1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "asm/macroAssembler.hpp" 26 #include "compiler/disassembler.hpp" 27 #include "gc/shared/collectedHeap.hpp" 28 #include "gc/shared/gc_globals.hpp" 29 #include "gc/shared/tlab_globals.hpp" 30 #include "interpreter/interpreter.hpp" 31 #include "interpreter/interpreterRuntime.hpp" 32 #include "interpreter/interp_masm.hpp" 33 #include "interpreter/templateTable.hpp" 34 #include "memory/universe.hpp" 35 #include "oops/methodCounters.hpp" 36 #include "oops/methodData.hpp" 37 #include "oops/objArrayKlass.hpp" 38 #include "oops/oop.inline.hpp" 39 #include "oops/inlineKlass.hpp" 40 #include "oops/resolvedFieldEntry.hpp" 41 #include "oops/resolvedIndyEntry.hpp" 42 #include "oops/resolvedMethodEntry.hpp" 43 #include "prims/jvmtiExport.hpp" 44 #include "prims/methodHandles.hpp" 45 #include "runtime/frame.inline.hpp" 46 #include "runtime/safepointMechanism.hpp" 47 #include "runtime/sharedRuntime.hpp" 48 #include "runtime/stubRoutines.hpp" 49 #include "runtime/synchronizer.hpp" 50 #include "utilities/macros.hpp" 51 52 #define __ Disassembler::hook<InterpreterMacroAssembler>(__FILE__, __LINE__, _masm)-> 53 54 // Global Register Names 55 static const Register rbcp = r13; 56 static const Register rlocals = r14; 57 58 // Address Computation: local variables 59 static inline Address iaddress(int n) { 60 return Address(rlocals, Interpreter::local_offset_in_bytes(n)); 61 } 62 63 static inline Address laddress(int n) { 64 return iaddress(n + 1); 65 } 66 67 static inline Address faddress(int n) { 68 return iaddress(n); 69 } 70 71 static inline Address daddress(int n) { 72 return laddress(n); 73 } 74 75 static inline Address aaddress(int n) { 76 return iaddress(n); 77 } 78 79 static inline Address iaddress(Register r) { 80 return Address(rlocals, r, Address::times_ptr); 81 } 82 83 static inline Address laddress(Register r) { 84 return Address(rlocals, r, Address::times_ptr, Interpreter::local_offset_in_bytes(1)); 85 } 86 87 static inline Address faddress(Register r) { 88 return iaddress(r); 89 } 90 91 static inline Address daddress(Register r) { 92 return laddress(r); 93 } 94 95 static inline Address aaddress(Register r) { 96 return iaddress(r); 97 } 98 99 100 // expression stack 101 // (Note: Must not use symmetric equivalents at_rsp_m1/2 since they store 102 // data beyond the rsp which is potentially unsafe in an MT environment; 103 // an interrupt may overwrite that data.) 104 static inline Address at_rsp () { 105 return Address(rsp, 0); 106 } 107 108 // At top of Java expression stack which may be different than esp(). It 109 // isn't for category 1 objects. 110 static inline Address at_tos () { 111 return Address(rsp, Interpreter::expr_offset_in_bytes(0)); 112 } 113 114 static inline Address at_tos_p1() { 115 return Address(rsp, Interpreter::expr_offset_in_bytes(1)); 116 } 117 118 static inline Address at_tos_p2() { 119 return Address(rsp, Interpreter::expr_offset_in_bytes(2)); 120 } 121 122 // Condition conversion 123 static Assembler::Condition j_not(TemplateTable::Condition cc) { 124 switch (cc) { 125 case TemplateTable::equal : return Assembler::notEqual; 126 case TemplateTable::not_equal : return Assembler::equal; 127 case TemplateTable::less : return Assembler::greaterEqual; 128 case TemplateTable::less_equal : return Assembler::greater; 129 case TemplateTable::greater : return Assembler::lessEqual; 130 case TemplateTable::greater_equal: return Assembler::less; 131 } 132 ShouldNotReachHere(); 133 return Assembler::zero; 134 } 135 136 137 138 // Miscellaneous helper routines 139 // Store an oop (or null) at the address described by obj. 140 // If val == noreg this means store a null 141 142 143 static void do_oop_store(InterpreterMacroAssembler* _masm, 144 Address dst, 145 Register val, 146 DecoratorSet decorators = 0) { 147 assert(val == noreg || val == rax, "parameter is just for looks"); 148 __ store_heap_oop(dst, val, rscratch2, r9, r8, decorators); 149 } 150 151 static void do_oop_load(InterpreterMacroAssembler* _masm, 152 Address src, 153 Register dst, 154 DecoratorSet decorators = 0) { 155 __ load_heap_oop(dst, src, rdx, decorators); 156 } 157 158 Address TemplateTable::at_bcp(int offset) { 159 assert(_desc->uses_bcp(), "inconsistent uses_bcp information"); 160 return Address(rbcp, offset); 161 } 162 163 164 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg, 165 Register temp_reg, bool load_bc_into_bc_reg/*=true*/, 166 int byte_no) { 167 if (!RewriteBytecodes) return; 168 Label L_patch_done; 169 170 switch (bc) { 171 case Bytecodes::_fast_vputfield: 172 case Bytecodes::_fast_aputfield: 173 case Bytecodes::_fast_bputfield: 174 case Bytecodes::_fast_zputfield: 175 case Bytecodes::_fast_cputfield: 176 case Bytecodes::_fast_dputfield: 177 case Bytecodes::_fast_fputfield: 178 case Bytecodes::_fast_iputfield: 179 case Bytecodes::_fast_lputfield: 180 case Bytecodes::_fast_sputfield: 181 { 182 // We skip bytecode quickening for putfield instructions when 183 // the put_code written to the constant pool cache is zero. 184 // This is required so that every execution of this instruction 185 // calls out to InterpreterRuntime::resolve_get_put to do 186 // additional, required work. 187 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 188 assert(load_bc_into_bc_reg, "we use bc_reg as temp"); 189 __ load_field_entry(temp_reg, bc_reg); 190 if (byte_no == f1_byte) { 191 __ load_unsigned_byte(temp_reg, Address(temp_reg, in_bytes(ResolvedFieldEntry::get_code_offset()))); 192 } else { 193 __ load_unsigned_byte(temp_reg, Address(temp_reg, in_bytes(ResolvedFieldEntry::put_code_offset()))); 194 } 195 196 __ movl(bc_reg, bc); 197 __ cmpl(temp_reg, (int) 0); 198 __ jcc(Assembler::zero, L_patch_done); // don't patch 199 } 200 break; 201 default: 202 assert(byte_no == -1, "sanity"); 203 // the pair bytecodes have already done the load. 204 if (load_bc_into_bc_reg) { 205 __ movl(bc_reg, bc); 206 } 207 } 208 209 if (JvmtiExport::can_post_breakpoint()) { 210 Label L_fast_patch; 211 // if a breakpoint is present we can't rewrite the stream directly 212 __ movzbl(temp_reg, at_bcp(0)); 213 __ cmpl(temp_reg, Bytecodes::_breakpoint); 214 __ jcc(Assembler::notEqual, L_fast_patch); 215 __ get_method(temp_reg); 216 // Let breakpoint table handling rewrite to quicker bytecode 217 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), temp_reg, rbcp, bc_reg); 218 #ifndef ASSERT 219 __ jmpb(L_patch_done); 220 #else 221 __ jmp(L_patch_done); 222 #endif 223 __ bind(L_fast_patch); 224 } 225 226 #ifdef ASSERT 227 Label L_okay; 228 __ load_unsigned_byte(temp_reg, at_bcp(0)); 229 __ cmpl(temp_reg, (int) Bytecodes::java_code(bc)); 230 __ jcc(Assembler::equal, L_okay); 231 __ cmpl(temp_reg, bc_reg); 232 __ jcc(Assembler::equal, L_okay); 233 __ stop("patching the wrong bytecode"); 234 __ bind(L_okay); 235 #endif 236 237 // patch bytecode 238 __ movb(at_bcp(0), bc_reg); 239 __ bind(L_patch_done); 240 } 241 // Individual instructions 242 243 244 void TemplateTable::nop() { 245 transition(vtos, vtos); 246 // nothing to do 247 } 248 249 void TemplateTable::shouldnotreachhere() { 250 transition(vtos, vtos); 251 __ stop("shouldnotreachhere bytecode"); 252 } 253 254 void TemplateTable::aconst_null() { 255 transition(vtos, atos); 256 __ xorl(rax, rax); 257 } 258 259 void TemplateTable::iconst(int value) { 260 transition(vtos, itos); 261 if (value == 0) { 262 __ xorl(rax, rax); 263 } else { 264 __ movl(rax, value); 265 } 266 } 267 268 void TemplateTable::lconst(int value) { 269 transition(vtos, ltos); 270 if (value == 0) { 271 __ xorl(rax, rax); 272 } else { 273 __ movl(rax, value); 274 } 275 } 276 277 278 279 void TemplateTable::fconst(int value) { 280 transition(vtos, ftos); 281 static float one = 1.0f, two = 2.0f; 282 switch (value) { 283 case 0: 284 __ xorps(xmm0, xmm0); 285 break; 286 case 1: 287 __ movflt(xmm0, ExternalAddress((address) &one), rscratch1); 288 break; 289 case 2: 290 __ movflt(xmm0, ExternalAddress((address) &two), rscratch1); 291 break; 292 default: 293 ShouldNotReachHere(); 294 break; 295 } 296 } 297 298 void TemplateTable::dconst(int value) { 299 transition(vtos, dtos); 300 static double one = 1.0; 301 switch (value) { 302 case 0: 303 __ xorpd(xmm0, xmm0); 304 break; 305 case 1: 306 __ movdbl(xmm0, ExternalAddress((address) &one), rscratch1); 307 break; 308 default: 309 ShouldNotReachHere(); 310 break; 311 } 312 } 313 314 void TemplateTable::bipush() { 315 transition(vtos, itos); 316 __ load_signed_byte(rax, at_bcp(1)); 317 } 318 319 void TemplateTable::sipush() { 320 transition(vtos, itos); 321 __ load_unsigned_short(rax, at_bcp(1)); 322 __ bswapl(rax); 323 __ sarl(rax, 16); 324 } 325 326 void TemplateTable::ldc(LdcType type) { 327 transition(vtos, vtos); 328 Register rarg = c_rarg1; 329 Label call_ldc, notFloat, notClass, notInt, Done; 330 331 if (is_ldc_wide(type)) { 332 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); 333 } else { 334 __ load_unsigned_byte(rbx, at_bcp(1)); 335 } 336 337 __ get_cpool_and_tags(rcx, rax); 338 const int base_offset = ConstantPool::header_size() * wordSize; 339 const int tags_offset = Array<u1>::base_offset_in_bytes(); 340 341 // get type 342 __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset)); 343 344 // unresolved class - get the resolved class 345 __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass); 346 __ jccb(Assembler::equal, call_ldc); 347 348 // unresolved class in error state - call into runtime to throw the error 349 // from the first resolution attempt 350 __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError); 351 __ jccb(Assembler::equal, call_ldc); 352 353 // resolved class - need to call vm to get java mirror of the class 354 __ cmpl(rdx, JVM_CONSTANT_Class); 355 __ jcc(Assembler::notEqual, notClass); 356 357 __ bind(call_ldc); 358 359 __ movl(rarg, is_ldc_wide(type) ? 1 : 0); 360 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), rarg); 361 362 __ push(atos); 363 __ jmp(Done); 364 365 __ bind(notClass); 366 __ cmpl(rdx, JVM_CONSTANT_Float); 367 __ jccb(Assembler::notEqual, notFloat); 368 369 // ftos 370 __ movflt(xmm0, Address(rcx, rbx, Address::times_ptr, base_offset)); 371 __ push(ftos); 372 __ jmp(Done); 373 374 __ bind(notFloat); 375 __ cmpl(rdx, JVM_CONSTANT_Integer); 376 __ jccb(Assembler::notEqual, notInt); 377 378 // itos 379 __ movl(rax, Address(rcx, rbx, Address::times_ptr, base_offset)); 380 __ push(itos); 381 __ jmp(Done); 382 383 // assume the tag is for condy; if not, the VM runtime will tell us 384 __ bind(notInt); 385 condy_helper(Done); 386 387 __ bind(Done); 388 } 389 390 // Fast path for caching oop constants. 391 void TemplateTable::fast_aldc(LdcType type) { 392 transition(vtos, atos); 393 394 Register result = rax; 395 Register tmp = rdx; 396 Register rarg = c_rarg1; 397 int index_size = is_ldc_wide(type) ? sizeof(u2) : sizeof(u1); 398 399 Label resolved; 400 401 // We are resolved if the resolved reference cache entry contains a 402 // non-null object (String, MethodType, etc.) 403 assert_different_registers(result, tmp); 404 __ get_cache_index_at_bcp(tmp, 1, index_size); 405 __ load_resolved_reference_at_index(result, tmp); 406 __ testptr(result, result); 407 __ jcc(Assembler::notZero, resolved); 408 409 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc); 410 411 // first time invocation - must resolve first 412 __ movl(rarg, (int)bytecode()); 413 __ call_VM(result, entry, rarg); 414 __ bind(resolved); 415 416 { // Check for the null sentinel. 417 // If we just called the VM, it already did the mapping for us, 418 // but it's harmless to retry. 419 Label notNull; 420 ExternalAddress null_sentinel((address)Universe::the_null_sentinel_addr()); 421 __ movptr(tmp, null_sentinel); 422 __ resolve_oop_handle(tmp, rscratch2); 423 __ cmpoop(tmp, result); 424 __ jccb(Assembler::notEqual, notNull); 425 __ xorptr(result, result); // null object reference 426 __ bind(notNull); 427 } 428 429 if (VerifyOops) { 430 __ verify_oop(result); 431 } 432 } 433 434 void TemplateTable::ldc2_w() { 435 transition(vtos, vtos); 436 Label notDouble, notLong, Done; 437 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); 438 439 __ get_cpool_and_tags(rcx, rax); 440 const int base_offset = ConstantPool::header_size() * wordSize; 441 const int tags_offset = Array<u1>::base_offset_in_bytes(); 442 443 // get type 444 __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset)); 445 __ cmpl(rdx, JVM_CONSTANT_Double); 446 __ jccb(Assembler::notEqual, notDouble); 447 448 // dtos 449 __ movdbl(xmm0, Address(rcx, rbx, Address::times_ptr, base_offset)); 450 __ push(dtos); 451 452 __ jmp(Done); 453 __ bind(notDouble); 454 __ cmpl(rdx, JVM_CONSTANT_Long); 455 __ jccb(Assembler::notEqual, notLong); 456 457 // ltos 458 __ movptr(rax, Address(rcx, rbx, Address::times_ptr, base_offset + 0 * wordSize)); 459 __ push(ltos); 460 __ jmp(Done); 461 462 __ bind(notLong); 463 condy_helper(Done); 464 465 __ bind(Done); 466 } 467 468 void TemplateTable::condy_helper(Label& Done) { 469 const Register obj = rax; 470 const Register off = rbx; 471 const Register flags = rcx; 472 const Register rarg = c_rarg1; 473 __ movl(rarg, (int)bytecode()); 474 call_VM(obj, CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc), rarg); 475 __ get_vm_result_metadata(flags); 476 // VMr = obj = base address to find primitive value to push 477 // VMr2 = flags = (tos, off) using format of CPCE::_flags 478 __ movl(off, flags); 479 __ andl(off, ConstantPoolCache::field_index_mask); 480 const Address field(obj, off, Address::times_1, 0*wordSize); 481 482 // What sort of thing are we loading? 483 __ shrl(flags, ConstantPoolCache::tos_state_shift); 484 __ andl(flags, ConstantPoolCache::tos_state_mask); 485 486 switch (bytecode()) { 487 case Bytecodes::_ldc: 488 case Bytecodes::_ldc_w: 489 { 490 // tos in (itos, ftos, stos, btos, ctos, ztos) 491 Label notInt, notFloat, notShort, notByte, notChar, notBool; 492 __ cmpl(flags, itos); 493 __ jccb(Assembler::notEqual, notInt); 494 // itos 495 __ movl(rax, field); 496 __ push(itos); 497 __ jmp(Done); 498 499 __ bind(notInt); 500 __ cmpl(flags, ftos); 501 __ jccb(Assembler::notEqual, notFloat); 502 // ftos 503 __ movflt(xmm0, field); 504 __ push(ftos); 505 __ jmp(Done); 506 507 __ bind(notFloat); 508 __ cmpl(flags, stos); 509 __ jccb(Assembler::notEqual, notShort); 510 // stos 511 __ load_signed_short(rax, field); 512 __ push(stos); 513 __ jmp(Done); 514 515 __ bind(notShort); 516 __ cmpl(flags, btos); 517 __ jccb(Assembler::notEqual, notByte); 518 // btos 519 __ load_signed_byte(rax, field); 520 __ push(btos); 521 __ jmp(Done); 522 523 __ bind(notByte); 524 __ cmpl(flags, ctos); 525 __ jccb(Assembler::notEqual, notChar); 526 // ctos 527 __ load_unsigned_short(rax, field); 528 __ push(ctos); 529 __ jmp(Done); 530 531 __ bind(notChar); 532 __ cmpl(flags, ztos); 533 __ jccb(Assembler::notEqual, notBool); 534 // ztos 535 __ load_signed_byte(rax, field); 536 __ push(ztos); 537 __ jmp(Done); 538 539 __ bind(notBool); 540 break; 541 } 542 543 case Bytecodes::_ldc2_w: 544 { 545 Label notLong, notDouble; 546 __ cmpl(flags, ltos); 547 __ jccb(Assembler::notEqual, notLong); 548 // ltos 549 // Loading high word first because movptr clobbers rax 550 __ movptr(rax, field); 551 __ push(ltos); 552 __ jmp(Done); 553 554 __ bind(notLong); 555 __ cmpl(flags, dtos); 556 __ jccb(Assembler::notEqual, notDouble); 557 // dtos 558 __ movdbl(xmm0, field); 559 __ push(dtos); 560 __ jmp(Done); 561 562 __ bind(notDouble); 563 break; 564 } 565 566 default: 567 ShouldNotReachHere(); 568 } 569 570 __ stop("bad ldc/condy"); 571 } 572 573 void TemplateTable::locals_index(Register reg, int offset) { 574 __ load_unsigned_byte(reg, at_bcp(offset)); 575 __ negptr(reg); 576 } 577 578 void TemplateTable::iload() { 579 iload_internal(); 580 } 581 582 void TemplateTable::nofast_iload() { 583 iload_internal(may_not_rewrite); 584 } 585 586 void TemplateTable::iload_internal(RewriteControl rc) { 587 transition(vtos, itos); 588 if (RewriteFrequentPairs && rc == may_rewrite) { 589 Label rewrite, done; 590 const Register bc = c_rarg3; 591 assert(rbx != bc, "register damaged"); 592 593 // get next byte 594 __ load_unsigned_byte(rbx, 595 at_bcp(Bytecodes::length_for(Bytecodes::_iload))); 596 // if _iload, wait to rewrite to iload2. We only want to rewrite the 597 // last two iloads in a pair. Comparing against fast_iload means that 598 // the next bytecode is neither an iload or a caload, and therefore 599 // an iload pair. 600 __ cmpl(rbx, Bytecodes::_iload); 601 __ jcc(Assembler::equal, done); 602 603 __ cmpl(rbx, Bytecodes::_fast_iload); 604 __ movl(bc, Bytecodes::_fast_iload2); 605 606 __ jccb(Assembler::equal, rewrite); 607 608 // if _caload, rewrite to fast_icaload 609 __ cmpl(rbx, Bytecodes::_caload); 610 __ movl(bc, Bytecodes::_fast_icaload); 611 __ jccb(Assembler::equal, rewrite); 612 613 // rewrite so iload doesn't check again. 