1 //
    2 // Copyright (c) 2003, 2024, Oracle and/or its affiliates. All rights reserved.
    3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
    4 //
    5 // This code is free software; you can redistribute it and/or modify it
    6 // under the terms of the GNU General Public License version 2 only, as
    7 // published by the Free Software Foundation.
    8 //
    9 // This code is distributed in the hope that it will be useful, but WITHOUT
   10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
   11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
   12 // version 2 for more details (a copy is included in the LICENSE file that
   13 // accompanied this code).
   14 //
   15 // You should have received a copy of the GNU General Public License version
   16 // 2 along with this work; if not, write to the Free Software Foundation,
   17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
   18 //
   19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
   20 // or visit www.oracle.com if you need additional information or have any
   21 // questions.
   22 //
   23 //
   24 
   25 // AMD64 Architecture Description File
   26 
   27 //----------REGISTER DEFINITION BLOCK------------------------------------------
   28 // This information is used by the matcher and the register allocator to
   29 // describe individual registers and classes of registers within the target
   30 // architecture.
   31 
   32 register %{
   33 //----------Architecture Description Register Definitions----------------------
   34 // General Registers
   35 // "reg_def"  name ( register save type, C convention save type,
   36 //                   ideal register type, encoding );
   37 // Register Save Types:
   38 //
   39 // NS  = No-Save:       The register allocator assumes that these registers
   40 //                      can be used without saving upon entry to the method, &
   41 //                      that they do not need to be saved at call sites.
   42 //
   43 // SOC = Save-On-Call:  The register allocator assumes that these registers
   44 //                      can be used without saving upon entry to the method,
   45 //                      but that they must be saved at call sites.
   46 //
   47 // SOE = Save-On-Entry: The register allocator assumes that these registers
   48 //                      must be saved before using them upon entry to the
   49 //                      method, but they do not need to be saved at call
   50 //                      sites.
   51 //
   52 // AS  = Always-Save:   The register allocator assumes that these registers
   53 //                      must be saved before using them upon entry to the
   54 //                      method, & that they must be saved at call sites.
   55 //
   56 // Ideal Register Type is used to determine how to save & restore a
   57 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
   58 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
   59 //
   60 // The encoding number is the actual bit-pattern placed into the opcodes.
   61 
   62 // General Registers
   63 // R8-R15 must be encoded with REX.  (RSP, RBP, RSI, RDI need REX when
   64 // used as byte registers)
   65 
   66 // Previously set RBX, RSI, and RDI as save-on-entry for java code
   67 // Turn off SOE in java-code due to frequent use of uncommon-traps.
   68 // Now that allocator is better, turn on RSI and RDI as SOE registers.
   69 
   70 reg_def RAX  (SOC, SOC, Op_RegI,  0, rax->as_VMReg());
   71 reg_def RAX_H(SOC, SOC, Op_RegI,  0, rax->as_VMReg()->next());
   72 
   73 reg_def RCX  (SOC, SOC, Op_RegI,  1, rcx->as_VMReg());
   74 reg_def RCX_H(SOC, SOC, Op_RegI,  1, rcx->as_VMReg()->next());
   75 
   76 reg_def RDX  (SOC, SOC, Op_RegI,  2, rdx->as_VMReg());
   77 reg_def RDX_H(SOC, SOC, Op_RegI,  2, rdx->as_VMReg()->next());
   78 
   79 reg_def RBX  (SOC, SOE, Op_RegI,  3, rbx->as_VMReg());
   80 reg_def RBX_H(SOC, SOE, Op_RegI,  3, rbx->as_VMReg()->next());
   81 
   82 reg_def RSP  (NS,  NS,  Op_RegI,  4, rsp->as_VMReg());
   83 reg_def RSP_H(NS,  NS,  Op_RegI,  4, rsp->as_VMReg()->next());
   84 
   85 // now that adapter frames are gone RBP is always saved and restored by the prolog/epilog code
   86 reg_def RBP  (NS, SOE, Op_RegI,  5, rbp->as_VMReg());
   87 reg_def RBP_H(NS, SOE, Op_RegI,  5, rbp->as_VMReg()->next());
   88 
   89 #ifdef _WIN64
   90 
   91 reg_def RSI  (SOC, SOE, Op_RegI,  6, rsi->as_VMReg());
   92 reg_def RSI_H(SOC, SOE, Op_RegI,  6, rsi->as_VMReg()->next());
   93 
   94 reg_def RDI  (SOC, SOE, Op_RegI,  7, rdi->as_VMReg());
   95 reg_def RDI_H(SOC, SOE, Op_RegI,  7, rdi->as_VMReg()->next());
   96 
   97 #else
   98 
   99 reg_def RSI  (SOC, SOC, Op_RegI,  6, rsi->as_VMReg());
  100 reg_def RSI_H(SOC, SOC, Op_RegI,  6, rsi->as_VMReg()->next());
  101 
  102 reg_def RDI  (SOC, SOC, Op_RegI,  7, rdi->as_VMReg());
  103 reg_def RDI_H(SOC, SOC, Op_RegI,  7, rdi->as_VMReg()->next());
  104 
  105 #endif
  106 
  107 reg_def R8   (SOC, SOC, Op_RegI,  8, r8->as_VMReg());
  108 reg_def R8_H (SOC, SOC, Op_RegI,  8, r8->as_VMReg()->next());
  109 
  110 reg_def R9   (SOC, SOC, Op_RegI,  9, r9->as_VMReg());
  111 reg_def R9_H (SOC, SOC, Op_RegI,  9, r9->as_VMReg()->next());
  112 
  113 reg_def R10  (SOC, SOC, Op_RegI, 10, r10->as_VMReg());
  114 reg_def R10_H(SOC, SOC, Op_RegI, 10, r10->as_VMReg()->next());
  115 
  116 reg_def R11  (SOC, SOC, Op_RegI, 11, r11->as_VMReg());
  117 reg_def R11_H(SOC, SOC, Op_RegI, 11, r11->as_VMReg()->next());
  118 
  119 reg_def R12  (SOC, SOE, Op_RegI, 12, r12->as_VMReg());
  120 reg_def R12_H(SOC, SOE, Op_RegI, 12, r12->as_VMReg()->next());
  121 
  122 reg_def R13  (SOC, SOE, Op_RegI, 13, r13->as_VMReg());
  123 reg_def R13_H(SOC, SOE, Op_RegI, 13, r13->as_VMReg()->next());
  124 
  125 reg_def R14  (SOC, SOE, Op_RegI, 14, r14->as_VMReg());
  126 reg_def R14_H(SOC, SOE, Op_RegI, 14, r14->as_VMReg()->next());
  127 
  128 reg_def R15  (SOC, SOE, Op_RegI, 15, r15->as_VMReg());
  129 reg_def R15_H(SOC, SOE, Op_RegI, 15, r15->as_VMReg()->next());
  130 
  131 reg_def R16  (SOC, SOC, Op_RegI, 16, r16->as_VMReg());
  132 reg_def R16_H(SOC, SOC, Op_RegI, 16, r16->as_VMReg()->next());
  133 
  134 reg_def R17  (SOC, SOC, Op_RegI, 17, r17->as_VMReg());
  135 reg_def R17_H(SOC, SOC, Op_RegI, 17, r17->as_VMReg()->next());
  136 
  137 reg_def R18  (SOC, SOC, Op_RegI, 18, r18->as_VMReg());
  138 reg_def R18_H(SOC, SOC, Op_RegI, 18, r18->as_VMReg()->next());
  139 
  140 reg_def R19  (SOC, SOC, Op_RegI, 19, r19->as_VMReg());
  141 reg_def R19_H(SOC, SOC, Op_RegI, 19, r19->as_VMReg()->next());
  142 
  143 reg_def R20  (SOC, SOC, Op_RegI, 20, r20->as_VMReg());
  144 reg_def R20_H(SOC, SOC, Op_RegI, 20, r20->as_VMReg()->next());
  145 
  146 reg_def R21  (SOC, SOC, Op_RegI, 21, r21->as_VMReg());
  147 reg_def R21_H(SOC, SOC, Op_RegI, 21, r21->as_VMReg()->next());
  148 
  149 reg_def R22  (SOC, SOC, Op_RegI, 22, r22->as_VMReg());
  150 reg_def R22_H(SOC, SOC, Op_RegI, 22, r22->as_VMReg()->next());
  151 
  152 reg_def R23  (SOC, SOC, Op_RegI, 23, r23->as_VMReg());
  153 reg_def R23_H(SOC, SOC, Op_RegI, 23, r23->as_VMReg()->next());
  154 
  155 reg_def R24  (SOC, SOC, Op_RegI, 24, r24->as_VMReg());
  156 reg_def R24_H(SOC, SOC, Op_RegI, 24, r24->as_VMReg()->next());
  157 
  158 reg_def R25  (SOC, SOC, Op_RegI, 25, r25->as_VMReg());
  159 reg_def R25_H(SOC, SOC, Op_RegI, 25, r25->as_VMReg()->next());
  160 
  161 reg_def R26  (SOC, SOC, Op_RegI, 26, r26->as_VMReg());
  162 reg_def R26_H(SOC, SOC, Op_RegI, 26, r26->as_VMReg()->next());
  163 
  164 reg_def R27  (SOC, SOC, Op_RegI, 27, r27->as_VMReg());
  165 reg_def R27_H(SOC, SOC, Op_RegI, 27, r27->as_VMReg()->next());
  166 
  167 reg_def R28  (SOC, SOC, Op_RegI, 28, r28->as_VMReg());
  168 reg_def R28_H(SOC, SOC, Op_RegI, 28, r28->as_VMReg()->next());
  169 
  170 reg_def R29  (SOC, SOC, Op_RegI, 29, r29->as_VMReg());
  171 reg_def R29_H(SOC, SOC, Op_RegI, 29, r29->as_VMReg()->next());
  172 
  173 reg_def R30  (SOC, SOC, Op_RegI, 30, r30->as_VMReg());
  174 reg_def R30_H(SOC, SOC, Op_RegI, 30, r30->as_VMReg()->next());
  175 
  176 reg_def R31  (SOC, SOC, Op_RegI, 31, r31->as_VMReg());
  177 reg_def R31_H(SOC, SOC, Op_RegI, 31, r31->as_VMReg()->next());
  178 
  179 // Floating Point Registers
  180 
  181 // Specify priority of register selection within phases of register
  182 // allocation.  Highest priority is first.  A useful heuristic is to
  183 // give registers a low priority when they are required by machine
  184 // instructions, like EAX and EDX on I486, and choose no-save registers
  185 // before save-on-call, & save-on-call before save-on-entry.  Registers
  186 // which participate in fixed calling sequences should come last.
  187 // Registers which are used as pairs must fall on an even boundary.
  188 
  189 alloc_class chunk0(R10,         R10_H,
  190                    R11,         R11_H,
  191                    R8,          R8_H,
  192                    R9,          R9_H,
  193                    R12,         R12_H,
  194                    RCX,         RCX_H,
  195                    RBX,         RBX_H,
  196                    RDI,         RDI_H,
  197                    RDX,         RDX_H,
  198                    RSI,         RSI_H,
  199                    RAX,         RAX_H,
  200                    RBP,         RBP_H,
  201                    R13,         R13_H,
  202                    R14,         R14_H,
  203                    R15,         R15_H,
  204                    R16,         R16_H,
  205                    R17,         R17_H,
  206                    R18,         R18_H,
  207                    R19,         R19_H,
  208                    R20,         R20_H,
  209                    R21,         R21_H,
  210                    R22,         R22_H,
  211                    R23,         R23_H,
  212                    R24,         R24_H,
  213                    R25,         R25_H,
  214                    R26,         R26_H,
  215                    R27,         R27_H,
  216                    R28,         R28_H,
  217                    R29,         R29_H,
  218                    R30,         R30_H,
  219                    R31,         R31_H,
  220                    RSP,         RSP_H);
  221 
  222 
  223 //----------Architecture Description Register Classes--------------------------
  224 // Several register classes are automatically defined based upon information in
  225 // this architecture description.
  226 // 1) reg_class inline_cache_reg           ( /* as def'd in frame section */ )
  227 // 2) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
  228 //
  229 
  230 // Empty register class.
  231 reg_class no_reg();
  232 
  233 // Class for all pointer/long registers including APX extended GPRs.
  234 reg_class all_reg(RAX, RAX_H,
  235                   RDX, RDX_H,
  236                   RBP, RBP_H,
  237                   RDI, RDI_H,
  238                   RSI, RSI_H,
  239                   RCX, RCX_H,
  240                   RBX, RBX_H,
  241                   RSP, RSP_H,
  242                   R8,  R8_H,
  243                   R9,  R9_H,
  244                   R10, R10_H,
  245                   R11, R11_H,
  246                   R12, R12_H,
  247                   R13, R13_H,
  248                   R14, R14_H,
  249                   R15, R15_H,
  250                   R16, R16_H,
  251                   R17, R17_H,
  252                   R18, R18_H,
  253                   R19, R19_H,
  254                   R20, R20_H,
  255                   R21, R21_H,
  256                   R22, R22_H,
  257                   R23, R23_H,
  258                   R24, R24_H,
  259                   R25, R25_H,
  260                   R26, R26_H,
  261                   R27, R27_H,
  262                   R28, R28_H,
  263                   R29, R29_H,
  264                   R30, R30_H,
  265                   R31, R31_H);
  266 
  267 // Class for all int registers including APX extended GPRs.
  268 reg_class all_int_reg(RAX
  269                       RDX,
  270                       RBP,
  271                       RDI,
  272                       RSI,
  273                       RCX,
  274                       RBX,
  275                       R8,
  276                       R9,
  277                       R10,
  278                       R11,
  279                       R12,
  280                       R13,
  281                       R14,
  282                       R16,
  283                       R17,
  284                       R18,
  285                       R19,
  286                       R20,
  287                       R21,
  288                       R22,
  289                       R23,
  290                       R24,
  291                       R25,
  292                       R26,
  293                       R27,
  294                       R28,
  295                       R29,
  296                       R30,
  297                       R31);
  298 
  299 // Class for all pointer registers
  300 reg_class any_reg %{
  301   return _ANY_REG_mask;
  302 %}
  303 
  304 // Class for all pointer registers (excluding RSP)
  305 reg_class ptr_reg %{
  306   return _PTR_REG_mask;
  307 %}
  308 
  309 // Class for all pointer registers (excluding RSP and RBP)
  310 reg_class ptr_reg_no_rbp %{
  311   return _PTR_REG_NO_RBP_mask;
  312 %}
  313 
  314 // Class for all pointer registers (excluding RAX and RSP)
  315 reg_class ptr_no_rax_reg %{
  316   return _PTR_NO_RAX_REG_mask;
  317 %}
  318 
  319 // Class for all pointer registers (excluding RAX, RBX, and RSP)
  320 reg_class ptr_no_rax_rbx_reg %{
  321   return _PTR_NO_RAX_RBX_REG_mask;
  322 %}
  323 
  324 // Class for all long registers (excluding RSP)
  325 reg_class long_reg %{
  326   return _LONG_REG_mask;
  327 %}
  328 
  329 // Class for all long registers (excluding RAX, RDX and RSP)
  330 reg_class long_no_rax_rdx_reg %{
  331   return _LONG_NO_RAX_RDX_REG_mask;
  332 %}
  333 
  334 // Class for all long registers (excluding RCX and RSP)
  335 reg_class long_no_rcx_reg %{
  336   return _LONG_NO_RCX_REG_mask;
  337 %}
  338 
  339 // Class for all long registers (excluding RBP and R13)
  340 reg_class long_no_rbp_r13_reg %{
  341   return _LONG_NO_RBP_R13_REG_mask;
  342 %}
  343 
  344 // Class for all int registers (excluding RSP)
  345 reg_class int_reg %{
  346   return _INT_REG_mask;
  347 %}
  348 
  349 // Class for all int registers (excluding RAX, RDX, and RSP)
  350 reg_class int_no_rax_rdx_reg %{
  351   return _INT_NO_RAX_RDX_REG_mask;
  352 %}
  353 
  354 // Class for all int registers (excluding RCX and RSP)
  355 reg_class int_no_rcx_reg %{
  356   return _INT_NO_RCX_REG_mask;
  357 %}
  358 
  359 // Class for all int registers (excluding RBP and R13)
  360 reg_class int_no_rbp_r13_reg %{
  361   return _INT_NO_RBP_R13_REG_mask;
  362 %}
  363 
  364 // Singleton class for RAX pointer register
  365 reg_class ptr_rax_reg(RAX, RAX_H);
  366 
  367 // Singleton class for RBX pointer register
  368 reg_class ptr_rbx_reg(RBX, RBX_H);
  369 
  370 // Singleton class for RSI pointer register
  371 reg_class ptr_rsi_reg(RSI, RSI_H);
  372 
  373 // Singleton class for RBP pointer register
  374 reg_class ptr_rbp_reg(RBP, RBP_H);
  375 
  376 // Singleton class for RDI pointer register
  377 reg_class ptr_rdi_reg(RDI, RDI_H);
  378 
  379 // Singleton class for stack pointer
  380 reg_class ptr_rsp_reg(RSP, RSP_H);
  381 
  382 // Singleton class for TLS pointer
  383 reg_class ptr_r15_reg(R15, R15_H);
  384 
  385 // Singleton class for RAX long register
  386 reg_class long_rax_reg(RAX, RAX_H);
  387 
  388 // Singleton class for RCX long register
  389 reg_class long_rcx_reg(RCX, RCX_H);
  390 
  391 // Singleton class for RDX long register
  392 reg_class long_rdx_reg(RDX, RDX_H);
  393 
  394 // Singleton class for R11 long register
  395 reg_class long_r11_reg(R11, R11_H);
  396 
  397 // Singleton class for RAX int register
  398 reg_class int_rax_reg(RAX);
  399 
  400 // Singleton class for RBX int register
  401 reg_class int_rbx_reg(RBX);
  402 
  403 // Singleton class for RCX int register
  404 reg_class int_rcx_reg(RCX);
  405 
  406 // Singleton class for RDX int register
  407 reg_class int_rdx_reg(RDX);
  408 
  409 // Singleton class for RDI int register
  410 reg_class int_rdi_reg(RDI);
  411 
  412 // Singleton class for instruction pointer
  413 // reg_class ip_reg(RIP);
  414 
  415 %}
  416 
  417 //----------SOURCE BLOCK-------------------------------------------------------
  418 // This is a block of C++ code which provides values, functions, and
  419 // definitions necessary in the rest of the architecture description
  420 
  421 source_hpp %{
  422 
  423 #include "peephole_x86_64.hpp"
  424 
  425 %}
  426 
  427 // Register masks
  428 source_hpp %{
  429 
  430 extern RegMask _ANY_REG_mask;
  431 extern RegMask _PTR_REG_mask;
  432 extern RegMask _PTR_REG_NO_RBP_mask;
  433 extern RegMask _PTR_NO_RAX_REG_mask;
  434 extern RegMask _PTR_NO_RAX_RBX_REG_mask;
  435 extern RegMask _LONG_REG_mask;
  436 extern RegMask _LONG_NO_RAX_RDX_REG_mask;
  437 extern RegMask _LONG_NO_RCX_REG_mask;
  438 extern RegMask _LONG_NO_RBP_R13_REG_mask;
  439 extern RegMask _INT_REG_mask;
  440 extern RegMask _INT_NO_RAX_RDX_REG_mask;
  441 extern RegMask _INT_NO_RCX_REG_mask;
  442 extern RegMask _INT_NO_RBP_R13_REG_mask;
  443 extern RegMask _FLOAT_REG_mask;
  444 
  445 extern RegMask _STACK_OR_PTR_REG_mask;
  446 extern RegMask _STACK_OR_LONG_REG_mask;
  447 extern RegMask _STACK_OR_INT_REG_mask;
  448 
  449 inline const RegMask& STACK_OR_PTR_REG_mask()  { return _STACK_OR_PTR_REG_mask;  }
  450 inline const RegMask& STACK_OR_LONG_REG_mask() { return _STACK_OR_LONG_REG_mask; }
  451 inline const RegMask& STACK_OR_INT_REG_mask()  { return _STACK_OR_INT_REG_mask;  }
  452 
  453 %}
  454 
  455 source %{
  456 #define   RELOC_IMM64    Assembler::imm_operand
  457 #define   RELOC_DISP32   Assembler::disp32_operand
  458 
  459 #define __ masm->
  460 
  461 RegMask _ANY_REG_mask;
  462 RegMask _PTR_REG_mask;
  463 RegMask _PTR_REG_NO_RBP_mask;
  464 RegMask _PTR_NO_RAX_REG_mask;
  465 RegMask _PTR_NO_RAX_RBX_REG_mask;
  466 RegMask _LONG_REG_mask;
  467 RegMask _LONG_NO_RAX_RDX_REG_mask;
  468 RegMask _LONG_NO_RCX_REG_mask;
  469 RegMask _LONG_NO_RBP_R13_REG_mask;
  470 RegMask _INT_REG_mask;
  471 RegMask _INT_NO_RAX_RDX_REG_mask;
  472 RegMask _INT_NO_RCX_REG_mask;
  473 RegMask _INT_NO_RBP_R13_REG_mask;
  474 RegMask _FLOAT_REG_mask;
  475 RegMask _STACK_OR_PTR_REG_mask;
  476 RegMask _STACK_OR_LONG_REG_mask;
  477 RegMask _STACK_OR_INT_REG_mask;
  478 
  479 static bool need_r12_heapbase() {
  480   return UseCompressedOops;
  481 }
  482 
  483 void reg_mask_init() {
  484   constexpr Register egprs[] = {r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31};
  485 
  486   // _ALL_REG_mask is generated by adlc from the all_reg register class below.
  487   // We derive a number of subsets from it.
  488   _ANY_REG_mask = _ALL_REG_mask;
  489 
  490   if (PreserveFramePointer) {
  491     _ANY_REG_mask.Remove(OptoReg::as_OptoReg(rbp->as_VMReg()));
  492     _ANY_REG_mask.Remove(OptoReg::as_OptoReg(rbp->as_VMReg()->next()));
  493   }
  494   if (need_r12_heapbase()) {
  495     _ANY_REG_mask.Remove(OptoReg::as_OptoReg(r12->as_VMReg()));
  496     _ANY_REG_mask.Remove(OptoReg::as_OptoReg(r12->as_VMReg()->next()));
  497   }
  498 
  499   _PTR_REG_mask = _ANY_REG_mask;
  500   _PTR_REG_mask.Remove(OptoReg::as_OptoReg(rsp->as_VMReg()));
  501   _PTR_REG_mask.Remove(OptoReg::as_OptoReg(rsp->as_VMReg()->next()));
  502   _PTR_REG_mask.Remove(OptoReg::as_OptoReg(r15->as_VMReg()));
  503   _PTR_REG_mask.Remove(OptoReg::as_OptoReg(r15->as_VMReg()->next()));
  504   if (!UseAPX) {
  505     for (uint i = 0; i < sizeof(egprs)/sizeof(Register); i++) {
  506       _PTR_REG_mask.Remove(OptoReg::as_OptoReg(egprs[i]->as_VMReg()));
  507       _PTR_REG_mask.Remove(OptoReg::as_OptoReg(egprs[i]->as_VMReg()->next()));
  508     }
  509   }
  510 
  511   _STACK_OR_PTR_REG_mask = _PTR_REG_mask;
  512   _STACK_OR_PTR_REG_mask.OR(STACK_OR_STACK_SLOTS_mask());
  513 
  514   _PTR_REG_NO_RBP_mask = _PTR_REG_mask;
  515   _PTR_REG_NO_RBP_mask.Remove(OptoReg::as_OptoReg(rbp->as_VMReg()));
  516   _PTR_REG_NO_RBP_mask.Remove(OptoReg::as_OptoReg(rbp->as_VMReg()->next()));
  517 
  518   _PTR_NO_RAX_REG_mask = _PTR_REG_mask;
  519   _PTR_NO_RAX_REG_mask.Remove(OptoReg::as_OptoReg(rax->as_VMReg()));
  520   _PTR_NO_RAX_REG_mask.Remove(OptoReg::as_OptoReg(rax->as_VMReg()->next()));
  521 
  522   _PTR_NO_RAX_RBX_REG_mask = _PTR_NO_RAX_REG_mask;
  523   _PTR_NO_RAX_RBX_REG_mask.Remove(OptoReg::as_OptoReg(rbx->as_VMReg()));
  524   _PTR_NO_RAX_RBX_REG_mask.Remove(OptoReg::as_OptoReg(rbx->as_VMReg()->next()));
  525 
  526 
  527   _LONG_REG_mask = _PTR_REG_mask;
  528   _STACK_OR_LONG_REG_mask = _LONG_REG_mask;
  529   _STACK_OR_LONG_REG_mask.OR(STACK_OR_STACK_SLOTS_mask());
  530 
  531   _LONG_NO_RAX_RDX_REG_mask = _LONG_REG_mask;
  532   _LONG_NO_RAX_RDX_REG_mask.Remove(OptoReg::as_OptoReg(rax->as_VMReg()));
  533   _LONG_NO_RAX_RDX_REG_mask.Remove(OptoReg::as_OptoReg(rax->as_VMReg()->next()));
  534   _LONG_NO_RAX_RDX_REG_mask.Remove(OptoReg::as_OptoReg(rdx->as_VMReg()));
  535   _LONG_NO_RAX_RDX_REG_mask.Remove(OptoReg::as_OptoReg(rdx->as_VMReg()->next()));
  536 
  537   _LONG_NO_RCX_REG_mask = _LONG_REG_mask;
  538   _LONG_NO_RCX_REG_mask.Remove(OptoReg::as_OptoReg(rcx->as_VMReg()));
  539   _LONG_NO_RCX_REG_mask.Remove(OptoReg::as_OptoReg(rcx->as_VMReg()->next()));
  540 
  541   _LONG_NO_RBP_R13_REG_mask = _LONG_REG_mask;
  542   _LONG_NO_RBP_R13_REG_mask.Remove(OptoReg::as_OptoReg(rbp->as_VMReg()));
  543   _LONG_NO_RBP_R13_REG_mask.Remove(OptoReg::as_OptoReg(rbp->as_VMReg()->next()));
  544   _LONG_NO_RBP_R13_REG_mask.Remove(OptoReg::as_OptoReg(r13->as_VMReg()));
  545   _LONG_NO_RBP_R13_REG_mask.Remove(OptoReg::as_OptoReg(r13->as_VMReg()->next()));
  546 
  547   _INT_REG_mask = _ALL_INT_REG_mask;
  548   if (!UseAPX) {
  549     for (uint i = 0; i < sizeof(egprs)/sizeof(Register); i++) {
  550       _INT_REG_mask.Remove(OptoReg::as_OptoReg(egprs[i]->as_VMReg()));
  551     }
  552   }
  553 
  554   if (PreserveFramePointer) {
  555     _INT_REG_mask.Remove(OptoReg::as_OptoReg(rbp->as_VMReg()));
  556   }
  557   if (need_r12_heapbase()) {
  558     _INT_REG_mask.Remove(OptoReg::as_OptoReg(r12->as_VMReg()));
  559   }
  560 
  561   _STACK_OR_INT_REG_mask = _INT_REG_mask;
  562   _STACK_OR_INT_REG_mask.OR(STACK_OR_STACK_SLOTS_mask());
  563 
  564   _INT_NO_RAX_RDX_REG_mask = _INT_REG_mask;
  565   _INT_NO_RAX_RDX_REG_mask.Remove(OptoReg::as_OptoReg(rax->as_VMReg()));
  566   _INT_NO_RAX_RDX_REG_mask.Remove(OptoReg::as_OptoReg(rdx->as_VMReg()));
  567 
  568   _INT_NO_RCX_REG_mask = _INT_REG_mask;
  569   _INT_NO_RCX_REG_mask.Remove(OptoReg::as_OptoReg(rcx->as_VMReg()));
  570 
  571   _INT_NO_RBP_R13_REG_mask = _INT_REG_mask;
  572   _INT_NO_RBP_R13_REG_mask.Remove(OptoReg::as_OptoReg(rbp->as_VMReg()));
  573   _INT_NO_RBP_R13_REG_mask.Remove(OptoReg::as_OptoReg(r13->as_VMReg()));
  574 
  575   // _FLOAT_REG_LEGACY_mask/_FLOAT_REG_EVEX_mask is generated by adlc
  576   // from the float_reg_legacy/float_reg_evex register class.
