_data64(0x0017001600150014, relocInfo::none); 855 __ emit_data64(0x001B001A00190018, relocInfo::none); 856 __ emit_data64(0x001F001E001D001C, relocInfo::none); 857 // D 858 __ emit_data64(0x0000000100000000, relocInfo::none); 859 __ emit_data64(0x0000000300000002, relocInfo::none); 860 __ emit_data64(0x0000000500000004, relocInfo::none); 861 __ emit_data64(0x0000000700000006, relocInfo::none); 862 __ emit_data64(0x0000000900000008, relocInfo::none); 863 __ emit_data64(0x0000000B0000000A, relocInfo::none); 864 __ emit_data64(0x0000000D0000000C, relocInfo::none); 865 __ emit_data64(0x0000000F0000000E, relocInfo::none); 866 // Q 867 __ emit_data64(0x0000000000000000, relocInfo::none); 868 __ emit_data64(0x0000000000000001, relocInfo::none); 869 __ emit_data64(0x0000000000000002, relocInfo::none); 870 __ emit_data64(0x0000000000000003, relocInfo::none); 871 __ emit_data64(0x0000000000000004, relocInfo::none); 872 __ emit_data64(0x0000000000000005, relocInfo::none); 873 __ emit_data64(0x0000000000000006, relocInfo::none); 874 __ emit_data64(0x0000000000000007, relocInfo::none); 875 // D - FP 876 __ emit_data64(0x3F80000000000000, relocInfo::none); // 0.0f, 1.0f 877 __ emit_data64(0x4040000040000000, relocInfo::none); // 2.0f, 3.0f 878 __ emit_data64(0x40A0000040800000, relocInfo::none); // 4.0f, 5.0f 879 __ emit_data64(0x40E0000040C00000, relocInfo::none); // 6.0f, 7.0f 880 __ emit_data64(0x4110000041000000, relocInfo::none); // 8.0f, 9.0f 881 __ emit_data64(0x4130000041200000, relocInfo::none); // 10.0f, 11.0f 882 __ emit_data64(0x4150000041400000, relocInfo::none); // 12.0f, 13.0f 883 __ emit_data64(0x4170000041600000, relocInfo::none); // 14.0f, 15.0f 884 // Q - FP 885 __ emit_data64(0x0000000000000000, relocInfo::none); // 0.0d 886 __ emit_data64(0x3FF0000000000000, relocInfo::none); // 1.0d 887 __ emit_data64(0x4000000000000000, relocInfo::none); // 2.0d 888 __ emit_data64(0x4008000000000000, relocInfo::none); // 3.0d 889 __ emit_data64(0x4010000000000000, relocInfo::none); // 4.0d 890 __ emit_data64(0x4014000000000000, relocInfo::none); // 5.0d 891 __ emit_data64(0x4018000000000000, relocInfo::none); // 6.0d 892 __ emit_data64(0x401c000000000000, relocInfo::none); // 7.0d 893 return start; 894 } 895 896 address StubGenerator::generate_vector_reverse_bit_lut(const char *stub_name) { 897 __ align(CodeEntryAlignment); 898 StubCodeMark mark(this, "StubRoutines", stub_name); 899 address start = __ pc(); 900 901 __ emit_data64(0x0E060A020C040800, relocInfo::none); 902 __ emit_data64(0x0F070B030D050901, relocInfo::none); 903 __ emit_data64(0x0E060A020C040800, relocInfo::none); 904 __ emit_data64(0x0F070B030D050901, relocInfo::none); 905 __ emit_data64(0x0E060A020C040800, relocInfo::none); 906 __ emit_data64(0x0F070B030D050901, relocInfo::none); 907 __ emit_data64(0x0E060A020C040800, relocInfo::none); 908 __ emit_data64(0x0F070B030D050901, relocInfo::none); 909 910 return start; 911 } 912 913 address StubGenerator::generate_vector_reverse_byte_perm_mask_long(const char *stub_name) { 914 __ align(CodeEntryAlignment); 915 StubCodeMark mark(this, "StubRoutines", stub_name); 916 address start = __ pc(); 917 918 __ emit_data64(0x0001020304050607, relocInfo::none); 919 __ emit_data64(0x08090A0B0C0D0E0F, relocInfo::none); 920 __ emit_data64(0x0001020304050607, relocInfo::none); 921 __ emit_data64(0x08090A0B0C0D0E0F, relocInfo::none); 922 __ emit_data64(0x0001020304050607, relocInfo::none); 923 __ emit_data64(0x08090A0B0C0D0E0F, relocInfo::none); 924 __ emit_data64(0x0001020304050607, relocInfo::none); 925 __ emit_data64(0x08090A0B0C0D0E0F, relocInfo::none); 926 927 return start; 928 } 929 930 address StubGenerator::generate_vector_reverse_byte_perm_mask_int(const char *stub_name) { 931 __ align(CodeEntryAlignment); 932 StubCodeMark mark(this, "StubRoutines", stub_name); 933 address start = __ pc(); 934 935 __ emit_data64(0x0405060700010203, relocInfo::none); 936 __ emit_data64(0x0C0D0E0F08090A0B, relocInfo::none); 937 __ emit_data64(0x0405060700010203, relocInfo::none); 938 __ emit_data64(0x0C0D0E0F08090A0B, relocInfo::none); 939 __ emit_data64(0x0405060700010203, relocInfo::none); 940 __ emit_data64(0x0C0D0E0F08090A0B, relocInfo::none); 941 __ emit_data64(0x0405060700010203, relocInfo::none); 942 __ emit_data64(0x0C0D0E0F08090A0B, relocInfo::none); 943 944 return start; 945 } 946 947 address StubGenerator::generate_vector_reverse_byte_perm_mask_short(const char *stub_name) { 948 __ align(CodeEntryAlignment); 949 StubCodeMark mark(this, "StubRoutines", stub_name); 950 address start = __ pc(); 951 952 __ emit_data64(0x0607040502030001, relocInfo::none); 953 __ emit_data64(0x0E0F0C0D0A0B0809, relocInfo::none); 954 __ emit_data64(0x0607040502030001, relocInfo::none); 955 __ emit_data64(0x0E0F0C0D0A0B0809, relocInfo::none); 956 __ emit_data64(0x0607040502030001, relocInfo::none); 957 __ emit_data64(0x0E0F0C0D0A0B0809, relocInfo::none); 958 __ emit_data64(0x0607040502030001, relocInfo::none); 959 __ emit_data64(0x0E0F0C0D0A0B0809, relocInfo::none); 960 961 return start; 962 } 963 964 address StubGenerator::generate_vector_byte_shuffle_mask(const char *stub_name) { 965 __ align(CodeEntryAlignment); 966 StubCodeMark mark(this, "StubRoutines", stub_name); 967 address start = __ pc(); 968 969 __ emit_data64(0x7070707070707070, relocInfo::none); 970 __ emit_data64(0x7070707070707070, relocInfo::none); 971 __ emit_data64(0xF0F0F0F0F0F0F0F0, relocInfo::none); 972 __ emit_data64(0xF0F0F0F0F0F0F0F0, relocInfo::none); 973 974 return start; 975 } 976 977 address StubGenerator::generate_fp_mask(const char *stub_name, int64_t mask) { 978 __ align(CodeEntryAlignment); 979 StubCodeMark mark(this, "StubRoutines", stub_name); 980 address start = __ pc(); 981 982 __ emit_data64( mask, relocInfo::none ); 983 __ emit_data64( mask, relocInfo::none ); 984 985 return start; 986 } 987 988 address StubGenerator::generate_vector_mask(const char *stub_name, int64_t mask) { 989 __ align(CodeEntryAlignment); 990 StubCodeMark mark(this, "StubRoutines", stub_name); 991 address start = __ pc(); 992 993 __ emit_data64(mask, relocInfo::none); 994 __ emit_data64(mask, relocInfo::none); 995 __ emit_data64(mask, relocInfo::none); 996 __ emit_data64(mask, relocInfo::none); 997 __ emit_data64(mask, relocInfo::none); 998 __ emit_data64(mask, relocInfo::none); 999 __ emit_data64(mask, relocInfo::none); 1000 __ emit_data64(mask, relocInfo::none); 1001 1002 return start; 1003 } 1004 1005 address StubGenerator::generate_vector_byte_perm_mask(const char *stub_name) { 1006 __ align(CodeEntryAlignment); 1007 StubCodeMark mark(this, "StubRoutines", stub_name); 1008 address start = __ pc(); 1009 1010 __ emit_data64(0x0000000000000001, relocInfo::none); 1011 __ emit_data64(0x0000000000000003, relocInfo::none); 1012 __ emit_data64(0x0000000000000005, relocInfo::none); 1013 __ emit_data64(0x0000000000000007, relocInfo::none); 1014 __ emit_data64(0x0000000000000000, relocInfo::none); 1015 __ emit_data64(0x0000000000000002, relocInfo::none); 1016 __ emit_data64(0x0000000000000004, relocInfo::none); 1017 __ emit_data64(0x0000000000000006, relocInfo::none); 1018 1019 return start; 1020 } 1021 1022 address StubGenerator::generate_vector_fp_mask(const char *stub_name, int64_t mask) { 1023 __ align(CodeEntryAlignment); 1024 StubCodeMark mark(this, "StubRoutines", stub_name); 1025 address start = __ pc(); 1026 1027 __ emit_data64(mask, relocInfo::none); 1028 __ emit_data64(mask, relocInfo::none); 1029 __ emit_data64(mask, relocInfo::none); 1030 __ emit_data64(mask, relocInfo::none); 1031 __ emit_data64(mask, relocInfo::none); 1032 __ emit_data64(mask, relocInfo::none); 1033 __ emit_data64(mask, relocInfo::none); 1034 __ emit_data64(mask, relocInfo::none); 1035 1036 return start; 1037 } 1038 1039 address StubGenerator::generate_vector_custom_i32(const char *stub_name, Assembler::AvxVectorLen len, 1040 int32_t val0, int32_t val1, int32_t val2, int32_t val3, 1041 int32_t val4, int32_t val5, int32_t val6, int32_t val7, 1042 int32_t val8, int32_t val9, int32_t val10, int32_t val11, 1043 int32_t val12, int32_t val13, int32_t val14, int32_t val15) { 1044 __ align(CodeEntryAlignment); 1045 StubCodeMark mark(this, "StubRoutines", stub_name); 1046 address start = __ pc(); 1047 1048 assert(len != Assembler::AVX_NoVec, "vector len must be specified"); 1049 __ emit_data(val0, relocInfo::none, 0); 1050 __ emit_data(val1, relocInfo::none, 0); 1051 __ emit_data(val2, relocInfo::none, 0); 1052 __ emit_data(val3, relocInfo::none, 0); 1053 if (len >= Assembler::AVX_256bit) { 1054 __ emit_data(val4, relocInfo::none, 0); 1055 __ emit_data(val5, relocInfo::none, 0); 1056 __ emit_data(val6, relocInfo::none, 0); 1057 __ emit_data(val7, relocInfo::none, 0); 1058 if (len >= Assembler::AVX_512bit) { 1059 __ emit_data(val8, relocInfo::none, 0); 1060 __ emit_data(val9, relocInfo::none, 0); 1061 __ emit_data(val10, relocInfo::none, 0); 1062 __ emit_data(val11, relocInfo::none, 0); 1063 __ emit_data(val12, relocInfo::none, 0); 1064 __ emit_data(val13, relocInfo::none, 0); 1065 __ emit_data(val14, relocInfo::none, 0); 1066 __ emit_data(val15, relocInfo::none, 0); 1067 } 1068 } 1069 return start; 1070 } 1071 1072 // Non-destructive plausibility checks for oops 1073 // 1074 // Arguments: 1075 // all args on stack! 1076 // 1077 // Stack after saving c_rarg3: 1078 // [tos + 0]: saved c_rarg3 1079 // [tos + 1]: saved c_rarg2 1080 // [tos + 2]: saved r12 (several TemplateTable methods use it) 1081 // [tos + 3]: saved flags 1082 // [tos + 4]: return address 1083 // * [tos + 5]: error message (char*) 1084 // * [tos + 6]: object to verify (oop) 1085 // * [tos + 7]: saved rax - saved by caller and bashed 1086 // * [tos + 8]: saved r10 (rscratch1) - saved by caller 1087 // * = popped on exit 1088 address StubGenerator::generate_verify_oop() { 1089 StubCodeMark mark(this, "StubRoutines", "verify_oop"); 1090 address start = __ pc(); 1091 1092 Label exit, error; 1093 1094 __ pushf(); 1095 __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()), rscratch1); 1096 1097 __ push(r12); 1098 1099 // save c_rarg2 and c_rarg3 1100 __ push(c_rarg2); 1101 __ push(c_rarg3); 1102 1103 enum { 1104 // After previous pushes. 1105 oop_to_verify = 6 * wordSize, 1106 saved_rax = 7 * wordSize, 1107 saved_r10 = 8 * wordSize, 1108 1109 // Before the call to MacroAssembler::debug(), see below. 1110 return_addr = 16 * wordSize, 1111 error_msg = 17 * wordSize 1112 }; 1113 1114 // get object 1115 __ movptr(rax, Address(rsp, oop_to_verify)); 1116 1117 // make sure object is 'reasonable' 1118 __ testptr(rax, rax); 1119 __ jcc(Assembler::zero, exit); // if obj is null it is OK 1120 1121 BarrierSetAssembler* bs_asm = BarrierSet::barrier_set()->barrier_set_assembler(); 1122 bs_asm->check_oop(_masm, rax, c_rarg2, c_rarg3, error); 1123 1124 // return if everything seems ok 1125 __ bind(exit); 1126 __ movptr(rax, Address(rsp, saved_rax)); // get saved rax back 1127 __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back 1128 __ pop(c_rarg3); // restore c_rarg3 1129 __ pop(c_rarg2); // restore c_rarg2 1130 __ pop(r12); // restore r12 1131 __ popf(); // restore flags 1132 __ ret(4 * wordSize); // pop caller saved stuff 1133 1134 // handle errors 1135 __ bind(error); 1136 __ movptr(rax, Address(rsp, saved_rax)); // get saved rax back 1137 __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back 1138 __ pop(c_rarg3); // get saved c_rarg3 back 1139 __ pop(c_rarg2); // get saved c_rarg2 back 1140 __ pop(r12); // get saved r12 back 1141 __ popf(); // get saved flags off stack -- 1142 // will be ignored 1143 1144 __ pusha(); // push registers 1145 // (rip is already 1146 // already pushed) 1147 // debug(char* msg, int64_t pc, int64_t regs[]) 1148 // We've popped the registers we'd saved (c_rarg3, c_rarg2 and flags), and 1149 // pushed all the registers, so now the stack looks like: 1150 // [tos + 0] 16 saved registers 1151 // [tos + 16] return address 1152 // * [tos + 17] error message (char*) 1153 // * [tos + 18] object to verify (oop) 1154 // * [tos + 19] saved rax - saved by caller and bashed 1155 // * [tos + 20] saved r10 (rscratch1) - saved by caller 1156 // * = popped on exit 1157 1158 __ movptr(c_rarg0, Address(rsp, error_msg)); // pass address of error message 1159 __ movptr(c_rarg1, Address(rsp, return_addr)); // pass return address 1160 __ movq(c_rarg2, rsp); // pass address of regs on stack 1161 __ mov(r12, rsp); // remember rsp 1162 __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows 1163 __ andptr(rsp, -16); // align stack as required by ABI 1164 BLOCK_COMMENT("call MacroAssembler::debug"); 1165 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64))); 1166 __ hlt(); 1167 1168 return start; 1169 } 1170 1171 1172 // Shuffle first three arg regs on Windows into Linux/Solaris locations. 1173 // 1174 // Outputs: 1175 // rdi - rcx 1176 // rsi - rdx 1177 // rdx - r8 1178 // rcx - r9 1179 // 1180 // Registers r9 and r10 are used to save rdi and rsi on Windows, which latter 1181 // are non-volatile. r9 and r10 should not be used by the caller. 1182 // 1183 void StubGenerator::setup_arg_regs(int nargs) { 1184 const Register saved_rdi = r9; 1185 const Register saved_rsi = r10; 1186 assert(nargs == 3 || nargs == 4, "else fix"); 1187 #ifdef _WIN64 1188 assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9, 1189 "unexpected argument registers"); 1190 if (nargs == 4) { 1191 __ mov(rax, r9); // r9 is also saved_rdi 1192 } 1193 __ movptr(saved_rdi, rdi); 1194 __ movptr(saved_rsi, rsi); 1195 __ mov(rdi, rcx); // c_rarg0 1196 __ mov(rsi, rdx); // c_rarg1 1197 __ mov(rdx, r8); // c_rarg2 1198 if (nargs == 4) { 1199 __ mov(rcx, rax); // c_rarg3 (via rax) 1200 } 1201 #else 1202 assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx, 1203 "unexpected argument registers"); 1204 #endif 1205 DEBUG_ONLY(_regs_in_thread = false;) 1206 } 1207 1208 1209 void StubGenerator::restore_arg_regs() { 1210 assert(!_regs_in_thread, "wrong call to restore_arg_regs"); 1211 const Register saved_rdi = r9; 1212 const Register saved_rsi = r10; 1213 #ifdef _WIN64 1214 __ movptr(rdi, saved_rdi); 1215 __ movptr(rsi, saved_rsi); 1216 #endif 1217 } 1218 1219 1220 // This is used in places where r10 is a scratch register, and can 1221 // be adapted if r9 is needed also. 1222 void StubGenerator::setup_arg_regs_using_thread(int nargs) { 1223 const Register saved_r15 = r9; 1224 assert(nargs == 3 || nargs == 4, "else fix"); 1225 #ifdef _WIN64 1226 if (nargs == 4) { 1227 __ mov(rax, r9); // r9 is also saved_r15 1228 } 1229 __ mov(saved_r15, r15); // r15 is callee saved and needs to be restored 1230 __ get_thread(r15_thread); 1231 assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9, 1232 "unexpected argument registers"); 1233 __ movptr(Address(r15_thread, in_bytes(JavaThread::windows_saved_rdi_offset())), rdi); 1234 __ movptr(Address(r15_thread, in_bytes(JavaThread::windows_saved_rsi_offset())), rsi); 1235 1236 __ mov(rdi, rcx); // c_rarg0 1237 __ mov(rsi, rdx); // c_rarg1 1238 __ mov(rdx, r8); // c_rarg2 1239 if (nargs == 4) { 1240 __ mov(rcx, rax); // c_rarg3 (via rax) 1241 } 1242 #else 1243 assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx, 1244 "unexpected argument registers"); 1245 #endif 1246 DEBUG_ONLY(_regs_in_thread = true;) 1247 } 1248 1249 1250 void StubGenerator::restore_arg_regs_using_thread() { 1251 assert(_regs_in_thread, "wrong call to restore_arg_regs"); 1252 const Register saved_r15 = r9; 1253 #ifdef _WIN64 1254 __ get_thread(r15_thread); 1255 __ movptr(rsi, Address(r15_thread, in_bytes(JavaThread::windows_saved_rsi_offset()))); 1256 __ movptr(rdi, Address(r15_thread, in_bytes(JavaThread::windows_saved_rdi_offset()))); 1257 __ mov(r15, saved_r15); // r15 is callee saved and needs to be restored 1258 #endif 1259 } 1260 1261 1262 void StubGenerator::setup_argument_regs(BasicType type) { 1263 if (type == T_BYTE || type == T_SHORT) { 1264 setup_arg_regs(); // from => rdi, to => rsi, count => rdx 1265 // r9 and r10 may be used to save non-volatile registers 1266 } else { 1267 setup_arg_regs_using_thread(); // from => rdi, to => rsi, count => rdx 1268 // r9 is used to save r15_thread 1269 } 1270 } 1271 1272 1273 void StubGenerator::restore_argument_regs(BasicType type) { 1274 if (type == T_BYTE || type == T_SHORT) { 1275 restore_arg_regs(); 1276 } else { 1277 restore_arg_regs_using_thread(); 1278 } 1279 } 1280 1281 address StubGenerator::generate_data_cache_writeback() { 1282 const Register src = c_rarg0; // source address 1283 1284 __ align(CodeEntryAlignment); 1285 1286 StubCodeMark mark(this, "StubRoutines", "_data_cache_writeback"); 1287 1288 address start = __ pc(); 1289 1290 __ enter(); 1291 __ cache_wb(Address(src, 0)); 1292 __ leave(); 1293 __ ret(0); 1294 1295 return start; 1296 } 1297 1298 address StubGenerator::generate_data_cache_writeback_sync() { 1299 const Register is_pre = c_rarg0; // pre or post sync 1300 1301 __ align(CodeEntryAlignment); 1302 1303 StubCodeMark mark(this, "StubRoutines", "_data_cache_writeback_sync"); 1304 1305 // pre wbsync is a no-op 1306 // post wbsync translates to an sfence 1307 1308 Label skip; 1309 address start = __ pc(); 1310 1311 __ enter(); 1312 __ cmpl(is_pre, 0); 1313 __ jcc(Assembler::notEqual, skip); 1314 __ cache_wbsync(false); 1315 __ bind(skip); 1316 __ leave(); 1317 __ ret(0); 1318 1319 return start; 1320 } 1321 1322 // ofs and limit are use for multi-block byte array. 