1 /*
2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "asm/macroAssembler.hpp"
26 #include "compiler/disassembler.hpp"
27 #include "gc/shared/collectedHeap.hpp"
28 #include "gc/shared/gc_globals.hpp"
29 #include "gc/shared/tlab_globals.hpp"
30 #include "interpreter/interpreter.hpp"
31 #include "interpreter/interpreterRuntime.hpp"
32 #include "interpreter/interp_masm.hpp"
33 #include "interpreter/templateTable.hpp"
34 #include "memory/universe.hpp"
35 #include "oops/methodCounters.hpp"
36 #include "oops/methodData.hpp"
37 #include "oops/objArrayKlass.hpp"
38 #include "oops/oop.inline.hpp"
39 #include "oops/inlineKlass.hpp"
40 #include "oops/resolvedFieldEntry.hpp"
41 #include "oops/resolvedIndyEntry.hpp"
42 #include "oops/resolvedMethodEntry.hpp"
43 #include "prims/jvmtiExport.hpp"
44 #include "prims/methodHandles.hpp"
45 #include "runtime/arguments.hpp"
46 #include "runtime/frame.inline.hpp"
47 #include "runtime/safepointMechanism.hpp"
48 #include "runtime/sharedRuntime.hpp"
49 #include "runtime/stubRoutines.hpp"
50 #include "runtime/synchronizer.hpp"
51 #include "utilities/macros.hpp"
52
53 #define __ Disassembler::hook<InterpreterMacroAssembler>(__FILE__, __LINE__, _masm)->
54
55 // Global Register Names
56 static const Register rbcp = r13;
57 static const Register rlocals = r14;
58
59 // Address Computation: local variables
60 static inline Address iaddress(int n) {
61 return Address(rlocals, Interpreter::local_offset_in_bytes(n));
62 }
63
64 static inline Address laddress(int n) {
65 return iaddress(n + 1);
66 }
67
68 static inline Address faddress(int n) {
69 return iaddress(n);
70 }
71
72 static inline Address daddress(int n) {
73 return laddress(n);
74 }
75
76 static inline Address aaddress(int n) {
77 return iaddress(n);
78 }
79
80 static inline Address iaddress(Register r) {
81 return Address(rlocals, r, Address::times_ptr);
82 }
83
84 static inline Address laddress(Register r) {
85 return Address(rlocals, r, Address::times_ptr, Interpreter::local_offset_in_bytes(1));
86 }
87
88 static inline Address faddress(Register r) {
89 return iaddress(r);
90 }
91
92 static inline Address daddress(Register r) {
93 return laddress(r);
94 }
95
96 static inline Address aaddress(Register r) {
97 return iaddress(r);
98 }
99
100
101 // expression stack
102 // (Note: Must not use symmetric equivalents at_rsp_m1/2 since they store
103 // data beyond the rsp which is potentially unsafe in an MT environment;
104 // an interrupt may overwrite that data.)
105 static inline Address at_rsp () {
106 return Address(rsp, 0);
107 }
108
109 // At top of Java expression stack which may be different than esp(). It
110 // isn't for category 1 objects.
111 static inline Address at_tos () {
112 return Address(rsp, Interpreter::expr_offset_in_bytes(0));
113 }
114
115 static inline Address at_tos_p1() {
116 return Address(rsp, Interpreter::expr_offset_in_bytes(1));
117 }
118
119 static inline Address at_tos_p2() {
120 return Address(rsp, Interpreter::expr_offset_in_bytes(2));
121 }
122
123 // Condition conversion
124 static Assembler::Condition j_not(TemplateTable::Condition cc) {
125 switch (cc) {
126 case TemplateTable::equal : return Assembler::notEqual;
127 case TemplateTable::not_equal : return Assembler::equal;
128 case TemplateTable::less : return Assembler::greaterEqual;
129 case TemplateTable::less_equal : return Assembler::greater;
130 case TemplateTable::greater : return Assembler::lessEqual;
131 case TemplateTable::greater_equal: return Assembler::less;
132 }
133 ShouldNotReachHere();
134 return Assembler::zero;
135 }
136
137
138
139 // Miscellaneous helper routines
140 // Store an oop (or null) at the address described by obj.
141 // If val == noreg this means store a null
142
143
144 static void do_oop_store(InterpreterMacroAssembler* _masm,
145 Address dst,
146 Register val,
147 DecoratorSet decorators = 0) {
148 assert(val == noreg || val == rax, "parameter is just for looks");
149 __ store_heap_oop(dst, val, rscratch2, r9, r8, decorators);
150 }
151
152 static void do_oop_load(InterpreterMacroAssembler* _masm,
153 Address src,
154 Register dst,
155 DecoratorSet decorators = 0) {
156 __ load_heap_oop(dst, src, rdx, decorators);
157 }
158
159 Address TemplateTable::at_bcp(int offset) {
160 assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
161 return Address(rbcp, offset);
162 }
163
164
165 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
166 Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
167 int byte_no) {
168 if (!RewriteBytecodes) return;
169 Label L_patch_done;
170
171 switch (bc) {
172 case Bytecodes::_fast_vputfield:
173 case Bytecodes::_fast_aputfield:
174 case Bytecodes::_fast_bputfield:
175 case Bytecodes::_fast_zputfield:
176 case Bytecodes::_fast_cputfield:
177 case Bytecodes::_fast_dputfield:
178 case Bytecodes::_fast_fputfield:
179 case Bytecodes::_fast_iputfield:
180 case Bytecodes::_fast_lputfield:
181 case Bytecodes::_fast_sputfield:
182 {
183 // We skip bytecode quickening for putfield instructions when
184 // the put_code written to the constant pool cache is zero.
185 // This is required so that every execution of this instruction
186 // calls out to InterpreterRuntime::resolve_get_put to do
187 // additional, required work.
188 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
189 assert(load_bc_into_bc_reg, "we use bc_reg as temp");
190 __ load_field_entry(temp_reg, bc_reg);
191 if (byte_no == f1_byte) {
192 __ load_unsigned_byte(temp_reg, Address(temp_reg, in_bytes(ResolvedFieldEntry::get_code_offset())));
193 } else {
194 __ load_unsigned_byte(temp_reg, Address(temp_reg, in_bytes(ResolvedFieldEntry::put_code_offset())));
195 }
196
197 __ movl(bc_reg, bc);
198 __ cmpl(temp_reg, (int) 0);
199 __ jcc(Assembler::zero, L_patch_done); // don't patch
200 }
201 break;
202 default:
203 assert(byte_no == -1, "sanity");
204 // the pair bytecodes have already done the load.
205 if (load_bc_into_bc_reg) {
206 __ movl(bc_reg, bc);
207 }
208 }
209
210 if (JvmtiExport::can_post_breakpoint()) {
211 Label L_fast_patch;
212 // if a breakpoint is present we can't rewrite the stream directly
213 __ movzbl(temp_reg, at_bcp(0));
214 __ cmpl(temp_reg, Bytecodes::_breakpoint);
215 __ jcc(Assembler::notEqual, L_fast_patch);
216 __ get_method(temp_reg);
217 // Let breakpoint table handling rewrite to quicker bytecode
218 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), temp_reg, rbcp, bc_reg);
219 #ifndef ASSERT
220 __ jmpb(L_patch_done);
221 #else
222 __ jmp(L_patch_done);
223 #endif
224 __ bind(L_fast_patch);
225 }
226
227 #ifdef ASSERT
228 Label L_okay;
229 __ load_unsigned_byte(temp_reg, at_bcp(0));
230 __ cmpl(temp_reg, (int) Bytecodes::java_code(bc));
231 __ jcc(Assembler::equal, L_okay);
232 __ cmpl(temp_reg, bc_reg);
233 __ jcc(Assembler::equal, L_okay);
234 __ stop("patching the wrong bytecode");
235 __ bind(L_okay);
236 #endif
237
238 // patch bytecode
239 __ movb(at_bcp(0), bc_reg);
240 __ bind(L_patch_done);
241 }
242 // Individual instructions
243
244
245 void TemplateTable::nop() {
246 transition(vtos, vtos);
247 // nothing to do
248 }
249
250 void TemplateTable::shouldnotreachhere() {
251 transition(vtos, vtos);
252 __ stop("shouldnotreachhere bytecode");
253 }
254
255 void TemplateTable::aconst_null() {
256 transition(vtos, atos);
257 __ xorl(rax, rax);
258 }
259
260 void TemplateTable::iconst(int value) {
261 transition(vtos, itos);
262 if (value == 0) {
263 __ xorl(rax, rax);
264 } else {
265 __ movl(rax, value);
266 }
267 }
268
269 void TemplateTable::lconst(int value) {
270 transition(vtos, ltos);
271 if (value == 0) {
272 __ xorl(rax, rax);
273 } else {
274 __ movl(rax, value);
275 }
276 }
277
278
279
280 void TemplateTable::fconst(int value) {
281 transition(vtos, ftos);
282 static float one = 1.0f, two = 2.0f;
283 switch (value) {
284 case 0:
285 __ xorps(xmm0, xmm0);
286 break;
287 case 1:
288 __ movflt(xmm0, ExternalAddress((address) &one), rscratch1);
289 break;
290 case 2:
291 __ movflt(xmm0, ExternalAddress((address) &two), rscratch1);
292 break;
293 default:
294 ShouldNotReachHere();
295 break;
296 }
297 }
298
299 void TemplateTable::dconst(int value) {
300 transition(vtos, dtos);
301 static double one = 1.0;
302 switch (value) {
303 case 0:
304 __ xorpd(xmm0, xmm0);
305 break;
306 case 1:
307 __ movdbl(xmm0, ExternalAddress((address) &one), rscratch1);
308 break;
309 default:
310 ShouldNotReachHere();
311 break;
312 }
313 }
314
315 void TemplateTable::bipush() {
316 transition(vtos, itos);
317 __ load_signed_byte(rax, at_bcp(1));
318 }
319
320 void TemplateTable::sipush() {
321 transition(vtos, itos);
322 __ load_unsigned_short(rax, at_bcp(1));
323 __ bswapl(rax);
324 __ sarl(rax, 16);
325 }
326
327 void TemplateTable::ldc(LdcType type) {
328 transition(vtos, vtos);
329 Register rarg = c_rarg1;
330 Label call_ldc, notFloat, notClass, notInt, Done;
331
332 if (is_ldc_wide(type)) {
333 __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
334 } else {
335 __ load_unsigned_byte(rbx, at_bcp(1));
336 }
337
338 __ get_cpool_and_tags(rcx, rax);
339 const int base_offset = ConstantPool::header_size() * wordSize;
340 const int tags_offset = Array<u1>::base_offset_in_bytes();
341
342 // get type
343 __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset));
344
345 // unresolved class - get the resolved class
346 __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass);
347 __ jccb(Assembler::equal, call_ldc);
348
349 // unresolved class in error state - call into runtime to throw the error
350 // from the first resolution attempt
351 __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError);
352 __ jccb(Assembler::equal, call_ldc);
353
354 // resolved class - need to call vm to get java mirror of the class
355 __ cmpl(rdx, JVM_CONSTANT_Class);
356 __ jcc(Assembler::notEqual, notClass);
357
358 __ bind(call_ldc);
359
360 __ movl(rarg, is_ldc_wide(type) ? 1 : 0);
361 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), rarg);
362
363 __ push(atos);
364 __ jmp(Done);
365
366 __ bind(notClass);
367 __ cmpl(rdx, JVM_CONSTANT_Float);
368 __ jccb(Assembler::notEqual, notFloat);
369
370 // ftos
371 __ movflt(xmm0, Address(rcx, rbx, Address::times_ptr, base_offset));
372 __ push(ftos);
373 __ jmp(Done);
374
375 __ bind(notFloat);
376 __ cmpl(rdx, JVM_CONSTANT_Integer);
377 __ jccb(Assembler::notEqual, notInt);
378
379 // itos
380 __ movl(rax, Address(rcx, rbx, Address::times_ptr, base_offset));
381 __ push(itos);
382 __ jmp(Done);
383
384 // assume the tag is for condy; if not, the VM runtime will tell us
385 __ bind(notInt);
386 condy_helper(Done);
387
388 __ bind(Done);
389 }
390
391 // Fast path for caching oop constants.
392 void TemplateTable::fast_aldc(LdcType type) {
393 transition(vtos, atos);
394
395 Register result = rax;
396 Register tmp = rdx;
397 Register rarg = c_rarg1;
398 int index_size = is_ldc_wide(type) ? sizeof(u2) : sizeof(u1);
399
400 Label resolved;
401
402 // We are resolved if the resolved reference cache entry contains a
403 // non-null object (String, MethodType, etc.)
404 assert_different_registers(result, tmp);
405 __ get_cache_index_at_bcp(tmp, 1, index_size);
406 __ load_resolved_reference_at_index(result, tmp);
407 __ testptr(result, result);
408 __ jcc(Assembler::notZero, resolved);
409
410 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
411
412 // first time invocation - must resolve first
413 __ movl(rarg, (int)bytecode());
414 __ call_VM(result, entry, rarg);
415 __ bind(resolved);
416
417 { // Check for the null sentinel.
418 // If we just called the VM, it already did the mapping for us,
419 // but it's harmless to retry.
420 Label notNull;
421 ExternalAddress null_sentinel((address)Universe::the_null_sentinel_addr());
422 __ movptr(tmp, null_sentinel);
423 __ resolve_oop_handle(tmp, rscratch2);
424 __ cmpoop(tmp, result);
425 __ jccb(Assembler::notEqual, notNull);
426 __ xorptr(result, result); // null object reference
427 __ bind(notNull);
428 }
429
430 if (VerifyOops) {
431 __ verify_oop(result);
432 }
433 }
434
435 void TemplateTable::ldc2_w() {
436 transition(vtos, vtos);
437 Label notDouble, notLong, Done;
438 __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
439
440 __ get_cpool_and_tags(rcx, rax);
441 const int base_offset = ConstantPool::header_size() * wordSize;
442 const int tags_offset = Array<u1>::base_offset_in_bytes();
443
444 // get type
445 __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset));
446 __ cmpl(rdx, JVM_CONSTANT_Double);
447 __ jccb(Assembler::notEqual, notDouble);
448
449 // dtos
450 __ movdbl(xmm0, Address(rcx, rbx, Address::times_ptr, base_offset));
451 __ push(dtos);
452
453 __ jmp(Done);
454 __ bind(notDouble);
455 __ cmpl(rdx, JVM_CONSTANT_Long);
456 __ jccb(Assembler::notEqual, notLong);
457
458 // ltos
459 __ movptr(rax, Address(rcx, rbx, Address::times_ptr, base_offset + 0 * wordSize));
460 __ push(ltos);
461 __ jmp(Done);
462
463 __ bind(notLong);
464 condy_helper(Done);
465
466 __ bind(Done);
467 }
468
469 void TemplateTable::condy_helper(Label& Done) {
470 const Register obj = rax;
471 const Register off = rbx;
472 const Register flags = rcx;
473 const Register rarg = c_rarg1;
474 __ movl(rarg, (int)bytecode());
475 call_VM(obj, CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc), rarg);
476 __ get_vm_result_metadata(flags);
477 // VMr = obj = base address to find primitive value to push
478 // VMr2 = flags = (tos, off) using format of CPCE::_flags
479 __ movl(off, flags);
480 __ andl(off, ConstantPoolCache::field_index_mask);
481 const Address field(obj, off, Address::times_1, 0*wordSize);
482
483 // What sort of thing are we loading?
484 __ shrl(flags, ConstantPoolCache::tos_state_shift);
485 __ andl(flags, ConstantPoolCache::tos_state_mask);
486
487 switch (bytecode()) {
488 case Bytecodes::_ldc:
489 case Bytecodes::_ldc_w:
490 {
491 // tos in (itos, ftos, stos, btos, ctos, ztos)
492 Label notInt, notFloat, notShort, notByte, notChar, notBool;
493 __ cmpl(flags, itos);
494 __ jccb(Assembler::notEqual, notInt);
495 // itos
496 __ movl(rax, field);
497 __ push(itos);
498 __ jmp(Done);
499
500 __ bind(notInt);
501 __ cmpl(flags, ftos);
502 __ jccb(Assembler::notEqual, notFloat);
503 // ftos
504 __ movflt(xmm0, field);
505 __ push(ftos);
506 __ jmp(Done);
507
508 __ bind(notFloat);
509 __ cmpl(flags, stos);
510 __ jccb(Assembler::notEqual, notShort);
511 // stos
512 __ load_signed_short(rax, field);
513 __ push(stos);
514 __ jmp(Done);
515
516 __ bind(notShort);
517 __ cmpl(flags, btos);
518 __ jccb(Assembler::notEqual, notByte);
519 // btos
520 __ load_signed_byte(rax, field);
521 __ push(btos);
522 __ jmp(Done);
523
524 __ bind(notByte);
525 __ cmpl(flags, ctos);
526 __ jccb(Assembler::notEqual, notChar);
527 // ctos
528 __ load_unsigned_short(rax, field);
529 __ push(ctos);
530 __ jmp(Done);
531
532 __ bind(notChar);
533 __ cmpl(flags, ztos);
534 __ jccb(Assembler::notEqual, notBool);
535 // ztos
536 __ load_signed_byte(rax, field);
537 __ push(ztos);
538 __ jmp(Done);
539
540 __ bind(notBool);
541 break;
542 }
543
544 case Bytecodes::_ldc2_w:
545 {
546 Label notLong, notDouble;
547 __ cmpl(flags, ltos);
548 __ jccb(Assembler::notEqual, notLong);
549 // ltos
550 // Loading high word first because movptr clobbers rax
551 __ movptr(rax, field);
552 __ push(ltos);
553 __ jmp(Done);
554
555 __ bind(notLong);
556 __ cmpl(flags, dtos);
557 __ jccb(Assembler::notEqual, notDouble);
558 // dtos
559 __ movdbl(xmm0, field);
560 __ push(dtos);
561 __ jmp(Done);
562
563 __ bind(notDouble);
564 break;
565 }
566
567 default:
568 ShouldNotReachHere();
569 }
570
571 __ stop("bad ldc/condy");
572 }
573
574 void TemplateTable::locals_index(Register reg, int offset) {
575 __ load_unsigned_byte(reg, at_bcp(offset));
576 __ negptr(reg);
577 }
578
579 void TemplateTable::iload() {
580 iload_internal();
581 }
582
583 void TemplateTable::nofast_iload() {
584 iload_internal(may_not_rewrite);
585 }
586
587 void TemplateTable::iload_internal(RewriteControl rc) {
588 transition(vtos, itos);
589 if (RewriteFrequentPairs && rc == may_rewrite) {
590 Label rewrite, done;
591 const Register bc = c_rarg3;
592 assert(rbx != bc, "register damaged");
593
594 // get next byte
595 __ load_unsigned_byte(rbx,
596 at_bcp(Bytecodes::length_for(Bytecodes::_iload)));
597 // if _iload, wait to rewrite to iload2. We only want to rewrite the
598 // last two iloads in a pair. Comparing against fast_iload means that
599 // the next bytecode is neither an iload or a caload, and therefore
600 // an iload pair.
601 __ cmpl(rbx, Bytecodes::_iload);
602 __ jcc(Assembler::equal, done);
603
604 __ cmpl(rbx, Bytecodes::_fast_iload);
605 __ movl(bc, Bytecodes::_fast_iload2);
606
607 __ jccb(Assembler::equal, rewrite);
608
609 // if _caload, rewrite to fast_icaload
610 __ cmpl(rbx, Bytecodes::_caload);
611 __ movl(bc, Bytecodes::_fast_icaload);
612 __ jccb(Assembler::equal, rewrite);
613
614 // rewrite so iload doesn't check again.