  577   _FLOAT_REG_mask = VM_Version::supports_evex() ? _FLOAT_REG_EVEX_mask : _FLOAT_REG_LEGACY_mask;
  578 }
  579 
  580 static bool generate_vzeroupper(Compile* C) {
  581   return (VM_Version::supports_vzeroupper() && (C->max_vector_size() > 16 || C->clear_upper_avx() == true)) ? true: false;  // Generate vzeroupper
  582 }
  583 
  584 static int clear_avx_size() {
  585   return generate_vzeroupper(Compile::current()) ? 3: 0;  // vzeroupper
  586 }
  587 
  588 // !!!!! Special hack to get all types of calls to specify the byte offset
  589 //       from the start of the call to the point where the return address
  590 //       will point.
  591 int MachCallStaticJavaNode::ret_addr_offset()
  592 {
  593   int offset = 5; // 5 bytes from start of call to where return address points
  594   offset += clear_avx_size();
  595   return offset;
  596 }
  597 
  598 int MachCallDynamicJavaNode::ret_addr_offset()
  599 {
  600   int offset = 15; // 15 bytes from start of call to where return address points
  601   offset += clear_avx_size();
  602   return offset;
  603 }
  604 
  605 int MachCallRuntimeNode::ret_addr_offset() {
  606   int offset = 13; // movq r10,#addr; callq (r10)
  607   if (this->ideal_Opcode() != Op_CallLeafVector) {
  608     offset += clear_avx_size();
  609   }
  610   return offset;
  611 }
  612 //
  613 // Compute padding required for nodes which need alignment
  614 //
  615 
  616 // The address of the call instruction needs to be 4-byte aligned to
  617 // ensure that it does not span a cache line so that it can be patched.
  618 int CallStaticJavaDirectNode::compute_padding(int current_offset) const
  619 {
  620   current_offset += clear_avx_size(); // skip vzeroupper
  621   current_offset += 1; // skip call opcode byte
  622   return align_up(current_offset, alignment_required()) - current_offset;
  623 }
  624 
  625 // The address of the call instruction needs to be 4-byte aligned to
  626 // ensure that it does not span a cache line so that it can be patched.
  627 int CallDynamicJavaDirectNode::compute_padding(int current_offset) const
  628 {
  629   current_offset += clear_avx_size(); // skip vzeroupper
  630   current_offset += 11; // skip movq instruction + call opcode byte
  631   return align_up(current_offset, alignment_required()) - current_offset;
  632 }
  633 
  634 // This could be in MacroAssembler but it's fairly C2 specific
  635 static void emit_cmpfp_fixup(MacroAssembler* masm) {
  636   Label exit;
  637   __ jccb(Assembler::noParity, exit);
  638   __ pushf();
  639   //
  640   // comiss/ucomiss instructions set ZF,PF,CF flags and
  641   // zero OF,AF,SF for NaN values.
  642   // Fixup flags by zeroing ZF,PF so that compare of NaN
  643   // values returns 'less than' result (CF is set).
  644   // Leave the rest of flags unchanged.
  645   //
  646   //    7 6 5 4 3 2 1 0
  647   //   |S|Z|r|A|r|P|r|C|  (r - reserved bit)
  648   //    0 0 1 0 1 0 1 1   (0x2B)
  649   //
  650   __ andq(Address(rsp, 0), 0xffffff2b);
  651   __ popf();
  652   __ bind(exit);
  653 }
  654 
  655 static void emit_cmpfp3(MacroAssembler* masm, Register dst) {
  656   Label done;
  657   __ movl(dst, -1);
  658   __ jcc(Assembler::parity, done);
  659   __ jcc(Assembler::below, done);
  660   __ setcc(Assembler::notEqual, dst);
  661   __ bind(done);
  662 }
  663 
  664 // Math.min()    # Math.max()
  665 // --------------------------
  666 // ucomis[s/d]   #
  667 // ja   -> b     # a
  668 // jp   -> NaN   # NaN
  669 // jb   -> a     # b
  670 // je            #
  671 // |-jz -> a | b # a & b
  672 // |    -> a     #
  673 static void emit_fp_min_max(MacroAssembler* masm, XMMRegister dst,
  674                             XMMRegister a, XMMRegister b,
  675                             XMMRegister xmmt, Register rt,
  676                             bool min, bool single) {
  677 
  678   Label nan, zero, below, above, done;
  679 
  680   if (single)
  681     __ ucomiss(a, b);
  682   else
  683     __ ucomisd(a, b);
  684 
  685   if (dst->encoding() != (min ? b : a)->encoding())
  686     __ jccb(Assembler::above, above); // CF=0 & ZF=0
  687   else
  688     __ jccb(Assembler::above, done);
  689 
  690   __ jccb(Assembler::parity, nan);  // PF=1
  691   __ jccb(Assembler::below, below); // CF=1
  692 
  693   // equal
  694   __ vpxor(xmmt, xmmt, xmmt, Assembler::AVX_128bit);
  695   if (single) {
  696     __ ucomiss(a, xmmt);
  697     __ jccb(Assembler::equal, zero);
  698 
  699     __ movflt(dst, a);
  700     __ jmp(done);
  701   }
  702   else {
  703     __ ucomisd(a, xmmt);
  704     __ jccb(Assembler::equal, zero);
  705 
  706     __ movdbl(dst, a);
  707     __ jmp(done);
  708   }
  709 
  710   __ bind(zero);
  711   if (min)
  712     __ vpor(dst, a, b, Assembler::AVX_128bit);
  713   else
  714     __ vpand(dst, a, b, Assembler::AVX_128bit);
  715 
  716   __ jmp(done);
  717 
  718   __ bind(above);
  719   if (single)
  720     __ movflt(dst, min ? b : a);
  721   else
  722     __ movdbl(dst, min ? b : a);
  723 
  724   __ jmp(done);
  725 
  726   __ bind(nan);
  727   if (single) {
  728     __ movl(rt, 0x7fc00000); // Float.NaN
  729     __ movdl(dst, rt);
  730   }
  731   else {
  732     __ mov64(rt, 0x7ff8000000000000L); // Double.NaN
  733     __ movdq(dst, rt);
  734   }
  735   __ jmp(done);
  736 
  737   __ bind(below);
  738   if (single)
  739     __ movflt(dst, min ? a : b);
  740   else
  741     __ movdbl(dst, min ? a : b);
  742 
  743   __ bind(done);
  744 }
  745 
  746 //=============================================================================
  747 const RegMask& MachConstantBaseNode::_out_RegMask = RegMask::Empty;
  748 
  749 int ConstantTable::calculate_table_base_offset() const {
  750   return 0;  // absolute addressing, no offset
  751 }
  752 
  753 bool MachConstantBaseNode::requires_postalloc_expand() const { return false; }
  754 void MachConstantBaseNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {
  755   ShouldNotReachHere();
  756 }
  757 
  758 void MachConstantBaseNode::emit(C2_MacroAssembler* masm, PhaseRegAlloc* ra_) const {
  759   // Empty encoding
  760 }
  761 
  762 uint MachConstantBaseNode::size(PhaseRegAlloc* ra_) const {
  763   return 0;
  764 }
  765 
  766 #ifndef PRODUCT
  767 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
  768   st->print("# MachConstantBaseNode (empty encoding)");
  769 }
  770 #endif
  771 
  772 
  773 //=============================================================================
  774 #ifndef PRODUCT
  775 void MachPrologNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
  776   Compile* C = ra_->C;
  777 
  778   int framesize = C->output()->frame_size_in_bytes();
  779   int bangsize = C->output()->bang_size_in_bytes();
  780   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
  781   // Remove wordSize for return addr which is already pushed.
  782   framesize -= wordSize;
  783 
  784   if (C->output()->need_stack_bang(bangsize)) {
  785     framesize -= wordSize;
  786     st->print("# stack bang (%d bytes)", bangsize);
  787     st->print("\n\t");
  788     st->print("pushq   rbp\t# Save rbp");
  789     if (PreserveFramePointer) {
  790         st->print("\n\t");
  791         st->print("movq    rbp, rsp\t# Save the caller's SP into rbp");
  792     }
  793     if (framesize) {
  794       st->print("\n\t");
  795       st->print("subq    rsp, #%d\t# Create frame",framesize);
  796     }
  797   } else {
  798     st->print("subq    rsp, #%d\t# Create frame",framesize);
  799     st->print("\n\t");
  800     framesize -= wordSize;
  801     st->print("movq    [rsp + #%d], rbp\t# Save rbp",framesize);
  802     if (PreserveFramePointer) {
  803       st->print("\n\t");
  804       st->print("movq    rbp, rsp\t# Save the caller's SP into rbp");
  805       if (framesize > 0) {
  806         st->print("\n\t");
  807         st->print("addq    rbp, #%d", framesize);
  808       }
  809     }
  810   }
  811 
  812   if (VerifyStackAtCalls) {
  813     st->print("\n\t");
  814     framesize -= wordSize;
  815     st->print("movq    [rsp + #%d], 0xbadb100d\t# Majik cookie for stack depth check",framesize);
  816 #ifdef ASSERT
  817     st->print("\n\t");
  818     st->print("# stack alignment check");
  819 #endif
  820   }
  821   if (C->stub_function() != nullptr && BarrierSet::barrier_set()->barrier_set_nmethod() != nullptr) {
  822     st->print("\n\t");
  823     st->print("cmpl    [r15_thread + #disarmed_guard_value_offset], #disarmed_guard_value\t");
  824     st->print("\n\t");
  825     st->print("je      fast_entry\t");
  826     st->print("\n\t");
  827     st->print("call    #nmethod_entry_barrier_stub\t");
  828     st->print("\n\tfast_entry:");
  829   }
  830   st->cr();
  831 }
  832 #endif
  833 
  834 void MachPrologNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const {
  835   Compile* C = ra_->C;
  836 
  837   int framesize = C->output()->frame_size_in_bytes();
  838   int bangsize = C->output()->bang_size_in_bytes();
  839 
  840   if (C->clinit_barrier_on_entry()) {
  841     assert(VM_Version::supports_fast_class_init_checks(), "sanity");
  842     assert(!C->method()->holder()->is_not_initialized(), "initialization should have been started");
  843 
  844     Label L_skip_barrier;
  845     Register klass = rscratch1;
  846 
  847     __ mov_metadata(klass, C->method()->holder()->constant_encoding());
  848     __ clinit_barrier(klass, r15_thread, &L_skip_barrier /*L_fast_path*/);
  849 
  850     __ jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); // slow path
  851 
  852     __ bind(L_skip_barrier);
  853   }
  854 
  855   __ verified_entry(framesize, C->output()->need_stack_bang(bangsize)?bangsize:0, false, C->stub_function() != nullptr);
  856 
  857   C->output()->set_frame_complete(__ offset());
  858 
  859   if (C->has_mach_constant_base_node()) {
  860     // NOTE: We set the table base offset here because users might be
  861     // emitted before MachConstantBaseNode.
  862     ConstantTable& constant_table = C->output()->constant_table();
  863     constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
  864   }
  865 }
  866 
  867 uint MachPrologNode::size(PhaseRegAlloc* ra_) const
  868 {
  869   return MachNode::size(ra_); // too many variables; just compute it
  870                               // the hard way
  871 }
  872 
  873 int MachPrologNode::reloc() const
  874 {
  875   return 0; // a large enough number
  876 }
  877 
  878 //=============================================================================
  879 #ifndef PRODUCT
  880 void MachEpilogNode::format(PhaseRegAlloc* ra_, outputStream* st) const
  881 {
  882   Compile* C = ra_->C;
  883   if (generate_vzeroupper(C)) {
  884     st->print("vzeroupper");
  885     st->cr(); st->print("\t");
  886   }
  887 
  888   int framesize = C->output()->frame_size_in_bytes();
  889   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
  890   // Remove word for return adr already pushed
  891   // and RBP
  892   framesize -= 2*wordSize;
  893 
  894   if (framesize) {
  895     st->print_cr("addq    rsp, %d\t# Destroy frame", framesize);
  896     st->print("\t");
  897   }
  898 
  899   st->print_cr("popq    rbp");
  900   if (do_polling() && C->is_method_compilation()) {
  901     st->print("\t");
  902     st->print_cr("cmpq    rsp, poll_offset[r15_thread] \n\t"
  903                  "ja      #safepoint_stub\t"
  904                  "# Safepoint: poll for GC");
  905   }
  906 }
  907 #endif
  908 
  909 void MachEpilogNode::emit(C2_MacroAssembler* masm, PhaseRegAlloc* ra_) const
  910 {
  911   Compile* C = ra_->C;
  912 
  913   if (generate_vzeroupper(C)) {
  914     // Clear upper bits of YMM registers when current compiled code uses
  915     // wide vectors to avoid AVX <-> SSE transition penalty during call.
  916     __ vzeroupper();
  917   }
  918 
  919   int framesize = C->output()->frame_size_in_bytes();
  920   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
  921   // Remove word for return adr already pushed
  922   // and RBP
  923   framesize -= 2*wordSize;
  924 
  925   // Note that VerifyStackAtCalls' Majik cookie does not change the frame size popped here
  926 
  927   if (framesize) {
  928     __ addq(rsp, framesize);
  929   }
  930 
  931   __ popq(rbp);
  932 
  933   if (StackReservedPages > 0 && C->has_reserved_stack_access()) {
  934     __ reserved_stack_check();
  935   }
  936 
  937   if (do_polling() && C->is_method_compilation()) {
  938     Label dummy_label;
  939     Label* code_stub = &dummy_label;
  940     if (!C->output()->in_scratch_emit_size()) {
  941       C2SafepointPollStub* stub = new (C->comp_arena()) C2SafepointPollStub(__ offset());
  942       C->output()->add_stub(stub);
  943       code_stub = &stub->entry();
  944     }
  945     __ relocate(relocInfo::poll_return_type);
  946     __ safepoint_poll(*code_stub, r15_thread, true /* at_return */, true /* in_nmethod */);
  947   }
  948 }
  949 
  950 uint MachEpilogNode::size(PhaseRegAlloc* ra_) const
  951 {
  952   return MachNode::size(ra_); // too many variables; just compute it
  953                               // the hard way
  954 }
  955 
  956 int MachEpilogNode::reloc() const
  957 {
  958   return 2; // a large enough number
  959 }
  960 
  961 const Pipeline* MachEpilogNode::pipeline() const
  962 {
  963   return MachNode::pipeline_class();
  964 }
  965 
  966 //=============================================================================
  967 
  968 enum RC {
  969   rc_bad,
  970   rc_int,
  971   rc_kreg,
  972   rc_float,
  973   rc_stack
  974 };
  975 
  976 static enum RC rc_class(OptoReg::Name reg)
  977 {
  978   if( !OptoReg::is_valid(reg)  ) return rc_bad;
  979 
  980   if (OptoReg::is_stack(reg)) return rc_stack;
  981 
  982   VMReg r = OptoReg::as_VMReg(reg);
  983 
  984   if (r->is_Register()) return rc_int;
  985 
  986   if (r->is_KRegister()) return rc_kreg;
  987 
  988   assert(r->is_XMMRegister(), "must be");
  989   return rc_float;
  990 }
  991 
  992 // Next two methods are shared by 32- and 64-bit VM. They are defined in x86.ad.
  993 static void vec_mov_helper(C2_MacroAssembler *masm, int src_lo, int dst_lo,
  994                           int src_hi, int dst_hi, uint ireg, outputStream* st);
  995 
  996 void vec_spill_helper(C2_MacroAssembler *masm, bool is_load,
  997                      int stack_offset, int reg, uint ireg, outputStream* st);
  998 
  999 static void vec_stack_to_stack_helper(C2_MacroAssembler *masm, int src_offset,
 1000                                       int dst_offset, uint ireg, outputStream* st) {
 1001   if (masm) {
 1002     switch (ireg) {
 1003     case Op_VecS:
 1004       __ movq(Address(rsp, -8), rax);
 1005       __ movl(rax, Address(rsp, src_offset));
 1006       __ movl(Address(rsp, dst_offset), rax);
 1007       __ movq(rax, Address(rsp, -8));
 1008       break;
 1009     case Op_VecD:
 1010       __ pushq(Address(rsp, src_offset));
 1011       __ popq (Address(rsp, dst_offset));
 1012       break;
 1013     case Op_VecX:
 1014       __ pushq(Address(rsp, src_offset));
 1015       __ popq (Address(rsp, dst_offset));
 1016       __ pushq(Address(rsp, src_offset+8));
 1017       __ popq (Address(rsp, dst_offset+8));
 1018       break;
 1019     case Op_VecY:
 1020       __ vmovdqu(Address(rsp, -32), xmm0);
 1021       __ vmovdqu(xmm0, Address(rsp, src_offset));
 1022       __ vmovdqu(Address(rsp, dst_offset), xmm0);
 1023       __ vmovdqu(xmm0, Address(rsp, -32));
 1024       break;
 1025     case Op_VecZ:
 1026       __ evmovdquq(Address(rsp, -64), xmm0, 2);
 1027       __ evmovdquq(xmm0, Address(rsp, src_offset), 2);
 1028       __ evmovdquq(Address(rsp, dst_offset), xmm0, 2);
 1029       __ evmovdquq(xmm0, Address(rsp, -64), 2);
 1030       break;
 1031     default:
 1032       ShouldNotReachHere();
 1033     }
 1034 #ifndef PRODUCT
 1035   } else {
 1036     switch (ireg) {
 1037     case Op_VecS:
 1038       st->print("movq    [rsp - #8], rax\t# 32-bit mem-mem spill\n\t"
 1039                 "movl    rax, [rsp + #%d]\n\t"
 1040                 "movl    [rsp + #%d], rax\n\t"
 1041                 "movq    rax, [rsp - #8]",
 1042                 src_offset, dst_offset);
 1043       break;
 1044     case Op_VecD:
 1045       st->print("pushq   [rsp + #%d]\t# 64-bit mem-mem spill\n\t"
 1046                 "popq    [rsp + #%d]",
 1047                 src_offset, dst_offset);
 1048       break;
 1049      case Op_VecX:
 1050       st->print("pushq   [rsp + #%d]\t# 128-bit mem-mem spill\n\t"
 1051                 "popq    [rsp + #%d]\n\t"
 1052                 "pushq   [rsp + #%d]\n\t"
 1053                 "popq    [rsp + #%d]",
 1054                 src_offset, dst_offset, src_offset+8, dst_offset+8);
 1055       break;
 1056     case Op_VecY:
 1057       st->print("vmovdqu [rsp - #32], xmm0\t# 256-bit mem-mem spill\n\t"
 1058                 "vmovdqu xmm0, [rsp + #%d]\n\t"
 1059                 "vmovdqu [rsp + #%d], xmm0\n\t"
 1060                 "vmovdqu xmm0, [rsp - #32]",
 1061                 src_offset, dst_offset);
 1062       break;
 1063     case Op_VecZ:
 1064       st->print("vmovdqu [rsp - #64], xmm0\t# 512-bit mem-mem spill\n\t"
 1065                 "vmovdqu xmm0, [rsp + #%d]\n\t"
 1066                 "vmovdqu [rsp + #%d], xmm0\n\t"
 1067                 "vmovdqu xmm0, [rsp - #64]",
 1068                 src_offset, dst_offset);
 1069       break;
 1070     default:
 1071       ShouldNotReachHere();
 1072     }
 1073 #endif
 1074   }
 1075 }
 1076 
 1077 uint MachSpillCopyNode::implementation(C2_MacroAssembler* masm,
 1078                                        PhaseRegAlloc* ra_,
 1079                                        bool do_size,
 1080                                        outputStream* st) const {
 1081   assert(masm != nullptr || st  != nullptr, "sanity");
 1082   // Get registers to move
 1083   OptoReg::Name src_second = ra_->get_reg_second(in(1));
 1084   OptoReg::Name src_first = ra_->get_reg_first(in(1));
 1085   OptoReg::Name dst_second = ra_->get_reg_second(this);
 1086   OptoReg::Name dst_first = ra_->get_reg_first(this);
 1087 
 1088   enum RC src_second_rc = rc_class(src_second);
 1089   enum RC src_first_rc = rc_class(src_first);
 1090   enum RC dst_second_rc = rc_class(dst_second);
 1091   enum RC dst_first_rc = rc_class(dst_first);
 1092 
 1093   assert(OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first),
 1094          "must move at least 1 register" );
 1095 
 1096   if (src_first == dst_first && src_second == dst_second) {
 1097     // Self copy, no move
 1098     return 0;
 1099   }
 1100   if (bottom_type()->isa_vect() != nullptr && bottom_type()->isa_vectmask() == nullptr) {
 1101     uint ireg = ideal_reg();
 1102     assert((src_first_rc != rc_int && dst_first_rc != rc_int), "sanity");
 1103     assert((ireg == Op_VecS || ireg == Op_VecD || ireg == Op_VecX || ireg == Op_VecY || ireg == Op_VecZ ), "sanity");
 1104     if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
 1105       // mem -> mem
 1106       int src_offset = ra_->reg2offset(src_first);
 1107       int dst_offset = ra_->reg2offset(dst_first);
 1108       vec_stack_to_stack_helper(masm, src_offset, dst_offset, ireg, st);
 1109     } else if (src_first_rc == rc_float && dst_first_rc == rc_float ) {
 1110       vec_mov_helper(masm, src_first, dst_first, src_second, dst_second, ireg, st);
 1111     } else if (src_first_rc == rc_float && dst_first_rc == rc_stack ) {
 1112       int stack_offset = ra_->reg2offset(dst_first);
 1113       vec_spill_helper(masm, false, stack_offset, src_first, ireg, st);
 1114     } else if (src_first_rc == rc_stack && dst_first_rc == rc_float ) {
 1115       int stack_offset = ra_->reg2offset(src_first);
 1116       vec_spill_helper(masm, true,  stack_offset, dst_first, ireg, st);
 1117     } else {
 1118       ShouldNotReachHere();
 1119     }
 1120     return 0;
 1121   }
 1122   if (src_first_rc == rc_stack) {
 1123     // mem ->
 1124     if (dst_first_rc == rc_stack) {
 1125       // mem -> mem
 1126       assert(src_second != dst_first, "overlap");
 1127       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
 1128           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
 1129         // 64-bit
 1130         int src_offset = ra_->reg2offset(src_first);
 1131         int dst_offset = ra_->reg2offset(dst_first);
 1132         if (masm) {
 1133           __ pushq(Address(rsp, src_offset));
 1134           __ popq (Address(rsp, dst_offset));
 1135 #ifndef PRODUCT
 1136         } else {
 1137           st->print("pushq   [rsp + #%d]\t# 64-bit mem-mem spill\n\t"
 1138                     "popq    [rsp + #%d]",
 1139                      src_offset, dst_offset);
 1140 #endif
 1141         }
 1142       } else {
 1143         // 32-bit
 1144         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
 1145         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
 1146         // No pushl/popl, so:
 1147         int src_offset = ra_->reg2offset(src_first);
 1148         int dst_offset = ra_->reg2offset(dst_first);
 1149         if (masm) {
 1150           __ movq(Address(rsp, -8), rax);
 1151           __ movl(rax, Address(rsp, src_offset));
 1152           __ movl(Address(rsp, dst_offset), rax);
 1153           __ movq(rax, Address(rsp, -8));
 1154 #ifndef PRODUCT
 1155         } else {
 1156           st->print("movq    [rsp - #8], rax\t# 32-bit mem-mem spill\n\t"
 1157                     "movl    rax, [rsp + #%d]\n\t"
 1158                     "movl    [rsp + #%d], rax\n\t"
 1159                     "movq    rax, [rsp - #8]",
 1160                      src_offset, dst_offset);
 1161 #endif
 1162         }
 1163       }
 1164       return 0;
 1165     } else if (dst_first_rc == rc_int) {
 1166       // mem -> gpr
 1167       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
 1168           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
 1169         // 64-bit
 1170         int offset = ra_->reg2offset(src_first);
 1171         if (masm) {
 1172           __ movq(as_Register(Matcher::_regEncode[dst_first]), Address(rsp, offset));
 1173 #ifndef PRODUCT
 1174         } else {
 1175           st->print("movq    %s, [rsp + #%d]\t# spill",
 1176                      Matcher::regName[dst_first],
 1177                      offset);
 1178 #endif
 1179         }
 1180       } else {
 1181         // 32-bit
 1182         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
 1183         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
 1184         int offset = ra_->reg2offset(src_first);
 1185         if (masm) {
 1186           __ movl(as_Register(Matcher::_regEncode[dst_first]), Address(rsp, offset));
 1187 #ifndef PRODUCT
 1188         } else {
 1189           st->print("movl    %s, [rsp + #%d]\t# spill",
 1190                      Matcher::regName[dst_first],
 1191                      offset);
 1192 #endif
 1193         }
 1194       }
 1195       return 0;
 1196     } else if (dst_first_rc == rc_float) {
 1197       // mem-> xmm
 1198       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
 1199           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