1323 // int com.sun.security.provider.MD5.implCompress(byte[] b, int ofs) 1324 address StubGenerator::generate_md5_implCompress(bool multi_block, const char *name) { 1325 __ align(CodeEntryAlignment); 1326 StubCodeMark mark(this, "StubRoutines", name); 1327 address start = __ pc(); 1328 1329 const Register buf_param = r15; 1330 const Address state_param(rsp, 0 * wordSize); 1331 const Address ofs_param (rsp, 1 * wordSize ); 1332 const Address limit_param(rsp, 1 * wordSize + 4); 1333 1334 __ enter(); 1335 __ push(rbx); 1336 __ push(rdi); 1337 __ push(rsi); 1338 __ push(r15); 1339 __ subptr(rsp, 2 * wordSize); 1340 1341 __ movptr(buf_param, c_rarg0); 1342 __ movptr(state_param, c_rarg1); 1343 if (multi_block) { 1344 __ movl(ofs_param, c_rarg2); 1345 __ movl(limit_param, c_rarg3); 1346 } 1347 __ fast_md5(buf_param, state_param, ofs_param, limit_param, multi_block); 1348 1349 __ addptr(rsp, 2 * wordSize); 1350 __ pop(r15); 1351 __ pop(rsi); 1352 __ pop(rdi); 1353 __ pop(rbx); 1354 __ leave(); 1355 __ ret(0); 1356 1357 return start; 1358 } 1359 1360 address StubGenerator::generate_upper_word_mask() { 1361 __ align64(); 1362 StubCodeMark mark(this, "StubRoutines", "upper_word_mask"); 1363 address start = __ pc(); 1364 1365 __ emit_data64(0x0000000000000000, relocInfo::none); 1366 __ emit_data64(0xFFFFFFFF00000000, relocInfo::none); 1367 1368 return start; 1369 } 1370 1371 address StubGenerator::generate_shuffle_byte_flip_mask() { 1372 __ align64(); 1373 StubCodeMark mark(this, "StubRoutines", "shuffle_byte_flip_mask"); 1374 address start = __ pc(); 1375 1376 __ emit_data64(0x08090a0b0c0d0e0f, relocInfo::none); 1377 __ emit_data64(0x0001020304050607, relocInfo::none); 1378 1379 return start; 1380 } 1381 1382 // ofs and limit are use for multi-block byte array. 1383 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit) 1384 address StubGenerator::generate_sha1_implCompress(bool multi_block, const char *name) { 1385 __ align(CodeEntryAlignment); 1386 StubCodeMark mark(this, "StubRoutines", name); 1387 address start = __ pc(); 1388 1389 Register buf = c_rarg0; 1390 Register state = c_rarg1; 1391 Register ofs = c_rarg2; 1392 Register limit = c_rarg3; 1393 1394 const XMMRegister abcd = xmm0; 1395 const XMMRegister e0 = xmm1; 1396 const XMMRegister e1 = xmm2; 1397 const XMMRegister msg0 = xmm3; 1398 1399 const XMMRegister msg1 = xmm4; 1400 const XMMRegister msg2 = xmm5; 1401 const XMMRegister msg3 = xmm6; 1402 const XMMRegister shuf_mask = xmm7; 1403 1404 __ enter(); 1405 1406 __ subptr(rsp, 4 * wordSize); 1407 1408 __ fast_sha1(abcd, e0, e1, msg0, msg1, msg2, msg3, shuf_mask, 1409 buf, state, ofs, limit, rsp, multi_block); 1410 1411 __ addptr(rsp, 4 * wordSize); 1412 1413 __ leave(); 1414 __ ret(0); 1415 1416 return start; 1417 } 1418 1419 address StubGenerator::generate_pshuffle_byte_flip_mask() { 1420 __ align64(); 1421 StubCodeMark mark(this, "StubRoutines", "pshuffle_byte_flip_mask"); 1422 address start = __ pc(); 1423 1424 __ emit_data64(0x0405060700010203, relocInfo::none); 1425 __ emit_data64(0x0c0d0e0f08090a0b, relocInfo::none); 1426 1427 if (VM_Version::supports_avx2()) { 1428 __ emit_data64(0x0405060700010203, relocInfo::none); // second copy 1429 __ emit_data64(0x0c0d0e0f08090a0b, relocInfo::none); 1430 // _SHUF_00BA 1431 __ emit_data64(0x0b0a090803020100, relocInfo::none); 1432 __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none); 1433 __ emit_data64(0x0b0a090803020100, relocInfo::none); 1434 __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none); 1435 // _SHUF_DC00 1436 __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none); 1437 __ emit_data64(0x0b0a090803020100, relocInfo::none); 1438 __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none); 1439 __ emit_data64(0x0b0a090803020100, relocInfo::none); 1440 } 1441 1442 return start; 1443 } 1444 1445 //Mask for byte-swapping a couple of qwords in an XMM register using (v)pshufb. 1446 address StubGenerator::generate_pshuffle_byte_flip_mask_sha512() { 1447 __ align32(); 1448 StubCodeMark mark(this, "StubRoutines", "pshuffle_byte_flip_mask_sha512"); 1449 address start = __ pc(); 1450 1451 if (VM_Version::supports_avx2()) { 1452 __ emit_data64(0x0001020304050607, relocInfo::none); // PSHUFFLE_BYTE_FLIP_MASK 1453 __ emit_data64(0x08090a0b0c0d0e0f, relocInfo::none); 1454 __ emit_data64(0x1011121314151617, relocInfo::none); 1455 __ emit_data64(0x18191a1b1c1d1e1f, relocInfo::none); 1456 __ emit_data64(0x0000000000000000, relocInfo::none); //MASK_YMM_LO 1457 __ emit_data64(0x0000000000000000, relocInfo::none); 1458 __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none); 1459 __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none); 1460 } 1461 1462 return start; 1463 } 1464 1465 // ofs and limit are use for multi-block byte array. 1466 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit) 1467 address StubGenerator::generate_sha256_implCompress(bool multi_block, const char *name) { 1468 assert(VM_Version::supports_sha() || VM_Version::supports_avx2(), ""); 1469 __ align(CodeEntryAlignment); 1470 StubCodeMark mark(this, "StubRoutines", name); 1471 address start = __ pc(); 1472 1473 Register buf = c_rarg0; 1474 Register state = c_rarg1; 1475 Register ofs = c_rarg2; 1476 Register limit = c_rarg3; 1477 1478 const XMMRegister msg = xmm0; 1479 const XMMRegister state0 = xmm1; 1480 const XMMRegister state1 = xmm2; 1481 const XMMRegister msgtmp0 = xmm3; 1482 1483 const XMMRegister msgtmp1 = xmm4; 1484 const XMMRegister msgtmp2 = xmm5; 1485 const XMMRegister msgtmp3 = xmm6; 1486 const XMMRegister msgtmp4 = xmm7; 1487 1488 const XMMRegister shuf_mask = xmm8; 1489 1490 __ enter(); 1491 1492 __ subptr(rsp, 4 * wordSize); 1493 1494 if (VM_Version::supports_sha()) { 1495 __ fast_sha256(msg, state0, state1, msgtmp0, msgtmp1, msgtmp2, msgtmp3, msgtmp4, 1496 buf, state, ofs, limit, rsp, multi_block, shuf_mask); 1497 } else if (VM_Version::supports_avx2()) { 1498 __ sha256_AVX2(msg, state0, state1, msgtmp0, msgtmp1, msgtmp2, msgtmp3, msgtmp4, 1499 buf, state, ofs, limit, rsp, multi_block, shuf_mask); 1500 } 1501 __ addptr(rsp, 4 * wordSize); 1502 __ vzeroupper(); 1503 __ leave(); 1504 __ ret(0); 1505 1506 return start; 1507 } 1508 1509 address StubGenerator::generate_sha512_implCompress(bool multi_block, const char *name) { 1510 assert(VM_Version::supports_avx2(), ""); 1511 assert(VM_Version::supports_bmi2(), ""); 1512 __ align(CodeEntryAlignment); 1513 StubCodeMark mark(this, "StubRoutines", name); 1514 address start = __ pc(); 1515 1516 Register buf = c_rarg0; 1517 Register state = c_rarg1; 1518 Register ofs = c_rarg2; 1519 Register limit = c_rarg3; 1520 1521 const XMMRegister msg = xmm0; 1522 const XMMRegister state0 = xmm1; 1523 const XMMRegister state1 = xmm2; 1524 const XMMRegister msgtmp0 = xmm3; 1525 const XMMRegister msgtmp1 = xmm4; 1526 const XMMRegister msgtmp2 = xmm5; 1527 const XMMRegister msgtmp3 = xmm6; 1528 const XMMRegister msgtmp4 = xmm7; 1529 1530 const XMMRegister shuf_mask = xmm8; 1531 1532 __ enter(); 1533 1534 __ sha512_AVX2(msg, state0, state1, msgtmp0, msgtmp1, msgtmp2, msgtmp3, msgtmp4, 1535 buf, state, ofs, limit, rsp, multi_block, shuf_mask); 1536 1537 __ vzeroupper(); 1538 __ leave(); 1539 __ ret(0); 1540 1541 return start; 1542 } 1543 1544 address StubGenerator::base64_shuffle_addr() { 1545 __ align64(); 1546 StubCodeMark mark(this, "StubRoutines", "shuffle_base64"); 1547 address start = __ pc(); 1548 1549 assert(((unsigned long long)start & 0x3f) == 0, 1550 "Alignment problem (0x%08llx)", (unsigned long long)start); 1551 __ emit_data64(0x0405030401020001, relocInfo::none); 1552 __ emit_data64(0x0a0b090a07080607, relocInfo::none); 1553 __ emit_data64(0x10110f100d0e0c0d, relocInfo::none); 1554 __ emit_data64(0x1617151613141213, relocInfo::none); 1555 __ emit_data64(0x1c1d1b1c191a1819, relocInfo::none); 1556 __ emit_data64(0x222321221f201e1f, relocInfo::none); 1557 __ emit_data64(0x2829272825262425, relocInfo::none); 1558 __ emit_data64(0x2e2f2d2e2b2c2a2b, relocInfo::none); 1559 1560 return start; 1561 } 1562 1563 address StubGenerator::base64_avx2_shuffle_addr() { 1564 __ align32(); 1565 StubCodeMark mark(this, "StubRoutines", "avx2_shuffle_base64"); 1566 address start = __ pc(); 1567 1568 __ emit_data64(0x0809070805060405, relocInfo::none); 1569 __ emit_data64(0x0e0f0d0e0b0c0a0b, relocInfo::none); 1570 __ emit_data64(0x0405030401020001, relocInfo::none); 1571 __ emit_data64(0x0a0b090a07080607, relocInfo::none); 1572 1573 return start; 1574 } 1575 1576 address StubGenerator::base64_avx2_input_mask_addr() { 1577 __ align32(); 1578 StubCodeMark mark(this, "StubRoutines", "avx2_input_mask_base64"); 1579 address start = __ pc(); 1580 1581 __ emit_data64(0x8000000000000000, relocInfo::none); 1582 __ emit_data64(0x8000000080000000, relocInfo::none); 1583 __ emit_data64(0x8000000080000000, relocInfo::none); 1584 __ emit_data64(0x8000000080000000, relocInfo::none); 1585 1586 return start; 1587 } 1588 1589 address StubGenerator::base64_avx2_lut_addr() { 1590 __ align32(); 1591 StubCodeMark mark(this, "StubRoutines", "avx2_lut_base64"); 1592 address start = __ pc(); 1593 1594 __ emit_data64(0xfcfcfcfcfcfc4741, relocInfo::none); 1595 __ emit_data64(0x0000f0edfcfcfcfc, relocInfo::none); 1596 __ emit_data64(0xfcfcfcfcfcfc4741, relocInfo::none); 1597 __ emit_data64(0x0000f0edfcfcfcfc, relocInfo::none); 1598 1599 // URL LUT 1600 __ emit_data64(0xfcfcfcfcfcfc4741, relocInfo::none); 1601 __ emit_data64(0x000020effcfcfcfc, relocInfo::none); 1602 __ emit_data64(0xfcfcfcfcfcfc4741, relocInfo::none); 1603 __ emit_data64(0x000020effcfcfcfc, relocInfo::none); 1604 1605 return start; 1606 } 1607 1608 address StubGenerator::base64_encoding_table_addr() { 1609 __ align64(); 1610 StubCodeMark mark(this, "StubRoutines", "encoding_table_base64"); 1611 address start = __ pc(); 1612 1613 assert(((unsigned long long)start & 0x3f) == 0, "Alignment problem (0x%08llx)", (unsigned long long)start); 1614 __ emit_data64(0x4847464544434241, relocInfo::none); 1615 __ emit_data64(0x504f4e4d4c4b4a49, relocInfo::none); 1616 __ emit_data64(0x5857565554535251, relocInfo::none); 1617 __ emit_data64(0x6665646362615a59, relocInfo::none); 1618 __ emit_data64(0x6e6d6c6b6a696867, relocInfo::none); 1619 __ emit_data64(0x767574737271706f, relocInfo::none); 1620 __ emit_data64(0x333231307a797877, relocInfo::none); 1621 __ emit_data64(0x2f2b393837363534, relocInfo::none); 1622 1623 // URL table 1624 __ emit_data64(0x4847464544434241, relocInfo::none); 1625 __ emit_data64(0x504f4e4d4c4b4a49, relocInfo::none); 1626 __ emit_data64(0x5857565554535251, relocInfo::none); 1627 __ emit_data64(0x6665646362615a59, relocInfo::none); 1628 __ emit_data64(0x6e6d6c6b6a696867, relocInfo::none); 1629 __ emit_data64(0x767574737271706f, relocInfo::none); 1630 __ emit_data64(0x333231307a797877, relocInfo::none); 1631 __ emit_data64(0x5f2d393837363534, relocInfo::none); 1632 1633 return start; 1634 } 1635 1636 // Code for generating Base64 encoding. 1637 // Intrinsic function prototype in Base64.java: 1638 // private void encodeBlock(byte[] src, int sp, int sl, byte[] dst, int dp, 1639 // boolean isURL) { 1640 address StubGenerator::generate_base64_encodeBlock() 1641 { 1642 __ align(CodeEntryAlignment); 1643 StubCodeMark mark(this, "StubRoutines", "implEncode"); 1644 address start = __ pc(); 1645 1646 __ enter(); 1647 1648 // Save callee-saved registers before using them 1649 __ push(r12); 1650 __ push(r13); 1651 __ push(r14); 1652 __ push(r15); 1653 1654 // arguments 1655 const Register source = c_rarg0; // Source Array 1656 const Register start_offset = c_rarg1; // start offset 1657 const Register end_offset = c_rarg2; // end offset 1658 const Register dest = c_rarg3; // destination array 1659 1660 #ifndef _WIN64 1661 const Register dp = c_rarg4; // Position for writing to dest array 1662 const Register isURL = c_rarg5; // Base64 or URL character set 1663 #else 1664 const Address dp_mem(rbp, 6 * wordSize); // length is on stack on Win64 1665 const Address isURL_mem(rbp, 7 * wordSize); 1666 const Register isURL = r10; // pick the volatile windows register 1667 const Register dp = r12; 1668 __ movl(dp, dp_mem); 1669 __ movl(isURL, isURL_mem); 1670 #endif 1671 1672 const Register length = r14; 1673 const Register encode_table = r13; 1674 Label L_process3, L_exit, L_processdata, L_vbmiLoop, L_not512, L_32byteLoop; 1675 1676 // calculate length from offsets 1677 __ movl(length, end_offset); 1678 __ subl(length, start_offset); 1679 __ jcc(Assembler::lessEqual, L_exit); 1680 1681 // Code for 512-bit VBMI encoding. Encodes 48 input bytes into 64 1682 // output bytes. We read 64 input bytes and ignore the last 16, so be 1683 // sure not to read past the end of the input buffer. 1684 if (VM_Version::supports_avx512_vbmi()) { 1685 __ cmpl(length, 64); // Do not overrun input buffer. 1686 __ jcc(Assembler::below, L_not512); 1687 1688 __ shll(isURL, 6); // index into decode table based on isURL 1689 __ lea(encode_table, ExternalAddress(StubRoutines::x86::base64_encoding_table_addr())); 1690 __ addptr(encode_table, isURL); 1691 __ shrl(isURL, 6); // restore isURL 1692 1693 __ mov64(rax, 0x3036242a1016040aull); // Shifts 1694 __ evmovdquq(xmm3, ExternalAddress(StubRoutines::x86::base64_shuffle_addr()), Assembler::AVX_512bit, r15); 1695 __ evmovdquq(xmm2, Address(encode_table, 0), Assembler::AVX_512bit); 1696 __ evpbroadcastq(xmm1, rax, Assembler::AVX_512bit); 1697 1698 __ align32(); 1699 __ BIND(L_vbmiLoop); 1700 1701 __ vpermb(xmm0, xmm3, Address(source, start_offset), Assembler::AVX_512bit); 1702 __ subl(length, 48); 1703 1704 // Put the input bytes into the proper lanes for writing, then 1705 // encode them. 1706 __ evpmultishiftqb(xmm0, xmm1, xmm0, Assembler::AVX_512bit); 1707 __ vpermb(xmm0, xmm0, xmm2, Assembler::AVX_512bit); 1708 1709 // Write to destination 1710 __ evmovdquq(Address(dest, dp), xmm0, Assembler::AVX_512bit); 1711 1712 __ addptr(dest, 64); 1713 __ addptr(source, 48); 1714 __ cmpl(length, 64); 1715 __ jcc(Assembler::aboveEqual, L_vbmiLoop); 1716 1717 __ vzeroupper(); 1718 } 1719 1720 __ BIND(L_not512); 1721 if (VM_Version::supports_avx2()) { 1722 /* 1723 ** This AVX2 encoder is based off the paper at: 1724 ** https://dl.acm.org/doi/10.1145/3132709 1725 ** 1726 ** We use AVX2 SIMD instructions to encode 24 bytes into 32 1727 ** output bytes. 1728 ** 1729 */ 1730 // Lengths under 32 bytes are done with scalar routine 1731 __ cmpl(length, 31); 1732 __ jcc(Assembler::belowEqual, L_process3); 1733 1734 // Set up supporting constant table data 1735 __ vmovdqu(xmm9, ExternalAddress(StubRoutines::x86::base64_avx2_shuffle_addr()), rax); 1736 // 6-bit mask for 2nd and 4th (and multiples) 6-bit values 1737 __ movl(rax, 0x0fc0fc00); 1738 __ movdl(xmm8, rax); 1739 __ vmovdqu(xmm1, ExternalAddress(StubRoutines::x86::base64_avx2_input_mask_addr()), rax); 1740 __ vpbroadcastd(xmm8, xmm8, Assembler::AVX_256bit); 1741 1742 // Multiplication constant for "shifting" right by 6 and 10 1743 // bits 1744 __ movl(rax, 0x04000040); 1745 1746 __ subl(length, 24); 1747 __ movdl(xmm7, rax); 1748 __ vpbroadcastd(xmm7, xmm7, Assembler::AVX_256bit); 1749 1750 // For the first load, we mask off reading of the first 4 1751 // bytes into the register. This is so we can get 4 3-byte 1752 // chunks into each lane of the register, avoiding having to 1753 // handle end conditions. We then shuffle these bytes into a 1754 // specific order so that manipulation is easier. 1755 // 1756 // The initial read loads the XMM register like this: 1757 // 1758 // Lower 128-bit lane: 1759 // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+ 1760 // | XX | XX | XX | XX | A0 | A1 | A2 | B0 | B1 | B2 | C0 | C1 1761 // | C2 | D0 | D1 | D2 | 1762 // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+ 1763 // 1764 // Upper 128-bit lane: 1765 // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+ 1766 // | E0 | E1 | E2 | F0 | F1 | F2 | G0 | G1 | G2 | H0 | H1 | H2 1767 // | XX | XX | XX | XX | 1768 // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+ 1769 // 1770 // Where A0 is the first input byte, B0 is the fourth, etc. 1771 // The alphabetical significance denotes the 3 bytes to be 1772 // consumed and encoded into 4 bytes. 1773 // 1774 // We then shuffle the register so each 32-bit word contains 1775 // the sequence: 1776 // A1 A0 A2 A1, B1, B0, B2, B1, etc. 1777 // Each of these byte sequences are then manipulated into 4 1778 // 6-bit values ready for encoding. 