615 __ movl(bc, Bytecodes::_fast_iload);
616
617 // rewrite
618 // bc: fast bytecode
619 __ bind(rewrite);
620 patch_bytecode(Bytecodes::_iload, bc, rbx, false);
621 __ bind(done);
622 }
623
624 // Get the local value into tos
625 locals_index(rbx);
626 __ movl(rax, iaddress(rbx));
627 }
628
629 void TemplateTable::fast_iload2() {
630 transition(vtos, itos);
631 locals_index(rbx);
632 __ movl(rax, iaddress(rbx));
633 __ push(itos);
634 locals_index(rbx, 3);
635 __ movl(rax, iaddress(rbx));
636 }
637
638 void TemplateTable::fast_iload() {
639 transition(vtos, itos);
640 locals_index(rbx);
641 __ movl(rax, iaddress(rbx));
642 }
643
644 void TemplateTable::lload() {
645 transition(vtos, ltos);
646 locals_index(rbx);
647 __ movptr(rax, laddress(rbx));
648 }
649
650 void TemplateTable::fload() {
651 transition(vtos, ftos);
652 locals_index(rbx);
653 __ movflt(xmm0, faddress(rbx));
654 }
655
656 void TemplateTable::dload() {
657 transition(vtos, dtos);
658 locals_index(rbx);
659 __ movdbl(xmm0, daddress(rbx));
660 }
661
662 void TemplateTable::aload() {
663 transition(vtos, atos);
664 locals_index(rbx);
665 __ movptr(rax, aaddress(rbx));
666 }
667
668 void TemplateTable::locals_index_wide(Register reg) {
669 __ load_unsigned_short(reg, at_bcp(2));
670 __ bswapl(reg);
671 __ shrl(reg, 16);
672 __ negptr(reg);
673 }
674
675 void TemplateTable::wide_iload() {
676 transition(vtos, itos);
677 locals_index_wide(rbx);
678 __ movl(rax, iaddress(rbx));
679 }
680
681 void TemplateTable::wide_lload() {
682 transition(vtos, ltos);
683 locals_index_wide(rbx);
684 __ movptr(rax, laddress(rbx));
685 }
686
687 void TemplateTable::wide_fload() {
688 transition(vtos, ftos);
689 locals_index_wide(rbx);
690 __ movflt(xmm0, faddress(rbx));
691 }
692
693 void TemplateTable::wide_dload() {
694 transition(vtos, dtos);
695 locals_index_wide(rbx);
696 __ movdbl(xmm0, daddress(rbx));
697 }
698
699 void TemplateTable::wide_aload() {
700 transition(vtos, atos);
701 locals_index_wide(rbx);
702 __ movptr(rax, aaddress(rbx));
703 }
704
705 void TemplateTable::index_check(Register array, Register index) {
706 // Pop ptr into array
707 __ pop_ptr(array);
708 index_check_without_pop(array, index);
709 }
710
711 void TemplateTable::index_check_without_pop(Register array, Register index) {
712 // destroys rbx
713 // sign extend index for use by indexed load
714 __ movl2ptr(index, index);
715 // check index
716 __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes()));
717 if (index != rbx) {
718 // ??? convention: move aberrant index into rbx for exception message
719 assert(rbx != array, "different registers");
720 __ movl(rbx, index);
721 }
722 Label skip;
723 __ jccb(Assembler::below, skip);
724 // Pass array to create more detailed exceptions.
725 __ mov(c_rarg1, array);
726 __ jump(RuntimeAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry));
727 __ bind(skip);
728 }
729
730 void TemplateTable::iaload() {
731 transition(itos, itos);
732 // rax: index
733 // rdx: array
734 index_check(rdx, rax); // kills rbx
735 __ access_load_at(T_INT, IN_HEAP | IS_ARRAY, rax,
736 Address(rdx, rax, Address::times_4,
737 arrayOopDesc::base_offset_in_bytes(T_INT)),
738 noreg);
739 }
740
741 void TemplateTable::laload() {
742 transition(itos, ltos);
743 // rax: index
744 // rdx: array
745 index_check(rdx, rax); // kills rbx
746 // rbx,: index
747 __ access_load_at(T_LONG, IN_HEAP | IS_ARRAY, noreg /* ltos */,
748 Address(rdx, rbx, Address::times_8,
749 arrayOopDesc::base_offset_in_bytes(T_LONG)),
750 noreg);
751 }
752
753
754
755 void TemplateTable::faload() {
756 transition(itos, ftos);
757 // rax: index
758 // rdx: array
759 index_check(rdx, rax); // kills rbx
760 __ access_load_at(T_FLOAT, IN_HEAP | IS_ARRAY, noreg /* ftos */,
761 Address(rdx, rax,
762 Address::times_4,
763 arrayOopDesc::base_offset_in_bytes(T_FLOAT)),
764 noreg);
765 }
766
767 void TemplateTable::daload() {
768 transition(itos, dtos);
769 // rax: index
770 // rdx: array
771 index_check(rdx, rax); // kills rbx
772 __ access_load_at(T_DOUBLE, IN_HEAP | IS_ARRAY, noreg /* dtos */,
773 Address(rdx, rax,
774 Address::times_8,
775 arrayOopDesc::base_offset_in_bytes(T_DOUBLE)),
776 noreg);
777 }
778
779 void TemplateTable::aaload() {
780 transition(itos, atos);
781 Register array = rdx;
782 Register index = rax;
783
784 index_check(array, index); // kills rbx
785 __ profile_array_type<ArrayLoadData>(rbx, array, rcx);
786 if (UseArrayFlattening) {
787 Label is_flat_array, done;
788 __ test_flat_array_oop(array, rbx, is_flat_array);
789 do_oop_load(_masm,
790 Address(array, index,
791 UseCompressedOops ? Address::times_4 : Address::times_ptr,
792 arrayOopDesc::base_offset_in_bytes(T_OBJECT)),
793 rax,
794 IS_ARRAY);
795 __ jmp(done);
796 __ bind(is_flat_array);
797 __ movptr(rcx, array);
798 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::flat_array_load), rcx, index);
799 __ bind(done);
800 } else {
801 do_oop_load(_masm,
802 Address(array, index,
803 UseCompressedOops ? Address::times_4 : Address::times_ptr,
804 arrayOopDesc::base_offset_in_bytes(T_OBJECT)),
805 rax,
806 IS_ARRAY);
807 }
808 __ profile_element_type(rbx, rax, rcx);
809 }
810
811 void TemplateTable::baload() {
812 transition(itos, itos);
813 // rax: index
814 // rdx: array
815 index_check(rdx, rax); // kills rbx
816 __ access_load_at(T_BYTE, IN_HEAP | IS_ARRAY, rax,
817 Address(rdx, rax, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_BYTE)),
818 noreg);
819 }
820
821 void TemplateTable::caload() {
822 transition(itos, itos);
823 // rax: index
824 // rdx: array
825 index_check(rdx, rax); // kills rbx
826 __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, rax,
827 Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)),
828 noreg);
829 }
830
831 // iload followed by caload frequent pair
832 void TemplateTable::fast_icaload() {
833 transition(vtos, itos);
834 // load index out of locals
835 locals_index(rbx);
836 __ movl(rax, iaddress(rbx));
837
838 // rax: index
839 // rdx: array
840 index_check(rdx, rax); // kills rbx
841 __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, rax,
842 Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)),
843 noreg);
844 }
845
846
847 void TemplateTable::saload() {
848 transition(itos, itos);
849 // rax: index
850 // rdx: array
851 index_check(rdx, rax); // kills rbx
852 __ access_load_at(T_SHORT, IN_HEAP | IS_ARRAY, rax,
853 Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_SHORT)),
854 noreg);
855 }
856
857 void TemplateTable::iload(int n) {
858 transition(vtos, itos);
859 __ movl(rax, iaddress(n));
860 }
861
862 void TemplateTable::lload(int n) {
863 transition(vtos, ltos);
864 __ movptr(rax, laddress(n));
865 }
866
867 void TemplateTable::fload(int n) {
868 transition(vtos, ftos);
869 __ movflt(xmm0, faddress(n));
870 }
871
872 void TemplateTable::dload(int n) {
873 transition(vtos, dtos);
874 __ movdbl(xmm0, daddress(n));
875 }
876
877 void TemplateTable::aload(int n) {
878 transition(vtos, atos);
879 __ movptr(rax, aaddress(n));
880 }
881
882 void TemplateTable::aload_0() {
883 aload_0_internal();
884 }
885
886 void TemplateTable::nofast_aload_0() {
887 aload_0_internal(may_not_rewrite);
888 }
889
890 void TemplateTable::aload_0_internal(RewriteControl rc) {
891 transition(vtos, atos);
892 // According to bytecode histograms, the pairs:
893 //
894 // _aload_0, _fast_igetfield
895 // _aload_0, _fast_agetfield
896 // _aload_0, _fast_fgetfield
897 //
898 // occur frequently. If RewriteFrequentPairs is set, the (slow)
899 // _aload_0 bytecode checks if the next bytecode is either
900 // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then
901 // rewrites the current bytecode into a pair bytecode; otherwise it
902 // rewrites the current bytecode into _fast_aload_0 that doesn't do
903 // the pair check anymore.
904 //
905 // Note: If the next bytecode is _getfield, the rewrite must be
906 // delayed, otherwise we may miss an opportunity for a pair.
907 //
908 // Also rewrite frequent pairs
909 // aload_0, aload_1
910 // aload_0, iload_1
911 // These bytecodes with a small amount of code are most profitable
912 // to rewrite
913 if (RewriteFrequentPairs && rc == may_rewrite) {
914 Label rewrite, done;
915
916 const Register bc = c_rarg3;
917 assert(rbx != bc, "register damaged");
918
919 // get next byte
920 __ load_unsigned_byte(rbx, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)));
921
922 // if _getfield then wait with rewrite
923 __ cmpl(rbx, Bytecodes::_getfield);
924 __ jcc(Assembler::equal, done);
925
926 // if _igetfield then rewrite to _fast_iaccess_0
927 assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
928 __ cmpl(rbx, Bytecodes::_fast_igetfield);
929 __ movl(bc, Bytecodes::_fast_iaccess_0);
930 __ jccb(Assembler::equal, rewrite);
931
932 // if _agetfield then rewrite to _fast_aaccess_0
933 assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
934 __ cmpl(rbx, Bytecodes::_fast_agetfield);
935 __ movl(bc, Bytecodes::_fast_aaccess_0);
936 __ jccb(Assembler::equal, rewrite);
937
938 // if _fgetfield then rewrite to _fast_faccess_0
939 assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
940 __ cmpl(rbx, Bytecodes::_fast_fgetfield);
941 __ movl(bc, Bytecodes::_fast_faccess_0);
942 __ jccb(Assembler::equal, rewrite);
943
944 // else rewrite to _fast_aload0
945 assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition");
946 __ movl(bc, Bytecodes::_fast_aload_0);
947
948 // rewrite
949 // bc: fast bytecode
950 __ bind(rewrite);
951 patch_bytecode(Bytecodes::_aload_0, bc, rbx, false);
952
953 __ bind(done);
954 }
955
956 // Do actual aload_0 (must do this after patch_bytecode which might call VM and GC might change oop).
957 aload(0);
958 }
959
960 void TemplateTable::istore() {
961 transition(itos, vtos);
962 locals_index(rbx);
963 __ movl(iaddress(rbx), rax);
964 }
965
966
967 void TemplateTable::lstore() {
968 transition(ltos, vtos);
969 locals_index(rbx);
970 __ movptr(laddress(rbx), rax);
971 }
972
973 void TemplateTable::fstore() {
974 transition(ftos, vtos);
975 locals_index(rbx);
976 __ movflt(faddress(rbx), xmm0);
977 }
978
979 void TemplateTable::dstore() {
980 transition(dtos, vtos);
981 locals_index(rbx);
982 __ movdbl(daddress(rbx), xmm0);
983 }
984
985 void TemplateTable::astore() {
986 transition(vtos, vtos);
987 __ pop_ptr(rax);
988 locals_index(rbx);
989 __ movptr(aaddress(rbx), rax);
990 }
991
992 void TemplateTable::wide_istore() {
993 transition(vtos, vtos);
994 __ pop_i();
995 locals_index_wide(rbx);
996 __ movl(iaddress(rbx), rax);
997 }
998
999 void TemplateTable::wide_lstore() {
1000 transition(vtos, vtos);
1001 __ pop_l();
1002 locals_index_wide(rbx);
1003 __ movptr(laddress(rbx), rax);
1004 }
1005
1006 void TemplateTable::wide_fstore() {
1007 transition(vtos, vtos);
1008 __ pop_f(xmm0);
1009 locals_index_wide(rbx);
1010 __ movflt(faddress(rbx), xmm0);
1011 }
1012
1013 void TemplateTable::wide_dstore() {
1014 transition(vtos, vtos);
1015 __ pop_d(xmm0);
1016 locals_index_wide(rbx);
1017 __ movdbl(daddress(rbx), xmm0);
1018 }
1019
1020 void TemplateTable::wide_astore() {
1021 transition(vtos, vtos);
1022 __ pop_ptr(rax);
1023 locals_index_wide(rbx);
1024 __ movptr(aaddress(rbx), rax);
1025 }
1026
1027 void TemplateTable::iastore() {
1028 transition(itos, vtos);
1029 __ pop_i(rbx);
1030 // rax: value
1031 // rbx: index
1032 // rdx: array
1033 index_check(rdx, rbx); // prefer index in rbx
1034 __ access_store_at(T_INT, IN_HEAP | IS_ARRAY,
1035 Address(rdx, rbx, Address::times_4,
1036 arrayOopDesc::base_offset_in_bytes(T_INT)),
1037 rax, noreg, noreg, noreg);
1038 }
1039
1040 void TemplateTable::lastore() {
1041 transition(ltos, vtos);
1042 __ pop_i(rbx);
1043 // rax,: low(value)
1044 // rcx: array
1045 // rdx: high(value)
1046 index_check(rcx, rbx); // prefer index in rbx,
1047 // rbx,: index
1048 __ access_store_at(T_LONG, IN_HEAP | IS_ARRAY,
1049 Address(rcx, rbx, Address::times_8,
1050 arrayOopDesc::base_offset_in_bytes(T_LONG)),
1051 noreg /* ltos */, noreg, noreg, noreg);
1052 }
1053
1054
1055 void TemplateTable::fastore() {
1056 transition(ftos, vtos);
1057 __ pop_i(rbx);
1058 // value is in xmm0
1059 // rbx: index
1060 // rdx: array
1061 index_check(rdx, rbx); // prefer index in rbx
1062 __ access_store_at(T_FLOAT, IN_HEAP | IS_ARRAY,
1063 Address(rdx, rbx, Address::times_4,
1064 arrayOopDesc::base_offset_in_bytes(T_FLOAT)),
1065 noreg /* ftos */, noreg, noreg, noreg);
1066 }
1067
1068 void TemplateTable::dastore() {
1069 transition(dtos, vtos);
1070 __ pop_i(rbx);
1071 // value is in xmm0
1072 // rbx: index
1073 // rdx: array
1074 index_check(rdx, rbx); // prefer index in rbx
1075 __ access_store_at(T_DOUBLE, IN_HEAP | IS_ARRAY,
1076 Address(rdx, rbx, Address::times_8,
1077 arrayOopDesc::base_offset_in_bytes(T_DOUBLE)),
1078 noreg /* dtos */, noreg, noreg, noreg);
1079 }
1080
1081 void TemplateTable::aastore() {
1082 Label is_null, is_flat_array, ok_is_subtype, done;
1083 transition(vtos, vtos);
1084 // stack: ..., array, index, value
1085 __ movptr(rax, at_tos()); // value
1086 __ movl(rcx, at_tos_p1()); // index
1087 __ movptr(rdx, at_tos_p2()); // array
1088
1089 Address element_address(rdx, rcx,
1090 UseCompressedOops? Address::times_4 : Address::times_ptr,
1091 arrayOopDesc::base_offset_in_bytes(T_OBJECT));
1092
1093 index_check_without_pop(rdx, rcx); // kills rbx
1094
1095 __ profile_array_type<ArrayStoreData>(rdi, rdx, rbx);
1096 __ profile_multiple_element_types(rdi, rax, rbx, rcx);
1097
1098 __ testptr(rax, rax);
1099 __ jcc(Assembler::zero, is_null);
1100
1101 // Move array class to rdi
1102 __ load_klass(rdi, rdx, rscratch1);
1103 if (UseArrayFlattening) {
1104 __ movl(rbx, Address(rdi, Klass::layout_helper_offset()));
1105 __ test_flat_array_layout(rbx, is_flat_array);
1106 }
1107
1108 // Move subklass into rbx
1109 __ load_klass(rbx, rax, rscratch1);
1110 // Move array element superklass into rax
1111 __ movptr(rax, Address(rdi,
1112 ObjArrayKlass::element_klass_offset()));
1113
1114 // Generate subtype check. Blows rcx, rdi
1115 // Superklass in rax. Subklass in rbx.
1116 // is "rbx <: rax" ? (value subclass <: array element superclass)
1117 __ gen_subtype_check(rbx, ok_is_subtype, false);
1118
1119 // Come here on failure
1120 // object is at TOS
1121 __ jump(RuntimeAddress(Interpreter::_throw_ArrayStoreException_entry));
1122
1123 // Come here on success
1124 __ bind(ok_is_subtype);
1125
1126 // Get the value we will store
1127 __ movptr(rax, at_tos());
1128 __ movl(rcx, at_tos_p1()); // index
1129 // Now store using the appropriate barrier
1130 do_oop_store(_masm, element_address, rax, IS_ARRAY);
1131 __ jmp(done);
1132
1133 // Have a null in rax, rdx=array, ecx=index. Store null at ary[idx]
1134 __ bind(is_null);
1135 if (Arguments::is_valhalla_enabled()) {
1136 Label write_null_to_null_free_array, store_null;
1137
1138 // Move array class to rdi
1139 __ load_klass(rdi, rdx, rscratch1);
1140 if (UseArrayFlattening) {
1141 __ movl(rbx, Address(rdi, Klass::layout_helper_offset()));
1142 __ test_flat_array_layout(rbx, is_flat_array);
1143 }
1144
1145 // No way to store null in null-free array
1146 __ test_null_free_array_oop(rdx, rbx, write_null_to_null_free_array);
1147 __ jmp(store_null);
1148
1149 __ bind(write_null_to_null_free_array);
1150 __ jump(RuntimeAddress(Interpreter::_throw_NullPointerException_entry));
1151
1152 __ bind(store_null);
1153 }
1154 // Store a null
1155 do_oop_store(_masm, element_address, noreg, IS_ARRAY);
1156 __ jmp(done);
1157
1158 if (UseArrayFlattening) {
1159 Label is_type_ok;
1160 __ bind(is_flat_array); // Store non-null value to flat
1161
1162 __ movptr(rax, at_tos());
1163 __ movl(rcx, at_tos_p1()); // index
1164 __ movptr(rdx, at_tos_p2()); // array
1165
1166 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::flat_array_store), rax, rdx, rcx);
1167 }
1168 // Pop stack arguments
1169 __ bind(done);
1170 __ addptr(rsp, 3 * Interpreter::stackElementSize);
1171 }
1172
1173 void TemplateTable::bastore() {
1174 transition(itos, vtos);
1175 __ pop_i(rbx);
1176 // rax: value
1177 // rbx: index
1178 // rdx: array
1179 index_check(rdx, rbx); // prefer index in rbx
1180 // Need to check whether array is boolean or byte
1181 // since both types share the bastore bytecode.
