1 /*
   2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "compiler/disassembler.hpp"
  28 #include "gc/shared/collectedHeap.hpp"
  29 #include "gc/shared/gc_globals.hpp"
  30 #include "gc/shared/tlab_globals.hpp"
  31 #include "interpreter/interpreter.hpp"
  32 #include "interpreter/interpreterRuntime.hpp"
  33 #include "interpreter/interp_masm.hpp"
  34 #include "interpreter/templateTable.hpp"
  35 #include "memory/universe.hpp"
  36 #include "oops/methodCounters.hpp"
  37 #include "oops/methodData.hpp"
  38 #include "oops/objArrayKlass.hpp"
  39 #include "oops/oop.inline.hpp"
  40 #include "oops/inlineKlass.hpp"
  41 #include "oops/resolvedFieldEntry.hpp"
  42 #include "oops/resolvedIndyEntry.hpp"
  43 #include "oops/resolvedMethodEntry.hpp"
  44 #include "prims/jvmtiExport.hpp"
  45 #include "prims/methodHandles.hpp"
  46 #include "runtime/frame.inline.hpp"
  47 #include "runtime/safepointMechanism.hpp"
  48 #include "runtime/sharedRuntime.hpp"
  49 #include "runtime/stubRoutines.hpp"
  50 #include "runtime/synchronizer.hpp"
  51 #include "utilities/macros.hpp"
  52 
  53 #define __ Disassembler::hook<InterpreterMacroAssembler>(__FILE__, __LINE__, _masm)->
  54 
  55 // Global Register Names
  56 static const Register rbcp     = LP64_ONLY(r13) NOT_LP64(rsi);
  57 static const Register rlocals  = LP64_ONLY(r14) NOT_LP64(rdi);
  58 
  59 // Address Computation: local variables
  60 static inline Address iaddress(int n) {
  61   return Address(rlocals, Interpreter::local_offset_in_bytes(n));
  62 }
  63 
  64 static inline Address laddress(int n) {
  65   return iaddress(n + 1);
  66 }
  67 
  68 #ifndef _LP64
  69 static inline Address haddress(int n) {
  70   return iaddress(n + 0);
  71 }
  72 #endif
  73 
  74 static inline Address faddress(int n) {
  75   return iaddress(n);
  76 }
  77 
  78 static inline Address daddress(int n) {
  79   return laddress(n);
  80 }
  81 
  82 static inline Address aaddress(int n) {
  83   return iaddress(n);
  84 }
  85 
  86 static inline Address iaddress(Register r) {
  87   return Address(rlocals, r, Address::times_ptr);
  88 }
  89 
  90 static inline Address laddress(Register r) {
  91   return Address(rlocals, r, Address::times_ptr, Interpreter::local_offset_in_bytes(1));
  92 }
  93 
  94 #ifndef _LP64
  95 static inline Address haddress(Register r)       {
  96   return Address(rlocals, r, Interpreter::stackElementScale(), Interpreter::local_offset_in_bytes(0));
  97 }
  98 #endif
  99 
 100 static inline Address faddress(Register r) {
 101   return iaddress(r);
 102 }
 103 
 104 static inline Address daddress(Register r) {
 105   return laddress(r);
 106 }
 107 
 108 static inline Address aaddress(Register r) {
 109   return iaddress(r);
 110 }
 111 
 112 
 113 // expression stack
 114 // (Note: Must not use symmetric equivalents at_rsp_m1/2 since they store
 115 // data beyond the rsp which is potentially unsafe in an MT environment;
 116 // an interrupt may overwrite that data.)
 117 static inline Address at_rsp   () {
 118   return Address(rsp, 0);
 119 }
 120 
 121 // At top of Java expression stack which may be different than esp().  It
 122 // isn't for category 1 objects.
 123 static inline Address at_tos   () {
 124   return Address(rsp,  Interpreter::expr_offset_in_bytes(0));
 125 }
 126 
 127 static inline Address at_tos_p1() {
 128   return Address(rsp,  Interpreter::expr_offset_in_bytes(1));
 129 }
 130 
 131 static inline Address at_tos_p2() {
 132   return Address(rsp,  Interpreter::expr_offset_in_bytes(2));
 133 }
 134 
 135 // Condition conversion
 136 static Assembler::Condition j_not(TemplateTable::Condition cc) {
 137   switch (cc) {
 138   case TemplateTable::equal        : return Assembler::notEqual;
 139   case TemplateTable::not_equal    : return Assembler::equal;
 140   case TemplateTable::less         : return Assembler::greaterEqual;
 141   case TemplateTable::less_equal   : return Assembler::greater;
 142   case TemplateTable::greater      : return Assembler::lessEqual;
 143   case TemplateTable::greater_equal: return Assembler::less;
 144   }
 145   ShouldNotReachHere();
 146   return Assembler::zero;
 147 }
 148 
 149 
 150 
 151 // Miscellaneous helper routines
 152 // Store an oop (or null) at the address described by obj.
 153 // If val == noreg this means store a null
 154 
 155 
 156 static void do_oop_store(InterpreterMacroAssembler* _masm,
 157                          Address dst,
 158                          Register val,
 159                          DecoratorSet decorators = 0) {
 160   assert(val == noreg || val == rax, "parameter is just for looks");
 161   __ store_heap_oop(dst, val,
 162                     NOT_LP64(rdx) LP64_ONLY(rscratch2),
 163                     NOT_LP64(rbx) LP64_ONLY(r9),
 164                     NOT_LP64(rsi) LP64_ONLY(r8), decorators);
 165 }
 166 
 167 static void do_oop_load(InterpreterMacroAssembler* _masm,
 168                         Address src,
 169                         Register dst,
 170                         DecoratorSet decorators = 0) {
 171   __ load_heap_oop(dst, src, rdx, rbx, decorators);
 172 }
 173 
 174 Address TemplateTable::at_bcp(int offset) {
 175   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
 176   return Address(rbcp, offset);
 177 }
 178 
 179 
 180 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
 181                                    Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
 182                                    int byte_no) {
 183   if (!RewriteBytecodes)  return;
 184   Label L_patch_done;
 185 
 186   switch (bc) {
 187   case Bytecodes::_fast_vputfield:
 188   case Bytecodes::_fast_aputfield:
 189   case Bytecodes::_fast_bputfield:
 190   case Bytecodes::_fast_zputfield:
 191   case Bytecodes::_fast_cputfield:
 192   case Bytecodes::_fast_dputfield:
 193   case Bytecodes::_fast_fputfield:
 194   case Bytecodes::_fast_iputfield:
 195   case Bytecodes::_fast_lputfield:
 196   case Bytecodes::_fast_sputfield:
 197     {
 198       // We skip bytecode quickening for putfield instructions when
 199       // the put_code written to the constant pool cache is zero.
 200       // This is required so that every execution of this instruction
 201       // calls out to InterpreterRuntime::resolve_get_put to do
 202       // additional, required work.
 203       assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
 204       assert(load_bc_into_bc_reg, "we use bc_reg as temp");
 205       __ load_field_entry(temp_reg, bc_reg);
 206       if (byte_no == f1_byte) {
 207         __ load_unsigned_byte(temp_reg, Address(temp_reg, in_bytes(ResolvedFieldEntry::get_code_offset())));
 208       } else {
 209         __ load_unsigned_byte(temp_reg, Address(temp_reg, in_bytes(ResolvedFieldEntry::put_code_offset())));
 210       }
 211 
 212       __ movl(bc_reg, bc);
 213       __ cmpl(temp_reg, (int) 0);
 214       __ jcc(Assembler::zero, L_patch_done);  // don't patch
 215     }
 216     break;
 217   default:
 218     assert(byte_no == -1, "sanity");
 219     // the pair bytecodes have already done the load.
 220     if (load_bc_into_bc_reg) {
 221       __ movl(bc_reg, bc);
 222     }
 223   }
 224 
 225   if (JvmtiExport::can_post_breakpoint()) {
 226     Label L_fast_patch;
 227     // if a breakpoint is present we can't rewrite the stream directly
 228     __ movzbl(temp_reg, at_bcp(0));
 229     __ cmpl(temp_reg, Bytecodes::_breakpoint);
 230     __ jcc(Assembler::notEqual, L_fast_patch);
 231     __ get_method(temp_reg);
 232     // Let breakpoint table handling rewrite to quicker bytecode
 233     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), temp_reg, rbcp, bc_reg);
 234 #ifndef ASSERT
 235     __ jmpb(L_patch_done);
 236 #else
 237     __ jmp(L_patch_done);
 238 #endif
 239     __ bind(L_fast_patch);
 240   }
 241 
 242 #ifdef ASSERT
 243   Label L_okay;
 244   __ load_unsigned_byte(temp_reg, at_bcp(0));
 245   __ cmpl(temp_reg, (int) Bytecodes::java_code(bc));
 246   __ jcc(Assembler::equal, L_okay);
 247   __ cmpl(temp_reg, bc_reg);
 248   __ jcc(Assembler::equal, L_okay);
 249   __ stop("patching the wrong bytecode");
 250   __ bind(L_okay);
 251 #endif
 252 
 253   // patch bytecode
 254   __ movb(at_bcp(0), bc_reg);
 255   __ bind(L_patch_done);
 256 }
 257 // Individual instructions
 258 
 259 
 260 void TemplateTable::nop() {
 261   transition(vtos, vtos);
 262   // nothing to do
 263 }
 264 
 265 void TemplateTable::shouldnotreachhere() {
 266   transition(vtos, vtos);
 267   __ stop("shouldnotreachhere bytecode");
 268 }
 269 
 270 void TemplateTable::aconst_null() {
 271   transition(vtos, atos);
 272   __ xorl(rax, rax);
 273 }
 274 
 275 void TemplateTable::iconst(int value) {
 276   transition(vtos, itos);
 277   if (value == 0) {
 278     __ xorl(rax, rax);
 279   } else {
 280     __ movl(rax, value);
 281   }
 282 }
 283 
 284 void TemplateTable::lconst(int value) {
 285   transition(vtos, ltos);
 286   if (value == 0) {
 287     __ xorl(rax, rax);
 288   } else {
 289     __ movl(rax, value);
 290   }
 291 #ifndef _LP64
 292   assert(value >= 0, "check this code");
 293   __ xorptr(rdx, rdx);
 294 #endif
 295 }
 296 
 297 
 298 
 299 void TemplateTable::fconst(int value) {
 300   transition(vtos, ftos);
 301   if (UseSSE >= 1) {
 302     static float one = 1.0f, two = 2.0f;
 303     switch (value) {
 304     case 0:
 305       __ xorps(xmm0, xmm0);
 306       break;
 307     case 1:
 308       __ movflt(xmm0, ExternalAddress((address) &one), rscratch1);
 309       break;
 310     case 2:
 311       __ movflt(xmm0, ExternalAddress((address) &two), rscratch1);
 312       break;
 313     default:
 314       ShouldNotReachHere();
 315       break;
 316     }
 317   } else {
 318 #ifdef _LP64
 319     ShouldNotReachHere();
 320 #else
 321            if (value == 0) { __ fldz();
 322     } else if (value == 1) { __ fld1();
 323     } else if (value == 2) { __ fld1(); __ fld1(); __ faddp(); // should do a better solution here
 324     } else                 { ShouldNotReachHere();
 325     }
 326 #endif // _LP64
 327   }
 328 }
 329 
 330 void TemplateTable::dconst(int value) {
 331   transition(vtos, dtos);
 332   if (UseSSE >= 2) {
 333     static double one = 1.0;
 334     switch (value) {
 335     case 0:
 336       __ xorpd(xmm0, xmm0);
 337       break;
 338     case 1:
 339       __ movdbl(xmm0, ExternalAddress((address) &one), rscratch1);
 340       break;
 341     default:
 342       ShouldNotReachHere();
 343       break;
 344     }
 345   } else {
 346 #ifdef _LP64
 347     ShouldNotReachHere();
 348 #else
 349            if (value == 0) { __ fldz();
 350     } else if (value == 1) { __ fld1();
 351     } else                 { ShouldNotReachHere();
 352     }
 353 #endif
 354   }
 355 }
 356 
 357 void TemplateTable::bipush() {
 358   transition(vtos, itos);
 359   __ load_signed_byte(rax, at_bcp(1));
 360 }
 361 
 362 void TemplateTable::sipush() {
 363   transition(vtos, itos);
 364   __ load_unsigned_short(rax, at_bcp(1));
 365   __ bswapl(rax);
 366   __ sarl(rax, 16);
 367 }
 368 
 369 void TemplateTable::ldc(LdcType type) {
 370   transition(vtos, vtos);
 371   Register rarg = NOT_LP64(rcx) LP64_ONLY(c_rarg1);
 372   Label call_ldc, notFloat, notClass, notInt, Done;
 373 
 374   if (is_ldc_wide(type)) {
 375     __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
 376   } else {
 377     __ load_unsigned_byte(rbx, at_bcp(1));
 378   }
 379 
 380   __ get_cpool_and_tags(rcx, rax);
 381   const int base_offset = ConstantPool::header_size() * wordSize;
 382   const int tags_offset = Array<u1>::base_offset_in_bytes();
 383 
 384   // get type
 385   __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset));
 386 
 387   // unresolved class - get the resolved class
 388   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass);
 389   __ jccb(Assembler::equal, call_ldc);
 390 
 391   // unresolved class in error state - call into runtime to throw the error
 392   // from the first resolution attempt
 393   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError);
 394   __ jccb(Assembler::equal, call_ldc);
 395 
 396   // resolved class - need to call vm to get java mirror of the class
 397   __ cmpl(rdx, JVM_CONSTANT_Class);
 398   __ jcc(Assembler::notEqual, notClass);
 399 
 400   __ bind(call_ldc);
 401 
 402   __ movl(rarg, is_ldc_wide(type) ? 1 : 0);
 403   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), rarg);
 404 
 405   __ push(atos);
 406   __ jmp(Done);
 407 
 408   __ bind(notClass);
 409   __ cmpl(rdx, JVM_CONSTANT_Float);
 410   __ jccb(Assembler::notEqual, notFloat);
 411 
 412   // ftos
 413   __ load_float(Address(rcx, rbx, Address::times_ptr, base_offset));
 414   __ push(ftos);
 415   __ jmp(Done);
 416 
 417   __ bind(notFloat);
 418   __ cmpl(rdx, JVM_CONSTANT_Integer);
 419   __ jccb(Assembler::notEqual, notInt);
 420 
 421   // itos
 422   __ movl(rax, Address(rcx, rbx, Address::times_ptr, base_offset));
 423   __ push(itos);
 424   __ jmp(Done);
 425 
 426   // assume the tag is for condy; if not, the VM runtime will tell us
 427   __ bind(notInt);
 428   condy_helper(Done);
 429 
 430   __ bind(Done);
 431 }
 432 
 433 // Fast path for caching oop constants.
 434 void TemplateTable::fast_aldc(LdcType type) {
 435   transition(vtos, atos);
 436 
 437   Register result = rax;
 438   Register tmp = rdx;
 439   Register rarg = NOT_LP64(rcx) LP64_ONLY(c_rarg1);
 440   int index_size = is_ldc_wide(type) ? sizeof(u2) : sizeof(u1);
 441 
 442   Label resolved;
 443 
 444   // We are resolved if the resolved reference cache entry contains a
 445   // non-null object (String, MethodType, etc.)
 446   assert_different_registers(result, tmp);
 447   __ get_cache_index_at_bcp(tmp, 1, index_size);
 448   __ load_resolved_reference_at_index(result, tmp);
 449   __ testptr(result, result);
 450   __ jcc(Assembler::notZero, resolved);
 451 
 452   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
 453 
 454   // first time invocation - must resolve first
 455   __ movl(rarg, (int)bytecode());
 456   __ call_VM(result, entry, rarg);
 457   __ bind(resolved);
 458 
 459   { // Check for the null sentinel.
 460     // If we just called the VM, it already did the mapping for us,
 461     // but it's harmless to retry.
 462     Label notNull;
 463     ExternalAddress null_sentinel((address)Universe::the_null_sentinel_addr());
 464     __ movptr(tmp, null_sentinel);
 465     __ resolve_oop_handle(tmp, rscratch2);
 466     __ cmpoop(tmp, result);
 467     __ jccb(Assembler::notEqual, notNull);
 468     __ xorptr(result, result);  // null object reference
 469     __ bind(notNull);
 470   }
 471 
 472   if (VerifyOops) {
 473     __ verify_oop(result);
 474   }
 475 }
 476 
 477 void TemplateTable::ldc2_w() {
 478   transition(vtos, vtos);
 479   Label notDouble, notLong, Done;
 480   __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
 481 
 482   __ get_cpool_and_tags(rcx, rax);
 483   const int base_offset = ConstantPool::header_size() * wordSize;
 484   const int tags_offset = Array<u1>::base_offset_in_bytes();
 485 
 486   // get type
 487   __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset));
 488   __ cmpl(rdx, JVM_CONSTANT_Double);
 489   __ jccb(Assembler::notEqual, notDouble);
 490 
 491   // dtos
 492   __ load_double(Address(rcx, rbx, Address::times_ptr, base_offset));
 493   __ push(dtos);
 494 
 495   __ jmp(Done);
 496   __ bind(notDouble);
 497   __ cmpl(rdx, JVM_CONSTANT_Long);
 498   __ jccb(Assembler::notEqual, notLong);
 499 
 500   // ltos
 501   __ movptr(rax, Address(rcx, rbx, Address::times_ptr, base_offset + 0 * wordSize));
 502   NOT_LP64(__ movptr(rdx, Address(rcx, rbx, Address::times_ptr, base_offset + 1 * wordSize)));
 503   __ push(ltos);
 504   __ jmp(Done);
 505 
 506   __ bind(notLong);
 507   condy_helper(Done);
 508 
 509   __ bind(Done);
 510 }
 511 
 512 void TemplateTable::condy_helper(Label& Done) {
 513   const Register obj = rax;
 514   const Register off = rbx;
 515   const Register flags = rcx;
 516   const Register rarg = NOT_LP64(rcx) LP64_ONLY(c_rarg1);
 517   __ movl(rarg, (int)bytecode());
 518   call_VM(obj, CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc), rarg);
 519 #ifndef _LP64
 520   // borrow rdi from locals
 521   __ get_thread(rdi);
 522   __ get_vm_result_2(flags, rdi);
 523   __ restore_locals();
 524 #else
 525   __ get_vm_result_2(flags, r15_thread);
 526 #endif
 527   // VMr = obj = base address to find primitive value to push
 528   // VMr2 = flags = (tos, off) using format of CPCE::_flags
 529   __ movl(off, flags);
 530   __ andl(off, ConstantPoolCache::field_index_mask);
 531   const Address field(obj, off, Address::times_1, 0*wordSize);
 532 
 533   // What sort of thing are we loading?
 534   __ shrl(flags, ConstantPoolCache::tos_state_shift);
 535   __ andl(flags, ConstantPoolCache::tos_state_mask);
 536 
 537   switch (bytecode()) {
 538   case Bytecodes::_ldc:
 539   case Bytecodes::_ldc_w:
 540     {
 541       // tos in (itos, ftos, stos, btos, ctos, ztos)
 542       Label notInt, notFloat, notShort, notByte, notChar, notBool;
 543       __ cmpl(flags, itos);
 544       __ jccb(Assembler::notEqual, notInt);
 545       // itos
 546       __ movl(rax, field);
 547       __ push(itos);
 548       __ jmp(Done);
 549 
 550       __ bind(notInt);
 551       __ cmpl(flags, ftos);
 552       __ jccb(Assembler::notEqual, notFloat);
 553       // ftos
 554       __ load_float(field);
 555       __ push(ftos);
 556       __ jmp(Done);
 557 
 558       __ bind(notFloat);
 559       __ cmpl(flags, stos);
 560       __ jccb(Assembler::notEqual, notShort);
 561       // stos
 562       __ load_signed_short(rax, field);
 563       __ push(stos);
 564       __ jmp(Done);
 565 
 566       __ bind(notShort);
 567       __ cmpl(flags, btos);
 568       __ jccb(Assembler::notEqual, notByte);
 569       // btos
 570       __ load_signed_byte(rax, field);
 571       __ push(btos);
 572       __ jmp(Done);
 573 
 574       __ bind(notByte);
 575       __ cmpl(flags, ctos);
 576       __ jccb(Assembler::notEqual, notChar);
 577       // ctos
 578       __ load_unsigned_short(rax, field);
 579       __ push(ctos);
 580       __ jmp(Done);
 581 
 582       __ bind(notChar);
 583       __ cmpl(flags, ztos);
 584       __ jccb(Assembler::notEqual, notBool);
 585       // ztos
 586       __ load_signed_byte(rax, field);
 587       __ push(ztos);
 588       __ jmp(Done);
 589 
 590       __ bind(notBool);
 591       break;
 592     }
 593 
 594   case Bytecodes::_ldc2_w:
 595     {
 596       Label notLong, notDouble;
 597       __ cmpl(flags, ltos);
 598       __ jccb(Assembler::notEqual, notLong);
 599       // ltos
 600       // Loading high word first because movptr clobbers rax
 601       NOT_LP64(__ movptr(rdx, field.plus_disp(4)));
 602       __ movptr(rax, field);
 603       __ push(ltos);
 604       __ jmp(Done);
 605 
 606       __ bind(notLong);
 607       __ cmpl(flags, dtos);
 608       __ jccb(Assembler::notEqual, notDouble);
 609       // dtos
 610       __ load_double(field);
 611       __ push(dtos);
 612       __ jmp(Done);
 613 
 614       __ bind(notDouble);
 615       break;
 616     }
 617 
 618   default:
 619     ShouldNotReachHere();
 620   }
 621 
 622   __ stop("bad ldc/condy");
 623 }
 624 
 625 void TemplateTable::locals_index(Register reg, int offset) {
 626   __ load_unsigned_byte(reg, at_bcp(offset));
 627   __ negptr(reg);
 628 }
 629 
 630 void TemplateTable::iload() {
 631   iload_internal();
 632 }
 633 
 634 void TemplateTable::nofast_iload() {
 635   iload_internal(may_not_rewrite);
 636 }
 637 
 638 void TemplateTable::iload_internal(RewriteControl rc) {
 639   transition(vtos, itos);
 640   if (RewriteFrequentPairs && rc == may_rewrite) {
 641     Label rewrite, done;
 642     const Register bc = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
 643     LP64_ONLY(assert(rbx != bc, "register damaged"));
 644 
 645     // get next byte
 646     __ load_unsigned_byte(rbx,
 647                           at_bcp(Bytecodes::length_for(Bytecodes::_iload)));
 648     // if _iload, wait to rewrite to iload2.  We only want to rewrite the
 649     // last two iloads in a pair.  Comparing against fast_iload means that
 650     // the next bytecode is neither an iload or a caload, and therefore
 651     // an iload pair.
 652     __ cmpl(rbx, Bytecodes::_iload);
 653     __ jcc(Assembler::equal, done);
 654 
 655     __ cmpl(rbx, Bytecodes::_fast_iload);
 656     __ movl(bc, Bytecodes::_fast_iload2);
 657 
 658     __ jccb(Assembler::equal, rewrite);
 659 
 660     // if _caload, rewrite to fast_icaload
 661     __ cmpl(rbx, Bytecodes::_caload);
 662     __ movl(bc, Bytecodes::_fast_icaload);
 663     __ jccb(Assembler::equal, rewrite);
 664 
 665     // rewrite so iload doesn't check again.
