1 /*
  2  * Copyright (c) 2003, 2023, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #ifndef CPU_X86_STUBGENERATOR_X86_64_HPP
 26 #define CPU_X86_STUBGENERATOR_X86_64_HPP
 27 
 28 #include "code/codeBlob.hpp"
 29 #include "runtime/continuation.hpp"
 30 #include "runtime/stubCodeGenerator.hpp"
 31 
 32 // Stub Code definitions
 33 
 34 class StubGenerator: public StubCodeGenerator {
 35  private:
 36 
 37   // Call stubs are used to call Java from C.
 38   address generate_call_stub(address& return_address);
 39 
 40   // Return point for a Java call if there's an exception thrown in
 41   // Java code.  The exception is caught and transformed into a
 42   // pending exception stored in JavaThread that can be tested from
 43   // within the VM.
 44   //
 45   // Note: Usually the parameters are removed by the callee. In case
 46   // of an exception crossing an activation frame boundary, that is
 47   // not the case if the callee is compiled code => need to setup the
 48   // rsp.
 49   //
 50   // rax: exception oop
 51 
 52   address generate_catch_exception();
 53 
 54   // Continuation point for runtime calls returning with a pending
 55   // exception.  The pending exception check happened in the runtime
 56   // or native call stub.  The pending exception in Thread is
 57   // converted into a Java-level exception.
 58   //
 59   // Contract with Java-level exception handlers:
 60   // rax: exception
 61   // rdx: throwing pc
 62   //
 63   // NOTE: At entry of this stub, exception-pc must be on stack !!
 64 
 65   address generate_forward_exception();
 66 
 67   // Support for intptr_t OrderAccess::fence()
 68   address generate_orderaccess_fence();
 69 
 70   // Support for intptr_t get_previous_sp()
 71   //
 72   // This routine is used to find the previous stack pointer for the
 73   // caller.
 74   address generate_get_previous_sp();
 75 
 76   //----------------------------------------------------------------------------------------------------
 77   // Support for void verify_mxcsr()
 78   //
 79   // This routine is used with -Xcheck:jni to verify that native
 80   // JNI code does not return to Java code without restoring the
 81   // MXCSR register to our expected state.
 82 
 83   address generate_verify_mxcsr();
 84 
 85   address generate_f2i_fixup();
 86   address generate_f2l_fixup();
 87   address generate_d2i_fixup();
 88   address generate_d2l_fixup();
 89 
 90   address generate_count_leading_zeros_lut(const char *stub_name);
 91   address generate_popcount_avx_lut(const char *stub_name);
 92   address generate_iota_indices(const char *stub_name);
 93   address generate_vector_reverse_bit_lut(const char *stub_name);
 94 
 95   address generate_vector_reverse_byte_perm_mask_long(const char *stub_name);
 96   address generate_vector_reverse_byte_perm_mask_int(const char *stub_name);
 97   address generate_vector_reverse_byte_perm_mask_short(const char *stub_name);
 98   address generate_vector_byte_shuffle_mask(const char *stub_name);
 99 
100   address generate_fp_mask(const char *stub_name, int64_t mask);
101 
102   address generate_vector_mask(const char *stub_name, int64_t mask);
103 
104   address generate_vector_byte_perm_mask(const char *stub_name);
105 
106   address generate_vector_fp_mask(const char *stub_name, int64_t mask);
107 
108   address generate_vector_custom_i32(const char *stub_name, Assembler::AvxVectorLen len,
109                                      int32_t val0, int32_t val1, int32_t val2, int32_t val3,
110                                      int32_t val4 = 0, int32_t val5 = 0, int32_t val6 = 0, int32_t val7 = 0,
111                                      int32_t val8 = 0, int32_t val9 = 0, int32_t val10 = 0, int32_t val11 = 0,
112                                      int32_t val12 = 0, int32_t val13 = 0, int32_t val14 = 0, int32_t val15 = 0);
113 
114   // Non-destructive plausibility checks for oops
115   address generate_verify_oop();
116 
117   // Verify that a register contains clean 32-bits positive value
118   // (high 32-bits are 0) so it could be used in 64-bits shifts.