1182 __ load_klass(rcx, rdx, rscratch1);
1183 __ movl(rcx, Address(rcx, Klass::layout_helper_offset()));
1184 int diffbit = Klass::layout_helper_boolean_diffbit();
1185 __ testl(rcx, diffbit);
1186 Label L_skip;
1187 __ jccb(Assembler::zero, L_skip);
1188 __ andl(rax, 1); // if it is a T_BOOLEAN array, mask the stored value to 0/1
1189 __ bind(L_skip);
1190 __ access_store_at(T_BYTE, IN_HEAP | IS_ARRAY,
1191 Address(rdx, rbx,Address::times_1,
1192 arrayOopDesc::base_offset_in_bytes(T_BYTE)),
1193 rax, noreg, noreg, noreg);
1194 }
1195
1196 void TemplateTable::castore() {
1197 transition(itos, vtos);
1198 __ pop_i(rbx);
1199 // rax: value
1200 // rbx: index
1201 // rdx: array
1202 index_check(rdx, rbx); // prefer index in rbx
1203 __ access_store_at(T_CHAR, IN_HEAP | IS_ARRAY,
1204 Address(rdx, rbx, Address::times_2,
1205 arrayOopDesc::base_offset_in_bytes(T_CHAR)),
1206 rax, noreg, noreg, noreg);
1207 }
1208
1209
1210 void TemplateTable::sastore() {
1211 castore();
1212 }
1213
1214 void TemplateTable::istore(int n) {
1215 transition(itos, vtos);
1216 __ movl(iaddress(n), rax);
1217 }
1218
1219 void TemplateTable::lstore(int n) {
1220 transition(ltos, vtos);
1221 __ movptr(laddress(n), rax);
1222 }
1223
1224 void TemplateTable::fstore(int n) {
1225 transition(ftos, vtos);
1226 __ movflt(faddress(n), xmm0);
1227 }
1228
1229 void TemplateTable::dstore(int n) {
1230 transition(dtos, vtos);
1231 __ movdbl(daddress(n), xmm0);
1232 }
1233
1234
1235 void TemplateTable::astore(int n) {
1236 transition(vtos, vtos);
1237 __ pop_ptr(rax);
1238 __ movptr(aaddress(n), rax);
1239 }
1240
1241 void TemplateTable::pop() {
1242 transition(vtos, vtos);
1243 __ addptr(rsp, Interpreter::stackElementSize);
1244 }
1245
1246 void TemplateTable::pop2() {
1247 transition(vtos, vtos);
1248 __ addptr(rsp, 2 * Interpreter::stackElementSize);
1249 }
1250
1251
1252 void TemplateTable::dup() {
1253 transition(vtos, vtos);
1254 __ load_ptr(0, rax);
1255 __ push_ptr(rax);
1256 // stack: ..., a, a
1257 }
1258
1259 void TemplateTable::dup_x1() {
1260 transition(vtos, vtos);
1261 // stack: ..., a, b
1262 __ load_ptr( 0, rax); // load b
1263 __ load_ptr( 1, rcx); // load a
1264 __ store_ptr(1, rax); // store b
1265 __ store_ptr(0, rcx); // store a
1266 __ push_ptr(rax); // push b
1267 // stack: ..., b, a, b
1268 }
1269
1270 void TemplateTable::dup_x2() {
1271 transition(vtos, vtos);
1272 // stack: ..., a, b, c
1273 __ load_ptr( 0, rax); // load c
1274 __ load_ptr( 2, rcx); // load a
1275 __ store_ptr(2, rax); // store c in a
1276 __ push_ptr(rax); // push c
1277 // stack: ..., c, b, c, c
1278 __ load_ptr( 2, rax); // load b
1279 __ store_ptr(2, rcx); // store a in b
1280 // stack: ..., c, a, c, c
1281 __ store_ptr(1, rax); // store b in c
1282 // stack: ..., c, a, b, c
1283 }
1284
1285 void TemplateTable::dup2() {
1286 transition(vtos, vtos);
1287 // stack: ..., a, b
1288 __ load_ptr(1, rax); // load a
1289 __ push_ptr(rax); // push a
1290 __ load_ptr(1, rax); // load b
1291 __ push_ptr(rax); // push b
1292 // stack: ..., a, b, a, b
1293 }
1294
1295
1296 void TemplateTable::dup2_x1() {
1297 transition(vtos, vtos);
1298 // stack: ..., a, b, c
1299 __ load_ptr( 0, rcx); // load c
1300 __ load_ptr( 1, rax); // load b
1301 __ push_ptr(rax); // push b
1302 __ push_ptr(rcx); // push c
1303 // stack: ..., a, b, c, b, c
1304 __ store_ptr(3, rcx); // store c in b
1305 // stack: ..., a, c, c, b, c
1306 __ load_ptr( 4, rcx); // load a
1307 __ store_ptr(2, rcx); // store a in 2nd c
1308 // stack: ..., a, c, a, b, c
1309 __ store_ptr(4, rax); // store b in a
1310 // stack: ..., b, c, a, b, c
1311 }
1312
1313 void TemplateTable::dup2_x2() {
1314 transition(vtos, vtos);
1315 // stack: ..., a, b, c, d
1316 __ load_ptr( 0, rcx); // load d
1317 __ load_ptr( 1, rax); // load c
1318 __ push_ptr(rax); // push c
1319 __ push_ptr(rcx); // push d
1320 // stack: ..., a, b, c, d, c, d
1321 __ load_ptr( 4, rax); // load b
1322 __ store_ptr(2, rax); // store b in d
1323 __ store_ptr(4, rcx); // store d in b
1324 // stack: ..., a, d, c, b, c, d
1325 __ load_ptr( 5, rcx); // load a
1326 __ load_ptr( 3, rax); // load c
1327 __ store_ptr(3, rcx); // store a in c
1328 __ store_ptr(5, rax); // store c in a
1329 // stack: ..., c, d, a, b, c, d
1330 }
1331
1332 void TemplateTable::swap() {
1333 transition(vtos, vtos);
1334 // stack: ..., a, b
1335 __ load_ptr( 1, rcx); // load a
1336 __ load_ptr( 0, rax); // load b
1337 __ store_ptr(0, rcx); // store a in b
1338 __ store_ptr(1, rax); // store b in a
1339 // stack: ..., b, a
1340 }
1341
1342 void TemplateTable::iop2(Operation op) {
1343 transition(itos, itos);
1344 switch (op) {
1345 case add : __ pop_i(rdx); __ addl (rax, rdx); break;
1346 case sub : __ movl(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break;
1347 case mul : __ pop_i(rdx); __ imull(rax, rdx); break;
1348 case _and : __ pop_i(rdx); __ andl (rax, rdx); break;
1349 case _or : __ pop_i(rdx); __ orl (rax, rdx); break;
1350 case _xor : __ pop_i(rdx); __ xorl (rax, rdx); break;
1351 case shl : __ movl(rcx, rax); __ pop_i(rax); __ shll (rax); break;
1352 case shr : __ movl(rcx, rax); __ pop_i(rax); __ sarl (rax); break;
1353 case ushr : __ movl(rcx, rax); __ pop_i(rax); __ shrl (rax); break;
1354 default : ShouldNotReachHere();
1355 }
1356 }
1357
1358 void TemplateTable::lop2(Operation op) {
1359 transition(ltos, ltos);
1360 switch (op) {
1361 case add : __ pop_l(rdx); __ addptr(rax, rdx); break;
1362 case sub : __ mov(rdx, rax); __ pop_l(rax); __ subptr(rax, rdx); break;
1363 case _and : __ pop_l(rdx); __ andptr(rax, rdx); break;
1364 case _or : __ pop_l(rdx); __ orptr (rax, rdx); break;
1365 case _xor : __ pop_l(rdx); __ xorptr(rax, rdx); break;
1366 default : ShouldNotReachHere();
1367 }
1368 }
1369
1370 void TemplateTable::idiv() {
1371 transition(itos, itos);
1372 __ movl(rcx, rax);
1373 __ pop_i(rax);
1374 // Note: could xor rax and ecx and compare with (-1 ^ min_int). If
1375 // they are not equal, one could do a normal division (no correction
1376 // needed), which may speed up this implementation for the common case.
1377 // (see also JVM spec., p.243 & p.271)
1378 __ corrected_idivl(rcx);
1379 }
1380
1381 void TemplateTable::irem() {
1382 transition(itos, itos);
1383 __ movl(rcx, rax);
1384 __ pop_i(rax);
1385 // Note: could xor rax and ecx and compare with (-1 ^ min_int). If
1386 // they are not equal, one could do a normal division (no correction
1387 // needed), which may speed up this implementation for the common case.
1388 // (see also JVM spec., p.243 & p.271)
1389 __ corrected_idivl(rcx);
1390 __ movl(rax, rdx);
1391 }
1392
1393 void TemplateTable::lmul() {
1394 transition(ltos, ltos);
1395 __ pop_l(rdx);
1396 __ imulq(rax, rdx);
1397 }
1398
1399 void TemplateTable::ldiv() {
1400 transition(ltos, ltos);
1401 __ mov(rcx, rax);
1402 __ pop_l(rax);
1403 // generate explicit div0 check
1404 __ testq(rcx, rcx);
1405 __ jump_cc(Assembler::zero,
1406 RuntimeAddress(Interpreter::_throw_ArithmeticException_entry));
1407 // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
1408 // they are not equal, one could do a normal division (no correction
1409 // needed), which may speed up this implementation for the common case.
1410 // (see also JVM spec., p.243 & p.271)
1411 __ corrected_idivq(rcx); // kills rbx
1412 }
1413
1414 void TemplateTable::lrem() {
1415 transition(ltos, ltos);
1416 __ mov(rcx, rax);
1417 __ pop_l(rax);
1418 __ testq(rcx, rcx);
1419 __ jump_cc(Assembler::zero,
1420 RuntimeAddress(Interpreter::_throw_ArithmeticException_entry));
1421 // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
1422 // they are not equal, one could do a normal division (no correction
1423 // needed), which may speed up this implementation for the common case.
1424 // (see also JVM spec., p.243 & p.271)
1425 __ corrected_idivq(rcx); // kills rbx
1426 __ mov(rax, rdx);
1427 }
1428
1429 void TemplateTable::lshl() {
1430 transition(itos, ltos);
1431 __ movl(rcx, rax); // get shift count
1432 __ pop_l(rax); // get shift value
1433 __ shlq(rax);
1434 }
1435
1436 void TemplateTable::lshr() {
1437 transition(itos, ltos);
1438 __ movl(rcx, rax); // get shift count
1439 __ pop_l(rax); // get shift value
1440 __ sarq(rax);
1441 }
1442
1443 void TemplateTable::lushr() {
1444 transition(itos, ltos);
1445 __ movl(rcx, rax); // get shift count
1446 __ pop_l(rax); // get shift value
1447 __ shrq(rax);
1448 }
1449
1450 void TemplateTable::fop2(Operation op) {
1451 transition(ftos, ftos);
1452
1453 switch (op) {
1454 case add:
1455 __ addss(xmm0, at_rsp());
1456 __ addptr(rsp, Interpreter::stackElementSize);
1457 break;
1458 case sub:
1459 __ movflt(xmm1, xmm0);
1460 __ pop_f(xmm0);
1461 __ subss(xmm0, xmm1);
1462 break;
1463 case mul:
1464 __ mulss(xmm0, at_rsp());
1465 __ addptr(rsp, Interpreter::stackElementSize);
1466 break;
1467 case div:
1468 __ movflt(xmm1, xmm0);
1469 __ pop_f(xmm0);
1470 __ divss(xmm0, xmm1);
1471 break;
1472 case rem:
1473 // On x86_64 platforms the SharedRuntime::frem method is called to perform the
1474 // modulo operation. The frem method calls the function
1475 // double fmod(double x, double y) in math.h. The documentation of fmod states:
1476 // "If x or y is a NaN, a NaN is returned." without specifying what type of NaN
1477 // (signalling or quiet) is returned.
1478 __ movflt(xmm1, xmm0);
1479 __ pop_f(xmm0);
1480 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem), 2);
1481 break;
1482 default:
1483 ShouldNotReachHere();
1484 break;
1485 }
1486 }
1487
1488 void TemplateTable::dop2(Operation op) {
1489 transition(dtos, dtos);
1490 switch (op) {
1491 case add:
1492 __ addsd(xmm0, at_rsp());
1493 __ addptr(rsp, 2 * Interpreter::stackElementSize);
1494 break;
1495 case sub:
1496 __ movdbl(xmm1, xmm0);
1497 __ pop_d(xmm0);
1498 __ subsd(xmm0, xmm1);
1499 break;
1500 case mul:
1501 __ mulsd(xmm0, at_rsp());
1502 __ addptr(rsp, 2 * Interpreter::stackElementSize);
1503 break;
1504 case div:
1505 __ movdbl(xmm1, xmm0);
1506 __ pop_d(xmm0);
1507 __ divsd(xmm0, xmm1);
1508 break;
1509 case rem:
1510 // Similar to fop2(), the modulo operation is performed using the
1511 // SharedRuntime::drem method on x86_64 platforms for the same reasons
1512 // as mentioned in fop2().
1513 __ movdbl(xmm1, xmm0);
1514 __ pop_d(xmm0);
1515 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem), 2);
1516 break;
1517 default:
1518 ShouldNotReachHere();
1519 break;
1520 }
1521 }
1522
1523 void TemplateTable::ineg() {
1524 transition(itos, itos);
1525 __ negl(rax);
1526 }
1527
1528 void TemplateTable::lneg() {
1529 transition(ltos, ltos);
1530 __ negq(rax);
1531 }
1532
1533 // Note: 'double' and 'long long' have 32-bits alignment on x86.
1534 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
1535 // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
1536 // of 128-bits operands for SSE instructions.
1537 jlong *operand = (jlong*)(((intptr_t)adr)&((intptr_t)(~0xF)));
1538 // Store the value to a 128-bits operand.
1539 operand[0] = lo;
1540 operand[1] = hi;
1541 return operand;
1542 }
1543
1544 // Buffer for 128-bits masks used by SSE instructions.
1545 static jlong float_signflip_pool[2*2];
1546 static jlong double_signflip_pool[2*2];
1547
1548 void TemplateTable::fneg() {
1549 transition(ftos, ftos);
1550 static jlong *float_signflip = double_quadword(&float_signflip_pool[1], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
1551 __ xorps(xmm0, ExternalAddress((address) float_signflip), rscratch1);
1552 }
1553
1554 void TemplateTable::dneg() {
1555 transition(dtos, dtos);
1556 static jlong *double_signflip =
1557 double_quadword(&double_signflip_pool[1], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
1558 __ xorpd(xmm0, ExternalAddress((address) double_signflip), rscratch1);
1559 }
1560
1561 void TemplateTable::iinc() {
1562 transition(vtos, vtos);
1563 __ load_signed_byte(rdx, at_bcp(2)); // get constant
1564 locals_index(rbx);
1565 __ addl(iaddress(rbx), rdx);
1566 }
1567
1568 void TemplateTable::wide_iinc() {
1569 transition(vtos, vtos);
1570 __ movl(rdx, at_bcp(4)); // get constant
1571 locals_index_wide(rbx);
1572 __ bswapl(rdx); // swap bytes & sign-extend constant
1573 __ sarl(rdx, 16);
1574 __ addl(iaddress(rbx), rdx);
1575 // Note: should probably use only one movl to get both
1576 // the index and the constant -> fix this
1577 }
1578
1579 void TemplateTable::convert() {
1580 // Checking
1581 #ifdef ASSERT
1582 {
1583 TosState tos_in = ilgl;
1584 TosState tos_out = ilgl;
1585 switch (bytecode()) {
1586 case Bytecodes::_i2l: // fall through
1587 case Bytecodes::_i2f: // fall through
1588 case Bytecodes::_i2d: // fall through
1589 case Bytecodes::_i2b: // fall through
1590 case Bytecodes::_i2c: // fall through
1591 case Bytecodes::_i2s: tos_in = itos; break;
1592 case Bytecodes::_l2i: // fall through
1593 case Bytecodes::_l2f: // fall through
1594 case Bytecodes::_l2d: tos_in = ltos; break;
1595 case Bytecodes::_f2i: // fall through
1596 case Bytecodes::_f2l: // fall through
1597 case Bytecodes::_f2d: tos_in = ftos; break;
1598 case Bytecodes::_d2i: // fall through
1599 case Bytecodes::_d2l: // fall through
1600 case Bytecodes::_d2f: tos_in = dtos; break;
1601 default : ShouldNotReachHere();
1602 }
1603 switch (bytecode()) {
1604 case Bytecodes::_l2i: // fall through
1605 case Bytecodes::_f2i: // fall through
1606 case Bytecodes::_d2i: // fall through
1607 case Bytecodes::_i2b: // fall through
1608 case Bytecodes::_i2c: // fall through
1609 case Bytecodes::_i2s: tos_out = itos; break;
1610 case Bytecodes::_i2l: // fall through
1611 case Bytecodes::_f2l: // fall through
1612 case Bytecodes::_d2l: tos_out = ltos; break;
1613 case Bytecodes::_i2f: // fall through
1614 case Bytecodes::_l2f: // fall through
1615 case Bytecodes::_d2f: tos_out = ftos; break;
1616 case Bytecodes::_i2d: // fall through
1617 case Bytecodes::_l2d: // fall through
1618 case Bytecodes::_f2d: tos_out = dtos; break;
1619 default : ShouldNotReachHere();
1620 }
1621 transition(tos_in, tos_out);
1622 }
1623 #endif // ASSERT
1624
1625 static const int64_t is_nan = 0x8000000000000000L;
1626
1627 // Conversion
1628 switch (bytecode()) {
1629 case Bytecodes::_i2l:
1630 __ movslq(rax, rax);
1631 break;
1632 case Bytecodes::_i2f:
1633 __ cvtsi2ssl(xmm0, rax);
1634 break;
1635 case Bytecodes::_i2d:
1636 __ cvtsi2sdl(xmm0, rax);
1637 break;
1638 case Bytecodes::_i2b:
1639 __ movsbl(rax, rax);
1640 break;
1641 case Bytecodes::_i2c:
1642 __ movzwl(rax, rax);
1643 break;
1644 case Bytecodes::_i2s:
1645 __ movswl(rax, rax);
1646 break;
1647 case Bytecodes::_l2i:
1648 __ movl(rax, rax);
1649 break;
1650 case Bytecodes::_l2f:
1651 __ cvtsi2ssq(xmm0, rax);
1652 break;
1653 case Bytecodes::_l2d:
1654 __ cvtsi2sdq(xmm0, rax);
1655 break;
1656 case Bytecodes::_f2i:
1657 {
1658 Label L;
1659 __ cvttss2sil(rax, xmm0);
1660 __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
1661 __ jcc(Assembler::notEqual, L);
1662 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1);
1663 __ bind(L);
1664 }
1665 break;
1666 case Bytecodes::_f2l:
1667 {
1668 Label L;
1669 __ cvttss2siq(rax, xmm0);
1670 // NaN or overflow/underflow?