 666     __ movl(bc, Bytecodes::_fast_iload);
 667 
 668     // rewrite
 669     // bc: fast bytecode
 670     __ bind(rewrite);
 671     patch_bytecode(Bytecodes::_iload, bc, rbx, false);
 672     __ bind(done);
 673   }
 674 
 675   // Get the local value into tos
 676   locals_index(rbx);
 677   __ movl(rax, iaddress(rbx));
 678 }
 679 
 680 void TemplateTable::fast_iload2() {
 681   transition(vtos, itos);
 682   locals_index(rbx);
 683   __ movl(rax, iaddress(rbx));
 684   __ push(itos);
 685   locals_index(rbx, 3);
 686   __ movl(rax, iaddress(rbx));
 687 }
 688 
 689 void TemplateTable::fast_iload() {
 690   transition(vtos, itos);
 691   locals_index(rbx);
 692   __ movl(rax, iaddress(rbx));
 693 }
 694 
 695 void TemplateTable::lload() {
 696   transition(vtos, ltos);
 697   locals_index(rbx);
 698   __ movptr(rax, laddress(rbx));
 699   NOT_LP64(__ movl(rdx, haddress(rbx)));
 700 }
 701 
 702 void TemplateTable::fload() {
 703   transition(vtos, ftos);
 704   locals_index(rbx);
 705   __ load_float(faddress(rbx));
 706 }
 707 
 708 void TemplateTable::dload() {
 709   transition(vtos, dtos);
 710   locals_index(rbx);
 711   __ load_double(daddress(rbx));
 712 }
 713 
 714 void TemplateTable::aload() {
 715   transition(vtos, atos);
 716   locals_index(rbx);
 717   __ movptr(rax, aaddress(rbx));
 718 }
 719 
 720 void TemplateTable::locals_index_wide(Register reg) {
 721   __ load_unsigned_short(reg, at_bcp(2));
 722   __ bswapl(reg);
 723   __ shrl(reg, 16);
 724   __ negptr(reg);
 725 }
 726 
 727 void TemplateTable::wide_iload() {
 728   transition(vtos, itos);
 729   locals_index_wide(rbx);
 730   __ movl(rax, iaddress(rbx));
 731 }
 732 
 733 void TemplateTable::wide_lload() {
 734   transition(vtos, ltos);
 735   locals_index_wide(rbx);
 736   __ movptr(rax, laddress(rbx));
 737   NOT_LP64(__ movl(rdx, haddress(rbx)));
 738 }
 739 
 740 void TemplateTable::wide_fload() {
 741   transition(vtos, ftos);
 742   locals_index_wide(rbx);
 743   __ load_float(faddress(rbx));
 744 }
 745 
 746 void TemplateTable::wide_dload() {
 747   transition(vtos, dtos);
 748   locals_index_wide(rbx);
 749   __ load_double(daddress(rbx));
 750 }
 751 
 752 void TemplateTable::wide_aload() {
 753   transition(vtos, atos);
 754   locals_index_wide(rbx);
 755   __ movptr(rax, aaddress(rbx));
 756 }
 757 
 758 void TemplateTable::index_check(Register array, Register index) {
 759   // Pop ptr into array
 760   __ pop_ptr(array);
 761   index_check_without_pop(array, index);
 762 }
 763 
 764 void TemplateTable::index_check_without_pop(Register array, Register index) {
 765   // destroys rbx
 766   // sign extend index for use by indexed load
 767   __ movl2ptr(index, index);
 768   // check index
 769   __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes()));
 770   if (index != rbx) {
 771     // ??? convention: move aberrant index into rbx for exception message
 772     assert(rbx != array, "different registers");
 773     __ movl(rbx, index);
 774   }
 775   Label skip;
 776   __ jccb(Assembler::below, skip);
 777   // Pass array to create more detailed exceptions.
 778   __ mov(NOT_LP64(rax) LP64_ONLY(c_rarg1), array);
 779   __ jump(RuntimeAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry));
 780   __ bind(skip);
 781 }
 782 
 783 void TemplateTable::iaload() {
 784   transition(itos, itos);
 785   // rax: index
 786   // rdx: array
 787   index_check(rdx, rax); // kills rbx
 788   __ access_load_at(T_INT, IN_HEAP | IS_ARRAY, rax,
 789                     Address(rdx, rax, Address::times_4,
 790                             arrayOopDesc::base_offset_in_bytes(T_INT)),
 791                     noreg, noreg);
 792 }
 793 
 794 void TemplateTable::laload() {
 795   transition(itos, ltos);
 796   // rax: index
 797   // rdx: array
 798   index_check(rdx, rax); // kills rbx
 799   NOT_LP64(__ mov(rbx, rax));
 800   // rbx,: index
 801   __ access_load_at(T_LONG, IN_HEAP | IS_ARRAY, noreg /* ltos */,
 802                     Address(rdx, rbx, Address::times_8,
 803                             arrayOopDesc::base_offset_in_bytes(T_LONG)),
 804                     noreg, noreg);
 805 }
 806 
 807 
 808 
 809 void TemplateTable::faload() {
 810   transition(itos, ftos);
 811   // rax: index
 812   // rdx: array
 813   index_check(rdx, rax); // kills rbx
 814   __ access_load_at(T_FLOAT, IN_HEAP | IS_ARRAY, noreg /* ftos */,
 815                     Address(rdx, rax,
 816                             Address::times_4,
 817                             arrayOopDesc::base_offset_in_bytes(T_FLOAT)),
 818                     noreg, noreg);
 819 }
 820 
 821 void TemplateTable::daload() {
 822   transition(itos, dtos);
 823   // rax: index
 824   // rdx: array
 825   index_check(rdx, rax); // kills rbx
 826   __ access_load_at(T_DOUBLE, IN_HEAP | IS_ARRAY, noreg /* dtos */,
 827                     Address(rdx, rax,
 828                             Address::times_8,
 829                             arrayOopDesc::base_offset_in_bytes(T_DOUBLE)),
 830                     noreg, noreg);
 831 }
 832 
 833 void TemplateTable::aaload() {
 834   transition(itos, atos);
 835   Register array = rdx;
 836   Register index = rax;
 837 
 838   index_check(array, index); // kills rbx
 839   __ profile_array_type<ArrayLoadData>(rbx, array, rcx);
 840   if (UseFlatArray) {
 841     Label is_flat_array, done;
 842     __ test_flat_array_oop(array, rbx, is_flat_array);
 843     do_oop_load(_masm,
 844                 Address(array, index,
 845                         UseCompressedOops ? Address::times_4 : Address::times_ptr,
 846                         arrayOopDesc::base_offset_in_bytes(T_OBJECT)),
 847                 rax,
 848                 IS_ARRAY);
 849     __ jmp(done);
 850     __ bind(is_flat_array);
 851     __ movptr(rcx, array);
 852     call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::flat_array_load), rcx, index);
 853     __ bind(done);
 854   } else {
 855     do_oop_load(_masm,
 856                 Address(array, index,
 857                         UseCompressedOops ? Address::times_4 : Address::times_ptr,
 858                         arrayOopDesc::base_offset_in_bytes(T_OBJECT)),
 859                 rax,
 860                 IS_ARRAY);
 861   }
 862   __ profile_element_type(rbx, rax, rcx);
 863 }
 864 
 865 void TemplateTable::baload() {
 866   transition(itos, itos);
 867   // rax: index
 868   // rdx: array
 869   index_check(rdx, rax); // kills rbx
 870   __ access_load_at(T_BYTE, IN_HEAP | IS_ARRAY, rax,
 871                     Address(rdx, rax, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_BYTE)),
 872                     noreg, noreg);
 873 }
 874 
 875 void TemplateTable::caload() {
 876   transition(itos, itos);
 877   // rax: index
 878   // rdx: array
 879   index_check(rdx, rax); // kills rbx
 880   __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, rax,
 881                     Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)),
 882                     noreg, noreg);
 883 }
 884 
 885 // iload followed by caload frequent pair
 886 void TemplateTable::fast_icaload() {
 887   transition(vtos, itos);
 888   // load index out of locals
 889   locals_index(rbx);
 890   __ movl(rax, iaddress(rbx));
 891 
 892   // rax: index
 893   // rdx: array
 894   index_check(rdx, rax); // kills rbx
 895   __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, rax,
 896                     Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)),
 897                     noreg, noreg);
 898 }
 899 
 900 
 901 void TemplateTable::saload() {
 902   transition(itos, itos);
 903   // rax: index
 904   // rdx: array
 905   index_check(rdx, rax); // kills rbx
 906   __ access_load_at(T_SHORT, IN_HEAP | IS_ARRAY, rax,
 907                     Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_SHORT)),
 908                     noreg, noreg);
 909 }
 910 
 911 void TemplateTable::iload(int n) {
 912   transition(vtos, itos);
 913   __ movl(rax, iaddress(n));
 914 }
 915 
 916 void TemplateTable::lload(int n) {
 917   transition(vtos, ltos);
 918   __ movptr(rax, laddress(n));
 919   NOT_LP64(__ movptr(rdx, haddress(n)));
 920 }
 921 
 922 void TemplateTable::fload(int n) {
 923   transition(vtos, ftos);
 924   __ load_float(faddress(n));
 925 }
 926 
 927 void TemplateTable::dload(int n) {
 928   transition(vtos, dtos);
 929   __ load_double(daddress(n));
 930 }
 931 
 932 void TemplateTable::aload(int n) {
 933   transition(vtos, atos);
 934   __ movptr(rax, aaddress(n));
 935 }
 936 
 937 void TemplateTable::aload_0() {
 938   aload_0_internal();
 939 }
 940 
 941 void TemplateTable::nofast_aload_0() {
 942   aload_0_internal(may_not_rewrite);
 943 }
 944 
 945 void TemplateTable::aload_0_internal(RewriteControl rc) {
 946   transition(vtos, atos);
 947   // According to bytecode histograms, the pairs:
 948   //
 949   // _aload_0, _fast_igetfield
 950   // _aload_0, _fast_agetfield
 951   // _aload_0, _fast_fgetfield
 952   //
 953   // occur frequently. If RewriteFrequentPairs is set, the (slow)
 954   // _aload_0 bytecode checks if the next bytecode is either
 955   // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then
 956   // rewrites the current bytecode into a pair bytecode; otherwise it
 957   // rewrites the current bytecode into _fast_aload_0 that doesn't do
 958   // the pair check anymore.
 959   //
 960   // Note: If the next bytecode is _getfield, the rewrite must be
 961   //       delayed, otherwise we may miss an opportunity for a pair.
 962   //
 963   // Also rewrite frequent pairs
 964   //   aload_0, aload_1
 965   //   aload_0, iload_1
 966   // These bytecodes with a small amount of code are most profitable
 967   // to rewrite
 968   if (RewriteFrequentPairs && rc == may_rewrite) {
 969     Label rewrite, done;
 970 
 971     const Register bc = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
 972     LP64_ONLY(assert(rbx != bc, "register damaged"));
 973 
 974     // get next byte
 975     __ load_unsigned_byte(rbx, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)));
 976 
 977     // if _getfield then wait with rewrite
 978     __ cmpl(rbx, Bytecodes::_getfield);
 979     __ jcc(Assembler::equal, done);
 980 
 981     // if _igetfield then rewrite to _fast_iaccess_0
 982     assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
 983     __ cmpl(rbx, Bytecodes::_fast_igetfield);
 984     __ movl(bc, Bytecodes::_fast_iaccess_0);
 985     __ jccb(Assembler::equal, rewrite);
 986 
 987     // if _agetfield then rewrite to _fast_aaccess_0
 988     assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
 989     __ cmpl(rbx, Bytecodes::_fast_agetfield);
 990     __ movl(bc, Bytecodes::_fast_aaccess_0);
 991     __ jccb(Assembler::equal, rewrite);
 992 
 993     // if _fgetfield then rewrite to _fast_faccess_0
 994     assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
 995     __ cmpl(rbx, Bytecodes::_fast_fgetfield);
 996     __ movl(bc, Bytecodes::_fast_faccess_0);
 997     __ jccb(Assembler::equal, rewrite);
 998 
 999     // else rewrite to _fast_aload0
1000     assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition");
1001     __ movl(bc, Bytecodes::_fast_aload_0);
1002 
1003     // rewrite
1004     // bc: fast bytecode
1005     __ bind(rewrite);
1006     patch_bytecode(Bytecodes::_aload_0, bc, rbx, false);
1007 
1008     __ bind(done);
1009   }
1010 
1011   // Do actual aload_0 (must do this after patch_bytecode which might call VM and GC might change oop).
1012   aload(0);
1013 }
1014 
1015 void TemplateTable::istore() {
1016   transition(itos, vtos);
1017   locals_index(rbx);
1018   __ movl(iaddress(rbx), rax);
1019 }
1020 
1021 
1022 void TemplateTable::lstore() {
1023   transition(ltos, vtos);
1024   locals_index(rbx);
1025   __ movptr(laddress(rbx), rax);
1026   NOT_LP64(__ movptr(haddress(rbx), rdx));
1027 }
1028 
1029 void TemplateTable::fstore() {
1030   transition(ftos, vtos);
1031   locals_index(rbx);
1032   __ store_float(faddress(rbx));
1033 }
1034 
1035 void TemplateTable::dstore() {
1036   transition(dtos, vtos);
1037   locals_index(rbx);
1038   __ store_double(daddress(rbx));
1039 }
1040 
1041 void TemplateTable::astore() {
1042   transition(vtos, vtos);
1043   __ pop_ptr(rax);
1044   locals_index(rbx);
1045   __ movptr(aaddress(rbx), rax);
1046 }
1047 
1048 void TemplateTable::wide_istore() {
1049   transition(vtos, vtos);
1050   __ pop_i();
1051   locals_index_wide(rbx);
1052   __ movl(iaddress(rbx), rax);
1053 }
1054 
1055 void TemplateTable::wide_lstore() {
1056   transition(vtos, vtos);
1057   NOT_LP64(__ pop_l(rax, rdx));
1058   LP64_ONLY(__ pop_l());
1059   locals_index_wide(rbx);
1060   __ movptr(laddress(rbx), rax);
1061   NOT_LP64(__ movl(haddress(rbx), rdx));
1062 }
1063 
1064 void TemplateTable::wide_fstore() {
1065 #ifdef _LP64
1066   transition(vtos, vtos);
1067   __ pop_f(xmm0);
1068   locals_index_wide(rbx);
1069   __ movflt(faddress(rbx), xmm0);
1070 #else
1071   wide_istore();
1072 #endif
1073 }
1074 
1075 void TemplateTable::wide_dstore() {
1076 #ifdef _LP64
1077   transition(vtos, vtos);
1078   __ pop_d(xmm0);
1079   locals_index_wide(rbx);
1080   __ movdbl(daddress(rbx), xmm0);
1081 #else
1082   wide_lstore();
1083 #endif
1084 }
1085 
1086 void TemplateTable::wide_astore() {
1087   transition(vtos, vtos);
1088   __ pop_ptr(rax);
1089   locals_index_wide(rbx);
1090   __ movptr(aaddress(rbx), rax);
1091 }
1092 
1093 void TemplateTable::iastore() {
1094   transition(itos, vtos);
1095   __ pop_i(rbx);
1096   // rax: value
1097   // rbx: index
1098   // rdx: array
1099   index_check(rdx, rbx); // prefer index in rbx
1100   __ access_store_at(T_INT, IN_HEAP | IS_ARRAY,
1101                      Address(rdx, rbx, Address::times_4,
1102                              arrayOopDesc::base_offset_in_bytes(T_INT)),
1103                      rax, noreg, noreg, noreg);
1104 }
1105 
1106 void TemplateTable::lastore() {
1107   transition(ltos, vtos);
1108   __ pop_i(rbx);
1109   // rax,: low(value)
1110   // rcx: array
1111   // rdx: high(value)
1112   index_check(rcx, rbx);  // prefer index in rbx,
1113   // rbx,: index
1114   __ access_store_at(T_LONG, IN_HEAP | IS_ARRAY,
1115                      Address(rcx, rbx, Address::times_8,
1116                              arrayOopDesc::base_offset_in_bytes(T_LONG)),
1117                      noreg /* ltos */, noreg, noreg, noreg);
1118 }
1119 
1120 
1121 void TemplateTable::fastore() {
1122   transition(ftos, vtos);
1123   __ pop_i(rbx);
1124   // value is in UseSSE >= 1 ? xmm0 : ST(0)
1125   // rbx:  index
1126   // rdx:  array
1127   index_check(rdx, rbx); // prefer index in rbx
1128   __ access_store_at(T_FLOAT, IN_HEAP | IS_ARRAY,
1129                      Address(rdx, rbx, Address::times_4,
1130                              arrayOopDesc::base_offset_in_bytes(T_FLOAT)),
1131                      noreg /* ftos */, noreg, noreg, noreg);
1132 }
1133 
1134 void TemplateTable::dastore() {
1135   transition(dtos, vtos);
1136   __ pop_i(rbx);
1137   // value is in UseSSE >= 2 ? xmm0 : ST(0)
1138   // rbx:  index
1139   // rdx:  array
1140   index_check(rdx, rbx); // prefer index in rbx
1141   __ access_store_at(T_DOUBLE, IN_HEAP | IS_ARRAY,
1142                      Address(rdx, rbx, Address::times_8,
1143                              arrayOopDesc::base_offset_in_bytes(T_DOUBLE)),
1144                      noreg /* dtos */, noreg, noreg, noreg);
1145 }
1146 
1147 void TemplateTable::aastore() {
1148   Label is_null, is_flat_array, ok_is_subtype, done;
1149   transition(vtos, vtos);
1150   // stack: ..., array, index, value
1151   __ movptr(rax, at_tos());    // value
1152   __ movl(rcx, at_tos_p1()); // index
1153   __ movptr(rdx, at_tos_p2()); // array
1154 
1155   Address element_address(rdx, rcx,
1156                           UseCompressedOops? Address::times_4 : Address::times_ptr,
1157                           arrayOopDesc::base_offset_in_bytes(T_OBJECT));
1158 
1159   index_check_without_pop(rdx, rcx);     // kills rbx
1160 
1161   __ profile_array_type<ArrayStoreData>(rdi, rdx, rbx);
1162   __ profile_multiple_element_types(rdi, rax, rbx, rcx);
1163 
1164   __ testptr(rax, rax);
1165   __ jcc(Assembler::zero, is_null);
1166 
1167   // Move array class to rdi
1168   __ load_klass(rdi, rdx, rscratch1);
1169   if (UseFlatArray) {
1170     __ movl(rbx, Address(rdi, Klass::layout_helper_offset()));
1171     __ test_flat_array_layout(rbx, is_flat_array);
1172   }
1173 
1174   // Move subklass into rbx
1175   __ load_klass(rbx, rax, rscratch1);
1176   // Move array element superklass into rax
1177   __ movptr(rax, Address(rdi,
1178                          ObjArrayKlass::element_klass_offset()));
1179 
1180   // Generate subtype check.  Blows rcx, rdi
1181   // Superklass in rax.  Subklass in rbx.
1182   // is "rbx <: rax" ? (value subclass <: array element superclass)
1183   __ gen_subtype_check(rbx, ok_is_subtype, false);
1184 
1185   // Come here on failure
1186   // object is at TOS
1187   __ jump(RuntimeAddress(Interpreter::_throw_ArrayStoreException_entry));
1188 
1189   // Come here on success
1190   __ bind(ok_is_subtype);
1191 
1192   // Get the value we will store
1193   __ movptr(rax, at_tos());
1194   __ movl(rcx, at_tos_p1()); // index
1195   // Now store using the appropriate barrier
1196   do_oop_store(_masm, element_address, rax, IS_ARRAY);
1197   __ jmp(done);
1198 
1199   // Have a null in rax, rdx=array, ecx=index.  Store null at ary[idx]
1200   __ bind(is_null);
1201   if (EnableValhalla) {
1202     Label is_null_into_value_array_npe, store_null;
1203 
1204       // Move array class to rdi
1205     __ load_klass(rdi, rdx, rscratch1);
1206     if (UseFlatArray) {
1207       __ movl(rbx, Address(rdi, Klass::layout_helper_offset()));
1208       __ test_flat_array_layout(rbx, is_flat_array);
1209     }
1210 
1211     // No way to store null in null-free array
1212     __ test_null_free_array_oop(rdx, rbx, is_null_into_value_array_npe);
1213     __ jmp(store_null);
1214 
1215     __ bind(is_null_into_value_array_npe);
1216     __ jump(RuntimeAddress(Interpreter::_throw_NullPointerException_entry));
1217 
1218     __ bind(store_null);
1219   }
1220   // Store a null
1221   do_oop_store(_masm, element_address, noreg, IS_ARRAY);
1222   __ jmp(done);
1223 
1224   if (UseFlatArray) {
1225     Label is_type_ok;
1226     __ bind(is_flat_array); // Store non-null value to flat
1227 
1228     __ movptr(rax, at_tos());
1229     __ movl(rcx, at_tos_p1()); // index
1230     __ movptr(rdx, at_tos_p2()); // array
1231 
1232     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::flat_array_store), rax, rdx, rcx);
1233   }
1234   // Pop stack arguments
1235   __ bind(done);
1236   __ addptr(rsp, 3 * Interpreter::stackElementSize);
1237 }
1238 
1239 void TemplateTable::bastore() {
1240   transition(itos, vtos);
1241   __ pop_i(rbx);
1242   // rax: value
1243   // rbx: index
1244   // rdx: array
1245   index_check(rdx, rbx); // prefer index in rbx
1246   // Need to check whether array is boolean or byte
1247   // since both types share the bastore bytecode.