119   void assert_clean_int(Register Rint, Register Rtmp);
120 
121   //  Generate overlap test for array copy stubs
122   void array_overlap_test(address no_overlap_target, Label* NOLp, Address::ScaleFactor sf);
123 
124   void array_overlap_test(address no_overlap_target, Address::ScaleFactor sf) {
125     assert(no_overlap_target != nullptr, "must be generated");
126     array_overlap_test(no_overlap_target, nullptr, sf);
127   }
128   void array_overlap_test(Label& L_no_overlap, Address::ScaleFactor sf) {
129     array_overlap_test(nullptr, &L_no_overlap, sf);
130   }
131 
132 
133   // Shuffle first three arg regs on Windows into Linux/Solaris locations.
134   void setup_arg_regs(int nargs = 3);
135   void restore_arg_regs();
136 
137 #ifdef ASSERT
138   bool _regs_in_thread;
139 #endif
140 
141   // This is used in places where r10 is a scratch register, and can
142   // be adapted if r9 is needed also.
143   void setup_arg_regs_using_thread(int nargs = 3);
144 
145   void restore_arg_regs_using_thread();
146 
147   // Copy big chunks forward
148   void copy_bytes_forward(Register end_from, Register end_to,
149                           Register qword_count, Register tmp1,
150                           Register tmp2, Label& L_copy_bytes,
151                           Label& L_copy_8_bytes, DecoratorSet decorators,
152                           BasicType type);
153 
154   // Copy big chunks backward
155   void copy_bytes_backward(Register from, Register dest,
156                            Register qword_count, Register tmp1,
157                            Register tmp2, Label& L_copy_bytes,
158                            Label& L_copy_8_bytes, DecoratorSet decorators,
159                            BasicType type);
160 
161   void setup_argument_regs(BasicType type);
162 
163   void restore_argument_regs(BasicType type);
164 
165 #if COMPILER2_OR_JVMCI
166   // Following rules apply to AVX3 optimized arraycopy stubs:
167   // - If target supports AVX3 features (BW+VL+F) then implementation uses 32 byte vectors (YMMs)
168   //   for both special cases (various small block sizes) and aligned copy loop. This is the
169   //   default configuration.
170   // - If copy length is above AVX3Threshold, then implementation use 64 byte vectors (ZMMs)
171   //   for main copy loop (and subsequent tail) since bulk of the cycles will be consumed in it.
172   // - If user forces MaxVectorSize=32 then above 4096 bytes its seen that REP MOVs shows a
173   //   better performance for disjoint copies. For conjoint/backward copy vector based
174   //   copy performs better.
175   // - If user sets AVX3Threshold=0, then special cases for small blocks sizes operate over
176   //   64 byte vector registers (ZMMs).
177 
178   address generate_disjoint_copy_avx3_masked(address* entry, const char *name, int shift,
179                                              bool aligned, bool is_oop, bool dest_uninitialized);
180 
181   address generate_conjoint_copy_avx3_masked(address* entry, const char *name, int shift,
182                                              address nooverlap_target, bool aligned, bool is_oop,
183                                              bool dest_uninitialized);
184 
185   void arraycopy_avx3_special_cases(XMMRegister xmm, KRegister mask, Register from,
186                                     Register to, Register count, int shift,
187                                     Register index, Register temp,
188                                     bool use64byteVector, Label& L_entry, Label& L_exit);
189 
190   void arraycopy_avx3_special_cases_256(XMMRegister xmm, KRegister mask, Register from,
191                                     Register to, Register count, int shift,
192                                     Register index, Register temp, Label& L_exit);
193 
194   void arraycopy_avx3_special_cases_conjoint(XMMRegister xmm, KRegister mask, Register from,
195                                              Register to, Register start_index, Register end_index,
196                                              Register count, int shift, Register temp,
197                                              bool use64byteVector, Label& L_entry, Label& L_exit);
198 
199   void arraycopy_avx3_large(Register to, Register from, Register temp1, Register temp2,
200                             Register temp3, Register temp4, Register count,
201                             XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
202                             XMMRegister xmm4, int shift);
203 
204   void copy32_avx(Register dst, Register src, Register index, XMMRegister xmm,
205                   int shift = Address::times_1, int offset = 0);
206 
207   void copy64_avx(Register dst, Register src, Register index, XMMRegister xmm,
208                   bool conjoint, int shift = Address::times_1, int offset = 0,
209                   bool use64byteVector = false);
210 
211   void copy256_avx3(Register dst, Register src, Register index, XMMRegister xmm1, XMMRegister xmm2,
212                                 XMMRegister xmm3, XMMRegister xmm4, int shift, int offset = 0);
