1 /* 2 * Copyright (c) 2003, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/assembler.hpp" 27 #include "asm/macroAssembler.hpp" 28 #include "classfile/javaClasses.hpp" 29 #include "classfile/vmIntrinsics.hpp" 30 #include "compiler/oopMap.hpp" 31 #include "gc/shared/barrierSet.hpp" 32 #include "gc/shared/barrierSetAssembler.hpp" 33 #include "gc/shared/barrierSetNMethod.hpp" 34 #include "gc/shared/gc_globals.hpp" 35 #include "memory/universe.hpp" 36 #include "prims/jvmtiExport.hpp" 37 #include "prims/upcallLinker.hpp" 38 #include "runtime/arguments.hpp" 39 #include "runtime/javaThread.hpp" 40 #include "runtime/sharedRuntime.hpp" 41 #include "runtime/stubRoutines.hpp" 42 #include "utilities/macros.hpp" 43 #include "vmreg_x86.inline.hpp" 44 #include "stubGenerator_x86_64.hpp" 45 #ifdef COMPILER2 46 #include "opto/runtime.hpp" 47 #include "opto/c2_globals.hpp" 48 #endif 49 #if INCLUDE_JVMCI 50 #include "jvmci/jvmci_globals.hpp" 51 #endif 52 53 // For a more detailed description of the stub routine structure 54 // see the comment in stubRoutines.hpp 55 56 #define __ _masm-> 57 #define TIMES_OOP (UseCompressedOops ? Address::times_4 : Address::times_8) 58 59 #ifdef PRODUCT 60 #define BLOCK_COMMENT(str) /* nothing */ 61 #else 62 #define BLOCK_COMMENT(str) __ block_comment(str) 63 #endif // PRODUCT 64 65 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") 66 67 // 68 // Linux Arguments: 69 // c_rarg0: call wrapper address address 70 // c_rarg1: result address 71 // c_rarg2: result type BasicType 72 // c_rarg3: method Method* 73 // c_rarg4: (interpreter) entry point address 74 // c_rarg5: parameters intptr_t* 75 // 16(rbp): parameter size (in words) int 76 // 24(rbp): thread Thread* 77 // 78 // [ return_from_Java ] <--- rsp 79 // [ argument word n ] 80 // ... 81 // -12 [ argument word 1 ] 82 // -11 [ saved r15 ] <--- rsp_after_call 83 // -10 [ saved r14 ] 84 // -9 [ saved r13 ] 85 // -8 [ saved r12 ] 86 // -7 [ saved rbx ] 87 // -6 [ call wrapper ] 88 // -5 [ result ] 89 // -4 [ result type ] 90 // -3 [ method ] 91 // -2 [ entry point ] 92 // -1 [ parameters ] 93 // 0 [ saved rbp ] <--- rbp 94 // 1 [ return address ] 95 // 2 [ parameter size ] 96 // 3 [ thread ] 97 // 98 // Windows Arguments: 99 // c_rarg0: call wrapper address address 100 // c_rarg1: result address 101 // c_rarg2: result type BasicType 102 // c_rarg3: method Method* 103 // 48(rbp): (interpreter) entry point address 104 // 56(rbp): parameters intptr_t* 105 // 64(rbp): parameter size (in words) int 106 // 72(rbp): thread Thread* 107 // 108 // [ return_from_Java ] <--- rsp 109 // [ argument word n ] 110 // ... 111 // -28 [ argument word 1 ] 112 // -27 [ saved xmm15 ] <--- rsp after_call 113 // [ saved xmm7-xmm14 ] 114 // -9 [ saved xmm6 ] (each xmm register takes 2 slots) 115 // -7 [ saved r15 ] 116 // -6 [ saved r14 ] 117 // -5 [ saved r13 ] 118 // -4 [ saved r12 ] 119 // -3 [ saved rdi ] 120 // -2 [ saved rsi ] 121 // -1 [ saved rbx ] 122 // 0 [ saved rbp ] <--- rbp 123 // 1 [ return address ] 124 // 2 [ call wrapper ] 125 // 3 [ result ] 126 // 4 [ result type ] 127 // 5 [ method ] 128 // 6 [ entry point ] 129 // 7 [ parameters ] 130 // 8 [ parameter size ] 131 // 9 [ thread ] 132 // 133 // Windows reserves the callers stack space for arguments 1-4. 134 // We spill c_rarg0-c_rarg3 to this space. 135 136 // Call stub stack layout word offsets from rbp 137 #ifdef _WIN64 138 enum call_stub_layout { 139 xmm_save_first = 6, // save from xmm6 140 xmm_save_last = 15, // to xmm15 141 xmm_save_base = -9, 142 rsp_after_call_off = xmm_save_base - 2 * (xmm_save_last - xmm_save_first), // -27 143 r15_off = -7, 144 r14_off = -6, 145 r13_off = -5, 146 r12_off = -4, 147 rdi_off = -3, 148 rsi_off = -2, 149 rbx_off = -1, 150 rbp_off = 0, 151 retaddr_off = 1, 152 call_wrapper_off = 2, 153 result_off = 3, 154 result_type_off = 4, 155 method_off = 5, 156 entry_point_off = 6, 157 parameters_off = 7, 158 parameter_size_off = 8, 159 thread_off = 9 160 }; 161 162 static Address xmm_save(int reg) { 163 assert(reg >= xmm_save_first && reg <= xmm_save_last, "XMM register number out of range"); 164 return Address(rbp, (xmm_save_base - (reg - xmm_save_first) * 2) * wordSize); 165 } 166 #else // !_WIN64 167 enum call_stub_layout { 168 rsp_after_call_off = -12, 169 mxcsr_off = rsp_after_call_off, 170 r15_off = -11, 171 r14_off = -10, 172 r13_off = -9, 173 r12_off = -8, 174 rbx_off = -7, 175 call_wrapper_off = -6, 176 result_off = -5, 177 result_type_off = -4, 178 method_off = -3, 179 entry_point_off = -2, 180 parameters_off = -1, 181 rbp_off = 0, 182 retaddr_off = 1, 183 parameter_size_off = 2, 184 thread_off = 3 185 }; 186 #endif // _WIN64 187 188 address StubGenerator::generate_call_stub(address& return_address) { 189 190 assert((int)frame::entry_frame_after_call_words == -(int)rsp_after_call_off + 1 && 191 (int)frame::entry_frame_call_wrapper_offset == (int)call_wrapper_off, 192 "adjust this code"); 193 StubCodeMark mark(this, "StubRoutines", "call_stub"); 194 address start = __ pc(); 195 196 // same as in generate_catch_exception()! 197 const Address rsp_after_call(rbp, rsp_after_call_off * wordSize); 198 199 const Address call_wrapper (rbp, call_wrapper_off * wordSize); 200 const Address result (rbp, result_off * wordSize); 201 const Address result_type (rbp, result_type_off * wordSize); 202 const Address method (rbp, method_off * wordSize); 203 const Address entry_point (rbp, entry_point_off * wordSize); 204 const Address parameters (rbp, parameters_off * wordSize); 205 const Address parameter_size(rbp, parameter_size_off * wordSize); 206 207 // same as in generate_catch_exception()! 208 const Address thread (rbp, thread_off * wordSize); 209 210 const Address r15_save(rbp, r15_off * wordSize); 211 const Address r14_save(rbp, r14_off * wordSize); 212 const Address r13_save(rbp, r13_off * wordSize); 213 const Address r12_save(rbp, r12_off * wordSize); 214 const Address rbx_save(rbp, rbx_off * wordSize); 215 216 // stub code 217 __ enter(); 218 __ subptr(rsp, -rsp_after_call_off * wordSize); 219 220 // save register parameters 221 #ifndef _WIN64 222 __ movptr(parameters, c_rarg5); // parameters 223 __ movptr(entry_point, c_rarg4); // entry_point 224 #endif 225 226 __ movptr(method, c_rarg3); // method 227 __ movl(result_type, c_rarg2); // result type 228 __ movptr(result, c_rarg1); // result 229 __ movptr(call_wrapper, c_rarg0); // call wrapper 230 231 // save regs belonging to calling function 232 __ movptr(rbx_save, rbx); 233 __ movptr(r12_save, r12); 234 __ movptr(r13_save, r13); 235 __ movptr(r14_save, r14); 236 __ movptr(r15_save, r15); 237 238 #ifdef _WIN64 239 int last_reg = 15; 240 for (int i = xmm_save_first; i <= last_reg; i++) { 241 __ movdqu(xmm_save(i), as_XMMRegister(i)); 242 } 243 244 const Address rdi_save(rbp, rdi_off * wordSize); 245 const Address rsi_save(rbp, rsi_off * wordSize); 246 247 __ movptr(rsi_save, rsi); 248 __ movptr(rdi_save, rdi); 249 #else 250 const Address mxcsr_save(rbp, mxcsr_off * wordSize); 251 { 252 Label skip_ldmx; 253 __ stmxcsr(mxcsr_save); 254 __ movl(rax, mxcsr_save); 255 __ andl(rax, 0xFFC0); // Mask out any pending exceptions (only check control and mask bits) 256 ExternalAddress mxcsr_std(StubRoutines::x86::addr_mxcsr_std()); 257 __ cmp32(rax, mxcsr_std, rscratch1); 258 __ jcc(Assembler::equal, skip_ldmx); 259 __ ldmxcsr(mxcsr_std, rscratch1); 260 __ bind(skip_ldmx); 261 } 262 #endif 263 264 // Load up thread register 265 __ movptr(r15_thread, thread); 266 __ reinit_heapbase(); 267 268 #ifdef ASSERT 269 // make sure we have no pending exceptions 270 { 271 Label L; 272 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), NULL_WORD); 273 __ jcc(Assembler::equal, L); 274 __ stop("StubRoutines::call_stub: entered with pending exception"); 275 __ bind(L); 276 } 277 #endif 278 279 // pass parameters if any 280 BLOCK_COMMENT("pass parameters if any"); 281 Label parameters_done; 282 __ movl(c_rarg3, parameter_size); 283 __ testl(c_rarg3, c_rarg3); 284 __ jcc(Assembler::zero, parameters_done); 285 286 Label loop; 287 __ movptr(c_rarg2, parameters); // parameter pointer 288 __ movl(c_rarg1, c_rarg3); // parameter counter is in c_rarg1 289 __ BIND(loop); 290 __ movptr(rax, Address(c_rarg2, 0));// get parameter 291 __ addptr(c_rarg2, wordSize); // advance to next parameter 292 __ decrementl(c_rarg1); // decrement counter 293 __ push(rax); // pass parameter 294 __ jcc(Assembler::notZero, loop); 295 296 // call Java function 297 __ BIND(parameters_done); 298 __ movptr(rbx, method); // get Method* 299 __ movptr(c_rarg1, entry_point); // get entry_point 300 __ mov(r13, rsp); // set sender sp 301 BLOCK_COMMENT("call Java function"); 302 __ call(c_rarg1); 303 304 BLOCK_COMMENT("call_stub_return_address:"); 305 return_address = __ pc(); 306 307 // store result depending on type (everything that is not 308 // T_OBJECT, T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT) 309 __ movptr(r13, result); 310 Label is_long, is_float, is_double, check_prim, exit; 311 __ movl(rbx, result_type); 312 __ cmpl(rbx, T_OBJECT); 313 __ jcc(Assembler::equal, check_prim); 314 __ cmpl(rbx, T_LONG); 315 __ jcc(Assembler::equal, is_long); 316 __ cmpl(rbx, T_FLOAT); 317 __ jcc(Assembler::equal, is_float); 318 __ cmpl(rbx, T_DOUBLE); 319 __ jcc(Assembler::equal, is_double); 320 #ifdef ASSERT 321 // make sure the type is INT 322 { 323 Label L; 324 __ cmpl(rbx, T_INT); 325 __ jcc(Assembler::equal, L); 326 __ stop("StubRoutines::call_stub: unexpected result type"); 327 __ bind(L); 328 } 329 #endif 330 331 // handle T_INT case 332 __ movl(Address(r13, 0), rax); 333 334 __ BIND(exit); 335 336 // pop parameters 337 __ lea(rsp, rsp_after_call); 338 339 #ifdef ASSERT 340 // verify that threads correspond 341 { 342 Label L1, L2, L3; 343 __ cmpptr(r15_thread, thread); 344 __ jcc(Assembler::equal, L1); 345 __ stop("StubRoutines::call_stub: r15_thread is corrupted"); 346 __ bind(L1); 347 __ get_thread(rbx); 348 __ cmpptr(r15_thread, thread); 349 __ jcc(Assembler::equal, L2); 350 __ stop("StubRoutines::call_stub: r15_thread is modified by call"); 351 __ bind(L2); 352 __ cmpptr(r15_thread, rbx); 353 __ jcc(Assembler::equal, L3); 354 __ stop("StubRoutines::call_stub: threads must correspond"); 355 __ bind(L3); 356 } 357 #endif 358 359 __ pop_cont_fastpath(); 360 361 // restore regs belonging to calling function 362 #ifdef _WIN64 363 // emit the restores for xmm regs 364 for (int i = xmm_save_first; i <= last_reg; i++) { 365 __ movdqu(as_XMMRegister(i), xmm_save(i)); 366 } 367 #endif 368 __ movptr(r15, r15_save); 369 __ movptr(r14, r14_save); 370 __ movptr(r13, r13_save); 371 __ movptr(r12, r12_save); 372 __ movptr(rbx, rbx_save); 373 374 #ifdef _WIN64 375 __ movptr(rdi, rdi_save); 376 __ movptr(rsi, rsi_save); 377 #else 378 __ ldmxcsr(mxcsr_save); 379 #endif 380 381 // restore rsp 382 __ addptr(rsp, -rsp_after_call_off * wordSize); 383 384 // return 385 __ vzeroupper(); 386 __ pop(rbp); 387 __ ret(0); 388 389 // handle return types different from T_INT 390 __ BIND(check_prim); 391 if (InlineTypeReturnedAsFields) { 392 // Check for scalarized return value 393 __ testptr(rax, 1); 394 __ jcc(Assembler::zero, is_long); 395 // Load pack handler address 396 __ andptr(rax, -2); 397 __ movptr(rax, Address(rax, InstanceKlass::adr_inlineklass_fixed_block_offset())); 398 __ movptr(rbx, Address(rax, InlineKlass::pack_handler_jobject_offset())); 399 // Call pack handler to initialize the buffer 400 __ call(rbx); 401 __ jmp(exit); 402 } 403 __ BIND(is_long); 404 __ movq(Address(r13, 0), rax); 405 __ jmp(exit); 406 407 __ BIND(is_float); 408 __ movflt(Address(r13, 0), xmm0); 409 __ jmp(exit); 410 411 __ BIND(is_double); 412 __ movdbl(Address(r13, 0), xmm0); 413 __ jmp(exit); 414 415 return start; 416 } 417 418 // Return point for a Java call if there's an exception thrown in 419 // Java code. The exception is caught and transformed into a 420 // pending exception stored in JavaThread that can be tested from 421 // within the VM. 422 // 423 // Note: Usually the parameters are removed by the callee. In case 424 // of an exception crossing an activation frame boundary, that is 425 // not the case if the callee is compiled code => need to setup the 426 // rsp. 427 // 428 // rax: exception oop 429 430 address StubGenerator::generate_catch_exception() { 431 StubCodeMark mark(this, "StubRoutines", "catch_exception"); 432 address start = __ pc(); 433 434 // same as in generate_call_stub(): 435 const Address rsp_after_call(rbp, rsp_after_call_off * wordSize); 436 const Address thread (rbp, thread_off * wordSize); 437 438 #ifdef ASSERT 439 // verify that threads correspond 440 { 441 Label L1, L2, L3; 442 __ cmpptr(r15_thread, thread); 443 __ jcc(Assembler::equal, L1); 444 __ stop("StubRoutines::catch_exception: r15_thread is corrupted"); 445 __ bind(L1); 446 __ get_thread(rbx); 447 __ cmpptr(r15_thread, thread); 448 __ jcc(Assembler::equal, L2); 449 __ stop("StubRoutines::catch_exception: r15_thread is modified by call"); 450 __ bind(L2); 451 __ cmpptr(r15_thread, rbx); 452 __ jcc(Assembler::equal, L3); 453 __ stop("StubRoutines::catch_exception: threads must correspond"); 454 __ bind(L3); 455 } 456 #endif 457 458 // set pending exception 459 __ verify_oop(rax); 460 461 __ movptr(Address(r15_thread, Thread::pending_exception_offset()), rax); 462 __ lea(rscratch1, ExternalAddress((address)__FILE__)); 463 __ movptr(Address(r15_thread, Thread::exception_file_offset()), rscratch1); 464 __ movl(Address(r15_thread, Thread::exception_line_offset()), (int) __LINE__); 465 466 // complete return to VM 467 assert(StubRoutines::_call_stub_return_address != nullptr, 468 "_call_stub_return_address must have been generated before"); 469 __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address)); 470 471 return start; 472 } 473 474 // Continuation point for runtime calls returning with a pending 475 // exception. The pending exception check happened in the runtime 476 // or native call stub. The pending exception in Thread is 477 // converted into a Java-level exception. 478 // 479 // Contract with Java-level exception handlers: 480 // rax: exception 481 // rdx: throwing pc 482 // 483 // NOTE: At entry of this stub, exception-pc must be on stack !! 484 485 address StubGenerator::generate_forward_exception() { 486 StubCodeMark mark(this, "StubRoutines", "forward exception"); 487 address start = __ pc(); 488 489 // Upon entry, the sp points to the return address returning into 490 // Java (interpreted or compiled) code; i.e., the return address 491 // becomes the throwing pc. 492 // 493 // Arguments pushed before the runtime call are still on the stack 494 // but the exception handler will reset the stack pointer -> 495 // ignore them. A potential result in registers can be ignored as 496 // well. 497 498 #ifdef ASSERT 499 // make sure this code is only executed if there is a pending exception 500 { 501 Label L; 502 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), NULL_WORD); 503 __ jcc(Assembler::notEqual, L); 504 __ stop("StubRoutines::forward exception: no pending exception (1)"); 505 __ bind(L); 506 } 507 #endif 508 509 // compute exception handler into rbx 510 __ movptr(c_rarg0, Address(rsp, 0)); 511 BLOCK_COMMENT("call exception_handler_for_return_address"); 512 __ call_VM_leaf(CAST_FROM_FN_PTR(address, 513 SharedRuntime::exception_handler_for_return_address), 514 r15_thread, c_rarg0); 515 __ mov(rbx, rax); 516 517 // setup rax & rdx, remove return address & clear pending exception 518 __ pop(rdx); 519 __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset())); 520 __ movptr(Address(r15_thread, Thread::pending_exception_offset()), NULL_WORD); 521 522 #ifdef ASSERT 523 // make sure exception is set 524 { 525 Label L; 526 __ testptr(rax, rax); 527 __ jcc(Assembler::notEqual, L); 528 __ stop("StubRoutines::forward exception: no pending exception (2)"); 529 __ bind(L); 530 } 531 #endif 532 533 // continue at exception handler (return address removed) 534 // rax: exception 535 // rbx: exception handler 536 // rdx: throwing pc 537 __ verify_oop(rax); 538 __ jmp(rbx); 539 540 return start; 541 } 542 543 // Support for intptr_t OrderAccess::fence() 544 // 545 // Arguments : 546 // 547 // Result: 548 address StubGenerator::generate_orderaccess_fence() { 549 StubCodeMark mark(this, "StubRoutines", "orderaccess_fence"); 550 address start = __ pc(); 551 552 __ membar(Assembler::StoreLoad); 553 __ ret(0); 554 555 return start; 556 } 557 558 559 // Support for intptr_t get_previous_sp() 560 // 561 // This routine is used to find the previous stack pointer for the 562 // caller. 563 address StubGenerator::generate_get_previous_sp() { 564 StubCodeMark mark(this, "StubRoutines", "get_previous_sp"); 565 address start = __ pc(); 566 567 __ movptr(rax, rsp); 568 __ addptr(rax, 8); // return address is at the top of the stack. 569 __ ret(0); 570 571 return start; 572 } 573 574 //---------------------------------------------------------------------------------------------------- 575 // Support for void verify_mxcsr() 576 // 577 // This routine is used with -Xcheck:jni to verify that native 578 // JNI code does not return to Java code without restoring the 579 // MXCSR register to our expected state. 580 581 address StubGenerator::generate_verify_mxcsr() { 582 StubCodeMark mark(this, "StubRoutines", "verify_mxcsr"); 583 address start = __ pc(); 584 585 const Address mxcsr_save(rsp, 0); 586 587 if (CheckJNICalls) { 588 Label ok_ret; 589 ExternalAddress mxcsr_std(StubRoutines::x86::addr_mxcsr_std()); 590 __ push(rax); 591 __ subptr(rsp, wordSize); // allocate a temp location 592 __ stmxcsr(mxcsr_save); 593 __ movl(rax, mxcsr_save); 594 __ andl(rax, 0xFFC0); // Mask out any pending exceptions (only check control and mask bits) 595 __ cmp32(rax, mxcsr_std, rscratch1); 596 __ jcc(Assembler::equal, ok_ret); 597 598 __ warn("MXCSR changed by native JNI code, use -XX:+RestoreMXCSROnJNICall"); 599 600 __ ldmxcsr(mxcsr_std, rscratch1); 601 602 __ bind(ok_ret); 603 __ addptr(rsp, wordSize); 604 __ pop(rax); 605 } 606 607 __ ret(0); 608 609 return start; 610 } 611 612 address StubGenerator::generate_f2i_fixup() { 613 StubCodeMark mark(this, "StubRoutines", "f2i_fixup"); 614 Address inout(rsp, 5 * wordSize); // return address + 4 saves 615 616 address start = __ pc(); 617 618 Label L; 619 620 __ push(rax); 621 __ push(c_rarg3); 622 __ push(c_rarg2); 623 __ push(c_rarg1); 624 625 __ movl(rax, 0x7f800000); 626 __ xorl(c_rarg3, c_rarg3); 627 __ movl(c_rarg2, inout); 628 __ movl(c_rarg1, c_rarg2); 629 __ andl(c_rarg1, 0x7fffffff); 630 __ cmpl(rax, c_rarg1); // NaN? -> 0 631 __ jcc(Assembler::negative, L); 632 __ testl(c_rarg2, c_rarg2); // signed ? min_jint : max_jint 633 __ movl(c_rarg3, 0x80000000); 634 __ movl(rax, 0x7fffffff); 635 __ cmovl(Assembler::positive, c_rarg3, rax); 636 637 __ bind(L); 638 __ movptr(inout, c_rarg3); 639 640 __ pop(c_rarg1); 641 __ pop(c_rarg2); 642 __ pop(c_rarg3); 643 __ pop(rax); 644 645 __ ret(0); 646 647 return start; 648 } 649 650 address StubGenerator::generate_f2l_fixup() { 651 StubCodeMark mark(this, "StubRoutines", "f2l_fixup"); 652 Address inout(rsp, 5 * wordSize); // return address + 4 saves 653 address start = __ pc(); 654 655 Label L; 656 657 __ push(rax); 658 __ push(c_rarg3); 659 __ push(c_rarg2); 660 __ push(c_rarg1); 661 662 __ movl(rax, 0x7f800000); 663 __ xorl(c_rarg3, c_rarg3); 664 __ movl(c_rarg2, inout); 665 __ movl(c_rarg1, c_rarg2); 666 __ andl(c_rarg1, 0x7fffffff); 667 __ cmpl(rax, c_rarg1); // NaN? -> 0 668 __ jcc(Assembler::negative, L); 669 __ testl(c_rarg2, c_rarg2); // signed ? min_jlong : max_jlong 670 __ mov64(c_rarg3, 0x8000000000000000); 671 __ mov64(rax, 0x7fffffffffffffff); 672 __ cmov(Assembler::positive, c_rarg3, rax); 673 674 __ bind(L); 675 __ movptr(inout, c_rarg3); 676 677 __ pop(c_rarg1); 678 __ pop(c_rarg2); 679 __ pop(c_rarg3); 680 __ pop(rax); 681 682 __ ret(0); 683 684 return start; 685 } 686 687 address StubGenerator::generate_d2i_fixup() { 688 StubCodeMark mark(this, "StubRoutines", "d2i_fixup"); 689 Address inout(rsp, 6 * wordSize); // return address + 5 saves 690 691 address start = __ pc(); 692 693 Label L; 694 695 __ push(rax); 696 __ push(c_rarg3); 697 __ push(c_rarg2); 698 __ push(c_rarg1); 699 __ push(c_rarg0); 700 701 __ movl(rax, 0x7ff00000); 702 __ movq(c_rarg2, inout); 703 __ movl(c_rarg3, c_rarg2); 704 __ mov(c_rarg1, c_rarg2); 705 __ mov(c_rarg0, c_rarg2); 706 __ negl(c_rarg3); 707 __ shrptr(c_rarg1, 0x20); 708 __ orl(c_rarg3, c_rarg2); 