1779 // 1780 // If we focus on one set of 3-byte chunks, changing the 1781 // nomenclature such that A0 => a, A1 => b, and A2 => c, we 1782 // shuffle such that each 24-bit chunk contains: 1783 // 1784 // b7 b6 b5 b4 b3 b2 b1 b0 | a7 a6 a5 a4 a3 a2 a1 a0 | c7 c6 1785 // c5 c4 c3 c2 c1 c0 | b7 b6 b5 b4 b3 b2 b1 b0 1786 // Explain this step. 1787 // b3 b2 b1 b0 c5 c4 c3 c2 | c1 c0 d5 d4 d3 d2 d1 d0 | a5 a4 1788 // a3 a2 a1 a0 b5 b4 | b3 b2 b1 b0 c5 c4 c3 c2 1789 // 1790 // W first and off all but bits 4-9 and 16-21 (c5..c0 and 1791 // a5..a0) and shift them using a vector multiplication 1792 // operation (vpmulhuw) which effectively shifts c right by 6 1793 // bits and a right by 10 bits. We similarly mask bits 10-15 1794 // (d5..d0) and 22-27 (b5..b0) and shift them left by 8 and 4 1795 // bits respectively. This is done using vpmullw. We end up 1796 // with 4 6-bit values, thus splitting the 3 input bytes, 1797 // ready for encoding: 1798 // 0 0 d5..d0 0 0 c5..c0 0 0 b5..b0 0 0 a5..a0 1799 // 1800 // For translation, we recognize that there are 5 distinct 1801 // ranges of legal Base64 characters as below: 1802 // 1803 // +-------------+-------------+------------+ 1804 // | 6-bit value | ASCII range | offset | 1805 // +-------------+-------------+------------+ 1806 // | 0..25 | A..Z | 65 | 1807 // | 26..51 | a..z | 71 | 1808 // | 52..61 | 0..9 | -4 | 1809 // | 62 | + or - | -19 or -17 | 1810 // | 63 | / or _ | -16 or 32 | 1811 // +-------------+-------------+------------+ 1812 // 1813 // We note that vpshufb does a parallel lookup in a 1814 // destination register using the lower 4 bits of bytes from a 1815 // source register. If we use a saturated subtraction and 1816 // subtract 51 from each 6-bit value, bytes from [0,51] 1817 // saturate to 0, and [52,63] map to a range of [1,12]. We 1818 // distinguish the [0,25] and [26,51] ranges by assigning a 1819 // value of 13 for all 6-bit values less than 26. We end up 1820 // with: 1821 // 1822 // +-------------+-------------+------------+ 1823 // | 6-bit value | Reduced | offset | 1824 // +-------------+-------------+------------+ 1825 // | 0..25 | 13 | 65 | 1826 // | 26..51 | 0 | 71 | 1827 // | 52..61 | 0..9 | -4 | 1828 // | 62 | 11 | -19 or -17 | 1829 // | 63 | 12 | -16 or 32 | 1830 // +-------------+-------------+------------+ 1831 // 1832 // We then use a final vpshufb to add the appropriate offset, 1833 // translating the bytes. 1834 // 1835 // Load input bytes - only 28 bytes. Mask the first load to 1836 // not load into the full register. 1837 __ vpmaskmovd(xmm1, xmm1, Address(source, start_offset, Address::times_1, -4), Assembler::AVX_256bit); 1838 1839 // Move 3-byte chunks of input (12 bytes) into 16 bytes, 1840 // ordering by: 1841 // 1, 0, 2, 1; 4, 3, 5, 4; etc. This groups 6-bit chunks 1842 // for easy masking 1843 __ vpshufb(xmm1, xmm1, xmm9, Assembler::AVX_256bit); 1844 1845 __ addl(start_offset, 24); 1846 1847 // Load masking register for first and third (and multiples) 1848 // 6-bit values. 1849 __ movl(rax, 0x003f03f0); 1850 __ movdl(xmm6, rax); 1851 __ vpbroadcastd(xmm6, xmm6, Assembler::AVX_256bit); 1852 // Multiplication constant for "shifting" left by 4 and 8 bits 1853 __ movl(rax, 0x01000010); 1854 __ movdl(xmm5, rax); 1855 __ vpbroadcastd(xmm5, xmm5, Assembler::AVX_256bit); 1856 1857 // Isolate 6-bit chunks of interest 1858 __ vpand(xmm0, xmm8, xmm1, Assembler::AVX_256bit); 1859 1860 // Load constants for encoding 1861 __ movl(rax, 0x19191919); 1862 __ movdl(xmm3, rax); 1863 __ vpbroadcastd(xmm3, xmm3, Assembler::AVX_256bit); 1864 __ movl(rax, 0x33333333); 1865 __ movdl(xmm4, rax); 1866 __ vpbroadcastd(xmm4, xmm4, Assembler::AVX_256bit); 1867 1868 // Shift output bytes 0 and 2 into proper lanes 1869 __ vpmulhuw(xmm2, xmm0, xmm7, Assembler::AVX_256bit); 1870 1871 // Mask and shift output bytes 1 and 3 into proper lanes and 1872 // combine 1873 __ vpand(xmm0, xmm6, xmm1, Assembler::AVX_256bit); 1874 __ vpmullw(xmm0, xmm5, xmm0, Assembler::AVX_256bit); 1875 __ vpor(xmm0, xmm0, xmm2, Assembler::AVX_256bit); 1876 1877 // Find out which are 0..25. This indicates which input 1878 // values fall in the range of 'A'-'Z', which require an 1879 // additional offset (see comments above) 1880 __ vpcmpgtb(xmm2, xmm0, xmm3, Assembler::AVX_256bit); 1881 __ vpsubusb(xmm1, xmm0, xmm4, Assembler::AVX_256bit); 1882 __ vpsubb(xmm1, xmm1, xmm2, Assembler::AVX_256bit); 1883 1884 // Load the proper lookup table 1885 __ lea(r11, ExternalAddress(StubRoutines::x86::base64_avx2_lut_addr())); 1886 __ movl(r15, isURL); 1887 __ shll(r15, 5); 1888 __ vmovdqu(xmm2, Address(r11, r15)); 1889 1890 // Shuffle the offsets based on the range calculation done 1891 // above. This allows us to add the correct offset to the 1892 // 6-bit value corresponding to the range documented above. 1893 __ vpshufb(xmm1, xmm2, xmm1, Assembler::AVX_256bit); 1894 __ vpaddb(xmm0, xmm1, xmm0, Assembler::AVX_256bit); 1895 1896 // Store the encoded bytes 1897 __ vmovdqu(Address(dest, dp), xmm0); 1898 __ addl(dp, 32); 1899 1900 __ cmpl(length, 31); 1901 __ jcc(Assembler::belowEqual, L_process3); 1902 1903 __ align32(); 1904 __ BIND(L_32byteLoop); 1905 1906 // Get next 32 bytes 1907 __ vmovdqu(xmm1, Address(source, start_offset, Address::times_1, -4)); 1908 1909 __ subl(length, 24); 1910 __ addl(start_offset, 24); 1911 1912 // This logic is identical to the above, with only constant 1913 // register loads removed. Shuffle the input, mask off 6-bit 1914 // chunks, shift them into place, then add the offset to 1915 // encode. 1916 __ vpshufb(xmm1, xmm1, xmm9, Assembler::AVX_256bit); 1917 1918 __ vpand(xmm0, xmm8, xmm1, Assembler::AVX_256bit); 1919 __ vpmulhuw(xmm10, xmm0, xmm7, Assembler::AVX_256bit); 1920 __ vpand(xmm0, xmm6, xmm1, Assembler::AVX_256bit); 1921 __ vpmullw(xmm0, xmm5, xmm0, Assembler::AVX_256bit); 1922 __ vpor(xmm0, xmm0, xmm10, Assembler::AVX_256bit); 1923 __ vpcmpgtb(xmm10, xmm0, xmm3, Assembler::AVX_256bit); 1924 __ vpsubusb(xmm1, xmm0, xmm4, Assembler::AVX_256bit); 1925 __ vpsubb(xmm1, xmm1, xmm10, Assembler::AVX_256bit); 1926 __ vpshufb(xmm1, xmm2, xmm1, Assembler::AVX_256bit); 1927 __ vpaddb(xmm0, xmm1, xmm0, Assembler::AVX_256bit); 1928 1929 // Store the encoded bytes 1930 __ vmovdqu(Address(dest, dp), xmm0); 1931 __ addl(dp, 32); 1932 1933 __ cmpl(length, 31); 1934 __ jcc(Assembler::above, L_32byteLoop); 1935 1936 __ BIND(L_process3); 1937 __ vzeroupper(); 1938 } else { 1939 __ BIND(L_process3); 1940 } 1941 1942 __ cmpl(length, 3); 1943 __ jcc(Assembler::below, L_exit); 1944 1945 // Load the encoding table based on isURL 1946 __ lea(r11, ExternalAddress(StubRoutines::x86::base64_encoding_table_addr())); 1947 __ movl(r15, isURL); 1948 __ shll(r15, 6); 1949 __ addptr(r11, r15); 1950 1951 __ BIND(L_processdata); 1952 1953 // Load 3 bytes 1954 __ load_unsigned_byte(r15, Address(source, start_offset)); 1955 __ load_unsigned_byte(r10, Address(source, start_offset, Address::times_1, 1)); 1956 __ load_unsigned_byte(r13, Address(source, start_offset, Address::times_1, 2)); 1957 1958 // Build a 32-bit word with bytes 1, 2, 0, 1 1959 __ movl(rax, r10); 1960 __ shll(r10, 24); 1961 __ orl(rax, r10); 1962 1963 __ subl(length, 3); 1964 1965 __ shll(r15, 8); 1966 __ shll(r13, 16); 1967 __ orl(rax, r15); 1968 1969 __ addl(start_offset, 3); 1970 1971 __ orl(rax, r13); 1972 // At this point, rax contains | byte1 | byte2 | byte0 | byte1 1973 // r13 has byte2 << 16 - need low-order 6 bits to translate. 1974 // This translated byte is the fourth output byte. 1975 __ shrl(r13, 16); 1976 __ andl(r13, 0x3f); 1977 1978 // The high-order 6 bits of r15 (byte0) is translated. 1979 // The translated byte is the first output byte. 1980 __ shrl(r15, 10); 1981 1982 __ load_unsigned_byte(r13, Address(r11, r13)); 1983 __ load_unsigned_byte(r15, Address(r11, r15)); 1984 1985 __ movb(Address(dest, dp, Address::times_1, 3), r13); 1986 1987 // Extract high-order 4 bits of byte1 and low-order 2 bits of byte0. 1988 // This translated byte is the second output byte. 1989 __ shrl(rax, 4); 1990 __ movl(r10, rax); 1991 __ andl(rax, 0x3f); 1992 1993 __ movb(Address(dest, dp, Address::times_1, 0), r15); 1994 1995 __ load_unsigned_byte(rax, Address(r11, rax)); 1996 1997 // Extract low-order 2 bits of byte1 and high-order 4 bits of byte2. 1998 // This translated byte is the third output byte. 1999 __ shrl(r10, 18); 2000 __ andl(r10, 0x3f); 2001 2002 __ load_unsigned_byte(r10, Address(r11, r10)); 2003 2004 __ movb(Address(dest, dp, Address::times_1, 1), rax); 2005 __ movb(Address(dest, dp, Address::times_1, 2), r10); 2006 2007 __ addl(dp, 4); 2008 __ cmpl(length, 3); 2009 __ jcc(Assembler::aboveEqual, L_processdata); 2010 2011 __ BIND(L_exit); 2012 __ pop(r15); 2013 __ pop(r14); 2014 __ pop(r13); 2015 __ pop(r12); 2016 __ leave(); 2017 __ ret(0); 2018 2019 return start; 2020 } 2021 2022 // base64 AVX512vbmi tables 2023 address StubGenerator::base64_vbmi_lookup_lo_addr() { 2024 __ align64(); 2025 StubCodeMark mark(this, "StubRoutines", "lookup_lo_base64"); 2026 address start = __ pc(); 2027 2028 assert(((unsigned long long)start & 0x3f) == 0, 2029 "Alignment problem (0x%08llx)", (unsigned long long)start); 2030 __ emit_data64(0x8080808080808080, relocInfo::none); 2031 __ emit_data64(0x8080808080808080, relocInfo::none); 2032 __ emit_data64(0x8080808080808080, relocInfo::none); 2033 __ emit_data64(0x8080808080808080, relocInfo::none); 2034 __ emit_data64(0x8080808080808080, relocInfo::none); 2035 __ emit_data64(0x3f8080803e808080, relocInfo::none); 2036 __ emit_data64(0x3b3a393837363534, relocInfo::none); 2037 __ emit_data64(0x8080808080803d3c, relocInfo::none); 2038 2039 return start; 2040 } 2041 2042 address StubGenerator::base64_vbmi_lookup_hi_addr() { 2043 __ align64(); 2044 StubCodeMark mark(this, "StubRoutines", "lookup_hi_base64"); 2045 address start = __ pc(); 2046 2047 assert(((unsigned long long)start & 0x3f) == 0, 2048 "Alignment problem (0x%08llx)", (unsigned long long)start); 2049 __ emit_data64(0x0605040302010080, relocInfo::none); 2050 __ emit_data64(0x0e0d0c0b0a090807, relocInfo::none); 2051 __ emit_data64(0x161514131211100f, relocInfo::none); 2052 __ emit_data64(0x8080808080191817, relocInfo::none); 2053 __ emit_data64(0x201f1e1d1c1b1a80, relocInfo::none); 2054 __ emit_data64(0x2827262524232221, relocInfo::none); 2055 __ emit_data64(0x302f2e2d2c2b2a29, relocInfo::none); 2056 __ emit_data64(0x8080808080333231, relocInfo::none); 2057 2058 return start; 2059 } 2060 address StubGenerator::base64_vbmi_lookup_lo_url_addr() { 2061 __ align64(); 2062 StubCodeMark mark(this, "StubRoutines", "lookup_lo_base64url"); 2063 address start = __ pc(); 2064 2065 assert(((unsigned long long)start & 0x3f) == 0, 2066 "Alignment problem (0x%08llx)", (unsigned long long)start); 2067 __ emit_data64(0x8080808080808080, relocInfo::none); 2068 __ emit_data64(0x8080808080808080, relocInfo::none); 2069 __ emit_data64(0x8080808080808080, relocInfo::none); 2070 __ emit_data64(0x8080808080808080, relocInfo::none); 2071 __ emit_data64(0x8080808080808080, relocInfo::none); 2072 __ emit_data64(0x80803e8080808080, relocInfo::none); 2073 __ emit_data64(0x3b3a393837363534, relocInfo::none); 2074 __ emit_data64(0x8080808080803d3c, relocInfo::none); 2075 2076 return start; 2077 } 2078 2079 address StubGenerator::base64_vbmi_lookup_hi_url_addr() { 2080 __ align64(); 2081 StubCodeMark mark(this, "StubRoutines", "lookup_hi_base64url"); 2082 address start = __ pc(); 2083 2084 assert(((unsigned long long)start & 0x3f) == 0, 2085 "Alignment problem (0x%08llx)", (unsigned long long)start); 2086 __ emit_data64(0x0605040302010080, relocInfo::none); 2087 __ emit_data64(0x0e0d0c0b0a090807, relocInfo::none); 2088 __ emit_data64(0x161514131211100f, relocInfo::none); 2089 __ emit_data64(0x3f80808080191817, relocInfo::none); 2090 __ emit_data64(0x201f1e1d1c1b1a80, relocInfo::none); 2091 __ emit_data64(0x2827262524232221, relocInfo::none); 2092 __ emit_data64(0x302f2e2d2c2b2a29, relocInfo::none); 2093 __ emit_data64(0x8080808080333231, relocInfo::none); 2094 2095 return start; 2096 } 2097 2098 address StubGenerator::base64_vbmi_pack_vec_addr() { 2099 __ align64(); 2100 StubCodeMark mark(this, "StubRoutines", "pack_vec_base64"); 2101 address start = __ pc(); 2102 2103 assert(((unsigned long long)start & 0x3f) == 0, 2104 "Alignment problem (0x%08llx)", (unsigned long long)start); 2105 __ emit_data64(0x090a040506000102, relocInfo::none); 2106 __ emit_data64(0x161011120c0d0e08, relocInfo::none); 2107 __ emit_data64(0x1c1d1e18191a1415, relocInfo::none); 2108 __ emit_data64(0x292a242526202122, relocInfo::none); 2109 __ emit_data64(0x363031322c2d2e28, relocInfo::none); 2110 __ emit_data64(0x3c3d3e38393a3435, relocInfo::none); 2111 __ emit_data64(0x0000000000000000, relocInfo::none); 2112 __ emit_data64(0x0000000000000000, relocInfo::none); 2113 2114 return start; 2115 } 2116 2117 address StubGenerator::base64_vbmi_join_0_1_addr() { 2118 __ align64(); 2119 StubCodeMark mark(this, "StubRoutines", "join_0_1_base64"); 2120 address start = __ pc(); 2121 2122 assert(((unsigned long long)start & 0x3f) == 0, 2123 "Alignment problem (0x%08llx)", (unsigned long long)start); 2124 __ emit_data64(0x090a040506000102, relocInfo::none); 2125 __ emit_data64(0x161011120c0d0e08, relocInfo::none); 2126 __ emit_data64(0x1c1d1e18191a1415, relocInfo::none); 2127 __ emit_data64(0x292a242526202122, relocInfo::none); 2128 __ emit_data64(0x363031322c2d2e28, relocInfo::none); 2129 __ emit_data64(0x3c3d3e38393a3435, relocInfo::none); 2130 __ emit_data64(0x494a444546404142, relocInfo::none); 2131 __ emit_data64(0x565051524c4d4e48, relocInfo::none); 2132 2133 return start; 2134 } 2135 2136 address StubGenerator::base64_vbmi_join_1_2_addr() { 2137 __ align64(); 2138 StubCodeMark mark(this, "StubRoutines", "join_1_2_base64"); 2139 address start = __ pc(); 2140 2141 assert(((unsigned long long)start & 0x3f) == 0, 2142 "Alignment problem (0x%08llx)", (unsigned long long)start); 2143 __ emit_data64(0x1c1d1e18191a1415, relocInfo::none); 2144 __ emit_data64(0x292a242526202122, relocInfo::none); 2145 __ emit_data64(0x363031322c2d2e28, relocInfo::none); 2146 __ emit_data64(0x3c3d3e38393a3435, relocInfo::none); 2147 __ emit_data64(0x494a444546404142, relocInfo::none); 2148 __ emit_data64(0x565051524c4d4e48, relocInfo::none); 2149 __ emit_data64(0x5c5d5e58595a5455, relocInfo::none); 2150 __ emit_data64(0x696a646566606162, relocInfo::none); 2151 2152 return start; 2153 } 2154 2155 address StubGenerator::base64_vbmi_join_2_3_addr() { 2156 __ align64(); 2157 StubCodeMark mark(this, "StubRoutines", "join_2_3_base64"); 2158 address start = __ pc(); 2159 2160 assert(((unsigned long long)start & 0x3f) == 0, 2161 "Alignment problem (0x%08llx)", (unsigned long long)start); 2162 __ emit_data64(0x363031322c2d2e28, relocInfo::none); 2163 __ emit_data64(0x3c3d3e38393a3435, relocInfo::none); 2164 __ emit_data64(0x494a444546404142, relocInfo::none); 2165 __ emit_data64(0x565051524c4d4e48, relocInfo::none); 2166 __ emit_data64(0x5c5d5e58595a5455, relocInfo::none); 2167 __ emit_data64(0x696a646566606162, relocInfo::none); 2168 __ emit_data64(0x767071726c6d6e68, relocInfo::none); 2169 __ emit_data64(0x7c7d7e78797a7475, relocInfo::none); 2170 2171 return start; 2172 } 2173 2174 address StubGenerator::base64_AVX2_decode_tables_addr() { 2175 __ align64(); 2176 StubCodeMark mark(this, "StubRoutines", "AVX2_tables_base64"); 2177 address start = __ pc(); 2178 2179 assert(((unsigned long long)start & 0x3f) == 0, 2180 "Alignment problem (0x%08llx)", (unsigned long long)start); 2181 __ emit_data(0x2f2f2f2f, relocInfo::none, 0); 2182 __ emit_data(0x5f5f5f5f, relocInfo::none, 0); // for URL 2183 2184 __ emit_data(0xffffffff, relocInfo::none, 0); 2185 __ emit_data(0xfcfcfcfc, relocInfo::none, 0); // for URL 2186 2187 // Permute table 2188 __ emit_data64(0x0000000100000000, relocInfo::none); 2189 __ emit_data64(0x0000000400000002, relocInfo::none); 2190 __ emit_data64(0x0000000600000005, relocInfo::none); 2191 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2192 2193 // Shuffle table 2194 __ emit_data64(0x090a040506000102, relocInfo::none); 2195 __ emit_data64(0xffffffff0c0d0e08, relocInfo::none); 2196 __ emit_data64(0x090a040506000102, relocInfo::none); 2197 __ emit_data64(0xffffffff0c0d0e08, relocInfo::none); 2198 2199 // merge table 2200 __ emit_data(0x01400140, relocInfo::none, 0); 2201 2202 // merge multiplier 2203 __ emit_data(0x00011000, relocInfo::none, 0); 2204 2205 return start; 2206 } 2207 2208 address StubGenerator::base64_AVX2_decode_LUT_tables_addr() { 2209 __ align64(); 2210 StubCodeMark mark(this, "StubRoutines", "AVX2_tables_URL_base64"); 2211 address start = __ pc(); 2212 2213 assert(((unsigned long long)start & 0x3f) == 0, 2214 "Alignment problem (0x%08llx)", (unsigned long long)start); 2215 // lut_lo 2216 __ emit_data64(0x1111111111111115, relocInfo::none); 2217 __ emit_data64(0x1a1b1b1b1a131111, relocInfo::none); 2218 __ emit_data64(0x1111111111111115, relocInfo::none); 2219 __ emit_data64(0x1a1b1b1b1a131111, relocInfo::none); 2220 2221 // lut_roll 2222 __ emit_data64(0xb9b9bfbf04131000, relocInfo::none); 2223 __ emit_data64(0x0000000000000000, relocInfo::none); 2224 __ emit_data64(0xb9b9bfbf04131000, relocInfo::none); 2225 __ emit_data64(0x0000000000000000, relocInfo::none); 2226 2227 // lut_lo URL 2228 __ emit_data64(0x1111111111111115, relocInfo::none); 2229 __ emit_data64(0x1b1b1a1b1b131111, relocInfo::none); 2230 __ emit_data64(0x1111111111111115, relocInfo::none); 2231 __ emit_data64(0x1b1b1a1b1b131111, relocInfo::none); 2232 2233 // lut_roll URL 2234 __ emit_data64(0xb9b9bfbf0411e000, relocInfo::none); 2235 __ emit_data64(0x0000000000000000, relocInfo::none); 2236 __ emit_data64(0xb9b9bfbf0411e000, relocInfo::none); 2237 __ emit_data64(0x0000000000000000, relocInfo::none); 2238 2239 // lut_hi 2240 __ emit_data64(0x0804080402011010, relocInfo::none); 2241 __ emit_data64(0x1010101010101010, relocInfo::none); 2242 __ emit_data64(0x0804080402011010, relocInfo::none); 2243 __ emit_data64(0x1010101010101010, relocInfo::none); 2244 2245 return start; 2246 } 2247 2248 address StubGenerator::base64_decoding_table_addr() { 2249 StubCodeMark