1248   __ load_klass(rcx, rdx, rscratch1);
1249   __ movl(rcx, Address(rcx, Klass::layout_helper_offset()));
1250   int diffbit = Klass::layout_helper_boolean_diffbit();
1251   __ testl(rcx, diffbit);
1252   Label L_skip;
1253   __ jccb(Assembler::zero, L_skip);
1254   __ andl(rax, 1);  // if it is a T_BOOLEAN array, mask the stored value to 0/1
1255   __ bind(L_skip);
1256   __ access_store_at(T_BYTE, IN_HEAP | IS_ARRAY,
1257                      Address(rdx, rbx,Address::times_1,
1258                              arrayOopDesc::base_offset_in_bytes(T_BYTE)),
1259                      rax, noreg, noreg, noreg);
1260 }
1261 
1262 void TemplateTable::castore() {
1263   transition(itos, vtos);
1264   __ pop_i(rbx);
1265   // rax: value
1266   // rbx: index
1267   // rdx: array
1268   index_check(rdx, rbx);  // prefer index in rbx
1269   __ access_store_at(T_CHAR, IN_HEAP | IS_ARRAY,
1270                      Address(rdx, rbx, Address::times_2,
1271                              arrayOopDesc::base_offset_in_bytes(T_CHAR)),
1272                      rax, noreg, noreg, noreg);
1273 }
1274 
1275 
1276 void TemplateTable::sastore() {
1277   castore();
1278 }
1279 
1280 void TemplateTable::istore(int n) {
1281   transition(itos, vtos);
1282   __ movl(iaddress(n), rax);
1283 }
1284 
1285 void TemplateTable::lstore(int n) {
1286   transition(ltos, vtos);
1287   __ movptr(laddress(n), rax);
1288   NOT_LP64(__ movptr(haddress(n), rdx));
1289 }
1290 
1291 void TemplateTable::fstore(int n) {
1292   transition(ftos, vtos);
1293   __ store_float(faddress(n));
1294 }
1295 
1296 void TemplateTable::dstore(int n) {
1297   transition(dtos, vtos);
1298   __ store_double(daddress(n));
1299 }
1300 
1301 
1302 void TemplateTable::astore(int n) {
1303   transition(vtos, vtos);
1304   __ pop_ptr(rax);
1305   __ movptr(aaddress(n), rax);
1306 }
1307 
1308 void TemplateTable::pop() {
1309   transition(vtos, vtos);
1310   __ addptr(rsp, Interpreter::stackElementSize);
1311 }
1312 
1313 void TemplateTable::pop2() {
1314   transition(vtos, vtos);
1315   __ addptr(rsp, 2 * Interpreter::stackElementSize);
1316 }
1317 
1318 
1319 void TemplateTable::dup() {
1320   transition(vtos, vtos);
1321   __ load_ptr(0, rax);
1322   __ push_ptr(rax);
1323   // stack: ..., a, a
1324 }
1325 
1326 void TemplateTable::dup_x1() {
1327   transition(vtos, vtos);
1328   // stack: ..., a, b
1329   __ load_ptr( 0, rax);  // load b
1330   __ load_ptr( 1, rcx);  // load a
1331   __ store_ptr(1, rax);  // store b
1332   __ store_ptr(0, rcx);  // store a
1333   __ push_ptr(rax);      // push b
1334   // stack: ..., b, a, b
1335 }
1336 
1337 void TemplateTable::dup_x2() {
1338   transition(vtos, vtos);
1339   // stack: ..., a, b, c
1340   __ load_ptr( 0, rax);  // load c
1341   __ load_ptr( 2, rcx);  // load a
1342   __ store_ptr(2, rax);  // store c in a
1343   __ push_ptr(rax);      // push c
1344   // stack: ..., c, b, c, c
1345   __ load_ptr( 2, rax);  // load b
1346   __ store_ptr(2, rcx);  // store a in b
1347   // stack: ..., c, a, c, c
1348   __ store_ptr(1, rax);  // store b in c
1349   // stack: ..., c, a, b, c
1350 }
1351 
1352 void TemplateTable::dup2() {
1353   transition(vtos, vtos);
1354   // stack: ..., a, b
1355   __ load_ptr(1, rax);  // load a
1356   __ push_ptr(rax);     // push a
1357   __ load_ptr(1, rax);  // load b
1358   __ push_ptr(rax);     // push b
1359   // stack: ..., a, b, a, b
1360 }
1361 
1362 
1363 void TemplateTable::dup2_x1() {
1364   transition(vtos, vtos);
1365   // stack: ..., a, b, c
1366   __ load_ptr( 0, rcx);  // load c
1367   __ load_ptr( 1, rax);  // load b
1368   __ push_ptr(rax);      // push b
1369   __ push_ptr(rcx);      // push c
1370   // stack: ..., a, b, c, b, c
1371   __ store_ptr(3, rcx);  // store c in b
1372   // stack: ..., a, c, c, b, c
1373   __ load_ptr( 4, rcx);  // load a
1374   __ store_ptr(2, rcx);  // store a in 2nd c
1375   // stack: ..., a, c, a, b, c
1376   __ store_ptr(4, rax);  // store b in a
1377   // stack: ..., b, c, a, b, c
1378 }
1379 
1380 void TemplateTable::dup2_x2() {
1381   transition(vtos, vtos);
1382   // stack: ..., a, b, c, d
1383   __ load_ptr( 0, rcx);  // load d
1384   __ load_ptr( 1, rax);  // load c
1385   __ push_ptr(rax);      // push c
1386   __ push_ptr(rcx);      // push d
1387   // stack: ..., a, b, c, d, c, d
1388   __ load_ptr( 4, rax);  // load b
1389   __ store_ptr(2, rax);  // store b in d
1390   __ store_ptr(4, rcx);  // store d in b
1391   // stack: ..., a, d, c, b, c, d
1392   __ load_ptr( 5, rcx);  // load a
1393   __ load_ptr( 3, rax);  // load c
1394   __ store_ptr(3, rcx);  // store a in c
1395   __ store_ptr(5, rax);  // store c in a
1396   // stack: ..., c, d, a, b, c, d
1397 }
1398 
1399 void TemplateTable::swap() {
1400   transition(vtos, vtos);
1401   // stack: ..., a, b
1402   __ load_ptr( 1, rcx);  // load a
1403   __ load_ptr( 0, rax);  // load b
1404   __ store_ptr(0, rcx);  // store a in b
1405   __ store_ptr(1, rax);  // store b in a
1406   // stack: ..., b, a
1407 }
1408 
1409 void TemplateTable::iop2(Operation op) {
1410   transition(itos, itos);
1411   switch (op) {
1412   case add  :                    __ pop_i(rdx); __ addl (rax, rdx); break;
1413   case sub  : __ movl(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break;
1414   case mul  :                    __ pop_i(rdx); __ imull(rax, rdx); break;
1415   case _and :                    __ pop_i(rdx); __ andl (rax, rdx); break;
1416   case _or  :                    __ pop_i(rdx); __ orl  (rax, rdx); break;
1417   case _xor :                    __ pop_i(rdx); __ xorl (rax, rdx); break;
1418   case shl  : __ movl(rcx, rax); __ pop_i(rax); __ shll (rax);      break;
1419   case shr  : __ movl(rcx, rax); __ pop_i(rax); __ sarl (rax);      break;
1420   case ushr : __ movl(rcx, rax); __ pop_i(rax); __ shrl (rax);      break;
1421   default   : ShouldNotReachHere();
1422   }
1423 }
1424 
1425 void TemplateTable::lop2(Operation op) {
1426   transition(ltos, ltos);
1427 #ifdef _LP64
1428   switch (op) {
1429   case add  :                    __ pop_l(rdx); __ addptr(rax, rdx); break;
1430   case sub  : __ mov(rdx, rax);  __ pop_l(rax); __ subptr(rax, rdx); break;
1431   case _and :                    __ pop_l(rdx); __ andptr(rax, rdx); break;
1432   case _or  :                    __ pop_l(rdx); __ orptr (rax, rdx); break;
1433   case _xor :                    __ pop_l(rdx); __ xorptr(rax, rdx); break;
1434   default   : ShouldNotReachHere();
1435   }
1436 #else
1437   __ pop_l(rbx, rcx);
1438   switch (op) {
1439     case add  : __ addl(rax, rbx); __ adcl(rdx, rcx); break;
1440     case sub  : __ subl(rbx, rax); __ sbbl(rcx, rdx);
1441                 __ mov (rax, rbx); __ mov (rdx, rcx); break;
1442     case _and : __ andl(rax, rbx); __ andl(rdx, rcx); break;
1443     case _or  : __ orl (rax, rbx); __ orl (rdx, rcx); break;
1444     case _xor : __ xorl(rax, rbx); __ xorl(rdx, rcx); break;
1445     default   : ShouldNotReachHere();
1446   }
1447 #endif
1448 }
1449 
1450 void TemplateTable::idiv() {
1451   transition(itos, itos);
1452   __ movl(rcx, rax);
1453   __ pop_i(rax);
1454   // Note: could xor rax and ecx and compare with (-1 ^ min_int). If
1455   //       they are not equal, one could do a normal division (no correction
1456   //       needed), which may speed up this implementation for the common case.
1457   //       (see also JVM spec., p.243 & p.271)
1458   __ corrected_idivl(rcx);
1459 }
1460 
1461 void TemplateTable::irem() {
1462   transition(itos, itos);
1463   __ movl(rcx, rax);
1464   __ pop_i(rax);
1465   // Note: could xor rax and ecx and compare with (-1 ^ min_int). If
1466   //       they are not equal, one could do a normal division (no correction
1467   //       needed), which may speed up this implementation for the common case.
1468   //       (see also JVM spec., p.243 & p.271)
1469   __ corrected_idivl(rcx);
1470   __ movl(rax, rdx);
1471 }
1472 
1473 void TemplateTable::lmul() {
1474   transition(ltos, ltos);
1475 #ifdef _LP64
1476   __ pop_l(rdx);
1477   __ imulq(rax, rdx);
1478 #else
1479   __ pop_l(rbx, rcx);
1480   __ push(rcx); __ push(rbx);
1481   __ push(rdx); __ push(rax);
1482   __ lmul(2 * wordSize, 0);
1483   __ addptr(rsp, 4 * wordSize);  // take off temporaries
1484 #endif
1485 }
1486 
1487 void TemplateTable::ldiv() {
1488   transition(ltos, ltos);
1489 #ifdef _LP64
1490   __ mov(rcx, rax);
1491   __ pop_l(rax);
1492   // generate explicit div0 check
1493   __ testq(rcx, rcx);
1494   __ jump_cc(Assembler::zero,
1495              RuntimeAddress(Interpreter::_throw_ArithmeticException_entry));
1496   // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
1497   //       they are not equal, one could do a normal division (no correction
1498   //       needed), which may speed up this implementation for the common case.
1499   //       (see also JVM spec., p.243 & p.271)
1500   __ corrected_idivq(rcx); // kills rbx
1501 #else
1502   __ pop_l(rbx, rcx);
1503   __ push(rcx); __ push(rbx);
1504   __ push(rdx); __ push(rax);
1505   // check if y = 0
1506   __ orl(rax, rdx);
1507   __ jump_cc(Assembler::zero,
1508              RuntimeAddress(Interpreter::_throw_ArithmeticException_entry));
1509   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::ldiv));
1510   __ addptr(rsp, 4 * wordSize);  // take off temporaries
1511 #endif
1512 }
1513 
1514 void TemplateTable::lrem() {
1515   transition(ltos, ltos);
1516 #ifdef _LP64
1517   __ mov(rcx, rax);
1518   __ pop_l(rax);
1519   __ testq(rcx, rcx);
1520   __ jump_cc(Assembler::zero,
1521              RuntimeAddress(Interpreter::_throw_ArithmeticException_entry));
1522   // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
1523   //       they are not equal, one could do a normal division (no correction
1524   //       needed), which may speed up this implementation for the common case.
1525   //       (see also JVM spec., p.243 & p.271)
1526   __ corrected_idivq(rcx); // kills rbx
1527   __ mov(rax, rdx);
1528 #else
1529   __ pop_l(rbx, rcx);
1530   __ push(rcx); __ push(rbx);
1531   __ push(rdx); __ push(rax);
1532   // check if y = 0
1533   __ orl(rax, rdx);
1534   __ jump_cc(Assembler::zero,
1535              RuntimeAddress(Interpreter::_throw_ArithmeticException_entry));
1536   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::lrem));
1537   __ addptr(rsp, 4 * wordSize);
1538 #endif
1539 }
1540 
1541 void TemplateTable::lshl() {
1542   transition(itos, ltos);
1543   __ movl(rcx, rax);                             // get shift count
1544   #ifdef _LP64
1545   __ pop_l(rax);                                 // get shift value
1546   __ shlq(rax);
1547 #else
1548   __ pop_l(rax, rdx);                            // get shift value
1549   __ lshl(rdx, rax);
1550 #endif
1551 }
1552 
1553 void TemplateTable::lshr() {
1554 #ifdef _LP64
1555   transition(itos, ltos);
1556   __ movl(rcx, rax);                             // get shift count
1557   __ pop_l(rax);                                 // get shift value
1558   __ sarq(rax);
1559 #else
1560   transition(itos, ltos);
1561   __ mov(rcx, rax);                              // get shift count
1562   __ pop_l(rax, rdx);                            // get shift value
1563   __ lshr(rdx, rax, true);
1564 #endif
1565 }
1566 
1567 void TemplateTable::lushr() {
1568   transition(itos, ltos);
1569 #ifdef _LP64
1570   __ movl(rcx, rax);                             // get shift count
1571   __ pop_l(rax);                                 // get shift value
1572   __ shrq(rax);
1573 #else
1574   __ mov(rcx, rax);                              // get shift count
1575   __ pop_l(rax, rdx);                            // get shift value
1576   __ lshr(rdx, rax);
1577 #endif
1578 }
1579 
1580 void TemplateTable::fop2(Operation op) {
1581   transition(ftos, ftos);
1582 
1583   if (UseSSE >= 1) {
1584     switch (op) {
1585     case add:
1586       __ addss(xmm0, at_rsp());
1587       __ addptr(rsp, Interpreter::stackElementSize);
1588       break;
1589     case sub:
1590       __ movflt(xmm1, xmm0);
1591       __ pop_f(xmm0);
1592       __ subss(xmm0, xmm1);
1593       break;
1594     case mul:
1595       __ mulss(xmm0, at_rsp());
1596       __ addptr(rsp, Interpreter::stackElementSize);
1597       break;
1598     case div:
1599       __ movflt(xmm1, xmm0);
1600       __ pop_f(xmm0);
1601       __ divss(xmm0, xmm1);
1602       break;
1603     case rem:
1604       // On x86_64 platforms the SharedRuntime::frem method is called to perform the
1605       // modulo operation. The frem method calls the function
1606       // double fmod(double x, double y) in math.h. The documentation of fmod states:
1607       // "If x or y is a NaN, a NaN is returned." without specifying what type of NaN
1608       // (signalling or quiet) is returned.
1609       //
1610       // On x86_32 platforms the FPU is used to perform the modulo operation. The
1611       // reason is that on 32-bit Windows the sign of modulo operations diverges from
1612       // what is considered the standard (e.g., -0.0f % -3.14f is 0.0f (and not -0.0f).
1613       // The fprem instruction used on x86_32 is functionally equivalent to
1614       // SharedRuntime::frem in that it returns a NaN.
1615 #ifdef _LP64
1616       __ movflt(xmm1, xmm0);
1617       __ pop_f(xmm0);
1618       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem), 2);
1619 #else // !_LP64
1620       __ push_f(xmm0);
1621       __ pop_f();
1622       __ fld_s(at_rsp());
1623       __ fremr(rax);
1624       __ f2ieee();
1625       __ pop(rax);  // pop second operand off the stack
1626       __ push_f();
1627       __ pop_f(xmm0);
1628 #endif // _LP64
1629       break;
1630     default:
1631       ShouldNotReachHere();
1632       break;
1633     }
1634   } else {
1635 #ifdef _LP64
1636     ShouldNotReachHere();
1637 #else // !_LP64
1638     switch (op) {
1639     case add: __ fadd_s (at_rsp());                break;
1640     case sub: __ fsubr_s(at_rsp());                break;
1641     case mul: __ fmul_s (at_rsp());                break;
1642     case div: __ fdivr_s(at_rsp());                break;
1643     case rem: __ fld_s  (at_rsp()); __ fremr(rax); break;
1644     default : ShouldNotReachHere();
1645     }
1646     __ f2ieee();
1647     __ pop(rax);  // pop second operand off the stack
1648 #endif // _LP64
1649   }
1650 }
1651 
1652 void TemplateTable::dop2(Operation op) {
1653   transition(dtos, dtos);
1654   if (UseSSE >= 2) {
1655     switch (op) {
1656     case add:
1657       __ addsd(xmm0, at_rsp());
1658       __ addptr(rsp, 2 * Interpreter::stackElementSize);
1659       break;
1660     case sub:
1661       __ movdbl(xmm1, xmm0);
1662       __ pop_d(xmm0);
1663       __ subsd(xmm0, xmm1);
1664       break;
1665     case mul:
1666       __ mulsd(xmm0, at_rsp());
1667       __ addptr(rsp, 2 * Interpreter::stackElementSize);
1668       break;
1669     case div:
1670       __ movdbl(xmm1, xmm0);
1671       __ pop_d(xmm0);
1672       __ divsd(xmm0, xmm1);
1673       break;
1674     case rem:
1675       // Similar to fop2(), the modulo operation is performed using the
1676       // SharedRuntime::drem method (on x86_64 platforms) or using the
1677       // FPU (on x86_32 platforms) for the same reasons as mentioned in fop2().
1678 #ifdef _LP64
1679       __ movdbl(xmm1, xmm0);
1680       __ pop_d(xmm0);
1681       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem), 2);
1682 #else // !_LP64
1683       __ push_d(xmm0);
1684       __ pop_d();
1685       __ fld_d(at_rsp());
1686       __ fremr(rax);
1687       __ d2ieee();
1688       __ pop(rax);
1689       __ pop(rdx);
1690       __ push_d();
1691       __ pop_d(xmm0);
1692 #endif // _LP64
1693       break;
1694     default:
1695       ShouldNotReachHere();
1696       break;
1697     }
1698   } else {
1699 #ifdef _LP64
1700     ShouldNotReachHere();
1701 #else // !_LP64
1702     switch (op) {
1703     case add: __ fadd_d (at_rsp());                break;
1704     case sub: __ fsubr_d(at_rsp());                break;
1705     case mul: {
1706       // strict semantics
1707       __ fld_x(ExternalAddress(StubRoutines::x86::addr_fpu_subnormal_bias1()));
1708       __ fmulp();
1709       __ fmul_d (at_rsp());
1710       __ fld_x(ExternalAddress(StubRoutines::x86::addr_fpu_subnormal_bias2()));
1711       __ fmulp();
1712       break;
1713     }
1714     case div: {
1715       // strict semantics
1716       __ fld_x(ExternalAddress(StubRoutines::x86::addr_fpu_subnormal_bias1()));
1717       __ fmul_d (at_rsp());
1718       __ fdivrp();
1719       __ fld_x(ExternalAddress(StubRoutines::x86::addr_fpu_subnormal_bias2()));
1720       __ fmulp();
1721       break;
1722     }
1723     case rem: __ fld_d  (at_rsp()); __ fremr(rax); break;
1724     default : ShouldNotReachHere();
1725     }
1726     __ d2ieee();
1727     // Pop double precision number from rsp.
1728     __ pop(rax);
1729     __ pop(rdx);
1730 #endif // _LP64
1731   }
1732 }
1733 
1734 void TemplateTable::ineg() {
1735   transition(itos, itos);
1736   __ negl(rax);
1737 }
1738 
1739 void TemplateTable::lneg() {
1740   transition(ltos, ltos);
1741   LP64_ONLY(__ negq(rax));
1742   NOT_LP64(__ lneg(rdx, rax));
1743 }
1744 
1745 // Note: 'double' and 'long long' have 32-bits alignment on x86.
1746 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
1747   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
1748   // of 128-bits operands for SSE instructions.
1749   jlong *operand = (jlong*)(((intptr_t)adr)&((intptr_t)(~0xF)));
1750   // Store the value to a 128-bits operand.
1751   operand[0] = lo;
1752   operand[1] = hi;
1753   return operand;
1754 }
1755 
1756 // Buffer for 128-bits masks used by SSE instructions.
1757 static jlong float_signflip_pool[2*2];
1758 static jlong double_signflip_pool[2*2];
1759 
1760 void TemplateTable::fneg() {
1761   transition(ftos, ftos);
1762   if (UseSSE >= 1) {
1763     static jlong *float_signflip  = double_quadword(&float_signflip_pool[1],  CONST64(0x8000000080000000),  CONST64(0x8000000080000000));
1764     __ xorps(xmm0, ExternalAddress((address) float_signflip), rscratch1);
1765   } else {
1766     LP64_ONLY(ShouldNotReachHere());
1767     NOT_LP64(__ fchs());
1768   }
1769 }
1770 
1771 void TemplateTable::dneg() {
1772   transition(dtos, dtos);
1773   if (UseSSE >= 2) {
1774     static jlong *double_signflip =
1775       double_quadword(&double_signflip_pool[1], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
1776     __ xorpd(xmm0, ExternalAddress((address) double_signflip), rscratch1);
1777   } else {
1778 #ifdef _LP64
1779     ShouldNotReachHere();
1780 #else
1781     __ fchs();
1782 #endif
1783   }
1784 }
1785 
1786 void TemplateTable::iinc() {
1787   transition(vtos, vtos);
1788   __ load_signed_byte(rdx, at_bcp(2)); // get constant
1789   locals_index(rbx);
1790   __ addl(iaddress(rbx), rdx);
1791 }
1792 
1793 void TemplateTable::wide_iinc() {
1794   transition(vtos, vtos);
1795   __ movl(rdx, at_bcp(4)); // get constant
1796   locals_index_wide(rbx);
1797   __ bswapl(rdx); // swap bytes & sign-extend constant
1798   __ sarl(rdx, 16);
1799   __ addl(iaddress(rbx), rdx);
1800   // Note: should probably use only one movl to get both
1801   //       the index and the constant -> fix this
1802 }
1803 
1804 void TemplateTable::convert() {
1805 #ifdef _LP64
1806   // Checking
1807 #ifdef ASSERT
1808   {
1809     TosState tos_in  = ilgl;
1810     TosState tos_out = ilgl;
1811     switch (bytecode()) {
1812     case Bytecodes::_i2l: // fall through
1813     case Bytecodes::_i2f: // fall through
1814     case Bytecodes::_i2d: // fall through
1815     case Bytecodes::_i2b: // fall through
1816     case Bytecodes::_i2c: // fall through
1817     case Bytecodes::_i2s: tos_in = itos; break;
1818     case Bytecodes::_l2i: // fall through
1819     case Bytecodes::_l2f: // fall through
1820     case Bytecodes::_l2d: tos_in = ltos; break;
1821     case Bytecodes::_f2i: // fall through
1822     case Bytecodes::_f2l: // fall through
1823     case Bytecodes::_f2d: tos_in = ftos; break;
1824     case Bytecodes::_d2i: // fall through
1825     case Bytecodes::_d2l: // fall through
1826     case Bytecodes::_d2f: tos_in = dtos; break;
1827     default             : ShouldNotReachHere();
1828     }
1829     switch (bytecode()) {
1830     case Bytecodes::_l2i: // fall through
1831     case Bytecodes::_f2i: // fall through
1832     case Bytecodes::_d2i: // fall through
1833     case Bytecodes::_i2b: // fall through
1834     case Bytecodes::_i2c: // fall through
1835     case Bytecodes::_i2s: tos_out = itos; break;
1836     case Bytecodes::_i2l: // fall through
1837     case Bytecodes::_f2l: // fall through
1838     case Bytecodes::_d2l: tos_out = ltos; break;
1839     case Bytecodes::_i2f: // fall through
1840     case Bytecodes::_l2f: // fall through
1841     case Bytecodes::_d2f: tos_out = ftos; break;
1842     case Bytecodes::_i2d: // fall through
1843     case Bytecodes::_l2d: // fall through
1844     case Bytecodes::_f2d: tos_out = dtos; break;
1845     default             : ShouldNotReachHere();
1846     }
1847     transition(tos_in, tos_out);
1848   }
1849 #endif // ASSERT
1850 
1851   static const int64_t is_nan = 0x8000000000000000L;
1852 
1853   // Conversion
1854   switch (bytecode()) {
1855   case Bytecodes::_i2l:
1856     __ movslq(rax, rax);
1857     break;
1858   case Bytecodes::_i2f:
1859     __ cvtsi2ssl(xmm0, rax);
1860     break;
1861   case Bytecodes::_i2d:
1862     __ cvtsi2sdl(xmm0, rax);
1863     break;
1864   case Bytecodes::_i2b:
1865     __ movsbl(rax, rax);
1866     break;
1867   case Bytecodes::_i2c:
1868     __ movzwl(rax, rax);
1869     break;
1870   case Bytecodes::_i2s:
1871     __ movswl(rax, rax);
1872     break;
1873   case Bytecodes::_l2i:
1874     __ movl(rax, rax);
1875     break;
1876   case Bytecodes::_l2f:
1877     __ cvtsi2ssq(xmm0, rax);
1878     break;
1879   case Bytecodes::_l2d:
1880     __ cvtsi2sdq(xmm0, rax);
1881     break;
1882   case Bytecodes::_f2i:
1883   {
1884     Label L;
1885     __ cvttss2sil(rax, xmm0);
1886     __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
1887     __ jcc(Assembler::notEqual, L);
1888     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1);
1889     __ bind(L);
1890   }
1891     break;
1892   case Bytecodes::_f2l:
1893   {
1894     Label L;
1895     __ cvttss2siq(rax, xmm0);
1896     // NaN or overflow/underflow?
