1 /*
2 * Copyright (c) 1997, 2026, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "asm/macroAssembler.hpp"
26 #include "compiler/disassembler.hpp"
27 #include "gc/shared/collectedHeap.hpp"
28 #include "gc/shared/gc_globals.hpp"
29 #include "gc/shared/tlab_globals.hpp"
30 #include "interpreter/interpreter.hpp"
31 #include "interpreter/interpreterRuntime.hpp"
32 #include "interpreter/interp_masm.hpp"
33 #include "interpreter/templateTable.hpp"
34 #include "memory/universe.hpp"
35 #include "oops/methodCounters.hpp"
36 #include "oops/methodData.hpp"
37 #include "oops/objArrayKlass.hpp"
38 #include "oops/oop.inline.hpp"
39 #include "oops/inlineKlass.hpp"
40 #include "oops/resolvedFieldEntry.hpp"
41 #include "oops/resolvedIndyEntry.hpp"
42 #include "oops/resolvedMethodEntry.hpp"
43 #include "prims/jvmtiExport.hpp"
44 #include "prims/methodHandles.hpp"
45 #include "runtime/arguments.hpp"
46 #include "runtime/frame.inline.hpp"
47 #include "runtime/safepointMechanism.hpp"
48 #include "runtime/sharedRuntime.hpp"
49 #include "runtime/stubRoutines.hpp"
50 #include "runtime/synchronizer.hpp"
51 #include "utilities/macros.hpp"
52
53 #define __ Disassembler::hook<InterpreterMacroAssembler>(__FILE__, __LINE__, _masm)->
54
55 // Global Register Names
56 static const Register rbcp = r13;
57 static const Register rlocals = r14;
58
59 // Address Computation: local variables
60 static inline Address iaddress(int n) {
61 return Address(rlocals, Interpreter::local_offset_in_bytes(n));
62 }
63
64 static inline Address laddress(int n) {
65 return iaddress(n + 1);
66 }
67
68 static inline Address faddress(int n) {
69 return iaddress(n);
70 }
71
72 static inline Address daddress(int n) {
73 return laddress(n);
74 }
75
76 static inline Address aaddress(int n) {
77 return iaddress(n);
78 }
79
80 static inline Address iaddress(Register r) {
81 return Address(rlocals, r, Address::times_ptr);
82 }
83
84 static inline Address laddress(Register r) {
85 return Address(rlocals, r, Address::times_ptr, Interpreter::local_offset_in_bytes(1));
86 }
87
88 static inline Address faddress(Register r) {
89 return iaddress(r);
90 }
91
92 static inline Address daddress(Register r) {
93 return laddress(r);
94 }
95
96 static inline Address aaddress(Register r) {
97 return iaddress(r);
98 }
99
100
101 // expression stack
102 // (Note: Must not use symmetric equivalents at_rsp_m1/2 since they store
103 // data beyond the rsp which is potentially unsafe in an MT environment;
104 // an interrupt may overwrite that data.)
105 static inline Address at_rsp () {
106 return Address(rsp, 0);
107 }
108
109 // At top of Java expression stack which may be different than esp(). It
110 // isn't for category 1 objects.
111 static inline Address at_tos () {
112 return Address(rsp, Interpreter::expr_offset_in_bytes(0));
113 }
114
115 static inline Address at_tos_p1() {
116 return Address(rsp, Interpreter::expr_offset_in_bytes(1));
117 }
118
119 static inline Address at_tos_p2() {
120 return Address(rsp, Interpreter::expr_offset_in_bytes(2));
121 }
122
123 // Condition conversion
124 static Assembler::Condition j_not(TemplateTable::Condition cc) {
125 switch (cc) {
126 case TemplateTable::equal : return Assembler::notEqual;
127 case TemplateTable::not_equal : return Assembler::equal;
128 case TemplateTable::less : return Assembler::greaterEqual;
129 case TemplateTable::less_equal : return Assembler::greater;
130 case TemplateTable::greater : return Assembler::lessEqual;
131 case TemplateTable::greater_equal: return Assembler::less;
132 }
133 ShouldNotReachHere();
134 return Assembler::zero;
135 }
136
137
138
139 // Miscellaneous helper routines
140 // Store an oop (or null) at the address described by obj.
141 // If val == noreg this means store a null
142
143
144 static void do_oop_store(InterpreterMacroAssembler* _masm,
145 Address dst,
146 Register val,
147 DecoratorSet decorators = 0) {
148 assert(val == noreg || val == rax, "parameter is just for looks");
149 __ store_heap_oop(dst, val, rscratch2, r9, r8, decorators);
150 }
151
152 static void do_oop_load(InterpreterMacroAssembler* _masm,
153 Address src,
154 Register dst,
155 DecoratorSet decorators = 0) {
156 __ load_heap_oop(dst, src, rdx, decorators);
157 }
158
159 Address TemplateTable::at_bcp(int offset) {
160 assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
161 return Address(rbcp, offset);
162 }
163
164
165 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
166 Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
167 int byte_no) {
168 if (!RewriteBytecodes) return;
169 Label L_patch_done;
170
171 switch (bc) {
172 case Bytecodes::_fast_vputfield:
173 case Bytecodes::_fast_aputfield:
174 case Bytecodes::_fast_bputfield:
175 case Bytecodes::_fast_zputfield:
176 case Bytecodes::_fast_cputfield:
177 case Bytecodes::_fast_dputfield:
178 case Bytecodes::_fast_fputfield:
179 case Bytecodes::_fast_iputfield:
180 case Bytecodes::_fast_lputfield:
181 case Bytecodes::_fast_sputfield:
182 {
183 // We skip bytecode quickening for putfield instructions when
184 // the put_code written to the constant pool cache is zero.
185 // This is required so that every execution of this instruction
186 // calls out to InterpreterRuntime::resolve_get_put to do
187 // additional, required work.
188 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
189 assert(load_bc_into_bc_reg, "we use bc_reg as temp");
190 __ load_field_entry(temp_reg, bc_reg);
191 if (byte_no == f1_byte) {
192 __ load_unsigned_byte(temp_reg, Address(temp_reg, in_bytes(ResolvedFieldEntry::get_code_offset())));
193 } else {
194 __ load_unsigned_byte(temp_reg, Address(temp_reg, in_bytes(ResolvedFieldEntry::put_code_offset())));
195 }
196
197 __ movl(bc_reg, bc);
198 __ cmpl(temp_reg, (int) 0);
199 __ jcc(Assembler::zero, L_patch_done); // don't patch
200 }
201 break;
202 default:
203 assert(byte_no == -1, "sanity");
204 // the pair bytecodes have already done the load.
205 if (load_bc_into_bc_reg) {
206 __ movl(bc_reg, bc);
207 }
208 }
209
210 if (JvmtiExport::can_post_breakpoint()) {
211 Label L_fast_patch;
212 // if a breakpoint is present we can't rewrite the stream directly
213 __ movzbl(temp_reg, at_bcp(0));
214 __ cmpl(temp_reg, Bytecodes::_breakpoint);
215 __ jcc(Assembler::notEqual, L_fast_patch);
216 __ get_method(temp_reg);
217 // Let breakpoint table handling rewrite to quicker bytecode
218 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), temp_reg, rbcp, bc_reg);
219 #ifndef ASSERT
220 __ jmpb(L_patch_done);
221 #else
222 __ jmp(L_patch_done);
223 #endif
224 __ bind(L_fast_patch);
225 }
226
227 #ifdef ASSERT
228 Label L_okay;
229 __ load_unsigned_byte(temp_reg, at_bcp(0));
230 __ cmpl(temp_reg, (int) Bytecodes::java_code(bc));
231 __ jcc(Assembler::equal, L_okay);
232 __ cmpl(temp_reg, bc_reg);
233 __ jcc(Assembler::equal, L_okay);
234 __ stop("patching the wrong bytecode");
235 __ bind(L_okay);
236 #endif
237
238 // patch bytecode
239 __ movb(at_bcp(0), bc_reg);
240 __ bind(L_patch_done);
241 }
242 // Individual instructions
243
244
245 void TemplateTable::nop() {
246 transition(vtos, vtos);
247 // nothing to do
248 }
249
250 void TemplateTable::shouldnotreachhere() {
251 transition(vtos, vtos);
252 __ stop("shouldnotreachhere bytecode");
253 }
254
255 void TemplateTable::aconst_null() {
256 transition(vtos, atos);
257 __ xorl(rax, rax);
258 }
259
260 void TemplateTable::iconst(int value) {
261 transition(vtos, itos);
262 if (value == 0) {
263 __ xorl(rax, rax);
264 } else {
265 __ movl(rax, value);
266 }
267 }
268
269 void TemplateTable::lconst(int value) {
270 transition(vtos, ltos);
271 if (value == 0) {
272 __ xorl(rax, rax);
273 } else {
274 __ movl(rax, value);
275 }
276 }
277
278
279
280 void TemplateTable::fconst(int value) {
281 transition(vtos, ftos);
282 static float one = 1.0f, two = 2.0f;
283 switch (value) {
284 case 0:
285 __ xorps(xmm0, xmm0);
286 break;
287 case 1:
288 __ movflt(xmm0, ExternalAddress((address) &one), rscratch1);
289 break;
290 case 2:
291 __ movflt(xmm0, ExternalAddress((address) &two), rscratch1);
292 break;
293 default:
294 ShouldNotReachHere();
295 break;
296 }
297 }
298
299 void TemplateTable::dconst(int value) {
300 transition(vtos, dtos);
301 static double one = 1.0;
302 switch (value) {
303 case 0:
304 __ xorpd(xmm0, xmm0);
305 break;
306 case 1:
307 __ movdbl(xmm0, ExternalAddress((address) &one), rscratch1);
308 break;
309 default:
310 ShouldNotReachHere();
311 break;
312 }
313 }
314
315 void TemplateTable::bipush() {
316 transition(vtos, itos);
317 __ load_signed_byte(rax, at_bcp(1));
318 }
319
320 void TemplateTable::sipush() {
321 transition(vtos, itos);
322 __ load_unsigned_short(rax, at_bcp(1));
323 __ bswapl(rax);
324 __ sarl(rax, 16);
325 }
326
327 void TemplateTable::ldc(LdcType type) {
328 transition(vtos, vtos);
329 Register rarg = c_rarg1;
330 Label call_ldc, notFloat, notClass, notInt, Done;
331
332 if (is_ldc_wide(type)) {
333 __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
334 } else {
335 __ load_unsigned_byte(rbx, at_bcp(1));
336 }
337
338 __ get_cpool_and_tags(rcx, rax);
339 const int base_offset = ConstantPool::header_size() * wordSize;
340 const int tags_offset = Array<u1>::base_offset_in_bytes();
341
342 // get type
343 __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset));
344
345 // unresolved class - get the resolved class
346 __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass);
347 __ jccb(Assembler::equal, call_ldc);
348
349 // unresolved class in error state - call into runtime to throw the error
350 // from the first resolution attempt
351 __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError);
352 __ jccb(Assembler::equal, call_ldc);
353
354 // resolved class - need to call vm to get java mirror of the class
355 __ cmpl(rdx, JVM_CONSTANT_Class);
356 __ jcc(Assembler::notEqual, notClass);
357
358 __ bind(call_ldc);
359
360 __ movl(rarg, is_ldc_wide(type) ? 1 : 0);
361 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), rarg);
362
363 __ push(atos);
364 __ jmp(Done);
365
366 __ bind(notClass);
367 __ cmpl(rdx, JVM_CONSTANT_Float);
368 __ jccb(Assembler::notEqual, notFloat);
369
370 // ftos
371 __ movflt(xmm0, Address(rcx, rbx, Address::times_ptr, base_offset));
372 __ push(ftos);
373 __ jmp(Done);
374
375 __ bind(notFloat);
376 __ cmpl(rdx, JVM_CONSTANT_Integer);
377 __ jccb(Assembler::notEqual, notInt);
378
379 // itos
380 __ movl(rax, Address(rcx, rbx, Address::times_ptr, base_offset));
381 __ push(itos);
382 __ jmp(Done);
383
384 // assume the tag is for condy; if not, the VM runtime will tell us
385 __ bind(notInt);
386 condy_helper(Done);
387
388 __ bind(Done);
389 }
390
391 // Fast path for caching oop constants.
392 void TemplateTable::fast_aldc(LdcType type) {
393 transition(vtos, atos);
394
395 Register result = rax;
396 Register tmp = rdx;
397 Register rarg = c_rarg1;
398 int index_size = is_ldc_wide(type) ? sizeof(u2) : sizeof(u1);
399
400 Label resolved;
401
402 // We are resolved if the resolved reference cache entry contains a
403 // non-null object (String, MethodType, etc.)
404 assert_different_registers(result, tmp);
405 __ get_cache_index_at_bcp(tmp, 1, index_size);
406 __ load_resolved_reference_at_index(result, tmp);
407 __ testptr(result, result);
408 __ jcc(Assembler::notZero, resolved);
409
410 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
411
412 // first time invocation - must resolve first
413 __ movl(rarg, (int)bytecode());
414 __ call_VM(result, entry, rarg);
415 __ bind(resolved);
416
417 { // Check for the null sentinel.
418 // If we just called the VM, it already did the mapping for us,
419 // but it's harmless to retry.
420 Label notNull;
421 ExternalAddress null_sentinel((address)Universe::the_null_sentinel_addr());
422 __ movptr(tmp, null_sentinel);
423 __ resolve_oop_handle(tmp, rscratch2);
424 __ cmpoop(tmp, result);
425 __ jccb(Assembler::notEqual, notNull);
426 __ xorptr(result, result); // null object reference
427 __ bind(notNull);
428 }
429
430 if (VerifyOops) {
431 __ verify_oop(result);
432 }
433 }
434
435 void TemplateTable::ldc2_w() {
436 transition(vtos, vtos);
437 Label notDouble, notLong, Done;
438 __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
439
440 __ get_cpool_and_tags(rcx, rax);
441 const int base_offset = ConstantPool::header_size() * wordSize;
442 const int tags_offset = Array<u1>::base_offset_in_bytes();
443
444 // get type
445 __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset));
446 __ cmpl(rdx, JVM_CONSTANT_Double);
447 __ jccb(Assembler::notEqual, notDouble);
448
449 // dtos
450 __ movdbl(xmm0, Address(rcx, rbx, Address::times_ptr, base_offset));
451 __ push(dtos);
452
453 __ jmp(Done);
454 __ bind(notDouble);
455 __ cmpl(rdx, JVM_CONSTANT_Long);
456 __ jccb(Assembler::notEqual, notLong);
457
458 // ltos
459 __ movptr(rax, Address(rcx, rbx, Address::times_ptr, base_offset + 0 * wordSize));
460 __ push(ltos);
461 __ jmp(Done);
462
463 __ bind(notLong);
464 condy_helper(Done);
465
466 __ bind(Done);
467 }
468
469 void TemplateTable::condy_helper(Label& Done) {
470 const Register obj = rax;
471 const Register off = rbx;
472 const Register flags = rcx;
473 const Register rarg = c_rarg1;
474 __ movl(rarg, (int)bytecode());
475 call_VM(obj, CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc), rarg);
476 __ get_vm_result_metadata(flags);
477 // VMr = obj = base address to find primitive value to push
478 // VMr2 = flags = (tos, off) using format of CPCE::_flags
479 __ movl(off, flags);
480 __ andl(off, ConstantPoolCache::field_index_mask);
481 const Address field(obj, off, Address::times_1, 0*wordSize);
482
483 // What sort of thing are we loading?
484 __ shrl(flags, ConstantPoolCache::tos_state_shift);
485 __ andl(flags, ConstantPoolCache::tos_state_mask);
486
487 switch (bytecode()) {
488 case Bytecodes::_ldc:
489 case Bytecodes::_ldc_w:
490 {
491 // tos in (itos, ftos, stos, btos, ctos, ztos)
492 Label notInt, notFloat, notShort, notByte, notChar, notBool;
493 __ cmpl(flags, itos);
494 __ jccb(Assembler::notEqual, notInt);
495 // itos
496 __ movl(rax, field);
497 __ push(itos);
498 __ jmp(Done);
499
500 __ bind(notInt);
501 __ cmpl(flags, ftos);
502 __ jccb(Assembler::notEqual, notFloat);
503 // ftos
504 __ movflt(xmm0, field);
505 __ push(ftos);
506 __ jmp(Done);
507
508 __ bind(notFloat);
509 __ cmpl(flags, stos);
510 __ jccb(Assembler::notEqual, notShort);
511 // stos
512 __ load_signed_short(rax, field);
513 __ push(stos);
514 __ jmp(Done);
515
516 __ bind(notShort);
517 __ cmpl(flags, btos);
518 __ jccb(Assembler::notEqual, notByte);
519 // btos
520 __ load_signed_byte(rax, field);
521 __ push(btos);
522 __ jmp(Done);
523
524 __ bind(notByte);
525 __ cmpl(flags, ctos);
526 __ jccb(Assembler::notEqual, notChar);
527 // ctos
528 __ load_unsigned_short(rax, field);
529 __ push(ctos);
530 __ jmp(Done);
531
532 __ bind(notChar);
533 __ cmpl(flags, ztos);
534 __ jccb(Assembler::notEqual, notBool);
535 // ztos
536 __ load_signed_byte(rax, field);
537 __ push(ztos);
538 __ jmp(Done);
539
540 __ bind(notBool);
541 break;
542 }
543
544 case Bytecodes::_ldc2_w:
545 {
546 Label notLong, notDouble;
547 __ cmpl(flags, ltos);
548 __ jccb(Assembler::notEqual, notLong);
549 // ltos
550 // Loading high word first because movptr clobbers rax
551 __ movptr(rax, field);
552 __ push(ltos);
553 __ jmp(Done);
554
555 __ bind(notLong);
556 __ cmpl(flags, dtos);
557 __ jccb(Assembler::notEqual, notDouble);
558 // dtos
559 __ movdbl(xmm0, field);
560 __ push(dtos);
561 __ jmp(Done);
562
563 __ bind(notDouble);
564 break;
565 }
566
567 default:
568 ShouldNotReachHere();
569 }
570
571 __ stop("bad ldc/condy");
572 }
573
574 void TemplateTable::locals_index(Register reg, int offset) {
575 __ load_unsigned_byte(reg, at_bcp(offset));
576 __ negptr(reg);
577 }
578
579 void TemplateTable::iload() {
580 iload_internal();
581 }
582
583 void TemplateTable::nofast_iload() {
584 iload_internal(may_not_rewrite);
585 }
586
587 void TemplateTable::iload_internal(RewriteControl rc) {
588 transition(vtos, itos);
589 if (RewriteFrequentPairs && rc == may_rewrite) {
590 Label rewrite, done;
591 const Register bc = c_rarg3;
592 assert(rbx != bc, "register damaged");
593
594 // get next byte
595 __ load_unsigned_byte(rbx,
596 at_bcp(Bytecodes::length_for(Bytecodes::_iload)));
597 // if _iload, wait to rewrite to iload2. We only want to rewrite the
598 // last two iloads in a pair. Comparing against fast_iload means that
599 // the next bytecode is neither an iload or a caload, and therefore
600 // an iload pair.
601 __ cmpl(rbx, Bytecodes::_iload);
602 __ jcc(Assembler::equal, done);
603
604 __ cmpl(rbx, Bytecodes::_fast_iload);
605 __ movl(bc, Bytecodes::_fast_iload2);
606
607 __ jccb(Assembler::equal, rewrite);
608
609 // if _caload, rewrite to fast_icaload
610 __ cmpl(rbx, Bytecodes::_caload);
611 __ movl(bc, Bytecodes::_fast_icaload);
612 __ jccb(Assembler::equal, rewrite);
613
614 // rewrite so iload doesn't check again.
