1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "asm/macroAssembler.hpp" 26 #include "compiler/disassembler.hpp" 27 #include "gc/shared/collectedHeap.hpp" 28 #include "gc/shared/gc_globals.hpp" 29 #include "gc/shared/tlab_globals.hpp" 30 #include "interpreter/interpreter.hpp" 31 #include "interpreter/interpreterRuntime.hpp" 32 #include "interpreter/interp_masm.hpp" 33 #include "interpreter/templateTable.hpp" 34 #include "memory/universe.hpp" 35 #include "oops/methodCounters.hpp" 36 #include "oops/methodData.hpp" 37 #include "oops/objArrayKlass.hpp" 38 #include "oops/oop.inline.hpp" 39 #include "oops/inlineKlass.hpp" 40 #include "oops/resolvedFieldEntry.hpp" 41 #include "oops/resolvedIndyEntry.hpp" 42 #include "oops/resolvedMethodEntry.hpp" 43 #include "prims/jvmtiExport.hpp" 44 #include "prims/methodHandles.hpp" 45 #include "runtime/frame.inline.hpp" 46 #include "runtime/safepointMechanism.hpp" 47 #include "runtime/sharedRuntime.hpp" 48 #include "runtime/stubRoutines.hpp" 49 #include "runtime/synchronizer.hpp" 50 #include "utilities/macros.hpp" 51 52 #define __ Disassembler::hook<InterpreterMacroAssembler>(__FILE__, __LINE__, _masm)-> 53 54 // Global Register Names 55 static const Register rbcp = r13; 56 static const Register rlocals = r14; 57 58 // Address Computation: local variables 59 static inline Address iaddress(int n) { 60 return Address(rlocals, Interpreter::local_offset_in_bytes(n)); 61 } 62 63 static inline Address laddress(int n) { 64 return iaddress(n + 1); 65 } 66 67 static inline Address faddress(int n) { 68 return iaddress(n); 69 } 70 71 static inline Address daddress(int n) { 72 return laddress(n); 73 } 74 75 static inline Address aaddress(int n) { 76 return iaddress(n); 77 } 78 79 static inline Address iaddress(Register r) { 80 return Address(rlocals, r, Address::times_ptr); 81 } 82 83 static inline Address laddress(Register r) { 84 return Address(rlocals, r, Address::times_ptr, Interpreter::local_offset_in_bytes(1)); 85 } 86 87 static inline Address faddress(Register r) { 88 return iaddress(r); 89 } 90 91 static inline Address daddress(Register r) { 92 return laddress(r); 93 } 94 95 static inline Address aaddress(Register r) { 96 return iaddress(r); 97 } 98 99 100 // expression stack 101 // (Note: Must not use symmetric equivalents at_rsp_m1/2 since they store 102 // data beyond the rsp which is potentially unsafe in an MT environment; 103 // an interrupt may overwrite that data.) 104 static inline Address at_rsp () { 105 return Address(rsp, 0); 106 } 107 108 // At top of Java expression stack which may be different than esp(). It 109 // isn't for category 1 objects. 110 static inline Address at_tos () { 111 return Address(rsp, Interpreter::expr_offset_in_bytes(0)); 112 } 113 114 static inline Address at_tos_p1() { 115 return Address(rsp, Interpreter::expr_offset_in_bytes(1)); 116 } 117 118 static inline Address at_tos_p2() { 119 return Address(rsp, Interpreter::expr_offset_in_bytes(2)); 120 } 121 122 // Condition conversion 123 static Assembler::Condition j_not(TemplateTable::Condition cc) { 124 switch (cc) { 125 case TemplateTable::equal : return Assembler::notEqual; 126 case TemplateTable::not_equal : return Assembler::equal; 127 case TemplateTable::less : return Assembler::greaterEqual; 128 case TemplateTable::less_equal : return Assembler::greater; 129 case TemplateTable::greater : return Assembler::lessEqual; 130 case TemplateTable::greater_equal: return Assembler::less; 131 } 132 ShouldNotReachHere(); 133 return Assembler::zero; 134 } 135 136 137 138 // Miscellaneous helper routines 139 // Store an oop (or null) at the address described by obj. 140 // If val == noreg this means store a null 141 142 143 static void do_oop_store(InterpreterMacroAssembler* _masm, 144 Address dst, 145 Register val, 146 DecoratorSet decorators = 0) { 147 assert(val == noreg || val == rax, "parameter is just for looks"); 148 __ store_heap_oop(dst, val, rscratch2, r9, r8, decorators); 149 } 150 151 static void do_oop_load(InterpreterMacroAssembler* _masm, 152 Address src, 153 Register dst, 154 DecoratorSet decorators = 0) { 155 __ load_heap_oop(dst, src, rdx, decorators); 156 } 157 158 Address TemplateTable::at_bcp(int offset) { 159 assert(_desc->uses_bcp(), "inconsistent uses_bcp information"); 160 return Address(rbcp, offset); 161 } 162 163 164 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg, 165 Register temp_reg, bool load_bc_into_bc_reg/*=true*/, 166 int byte_no) { 167 if (!RewriteBytecodes) return; 168 Label L_patch_done; 169 170 switch (bc) { 171 case Bytecodes::_fast_vputfield: 172 case Bytecodes::_fast_aputfield: 173 case Bytecodes::_fast_bputfield: 174 case Bytecodes::_fast_zputfield: 175 case Bytecodes::_fast_cputfield: 176 case Bytecodes::_fast_dputfield: 177 case Bytecodes::_fast_fputfield: 178 case Bytecodes::_fast_iputfield: 179 case Bytecodes::_fast_lputfield: 180 case Bytecodes::_fast_sputfield: 181 { 182 // We skip bytecode quickening for putfield instructions when 183 // the put_code written to the constant pool cache is zero. 184 // This is required so that every execution of this instruction 185 // calls out to InterpreterRuntime::resolve_get_put to do 186 // additional, required work. 187 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 188 assert(load_bc_into_bc_reg, "we use bc_reg as temp"); 189 __ load_field_entry(temp_reg, bc_reg); 190 if (byte_no == f1_byte) { 191 __ load_unsigned_byte(temp_reg, Address(temp_reg, in_bytes(ResolvedFieldEntry::get_code_offset()))); 192 } else { 193 __ load_unsigned_byte(temp_reg, Address(temp_reg, in_bytes(ResolvedFieldEntry::put_code_offset()))); 194 } 195 196 __ movl(bc_reg, bc); 197 __ cmpl(temp_reg, (int) 0); 198 __ jcc(Assembler::zero, L_patch_done); // don't patch 199 } 200 break; 201 default: 202 assert(byte_no == -1, "sanity"); 203 // the pair bytecodes have already done the load. 204 if (load_bc_into_bc_reg) { 205 __ movl(bc_reg, bc); 206 } 207 } 208 209 if (JvmtiExport::can_post_breakpoint()) { 210 Label L_fast_patch; 211 // if a breakpoint is present we can't rewrite the stream directly 212 __ movzbl(temp_reg, at_bcp(0)); 213 __ cmpl(temp_reg, Bytecodes::_breakpoint); 214 __ jcc(Assembler::notEqual, L_fast_patch); 215 __ get_method(temp_reg); 216 // Let breakpoint table handling rewrite to quicker bytecode 217 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), temp_reg, rbcp, bc_reg); 218 #ifndef ASSERT 219 __ jmpb(L_patch_done); 220 #else 221 __ jmp(L_patch_done); 222 #endif 223 __ bind(L_fast_patch); 224 } 225 226 #ifdef ASSERT 227 Label L_okay; 228 __ load_unsigned_byte(temp_reg, at_bcp(0)); 229 __ cmpl(temp_reg, (int) Bytecodes::java_code(bc)); 230 __ jcc(Assembler::equal, L_okay); 231 __ cmpl(temp_reg, bc_reg); 232 __ jcc(Assembler::equal, L_okay); 233 __ stop("patching the wrong bytecode"); 234 __ bind(L_okay); 235 #endif 236 237 // patch bytecode 238 __ movb(at_bcp(0), bc_reg); 239 __ bind(L_patch_done); 240 } 241 // Individual instructions 242 243 244 void TemplateTable::nop() { 245 transition(vtos, vtos); 246 // nothing to do 247 } 248 249 void TemplateTable::shouldnotreachhere() { 250 transition(vtos, vtos); 251 __ stop("shouldnotreachhere bytecode"); 252 } 253 254 void TemplateTable::aconst_null() { 255 transition(vtos, atos); 256 __ xorl(rax, rax); 257 } 258 259 void TemplateTable::iconst(int value) { 260 transition(vtos, itos); 261 if (value == 0) { 262 __ xorl(rax, rax); 263 } else { 264 __ movl(rax, value); 265 } 266 } 267 268 void TemplateTable::lconst(int value) { 269 transition(vtos, ltos); 270 if (value == 0) { 271 __ xorl(rax, rax); 272 } else { 273 __ movl(rax, value); 274 } 275 } 276 277 278 279 void TemplateTable::fconst(int value) { 280 transition(vtos, ftos); 281 static float one = 1.0f, two = 2.0f; 282 switch (value) { 283 case 0: 284 __ xorps(xmm0, xmm0); 285 break; 286 case 1: 287 __ movflt(xmm0, ExternalAddress((address) &one), rscratch1); 288 break; 289 case 2: 290 __ movflt(xmm0, ExternalAddress((address) &two), rscratch1); 291 break; 292 default: 293 ShouldNotReachHere(); 294 break; 295 } 296 } 297 298 void TemplateTable::dconst(int value) { 299 transition(vtos, dtos); 300 static double one = 1.0; 301 switch (value) { 302 case 0: 303 __ xorpd(xmm0, xmm0); 304 break; 305 case 1: 306 __ movdbl(xmm0, ExternalAddress((address) &one), rscratch1); 307 break; 308 default: 309 ShouldNotReachHere(); 310 break; 311 } 312 } 313 314 void TemplateTable::bipush() { 315 transition(vtos, itos); 316 __ load_signed_byte(rax, at_bcp(1)); 317 } 318 319 void TemplateTable::sipush() { 320 transition(vtos, itos); 321 __ load_unsigned_short(rax, at_bcp(1)); 322 __ bswapl(rax); 323 __ sarl(rax, 16); 324 } 325 326 void TemplateTable::ldc(LdcType type) { 327 transition(vtos, vtos); 328 Register rarg = c_rarg1; 329 Label call_ldc, notFloat, notClass, notInt, Done; 330 331 if (is_ldc_wide(type)) { 332 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); 333 } else { 334 __ load_unsigned_byte(rbx, at_bcp(1)); 335 } 336 337 __ get_cpool_and_tags(rcx, rax); 338 const int base_offset = ConstantPool::header_size() * wordSize; 339 const int tags_offset = Array<u1>::base_offset_in_bytes(); 340 341 // get type 342 __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset)); 343 344 // unresolved class - get the resolved class 345 __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass); 346 __ jccb(Assembler::equal, call_ldc); 347 348 // unresolved class in error state - call into runtime to throw the error 349 // from the first resolution attempt 350 __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError); 351 __ jccb(Assembler::equal, call_ldc); 352 353 // resolved class - need to call vm to get java mirror of the class 354 __ cmpl(rdx, JVM_CONSTANT_Class); 355 __ jcc(Assembler::notEqual, notClass); 356 357 __ bind(call_ldc); 358 359 __ movl(rarg, is_ldc_wide(type) ? 1 : 0); 360 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), rarg); 361 362 __ push(atos); 363 __ jmp(Done); 364 365 __ bind(notClass); 366 __ cmpl(rdx, JVM_CONSTANT_Float); 367 __ jccb(Assembler::notEqual, notFloat); 368 369 // ftos 370 __ movflt(xmm0, Address(rcx, rbx, Address::times_ptr, base_offset)); 371 __ push(ftos); 372 __ jmp(Done); 373 374 __ bind(notFloat); 375 __ cmpl(rdx, JVM_CONSTANT_Integer); 376 __ jccb(Assembler::notEqual, notInt); 377 378 // itos 379 __ movl(rax, Address(rcx, rbx, Address::times_ptr, base_offset)); 380 __ push(itos); 381 __ jmp(Done); 382 383 // assume the tag is for condy; if not, the VM runtime will tell us 384 __ bind(notInt); 385 condy_helper(Done); 386 387 __ bind(Done); 388 } 389 390 // Fast path for caching oop constants. 391 void TemplateTable::fast_aldc(LdcType type) { 392 transition(vtos, atos); 393 394 Register result = rax; 395 Register tmp = rdx; 396 Register rarg = c_rarg1; 397 int index_size = is_ldc_wide(type) ? sizeof(u2) : sizeof(u1); 398 399 Label resolved; 400 401 // We are resolved if the resolved reference cache entry contains a 402 // non-null object (String, MethodType, etc.) 403 assert_different_registers(result, tmp); 404 __ get_cache_index_at_bcp(tmp, 1, index_size); 405 __ load_resolved_reference_at_index(result, tmp); 406 __ testptr(result, result); 407 __ jcc(Assembler::notZero, resolved); 408 409 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc); 410 411 // first time invocation - must resolve first 412 __ movl(rarg, (int)bytecode()); 413 __ call_VM(result, entry, rarg); 414 __ bind(resolved); 415 416 { // Check for the null sentinel. 417 // If we just called the VM, it already did the mapping for us, 418 // but it's harmless to retry. 419 Label notNull; 420 ExternalAddress null_sentinel((address)Universe::the_null_sentinel_addr()); 421 __ movptr(tmp, null_sentinel); 422 __ resolve_oop_handle(tmp, rscratch2); 423 __ cmpoop(tmp, result); 424 __ jccb(Assembler::notEqual, notNull); 425 __ xorptr(result, result); // null object reference 426 __ bind(notNull); 427 } 428 429 if (VerifyOops) { 430 __ verify_oop(result); 431 } 432 } 433 434 void TemplateTable::ldc2_w() { 435 transition(vtos, vtos); 436 Label notDouble, notLong, Done; 437 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); 438 439 __ get_cpool_and_tags(rcx, rax); 440 const int base_offset = ConstantPool::header_size() * wordSize; 441 const int tags_offset = Array<u1>::base_offset_in_bytes(); 442 443 // get type 444 __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset)); 445 __ cmpl(rdx, JVM_CONSTANT_Double); 446 __ jccb(Assembler::notEqual, notDouble); 447 448 // dtos 449 __ movdbl(xmm0, Address(rcx, rbx, Address::times_ptr, base_offset)); 450 __ push(dtos); 451 452 __ jmp(Done); 453 __ bind(notDouble); 454 __ cmpl(rdx, JVM_CONSTANT_Long); 455 __ jccb(Assembler::notEqual, notLong); 456 457 // ltos 458 __ movptr(rax, Address(rcx, rbx, Address::times_ptr, base_offset + 0 * wordSize)); 459 __ push(ltos); 460 __ jmp(Done); 461 462 __ bind(notLong); 463 condy_helper(Done); 464 465 __ bind(Done); 466 } 467 468 void TemplateTable::condy_helper(Label& Done) { 469 const Register obj = rax; 470 const Register off = rbx; 471 const Register flags = rcx; 472 const Register rarg = c_rarg1; 473 __ movl(rarg, (int)bytecode()); 474 call_VM(obj, CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc), rarg); 475 __ get_vm_result_metadata(flags); 476 // VMr = obj = base address to find primitive value to push 477 // VMr2 = flags = (tos, off) using format of CPCE::_flags 478 __ movl(off, flags); 479 __ andl(off, ConstantPoolCache::field_index_mask); 480 const Address field(obj, off, Address::times_1, 0*wordSize); 481 482 // What sort of thing are we loading? 483 __ shrl(flags, ConstantPoolCache::tos_state_shift); 484 __ andl(flags, ConstantPoolCache::tos_state_mask); 485 486 switch (bytecode()) { 487 case Bytecodes::_ldc: 488 case Bytecodes::_ldc_w: 489 { 490 // tos in (itos, ftos, stos, btos, ctos, ztos) 491 Label notInt, notFloat, notShort, notByte, notChar, notBool; 492 __ cmpl(flags, itos); 493 __ jccb(Assembler::notEqual, notInt); 494 // itos 495 __ movl(rax, field); 496 __ push(itos); 497 __ jmp(Done); 498 499 __ bind(notInt); 500 __ cmpl(flags, ftos); 501 __ jccb(Assembler::notEqual, notFloat); 502 // ftos 503 __ movflt(xmm0, field); 504 __ push(ftos); 505 __ jmp(Done); 506 507 __ bind(notFloat); 508 __ cmpl(flags, stos); 509 __ jccb(Assembler::notEqual, notShort); 510 // stos 511 __ load_signed_short(rax, field); 512 __ push(stos); 513 __ jmp(Done); 514 515 __ bind(notShort); 516 __ cmpl(flags, btos); 517 __ jccb(Assembler::notEqual, notByte); 518 // btos 519 __ load_signed_byte(rax, field); 520 __ push(btos); 521 __ jmp(Done); 522 523 __ bind(notByte); 524 __ cmpl(flags, ctos); 525 __ jccb(Assembler::notEqual, notChar); 526 // ctos 527 __ load_unsigned_short(rax, field); 528 __ push(ctos); 529 __ jmp(Done); 530 531 __ bind(notChar); 532 __ cmpl(flags, ztos); 533 __ jccb(Assembler::notEqual, notBool); 534 // ztos 535 __ load_signed_byte(rax, field); 536 __ push(ztos); 537 __ jmp(Done); 538 539 __ bind(notBool); 540 break; 541 } 542 543 case Bytecodes::_ldc2_w: 544 { 545 Label notLong, notDouble; 546 __ cmpl(flags, ltos); 547 __ jccb(Assembler::notEqual, notLong); 548 // ltos 549 // Loading high word first because movptr clobbers rax 550 __ movptr(rax, field); 551 __ push(ltos); 552 __ jmp(Done); 553 554 __ bind(notLong); 555 __ cmpl(flags, dtos); 556 __ jccb(Assembler::notEqual, notDouble); 557 // dtos 558 __ movdbl(xmm0, field); 559 __ push(dtos); 560 __ jmp(Done); 561 562 __ bind(notDouble); 563 break; 564 } 565 566 default: 567 ShouldNotReachHere(); 568 } 569 570 __ stop("bad ldc/condy"); 571 } 572 573 void TemplateTable::locals_index(Register reg, int offset) { 574 __ load_unsigned_byte(reg, at_bcp(offset)); 575 __ negptr(reg); 576 } 577 578 void TemplateTable::iload() { 579 iload_internal(); 580 } 581 582 void TemplateTable::nofast_iload() { 583 iload_internal(may_not_rewrite); 584 } 585 586 void TemplateTable::iload_internal(RewriteControl rc) { 587 transition(vtos, itos); 588 if (RewriteFrequentPairs && rc == may_rewrite) { 589 Label rewrite, done; 590 const Register bc = c_rarg3; 591 assert(rbx != bc, "register damaged"); 592 593 // get next byte 594 __ load_unsigned_byte(rbx, 595 at_bcp(Bytecodes::length_for(Bytecodes::_iload))); 596 // if _iload, wait to rewrite to iload2. We only want to rewrite the 597 // last two iloads in a pair. Comparing against fast_iload means that 598 // the next bytecode is neither an iload or a caload, and therefore 599 // an iload pair. 600 __ cmpl(rbx, Bytecodes::_iload); 601 __ jcc(Assembler::equal, done); 602 603 __ cmpl(rbx, Bytecodes::_fast_iload); 604 __ movl(bc, Bytecodes::_fast_iload2); 605 606 __ jccb(Assembler::equal, rewrite); 607 608 // if _caload, rewrite to fast_icaload 609 __ cmpl(rbx, Bytecodes::_caload); 610 __ movl(bc, Bytecodes::_fast_icaload); 611 __ jccb(Assembler::equal, rewrite); 612 613 // rewrite so iload doesn't check again. 