< prev index next >

src/hotspot/cpu/x86/templateTable_x86.cpp

Print this page

  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "asm/macroAssembler.hpp"
  26 #include "compiler/disassembler.hpp"
  27 #include "gc/shared/collectedHeap.hpp"
  28 #include "gc/shared/gc_globals.hpp"
  29 #include "gc/shared/tlab_globals.hpp"
  30 #include "interpreter/interpreter.hpp"
  31 #include "interpreter/interpreterRuntime.hpp"
  32 #include "interpreter/interp_masm.hpp"
  33 #include "interpreter/templateTable.hpp"
  34 #include "memory/universe.hpp"
  35 #include "oops/methodCounters.hpp"
  36 #include "oops/methodData.hpp"
  37 #include "oops/objArrayKlass.hpp"
  38 #include "oops/oop.inline.hpp"

  39 #include "oops/resolvedFieldEntry.hpp"
  40 #include "oops/resolvedIndyEntry.hpp"
  41 #include "oops/resolvedMethodEntry.hpp"
  42 #include "prims/jvmtiExport.hpp"
  43 #include "prims/methodHandles.hpp"
  44 #include "runtime/frame.inline.hpp"
  45 #include "runtime/safepointMechanism.hpp"
  46 #include "runtime/sharedRuntime.hpp"
  47 #include "runtime/stubRoutines.hpp"
  48 #include "runtime/synchronizer.hpp"
  49 #include "utilities/macros.hpp"
  50 
  51 #define __ Disassembler::hook<InterpreterMacroAssembler>(__FILE__, __LINE__, _masm)->
  52 
  53 // Global Register Names
  54 static const Register rbcp     = r13;
  55 static const Register rlocals  = r14;
  56 
  57 // Address Computation: local variables
  58 static inline Address iaddress(int n) {

 150 static void do_oop_load(InterpreterMacroAssembler* _masm,
 151                         Address src,
 152                         Register dst,
 153                         DecoratorSet decorators = 0) {
 154   __ load_heap_oop(dst, src, rdx, rbx, decorators);
 155 }
 156 
 157 Address TemplateTable::at_bcp(int offset) {
 158   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
 159   return Address(rbcp, offset);
 160 }
 161 
 162 
 163 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
 164                                    Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
 165                                    int byte_no) {
 166   if (!RewriteBytecodes)  return;
 167   Label L_patch_done;
 168 
 169   switch (bc) {

 170   case Bytecodes::_fast_aputfield:
 171   case Bytecodes::_fast_bputfield:
 172   case Bytecodes::_fast_zputfield:
 173   case Bytecodes::_fast_cputfield:
 174   case Bytecodes::_fast_dputfield:
 175   case Bytecodes::_fast_fputfield:
 176   case Bytecodes::_fast_iputfield:
 177   case Bytecodes::_fast_lputfield:
 178   case Bytecodes::_fast_sputfield:
 179     {
 180       // We skip bytecode quickening for putfield instructions when
 181       // the put_code written to the constant pool cache is zero.
 182       // This is required so that every execution of this instruction
 183       // calls out to InterpreterRuntime::resolve_get_put to do
 184       // additional, required work.
 185       assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
 186       assert(load_bc_into_bc_reg, "we use bc_reg as temp");
 187       __ load_field_entry(temp_reg, bc_reg);
 188       if (byte_no == f1_byte) {
 189         __ load_unsigned_byte(temp_reg, Address(temp_reg, in_bytes(ResolvedFieldEntry::get_code_offset())));

 766                     Address(rdx, rax,
 767                             Address::times_4,
 768                             arrayOopDesc::base_offset_in_bytes(T_FLOAT)),
 769                     noreg, noreg);
 770 }
 771 
 772 void TemplateTable::daload() {
 773   transition(itos, dtos);
 774   // rax: index
 775   // rdx: array
 776   index_check(rdx, rax); // kills rbx
 777   __ access_load_at(T_DOUBLE, IN_HEAP | IS_ARRAY, noreg /* dtos */,
 778                     Address(rdx, rax,
 779                             Address::times_8,
 780                             arrayOopDesc::base_offset_in_bytes(T_DOUBLE)),
 781                     noreg, noreg);
 782 }
 783 
 784 void TemplateTable::aaload() {
 785   transition(itos, atos);
 786   // rax: index
 787   // rdx: array
 788   index_check(rdx, rax); // kills rbx
 789   do_oop_load(_masm,
 790               Address(rdx, rax,
 791                       UseCompressedOops ? Address::times_4 : Address::times_ptr,
 792                       arrayOopDesc::base_offset_in_bytes(T_OBJECT)),
 793               rax,
 794               IS_ARRAY);



















 795 }
 796 
 797 void TemplateTable::baload() {
 798   transition(itos, itos);
 799   // rax: index
 800   // rdx: array
 801   index_check(rdx, rax); // kills rbx
 802   __ access_load_at(T_BYTE, IN_HEAP | IS_ARRAY, rax,
 803                     Address(rdx, rax, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_BYTE)),
 804                     noreg, noreg);
 805 }
 806 
 807 void TemplateTable::caload() {
 808   transition(itos, itos);
 809   // rax: index
 810   // rdx: array
 811   index_check(rdx, rax); // kills rbx
 812   __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, rax,
 813                     Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)),
 814                     noreg, noreg);

1048   __ access_store_at(T_FLOAT, IN_HEAP | IS_ARRAY,
1049                      Address(rdx, rbx, Address::times_4,
1050                              arrayOopDesc::base_offset_in_bytes(T_FLOAT)),
1051                      noreg /* ftos */, noreg, noreg, noreg);
1052 }
1053 
1054 void TemplateTable::dastore() {
1055   transition(dtos, vtos);
1056   __ pop_i(rbx);
1057   // value is in UseSSE >= 2 ? xmm0 : ST(0)
1058   // rbx:  index
1059   // rdx:  array
1060   index_check(rdx, rbx); // prefer index in rbx
1061   __ access_store_at(T_DOUBLE, IN_HEAP | IS_ARRAY,
1062                      Address(rdx, rbx, Address::times_8,
1063                              arrayOopDesc::base_offset_in_bytes(T_DOUBLE)),
1064                      noreg /* dtos */, noreg, noreg, noreg);
1065 }
1066 
1067 void TemplateTable::aastore() {
1068   Label is_null, ok_is_subtype, done;
1069   transition(vtos, vtos);
1070   // stack: ..., array, index, value
1071   __ movptr(rax, at_tos());    // value
1072   __ movl(rcx, at_tos_p1()); // index
1073   __ movptr(rdx, at_tos_p2()); // array
1074 
1075   Address element_address(rdx, rcx,
1076                           UseCompressedOops? Address::times_4 : Address::times_ptr,
1077                           arrayOopDesc::base_offset_in_bytes(T_OBJECT));
1078 
1079   index_check_without_pop(rdx, rcx);     // kills rbx




1080   __ testptr(rax, rax);
1081   __ jcc(Assembler::zero, is_null);
1082 







1083   // Move subklass into rbx
1084   __ load_klass(rbx, rax, rscratch1);
1085   // Move superklass into rax
1086   __ load_klass(rax, rdx, rscratch1);
1087   __ movptr(rax, Address(rax,
1088                          ObjArrayKlass::element_klass_offset()));
1089 
1090   // Generate subtype check.  Blows rcx, rdi
1091   // Superklass in rax.  Subklass in rbx.
1092   __ gen_subtype_check(rbx, ok_is_subtype);

1093 
1094   // Come here on failure
1095   // object is at TOS
1096   __ jump(RuntimeAddress(Interpreter::_throw_ArrayStoreException_entry));
1097 
1098   // Come here on success
1099   __ bind(ok_is_subtype);
1100 
1101   // Get the value we will store
1102   __ movptr(rax, at_tos());
1103   __ movl(rcx, at_tos_p1()); // index
1104   // Now store using the appropriate barrier
1105   do_oop_store(_masm, element_address, rax, IS_ARRAY);
1106   __ jmp(done);
1107 
1108   // Have a null in rax, rdx=array, ecx=index.  Store null at ary[idx]
1109   __ bind(is_null);
1110   __ profile_null_seen(rbx);















1111 


1112   // Store a null
1113   do_oop_store(_masm, element_address, noreg, IS_ARRAY);









1114 


1115   // Pop stack arguments
1116   __ bind(done);
1117   __ addptr(rsp, 3 * Interpreter::stackElementSize);
1118 }
1119 
1120 void TemplateTable::bastore() {
1121   transition(itos, vtos);
1122   __ pop_i(rbx);
1123   // rax: value
1124   // rbx: index
1125   // rdx: array
1126   index_check(rdx, rbx); // prefer index in rbx
1127   // Need to check whether array is boolean or byte
1128   // since both types share the bastore bytecode.
1129   __ load_klass(rcx, rdx, rscratch1);
1130   __ movl(rcx, Address(rcx, Klass::layout_helper_offset()));
1131   int diffbit = Klass::layout_helper_boolean_diffbit();
1132   __ testl(rcx, diffbit);
1133   Label L_skip;
1134   __ jccb(Assembler::zero, L_skip);

1905   __ jcc(j_not(cc), not_taken);
1906   branch(false, false);
1907   __ bind(not_taken);
1908   __ profile_not_taken_branch(rax);
1909 }
1910 
1911 void TemplateTable::if_nullcmp(Condition cc) {
1912   transition(atos, vtos);
1913   // assume branch is more often taken than not (loops use backward branches)
1914   Label not_taken;
1915   __ testptr(rax, rax);
1916   __ jcc(j_not(cc), not_taken);
1917   branch(false, false);
1918   __ bind(not_taken);
1919   __ profile_not_taken_branch(rax);
1920 }
1921 
1922 void TemplateTable::if_acmp(Condition cc) {
1923   transition(atos, vtos);
1924   // assume branch is more often taken than not (loops use backward branches)
1925   Label not_taken;
1926   __ pop_ptr(rdx);




































1927   __ cmpoop(rdx, rax);
1928   __ jcc(j_not(cc), not_taken);

1929   branch(false, false);
1930   __ bind(not_taken);
1931   __ profile_not_taken_branch(rax);









1932 }
1933 
1934 void TemplateTable::ret() {
1935   transition(vtos, vtos);
1936   locals_index(rbx);
1937   __ movslq(rbx, iaddress(rbx)); // get return bci, compute return bcp
1938   __ profile_ret(rbx, rcx);
1939   __ get_method(rax);
1940   __ movptr(rbcp, Address(rax, Method::const_offset()));
1941   __ lea(rbcp, Address(rbcp, rbx, Address::times_1,
1942                       ConstMethod::codes_offset()));
1943   __ dispatch_next(vtos, 0, true);
1944 }
1945 
1946 void TemplateTable::wide_ret() {
1947   transition(vtos, vtos);
1948   locals_index_wide(rbx);
1949   __ movptr(rbx, aaddress(rbx)); // get return bci, compute return bcp
1950   __ profile_ret(rbx, rcx);
1951   __ get_method(rax);

2165   if (_desc->bytecode() != Bytecodes::_return_register_finalizer) {
2166     Label no_safepoint;
2167     NOT_PRODUCT(__ block_comment("Thread-local Safepoint poll"));
2168     __ testb(Address(r15_thread, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit());
2169     __ jcc(Assembler::zero, no_safepoint);
2170     __ push(state);
2171     __ push_cont_fastpath();
2172     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
2173                                        InterpreterRuntime::at_safepoint));
2174     __ pop_cont_fastpath();
2175     __ pop(state);
2176     __ bind(no_safepoint);
2177   }
2178 
2179   // Narrow result if state is itos but result type is smaller.
2180   // Need to narrow in the return bytecode rather than in generate_return_entry
2181   // since compiled code callers expect the result to already be narrowed.
2182   if (state == itos) {
2183     __ narrow(rax);
2184   }
2185   __ remove_activation(state, rbcp);

2186 
2187   __ jmp(rbcp);
2188 }
2189 
2190 // ----------------------------------------------------------------------------
2191 // Volatile variables demand their effects be made known to all CPU's
2192 // in order.  Store buffers on most chips allow reads & writes to
2193 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode
2194 // without some kind of memory barrier (i.e., it's not sufficient that
2195 // the interpreter does not reorder volatile references, the hardware
2196 // also must not reorder them).
2197 //
2198 // According to the new Java Memory Model (JMM):
2199 // (1) All volatiles are serialized wrt to each other.  ALSO reads &
2200 //     writes act as acquire & release, so:
2201 // (2) A read cannot let unrelated NON-volatile memory refs that
2202 //     happen after the read float up to before the read.  It's OK for
2203 //     non-volatile memory refs that happen before the volatile read to
2204 //     float down below it.
2205 // (3) Similar a volatile write cannot let unrelated NON-volatile