 1200         // 64-bit
 1201         int offset = ra_->reg2offset(src_first);
 1202         if (masm) {
 1203           __ movdbl( as_XMMRegister(Matcher::_regEncode[dst_first]), Address(rsp, offset));
 1204 #ifndef PRODUCT
 1205         } else {
 1206           st->print("%s  %s, [rsp + #%d]\t# spill",
 1207                      UseXmmLoadAndClearUpper ? "movsd " : "movlpd",
 1208                      Matcher::regName[dst_first],
 1209                      offset);
 1210 #endif
 1211         }
 1212       } else {
 1213         // 32-bit
 1214         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
 1215         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
 1216         int offset = ra_->reg2offset(src_first);
 1217         if (masm) {
 1218           __ movflt( as_XMMRegister(Matcher::_regEncode[dst_first]), Address(rsp, offset));
 1219 #ifndef PRODUCT
 1220         } else {
 1221           st->print("movss   %s, [rsp + #%d]\t# spill",
 1222                      Matcher::regName[dst_first],
 1223                      offset);
 1224 #endif
 1225         }
 1226       }
 1227       return 0;
 1228     } else if (dst_first_rc == rc_kreg) {
 1229       // mem -> kreg
 1230       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
 1231           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
 1232         // 64-bit
 1233         int offset = ra_->reg2offset(src_first);
 1234         if (masm) {
 1235           __ kmov(as_KRegister(Matcher::_regEncode[dst_first]), Address(rsp, offset));
 1236 #ifndef PRODUCT
 1237         } else {
 1238           st->print("kmovq   %s, [rsp + #%d]\t# spill",
 1239                      Matcher::regName[dst_first],
 1240                      offset);
 1241 #endif
 1242         }
 1243       }
 1244       return 0;
 1245     }
 1246   } else if (src_first_rc == rc_int) {
 1247     // gpr ->
 1248     if (dst_first_rc == rc_stack) {
 1249       // gpr -> mem
 1250       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
 1251           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
 1252         // 64-bit
 1253         int offset = ra_->reg2offset(dst_first);
 1254         if (masm) {
 1255           __ movq(Address(rsp, offset), as_Register(Matcher::_regEncode[src_first]));
 1256 #ifndef PRODUCT
 1257         } else {
 1258           st->print("movq    [rsp + #%d], %s\t# spill",
 1259                      offset,
 1260                      Matcher::regName[src_first]);
 1261 #endif
 1262         }
 1263       } else {
 1264         // 32-bit
 1265         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
 1266         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
 1267         int offset = ra_->reg2offset(dst_first);
 1268         if (masm) {
 1269           __ movl(Address(rsp, offset), as_Register(Matcher::_regEncode[src_first]));
 1270 #ifndef PRODUCT
 1271         } else {
 1272           st->print("movl    [rsp + #%d], %s\t# spill",
 1273                      offset,
 1274                      Matcher::regName[src_first]);
 1275 #endif
 1276         }
 1277       }
 1278       return 0;
 1279     } else if (dst_first_rc == rc_int) {
 1280       // gpr -> gpr
 1281       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
 1282           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
 1283         // 64-bit
 1284         if (masm) {
 1285           __ movq(as_Register(Matcher::_regEncode[dst_first]),
 1286                   as_Register(Matcher::_regEncode[src_first]));
 1287 #ifndef PRODUCT
 1288         } else {
 1289           st->print("movq    %s, %s\t# spill",
 1290                      Matcher::regName[dst_first],
 1291                      Matcher::regName[src_first]);
 1292 #endif
 1293         }
 1294         return 0;
 1295       } else {
 1296         // 32-bit
 1297         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
 1298         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
 1299         if (masm) {
 1300           __ movl(as_Register(Matcher::_regEncode[dst_first]),
 1301                   as_Register(Matcher::_regEncode[src_first]));
 1302 #ifndef PRODUCT
 1303         } else {
 1304           st->print("movl    %s, %s\t# spill",
 1305                      Matcher::regName[dst_first],
 1306                      Matcher::regName[src_first]);
 1307 #endif
 1308         }
 1309         return 0;
 1310       }
 1311     } else if (dst_first_rc == rc_float) {
 1312       // gpr -> xmm
 1313       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
 1314           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
 1315         // 64-bit
 1316         if (masm) {
 1317           __ movdq( as_XMMRegister(Matcher::_regEncode[dst_first]), as_Register(Matcher::_regEncode[src_first]));
 1318 #ifndef PRODUCT
 1319         } else {
 1320           st->print("movdq   %s, %s\t# spill",
 1321                      Matcher::regName[dst_first],
 1322                      Matcher::regName[src_first]);
 1323 #endif
 1324         }
 1325       } else {
 1326         // 32-bit
 1327         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
 1328         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
 1329         if (masm) {
 1330           __ movdl( as_XMMRegister(Matcher::_regEncode[dst_first]), as_Register(Matcher::_regEncode[src_first]));
 1331 #ifndef PRODUCT
 1332         } else {
 1333           st->print("movdl   %s, %s\t# spill",
 1334                      Matcher::regName[dst_first],
 1335                      Matcher::regName[src_first]);
 1336 #endif
 1337         }
 1338       }
 1339       return 0;
 1340     } else if (dst_first_rc == rc_kreg) {
 1341       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
 1342           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
 1343         // 64-bit
 1344         if (masm) {
 1345           __ kmov(as_KRegister(Matcher::_regEncode[dst_first]), as_Register(Matcher::_regEncode[src_first]));
 1346   #ifndef PRODUCT
 1347         } else {
 1348            st->print("kmovq   %s, %s\t# spill",
 1349                        Matcher::regName[dst_first],
 1350                        Matcher::regName[src_first]);
 1351   #endif
 1352         }
 1353       }
 1354       Unimplemented();
 1355       return 0;
 1356     }
 1357   } else if (src_first_rc == rc_float) {
 1358     // xmm ->
 1359     if (dst_first_rc == rc_stack) {
 1360       // xmm -> mem
 1361       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
 1362           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
 1363         // 64-bit
 1364         int offset = ra_->reg2offset(dst_first);
 1365         if (masm) {
 1366           __ movdbl( Address(rsp, offset), as_XMMRegister(Matcher::_regEncode[src_first]));
 1367 #ifndef PRODUCT
 1368         } else {
 1369           st->print("movsd   [rsp + #%d], %s\t# spill",
 1370                      offset,
 1371                      Matcher::regName[src_first]);
 1372 #endif
 1373         }
 1374       } else {
 1375         // 32-bit
 1376         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
 1377         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
 1378         int offset = ra_->reg2offset(dst_first);
 1379         if (masm) {
 1380           __ movflt(Address(rsp, offset), as_XMMRegister(Matcher::_regEncode[src_first]));
 1381 #ifndef PRODUCT
 1382         } else {
 1383           st->print("movss   [rsp + #%d], %s\t# spill",
 1384                      offset,
 1385                      Matcher::regName[src_first]);
 1386 #endif
 1387         }
 1388       }
 1389       return 0;
 1390     } else if (dst_first_rc == rc_int) {
 1391       // xmm -> gpr
 1392       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
 1393           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
 1394         // 64-bit
 1395         if (masm) {
 1396           __ movdq( as_Register(Matcher::_regEncode[dst_first]), as_XMMRegister(Matcher::_regEncode[src_first]));
 1397 #ifndef PRODUCT
 1398         } else {
 1399           st->print("movdq   %s, %s\t# spill",
 1400                      Matcher::regName[dst_first],
 1401                      Matcher::regName[src_first]);
 1402 #endif
 1403         }
 1404       } else {
 1405         // 32-bit
 1406         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
 1407         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
 1408         if (masm) {
 1409           __ movdl( as_Register(Matcher::_regEncode[dst_first]), as_XMMRegister(Matcher::_regEncode[src_first]));
 1410 #ifndef PRODUCT
 1411         } else {
 1412           st->print("movdl   %s, %s\t# spill",
 1413                      Matcher::regName[dst_first],
 1414                      Matcher::regName[src_first]);
 1415 #endif
 1416         }
 1417       }
 1418       return 0;
 1419     } else if (dst_first_rc == rc_float) {
 1420       // xmm -> xmm
 1421       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
 1422           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
 1423         // 64-bit
 1424         if (masm) {
 1425           __ movdbl( as_XMMRegister(Matcher::_regEncode[dst_first]), as_XMMRegister(Matcher::_regEncode[src_first]));
 1426 #ifndef PRODUCT
 1427         } else {
 1428           st->print("%s  %s, %s\t# spill",
 1429                      UseXmmRegToRegMoveAll ? "movapd" : "movsd ",
 1430                      Matcher::regName[dst_first],
 1431                      Matcher::regName[src_first]);
 1432 #endif
 1433         }
 1434       } else {
 1435         // 32-bit
 1436         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
 1437         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
 1438         if (masm) {
 1439           __ movflt( as_XMMRegister(Matcher::_regEncode[dst_first]), as_XMMRegister(Matcher::_regEncode[src_first]));
 1440 #ifndef PRODUCT
 1441         } else {
 1442           st->print("%s  %s, %s\t# spill",
 1443                      UseXmmRegToRegMoveAll ? "movaps" : "movss ",
 1444                      Matcher::regName[dst_first],
 1445                      Matcher::regName[src_first]);
 1446 #endif
 1447         }
 1448       }
 1449       return 0;
 1450     } else if (dst_first_rc == rc_kreg) {
 1451       assert(false, "Illegal spilling");
 1452       return 0;
 1453     }
 1454   } else if (src_first_rc == rc_kreg) {
 1455     if (dst_first_rc == rc_stack) {
 1456       // mem -> kreg
 1457       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
 1458           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
 1459         // 64-bit
 1460         int offset = ra_->reg2offset(dst_first);
 1461         if (masm) {
 1462           __ kmov(Address(rsp, offset), as_KRegister(Matcher::_regEncode[src_first]));
 1463 #ifndef PRODUCT
 1464         } else {
 1465           st->print("kmovq   [rsp + #%d] , %s\t# spill",
 1466                      offset,
 1467                      Matcher::regName[src_first]);
 1468 #endif
 1469         }
 1470       }
 1471       return 0;
 1472     } else if (dst_first_rc == rc_int) {
 1473       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
 1474           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
 1475         // 64-bit
 1476         if (masm) {
 1477           __ kmov(as_Register(Matcher::_regEncode[dst_first]), as_KRegister(Matcher::_regEncode[src_first]));
 1478 #ifndef PRODUCT
 1479         } else {
 1480          st->print("kmovq   %s, %s\t# spill",
 1481                      Matcher::regName[dst_first],
 1482                      Matcher::regName[src_first]);
 1483 #endif
 1484         }
 1485       }
 1486       Unimplemented();
 1487       return 0;
 1488     } else if (dst_first_rc == rc_kreg) {
 1489       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
 1490           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
 1491         // 64-bit
 1492         if (masm) {
 1493           __ kmov(as_KRegister(Matcher::_regEncode[dst_first]), as_KRegister(Matcher::_regEncode[src_first]));
 1494 #ifndef PRODUCT
 1495         } else {
 1496          st->print("kmovq   %s, %s\t# spill",
 1497                      Matcher::regName[dst_first],
 1498                      Matcher::regName[src_first]);
 1499 #endif
 1500         }
 1501       }
 1502       return 0;
 1503     } else if (dst_first_rc == rc_float) {
 1504       assert(false, "Illegal spill");
 1505       return 0;
 1506     }
 1507   }
 1508 
 1509   assert(0," foo ");
 1510   Unimplemented();
 1511   return 0;
 1512 }
 1513 
 1514 #ifndef PRODUCT
 1515 void MachSpillCopyNode::format(PhaseRegAlloc *ra_, outputStream* st) const {
 1516   implementation(nullptr, ra_, false, st);
 1517 }
 1518 #endif
 1519 
 1520 void MachSpillCopyNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const {
 1521   implementation(masm, ra_, false, nullptr);
 1522 }
 1523 
 1524 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
 1525   return MachNode::size(ra_);
 1526 }
 1527 
 1528 //=============================================================================
 1529 #ifndef PRODUCT
 1530 void BoxLockNode::format(PhaseRegAlloc* ra_, outputStream* st) const
 1531 {
 1532   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
 1533   int reg = ra_->get_reg_first(this);
 1534   st->print("leaq    %s, [rsp + #%d]\t# box lock",
 1535             Matcher::regName[reg], offset);
 1536 }
 1537 #endif
 1538 
 1539 void BoxLockNode::emit(C2_MacroAssembler* masm, PhaseRegAlloc* ra_) const
 1540 {
 1541   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
 1542   int reg = ra_->get_encode(this);
 1543 
 1544   __ lea(as_Register(reg), Address(rsp, offset));
 1545 }
 1546 
 1547 uint BoxLockNode::size(PhaseRegAlloc *ra_) const
 1548 {
 1549   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
 1550   return (offset < 0x80) ? 5 : 8; // REX
 1551 }
 1552 
 1553 //=============================================================================
 1554 #ifndef PRODUCT
 1555 void MachUEPNode::format(PhaseRegAlloc* ra_, outputStream* st) const
 1556 {
 1557   if (UseCompressedClassPointers) {
 1558     st->print_cr("movl    rscratch1, [j_rarg0 + oopDesc::klass_offset_in_bytes()]\t# compressed klass");
 1559     st->print_cr("\tcmpl    rscratch1, [rax + CompiledICData::speculated_klass_offset()]\t # Inline cache check");
 1560   } else {
 1561     st->print_cr("movq    rscratch1, [j_rarg0 + oopDesc::klass_offset_in_bytes()]\t# compressed klass");
 1562     st->print_cr("\tcmpq    rscratch1, [rax + CompiledICData::speculated_klass_offset()]\t # Inline cache check");
 1563   }
 1564   st->print_cr("\tjne     SharedRuntime::_ic_miss_stub");
 1565 }
 1566 #endif
 1567 
 1568 void MachUEPNode::emit(C2_MacroAssembler* masm, PhaseRegAlloc* ra_) const
 1569 {
 1570   __ ic_check(InteriorEntryAlignment);
 1571 }
 1572 
 1573 uint MachUEPNode::size(PhaseRegAlloc* ra_) const
 1574 {
 1575   return MachNode::size(ra_); // too many variables; just compute it
 1576                               // the hard way
 1577 }
 1578 
 1579 
 1580 //=============================================================================
 1581 
 1582 bool Matcher::supports_vector_calling_convention(void) {
 1583   if (EnableVectorSupport && UseVectorStubs) {
 1584     return true;
 1585   }
 1586   return false;
 1587 }
 1588 
 1589 OptoRegPair Matcher::vector_return_value(uint ideal_reg) {
 1590   assert(EnableVectorSupport && UseVectorStubs, "sanity");
 1591   int lo = XMM0_num;
 1592   int hi = XMM0b_num;
 1593   if (ideal_reg == Op_VecX) hi = XMM0d_num;
 1594   else if (ideal_reg == Op_VecY) hi = XMM0h_num;
 1595   else if (ideal_reg == Op_VecZ) hi = XMM0p_num;
 1596   return OptoRegPair(hi, lo);
 1597 }
 1598 
 1599 // Is this branch offset short enough that a short branch can be used?
 1600 //
 1601 // NOTE: If the platform does not provide any short branch variants, then
 1602 //       this method should return false for offset 0.
 1603 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
 1604   // The passed offset is relative to address of the branch.
 1605   // On 86 a branch displacement is calculated relative to address
 1606   // of a next instruction.
 1607   offset -= br_size;
 1608 
 1609   // the short version of jmpConUCF2 contains multiple branches,
 1610   // making the reach slightly less
 1611   if (rule == jmpConUCF2_rule)
 1612     return (-126 <= offset && offset <= 125);
 1613   return (-128 <= offset && offset <= 127);
 1614 }
 1615 
 1616 // Return whether or not this register is ever used as an argument.
 1617 // This function is used on startup to build the trampoline stubs in
 1618 // generateOptoStub.  Registers not mentioned will be killed by the VM
 1619 // call in the trampoline, and arguments in those registers not be
 1620 // available to the callee.
 1621 bool Matcher::can_be_java_arg(int reg)
 1622 {
 1623   return
 1624     reg ==  RDI_num || reg == RDI_H_num ||
 1625     reg ==  RSI_num || reg == RSI_H_num ||
 1626     reg ==  RDX_num || reg == RDX_H_num ||
 1627     reg ==  RCX_num || reg == RCX_H_num ||
 1628     reg ==   R8_num || reg ==  R8_H_num ||
 1629     reg ==   R9_num || reg ==  R9_H_num ||
 1630     reg ==  R12_num || reg == R12_H_num ||
 1631     reg == XMM0_num || reg == XMM0b_num ||
 1632     reg == XMM1_num || reg == XMM1b_num ||
 1633     reg == XMM2_num || reg == XMM2b_num ||
 1634     reg == XMM3_num || reg == XMM3b_num ||
 1635     reg == XMM4_num || reg == XMM4b_num ||
 1636     reg == XMM5_num || reg == XMM5b_num ||
 1637     reg == XMM6_num || reg == XMM6b_num ||
 1638     reg == XMM7_num || reg == XMM7b_num;
 1639 }
 1640 
 1641 bool Matcher::is_spillable_arg(int reg)
 1642 {
 1643   return can_be_java_arg(reg);
 1644 }
 1645 
 1646 uint Matcher::int_pressure_limit()
 1647 {
 1648   return (INTPRESSURE == -1) ? _INT_REG_mask.Size() : INTPRESSURE;
 1649 }
 1650 
 1651 uint Matcher::float_pressure_limit()
 1652 {
 1653   // After experiment around with different values, the following default threshold
 1654   // works best for LCM's register pressure scheduling on x64.
 1655   uint dec_count  = VM_Version::supports_evex() ? 4 : 2;
 1656   uint default_float_pressure_threshold = _FLOAT_REG_mask.Size() - dec_count;
 1657   return (FLOATPRESSURE == -1) ? default_float_pressure_threshold : FLOATPRESSURE;
 1658 }
 1659 
 1660 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
 1661   // In 64 bit mode a code which use multiply when
 1662   // devisor is constant is faster than hardware
 1663   // DIV instruction (it uses MulHiL).
 1664   return false;
 1665 }
 1666 
 1667 // Register for DIVI projection of divmodI
 1668 RegMask Matcher::divI_proj_mask() {
 1669   return INT_RAX_REG_mask();
 1670 }
 1671 
 1672 // Register for MODI projection of divmodI
 1673 RegMask Matcher::modI_proj_mask() {
 1674   return INT_RDX_REG_mask();
 1675 }
 1676 
 1677 // Register for DIVL projection of divmodL
 1678 RegMask Matcher::divL_proj_mask() {
 1679   return LONG_RAX_REG_mask();
 1680 }
 1681 
 1682 // Register for MODL projection of divmodL
 1683 RegMask Matcher::modL_proj_mask() {
 1684   return LONG_RDX_REG_mask();
 1685 }
 1686 
 1687 // Register for saving SP into on method handle invokes. Not used on x86_64.
 1688 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
 1689     return NO_REG_mask();
 1690 }
 1691 
 1692 %}
 1693 
 1694 //----------ENCODING BLOCK-----------------------------------------------------
 1695 // This block specifies the encoding classes used by the compiler to
 1696 // output byte streams.  Encoding classes are parameterized macros
 1697 // used by Machine Instruction Nodes in order to generate the bit
 1698 // encoding of the instruction.  Operands specify their base encoding
 1699 // interface with the interface keyword.  There are currently
 1700 // supported four interfaces, REG_INTER, CONST_INTER, MEMORY_INTER, &
 1701 // COND_INTER.  REG_INTER causes an operand to generate a function
 1702 // which returns its register number when queried.  CONST_INTER causes
 1703 // an operand to generate a function which returns the value of the
 1704 // constant when queried.  MEMORY_INTER causes an operand to generate
 1705 // four functions which return the Base Register, the Index Register,
 1706 // the Scale Value, and the Offset Value of the operand when queried.
 1707 // COND_INTER causes an operand to generate six functions which return
 1708 // the encoding code (ie - encoding bits for the instruction)
 1709 // associated with each basic boolean condition for a conditional
 1710 // instruction.
 1711 //
 1712 // Instructions specify two basic values for encoding.  Again, a
 1713 // function is available to check if the constant displacement is an
 1714 // oop. They use the ins_encode keyword to specify their encoding
 1715 // classes (which must be a sequence of enc_class names, and their
 1716 // parameters, specified in the encoding block), and they use the
 1717 // opcode keyword to specify, in order, their primary, secondary, and
 1718 // tertiary opcode.  Only the opcode sections which a particular
 1719 // instruction needs for encoding need to be specified.
 1720 encode %{
 1721   enc_class cdql_enc(no_rax_rdx_RegI div)
 1722   %{
 1723     // Full implementation of Java idiv and irem; checks for
 1724     // special case as described in JVM spec., p.243 & p.271.
 1725     //
 1726     //         normal case                           special case
 1727     //
 1728     // input : rax: dividend                         min_int
 1729     //         reg: divisor                          -1
 1730     //
 1731     // output: rax: quotient  (= rax idiv reg)       min_int
 1732     //         rdx: remainder (= rax irem reg)       0
 1733     //
 1734     //  Code sequnce:
 1735     //
 1736     //    0:   3d 00 00 00 80          cmp    $0x80000000,%eax
 1737     //    5:   75 07/08                jne    e <normal>
 1738     //    7:   33 d2                   xor    %edx,%edx
 1739     //  [div >= 8 -> offset + 1]
 1740     //  [REX_B]
 1741     //    9:   83 f9 ff                cmp    $0xffffffffffffffff,$div
 1742     //    c:   74 03/04                je     11 <done>
 1743     // 000000000000000e <normal>:
 1744     //    e:   99                      cltd
 1745     //  [div >= 8 -> offset + 1]
 1746     //  [REX_B]
 1747     //    f:   f7 f9                   idiv   $div
 1748     // 0000000000000011 <done>:
 1749     Label normal;
 1750     Label done;
 1751 
 1752     // cmp    $0x80000000,%eax
 1753     __ cmpl(as_Register(RAX_enc), 0x80000000);
 1754 
 1755     // jne    e <normal>
 1756     __ jccb(Assembler::notEqual, normal);
 1757 
 1758     // xor    %edx,%edx
 1759     __ xorl(as_Register(RDX_enc), as_Register(RDX_enc));
 1760 
 1761     // cmp    $0xffffffffffffffff,%ecx
 1762     __ cmpl($div$$Register, -1);
 1763 
 1764     // je     11 <done>
 1765     __ jccb(Assembler::equal, done);
 1766 
 1767     // <normal>
 1768     // cltd
 1769     __ bind(normal);
 1770     __ cdql();
 1771 
 1772     // idivl
 1773     // <done>
 1774     __ idivl($div$$Register);
 1775     __ bind(done);
 1776   %}
 1777 
 1778   enc_class cdqq_enc(no_rax_rdx_RegL div)
 1779   %{
 1780     // Full implementation of Java ldiv and lrem; checks for
 1781     // special case as described in JVM spec., p.243 & p.271.