614 __ movl(bc, Bytecodes::_fast_iload); 615 616 // rewrite 617 // bc: fast bytecode 618 __ bind(rewrite); 619 patch_bytecode(Bytecodes::_iload, bc, rbx, false); 620 __ bind(done); 621 } 622 623 // Get the local value into tos 624 locals_index(rbx); 625 __ movl(rax, iaddress(rbx)); 626 } 627 628 void TemplateTable::fast_iload2() { 629 transition(vtos, itos); 630 locals_index(rbx); 631 __ movl(rax, iaddress(rbx)); 632 __ push(itos); 633 locals_index(rbx, 3); 634 __ movl(rax, iaddress(rbx)); 635 } 636 637 void TemplateTable::fast_iload() { 638 transition(vtos, itos); 639 locals_index(rbx); 640 __ movl(rax, iaddress(rbx)); 641 } 642 643 void TemplateTable::lload() { 644 transition(vtos, ltos); 645 locals_index(rbx); 646 __ movptr(rax, laddress(rbx)); 647 } 648 649 void TemplateTable::fload() { 650 transition(vtos, ftos); 651 locals_index(rbx); 652 __ movflt(xmm0, faddress(rbx)); 653 } 654 655 void TemplateTable::dload() { 656 transition(vtos, dtos); 657 locals_index(rbx); 658 __ movdbl(xmm0, daddress(rbx)); 659 } 660 661 void TemplateTable::aload() { 662 transition(vtos, atos); 663 locals_index(rbx); 664 __ movptr(rax, aaddress(rbx)); 665 } 666 667 void TemplateTable::locals_index_wide(Register reg) { 668 __ load_unsigned_short(reg, at_bcp(2)); 669 __ bswapl(reg); 670 __ shrl(reg, 16); 671 __ negptr(reg); 672 } 673 674 void TemplateTable::wide_iload() { 675 transition(vtos, itos); 676 locals_index_wide(rbx); 677 __ movl(rax, iaddress(rbx)); 678 } 679 680 void TemplateTable::wide_lload() { 681 transition(vtos, ltos); 682 locals_index_wide(rbx); 683 __ movptr(rax, laddress(rbx)); 684 } 685 686 void TemplateTable::wide_fload() { 687 transition(vtos, ftos); 688 locals_index_wide(rbx); 689 __ movflt(xmm0, faddress(rbx)); 690 } 691 692 void TemplateTable::wide_dload() { 693 transition(vtos, dtos); 694 locals_index_wide(rbx); 695 __ movdbl(xmm0, daddress(rbx)); 696 } 697 698 void TemplateTable::wide_aload() { 699 transition(vtos, atos); 700 locals_index_wide(rbx); 701 __ movptr(rax, aaddress(rbx)); 702 } 703 704 void TemplateTable::index_check(Register array, Register index) { 705 // Pop ptr into array 706 __ pop_ptr(array); 707 index_check_without_pop(array, index); 708 } 709 710 void TemplateTable::index_check_without_pop(Register array, Register index) { 711 // destroys rbx 712 // sign extend index for use by indexed load 713 __ movl2ptr(index, index); 714 // check index 715 __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes())); 716 if (index != rbx) { 717 // ??? convention: move aberrant index into rbx for exception message 718 assert(rbx != array, "different registers"); 719 __ movl(rbx, index); 720 } 721 Label skip; 722 __ jccb(Assembler::below, skip); 723 // Pass array to create more detailed exceptions. 724 __ mov(c_rarg1, array); 725 __ jump(RuntimeAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry)); 726 __ bind(skip); 727 } 728 729 void TemplateTable::iaload() { 730 transition(itos, itos); 731 // rax: index 732 // rdx: array 733 index_check(rdx, rax); // kills rbx 734 __ access_load_at(T_INT, IN_HEAP | IS_ARRAY, rax, 735 Address(rdx, rax, Address::times_4, 736 arrayOopDesc::base_offset_in_bytes(T_INT)), 737 noreg); 738 } 739 740 void TemplateTable::laload() { 741 transition(itos, ltos); 742 // rax: index 743 // rdx: array 744 index_check(rdx, rax); // kills rbx 745 // rbx,: index 746 __ access_load_at(T_LONG, IN_HEAP | IS_ARRAY, noreg /* ltos */, 747 Address(rdx, rbx, Address::times_8, 748 arrayOopDesc::base_offset_in_bytes(T_LONG)), 749 noreg); 750 } 751 752 753 754 void TemplateTable::faload() { 755 transition(itos, ftos); 756 // rax: index 757 // rdx: array 758 index_check(rdx, rax); // kills rbx 759 __ access_load_at(T_FLOAT, IN_HEAP | IS_ARRAY, noreg /* ftos */, 760 Address(rdx, rax, 761 Address::times_4, 762 arrayOopDesc::base_offset_in_bytes(T_FLOAT)), 763 noreg); 764 } 765 766 void TemplateTable::daload() { 767 transition(itos, dtos); 768 // rax: index 769 // rdx: array 770 index_check(rdx, rax); // kills rbx 771 __ access_load_at(T_DOUBLE, IN_HEAP | IS_ARRAY, noreg /* dtos */, 772 Address(rdx, rax, 773 Address::times_8, 774 arrayOopDesc::base_offset_in_bytes(T_DOUBLE)), 775 noreg); 776 } 777 778 void TemplateTable::aaload() { 779 transition(itos, atos); 780 Register array = rdx; 781 Register index = rax; 782 783 index_check(array, index); // kills rbx 784 __ profile_array_type<ArrayLoadData>(rbx, array, rcx); 785 if (UseArrayFlattening) { 786 Label is_flat_array, done; 787 __ test_flat_array_oop(array, rbx, is_flat_array); 788 do_oop_load(_masm, 789 Address(array, index, 790 UseCompressedOops ? Address::times_4 : Address::times_ptr, 791 arrayOopDesc::base_offset_in_bytes(T_OBJECT)), 792 rax, 793 IS_ARRAY); 794 __ jmp(done); 795 __ bind(is_flat_array); 796 __ movptr(rcx, array); 797 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::flat_array_load), rcx, index); 798 __ bind(done); 799 } else { 800 do_oop_load(_masm, 801 Address(array, index, 802 UseCompressedOops ? Address::times_4 : Address::times_ptr, 803 arrayOopDesc::base_offset_in_bytes(T_OBJECT)), 804 rax, 805 IS_ARRAY); 806 } 807 __ profile_element_type(rbx, rax, rcx); 808 } 809 810 void TemplateTable::baload() { 811 transition(itos, itos); 812 // rax: index 813 // rdx: array 814 index_check(rdx, rax); // kills rbx 815 __ access_load_at(T_BYTE, IN_HEAP | IS_ARRAY, rax, 816 Address(rdx, rax, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_BYTE)), 817 noreg); 818 } 819 820 void TemplateTable::caload() { 821 transition(itos, itos); 822 // rax: index 823 // rdx: array 824 index_check(rdx, rax); // kills rbx 825 __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, rax, 826 Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)), 827 noreg); 828 } 829 830 // iload followed by caload frequent pair 831 void TemplateTable::fast_icaload() { 832 transition(vtos, itos); 833 // load index out of locals 834 locals_index(rbx); 835 __ movl(rax, iaddress(rbx)); 836 837 // rax: index 838 // rdx: array 839 index_check(rdx, rax); // kills rbx 840 __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, rax, 841 Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)), 842 noreg); 843 } 844 845 846 void TemplateTable::saload() { 847 transition(itos, itos); 848 // rax: index 849 // rdx: array 850 index_check(rdx, rax); // kills rbx 851 __ access_load_at(T_SHORT, IN_HEAP | IS_ARRAY, rax, 852 Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_SHORT)), 853 noreg); 854 } 855 856 void TemplateTable::iload(int n) { 857 transition(vtos, itos); 858 __ movl(rax, iaddress(n)); 859 } 860 861 void TemplateTable::lload(int n) { 862 transition(vtos, ltos); 863 __ movptr(rax, laddress(n)); 864 } 865 866 void TemplateTable::fload(int n) { 867 transition(vtos, ftos); 868 __ movflt(xmm0, faddress(n)); 869 } 870 871 void TemplateTable::dload(int n) { 872 transition(vtos, dtos); 873 __ movdbl(xmm0, daddress(n)); 874 } 875 876 void TemplateTable::aload(int n) { 877 transition(vtos, atos); 878 __ movptr(rax, aaddress(n)); 879 } 880 881 void TemplateTable::aload_0() { 882 aload_0_internal(); 883 } 884 885 void TemplateTable::nofast_aload_0() { 886 aload_0_internal(may_not_rewrite); 887 } 888 889 void TemplateTable::aload_0_internal(RewriteControl rc) { 890 transition(vtos, atos); 891 // According to bytecode histograms, the pairs: 892 // 893 // _aload_0, _fast_igetfield 894 // _aload_0, _fast_agetfield 895 // _aload_0, _fast_fgetfield 896 // 897 // occur frequently. If RewriteFrequentPairs is set, the (slow) 898 // _aload_0 bytecode checks if the next bytecode is either 899 // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then 900 // rewrites the current bytecode into a pair bytecode; otherwise it 901 // rewrites the current bytecode into _fast_aload_0 that doesn't do 902 // the pair check anymore. 903 // 904 // Note: If the next bytecode is _getfield, the rewrite must be 905 // delayed, otherwise we may miss an opportunity for a pair. 906 // 907 // Also rewrite frequent pairs 908 // aload_0, aload_1 909 // aload_0, iload_1 910 // These bytecodes with a small amount of code are most profitable 911 // to rewrite 912 if (RewriteFrequentPairs && rc == may_rewrite) { 913 Label rewrite, done; 914 915 const Register bc = c_rarg3; 916 assert(rbx != bc, "register damaged"); 917 918 // get next byte 919 __ load_unsigned_byte(rbx, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0))); 920 921 // if _getfield then wait with rewrite 922 __ cmpl(rbx, Bytecodes::_getfield); 923 __ jcc(Assembler::equal, done); 924 925 // if _igetfield then rewrite to _fast_iaccess_0 926 assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 927 __ cmpl(rbx, Bytecodes::_fast_igetfield); 928 __ movl(bc, Bytecodes::_fast_iaccess_0); 929 __ jccb(Assembler::equal, rewrite); 930 931 // if _agetfield then rewrite to _fast_aaccess_0 932 assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 933 __ cmpl(rbx, Bytecodes::_fast_agetfield); 934 __ movl(bc, Bytecodes::_fast_aaccess_0); 935 __ jccb(Assembler::equal, rewrite); 936 937 // if _fgetfield then rewrite to _fast_faccess_0 938 assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 939 __ cmpl(rbx, Bytecodes::_fast_fgetfield); 940 __ movl(bc, Bytecodes::_fast_faccess_0); 941 __ jccb(Assembler::equal, rewrite); 942 943 // else rewrite to _fast_aload0 944 assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition"); 945 __ movl(bc, Bytecodes::_fast_aload_0); 946 947 // rewrite 948 // bc: fast bytecode 949 __ bind(rewrite); 950 patch_bytecode(Bytecodes::_aload_0, bc, rbx, false); 951 952 __ bind(done); 953 } 954 955 // Do actual aload_0 (must do this after patch_bytecode which might call VM and GC might change oop). 956 aload(0); 957 } 958 959 void TemplateTable::istore() { 960 transition(itos, vtos); 961 locals_index(rbx); 962 __ movl(iaddress(rbx), rax); 963 } 964 965 966 void TemplateTable::lstore() { 967 transition(ltos, vtos); 968 locals_index(rbx); 969 __ movptr(laddress(rbx), rax); 970 } 971 972 void TemplateTable::fstore() { 973 transition(ftos, vtos); 974 locals_index(rbx); 975 __ movflt(faddress(rbx), xmm0); 976 } 977 978 void TemplateTable::dstore() { 979 transition(dtos, vtos); 980 locals_index(rbx); 981 __ movdbl(daddress(rbx), xmm0); 982 } 983 984 void TemplateTable::astore() { 985 transition(vtos, vtos); 986 __ pop_ptr(rax); 987 locals_index(rbx); 988 __ movptr(aaddress(rbx), rax); 989 } 990 991 void TemplateTable::wide_istore() { 992 transition(vtos, vtos); 993 __ pop_i(); 994 locals_index_wide(rbx); 995 __ movl(iaddress(rbx), rax); 996 } 997 998 void TemplateTable::wide_lstore() { 999 transition(vtos, vtos); 1000 __ pop_l(); 1001 locals_index_wide(rbx); 1002 __ movptr(laddress(rbx), rax); 1003 } 1004 1005 void TemplateTable::wide_fstore() { 1006 transition(vtos, vtos); 1007 __ pop_f(xmm0); 1008 locals_index_wide(rbx); 1009 __ movflt(faddress(rbx), xmm0); 1010 } 1011 1012 void TemplateTable::wide_dstore() { 1013 transition(vtos, vtos); 1014 __ pop_d(xmm0); 1015 locals_index_wide(rbx); 1016 __ movdbl(daddress(rbx), xmm0); 1017 } 1018 1019 void TemplateTable::wide_astore() { 1020 transition(vtos, vtos); 1021 __ pop_ptr(rax); 1022 locals_index_wide(rbx); 1023 __ movptr(aaddress(rbx), rax); 1024 } 1025 1026 void TemplateTable::iastore() { 1027 transition(itos, vtos); 1028 __ pop_i(rbx); 1029 // rax: value 1030 // rbx: index 1031 // rdx: array 1032 index_check(rdx, rbx); // prefer index in rbx 1033 __ access_store_at(T_INT, IN_HEAP | IS_ARRAY, 1034 Address(rdx, rbx, Address::times_4, 1035 arrayOopDesc::base_offset_in_bytes(T_INT)), 1036 rax, noreg, noreg, noreg); 1037 } 1038 1039 void TemplateTable::lastore() { 1040 transition(ltos, vtos); 1041 __ pop_i(rbx); 1042 // rax,: low(value) 1043 // rcx: array 1044 // rdx: high(value) 1045 index_check(rcx, rbx); // prefer index in rbx, 1046 // rbx,: index 1047 __ access_store_at(T_LONG, IN_HEAP | IS_ARRAY, 1048 Address(rcx, rbx, Address::times_8, 1049 arrayOopDesc::base_offset_in_bytes(T_LONG)), 1050 noreg /* ltos */, noreg, noreg, noreg); 1051 } 1052 1053 1054 void TemplateTable::fastore() { 1055 transition(ftos, vtos); 1056 __ pop_i(rbx); 1057 // value is in xmm0 1058 // rbx: index 1059 // rdx: array 1060 index_check(rdx, rbx); // prefer index in rbx 1061 __ access_store_at(T_FLOAT, IN_HEAP | IS_ARRAY, 1062 Address(rdx, rbx, Address::times_4, 1063 arrayOopDesc::base_offset_in_bytes(T_FLOAT)), 1064 noreg /* ftos */, noreg, noreg, noreg); 1065 } 1066 1067 void TemplateTable::dastore() { 1068 transition(dtos, vtos); 1069 __ pop_i(rbx); 1070 // value is in xmm0 1071 // rbx: index 1072 // rdx: array 1073 index_check(rdx, rbx); // prefer index in rbx 1074 __ access_store_at(T_DOUBLE, IN_HEAP | IS_ARRAY, 1075 Address(rdx, rbx, Address::times_8, 1076 arrayOopDesc::base_offset_in_bytes(T_DOUBLE)), 1077 noreg /* dtos */, noreg, noreg, noreg); 1078 } 1079 1080 void TemplateTable::aastore() { 1081 Label is_null, is_flat_array, ok_is_subtype, done; 1082 transition(vtos, vtos); 1083 // stack: ..., array, index, value 1084 __ movptr(rax, at_tos()); // value 1085 __ movl(rcx, at_tos_p1()); // index 1086 __ movptr(rdx, at_tos_p2()); // array 1087 1088 Address element_address(rdx, rcx, 1089 UseCompressedOops? Address::times_4 : Address::times_ptr, 1090 arrayOopDesc::base_offset_in_bytes(T_OBJECT)); 1091 1092 index_check_without_pop(rdx, rcx); // kills rbx 1093 1094 __ profile_array_type<ArrayStoreData>(rdi, rdx, rbx); 1095 __ profile_multiple_element_types(rdi, rax, rbx, rcx); 1096 1097 __ testptr(rax, rax); 1098 __ jcc(Assembler::zero, is_null); 1099 1100 // Move array class to rdi 1101 __ load_klass(rdi, rdx, rscratch1); 1102 if (UseArrayFlattening) { 1103 __ movl(rbx, Address(rdi, Klass::layout_helper_offset())); 1104 __ test_flat_array_layout(rbx, is_flat_array); 1105 } 1106 1107 // Move subklass into rbx 1108 __ load_klass(rbx, rax, rscratch1); 1109 // Move array element superklass into rax 1110 __ movptr(rax, Address(rdi, 1111 ObjArrayKlass::element_klass_offset())); 1112 1113 // Generate subtype check. Blows rcx, rdi 1114 // Superklass in rax. Subklass in rbx. 1115 // is "rbx <: rax" ? (value subclass <: array element superclass) 1116 __ gen_subtype_check(rbx, ok_is_subtype, false); 1117 1118 // Come here on failure 1119 // object is at TOS 1120 __ jump(RuntimeAddress(Interpreter::_throw_ArrayStoreException_entry)); 1121 1122 // Come here on success 1123 __ bind(ok_is_subtype); 1124 1125 // Get the value we will store 1126 __ movptr(rax, at_tos()); 1127 __ movl(rcx, at_tos_p1()); // index 1128 // Now store using the appropriate barrier 1129 do_oop_store(_masm, element_address, rax, IS_ARRAY); 1130 __ jmp(done); 1131 1132 // Have a null in rax, rdx=array, ecx=index. Store null at ary[idx] 1133 __ bind(is_null); 1134 if (EnableValhalla) { 1135 Label write_null_to_null_free_array, store_null; 1136 1137 // Move array class to rdi 1138 __ load_klass(rdi, rdx, rscratch1); 1139 if (UseArrayFlattening) { 1140 __ movl(rbx, Address(rdi, Klass::layout_helper_offset())); 1141 __ test_flat_array_layout(rbx, is_flat_array); 1142 } 1143 1144 // No way to store null in null-free array 1145 __ test_null_free_array_oop(rdx, rbx, write_null_to_null_free_array); 1146 __ jmp(store_null); 1147 1148 __ bind(write_null_to_null_free_array); 1149 __ jump(RuntimeAddress(Interpreter::_throw_NullPointerException_entry)); 1150 1151 __ bind(store_null); 1152 } 1153 // Store a null 1154 do_oop_store(_masm, element_address, noreg, IS_ARRAY); 1155 __ jmp(done); 1156 1157 if (UseArrayFlattening) { 1158 Label is_type_ok; 1159 __ bind(is_flat_array); // Store non-null value to flat 1160 1161 __ movptr(rax, at_tos()); 1162 __ movl(rcx, at_tos_p1()); // index 1163 __ movptr(rdx, at_tos_p2()); // array 1164 1165 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::flat_array_store), rax, rdx, rcx); 1166 } 1167 // Pop stack arguments 1168 __ bind(done); 1169 __ addptr(rsp, 3 * Interpreter::stackElementSize); 1170 } 1171 1172 void TemplateTable::bastore() { 1173 transition(itos, vtos); 1174 __ pop_i(rbx); 1175 // rax: value 1176 // rbx: index 1177 // rdx: array 1178 index_check(rdx, rbx); // prefer index in rbx 1179 // Need to check whether array is boolean or byte 1180 // since both types share the bastore bytecode. 