2527     }
2528     // rax,:   object pointer or null
2529     // cache: cache entry pointer
2530     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access),
2531               rax, cache);
2532 
2533     __ load_field_entry(cache, index);
2534     __ bind(L1);
2535   }
2536 }
2537 
2538 void TemplateTable::pop_and_check_object(Register r) {
2539   __ pop_ptr(r);
2540   __ null_check(r);  // for field access must check obj.
2541   __ verify_oop(r);
2542 }
2543 
2544 void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
2545   transition(vtos, vtos);
2546 
2547   const Register obj   = c_rarg3;
2548   const Register cache = rcx;
2549   const Register index = rdx;
2550   const Register off   = rbx;
2551   const Register tos_state   = rax;
2552   const Register flags = rdx;
2553   const Register bc    = c_rarg3; // uses same reg as obj, so don't mix them
2554 
2555   resolve_cache_and_index_for_field(byte_no, cache, index);
2556   jvmti_post_field_access(cache, index, is_static, false);
2557   load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static);
2558 
2559   if (!is_static) pop_and_check_object(obj);
2560 
2561   const Address field(obj, off, Address::times_1, 0*wordSize);
2562 
2563   Label Done, notByte, notBool, notInt, notShort, notChar, notLong, notFloat, notObj;
2564 
2565   // Make sure we don't need to mask edx after the above shift
2566   assert(btos == 0, "change code, btos != 0");
2567   __ testl(tos_state, tos_state);
2568   __ jcc(Assembler::notZero, notByte);
2569 
2570   // btos

2571   __ access_load_at(T_BYTE, IN_HEAP, rax, field, noreg, noreg);
2572   __ push(btos);
2573   // Rewrite bytecode to be faster
2574   if (!is_static && rc == may_rewrite) {
2575     patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx);
2576   }
2577   __ jmp(Done);
2578 
2579   __ bind(notByte);
2580   __ cmpl(tos_state, ztos);
2581   __ jcc(Assembler::notEqual, notBool);
2582 
2583   // ztos (same code as btos)
2584   __ access_load_at(T_BOOLEAN, IN_HEAP, rax, field, noreg, noreg);
2585   __ push(ztos);
2586   // Rewrite bytecode to be faster
2587   if (!is_static && rc == may_rewrite) {
2588     // use btos rewriting, no truncating to t/f bit is needed for getfield.
2589     patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx);
2590   }
2591   __ jmp(Done);
2592 
2593   __ bind(notBool);
2594   __ cmpl(tos_state, atos);
2595   __ jcc(Assembler::notEqual, notObj);
2596   // atos
2597   do_oop_load(_masm, field, rax);
2598   __ push(atos);
2599   if (!is_static && rc == may_rewrite) {
2600     patch_bytecode(Bytecodes::_fast_agetfield, bc, rbx);































































2601   }
2602   __ jmp(Done);
2603 
2604   __ bind(notObj);



2605   __ cmpl(tos_state, itos);
2606   __ jcc(Assembler::notEqual, notInt);
2607   // itos
2608   __ access_load_at(T_INT, IN_HEAP, rax, field, noreg, noreg);
2609   __ push(itos);
2610   // Rewrite bytecode to be faster
2611   if (!is_static && rc == may_rewrite) {
2612     patch_bytecode(Bytecodes::_fast_igetfield, bc, rbx);
2613   }
2614   __ jmp(Done);
2615 
2616   __ bind(notInt);
2617   __ cmpl(tos_state, ctos);
2618   __ jcc(Assembler::notEqual, notChar);
2619   // ctos
2620   __ access_load_at(T_CHAR, IN_HEAP, rax, field, noreg, noreg);
2621   __ push(ctos);
2622   // Rewrite bytecode to be faster
2623   if (!is_static && rc == may_rewrite) {
2624     patch_bytecode(Bytecodes::_fast_cgetfield, bc, rbx);

2684 #endif
2685 
2686   __ bind(Done);
2687   // [jk] not needed currently
2688   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadLoad |
2689   //                                              Assembler::LoadStore));
2690 }
2691 
2692 void TemplateTable::getfield(int byte_no) {
2693   getfield_or_static(byte_no, false);
2694 }
2695 
2696 void TemplateTable::nofast_getfield(int byte_no) {
2697   getfield_or_static(byte_no, false, may_not_rewrite);
2698 }
2699 
2700 void TemplateTable::getstatic(int byte_no) {
2701   getfield_or_static(byte_no, true);
2702 }
2703 
2704 
2705 // The registers cache and index expected to be set before call.
2706 // The function may destroy various registers, just not the cache and index registers.
2707 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) {
2708   // Cache is rcx and index is rdx
2709   const Register entry = c_rarg2; // ResolvedFieldEntry
2710   const Register obj = c_rarg1;   // Object pointer
2711   const Register value = c_rarg3; // JValue object
2712 
2713   if (JvmtiExport::can_post_field_modification()) {
2714     // Check to see if a field modification watch has been set before
2715     // we take the time to call into the VM.
2716     Label L1;
2717     assert_different_registers(cache, obj, rax);
2718     __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
2719     __ testl(rax, rax);
2720     __ jcc(Assembler::zero, L1);
2721 
2722     __ mov(entry, cache);
2723 
2724     if (is_static) {

2746     // cache: field entry pointer
2747     // value: jvalue object on the stack
2748     __ call_VM(noreg,
2749               CAST_FROM_FN_PTR(address,
2750                               InterpreterRuntime::post_field_modification),
2751               obj, entry, value);
2752     // Reload field entry
2753     __ load_field_entry(cache, index);
2754     __ bind(L1);
2755   }
2756 }
2757 
2758 void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
2759   transition(vtos, vtos);
2760 
2761   const Register obj = rcx;
2762   const Register cache = rcx;
2763   const Register index = rdx;
2764   const Register tos_state   = rdx;
2765   const Register off   = rbx;
2766   const Register flags = rax;
2767 
2768   resolve_cache_and_index_for_field(byte_no, cache, index);
2769   jvmti_post_field_mod(cache, index, is_static);
2770   load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static);
2771 
2772   // [jk] not needed currently
2773   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
2774   //                                              Assembler::StoreStore));
2775 
2776   Label notVolatile, Done;
2777 
2778   // Check for volatile store
2779   __ andl(flags, (1 << ResolvedFieldEntry::is_volatile_shift));
2780   __ testl(flags, flags);

2781   __ jcc(Assembler::zero, notVolatile);
2782 
2783   putfield_or_static_helper(byte_no, is_static, rc, obj, off, tos_state);
2784   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
2785                                                Assembler::StoreStore));
2786   __ jmp(Done);
2787   __ bind(notVolatile);
2788 
2789   putfield_or_static_helper(byte_no, is_static, rc, obj, off, tos_state);
2790 
2791   __ bind(Done);
2792 }
2793 
2794 void TemplateTable::putfield_or_static_helper(int byte_no, bool is_static, RewriteControl rc,
2795                                               Register obj, Register off, Register tos_state) {
2796 
2797   // field addresses
2798   const Address field(obj, off, Address::times_1, 0*wordSize);
2799 
2800   Label notByte, notBool, notInt, notShort, notChar,
2801         notLong, notFloat, notObj;
2802   Label Done;
2803 
2804   const Register bc    = c_rarg3;
2805 
2806   // Test TOS state
2807   __ testl(tos_state, tos_state);
2808   __ jcc(Assembler::notZero, notByte);
2809 
2810   // btos
2811   {
2812     __ pop(btos);
2813     if (!is_static) pop_and_check_object(obj);
2814     __ access_store_at(T_BYTE, IN_HEAP, field, rax, noreg, noreg, noreg);
2815     if (!is_static && rc == may_rewrite) {
2816       patch_bytecode(Bytecodes::_fast_bputfield, bc, rbx, true, byte_no);
2817     }
2818     __ jmp(Done);
2819   }
2820 
2821   __ bind(notByte);
2822   __ cmpl(tos_state, ztos);
2823   __ jcc(Assembler::notEqual, notBool);
2824 
2825   // ztos
2826   {
2827     __ pop(ztos);
2828     if (!is_static) pop_and_check_object(obj);
2829     __ access_store_at(T_BOOLEAN, IN_HEAP, field, rax, noreg, noreg, noreg);
2830     if (!is_static && rc == may_rewrite) {
2831       patch_bytecode(Bytecodes::_fast_zputfield, bc, rbx, true, byte_no);
2832     }
2833     __ jmp(Done);
2834   }
2835 
2836   __ bind(notBool);
2837   __ cmpl(tos_state, atos);
2838   __ jcc(Assembler::notEqual, notObj);
2839 
2840   // atos
2841   {
2842     __ pop(atos);
2843     if (!is_static) pop_and_check_object(obj);
2844     // Store into the field
2845     do_oop_store(_masm, field, rax);
2846     if (!is_static && rc == may_rewrite) {
2847       patch_bytecode(Bytecodes::_fast_aputfield, bc, rbx, true, byte_no);

























































2848     }
2849     __ jmp(Done);
2850   }
2851 
2852   __ bind(notObj);
2853   __ cmpl(tos_state, itos);
2854   __ jcc(Assembler::notEqual, notInt);
2855 
2856   // itos
2857   {
2858     __ pop(itos);
2859     if (!is_static) pop_and_check_object(obj);
2860     __ access_store_at(T_INT, IN_HEAP, field, rax, noreg, noreg, noreg);
2861     if (!is_static && rc == may_rewrite) {
2862       patch_bytecode(Bytecodes::_fast_iputfield, bc, rbx, true, byte_no);
2863     }
2864     __ jmp(Done);
2865   }
2866 
2867   __ bind(notInt);
2868   __ cmpl(tos_state, ctos);
2869   __ jcc(Assembler::notEqual, notChar);

2966 }
2967 
2968 void TemplateTable::jvmti_post_fast_field_mod() {
2969 
2970   const Register scratch = c_rarg3;
2971 
2972   if (JvmtiExport::can_post_field_modification()) {
2973     // Check to see if a field modification watch has been set before
2974     // we take the time to call into the VM.
2975     Label L2;
2976     __ mov32(scratch, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
2977     __ testl(scratch, scratch);
2978     __ jcc(Assembler::zero, L2);
2979     __ pop_ptr(rbx);                  // copy the object pointer from tos
2980     __ verify_oop(rbx);
2981     __ push_ptr(rbx);                 // put the object pointer back on tos
2982     // Save tos values before call_VM() clobbers them. Since we have
2983     // to do it for every data type, we use the saved values as the
2984     // jvalue object.
2985     switch (bytecode()) {          // load values into the jvalue object

2986     case Bytecodes::_fast_aputfield: __ push_ptr(rax); break;
2987     case Bytecodes::_fast_bputfield: // fall through
2988     case Bytecodes::_fast_zputfield: // fall through
2989     case Bytecodes::_fast_sputfield: // fall through
2990     case Bytecodes::_fast_cputfield: // fall through
2991     case Bytecodes::_fast_iputfield: __ push_i(rax); break;
2992     case Bytecodes::_fast_dputfield: __ push(dtos); break;
2993     case Bytecodes::_fast_fputfield: __ push(ftos); break;
2994     case Bytecodes::_fast_lputfield: __ push_l(rax); break;
2995 
2996     default:
2997       ShouldNotReachHere();
2998     }
2999     __ mov(scratch, rsp);             // points to jvalue on the stack
3000     // access constant pool cache entry
3001     __ load_field_entry(c_rarg2, rax);
3002     __ verify_oop(rbx);
3003     // rbx: object pointer copied above
3004     // c_rarg2: cache entry pointer
3005     // c_rarg3: jvalue object on the stack
3006     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), rbx, c_rarg2, c_rarg3);
3007 
3008     switch (bytecode()) {             // restore tos values