709 __ andl(c_rarg1, 0x7fffffff); 710 __ xorl(c_rarg2, c_rarg2); 711 __ shrl(c_rarg3, 0x1f); 712 __ orl(c_rarg1, c_rarg3); 713 __ cmpl(rax, c_rarg1); 714 __ jcc(Assembler::negative, L); // NaN -> 0 715 __ testptr(c_rarg0, c_rarg0); // signed ? min_jint : max_jint 716 __ movl(c_rarg2, 0x80000000); 717 __ movl(rax, 0x7fffffff); 718 __ cmov(Assembler::positive, c_rarg2, rax); 719 720 __ bind(L); 721 __ movptr(inout, c_rarg2); 722 723 __ pop(c_rarg0); 724 __ pop(c_rarg1); 725 __ pop(c_rarg2); 726 __ pop(c_rarg3); 727 __ pop(rax); 728 729 __ ret(0); 730 731 return start; 732 } 733 734 address StubGenerator::generate_d2l_fixup() { 735 StubCodeMark mark(this, "StubRoutines", "d2l_fixup"); 736 Address inout(rsp, 6 * wordSize); // return address + 5 saves 737 738 address start = __ pc(); 739 740 Label L; 741 742 __ push(rax); 743 __ push(c_rarg3); 744 __ push(c_rarg2); 745 __ push(c_rarg1); 746 __ push(c_rarg0); 747 748 __ movl(rax, 0x7ff00000); 749 __ movq(c_rarg2, inout); 750 __ movl(c_rarg3, c_rarg2); 751 __ mov(c_rarg1, c_rarg2); 752 __ mov(c_rarg0, c_rarg2); 753 __ negl(c_rarg3); 754 __ shrptr(c_rarg1, 0x20); 755 __ orl(c_rarg3, c_rarg2); 756 __ andl(c_rarg1, 0x7fffffff); 757 __ xorl(c_rarg2, c_rarg2); 758 __ shrl(c_rarg3, 0x1f); 759 __ orl(c_rarg1, c_rarg3); 760 __ cmpl(rax, c_rarg1); 761 __ jcc(Assembler::negative, L); // NaN -> 0 762 __ testq(c_rarg0, c_rarg0); // signed ? min_jlong : max_jlong 763 __ mov64(c_rarg2, 0x8000000000000000); 764 __ mov64(rax, 0x7fffffffffffffff); 765 __ cmovq(Assembler::positive, c_rarg2, rax); 766 767 __ bind(L); 768 __ movq(inout, c_rarg2); 769 770 __ pop(c_rarg0); 771 __ pop(c_rarg1); 772 __ pop(c_rarg2); 773 __ pop(c_rarg3); 774 __ pop(rax); 775 776 __ ret(0); 777 778 return start; 779 } 780 781 address StubGenerator::generate_count_leading_zeros_lut(const char *stub_name) { 782 __ align64(); 783 StubCodeMark mark(this, "StubRoutines", stub_name); 784 address start = __ pc(); 785 786 __ emit_data64(0x0101010102020304, relocInfo::none); 787 __ emit_data64(0x0000000000000000, relocInfo::none); 788 __ emit_data64(0x0101010102020304, relocInfo::none); 789 __ emit_data64(0x0000000000000000, relocInfo::none); 790 __ emit_data64(0x0101010102020304, relocInfo::none); 791 __ emit_data64(0x0000000000000000, relocInfo::none); 792 __ emit_data64(0x0101010102020304, relocInfo::none); 793 __ emit_data64(0x0000000000000000, relocInfo::none); 794 795 return start; 796 } 797 798 address StubGenerator::generate_popcount_avx_lut(const char *stub_name) { 799 __ align64(); 800 StubCodeMark mark(this, "StubRoutines", stub_name); 801 address start = __ pc(); 802 803 __ emit_data64(0x0302020102010100, relocInfo::none); 804 __ emit_data64(0x0403030203020201, relocInfo::none); 805 __ emit_data64(0x0302020102010100, relocInfo::none); 806 __ emit_data64(0x0403030203020201, relocInfo::none); 807 __ emit_data64(0x0302020102010100, relocInfo::none); 808 __ emit_data64(0x0403030203020201, relocInfo::none); 809 __ emit_data64(0x0302020102010100, relocInfo::none); 810 __ emit_data64(0x0403030203020201, relocInfo::none); 811 812 return start; 813 } 814 815 address StubGenerator::generate_iota_indices(const char *stub_name) { 816 __ align(CodeEntryAlignment); 817 StubCodeMark mark(this, "StubRoutines", stub_name); 818 address start = __ pc(); 819 // B 820 __ emit_data64(0x0706050403020100, relocInfo::none); 821 __ emit_data64(0x0F0E0D0C0B0A0908, relocInfo::none); 822 __ emit_data64(0x1716151413121110, relocInfo::none); 823 __ emit_data64(0x1F1E1D1C1B1A1918, relocInfo::none); 824 __ emit_data64(0x2726252423222120, relocInfo::none); 825 __ emit_data64(0x2F2E2D2C2B2A2928, relocInfo::none); 826 __ emit_data64(0x3736353433323130, relocInfo::none); 827 __ emit_data64(0x3F3E3D3C3B3A3938, relocInfo::none); 828 // W 829 __ emit_data64(0x0003000200010000, relocInfo::none); 830 __ emit_data64(0x0007000600050004, relocInfo::none); 831 __ emit_data64(0x000B000A00090008, relocInfo::none); 832 __ emit_data64(0x000F000E000D000C, relocInfo::none); 833 __ emit_data64(0x0013001200110010, relocInfo::none); 834 __ emit_data64(0x0017001600150014, relocInfo::none); 835 __ emit_data64(0x001B001A00190018, relocInfo::none); 836 __ emit_data64(0x001F001E001D001C, relocInfo::none); 837 // D 838 __ emit_data64(0x0000000100000000, relocInfo::none); 839 __ emit_data64(0x0000000300000002, relocInfo::none); 840 __ emit_data64(0x0000000500000004, relocInfo::none); 841 __ emit_data64(0x0000000700000006, relocInfo::none); 842 __ emit_data64(0x0000000900000008, relocInfo::none); 843 __ emit_data64(0x0000000B0000000A, relocInfo::none); 844 __ emit_data64(0x0000000D0000000C, relocInfo::none); 845 __ emit_data64(0x0000000F0000000E, relocInfo::none); 846 // Q 847 __ emit_data64(0x0000000000000000, relocInfo::none); 848 __ emit_data64(0x0000000000000001, relocInfo::none); 849 __ emit_data64(0x0000000000000002, relocInfo::none); 850 __ emit_data64(0x0000000000000003, relocInfo::none); 851 __ emit_data64(0x0000000000000004, relocInfo::none); 852 __ emit_data64(0x0000000000000005, relocInfo::none); 853 __ emit_data64(0x0000000000000006, relocInfo::none); 854 __ emit_data64(0x0000000000000007, relocInfo::none); 855 // D - FP 856 __ emit_data64(0x3F80000000000000, relocInfo::none); // 0.0f, 1.0f 857 __ emit_data64(0x4040000040000000, relocInfo::none); // 2.0f, 3.0f 858 __ emit_data64(0x40A0000040800000, relocInfo::none); // 4.0f, 5.0f 859 __ emit_data64(0x40E0000040C00000, relocInfo::none); // 6.0f, 7.0f 860 __ emit_data64(0x4110000041000000, relocInfo::none); // 8.0f, 9.0f 861 __ emit_data64(0x4130000041200000, relocInfo::none); // 10.0f, 11.0f 862 __ emit_data64(0x4150000041400000, relocInfo::none); // 12.0f, 13.0f 863 __ emit_data64(0x4170000041600000, relocInfo::none); // 14.0f, 15.0f 864 // Q - FP 865 __ emit_data64(0x0000000000000000, relocInfo::none); // 0.0d 866 __ emit_data64(0x3FF0000000000000, relocInfo::none); // 1.0d 867 __ emit_data64(0x4000000000000000, relocInfo::none); // 2.0d 868 __ emit_data64(0x4008000000000000, relocInfo::none); // 3.0d 869 __ emit_data64(0x4010000000000000, relocInfo::none); // 4.0d 870 __ emit_data64(0x4014000000000000, relocInfo::none); // 5.0d 871 __ emit_data64(0x4018000000000000, relocInfo::none); // 6.0d 872 __ emit_data64(0x401c000000000000, relocInfo::none); // 7.0d 873 return start; 874 } 875 876 address StubGenerator::generate_vector_reverse_bit_lut(const char *stub_name) { 877 __ align(CodeEntryAlignment); 878 StubCodeMark mark(this, "StubRoutines", stub_name); 879 address start = __ pc(); 880 881 __ emit_data64(0x0E060A020C040800, relocInfo::none); 882 __ emit_data64(0x0F070B030D050901, relocInfo::none); 883 __ emit_data64(0x0E060A020C040800, relocInfo::none); 884 __ emit_data64(0x0F070B030D050901, relocInfo::none); 885 __ emit_data64(0x0E060A020C040800, relocInfo::none); 886 __ emit_data64(0x0F070B030D050901, relocInfo::none); 887 __ emit_data64(0x0E060A020C040800, relocInfo::none); 888 __ emit_data64(0x0F070B030D050901, relocInfo::none); 889 890 return start; 891 } 892 893 address StubGenerator::generate_vector_reverse_byte_perm_mask_long(const char *stub_name) { 894 __ align(CodeEntryAlignment); 895 StubCodeMark mark(this, "StubRoutines", stub_name); 896 address start = __ pc(); 897 898 __ emit_data64(0x0001020304050607, relocInfo::none); 899 __ emit_data64(0x08090A0B0C0D0E0F, relocInfo::none); 900 __ emit_data64(0x0001020304050607, relocInfo::none); 901 __ emit_data64(0x08090A0B0C0D0E0F, relocInfo::none); 902 __ emit_data64(0x0001020304050607, relocInfo::none); 903 __ emit_data64(0x08090A0B0C0D0E0F, relocInfo::none); 904 __ emit_data64(0x0001020304050607, relocInfo::none); 905 __ emit_data64(0x08090A0B0C0D0E0F, relocInfo::none); 906 907 return start; 908 } 909 910 address StubGenerator::generate_vector_reverse_byte_perm_mask_int(const char *stub_name) { 911 __ align(CodeEntryAlignment); 912 StubCodeMark mark(this, "StubRoutines", stub_name); 913 address start = __ pc(); 914 915 __ emit_data64(0x0405060700010203, relocInfo::none); 916 __ emit_data64(0x0C0D0E0F08090A0B, relocInfo::none); 917 __ emit_data64(0x0405060700010203, relocInfo::none); 918 __ emit_data64(0x0C0D0E0F08090A0B, relocInfo::none); 919 __ emit_data64(0x0405060700010203, relocInfo::none); 920 __ emit_data64(0x0C0D0E0F08090A0B, relocInfo::none); 921 __ emit_data64(0x0405060700010203, relocInfo::none); 922 __ emit_data64(0x0C0D0E0F08090A0B, relocInfo::none); 923 924 return start; 925 } 926 927 address StubGenerator::generate_vector_reverse_byte_perm_mask_short(const char *stub_name) { 928 __ align(CodeEntryAlignment); 929 StubCodeMark mark(this, "StubRoutines", stub_name); 930 address start = __ pc(); 931 932 __ emit_data64(0x0607040502030001, relocInfo::none); 933 __ emit_data64(0x0E0F0C0D0A0B0809, relocInfo::none); 934 __ emit_data64(0x0607040502030001, relocInfo::none); 935 __ emit_data64(0x0E0F0C0D0A0B0809, relocInfo::none); 936 __ emit_data64(0x0607040502030001, relocInfo::none); 937 __ emit_data64(0x0E0F0C0D0A0B0809, relocInfo::none); 938 __ emit_data64(0x0607040502030001, relocInfo::none); 939 __ emit_data64(0x0E0F0C0D0A0B0809, relocInfo::none); 940 941 return start; 942 } 943 944 address StubGenerator::generate_vector_byte_shuffle_mask(const char *stub_name) { 945 __ align(CodeEntryAlignment); 946 StubCodeMark mark(this, "StubRoutines", stub_name); 947 address start = __ pc(); 948 949 __ emit_data64(0x7070707070707070, relocInfo::none); 950 __ emit_data64(0x7070707070707070, relocInfo::none); 951 __ emit_data64(0xF0F0F0F0F0F0F0F0, relocInfo::none); 952 __ emit_data64(0xF0F0F0F0F0F0F0F0, relocInfo::none); 953 954 return start; 955 } 956 957 address StubGenerator::generate_fp_mask(const char *stub_name, int64_t mask) { 958 __ align(CodeEntryAlignment); 959 StubCodeMark mark(this, "StubRoutines", stub_name); 960 address start = __ pc(); 961 962 __ emit_data64( mask, relocInfo::none ); 963 __ emit_data64( mask, relocInfo::none ); 964 965 return start; 966 } 967 968 address StubGenerator::generate_compress_perm_table(const char *stub_name, int32_t esize) { 969 __ align(CodeEntryAlignment); 970 StubCodeMark mark(this, "StubRoutines", stub_name); 971 address start = __ pc(); 972 if (esize == 32) { 973 // Loop to generate 256 x 8 int compression permute index table. A row is 974 // accessed using 8 bit index computed using vector mask. An entry in 975 // a row holds either a valid permute index corresponding to set bit position 976 // or a -1 (default) value. 977 for (int mask = 0; mask < 256; mask++) { 978 int ctr = 0; 979 for (int j = 0; j < 8; j++) { 980 if (mask & (1 << j)) { 981 __ emit_data(j, relocInfo::none); 982 ctr++; 983 } 984 } 985 for (; ctr < 8; ctr++) { 986 __ emit_data(-1, relocInfo::none); 987 } 988 } 989 } else { 990 assert(esize == 64, ""); 991 // Loop to generate 16 x 4 long compression permute index table. A row is 992 // accessed using 4 bit index computed using vector mask. An entry in 993 // a row holds either a valid permute index pair for a quadword corresponding 994 // to set bit position or a -1 (default) value. 995 for (int mask = 0; mask < 16; mask++) { 996 int ctr = 0; 997 for (int j = 0; j < 4; j++) { 998 if (mask & (1 << j)) { 999 __ emit_data(2 * j, relocInfo::none); 1000 __ emit_data(2 * j + 1, relocInfo::none); 1001 ctr++; 1002 } 1003 } 1004 for (; ctr < 4; ctr++) { 1005 __ emit_data64(-1L, relocInfo::none); 1006 } 1007 } 1008 } 1009 return start; 1010 } 1011 1012 address StubGenerator::generate_expand_perm_table(const char *stub_name, int32_t esize) { 1013 __ align(CodeEntryAlignment); 1014 StubCodeMark mark(this, "StubRoutines", stub_name); 1015 address start = __ pc(); 1016 if (esize == 32) { 1017 // Loop to generate 256 x 8 int expand permute index table. A row is accessed 1018 // using 8 bit index computed using vector mask. An entry in a row holds either 1019 // a valid permute index (starting from least significant lane) placed at poisition 1020 // corresponding to set bit position or a -1 (default) value. 1021 for (int mask = 0; mask < 256; mask++) { 1022 int ctr = 0; 1023 for (int j = 0; j < 8; j++) { 1024 if (mask & (1 << j)) { 1025 __ emit_data(ctr++, relocInfo::none); 1026 } else { 1027 __ emit_data(-1, relocInfo::none); 1028 } 1029 } 1030 } 1031 } else { 1032 assert(esize == 64, ""); 1033 // Loop to generate 16 x 4 long expand permute index table. A row is accessed 1034 // using 4 bit index computed using vector mask. An entry in a row holds either 1035 // a valid doubleword permute index pair representing a quadword index (starting 1036 // from least significant lane) placed at poisition corresponding to set bit 1037 // position or a -1 (default) value. 1038 for (int mask = 0; mask < 16; mask++) { 1039 int ctr = 0; 1040 for (int j = 0; j < 4; j++) { 1041 if (mask & (1 << j)) { 1042 __ emit_data(2 * ctr, relocInfo::none); 1043 __ emit_data(2 * ctr + 1, relocInfo::none); 1044 ctr++; 1045 } else { 1046 __ emit_data64(-1L, relocInfo::none); 1047 } 1048 } 1049 } 1050 } 1051 return start; 1052 } 1053 1054 address StubGenerator::generate_vector_mask(const char *stub_name, int64_t mask) { 1055 __ align(CodeEntryAlignment); 1056 StubCodeMark mark(this, "StubRoutines", stub_name); 1057 address start = __ pc(); 1058 1059 __ emit_data64(mask, relocInfo::none); 1060 __ emit_data64(mask, relocInfo::none); 1061 __ emit_data64(mask, relocInfo::none); 1062 __ emit_data64(mask, relocInfo::none); 1063 __ emit_data64(mask, relocInfo::none); 1064 __ emit_data64(mask, relocInfo::none); 1065 __ emit_data64(mask, relocInfo::none); 1066 __ emit_data64(mask, relocInfo::none); 1067 1068 return start; 1069 } 1070 1071 address StubGenerator::generate_vector_byte_perm_mask(const char *stub_name) { 1072 __ align(CodeEntryAlignment); 1073 StubCodeMark mark(this, "StubRoutines", stub_name); 1074 address start = __ pc(); 1075 1076 __ emit_data64(0x0000000000000001, relocInfo::none); 1077 __ emit_data64(0x0000000000000003, relocInfo::none); 1078 __ emit_data64(0x0000000000000005, relocInfo::none); 1079 __ emit_data64(0x0000000000000007, relocInfo::none); 1080 __ emit_data64(0x0000000000000000, relocInfo::none); 1081 __ emit_data64(0x0000000000000002, relocInfo::none); 1082 __ emit_data64(0x0000000000000004, relocInfo::none); 1083 __ emit_data64(0x0000000000000006, relocInfo::none); 1084 1085 return start; 1086 } 1087 1088 address StubGenerator::generate_vector_fp_mask(const char *stub_name, int64_t mask) { 1089 __ align(CodeEntryAlignment); 1090 StubCodeMark mark(this, "StubRoutines", stub_name); 1091 address start = __ pc(); 1092 1093 __ emit_data64(mask, relocInfo::none); 1094 __ emit_data64(mask, relocInfo::none); 1095 __ emit_data64(mask, relocInfo::none); 1096 __ emit_data64(mask, relocInfo::none); 1097 __ emit_data64(mask, relocInfo::none); 1098 __ emit_data64(mask, relocInfo::none); 1099 __ emit_data64(mask, relocInfo::none); 1100 __ emit_data64(mask, relocInfo::none); 1101 1102 return start; 1103 } 1104 1105 address StubGenerator::generate_vector_custom_i32(const char *stub_name, Assembler::AvxVectorLen len, 1106 int32_t val0, int32_t val1, int32_t val2, int32_t val3, 1107 int32_t val4, int32_t val5, int32_t val6, int32_t val7, 1108 int32_t val8, int32_t val9, int32_t val10, int32_t val11, 1109 int32_t val12, int32_t val13, int32_t val14, int32_t val15) { 1110 __ align(CodeEntryAlignment); 1111 StubCodeMark mark(this, "StubRoutines", stub_name); 1112 address start = __ pc(); 1113 1114 assert(len != Assembler::AVX_NoVec, "vector len must be specified"); 1115 __ emit_data(val0, relocInfo::none, 0); 1116 __ emit_data(val1, relocInfo::none, 0); 1117 __ emit_data(val2, relocInfo::none, 0); 1118 __ emit_data(val3, relocInfo::none, 0); 1119 if (len >= Assembler::AVX_256bit) { 1120 __ emit_data(val4, relocInfo::none, 0); 1121 __ emit_data(val5, relocInfo::none, 0); 1122 __ emit_data(val6, relocInfo::none, 0); 1123 __ emit_data(val7, relocInfo::none, 0); 1124 if (len >= Assembler::AVX_512bit) { 1125 __ emit_data(val8, relocInfo::none, 0); 1126 __ emit_data(val9, relocInfo::none, 0); 1127 __ emit_data(val10, relocInfo::none, 0); 1128 __ emit_data(val11, relocInfo::none, 0); 1129 __ emit_data(val12, relocInfo::none, 0); 1130 __ emit_data(val13, relocInfo::none, 0); 1131 __ emit_data(val14, relocInfo::none, 0); 1132 __ emit_data(val15, relocInfo::none, 0); 1133 } 1134 } 1135 return start; 1136 } 1137 1138 // Non-destructive plausibility checks for oops 1139 // 1140 // Arguments: 1141 // all args on stack! 1142 // 1143 // Stack after saving c_rarg3: 1144 // [tos + 0]: saved c_rarg3 1145 // [tos + 1]: saved c_rarg2 1146 // [tos + 2]: saved r12 (several TemplateTable methods use it) 1147 // [tos + 3]: saved flags 1148 // [tos + 4]: return address 1149 // * [tos + 5]: error message (char*) 1150 // * [tos + 6]: object to verify (oop) 1151 // * [tos + 7]: saved rax - saved by caller and bashed 1152 // * [tos + 8]: saved r10 (rscratch1) - saved by caller 1153 // * = popped on exit 1154 address StubGenerator::generate_verify_oop() { 1155 StubCodeMark mark(this, "StubRoutines", "verify_oop"); 1156 address start = __ pc(); 1157 1158 Label exit, error; 1159 1160 __ pushf(); 1161 __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()), rscratch1); 1162 1163 __ push(r12); 1164 1165 // save c_rarg2 and c_rarg3 1166 __ push(c_rarg2); 1167 __ push(c_rarg3); 1168 1169 enum { 1170 // After previous pushes. 1171 oop_to_verify = 6 * wordSize, 1172 saved_rax = 7 * wordSize, 1173 saved_r10 = 8 * wordSize, 1174 1175 // Before the call to MacroAssembler::debug(), see below. 1176 return_addr = 16 * wordSize, 1177 error_msg = 17 * wordSize 1178 }; 1179 1180 // get object 1181 __ movptr(rax, Address(rsp, oop_to_verify)); 1182 1183 // make sure object is 'reasonable' 1184 __ testptr(rax, rax); 1185 __ jcc(Assembler::zero, exit); // if obj is null it is OK 1186 1187 BarrierSetAssembler* bs_asm = BarrierSet::barrier_set()->barrier_set_assembler(); 1188 bs_asm->check_oop(_masm, rax, c_rarg2, c_rarg3, error); 1189 1190 // return if everything seems ok 1191 __ bind(exit); 1192 __ movptr(rax, Address(rsp, saved_rax)); // get saved rax back 1193 __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back 1194 __ pop(c_rarg3); // restore c_rarg3 1195 __ pop(c_rarg2); // restore c_rarg2 1196 __ pop(r12); // restore r12 1197 __ popf(); // restore flags 1198 __ ret(4 * wordSize); // pop caller saved stuff 1199 1200 // handle errors 1201 __ bind(error); 1202 __ movptr(rax, Address(rsp, saved_rax)); // get saved rax back 1203 __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back 1204 __ pop(c_rarg3); // get saved c_rarg3 back 1205 __ pop(c_rarg2); // get saved c_rarg2 back 1206 __ pop(r12); // get saved r12 back 1207 __ popf(); // get saved flags off stack -- 1208 // will be ignored 1209 1210 __ pusha(); // push registers 1211 // (rip is already 1212 // already pushed) 1213 // debug(char* msg, int64_t pc, int64_t regs[]) 1214 // We've popped the registers we'd saved (c_rarg3, c_rarg2 and flags), and 1215 // pushed all the registers, so now the stack looks like: 1216 // [tos + 0] 16 saved registers 1217 // [tos + 16] return address 1218 // * [tos + 17] error message (char*) 1219 // * [tos + 18] object to verify (oop) 1220 // * [tos + 19] saved rax - saved by caller and bashed 1221 // * [tos + 20] saved r10 (rscratch1) - saved by caller 1222 // * = popped on exit 1223 1224 __ movptr(c_rarg0, Address(rsp, error_msg)); // pass address of error message 1225 __ movptr(c_rarg1, Address(rsp, return_addr)); // pass return address 1226 __ movq(c_rarg2, rsp); // pass address of regs on stack 1227 __ mov(r12, rsp); // remember rsp 1228 __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows 1229 __ andptr(rsp, -16); // align stack as required by ABI 1230 BLOCK_COMMENT("call MacroAssembler::debug"); 1231 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64))); 1232 __ hlt(); 1233 1234 return start; 1235 } 1236 1237 1238 // Shuffle first three arg regs on Windows into Linux/Solaris locations. 1239 // 1240 // Outputs: 1241 // rdi - rcx 1242 // rsi - rdx 1243 // rdx - r8 1244 // rcx - r9 1245 // 1246 // Registers r9 and r10 are used to save rdi and rsi on Windows, which latter 1247 // are non-volatile. r9 and r10 should not be used by the caller. 