mark(this, "StubRoutines", "decoding_table_base64"); 2250 address start = __ pc(); 2251 2252 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2253 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2254 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2255 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2256 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2257 __ emit_data64(0x3fffffff3effffff, relocInfo::none); 2258 __ emit_data64(0x3b3a393837363534, relocInfo::none); 2259 __ emit_data64(0xffffffffffff3d3c, relocInfo::none); 2260 __ emit_data64(0x06050403020100ff, relocInfo::none); 2261 __ emit_data64(0x0e0d0c0b0a090807, relocInfo::none); 2262 __ emit_data64(0x161514131211100f, relocInfo::none); 2263 __ emit_data64(0xffffffffff191817, relocInfo::none); 2264 __ emit_data64(0x201f1e1d1c1b1aff, relocInfo::none); 2265 __ emit_data64(0x2827262524232221, relocInfo::none); 2266 __ emit_data64(0x302f2e2d2c2b2a29, relocInfo::none); 2267 __ emit_data64(0xffffffffff333231, relocInfo::none); 2268 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2269 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2270 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2271 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2272 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2273 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2274 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2275 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2276 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2277 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2278 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2279 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2280 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2281 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2282 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2283 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2284 2285 // URL table 2286 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2287 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2288 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2289 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2290 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2291 __ emit_data64(0xffff3effffffffff, relocInfo::none); 2292 __ emit_data64(0x3b3a393837363534, relocInfo::none); 2293 __ emit_data64(0xffffffffffff3d3c, relocInfo::none); 2294 __ emit_data64(0x06050403020100ff, relocInfo::none); 2295 __ emit_data64(0x0e0d0c0b0a090807, relocInfo::none); 2296 __ emit_data64(0x161514131211100f, relocInfo::none); 2297 __ emit_data64(0x3fffffffff191817, relocInfo::none); 2298 __ emit_data64(0x201f1e1d1c1b1aff, relocInfo::none); 2299 __ emit_data64(0x2827262524232221, relocInfo::none); 2300 __ emit_data64(0x302f2e2d2c2b2a29, relocInfo::none); 2301 __ emit_data64(0xffffffffff333231, relocInfo::none); 2302 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2303 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2304 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2305 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2306 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2307 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2308 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2309 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2310 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2311 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2312 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2313 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2314 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2315 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2316 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2317 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2318 2319 return start; 2320 } 2321 2322 2323 // Code for generating Base64 decoding. 2324 // 2325 // Based on the article (and associated code) from https://arxiv.org/abs/1910.05109. 2326 // 2327 // Intrinsic function prototype in Base64.java: 2328 // private void decodeBlock(byte[] src, int sp, int sl, byte[] dst, int dp, boolean isURL, isMIME) { 2329 address StubGenerator::generate_base64_decodeBlock() { 2330 __ align(CodeEntryAlignment); 2331 StubCodeMark mark(this, "StubRoutines", "implDecode"); 2332 address start = __ pc(); 2333 2334 __ enter(); 2335 2336 // Save callee-saved registers before using them 2337 __ push(r12); 2338 __ push(r13); 2339 __ push(r14); 2340 __ push(r15); 2341 __ push(rbx); 2342 2343 // arguments 2344 const Register source = c_rarg0; // Source Array 2345 const Register start_offset = c_rarg1; // start offset 2346 const Register end_offset = c_rarg2; // end offset 2347 const Register dest = c_rarg3; // destination array 2348 const Register isMIME = rbx; 2349 2350 #ifndef _WIN64 2351 const Register dp = c_rarg4; // Position for writing to dest array 2352 const Register isURL = c_rarg5;// Base64 or URL character set 2353 __ movl(isMIME, Address(rbp, 2 * wordSize)); 2354 #else 2355 const Address dp_mem(rbp, 6 * wordSize); // length is on stack on Win64 2356 const Address isURL_mem(rbp, 7 * wordSize); 2357 const Register isURL = r10; // pick the volatile windows register 2358 const Register dp = r12; 2359 __ movl(dp, dp_mem); 2360 __ movl(isURL, isURL_mem); 2361 __ movl(isMIME, Address(rbp, 8 * wordSize)); 2362 #endif 2363 2364 const XMMRegister lookup_lo = xmm5; 2365 const XMMRegister lookup_hi = xmm6; 2366 const XMMRegister errorvec = xmm7; 2367 const XMMRegister pack16_op = xmm9; 2368 const XMMRegister pack32_op = xmm8; 2369 const XMMRegister input0 = xmm3; 2370 const XMMRegister input1 = xmm20; 2371 const XMMRegister input2 = xmm21; 2372 const XMMRegister input3 = xmm19; 2373 const XMMRegister join01 = xmm12; 2374 const XMMRegister join12 = xmm11; 2375 const XMMRegister join23 = xmm10; 2376 const XMMRegister translated0 = xmm2; 2377 const XMMRegister translated1 = xmm1; 2378 const XMMRegister translated2 = xmm0; 2379 const XMMRegister translated3 = xmm4; 2380 2381 const XMMRegister merged0 = xmm2; 2382 const XMMRegister merged1 = xmm1; 2383 const XMMRegister merged2 = xmm0; 2384 const XMMRegister merged3 = xmm4; 2385 const XMMRegister merge_ab_bc0 = xmm2; 2386 const XMMRegister merge_ab_bc1 = xmm1; 2387 const XMMRegister merge_ab_bc2 = xmm0; 2388 const XMMRegister merge_ab_bc3 = xmm4; 2389 2390 const XMMRegister pack24bits = xmm4; 2391 2392 const Register length = r14; 2393 const Register output_size = r13; 2394 const Register output_mask = r15; 2395 const KRegister input_mask = k1; 2396 2397 const XMMRegister input_initial_valid_b64 = xmm0; 2398 const XMMRegister tmp = xmm10; 2399 const XMMRegister mask = xmm0; 2400 const XMMRegister invalid_b64 = xmm1; 2401 2402 Label L_process256, L_process64, L_process64Loop, L_exit, L_processdata, L_loadURL; 2403 Label L_continue, L_finalBit, L_padding, L_donePadding, L_bruteForce; 2404 Label L_forceLoop, L_bottomLoop, L_checkMIME, L_exit_no_vzero, L_lastChunk; 2405 2406 // calculate length from offsets 2407 __ movl(length, end_offset); 2408 __ subl(length, start_offset); 2409 __ push(dest); // Save for return value calc 2410 2411 // If AVX512 VBMI not supported, just compile non-AVX code 2412 if(VM_Version::supports_avx512_vbmi() && 2413 VM_Version::supports_avx512bw()) { 2414 __ cmpl(length, 31); // 32-bytes is break-even for AVX-512 2415 __ jcc(Assembler::lessEqual, L_lastChunk); 2416 2417 __ cmpl(isMIME, 0); 2418 __ jcc(Assembler::notEqual, L_lastChunk); 2419 2420 // Load lookup tables based on isURL 2421 __ cmpl(isURL, 0); 2422 __ jcc(Assembler::notZero, L_loadURL); 2423 2424 __ evmovdquq(lookup_lo, ExternalAddress(StubRoutines::x86::base64_vbmi_lookup_lo_addr()), Assembler::AVX_512bit, r13); 2425 __ evmovdquq(lookup_hi, ExternalAddress(StubRoutines::x86::base64_vbmi_lookup_hi_addr()), Assembler::AVX_512bit, r13); 2426 2427 __ BIND(L_continue); 2428 2429 __ movl(r15, 0x01400140); 2430 __ evpbroadcastd(pack16_op, r15, Assembler::AVX_512bit); 2431 2432 __ movl(r15, 0x00011000); 2433 __ evpbroadcastd(pack32_op, r15, Assembler::AVX_512bit); 2434 2435 __ cmpl(length, 0xff); 2436 __ jcc(Assembler::lessEqual, L_process64); 2437 2438 // load masks required for decoding data 2439 __ BIND(L_processdata); 2440 __ evmovdquq(join01, ExternalAddress(StubRoutines::x86::base64_vbmi_join_0_1_addr()), Assembler::AVX_512bit,r13); 2441 __ evmovdquq(join12, ExternalAddress(StubRoutines::x86::base64_vbmi_join_1_2_addr()), Assembler::AVX_512bit, r13); 2442 __ evmovdquq(join23, ExternalAddress(StubRoutines::x86::base64_vbmi_join_2_3_addr()), Assembler::AVX_512bit, r13); 2443 2444 __ align32(); 2445 __ BIND(L_process256); 2446 // Grab input data 2447 __ evmovdquq(input0, Address(source, start_offset, Address::times_1, 0x00), Assembler::AVX_512bit); 2448 __ evmovdquq(input1, Address(source, start_offset, Address::times_1, 0x40), Assembler::AVX_512bit); 2449 __ evmovdquq(input2, Address(source, start_offset, Address::times_1, 0x80), Assembler::AVX_512bit); 2450 __ evmovdquq(input3, Address(source, start_offset, Address::times_1, 0xc0), Assembler::AVX_512bit); 2451 2452 // Copy the low part of the lookup table into the destination of the permutation 2453 __ evmovdquq(translated0, lookup_lo, Assembler::AVX_512bit); 2454 __ evmovdquq(translated1, lookup_lo, Assembler::AVX_512bit); 2455 __ evmovdquq(translated2, lookup_lo, Assembler::AVX_512bit); 2456 __ evmovdquq(translated3, lookup_lo, Assembler::AVX_512bit); 2457 2458 // Translate the base64 input into "decoded" bytes 2459 __ evpermt2b(translated0, input0, lookup_hi, Assembler::AVX_512bit); 2460 __ evpermt2b(translated1, input1, lookup_hi, Assembler::AVX_512bit); 2461 __ evpermt2b(translated2, input2, lookup_hi, Assembler::AVX_512bit); 2462 __ evpermt2b(translated3, input3, lookup_hi, Assembler::AVX_512bit); 2463 2464 // OR all of the translations together to check for errors (high-order bit of byte set) 2465 __ vpternlogd(input0, 0xfe, input1, input2, Assembler::AVX_512bit); 2466 2467 __ vpternlogd(input3, 0xfe, translated0, translated1, Assembler::AVX_512bit); 2468 __ vpternlogd(input0, 0xfe, translated2, translated3, Assembler::AVX_512bit); 2469 __ vpor(errorvec, input3, input0, Assembler::AVX_512bit); 2470 2471 // Check if there was an error - if so, try 64-byte chunks 2472 __ evpmovb2m(k3, errorvec, Assembler::AVX_512bit); 2473 __ kortestql(k3, k3); 2474 __ jcc(Assembler::notZero, L_process64); 2475 2476 // The merging and shuffling happens here 2477 // We multiply each byte pair [00dddddd | 00cccccc | 00bbbbbb | 00aaaaaa] 2478 // Multiply [00cccccc] by 2^6 added to [00dddddd] to get [0000cccc | ccdddddd] 2479 // The pack16_op is a vector of 0x01400140, so multiply D by 1 and C by 0x40 2480 __ vpmaddubsw(merge_ab_bc0, translated0, pack16_op, Assembler::AVX_512bit); 2481 __ vpmaddubsw(merge_ab_bc1, translated1, pack16_op, Assembler::AVX_512bit); 2482 __ vpmaddubsw(merge_ab_bc2, translated2, pack16_op, Assembler::AVX_512bit); 2483 __ vpmaddubsw(merge_ab_bc3, translated3, pack16_op, Assembler::AVX_512bit); 2484 2485 // Now do the same with packed 16-bit values. 2486 // We start with [0000cccc | ccdddddd | 0000aaaa | aabbbbbb] 2487 // pack32_op is 0x00011000 (2^12, 1), so this multiplies [0000aaaa | aabbbbbb] by 2^12 2488 // and adds [0000cccc | ccdddddd] to yield [00000000 | aaaaaabb | bbbbcccc | ccdddddd] 2489 __ vpmaddwd(merged0, merge_ab_bc0, pack32_op, Assembler::AVX_512bit); 2490 __ vpmaddwd(merged1, merge_ab_bc1, pack32_op, Assembler::AVX_512bit); 2491 __ vpmaddwd(merged2, merge_ab_bc2, pack32_op, Assembler::AVX_512bit); 2492 __ vpmaddwd(merged3, merge_ab_bc3, pack32_op, Assembler::AVX_512bit); 2493 2494 // The join vectors specify which byte from which vector goes into the outputs 2495 // One of every 4 bytes in the extended vector is zero, so we pack them into their 2496 // final positions in the register for storing (256 bytes in, 192 bytes out) 2497 __ evpermt2b(merged0, join01, merged1, Assembler::AVX_512bit); 2498 __ evpermt2b(merged1, join12, merged2, Assembler::AVX_512bit); 2499 __ evpermt2b(merged2, join23, merged3, Assembler::AVX_512bit); 2500 2501 // Store result 2502 __ evmovdquq(Address(dest, dp, Address::times_1, 0x00), merged0, Assembler::AVX_512bit); 2503 __ evmovdquq(Address(dest, dp, Address::times_1, 0x40), merged1, Assembler::AVX_512bit); 2504 __ evmovdquq(Address(dest, dp, Address::times_1, 0x80), merged2, Assembler::AVX_512bit); 2505 2506 __ addptr(source, 0x100); 2507 __ addptr(dest, 0xc0); 2508 __ subl(length, 0x100); 2509 __ cmpl(length, 64 * 4); 2510 __ jcc(Assembler::greaterEqual, L_process256); 2511 2512 // At this point, we've decoded 64 * 4 * n bytes. 2513 // The remaining length will be <= 64 * 4 - 1. 2514 // UNLESS there was an error decoding the first 256-byte chunk. In this 2515 // case, the length will be arbitrarily long. 2516 // 2517 // Note that this will be the path for MIME-encoded strings. 2518 2519 __ BIND(L_process64); 2520 2521 __ evmovdquq(pack24bits, ExternalAddress(StubRoutines::x86::base64_vbmi_pack_vec_addr()), Assembler::AVX_512bit, r13); 2522 2523 __ cmpl(length, 63); 2524 __ jcc(Assembler::lessEqual, L_finalBit); 2525 2526 __ mov64(rax, 0x0000ffffffffffff); 2527 __ kmovql(k2, rax); 2528 2529 __ align32(); 2530 __ BIND(L_process64Loop); 2531 2532 // Handle first 64-byte block 2533 2534 __ evmovdquq(input0, Address(source, start_offset), Assembler::AVX_512bit); 2535 __ evmovdquq(translated0, lookup_lo, Assembler::AVX_512bit); 2536 __ evpermt2b(translated0, input0, lookup_hi, Assembler::AVX_512bit); 2537 2538 __ vpor(errorvec, translated0, input0, Assembler::AVX_512bit); 2539 2540 // Check for error and bomb out before updating dest 2541 __ evpmovb2m(k3, errorvec, Assembler::AVX_512bit); 2542 __ kortestql(k3, k3); 2543 __ jcc(Assembler::notZero, L_exit); 2544 2545 // Pack output register, selecting correct byte ordering 2546 __ vpmaddubsw(merge_ab_bc0, translated0, pack16_op, Assembler::AVX_512bit); 2547 __ vpmaddwd(merged0, merge_ab_bc0, pack32_op, Assembler::AVX_512bit); 2548 __ vpermb(merged0, pack24bits, merged0, Assembler::AVX_512bit); 2549 2550 __ evmovdqub(Address(dest, dp), k2, merged0, true, Assembler::AVX_512bit); 2551 2552 __ subl(length, 64); 2553 __ addptr(source, 64); 2554 __ addptr(dest, 48); 2555 2556 __ cmpl(length, 64); 2557 __ jcc(Assembler::greaterEqual, L_process64Loop); 2558 2559 __ cmpl(length, 0); 2560 __ jcc(Assembler::lessEqual, L_exit); 2561 2562 __ BIND(L_finalBit); 2563 // Now have 1 to 63 bytes left to decode 2564 2565 // I was going to let Java take care of the final fragment 2566 // however it will repeatedly call this routine for every 4 bytes 2567 // of input data, so handle the rest here. 2568 __ movq(rax, -1); 2569 __ bzhiq(rax, rax, length); // Input mask in rax 2570 2571 __ movl(output_size, length); 2572 __ shrl(output_size, 2); // Find (len / 4) * 3 (output length) 2573 __ lea(output_size, Address(output_size, output_size, Address::times_2, 0)); 2574 // output_size in r13 2575 2576 // Strip pad characters, if any, and adjust length and mask 2577 __ cmpb(Address(source, length, Address::times_1, -1), '='); 2578 __ jcc(Assembler::equal, L_padding); 2579 2580 __ BIND(L_donePadding); 2581 2582 // Output size is (64 - output_size), output mask is (all 1s >> output_size). 2583 __ kmovql(input_mask, rax); 2584 __ movq(output_mask, -1); 2585 __ bzhiq(output_mask, output_mask, output_size); 2586 2587 // Load initial input with all valid base64 characters. Will be used 2588 // in merging source bytes to avoid masking when determining if an error occurred. 2589 __ movl(rax, 0x61616161); 2590 __ evpbroadcastd(input_initial_valid_b64, rax, Assembler::AVX_512bit); 2591 2592 // A register containing all invalid base64 decoded values 2593 __ movl(rax, 0x80808080); 2594 __ evpbroadcastd(invalid_b64, rax, Assembler::AVX_512bit); 2595 2596 // input_mask is in k1 2597 // output_size is in r13 2598 // output_mask is in r15 2599 // zmm0 - free 2600 // zmm1 - 0x00011000 2601 // zmm2 - 0x01400140 2602 // zmm3 - errorvec 2603 // zmm4 - pack vector 2604 // zmm5 - lookup_lo 2605 // zmm6 - lookup_hi 2606 // zmm7 - errorvec 2607 // zmm8 - 0x61616161 2608 // zmm9 - 0x80808080 2609 2610 // Load only the bytes from source, merging into our "fully-valid" register 2611 __ evmovdqub(input_initial_valid_b64, input_mask, Address(source, start_offset, Address::times_1, 0x0), true, Assembler::AVX_512bit); 2612 2613 // Decode all bytes within our merged input 2614 __ evmovdquq(tmp, lookup_lo, Assembler::AVX_512bit); 2615 __ evpermt2b(tmp, input_initial_valid_b64, lookup_hi, Assembler::AVX_512bit); 2616 __ evporq(mask, tmp, input_initial_valid_b64, Assembler::AVX_512bit); 2617 2618 // Check for error. Compare (decoded | initial) to all invalid. 2619 // If any bytes have their high-order bit set, then we have an error. 2620 __ evptestmb(k2, mask, invalid_b64, Assembler::AVX_512bit); 2621 __ kortestql(k2, k2); 2622 2623 // If we have an error, use the brute force loop to decode what we can (4-byte chunks). 