 1782     //
 1783     //         normal case                           special case
 1784     //
 1785     // input : rax: dividend                         min_long
 1786     //         reg: divisor                          -1
 1787     //
 1788     // output: rax: quotient  (= rax idiv reg)       min_long
 1789     //         rdx: remainder (= rax irem reg)       0
 1790     //
 1791     //  Code sequnce:
 1792     //
 1793     //    0:   48 ba 00 00 00 00 00    mov    $0x8000000000000000,%rdx
 1794     //    7:   00 00 80
 1795     //    a:   48 39 d0                cmp    %rdx,%rax
 1796     //    d:   75 08                   jne    17 <normal>
 1797     //    f:   33 d2                   xor    %edx,%edx
 1798     //   11:   48 83 f9 ff             cmp    $0xffffffffffffffff,$div
 1799     //   15:   74 05                   je     1c <done>
 1800     // 0000000000000017 <normal>:
 1801     //   17:   48 99                   cqto
 1802     //   19:   48 f7 f9                idiv   $div
 1803     // 000000000000001c <done>:
 1804     Label normal;
 1805     Label done;
 1806 
 1807     // mov    $0x8000000000000000,%rdx
 1808     __ mov64(as_Register(RDX_enc), 0x8000000000000000);
 1809 
 1810     // cmp    %rdx,%rax
 1811     __ cmpq(as_Register(RAX_enc), as_Register(RDX_enc));
 1812 
 1813     // jne    17 <normal>
 1814     __ jccb(Assembler::notEqual, normal);
 1815 
 1816     // xor    %edx,%edx
 1817     __ xorl(as_Register(RDX_enc), as_Register(RDX_enc));
 1818 
 1819     // cmp    $0xffffffffffffffff,$div
 1820     __ cmpq($div$$Register, -1);
 1821 
 1822     // je     1e <done>
 1823     __ jccb(Assembler::equal, done);
 1824 
 1825     // <normal>
 1826     // cqto
 1827     __ bind(normal);
 1828     __ cdqq();
 1829 
 1830     // idivq (note: must be emitted by the user of this rule)
 1831     // <done>
 1832     __ idivq($div$$Register);
 1833     __ bind(done);
 1834   %}
 1835 
 1836   enc_class enc_PartialSubtypeCheck()
 1837   %{
 1838     Register Rrdi = as_Register(RDI_enc); // result register
 1839     Register Rrax = as_Register(RAX_enc); // super class
 1840     Register Rrcx = as_Register(RCX_enc); // killed
 1841     Register Rrsi = as_Register(RSI_enc); // sub class
 1842     Label miss;
 1843     const bool set_cond_codes = true;
 1844 
 1845     __ check_klass_subtype_slow_path(Rrsi, Rrax, Rrcx, Rrdi,
 1846                                      nullptr, &miss,
 1847                                      /*set_cond_codes:*/ true);
 1848     if ($primary) {
 1849       __ xorptr(Rrdi, Rrdi);
 1850     }
 1851     __ bind(miss);
 1852   %}
 1853 
 1854   enc_class clear_avx %{
 1855     debug_only(int off0 = __ offset());
 1856     if (generate_vzeroupper(Compile::current())) {
 1857       // Clear upper bits of YMM registers to avoid AVX <-> SSE transition penalty
 1858       // Clear upper bits of YMM registers when current compiled code uses
 1859       // wide vectors to avoid AVX <-> SSE transition penalty during call.
 1860       __ vzeroupper();
 1861     }
 1862     debug_only(int off1 = __ offset());
 1863     assert(off1 - off0 == clear_avx_size(), "correct size prediction");
 1864   %}
 1865 
 1866   enc_class Java_To_Runtime(method meth) %{
 1867     // No relocation needed
 1868     __ mov64(r10, (int64_t) $meth$$method);
 1869     __ call(r10);
 1870     __ post_call_nop();
 1871   %}
 1872 
 1873   enc_class Java_Static_Call(method meth)
 1874   %{
 1875     // JAVA STATIC CALL
 1876     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to
 1877     // determine who we intended to call.
 1878     if (!_method) {
 1879       __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, $meth$$method)));
 1880     } else if (_method->intrinsic_id() == vmIntrinsicID::_ensureMaterializedForStackWalk) {
 1881       // The NOP here is purely to ensure that eliding a call to
 1882       // JVM_EnsureMaterializedForStackWalk doesn't change the code size.
 1883       __ addr_nop_5();
 1884       __ block_comment("call JVM_EnsureMaterializedForStackWalk (elided)");
 1885     } else {
 1886       int method_index = resolved_method_index(masm);
 1887       RelocationHolder rspec = _optimized_virtual ? opt_virtual_call_Relocation::spec(method_index)
 1888                                                   : static_call_Relocation::spec(method_index);
 1889       address mark = __ pc();
 1890       int call_offset = __ offset();
 1891       __ call(AddressLiteral(CAST_FROM_FN_PTR(address, $meth$$method), rspec));
 1892       if (CodeBuffer::supports_shared_stubs() && _method->can_be_statically_bound()) {
 1893         // Calls of the same statically bound method can share
 1894         // a stub to the interpreter.
 1895         __ code()->shared_stub_to_interp_for(_method, call_offset);
 1896       } else {
 1897         // Emit stubs for static call.
 1898         address stub = CompiledDirectCall::emit_to_interp_stub(masm, mark);
 1899         __ clear_inst_mark();
 1900         if (stub == nullptr) {
 1901           ciEnv::current()->record_failure("CodeCache is full");
 1902           return;
 1903         }
 1904       }
 1905     }
 1906     __ post_call_nop();
 1907   %}
 1908 
 1909   enc_class Java_Dynamic_Call(method meth) %{
 1910     __ ic_call((address)$meth$$method, resolved_method_index(masm));
 1911     __ post_call_nop();
 1912   %}
 1913 
 1914 %}
 1915 
 1916 
 1917 
 1918 //----------FRAME--------------------------------------------------------------
 1919 // Definition of frame structure and management information.
 1920 //
 1921 //  S T A C K   L A Y O U T    Allocators stack-slot number
 1922 //                             |   (to get allocators register number
 1923 //  G  Owned by    |        |  v    add OptoReg::stack0())
 1924 //  r   CALLER     |        |
 1925 //  o     |        +--------+      pad to even-align allocators stack-slot
 1926 //  w     V        |  pad0  |        numbers; owned by CALLER
 1927 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
 1928 //  h     ^        |   in   |  5
 1929 //        |        |  args  |  4   Holes in incoming args owned by SELF
 1930 //  |     |        |        |  3
 1931 //  |     |        +--------+
 1932 //  V     |        | old out|      Empty on Intel, window on Sparc
 1933 //        |    old |preserve|      Must be even aligned.
 1934 //        |     SP-+--------+----> Matcher::_old_SP, even aligned
 1935 //        |        |   in   |  3   area for Intel ret address
 1936 //     Owned by    |preserve|      Empty on Sparc.
 1937 //       SELF      +--------+
 1938 //        |        |  pad2  |  2   pad to align old SP
 1939 //        |        +--------+  1
 1940 //        |        | locks  |  0
 1941 //        |        +--------+----> OptoReg::stack0(), even aligned
 1942 //        |        |  pad1  | 11   pad to align new SP
 1943 //        |        +--------+
 1944 //        |        |        | 10
 1945 //        |        | spills |  9   spills
 1946 //        V        |        |  8   (pad0 slot for callee)
 1947 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
 1948 //        ^        |  out   |  7
 1949 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
 1950 //     Owned by    +--------+
 1951 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
 1952 //        |    new |preserve|      Must be even-aligned.
 1953 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
 1954 //        |        |        |
 1955 //
 1956 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
 1957 //         known from SELF's arguments and the Java calling convention.
 1958 //         Region 6-7 is determined per call site.
 1959 // Note 2: If the calling convention leaves holes in the incoming argument
 1960 //         area, those holes are owned by SELF.  Holes in the outgoing area
 1961 //         are owned by the CALLEE.  Holes should not be necessary in the
 1962 //         incoming area, as the Java calling convention is completely under
 1963 //         the control of the AD file.  Doubles can be sorted and packed to
 1964 //         avoid holes.  Holes in the outgoing arguments may be necessary for
 1965 //         varargs C calling conventions.
 1966 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
 1967 //         even aligned with pad0 as needed.
 1968 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
 1969 //         region 6-11 is even aligned; it may be padded out more so that
 1970 //         the region from SP to FP meets the minimum stack alignment.
 1971 // Note 4: For I2C adapters, the incoming FP may not meet the minimum stack
 1972 //         alignment.  Region 11, pad1, may be dynamically extended so that
 1973 //         SP meets the minimum alignment.
 1974 
 1975 frame
 1976 %{
 1977   // These three registers define part of the calling convention
 1978   // between compiled code and the interpreter.
 1979   inline_cache_reg(RAX);                // Inline Cache Register
 1980 
 1981   // Optional: name the operand used by cisc-spilling to access
 1982   // [stack_pointer + offset]
 1983   cisc_spilling_operand_name(indOffset32);
 1984 
 1985   // Number of stack slots consumed by locking an object
 1986   sync_stack_slots(2);
 1987 
 1988   // Compiled code's Frame Pointer
 1989   frame_pointer(RSP);
 1990 
 1991   // Interpreter stores its frame pointer in a register which is
 1992   // stored to the stack by I2CAdaptors.
 1993   // I2CAdaptors convert from interpreted java to compiled java.
 1994   interpreter_frame_pointer(RBP);
 1995 
 1996   // Stack alignment requirement
 1997   stack_alignment(StackAlignmentInBytes); // Alignment size in bytes (128-bit -> 16 bytes)
 1998 
 1999   // Number of outgoing stack slots killed above the out_preserve_stack_slots
 2000   // for calls to C.  Supports the var-args backing area for register parms.
 2001   varargs_C_out_slots_killed(frame::arg_reg_save_area_bytes/BytesPerInt);
 2002 
 2003   // The after-PROLOG location of the return address.  Location of
 2004   // return address specifies a type (REG or STACK) and a number
 2005   // representing the register number (i.e. - use a register name) or
 2006   // stack slot.
 2007   // Ret Addr is on stack in slot 0 if no locks or verification or alignment.
 2008   // Otherwise, it is above the locks and verification slot and alignment word
 2009   return_addr(STACK - 2 +
 2010               align_up((Compile::current()->in_preserve_stack_slots() +
 2011                         Compile::current()->fixed_slots()),
 2012                        stack_alignment_in_slots()));
 2013 
 2014   // Location of compiled Java return values.  Same as C for now.
 2015   return_value
 2016   %{
 2017     assert(ideal_reg >= Op_RegI && ideal_reg <= Op_RegL,
 2018            "only return normal values");
 2019 
 2020     static const int lo[Op_RegL + 1] = {
 2021       0,
 2022       0,
 2023       RAX_num,  // Op_RegN
 2024       RAX_num,  // Op_RegI
 2025       RAX_num,  // Op_RegP
 2026       XMM0_num, // Op_RegF
 2027       XMM0_num, // Op_RegD
 2028       RAX_num   // Op_RegL
 2029     };
 2030     static const int hi[Op_RegL + 1] = {
 2031       0,
 2032       0,
 2033       OptoReg::Bad, // Op_RegN
 2034       OptoReg::Bad, // Op_RegI
 2035       RAX_H_num,    // Op_RegP
 2036       OptoReg::Bad, // Op_RegF
 2037       XMM0b_num,    // Op_RegD
 2038       RAX_H_num     // Op_RegL
 2039     };
 2040     // Excluded flags and vector registers.
 2041     assert(ARRAY_SIZE(hi) == _last_machine_leaf - 8, "missing type");
 2042     return OptoRegPair(hi[ideal_reg], lo[ideal_reg]);
 2043   %}
 2044 %}
 2045 
 2046 //----------ATTRIBUTES---------------------------------------------------------
 2047 //----------Operand Attributes-------------------------------------------------
 2048 op_attrib op_cost(0);        // Required cost attribute
 2049 
 2050 //----------Instruction Attributes---------------------------------------------
 2051 ins_attrib ins_cost(100);       // Required cost attribute
 2052 ins_attrib ins_size(8);         // Required size attribute (in bits)
 2053 ins_attrib ins_short_branch(0); // Required flag: is this instruction
 2054                                 // a non-matching short branch variant
 2055                                 // of some long branch?
 2056 ins_attrib ins_alignment(1);    // Required alignment attribute (must
 2057                                 // be a power of 2) specifies the
 2058                                 // alignment that some part of the
 2059                                 // instruction (not necessarily the
 2060                                 // start) requires.  If > 1, a
 2061                                 // compute_padding() function must be
 2062                                 // provided for the instruction
 2063 
 2064 //----------OPERANDS-----------------------------------------------------------
 2065 // Operand definitions must precede instruction definitions for correct parsing
 2066 // in the ADLC because operands constitute user defined types which are used in
 2067 // instruction definitions.
 2068 
 2069 //----------Simple Operands----------------------------------------------------
 2070 // Immediate Operands
 2071 // Integer Immediate
 2072 operand immI()
 2073 %{
 2074   match(ConI);
 2075 
 2076   op_cost(10);
 2077   format %{ %}
 2078   interface(CONST_INTER);
 2079 %}
 2080 
 2081 // Constant for test vs zero
 2082 operand immI_0()
 2083 %{
 2084   predicate(n->get_int() == 0);
 2085   match(ConI);
 2086 
 2087   op_cost(0);
 2088   format %{ %}
 2089   interface(CONST_INTER);
 2090 %}
 2091 
 2092 // Constant for increment
 2093 operand immI_1()
 2094 %{
 2095   predicate(n->get_int() == 1);
 2096   match(ConI);
 2097 
 2098   op_cost(0);
 2099   format %{ %}
 2100   interface(CONST_INTER);
 2101 %}
 2102 
 2103 // Constant for decrement
 2104 operand immI_M1()
 2105 %{
 2106   predicate(n->get_int() == -1);
 2107   match(ConI);
 2108 
 2109   op_cost(0);
 2110   format %{ %}
 2111   interface(CONST_INTER);
 2112 %}
 2113 
 2114 operand immI_2()
 2115 %{
 2116   predicate(n->get_int() == 2);
 2117   match(ConI);
 2118 
 2119   op_cost(0);
 2120   format %{ %}
 2121   interface(CONST_INTER);
 2122 %}
 2123 
 2124 operand immI_4()
 2125 %{
 2126   predicate(n->get_int() == 4);
 2127   match(ConI);
 2128 
 2129   op_cost(0);
 2130   format %{ %}
 2131   interface(CONST_INTER);
 2132 %}
 2133 
 2134 operand immI_8()
 2135 %{
 2136   predicate(n->get_int() == 8);
 2137   match(ConI);
 2138 
 2139   op_cost(0);
 2140   format %{ %}
 2141   interface(CONST_INTER);
 2142 %}
 2143 
 2144 // Valid scale values for addressing modes
 2145 operand immI2()
 2146 %{
 2147   predicate(0 <= n->get_int() && (n->get_int() <= 3));
 2148   match(ConI);
 2149 
 2150   format %{ %}
 2151   interface(CONST_INTER);
 2152 %}
 2153 
 2154 operand immU7()
 2155 %{
 2156   predicate((0 <= n->get_int()) && (n->get_int() <= 0x7F));
 2157   match(ConI);
 2158 
 2159   op_cost(5);
 2160   format %{ %}
 2161   interface(CONST_INTER);
 2162 %}
 2163 
 2164 operand immI8()
 2165 %{
 2166   predicate((-0x80 <= n->get_int()) && (n->get_int() < 0x80));
 2167   match(ConI);
 2168 
 2169   op_cost(5);
 2170   format %{ %}
 2171   interface(CONST_INTER);
 2172 %}
 2173 
 2174 operand immU8()
 2175 %{
 2176   predicate((0 <= n->get_int()) && (n->get_int() <= 255));
 2177   match(ConI);
 2178 
 2179   op_cost(5);
 2180   format %{ %}
 2181   interface(CONST_INTER);
 2182 %}
 2183 
 2184 operand immI16()
 2185 %{
 2186   predicate((-32768 <= n->get_int()) && (n->get_int() <= 32767));
 2187   match(ConI);
 2188 
 2189   op_cost(10);
 2190   format %{ %}
 2191   interface(CONST_INTER);
 2192 %}
 2193 
 2194 // Int Immediate non-negative
 2195 operand immU31()
 2196 %{
 2197   predicate(n->get_int() >= 0);
 2198   match(ConI);
 2199 
 2200   op_cost(0);
 2201   format %{ %}
 2202   interface(CONST_INTER);
 2203 %}
 2204 
 2205 // Pointer Immediate
 2206 operand immP()
 2207 %{
 2208   match(ConP);
 2209 
 2210   op_cost(10);
 2211   format %{ %}
 2212   interface(CONST_INTER);
 2213 %}
 2214 
 2215 // Null Pointer Immediate
 2216 operand immP0()
 2217 %{
 2218   predicate(n->get_ptr() == 0);
 2219   match(ConP);
 2220 
 2221   op_cost(5);
 2222   format %{ %}
 2223   interface(CONST_INTER);
 2224 %}
 2225 
 2226 // Pointer Immediate
 2227 operand immN() %{
 2228   match(ConN);
 2229 
 2230   op_cost(10);
 2231   format %{ %}
 2232   interface(CONST_INTER);
 2233 %}
 2234 
 2235 operand immNKlass() %{
 2236   match(ConNKlass);
 2237 
 2238   op_cost(10);
 2239   format %{ %}
 2240   interface(CONST_INTER);
 2241 %}
 2242 
 2243 // Null Pointer Immediate
 2244 operand immN0() %{
 2245   predicate(n->get_narrowcon() == 0);
 2246   match(ConN);
 2247 
 2248   op_cost(5);
 2249   format %{ %}
 2250   interface(CONST_INTER);
 2251 %}
 2252 
 2253 operand immP31()
 2254 %{
 2255   predicate(n->as_Type()->type()->reloc() == relocInfo::none
 2256             && (n->get_ptr() >> 31) == 0);
 2257   match(ConP);
 2258 
 2259   op_cost(5);
 2260   format %{ %}
 2261   interface(CONST_INTER);
 2262 %}
 2263 
 2264 
 2265 // Long Immediate
 2266 operand immL()
 2267 %{
 2268   match(ConL);
 2269 
 2270   op_cost(20);
 2271   format %{ %}
 2272   interface(CONST_INTER);
 2273 %}
 2274 
 2275 // Long Immediate 8-bit
 2276 operand immL8()
 2277 %{
 2278   predicate(-0x80L <= n->get_long() && n->get_long() < 0x80L);
 2279   match(ConL);
 2280 
 2281   op_cost(5);
 2282   format %{ %}
 2283   interface(CONST_INTER);
 2284 %}
 2285 
 2286 // Long Immediate 32-bit unsigned
 2287 operand immUL32()
 2288 %{
 2289   predicate(n->get_long() == (unsigned int) (n->get_long()));
 2290   match(ConL);
 2291 
 2292   op_cost(10);
 2293   format %{ %}
 2294   interface(CONST_INTER);
 2295 %}
 2296 
 2297 // Long Immediate 32-bit signed
 2298 operand immL32()
 2299 %{
 2300   predicate(n->get_long() == (int) (n->get_long()));
 2301   match(ConL);
 2302 
 2303   op_cost(15);
 2304   format %{ %}
 2305   interface(CONST_INTER);
 2306 %}
 2307 
 2308 operand immL_Pow2()
 2309 %{
 2310   predicate(is_power_of_2((julong)n->get_long()));
 2311   match(ConL);
 2312 
 2313   op_cost(15);
 2314   format %{ %}
 2315   interface(CONST_INTER);
 2316 %}
 2317 
 2318 operand immL_NotPow2()
 2319 %{
 2320   predicate(is_power_of_2((julong)~n->get_long()));
 2321   match(ConL);
 2322 
 2323   op_cost(15);
 2324   format %{ %}
 2325   interface(CONST_INTER);
 2326 %}
 2327 
 2328 // Long Immediate zero
 2329 operand immL0()
 2330 %{
 2331   predicate(n->get_long() == 0L);
 2332   match(ConL);
 2333 
 2334   op_cost(10);
 2335   format %{ %}
 2336   interface(CONST_INTER);
 2337 %}
 2338 
 2339 // Constant for increment
 2340 operand immL1()
 2341 %{
 2342   predicate(n->get_long() == 1);
 2343   match(ConL);
 2344 
 2345   format %{ %}
 2346   interface(CONST_INTER);
 2347 %}
 2348 
 2349 // Constant for decrement
 2350 operand immL_M1()
 2351 %{
 2352   predicate(n->get_long() == -1);
 2353   match(ConL);
 2354 
 2355   format %{ %}
 2356   interface(CONST_INTER);
 2357 %}
 2358 
 2359 // Long Immediate: low 32-bit mask
 2360 operand immL_32bits()
 2361 %{
 2362   predicate(n->get_long() == 0xFFFFFFFFL);
 2363   match(ConL);
 2364   op_cost(20);
 2365 
 2366   format %{ %}
 2367   interface(CONST_INTER);
 2368 %}
 2369 
 2370 // Int Immediate: 2^n-1, positive
 2371 operand immI_Pow2M1()
 2372 %{
 2373   predicate((n->get_int() > 0)
 2374             && is_power_of_2((juint)n->get_int() + 1));
 2375   match(ConI);
 2376 
 2377   op_cost(20);
 2378   format %{ %}
 2379   interface(CONST_INTER);
 2380 %}
 2381 
 2382 // Float Immediate zero
 2383 operand immF0()
 2384 %{
 2385   predicate(jint_cast(n->getf()) == 0);
 2386   match(ConF);
 2387 
 2388   op_cost(5);
 2389   format %{ %}
 2390   interface(CONST_INTER);
 2391 %}
 2392 
 2393 // Float Immediate
 2394 operand immF()
 2395 %{
 2396   match(ConF);
 2397 
 2398   op_cost(15);
 2399   format %{ %}
 2400   interface(CONST_INTER);
 2401 %}
 2402 
 2403 // Double Immediate zero
 2404 operand immD0()
 2405 %{
 2406   predicate(jlong_cast(n->getd()) == 0);
 2407   match(ConD);
 2408 
 2409   op_cost(5);
 2410   format %{ %}
 2411   interface(CONST_INTER);
 2412 %}
 2413 
 2414 // Double Immediate
 2415 operand immD()
 2416 %{
 2417   match(ConD);
 2418 
 2419   op_cost(15);
 2420   format %{ %}
 2421   interface(CONST_INTER);
 2422 %}
 2423 
 2424 // Immediates for special shifts (sign extend)
 2425 
 2426 // Constants for increment
 2427 operand immI_16()
 2428 %{
 2429   predicate(n->get_int() == 16);
 2430   match(ConI);
 2431 
 2432   format %{ %}
 2433   interface(CONST_INTER);
 2434 %}
 2435 
 2436 operand immI_24()
 2437 %{
 2438   predicate(n->get_int() == 24);
 2439   match(ConI);
 2440 
 2441   format %{ %}
 2442   interface(CONST_INTER);
 2443 %}
 2444 
 2445 // Constant for byte-wide masking
 2446 operand immI_255()
 2447 %{
 2448   predicate(n->get_int() == 255);
 2449   match(ConI);
 2450 
 2451   format %{ %}
 2452   interface(CONST_INTER);
 2453 %}
 2454 
 2455 // Constant for short-wide masking
 2456 operand immI_65535()
 2457 %{
 2458   predicate(n->get_int() == 65535);
 2459   match(ConI);
 2460 
 2461   format %{ %}
 2462   interface(CONST_INTER);
 2463 %}
 2464 
 2465 // Constant for byte-wide masking
 2466 operand immL_255()
 2467 %{
 2468   predicate(n->get_long() == 255);
 2469   match(ConL);
 2470 
 2471   format %{ %}
 2472   interface(CONST_INTER);
 2473 %}
 2474 
 2475 // Constant for short-wide masking
 2476 operand immL_65535()
 2477 %{
 2478   predicate(n->get_long() == 65535);
 2479   match(ConL);
 2480 
 2481   format %{ %}
 2482   interface(CONST_INTER);
 2483 %}
 2484 
 2485 operand kReg()
 2486 %{
 2487   constraint(ALLOC_IN_RC(vectmask_reg));
 2488   match(RegVectMask);
 2489   format %{%}
 2490   interface(REG_INTER);
 2491 %}
 2492 
 2493 // Register Operands
 2494 // Integer Register
 2495 operand rRegI()
 2496 %{
 2497   constraint(ALLOC_IN_RC(int_reg));
 2498   match(RegI);
 2499 
 2500   match(rax_RegI);
 2501   match(rbx_RegI);
 2502   match(rcx_RegI);
 2503   match(rdx_RegI);
 2504   match(rdi_RegI);
 2505 
 2506   format %{ %}
 2507   interface(REG_INTER);
 2508 %}
 2509 
 2510 // Special Registers
 2511 operand rax_RegI()
 2512 %{
 2513   constraint(ALLOC_IN_RC(int_rax_reg));
 2514   match(RegI);
 2515   match(rRegI);
 2516 
 2517   format %{ "RAX" %}
 2518   interface(REG_INTER);
 2519 %}
 2520 
 2521 // Special Registers
 2522 operand rbx_RegI()
 2523 %{
 2524   constraint(ALLOC_IN_RC(int_rbx_reg));
 2525   match(RegI);
 2526   match(rRegI);
 2527 
 2528   format %{ "RBX" %}
 2529   interface(REG_INTER);
 2530 %}
 2531 
 2532 operand rcx_RegI()
 2533 %{
 2534   constraint(ALLOC_IN_RC(int_rcx_reg));
 2535   match(RegI);
 2536   match(rRegI);
 2537 
 2538   format %{ "RCX" %}
 2539   interface(REG_INTER);
 2540 %}
 2541 
 2542 operand rdx_RegI()
 2543 %{
 2544   constraint(ALLOC_IN_RC(int_rdx_reg));
 2545   match(RegI);
 2546   match(rRegI);
 2547 
 2548   format %{ "RDX" %}
 2549   interface(REG_INTER);
 2550 %}
 2551 
 2552 operand rdi_RegI()
 2553 %{
 2554   constraint(ALLOC_IN_RC(int_rdi_reg));
 2555   match(RegI);
 2556   match(rRegI);
 2557 
 2558   format %{ "RDI" %}
 2559   interface(REG_INTER);
 2560 %}
 2561 
 2562 operand no_rax_rdx_RegI()
 2563 %{
 2564   constraint(ALLOC_IN_RC(int_no_rax_rdx_reg));
 2565   match(RegI);
 2566   match(rbx_RegI);
 2567   match(rcx_RegI);
 2568   match(rdi_RegI);
 2569 
 2570   format %{ %}
 2571   interface(REG_INTER);
 2572 %}
 2573 
 2574 operand no_rbp_r13_RegI()
 2575 %{
 2576   constraint(ALLOC_IN_RC(int_no_rbp_r13_reg));
 2577   match(RegI);
 2578   match(rRegI);
 2579   match(rax_RegI);
 2580   match(rbx_RegI);
 2581   match(rcx_RegI);
 2582   match(rdx_RegI);
 2583   match(rdi_RegI);
 2584 
 2585   format %{ %}
 2586   interface(REG_INTER);
 2587 %}
 2588 
 2589 // Pointer Register
 2590 operand any_RegP()
 2591 %{
 2592   constraint(ALLOC_IN_RC(any_reg));
 2593   match(RegP);
 2594   match(rax_RegP);
 2595   match(rbx_RegP);
 2596   match(rdi_RegP);
 2597   match(rsi_RegP);
 2598   match(rbp_RegP);
 2599   match(r15_RegP);
 2600   match(rRegP);
 2601 
 2602   format %{ %}
 2603   interface(REG_INTER);
 2604 %}
 2605 
 2606 operand rRegP()
 2607 %{
 2608   constraint(ALLOC_IN_RC(ptr_reg));
 2609   match(RegP);
 2610   match(rax_RegP);
 2611   match(rbx_RegP);
 2612   match(rdi_RegP);
 2613   match(rsi_RegP);
 2614   match(rbp_RegP);  // See Q&A below about
 2615   match(r15_RegP);  // r15_RegP and rbp_RegP.