614 __ movl(bc, Bytecodes::_fast_iload); 615 616 // rewrite 617 // bc: fast bytecode 618 __ bind(rewrite); 619 patch_bytecode(Bytecodes::_iload, bc, rbx, false); 620 __ bind(done); 621 } 622 623 // Get the local value into tos 624 locals_index(rbx); 625 __ movl(rax, iaddress(rbx)); 626 } 627 628 void TemplateTable::fast_iload2() { 629 transition(vtos, itos); 630 locals_index(rbx); 631 __ movl(rax, iaddress(rbx)); 632 __ push(itos); 633 locals_index(rbx, 3); 634 __ movl(rax, iaddress(rbx)); 635 } 636 637 void TemplateTable::fast_iload() { 638 transition(vtos, itos); 639 locals_index(rbx); 640 __ movl(rax, iaddress(rbx)); 641 } 642 643 void TemplateTable::lload() { 644 transition(vtos, ltos); 645 locals_index(rbx); 646 __ movptr(rax, laddress(rbx)); 647 } 648 649 void TemplateTable::fload() { 650 transition(vtos, ftos); 651 locals_index(rbx); 652 __ movflt(xmm0, faddress(rbx)); 653 } 654 655 void TemplateTable::dload() { 656 transition(vtos, dtos); 657 locals_index(rbx); 658 __ movdbl(xmm0, daddress(rbx)); 659 } 660 661 void TemplateTable::aload() { 662 transition(vtos, atos); 663 locals_index(rbx); 664 __ movptr(rax, aaddress(rbx)); 665 } 666 667 void TemplateTable::locals_index_wide(Register reg) { 668 __ load_unsigned_short(reg, at_bcp(2)); 669 __ bswapl(reg); 670 __ shrl(reg, 16); 671 __ negptr(reg); 672 } 673 674 void TemplateTable::wide_iload() { 675 transition(vtos, itos); 676 locals_index_wide(rbx); 677 __ movl(rax, iaddress(rbx)); 678 } 679 680 void TemplateTable::wide_lload() { 681 transition(vtos, ltos); 682 locals_index_wide(rbx); 683 __ movptr(rax, laddress(rbx)); 684 } 685 686 void TemplateTable::wide_fload() { 687 transition(vtos, ftos); 688 locals_index_wide(rbx); 689 __ movflt(xmm0, faddress(rbx)); 690 } 691 692 void TemplateTable::wide_dload() { 693 transition(vtos, dtos); 694 locals_index_wide(rbx); 695 __ movdbl(xmm0, daddress(rbx)); 696 } 697 698 void TemplateTable::wide_aload() { 699 transition(vtos, atos); 700 locals_index_wide(rbx); 701 __ movptr(rax, aaddress(rbx)); 702 } 703 704 void TemplateTable::index_check(Register array, Register index) { 705 // Pop ptr into array 706 __ pop_ptr(array); 707 index_check_without_pop(array, index); 708 } 709 710 void TemplateTable::index_check_without_pop(Register array, Register index) { 711 // destroys rbx 712 // sign extend index for use by indexed load 713 __ movl2ptr(index, index); 714 // check index 715 __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes())); 716 if (index != rbx) { 717 // ??? convention: move aberrant index into rbx for exception message 718 assert(rbx != array, "different registers"); 719 __ movl(rbx, index); 720 } 721 Label skip; 722 __ jccb(Assembler::below, skip); 723 // Pass array to create more detailed exceptions. 724 __ mov(c_rarg1, array); 725 __ jump(RuntimeAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry)); 726 __ bind(skip); 727 } 728 729 void TemplateTable::iaload() { 730 transition(itos, itos); 731 // rax: index 732 // rdx: array 733 index_check(rdx, rax); // kills rbx 734 __ access_load_at(T_INT, IN_HEAP | IS_ARRAY, rax, 735 Address(rdx, rax, Address::times_4, 736 arrayOopDesc::base_offset_in_bytes(T_INT)), 737 noreg); 738 } 739 740 void TemplateTable::laload() { 741 transition(itos, ltos); 742 // rax: index 743 // rdx: array 744 index_check(rdx, rax); // kills rbx 745 // rbx,: index 746 __ access_load_at(T_LONG, IN_HEAP | IS_ARRAY, noreg /* ltos */, 747 Address(rdx, rbx, Address::times_8, 748 arrayOopDesc::base_offset_in_bytes(T_LONG)), 749 noreg); 750 } 751 752 753 754 void TemplateTable::faload() { 755 transition(itos, ftos); 756 // rax: index 757 // rdx: array 758 index_check(rdx, rax); // kills rbx 759 __ access_load_at(T_FLOAT, IN_HEAP | IS_ARRAY, noreg /* ftos */, 760 Address(rdx, rax, 761 Address::times_4, 762 arrayOopDesc::base_offset_in_bytes(T_FLOAT)), 763 noreg); 764 } 765 766 void TemplateTable::daload() { 767 transition(itos, dtos); 768 // rax: index 769 // rdx: array 770 index_check(rdx, rax); // kills rbx 771 __ access_load_at(T_DOUBLE, IN_HEAP | IS_ARRAY, noreg /* dtos */, 772 Address(rdx, rax, 773 Address::times_8, 774 arrayOopDesc::base_offset_in_bytes(T_DOUBLE)), 775 noreg); 776 } 777 778 void TemplateTable::aaload() { 779 transition(itos, atos); 780 Register array = rdx; 781 Register index = rax; 782 783 index_check(array, index); // kills rbx 784 __ profile_array_type<ArrayLoadData>(rbx, array, rcx); 785 if (UseArrayFlattening) { 786 Label is_flat_array, done; 787 __ test_flat_array_oop(array, rbx, is_flat_array); 788 do_oop_load(_masm, 789 Address(array, index, 790 UseCompressedOops ? Address::times_4 : Address::times_ptr, 791 arrayOopDesc::base_offset_in_bytes(T_OBJECT)), 792 rax, 793 IS_ARRAY); 794 __ jmp(done); 795 __ bind(is_flat_array); 796 __ movptr(rcx, array); 797 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::flat_array_load), rcx, index); 798 __ bind(done); 799 } else { 800 do_oop_load(_masm, 801 Address(array, index, 802 UseCompressedOops ? Address::times_4 : Address::times_ptr, 803 arrayOopDesc::base_offset_in_bytes(T_OBJECT)), 804 rax, 805 IS_ARRAY); 806 } 807 __ profile_element_type(rbx, rax, rcx); 808 } 809 810 void TemplateTable::baload() { 811 transition(itos, itos); 812 // rax: index 813 // rdx: array 814 index_check(rdx, rax); // kills rbx 815 __ access_load_at(T_BYTE, IN_HEAP | IS_ARRAY, rax, 816 Address(rdx, rax, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_BYTE)), 817 noreg); 818 } 819 820 void TemplateTable::caload() { 821 transition(itos, itos); 822 // rax: index 823 // rdx: array 824 index_check(rdx, rax); // kills rbx 825 __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, rax, 826 Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)), 827 noreg); 828 } 829 830 // iload followed by caload frequent pair 831 void TemplateTable::fast_icaload() { 832 transition(vtos, itos); 833 // load index out of locals 834 locals_index(rbx); 835 __ movl(rax, iaddress(rbx)); 836 837 // rax: index 838 // rdx: array 839 index_check(rdx, rax); // kills rbx 840 __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, rax, 841 Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)), 842 noreg); 843 } 844 845 846 void TemplateTable::saload() { 847 transition(itos, itos); 848 // rax: index 849 // rdx: array 850 index_check(rdx, rax); // kills rbx 851 __ access_load_at(T_SHORT, IN_HEAP | IS_ARRAY, rax, 852 Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_SHORT)), 853 noreg); 854 } 855 856 void TemplateTable::iload(int n) { 857 transition(vtos, itos); 858 __ movl(rax, iaddress(n)); 859 } 860 861 void TemplateTable::lload(int n) { 862 transition(vtos, ltos); 863 __ movptr(rax, laddress(n)); 864 } 865 866 void TemplateTable::fload(int n) { 867 transition(vtos, ftos); 868 __ movflt(xmm0, faddress(n)); 869 } 870 871 void TemplateTable::dload(int n) { 872 transition(vtos, dtos); 873 __ movdbl(xmm0, daddress(n)); 874 } 875 876 void TemplateTable::aload(int n) { 877 transition(vtos, atos); 878 __ movptr(rax, aaddress(n)); 879 } 880 881 void TemplateTable::aload_0() { 882 aload_0_internal(); 883 } 884 885 void TemplateTable::nofast_aload_0() { 886 aload_0_internal(may_not_rewrite); 887 } 888 889 void TemplateTable::aload_0_internal(RewriteControl rc) { 890 transition(vtos, atos); 891 // According to bytecode histograms, the pairs: 892 // 893 // _aload_0, _fast_igetfield 894 // _aload_0, _fast_agetfield 895 // _aload_0, _fast_fgetfield 896 // 897 // occur frequently. If RewriteFrequentPairs is set, the (slow) 898 // _aload_0 bytecode checks if the next bytecode is either 899 // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then 900 // rewrites the current bytecode into a pair bytecode; otherwise it 901 // rewrites the current bytecode into _fast_aload_0 that doesn't do 902 // the pair check anymore. 903 // 904 // Note: If the next bytecode is _getfield, the rewrite must be 905 // delayed, otherwise we may miss an opportunity for a pair. 906 // 907 // Also rewrite frequent pairs 908 // aload_0, aload_1 909 // aload_0, iload_1 910 // These bytecodes with a small amount of code are most profitable 911 // to rewrite 912 if (RewriteFrequentPairs && rc == may_rewrite) { 913 Label rewrite, done; 914 915 const Register bc = c_rarg3; 916 assert(rbx != bc, "register damaged"); 917 918 // get next byte 919 __ load_unsigned_byte(rbx, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0))); 920 921 // if _getfield then wait with rewrite 922 __ cmpl(rbx, Bytecodes::_getfield); 923 __ jcc(Assembler::equal, done); 924 925 // if _igetfield then rewrite to _fast_iaccess_0 926 assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 927 __ cmpl(rbx, Bytecodes::_fast_igetfield); 928 __ movl(bc, Bytecodes::_fast_iaccess_0); 929 __ jccb(Assembler::equal, rewrite); 930 931 // if _agetfield then rewrite to _fast_aaccess_0 932 assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 933 __ cmpl(rbx, Bytecodes::_fast_agetfield); 934 __ movl(bc, Bytecodes::_fast_aaccess_0); 935 __ jccb(Assembler::equal, rewrite); 936 937 // if _fgetfield then rewrite to _fast_faccess_0 938 assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 939 __ cmpl(rbx, Bytecodes::_fast_fgetfield); 940 __ movl(bc, Bytecodes::_fast_faccess_0); 941 __ jccb(Assembler::equal, rewrite); 942 943 // else rewrite to _fast_aload0 944 assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition"); 945 __ movl(bc, Bytecodes::_fast_aload_0); 946 947 // rewrite 948 // bc: fast bytecode 949 __ bind(rewrite); 950 patch_bytecode(Bytecodes::_aload_0, bc, rbx, false); 951 952 __ bind(done); 953 } 954 955 // Do actual aload_0 (must do this after patch_bytecode which might call VM and GC might change oop). 956 aload(0); 957 } 958 959 void TemplateTable::istore() { 960 transition(itos, vtos); 961 locals_index(rbx); 962 __ movl(iaddress(rbx), rax); 963 } 964 965 966 void TemplateTable::lstore() { 967 transition(ltos, vtos); 968 locals_index(rbx); 969 __ movptr(laddress(rbx), rax); 970 } 971 972 void TemplateTable::fstore() { 973 transition(ftos, vtos); 974 locals_index(rbx); 975 __ movflt(faddress(rbx), xmm0); 976 } 977 978 void TemplateTable::dstore() { 979 transition(dtos, vtos); 980 locals_index(rbx); 981 __ movdbl(daddress(rbx), xmm0); 982 } 983 984 void TemplateTable::astore() { 985 transition(vtos, vtos); 986 __ pop_ptr(rax); 987 locals_index(rbx); 988 __ movptr(aaddress(rbx), rax); 989 } 990 991 void TemplateTable::wide_istore() { 992 transition(vtos, vtos); 993 __ pop_i(); 994 locals_index_wide(rbx); 995 __ movl(iaddress(rbx), rax); 996 } 997 998 void TemplateTable::wide_lstore() { 999 transition(vtos, vtos); 1000 __ pop_l(); 1001 locals_index_wide(rbx); 1002 __ movptr(laddress(rbx), rax); 1003 } 1004 1005 void TemplateTable::wide_fstore() { 1006 transition(vtos, vtos); 1007 __ pop_f(xmm0); 1008 locals_index_wide(rbx); 1009 __ movflt(faddress(rbx), xmm0); 1010 } 1011 1012 void TemplateTable::wide_dstore() { 1013 transition(vtos, vtos); 1014 __ pop_d(xmm0); 1015 locals_index_wide(rbx); 1016 __ movdbl(daddress(rbx), xmm0); 1017 } 1018 1019 void TemplateTable::wide_astore() { 1020 transition(vtos, vtos); 1021 __ pop_ptr(rax); 1022 locals_index_wide(rbx); 1023 __ movptr(aaddress(rbx), rax); 1024 } 1025 1026 void TemplateTable::iastore() { 1027 transition(itos, vtos); 1028 __ pop_i(rbx); 1029 // rax: value 1030 // rbx: index 1031 // rdx: array 1032 index_check(rdx, rbx); // prefer index in rbx 1033 __ access_store_at(T_INT, IN_HEAP | IS_ARRAY, 1034 Address(rdx, rbx, Address::times_4, 1035 arrayOopDesc::base_offset_in_bytes(T_INT)), 1036 rax, noreg, noreg, noreg); 1037 } 1038 1039 void TemplateTable::lastore() { 1040 transition(ltos, vtos); 1041 __ pop_i(rbx); 1042 // rax,: low(value) 1043 // rcx: array 1044 // rdx: high(value) 1045 index_check(rcx, rbx); // prefer index in rbx, 1046 // rbx,: index 1047 __ access_store_at(T_LONG, IN_HEAP | IS_ARRAY, 1048 Address(rcx, rbx, Address::times_8, 1049 arrayOopDesc::base_offset_in_bytes(T_LONG)), 1050 noreg /* ltos */, noreg, noreg, noreg); 1051 } 1052 1053 1054 void TemplateTable::fastore() { 1055 transition(ftos, vtos); 1056 __ pop_i(rbx); 1057 // value is in xmm0 1058 // rbx: index 1059 // rdx: array 1060 index_check(rdx, rbx); // prefer index in rbx 1061 __ access_store_at(T_FLOAT, IN_HEAP | IS_ARRAY, 1062 Address(rdx, rbx, Address::times_4, 1063 arrayOopDesc::base_offset_in_bytes(T_FLOAT)), 1064 noreg /* ftos */, noreg, noreg, noreg); 1065 } 1066 1067 void TemplateTable::dastore() { 1068 transition(dtos, vtos); 1069 __ pop_i(rbx); 1070 // value is in xmm0 1071 // rbx: index 1072 // rdx: array 1073 index_check(rdx, rbx); // prefer index in rbx 1074 __ access_store_at(T_DOUBLE, IN_HEAP | IS_ARRAY, 1075 Address(rdx, rbx, Address::times_8, 1076 arrayOopDesc::base_offset_in_bytes(T_DOUBLE)), 1077 noreg /* dtos */, noreg, noreg, noreg); 1078 } 1079 1080 void TemplateTable::aastore() { 1081 Label is_null, is_flat_array, ok_is_subtype, done; 1082 transition(vtos, vtos); 1083 // stack: ..., array, index, value 1084 __ movptr(rax, at_tos()); // value 1085 __ movl(rcx, at_tos_p1()); // index 1086 __ movptr(rdx, at_tos_p2()); // array 1087 1088 Address element_address(rdx, rcx, 1089 UseCompressedOops? Address::times_4 : Address::times_ptr, 1090 arrayOopDesc::base_offset_in_bytes(T_OBJECT)); 1091 1092 index_check_without_pop(rdx, rcx); // kills rbx 1093 1094 __ profile_array_type<ArrayStoreData>(rdi, rdx, rbx); 1095 __ profile_multiple_element_types(rdi, rax, rbx, rcx); 1096 1097 __ testptr(rax, rax); 1098 __ jcc(Assembler::zero, is_null); 1099 1100 // Move array class to rdi 1101 __ load_klass(rdi, rdx, rscratch1); 1102 if (UseArrayFlattening) { 1103 __ movl(rbx, Address(rdi, Klass::layout_helper_offset())); 1104 __ test_flat_array_layout(rbx, is_flat_array); 1105 } 1106 1107 // Move subklass into rbx 1108 __ load_klass(rbx, rax, rscratch1); 1109 // Move array element superklass into rax 1110 __ movptr(rax, Address(rdi, 1111 ObjArrayKlass::element_klass_offset())); 1112 1113 // Generate subtype check. Blows rcx, rdi 1114 // Superklass in rax. Subklass in rbx. 1115 // is "rbx <: rax" ? (value subclass <: array element superclass) 1116 __ gen_subtype_check(rbx, ok_is_subtype, false); 1117 1118 // Come here on failure 1119 // object is at TOS 1120 __ jump(RuntimeAddress(Interpreter::_throw_ArrayStoreException_entry)); 1121 1122 // Come here on success 1123 __ bind(ok_is_subtype); 1124 1125 // Get the value we will store 1126 __ movptr(rax, at_tos()); 1127 __ movl(rcx, at_tos_p1()); // index 1128 // Now store using the appropriate barrier 1129 do_oop_store(_masm, element_address, rax, IS_ARRAY); 1130 __ jmp(done); 1131 1132 // Have a null in rax, rdx=array, ecx=index. Store null at ary[idx] 1133 __ bind(is_null); 1134 if (EnableValhalla) { 1135 Label write_null_to_null_free_array, store_null; 1136 1137 // Move array class to rdi 1138 __ load_klass(rdi, rdx, rscratch1); 1139 if (UseArrayFlattening) { 1140 __ movl(rbx, Address(rdi, Klass::layout_helper_offset())); 1141 __ test_flat_array_layout(rbx, is_flat_array); 1142 } 1143 1144 // No way to store null in null-free array 1145 __ test_null_free_array_oop(rdx, rbx, write_null_to_null_free_array); 1146 __ jmp(store_null); 1147 1148 __ bind(write_null_to_null_free_array); 1149 __ jump(RuntimeAddress(Interpreter::_throw_NullPointerException_entry)); 1150 1151 __ bind(store_null); 1152 } 1153 // Store a null 1154 do_oop_store(_masm, element_address, noreg, IS_ARRAY); 1155 __ jmp(done); 1156 1157 if (UseArrayFlattening) { 1158 Label is_type_ok; 1159 __ bind(is_flat_array); // Store non-null value to flat 1160 1161 __ movptr(rax, at_tos()); 1162 __ movl(rcx, at_tos_p1()); // index 1163 __ movptr(rdx, at_tos_p2()); // array 1164 1165 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::flat_array_store), rax, rdx, rcx); 1166 } 1167 // Pop stack arguments 1168 __ bind(done); 1169 __ addptr(rsp, 3 * Interpreter::stackElementSize); 1170 } 1171 1172 void TemplateTable::bastore() { 1173 transition(itos, vtos); 1174 __ pop_i(rbx); 1175 // rax: value 1176 // rbx: index 1177 // rdx: array 1178 index_check(rdx, rbx); // prefer index in rbx 1179 // Need to check whether array is boolean or byte 1180 // since both types share the bastore bytecode. 