1181 __ load_klass(rcx, rdx, rscratch1); 1182 __ movl(rcx, Address(rcx, Klass::layout_helper_offset())); 1183 int diffbit = Klass::layout_helper_boolean_diffbit(); 1184 __ testl(rcx, diffbit); 1185 Label L_skip; 1186 __ jccb(Assembler::zero, L_skip); 1187 __ andl(rax, 1); // if it is a T_BOOLEAN array, mask the stored value to 0/1 1188 __ bind(L_skip); 1189 __ access_store_at(T_BYTE, IN_HEAP | IS_ARRAY, 1190 Address(rdx, rbx,Address::times_1, 1191 arrayOopDesc::base_offset_in_bytes(T_BYTE)), 1192 rax, noreg, noreg, noreg); 1193 } 1194 1195 void TemplateTable::castore() { 1196 transition(itos, vtos); 1197 __ pop_i(rbx); 1198 // rax: value 1199 // rbx: index 1200 // rdx: array 1201 index_check(rdx, rbx); // prefer index in rbx 1202 __ access_store_at(T_CHAR, IN_HEAP | IS_ARRAY, 1203 Address(rdx, rbx, Address::times_2, 1204 arrayOopDesc::base_offset_in_bytes(T_CHAR)), 1205 rax, noreg, noreg, noreg); 1206 } 1207 1208 1209 void TemplateTable::sastore() { 1210 castore(); 1211 } 1212 1213 void TemplateTable::istore(int n) { 1214 transition(itos, vtos); 1215 __ movl(iaddress(n), rax); 1216 } 1217 1218 void TemplateTable::lstore(int n) { 1219 transition(ltos, vtos); 1220 __ movptr(laddress(n), rax); 1221 } 1222 1223 void TemplateTable::fstore(int n) { 1224 transition(ftos, vtos); 1225 __ movflt(faddress(n), xmm0); 1226 } 1227 1228 void TemplateTable::dstore(int n) { 1229 transition(dtos, vtos); 1230 __ movdbl(daddress(n), xmm0); 1231 } 1232 1233 1234 void TemplateTable::astore(int n) { 1235 transition(vtos, vtos); 1236 __ pop_ptr(rax); 1237 __ movptr(aaddress(n), rax); 1238 } 1239 1240 void TemplateTable::pop() { 1241 transition(vtos, vtos); 1242 __ addptr(rsp, Interpreter::stackElementSize); 1243 } 1244 1245 void TemplateTable::pop2() { 1246 transition(vtos, vtos); 1247 __ addptr(rsp, 2 * Interpreter::stackElementSize); 1248 } 1249 1250 1251 void TemplateTable::dup() { 1252 transition(vtos, vtos); 1253 __ load_ptr(0, rax); 1254 __ push_ptr(rax); 1255 // stack: ..., a, a 1256 } 1257 1258 void TemplateTable::dup_x1() { 1259 transition(vtos, vtos); 1260 // stack: ..., a, b 1261 __ load_ptr( 0, rax); // load b 1262 __ load_ptr( 1, rcx); // load a 1263 __ store_ptr(1, rax); // store b 1264 __ store_ptr(0, rcx); // store a 1265 __ push_ptr(rax); // push b 1266 // stack: ..., b, a, b 1267 } 1268 1269 void TemplateTable::dup_x2() { 1270 transition(vtos, vtos); 1271 // stack: ..., a, b, c 1272 __ load_ptr( 0, rax); // load c 1273 __ load_ptr( 2, rcx); // load a 1274 __ store_ptr(2, rax); // store c in a 1275 __ push_ptr(rax); // push c 1276 // stack: ..., c, b, c, c 1277 __ load_ptr( 2, rax); // load b 1278 __ store_ptr(2, rcx); // store a in b 1279 // stack: ..., c, a, c, c 1280 __ store_ptr(1, rax); // store b in c 1281 // stack: ..., c, a, b, c 1282 } 1283 1284 void TemplateTable::dup2() { 1285 transition(vtos, vtos); 1286 // stack: ..., a, b 1287 __ load_ptr(1, rax); // load a 1288 __ push_ptr(rax); // push a 1289 __ load_ptr(1, rax); // load b 1290 __ push_ptr(rax); // push b 1291 // stack: ..., a, b, a, b 1292 } 1293 1294 1295 void TemplateTable::dup2_x1() { 1296 transition(vtos, vtos); 1297 // stack: ..., a, b, c 1298 __ load_ptr( 0, rcx); // load c 1299 __ load_ptr( 1, rax); // load b 1300 __ push_ptr(rax); // push b 1301 __ push_ptr(rcx); // push c 1302 // stack: ..., a, b, c, b, c 1303 __ store_ptr(3, rcx); // store c in b 1304 // stack: ..., a, c, c, b, c 1305 __ load_ptr( 4, rcx); // load a 1306 __ store_ptr(2, rcx); // store a in 2nd c 1307 // stack: ..., a, c, a, b, c 1308 __ store_ptr(4, rax); // store b in a 1309 // stack: ..., b, c, a, b, c 1310 } 1311 1312 void TemplateTable::dup2_x2() { 1313 transition(vtos, vtos); 1314 // stack: ..., a, b, c, d 1315 __ load_ptr( 0, rcx); // load d 1316 __ load_ptr( 1, rax); // load c 1317 __ push_ptr(rax); // push c 1318 __ push_ptr(rcx); // push d 1319 // stack: ..., a, b, c, d, c, d 1320 __ load_ptr( 4, rax); // load b 1321 __ store_ptr(2, rax); // store b in d 1322 __ store_ptr(4, rcx); // store d in b 1323 // stack: ..., a, d, c, b, c, d 1324 __ load_ptr( 5, rcx); // load a 1325 __ load_ptr( 3, rax); // load c 1326 __ store_ptr(3, rcx); // store a in c 1327 __ store_ptr(5, rax); // store c in a 1328 // stack: ..., c, d, a, b, c, d 1329 } 1330 1331 void TemplateTable::swap() { 1332 transition(vtos, vtos); 1333 // stack: ..., a, b 1334 __ load_ptr( 1, rcx); // load a 1335 __ load_ptr( 0, rax); // load b 1336 __ store_ptr(0, rcx); // store a in b 1337 __ store_ptr(1, rax); // store b in a 1338 // stack: ..., b, a 1339 } 1340 1341 void TemplateTable::iop2(Operation op) { 1342 transition(itos, itos); 1343 switch (op) { 1344 case add : __ pop_i(rdx); __ addl (rax, rdx); break; 1345 case sub : __ movl(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break; 1346 case mul : __ pop_i(rdx); __ imull(rax, rdx); break; 1347 case _and : __ pop_i(rdx); __ andl (rax, rdx); break; 1348 case _or : __ pop_i(rdx); __ orl (rax, rdx); break; 1349 case _xor : __ pop_i(rdx); __ xorl (rax, rdx); break; 1350 case shl : __ movl(rcx, rax); __ pop_i(rax); __ shll (rax); break; 1351 case shr : __ movl(rcx, rax); __ pop_i(rax); __ sarl (rax); break; 1352 case ushr : __ movl(rcx, rax); __ pop_i(rax); __ shrl (rax); break; 1353 default : ShouldNotReachHere(); 1354 } 1355 } 1356 1357 void TemplateTable::lop2(Operation op) { 1358 transition(ltos, ltos); 1359 switch (op) { 1360 case add : __ pop_l(rdx); __ addptr(rax, rdx); break; 1361 case sub : __ mov(rdx, rax); __ pop_l(rax); __ subptr(rax, rdx); break; 1362 case _and : __ pop_l(rdx); __ andptr(rax, rdx); break; 1363 case _or : __ pop_l(rdx); __ orptr (rax, rdx); break; 1364 case _xor : __ pop_l(rdx); __ xorptr(rax, rdx); break; 1365 default : ShouldNotReachHere(); 1366 } 1367 } 1368 1369 void TemplateTable::idiv() { 1370 transition(itos, itos); 1371 __ movl(rcx, rax); 1372 __ pop_i(rax); 1373 // Note: could xor rax and ecx and compare with (-1 ^ min_int). If 1374 // they are not equal, one could do a normal division (no correction 1375 // needed), which may speed up this implementation for the common case. 1376 // (see also JVM spec., p.243 & p.271) 1377 __ corrected_idivl(rcx); 1378 } 1379 1380 void TemplateTable::irem() { 1381 transition(itos, itos); 1382 __ movl(rcx, rax); 1383 __ pop_i(rax); 1384 // Note: could xor rax and ecx and compare with (-1 ^ min_int). If 1385 // they are not equal, one could do a normal division (no correction 1386 // needed), which may speed up this implementation for the common case. 1387 // (see also JVM spec., p.243 & p.271) 1388 __ corrected_idivl(rcx); 1389 __ movl(rax, rdx); 1390 } 1391 1392 void TemplateTable::lmul() { 1393 transition(ltos, ltos); 1394 __ pop_l(rdx); 1395 __ imulq(rax, rdx); 1396 } 1397 1398 void TemplateTable::ldiv() { 1399 transition(ltos, ltos); 1400 __ mov(rcx, rax); 1401 __ pop_l(rax); 1402 // generate explicit div0 check 1403 __ testq(rcx, rcx); 1404 __ jump_cc(Assembler::zero, 1405 RuntimeAddress(Interpreter::_throw_ArithmeticException_entry)); 1406 // Note: could xor rax and rcx and compare with (-1 ^ min_int). If 1407 // they are not equal, one could do a normal division (no correction 1408 // needed), which may speed up this implementation for the common case. 1409 // (see also JVM spec., p.243 & p.271) 1410 __ corrected_idivq(rcx); // kills rbx 1411 } 1412 1413 void TemplateTable::lrem() { 1414 transition(ltos, ltos); 1415 __ mov(rcx, rax); 1416 __ pop_l(rax); 1417 __ testq(rcx, rcx); 1418 __ jump_cc(Assembler::zero, 1419 RuntimeAddress(Interpreter::_throw_ArithmeticException_entry)); 1420 // Note: could xor rax and rcx and compare with (-1 ^ min_int). If 1421 // they are not equal, one could do a normal division (no correction 1422 // needed), which may speed up this implementation for the common case. 1423 // (see also JVM spec., p.243 & p.271) 1424 __ corrected_idivq(rcx); // kills rbx 1425 __ mov(rax, rdx); 1426 } 1427 1428 void TemplateTable::lshl() { 1429 transition(itos, ltos); 1430 __ movl(rcx, rax); // get shift count 1431 __ pop_l(rax); // get shift value 1432 __ shlq(rax); 1433 } 1434 1435 void TemplateTable::lshr() { 1436 transition(itos, ltos); 1437 __ movl(rcx, rax); // get shift count 1438 __ pop_l(rax); // get shift value 1439 __ sarq(rax); 1440 } 1441 1442 void TemplateTable::lushr() { 1443 transition(itos, ltos); 1444 __ movl(rcx, rax); // get shift count 1445 __ pop_l(rax); // get shift value 1446 __ shrq(rax); 1447 } 1448 1449 void TemplateTable::fop2(Operation op) { 1450 transition(ftos, ftos); 1451 1452 switch (op) { 1453 case add: 1454 __ addss(xmm0, at_rsp()); 1455 __ addptr(rsp, Interpreter::stackElementSize); 1456 break; 1457 case sub: 1458 __ movflt(xmm1, xmm0); 1459 __ pop_f(xmm0); 1460 __ subss(xmm0, xmm1); 1461 break; 1462 case mul: 1463 __ mulss(xmm0, at_rsp()); 1464 __ addptr(rsp, Interpreter::stackElementSize); 1465 break; 1466 case div: 1467 __ movflt(xmm1, xmm0); 1468 __ pop_f(xmm0); 1469 __ divss(xmm0, xmm1); 1470 break; 1471 case rem: 1472 // On x86_64 platforms the SharedRuntime::frem method is called to perform the 1473 // modulo operation. The frem method calls the function 1474 // double fmod(double x, double y) in math.h. The documentation of fmod states: 1475 // "If x or y is a NaN, a NaN is returned." without specifying what type of NaN 1476 // (signalling or quiet) is returned. 1477 __ movflt(xmm1, xmm0); 1478 __ pop_f(xmm0); 1479 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem), 2); 1480 break; 1481 default: 1482 ShouldNotReachHere(); 1483 break; 1484 } 1485 } 1486 1487 void TemplateTable::dop2(Operation op) { 1488 transition(dtos, dtos); 1489 switch (op) { 1490 case add: 1491 __ addsd(xmm0, at_rsp()); 1492 __ addptr(rsp, 2 * Interpreter::stackElementSize); 1493 break; 1494 case sub: 1495 __ movdbl(xmm1, xmm0); 1496 __ pop_d(xmm0); 1497 __ subsd(xmm0, xmm1); 1498 break; 1499 case mul: 1500 __ mulsd(xmm0, at_rsp()); 1501 __ addptr(rsp, 2 * Interpreter::stackElementSize); 1502 break; 1503 case div: 1504 __ movdbl(xmm1, xmm0); 1505 __ pop_d(xmm0); 1506 __ divsd(xmm0, xmm1); 1507 break; 1508 case rem: 1509 // Similar to fop2(), the modulo operation is performed using the 1510 // SharedRuntime::drem method on x86_64 platforms for the same reasons 1511 // as mentioned in fop2(). 1512 __ movdbl(xmm1, xmm0); 1513 __ pop_d(xmm0); 1514 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem), 2); 1515 break; 1516 default: 1517 ShouldNotReachHere(); 1518 break; 1519 } 1520 } 1521 1522 void TemplateTable::ineg() { 1523 transition(itos, itos); 1524 __ negl(rax); 1525 } 1526 1527 void TemplateTable::lneg() { 1528 transition(ltos, ltos); 1529 __ negq(rax); 1530 } 1531 1532 // Note: 'double' and 'long long' have 32-bits alignment on x86. 1533 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) { 1534 // Use the expression (adr)&(~0xF) to provide 128-bits aligned address 1535 // of 128-bits operands for SSE instructions. 1536 jlong *operand = (jlong*)(((intptr_t)adr)&((intptr_t)(~0xF))); 1537 // Store the value to a 128-bits operand. 1538 operand[0] = lo; 1539 operand[1] = hi; 1540 return operand; 1541 } 1542 1543 // Buffer for 128-bits masks used by SSE instructions. 1544 static jlong float_signflip_pool[2*2]; 1545 static jlong double_signflip_pool[2*2]; 1546 1547 void TemplateTable::fneg() { 1548 transition(ftos, ftos); 1549 static jlong *float_signflip = double_quadword(&float_signflip_pool[1], CONST64(0x8000000080000000), CONST64(0x8000000080000000)); 1550 __ xorps(xmm0, ExternalAddress((address) float_signflip), rscratch1); 1551 } 1552 1553 void TemplateTable::dneg() { 1554 transition(dtos, dtos); 1555 static jlong *double_signflip = 1556 double_quadword(&double_signflip_pool[1], CONST64(0x8000000000000000), CONST64(0x8000000000000000)); 1557 __ xorpd(xmm0, ExternalAddress((address) double_signflip), rscratch1); 1558 } 1559 1560 void TemplateTable::iinc() { 1561 transition(vtos, vtos); 1562 __ load_signed_byte(rdx, at_bcp(2)); // get constant 1563 locals_index(rbx); 1564 __ addl(iaddress(rbx), rdx); 1565 } 1566 1567 void TemplateTable::wide_iinc() { 1568 transition(vtos, vtos); 1569 __ movl(rdx, at_bcp(4)); // get constant 1570 locals_index_wide(rbx); 1571 __ bswapl(rdx); // swap bytes & sign-extend constant 1572 __ sarl(rdx, 16); 1573 __ addl(iaddress(rbx), rdx); 1574 // Note: should probably use only one movl to get both 1575 // the index and the constant -> fix this 1576 } 1577 1578 void TemplateTable::convert() { 1579 // Checking 1580 #ifdef ASSERT 1581 { 1582 TosState tos_in = ilgl; 1583 TosState tos_out = ilgl; 1584 switch (bytecode()) { 1585 case Bytecodes::_i2l: // fall through 1586 case Bytecodes::_i2f: // fall through 1587 case Bytecodes::_i2d: // fall through 1588 case Bytecodes::_i2b: // fall through 1589 case Bytecodes::_i2c: // fall through 1590 case Bytecodes::_i2s: tos_in = itos; break; 1591 case Bytecodes::_l2i: // fall through 1592 case Bytecodes::_l2f: // fall through 1593 case Bytecodes::_l2d: tos_in = ltos; break; 1594 case Bytecodes::_f2i: // fall through 1595 case Bytecodes::_f2l: // fall through 1596 case Bytecodes::_f2d: tos_in = ftos; break; 1597 case Bytecodes::_d2i: // fall through 1598 case Bytecodes::_d2l: // fall through 1599 case Bytecodes::_d2f: tos_in = dtos; break; 1600 default : ShouldNotReachHere(); 1601 } 1602 switch (bytecode()) { 1603 case Bytecodes::_l2i: // fall through 1604 case Bytecodes::_f2i: // fall through 1605 case Bytecodes::_d2i: // fall through 1606 case Bytecodes::_i2b: // fall through 1607 case Bytecodes::_i2c: // fall through 1608 case Bytecodes::_i2s: tos_out = itos; break; 1609 case Bytecodes::_i2l: // fall through 1610 case Bytecodes::_f2l: // fall through 1611 case Bytecodes::_d2l: tos_out = ltos; break; 1612 case Bytecodes::_i2f: // fall through 1613 case Bytecodes::_l2f: // fall through 1614 case Bytecodes::_d2f: tos_out = ftos; break; 1615 case Bytecodes::_i2d: // fall through 1616 case Bytecodes::_l2d: // fall through 1617 case Bytecodes::_f2d: tos_out = dtos; break; 1618 default : ShouldNotReachHere(); 1619 } 1620 transition(tos_in, tos_out); 1621 } 1622 #endif // ASSERT 1623 1624 static const int64_t is_nan = 0x8000000000000000L; 1625 1626 // Conversion 1627 switch (bytecode()) { 1628 case Bytecodes::_i2l: 1629 __ movslq(rax, rax); 1630 break; 1631 case Bytecodes::_i2f: 1632 __ cvtsi2ssl(xmm0, rax); 1633 break; 1634 case Bytecodes::_i2d: 1635 __ cvtsi2sdl(xmm0, rax); 1636 break; 1637 case Bytecodes::_i2b: 1638 __ movsbl(rax, rax); 1639 break; 1640 case Bytecodes::_i2c: 1641 __ movzwl(rax, rax); 1642 break; 1643 case Bytecodes::_i2s: 1644 __ movswl(rax, rax); 1645 break; 1646 case Bytecodes::_l2i: 1647 __ movl(rax, rax); 1648 break; 1649 case Bytecodes::_l2f: 1650 __ cvtsi2ssq(xmm0, rax); 1651 break; 1652 case Bytecodes::_l2d: 1653 __ cvtsi2sdq(xmm0, rax); 1654 break; 1655 case Bytecodes::_f2i: 1656 { 1657 Label L; 1658 __ cvttss2sil(rax, xmm0); 1659 __ cmpl(rax, 0x80000000); // NaN or overflow/underflow? 1660 __ jcc(Assembler::notEqual, L); 1661 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1); 1662 __ bind(L); 1663 } 1664 break; 1665 case Bytecodes::_f2l: 1666 { 1667 Label L; 1668 __ cvttss2siq(rax, xmm0); 1669 // NaN or overflow/underflow? 1670 __ cmp64(rax, ExternalAddress((address) &is_nan), rscratch1); 1671 __ jcc(Assembler::notEqual, L); 1672 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1); 1673 __ bind(L); 1674 } 1675 break; 1676 case Bytecodes::_f2d: 1677 __ cvtss2sd(xmm0, xmm0); 1678 break; 1679 case Bytecodes::_d2i: 1680 { 1681 Label L; 1682 __ cvttsd2sil(rax, xmm0); 1683 __ cmpl(rax, 0x80000000); // NaN or overflow/underflow? 1684 __ jcc(Assembler::notEqual, L); 1685 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 1); 1686 __ bind(L); 1687 } 1688 break; 1689 case Bytecodes::_d2l: 1690 { 1691 Label L; 1692 __ cvttsd2siq(rax, xmm0); 1693 // NaN or overflow/underflow? 1694 __ cmp64(rax, ExternalAddress((address) &is_nan), rscratch1); 1695 __ jcc(Assembler::notEqual, L); 1696 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 1); 1697 __ bind(L); 1698 } 1699 break; 1700 case Bytecodes::_d2f: 1701 __ cvtsd2ss(xmm0, xmm0); 1702 break; 1703 default: 1704 ShouldNotReachHere(); 1705 } 1706 } 1707 1708 void TemplateTable::lcmp() { 1709 transition(ltos, itos); 1710 Label done; 1711 __ pop_l(rdx); 1712 __ cmpq(rdx, rax); 1713 __ movl(rax, -1); 1714 __ jccb(Assembler::less, done); 1715 __ setb(Assembler::notEqual, rax); 1716 __ movzbl(rax, rax); 1717 __ bind(done); 1718 } 1719 1720 void TemplateTable::float_cmp(bool is_float, int unordered_result) { 1721 Label done; 1722 if (is_float) { 1723 // XXX get rid of pop here, use ... reg, mem32 1724 __ pop_f(xmm1); 1725 __ ucomiss(xmm1, xmm0); 1726 } else { 1727 // XXX get rid of pop here, use ... reg, mem64 1728 __ pop_d(xmm1); 1729 __ ucomisd(xmm1, xmm0); 1730 } 1731 if (unordered_result < 0) { 1732 __ movl(rax, -1); 1733 __ jccb(Assembler::parity, done); 1734 __ jccb(Assembler::below, done); 1735 __ setb(Assembler::notEqual, rdx); 1736 __ movzbl(rax, rdx); 1737 } else { 1738 __ movl(rax, 1); 1739 __ jccb(Assembler::parity, done); 1740 __ jccb(Assembler::above, done); 1741 __ movl(rax, 0); 1742 __ jccb(Assembler::equal, done); 1743 __ decrementl(rax); 1744 } 1745 __ bind(done); 1746 } 1747 1748 void TemplateTable::branch(bool is_jsr, bool is_wide) { 1749 __ get_method(rcx); // rcx holds method 1750 __ profile_taken_branch(rax); // rax holds updated MDP 1751 1752 const ByteSize be_offset = MethodCounters::backedge_counter_offset() + 1753 InvocationCounter::counter_offset(); 1754 const ByteSize inv_offset = MethodCounters::invocation_counter_offset() + 1755 InvocationCounter::counter_offset(); 1756 1757 // Load up edx with the branch displacement 1758 if (is_wide) { 1759 __ movl(rdx, at_bcp(1)); 1760 } else { 1761 __ load_signed_short(rdx, at_bcp(1)); 1762 } 1763 __ bswapl(rdx); 1764 1765 if (!is_wide) { 1766 __ sarl(rdx, 16); 1767 } 1768 __ movl2ptr(rdx, rdx); 1769 1770 // Handle all the JSR stuff here, then exit. 1771 // It's much shorter and cleaner than intermingling with the non-JSR 1772 // normal-branch stuff occurring below. 