 2616 
 2617   format %{ %}
 2618   interface(REG_INTER);
 2619 %}
 2620 
 2621 operand rRegN() %{
 2622   constraint(ALLOC_IN_RC(int_reg));
 2623   match(RegN);
 2624 
 2625   format %{ %}
 2626   interface(REG_INTER);
 2627 %}
 2628 
 2629 // Question: Why is r15_RegP (the read-only TLS register) a match for rRegP?
 2630 // Answer: Operand match rules govern the DFA as it processes instruction inputs.
 2631 // It's fine for an instruction input that expects rRegP to match a r15_RegP.
 2632 // The output of an instruction is controlled by the allocator, which respects
 2633 // register class masks, not match rules.  Unless an instruction mentions
 2634 // r15_RegP or any_RegP explicitly as its output, r15 will not be considered
 2635 // by the allocator as an input.
 2636 // The same logic applies to rbp_RegP being a match for rRegP: If PreserveFramePointer==true,
 2637 // the RBP is used as a proper frame pointer and is not included in ptr_reg. As a
 2638 // result, RBP is not included in the output of the instruction either.
 2639 
 2640 // This operand is not allowed to use RBP even if
 2641 // RBP is not used to hold the frame pointer.
 2642 operand no_rbp_RegP()
 2643 %{
 2644   constraint(ALLOC_IN_RC(ptr_reg_no_rbp));
 2645   match(RegP);
 2646   match(rbx_RegP);
 2647   match(rsi_RegP);
 2648   match(rdi_RegP);
 2649 
 2650   format %{ %}
 2651   interface(REG_INTER);
 2652 %}
 2653 
 2654 // Special Registers
 2655 // Return a pointer value
 2656 operand rax_RegP()
 2657 %{
 2658   constraint(ALLOC_IN_RC(ptr_rax_reg));
 2659   match(RegP);
 2660   match(rRegP);
 2661 
 2662   format %{ %}
 2663   interface(REG_INTER);
 2664 %}
 2665 
 2666 // Special Registers
 2667 // Return a compressed pointer value
 2668 operand rax_RegN()
 2669 %{
 2670   constraint(ALLOC_IN_RC(int_rax_reg));
 2671   match(RegN);
 2672   match(rRegN);
 2673 
 2674   format %{ %}
 2675   interface(REG_INTER);
 2676 %}
 2677 
 2678 // Used in AtomicAdd
 2679 operand rbx_RegP()
 2680 %{
 2681   constraint(ALLOC_IN_RC(ptr_rbx_reg));
 2682   match(RegP);
 2683   match(rRegP);
 2684 
 2685   format %{ %}
 2686   interface(REG_INTER);
 2687 %}
 2688 
 2689 operand rsi_RegP()
 2690 %{
 2691   constraint(ALLOC_IN_RC(ptr_rsi_reg));
 2692   match(RegP);
 2693   match(rRegP);
 2694 
 2695   format %{ %}
 2696   interface(REG_INTER);
 2697 %}
 2698 
 2699 operand rbp_RegP()
 2700 %{
 2701   constraint(ALLOC_IN_RC(ptr_rbp_reg));
 2702   match(RegP);
 2703   match(rRegP);
 2704 
 2705   format %{ %}
 2706   interface(REG_INTER);
 2707 %}
 2708 
 2709 // Used in rep stosq
 2710 operand rdi_RegP()
 2711 %{
 2712   constraint(ALLOC_IN_RC(ptr_rdi_reg));
 2713   match(RegP);
 2714   match(rRegP);
 2715 
 2716   format %{ %}
 2717   interface(REG_INTER);
 2718 %}
 2719 
 2720 operand r15_RegP()
 2721 %{
 2722   constraint(ALLOC_IN_RC(ptr_r15_reg));
 2723   match(RegP);
 2724   match(rRegP);
 2725 
 2726   format %{ %}
 2727   interface(REG_INTER);
 2728 %}
 2729 
 2730 operand rRegL()
 2731 %{
 2732   constraint(ALLOC_IN_RC(long_reg));
 2733   match(RegL);
 2734   match(rax_RegL);
 2735   match(rdx_RegL);
 2736 
 2737   format %{ %}
 2738   interface(REG_INTER);
 2739 %}
 2740 
 2741 // Special Registers
 2742 operand no_rax_rdx_RegL()
 2743 %{
 2744   constraint(ALLOC_IN_RC(long_no_rax_rdx_reg));
 2745   match(RegL);
 2746   match(rRegL);
 2747 
 2748   format %{ %}
 2749   interface(REG_INTER);
 2750 %}
 2751 
 2752 operand rax_RegL()
 2753 %{
 2754   constraint(ALLOC_IN_RC(long_rax_reg));
 2755   match(RegL);
 2756   match(rRegL);
 2757 
 2758   format %{ "RAX" %}
 2759   interface(REG_INTER);
 2760 %}
 2761 
 2762 operand rcx_RegL()
 2763 %{
 2764   constraint(ALLOC_IN_RC(long_rcx_reg));
 2765   match(RegL);
 2766   match(rRegL);
 2767 
 2768   format %{ %}
 2769   interface(REG_INTER);
 2770 %}
 2771 
 2772 operand rdx_RegL()
 2773 %{
 2774   constraint(ALLOC_IN_RC(long_rdx_reg));
 2775   match(RegL);
 2776   match(rRegL);
 2777 
 2778   format %{ %}
 2779   interface(REG_INTER);
 2780 %}
 2781 
 2782 operand r11_RegL()
 2783 %{
 2784   constraint(ALLOC_IN_RC(long_r11_reg));
 2785   match(RegL);
 2786   match(rRegL);
 2787 
 2788   format %{ %}
 2789   interface(REG_INTER);
 2790 %}
 2791 
 2792 operand no_rbp_r13_RegL()
 2793 %{
 2794   constraint(ALLOC_IN_RC(long_no_rbp_r13_reg));
 2795   match(RegL);
 2796   match(rRegL);
 2797   match(rax_RegL);
 2798   match(rcx_RegL);
 2799   match(rdx_RegL);
 2800 
 2801   format %{ %}
 2802   interface(REG_INTER);
 2803 %}
 2804 
 2805 // Flags register, used as output of compare instructions
 2806 operand rFlagsReg()
 2807 %{
 2808   constraint(ALLOC_IN_RC(int_flags));
 2809   match(RegFlags);
 2810 
 2811   format %{ "RFLAGS" %}
 2812   interface(REG_INTER);
 2813 %}
 2814 
 2815 // Flags register, used as output of FLOATING POINT compare instructions
 2816 operand rFlagsRegU()
 2817 %{
 2818   constraint(ALLOC_IN_RC(int_flags));
 2819   match(RegFlags);
 2820 
 2821   format %{ "RFLAGS_U" %}
 2822   interface(REG_INTER);
 2823 %}
 2824 
 2825 operand rFlagsRegUCF() %{
 2826   constraint(ALLOC_IN_RC(int_flags));
 2827   match(RegFlags);
 2828   predicate(false);
 2829 
 2830   format %{ "RFLAGS_U_CF" %}
 2831   interface(REG_INTER);
 2832 %}
 2833 
 2834 // Float register operands
 2835 operand regF() %{
 2836    constraint(ALLOC_IN_RC(float_reg));
 2837    match(RegF);
 2838 
 2839    format %{ %}
 2840    interface(REG_INTER);
 2841 %}
 2842 
 2843 // Float register operands
 2844 operand legRegF() %{
 2845    constraint(ALLOC_IN_RC(float_reg_legacy));
 2846    match(RegF);
 2847 
 2848    format %{ %}
 2849    interface(REG_INTER);
 2850 %}
 2851 
 2852 // Float register operands
 2853 operand vlRegF() %{
 2854    constraint(ALLOC_IN_RC(float_reg_vl));
 2855    match(RegF);
 2856 
 2857    format %{ %}
 2858    interface(REG_INTER);
 2859 %}
 2860 
 2861 // Double register operands
 2862 operand regD() %{
 2863    constraint(ALLOC_IN_RC(double_reg));
 2864    match(RegD);
 2865 
 2866    format %{ %}
 2867    interface(REG_INTER);
 2868 %}
 2869 
 2870 // Double register operands
 2871 operand legRegD() %{
 2872    constraint(ALLOC_IN_RC(double_reg_legacy));
 2873    match(RegD);
 2874 
 2875    format %{ %}
 2876    interface(REG_INTER);
 2877 %}
 2878 
 2879 // Double register operands
 2880 operand vlRegD() %{
 2881    constraint(ALLOC_IN_RC(double_reg_vl));
 2882    match(RegD);
 2883 
 2884    format %{ %}
 2885    interface(REG_INTER);
 2886 %}
 2887 
 2888 //----------Memory Operands----------------------------------------------------
 2889 // Direct Memory Operand
 2890 // operand direct(immP addr)
 2891 // %{
 2892 //   match(addr);
 2893 
 2894 //   format %{ "[$addr]" %}
 2895 //   interface(MEMORY_INTER) %{
 2896 //     base(0xFFFFFFFF);
 2897 //     index(0x4);
 2898 //     scale(0x0);
 2899 //     disp($addr);
 2900 //   %}
 2901 // %}
 2902 
 2903 // Indirect Memory Operand
 2904 operand indirect(any_RegP reg)
 2905 %{
 2906   constraint(ALLOC_IN_RC(ptr_reg));
 2907   match(reg);
 2908 
 2909   format %{ "[$reg]" %}
 2910   interface(MEMORY_INTER) %{
 2911     base($reg);
 2912     index(0x4);
 2913     scale(0x0);
 2914     disp(0x0);
 2915   %}
 2916 %}
 2917 
 2918 // Indirect Memory Plus Short Offset Operand
 2919 operand indOffset8(any_RegP reg, immL8 off)
 2920 %{
 2921   constraint(ALLOC_IN_RC(ptr_reg));
 2922   match(AddP reg off);
 2923 
 2924   format %{ "[$reg + $off (8-bit)]" %}
 2925   interface(MEMORY_INTER) %{
 2926     base($reg);
 2927     index(0x4);
 2928     scale(0x0);
 2929     disp($off);
 2930   %}
 2931 %}
 2932 
 2933 // Indirect Memory Plus Long Offset Operand
 2934 operand indOffset32(any_RegP reg, immL32 off)
 2935 %{
 2936   constraint(ALLOC_IN_RC(ptr_reg));
 2937   match(AddP reg off);
 2938 
 2939   format %{ "[$reg + $off (32-bit)]" %}
 2940   interface(MEMORY_INTER) %{
 2941     base($reg);
 2942     index(0x4);
 2943     scale(0x0);
 2944     disp($off);
 2945   %}
 2946 %}
 2947 
 2948 // Indirect Memory Plus Index Register Plus Offset Operand
 2949 operand indIndexOffset(any_RegP reg, rRegL lreg, immL32 off)
 2950 %{
 2951   constraint(ALLOC_IN_RC(ptr_reg));
 2952   match(AddP (AddP reg lreg) off);
 2953 
 2954   op_cost(10);
 2955   format %{"[$reg + $off + $lreg]" %}
 2956   interface(MEMORY_INTER) %{
 2957     base($reg);
 2958     index($lreg);
 2959     scale(0x0);
 2960     disp($off);
 2961   %}
 2962 %}
 2963 
 2964 // Indirect Memory Plus Index Register Plus Offset Operand
 2965 operand indIndex(any_RegP reg, rRegL lreg)
 2966 %{
 2967   constraint(ALLOC_IN_RC(ptr_reg));
 2968   match(AddP reg lreg);
 2969 
 2970   op_cost(10);
 2971   format %{"[$reg + $lreg]" %}
 2972   interface(MEMORY_INTER) %{
 2973     base($reg);
 2974     index($lreg);
 2975     scale(0x0);
 2976     disp(0x0);
 2977   %}
 2978 %}
 2979 
 2980 // Indirect Memory Times Scale Plus Index Register
 2981 operand indIndexScale(any_RegP reg, rRegL lreg, immI2 scale)
 2982 %{
 2983   constraint(ALLOC_IN_RC(ptr_reg));
 2984   match(AddP reg (LShiftL lreg scale));
 2985 
 2986   op_cost(10);
 2987   format %{"[$reg + $lreg << $scale]" %}
 2988   interface(MEMORY_INTER) %{
 2989     base($reg);
 2990     index($lreg);
 2991     scale($scale);
 2992     disp(0x0);
 2993   %}
 2994 %}
 2995 
 2996 operand indPosIndexScale(any_RegP reg, rRegI idx, immI2 scale)
 2997 %{
 2998   constraint(ALLOC_IN_RC(ptr_reg));
 2999   predicate(n->in(3)->in(1)->as_Type()->type()->is_long()->_lo >= 0);
 3000   match(AddP reg (LShiftL (ConvI2L idx) scale));
 3001 
 3002   op_cost(10);
 3003   format %{"[$reg + pos $idx << $scale]" %}
 3004   interface(MEMORY_INTER) %{
 3005     base($reg);
 3006     index($idx);
 3007     scale($scale);
 3008     disp(0x0);
 3009   %}
 3010 %}
 3011 
 3012 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
 3013 operand indIndexScaleOffset(any_RegP reg, immL32 off, rRegL lreg, immI2 scale)
 3014 %{
 3015   constraint(ALLOC_IN_RC(ptr_reg));
 3016   match(AddP (AddP reg (LShiftL lreg scale)) off);
 3017 
 3018   op_cost(10);
 3019   format %{"[$reg + $off + $lreg << $scale]" %}
 3020   interface(MEMORY_INTER) %{
 3021     base($reg);
 3022     index($lreg);
 3023     scale($scale);
 3024     disp($off);
 3025   %}
 3026 %}
 3027 
 3028 // Indirect Memory Plus Positive Index Register Plus Offset Operand
 3029 operand indPosIndexOffset(any_RegP reg, immL32 off, rRegI idx)
 3030 %{
 3031   constraint(ALLOC_IN_RC(ptr_reg));
 3032   predicate(n->in(2)->in(3)->as_Type()->type()->is_long()->_lo >= 0);
 3033   match(AddP (AddP reg (ConvI2L idx)) off);
 3034 
 3035   op_cost(10);
 3036   format %{"[$reg + $off + $idx]" %}
 3037   interface(MEMORY_INTER) %{
 3038     base($reg);
 3039     index($idx);
 3040     scale(0x0);
 3041     disp($off);
 3042   %}
 3043 %}
 3044 
 3045 // Indirect Memory Times Scale Plus Positive Index Register Plus Offset Operand
 3046 operand indPosIndexScaleOffset(any_RegP reg, immL32 off, rRegI idx, immI2 scale)
 3047 %{
 3048   constraint(ALLOC_IN_RC(ptr_reg));
 3049   predicate(n->in(2)->in(3)->in(1)->as_Type()->type()->is_long()->_lo >= 0);
 3050   match(AddP (AddP reg (LShiftL (ConvI2L idx) scale)) off);
 3051 
 3052   op_cost(10);
 3053   format %{"[$reg + $off + $idx << $scale]" %}
 3054   interface(MEMORY_INTER) %{
 3055     base($reg);
 3056     index($idx);
 3057     scale($scale);
 3058     disp($off);
 3059   %}
 3060 %}
 3061 
 3062 // Indirect Narrow Oop Plus Offset Operand
 3063 // Note: x86 architecture doesn't support "scale * index + offset" without a base
 3064 // we can't free r12 even with CompressedOops::base() == nullptr.
 3065 operand indCompressedOopOffset(rRegN reg, immL32 off) %{
 3066   predicate(UseCompressedOops && (CompressedOops::shift() == Address::times_8));
 3067   constraint(ALLOC_IN_RC(ptr_reg));
 3068   match(AddP (DecodeN reg) off);
 3069 
 3070   op_cost(10);
 3071   format %{"[R12 + $reg << 3 + $off] (compressed oop addressing)" %}
 3072   interface(MEMORY_INTER) %{
 3073     base(0xc); // R12
 3074     index($reg);
 3075     scale(0x3);
 3076     disp($off);
 3077   %}
 3078 %}
 3079 
 3080 // Indirect Memory Operand
 3081 operand indirectNarrow(rRegN reg)
 3082 %{
 3083   predicate(CompressedOops::shift() == 0);
 3084   constraint(ALLOC_IN_RC(ptr_reg));
 3085   match(DecodeN reg);
 3086 
 3087   format %{ "[$reg]" %}
 3088   interface(MEMORY_INTER) %{
 3089     base($reg);
 3090     index(0x4);
 3091     scale(0x0);
 3092     disp(0x0);
 3093   %}
 3094 %}
 3095 
 3096 // Indirect Memory Plus Short Offset Operand
 3097 operand indOffset8Narrow(rRegN reg, immL8 off)
 3098 %{
 3099   predicate(CompressedOops::shift() == 0);
 3100   constraint(ALLOC_IN_RC(ptr_reg));
 3101   match(AddP (DecodeN reg) off);
 3102 
 3103   format %{ "[$reg + $off (8-bit)]" %}
 3104   interface(MEMORY_INTER) %{
 3105     base($reg);
 3106     index(0x4);
 3107     scale(0x0);
 3108     disp($off);
 3109   %}
 3110 %}
 3111 
 3112 // Indirect Memory Plus Long Offset Operand
 3113 operand indOffset32Narrow(rRegN reg, immL32 off)
 3114 %{
 3115   predicate(CompressedOops::shift() == 0);
 3116   constraint(ALLOC_IN_RC(ptr_reg));
 3117   match(AddP (DecodeN reg) off);
 3118 
 3119   format %{ "[$reg + $off (32-bit)]" %}
 3120   interface(MEMORY_INTER) %{
 3121     base($reg);
 3122     index(0x4);
 3123     scale(0x0);
 3124     disp($off);
 3125   %}
 3126 %}
 3127 
 3128 // Indirect Memory Plus Index Register Plus Offset Operand
 3129 operand indIndexOffsetNarrow(rRegN reg, rRegL lreg, immL32 off)
 3130 %{
 3131   predicate(CompressedOops::shift() == 0);
 3132   constraint(ALLOC_IN_RC(ptr_reg));
 3133   match(AddP (AddP (DecodeN reg) lreg) off);
 3134 
 3135   op_cost(10);
 3136   format %{"[$reg + $off + $lreg]" %}
 3137   interface(MEMORY_INTER) %{
 3138     base($reg);
 3139     index($lreg);
 3140     scale(0x0);
 3141     disp($off);
 3142   %}
 3143 %}
 3144 
 3145 // Indirect Memory Plus Index Register Plus Offset Operand
 3146 operand indIndexNarrow(rRegN reg, rRegL lreg)
 3147 %{
 3148   predicate(CompressedOops::shift() == 0);
 3149   constraint(ALLOC_IN_RC(ptr_reg));
 3150   match(AddP (DecodeN reg) lreg);
 3151 
 3152   op_cost(10);
 3153   format %{"[$reg + $lreg]" %}
 3154   interface(MEMORY_INTER) %{
 3155     base($reg);
 3156     index($lreg);
 3157     scale(0x0);
 3158     disp(0x0);
 3159   %}
 3160 %}
 3161 
 3162 // Indirect Memory Times Scale Plus Index Register
 3163 operand indIndexScaleNarrow(rRegN reg, rRegL lreg, immI2 scale)
 3164 %{
 3165   predicate(CompressedOops::shift() == 0);
 3166   constraint(ALLOC_IN_RC(ptr_reg));
 3167   match(AddP (DecodeN reg) (LShiftL lreg scale));
 3168 
 3169   op_cost(10);
 3170   format %{"[$reg + $lreg << $scale]" %}
 3171   interface(MEMORY_INTER) %{
 3172     base($reg);
 3173     index($lreg);
 3174     scale($scale);
 3175     disp(0x0);
 3176   %}
 3177 %}
 3178 
 3179 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
 3180 operand indIndexScaleOffsetNarrow(rRegN reg, immL32 off, rRegL lreg, immI2 scale)
 3181 %{
 3182   predicate(CompressedOops::shift() == 0);
 3183   constraint(ALLOC_IN_RC(ptr_reg));
 3184   match(AddP (AddP (DecodeN reg) (LShiftL lreg scale)) off);
 3185 
 3186   op_cost(10);
 3187   format %{"[$reg + $off + $lreg << $scale]" %}
 3188   interface(MEMORY_INTER) %{
 3189     base($reg);
 3190     index($lreg);
 3191     scale($scale);
 3192     disp($off);
 3193   %}
 3194 %}
 3195 
 3196 // Indirect Memory Times Plus Positive Index Register Plus Offset Operand
 3197 operand indPosIndexOffsetNarrow(rRegN reg, immL32 off, rRegI idx)
 3198 %{
 3199   constraint(ALLOC_IN_RC(ptr_reg));
 3200   predicate(CompressedOops::shift() == 0 && n->in(2)->in(3)->as_Type()->type()->is_long()->_lo >= 0);
 3201   match(AddP (AddP (DecodeN reg) (ConvI2L idx)) off);
 3202 
 3203   op_cost(10);
 3204   format %{"[$reg + $off + $idx]" %}
 3205   interface(MEMORY_INTER) %{
 3206     base($reg);
 3207     index($idx);
 3208     scale(0x0);
 3209     disp($off);
 3210   %}
 3211 %}
 3212 
 3213 // Indirect Memory Times Scale Plus Positive Index Register Plus Offset Operand
 3214 operand indPosIndexScaleOffsetNarrow(rRegN reg, immL32 off, rRegI idx, immI2 scale)
 3215 %{
 3216   constraint(ALLOC_IN_RC(ptr_reg));
 3217   predicate(CompressedOops::shift() == 0 && n->in(2)->in(3)->in(1)->as_Type()->type()->is_long()->_lo >= 0);
 3218   match(AddP (AddP (DecodeN reg) (LShiftL (ConvI2L idx) scale)) off);
 3219 
 3220   op_cost(10);
 3221   format %{"[$reg + $off + $idx << $scale]" %}
 3222   interface(MEMORY_INTER) %{
 3223     base($reg);
 3224     index($idx);
 3225     scale($scale);
 3226     disp($off);
 3227   %}
 3228 %}
 3229 
 3230 //----------Special Memory Operands--------------------------------------------
 3231 // Stack Slot Operand - This operand is used for loading and storing temporary
 3232 //                      values on the stack where a match requires a value to
 3233 //                      flow through memory.
 3234 operand stackSlotP(sRegP reg)
 3235 %{
 3236   constraint(ALLOC_IN_RC(stack_slots));
 3237   // No match rule because this operand is only generated in matching
 3238 
 3239   format %{ "[$reg]" %}
 3240   interface(MEMORY_INTER) %{
 3241     base(0x4);   // RSP
 3242     index(0x4);  // No Index
 3243     scale(0x0);  // No Scale
 3244     disp($reg);  // Stack Offset
 3245   %}
 3246 %}
 3247 
 3248 operand stackSlotI(sRegI reg)
 3249 %{
 3250   constraint(ALLOC_IN_RC(stack_slots));
 3251   // No match rule because this operand is only generated in matching
 3252 
 3253   format %{ "[$reg]" %}
 3254   interface(MEMORY_INTER) %{
 3255     base(0x4);   // RSP
 3256     index(0x4);  // No Index
 3257     scale(0x0);  // No Scale
 3258     disp($reg);  // Stack Offset
 3259   %}
 3260 %}
 3261 
 3262 operand stackSlotF(sRegF reg)
 3263 %{
 3264   constraint(ALLOC_IN_RC(stack_slots));
 3265   // No match rule because this operand is only generated in matching
 3266 
 3267   format %{ "[$reg]" %}
 3268   interface(MEMORY_INTER) %{
 3269     base(0x4);   // RSP
 3270     index(0x4);  // No Index
 3271     scale(0x0);  // No Scale
 3272     disp($reg);  // Stack Offset
 3273   %}
 3274 %}
 3275 
 3276 operand stackSlotD(sRegD reg)
 3277 %{
 3278   constraint(ALLOC_IN_RC(stack_slots));
 3279   // No match rule because this operand is only generated in matching
 3280 
 3281   format %{ "[$reg]" %}
 3282   interface(MEMORY_INTER) %{
 3283     base(0x4);   // RSP
 3284     index(0x4);  // No Index
 3285     scale(0x0);  // No Scale
 3286     disp($reg);  // Stack Offset
 3287   %}
 3288 %}
 3289 operand stackSlotL(sRegL reg)
 3290 %{
 3291   constraint(ALLOC_IN_RC(stack_slots));
 3292   // No match rule because this operand is only generated in matching
 3293 
 3294   format %{ "[$reg]" %}
 3295   interface(MEMORY_INTER) %{
 3296     base(0x4);   // RSP
 3297     index(0x4);  // No Index
 3298     scale(0x0);  // No Scale
 3299     disp($reg);  // Stack Offset
 3300   %}
 3301 %}
 3302 
 3303 //----------Conditional Branch Operands----------------------------------------
 3304 // Comparison Op  - This is the operation of the comparison, and is limited to
 3305 //                  the following set of codes:
 3306 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
 3307 //
 3308 // Other attributes of the comparison, such as unsignedness, are specified
 3309 // by the comparison instruction that sets a condition code flags register.