615 __ movl(bc, Bytecodes::_fast_iload);
616
617 // rewrite
618 // bc: fast bytecode
619 __ bind(rewrite);
620 patch_bytecode(Bytecodes::_iload, bc, rbx, false);
621 __ bind(done);
622 }
623
624 // Get the local value into tos
625 locals_index(rbx);
626 __ movl(rax, iaddress(rbx));
627 }
628
629 void TemplateTable::fast_iload2() {
630 transition(vtos, itos);
631 locals_index(rbx);
632 __ movl(rax, iaddress(rbx));
633 __ push(itos);
634 locals_index(rbx, 3);
635 __ movl(rax, iaddress(rbx));
636 }
637
638 void TemplateTable::fast_iload() {
639 transition(vtos, itos);
640 locals_index(rbx);
641 __ movl(rax, iaddress(rbx));
642 }
643
644 void TemplateTable::lload() {
645 transition(vtos, ltos);
646 locals_index(rbx);
647 __ movptr(rax, laddress(rbx));
648 }
649
650 void TemplateTable::fload() {
651 transition(vtos, ftos);
652 locals_index(rbx);
653 __ movflt(xmm0, faddress(rbx));
654 }
655
656 void TemplateTable::dload() {
657 transition(vtos, dtos);
658 locals_index(rbx);
659 __ movdbl(xmm0, daddress(rbx));
660 }
661
662 void TemplateTable::aload() {
663 transition(vtos, atos);
664 locals_index(rbx);
665 __ movptr(rax, aaddress(rbx));
666 }
667
668 void TemplateTable::locals_index_wide(Register reg) {
669 __ load_unsigned_short(reg, at_bcp(2));
670 __ bswapl(reg);
671 __ shrl(reg, 16);
672 __ negptr(reg);
673 }
674
675 void TemplateTable::wide_iload() {
676 transition(vtos, itos);
677 locals_index_wide(rbx);
678 __ movl(rax, iaddress(rbx));
679 }
680
681 void TemplateTable::wide_lload() {
682 transition(vtos, ltos);
683 locals_index_wide(rbx);
684 __ movptr(rax, laddress(rbx));
685 }
686
687 void TemplateTable::wide_fload() {
688 transition(vtos, ftos);
689 locals_index_wide(rbx);
690 __ movflt(xmm0, faddress(rbx));
691 }
692
693 void TemplateTable::wide_dload() {
694 transition(vtos, dtos);
695 locals_index_wide(rbx);
696 __ movdbl(xmm0, daddress(rbx));
697 }
698
699 void TemplateTable::wide_aload() {
700 transition(vtos, atos);
701 locals_index_wide(rbx);
702 __ movptr(rax, aaddress(rbx));
703 }
704
705 void TemplateTable::index_check(Register array, Register index) {
706 // Pop ptr into array
707 __ pop_ptr(array);
708 index_check_without_pop(array, index);
709 }
710
711 void TemplateTable::index_check_without_pop(Register array, Register index) {
712 // destroys rbx
713 // sign extend index for use by indexed load
714 __ movl2ptr(index, index);
715 // check index
716 __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes()));
717 if (index != rbx) {
718 // ??? convention: move aberrant index into rbx for exception message
719 assert(rbx != array, "different registers");
720 __ movl(rbx, index);
721 }
722 Label skip;
723 __ jccb(Assembler::below, skip);
724 // Pass array to create more detailed exceptions.
725 __ mov(c_rarg1, array);
726 __ jump(RuntimeAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry));
727 __ bind(skip);
728 }
729
730 void TemplateTable::iaload() {
731 transition(itos, itos);
732 // rax: index
733 // rdx: array
734 index_check(rdx, rax); // kills rbx
735 __ access_load_at(T_INT, IN_HEAP | IS_ARRAY, rax,
736 Address(rdx, rax, Address::times_4,
737 arrayOopDesc::base_offset_in_bytes(T_INT)),
738 noreg);
739 }
740
741 void TemplateTable::laload() {
742 transition(itos, ltos);
743 // rax: index
744 // rdx: array
745 index_check(rdx, rax); // kills rbx
746 // rbx,: index
747 __ access_load_at(T_LONG, IN_HEAP | IS_ARRAY, noreg /* ltos */,
748 Address(rdx, rbx, Address::times_8,
749 arrayOopDesc::base_offset_in_bytes(T_LONG)),
750 noreg);
751 }
752
753
754
755 void TemplateTable::faload() {
756 transition(itos, ftos);
757 // rax: index
758 // rdx: array
759 index_check(rdx, rax); // kills rbx
760 __ access_load_at(T_FLOAT, IN_HEAP | IS_ARRAY, noreg /* ftos */,
761 Address(rdx, rax,
762 Address::times_4,
763 arrayOopDesc::base_offset_in_bytes(T_FLOAT)),
764 noreg);
765 }
766
767 void TemplateTable::daload() {
768 transition(itos, dtos);
769 // rax: index
770 // rdx: array
771 index_check(rdx, rax); // kills rbx
772 __ access_load_at(T_DOUBLE, IN_HEAP | IS_ARRAY, noreg /* dtos */,
773 Address(rdx, rax,
774 Address::times_8,
775 arrayOopDesc::base_offset_in_bytes(T_DOUBLE)),
776 noreg);
777 }
778
779 void TemplateTable::aaload() {
780 transition(itos, atos);
781 Register array = rdx;
782 Register index = rax;
783
784 index_check(array, index); // kills rbx
785 __ profile_array_type<ArrayLoadData>(rbx, array, rcx);
786 if (UseArrayFlattening) {
787 Label is_flat_array, done;
788 __ test_flat_array_oop(array, rbx, is_flat_array);
789 do_oop_load(_masm,
790 Address(array, index,
791 UseCompressedOops ? Address::times_4 : Address::times_ptr,
792 arrayOopDesc::base_offset_in_bytes(T_OBJECT)),
793 rax,
794 IS_ARRAY);
795 __ jmp(done);
796 __ bind(is_flat_array);
797 __ movptr(rcx, array);
798 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::flat_array_load), rcx, index);
799 __ bind(done);
800 } else {
801 do_oop_load(_masm,
802 Address(array, index,
803 UseCompressedOops ? Address::times_4 : Address::times_ptr,
804 arrayOopDesc::base_offset_in_bytes(T_OBJECT)),
805 rax,
806 IS_ARRAY);
807 }
808 __ profile_element_type(rbx, rax, rcx);
809 }
810
811 void TemplateTable::baload() {
812 transition(itos, itos);
813 // rax: index
814 // rdx: array
815 index_check(rdx, rax); // kills rbx
816 __ access_load_at(T_BYTE, IN_HEAP | IS_ARRAY, rax,
817 Address(rdx, rax, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_BYTE)),
818 noreg);
819 }
820
821 void TemplateTable::caload() {
822 transition(itos, itos);
823 // rax: index
824 // rdx: array
825 index_check(rdx, rax); // kills rbx
826 __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, rax,
827 Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)),
828 noreg);
829 }
830
831 // iload followed by caload frequent pair
832 void TemplateTable::fast_icaload() {
833 transition(vtos, itos);
834 // load index out of locals
835 locals_index(rbx);
836 __ movl(rax, iaddress(rbx));
837
838 // rax: index
839 // rdx: array
840 index_check(rdx, rax); // kills rbx
841 __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, rax,
842 Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)),
843 noreg);
844 }
845
846
847 void TemplateTable::saload() {
848 transition(itos, itos);
849 // rax: index
850 // rdx: array
851 index_check(rdx, rax); // kills rbx
852 __ access_load_at(T_SHORT, IN_HEAP | IS_ARRAY, rax,
853 Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_SHORT)),
854 noreg);
855 }
856
857 void TemplateTable::iload(int n) {
858 transition(vtos, itos);
859 __ movl(rax, iaddress(n));
860 }
861
862 void TemplateTable::lload(int n) {
863 transition(vtos, ltos);
864 __ movptr(rax, laddress(n));
865 }
866
867 void TemplateTable::fload(int n) {
868 transition(vtos, ftos);
869 __ movflt(xmm0, faddress(n));
870 }
871
872 void TemplateTable::dload(int n) {
873 transition(vtos, dtos);
874 __ movdbl(xmm0, daddress(n));
875 }
876
877 void TemplateTable::aload(int n) {
878 transition(vtos, atos);
879 __ movptr(rax, aaddress(n));
880 }
881
882 void TemplateTable::aload_0() {
883 aload_0_internal();
884 }
885
886 void TemplateTable::nofast_aload_0() {
887 aload_0_internal(may_not_rewrite);
888 }
889
890 void TemplateTable::aload_0_internal(RewriteControl rc) {
891 transition(vtos, atos);
892 // According to bytecode histograms, the pairs:
893 //
894 // _aload_0, _fast_igetfield
895 // _aload_0, _fast_agetfield
896 // _aload_0, _fast_fgetfield
897 //
898 // occur frequently. If RewriteFrequentPairs is set, the (slow)
899 // _aload_0 bytecode checks if the next bytecode is either
900 // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then
901 // rewrites the current bytecode into a pair bytecode; otherwise it
902 // rewrites the current bytecode into _fast_aload_0 that doesn't do
903 // the pair check anymore.
904 //
905 // Note: If the next bytecode is _getfield, the rewrite must be
906 // delayed, otherwise we may miss an opportunity for a pair.
907 //
908 // Also rewrite frequent pairs
909 // aload_0, aload_1
910 // aload_0, iload_1
911 // These bytecodes with a small amount of code are most profitable
912 // to rewrite
913 if (RewriteFrequentPairs && rc == may_rewrite) {
914 Label rewrite, done;
915
916 const Register bc = c_rarg3;
917 assert(rbx != bc, "register damaged");
918
919 // get next byte
920 __ load_unsigned_byte(rbx, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)));
921
922 // if _getfield then wait with rewrite
923 __ cmpl(rbx, Bytecodes::_getfield);
924 __ jcc(Assembler::equal, done);
925
926 // if _igetfield then rewrite to _fast_iaccess_0
927 assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
928 __ cmpl(rbx, Bytecodes::_fast_igetfield);
929 __ movl(bc, Bytecodes::_fast_iaccess_0);
930 __ jccb(Assembler::equal, rewrite);
931
932 // if _agetfield then rewrite to _fast_aaccess_0
933 assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
934 __ cmpl(rbx, Bytecodes::_fast_agetfield);
935 __ movl(bc, Bytecodes::_fast_aaccess_0);
936 __ jccb(Assembler::equal, rewrite);
937
938 // if _fgetfield then rewrite to _fast_faccess_0
939 assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
940 __ cmpl(rbx, Bytecodes::_fast_fgetfield);
941 __ movl(bc, Bytecodes::_fast_faccess_0);
942 __ jccb(Assembler::equal, rewrite);
943
944 // else rewrite to _fast_aload0
945 assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition");
946 __ movl(bc, Bytecodes::_fast_aload_0);
947
948 // rewrite
949 // bc: fast bytecode
950 __ bind(rewrite);
951 patch_bytecode(Bytecodes::_aload_0, bc, rbx, false);
952
953 __ bind(done);
954 }
955
956 // Do actual aload_0 (must do this after patch_bytecode which might call VM and GC might change oop).
957 aload(0);
958 }
959
960 void TemplateTable::istore() {
961 transition(itos, vtos);
962 locals_index(rbx);
963 __ movl(iaddress(rbx), rax);
964 }
965
966
967 void TemplateTable::lstore() {
968 transition(ltos, vtos);
969 locals_index(rbx);
970 __ movptr(laddress(rbx), rax);
971 }
972
973 void TemplateTable::fstore() {
974 transition(ftos, vtos);
975 locals_index(rbx);
976 __ movflt(faddress(rbx), xmm0);
977 }
978
979 void TemplateTable::dstore() {
980 transition(dtos, vtos);
981 locals_index(rbx);
982 __ movdbl(daddress(rbx), xmm0);
983 }
984
985 void TemplateTable::astore() {
986 transition(vtos, vtos);
987 __ pop_ptr(rax);
988 locals_index(rbx);
989 __ movptr(aaddress(rbx), rax);
990 }
991
992 void TemplateTable::wide_istore() {
993 transition(vtos, vtos);
994 __ pop_i();
995 locals_index_wide(rbx);
996 __ movl(iaddress(rbx), rax);
997 }
998
999 void TemplateTable::wide_lstore() {
1000 transition(vtos, vtos);
1001 __ pop_l();
1002 locals_index_wide(rbx);
1003 __ movptr(laddress(rbx), rax);
1004 }
1005
1006 void TemplateTable::wide_fstore() {
1007 transition(vtos, vtos);
1008 __ pop_f(xmm0);
1009 locals_index_wide(rbx);
1010 __ movflt(faddress(rbx), xmm0);
1011 }
1012
1013 void TemplateTable::wide_dstore() {
1014 transition(vtos, vtos);
1015 __ pop_d(xmm0);
1016 locals_index_wide(rbx);
1017 __ movdbl(daddress(rbx), xmm0);
1018 }
1019
1020 void TemplateTable::wide_astore() {
1021 transition(vtos, vtos);
1022 __ pop_ptr(rax);
1023 locals_index_wide(rbx);
1024 __ movptr(aaddress(rbx), rax);
1025 }
1026
1027 void TemplateTable::iastore() {
1028 transition(itos, vtos);
1029 __ pop_i(rbx);
1030 // rax: value
1031 // rbx: index
1032 // rdx: array
1033 index_check(rdx, rbx); // prefer index in rbx
1034 __ access_store_at(T_INT, IN_HEAP | IS_ARRAY,
1035 Address(rdx, rbx, Address::times_4,
1036 arrayOopDesc::base_offset_in_bytes(T_INT)),
1037 rax, noreg, noreg, noreg);
1038 }
1039
1040 void TemplateTable::lastore() {
1041 transition(ltos, vtos);
1042 __ pop_i(rbx);
1043 // rax,: low(value)
1044 // rcx: array
1045 // rdx: high(value)
1046 index_check(rcx, rbx); // prefer index in rbx,
1047 // rbx,: index
1048 __ access_store_at(T_LONG, IN_HEAP | IS_ARRAY,
1049 Address(rcx, rbx, Address::times_8,
1050 arrayOopDesc::base_offset_in_bytes(T_LONG)),
1051 noreg /* ltos */, noreg, noreg, noreg);
1052 }
1053
1054
1055 void TemplateTable::fastore() {
1056 transition(ftos, vtos);
1057 __ pop_i(rbx);
1058 // value is in xmm0
1059 // rbx: index
1060 // rdx: array
1061 index_check(rdx, rbx); // prefer index in rbx
1062 __ access_store_at(T_FLOAT, IN_HEAP | IS_ARRAY,
1063 Address(rdx, rbx, Address::times_4,
1064 arrayOopDesc::base_offset_in_bytes(T_FLOAT)),
1065 noreg /* ftos */, noreg, noreg, noreg);
1066 }
1067
1068 void TemplateTable::dastore() {
1069 transition(dtos, vtos);
1070 __ pop_i(rbx);
1071 // value is in xmm0
1072 // rbx: index
1073 // rdx: array
1074 index_check(rdx, rbx); // prefer index in rbx
1075 __ access_store_at(T_DOUBLE, IN_HEAP | IS_ARRAY,
1076 Address(rdx, rbx, Address::times_8,
1077 arrayOopDesc::base_offset_in_bytes(T_DOUBLE)),
1078 noreg /* dtos */, noreg, noreg, noreg);
1079 }
1080
1081 void TemplateTable::aastore() {
1082 Label is_null, is_flat_array, ok_is_subtype, done;
1083 transition(vtos, vtos);
1084 // stack: ..., array, index, value
1085 __ movptr(rax, at_tos()); // value
1086 __ movl(rcx, at_tos_p1()); // index
1087 __ movptr(rdx, at_tos_p2()); // array
1088
1089 Address element_address(rdx, rcx,
1090 UseCompressedOops? Address::times_4 : Address::times_ptr,
1091 arrayOopDesc::base_offset_in_bytes(T_OBJECT));
1092
1093 index_check_without_pop(rdx, rcx); // kills rbx
1094
1095 __ profile_array_type<ArrayStoreData>(rdi, rdx, rbx);
1096 __ profile_multiple_element_types(rdi, rax, rbx, rcx);
1097
1098 __ testptr(rax, rax);
1099 __ jcc(Assembler::zero, is_null);
1100
1101 // Move array class to rdi
1102 __ load_klass(rdi, rdx, rscratch1);
1103 if (UseArrayFlattening) {
1104 __ movl(rbx, Address(rdi, Klass::layout_helper_offset()));
1105 __ test_flat_array_layout(rbx, is_flat_array);
1106 }
1107
1108 // Move subklass into rbx
1109 __ load_klass(rbx, rax, rscratch1);
1110 // Move array element superklass into rax
1111 __ movptr(rax, Address(rdi,
1112 ObjArrayKlass::element_klass_offset()));
1113
1114 // Generate subtype check. Blows rcx, rdi
1115 // Superklass in rax. Subklass in rbx.
1116 // is "rbx <: rax" ? (value subclass <: array element superclass)
1117 __ gen_subtype_check(rbx, ok_is_subtype, false);
1118
1119 // Come here on failure
1120 // object is at TOS
1121 __ jump(RuntimeAddress(Interpreter::_throw_ArrayStoreException_entry));
1122
1123 // Come here on success
1124 __ bind(ok_is_subtype);
1125
1126 // Get the value we will store
1127 __ movptr(rax, at_tos());
1128 __ movl(rcx, at_tos_p1()); // index
1129 // Now store using the appropriate barrier
1130 do_oop_store(_masm, element_address, rax, IS_ARRAY);
1131 __ jmp(done);
1132
1133 // Have a null in rax, rdx=array, ecx=index. Store null at ary[idx]
1134 __ bind(is_null);
1135 if (Arguments::is_valhalla_enabled()) {
1136 Label write_null_to_null_free_array, store_null;
1137
1138 // Move array class to rdi
1139 __ load_klass(rdi, rdx, rscratch1);
1140 if (UseArrayFlattening) {
1141 __ movl(rbx, Address(rdi, Klass::layout_helper_offset()));
1142 __ test_flat_array_layout(rbx, is_flat_array);
1143 }
1144
1145 // No way to store null in null-free array
1146 __ test_null_free_array_oop(rdx, rbx, write_null_to_null_free_array);
1147 __ jmp(store_null);
1148
1149 __ bind(write_null_to_null_free_array);
1150 __ jump(RuntimeAddress(Interpreter::_throw_NullPointerException_entry));
1151
1152 __ bind(store_null);
1153 }
1154 // Store a null
1155 do_oop_store(_masm, element_address, noreg, IS_ARRAY);
1156 __ jmp(done);
1157
1158 if (UseArrayFlattening) {
1159 Label is_type_ok;
1160 __ bind(is_flat_array); // Store non-null value to flat
1161
1162 __ movptr(rax, at_tos());
1163 __ movl(rcx, at_tos_p1()); // index
1164 __ movptr(rdx, at_tos_p2()); // array
1165
1166 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::flat_array_store), rax, rdx, rcx);
1167 }
1168 // Pop stack arguments
1169 __ bind(done);
1170 __ addptr(rsp, 3 * Interpreter::stackElementSize);
1171 }
1172
1173 void TemplateTable::bastore() {
1174 transition(itos, vtos);
1175 __ pop_i(rbx);
1176 // rax: value
1177 // rbx: index
1178 // rdx: array
1179 index_check(rdx, rbx); // prefer index in rbx
1180 // Need to check whether array is boolean or byte
1181 // since both types share the bastore bytecode.