1897     __ cmp64(rax, ExternalAddress((address) &is_nan), rscratch1);
1898     __ jcc(Assembler::notEqual, L);
1899     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1);
1900     __ bind(L);
1901   }
1902     break;
1903   case Bytecodes::_f2d:
1904     __ cvtss2sd(xmm0, xmm0);
1905     break;
1906   case Bytecodes::_d2i:
1907   {
1908     Label L;
1909     __ cvttsd2sil(rax, xmm0);
1910     __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
1911     __ jcc(Assembler::notEqual, L);
1912     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 1);
1913     __ bind(L);
1914   }
1915     break;
1916   case Bytecodes::_d2l:
1917   {
1918     Label L;
1919     __ cvttsd2siq(rax, xmm0);
1920     // NaN or overflow/underflow?
1921     __ cmp64(rax, ExternalAddress((address) &is_nan), rscratch1);
1922     __ jcc(Assembler::notEqual, L);
1923     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 1);
1924     __ bind(L);
1925   }
1926     break;
1927   case Bytecodes::_d2f:
1928     __ cvtsd2ss(xmm0, xmm0);
1929     break;
1930   default:
1931     ShouldNotReachHere();
1932   }
1933 #else // !_LP64
1934   // Checking
1935 #ifdef ASSERT
1936   { TosState tos_in  = ilgl;
1937     TosState tos_out = ilgl;
1938     switch (bytecode()) {
1939       case Bytecodes::_i2l: // fall through
1940       case Bytecodes::_i2f: // fall through
1941       case Bytecodes::_i2d: // fall through
1942       case Bytecodes::_i2b: // fall through
1943       case Bytecodes::_i2c: // fall through
1944       case Bytecodes::_i2s: tos_in = itos; break;
1945       case Bytecodes::_l2i: // fall through
1946       case Bytecodes::_l2f: // fall through
1947       case Bytecodes::_l2d: tos_in = ltos; break;
1948       case Bytecodes::_f2i: // fall through
1949       case Bytecodes::_f2l: // fall through
1950       case Bytecodes::_f2d: tos_in = ftos; break;
1951       case Bytecodes::_d2i: // fall through
1952       case Bytecodes::_d2l: // fall through
1953       case Bytecodes::_d2f: tos_in = dtos; break;
1954       default             : ShouldNotReachHere();
1955     }
1956     switch (bytecode()) {
1957       case Bytecodes::_l2i: // fall through
1958       case Bytecodes::_f2i: // fall through
1959       case Bytecodes::_d2i: // fall through
1960       case Bytecodes::_i2b: // fall through
1961       case Bytecodes::_i2c: // fall through
1962       case Bytecodes::_i2s: tos_out = itos; break;
1963       case Bytecodes::_i2l: // fall through
1964       case Bytecodes::_f2l: // fall through
1965       case Bytecodes::_d2l: tos_out = ltos; break;
1966       case Bytecodes::_i2f: // fall through
1967       case Bytecodes::_l2f: // fall through
1968       case Bytecodes::_d2f: tos_out = ftos; break;
1969       case Bytecodes::_i2d: // fall through
1970       case Bytecodes::_l2d: // fall through
1971       case Bytecodes::_f2d: tos_out = dtos; break;
1972       default             : ShouldNotReachHere();
1973     }
1974     transition(tos_in, tos_out);
1975   }
1976 #endif // ASSERT
1977 
1978   // Conversion
1979   // (Note: use push(rcx)/pop(rcx) for 1/2-word stack-ptr manipulation)
1980   switch (bytecode()) {
1981     case Bytecodes::_i2l:
1982       __ extend_sign(rdx, rax);
1983       break;
1984     case Bytecodes::_i2f:
1985       if (UseSSE >= 1) {
1986         __ cvtsi2ssl(xmm0, rax);
1987       } else {
1988         __ push(rax);          // store int on tos
1989         __ fild_s(at_rsp());   // load int to ST0
1990         __ f2ieee();           // truncate to float size
1991         __ pop(rcx);           // adjust rsp
1992       }
1993       break;
1994     case Bytecodes::_i2d:
1995       if (UseSSE >= 2) {
1996         __ cvtsi2sdl(xmm0, rax);
1997       } else {
1998       __ push(rax);          // add one slot for d2ieee()
1999       __ push(rax);          // store int on tos
2000       __ fild_s(at_rsp());   // load int to ST0
2001       __ d2ieee();           // truncate to double size
2002       __ pop(rcx);           // adjust rsp
2003       __ pop(rcx);
2004       }
2005       break;
2006     case Bytecodes::_i2b:
2007       __ shll(rax, 24);      // truncate upper 24 bits
2008       __ sarl(rax, 24);      // and sign-extend byte
2009       LP64_ONLY(__ movsbl(rax, rax));
2010       break;
2011     case Bytecodes::_i2c:
2012       __ andl(rax, 0xFFFF);  // truncate upper 16 bits
2013       LP64_ONLY(__ movzwl(rax, rax));
2014       break;
2015     case Bytecodes::_i2s:
2016       __ shll(rax, 16);      // truncate upper 16 bits
2017       __ sarl(rax, 16);      // and sign-extend short
2018       LP64_ONLY(__ movswl(rax, rax));
2019       break;
2020     case Bytecodes::_l2i:
2021       /* nothing to do */
2022       break;
2023     case Bytecodes::_l2f:
2024       // On 64-bit platforms, the cvtsi2ssq instruction is used to convert
2025       // 64-bit long values to floats. On 32-bit platforms it is not possible
2026       // to use that instruction with 64-bit operands, therefore the FPU is
2027       // used to perform the conversion.
2028       __ push(rdx);          // store long on tos
2029       __ push(rax);
2030       __ fild_d(at_rsp());   // load long to ST0
2031       __ f2ieee();           // truncate to float size
2032       __ pop(rcx);           // adjust rsp
2033       __ pop(rcx);
2034       if (UseSSE >= 1) {
2035         __ push_f();
2036         __ pop_f(xmm0);
2037       }
2038       break;
2039     case Bytecodes::_l2d:
2040       // On 32-bit platforms the FPU is used for conversion because on
2041       // 32-bit platforms it is not not possible to use the cvtsi2sdq
2042       // instruction with 64-bit operands.
2043       __ push(rdx);          // store long on tos
2044       __ push(rax);
2045       __ fild_d(at_rsp());   // load long to ST0
2046       __ d2ieee();           // truncate to double size
2047       __ pop(rcx);           // adjust rsp
2048       __ pop(rcx);
2049       if (UseSSE >= 2) {
2050         __ push_d();
2051         __ pop_d(xmm0);
2052       }
2053       break;
2054     case Bytecodes::_f2i:
2055       // SharedRuntime::f2i does not differentiate between sNaNs and qNaNs
2056       // as it returns 0 for any NaN.
2057       if (UseSSE >= 1) {
2058         __ push_f(xmm0);
2059       } else {
2060         __ push(rcx);          // reserve space for argument
2061         __ fstp_s(at_rsp());   // pass float argument on stack
2062       }
2063       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1);
2064       break;
2065     case Bytecodes::_f2l:
2066       // SharedRuntime::f2l does not differentiate between sNaNs and qNaNs
2067       // as it returns 0 for any NaN.
2068       if (UseSSE >= 1) {
2069        __ push_f(xmm0);
2070       } else {
2071         __ push(rcx);          // reserve space for argument
2072         __ fstp_s(at_rsp());   // pass float argument on stack
2073       }
2074       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1);
2075       break;
2076     case Bytecodes::_f2d:
2077       if (UseSSE < 1) {
2078         /* nothing to do */
2079       } else if (UseSSE == 1) {
2080         __ push_f(xmm0);
2081         __ pop_f();
2082       } else { // UseSSE >= 2
2083         __ cvtss2sd(xmm0, xmm0);
2084       }
2085       break;
2086     case Bytecodes::_d2i:
2087       if (UseSSE >= 2) {
2088         __ push_d(xmm0);
2089       } else {
2090         __ push(rcx);          // reserve space for argument
2091         __ push(rcx);
2092         __ fstp_d(at_rsp());   // pass double argument on stack
2093       }
2094       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 2);
2095       break;
2096     case Bytecodes::_d2l:
2097       if (UseSSE >= 2) {
2098         __ push_d(xmm0);
2099       } else {
2100         __ push(rcx);          // reserve space for argument
2101         __ push(rcx);
2102         __ fstp_d(at_rsp());   // pass double argument on stack
2103       }
2104       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 2);
2105       break;
2106     case Bytecodes::_d2f:
2107       if (UseSSE <= 1) {
2108         __ push(rcx);          // reserve space for f2ieee()
2109         __ f2ieee();           // truncate to float size
2110         __ pop(rcx);           // adjust rsp
2111         if (UseSSE == 1) {
2112           // The cvtsd2ss instruction is not available if UseSSE==1, therefore
2113           // the conversion is performed using the FPU in this case.
2114           __ push_f();
2115           __ pop_f(xmm0);
2116         }
2117       } else { // UseSSE >= 2
2118         __ cvtsd2ss(xmm0, xmm0);
2119       }
2120       break;
2121     default             :
2122       ShouldNotReachHere();
2123   }
2124 #endif // _LP64
2125 }
2126 
2127 void TemplateTable::lcmp() {
2128   transition(ltos, itos);
2129 #ifdef _LP64
2130   Label done;
2131   __ pop_l(rdx);
2132   __ cmpq(rdx, rax);
2133   __ movl(rax, -1);
2134   __ jccb(Assembler::less, done);
2135   __ setb(Assembler::notEqual, rax);
2136   __ movzbl(rax, rax);
2137   __ bind(done);
2138 #else
2139 
2140   // y = rdx:rax
2141   __ pop_l(rbx, rcx);             // get x = rcx:rbx
2142   __ lcmp2int(rcx, rbx, rdx, rax);// rcx := cmp(x, y)
2143   __ mov(rax, rcx);
2144 #endif
2145 }
2146 
2147 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
2148   if ((is_float && UseSSE >= 1) ||
2149       (!is_float && UseSSE >= 2)) {
2150     Label done;
2151     if (is_float) {
2152       // XXX get rid of pop here, use ... reg, mem32
2153       __ pop_f(xmm1);
2154       __ ucomiss(xmm1, xmm0);
2155     } else {
2156       // XXX get rid of pop here, use ... reg, mem64
2157       __ pop_d(xmm1);
2158       __ ucomisd(xmm1, xmm0);
2159     }
2160     if (unordered_result < 0) {
2161       __ movl(rax, -1);
2162       __ jccb(Assembler::parity, done);
2163       __ jccb(Assembler::below, done);
2164       __ setb(Assembler::notEqual, rdx);
2165       __ movzbl(rax, rdx);
2166     } else {
2167       __ movl(rax, 1);
2168       __ jccb(Assembler::parity, done);
2169       __ jccb(Assembler::above, done);
2170       __ movl(rax, 0);
2171       __ jccb(Assembler::equal, done);
2172       __ decrementl(rax);
2173     }
2174     __ bind(done);
2175   } else {
2176 #ifdef _LP64
2177     ShouldNotReachHere();
2178 #else // !_LP64
2179     if (is_float) {
2180       __ fld_s(at_rsp());
2181     } else {
2182       __ fld_d(at_rsp());
2183       __ pop(rdx);
2184     }
2185     __ pop(rcx);
2186     __ fcmp2int(rax, unordered_result < 0);
2187 #endif // _LP64
2188   }
2189 }
2190 
2191 void TemplateTable::branch(bool is_jsr, bool is_wide) {
2192   __ get_method(rcx); // rcx holds method
2193   __ profile_taken_branch(rax, rbx); // rax holds updated MDP, rbx
2194                                      // holds bumped taken count
2195 
2196   const ByteSize be_offset = MethodCounters::backedge_counter_offset() +
2197                              InvocationCounter::counter_offset();
2198   const ByteSize inv_offset = MethodCounters::invocation_counter_offset() +
2199                               InvocationCounter::counter_offset();
2200 
2201   // Load up edx with the branch displacement
2202   if (is_wide) {
2203     __ movl(rdx, at_bcp(1));
2204   } else {
2205     __ load_signed_short(rdx, at_bcp(1));
2206   }
2207   __ bswapl(rdx);
2208 
2209   if (!is_wide) {
2210     __ sarl(rdx, 16);
2211   }
2212   LP64_ONLY(__ movl2ptr(rdx, rdx));
2213 
2214   // Handle all the JSR stuff here, then exit.
2215   // It's much shorter and cleaner than intermingling with the non-JSR
2216   // normal-branch stuff occurring below.
2217   if (is_jsr) {
2218     // Pre-load the next target bytecode into rbx
2219     __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1, 0));
2220 
2221     // compute return address as bci in rax
2222     __ lea(rax, at_bcp((is_wide ? 5 : 3) -
2223                         in_bytes(ConstMethod::codes_offset())));
2224     __ subptr(rax, Address(rcx, Method::const_offset()));
2225     // Adjust the bcp in r13 by the displacement in rdx
2226     __ addptr(rbcp, rdx);
2227     // jsr returns atos that is not an oop
2228     __ push_i(rax);
2229     __ dispatch_only(vtos, true);
2230     return;
2231   }
2232 
2233   // Normal (non-jsr) branch handling
2234 
2235   // Adjust the bcp in r13 by the displacement in rdx
2236   __ addptr(rbcp, rdx);
2237 
2238   assert(UseLoopCounter || !UseOnStackReplacement,
2239          "on-stack-replacement requires loop counters");
2240   Label backedge_counter_overflow;
2241   Label dispatch;
2242   if (UseLoopCounter) {
2243     // increment backedge counter for backward branches
2244     // rax: MDO
2245     // rbx: MDO bumped taken-count
2246     // rcx: method
2247     // rdx: target offset
2248     // r13: target bcp
2249     // r14: locals pointer
2250     __ testl(rdx, rdx);             // check if forward or backward branch
2251     __ jcc(Assembler::positive, dispatch); // count only if backward branch
2252 
2253     // check if MethodCounters exists
2254     Label has_counters;
2255     __ movptr(rax, Address(rcx, Method::method_counters_offset()));
2256     __ testptr(rax, rax);
2257     __ jcc(Assembler::notZero, has_counters);
2258     __ push(rdx);
2259     __ push(rcx);
2260     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::build_method_counters),
2261                rcx);
2262     __ pop(rcx);
2263     __ pop(rdx);
2264     __ movptr(rax, Address(rcx, Method::method_counters_offset()));
2265     __ testptr(rax, rax);
2266     __ jcc(Assembler::zero, dispatch);
2267     __ bind(has_counters);
2268 
2269     Label no_mdo;
2270     if (ProfileInterpreter) {
2271       // Are we profiling?
2272       __ movptr(rbx, Address(rcx, in_bytes(Method::method_data_offset())));
2273       __ testptr(rbx, rbx);
2274       __ jccb(Assembler::zero, no_mdo);
2275       // Increment the MDO backedge counter
2276       const Address mdo_backedge_counter(rbx, in_bytes(MethodData::backedge_counter_offset()) +
2277           in_bytes(InvocationCounter::counter_offset()));
2278       const Address mask(rbx, in_bytes(MethodData::backedge_mask_offset()));
2279       __ increment_mask_and_jump(mdo_backedge_counter, mask, rax,
2280           UseOnStackReplacement ? &backedge_counter_overflow : nullptr);
2281       __ jmp(dispatch);
2282     }
2283     __ bind(no_mdo);
2284     // Increment backedge counter in MethodCounters*
2285     __ movptr(rcx, Address(rcx, Method::method_counters_offset()));
2286     const Address mask(rcx, in_bytes(MethodCounters::backedge_mask_offset()));
2287     __ increment_mask_and_jump(Address(rcx, be_offset), mask, rax,
2288         UseOnStackReplacement ? &backedge_counter_overflow : nullptr);
2289     __ bind(dispatch);
2290   }
2291 
2292   // Pre-load the next target bytecode into rbx
2293   __ load_unsigned_byte(rbx, Address(rbcp, 0));
2294 
2295   // continue with the bytecode @ target
2296   // rax: return bci for jsr's, unused otherwise
2297   // rbx: target bytecode
2298   // r13: target bcp
2299   __ dispatch_only(vtos, true);
2300 
2301   if (UseLoopCounter) {
2302     if (UseOnStackReplacement) {
2303       Label set_mdp;
2304       // invocation counter overflow
2305       __ bind(backedge_counter_overflow);
2306       __ negptr(rdx);
2307       __ addptr(rdx, rbcp); // branch bcp
2308       // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp)
2309       __ call_VM(noreg,
2310                  CAST_FROM_FN_PTR(address,
2311                                   InterpreterRuntime::frequency_counter_overflow),
2312                  rdx);
2313 
2314       // rax: osr nmethod (osr ok) or null (osr not possible)
2315       // rdx: scratch
2316       // r14: locals pointer
2317       // r13: bcp
2318       __ testptr(rax, rax);                        // test result
2319       __ jcc(Assembler::zero, dispatch);         // no osr if null
2320       // nmethod may have been invalidated (VM may block upon call_VM return)
2321       __ cmpb(Address(rax, nmethod::state_offset()), nmethod::in_use);
2322       __ jcc(Assembler::notEqual, dispatch);
2323 
2324       // We have the address of an on stack replacement routine in rax.
2325       // In preparation of invoking it, first we must migrate the locals
2326       // and monitors from off the interpreter frame on the stack.
2327       // Ensure to save the osr nmethod over the migration call,
2328       // it will be preserved in rbx.
2329       __ mov(rbx, rax);
2330 
2331       NOT_LP64(__ get_thread(rcx));
2332 
2333       call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
2334 
2335       // rax is OSR buffer, move it to expected parameter location
2336       LP64_ONLY(__ mov(j_rarg0, rax));
2337       NOT_LP64(__ mov(rcx, rax));
2338       // We use j_rarg definitions here so that registers don't conflict as parameter
2339       // registers change across platforms as we are in the midst of a calling
2340       // sequence to the OSR nmethod and we don't want collision. These are NOT parameters.
2341 
2342       const Register retaddr   = LP64_ONLY(j_rarg2) NOT_LP64(rdi);
2343       const Register sender_sp = LP64_ONLY(j_rarg1) NOT_LP64(rdx);
2344 
2345       // pop the interpreter frame
2346       __ movptr(sender_sp, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
2347       __ leave();                                // remove frame anchor
2348       __ pop(retaddr);                           // get return address
2349       __ mov(rsp, sender_sp);                   // set sp to sender sp
2350       // Ensure compiled code always sees stack at proper alignment
2351       __ andptr(rsp, -(StackAlignmentInBytes));
2352 
2353       // unlike x86 we need no specialized return from compiled code
2354       // to the interpreter or the call stub.
2355 
2356       // push the return address
2357       __ push(retaddr);
2358 
2359       // and begin the OSR nmethod
2360       __ jmp(Address(rbx, nmethod::osr_entry_point_offset()));
2361     }
2362   }
2363 }
2364 
2365 void TemplateTable::if_0cmp(Condition cc) {
2366   transition(itos, vtos);
2367   // assume branch is more often taken than not (loops use backward branches)
2368   Label not_taken;
2369   __ testl(rax, rax);
2370   __ jcc(j_not(cc), not_taken);
2371   branch(false, false);
2372   __ bind(not_taken);
2373   __ profile_not_taken_branch(rax);
2374 }
2375 
2376 void TemplateTable::if_icmp(Condition cc) {
2377   transition(itos, vtos);
2378   // assume branch is more often taken than not (loops use backward branches)
2379   Label not_taken;
2380   __ pop_i(rdx);
2381   __ cmpl(rdx, rax);
2382   __ jcc(j_not(cc), not_taken);
2383   branch(false, false);
2384   __ bind(not_taken);
2385   __ profile_not_taken_branch(rax);
2386 }
2387 
2388 void TemplateTable::if_nullcmp(Condition cc) {
2389   transition(atos, vtos);
2390   // assume branch is more often taken than not (loops use backward branches)
2391   Label not_taken;
2392   __ testptr(rax, rax);
2393   __ jcc(j_not(cc), not_taken);
2394   branch(false, false);
2395   __ bind(not_taken);
2396   __ profile_not_taken_branch(rax);
2397 }
2398 
2399 void TemplateTable::if_acmp(Condition cc) {
2400   transition(atos, vtos);
2401   // assume branch is more often taken than not (loops use backward branches)
2402   Label taken, not_taken;
2403   __ pop_ptr(rdx);
2404 
2405   __ profile_acmp(rbx, rdx, rax, rcx);
2406 
2407   const int is_inline_type_mask = markWord::inline_type_pattern;
2408   if (EnableValhalla) {
2409     __ cmpoop(rdx, rax);
2410     __ jcc(Assembler::equal, (cc == equal) ? taken : not_taken);
2411 
2412     // might be substitutable, test if either rax or rdx is null
2413     __ testptr(rax, rax);
2414     __ jcc(Assembler::zero, (cc == equal) ? not_taken : taken);
2415     __ testptr(rdx, rdx);
2416     __ jcc(Assembler::zero, (cc == equal) ? not_taken : taken);
2417 
2418     // and both are values ?
2419     __ movptr(rbx, Address(rdx, oopDesc::mark_offset_in_bytes()));
2420     __ andptr(rbx, Address(rax, oopDesc::mark_offset_in_bytes()));
2421     __ andptr(rbx, is_inline_type_mask);
2422     __ cmpptr(rbx, is_inline_type_mask);
2423     __ jcc(Assembler::notEqual, (cc == equal) ? not_taken : taken);
2424 
2425     // same value klass ?
2426     __ load_metadata(rbx, rdx);
2427     __ load_metadata(rcx, rax);
2428     __ cmpptr(rbx, rcx);
2429     __ jcc(Assembler::notEqual, (cc == equal) ? not_taken : taken);
2430 
2431     // Know both are the same type, let's test for substitutability...
2432     if (cc == equal) {
2433       invoke_is_substitutable(rax, rdx, taken, not_taken);
2434     } else {
2435       invoke_is_substitutable(rax, rdx, not_taken, taken);
2436     }
2437     __ stop("Not reachable");
2438   }
2439 
2440   __ cmpoop(rdx, rax);
2441   __ jcc(j_not(cc), not_taken);
2442   __ bind(taken);
2443   branch(false, false);
2444   __ bind(not_taken);
2445   __ profile_not_taken_branch(rax, true);
2446 }
2447 
2448 void TemplateTable::invoke_is_substitutable(Register aobj, Register bobj,
2449                                             Label& is_subst, Label& not_subst) {
2450   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::is_substitutable), aobj, bobj);
2451   // Restored...rax answer, jmp to outcome...