213 
214   void copy64_masked_avx(Register dst, Register src, XMMRegister xmm,
215                          KRegister mask, Register length, Register index,
216                          Register temp, int shift = Address::times_1, int offset = 0,
217                          bool use64byteVector = false);
218 
219   void copy32_masked_avx(Register dst, Register src, XMMRegister xmm,
220                          KRegister mask, Register length, Register index,
221                          Register temp, int shift = Address::times_1, int offset = 0);
222 #endif // COMPILER2_OR_JVMCI
223 
224   address generate_disjoint_byte_copy(bool aligned, address* entry, const char *name);
225 
226   address generate_conjoint_byte_copy(bool aligned, address nooverlap_target,
227                                       address* entry, const char *name);
228 
229   address generate_disjoint_short_copy(bool aligned, address *entry, const char *name);
230 
231   address generate_fill(BasicType t, bool aligned, const char *name);
232 
233   address generate_conjoint_short_copy(bool aligned, address nooverlap_target,
234                                        address *entry, const char *name);
235   address generate_disjoint_int_oop_copy(bool aligned, bool is_oop, address* entry,
236                                          const char *name, bool dest_uninitialized = false);
237   address generate_conjoint_int_oop_copy(bool aligned, bool is_oop, address nooverlap_target,
238                                          address *entry, const char *name,
239                                          bool dest_uninitialized = false);
240   address generate_disjoint_long_oop_copy(bool aligned, bool is_oop, address *entry,
241                                           const char *name, bool dest_uninitialized = false);
242   address generate_conjoint_long_oop_copy(bool aligned, bool is_oop,
243                                           address nooverlap_target, address *entry,
244                                           const char *name, bool dest_uninitialized = false);
245 
246   // Helper for generating a dynamic type check.
247   // Smashes no registers.
248   void generate_type_check(Register sub_klass,
249                            Register super_check_offset,
250                            Register super_klass,
251                            Label& L_success);
252 
253   // Generate checkcasting array copy stub
254   address generate_checkcast_copy(const char *name, address *entry,
255                                   bool dest_uninitialized = false);
256 
257   // Generate 'unsafe' array copy stub
258   // Though just as safe as the other stubs, it takes an unscaled
259   // size_t argument instead of an element count.
260   //
261   // Examines the alignment of the operands and dispatches
262   // to a long, int, short, or byte copy loop.
263   address generate_unsafe_copy(const char *name,
264                                address byte_copy_entry, address short_copy_entry,
265                                address int_copy_entry, address long_copy_entry);
266 
267   // Perform range checks on the proposed arraycopy.
268   // Kills temp, but nothing else.
269   // Also, clean the sign bits of src_pos and dst_pos.
270   void arraycopy_range_checks(Register src,     // source array oop (c_rarg0)
271                               Register src_pos, // source position (c_rarg1)
272                               Register dst,     // destination array oo (c_rarg2)
273                               Register dst_pos, // destination position (c_rarg3)
274                               Register length,
275                               Register temp,
276                               Label& L_failed);
277 
278   // Generate generic array copy stubs
279   address generate_generic_copy(const char *name,
280                                 address byte_copy_entry, address short_copy_entry,
281                                 address int_copy_entry, address oop_copy_entry,
282                                 address long_copy_entry, address checkcast_copy_entry);
283 
284   address generate_data_cache_writeback();
285 
286   address generate_data_cache_writeback_sync();
287 
288   void generate_arraycopy_stubs();
289 
290 
291   // MD5 stubs
292 
293   // ofs and limit are use for multi-block byte array.
294   // int com.sun.security.provider.MD5.implCompress(byte[] b, int ofs)
295   address generate_md5_implCompress(bool multi_block, const char *name);
296 
297 
298   // SHA stubs
299 
300   // ofs and limit are use for multi-block byte array.
301   // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
302   address generate_sha1_implCompress(bool multi_block, const char *name);
303 
304   // ofs and limit are use for multi-block byte array.
305   // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
306   address generate_sha256_implCompress(bool multi_block, const char *name);
307   address generate_sha512_implCompress(bool multi_block, const char *name);
308 
309   // Mask for byte-swapping a couple of qwords in an XMM register using (v)pshufb.