2624 __ jcc(Assembler::notZero, L_bruteForce); 2625 2626 // Shuffle output bytes 2627 __ vpmaddubsw(tmp, tmp, pack16_op, Assembler::AVX_512bit); 2628 __ vpmaddwd(tmp, tmp, pack32_op, Assembler::AVX_512bit); 2629 2630 __ vpermb(tmp, pack24bits, tmp, Assembler::AVX_512bit); 2631 __ kmovql(k1, output_mask); 2632 __ evmovdqub(Address(dest, dp), k1, tmp, true, Assembler::AVX_512bit); 2633 2634 __ addptr(dest, output_size); 2635 2636 __ BIND(L_exit); 2637 __ vzeroupper(); 2638 __ pop(rax); // Get original dest value 2639 __ subptr(dest, rax); // Number of bytes converted 2640 __ movptr(rax, dest); 2641 __ pop(rbx); 2642 __ pop(r15); 2643 __ pop(r14); 2644 __ pop(r13); 2645 __ pop(r12); 2646 __ leave(); 2647 __ ret(0); 2648 2649 __ BIND(L_loadURL); 2650 __ evmovdquq(lookup_lo, ExternalAddress(StubRoutines::x86::base64_vbmi_lookup_lo_url_addr()), Assembler::AVX_512bit, r13); 2651 __ evmovdquq(lookup_hi, ExternalAddress(StubRoutines::x86::base64_vbmi_lookup_hi_url_addr()), Assembler::AVX_512bit, r13); 2652 __ jmp(L_continue); 2653 2654 __ BIND(L_padding); 2655 __ decrementq(output_size, 1); 2656 __ shrq(rax, 1); 2657 2658 __ cmpb(Address(source, length, Address::times_1, -2), '='); 2659 __ jcc(Assembler::notEqual, L_donePadding); 2660 2661 __ decrementq(output_size, 1); 2662 __ shrq(rax, 1); 2663 __ jmp(L_donePadding); 2664 2665 __ align32(); 2666 __ BIND(L_bruteForce); 2667 } // End of if(avx512_vbmi) 2668 2669 if (VM_Version::supports_avx2()) { 2670 Label L_tailProc, L_topLoop, L_enterLoop; 2671 2672 __ cmpl(isMIME, 0); 2673 __ jcc(Assembler::notEqual, L_lastChunk); 2674 2675 // Check for buffer too small (for algorithm) 2676 __ subl(length, 0x2c); 2677 __ jcc(Assembler::less, L_tailProc); 2678 2679 __ shll(isURL, 2); 2680 2681 // Algorithm adapted from https://arxiv.org/abs/1704.00605, "Faster Base64 2682 // Encoding and Decoding using AVX2 Instructions". URL modifications added. 2683 2684 // Set up constants 2685 __ lea(r13, ExternalAddress(StubRoutines::x86::base64_AVX2_decode_tables_addr())); 2686 __ vpbroadcastd(xmm4, Address(r13, isURL, Address::times_1), Assembler::AVX_256bit); // 2F or 5F 2687 __ vpbroadcastd(xmm10, Address(r13, isURL, Address::times_1, 0x08), Assembler::AVX_256bit); // -1 or -4 2688 __ vmovdqu(xmm12, Address(r13, 0x10)); // permute 2689 __ vmovdqu(xmm13, Address(r13, 0x30)); // shuffle 2690 __ vpbroadcastd(xmm7, Address(r13, 0x50), Assembler::AVX_256bit); // merge 2691 __ vpbroadcastd(xmm6, Address(r13, 0x54), Assembler::AVX_256bit); // merge mult 2692 2693 __ lea(r13, ExternalAddress(StubRoutines::x86::base64_AVX2_decode_LUT_tables_addr())); 2694 __ shll(isURL, 4); 2695 __ vmovdqu(xmm11, Address(r13, isURL, Address::times_1, 0x00)); // lut_lo 2696 __ vmovdqu(xmm8, Address(r13, isURL, Address::times_1, 0x20)); // lut_roll 2697 __ shrl(isURL, 6); // restore isURL 2698 __ vmovdqu(xmm9, Address(r13, 0x80)); // lut_hi 2699 __ jmp(L_enterLoop); 2700 2701 __ align32(); 2702 __ bind(L_topLoop); 2703 // Add in the offset value (roll) to get 6-bit out values 2704 __ vpaddb(xmm0, xmm0, xmm2, Assembler::AVX_256bit); 2705 // Merge and permute the output bits into appropriate output byte lanes 2706 __ vpmaddubsw(xmm0, xmm0, xmm7, Assembler::AVX_256bit); 2707 __ vpmaddwd(xmm0, xmm0, xmm6, Assembler::AVX_256bit); 2708 __ vpshufb(xmm0, xmm0, xmm13, Assembler::AVX_256bit); 2709 __ vpermd(xmm0, xmm12, xmm0, Assembler::AVX_256bit); 2710 // Store the output bytes 2711 __ vmovdqu(Address(dest, dp, Address::times_1, 0), xmm0); 2712 __ addptr(source, 0x20); 2713 __ addptr(dest, 0x18); 2714 __ subl(length, 0x20); 2715 __ jcc(Assembler::less, L_tailProc); 2716 2717 __ bind(L_enterLoop); 2718 2719 // Load in encoded string (32 bytes) 2720 __ vmovdqu(xmm2, Address(source, start_offset, Address::times_1, 0x0)); 2721 // Extract the high nibble for indexing into the lut tables. High 4 bits are don't care. 2722 __ vpsrld(xmm1, xmm2, 0x4, Assembler::AVX_256bit); 2723 __ vpand(xmm1, xmm4, xmm1, Assembler::AVX_256bit); 2724 // Extract the low nibble. 5F/2F will isolate the low-order 4 bits. High 4 bits are don't care. 2725 __ vpand(xmm3, xmm2, xmm4, Assembler::AVX_256bit); 2726 // Check for special-case (0x2F or 0x5F (URL)) 2727 __ vpcmpeqb(xmm0, xmm4, xmm2, Assembler::AVX_256bit); 2728 // Get the bitset based on the low nibble. vpshufb uses low-order 4 bits only. 2729 __ vpshufb(xmm3, xmm11, xmm3, Assembler::AVX_256bit); 2730 // Get the bit value of the high nibble 2731 __ vpshufb(xmm5, xmm9, xmm1, Assembler::AVX_256bit); 2732 // Make sure 2F / 5F shows as valid 2733 __ vpandn(xmm3, xmm0, xmm3, Assembler::AVX_256bit); 2734 // Make adjustment for roll index. For non-URL, this is a no-op, 2735 // for URL, this adjusts by -4. This is to properly index the 2736 // roll value for 2F / 5F. 2737 __ vpand(xmm0, xmm0, xmm10, Assembler::AVX_256bit); 2738 // If the and of the two is non-zero, we have an invalid input character 2739 __ vptest(xmm3, xmm5); 2740 // Extract the "roll" value - value to add to the input to get 6-bit out value 2741 __ vpaddb(xmm0, xmm0, xmm1, Assembler::AVX_256bit); // Handle 2F / 5F 2742 __ vpshufb(xmm0, xmm8, xmm0, Assembler::AVX_256bit); 2743 __ jcc(Assembler::equal, L_topLoop); // Fall through on error 2744 2745 __ bind(L_tailProc); 2746 2747 __ addl(length, 0x2c); 2748 2749 __ vzeroupper(); 2750 } 2751 2752 // Use non-AVX code to decode 4-byte chunks into 3 bytes of output 2753 2754 // Register state (Linux): 2755 // r12-15 - saved on stack 2756 // rdi - src 2757 // rsi - sp 2758 // rdx - sl 2759 // rcx - dst 2760 // r8 - dp 2761 // r9 - isURL 2762 2763 // Register state (Windows): 2764 // r12-15 - saved on stack 2765 // rcx - src 2766 // rdx - sp 2767 // r8 - sl 2768 // r9 - dst 2769 // r12 - dp 2770 // r10 - isURL 2771 2772 // Registers (common): 2773 // length (r14) - bytes in src 2774 2775 const Register decode_table = r11; 2776 const Register out_byte_count = rbx; 2777 const Register byte1 = r13; 2778 const Register byte2 = r15; 2779 const Register byte3 = WIN64_ONLY(r8) NOT_WIN64(rdx); 2780 const Register byte4 = WIN64_ONLY(r10) NOT_WIN64(r9); 2781 2782 __ bind(L_lastChunk); 2783 2784 __ shrl(length, 2); // Multiple of 4 bytes only - length is # 4-byte chunks 2785 __ cmpl(length, 0); 2786 __ jcc(Assembler::lessEqual, L_exit_no_vzero); 2787 2788 __ shll(isURL, 8); // index into decode table based on isURL 2789 __ lea(decode_table, ExternalAddress(StubRoutines::x86::base64_decoding_table_addr())); 2790 __ addptr(decode_table, isURL); 2791 2792 __ jmp(L_bottomLoop); 2793 2794 __ align32(); 2795 __ BIND(L_forceLoop); 2796 __ shll(byte1, 18); 2797 __ shll(byte2, 12); 2798 __ shll(byte3, 6); 2799 __ orl(byte1, byte2); 2800 __ orl(byte1, byte3); 2801 __ orl(byte1, byte4); 2802 2803 __ addptr(source, 4); 2804 2805 __ movb(Address(dest, dp, Address::times_1, 2), byte1); 2806 __ shrl(byte1, 8); 2807 __ movb(Address(dest, dp, Address::times_1, 1), byte1); 2808 __ shrl(byte1, 8); 2809 __ movb(Address(dest, dp, Address::times_1, 0), byte1); 2810 2811 __ addptr(dest, 3); 2812 __ decrementl(length, 1); 2813 __ jcc(Assembler::zero, L_exit_no_vzero); 2814 2815 __ BIND(L_bottomLoop); 2816 __ load_unsigned_byte(byte1, Address(source, start_offset, Address::times_1, 0x00)); 2817 __ load_unsigned_byte(byte2, Address(source, start_offset, Address::times_1, 0x01)); 2818 __ load_signed_byte(byte1, Address(decode_table, byte1)); 2819 __ load_signed_byte(byte2, Address(decode_table, byte2)); 2820 __ load_unsigned_byte(byte3, Address(source, start_offset, Address::times_1, 0x02)); 2821 __ load_unsigned_byte(byte4, Address(source, start_offset, Address::times_1, 0x03)); 2822 __ load_signed_byte(byte3, Address(decode_table, byte3)); 2823 __ load_signed_byte(byte4, Address(decode_table, byte4)); 2824 2825 __ mov(rax, byte1); 2826 __ orl(rax, byte2); 2827 __ orl(rax, byte3); 2828 __ orl(rax, byte4); 2829 __ jcc(Assembler::positive, L_forceLoop); 2830 2831 __ BIND(L_exit_no_vzero); 2832 __ pop(rax); // Get original dest value 2833 __ subptr(dest, rax); // Number of bytes converted 2834 __ movptr(rax, dest); 2835 __ pop(rbx); 2836 __ pop(r15); 2837 __ pop(r14); 2838 __ pop(r13); 2839 __ pop(r12); 2840 __ leave(); 2841 __ ret(0); 2842 2843 return start; 2844 } 2845 2846 2847 /** 2848 * Arguments: 2849 * 2850 * Inputs: 2851 * c_rarg0 - int crc 2852 * c_rarg1 - byte* buf 2853 * c_rarg2 - int length 2854 * 2855 * Output: 2856 * rax - int crc result 2857 */ 2858 address StubGenerator::generate_updateBytesCRC32() { 2859 assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions"); 2860 2861 __ align(CodeEntryAlignment); 2862 StubCodeMark mark(this, "StubRoutines", "updateBytesCRC32"); 2863 2864 address start = __ pc(); 2865 2866 // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...) 2867 // Unix: rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...) 2868 // rscratch1: r10 2869 const Register crc = c_rarg0; // crc 2870 const Register buf = c_rarg1; // source java byte array address 2871 const Register len = c_rarg2; // length 2872 const Register table = c_rarg3; // crc_table address (reuse register) 2873 const Register tmp1 = r11; 2874 const Register tmp2 = r10; 2875 assert_different_registers(crc, buf, len, table, tmp1, tmp2, rax); 2876 2877 BLOCK_COMMENT("Entry:"); 2878 __ enter(); // required for proper stackwalking of RuntimeStub frame 2879 2880 if (VM_Version::supports_sse4_1() && VM_Version::supports_avx512_vpclmulqdq() && 2881 VM_Version::supports_avx512bw() && 2882 VM_Version::supports_avx512vl()) { 2883 // The constants used in the CRC32 algorithm requires the 1's compliment of the initial crc value. 2884 // However, the constant table for CRC32-C assumes the original crc value. Account for this 2885 // difference before calling and after returning. 2886 __ lea(table, ExternalAddress(StubRoutines::x86::crc_table_avx512_addr())); 2887 __ notl(crc); 2888 __ kernel_crc32_avx512(crc, buf, len, table, tmp1, tmp2); 2889 __ notl(crc); 2890 } else { 2891 __ kernel_crc32(crc, buf, len, table, tmp1); 2892 } 2893 2894 __ movl(rax, crc); 2895 __ vzeroupper(); 2896 __ leave(); // required for proper stackwalking of RuntimeStub frame 2897 __ ret(0); 2898 2899 return start; 2900 } 2901 2902 /** 2903 * Arguments: 2904 * 2905 * Inputs: 2906 * c_rarg0 - int crc 2907 * c_rarg1 - byte* buf 2908 * c_rarg2 - long length 2909 * c_rarg3 - table_start - optional (present only when doing a library_call, 2910 * not used by x86 algorithm) 2911 * 2912 * Output: 2913 * rax - int crc result 2914 */ 2915 address StubGenerator::generate_updateBytesCRC32C(bool is_pclmulqdq_supported) { 2916 assert(UseCRC32CIntrinsics, "need SSE4_2"); 2917 __ align(CodeEntryAlignment); 2918 StubCodeMark mark(this, "StubRoutines", "updateBytesCRC32C"); 2919 address start = __ pc(); 2920 2921 //reg.arg int#0 int#1 int#2 int#3 int#4 int#5 float regs 2922 //Windows RCX RDX R8 R9 none none XMM0..XMM3 2923 //Lin / Sol RDI RSI RDX RCX R8 R9 XMM0..XMM7 2924 const Register crc = c_rarg0; // crc 2925 const Register buf = c_rarg1; // source java byte array address 2926 const Register len = c_rarg2; // length 2927 const Register a = rax; 2928 const Register j = r9; 2929 const Register k = r10; 2930 const Register l = r11; 2931 #ifdef _WIN64 2932 const Register y = rdi; 2933 const Register z = rsi; 2934 #else 2935 const Register y = rcx; 2936 const Register z = r8; 2937 #endif 2938 assert_different_registers(crc, buf, len, a, j, k, l, y, z); 2939 2940 BLOCK_COMMENT("Entry:"); 2941 __ enter(); // required for proper stackwalking of RuntimeStub frame 2942 Label L_continue; 2943 2944 if (VM_Version::supports_sse4_1() && VM_Version::supports_avx512_vpclmulqdq() && 2945 VM_Version::supports_avx512bw() && 2946 VM_Version::supports_avx512vl()) { 2947 Label L_doSmall; 2948 2949 __ cmpl(len, 384); 2950 __ jcc(Assembler::lessEqual, L_doSmall); 2951 2952 __ lea(j, ExternalAddress(StubRoutines::x86::crc32c_table_avx512_addr())); 2953 __ kernel_crc32_avx512(crc, buf, len, j, l, k); 2954 2955 __ jmp(L_continue); 2956 2957 __ bind(L_doSmall); 2958 } 2959 #ifdef _WIN64 2960 __ push(y); 2961 __ push(z); 2962 #endif 2963 __ crc32c_ipl_alg2_alt2(crc, buf, len, 2964 a, j, k, 2965 l, y, z, 2966 c_farg0, c_farg1, c_farg2, 2967 is_pclmulqdq_supported); 2968 #ifdef _WIN64 2969 __ pop(z); 2970 __ pop(y); 2971 #endif 2972 2973 __ bind(L_continue); 2974 __ movl(rax, crc); 2975 __ vzeroupper(); 2976 __ leave(); // required for proper stackwalking of RuntimeStub frame 2977 __ ret(0); 2978 2979 return start; 2980 } 2981 2982 2983 /** 2984 * Arguments: 2985 * 2986 * Input: 2987 * c_rarg0 - x address 2988 * c_rarg1 - x length 2989 * c_rarg2 - y address 2990 * c_rarg3 - y length 2991 * not Win64 2992 * c_rarg4 - z address 2993 * c_rarg5 - z length 2994 * Win64 2995 * rsp+40 - z address 2996 * rsp+48 - z length 2997 */ 2998 address StubGenerator::generate_multiplyToLen() { 2999 __ align(CodeEntryAlignment); 3000 StubCodeMark mark(this, "StubRoutines", "multiplyToLen"); 3001 address start = __ pc(); 3002 3003 // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...) 3004 // Unix: rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...) 3005 const Register x = rdi; 3006 const Register xlen = rax; 3007 const Register y = rsi; 3008 const Register ylen = rcx; 3009 const Register z = r8; 3010 const Register zlen = r11; 3011 3012 // Next registers will be saved on stack in multiply_to_len(). 3013 const Register tmp1 = r12; 3014 const Register tmp2 = r13; 3015 const Register tmp3 = r14; 3016 const Register tmp4 = r15; 3017 const Register tmp5 = rbx; 3018 3019 BLOCK_COMMENT("Entry:"); 3020 __ enter(); // required for proper stackwalking of RuntimeStub frame 3021 3022 #ifndef _WIN64 3023 __ movptr(zlen, r9); // Save r9 in r11 - zlen 3024 #endif 3025 setup_arg_regs(4); // x => rdi, xlen => rsi, y => rdx 3026 // ylen => rcx, z => r8, zlen => r11 3027 // r9 and r10 may be used to save non-volatile registers 3028 #ifdef _WIN64 3029 // last 2 arguments (#4, #5) are on stack on Win64 3030 __ movptr(z, Address(rsp, 6 * wordSize)); 3031 __ movptr(zlen, Address(rsp, 7 * wordSize)); 3032 #endif 3033 3034 __ movptr(xlen, rsi); 3035 __ movptr(y, rdx); 3036 __ multiply_to_len(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5); 3037 3038 restore_arg_regs(); 3039 3040 __ leave(); // required for proper stackwalking of RuntimeStub frame 3041 __ ret(0); 3042 3043 return start; 3044 } 3045 3046 /** 3047 * Arguments: 3048 * 3049 * Input: 3050 * c_rarg0 - obja address 3051 * c_rarg1 - objb address 3052 * c_rarg3 - length length 3053 * c_rarg4 - scale log2_array_indxscale 3054 * 3055 * Output: 3056 * rax - int >= mismatched index, < 0 bitwise complement of tail 3057 */ 3058 address StubGenerator::generate_vectorizedMismatch() { 3059 __ align(CodeEntryAlignment); 3060 StubCodeMark mark(this, "StubRoutines", "vectorizedMismatch"); 3061 address start = __ pc(); 3062 3063 BLOCK_COMMENT("Entry:"); 3064 __ enter(); 3065 3066 #ifdef _WIN64 // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...) 3067 const Register scale = c_rarg0; //rcx, will exchange with r9 3068 const Register objb = c_rarg1; //rdx 3069 const Register length = c_rarg2; //r8 3070 const Register obja = c_rarg3; //r9 3071 __ xchgq(obja, scale); //now obja and scale contains the correct contents 3072 3073 const Register tmp1 = r10; 3074 const Register tmp2 = r11; 3075 #endif 3076 #ifndef _WIN64 // Unix: rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...) 3077 const Register obja = c_rarg0; //U:rdi 3078 const Register objb = c_rarg1; //U:rsi 3079 const Register length = c_rarg2; //U:rdx 3080 const Register scale = c_rarg3; //U:rcx 3081 const Register tmp1 = r8; 3082 const Register tmp2 = r9; 3083 #endif 3084 const Register result = rax; //return value 3085 const XMMRegister vec0 = xmm0; 3086 const XMMRegister vec1 = xmm1; 3087 const XMMRegister vec2 = xmm2; 3088 3089 __ vectorized_mismatch(obja, objb, length, scale, result, tmp1, tmp2, vec0, vec1, vec2); 3090 3091 __ vzeroupper(); 3092 __ leave(); 3093 __ ret(0); 3094 3095 return start; 3096 } 3097 3098 /** 3099 * Arguments: 3100 * 3101 // Input: 3102 // c_rarg0 - x address 3103 // c_rarg1 - x length 3104 // c_rarg2 - z address 3105 // c_rarg3 - z length 3106 * 3107 */ 3108 address StubGenerator::generate_squareToLen() { 3109 3110 __ align(CodeEntryAlignment); 3111 StubCodeMark mark(this, "StubRoutines", "squareToLen"); 3112 address start = __ pc(); 3113 3114 // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...) 3115 // Unix: rdi, rsi, rdx, rcx (c_rarg0, c_rarg1, ...) 3116 const Register x = rdi; 3117 const Register len = rsi; 3118 const Register z = r8; 3119 const Register zlen = rcx; 3120 3121 const Register tmp1 = r12; 3122 const Register tmp2 = r13; 3123 const Register tmp3 = r14; 3124 const Register tmp4 = r15; 3125 const Register tmp5 = rbx; 3126 3127 BLOCK_COMMENT("Entry:"); 3128 __ enter(); // required for proper stackwalking of RuntimeStub frame 3129 3130 setup_arg_regs(4); // x => rdi, len => rsi, z => rdx 3131 // zlen => rcx 3132 // r9 and r10 may be used to save non-volatile registers 3133 __ movptr(r8, rdx); 3134 __ square_to_len(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, rdx, rax); 3135 3136 restore_arg_regs(); 3137 3138 __ leave(); // required for proper stackwalking of RuntimeStub frame 3139 __ ret(0); 3140 3141 return start; 3142 } 3143 3144 address StubGenerator::generate_method_entry_barrier() { 3145 __ align(CodeEntryAlignment); 3146 StubCodeMark mark(this, "StubRoutines", "nmethod_entry_barrier"); 3147 address start = __ pc(); 3148 3149 Label deoptimize_label; 3150 3151 __ push(-1); // cookie, this is used for writing the new rsp when deoptimizing 3152 3153 BLOCK_COMMENT("Entry:"); 3154 __ enter(); // save rbp 3155 3156 // save c_rarg0, because we want to use that value. 