1248 // 1249 void StubGenerator::setup_arg_regs(int nargs) { 1250 const Register saved_rdi = r9; 1251 const Register saved_rsi = r10; 1252 assert(nargs == 3 || nargs == 4, "else fix"); 1253 #ifdef _WIN64 1254 assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9, 1255 "unexpected argument registers"); 1256 if (nargs == 4) { 1257 __ mov(rax, r9); // r9 is also saved_rdi 1258 } 1259 __ movptr(saved_rdi, rdi); 1260 __ movptr(saved_rsi, rsi); 1261 __ mov(rdi, rcx); // c_rarg0 1262 __ mov(rsi, rdx); // c_rarg1 1263 __ mov(rdx, r8); // c_rarg2 1264 if (nargs == 4) { 1265 __ mov(rcx, rax); // c_rarg3 (via rax) 1266 } 1267 #else 1268 assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx, 1269 "unexpected argument registers"); 1270 #endif 1271 DEBUG_ONLY(_regs_in_thread = false;) 1272 } 1273 1274 1275 void StubGenerator::restore_arg_regs() { 1276 assert(!_regs_in_thread, "wrong call to restore_arg_regs"); 1277 const Register saved_rdi = r9; 1278 const Register saved_rsi = r10; 1279 #ifdef _WIN64 1280 __ movptr(rdi, saved_rdi); 1281 __ movptr(rsi, saved_rsi); 1282 #endif 1283 } 1284 1285 1286 // This is used in places where r10 is a scratch register, and can 1287 // be adapted if r9 is needed also. 1288 void StubGenerator::setup_arg_regs_using_thread(int nargs) { 1289 const Register saved_r15 = r9; 1290 assert(nargs == 3 || nargs == 4, "else fix"); 1291 #ifdef _WIN64 1292 if (nargs == 4) { 1293 __ mov(rax, r9); // r9 is also saved_r15 1294 } 1295 __ mov(saved_r15, r15); // r15 is callee saved and needs to be restored 1296 __ get_thread(r15_thread); 1297 assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9, 1298 "unexpected argument registers"); 1299 __ movptr(Address(r15_thread, in_bytes(JavaThread::windows_saved_rdi_offset())), rdi); 1300 __ movptr(Address(r15_thread, in_bytes(JavaThread::windows_saved_rsi_offset())), rsi); 1301 1302 __ mov(rdi, rcx); // c_rarg0 1303 __ mov(rsi, rdx); // c_rarg1 1304 __ mov(rdx, r8); // c_rarg2 1305 if (nargs == 4) { 1306 __ mov(rcx, rax); // c_rarg3 (via rax) 1307 } 1308 #else 1309 assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx, 1310 "unexpected argument registers"); 1311 #endif 1312 DEBUG_ONLY(_regs_in_thread = true;) 1313 } 1314 1315 1316 void StubGenerator::restore_arg_regs_using_thread() { 1317 assert(_regs_in_thread, "wrong call to restore_arg_regs"); 1318 const Register saved_r15 = r9; 1319 #ifdef _WIN64 1320 __ get_thread(r15_thread); 1321 __ movptr(rsi, Address(r15_thread, in_bytes(JavaThread::windows_saved_rsi_offset()))); 1322 __ movptr(rdi, Address(r15_thread, in_bytes(JavaThread::windows_saved_rdi_offset()))); 1323 __ mov(r15, saved_r15); // r15 is callee saved and needs to be restored 1324 #endif 1325 } 1326 1327 1328 void StubGenerator::setup_argument_regs(BasicType type) { 1329 if (type == T_BYTE || type == T_SHORT) { 1330 setup_arg_regs(); // from => rdi, to => rsi, count => rdx 1331 // r9 and r10 may be used to save non-volatile registers 1332 } else { 1333 setup_arg_regs_using_thread(); // from => rdi, to => rsi, count => rdx 1334 // r9 is used to save r15_thread 1335 } 1336 } 1337 1338 1339 void StubGenerator::restore_argument_regs(BasicType type) { 1340 if (type == T_BYTE || type == T_SHORT) { 1341 restore_arg_regs(); 1342 } else { 1343 restore_arg_regs_using_thread(); 1344 } 1345 } 1346 1347 address StubGenerator::generate_data_cache_writeback() { 1348 const Register src = c_rarg0; // source address 1349 1350 __ align(CodeEntryAlignment); 1351 1352 StubCodeMark mark(this, "StubRoutines", "_data_cache_writeback"); 1353 1354 address start = __ pc(); 1355 1356 __ enter(); 1357 __ cache_wb(Address(src, 0)); 1358 __ leave(); 1359 __ ret(0); 1360 1361 return start; 1362 } 1363 1364 address StubGenerator::generate_data_cache_writeback_sync() { 1365 const Register is_pre = c_rarg0; // pre or post sync 1366 1367 __ align(CodeEntryAlignment); 1368 1369 StubCodeMark mark(this, "StubRoutines", "_data_cache_writeback_sync"); 1370 1371 // pre wbsync is a no-op 1372 // post wbsync translates to an sfence 1373 1374 Label skip; 1375 address start = __ pc(); 1376 1377 __ enter(); 1378 __ cmpl(is_pre, 0); 1379 __ jcc(Assembler::notEqual, skip); 1380 __ cache_wbsync(false); 1381 __ bind(skip); 1382 __ leave(); 1383 __ ret(0); 1384 1385 return start; 1386 } 1387 1388 // ofs and limit are use for multi-block byte array. 1389 // int com.sun.security.provider.MD5.implCompress(byte[] b, int ofs) 1390 address StubGenerator::generate_md5_implCompress(bool multi_block, const char *name) { 1391 __ align(CodeEntryAlignment); 1392 StubCodeMark mark(this, "StubRoutines", name); 1393 address start = __ pc(); 1394 1395 const Register buf_param = r15; 1396 const Address state_param(rsp, 0 * wordSize); 1397 const Address ofs_param (rsp, 1 * wordSize ); 1398 const Address limit_param(rsp, 1 * wordSize + 4); 1399 1400 __ enter(); 1401 __ push(rbx); 1402 __ push(rdi); 1403 __ push(rsi); 1404 __ push(r15); 1405 __ subptr(rsp, 2 * wordSize); 1406 1407 __ movptr(buf_param, c_rarg0); 1408 __ movptr(state_param, c_rarg1); 1409 if (multi_block) { 1410 __ movl(ofs_param, c_rarg2); 1411 __ movl(limit_param, c_rarg3); 1412 } 1413 __ fast_md5(buf_param, state_param, ofs_param, limit_param, multi_block); 1414 1415 __ addptr(rsp, 2 * wordSize); 1416 __ pop(r15); 1417 __ pop(rsi); 1418 __ pop(rdi); 1419 __ pop(rbx); 1420 __ leave(); 1421 __ ret(0); 1422 1423 return start; 1424 } 1425 1426 address StubGenerator::generate_upper_word_mask() { 1427 __ align64(); 1428 StubCodeMark mark(this, "StubRoutines", "upper_word_mask"); 1429 address start = __ pc(); 1430 1431 __ emit_data64(0x0000000000000000, relocInfo::none); 1432 __ emit_data64(0xFFFFFFFF00000000, relocInfo::none); 1433 1434 return start; 1435 } 1436 1437 address StubGenerator::generate_shuffle_byte_flip_mask() { 1438 __ align64(); 1439 StubCodeMark mark(this, "StubRoutines", "shuffle_byte_flip_mask"); 1440 address start = __ pc(); 1441 1442 __ emit_data64(0x08090a0b0c0d0e0f, relocInfo::none); 1443 __ emit_data64(0x0001020304050607, relocInfo::none); 1444 1445 return start; 1446 } 1447 1448 // ofs and limit are use for multi-block byte array. 1449 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit) 1450 address StubGenerator::generate_sha1_implCompress(bool multi_block, const char *name) { 1451 __ align(CodeEntryAlignment); 1452 StubCodeMark mark(this, "StubRoutines", name); 1453 address start = __ pc(); 1454 1455 Register buf = c_rarg0; 1456 Register state = c_rarg1; 1457 Register ofs = c_rarg2; 1458 Register limit = c_rarg3; 1459 1460 const XMMRegister abcd = xmm0; 1461 const XMMRegister e0 = xmm1; 1462 const XMMRegister e1 = xmm2; 1463 const XMMRegister msg0 = xmm3; 1464 1465 const XMMRegister msg1 = xmm4; 1466 const XMMRegister msg2 = xmm5; 1467 const XMMRegister msg3 = xmm6; 1468 const XMMRegister shuf_mask = xmm7; 1469 1470 __ enter(); 1471 1472 __ subptr(rsp, 4 * wordSize); 1473 1474 __ fast_sha1(abcd, e0, e1, msg0, msg1, msg2, msg3, shuf_mask, 1475 buf, state, ofs, limit, rsp, multi_block); 1476 1477 __ addptr(rsp, 4 * wordSize); 1478 1479 __ leave(); 1480 __ ret(0); 1481 1482 return start; 1483 } 1484 1485 address StubGenerator::generate_pshuffle_byte_flip_mask() { 1486 __ align64(); 1487 StubCodeMark mark(this, "StubRoutines", "pshuffle_byte_flip_mask"); 1488 address start = __ pc(); 1489 1490 __ emit_data64(0x0405060700010203, relocInfo::none); 1491 __ emit_data64(0x0c0d0e0f08090a0b, relocInfo::none); 1492 1493 if (VM_Version::supports_avx2()) { 1494 __ emit_data64(0x0405060700010203, relocInfo::none); // second copy 1495 __ emit_data64(0x0c0d0e0f08090a0b, relocInfo::none); 1496 // _SHUF_00BA 1497 __ emit_data64(0x0b0a090803020100, relocInfo::none); 1498 __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none); 1499 __ emit_data64(0x0b0a090803020100, relocInfo::none); 1500 __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none); 1501 // _SHUF_DC00 1502 __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none); 1503 __ emit_data64(0x0b0a090803020100, relocInfo::none); 1504 __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none); 1505 __ emit_data64(0x0b0a090803020100, relocInfo::none); 1506 } 1507 1508 return start; 1509 } 1510 1511 //Mask for byte-swapping a couple of qwords in an XMM register using (v)pshufb. 1512 address StubGenerator::generate_pshuffle_byte_flip_mask_sha512() { 1513 __ align32(); 1514 StubCodeMark mark(this, "StubRoutines", "pshuffle_byte_flip_mask_sha512"); 1515 address start = __ pc(); 1516 1517 if (VM_Version::supports_avx2()) { 1518 __ emit_data64(0x0001020304050607, relocInfo::none); // PSHUFFLE_BYTE_FLIP_MASK 1519 __ emit_data64(0x08090a0b0c0d0e0f, relocInfo::none); 1520 __ emit_data64(0x1011121314151617, relocInfo::none); 1521 __ emit_data64(0x18191a1b1c1d1e1f, relocInfo::none); 1522 __ emit_data64(0x0000000000000000, relocInfo::none); //MASK_YMM_LO 1523 __ emit_data64(0x0000000000000000, relocInfo::none); 1524 __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none); 1525 __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none); 1526 } 1527 1528 return start; 1529 } 1530 1531 // ofs and limit are use for multi-block byte array. 1532 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit) 1533 address StubGenerator::generate_sha256_implCompress(bool multi_block, const char *name) { 1534 assert(VM_Version::supports_sha() || VM_Version::supports_avx2(), ""); 1535 __ align(CodeEntryAlignment); 1536 StubCodeMark mark(this, "StubRoutines", name); 1537 address start = __ pc(); 1538 1539 Register buf = c_rarg0; 1540 Register state = c_rarg1; 1541 Register ofs = c_rarg2; 1542 Register limit = c_rarg3; 1543 1544 const XMMRegister msg = xmm0; 1545 const XMMRegister state0 = xmm1; 1546 const XMMRegister state1 = xmm2; 1547 const XMMRegister msgtmp0 = xmm3; 1548 1549 const XMMRegister msgtmp1 = xmm4; 1550 const XMMRegister msgtmp2 = xmm5; 1551 const XMMRegister msgtmp3 = xmm6; 1552 const XMMRegister msgtmp4 = xmm7; 1553 1554 const XMMRegister shuf_mask = xmm8; 1555 1556 __ enter(); 1557 1558 __ subptr(rsp, 4 * wordSize); 1559 1560 if (VM_Version::supports_sha()) { 1561 __ fast_sha256(msg, state0, state1, msgtmp0, msgtmp1, msgtmp2, msgtmp3, msgtmp4, 1562 buf, state, ofs, limit, rsp, multi_block, shuf_mask); 1563 } else if (VM_Version::supports_avx2()) { 1564 __ sha256_AVX2(msg, state0, state1, msgtmp0, msgtmp1, msgtmp2, msgtmp3, msgtmp4, 1565 buf, state, ofs, limit, rsp, multi_block, shuf_mask); 1566 } 1567 __ addptr(rsp, 4 * wordSize); 1568 __ vzeroupper(); 1569 __ leave(); 1570 __ ret(0); 1571 1572 return start; 1573 } 1574 1575 address StubGenerator::generate_sha512_implCompress(bool multi_block, const char *name) { 1576 assert(VM_Version::supports_avx2(), ""); 1577 assert(VM_Version::supports_bmi2(), ""); 1578 __ align(CodeEntryAlignment); 1579 StubCodeMark mark(this, "StubRoutines", name); 1580 address start = __ pc(); 1581 1582 Register buf = c_rarg0; 1583 Register state = c_rarg1; 1584 Register ofs = c_rarg2; 1585 Register limit = c_rarg3; 1586 1587 const XMMRegister msg = xmm0; 1588 const XMMRegister state0 = xmm1; 1589 const XMMRegister state1 = xmm2; 1590 const XMMRegister msgtmp0 = xmm3; 1591 const XMMRegister msgtmp1 = xmm4; 1592 const XMMRegister msgtmp2 = xmm5; 1593 const XMMRegister msgtmp3 = xmm6; 1594 const XMMRegister msgtmp4 = xmm7; 1595 1596 const XMMRegister shuf_mask = xmm8; 1597 1598 __ enter(); 1599 1600 __ sha512_AVX2(msg, state0, state1, msgtmp0, msgtmp1, msgtmp2, msgtmp3, msgtmp4, 1601 buf, state, ofs, limit, rsp, multi_block, shuf_mask); 1602 1603 __ vzeroupper(); 1604 __ leave(); 1605 __ ret(0); 1606 1607 return start; 1608 } 1609 1610 address StubGenerator::base64_shuffle_addr() { 1611 __ align64(); 1612 StubCodeMark mark(this, "StubRoutines", "shuffle_base64"); 1613 address start = __ pc(); 1614 1615 assert(((unsigned long long)start & 0x3f) == 0, 1616 "Alignment problem (0x%08llx)", (unsigned long long)start); 1617 __ emit_data64(0x0405030401020001, relocInfo::none); 1618 __ emit_data64(0x0a0b090a07080607, relocInfo::none); 1619 __ emit_data64(0x10110f100d0e0c0d, relocInfo::none); 1620 __ emit_data64(0x1617151613141213, relocInfo::none); 1621 __ emit_data64(0x1c1d1b1c191a1819, relocInfo::none); 1622 __ emit_data64(0x222321221f201e1f, relocInfo::none); 1623 __ emit_data64(0x2829272825262425, relocInfo::none); 1624 __ emit_data64(0x2e2f2d2e2b2c2a2b, relocInfo::none); 1625 1626 return start; 1627 } 1628 1629 address StubGenerator::base64_avx2_shuffle_addr() { 1630 __ align32(); 1631 StubCodeMark mark(this, "StubRoutines", "avx2_shuffle_base64"); 1632 address start = __ pc(); 1633 1634 __ emit_data64(0x0809070805060405, relocInfo::none); 1635 __ emit_data64(0x0e0f0d0e0b0c0a0b, relocInfo::none); 1636 __ emit_data64(0x0405030401020001, relocInfo::none); 1637 __ emit_data64(0x0a0b090a07080607, relocInfo::none); 1638 1639 return start; 1640 } 1641 1642 address StubGenerator::base64_avx2_input_mask_addr() { 1643 __ align32(); 1644 StubCodeMark mark(this, "StubRoutines", "avx2_input_mask_base64"); 1645 address start = __ pc(); 1646 1647 __ emit_data64(0x8000000000000000, relocInfo::none); 1648 __ emit_data64(0x8000000080000000, relocInfo::none); 1649 __ emit_data64(0x8000000080000000, relocInfo::none); 1650 __ emit_data64(0x8000000080000000, relocInfo::none); 1651 1652 return start; 1653 } 1654 1655 address StubGenerator::base64_avx2_lut_addr() { 1656 __ align32(); 1657 StubCodeMark mark(this, "StubRoutines", "avx2_lut_base64"); 1658 address start = __ pc(); 1659 1660 __ emit_data64(0xfcfcfcfcfcfc4741, relocInfo::none); 1661 __ emit_data64(0x0000f0edfcfcfcfc, relocInfo::none); 1662 __ emit_data64(0xfcfcfcfcfcfc4741, relocInfo::none); 1663 __ emit_data64(0x0000f0edfcfcfcfc, relocInfo::none); 1664 1665 // URL LUT 1666 __ emit_data64(0xfcfcfcfcfcfc4741, relocInfo::none); 1667 __ emit_data64(0x000020effcfcfcfc, relocInfo::none); 1668 __ emit_data64(0xfcfcfcfcfcfc4741, relocInfo::none); 1669 __ emit_data64(0x000020effcfcfcfc, relocInfo::none); 1670 1671 return start; 1672 } 1673 1674 address StubGenerator::base64_encoding_table_addr() { 1675 __ align64(); 1676 StubCodeMark mark(this, "StubRoutines", "encoding_table_base64"); 1677 address start = __ pc(); 1678 1679 assert(((unsigned long long)start & 0x3f) == 0, "Alignment problem (0x%08llx)", (unsigned long long)start); 1680 __ emit_data64(0x4847464544434241, relocInfo::none); 1681 __ emit_data64(0x504f4e4d4c4b4a49, relocInfo::none); 1682 __ emit_data64(0x5857565554535251, relocInfo::none); 1683 __ emit_data64(0x6665646362615a59, relocInfo::none); 1684 __ emit_data64(0x6e6d6c6b6a696867, relocInfo::none); 1685 __ emit_data64(0x767574737271706f, relocInfo::none); 1686 __ emit_data64(0x333231307a797877, relocInfo::none); 1687 __ emit_data64(0x2f2b393837363534, relocInfo::none); 1688 1689 // URL table 1690 __ emit_data64(0x4847464544434241, relocInfo::none); 1691 __ emit_data64(0x504f4e4d4c4b4a49, relocInfo::none); 1692 __ emit_data64(0x5857565554535251, relocInfo::none); 1693 __ emit_data64(0x6665646362615a59, relocInfo::none); 1694 __ emit_data64(0x6e6d6c6b6a696867, relocInfo::none); 1695 __ emit_data64(0x767574737271706f, relocInfo::none); 1696 __ emit_data64(0x333231307a797877, relocInfo::none); 1697 __ emit_data64(0x5f2d393837363534, relocInfo::none); 1698 1699 return start; 1700 } 1701 1702 // Code for generating Base64 encoding. 1703 // Intrinsic function prototype in Base64.java: 1704 // private void encodeBlock(byte[] src, int sp, int sl, byte[] dst, int dp, 1705 // boolean isURL) { 1706 address StubGenerator::generate_base64_encodeBlock() 1707 { 1708 __ align(CodeEntryAlignment); 1709 StubCodeMark mark(this, "StubRoutines", "implEncode"); 1710 address start = __ pc(); 1711 1712 __ enter(); 1713 1714 // Save callee-saved registers before using them 1715 __ push(r12); 1716 __ push(r13); 1717 __ push(r14); 1718 __ push(r15); 1719 1720 // arguments 1721 const Register source = c_rarg0; // Source Array 1722 const Register start_offset = c_rarg1; // start offset 1723 const Register end_offset = c_rarg2; // end offset 1724 const Register dest = c_rarg3; // destination array 1725 1726 #ifndef _WIN64 1727 const Register dp = c_rarg4; // Position for writing to dest array 1728 const Register isURL = c_rarg5; // Base64 or URL character set 1729 #else 1730 const Address dp_mem(rbp, 6 * wordSize); // length is on stack on Win64 1731 const Address isURL_mem(rbp, 7 * wordSize); 1732 const Register isURL = r10; // pick the volatile windows register 1733 const Register dp = r12; 1734 __ movl(dp, dp_mem); 1735 __ movl(isURL, isURL_mem); 1736 #endif 1737 1738 const Register length = r14; 1739 const Register encode_table = r13; 1740 Label L_process3, L_exit, L_processdata, L_vbmiLoop, L_not512, L_32byteLoop; 1741 1742 // calculate length from offsets 1743 __ movl(length, end_offset); 1744 __ subl(length, start_offset); 1745 __ jcc(Assembler::lessEqual, L_exit); 1746 1747 // Code for 512-bit VBMI encoding. Encodes 48 input bytes into 64 1748 // output bytes. We read 64 input bytes and ignore the last 16, so be 1749 // sure not to read past the end of the input buffer. 1750 if (VM_Version::supports_avx512_vbmi()) { 1751 __ cmpl(length, 64); // Do not overrun input buffer. 1752 __ jcc(Assembler::below, L_not512); 1753 1754 __ shll(isURL, 6); // index into decode table based on isURL 1755 __ lea(encode_table, ExternalAddress(StubRoutines::x86::base64_encoding_table_addr())); 1756 __ addptr(encode_table, isURL); 1757 __ shrl(isURL, 6); // restore isURL 1758 1759 __ mov64(rax, 0x3036242a1016040aull); // Shifts 1760 __ evmovdquq(xmm3, ExternalAddress(StubRoutines::x86::base64_shuffle_addr()), Assembler::AVX_512bit, r15); 1761 __ evmovdquq(xmm2, Address(encode_table, 0), Assembler::AVX_512bit); 1762 __ evpbroadcastq(xmm1, rax, Assembler::AVX_512bit); 1763 1764 __ align32(); 1765 __ BIND(L_vbmiLoop); 1766 1767 __ vpermb(xmm0, xmm3, Address(source, start_offset), Assembler::AVX_512bit); 1768 __ subl(length, 48); 1769 1770 // Put the input bytes into the proper lanes for writing, then 1771 // encode them. 1772 __ evpmultishiftqb(xmm0, xmm1, xmm0, Assembler::AVX_512bit); 1773 __ vpermb(xmm0, xmm0, xmm2, Assembler::AVX_512bit); 1774 1775 // Write to destination 1776 __ evmovdquq(Address(dest, dp), xmm0, Assembler::AVX_512bit); 1777 1778 __ addptr(dest, 64); 1779 __ addptr(source, 48); 1780 __ cmpl(length, 64); 1781 __ jcc(Assembler::aboveEqual, L_vbmiLoop); 1782 1783 __ vzeroupper(); 1784 } 1785 1786 __ BIND(L_not512); 1787 if (VM_Version::supports_avx2()) { 1788 /* 1789 ** This AVX2 encoder is based off the paper at: 1790 ** https://dl.acm.org/doi/10.1145/3132709 1791 ** 1792 ** We use AVX2 SIMD instructions to encode 24 bytes into 32 1793 ** output bytes. 1794 ** 1795 */ 1796 // Lengths under 32 bytes are done with scalar routine 1797 __ cmpl(length, 31); 1798 __ jcc(Assembler::belowEqual, L_process3); 1799 1800 // Set up supporting constant table data 1801 __ vmovdqu(xmm9, ExternalAddress(StubRoutines::x86::base64_avx2_shuffle_addr()), rax); 1802 // 6-bit mask for 2nd and 4th (and multiples) 6-bit values 1803 __ movl(rax, 0x0fc0fc00); 1804 __ movdl(xmm8, rax); 1805 __ vmovdqu(xmm1, ExternalAddress(StubRoutines::x86::base64_avx2_input_mask_addr()), rax); 1806 __ vpbroadcastd(xmm8, xmm8, Assembler::AVX_256bit); 1807 1808 // Multiplication constant for "shifting" right by 6 and 10 1809 // bits 1810 __ movl(rax, 0x04000040); 1811 1812 __ subl(length, 24); 1813 __ movdl(xmm7, rax); 1814 __ vpbroadcastd(xmm7, xmm7, Assembler::AVX_256bit); 1815 1816 // For the first load, we mask off reading of the first 4 1817 // bytes into the register. This is so we can get 4 3-byte 1818 // chunks into each lane of the register, avoiding having to 1819 // handle end conditions. We then shuffle these bytes into a 1820 // specific order so that manipulation is easier. 1821 // 1822 // The initial read loads the XMM register like this: 1823 // 1824 // Lower 128-bit lane: 1825 // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+ 1826 // | XX | XX | XX | XX | A0 | A1 | A2 | B0 | B1 | B2 | C0 | C1 1827 // | C2 | D0 | D1 | D2 | 1828 // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+ 1829 // 1830 // Upper 128-bit lane: 1831 // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+ 1832 // | E0 | E1 | E2 | F0 | F1 | F2 | G0 | G1 | G2 | H0 | H1 | H2 1833 // | XX | XX | XX | XX | 1834 // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+ 1835 // 1836 // Where A0 is the first input byte, B0 is the fourth, etc. 1837 // The alphabetical significance denotes the 3 bytes to be 1838 // consumed and encoded into 4 bytes. 1839 // 1840 // We then shuffle the register so each 32-bit word contains 1841 // the sequence: 1842 // A1 A0 A2 A1, B1, B0, B2, B1, etc. 1843 // Each of these byte sequences are then manipulated into 4 1844 // 6-bit values ready for encoding. 