 3310 // That result is represented by a flags operand whose subtype is appropriate
 3311 // to the unsignedness (etc.) of the comparison.
 3312 //
 3313 // Later, the instruction which matches both the Comparison Op (a Bool) and
 3314 // the flags (produced by the Cmp) specifies the coding of the comparison op
 3315 // by matching a specific subtype of Bool operand below, such as cmpOpU.
 3316 
 3317 // Comparison Code
 3318 operand cmpOp()
 3319 %{
 3320   match(Bool);
 3321 
 3322   format %{ "" %}
 3323   interface(COND_INTER) %{
 3324     equal(0x4, "e");
 3325     not_equal(0x5, "ne");
 3326     less(0xC, "l");
 3327     greater_equal(0xD, "ge");
 3328     less_equal(0xE, "le");
 3329     greater(0xF, "g");
 3330     overflow(0x0, "o");
 3331     no_overflow(0x1, "no");
 3332   %}
 3333 %}
 3334 
 3335 // Comparison Code, unsigned compare.  Used by FP also, with
 3336 // C2 (unordered) turned into GT or LT already.  The other bits
 3337 // C0 and C3 are turned into Carry & Zero flags.
 3338 operand cmpOpU()
 3339 %{
 3340   match(Bool);
 3341 
 3342   format %{ "" %}
 3343   interface(COND_INTER) %{
 3344     equal(0x4, "e");
 3345     not_equal(0x5, "ne");
 3346     less(0x2, "b");
 3347     greater_equal(0x3, "ae");
 3348     less_equal(0x6, "be");
 3349     greater(0x7, "a");
 3350     overflow(0x0, "o");
 3351     no_overflow(0x1, "no");
 3352   %}
 3353 %}
 3354 
 3355 
 3356 // Floating comparisons that don't require any fixup for the unordered case,
 3357 // If both inputs of the comparison are the same, ZF is always set so we
 3358 // don't need to use cmpOpUCF2 for eq/ne
 3359 operand cmpOpUCF() %{
 3360   match(Bool);
 3361   predicate(n->as_Bool()->_test._test == BoolTest::lt ||
 3362             n->as_Bool()->_test._test == BoolTest::ge ||
 3363             n->as_Bool()->_test._test == BoolTest::le ||
 3364             n->as_Bool()->_test._test == BoolTest::gt ||
 3365             n->in(1)->in(1) == n->in(1)->in(2));
 3366   format %{ "" %}
 3367   interface(COND_INTER) %{
 3368     equal(0xb, "np");
 3369     not_equal(0xa, "p");
 3370     less(0x2, "b");
 3371     greater_equal(0x3, "ae");
 3372     less_equal(0x6, "be");
 3373     greater(0x7, "a");
 3374     overflow(0x0, "o");
 3375     no_overflow(0x1, "no");
 3376   %}
 3377 %}
 3378 
 3379 
 3380 // Floating comparisons that can be fixed up with extra conditional jumps
 3381 operand cmpOpUCF2() %{
 3382   match(Bool);
 3383   predicate((n->as_Bool()->_test._test == BoolTest::ne ||
 3384              n->as_Bool()->_test._test == BoolTest::eq) &&
 3385             n->in(1)->in(1) != n->in(1)->in(2));
 3386   format %{ "" %}
 3387   interface(COND_INTER) %{
 3388     equal(0x4, "e");
 3389     not_equal(0x5, "ne");
 3390     less(0x2, "b");
 3391     greater_equal(0x3, "ae");
 3392     less_equal(0x6, "be");
 3393     greater(0x7, "a");
 3394     overflow(0x0, "o");
 3395     no_overflow(0x1, "no");
 3396   %}
 3397 %}
 3398 
 3399 //----------OPERAND CLASSES----------------------------------------------------
 3400 // Operand Classes are groups of operands that are used as to simplify
 3401 // instruction definitions by not requiring the AD writer to specify separate
 3402 // instructions for every form of operand when the instruction accepts
 3403 // multiple operand types with the same basic encoding and format.  The classic
 3404 // case of this is memory operands.
 3405 
 3406 opclass memory(indirect, indOffset8, indOffset32, indIndexOffset, indIndex,
 3407                indIndexScale, indPosIndexScale, indIndexScaleOffset, indPosIndexOffset, indPosIndexScaleOffset,
 3408                indCompressedOopOffset,
 3409                indirectNarrow, indOffset8Narrow, indOffset32Narrow,
 3410                indIndexOffsetNarrow, indIndexNarrow, indIndexScaleNarrow,
 3411                indIndexScaleOffsetNarrow, indPosIndexOffsetNarrow, indPosIndexScaleOffsetNarrow);
 3412 
 3413 //----------PIPELINE-----------------------------------------------------------
 3414 // Rules which define the behavior of the target architectures pipeline.
 3415 pipeline %{
 3416 
 3417 //----------ATTRIBUTES---------------------------------------------------------
 3418 attributes %{
 3419   variable_size_instructions;        // Fixed size instructions
 3420   max_instructions_per_bundle = 3;   // Up to 3 instructions per bundle
 3421   instruction_unit_size = 1;         // An instruction is 1 bytes long
 3422   instruction_fetch_unit_size = 16;  // The processor fetches one line
 3423   instruction_fetch_units = 1;       // of 16 bytes
 3424 
 3425   // List of nop instructions
 3426   nops( MachNop );
 3427 %}
 3428 
 3429 //----------RESOURCES----------------------------------------------------------
 3430 // Resources are the functional units available to the machine
 3431 
 3432 // Generic P2/P3 pipeline
 3433 // 3 decoders, only D0 handles big operands; a "bundle" is the limit of
 3434 // 3 instructions decoded per cycle.
 3435 // 2 load/store ops per cycle, 1 branch, 1 FPU,
 3436 // 3 ALU op, only ALU0 handles mul instructions.
 3437 resources( D0, D1, D2, DECODE = D0 | D1 | D2,
 3438            MS0, MS1, MS2, MEM = MS0 | MS1 | MS2,
 3439            BR, FPU,
 3440            ALU0, ALU1, ALU2, ALU = ALU0 | ALU1 | ALU2);
 3441 
 3442 //----------PIPELINE DESCRIPTION-----------------------------------------------
 3443 // Pipeline Description specifies the stages in the machine's pipeline
 3444 
 3445 // Generic P2/P3 pipeline
 3446 pipe_desc(S0, S1, S2, S3, S4, S5);
 3447 
 3448 //----------PIPELINE CLASSES---------------------------------------------------
 3449 // Pipeline Classes describe the stages in which input and output are
 3450 // referenced by the hardware pipeline.
 3451 
 3452 // Naming convention: ialu or fpu
 3453 // Then: _reg
 3454 // Then: _reg if there is a 2nd register
 3455 // Then: _long if it's a pair of instructions implementing a long
 3456 // Then: _fat if it requires the big decoder
 3457 //   Or: _mem if it requires the big decoder and a memory unit.
 3458 
 3459 // Integer ALU reg operation
 3460 pipe_class ialu_reg(rRegI dst)
 3461 %{
 3462     single_instruction;
 3463     dst    : S4(write);
 3464     dst    : S3(read);
 3465     DECODE : S0;        // any decoder
 3466     ALU    : S3;        // any alu
 3467 %}
 3468 
 3469 // Long ALU reg operation
 3470 pipe_class ialu_reg_long(rRegL dst)
 3471 %{
 3472     instruction_count(2);
 3473     dst    : S4(write);
 3474     dst    : S3(read);
 3475     DECODE : S0(2);     // any 2 decoders
 3476     ALU    : S3(2);     // both alus
 3477 %}
 3478 
 3479 // Integer ALU reg operation using big decoder
 3480 pipe_class ialu_reg_fat(rRegI dst)
 3481 %{
 3482     single_instruction;
 3483     dst    : S4(write);
 3484     dst    : S3(read);
 3485     D0     : S0;        // big decoder only
 3486     ALU    : S3;        // any alu
 3487 %}
 3488 
 3489 // Integer ALU reg-reg operation
 3490 pipe_class ialu_reg_reg(rRegI dst, rRegI src)
 3491 %{
 3492     single_instruction;
 3493     dst    : S4(write);
 3494     src    : S3(read);
 3495     DECODE : S0;        // any decoder
 3496     ALU    : S3;        // any alu
 3497 %}
 3498 
 3499 // Integer ALU reg-reg operation
 3500 pipe_class ialu_reg_reg_fat(rRegI dst, memory src)
 3501 %{
 3502     single_instruction;
 3503     dst    : S4(write);
 3504     src    : S3(read);
 3505     D0     : S0;        // big decoder only
 3506     ALU    : S3;        // any alu
 3507 %}
 3508 
 3509 // Integer ALU reg-mem operation
 3510 pipe_class ialu_reg_mem(rRegI dst, memory mem)
 3511 %{
 3512     single_instruction;
 3513     dst    : S5(write);
 3514     mem    : S3(read);
 3515     D0     : S0;        // big decoder only
 3516     ALU    : S4;        // any alu
 3517     MEM    : S3;        // any mem
 3518 %}
 3519 
 3520 // Integer mem operation (prefetch)
 3521 pipe_class ialu_mem(memory mem)
 3522 %{
 3523     single_instruction;
 3524     mem    : S3(read);
 3525     D0     : S0;        // big decoder only
 3526     MEM    : S3;        // any mem
 3527 %}
 3528 
 3529 // Integer Store to Memory
 3530 pipe_class ialu_mem_reg(memory mem, rRegI src)
 3531 %{
 3532     single_instruction;
 3533     mem    : S3(read);
 3534     src    : S5(read);
 3535     D0     : S0;        // big decoder only
 3536     ALU    : S4;        // any alu
 3537     MEM    : S3;
 3538 %}
 3539 
 3540 // // Long Store to Memory
 3541 // pipe_class ialu_mem_long_reg(memory mem, rRegL src)
 3542 // %{
 3543 //     instruction_count(2);
 3544 //     mem    : S3(read);
 3545 //     src    : S5(read);
 3546 //     D0     : S0(2);          // big decoder only; twice
 3547 //     ALU    : S4(2);     // any 2 alus
 3548 //     MEM    : S3(2);  // Both mems
 3549 // %}
 3550 
 3551 // Integer Store to Memory
 3552 pipe_class ialu_mem_imm(memory mem)
 3553 %{
 3554     single_instruction;
 3555     mem    : S3(read);
 3556     D0     : S0;        // big decoder only
 3557     ALU    : S4;        // any alu
 3558     MEM    : S3;
 3559 %}
 3560 
 3561 // Integer ALU0 reg-reg operation
 3562 pipe_class ialu_reg_reg_alu0(rRegI dst, rRegI src)
 3563 %{
 3564     single_instruction;
 3565     dst    : S4(write);
 3566     src    : S3(read);
 3567     D0     : S0;        // Big decoder only
 3568     ALU0   : S3;        // only alu0
 3569 %}
 3570 
 3571 // Integer ALU0 reg-mem operation
 3572 pipe_class ialu_reg_mem_alu0(rRegI dst, memory mem)
 3573 %{
 3574     single_instruction;
 3575     dst    : S5(write);
 3576     mem    : S3(read);
 3577     D0     : S0;        // big decoder only
 3578     ALU0   : S4;        // ALU0 only
 3579     MEM    : S3;        // any mem
 3580 %}
 3581 
 3582 // Integer ALU reg-reg operation
 3583 pipe_class ialu_cr_reg_reg(rFlagsReg cr, rRegI src1, rRegI src2)
 3584 %{
 3585     single_instruction;
 3586     cr     : S4(write);
 3587     src1   : S3(read);
 3588     src2   : S3(read);
 3589     DECODE : S0;        // any decoder
 3590     ALU    : S3;        // any alu
 3591 %}
 3592 
 3593 // Integer ALU reg-imm operation
 3594 pipe_class ialu_cr_reg_imm(rFlagsReg cr, rRegI src1)
 3595 %{
 3596     single_instruction;
 3597     cr     : S4(write);
 3598     src1   : S3(read);
 3599     DECODE : S0;        // any decoder
 3600     ALU    : S3;        // any alu
 3601 %}
 3602 
 3603 // Integer ALU reg-mem operation
 3604 pipe_class ialu_cr_reg_mem(rFlagsReg cr, rRegI src1, memory src2)
 3605 %{
 3606     single_instruction;
 3607     cr     : S4(write);
 3608     src1   : S3(read);
 3609     src2   : S3(read);
 3610     D0     : S0;        // big decoder only
 3611     ALU    : S4;        // any alu
 3612     MEM    : S3;
 3613 %}
 3614 
 3615 // Conditional move reg-reg
 3616 pipe_class pipe_cmplt( rRegI p, rRegI q, rRegI y)
 3617 %{
 3618     instruction_count(4);
 3619     y      : S4(read);
 3620     q      : S3(read);
 3621     p      : S3(read);
 3622     DECODE : S0(4);     // any decoder
 3623 %}
 3624 
 3625 // Conditional move reg-reg
 3626 pipe_class pipe_cmov_reg( rRegI dst, rRegI src, rFlagsReg cr)
 3627 %{
 3628     single_instruction;
 3629     dst    : S4(write);
 3630     src    : S3(read);
 3631     cr     : S3(read);
 3632     DECODE : S0;        // any decoder
 3633 %}
 3634 
 3635 // Conditional move reg-mem
 3636 pipe_class pipe_cmov_mem( rFlagsReg cr, rRegI dst, memory src)
 3637 %{
 3638     single_instruction;
 3639     dst    : S4(write);
 3640     src    : S3(read);
 3641     cr     : S3(read);
 3642     DECODE : S0;        // any decoder
 3643     MEM    : S3;
 3644 %}
 3645 
 3646 // Conditional move reg-reg long
 3647 pipe_class pipe_cmov_reg_long( rFlagsReg cr, rRegL dst, rRegL src)
 3648 %{
 3649     single_instruction;
 3650     dst    : S4(write);
 3651     src    : S3(read);
 3652     cr     : S3(read);
 3653     DECODE : S0(2);     // any 2 decoders
 3654 %}
 3655 
 3656 // Float reg-reg operation
 3657 pipe_class fpu_reg(regD dst)
 3658 %{
 3659     instruction_count(2);
 3660     dst    : S3(read);
 3661     DECODE : S0(2);     // any 2 decoders
 3662     FPU    : S3;
 3663 %}
 3664 
 3665 // Float reg-reg operation
 3666 pipe_class fpu_reg_reg(regD dst, regD src)
 3667 %{
 3668     instruction_count(2);
 3669     dst    : S4(write);
 3670     src    : S3(read);
 3671     DECODE : S0(2);     // any 2 decoders
 3672     FPU    : S3;
 3673 %}
 3674 
 3675 // Float reg-reg operation
 3676 pipe_class fpu_reg_reg_reg(regD dst, regD src1, regD src2)
 3677 %{
 3678     instruction_count(3);
 3679     dst    : S4(write);
 3680     src1   : S3(read);
 3681     src2   : S3(read);
 3682     DECODE : S0(3);     // any 3 decoders
 3683     FPU    : S3(2);
 3684 %}
 3685 
 3686 // Float reg-reg operation
 3687 pipe_class fpu_reg_reg_reg_reg(regD dst, regD src1, regD src2, regD src3)
 3688 %{
 3689     instruction_count(4);
 3690     dst    : S4(write);
 3691     src1   : S3(read);
 3692     src2   : S3(read);
 3693     src3   : S3(read);
 3694     DECODE : S0(4);     // any 3 decoders
 3695     FPU    : S3(2);
 3696 %}
 3697 
 3698 // Float reg-reg operation
 3699 pipe_class fpu_reg_mem_reg_reg(regD dst, memory src1, regD src2, regD src3)
 3700 %{
 3701     instruction_count(4);
 3702     dst    : S4(write);
 3703     src1   : S3(read);
 3704     src2   : S3(read);
 3705     src3   : S3(read);
 3706     DECODE : S1(3);     // any 3 decoders
 3707     D0     : S0;        // Big decoder only
 3708     FPU    : S3(2);
 3709     MEM    : S3;
 3710 %}
 3711 
 3712 // Float reg-mem operation
 3713 pipe_class fpu_reg_mem(regD dst, memory mem)
 3714 %{
 3715     instruction_count(2);
 3716     dst    : S5(write);
 3717     mem    : S3(read);
 3718     D0     : S0;        // big decoder only
 3719     DECODE : S1;        // any decoder for FPU POP
 3720     FPU    : S4;
 3721     MEM    : S3;        // any mem
 3722 %}
 3723 
 3724 // Float reg-mem operation
 3725 pipe_class fpu_reg_reg_mem(regD dst, regD src1, memory mem)
 3726 %{
 3727     instruction_count(3);
 3728     dst    : S5(write);
 3729     src1   : S3(read);
 3730     mem    : S3(read);
 3731     D0     : S0;        // big decoder only
 3732     DECODE : S1(2);     // any decoder for FPU POP
 3733     FPU    : S4;
 3734     MEM    : S3;        // any mem
 3735 %}
 3736 
 3737 // Float mem-reg operation
 3738 pipe_class fpu_mem_reg(memory mem, regD src)
 3739 %{
 3740     instruction_count(2);
 3741     src    : S5(read);
 3742     mem    : S3(read);
 3743     DECODE : S0;        // any decoder for FPU PUSH
 3744     D0     : S1;        // big decoder only
 3745     FPU    : S4;
 3746     MEM    : S3;        // any mem
 3747 %}
 3748 
 3749 pipe_class fpu_mem_reg_reg(memory mem, regD src1, regD src2)
 3750 %{
 3751     instruction_count(3);
 3752     src1   : S3(read);
 3753     src2   : S3(read);
 3754     mem    : S3(read);
 3755     DECODE : S0(2);     // any decoder for FPU PUSH
 3756     D0     : S1;        // big decoder only
 3757     FPU    : S4;
 3758     MEM    : S3;        // any mem
 3759 %}
 3760 
 3761 pipe_class fpu_mem_reg_mem(memory mem, regD src1, memory src2)
 3762 %{
 3763     instruction_count(3);
 3764     src1   : S3(read);
 3765     src2   : S3(read);
 3766     mem    : S4(read);
 3767     DECODE : S0;        // any decoder for FPU PUSH
 3768     D0     : S0(2);     // big decoder only
 3769     FPU    : S4;
 3770     MEM    : S3(2);     // any mem
 3771 %}
 3772 
 3773 pipe_class fpu_mem_mem(memory dst, memory src1)
 3774 %{
 3775     instruction_count(2);
 3776     src1   : S3(read);
 3777     dst    : S4(read);
 3778     D0     : S0(2);     // big decoder only
 3779     MEM    : S3(2);     // any mem
 3780 %}
 3781 
 3782 pipe_class fpu_mem_mem_mem(memory dst, memory src1, memory src2)
 3783 %{
 3784     instruction_count(3);
 3785     src1   : S3(read);
 3786     src2   : S3(read);
 3787     dst    : S4(read);
 3788     D0     : S0(3);     // big decoder only
 3789     FPU    : S4;
 3790     MEM    : S3(3);     // any mem
 3791 %}
 3792 
 3793 pipe_class fpu_mem_reg_con(memory mem, regD src1)
 3794 %{
 3795     instruction_count(3);
 3796     src1   : S4(read);
 3797     mem    : S4(read);
 3798     DECODE : S0;        // any decoder for FPU PUSH
 3799     D0     : S0(2);     // big decoder only
 3800     FPU    : S4;
 3801     MEM    : S3(2);     // any mem
 3802 %}
 3803 
 3804 // Float load constant
 3805 pipe_class fpu_reg_con(regD dst)
 3806 %{
 3807     instruction_count(2);
 3808     dst    : S5(write);
 3809     D0     : S0;        // big decoder only for the load
 3810     DECODE : S1;        // any decoder for FPU POP
 3811     FPU    : S4;
 3812     MEM    : S3;        // any mem
 3813 %}
 3814 
 3815 // Float load constant
 3816 pipe_class fpu_reg_reg_con(regD dst, regD src)
 3817 %{
 3818     instruction_count(3);
 3819     dst    : S5(write);
 3820     src    : S3(read);
 3821     D0     : S0;        // big decoder only for the load
 3822     DECODE : S1(2);     // any decoder for FPU POP
 3823     FPU    : S4;
 3824     MEM    : S3;        // any mem
 3825 %}
 3826 
 3827 // UnConditional branch
 3828 pipe_class pipe_jmp(label labl)
 3829 %{
 3830     single_instruction;
 3831     BR   : S3;
 3832 %}
 3833 
 3834 // Conditional branch
 3835 pipe_class pipe_jcc(cmpOp cmp, rFlagsReg cr, label labl)
 3836 %{
 3837     single_instruction;
 3838     cr    : S1(read);
 3839     BR    : S3;
 3840 %}
 3841 
 3842 // Allocation idiom
 3843 pipe_class pipe_cmpxchg(rRegP dst, rRegP heap_ptr)
 3844 %{
 3845     instruction_count(1); force_serialization;
 3846     fixed_latency(6);
 3847     heap_ptr : S3(read);
 3848     DECODE   : S0(3);
 3849     D0       : S2;
 3850     MEM      : S3;
 3851     ALU      : S3(2);
 3852     dst      : S5(write);
 3853     BR       : S5;
 3854 %}
 3855 
 3856 // Generic big/slow expanded idiom
 3857 pipe_class pipe_slow()
 3858 %{
 3859     instruction_count(10); multiple_bundles; force_serialization;
 3860     fixed_latency(100);
 3861     D0  : S0(2);
 3862     MEM : S3(2);
 3863 %}
 3864 
 3865 // The real do-nothing guy
 3866 pipe_class empty()
 3867 %{
 3868     instruction_count(0);
 3869 %}
 3870 
 3871 // Define the class for the Nop node
 3872 define
 3873 %{
 3874    MachNop = empty;
 3875 %}
 3876 
 3877 %}
 3878 
 3879 //----------INSTRUCTIONS-------------------------------------------------------
 3880 //
 3881 // match      -- States which machine-independent subtree may be replaced
 3882 //               by this instruction.
 3883 // ins_cost   -- The estimated cost of this instruction is used by instruction
 3884 //               selection to identify a minimum cost tree of machine
 3885 //               instructions that matches a tree of machine-independent
 3886 //               instructions.
 3887 // format     -- A string providing the disassembly for this instruction.
 3888 //               The value of an instruction's operand may be inserted
 3889 //               by referring to it with a '$' prefix.
 3890 // opcode     -- Three instruction opcodes may be provided.  These are referred
 3891 //               to within an encode class as $primary, $secondary, and $tertiary
 3892 //               rrspectively.  The primary opcode is commonly used to
 3893 //               indicate the type of machine instruction, while secondary
 3894 //               and tertiary are often used for prefix options or addressing
 3895 //               modes.
 3896 // ins_encode -- A list of encode classes with parameters. The encode class
 3897 //               name must have been defined in an 'enc_class' specification
 3898 //               in the encode section of the architecture description.
 3899 
 3900 // Dummy reg-to-reg vector moves. Removed during post-selection cleanup.