1181 __ load_klass(rcx, rdx, rscratch1); 1182 __ movl(rcx, Address(rcx, Klass::layout_helper_offset())); 1183 int diffbit = Klass::layout_helper_boolean_diffbit(); 1184 __ testl(rcx, diffbit); 1185 Label L_skip; 1186 __ jccb(Assembler::zero, L_skip); 1187 __ andl(rax, 1); // if it is a T_BOOLEAN array, mask the stored value to 0/1 1188 __ bind(L_skip); 1189 __ access_store_at(T_BYTE, IN_HEAP | IS_ARRAY, 1190 Address(rdx, rbx,Address::times_1, 1191 arrayOopDesc::base_offset_in_bytes(T_BYTE)), 1192 rax, noreg, noreg, noreg); 1193 } 1194 1195 void TemplateTable::castore() { 1196 transition(itos, vtos); 1197 __ pop_i(rbx); 1198 // rax: value 1199 // rbx: index 1200 // rdx: array 1201 index_check(rdx, rbx); // prefer index in rbx 1202 __ access_store_at(T_CHAR, IN_HEAP | IS_ARRAY, 1203 Address(rdx, rbx, Address::times_2, 1204 arrayOopDesc::base_offset_in_bytes(T_CHAR)), 1205 rax, noreg, noreg, noreg); 1206 } 1207 1208 1209 void TemplateTable::sastore() { 1210 castore(); 1211 } 1212 1213 void TemplateTable::istore(int n) { 1214 transition(itos, vtos); 1215 __ movl(iaddress(n), rax); 1216 } 1217 1218 void TemplateTable::lstore(int n) { 1219 transition(ltos, vtos); 1220 __ movptr(laddress(n), rax); 1221 } 1222 1223 void TemplateTable::fstore(int n) { 1224 transition(ftos, vtos); 1225 __ movflt(faddress(n), xmm0); 1226 } 1227 1228 void TemplateTable::dstore(int n) { 1229 transition(dtos, vtos); 1230 __ movdbl(daddress(n), xmm0); 1231 } 1232 1233 1234 void TemplateTable::astore(int n) { 1235 transition(vtos, vtos); 1236 __ pop_ptr(rax); 1237 __ movptr(aaddress(n), rax); 1238 } 1239 1240 void TemplateTable::pop() { 1241 transition(vtos, vtos); 1242 __ addptr(rsp, Interpreter::stackElementSize); 1243 } 1244 1245 void TemplateTable::pop2() { 1246 transition(vtos, vtos); 1247 __ addptr(rsp, 2 * Interpreter::stackElementSize); 1248 } 1249 1250 1251 void TemplateTable::dup() { 1252 transition(vtos, vtos); 1253 __ load_ptr(0, rax); 1254 __ push_ptr(rax); 1255 // stack: ..., a, a 1256 } 1257 1258 void TemplateTable::dup_x1() { 1259 transition(vtos, vtos); 1260 // stack: ..., a, b 1261 __ load_ptr( 0, rax); // load b 1262 __ load_ptr( 1, rcx); // load a 1263 __ store_ptr(1, rax); // store b 1264 __ store_ptr(0, rcx); // store a 1265 __ push_ptr(rax); // push b 1266 // stack: ..., b, a, b 1267 } 1268 1269 void TemplateTable::dup_x2() { 1270 transition(vtos, vtos); 1271 // stack: ..., a, b, c 1272 __ load_ptr( 0, rax); // load c 1273 __ load_ptr( 2, rcx); // load a 1274 __ store_ptr(2, rax); // store c in a 1275 __ push_ptr(rax); // push c 1276 // stack: ..., c, b, c, c 1277 __ load_ptr( 2, rax); // load b 1278 __ store_ptr(2, rcx); // store a in b 1279 // stack: ..., c, a, c, c 1280 __ store_ptr(1, rax); // store b in c 1281 // stack: ..., c, a, b, c 1282 } 1283 1284 void TemplateTable::dup2() { 1285 transition(vtos, vtos); 1286 // stack: ..., a, b 1287 __ load_ptr(1, rax); // load a 1288 __ push_ptr(rax); // push a 1289 __ load_ptr(1, rax); // load b 1290 __ push_ptr(rax); // push b 1291 // stack: ..., a, b, a, b 1292 } 1293 1294 1295 void TemplateTable::dup2_x1() { 1296 transition(vtos, vtos); 1297 // stack: ..., a, b, c 1298 __ load_ptr( 0, rcx); // load c 1299 __ load_ptr( 1, rax); // load b 1300 __ push_ptr(rax); // push b 1301 __ push_ptr(rcx); // push c 1302 // stack: ..., a, b, c, b, c 1303 __ store_ptr(3, rcx); // store c in b 1304 // stack: ..., a, c, c, b, c 1305 __ load_ptr( 4, rcx); // load a 1306 __ store_ptr(2, rcx); // store a in 2nd c 1307 // stack: ..., a, c, a, b, c 1308 __ store_ptr(4, rax); // store b in a 1309 // stack: ..., b, c, a, b, c 1310 } 1311 1312 void TemplateTable::dup2_x2() { 1313 transition(vtos, vtos); 1314 // stack: ..., a, b, c, d 1315 __ load_ptr( 0, rcx); // load d 1316 __ load_ptr( 1, rax); // load c 1317 __ push_ptr(rax); // push c 1318 __ push_ptr(rcx); // push d 1319 // stack: ..., a, b, c, d, c, d 1320 __ load_ptr( 4, rax); // load b 1321 __ store_ptr(2, rax); // store b in d 1322 __ store_ptr(4, rcx); // store d in b 1323 // stack: ..., a, d, c, b, c, d 1324 __ load_ptr( 5, rcx); // load a 1325 __ load_ptr( 3, rax); // load c 1326 __ store_ptr(3, rcx); // store a in c 1327 __ store_ptr(5, rax); // store c in a 1328 // stack: ..., c, d, a, b, c, d 1329 } 1330 1331 void TemplateTable::swap() { 1332 transition(vtos, vtos); 1333 // stack: ..., a, b 1334 __ load_ptr( 1, rcx); // load a 1335 __ load_ptr( 0, rax); // load b 1336 __ store_ptr(0, rcx); // store a in b 1337 __ store_ptr(1, rax); // store b in a 1338 // stack: ..., b, a 1339 } 1340 1341 void TemplateTable::iop2(Operation op) { 1342 transition(itos, itos); 1343 switch (op) { 1344 case add : __ pop_i(rdx); __ addl (rax, rdx); break; 1345 case sub : __ movl(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break; 1346 case mul : __ pop_i(rdx); __ imull(rax, rdx); break; 1347 case _and : __ pop_i(rdx); __ andl (rax, rdx); break; 1348 case _or : __ pop_i(rdx); __ orl (rax, rdx); break; 1349 case _xor : __ pop_i(rdx); __ xorl (rax, rdx); break; 1350 case shl : __ movl(rcx, rax); __ pop_i(rax); __ shll (rax); break; 1351 case shr : __ movl(rcx, rax); __ pop_i(rax); __ sarl (rax); break; 1352 case ushr : __ movl(rcx, rax); __ pop_i(rax); __ shrl (rax); break; 1353 default : ShouldNotReachHere(); 1354 } 1355 } 1356 1357 void TemplateTable::lop2(Operation op) { 1358 transition(ltos, ltos); 1359 switch (op) { 1360 case add : __ pop_l(rdx); __ addptr(rax, rdx); break; 1361 case sub : __ mov(rdx, rax); __ pop_l(rax); __ subptr(rax, rdx); break; 1362 case _and : __ pop_l(rdx); __ andptr(rax, rdx); break; 1363 case _or : __ pop_l(rdx); __ orptr (rax, rdx); break; 1364 case _xor : __ pop_l(rdx); __ xorptr(rax, rdx); break; 1365 default : ShouldNotReachHere(); 1366 } 1367 } 1368 1369 void TemplateTable::idiv() { 1370 transition(itos, itos); 1371 __ movl(rcx, rax); 1372 __ pop_i(rax); 1373 // Note: could xor rax and ecx and compare with (-1 ^ min_int). If 1374 // they are not equal, one could do a normal division (no correction 1375 // needed), which may speed up this implementation for the common case. 1376 // (see also JVM spec., p.243 & p.271) 1377 __ corrected_idivl(rcx); 1378 } 1379 1380 void TemplateTable::irem() { 1381 transition(itos, itos); 1382 __ movl(rcx, rax); 1383 __ pop_i(rax); 1384 // Note: could xor rax and ecx and compare with (-1 ^ min_int). If 1385 // they are not equal, one could do a normal division (no correction 1386 // needed), which may speed up this implementation for the common case. 1387 // (see also JVM spec., p.243 & p.271) 1388 __ corrected_idivl(rcx); 1389 __ movl(rax, rdx); 1390 } 1391 1392 void TemplateTable::lmul() { 1393 transition(ltos, ltos); 1394 __ pop_l(rdx); 1395 __ imulq(rax, rdx); 1396 } 1397 1398 void TemplateTable::ldiv() { 1399 transition(ltos, ltos); 1400 __ mov(rcx, rax); 1401 __ pop_l(rax); 1402 // generate explicit div0 check 1403 __ testq(rcx, rcx); 1404 __ jump_cc(Assembler::zero, 1405 RuntimeAddress(Interpreter::_throw_ArithmeticException_entry)); 1406 // Note: could xor rax and rcx and compare with (-1 ^ min_int). If 1407 // they are not equal, one could do a normal division (no correction 1408 // needed), which may speed up this implementation for the common case. 1409 // (see also JVM spec., p.243 & p.271) 1410 __ corrected_idivq(rcx); // kills rbx 1411 } 1412 1413 void TemplateTable::lrem() { 1414 transition(ltos, ltos); 1415 __ mov(rcx, rax); 1416 __ pop_l(rax); 1417 __ testq(rcx, rcx); 1418 __ jump_cc(Assembler::zero, 1419 RuntimeAddress(Interpreter::_throw_ArithmeticException_entry)); 1420 // Note: could xor rax and rcx and compare with (-1 ^ min_int). If 1421 // they are not equal, one could do a normal division (no correction 1422 // needed), which may speed up this implementation for the common case. 1423 // (see also JVM spec., p.243 & p.271) 1424 __ corrected_idivq(rcx); // kills rbx 1425 __ mov(rax, rdx); 1426 } 1427 1428 void TemplateTable::lshl() { 1429 transition(itos, ltos); 1430 __ movl(rcx, rax); // get shift count 1431 __ pop_l(rax); // get shift value 1432 __ shlq(rax); 1433 } 1434 1435 void TemplateTable::lshr() { 1436 transition(itos, ltos); 1437 __ movl(rcx, rax); // get shift count 1438 __ pop_l(rax); // get shift value 1439 __ sarq(rax); 1440 } 1441 1442 void TemplateTable::lushr() { 1443 transition(itos, ltos); 1444 __ movl(rcx, rax); // get shift count 1445 __ pop_l(rax); // get shift value 1446 __ shrq(rax); 1447 } 1448 1449 void TemplateTable::fop2(Operation op) { 1450 transition(ftos, ftos); 1451 1452 switch (op) { 1453 case add: 1454 __ addss(xmm0, at_rsp()); 1455 __ addptr(rsp, Interpreter::stackElementSize); 1456 break; 1457 case sub: 1458 __ movflt(xmm1, xmm0); 1459 __ pop_f(xmm0); 1460 __ subss(xmm0, xmm1); 1461 break; 1462 case mul: 1463 __ mulss(xmm0, at_rsp()); 1464 __ addptr(rsp, Interpreter::stackElementSize); 1465 break; 1466 case div: 1467 __ movflt(xmm1, xmm0); 1468 __ pop_f(xmm0); 1469 __ divss(xmm0, xmm1); 1470 break; 1471 case rem: 1472 // On x86_64 platforms the SharedRuntime::frem method is called to perform the 1473 // modulo operation. The frem method calls the function 1474 // double fmod(double x, double y) in math.h. The documentation of fmod states: 1475 // "If x or y is a NaN, a NaN is returned." without specifying what type of NaN 1476 // (signalling or quiet) is returned. 1477 __ movflt(xmm1, xmm0); 1478 __ pop_f(xmm0); 1479 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem), 2); 1480 break; 1481 default: 1482 ShouldNotReachHere(); 1483 break; 1484 } 1485 } 1486 1487 void TemplateTable::dop2(Operation op) { 1488 transition(dtos, dtos); 1489 switch (op) { 1490 case add: 1491 __ addsd(xmm0, at_rsp()); 1492 __ addptr(rsp, 2 * Interpreter::stackElementSize); 1493 break; 1494 case sub: 1495 __ movdbl(xmm1, xmm0); 1496 __ pop_d(xmm0); 1497 __ subsd(xmm0, xmm1); 1498 break; 1499 case mul: 1500 __ mulsd(xmm0, at_rsp()); 1501 __ addptr(rsp, 2 * Interpreter::stackElementSize); 1502 break; 1503 case div: 1504 __ movdbl(xmm1, xmm0); 1505 __ pop_d(xmm0); 1506 __ divsd(xmm0, xmm1); 1507 break; 1508 case rem: 1509 // Similar to fop2(), the modulo operation is performed using the 1510 // SharedRuntime::drem method on x86_64 platforms for the same reasons 1511 // as mentioned in fop2(). 1512 __ movdbl(xmm1, xmm0); 1513 __ pop_d(xmm0); 1514 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem), 2); 1515 break; 1516 default: 1517 ShouldNotReachHere(); 1518 break; 1519 } 1520 } 1521 1522 void TemplateTable::ineg() { 1523 transition(itos, itos); 1524 __ negl(rax); 1525 } 1526 1527 void TemplateTable::lneg() { 1528 transition(ltos, ltos); 1529 __ negq(rax); 1530 } 1531 1532 // Note: 'double' and 'long long' have 32-bits alignment on x86. 1533 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) { 1534 // Use the expression (adr)&(~0xF) to provide 128-bits aligned address 1535 // of 128-bits operands for SSE instructions. 1536 jlong *operand = (jlong*)(((intptr_t)adr)&((intptr_t)(~0xF))); 1537 // Store the value to a 128-bits operand. 1538 operand[0] = lo; 1539 operand[1] = hi; 1540 return operand; 1541 } 1542 1543 // Buffer for 128-bits masks used by SSE instructions. 1544 static jlong float_signflip_pool[2*2]; 1545 static jlong double_signflip_pool[2*2]; 1546 1547 void TemplateTable::fneg() { 1548 transition(ftos, ftos); 1549 static jlong *float_signflip = double_quadword(&float_signflip_pool[1], CONST64(0x8000000080000000), CONST64(0x8000000080000000)); 1550 __ xorps(xmm0, ExternalAddress((address) float_signflip), rscratch1); 1551 } 1552 1553 void TemplateTable::dneg() { 1554 transition(dtos, dtos); 1555 static jlong *double_signflip = 1556 double_quadword(&double_signflip_pool[1], CONST64(0x8000000000000000), CONST64(0x8000000000000000)); 1557 __ xorpd(xmm0, ExternalAddress((address) double_signflip), rscratch1); 1558 } 1559 1560 void TemplateTable::iinc() { 1561 transition(vtos, vtos); 1562 __ load_signed_byte(rdx, at_bcp(2)); // get constant 1563 locals_index(rbx); 1564 __ addl(iaddress(rbx), rdx); 1565 } 1566 1567 void TemplateTable::wide_iinc() { 1568 transition(vtos, vtos); 1569 __ movl(rdx, at_bcp(4)); // get constant 1570 locals_index_wide(rbx); 1571 __ bswapl(rdx); // swap bytes & sign-extend constant 1572 __ sarl(rdx, 16); 1573 __ addl(iaddress(rbx), rdx); 1574 // Note: should probably use only one movl to get both 1575 // the index and the constant -> fix this 1576 } 1577 1578 void TemplateTable::convert() { 1579 // Checking 1580 #ifdef ASSERT 1581 { 1582 TosState tos_in = ilgl; 1583 TosState tos_out = ilgl; 1584 switch (bytecode()) { 1585 case Bytecodes::_i2l: // fall through 1586 case Bytecodes::_i2f: // fall through 1587 case Bytecodes::_i2d: // fall through 1588 case Bytecodes::_i2b: // fall through 1589 case Bytecodes::_i2c: // fall through 1590 case Bytecodes::_i2s: tos_in = itos; break; 1591 case Bytecodes::_l2i: // fall through 1592 case Bytecodes::_l2f: // fall through 1593 case Bytecodes::_l2d: tos_in = ltos; break; 1594 case Bytecodes::_f2i: // fall through 1595 case Bytecodes::_f2l: // fall through 1596 case Bytecodes::_f2d: tos_in = ftos; break; 1597 case Bytecodes::_d2i: // fall through 1598 case Bytecodes::_d2l: // fall through 1599 case Bytecodes::_d2f: tos_in = dtos; break; 1600 default : ShouldNotReachHere(); 1601 } 1602 switch (bytecode()) { 1603 case Bytecodes::_l2i: // fall through 1604 case Bytecodes::_f2i: // fall through 1605 case Bytecodes::_d2i: // fall through 1606 case Bytecodes::_i2b: // fall through 1607 case Bytecodes::_i2c: // fall through 1608 case Bytecodes::_i2s: tos_out = itos; break; 1609 case Bytecodes::_i2l: // fall through 1610 case Bytecodes::_f2l: // fall through 1611 case Bytecodes::_d2l: tos_out = ltos; break; 1612 case Bytecodes::_i2f: // fall through 1613 case Bytecodes::_l2f: // fall through 1614 case Bytecodes::_d2f: tos_out = ftos; break; 1615 case Bytecodes::_i2d: // fall through 1616 case Bytecodes::_l2d: // fall through 1617 case Bytecodes::_f2d: tos_out = dtos; break; 1618 default : ShouldNotReachHere(); 1619 } 1620 transition(tos_in, tos_out); 1621 } 1622 #endif // ASSERT 1623 1624 static const int64_t is_nan = 0x8000000000000000L; 1625 1626 // Conversion 1627 switch (bytecode()) { 1628 case Bytecodes::_i2l: 1629 __ movslq(rax, rax); 1630 break; 1631 case Bytecodes::_i2f: 1632 __ cvtsi2ssl(xmm0, rax); 1633 break; 1634 case Bytecodes::_i2d: 1635 __ cvtsi2sdl(xmm0, rax); 1636 break; 1637 case Bytecodes::_i2b: 1638 __ movsbl(rax, rax); 1639 break; 1640 case Bytecodes::_i2c: 1641 __ movzwl(rax, rax); 1642 break; 1643 case Bytecodes::_i2s: 1644 __ movswl(rax, rax); 1645 break; 1646 case Bytecodes::_l2i: 1647 __ movl(rax, rax); 1648 break; 1649 case Bytecodes::_l2f: 1650 __ cvtsi2ssq(xmm0, rax); 1651 break; 1652 case Bytecodes::_l2d: 1653 __ cvtsi2sdq(xmm0, rax); 1654 break; 1655 case Bytecodes::_f2i: 1656 { 1657 Label L; 1658 __ cvttss2sil(rax, xmm0); 1659 __ cmpl(rax, 0x80000000); // NaN or overflow/underflow? 1660 __ jcc(Assembler::notEqual, L); 1661 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1); 1662 __ bind(L); 1663 } 1664 break; 1665 case Bytecodes::_f2l: 1666 { 1667 Label L; 1668 __ cvttss2siq(rax, xmm0); 1669 // NaN or overflow/underflow? 1670 __ cmp64(rax, ExternalAddress((address) &is_nan), rscratch1); 1671 __ jcc(Assembler::notEqual, L); 1672 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1); 1673 __ bind(L); 1674 } 1675 break; 1676 case Bytecodes::_f2d: 1677 __ cvtss2sd(xmm0, xmm0); 1678 break; 1679 case Bytecodes::_d2i: 1680 { 1681 Label L; 1682 __ cvttsd2sil(rax, xmm0); 1683 __ cmpl(rax, 0x80000000); // NaN or overflow/underflow? 1684 __ jcc(Assembler::notEqual, L); 1685 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 1); 1686 __ bind(L); 1687 } 1688 break; 1689 case Bytecodes::_d2l: 1690 { 1691 Label L; 1692 __ cvttsd2siq(rax, xmm0); 1693 // NaN or overflow/underflow? 1694 __ cmp64(rax, ExternalAddress((address) &is_nan), rscratch1); 1695 __ jcc(Assembler::notEqual, L); 1696 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 1); 1697 __ bind(L); 1698 } 1699 break; 1700 case Bytecodes::_d2f: 1701 __ cvtsd2ss(xmm0, xmm0); 1702 break; 1703 default: 1704 ShouldNotReachHere(); 1705 } 1706 } 1707 1708 void TemplateTable::lcmp() { 1709 transition(ltos, itos); 1710 Label done; 1711 __ pop_l(rdx); 1712 __ cmpq(rdx, rax); 1713 __ movl(rax, -1); 1714 __ jccb(Assembler::less, done); 1715 __ setb(Assembler::notEqual, rax); 1716 __ movzbl(rax, rax); 1717 __ bind(done); 1718 } 1719 1720 void TemplateTable::float_cmp(bool is_float, int unordered_result) { 1721 Label done; 1722 if (is_float) { 1723 // XXX get rid of pop here, use ... reg, mem32 1724 __ pop_f(xmm1); 1725 __ ucomiss(xmm1, xmm0); 1726 } else { 1727 // XXX get rid of pop here, use ... reg, mem64 1728 __ pop_d(xmm1); 1729 __ ucomisd(xmm1, xmm0); 1730 } 1731 if (unordered_result < 0) { 1732 __ movl(rax, -1); 1733 __ jccb(Assembler::parity, done); 1734 __ jccb(Assembler::below, done); 1735 __ setb(Assembler::notEqual, rdx); 1736 __ movzbl(rax, rdx); 1737 } else { 1738 __ movl(rax, 1); 1739 __ jccb(Assembler::parity, done); 1740 __ jccb(Assembler::above, done); 1741 __ movl(rax, 0); 1742 __ jccb(Assembler::equal, done); 1743 __ decrementl(rax); 1744 } 1745 __ bind(done); 1746 } 1747 1748 void TemplateTable::branch(bool is_jsr, bool is_wide) { 1749 __ get_method(rcx); // rcx holds method 1750 __ profile_taken_branch(rax, rbx); // rax holds updated MDP, rbx 1751 // holds bumped taken count 1752 1753 const ByteSize be_offset = MethodCounters::backedge_counter_offset() + 1754 InvocationCounter::counter_offset(); 1755 const ByteSize inv_offset = MethodCounters::invocation_counter_offset() + 1756 InvocationCounter::counter_offset(); 1757 1758 // Load up edx with the branch displacement 1759 if (is_wide) { 1760 __ movl(rdx, at_bcp(1)); 1761 } else { 1762 __ load_signed_short(rdx, at_bcp(1)); 1763 } 1764 __ bswapl(rdx); 1765 1766 if (!is_wide) { 1767 __ sarl(rdx, 16); 1768 } 1769 __ movl2ptr(rdx, rdx); 1770 1771 // Handle all the JSR stuff here, then exit. 1772 // It's much shorter and cleaner than intermingling with the non-JSR 1773 // normal-branch stuff occurring below. 1774 if (is_jsr) { 1775 // Pre-load the next target bytecode into rbx 1776 __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1, 0)); 1777 1778 // compute return address as bci in rax 1779 __ lea(rax, at_bcp((is_wide ? 