1671 __ cmp64(rax, ExternalAddress((address) &is_nan), rscratch1);
1672 __ jcc(Assembler::notEqual, L);
1673 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1);
1674 __ bind(L);
1675 }
1676 break;
1677 case Bytecodes::_f2d:
1678 __ cvtss2sd(xmm0, xmm0);
1679 break;
1680 case Bytecodes::_d2i:
1681 {
1682 Label L;
1683 __ cvttsd2sil(rax, xmm0);
1684 __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
1685 __ jcc(Assembler::notEqual, L);
1686 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 1);
1687 __ bind(L);
1688 }
1689 break;
1690 case Bytecodes::_d2l:
1691 {
1692 Label L;
1693 __ cvttsd2siq(rax, xmm0);
1694 // NaN or overflow/underflow?
1695 __ cmp64(rax, ExternalAddress((address) &is_nan), rscratch1);
1696 __ jcc(Assembler::notEqual, L);
1697 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 1);
1698 __ bind(L);
1699 }
1700 break;
1701 case Bytecodes::_d2f:
1702 __ cvtsd2ss(xmm0, xmm0);
1703 break;
1704 default:
1705 ShouldNotReachHere();
1706 }
1707 }
1708
1709 void TemplateTable::lcmp() {
1710 transition(ltos, itos);
1711 Label done;
1712 __ pop_l(rdx);
1713 __ cmpq(rdx, rax);
1714 __ movl(rax, -1);
1715 __ jccb(Assembler::less, done);
1716 __ setb(Assembler::notEqual, rax);
1717 __ movzbl(rax, rax);
1718 __ bind(done);
1719 }
1720
1721 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
1722 Label done;
1723 if (is_float) {
1724 // XXX get rid of pop here, use ... reg, mem32
1725 __ pop_f(xmm1);
1726 __ ucomiss(xmm1, xmm0);
1727 } else {
1728 // XXX get rid of pop here, use ... reg, mem64
1729 __ pop_d(xmm1);
1730 __ ucomisd(xmm1, xmm0);
1731 }
1732 if (unordered_result < 0) {
1733 __ movl(rax, -1);
1734 __ jccb(Assembler::parity, done);
1735 __ jccb(Assembler::below, done);
1736 __ setb(Assembler::notEqual, rdx);
1737 __ movzbl(rax, rdx);
1738 } else {
1739 __ movl(rax, 1);
1740 __ jccb(Assembler::parity, done);
1741 __ jccb(Assembler::above, done);
1742 __ movl(rax, 0);
1743 __ jccb(Assembler::equal, done);
1744 __ decrementl(rax);
1745 }
1746 __ bind(done);
1747 }
1748
1749 void TemplateTable::branch(bool is_jsr, bool is_wide) {
1750 __ get_method(rcx); // rcx holds method
1751 __ profile_taken_branch(rax); // rax holds updated MDP
1752
1753 const ByteSize be_offset = MethodCounters::backedge_counter_offset() +
1754 InvocationCounter::counter_offset();
1755 const ByteSize inv_offset = MethodCounters::invocation_counter_offset() +
1756 InvocationCounter::counter_offset();
1757
1758 // Load up edx with the branch displacement
1759 if (is_wide) {
1760 __ movl(rdx, at_bcp(1));
1761 } else {
1762 __ load_signed_short(rdx, at_bcp(1));
1763 }
1764 __ bswapl(rdx);
1765
1766 if (!is_wide) {
1767 __ sarl(rdx, 16);
1768 }
1769 __ movl2ptr(rdx, rdx);
1770
1771 // Handle all the JSR stuff here, then exit.
1772 // It's much shorter and cleaner than intermingling with the non-JSR
1773 // normal-branch stuff occurring below.
1774 if (is_jsr) {
1775 // Pre-load the next target bytecode into rbx
1776 __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1, 0));
1777
1778 // compute return address as bci in rax
1779 __ lea(rax, at_bcp((is_wide ? 5 : 3) -
1780 in_bytes(ConstMethod::codes_offset())));
1781 __ subptr(rax, Address(rcx, Method::const_offset()));
1782 // Adjust the bcp in r13 by the displacement in rdx
1783 __ addptr(rbcp, rdx);
1784 // jsr returns atos that is not an oop
1785 __ push_i(rax);
1786 __ dispatch_only(vtos, true);
1787 return;
1788 }
1789
1790 // Normal (non-jsr) branch handling
1791
1792 // Adjust the bcp in r13 by the displacement in rdx
1793 __ addptr(rbcp, rdx);
1794
1795 assert(UseLoopCounter || !UseOnStackReplacement,
1796 "on-stack-replacement requires loop counters");
1797 Label backedge_counter_overflow;
1798 Label dispatch;
1799 if (UseLoopCounter) {
1800 // increment backedge counter for backward branches
1801 // rax: MDO
1802 // rcx: method
1803 // rdx: target offset
1804 // r13: target bcp
1805 // r14: locals pointer
1806 __ testl(rdx, rdx); // check if forward or backward branch
1807 __ jcc(Assembler::positive, dispatch); // count only if backward branch
1808
1809 // check if MethodCounters exists
1810 Label has_counters;
1811 __ movptr(rax, Address(rcx, Method::method_counters_offset()));
1812 __ testptr(rax, rax);
1813 __ jcc(Assembler::notZero, has_counters);
1814 __ push(rdx);
1815 __ push(rcx);
1816 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::build_method_counters),
1817 rcx);
1818 __ pop(rcx);
1819 __ pop(rdx);
1820 __ movptr(rax, Address(rcx, Method::method_counters_offset()));
1821 __ testptr(rax, rax);
1822 __ jcc(Assembler::zero, dispatch);
1823 __ bind(has_counters);
1824
1825 Label no_mdo;
1826 if (ProfileInterpreter) {
1827 // Are we profiling?
1828 __ movptr(rbx, Address(rcx, in_bytes(Method::method_data_offset())));
1829 __ testptr(rbx, rbx);
1830 __ jccb(Assembler::zero, no_mdo);
1831 // Increment the MDO backedge counter
1832 const Address mdo_backedge_counter(rbx, in_bytes(MethodData::backedge_counter_offset()) +
1833 in_bytes(InvocationCounter::counter_offset()));
1834 const Address mask(rbx, in_bytes(MethodData::backedge_mask_offset()));
1835 __ increment_mask_and_jump(mdo_backedge_counter, mask, rax,
1836 UseOnStackReplacement ? &backedge_counter_overflow : nullptr);
1837 __ jmp(dispatch);
1838 }
1839 __ bind(no_mdo);
1840 // Increment backedge counter in MethodCounters*
1841 __ movptr(rcx, Address(rcx, Method::method_counters_offset()));
1842 const Address mask(rcx, in_bytes(MethodCounters::backedge_mask_offset()));
1843 __ increment_mask_and_jump(Address(rcx, be_offset), mask, rax,
1844 UseOnStackReplacement ? &backedge_counter_overflow : nullptr);
1845 __ bind(dispatch);
1846 }
1847
1848 // Pre-load the next target bytecode into rbx
1849 __ load_unsigned_byte(rbx, Address(rbcp, 0));
1850
1851 // continue with the bytecode @ target
1852 // rax: return bci for jsr's, unused otherwise
1853 // rbx: target bytecode
1854 // r13: target bcp
1855 __ dispatch_only(vtos, true);
1856
1857 if (UseLoopCounter) {
1858 if (UseOnStackReplacement) {
1859 Label set_mdp;
1860 // invocation counter overflow
1861 __ bind(backedge_counter_overflow);
1862 __ negptr(rdx);
1863 __ addptr(rdx, rbcp); // branch bcp
1864 // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp)
1865 __ call_VM(noreg,
1866 CAST_FROM_FN_PTR(address,
1867 InterpreterRuntime::frequency_counter_overflow),
1868 rdx);
1869
1870 // rax: osr nmethod (osr ok) or null (osr not possible)
1871 // rdx: scratch
1872 // r14: locals pointer
1873 // r13: bcp
1874 __ testptr(rax, rax); // test result
1875 __ jcc(Assembler::zero, dispatch); // no osr if null
1876 // nmethod may have been invalidated (VM may block upon call_VM return)
1877 __ cmpb(Address(rax, nmethod::state_offset()), nmethod::in_use);
1878 __ jcc(Assembler::notEqual, dispatch);
1879
1880 // We have the address of an on stack replacement routine in rax.
1881 // In preparation of invoking it, first we must migrate the locals
1882 // and monitors from off the interpreter frame on the stack.
1883 // Ensure to save the osr nmethod over the migration call,
1884 // it will be preserved in rbx.
1885 __ mov(rbx, rax);
1886
1887 JFR_ONLY(__ enter_jfr_critical_section();)
1888
1889 call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
1890
1891 // rax is OSR buffer, move it to expected parameter location
1892 __ mov(j_rarg0, rax);
1893 // We use j_rarg definitions here so that registers don't conflict as parameter
1894 // registers change across platforms as we are in the midst of a calling
1895 // sequence to the OSR nmethod and we don't want collision. These are NOT parameters.
1896
1897 const Register retaddr = j_rarg2;
1898 const Register sender_sp = j_rarg1;
1899
1900 // pop the interpreter frame
1901 __ movptr(sender_sp, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
1902 __ leave(); // remove frame anchor
1903 JFR_ONLY(__ leave_jfr_critical_section();)
1904 __ pop(retaddr); // get return address
1905 __ mov(rsp, sender_sp); // set sp to sender sp
1906 // Ensure compiled code always sees stack at proper alignment
1907 __ andptr(rsp, -(StackAlignmentInBytes));
1908
1909 // push the return address
1910 __ push(retaddr);
1911
1912 // and begin the OSR nmethod
1913 __ jmp(Address(rbx, nmethod::osr_entry_point_offset()));
1914 }
1915 }
1916 }
1917
1918 void TemplateTable::if_0cmp(Condition cc) {
1919 transition(itos, vtos);
1920 // assume branch is more often taken than not (loops use backward branches)
1921 Label not_taken;
1922 __ testl(rax, rax);
1923 __ jcc(j_not(cc), not_taken);
1924 branch(false, false);
1925 __ bind(not_taken);
1926 __ profile_not_taken_branch(rax);
1927 }
1928
1929 void TemplateTable::if_icmp(Condition cc) {
1930 transition(itos, vtos);
1931 // assume branch is more often taken than not (loops use backward branches)
1932 Label not_taken;
1933 __ pop_i(rdx);
1934 __ cmpl(rdx, rax);
1935 __ jcc(j_not(cc), not_taken);
1936 branch(false, false);
1937 __ bind(not_taken);
1938 __ profile_not_taken_branch(rax);
1939 }
1940
1941 void TemplateTable::if_nullcmp(Condition cc) {
1942 transition(atos, vtos);
1943 // assume branch is more often taken than not (loops use backward branches)
1944 Label not_taken;
1945 __ testptr(rax, rax);
1946 __ jcc(j_not(cc), not_taken);
1947 branch(false, false);
1948 __ bind(not_taken);
1949 __ profile_not_taken_branch(rax);
1950 }
1951
1952 void TemplateTable::if_acmp(Condition cc) {
1953 transition(atos, vtos);
1954 // assume branch is more often taken than not (loops use backward branches)
1955 Label taken, not_taken;
1956 __ pop_ptr(rdx);
1957
1958 __ profile_acmp(rbx, rdx, rax, rcx);
1959
1960 const int is_inline_type_mask = markWord::inline_type_pattern;
1961 if (Arguments::is_valhalla_enabled()) {
1962 __ cmpoop(rdx, rax);
1963 __ jcc(Assembler::equal, (cc == equal) ? taken : not_taken);
1964
1965 // might be substitutable, test if either rax or rdx is null
1966 __ testptr(rax, rax);
1967 __ jcc(Assembler::zero, (cc == equal) ? not_taken : taken);
1968 __ testptr(rdx, rdx);
1969 __ jcc(Assembler::zero, (cc == equal) ? not_taken : taken);
1970
1971 // and both are values ?
1972 __ movptr(rbx, Address(rdx, oopDesc::mark_offset_in_bytes()));
1973 __ andptr(rbx, Address(rax, oopDesc::mark_offset_in_bytes()));
1974 __ andptr(rbx, is_inline_type_mask);
1975 __ cmpptr(rbx, is_inline_type_mask);
1976 __ jcc(Assembler::notEqual, (cc == equal) ? not_taken : taken);
1977
1978 // same value klass ?
1979 __ load_metadata(rbx, rdx);
1980 __ load_metadata(rcx, rax);
1981 __ cmpptr(rbx, rcx);
1982 __ jcc(Assembler::notEqual, (cc == equal) ? not_taken : taken);
1983
1984 // Know both are the same type, let's test for substitutability...
1985 if (cc == equal) {
1986 invoke_is_substitutable(rax, rdx, taken, not_taken);
1987 } else {
1988 invoke_is_substitutable(rax, rdx, not_taken, taken);
1989 }
1990 __ stop("Not reachable");
1991 }
1992
1993 __ cmpoop(rdx, rax);
1994 __ jcc(j_not(cc), not_taken);
1995 __ bind(taken);
1996 branch(false, false);
1997 __ bind(not_taken);
1998 __ profile_not_taken_branch(rax, true);
1999 }
2000
2001 void TemplateTable::invoke_is_substitutable(Register aobj, Register bobj,
2002 Label& is_subst, Label& not_subst) {
2003 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::is_substitutable), aobj, bobj);
2004 // Restored...rax answer, jmp to outcome...
2005 __ testl(rax, rax);
2006 __ jcc(Assembler::zero, not_subst);
2007 __ jmp(is_subst);
2008 }
2009
2010 void TemplateTable::ret() {
2011 transition(vtos, vtos);
2012 locals_index(rbx);
2013 __ movslq(rbx, iaddress(rbx)); // get return bci, compute return bcp
2014 __ profile_ret(rbx, rcx);
2015 __ get_method(rax);
2016 __ movptr(rbcp, Address(rax, Method::const_offset()));
2017 __ lea(rbcp, Address(rbcp, rbx, Address::times_1,
2018 ConstMethod::codes_offset()));
2019 __ dispatch_next(vtos, 0, true);
2020 }
2021
2022 void TemplateTable::wide_ret() {
2023 transition(vtos, vtos);
2024 locals_index_wide(rbx);
2025 __ movptr(rbx, aaddress(rbx)); // get return bci, compute return bcp
2026 __ profile_ret(rbx, rcx);
2027 __ get_method(rax);
2028 __ movptr(rbcp, Address(rax, Method::const_offset()));
2029 __ lea(rbcp, Address(rbcp, rbx, Address::times_1, ConstMethod::codes_offset()));
2030 __ dispatch_next(vtos, 0, true);
2031 }
2032
2033 void TemplateTable::tableswitch() {
2034 Label default_case, continue_execution;
2035 transition(itos, vtos);
2036
2037 // align r13/rsi
2038 __ lea(rbx, at_bcp(BytesPerInt));
2039 __ andptr(rbx, -BytesPerInt);
2040 // load lo & hi
2041 __ movl(rcx, Address(rbx, BytesPerInt));
2042 __ movl(rdx, Address(rbx, 2 * BytesPerInt));
2043 __ bswapl(rcx);
2044 __ bswapl(rdx);
2045 // check against lo & hi
2046 __ cmpl(rax, rcx);
2047 __ jcc(Assembler::less, default_case);
2048 __ cmpl(rax, rdx);
2049 __ jcc(Assembler::greater, default_case);
2050 // lookup dispatch offset
2051 __ subl(rax, rcx);
2052 __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt));
2053 __ profile_switch_case(rax, rbx, rcx);
2054 // continue execution
2055 __ bind(continue_execution);
2056 __ bswapl(rdx);
2057 __ movl2ptr(rdx, rdx);
2058 __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1));
2059 __ addptr(rbcp, rdx);
2060 __ dispatch_only(vtos, true);
2061 // handle default
2062 __ bind(default_case);
2063 __ profile_switch_default(rax);
2064 __ movl(rdx, Address(rbx, 0));
2065 __ jmp(continue_execution);
2066 }
2067
2068 void TemplateTable::lookupswitch() {
2069 transition(itos, itos);
2070 __ stop("lookupswitch bytecode should have been rewritten");
2071 }
2072
2073 void TemplateTable::fast_linearswitch() {
2074 transition(itos, vtos);
2075 Label loop_entry, loop, found, continue_execution;
2076 // bswap rax so we can avoid bswapping the table entries
2077 __ bswapl(rax);
2078 // align r13
2079 __ lea(rbx, at_bcp(BytesPerInt)); // btw: should be able to get rid of
2080 // this instruction (change offsets
2081 // below)
2082 __ andptr(rbx, -BytesPerInt);
2083 // set counter
2084 __ movl(rcx, Address(rbx, BytesPerInt));
2085 __ bswapl(rcx);
2086 __ jmpb(loop_entry);
2087 // table search
2088 __ bind(loop);
2089 __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * BytesPerInt));
2090 __ jcc(Assembler::equal, found);
2091 __ bind(loop_entry);
2092 __ decrementl(rcx);
2093 __ jcc(Assembler::greaterEqual, loop);
2094 // default case
2095 __ profile_switch_default(rax);
2096 __ movl(rdx, Address(rbx, 0));
2097 __ jmp(continue_execution);
2098 // entry found -> get offset
2099 __ bind(found);
2100 __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * BytesPerInt));
2101 __ profile_switch_case(rcx, rax, rbx);
2102 // continue execution
2103 __ bind(continue_execution);
2104 __ bswapl(rdx);
2105 __ movl2ptr(rdx, rdx);
2106 __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1));
2107 __ addptr(rbcp, rdx);
2108 __ dispatch_only(vtos, true);
2109 }
2110
2111 void TemplateTable::fast_binaryswitch() {
2112 transition(itos, vtos);
2113 // Implementation using the following core algorithm:
2114 //
2115 // int binary_search(int key, LookupswitchPair* array, int n) {
2116 // // Binary search according to "Methodik des Programmierens" by
2117 // // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
2118 // int i = 0;
2119 // int j = n;
2120 // while (i+1 < j) {
2121 // // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
2122 // // with Q: for all i: 0 <= i < n: key < a[i]
2123 // // where a stands for the array and assuming that the (inexisting)
2124 // // element a[n] is infinitely big.
2125 // int h = (i + j) >> 1;
2126 // // i < h < j
2127 // if (key < array[h].fast_match()) {
2128 // j = h;
2129 // } else {
2130 // i = h;
2131 // }
2132 // }
2133 // // R: a[i] <= key < a[i+1] or Q
2134 // // (i.e., if key is within array, i is the correct index)
2135 // return i;
2136 // }
2137
2138 // Register allocation
2139 const Register key = rax; // already set (tosca)
2140 const Register array = rbx;
2141 const Register i = rcx;
2142 const Register j = rdx;
2143 const Register h = rdi;
2144 const Register temp = rsi;
2145
2146 // Find array start
2147 __ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to
2148 // get rid of this
2149 // instruction (change
2150 // offsets below)
2151 __ andptr(array, -BytesPerInt);
2152
2153 // Initialize i & j
2154 __ xorl(i, i); // i = 0;
2155 __ movl(j, Address(array, -BytesPerInt)); // j = length(array);
2156
2157 // Convert j into native byteordering
2158 __ bswapl(j);
2159
2160 // And start
2161 Label entry;
2162 __ jmp(entry);
2163
2164 // binary search loop
2165 {
2166 Label loop;
2167 __ bind(loop);
2168 // int h = (i + j) >> 1;
2169 __ leal(h, Address(i, j, Address::times_1)); // h = i + j;
2170 __ sarl(h, 1); // h = (i + j) >> 1;
2171 // if (key < array[h].fast_match()) {
2172 // j = h;
2173 // } else {
2174 // i = h;
2175 // }
2176 // Convert array[h].match to native byte-ordering before compare
2177 __ movl(temp, Address(array, h, Address::times_8));
2178 __ bswapl(temp);
2179 __ cmpl(key, temp);
2180 // j = h if (key < array[h].fast_match())
2181 __ cmov32(Assembler::less, j, h);
2182 // i = h if (key >= array[h].fast_match())
2183 __ cmov32(Assembler::greaterEqual, i, h);
2184 // while (i+1 < j)
2185 __ bind(entry);
2186 __ leal(h, Address(i, 1)); // i+1
2187 __ cmpl(h, j); // i+1 < j
2188 __ jcc(Assembler::less, loop);
2189 }
2190
2191 // end of binary search, result index is i (must check again!)