1845 // 1846 // If we focus on one set of 3-byte chunks, changing the 1847 // nomenclature such that A0 => a, A1 => b, and A2 => c, we 1848 // shuffle such that each 24-bit chunk contains: 1849 // 1850 // b7 b6 b5 b4 b3 b2 b1 b0 | a7 a6 a5 a4 a3 a2 a1 a0 | c7 c6 1851 // c5 c4 c3 c2 c1 c0 | b7 b6 b5 b4 b3 b2 b1 b0 1852 // Explain this step. 1853 // b3 b2 b1 b0 c5 c4 c3 c2 | c1 c0 d5 d4 d3 d2 d1 d0 | a5 a4 1854 // a3 a2 a1 a0 b5 b4 | b3 b2 b1 b0 c5 c4 c3 c2 1855 // 1856 // W first and off all but bits 4-9 and 16-21 (c5..c0 and 1857 // a5..a0) and shift them using a vector multiplication 1858 // operation (vpmulhuw) which effectively shifts c right by 6 1859 // bits and a right by 10 bits. We similarly mask bits 10-15 1860 // (d5..d0) and 22-27 (b5..b0) and shift them left by 8 and 4 1861 // bits respectively. This is done using vpmullw. We end up 1862 // with 4 6-bit values, thus splitting the 3 input bytes, 1863 // ready for encoding: 1864 // 0 0 d5..d0 0 0 c5..c0 0 0 b5..b0 0 0 a5..a0 1865 // 1866 // For translation, we recognize that there are 5 distinct 1867 // ranges of legal Base64 characters as below: 1868 // 1869 // +-------------+-------------+------------+ 1870 // | 6-bit value | ASCII range | offset | 1871 // +-------------+-------------+------------+ 1872 // | 0..25 | A..Z | 65 | 1873 // | 26..51 | a..z | 71 | 1874 // | 52..61 | 0..9 | -4 | 1875 // | 62 | + or - | -19 or -17 | 1876 // | 63 | / or _ | -16 or 32 | 1877 // +-------------+-------------+------------+ 1878 // 1879 // We note that vpshufb does a parallel lookup in a 1880 // destination register using the lower 4 bits of bytes from a 1881 // source register. If we use a saturated subtraction and 1882 // subtract 51 from each 6-bit value, bytes from [0,51] 1883 // saturate to 0, and [52,63] map to a range of [1,12]. We 1884 // distinguish the [0,25] and [26,51] ranges by assigning a 1885 // value of 13 for all 6-bit values less than 26. We end up 1886 // with: 1887 // 1888 // +-------------+-------------+------------+ 1889 // | 6-bit value | Reduced | offset | 1890 // +-------------+-------------+------------+ 1891 // | 0..25 | 13 | 65 | 1892 // | 26..51 | 0 | 71 | 1893 // | 52..61 | 0..9 | -4 | 1894 // | 62 | 11 | -19 or -17 | 1895 // | 63 | 12 | -16 or 32 | 1896 // +-------------+-------------+------------+ 1897 // 1898 // We then use a final vpshufb to add the appropriate offset, 1899 // translating the bytes. 1900 // 1901 // Load input bytes - only 28 bytes. Mask the first load to 1902 // not load into the full register. 1903 __ vpmaskmovd(xmm1, xmm1, Address(source, start_offset, Address::times_1, -4), Assembler::AVX_256bit); 1904 1905 // Move 3-byte chunks of input (12 bytes) into 16 bytes, 1906 // ordering by: 1907 // 1, 0, 2, 1; 4, 3, 5, 4; etc. This groups 6-bit chunks 1908 // for easy masking 1909 __ vpshufb(xmm1, xmm1, xmm9, Assembler::AVX_256bit); 1910 1911 __ addl(start_offset, 24); 1912 1913 // Load masking register for first and third (and multiples) 1914 // 6-bit values. 1915 __ movl(rax, 0x003f03f0); 1916 __ movdl(xmm6, rax); 1917 __ vpbroadcastd(xmm6, xmm6, Assembler::AVX_256bit); 1918 // Multiplication constant for "shifting" left by 4 and 8 bits 1919 __ movl(rax, 0x01000010); 1920 __ movdl(xmm5, rax); 1921 __ vpbroadcastd(xmm5, xmm5, Assembler::AVX_256bit); 1922 1923 // Isolate 6-bit chunks of interest 1924 __ vpand(xmm0, xmm8, xmm1, Assembler::AVX_256bit); 1925 1926 // Load constants for encoding 1927 __ movl(rax, 0x19191919); 1928 __ movdl(xmm3, rax); 1929 __ vpbroadcastd(xmm3, xmm3, Assembler::AVX_256bit); 1930 __ movl(rax, 0x33333333); 1931 __ movdl(xmm4, rax); 1932 __ vpbroadcastd(xmm4, xmm4, Assembler::AVX_256bit); 1933 1934 // Shift output bytes 0 and 2 into proper lanes 1935 __ vpmulhuw(xmm2, xmm0, xmm7, Assembler::AVX_256bit); 1936 1937 // Mask and shift output bytes 1 and 3 into proper lanes and 1938 // combine 1939 __ vpand(xmm0, xmm6, xmm1, Assembler::AVX_256bit); 1940 __ vpmullw(xmm0, xmm5, xmm0, Assembler::AVX_256bit); 1941 __ vpor(xmm0, xmm0, xmm2, Assembler::AVX_256bit); 1942 1943 // Find out which are 0..25. This indicates which input 1944 // values fall in the range of 'A'-'Z', which require an 1945 // additional offset (see comments above) 1946 __ vpcmpgtb(xmm2, xmm0, xmm3, Assembler::AVX_256bit); 1947 __ vpsubusb(xmm1, xmm0, xmm4, Assembler::AVX_256bit); 1948 __ vpsubb(xmm1, xmm1, xmm2, Assembler::AVX_256bit); 1949 1950 // Load the proper lookup table 1951 __ lea(r11, ExternalAddress(StubRoutines::x86::base64_avx2_lut_addr())); 1952 __ movl(r15, isURL); 1953 __ shll(r15, 5); 1954 __ vmovdqu(xmm2, Address(r11, r15)); 1955 1956 // Shuffle the offsets based on the range calculation done 1957 // above. This allows us to add the correct offset to the 1958 // 6-bit value corresponding to the range documented above. 1959 __ vpshufb(xmm1, xmm2, xmm1, Assembler::AVX_256bit); 1960 __ vpaddb(xmm0, xmm1, xmm0, Assembler::AVX_256bit); 1961 1962 // Store the encoded bytes 1963 __ vmovdqu(Address(dest, dp), xmm0); 1964 __ addl(dp, 32); 1965 1966 __ cmpl(length, 31); 1967 __ jcc(Assembler::belowEqual, L_process3); 1968 1969 __ align32(); 1970 __ BIND(L_32byteLoop); 1971 1972 // Get next 32 bytes 1973 __ vmovdqu(xmm1, Address(source, start_offset, Address::times_1, -4)); 1974 1975 __ subl(length, 24); 1976 __ addl(start_offset, 24); 1977 1978 // This logic is identical to the above, with only constant 1979 // register loads removed. Shuffle the input, mask off 6-bit 1980 // chunks, shift them into place, then add the offset to 1981 // encode. 1982 __ vpshufb(xmm1, xmm1, xmm9, Assembler::AVX_256bit); 1983 1984 __ vpand(xmm0, xmm8, xmm1, Assembler::AVX_256bit); 1985 __ vpmulhuw(xmm10, xmm0, xmm7, Assembler::AVX_256bit); 1986 __ vpand(xmm0, xmm6, xmm1, Assembler::AVX_256bit); 1987 __ vpmullw(xmm0, xmm5, xmm0, Assembler::AVX_256bit); 1988 __ vpor(xmm0, xmm0, xmm10, Assembler::AVX_256bit); 1989 __ vpcmpgtb(xmm10, xmm0, xmm3, Assembler::AVX_256bit); 1990 __ vpsubusb(xmm1, xmm0, xmm4, Assembler::AVX_256bit); 1991 __ vpsubb(xmm1, xmm1, xmm10, Assembler::AVX_256bit); 1992 __ vpshufb(xmm1, xmm2, xmm1, Assembler::AVX_256bit); 1993 __ vpaddb(xmm0, xmm1, xmm0, Assembler::AVX_256bit); 1994 1995 // Store the encoded bytes 1996 __ vmovdqu(Address(dest, dp), xmm0); 1997 __ addl(dp, 32); 1998 1999 __ cmpl(length, 31); 2000 __ jcc(Assembler::above, L_32byteLoop); 2001 2002 __ BIND(L_process3); 2003 __ vzeroupper(); 2004 } else { 2005 __ BIND(L_process3); 2006 } 2007 2008 __ cmpl(length, 3); 2009 __ jcc(Assembler::below, L_exit); 2010 2011 // Load the encoding table based on isURL 2012 __ lea(r11, ExternalAddress(StubRoutines::x86::base64_encoding_table_addr())); 2013 __ movl(r15, isURL); 2014 __ shll(r15, 6); 2015 __ addptr(r11, r15); 2016 2017 __ BIND(L_processdata); 2018 2019 // Load 3 bytes 2020 __ load_unsigned_byte(r15, Address(source, start_offset)); 2021 __ load_unsigned_byte(r10, Address(source, start_offset, Address::times_1, 1)); 2022 __ load_unsigned_byte(r13, Address(source, start_offset, Address::times_1, 2)); 2023 2024 // Build a 32-bit word with bytes 1, 2, 0, 1 2025 __ movl(rax, r10); 2026 __ shll(r10, 24); 2027 __ orl(rax, r10); 2028 2029 __ subl(length, 3); 2030 2031 __ shll(r15, 8); 2032 __ shll(r13, 16); 2033 __ orl(rax, r15); 2034 2035 __ addl(start_offset, 3); 2036 2037 __ orl(rax, r13); 2038 // At this point, rax contains | byte1 | byte2 | byte0 | byte1 2039 // r13 has byte2 << 16 - need low-order 6 bits to translate. 2040 // This translated byte is the fourth output byte. 2041 __ shrl(r13, 16); 2042 __ andl(r13, 0x3f); 2043 2044 // The high-order 6 bits of r15 (byte0) is translated. 2045 // The translated byte is the first output byte. 2046 __ shrl(r15, 10); 2047 2048 __ load_unsigned_byte(r13, Address(r11, r13)); 2049 __ load_unsigned_byte(r15, Address(r11, r15)); 2050 2051 __ movb(Address(dest, dp, Address::times_1, 3), r13); 2052 2053 // Extract high-order 4 bits of byte1 and low-order 2 bits of byte0. 2054 // This translated byte is the second output byte. 2055 __ shrl(rax, 4); 2056 __ movl(r10, rax); 2057 __ andl(rax, 0x3f); 2058 2059 __ movb(Address(dest, dp, Address::times_1, 0), r15); 2060 2061 __ load_unsigned_byte(rax, Address(r11, rax)); 2062 2063 // Extract low-order 2 bits of byte1 and high-order 4 bits of byte2. 2064 // This translated byte is the third output byte. 2065 __ shrl(r10, 18); 2066 __ andl(r10, 0x3f); 2067 2068 __ load_unsigned_byte(r10, Address(r11, r10)); 2069 2070 __ movb(Address(dest, dp, Address::times_1, 1), rax); 2071 __ movb(Address(dest, dp, Address::times_1, 2), r10); 2072 2073 __ addl(dp, 4); 2074 __ cmpl(length, 3); 2075 __ jcc(Assembler::aboveEqual, L_processdata); 2076 2077 __ BIND(L_exit); 2078 __ pop(r15); 2079 __ pop(r14); 2080 __ pop(r13); 2081 __ pop(r12); 2082 __ leave(); 2083 __ ret(0); 2084 2085 return start; 2086 } 2087 2088 // base64 AVX512vbmi tables 2089 address StubGenerator::base64_vbmi_lookup_lo_addr() { 2090 __ align64(); 2091 StubCodeMark mark(this, "StubRoutines", "lookup_lo_base64"); 2092 address start = __ pc(); 2093 2094 assert(((unsigned long long)start & 0x3f) == 0, 2095 "Alignment problem (0x%08llx)", (unsigned long long)start); 2096 __ emit_data64(0x8080808080808080, relocInfo::none); 2097 __ emit_data64(0x8080808080808080, relocInfo::none); 2098 __ emit_data64(0x8080808080808080, relocInfo::none); 2099 __ emit_data64(0x8080808080808080, relocInfo::none); 2100 __ emit_data64(0x8080808080808080, relocInfo::none); 2101 __ emit_data64(0x3f8080803e808080, relocInfo::none); 2102 __ emit_data64(0x3b3a393837363534, relocInfo::none); 2103 __ emit_data64(0x8080808080803d3c, relocInfo::none); 2104 2105 return start; 2106 } 2107 2108 address StubGenerator::base64_vbmi_lookup_hi_addr() { 2109 __ align64(); 2110 StubCodeMark mark(this, "StubRoutines", "lookup_hi_base64"); 2111 address start = __ pc(); 2112 2113 assert(((unsigned long long)start & 0x3f) == 0, 2114 "Alignment problem (0x%08llx)", (unsigned long long)start); 2115 __ emit_data64(0x0605040302010080, relocInfo::none); 2116 __ emit_data64(0x0e0d0c0b0a090807, relocInfo::none); 2117 __ emit_data64(0x161514131211100f, relocInfo::none); 2118 __ emit_data64(0x8080808080191817, relocInfo::none); 2119 __ emit_data64(0x201f1e1d1c1b1a80, relocInfo::none); 2120 __ emit_data64(0x2827262524232221, relocInfo::none); 2121 __ emit_data64(0x302f2e2d2c2b2a29, relocInfo::none); 2122 __ emit_data64(0x8080808080333231, relocInfo::none); 2123 2124 return start; 2125 } 2126 address StubGenerator::base64_vbmi_lookup_lo_url_addr() { 2127 __ align64(); 2128 StubCodeMark mark(this, "StubRoutines", "lookup_lo_base64url"); 2129 address start = __ pc(); 2130 2131 assert(((unsigned long long)start & 0x3f) == 0, 2132 "Alignment problem (0x%08llx)", (unsigned long long)start); 2133 __ emit_data64(0x8080808080808080, relocInfo::none); 2134 __ emit_data64(0x8080808080808080, relocInfo::none); 2135 __ emit_data64(0x8080808080808080, relocInfo::none); 2136 __ emit_data64(0x8080808080808080, relocInfo::none); 2137 __ emit_data64(0x8080808080808080, relocInfo::none); 2138 __ emit_data64(0x80803e8080808080, relocInfo::none); 2139 __ emit_data64(0x3b3a393837363534, relocInfo::none); 2140 __ emit_data64(0x8080808080803d3c, relocInfo::none); 2141 2142 return start; 2143 } 2144 2145 address StubGenerator::base64_vbmi_lookup_hi_url_addr() { 2146 __ align64(); 2147 StubCodeMark mark(this, "StubRoutines", "lookup_hi_base64url"); 2148 address start = __ pc(); 2149 2150 assert(((unsigned long long)start & 0x3f) == 0, 2151 "Alignment problem (0x%08llx)", (unsigned long long)start); 2152 __ emit_data64(0x0605040302010080, relocInfo::none); 2153 __ emit_data64(0x0e0d0c0b0a090807, relocInfo::none); 2154 __ emit_data64(0x161514131211100f, relocInfo::none); 2155 __ emit_data64(0x3f80808080191817, relocInfo::none); 2156 __ emit_data64(0x201f1e1d1c1b1a80, relocInfo::none); 2157 __ emit_data64(0x2827262524232221, relocInfo::none); 2158 __ emit_data64(0x302f2e2d2c2b2a29, relocInfo::none); 2159 __ emit_data64(0x8080808080333231, relocInfo::none); 2160 2161 return start; 2162 } 2163 2164 address StubGenerator::base64_vbmi_pack_vec_addr() { 2165 __ align64(); 2166 StubCodeMark mark(this, "StubRoutines", "pack_vec_base64"); 2167 address start = __ pc(); 2168 2169 assert(((unsigned long long)start & 0x3f) == 0, 2170 "Alignment problem (0x%08llx)", (unsigned long long)start); 2171 __ emit_data64(0x090a040506000102, relocInfo::none); 2172 __ emit_data64(0x161011120c0d0e08, relocInfo::none); 2173 __ emit_data64(0x1c1d1e18191a1415, relocInfo::none); 2174 __ emit_data64(0x292a242526202122, relocInfo::none); 2175 __ emit_data64(0x363031322c2d2e28, relocInfo::none); 2176 __ emit_data64(0x3c3d3e38393a3435, relocInfo::none); 2177 __ emit_data64(0x0000000000000000, relocInfo::none); 2178 __ emit_data64(0x0000000000000000, relocInfo::none); 2179 2180 return start; 2181 } 2182 2183 address StubGenerator::base64_vbmi_join_0_1_addr() { 2184 __ align64(); 2185 StubCodeMark mark(this, "StubRoutines", "join_0_1_base64"); 2186 address start = __ pc(); 2187 2188 assert(((unsigned long long)start & 0x3f) == 0, 2189 "Alignment problem (0x%08llx)", (unsigned long long)start); 2190 __ emit_data64(0x090a040506000102, relocInfo::none); 2191 __ emit_data64(0x161011120c0d0e08, relocInfo::none); 2192 __ emit_data64(0x1c1d1e18191a1415, relocInfo::none); 2193 __ emit_data64(0x292a242526202122, relocInfo::none); 2194 __ emit_data64(0x363031322c2d2e28, relocInfo::none); 2195 __ emit_data64(0x3c3d3e38393a3435, relocInfo::none); 2196 __ emit_data64(0x494a444546404142, relocInfo::none); 2197 __ emit_data64(0x565051524c4d4e48, relocInfo::none); 2198 2199 return start; 2200 } 2201 2202 address StubGenerator::base64_vbmi_join_1_2_addr() { 2203 __ align64(); 2204 StubCodeMark mark(this, "StubRoutines", "join_1_2_base64"); 2205 address start = __ pc(); 2206 2207 assert(((unsigned long long)start & 0x3f) == 0, 2208 "Alignment problem (0x%08llx)", (unsigned long long)start); 2209 __ emit_data64(0x1c1d1e18191a1415, relocInfo::none); 2210 __ emit_data64(0x292a242526202122, relocInfo::none); 2211 __ emit_data64(0x363031322c2d2e28, relocInfo::none); 2212 __ emit_data64(0x3c3d3e38393a3435, relocInfo::none); 2213 __ emit_data64(0x494a444546404142, relocInfo::none); 2214 __ emit_data64(0x565051524c4d4e48, relocInfo::none); 2215 __ emit_data64(0x5c5d5e58595a5455, relocInfo::none); 2216 __ emit_data64(0x696a646566606162, relocInfo::none); 2217 2218 return start; 2219 } 2220 2221 address StubGenerator::base64_vbmi_join_2_3_addr() { 2222 __ align64(); 2223 StubCodeMark mark(this, "StubRoutines", "join_2_3_base64"); 2224 address start = __ pc(); 2225 2226 assert(((unsigned long long)start & 0x3f) == 0, 2227 "Alignment problem (0x%08llx)", (unsigned long long)start); 2228 __ emit_data64(0x363031322c2d2e28, relocInfo::none); 2229 __ emit_data64(0x3c3d3e38393a3435, relocInfo::none); 2230 __ emit_data64(0x494a444546404142, relocInfo::none); 2231 __ emit_data64(0x565051524c4d4e48, relocInfo::none); 2232 __ emit_data64(0x5c5d5e58595a5455, relocInfo::none); 2233 __ emit_data64(0x696a646566606162, relocInfo::none); 2234 __ emit_data64(0x767071726c6d6e68, relocInfo::none); 2235 __ emit_data64(0x7c7d7e78797a7475, relocInfo::none); 2236 2237 return start; 2238 } 2239 2240 address StubGenerator::base64_AVX2_decode_tables_addr() { 2241 __ align64(); 2242 StubCodeMark mark(this, "StubRoutines", "AVX2_tables_base64"); 2243 address start = __ pc(); 2244 2245 assert(((unsigned long long)start & 0x3f) == 0, 2246 "Alignment problem (0x%08llx)", (unsigned long long)start); 2247 __ emit_data(0x2f2f2f2f, relocInfo::none, 0); 2248 __ emit_data(0x5f5f5f5f, relocInfo::none, 0); // for URL 2249 2250 __ emit_data(0xffffffff, relocInfo::none, 0); 2251 __ emit_data(0xfcfcfcfc, relocInfo::none, 0); // for URL 2252 2253 // Permute table 2254 __ emit_data64(0x0000000100000000, relocInfo::none); 2255 __ emit_data64(0x0000000400000002, relocInfo::none); 2256 __ emit_data64(0x0000000600000005, relocInfo::none); 2257 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2258 2259 // Shuffle table 2260 __ emit_data64(0x090a040506000102, relocInfo::none); 2261 __ emit_data64(0xffffffff0c0d0e08, relocInfo::none); 2262 __ emit_data64(0x090a040506000102, relocInfo::none); 2263 __ emit_data64(0xffffffff0c0d0e08, relocInfo::none); 2264 2265 // merge table 2266 __ emit_data(0x01400140, relocInfo::none, 0); 2267 2268 // merge multiplier 2269 __ emit_data(0x00011000, relocInfo::none, 0); 2270 2271 return start; 2272 } 2273 2274 address StubGenerator::base64_AVX2_decode_LUT_tables_addr() { 2275 __ align64(); 2276 StubCodeMark mark(this, "StubRoutines", "AVX2_tables_URL_base64"); 2277 address start = __ pc(); 2278 2279 assert(((unsigned long long)start & 0x3f) == 0, 2280 "Alignment problem (0x%08llx)", (unsigned long long)start); 2281 // lut_lo 2282 __ emit_data64(0x1111111111111115, relocInfo::none); 2283 __ emit_data64(0x1a1b1b1b1a131111, relocInfo::none); 2284 __ emit_data64(0x1111111111111115, relocInfo::none); 2285 __ emit_data64(0x1a1b1b1b1a131111, relocInfo::none); 2286 2287 // lut_roll 2288 __ emit_data64(0xb9b9bfbf04131000, relocInfo::none); 2289 __ emit_data64(0x0000000000000000, relocInfo::none); 2290 __ emit_data64(0xb9b9bfbf04131000, relocInfo::none); 2291 __ emit_data64(0x0000000000000000, relocInfo::none); 2292 2293 // lut_lo URL 2294 __ emit_data64(0x1111111111111115, relocInfo::none); 2295 __ emit_data64(0x1b1b1a1b1b131111, relocInfo::none); 2296 __ emit_data64(0x1111111111111115, relocInfo::none); 2297 __ emit_data64(0x1b1b1a1b1b131111, relocInfo::none); 2298 2299 // lut_roll URL 2300 __ emit_data64(0xb9b9bfbf0411e000, relocInfo::none); 2301 __ emit_data64(0x0000000000000000, relocInfo::none); 2302 __ emit_data64(0xb9b9bfbf0411e000, relocInfo::none); 2303 __ emit_data64(0x0000000000000000, relocInfo::none); 2304 2305 // lut_hi 2306 __ emit_data64(0x0804080402011010, relocInfo::none); 2307 __ emit_data64(0x1010101010101010, relocInfo::none); 2308 __ emit_data64(0x0804080402011010, relocInfo::none); 2309 __ emit_data64(0x1010101010101010, relocInfo::none); 2310 2311 return start; 2312 } 2313 2314 address StubGenerator::base64_decoding_table_addr() { 2315 StubCodeMark mark(this, "StubRoutines", "decoding_table_base64"); 2316 address start = __ pc(); 2317 2318 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2319 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2320 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2321 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2322 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2323 __ emit_data64(0x3fffffff3effffff, relocInfo::none); 2324 __ emit_data64(0x3b3a393837363534, relocInfo::none); 2325 __ emit_data64(0xffffffffffff3d3c, relocInfo::none); 2326 __ emit_data64(0x06050403020100ff, relocInfo::none); 2327 __ emit_data64(0x0e0d0c0b0a090807, relocInfo::none); 2328 __ emit_data64(0x161514131211100f, relocInfo::none); 2329 __ emit_data64(0xffffffffff191817, relocInfo::none); 2330 __ emit_data64(0x201f1e1d1c1b1aff, relocInfo::none); 2331 __ emit_data64(0x2827262524232221, relocInfo::none); 2332 __ emit_data64(0x302f2e2d2c2b2a29, relocInfo::none); 2333 __ emit_data64(0xffffffffff333231, relocInfo::none); 2334 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2335 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2336 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2337 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2338 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2339 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2340 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2341 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2342 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2343 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2344 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2345 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2346 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2347 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2348 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2349 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2350 2351 // URL table 2352 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2353 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2354 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2355 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2356 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2357 __ emit_data64(0xffff3effffffffff, relocInfo::none); 2358 __ emit_data64(0x3b3a393837363534, relocInfo::none); 2359 __ emit_data64(0xffffffffffff3d3c, relocInfo::none); 2360 __ emit_data64(0x06050403020100ff, relocInfo::none); 2361 __ emit_data64(0x0e0d0c0b0a090807, relocInfo::none); 2362 __ emit_data64(0x161514131211100f, relocInfo::none); 2363 __ emit_data64(0x3fffffffff191817, relocInfo::none); 2364 __ emit_data64(0x201f1e1d1c1b1aff, relocInfo::none); 2365 __ emit_data64(0x2827262524232221, relocInfo::none); 2366 __ emit_data64(0x302f2e2d2c2b2a29, relocInfo::none); 2367 __ emit_data64(0xffffffffff333231, relocInfo::none); 2368 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2369 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2370 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2371 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2372 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2373 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2374 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2375 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2376 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2377 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2378 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2379 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2380 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2381 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2382 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2383 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2384 2385 return start; 2386 } 2387 2388 2389 // Code for generating Base64 decoding. 