5 : 3) - 1780 in_bytes(ConstMethod::codes_offset()))); 1781 __ subptr(rax, Address(rcx, Method::const_offset())); 1782 // Adjust the bcp in r13 by the displacement in rdx 1783 __ addptr(rbcp, rdx); 1784 // jsr returns atos that is not an oop 1785 __ push_i(rax); 1786 __ dispatch_only(vtos, true); 1787 return; 1788 } 1789 1790 // Normal (non-jsr) branch handling 1791 1792 // Adjust the bcp in r13 by the displacement in rdx 1793 __ addptr(rbcp, rdx); 1794 1795 assert(UseLoopCounter || !UseOnStackReplacement, 1796 "on-stack-replacement requires loop counters"); 1797 Label backedge_counter_overflow; 1798 Label dispatch; 1799 if (UseLoopCounter) { 1800 // increment backedge counter for backward branches 1801 // rax: MDO 1802 // rbx: MDO bumped taken-count 1803 // rcx: method 1804 // rdx: target offset 1805 // r13: target bcp 1806 // r14: locals pointer 1807 __ testl(rdx, rdx); // check if forward or backward branch 1808 __ jcc(Assembler::positive, dispatch); // count only if backward branch 1809 1810 // check if MethodCounters exists 1811 Label has_counters; 1812 __ movptr(rax, Address(rcx, Method::method_counters_offset())); 1813 __ testptr(rax, rax); 1814 __ jcc(Assembler::notZero, has_counters); 1815 __ push(rdx); 1816 __ push(rcx); 1817 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::build_method_counters), 1818 rcx); 1819 __ pop(rcx); 1820 __ pop(rdx); 1821 __ movptr(rax, Address(rcx, Method::method_counters_offset())); 1822 __ testptr(rax, rax); 1823 __ jcc(Assembler::zero, dispatch); 1824 __ bind(has_counters); 1825 1826 Label no_mdo; 1827 if (ProfileInterpreter) { 1828 // Are we profiling? 1829 __ movptr(rbx, Address(rcx, in_bytes(Method::method_data_offset()))); 1830 __ testptr(rbx, rbx); 1831 __ jccb(Assembler::zero, no_mdo); 1832 // Increment the MDO backedge counter 1833 const Address mdo_backedge_counter(rbx, in_bytes(MethodData::backedge_counter_offset()) + 1834 in_bytes(InvocationCounter::counter_offset())); 1835 const Address mask(rbx, in_bytes(MethodData::backedge_mask_offset())); 1836 __ increment_mask_and_jump(mdo_backedge_counter, mask, rax, 1837 UseOnStackReplacement ? &backedge_counter_overflow : nullptr); 1838 __ jmp(dispatch); 1839 } 1840 __ bind(no_mdo); 1841 // Increment backedge counter in MethodCounters* 1842 __ movptr(rcx, Address(rcx, Method::method_counters_offset())); 1843 const Address mask(rcx, in_bytes(MethodCounters::backedge_mask_offset())); 1844 __ increment_mask_and_jump(Address(rcx, be_offset), mask, rax, 1845 UseOnStackReplacement ? &backedge_counter_overflow : nullptr); 1846 __ bind(dispatch); 1847 } 1848 1849 // Pre-load the next target bytecode into rbx 1850 __ load_unsigned_byte(rbx, Address(rbcp, 0)); 1851 1852 // continue with the bytecode @ target 1853 // rax: return bci for jsr's, unused otherwise 1854 // rbx: target bytecode 1855 // r13: target bcp 1856 __ dispatch_only(vtos, true); 1857 1858 if (UseLoopCounter) { 1859 if (UseOnStackReplacement) { 1860 Label set_mdp; 1861 // invocation counter overflow 1862 __ bind(backedge_counter_overflow); 1863 __ negptr(rdx); 1864 __ addptr(rdx, rbcp); // branch bcp 1865 // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp) 1866 __ call_VM(noreg, 1867 CAST_FROM_FN_PTR(address, 1868 InterpreterRuntime::frequency_counter_overflow), 1869 rdx); 1870 1871 // rax: osr nmethod (osr ok) or null (osr not possible) 1872 // rdx: scratch 1873 // r14: locals pointer 1874 // r13: bcp 1875 __ testptr(rax, rax); // test result 1876 __ jcc(Assembler::zero, dispatch); // no osr if null 1877 // nmethod may have been invalidated (VM may block upon call_VM return) 1878 __ cmpb(Address(rax, nmethod::state_offset()), nmethod::in_use); 1879 __ jcc(Assembler::notEqual, dispatch); 1880 1881 // We have the address of an on stack replacement routine in rax. 1882 // In preparation of invoking it, first we must migrate the locals 1883 // and monitors from off the interpreter frame on the stack. 1884 // Ensure to save the osr nmethod over the migration call, 1885 // it will be preserved in rbx. 1886 __ mov(rbx, rax); 1887 1888 call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin)); 1889 1890 // rax is OSR buffer, move it to expected parameter location 1891 __ mov(j_rarg0, rax); 1892 // We use j_rarg definitions here so that registers don't conflict as parameter 1893 // registers change across platforms as we are in the midst of a calling 1894 // sequence to the OSR nmethod and we don't want collision. These are NOT parameters. 1895 1896 const Register retaddr = j_rarg2; 1897 const Register sender_sp = j_rarg1; 1898 1899 // pop the interpreter frame 1900 __ movptr(sender_sp, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp 1901 __ leave(); // remove frame anchor 1902 __ pop(retaddr); // get return address 1903 __ mov(rsp, sender_sp); // set sp to sender sp 1904 // Ensure compiled code always sees stack at proper alignment 1905 __ andptr(rsp, -(StackAlignmentInBytes)); 1906 1907 // unlike x86 we need no specialized return from compiled code 1908 // to the interpreter or the call stub. 1909 1910 // push the return address 1911 __ push(retaddr); 1912 1913 // and begin the OSR nmethod 1914 __ jmp(Address(rbx, nmethod::osr_entry_point_offset())); 1915 } 1916 } 1917 } 1918 1919 void TemplateTable::if_0cmp(Condition cc) { 1920 transition(itos, vtos); 1921 // assume branch is more often taken than not (loops use backward branches) 1922 Label not_taken; 1923 __ testl(rax, rax); 1924 __ jcc(j_not(cc), not_taken); 1925 branch(false, false); 1926 __ bind(not_taken); 1927 __ profile_not_taken_branch(rax); 1928 } 1929 1930 void TemplateTable::if_icmp(Condition cc) { 1931 transition(itos, vtos); 1932 // assume branch is more often taken than not (loops use backward branches) 1933 Label not_taken; 1934 __ pop_i(rdx); 1935 __ cmpl(rdx, rax); 1936 __ jcc(j_not(cc), not_taken); 1937 branch(false, false); 1938 __ bind(not_taken); 1939 __ profile_not_taken_branch(rax); 1940 } 1941 1942 void TemplateTable::if_nullcmp(Condition cc) { 1943 transition(atos, vtos); 1944 // assume branch is more often taken than not (loops use backward branches) 1945 Label not_taken; 1946 __ testptr(rax, rax); 1947 __ jcc(j_not(cc), not_taken); 1948 branch(false, false); 1949 __ bind(not_taken); 1950 __ profile_not_taken_branch(rax); 1951 } 1952 1953 void TemplateTable::if_acmp(Condition cc) { 1954 transition(atos, vtos); 1955 // assume branch is more often taken than not (loops use backward branches) 1956 Label taken, not_taken; 1957 __ pop_ptr(rdx); 1958 1959 __ profile_acmp(rbx, rdx, rax, rcx); 1960 1961 const int is_inline_type_mask = markWord::inline_type_pattern; 1962 if (EnableValhalla) { 1963 __ cmpoop(rdx, rax); 1964 __ jcc(Assembler::equal, (cc == equal) ? taken : not_taken); 1965 1966 // might be substitutable, test if either rax or rdx is null 1967 __ testptr(rax, rax); 1968 __ jcc(Assembler::zero, (cc == equal) ? not_taken : taken); 1969 __ testptr(rdx, rdx); 1970 __ jcc(Assembler::zero, (cc == equal) ? not_taken : taken); 1971 1972 // and both are values ? 1973 __ movptr(rbx, Address(rdx, oopDesc::mark_offset_in_bytes())); 1974 __ andptr(rbx, Address(rax, oopDesc::mark_offset_in_bytes())); 1975 __ andptr(rbx, is_inline_type_mask); 1976 __ cmpptr(rbx, is_inline_type_mask); 1977 __ jcc(Assembler::notEqual, (cc == equal) ? not_taken : taken); 1978 1979 // same value klass ? 1980 __ load_metadata(rbx, rdx); 1981 __ load_metadata(rcx, rax); 1982 __ cmpptr(rbx, rcx); 1983 __ jcc(Assembler::notEqual, (cc == equal) ? not_taken : taken); 1984 1985 // Know both are the same type, let's test for substitutability... 1986 if (cc == equal) { 1987 invoke_is_substitutable(rax, rdx, taken, not_taken); 1988 } else { 1989 invoke_is_substitutable(rax, rdx, not_taken, taken); 1990 } 1991 __ stop("Not reachable"); 1992 } 1993 1994 __ cmpoop(rdx, rax); 1995 __ jcc(j_not(cc), not_taken); 1996 __ bind(taken); 1997 branch(false, false); 1998 __ bind(not_taken); 1999 __ profile_not_taken_branch(rax, true); 2000 } 2001 2002 void TemplateTable::invoke_is_substitutable(Register aobj, Register bobj, 2003 Label& is_subst, Label& not_subst) { 2004 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::is_substitutable), aobj, bobj); 2005 // Restored...rax answer, jmp to outcome... 2006 __ testl(rax, rax); 2007 __ jcc(Assembler::zero, not_subst); 2008 __ jmp(is_subst); 2009 } 2010 2011 void TemplateTable::ret() { 2012 transition(vtos, vtos); 2013 locals_index(rbx); 2014 __ movslq(rbx, iaddress(rbx)); // get return bci, compute return bcp 2015 __ profile_ret(rbx, rcx); 2016 __ get_method(rax); 2017 __ movptr(rbcp, Address(rax, Method::const_offset())); 2018 __ lea(rbcp, Address(rbcp, rbx, Address::times_1, 2019 ConstMethod::codes_offset())); 2020 __ dispatch_next(vtos, 0, true); 2021 } 2022 2023 void TemplateTable::wide_ret() { 2024 transition(vtos, vtos); 2025 locals_index_wide(rbx); 2026 __ movptr(rbx, aaddress(rbx)); // get return bci, compute return bcp 2027 __ profile_ret(rbx, rcx); 2028 __ get_method(rax); 2029 __ movptr(rbcp, Address(rax, Method::const_offset())); 2030 __ lea(rbcp, Address(rbcp, rbx, Address::times_1, ConstMethod::codes_offset())); 2031 __ dispatch_next(vtos, 0, true); 2032 } 2033 2034 void TemplateTable::tableswitch() { 2035 Label default_case, continue_execution; 2036 transition(itos, vtos); 2037 2038 // align r13/rsi 2039 __ lea(rbx, at_bcp(BytesPerInt)); 2040 __ andptr(rbx, -BytesPerInt); 2041 // load lo & hi 2042 __ movl(rcx, Address(rbx, BytesPerInt)); 2043 __ movl(rdx, Address(rbx, 2 * BytesPerInt)); 2044 __ bswapl(rcx); 2045 __ bswapl(rdx); 2046 // check against lo & hi 2047 __ cmpl(rax, rcx); 2048 __ jcc(Assembler::less, default_case); 2049 __ cmpl(rax, rdx); 2050 __ jcc(Assembler::greater, default_case); 2051 // lookup dispatch offset 2052 __ subl(rax, rcx); 2053 __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt)); 2054 __ profile_switch_case(rax, rbx, rcx); 2055 // continue execution 2056 __ bind(continue_execution); 2057 __ bswapl(rdx); 2058 __ movl2ptr(rdx, rdx); 2059 __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1)); 2060 __ addptr(rbcp, rdx); 2061 __ dispatch_only(vtos, true); 2062 // handle default 2063 __ bind(default_case); 2064 __ profile_switch_default(rax); 2065 __ movl(rdx, Address(rbx, 0)); 2066 __ jmp(continue_execution); 2067 } 2068 2069 void TemplateTable::lookupswitch() { 2070 transition(itos, itos); 2071 __ stop("lookupswitch bytecode should have been rewritten"); 2072 } 2073 2074 void TemplateTable::fast_linearswitch() { 2075 transition(itos, vtos); 2076 Label loop_entry, loop, found, continue_execution; 2077 // bswap rax so we can avoid bswapping the table entries 2078 __ bswapl(rax); 2079 // align r13 2080 __ lea(rbx, at_bcp(BytesPerInt)); // btw: should be able to get rid of 2081 // this instruction (change offsets 2082 // below) 2083 __ andptr(rbx, -BytesPerInt); 2084 // set counter 2085 __ movl(rcx, Address(rbx, BytesPerInt)); 2086 __ bswapl(rcx); 2087 __ jmpb(loop_entry); 2088 // table search 2089 __ bind(loop); 2090 __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * BytesPerInt)); 2091 __ jcc(Assembler::equal, found); 2092 __ bind(loop_entry); 2093 __ decrementl(rcx); 2094 __ jcc(Assembler::greaterEqual, loop); 2095 // default case 2096 __ profile_switch_default(rax); 2097 __ movl(rdx, Address(rbx, 0)); 2098 __ jmp(continue_execution); 2099 // entry found -> get offset 2100 __ bind(found); 2101 __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * BytesPerInt)); 2102 __ profile_switch_case(rcx, rax, rbx); 2103 // continue execution 2104 __ bind(continue_execution); 2105 __ bswapl(rdx); 2106 __ movl2ptr(rdx, rdx); 2107 __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1)); 2108 __ addptr(rbcp, rdx); 2109 __ dispatch_only(vtos, true); 2110 } 2111 2112 void TemplateTable::fast_binaryswitch() { 2113 transition(itos, vtos); 2114 // Implementation using the following core algorithm: 2115 // 2116 // int binary_search(int key, LookupswitchPair* array, int n) { 2117 // // Binary search according to "Methodik des Programmierens" by 2118 // // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985. 2119 // int i = 0; 2120 // int j = n; 2121 // while (i+1 < j) { 2122 // // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q) 2123 // // with Q: for all i: 0 <= i < n: key < a[i] 2124 // // where a stands for the array and assuming that the (inexisting) 2125 // // element a[n] is infinitely big. 2126 // int h = (i + j) >> 1; 2127 // // i < h < j 2128 // if (key < array[h].fast_match()) { 2129 // j = h; 2130 // } else { 2131 // i = h; 2132 // } 2133 // } 2134 // // R: a[i] <= key < a[i+1] or Q 2135 // // (i.e., if key is within array, i is the correct index) 2136 // return i; 2137 // } 2138 2139 // Register allocation 2140 const Register key = rax; // already set (tosca) 2141 const Register array = rbx; 2142 const Register i = rcx; 2143 const Register j = rdx; 2144 const Register h = rdi; 2145 const Register temp = rsi; 2146 2147 // Find array start 2148 __ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to 2149 // get rid of this 2150 // instruction (change 2151 // offsets below) 2152 __ andptr(array, -BytesPerInt); 2153 2154 // Initialize i & j 2155 __ xorl(i, i); // i = 0; 2156 __ movl(j, Address(array, -BytesPerInt)); // j = length(array); 2157 2158 // Convert j into native byteordering 2159 __ bswapl(j); 2160 2161 // And start 2162 Label entry; 2163 __ jmp(entry); 2164 2165 // binary search loop 2166 { 2167 Label loop; 2168 __ bind(loop); 2169 // int h = (i + j) >> 1; 2170 __ leal(h, Address(i, j, Address::times_1)); // h = i + j; 2171 __ sarl(h, 1); // h = (i + j) >> 1; 2172 // if (key < array[h].fast_match()) { 2173 // j = h; 2174 // } else { 2175 // i = h; 2176 // } 2177 // Convert array[h].match to native byte-ordering before compare 2178 __ movl(temp, Address(array, h, Address::times_8)); 2179 __ bswapl(temp); 2180 __ cmpl(key, temp); 2181 // j = h if (key < array[h].fast_match()) 2182 __ cmov32(Assembler::less, j, h); 2183 // i = h if (key >= array[h].fast_match()) 2184 __ cmov32(Assembler::greaterEqual, i, h); 2185 // while (i+1 < j) 2186 __ bind(entry); 2187 __ leal(h, Address(i, 1)); // i+1 2188 __ cmpl(h, j); // i+1 < j 2189 __ jcc(Assembler::less, loop); 2190 } 2191 2192 // end of binary search, result index is i (must check again!) 2193 Label default_case; 2194 // Convert array[i].match to native byte-ordering before compare 2195 __ movl(temp, Address(array, i, Address::times_8)); 2196 __ bswapl(temp); 2197 __ cmpl(key, temp); 2198 __ jcc(Assembler::notEqual, default_case); 2199 2200 // entry found -> j = offset 2201 __ movl(j , Address(array, i, Address::times_8, BytesPerInt)); 2202 __ profile_switch_case(i, key, array); 2203 __ bswapl(j); 2204 __ movslq(j, j); 2205 2206 __ load_unsigned_byte(rbx, Address(rbcp, j, Address::times_1)); 2207 __ addptr(rbcp, j); 2208 __ dispatch_only(vtos, true); 2209 2210 // default case -> j = default offset 2211 __ bind(default_case); 2212 __ profile_switch_default(i); 2213 __ movl(j, Address(array, -2 * BytesPerInt)); 2214 __ bswapl(j); 2215 __ movslq(j, j); 2216 2217 __ load_unsigned_byte(rbx, Address(rbcp, j, Address::times_1)); 2218 __ addptr(rbcp, j); 2219 __ dispatch_only(vtos, true); 2220 } 2221 2222 void TemplateTable::_return(TosState state) { 2223 transition(state, state); 2224 2225 assert(_desc->calls_vm(), 2226 "inconsistent calls_vm information"); // call in remove_activation 2227 2228 if (_desc->bytecode() == Bytecodes::_return_register_finalizer) { 2229 assert(state == vtos, "only valid state"); 2230 Register robj = c_rarg1; 2231 __ movptr(robj, aaddress(0)); 2232 __ load_klass(rdi, robj, rscratch1); 2233 __ testb(Address(rdi, Klass::misc_flags_offset()), KlassFlags::_misc_has_finalizer); 2234 Label skip_register_finalizer; 2235 __ jcc(Assembler::zero, skip_register_finalizer); 2236 2237 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), robj); 2238 2239 __ bind(skip_register_finalizer); 2240 } 2241 2242 if (_desc->bytecode() != Bytecodes::_return_register_finalizer) { 2243 Label no_safepoint; 2244 NOT_PRODUCT(__ block_comment("Thread-local Safepoint poll")); 2245 __ testb(Address(r15_thread, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit()); 2246 __ jcc(Assembler::zero, no_safepoint); 2247 __ push(state); 2248 __ push_cont_fastpath(); 2249 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 2250 InterpreterRuntime::at_safepoint)); 2251 __ pop_cont_fastpath(); 2252 __ pop(state); 2253 __ bind(no_safepoint); 2254 } 2255 2256 // Narrow result if state is itos but result type is smaller. 2257 // Need to narrow in the return bytecode rather than in generate_return_entry 2258 // since compiled code callers expect the result to already be narrowed. 2259 if (state == itos) { 2260 __ narrow(rax); 2261 } 2262 2263 __ remove_activation(state, rbcp, true, true, true); 2264 2265 __ jmp(rbcp); 2266 } 2267 2268 // ---------------------------------------------------------------------------- 2269 // Volatile variables demand their effects be made known to all CPU's 2270 // in order. Store buffers on most chips allow reads & writes to 2271 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode 2272 // without some kind of memory barrier (i.e., it's not sufficient that 2273 // the interpreter does not reorder volatile references, the hardware 2274 // also must not reorder them). 