 3901 // Load Float
 3902 instruct MoveF2VL(vlRegF dst, regF src) %{
 3903   match(Set dst src);
 3904   format %{ "movss $dst,$src\t! load float (4 bytes)" %}
 3905   ins_encode %{
 3906     ShouldNotReachHere();
 3907   %}
 3908   ins_pipe( fpu_reg_reg );
 3909 %}
 3910 
 3911 // Load Float
 3912 instruct MoveF2LEG(legRegF dst, regF src) %{
 3913   match(Set dst src);
 3914   format %{ "movss $dst,$src\t# if src != dst load float (4 bytes)" %}
 3915   ins_encode %{
 3916     ShouldNotReachHere();
 3917   %}
 3918   ins_pipe( fpu_reg_reg );
 3919 %}
 3920 
 3921 // Load Float
 3922 instruct MoveVL2F(regF dst, vlRegF src) %{
 3923   match(Set dst src);
 3924   format %{ "movss $dst,$src\t! load float (4 bytes)" %}
 3925   ins_encode %{
 3926     ShouldNotReachHere();
 3927   %}
 3928   ins_pipe( fpu_reg_reg );
 3929 %}
 3930 
 3931 // Load Float
 3932 instruct MoveLEG2F(regF dst, legRegF src) %{
 3933   match(Set dst src);
 3934   format %{ "movss $dst,$src\t# if src != dst load float (4 bytes)" %}
 3935   ins_encode %{
 3936     ShouldNotReachHere();
 3937   %}
 3938   ins_pipe( fpu_reg_reg );
 3939 %}
 3940 
 3941 // Load Double
 3942 instruct MoveD2VL(vlRegD dst, regD src) %{
 3943   match(Set dst src);
 3944   format %{ "movsd $dst,$src\t! load double (8 bytes)" %}
 3945   ins_encode %{
 3946     ShouldNotReachHere();
 3947   %}
 3948   ins_pipe( fpu_reg_reg );
 3949 %}
 3950 
 3951 // Load Double
 3952 instruct MoveD2LEG(legRegD dst, regD src) %{
 3953   match(Set dst src);
 3954   format %{ "movsd $dst,$src\t# if src != dst load double (8 bytes)" %}
 3955   ins_encode %{
 3956     ShouldNotReachHere();
 3957   %}
 3958   ins_pipe( fpu_reg_reg );
 3959 %}
 3960 
 3961 // Load Double
 3962 instruct MoveVL2D(regD dst, vlRegD src) %{
 3963   match(Set dst src);
 3964   format %{ "movsd $dst,$src\t! load double (8 bytes)" %}
 3965   ins_encode %{
 3966     ShouldNotReachHere();
 3967   %}
 3968   ins_pipe( fpu_reg_reg );
 3969 %}
 3970 
 3971 // Load Double
 3972 instruct MoveLEG2D(regD dst, legRegD src) %{
 3973   match(Set dst src);
 3974   format %{ "movsd $dst,$src\t# if src != dst load double (8 bytes)" %}
 3975   ins_encode %{
 3976     ShouldNotReachHere();
 3977   %}
 3978   ins_pipe( fpu_reg_reg );
 3979 %}
 3980 
 3981 //----------Load/Store/Move Instructions---------------------------------------
 3982 //----------Load Instructions--------------------------------------------------
 3983 
 3984 // Load Byte (8 bit signed)
 3985 instruct loadB(rRegI dst, memory mem)
 3986 %{
 3987   match(Set dst (LoadB mem));
 3988 
 3989   ins_cost(125);
 3990   format %{ "movsbl  $dst, $mem\t# byte" %}
 3991 
 3992   ins_encode %{
 3993     __ movsbl($dst$$Register, $mem$$Address);
 3994   %}
 3995 
 3996   ins_pipe(ialu_reg_mem);
 3997 %}
 3998 
 3999 // Load Byte (8 bit signed) into Long Register
 4000 instruct loadB2L(rRegL dst, memory mem)
 4001 %{
 4002   match(Set dst (ConvI2L (LoadB mem)));
 4003 
 4004   ins_cost(125);
 4005   format %{ "movsbq  $dst, $mem\t# byte -> long" %}
 4006 
 4007   ins_encode %{
 4008     __ movsbq($dst$$Register, $mem$$Address);
 4009   %}
 4010 
 4011   ins_pipe(ialu_reg_mem);
 4012 %}
 4013 
 4014 // Load Unsigned Byte (8 bit UNsigned)
 4015 instruct loadUB(rRegI dst, memory mem)
 4016 %{
 4017   match(Set dst (LoadUB mem));
 4018 
 4019   ins_cost(125);
 4020   format %{ "movzbl  $dst, $mem\t# ubyte" %}
 4021 
 4022   ins_encode %{
 4023     __ movzbl($dst$$Register, $mem$$Address);
 4024   %}
 4025 
 4026   ins_pipe(ialu_reg_mem);
 4027 %}
 4028 
 4029 // Load Unsigned Byte (8 bit UNsigned) into Long Register
 4030 instruct loadUB2L(rRegL dst, memory mem)
 4031 %{
 4032   match(Set dst (ConvI2L (LoadUB mem)));
 4033 
 4034   ins_cost(125);
 4035   format %{ "movzbq  $dst, $mem\t# ubyte -> long" %}
 4036 
 4037   ins_encode %{
 4038     __ movzbq($dst$$Register, $mem$$Address);
 4039   %}
 4040 
 4041   ins_pipe(ialu_reg_mem);
 4042 %}
 4043 
 4044 // Load Unsigned Byte (8 bit UNsigned) with 32-bit mask into Long Register
 4045 instruct loadUB2L_immI(rRegL dst, memory mem, immI mask, rFlagsReg cr) %{
 4046   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
 4047   effect(KILL cr);
 4048 
 4049   format %{ "movzbq  $dst, $mem\t# ubyte & 32-bit mask -> long\n\t"
 4050             "andl    $dst, right_n_bits($mask, 8)" %}
 4051   ins_encode %{
 4052     Register Rdst = $dst$$Register;
 4053     __ movzbq(Rdst, $mem$$Address);
 4054     __ andl(Rdst, $mask$$constant & right_n_bits(8));
 4055   %}
 4056   ins_pipe(ialu_reg_mem);
 4057 %}
 4058 
 4059 // Load Short (16 bit signed)
 4060 instruct loadS(rRegI dst, memory mem)
 4061 %{
 4062   match(Set dst (LoadS mem));
 4063 
 4064   ins_cost(125);
 4065   format %{ "movswl $dst, $mem\t# short" %}
 4066 
 4067   ins_encode %{
 4068     __ movswl($dst$$Register, $mem$$Address);
 4069   %}
 4070 
 4071   ins_pipe(ialu_reg_mem);
 4072 %}
 4073 
 4074 // Load Short (16 bit signed) to Byte (8 bit signed)
 4075 instruct loadS2B(rRegI dst, memory mem, immI_24 twentyfour) %{
 4076   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
 4077 
 4078   ins_cost(125);
 4079   format %{ "movsbl $dst, $mem\t# short -> byte" %}
 4080   ins_encode %{
 4081     __ movsbl($dst$$Register, $mem$$Address);
 4082   %}
 4083   ins_pipe(ialu_reg_mem);
 4084 %}
 4085 
 4086 // Load Short (16 bit signed) into Long Register
 4087 instruct loadS2L(rRegL dst, memory mem)
 4088 %{
 4089   match(Set dst (ConvI2L (LoadS mem)));
 4090 
 4091   ins_cost(125);
 4092   format %{ "movswq $dst, $mem\t# short -> long" %}
 4093 
 4094   ins_encode %{
 4095     __ movswq($dst$$Register, $mem$$Address);
 4096   %}
 4097 
 4098   ins_pipe(ialu_reg_mem);
 4099 %}
 4100 
 4101 // Load Unsigned Short/Char (16 bit UNsigned)
 4102 instruct loadUS(rRegI dst, memory mem)
 4103 %{
 4104   match(Set dst (LoadUS mem));
 4105 
 4106   ins_cost(125);
 4107   format %{ "movzwl  $dst, $mem\t# ushort/char" %}
 4108 
 4109   ins_encode %{
 4110     __ movzwl($dst$$Register, $mem$$Address);
 4111   %}
 4112 
 4113   ins_pipe(ialu_reg_mem);
 4114 %}
 4115 
 4116 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
 4117 instruct loadUS2B(rRegI dst, memory mem, immI_24 twentyfour) %{
 4118   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
 4119 
 4120   ins_cost(125);
 4121   format %{ "movsbl $dst, $mem\t# ushort -> byte" %}
 4122   ins_encode %{
 4123     __ movsbl($dst$$Register, $mem$$Address);
 4124   %}
 4125   ins_pipe(ialu_reg_mem);
 4126 %}
 4127 
 4128 // Load Unsigned Short/Char (16 bit UNsigned) into Long Register
 4129 instruct loadUS2L(rRegL dst, memory mem)
 4130 %{
 4131   match(Set dst (ConvI2L (LoadUS mem)));
 4132 
 4133   ins_cost(125);
 4134   format %{ "movzwq  $dst, $mem\t# ushort/char -> long" %}
 4135 
 4136   ins_encode %{
 4137     __ movzwq($dst$$Register, $mem$$Address);
 4138   %}
 4139 
 4140   ins_pipe(ialu_reg_mem);
 4141 %}
 4142 
 4143 // Load Unsigned Short/Char (16 bit UNsigned) with mask 0xFF into Long Register
 4144 instruct loadUS2L_immI_255(rRegL dst, memory mem, immI_255 mask) %{
 4145   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
 4146 
 4147   format %{ "movzbq  $dst, $mem\t# ushort/char & 0xFF -> long" %}
 4148   ins_encode %{
 4149     __ movzbq($dst$$Register, $mem$$Address);
 4150   %}
 4151   ins_pipe(ialu_reg_mem);
 4152 %}
 4153 
 4154 // Load Unsigned Short/Char (16 bit UNsigned) with 32-bit mask into Long Register
 4155 instruct loadUS2L_immI(rRegL dst, memory mem, immI mask, rFlagsReg cr) %{
 4156   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
 4157   effect(KILL cr);
 4158 
 4159   format %{ "movzwq  $dst, $mem\t# ushort/char & 32-bit mask -> long\n\t"
 4160             "andl    $dst, right_n_bits($mask, 16)" %}
 4161   ins_encode %{
 4162     Register Rdst = $dst$$Register;
 4163     __ movzwq(Rdst, $mem$$Address);
 4164     __ andl(Rdst, $mask$$constant & right_n_bits(16));
 4165   %}
 4166   ins_pipe(ialu_reg_mem);
 4167 %}
 4168 
 4169 // Load Integer
 4170 instruct loadI(rRegI dst, memory mem)
 4171 %{
 4172   match(Set dst (LoadI mem));
 4173 
 4174   ins_cost(125);
 4175   format %{ "movl    $dst, $mem\t# int" %}
 4176 
 4177   ins_encode %{
 4178     __ movl($dst$$Register, $mem$$Address);
 4179   %}
 4180 
 4181   ins_pipe(ialu_reg_mem);
 4182 %}
 4183 
 4184 // Load Integer (32 bit signed) to Byte (8 bit signed)
 4185 instruct loadI2B(rRegI dst, memory mem, immI_24 twentyfour) %{
 4186   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
 4187 
 4188   ins_cost(125);
 4189   format %{ "movsbl  $dst, $mem\t# int -> byte" %}
 4190   ins_encode %{
 4191     __ movsbl($dst$$Register, $mem$$Address);
 4192   %}
 4193   ins_pipe(ialu_reg_mem);
 4194 %}
 4195 
 4196 // Load Integer (32 bit signed) to Unsigned Byte (8 bit UNsigned)
 4197 instruct loadI2UB(rRegI dst, memory mem, immI_255 mask) %{
 4198   match(Set dst (AndI (LoadI mem) mask));
 4199 
 4200   ins_cost(125);
 4201   format %{ "movzbl  $dst, $mem\t# int -> ubyte" %}
 4202   ins_encode %{
 4203     __ movzbl($dst$$Register, $mem$$Address);
 4204   %}
 4205   ins_pipe(ialu_reg_mem);
 4206 %}
 4207 
 4208 // Load Integer (32 bit signed) to Short (16 bit signed)
 4209 instruct loadI2S(rRegI dst, memory mem, immI_16 sixteen) %{
 4210   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
 4211 
 4212   ins_cost(125);
 4213   format %{ "movswl  $dst, $mem\t# int -> short" %}
 4214   ins_encode %{
 4215     __ movswl($dst$$Register, $mem$$Address);
 4216   %}
 4217   ins_pipe(ialu_reg_mem);
 4218 %}
 4219 
 4220 // Load Integer (32 bit signed) to Unsigned Short/Char (16 bit UNsigned)
 4221 instruct loadI2US(rRegI dst, memory mem, immI_65535 mask) %{
 4222   match(Set dst (AndI (LoadI mem) mask));
 4223 
 4224   ins_cost(125);
 4225   format %{ "movzwl  $dst, $mem\t# int -> ushort/char" %}
 4226   ins_encode %{
 4227     __ movzwl($dst$$Register, $mem$$Address);
 4228   %}
 4229   ins_pipe(ialu_reg_mem);
 4230 %}
 4231 
 4232 // Load Integer into Long Register
 4233 instruct loadI2L(rRegL dst, memory mem)
 4234 %{
 4235   match(Set dst (ConvI2L (LoadI mem)));
 4236 
 4237   ins_cost(125);
 4238   format %{ "movslq  $dst, $mem\t# int -> long" %}
 4239 
 4240   ins_encode %{
 4241     __ movslq($dst$$Register, $mem$$Address);
 4242   %}
 4243 
 4244   ins_pipe(ialu_reg_mem);
 4245 %}
 4246 
 4247 // Load Integer with mask 0xFF into Long Register
 4248 instruct loadI2L_immI_255(rRegL dst, memory mem, immI_255 mask) %{
 4249   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
 4250 
 4251   format %{ "movzbq  $dst, $mem\t# int & 0xFF -> long" %}
 4252   ins_encode %{
 4253     __ movzbq($dst$$Register, $mem$$Address);
 4254   %}
 4255   ins_pipe(ialu_reg_mem);
 4256 %}
 4257 
 4258 // Load Integer with mask 0xFFFF into Long Register
 4259 instruct loadI2L_immI_65535(rRegL dst, memory mem, immI_65535 mask) %{
 4260   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
 4261 
 4262   format %{ "movzwq  $dst, $mem\t# int & 0xFFFF -> long" %}
 4263   ins_encode %{
 4264     __ movzwq($dst$$Register, $mem$$Address);
 4265   %}
 4266   ins_pipe(ialu_reg_mem);
 4267 %}
 4268 
 4269 // Load Integer with a 31-bit mask into Long Register
 4270 instruct loadI2L_immU31(rRegL dst, memory mem, immU31 mask, rFlagsReg cr) %{
 4271   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
 4272   effect(KILL cr);
 4273 
 4274   format %{ "movl    $dst, $mem\t# int & 31-bit mask -> long\n\t"
 4275             "andl    $dst, $mask" %}
 4276   ins_encode %{
 4277     Register Rdst = $dst$$Register;
 4278     __ movl(Rdst, $mem$$Address);
 4279     __ andl(Rdst, $mask$$constant);
 4280   %}
 4281   ins_pipe(ialu_reg_mem);
 4282 %}
 4283 
 4284 // Load Unsigned Integer into Long Register
 4285 instruct loadUI2L(rRegL dst, memory mem, immL_32bits mask)
 4286 %{
 4287   match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
 4288 
 4289   ins_cost(125);
 4290   format %{ "movl    $dst, $mem\t# uint -> long" %}
 4291 
 4292   ins_encode %{
 4293     __ movl($dst$$Register, $mem$$Address);
 4294   %}
 4295 
 4296   ins_pipe(ialu_reg_mem);
 4297 %}
 4298 
 4299 // Load Long
 4300 instruct loadL(rRegL dst, memory mem)
 4301 %{
 4302   match(Set dst (LoadL mem));
 4303 
 4304   ins_cost(125);
 4305   format %{ "movq    $dst, $mem\t# long" %}
 4306 
 4307   ins_encode %{
 4308     __ movq($dst$$Register, $mem$$Address);
 4309   %}
 4310 
 4311   ins_pipe(ialu_reg_mem); // XXX
 4312 %}
 4313 
 4314 // Load Range
 4315 instruct loadRange(rRegI dst, memory mem)
 4316 %{
 4317   match(Set dst (LoadRange mem));
 4318 
 4319   ins_cost(125); // XXX
 4320   format %{ "movl    $dst, $mem\t# range" %}
 4321   ins_encode %{
 4322     __ movl($dst$$Register, $mem$$Address);
 4323   %}
 4324   ins_pipe(ialu_reg_mem);
 4325 %}
 4326 
 4327 // Load Pointer
 4328 instruct loadP(rRegP dst, memory mem)
 4329 %{
 4330   match(Set dst (LoadP mem));
 4331   predicate(n->as_Load()->barrier_data() == 0);
 4332 
 4333   ins_cost(125); // XXX
 4334   format %{ "movq    $dst, $mem\t# ptr" %}
 4335   ins_encode %{
 4336     __ movq($dst$$Register, $mem$$Address);
 4337   %}
 4338   ins_pipe(ialu_reg_mem); // XXX
 4339 %}
 4340 
 4341 // Load Compressed Pointer
 4342 instruct loadN(rRegN dst, memory mem)
 4343 %{
 4344    predicate(n->as_Load()->barrier_data() == 0);
 4345    match(Set dst (LoadN mem));
 4346 
 4347    ins_cost(125); // XXX
 4348    format %{ "movl    $dst, $mem\t# compressed ptr" %}
 4349    ins_encode %{
 4350      __ movl($dst$$Register, $mem$$Address);
 4351    %}
 4352    ins_pipe(ialu_reg_mem); // XXX
 4353 %}
 4354 
 4355 
 4356 // Load Klass Pointer
 4357 instruct loadKlass(rRegP dst, memory mem)
 4358 %{
 4359   match(Set dst (LoadKlass mem));
 4360 
 4361   ins_cost(125); // XXX
 4362   format %{ "movq    $dst, $mem\t# class" %}
 4363   ins_encode %{
 4364     __ movq($dst$$Register, $mem$$Address);
 4365   %}
 4366   ins_pipe(ialu_reg_mem); // XXX
 4367 %}
 4368 
 4369 // Load narrow Klass Pointer
 4370 instruct loadNKlass(rRegN dst, memory mem)
 4371 %{
 4372   match(Set dst (LoadNKlass mem));
 4373 
 4374   ins_cost(125); // XXX
 4375   format %{ "movl    $dst, $mem\t# compressed klass ptr" %}
 4376   ins_encode %{
 4377     __ movl($dst$$Register, $mem$$Address);
 4378   %}
 4379   ins_pipe(ialu_reg_mem); // XXX
 4380 %}
 4381 
 4382 // Load Float
 4383 instruct loadF(regF dst, memory mem)
 4384 %{
 4385   match(Set dst (LoadF mem));
 4386 
 4387   ins_cost(145); // XXX
 4388   format %{ "movss   $dst, $mem\t# float" %}
 4389   ins_encode %{
 4390     __ movflt($dst$$XMMRegister, $mem$$Address);
 4391   %}
 4392   ins_pipe(pipe_slow); // XXX
 4393 %}
 4394 
 4395 // Load Double
 4396 instruct loadD_partial(regD dst, memory mem)
 4397 %{
 4398   predicate(!UseXmmLoadAndClearUpper);
 4399   match(Set dst (LoadD mem));
 4400 
 4401   ins_cost(145); // XXX
 4402   format %{ "movlpd  $dst, $mem\t# double" %}
 4403   ins_encode %{
 4404     __ movdbl($dst$$XMMRegister, $mem$$Address);
 4405   %}
 4406   ins_pipe(pipe_slow); // XXX
 4407 %}
 4408 
 4409 instruct loadD(regD dst, memory mem)
 4410 %{
 4411   predicate(UseXmmLoadAndClearUpper);
 4412   match(Set dst (LoadD mem));
 4413 
 4414   ins_cost(145); // XXX
 4415   format %{ "movsd   $dst, $mem\t# double" %}
 4416   ins_encode %{
 4417     __ movdbl($dst$$XMMRegister, $mem$$Address);
 4418   %}
 4419   ins_pipe(pipe_slow); // XXX
 4420 %}
 4421 
 4422 // max = java.lang.Math.max(float a, float b)
 4423 instruct maxF_reg(legRegF dst, legRegF a, legRegF b, legRegF tmp, legRegF atmp, legRegF btmp) %{
 4424   predicate(UseAVX > 0 && !VLoopReductions::is_reduction(n));
 4425   match(Set dst (MaxF a b));
 4426   effect(USE a, USE b, TEMP tmp, TEMP atmp, TEMP btmp);
 4427   format %{ "maxF $dst, $a, $b \t! using tmp, atmp and btmp as TEMP" %}
 4428   ins_encode %{
 4429     __ vminmax_fp(Op_MaxV, T_FLOAT, $dst$$XMMRegister, $a$$XMMRegister, $b$$XMMRegister, $tmp$$XMMRegister, $atmp$$XMMRegister, $btmp$$XMMRegister, Assembler::AVX_128bit);
 4430   %}
 4431   ins_pipe( pipe_slow );
 4432 %}
 4433 
 4434 instruct maxF_reduction_reg(legRegF dst, legRegF a, legRegF b, legRegF xmmt, rRegI tmp, rFlagsReg cr) %{
 4435   predicate(UseAVX > 0 && VLoopReductions::is_reduction(n));
 4436   match(Set dst (MaxF a b));
 4437   effect(USE a, USE b, TEMP xmmt, TEMP tmp, KILL cr);
 4438 
 4439   format %{ "$dst = max($a, $b)\t# intrinsic (float)" %}
 4440   ins_encode %{
 4441     emit_fp_min_max(masm, $dst$$XMMRegister, $a$$XMMRegister, $b$$XMMRegister, $xmmt$$XMMRegister, $tmp$$Register,
 4442                     false /*min*/, true /*single*/);
 4443   %}
 4444   ins_pipe( pipe_slow );
 4445 %}
 4446 
 4447 // max = java.lang.Math.max(double a, double b)
 4448 instruct maxD_reg(legRegD dst, legRegD a, legRegD b, legRegD tmp, legRegD atmp, legRegD btmp) %{
 4449   predicate(UseAVX > 0 && !VLoopReductions::is_reduction(n));
 4450   match(Set dst (MaxD a b));
 4451   effect(USE a, USE b, TEMP atmp, TEMP btmp, TEMP tmp);
 4452   format %{ "maxD $dst, $a, $b \t! using tmp, atmp and btmp as TEMP" %}
 4453   ins_encode %{
 4454     __ vminmax_fp(Op_MaxV, T_DOUBLE, $dst$$XMMRegister, $a$$XMMRegister, $b$$XMMRegister, $tmp$$XMMRegister, $atmp$$XMMRegister, $btmp$$XMMRegister, Assembler::AVX_128bit);
 4455   %}
 4456   ins_pipe( pipe_slow );
 4457 %}
 4458 
 4459 instruct maxD_reduction_reg(legRegD dst, legRegD a, legRegD b, legRegD xmmt, rRegL tmp, rFlagsReg cr) %{
 4460   predicate(UseAVX > 0 && VLoopReductions::is_reduction(n));
 4461   match(Set dst (MaxD a b));
 4462   effect(USE a, USE b, TEMP xmmt, TEMP tmp, KILL cr);
 4463 
 4464   format %{ "$dst = max($a, $b)\t# intrinsic (double)" %}
 4465   ins_encode %{
 4466     emit_fp_min_max(masm, $dst$$XMMRegister, $a$$XMMRegister, $b$$XMMRegister, $xmmt$$XMMRegister, $tmp$$Register,
 4467                     false /*min*/, false /*single*/);
 4468   %}
 4469   ins_pipe( pipe_slow );
 4470 %}
 4471 
 4472 // min = java.lang.Math.min(float a, float b)
 4473 instruct minF_reg(legRegF dst, legRegF a, legRegF b, legRegF tmp, legRegF atmp, legRegF btmp) %{
 4474   predicate(UseAVX > 0 && !VLoopReductions::is_reduction(n));
 4475   match(Set dst (MinF a b));
 4476   effect(USE a, USE b, TEMP tmp, TEMP atmp, TEMP btmp);
 4477   format %{ "minF $dst, $a, $b \t! using tmp, atmp and btmp as TEMP" %}
 4478   ins_encode %{
 4479     __ vminmax_fp(Op_MinV, T_FLOAT, $dst$$XMMRegister, $a$$XMMRegister, $b$$XMMRegister, $tmp$$XMMRegister, $atmp$$XMMRegister, $btmp$$XMMRegister, Assembler::AVX_128bit);
 4480   %}
 4481   ins_pipe( pipe_slow );
 4482 %}
 4483 
 4484 instruct minF_reduction_reg(legRegF dst, legRegF a, legRegF b, legRegF xmmt, rRegI tmp, rFlagsReg cr) %{
 4485   predicate(UseAVX > 0 && VLoopReductions::is_reduction(n));
 4486   match(Set dst (MinF a b));
 4487   effect(USE a, USE b, TEMP xmmt, TEMP tmp, KILL cr);
 4488 
 4489   format %{ "$dst = min($a, $b)\t# intrinsic (float)" %}
 4490   ins_encode %{
 4491     emit_fp_min_max(masm, $dst$$XMMRegister, $a$$XMMRegister, $b$$XMMRegister, $xmmt$$XMMRegister, $tmp$$Register,
 4492                     true /*min*/, true /*single*/);
 4493   %}
 4494   ins_pipe( pipe_slow );
 4495 %}
 4496 
 4497 // min = java.lang.Math.min(double a, double b)
 4498 instruct minD_reg(legRegD dst, legRegD a, legRegD b, legRegD tmp, legRegD atmp, legRegD btmp) %{
 4499   predicate(UseAVX > 0 && !VLoopReductions::is_reduction(n));
 4500   match(Set dst (MinD a b));
 4501   effect(USE a, USE b, TEMP tmp, TEMP atmp, TEMP btmp);
 4502     format %{ "minD $dst, $a, $b \t! using tmp, atmp and btmp as TEMP" %}
 4503   ins_encode %{
 4504     __ vminmax_fp(Op_MinV, T_DOUBLE, $dst$$XMMRegister, $a$$XMMRegister, $b$$XMMRegister, $tmp$$XMMRegister, $atmp$$XMMRegister, $btmp$$XMMRegister, Assembler::AVX_128bit);