2390 // 2391 // Based on the article (and associated code) from https://arxiv.org/abs/1910.05109. 2392 // 2393 // Intrinsic function prototype in Base64.java: 2394 // private void decodeBlock(byte[] src, int sp, int sl, byte[] dst, int dp, boolean isURL, isMIME) { 2395 address StubGenerator::generate_base64_decodeBlock() { 2396 __ align(CodeEntryAlignment); 2397 StubCodeMark mark(this, "StubRoutines", "implDecode"); 2398 address start = __ pc(); 2399 2400 __ enter(); 2401 2402 // Save callee-saved registers before using them 2403 __ push(r12); 2404 __ push(r13); 2405 __ push(r14); 2406 __ push(r15); 2407 __ push(rbx); 2408 2409 // arguments 2410 const Register source = c_rarg0; // Source Array 2411 const Register start_offset = c_rarg1; // start offset 2412 const Register end_offset = c_rarg2; // end offset 2413 const Register dest = c_rarg3; // destination array 2414 const Register isMIME = rbx; 2415 2416 #ifndef _WIN64 2417 const Register dp = c_rarg4; // Position for writing to dest array 2418 const Register isURL = c_rarg5;// Base64 or URL character set 2419 __ movl(isMIME, Address(rbp, 2 * wordSize)); 2420 #else 2421 const Address dp_mem(rbp, 6 * wordSize); // length is on stack on Win64 2422 const Address isURL_mem(rbp, 7 * wordSize); 2423 const Register isURL = r10; // pick the volatile windows register 2424 const Register dp = r12; 2425 __ movl(dp, dp_mem); 2426 __ movl(isURL, isURL_mem); 2427 __ movl(isMIME, Address(rbp, 8 * wordSize)); 2428 #endif 2429 2430 const XMMRegister lookup_lo = xmm5; 2431 const XMMRegister lookup_hi = xmm6; 2432 const XMMRegister errorvec = xmm7; 2433 const XMMRegister pack16_op = xmm9; 2434 const XMMRegister pack32_op = xmm8; 2435 const XMMRegister input0 = xmm3; 2436 const XMMRegister input1 = xmm20; 2437 const XMMRegister input2 = xmm21; 2438 const XMMRegister input3 = xmm19; 2439 const XMMRegister join01 = xmm12; 2440 const XMMRegister join12 = xmm11; 2441 const XMMRegister join23 = xmm10; 2442 const XMMRegister translated0 = xmm2; 2443 const XMMRegister translated1 = xmm1; 2444 const XMMRegister translated2 = xmm0; 2445 const XMMRegister translated3 = xmm4; 2446 2447 const XMMRegister merged0 = xmm2; 2448 const XMMRegister merged1 = xmm1; 2449 const XMMRegister merged2 = xmm0; 2450 const XMMRegister merged3 = xmm4; 2451 const XMMRegister merge_ab_bc0 = xmm2; 2452 const XMMRegister merge_ab_bc1 = xmm1; 2453 const XMMRegister merge_ab_bc2 = xmm0; 2454 const XMMRegister merge_ab_bc3 = xmm4; 2455 2456 const XMMRegister pack24bits = xmm4; 2457 2458 const Register length = r14; 2459 const Register output_size = r13; 2460 const Register output_mask = r15; 2461 const KRegister input_mask = k1; 2462 2463 const XMMRegister input_initial_valid_b64 = xmm0; 2464 const XMMRegister tmp = xmm10; 2465 const XMMRegister mask = xmm0; 2466 const XMMRegister invalid_b64 = xmm1; 2467 2468 Label L_process256, L_process64, L_process64Loop, L_exit, L_processdata, L_loadURL; 2469 Label L_continue, L_finalBit, L_padding, L_donePadding, L_bruteForce; 2470 Label L_forceLoop, L_bottomLoop, L_checkMIME, L_exit_no_vzero, L_lastChunk; 2471 2472 // calculate length from offsets 2473 __ movl(length, end_offset); 2474 __ subl(length, start_offset); 2475 __ push(dest); // Save for return value calc 2476 2477 // If AVX512 VBMI not supported, just compile non-AVX code 2478 if(VM_Version::supports_avx512_vbmi() && 2479 VM_Version::supports_avx512bw()) { 2480 __ cmpl(length, 31); // 32-bytes is break-even for AVX-512 2481 __ jcc(Assembler::lessEqual, L_lastChunk); 2482 2483 __ cmpl(isMIME, 0); 2484 __ jcc(Assembler::notEqual, L_lastChunk); 2485 2486 // Load lookup tables based on isURL 2487 __ cmpl(isURL, 0); 2488 __ jcc(Assembler::notZero, L_loadURL); 2489 2490 __ evmovdquq(lookup_lo, ExternalAddress(StubRoutines::x86::base64_vbmi_lookup_lo_addr()), Assembler::AVX_512bit, r13); 2491 __ evmovdquq(lookup_hi, ExternalAddress(StubRoutines::x86::base64_vbmi_lookup_hi_addr()), Assembler::AVX_512bit, r13); 2492 2493 __ BIND(L_continue); 2494 2495 __ movl(r15, 0x01400140); 2496 __ evpbroadcastd(pack16_op, r15, Assembler::AVX_512bit); 2497 2498 __ movl(r15, 0x00011000); 2499 __ evpbroadcastd(pack32_op, r15, Assembler::AVX_512bit); 2500 2501 __ cmpl(length, 0xff); 2502 __ jcc(Assembler::lessEqual, L_process64); 2503 2504 // load masks required for decoding data 2505 __ BIND(L_processdata); 2506 __ evmovdquq(join01, ExternalAddress(StubRoutines::x86::base64_vbmi_join_0_1_addr()), Assembler::AVX_512bit,r13); 2507 __ evmovdquq(join12, ExternalAddress(StubRoutines::x86::base64_vbmi_join_1_2_addr()), Assembler::AVX_512bit, r13); 2508 __ evmovdquq(join23, ExternalAddress(StubRoutines::x86::base64_vbmi_join_2_3_addr()), Assembler::AVX_512bit, r13); 2509 2510 __ align32(); 2511 __ BIND(L_process256); 2512 // Grab input data 2513 __ evmovdquq(input0, Address(source, start_offset, Address::times_1, 0x00), Assembler::AVX_512bit); 2514 __ evmovdquq(input1, Address(source, start_offset, Address::times_1, 0x40), Assembler::AVX_512bit); 2515 __ evmovdquq(input2, Address(source, start_offset, Address::times_1, 0x80), Assembler::AVX_512bit); 2516 __ evmovdquq(input3, Address(source, start_offset, Address::times_1, 0xc0), Assembler::AVX_512bit); 2517 2518 // Copy the low part of the lookup table into the destination of the permutation 2519 __ evmovdquq(translated0, lookup_lo, Assembler::AVX_512bit); 2520 __ evmovdquq(translated1, lookup_lo, Assembler::AVX_512bit); 2521 __ evmovdquq(translated2, lookup_lo, Assembler::AVX_512bit); 2522 __ evmovdquq(translated3, lookup_lo, Assembler::AVX_512bit); 2523 2524 // Translate the base64 input into "decoded" bytes 2525 __ evpermt2b(translated0, input0, lookup_hi, Assembler::AVX_512bit); 2526 __ evpermt2b(translated1, input1, lookup_hi, Assembler::AVX_512bit); 2527 __ evpermt2b(translated2, input2, lookup_hi, Assembler::AVX_512bit); 2528 __ evpermt2b(translated3, input3, lookup_hi, Assembler::AVX_512bit); 2529 2530 // OR all of the translations together to check for errors (high-order bit of byte set) 2531 __ vpternlogd(input0, 0xfe, input1, input2, Assembler::AVX_512bit); 2532 2533 __ vpternlogd(input3, 0xfe, translated0, translated1, Assembler::AVX_512bit); 2534 __ vpternlogd(input0, 0xfe, translated2, translated3, Assembler::AVX_512bit); 2535 __ vpor(errorvec, input3, input0, Assembler::AVX_512bit); 2536 2537 // Check if there was an error - if so, try 64-byte chunks 2538 __ evpmovb2m(k3, errorvec, Assembler::AVX_512bit); 2539 __ kortestql(k3, k3); 2540 __ jcc(Assembler::notZero, L_process64); 2541 2542 // The merging and shuffling happens here 2543 // We multiply each byte pair [00dddddd | 00cccccc | 00bbbbbb | 00aaaaaa] 2544 // Multiply [00cccccc] by 2^6 added to [00dddddd] to get [0000cccc | ccdddddd] 2545 // The pack16_op is a vector of 0x01400140, so multiply D by 1 and C by 0x40 2546 __ vpmaddubsw(merge_ab_bc0, translated0, pack16_op, Assembler::AVX_512bit); 2547 __ vpmaddubsw(merge_ab_bc1, translated1, pack16_op, Assembler::AVX_512bit); 2548 __ vpmaddubsw(merge_ab_bc2, translated2, pack16_op, Assembler::AVX_512bit); 2549 __ vpmaddubsw(merge_ab_bc3, translated3, pack16_op, Assembler::AVX_512bit); 2550 2551 // Now do the same with packed 16-bit values. 2552 // We start with [0000cccc | ccdddddd | 0000aaaa | aabbbbbb] 2553 // pack32_op is 0x00011000 (2^12, 1), so this multiplies [0000aaaa | aabbbbbb] by 2^12 2554 // and adds [0000cccc | ccdddddd] to yield [00000000 | aaaaaabb | bbbbcccc | ccdddddd] 2555 __ vpmaddwd(merged0, merge_ab_bc0, pack32_op, Assembler::AVX_512bit); 2556 __ vpmaddwd(merged1, merge_ab_bc1, pack32_op, Assembler::AVX_512bit); 2557 __ vpmaddwd(merged2, merge_ab_bc2, pack32_op, Assembler::AVX_512bit); 2558 __ vpmaddwd(merged3, merge_ab_bc3, pack32_op, Assembler::AVX_512bit); 2559 2560 // The join vectors specify which byte from which vector goes into the outputs 2561 // One of every 4 bytes in the extended vector is zero, so we pack them into their 2562 // final positions in the register for storing (256 bytes in, 192 bytes out) 2563 __ evpermt2b(merged0, join01, merged1, Assembler::AVX_512bit); 2564 __ evpermt2b(merged1, join12, merged2, Assembler::AVX_512bit); 2565 __ evpermt2b(merged2, join23, merged3, Assembler::AVX_512bit); 2566 2567 // Store result 2568 __ evmovdquq(Address(dest, dp, Address::times_1, 0x00), merged0, Assembler::AVX_512bit); 2569 __ evmovdquq(Address(dest, dp, Address::times_1, 0x40), merged1, Assembler::AVX_512bit); 2570 __ evmovdquq(Address(dest, dp, Address::times_1, 0x80), merged2, Assembler::AVX_512bit); 2571 2572 __ addptr(source, 0x100); 2573 __ addptr(dest, 0xc0); 2574 __ subl(length, 0x100); 2575 __ cmpl(length, 64 * 4); 2576 __ jcc(Assembler::greaterEqual, L_process256); 2577 2578 // At this point, we've decoded 64 * 4 * n bytes. 2579 // The remaining length will be <= 64 * 4 - 1. 2580 // UNLESS there was an error decoding the first 256-byte chunk. In this 2581 // case, the length will be arbitrarily long. 2582 // 2583 // Note that this will be the path for MIME-encoded strings. 2584 2585 __ BIND(L_process64); 2586 2587 __ evmovdquq(pack24bits, ExternalAddress(StubRoutines::x86::base64_vbmi_pack_vec_addr()), Assembler::AVX_512bit, r13); 2588 2589 __ cmpl(length, 63); 2590 __ jcc(Assembler::lessEqual, L_finalBit); 2591 2592 __ mov64(rax, 0x0000ffffffffffff); 2593 __ kmovql(k2, rax); 2594 2595 __ align32(); 2596 __ BIND(L_process64Loop); 2597 2598 // Handle first 64-byte block 2599 2600 __ evmovdquq(input0, Address(source, start_offset), Assembler::AVX_512bit); 2601 __ evmovdquq(translated0, lookup_lo, Assembler::AVX_512bit); 2602 __ evpermt2b(translated0, input0, lookup_hi, Assembler::AVX_512bit); 2603 2604 __ vpor(errorvec, translated0, input0, Assembler::AVX_512bit); 2605 2606 // Check for error and bomb out before updating dest 2607 __ evpmovb2m(k3, errorvec, Assembler::AVX_512bit); 2608 __ kortestql(k3, k3); 2609 __ jcc(Assembler::notZero, L_exit); 2610 2611 // Pack output register, selecting correct byte ordering 2612 __ vpmaddubsw(merge_ab_bc0, translated0, pack16_op, Assembler::AVX_512bit); 2613 __ vpmaddwd(merged0, merge_ab_bc0, pack32_op, Assembler::AVX_512bit); 2614 __ vpermb(merged0, pack24bits, merged0, Assembler::AVX_512bit); 2615 2616 __ evmovdqub(Address(dest, dp), k2, merged0, true, Assembler::AVX_512bit); 2617 2618 __ subl(length, 64); 2619 __ addptr(source, 64); 2620 __ addptr(dest, 48); 2621 2622 __ cmpl(length, 64); 2623 __ jcc(Assembler::greaterEqual, L_process64Loop); 2624 2625 __ cmpl(length, 0); 2626 __ jcc(Assembler::lessEqual, L_exit); 2627 2628 __ BIND(L_finalBit); 2629 // Now have 1 to 63 bytes left to decode 2630 2631 // I was going to let Java take care of the final fragment 2632 // however it will repeatedly call this routine for every 4 bytes 2633 // of input data, so handle the rest here. 2634 __ movq(rax, -1); 2635 __ bzhiq(rax, rax, length); // Input mask in rax 2636 2637 __ movl(output_size, length); 2638 __ shrl(output_size, 2); // Find (len / 4) * 3 (output length) 2639 __ lea(output_size, Address(output_size, output_size, Address::times_2, 0)); 2640 // output_size in r13 2641 2642 // Strip pad characters, if any, and adjust length and mask 2643 __ addq(length, start_offset); 2644 __ cmpb(Address(source, length, Address::times_1, -1), '='); 2645 __ jcc(Assembler::equal, L_padding); 2646 2647 __ BIND(L_donePadding); 2648 __ subq(length, start_offset); 2649 2650 // Output size is (64 - output_size), output mask is (all 1s >> output_size). 2651 __ kmovql(input_mask, rax); 2652 __ movq(output_mask, -1); 2653 __ bzhiq(output_mask, output_mask, output_size); 2654 2655 // Load initial input with all valid base64 characters. Will be used 2656 // in merging source bytes to avoid masking when determining if an error occurred. 2657 __ movl(rax, 0x61616161); 2658 __ evpbroadcastd(input_initial_valid_b64, rax, Assembler::AVX_512bit); 2659 2660 // A register containing all invalid base64 decoded values 2661 __ movl(rax, 0x80808080); 2662 __ evpbroadcastd(invalid_b64, rax, Assembler::AVX_512bit); 2663 2664 // input_mask is in k1 2665 // output_size is in r13 2666 // output_mask is in r15 2667 // zmm0 - free 2668 // zmm1 - 0x00011000 2669 // zmm2 - 0x01400140 2670 // zmm3 - errorvec 2671 // zmm4 - pack vector 2672 // zmm5 - lookup_lo 2673 // zmm6 - lookup_hi 2674 // zmm7 - errorvec 2675 // zmm8 - 0x61616161 2676 // zmm9 - 0x80808080 2677 2678 // Load only the bytes from source, merging into our "fully-valid" register 2679 __ evmovdqub(input_initial_valid_b64, input_mask, Address(source, start_offset, Address::times_1, 0x0), true, Assembler::AVX_512bit); 2680 2681 // Decode all bytes within our merged input 2682 __ evmovdquq(tmp, lookup_lo, Assembler::AVX_512bit); 2683 __ evpermt2b(tmp, input_initial_valid_b64, lookup_hi, Assembler::AVX_512bit); 2684 __ evporq(mask, tmp, input_initial_valid_b64, Assembler::AVX_512bit); 2685 2686 // Check for error. Compare (decoded | initial) to all invalid. 2687 // If any bytes have their high-order bit set, then we have an error. 2688 __ evptestmb(k2, mask, invalid_b64, Assembler::AVX_512bit); 2689 __ kortestql(k2, k2); 2690 2691 // If we have an error, use the brute force loop to decode what we can (4-byte chunks). 2692 __ jcc(Assembler::notZero, L_bruteForce); 2693 2694 // Shuffle output bytes 2695 __ vpmaddubsw(tmp, tmp, pack16_op, Assembler::AVX_512bit); 2696 __ vpmaddwd(tmp, tmp, pack32_op, Assembler::AVX_512bit); 2697 2698 __ vpermb(tmp, pack24bits, tmp, Assembler::AVX_512bit); 2699 __ kmovql(k1, output_mask); 2700 __ evmovdqub(Address(dest, dp), k1, tmp, true, Assembler::AVX_512bit); 2701 2702 __ addptr(dest, output_size); 2703 2704 __ BIND(L_exit); 2705 __ vzeroupper(); 2706 __ pop(rax); // Get original dest value 2707 __ subptr(dest, rax); // Number of bytes converted 2708 __ movptr(rax, dest); 2709 __ pop(rbx); 2710 __ pop(r15); 2711 __ pop(r14); 2712 __ pop(r13); 2713 __ pop(r12); 2714 __ leave(); 2715 __ ret(0); 2716 2717 __ BIND(L_loadURL); 2718 __ evmovdquq(lookup_lo, ExternalAddress(StubRoutines::x86::base64_vbmi_lookup_lo_url_addr()), Assembler::AVX_512bit, r13); 2719 __ evmovdquq(lookup_hi, ExternalAddress(StubRoutines::x86::base64_vbmi_lookup_hi_url_addr()), Assembler::AVX_512bit, r13); 2720 __ jmp(L_continue); 2721 2722 __ BIND(L_padding); 2723 __ decrementq(output_size, 1); 2724 __ shrq(rax, 1); 2725 2726 __ cmpb(Address(source, length, Address::times_1, -2), '='); 2727 __ jcc(Assembler::notEqual, L_donePadding); 2728 2729 __ decrementq(output_size, 1); 2730 __ shrq(rax, 1); 2731 __ jmp(L_donePadding); 2732 2733 __ align32(); 2734 __ BIND(L_bruteForce); 2735 } // End of if(avx512_vbmi) 2736 2737 if (VM_Version::supports_avx2()) { 2738 Label L_tailProc, L_topLoop, L_enterLoop; 2739 2740 __ cmpl(isMIME, 0); 2741 __ jcc(Assembler::notEqual, L_lastChunk); 2742 2743 // Check for buffer too small (for algorithm) 2744 __ subl(length, 0x2c); 2745 __ jcc(Assembler::less, L_tailProc); 2746 2747 __ shll(isURL, 2); 2748 2749 // Algorithm adapted from https://arxiv.org/abs/1704.00605, "Faster Base64 2750 // Encoding and Decoding using AVX2 Instructions". URL modifications added. 2751 2752 // Set up constants 2753 __ lea(r13, ExternalAddress(StubRoutines::x86::base64_AVX2_decode_tables_addr())); 2754 __ vpbroadcastd(xmm4, Address(r13, isURL, Address::times_1), Assembler::AVX_256bit); // 2F or 5F 2755 __ vpbroadcastd(xmm10, Address(r13, isURL, Address::times_1, 0x08), Assembler::AVX_256bit); // -1 or -4 2756 __ vmovdqu(xmm12, Address(r13, 0x10)); // permute 2757 __ vmovdqu(xmm13, Address(r13, 0x30)); // shuffle 2758 __ vpbroadcastd(xmm7, Address(r13, 0x50), Assembler::AVX_256bit); // merge 2759 __ vpbroadcastd(xmm6, Address(r13, 0x54), Assembler::AVX_256bit); // merge mult 2760 2761 __ lea(r13, ExternalAddress(StubRoutines::x86::base64_AVX2_decode_LUT_tables_addr())); 2762 __ shll(isURL, 4); 2763 __ vmovdqu(xmm11, Address(r13, isURL, Address::times_1, 0x00)); // lut_lo 2764 __ vmovdqu(xmm8, Address(r13, isURL, Address::times_1, 0x20)); // lut_roll 2765 __ shrl(isURL, 6); // restore isURL 2766 __ vmovdqu(xmm9, Address(r13, 0x80)); // lut_hi 2767 __ jmp(L_enterLoop); 2768 2769 __ align32(); 2770 __ bind(L_topLoop); 2771 // Add in the offset value (roll) to get 6-bit out values 2772 __ vpaddb(xmm0, xmm0, xmm2, Assembler::AVX_256bit); 2773 // Merge and permute the output bits into appropriate output byte lanes 2774 __ vpmaddubsw(xmm0, xmm0, xmm7, Assembler::AVX_256bit); 2775 __ vpmaddwd(xmm0, xmm0, xmm6, Assembler::AVX_256bit); 2776 __ vpshufb(xmm0, xmm0, xmm13, Assembler::AVX_256bit); 2777 __ vpermd(xmm0, xmm12, xmm0, Assembler::AVX_256bit); 2778 // Store the output bytes 2779 __ vmovdqu(Address(dest, dp, Address::times_1, 0), xmm0); 2780 __ addptr(source, 0x20); 2781 __ addptr(dest, 0x18); 2782 __ subl(length, 0x20); 2783 __ jcc(Assembler::less, L_tailProc); 2784 2785 __ bind(L_enterLoop); 2786 2787 // Load in encoded string (32 bytes) 2788 __ vmovdqu(xmm2, Address(source, start_offset, Address::times_1, 0x0)); 2789 // Extract the high nibble for indexing into the lut tables. High 4 bits are don't care. 2790 __ vpsrld(xmm1, xmm2, 0x4, Assembler::AVX_256bit); 2791 __ vpand(xmm1, xmm4, xmm1, Assembler::AVX_256bit); 2792 // Extract the low nibble. 