2452   __ testl(rax, rax);
2453   __ jcc(Assembler::zero, not_subst);
2454   __ jmp(is_subst);
2455 }
2456 
2457 void TemplateTable::ret() {
2458   transition(vtos, vtos);
2459   locals_index(rbx);
2460   LP64_ONLY(__ movslq(rbx, iaddress(rbx))); // get return bci, compute return bcp
2461   NOT_LP64(__ movptr(rbx, iaddress(rbx)));
2462   __ profile_ret(rbx, rcx);
2463   __ get_method(rax);
2464   __ movptr(rbcp, Address(rax, Method::const_offset()));
2465   __ lea(rbcp, Address(rbcp, rbx, Address::times_1,
2466                       ConstMethod::codes_offset()));
2467   __ dispatch_next(vtos, 0, true);
2468 }
2469 
2470 void TemplateTable::wide_ret() {
2471   transition(vtos, vtos);
2472   locals_index_wide(rbx);
2473   __ movptr(rbx, aaddress(rbx)); // get return bci, compute return bcp
2474   __ profile_ret(rbx, rcx);
2475   __ get_method(rax);
2476   __ movptr(rbcp, Address(rax, Method::const_offset()));
2477   __ lea(rbcp, Address(rbcp, rbx, Address::times_1, ConstMethod::codes_offset()));
2478   __ dispatch_next(vtos, 0, true);
2479 }
2480 
2481 void TemplateTable::tableswitch() {
2482   Label default_case, continue_execution;
2483   transition(itos, vtos);
2484 
2485   // align r13/rsi
2486   __ lea(rbx, at_bcp(BytesPerInt));
2487   __ andptr(rbx, -BytesPerInt);
2488   // load lo & hi
2489   __ movl(rcx, Address(rbx, BytesPerInt));
2490   __ movl(rdx, Address(rbx, 2 * BytesPerInt));
2491   __ bswapl(rcx);
2492   __ bswapl(rdx);
2493   // check against lo & hi
2494   __ cmpl(rax, rcx);
2495   __ jcc(Assembler::less, default_case);
2496   __ cmpl(rax, rdx);
2497   __ jcc(Assembler::greater, default_case);
2498   // lookup dispatch offset
2499   __ subl(rax, rcx);
2500   __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt));
2501   __ profile_switch_case(rax, rbx, rcx);
2502   // continue execution
2503   __ bind(continue_execution);
2504   __ bswapl(rdx);
2505   LP64_ONLY(__ movl2ptr(rdx, rdx));
2506   __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1));
2507   __ addptr(rbcp, rdx);
2508   __ dispatch_only(vtos, true);
2509   // handle default
2510   __ bind(default_case);
2511   __ profile_switch_default(rax);
2512   __ movl(rdx, Address(rbx, 0));
2513   __ jmp(continue_execution);
2514 }
2515 
2516 void TemplateTable::lookupswitch() {
2517   transition(itos, itos);
2518   __ stop("lookupswitch bytecode should have been rewritten");
2519 }
2520 
2521 void TemplateTable::fast_linearswitch() {
2522   transition(itos, vtos);
2523   Label loop_entry, loop, found, continue_execution;
2524   // bswap rax so we can avoid bswapping the table entries
2525   __ bswapl(rax);
2526   // align r13
2527   __ lea(rbx, at_bcp(BytesPerInt)); // btw: should be able to get rid of
2528                                     // this instruction (change offsets
2529                                     // below)
2530   __ andptr(rbx, -BytesPerInt);
2531   // set counter
2532   __ movl(rcx, Address(rbx, BytesPerInt));
2533   __ bswapl(rcx);
2534   __ jmpb(loop_entry);
2535   // table search
2536   __ bind(loop);
2537   __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * BytesPerInt));
2538   __ jcc(Assembler::equal, found);
2539   __ bind(loop_entry);
2540   __ decrementl(rcx);
2541   __ jcc(Assembler::greaterEqual, loop);
2542   // default case
2543   __ profile_switch_default(rax);
2544   __ movl(rdx, Address(rbx, 0));
2545   __ jmp(continue_execution);
2546   // entry found -> get offset
2547   __ bind(found);
2548   __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * BytesPerInt));
2549   __ profile_switch_case(rcx, rax, rbx);
2550   // continue execution
2551   __ bind(continue_execution);
2552   __ bswapl(rdx);
2553   __ movl2ptr(rdx, rdx);
2554   __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1));
2555   __ addptr(rbcp, rdx);
2556   __ dispatch_only(vtos, true);
2557 }
2558 
2559 void TemplateTable::fast_binaryswitch() {
2560   transition(itos, vtos);
2561   // Implementation using the following core algorithm:
2562   //
2563   // int binary_search(int key, LookupswitchPair* array, int n) {
2564   //   // Binary search according to "Methodik des Programmierens" by
2565   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
2566   //   int i = 0;
2567   //   int j = n;
2568   //   while (i+1 < j) {
2569   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
2570   //     // with      Q: for all i: 0 <= i < n: key < a[i]
2571   //     // where a stands for the array and assuming that the (inexisting)
2572   //     // element a[n] is infinitely big.
2573   //     int h = (i + j) >> 1;
2574   //     // i < h < j
2575   //     if (key < array[h].fast_match()) {
2576   //       j = h;
2577   //     } else {
2578   //       i = h;
2579   //     }
2580   //   }
2581   //   // R: a[i] <= key < a[i+1] or Q
2582   //   // (i.e., if key is within array, i is the correct index)
2583   //   return i;
2584   // }
2585 
2586   // Register allocation
2587   const Register key   = rax; // already set (tosca)
2588   const Register array = rbx;
2589   const Register i     = rcx;
2590   const Register j     = rdx;
2591   const Register h     = rdi;
2592   const Register temp  = rsi;
2593 
2594   // Find array start
2595   NOT_LP64(__ save_bcp());
2596 
2597   __ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to
2598                                           // get rid of this
2599                                           // instruction (change
2600                                           // offsets below)
2601   __ andptr(array, -BytesPerInt);
2602 
2603   // Initialize i & j
2604   __ xorl(i, i);                            // i = 0;
2605   __ movl(j, Address(array, -BytesPerInt)); // j = length(array);
2606 
2607   // Convert j into native byteordering
2608   __ bswapl(j);
2609 
2610   // And start
2611   Label entry;
2612   __ jmp(entry);
2613 
2614   // binary search loop
2615   {
2616     Label loop;
2617     __ bind(loop);
2618     // int h = (i + j) >> 1;
2619     __ leal(h, Address(i, j, Address::times_1)); // h = i + j;
2620     __ sarl(h, 1);                               // h = (i + j) >> 1;
2621     // if (key < array[h].fast_match()) {
2622     //   j = h;
2623     // } else {
2624     //   i = h;
2625     // }
2626     // Convert array[h].match to native byte-ordering before compare
2627     __ movl(temp, Address(array, h, Address::times_8));
2628     __ bswapl(temp);
2629     __ cmpl(key, temp);
2630     // j = h if (key <  array[h].fast_match())
2631     __ cmov32(Assembler::less, j, h);
2632     // i = h if (key >= array[h].fast_match())
2633     __ cmov32(Assembler::greaterEqual, i, h);
2634     // while (i+1 < j)
2635     __ bind(entry);
2636     __ leal(h, Address(i, 1)); // i+1
2637     __ cmpl(h, j);             // i+1 < j
2638     __ jcc(Assembler::less, loop);
2639   }
2640 
2641   // end of binary search, result index is i (must check again!)
2642   Label default_case;
2643   // Convert array[i].match to native byte-ordering before compare
2644   __ movl(temp, Address(array, i, Address::times_8));
2645   __ bswapl(temp);
2646   __ cmpl(key, temp);
2647   __ jcc(Assembler::notEqual, default_case);
2648 
2649   // entry found -> j = offset
2650   __ movl(j , Address(array, i, Address::times_8, BytesPerInt));
2651   __ profile_switch_case(i, key, array);
2652   __ bswapl(j);
2653   LP64_ONLY(__ movslq(j, j));
2654 
2655   NOT_LP64(__ restore_bcp());
2656   NOT_LP64(__ restore_locals());                           // restore rdi
2657 
2658   __ load_unsigned_byte(rbx, Address(rbcp, j, Address::times_1));
2659   __ addptr(rbcp, j);
2660   __ dispatch_only(vtos, true);
2661 
2662   // default case -> j = default offset
2663   __ bind(default_case);
2664   __ profile_switch_default(i);
2665   __ movl(j, Address(array, -2 * BytesPerInt));
2666   __ bswapl(j);
2667   LP64_ONLY(__ movslq(j, j));
2668 
2669   NOT_LP64(__ restore_bcp());
2670   NOT_LP64(__ restore_locals());
2671 
2672   __ load_unsigned_byte(rbx, Address(rbcp, j, Address::times_1));
2673   __ addptr(rbcp, j);
2674   __ dispatch_only(vtos, true);
2675 }
2676 
2677 void TemplateTable::_return(TosState state) {
2678   transition(state, state);
2679 
2680   assert(_desc->calls_vm(),
2681          "inconsistent calls_vm information"); // call in remove_activation
2682 
2683   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
2684     assert(state == vtos, "only valid state");
2685     Register robj = LP64_ONLY(c_rarg1) NOT_LP64(rax);
2686     __ movptr(robj, aaddress(0));
2687     __ load_klass(rdi, robj, rscratch1);
2688     __ testb(Address(rdi, Klass::misc_flags_offset()), KlassFlags::_misc_has_finalizer);
2689     Label skip_register_finalizer;
2690     __ jcc(Assembler::zero, skip_register_finalizer);
2691 
2692     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), robj);
2693 
2694     __ bind(skip_register_finalizer);
2695   }
2696 
2697   if (_desc->bytecode() != Bytecodes::_return_register_finalizer) {
2698     Label no_safepoint;
2699     NOT_PRODUCT(__ block_comment("Thread-local Safepoint poll"));
2700 #ifdef _LP64
2701     __ testb(Address(r15_thread, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit());
2702 #else
2703     const Register thread = rdi;
2704     __ get_thread(thread);
2705     __ testb(Address(thread, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit());
2706 #endif
2707     __ jcc(Assembler::zero, no_safepoint);
2708     __ push(state);
2709     __ push_cont_fastpath();
2710     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
2711                                        InterpreterRuntime::at_safepoint));
2712     __ pop_cont_fastpath();
2713     __ pop(state);
2714     __ bind(no_safepoint);
2715   }
2716 
2717   // Narrow result if state is itos but result type is smaller.
2718   // Need to narrow in the return bytecode rather than in generate_return_entry
2719   // since compiled code callers expect the result to already be narrowed.
2720   if (state == itos) {
2721     __ narrow(rax);
2722   }
2723 
2724   __ remove_activation(state, rbcp, true, true, true);
2725 
2726   __ jmp(rbcp);
2727 }
2728 
2729 // ----------------------------------------------------------------------------
2730 // Volatile variables demand their effects be made known to all CPU's
2731 // in order.  Store buffers on most chips allow reads & writes to
2732 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode
2733 // without some kind of memory barrier (i.e., it's not sufficient that
2734 // the interpreter does not reorder volatile references, the hardware
2735 // also must not reorder them).
2736 //
2737 // According to the new Java Memory Model (JMM):
2738 // (1) All volatiles are serialized wrt to each other.  ALSO reads &
2739 //     writes act as acquire & release, so:
2740 // (2) A read cannot let unrelated NON-volatile memory refs that
2741 //     happen after the read float up to before the read.  It's OK for
2742 //     non-volatile memory refs that happen before the volatile read to
2743 //     float down below it.
2744 // (3) Similar a volatile write cannot let unrelated NON-volatile
2745 //     memory refs that happen BEFORE the write float down to after the
2746 //     write.  It's OK for non-volatile memory refs that happen after the
2747 //     volatile write to float up before it.
2748 //
2749 // We only put in barriers around volatile refs (they are expensive),
2750 // not _between_ memory refs (that would require us to track the
2751 // flavor of the previous memory refs).  Requirements (2) and (3)
2752 // require some barriers before volatile stores and after volatile
2753 // loads.  These nearly cover requirement (1) but miss the
2754 // volatile-store-volatile-load case.  This final case is placed after
2755 // volatile-stores although it could just as well go before
2756 // volatile-loads.
2757 
2758 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits order_constraint ) {
2759   // Helper function to insert a is-volatile test and memory barrier
2760   __ membar(order_constraint);
2761 }
2762 
2763 void TemplateTable::resolve_cache_and_index_for_method(int byte_no,
2764                                                        Register cache,
2765                                                        Register index) {
2766   const Register temp = rbx;
2767   assert_different_registers(cache, index, temp);
2768 
2769   Label L_clinit_barrier_slow;
2770   Label resolved;
2771 
2772   Bytecodes::Code code = bytecode();
2773 
2774   assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
2775 
2776   __ load_method_entry(cache, index);
2777   switch(byte_no) {
2778     case f1_byte:
2779       __ load_unsigned_byte(temp, Address(cache, in_bytes(ResolvedMethodEntry::bytecode1_offset())));
2780       break;
2781     case f2_byte:
2782       __ load_unsigned_byte(temp, Address(cache, in_bytes(ResolvedMethodEntry::bytecode2_offset())));
2783       break;
2784     default:
2785       ShouldNotReachHere();
2786   }
2787   __ cmpl(temp, code);  // have we resolved this bytecode?
2788   __ jcc(Assembler::equal, resolved);
2789 
2790   // resolve first time through
2791   // Class initialization barrier slow path lands here as well.
2792   __ bind(L_clinit_barrier_slow);
2793   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache);
2794   __ movl(temp, code);
2795   __ call_VM(noreg, entry, temp);
2796   // Update registers with resolved info
2797   __ load_method_entry(cache, index);
2798 
2799   __ bind(resolved);
2800 
2801   // Class initialization barrier for static methods
2802   if (VM_Version::supports_fast_class_init_checks() && bytecode() == Bytecodes::_invokestatic) {
2803     const Register method = temp;
2804     const Register klass  = temp;
2805     const Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2806     assert(thread != noreg, "x86_32 not supported");
2807 
2808     __ movptr(method, Address(cache, in_bytes(ResolvedMethodEntry::method_offset())));
2809     __ load_method_holder(klass, method);
2810     __ clinit_barrier(klass, thread, nullptr /*L_fast_path*/, &L_clinit_barrier_slow);
2811   }
2812 }
2813 
2814 void TemplateTable::resolve_cache_and_index_for_field(int byte_no,
2815                                             Register cache,
2816                                             Register index) {
2817   const Register temp = rbx;
2818   assert_different_registers(cache, index, temp);
2819 
2820   Label resolved;
2821 
2822   Bytecodes::Code code = bytecode();
2823   switch (code) {
2824     case Bytecodes::_nofast_getfield: code = Bytecodes::_getfield; break;
2825     case Bytecodes::_nofast_putfield: code = Bytecodes::_putfield; break;
2826     default: break;
2827   }
2828 
2829   assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
2830   __ load_field_entry(cache, index);
2831   if (byte_no == f1_byte) {
2832     __ load_unsigned_byte(temp, Address(cache, in_bytes(ResolvedFieldEntry::get_code_offset())));
2833   } else {
2834     __ load_unsigned_byte(temp, Address(cache, in_bytes(ResolvedFieldEntry::put_code_offset())));
2835   }
2836   __ cmpl(temp, code);  // have we resolved this bytecode?
2837   __ jcc(Assembler::equal, resolved);
2838 
2839   // resolve first time through
2840   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache);
2841   __ movl(temp, code);
2842   __ call_VM(noreg, entry, temp);
2843   // Update registers with resolved info
2844   __ load_field_entry(cache, index);
2845 
2846   __ bind(resolved);
2847 }
2848 
2849 void TemplateTable::load_resolved_field_entry(Register obj,
2850                                               Register cache,
2851                                               Register tos_state,
2852                                               Register offset,
2853                                               Register flags,
2854                                               bool is_static = false) {
2855   assert_different_registers(cache, tos_state, flags, offset);
2856 
2857   // Field offset
2858   __ load_sized_value(offset, Address(cache, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/);
2859 
2860   // Flags
2861   __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedFieldEntry::flags_offset())));
2862 
2863   // TOS state
2864   __ load_unsigned_byte(tos_state, Address(cache, in_bytes(ResolvedFieldEntry::type_offset())));
2865 
2866   // Klass overwrite register
2867   if (is_static) {
2868     __ movptr(obj, Address(cache, ResolvedFieldEntry::field_holder_offset()));
2869     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
2870     __ movptr(obj, Address(obj, mirror_offset));
2871     __ resolve_oop_handle(obj, rscratch2);
2872   }
2873 
2874 }
2875 
2876 void TemplateTable::load_invokedynamic_entry(Register method) {
2877   // setup registers
2878   const Register appendix = rax;
2879   const Register cache = rcx;
2880   const Register index = rdx;
2881   assert_different_registers(method, appendix, cache, index);
2882 
2883   __ save_bcp();
2884 
2885   Label resolved;
2886 
2887   __ load_resolved_indy_entry(cache, index);
2888   __ movptr(method, Address(cache, in_bytes(ResolvedIndyEntry::method_offset())));
2889 
2890   // Compare the method to zero
2891   __ testptr(method, method);
2892   __ jcc(Assembler::notZero, resolved);
2893 
2894   Bytecodes::Code code = bytecode();
2895 
2896   // Call to the interpreter runtime to resolve invokedynamic
2897   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache);
2898   __ movl(method, code); // this is essentially Bytecodes::_invokedynamic
2899   __ call_VM(noreg, entry, method);
2900   // Update registers with resolved info
2901   __ load_resolved_indy_entry(cache, index);
2902   __ movptr(method, Address(cache, in_bytes(ResolvedIndyEntry::method_offset())));
2903 
2904 #ifdef ASSERT
2905   __ testptr(method, method);
2906   __ jcc(Assembler::notZero, resolved);
2907   __ stop("Should be resolved by now");
2908 #endif // ASSERT
2909   __ bind(resolved);
2910 
2911   Label L_no_push;
2912   // Check if there is an appendix
2913   __ load_unsigned_byte(index, Address(cache, in_bytes(ResolvedIndyEntry::flags_offset())));
2914   __ testl(index, (1 << ResolvedIndyEntry::has_appendix_shift));
2915   __ jcc(Assembler::zero, L_no_push);
2916 
2917   // Get appendix
2918   __ load_unsigned_short(index, Address(cache, in_bytes(ResolvedIndyEntry::resolved_references_index_offset())));
2919   // Push the appendix as a trailing parameter
2920   // since the parameter_size includes it.
2921   __ load_resolved_reference_at_index(appendix, index);
2922   __ verify_oop(appendix);
2923   __ push(appendix);  // push appendix (MethodType, CallSite, etc.)
2924   __ bind(L_no_push);
2925 
2926   // compute return type
2927   __ load_unsigned_byte(index, Address(cache, in_bytes(ResolvedIndyEntry::result_type_offset())));
2928   // load return address
2929   {
2930     const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code);
2931     ExternalAddress table(table_addr);
2932 #ifdef _LP64
2933     __ lea(rscratch1, table);
2934     __ movptr(index, Address(rscratch1, index, Address::times_ptr));
2935 #else
2936     __ movptr(index, ArrayAddress(table, Address(noreg, index, Address::times_ptr)));
2937 #endif // _LP64
2938   }
2939 
2940   // push return address
2941   __ push(index);
2942 }
2943 
2944 void TemplateTable::load_resolved_method_entry_special_or_static(Register cache,
2945                                                                  Register method,
2946                                                                  Register flags) {
2947   // setup registers
2948   const Register index = rdx;
2949   assert_different_registers(cache, index);
2950   assert_different_registers(method, cache, flags);
2951 
2952   // determine constant pool cache field offsets
2953   resolve_cache_and_index_for_method(f1_byte, cache, index);
2954   __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset())));
2955   __ movptr(method, Address(cache, in_bytes(ResolvedMethodEntry::method_offset())));
2956 }
2957 
2958 void TemplateTable::load_resolved_method_entry_handle(Register cache,
2959                                                Register method,
2960                                                Register ref_index,
2961                                                Register flags) {
2962   // setup registers
2963   const Register index = rdx;
2964   assert_different_registers(cache, index);
2965   assert_different_registers(cache, method, ref_index, flags);
2966 
2967   // determine constant pool cache field offsets
2968   resolve_cache_and_index_for_method(f1_byte, cache, index);
2969   __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset())));
2970 
2971   // Maybe push appendix
2972   Label L_no_push;
2973   __ testl(flags, (1 << ResolvedMethodEntry::has_appendix_shift));
2974   __ jcc(Assembler::zero, L_no_push);
2975   // invokehandle uses an index into the resolved references array
2976   __ load_unsigned_short(ref_index, Address(cache, in_bytes(ResolvedMethodEntry::resolved_references_index_offset())));
2977   // Push the appendix as a trailing parameter.
2978   // This must be done before we get the receiver,
2979   // since the parameter_size includes it.
2980   Register appendix = method;
2981   __ load_resolved_reference_at_index(appendix, ref_index);
2982   __ push(appendix);  // push appendix (MethodType, CallSite, etc.)
2983   __ bind(L_no_push);
2984 
2985   __ movptr(method, Address(cache, in_bytes(ResolvedMethodEntry::method_offset())));
2986 }
2987 
2988 void TemplateTable::load_resolved_method_entry_interface(Register cache,
2989                                                          Register klass,
2990                                                          Register method_or_table_index,
2991                                                          Register flags) {
2992   // setup registers
2993   const Register index = rdx;
2994   assert_different_registers(cache, klass, method_or_table_index, flags);
2995 
2996   // determine constant pool cache field offsets
2997   resolve_cache_and_index_for_method(f1_byte, cache, index);
2998   __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset())));
2999 
3000   // Invokeinterface can behave in different ways:
3001   // If calling a method from java.lang.Object, the forced virtual flag is true so the invocation will
3002   // behave like an invokevirtual call. The state of the virtual final flag will determine whether a method or
3003   // vtable index is placed in the register.
3004   // Otherwise, the registers will be populated with the klass and method.
3005 
3006   Label NotVirtual; Label NotVFinal; Label Done;
3007   __ testl(flags, 1 << ResolvedMethodEntry::is_forced_virtual_shift);
3008   __ jcc(Assembler::zero, NotVirtual);
3009   __ testl(flags, (1 << ResolvedMethodEntry::is_vfinal_shift));
3010   __ jcc(Assembler::zero, NotVFinal);
3011   __ movptr(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::method_offset())));
3012   __ jmp(Done);
3013 
3014   __ bind(NotVFinal);
3015   __ load_unsigned_short(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::table_index_offset())));
3016   __ jmp(Done);
3017 
3018   __ bind(NotVirtual);
3019   __ movptr(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::method_offset())));
3020   __ movptr(klass, Address(cache, in_bytes(ResolvedMethodEntry::klass_offset())));
3021   __ bind(Done);
3022 }
3023 
3024 void TemplateTable::load_resolved_method_entry_virtual(Register cache,
3025                                                        Register method_or_table_index,
3026                                                        Register flags) {
3027   // setup registers
3028   const Register index = rdx;
3029   assert_different_registers(index, cache);
3030   assert_different_registers(method_or_table_index, cache, flags);
3031 
3032   // determine constant pool cache field offsets
3033   resolve_cache_and_index_for_method(f2_byte, cache, index);
3034   __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset())));
3035 
3036   // method_or_table_index can either be an itable index or a method depending on the virtual final flag
3037   Label isVFinal; Label Done;
3038   __ testl(flags, (1 << ResolvedMethodEntry::is_vfinal_shift));
3039   __ jcc(Assembler::notZero, isVFinal);
3040   __ load_unsigned_short(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::table_index_offset())));
3041   __ jmp(Done);
3042   __ bind(isVFinal);
3043   __ movptr(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::method_offset())));
3044   __ bind(Done);
3045 }
3046 
3047 // The registers cache and index expected to be set before call.
3048 // Correct values of the cache and index registers are preserved.
3049 void TemplateTable::jvmti_post_field_access(Register cache,
3050                                             Register index,
3051                                             bool is_static,
3052                                             bool has_tos) {
3053   if (JvmtiExport::can_post_field_access()) {
3054     // Check to see if a field access watch has been set before we take
3055     // the time to call into the VM.