1182 __ load_klass(rcx, rdx, rscratch1);
1183 __ movl(rcx, Address(rcx, Klass::layout_helper_offset()));
1184 int diffbit = Klass::layout_helper_boolean_diffbit();
1185 __ testl(rcx, diffbit);
1186 Label L_skip;
1187 __ jccb(Assembler::zero, L_skip);
1188 __ andl(rax, 1); // if it is a T_BOOLEAN array, mask the stored value to 0/1
1189 __ bind(L_skip);
1190 __ access_store_at(T_BYTE, IN_HEAP | IS_ARRAY,
1191 Address(rdx, rbx,Address::times_1,
1192 arrayOopDesc::base_offset_in_bytes(T_BYTE)),
1193 rax, noreg, noreg, noreg);
1194 }
1195
1196 void TemplateTable::castore() {
1197 transition(itos, vtos);
1198 __ pop_i(rbx);
1199 // rax: value
1200 // rbx: index
1201 // rdx: array
1202 index_check(rdx, rbx); // prefer index in rbx
1203 __ access_store_at(T_CHAR, IN_HEAP | IS_ARRAY,
1204 Address(rdx, rbx, Address::times_2,
1205 arrayOopDesc::base_offset_in_bytes(T_CHAR)),
1206 rax, noreg, noreg, noreg);
1207 }
1208
1209
1210 void TemplateTable::sastore() {
1211 castore();
1212 }
1213
1214 void TemplateTable::istore(int n) {
1215 transition(itos, vtos);
1216 __ movl(iaddress(n), rax);
1217 }
1218
1219 void TemplateTable::lstore(int n) {
1220 transition(ltos, vtos);
1221 __ movptr(laddress(n), rax);
1222 }
1223
1224 void TemplateTable::fstore(int n) {
1225 transition(ftos, vtos);
1226 __ movflt(faddress(n), xmm0);
1227 }
1228
1229 void TemplateTable::dstore(int n) {
1230 transition(dtos, vtos);
1231 __ movdbl(daddress(n), xmm0);
1232 }
1233
1234
1235 void TemplateTable::astore(int n) {
1236 transition(vtos, vtos);
1237 __ pop_ptr(rax);
1238 __ movptr(aaddress(n), rax);
1239 }
1240
1241 void TemplateTable::pop() {
1242 transition(vtos, vtos);
1243 __ addptr(rsp, Interpreter::stackElementSize);
1244 }
1245
1246 void TemplateTable::pop2() {
1247 transition(vtos, vtos);
1248 __ addptr(rsp, 2 * Interpreter::stackElementSize);
1249 }
1250
1251
1252 void TemplateTable::dup() {
1253 transition(vtos, vtos);
1254 __ load_ptr(0, rax);
1255 __ push_ptr(rax);
1256 // stack: ..., a, a
1257 }
1258
1259 void TemplateTable::dup_x1() {
1260 transition(vtos, vtos);
1261 // stack: ..., a, b
1262 __ load_ptr( 0, rax); // load b
1263 __ load_ptr( 1, rcx); // load a
1264 __ store_ptr(1, rax); // store b
1265 __ store_ptr(0, rcx); // store a
1266 __ push_ptr(rax); // push b
1267 // stack: ..., b, a, b
1268 }
1269
1270 void TemplateTable::dup_x2() {
1271 transition(vtos, vtos);
1272 // stack: ..., a, b, c
1273 __ load_ptr( 0, rax); // load c
1274 __ load_ptr( 2, rcx); // load a
1275 __ store_ptr(2, rax); // store c in a
1276 __ push_ptr(rax); // push c
1277 // stack: ..., c, b, c, c
1278 __ load_ptr( 2, rax); // load b
1279 __ store_ptr(2, rcx); // store a in b
1280 // stack: ..., c, a, c, c
1281 __ store_ptr(1, rax); // store b in c
1282 // stack: ..., c, a, b, c
1283 }
1284
1285 void TemplateTable::dup2() {
1286 transition(vtos, vtos);
1287 // stack: ..., a, b
1288 __ load_ptr(1, rax); // load a
1289 __ push_ptr(rax); // push a
1290 __ load_ptr(1, rax); // load b
1291 __ push_ptr(rax); // push b
1292 // stack: ..., a, b, a, b
1293 }
1294
1295
1296 void TemplateTable::dup2_x1() {
1297 transition(vtos, vtos);
1298 // stack: ..., a, b, c
1299 __ load_ptr( 0, rcx); // load c
1300 __ load_ptr( 1, rax); // load b
1301 __ push_ptr(rax); // push b
1302 __ push_ptr(rcx); // push c
1303 // stack: ..., a, b, c, b, c
1304 __ store_ptr(3, rcx); // store c in b
1305 // stack: ..., a, c, c, b, c
1306 __ load_ptr( 4, rcx); // load a
1307 __ store_ptr(2, rcx); // store a in 2nd c
1308 // stack: ..., a, c, a, b, c
1309 __ store_ptr(4, rax); // store b in a
1310 // stack: ..., b, c, a, b, c
1311 }
1312
1313 void TemplateTable::dup2_x2() {
1314 transition(vtos, vtos);
1315 // stack: ..., a, b, c, d
1316 __ load_ptr( 0, rcx); // load d
1317 __ load_ptr( 1, rax); // load c
1318 __ push_ptr(rax); // push c
1319 __ push_ptr(rcx); // push d
1320 // stack: ..., a, b, c, d, c, d
1321 __ load_ptr( 4, rax); // load b
1322 __ store_ptr(2, rax); // store b in d
1323 __ store_ptr(4, rcx); // store d in b
1324 // stack: ..., a, d, c, b, c, d
1325 __ load_ptr( 5, rcx); // load a
1326 __ load_ptr( 3, rax); // load c
1327 __ store_ptr(3, rcx); // store a in c
1328 __ store_ptr(5, rax); // store c in a
1329 // stack: ..., c, d, a, b, c, d
1330 }
1331
1332 void TemplateTable::swap() {
1333 transition(vtos, vtos);
1334 // stack: ..., a, b
1335 __ load_ptr( 1, rcx); // load a
1336 __ load_ptr( 0, rax); // load b
1337 __ store_ptr(0, rcx); // store a in b
1338 __ store_ptr(1, rax); // store b in a
1339 // stack: ..., b, a
1340 }
1341
1342 void TemplateTable::iop2(Operation op) {
1343 transition(itos, itos);
1344 switch (op) {
1345 case add : __ pop_i(rdx); __ addl (rax, rdx); break;
1346 case sub : __ movl(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break;
1347 case mul : __ pop_i(rdx); __ imull(rax, rdx); break;
1348 case _and : __ pop_i(rdx); __ andl (rax, rdx); break;
1349 case _or : __ pop_i(rdx); __ orl (rax, rdx); break;
1350 case _xor : __ pop_i(rdx); __ xorl (rax, rdx); break;
1351 case shl : __ movl(rcx, rax); __ pop_i(rax); __ shll (rax); break;
1352 case shr : __ movl(rcx, rax); __ pop_i(rax); __ sarl (rax); break;
1353 case ushr : __ movl(rcx, rax); __ pop_i(rax); __ shrl (rax); break;
1354 default : ShouldNotReachHere();
1355 }
1356 }
1357
1358 void TemplateTable::lop2(Operation op) {
1359 transition(ltos, ltos);
1360 switch (op) {
1361 case add : __ pop_l(rdx); __ addptr(rax, rdx); break;
1362 case sub : __ mov(rdx, rax); __ pop_l(rax); __ subptr(rax, rdx); break;
1363 case _and : __ pop_l(rdx); __ andptr(rax, rdx); break;
1364 case _or : __ pop_l(rdx); __ orptr (rax, rdx); break;
1365 case _xor : __ pop_l(rdx); __ xorptr(rax, rdx); break;
1366 default : ShouldNotReachHere();
1367 }
1368 }
1369
1370 void TemplateTable::idiv() {
1371 transition(itos, itos);
1372 __ movl(rcx, rax);
1373 __ pop_i(rax);
1374 // Note: could xor rax and ecx and compare with (-1 ^ min_int). If
1375 // they are not equal, one could do a normal division (no correction
1376 // needed), which may speed up this implementation for the common case.
1377 // (see also JVM spec., p.243 & p.271)
1378 __ corrected_idivl(rcx);
1379 }
1380
1381 void TemplateTable::irem() {
1382 transition(itos, itos);
1383 __ movl(rcx, rax);
1384 __ pop_i(rax);
1385 // Note: could xor rax and ecx and compare with (-1 ^ min_int). If
1386 // they are not equal, one could do a normal division (no correction
1387 // needed), which may speed up this implementation for the common case.
1388 // (see also JVM spec., p.243 & p.271)
1389 __ corrected_idivl(rcx);
1390 __ movl(rax, rdx);
1391 }
1392
1393 void TemplateTable::lmul() {
1394 transition(ltos, ltos);
1395 __ pop_l(rdx);
1396 __ imulq(rax, rdx);
1397 }
1398
1399 void TemplateTable::ldiv() {
1400 transition(ltos, ltos);
1401 __ mov(rcx, rax);
1402 __ pop_l(rax);
1403 // generate explicit div0 check
1404 __ testq(rcx, rcx);
1405 __ jump_cc(Assembler::zero,
1406 RuntimeAddress(Interpreter::_throw_ArithmeticException_entry));
1407 // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
1408 // they are not equal, one could do a normal division (no correction
1409 // needed), which may speed up this implementation for the common case.
1410 // (see also JVM spec., p.243 & p.271)
1411 __ corrected_idivq(rcx); // kills rbx
1412 }
1413
1414 void TemplateTable::lrem() {
1415 transition(ltos, ltos);
1416 __ mov(rcx, rax);
1417 __ pop_l(rax);
1418 __ testq(rcx, rcx);
1419 __ jump_cc(Assembler::zero,
1420 RuntimeAddress(Interpreter::_throw_ArithmeticException_entry));
1421 // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
1422 // they are not equal, one could do a normal division (no correction
1423 // needed), which may speed up this implementation for the common case.
1424 // (see also JVM spec., p.243 & p.271)
1425 __ corrected_idivq(rcx); // kills rbx
1426 __ mov(rax, rdx);
1427 }
1428
1429 void TemplateTable::lshl() {
1430 transition(itos, ltos);
1431 __ movl(rcx, rax); // get shift count
1432 __ pop_l(rax); // get shift value
1433 __ shlq(rax);
1434 }
1435
1436 void TemplateTable::lshr() {
1437 transition(itos, ltos);
1438 __ movl(rcx, rax); // get shift count
1439 __ pop_l(rax); // get shift value
1440 __ sarq(rax);
1441 }
1442
1443 void TemplateTable::lushr() {
1444 transition(itos, ltos);
1445 __ movl(rcx, rax); // get shift count
1446 __ pop_l(rax); // get shift value
1447 __ shrq(rax);
1448 }
1449
1450 void TemplateTable::fop2(Operation op) {
1451 transition(ftos, ftos);
1452
1453 switch (op) {
1454 case add:
1455 __ addss(xmm0, at_rsp());
1456 __ addptr(rsp, Interpreter::stackElementSize);
1457 break;
1458 case sub:
1459 __ movflt(xmm1, xmm0);
1460 __ pop_f(xmm0);
1461 __ subss(xmm0, xmm1);
1462 break;
1463 case mul:
1464 __ mulss(xmm0, at_rsp());
1465 __ addptr(rsp, Interpreter::stackElementSize);
1466 break;
1467 case div:
1468 __ movflt(xmm1, xmm0);
1469 __ pop_f(xmm0);
1470 __ divss(xmm0, xmm1);
1471 break;
1472 case rem:
1473 // On x86_64 platforms the SharedRuntime::frem method is called to perform the
1474 // modulo operation. The frem method calls the function
1475 // double fmod(double x, double y) in math.h. The documentation of fmod states:
1476 // "If x or y is a NaN, a NaN is returned." without specifying what type of NaN
1477 // (signalling or quiet) is returned.
1478 __ movflt(xmm1, xmm0);
1479 __ pop_f(xmm0);
1480 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem), 2);
1481 break;
1482 default:
1483 ShouldNotReachHere();
1484 break;
1485 }
1486 }
1487
1488 void TemplateTable::dop2(Operation op) {
1489 transition(dtos, dtos);
1490 switch (op) {
1491 case add:
1492 __ addsd(xmm0, at_rsp());
1493 __ addptr(rsp, 2 * Interpreter::stackElementSize);
1494 break;
1495 case sub:
1496 __ movdbl(xmm1, xmm0);
1497 __ pop_d(xmm0);
1498 __ subsd(xmm0, xmm1);
1499 break;
1500 case mul:
1501 __ mulsd(xmm0, at_rsp());
1502 __ addptr(rsp, 2 * Interpreter::stackElementSize);
1503 break;
1504 case div:
1505 __ movdbl(xmm1, xmm0);
1506 __ pop_d(xmm0);
1507 __ divsd(xmm0, xmm1);
1508 break;
1509 case rem:
1510 // Similar to fop2(), the modulo operation is performed using the
1511 // SharedRuntime::drem method on x86_64 platforms for the same reasons
1512 // as mentioned in fop2().
1513 __ movdbl(xmm1, xmm0);
1514 __ pop_d(xmm0);
1515 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem), 2);
1516 break;
1517 default:
1518 ShouldNotReachHere();
1519 break;
1520 }
1521 }
1522
1523 void TemplateTable::ineg() {
1524 transition(itos, itos);
1525 __ negl(rax);
1526 }
1527
1528 void TemplateTable::lneg() {
1529 transition(ltos, ltos);
1530 __ negq(rax);
1531 }
1532
1533 // Note: 'double' and 'long long' have 32-bits alignment on x86.
1534 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
1535 // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
1536 // of 128-bits operands for SSE instructions.
1537 jlong *operand = (jlong*)(((intptr_t)adr)&((intptr_t)(~0xF)));
1538 // Store the value to a 128-bits operand.
1539 operand[0] = lo;
1540 operand[1] = hi;
1541 return operand;
1542 }
1543
1544 // Buffer for 128-bits masks used by SSE instructions.
1545 static jlong float_signflip_pool[2*2];
1546 static jlong double_signflip_pool[2*2];
1547
1548 void TemplateTable::fneg() {
1549 transition(ftos, ftos);
1550 static jlong *float_signflip = double_quadword(&float_signflip_pool[1], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
1551 __ xorps(xmm0, ExternalAddress((address) float_signflip), rscratch1);
1552 }
1553
1554 void TemplateTable::dneg() {
1555 transition(dtos, dtos);
1556 static jlong *double_signflip =
1557 double_quadword(&double_signflip_pool[1], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
1558 __ xorpd(xmm0, ExternalAddress((address) double_signflip), rscratch1);
1559 }
1560
1561 void TemplateTable::iinc() {
1562 transition(vtos, vtos);
1563 __ load_signed_byte(rdx, at_bcp(2)); // get constant
1564 locals_index(rbx);
1565 __ addl(iaddress(rbx), rdx);
1566 }
1567
1568 void TemplateTable::wide_iinc() {
1569 transition(vtos, vtos);
1570 __ movl(rdx, at_bcp(4)); // get constant
1571 locals_index_wide(rbx);
1572 __ bswapl(rdx); // swap bytes & sign-extend constant
1573 __ sarl(rdx, 16);
1574 __ addl(iaddress(rbx), rdx);
1575 // Note: should probably use only one movl to get both
1576 // the index and the constant -> fix this
1577 }
1578
1579 void TemplateTable::convert() {
1580 // Checking
1581 #ifdef ASSERT
1582 {
1583 TosState tos_in = ilgl;
1584 TosState tos_out = ilgl;
1585 switch (bytecode()) {
1586 case Bytecodes::_i2l: // fall through
1587 case Bytecodes::_i2f: // fall through
1588 case Bytecodes::_i2d: // fall through
1589 case Bytecodes::_i2b: // fall through
1590 case Bytecodes::_i2c: // fall through
1591 case Bytecodes::_i2s: tos_in = itos; break;
1592 case Bytecodes::_l2i: // fall through
1593 case Bytecodes::_l2f: // fall through
1594 case Bytecodes::_l2d: tos_in = ltos; break;
1595 case Bytecodes::_f2i: // fall through
1596 case Bytecodes::_f2l: // fall through
1597 case Bytecodes::_f2d: tos_in = ftos; break;
1598 case Bytecodes::_d2i: // fall through
1599 case Bytecodes::_d2l: // fall through
1600 case Bytecodes::_d2f: tos_in = dtos; break;
1601 default : ShouldNotReachHere();
1602 }
1603 switch (bytecode()) {
1604 case Bytecodes::_l2i: // fall through
1605 case Bytecodes::_f2i: // fall through
1606 case Bytecodes::_d2i: // fall through
1607 case Bytecodes::_i2b: // fall through
1608 case Bytecodes::_i2c: // fall through
1609 case Bytecodes::_i2s: tos_out = itos; break;
1610 case Bytecodes::_i2l: // fall through
1611 case Bytecodes::_f2l: // fall through
1612 case Bytecodes::_d2l: tos_out = ltos; break;
1613 case Bytecodes::_i2f: // fall through
1614 case Bytecodes::_l2f: // fall through
1615 case Bytecodes::_d2f: tos_out = ftos; break;
1616 case Bytecodes::_i2d: // fall through
1617 case Bytecodes::_l2d: // fall through
1618 case Bytecodes::_f2d: tos_out = dtos; break;
1619 default : ShouldNotReachHere();
1620 }
1621 transition(tos_in, tos_out);
1622 }
1623 #endif // ASSERT
1624
1625 static const int64_t is_nan = 0x8000000000000000L;
1626
1627 // Conversion
1628 switch (bytecode()) {
1629 case Bytecodes::_i2l:
1630 __ movslq(rax, rax);
1631 break;
1632 case Bytecodes::_i2f:
1633 __ cvtsi2ssl(xmm0, rax);
1634 break;
1635 case Bytecodes::_i2d:
1636 __ cvtsi2sdl(xmm0, rax);
1637 break;
1638 case Bytecodes::_i2b:
1639 __ movsbl(rax, rax);
1640 break;
1641 case Bytecodes::_i2c:
1642 __ movzwl(rax, rax);
1643 break;
1644 case Bytecodes::_i2s:
1645 __ movswl(rax, rax);
1646 break;
1647 case Bytecodes::_l2i:
1648 __ movl(rax, rax);
1649 break;
1650 case Bytecodes::_l2f:
1651 __ cvtsi2ssq(xmm0, rax);
1652 break;
1653 case Bytecodes::_l2d:
1654 __ cvtsi2sdq(xmm0, rax);
1655 break;
1656 case Bytecodes::_f2i:
1657 {
1658 Label L;
1659 __ cvttss2sil(rax, xmm0);
1660 __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
1661 __ jcc(Assembler::notEqual, L);
1662 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1);
1663 __ bind(L);
1664 }
1665 break;
1666 case Bytecodes::_f2l:
1667 {
1668 Label L;
1669 __ cvttss2siq(rax, xmm0);
1670 // NaN or overflow/underflow?