1773 if (is_jsr) { 1774 // Pre-load the next target bytecode into rbx 1775 __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1, 0)); 1776 1777 // compute return address as bci in rax 1778 __ lea(rax, at_bcp((is_wide ? 5 : 3) - 1779 in_bytes(ConstMethod::codes_offset()))); 1780 __ subptr(rax, Address(rcx, Method::const_offset())); 1781 // Adjust the bcp in r13 by the displacement in rdx 1782 __ addptr(rbcp, rdx); 1783 // jsr returns atos that is not an oop 1784 __ push_i(rax); 1785 __ dispatch_only(vtos, true); 1786 return; 1787 } 1788 1789 // Normal (non-jsr) branch handling 1790 1791 // Adjust the bcp in r13 by the displacement in rdx 1792 __ addptr(rbcp, rdx); 1793 1794 assert(UseLoopCounter || !UseOnStackReplacement, 1795 "on-stack-replacement requires loop counters"); 1796 Label backedge_counter_overflow; 1797 Label dispatch; 1798 if (UseLoopCounter) { 1799 // increment backedge counter for backward branches 1800 // rax: MDO 1801 // rcx: method 1802 // rdx: target offset 1803 // r13: target bcp 1804 // r14: locals pointer 1805 __ testl(rdx, rdx); // check if forward or backward branch 1806 __ jcc(Assembler::positive, dispatch); // count only if backward branch 1807 1808 // check if MethodCounters exists 1809 Label has_counters; 1810 __ movptr(rax, Address(rcx, Method::method_counters_offset())); 1811 __ testptr(rax, rax); 1812 __ jcc(Assembler::notZero, has_counters); 1813 __ push(rdx); 1814 __ push(rcx); 1815 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::build_method_counters), 1816 rcx); 1817 __ pop(rcx); 1818 __ pop(rdx); 1819 __ movptr(rax, Address(rcx, Method::method_counters_offset())); 1820 __ testptr(rax, rax); 1821 __ jcc(Assembler::zero, dispatch); 1822 __ bind(has_counters); 1823 1824 Label no_mdo; 1825 if (ProfileInterpreter) { 1826 // Are we profiling? 1827 __ movptr(rbx, Address(rcx, in_bytes(Method::method_data_offset()))); 1828 __ testptr(rbx, rbx); 1829 __ jccb(Assembler::zero, no_mdo); 1830 // Increment the MDO backedge counter 1831 const Address mdo_backedge_counter(rbx, in_bytes(MethodData::backedge_counter_offset()) + 1832 in_bytes(InvocationCounter::counter_offset())); 1833 const Address mask(rbx, in_bytes(MethodData::backedge_mask_offset())); 1834 __ increment_mask_and_jump(mdo_backedge_counter, mask, rax, 1835 UseOnStackReplacement ? &backedge_counter_overflow : nullptr); 1836 __ jmp(dispatch); 1837 } 1838 __ bind(no_mdo); 1839 // Increment backedge counter in MethodCounters* 1840 __ movptr(rcx, Address(rcx, Method::method_counters_offset())); 1841 const Address mask(rcx, in_bytes(MethodCounters::backedge_mask_offset())); 1842 __ increment_mask_and_jump(Address(rcx, be_offset), mask, rax, 1843 UseOnStackReplacement ? &backedge_counter_overflow : nullptr); 1844 __ bind(dispatch); 1845 } 1846 1847 // Pre-load the next target bytecode into rbx 1848 __ load_unsigned_byte(rbx, Address(rbcp, 0)); 1849 1850 // continue with the bytecode @ target 1851 // rax: return bci for jsr's, unused otherwise 1852 // rbx: target bytecode 1853 // r13: target bcp 1854 __ dispatch_only(vtos, true); 1855 1856 if (UseLoopCounter) { 1857 if (UseOnStackReplacement) { 1858 Label set_mdp; 1859 // invocation counter overflow 1860 __ bind(backedge_counter_overflow); 1861 __ negptr(rdx); 1862 __ addptr(rdx, rbcp); // branch bcp 1863 // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp) 1864 __ call_VM(noreg, 1865 CAST_FROM_FN_PTR(address, 1866 InterpreterRuntime::frequency_counter_overflow), 1867 rdx); 1868 1869 // rax: osr nmethod (osr ok) or null (osr not possible) 1870 // rdx: scratch 1871 // r14: locals pointer 1872 // r13: bcp 1873 __ testptr(rax, rax); // test result 1874 __ jcc(Assembler::zero, dispatch); // no osr if null 1875 // nmethod may have been invalidated (VM may block upon call_VM return) 1876 __ cmpb(Address(rax, nmethod::state_offset()), nmethod::in_use); 1877 __ jcc(Assembler::notEqual, dispatch); 1878 1879 // We have the address of an on stack replacement routine in rax. 1880 // In preparation of invoking it, first we must migrate the locals 1881 // and monitors from off the interpreter frame on the stack. 1882 // Ensure to save the osr nmethod over the migration call, 1883 // it will be preserved in rbx. 1884 __ mov(rbx, rax); 1885 1886 JFR_ONLY(__ enter_jfr_critical_section();) 1887 1888 call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin)); 1889 1890 // rax is OSR buffer, move it to expected parameter location 1891 __ mov(j_rarg0, rax); 1892 // We use j_rarg definitions here so that registers don't conflict as parameter 1893 // registers change across platforms as we are in the midst of a calling 1894 // sequence to the OSR nmethod and we don't want collision. These are NOT parameters. 1895 1896 const Register retaddr = j_rarg2; 1897 const Register sender_sp = j_rarg1; 1898 1899 // pop the interpreter frame 1900 __ movptr(sender_sp, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp 1901 __ leave(); // remove frame anchor 1902 JFR_ONLY(__ leave_jfr_critical_section();) 1903 __ pop(retaddr); // get return address 1904 __ mov(rsp, sender_sp); // set sp to sender sp 1905 // Ensure compiled code always sees stack at proper alignment 1906 __ andptr(rsp, -(StackAlignmentInBytes)); 1907 1908 // push the return address 1909 __ push(retaddr); 1910 1911 // and begin the OSR nmethod 1912 __ jmp(Address(rbx, nmethod::osr_entry_point_offset())); 1913 } 1914 } 1915 } 1916 1917 void TemplateTable::if_0cmp(Condition cc) { 1918 transition(itos, vtos); 1919 // assume branch is more often taken than not (loops use backward branches) 1920 Label not_taken; 1921 __ testl(rax, rax); 1922 __ jcc(j_not(cc), not_taken); 1923 branch(false, false); 1924 __ bind(not_taken); 1925 __ profile_not_taken_branch(rax); 1926 } 1927 1928 void TemplateTable::if_icmp(Condition cc) { 1929 transition(itos, vtos); 1930 // assume branch is more often taken than not (loops use backward branches) 1931 Label not_taken; 1932 __ pop_i(rdx); 1933 __ cmpl(rdx, rax); 1934 __ jcc(j_not(cc), not_taken); 1935 branch(false, false); 1936 __ bind(not_taken); 1937 __ profile_not_taken_branch(rax); 1938 } 1939 1940 void TemplateTable::if_nullcmp(Condition cc) { 1941 transition(atos, vtos); 1942 // assume branch is more often taken than not (loops use backward branches) 1943 Label not_taken; 1944 __ testptr(rax, rax); 1945 __ jcc(j_not(cc), not_taken); 1946 branch(false, false); 1947 __ bind(not_taken); 1948 __ profile_not_taken_branch(rax); 1949 } 1950 1951 void TemplateTable::if_acmp(Condition cc) { 1952 transition(atos, vtos); 1953 // assume branch is more often taken than not (loops use backward branches) 1954 Label taken, not_taken; 1955 __ pop_ptr(rdx); 1956 1957 __ profile_acmp(rbx, rdx, rax, rcx); 1958 1959 const int is_inline_type_mask = markWord::inline_type_pattern; 1960 if (EnableValhalla) { 1961 __ cmpoop(rdx, rax); 1962 __ jcc(Assembler::equal, (cc == equal) ? taken : not_taken); 1963 1964 // might be substitutable, test if either rax or rdx is null 1965 __ testptr(rax, rax); 1966 __ jcc(Assembler::zero, (cc == equal) ? not_taken : taken); 1967 __ testptr(rdx, rdx); 1968 __ jcc(Assembler::zero, (cc == equal) ? not_taken : taken); 1969 1970 // and both are values ? 1971 __ movptr(rbx, Address(rdx, oopDesc::mark_offset_in_bytes())); 1972 __ andptr(rbx, Address(rax, oopDesc::mark_offset_in_bytes())); 1973 __ andptr(rbx, is_inline_type_mask); 1974 __ cmpptr(rbx, is_inline_type_mask); 1975 __ jcc(Assembler::notEqual, (cc == equal) ? not_taken : taken); 1976 1977 // same value klass ? 1978 __ load_metadata(rbx, rdx); 1979 __ load_metadata(rcx, rax); 1980 __ cmpptr(rbx, rcx); 1981 __ jcc(Assembler::notEqual, (cc == equal) ? not_taken : taken); 1982 1983 // Know both are the same type, let's test for substitutability... 1984 if (cc == equal) { 1985 invoke_is_substitutable(rax, rdx, taken, not_taken); 1986 } else { 1987 invoke_is_substitutable(rax, rdx, not_taken, taken); 1988 } 1989 __ stop("Not reachable"); 1990 } 1991 1992 __ cmpoop(rdx, rax); 1993 __ jcc(j_not(cc), not_taken); 1994 __ bind(taken); 1995 branch(false, false); 1996 __ bind(not_taken); 1997 __ profile_not_taken_branch(rax, true); 1998 } 1999 2000 void TemplateTable::invoke_is_substitutable(Register aobj, Register bobj, 2001 Label& is_subst, Label& not_subst) { 2002 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::is_substitutable), aobj, bobj); 2003 // Restored...rax answer, jmp to outcome... 2004 __ testl(rax, rax); 2005 __ jcc(Assembler::zero, not_subst); 2006 __ jmp(is_subst); 2007 } 2008 2009 void TemplateTable::ret() { 2010 transition(vtos, vtos); 2011 locals_index(rbx); 2012 __ movslq(rbx, iaddress(rbx)); // get return bci, compute return bcp 2013 __ profile_ret(rbx, rcx); 2014 __ get_method(rax); 2015 __ movptr(rbcp, Address(rax, Method::const_offset())); 2016 __ lea(rbcp, Address(rbcp, rbx, Address::times_1, 2017 ConstMethod::codes_offset())); 2018 __ dispatch_next(vtos, 0, true); 2019 } 2020 2021 void TemplateTable::wide_ret() { 2022 transition(vtos, vtos); 2023 locals_index_wide(rbx); 2024 __ movptr(rbx, aaddress(rbx)); // get return bci, compute return bcp 2025 __ profile_ret(rbx, rcx); 2026 __ get_method(rax); 2027 __ movptr(rbcp, Address(rax, Method::const_offset())); 2028 __ lea(rbcp, Address(rbcp, rbx, Address::times_1, ConstMethod::codes_offset())); 2029 __ dispatch_next(vtos, 0, true); 2030 } 2031 2032 void TemplateTable::tableswitch() { 2033 Label default_case, continue_execution; 2034 transition(itos, vtos); 2035 2036 // align r13/rsi 2037 __ lea(rbx, at_bcp(BytesPerInt)); 2038 __ andptr(rbx, -BytesPerInt); 2039 // load lo & hi 2040 __ movl(rcx, Address(rbx, BytesPerInt)); 2041 __ movl(rdx, Address(rbx, 2 * BytesPerInt)); 2042 __ bswapl(rcx); 2043 __ bswapl(rdx); 2044 // check against lo & hi 2045 __ cmpl(rax, rcx); 2046 __ jcc(Assembler::less, default_case); 2047 __ cmpl(rax, rdx); 2048 __ jcc(Assembler::greater, default_case); 2049 // lookup dispatch offset 2050 __ subl(rax, rcx); 2051 __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt)); 2052 __ profile_switch_case(rax, rbx, rcx); 2053 // continue execution 2054 __ bind(continue_execution); 2055 __ bswapl(rdx); 2056 __ movl2ptr(rdx, rdx); 2057 __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1)); 2058 __ addptr(rbcp, rdx); 2059 __ dispatch_only(vtos, true); 2060 // handle default 2061 __ bind(default_case); 2062 __ profile_switch_default(rax); 2063 __ movl(rdx, Address(rbx, 0)); 2064 __ jmp(continue_execution); 2065 } 2066 2067 void TemplateTable::lookupswitch() { 2068 transition(itos, itos); 2069 __ stop("lookupswitch bytecode should have been rewritten"); 2070 } 2071 2072 void TemplateTable::fast_linearswitch() { 2073 transition(itos, vtos); 2074 Label loop_entry, loop, found, continue_execution; 2075 // bswap rax so we can avoid bswapping the table entries 2076 __ bswapl(rax); 2077 // align r13 2078 __ lea(rbx, at_bcp(BytesPerInt)); // btw: should be able to get rid of 2079 // this instruction (change offsets 2080 // below) 2081 __ andptr(rbx, -BytesPerInt); 2082 // set counter 2083 __ movl(rcx, Address(rbx, BytesPerInt)); 2084 __ bswapl(rcx); 2085 __ jmpb(loop_entry); 2086 // table search 2087 __ bind(loop); 2088 __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * BytesPerInt)); 2089 __ jcc(Assembler::equal, found); 2090 __ bind(loop_entry); 2091 __ decrementl(rcx); 2092 __ jcc(Assembler::greaterEqual, loop); 2093 // default case 2094 __ profile_switch_default(rax); 2095 __ movl(rdx, Address(rbx, 0)); 2096 __ jmp(continue_execution); 2097 // entry found -> get offset 2098 __ bind(found); 2099 __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * BytesPerInt)); 2100 __ profile_switch_case(rcx, rax, rbx); 2101 // continue execution 2102 __ bind(continue_execution); 2103 __ bswapl(rdx); 2104 __ movl2ptr(rdx, rdx); 2105 __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1)); 2106 __ addptr(rbcp, rdx); 2107 __ dispatch_only(vtos, true); 2108 } 2109 2110 void TemplateTable::fast_binaryswitch() { 2111 transition(itos, vtos); 2112 // Implementation using the following core algorithm: 2113 // 2114 // int binary_search(int key, LookupswitchPair* array, int n) { 2115 // // Binary search according to "Methodik des Programmierens" by 2116 // // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985. 2117 // int i = 0; 2118 // int j = n; 2119 // while (i+1 < j) { 2120 // // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q) 2121 // // with Q: for all i: 0 <= i < n: key < a[i] 2122 // // where a stands for the array and assuming that the (inexisting) 2123 // // element a[n] is infinitely big. 2124 // int h = (i + j) >> 1; 2125 // // i < h < j 2126 // if (key < array[h].fast_match()) { 2127 // j = h; 2128 // } else { 2129 // i = h; 2130 // } 2131 // } 2132 // // R: a[i] <= key < a[i+1] or Q 2133 // // (i.e., if key is within array, i is the correct index) 2134 // return i; 2135 // } 2136 2137 // Register allocation 2138 const Register key = rax; // already set (tosca) 2139 const Register array = rbx; 2140 const Register i = rcx; 2141 const Register j = rdx; 2142 const Register h = rdi; 2143 const Register temp = rsi; 2144 2145 // Find array start 2146 __ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to 2147 // get rid of this 2148 // instruction (change 2149 // offsets below) 2150 __ andptr(array, -BytesPerInt); 2151 2152 // Initialize i & j 2153 __ xorl(i, i); // i = 0; 2154 __ movl(j, Address(array, -BytesPerInt)); // j = length(array); 2155 2156 // Convert j into native byteordering 2157 __ bswapl(j); 2158 2159 // And start 2160 Label entry; 2161 __ jmp(entry); 2162 2163 // binary search loop 2164 { 2165 Label loop; 2166 __ bind(loop); 2167 // int h = (i + j) >> 1; 2168 __ leal(h, Address(i, j, Address::times_1)); // h = i + j; 2169 __ sarl(h, 1); // h = (i + j) >> 1; 2170 // if (key < array[h].fast_match()) { 2171 // j = h; 2172 // } else { 2173 // i = h; 2174 // } 2175 // Convert array[h].match to native byte-ordering before compare 2176 __ movl(temp, Address(array, h, Address::times_8)); 2177 __ bswapl(temp); 2178 __ cmpl(key, temp); 2179 // j = h if (key < array[h].fast_match()) 2180 __ cmov32(Assembler::less, j, h); 2181 // i = h if (key >= array[h].fast_match()) 2182 __ cmov32(Assembler::greaterEqual, i, h); 2183 // while (i+1 < j) 2184 __ bind(entry); 2185 __ leal(h, Address(i, 1)); // i+1 2186 __ cmpl(h, j); // i+1 < j 2187 __ jcc(Assembler::less, loop); 2188 } 2189 2190 // end of binary search, result index is i (must check again!) 2191 Label default_case; 2192 // Convert array[i].match to native byte-ordering before compare 2193 __ movl(temp, Address(array, i, Address::times_8)); 2194 __ bswapl(temp); 2195 __ cmpl(key, temp); 2196 __ jcc(Assembler::notEqual, default_case); 2197 2198 // entry found -> j = offset 2199 __ movl(j , Address(array, i, Address::times_8, BytesPerInt)); 2200 __ profile_switch_case(i, key, array); 2201 __ bswapl(j); 2202 __ movslq(j, j); 2203 2204 __ load_unsigned_byte(rbx, Address(rbcp, j, Address::times_1)); 2205 __ addptr(rbcp, j); 2206 __ dispatch_only(vtos, true); 2207 2208 // default case -> j = default offset 2209 __ bind(default_case); 2210 __ profile_switch_default(i); 2211 __ movl(j, Address(array, -2 * BytesPerInt)); 2212 __ bswapl(j); 2213 __ movslq(j, j); 2214 2215 __ load_unsigned_byte(rbx, Address(rbcp, j, Address::times_1)); 2216 __ addptr(rbcp, j); 2217 __ dispatch_only(vtos, true); 2218 } 2219 2220 void TemplateTable::_return(TosState state) { 2221 transition(state, state); 2222 2223 assert(_desc->calls_vm(), 2224 "inconsistent calls_vm information"); // call in remove_activation 2225 2226 if (_desc->bytecode() == Bytecodes::_return_register_finalizer) { 2227 assert(state == vtos, "only valid state"); 2228 Register robj = c_rarg1; 2229 __ movptr(robj, aaddress(0)); 2230 __ load_klass(rdi, robj, rscratch1); 2231 __ testb(Address(rdi, Klass::misc_flags_offset()), KlassFlags::_misc_has_finalizer); 2232 Label skip_register_finalizer; 2233 __ jcc(Assembler::zero, skip_register_finalizer); 2234 2235 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), robj); 2236 2237 __ bind(skip_register_finalizer); 2238 } 2239 2240 if (_desc->bytecode() != Bytecodes::_return_register_finalizer) { 2241 Label no_safepoint; 2242 NOT_PRODUCT(__ block_comment("Thread-local Safepoint poll")); 2243 __ testb(Address(r15_thread, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit()); 2244 __ jcc(Assembler::zero, no_safepoint); 2245 __ push(state); 2246 __ push_cont_fastpath(); 2247 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 2248 InterpreterRuntime::at_safepoint)); 2249 __ pop_cont_fastpath(); 2250 __ pop(state); 2251 __ bind(no_safepoint); 2252 } 2253 2254 // Narrow result if state is itos but result type is smaller. 