3056     Label L1;
3057     assert_different_registers(cache, index, rax);
3058     __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
3059     __ testl(rax,rax);
3060     __ jcc(Assembler::zero, L1);
3061 
3062     // cache entry pointer
3063     __ load_field_entry(cache, index);
3064     if (is_static) {
3065       __ xorptr(rax, rax);      // null object reference
3066     } else {
3067       __ pop(atos);         // Get the object
3068       __ verify_oop(rax);
3069       __ push(atos);        // Restore stack state
3070     }
3071     // rax,:   object pointer or null
3072     // cache: cache entry pointer
3073     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access),
3074               rax, cache);
3075 
3076     __ load_field_entry(cache, index);
3077     __ bind(L1);
3078   }
3079 }
3080 
3081 void TemplateTable::pop_and_check_object(Register r) {
3082   __ pop_ptr(r);
3083   __ null_check(r);  // for field access must check obj.
3084   __ verify_oop(r);
3085 }
3086 
3087 void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
3088   transition(vtos, vtos);
3089 
3090   const Register obj   = LP64_ONLY(r9) NOT_LP64(rcx);
3091   const Register cache = rcx;
3092   const Register index = rdx;
3093   const Register off   = rbx;
3094   const Register tos_state   = rax;
3095   const Register flags = rdx;
3096   const Register bc    = LP64_ONLY(c_rarg3) NOT_LP64(rcx); // uses same reg as obj, so don't mix them
3097 
3098   resolve_cache_and_index_for_field(byte_no, cache, index);
3099   jvmti_post_field_access(cache, index, is_static, false);
3100   load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static);
3101 
3102   const Address field(obj, off, Address::times_1, 0*wordSize);
3103 
3104   Label Done, notByte, notBool, notInt, notShort, notChar, notLong, notFloat, notObj, notInlineType;
3105 
3106   // Make sure we don't need to mask edx after the above shift
3107   assert(btos == 0, "change code, btos != 0");
3108   __ testl(tos_state, tos_state);
3109   __ jcc(Assembler::notZero, notByte);
3110 
3111   // btos
3112   if (!is_static) pop_and_check_object(obj);
3113   __ access_load_at(T_BYTE, IN_HEAP, rax, field, noreg, noreg);
3114   __ push(btos);
3115   // Rewrite bytecode to be faster
3116   if (!is_static && rc == may_rewrite) {
3117     patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx);
3118   }
3119   __ jmp(Done);
3120 
3121   __ bind(notByte);
3122   __ cmpl(tos_state, ztos);
3123   __ jcc(Assembler::notEqual, notBool);
3124    if (!is_static) pop_and_check_object(obj);
3125   // ztos (same code as btos)
3126   __ access_load_at(T_BOOLEAN, IN_HEAP, rax, field, noreg, noreg);
3127   __ push(ztos);
3128   // Rewrite bytecode to be faster
3129   if (!is_static && rc == may_rewrite) {
3130     // use btos rewriting, no truncating to t/f bit is needed for getfield.
3131     patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx);
3132   }
3133   __ jmp(Done);
3134 
3135   __ bind(notBool);
3136   __ cmpl(tos_state, atos);
3137   __ jcc(Assembler::notEqual, notObj);
3138   // atos
3139   if (!EnableValhalla) {
3140     if (!is_static) pop_and_check_object(obj);
3141     do_oop_load(_masm, field, rax);
3142     __ push(atos);
3143     if (!is_static && rc == may_rewrite) {
3144       patch_bytecode(Bytecodes::_fast_agetfield, bc, rbx);
3145     }
3146     __ jmp(Done);
3147   } else {
3148     if (is_static) {
3149       __ load_heap_oop(rax, field);
3150       Label is_null_free_inline_type, uninitialized;
3151       // Issue below if the static field has not been initialized yet
3152       __ test_field_is_null_free_inline_type(flags, rscratch1, is_null_free_inline_type);
3153         // field is not a null free inline type
3154         __ push(atos);
3155         __ jmp(Done);
3156       // field is a null free inline type, must not return null even if uninitialized
3157       __ bind(is_null_free_inline_type);
3158           __ testptr(rax, rax);
3159         __ jcc(Assembler::zero, uninitialized);
3160           __ push(atos);
3161           __ jmp(Done);
3162         __ bind(uninitialized);
3163 #ifdef _LP64
3164           Label slow_case, finish;
3165           __ movptr(rbx, Address(obj, java_lang_Class::klass_offset()));
3166           __ cmpb(Address(rbx, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized);
3167           __ jcc(Assembler::notEqual, slow_case);
3168         __ get_default_value_oop(rbx, rscratch1, rax);
3169         __ jmp(finish);
3170         __ bind(slow_case);
3171 #endif // LP64
3172           __ call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::uninitialized_static_inline_type_field),
3173                 obj, cache);
3174 #ifdef _LP64
3175           __ bind(finish);
3176   #endif // _LP64
3177         __ verify_oop(rax);
3178         __ push(atos);
3179         __ jmp(Done);
3180     } else {
3181       Label is_flat, nonnull, is_inline_type, rewrite_inline, has_null_marker;
3182       __ test_field_is_null_free_inline_type(flags, rscratch1, is_inline_type);
3183       __ test_field_has_null_marker(flags, rscratch1, has_null_marker);
3184       // field is not a null free inline type
3185       pop_and_check_object(obj);
3186       __ load_heap_oop(rax, field);
3187       __ push(atos);
3188       if (rc == may_rewrite) {
3189         patch_bytecode(Bytecodes::_fast_agetfield, bc, rbx);
3190       }
3191       __ jmp(Done);
3192       __ bind(is_inline_type);
3193       __ test_field_is_flat(flags, rscratch1, is_flat);
3194           // field is not flat
3195           pop_and_check_object(obj);
3196           __ load_heap_oop(rax, field);
3197           __ testptr(rax, rax);
3198           __ jcc(Assembler::notZero, nonnull);
3199             __ load_unsigned_short(flags, Address(cache, in_bytes(ResolvedFieldEntry::field_index_offset())));
3200             __ movptr(rcx, Address(cache, ResolvedFieldEntry::field_holder_offset()));
3201             __ get_inline_type_field_klass(rcx, flags, rbx);
3202             __ get_default_value_oop(rbx, rcx, rax);
3203           __ bind(nonnull);
3204           __ verify_oop(rax);
3205           __ push(atos);
3206           __ jmp(rewrite_inline);
3207         __ bind(is_flat);
3208           pop_and_check_object(rax);
3209           __ read_flat_field(rcx, rdx, rbx, rax);
3210           __ verify_oop(rax);
3211           __ push(atos);
3212           __ jmp(rewrite_inline);
3213       __ bind(has_null_marker);
3214         pop_and_check_object(rax);
3215         __ load_field_entry(rcx, rbx);
3216         call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::read_nullable_flat_field), rax, rcx);
3217         __ get_vm_result(rax, r15_thread);
3218         __ push(atos);
3219       __ bind(rewrite_inline);
3220       if (rc == may_rewrite) {
3221         patch_bytecode(Bytecodes::_fast_vgetfield, bc, rbx);
3222       }
3223         __ jmp(Done);
3224     }
3225   }
3226 
3227   __ bind(notObj);
3228 
3229   if (!is_static) pop_and_check_object(obj);
3230 
3231   __ cmpl(tos_state, itos);
3232   __ jcc(Assembler::notEqual, notInt);
3233   // itos
3234   __ access_load_at(T_INT, IN_HEAP, rax, field, noreg, noreg);
3235   __ push(itos);
3236   // Rewrite bytecode to be faster
3237   if (!is_static && rc == may_rewrite) {
3238     patch_bytecode(Bytecodes::_fast_igetfield, bc, rbx);
3239   }
3240   __ jmp(Done);
3241 
3242   __ bind(notInt);
3243   __ cmpl(tos_state, ctos);
3244   __ jcc(Assembler::notEqual, notChar);
3245   // ctos
3246   __ access_load_at(T_CHAR, IN_HEAP, rax, field, noreg, noreg);
3247   __ push(ctos);
3248   // Rewrite bytecode to be faster
3249   if (!is_static && rc == may_rewrite) {
3250     patch_bytecode(Bytecodes::_fast_cgetfield, bc, rbx);
3251   }
3252   __ jmp(Done);
3253 
3254   __ bind(notChar);
3255   __ cmpl(tos_state, stos);
3256   __ jcc(Assembler::notEqual, notShort);
3257   // stos
3258   __ access_load_at(T_SHORT, IN_HEAP, rax, field, noreg, noreg);
3259   __ push(stos);
3260   // Rewrite bytecode to be faster
3261   if (!is_static && rc == may_rewrite) {
3262     patch_bytecode(Bytecodes::_fast_sgetfield, bc, rbx);
3263   }
3264   __ jmp(Done);
3265 
3266   __ bind(notShort);
3267   __ cmpl(tos_state, ltos);
3268   __ jcc(Assembler::notEqual, notLong);
3269   // ltos
3270     // Generate code as if volatile (x86_32).  There just aren't enough registers to
3271     // save that information and this code is faster than the test.
3272   __ access_load_at(T_LONG, IN_HEAP | MO_RELAXED, noreg /* ltos */, field, noreg, noreg);
3273   __ push(ltos);
3274   // Rewrite bytecode to be faster
3275   LP64_ONLY(if (!is_static && rc == may_rewrite) patch_bytecode(Bytecodes::_fast_lgetfield, bc, rbx));
3276   __ jmp(Done);
3277 
3278   __ bind(notLong);
3279   __ cmpl(tos_state, ftos);
3280   __ jcc(Assembler::notEqual, notFloat);
3281   // ftos
3282 
3283   __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg);
3284   __ push(ftos);
3285   // Rewrite bytecode to be faster
3286   if (!is_static && rc == may_rewrite) {
3287     patch_bytecode(Bytecodes::_fast_fgetfield, bc, rbx);
3288   }
3289   __ jmp(Done);
3290 
3291   __ bind(notFloat);
3292 #ifdef ASSERT
3293   Label notDouble;
3294   __ cmpl(tos_state, dtos);
3295   __ jcc(Assembler::notEqual, notDouble);
3296 #endif
3297   // dtos
3298   // MO_RELAXED: for the case of volatile field, in fact it adds no extra work for the underlying implementation
3299   __ access_load_at(T_DOUBLE, IN_HEAP | MO_RELAXED, noreg /* dtos */, field, noreg, noreg);
3300   __ push(dtos);
3301   // Rewrite bytecode to be faster
3302   if (!is_static && rc == may_rewrite) {
3303     patch_bytecode(Bytecodes::_fast_dgetfield, bc, rbx);
3304   }
3305 #ifdef ASSERT
3306   __ jmp(Done);
3307 
3308   __ bind(notDouble);
3309   __ stop("Bad state");
3310 #endif
3311 
3312   __ bind(Done);
3313   // [jk] not needed currently
3314   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadLoad |
3315   //                                              Assembler::LoadStore));
3316 }
3317 
3318 void TemplateTable::getfield(int byte_no) {
3319   getfield_or_static(byte_no, false);
3320 }
3321 
3322 void TemplateTable::nofast_getfield(int byte_no) {
3323   getfield_or_static(byte_no, false, may_not_rewrite);
3324 }
3325 
3326 void TemplateTable::getstatic(int byte_no) {
3327   getfield_or_static(byte_no, true);
3328 }
3329 
3330 // The registers cache and index expected to be set before call.
3331 // The function may destroy various registers, just not the cache and index registers.
3332 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) {
3333   // Cache is rcx and index is rdx
3334   const Register entry = LP64_ONLY(c_rarg2) NOT_LP64(rax); // ResolvedFieldEntry
3335   const Register obj = LP64_ONLY(c_rarg1) NOT_LP64(rbx);   // Object pointer
3336   const Register value = LP64_ONLY(c_rarg3) NOT_LP64(rcx); // JValue object
3337 
3338   if (JvmtiExport::can_post_field_modification()) {
3339     // Check to see if a field modification watch has been set before
3340     // we take the time to call into the VM.
3341     Label L1;
3342     assert_different_registers(cache, obj, rax);
3343     __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
3344     __ testl(rax, rax);
3345     __ jcc(Assembler::zero, L1);
3346 
3347     __ mov(entry, cache);
3348 
3349     if (is_static) {
3350       // Life is simple.  Null out the object pointer.
3351       __ xorl(obj, obj);
3352 
3353     } else {
3354       // Life is harder. The stack holds the value on top, followed by
3355       // the object.  We don't know the size of the value, though; it
3356       // could be one or two words depending on its type. As a result,
3357       // we must find the type to determine where the object is.
3358 #ifndef _LP64
3359       Label two_word, valsize_known;
3360 #endif
3361       __ load_unsigned_byte(value, Address(entry, in_bytes(ResolvedFieldEntry::type_offset())));
3362 #ifdef _LP64
3363       __ movptr(obj, at_tos_p1());  // initially assume a one word jvalue
3364       __ cmpl(value, ltos);
3365       __ cmovptr(Assembler::equal,
3366                  obj, at_tos_p2()); // ltos (two word jvalue)
3367       __ cmpl(value, dtos);
3368       __ cmovptr(Assembler::equal,
3369                  obj, at_tos_p2()); // dtos (two word jvalue)
3370 #else
3371       __ mov(obj, rsp);
3372       __ cmpl(value, ltos);
3373       __ jccb(Assembler::equal, two_word);
3374       __ cmpl(value, dtos);
3375       __ jccb(Assembler::equal, two_word);
3376       __ addptr(obj, Interpreter::expr_offset_in_bytes(1)); // one word jvalue (not ltos, dtos)
3377       __ jmpb(valsize_known);
3378 
3379       __ bind(two_word);
3380       __ addptr(obj, Interpreter::expr_offset_in_bytes(2)); // two words jvalue
3381 
3382       __ bind(valsize_known);
3383       // setup object pointer
3384       __ movptr(obj, Address(obj, 0));
3385 #endif
3386     }
3387 
3388     // object (tos)
3389     __ mov(value, rsp);
3390     // obj: object pointer set up above (null if static)
3391     // cache: field entry pointer
3392     // value: jvalue object on the stack
3393     __ call_VM(noreg,
3394               CAST_FROM_FN_PTR(address,
3395                               InterpreterRuntime::post_field_modification),
3396               obj, entry, value);
3397     // Reload field entry
3398     __ load_field_entry(cache, index);
3399     __ bind(L1);
3400   }
3401 }
3402 
3403 void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
3404   transition(vtos, vtos);
3405 
3406   const Register obj = rcx;
3407   const Register cache = rcx;
3408   const Register index = rdx;
3409   const Register tos_state   = rdx;
3410   const Register off   = rbx;
3411   const Register flags = r9;
3412 
3413   resolve_cache_and_index_for_field(byte_no, cache, index);
3414   jvmti_post_field_mod(cache, index, is_static);
3415   load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static);
3416 
3417   // [jk] not needed currently
3418   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
3419   //                                              Assembler::StoreStore));
3420 
3421   Label notVolatile, Done;
3422 
3423   // Check for volatile store
3424   __ movl(rscratch1, flags);
3425   __ andl(rscratch1, (1 << ResolvedFieldEntry::is_volatile_shift));
3426   __ testl(rscratch1, rscratch1);
3427   __ jcc(Assembler::zero, notVolatile);
3428 
3429   putfield_or_static_helper(byte_no, is_static, rc, obj, off, tos_state, flags);
3430   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
3431                                                Assembler::StoreStore));
3432   __ jmp(Done);
3433   __ bind(notVolatile);
3434 
3435   putfield_or_static_helper(byte_no, is_static, rc, obj, off, tos_state, flags);
3436 
3437   __ bind(Done);
3438 }
3439 
3440 void TemplateTable::putfield_or_static_helper(int byte_no, bool is_static, RewriteControl rc,
3441                                               Register obj, Register off, Register tos_state, Register flags) {
3442 
3443   // field addresses
3444   const Address field(obj, off, Address::times_1, 0*wordSize);
3445   NOT_LP64( const Address hi(obj, off, Address::times_1, 1*wordSize);)
3446 
3447   Label notByte, notBool, notInt, notShort, notChar,
3448         notLong, notFloat, notObj, notInlineType;
3449   Label Done;
3450 
3451   const Register bc    = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
3452 
3453   // Test TOS state
3454   __ testl(tos_state, tos_state);
3455   __ jcc(Assembler::notZero, notByte);
3456 
3457   // btos
3458   {
3459     __ pop(btos);
3460     if (!is_static) pop_and_check_object(obj);
3461     __ access_store_at(T_BYTE, IN_HEAP, field, rax, noreg, noreg, noreg);
3462     if (!is_static && rc == may_rewrite) {
3463       patch_bytecode(Bytecodes::_fast_bputfield, bc, rbx, true, byte_no);
3464     }
3465     __ jmp(Done);
3466   }
3467 
3468   __ bind(notByte);
3469   __ cmpl(tos_state, ztos);
3470   __ jcc(Assembler::notEqual, notBool);
3471 
3472   // ztos
3473   {
3474     __ pop(ztos);
3475     if (!is_static) pop_and_check_object(obj);
3476     __ access_store_at(T_BOOLEAN, IN_HEAP, field, rax, noreg, noreg, noreg);
3477     if (!is_static && rc == may_rewrite) {
3478       patch_bytecode(Bytecodes::_fast_zputfield, bc, rbx, true, byte_no);
3479     }
3480     __ jmp(Done);
3481   }
3482 
3483   __ bind(notBool);
3484   __ cmpl(tos_state, atos);
3485   __ jcc(Assembler::notEqual, notObj);
3486 
3487   // atos
3488   {
3489     if (!EnableValhalla) {
3490       __ pop(atos);
3491       if (!is_static) pop_and_check_object(obj);
3492       // Store into the field
3493       do_oop_store(_masm, field, rax);
3494       if (!is_static && rc == may_rewrite) {
3495         patch_bytecode(Bytecodes::_fast_aputfield, bc, rbx, true, byte_no);
3496       }
3497       __ jmp(Done);
3498     } else {
3499       __ pop(atos);
3500       if (is_static) {
3501         Label is_inline_type;
3502         __ test_field_is_not_null_free_inline_type(flags, rscratch1, is_inline_type);
3503         __ null_check(rax);
3504         __ bind(is_inline_type);
3505         do_oop_store(_masm, field, rax);
3506         __ jmp(Done);
3507       } else {
3508         Label is_null_free_inline_type, is_flat, has_null_marker,
3509               write_null, rewrite_not_inline, rewrite_inline;
3510         __ test_field_is_null_free_inline_type(flags, rscratch1, is_null_free_inline_type);
3511         __ test_field_has_null_marker(flags, rscratch1, has_null_marker);
3512           // Not an inline type
3513           pop_and_check_object(obj);
3514           // Store into the field
3515           do_oop_store(_masm, field, rax);
3516           __ bind(rewrite_not_inline);
3517           if (rc == may_rewrite) {
3518             patch_bytecode(Bytecodes::_fast_aputfield, bc, rbx, true, byte_no);
3519           }
3520           __ jmp(Done);
3521         // Implementation of the inline type semantic
3522         __ bind(is_null_free_inline_type);
3523           __ null_check(rax);
3524           __ test_field_is_flat(flags, rscratch1, is_flat);
3525             // field is not flat
3526             pop_and_check_object(obj);
3527             // Store into the field
3528             do_oop_store(_masm, field, rax);
3529           __ jmp(rewrite_inline);
3530           __ bind(is_flat);
3531             // field is flat
3532             __ load_unsigned_short(rdx, Address(rcx, in_bytes(ResolvedFieldEntry::field_index_offset())));
3533             __ movptr(r9, Address(rcx, in_bytes(ResolvedFieldEntry::field_holder_offset())));
3534             pop_and_check_object(obj);  // obj = rcx
3535             __ load_klass(r8, rax, rscratch1);
3536             __ data_for_oop(rax, rax, r8);
3537             __ addptr(obj, off);
3538             __ inline_layout_info(r9, rdx, rbx);
3539             // because we use InlineLayoutInfo, we need special value access code specialized for fields (arrays will need a different API)
3540             __ flat_field_copy(IN_HEAP, rax, obj, rbx);
3541             __ jmp(rewrite_inline);
3542         __ bind(has_null_marker); // has null marker means the field is flat with a null marker
3543           pop_and_check_object(rbx);
3544           __ load_field_entry(rcx, rdx);
3545           call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::write_nullable_flat_field), rbx, rax, rcx);
3546         __ bind(rewrite_inline);
3547         if (rc == may_rewrite) {
3548           patch_bytecode(Bytecodes::_fast_vputfield, bc, rbx, true, byte_no);
3549         }
3550         __ jmp(Done);
3551       }
3552     }
3553   }
3554 
3555   __ bind(notObj);
3556   __ cmpl(tos_state, itos);
3557   __ jcc(Assembler::notEqual, notInt);
3558 
3559   // itos
3560   {
3561     __ pop(itos);
3562     if (!is_static) pop_and_check_object(obj);
3563     __ access_store_at(T_INT, IN_HEAP, field, rax, noreg, noreg, noreg);
3564     if (!is_static && rc == may_rewrite) {
3565       patch_bytecode(Bytecodes::_fast_iputfield, bc, rbx, true, byte_no);
3566     }
3567     __ jmp(Done);
3568   }
3569 
3570   __ bind(notInt);
3571   __ cmpl(tos_state, ctos);
3572   __ jcc(Assembler::notEqual, notChar);
3573 
3574   // ctos
3575   {
3576     __ pop(ctos);
3577     if (!is_static) pop_and_check_object(obj);
3578     __ access_store_at(T_CHAR, IN_HEAP, field, rax, noreg, noreg, noreg);
3579     if (!is_static && rc == may_rewrite) {
3580       patch_bytecode(Bytecodes::_fast_cputfield, bc, rbx, true, byte_no);
3581     }
3582     __ jmp(Done);
3583   }
3584 
3585   __ bind(notChar);
3586   __ cmpl(tos_state, stos);
3587   __ jcc(Assembler::notEqual, notShort);
3588 
3589   // stos
3590   {
3591     __ pop(stos);
3592     if (!is_static) pop_and_check_object(obj);
3593     __ access_store_at(T_SHORT, IN_HEAP, field, rax, noreg, noreg, noreg);
3594     if (!is_static && rc == may_rewrite) {
3595       patch_bytecode(Bytecodes::_fast_sputfield, bc, rbx, true, byte_no);
3596     }
3597     __ jmp(Done);
3598   }
3599 
3600   __ bind(notShort);
3601   __ cmpl(tos_state, ltos);
3602   __ jcc(Assembler::notEqual, notLong);
3603 
3604   // ltos
3605   {
3606     __ pop(ltos);
3607     if (!is_static) pop_and_check_object(obj);
3608     // MO_RELAXED: generate atomic store for the case of volatile field (important for x86_32)
3609     __ access_store_at(T_LONG, IN_HEAP | MO_RELAXED, field, noreg /* ltos*/, noreg, noreg, noreg);
3610 #ifdef _LP64
3611     if (!is_static && rc == may_rewrite) {
3612       patch_bytecode(Bytecodes::_fast_lputfield, bc, rbx, true, byte_no);
3613     }
3614 #endif // _LP64
3615     __ jmp(Done);
3616   }
3617 
3618   __ bind(notLong);
3619   __ cmpl(tos_state, ftos);
3620   __ jcc(Assembler::notEqual, notFloat);
3621 
3622   // ftos
3623   {
3624     __ pop(ftos);
3625     if (!is_static) pop_and_check_object(obj);
3626     __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos */, noreg, noreg, noreg);
3627     if (!is_static && rc == may_rewrite) {
3628       patch_bytecode(Bytecodes::_fast_fputfield, bc, rbx, true, byte_no);
3629     }
3630     __ jmp(Done);
3631   }
3632 
3633   __ bind(notFloat);
3634 #ifdef ASSERT
3635   Label notDouble;
3636   __ cmpl(tos_state, dtos);
3637   __ jcc(Assembler::notEqual, notDouble);
3638 #endif
3639 
3640   // dtos
3641   {
3642     __ pop(dtos);
3643     if (!is_static) pop_and_check_object(obj);
3644     // MO_RELAXED: for the case of volatile field, in fact it adds no extra work for the underlying implementation
3645     __ access_store_at(T_DOUBLE, IN_HEAP | MO_RELAXED, field, noreg /* dtos */, noreg, noreg, noreg);
3646     if (!is_static && rc == may_rewrite) {
3647       patch_bytecode(Bytecodes::_fast_dputfield, bc, rbx, true, byte_no);
3648     }
3649   }
3650 
3651 #ifdef ASSERT
3652   __ jmp(Done);
3653 
3654   __ bind(notDouble);
3655   __ stop("Bad state");
3656 #endif
3657 
3658   __ bind(Done);
3659 }
3660 
3661 void TemplateTable::putfield(int byte_no) {
3662   putfield_or_static(byte_no, false);
3663 }
3664 
3665 void TemplateTable::nofast_putfield(int byte_no) {
3666   putfield_or_static(byte_no, false, may_not_rewrite);
3667 }
3668 
3669 void TemplateTable::putstatic(int byte_no) {
3670   putfield_or_static(byte_no, true);
3671 }
3672 
3673 void TemplateTable::jvmti_post_fast_field_mod() {
3674 
3675   const Register scratch = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
3676 
3677   if (JvmtiExport::can_post_field_modification()) {
3678     // Check to see if a field modification watch has been set before
3679     // we take the time to call into the VM.