1671 __ cmp64(rax, ExternalAddress((address) &is_nan), rscratch1);
1672 __ jcc(Assembler::notEqual, L);
1673 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1);
1674 __ bind(L);
1675 }
1676 break;
1677 case Bytecodes::_f2d:
1678 __ cvtss2sd(xmm0, xmm0);
1679 break;
1680 case Bytecodes::_d2i:
1681 {
1682 Label L;
1683 __ cvttsd2sil(rax, xmm0);
1684 __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
1685 __ jcc(Assembler::notEqual, L);
1686 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 1);
1687 __ bind(L);
1688 }
1689 break;
1690 case Bytecodes::_d2l:
1691 {
1692 Label L;
1693 __ cvttsd2siq(rax, xmm0);
1694 // NaN or overflow/underflow?
1695 __ cmp64(rax, ExternalAddress((address) &is_nan), rscratch1);
1696 __ jcc(Assembler::notEqual, L);
1697 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 1);
1698 __ bind(L);
1699 }
1700 break;
1701 case Bytecodes::_d2f:
1702 __ cvtsd2ss(xmm0, xmm0);
1703 break;
1704 default:
1705 ShouldNotReachHere();
1706 }
1707 }
1708
1709 void TemplateTable::lcmp() {
1710 transition(ltos, itos);
1711 Label done;
1712 __ pop_l(rdx);
1713 __ cmpq(rdx, rax);
1714 __ movl(rax, -1);
1715 __ jccb(Assembler::less, done);
1716 __ setb(Assembler::notEqual, rax);
1717 __ movzbl(rax, rax);
1718 __ bind(done);
1719 }
1720
1721 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
1722 Label done;
1723 if (is_float) {
1724 // XXX get rid of pop here, use ... reg, mem32
1725 __ pop_f(xmm1);
1726 __ ucomiss(xmm1, xmm0);
1727 } else {
1728 // XXX get rid of pop here, use ... reg, mem64
1729 __ pop_d(xmm1);
1730 __ ucomisd(xmm1, xmm0);
1731 }
1732 if (unordered_result < 0) {
1733 __ movl(rax, -1);
1734 __ jccb(Assembler::parity, done);
1735 __ jccb(Assembler::below, done);
1736 __ setb(Assembler::notEqual, rdx);
1737 __ movzbl(rax, rdx);
1738 } else {
1739 __ movl(rax, 1);
1740 __ jccb(Assembler::parity, done);
1741 __ jccb(Assembler::above, done);
1742 __ movl(rax, 0);
1743 __ jccb(Assembler::equal, done);
1744 __ decrementl(rax);
1745 }
1746 __ bind(done);
1747 }
1748
1749 void TemplateTable::branch(bool is_jsr, bool is_wide) {
1750 __ get_method(rcx); // rcx holds method
1751 __ profile_taken_branch(rax); // rax holds updated MDP
1752
1753 const ByteSize be_offset = MethodCounters::backedge_counter_offset() +
1754 InvocationCounter::counter_offset();
1755 const ByteSize inv_offset = MethodCounters::invocation_counter_offset() +
1756 InvocationCounter::counter_offset();
1757
1758 // Load up edx with the branch displacement
1759 if (is_wide) {
1760 __ movl(rdx, at_bcp(1));
1761 } else {
1762 __ load_signed_short(rdx, at_bcp(1));
1763 }
1764 __ bswapl(rdx);
1765
1766 if (!is_wide) {
1767 __ sarl(rdx, 16);
1768 }
1769 __ movl2ptr(rdx, rdx);
1770
1771 // Handle all the JSR stuff here, then exit.
1772 // It's much shorter and cleaner than intermingling with the non-JSR
1773 // normal-branch stuff occurring below.
1774 if (is_jsr) {
1775 // Pre-load the next target bytecode into rbx
1776 __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1, 0));
1777
1778 // compute return address as bci in rax
1779 __ lea(rax, at_bcp((is_wide ? 5 : 3) -
1780 in_bytes(ConstMethod::codes_offset())));
1781 __ subptr(rax, Address(rcx, Method::const_offset()));
1782 // Adjust the bcp in r13 by the displacement in rdx
1783 __ addptr(rbcp, rdx);
1784 // jsr returns atos that is not an oop
1785 __ push_i(rax);
1786 __ dispatch_only(vtos, true);
1787 return;
1788 }
1789
1790 // Normal (non-jsr) branch handling
1791
1792 // Adjust the bcp in r13 by the displacement in rdx
1793 __ addptr(rbcp, rdx);
1794
1795 assert(UseLoopCounter || !UseOnStackReplacement,
1796 "on-stack-replacement requires loop counters");
1797 Label backedge_counter_overflow;
1798 Label dispatch;
1799 if (UseLoopCounter) {
1800 // increment backedge counter for backward branches
1801 // rax: MDO
1802 // rcx: method
1803 // rdx: target offset
1804 // r13: target bcp
1805 // r14: locals pointer
1806 __ testl(rdx, rdx); // check if forward or backward branch
1807 __ jcc(Assembler::positive, dispatch); // count only if backward branch
1808
1809 // check if MethodCounters exists
1810 Label has_counters;
1811 __ movptr(rax, Address(rcx, Method::method_counters_offset()));
1812 __ testptr(rax, rax);
1813 __ jcc(Assembler::notZero, has_counters);
1814 __ push(rdx);
1815 __ push(rcx);
1816 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::build_method_counters),
1817 rcx);
1818 __ pop(rcx);
1819 __ pop(rdx);
1820 __ movptr(rax, Address(rcx, Method::method_counters_offset()));
1821 __ testptr(rax, rax);
1822 __ jcc(Assembler::zero, dispatch);
1823 __ bind(has_counters);
1824
1825 Label no_mdo;
1826 if (ProfileInterpreter) {
1827 // Are we profiling?
1828 __ movptr(rbx, Address(rcx, in_bytes(Method::method_data_offset())));
1829 __ testptr(rbx, rbx);
1830 __ jccb(Assembler::zero, no_mdo);
1831 // Increment the MDO backedge counter
1832 const Address mdo_backedge_counter(rbx, in_bytes(MethodData::backedge_counter_offset()) +
1833 in_bytes(InvocationCounter::counter_offset()));
1834 const Address mask(rbx, in_bytes(MethodData::backedge_mask_offset()));
1835 __ increment_mask_and_jump(mdo_backedge_counter, mask, rax,
1836 UseOnStackReplacement ? &backedge_counter_overflow : nullptr);
1837 __ jmp(dispatch);
1838 }
1839 __ bind(no_mdo);
1840 // Increment backedge counter in MethodCounters*
1841 __ movptr(rcx, Address(rcx, Method::method_counters_offset()));
1842 const Address mask(rcx, in_bytes(MethodCounters::backedge_mask_offset()));
1843 __ increment_mask_and_jump(Address(rcx, be_offset), mask, rax,
1844 UseOnStackReplacement ? &backedge_counter_overflow : nullptr);
1845 __ bind(dispatch);
1846 }
1847
1848 // Pre-load the next target bytecode into rbx
1849 __ load_unsigned_byte(rbx, Address(rbcp, 0));
1850
1851 // continue with the bytecode @ target
1852 // rax: return bci for jsr's, unused otherwise
1853 // rbx: target bytecode
1854 // r13: target bcp
1855 __ dispatch_only(vtos, true);
1856
1857 if (UseLoopCounter) {
1858 if (UseOnStackReplacement) {
1859 Label set_mdp;
1860 // invocation counter overflow
1861 __ bind(backedge_counter_overflow);
1862 __ negptr(rdx);
1863 __ addptr(rdx, rbcp); // branch bcp
1864 // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp)
1865 __ call_VM(noreg,
1866 CAST_FROM_FN_PTR(address,
1867 InterpreterRuntime::frequency_counter_overflow),
1868 rdx);
1869
1870 // rax: osr nmethod (osr ok) or null (osr not possible)
1871 // rdx: scratch
1872 // r14: locals pointer
1873 // r13: bcp
1874 __ testptr(rax, rax); // test result
1875 __ jcc(Assembler::zero, dispatch); // no osr if null
1876 // nmethod may have been invalidated (VM may block upon call_VM return)
1877 __ cmpb(Address(rax, nmethod::state_offset()), nmethod::in_use);
1878 __ jcc(Assembler::notEqual, dispatch);
1879
1880 // We have the address of an on stack replacement routine in rax.
1881 // In preparation of invoking it, first we must migrate the locals
1882 // and monitors from off the interpreter frame on the stack.
1883 // Ensure to save the osr nmethod over the migration call,
1884 // it will be preserved in rbx.
1885 __ mov(rbx, rax);
1886
1887 JFR_ONLY(__ enter_jfr_critical_section();)
1888
1889 call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
1890
1891 // rax is OSR buffer, move it to expected parameter location
1892 __ mov(j_rarg0, rax);
1893 // We use j_rarg definitions here so that registers don't conflict as parameter
1894 // registers change across platforms as we are in the midst of a calling
1895 // sequence to the OSR nmethod and we don't want collision. These are NOT parameters.
1896
1897 const Register retaddr = j_rarg2;
1898 const Register sender_sp = j_rarg1;
1899
1900 // pop the interpreter frame
1901 __ movptr(sender_sp, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
1902 __ leave(); // remove frame anchor
1903 JFR_ONLY(__ leave_jfr_critical_section();)
1904 __ pop(retaddr); // get return address
1905 __ mov(rsp, sender_sp); // set sp to sender sp
1906 // Ensure compiled code always sees stack at proper alignment
1907 __ andptr(rsp, -(StackAlignmentInBytes));
1908
1909 // push the return address
1910 __ push(retaddr);
1911
1912 // and begin the OSR nmethod
1913 __ jmp(Address(rbx, nmethod::osr_entry_point_offset()));
1914 }
1915 }
1916 }
1917
1918 void TemplateTable::if_0cmp(Condition cc) {
1919 transition(itos, vtos);
1920 // assume branch is more often taken than not (loops use backward branches)
1921 Label not_taken;
1922 __ testl(rax, rax);
1923 __ jcc(j_not(cc), not_taken);
1924 branch(false, false);
1925 __ bind(not_taken);
1926 __ profile_not_taken_branch(rax);
1927 }
1928
1929 void TemplateTable::if_icmp(Condition cc) {
1930 transition(itos, vtos);
1931 // assume branch is more often taken than not (loops use backward branches)
1932 Label not_taken;
1933 __ pop_i(rdx);
1934 __ cmpl(rdx, rax);
1935 __ jcc(j_not(cc), not_taken);
1936 branch(false, false);
1937 __ bind(not_taken);
1938 __ profile_not_taken_branch(rax);
1939 }
1940
1941 void TemplateTable::if_nullcmp(Condition cc) {
1942 transition(atos, vtos);
1943 // assume branch is more often taken than not (loops use backward branches)
1944 Label not_taken;
1945 __ testptr(rax, rax);
1946 __ jcc(j_not(cc), not_taken);
1947 branch(false, false);
1948 __ bind(not_taken);
1949 __ profile_not_taken_branch(rax);
1950 }
1951
1952 void TemplateTable::if_acmp(Condition cc) {
1953 transition(atos, vtos);
1954 // assume branch is more often taken than not (loops use backward branches)
1955 Label taken, not_taken;
1956 __ pop_ptr(rdx);
1957
1958 __ profile_acmp(rbx, rdx, rax, rcx);
1959
1960 const int is_inline_type_mask = markWord::inline_type_pattern;
1961 if (Arguments::is_valhalla_enabled()) {
1962 __ cmpoop(rdx, rax);
1963 __ jcc(Assembler::equal, (cc == equal) ? taken : not_taken);
1964
1965 // might be substitutable, test if either rax or rdx is null
1966 __ testptr(rax, rax);
1967 __ jcc(Assembler::zero, (cc == equal) ? not_taken : taken);
1968 __ testptr(rdx, rdx);
1969 __ jcc(Assembler::zero, (cc == equal) ? not_taken : taken);
1970
1971 // and both are values ?
1972 __ movptr(rbx, Address(rdx, oopDesc::mark_offset_in_bytes()));
1973 __ andptr(rbx, Address(rax, oopDesc::mark_offset_in_bytes()));
1974 __ andptr(rbx, is_inline_type_mask);
1975 __ cmpptr(rbx, is_inline_type_mask);
1976 __ jcc(Assembler::notEqual, (cc == equal) ? not_taken : taken);
1977
1978 // same value klass ?
1979 __ load_metadata(rbx, rdx);
1980 __ load_metadata(rcx, rax);
1981 __ cmpptr(rbx, rcx);
1982 __ jcc(Assembler::notEqual, (cc == equal) ? not_taken : taken);
1983
1984 // Know both are the same type, let's test for substitutability...
1985 if (cc == equal) {
1986 invoke_is_substitutable(rax, rdx, taken, not_taken);
1987 } else {
1988 invoke_is_substitutable(rax, rdx, not_taken, taken);
1989 }
1990 __ stop("Not reachable");
1991 }
1992
1993 __ cmpoop(rdx, rax);
1994 __ jcc(j_not(cc), not_taken);
1995 __ bind(taken);
1996 branch(false, false);
1997 __ bind(not_taken);
1998 __ profile_not_taken_branch(rax, true);
1999 }
2000
2001 void TemplateTable::invoke_is_substitutable(Register aobj, Register bobj,
2002 Label& is_subst, Label& not_subst) {
2003 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::is_substitutable), aobj, bobj);
2004 // Restored...rax answer, jmp to outcome...
2005 __ testl(rax, rax);
2006 __ jcc(Assembler::zero, not_subst);
2007 __ jmp(is_subst);
2008 }
2009
2010 void TemplateTable::ret() {
2011 transition(vtos, vtos);
2012 locals_index(rbx);
2013 __ movslq(rbx, iaddress(rbx)); // get return bci, compute return bcp
2014 __ profile_ret(rbx, rcx);
2015 __ get_method(rax);
2016 __ movptr(rbcp, Address(rax, Method::const_offset()));
2017 __ lea(rbcp, Address(rbcp, rbx, Address::times_1,
2018 ConstMethod::codes_offset()));
2019 __ dispatch_next(vtos, 0, true);
2020 }
2021
2022 void TemplateTable::wide_ret() {
2023 transition(vtos, vtos);
2024 locals_index_wide(rbx);
2025 __ movptr(rbx, aaddress(rbx)); // get return bci, compute return bcp
2026 __ profile_ret(rbx, rcx);
2027 __ get_method(rax);
2028 __ movptr(rbcp, Address(rax, Method::const_offset()));
2029 __ lea(rbcp, Address(rbcp, rbx, Address::times_1, ConstMethod::codes_offset()));
2030 __ dispatch_next(vtos, 0, true);
2031 }
2032
2033 void TemplateTable::tableswitch() {
2034 Label default_case, continue_execution;
2035 transition(itos, vtos);
2036
2037 // align r13/rsi
2038 __ lea(rbx, at_bcp(BytesPerInt));
2039 __ andptr(rbx, -BytesPerInt);
2040 // load lo & hi
2041 __ movl(rcx, Address(rbx, BytesPerInt));
2042 __ movl(rdx, Address(rbx, 2 * BytesPerInt));
2043 __ bswapl(rcx);
2044 __ bswapl(rdx);
2045 // check against lo & hi
2046 __ cmpl(rax, rcx);
2047 __ jcc(Assembler::less, default_case);
2048 __ cmpl(rax, rdx);
2049 __ jcc(Assembler::greater, default_case);
2050 // lookup dispatch offset
2051 __ subl(rax, rcx);
2052 __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt));
2053 __ profile_switch_case(rax, rbx, rcx);
2054 // continue execution
2055 __ bind(continue_execution);
2056 __ bswapl(rdx);
2057 __ movl2ptr(rdx, rdx);
2058 __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1));
2059 __ addptr(rbcp, rdx);
2060 __ dispatch_only(vtos, true);
2061 // handle default
2062 __ bind(default_case);
2063 __ profile_switch_default(rax);
2064 __ movl(rdx, Address(rbx, 0));
2065 __ jmp(continue_execution);
2066 }
2067
2068 void TemplateTable::lookupswitch() {
2069 transition(itos, itos);
2070 __ stop("lookupswitch bytecode should have been rewritten");
2071 }
2072
2073 void TemplateTable::fast_linearswitch() {
2074 transition(itos, vtos);
2075 Label loop_entry, loop, found, continue_execution;
2076 // bswap rax so we can avoid bswapping the table entries
2077 __ bswapl(rax);
2078 // align r13
2079 __ lea(rbx, at_bcp(BytesPerInt)); // btw: should be able to get rid of
2080 // this instruction (change offsets
2081 // below)
2082 __ andptr(rbx, -BytesPerInt);
2083 // set counter
2084 __ movl(rcx, Address(rbx, BytesPerInt));
2085 __ bswapl(rcx);
2086 __ jmpb(loop_entry);
2087 // table search
2088 __ bind(loop);
2089 __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * BytesPerInt));
2090 __ jcc(Assembler::equal, found);
2091 __ bind(loop_entry);
2092 __ decrementl(rcx);
2093 __ jcc(Assembler::greaterEqual, loop);
2094 // default case
2095 __ profile_switch_default(rax);
2096 __ movl(rdx, Address(rbx, 0));
2097 __ jmp(continue_execution);
2098 // entry found -> get offset
2099 __ bind(found);
2100 __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * BytesPerInt));
2101 __ profile_switch_case(rcx, rax, rbx);
2102 // continue execution
2103 __ bind(continue_execution);
2104 __ bswapl(rdx);
2105 __ movl2ptr(rdx, rdx);
2106 __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1));
2107 __ addptr(rbcp, rdx);
2108 __ dispatch_only(vtos, true);
2109 }
2110
2111 void TemplateTable::fast_binaryswitch() {
2112 transition(itos, vtos);
2113 // Implementation using the following core algorithm:
2114 //
2115 // int binary_search(int key, LookupswitchPair* array, int n) {
2116 // // Binary search according to "Methodik des Programmierens" by
2117 // // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
2118 // int i = 0;
2119 // int j = n;
2120 // while (i+1 < j) {
2121 // // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
2122 // // with Q: for all i: 0 <= i < n: key < a[i]
2123 // // where a stands for the array and assuming that the (inexisting)
2124 // // element a[n] is infinitely big.
2125 // int h = (i + j) >> 1;
2126 // // i < h < j
2127 // if (key < array[h].fast_match()) {
2128 // j = h;
2129 // } else {
2130 // i = h;
2131 // }
2132 // }
2133 // // R: a[i] <= key < a[i+1] or Q
2134 // // (i.e., if key is within array, i is the correct index)
2135 // return i;
2136 // }
2137
2138 // Register allocation
2139 const Register key = rax; // already set (tosca)
2140 const Register array = rbx;
2141 const Register i = rcx;
2142 const Register j = rdx;
2143 const Register h = rdi;
2144 const Register temp = rsi;
2145
2146 // Find array start
2147 __ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to
2148 // get rid of this
2149 // instruction (change
2150 // offsets below)
2151 __ andptr(array, -BytesPerInt);
2152
2153 // Initialize i & j
2154 __ xorl(i, i); // i = 0;
2155 __ movl(j, Address(array, -BytesPerInt)); // j = length(array);
2156
2157 // Convert j into native byteordering
2158 __ bswapl(j);
2159
2160 // And start
2161 Label entry;
2162 __ jmp(entry);
2163
2164 // binary search loop
2165 {
2166 Label loop;
2167 __ bind(loop);
2168 // int h = (i + j) >> 1;
2169 __ leal(h, Address(i, j, Address::times_1)); // h = i + j;
2170 __ sarl(h, 1); // h = (i + j) >> 1;
2171 // if (key < array[h].fast_match()) {
2172 // j = h;
2173 // } else {
2174 // i = h;
2175 // }
2176 // Convert array[h].match to native byte-ordering before compare
2177 __ movl(temp, Address(array, h, Address::times_8));
2178 __ bswapl(temp);
2179 __ cmpl(key, temp);
2180 // j = h if (key < array[h].fast_match())
2181 __ cmov32(Assembler::less, j, h);
2182 // i = h if (key >= array[h].fast_match())
2183 __ cmov32(Assembler::greaterEqual, i, h);
2184 // while (i+1 < j)
2185 __ bind(entry);
2186 __ leal(h, Address(i, 1)); // i+1
2187 __ cmpl(h, j); // i+1 < j
2188 __ jcc(Assembler::less, loop);
2189 }
2190
2191 // end of binary search, result index is i (must check again!)