5F/2F will isolate the low-order 4 bits. High 4 bits are don't care. 2793 __ vpand(xmm3, xmm2, xmm4, Assembler::AVX_256bit); 2794 // Check for special-case (0x2F or 0x5F (URL)) 2795 __ vpcmpeqb(xmm0, xmm4, xmm2, Assembler::AVX_256bit); 2796 // Get the bitset based on the low nibble. vpshufb uses low-order 4 bits only. 2797 __ vpshufb(xmm3, xmm11, xmm3, Assembler::AVX_256bit); 2798 // Get the bit value of the high nibble 2799 __ vpshufb(xmm5, xmm9, xmm1, Assembler::AVX_256bit); 2800 // Make sure 2F / 5F shows as valid 2801 __ vpandn(xmm3, xmm0, xmm3, Assembler::AVX_256bit); 2802 // Make adjustment for roll index. For non-URL, this is a no-op, 2803 // for URL, this adjusts by -4. This is to properly index the 2804 // roll value for 2F / 5F. 2805 __ vpand(xmm0, xmm0, xmm10, Assembler::AVX_256bit); 2806 // If the and of the two is non-zero, we have an invalid input character 2807 __ vptest(xmm3, xmm5); 2808 // Extract the "roll" value - value to add to the input to get 6-bit out value 2809 __ vpaddb(xmm0, xmm0, xmm1, Assembler::AVX_256bit); // Handle 2F / 5F 2810 __ vpshufb(xmm0, xmm8, xmm0, Assembler::AVX_256bit); 2811 __ jcc(Assembler::equal, L_topLoop); // Fall through on error 2812 2813 __ bind(L_tailProc); 2814 2815 __ addl(length, 0x2c); 2816 2817 __ vzeroupper(); 2818 } 2819 2820 // Use non-AVX code to decode 4-byte chunks into 3 bytes of output 2821 2822 // Register state (Linux): 2823 // r12-15 - saved on stack 2824 // rdi - src 2825 // rsi - sp 2826 // rdx - sl 2827 // rcx - dst 2828 // r8 - dp 2829 // r9 - isURL 2830 2831 // Register state (Windows): 2832 // r12-15 - saved on stack 2833 // rcx - src 2834 // rdx - sp 2835 // r8 - sl 2836 // r9 - dst 2837 // r12 - dp 2838 // r10 - isURL 2839 2840 // Registers (common): 2841 // length (r14) - bytes in src 2842 2843 const Register decode_table = r11; 2844 const Register out_byte_count = rbx; 2845 const Register byte1 = r13; 2846 const Register byte2 = r15; 2847 const Register byte3 = WIN64_ONLY(r8) NOT_WIN64(rdx); 2848 const Register byte4 = WIN64_ONLY(r10) NOT_WIN64(r9); 2849 2850 __ bind(L_lastChunk); 2851 2852 __ shrl(length, 2); // Multiple of 4 bytes only - length is # 4-byte chunks 2853 __ cmpl(length, 0); 2854 __ jcc(Assembler::lessEqual, L_exit_no_vzero); 2855 2856 __ shll(isURL, 8); // index into decode table based on isURL 2857 __ lea(decode_table, ExternalAddress(StubRoutines::x86::base64_decoding_table_addr())); 2858 __ addptr(decode_table, isURL); 2859 2860 __ jmp(L_bottomLoop); 2861 2862 __ align32(); 2863 __ BIND(L_forceLoop); 2864 __ shll(byte1, 18); 2865 __ shll(byte2, 12); 2866 __ shll(byte3, 6); 2867 __ orl(byte1, byte2); 2868 __ orl(byte1, byte3); 2869 __ orl(byte1, byte4); 2870 2871 __ addptr(source, 4); 2872 2873 __ movb(Address(dest, dp, Address::times_1, 2), byte1); 2874 __ shrl(byte1, 8); 2875 __ movb(Address(dest, dp, Address::times_1, 1), byte1); 2876 __ shrl(byte1, 8); 2877 __ movb(Address(dest, dp, Address::times_1, 0), byte1); 2878 2879 __ addptr(dest, 3); 2880 __ decrementl(length, 1); 2881 __ jcc(Assembler::zero, L_exit_no_vzero); 2882 2883 __ BIND(L_bottomLoop); 2884 __ load_unsigned_byte(byte1, Address(source, start_offset, Address::times_1, 0x00)); 2885 __ load_unsigned_byte(byte2, Address(source, start_offset, Address::times_1, 0x01)); 2886 __ load_signed_byte(byte1, Address(decode_table, byte1)); 2887 __ load_signed_byte(byte2, Address(decode_table, byte2)); 2888 __ load_unsigned_byte(byte3, Address(source, start_offset, Address::times_1, 0x02)); 2889 __ load_unsigned_byte(byte4, Address(source, start_offset, Address::times_1, 0x03)); 2890 __ load_signed_byte(byte3, Address(decode_table, byte3)); 2891 __ load_signed_byte(byte4, Address(decode_table, byte4)); 2892 2893 __ mov(rax, byte1); 2894 __ orl(rax, byte2); 2895 __ orl(rax, byte3); 2896 __ orl(rax, byte4); 2897 __ jcc(Assembler::positive, L_forceLoop); 2898 2899 __ BIND(L_exit_no_vzero); 2900 __ pop(rax); // Get original dest value 2901 __ subptr(dest, rax); // Number of bytes converted 2902 __ movptr(rax, dest); 2903 __ pop(rbx); 2904 __ pop(r15); 2905 __ pop(r14); 2906 __ pop(r13); 2907 __ pop(r12); 2908 __ leave(); 2909 __ ret(0); 2910 2911 return start; 2912 } 2913 2914 2915 /** 2916 * Arguments: 2917 * 2918 * Inputs: 2919 * c_rarg0 - int crc 2920 * c_rarg1 - byte* buf 2921 * c_rarg2 - int length 2922 * 2923 * Output: 2924 * rax - int crc result 2925 */ 2926 address StubGenerator::generate_updateBytesCRC32() { 2927 assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions"); 2928 2929 __ align(CodeEntryAlignment); 2930 StubCodeMark mark(this, "StubRoutines", "updateBytesCRC32"); 2931 2932 address start = __ pc(); 2933 2934 // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...) 2935 // Unix: rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...) 2936 // rscratch1: r10 2937 const Register crc = c_rarg0; // crc 2938 const Register buf = c_rarg1; // source java byte array address 2939 const Register len = c_rarg2; // length 2940 const Register table = c_rarg3; // crc_table address (reuse register) 2941 const Register tmp1 = r11; 2942 const Register tmp2 = r10; 2943 assert_different_registers(crc, buf, len, table, tmp1, tmp2, rax); 2944 2945 BLOCK_COMMENT("Entry:"); 2946 __ enter(); // required for proper stackwalking of RuntimeStub frame 2947 2948 if (VM_Version::supports_sse4_1() && VM_Version::supports_avx512_vpclmulqdq() && 2949 VM_Version::supports_avx512bw() && 2950 VM_Version::supports_avx512vl()) { 2951 // The constants used in the CRC32 algorithm requires the 1's compliment of the initial crc value. 2952 // However, the constant table for CRC32-C assumes the original crc value. Account for this 2953 // difference before calling and after returning. 2954 __ lea(table, ExternalAddress(StubRoutines::x86::crc_table_avx512_addr())); 2955 __ notl(crc); 2956 __ kernel_crc32_avx512(crc, buf, len, table, tmp1, tmp2); 2957 __ notl(crc); 2958 } else { 2959 __ kernel_crc32(crc, buf, len, table, tmp1); 2960 } 2961 2962 __ movl(rax, crc); 2963 __ vzeroupper(); 2964 __ leave(); // required for proper stackwalking of RuntimeStub frame 2965 __ ret(0); 2966 2967 return start; 2968 } 2969 2970 /** 2971 * Arguments: 2972 * 2973 * Inputs: 2974 * c_rarg0 - int crc 2975 * c_rarg1 - byte* buf 2976 * c_rarg2 - long length 2977 * c_rarg3 - table_start - optional (present only when doing a library_call, 2978 * not used by x86 algorithm) 2979 * 2980 * Output: 2981 * rax - int crc result 2982 */ 2983 address StubGenerator::generate_updateBytesCRC32C(bool is_pclmulqdq_supported) { 2984 assert(UseCRC32CIntrinsics, "need SSE4_2"); 2985 __ align(CodeEntryAlignment); 2986 StubCodeMark mark(this, "StubRoutines", "updateBytesCRC32C"); 2987 address start = __ pc(); 2988 2989 //reg.arg int#0 int#1 int#2 int#3 int#4 int#5 float regs 2990 //Windows RCX RDX R8 R9 none none XMM0..XMM3 2991 //Lin / Sol RDI RSI RDX RCX R8 R9 XMM0..XMM7 2992 const Register crc = c_rarg0; // crc 2993 const Register buf = c_rarg1; // source java byte array address 2994 const Register len = c_rarg2; // length 2995 const Register a = rax; 2996 const Register j = r9; 2997 const Register k = r10; 2998 const Register l = r11; 2999 #ifdef _WIN64 3000 const Register y = rdi; 3001 const Register z = rsi; 3002 #else 3003 const Register y = rcx; 3004 const Register z = r8; 3005 #endif 3006 assert_different_registers(crc, buf, len, a, j, k, l, y, z); 3007 3008 BLOCK_COMMENT("Entry:"); 3009 __ enter(); // required for proper stackwalking of RuntimeStub frame 3010 Label L_continue; 3011 3012 if (VM_Version::supports_sse4_1() && VM_Version::supports_avx512_vpclmulqdq() && 3013 VM_Version::supports_avx512bw() && 3014 VM_Version::supports_avx512vl()) { 3015 Label L_doSmall; 3016 3017 __ cmpl(len, 384); 3018 __ jcc(Assembler::lessEqual, L_doSmall); 3019 3020 __ lea(j, ExternalAddress(StubRoutines::x86::crc32c_table_avx512_addr())); 3021 __ kernel_crc32_avx512(crc, buf, len, j, l, k); 3022 3023 __ jmp(L_continue); 3024 3025 __ bind(L_doSmall); 3026 } 3027 #ifdef _WIN64 3028 __ push(y); 3029 __ push(z); 3030 #endif 3031 __ crc32c_ipl_alg2_alt2(crc, buf, len, 3032 a, j, k, 3033 l, y, z, 3034 c_farg0, c_farg1, c_farg2, 3035 is_pclmulqdq_supported); 3036 #ifdef _WIN64 3037 __ pop(z); 3038 __ pop(y); 3039 #endif 3040 3041 __ bind(L_continue); 3042 __ movl(rax, crc); 3043 __ vzeroupper(); 3044 __ leave(); // required for proper stackwalking of RuntimeStub frame 3045 __ ret(0); 3046 3047 return start; 3048 } 3049 3050 3051 /** 3052 * Arguments: 3053 * 3054 * Input: 3055 * c_rarg0 - x address 3056 * c_rarg1 - x length 3057 * c_rarg2 - y address 3058 * c_rarg3 - y length 3059 * not Win64 3060 * c_rarg4 - z address 3061 * Win64 3062 * rsp+40 - z address 3063 */ 3064 address StubGenerator::generate_multiplyToLen() { 3065 __ align(CodeEntryAlignment); 3066 StubCodeMark mark(this, "StubRoutines", "multiplyToLen"); 3067 address start = __ pc(); 3068 3069 // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...) 3070 // Unix: rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...) 3071 const Register x = rdi; 3072 const Register xlen = rax; 3073 const Register y = rsi; 3074 const Register ylen = rcx; 3075 const Register z = r8; 3076 3077 // Next registers will be saved on stack in multiply_to_len(). 3078 const Register tmp0 = r11; 3079 const Register tmp1 = r12; 3080 const Register tmp2 = r13; 3081 const Register tmp3 = r14; 3082 const Register tmp4 = r15; 3083 const Register tmp5 = rbx; 3084 3085 BLOCK_COMMENT("Entry:"); 3086 __ enter(); // required for proper stackwalking of RuntimeStub frame 3087 3088 setup_arg_regs(4); // x => rdi, xlen => rsi, y => rdx 3089 // ylen => rcx, z => r8 3090 // r9 and r10 may be used to save non-volatile registers 3091 #ifdef _WIN64 3092 // last argument (#4) is on stack on Win64 3093 __ movptr(z, Address(rsp, 6 * wordSize)); 3094 #endif 3095 3096 __ movptr(xlen, rsi); 3097 __ movptr(y, rdx); 3098 __ multiply_to_len(x, xlen, y, ylen, z, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5); 3099 3100 restore_arg_regs(); 3101 3102 __ leave(); // required for proper stackwalking of RuntimeStub frame 3103 __ ret(0); 3104 3105 return start; 3106 } 3107 3108 /** 3109 * Arguments: 3110 * 3111 * Input: 3112 * c_rarg0 - obja address 3113 * c_rarg1 - objb address 3114 * c_rarg3 - length length 3115 * c_rarg4 - scale log2_array_indxscale 3116 * 3117 * Output: 3118 * rax - int >= mismatched index, < 0 bitwise complement of tail 3119 */ 3120 address StubGenerator::generate_vectorizedMismatch() { 3121 __ align(CodeEntryAlignment); 3122 StubCodeMark mark(this, "StubRoutines", "vectorizedMismatch"); 3123 address start = __ pc(); 3124 3125 BLOCK_COMMENT("Entry:"); 3126 __ enter(); 3127 3128 #ifdef _WIN64 // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...) 3129 const Register scale = c_rarg0; //rcx, will exchange with r9 3130 const Register objb = c_rarg1; //rdx 3131 const Register length = c_rarg2; //r8 3132 const Register obja = c_rarg3; //r9 3133 __ xchgq(obja, scale); //now obja and scale contains the correct contents 3134 3135 const Register tmp1 = r10; 3136 const Register tmp2 = r11; 3137 #endif 3138 #ifndef _WIN64 // Unix: rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...) 3139 const Register obja = c_rarg0; //U:rdi 3140 const Register objb = c_rarg1; //U:rsi 3141 const Register length = c_rarg2; //U:rdx 3142 const Register scale = c_rarg3; //U:rcx 3143 const Register tmp1 = r8; 3144 const Register tmp2 = r9; 3145 #endif 3146 const Register result = rax; //return value 3147 const XMMRegister vec0 = xmm0; 3148 const XMMRegister vec1 = xmm1; 3149 const XMMRegister vec2 = xmm2; 3150 3151 __ vectorized_mismatch(obja, objb, length, scale, result, tmp1, tmp2, vec0, vec1, vec2); 3152 3153 __ vzeroupper(); 3154 __ leave(); 3155 __ ret(0); 3156 3157 return start; 3158 } 3159 3160 /** 3161 * Arguments: 3162 * 3163 // Input: 3164 // c_rarg0 - x address 3165 // c_rarg1 - x length 3166 // c_rarg2 - z address 3167 // c_rarg3 - z length 3168 * 3169 */ 3170 address StubGenerator::generate_squareToLen() { 3171 3172 __ align(CodeEntryAlignment); 3173 StubCodeMark mark(this, "StubRoutines", "squareToLen"); 3174 address start = __ pc(); 3175 3176 // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...) 3177 // Unix: rdi, rsi, rdx, rcx (c_rarg0, c_rarg1, ...) 3178 const Register x = rdi; 3179 const Register len = rsi; 3180 const Register z = r8; 3181 const Register zlen = rcx; 3182 3183 const Register tmp1 = r12; 3184 const Register tmp2 = r13; 3185 const Register tmp3 = r14; 3186 const Register tmp4 = r15; 3187 const Register tmp5 = rbx; 3188 3189 BLOCK_COMMENT("Entry:"); 3190 __ enter(); // required for proper stackwalking of RuntimeStub frame 3191 3192 setup_arg_regs(4); // x => rdi, len => rsi, z => rdx 3193 // zlen => rcx 3194 // r9 and r10 may be used to save non-volatile registers 3195 __ movptr(r8, rdx); 3196 __ square_to_len(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, rdx, rax); 3197 3198 restore_arg_regs(); 3199 3200 __ leave(); // required for proper stackwalking of RuntimeStub frame 3201 __ ret(0); 3202 3203 return start; 3204 } 3205 3206 address StubGenerator::generate_method_entry_barrier() { 3207 __ align(CodeEntryAlignment); 3208 StubCodeMark mark(this, "StubRoutines", "nmethod_entry_barrier"); 3209 address start = __ pc(); 3210 3211 Label deoptimize_label; 3212 3213 __ push(-1); // cookie, this is used for writing the new rsp when deoptimizing 3214 3215 BLOCK_COMMENT("Entry:"); 3216 __ enter(); // save rbp 3217 3218 // save c_rarg0, because we want to use that value. 3219 // We could do without it but then we depend on the number of slots used by pusha 3220 __ push(c_rarg0); 3221 3222 __ lea(c_rarg0, Address(rsp, wordSize * 3)); // 1 for cookie, 1 for rbp, 1 for c_rarg0 - this should be the return address 3223 3224 __ pusha(); 3225 3226 // The method may have floats as arguments, and we must spill them before calling 3227 // the VM runtime. 3228 assert(Argument::n_float_register_parameters_j == 8, "Assumption"); 3229 const int xmm_size = wordSize * 2; 3230 const int xmm_spill_size = xmm_size * Argument::n_float_register_parameters_j; 3231 __ subptr(rsp, xmm_spill_size); 3232 __ movdqu(Address(rsp, xmm_size * 7), xmm7); 3233 __ movdqu(Address(rsp, xmm_size * 6), xmm6); 3234 __ movdqu(Address(rsp, xmm_size * 5), xmm5); 3235 __ movdqu(Address(rsp, xmm_size * 4), xmm4); 3236 __ movdqu(Address(rsp, xmm_size * 3), xmm3); 3237 __ movdqu(Address(rsp, xmm_size * 2), xmm2); 3238 __ movdqu(Address(rsp, xmm_size * 1), xmm1); 3239 __ movdqu(Address(rsp, xmm_size * 0), xmm0); 3240 3241 __ call_VM_leaf(CAST_FROM_FN_PTR(address, static_cast<int (*)(address*)>(BarrierSetNMethod::nmethod_stub_entry_barrier)), 1); 3242 3243 __ movdqu(xmm0, Address(rsp, xmm_size * 0)); 3244 __ movdqu(xmm1, Address(rsp, xmm_size * 1)); 3245 __ movdqu(xmm2, Address(rsp, xmm_size * 2)); 3246 __ movdqu(xmm3, Address(rsp, xmm_size * 3)); 3247 __ movdqu(xmm4, Address(rsp, xmm_size * 4)); 3248 __ movdqu(xmm5, Address(rsp, xmm_size * 5)); 3249 __ movdqu(xmm6, Address(rsp, xmm_size * 6)); 3250 __ movdqu(xmm7, Address(rsp, xmm_size * 7)); 3251 __ addptr(rsp, xmm_spill_size); 3252 3253 __ cmpl(rax, 1); // 1 means deoptimize 3254 __ jcc(Assembler::equal, deoptimize_label); 3255 3256 __ popa(); 3257 __ pop(c_rarg0); 3258 3259 __ leave(); 3260 3261 __ addptr(rsp, 1 * wordSize); // cookie 3262 __ ret(0); 3263 3264 3265 __ BIND(deoptimize_label); 3266 3267 __ popa(); 3268 __ pop(c_rarg0); 3269 3270 __ leave(); 3271 3272 // this can be taken out, but is good for verification purposes. getting a SIGSEGV 3273 // here while still having a correct stack is valuable 3274 __ testptr(rsp, Address(rsp, 0)); 3275 3276 __ movptr(rsp, Address(rsp, 0)); // new rsp was written in the barrier 3277 __ jmp(Address(rsp, -1 * wordSize)); // jmp target should be callers verified_entry_point 3278 3279 return start; 3280 } 3281 3282 /** 3283 * Arguments: 3284 * 3285 * Input: 3286 * c_rarg0 - out address 3287 * c_rarg1 - in address 3288 * c_rarg2 - offset 3289 * c_rarg3 - len 3290 * not Win64 3291 * c_rarg4 - k 3292 * Win64 3293 * rsp+40 - k 3294 */ 3295 address StubGenerator::generate_mulAdd() { 3296 __ align(CodeEntryAlignment); 3297 StubCodeMark mark(this, "StubRoutines", "mulAdd"); 3298 address start = __ pc(); 3299 3300 // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...) 3301 // Unix: rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...) 3302 const Register out = rdi; 3303 const Register in = rsi; 3304 const Register offset = r11; 3305 const Register len = rcx; 3306 const Register k = r8; 3307 3308 // Next registers will be saved on stack in mul_add(). 3309 const Register tmp1 = r12; 3310 const Register tmp2 = r13; 3311 const Register tmp3 = r14; 3312 const Register tmp4 = r15; 3313 const Register tmp5 = rbx; 3314 3315 BLOCK_COMMENT("Entry:"); 3316 __ enter(); // required for proper stackwalking of RuntimeStub frame 3317 3318 setup_arg_regs(4); // out => rdi, in => rsi, offset => rdx 3319 // len => rcx, k => r8 3320 // r9 and r10 may be used to save non-volatile registers 3321 #ifdef _WIN64 3322 // last argument is on stack on Win64 3323 __ movl(k, Address(rsp, 6 * wordSize)); 3324 #endif 3325 __ movptr(r11, rdx); // move offset in rdx to offset(r11) 3326 __ mul_add(out, in, offset, len, k, tmp1, tmp2, tmp3, tmp4, tmp5, rdx, rax); 3327 3328 restore_arg_regs(); 3329 3330 __ leave(); // required for proper stackwalking of RuntimeStub frame 3331 __ ret(0); 3332 3333 return start; 3334 } 3335 3336 address StubGenerator::generate_bigIntegerRightShift() { 3337 __ align(CodeEntryAlignment); 3338 StubCodeMark mark(this, "StubRoutines", "bigIntegerRightShiftWorker"); 3339 address start = __ pc(); 3340 3341 Label Shift512Loop, ShiftTwo, ShiftTwoLoop, ShiftOne, Exit; 3342 // For Unix, the arguments are as follows: rdi, rsi, rdx, rcx, r8. 3343 const Register newArr = rdi; 3344 const Register oldArr = rsi; 3345 const Register newIdx = rdx; 3346 const Register shiftCount = rcx; // It was intentional to have shiftCount in rcx since it is used implicitly for shift. 3347 const Register totalNumIter = r8; 3348 3349 // For windows, we use r9 and r10 as temps to save rdi and rsi. Thus we cannot allocate them for our temps. 3350 // For everything else, we prefer using r9 and r10 since we do not have to save them before use. 3351 const Register tmp1 = r11; // Caller save. 3352 const Register tmp2 = rax; // Caller save. 3353 const Register tmp3 = WIN64_ONLY(r12) NOT_WIN64(r9); // Windows: Callee save. Linux: Caller save. 3354 const Register tmp4 = WIN64_ONLY(r13) NOT_WIN64(r10); // Windows: Callee save. Linux: Caller save. 3355 const Register tmp5 = r14; // Callee save. 3356 const Register tmp6 = r15; 3357 3358 const XMMRegister x0 = xmm0; 3359 const XMMRegister x1 = xmm1; 3360 const XMMRegister x2 = xmm2; 3361 3362 BLOCK_COMMENT("Entry:"); 3363 __ enter(); // required for proper stackwalking of RuntimeStub frame 3364 3365 #ifdef _WIN64 3366 setup_arg_regs(4); 3367 // For windows, since last argument is on stack, we need to move it to the appropriate register. 3368 __ movl(totalNumIter, Address(rsp, 6 * wordSize)); 3369 // Save callee save registers. 3370 __ push(tmp3); 3371 __ push(tmp4); 3372 #endif 3373 __ push(tmp5); 3374 3375 // Rename temps used throughout the code. 3376 const Register idx = tmp1; 3377 const Register nIdx = tmp2; 3378 3379 __ xorl(idx, idx); 3380 3381 // Start right shift from end of the array. 3382 // For example, if #iteration = 4 and newIdx = 1 3383 // then dest[4] = src[4] >> shiftCount | src[3] <<< (shiftCount - 32) 3384 // if #iteration = 4 and newIdx = 0 3385 // then dest[3] = src[4] >> shiftCount | src[3] <<< (shiftCount - 32) 3386 __ movl(idx, totalNumIter); 3387 __ movl(nIdx, idx); 3388 __ addl(nIdx, newIdx); 3389 3390 // If vectorization is enabled, check if the number of iterations is at least 64 3391 // If not, then go to ShifTwo processing 2 iterations 3392 if (VM_Version::supports_avx512_vbmi2()) { 3393 __ cmpptr(totalNumIter, (AVX3Threshold/64)); 3394 __ jcc(Assembler::less, ShiftTwo); 3395 3396 if (AVX3Threshold < 16 * 64) { 3397 __ cmpl(totalNumIter, 16); 3398 __ jcc(Assembler::less, ShiftTwo); 3399 } 3400 __ evpbroadcastd(x0, shiftCount, Assembler::AVX_512bit); 3401 __ subl(idx, 16); 3402 __ subl(nIdx, 16); 3403 __ BIND(Shift512Loop); 3404 __ evmovdqul(x2, Address(oldArr, idx, Address::times_4, 4), Assembler::AVX_512bit); 3405 __ evmovdqul(x1, Address(oldArr, idx, Address::times_4), Assembler::AVX_512bit); 3406 __ vpshrdvd(x2, x1, x0, Assembler::AVX_512bit); 3407 __ evmovdqul(Address(newArr, nIdx, Address::times_4), x2, Assembler::AVX_512bit); 3408 __ subl(nIdx, 16); 3409 __ subl(idx, 16); 3410 __ jcc(Assembler::greaterEqual, Shift512Loop); 3411 __ addl(idx, 16); 3412 __ addl(nIdx, 16); 3413 } 3414 __ BIND(ShiftTwo); 3415 __ cmpl(idx, 2); 3416 __ jcc(Assembler::less, ShiftOne); 3417 __ subl(idx, 2); 3418 __ subl(nIdx, 2); 3419 __ BIND(ShiftTwoLoop); 3420 __ movl(tmp5, Address(oldArr, idx, Address::times_4, 8)); 3421 __ movl(tmp4, Address(oldArr, idx, Address::times_4, 4)); 3422 __ movl(tmp3, Address(oldArr, idx, Address::times_4)); 3423 __ shrdl(tmp5, tmp4); 3424 __ shrdl(tmp4, tmp3); 3425 __ movl(Address(newArr, nIdx, Address::times_4, 4), tmp5); 3426 __ movl(Address(newArr, nIdx, Address::times_4), tmp4); 3427 __ subl(nIdx, 2); 3428 __ subl(idx, 2); 3429 __ jcc(Assembler::greaterEqual, ShiftTwoLoop); 3430 __ addl(idx, 2); 3431 __ addl(nIdx, 2); 3432 3433 // Do the last iteration 3434 __ BIND(ShiftOne); 3435 __ cmpl(idx, 1); 3436 __ jcc(Assembler::less, Exit); 3437 __ subl(idx, 1); 3438 __ subl(nIdx, 1); 3439 __ movl(tmp4, Address(oldArr, idx, Address::times_4, 4)); 3440 __ movl(tmp3, Address(oldArr, idx, Address::times_4)); 3441 __ shrdl(tmp4, tmp3); 3442 __ movl(Address(newArr, nIdx, Address::times_4), tmp4); 3443 __ BIND(Exit); 3444 __ vzeroupper(); 3445 // Restore callee save registers. 