3680     Label L2;
3681     __ mov32(scratch, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
3682     __ testl(scratch, scratch);
3683     __ jcc(Assembler::zero, L2);
3684     __ pop_ptr(rbx);                  // copy the object pointer from tos
3685     __ verify_oop(rbx);
3686     __ push_ptr(rbx);                 // put the object pointer back on tos
3687     // Save tos values before call_VM() clobbers them. Since we have
3688     // to do it for every data type, we use the saved values as the
3689     // jvalue object.
3690     switch (bytecode()) {          // load values into the jvalue object
3691     case Bytecodes::_fast_vputfield: //fall through
3692     case Bytecodes::_fast_aputfield: __ push_ptr(rax); break;
3693     case Bytecodes::_fast_bputfield: // fall through
3694     case Bytecodes::_fast_zputfield: // fall through
3695     case Bytecodes::_fast_sputfield: // fall through
3696     case Bytecodes::_fast_cputfield: // fall through
3697     case Bytecodes::_fast_iputfield: __ push_i(rax); break;
3698     case Bytecodes::_fast_dputfield: __ push(dtos); break;
3699     case Bytecodes::_fast_fputfield: __ push(ftos); break;
3700     case Bytecodes::_fast_lputfield: __ push_l(rax); break;
3701 
3702     default:
3703       ShouldNotReachHere();
3704     }
3705     __ mov(scratch, rsp);             // points to jvalue on the stack
3706     // access constant pool cache entry
3707     LP64_ONLY(__ load_field_entry(c_rarg2, rax));
3708     NOT_LP64(__ load_field_entry(rax, rdx));
3709     __ verify_oop(rbx);
3710     // rbx: object pointer copied above
3711     // c_rarg2: cache entry pointer
3712     // c_rarg3: jvalue object on the stack
3713     LP64_ONLY(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), rbx, c_rarg2, c_rarg3));
3714     NOT_LP64(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), rbx, rax, rcx));
3715 
3716     switch (bytecode()) {             // restore tos values
3717     case Bytecodes::_fast_vputfield: // fall through
3718     case Bytecodes::_fast_aputfield: __ pop_ptr(rax); break;
3719     case Bytecodes::_fast_bputfield: // fall through
3720     case Bytecodes::_fast_zputfield: // fall through
3721     case Bytecodes::_fast_sputfield: // fall through
3722     case Bytecodes::_fast_cputfield: // fall through
3723     case Bytecodes::_fast_iputfield: __ pop_i(rax); break;
3724     case Bytecodes::_fast_dputfield: __ pop(dtos); break;
3725     case Bytecodes::_fast_fputfield: __ pop(ftos); break;
3726     case Bytecodes::_fast_lputfield: __ pop_l(rax); break;
3727     default: break;
3728     }
3729     __ bind(L2);
3730   }
3731 }
3732 
3733 void TemplateTable::fast_storefield(TosState state) {
3734   transition(state, vtos);
3735 
3736   Label notVolatile, Done;
3737 
3738   jvmti_post_fast_field_mod();
3739 
3740   __ push(rax);
3741   __ load_field_entry(rcx, rax);
3742   load_resolved_field_entry(noreg, rcx, rax, rbx, rdx);
3743   __ pop(rax);
3744   // RBX: field offset, RCX: RAX: TOS, RDX: flags
3745 
3746   // Get object from stack
3747   pop_and_check_object(rcx);
3748 
3749   // field address
3750   const Address field(rcx, rbx, Address::times_1);
3751 
3752   // Check for volatile store
3753   __ movl(rscratch2, rdx);  // saving flags for is_flat test
3754   __ andl(rscratch2, (1 << ResolvedFieldEntry::is_volatile_shift));
3755   __ testl(rscratch2, rscratch2);
3756   __ jcc(Assembler::zero, notVolatile);
3757 
3758   fast_storefield_helper(field, rax, rdx);
3759   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
3760                                                Assembler::StoreStore));
3761   __ jmp(Done);
3762   __ bind(notVolatile);
3763 
3764   fast_storefield_helper(field, rax, rdx);
3765 
3766   __ bind(Done);
3767 }
3768 
3769 void TemplateTable::fast_storefield_helper(Address field, Register rax, Register flags) {
3770 
3771   // DANGER: 'field' argument depends on rcx and rbx
3772 
3773   // access field
3774   switch (bytecode()) {
3775   case Bytecodes::_fast_vputfield:
3776     {
3777       Label is_flat, has_null_marker, write_null, done;
3778       __ test_field_has_null_marker(flags, rscratch1, has_null_marker);
3779       // Null free field cases: flat or not flat
3780       __ null_check(rax);
3781       __ test_field_is_flat(flags, rscratch1, is_flat);
3782         // field is not flat
3783         do_oop_store(_masm, field, rax);
3784         __ jmp(done);
3785       __ bind(is_flat);
3786         __ load_field_entry(r8, r9);
3787         __ load_unsigned_short(r9, Address(r8, in_bytes(ResolvedFieldEntry::field_index_offset())));
3788         __ movptr(r8, Address(r8, in_bytes(ResolvedFieldEntry::field_holder_offset())));
3789         __ inline_layout_info(r8, r9, r8);
3790         __ load_klass(rdx, rax, rscratch1);
3791         __ data_for_oop(rax, rax, rdx);
3792         __ lea(rcx, field);
3793         __ flat_field_copy(IN_HEAP, rax, rcx, r8);
3794         __ jmp(done);
3795       __ bind(has_null_marker); // has null marker means the field is flat with a null marker
3796         __ movptr(rbx, rcx);
3797         __ load_field_entry(rcx, rdx);
3798         call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::write_nullable_flat_field), rbx, rax, rcx);
3799       __ bind(done);
3800     }
3801     break;
3802   case Bytecodes::_fast_aputfield:
3803     {
3804       do_oop_store(_masm, field, rax);
3805     }
3806     break;
3807   case Bytecodes::_fast_lputfield:
3808 #ifdef _LP64
3809     __ access_store_at(T_LONG, IN_HEAP, field, noreg /* ltos */, noreg, noreg, noreg);
3810 #else
3811   __ stop("should not be rewritten");
3812 #endif
3813     break;
3814   case Bytecodes::_fast_iputfield:
3815     __ access_store_at(T_INT, IN_HEAP, field, rax, noreg, noreg, noreg);
3816     break;
3817   case Bytecodes::_fast_zputfield:
3818     __ access_store_at(T_BOOLEAN, IN_HEAP, field, rax, noreg, noreg, noreg);
3819     break;
3820   case Bytecodes::_fast_bputfield:
3821     __ access_store_at(T_BYTE, IN_HEAP, field, rax, noreg, noreg, noreg);
3822     break;
3823   case Bytecodes::_fast_sputfield:
3824     __ access_store_at(T_SHORT, IN_HEAP, field, rax, noreg, noreg, noreg);
3825     break;
3826   case Bytecodes::_fast_cputfield:
3827     __ access_store_at(T_CHAR, IN_HEAP, field, rax, noreg, noreg, noreg);
3828     break;
3829   case Bytecodes::_fast_fputfield:
3830     __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos*/, noreg, noreg, noreg);
3831     break;
3832   case Bytecodes::_fast_dputfield:
3833     __ access_store_at(T_DOUBLE, IN_HEAP, field, noreg /* dtos*/, noreg, noreg, noreg);
3834     break;
3835   default:
3836     ShouldNotReachHere();
3837   }
3838 }
3839 
3840 void TemplateTable::fast_accessfield(TosState state) {
3841   transition(atos, state);
3842 
3843   // Do the JVMTI work here to avoid disturbing the register state below
3844   if (JvmtiExport::can_post_field_access()) {
3845     // Check to see if a field access watch has been set before we
3846     // take the time to call into the VM.
3847     Label L1;
3848     __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
3849     __ testl(rcx, rcx);
3850     __ jcc(Assembler::zero, L1);
3851     // access constant pool cache entry
3852     LP64_ONLY(__ load_field_entry(c_rarg2, rcx));
3853     NOT_LP64(__ load_field_entry(rcx, rdx));
3854     __ verify_oop(rax);
3855     __ push_ptr(rax);  // save object pointer before call_VM() clobbers it
3856     LP64_ONLY(__ mov(c_rarg1, rax));
3857     // c_rarg1: object pointer copied above
3858     // c_rarg2: cache entry pointer
3859     LP64_ONLY(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), c_rarg1, c_rarg2));
3860     NOT_LP64(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), rax, rcx));
3861     __ pop_ptr(rax); // restore object pointer
3862     __ bind(L1);
3863   }
3864 
3865   // access constant pool cache
3866   __ load_field_entry(rcx, rbx);
3867   __ load_sized_value(rdx, Address(rcx, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/);
3868 
3869   // rax: object
3870   __ verify_oop(rax);
3871   __ null_check(rax);
3872   Address field(rax, rdx, Address::times_1);
3873 
3874   // access field
3875   switch (bytecode()) {
3876   case Bytecodes::_fast_vgetfield:
3877     {
3878       Label is_flat, nonnull, Done, has_null_marker;
3879       __ load_unsigned_byte(rscratch1, Address(rcx, in_bytes(ResolvedFieldEntry::flags_offset())));
3880       __ test_field_has_null_marker(rscratch1, rscratch2, has_null_marker);
3881       __ test_field_is_flat(rscratch1, rscratch2, is_flat);
3882         // field is not flat
3883         __ load_heap_oop(rax, field);
3884         __ testptr(rax, rax);
3885         __ jcc(Assembler::notZero, nonnull);
3886           __ load_unsigned_short(rdx, Address(rcx, in_bytes(ResolvedFieldEntry::field_index_offset())));
3887           __ movptr(rcx, Address(rcx, ResolvedFieldEntry::field_holder_offset()));
3888           __ get_inline_type_field_klass(rcx, rdx, rbx);
3889           __ get_default_value_oop(rbx, rcx, rax);
3890         __ bind(nonnull);
3891         __ verify_oop(rax);
3892         __ jmp(Done);
3893       __ bind(is_flat);
3894       // field is flat
3895         __ read_flat_field(rcx, rdx, rbx, rax);
3896         __ jmp(Done);
3897       __ bind(has_null_marker);
3898         // rax = instance, rcx = resolved entry
3899         call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::read_nullable_flat_field), rax, rcx);
3900         __ get_vm_result(rax, r15_thread);
3901       __ bind(Done);
3902       __ verify_oop(rax);
3903     }
3904     break;
3905   case Bytecodes::_fast_agetfield:
3906     do_oop_load(_masm, field, rax);
3907     __ verify_oop(rax);
3908     break;
3909   case Bytecodes::_fast_lgetfield:
3910 #ifdef _LP64
3911     __ access_load_at(T_LONG, IN_HEAP, noreg /* ltos */, field, noreg, noreg);
3912 #else
3913   __ stop("should not be rewritten");
3914 #endif
3915     break;
3916   case Bytecodes::_fast_igetfield:
3917     __ access_load_at(T_INT, IN_HEAP, rax, field, noreg, noreg);
3918     break;
3919   case Bytecodes::_fast_bgetfield:
3920     __ access_load_at(T_BYTE, IN_HEAP, rax, field, noreg, noreg);
3921     break;
3922   case Bytecodes::_fast_sgetfield:
3923     __ access_load_at(T_SHORT, IN_HEAP, rax, field, noreg, noreg);
3924     break;
3925   case Bytecodes::_fast_cgetfield:
3926     __ access_load_at(T_CHAR, IN_HEAP, rax, field, noreg, noreg);
3927     break;
3928   case Bytecodes::_fast_fgetfield:
3929     __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg);
3930     break;
3931   case Bytecodes::_fast_dgetfield:
3932     __ access_load_at(T_DOUBLE, IN_HEAP, noreg /* dtos */, field, noreg, noreg);
3933     break;
3934   default:
3935     ShouldNotReachHere();
3936   }
3937   // [jk] not needed currently
3938   //   Label notVolatile;
3939   //   __ testl(rdx, rdx);
3940   //   __ jcc(Assembler::zero, notVolatile);
3941   //   __ membar(Assembler::LoadLoad);
3942   //   __ bind(notVolatile);
3943 }
3944 
3945 void TemplateTable::fast_xaccess(TosState state) {
3946   transition(vtos, state);
3947 
3948   // get receiver
3949   __ movptr(rax, aaddress(0));
3950   // access constant pool cache
3951   __ load_field_entry(rcx, rdx, 2);
3952   __ load_sized_value(rbx, Address(rcx, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/);
3953 
3954   // make sure exception is reported in correct bcp range (getfield is
3955   // next instruction)
3956   __ increment(rbcp);
3957   __ null_check(rax);
3958   const Address field = Address(rax, rbx, Address::times_1, 0*wordSize);
3959   switch (state) {
3960   case itos:
3961     __ access_load_at(T_INT, IN_HEAP, rax, field, noreg, noreg);
3962     break;
3963   case atos:
3964     do_oop_load(_masm, field, rax);
3965     __ verify_oop(rax);
3966     break;
3967   case ftos:
3968     __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg);
3969     break;
3970   default:
3971     ShouldNotReachHere();
3972   }
3973 
3974   // [jk] not needed currently
3975   // Label notVolatile;
3976   // __ movl(rdx, Address(rcx, rdx, Address::times_8,
3977   //                      in_bytes(ConstantPoolCache::base_offset() +
3978   //                               ConstantPoolCacheEntry::flags_offset())));
3979   // __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
3980   // __ testl(rdx, 0x1);
3981   // __ jcc(Assembler::zero, notVolatile);
3982   // __ membar(Assembler::LoadLoad);
3983   // __ bind(notVolatile);
3984 
3985   __ decrement(rbcp);
3986 }
3987 
3988 //-----------------------------------------------------------------------------
3989 // Calls
3990 
3991 void TemplateTable::prepare_invoke(Register cache, Register recv, Register flags) {
3992   // determine flags
3993   const Bytecodes::Code code = bytecode();
3994   const bool load_receiver       = (code != Bytecodes::_invokestatic) && (code != Bytecodes::_invokedynamic);
3995   assert_different_registers(recv, flags);
3996 
3997   // save 'interpreter return address'
3998   __ save_bcp();
3999 
4000   // Save flags and load TOS
4001   __ movl(rbcp, flags);
4002   __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::type_offset())));
4003 
4004   // load receiver if needed (after appendix is pushed so parameter size is correct)
4005   // Note: no return address pushed yet
4006   if (load_receiver) {
4007     __ load_unsigned_short(recv, Address(cache, in_bytes(ResolvedMethodEntry::num_parameters_offset())));
4008     const int no_return_pc_pushed_yet = -1;  // argument slot correction before we push return address
4009     const int receiver_is_at_end      = -1;  // back off one slot to get receiver
4010     Address recv_addr = __ argument_address(recv, no_return_pc_pushed_yet + receiver_is_at_end);
4011     __ movptr(recv, recv_addr);
4012     __ verify_oop(recv);
4013   }
4014 
4015   // load return address
4016   {
4017     const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code);
4018     ExternalAddress table(table_addr);
4019 #ifdef _LP64
4020     __ lea(rscratch1, table);
4021     __ movptr(flags, Address(rscratch1, flags, Address::times_ptr));
4022 #else
4023     __ movptr(flags, ArrayAddress(table, Address(noreg, flags, Address::times_ptr)));
4024 #endif // _LP64
4025   }
4026 
4027   // push return address
4028   __ push(flags);
4029 
4030   // Restore flags value from the constant pool cache entry, and restore rsi
4031   // for later null checks.  r13 is the bytecode pointer
4032   __ movl(flags, rbcp);
4033   __ restore_bcp();
4034 }
4035 
4036 void TemplateTable::invokevirtual_helper(Register index,
4037                                          Register recv,
4038                                          Register flags) {
4039   // Uses temporary registers rax, rdx
4040   assert_different_registers(index, recv, rax, rdx);
4041   assert(index == rbx, "");
4042   assert(recv  == rcx, "");
4043 
4044   // Test for an invoke of a final method
4045   Label notFinal;
4046   __ movl(rax, flags);
4047   __ andl(rax, (1 << ResolvedMethodEntry::is_vfinal_shift));
4048   __ jcc(Assembler::zero, notFinal);
4049 
4050   const Register method = index;  // method must be rbx
4051   assert(method == rbx,
4052          "Method* must be rbx for interpreter calling convention");
4053 
4054   // do the call - the index is actually the method to call
4055   // that is, f2 is a vtable index if !is_vfinal, else f2 is a Method*
4056 
4057   // It's final, need a null check here!
4058   __ null_check(recv);
4059 
4060   // profile this call
4061   __ profile_final_call(rax);
4062   __ profile_arguments_type(rax, method, rbcp, true);
4063 
4064   __ jump_from_interpreted(method, rax);
4065 
4066   __ bind(notFinal);
4067 
4068   // get receiver klass
4069   __ load_klass(rax, recv, rscratch1);
4070 
4071   // profile this call
4072   __ profile_virtual_call(rax, rlocals, rdx);
4073   // get target Method* & entry point
4074   __ lookup_virtual_method(rax, index, method);
4075 
4076   __ profile_arguments_type(rdx, method, rbcp, true);
4077   __ jump_from_interpreted(method, rdx);
4078 }
4079 
4080 void TemplateTable::invokevirtual(int byte_no) {
4081   transition(vtos, vtos);
4082   assert(byte_no == f2_byte, "use this argument");
4083 
4084   load_resolved_method_entry_virtual(rcx,  // ResolvedMethodEntry*
4085                                      rbx,  // Method or itable index
4086                                      rdx); // Flags
4087   prepare_invoke(rcx,  // ResolvedMethodEntry*
4088                  rcx,  // Receiver
4089                  rdx); // flags
4090 
4091   // rbx: index
4092   // rcx: receiver
4093   // rdx: flags
4094   invokevirtual_helper(rbx, rcx, rdx);
4095 }
4096 
4097 void TemplateTable::invokespecial(int byte_no) {
4098   transition(vtos, vtos);
4099   assert(byte_no == f1_byte, "use this argument");
4100 
4101   load_resolved_method_entry_special_or_static(rcx,  // ResolvedMethodEntry*
4102                                                rbx,  // Method*
4103                                                rdx); // flags
4104   prepare_invoke(rcx,
4105                  rcx,  // get receiver also for null check
4106                  rdx); // flags
4107 
4108   __ verify_oop(rcx);
4109   __ null_check(rcx);
4110   // do the call
4111   __ profile_call(rax);
4112   __ profile_arguments_type(rax, rbx, rbcp, false);
4113   __ jump_from_interpreted(rbx, rax);
4114 }
4115 
4116 void TemplateTable::invokestatic(int byte_no) {
4117   transition(vtos, vtos);
4118   assert(byte_no == f1_byte, "use this argument");
4119 
4120   load_resolved_method_entry_special_or_static(rcx, // ResolvedMethodEntry*
4121                                                rbx, // Method*
4122                                                rdx  // flags
4123                                                );
4124   prepare_invoke(rcx, rcx, rdx);  // cache and flags
4125 
4126   // do the call
4127   __ profile_call(rax);
4128   __ profile_arguments_type(rax, rbx, rbcp, false);
4129   __ jump_from_interpreted(rbx, rax);
4130 }
4131 
4132 
4133 void TemplateTable::fast_invokevfinal(int byte_no) {
4134   transition(vtos, vtos);
4135   assert(byte_no == f2_byte, "use this argument");
4136   __ stop("fast_invokevfinal not used on x86");
4137 }
4138 
4139 
4140 void TemplateTable::invokeinterface(int byte_no) {
4141   transition(vtos, vtos);
4142   assert(byte_no == f1_byte, "use this argument");
4143 
4144   load_resolved_method_entry_interface(rcx,  // ResolvedMethodEntry*
4145                                        rax,  // Klass*
4146                                        rbx,  // Method* or itable/vtable index
4147                                        rdx); // flags
4148   prepare_invoke(rcx, rcx, rdx); // receiver, flags
4149 
4150   // First check for Object case, then private interface method,
4151   // then regular interface method.
4152 
4153   // Special case of invokeinterface called for virtual method of
4154   // java.lang.Object.  See cpCache.cpp for details.
4155   Label notObjectMethod;
4156   __ movl(rlocals, rdx);
4157   __ andl(rlocals, (1 << ResolvedMethodEntry::is_forced_virtual_shift));
4158   __ jcc(Assembler::zero, notObjectMethod);
4159 
4160   invokevirtual_helper(rbx, rcx, rdx);
4161   // no return from above
4162   __ bind(notObjectMethod);
4163 
4164   Label no_such_interface; // for receiver subtype check
4165   Register recvKlass; // used for exception processing
4166 
4167   // Check for private method invocation - indicated by vfinal
4168   Label notVFinal;
4169   __ movl(rlocals, rdx);
4170   __ andl(rlocals, (1 << ResolvedMethodEntry::is_vfinal_shift));
4171   __ jcc(Assembler::zero, notVFinal);
4172 
4173   // Get receiver klass into rlocals - also a null check
4174   __ load_klass(rlocals, rcx, rscratch1);
4175 
4176   Label subtype;
4177   __ check_klass_subtype(rlocals, rax, rbcp, subtype);
4178   // If we get here the typecheck failed
4179   recvKlass = rdx;
4180   __ mov(recvKlass, rlocals); // shuffle receiver class for exception use
4181   __ jmp(no_such_interface);
4182 
4183   __ bind(subtype);
4184 
4185   // do the call - rbx is actually the method to call
4186 
4187   __ profile_final_call(rdx);
4188   __ profile_arguments_type(rdx, rbx, rbcp, true);
4189 
4190   __ jump_from_interpreted(rbx, rdx);
4191   // no return from above
4192   __ bind(notVFinal);
4193 
4194   // Get receiver klass into rdx - also a null check
4195   __ restore_locals();  // restore r14
4196   __ load_klass(rdx, rcx, rscratch1);
4197 
4198   Label no_such_method;
4199 
4200   // Preserve method for throw_AbstractMethodErrorVerbose.