2192 Label default_case;
2193 // Convert array[i].match to native byte-ordering before compare
2194 __ movl(temp, Address(array, i, Address::times_8));
2195 __ bswapl(temp);
2196 __ cmpl(key, temp);
2197 __ jcc(Assembler::notEqual, default_case);
2198
2199 // entry found -> j = offset
2200 __ movl(j , Address(array, i, Address::times_8, BytesPerInt));
2201 __ profile_switch_case(i, key, array);
2202 __ bswapl(j);
2203 __ movslq(j, j);
2204
2205 __ load_unsigned_byte(rbx, Address(rbcp, j, Address::times_1));
2206 __ addptr(rbcp, j);
2207 __ dispatch_only(vtos, true);
2208
2209 // default case -> j = default offset
2210 __ bind(default_case);
2211 __ profile_switch_default(i);
2212 __ movl(j, Address(array, -2 * BytesPerInt));
2213 __ bswapl(j);
2214 __ movslq(j, j);
2215
2216 __ load_unsigned_byte(rbx, Address(rbcp, j, Address::times_1));
2217 __ addptr(rbcp, j);
2218 __ dispatch_only(vtos, true);
2219 }
2220
2221 void TemplateTable::_return(TosState state) {
2222 transition(state, state);
2223
2224 assert(_desc->calls_vm(),
2225 "inconsistent calls_vm information"); // call in remove_activation
2226
2227 if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
2228 assert(state == vtos, "only valid state");
2229 Register robj = c_rarg1;
2230 __ movptr(robj, aaddress(0));
2231 __ load_klass(rdi, robj, rscratch1);
2232 __ testb(Address(rdi, Klass::misc_flags_offset()), KlassFlags::_misc_has_finalizer);
2233 Label skip_register_finalizer;
2234 __ jcc(Assembler::zero, skip_register_finalizer);
2235
2236 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), robj);
2237
2238 __ bind(skip_register_finalizer);
2239 }
2240
2241 if (_desc->bytecode() != Bytecodes::_return_register_finalizer) {
2242 Label no_safepoint;
2243 NOT_PRODUCT(__ block_comment("Thread-local Safepoint poll"));
2244 __ testb(Address(r15_thread, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit());
2245 __ jcc(Assembler::zero, no_safepoint);
2246 __ push(state);
2247 __ push_cont_fastpath();
2248 __ call_VM(noreg, CAST_FROM_FN_PTR(address,
2249 InterpreterRuntime::at_safepoint));
2250 __ pop_cont_fastpath();
2251 __ pop(state);
2252 __ bind(no_safepoint);
2253 }
2254
2255 // Narrow result if state is itos but result type is smaller.
2256 // Need to narrow in the return bytecode rather than in generate_return_entry
2257 // since compiled code callers expect the result to already be narrowed.
2258 if (state == itos) {
2259 __ narrow(rax);
2260 }
2261
2262 __ remove_activation(state, rbcp, true, true, true);
2263
2264 __ jmp(rbcp);
2265 }
2266
2267 // ----------------------------------------------------------------------------
2268 // Volatile variables demand their effects be made known to all CPU's
2269 // in order. Store buffers on most chips allow reads & writes to
2270 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode
2271 // without some kind of memory barrier (i.e., it's not sufficient that
2272 // the interpreter does not reorder volatile references, the hardware
2273 // also must not reorder them).
2274 //
2275 // According to the new Java Memory Model (JMM):
2276 // (1) All volatiles are serialized wrt to each other. ALSO reads &
2277 // writes act as acquire & release, so:
2278 // (2) A read cannot let unrelated NON-volatile memory refs that
2279 // happen after the read float up to before the read. It's OK for
2280 // non-volatile memory refs that happen before the volatile read to
2281 // float down below it.
2282 // (3) Similar a volatile write cannot let unrelated NON-volatile
2283 // memory refs that happen BEFORE the write float down to after the
2284 // write. It's OK for non-volatile memory refs that happen after the
2285 // volatile write to float up before it.
2286 //
2287 // We only put in barriers around volatile refs (they are expensive),
2288 // not _between_ memory refs (that would require us to track the
2289 // flavor of the previous memory refs). Requirements (2) and (3)
2290 // require some barriers before volatile stores and after volatile
2291 // loads. These nearly cover requirement (1) but miss the
2292 // volatile-store-volatile-load case. This final case is placed after
2293 // volatile-stores although it could just as well go before
2294 // volatile-loads.
2295
2296 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits order_constraint ) {
2297 // Helper function to insert a is-volatile test and memory barrier
2298 __ membar(order_constraint);
2299 }
2300
2301 void TemplateTable::resolve_cache_and_index_for_method(int byte_no,
2302 Register cache,
2303 Register index) {
2304 const Register temp = rbx;
2305 assert_different_registers(cache, index, temp);
2306
2307 Label L_clinit_barrier_slow, L_done;
2308
2309 Bytecodes::Code code = bytecode();
2310
2311 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
2312
2313 __ load_method_entry(cache, index);
2314 switch(byte_no) {
2315 case f1_byte:
2316 __ load_unsigned_byte(temp, Address(cache, in_bytes(ResolvedMethodEntry::bytecode1_offset())));
2317 break;
2318 case f2_byte:
2319 __ load_unsigned_byte(temp, Address(cache, in_bytes(ResolvedMethodEntry::bytecode2_offset())));
2320 break;
2321 default:
2322 ShouldNotReachHere();
2323 }
2324 __ cmpl(temp, code); // have we resolved this bytecode?
2325
2326 // Class initialization barrier for static methods
2327 if (bytecode() == Bytecodes::_invokestatic) {
2328 assert(VM_Version::supports_fast_class_init_checks(), "sanity");
2329 const Register method = temp;
2330 const Register klass = temp;
2331
2332 __ jcc(Assembler::notEqual, L_clinit_barrier_slow);
2333 __ movptr(method, Address(cache, in_bytes(ResolvedMethodEntry::method_offset())));
2334 __ load_method_holder(klass, method);
2335 __ clinit_barrier(klass, &L_done, /*L_slow_path*/ nullptr);
2336 __ bind(L_clinit_barrier_slow);
2337 } else {
2338 __ jcc(Assembler::equal, L_done);
2339 }
2340
2341 // resolve first time through
2342 // Class initialization barrier slow path lands here as well.
2343 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache);
2344 __ movl(temp, code);
2345 __ call_VM_preemptable(noreg, entry, temp);
2346 // Update registers with resolved info
2347 __ load_method_entry(cache, index);
2348 __ bind(L_done);
2349 }
2350
2351 void TemplateTable::resolve_cache_and_index_for_field(int byte_no,
2352 Register cache,
2353 Register index) {
2354 const Register temp = rbx;
2355 assert_different_registers(cache, index, temp);
2356
2357 Label L_clinit_barrier_slow, L_done;
2358
2359 Bytecodes::Code code = bytecode();
2360 switch (code) {
2361 case Bytecodes::_nofast_getfield: code = Bytecodes::_getfield; break;
2362 case Bytecodes::_nofast_putfield: code = Bytecodes::_putfield; break;
2363 default: break;
2364 }
2365
2366 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
2367 __ load_field_entry(cache, index);
2368 if (byte_no == f1_byte) {
2369 __ load_unsigned_byte(temp, Address(cache, in_bytes(ResolvedFieldEntry::get_code_offset())));
2370 } else {
2371 __ load_unsigned_byte(temp, Address(cache, in_bytes(ResolvedFieldEntry::put_code_offset())));
2372 }
2373 __ cmpl(temp, code); // have we resolved this bytecode?
2374
2375 // Class initialization barrier for static fields
2376 if (bytecode() == Bytecodes::_getstatic || bytecode() == Bytecodes::_putstatic) {
2377 assert(VM_Version::supports_fast_class_init_checks(), "sanity");
2378 const Register field_holder = temp;
2379
2380 __ jcc(Assembler::notEqual, L_clinit_barrier_slow);
2381 __ movptr(field_holder, Address(cache, in_bytes(ResolvedFieldEntry::field_holder_offset())));
2382 __ clinit_barrier(field_holder, &L_done, /*L_slow_path*/ nullptr);
2383 __ bind(L_clinit_barrier_slow);
2384 } else {
2385 __ jcc(Assembler::equal, L_done);
2386 }
2387
2388 // resolve first time through
2389 // Class initialization barrier slow path lands here as well.
2390 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache);
2391 __ movl(temp, code);
2392 __ call_VM_preemptable(noreg, entry, temp);
2393 // Update registers with resolved info
2394 __ load_field_entry(cache, index);
2395 __ bind(L_done);
2396 }
2397
2398 void TemplateTable::load_resolved_field_entry(Register obj,
2399 Register cache,
2400 Register tos_state,
2401 Register offset,
2402 Register flags,
2403 bool is_static = false) {
2404 assert_different_registers(cache, tos_state, flags, offset);
2405
2406 // Field offset
2407 __ load_sized_value(offset, Address(cache, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/);
2408
2409 // Flags
2410 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedFieldEntry::flags_offset())));
2411
2412 // TOS state
2413 __ load_unsigned_byte(tos_state, Address(cache, in_bytes(ResolvedFieldEntry::type_offset())));
2414
2415 // Klass overwrite register
2416 if (is_static) {
2417 __ movptr(obj, Address(cache, ResolvedFieldEntry::field_holder_offset()));
2418 const int mirror_offset = in_bytes(Klass::java_mirror_offset());
2419 __ movptr(obj, Address(obj, mirror_offset));
2420 __ resolve_oop_handle(obj, rscratch2);
2421 }
2422
2423 }
2424
2425 void TemplateTable::load_invokedynamic_entry(Register method) {
2426 // setup registers
2427 const Register appendix = rax;
2428 const Register cache = rcx;
2429 const Register index = rdx;
2430 assert_different_registers(method, appendix, cache, index);
2431
2432 __ save_bcp();
2433
2434 Label resolved;
2435
2436 __ load_resolved_indy_entry(cache, index);
2437 __ movptr(method, Address(cache, in_bytes(ResolvedIndyEntry::method_offset())));
2438
2439 // Compare the method to zero
2440 __ testptr(method, method);
2441 __ jcc(Assembler::notZero, resolved);
2442
2443 Bytecodes::Code code = bytecode();
2444
2445 // Call to the interpreter runtime to resolve invokedynamic
2446 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache);
2447 __ movl(method, code); // this is essentially Bytecodes::_invokedynamic
2448 __ call_VM(noreg, entry, method);
2449 // Update registers with resolved info
2450 __ load_resolved_indy_entry(cache, index);
2451 __ movptr(method, Address(cache, in_bytes(ResolvedIndyEntry::method_offset())));
2452
2453 #ifdef ASSERT
2454 __ testptr(method, method);
2455 __ jcc(Assembler::notZero, resolved);
2456 __ stop("Should be resolved by now");
2457 #endif // ASSERT
2458 __ bind(resolved);
2459
2460 Label L_no_push;
2461 // Check if there is an appendix
2462 __ load_unsigned_byte(index, Address(cache, in_bytes(ResolvedIndyEntry::flags_offset())));
2463 __ testl(index, (1 << ResolvedIndyEntry::has_appendix_shift));
2464 __ jcc(Assembler::zero, L_no_push);
2465
2466 // Get appendix
2467 __ load_unsigned_short(index, Address(cache, in_bytes(ResolvedIndyEntry::resolved_references_index_offset())));
2468 // Push the appendix as a trailing parameter
2469 // since the parameter_size includes it.
2470 __ load_resolved_reference_at_index(appendix, index);
2471 __ verify_oop(appendix);
2472 __ push(appendix); // push appendix (MethodType, CallSite, etc.)
2473 __ bind(L_no_push);
2474
2475 // compute return type
2476 __ load_unsigned_byte(index, Address(cache, in_bytes(ResolvedIndyEntry::result_type_offset())));
2477 // load return address
2478 {
2479 const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code);
2480 ExternalAddress table(table_addr);
2481 __ lea(rscratch1, table);
2482 __ movptr(index, Address(rscratch1, index, Address::times_ptr));
2483 }
2484
2485 // push return address
2486 __ push(index);
2487 }
2488
2489 void TemplateTable::load_resolved_method_entry_special_or_static(Register cache,
2490 Register method,
2491 Register flags) {
2492 // setup registers
2493 const Register index = rdx;
2494 assert_different_registers(cache, index);
2495 assert_different_registers(method, cache, flags);
2496
2497 // determine constant pool cache field offsets
2498 resolve_cache_and_index_for_method(f1_byte, cache, index);
2499 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset())));
2500 __ movptr(method, Address(cache, in_bytes(ResolvedMethodEntry::method_offset())));
2501 }
2502
2503 void TemplateTable::load_resolved_method_entry_handle(Register cache,
2504 Register method,
2505 Register ref_index,
2506 Register flags) {
2507 // setup registers
2508 const Register index = rdx;
2509 assert_different_registers(cache, index);
2510 assert_different_registers(cache, method, ref_index, flags);
2511
2512 // determine constant pool cache field offsets
2513 resolve_cache_and_index_for_method(f1_byte, cache, index);
2514 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset())));
2515
2516 // Maybe push appendix
2517 Label L_no_push;
2518 __ testl(flags, (1 << ResolvedMethodEntry::has_appendix_shift));
2519 __ jcc(Assembler::zero, L_no_push);
2520 // invokehandle uses an index into the resolved references array
2521 __ load_unsigned_short(ref_index, Address(cache, in_bytes(ResolvedMethodEntry::resolved_references_index_offset())));
2522 // Push the appendix as a trailing parameter.
2523 // This must be done before we get the receiver,
2524 // since the parameter_size includes it.
2525 Register appendix = method;
2526 __ load_resolved_reference_at_index(appendix, ref_index);
2527 __ push(appendix); // push appendix (MethodType, CallSite, etc.)
2528 __ bind(L_no_push);
2529
2530 __ movptr(method, Address(cache, in_bytes(ResolvedMethodEntry::method_offset())));
2531 }
2532
2533 void TemplateTable::load_resolved_method_entry_interface(Register cache,
2534 Register klass,
2535 Register method_or_table_index,
2536 Register flags) {
2537 // setup registers
2538 const Register index = rdx;
2539 assert_different_registers(cache, klass, method_or_table_index, flags);
2540
2541 // determine constant pool cache field offsets
2542 resolve_cache_and_index_for_method(f1_byte, cache, index);
2543 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset())));
2544
2545 // Invokeinterface can behave in different ways:
2546 // If calling a method from java.lang.Object, the forced virtual flag is true so the invocation will
2547 // behave like an invokevirtual call. The state of the virtual final flag will determine whether a method or
2548 // vtable index is placed in the register.
2549 // Otherwise, the registers will be populated with the klass and method.
2550
2551 Label NotVirtual; Label NotVFinal; Label Done;
2552 __ testl(flags, 1 << ResolvedMethodEntry::is_forced_virtual_shift);
2553 __ jcc(Assembler::zero, NotVirtual);
2554 __ testl(flags, (1 << ResolvedMethodEntry::is_vfinal_shift));
2555 __ jcc(Assembler::zero, NotVFinal);
2556 __ movptr(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::method_offset())));
2557 __ jmp(Done);
2558
2559 __ bind(NotVFinal);
2560 __ load_unsigned_short(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::table_index_offset())));
2561 __ jmp(Done);
2562
2563 __ bind(NotVirtual);
2564 __ movptr(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::method_offset())));
2565 __ movptr(klass, Address(cache, in_bytes(ResolvedMethodEntry::klass_offset())));
2566 __ bind(Done);
2567 }
2568
2569 void TemplateTable::load_resolved_method_entry_virtual(Register cache,
2570 Register method_or_table_index,
2571 Register flags) {
2572 // setup registers
2573 const Register index = rdx;
2574 assert_different_registers(index, cache);
2575 assert_different_registers(method_or_table_index, cache, flags);
2576
2577 // determine constant pool cache field offsets
2578 resolve_cache_and_index_for_method(f2_byte, cache, index);
2579 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset())));
2580
2581 // method_or_table_index can either be an itable index or a method depending on the virtual final flag
2582 Label isVFinal; Label Done;
2583 __ testl(flags, (1 << ResolvedMethodEntry::is_vfinal_shift));
2584 __ jcc(Assembler::notZero, isVFinal);
2585 __ load_unsigned_short(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::table_index_offset())));
2586 __ jmp(Done);
2587 __ bind(isVFinal);
2588 __ movptr(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::method_offset())));
2589 __ bind(Done);
2590 }
2591
2592 // The registers cache and index expected to be set before call.
2593 // Correct values of the cache and index registers are preserved.
2594 void TemplateTable::jvmti_post_field_access(Register cache,
2595 Register index,
2596 bool is_static,
2597 bool has_tos) {
2598 if (JvmtiExport::can_post_field_access()) {
2599 // Check to see if a field access watch has been set before we take
2600 // the time to call into the VM.
2601 Label L1;
2602 assert_different_registers(cache, index, rax);
2603 __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
2604 __ testl(rax,rax);
2605 __ jcc(Assembler::zero, L1);
2606
2607 // cache entry pointer
2608 __ load_field_entry(cache, index);
2609 if (is_static) {
2610 __ xorptr(rax, rax); // null object reference
2611 } else {
2612 __ pop(atos); // Get the object
2613 __ verify_oop(rax);
2614 __ push(atos); // Restore stack state
2615 }
2616 // rax,: object pointer or null
2617 // cache: cache entry pointer
2618 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access),
2619 rax, cache);
2620
2621 __ load_field_entry(cache, index);
2622 __ bind(L1);
2623 }
2624 }
2625
2626 void TemplateTable::pop_and_check_object(Register r) {
2627 __ pop_ptr(r);
2628 __ null_check(r); // for field access must check obj.
2629 __ verify_oop(r);
2630 }
2631
2632 void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
2633 transition(vtos, vtos);
2634
2635 const Register obj = r9;
2636 const Register cache = rcx;
2637 const Register index = rdx;
2638 const Register off = rbx;
2639 const Register tos_state = rax;
2640 const Register flags = rdx;
2641 const Register bc = c_rarg3;
2642
2643 resolve_cache_and_index_for_field(byte_no, cache, index);
2644 jvmti_post_field_access(cache, index, is_static, false);
2645 load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static);
2646
2647 const Address field(obj, off, Address::times_1, 0*wordSize);
2648
2649 Label Done, notByte, notBool, notInt, notShort, notChar, notLong, notFloat, notObj;
2650
2651 // Make sure we don't need to mask edx after the above shift
2652 assert(btos == 0, "change code, btos != 0");
2653 __ testl(tos_state, tos_state);
2654 __ jcc(Assembler::notZero, notByte);
2655
2656 // btos
2657 if (!is_static) pop_and_check_object(obj);
2658 __ access_load_at(T_BYTE, IN_HEAP, rax, field, noreg);
2659 __ push(btos);
2660 // Rewrite bytecode to be faster
2661 if (!is_static && rc == may_rewrite) {
2662 patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx);
2663 }
2664 __ jmp(Done);
2665
2666 __ bind(notByte);
2667 __ cmpl(tos_state, ztos);
2668 __ jcc(Assembler::notEqual, notBool);
2669
2670 // ztos (same code as btos)
2671 if (!is_static) pop_and_check_object(obj);
2672 __ access_load_at(T_BOOLEAN, IN_HEAP, rax, field, noreg);
2673 __ push(ztos);
2674 // Rewrite bytecode to be faster
2675 if (!is_static && rc == may_rewrite) {
2676 // use btos rewriting, no truncating to t/f bit is needed for getfield.