3446 __ pop(tmp5); 3447 #ifdef _WIN64 3448 __ pop(tmp4); 3449 __ pop(tmp3); 3450 restore_arg_regs(); 3451 #endif 3452 __ leave(); // required for proper stackwalking of RuntimeStub frame 3453 __ ret(0); 3454 3455 return start; 3456 } 3457 3458 /** 3459 * Arguments: 3460 * 3461 * Input: 3462 * c_rarg0 - newArr address 3463 * c_rarg1 - oldArr address 3464 * c_rarg2 - newIdx 3465 * c_rarg3 - shiftCount 3466 * not Win64 3467 * c_rarg4 - numIter 3468 * Win64 3469 * rsp40 - numIter 3470 */ 3471 address StubGenerator::generate_bigIntegerLeftShift() { 3472 __ align(CodeEntryAlignment); 3473 StubCodeMark mark(this, "StubRoutines", "bigIntegerLeftShiftWorker"); 3474 address start = __ pc(); 3475 3476 Label Shift512Loop, ShiftTwo, ShiftTwoLoop, ShiftOne, Exit; 3477 // For Unix, the arguments are as follows: rdi, rsi, rdx, rcx, r8. 3478 const Register newArr = rdi; 3479 const Register oldArr = rsi; 3480 const Register newIdx = rdx; 3481 const Register shiftCount = rcx; // It was intentional to have shiftCount in rcx since it is used implicitly for shift. 3482 const Register totalNumIter = r8; 3483 // For windows, we use r9 and r10 as temps to save rdi and rsi. Thus we cannot allocate them for our temps. 3484 // For everything else, we prefer using r9 and r10 since we do not have to save them before use. 3485 const Register tmp1 = r11; // Caller save. 3486 const Register tmp2 = rax; // Caller save. 3487 const Register tmp3 = WIN64_ONLY(r12) NOT_WIN64(r9); // Windows: Callee save. Linux: Caller save. 3488 const Register tmp4 = WIN64_ONLY(r13) NOT_WIN64(r10); // Windows: Callee save. Linux: Caller save. 3489 const Register tmp5 = r14; // Callee save. 3490 3491 const XMMRegister x0 = xmm0; 3492 const XMMRegister x1 = xmm1; 3493 const XMMRegister x2 = xmm2; 3494 BLOCK_COMMENT("Entry:"); 3495 __ enter(); // required for proper stackwalking of RuntimeStub frame 3496 3497 #ifdef _WIN64 3498 setup_arg_regs(4); 3499 // For windows, since last argument is on stack, we need to move it to the appropriate register. 3500 __ movl(totalNumIter, Address(rsp, 6 * wordSize)); 3501 // Save callee save registers. 3502 __ push(tmp3); 3503 __ push(tmp4); 3504 #endif 3505 __ push(tmp5); 3506 3507 // Rename temps used throughout the code 3508 const Register idx = tmp1; 3509 const Register numIterTmp = tmp2; 3510 3511 // Start idx from zero. 3512 __ xorl(idx, idx); 3513 // Compute interior pointer for new array. We do this so that we can use same index for both old and new arrays. 3514 __ lea(newArr, Address(newArr, newIdx, Address::times_4)); 3515 __ movl(numIterTmp, totalNumIter); 3516 3517 // If vectorization is enabled, check if the number of iterations is at least 64 3518 // If not, then go to ShiftTwo shifting two numbers at a time 3519 if (VM_Version::supports_avx512_vbmi2()) { 3520 __ cmpl(totalNumIter, (AVX3Threshold/64)); 3521 __ jcc(Assembler::less, ShiftTwo); 3522 3523 if (AVX3Threshold < 16 * 64) { 3524 __ cmpl(totalNumIter, 16); 3525 __ jcc(Assembler::less, ShiftTwo); 3526 } 3527 __ evpbroadcastd(x0, shiftCount, Assembler::AVX_512bit); 3528 __ subl(numIterTmp, 16); 3529 __ BIND(Shift512Loop); 3530 __ evmovdqul(x1, Address(oldArr, idx, Address::times_4), Assembler::AVX_512bit); 3531 __ evmovdqul(x2, Address(oldArr, idx, Address::times_4, 0x4), Assembler::AVX_512bit); 3532 __ vpshldvd(x1, x2, x0, Assembler::AVX_512bit); 3533 __ evmovdqul(Address(newArr, idx, Address::times_4), x1, Assembler::AVX_512bit); 3534 __ addl(idx, 16); 3535 __ subl(numIterTmp, 16); 3536 __ jcc(Assembler::greaterEqual, Shift512Loop); 3537 __ addl(numIterTmp, 16); 3538 } 3539 __ BIND(ShiftTwo); 3540 __ cmpl(totalNumIter, 1); 3541 __ jcc(Assembler::less, Exit); 3542 __ movl(tmp3, Address(oldArr, idx, Address::times_4)); 3543 __ subl(numIterTmp, 2); 3544 __ jcc(Assembler::less, ShiftOne); 3545 3546 __ BIND(ShiftTwoLoop); 3547 __ movl(tmp4, Address(oldArr, idx, Address::times_4, 0x4)); 3548 __ movl(tmp5, Address(oldArr, idx, Address::times_4, 0x8)); 3549 __ shldl(tmp3, tmp4); 3550 __ shldl(tmp4, tmp5); 3551 __ movl(Address(newArr, idx, Address::times_4), tmp3); 3552 __ movl(Address(newArr, idx, Address::times_4, 0x4), tmp4); 3553 __ movl(tmp3, tmp5); 3554 __ addl(idx, 2); 3555 __ subl(numIterTmp, 2); 3556 __ jcc(Assembler::greaterEqual, ShiftTwoLoop); 3557 3558 // Do the last iteration 3559 __ BIND(ShiftOne); 3560 __ addl(numIterTmp, 2); 3561 __ cmpl(numIterTmp, 1); 3562 __ jcc(Assembler::less, Exit); 3563 __ movl(tmp4, Address(oldArr, idx, Address::times_4, 0x4)); 3564 __ shldl(tmp3, tmp4); 3565 __ movl(Address(newArr, idx, Address::times_4), tmp3); 3566 3567 __ BIND(Exit); 3568 __ vzeroupper(); 3569 // Restore callee save registers. 3570 __ pop(tmp5); 3571 #ifdef _WIN64 3572 __ pop(tmp4); 3573 __ pop(tmp3); 3574 restore_arg_regs(); 3575 #endif 3576 __ leave(); // required for proper stackwalking of RuntimeStub frame 3577 __ ret(0); 3578 3579 return start; 3580 } 3581 3582 void StubGenerator::generate_libm_stubs() { 3583 if (UseLibmIntrinsic && InlineIntrinsics) { 3584 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dsin)) { 3585 StubRoutines::_dsin = generate_libmSin(); // from stubGenerator_x86_64_sin.cpp 3586 } 3587 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dcos)) { 3588 StubRoutines::_dcos = generate_libmCos(); // from stubGenerator_x86_64_cos.cpp 3589 } 3590 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dtan)) { 3591 StubRoutines::_dtan = generate_libmTan(); // from stubGenerator_x86_64_tan.cpp 3592 } 3593 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dtanh)) { 3594 StubRoutines::_dtanh = generate_libmTanh(); // from stubGenerator_x86_64_tanh.cpp 3595 } 3596 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dexp)) { 3597 StubRoutines::_dexp = generate_libmExp(); // from stubGenerator_x86_64_exp.cpp 3598 } 3599 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dpow)) { 3600 StubRoutines::_dpow = generate_libmPow(); // from stubGenerator_x86_64_pow.cpp 3601 } 3602 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dlog)) { 3603 StubRoutines::_dlog = generate_libmLog(); // from stubGenerator_x86_64_log.cpp 3604 } 3605 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dlog10)) { 3606 StubRoutines::_dlog10 = generate_libmLog10(); // from stubGenerator_x86_64_log.cpp 3607 } 3608 } 3609 } 3610 3611 /** 3612 * Arguments: 3613 * 3614 * Input: 3615 * c_rarg0 - float16 jshort 3616 * 3617 * Output: 3618 * xmm0 - float 3619 */ 3620 address StubGenerator::generate_float16ToFloat() { 3621 StubCodeMark mark(this, "StubRoutines", "float16ToFloat"); 3622 3623 address start = __ pc(); 3624 3625 BLOCK_COMMENT("Entry:"); 3626 // No need for RuntimeStub frame since it is called only during JIT compilation 3627 3628 // Load value into xmm0 and convert 3629 __ flt16_to_flt(xmm0, c_rarg0); 3630 3631 __ ret(0); 3632 3633 return start; 3634 } 3635 3636 /** 3637 * Arguments: 3638 * 3639 * Input: 3640 * xmm0 - float 3641 * 3642 * Output: 3643 * rax - float16 jshort 3644 */ 3645 address StubGenerator::generate_floatToFloat16() { 3646 StubCodeMark mark(this, "StubRoutines", "floatToFloat16"); 3647 3648 address start = __ pc(); 3649 3650 BLOCK_COMMENT("Entry:"); 3651 // No need for RuntimeStub frame since it is called only during JIT compilation 3652 3653 // Convert and put result into rax 3654 __ flt_to_flt16(rax, xmm0, xmm1); 3655 3656 __ ret(0); 3657 3658 return start; 3659 } 3660 3661 address StubGenerator::generate_cont_thaw(const char* label, Continuation::thaw_kind kind) { 3662 if (!Continuations::enabled()) return nullptr; 3663 3664 bool return_barrier = Continuation::is_thaw_return_barrier(kind); 3665 bool return_barrier_exception = Continuation::is_thaw_return_barrier_exception(kind); 3666 3667 StubCodeMark mark(this, "StubRoutines", label); 3668 address start = __ pc(); 3669 3670 // TODO: Handle Valhalla return types. May require generating different return barriers. 3671 3672 if (!return_barrier) { 3673 // Pop return address. If we don't do this, we get a drift, 3674 // where the bottom-most frozen frame continuously grows. 3675 __ pop(c_rarg3); 3676 } else { 3677 __ movptr(rsp, Address(r15_thread, JavaThread::cont_entry_offset())); 3678 } 3679 3680 #ifdef ASSERT 3681 { 3682 Label L_good_sp; 3683 __ cmpptr(rsp, Address(r15_thread, JavaThread::cont_entry_offset())); 3684 __ jcc(Assembler::equal, L_good_sp); 3685 __ stop("Incorrect rsp at thaw entry"); 3686 __ BIND(L_good_sp); 3687 } 3688 #endif // ASSERT 3689 3690 if (return_barrier) { 3691 // Preserve possible return value from a method returning to the return barrier. 3692 __ push(rax); 3693 __ push_d(xmm0); 3694 } 3695 3696 __ movptr(c_rarg0, r15_thread); 3697 __ movptr(c_rarg1, (return_barrier ? 1 : 0)); 3698 __ call_VM_leaf(CAST_FROM_FN_PTR(address, Continuation::prepare_thaw), 2); 3699 __ movptr(rbx, rax); 3700 3701 if (return_barrier) { 3702 // Restore return value from a method returning to the return barrier. 3703 // No safepoint in the call to thaw, so even an oop return value should be OK. 3704 __ pop_d(xmm0); 3705 __ pop(rax); 3706 } 3707 3708 #ifdef ASSERT 3709 { 3710 Label L_good_sp; 3711 __ cmpptr(rsp, Address(r15_thread, JavaThread::cont_entry_offset())); 3712 __ jcc(Assembler::equal, L_good_sp); 3713 __ stop("Incorrect rsp after prepare thaw"); 3714 __ BIND(L_good_sp); 3715 } 3716 #endif // ASSERT 3717 3718 // rbx contains the size of the frames to thaw, 0 if overflow or no more frames 3719 Label L_thaw_success; 3720 __ testptr(rbx, rbx); 3721 __ jccb(Assembler::notZero, L_thaw_success); 3722 __ jump(RuntimeAddress(SharedRuntime::throw_StackOverflowError_entry())); 3723 __ bind(L_thaw_success); 3724 3725 // Make room for the thawed frames and align the stack. 3726 __ subptr(rsp, rbx); 3727 __ andptr(rsp, -StackAlignmentInBytes); 3728 3729 if (return_barrier) { 3730 // Preserve possible return value from a method returning to the return barrier. (Again.) 3731 __ push(rax); 3732 __ push_d(xmm0); 3733 } 3734 3735 // If we want, we can templatize thaw by kind, and have three different entries. 3736 __ movptr(c_rarg0, r15_thread); 3737 __ movptr(c_rarg1, kind); 3738 __ call_VM_leaf(Continuation::thaw_entry(), 2); 3739 __ movptr(rbx, rax); 3740 3741 if (return_barrier) { 3742 // Restore return value from a method returning to the return barrier. (Again.) 3743 // No safepoint in the call to thaw, so even an oop return value should be OK. 3744 __ pop_d(xmm0); 3745 __ pop(rax); 3746 } else { 3747 // Return 0 (success) from doYield. 3748 __ xorptr(rax, rax); 3749 } 3750 3751 // After thawing, rbx is the SP of the yielding frame. 3752 // Move there, and then to saved RBP slot. 3753 __ movptr(rsp, rbx); 3754 __ subptr(rsp, 2*wordSize); 3755 3756 if (return_barrier_exception) { 3757 __ movptr(c_rarg0, r15_thread); 3758 __ movptr(c_rarg1, Address(rsp, wordSize)); // return address 3759 3760 // rax still holds the original exception oop, save it before the call 3761 __ push(rax); 3762 3763 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), 2); 3764 __ movptr(rbx, rax); 3765 3766 // Continue at exception handler: 3767 // rax: exception oop 3768 // rbx: exception handler 3769 // rdx: exception pc 3770 __ pop(rax); 3771 __ verify_oop(rax); 3772 __ pop(rbp); // pop out RBP here too 3773 __ pop(rdx); 3774 __ jmp(rbx); 3775 } else { 3776 // We are "returning" into the topmost thawed frame; see Thaw::push_return_frame 3777 __ pop(rbp); 3778 __ ret(0); 3779 } 3780 3781 return start; 3782 } 3783 3784 address StubGenerator::generate_cont_thaw() { 3785 return generate_cont_thaw("Cont thaw", Continuation::thaw_top); 3786 } 3787 3788 // TODO: will probably need multiple return barriers depending on return type 3789 3790 address StubGenerator::generate_cont_returnBarrier() { 3791 return generate_cont_thaw("Cont thaw return barrier", Continuation::thaw_return_barrier); 3792 } 3793 3794 address StubGenerator::generate_cont_returnBarrier_exception() { 3795 return generate_cont_thaw("Cont thaw return barrier exception", Continuation::thaw_return_barrier_exception); 3796 } 3797 3798 // exception handler for upcall stubs 3799 address StubGenerator::generate_upcall_stub_exception_handler() { 3800 StubCodeMark mark(this, "StubRoutines", "upcall stub exception handler"); 3801 address start = __ pc(); 3802 3803 // native caller has no idea how to handle exceptions 3804 // we just crash here. Up to callee to catch exceptions. 3805 __ verify_oop(rax); 3806 __ vzeroupper(); 3807 __ mov(c_rarg0, rax); 3808 __ andptr(rsp, -StackAlignmentInBytes); // align stack as required by ABI 3809 __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows 3810 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, UpcallLinker::handle_uncaught_exception))); 3811 __ should_not_reach_here(); 3812 3813 return start; 3814 } 3815 3816 // load Method* target of MethodHandle 3817 // j_rarg0 = jobject receiver 3818 // rbx = result 3819 address StubGenerator::generate_upcall_stub_load_target() { 3820 StubCodeMark mark(this, "StubRoutines", "upcall_stub_load_target"); 3821 address start = __ pc(); 3822 3823 __ resolve_global_jobject(j_rarg0, r15_thread, rscratch1); 3824 // Load target method from receiver 3825 __ load_heap_oop(rbx, Address(j_rarg0, java_lang_invoke_MethodHandle::form_offset()), rscratch1); 3826 __ load_heap_oop(rbx, Address(rbx, java_lang_invoke_LambdaForm::vmentry_offset()), rscratch1); 3827 __ load_heap_oop(rbx, Address(rbx, java_lang_invoke_MemberName::method_offset()), rscratch1); 3828 __ access_load_at(T_ADDRESS, IN_HEAP, rbx, 3829 Address(rbx, java_lang_invoke_ResolvedMethodName::vmtarget_offset()), 3830 noreg, noreg); 3831 __ movptr(Address(r15_thread, JavaThread::callee_target_offset()), rbx); // just in case callee is deoptimized 3832 3833 __ ret(0); 3834 3835 return start; 3836 } 3837 3838 address StubGenerator::generate_lookup_secondary_supers_table_stub(u1 super_klass_index) { 3839 StubCodeMark mark(this, "StubRoutines", "lookup_secondary_supers_table"); 3840 3841 address start = __ pc(); 3842 3843 const Register 3844 r_super_klass = rax, 3845 r_sub_klass = rsi, 3846 result = rdi; 3847 3848 __ lookup_secondary_supers_table(r_sub_klass, r_super_klass, 3849 rdx, rcx, rbx, r11, // temps 3850 result, 3851 super_klass_index); 3852 __ ret(0); 3853 3854 return start; 3855 } 3856 3857 // Slow path implementation for UseSecondarySupersTable. 3858 address StubGenerator::generate_lookup_secondary_supers_table_slow_path_stub() { 3859 StubCodeMark mark(this, "StubRoutines", "lookup_secondary_supers_table"); 3860 3861 address start = __ pc(); 3862 3863 const Register 3864 r_super_klass = rax, 3865 r_array_base = rbx, 3866 r_array_index = rdx, 3867 r_sub_klass = rsi, 3868 r_bitmap = r11, 3869 result = rdi; 3870 3871 Label L_success; 3872 __ lookup_secondary_supers_table_slow_path(r_super_klass, r_array_base, r_array_index, r_bitmap, 3873 rcx, rdi, // temps 3874 &L_success); 3875 // bind(L_failure); 3876 __ movl(result, 1); 3877 __ ret(0); 3878 3879 __ bind(L_success); 3880 __ movl(result, 0); 3881 __ ret(0); 3882 3883 return start; 3884 } 3885 3886 void StubGenerator::create_control_words() { 3887 // Round to nearest, 64-bit mode, exceptions masked, flags specialized 3888 StubRoutines::x86::_mxcsr_std = EnableX86ECoreOpts ? 0x1FBF : 0x1F80; 3889 // Round to zero, 64-bit mode, exceptions masked, flags specialized 3890 StubRoutines::x86::_mxcsr_rz = EnableX86ECoreOpts ? 0x7FBF : 0x7F80; 3891 } 3892 3893 // Initialization 3894 void StubGenerator::generate_initial_stubs() { 3895 // Generates all stubs and initializes the entry points 3896 3897 // This platform-specific settings are needed by generate_call_stub() 3898 create_control_words(); 3899 3900 // Initialize table for unsafe copy memeory check. 3901 if (UnsafeMemoryAccess::_table == nullptr) { 3902 UnsafeMemoryAccess::create_table(16 + 4); // 16 for copyMemory; 4 for setMemory 3903 } 3904 3905 // entry points that exist in all platforms Note: This is code 3906 // that could be shared among different platforms - however the 3907 // benefit seems to be smaller than the disadvantage of having a 3908 // much more complicated generator structure. See also comment in 3909 // stubRoutines.hpp. 3910 3911 StubRoutines::_forward_exception_entry = generate_forward_exception(); 3912 3913 // Generate these first because they are called from other stubs 3914 if (InlineTypeReturnedAsFields) { 3915 StubRoutines::_load_inline_type_fields_in_regs = 3916 generate_return_value_stub(CAST_FROM_FN_PTR(address, SharedRuntime::load_inline_type_fields_in_regs), 3917 "load_inline_type_fields_in_regs", false); 3918 StubRoutines::_store_inline_type_fields_to_buf = 3919 generate_return_value_stub(CAST_FROM_FN_PTR(address, SharedRuntime::store_inline_type_fields_to_buf), 3920 "store_inline_type_fields_to_buf", true); 3921 } 3922 3923 StubRoutines::_call_stub_entry = 3924 generate_call_stub(StubRoutines::_call_stub_return_address); 3925 3926 // is referenced by megamorphic call 3927 StubRoutines::_catch_exception_entry = generate_catch_exception(); 3928 3929 // atomic calls 3930 StubRoutines::_fence_entry = generate_orderaccess_fence(); 3931 3932 // platform dependent 3933 StubRoutines::x86::_get_previous_sp_entry = generate_get_previous_sp(); 3934 3935 StubRoutines::x86::_verify_mxcsr_entry = generate_verify_mxcsr(); 3936 3937 StubRoutines::x86::_f2i_fixup = generate_f2i_fixup(); 3938 StubRoutines::x86::_f2l_fixup = generate_f2l_fixup(); 3939 StubRoutines::x86::_d2i_fixup = generate_d2i_fixup(); 3940 StubRoutines::x86::_d2l_fixup = generate_d2l_fixup(); 3941 3942 StubRoutines::x86::_float_sign_mask = generate_fp_mask("float_sign_mask", 0x7FFFFFFF7FFFFFFF); 3943 StubRoutines::x86::_float_sign_flip = generate_fp_mask("float_sign_flip", 0x8000000080000000); 3944 StubRoutines::x86::_double_sign_mask = generate_fp_mask("double_sign_mask", 0x7FFFFFFFFFFFFFFF); 3945 StubRoutines::x86::_double_sign_flip = generate_fp_mask("double_sign_flip", 0x8000000000000000); 3946 3947 if (UseCRC32Intrinsics) { 3948 // set table address before stub generation which use it 3949 StubRoutines::_crc_table_adr = (address)StubRoutines::x86::_crc_table; 3950 StubRoutines::_updateBytesCRC32 = generate_updateBytesCRC32(); 3951 } 3952 3953 if (UseCRC32CIntrinsics) { 3954 bool supports_clmul = VM_Version::supports_clmul(); 3955 StubRoutines::x86::generate_CRC32C_table(supports_clmul); 3956 StubRoutines::_crc32c_table_addr = (address)StubRoutines::x86::_crc32c_table; 3957 StubRoutines::_updateBytesCRC32C = generate_updateBytesCRC32C(supports_clmul); 3958 } 3959 3960 if (VM_Version::supports_float16()) { 3961 // For results consistency both intrinsics should be enabled. 3962 // vmIntrinsics checks InlineIntrinsics flag, no need to check it here. 3963 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_float16ToFloat) && 3964 vmIntrinsics::is_intrinsic_available(vmIntrinsics::_floatToFloat16)) { 3965 StubRoutines::_hf2f = generate_float16ToFloat(); 3966 StubRoutines::_f2hf = generate_floatToFloat16(); 3967 } 3968 } 3969 3970 generate_libm_stubs(); 3971 3972 StubRoutines::_fmod = generate_libmFmod(); // from stubGenerator_x86_64_fmod.cpp 3973 } 3974 3975 // Call here from the interpreter or compiled code to either load 3976 // multiple returned values from the inline type instance being 3977 // returned to registers or to store returned values to a newly 3978 // allocated inline type instance. 3979 // Register is a class, but it would be assigned numerical value. 3980 // "0" is assigned for xmm0. Thus we need to ignore -Wnonnull. 3981 PRAGMA_DIAG_PUSH 3982 PRAGMA_NONNULL_IGNORED 3983 address StubGenerator::generate_return_value_stub(address destination, const char* name, bool has_res) { 3984 // We need to save all registers the calling convention may use so 3985 // the runtime calls read or update those registers. This needs to 3986 // be in sync with SharedRuntime::java_return_convention(). 