2255 // Need to narrow in the return bytecode rather than in generate_return_entry 2256 // since compiled code callers expect the result to already be narrowed. 2257 if (state == itos) { 2258 __ narrow(rax); 2259 } 2260 2261 __ remove_activation(state, rbcp, true, true, true); 2262 2263 __ jmp(rbcp); 2264 } 2265 2266 // ---------------------------------------------------------------------------- 2267 // Volatile variables demand their effects be made known to all CPU's 2268 // in order. Store buffers on most chips allow reads & writes to 2269 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode 2270 // without some kind of memory barrier (i.e., it's not sufficient that 2271 // the interpreter does not reorder volatile references, the hardware 2272 // also must not reorder them). 2273 // 2274 // According to the new Java Memory Model (JMM): 2275 // (1) All volatiles are serialized wrt to each other. ALSO reads & 2276 // writes act as acquire & release, so: 2277 // (2) A read cannot let unrelated NON-volatile memory refs that 2278 // happen after the read float up to before the read. It's OK for 2279 // non-volatile memory refs that happen before the volatile read to 2280 // float down below it. 2281 // (3) Similar a volatile write cannot let unrelated NON-volatile 2282 // memory refs that happen BEFORE the write float down to after the 2283 // write. It's OK for non-volatile memory refs that happen after the 2284 // volatile write to float up before it. 2285 // 2286 // We only put in barriers around volatile refs (they are expensive), 2287 // not _between_ memory refs (that would require us to track the 2288 // flavor of the previous memory refs). Requirements (2) and (3) 2289 // require some barriers before volatile stores and after volatile 2290 // loads. These nearly cover requirement (1) but miss the 2291 // volatile-store-volatile-load case. This final case is placed after 2292 // volatile-stores although it could just as well go before 2293 // volatile-loads. 2294 2295 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits order_constraint ) { 2296 // Helper function to insert a is-volatile test and memory barrier 2297 __ membar(order_constraint); 2298 } 2299 2300 void TemplateTable::resolve_cache_and_index_for_method(int byte_no, 2301 Register cache, 2302 Register index) { 2303 const Register temp = rbx; 2304 assert_different_registers(cache, index, temp); 2305 2306 Label L_clinit_barrier_slow; 2307 Label resolved; 2308 2309 Bytecodes::Code code = bytecode(); 2310 2311 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 2312 2313 __ load_method_entry(cache, index); 2314 switch(byte_no) { 2315 case f1_byte: 2316 __ load_unsigned_byte(temp, Address(cache, in_bytes(ResolvedMethodEntry::bytecode1_offset()))); 2317 break; 2318 case f2_byte: 2319 __ load_unsigned_byte(temp, Address(cache, in_bytes(ResolvedMethodEntry::bytecode2_offset()))); 2320 break; 2321 default: 2322 ShouldNotReachHere(); 2323 } 2324 __ cmpl(temp, code); // have we resolved this bytecode? 2325 __ jcc(Assembler::equal, resolved); 2326 2327 // resolve first time through 2328 // Class initialization barrier slow path lands here as well. 2329 __ bind(L_clinit_barrier_slow); 2330 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache); 2331 __ movl(temp, code); 2332 __ call_VM(noreg, entry, temp); 2333 // Update registers with resolved info 2334 __ load_method_entry(cache, index); 2335 2336 __ bind(resolved); 2337 2338 // Class initialization barrier for static methods 2339 if (VM_Version::supports_fast_class_init_checks() && bytecode() == Bytecodes::_invokestatic) { 2340 const Register method = temp; 2341 const Register klass = temp; 2342 2343 __ movptr(method, Address(cache, in_bytes(ResolvedMethodEntry::method_offset()))); 2344 __ load_method_holder(klass, method); 2345 __ clinit_barrier(klass, nullptr /*L_fast_path*/, &L_clinit_barrier_slow); 2346 } 2347 } 2348 2349 void TemplateTable::resolve_cache_and_index_for_field(int byte_no, 2350 Register cache, 2351 Register index) { 2352 const Register temp = rbx; 2353 assert_different_registers(cache, index, temp); 2354 2355 Label resolved; 2356 2357 Bytecodes::Code code = bytecode(); 2358 switch (code) { 2359 case Bytecodes::_nofast_getfield: code = Bytecodes::_getfield; break; 2360 case Bytecodes::_nofast_putfield: code = Bytecodes::_putfield; break; 2361 default: break; 2362 } 2363 2364 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 2365 __ load_field_entry(cache, index); 2366 if (byte_no == f1_byte) { 2367 __ load_unsigned_byte(temp, Address(cache, in_bytes(ResolvedFieldEntry::get_code_offset()))); 2368 } else { 2369 __ load_unsigned_byte(temp, Address(cache, in_bytes(ResolvedFieldEntry::put_code_offset()))); 2370 } 2371 __ cmpl(temp, code); // have we resolved this bytecode? 2372 __ jcc(Assembler::equal, resolved); 2373 2374 // resolve first time through 2375 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache); 2376 __ movl(temp, code); 2377 __ call_VM(noreg, entry, temp); 2378 // Update registers with resolved info 2379 __ load_field_entry(cache, index); 2380 2381 __ bind(resolved); 2382 } 2383 2384 void TemplateTable::load_resolved_field_entry(Register obj, 2385 Register cache, 2386 Register tos_state, 2387 Register offset, 2388 Register flags, 2389 bool is_static = false) { 2390 assert_different_registers(cache, tos_state, flags, offset); 2391 2392 // Field offset 2393 __ load_sized_value(offset, Address(cache, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/); 2394 2395 // Flags 2396 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedFieldEntry::flags_offset()))); 2397 2398 // TOS state 2399 __ load_unsigned_byte(tos_state, Address(cache, in_bytes(ResolvedFieldEntry::type_offset()))); 2400 2401 // Klass overwrite register 2402 if (is_static) { 2403 __ movptr(obj, Address(cache, ResolvedFieldEntry::field_holder_offset())); 2404 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 2405 __ movptr(obj, Address(obj, mirror_offset)); 2406 __ resolve_oop_handle(obj, rscratch2); 2407 } 2408 2409 } 2410 2411 void TemplateTable::load_invokedynamic_entry(Register method) { 2412 // setup registers 2413 const Register appendix = rax; 2414 const Register cache = rcx; 2415 const Register index = rdx; 2416 assert_different_registers(method, appendix, cache, index); 2417 2418 __ save_bcp(); 2419 2420 Label resolved; 2421 2422 __ load_resolved_indy_entry(cache, index); 2423 __ movptr(method, Address(cache, in_bytes(ResolvedIndyEntry::method_offset()))); 2424 2425 // Compare the method to zero 2426 __ testptr(method, method); 2427 __ jcc(Assembler::notZero, resolved); 2428 2429 Bytecodes::Code code = bytecode(); 2430 2431 // Call to the interpreter runtime to resolve invokedynamic 2432 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache); 2433 __ movl(method, code); // this is essentially Bytecodes::_invokedynamic 2434 __ call_VM(noreg, entry, method); 2435 // Update registers with resolved info 2436 __ load_resolved_indy_entry(cache, index); 2437 __ movptr(method, Address(cache, in_bytes(ResolvedIndyEntry::method_offset()))); 2438 2439 #ifdef ASSERT 2440 __ testptr(method, method); 2441 __ jcc(Assembler::notZero, resolved); 2442 __ stop("Should be resolved by now"); 2443 #endif // ASSERT 2444 __ bind(resolved); 2445 2446 Label L_no_push; 2447 // Check if there is an appendix 2448 __ load_unsigned_byte(index, Address(cache, in_bytes(ResolvedIndyEntry::flags_offset()))); 2449 __ testl(index, (1 << ResolvedIndyEntry::has_appendix_shift)); 2450 __ jcc(Assembler::zero, L_no_push); 2451 2452 // Get appendix 2453 __ load_unsigned_short(index, Address(cache, in_bytes(ResolvedIndyEntry::resolved_references_index_offset()))); 2454 // Push the appendix as a trailing parameter 2455 // since the parameter_size includes it. 2456 __ load_resolved_reference_at_index(appendix, index); 2457 __ verify_oop(appendix); 2458 __ push(appendix); // push appendix (MethodType, CallSite, etc.) 2459 __ bind(L_no_push); 2460 2461 // compute return type 2462 __ load_unsigned_byte(index, Address(cache, in_bytes(ResolvedIndyEntry::result_type_offset()))); 2463 // load return address 2464 { 2465 const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code); 2466 ExternalAddress table(table_addr); 2467 __ lea(rscratch1, table); 2468 __ movptr(index, Address(rscratch1, index, Address::times_ptr)); 2469 } 2470 2471 // push return address 2472 __ push(index); 2473 } 2474 2475 void TemplateTable::load_resolved_method_entry_special_or_static(Register cache, 2476 Register method, 2477 Register flags) { 2478 // setup registers 2479 const Register index = rdx; 2480 assert_different_registers(cache, index); 2481 assert_different_registers(method, cache, flags); 2482 2483 // determine constant pool cache field offsets 2484 resolve_cache_and_index_for_method(f1_byte, cache, index); 2485 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset()))); 2486 __ movptr(method, Address(cache, in_bytes(ResolvedMethodEntry::method_offset()))); 2487 } 2488 2489 void TemplateTable::load_resolved_method_entry_handle(Register cache, 2490 Register method, 2491 Register ref_index, 2492 Register flags) { 2493 // setup registers 2494 const Register index = rdx; 2495 assert_different_registers(cache, index); 2496 assert_different_registers(cache, method, ref_index, flags); 2497 2498 // determine constant pool cache field offsets 2499 resolve_cache_and_index_for_method(f1_byte, cache, index); 2500 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset()))); 2501 2502 // Maybe push appendix 2503 Label L_no_push; 2504 __ testl(flags, (1 << ResolvedMethodEntry::has_appendix_shift)); 2505 __ jcc(Assembler::zero, L_no_push); 2506 // invokehandle uses an index into the resolved references array 2507 __ load_unsigned_short(ref_index, Address(cache, in_bytes(ResolvedMethodEntry::resolved_references_index_offset()))); 2508 // Push the appendix as a trailing parameter. 2509 // This must be done before we get the receiver, 2510 // since the parameter_size includes it. 2511 Register appendix = method; 2512 __ load_resolved_reference_at_index(appendix, ref_index); 2513 __ push(appendix); // push appendix (MethodType, CallSite, etc.) 2514 __ bind(L_no_push); 2515 2516 __ movptr(method, Address(cache, in_bytes(ResolvedMethodEntry::method_offset()))); 2517 } 2518 2519 void TemplateTable::load_resolved_method_entry_interface(Register cache, 2520 Register klass, 2521 Register method_or_table_index, 2522 Register flags) { 2523 // setup registers 2524 const Register index = rdx; 2525 assert_different_registers(cache, klass, method_or_table_index, flags); 2526 2527 // determine constant pool cache field offsets 2528 resolve_cache_and_index_for_method(f1_byte, cache, index); 2529 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset()))); 2530 2531 // Invokeinterface can behave in different ways: 2532 // If calling a method from java.lang.Object, the forced virtual flag is true so the invocation will 2533 // behave like an invokevirtual call. The state of the virtual final flag will determine whether a method or 2534 // vtable index is placed in the register. 2535 // Otherwise, the registers will be populated with the klass and method. 2536 2537 Label NotVirtual; Label NotVFinal; Label Done; 2538 __ testl(flags, 1 << ResolvedMethodEntry::is_forced_virtual_shift); 2539 __ jcc(Assembler::zero, NotVirtual); 2540 __ testl(flags, (1 << ResolvedMethodEntry::is_vfinal_shift)); 2541 __ jcc(Assembler::zero, NotVFinal); 2542 __ movptr(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::method_offset()))); 2543 __ jmp(Done); 2544 2545 __ bind(NotVFinal); 2546 __ load_unsigned_short(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::table_index_offset()))); 2547 __ jmp(Done); 2548 2549 __ bind(NotVirtual); 2550 __ movptr(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::method_offset()))); 2551 __ movptr(klass, Address(cache, in_bytes(ResolvedMethodEntry::klass_offset()))); 2552 __ bind(Done); 2553 } 2554 2555 void TemplateTable::load_resolved_method_entry_virtual(Register cache, 2556 Register method_or_table_index, 2557 Register flags) { 2558 // setup registers 2559 const Register index = rdx; 2560 assert_different_registers(index, cache); 2561 assert_different_registers(method_or_table_index, cache, flags); 2562 2563 // determine constant pool cache field offsets 2564 resolve_cache_and_index_for_method(f2_byte, cache, index); 2565 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset()))); 2566 2567 // method_or_table_index can either be an itable index or a method depending on the virtual final flag 2568 Label isVFinal; Label Done; 2569 __ testl(flags, (1 << ResolvedMethodEntry::is_vfinal_shift)); 2570 __ jcc(Assembler::notZero, isVFinal); 2571 __ load_unsigned_short(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::table_index_offset()))); 2572 __ jmp(Done); 2573 __ bind(isVFinal); 2574 __ movptr(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::method_offset()))); 2575 __ bind(Done); 2576 } 2577 2578 // The registers cache and index expected to be set before call. 2579 // Correct values of the cache and index registers are preserved. 2580 void TemplateTable::jvmti_post_field_access(Register cache, 2581 Register index, 2582 bool is_static, 2583 bool has_tos) { 2584 if (JvmtiExport::can_post_field_access()) { 2585 // Check to see if a field access watch has been set before we take 2586 // the time to call into the VM. 2587 Label L1; 2588 assert_different_registers(cache, index, rax); 2589 __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr())); 2590 __ testl(rax,rax); 2591 __ jcc(Assembler::zero, L1); 2592 2593 // cache entry pointer 2594 __ load_field_entry(cache, index); 2595 if (is_static) { 2596 __ xorptr(rax, rax); // null object reference 2597 } else { 2598 __ pop(atos); // Get the object 2599 __ verify_oop(rax); 2600 __ push(atos); // Restore stack state 2601 } 2602 // rax,: object pointer or null 2603 // cache: cache entry pointer 2604 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), 2605 rax, cache); 2606 2607 __ load_field_entry(cache, index); 2608 __ bind(L1); 2609 } 2610 } 2611 2612 void TemplateTable::pop_and_check_object(Register r) { 2613 __ pop_ptr(r); 2614 __ null_check(r); // for field access must check obj. 2615 __ verify_oop(r); 2616 } 2617 2618 void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc) { 2619 transition(vtos, vtos); 2620 2621 const Register obj = r9; 2622 const Register cache = rcx; 2623 const Register index = rdx; 2624 const Register off = rbx; 2625 const Register tos_state = rax; 2626 const Register flags = rdx; 2627 const Register bc = c_rarg3; // uses same reg as obj, so don't mix them 2628 2629 resolve_cache_and_index_for_field(byte_no, cache, index); 2630 jvmti_post_field_access(cache, index, is_static, false); 2631 load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static); 2632 2633 const Address field(obj, off, Address::times_1, 0*wordSize); 2634 2635 Label Done, notByte, notBool, notInt, notShort, notChar, notLong, notFloat, notObj, notInlineType; 2636 2637 // Make sure we don't need to mask edx after the above shift 2638 assert(btos == 0, "change code, btos != 0"); 2639 __ testl(tos_state, tos_state); 2640 __ jcc(Assembler::notZero, notByte); 2641 2642 // btos 2643 if (!is_static) pop_and_check_object(obj); 2644 __ access_load_at(T_BYTE, IN_HEAP, rax, field, noreg); 2645 __ push(btos); 2646 // Rewrite bytecode to be faster 2647 if (!is_static && rc == may_rewrite) { 2648 patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx); 2649 } 2650 __ jmp(Done); 2651 2652 __ bind(notByte); 2653 __ cmpl(tos_state, ztos); 2654 __ jcc(Assembler::notEqual, notBool); 2655 if (!is_static) pop_and_check_object(obj); 2656 // ztos (same code as btos) 2657 __ access_load_at(T_BOOLEAN, IN_HEAP, rax, field, noreg); 2658 __ push(ztos); 2659 // Rewrite bytecode to be faster 2660 if (!is_static && rc == may_rewrite) { 2661 // use btos rewriting, no truncating to t/f bit is needed for getfield. 