2677 patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx);
2678 }
2679 __ jmp(Done);
2680
2681 __ bind(notBool);
2682 __ cmpl(tos_state, atos);
2683 __ jcc(Assembler::notEqual, notObj);
2684 // atos
2685 if (!Arguments::is_valhalla_enabled()) {
2686 if (!is_static) pop_and_check_object(obj);
2687 do_oop_load(_masm, field, rax);
2688 __ push(atos);
2689 if (!is_static && rc == may_rewrite) {
2690 patch_bytecode(Bytecodes::_fast_agetfield, bc, rbx);
2691 }
2692 __ jmp(Done);
2693 } else {
2694 if (is_static) {
2695 __ load_heap_oop(rax, field);
2696 __ push(atos);
2697 __ jmp(Done);
2698 } else {
2699 Label is_flat;
2700 __ test_field_is_flat(flags, rscratch1, is_flat);
2701 pop_and_check_object(obj);
2702 __ load_heap_oop(rax, field);
2703 __ push(atos);
2704 if (rc == may_rewrite) {
2705 patch_bytecode(Bytecodes::_fast_agetfield, bc, rbx);
2706 }
2707 __ jmp(Done);
2708 __ bind(is_flat);
2709 // field is flat (null-free or nullable with a null-marker)
2710 pop_and_check_object(rax);
2711 __ read_flat_field(rcx, rax);
2712 __ verify_oop(rax);
2713 __ push(atos);
2714 if (rc == may_rewrite) {
2715 patch_bytecode(Bytecodes::_fast_vgetfield, bc, rbx);
2716 }
2717 __ jmp(Done);
2718 }
2719 }
2720
2721 __ bind(notObj);
2722
2723 if (!is_static) pop_and_check_object(obj);
2724
2725 __ cmpl(tos_state, itos);
2726 __ jcc(Assembler::notEqual, notInt);
2727 // itos
2728 __ access_load_at(T_INT, IN_HEAP, rax, field, noreg);
2729 __ push(itos);
2730 // Rewrite bytecode to be faster
2731 if (!is_static && rc == may_rewrite) {
2732 patch_bytecode(Bytecodes::_fast_igetfield, bc, rbx);
2733 }
2734 __ jmp(Done);
2735
2736 __ bind(notInt);
2737 __ cmpl(tos_state, ctos);
2738 __ jcc(Assembler::notEqual, notChar);
2739 // ctos
2740 __ access_load_at(T_CHAR, IN_HEAP, rax, field, noreg);
2741 __ push(ctos);
2742 // Rewrite bytecode to be faster
2743 if (!is_static && rc == may_rewrite) {
2744 patch_bytecode(Bytecodes::_fast_cgetfield, bc, rbx);
2745 }
2746 __ jmp(Done);
2747
2748 __ bind(notChar);
2749 __ cmpl(tos_state, stos);
2750 __ jcc(Assembler::notEqual, notShort);
2751 // stos
2752 __ access_load_at(T_SHORT, IN_HEAP, rax, field, noreg);
2753 __ push(stos);
2754 // Rewrite bytecode to be faster
2755 if (!is_static && rc == may_rewrite) {
2756 patch_bytecode(Bytecodes::_fast_sgetfield, bc, rbx);
2757 }
2758 __ jmp(Done);
2759
2760 __ bind(notShort);
2761 __ cmpl(tos_state, ltos);
2762 __ jcc(Assembler::notEqual, notLong);
2763 // ltos
2764 // Generate code as if volatile (x86_32). There just aren't enough registers to
2765 // save that information and this code is faster than the test.
2766 __ access_load_at(T_LONG, IN_HEAP | MO_RELAXED, noreg /* ltos */, field, noreg);
2767 __ push(ltos);
2768 // Rewrite bytecode to be faster
2769 if (!is_static && rc == may_rewrite) patch_bytecode(Bytecodes::_fast_lgetfield, bc, rbx);
2770 __ jmp(Done);
2771
2772 __ bind(notLong);
2773 __ cmpl(tos_state, ftos);
2774 __ jcc(Assembler::notEqual, notFloat);
2775 // ftos
2776
2777 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg);
2778 __ push(ftos);
2779 // Rewrite bytecode to be faster
2780 if (!is_static && rc == may_rewrite) {
2781 patch_bytecode(Bytecodes::_fast_fgetfield, bc, rbx);
2782 }
2783 __ jmp(Done);
2784
2785 __ bind(notFloat);
2786 #ifdef ASSERT
2787 Label notDouble;
2788 __ cmpl(tos_state, dtos);
2789 __ jcc(Assembler::notEqual, notDouble);
2790 #endif
2791 // dtos
2792 // MO_RELAXED: for the case of volatile field, in fact it adds no extra work for the underlying implementation
2793 __ access_load_at(T_DOUBLE, IN_HEAP | MO_RELAXED, noreg /* dtos */, field, noreg);
2794 __ push(dtos);
2795 // Rewrite bytecode to be faster
2796 if (!is_static && rc == may_rewrite) {
2797 patch_bytecode(Bytecodes::_fast_dgetfield, bc, rbx);
2798 }
2799 #ifdef ASSERT
2800 __ jmp(Done);
2801
2802 __ bind(notDouble);
2803 __ stop("Bad state");
2804 #endif
2805
2806 __ bind(Done);
2807 // [jk] not needed currently
2808 // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadLoad |
2809 // Assembler::LoadStore));
2810 }
2811
2812 void TemplateTable::getfield(int byte_no) {
2813 getfield_or_static(byte_no, false);
2814 }
2815
2816 void TemplateTable::nofast_getfield(int byte_no) {
2817 getfield_or_static(byte_no, false, may_not_rewrite);
2818 }
2819
2820 void TemplateTable::getstatic(int byte_no) {
2821 getfield_or_static(byte_no, true);
2822 }
2823
2824 // The registers cache and index expected to be set before call.
2825 // The function may destroy various registers, just not the cache and index registers.
2826 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) {
2827 // Cache is rcx and index is rdx
2828 const Register entry = c_rarg2; // ResolvedFieldEntry
2829 const Register obj = c_rarg1; // Object pointer
2830 const Register value = c_rarg3; // JValue object
2831
2832 if (JvmtiExport::can_post_field_modification()) {
2833 // Check to see if a field modification watch has been set before
2834 // we take the time to call into the VM.
2835 Label L1;
2836 assert_different_registers(cache, obj, rax);
2837 __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
2838 __ testl(rax, rax);
2839 __ jcc(Assembler::zero, L1);
2840
2841 __ mov(entry, cache);
2842
2843 if (is_static) {
2844 // Life is simple. Null out the object pointer.
2845 __ xorl(obj, obj);
2846
2847 } else {
2848 // Life is harder. The stack holds the value on top, followed by
2849 // the object. We don't know the size of the value, though; it
2850 // could be one or two words depending on its type. As a result,
2851 // we must find the type to determine where the object is.
2852 __ load_unsigned_byte(value, Address(entry, in_bytes(ResolvedFieldEntry::type_offset())));
2853 __ movptr(obj, at_tos_p1()); // initially assume a one word jvalue
2854 __ cmpl(value, ltos);
2855 __ cmovptr(Assembler::equal,
2856 obj, at_tos_p2()); // ltos (two word jvalue)
2857 __ cmpl(value, dtos);
2858 __ cmovptr(Assembler::equal,
2859 obj, at_tos_p2()); // dtos (two word jvalue)
2860 }
2861
2862 // object (tos)
2863 __ mov(value, rsp);
2864 // obj: object pointer set up above (null if static)
2865 // cache: field entry pointer
2866 // value: jvalue object on the stack
2867 __ call_VM(noreg,
2868 CAST_FROM_FN_PTR(address,
2869 InterpreterRuntime::post_field_modification),
2870 obj, entry, value);
2871 // Reload field entry
2872 __ load_field_entry(cache, index);
2873 __ bind(L1);
2874 }
2875 }
2876
2877 void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
2878 transition(vtos, vtos);
2879
2880 const Register obj = rcx;
2881 const Register cache = rcx;
2882 const Register index = rdx;
2883 const Register tos_state = rdx;
2884 const Register off = rbx;
2885 const Register flags = r9;
2886
2887 resolve_cache_and_index_for_field(byte_no, cache, index);
2888 jvmti_post_field_mod(cache, index, is_static);
2889 load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static);
2890
2891 // [jk] not needed currently
2892 // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
2893 // Assembler::StoreStore));
2894
2895 Label notVolatile, Done;
2896
2897 // Check for volatile store
2898 __ movl(rscratch1, flags);
2899 __ andl(rscratch1, (1 << ResolvedFieldEntry::is_volatile_shift));
2900 __ testl(rscratch1, rscratch1);
2901 __ jcc(Assembler::zero, notVolatile);
2902
2903 putfield_or_static_helper(byte_no, is_static, rc, obj, off, tos_state, flags);
2904 volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
2905 Assembler::StoreStore));
2906 __ jmp(Done);
2907 __ bind(notVolatile);
2908
2909 putfield_or_static_helper(byte_no, is_static, rc, obj, off, tos_state, flags);
2910
2911 __ bind(Done);
2912 }
2913
2914 void TemplateTable::putfield_or_static_helper(int byte_no, bool is_static, RewriteControl rc,
2915 Register obj, Register off, Register tos_state, Register flags) {
2916
2917 // field addresses
2918 const Address field(obj, off, Address::times_1, 0*wordSize);
2919
2920 Label notByte, notBool, notInt, notShort, notChar,
2921 notLong, notFloat, notObj;
2922 Label Done;
2923
2924 const Register bc = c_rarg3;
2925
2926 // Test TOS state
2927 __ testl(tos_state, tos_state);
2928 __ jcc(Assembler::notZero, notByte);
2929
2930 // btos
2931 {
2932 __ pop(btos);
2933 if (!is_static) pop_and_check_object(obj);
2934 __ access_store_at(T_BYTE, IN_HEAP, field, rax, noreg, noreg, noreg);
2935 if (!is_static && rc == may_rewrite) {
2936 patch_bytecode(Bytecodes::_fast_bputfield, bc, rbx, true, byte_no);
2937 }
2938 __ jmp(Done);
2939 }
2940
2941 __ bind(notByte);
2942 __ cmpl(tos_state, ztos);
2943 __ jcc(Assembler::notEqual, notBool);
2944
2945 // ztos
2946 {
2947 __ pop(ztos);
2948 if (!is_static) pop_and_check_object(obj);
2949 __ access_store_at(T_BOOLEAN, IN_HEAP, field, rax, noreg, noreg, noreg);
2950 if (!is_static && rc == may_rewrite) {
2951 patch_bytecode(Bytecodes::_fast_zputfield, bc, rbx, true, byte_no);
2952 }
2953 __ jmp(Done);
2954 }
2955
2956 __ bind(notBool);
2957 __ cmpl(tos_state, atos);
2958 __ jcc(Assembler::notEqual, notObj);
2959
2960 // atos
2961 {
2962 if (!Arguments::is_valhalla_enabled()) {
2963 __ pop(atos);
2964 if (!is_static) pop_and_check_object(obj);
2965 // Store into the field
2966 do_oop_store(_masm, field, rax);
2967 if (!is_static && rc == may_rewrite) {
2968 patch_bytecode(Bytecodes::_fast_aputfield, bc, rbx, true, byte_no);
2969 }
2970 __ jmp(Done);
2971 } else {
2972 __ pop(atos);
2973 if (is_static) {
2974 Label is_nullable;
2975 __ test_field_is_not_null_free_inline_type(flags, rscratch1, is_nullable);
2976 __ null_check(rax); // FIXME JDK-8341120
2977 __ bind(is_nullable);
2978 do_oop_store(_masm, field, rax);
2979 __ jmp(Done);
2980 } else {
2981 Label is_flat, null_free_reference, rewrite_inline;
2982 __ test_field_is_flat(flags, rscratch1, is_flat);
2983 __ test_field_is_null_free_inline_type(flags, rscratch1, null_free_reference);
2984 pop_and_check_object(obj);
2985 // Store into the field
2986 do_oop_store(_masm, field, rax);
2987 if (rc == may_rewrite) {
2988 patch_bytecode(Bytecodes::_fast_aputfield, bc, rbx, true, byte_no);
2989 }
2990 __ jmp(Done);
2991 __ bind(null_free_reference);
2992 __ null_check(rax); // FIXME JDK-8341120
2993 pop_and_check_object(obj);
2994 // Store into the field
2995 do_oop_store(_masm, field, rax);
2996 __ jmp(rewrite_inline);
2997 __ bind(is_flat);
2998 pop_and_check_object(rscratch2);
2999 __ write_flat_field(rcx, r8, rscratch1, rscratch2, rbx, rax);
3000 __ bind(rewrite_inline);
3001 if (rc == may_rewrite) {
3002 patch_bytecode(Bytecodes::_fast_vputfield, bc, rbx, true, byte_no);
3003 }
3004 __ jmp(Done);
3005 }
3006 }
3007 }
3008
3009 __ bind(notObj);
3010 __ cmpl(tos_state, itos);
3011 __ jcc(Assembler::notEqual, notInt);
3012
3013 // itos
3014 {
3015 __ pop(itos);
3016 if (!is_static) pop_and_check_object(obj);
3017 __ access_store_at(T_INT, IN_HEAP, field, rax, noreg, noreg, noreg);
3018 if (!is_static && rc == may_rewrite) {
3019 patch_bytecode(Bytecodes::_fast_iputfield, bc, rbx, true, byte_no);
3020 }
3021 __ jmp(Done);
3022 }
3023
3024 __ bind(notInt);
3025 __ cmpl(tos_state, ctos);
3026 __ jcc(Assembler::notEqual, notChar);
3027
3028 // ctos
3029 {
3030 __ pop(ctos);
3031 if (!is_static) pop_and_check_object(obj);
3032 __ access_store_at(T_CHAR, IN_HEAP, field, rax, noreg, noreg, noreg);
3033 if (!is_static && rc == may_rewrite) {
3034 patch_bytecode(Bytecodes::_fast_cputfield, bc, rbx, true, byte_no);
3035 }
3036 __ jmp(Done);
3037 }
3038
3039 __ bind(notChar);
3040 __ cmpl(tos_state, stos);
3041 __ jcc(Assembler::notEqual, notShort);
3042
3043 // stos
3044 {
3045 __ pop(stos);
3046 if (!is_static) pop_and_check_object(obj);
3047 __ access_store_at(T_SHORT, IN_HEAP, field, rax, noreg, noreg, noreg);
3048 if (!is_static && rc == may_rewrite) {
3049 patch_bytecode(Bytecodes::_fast_sputfield, bc, rbx, true, byte_no);
3050 }
3051 __ jmp(Done);
3052 }
3053
3054 __ bind(notShort);
3055 __ cmpl(tos_state, ltos);
3056 __ jcc(Assembler::notEqual, notLong);
3057
3058 // ltos
3059 {
3060 __ pop(ltos);
3061 if (!is_static) pop_and_check_object(obj);
3062 // MO_RELAXED: generate atomic store for the case of volatile field (important for x86_32)
3063 __ access_store_at(T_LONG, IN_HEAP | MO_RELAXED, field, noreg /* ltos*/, noreg, noreg, noreg);
3064 if (!is_static && rc == may_rewrite) {
3065 patch_bytecode(Bytecodes::_fast_lputfield, bc, rbx, true, byte_no);
3066 }
3067 __ jmp(Done);
3068 }
3069
3070 __ bind(notLong);
3071 __ cmpl(tos_state, ftos);
3072 __ jcc(Assembler::notEqual, notFloat);
3073
3074 // ftos
3075 {
3076 __ pop(ftos);
3077 if (!is_static) pop_and_check_object(obj);
3078 __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos */, noreg, noreg, noreg);
3079 if (!is_static && rc == may_rewrite) {
3080 patch_bytecode(Bytecodes::_fast_fputfield, bc, rbx, true, byte_no);
3081 }
3082 __ jmp(Done);
3083 }
3084
3085 __ bind(notFloat);
3086 #ifdef ASSERT
3087 Label notDouble;
3088 __ cmpl(tos_state, dtos);
3089 __ jcc(Assembler::notEqual, notDouble);
3090 #endif
3091
3092 // dtos
3093 {
3094 __ pop(dtos);
3095 if (!is_static) pop_and_check_object(obj);
3096 // MO_RELAXED: for the case of volatile field, in fact it adds no extra work for the underlying implementation
3097 __ access_store_at(T_DOUBLE, IN_HEAP | MO_RELAXED, field, noreg /* dtos */, noreg, noreg, noreg);
3098 if (!is_static && rc == may_rewrite) {
3099 patch_bytecode(Bytecodes::_fast_dputfield, bc, rbx, true, byte_no);
3100 }
3101 }
3102
3103 #ifdef ASSERT
3104 __ jmp(Done);
3105
3106 __ bind(notDouble);
3107 __ stop("Bad state");
3108 #endif
3109
3110 __ bind(Done);
3111 }
3112
3113 void TemplateTable::putfield(int byte_no) {
3114 putfield_or_static(byte_no, false);
3115 }
3116
3117 void TemplateTable::nofast_putfield(int byte_no) {
3118 putfield_or_static(byte_no, false, may_not_rewrite);
3119 }
3120
3121 void TemplateTable::putstatic(int byte_no) {
3122 putfield_or_static(byte_no, true);
3123 }
3124
3125 void TemplateTable::jvmti_post_fast_field_mod() {
3126
3127 const Register scratch = c_rarg3;
3128
3129 if (JvmtiExport::can_post_field_modification()) {
3130 // Check to see if a field modification watch has been set before
3131 // we take the time to call into the VM.
3132 Label L2;
3133 __ mov32(scratch, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
3134 __ testl(scratch, scratch);
3135 __ jcc(Assembler::zero, L2);
3136 __ pop_ptr(rbx); // copy the object pointer from tos
3137 __ verify_oop(rbx);
3138 __ push_ptr(rbx); // put the object pointer back on tos
3139 // Save tos values before call_VM() clobbers them. Since we have
3140 // to do it for every data type, we use the saved values as the
3141 // jvalue object.