310   address generate_pshuffle_byte_flip_mask_sha512();
311 
312   address generate_upper_word_mask();
313   address generate_shuffle_byte_flip_mask();
314   address generate_pshuffle_byte_flip_mask();
315 
316 
317   // AES intrinsic stubs
318 
319   address generate_aescrypt_encryptBlock();
320 
321   address generate_aescrypt_decryptBlock();
322 
323   address generate_cipherBlockChaining_encryptAESCrypt();
324 
325   // A version of CBC/AES Decrypt which does 4 blocks in a loop at a time
326   // to hide instruction latency
327   address generate_cipherBlockChaining_decryptAESCrypt_Parallel();
328 
329   address generate_electronicCodeBook_encryptAESCrypt();
330 
331   void aesecb_encrypt(Register source_addr, Register dest_addr, Register key, Register len);
332 
333   address generate_electronicCodeBook_decryptAESCrypt();
334 
335   void aesecb_decrypt(Register source_addr, Register dest_addr, Register key, Register len);
336 
337   // Vector AES Galois Counter Mode implementation
338   address generate_galoisCounterMode_AESCrypt();
339   void aesgcm_encrypt(Register in, Register len, Register ct, Register out, Register key,
340                       Register state, Register subkeyHtbl, Register avx512_subkeyHtbl, Register counter);
341 
342   // AVX2 AES Galois Counter Mode implementation
343   address generate_avx2_galoisCounterMode_AESCrypt();
344   void aesgcm_avx2(Register in, Register len, Register ct, Register out, Register key,
345                    Register state, Register subkeyHtbl, Register counter);
346 
347  // Vector AES Counter implementation
348   address generate_counterMode_VectorAESCrypt();
349   void aesctr_encrypt(Register src_addr, Register dest_addr, Register key, Register counter,
350                       Register len_reg, Register used, Register used_addr, Register saved_encCounter_start);
351 
352   // This is a version of CTR/AES crypt which does 6 blocks in a loop at a time
353   // to hide instruction latency
354   address generate_counterMode_AESCrypt_Parallel();
355 
356   address generate_cipherBlockChaining_decryptVectorAESCrypt();
357 
358   address generate_key_shuffle_mask();
359 
360   void roundDec(XMMRegister xmm_reg);
361   void roundDeclast(XMMRegister xmm_reg);
362   void roundEnc(XMMRegister key, int rnum);
363   void lastroundEnc(XMMRegister key, int rnum);
364   void roundDec(XMMRegister key, int rnum);
365   void lastroundDec(XMMRegister key, int rnum);
366   void gfmul_avx512(XMMRegister ghash, XMMRegister hkey);
367   void generateHtbl_48_block_zmm(Register htbl, Register avx512_subkeyHtbl, Register rscratch);
368   void ghash16_encrypt16_parallel(Register key, Register subkeyHtbl, XMMRegister ctr_blockx,
369                                   XMMRegister aad_hashx, Register in, Register out, Register data, Register pos, bool reduction,
370                                   XMMRegister addmask, bool no_ghash_input, Register rounds, Register ghash_pos,
371                                   bool final_reduction, int index, XMMRegister counter_inc_mask);
372   // AVX2 AES-GCM related functions
373   void initial_blocks_avx2(XMMRegister ctr, Register rounds, Register key, Register len,
374                            Register in, Register out, Register ct, XMMRegister aad_hashx, Register pos);
375   void gfmul_avx2(XMMRegister GH, XMMRegister HK);
376   void generateHtbl_8_block_avx2(Register htbl);
377   void ghash8_encrypt8_parallel_avx2(Register key, Register subkeyHtbl, XMMRegister ctr_blockx, Register in,
378                                      Register out, Register ct, Register pos, bool out_order, Register rounds,
379                                      XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
380                                      XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, XMMRegister xmm8);
381   void ghash_last_8_avx2(Register subkeyHtbl);
382 
383   // Load key and shuffle operation
384   void ev_load_key(XMMRegister xmmdst, Register key, int offset, XMMRegister xmm_shuf_mask);
385   void ev_load_key(XMMRegister xmmdst, Register key, int offset, Register rscratch);
386 
387   // Utility routine for loading a 128-bit key word in little endian format
388   // can optionally specify that the shuffle mask is already in an xmmregister
389   void load_key(XMMRegister xmmdst, Register key, int offset, XMMRegister xmm_shuf_mask);
390   void load_key(XMMRegister xmmdst, Register key, int offset, Register rscratch);
391 
392   // Utility routine for increase 128bit counter (iv in CTR mode)
393   void inc_counter(Register reg, XMMRegister xmmdst, int inc_delta, Label& next_block);
394   void ev_add128(XMMRegister xmmdst, XMMRegister xmmsrc1, XMMRegister xmmsrc2,
395                  int vector_len, KRegister ktmp, XMMRegister ones);
396   void generate_aes_stubs();
397 
398 
399   // GHASH stubs
400 
401   void generate_ghash_stubs();
402 
403   void schoolbookAAD(int i, Register subkeyH, XMMRegister data, XMMRegister tmp0,
404                      XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3);
405   void gfmul(XMMRegister tmp0, XMMRegister t);
406   void generateHtbl_one_block(Register htbl, Register rscratch);
407   void generateHtbl_eight_blocks(Register htbl);
408   void avx_ghash(Register state, Register htbl, Register data, Register blocks);
409 
410   // Used by GHASH and AES stubs.