2662 patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx); 2663 } 2664 __ jmp(Done); 2665 2666 __ bind(notBool); 2667 __ cmpl(tos_state, atos); 2668 __ jcc(Assembler::notEqual, notObj); 2669 // atos 2670 if (!EnableValhalla) { 2671 if (!is_static) pop_and_check_object(obj); 2672 do_oop_load(_masm, field, rax); 2673 __ push(atos); 2674 if (!is_static && rc == may_rewrite) { 2675 patch_bytecode(Bytecodes::_fast_agetfield, bc, rbx); 2676 } 2677 __ jmp(Done); 2678 } else { 2679 if (is_static) { 2680 __ load_heap_oop(rax, field); 2681 __ push(atos); 2682 __ jmp(Done); 2683 } else { 2684 Label is_flat, rewrite_inline; 2685 __ test_field_is_flat(flags, rscratch1, is_flat); 2686 pop_and_check_object(obj); 2687 __ load_heap_oop(rax, field); 2688 __ push(atos); 2689 if (rc == may_rewrite) { 2690 patch_bytecode(Bytecodes::_fast_agetfield, bc, rbx); 2691 } 2692 __ jmp(Done); 2693 __ bind(is_flat); 2694 // field is flat (null-free or nullable with a null-marker) 2695 pop_and_check_object(rax); 2696 __ read_flat_field(rcx, rdx, rbx, rax); 2697 __ verify_oop(rax); 2698 __ push(atos); 2699 __ bind(rewrite_inline); 2700 if (rc == may_rewrite) { 2701 patch_bytecode(Bytecodes::_fast_vgetfield, bc, rbx); 2702 } 2703 __ jmp(Done); 2704 } 2705 } 2706 2707 __ bind(notObj); 2708 2709 if (!is_static) pop_and_check_object(obj); 2710 2711 __ cmpl(tos_state, itos); 2712 __ jcc(Assembler::notEqual, notInt); 2713 // itos 2714 __ access_load_at(T_INT, IN_HEAP, rax, field, noreg); 2715 __ push(itos); 2716 // Rewrite bytecode to be faster 2717 if (!is_static && rc == may_rewrite) { 2718 patch_bytecode(Bytecodes::_fast_igetfield, bc, rbx); 2719 } 2720 __ jmp(Done); 2721 2722 __ bind(notInt); 2723 __ cmpl(tos_state, ctos); 2724 __ jcc(Assembler::notEqual, notChar); 2725 // ctos 2726 __ access_load_at(T_CHAR, IN_HEAP, rax, field, noreg); 2727 __ push(ctos); 2728 // Rewrite bytecode to be faster 2729 if (!is_static && rc == may_rewrite) { 2730 patch_bytecode(Bytecodes::_fast_cgetfield, bc, rbx); 2731 } 2732 __ jmp(Done); 2733 2734 __ bind(notChar); 2735 __ cmpl(tos_state, stos); 2736 __ jcc(Assembler::notEqual, notShort); 2737 // stos 2738 __ access_load_at(T_SHORT, IN_HEAP, rax, field, noreg); 2739 __ push(stos); 2740 // Rewrite bytecode to be faster 2741 if (!is_static && rc == may_rewrite) { 2742 patch_bytecode(Bytecodes::_fast_sgetfield, bc, rbx); 2743 } 2744 __ jmp(Done); 2745 2746 __ bind(notShort); 2747 __ cmpl(tos_state, ltos); 2748 __ jcc(Assembler::notEqual, notLong); 2749 // ltos 2750 // Generate code as if volatile (x86_32). There just aren't enough registers to 2751 // save that information and this code is faster than the test. 2752 __ access_load_at(T_LONG, IN_HEAP | MO_RELAXED, noreg /* ltos */, field, noreg); 2753 __ push(ltos); 2754 // Rewrite bytecode to be faster 2755 if (!is_static && rc == may_rewrite) patch_bytecode(Bytecodes::_fast_lgetfield, bc, rbx); 2756 __ jmp(Done); 2757 2758 __ bind(notLong); 2759 __ cmpl(tos_state, ftos); 2760 __ jcc(Assembler::notEqual, notFloat); 2761 // ftos 2762 2763 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg); 2764 __ push(ftos); 2765 // Rewrite bytecode to be faster 2766 if (!is_static && rc == may_rewrite) { 2767 patch_bytecode(Bytecodes::_fast_fgetfield, bc, rbx); 2768 } 2769 __ jmp(Done); 2770 2771 __ bind(notFloat); 2772 #ifdef ASSERT 2773 Label notDouble; 2774 __ cmpl(tos_state, dtos); 2775 __ jcc(Assembler::notEqual, notDouble); 2776 #endif 2777 // dtos 2778 // MO_RELAXED: for the case of volatile field, in fact it adds no extra work for the underlying implementation 2779 __ access_load_at(T_DOUBLE, IN_HEAP | MO_RELAXED, noreg /* dtos */, field, noreg); 2780 __ push(dtos); 2781 // Rewrite bytecode to be faster 2782 if (!is_static && rc == may_rewrite) { 2783 patch_bytecode(Bytecodes::_fast_dgetfield, bc, rbx); 2784 } 2785 #ifdef ASSERT 2786 __ jmp(Done); 2787 2788 __ bind(notDouble); 2789 __ stop("Bad state"); 2790 #endif 2791 2792 __ bind(Done); 2793 // [jk] not needed currently 2794 // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadLoad | 2795 // Assembler::LoadStore)); 2796 } 2797 2798 void TemplateTable::getfield(int byte_no) { 2799 getfield_or_static(byte_no, false); 2800 } 2801 2802 void TemplateTable::nofast_getfield(int byte_no) { 2803 getfield_or_static(byte_no, false, may_not_rewrite); 2804 } 2805 2806 void TemplateTable::getstatic(int byte_no) { 2807 getfield_or_static(byte_no, true); 2808 } 2809 2810 // The registers cache and index expected to be set before call. 2811 // The function may destroy various registers, just not the cache and index registers. 2812 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) { 2813 // Cache is rcx and index is rdx 2814 const Register entry = c_rarg2; // ResolvedFieldEntry 2815 const Register obj = c_rarg1; // Object pointer 2816 const Register value = c_rarg3; // JValue object 2817 2818 if (JvmtiExport::can_post_field_modification()) { 2819 // Check to see if a field modification watch has been set before 2820 // we take the time to call into the VM. 2821 Label L1; 2822 assert_different_registers(cache, obj, rax); 2823 __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr())); 2824 __ testl(rax, rax); 2825 __ jcc(Assembler::zero, L1); 2826 2827 __ mov(entry, cache); 2828 2829 if (is_static) { 2830 // Life is simple. Null out the object pointer. 2831 __ xorl(obj, obj); 2832 2833 } else { 2834 // Life is harder. The stack holds the value on top, followed by 2835 // the object. We don't know the size of the value, though; it 2836 // could be one or two words depending on its type. As a result, 2837 // we must find the type to determine where the object is. 2838 __ load_unsigned_byte(value, Address(entry, in_bytes(ResolvedFieldEntry::type_offset()))); 2839 __ movptr(obj, at_tos_p1()); // initially assume a one word jvalue 2840 __ cmpl(value, ltos); 2841 __ cmovptr(Assembler::equal, 2842 obj, at_tos_p2()); // ltos (two word jvalue) 2843 __ cmpl(value, dtos); 2844 __ cmovptr(Assembler::equal, 2845 obj, at_tos_p2()); // dtos (two word jvalue) 2846 } 2847 2848 // object (tos) 2849 __ mov(value, rsp); 2850 // obj: object pointer set up above (null if static) 2851 // cache: field entry pointer 2852 // value: jvalue object on the stack 2853 __ call_VM(noreg, 2854 CAST_FROM_FN_PTR(address, 2855 InterpreterRuntime::post_field_modification), 2856 obj, entry, value); 2857 // Reload field entry 2858 __ load_field_entry(cache, index); 2859 __ bind(L1); 2860 } 2861 } 2862 2863 void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) { 2864 transition(vtos, vtos); 2865 2866 const Register obj = rcx; 2867 const Register cache = rcx; 2868 const Register index = rdx; 2869 const Register tos_state = rdx; 2870 const Register off = rbx; 2871 const Register flags = r9; 2872 2873 resolve_cache_and_index_for_field(byte_no, cache, index); 2874 jvmti_post_field_mod(cache, index, is_static); 2875 load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static); 2876 2877 // [jk] not needed currently 2878 // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore | 2879 // Assembler::StoreStore)); 2880 2881 Label notVolatile, Done; 2882 2883 // Check for volatile store 2884 __ movl(rscratch1, flags); 2885 __ andl(rscratch1, (1 << ResolvedFieldEntry::is_volatile_shift)); 2886 __ testl(rscratch1, rscratch1); 2887 __ jcc(Assembler::zero, notVolatile); 2888 2889 putfield_or_static_helper(byte_no, is_static, rc, obj, off, tos_state, flags); 2890 volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad | 2891 Assembler::StoreStore)); 2892 __ jmp(Done); 2893 __ bind(notVolatile); 2894 2895 putfield_or_static_helper(byte_no, is_static, rc, obj, off, tos_state, flags); 2896 2897 __ bind(Done); 2898 } 2899 2900 void TemplateTable::putfield_or_static_helper(int byte_no, bool is_static, RewriteControl rc, 2901 Register obj, Register off, Register tos_state, Register flags) { 2902 2903 // field addresses 2904 const Address field(obj, off, Address::times_1, 0*wordSize); 2905 2906 Label notByte, notBool, notInt, notShort, notChar, 2907 notLong, notFloat, notObj, notInlineType; 2908 Label Done; 2909 2910 const Register bc = c_rarg3; 2911 2912 // Test TOS state 2913 __ testl(tos_state, tos_state); 2914 __ jcc(Assembler::notZero, notByte); 2915 2916 // btos 2917 { 2918 __ pop(btos); 2919 if (!is_static) pop_and_check_object(obj); 2920 __ access_store_at(T_BYTE, IN_HEAP, field, rax, noreg, noreg, noreg); 2921 if (!is_static && rc == may_rewrite) { 2922 patch_bytecode(Bytecodes::_fast_bputfield, bc, rbx, true, byte_no); 2923 } 2924 __ jmp(Done); 2925 } 2926 2927 __ bind(notByte); 2928 __ cmpl(tos_state, ztos); 2929 __ jcc(Assembler::notEqual, notBool); 2930 2931 // ztos 2932 { 2933 __ pop(ztos); 2934 if (!is_static) pop_and_check_object(obj); 2935 __ access_store_at(T_BOOLEAN, IN_HEAP, field, rax, noreg, noreg, noreg); 2936 if (!is_static && rc == may_rewrite) { 2937 patch_bytecode(Bytecodes::_fast_zputfield, bc, rbx, true, byte_no); 2938 } 2939 __ jmp(Done); 2940 } 2941 2942 __ bind(notBool); 2943 __ cmpl(tos_state, atos); 2944 __ jcc(Assembler::notEqual, notObj); 2945 2946 // atos 2947 { 2948 if (!EnableValhalla) { 2949 __ pop(atos); 2950 if (!is_static) pop_and_check_object(obj); 2951 // Store into the field 2952 do_oop_store(_masm, field, rax); 2953 if (!is_static && rc == may_rewrite) { 2954 patch_bytecode(Bytecodes::_fast_aputfield, bc, rbx, true, byte_no); 2955 } 2956 __ jmp(Done); 2957 } else { 2958 __ pop(atos); 2959 if (is_static) { 2960 Label is_nullable; 2961 __ test_field_is_not_null_free_inline_type(flags, rscratch1, is_nullable); 2962 __ null_check(rax); // FIXME JDK-8341120 2963 __ bind(is_nullable); 2964 do_oop_store(_masm, field, rax); 2965 __ jmp(Done); 2966 } else { 2967 Label is_flat, null_free_reference, rewrite_inline; 2968 __ test_field_is_flat(flags, rscratch1, is_flat); 2969 __ test_field_is_null_free_inline_type(flags, rscratch1, null_free_reference); 2970 pop_and_check_object(obj); 2971 // Store into the field 2972 do_oop_store(_masm, field, rax); 2973 if (rc == may_rewrite) { 2974 patch_bytecode(Bytecodes::_fast_aputfield, bc, rbx, true, byte_no); 2975 } 2976 __ jmp(Done); 2977 __ bind(null_free_reference); 2978 __ null_check(rax); // FIXME JDK-8341120 2979 pop_and_check_object(obj); 2980 // Store into the field 2981 do_oop_store(_masm, field, rax); 2982 __ jmp(rewrite_inline); 2983 __ bind(is_flat); 2984 pop_and_check_object(r8); 2985 __ write_flat_field(rcx, r9, rscratch2, r8, rbx, rax); 2986 __ bind(rewrite_inline); 2987 if (rc == may_rewrite) { 2988 patch_bytecode(Bytecodes::_fast_vputfield, bc, rbx, true, byte_no); 2989 } 2990 __ jmp(Done); 2991 } 2992 } 2993 } 2994 2995 __ bind(notObj); 2996 __ cmpl(tos_state, itos); 2997 __ jcc(Assembler::notEqual, notInt); 2998 2999 // itos 3000 { 3001 __ pop(itos); 3002 if (!is_static) pop_and_check_object(obj); 3003 __ access_store_at(T_INT, IN_HEAP, field, rax, noreg, noreg, noreg); 3004 if (!is_static && rc == may_rewrite) { 3005 patch_bytecode(Bytecodes::_fast_iputfield, bc, rbx, true, byte_no); 3006 } 3007 __ jmp(Done); 3008 } 3009 3010 __ bind(notInt); 3011 __ cmpl(tos_state, ctos); 3012 __ jcc(Assembler::notEqual, notChar); 3013 3014 // ctos 3015 { 3016 __ pop(ctos); 3017 if (!is_static) pop_and_check_object(obj); 3018 __ access_store_at(T_CHAR, IN_HEAP, field, rax, noreg, noreg, noreg); 3019 if (!is_static && rc == may_rewrite) { 3020 patch_bytecode(Bytecodes::_fast_cputfield, bc, rbx, true, byte_no); 3021 } 3022 __ jmp(Done); 3023 } 3024 3025 __ bind(notChar); 3026 __ cmpl(tos_state, stos); 3027 __ jcc(Assembler::notEqual, notShort); 3028 3029 // stos 3030 { 3031 __ pop(stos); 3032 if (!is_static) pop_and_check_object(obj); 3033 __ access_store_at(T_SHORT, IN_HEAP, field, rax, noreg, noreg, noreg); 3034 if (!is_static && rc == may_rewrite) { 3035 patch_bytecode(Bytecodes::_fast_sputfield, bc, rbx, true, byte_no); 3036 } 3037 __ jmp(Done); 3038 } 3039 3040 __ bind(notShort); 3041 __ cmpl(tos_state, ltos); 3042 __ jcc(Assembler::notEqual, notLong); 3043 3044 // ltos 3045 { 3046 __ pop(ltos); 3047 if (!is_static) pop_and_check_object(obj); 3048 // MO_RELAXED: generate atomic store for the case of volatile field (important for x86_32) 3049 __ access_store_at(T_LONG, IN_HEAP | MO_RELAXED, field, noreg /* ltos*/, noreg, noreg, noreg); 3050 if (!is_static && rc == may_rewrite) { 3051 patch_bytecode(Bytecodes::_fast_lputfield, bc, rbx, true, byte_no); 3052 } 3053 __ jmp(Done); 3054 } 3055 3056 __ bind(notLong); 3057 __ cmpl(tos_state, ftos); 3058 __ jcc(Assembler::notEqual, notFloat); 3059 3060 // ftos 3061 { 3062 __ pop(ftos); 3063 if (!is_static) pop_and_check_object(obj); 3064 __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos */, noreg, noreg, noreg); 3065 if (!is_static && rc == may_rewrite) { 3066 patch_bytecode(Bytecodes::_fast_fputfield, bc, rbx, true, byte_no); 3067 } 3068 __ jmp(Done); 3069 } 3070 3071 __ bind(notFloat); 3072 #ifdef ASSERT 3073 Label notDouble; 3074 __ cmpl(tos_state, dtos); 3075 __ jcc(Assembler::notEqual, notDouble); 3076 #endif 3077 3078 // dtos 3079 { 3080 __ pop(dtos); 3081 if (!is_static) pop_and_check_object(obj); 3082 // MO_RELAXED: for the case of volatile field, in fact it adds no extra work for the underlying implementation 3083 __ access_store_at(T_DOUBLE, IN_HEAP | MO_RELAXED, field, noreg /* dtos */, noreg, noreg, noreg); 3084 if (!is_static && rc == may_rewrite) { 3085 patch_bytecode(Bytecodes::_fast_dputfield, bc, rbx, true, byte_no); 3086 } 3087 } 3088 3089 #ifdef ASSERT 3090 __ jmp(Done); 3091 3092 __ bind(notDouble); 3093 __ stop("Bad state"); 3094 #endif 3095 3096 __ bind(Done); 3097 } 3098 3099 void TemplateTable::putfield(int byte_no) { 3100 putfield_or_static(byte_no, false); 3101 } 3102 3103 void TemplateTable::nofast_putfield(int byte_no) { 3104 putfield_or_static(byte_no, false, may_not_rewrite); 3105 } 3106 3107 void TemplateTable::putstatic(int byte_no) { 3108 putfield_or_static(byte_no, true); 3109 } 3110 3111 void TemplateTable::jvmti_post_fast_field_mod() { 3112 3113 const Register scratch = c_rarg3; 3114 3115 if (JvmtiExport::can_post_field_modification()) { 3116 // Check to see if a field modification watch has been set before 3117 // we take the time to call into the VM. 3118 Label L2; 3119 __ mov32(scratch, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr())); 3120 __ testl(scratch, scratch); 3121 __ jcc(Assembler::zero, L2); 3122 __ pop_ptr(rbx); // copy the object pointer from tos 3123 __ verify_oop(rbx); 3124 __ push_ptr(rbx); // put the object pointer back on tos 3125 // Save tos values before call_VM() clobbers them. Since we have 3126 // to do it for every data type, we use the saved values as the 3127 // jvalue object. 