3142 switch (bytecode()) { // load values into the jvalue object
3143 case Bytecodes::_fast_vputfield: // fall through
3144 case Bytecodes::_fast_aputfield: __ push_ptr(rax); break;
3145 case Bytecodes::_fast_bputfield: // fall through
3146 case Bytecodes::_fast_zputfield: // fall through
3147 case Bytecodes::_fast_sputfield: // fall through
3148 case Bytecodes::_fast_cputfield: // fall through
3149 case Bytecodes::_fast_iputfield: __ push_i(rax); break;
3150 case Bytecodes::_fast_dputfield: __ push(dtos); break;
3151 case Bytecodes::_fast_fputfield: __ push(ftos); break;
3152 case Bytecodes::_fast_lputfield: __ push_l(rax); break;
3153
3154 default:
3155 ShouldNotReachHere();
3156 }
3157 __ mov(scratch, rsp); // points to jvalue on the stack
3158 // access constant pool cache entry
3159 __ load_field_entry(c_rarg2, rax);
3160 __ verify_oop(rbx);
3161 // rbx: object pointer copied above
3162 // c_rarg2: cache entry pointer
3163 // c_rarg3: jvalue object on the stack
3164 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), rbx, c_rarg2, c_rarg3);
3165
3166 switch (bytecode()) { // restore tos values
3167 case Bytecodes::_fast_vputfield: // fall through
3168 case Bytecodes::_fast_aputfield: __ pop_ptr(rax); break;
3169 case Bytecodes::_fast_bputfield: // fall through
3170 case Bytecodes::_fast_zputfield: // fall through
3171 case Bytecodes::_fast_sputfield: // fall through
3172 case Bytecodes::_fast_cputfield: // fall through
3173 case Bytecodes::_fast_iputfield: __ pop_i(rax); break;
3174 case Bytecodes::_fast_dputfield: __ pop(dtos); break;
3175 case Bytecodes::_fast_fputfield: __ pop(ftos); break;
3176 case Bytecodes::_fast_lputfield: __ pop_l(rax); break;
3177 default: break;
3178 }
3179 __ bind(L2);
3180 }
3181 }
3182
3183 void TemplateTable::fast_storefield(TosState state) {
3184 transition(state, vtos);
3185
3186 Label notVolatile, Done;
3187
3188 jvmti_post_fast_field_mod();
3189
3190 __ push(rax);
3191 __ load_field_entry(rcx, rax);
3192 load_resolved_field_entry(noreg, rcx, rax, rbx, rdx);
3193 __ pop(rax);
3194 // RBX: field offset, RCX: RAX: TOS, RDX: flags
3195
3196 // Get object from stack
3197 pop_and_check_object(rcx);
3198
3199 // field address
3200 const Address field(rcx, rbx, Address::times_1);
3201
3202 // Check for volatile store
3203 __ movl(rscratch2, rdx); // saving flags for is_flat test
3204 __ andl(rscratch2, (1 << ResolvedFieldEntry::is_volatile_shift));
3205 __ testl(rscratch2, rscratch2);
3206 __ jcc(Assembler::zero, notVolatile);
3207
3208 fast_storefield_helper(field, rax, rdx);
3209 volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
3210 Assembler::StoreStore));
3211 __ jmp(Done);
3212 __ bind(notVolatile);
3213
3214 fast_storefield_helper(field, rax, rdx);
3215
3216 __ bind(Done);
3217 }
3218
3219 void TemplateTable::fast_storefield_helper(Address field, Register rax, Register flags) {
3220
3221 // DANGER: 'field' argument depends on rcx and rbx
3222
3223 // access field
3224 switch (bytecode()) {
3225 case Bytecodes::_fast_vputfield:
3226 {
3227 // Field is either flat (nullable or not) or non-flat and null-free
3228 Label is_flat, done;
3229 __ test_field_is_flat(flags, rscratch1, is_flat);
3230 __ null_check(rax); // FIXME JDK-8341120
3231 do_oop_store(_masm, field, rax);
3232 __ jmp(done);
3233 __ bind(is_flat);
3234 __ load_field_entry(r8, r9);
3235 __ movptr(rscratch2, rcx); // re-shuffle registers because of VM call calling convention
3236 __ write_flat_field(r8, rscratch1, r9, rscratch2, rbx, rax);
3237 __ bind(done);
3238 }
3239 break;
3240 case Bytecodes::_fast_aputfield:
3241 {
3242 do_oop_store(_masm, field, rax);
3243 }
3244 break;
3245 case Bytecodes::_fast_lputfield:
3246 __ access_store_at(T_LONG, IN_HEAP, field, noreg /* ltos */, noreg, noreg, noreg);
3247 break;
3248 case Bytecodes::_fast_iputfield:
3249 __ access_store_at(T_INT, IN_HEAP, field, rax, noreg, noreg, noreg);
3250 break;
3251 case Bytecodes::_fast_zputfield:
3252 __ access_store_at(T_BOOLEAN, IN_HEAP, field, rax, noreg, noreg, noreg);
3253 break;
3254 case Bytecodes::_fast_bputfield:
3255 __ access_store_at(T_BYTE, IN_HEAP, field, rax, noreg, noreg, noreg);
3256 break;
3257 case Bytecodes::_fast_sputfield:
3258 __ access_store_at(T_SHORT, IN_HEAP, field, rax, noreg, noreg, noreg);
3259 break;
3260 case Bytecodes::_fast_cputfield:
3261 __ access_store_at(T_CHAR, IN_HEAP, field, rax, noreg, noreg, noreg);
3262 break;
3263 case Bytecodes::_fast_fputfield:
3264 __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos*/, noreg, noreg, noreg);
3265 break;
3266 case Bytecodes::_fast_dputfield:
3267 __ access_store_at(T_DOUBLE, IN_HEAP, field, noreg /* dtos*/, noreg, noreg, noreg);
3268 break;
3269 default:
3270 ShouldNotReachHere();
3271 }
3272 }
3273
3274 void TemplateTable::fast_accessfield(TosState state) {
3275 transition(atos, state);
3276
3277 // Do the JVMTI work here to avoid disturbing the register state below
3278 if (JvmtiExport::can_post_field_access()) {
3279 // Check to see if a field access watch has been set before we
3280 // take the time to call into the VM.
3281 Label L1;
3282 __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
3283 __ testl(rcx, rcx);
3284 __ jcc(Assembler::zero, L1);
3285 // access constant pool cache entry
3286 __ load_field_entry(c_rarg2, rcx);
3287 __ verify_oop(rax);
3288 __ push_ptr(rax); // save object pointer before call_VM() clobbers it
3289 __ mov(c_rarg1, rax);
3290 // c_rarg1: object pointer copied above
3291 // c_rarg2: cache entry pointer
3292 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), c_rarg1, c_rarg2);
3293 __ pop_ptr(rax); // restore object pointer
3294 __ bind(L1);
3295 }
3296
3297 // access constant pool cache
3298 __ load_field_entry(rcx, rbx);
3299 __ load_sized_value(rdx, Address(rcx, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/);
3300
3301 // rax: object
3302 __ verify_oop(rax);
3303 __ null_check(rax);
3304 Address field(rax, rdx, Address::times_1);
3305
3306 // access field
3307 switch (bytecode()) {
3308 case Bytecodes::_fast_vgetfield:
3309 __ read_flat_field(rcx, rax);
3310 __ verify_oop(rax);
3311 break;
3312 case Bytecodes::_fast_agetfield:
3313 do_oop_load(_masm, field, rax);
3314 __ verify_oop(rax);
3315 break;
3316 case Bytecodes::_fast_lgetfield:
3317 __ access_load_at(T_LONG, IN_HEAP, noreg /* ltos */, field, noreg);
3318 break;
3319 case Bytecodes::_fast_igetfield:
3320 __ access_load_at(T_INT, IN_HEAP, rax, field, noreg);
3321 break;
3322 case Bytecodes::_fast_bgetfield:
3323 __ access_load_at(T_BYTE, IN_HEAP, rax, field, noreg);
3324 break;
3325 case Bytecodes::_fast_sgetfield:
3326 __ access_load_at(T_SHORT, IN_HEAP, rax, field, noreg);
3327 break;
3328 case Bytecodes::_fast_cgetfield:
3329 __ access_load_at(T_CHAR, IN_HEAP, rax, field, noreg);
3330 break;
3331 case Bytecodes::_fast_fgetfield:
3332 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg);
3333 break;
3334 case Bytecodes::_fast_dgetfield:
3335 __ access_load_at(T_DOUBLE, IN_HEAP, noreg /* dtos */, field, noreg);
3336 break;
3337 default:
3338 ShouldNotReachHere();
3339 }
3340 // [jk] not needed currently
3341 // Label notVolatile;
3342 // __ testl(rdx, rdx);
3343 // __ jcc(Assembler::zero, notVolatile);
3344 // __ membar(Assembler::LoadLoad);
3345 // __ bind(notVolatile);
3346 }
3347
3348 void TemplateTable::fast_xaccess(TosState state) {
3349 transition(vtos, state);
3350
3351 // get receiver
3352 __ movptr(rax, aaddress(0));
3353 // access constant pool cache
3354 __ load_field_entry(rcx, rdx, 2);
3355 __ load_sized_value(rbx, Address(rcx, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/);
3356
3357 // make sure exception is reported in correct bcp range (getfield is
3358 // next instruction)
3359 __ increment(rbcp);
3360 __ null_check(rax);
3361 const Address field = Address(rax, rbx, Address::times_1, 0*wordSize);
3362 switch (state) {
3363 case itos:
3364 __ access_load_at(T_INT, IN_HEAP, rax, field, noreg);
3365 break;
3366 case atos:
3367 do_oop_load(_masm, field, rax);
3368 __ verify_oop(rax);
3369 break;
3370 case ftos:
3371 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg);
3372 break;
3373 default:
3374 ShouldNotReachHere();
3375 }
3376
3377 // [jk] not needed currently
3378 // Label notVolatile;
3379 // __ movl(rdx, Address(rcx, rdx, Address::times_8,
3380 // in_bytes(ConstantPoolCache::base_offset() +
3381 // ConstantPoolCacheEntry::flags_offset())));
3382 // __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
3383 // __ testl(rdx, 0x1);
3384 // __ jcc(Assembler::zero, notVolatile);
3385 // __ membar(Assembler::LoadLoad);
3386 // __ bind(notVolatile);
3387
3388 __ decrement(rbcp);
3389 }
3390
3391 //-----------------------------------------------------------------------------
3392 // Calls
3393
3394 void TemplateTable::prepare_invoke(Register cache, Register recv, Register flags) {
3395 // determine flags
3396 const Bytecodes::Code code = bytecode();
3397 const bool load_receiver = (code != Bytecodes::_invokestatic) && (code != Bytecodes::_invokedynamic);
3398 assert_different_registers(recv, flags);
3399
3400 // save 'interpreter return address'
3401 __ save_bcp();
3402
3403 // Save flags and load TOS
3404 __ movl(rbcp, flags);
3405 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::type_offset())));
3406
3407 // load receiver if needed (after appendix is pushed so parameter size is correct)
3408 // Note: no return address pushed yet
3409 if (load_receiver) {
3410 __ load_unsigned_short(recv, Address(cache, in_bytes(ResolvedMethodEntry::num_parameters_offset())));
3411 const int no_return_pc_pushed_yet = -1; // argument slot correction before we push return address
3412 const int receiver_is_at_end = -1; // back off one slot to get receiver
3413 Address recv_addr = __ argument_address(recv, no_return_pc_pushed_yet + receiver_is_at_end);
3414 __ movptr(recv, recv_addr);
3415 __ verify_oop(recv);
3416 }
3417
3418 // load return address
3419 {
3420 const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code);
3421 ExternalAddress table(table_addr);
3422 __ lea(rscratch1, table);
3423 __ movptr(flags, Address(rscratch1, flags, Address::times_ptr));
3424 }
3425
3426 // push return address
3427 __ push(flags);
3428
3429 // Restore flags value from the constant pool cache entry, and restore rsi
3430 // for later null checks. r13 is the bytecode pointer
3431 __ movl(flags, rbcp);
3432 __ restore_bcp();
3433 }
3434
3435 void TemplateTable::invokevirtual_helper(Register index,
3436 Register recv,
3437 Register flags) {
3438 // Uses temporary registers rax, rdx
3439 assert_different_registers(index, recv, rax, rdx);
3440 assert(index == rbx, "");
3441 assert(recv == rcx, "");
3442
3443 // Test for an invoke of a final method
3444 Label notFinal;
3445 __ movl(rax, flags);
3446 __ andl(rax, (1 << ResolvedMethodEntry::is_vfinal_shift));
3447 __ jcc(Assembler::zero, notFinal);
3448
3449 const Register method = index; // method must be rbx
3450 assert(method == rbx,
3451 "Method* must be rbx for interpreter calling convention");
3452
3453 // do the call - the index is actually the method to call
3454 // that is, f2 is a vtable index if !is_vfinal, else f2 is a Method*
3455
3456 // It's final, need a null check here!
3457 __ null_check(recv);
3458
3459 // profile this call
3460 __ profile_final_call(rax);
3461 __ profile_arguments_type(rax, method, rbcp, true);
3462
3463 __ jump_from_interpreted(method, rax);
3464
3465 __ bind(notFinal);
3466
3467 // get receiver klass
3468 __ load_klass(rax, recv, rscratch1);
3469
3470 // profile this call
3471 __ profile_virtual_call(rax, rlocals);
3472 // get target Method* & entry point
3473 __ lookup_virtual_method(rax, index, method);
3474
3475 __ profile_arguments_type(rdx, method, rbcp, true);
3476 __ jump_from_interpreted(method, rdx);
3477 }
3478
3479 void TemplateTable::invokevirtual(int byte_no) {
3480 transition(vtos, vtos);
3481 assert(byte_no == f2_byte, "use this argument");
3482
3483 load_resolved_method_entry_virtual(rcx, // ResolvedMethodEntry*
3484 rbx, // Method or itable index
3485 rdx); // Flags
3486 prepare_invoke(rcx, // ResolvedMethodEntry*
3487 rcx, // Receiver
3488 rdx); // flags
3489
3490 // rbx: index
3491 // rcx: receiver
3492 // rdx: flags
3493 invokevirtual_helper(rbx, rcx, rdx);
3494 }
3495
3496 void TemplateTable::invokespecial(int byte_no) {
3497 transition(vtos, vtos);
3498 assert(byte_no == f1_byte, "use this argument");
3499
3500 load_resolved_method_entry_special_or_static(rcx, // ResolvedMethodEntry*
3501 rbx, // Method*
3502 rdx); // flags
3503 prepare_invoke(rcx,
3504 rcx, // get receiver also for null check
3505 rdx); // flags
3506
3507 __ verify_oop(rcx);
3508 __ null_check(rcx);
3509 // do the call
3510 __ profile_call(rax);
3511 __ profile_arguments_type(rax, rbx, rbcp, false);
3512 __ jump_from_interpreted(rbx, rax);
3513 }
3514
3515 void TemplateTable::invokestatic(int byte_no) {
3516 transition(vtos, vtos);
3517 assert(byte_no == f1_byte, "use this argument");
3518
3519 load_resolved_method_entry_special_or_static(rcx, // ResolvedMethodEntry*
3520 rbx, // Method*
3521 rdx // flags
3522 );
3523 prepare_invoke(rcx, rcx, rdx); // cache and flags
3524
3525 // do the call
3526 __ profile_call(rax);
3527 __ profile_arguments_type(rax, rbx, rbcp, false);
3528 __ jump_from_interpreted(rbx, rax);
3529 }
3530
3531
3532 void TemplateTable::fast_invokevfinal(int byte_no) {
3533 transition(vtos, vtos);
3534 assert(byte_no == f2_byte, "use this argument");
3535 __ stop("fast_invokevfinal not used on x86");
3536 }
3537
3538
3539 void TemplateTable::invokeinterface(int byte_no) {
3540 transition(vtos, vtos);
3541 assert(byte_no == f1_byte, "use this argument");
3542
3543 load_resolved_method_entry_interface(rcx, // ResolvedMethodEntry*
3544 rax, // Klass*
3545 rbx, // Method* or itable/vtable index
3546 rdx); // flags
3547 prepare_invoke(rcx, rcx, rdx); // receiver, flags
3548
3549 // First check for Object case, then private interface method,
3550 // then regular interface method.
3551
3552 // Special case of invokeinterface called for virtual method of
3553 // java.lang.Object. See cpCache.cpp for details.
3554 Label notObjectMethod;
3555 __ movl(rlocals, rdx);
3556 __ andl(rlocals, (1 << ResolvedMethodEntry::is_forced_virtual_shift));
3557 __ jcc(Assembler::zero, notObjectMethod);
3558
3559 invokevirtual_helper(rbx, rcx, rdx);
3560 // no return from above
3561 __ bind(notObjectMethod);
3562
3563 Label no_such_interface; // for receiver subtype check
3564 Register recvKlass; // used for exception processing
3565
3566 // Check for private method invocation - indicated by vfinal
3567 Label notVFinal;
3568 __ movl(rlocals, rdx);
3569 __ andl(rlocals, (1 << ResolvedMethodEntry::is_vfinal_shift));
3570 __ jcc(Assembler::zero, notVFinal);
3571
3572 // Get receiver klass into rlocals - also a null check
3573 __ load_klass(rlocals, rcx, rscratch1);
3574
3575 Label subtype;
3576 __ check_klass_subtype(rlocals, rax, rbcp, subtype);
3577 // If we get here the typecheck failed
3578 recvKlass = rdx;
3579 __ mov(recvKlass, rlocals); // shuffle receiver class for exception use
3580 __ jmp(no_such_interface);
3581
3582 __ bind(subtype);
3583
3584 // do the call - rbx is actually the method to call
3585
3586 __ profile_final_call(rdx);
3587 __ profile_arguments_type(rdx, rbx, rbcp, true);
3588
3589 __ jump_from_interpreted(rbx, rdx);
3590 // no return from above
3591 __ bind(notVFinal);
3592
3593 // Get receiver klass into rdx - also a null check
3594 __ restore_locals(); // restore r14
3595 __ load_klass(rdx, rcx, rscratch1);
3596
3597 Label no_such_method;
3598
3599 // Preserve method for throw_AbstractMethodErrorVerbose.
3600 __ mov(rcx, rbx);
3601 // Receiver subtype check against REFC.
3602 // Superklass in rax. Subklass in rdx. Blows rcx, rdi.
3603 __ lookup_interface_method(// inputs: rec. class, interface, itable index
3604 rdx, rax, noreg,
3605 // outputs: scan temp. reg, scan temp. reg
3606 rbcp, rlocals,
3607 no_such_interface,
3608 /*return_method=*/false);
3609
3610 // profile this call
3611 __ restore_bcp(); // rbcp was destroyed by receiver type check
3612 __ profile_virtual_call(rdx, rbcp);
3613
3614 // Get declaring interface class from method, and itable index
3615 __ load_method_holder(rax, rbx);
3616 __ movl(rbx, Address(rbx, Method::itable_index_offset()));
3617 __ subl(rbx, Method::itable_index_max);
3618 __ negl(rbx);
3619
3620 // Preserve recvKlass for throw_AbstractMethodErrorVerbose.
3621 __ mov(rlocals, rdx);
3622 __ lookup_interface_method(// inputs: rec. class, interface, itable index
3623 rlocals, rax, rbx,
3624 // outputs: method, scan temp. reg
3625 rbx, rbcp,
3626 no_such_interface);
3627
3628 // rbx: Method* to call
3629 // rcx: receiver
3630 // Check for abstract method error
3631 // Note: This should be done more efficiently via a throw_abstract_method_error
3632 // interpreter entry point and a conditional jump to it in case of a null
3633 // method.
3634 __ testptr(rbx, rbx);
3635 __ jcc(Assembler::zero, no_such_method);
3636
3637 __ profile_arguments_type(rdx, rbx, rbcp, true);
3638
3639 // do the call
3640 // rcx: receiver
3641 // rbx,: Method*
3642 __ jump_from_interpreted(rbx, rdx);
3643 __ should_not_reach_here();
3644
3645 // exception handling code follows...