4201   __ mov(rcx, rbx);
4202   // Receiver subtype check against REFC.
4203   // Superklass in rax. Subklass in rdx. Blows rcx, rdi.
4204   __ lookup_interface_method(// inputs: rec. class, interface, itable index
4205                              rdx, rax, noreg,
4206                              // outputs: scan temp. reg, scan temp. reg
4207                              rbcp, rlocals,
4208                              no_such_interface,
4209                              /*return_method=*/false);
4210 
4211   // profile this call
4212   __ restore_bcp(); // rbcp was destroyed by receiver type check
4213   __ profile_virtual_call(rdx, rbcp, rlocals);
4214 
4215   // Get declaring interface class from method, and itable index
4216   __ load_method_holder(rax, rbx);
4217   __ movl(rbx, Address(rbx, Method::itable_index_offset()));
4218   __ subl(rbx, Method::itable_index_max);
4219   __ negl(rbx);
4220 
4221   // Preserve recvKlass for throw_AbstractMethodErrorVerbose.
4222   __ mov(rlocals, rdx);
4223   __ lookup_interface_method(// inputs: rec. class, interface, itable index
4224                              rlocals, rax, rbx,
4225                              // outputs: method, scan temp. reg
4226                              rbx, rbcp,
4227                              no_such_interface);
4228 
4229   // rbx: Method* to call
4230   // rcx: receiver
4231   // Check for abstract method error
4232   // Note: This should be done more efficiently via a throw_abstract_method_error
4233   //       interpreter entry point and a conditional jump to it in case of a null
4234   //       method.
4235   __ testptr(rbx, rbx);
4236   __ jcc(Assembler::zero, no_such_method);
4237 
4238   __ profile_arguments_type(rdx, rbx, rbcp, true);
4239 
4240   // do the call
4241   // rcx: receiver
4242   // rbx,: Method*
4243   __ jump_from_interpreted(rbx, rdx);
4244   __ should_not_reach_here();
4245 
4246   // exception handling code follows...
4247   // note: must restore interpreter registers to canonical
4248   //       state for exception handling to work correctly!
4249 
4250   __ bind(no_such_method);
4251   // throw exception
4252   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
4253   __ restore_bcp();      // rbcp must be correct for exception handler   (was destroyed)
4254   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
4255   // Pass arguments for generating a verbose error message.
4256 #ifdef _LP64
4257   recvKlass = c_rarg1;
4258   Register method    = c_rarg2;
4259   if (recvKlass != rdx) { __ movq(recvKlass, rdx); }
4260   if (method != rcx)    { __ movq(method, rcx);    }
4261 #else
4262   recvKlass = rdx;
4263   Register method    = rcx;
4264 #endif
4265   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodErrorVerbose),
4266              recvKlass, method);
4267   // The call_VM checks for exception, so we should never return here.
4268   __ should_not_reach_here();
4269 
4270   __ bind(no_such_interface);
4271   // throw exception
4272   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
4273   __ restore_bcp();      // rbcp must be correct for exception handler   (was destroyed)
4274   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
4275   // Pass arguments for generating a verbose error message.
4276   LP64_ONLY( if (recvKlass != rdx) { __ movq(recvKlass, rdx); } )
4277   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_IncompatibleClassChangeErrorVerbose),
4278              recvKlass, rax);
4279   // the call_VM checks for exception, so we should never return here.
4280   __ should_not_reach_here();
4281 }
4282 
4283 void TemplateTable::invokehandle(int byte_no) {
4284   transition(vtos, vtos);
4285   assert(byte_no == f1_byte, "use this argument");
4286   const Register rbx_method = rbx;
4287   const Register rax_mtype  = rax;
4288   const Register rcx_recv   = rcx;
4289   const Register rdx_flags  = rdx;
4290 
4291   load_resolved_method_entry_handle(rcx, rbx_method, rax_mtype, rdx_flags);
4292   prepare_invoke(rcx, rcx_recv, rdx_flags);
4293 
4294   __ verify_method_ptr(rbx_method);
4295   __ verify_oop(rcx_recv);
4296   __ null_check(rcx_recv);
4297 
4298   // rax: MethodType object (from cpool->resolved_references[f1], if necessary)
4299   // rbx: MH.invokeExact_MT method
4300 
4301   // Note:  rax_mtype is already pushed (if necessary)
4302 
4303   // FIXME: profile the LambdaForm also
4304   __ profile_final_call(rax);
4305   __ profile_arguments_type(rdx, rbx_method, rbcp, true);
4306 
4307   __ jump_from_interpreted(rbx_method, rdx);
4308 }
4309 
4310 void TemplateTable::invokedynamic(int byte_no) {
4311   transition(vtos, vtos);
4312   assert(byte_no == f1_byte, "use this argument");
4313 
4314   const Register rbx_method   = rbx;
4315   const Register rax_callsite = rax;
4316 
4317   load_invokedynamic_entry(rbx_method);
4318   // rax: CallSite object (from cpool->resolved_references[])
4319   // rbx: MH.linkToCallSite method
4320 
4321   // Note:  rax_callsite is already pushed
4322 
4323   // %%% should make a type profile for any invokedynamic that takes a ref argument
4324   // profile this call
4325   __ profile_call(rbcp);
4326   __ profile_arguments_type(rdx, rbx_method, rbcp, false);
4327 
4328   __ verify_oop(rax_callsite);
4329 
4330   __ jump_from_interpreted(rbx_method, rdx);
4331 }
4332 
4333 //-----------------------------------------------------------------------------
4334 // Allocation
4335 
4336 void TemplateTable::_new() {
4337   transition(vtos, atos);
4338   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
4339   Label slow_case;
4340   Label done;
4341 
4342   __ get_cpool_and_tags(rcx, rax);
4343 
4344   // Make sure the class we're about to instantiate has been resolved.
4345   // This is done before loading InstanceKlass to be consistent with the order
4346   // how Constant Pool is updated (see ConstantPool::klass_at_put)
4347   const int tags_offset = Array<u1>::base_offset_in_bytes();
4348   __ cmpb(Address(rax, rdx, Address::times_1, tags_offset), JVM_CONSTANT_Class);
4349   __ jcc(Assembler::notEqual, slow_case);
4350 
4351   // get InstanceKlass
4352   __ load_resolved_klass_at_index(rcx, rcx, rdx);
4353 
4354   // make sure klass is initialized
4355   // init_state needs acquire, but x86 is TSO, and so we are already good.
4356 #ifdef _LP64
4357   assert(VM_Version::supports_fast_class_init_checks(), "must support fast class initialization checks");
4358   __ clinit_barrier(rcx, r15_thread, nullptr /*L_fast_path*/, &slow_case);
4359 #else
4360   __ cmpb(Address(rcx, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized);
4361   __ jcc(Assembler::notEqual, slow_case);
4362 #endif
4363 
4364   __ allocate_instance(rcx, rax, rdx, rbx, true, slow_case);
4365     if (DTraceAllocProbes) {
4366       // Trigger dtrace event for fastpath
4367       __ push(atos);
4368       __ call_VM_leaf(
4369            CAST_FROM_FN_PTR(address, static_cast<int (*)(oopDesc*)>(SharedRuntime::dtrace_object_alloc)), rax);
4370       __ pop(atos);
4371     }
4372   __ jmp(done);
4373 
4374   // slow case
4375   __ bind(slow_case);
4376 
4377   Register rarg1 = LP64_ONLY(c_rarg1) NOT_LP64(rax);
4378   Register rarg2 = LP64_ONLY(c_rarg2) NOT_LP64(rdx);
4379 
4380   __ get_constant_pool(rarg1);
4381   __ get_unsigned_2_byte_index_at_bcp(rarg2, 1);
4382   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), rarg1, rarg2);
4383    __ verify_oop(rax);
4384 
4385   // continue
4386   __ bind(done);
4387 }
4388 
4389 void TemplateTable::newarray() {
4390   transition(itos, atos);
4391   Register rarg1 = LP64_ONLY(c_rarg1) NOT_LP64(rdx);
4392   __ load_unsigned_byte(rarg1, at_bcp(1));
4393   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray),
4394           rarg1, rax);
4395 }
4396 
4397 void TemplateTable::anewarray() {
4398   transition(itos, atos);
4399 
4400   Register rarg1 = LP64_ONLY(c_rarg1) NOT_LP64(rcx);
4401   Register rarg2 = LP64_ONLY(c_rarg2) NOT_LP64(rdx);
4402 
4403   __ get_unsigned_2_byte_index_at_bcp(rarg2, 1);
4404   __ get_constant_pool(rarg1);
4405   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray),
4406           rarg1, rarg2, rax);
4407 }
4408 
4409 void TemplateTable::arraylength() {
4410   transition(atos, itos);
4411   __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes()));
4412 }
4413 
4414 void TemplateTable::checkcast() {
4415   transition(atos, atos);
4416   Label done, is_null, ok_is_subtype, quicked, resolved;
4417   __ testptr(rax, rax); // object is in rax
4418   __ jcc(Assembler::zero, is_null);
4419 
4420   // Get cpool & tags index
4421   __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
4422   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
4423   // See if bytecode has already been quicked
4424   __ movzbl(rdx, Address(rdx, rbx,
4425       Address::times_1,
4426       Array<u1>::base_offset_in_bytes()));
4427   __ cmpl(rdx, JVM_CONSTANT_Class);
4428   __ jcc(Assembler::equal, quicked);
4429   __ push(atos); // save receiver for result, and for GC
4430   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
4431 
4432   // vm_result_2 has metadata result
4433 #ifndef _LP64
4434   // borrow rdi from locals
4435   __ get_thread(rdi);
4436   __ get_vm_result_2(rax, rdi);
4437   __ restore_locals();
4438 #else
4439   __ get_vm_result_2(rax, r15_thread);
4440 #endif
4441 
4442   __ pop_ptr(rdx); // restore receiver
4443   __ jmpb(resolved);
4444 
4445   // Get superklass in rax and subklass in rbx
4446   __ bind(quicked);
4447   __ mov(rdx, rax); // Save object in rdx; rax needed for subtype check
4448   __ load_resolved_klass_at_index(rax, rcx, rbx);
4449 
4450   __ bind(resolved);
4451   __ load_klass(rbx, rdx, rscratch1);
4452 
4453   // Generate subtype check.  Blows rcx, rdi.  Object in rdx.
4454   // Superklass in rax.  Subklass in rbx.
4455   __ gen_subtype_check(rbx, ok_is_subtype);
4456 
4457   // Come here on failure
4458   __ push_ptr(rdx);
4459   // object is at TOS
4460   __ jump(RuntimeAddress(Interpreter::_throw_ClassCastException_entry));
4461 
4462   // Come here on success
4463   __ bind(ok_is_subtype);
4464   __ mov(rax, rdx); // Restore object in rdx
4465   __ jmp(done);
4466 
4467   __ bind(is_null);
4468 
4469   // Collect counts on whether this check-cast sees nulls a lot or not.
4470   if (ProfileInterpreter) {
4471     __ profile_null_seen(rcx);
4472   }
4473 
4474   __ bind(done);
4475 }
4476 
4477 void TemplateTable::instanceof() {
4478   transition(atos, itos);
4479   Label done, is_null, ok_is_subtype, quicked, resolved;
4480   __ testptr(rax, rax);
4481   __ jcc(Assembler::zero, is_null);
4482 
4483   // Get cpool & tags index
4484   __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
4485   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
4486   // See if bytecode has already been quicked
4487   __ movzbl(rdx, Address(rdx, rbx,
4488         Address::times_1,
4489         Array<u1>::base_offset_in_bytes()));
4490   __ cmpl(rdx, JVM_CONSTANT_Class);
4491   __ jcc(Assembler::equal, quicked);
4492 
4493   __ push(atos); // save receiver for result, and for GC
4494   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
4495   // vm_result_2 has metadata result
4496 
4497 #ifndef _LP64
4498   // borrow rdi from locals
4499   __ get_thread(rdi);
4500   __ get_vm_result_2(rax, rdi);
4501   __ restore_locals();
4502 #else
4503   __ get_vm_result_2(rax, r15_thread);
4504 #endif
4505 
4506   __ pop_ptr(rdx); // restore receiver
4507   __ verify_oop(rdx);
4508   __ load_klass(rdx, rdx, rscratch1);
4509   __ jmpb(resolved);
4510 
4511   // Get superklass in rax and subklass in rdx
4512   __ bind(quicked);
4513   __ load_klass(rdx, rax, rscratch1);
4514   __ load_resolved_klass_at_index(rax, rcx, rbx);
4515 
4516   __ bind(resolved);
4517 
4518   // Generate subtype check.  Blows rcx, rdi
4519   // Superklass in rax.  Subklass in rdx.
4520   __ gen_subtype_check(rdx, ok_is_subtype);
4521 
4522   // Come here on failure
4523   __ xorl(rax, rax);
4524   __ jmpb(done);
4525   // Come here on success
4526   __ bind(ok_is_subtype);
4527   __ movl(rax, 1);
4528 
4529   // Collect counts on whether this test sees nulls a lot or not.
4530   if (ProfileInterpreter) {
4531     __ jmp(done);
4532     __ bind(is_null);
4533     __ profile_null_seen(rcx);
4534   } else {
4535     __ bind(is_null);   // same as 'done'
4536   }
4537   __ bind(done);
4538   // rax = 0: obj == nullptr or  obj is not an instanceof the specified klass
4539   // rax = 1: obj != nullptr and obj is     an instanceof the specified klass
4540 }
4541 
4542 //----------------------------------------------------------------------------------------------------
4543 // Breakpoints
4544 void TemplateTable::_breakpoint() {
4545   // Note: We get here even if we are single stepping..
4546   // jbug insists on setting breakpoints at every bytecode
4547   // even if we are in single step mode.
4548 
4549   transition(vtos, vtos);
4550 
4551   Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rcx);
4552 
4553   // get the unpatched byte code
4554   __ get_method(rarg);
4555   __ call_VM(noreg,
4556              CAST_FROM_FN_PTR(address,
4557                               InterpreterRuntime::get_original_bytecode_at),
4558              rarg, rbcp);
4559   __ mov(rbx, rax);  // why?
4560 
4561   // post the breakpoint event
4562   __ get_method(rarg);
4563   __ call_VM(noreg,
4564              CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint),
4565              rarg, rbcp);
4566 
4567   // complete the execution of original bytecode
4568   __ dispatch_only_normal(vtos);
4569 }
4570 
4571 //-----------------------------------------------------------------------------
4572 // Exceptions
4573 
4574 void TemplateTable::athrow() {
4575   transition(atos, vtos);
4576   __ null_check(rax);
4577   __ jump(RuntimeAddress(Interpreter::throw_exception_entry()));
4578 }
4579 
4580 //-----------------------------------------------------------------------------
4581 // Synchronization
4582 //
4583 // Note: monitorenter & exit are symmetric routines; which is reflected
4584 //       in the assembly code structure as well
4585 //
4586 // Stack layout:
4587 //
4588 // [expressions  ] <--- rsp               = expression stack top
4589 // ..
4590 // [expressions  ]
4591 // [monitor entry] <--- monitor block top = expression stack bot
4592 // ..
4593 // [monitor entry]
4594 // [frame data   ] <--- monitor block bot
4595 // ...
4596 // [saved rbp    ] <--- rbp
4597 void TemplateTable::monitorenter() {
4598   transition(atos, vtos);
4599 
4600   // check for null object
4601   __ null_check(rax);
4602 
4603   Label is_inline_type;
4604   __ movptr(rbx, Address(rax, oopDesc::mark_offset_in_bytes()));
4605   __ test_markword_is_inline_type(rbx, is_inline_type);
4606 
4607   const Address monitor_block_top(
4608         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
4609   const Address monitor_block_bot(
4610         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
4611   const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
4612 
4613   Label allocated;
4614 
4615   Register rtop = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
4616   Register rbot = LP64_ONLY(c_rarg2) NOT_LP64(rbx);
4617   Register rmon = LP64_ONLY(c_rarg1) NOT_LP64(rdx);
4618 
4619   // initialize entry pointer
4620   __ xorl(rmon, rmon); // points to free slot or null
4621 
4622   // find a free slot in the monitor block (result in rmon)
4623   {
4624     Label entry, loop, exit;
4625     __ movptr(rtop, monitor_block_top); // derelativize pointer
4626     __ lea(rtop, Address(rbp, rtop, Address::times_ptr));
4627     // rtop points to current entry, starting with top-most entry
4628 
4629     __ lea(rbot, monitor_block_bot);    // points to word before bottom
4630                                         // of monitor block
4631     __ jmpb(entry);
4632 
4633     __ bind(loop);
4634     // check if current entry is used
4635     __ cmpptr(Address(rtop, BasicObjectLock::obj_offset()), NULL_WORD);
4636     // if not used then remember entry in rmon
4637     __ cmovptr(Assembler::equal, rmon, rtop);   // cmov => cmovptr
4638     // check if current entry is for same object
4639     __ cmpptr(rax, Address(rtop, BasicObjectLock::obj_offset()));
4640     // if same object then stop searching
4641     __ jccb(Assembler::equal, exit);
4642     // otherwise advance to next entry
4643     __ addptr(rtop, entry_size);
4644     __ bind(entry);
4645     // check if bottom reached
4646     __ cmpptr(rtop, rbot);
4647     // if not at bottom then check this entry
4648     __ jcc(Assembler::notEqual, loop);
4649     __ bind(exit);
4650   }
4651 
4652   __ testptr(rmon, rmon); // check if a slot has been found
4653   __ jcc(Assembler::notZero, allocated); // if found, continue with that one
4654 
4655   // allocate one if there's no free slot
4656   {
4657     Label entry, loop;
4658     // 1. compute new pointers          // rsp: old expression stack top
4659     __ movptr(rmon, monitor_block_bot); // rmon: old expression stack bottom
4660     __ lea(rmon, Address(rbp, rmon, Address::times_ptr));
4661     __ subptr(rsp, entry_size);         // move expression stack top
4662     __ subptr(rmon, entry_size);        // move expression stack bottom
4663     __ mov(rtop, rsp);                  // set start value for copy loop
4664     __ subptr(monitor_block_bot, entry_size / wordSize); // set new monitor block bottom
4665     __ jmp(entry);
4666     // 2. move expression stack contents
4667     __ bind(loop);
4668     __ movptr(rbot, Address(rtop, entry_size)); // load expression stack
4669                                                 // word from old location
4670     __ movptr(Address(rtop, 0), rbot);          // and store it at new location
4671     __ addptr(rtop, wordSize);                  // advance to next word
4672     __ bind(entry);
4673     __ cmpptr(rtop, rmon);                      // check if bottom reached
4674     __ jcc(Assembler::notEqual, loop);          // if not at bottom then
4675                                                 // copy next word
4676   }
4677 
4678   // call run-time routine
4679   // rmon: points to monitor entry
4680   __ bind(allocated);
4681 
4682   // Increment bcp to point to the next bytecode, so exception
4683   // handling for async. exceptions work correctly.
4684   // The object has already been popped from the stack, so the
4685   // expression stack looks correct.
4686   __ increment(rbcp);
4687 
4688   // store object
4689   __ movptr(Address(rmon, BasicObjectLock::obj_offset()), rax);
4690   __ lock_object(rmon);
4691 
4692   // check to make sure this monitor doesn't cause stack overflow after locking
4693   __ save_bcp();  // in case of exception
4694   __ generate_stack_overflow_check(0);
4695 
4696   // The bcp has already been incremented. Just need to dispatch to
4697   // next instruction.
4698   __ dispatch_next(vtos);
4699 
4700   __ bind(is_inline_type);
4701   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
4702                     InterpreterRuntime::throw_identity_exception), rax);
4703   __ should_not_reach_here();
4704 }
4705 
4706 void TemplateTable::monitorexit() {
4707   transition(atos, vtos);
4708 
4709   // check for null object
4710   __ null_check(rax);
4711 
4712   const int is_inline_type_mask = markWord::inline_type_pattern;
4713   Label has_identity;
4714   __ movptr(rbx, Address(rax, oopDesc::mark_offset_in_bytes()));
4715   __ andptr(rbx, is_inline_type_mask);
4716   __ cmpl(rbx, is_inline_type_mask);
4717   __ jcc(Assembler::notEqual, has_identity);
4718   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
4719                      InterpreterRuntime::throw_illegal_monitor_state_exception));
4720   __ should_not_reach_here();
4721   __ bind(has_identity);
4722 
4723   const Address monitor_block_top(
4724         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
4725   const Address monitor_block_bot(
4726         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
4727   const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
4728 
4729   Register rtop = LP64_ONLY(c_rarg1) NOT_LP64(rdx);
4730   Register rbot = LP64_ONLY(c_rarg2) NOT_LP64(rbx);
4731 
4732   Label found;
4733 
4734   // find matching slot
4735   {
4736     Label entry, loop;
4737     __ movptr(rtop, monitor_block_top); // derelativize pointer
4738     __ lea(rtop, Address(rbp, rtop, Address::times_ptr));
4739     // rtop points to current entry, starting with top-most entry
4740 
4741     __ lea(rbot, monitor_block_bot);    // points to word before bottom
4742                                         // of monitor block
4743     __ jmpb(entry);
4744 
4745     __ bind(loop);
4746     // check if current entry is for same object
4747     __ cmpptr(rax, Address(rtop, BasicObjectLock::obj_offset()));
4748     // if same object then stop searching
4749     __ jcc(Assembler::equal, found);
4750     // otherwise advance to next entry
4751     __ addptr(rtop, entry_size);
4752     __ bind(entry);
4753     // check if bottom reached
4754     __ cmpptr(rtop, rbot);
4755     // if not at bottom then check this entry
4756     __ jcc(Assembler::notEqual, loop);
4757   }
4758 
4759   // error handling. Unlocking was not block-structured
4760   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
4761                    InterpreterRuntime::throw_illegal_monitor_state_exception));
4762   __ should_not_reach_here();
4763 
4764   // call run-time routine
4765   __ bind(found);
4766   __ push_ptr(rax); // make sure object is on stack (contract with oopMaps)
4767   __ unlock_object(rtop);
4768   __ pop_ptr(rax); // discard object
4769 }
4770 
4771 // Wide instructions
4772 void TemplateTable::wide() {
4773   transition(vtos, vtos);
4774   __ load_unsigned_byte(rbx, at_bcp(1));
4775   ExternalAddress wtable((address)Interpreter::_wentry_point);
4776   __ jump(ArrayAddress(wtable, Address(noreg, rbx, Address::times_ptr)), rscratch1);
4777   // Note: the rbcp increment step is part of the individual wide bytecode implementations
4778 }
4779 
4780 // Multi arrays
4781 void TemplateTable::multianewarray() {
4782   transition(vtos, atos);
4783 
4784   Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rax);
4785   __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions
4786   // last dim is on top of stack; we want address of first one:
4787   // first_addr = last_addr + (ndims - 1) * stackElementSize - 1*wordsize
4788   // the latter wordSize to point to the beginning of the array.
4789   __ lea(rarg, Address(rsp, rax, Interpreter::stackElementScale(), -wordSize));
4790   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), rarg);
4791   __ load_unsigned_byte(rbx, at_bcp(3));
4792   __ lea(rsp, Address(rsp, rbx, Interpreter::stackElementScale()));  // get rid of counts
4793 }