2192 Label default_case;
2193 // Convert array[i].match to native byte-ordering before compare
2194 __ movl(temp, Address(array, i, Address::times_8));
2195 __ bswapl(temp);
2196 __ cmpl(key, temp);
2197 __ jcc(Assembler::notEqual, default_case);
2198
2199 // entry found -> j = offset
2200 __ movl(j , Address(array, i, Address::times_8, BytesPerInt));
2201 __ profile_switch_case(i, key, array);
2202 __ bswapl(j);
2203 __ movslq(j, j);
2204
2205 __ load_unsigned_byte(rbx, Address(rbcp, j, Address::times_1));
2206 __ addptr(rbcp, j);
2207 __ dispatch_only(vtos, true);
2208
2209 // default case -> j = default offset
2210 __ bind(default_case);
2211 __ profile_switch_default(i);
2212 __ movl(j, Address(array, -2 * BytesPerInt));
2213 __ bswapl(j);
2214 __ movslq(j, j);
2215
2216 __ load_unsigned_byte(rbx, Address(rbcp, j, Address::times_1));
2217 __ addptr(rbcp, j);
2218 __ dispatch_only(vtos, true);
2219 }
2220
2221 void TemplateTable::_return(TosState state) {
2222 transition(state, state);
2223
2224 assert(_desc->calls_vm(),
2225 "inconsistent calls_vm information"); // call in remove_activation
2226
2227 if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
2228 assert(state == vtos, "only valid state");
2229 Register robj = c_rarg1;
2230 __ movptr(robj, aaddress(0));
2231 __ load_klass(rdi, robj, rscratch1);
2232 __ testb(Address(rdi, Klass::misc_flags_offset()), KlassFlags::_misc_has_finalizer);
2233 Label skip_register_finalizer;
2234 __ jcc(Assembler::zero, skip_register_finalizer);
2235
2236 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), robj);
2237
2238 __ bind(skip_register_finalizer);
2239 }
2240
2241 if (_desc->bytecode() != Bytecodes::_return_register_finalizer) {
2242 Label no_safepoint;
2243 NOT_PRODUCT(__ block_comment("Thread-local Safepoint poll"));
2244 __ testb(Address(r15_thread, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit());
2245 __ jcc(Assembler::zero, no_safepoint);
2246 __ push(state);
2247 __ push_cont_fastpath();
2248 __ call_VM(noreg, CAST_FROM_FN_PTR(address,
2249 InterpreterRuntime::at_safepoint));
2250 __ pop_cont_fastpath();
2251 __ pop(state);
2252 __ bind(no_safepoint);
2253 }
2254
2255 // Narrow result if state is itos but result type is smaller.
2256 // Need to narrow in the return bytecode rather than in generate_return_entry
2257 // since compiled code callers expect the result to already be narrowed.
2258 if (state == itos) {
2259 __ narrow(rax);
2260 }
2261
2262 __ remove_activation(state, rbcp, true, true, true);
2263
2264 __ jmp(rbcp);
2265 }
2266
2267 // ----------------------------------------------------------------------------
2268 // Volatile variables demand their effects be made known to all CPU's
2269 // in order. Store buffers on most chips allow reads & writes to
2270 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode
2271 // without some kind of memory barrier (i.e., it's not sufficient that
2272 // the interpreter does not reorder volatile references, the hardware
2273 // also must not reorder them).
2274 //
2275 // According to the new Java Memory Model (JMM):
2276 // (1) All volatiles are serialized wrt to each other. ALSO reads &
2277 // writes act as acquire & release, so:
2278 // (2) A read cannot let unrelated NON-volatile memory refs that
2279 // happen after the read float up to before the read. It's OK for
2280 // non-volatile memory refs that happen before the volatile read to
2281 // float down below it.
2282 // (3) Similar a volatile write cannot let unrelated NON-volatile
2283 // memory refs that happen BEFORE the write float down to after the
2284 // write. It's OK for non-volatile memory refs that happen after the
2285 // volatile write to float up before it.
2286 //
2287 // We only put in barriers around volatile refs (they are expensive),
2288 // not _between_ memory refs (that would require us to track the
2289 // flavor of the previous memory refs). Requirements (2) and (3)
2290 // require some barriers before volatile stores and after volatile
2291 // loads. These nearly cover requirement (1) but miss the
2292 // volatile-store-volatile-load case. This final case is placed after
2293 // volatile-stores although it could just as well go before
2294 // volatile-loads.
2295
2296 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits order_constraint ) {
2297 // Helper function to insert a is-volatile test and memory barrier
2298 __ membar(order_constraint);
2299 }
2300
2301 void TemplateTable::resolve_cache_and_index_for_method(int byte_no,
2302 Register cache,
2303 Register index) {
2304 const Register temp = rbx;
2305 assert_different_registers(cache, index, temp);
2306
2307 Label L_clinit_barrier_slow, L_done;
2308
2309 Bytecodes::Code code = bytecode();
2310
2311 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
2312
2313 __ load_method_entry(cache, index);
2314 switch(byte_no) {
2315 case f1_byte:
2316 __ load_unsigned_byte(temp, Address(cache, in_bytes(ResolvedMethodEntry::bytecode1_offset())));
2317 break;
2318 case f2_byte:
2319 __ load_unsigned_byte(temp, Address(cache, in_bytes(ResolvedMethodEntry::bytecode2_offset())));
2320 break;
2321 default:
2322 ShouldNotReachHere();
2323 }
2324 __ cmpl(temp, code); // have we resolved this bytecode?
2325
2326 // Class initialization barrier for static methods
2327 if (VM_Version::supports_fast_class_init_checks() && bytecode() == Bytecodes::_invokestatic) {
2328 const Register method = temp;
2329 const Register klass = temp;
2330
2331 __ jcc(Assembler::notEqual, L_clinit_barrier_slow);
2332 __ movptr(method, Address(cache, in_bytes(ResolvedMethodEntry::method_offset())));
2333 __ load_method_holder(klass, method);
2334 __ clinit_barrier(klass, &L_done, /*L_slow_path*/ nullptr);
2335 __ bind(L_clinit_barrier_slow);
2336 } else {
2337 __ jcc(Assembler::equal, L_done);
2338 }
2339
2340 // resolve first time through
2341 // Class initialization barrier slow path lands here as well.
2342 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache);
2343 __ movl(temp, code);
2344 __ call_VM_preemptable(noreg, entry, temp);
2345 // Update registers with resolved info
2346 __ load_method_entry(cache, index);
2347 __ bind(L_done);
2348 }
2349
2350 void TemplateTable::resolve_cache_and_index_for_field(int byte_no,
2351 Register cache,
2352 Register index) {
2353 const Register temp = rbx;
2354 assert_different_registers(cache, index, temp);
2355
2356 Label L_clinit_barrier_slow, L_done;
2357
2358 Bytecodes::Code code = bytecode();
2359 switch (code) {
2360 case Bytecodes::_nofast_getfield: code = Bytecodes::_getfield; break;
2361 case Bytecodes::_nofast_putfield: code = Bytecodes::_putfield; break;
2362 default: break;
2363 }
2364
2365 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
2366 __ load_field_entry(cache, index);
2367 if (byte_no == f1_byte) {
2368 __ load_unsigned_byte(temp, Address(cache, in_bytes(ResolvedFieldEntry::get_code_offset())));
2369 } else {
2370 __ load_unsigned_byte(temp, Address(cache, in_bytes(ResolvedFieldEntry::put_code_offset())));
2371 }
2372 __ cmpl(temp, code); // have we resolved this bytecode?
2373
2374 // Class initialization barrier for static fields
2375 if (VM_Version::supports_fast_class_init_checks() &&
2376 (bytecode() == Bytecodes::_getstatic || bytecode() == Bytecodes::_putstatic)) {
2377 const Register field_holder = temp;
2378
2379 __ jcc(Assembler::notEqual, L_clinit_barrier_slow);
2380 __ movptr(field_holder, Address(cache, in_bytes(ResolvedFieldEntry::field_holder_offset())));
2381 __ clinit_barrier(field_holder, &L_done, /*L_slow_path*/ nullptr);
2382 __ bind(L_clinit_barrier_slow);
2383 } else {
2384 __ jcc(Assembler::equal, L_done);
2385 }
2386
2387 // resolve first time through
2388 // Class initialization barrier slow path lands here as well.
2389 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache);
2390 __ movl(temp, code);
2391 __ call_VM_preemptable(noreg, entry, temp);
2392 // Update registers with resolved info
2393 __ load_field_entry(cache, index);
2394 __ bind(L_done);
2395 }
2396
2397 void TemplateTable::load_resolved_field_entry(Register obj,
2398 Register cache,
2399 Register tos_state,
2400 Register offset,
2401 Register flags,
2402 bool is_static = false) {
2403 assert_different_registers(cache, tos_state, flags, offset);
2404
2405 // Field offset
2406 __ load_sized_value(offset, Address(cache, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/);
2407
2408 // Flags
2409 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedFieldEntry::flags_offset())));
2410
2411 // TOS state
2412 __ load_unsigned_byte(tos_state, Address(cache, in_bytes(ResolvedFieldEntry::type_offset())));
2413
2414 // Klass overwrite register
2415 if (is_static) {
2416 __ movptr(obj, Address(cache, ResolvedFieldEntry::field_holder_offset()));
2417 const int mirror_offset = in_bytes(Klass::java_mirror_offset());
2418 __ movptr(obj, Address(obj, mirror_offset));
2419 __ resolve_oop_handle(obj, rscratch2);
2420 }
2421
2422 }
2423
2424 void TemplateTable::load_invokedynamic_entry(Register method) {
2425 // setup registers
2426 const Register appendix = rax;
2427 const Register cache = rcx;
2428 const Register index = rdx;
2429 assert_different_registers(method, appendix, cache, index);
2430
2431 __ save_bcp();
2432
2433 Label resolved;
2434
2435 __ load_resolved_indy_entry(cache, index);
2436 __ movptr(method, Address(cache, in_bytes(ResolvedIndyEntry::method_offset())));
2437
2438 // Compare the method to zero
2439 __ testptr(method, method);
2440 __ jcc(Assembler::notZero, resolved);
2441
2442 Bytecodes::Code code = bytecode();
2443
2444 // Call to the interpreter runtime to resolve invokedynamic
2445 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache);
2446 __ movl(method, code); // this is essentially Bytecodes::_invokedynamic
2447 __ call_VM(noreg, entry, method);
2448 // Update registers with resolved info
2449 __ load_resolved_indy_entry(cache, index);
2450 __ movptr(method, Address(cache, in_bytes(ResolvedIndyEntry::method_offset())));
2451
2452 #ifdef ASSERT
2453 __ testptr(method, method);
2454 __ jcc(Assembler::notZero, resolved);
2455 __ stop("Should be resolved by now");
2456 #endif // ASSERT
2457 __ bind(resolved);
2458
2459 Label L_no_push;
2460 // Check if there is an appendix
2461 __ load_unsigned_byte(index, Address(cache, in_bytes(ResolvedIndyEntry::flags_offset())));
2462 __ testl(index, (1 << ResolvedIndyEntry::has_appendix_shift));
2463 __ jcc(Assembler::zero, L_no_push);
2464
2465 // Get appendix
2466 __ load_unsigned_short(index, Address(cache, in_bytes(ResolvedIndyEntry::resolved_references_index_offset())));
2467 // Push the appendix as a trailing parameter
2468 // since the parameter_size includes it.
2469 __ load_resolved_reference_at_index(appendix, index);
2470 __ verify_oop(appendix);
2471 __ push(appendix); // push appendix (MethodType, CallSite, etc.)
2472 __ bind(L_no_push);
2473
2474 // compute return type
2475 __ load_unsigned_byte(index, Address(cache, in_bytes(ResolvedIndyEntry::result_type_offset())));
2476 // load return address
2477 {
2478 const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code);
2479 ExternalAddress table(table_addr);
2480 __ lea(rscratch1, table);
2481 __ movptr(index, Address(rscratch1, index, Address::times_ptr));
2482 }
2483
2484 // push return address
2485 __ push(index);
2486 }
2487
2488 void TemplateTable::load_resolved_method_entry_special_or_static(Register cache,
2489 Register method,
2490 Register flags) {
2491 // setup registers
2492 const Register index = rdx;
2493 assert_different_registers(cache, index);
2494 assert_different_registers(method, cache, flags);
2495
2496 // determine constant pool cache field offsets
2497 resolve_cache_and_index_for_method(f1_byte, cache, index);
2498 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset())));
2499 __ movptr(method, Address(cache, in_bytes(ResolvedMethodEntry::method_offset())));
2500 }
2501
2502 void TemplateTable::load_resolved_method_entry_handle(Register cache,
2503 Register method,
2504 Register ref_index,
2505 Register flags) {
2506 // setup registers
2507 const Register index = rdx;
2508 assert_different_registers(cache, index);
2509 assert_different_registers(cache, method, ref_index, flags);
2510
2511 // determine constant pool cache field offsets
2512 resolve_cache_and_index_for_method(f1_byte, cache, index);
2513 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset())));
2514
2515 // Maybe push appendix
2516 Label L_no_push;
2517 __ testl(flags, (1 << ResolvedMethodEntry::has_appendix_shift));
2518 __ jcc(Assembler::zero, L_no_push);
2519 // invokehandle uses an index into the resolved references array
2520 __ load_unsigned_short(ref_index, Address(cache, in_bytes(ResolvedMethodEntry::resolved_references_index_offset())));
2521 // Push the appendix as a trailing parameter.
2522 // This must be done before we get the receiver,
2523 // since the parameter_size includes it.
2524 Register appendix = method;
2525 __ load_resolved_reference_at_index(appendix, ref_index);
2526 __ push(appendix); // push appendix (MethodType, CallSite, etc.)
2527 __ bind(L_no_push);
2528
2529 __ movptr(method, Address(cache, in_bytes(ResolvedMethodEntry::method_offset())));
2530 }
2531
2532 void TemplateTable::load_resolved_method_entry_interface(Register cache,
2533 Register klass,
2534 Register method_or_table_index,
2535 Register flags) {
2536 // setup registers
2537 const Register index = rdx;
2538 assert_different_registers(cache, klass, method_or_table_index, flags);
2539
2540 // determine constant pool cache field offsets
2541 resolve_cache_and_index_for_method(f1_byte, cache, index);
2542 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset())));
2543
2544 // Invokeinterface can behave in different ways:
2545 // If calling a method from java.lang.Object, the forced virtual flag is true so the invocation will
2546 // behave like an invokevirtual call. The state of the virtual final flag will determine whether a method or
2547 // vtable index is placed in the register.
2548 // Otherwise, the registers will be populated with the klass and method.
2549
2550 Label NotVirtual; Label NotVFinal; Label Done;
2551 __ testl(flags, 1 << ResolvedMethodEntry::is_forced_virtual_shift);
2552 __ jcc(Assembler::zero, NotVirtual);
2553 __ testl(flags, (1 << ResolvedMethodEntry::is_vfinal_shift));
2554 __ jcc(Assembler::zero, NotVFinal);
2555 __ movptr(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::method_offset())));
2556 __ jmp(Done);
2557
2558 __ bind(NotVFinal);
2559 __ load_unsigned_short(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::table_index_offset())));
2560 __ jmp(Done);
2561
2562 __ bind(NotVirtual);
2563 __ movptr(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::method_offset())));
2564 __ movptr(klass, Address(cache, in_bytes(ResolvedMethodEntry::klass_offset())));
2565 __ bind(Done);
2566 }
2567
2568 void TemplateTable::load_resolved_method_entry_virtual(Register cache,
2569 Register method_or_table_index,
2570 Register flags) {
2571 // setup registers
2572 const Register index = rdx;
2573 assert_different_registers(index, cache);
2574 assert_different_registers(method_or_table_index, cache, flags);
2575
2576 // determine constant pool cache field offsets
2577 resolve_cache_and_index_for_method(f2_byte, cache, index);
2578 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset())));
2579
2580 // method_or_table_index can either be an itable index or a method depending on the virtual final flag
2581 Label isVFinal; Label Done;
2582 __ testl(flags, (1 << ResolvedMethodEntry::is_vfinal_shift));
2583 __ jcc(Assembler::notZero, isVFinal);
2584 __ load_unsigned_short(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::table_index_offset())));
2585 __ jmp(Done);
2586 __ bind(isVFinal);
2587 __ movptr(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::method_offset())));
2588 __ bind(Done);
2589 }
2590
2591 // The registers cache and index expected to be set before call.
2592 // Correct values of the cache and index registers are preserved.
2593 void TemplateTable::jvmti_post_field_access(Register cache,
2594 Register index,
2595 bool is_static,
2596 bool has_tos) {
2597 if (JvmtiExport::can_post_field_access()) {
2598 // Check to see if a field access watch has been set before we take
2599 // the time to call into the VM.
2600 Label L1;
2601 assert_different_registers(cache, index, rax);
2602 __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
2603 __ testl(rax,rax);
2604 __ jcc(Assembler::zero, L1);
2605
2606 // cache entry pointer
2607 __ load_field_entry(cache, index);
2608 if (is_static) {
2609 __ xorptr(rax, rax); // null object reference
2610 } else {
2611 __ pop(atos); // Get the object
2612 __ verify_oop(rax);
2613 __ push(atos); // Restore stack state
2614 }
2615 // rax,: object pointer or null
2616 // cache: cache entry pointer
2617 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access),
2618 rax, cache);
2619
2620 __ load_field_entry(cache, index);
2621 __ bind(L1);
2622 }
2623 }
2624
2625 void TemplateTable::pop_and_check_object(Register r) {
2626 __ pop_ptr(r);
2627 __ null_check(r); // for field access must check obj.
2628 __ verify_oop(r);
2629 }
2630
2631 void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
2632 transition(vtos, vtos);
2633
2634 const Register obj = r9;
2635 const Register cache = rcx;
2636 const Register index = rdx;
2637 const Register off = rbx;
2638 const Register tos_state = rax;
2639 const Register flags = rdx;
2640 const Register bc = c_rarg3; // uses same reg as obj, so don't mix them
2641
2642 resolve_cache_and_index_for_field(byte_no, cache, index);
2643 jvmti_post_field_access(cache, index, is_static, false);
2644 load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static);
2645
2646 const Address field(obj, off, Address::times_1, 0*wordSize);
2647
2648 Label Done, notByte, notBool, notInt, notShort, notChar, notLong, notFloat, notObj, notInlineType;
2649
2650 // Make sure we don't need to mask edx after the above shift
2651 assert(btos == 0, "change code, btos != 0");
2652 __ testl(tos_state, tos_state);
2653 __ jcc(Assembler::notZero, notByte);
2654
2655 // btos
2656 if (!is_static) pop_and_check_object(obj);
2657 __ access_load_at(T_BYTE, IN_HEAP, rax, field, noreg);
2658 __ push(btos);
2659 // Rewrite bytecode to be faster
2660 if (!is_static && rc == may_rewrite) {
2661 patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx);
2662 }
2663 __ jmp(Done);
2664
2665 __ bind(notByte);
2666 __ cmpl(tos_state, ztos);
2667 __ jcc(Assembler::notEqual, notBool);
2668 if (!is_static) pop_and_check_object(obj);
2669 // ztos (same code as btos)
2670 __ access_load_at(T_BOOLEAN, IN_HEAP, rax, field, noreg);
2671 __ push(ztos);
2672 // Rewrite bytecode to be faster
2673 if (!is_static && rc == may_rewrite) {
2674 // use btos rewriting, no truncating to t/f bit is needed for getfield.