3646 // note: must restore interpreter registers to canonical
3647 // state for exception handling to work correctly!
3648
3649 __ bind(no_such_method);
3650 // throw exception
3651 __ pop(rbx); // pop return address (pushed by prepare_invoke)
3652 __ restore_bcp(); // rbcp must be correct for exception handler (was destroyed)
3653 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed)
3654 // Pass arguments for generating a verbose error message.
3655 recvKlass = c_rarg1;
3656 Register method = c_rarg2;
3657 if (recvKlass != rdx) { __ movq(recvKlass, rdx); }
3658 if (method != rcx) { __ movq(method, rcx); }
3659 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodErrorVerbose),
3660 recvKlass, method);
3661 // The call_VM checks for exception, so we should never return here.
3662 __ should_not_reach_here();
3663
3664 __ bind(no_such_interface);
3665 // throw exception
3666 __ pop(rbx); // pop return address (pushed by prepare_invoke)
3667 __ restore_bcp(); // rbcp must be correct for exception handler (was destroyed)
3668 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed)
3669 // Pass arguments for generating a verbose error message.
3670 if (recvKlass != rdx) {
3671 __ movq(recvKlass, rdx);
3672 }
3673 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_IncompatibleClassChangeErrorVerbose),
3674 recvKlass, rax);
3675 // the call_VM checks for exception, so we should never return here.
3676 __ should_not_reach_here();
3677 }
3678
3679 void TemplateTable::invokehandle(int byte_no) {
3680 transition(vtos, vtos);
3681 assert(byte_no == f1_byte, "use this argument");
3682 const Register rbx_method = rbx;
3683 const Register rax_mtype = rax;
3684 const Register rcx_recv = rcx;
3685 const Register rdx_flags = rdx;
3686
3687 load_resolved_method_entry_handle(rcx, rbx_method, rax_mtype, rdx_flags);
3688 prepare_invoke(rcx, rcx_recv, rdx_flags);
3689
3690 __ verify_method_ptr(rbx_method);
3691 __ verify_oop(rcx_recv);
3692 __ null_check(rcx_recv);
3693
3694 // rax: MethodType object (from cpool->resolved_references[f1], if necessary)
3695 // rbx: MH.invokeExact_MT method
3696
3697 // Note: rax_mtype is already pushed (if necessary)
3698
3699 // FIXME: profile the LambdaForm also
3700 __ profile_final_call(rax);
3701 __ profile_arguments_type(rdx, rbx_method, rbcp, true);
3702
3703 __ jump_from_interpreted(rbx_method, rdx);
3704 }
3705
3706 void TemplateTable::invokedynamic(int byte_no) {
3707 transition(vtos, vtos);
3708 assert(byte_no == f1_byte, "use this argument");
3709
3710 const Register rbx_method = rbx;
3711 const Register rax_callsite = rax;
3712
3713 load_invokedynamic_entry(rbx_method);
3714 // rax: CallSite object (from cpool->resolved_references[])
3715 // rbx: MH.linkToCallSite method
3716
3717 // Note: rax_callsite is already pushed
3718
3719 // %%% should make a type profile for any invokedynamic that takes a ref argument
3720 // profile this call
3721 __ profile_call(rbcp);
3722 __ profile_arguments_type(rdx, rbx_method, rbcp, false);
3723
3724 __ verify_oop(rax_callsite);
3725
3726 __ jump_from_interpreted(rbx_method, rdx);
3727 }
3728
3729 //-----------------------------------------------------------------------------
3730 // Allocation
3731
3732 void TemplateTable::_new() {
3733 transition(vtos, atos);
3734 __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
3735 Label slow_case;
3736 Label done;
3737
3738 __ get_cpool_and_tags(rcx, rax);
3739
3740 // Make sure the class we're about to instantiate has been resolved.
3741 // This is done before loading InstanceKlass to be consistent with the order
3742 // how Constant Pool is updated (see ConstantPool::klass_at_put)
3743 const int tags_offset = Array<u1>::base_offset_in_bytes();
3744 __ cmpb(Address(rax, rdx, Address::times_1, tags_offset), JVM_CONSTANT_Class);
3745 __ jcc(Assembler::notEqual, slow_case);
3746
3747 // get InstanceKlass
3748 __ load_resolved_klass_at_index(rcx, rcx, rdx);
3749
3750 // make sure klass is initialized
3751 // init_state needs acquire, but x86 is TSO, and so we are already good.
3752 assert(VM_Version::supports_fast_class_init_checks(), "must support fast class initialization checks");
3753 __ clinit_barrier(rcx, nullptr /*L_fast_path*/, &slow_case);
3754
3755 __ allocate_instance(rcx, rax, rdx, rbx, true, slow_case);
3756 __ jmp(done);
3757
3758 // slow case
3759 __ bind(slow_case);
3760
3761 __ get_constant_pool(c_rarg1);
3762 __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
3763 __ call_VM_preemptable(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2);
3764 __ verify_oop(rax);
3765
3766 // continue
3767 __ bind(done);
3768 }
3769
3770 void TemplateTable::newarray() {
3771 transition(itos, atos);
3772 __ load_unsigned_byte(c_rarg1, at_bcp(1));
3773 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray),
3774 c_rarg1, rax);
3775 }
3776
3777 void TemplateTable::anewarray() {
3778 transition(itos, atos);
3779
3780 __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
3781 __ get_constant_pool(c_rarg1);
3782 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray),
3783 c_rarg1, c_rarg2, rax);
3784 }
3785
3786 void TemplateTable::arraylength() {
3787 transition(atos, itos);
3788 __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes()));
3789 }
3790
3791 void TemplateTable::checkcast() {
3792 transition(atos, atos);
3793 Label done, is_null, ok_is_subtype, quicked, resolved;
3794 __ testptr(rax, rax); // object is in rax
3795 __ jcc(Assembler::zero, is_null);
3796
3797 // Get cpool & tags index
3798 __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
3799 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
3800 // See if bytecode has already been quicked
3801 __ movzbl(rdx, Address(rdx, rbx,
3802 Address::times_1,
3803 Array<u1>::base_offset_in_bytes()));
3804 __ cmpl(rdx, JVM_CONSTANT_Class);
3805 __ jcc(Assembler::equal, quicked);
3806 __ push(atos); // save receiver for result, and for GC
3807 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
3808
3809 __ get_vm_result_metadata(rax);
3810
3811 __ pop_ptr(rdx); // restore receiver
3812 __ jmpb(resolved);
3813
3814 // Get superklass in rax and subklass in rbx
3815 __ bind(quicked);
3816 __ mov(rdx, rax); // Save object in rdx; rax needed for subtype check
3817 __ load_resolved_klass_at_index(rax, rcx, rbx);
3818
3819 __ bind(resolved);
3820 __ load_klass(rbx, rdx, rscratch1);
3821
3822 // Generate subtype check. Blows rcx, rdi. Object in rdx.
3823 // Superklass in rax. Subklass in rbx.
3824 __ gen_subtype_check(rbx, ok_is_subtype);
3825
3826 // Come here on failure
3827 __ push_ptr(rdx);
3828 // object is at TOS
3829 __ jump(RuntimeAddress(Interpreter::_throw_ClassCastException_entry));
3830
3831 // Come here on success
3832 __ bind(ok_is_subtype);
3833 __ mov(rax, rdx); // Restore object in rdx
3834 __ jmp(done);
3835
3836 __ bind(is_null);
3837
3838 // Collect counts on whether this check-cast sees nulls a lot or not.
3839 if (ProfileInterpreter) {
3840 __ profile_null_seen(rcx);
3841 }
3842
3843 __ bind(done);
3844 }
3845
3846 void TemplateTable::instanceof() {
3847 transition(atos, itos);
3848 Label done, is_null, ok_is_subtype, quicked, resolved;
3849 __ testptr(rax, rax);
3850 __ jcc(Assembler::zero, is_null);
3851
3852 // Get cpool & tags index
3853 __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
3854 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
3855 // See if bytecode has already been quicked
3856 __ movzbl(rdx, Address(rdx, rbx,
3857 Address::times_1,
3858 Array<u1>::base_offset_in_bytes()));
3859 __ cmpl(rdx, JVM_CONSTANT_Class);
3860 __ jcc(Assembler::equal, quicked);
3861
3862 __ push(atos); // save receiver for result, and for GC
3863 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
3864
3865 __ get_vm_result_metadata(rax);
3866
3867 __ pop_ptr(rdx); // restore receiver
3868 __ verify_oop(rdx);
3869 __ load_klass(rdx, rdx, rscratch1);
3870 __ jmpb(resolved);
3871
3872 // Get superklass in rax and subklass in rdx
3873 __ bind(quicked);
3874 __ load_klass(rdx, rax, rscratch1);
3875 __ load_resolved_klass_at_index(rax, rcx, rbx);
3876
3877 __ bind(resolved);
3878
3879 // Generate subtype check. Blows rcx, rdi
3880 // Superklass in rax. Subklass in rdx.
3881 __ gen_subtype_check(rdx, ok_is_subtype);
3882
3883 // Come here on failure
3884 __ xorl(rax, rax);
3885 __ jmpb(done);
3886 // Come here on success
3887 __ bind(ok_is_subtype);
3888 __ movl(rax, 1);
3889
3890 // Collect counts on whether this test sees nulls a lot or not.
3891 if (ProfileInterpreter) {
3892 __ jmp(done);
3893 __ bind(is_null);
3894 __ profile_null_seen(rcx);
3895 } else {
3896 __ bind(is_null); // same as 'done'
3897 }
3898 __ bind(done);
3899 // rax = 0: obj == nullptr or obj is not an instanceof the specified klass
3900 // rax = 1: obj != nullptr and obj is an instanceof the specified klass
3901 }
3902
3903 //----------------------------------------------------------------------------------------------------
3904 // Breakpoints
3905 void TemplateTable::_breakpoint() {
3906 // Note: We get here even if we are single stepping..
3907 // jbug insists on setting breakpoints at every bytecode
3908 // even if we are in single step mode.
3909
3910 transition(vtos, vtos);
3911
3912 // get the unpatched byte code
3913 __ get_method(c_rarg1);
3914 __ call_VM(noreg,
3915 CAST_FROM_FN_PTR(address,
3916 InterpreterRuntime::get_original_bytecode_at),
3917 c_rarg1, rbcp);
3918 __ mov(rbx, rax); // why?
3919
3920 // post the breakpoint event
3921 __ get_method(c_rarg1);
3922 __ call_VM(noreg,
3923 CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint),
3924 c_rarg1, rbcp);
3925
3926 // complete the execution of original bytecode
3927 __ dispatch_only_normal(vtos);
3928 }
3929
3930 //-----------------------------------------------------------------------------
3931 // Exceptions
3932
3933 void TemplateTable::athrow() {
3934 transition(atos, vtos);
3935 __ null_check(rax);
3936 __ jump(RuntimeAddress(Interpreter::throw_exception_entry()));
3937 }
3938
3939 //-----------------------------------------------------------------------------
3940 // Synchronization
3941 //
3942 // Note: monitorenter & exit are symmetric routines; which is reflected
3943 // in the assembly code structure as well
3944 //
3945 // Stack layout:
3946 //
3947 // [expressions ] <--- rsp = expression stack top
3948 // ..
3949 // [expressions ]
3950 // [monitor entry] <--- monitor block top = expression stack bot
3951 // ..
3952 // [monitor entry]
3953 // [frame data ] <--- monitor block bot
3954 // ...
3955 // [saved rbp ] <--- rbp
3956 void TemplateTable::monitorenter() {
3957 transition(atos, vtos);
3958
3959 // check for null object
3960 __ null_check(rax);
3961
3962 Label is_inline_type;
3963 __ movptr(rbx, Address(rax, oopDesc::mark_offset_in_bytes()));
3964 __ test_markword_is_inline_type(rbx, is_inline_type);
3965
3966 const Address monitor_block_top(
3967 rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
3968 const Address monitor_block_bot(
3969 rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
3970 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
3971
3972 Label allocated;
3973
3974 Register rtop = c_rarg3;
3975 Register rbot = c_rarg2;
3976 Register rmon = c_rarg1;
3977
3978 // initialize entry pointer
3979 __ xorl(rmon, rmon); // points to free slot or null
3980
3981 // find a free slot in the monitor block (result in rmon)
3982 {
3983 Label entry, loop, exit;
3984 __ movptr(rtop, monitor_block_top); // derelativize pointer
3985 __ lea(rtop, Address(rbp, rtop, Address::times_ptr));
3986 // rtop points to current entry, starting with top-most entry
3987
3988 __ lea(rbot, monitor_block_bot); // points to word before bottom
3989 // of monitor block
3990 __ jmpb(entry);
3991
3992 __ bind(loop);
3993 // check if current entry is used
3994 __ cmpptr(Address(rtop, BasicObjectLock::obj_offset()), NULL_WORD);
3995 // if not used then remember entry in rmon
3996 __ cmovptr(Assembler::equal, rmon, rtop); // cmov => cmovptr
3997 // check if current entry is for same object
3998 __ cmpptr(rax, Address(rtop, BasicObjectLock::obj_offset()));
3999 // if same object then stop searching
4000 __ jccb(Assembler::equal, exit);
4001 // otherwise advance to next entry
4002 __ addptr(rtop, entry_size);
4003 __ bind(entry);
4004 // check if bottom reached
4005 __ cmpptr(rtop, rbot);
4006 // if not at bottom then check this entry
4007 __ jcc(Assembler::notEqual, loop);
4008 __ bind(exit);
4009 }
4010
4011 __ testptr(rmon, rmon); // check if a slot has been found
4012 __ jcc(Assembler::notZero, allocated); // if found, continue with that one
4013
4014 // allocate one if there's no free slot
4015 {
4016 Label entry, loop;
4017 // 1. compute new pointers // rsp: old expression stack top
4018 __ movptr(rmon, monitor_block_bot); // rmon: old expression stack bottom
4019 __ lea(rmon, Address(rbp, rmon, Address::times_ptr));
4020 __ subptr(rsp, entry_size); // move expression stack top
4021 __ subptr(rmon, entry_size); // move expression stack bottom
4022 __ mov(rtop, rsp); // set start value for copy loop
4023 __ subptr(monitor_block_bot, entry_size / wordSize); // set new monitor block bottom
4024 __ jmp(entry);
4025 // 2. move expression stack contents
4026 __ bind(loop);
4027 __ movptr(rbot, Address(rtop, entry_size)); // load expression stack
4028 // word from old location
4029 __ movptr(Address(rtop, 0), rbot); // and store it at new location
4030 __ addptr(rtop, wordSize); // advance to next word
4031 __ bind(entry);
4032 __ cmpptr(rtop, rmon); // check if bottom reached
4033 __ jcc(Assembler::notEqual, loop); // if not at bottom then
4034 // copy next word
4035 }
4036
4037 // call run-time routine
4038 // rmon: points to monitor entry
4039 __ bind(allocated);
4040
4041 // Increment bcp to point to the next bytecode, so exception
4042 // handling for async. exceptions work correctly.
4043 // The object has already been popped from the stack, so the
4044 // expression stack looks correct.
4045 __ increment(rbcp);
4046
4047 // store object
4048 __ movptr(Address(rmon, BasicObjectLock::obj_offset()), rax);
4049 __ lock_object(rmon);
4050
4051 // check to make sure this monitor doesn't cause stack overflow after locking
4052 __ save_bcp(); // in case of exception
4053 __ generate_stack_overflow_check(0);
4054
4055 // The bcp has already been incremented. Just need to dispatch to
4056 // next instruction.
4057 __ dispatch_next(vtos);
4058
4059 __ bind(is_inline_type);
4060 __ call_VM(noreg, CAST_FROM_FN_PTR(address,
4061 InterpreterRuntime::throw_identity_exception), rax);
4062 __ should_not_reach_here();
4063 }
4064
4065 void TemplateTable::monitorexit() {
4066 transition(atos, vtos);
4067
4068 // check for null object
4069 __ null_check(rax);
4070
4071 const int is_inline_type_mask = markWord::inline_type_pattern;
4072 Label has_identity;
4073 __ movptr(rbx, Address(rax, oopDesc::mark_offset_in_bytes()));
4074 __ andptr(rbx, is_inline_type_mask);
4075 __ cmpl(rbx, is_inline_type_mask);
4076 __ jcc(Assembler::notEqual, has_identity);
4077 __ call_VM(noreg, CAST_FROM_FN_PTR(address,
4078 InterpreterRuntime::throw_illegal_monitor_state_exception));
4079 __ should_not_reach_here();
4080 __ bind(has_identity);
4081
4082 const Address monitor_block_top(
4083 rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
4084 const Address monitor_block_bot(
4085 rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
4086 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
4087
4088 Register rtop = c_rarg1;
4089 Register rbot = c_rarg2;
4090
4091 Label found;
4092
4093 // find matching slot
4094 {
4095 Label entry, loop;
4096 __ movptr(rtop, monitor_block_top); // derelativize pointer
4097 __ lea(rtop, Address(rbp, rtop, Address::times_ptr));
4098 // rtop points to current entry, starting with top-most entry
4099
4100 __ lea(rbot, monitor_block_bot); // points to word before bottom
4101 // of monitor block
4102 __ jmpb(entry);
4103
4104 __ bind(loop);
4105 // check if current entry is for same object
4106 __ cmpptr(rax, Address(rtop, BasicObjectLock::obj_offset()));
4107 // if same object then stop searching
4108 __ jcc(Assembler::equal, found);
4109 // otherwise advance to next entry
4110 __ addptr(rtop, entry_size);
4111 __ bind(entry);
4112 // check if bottom reached
4113 __ cmpptr(rtop, rbot);
4114 // if not at bottom then check this entry
4115 __ jcc(Assembler::notEqual, loop);
4116 }
4117
4118 // error handling. Unlocking was not block-structured
4119 __ call_VM(noreg, CAST_FROM_FN_PTR(address,
4120 InterpreterRuntime::throw_illegal_monitor_state_exception));
4121 __ should_not_reach_here();
4122
4123 // call run-time routine
4124 __ bind(found);
4125 __ push_ptr(rax); // make sure object is on stack (contract with oopMaps)
4126 __ unlock_object(rtop);
4127 __ pop_ptr(rax); // discard object
4128 }
4129
4130 // Wide instructions
4131 void TemplateTable::wide() {
4132 transition(vtos, vtos);
4133 __ load_unsigned_byte(rbx, at_bcp(1));
4134 ExternalAddress wtable((address)Interpreter::_wentry_point);
4135 __ jump(ArrayAddress(wtable, Address(noreg, rbx, Address::times_ptr)), rscratch1);
4136 // Note: the rbcp increment step is part of the individual wide bytecode implementations
4137 }
4138
4139 // Multi arrays
4140 void TemplateTable::multianewarray() {
4141 transition(vtos, atos);
4142
4143 __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions
4144 // last dim is on top of stack; we want address of first one:
4145 // first_addr = last_addr + (ndims - 1) * stackElementSize - 1*wordsize
4146 // the latter wordSize to point to the beginning of the array.
4147 __ lea(c_rarg1, Address(rsp, rax, Interpreter::stackElementScale(), -wordSize));
4148 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), c_rarg1);
4149 __ load_unsigned_byte(rbx, at_bcp(3));
4150 __ lea(rsp, Address(rsp, rbx, Interpreter::stackElementScale())); // get rid of counts
4151 }