3009     case Bytecodes::_fast_aputfield: __ pop_ptr(rax); break;
3010     case Bytecodes::_fast_bputfield: // fall through
3011     case Bytecodes::_fast_zputfield: // fall through
3012     case Bytecodes::_fast_sputfield: // fall through
3013     case Bytecodes::_fast_cputfield: // fall through
3014     case Bytecodes::_fast_iputfield: __ pop_i(rax); break;
3015     case Bytecodes::_fast_dputfield: __ pop(dtos); break;
3016     case Bytecodes::_fast_fputfield: __ pop(ftos); break;
3017     case Bytecodes::_fast_lputfield: __ pop_l(rax); break;
3018     default: break;
3019     }
3020     __ bind(L2);
3021   }
3022 }
3023 
3024 void TemplateTable::fast_storefield(TosState state) {
3025   transition(state, vtos);
3026 
3027   Register cache = rcx;
3028 
3029   Label notVolatile, Done;
3030 
3031   jvmti_post_fast_field_mod();
3032 
3033   __ push(rax);
3034   __ load_field_entry(rcx, rax);
3035   load_resolved_field_entry(noreg, cache, rax, rbx, rdx);
3036   // RBX: field offset, RAX: TOS, RDX: flags
3037   __ andl(rdx, (1 << ResolvedFieldEntry::is_volatile_shift));
3038   __ pop(rax);

3039 
3040   // Get object from stack
3041   pop_and_check_object(rcx);
3042 
3043   // field address
3044   const Address field(rcx, rbx, Address::times_1);
3045 
3046   // Check for volatile store
3047   __ testl(rdx, rdx);


3048   __ jcc(Assembler::zero, notVolatile);
3049 
3050   fast_storefield_helper(field, rax);
3051   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
3052                                                Assembler::StoreStore));
3053   __ jmp(Done);
3054   __ bind(notVolatile);
3055 
3056   fast_storefield_helper(field, rax);
3057 
3058   __ bind(Done);
3059 }
3060 
3061 void TemplateTable::fast_storefield_helper(Address field, Register rax) {


3062 
3063   // access field
3064   switch (bytecode()) {



























3065   case Bytecodes::_fast_aputfield:
3066     do_oop_store(_masm, field, rax);


3067     break;
3068   case Bytecodes::_fast_lputfield:
3069     __ access_store_at(T_LONG, IN_HEAP, field, noreg /* ltos */, noreg, noreg, noreg);
3070     break;
3071   case Bytecodes::_fast_iputfield:
3072     __ access_store_at(T_INT, IN_HEAP, field, rax, noreg, noreg, noreg);
3073     break;
3074   case Bytecodes::_fast_zputfield:
3075     __ access_store_at(T_BOOLEAN, IN_HEAP, field, rax, noreg, noreg, noreg);
3076     break;
3077   case Bytecodes::_fast_bputfield:
3078     __ access_store_at(T_BYTE, IN_HEAP, field, rax, noreg, noreg, noreg);
3079     break;
3080   case Bytecodes::_fast_sputfield:
3081     __ access_store_at(T_SHORT, IN_HEAP, field, rax, noreg, noreg, noreg);
3082     break;
3083   case Bytecodes::_fast_cputfield:
3084     __ access_store_at(T_CHAR, IN_HEAP, field, rax, noreg, noreg, noreg);
3085     break;
3086   case Bytecodes::_fast_fputfield:

3102     // Check to see if a field access watch has been set before we
3103     // take the time to call into the VM.
3104     Label L1;
3105     __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
3106     __ testl(rcx, rcx);
3107     __ jcc(Assembler::zero, L1);
3108     // access constant pool cache entry
3109     __ load_field_entry(c_rarg2, rcx);
3110     __ verify_oop(rax);
3111     __ push_ptr(rax);  // save object pointer before call_VM() clobbers it
3112     __ mov(c_rarg1, rax);
3113     // c_rarg1: object pointer copied above
3114     // c_rarg2: cache entry pointer
3115     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), c_rarg1, c_rarg2);
3116     __ pop_ptr(rax); // restore object pointer
3117     __ bind(L1);
3118   }
3119 
3120   // access constant pool cache
3121   __ load_field_entry(rcx, rbx);
3122   __ load_sized_value(rbx, Address(rcx, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/);
3123 
3124   // rax: object
3125   __ verify_oop(rax);
3126   __ null_check(rax);
3127   Address field(rax, rbx, Address::times_1);
3128 
3129   // access field
3130   switch (bytecode()) {


























3131   case Bytecodes::_fast_agetfield:
3132     do_oop_load(_masm, field, rax);
3133     __ verify_oop(rax);
3134     break;
3135   case Bytecodes::_fast_lgetfield:
3136     __ access_load_at(T_LONG, IN_HEAP, noreg /* ltos */, field, noreg, noreg);
3137     break;
3138   case Bytecodes::_fast_igetfield:
3139     __ access_load_at(T_INT, IN_HEAP, rax, field, noreg, noreg);
3140     break;
3141   case Bytecodes::_fast_bgetfield:
3142     __ access_load_at(T_BYTE, IN_HEAP, rax, field, noreg, noreg);
3143     break;
3144   case Bytecodes::_fast_sgetfield:
3145     __ access_load_at(T_SHORT, IN_HEAP, rax, field, noreg, noreg);
3146     break;
3147   case Bytecodes::_fast_cgetfield:
3148     __ access_load_at(T_CHAR, IN_HEAP, rax, field, noreg, noreg);
3149     break;
3150   case Bytecodes::_fast_fgetfield:

3535 
3536   // Note:  rax_callsite is already pushed
3537 
3538   // %%% should make a type profile for any invokedynamic that takes a ref argument
3539   // profile this call
3540   __ profile_call(rbcp);
3541   __ profile_arguments_type(rdx, rbx_method, rbcp, false);
3542 
3543   __ verify_oop(rax_callsite);
3544 
3545   __ jump_from_interpreted(rbx_method, rdx);
3546 }
3547 
3548 //-----------------------------------------------------------------------------
3549 // Allocation
3550 
3551 void TemplateTable::_new() {
3552   transition(vtos, atos);
3553   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
3554   Label slow_case;
3555   Label slow_case_no_pop;
3556   Label done;
3557   Label initialize_header;
3558 
3559   __ get_cpool_and_tags(rcx, rax);
3560 
3561   // Make sure the class we're about to instantiate has been resolved.
3562   // This is done before loading InstanceKlass to be consistent with the order
3563   // how Constant Pool is updated (see ConstantPool::klass_at_put)
3564   const int tags_offset = Array<u1>::base_offset_in_bytes();
3565   __ cmpb(Address(rax, rdx, Address::times_1, tags_offset), JVM_CONSTANT_Class);
3566   __ jcc(Assembler::notEqual, slow_case_no_pop);
3567 
3568   // get InstanceKlass
3569   __ load_resolved_klass_at_index(rcx, rcx, rdx);
3570   __ push(rcx);  // save the contexts of klass for initializing the header
3571 
3572   // make sure klass is initialized
3573   // init_state needs acquire, but x86 is TSO, and so we are already good.
3574   assert(VM_Version::supports_fast_class_init_checks(), "must support fast class initialization checks");
3575   __ clinit_barrier(rcx, r15_thread, nullptr /*L_fast_path*/, &slow_case);
3576 
3577   // get instance_size in InstanceKlass (scaled to a count of bytes)
3578   __ movl(rdx, Address(rcx, Klass::layout_helper_offset()));
3579   // test to see if it is malformed in some way
3580   __ testl(rdx, Klass::_lh_instance_slow_path_bit);
3581   __ jcc(Assembler::notZero, slow_case);
3582 
3583   // Allocate the instance:
3584   //  If TLAB is enabled:
3585   //    Try to allocate in the TLAB.
3586   //    If fails, go to the slow path.
3587   //    Initialize the allocation.
3588   //    Exit.
3589   //
3590   //  Go to slow path.
3591 
3592   if (UseTLAB) {
3593     __ tlab_allocate(r15_thread, rax, rdx, 0, rcx, rbx, slow_case);
3594     if (ZeroTLAB) {
3595       // the fields have been already cleared
3596       __ jmp(initialize_header);
3597     }
3598 
3599     // The object is initialized before the header.  If the object size is
3600     // zero, go directly to the header initialization.
3601     if (UseCompactObjectHeaders) {
3602       assert(is_aligned(oopDesc::base_offset_in_bytes(), BytesPerLong), "oop base offset must be 8-byte-aligned");
3603       __ decrement(rdx, oopDesc::base_offset_in_bytes());
3604     } else {
3605       __ decrement(rdx, sizeof(oopDesc));
3606     }
3607     __ jcc(Assembler::zero, initialize_header);
3608 
3609     // Initialize topmost object field, divide rdx by 8, check if odd and
3610     // test if zero.
3611     __ xorl(rcx, rcx);    // use zero reg to clear memory (shorter code)
3612     __ shrl(rdx, LogBytesPerLong); // divide by 2*oopSize and set carry flag if odd
3613 
3614     // rdx must have been multiple of 8
3615 #ifdef ASSERT
3616     // make sure rdx was multiple of 8
3617     Label L;
3618     // Ignore partial flag stall after shrl() since it is debug VM
3619     __ jcc(Assembler::carryClear, L);
3620     __ stop("object size is not multiple of 2 - adjust this code");
3621     __ bind(L);
3622     // rdx must be > 0, no extra check needed here
3623 #endif
3624 
3625     // initialize remaining object fields: rdx was a multiple of 8
3626     { Label loop;
3627     __ bind(loop);
3628     int header_size_bytes = oopDesc::header_size() * HeapWordSize;
3629     assert(is_aligned(header_size_bytes, BytesPerLong), "oop header size must be 8-byte-aligned");
3630     __ movptr(Address(rax, rdx, Address::times_8, header_size_bytes - 1*oopSize), rcx);
3631     __ decrement(rdx);
3632     __ jcc(Assembler::notZero, loop);
3633     }
3634 
3635     // initialize object header only.
3636     __ bind(initialize_header);
3637     if (UseCompactObjectHeaders) {
3638       __ pop(rcx);   // get saved klass back in the register.
3639       __ movptr(rbx, Address(rcx, Klass::prototype_header_offset()));
3640       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes()), rbx);
3641     } else {
3642       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes()),
3643                 (intptr_t)markWord::prototype().value()); // header
3644       __ pop(rcx);   // get saved klass back in the register.
3645       __ xorl(rsi, rsi); // use zero reg to clear memory (shorter code)
3646       __ store_klass_gap(rax, rsi);  // zero klass gap for compressed oops
3647       __ store_klass(rax, rcx, rscratch1);  // klass
3648     }
3649 
3650     if (DTraceAllocProbes) {
3651       // Trigger dtrace event for fastpath
3652       __ push(atos);
3653       __ call_VM_leaf(
3654            CAST_FROM_FN_PTR(address, static_cast<int (*)(oopDesc*)>(SharedRuntime::dtrace_object_alloc)), rax);
3655       __ pop(atos);
3656     }
3657 
3658     __ jmp(done);
3659   }
3660 
3661   // slow case
3662   __ bind(slow_case);
3663   __ pop(rcx);   // restore stack pointer to what it was when we came in.
3664   __ bind(slow_case_no_pop);
3665 
3666   __ get_constant_pool(c_rarg1);
3667   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
3668   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2);
3669    __ verify_oop(rax);
3670 
3671   // continue
3672   __ bind(done);
3673 }
3674 
3675 void TemplateTable::newarray() {
3676   transition(itos, atos);
3677   __ load_unsigned_byte(c_rarg1, at_bcp(1));
3678   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray),
3679           c_rarg1, rax);
3680 }
3681 
3682 void TemplateTable::anewarray() {
3683   transition(itos, atos);
3684 