2275 // 2276 // According to the new Java Memory Model (JMM): 2277 // (1) All volatiles are serialized wrt to each other. ALSO reads & 2278 // writes act as acquire & release, so: 2279 // (2) A read cannot let unrelated NON-volatile memory refs that 2280 // happen after the read float up to before the read. It's OK for 2281 // non-volatile memory refs that happen before the volatile read to 2282 // float down below it. 2283 // (3) Similar a volatile write cannot let unrelated NON-volatile 2284 // memory refs that happen BEFORE the write float down to after the 2285 // write. It's OK for non-volatile memory refs that happen after the 2286 // volatile write to float up before it. 2287 // 2288 // We only put in barriers around volatile refs (they are expensive), 2289 // not _between_ memory refs (that would require us to track the 2290 // flavor of the previous memory refs). Requirements (2) and (3) 2291 // require some barriers before volatile stores and after volatile 2292 // loads. These nearly cover requirement (1) but miss the 2293 // volatile-store-volatile-load case. This final case is placed after 2294 // volatile-stores although it could just as well go before 2295 // volatile-loads. 2296 2297 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits order_constraint ) { 2298 // Helper function to insert a is-volatile test and memory barrier 2299 __ membar(order_constraint); 2300 } 2301 2302 void TemplateTable::resolve_cache_and_index_for_method(int byte_no, 2303 Register cache, 2304 Register index) { 2305 const Register temp = rbx; 2306 assert_different_registers(cache, index, temp); 2307 2308 Label L_clinit_barrier_slow; 2309 Label resolved; 2310 2311 Bytecodes::Code code = bytecode(); 2312 2313 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 2314 2315 __ load_method_entry(cache, index); 2316 switch(byte_no) { 2317 case f1_byte: 2318 __ load_unsigned_byte(temp, Address(cache, in_bytes(ResolvedMethodEntry::bytecode1_offset()))); 2319 break; 2320 case f2_byte: 2321 __ load_unsigned_byte(temp, Address(cache, in_bytes(ResolvedMethodEntry::bytecode2_offset()))); 2322 break; 2323 default: 2324 ShouldNotReachHere(); 2325 } 2326 __ cmpl(temp, code); // have we resolved this bytecode? 2327 __ jcc(Assembler::equal, resolved); 2328 2329 // resolve first time through 2330 // Class initialization barrier slow path lands here as well. 2331 __ bind(L_clinit_barrier_slow); 2332 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache); 2333 __ movl(temp, code); 2334 __ call_VM(noreg, entry, temp); 2335 // Update registers with resolved info 2336 __ load_method_entry(cache, index); 2337 2338 __ bind(resolved); 2339 2340 // Class initialization barrier for static methods 2341 if (VM_Version::supports_fast_class_init_checks() && bytecode() == Bytecodes::_invokestatic) { 2342 const Register method = temp; 2343 const Register klass = temp; 2344 2345 __ movptr(method, Address(cache, in_bytes(ResolvedMethodEntry::method_offset()))); 2346 __ load_method_holder(klass, method); 2347 __ clinit_barrier(klass, nullptr /*L_fast_path*/, &L_clinit_barrier_slow); 2348 } 2349 } 2350 2351 void TemplateTable::resolve_cache_and_index_for_field(int byte_no, 2352 Register cache, 2353 Register index) { 2354 const Register temp = rbx; 2355 assert_different_registers(cache, index, temp); 2356 2357 Label resolved; 2358 2359 Bytecodes::Code code = bytecode(); 2360 switch (code) { 2361 case Bytecodes::_nofast_getfield: code = Bytecodes::_getfield; break; 2362 case Bytecodes::_nofast_putfield: code = Bytecodes::_putfield; break; 2363 default: break; 2364 } 2365 2366 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 2367 __ load_field_entry(cache, index); 2368 if (byte_no == f1_byte) { 2369 __ load_unsigned_byte(temp, Address(cache, in_bytes(ResolvedFieldEntry::get_code_offset()))); 2370 } else { 2371 __ load_unsigned_byte(temp, Address(cache, in_bytes(ResolvedFieldEntry::put_code_offset()))); 2372 } 2373 __ cmpl(temp, code); // have we resolved this bytecode? 2374 __ jcc(Assembler::equal, resolved); 2375 2376 // resolve first time through 2377 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache); 2378 __ movl(temp, code); 2379 __ call_VM(noreg, entry, temp); 2380 // Update registers with resolved info 2381 __ load_field_entry(cache, index); 2382 2383 __ bind(resolved); 2384 } 2385 2386 void TemplateTable::load_resolved_field_entry(Register obj, 2387 Register cache, 2388 Register tos_state, 2389 Register offset, 2390 Register flags, 2391 bool is_static = false) { 2392 assert_different_registers(cache, tos_state, flags, offset); 2393 2394 // Field offset 2395 __ load_sized_value(offset, Address(cache, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/); 2396 2397 // Flags 2398 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedFieldEntry::flags_offset()))); 2399 2400 // TOS state 2401 __ load_unsigned_byte(tos_state, Address(cache, in_bytes(ResolvedFieldEntry::type_offset()))); 2402 2403 // Klass overwrite register 2404 if (is_static) { 2405 __ movptr(obj, Address(cache, ResolvedFieldEntry::field_holder_offset())); 2406 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 2407 __ movptr(obj, Address(obj, mirror_offset)); 2408 __ resolve_oop_handle(obj, rscratch2); 2409 } 2410 2411 } 2412 2413 void TemplateTable::load_invokedynamic_entry(Register method) { 2414 // setup registers 2415 const Register appendix = rax; 2416 const Register cache = rcx; 2417 const Register index = rdx; 2418 assert_different_registers(method, appendix, cache, index); 2419 2420 __ save_bcp(); 2421 2422 Label resolved; 2423 2424 __ load_resolved_indy_entry(cache, index); 2425 __ movptr(method, Address(cache, in_bytes(ResolvedIndyEntry::method_offset()))); 2426 2427 // Compare the method to zero 2428 __ testptr(method, method); 2429 __ jcc(Assembler::notZero, resolved); 2430 2431 Bytecodes::Code code = bytecode(); 2432 2433 // Call to the interpreter runtime to resolve invokedynamic 2434 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache); 2435 __ movl(method, code); // this is essentially Bytecodes::_invokedynamic 2436 __ call_VM(noreg, entry, method); 2437 // Update registers with resolved info 2438 __ load_resolved_indy_entry(cache, index); 2439 __ movptr(method, Address(cache, in_bytes(ResolvedIndyEntry::method_offset()))); 2440 2441 #ifdef ASSERT 2442 __ testptr(method, method); 2443 __ jcc(Assembler::notZero, resolved); 2444 __ stop("Should be resolved by now"); 2445 #endif // ASSERT 2446 __ bind(resolved); 2447 2448 Label L_no_push; 2449 // Check if there is an appendix 2450 __ load_unsigned_byte(index, Address(cache, in_bytes(ResolvedIndyEntry::flags_offset()))); 2451 __ testl(index, (1 << ResolvedIndyEntry::has_appendix_shift)); 2452 __ jcc(Assembler::zero, L_no_push); 2453 2454 // Get appendix 2455 __ load_unsigned_short(index, Address(cache, in_bytes(ResolvedIndyEntry::resolved_references_index_offset()))); 2456 // Push the appendix as a trailing parameter 2457 // since the parameter_size includes it. 2458 __ load_resolved_reference_at_index(appendix, index); 2459 __ verify_oop(appendix); 2460 __ push(appendix); // push appendix (MethodType, CallSite, etc.) 2461 __ bind(L_no_push); 2462 2463 // compute return type 2464 __ load_unsigned_byte(index, Address(cache, in_bytes(ResolvedIndyEntry::result_type_offset()))); 2465 // load return address 2466 { 2467 const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code); 2468 ExternalAddress table(table_addr); 2469 __ lea(rscratch1, table); 2470 __ movptr(index, Address(rscratch1, index, Address::times_ptr)); 2471 } 2472 2473 // push return address 2474 __ push(index); 2475 } 2476 2477 void TemplateTable::load_resolved_method_entry_special_or_static(Register cache, 2478 Register method, 2479 Register flags) { 2480 // setup registers 2481 const Register index = rdx; 2482 assert_different_registers(cache, index); 2483 assert_different_registers(method, cache, flags); 2484 2485 // determine constant pool cache field offsets 2486 resolve_cache_and_index_for_method(f1_byte, cache, index); 2487 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset()))); 2488 __ movptr(method, Address(cache, in_bytes(ResolvedMethodEntry::method_offset()))); 2489 } 2490 2491 void TemplateTable::load_resolved_method_entry_handle(Register cache, 2492 Register method, 2493 Register ref_index, 2494 Register flags) { 2495 // setup registers 2496 const Register index = rdx; 2497 assert_different_registers(cache, index); 2498 assert_different_registers(cache, method, ref_index, flags); 2499 2500 // determine constant pool cache field offsets 2501 resolve_cache_and_index_for_method(f1_byte, cache, index); 2502 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset()))); 2503 2504 // Maybe push appendix 2505 Label L_no_push; 2506 __ testl(flags, (1 << ResolvedMethodEntry::has_appendix_shift)); 2507 __ jcc(Assembler::zero, L_no_push); 2508 // invokehandle uses an index into the resolved references array 2509 __ load_unsigned_short(ref_index, Address(cache, in_bytes(ResolvedMethodEntry::resolved_references_index_offset()))); 2510 // Push the appendix as a trailing parameter. 2511 // This must be done before we get the receiver, 2512 // since the parameter_size includes it. 2513 Register appendix = method; 2514 __ load_resolved_reference_at_index(appendix, ref_index); 2515 __ push(appendix); // push appendix (MethodType, CallSite, etc.) 2516 __ bind(L_no_push); 2517 2518 __ movptr(method, Address(cache, in_bytes(ResolvedMethodEntry::method_offset()))); 2519 } 2520 2521 void TemplateTable::load_resolved_method_entry_interface(Register cache, 2522 Register klass, 2523 Register method_or_table_index, 2524 Register flags) { 2525 // setup registers 2526 const Register index = rdx; 2527 assert_different_registers(cache, klass, method_or_table_index, flags); 2528 2529 // determine constant pool cache field offsets 2530 resolve_cache_and_index_for_method(f1_byte, cache, index); 2531 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset()))); 2532 2533 // Invokeinterface can behave in different ways: 2534 // If calling a method from java.lang.Object, the forced virtual flag is true so the invocation will 2535 // behave like an invokevirtual call. The state of the virtual final flag will determine whether a method or 2536 // vtable index is placed in the register. 2537 // Otherwise, the registers will be populated with the klass and method. 2538 2539 Label NotVirtual; Label NotVFinal; Label Done; 2540 __ testl(flags, 1 << ResolvedMethodEntry::is_forced_virtual_shift); 2541 __ jcc(Assembler::zero, NotVirtual); 2542 __ testl(flags, (1 << ResolvedMethodEntry::is_vfinal_shift)); 2543 __ jcc(Assembler::zero, NotVFinal); 2544 __ movptr(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::method_offset()))); 2545 __ jmp(Done); 2546 2547 __ bind(NotVFinal); 2548 __ load_unsigned_short(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::table_index_offset()))); 2549 __ jmp(Done); 2550 2551 __ bind(NotVirtual); 2552 __ movptr(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::method_offset()))); 2553 __ movptr(klass, Address(cache, in_bytes(ResolvedMethodEntry::klass_offset()))); 2554 __ bind(Done); 2555 } 2556 2557 void TemplateTable::load_resolved_method_entry_virtual(Register cache, 2558 Register method_or_table_index, 2559 Register flags) { 2560 // setup registers 2561 const Register index = rdx; 2562 assert_different_registers(index, cache); 2563 assert_different_registers(method_or_table_index, cache, flags); 2564 2565 // determine constant pool cache field offsets 2566 resolve_cache_and_index_for_method(f2_byte, cache, index); 2567 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset()))); 2568 2569 // method_or_table_index can either be an itable index or a method depending on the virtual final flag 2570 Label isVFinal; Label Done; 2571 __ testl(flags, (1 << ResolvedMethodEntry::is_vfinal_shift)); 2572 __ jcc(Assembler::notZero, isVFinal); 2573 __ load_unsigned_short(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::table_index_offset()))); 2574 __ jmp(Done); 2575 __ bind(isVFinal); 2576 __ movptr(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::method_offset()))); 2577 __ bind(Done); 2578 } 2579 2580 // The registers cache and index expected to be set before call. 2581 // Correct values of the cache and index registers are preserved. 2582 void TemplateTable::jvmti_post_field_access(Register cache, 2583 Register index, 2584 bool is_static, 2585 bool has_tos) { 2586 if (JvmtiExport::can_post_field_access()) { 2587 // Check to see if a field access watch has been set before we take 2588 // the time to call into the VM. 2589 Label L1; 2590 assert_different_registers(cache, index, rax); 2591 __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr())); 2592 __ testl(rax,rax); 2593 __ jcc(Assembler::zero, L1); 2594 2595 // cache entry pointer 2596 __ load_field_entry(cache, index); 2597 if (is_static) { 2598 __ xorptr(rax, rax); // null object reference 2599 } else { 2600 __ pop(atos); // Get the object 2601 __ verify_oop(rax); 2602 __ push(atos); // Restore stack state 2603 } 2604 // rax,: object pointer or null 2605 // cache: cache entry pointer 2606 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), 2607 rax, cache); 2608 2609 __ load_field_entry(cache, index); 2610 __ bind(L1); 2611 } 2612 } 2613 2614 void TemplateTable::pop_and_check_object(Register r) { 2615 __ pop_ptr(r); 2616 __ null_check(r); // for field access must check obj. 2617 __ verify_oop(r); 2618 } 2619 2620 void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc) { 2621 transition(vtos, vtos); 2622 2623 const Register obj = r9; 2624 const Register cache = rcx; 2625 const Register index = rdx; 2626 const Register off = rbx; 2627 const Register tos_state = rax; 2628 const Register flags = rdx; 2629 const Register bc = c_rarg3; // uses same reg as obj, so don't mix them 2630 2631 resolve_cache_and_index_for_field(byte_no, cache, index); 2632 jvmti_post_field_access(cache, index, is_static, false); 2633 load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static); 2634 2635 const Address field(obj, off, Address::times_1, 0*wordSize); 2636 2637 Label Done, notByte, notBool, notInt, notShort, notChar, notLong, notFloat, notObj, notInlineType; 2638 2639 // Make sure we don't need to mask edx after the above shift 2640 assert(btos == 0, "change code, btos != 0"); 2641 __ testl(tos_state, tos_state); 2642 __ jcc(Assembler::notZero, notByte); 2643 2644 // btos 2645 if (!is_static) pop_and_check_object(obj); 2646 __ access_load_at(T_BYTE, IN_HEAP, rax, field, noreg); 2647 __ push(btos); 2648 // Rewrite bytecode to be faster 2649 if (!is_static && rc == may_rewrite) { 2650 patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx); 2651 } 2652 __ jmp(Done); 2653 2654 __ bind(notByte); 2655 __ cmpl(tos_state, ztos); 2656 __ jcc(Assembler::notEqual, notBool); 2657 if (!is_static) pop_and_check_object(obj); 2658 // ztos (same code as btos) 2659 __ access_load_at(T_BOOLEAN, IN_HEAP, rax, field, noreg); 2660 __ push(ztos); 2661 // Rewrite bytecode to be faster 2662 if (!is_static && rc == may_rewrite) { 2663 // use btos rewriting, no truncating to t/f bit is needed for getfield. 