3987 enum layout { 3988 pad_off = frame::arg_reg_save_area_bytes/BytesPerInt, pad_off_2, 3989 rax_off, rax_off_2, 3990 j_rarg5_off, j_rarg5_2, 3991 j_rarg4_off, j_rarg4_2, 3992 j_rarg3_off, j_rarg3_2, 3993 j_rarg2_off, j_rarg2_2, 3994 j_rarg1_off, j_rarg1_2, 3995 j_rarg0_off, j_rarg0_2, 3996 j_farg0_off, j_farg0_2, 3997 j_farg1_off, j_farg1_2, 3998 j_farg2_off, j_farg2_2, 3999 j_farg3_off, j_farg3_2, 4000 j_farg4_off, j_farg4_2, 4001 j_farg5_off, j_farg5_2, 4002 j_farg6_off, j_farg6_2, 4003 j_farg7_off, j_farg7_2, 4004 rbp_off, rbp_off_2, 4005 return_off, return_off_2, 4006 4007 framesize 4008 }; 4009 4010 CodeBuffer buffer(name, 1000, 512); 4011 MacroAssembler* _masm = new MacroAssembler(&buffer); 4012 4013 int frame_size_in_bytes = align_up(framesize*BytesPerInt, 16); 4014 assert(frame_size_in_bytes == framesize*BytesPerInt, "misaligned"); 4015 int frame_size_in_slots = frame_size_in_bytes / BytesPerInt; 4016 int frame_size_in_words = frame_size_in_bytes / wordSize; 4017 4018 OopMapSet *oop_maps = new OopMapSet(); 4019 OopMap* map = new OopMap(frame_size_in_slots, 0); 4020 4021 map->set_callee_saved(VMRegImpl::stack2reg(rax_off), rax->as_VMReg()); 4022 map->set_callee_saved(VMRegImpl::stack2reg(j_rarg5_off), j_rarg5->as_VMReg()); 4023 map->set_callee_saved(VMRegImpl::stack2reg(j_rarg4_off), j_rarg4->as_VMReg()); 4024 map->set_callee_saved(VMRegImpl::stack2reg(j_rarg3_off), j_rarg3->as_VMReg()); 4025 map->set_callee_saved(VMRegImpl::stack2reg(j_rarg2_off), j_rarg2->as_VMReg()); 4026 map->set_callee_saved(VMRegImpl::stack2reg(j_rarg1_off), j_rarg1->as_VMReg()); 4027 map->set_callee_saved(VMRegImpl::stack2reg(j_rarg0_off), j_rarg0->as_VMReg()); 4028 map->set_callee_saved(VMRegImpl::stack2reg(j_farg0_off), j_farg0->as_VMReg()); 4029 map->set_callee_saved(VMRegImpl::stack2reg(j_farg1_off), j_farg1->as_VMReg()); 4030 map->set_callee_saved(VMRegImpl::stack2reg(j_farg2_off), j_farg2->as_VMReg()); 4031 map->set_callee_saved(VMRegImpl::stack2reg(j_farg3_off), j_farg3->as_VMReg()); 4032 map->set_callee_saved(VMRegImpl::stack2reg(j_farg4_off), j_farg4->as_VMReg()); 4033 map->set_callee_saved(VMRegImpl::stack2reg(j_farg5_off), j_farg5->as_VMReg()); 4034 map->set_callee_saved(VMRegImpl::stack2reg(j_farg6_off), j_farg6->as_VMReg()); 4035 map->set_callee_saved(VMRegImpl::stack2reg(j_farg7_off), j_farg7->as_VMReg()); 4036 4037 int start = __ offset(); 4038 4039 __ subptr(rsp, frame_size_in_bytes - 8 /* return address*/); 4040 4041 __ movptr(Address(rsp, rbp_off * BytesPerInt), rbp); 4042 __ movdbl(Address(rsp, j_farg7_off * BytesPerInt), j_farg7); 4043 __ movdbl(Address(rsp, j_farg6_off * BytesPerInt), j_farg6); 4044 __ movdbl(Address(rsp, j_farg5_off * BytesPerInt), j_farg5); 4045 __ movdbl(Address(rsp, j_farg4_off * BytesPerInt), j_farg4); 4046 __ movdbl(Address(rsp, j_farg3_off * BytesPerInt), j_farg3); 4047 __ movdbl(Address(rsp, j_farg2_off * BytesPerInt), j_farg2); 4048 __ movdbl(Address(rsp, j_farg1_off * BytesPerInt), j_farg1); 4049 __ movdbl(Address(rsp, j_farg0_off * BytesPerInt), j_farg0); 4050 4051 __ movptr(Address(rsp, j_rarg0_off * BytesPerInt), j_rarg0); 4052 __ movptr(Address(rsp, j_rarg1_off * BytesPerInt), j_rarg1); 4053 __ movptr(Address(rsp, j_rarg2_off * BytesPerInt), j_rarg2); 4054 __ movptr(Address(rsp, j_rarg3_off * BytesPerInt), j_rarg3); 4055 __ movptr(Address(rsp, j_rarg4_off * BytesPerInt), j_rarg4); 4056 __ movptr(Address(rsp, j_rarg5_off * BytesPerInt), j_rarg5); 4057 __ movptr(Address(rsp, rax_off * BytesPerInt), rax); 4058 4059 int frame_complete = __ offset(); 4060 4061 __ set_last_Java_frame(noreg, noreg, nullptr, rscratch1); 4062 4063 __ mov(c_rarg0, r15_thread); 4064 __ mov(c_rarg1, rax); 4065 4066 __ call(RuntimeAddress(destination)); 4067 4068 // Set an oopmap for the call site. 4069 4070 oop_maps->add_gc_map( __ offset() - start, map); 4071 4072 // clear last_Java_sp 4073 __ reset_last_Java_frame(false); 4074 4075 __ movptr(rbp, Address(rsp, rbp_off * BytesPerInt)); 4076 __ movdbl(j_farg7, Address(rsp, j_farg7_off * BytesPerInt)); 4077 __ movdbl(j_farg6, Address(rsp, j_farg6_off * BytesPerInt)); 4078 __ movdbl(j_farg5, Address(rsp, j_farg5_off * BytesPerInt)); 4079 __ movdbl(j_farg4, Address(rsp, j_farg4_off * BytesPerInt)); 4080 __ movdbl(j_farg3, Address(rsp, j_farg3_off * BytesPerInt)); 4081 __ movdbl(j_farg2, Address(rsp, j_farg2_off * BytesPerInt)); 4082 __ movdbl(j_farg1, Address(rsp, j_farg1_off * BytesPerInt)); 4083 __ movdbl(j_farg0, Address(rsp, j_farg0_off * BytesPerInt)); 4084 4085 __ movptr(j_rarg0, Address(rsp, j_rarg0_off * BytesPerInt)); 4086 __ movptr(j_rarg1, Address(rsp, j_rarg1_off * BytesPerInt)); 4087 __ movptr(j_rarg2, Address(rsp, j_rarg2_off * BytesPerInt)); 4088 __ movptr(j_rarg3, Address(rsp, j_rarg3_off * BytesPerInt)); 4089 __ movptr(j_rarg4, Address(rsp, j_rarg4_off * BytesPerInt)); 4090 __ movptr(j_rarg5, Address(rsp, j_rarg5_off * BytesPerInt)); 4091 __ movptr(rax, Address(rsp, rax_off * BytesPerInt)); 4092 4093 __ addptr(rsp, frame_size_in_bytes-8); 4094 4095 // check for pending exceptions 4096 Label pending; 4097 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD); 4098 __ jcc(Assembler::notEqual, pending); 4099 4100 if (has_res) { 4101 __ get_vm_result(rax, r15_thread); 4102 } 4103 4104 __ ret(0); 4105 4106 __ bind(pending); 4107 4108 __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset())); 4109 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 4110 4111 // ------------- 4112 // make sure all code is generated 4113 _masm->flush(); 4114 4115 RuntimeStub* stub = RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_words, oop_maps, false); 4116 return stub->entry_point(); 4117 } 4118 4119 void StubGenerator::generate_continuation_stubs() { 4120 // Continuation stubs: 4121 StubRoutines::_cont_thaw = generate_cont_thaw(); 4122 StubRoutines::_cont_returnBarrier = generate_cont_returnBarrier(); 4123 StubRoutines::_cont_returnBarrierExc = generate_cont_returnBarrier_exception(); 4124 } 4125 4126 void StubGenerator::generate_final_stubs() { 4127 // Generates the rest of stubs and initializes the entry points 4128 4129 // support for verify_oop (must happen after universe_init) 4130 if (VerifyOops) { 4131 StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop(); 4132 } 4133 4134 // data cache line writeback 4135 StubRoutines::_data_cache_writeback = generate_data_cache_writeback(); 4136 StubRoutines::_data_cache_writeback_sync = generate_data_cache_writeback_sync(); 4137 4138 // arraycopy stubs used by compilers 4139 generate_arraycopy_stubs(); 4140 4141 BarrierSetNMethod* bs_nm = BarrierSet::barrier_set()->barrier_set_nmethod(); 4142 if (bs_nm != nullptr) { 4143 StubRoutines::_method_entry_barrier = generate_method_entry_barrier(); 4144 } 4145 4146 if (UseVectorizedMismatchIntrinsic) { 4147 StubRoutines::_vectorizedMismatch = generate_vectorizedMismatch(); 4148 } 4149 4150 StubRoutines::_upcall_stub_exception_handler = generate_upcall_stub_exception_handler(); 4151 StubRoutines::_upcall_stub_load_target = generate_upcall_stub_load_target(); 4152 } 4153 4154 void StubGenerator::generate_compiler_stubs() { 4155 #if COMPILER2_OR_JVMCI 4156 4157 // Entry points that are C2 compiler specific. 4158 4159 StubRoutines::x86::_vector_float_sign_mask = generate_vector_mask("vector_float_sign_mask", 0x7FFFFFFF7FFFFFFF); 4160 StubRoutines::x86::_vector_float_sign_flip = generate_vector_mask("vector_float_sign_flip", 0x8000000080000000); 4161 StubRoutines::x86::_vector_double_sign_mask = generate_vector_mask("vector_double_sign_mask", 0x7FFFFFFFFFFFFFFF); 4162 StubRoutines::x86::_vector_double_sign_flip = generate_vector_mask("vector_double_sign_flip", 0x8000000000000000); 4163 StubRoutines::x86::_vector_all_bits_set = generate_vector_mask("vector_all_bits_set", 0xFFFFFFFFFFFFFFFF); 4164 StubRoutines::x86::_vector_int_mask_cmp_bits = generate_vector_mask("vector_int_mask_cmp_bits", 0x0000000100000001); 4165 StubRoutines::x86::_vector_short_to_byte_mask = generate_vector_mask("vector_short_to_byte_mask", 0x00ff00ff00ff00ff); 4166 StubRoutines::x86::_vector_byte_perm_mask = generate_vector_byte_perm_mask("vector_byte_perm_mask"); 4167 StubRoutines::x86::_vector_int_to_byte_mask = generate_vector_mask("vector_int_to_byte_mask", 0x000000ff000000ff); 4168 StubRoutines::x86::_vector_int_to_short_mask = generate_vector_mask("vector_int_to_short_mask", 0x0000ffff0000ffff); 4169 StubRoutines::x86::_vector_32_bit_mask = generate_vector_custom_i32("vector_32_bit_mask", Assembler::AVX_512bit, 4170 0xFFFFFFFF, 0, 0, 0); 4171 StubRoutines::x86::_vector_64_bit_mask = generate_vector_custom_i32("vector_64_bit_mask", Assembler::AVX_512bit, 4172 0xFFFFFFFF, 0xFFFFFFFF, 0, 0); 4173 StubRoutines::x86::_vector_int_shuffle_mask = generate_vector_mask("vector_int_shuffle_mask", 0x0302010003020100); 4174 StubRoutines::x86::_vector_byte_shuffle_mask = generate_vector_byte_shuffle_mask("vector_byte_shuffle_mask"); 4175 StubRoutines::x86::_vector_short_shuffle_mask = generate_vector_mask("vector_short_shuffle_mask", 0x0100010001000100); 4176 StubRoutines::x86::_vector_long_shuffle_mask = generate_vector_mask("vector_long_shuffle_mask", 0x0000000100000000); 4177 StubRoutines::x86::_vector_long_sign_mask = generate_vector_mask("vector_long_sign_mask", 0x8000000000000000); 4178 StubRoutines::x86::_vector_iota_indices = generate_iota_indices("iota_indices"); 4179 StubRoutines::x86::_vector_count_leading_zeros_lut = generate_count_leading_zeros_lut("count_leading_zeros_lut"); 4180 StubRoutines::x86::_vector_reverse_bit_lut = generate_vector_reverse_bit_lut("reverse_bit_lut"); 4181 StubRoutines::x86::_vector_reverse_byte_perm_mask_long = generate_vector_reverse_byte_perm_mask_long("perm_mask_long"); 4182 StubRoutines::x86::_vector_reverse_byte_perm_mask_int = generate_vector_reverse_byte_perm_mask_int("perm_mask_int"); 4183 StubRoutines::x86::_vector_reverse_byte_perm_mask_short = generate_vector_reverse_byte_perm_mask_short("perm_mask_short"); 4184 4185 if (VM_Version::supports_avx2() && !VM_Version::supports_avx512vl()) { 4186 StubRoutines::x86::_compress_perm_table32 = generate_compress_perm_table("compress_perm_table32", 32); 4187 StubRoutines::x86::_compress_perm_table64 = generate_compress_perm_table("compress_perm_table64", 64); 4188 StubRoutines::x86::_expand_perm_table32 = generate_expand_perm_table("expand_perm_table32", 32); 4189 StubRoutines::x86::_expand_perm_table64 = generate_expand_perm_table("expand_perm_table64", 64); 4190 } 4191 4192 if (VM_Version::supports_avx2() && !VM_Version::supports_avx512_vpopcntdq()) { 4193 // lut implementation influenced by counting 1s algorithm from section 5-1 of Hackers' Delight. 4194 StubRoutines::x86::_vector_popcount_lut = generate_popcount_avx_lut("popcount_lut"); 4195 } 4196 4197 generate_aes_stubs(); 4198 4199 generate_ghash_stubs(); 4200 4201 generate_chacha_stubs(); 4202 4203 #ifdef COMPILER2 4204 if ((UseAVX == 2) && EnableX86ECoreOpts) { 4205 generate_string_indexof(StubRoutines::_string_indexof_array); 4206 } 4207 #endif 4208 4209 if (UseAdler32Intrinsics) { 4210 StubRoutines::_updateBytesAdler32 = generate_updateBytesAdler32(); 4211 } 4212 4213 if (UsePoly1305Intrinsics) { 4214 StubRoutines::_poly1305_processBlocks = generate_poly1305_processBlocks(); 4215 } 4216 4217 if (UseIntPolyIntrinsics) { 4218 StubRoutines::_intpoly_montgomeryMult_P256 = generate_intpoly_montgomeryMult_P256(); 4219 StubRoutines::_intpoly_assign = generate_intpoly_assign(); 4220 } 4221 4222 if (UseMD5Intrinsics) { 4223 StubRoutines::_md5_implCompress = generate_md5_implCompress(false, "md5_implCompress"); 4224 StubRoutines::_md5_implCompressMB = generate_md5_implCompress(true, "md5_implCompressMB"); 4225 } 4226 4227 if (UseSHA1Intrinsics) { 4228 StubRoutines::x86::_upper_word_mask_addr = generate_upper_word_mask(); 4229 StubRoutines::x86::_shuffle_byte_flip_mask_addr = generate_shuffle_byte_flip_mask(); 4230 StubRoutines::_sha1_implCompress = generate_sha1_implCompress(false, "sha1_implCompress"); 4231 StubRoutines::_sha1_implCompressMB = generate_sha1_implCompress(true, "sha1_implCompressMB"); 4232 } 4233 4234 if (UseSHA256Intrinsics) { 4235 StubRoutines::x86::_k256_adr = (address)StubRoutines::x86::_k256; 4236 char* dst = (char*)StubRoutines::x86::_k256_W; 4237 char* src = (char*)StubRoutines::x86::_k256; 4238 for (int ii = 0; ii < 16; ++ii) { 4239 memcpy(dst + 32 * ii, src + 16 * ii, 16); 4240 memcpy(dst + 32 * ii + 16, src + 16 * ii, 16); 4241 } 4242 StubRoutines::x86::_k256_W_adr = (address)StubRoutines::x86::_k256_W; 4243 StubRoutines::x86::_pshuffle_byte_flip_mask_addr = generate_pshuffle_byte_flip_mask(); 4244 StubRoutines::_sha256_implCompress = generate_sha256_implCompress(false, "sha256_implCompress"); 4245 StubRoutines::_sha256_implCompressMB = generate_sha256_implCompress(true, "sha256_implCompressMB"); 4246 } 4247 4248 if (UseSHA512Intrinsics) { 4249 StubRoutines::x86::_k512_W_addr = (address)StubRoutines::x86::_k512_W; 4250 StubRoutines::x86::_pshuffle_byte_flip_mask_addr_sha512 = generate_pshuffle_byte_flip_mask_sha512(); 4251 StubRoutines::_sha512_implCompress = generate_sha512_implCompress(false, "sha512_implCompress"); 4252 StubRoutines::_sha512_implCompressMB = generate_sha512_implCompress(true, "sha512_implCompressMB"); 4253 } 4254 4255 if (UseBASE64Intrinsics) { 4256 if(VM_Version::supports_avx2()) { 4257 StubRoutines::x86::_avx2_shuffle_base64 = base64_avx2_shuffle_addr(); 4258 StubRoutines::x86::_avx2_input_mask_base64 = base64_avx2_input_mask_addr(); 4259 StubRoutines::x86::_avx2_lut_base64 = base64_avx2_lut_addr(); 4260 StubRoutines::x86::_avx2_decode_tables_base64 = base64_AVX2_decode_tables_addr(); 4261 StubRoutines::x86::_avx2_decode_lut_tables_base64 = base64_AVX2_decode_LUT_tables_addr(); 4262 } 4263 StubRoutines::x86::_encoding_table_base64 = base64_encoding_table_addr(); 4264 if (VM_Version::supports_avx512_vbmi()) { 4265 StubRoutines::x86::_shuffle_base64 = base64_shuffle_addr(); 4266 StubRoutines::x86::_lookup_lo_base64 = base64_vbmi_lookup_lo_addr(); 4267 StubRoutines::x86::_lookup_hi_base64 = base64_vbmi_lookup_hi_addr(); 4268 StubRoutines::x86::_lookup_lo_base64url = base64_vbmi_lookup_lo_url_addr(); 4269 StubRoutines::x86::_lookup_hi_base64url = base64_vbmi_lookup_hi_url_addr(); 4270 StubRoutines::x86::_pack_vec_base64 = base64_vbmi_pack_vec_addr(); 4271 StubRoutines::x86::_join_0_1_base64 = base64_vbmi_join_0_1_addr(); 4272 StubRoutines::x86::_join_1_2_base64 = base64_vbmi_join_1_2_addr(); 4273 StubRoutines::x86::_join_2_3_base64 = base64_vbmi_join_2_3_addr(); 4274 } 4275 StubRoutines::x86::_decoding_table_base64 = base64_decoding_table_addr(); 4276 StubRoutines::_base64_encodeBlock = generate_base64_encodeBlock(); 4277 StubRoutines::_base64_decodeBlock = generate_base64_decodeBlock(); 4278 } 4279 4280 #ifdef COMPILER2 4281 if (UseMultiplyToLenIntrinsic) { 4282 StubRoutines::_multiplyToLen = generate_multiplyToLen(); 4283 } 4284 if (UseSquareToLenIntrinsic) { 4285 StubRoutines::_squareToLen = generate_squareToLen(); 4286 } 4287 if (UseMulAddIntrinsic) { 4288 StubRoutines::_mulAdd = generate_mulAdd(); 4289 } 4290 if (VM_Version::supports_avx512_vbmi2()) { 4291 StubRoutines::_bigIntegerRightShiftWorker = generate_bigIntegerRightShift(); 4292 StubRoutines::_bigIntegerLeftShiftWorker = generate_bigIntegerLeftShift(); 4293 } 4294 if (UseSecondarySupersTable) { 4295 StubRoutines::_lookup_secondary_supers_table_slow_path_stub = generate_lookup_secondary_supers_table_slow_path_stub(); 4296 if (! InlineSecondarySupersTest) { 4297 for (int slot = 0; slot < Klass::SECONDARY_SUPERS_TABLE_SIZE; slot++) { 4298 StubRoutines::_lookup_secondary_supers_table_stubs[slot] = generate_lookup_secondary_supers_table_stub(slot); 4299 } 4300 } 4301 } 4302 if (UseMontgomeryMultiplyIntrinsic) { 4303 StubRoutines::_montgomeryMultiply 4304 = CAST_FROM_FN_PTR(address, SharedRuntime::montgomery_multiply); 4305 } 4306 if (UseMontgomerySquareIntrinsic) { 4307 StubRoutines::_montgomerySquare 4308 = CAST_FROM_FN_PTR(address, SharedRuntime::montgomery_square); 4309 } 4310 4311 // Load x86_64_sort library on supported hardware to enable SIMD sort and partition intrinsics 4312 4313 if (VM_Version::is_intel() && (VM_Version::supports_avx512dq() || VM_Version::supports_avx2())) { 4314 void *libsimdsort = nullptr; 4315 char ebuf_[1024]; 4316 char dll_name_simd_sort[JVM_MAXPATHLEN]; 4317 if (os::dll_locate_lib(dll_name_simd_sort, sizeof(dll_name_simd_sort), Arguments::get_dll_dir(), "simdsort")) { 4318 libsimdsort = os::dll_load(dll_name_simd_sort, ebuf_, sizeof ebuf_); 4319 } 4320 // Get addresses for SIMD sort and partition routines 4321 if (libsimdsort != nullptr) { 4322 log_info(library)("Loaded library %s, handle " INTPTR_FORMAT, JNI_LIB_PREFIX "simdsort" JNI_LIB_SUFFIX, p2i(libsimdsort)); 4323 4324 snprintf(ebuf_, sizeof(ebuf_), VM_Version::supports_avx512dq() ? "avx512_sort" : "avx2_sort"); 4325 StubRoutines::_array_sort = (address)os::dll_lookup(libsimdsort, ebuf_); 4326 4327 snprintf(ebuf_, sizeof(ebuf_), VM_Version::supports_avx512dq() ? "avx512_partition" : "avx2_partition"); 4328 StubRoutines::_array_partition = (address)os::dll_lookup(libsimdsort, ebuf_); 4329 } 4330 } 4331 4332 // Get svml stub routine addresses 4333 void *libjsvml = nullptr; 4334 char ebuf[1024]; 4335 char dll_name[JVM_MAXPATHLEN]; 4336 if (os::dll_locate_lib(dll_name, sizeof(dll_name), Arguments::get_dll_dir(), "jsvml")) { 4337 libjsvml = os::dll_load(dll_name, ebuf, sizeof ebuf); 4338 } 4339 if (libjsvml != nullptr) { 4340 // SVML method naming convention 4341 // All the methods are named as __jsvml_op<T><N>_ha_<VV> 4342 // Where: 4343 // ha stands for high accuracy 4344 // <T> is optional to indicate float/double 4345 // Set to f for vector float operation 4346 // Omitted for vector double operation 4347 // <N> is the number of elements in the vector 4348 // 1, 2, 4, 8, 16 4349 // e.g. 128 bit float vector has 4 float elements 4350 // <VV> indicates the avx/sse level: 4351 // z0 is AVX512, l9 is AVX2, e9 is AVX1 and ex is for SSE2 4352 // e.g. __jsvml_expf16_ha_z0 is the method for computing 16 element vector float exp using AVX 512 insns 4353 // __jsvml_exp8_ha_z0 is the method for computing 8 element vector double exp using AVX 512 insns 4354 4355 log_info(library)("Loaded library %s, handle " INTPTR_FORMAT, JNI_LIB_PREFIX "jsvml" JNI_LIB_SUFFIX, p2i(libjsvml)); 4356 if (UseAVX > 2) { 4357 for (int op = 0; op < VectorSupport::NUM_VECTOR_OP_MATH; op++) { 4358 int vop = VectorSupport::VECTOR_OP_MATH_START + op; 4359 if ((!VM_Version::supports_avx512dq()) && 4360 (vop == VectorSupport::VECTOR_OP_LOG || vop == VectorSupport::VECTOR_OP_LOG10 || vop == VectorSupport::VECTOR_OP_POW)) { 4361 continue; 4362 } 4363 snprintf(ebuf, sizeof(ebuf), "__jsvml_%sf16_ha_z0", VectorSupport::mathname[op]); 4364 StubRoutines::_vector_f_math[VectorSupport::VEC_SIZE_512][op] = (address)os::dll_lookup(libjsvml, ebuf); 4365 4366 snprintf(ebuf, sizeof(ebuf), "__jsvml_%s8_ha_z0", VectorSupport::mathname[op]); 4367 StubRoutines::_vector_d_math[VectorSupport::VEC_SIZE_512][op] = (address)os::dll_lookup(libjsvml, ebuf); 4368 } 4369 } 4370 const char* avx_sse_str = (UseAVX >= 2) ? "l9" : ((UseAVX == 1) ? "e9" : "ex"); 4371 for (int op = 0; op < VectorSupport::NUM_VECTOR_OP_MATH; op++) { 4372 int vop = VectorSupport::VECTOR_OP_MATH_START + op; 4373 if (vop == VectorSupport::VECTOR_OP_POW) { 4374 continue; 4375 } 4376 snprintf(ebuf, sizeof(ebuf), "__jsvml_%sf4_ha_%s", VectorSupport::mathname[op], avx_sse_str); 4377 StubRoutines::_vector_f_math[VectorSupport::VEC_SIZE_64][op] = (address)os::dll_lookup(libjsvml, ebuf); 4378 4379 snprintf(ebuf, sizeof(ebuf), "__jsvml_%sf4_ha_%s", VectorSupport::mathname[op], avx_sse_str); 4380 StubRoutines::_vector_f_math[VectorSupport::VEC_SIZE_128][op] = (address)os::dll_lookup(libjsvml, ebuf); 4381 4382 snprintf(ebuf, sizeof(ebuf), "__jsvml_%sf8_ha_%s", VectorSupport::mathname[op], avx_sse_str); 4383 StubRoutines::_vector_f_math[VectorSupport::VEC_SIZE_256][op] = (address)os::dll_lookup(libjsvml, ebuf); 4384 4385 snprintf(ebuf, sizeof(ebuf), "__jsvml_%s1_ha_%s", VectorSupport::mathname[op], avx_sse_str); 4386 StubRoutines::_vector_d_math[VectorSupport::VEC_SIZE_64][op] = (address)os::dll_lookup(libjsvml, ebuf); 4387 4388 snprintf(ebuf, sizeof(ebuf), "__jsvml_%s2_ha_%s", VectorSupport::mathname[op], avx_sse_str); 4389 StubRoutines::_vector_d_math[VectorSupport::VEC_SIZE_128][op] = (address)os::dll_lookup(libjsvml, ebuf); 4390 4391 snprintf(ebuf, sizeof(ebuf), "__jsvml_%s4_ha_%s", VectorSupport::mathname[op], avx_sse_str); 4392 StubRoutines::_vector_d_math[VectorSupport::VEC_SIZE_256][op] = (address)os::dll_lookup(libjsvml, ebuf); 4393 } 4394 } 4395 4396 #endif // COMPILER2 4397 #endif // COMPILER2_OR_JVMCI 4398 } 4399 4400 StubGenerator::StubGenerator(CodeBuffer* code, StubsKind kind) : StubCodeGenerator(code) { 4401 DEBUG_ONLY( _regs_in_thread = false; ) 4402 switch(kind) { 4403 case Initial_stubs: 4404 generate_initial_stubs(); 4405 break; 4406 case Continuation_stubs: 4407 generate_continuation_stubs(); 4408 break; 4409 case Compiler_stubs: 4410 generate_compiler_stubs(); 4411 break; 4412 case Final_stubs: 4413 generate_final_stubs(); 4414 break; 4415 default: 4416 fatal("unexpected stubs kind: %d", kind); 4417 break; 4418 }; 4419 } 4420 4421 void StubGenerator_generate(CodeBuffer* code, StubCodeGenerator::StubsKind kind) { 4422 StubGenerator g(code, kind); 4423 } 4424 4425 #undef __