3686   __ get_constant_pool(c_rarg1);
3687   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray),
3688           c_rarg1, c_rarg2, rax);
3689 }
3690 
3691 void TemplateTable::arraylength() {
3692   transition(atos, itos);
3693   __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes()));
3694 }
3695 
3696 void TemplateTable::checkcast() {
3697   transition(atos, atos);
3698   Label done, is_null, ok_is_subtype, quicked, resolved;
3699   __ testptr(rax, rax); // object is in rax
3700   __ jcc(Assembler::zero, is_null);
3701 
3702   // Get cpool & tags index
3703   __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
3704   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
3705   // See if bytecode has already been quicked
3706   __ cmpb(Address(rdx, rbx,
3707                   Address::times_1,
3708                   Array<u1>::base_offset_in_bytes()),
3709           JVM_CONSTANT_Class);
3710   __ jcc(Assembler::equal, quicked);
3711   __ push(atos); // save receiver for result, and for GC
3712   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
3713 
3714   // vm_result_2 has metadata result
3715   __ get_vm_result_2(rax, r15_thread);
3716 
3717   __ pop_ptr(rdx); // restore receiver
3718   __ jmpb(resolved);
3719 
3720   // Get superklass in rax and subklass in rbx
3721   __ bind(quicked);
3722   __ mov(rdx, rax); // Save object in rdx; rax needed for subtype check
3723   __ load_resolved_klass_at_index(rax, rcx, rbx);
3724 
3725   __ bind(resolved);
3726   __ load_klass(rbx, rdx, rscratch1);
3727 
3728   // Generate subtype check.  Blows rcx, rdi.  Object in rdx.
3729   // Superklass in rax.  Subklass in rbx.
3730   __ gen_subtype_check(rbx, ok_is_subtype);
3731 
3732   // Come here on failure
3733   __ push_ptr(rdx);
3734   // object is at TOS
3735   __ jump(RuntimeAddress(Interpreter::_throw_ClassCastException_entry));
3736 
3737   // Come here on success
3738   __ bind(ok_is_subtype);
3739   __ mov(rax, rdx); // Restore object in rdx



3740 
3741   // Collect counts on whether this check-cast sees nulls a lot or not.
3742   if (ProfileInterpreter) {
3743     __ jmp(done);
3744     __ bind(is_null);
3745     __ profile_null_seen(rcx);
3746   } else {
3747     __ bind(is_null);   // same as 'done'
3748   }

3749   __ bind(done);
3750 }
3751 
3752 void TemplateTable::instanceof() {
3753   transition(atos, itos);
3754   Label done, is_null, ok_is_subtype, quicked, resolved;
3755   __ testptr(rax, rax);
3756   __ jcc(Assembler::zero, is_null);
3757 
3758   // Get cpool & tags index
3759   __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
3760   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
3761   // See if bytecode has already been quicked
3762   __ cmpb(Address(rdx, rbx,
3763                   Address::times_1,
3764                   Array<u1>::base_offset_in_bytes()),
3765           JVM_CONSTANT_Class);
3766   __ jcc(Assembler::equal, quicked);
3767 
3768   __ push(atos); // save receiver for result, and for GC
3769   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
3770   // vm_result_2 has metadata result
3771 
3772   __ get_vm_result_2(rax, r15_thread);
3773 
3774   __ pop_ptr(rdx); // restore receiver
3775   __ verify_oop(rdx);
3776   __ load_klass(rdx, rdx, rscratch1);
3777   __ jmpb(resolved);
3778 
3779   // Get superklass in rax and subklass in rdx
3780   __ bind(quicked);
3781   __ load_klass(rdx, rax, rscratch1);
3782   __ load_resolved_klass_at_index(rax, rcx, rbx);
3783 
3784   __ bind(resolved);
3785 

3790   // Come here on failure
3791   __ xorl(rax, rax);
3792   __ jmpb(done);
3793   // Come here on success
3794   __ bind(ok_is_subtype);
3795   __ movl(rax, 1);
3796 
3797   // Collect counts on whether this test sees nulls a lot or not.
3798   if (ProfileInterpreter) {
3799     __ jmp(done);
3800     __ bind(is_null);
3801     __ profile_null_seen(rcx);
3802   } else {
3803     __ bind(is_null);   // same as 'done'
3804   }
3805   __ bind(done);
3806   // rax = 0: obj == nullptr or  obj is not an instanceof the specified klass
3807   // rax = 1: obj != nullptr and obj is     an instanceof the specified klass
3808 }
3809 
3810 
3811 //----------------------------------------------------------------------------------------------------
3812 // Breakpoints
3813 void TemplateTable::_breakpoint() {
3814   // Note: We get here even if we are single stepping..
3815   // jbug insists on setting breakpoints at every bytecode
3816   // even if we are in single step mode.
3817 
3818   transition(vtos, vtos);
3819 
3820   // get the unpatched byte code
3821   __ get_method(c_rarg1);
3822   __ call_VM(noreg,
3823              CAST_FROM_FN_PTR(address,
3824                               InterpreterRuntime::get_original_bytecode_at),
3825              c_rarg1, rbcp);
3826   __ mov(rbx, rax);  // why?
3827 
3828   // post the breakpoint event
3829   __ get_method(c_rarg1);
3830   __ call_VM(noreg,

3850 // Note: monitorenter & exit are symmetric routines; which is reflected
3851 //       in the assembly code structure as well
3852 //
3853 // Stack layout:
3854 //
3855 // [expressions  ] <--- rsp               = expression stack top
3856 // ..
3857 // [expressions  ]
3858 // [monitor entry] <--- monitor block top = expression stack bot
3859 // ..
3860 // [monitor entry]
3861 // [frame data   ] <--- monitor block bot
3862 // ...
3863 // [saved rbp    ] <--- rbp
3864 void TemplateTable::monitorenter() {
3865   transition(atos, vtos);
3866 
3867   // check for null object
3868   __ null_check(rax);
3869 




3870   const Address monitor_block_top(
3871         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
3872   const Address monitor_block_bot(
3873         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
3874   const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
3875 
3876   Label allocated;
3877 
3878   Register rtop = c_rarg3;
3879   Register rbot = c_rarg2;
3880   Register rmon = c_rarg1;
3881 
3882   // initialize entry pointer
3883   __ xorl(rmon, rmon); // points to free slot or null
3884 
3885   // find a free slot in the monitor block (result in rmon)
3886   {
3887     Label entry, loop, exit;
3888     __ movptr(rtop, monitor_block_top); // derelativize pointer
3889     __ lea(rtop, Address(rbp, rtop, Address::times_ptr));

3942   // rmon: points to monitor entry
3943   __ bind(allocated);
3944 
3945   // Increment bcp to point to the next bytecode, so exception
3946   // handling for async. exceptions work correctly.
3947   // The object has already been popped from the stack, so the
3948   // expression stack looks correct.
3949   __ increment(rbcp);
3950 
3951   // store object
3952   __ movptr(Address(rmon, BasicObjectLock::obj_offset()), rax);
3953   __ lock_object(rmon);
3954 
3955   // check to make sure this monitor doesn't cause stack overflow after locking
3956   __ save_bcp();  // in case of exception
3957   __ generate_stack_overflow_check(0);
3958 
3959   // The bcp has already been incremented. Just need to dispatch to
3960   // next instruction.
3961   __ dispatch_next(vtos);





3962 }
3963 
3964 void TemplateTable::monitorexit() {
3965   transition(atos, vtos);
3966 
3967   // check for null object
3968   __ null_check(rax);
3969 











3970   const Address monitor_block_top(
3971         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
3972   const Address monitor_block_bot(
3973         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
3974   const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
3975 
3976   Register rtop = c_rarg1;
3977   Register rbot = c_rarg2;
3978 
3979   Label found;
3980 
3981   // find matching slot
3982   {
3983     Label entry, loop;
3984     __ movptr(rtop, monitor_block_top); // derelativize pointer
3985     __ lea(rtop, Address(rbp, rtop, Address::times_ptr));
3986     // rtop points to current entry, starting with top-most entry
3987 
3988     __ lea(rbot, monitor_block_bot);    // points to word before bottom
3989                                         // of monitor block

  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "asm/macroAssembler.hpp"
  26 #include "compiler/disassembler.hpp"
  27 #include "gc/shared/collectedHeap.hpp"
  28 #include "gc/shared/gc_globals.hpp"
  29 #include "gc/shared/tlab_globals.hpp"
  30 #include "interpreter/interpreter.hpp"
  31 #include "interpreter/interpreterRuntime.hpp"
  32 #include "interpreter/interp_masm.hpp"
  33 #include "interpreter/templateTable.hpp"
  34 #include "memory/universe.hpp"
  35 #include "oops/methodCounters.hpp"
  36 #include "oops/methodData.hpp"
  37 #include "oops/objArrayKlass.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "oops/inlineKlass.hpp"
  40 #include "oops/resolvedFieldEntry.hpp"
  41 #include "oops/resolvedIndyEntry.hpp"
  42 #include "oops/resolvedMethodEntry.hpp"
  43 #include "prims/jvmtiExport.hpp"
  44 #include "prims/methodHandles.hpp"
  45 #include "runtime/frame.inline.hpp"
  46 #include "runtime/safepointMechanism.hpp"
  47 #include "runtime/sharedRuntime.hpp"
  48 #include "runtime/stubRoutines.hpp"
  49 #include "runtime/synchronizer.hpp"
  50 #include "utilities/macros.hpp"
  51 
  52 #define __ Disassembler::hook<InterpreterMacroAssembler>(__FILE__, __LINE__, _masm)->
  53 
  54 // Global Register Names
  55 static const Register rbcp     = r13;
  56 static const Register rlocals  = r14;
  57 
  58 // Address Computation: local variables
  59 static inline Address iaddress(int n) {

 151 static void do_oop_load(InterpreterMacroAssembler* _masm,
 152                         Address src,
 153                         Register dst,
 154                         DecoratorSet decorators = 0) {
 155   __ load_heap_oop(dst, src, rdx, rbx, decorators);
 156 }
 157 
 158 Address TemplateTable::at_bcp(int offset) {
 159   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
 160   return Address(rbcp, offset);
 161 }
 162 
 163 
 164 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
 165                                    Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
 166                                    int byte_no) {
 167   if (!RewriteBytecodes)  return;
 168   Label L_patch_done;
 169 
 170   switch (bc) {
 171   case Bytecodes::_fast_vputfield:
 172   case Bytecodes::_fast_aputfield:
 173   case Bytecodes::_fast_bputfield:
 174   case Bytecodes::_fast_zputfield:
 175   case Bytecodes::_fast_cputfield:
 176   case Bytecodes::_fast_dputfield:
 177   case Bytecodes::_fast_fputfield:
 178   case Bytecodes::_fast_iputfield:
 179   case Bytecodes::_fast_lputfield:
 180   case Bytecodes::_fast_sputfield:
 181     {
 182       // We skip bytecode quickening for putfield instructions when
 183       // the put_code written to the constant pool cache is zero.
 184       // This is required so that every execution of this instruction
 185       // calls out to InterpreterRuntime::resolve_get_put to do
 186       // additional, required work.
 187       assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
 188       assert(load_bc_into_bc_reg, "we use bc_reg as temp");
 189       __ load_field_entry(temp_reg, bc_reg);
 190       if (byte_no == f1_byte) {
 191         __ load_unsigned_byte(temp_reg, Address(temp_reg, in_bytes(ResolvedFieldEntry::get_code_offset())));

 768                     Address(rdx, rax,
 769                             Address::times_4,
 770                             arrayOopDesc::base_offset_in_bytes(T_FLOAT)),
 771                     noreg, noreg);
 772 }
 773 
 774 void TemplateTable::daload() {
 775   transition(itos, dtos);
 776   // rax: index
 777   // rdx: array
 778   index_check(rdx, rax); // kills rbx
 779   __ access_load_at(T_DOUBLE, IN_HEAP | IS_ARRAY, noreg /* dtos */,
 780                     Address(rdx, rax,
 781                             Address::times_8,
 782                             arrayOopDesc::base_offset_in_bytes(T_DOUBLE)),
 783                     noreg, noreg);
 784 }
 785 
 786 void TemplateTable::aaload() {
 787   transition(itos, atos);
 788   Register array = rdx;
 789   Register index = rax;
 790 
 791   index_check(array, index); // kills rbx
 792   __ profile_array_type<ArrayLoadData>(rbx, array, rcx);
 793   if (UseArrayFlattening) {
 794     Label is_flat_array, done;
 795     __ test_flat_array_oop(array, rbx, is_flat_array);
 796     do_oop_load(_masm,
 797                 Address(array, index,
 798                         UseCompressedOops ? Address::times_4 : Address::times_ptr,
 799                         arrayOopDesc::base_offset_in_bytes(T_OBJECT)),
 800                 rax,
 801                 IS_ARRAY);
 802     __ jmp(done);
 803     __ bind(is_flat_array);
 804     __ movptr(rcx, array);
 805     call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::flat_array_load), rcx, index);
 806     __ bind(done);
 807   } else {
 808     do_oop_load(_masm,
 809                 Address(array, index,
 810                         UseCompressedOops ? Address::times_4 : Address::times_ptr,
 811                         arrayOopDesc::base_offset_in_bytes(T_OBJECT)),
 812                 rax,
 813                 IS_ARRAY);
 814   }
 815   __ profile_element_type(rbx, rax, rcx);
 816 }
 817 
 818 void TemplateTable::baload() {
 819   transition(itos, itos);
 820   // rax: index
 821   // rdx: array
 822   index_check(rdx, rax); // kills rbx
 823   __ access_load_at(T_BYTE, IN_HEAP | IS_ARRAY, rax,
 824                     Address(rdx, rax, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_BYTE)),
 825                     noreg, noreg);
 826 }
 827 
 828 void TemplateTable::caload() {
 829   transition(itos, itos);
 830   // rax: index
 831   // rdx: array
 832   index_check(rdx, rax); // kills rbx
 833   __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, rax,
 834                     Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)),
 835                     noreg, noreg);