2664 patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx); 2665 } 2666 __ jmp(Done); 2667 2668 __ bind(notBool); 2669 __ cmpl(tos_state, atos); 2670 __ jcc(Assembler::notEqual, notObj); 2671 // atos 2672 if (!EnableValhalla) { 2673 if (!is_static) pop_and_check_object(obj); 2674 do_oop_load(_masm, field, rax); 2675 __ push(atos); 2676 if (!is_static && rc == may_rewrite) { 2677 patch_bytecode(Bytecodes::_fast_agetfield, bc, rbx); 2678 } 2679 __ jmp(Done); 2680 } else { 2681 if (is_static) { 2682 __ load_heap_oop(rax, field); 2683 Label is_null_free_inline_type, uninitialized; 2684 // Issue below if the static field has not been initialized yet 2685 __ test_field_is_null_free_inline_type(flags, rscratch1, is_null_free_inline_type); 2686 // field is not a null free inline type 2687 __ push(atos); 2688 __ jmp(Done); 2689 // field is a null free inline type, must not return null even if uninitialized 2690 __ bind(is_null_free_inline_type); 2691 __ testptr(rax, rax); 2692 __ jcc(Assembler::zero, uninitialized); 2693 __ push(atos); 2694 __ jmp(Done); 2695 __ bind(uninitialized); 2696 __ jump(RuntimeAddress(Interpreter::_throw_NPE_UninitializedField_entry)); 2697 } else { 2698 Label is_flat, nonnull, is_null_free_inline_type, rewrite_inline, has_null_marker; 2699 __ test_field_is_null_free_inline_type(flags, rscratch1, is_null_free_inline_type); 2700 __ test_field_has_null_marker(flags, rscratch1, has_null_marker); 2701 // field is not a null free inline type 2702 pop_and_check_object(obj); 2703 __ load_heap_oop(rax, field); 2704 __ push(atos); 2705 if (rc == may_rewrite) { 2706 patch_bytecode(Bytecodes::_fast_agetfield, bc, rbx); 2707 } 2708 __ jmp(Done); 2709 __ bind(is_null_free_inline_type); 2710 __ test_field_is_flat(flags, rscratch1, is_flat); 2711 // field is not flat 2712 pop_and_check_object(obj); 2713 __ load_heap_oop(rax, field); 2714 __ testptr(rax, rax); 2715 __ jcc(Assembler::notZero, nonnull); 2716 __ jump(RuntimeAddress(Interpreter::_throw_NPE_UninitializedField_entry)); 2717 __ bind(nonnull); 2718 __ verify_oop(rax); 2719 __ push(atos); 2720 __ jmp(rewrite_inline); 2721 __ bind(is_flat); 2722 pop_and_check_object(rax); 2723 __ read_flat_field(rcx, rdx, rbx, rax); 2724 __ verify_oop(rax); 2725 __ push(atos); 2726 __ jmp(rewrite_inline); 2727 __ bind(has_null_marker); 2728 pop_and_check_object(rax); 2729 __ load_field_entry(rcx, rbx); 2730 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::read_nullable_flat_field), rax, rcx); 2731 __ get_vm_result_oop(rax); 2732 __ push(atos); 2733 __ bind(rewrite_inline); 2734 if (rc == may_rewrite) { 2735 patch_bytecode(Bytecodes::_fast_vgetfield, bc, rbx); 2736 } 2737 __ jmp(Done); 2738 } 2739 } 2740 2741 __ bind(notObj); 2742 2743 if (!is_static) pop_and_check_object(obj); 2744 2745 __ cmpl(tos_state, itos); 2746 __ jcc(Assembler::notEqual, notInt); 2747 // itos 2748 __ access_load_at(T_INT, IN_HEAP, rax, field, noreg); 2749 __ push(itos); 2750 // Rewrite bytecode to be faster 2751 if (!is_static && rc == may_rewrite) { 2752 patch_bytecode(Bytecodes::_fast_igetfield, bc, rbx); 2753 } 2754 __ jmp(Done); 2755 2756 __ bind(notInt); 2757 __ cmpl(tos_state, ctos); 2758 __ jcc(Assembler::notEqual, notChar); 2759 // ctos 2760 __ access_load_at(T_CHAR, IN_HEAP, rax, field, noreg); 2761 __ push(ctos); 2762 // Rewrite bytecode to be faster 2763 if (!is_static && rc == may_rewrite) { 2764 patch_bytecode(Bytecodes::_fast_cgetfield, bc, rbx); 2765 } 2766 __ jmp(Done); 2767 2768 __ bind(notChar); 2769 __ cmpl(tos_state, stos); 2770 __ jcc(Assembler::notEqual, notShort); 2771 // stos 2772 __ access_load_at(T_SHORT, IN_HEAP, rax, field, noreg); 2773 __ push(stos); 2774 // Rewrite bytecode to be faster 2775 if (!is_static && rc == may_rewrite) { 2776 patch_bytecode(Bytecodes::_fast_sgetfield, bc, rbx); 2777 } 2778 __ jmp(Done); 2779 2780 __ bind(notShort); 2781 __ cmpl(tos_state, ltos); 2782 __ jcc(Assembler::notEqual, notLong); 2783 // ltos 2784 // Generate code as if volatile (x86_32). There just aren't enough registers to 2785 // save that information and this code is faster than the test. 2786 __ access_load_at(T_LONG, IN_HEAP | MO_RELAXED, noreg /* ltos */, field, noreg); 2787 __ push(ltos); 2788 // Rewrite bytecode to be faster 2789 if (!is_static && rc == may_rewrite) patch_bytecode(Bytecodes::_fast_lgetfield, bc, rbx); 2790 __ jmp(Done); 2791 2792 __ bind(notLong); 2793 __ cmpl(tos_state, ftos); 2794 __ jcc(Assembler::notEqual, notFloat); 2795 // ftos 2796 2797 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg); 2798 __ push(ftos); 2799 // Rewrite bytecode to be faster 2800 if (!is_static && rc == may_rewrite) { 2801 patch_bytecode(Bytecodes::_fast_fgetfield, bc, rbx); 2802 } 2803 __ jmp(Done); 2804 2805 __ bind(notFloat); 2806 #ifdef ASSERT 2807 Label notDouble; 2808 __ cmpl(tos_state, dtos); 2809 __ jcc(Assembler::notEqual, notDouble); 2810 #endif 2811 // dtos 2812 // MO_RELAXED: for the case of volatile field, in fact it adds no extra work for the underlying implementation 2813 __ access_load_at(T_DOUBLE, IN_HEAP | MO_RELAXED, noreg /* dtos */, field, noreg); 2814 __ push(dtos); 2815 // Rewrite bytecode to be faster 2816 if (!is_static && rc == may_rewrite) { 2817 patch_bytecode(Bytecodes::_fast_dgetfield, bc, rbx); 2818 } 2819 #ifdef ASSERT 2820 __ jmp(Done); 2821 2822 __ bind(notDouble); 2823 __ stop("Bad state"); 2824 #endif 2825 2826 __ bind(Done); 2827 // [jk] not needed currently 2828 // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadLoad | 2829 // Assembler::LoadStore)); 2830 } 2831 2832 void TemplateTable::getfield(int byte_no) { 2833 getfield_or_static(byte_no, false); 2834 } 2835 2836 void TemplateTable::nofast_getfield(int byte_no) { 2837 getfield_or_static(byte_no, false, may_not_rewrite); 2838 } 2839 2840 void TemplateTable::getstatic(int byte_no) { 2841 getfield_or_static(byte_no, true); 2842 } 2843 2844 // The registers cache and index expected to be set before call. 2845 // The function may destroy various registers, just not the cache and index registers. 2846 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) { 2847 // Cache is rcx and index is rdx 2848 const Register entry = c_rarg2; // ResolvedFieldEntry 2849 const Register obj = c_rarg1; // Object pointer 2850 const Register value = c_rarg3; // JValue object 2851 2852 if (JvmtiExport::can_post_field_modification()) { 2853 // Check to see if a field modification watch has been set before 2854 // we take the time to call into the VM. 2855 Label L1; 2856 assert_different_registers(cache, obj, rax); 2857 __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr())); 2858 __ testl(rax, rax); 2859 __ jcc(Assembler::zero, L1); 2860 2861 __ mov(entry, cache); 2862 2863 if (is_static) { 2864 // Life is simple. Null out the object pointer. 2865 __ xorl(obj, obj); 2866 2867 } else { 2868 // Life is harder. The stack holds the value on top, followed by 2869 // the object. We don't know the size of the value, though; it 2870 // could be one or two words depending on its type. As a result, 2871 // we must find the type to determine where the object is. 2872 __ load_unsigned_byte(value, Address(entry, in_bytes(ResolvedFieldEntry::type_offset()))); 2873 __ movptr(obj, at_tos_p1()); // initially assume a one word jvalue 2874 __ cmpl(value, ltos); 2875 __ cmovptr(Assembler::equal, 2876 obj, at_tos_p2()); // ltos (two word jvalue) 2877 __ cmpl(value, dtos); 2878 __ cmovptr(Assembler::equal, 2879 obj, at_tos_p2()); // dtos (two word jvalue) 2880 } 2881 2882 // object (tos) 2883 __ mov(value, rsp); 2884 // obj: object pointer set up above (null if static) 2885 // cache: field entry pointer 2886 // value: jvalue object on the stack 2887 __ call_VM(noreg, 2888 CAST_FROM_FN_PTR(address, 2889 InterpreterRuntime::post_field_modification), 2890 obj, entry, value); 2891 // Reload field entry 2892 __ load_field_entry(cache, index); 2893 __ bind(L1); 2894 } 2895 } 2896 2897 void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) { 2898 transition(vtos, vtos); 2899 2900 const Register obj = rcx; 2901 const Register cache = rcx; 2902 const Register index = rdx; 2903 const Register tos_state = rdx; 2904 const Register off = rbx; 2905 const Register flags = r9; 2906 2907 resolve_cache_and_index_for_field(byte_no, cache, index); 2908 jvmti_post_field_mod(cache, index, is_static); 2909 load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static); 2910 2911 // [jk] not needed currently 2912 // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore | 2913 // Assembler::StoreStore)); 2914 2915 Label notVolatile, Done; 2916 2917 // Check for volatile store 2918 __ movl(rscratch1, flags); 2919 __ andl(rscratch1, (1 << ResolvedFieldEntry::is_volatile_shift)); 2920 __ testl(rscratch1, rscratch1); 2921 __ jcc(Assembler::zero, notVolatile); 2922 2923 putfield_or_static_helper(byte_no, is_static, rc, obj, off, tos_state, flags); 2924 volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad | 2925 Assembler::StoreStore)); 2926 __ jmp(Done); 2927 __ bind(notVolatile); 2928 2929 putfield_or_static_helper(byte_no, is_static, rc, obj, off, tos_state, flags); 2930 2931 __ bind(Done); 2932 } 2933 2934 void TemplateTable::putfield_or_static_helper(int byte_no, bool is_static, RewriteControl rc, 2935 Register obj, Register off, Register tos_state, Register flags) { 2936 2937 // field addresses 2938 const Address field(obj, off, Address::times_1, 0*wordSize); 2939 2940 Label notByte, notBool, notInt, notShort, notChar, 2941 notLong, notFloat, notObj, notInlineType; 2942 Label Done; 2943 2944 const Register bc = c_rarg3; 2945 2946 // Test TOS state 2947 __ testl(tos_state, tos_state); 2948 __ jcc(Assembler::notZero, notByte); 2949 2950 // btos 2951 { 2952 __ pop(btos); 2953 if (!is_static) pop_and_check_object(obj); 2954 __ access_store_at(T_BYTE, IN_HEAP, field, rax, noreg, noreg, noreg); 2955 if (!is_static && rc == may_rewrite) { 2956 patch_bytecode(Bytecodes::_fast_bputfield, bc, rbx, true, byte_no); 2957 } 2958 __ jmp(Done); 2959 } 2960 2961 __ bind(notByte); 2962 __ cmpl(tos_state, ztos); 2963 __ jcc(Assembler::notEqual, notBool); 2964 2965 // ztos 2966 { 2967 __ pop(ztos); 2968 if (!is_static) pop_and_check_object(obj); 2969 __ access_store_at(T_BOOLEAN, IN_HEAP, field, rax, noreg, noreg, noreg); 2970 if (!is_static && rc == may_rewrite) { 2971 patch_bytecode(Bytecodes::_fast_zputfield, bc, rbx, true, byte_no); 2972 } 2973 __ jmp(Done); 2974 } 2975 2976 __ bind(notBool); 2977 __ cmpl(tos_state, atos); 2978 __ jcc(Assembler::notEqual, notObj); 2979 2980 // atos 2981 { 2982 if (!EnableValhalla) { 2983 __ pop(atos); 2984 if (!is_static) pop_and_check_object(obj); 2985 // Store into the field 2986 do_oop_store(_masm, field, rax); 2987 if (!is_static && rc == may_rewrite) { 2988 patch_bytecode(Bytecodes::_fast_aputfield, bc, rbx, true, byte_no); 2989 } 2990 __ jmp(Done); 2991 } else { 2992 __ pop(atos); 2993 if (is_static) { 2994 Label is_inline_type; 2995 __ test_field_is_not_null_free_inline_type(flags, rscratch1, is_inline_type); 2996 __ null_check(rax); 2997 __ bind(is_inline_type); 2998 do_oop_store(_masm, field, rax); 2999 __ jmp(Done); 3000 } else { 3001 Label is_null_free_inline_type, is_flat, has_null_marker, 3002 write_null, rewrite_not_inline, rewrite_inline; 3003 __ test_field_is_null_free_inline_type(flags, rscratch1, is_null_free_inline_type); 3004 __ test_field_has_null_marker(flags, rscratch1, has_null_marker); 3005 // Not an inline type 3006 pop_and_check_object(obj); 3007 // Store into the field 3008 do_oop_store(_masm, field, rax); 3009 __ bind(rewrite_not_inline); 3010 if (rc == may_rewrite) { 3011 patch_bytecode(Bytecodes::_fast_aputfield, bc, rbx, true, byte_no); 3012 } 3013 __ jmp(Done); 3014 // Implementation of the inline type semantic 3015 __ bind(is_null_free_inline_type); 3016 __ null_check(rax); 3017 __ test_field_is_flat(flags, rscratch1, is_flat); 3018 // field is not flat 3019 pop_and_check_object(obj); 3020 // Store into the field 3021 do_oop_store(_masm, field, rax); 3022 __ jmp(rewrite_inline); 3023 __ bind(is_flat); 3024 // field is flat 3025 __ load_unsigned_short(rdx, Address(rcx, in_bytes(ResolvedFieldEntry::field_index_offset()))); 3026 __ movptr(r9, Address(rcx, in_bytes(ResolvedFieldEntry::field_holder_offset()))); 3027 pop_and_check_object(obj); // obj = rcx 3028 __ load_klass(r8, rax, rscratch1); 3029 __ payload_addr(rax, rax, r8); 3030 __ addptr(obj, off); 3031 __ inline_layout_info(r9, rdx, rbx); 3032 // because we use InlineLayoutInfo, we need special value access code specialized for fields (arrays will need a different API) 3033 __ flat_field_copy(IN_HEAP, rax, obj, rbx); 3034 __ jmp(rewrite_inline); 3035 __ bind(has_null_marker); // has null marker means the field is flat with a null marker 3036 pop_and_check_object(rbx); 3037 __ load_field_entry(rcx, rdx); 3038 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::write_nullable_flat_field), rbx, rax, rcx); 3039 __ bind(rewrite_inline); 3040 if (rc == may_rewrite) { 3041 patch_bytecode(Bytecodes::_fast_vputfield, bc, rbx, true, byte_no); 3042 } 3043 __ jmp(Done); 3044 } 3045 } 3046 } 3047 3048 __ bind(notObj); 3049 __ cmpl(tos_state, itos); 3050 __ jcc(Assembler::notEqual, notInt); 3051 3052 // itos 3053 { 3054 __ pop(itos); 3055 if (!is_static) pop_and_check_object(obj); 3056 __ access_store_at(T_INT, IN_HEAP, field, rax, noreg, noreg, noreg); 3057 if (!is_static && rc == may_rewrite) { 3058 patch_bytecode(Bytecodes::_fast_iputfield, bc, rbx, true, byte_no); 3059 } 3060 __ jmp(Done); 3061 } 3062 3063 __ bind(notInt); 3064 __ cmpl(tos_state, ctos); 3065 __ jcc(Assembler::notEqual, notChar); 3066 3067 // ctos 3068 { 3069 __ pop(ctos); 3070 if (!is_static) pop_and_check_object(obj); 3071 __ access_store_at(T_CHAR, IN_HEAP, field, rax, noreg, noreg, noreg); 3072 if (!is_static && rc == may_rewrite) { 3073 patch_bytecode(Bytecodes::_fast_cputfield, bc, rbx, true, byte_no); 3074 } 3075 __ jmp(Done); 3076 } 3077 3078 __ bind(notChar); 3079 __ cmpl(tos_state, stos); 3080 __ jcc(Assembler::notEqual, notShort); 3081 3082 // stos 3083 { 3084 __ pop(stos); 3085 if (!is_static) pop_and_check_object(obj); 3086 __ access_store_at(T_SHORT, IN_HEAP, field, rax, noreg, noreg, noreg); 3087 if (!is_static && rc == may_rewrite) { 3088 patch_bytecode(Bytecodes::_fast_sputfield, bc, rbx, true, byte_no); 3089 } 3090 __ jmp(Done); 3091 } 3092 3093 __ bind(notShort); 3094 __ cmpl(tos_state, ltos); 3095 __ jcc(Assembler::notEqual, notLong); 3096 3097 // ltos 3098 { 3099 __ pop(ltos); 3100 if (!is_static) pop_and_check_object(obj); 3101 // MO_RELAXED: generate atomic store for the case of volatile field (important for x86_32) 3102 __ access_store_at(T_LONG, IN_HEAP | MO_RELAXED, field, noreg /* ltos*/, noreg, noreg, noreg); 3103 if (!is_static && rc == may_rewrite) { 3104 patch_bytecode(Bytecodes::_fast_lputfield, bc, rbx, true, byte_no); 3105 } 3106 __ jmp(Done); 3107 } 3108 3109 __ bind(notLong); 3110 __ cmpl(tos_state, ftos); 3111 __ jcc(Assembler::notEqual, notFloat); 3112 3113 // ftos 3114 { 3115 __ pop(ftos); 3116 if (!is_static) pop_and_check_object(obj); 3117 __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos */, noreg, noreg, noreg); 3118 if (!is_static && rc == may_rewrite) { 3119 patch_bytecode(Bytecodes::_fast_fputfield, bc, rbx, true, byte_no); 3120 } 3121 __ jmp(Done); 3122 } 3123 3124 __ bind(notFloat); 3125 #ifdef ASSERT 3126 Label notDouble; 3127 __ cmpl(tos_state, dtos); 3128 __ jcc(Assembler::notEqual, notDouble); 3129 #endif 3130 3131 // dtos 3132 { 3133 __ pop(dtos); 3134 if (!is_static) pop_and_check_object(obj); 3135 // MO_RELAXED: for the case of volatile field, in fact it adds no extra work for the underlying implementation 3136 __ access_store_at(T_DOUBLE, IN_HEAP | MO_RELAXED, field, noreg /* dtos */, noreg, noreg, noreg); 3137 if (!is_static && rc == may_rewrite) { 3138 patch_bytecode(Bytecodes::_fast_dputfield, bc, rbx, true, byte_no); 3139 } 3140 } 3141 3142 #ifdef ASSERT 3143 __ jmp(Done); 3144 3145 __ bind(notDouble); 3146 __ stop("Bad state"); 3147 #endif 3148 3149 __ bind(Done); 3150 } 3151 3152 void TemplateTable::putfield(int byte_no) { 3153 putfield_or_static(byte_no, false); 3154 } 3155 3156 void TemplateTable::nofast_putfield(int byte_no) { 3157 putfield_or_static(byte_no, false, may_not_rewrite); 3158 } 3159 3160 void TemplateTable::putstatic(int byte_no) { 3161 putfield_or_static(byte_no, true); 3162 } 3163 3164 void TemplateTable::jvmti_post_fast_field_mod() { 3165 3166 const Register scratch = c_rarg3; 3167 3168 if (JvmtiExport::can_post_field_modification()) { 3169 // Check to see if a field modification watch has been set before 3170 // we take the time to call into the VM. 3171 Label L2; 3172 __ mov32(scratch, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr())); 3173 __ testl(scratch, scratch); 3174 __ jcc(Assembler::zero, L2); 3175 __ pop_ptr(rbx); // copy the object pointer from tos 3176 __ verify_oop(rbx); 3177 __ push_ptr(rbx); // put the object pointer back on tos 3178 // Save tos values before call_VM() clobbers them. Since we have 3179 // to do it for every data type, we use the saved values as the 3180 // jvalue object. 