2675 patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx);
2676 }
2677 __ jmp(Done);
2678
2679 __ bind(notBool);
2680 __ cmpl(tos_state, atos);
2681 __ jcc(Assembler::notEqual, notObj);
2682 // atos
2683 if (!Arguments::is_valhalla_enabled()) {
2684 if (!is_static) pop_and_check_object(obj);
2685 do_oop_load(_masm, field, rax);
2686 __ push(atos);
2687 if (!is_static && rc == may_rewrite) {
2688 patch_bytecode(Bytecodes::_fast_agetfield, bc, rbx);
2689 }
2690 __ jmp(Done);
2691 } else {
2692 if (is_static) {
2693 __ load_heap_oop(rax, field);
2694 __ push(atos);
2695 __ jmp(Done);
2696 } else {
2697 Label is_flat, rewrite_inline;
2698 __ test_field_is_flat(flags, rscratch1, is_flat);
2699 pop_and_check_object(obj);
2700 __ load_heap_oop(rax, field);
2701 __ push(atos);
2702 if (rc == may_rewrite) {
2703 patch_bytecode(Bytecodes::_fast_agetfield, bc, rbx);
2704 }
2705 __ jmp(Done);
2706 __ bind(is_flat);
2707 // field is flat (null-free or nullable with a null-marker)
2708 pop_and_check_object(rax);
2709 __ read_flat_field(rcx, rdx, rbx, rax);
2710 __ verify_oop(rax);
2711 __ push(atos);
2712 __ bind(rewrite_inline);
2713 if (rc == may_rewrite) {
2714 patch_bytecode(Bytecodes::_fast_vgetfield, bc, rbx);
2715 }
2716 __ jmp(Done);
2717 }
2718 }
2719
2720 __ bind(notObj);
2721
2722 if (!is_static) pop_and_check_object(obj);
2723
2724 __ cmpl(tos_state, itos);
2725 __ jcc(Assembler::notEqual, notInt);
2726 // itos
2727 __ access_load_at(T_INT, IN_HEAP, rax, field, noreg);
2728 __ push(itos);
2729 // Rewrite bytecode to be faster
2730 if (!is_static && rc == may_rewrite) {
2731 patch_bytecode(Bytecodes::_fast_igetfield, bc, rbx);
2732 }
2733 __ jmp(Done);
2734
2735 __ bind(notInt);
2736 __ cmpl(tos_state, ctos);
2737 __ jcc(Assembler::notEqual, notChar);
2738 // ctos
2739 __ access_load_at(T_CHAR, IN_HEAP, rax, field, noreg);
2740 __ push(ctos);
2741 // Rewrite bytecode to be faster
2742 if (!is_static && rc == may_rewrite) {
2743 patch_bytecode(Bytecodes::_fast_cgetfield, bc, rbx);
2744 }
2745 __ jmp(Done);
2746
2747 __ bind(notChar);
2748 __ cmpl(tos_state, stos);
2749 __ jcc(Assembler::notEqual, notShort);
2750 // stos
2751 __ access_load_at(T_SHORT, IN_HEAP, rax, field, noreg);
2752 __ push(stos);
2753 // Rewrite bytecode to be faster
2754 if (!is_static && rc == may_rewrite) {
2755 patch_bytecode(Bytecodes::_fast_sgetfield, bc, rbx);
2756 }
2757 __ jmp(Done);
2758
2759 __ bind(notShort);
2760 __ cmpl(tos_state, ltos);
2761 __ jcc(Assembler::notEqual, notLong);
2762 // ltos
2763 // Generate code as if volatile (x86_32). There just aren't enough registers to
2764 // save that information and this code is faster than the test.
2765 __ access_load_at(T_LONG, IN_HEAP | MO_RELAXED, noreg /* ltos */, field, noreg);
2766 __ push(ltos);
2767 // Rewrite bytecode to be faster
2768 if (!is_static && rc == may_rewrite) patch_bytecode(Bytecodes::_fast_lgetfield, bc, rbx);
2769 __ jmp(Done);
2770
2771 __ bind(notLong);
2772 __ cmpl(tos_state, ftos);
2773 __ jcc(Assembler::notEqual, notFloat);
2774 // ftos
2775
2776 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg);
2777 __ push(ftos);
2778 // Rewrite bytecode to be faster
2779 if (!is_static && rc == may_rewrite) {
2780 patch_bytecode(Bytecodes::_fast_fgetfield, bc, rbx);
2781 }
2782 __ jmp(Done);
2783
2784 __ bind(notFloat);
2785 #ifdef ASSERT
2786 Label notDouble;
2787 __ cmpl(tos_state, dtos);
2788 __ jcc(Assembler::notEqual, notDouble);
2789 #endif
2790 // dtos
2791 // MO_RELAXED: for the case of volatile field, in fact it adds no extra work for the underlying implementation
2792 __ access_load_at(T_DOUBLE, IN_HEAP | MO_RELAXED, noreg /* dtos */, field, noreg);
2793 __ push(dtos);
2794 // Rewrite bytecode to be faster
2795 if (!is_static && rc == may_rewrite) {
2796 patch_bytecode(Bytecodes::_fast_dgetfield, bc, rbx);
2797 }
2798 #ifdef ASSERT
2799 __ jmp(Done);
2800
2801 __ bind(notDouble);
2802 __ stop("Bad state");
2803 #endif
2804
2805 __ bind(Done);
2806 // [jk] not needed currently
2807 // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadLoad |
2808 // Assembler::LoadStore));
2809 }
2810
2811 void TemplateTable::getfield(int byte_no) {
2812 getfield_or_static(byte_no, false);
2813 }
2814
2815 void TemplateTable::nofast_getfield(int byte_no) {
2816 getfield_or_static(byte_no, false, may_not_rewrite);
2817 }
2818
2819 void TemplateTable::getstatic(int byte_no) {
2820 getfield_or_static(byte_no, true);
2821 }
2822
2823 // The registers cache and index expected to be set before call.
2824 // The function may destroy various registers, just not the cache and index registers.
2825 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) {
2826 // Cache is rcx and index is rdx
2827 const Register entry = c_rarg2; // ResolvedFieldEntry
2828 const Register obj = c_rarg1; // Object pointer
2829 const Register value = c_rarg3; // JValue object
2830
2831 if (JvmtiExport::can_post_field_modification()) {
2832 // Check to see if a field modification watch has been set before
2833 // we take the time to call into the VM.
2834 Label L1;
2835 assert_different_registers(cache, obj, rax);
2836 __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
2837 __ testl(rax, rax);
2838 __ jcc(Assembler::zero, L1);
2839
2840 __ mov(entry, cache);
2841
2842 if (is_static) {
2843 // Life is simple. Null out the object pointer.
2844 __ xorl(obj, obj);
2845
2846 } else {
2847 // Life is harder. The stack holds the value on top, followed by
2848 // the object. We don't know the size of the value, though; it
2849 // could be one or two words depending on its type. As a result,
2850 // we must find the type to determine where the object is.
2851 __ load_unsigned_byte(value, Address(entry, in_bytes(ResolvedFieldEntry::type_offset())));
2852 __ movptr(obj, at_tos_p1()); // initially assume a one word jvalue
2853 __ cmpl(value, ltos);
2854 __ cmovptr(Assembler::equal,
2855 obj, at_tos_p2()); // ltos (two word jvalue)
2856 __ cmpl(value, dtos);
2857 __ cmovptr(Assembler::equal,
2858 obj, at_tos_p2()); // dtos (two word jvalue)
2859 }
2860
2861 // object (tos)
2862 __ mov(value, rsp);
2863 // obj: object pointer set up above (null if static)
2864 // cache: field entry pointer
2865 // value: jvalue object on the stack
2866 __ call_VM(noreg,
2867 CAST_FROM_FN_PTR(address,
2868 InterpreterRuntime::post_field_modification),
2869 obj, entry, value);
2870 // Reload field entry
2871 __ load_field_entry(cache, index);
2872 __ bind(L1);
2873 }
2874 }
2875
2876 void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
2877 transition(vtos, vtos);
2878
2879 const Register obj = rcx;
2880 const Register cache = rcx;
2881 const Register index = rdx;
2882 const Register tos_state = rdx;
2883 const Register off = rbx;
2884 const Register flags = r9;
2885
2886 resolve_cache_and_index_for_field(byte_no, cache, index);
2887 jvmti_post_field_mod(cache, index, is_static);
2888 load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static);
2889
2890 // [jk] not needed currently
2891 // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
2892 // Assembler::StoreStore));
2893
2894 Label notVolatile, Done;
2895
2896 // Check for volatile store
2897 __ movl(rscratch1, flags);
2898 __ andl(rscratch1, (1 << ResolvedFieldEntry::is_volatile_shift));
2899 __ testl(rscratch1, rscratch1);
2900 __ jcc(Assembler::zero, notVolatile);
2901
2902 putfield_or_static_helper(byte_no, is_static, rc, obj, off, tos_state, flags);
2903 volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
2904 Assembler::StoreStore));
2905 __ jmp(Done);
2906 __ bind(notVolatile);
2907
2908 putfield_or_static_helper(byte_no, is_static, rc, obj, off, tos_state, flags);
2909
2910 __ bind(Done);
2911 }
2912
2913 void TemplateTable::putfield_or_static_helper(int byte_no, bool is_static, RewriteControl rc,
2914 Register obj, Register off, Register tos_state, Register flags) {
2915
2916 // field addresses
2917 const Address field(obj, off, Address::times_1, 0*wordSize);
2918
2919 Label notByte, notBool, notInt, notShort, notChar,
2920 notLong, notFloat, notObj, notInlineType;
2921 Label Done;
2922
2923 const Register bc = c_rarg3;
2924
2925 // Test TOS state
2926 __ testl(tos_state, tos_state);
2927 __ jcc(Assembler::notZero, notByte);
2928
2929 // btos
2930 {
2931 __ pop(btos);
2932 if (!is_static) pop_and_check_object(obj);
2933 __ access_store_at(T_BYTE, IN_HEAP, field, rax, noreg, noreg, noreg);
2934 if (!is_static && rc == may_rewrite) {
2935 patch_bytecode(Bytecodes::_fast_bputfield, bc, rbx, true, byte_no);
2936 }
2937 __ jmp(Done);
2938 }
2939
2940 __ bind(notByte);
2941 __ cmpl(tos_state, ztos);
2942 __ jcc(Assembler::notEqual, notBool);
2943
2944 // ztos
2945 {
2946 __ pop(ztos);
2947 if (!is_static) pop_and_check_object(obj);
2948 __ access_store_at(T_BOOLEAN, IN_HEAP, field, rax, noreg, noreg, noreg);
2949 if (!is_static && rc == may_rewrite) {
2950 patch_bytecode(Bytecodes::_fast_zputfield, bc, rbx, true, byte_no);
2951 }
2952 __ jmp(Done);
2953 }
2954
2955 __ bind(notBool);
2956 __ cmpl(tos_state, atos);
2957 __ jcc(Assembler::notEqual, notObj);
2958
2959 // atos
2960 {
2961 if (!Arguments::is_valhalla_enabled()) {
2962 __ pop(atos);
2963 if (!is_static) pop_and_check_object(obj);
2964 // Store into the field
2965 do_oop_store(_masm, field, rax);
2966 if (!is_static && rc == may_rewrite) {
2967 patch_bytecode(Bytecodes::_fast_aputfield, bc, rbx, true, byte_no);
2968 }
2969 __ jmp(Done);
2970 } else {
2971 __ pop(atos);
2972 if (is_static) {
2973 Label is_nullable;
2974 __ test_field_is_not_null_free_inline_type(flags, rscratch1, is_nullable);
2975 __ null_check(rax); // FIXME JDK-8341120
2976 __ bind(is_nullable);
2977 do_oop_store(_masm, field, rax);
2978 __ jmp(Done);
2979 } else {
2980 Label is_flat, null_free_reference, rewrite_inline;
2981 __ test_field_is_flat(flags, rscratch1, is_flat);
2982 __ test_field_is_null_free_inline_type(flags, rscratch1, null_free_reference);
2983 pop_and_check_object(obj);
2984 // Store into the field
2985 do_oop_store(_masm, field, rax);
2986 if (rc == may_rewrite) {
2987 patch_bytecode(Bytecodes::_fast_aputfield, bc, rbx, true, byte_no);
2988 }
2989 __ jmp(Done);
2990 __ bind(null_free_reference);
2991 __ null_check(rax); // FIXME JDK-8341120
2992 pop_and_check_object(obj);
2993 // Store into the field
2994 do_oop_store(_masm, field, rax);
2995 __ jmp(rewrite_inline);
2996 __ bind(is_flat);
2997 pop_and_check_object(rscratch2);
2998 __ write_flat_field(rcx, r8, rscratch1, rscratch2, rbx, rax);
2999 __ bind(rewrite_inline);
3000 if (rc == may_rewrite) {
3001 patch_bytecode(Bytecodes::_fast_vputfield, bc, rbx, true, byte_no);
3002 }
3003 __ jmp(Done);
3004 }
3005 }
3006 }
3007
3008 __ bind(notObj);
3009 __ cmpl(tos_state, itos);
3010 __ jcc(Assembler::notEqual, notInt);
3011
3012 // itos
3013 {
3014 __ pop(itos);
3015 if (!is_static) pop_and_check_object(obj);
3016 __ access_store_at(T_INT, IN_HEAP, field, rax, noreg, noreg, noreg);
3017 if (!is_static && rc == may_rewrite) {
3018 patch_bytecode(Bytecodes::_fast_iputfield, bc, rbx, true, byte_no);
3019 }
3020 __ jmp(Done);
3021 }
3022
3023 __ bind(notInt);
3024 __ cmpl(tos_state, ctos);
3025 __ jcc(Assembler::notEqual, notChar);
3026
3027 // ctos
3028 {
3029 __ pop(ctos);
3030 if (!is_static) pop_and_check_object(obj);
3031 __ access_store_at(T_CHAR, IN_HEAP, field, rax, noreg, noreg, noreg);
3032 if (!is_static && rc == may_rewrite) {
3033 patch_bytecode(Bytecodes::_fast_cputfield, bc, rbx, true, byte_no);
3034 }
3035 __ jmp(Done);
3036 }
3037
3038 __ bind(notChar);
3039 __ cmpl(tos_state, stos);
3040 __ jcc(Assembler::notEqual, notShort);
3041
3042 // stos
3043 {
3044 __ pop(stos);
3045 if (!is_static) pop_and_check_object(obj);
3046 __ access_store_at(T_SHORT, IN_HEAP, field, rax, noreg, noreg, noreg);
3047 if (!is_static && rc == may_rewrite) {
3048 patch_bytecode(Bytecodes::_fast_sputfield, bc, rbx, true, byte_no);
3049 }
3050 __ jmp(Done);
3051 }
3052
3053 __ bind(notShort);
3054 __ cmpl(tos_state, ltos);
3055 __ jcc(Assembler::notEqual, notLong);
3056
3057 // ltos
3058 {
3059 __ pop(ltos);
3060 if (!is_static) pop_and_check_object(obj);
3061 // MO_RELAXED: generate atomic store for the case of volatile field (important for x86_32)
3062 __ access_store_at(T_LONG, IN_HEAP | MO_RELAXED, field, noreg /* ltos*/, noreg, noreg, noreg);
3063 if (!is_static && rc == may_rewrite) {
3064 patch_bytecode(Bytecodes::_fast_lputfield, bc, rbx, true, byte_no);
3065 }
3066 __ jmp(Done);
3067 }
3068
3069 __ bind(notLong);
3070 __ cmpl(tos_state, ftos);
3071 __ jcc(Assembler::notEqual, notFloat);
3072
3073 // ftos
3074 {
3075 __ pop(ftos);
3076 if (!is_static) pop_and_check_object(obj);
3077 __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos */, noreg, noreg, noreg);
3078 if (!is_static && rc == may_rewrite) {
3079 patch_bytecode(Bytecodes::_fast_fputfield, bc, rbx, true, byte_no);
3080 }
3081 __ jmp(Done);
3082 }
3083
3084 __ bind(notFloat);
3085 #ifdef ASSERT
3086 Label notDouble;
3087 __ cmpl(tos_state, dtos);
3088 __ jcc(Assembler::notEqual, notDouble);
3089 #endif
3090
3091 // dtos
3092 {
3093 __ pop(dtos);
3094 if (!is_static) pop_and_check_object(obj);
3095 // MO_RELAXED: for the case of volatile field, in fact it adds no extra work for the underlying implementation
3096 __ access_store_at(T_DOUBLE, IN_HEAP | MO_RELAXED, field, noreg /* dtos */, noreg, noreg, noreg);
3097 if (!is_static && rc == may_rewrite) {
3098 patch_bytecode(Bytecodes::_fast_dputfield, bc, rbx, true, byte_no);
3099 }
3100 }
3101
3102 #ifdef ASSERT
3103 __ jmp(Done);
3104
3105 __ bind(notDouble);
3106 __ stop("Bad state");
3107 #endif
3108
3109 __ bind(Done);
3110 }
3111
3112 void TemplateTable::putfield(int byte_no) {
3113 putfield_or_static(byte_no, false);
3114 }
3115
3116 void TemplateTable::nofast_putfield(int byte_no) {
3117 putfield_or_static(byte_no, false, may_not_rewrite);
3118 }
3119
3120 void TemplateTable::putstatic(int byte_no) {
3121 putfield_or_static(byte_no, true);
3122 }
3123
3124 void TemplateTable::jvmti_post_fast_field_mod() {
3125
3126 const Register scratch = c_rarg3;
3127
3128 if (JvmtiExport::can_post_field_modification()) {
3129 // Check to see if a field modification watch has been set before
3130 // we take the time to call into the VM.
3131 Label L2;
3132 __ mov32(scratch, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
3133 __ testl(scratch, scratch);
3134 __ jcc(Assembler::zero, L2);
3135 __ pop_ptr(rbx); // copy the object pointer from tos
3136 __ verify_oop(rbx);
3137 __ push_ptr(rbx); // put the object pointer back on tos
3138 // Save tos values before call_VM() clobbers them. Since we have
3139 // to do it for every data type, we use the saved values as the
3140 // jvalue object.