1069   __ access_store_at(T_FLOAT, IN_HEAP | IS_ARRAY,
1070                      Address(rdx, rbx, Address::times_4,
1071                              arrayOopDesc::base_offset_in_bytes(T_FLOAT)),
1072                      noreg /* ftos */, noreg, noreg, noreg);
1073 }
1074 
1075 void TemplateTable::dastore() {
1076   transition(dtos, vtos);
1077   __ pop_i(rbx);
1078   // value is in UseSSE >= 2 ? xmm0 : ST(0)
1079   // rbx:  index
1080   // rdx:  array
1081   index_check(rdx, rbx); // prefer index in rbx
1082   __ access_store_at(T_DOUBLE, IN_HEAP | IS_ARRAY,
1083                      Address(rdx, rbx, Address::times_8,
1084                              arrayOopDesc::base_offset_in_bytes(T_DOUBLE)),
1085                      noreg /* dtos */, noreg, noreg, noreg);
1086 }
1087 
1088 void TemplateTable::aastore() {
1089   Label is_null, is_flat_array, ok_is_subtype, done;
1090   transition(vtos, vtos);
1091   // stack: ..., array, index, value
1092   __ movptr(rax, at_tos());    // value
1093   __ movl(rcx, at_tos_p1()); // index
1094   __ movptr(rdx, at_tos_p2()); // array
1095 
1096   Address element_address(rdx, rcx,
1097                           UseCompressedOops? Address::times_4 : Address::times_ptr,
1098                           arrayOopDesc::base_offset_in_bytes(T_OBJECT));
1099 
1100   index_check_without_pop(rdx, rcx);     // kills rbx
1101 
1102   __ profile_array_type<ArrayStoreData>(rdi, rdx, rbx);
1103   __ profile_multiple_element_types(rdi, rax, rbx, rcx);
1104 
1105   __ testptr(rax, rax);
1106   __ jcc(Assembler::zero, is_null);
1107 
1108   // Move array class to rdi
1109   __ load_klass(rdi, rdx, rscratch1);
1110   if (UseArrayFlattening) {
1111     __ movl(rbx, Address(rdi, Klass::layout_helper_offset()));
1112     __ test_flat_array_layout(rbx, is_flat_array);
1113   }
1114 
1115   // Move subklass into rbx
1116   __ load_klass(rbx, rax, rscratch1);
1117   // Move array element superklass into rax
1118   __ movptr(rax, Address(rdi,

1119                          ObjArrayKlass::element_klass_offset()));
1120 
1121   // Generate subtype check.  Blows rcx, rdi
1122   // Superklass in rax.  Subklass in rbx.
1123   // is "rbx <: rax" ? (value subclass <: array element superclass)
1124   __ gen_subtype_check(rbx, ok_is_subtype, false);
1125 
1126   // Come here on failure
1127   // object is at TOS
1128   __ jump(RuntimeAddress(Interpreter::_throw_ArrayStoreException_entry));
1129 
1130   // Come here on success
1131   __ bind(ok_is_subtype);
1132 
1133   // Get the value we will store
1134   __ movptr(rax, at_tos());
1135   __ movl(rcx, at_tos_p1()); // index
1136   // Now store using the appropriate barrier
1137   do_oop_store(_masm, element_address, rax, IS_ARRAY);
1138   __ jmp(done);
1139 
1140   // Have a null in rax, rdx=array, ecx=index.  Store null at ary[idx]
1141   __ bind(is_null);
1142   if (EnableValhalla) {
1143     Label write_null_to_null_free_array, store_null;
1144 
1145       // Move array class to rdi
1146     __ load_klass(rdi, rdx, rscratch1);
1147     if (UseArrayFlattening) {
1148       __ movl(rbx, Address(rdi, Klass::layout_helper_offset()));
1149       __ test_flat_array_layout(rbx, is_flat_array);
1150     }
1151 
1152     // No way to store null in null-free array
1153     __ test_null_free_array_oop(rdx, rbx, write_null_to_null_free_array);
1154     __ jmp(store_null);
1155 
1156     __ bind(write_null_to_null_free_array);
1157     __ jump(RuntimeAddress(Interpreter::_throw_NullPointerException_entry));
1158 
1159     __ bind(store_null);
1160   }
1161   // Store a null
1162   do_oop_store(_masm, element_address, noreg, IS_ARRAY);
1163   __ jmp(done);
1164 
1165   if (UseArrayFlattening) {
1166     Label is_type_ok;
1167     __ bind(is_flat_array); // Store non-null value to flat
1168 
1169     __ movptr(rax, at_tos());
1170     __ movl(rcx, at_tos_p1()); // index
1171     __ movptr(rdx, at_tos_p2()); // array
1172 
1173     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::flat_array_store), rax, rdx, rcx);
1174   }
1175   // Pop stack arguments
1176   __ bind(done);
1177   __ addptr(rsp, 3 * Interpreter::stackElementSize);
1178 }
1179 
1180 void TemplateTable::bastore() {
1181   transition(itos, vtos);
1182   __ pop_i(rbx);
1183   // rax: value
1184   // rbx: index
1185   // rdx: array
1186   index_check(rdx, rbx); // prefer index in rbx
1187   // Need to check whether array is boolean or byte
1188   // since both types share the bastore bytecode.
1189   __ load_klass(rcx, rdx, rscratch1);
1190   __ movl(rcx, Address(rcx, Klass::layout_helper_offset()));
1191   int diffbit = Klass::layout_helper_boolean_diffbit();
1192   __ testl(rcx, diffbit);
1193   Label L_skip;
1194   __ jccb(Assembler::zero, L_skip);

1965   __ jcc(j_not(cc), not_taken);
1966   branch(false, false);
1967   __ bind(not_taken);
1968   __ profile_not_taken_branch(rax);
1969 }
1970 
1971 void TemplateTable::if_nullcmp(Condition cc) {
1972   transition(atos, vtos);
1973   // assume branch is more often taken than not (loops use backward branches)
1974   Label not_taken;
1975   __ testptr(rax, rax);
1976   __ jcc(j_not(cc), not_taken);
1977   branch(false, false);
1978   __ bind(not_taken);
1979   __ profile_not_taken_branch(rax);
1980 }
1981 
1982 void TemplateTable::if_acmp(Condition cc) {
1983   transition(atos, vtos);
1984   // assume branch is more often taken than not (loops use backward branches)
1985   Label taken, not_taken;
1986   __ pop_ptr(rdx);
1987 
1988   __ profile_acmp(rbx, rdx, rax, rcx);
1989 
1990   const int is_inline_type_mask = markWord::inline_type_pattern;
1991   if (EnableValhalla) {
1992     __ cmpoop(rdx, rax);
1993     __ jcc(Assembler::equal, (cc == equal) ? taken : not_taken);
1994 
1995     // might be substitutable, test if either rax or rdx is null
1996     __ testptr(rax, rax);
1997     __ jcc(Assembler::zero, (cc == equal) ? not_taken : taken);
1998     __ testptr(rdx, rdx);
1999     __ jcc(Assembler::zero, (cc == equal) ? not_taken : taken);
2000 
2001     // and both are values ?
2002     __ movptr(rbx, Address(rdx, oopDesc::mark_offset_in_bytes()));
2003     __ andptr(rbx, Address(rax, oopDesc::mark_offset_in_bytes()));
2004     __ andptr(rbx, is_inline_type_mask);
2005     __ cmpptr(rbx, is_inline_type_mask);
2006     __ jcc(Assembler::notEqual, (cc == equal) ? not_taken : taken);
2007 
2008     // same value klass ?
2009     __ load_metadata(rbx, rdx);
2010     __ load_metadata(rcx, rax);
2011     __ cmpptr(rbx, rcx);
2012     __ jcc(Assembler::notEqual, (cc == equal) ? not_taken : taken);
2013 
2014     // Know both are the same type, let's test for substitutability...
2015     if (cc == equal) {
2016       invoke_is_substitutable(rax, rdx, taken, not_taken);
2017     } else {
2018       invoke_is_substitutable(rax, rdx, not_taken, taken);
2019     }
2020     __ stop("Not reachable");
2021   }
2022 
2023   __ cmpoop(rdx, rax);
2024   __ jcc(j_not(cc), not_taken);
2025   __ bind(taken);
2026   branch(false, false);
2027   __ bind(not_taken);
2028   __ profile_not_taken_branch(rax, true);
2029 }
2030 
2031 void TemplateTable::invoke_is_substitutable(Register aobj, Register bobj,
2032                                             Label& is_subst, Label& not_subst) {
2033   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::is_substitutable), aobj, bobj);
2034   // Restored...rax answer, jmp to outcome...
2035   __ testl(rax, rax);
2036   __ jcc(Assembler::zero, not_subst);
2037   __ jmp(is_subst);
2038 }
2039 
2040 void TemplateTable::ret() {
2041   transition(vtos, vtos);
2042   locals_index(rbx);
2043   __ movslq(rbx, iaddress(rbx)); // get return bci, compute return bcp
2044   __ profile_ret(rbx, rcx);
2045   __ get_method(rax);
2046   __ movptr(rbcp, Address(rax, Method::const_offset()));
2047   __ lea(rbcp, Address(rbcp, rbx, Address::times_1,
2048                       ConstMethod::codes_offset()));
2049   __ dispatch_next(vtos, 0, true);
2050 }
2051 
2052 void TemplateTable::wide_ret() {
2053   transition(vtos, vtos);
2054   locals_index_wide(rbx);
2055   __ movptr(rbx, aaddress(rbx)); // get return bci, compute return bcp
2056   __ profile_ret(rbx, rcx);
2057   __ get_method(rax);

2271   if (_desc->bytecode() != Bytecodes::_return_register_finalizer) {
2272     Label no_safepoint;
2273     NOT_PRODUCT(__ block_comment("Thread-local Safepoint poll"));
2274     __ testb(Address(r15_thread, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit());
2275     __ jcc(Assembler::zero, no_safepoint);
2276     __ push(state);
2277     __ push_cont_fastpath();
2278     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
2279                                        InterpreterRuntime::at_safepoint));
2280     __ pop_cont_fastpath();
2281     __ pop(state);
2282     __ bind(no_safepoint);
2283   }
2284 
2285   // Narrow result if state is itos but result type is smaller.
2286   // Need to narrow in the return bytecode rather than in generate_return_entry
2287   // since compiled code callers expect the result to already be narrowed.
2288   if (state == itos) {
2289     __ narrow(rax);
2290   }
2291 
2292   __ remove_activation(state, rbcp, true, true, true);
2293 
2294   __ jmp(rbcp);
2295 }
2296 
2297 // ----------------------------------------------------------------------------
2298 // Volatile variables demand their effects be made known to all CPU's
2299 // in order.  Store buffers on most chips allow reads & writes to
2300 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode
2301 // without some kind of memory barrier (i.e., it's not sufficient that
2302 // the interpreter does not reorder volatile references, the hardware
2303 // also must not reorder them).
2304 //
2305 // According to the new Java Memory Model (JMM):
2306 // (1) All volatiles are serialized wrt to each other.  ALSO reads &
2307 //     writes act as acquire & release, so:
2308 // (2) A read cannot let unrelated NON-volatile memory refs that
2309 //     happen after the read float up to before the read.  It's OK for
2310 //     non-volatile memory refs that happen before the volatile read to
2311 //     float down below it.
2312 // (3) Similar a volatile write cannot let unrelated NON-volatile