3157 // We could do without it but then we depend on the number of slots used by pusha 3158 __ push(c_rarg0); 3159 3160 __ lea(c_rarg0, Address(rsp, wordSize * 3)); // 1 for cookie, 1 for rbp, 1 for c_rarg0 - this should be the return address 3161 3162 __ pusha(); 3163 3164 // The method may have floats as arguments, and we must spill them before calling 3165 // the VM runtime. 3166 assert(Argument::n_float_register_parameters_j == 8, "Assumption"); 3167 const int xmm_size = wordSize * 2; 3168 const int xmm_spill_size = xmm_size * Argument::n_float_register_parameters_j; 3169 __ subptr(rsp, xmm_spill_size); 3170 __ movdqu(Address(rsp, xmm_size * 7), xmm7); 3171 __ movdqu(Address(rsp, xmm_size * 6), xmm6); 3172 __ movdqu(Address(rsp, xmm_size * 5), xmm5); 3173 __ movdqu(Address(rsp, xmm_size * 4), xmm4); 3174 __ movdqu(Address(rsp, xmm_size * 3), xmm3); 3175 __ movdqu(Address(rsp, xmm_size * 2), xmm2); 3176 __ movdqu(Address(rsp, xmm_size * 1), xmm1); 3177 __ movdqu(Address(rsp, xmm_size * 0), xmm0); 3178 3179 __ call_VM_leaf(CAST_FROM_FN_PTR(address, static_cast<int (*)(address*)>(BarrierSetNMethod::nmethod_stub_entry_barrier)), 1); 3180 3181 __ movdqu(xmm0, Address(rsp, xmm_size * 0)); 3182 __ movdqu(xmm1, Address(rsp, xmm_size * 1)); 3183 __ movdqu(xmm2, Address(rsp, xmm_size * 2)); 3184 __ movdqu(xmm3, Address(rsp, xmm_size * 3)); 3185 __ movdqu(xmm4, Address(rsp, xmm_size * 4)); 3186 __ movdqu(xmm5, Address(rsp, xmm_size * 5)); 3187 __ movdqu(xmm6, Address(rsp, xmm_size * 6)); 3188 __ movdqu(xmm7, Address(rsp, xmm_size * 7)); 3189 __ addptr(rsp, xmm_spill_size); 3190 3191 __ cmpl(rax, 1); // 1 means deoptimize 3192 __ jcc(Assembler::equal, deoptimize_label); 3193 3194 __ popa(); 3195 __ pop(c_rarg0); 3196 3197 __ leave(); 3198 3199 __ addptr(rsp, 1 * wordSize); // cookie 3200 __ ret(0); 3201 3202 3203 __ BIND(deoptimize_label); 3204 3205 __ popa(); 3206 __ pop(c_rarg0); 3207 3208 __ leave(); 3209 3210 // this can be taken out, but is good for verification purposes. getting a SIGSEGV 3211 // here while still having a correct stack is valuable 3212 __ testptr(rsp, Address(rsp, 0)); 3213 3214 __ movptr(rsp, Address(rsp, 0)); // new rsp was written in the barrier 3215 __ jmp(Address(rsp, -1 * wordSize)); // jmp target should be callers verified_entry_point 3216 3217 return start; 3218 } 3219 3220 /** 3221 * Arguments: 3222 * 3223 * Input: 3224 * c_rarg0 - out address 3225 * c_rarg1 - in address 3226 * c_rarg2 - offset 3227 * c_rarg3 - len 3228 * not Win64 3229 * c_rarg4 - k 3230 * Win64 3231 * rsp+40 - k 3232 */ 3233 address StubGenerator::generate_mulAdd() { 3234 __ align(CodeEntryAlignment); 3235 StubCodeMark mark(this, "StubRoutines", "mulAdd"); 3236 address start = __ pc(); 3237 3238 // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...) 3239 // Unix: rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...) 3240 const Register out = rdi; 3241 const Register in = rsi; 3242 const Register offset = r11; 3243 const Register len = rcx; 3244 const Register k = r8; 3245 3246 // Next registers will be saved on stack in mul_add(). 3247 const Register tmp1 = r12; 3248 const Register tmp2 = r13; 3249 const Register tmp3 = r14; 3250 const Register tmp4 = r15; 3251 const Register tmp5 = rbx; 3252 3253 BLOCK_COMMENT("Entry:"); 3254 __ enter(); // required for proper stackwalking of RuntimeStub frame 3255 3256 setup_arg_regs(4); // out => rdi, in => rsi, offset => rdx 3257 // len => rcx, k => r8 3258 // r9 and r10 may be used to save non-volatile registers 3259 #ifdef _WIN64 3260 // last argument is on stack on Win64 3261 __ movl(k, Address(rsp, 6 * wordSize)); 3262 #endif 3263 __ movptr(r11, rdx); // move offset in rdx to offset(r11) 3264 __ mul_add(out, in, offset, len, k, tmp1, tmp2, tmp3, tmp4, tmp5, rdx, rax); 3265 3266 restore_arg_regs(); 3267 3268 __ leave(); // required for proper stackwalking of RuntimeStub frame 3269 __ ret(0); 3270 3271 return start; 3272 } 3273 3274 address StubGenerator::generate_bigIntegerRightShift() { 3275 __ align(CodeEntryAlignment); 3276 StubCodeMark mark(this, "StubRoutines", "bigIntegerRightShiftWorker"); 3277 address start = __ pc(); 3278 3279 Label Shift512Loop, ShiftTwo, ShiftTwoLoop, ShiftOne, Exit; 3280 // For Unix, the arguments are as follows: rdi, rsi, rdx, rcx, r8. 3281 const Register newArr = rdi; 3282 const Register oldArr = rsi; 3283 const Register newIdx = rdx; 3284 const Register shiftCount = rcx; // It was intentional to have shiftCount in rcx since it is used implicitly for shift. 3285 const Register totalNumIter = r8; 3286 3287 // For windows, we use r9 and r10 as temps to save rdi and rsi. Thus we cannot allocate them for our temps. 3288 // For everything else, we prefer using r9 and r10 since we do not have to save them before use. 3289 const Register tmp1 = r11; // Caller save. 3290 const Register tmp2 = rax; // Caller save. 3291 const Register tmp3 = WIN64_ONLY(r12) NOT_WIN64(r9); // Windows: Callee save. Linux: Caller save. 3292 const Register tmp4 = WIN64_ONLY(r13) NOT_WIN64(r10); // Windows: Callee save. Linux: Caller save. 3293 const Register tmp5 = r14; // Callee save. 3294 const Register tmp6 = r15; 3295 3296 const XMMRegister x0 = xmm0; 3297 const XMMRegister x1 = xmm1; 3298 const XMMRegister x2 = xmm2; 3299 3300 BLOCK_COMMENT("Entry:"); 3301 __ enter(); // required for proper stackwalking of RuntimeStub frame 3302 3303 #ifdef _WIN64 3304 setup_arg_regs(4); 3305 // For windows, since last argument is on stack, we need to move it to the appropriate register. 3306 __ movl(totalNumIter, Address(rsp, 6 * wordSize)); 3307 // Save callee save registers. 3308 __ push(tmp3); 3309 __ push(tmp4); 3310 #endif 3311 __ push(tmp5); 3312 3313 // Rename temps used throughout the code. 3314 const Register idx = tmp1; 3315 const Register nIdx = tmp2; 3316 3317 __ xorl(idx, idx); 3318 3319 // Start right shift from end of the array. 3320 // For example, if #iteration = 4 and newIdx = 1 3321 // then dest[4] = src[4] >> shiftCount | src[3] <<< (shiftCount - 32) 3322 // if #iteration = 4 and newIdx = 0 3323 // then dest[3] = src[4] >> shiftCount | src[3] <<< (shiftCount - 32) 3324 __ movl(idx, totalNumIter); 3325 __ movl(nIdx, idx); 3326 __ addl(nIdx, newIdx); 3327 3328 // If vectorization is enabled, check if the number of iterations is at least 64 3329 // If not, then go to ShifTwo processing 2 iterations 3330 if (VM_Version::supports_avx512_vbmi2()) { 3331 __ cmpptr(totalNumIter, (AVX3Threshold/64)); 3332 __ jcc(Assembler::less, ShiftTwo); 3333 3334 if (AVX3Threshold < 16 * 64) { 3335 __ cmpl(totalNumIter, 16); 3336 __ jcc(Assembler::less, ShiftTwo); 3337 } 3338 __ evpbroadcastd(x0, shiftCount, Assembler::AVX_512bit); 3339 __ subl(idx, 16); 3340 __ subl(nIdx, 16); 3341 __ BIND(Shift512Loop); 3342 __ evmovdqul(x2, Address(oldArr, idx, Address::times_4, 4), Assembler::AVX_512bit); 3343 __ evmovdqul(x1, Address(oldArr, idx, Address::times_4), Assembler::AVX_512bit); 3344 __ vpshrdvd(x2, x1, x0, Assembler::AVX_512bit); 3345 __ evmovdqul(Address(newArr, nIdx, Address::times_4), x2, Assembler::AVX_512bit); 3346 __ subl(nIdx, 16); 3347 __ subl(idx, 16); 3348 __ jcc(Assembler::greaterEqual, Shift512Loop); 3349 __ addl(idx, 16); 3350 __ addl(nIdx, 16); 3351 } 3352 __ BIND(ShiftTwo); 3353 __ cmpl(idx, 2); 3354 __ jcc(Assembler::less, ShiftOne); 3355 __ subl(idx, 2); 3356 __ subl(nIdx, 2); 3357 __ BIND(ShiftTwoLoop); 3358 __ movl(tmp5, Address(oldArr, idx, Address::times_4, 8)); 3359 __ movl(tmp4, Address(oldArr, idx, Address::times_4, 4)); 3360 __ movl(tmp3, Address(oldArr, idx, Address::times_4)); 3361 __ shrdl(tmp5, tmp4); 3362 __ shrdl(tmp4, tmp3); 3363 __ movl(Address(newArr, nIdx, Address::times_4, 4), tmp5); 3364 __ movl(Address(newArr, nIdx, Address::times_4), tmp4); 3365 __ subl(nIdx, 2); 3366 __ subl(idx, 2); 3367 __ jcc(Assembler::greaterEqual, ShiftTwoLoop); 3368 __ addl(idx, 2); 3369 __ addl(nIdx, 2); 3370 3371 // Do the last iteration 3372 __ BIND(ShiftOne); 3373 __ cmpl(idx, 1); 3374 __ jcc(Assembler::less, Exit); 3375 __ subl(idx, 1); 3376 __ subl(nIdx, 1); 3377 __ movl(tmp4, Address(oldArr, idx, Address::times_4, 4)); 3378 __ movl(tmp3, Address(oldArr, idx, Address::times_4)); 3379 __ shrdl(tmp4, tmp3); 3380 __ movl(Address(newArr, nIdx, Address::times_4), tmp4); 3381 __ BIND(Exit); 3382 __ vzeroupper(); 3383 // Restore callee save registers. 3384 __ pop(tmp5); 3385 #ifdef _WIN64 3386 __ pop(tmp4); 3387 __ pop(tmp3); 3388 restore_arg_regs(); 3389 #endif 3390 __ leave(); // required for proper stackwalking of RuntimeStub frame 3391 __ ret(0); 3392 3393 return start; 3394 } 3395 3396 /** 3397 * Arguments: 3398 * 3399 * Input: 3400 * c_rarg0 - newArr address 3401 * c_rarg1 - oldArr address 3402 * c_rarg2 - newIdx 3403 * c_rarg3 - shiftCount 3404 * not Win64 3405 * c_rarg4 - numIter 3406 * Win64 3407 * rsp40 - numIter 3408 */ 3409 address StubGenerator::generate_bigIntegerLeftShift() { 3410 __ align(CodeEntryAlignment); 3411 StubCodeMark mark(this, "StubRoutines", "bigIntegerLeftShiftWorker"); 3412 address start = __ pc(); 3413 3414 Label Shift512Loop, ShiftTwo, ShiftTwoLoop, ShiftOne, Exit; 3415 // For Unix, the arguments are as follows: rdi, rsi, rdx, rcx, r8. 3416 const Register newArr = rdi; 3417 const Register oldArr = rsi; 3418 const Register newIdx = rdx; 3419 const Register shiftCount = rcx; // It was intentional to have shiftCount in rcx since it is used implicitly for shift. 3420 const Register totalNumIter = r8; 3421 // For windows, we use r9 and r10 as temps to save rdi and rsi. Thus we cannot allocate them for our temps. 3422 // For everything else, we prefer using r9 and r10 since we do not have to save them before use. 3423 const Register tmp1 = r11; // Caller save. 3424 const Register tmp2 = rax; // Caller save. 3425 const Register tmp3 = WIN64_ONLY(r12) NOT_WIN64(r9); // Windows: Callee save. Linux: Caller save. 3426 const Register tmp4 = WIN64_ONLY(r13) NOT_WIN64(r10); // Windows: Callee save. Linux: Caller save. 3427 const Register tmp5 = r14; // Callee save. 3428 3429 const XMMRegister x0 = xmm0; 3430 const XMMRegister x1 = xmm1; 3431 const XMMRegister x2 = xmm2; 3432 BLOCK_COMMENT("Entry:"); 3433 __ enter(); // required for proper stackwalking of RuntimeStub frame 3434 3435 #ifdef _WIN64 3436 setup_arg_regs(4); 3437 // For windows, since last argument is on stack, we need to move it to the appropriate register. 3438 __ movl(totalNumIter, Address(rsp, 6 * wordSize)); 3439 // Save callee save registers. 3440 __ push(tmp3); 3441 __ push(tmp4); 3442 #endif 3443 __ push(tmp5); 3444 3445 // Rename temps used throughout the code 3446 const Register idx = tmp1; 3447 const Register numIterTmp = tmp2; 3448 3449 // Start idx from zero. 3450 __ xorl(idx, idx); 3451 // Compute interior pointer for new array. We do this so that we can use same index for both old and new arrays. 3452 __ lea(newArr, Address(newArr, newIdx, Address::times_4)); 3453 __ movl(numIterTmp, totalNumIter); 3454 3455 // If vectorization is enabled, check if the number of iterations is at least 64 3456 // If not, then go to ShiftTwo shifting two numbers at a time 3457 if (VM_Version::supports_avx512_vbmi2()) { 3458 __ cmpl(totalNumIter, (AVX3Threshold/64)); 3459 __ jcc(Assembler::less, ShiftTwo); 3460 3461 if (AVX3Threshold < 16 * 64) { 3462 __ cmpl(totalNumIter, 16); 3463 __ jcc(Assembler::less, ShiftTwo); 3464 } 3465 __ evpbroadcastd(x0, shiftCount, Assembler::AVX_512bit); 3466 __ subl(numIterTmp, 16); 3467 __ BIND(Shift512Loop); 3468 __ evmovdqul(x1, Address(oldArr, idx, Address::times_4), Assembler::AVX_512bit); 3469 __ evmovdqul(x2, Address(oldArr, idx, Address::times_4, 0x4), Assembler::AVX_512bit); 3470 __ vpshldvd(x1, x2, x0, Assembler::AVX_512bit); 3471 __ evmovdqul(Address(newArr, idx, Address::times_4), x1, Assembler::AVX_512bit); 3472 __ addl(idx, 16); 3473 __ subl(numIterTmp, 16); 3474 __ jcc(Assembler::greaterEqual, Shift512Loop); 3475 __ addl(numIterTmp, 16); 3476 } 3477 __ BIND(ShiftTwo); 3478 __ cmpl(totalNumIter, 1); 3479 __ jcc(Assembler::less, Exit); 3480 __ movl(tmp3, Address(oldArr, idx, Address::times_4)); 3481 __ subl(numIterTmp, 2); 3482 __ jcc(Assembler::less, ShiftOne); 3483 3484 __ BIND(ShiftTwoLoop); 3485 __ movl(tmp4, Address(oldArr, idx, Address::times_4, 0x4)); 3486 __ movl(tmp5, Address(oldArr, idx, Address::times_4, 0x8)); 3487 __ shldl(tmp3, tmp4); 3488 __ shldl(tmp4, tmp5); 3489 __ movl(Address(newArr, idx, Address::times_4), tmp3); 3490 __ movl(Address(newArr, idx, Address::times_4, 0x4), tmp4); 3491 __ movl(tmp3, tmp5); 3492 __ addl(idx, 2); 3493 __ subl(numIterTmp, 2); 3494 __ jcc(Assembler::greaterEqual, ShiftTwoLoop); 3495 3496 // Do the last iteration 3497 __ BIND(ShiftOne); 3498 __ addl(numIterTmp, 2); 3499 __ cmpl(numIterTmp, 1); 3500 __ jcc(Assembler::less, Exit); 3501 __ movl(tmp4, Address(oldArr, idx, Address::times_4, 0x4)); 3502 __ shldl(tmp3, tmp4); 3503 __ movl(Address(newArr, idx, Address::times_4), tmp3); 3504 3505 __ BIND(Exit); 3506 __ vzeroupper(); 3507 // Restore callee save registers. 3508 __ pop(tmp5); 3509 #ifdef _WIN64 3510 __ pop(tmp4); 3511 __ pop(tmp3); 3512 restore_arg_regs(); 3513 #endif 3514 __ leave(); // required for proper stackwalking of RuntimeStub frame 3515 __ ret(0); 3516 3517 return start; 3518 } 3519 3520 void StubGenerator::generate_libm_stubs() { 3521 if (UseLibmIntrinsic && InlineIntrinsics) { 3522 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dsin)) { 3523 StubRoutines::_dsin = generate_libmSin(); // from stubGenerator_x86_64_sin.cpp 3524 } 3525 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dcos)) { 3526 StubRoutines::_dcos = generate_libmCos(); // from stubGenerator_x86_64_cos.cpp 3527 } 3528 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dtan)) { 3529 StubRoutines::_dtan = generate_libmTan(); // from stubGenerator_x86_64_tan.cpp 3530 } 3531 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dexp)) { 3532 StubRoutines::_dexp = generate_libmExp(); // from stubGenerator_x86_64_exp.cpp 3533 } 3534 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dpow)) { 3535 StubRoutines::_dpow = generate_libmPow(); // from stubGenerator_x86_64_pow.cpp 3536 } 3537 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dlog)) { 3538 StubRoutines::_dlog = generate_libmLog(); // from stubGenerator_x86_64_log.cpp 3539 } 3540 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dlog10)) { 3541 StubRoutines::_dlog10 = generate_libmLog10(); // from stubGenerator_x86_64_log.cpp 3542 } 3543 } 3544 } 3545 3546 /** 3547 * Arguments: 3548 * 3549 * Input: 3550 * c_rarg0 - float16 jshort 3551 * 3552 * Output: 3553 * xmm0 - float 3554 */ 3555 address StubGenerator::generate_float16ToFloat() { 3556 StubCodeMark mark(this, "StubRoutines", "float16ToFloat"); 3557 3558 address start = __ pc(); 3559 3560 BLOCK_COMMENT("Entry:"); 3561 // No need for RuntimeStub frame since it is called only during JIT compilation 3562 3563 // Load value into xmm0 and convert 3564 __ flt16_to_flt(xmm0, c_rarg0); 3565 3566 __ ret(0); 3567 3568 return start; 3569 } 3570 3571 /** 3572 * Arguments: 3573 * 3574 * Input: 3575 * xmm0 - float 3576 * 3577 * Output: 3578 * rax - float16 jshort 3579 */ 3580 address StubGenerator::generate_floatToFloat16() { 3581 StubCodeMark mark(this, "StubRoutines", "floatToFloat16"); 3582 3583 address start = __ pc(); 3584 3585 BLOCK_COMMENT("Entry:"); 3586 // No need for RuntimeStub frame since it is called only during JIT compilation 3587 3588 // Convert and put result into rax 3589 __ flt_to_flt16(rax, xmm0, xmm1); 3590 3591 __ ret(0); 3592 3593 return start; 3594 } 3595 3596 address StubGenerator::generate_cont_thaw(const char* label, Continuation::thaw_kind kind) { 3597 if (!Continuations::enabled()) return nullptr; 3598 3599 bool return_barrier = Continuation::is_thaw_return_barrier(kind); 3600 bool return_barrier_exception = Continuation::is_thaw_return_barrier_exception(kind); 3601 3602 StubCodeMark mark(this, "StubRoutines", label); 3603 address start = __ pc(); 3604 3605 // TODO: Handle Valhalla return types. May require generating different return barriers. 3606 3607 if (!return_barrier) { 3608 // Pop return address. If we don't do this, we get a drift, 3609 // where the bottom-most frozen frame continuously grows. 3610 __ pop(c_rarg3); 3611 } else { 3612 __ movptr(rsp, Address(r15_thread, JavaThread::cont_entry_offset())); 3613 } 3614 3615 #ifdef ASSERT 3616 { 3617 Label L_good_sp; 3618 __ cmpptr(rsp, Address(r15_thread, JavaThread::cont_entry_offset())); 3619 __ jcc(Assembler::equal, L_good_sp); 3620 __ stop("Incorrect rsp at thaw entry"); 3621 __ BIND(L_good_sp); 3622 } 3623 #endif // ASSERT 3624 3625 if (return_barrier) { 3626 // Preserve possible return value from a method returning to the return barrier. 3627 __ push(rax); 3628 __ push_d(xmm0); 3629 } 3630 3631 __ movptr(c_rarg0, r15_thread); 3632 __ movptr(c_rarg1, (return_barrier ? 1 : 0)); 3633 __ call_VM_leaf(CAST_FROM_FN_PTR(address, Continuation::prepare_thaw), 2); 3634 __ movptr(rbx, rax); 3635 3636 if (return_barrier) { 3637 // Restore return value from a method returning to the return barrier. 