3141 switch (bytecode()) { // load values into the jvalue object
3142 case Bytecodes::_fast_vputfield: //fall through
3143 case Bytecodes::_fast_aputfield: __ push_ptr(rax); break;
3144 case Bytecodes::_fast_bputfield: // fall through
3145 case Bytecodes::_fast_zputfield: // fall through
3146 case Bytecodes::_fast_sputfield: // fall through
3147 case Bytecodes::_fast_cputfield: // fall through
3148 case Bytecodes::_fast_iputfield: __ push_i(rax); break;
3149 case Bytecodes::_fast_dputfield: __ push(dtos); break;
3150 case Bytecodes::_fast_fputfield: __ push(ftos); break;
3151 case Bytecodes::_fast_lputfield: __ push_l(rax); break;
3152
3153 default:
3154 ShouldNotReachHere();
3155 }
3156 __ mov(scratch, rsp); // points to jvalue on the stack
3157 // access constant pool cache entry
3158 __ load_field_entry(c_rarg2, rax);
3159 __ verify_oop(rbx);
3160 // rbx: object pointer copied above
3161 // c_rarg2: cache entry pointer
3162 // c_rarg3: jvalue object on the stack
3163 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), rbx, c_rarg2, c_rarg3);
3164
3165 switch (bytecode()) { // restore tos values
3166 case Bytecodes::_fast_vputfield: // fall through
3167 case Bytecodes::_fast_aputfield: __ pop_ptr(rax); break;
3168 case Bytecodes::_fast_bputfield: // fall through
3169 case Bytecodes::_fast_zputfield: // fall through
3170 case Bytecodes::_fast_sputfield: // fall through
3171 case Bytecodes::_fast_cputfield: // fall through
3172 case Bytecodes::_fast_iputfield: __ pop_i(rax); break;
3173 case Bytecodes::_fast_dputfield: __ pop(dtos); break;
3174 case Bytecodes::_fast_fputfield: __ pop(ftos); break;
3175 case Bytecodes::_fast_lputfield: __ pop_l(rax); break;
3176 default: break;
3177 }
3178 __ bind(L2);
3179 }
3180 }
3181
3182 void TemplateTable::fast_storefield(TosState state) {
3183 transition(state, vtos);
3184
3185 Label notVolatile, Done;
3186
3187 jvmti_post_fast_field_mod();
3188
3189 __ push(rax);
3190 __ load_field_entry(rcx, rax);
3191 load_resolved_field_entry(noreg, rcx, rax, rbx, rdx);
3192 __ pop(rax);
3193 // RBX: field offset, RCX: RAX: TOS, RDX: flags
3194
3195 // Get object from stack
3196 pop_and_check_object(rcx);
3197
3198 // field address
3199 const Address field(rcx, rbx, Address::times_1);
3200
3201 // Check for volatile store
3202 __ movl(rscratch2, rdx); // saving flags for is_flat test
3203 __ andl(rscratch2, (1 << ResolvedFieldEntry::is_volatile_shift));
3204 __ testl(rscratch2, rscratch2);
3205 __ jcc(Assembler::zero, notVolatile);
3206
3207 fast_storefield_helper(field, rax, rdx);
3208 volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
3209 Assembler::StoreStore));
3210 __ jmp(Done);
3211 __ bind(notVolatile);
3212
3213 fast_storefield_helper(field, rax, rdx);
3214
3215 __ bind(Done);
3216 }
3217
3218 void TemplateTable::fast_storefield_helper(Address field, Register rax, Register flags) {
3219
3220 // DANGER: 'field' argument depends on rcx and rbx
3221
3222 // access field
3223 switch (bytecode()) {
3224 case Bytecodes::_fast_vputfield:
3225 {
3226 // Field is either flat (nullable or not) or non-flat and null-free
3227 Label is_flat, done;
3228 __ test_field_is_flat(flags, rscratch1, is_flat);
3229 __ null_check(rax); // FIXME JDK-8341120
3230 do_oop_store(_masm, field, rax);
3231 __ jmp(done);
3232 __ bind(is_flat);
3233 __ load_field_entry(r8, r9);
3234 __ movptr(rscratch2, rcx); // re-shuffle registers because of VM call calling convention
3235 __ write_flat_field(r8, rscratch1, r9, rscratch2, rbx, rax);
3236 __ bind(done);
3237 }
3238 break;
3239 case Bytecodes::_fast_aputfield:
3240 {
3241 do_oop_store(_masm, field, rax);
3242 }
3243 break;
3244 case Bytecodes::_fast_lputfield:
3245 __ access_store_at(T_LONG, IN_HEAP, field, noreg /* ltos */, noreg, noreg, noreg);
3246 break;
3247 case Bytecodes::_fast_iputfield:
3248 __ access_store_at(T_INT, IN_HEAP, field, rax, noreg, noreg, noreg);
3249 break;
3250 case Bytecodes::_fast_zputfield:
3251 __ access_store_at(T_BOOLEAN, IN_HEAP, field, rax, noreg, noreg, noreg);
3252 break;
3253 case Bytecodes::_fast_bputfield:
3254 __ access_store_at(T_BYTE, IN_HEAP, field, rax, noreg, noreg, noreg);
3255 break;
3256 case Bytecodes::_fast_sputfield:
3257 __ access_store_at(T_SHORT, IN_HEAP, field, rax, noreg, noreg, noreg);
3258 break;
3259 case Bytecodes::_fast_cputfield:
3260 __ access_store_at(T_CHAR, IN_HEAP, field, rax, noreg, noreg, noreg);
3261 break;
3262 case Bytecodes::_fast_fputfield:
3263 __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos*/, noreg, noreg, noreg);
3264 break;
3265 case Bytecodes::_fast_dputfield:
3266 __ access_store_at(T_DOUBLE, IN_HEAP, field, noreg /* dtos*/, noreg, noreg, noreg);
3267 break;
3268 default:
3269 ShouldNotReachHere();
3270 }
3271 }
3272
3273 void TemplateTable::fast_accessfield(TosState state) {
3274 transition(atos, state);
3275
3276 // Do the JVMTI work here to avoid disturbing the register state below
3277 if (JvmtiExport::can_post_field_access()) {
3278 // Check to see if a field access watch has been set before we
3279 // take the time to call into the VM.
3280 Label L1;
3281 __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
3282 __ testl(rcx, rcx);
3283 __ jcc(Assembler::zero, L1);
3284 // access constant pool cache entry
3285 __ load_field_entry(c_rarg2, rcx);
3286 __ verify_oop(rax);
3287 __ push_ptr(rax); // save object pointer before call_VM() clobbers it
3288 __ mov(c_rarg1, rax);
3289 // c_rarg1: object pointer copied above
3290 // c_rarg2: cache entry pointer
3291 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), c_rarg1, c_rarg2);
3292 __ pop_ptr(rax); // restore object pointer
3293 __ bind(L1);
3294 }
3295
3296 // access constant pool cache
3297 __ load_field_entry(rcx, rbx);
3298 __ load_sized_value(rdx, Address(rcx, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/);
3299
3300 // rax: object
3301 __ verify_oop(rax);
3302 __ null_check(rax);
3303 Address field(rax, rdx, Address::times_1);
3304
3305 // access field
3306 switch (bytecode()) {
3307 case Bytecodes::_fast_vgetfield:
3308 __ read_flat_field(rcx, rdx, rbx, rax);
3309 __ verify_oop(rax);
3310 break;
3311 case Bytecodes::_fast_agetfield:
3312 do_oop_load(_masm, field, rax);
3313 __ verify_oop(rax);
3314 break;
3315 case Bytecodes::_fast_lgetfield:
3316 __ access_load_at(T_LONG, IN_HEAP, noreg /* ltos */, field, noreg);
3317 break;
3318 case Bytecodes::_fast_igetfield:
3319 __ access_load_at(T_INT, IN_HEAP, rax, field, noreg);
3320 break;
3321 case Bytecodes::_fast_bgetfield:
3322 __ access_load_at(T_BYTE, IN_HEAP, rax, field, noreg);
3323 break;
3324 case Bytecodes::_fast_sgetfield:
3325 __ access_load_at(T_SHORT, IN_HEAP, rax, field, noreg);
3326 break;
3327 case Bytecodes::_fast_cgetfield:
3328 __ access_load_at(T_CHAR, IN_HEAP, rax, field, noreg);
3329 break;
3330 case Bytecodes::_fast_fgetfield:
3331 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg);
3332 break;
3333 case Bytecodes::_fast_dgetfield:
3334 __ access_load_at(T_DOUBLE, IN_HEAP, noreg /* dtos */, field, noreg);
3335 break;
3336 default:
3337 ShouldNotReachHere();
3338 }
3339 // [jk] not needed currently
3340 // Label notVolatile;
3341 // __ testl(rdx, rdx);
3342 // __ jcc(Assembler::zero, notVolatile);
3343 // __ membar(Assembler::LoadLoad);
3344 // __ bind(notVolatile);
3345 }
3346
3347 void TemplateTable::fast_xaccess(TosState state) {
3348 transition(vtos, state);
3349
3350 // get receiver
3351 __ movptr(rax, aaddress(0));
3352 // access constant pool cache
3353 __ load_field_entry(rcx, rdx, 2);
3354 __ load_sized_value(rbx, Address(rcx, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/);
3355
3356 // make sure exception is reported in correct bcp range (getfield is
3357 // next instruction)
3358 __ increment(rbcp);
3359 __ null_check(rax);
3360 const Address field = Address(rax, rbx, Address::times_1, 0*wordSize);
3361 switch (state) {
3362 case itos:
3363 __ access_load_at(T_INT, IN_HEAP, rax, field, noreg);
3364 break;
3365 case atos:
3366 do_oop_load(_masm, field, rax);
3367 __ verify_oop(rax);
3368 break;
3369 case ftos:
3370 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg);
3371 break;
3372 default:
3373 ShouldNotReachHere();
3374 }
3375
3376 // [jk] not needed currently
3377 // Label notVolatile;
3378 // __ movl(rdx, Address(rcx, rdx, Address::times_8,
3379 // in_bytes(ConstantPoolCache::base_offset() +
3380 // ConstantPoolCacheEntry::flags_offset())));
3381 // __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
3382 // __ testl(rdx, 0x1);
3383 // __ jcc(Assembler::zero, notVolatile);
3384 // __ membar(Assembler::LoadLoad);
3385 // __ bind(notVolatile);
3386
3387 __ decrement(rbcp);
3388 }
3389
3390 //-----------------------------------------------------------------------------
3391 // Calls
3392
3393 void TemplateTable::prepare_invoke(Register cache, Register recv, Register flags) {
3394 // determine flags
3395 const Bytecodes::Code code = bytecode();
3396 const bool load_receiver = (code != Bytecodes::_invokestatic) && (code != Bytecodes::_invokedynamic);
3397 assert_different_registers(recv, flags);
3398
3399 // save 'interpreter return address'
3400 __ save_bcp();
3401
3402 // Save flags and load TOS
3403 __ movl(rbcp, flags);
3404 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::type_offset())));
3405
3406 // load receiver if needed (after appendix is pushed so parameter size is correct)
3407 // Note: no return address pushed yet
3408 if (load_receiver) {
3409 __ load_unsigned_short(recv, Address(cache, in_bytes(ResolvedMethodEntry::num_parameters_offset())));
3410 const int no_return_pc_pushed_yet = -1; // argument slot correction before we push return address
3411 const int receiver_is_at_end = -1; // back off one slot to get receiver
3412 Address recv_addr = __ argument_address(recv, no_return_pc_pushed_yet + receiver_is_at_end);
3413 __ movptr(recv, recv_addr);
3414 __ verify_oop(recv);
3415 }
3416
3417 // load return address
3418 {
3419 const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code);
3420 ExternalAddress table(table_addr);
3421 __ lea(rscratch1, table);
3422 __ movptr(flags, Address(rscratch1, flags, Address::times_ptr));
3423 }
3424
3425 // push return address
3426 __ push(flags);
3427
3428 // Restore flags value from the constant pool cache entry, and restore rsi
3429 // for later null checks. r13 is the bytecode pointer
3430 __ movl(flags, rbcp);
3431 __ restore_bcp();
3432 }
3433
3434 void TemplateTable::invokevirtual_helper(Register index,
3435 Register recv,
3436 Register flags) {
3437 // Uses temporary registers rax, rdx
3438 assert_different_registers(index, recv, rax, rdx);
3439 assert(index == rbx, "");
3440 assert(recv == rcx, "");
3441
3442 // Test for an invoke of a final method
3443 Label notFinal;
3444 __ movl(rax, flags);
3445 __ andl(rax, (1 << ResolvedMethodEntry::is_vfinal_shift));
3446 __ jcc(Assembler::zero, notFinal);
3447
3448 const Register method = index; // method must be rbx
3449 assert(method == rbx,
3450 "Method* must be rbx for interpreter calling convention");
3451
3452 // do the call - the index is actually the method to call
3453 // that is, f2 is a vtable index if !is_vfinal, else f2 is a Method*
3454
3455 // It's final, need a null check here!
3456 __ null_check(recv);
3457
3458 // profile this call
3459 __ profile_final_call(rax);
3460 __ profile_arguments_type(rax, method, rbcp, true);
3461
3462 __ jump_from_interpreted(method, rax);
3463
3464 __ bind(notFinal);
3465
3466 // get receiver klass
3467 __ load_klass(rax, recv, rscratch1);
3468
3469 // profile this call
3470 __ profile_virtual_call(rax, rlocals, rdx);
3471 // get target Method* & entry point
3472 __ lookup_virtual_method(rax, index, method);
3473
3474 __ profile_arguments_type(rdx, method, rbcp, true);
3475 __ jump_from_interpreted(method, rdx);
3476 }
3477
3478 void TemplateTable::invokevirtual(int byte_no) {
3479 transition(vtos, vtos);
3480 assert(byte_no == f2_byte, "use this argument");
3481
3482 load_resolved_method_entry_virtual(rcx, // ResolvedMethodEntry*
3483 rbx, // Method or itable index
3484 rdx); // Flags
3485 prepare_invoke(rcx, // ResolvedMethodEntry*
3486 rcx, // Receiver
3487 rdx); // flags
3488
3489 // rbx: index
3490 // rcx: receiver
3491 // rdx: flags
3492 invokevirtual_helper(rbx, rcx, rdx);
3493 }
3494
3495 void TemplateTable::invokespecial(int byte_no) {
3496 transition(vtos, vtos);
3497 assert(byte_no == f1_byte, "use this argument");
3498
3499 load_resolved_method_entry_special_or_static(rcx, // ResolvedMethodEntry*
3500 rbx, // Method*
3501 rdx); // flags
3502 prepare_invoke(rcx,
3503 rcx, // get receiver also for null check
3504 rdx); // flags
3505
3506 __ verify_oop(rcx);
3507 __ null_check(rcx);
3508 // do the call
3509 __ profile_call(rax);
3510 __ profile_arguments_type(rax, rbx, rbcp, false);
3511 __ jump_from_interpreted(rbx, rax);
3512 }
3513
3514 void TemplateTable::invokestatic(int byte_no) {
3515 transition(vtos, vtos);
3516 assert(byte_no == f1_byte, "use this argument");
3517
3518 load_resolved_method_entry_special_or_static(rcx, // ResolvedMethodEntry*
3519 rbx, // Method*
3520 rdx // flags
3521 );
3522 prepare_invoke(rcx, rcx, rdx); // cache and flags
3523
3524 // do the call
3525 __ profile_call(rax);
3526 __ profile_arguments_type(rax, rbx, rbcp, false);
3527 __ jump_from_interpreted(rbx, rax);
3528 }
3529
3530
3531 void TemplateTable::fast_invokevfinal(int byte_no) {
3532 transition(vtos, vtos);
3533 assert(byte_no == f2_byte, "use this argument");
3534 __ stop("fast_invokevfinal not used on x86");
3535 }
3536
3537
3538 void TemplateTable::invokeinterface(int byte_no) {
3539 transition(vtos, vtos);
3540 assert(byte_no == f1_byte, "use this argument");
3541
3542 load_resolved_method_entry_interface(rcx, // ResolvedMethodEntry*
3543 rax, // Klass*
3544 rbx, // Method* or itable/vtable index
3545 rdx); // flags
3546 prepare_invoke(rcx, rcx, rdx); // receiver, flags
3547
3548 // First check for Object case, then private interface method,
3549 // then regular interface method.
3550
3551 // Special case of invokeinterface called for virtual method of
3552 // java.lang.Object. See cpCache.cpp for details.
3553 Label notObjectMethod;
3554 __ movl(rlocals, rdx);
3555 __ andl(rlocals, (1 << ResolvedMethodEntry::is_forced_virtual_shift));
3556 __ jcc(Assembler::zero, notObjectMethod);
3557
3558 invokevirtual_helper(rbx, rcx, rdx);
3559 // no return from above
3560 __ bind(notObjectMethod);
3561
3562 Label no_such_interface; // for receiver subtype check
3563 Register recvKlass; // used for exception processing
3564
3565 // Check for private method invocation - indicated by vfinal
3566 Label notVFinal;
3567 __ movl(rlocals, rdx);
3568 __ andl(rlocals, (1 << ResolvedMethodEntry::is_vfinal_shift));
3569 __ jcc(Assembler::zero, notVFinal);
3570
3571 // Get receiver klass into rlocals - also a null check
3572 __ load_klass(rlocals, rcx, rscratch1);
3573
3574 Label subtype;
3575 __ check_klass_subtype(rlocals, rax, rbcp, subtype);
3576 // If we get here the typecheck failed
3577 recvKlass = rdx;
3578 __ mov(recvKlass, rlocals); // shuffle receiver class for exception use
3579 __ jmp(no_such_interface);
3580
3581 __ bind(subtype);
3582
3583 // do the call - rbx is actually the method to call
3584
3585 __ profile_final_call(rdx);
3586 __ profile_arguments_type(rdx, rbx, rbcp, true);
3587
3588 __ jump_from_interpreted(rbx, rdx);
3589 // no return from above
3590 __ bind(notVFinal);
3591
3592 // Get receiver klass into rdx - also a null check
3593 __ restore_locals(); // restore r14
3594 __ load_klass(rdx, rcx, rscratch1);
3595
3596 Label no_such_method;
3597
3598 // Preserve method for throw_AbstractMethodErrorVerbose.
3599 __ mov(rcx, rbx);
3600 // Receiver subtype check against REFC.
3601 // Superklass in rax. Subklass in rdx. Blows rcx, rdi.
3602 __ lookup_interface_method(// inputs: rec. class, interface, itable index
3603 rdx, rax, noreg,
3604 // outputs: scan temp. reg, scan temp. reg
3605 rbcp, rlocals,
3606 no_such_interface,
3607 /*return_method=*/false);
3608
3609 // profile this call
3610 __ restore_bcp(); // rbcp was destroyed by receiver type check
3611 __ profile_virtual_call(rdx, rbcp, rlocals);
3612
3613 // Get declaring interface class from method, and itable index
3614 __ load_method_holder(rax, rbx);
3615 __ movl(rbx, Address(rbx, Method::itable_index_offset()));
3616 __ subl(rbx, Method::itable_index_max);
3617 __ negl(rbx);
3618
3619 // Preserve recvKlass for throw_AbstractMethodErrorVerbose.
3620 __ mov(rlocals, rdx);
3621 __ lookup_interface_method(// inputs: rec. class, interface, itable index
3622 rlocals, rax, rbx,
3623 // outputs: method, scan temp. reg
3624 rbx, rbcp,
3625 no_such_interface);
3626
3627 // rbx: Method* to call
3628 // rcx: receiver
3629 // Check for abstract method error
3630 // Note: This should be done more efficiently via a throw_abstract_method_error
3631 // interpreter entry point and a conditional jump to it in case of a null
3632 // method.
3633 __ testptr(rbx, rbx);
3634 __ jcc(Assembler::zero, no_such_method);
3635
3636 __ profile_arguments_type(rdx, rbx, rbcp, true);
3637
3638 // do the call
3639 // rcx: receiver
3640 // rbx,: Method*
3641 __ jump_from_interpreted(rbx, rdx);
3642 __ should_not_reach_here();
3643
3644 // exception handling code follows...