2634     }
2635     // rax,:   object pointer or null
2636     // cache: cache entry pointer
2637     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access),
2638               rax, cache);
2639 
2640     __ load_field_entry(cache, index);
2641     __ bind(L1);
2642   }
2643 }
2644 
2645 void TemplateTable::pop_and_check_object(Register r) {
2646   __ pop_ptr(r);
2647   __ null_check(r);  // for field access must check obj.
2648   __ verify_oop(r);
2649 }
2650 
2651 void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
2652   transition(vtos, vtos);
2653 
2654   const Register obj   = r9;
2655   const Register cache = rcx;
2656   const Register index = rdx;
2657   const Register off   = rbx;
2658   const Register tos_state   = rax;
2659   const Register flags = rdx;
2660   const Register bc    = c_rarg3; // uses same reg as obj, so don't mix them
2661 
2662   resolve_cache_and_index_for_field(byte_no, cache, index);
2663   jvmti_post_field_access(cache, index, is_static, false);
2664   load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static);
2665 


2666   const Address field(obj, off, Address::times_1, 0*wordSize);
2667 
2668   Label Done, notByte, notBool, notInt, notShort, notChar, notLong, notFloat, notObj, notInlineType;
2669 
2670   // Make sure we don't need to mask edx after the above shift
2671   assert(btos == 0, "change code, btos != 0");
2672   __ testl(tos_state, tos_state);
2673   __ jcc(Assembler::notZero, notByte);
2674 
2675   // btos
2676   if (!is_static) pop_and_check_object(obj);
2677   __ access_load_at(T_BYTE, IN_HEAP, rax, field, noreg, noreg);
2678   __ push(btos);
2679   // Rewrite bytecode to be faster
2680   if (!is_static && rc == may_rewrite) {
2681     patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx);
2682   }
2683   __ jmp(Done);
2684 
2685   __ bind(notByte);
2686   __ cmpl(tos_state, ztos);
2687   __ jcc(Assembler::notEqual, notBool);
2688    if (!is_static) pop_and_check_object(obj);
2689   // ztos (same code as btos)
2690   __ access_load_at(T_BOOLEAN, IN_HEAP, rax, field, noreg, noreg);
2691   __ push(ztos);
2692   // Rewrite bytecode to be faster
2693   if (!is_static && rc == may_rewrite) {
2694     // use btos rewriting, no truncating to t/f bit is needed for getfield.
2695     patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx);
2696   }
2697   __ jmp(Done);
2698 
2699   __ bind(notBool);
2700   __ cmpl(tos_state, atos);
2701   __ jcc(Assembler::notEqual, notObj);
2702   // atos
2703   if (!EnableValhalla) {
2704     if (!is_static) pop_and_check_object(obj);
2705     do_oop_load(_masm, field, rax);
2706     __ push(atos);
2707     if (!is_static && rc == may_rewrite) {
2708       patch_bytecode(Bytecodes::_fast_agetfield, bc, rbx);
2709     }
2710     __ jmp(Done);
2711   } else {
2712     if (is_static) {
2713       __ load_heap_oop(rax, field);
2714       Label is_null_free_inline_type, uninitialized;
2715       // Issue below if the static field has not been initialized yet
2716       __ test_field_is_null_free_inline_type(flags, rscratch1, is_null_free_inline_type);
2717         // field is not a null free inline type
2718         __ push(atos);
2719         __ jmp(Done);
2720       // field is a null free inline type, must not return null even if uninitialized
2721       __ bind(is_null_free_inline_type);
2722           __ testptr(rax, rax);
2723         __ jcc(Assembler::zero, uninitialized);
2724           __ push(atos);
2725           __ jmp(Done);
2726         __ bind(uninitialized);
2727           __ jump(RuntimeAddress(Interpreter::_throw_NPE_UninitializedField_entry));
2728     } else {
2729       Label is_flat, nonnull, is_null_free_inline_type, rewrite_inline, has_null_marker;
2730       __ test_field_is_null_free_inline_type(flags, rscratch1, is_null_free_inline_type);
2731       __ test_field_has_null_marker(flags, rscratch1, has_null_marker);
2732       // field is not a null free inline type
2733       pop_and_check_object(obj);
2734       __ load_heap_oop(rax, field);
2735       __ push(atos);
2736       if (rc == may_rewrite) {
2737         patch_bytecode(Bytecodes::_fast_agetfield, bc, rbx);
2738       }
2739       __ jmp(Done);
2740       __ bind(is_null_free_inline_type);
2741       __ test_field_is_flat(flags, rscratch1, is_flat);
2742           // field is not flat
2743           pop_and_check_object(obj);
2744           __ load_heap_oop(rax, field);
2745           __ testptr(rax, rax);
2746           __ jcc(Assembler::notZero, nonnull);
2747           __ jump(RuntimeAddress(Interpreter::_throw_NPE_UninitializedField_entry));
2748           __ bind(nonnull);
2749           __ verify_oop(rax);
2750           __ push(atos);
2751           __ jmp(rewrite_inline);
2752         __ bind(is_flat);
2753           pop_and_check_object(rax);
2754           __ read_flat_field(rcx, rdx, rbx, rax);
2755           __ verify_oop(rax);
2756           __ push(atos);
2757           __ jmp(rewrite_inline);
2758       __ bind(has_null_marker);
2759         pop_and_check_object(rax);
2760         __ load_field_entry(rcx, rbx);
2761         call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::read_nullable_flat_field), rax, rcx);
2762         __ get_vm_result(rax, r15_thread);
2763         __ push(atos);
2764       __ bind(rewrite_inline);
2765       if (rc == may_rewrite) {
2766         patch_bytecode(Bytecodes::_fast_vgetfield, bc, rbx);
2767       }
2768         __ jmp(Done);
2769     }
2770   }

2771 
2772   __ bind(notObj);
2773 
2774   if (!is_static) pop_and_check_object(obj);
2775 
2776   __ cmpl(tos_state, itos);
2777   __ jcc(Assembler::notEqual, notInt);
2778   // itos
2779   __ access_load_at(T_INT, IN_HEAP, rax, field, noreg, noreg);
2780   __ push(itos);
2781   // Rewrite bytecode to be faster
2782   if (!is_static && rc == may_rewrite) {
2783     patch_bytecode(Bytecodes::_fast_igetfield, bc, rbx);
2784   }
2785   __ jmp(Done);
2786 
2787   __ bind(notInt);
2788   __ cmpl(tos_state, ctos);
2789   __ jcc(Assembler::notEqual, notChar);
2790   // ctos
2791   __ access_load_at(T_CHAR, IN_HEAP, rax, field, noreg, noreg);
2792   __ push(ctos);
2793   // Rewrite bytecode to be faster
2794   if (!is_static && rc == may_rewrite) {
2795     patch_bytecode(Bytecodes::_fast_cgetfield, bc, rbx);

2855 #endif
2856 
2857   __ bind(Done);
2858   // [jk] not needed currently
2859   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadLoad |
2860   //                                              Assembler::LoadStore));
2861 }
2862 
2863 void TemplateTable::getfield(int byte_no) {
2864   getfield_or_static(byte_no, false);
2865 }
2866 
2867 void TemplateTable::nofast_getfield(int byte_no) {
2868   getfield_or_static(byte_no, false, may_not_rewrite);
2869 }
2870 
2871 void TemplateTable::getstatic(int byte_no) {
2872   getfield_or_static(byte_no, true);
2873 }
2874 

2875 // The registers cache and index expected to be set before call.
2876 // The function may destroy various registers, just not the cache and index registers.
2877 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) {
2878   // Cache is rcx and index is rdx
2879   const Register entry = c_rarg2; // ResolvedFieldEntry
2880   const Register obj = c_rarg1;   // Object pointer
2881   const Register value = c_rarg3; // JValue object
2882 
2883   if (JvmtiExport::can_post_field_modification()) {
2884     // Check to see if a field modification watch has been set before
2885     // we take the time to call into the VM.
2886     Label L1;
2887     assert_different_registers(cache, obj, rax);
2888     __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
2889     __ testl(rax, rax);
2890     __ jcc(Assembler::zero, L1);
2891 
2892     __ mov(entry, cache);
2893 
2894     if (is_static) {

2916     // cache: field entry pointer
2917     // value: jvalue object on the stack
2918     __ call_VM(noreg,
2919               CAST_FROM_FN_PTR(address,
2920                               InterpreterRuntime::post_field_modification),
2921               obj, entry, value);
2922     // Reload field entry
2923     __ load_field_entry(cache, index);
2924     __ bind(L1);
2925   }
2926 }
2927 
2928 void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
2929   transition(vtos, vtos);
2930 
2931   const Register obj = rcx;
2932   const Register cache = rcx;
2933   const Register index = rdx;
2934   const Register tos_state   = rdx;
2935   const Register off   = rbx;
2936   const Register flags = r9;
2937 
2938   resolve_cache_and_index_for_field(byte_no, cache, index);
2939   jvmti_post_field_mod(cache, index, is_static);
2940   load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static);
2941 
2942   // [jk] not needed currently
2943   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
2944   //                                              Assembler::StoreStore));
2945 
2946   Label notVolatile, Done;
2947 
2948   // Check for volatile store
2949   __ movl(rscratch1, flags);
2950   __ andl(rscratch1, (1 << ResolvedFieldEntry::is_volatile_shift));
2951   __ testl(rscratch1, rscratch1);
2952   __ jcc(Assembler::zero, notVolatile);
2953 
2954   putfield_or_static_helper(byte_no, is_static, rc, obj, off, tos_state, flags);
2955   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
2956                                                Assembler::StoreStore));
2957   __ jmp(Done);
2958   __ bind(notVolatile);
2959 
2960   putfield_or_static_helper(byte_no, is_static, rc, obj, off, tos_state, flags);
2961 
2962   __ bind(Done);
2963 }
2964 
2965 void TemplateTable::putfield_or_static_helper(int byte_no, bool is_static, RewriteControl rc,
2966                                               Register obj, Register off, Register tos_state, Register flags) {
2967 
2968   // field addresses
2969   const Address field(obj, off, Address::times_1, 0*wordSize);
2970 
2971   Label notByte, notBool, notInt, notShort, notChar,
2972         notLong, notFloat, notObj, notInlineType;
2973   Label Done;
2974 
2975   const Register bc    = c_rarg3;
2976 
2977   // Test TOS state
2978   __ testl(tos_state, tos_state);
2979   __ jcc(Assembler::notZero, notByte);
2980 
2981   // btos
2982   {
2983     __ pop(btos);
2984     if (!is_static) pop_and_check_object(obj);
2985     __ access_store_at(T_BYTE, IN_HEAP, field, rax, noreg, noreg, noreg);
2986     if (!is_static && rc == may_rewrite) {
2987       patch_bytecode(Bytecodes::_fast_bputfield, bc, rbx, true, byte_no);
2988     }
2989     __ jmp(Done);
2990   }
2991 
2992   __ bind(notByte);
2993   __ cmpl(tos_state, ztos);
2994   __ jcc(Assembler::notEqual, notBool);
2995 
2996   // ztos
2997   {
2998     __ pop(ztos);
2999     if (!is_static) pop_and_check_object(obj);
3000     __ access_store_at(T_BOOLEAN, IN_HEAP, field, rax, noreg, noreg, noreg);
3001     if (!is_static && rc == may_rewrite) {
3002       patch_bytecode(Bytecodes::_fast_zputfield, bc, rbx, true, byte_no);
3003     }
3004     __ jmp(Done);
3005   }
3006 
3007   __ bind(notBool);
3008   __ cmpl(tos_state, atos);
3009   __ jcc(Assembler::notEqual, notObj);
3010 
3011   // atos
3012   {
3013     if (!EnableValhalla) {
3014       __ pop(atos);
3015       if (!is_static) pop_and_check_object(obj);
3016       // Store into the field
3017       do_oop_store(_masm, field, rax);
3018       if (!is_static && rc == may_rewrite) {
3019         patch_bytecode(Bytecodes::_fast_aputfield, bc, rbx, true, byte_no);
3020       }
3021       __ jmp(Done);
3022     } else {
3023       __ pop(atos);
3024       if (is_static) {
3025         Label is_inline_type;
3026         __ test_field_is_not_null_free_inline_type(flags, rscratch1, is_inline_type);
3027         __ null_check(rax);
3028         __ bind(is_inline_type);
3029         do_oop_store(_masm, field, rax);
3030         __ jmp(Done);
3031       } else {
3032         Label is_null_free_inline_type, is_flat, has_null_marker,
3033               write_null, rewrite_not_inline, rewrite_inline;
3034         __ test_field_is_null_free_inline_type(flags, rscratch1, is_null_free_inline_type);
3035         __ test_field_has_null_marker(flags, rscratch1, has_null_marker);
3036           // Not an inline type
3037           pop_and_check_object(obj);
3038           // Store into the field
3039           do_oop_store(_masm, field, rax);
3040           __ bind(rewrite_not_inline);
3041           if (rc == may_rewrite) {
3042             patch_bytecode(Bytecodes::_fast_aputfield, bc, rbx, true, byte_no);
3043           }
3044           __ jmp(Done);
3045         // Implementation of the inline type semantic
3046         __ bind(is_null_free_inline_type);
3047           __ null_check(rax);
3048           __ test_field_is_flat(flags, rscratch1, is_flat);
3049             // field is not flat
3050             pop_and_check_object(obj);
3051             // Store into the field
3052             do_oop_store(_masm, field, rax);
3053           __ jmp(rewrite_inline);
3054           __ bind(is_flat);
3055             // field is flat
3056             __ load_unsigned_short(rdx, Address(rcx, in_bytes(ResolvedFieldEntry::field_index_offset())));
3057             __ movptr(r9, Address(rcx, in_bytes(ResolvedFieldEntry::field_holder_offset())));
3058             pop_and_check_object(obj);  // obj = rcx
3059             __ load_klass(r8, rax, rscratch1);
3060             __ payload_addr(rax, rax, r8);
3061             __ addptr(obj, off);
3062             __ inline_layout_info(r9, rdx, rbx);
3063             // because we use InlineLayoutInfo, we need special value access code specialized for fields (arrays will need a different API)
3064             __ flat_field_copy(IN_HEAP, rax, obj, rbx);
3065             __ jmp(rewrite_inline);
3066         __ bind(has_null_marker); // has null marker means the field is flat with a null marker
3067           pop_and_check_object(rbx);
3068           __ load_field_entry(rcx, rdx);
3069           call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::write_nullable_flat_field), rbx, rax, rcx);
3070         __ bind(rewrite_inline);
3071         if (rc == may_rewrite) {
3072           patch_bytecode(Bytecodes::_fast_vputfield, bc, rbx, true, byte_no);
3073         }
3074         __ jmp(Done);
3075       }
3076     }