3638 // No safepoint in the call to thaw, so even an oop return value should be OK. 3639 __ pop_d(xmm0); 3640 __ pop(rax); 3641 } 3642 3643 #ifdef ASSERT 3644 { 3645 Label L_good_sp; 3646 __ cmpptr(rsp, Address(r15_thread, JavaThread::cont_entry_offset())); 3647 __ jcc(Assembler::equal, L_good_sp); 3648 __ stop("Incorrect rsp after prepare thaw"); 3649 __ BIND(L_good_sp); 3650 } 3651 #endif // ASSERT 3652 3653 // rbx contains the size of the frames to thaw, 0 if overflow or no more frames 3654 Label L_thaw_success; 3655 __ testptr(rbx, rbx); 3656 __ jccb(Assembler::notZero, L_thaw_success); 3657 __ jump(ExternalAddress(StubRoutines::throw_StackOverflowError_entry())); 3658 __ bind(L_thaw_success); 3659 3660 // Make room for the thawed frames and align the stack. 3661 __ subptr(rsp, rbx); 3662 __ andptr(rsp, -StackAlignmentInBytes); 3663 3664 if (return_barrier) { 3665 // Preserve possible return value from a method returning to the return barrier. (Again.) 3666 __ push(rax); 3667 __ push_d(xmm0); 3668 } 3669 3670 // If we want, we can templatize thaw by kind, and have three different entries. 3671 __ movptr(c_rarg0, r15_thread); 3672 __ movptr(c_rarg1, kind); 3673 __ call_VM_leaf(Continuation::thaw_entry(), 2); 3674 __ movptr(rbx, rax); 3675 3676 if (return_barrier) { 3677 // Restore return value from a method returning to the return barrier. (Again.) 3678 // No safepoint in the call to thaw, so even an oop return value should be OK. 3679 __ pop_d(xmm0); 3680 __ pop(rax); 3681 } else { 3682 // Return 0 (success) from doYield. 3683 __ xorptr(rax, rax); 3684 } 3685 3686 // After thawing, rbx is the SP of the yielding frame. 3687 // Move there, and then to saved RBP slot. 3688 __ movptr(rsp, rbx); 3689 __ subptr(rsp, 2*wordSize); 3690 3691 if (return_barrier_exception) { 3692 __ movptr(c_rarg0, r15_thread); 3693 __ movptr(c_rarg1, Address(rsp, wordSize)); // return address 3694 3695 // rax still holds the original exception oop, save it before the call 3696 __ push(rax); 3697 3698 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), 2); 3699 __ movptr(rbx, rax); 3700 3701 // Continue at exception handler: 3702 // rax: exception oop 3703 // rbx: exception handler 3704 // rdx: exception pc 3705 __ pop(rax); 3706 __ verify_oop(rax); 3707 __ pop(rbp); // pop out RBP here too 3708 __ pop(rdx); 3709 __ jmp(rbx); 3710 } else { 3711 // We are "returning" into the topmost thawed frame; see Thaw::push_return_frame 3712 __ pop(rbp); 3713 __ ret(0); 3714 } 3715 3716 return start; 3717 } 3718 3719 address StubGenerator::generate_cont_thaw() { 3720 return generate_cont_thaw("Cont thaw", Continuation::thaw_top); 3721 } 3722 3723 // TODO: will probably need multiple return barriers depending on return type 3724 3725 address StubGenerator::generate_cont_returnBarrier() { 3726 return generate_cont_thaw("Cont thaw return barrier", Continuation::thaw_return_barrier); 3727 } 3728 3729 address StubGenerator::generate_cont_returnBarrier_exception() { 3730 return generate_cont_thaw("Cont thaw return barrier exception", Continuation::thaw_return_barrier_exception); 3731 } 3732 3733 #if INCLUDE_JFR 3734 3735 // For c2: c_rarg0 is junk, call to runtime to write a checkpoint. 3736 // It returns a jobject handle to the event writer. 3737 // The handle is dereferenced and the return value is the event writer oop. 3738 RuntimeStub* StubGenerator::generate_jfr_write_checkpoint() { 3739 enum layout { 3740 rbp_off, 3741 rbpH_off, 3742 return_off, 3743 return_off2, 3744 framesize // inclusive of return address 3745 }; 3746 3747 CodeBuffer code("jfr_write_checkpoint", 1024, 64); 3748 MacroAssembler* _masm = new MacroAssembler(&code); 3749 address start = __ pc(); 3750 3751 __ enter(); 3752 address the_pc = __ pc(); 3753 3754 int frame_complete = the_pc - start; 3755 3756 __ set_last_Java_frame(rsp, rbp, the_pc, rscratch1); 3757 __ movptr(c_rarg0, r15_thread); 3758 __ call_VM_leaf(CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::write_checkpoint), 1); 3759 __ reset_last_Java_frame(true); 3760 3761 // rax is jobject handle result, unpack and process it through a barrier. 3762 __ resolve_global_jobject(rax, r15_thread, c_rarg0); 3763 3764 __ leave(); 3765 __ ret(0); 3766 3767 OopMapSet* oop_maps = new OopMapSet(); 3768 OopMap* map = new OopMap(framesize, 1); 3769 oop_maps->add_gc_map(frame_complete, map); 3770 3771 RuntimeStub* stub = 3772 RuntimeStub::new_runtime_stub(code.name(), 3773 &code, 3774 frame_complete, 3775 (framesize >> (LogBytesPerWord - LogBytesPerInt)), 3776 oop_maps, 3777 false); 3778 return stub; 3779 } 3780 3781 // For c2: call to return a leased buffer. 3782 RuntimeStub* StubGenerator::generate_jfr_return_lease() { 3783 enum layout { 3784 rbp_off, 3785 rbpH_off, 3786 return_off, 3787 return_off2, 3788 framesize // inclusive of return address 3789 }; 3790 3791 CodeBuffer code("jfr_return_lease", 1024, 64); 3792 MacroAssembler* _masm = new MacroAssembler(&code); 3793 address start = __ pc(); 3794 3795 __ enter(); 3796 address the_pc = __ pc(); 3797 3798 int frame_complete = the_pc - start; 3799 3800 __ set_last_Java_frame(rsp, rbp, the_pc, rscratch2); 3801 __ movptr(c_rarg0, r15_thread); 3802 __ call_VM_leaf(CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::return_lease), 1); 3803 __ reset_last_Java_frame(true); 3804 3805 __ leave(); 3806 __ ret(0); 3807 3808 OopMapSet* oop_maps = new OopMapSet(); 3809 OopMap* map = new OopMap(framesize, 1); 3810 oop_maps->add_gc_map(frame_complete, map); 3811 3812 RuntimeStub* stub = 3813 RuntimeStub::new_runtime_stub(code.name(), 3814 &code, 3815 frame_complete, 3816 (framesize >> (LogBytesPerWord - LogBytesPerInt)), 3817 oop_maps, 3818 false); 3819 return stub; 3820 } 3821 3822 #endif // INCLUDE_JFR 3823 3824 // Continuation point for throwing of implicit exceptions that are 3825 // not handled in the current activation. Fabricates an exception 3826 // oop and initiates normal exception dispatching in this 3827 // frame. Since we need to preserve callee-saved values (currently 3828 // only for C2, but done for C1 as well) we need a callee-saved oop 3829 // map and therefore have to make these stubs into RuntimeStubs 3830 // rather than BufferBlobs. If the compiler needs all registers to 3831 // be preserved between the fault point and the exception handler 3832 // then it must assume responsibility for that in 3833 // AbstractCompiler::continuation_for_implicit_null_exception or 3834 // continuation_for_implicit_division_by_zero_exception. All other 3835 // implicit exceptions (e.g., NullPointerException or 3836 // AbstractMethodError on entry) are either at call sites or 3837 // otherwise assume that stack unwinding will be initiated, so 3838 // caller saved registers were assumed volatile in the compiler. 3839 address StubGenerator::generate_throw_exception(const char* name, 3840 address runtime_entry, 3841 Register arg1, 3842 Register arg2) { 3843 // Information about frame layout at time of blocking runtime call. 3844 // Note that we only have to preserve callee-saved registers since 3845 // the compilers are responsible for supplying a continuation point 3846 // if they expect all registers to be preserved. 3847 enum layout { 3848 rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt, 3849 rbp_off2, 3850 return_off, 3851 return_off2, 3852 framesize // inclusive of return address 3853 }; 3854 3855 int insts_size = 512; 3856 int locs_size = 64; 3857 3858 CodeBuffer code(name, insts_size, locs_size); 3859 OopMapSet* oop_maps = new OopMapSet(); 3860 MacroAssembler* _masm = new MacroAssembler(&code); 3861 3862 address start = __ pc(); 3863 3864 // This is an inlined and slightly modified version of call_VM 3865 // which has the ability to fetch the return PC out of 3866 // thread-local storage and also sets up last_Java_sp slightly 3867 // differently than the real call_VM 3868 3869 __ enter(); // required for proper stackwalking of RuntimeStub frame 3870 3871 assert(is_even(framesize/2), "sp not 16-byte aligned"); 3872 3873 // return address and rbp are already in place 3874 __ subptr(rsp, (framesize-4) << LogBytesPerInt); // prolog 3875 3876 int frame_complete = __ pc() - start; 3877 3878 // Set up last_Java_sp and last_Java_fp 3879 address the_pc = __ pc(); 3880 __ set_last_Java_frame(rsp, rbp, the_pc, rscratch1); 3881 __ andptr(rsp, -(StackAlignmentInBytes)); // Align stack 3882 3883 // Call runtime 3884 if (arg1 != noreg) { 3885 assert(arg2 != c_rarg1, "clobbered"); 3886 __ movptr(c_rarg1, arg1); 3887 } 3888 if (arg2 != noreg) { 3889 __ movptr(c_rarg2, arg2); 3890 } 3891 __ movptr(c_rarg0, r15_thread); 3892 BLOCK_COMMENT("call runtime_entry"); 3893 __ call(RuntimeAddress(runtime_entry)); 3894 3895 // Generate oop map 3896 OopMap* map = new OopMap(framesize, 0); 3897 3898 oop_maps->add_gc_map(the_pc - start, map); 3899 3900 __ reset_last_Java_frame(true); 3901 3902 __ leave(); // required for proper stackwalking of RuntimeStub frame 3903 3904 // check for pending exceptions 3905 #ifdef ASSERT 3906 Label L; 3907 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), NULL_WORD); 3908 __ jcc(Assembler::notEqual, L); 3909 __ should_not_reach_here(); 3910 __ bind(L); 3911 #endif // ASSERT 3912 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 3913 3914 3915 // codeBlob framesize is in words (not VMRegImpl::slot_size) 3916 RuntimeStub* stub = 3917 RuntimeStub::new_runtime_stub(name, 3918 &code, 3919 frame_complete, 3920 (framesize >> (LogBytesPerWord - LogBytesPerInt)), 3921 oop_maps, false); 3922 return stub->entry_point(); 3923 } 3924 3925 void StubGenerator::create_control_words() { 3926 // Round to nearest, 64-bit mode, exceptions masked 3927 StubRoutines::x86::_mxcsr_std = 0x1F80; 3928 // Round to zero, 64-bit mode, exceptions masked 3929 StubRoutines::x86::_mxcsr_rz = 0x7F80; 3930 } 3931 3932 // Initialization 3933 void StubGenerator::generate_initial_stubs() { 3934 // Generates all stubs and initializes the entry points 3935 3936 // This platform-specific settings are needed by generate_call_stub() 3937 create_control_words(); 3938 3939 // Initialize table for unsafe copy memeory check. 3940 if (UnsafeCopyMemory::_table == nullptr) { 3941 UnsafeCopyMemory::create_table(16); 3942 } 3943 3944 // entry points that exist in all platforms Note: This is code 3945 // that could be shared among different platforms - however the 3946 // benefit seems to be smaller than the disadvantage of having a 3947 // much more complicated generator structure. See also comment in 3948 // stubRoutines.hpp. 3949 3950 StubRoutines::_forward_exception_entry = generate_forward_exception(); 3951 3952 // Generate these first because they are called from other stubs 3953 if (InlineTypeReturnedAsFields) { 3954 StubRoutines::_load_inline_type_fields_in_regs = 3955 generate_return_value_stub(CAST_FROM_FN_PTR(address, SharedRuntime::load_inline_type_fields_in_regs), 3956 "load_inline_type_fields_in_regs", false); 3957 StubRoutines::_store_inline_type_fields_to_buf = 3958 generate_return_value_stub(CAST_FROM_FN_PTR(address, SharedRuntime::store_inline_type_fields_to_buf), 3959 "store_inline_type_fields_to_buf", true); 3960 } 3961 3962 StubRoutines::_call_stub_entry = 3963 generate_call_stub(StubRoutines::_call_stub_return_address); 3964 3965 // is referenced by megamorphic call 3966 StubRoutines::_catch_exception_entry = generate_catch_exception(); 3967 3968 // atomic calls 3969 StubRoutines::_fence_entry = generate_orderaccess_fence(); 3970 3971 // platform dependent 3972 StubRoutines::x86::_get_previous_sp_entry = generate_get_previous_sp(); 3973 3974 StubRoutines::x86::_verify_mxcsr_entry = generate_verify_mxcsr(); 3975 3976 StubRoutines::x86::_f2i_fixup = generate_f2i_fixup(); 3977 StubRoutines::x86::_f2l_fixup = generate_f2l_fixup(); 3978 StubRoutines::x86::_d2i_fixup = generate_d2i_fixup(); 3979 StubRoutines::x86::_d2l_fixup = generate_d2l_fixup(); 3980 3981 StubRoutines::x86::_float_sign_mask = generate_fp_mask("float_sign_mask", 0x7FFFFFFF7FFFFFFF); 3982 StubRoutines::x86::_float_sign_flip = generate_fp_mask("float_sign_flip", 0x8000000080000000); 3983 StubRoutines::x86::_double_sign_mask = generate_fp_mask("double_sign_mask", 0x7FFFFFFFFFFFFFFF); 3984 StubRoutines::x86::_double_sign_flip = generate_fp_mask("double_sign_flip", 0x8000000000000000); 3985 3986 // Build this early so it's available for the interpreter. 3987 StubRoutines::_throw_StackOverflowError_entry = 3988 generate_throw_exception("StackOverflowError throw_exception", 3989 CAST_FROM_FN_PTR(address, 3990 SharedRuntime:: 3991 throw_StackOverflowError)); 3992 StubRoutines::_throw_delayed_StackOverflowError_entry = 3993 generate_throw_exception("delayed StackOverflowError throw_exception", 3994 CAST_FROM_FN_PTR(address, 3995 SharedRuntime:: 3996 throw_delayed_StackOverflowError)); 3997 if (UseCRC32Intrinsics) { 3998 // set table address before stub generation which use it 3999 StubRoutines::_crc_table_adr = (address)StubRoutines::x86::_crc_table; 4000 StubRoutines::_updateBytesCRC32 = generate_updateBytesCRC32(); 4001 } 4002 4003 if (UseCRC32CIntrinsics) { 4004 bool supports_clmul = VM_Version::supports_clmul(); 4005 StubRoutines::x86::generate_CRC32C_table(supports_clmul); 4006 StubRoutines::_crc32c_table_addr = (address)StubRoutines::x86::_crc32c_table; 4007 StubRoutines::_updateBytesCRC32C = generate_updateBytesCRC32C(supports_clmul); 4008 } 4009 4010 if (VM_Version::supports_float16()) { 4011 // For results consistency both intrinsics should be enabled. 4012 // vmIntrinsics checks InlineIntrinsics flag, no need to check it here. 4013 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_float16ToFloat) && 4014 vmIntrinsics::is_intrinsic_available(vmIntrinsics::_floatToFloat16)) { 4015 StubRoutines::_hf2f = generate_float16ToFloat(); 4016 StubRoutines::_f2hf = generate_floatToFloat16(); 4017 } 4018 } 4019 4020 generate_libm_stubs(); 4021 4022 StubRoutines::_fmod = generate_libmFmod(); // from stubGenerator_x86_64_fmod.cpp 4023 } 4024 4025 // Call here from the interpreter or compiled code to either load 4026 // multiple returned values from the inline type instance being 4027 // returned to registers or to store returned values to a newly 4028 // allocated inline type instance. 4029 // Register is a class, but it would be assigned numerical value. 4030 // "0" is assigned for xmm0. Thus we need to ignore -Wnonnull. 4031 PRAGMA_DIAG_PUSH 4032 PRAGMA_NONNULL_IGNORED 4033 address StubGenerator::generate_return_value_stub(address destination, const char* name, bool has_res) { 4034 // We need to save all registers the calling convention may use so 4035 // the runtime calls read or update those registers. This needs to 4036 // be in sync with SharedRuntime::java_return_convention(). 4037 enum layout { 4038 pad_off = frame::arg_reg_save_area_bytes/BytesPerInt, pad_off_2, 4039 rax_off, rax_off_2, 4040 j_rarg5_off, j_rarg5_2, 4041 j_rarg4_off, j_rarg4_2, 4042 j_rarg3_off, j_rarg3_2, 4043 j_rarg2_off, j_rarg2_2, 4044 j_rarg1_off, j_rarg1_2, 4045 j_rarg0_off, j_rarg0_2, 4046 j_farg0_off, j_farg0_2, 4047 j_farg1_off, j_farg1_2, 4048 j_farg2_off, j_farg2_2, 4049 j_farg3_off, j_farg3_2, 4050 j_farg4_off, j_farg4_2, 4051 j_farg5_off, j_farg5_2, 4052 j_farg6_off, j_farg6_2, 4053 j_farg7_off, j_farg7_2, 4054 rbp_off, rbp_off_2, 4055 return_off, return_off_2, 4056 4057 framesize 4058 }; 4059 4060 CodeBuffer buffer(name, 1000, 512); 4061 MacroAssembler* _masm = new MacroAssembler(&buffer); 4062 4063 int frame_size_in_bytes = align_up(framesize*BytesPerInt, 16); 4064 assert(frame_size_in_bytes == framesize*BytesPerInt, "misaligned"); 4065 int frame_size_in_slots = frame_size_in_bytes / BytesPerInt; 4066 int frame_size_in_words = frame_size_in_bytes / wordSize; 4067 4068 OopMapSet *oop_maps = new OopMapSet(); 4069 OopMap* map = new OopMap(frame_size_in_slots, 0); 4070 4071 map->set_callee_saved(VMRegImpl::stack2reg(rax_off), rax->as_VMReg()); 4072 map->set_callee_saved(VMRegImpl::stack2reg(j_rarg5_off), j_rarg5->as_VMReg()); 4073 map->set_callee_saved(VMRegImpl::stack2reg(j_rarg4_off), j_rarg4->as_VMReg()); 4074 map->set_callee_saved(VMRegImpl::stack2reg(j_rarg3_off), j_rarg3->as_VMReg()); 4075 map->set_callee_saved(VMRegImpl::stack2reg(j_rarg2_off), j_rarg2->as_VMReg()); 4076 map->set_callee_saved(VMRegImpl::stack2reg(j_rarg1_off), j_rarg1->as_VMReg()); 4077 map->set_callee_saved(VMRegImpl::stack2reg(j_rarg0_off), j_rarg0->as_VMReg()); 4078 map->set_callee_saved(VMRegImpl::stack2reg(j_farg0_off), j_farg0->as_VMReg()); 4079 map->set_callee_saved(VMRegImpl::stack2reg(j_farg1_off), j_farg1->as_VMReg()); 4080 map->set_callee_saved(VMRegImpl::stack2reg(j_farg2_off), j_farg2->as_VMReg()); 4081 map->set_callee_saved(VMRegImpl::stack2reg(j_farg3_off), j_farg3->as_VMReg()); 4082 map->set_callee_saved(VMRegImpl::stack2reg(j_farg4_off), j_farg4->as_VMReg()); 4083 map->set_callee_saved(VMRegImpl::stack2reg(j_farg5_off), j_farg5->as_VMReg()); 4084 map->set_callee_saved(VMRegImpl::stack2reg(j_farg6_off), j_farg6->as_VMReg()); 4085 map->set_callee_saved(VMRegImpl::stack2reg(j_farg7_off), j_farg7->as_VMReg()); 4086 4087 int start = __ offset(); 4088 4089 __ subptr(rsp, frame_size_in_bytes - 8 /* return address*/); 4090 4091 __ movptr(Address(rsp, rbp_off * BytesPerInt), rbp); 4092 __ movdbl(Address(rsp, j_farg7_off * BytesPerInt), j_farg7); 4093 __ movdbl(Address(rsp, j_farg6_off * BytesPerInt), j_farg6); 4094 __ movdbl(Address(rsp, j_farg5_off * BytesPerInt), j_farg5); 4095 __ movdbl(Address(rsp, j_farg4_off * BytesPerInt), j_farg4); 4096 __ movdbl(Address(rsp, j_farg3_off * BytesPerInt), j_farg3); 