3128 switch (bytecode()) { // load values into the jvalue object 3129 case Bytecodes::_fast_vputfield: //fall through 3130 case Bytecodes::_fast_aputfield: __ push_ptr(rax); break; 3131 case Bytecodes::_fast_bputfield: // fall through 3132 case Bytecodes::_fast_zputfield: // fall through 3133 case Bytecodes::_fast_sputfield: // fall through 3134 case Bytecodes::_fast_cputfield: // fall through 3135 case Bytecodes::_fast_iputfield: __ push_i(rax); break; 3136 case Bytecodes::_fast_dputfield: __ push(dtos); break; 3137 case Bytecodes::_fast_fputfield: __ push(ftos); break; 3138 case Bytecodes::_fast_lputfield: __ push_l(rax); break; 3139 3140 default: 3141 ShouldNotReachHere(); 3142 } 3143 __ mov(scratch, rsp); // points to jvalue on the stack 3144 // access constant pool cache entry 3145 __ load_field_entry(c_rarg2, rax); 3146 __ verify_oop(rbx); 3147 // rbx: object pointer copied above 3148 // c_rarg2: cache entry pointer 3149 // c_rarg3: jvalue object on the stack 3150 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), rbx, c_rarg2, c_rarg3); 3151 3152 switch (bytecode()) { // restore tos values 3153 case Bytecodes::_fast_vputfield: // fall through 3154 case Bytecodes::_fast_aputfield: __ pop_ptr(rax); break; 3155 case Bytecodes::_fast_bputfield: // fall through 3156 case Bytecodes::_fast_zputfield: // fall through 3157 case Bytecodes::_fast_sputfield: // fall through 3158 case Bytecodes::_fast_cputfield: // fall through 3159 case Bytecodes::_fast_iputfield: __ pop_i(rax); break; 3160 case Bytecodes::_fast_dputfield: __ pop(dtos); break; 3161 case Bytecodes::_fast_fputfield: __ pop(ftos); break; 3162 case Bytecodes::_fast_lputfield: __ pop_l(rax); break; 3163 default: break; 3164 } 3165 __ bind(L2); 3166 } 3167 } 3168 3169 void TemplateTable::fast_storefield(TosState state) { 3170 transition(state, vtos); 3171 3172 Label notVolatile, Done; 3173 3174 jvmti_post_fast_field_mod(); 3175 3176 __ push(rax); 3177 __ load_field_entry(rcx, rax); 3178 load_resolved_field_entry(noreg, rcx, rax, rbx, rdx); 3179 __ pop(rax); 3180 // RBX: field offset, RCX: RAX: TOS, RDX: flags 3181 3182 // Get object from stack 3183 pop_and_check_object(rcx); 3184 3185 // field address 3186 const Address field(rcx, rbx, Address::times_1); 3187 3188 // Check for volatile store 3189 __ movl(rscratch2, rdx); // saving flags for is_flat test 3190 __ andl(rscratch2, (1 << ResolvedFieldEntry::is_volatile_shift)); 3191 __ testl(rscratch2, rscratch2); 3192 __ jcc(Assembler::zero, notVolatile); 3193 3194 fast_storefield_helper(field, rax, rdx); 3195 volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad | 3196 Assembler::StoreStore)); 3197 __ jmp(Done); 3198 __ bind(notVolatile); 3199 3200 fast_storefield_helper(field, rax, rdx); 3201 3202 __ bind(Done); 3203 } 3204 3205 void TemplateTable::fast_storefield_helper(Address field, Register rax, Register flags) { 3206 3207 // DANGER: 'field' argument depends on rcx and rbx 3208 3209 // access field 3210 switch (bytecode()) { 3211 case Bytecodes::_fast_vputfield: 3212 { 3213 // Field is either flat (nullable or not) or non-flat and null-free 3214 Label is_flat, done; 3215 __ test_field_is_flat(flags, rscratch1, is_flat); 3216 __ null_check(rax); // FIXME JDK-8341120 3217 do_oop_store(_masm, field, rax); 3218 __ jmp(done); 3219 __ bind(is_flat); 3220 __ load_field_entry(r8, r9); 3221 __ movptr(r9, rcx); // re-shuffle registers because of VM call calling convention 3222 __ write_flat_field(r8, rscratch1, rscratch2, r9, rbx, rax); 3223 __ bind(done); 3224 } 3225 break; 3226 case Bytecodes::_fast_aputfield: 3227 { 3228 do_oop_store(_masm, field, rax); 3229 } 3230 break; 3231 case Bytecodes::_fast_lputfield: 3232 __ access_store_at(T_LONG, IN_HEAP, field, noreg /* ltos */, noreg, noreg, noreg); 3233 break; 3234 case Bytecodes::_fast_iputfield: 3235 __ access_store_at(T_INT, IN_HEAP, field, rax, noreg, noreg, noreg); 3236 break; 3237 case Bytecodes::_fast_zputfield: 3238 __ access_store_at(T_BOOLEAN, IN_HEAP, field, rax, noreg, noreg, noreg); 3239 break; 3240 case Bytecodes::_fast_bputfield: 3241 __ access_store_at(T_BYTE, IN_HEAP, field, rax, noreg, noreg, noreg); 3242 break; 3243 case Bytecodes::_fast_sputfield: 3244 __ access_store_at(T_SHORT, IN_HEAP, field, rax, noreg, noreg, noreg); 3245 break; 3246 case Bytecodes::_fast_cputfield: 3247 __ access_store_at(T_CHAR, IN_HEAP, field, rax, noreg, noreg, noreg); 3248 break; 3249 case Bytecodes::_fast_fputfield: 3250 __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos*/, noreg, noreg, noreg); 3251 break; 3252 case Bytecodes::_fast_dputfield: 3253 __ access_store_at(T_DOUBLE, IN_HEAP, field, noreg /* dtos*/, noreg, noreg, noreg); 3254 break; 3255 default: 3256 ShouldNotReachHere(); 3257 } 3258 } 3259 3260 void TemplateTable::fast_accessfield(TosState state) { 3261 transition(atos, state); 3262 3263 // Do the JVMTI work here to avoid disturbing the register state below 3264 if (JvmtiExport::can_post_field_access()) { 3265 // Check to see if a field access watch has been set before we 3266 // take the time to call into the VM. 3267 Label L1; 3268 __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr())); 3269 __ testl(rcx, rcx); 3270 __ jcc(Assembler::zero, L1); 3271 // access constant pool cache entry 3272 __ load_field_entry(c_rarg2, rcx); 3273 __ verify_oop(rax); 3274 __ push_ptr(rax); // save object pointer before call_VM() clobbers it 3275 __ mov(c_rarg1, rax); 3276 // c_rarg1: object pointer copied above 3277 // c_rarg2: cache entry pointer 3278 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), c_rarg1, c_rarg2); 3279 __ pop_ptr(rax); // restore object pointer 3280 __ bind(L1); 3281 } 3282 3283 // access constant pool cache 3284 __ load_field_entry(rcx, rbx); 3285 __ load_sized_value(rdx, Address(rcx, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/); 3286 3287 // rax: object 3288 __ verify_oop(rax); 3289 __ null_check(rax); 3290 Address field(rax, rdx, Address::times_1); 3291 3292 // access field 3293 switch (bytecode()) { 3294 case Bytecodes::_fast_vgetfield: 3295 __ read_flat_field(rcx, rdx, rbx, rax); 3296 __ verify_oop(rax); 3297 break; 3298 case Bytecodes::_fast_agetfield: 3299 do_oop_load(_masm, field, rax); 3300 __ verify_oop(rax); 3301 break; 3302 case Bytecodes::_fast_lgetfield: 3303 __ access_load_at(T_LONG, IN_HEAP, noreg /* ltos */, field, noreg); 3304 break; 3305 case Bytecodes::_fast_igetfield: 3306 __ access_load_at(T_INT, IN_HEAP, rax, field, noreg); 3307 break; 3308 case Bytecodes::_fast_bgetfield: 3309 __ access_load_at(T_BYTE, IN_HEAP, rax, field, noreg); 3310 break; 3311 case Bytecodes::_fast_sgetfield: 3312 __ access_load_at(T_SHORT, IN_HEAP, rax, field, noreg); 3313 break; 3314 case Bytecodes::_fast_cgetfield: 3315 __ access_load_at(T_CHAR, IN_HEAP, rax, field, noreg); 3316 break; 3317 case Bytecodes::_fast_fgetfield: 3318 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg); 3319 break; 3320 case Bytecodes::_fast_dgetfield: 3321 __ access_load_at(T_DOUBLE, IN_HEAP, noreg /* dtos */, field, noreg); 3322 break; 3323 default: 3324 ShouldNotReachHere(); 3325 } 3326 // [jk] not needed currently 3327 // Label notVolatile; 3328 // __ testl(rdx, rdx); 3329 // __ jcc(Assembler::zero, notVolatile); 3330 // __ membar(Assembler::LoadLoad); 3331 // __ bind(notVolatile); 3332 } 3333 3334 void TemplateTable::fast_xaccess(TosState state) { 3335 transition(vtos, state); 3336 3337 // get receiver 3338 __ movptr(rax, aaddress(0)); 3339 // access constant pool cache 3340 __ load_field_entry(rcx, rdx, 2); 3341 __ load_sized_value(rbx, Address(rcx, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/); 3342 3343 // make sure exception is reported in correct bcp range (getfield is 3344 // next instruction) 3345 __ increment(rbcp); 3346 __ null_check(rax); 3347 const Address field = Address(rax, rbx, Address::times_1, 0*wordSize); 3348 switch (state) { 3349 case itos: 3350 __ access_load_at(T_INT, IN_HEAP, rax, field, noreg); 3351 break; 3352 case atos: 3353 do_oop_load(_masm, field, rax); 3354 __ verify_oop(rax); 3355 break; 3356 case ftos: 3357 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg); 3358 break; 3359 default: 3360 ShouldNotReachHere(); 3361 } 3362 3363 // [jk] not needed currently 3364 // Label notVolatile; 3365 // __ movl(rdx, Address(rcx, rdx, Address::times_8, 3366 // in_bytes(ConstantPoolCache::base_offset() + 3367 // ConstantPoolCacheEntry::flags_offset()))); 3368 // __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift); 3369 // __ testl(rdx, 0x1); 3370 // __ jcc(Assembler::zero, notVolatile); 3371 // __ membar(Assembler::LoadLoad); 3372 // __ bind(notVolatile); 3373 3374 __ decrement(rbcp); 3375 } 3376 3377 //----------------------------------------------------------------------------- 3378 // Calls 3379 3380 void TemplateTable::prepare_invoke(Register cache, Register recv, Register flags) { 3381 // determine flags 3382 const Bytecodes::Code code = bytecode(); 3383 const bool load_receiver = (code != Bytecodes::_invokestatic) && (code != Bytecodes::_invokedynamic); 3384 assert_different_registers(recv, flags); 3385 3386 // save 'interpreter return address' 3387 __ save_bcp(); 3388 3389 // Save flags and load TOS 3390 __ movl(rbcp, flags); 3391 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::type_offset()))); 3392 3393 // load receiver if needed (after appendix is pushed so parameter size is correct) 3394 // Note: no return address pushed yet 3395 if (load_receiver) { 3396 __ load_unsigned_short(recv, Address(cache, in_bytes(ResolvedMethodEntry::num_parameters_offset()))); 3397 const int no_return_pc_pushed_yet = -1; // argument slot correction before we push return address 3398 const int receiver_is_at_end = -1; // back off one slot to get receiver 3399 Address recv_addr = __ argument_address(recv, no_return_pc_pushed_yet + receiver_is_at_end); 3400 __ movptr(recv, recv_addr); 3401 __ verify_oop(recv); 3402 } 3403 3404 // load return address 3405 { 3406 const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code); 3407 ExternalAddress table(table_addr); 3408 __ lea(rscratch1, table); 3409 __ movptr(flags, Address(rscratch1, flags, Address::times_ptr)); 3410 } 3411 3412 // push return address 3413 __ push(flags); 3414 3415 // Restore flags value from the constant pool cache entry, and restore rsi 3416 // for later null checks. r13 is the bytecode pointer 3417 __ movl(flags, rbcp); 3418 __ restore_bcp(); 3419 } 3420 3421 void TemplateTable::invokevirtual_helper(Register index, 3422 Register recv, 3423 Register flags) { 3424 // Uses temporary registers rax, rdx 3425 assert_different_registers(index, recv, rax, rdx); 3426 assert(index == rbx, ""); 3427 assert(recv == rcx, ""); 3428 3429 // Test for an invoke of a final method 3430 Label notFinal; 3431 __ movl(rax, flags); 3432 __ andl(rax, (1 << ResolvedMethodEntry::is_vfinal_shift)); 3433 __ jcc(Assembler::zero, notFinal); 3434 3435 const Register method = index; // method must be rbx 3436 assert(method == rbx, 3437 "Method* must be rbx for interpreter calling convention"); 3438 3439 // do the call - the index is actually the method to call 3440 // that is, f2 is a vtable index if !is_vfinal, else f2 is a Method* 3441 3442 // It's final, need a null check here! 3443 __ null_check(recv); 3444 3445 // profile this call 3446 __ profile_final_call(rax); 3447 __ profile_arguments_type(rax, method, rbcp, true); 3448 3449 __ jump_from_interpreted(method, rax); 3450 3451 __ bind(notFinal); 3452 3453 // get receiver klass 3454 __ load_klass(rax, recv, rscratch1); 3455 3456 // profile this call 3457 __ profile_virtual_call(rax, rlocals, rdx); 3458 // get target Method* & entry point 3459 __ lookup_virtual_method(rax, index, method); 3460 3461 __ profile_arguments_type(rdx, method, rbcp, true); 3462 __ jump_from_interpreted(method, rdx); 3463 } 3464 3465 void TemplateTable::invokevirtual(int byte_no) { 3466 transition(vtos, vtos); 3467 assert(byte_no == f2_byte, "use this argument"); 3468 3469 load_resolved_method_entry_virtual(rcx, // ResolvedMethodEntry* 3470 rbx, // Method or itable index 3471 rdx); // Flags 3472 prepare_invoke(rcx, // ResolvedMethodEntry* 3473 rcx, // Receiver 3474 rdx); // flags 3475 3476 // rbx: index 3477 // rcx: receiver 3478 // rdx: flags 3479 invokevirtual_helper(rbx, rcx, rdx); 3480 } 3481 3482 void TemplateTable::invokespecial(int byte_no) { 3483 transition(vtos, vtos); 3484 assert(byte_no == f1_byte, "use this argument"); 3485 3486 load_resolved_method_entry_special_or_static(rcx, // ResolvedMethodEntry* 3487 rbx, // Method* 3488 rdx); // flags 3489 prepare_invoke(rcx, 3490 rcx, // get receiver also for null check 3491 rdx); // flags 3492 3493 __ verify_oop(rcx); 3494 __ null_check(rcx); 3495 // do the call 3496 __ profile_call(rax); 3497 __ profile_arguments_type(rax, rbx, rbcp, false); 3498 __ jump_from_interpreted(rbx, rax); 3499 } 3500 3501 void TemplateTable::invokestatic(int byte_no) { 3502 transition(vtos, vtos); 3503 assert(byte_no == f1_byte, "use this argument"); 3504 3505 load_resolved_method_entry_special_or_static(rcx, // ResolvedMethodEntry* 3506 rbx, // Method* 3507 rdx // flags 3508 ); 3509 prepare_invoke(rcx, rcx, rdx); // cache and flags 3510 3511 // do the call 3512 __ profile_call(rax); 3513 __ profile_arguments_type(rax, rbx, rbcp, false); 3514 __ jump_from_interpreted(rbx, rax); 3515 } 3516 3517 3518 void TemplateTable::fast_invokevfinal(int byte_no) { 3519 transition(vtos, vtos); 3520 assert(byte_no == f2_byte, "use this argument"); 3521 __ stop("fast_invokevfinal not used on x86"); 3522 } 3523 3524 3525 void TemplateTable::invokeinterface(int byte_no) { 3526 transition(vtos, vtos); 3527 assert(byte_no == f1_byte, "use this argument"); 3528 3529 load_resolved_method_entry_interface(rcx, // ResolvedMethodEntry* 3530 rax, // Klass* 3531 rbx, // Method* or itable/vtable index 3532 rdx); // flags 3533 prepare_invoke(rcx, rcx, rdx); // receiver, flags 3534 3535 // First check for Object case, then private interface method, 3536 // then regular interface method. 3537 3538 // Special case of invokeinterface called for virtual method of 3539 // java.lang.Object. See cpCache.cpp for details. 3540 Label notObjectMethod; 3541 __ movl(rlocals, rdx); 3542 __ andl(rlocals, (1 << ResolvedMethodEntry::is_forced_virtual_shift)); 3543 __ jcc(Assembler::zero, notObjectMethod); 3544 3545 invokevirtual_helper(rbx, rcx, rdx); 3546 // no return from above 3547 __ bind(notObjectMethod); 3548 3549 Label no_such_interface; // for receiver subtype check 3550 Register recvKlass; // used for exception processing 3551 3552 // Check for private method invocation - indicated by vfinal 3553 Label notVFinal; 3554 __ movl(rlocals, rdx); 3555 __ andl(rlocals, (1 << ResolvedMethodEntry::is_vfinal_shift)); 3556 __ jcc(Assembler::zero, notVFinal); 3557 3558 // Get receiver klass into rlocals - also a null check 3559 __ load_klass(rlocals, rcx, rscratch1); 3560 3561 Label subtype; 3562 __ check_klass_subtype(rlocals, rax, rbcp, subtype); 3563 // If we get here the typecheck failed 3564 recvKlass = rdx; 3565 __ mov(recvKlass, rlocals); // shuffle receiver class for exception use 3566 __ jmp(no_such_interface); 3567 3568 __ bind(subtype); 3569 3570 // do the call - rbx is actually the method to call 3571 3572 __ profile_final_call(rdx); 3573 __ profile_arguments_type(rdx, rbx, rbcp, true); 3574 3575 __ jump_from_interpreted(rbx, rdx); 3576 // no return from above 3577 __ bind(notVFinal); 3578 3579 // Get receiver klass into rdx - also a null check 3580 __ restore_locals(); // restore r14 3581 __ load_klass(rdx, rcx, rscratch1); 3582 3583 Label no_such_method; 3584 3585 // Preserve method for throw_AbstractMethodErrorVerbose. 3586 __ mov(rcx, rbx); 3587 // Receiver subtype check against REFC. 3588 // Superklass in rax. Subklass in rdx. Blows rcx, rdi. 3589 __ lookup_interface_method(// inputs: rec. class, interface, itable index 3590 rdx, rax, noreg, 3591 // outputs: scan temp. reg, scan temp. reg 3592 rbcp, rlocals, 3593 no_such_interface, 3594 /*return_method=*/false); 3595 3596 // profile this call 3597 __ restore_bcp(); // rbcp was destroyed by receiver type check 3598 __ profile_virtual_call(rdx, rbcp, rlocals); 3599 3600 // Get declaring interface class from method, and itable index 3601 __ load_method_holder(rax, rbx); 3602 __ movl(rbx, Address(rbx, Method::itable_index_offset())); 3603 __ subl(rbx, Method::itable_index_max); 3604 __ negl(rbx); 3605 3606 // Preserve recvKlass for throw_AbstractMethodErrorVerbose. 3607 __ mov(rlocals, rdx); 3608 __ lookup_interface_method(// inputs: rec. class, interface, itable index 3609 rlocals, rax, rbx, 3610 // outputs: method, scan temp. reg 3611 rbx, rbcp, 3612 no_such_interface); 3613 3614 // rbx: Method* to call 3615 // rcx: receiver 3616 // Check for abstract method error 3617 // Note: This should be done more efficiently via a throw_abstract_method_error 3618 // interpreter entry point and a conditional jump to it in case of a null 3619 // method. 3620 __ testptr(rbx, rbx); 3621 __ jcc(Assembler::zero, no_such_method); 3622 3623 __ profile_arguments_type(rdx, rbx, rbcp, true); 3624 3625 // do the call 3626 // rcx: receiver 3627 // rbx,: Method* 3628 __ jump_from_interpreted(rbx, rdx); 3629 __ should_not_reach_here(); 3630 3631 // exception handling code follows... 3632 // note: must restore interpreter registers to canonical 3633 // state for exception handling to work correctly! 3634 3635 __ bind(no_such_method); 3636 // throw exception 3637 __ pop(rbx); // pop return address (pushed by prepare_invoke) 3638 __ restore_bcp(); // rbcp must be correct for exception handler (was destroyed) 3639 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) 3640 // Pass arguments for generating a verbose error message. 3641 recvKlass = c_rarg1; 3642 Register method = c_rarg2; 3643 if (recvKlass != rdx) { __ movq(recvKlass, rdx); } 3644 if (method != rcx) { __ movq(method, rcx); } 3645 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodErrorVerbose), 3646 recvKlass, method); 3647 // The call_VM checks for exception, so we should never return here. 3648 __ should_not_reach_here(); 3649 3650 __ bind(no_such_interface); 3651 // throw exception 3652 __ pop(rbx); // pop return address (pushed by prepare_invoke) 3653 __ restore_bcp(); // rbcp must be correct for exception handler (was destroyed) 3654 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) 3655 // Pass arguments for generating a verbose error message. 