411   address ghash_polynomial_addr();
412   address ghash_shufflemask_addr();
413   address ghash_long_swap_mask_addr(); // byte swap x86 long
414   address ghash_byte_swap_mask_addr(); // byte swap x86 byte array
415 
416   // Single and multi-block ghash operations
417   address generate_ghash_processBlocks();
418 
419   // Ghash single and multi block operations using AVX instructions
420   address generate_avx_ghash_processBlocks();
421 
422   // ChaCha20 stubs and helper functions
423   void generate_chacha_stubs();
424   address generate_chacha20Block_avx();
425   address generate_chacha20Block_avx512();
426   void cc20_quarter_round_avx(XMMRegister aVec, XMMRegister bVec,
427     XMMRegister cVec, XMMRegister dVec, XMMRegister scratch,
428     XMMRegister lrot8, XMMRegister lrot16, int vector_len);
429   void cc20_shift_lane_org(XMMRegister bVec, XMMRegister cVec,
430     XMMRegister dVec, int vector_len, bool colToDiag);
431   void cc20_keystream_collate_avx512(XMMRegister aVec, XMMRegister bVec,
432     XMMRegister cVec, XMMRegister dVec, Register baseAddr, int baseOffset);
433 
434   // Poly1305 multiblock using IFMA instructions
435   address generate_poly1305_processBlocks();
436   void poly1305_process_blocks_avx512(const Register input, const Register length,
437                                       const Register A0, const Register A1, const Register A2,
438                                       const Register R0, const Register R1, const Register C1);
439   void poly1305_multiply_scalar(const Register a0, const Register a1, const Register a2,
440                                 const Register r0, const Register r1, const Register c1, bool only128,
441                                 const Register t0, const Register t1, const Register t2,
442                                 const Register mulql, const Register mulqh);
443   void poly1305_multiply8_avx512(const XMMRegister A0, const XMMRegister A1, const XMMRegister A2,
444                                  const XMMRegister R0, const XMMRegister R1, const XMMRegister R2, const XMMRegister R1P, const XMMRegister R2P,
445                                  const XMMRegister P0L, const XMMRegister P0H, const XMMRegister P1L, const XMMRegister P1H, const XMMRegister P2L, const XMMRegister P2H,
446                                  const XMMRegister TMP, const Register rscratch);
447   void poly1305_limbs(const Register limbs, const Register a0, const Register a1, const Register a2, const Register t0, const Register t1);
448   void poly1305_limbs_out(const Register a0, const Register a1, const Register a2, const Register limbs, const Register t0, const Register t1);
449   void poly1305_limbs_avx512(const XMMRegister D0, const XMMRegister D1,
450                              const XMMRegister L0, const XMMRegister L1, const XMMRegister L2, bool padMSG,
451                              const XMMRegister TMP, const Register rscratch);
452 
453   // BASE64 stubs
454 
455   address base64_shuffle_addr();
456   address base64_avx2_shuffle_addr();
457   address base64_avx2_input_mask_addr();
458   address base64_avx2_lut_addr();
459   address base64_encoding_table_addr();
460 
461   // Code for generating Base64 encoding.
462   // Intrinsic function prototype in Base64.java:
463   // private void encodeBlock(byte[] src, int sp, int sl, byte[] dst, int dp, boolean isURL)
464   address generate_base64_encodeBlock();
465 
466   // base64 AVX512vbmi tables
467   address base64_vbmi_lookup_lo_addr();
468   address base64_vbmi_lookup_hi_addr();
469   address base64_vbmi_lookup_lo_url_addr();
470   address base64_vbmi_lookup_hi_url_addr();
471   address base64_vbmi_pack_vec_addr();
472   address base64_vbmi_join_0_1_addr();
473   address base64_vbmi_join_1_2_addr();
474   address base64_vbmi_join_2_3_addr();
475   address base64_decoding_table_addr();
476   address base64_AVX2_decode_tables_addr();
477   address base64_AVX2_decode_LUT_tables_addr();
478 
479   // Code for generating Base64 decoding.