4097 __ movdbl(Address(rsp, j_farg2_off * BytesPerInt), j_farg2); 4098 __ movdbl(Address(rsp, j_farg1_off * BytesPerInt), j_farg1); 4099 __ movdbl(Address(rsp, j_farg0_off * BytesPerInt), j_farg0); 4100 4101 __ movptr(Address(rsp, j_rarg0_off * BytesPerInt), j_rarg0); 4102 __ movptr(Address(rsp, j_rarg1_off * BytesPerInt), j_rarg1); 4103 __ movptr(Address(rsp, j_rarg2_off * BytesPerInt), j_rarg2); 4104 __ movptr(Address(rsp, j_rarg3_off * BytesPerInt), j_rarg3); 4105 __ movptr(Address(rsp, j_rarg4_off * BytesPerInt), j_rarg4); 4106 __ movptr(Address(rsp, j_rarg5_off * BytesPerInt), j_rarg5); 4107 __ movptr(Address(rsp, rax_off * BytesPerInt), rax); 4108 4109 int frame_complete = __ offset(); 4110 4111 __ set_last_Java_frame(noreg, noreg, nullptr, rscratch1); 4112 4113 __ mov(c_rarg0, r15_thread); 4114 __ mov(c_rarg1, rax); 4115 4116 __ call(RuntimeAddress(destination)); 4117 4118 // Set an oopmap for the call site. 4119 4120 oop_maps->add_gc_map( __ offset() - start, map); 4121 4122 // clear last_Java_sp 4123 __ reset_last_Java_frame(false); 4124 4125 __ movptr(rbp, Address(rsp, rbp_off * BytesPerInt)); 4126 __ movdbl(j_farg7, Address(rsp, j_farg7_off * BytesPerInt)); 4127 __ movdbl(j_farg6, Address(rsp, j_farg6_off * BytesPerInt)); 4128 __ movdbl(j_farg5, Address(rsp, j_farg5_off * BytesPerInt)); 4129 __ movdbl(j_farg4, Address(rsp, j_farg4_off * BytesPerInt)); 4130 __ movdbl(j_farg3, Address(rsp, j_farg3_off * BytesPerInt)); 4131 __ movdbl(j_farg2, Address(rsp, j_farg2_off * BytesPerInt)); 4132 __ movdbl(j_farg1, Address(rsp, j_farg1_off * BytesPerInt)); 4133 __ movdbl(j_farg0, Address(rsp, j_farg0_off * BytesPerInt)); 4134 4135 __ movptr(j_rarg0, Address(rsp, j_rarg0_off * BytesPerInt)); 4136 __ movptr(j_rarg1, Address(rsp, j_rarg1_off * BytesPerInt)); 4137 __ movptr(j_rarg2, Address(rsp, j_rarg2_off * BytesPerInt)); 4138 __ movptr(j_rarg3, Address(rsp, j_rarg3_off * BytesPerInt)); 4139 __ movptr(j_rarg4, Address(rsp, j_rarg4_off * BytesPerInt)); 4140 __ movptr(j_rarg5, Address(rsp, j_rarg5_off * BytesPerInt)); 4141 __ movptr(rax, Address(rsp, rax_off * BytesPerInt)); 4142 4143 __ addptr(rsp, frame_size_in_bytes-8); 4144 4145 // check for pending exceptions 4146 Label pending; 4147 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD); 4148 __ jcc(Assembler::notEqual, pending); 4149 4150 if (has_res) { 4151 __ get_vm_result(rax, r15_thread); 4152 } 4153 4154 __ ret(0); 4155 4156 __ bind(pending); 4157 4158 __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset())); 4159 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 4160 4161 // ------------- 4162 // make sure all code is generated 4163 _masm->flush(); 4164 4165 RuntimeStub* stub = RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_words, oop_maps, false); 4166 return stub->entry_point(); 4167 } 4168 4169 void StubGenerator::generate_continuation_stubs() { 4170 // Continuation stubs: 4171 StubRoutines::_cont_thaw = generate_cont_thaw(); 4172 StubRoutines::_cont_returnBarrier = generate_cont_returnBarrier(); 4173 StubRoutines::_cont_returnBarrierExc = generate_cont_returnBarrier_exception(); 4174 4175 JFR_ONLY(generate_jfr_stubs();) 4176 } 4177 4178 #if INCLUDE_JFR 4179 void StubGenerator::generate_jfr_stubs() { 4180 StubRoutines::_jfr_write_checkpoint_stub = generate_jfr_write_checkpoint(); 4181 StubRoutines::_jfr_write_checkpoint = StubRoutines::_jfr_write_checkpoint_stub->entry_point(); 4182 StubRoutines::_jfr_return_lease_stub = generate_jfr_return_lease(); 4183 StubRoutines::_jfr_return_lease = StubRoutines::_jfr_return_lease_stub->entry_point(); 4184 } 4185 #endif 4186 4187 void StubGenerator::generate_final_stubs() { 4188 // Generates the rest of stubs and initializes the entry points 4189 4190 // These entry points require SharedInfo::stack0 to be set up in 4191 // non-core builds and need to be relocatable, so they each 4192 // fabricate a RuntimeStub internally. 4193 StubRoutines::_throw_AbstractMethodError_entry = 4194 generate_throw_exception("AbstractMethodError throw_exception", 4195 CAST_FROM_FN_PTR(address, 4196 SharedRuntime:: 4197 throw_AbstractMethodError)); 4198 4199 StubRoutines::_throw_IncompatibleClassChangeError_entry = 4200 generate_throw_exception("IncompatibleClassChangeError throw_exception", 4201 CAST_FROM_FN_PTR(address, 4202 SharedRuntime:: 4203 throw_IncompatibleClassChangeError)); 4204 4205 StubRoutines::_throw_NullPointerException_at_call_entry = 4206 generate_throw_exception("NullPointerException at call throw_exception", 4207 CAST_FROM_FN_PTR(address, 4208 SharedRuntime:: 4209 throw_NullPointerException_at_call)); 4210 4211 // support for verify_oop (must happen after universe_init) 4212 if (VerifyOops) { 4213 StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop(); 4214 } 4215 4216 // data cache line writeback 4217 StubRoutines::_data_cache_writeback = generate_data_cache_writeback(); 4218 StubRoutines::_data_cache_writeback_sync = generate_data_cache_writeback_sync(); 4219 4220 // arraycopy stubs used by compilers 4221 generate_arraycopy_stubs(); 4222 4223 BarrierSetNMethod* bs_nm = BarrierSet::barrier_set()->barrier_set_nmethod(); 4224 if (bs_nm != nullptr) { 4225 StubRoutines::x86::_method_entry_barrier = generate_method_entry_barrier(); 4226 } 4227 4228 if (UseVectorizedMismatchIntrinsic) { 4229 StubRoutines::_vectorizedMismatch = generate_vectorizedMismatch(); 4230 } 4231 } 4232 4233 void StubGenerator::generate_compiler_stubs() { 4234 #if COMPILER2_OR_JVMCI 4235 4236 // Entry points that are C2 compiler specific. 4237 4238 StubRoutines::x86::_vector_float_sign_mask = generate_vector_mask("vector_float_sign_mask", 0x7FFFFFFF7FFFFFFF); 4239 StubRoutines::x86::_vector_float_sign_flip = generate_vector_mask("vector_float_sign_flip", 0x8000000080000000); 4240 StubRoutines::x86::_vector_double_sign_mask = generate_vector_mask("vector_double_sign_mask", 0x7FFFFFFFFFFFFFFF); 4241 StubRoutines::x86::_vector_double_sign_flip = generate_vector_mask("vector_double_sign_flip", 0x8000000000000000); 4242 StubRoutines::x86::_vector_all_bits_set = generate_vector_mask("vector_all_bits_set", 0xFFFFFFFFFFFFFFFF); 4243 StubRoutines::x86::_vector_int_mask_cmp_bits = generate_vector_mask("vector_int_mask_cmp_bits", 0x0000000100000001); 4244 StubRoutines::x86::_vector_short_to_byte_mask = generate_vector_mask("vector_short_to_byte_mask", 0x00ff00ff00ff00ff); 4245 StubRoutines::x86::_vector_byte_perm_mask = generate_vector_byte_perm_mask("vector_byte_perm_mask"); 4246 StubRoutines::x86::_vector_int_to_byte_mask = generate_vector_mask("vector_int_to_byte_mask", 0x000000ff000000ff); 4247 StubRoutines::x86::_vector_int_to_short_mask = generate_vector_mask("vector_int_to_short_mask", 0x0000ffff0000ffff); 4248 StubRoutines::x86::_vector_32_bit_mask = generate_vector_custom_i32("vector_32_bit_mask", Assembler::AVX_512bit, 4249 0xFFFFFFFF, 0, 0, 0); 4250 StubRoutines::x86::_vector_64_bit_mask = generate_vector_custom_i32("vector_64_bit_mask", Assembler::AVX_512bit, 4251 0xFFFFFFFF, 0xFFFFFFFF, 0, 0); 4252 StubRoutines::x86::_vector_int_shuffle_mask = generate_vector_mask("vector_int_shuffle_mask", 0x0302010003020100); 4253 StubRoutines::x86::_vector_byte_shuffle_mask = generate_vector_byte_shuffle_mask("vector_byte_shuffle_mask"); 4254 StubRoutines::x86::_vector_short_shuffle_mask = generate_vector_mask("vector_short_shuffle_mask", 0x0100010001000100); 4255 StubRoutines::x86::_vector_long_shuffle_mask = generate_vector_mask("vector_long_shuffle_mask", 0x0000000100000000); 4256 StubRoutines::x86::_vector_long_sign_mask = generate_vector_mask("vector_long_sign_mask", 0x8000000000000000); 4257 StubRoutines::x86::_vector_iota_indices = generate_iota_indices("iota_indices"); 4258 StubRoutines::x86::_vector_count_leading_zeros_lut = generate_count_leading_zeros_lut("count_leading_zeros_lut"); 4259 StubRoutines::x86::_vector_reverse_bit_lut = generate_vector_reverse_bit_lut("reverse_bit_lut"); 4260 StubRoutines::x86::_vector_reverse_byte_perm_mask_long = generate_vector_reverse_byte_perm_mask_long("perm_mask_long"); 4261 StubRoutines::x86::_vector_reverse_byte_perm_mask_int = generate_vector_reverse_byte_perm_mask_int("perm_mask_int"); 4262 StubRoutines::x86::_vector_reverse_byte_perm_mask_short = generate_vector_reverse_byte_perm_mask_short("perm_mask_short"); 4263 4264 if (VM_Version::supports_avx2() && !VM_Version::supports_avx512_vpopcntdq()) { 4265 // lut implementation influenced by counting 1s algorithm from section 5-1 of Hackers' Delight. 4266 StubRoutines::x86::_vector_popcount_lut = generate_popcount_avx_lut("popcount_lut"); 4267 } 4268 4269 generate_aes_stubs(); 4270 4271 generate_ghash_stubs(); 4272 4273 generate_chacha_stubs(); 4274 4275 if (UseAdler32Intrinsics) { 4276 StubRoutines::_updateBytesAdler32 = generate_updateBytesAdler32(); 4277 } 4278 4279 if (UsePoly1305Intrinsics) { 4280 StubRoutines::_poly1305_processBlocks = generate_poly1305_processBlocks(); 4281 } 4282 4283 if (UseMD5Intrinsics) { 4284 StubRoutines::_md5_implCompress = generate_md5_implCompress(false, "md5_implCompress"); 4285 StubRoutines::_md5_implCompressMB = generate_md5_implCompress(true, "md5_implCompressMB"); 4286 } 4287 4288 if (UseSHA1Intrinsics) { 4289 StubRoutines::x86::_upper_word_mask_addr = generate_upper_word_mask(); 4290 StubRoutines::x86::_shuffle_byte_flip_mask_addr = generate_shuffle_byte_flip_mask(); 4291 StubRoutines::_sha1_implCompress = generate_sha1_implCompress(false, "sha1_implCompress"); 4292 StubRoutines::_sha1_implCompressMB = generate_sha1_implCompress(true, "sha1_implCompressMB"); 4293 } 4294 4295 if (UseSHA256Intrinsics) { 4296 StubRoutines::x86::_k256_adr = (address)StubRoutines::x86::_k256; 4297 char* dst = (char*)StubRoutines::x86::_k256_W; 4298 char* src = (char*)StubRoutines::x86::_k256; 4299 for (int ii = 0; ii < 16; ++ii) { 4300 memcpy(dst + 32 * ii, src + 16 * ii, 16); 4301 memcpy(dst + 32 * ii + 16, src + 16 * ii, 16); 4302 } 4303 StubRoutines::x86::_k256_W_adr = (address)StubRoutines::x86::_k256_W; 4304 StubRoutines::x86::_pshuffle_byte_flip_mask_addr = generate_pshuffle_byte_flip_mask(); 4305 StubRoutines::_sha256_implCompress = generate_sha256_implCompress(false, "sha256_implCompress"); 4306 StubRoutines::_sha256_implCompressMB = generate_sha256_implCompress(true, "sha256_implCompressMB"); 4307 } 4308 4309 if (UseSHA512Intrinsics) { 4310 StubRoutines::x86::_k512_W_addr = (address)StubRoutines::x86::_k512_W; 4311 StubRoutines::x86::_pshuffle_byte_flip_mask_addr_sha512 = generate_pshuffle_byte_flip_mask_sha512(); 4312 StubRoutines::_sha512_implCompress = generate_sha512_implCompress(false, "sha512_implCompress"); 4313 StubRoutines::_sha512_implCompressMB = generate_sha512_implCompress(true, "sha512_implCompressMB"); 4314 } 4315 4316 if (UseBASE64Intrinsics) { 4317 if(VM_Version::supports_avx2()) { 4318 StubRoutines::x86::_avx2_shuffle_base64 = base64_avx2_shuffle_addr(); 4319 StubRoutines::x86::_avx2_input_mask_base64 = base64_avx2_input_mask_addr(); 4320 StubRoutines::x86::_avx2_lut_base64 = base64_avx2_lut_addr(); 4321 StubRoutines::x86::_avx2_decode_tables_base64 = base64_AVX2_decode_tables_addr(); 4322 StubRoutines::x86::_avx2_decode_lut_tables_base64 = base64_AVX2_decode_LUT_tables_addr(); 4323 } 4324 StubRoutines::x86::_encoding_table_base64 = base64_encoding_table_addr(); 4325 if (VM_Version::supports_avx512_vbmi()) { 4326 StubRoutines::x86::_shuffle_base64 = base64_shuffle_addr(); 4327 StubRoutines::x86::_lookup_lo_base64 = base64_vbmi_lookup_lo_addr(); 4328 StubRoutines::x86::_lookup_hi_base64 = base64_vbmi_lookup_hi_addr(); 4329 StubRoutines::x86::_lookup_lo_base64url = base64_vbmi_lookup_lo_url_addr(); 4330 StubRoutines::x86::_lookup_hi_base64url = base64_vbmi_lookup_hi_url_addr(); 4331 StubRoutines::x86::_pack_vec_base64 = base64_vbmi_pack_vec_addr(); 4332 StubRoutines::x86::_join_0_1_base64 = base64_vbmi_join_0_1_addr(); 4333 StubRoutines::x86::_join_1_2_base64 = base64_vbmi_join_1_2_addr(); 4334 StubRoutines::x86::_join_2_3_base64 = base64_vbmi_join_2_3_addr(); 4335 } 4336 StubRoutines::x86::_decoding_table_base64 = base64_decoding_table_addr(); 4337 StubRoutines::_base64_encodeBlock = generate_base64_encodeBlock(); 4338 StubRoutines::_base64_decodeBlock = generate_base64_decodeBlock(); 4339 } 4340 4341 #ifdef COMPILER2 4342 if (UseMultiplyToLenIntrinsic) { 4343 StubRoutines::_multiplyToLen = generate_multiplyToLen(); 4344 } 4345 if (UseSquareToLenIntrinsic) { 4346 StubRoutines::_squareToLen = generate_squareToLen(); 4347 } 4348 if (UseMulAddIntrinsic) { 4349 StubRoutines::_mulAdd = generate_mulAdd(); 4350 } 4351 if (VM_Version::supports_avx512_vbmi2()) { 4352 StubRoutines::_bigIntegerRightShiftWorker = generate_bigIntegerRightShift(); 4353 StubRoutines::_bigIntegerLeftShiftWorker = generate_bigIntegerLeftShift(); 4354 } 4355 if (UseMontgomeryMultiplyIntrinsic) { 4356 StubRoutines::_montgomeryMultiply 4357 = CAST_FROM_FN_PTR(address, SharedRuntime::montgomery_multiply); 4358 } 4359 if (UseMontgomerySquareIntrinsic) { 4360 StubRoutines::_montgomerySquare 4361 = CAST_FROM_FN_PTR(address, SharedRuntime::montgomery_square); 4362 } 4363 4364 // Get svml stub routine addresses 4365 void *libjsvml = nullptr; 4366 char ebuf[1024]; 4367 char dll_name[JVM_MAXPATHLEN]; 4368 if (os::dll_locate_lib(dll_name, sizeof(dll_name), Arguments::get_dll_dir(), "jsvml")) { 4369 libjsvml = os::dll_load(dll_name, ebuf, sizeof ebuf); 4370 } 4371 if (libjsvml != nullptr) { 4372 // SVML method naming convention 4373 // All the methods are named as __jsvml_op<T><N>_ha_<VV> 4374 // Where: 4375 // ha stands for high accuracy 4376 // <T> is optional to indicate float/double 4377 // Set to f for vector float operation 4378 // Omitted for vector double operation 4379 // <N> is the number of elements in the vector 4380 // 1, 2, 4, 8, 16 4381 // e.g. 128 bit float vector has 4 float elements 4382 // <VV> indicates the avx/sse level: 4383 // z0 is AVX512, l9 is AVX2, e9 is AVX1 and ex is for SSE2 4384 // e.g. __jsvml_expf16_ha_z0 is the method for computing 16 element vector float exp using AVX 512 insns 4385 // __jsvml_exp8_ha_z0 is the method for computing 8 element vector double exp using AVX 512 insns 4386 4387 log_info(library)("Loaded library %s, handle " INTPTR_FORMAT, JNI_LIB_PREFIX "jsvml" JNI_LIB_SUFFIX, p2i(libjsvml)); 4388 if (UseAVX > 2) { 4389 for (int op = 0; op < VectorSupport::NUM_SVML_OP; op++) { 4390 int vop = VectorSupport::VECTOR_OP_SVML_START + op; 4391 if ((!VM_Version::supports_avx512dq()) && 4392 (vop == VectorSupport::VECTOR_OP_LOG || vop == VectorSupport::VECTOR_OP_LOG10 || vop == VectorSupport::VECTOR_OP_POW)) { 4393 continue; 4394 } 4395 snprintf(ebuf, sizeof(ebuf), "__jsvml_%sf16_ha_z0", VectorSupport::svmlname[op]); 4396 StubRoutines::_vector_f_math[VectorSupport::VEC_SIZE_512][op] = (address)os::dll_lookup(libjsvml, ebuf); 4397 4398 snprintf(ebuf, sizeof(ebuf), "__jsvml_%s8_ha_z0", VectorSupport::svmlname[op]); 4399 StubRoutines::_vector_d_math[VectorSupport::VEC_SIZE_512][op] = (address)os::dll_lookup(libjsvml, ebuf); 4400 } 4401 } 4402 const char* avx_sse_str = (UseAVX >= 2) ? "l9" : ((UseAVX == 1) ? "e9" : "ex"); 4403 for (int op = 0; op < VectorSupport::NUM_SVML_OP; op++) { 4404 int vop = VectorSupport::VECTOR_OP_SVML_START + op; 4405 if (vop == VectorSupport::VECTOR_OP_POW) { 4406 continue; 4407 } 4408 snprintf(ebuf, sizeof(ebuf), "__jsvml_%sf4_ha_%s", VectorSupport::svmlname[op], avx_sse_str); 4409 StubRoutines::_vector_f_math[VectorSupport::VEC_SIZE_64][op] = (address)os::dll_lookup(libjsvml, ebuf); 4410 4411 snprintf(ebuf, sizeof(ebuf), "__jsvml_%sf4_ha_%s", VectorSupport::svmlname[op], avx_sse_str); 4412 StubRoutines::_vector_f_math[VectorSupport::VEC_SIZE_128][op] = (address)os::dll_lookup(libjsvml, ebuf); 4413 4414 snprintf(ebuf, sizeof(ebuf), "__jsvml_%sf8_ha_%s", VectorSupport::svmlname[op], avx_sse_str); 4415 StubRoutines::_vector_f_math[VectorSupport::VEC_SIZE_256][op] = (address)os::dll_lookup(libjsvml, ebuf); 4416 4417 snprintf(ebuf, sizeof(ebuf), "__jsvml_%s1_ha_%s", VectorSupport::svmlname[op], avx_sse_str); 4418 StubRoutines::_vector_d_math[VectorSupport::VEC_SIZE_64][op] = (address)os::dll_lookup(libjsvml, ebuf); 4419 4420 snprintf(ebuf, sizeof(ebuf), "__jsvml_%s2_ha_%s", VectorSupport::svmlname[op], avx_sse_str); 4421 StubRoutines::_vector_d_math[VectorSupport::VEC_SIZE_128][op] = (address)os::dll_lookup(libjsvml, ebuf); 4422 4423 snprintf(ebuf, sizeof(ebuf), "__jsvml_%s4_ha_%s", VectorSupport::svmlname[op], avx_sse_str); 4424 StubRoutines::_vector_d_math[VectorSupport::VEC_SIZE_256][op] = (address)os::dll_lookup(libjsvml, ebuf); 4425 } 4426 } 4427 #endif // COMPILER2 4428 #endif // COMPILER2_OR_JVMCI 4429 } 4430 4431 StubGenerator::StubGenerator(CodeBuffer* code, StubsKind kind) : StubCodeGenerator(code) { 4432 DEBUG_ONLY( _regs_in_thread = false; ) 4433 switch(kind) { 4434 case Initial_stubs: 4435 generate_initial_stubs(); 4436 break; 4437 case Continuation_stubs: 4438 generate_continuation_stubs(); 4439 break; 4440 case Compiler_stubs: 4441 generate_compiler_stubs(); 4442 break; 4443 case Final_stubs: 4444 generate_final_stubs(); 4445 break; 4446 default: 4447 fatal("unexpected stubs kind: %d", kind); 4448 break; 4449 }; 4450 } 4451 4452 void StubGenerator_generate(CodeBuffer* code, StubCodeGenerator::StubsKind kind) { 4453 StubGenerator g(code, kind); 4454 } 4455 4456 #undef __