3077   }
3078 
3079   __ bind(notObj);
3080   __ cmpl(tos_state, itos);
3081   __ jcc(Assembler::notEqual, notInt);
3082 
3083   // itos
3084   {
3085     __ pop(itos);
3086     if (!is_static) pop_and_check_object(obj);
3087     __ access_store_at(T_INT, IN_HEAP, field, rax, noreg, noreg, noreg);
3088     if (!is_static && rc == may_rewrite) {
3089       patch_bytecode(Bytecodes::_fast_iputfield, bc, rbx, true, byte_no);
3090     }
3091     __ jmp(Done);
3092   }
3093 
3094   __ bind(notInt);
3095   __ cmpl(tos_state, ctos);
3096   __ jcc(Assembler::notEqual, notChar);

3193 }
3194 
3195 void TemplateTable::jvmti_post_fast_field_mod() {
3196 
3197   const Register scratch = c_rarg3;
3198 
3199   if (JvmtiExport::can_post_field_modification()) {
3200     // Check to see if a field modification watch has been set before
3201     // we take the time to call into the VM.
3202     Label L2;
3203     __ mov32(scratch, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
3204     __ testl(scratch, scratch);
3205     __ jcc(Assembler::zero, L2);
3206     __ pop_ptr(rbx);                  // copy the object pointer from tos
3207     __ verify_oop(rbx);
3208     __ push_ptr(rbx);                 // put the object pointer back on tos
3209     // Save tos values before call_VM() clobbers them. Since we have
3210     // to do it for every data type, we use the saved values as the
3211     // jvalue object.
3212     switch (bytecode()) {          // load values into the jvalue object
3213     case Bytecodes::_fast_vputfield: //fall through
3214     case Bytecodes::_fast_aputfield: __ push_ptr(rax); break;
3215     case Bytecodes::_fast_bputfield: // fall through
3216     case Bytecodes::_fast_zputfield: // fall through
3217     case Bytecodes::_fast_sputfield: // fall through
3218     case Bytecodes::_fast_cputfield: // fall through
3219     case Bytecodes::_fast_iputfield: __ push_i(rax); break;
3220     case Bytecodes::_fast_dputfield: __ push(dtos); break;
3221     case Bytecodes::_fast_fputfield: __ push(ftos); break;
3222     case Bytecodes::_fast_lputfield: __ push_l(rax); break;
3223 
3224     default:
3225       ShouldNotReachHere();
3226     }
3227     __ mov(scratch, rsp);             // points to jvalue on the stack
3228     // access constant pool cache entry
3229     __ load_field_entry(c_rarg2, rax);
3230     __ verify_oop(rbx);
3231     // rbx: object pointer copied above
3232     // c_rarg2: cache entry pointer
3233     // c_rarg3: jvalue object on the stack
3234     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), rbx, c_rarg2, c_rarg3);
3235 
3236     switch (bytecode()) {             // restore tos values
3237     case Bytecodes::_fast_vputfield: // fall through
3238     case Bytecodes::_fast_aputfield: __ pop_ptr(rax); break;
3239     case Bytecodes::_fast_bputfield: // fall through
3240     case Bytecodes::_fast_zputfield: // fall through
3241     case Bytecodes::_fast_sputfield: // fall through
3242     case Bytecodes::_fast_cputfield: // fall through
3243     case Bytecodes::_fast_iputfield: __ pop_i(rax); break;
3244     case Bytecodes::_fast_dputfield: __ pop(dtos); break;
3245     case Bytecodes::_fast_fputfield: __ pop(ftos); break;
3246     case Bytecodes::_fast_lputfield: __ pop_l(rax); break;
3247     default: break;
3248     }
3249     __ bind(L2);
3250   }
3251 }
3252 
3253 void TemplateTable::fast_storefield(TosState state) {
3254   transition(state, vtos);
3255 


3256   Label notVolatile, Done;
3257 
3258   jvmti_post_fast_field_mod();
3259 
3260   __ push(rax);
3261   __ load_field_entry(rcx, rax);
3262   load_resolved_field_entry(noreg, rcx, rax, rbx, rdx);


3263   __ pop(rax);
3264   // RBX: field offset, RCX: RAX: TOS, RDX: flags
3265 
3266   // Get object from stack
3267   pop_and_check_object(rcx);
3268 
3269   // field address
3270   const Address field(rcx, rbx, Address::times_1);
3271 
3272   // Check for volatile store
3273   __ movl(rscratch2, rdx);  // saving flags for is_flat test
3274   __ andl(rscratch2, (1 << ResolvedFieldEntry::is_volatile_shift));
3275   __ testl(rscratch2, rscratch2);
3276   __ jcc(Assembler::zero, notVolatile);
3277 
3278   fast_storefield_helper(field, rax, rdx);
3279   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
3280                                                Assembler::StoreStore));
3281   __ jmp(Done);
3282   __ bind(notVolatile);
3283 
3284   fast_storefield_helper(field, rax, rdx);
3285 
3286   __ bind(Done);
3287 }
3288 
3289 void TemplateTable::fast_storefield_helper(Address field, Register rax, Register flags) {
3290 
3291   // DANGER: 'field' argument depends on rcx and rbx
3292 
3293   // access field
3294   switch (bytecode()) {
3295   case Bytecodes::_fast_vputfield:
3296     {
3297       Label is_flat, has_null_marker, write_null, done;
3298       __ test_field_has_null_marker(flags, rscratch1, has_null_marker);
3299       // Null free field cases: flat or not flat
3300       __ null_check(rax);
3301       __ test_field_is_flat(flags, rscratch1, is_flat);
3302         // field is not flat
3303         do_oop_store(_masm, field, rax);
3304         __ jmp(done);
3305       __ bind(is_flat);
3306         __ load_field_entry(r8, r9);
3307         __ load_unsigned_short(r9, Address(r8, in_bytes(ResolvedFieldEntry::field_index_offset())));
3308         __ movptr(r8, Address(r8, in_bytes(ResolvedFieldEntry::field_holder_offset())));
3309         __ inline_layout_info(r8, r9, r8);
3310         __ load_klass(rdx, rax, rscratch1);
3311         __ payload_addr(rax, rax, rdx);
3312         __ lea(rcx, field);
3313         __ flat_field_copy(IN_HEAP, rax, rcx, r8);
3314         __ jmp(done);
3315       __ bind(has_null_marker); // has null marker means the field is flat with a null marker
3316         __ movptr(rbx, rcx);
3317         __ load_field_entry(rcx, rdx);
3318         call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::write_nullable_flat_field), rbx, rax, rcx);
3319       __ bind(done);
3320     }
3321     break;
3322   case Bytecodes::_fast_aputfield:
3323     {
3324       do_oop_store(_masm, field, rax);
3325     }
3326     break;
3327   case Bytecodes::_fast_lputfield:
3328     __ access_store_at(T_LONG, IN_HEAP, field, noreg /* ltos */, noreg, noreg, noreg);
3329     break;
3330   case Bytecodes::_fast_iputfield:
3331     __ access_store_at(T_INT, IN_HEAP, field, rax, noreg, noreg, noreg);
3332     break;
3333   case Bytecodes::_fast_zputfield:
3334     __ access_store_at(T_BOOLEAN, IN_HEAP, field, rax, noreg, noreg, noreg);
3335     break;
3336   case Bytecodes::_fast_bputfield:
3337     __ access_store_at(T_BYTE, IN_HEAP, field, rax, noreg, noreg, noreg);
3338     break;
3339   case Bytecodes::_fast_sputfield:
3340     __ access_store_at(T_SHORT, IN_HEAP, field, rax, noreg, noreg, noreg);
3341     break;
3342   case Bytecodes::_fast_cputfield:
3343     __ access_store_at(T_CHAR, IN_HEAP, field, rax, noreg, noreg, noreg);
3344     break;
3345   case Bytecodes::_fast_fputfield:

3361     // Check to see if a field access watch has been set before we
3362     // take the time to call into the VM.
3363     Label L1;
3364     __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
3365     __ testl(rcx, rcx);
3366     __ jcc(Assembler::zero, L1);
3367     // access constant pool cache entry
3368     __ load_field_entry(c_rarg2, rcx);
3369     __ verify_oop(rax);
3370     __ push_ptr(rax);  // save object pointer before call_VM() clobbers it
3371     __ mov(c_rarg1, rax);
3372     // c_rarg1: object pointer copied above
3373     // c_rarg2: cache entry pointer
3374     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), c_rarg1, c_rarg2);
3375     __ pop_ptr(rax); // restore object pointer
3376     __ bind(L1);
3377   }
3378 
3379   // access constant pool cache
3380   __ load_field_entry(rcx, rbx);
3381   __ load_sized_value(rdx, Address(rcx, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/);
3382 
3383   // rax: object
3384   __ verify_oop(rax);
3385   __ null_check(rax);
3386   Address field(rax, rdx, Address::times_1);
3387 
3388   // access field
3389   switch (bytecode()) {
3390   case Bytecodes::_fast_vgetfield:
3391     {
3392       Label is_flat, nonnull, Done, has_null_marker;
3393       __ load_unsigned_byte(rscratch1, Address(rcx, in_bytes(ResolvedFieldEntry::flags_offset())));
3394       __ test_field_has_null_marker(rscratch1, rscratch2, has_null_marker);
3395       __ test_field_is_flat(rscratch1, rscratch2, is_flat);
3396         // field is not flat
3397         __ load_heap_oop(rax, field);
3398         __ testptr(rax, rax);
3399         __ jcc(Assembler::notZero, nonnull);
3400           __ jump(RuntimeAddress(Interpreter::_throw_NPE_UninitializedField_entry));
3401         __ bind(nonnull);
3402         __ verify_oop(rax);
3403         __ jmp(Done);
3404       __ bind(is_flat);
3405       // field is flat
3406         __ read_flat_field(rcx, rdx, rbx, rax);
3407         __ jmp(Done);
3408       __ bind(has_null_marker);
3409         // rax = instance, rcx = resolved entry
3410         call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::read_nullable_flat_field), rax, rcx);
3411         __ get_vm_result(rax, r15_thread);
3412       __ bind(Done);
3413       __ verify_oop(rax);
3414     }
3415     break;
3416   case Bytecodes::_fast_agetfield:
3417     do_oop_load(_masm, field, rax);
3418     __ verify_oop(rax);
3419     break;
3420   case Bytecodes::_fast_lgetfield:
3421     __ access_load_at(T_LONG, IN_HEAP, noreg /* ltos */, field, noreg, noreg);
3422     break;
3423   case Bytecodes::_fast_igetfield:
3424     __ access_load_at(T_INT, IN_HEAP, rax, field, noreg, noreg);
3425     break;
3426   case Bytecodes::_fast_bgetfield:
3427     __ access_load_at(T_BYTE, IN_HEAP, rax, field, noreg, noreg);
3428     break;
3429   case Bytecodes::_fast_sgetfield:
3430     __ access_load_at(T_SHORT, IN_HEAP, rax, field, noreg, noreg);
3431     break;
3432   case Bytecodes::_fast_cgetfield:
3433     __ access_load_at(T_CHAR, IN_HEAP, rax, field, noreg, noreg);
3434     break;
3435   case Bytecodes::_fast_fgetfield:

3820 
3821   // Note:  rax_callsite is already pushed
3822 
3823   // %%% should make a type profile for any invokedynamic that takes a ref argument
3824   // profile this call
3825   __ profile_call(rbcp);
3826   __ profile_arguments_type(rdx, rbx_method, rbcp, false);
3827 
3828   __ verify_oop(rax_callsite);
3829 
3830   __ jump_from_interpreted(rbx_method, rdx);
3831 }
3832 
3833 //-----------------------------------------------------------------------------
3834 // Allocation
3835 
3836 void TemplateTable::_new() {
3837   transition(vtos, atos);
3838   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
3839   Label slow_case;

3840   Label done;

3841 
3842   __ get_cpool_and_tags(rcx, rax);
3843 
3844   // Make sure the class we're about to instantiate has been resolved.
3845   // This is done before loading InstanceKlass to be consistent with the order
3846   // how Constant Pool is updated (see ConstantPool::klass_at_put)
3847   const int tags_offset = Array<u1>::base_offset_in_bytes();
3848   __ cmpb(Address(rax, rdx, Address::times_1, tags_offset), JVM_CONSTANT_Class);
3849   __ jcc(Assembler::notEqual, slow_case);
3850 
3851   // get InstanceKlass
3852   __ load_resolved_klass_at_index(rcx, rcx, rdx);

3853 
3854   // make sure klass is initialized
3855   // init_state needs acquire, but x86 is TSO, and so we are already good.
3856   assert(VM_Version::supports_fast_class_init_checks(), "must support fast class initialization checks");
3857   __ clinit_barrier(rcx, r15_thread, nullptr /*L_fast_path*/, &slow_case);
3858 
3859   __ allocate_instance(rcx, rax, rdx, rbx, true, slow_case);








































































3860     if (DTraceAllocProbes) {
3861       // Trigger dtrace event for fastpath
3862       __ push(atos);
3863       __ call_VM_leaf(
3864            CAST_FROM_FN_PTR(address, static_cast<int (*)(oopDesc*)>(SharedRuntime::dtrace_object_alloc)), rax);
3865       __ pop(atos);
3866     }
3867   __ jmp(done);


3868 
3869   // slow case
3870   __ bind(slow_case);


3871 
3872   __ get_constant_pool(c_rarg1);
3873   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
3874   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2);
3875    __ verify_oop(rax);
3876 
3877   // continue
3878   __ bind(done);
3879 }
3880 
3881 void TemplateTable::newarray() {
3882   transition(itos, atos);
3883   __ load_unsigned_byte(c_rarg1, at_bcp(1));
3884   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray),
3885           c_rarg1, rax);
3886 }
3887 
3888 void TemplateTable::anewarray() {
3889   transition(itos, atos);
3890 

3892   __ get_constant_pool(c_rarg1);
3893   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray),
3894           c_rarg1, c_rarg2, rax);
3895 }
3896 
3897 void TemplateTable::arraylength() {
3898   transition(atos, itos);
3899   __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes()));
3900 }
3901 
3902 void TemplateTable::checkcast() {
3903   transition(atos, atos);
3904   Label done, is_null, ok_is_subtype, quicked, resolved;
3905   __ testptr(rax, rax); // object is in rax
3906   __ jcc(Assembler::zero, is_null);
3907 
3908   // Get cpool & tags index
3909   __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
3910   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
3911   // See if bytecode has already been quicked
3912   __ movzbl(rdx, Address(rdx, rbx,
3913       Address::times_1,
3914       Array<u1>::base_offset_in_bytes()));
3915   __ cmpl(rdx, JVM_CONSTANT_Class);
3916   __ jcc(Assembler::equal, quicked);
3917   __ push(atos); // save receiver for result, and for GC
3918   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
3919 
3920   // vm_result_2 has metadata result
3921   __ get_vm_result_2(rax, r15_thread);
3922 
3923   __ pop_ptr(rdx); // restore receiver
3924   __ jmpb(resolved);
3925 
3926   // Get superklass in rax and subklass in rbx
3927   __ bind(quicked);
3928   __ mov(rdx, rax); // Save object in rdx; rax needed for subtype check
3929   __ load_resolved_klass_at_index(rax, rcx, rbx);
3930 
3931   __ bind(resolved);
3932   __ load_klass(rbx, rdx, rscratch1);
3933 
3934   // Generate subtype check.  Blows rcx, rdi.  Object in rdx.
3935   // Superklass in rax.  Subklass in rbx.
3936   __ gen_subtype_check(rbx, ok_is_subtype);
3937 
3938   // Come here on failure
3939   __ push_ptr(rdx);
3940   // object is at TOS
3941   __ jump(RuntimeAddress(Interpreter::_throw_ClassCastException_entry));
3942 
3943   // Come here on success
3944   __ bind(ok_is_subtype);
3945   __ mov(rax, rdx); // Restore object in rdx
3946   __ jmp(done);
3947 
3948   __ bind(is_null);
3949 
3950   // Collect counts on whether this check-cast sees nulls a lot or not.
3951   if (ProfileInterpreter) {


3952     __ profile_null_seen(rcx);


3953   }
3954 
3955   __ bind(done);
3956 }
3957 
3958 void TemplateTable::instanceof() {
3959   transition(atos, itos);
3960   Label done, is_null, ok_is_subtype, quicked, resolved;
3961   __ testptr(rax, rax);
3962   __ jcc(Assembler::zero, is_null);
3963 
3964   // Get cpool & tags index
3965   __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
3966   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
3967   // See if bytecode has already been quicked
3968   __ movzbl(rdx, Address(rdx, rbx,
3969         Address::times_1,
3970         Array<u1>::base_offset_in_bytes()));
3971   __ cmpl(rdx, JVM_CONSTANT_Class);
3972   __ jcc(Assembler::equal, quicked);
3973 
3974   __ push(atos); // save receiver for result, and for GC
3975   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
3976   // vm_result_2 has metadata result
3977 
3978   __ get_vm_result_2(rax, r15_thread);
3979 
3980   __ pop_ptr(rdx); // restore receiver
3981   __ verify_oop(rdx);
3982   __ load_klass(rdx, rdx, rscratch1);
3983   __ jmpb(resolved);
3984 
3985   // Get superklass in rax and subklass in rdx
3986   __ bind(quicked);
3987   __ load_klass(rdx, rax, rscratch1);
3988   __ load_resolved_klass_at_index(rax, rcx, rbx);
3989 
3990   __ bind(resolved);
3991 

3996   // Come here on failure
3997   __ xorl(rax, rax);
3998   __ jmpb(done);
3999   // Come here on success
4000   __ bind(ok_is_subtype);
4001   __ movl(rax, 1);
4002 
4003   // Collect counts on whether this test sees nulls a lot or not.
4004   if (ProfileInterpreter) {
4005     __ jmp(done);
4006     __ bind(is_null);
4007     __ profile_null_seen(rcx);
4008   } else {
4009     __ bind(is_null);   // same as 'done'
4010   }
4011   __ bind(done);
4012   // rax = 0: obj == nullptr or  obj is not an instanceof the specified klass
4013   // rax = 1: obj != nullptr and obj is     an instanceof the specified klass
4014 }
4015 

4016 //----------------------------------------------------------------------------------------------------
4017 // Breakpoints
4018 void TemplateTable::_breakpoint() {
4019   // Note: We get here even if we are single stepping..
4020   // jbug insists on setting breakpoints at every bytecode
4021   // even if we are in single step mode.
4022 
4023   transition(vtos, vtos);
4024 
4025   // get the unpatched byte code
4026   __ get_method(c_rarg1);
4027   __ call_VM(noreg,
4028              CAST_FROM_FN_PTR(address,
4029                               InterpreterRuntime::get_original_bytecode_at),
4030              c_rarg1, rbcp);
4031   __ mov(rbx, rax);  // why?
4032 
4033   // post the breakpoint event
4034   __ get_method(c_rarg1);
4035   __ call_VM(noreg,

4055 // Note: monitorenter & exit are symmetric routines; which is reflected
4056 //       in the assembly code structure as well
4057 //
4058 // Stack layout:
4059 //
4060 // [expressions  ] <--- rsp               = expression stack top
4061 // ..
4062 // [expressions  ]
4063 // [monitor entry] <--- monitor block top = expression stack bot
4064 // ..
4065 // [monitor entry]
4066 // [frame data   ] <--- monitor block bot
4067 // ...
4068 // [saved rbp    ] <--- rbp
4069 void TemplateTable::monitorenter() {
4070   transition(atos, vtos);
4071 
4072   // check for null object
4073   __ null_check(rax);
4074 
4075   Label is_inline_type;
4076   __ movptr(rbx, Address(rax, oopDesc::mark_offset_in_bytes()));
4077   __ test_markword_is_inline_type(rbx, is_inline_type);
4078 
4079   const Address monitor_block_top(
4080         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
4081   const Address monitor_block_bot(
4082         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
4083   const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
4084 
4085   Label allocated;
4086 
4087   Register rtop = c_rarg3;
4088   Register rbot = c_rarg2;
4089   Register rmon = c_rarg1;
4090 
4091   // initialize entry pointer
4092   __ xorl(rmon, rmon); // points to free slot or null
4093 
4094   // find a free slot in the monitor block (result in rmon)
4095   {
4096     Label entry, loop, exit;
4097     __ movptr(rtop, monitor_block_top); // derelativize pointer
4098     __ lea(rtop, Address(rbp, rtop, Address::times_ptr));

4151   // rmon: points to monitor entry
4152   __ bind(allocated);
4153 
4154   // Increment bcp to point to the next bytecode, so exception
4155   // handling for async. exceptions work correctly.
4156   // The object has already been popped from the stack, so the
4157   // expression stack looks correct.
4158   __ increment(rbcp);
4159 
4160   // store object
4161   __ movptr(Address(rmon, BasicObjectLock::obj_offset()), rax);
4162   __ lock_object(rmon);
4163 
4164   // check to make sure this monitor doesn't cause stack overflow after locking
4165   __ save_bcp();  // in case of exception
4166   __ generate_stack_overflow_check(0);
4167 
4168   // The bcp has already been incremented. Just need to dispatch to
4169   // next instruction.
4170   __ dispatch_next(vtos);
4171 
4172   __ bind(is_inline_type);
4173   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
4174                     InterpreterRuntime::throw_identity_exception), rax);
4175   __ should_not_reach_here();
4176 }
4177 
4178 void TemplateTable::monitorexit() {
4179   transition(atos, vtos);
4180 
4181   // check for null object
4182   __ null_check(rax);
4183 
4184   const int is_inline_type_mask = markWord::inline_type_pattern;
4185   Label has_identity;
4186   __ movptr(rbx, Address(rax, oopDesc::mark_offset_in_bytes()));
4187   __ andptr(rbx, is_inline_type_mask);
4188   __ cmpl(rbx, is_inline_type_mask);
4189   __ jcc(Assembler::notEqual, has_identity);
4190   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
4191                      InterpreterRuntime::throw_illegal_monitor_state_exception));
4192   __ should_not_reach_here();
4193   __ bind(has_identity);
4194 
4195   const Address monitor_block_top(
4196         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
4197   const Address monitor_block_bot(
4198         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
4199   const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
4200 
4201   Register rtop = c_rarg1;
4202   Register rbot = c_rarg2;
4203 
4204   Label found;
4205 
4206   // find matching slot
4207   {
4208     Label entry, loop;
4209     __ movptr(rtop, monitor_block_top); // derelativize pointer
4210     __ lea(rtop, Address(rbp, rtop, Address::times_ptr));
4211     // rtop points to current entry, starting with top-most entry
4212 
4213     __ lea(rbot, monitor_block_bot);    // points to word before bottom
4214                                         // of monitor block
< prev index next >