480   //
481   // Based on the article (and associated code) from https://arxiv.org/abs/1910.05109.
482   //
483   // Intrinsic function prototype in Base64.java:
484   // private void decodeBlock(byte[] src, int sp, int sl, byte[] dst, int dp, boolean isURL, isMIME);
485   address generate_base64_decodeBlock();
486 
487   address generate_updateBytesCRC32();
488   address generate_updateBytesCRC32C(bool is_pclmulqdq_supported);
489 
490   address generate_updateBytesAdler32();
491 
492   address generate_multiplyToLen();
493 
494   address generate_vectorizedMismatch();
495 
496   address generate_squareToLen();
497 
498   address generate_method_entry_barrier();
499 
500   address generate_mulAdd();
501 
502   address generate_bigIntegerRightShift();
503   address generate_bigIntegerLeftShift();
504 
505   address generate_float16ToFloat();
506   address generate_floatToFloat16();
507 
508   // Libm trigonometric stubs
509 
510   address generate_libmSin();
511   address generate_libmCos();
512   address generate_libmTan();
513   address generate_libmExp();
514   address generate_libmPow();
515   address generate_libmLog();
516   address generate_libmLog10();
517   address generate_libmFmod();
518 
519   // Shared constants
520   static address ZERO;
521   static address NEG_ZERO;
522   static address ONE;
523   static address ONEHALF;
524   static address SIGN_MASK;
525   static address TWO_POW_55;
526   static address TWO_POW_M55;
527   static address SHIFTER;
528   static address PI32INV;
529   static address PI_INV_TABLE;
530   static address Ctable;
531   static address SC_1;
532   static address SC_2;
533   static address SC_3;
534   static address SC_4;
535   static address PI_4;
536   static address P_1;
537   static address P_3;
538   static address P_2;
539 
540   void generate_libm_stubs();
541 
542 
543   address generate_cont_thaw(const char* label, Continuation::thaw_kind kind);
544   address generate_cont_thaw();
545 
546   // TODO: will probably need multiple return barriers depending on return type
547   address generate_cont_returnBarrier();
548   address generate_cont_returnBarrier_exception();
549 
550 #if INCLUDE_JFR
551   void generate_jfr_stubs();
552   // For c2: c_rarg0 is junk, call to runtime to write a checkpoint.
553   // It returns a jobject handle to the event writer.
554   // The handle is dereferenced and the return value is the event writer oop.
555   RuntimeStub* generate_jfr_write_checkpoint();
556   // For c2: call to runtime to return a buffer lease.
557   RuntimeStub* generate_jfr_return_lease();
558 #endif // INCLUDE_JFR
559 
560   // Continuation point for throwing of implicit exceptions that are
561   // not handled in the current activation. Fabricates an exception
562   // oop and initiates normal exception dispatching in this
563   // frame. Since we need to preserve callee-saved values (currently
564   // only for C2, but done for C1 as well) we need a callee-saved oop
565   // map and therefore have to make these stubs into RuntimeStubs
566   // rather than BufferBlobs.  If the compiler needs all registers to
567   // be preserved between the fault point and the exception handler
568   // then it must assume responsibility for that in
569   // AbstractCompiler::continuation_for_implicit_null_exception or
570   // continuation_for_implicit_division_by_zero_exception. All other
571   // implicit exceptions (e.g., NullPointerException or
572   // AbstractMethodError on entry) are either at call sites or
573   // otherwise assume that stack unwinding will be initiated, so
574   // caller saved registers were assumed volatile in the compiler.
575   address generate_throw_exception(const char* name,
576                                    address runtime_entry,
577                                    Register arg1 = noreg,
578                                    Register arg2 = noreg);
579 
580   // shared exception handler for FFM upcall stubs
581   address generate_upcall_stub_exception_handler();
582 
583   void create_control_words();
584 
585   // Initialization
586   void generate_initial_stubs();
587   void generate_continuation_stubs();
588   void generate_compiler_stubs();
589   void generate_final_stubs();
590 
591  public:
592   StubGenerator(CodeBuffer* code, StubsKind kind);
593 };
594 
595 #endif // CPU_X86_STUBGENERATOR_X86_64_HPP