3656 if (recvKlass != rdx) { 3657 __ movq(recvKlass, rdx); 3658 } 3659 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_IncompatibleClassChangeErrorVerbose), 3660 recvKlass, rax); 3661 // the call_VM checks for exception, so we should never return here. 3662 __ should_not_reach_here(); 3663 } 3664 3665 void TemplateTable::invokehandle(int byte_no) { 3666 transition(vtos, vtos); 3667 assert(byte_no == f1_byte, "use this argument"); 3668 const Register rbx_method = rbx; 3669 const Register rax_mtype = rax; 3670 const Register rcx_recv = rcx; 3671 const Register rdx_flags = rdx; 3672 3673 load_resolved_method_entry_handle(rcx, rbx_method, rax_mtype, rdx_flags); 3674 prepare_invoke(rcx, rcx_recv, rdx_flags); 3675 3676 __ verify_method_ptr(rbx_method); 3677 __ verify_oop(rcx_recv); 3678 __ null_check(rcx_recv); 3679 3680 // rax: MethodType object (from cpool->resolved_references[f1], if necessary) 3681 // rbx: MH.invokeExact_MT method 3682 3683 // Note: rax_mtype is already pushed (if necessary) 3684 3685 // FIXME: profile the LambdaForm also 3686 __ profile_final_call(rax); 3687 __ profile_arguments_type(rdx, rbx_method, rbcp, true); 3688 3689 __ jump_from_interpreted(rbx_method, rdx); 3690 } 3691 3692 void TemplateTable::invokedynamic(int byte_no) { 3693 transition(vtos, vtos); 3694 assert(byte_no == f1_byte, "use this argument"); 3695 3696 const Register rbx_method = rbx; 3697 const Register rax_callsite = rax; 3698 3699 load_invokedynamic_entry(rbx_method); 3700 // rax: CallSite object (from cpool->resolved_references[]) 3701 // rbx: MH.linkToCallSite method 3702 3703 // Note: rax_callsite is already pushed 3704 3705 // %%% should make a type profile for any invokedynamic that takes a ref argument 3706 // profile this call 3707 __ profile_call(rbcp); 3708 __ profile_arguments_type(rdx, rbx_method, rbcp, false); 3709 3710 __ verify_oop(rax_callsite); 3711 3712 __ jump_from_interpreted(rbx_method, rdx); 3713 } 3714 3715 //----------------------------------------------------------------------------- 3716 // Allocation 3717 3718 void TemplateTable::_new() { 3719 transition(vtos, atos); 3720 __ get_unsigned_2_byte_index_at_bcp(rdx, 1); 3721 Label slow_case; 3722 Label done; 3723 3724 __ get_cpool_and_tags(rcx, rax); 3725 3726 // Make sure the class we're about to instantiate has been resolved. 3727 // This is done before loading InstanceKlass to be consistent with the order 3728 // how Constant Pool is updated (see ConstantPool::klass_at_put) 3729 const int tags_offset = Array<u1>::base_offset_in_bytes(); 3730 __ cmpb(Address(rax, rdx, Address::times_1, tags_offset), JVM_CONSTANT_Class); 3731 __ jcc(Assembler::notEqual, slow_case); 3732 3733 // get InstanceKlass 3734 __ load_resolved_klass_at_index(rcx, rcx, rdx); 3735 3736 // make sure klass is initialized 3737 // init_state needs acquire, but x86 is TSO, and so we are already good. 3738 assert(VM_Version::supports_fast_class_init_checks(), "must support fast class initialization checks"); 3739 __ clinit_barrier(rcx, nullptr /*L_fast_path*/, &slow_case); 3740 3741 __ allocate_instance(rcx, rax, rdx, rbx, true, slow_case); 3742 __ jmp(done); 3743 3744 // slow case 3745 __ bind(slow_case); 3746 3747 __ get_constant_pool(c_rarg1); 3748 __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1); 3749 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2); 3750 __ verify_oop(rax); 3751 3752 // continue 3753 __ bind(done); 3754 } 3755 3756 void TemplateTable::newarray() { 3757 transition(itos, atos); 3758 __ load_unsigned_byte(c_rarg1, at_bcp(1)); 3759 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), 3760 c_rarg1, rax); 3761 } 3762 3763 void TemplateTable::anewarray() { 3764 transition(itos, atos); 3765 3766 __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1); 3767 __ get_constant_pool(c_rarg1); 3768 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), 3769 c_rarg1, c_rarg2, rax); 3770 } 3771 3772 void TemplateTable::arraylength() { 3773 transition(atos, itos); 3774 __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes())); 3775 } 3776 3777 void TemplateTable::checkcast() { 3778 transition(atos, atos); 3779 Label done, is_null, ok_is_subtype, quicked, resolved; 3780 __ testptr(rax, rax); // object is in rax 3781 __ jcc(Assembler::zero, is_null); 3782 3783 // Get cpool & tags index 3784 __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array 3785 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index 3786 // See if bytecode has already been quicked 3787 __ movzbl(rdx, Address(rdx, rbx, 3788 Address::times_1, 3789 Array<u1>::base_offset_in_bytes())); 3790 __ cmpl(rdx, JVM_CONSTANT_Class); 3791 __ jcc(Assembler::equal, quicked); 3792 __ push(atos); // save receiver for result, and for GC 3793 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc)); 3794 3795 __ get_vm_result_metadata(rax); 3796 3797 __ pop_ptr(rdx); // restore receiver 3798 __ jmpb(resolved); 3799 3800 // Get superklass in rax and subklass in rbx 3801 __ bind(quicked); 3802 __ mov(rdx, rax); // Save object in rdx; rax needed for subtype check 3803 __ load_resolved_klass_at_index(rax, rcx, rbx); 3804 3805 __ bind(resolved); 3806 __ load_klass(rbx, rdx, rscratch1); 3807 3808 // Generate subtype check. Blows rcx, rdi. Object in rdx. 3809 // Superklass in rax. Subklass in rbx. 3810 __ gen_subtype_check(rbx, ok_is_subtype); 3811 3812 // Come here on failure 3813 __ push_ptr(rdx); 3814 // object is at TOS 3815 __ jump(RuntimeAddress(Interpreter::_throw_ClassCastException_entry)); 3816 3817 // Come here on success 3818 __ bind(ok_is_subtype); 3819 __ mov(rax, rdx); // Restore object in rdx 3820 __ jmp(done); 3821 3822 __ bind(is_null); 3823 3824 // Collect counts on whether this check-cast sees nulls a lot or not. 3825 if (ProfileInterpreter) { 3826 __ profile_null_seen(rcx); 3827 } 3828 3829 __ bind(done); 3830 } 3831 3832 void TemplateTable::instanceof() { 3833 transition(atos, itos); 3834 Label done, is_null, ok_is_subtype, quicked, resolved; 3835 __ testptr(rax, rax); 3836 __ jcc(Assembler::zero, is_null); 3837 3838 // Get cpool & tags index 3839 __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array 3840 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index 3841 // See if bytecode has already been quicked 3842 __ movzbl(rdx, Address(rdx, rbx, 3843 Address::times_1, 3844 Array<u1>::base_offset_in_bytes())); 3845 __ cmpl(rdx, JVM_CONSTANT_Class); 3846 __ jcc(Assembler::equal, quicked); 3847 3848 __ push(atos); // save receiver for result, and for GC 3849 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc)); 3850 3851 __ get_vm_result_metadata(rax); 3852 3853 __ pop_ptr(rdx); // restore receiver 3854 __ verify_oop(rdx); 3855 __ load_klass(rdx, rdx, rscratch1); 3856 __ jmpb(resolved); 3857 3858 // Get superklass in rax and subklass in rdx 3859 __ bind(quicked); 3860 __ load_klass(rdx, rax, rscratch1); 3861 __ load_resolved_klass_at_index(rax, rcx, rbx); 3862 3863 __ bind(resolved); 3864 3865 // Generate subtype check. Blows rcx, rdi 3866 // Superklass in rax. Subklass in rdx. 3867 __ gen_subtype_check(rdx, ok_is_subtype); 3868 3869 // Come here on failure 3870 __ xorl(rax, rax); 3871 __ jmpb(done); 3872 // Come here on success 3873 __ bind(ok_is_subtype); 3874 __ movl(rax, 1); 3875 3876 // Collect counts on whether this test sees nulls a lot or not. 3877 if (ProfileInterpreter) { 3878 __ jmp(done); 3879 __ bind(is_null); 3880 __ profile_null_seen(rcx); 3881 } else { 3882 __ bind(is_null); // same as 'done' 3883 } 3884 __ bind(done); 3885 // rax = 0: obj == nullptr or obj is not an instanceof the specified klass 3886 // rax = 1: obj != nullptr and obj is an instanceof the specified klass 3887 } 3888 3889 //---------------------------------------------------------------------------------------------------- 3890 // Breakpoints 3891 void TemplateTable::_breakpoint() { 3892 // Note: We get here even if we are single stepping.. 3893 // jbug insists on setting breakpoints at every bytecode 3894 // even if we are in single step mode. 3895 3896 transition(vtos, vtos); 3897 3898 // get the unpatched byte code 3899 __ get_method(c_rarg1); 3900 __ call_VM(noreg, 3901 CAST_FROM_FN_PTR(address, 3902 InterpreterRuntime::get_original_bytecode_at), 3903 c_rarg1, rbcp); 3904 __ mov(rbx, rax); // why? 3905 3906 // post the breakpoint event 3907 __ get_method(c_rarg1); 3908 __ call_VM(noreg, 3909 CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), 3910 c_rarg1, rbcp); 3911 3912 // complete the execution of original bytecode 3913 __ dispatch_only_normal(vtos); 3914 } 3915 3916 //----------------------------------------------------------------------------- 3917 // Exceptions 3918 3919 void TemplateTable::athrow() { 3920 transition(atos, vtos); 3921 __ null_check(rax); 3922 __ jump(RuntimeAddress(Interpreter::throw_exception_entry())); 3923 } 3924 3925 //----------------------------------------------------------------------------- 3926 // Synchronization 3927 // 3928 // Note: monitorenter & exit are symmetric routines; which is reflected 3929 // in the assembly code structure as well 3930 // 3931 // Stack layout: 3932 // 3933 // [expressions ] <--- rsp = expression stack top 3934 // .. 3935 // [expressions ] 3936 // [monitor entry] <--- monitor block top = expression stack bot 3937 // .. 3938 // [monitor entry] 3939 // [frame data ] <--- monitor block bot 3940 // ... 3941 // [saved rbp ] <--- rbp 3942 void TemplateTable::monitorenter() { 3943 transition(atos, vtos); 3944 3945 // check for null object 3946 __ null_check(rax); 3947 3948 Label is_inline_type; 3949 __ movptr(rbx, Address(rax, oopDesc::mark_offset_in_bytes())); 3950 __ test_markword_is_inline_type(rbx, is_inline_type); 3951 3952 const Address monitor_block_top( 3953 rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 3954 const Address monitor_block_bot( 3955 rbp, frame::interpreter_frame_initial_sp_offset * wordSize); 3956 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 3957 3958 Label allocated; 3959 3960 Register rtop = c_rarg3; 3961 Register rbot = c_rarg2; 3962 Register rmon = c_rarg1; 3963 3964 // initialize entry pointer 3965 __ xorl(rmon, rmon); // points to free slot or null 3966 3967 // find a free slot in the monitor block (result in rmon) 3968 { 3969 Label entry, loop, exit; 3970 __ movptr(rtop, monitor_block_top); // derelativize pointer 3971 __ lea(rtop, Address(rbp, rtop, Address::times_ptr)); 3972 // rtop points to current entry, starting with top-most entry 3973 3974 __ lea(rbot, monitor_block_bot); // points to word before bottom 3975 // of monitor block 3976 __ jmpb(entry); 3977 3978 __ bind(loop); 3979 // check if current entry is used 3980 __ cmpptr(Address(rtop, BasicObjectLock::obj_offset()), NULL_WORD); 3981 // if not used then remember entry in rmon 3982 __ cmovptr(Assembler::equal, rmon, rtop); // cmov => cmovptr 3983 // check if current entry is for same object 3984 __ cmpptr(rax, Address(rtop, BasicObjectLock::obj_offset())); 3985 // if same object then stop searching 3986 __ jccb(Assembler::equal, exit); 3987 // otherwise advance to next entry 3988 __ addptr(rtop, entry_size); 3989 __ bind(entry); 3990 // check if bottom reached 3991 __ cmpptr(rtop, rbot); 3992 // if not at bottom then check this entry 3993 __ jcc(Assembler::notEqual, loop); 3994 __ bind(exit); 3995 } 3996 3997 __ testptr(rmon, rmon); // check if a slot has been found 3998 __ jcc(Assembler::notZero, allocated); // if found, continue with that one 3999 4000 // allocate one if there's no free slot 4001 { 4002 Label entry, loop; 4003 // 1. compute new pointers // rsp: old expression stack top 4004 __ movptr(rmon, monitor_block_bot); // rmon: old expression stack bottom 4005 __ lea(rmon, Address(rbp, rmon, Address::times_ptr)); 4006 __ subptr(rsp, entry_size); // move expression stack top 4007 __ subptr(rmon, entry_size); // move expression stack bottom 4008 __ mov(rtop, rsp); // set start value for copy loop 4009 __ subptr(monitor_block_bot, entry_size / wordSize); // set new monitor block bottom 4010 __ jmp(entry); 4011 // 2. move expression stack contents 4012 __ bind(loop); 4013 __ movptr(rbot, Address(rtop, entry_size)); // load expression stack 4014 // word from old location 4015 __ movptr(Address(rtop, 0), rbot); // and store it at new location 4016 __ addptr(rtop, wordSize); // advance to next word 4017 __ bind(entry); 4018 __ cmpptr(rtop, rmon); // check if bottom reached 4019 __ jcc(Assembler::notEqual, loop); // if not at bottom then 4020 // copy next word 4021 } 4022 4023 // call run-time routine 4024 // rmon: points to monitor entry 4025 __ bind(allocated); 4026 4027 // Increment bcp to point to the next bytecode, so exception 4028 // handling for async. exceptions work correctly. 4029 // The object has already been popped from the stack, so the 4030 // expression stack looks correct. 4031 __ increment(rbcp); 4032 4033 // store object 4034 __ movptr(Address(rmon, BasicObjectLock::obj_offset()), rax); 4035 __ lock_object(rmon); 4036 4037 // check to make sure this monitor doesn't cause stack overflow after locking 4038 __ save_bcp(); // in case of exception 4039 __ generate_stack_overflow_check(0); 4040 4041 // The bcp has already been incremented. Just need to dispatch to 4042 // next instruction. 4043 __ dispatch_next(vtos); 4044 4045 __ bind(is_inline_type); 4046 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 4047 InterpreterRuntime::throw_identity_exception), rax); 4048 __ should_not_reach_here(); 4049 } 4050 4051 void TemplateTable::monitorexit() { 4052 transition(atos, vtos); 4053 4054 // check for null object 4055 __ null_check(rax); 4056 4057 const int is_inline_type_mask = markWord::inline_type_pattern; 4058 Label has_identity; 4059 __ movptr(rbx, Address(rax, oopDesc::mark_offset_in_bytes())); 4060 __ andptr(rbx, is_inline_type_mask); 4061 __ cmpl(rbx, is_inline_type_mask); 4062 __ jcc(Assembler::notEqual, has_identity); 4063 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 4064 InterpreterRuntime::throw_illegal_monitor_state_exception)); 4065 __ should_not_reach_here(); 4066 __ bind(has_identity); 4067 4068 const Address monitor_block_top( 4069 rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 4070 const Address monitor_block_bot( 4071 rbp, frame::interpreter_frame_initial_sp_offset * wordSize); 4072 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 4073 4074 Register rtop = c_rarg1; 4075 Register rbot = c_rarg2; 4076 4077 Label found; 4078 4079 // find matching slot 4080 { 4081 Label entry, loop; 4082 __ movptr(rtop, monitor_block_top); // derelativize pointer 4083 __ lea(rtop, Address(rbp, rtop, Address::times_ptr)); 4084 // rtop points to current entry, starting with top-most entry 4085 4086 __ lea(rbot, monitor_block_bot); // points to word before bottom 4087 // of monitor block 4088 __ jmpb(entry); 4089 4090 __ bind(loop); 4091 // check if current entry is for same object 4092 __ cmpptr(rax, Address(rtop, BasicObjectLock::obj_offset())); 4093 // if same object then stop searching 4094 __ jcc(Assembler::equal, found); 4095 // otherwise advance to next entry 4096 __ addptr(rtop, entry_size); 4097 __ bind(entry); 4098 // check if bottom reached 4099 __ cmpptr(rtop, rbot); 4100 // if not at bottom then check this entry 4101 __ jcc(Assembler::notEqual, loop); 4102 } 4103 4104 // error handling. Unlocking was not block-structured 4105 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 4106 InterpreterRuntime::throw_illegal_monitor_state_exception)); 4107 __ should_not_reach_here(); 4108 4109 // call run-time routine 4110 __ bind(found); 4111 __ push_ptr(rax); // make sure object is on stack (contract with oopMaps) 4112 __ unlock_object(rtop); 4113 __ pop_ptr(rax); // discard object 4114 } 4115 4116 // Wide instructions 4117 void TemplateTable::wide() { 4118 transition(vtos, vtos); 4119 __ load_unsigned_byte(rbx, at_bcp(1)); 4120 ExternalAddress wtable((address)Interpreter::_wentry_point); 4121 __ jump(ArrayAddress(wtable, Address(noreg, rbx, Address::times_ptr)), rscratch1); 4122 // Note: the rbcp increment step is part of the individual wide bytecode implementations 4123 } 4124 4125 // Multi arrays 4126 void TemplateTable::multianewarray() { 4127 transition(vtos, atos); 4128 4129 __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions 4130 // last dim is on top of stack; we want address of first one: 4131 // first_addr = last_addr + (ndims - 1) * stackElementSize - 1*wordsize 4132 // the latter wordSize to point to the beginning of the array. 4133 __ lea(c_rarg1, Address(rsp, rax, Interpreter::stackElementScale(), -wordSize)); 4134 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), c_rarg1); 4135 __ load_unsigned_byte(rbx, at_bcp(3)); 4136 __ lea(rsp, Address(rsp, rbx, Interpreter::stackElementScale())); // get rid of counts 4137 }