3181 switch (bytecode()) { // load values into the jvalue object 3182 case Bytecodes::_fast_vputfield: //fall through 3183 case Bytecodes::_fast_aputfield: __ push_ptr(rax); break; 3184 case Bytecodes::_fast_bputfield: // fall through 3185 case Bytecodes::_fast_zputfield: // fall through 3186 case Bytecodes::_fast_sputfield: // fall through 3187 case Bytecodes::_fast_cputfield: // fall through 3188 case Bytecodes::_fast_iputfield: __ push_i(rax); break; 3189 case Bytecodes::_fast_dputfield: __ push(dtos); break; 3190 case Bytecodes::_fast_fputfield: __ push(ftos); break; 3191 case Bytecodes::_fast_lputfield: __ push_l(rax); break; 3192 3193 default: 3194 ShouldNotReachHere(); 3195 } 3196 __ mov(scratch, rsp); // points to jvalue on the stack 3197 // access constant pool cache entry 3198 __ load_field_entry(c_rarg2, rax); 3199 __ verify_oop(rbx); 3200 // rbx: object pointer copied above 3201 // c_rarg2: cache entry pointer 3202 // c_rarg3: jvalue object on the stack 3203 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), rbx, c_rarg2, c_rarg3); 3204 3205 switch (bytecode()) { // restore tos values 3206 case Bytecodes::_fast_vputfield: // fall through 3207 case Bytecodes::_fast_aputfield: __ pop_ptr(rax); break; 3208 case Bytecodes::_fast_bputfield: // fall through 3209 case Bytecodes::_fast_zputfield: // fall through 3210 case Bytecodes::_fast_sputfield: // fall through 3211 case Bytecodes::_fast_cputfield: // fall through 3212 case Bytecodes::_fast_iputfield: __ pop_i(rax); break; 3213 case Bytecodes::_fast_dputfield: __ pop(dtos); break; 3214 case Bytecodes::_fast_fputfield: __ pop(ftos); break; 3215 case Bytecodes::_fast_lputfield: __ pop_l(rax); break; 3216 default: break; 3217 } 3218 __ bind(L2); 3219 } 3220 } 3221 3222 void TemplateTable::fast_storefield(TosState state) { 3223 transition(state, vtos); 3224 3225 Label notVolatile, Done; 3226 3227 jvmti_post_fast_field_mod(); 3228 3229 __ push(rax); 3230 __ load_field_entry(rcx, rax); 3231 load_resolved_field_entry(noreg, rcx, rax, rbx, rdx); 3232 __ pop(rax); 3233 // RBX: field offset, RCX: RAX: TOS, RDX: flags 3234 3235 // Get object from stack 3236 pop_and_check_object(rcx); 3237 3238 // field address 3239 const Address field(rcx, rbx, Address::times_1); 3240 3241 // Check for volatile store 3242 __ movl(rscratch2, rdx); // saving flags for is_flat test 3243 __ andl(rscratch2, (1 << ResolvedFieldEntry::is_volatile_shift)); 3244 __ testl(rscratch2, rscratch2); 3245 __ jcc(Assembler::zero, notVolatile); 3246 3247 fast_storefield_helper(field, rax, rdx); 3248 volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad | 3249 Assembler::StoreStore)); 3250 __ jmp(Done); 3251 __ bind(notVolatile); 3252 3253 fast_storefield_helper(field, rax, rdx); 3254 3255 __ bind(Done); 3256 } 3257 3258 void TemplateTable::fast_storefield_helper(Address field, Register rax, Register flags) { 3259 3260 // DANGER: 'field' argument depends on rcx and rbx 3261 3262 // access field 3263 switch (bytecode()) { 3264 case Bytecodes::_fast_vputfield: 3265 { 3266 Label is_flat, has_null_marker, write_null, done; 3267 __ test_field_has_null_marker(flags, rscratch1, has_null_marker); 3268 // Null free field cases: flat or not flat 3269 __ null_check(rax); 3270 __ test_field_is_flat(flags, rscratch1, is_flat); 3271 // field is not flat 3272 do_oop_store(_masm, field, rax); 3273 __ jmp(done); 3274 __ bind(is_flat); 3275 __ load_field_entry(r8, r9); 3276 __ load_unsigned_short(r9, Address(r8, in_bytes(ResolvedFieldEntry::field_index_offset()))); 3277 __ movptr(r8, Address(r8, in_bytes(ResolvedFieldEntry::field_holder_offset()))); 3278 __ inline_layout_info(r8, r9, r8); 3279 __ load_klass(rdx, rax, rscratch1); 3280 __ payload_addr(rax, rax, rdx); 3281 __ lea(rcx, field); 3282 __ flat_field_copy(IN_HEAP, rax, rcx, r8); 3283 __ jmp(done); 3284 __ bind(has_null_marker); // has null marker means the field is flat with a null marker 3285 __ movptr(rbx, rcx); 3286 __ load_field_entry(rcx, rdx); 3287 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::write_nullable_flat_field), rbx, rax, rcx); 3288 __ bind(done); 3289 } 3290 break; 3291 case Bytecodes::_fast_aputfield: 3292 { 3293 do_oop_store(_masm, field, rax); 3294 } 3295 break; 3296 case Bytecodes::_fast_lputfield: 3297 __ access_store_at(T_LONG, IN_HEAP, field, noreg /* ltos */, noreg, noreg, noreg); 3298 break; 3299 case Bytecodes::_fast_iputfield: 3300 __ access_store_at(T_INT, IN_HEAP, field, rax, noreg, noreg, noreg); 3301 break; 3302 case Bytecodes::_fast_zputfield: 3303 __ access_store_at(T_BOOLEAN, IN_HEAP, field, rax, noreg, noreg, noreg); 3304 break; 3305 case Bytecodes::_fast_bputfield: 3306 __ access_store_at(T_BYTE, IN_HEAP, field, rax, noreg, noreg, noreg); 3307 break; 3308 case Bytecodes::_fast_sputfield: 3309 __ access_store_at(T_SHORT, IN_HEAP, field, rax, noreg, noreg, noreg); 3310 break; 3311 case Bytecodes::_fast_cputfield: 3312 __ access_store_at(T_CHAR, IN_HEAP, field, rax, noreg, noreg, noreg); 3313 break; 3314 case Bytecodes::_fast_fputfield: 3315 __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos*/, noreg, noreg, noreg); 3316 break; 3317 case Bytecodes::_fast_dputfield: 3318 __ access_store_at(T_DOUBLE, IN_HEAP, field, noreg /* dtos*/, noreg, noreg, noreg); 3319 break; 3320 default: 3321 ShouldNotReachHere(); 3322 } 3323 } 3324 3325 void TemplateTable::fast_accessfield(TosState state) { 3326 transition(atos, state); 3327 3328 // Do the JVMTI work here to avoid disturbing the register state below 3329 if (JvmtiExport::can_post_field_access()) { 3330 // Check to see if a field access watch has been set before we 3331 // take the time to call into the VM. 3332 Label L1; 3333 __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr())); 3334 __ testl(rcx, rcx); 3335 __ jcc(Assembler::zero, L1); 3336 // access constant pool cache entry 3337 __ load_field_entry(c_rarg2, rcx); 3338 __ verify_oop(rax); 3339 __ push_ptr(rax); // save object pointer before call_VM() clobbers it 3340 __ mov(c_rarg1, rax); 3341 // c_rarg1: object pointer copied above 3342 // c_rarg2: cache entry pointer 3343 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), c_rarg1, c_rarg2); 3344 __ pop_ptr(rax); // restore object pointer 3345 __ bind(L1); 3346 } 3347 3348 // access constant pool cache 3349 __ load_field_entry(rcx, rbx); 3350 __ load_sized_value(rdx, Address(rcx, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/); 3351 3352 // rax: object 3353 __ verify_oop(rax); 3354 __ null_check(rax); 3355 Address field(rax, rdx, Address::times_1); 3356 3357 // access field 3358 switch (bytecode()) { 3359 case Bytecodes::_fast_vgetfield: 3360 { 3361 Label is_flat, nonnull, Done, has_null_marker; 3362 __ load_unsigned_byte(rscratch1, Address(rcx, in_bytes(ResolvedFieldEntry::flags_offset()))); 3363 __ test_field_has_null_marker(rscratch1, rscratch2, has_null_marker); 3364 __ test_field_is_flat(rscratch1, rscratch2, is_flat); 3365 // field is not flat 3366 __ load_heap_oop(rax, field); 3367 __ testptr(rax, rax); 3368 __ jcc(Assembler::notZero, nonnull); 3369 __ jump(RuntimeAddress(Interpreter::_throw_NPE_UninitializedField_entry)); 3370 __ bind(nonnull); 3371 __ verify_oop(rax); 3372 __ jmp(Done); 3373 __ bind(is_flat); 3374 // field is flat 3375 __ read_flat_field(rcx, rdx, rbx, rax); 3376 __ jmp(Done); 3377 __ bind(has_null_marker); 3378 // rax = instance, rcx = resolved entry 3379 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::read_nullable_flat_field), rax, rcx); 3380 __ get_vm_result_oop(rax); 3381 __ bind(Done); 3382 __ verify_oop(rax); 3383 } 3384 break; 3385 case Bytecodes::_fast_agetfield: 3386 do_oop_load(_masm, field, rax); 3387 __ verify_oop(rax); 3388 break; 3389 case Bytecodes::_fast_lgetfield: 3390 __ access_load_at(T_LONG, IN_HEAP, noreg /* ltos */, field, noreg); 3391 break; 3392 case Bytecodes::_fast_igetfield: 3393 __ access_load_at(T_INT, IN_HEAP, rax, field, noreg); 3394 break; 3395 case Bytecodes::_fast_bgetfield: 3396 __ access_load_at(T_BYTE, IN_HEAP, rax, field, noreg); 3397 break; 3398 case Bytecodes::_fast_sgetfield: 3399 __ access_load_at(T_SHORT, IN_HEAP, rax, field, noreg); 3400 break; 3401 case Bytecodes::_fast_cgetfield: 3402 __ access_load_at(T_CHAR, IN_HEAP, rax, field, noreg); 3403 break; 3404 case Bytecodes::_fast_fgetfield: 3405 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg); 3406 break; 3407 case Bytecodes::_fast_dgetfield: 3408 __ access_load_at(T_DOUBLE, IN_HEAP, noreg /* dtos */, field, noreg); 3409 break; 3410 default: 3411 ShouldNotReachHere(); 3412 } 3413 // [jk] not needed currently 3414 // Label notVolatile; 3415 // __ testl(rdx, rdx); 3416 // __ jcc(Assembler::zero, notVolatile); 3417 // __ membar(Assembler::LoadLoad); 3418 // __ bind(notVolatile); 3419 } 3420 3421 void TemplateTable::fast_xaccess(TosState state) { 3422 transition(vtos, state); 3423 3424 // get receiver 3425 __ movptr(rax, aaddress(0)); 3426 // access constant pool cache 3427 __ load_field_entry(rcx, rdx, 2); 3428 __ load_sized_value(rbx, Address(rcx, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/); 3429 3430 // make sure exception is reported in correct bcp range (getfield is 3431 // next instruction) 3432 __ increment(rbcp); 3433 __ null_check(rax); 3434 const Address field = Address(rax, rbx, Address::times_1, 0*wordSize); 3435 switch (state) { 3436 case itos: 3437 __ access_load_at(T_INT, IN_HEAP, rax, field, noreg); 3438 break; 3439 case atos: 3440 do_oop_load(_masm, field, rax); 3441 __ verify_oop(rax); 3442 break; 3443 case ftos: 3444 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg); 3445 break; 3446 default: 3447 ShouldNotReachHere(); 3448 } 3449 3450 // [jk] not needed currently 3451 // Label notVolatile; 3452 // __ movl(rdx, Address(rcx, rdx, Address::times_8, 3453 // in_bytes(ConstantPoolCache::base_offset() + 3454 // ConstantPoolCacheEntry::flags_offset()))); 3455 // __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift); 3456 // __ testl(rdx, 0x1); 3457 // __ jcc(Assembler::zero, notVolatile); 3458 // __ membar(Assembler::LoadLoad); 3459 // __ bind(notVolatile); 3460 3461 __ decrement(rbcp); 3462 } 3463 3464 //----------------------------------------------------------------------------- 3465 // Calls 3466 3467 void TemplateTable::prepare_invoke(Register cache, Register recv, Register flags) { 3468 // determine flags 3469 const Bytecodes::Code code = bytecode(); 3470 const bool load_receiver = (code != Bytecodes::_invokestatic) && (code != Bytecodes::_invokedynamic); 3471 assert_different_registers(recv, flags); 3472 3473 // save 'interpreter return address' 3474 __ save_bcp(); 3475 3476 // Save flags and load TOS 3477 __ movl(rbcp, flags); 3478 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::type_offset()))); 3479 3480 // load receiver if needed (after appendix is pushed so parameter size is correct) 3481 // Note: no return address pushed yet 3482 if (load_receiver) { 3483 __ load_unsigned_short(recv, Address(cache, in_bytes(ResolvedMethodEntry::num_parameters_offset()))); 3484 const int no_return_pc_pushed_yet = -1; // argument slot correction before we push return address 3485 const int receiver_is_at_end = -1; // back off one slot to get receiver 3486 Address recv_addr = __ argument_address(recv, no_return_pc_pushed_yet + receiver_is_at_end); 3487 __ movptr(recv, recv_addr); 3488 __ verify_oop(recv); 3489 } 3490 3491 // load return address 3492 { 3493 const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code); 3494 ExternalAddress table(table_addr); 3495 __ lea(rscratch1, table); 3496 __ movptr(flags, Address(rscratch1, flags, Address::times_ptr)); 3497 } 3498 3499 // push return address 3500 __ push(flags); 3501 3502 // Restore flags value from the constant pool cache entry, and restore rsi 3503 // for later null checks. r13 is the bytecode pointer 3504 __ movl(flags, rbcp); 3505 __ restore_bcp(); 3506 } 3507 3508 void TemplateTable::invokevirtual_helper(Register index, 3509 Register recv, 3510 Register flags) { 3511 // Uses temporary registers rax, rdx 3512 assert_different_registers(index, recv, rax, rdx); 3513 assert(index == rbx, ""); 3514 assert(recv == rcx, ""); 3515 3516 // Test for an invoke of a final method 3517 Label notFinal; 3518 __ movl(rax, flags); 3519 __ andl(rax, (1 << ResolvedMethodEntry::is_vfinal_shift)); 3520 __ jcc(Assembler::zero, notFinal); 3521 3522 const Register method = index; // method must be rbx 3523 assert(method == rbx, 3524 "Method* must be rbx for interpreter calling convention"); 3525 3526 // do the call - the index is actually the method to call 3527 // that is, f2 is a vtable index if !is_vfinal, else f2 is a Method* 3528 3529 // It's final, need a null check here! 3530 __ null_check(recv); 3531 3532 // profile this call 3533 __ profile_final_call(rax); 3534 __ profile_arguments_type(rax, method, rbcp, true); 3535 3536 __ jump_from_interpreted(method, rax); 3537 3538 __ bind(notFinal); 3539 3540 // get receiver klass 3541 __ load_klass(rax, recv, rscratch1); 3542 3543 // profile this call 3544 __ profile_virtual_call(rax, rlocals, rdx); 3545 // get target Method* & entry point 3546 __ lookup_virtual_method(rax, index, method); 3547 3548 __ profile_arguments_type(rdx, method, rbcp, true); 3549 __ jump_from_interpreted(method, rdx); 3550 } 3551 3552 void TemplateTable::invokevirtual(int byte_no) { 3553 transition(vtos, vtos); 3554 assert(byte_no == f2_byte, "use this argument"); 3555 3556 load_resolved_method_entry_virtual(rcx, // ResolvedMethodEntry* 3557 rbx, // Method or itable index 3558 rdx); // Flags 3559 prepare_invoke(rcx, // ResolvedMethodEntry* 3560 rcx, // Receiver 3561 rdx); // flags 3562 3563 // rbx: index 3564 // rcx: receiver 3565 // rdx: flags 3566 invokevirtual_helper(rbx, rcx, rdx); 3567 } 3568 3569 void TemplateTable::invokespecial(int byte_no) { 3570 transition(vtos, vtos); 3571 assert(byte_no == f1_byte, "use this argument"); 3572 3573 load_resolved_method_entry_special_or_static(rcx, // ResolvedMethodEntry* 3574 rbx, // Method* 3575 rdx); // flags 3576 prepare_invoke(rcx, 3577 rcx, // get receiver also for null check 3578 rdx); // flags 3579 3580 __ verify_oop(rcx); 3581 __ null_check(rcx); 3582 // do the call 3583 __ profile_call(rax); 3584 __ profile_arguments_type(rax, rbx, rbcp, false); 3585 __ jump_from_interpreted(rbx, rax); 3586 } 3587 3588 void TemplateTable::invokestatic(int byte_no) { 3589 transition(vtos, vtos); 3590 assert(byte_no == f1_byte, "use this argument"); 3591 3592 load_resolved_method_entry_special_or_static(rcx, // ResolvedMethodEntry* 3593 rbx, // Method* 3594 rdx // flags 3595 ); 3596 prepare_invoke(rcx, rcx, rdx); // cache and flags 3597 3598 // do the call 3599 __ profile_call(rax); 3600 __ profile_arguments_type(rax, rbx, rbcp, false); 3601 __ jump_from_interpreted(rbx, rax); 3602 } 3603 3604 3605 void TemplateTable::fast_invokevfinal(int byte_no) { 3606 transition(vtos, vtos); 3607 assert(byte_no == f2_byte, "use this argument"); 3608 __ stop("fast_invokevfinal not used on x86"); 3609 } 3610 3611 3612 void TemplateTable::invokeinterface(int byte_no) { 3613 transition(vtos, vtos); 3614 assert(byte_no == f1_byte, "use this argument"); 3615 3616 load_resolved_method_entry_interface(rcx, // ResolvedMethodEntry* 3617 rax, // Klass* 3618 rbx, // Method* or itable/vtable index 3619 rdx); // flags 3620 prepare_invoke(rcx, rcx, rdx); // receiver, flags 3621 3622 // First check for Object case, then private interface method, 3623 // then regular interface method. 3624 3625 // Special case of invokeinterface called for virtual method of 3626 // java.lang.Object. See cpCache.cpp for details. 3627 Label notObjectMethod; 3628 __ movl(rlocals, rdx); 3629 __ andl(rlocals, (1 << ResolvedMethodEntry::is_forced_virtual_shift)); 3630 __ jcc(Assembler::zero, notObjectMethod); 3631 3632 invokevirtual_helper(rbx, rcx, rdx); 3633 // no return from above 3634 __ bind(notObjectMethod); 3635 3636 Label no_such_interface; // for receiver subtype check 3637 Register recvKlass; // used for exception processing 3638 3639 // Check for private method invocation - indicated by vfinal 3640 Label notVFinal; 3641 __ movl(rlocals, rdx); 3642 __ andl(rlocals, (1 << ResolvedMethodEntry::is_vfinal_shift)); 3643 __ jcc(Assembler::zero, notVFinal); 3644 3645 // Get receiver klass into rlocals - also a null check 3646 __ load_klass(rlocals, rcx, rscratch1); 3647 3648 Label subtype; 3649 __ check_klass_subtype(rlocals, rax, rbcp, subtype); 3650 // If we get here the typecheck failed 3651 recvKlass = rdx; 3652 __ mov(recvKlass, rlocals); // shuffle receiver class for exception use 3653 __ jmp(no_such_interface); 3654 3655 __ bind(subtype); 3656 3657 // do the call - rbx is actually the method to call 3658 3659 __ profile_final_call(rdx); 3660 __ profile_arguments_type(rdx, rbx, rbcp, true); 3661 3662 __ jump_from_interpreted(rbx, rdx); 3663 // no return from above 3664 __ bind(notVFinal); 3665 3666 // Get receiver klass into rdx - also a null check 3667 __ restore_locals(); // restore r14 3668 __ load_klass(rdx, rcx, rscratch1); 3669 3670 Label no_such_method; 3671 3672 // Preserve method for throw_AbstractMethodErrorVerbose. 3673 __ mov(rcx, rbx); 3674 // Receiver subtype check against REFC. 3675 // Superklass in rax. Subklass in rdx. Blows rcx, rdi. 3676 __ lookup_interface_method(// inputs: rec. class, interface, itable index 3677 rdx, rax, noreg, 3678 // outputs: scan temp. reg, scan temp. reg 3679 rbcp, rlocals, 3680 no_such_interface, 3681 /*return_method=*/false); 3682 3683 // profile this call 3684 __ restore_bcp(); // rbcp was destroyed by receiver type check 3685 __ profile_virtual_call(rdx, rbcp, rlocals); 3686 3687 // Get declaring interface class from method, and itable index 3688 __ load_method_holder(rax, rbx); 3689 __ movl(rbx, Address(rbx, Method::itable_index_offset())); 3690 __ subl(rbx, Method::itable_index_max); 3691 __ negl(rbx); 3692 3693 // Preserve recvKlass for throw_AbstractMethodErrorVerbose. 3694 __ mov(rlocals, rdx); 3695 __ lookup_interface_method(// inputs: rec. class, interface, itable index 3696 rlocals, rax, rbx, 3697 // outputs: method, scan temp. reg 3698 rbx, rbcp, 3699 no_such_interface); 3700 3701 // rbx: Method* to call 3702 // rcx: receiver 3703 // Check for abstract method error 3704 // Note: This should be done more efficiently via a throw_abstract_method_error 3705 // interpreter entry point and a conditional jump to it in case of a null 3706 // method. 3707 __ testptr(rbx, rbx); 3708 __ jcc(Assembler::zero, no_such_method); 3709 3710 __ profile_arguments_type(rdx, rbx, rbcp, true); 3711 3712 // do the call 3713 // rcx: receiver 3714 // rbx,: Method* 3715 __ jump_from_interpreted(rbx, rdx); 3716 __ should_not_reach_here(); 3717 3718 // exception handling code follows... 3719 // note: must restore interpreter registers to canonical 3720 // state for exception handling to work correctly! 3721 3722 __ bind(no_such_method); 3723 // throw exception 3724 __ pop(rbx); // pop return address (pushed by prepare_invoke) 3725 __ restore_bcp(); // rbcp must be correct for exception handler (was destroyed) 3726 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) 3727 // Pass arguments for generating a verbose error message. 3728 recvKlass = c_rarg1; 3729 Register method = c_rarg2; 3730 if (recvKlass != rdx) { __ movq(recvKlass, rdx); } 3731 if (method != rcx) { __ movq(method, rcx); } 3732 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodErrorVerbose), 3733 recvKlass, method); 3734 // The call_VM checks for exception, so we should never return here. 3735 __ should_not_reach_here(); 3736 3737 __ bind(no_such_interface); 3738 // throw exception 3739 __ pop(rbx); // pop return address (pushed by prepare_invoke) 3740 __ restore_bcp(); // rbcp must be correct for exception handler (was destroyed) 3741 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) 3742 // Pass arguments for generating a verbose error message. 