3645 // note: must restore interpreter registers to canonical
3646 // state for exception handling to work correctly!
3647
3648 __ bind(no_such_method);
3649 // throw exception
3650 __ pop(rbx); // pop return address (pushed by prepare_invoke)
3651 __ restore_bcp(); // rbcp must be correct for exception handler (was destroyed)
3652 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed)
3653 // Pass arguments for generating a verbose error message.
3654 recvKlass = c_rarg1;
3655 Register method = c_rarg2;
3656 if (recvKlass != rdx) { __ movq(recvKlass, rdx); }
3657 if (method != rcx) { __ movq(method, rcx); }
3658 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodErrorVerbose),
3659 recvKlass, method);
3660 // The call_VM checks for exception, so we should never return here.
3661 __ should_not_reach_here();
3662
3663 __ bind(no_such_interface);
3664 // throw exception
3665 __ pop(rbx); // pop return address (pushed by prepare_invoke)
3666 __ restore_bcp(); // rbcp must be correct for exception handler (was destroyed)
3667 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed)
3668 // Pass arguments for generating a verbose error message.
3669 if (recvKlass != rdx) {
3670 __ movq(recvKlass, rdx);
3671 }
3672 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_IncompatibleClassChangeErrorVerbose),
3673 recvKlass, rax);
3674 // the call_VM checks for exception, so we should never return here.
3675 __ should_not_reach_here();
3676 }
3677
3678 void TemplateTable::invokehandle(int byte_no) {
3679 transition(vtos, vtos);
3680 assert(byte_no == f1_byte, "use this argument");
3681 const Register rbx_method = rbx;
3682 const Register rax_mtype = rax;
3683 const Register rcx_recv = rcx;
3684 const Register rdx_flags = rdx;
3685
3686 load_resolved_method_entry_handle(rcx, rbx_method, rax_mtype, rdx_flags);
3687 prepare_invoke(rcx, rcx_recv, rdx_flags);
3688
3689 __ verify_method_ptr(rbx_method);
3690 __ verify_oop(rcx_recv);
3691 __ null_check(rcx_recv);
3692
3693 // rax: MethodType object (from cpool->resolved_references[f1], if necessary)
3694 // rbx: MH.invokeExact_MT method
3695
3696 // Note: rax_mtype is already pushed (if necessary)
3697
3698 // FIXME: profile the LambdaForm also
3699 __ profile_final_call(rax);
3700 __ profile_arguments_type(rdx, rbx_method, rbcp, true);
3701
3702 __ jump_from_interpreted(rbx_method, rdx);
3703 }
3704
3705 void TemplateTable::invokedynamic(int byte_no) {
3706 transition(vtos, vtos);
3707 assert(byte_no == f1_byte, "use this argument");
3708
3709 const Register rbx_method = rbx;
3710 const Register rax_callsite = rax;
3711
3712 load_invokedynamic_entry(rbx_method);
3713 // rax: CallSite object (from cpool->resolved_references[])
3714 // rbx: MH.linkToCallSite method
3715
3716 // Note: rax_callsite is already pushed
3717
3718 // %%% should make a type profile for any invokedynamic that takes a ref argument
3719 // profile this call
3720 __ profile_call(rbcp);
3721 __ profile_arguments_type(rdx, rbx_method, rbcp, false);
3722
3723 __ verify_oop(rax_callsite);
3724
3725 __ jump_from_interpreted(rbx_method, rdx);
3726 }
3727
3728 //-----------------------------------------------------------------------------
3729 // Allocation
3730
3731 void TemplateTable::_new() {
3732 transition(vtos, atos);
3733 __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
3734 Label slow_case;
3735 Label done;
3736
3737 __ get_cpool_and_tags(rcx, rax);
3738
3739 // Make sure the class we're about to instantiate has been resolved.
3740 // This is done before loading InstanceKlass to be consistent with the order
3741 // how Constant Pool is updated (see ConstantPool::klass_at_put)
3742 const int tags_offset = Array<u1>::base_offset_in_bytes();
3743 __ cmpb(Address(rax, rdx, Address::times_1, tags_offset), JVM_CONSTANT_Class);
3744 __ jcc(Assembler::notEqual, slow_case);
3745
3746 // get InstanceKlass
3747 __ load_resolved_klass_at_index(rcx, rcx, rdx);
3748
3749 // make sure klass is initialized
3750 // init_state needs acquire, but x86 is TSO, and so we are already good.
3751 assert(VM_Version::supports_fast_class_init_checks(), "must support fast class initialization checks");
3752 __ clinit_barrier(rcx, nullptr /*L_fast_path*/, &slow_case);
3753
3754 __ allocate_instance(rcx, rax, rdx, rbx, true, slow_case);
3755 __ jmp(done);
3756
3757 // slow case
3758 __ bind(slow_case);
3759
3760 __ get_constant_pool(c_rarg1);
3761 __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
3762 __ call_VM_preemptable(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2);
3763 __ verify_oop(rax);
3764
3765 // continue
3766 __ bind(done);
3767 }
3768
3769 void TemplateTable::newarray() {
3770 transition(itos, atos);
3771 __ load_unsigned_byte(c_rarg1, at_bcp(1));
3772 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray),
3773 c_rarg1, rax);
3774 }
3775
3776 void TemplateTable::anewarray() {
3777 transition(itos, atos);
3778
3779 __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
3780 __ get_constant_pool(c_rarg1);
3781 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray),
3782 c_rarg1, c_rarg2, rax);
3783 }
3784
3785 void TemplateTable::arraylength() {
3786 transition(atos, itos);
3787 __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes()));
3788 }
3789
3790 void TemplateTable::checkcast() {
3791 transition(atos, atos);
3792 Label done, is_null, ok_is_subtype, quicked, resolved;
3793 __ testptr(rax, rax); // object is in rax
3794 __ jcc(Assembler::zero, is_null);
3795
3796 // Get cpool & tags index
3797 __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
3798 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
3799 // See if bytecode has already been quicked
3800 __ movzbl(rdx, Address(rdx, rbx,
3801 Address::times_1,
3802 Array<u1>::base_offset_in_bytes()));
3803 __ cmpl(rdx, JVM_CONSTANT_Class);
3804 __ jcc(Assembler::equal, quicked);
3805 __ push(atos); // save receiver for result, and for GC
3806 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
3807
3808 __ get_vm_result_metadata(rax);
3809
3810 __ pop_ptr(rdx); // restore receiver
3811 __ jmpb(resolved);
3812
3813 // Get superklass in rax and subklass in rbx
3814 __ bind(quicked);
3815 __ mov(rdx, rax); // Save object in rdx; rax needed for subtype check
3816 __ load_resolved_klass_at_index(rax, rcx, rbx);
3817
3818 __ bind(resolved);
3819 __ load_klass(rbx, rdx, rscratch1);
3820
3821 // Generate subtype check. Blows rcx, rdi. Object in rdx.
3822 // Superklass in rax. Subklass in rbx.
3823 __ gen_subtype_check(rbx, ok_is_subtype);
3824
3825 // Come here on failure
3826 __ push_ptr(rdx);
3827 // object is at TOS
3828 __ jump(RuntimeAddress(Interpreter::_throw_ClassCastException_entry));
3829
3830 // Come here on success
3831 __ bind(ok_is_subtype);
3832 __ mov(rax, rdx); // Restore object in rdx
3833 __ jmp(done);
3834
3835 __ bind(is_null);
3836
3837 // Collect counts on whether this check-cast sees nulls a lot or not.
3838 if (ProfileInterpreter) {
3839 __ profile_null_seen(rcx);
3840 }
3841
3842 __ bind(done);
3843 }
3844
3845 void TemplateTable::instanceof() {
3846 transition(atos, itos);
3847 Label done, is_null, ok_is_subtype, quicked, resolved;
3848 __ testptr(rax, rax);
3849 __ jcc(Assembler::zero, is_null);
3850
3851 // Get cpool & tags index
3852 __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
3853 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
3854 // See if bytecode has already been quicked
3855 __ movzbl(rdx, Address(rdx, rbx,
3856 Address::times_1,
3857 Array<u1>::base_offset_in_bytes()));
3858 __ cmpl(rdx, JVM_CONSTANT_Class);
3859 __ jcc(Assembler::equal, quicked);
3860
3861 __ push(atos); // save receiver for result, and for GC
3862 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
3863
3864 __ get_vm_result_metadata(rax);
3865
3866 __ pop_ptr(rdx); // restore receiver
3867 __ verify_oop(rdx);
3868 __ load_klass(rdx, rdx, rscratch1);
3869 __ jmpb(resolved);
3870
3871 // Get superklass in rax and subklass in rdx
3872 __ bind(quicked);
3873 __ load_klass(rdx, rax, rscratch1);
3874 __ load_resolved_klass_at_index(rax, rcx, rbx);
3875
3876 __ bind(resolved);
3877
3878 // Generate subtype check. Blows rcx, rdi
3879 // Superklass in rax. Subklass in rdx.
3880 __ gen_subtype_check(rdx, ok_is_subtype);
3881
3882 // Come here on failure
3883 __ xorl(rax, rax);
3884 __ jmpb(done);
3885 // Come here on success
3886 __ bind(ok_is_subtype);
3887 __ movl(rax, 1);
3888
3889 // Collect counts on whether this test sees nulls a lot or not.
3890 if (ProfileInterpreter) {
3891 __ jmp(done);
3892 __ bind(is_null);
3893 __ profile_null_seen(rcx);
3894 } else {
3895 __ bind(is_null); // same as 'done'
3896 }
3897 __ bind(done);
3898 // rax = 0: obj == nullptr or obj is not an instanceof the specified klass
3899 // rax = 1: obj != nullptr and obj is an instanceof the specified klass
3900 }
3901
3902 //----------------------------------------------------------------------------------------------------
3903 // Breakpoints
3904 void TemplateTable::_breakpoint() {
3905 // Note: We get here even if we are single stepping..
3906 // jbug insists on setting breakpoints at every bytecode
3907 // even if we are in single step mode.
3908
3909 transition(vtos, vtos);
3910
3911 // get the unpatched byte code
3912 __ get_method(c_rarg1);
3913 __ call_VM(noreg,
3914 CAST_FROM_FN_PTR(address,
3915 InterpreterRuntime::get_original_bytecode_at),
3916 c_rarg1, rbcp);
3917 __ mov(rbx, rax); // why?
3918
3919 // post the breakpoint event
3920 __ get_method(c_rarg1);
3921 __ call_VM(noreg,
3922 CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint),
3923 c_rarg1, rbcp);
3924
3925 // complete the execution of original bytecode
3926 __ dispatch_only_normal(vtos);
3927 }
3928
3929 //-----------------------------------------------------------------------------
3930 // Exceptions
3931
3932 void TemplateTable::athrow() {
3933 transition(atos, vtos);
3934 __ null_check(rax);
3935 __ jump(RuntimeAddress(Interpreter::throw_exception_entry()));
3936 }
3937
3938 //-----------------------------------------------------------------------------
3939 // Synchronization
3940 //
3941 // Note: monitorenter & exit are symmetric routines; which is reflected
3942 // in the assembly code structure as well
3943 //
3944 // Stack layout:
3945 //
3946 // [expressions ] <--- rsp = expression stack top
3947 // ..
3948 // [expressions ]
3949 // [monitor entry] <--- monitor block top = expression stack bot
3950 // ..
3951 // [monitor entry]
3952 // [frame data ] <--- monitor block bot
3953 // ...
3954 // [saved rbp ] <--- rbp
3955 void TemplateTable::monitorenter() {
3956 transition(atos, vtos);
3957
3958 // check for null object
3959 __ null_check(rax);
3960
3961 Label is_inline_type;
3962 __ movptr(rbx, Address(rax, oopDesc::mark_offset_in_bytes()));
3963 __ test_markword_is_inline_type(rbx, is_inline_type);
3964
3965 const Address monitor_block_top(
3966 rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
3967 const Address monitor_block_bot(
3968 rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
3969 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
3970
3971 Label allocated;
3972
3973 Register rtop = c_rarg3;
3974 Register rbot = c_rarg2;
3975 Register rmon = c_rarg1;
3976
3977 // initialize entry pointer
3978 __ xorl(rmon, rmon); // points to free slot or null
3979
3980 // find a free slot in the monitor block (result in rmon)
3981 {
3982 Label entry, loop, exit;
3983 __ movptr(rtop, monitor_block_top); // derelativize pointer
3984 __ lea(rtop, Address(rbp, rtop, Address::times_ptr));
3985 // rtop points to current entry, starting with top-most entry
3986
3987 __ lea(rbot, monitor_block_bot); // points to word before bottom
3988 // of monitor block
3989 __ jmpb(entry);
3990
3991 __ bind(loop);
3992 // check if current entry is used
3993 __ cmpptr(Address(rtop, BasicObjectLock::obj_offset()), NULL_WORD);
3994 // if not used then remember entry in rmon
3995 __ cmovptr(Assembler::equal, rmon, rtop); // cmov => cmovptr
3996 // check if current entry is for same object
3997 __ cmpptr(rax, Address(rtop, BasicObjectLock::obj_offset()));
3998 // if same object then stop searching
3999 __ jccb(Assembler::equal, exit);
4000 // otherwise advance to next entry
4001 __ addptr(rtop, entry_size);
4002 __ bind(entry);
4003 // check if bottom reached
4004 __ cmpptr(rtop, rbot);
4005 // if not at bottom then check this entry
4006 __ jcc(Assembler::notEqual, loop);
4007 __ bind(exit);
4008 }
4009
4010 __ testptr(rmon, rmon); // check if a slot has been found
4011 __ jcc(Assembler::notZero, allocated); // if found, continue with that one
4012
4013 // allocate one if there's no free slot
4014 {
4015 Label entry, loop;
4016 // 1. compute new pointers // rsp: old expression stack top
4017 __ movptr(rmon, monitor_block_bot); // rmon: old expression stack bottom
4018 __ lea(rmon, Address(rbp, rmon, Address::times_ptr));
4019 __ subptr(rsp, entry_size); // move expression stack top
4020 __ subptr(rmon, entry_size); // move expression stack bottom
4021 __ mov(rtop, rsp); // set start value for copy loop
4022 __ subptr(monitor_block_bot, entry_size / wordSize); // set new monitor block bottom
4023 __ jmp(entry);
4024 // 2. move expression stack contents
4025 __ bind(loop);
4026 __ movptr(rbot, Address(rtop, entry_size)); // load expression stack
4027 // word from old location
4028 __ movptr(Address(rtop, 0), rbot); // and store it at new location
4029 __ addptr(rtop, wordSize); // advance to next word
4030 __ bind(entry);
4031 __ cmpptr(rtop, rmon); // check if bottom reached
4032 __ jcc(Assembler::notEqual, loop); // if not at bottom then
4033 // copy next word
4034 }
4035
4036 // call run-time routine
4037 // rmon: points to monitor entry
4038 __ bind(allocated);
4039
4040 // Increment bcp to point to the next bytecode, so exception
4041 // handling for async. exceptions work correctly.
4042 // The object has already been popped from the stack, so the
4043 // expression stack looks correct.
4044 __ increment(rbcp);
4045
4046 // store object
4047 __ movptr(Address(rmon, BasicObjectLock::obj_offset()), rax);
4048 __ lock_object(rmon);
4049
4050 // check to make sure this monitor doesn't cause stack overflow after locking
4051 __ save_bcp(); // in case of exception
4052 __ generate_stack_overflow_check(0);
4053
4054 // The bcp has already been incremented. Just need to dispatch to
4055 // next instruction.
4056 __ dispatch_next(vtos);
4057
4058 __ bind(is_inline_type);
4059 __ call_VM(noreg, CAST_FROM_FN_PTR(address,
4060 InterpreterRuntime::throw_identity_exception), rax);
4061 __ should_not_reach_here();
4062 }
4063
4064 void TemplateTable::monitorexit() {
4065 transition(atos, vtos);
4066
4067 // check for null object
4068 __ null_check(rax);
4069
4070 const int is_inline_type_mask = markWord::inline_type_pattern;
4071 Label has_identity;
4072 __ movptr(rbx, Address(rax, oopDesc::mark_offset_in_bytes()));
4073 __ andptr(rbx, is_inline_type_mask);
4074 __ cmpl(rbx, is_inline_type_mask);
4075 __ jcc(Assembler::notEqual, has_identity);
4076 __ call_VM(noreg, CAST_FROM_FN_PTR(address,
4077 InterpreterRuntime::throw_illegal_monitor_state_exception));
4078 __ should_not_reach_here();
4079 __ bind(has_identity);
4080
4081 const Address monitor_block_top(
4082 rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
4083 const Address monitor_block_bot(
4084 rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
4085 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
4086
4087 Register rtop = c_rarg1;
4088 Register rbot = c_rarg2;
4089
4090 Label found;
4091
4092 // find matching slot
4093 {
4094 Label entry, loop;
4095 __ movptr(rtop, monitor_block_top); // derelativize pointer
4096 __ lea(rtop, Address(rbp, rtop, Address::times_ptr));
4097 // rtop points to current entry, starting with top-most entry
4098
4099 __ lea(rbot, monitor_block_bot); // points to word before bottom
4100 // of monitor block
4101 __ jmpb(entry);
4102
4103 __ bind(loop);
4104 // check if current entry is for same object
4105 __ cmpptr(rax, Address(rtop, BasicObjectLock::obj_offset()));
4106 // if same object then stop searching
4107 __ jcc(Assembler::equal, found);
4108 // otherwise advance to next entry
4109 __ addptr(rtop, entry_size);
4110 __ bind(entry);
4111 // check if bottom reached
4112 __ cmpptr(rtop, rbot);
4113 // if not at bottom then check this entry
4114 __ jcc(Assembler::notEqual, loop);
4115 }
4116
4117 // error handling. Unlocking was not block-structured
4118 __ call_VM(noreg, CAST_FROM_FN_PTR(address,
4119 InterpreterRuntime::throw_illegal_monitor_state_exception));
4120 __ should_not_reach_here();
4121
4122 // call run-time routine
4123 __ bind(found);
4124 __ push_ptr(rax); // make sure object is on stack (contract with oopMaps)
4125 __ unlock_object(rtop);
4126 __ pop_ptr(rax); // discard object
4127 }
4128
4129 // Wide instructions
4130 void TemplateTable::wide() {
4131 transition(vtos, vtos);
4132 __ load_unsigned_byte(rbx, at_bcp(1));
4133 ExternalAddress wtable((address)Interpreter::_wentry_point);
4134 __ jump(ArrayAddress(wtable, Address(noreg, rbx, Address::times_ptr)), rscratch1);
4135 // Note: the rbcp increment step is part of the individual wide bytecode implementations
4136 }
4137
4138 // Multi arrays
4139 void TemplateTable::multianewarray() {
4140 transition(vtos, atos);
4141
4142 __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions
4143 // last dim is on top of stack; we want address of first one:
4144 // first_addr = last_addr + (ndims - 1) * stackElementSize - 1*wordsize
4145 // the latter wordSize to point to the beginning of the array.
4146 __ lea(c_rarg1, Address(rsp, rax, Interpreter::stackElementScale(), -wordSize));
4147 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), c_rarg1);
4148 __ load_unsigned_byte(rbx, at_bcp(3));
4149 __ lea(rsp, Address(rsp, rbx, Interpreter::stackElementScale())); // get rid of counts
4150 }