3743 if (recvKlass != rdx) { 3744 __ movq(recvKlass, rdx); 3745 } 3746 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_IncompatibleClassChangeErrorVerbose), 3747 recvKlass, rax); 3748 // the call_VM checks for exception, so we should never return here. 3749 __ should_not_reach_here(); 3750 } 3751 3752 void TemplateTable::invokehandle(int byte_no) { 3753 transition(vtos, vtos); 3754 assert(byte_no == f1_byte, "use this argument"); 3755 const Register rbx_method = rbx; 3756 const Register rax_mtype = rax; 3757 const Register rcx_recv = rcx; 3758 const Register rdx_flags = rdx; 3759 3760 load_resolved_method_entry_handle(rcx, rbx_method, rax_mtype, rdx_flags); 3761 prepare_invoke(rcx, rcx_recv, rdx_flags); 3762 3763 __ verify_method_ptr(rbx_method); 3764 __ verify_oop(rcx_recv); 3765 __ null_check(rcx_recv); 3766 3767 // rax: MethodType object (from cpool->resolved_references[f1], if necessary) 3768 // rbx: MH.invokeExact_MT method 3769 3770 // Note: rax_mtype is already pushed (if necessary) 3771 3772 // FIXME: profile the LambdaForm also 3773 __ profile_final_call(rax); 3774 __ profile_arguments_type(rdx, rbx_method, rbcp, true); 3775 3776 __ jump_from_interpreted(rbx_method, rdx); 3777 } 3778 3779 void TemplateTable::invokedynamic(int byte_no) { 3780 transition(vtos, vtos); 3781 assert(byte_no == f1_byte, "use this argument"); 3782 3783 const Register rbx_method = rbx; 3784 const Register rax_callsite = rax; 3785 3786 load_invokedynamic_entry(rbx_method); 3787 // rax: CallSite object (from cpool->resolved_references[]) 3788 // rbx: MH.linkToCallSite method 3789 3790 // Note: rax_callsite is already pushed 3791 3792 // %%% should make a type profile for any invokedynamic that takes a ref argument 3793 // profile this call 3794 __ profile_call(rbcp); 3795 __ profile_arguments_type(rdx, rbx_method, rbcp, false); 3796 3797 __ verify_oop(rax_callsite); 3798 3799 __ jump_from_interpreted(rbx_method, rdx); 3800 } 3801 3802 //----------------------------------------------------------------------------- 3803 // Allocation 3804 3805 void TemplateTable::_new() { 3806 transition(vtos, atos); 3807 __ get_unsigned_2_byte_index_at_bcp(rdx, 1); 3808 Label slow_case; 3809 Label done; 3810 3811 __ get_cpool_and_tags(rcx, rax); 3812 3813 // Make sure the class we're about to instantiate has been resolved. 3814 // This is done before loading InstanceKlass to be consistent with the order 3815 // how Constant Pool is updated (see ConstantPool::klass_at_put) 3816 const int tags_offset = Array<u1>::base_offset_in_bytes(); 3817 __ cmpb(Address(rax, rdx, Address::times_1, tags_offset), JVM_CONSTANT_Class); 3818 __ jcc(Assembler::notEqual, slow_case); 3819 3820 // get InstanceKlass 3821 __ load_resolved_klass_at_index(rcx, rcx, rdx); 3822 3823 // make sure klass is initialized 3824 // init_state needs acquire, but x86 is TSO, and so we are already good. 3825 assert(VM_Version::supports_fast_class_init_checks(), "must support fast class initialization checks"); 3826 __ clinit_barrier(rcx, nullptr /*L_fast_path*/, &slow_case); 3827 3828 __ allocate_instance(rcx, rax, rdx, rbx, true, slow_case); 3829 if (DTraceAllocProbes) { 3830 // Trigger dtrace event for fastpath 3831 __ push(atos); 3832 __ call_VM_leaf( 3833 CAST_FROM_FN_PTR(address, static_cast<int (*)(oopDesc*)>(SharedRuntime::dtrace_object_alloc)), rax); 3834 __ pop(atos); 3835 } 3836 __ jmp(done); 3837 3838 // slow case 3839 __ bind(slow_case); 3840 3841 __ get_constant_pool(c_rarg1); 3842 __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1); 3843 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2); 3844 __ verify_oop(rax); 3845 3846 // continue 3847 __ bind(done); 3848 } 3849 3850 void TemplateTable::newarray() { 3851 transition(itos, atos); 3852 __ load_unsigned_byte(c_rarg1, at_bcp(1)); 3853 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), 3854 c_rarg1, rax); 3855 } 3856 3857 void TemplateTable::anewarray() { 3858 transition(itos, atos); 3859 3860 __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1); 3861 __ get_constant_pool(c_rarg1); 3862 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), 3863 c_rarg1, c_rarg2, rax); 3864 } 3865 3866 void TemplateTable::arraylength() { 3867 transition(atos, itos); 3868 __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes())); 3869 } 3870 3871 void TemplateTable::checkcast() { 3872 transition(atos, atos); 3873 Label done, is_null, ok_is_subtype, quicked, resolved; 3874 __ testptr(rax, rax); // object is in rax 3875 __ jcc(Assembler::zero, is_null); 3876 3877 // Get cpool & tags index 3878 __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array 3879 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index 3880 // See if bytecode has already been quicked 3881 __ movzbl(rdx, Address(rdx, rbx, 3882 Address::times_1, 3883 Array<u1>::base_offset_in_bytes())); 3884 __ cmpl(rdx, JVM_CONSTANT_Class); 3885 __ jcc(Assembler::equal, quicked); 3886 __ push(atos); // save receiver for result, and for GC 3887 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc)); 3888 3889 __ get_vm_result_metadata(rax); 3890 3891 __ pop_ptr(rdx); // restore receiver 3892 __ jmpb(resolved); 3893 3894 // Get superklass in rax and subklass in rbx 3895 __ bind(quicked); 3896 __ mov(rdx, rax); // Save object in rdx; rax needed for subtype check 3897 __ load_resolved_klass_at_index(rax, rcx, rbx); 3898 3899 __ bind(resolved); 3900 __ load_klass(rbx, rdx, rscratch1); 3901 3902 // Generate subtype check. Blows rcx, rdi. Object in rdx. 3903 // Superklass in rax. Subklass in rbx. 3904 __ gen_subtype_check(rbx, ok_is_subtype); 3905 3906 // Come here on failure 3907 __ push_ptr(rdx); 3908 // object is at TOS 3909 __ jump(RuntimeAddress(Interpreter::_throw_ClassCastException_entry)); 3910 3911 // Come here on success 3912 __ bind(ok_is_subtype); 3913 __ mov(rax, rdx); // Restore object in rdx 3914 __ jmp(done); 3915 3916 __ bind(is_null); 3917 3918 // Collect counts on whether this check-cast sees nulls a lot or not. 3919 if (ProfileInterpreter) { 3920 __ profile_null_seen(rcx); 3921 } 3922 3923 __ bind(done); 3924 } 3925 3926 void TemplateTable::instanceof() { 3927 transition(atos, itos); 3928 Label done, is_null, ok_is_subtype, quicked, resolved; 3929 __ testptr(rax, rax); 3930 __ jcc(Assembler::zero, is_null); 3931 3932 // Get cpool & tags index 3933 __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array 3934 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index 3935 // See if bytecode has already been quicked 3936 __ movzbl(rdx, Address(rdx, rbx, 3937 Address::times_1, 3938 Array<u1>::base_offset_in_bytes())); 3939 __ cmpl(rdx, JVM_CONSTANT_Class); 3940 __ jcc(Assembler::equal, quicked); 3941 3942 __ push(atos); // save receiver for result, and for GC 3943 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc)); 3944 3945 __ get_vm_result_metadata(rax); 3946 3947 __ pop_ptr(rdx); // restore receiver 3948 __ verify_oop(rdx); 3949 __ load_klass(rdx, rdx, rscratch1); 3950 __ jmpb(resolved); 3951 3952 // Get superklass in rax and subklass in rdx 3953 __ bind(quicked); 3954 __ load_klass(rdx, rax, rscratch1); 3955 __ load_resolved_klass_at_index(rax, rcx, rbx); 3956 3957 __ bind(resolved); 3958 3959 // Generate subtype check. Blows rcx, rdi 3960 // Superklass in rax. Subklass in rdx. 3961 __ gen_subtype_check(rdx, ok_is_subtype); 3962 3963 // Come here on failure 3964 __ xorl(rax, rax); 3965 __ jmpb(done); 3966 // Come here on success 3967 __ bind(ok_is_subtype); 3968 __ movl(rax, 1); 3969 3970 // Collect counts on whether this test sees nulls a lot or not. 3971 if (ProfileInterpreter) { 3972 __ jmp(done); 3973 __ bind(is_null); 3974 __ profile_null_seen(rcx); 3975 } else { 3976 __ bind(is_null); // same as 'done' 3977 } 3978 __ bind(done); 3979 // rax = 0: obj == nullptr or obj is not an instanceof the specified klass 3980 // rax = 1: obj != nullptr and obj is an instanceof the specified klass 3981 } 3982 3983 //---------------------------------------------------------------------------------------------------- 3984 // Breakpoints 3985 void TemplateTable::_breakpoint() { 3986 // Note: We get here even if we are single stepping.. 3987 // jbug insists on setting breakpoints at every bytecode 3988 // even if we are in single step mode. 3989 3990 transition(vtos, vtos); 3991 3992 // get the unpatched byte code 3993 __ get_method(c_rarg1); 3994 __ call_VM(noreg, 3995 CAST_FROM_FN_PTR(address, 3996 InterpreterRuntime::get_original_bytecode_at), 3997 c_rarg1, rbcp); 3998 __ mov(rbx, rax); // why? 3999 4000 // post the breakpoint event 4001 __ get_method(c_rarg1); 4002 __ call_VM(noreg, 4003 CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), 4004 c_rarg1, rbcp); 4005 4006 // complete the execution of original bytecode 4007 __ dispatch_only_normal(vtos); 4008 } 4009 4010 //----------------------------------------------------------------------------- 4011 // Exceptions 4012 4013 void TemplateTable::athrow() { 4014 transition(atos, vtos); 4015 __ null_check(rax); 4016 __ jump(RuntimeAddress(Interpreter::throw_exception_entry())); 4017 } 4018 4019 //----------------------------------------------------------------------------- 4020 // Synchronization 4021 // 4022 // Note: monitorenter & exit are symmetric routines; which is reflected 4023 // in the assembly code structure as well 4024 // 4025 // Stack layout: 4026 // 4027 // [expressions ] <--- rsp = expression stack top 4028 // .. 4029 // [expressions ] 4030 // [monitor entry] <--- monitor block top = expression stack bot 4031 // .. 4032 // [monitor entry] 4033 // [frame data ] <--- monitor block bot 4034 // ... 4035 // [saved rbp ] <--- rbp 4036 void TemplateTable::monitorenter() { 4037 transition(atos, vtos); 4038 4039 // check for null object 4040 __ null_check(rax); 4041 4042 Label is_inline_type; 4043 __ movptr(rbx, Address(rax, oopDesc::mark_offset_in_bytes())); 4044 __ test_markword_is_inline_type(rbx, is_inline_type); 4045 4046 const Address monitor_block_top( 4047 rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 4048 const Address monitor_block_bot( 4049 rbp, frame::interpreter_frame_initial_sp_offset * wordSize); 4050 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 4051 4052 Label allocated; 4053 4054 Register rtop = c_rarg3; 4055 Register rbot = c_rarg2; 4056 Register rmon = c_rarg1; 4057 4058 // initialize entry pointer 4059 __ xorl(rmon, rmon); // points to free slot or null 4060 4061 // find a free slot in the monitor block (result in rmon) 4062 { 4063 Label entry, loop, exit; 4064 __ movptr(rtop, monitor_block_top); // derelativize pointer 4065 __ lea(rtop, Address(rbp, rtop, Address::times_ptr)); 4066 // rtop points to current entry, starting with top-most entry 4067 4068 __ lea(rbot, monitor_block_bot); // points to word before bottom 4069 // of monitor block 4070 __ jmpb(entry); 4071 4072 __ bind(loop); 4073 // check if current entry is used 4074 __ cmpptr(Address(rtop, BasicObjectLock::obj_offset()), NULL_WORD); 4075 // if not used then remember entry in rmon 4076 __ cmovptr(Assembler::equal, rmon, rtop); // cmov => cmovptr 4077 // check if current entry is for same object 4078 __ cmpptr(rax, Address(rtop, BasicObjectLock::obj_offset())); 4079 // if same object then stop searching 4080 __ jccb(Assembler::equal, exit); 4081 // otherwise advance to next entry 4082 __ addptr(rtop, entry_size); 4083 __ bind(entry); 4084 // check if bottom reached 4085 __ cmpptr(rtop, rbot); 4086 // if not at bottom then check this entry 4087 __ jcc(Assembler::notEqual, loop); 4088 __ bind(exit); 4089 } 4090 4091 __ testptr(rmon, rmon); // check if a slot has been found 4092 __ jcc(Assembler::notZero, allocated); // if found, continue with that one 4093 4094 // allocate one if there's no free slot 4095 { 4096 Label entry, loop; 4097 // 1. compute new pointers // rsp: old expression stack top 4098 __ movptr(rmon, monitor_block_bot); // rmon: old expression stack bottom 4099 __ lea(rmon, Address(rbp, rmon, Address::times_ptr)); 4100 __ subptr(rsp, entry_size); // move expression stack top 4101 __ subptr(rmon, entry_size); // move expression stack bottom 4102 __ mov(rtop, rsp); // set start value for copy loop 4103 __ subptr(monitor_block_bot, entry_size / wordSize); // set new monitor block bottom 4104 __ jmp(entry); 4105 // 2. move expression stack contents 4106 __ bind(loop); 4107 __ movptr(rbot, Address(rtop, entry_size)); // load expression stack 4108 // word from old location 4109 __ movptr(Address(rtop, 0), rbot); // and store it at new location 4110 __ addptr(rtop, wordSize); // advance to next word 4111 __ bind(entry); 4112 __ cmpptr(rtop, rmon); // check if bottom reached 4113 __ jcc(Assembler::notEqual, loop); // if not at bottom then 4114 // copy next word 4115 } 4116 4117 // call run-time routine 4118 // rmon: points to monitor entry 4119 __ bind(allocated); 4120 4121 // Increment bcp to point to the next bytecode, so exception 4122 // handling for async. exceptions work correctly. 4123 // The object has already been popped from the stack, so the 4124 // expression stack looks correct. 4125 __ increment(rbcp); 4126 4127 // store object 4128 __ movptr(Address(rmon, BasicObjectLock::obj_offset()), rax); 4129 __ lock_object(rmon); 4130 4131 // check to make sure this monitor doesn't cause stack overflow after locking 4132 __ save_bcp(); // in case of exception 4133 __ generate_stack_overflow_check(0); 4134 4135 // The bcp has already been incremented. Just need to dispatch to 4136 // next instruction. 4137 __ dispatch_next(vtos); 4138 4139 __ bind(is_inline_type); 4140 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 4141 InterpreterRuntime::throw_identity_exception), rax); 4142 __ should_not_reach_here(); 4143 } 4144 4145 void TemplateTable::monitorexit() { 4146 transition(atos, vtos); 4147 4148 // check for null object 4149 __ null_check(rax); 4150 4151 const int is_inline_type_mask = markWord::inline_type_pattern; 4152 Label has_identity; 4153 __ movptr(rbx, Address(rax, oopDesc::mark_offset_in_bytes())); 4154 __ andptr(rbx, is_inline_type_mask); 4155 __ cmpl(rbx, is_inline_type_mask); 4156 __ jcc(Assembler::notEqual, has_identity); 4157 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 4158 InterpreterRuntime::throw_illegal_monitor_state_exception)); 4159 __ should_not_reach_here(); 4160 __ bind(has_identity); 4161 4162 const Address monitor_block_top( 4163 rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 4164 const Address monitor_block_bot( 4165 rbp, frame::interpreter_frame_initial_sp_offset * wordSize); 4166 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 4167 4168 Register rtop = c_rarg1; 4169 Register rbot = c_rarg2; 4170 4171 Label found; 4172 4173 // find matching slot 4174 { 4175 Label entry, loop; 4176 __ movptr(rtop, monitor_block_top); // derelativize pointer 4177 __ lea(rtop, Address(rbp, rtop, Address::times_ptr)); 4178 // rtop points to current entry, starting with top-most entry 4179 4180 __ lea(rbot, monitor_block_bot); // points to word before bottom 4181 // of monitor block 4182 __ jmpb(entry); 4183 4184 __ bind(loop); 4185 // check if current entry is for same object 4186 __ cmpptr(rax, Address(rtop, BasicObjectLock::obj_offset())); 4187 // if same object then stop searching 4188 __ jcc(Assembler::equal, found); 4189 // otherwise advance to next entry 4190 __ addptr(rtop, entry_size); 4191 __ bind(entry); 4192 // check if bottom reached 4193 __ cmpptr(rtop, rbot); 4194 // if not at bottom then check this entry 4195 __ jcc(Assembler::notEqual, loop); 4196 } 4197 4198 // error handling. Unlocking was not block-structured 4199 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 4200 InterpreterRuntime::throw_illegal_monitor_state_exception)); 4201 __ should_not_reach_here(); 4202 4203 // call run-time routine 4204 __ bind(found); 4205 __ push_ptr(rax); // make sure object is on stack (contract with oopMaps) 4206 __ unlock_object(rtop); 4207 __ pop_ptr(rax); // discard object 4208 } 4209 4210 // Wide instructions 4211 void TemplateTable::wide() { 4212 transition(vtos, vtos); 4213 __ load_unsigned_byte(rbx, at_bcp(1)); 4214 ExternalAddress wtable((address)Interpreter::_wentry_point); 4215 __ jump(ArrayAddress(wtable, Address(noreg, rbx, Address::times_ptr)), rscratch1); 4216 // Note: the rbcp increment step is part of the individual wide bytecode implementations 4217 } 4218 4219 // Multi arrays 4220 void TemplateTable::multianewarray() { 4221 transition(vtos, atos); 4222 4223 __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions 4224 // last dim is on top of stack; we want address of first one: 4225 // first_addr = last_addr + (ndims - 1) * stackElementSize - 1*wordsize 4226 // the latter wordSize to point to the beginning of the array. 4227 __ lea(c_rarg1, Address(rsp, rax, Interpreter::stackElementScale(), -wordSize)); 4228 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), c_rarg1); 4229 __ load_unsigned_byte(rbx, at_bcp(3)); 4230 __ lea(rsp, Address(rsp, rbx, Interpreter::stackElementScale())); // get rid of counts 4231 }