 4505   %}
 4506   ins_pipe( pipe_slow );
 4507 %}
 4508 
 4509 instruct minD_reduction_reg(legRegD dst, legRegD a, legRegD b, legRegD xmmt, rRegL tmp, rFlagsReg cr) %{
 4510   predicate(UseAVX > 0 && VLoopReductions::is_reduction(n));
 4511   match(Set dst (MinD a b));
 4512   effect(USE a, USE b, TEMP xmmt, TEMP tmp, KILL cr);
 4513 
 4514   format %{ "$dst = min($a, $b)\t# intrinsic (double)" %}
 4515   ins_encode %{
 4516     emit_fp_min_max(masm, $dst$$XMMRegister, $a$$XMMRegister, $b$$XMMRegister, $xmmt$$XMMRegister, $tmp$$Register,
 4517                     true /*min*/, false /*single*/);
 4518   %}
 4519   ins_pipe( pipe_slow );
 4520 %}
 4521 
 4522 // Load Effective Address
 4523 instruct leaP8(rRegP dst, indOffset8 mem)
 4524 %{
 4525   match(Set dst mem);
 4526 
 4527   ins_cost(110); // XXX
 4528   format %{ "leaq    $dst, $mem\t# ptr 8" %}
 4529   ins_encode %{
 4530     __ leaq($dst$$Register, $mem$$Address);
 4531   %}
 4532   ins_pipe(ialu_reg_reg_fat);
 4533 %}
 4534 
 4535 instruct leaP32(rRegP dst, indOffset32 mem)
 4536 %{
 4537   match(Set dst mem);
 4538 
 4539   ins_cost(110);
 4540   format %{ "leaq    $dst, $mem\t# ptr 32" %}
 4541   ins_encode %{
 4542     __ leaq($dst$$Register, $mem$$Address);
 4543   %}
 4544   ins_pipe(ialu_reg_reg_fat);
 4545 %}
 4546 
 4547 instruct leaPIdxOff(rRegP dst, indIndexOffset mem)
 4548 %{
 4549   match(Set dst mem);
 4550 
 4551   ins_cost(110);
 4552   format %{ "leaq    $dst, $mem\t# ptr idxoff" %}
 4553   ins_encode %{
 4554     __ leaq($dst$$Register, $mem$$Address);
 4555   %}
 4556   ins_pipe(ialu_reg_reg_fat);
 4557 %}
 4558 
 4559 instruct leaPIdxScale(rRegP dst, indIndexScale mem)
 4560 %{
 4561   match(Set dst mem);
 4562 
 4563   ins_cost(110);
 4564   format %{ "leaq    $dst, $mem\t# ptr idxscale" %}
 4565   ins_encode %{
 4566     __ leaq($dst$$Register, $mem$$Address);
 4567   %}
 4568   ins_pipe(ialu_reg_reg_fat);
 4569 %}
 4570 
 4571 instruct leaPPosIdxScale(rRegP dst, indPosIndexScale mem)
 4572 %{
 4573   match(Set dst mem);
 4574 
 4575   ins_cost(110);
 4576   format %{ "leaq    $dst, $mem\t# ptr idxscale" %}
 4577   ins_encode %{
 4578     __ leaq($dst$$Register, $mem$$Address);
 4579   %}
 4580   ins_pipe(ialu_reg_reg_fat);
 4581 %}
 4582 
 4583 instruct leaPIdxScaleOff(rRegP dst, indIndexScaleOffset mem)
 4584 %{
 4585   match(Set dst mem);
 4586 
 4587   ins_cost(110);
 4588   format %{ "leaq    $dst, $mem\t# ptr idxscaleoff" %}
 4589   ins_encode %{
 4590     __ leaq($dst$$Register, $mem$$Address);
 4591   %}
 4592   ins_pipe(ialu_reg_reg_fat);
 4593 %}
 4594 
 4595 instruct leaPPosIdxOff(rRegP dst, indPosIndexOffset mem)
 4596 %{
 4597   match(Set dst mem);
 4598 
 4599   ins_cost(110);
 4600   format %{ "leaq    $dst, $mem\t# ptr posidxoff" %}
 4601   ins_encode %{
 4602     __ leaq($dst$$Register, $mem$$Address);
 4603   %}
 4604   ins_pipe(ialu_reg_reg_fat);
 4605 %}
 4606 
 4607 instruct leaPPosIdxScaleOff(rRegP dst, indPosIndexScaleOffset mem)
 4608 %{
 4609   match(Set dst mem);
 4610 
 4611   ins_cost(110);
 4612   format %{ "leaq    $dst, $mem\t# ptr posidxscaleoff" %}
 4613   ins_encode %{
 4614     __ leaq($dst$$Register, $mem$$Address);
 4615   %}
 4616   ins_pipe(ialu_reg_reg_fat);
 4617 %}
 4618 
 4619 // Load Effective Address which uses Narrow (32-bits) oop
 4620 instruct leaPCompressedOopOffset(rRegP dst, indCompressedOopOffset mem)
 4621 %{
 4622   predicate(UseCompressedOops && (CompressedOops::shift() != 0));
 4623   match(Set dst mem);
 4624 
 4625   ins_cost(110);
 4626   format %{ "leaq    $dst, $mem\t# ptr compressedoopoff32" %}
 4627   ins_encode %{
 4628     __ leaq($dst$$Register, $mem$$Address);
 4629   %}
 4630   ins_pipe(ialu_reg_reg_fat);
 4631 %}
 4632 
 4633 instruct leaP8Narrow(rRegP dst, indOffset8Narrow mem)
 4634 %{
 4635   predicate(CompressedOops::shift() == 0);
 4636   match(Set dst mem);
 4637 
 4638   ins_cost(110); // XXX
 4639   format %{ "leaq    $dst, $mem\t# ptr off8narrow" %}
 4640   ins_encode %{
 4641     __ leaq($dst$$Register, $mem$$Address);
 4642   %}
 4643   ins_pipe(ialu_reg_reg_fat);
 4644 %}
 4645 
 4646 instruct leaP32Narrow(rRegP dst, indOffset32Narrow mem)
 4647 %{
 4648   predicate(CompressedOops::shift() == 0);
 4649   match(Set dst mem);
 4650 
 4651   ins_cost(110);
 4652   format %{ "leaq    $dst, $mem\t# ptr off32narrow" %}
 4653   ins_encode %{
 4654     __ leaq($dst$$Register, $mem$$Address);
 4655   %}
 4656   ins_pipe(ialu_reg_reg_fat);
 4657 %}
 4658 
 4659 instruct leaPIdxOffNarrow(rRegP dst, indIndexOffsetNarrow mem)
 4660 %{
 4661   predicate(CompressedOops::shift() == 0);
 4662   match(Set dst mem);
 4663 
 4664   ins_cost(110);
 4665   format %{ "leaq    $dst, $mem\t# ptr idxoffnarrow" %}
 4666   ins_encode %{
 4667     __ leaq($dst$$Register, $mem$$Address);
 4668   %}
 4669   ins_pipe(ialu_reg_reg_fat);
 4670 %}
 4671 
 4672 instruct leaPIdxScaleNarrow(rRegP dst, indIndexScaleNarrow mem)
 4673 %{
 4674   predicate(CompressedOops::shift() == 0);
 4675   match(Set dst mem);
 4676 
 4677   ins_cost(110);
 4678   format %{ "leaq    $dst, $mem\t# ptr idxscalenarrow" %}
 4679   ins_encode %{
 4680     __ leaq($dst$$Register, $mem$$Address);
 4681   %}
 4682   ins_pipe(ialu_reg_reg_fat);
 4683 %}
 4684 
 4685 instruct leaPIdxScaleOffNarrow(rRegP dst, indIndexScaleOffsetNarrow mem)
 4686 %{
 4687   predicate(CompressedOops::shift() == 0);
 4688   match(Set dst mem);
 4689 
 4690   ins_cost(110);
 4691   format %{ "leaq    $dst, $mem\t# ptr idxscaleoffnarrow" %}
 4692   ins_encode %{
 4693     __ leaq($dst$$Register, $mem$$Address);
 4694   %}
 4695   ins_pipe(ialu_reg_reg_fat);
 4696 %}
 4697 
 4698 instruct leaPPosIdxOffNarrow(rRegP dst, indPosIndexOffsetNarrow mem)
 4699 %{
 4700   predicate(CompressedOops::shift() == 0);
 4701   match(Set dst mem);
 4702 
 4703   ins_cost(110);
 4704   format %{ "leaq    $dst, $mem\t# ptr posidxoffnarrow" %}
 4705   ins_encode %{
 4706     __ leaq($dst$$Register, $mem$$Address);
 4707   %}
 4708   ins_pipe(ialu_reg_reg_fat);
 4709 %}
 4710 
 4711 instruct leaPPosIdxScaleOffNarrow(rRegP dst, indPosIndexScaleOffsetNarrow mem)
 4712 %{
 4713   predicate(CompressedOops::shift() == 0);
 4714   match(Set dst mem);
 4715 
 4716   ins_cost(110);
 4717   format %{ "leaq    $dst, $mem\t# ptr posidxscaleoffnarrow" %}
 4718   ins_encode %{
 4719     __ leaq($dst$$Register, $mem$$Address);
 4720   %}
 4721   ins_pipe(ialu_reg_reg_fat);
 4722 %}
 4723 
 4724 instruct loadConI(rRegI dst, immI src)
 4725 %{
 4726   match(Set dst src);
 4727 
 4728   format %{ "movl    $dst, $src\t# int" %}
 4729   ins_encode %{
 4730     __ movl($dst$$Register, $src$$constant);
 4731   %}
 4732   ins_pipe(ialu_reg_fat); // XXX
 4733 %}
 4734 
 4735 instruct loadConI0(rRegI dst, immI_0 src, rFlagsReg cr)
 4736 %{
 4737   match(Set dst src);
 4738   effect(KILL cr);
 4739 
 4740   ins_cost(50);
 4741   format %{ "xorl    $dst, $dst\t# int" %}
 4742   ins_encode %{
 4743     __ xorl($dst$$Register, $dst$$Register);
 4744   %}
 4745   ins_pipe(ialu_reg);
 4746 %}
 4747 
 4748 instruct loadConL(rRegL dst, immL src)
 4749 %{
 4750   match(Set dst src);
 4751 
 4752   ins_cost(150);
 4753   format %{ "movq    $dst, $src\t# long" %}
 4754   ins_encode %{
 4755     __ mov64($dst$$Register, $src$$constant);
 4756   %}
 4757   ins_pipe(ialu_reg);
 4758 %}
 4759 
 4760 instruct loadConL0(rRegL dst, immL0 src, rFlagsReg cr)
 4761 %{
 4762   match(Set dst src);
 4763   effect(KILL cr);
 4764 
 4765   ins_cost(50);
 4766   format %{ "xorl    $dst, $dst\t# long" %}
 4767   ins_encode %{
 4768     __ xorl($dst$$Register, $dst$$Register);
 4769   %}
 4770   ins_pipe(ialu_reg); // XXX
 4771 %}
 4772 
 4773 instruct loadConUL32(rRegL dst, immUL32 src)
 4774 %{
 4775   match(Set dst src);
 4776 
 4777   ins_cost(60);
 4778   format %{ "movl    $dst, $src\t# long (unsigned 32-bit)" %}
 4779   ins_encode %{
 4780     __ movl($dst$$Register, $src$$constant);
 4781   %}
 4782   ins_pipe(ialu_reg);
 4783 %}
 4784 
 4785 instruct loadConL32(rRegL dst, immL32 src)
 4786 %{
 4787   match(Set dst src);
 4788 
 4789   ins_cost(70);
 4790   format %{ "movq    $dst, $src\t# long (32-bit)" %}
 4791   ins_encode %{
 4792     __ movq($dst$$Register, $src$$constant);
 4793   %}
 4794   ins_pipe(ialu_reg);
 4795 %}
 4796 
 4797 instruct loadConP(rRegP dst, immP con) %{
 4798   match(Set dst con);
 4799 
 4800   format %{ "movq    $dst, $con\t# ptr" %}
 4801   ins_encode %{
 4802     __ mov64($dst$$Register, $con$$constant, $con->constant_reloc(), RELOC_IMM64);
 4803   %}
 4804   ins_pipe(ialu_reg_fat); // XXX
 4805 %}
 4806 
 4807 instruct loadConP0(rRegP dst, immP0 src, rFlagsReg cr)
 4808 %{
 4809   match(Set dst src);
 4810   effect(KILL cr);
 4811 
 4812   ins_cost(50);
 4813   format %{ "xorl    $dst, $dst\t# ptr" %}
 4814   ins_encode %{
 4815     __ xorl($dst$$Register, $dst$$Register);
 4816   %}
 4817   ins_pipe(ialu_reg);
 4818 %}
 4819 
 4820 instruct loadConP31(rRegP dst, immP31 src, rFlagsReg cr)
 4821 %{
 4822   match(Set dst src);
 4823   effect(KILL cr);
 4824 
 4825   ins_cost(60);
 4826   format %{ "movl    $dst, $src\t# ptr (positive 32-bit)" %}
 4827   ins_encode %{
 4828     __ movl($dst$$Register, $src$$constant);
 4829   %}
 4830   ins_pipe(ialu_reg);
 4831 %}
 4832 
 4833 instruct loadConF(regF dst, immF con) %{
 4834   match(Set dst con);
 4835   ins_cost(125);
 4836   format %{ "movss   $dst, [$constantaddress]\t# load from constant table: float=$con" %}
 4837   ins_encode %{
 4838     __ movflt($dst$$XMMRegister, $constantaddress($con));
 4839   %}
 4840   ins_pipe(pipe_slow);
 4841 %}
 4842 
 4843 instruct loadConN0(rRegN dst, immN0 src, rFlagsReg cr) %{
 4844   match(Set dst src);
 4845   effect(KILL cr);
 4846   format %{ "xorq    $dst, $src\t# compressed null pointer" %}
 4847   ins_encode %{
 4848     __ xorq($dst$$Register, $dst$$Register);
 4849   %}
 4850   ins_pipe(ialu_reg);
 4851 %}
 4852 
 4853 instruct loadConN(rRegN dst, immN src) %{
 4854   match(Set dst src);
 4855 
 4856   ins_cost(125);
 4857   format %{ "movl    $dst, $src\t# compressed ptr" %}
 4858   ins_encode %{
 4859     address con = (address)$src$$constant;
 4860     if (con == nullptr) {
 4861       ShouldNotReachHere();
 4862     } else {
 4863       __ set_narrow_oop($dst$$Register, (jobject)$src$$constant);
 4864     }
 4865   %}
 4866   ins_pipe(ialu_reg_fat); // XXX
 4867 %}
 4868 
 4869 instruct loadConNKlass(rRegN dst, immNKlass src) %{
 4870   match(Set dst src);
 4871 
 4872   ins_cost(125);
 4873   format %{ "movl    $dst, $src\t# compressed klass ptr" %}
 4874   ins_encode %{
 4875     address con = (address)$src$$constant;
 4876     if (con == nullptr) {
 4877       ShouldNotReachHere();
 4878     } else {
 4879       __ set_narrow_klass($dst$$Register, (Klass*)$src$$constant);
 4880     }
 4881   %}
 4882   ins_pipe(ialu_reg_fat); // XXX
 4883 %}
 4884 
 4885 instruct loadConF0(regF dst, immF0 src)
 4886 %{
 4887   match(Set dst src);
 4888   ins_cost(100);
 4889 
 4890   format %{ "xorps   $dst, $dst\t# float 0.0" %}
 4891   ins_encode %{
 4892     __ xorps($dst$$XMMRegister, $dst$$XMMRegister);
 4893   %}
 4894   ins_pipe(pipe_slow);
 4895 %}
 4896 
 4897 // Use the same format since predicate() can not be used here.
 4898 instruct loadConD(regD dst, immD con) %{
 4899   match(Set dst con);
 4900   ins_cost(125);
 4901   format %{ "movsd   $dst, [$constantaddress]\t# load from constant table: double=$con" %}
 4902   ins_encode %{
 4903     __ movdbl($dst$$XMMRegister, $constantaddress($con));
 4904   %}
 4905   ins_pipe(pipe_slow);
 4906 %}
 4907 
 4908 instruct loadConD0(regD dst, immD0 src)
 4909 %{
 4910   match(Set dst src);
 4911   ins_cost(100);
 4912 
 4913   format %{ "xorpd   $dst, $dst\t# double 0.0" %}
 4914   ins_encode %{
 4915     __ xorpd($dst$$XMMRegister, $dst$$XMMRegister);
 4916   %}
 4917   ins_pipe(pipe_slow);
 4918 %}
 4919 
 4920 instruct loadSSI(rRegI dst, stackSlotI src)
 4921 %{
 4922   match(Set dst src);
 4923 
 4924   ins_cost(125);
 4925   format %{ "movl    $dst, $src\t# int stk" %}
 4926   ins_encode %{
 4927     __ movl($dst$$Register, $src$$Address);
 4928   %}
 4929   ins_pipe(ialu_reg_mem);
 4930 %}
 4931 
 4932 instruct loadSSL(rRegL dst, stackSlotL src)
 4933 %{
 4934   match(Set dst src);
 4935 
 4936   ins_cost(125);
 4937   format %{ "movq    $dst, $src\t# long stk" %}
 4938   ins_encode %{
 4939     __ movq($dst$$Register, $src$$Address);
 4940   %}
 4941   ins_pipe(ialu_reg_mem);
 4942 %}
 4943 
 4944 instruct loadSSP(rRegP dst, stackSlotP src)
 4945 %{
 4946   match(Set dst src);
 4947 
 4948   ins_cost(125);
 4949   format %{ "movq    $dst, $src\t# ptr stk" %}
 4950   ins_encode %{
 4951     __ movq($dst$$Register, $src$$Address);
 4952   %}
 4953   ins_pipe(ialu_reg_mem);
 4954 %}
 4955 
 4956 instruct loadSSF(regF dst, stackSlotF src)
 4957 %{
 4958   match(Set dst src);
 4959 
 4960   ins_cost(125);
 4961   format %{ "movss   $dst, $src\t# float stk" %}
 4962   ins_encode %{
 4963     __ movflt($dst$$XMMRegister, Address(rsp, $src$$disp));
 4964   %}
 4965   ins_pipe(pipe_slow); // XXX
 4966 %}
 4967 
 4968 // Use the same format since predicate() can not be used here.
 4969 instruct loadSSD(regD dst, stackSlotD src)
 4970 %{
 4971   match(Set dst src);
 4972 
 4973   ins_cost(125);
 4974   format %{ "movsd   $dst, $src\t# double stk" %}
 4975   ins_encode  %{
 4976     __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
 4977   %}
 4978   ins_pipe(pipe_slow); // XXX
 4979 %}
 4980 
 4981 // Prefetch instructions for allocation.
 4982 // Must be safe to execute with invalid address (cannot fault).
 4983 
 4984 instruct prefetchAlloc( memory mem ) %{
 4985   predicate(AllocatePrefetchInstr==3);
 4986   match(PrefetchAllocation mem);
 4987   ins_cost(125);
 4988 
 4989   format %{ "PREFETCHW $mem\t# Prefetch allocation into level 1 cache and mark modified" %}
 4990   ins_encode %{
 4991     __ prefetchw($mem$$Address);
 4992   %}
 4993   ins_pipe(ialu_mem);
 4994 %}
 4995 
 4996 instruct prefetchAllocNTA( memory mem ) %{
 4997   predicate(AllocatePrefetchInstr==0);
 4998   match(PrefetchAllocation mem);
 4999   ins_cost(125);
 5000 
 5001   format %{ "PREFETCHNTA $mem\t# Prefetch allocation to non-temporal cache for write" %}
 5002   ins_encode %{
 5003     __ prefetchnta($mem$$Address);
 5004   %}
 5005   ins_pipe(ialu_mem);
 5006 %}
 5007 
 5008 instruct prefetchAllocT0( memory mem ) %{
 5009   predicate(AllocatePrefetchInstr==1);
 5010   match(PrefetchAllocation mem);
 5011   ins_cost(125);
 5012 
 5013   format %{ "PREFETCHT0 $mem\t# Prefetch allocation to level 1 and 2 caches for write" %}
 5014   ins_encode %{
 5015     __ prefetcht0($mem$$Address);
 5016   %}
 5017   ins_pipe(ialu_mem);
 5018 %}
 5019 
 5020 instruct prefetchAllocT2( memory mem ) %{
 5021   predicate(AllocatePrefetchInstr==2);
 5022   match(PrefetchAllocation mem);
 5023   ins_cost(125);
 5024 
 5025   format %{ "PREFETCHT2 $mem\t# Prefetch allocation to level 2 cache for write" %}
 5026   ins_encode %{
 5027     __ prefetcht2($mem$$Address);
 5028   %}
 5029   ins_pipe(ialu_mem);
 5030 %}
 5031 
 5032 //----------Store Instructions-------------------------------------------------
 5033 
 5034 // Store Byte
 5035 instruct storeB(memory mem, rRegI src)
 5036 %{
 5037   match(Set mem (StoreB mem src));
 5038 
 5039   ins_cost(125); // XXX
 5040   format %{ "movb    $mem, $src\t# byte" %}
 5041   ins_encode %{
 5042     __ movb($mem$$Address, $src$$Register);
 5043   %}
 5044   ins_pipe(ialu_mem_reg);
 5045 %}
 5046 
 5047 // Store Char/Short
 5048 instruct storeC(memory mem, rRegI src)
 5049 %{
 5050   match(Set mem (StoreC mem src));
 5051 
 5052   ins_cost(125); // XXX
 5053   format %{ "movw    $mem, $src\t# char/short" %}
 5054   ins_encode %{
 5055     __ movw($mem$$Address, $src$$Register);
 5056   %}
 5057   ins_pipe(ialu_mem_reg);
 5058 %}
 5059 
 5060 // Store Integer
 5061 instruct storeI(memory mem, rRegI src)
 5062 %{
 5063   match(Set mem (StoreI mem src));
 5064 
 5065   ins_cost(125); // XXX
 5066   format %{ "movl    $mem, $src\t# int" %}
 5067   ins_encode %{
 5068     __ movl($mem$$Address, $src$$Register);
 5069   %}
 5070   ins_pipe(ialu_mem_reg);
 5071 %}
 5072 
 5073 // Store Long
 5074 instruct storeL(memory mem, rRegL src)
 5075 %{
 5076   match(Set mem (StoreL mem src));
 5077 
 5078   ins_cost(125); // XXX
 5079   format %{ "movq    $mem, $src\t# long" %}
 5080   ins_encode %{
 5081     __ movq($mem$$Address, $src$$Register);
 5082   %}
 5083   ins_pipe(ialu_mem_reg); // XXX
 5084 %}
 5085 
 5086 // Store Pointer
 5087 instruct storeP(memory mem, any_RegP src)
 5088 %{
 5089   predicate(n->as_Store()->barrier_data() == 0);
 5090   match(Set mem (StoreP mem src));
 5091 
 5092   ins_cost(125); // XXX
 5093   format %{ "movq    $mem, $src\t# ptr" %}
 5094   ins_encode %{
 5095     __ movq($mem$$Address, $src$$Register);
 5096   %}
 5097   ins_pipe(ialu_mem_reg);
 5098 %}
 5099 
 5100 instruct storeImmP0(memory mem, immP0 zero)
 5101 %{
 5102   predicate(UseCompressedOops && (CompressedOops::base() == nullptr) && n->as_Store()->barrier_data() == 0);
 5103   match(Set mem (StoreP mem zero));
 5104 
 5105   ins_cost(125); // XXX
 5106   format %{ "movq    $mem, R12\t# ptr (R12_heapbase==0)" %}
 5107   ins_encode %{
 5108     __ movq($mem$$Address, r12);
 5109   %}
 5110   ins_pipe(ialu_mem_reg);
 5111 %}
 5112 
 5113 // Store Null Pointer, mark word, or other simple pointer constant.
 5114 instruct storeImmP(memory mem, immP31 src)
 5115 %{
 5116   predicate(n->as_Store()->barrier_data() == 0);
 5117   match(Set mem (StoreP mem src));
 5118 
 5119   ins_cost(150); // XXX
 5120   format %{ "movq    $mem, $src\t# ptr" %}
 5121   ins_encode %{
 5122     __ movq($mem$$Address, $src$$constant);
 5123   %}
 5124   ins_pipe(ialu_mem_imm);
 5125 %}
 5126 
 5127 // Store Compressed Pointer
 5128 instruct storeN(memory mem, rRegN src)
 5129 %{
 5130   predicate(n->as_Store()->barrier_data() == 0);
 5131   match(Set mem (StoreN mem src));
 5132 
 5133   ins_cost(125); // XXX
 5134   format %{ "movl    $mem, $src\t# compressed ptr" %}
 5135   ins_encode %{
 5136     __ movl($mem$$Address, $src$$Register);
 5137   %}
 5138   ins_pipe(ialu_mem_reg);
 5139 %}
 5140 
 5141 instruct storeNKlass(memory mem, rRegN src)
 5142 %{
 5143   match(Set mem (StoreNKlass mem src));
 5144 
 5145   ins_cost(125); // XXX
 5146   format %{ "movl    $mem, $src\t# compressed klass ptr" %}
 5147   ins_encode %{
 5148     __ movl($mem$$Address, $src$$Register);
 5149   %}
 5150   ins_pipe(ialu_mem_reg);
 5151 %}
 5152 
 5153 instruct storeImmN0(memory mem, immN0 zero)
 5154 %{
 5155   predicate(CompressedOops::base() == nullptr && n->as_Store()->barrier_data() == 0);
 5156   match(Set mem (StoreN mem zero));
 5157 
 5158   ins_cost(125); // XXX
 5159   format %{ "movl    $mem, R12\t# compressed ptr (R12_heapbase==0)" %}
 5160   ins_encode %{
 5161     __ movl($mem$$Address, r12);
 5162   %}
 5163   ins_pipe(ialu_mem_reg);
 5164 %}
 5165 
 5166 instruct storeImmN(memory mem, immN src)
 5167 %{
 5168   predicate(n->as_Store()->barrier_data() == 0);
 5169   match(Set mem (StoreN mem src));
 5170 
 5171   ins_cost(150); // XXX
 5172   format %{ "movl    $mem, $src\t# compressed ptr" %}
 5173   ins_encode %{
 5174     address con = (address)$src$$constant;
 5175     if (con == nullptr) {
 5176       __ movl($mem$$Address, 0);
 5177     } else {
 5178       __ set_narrow_oop($mem$$Address, (jobject)$src$$constant);
 5179     }
 5180   %}
 5181   ins_pipe(ialu_mem_imm);
 5182 %}
 5183 
 5184 instruct storeImmNKlass(memory mem, immNKlass src)
 5185 %{
 5186   match(Set mem (StoreNKlass mem src));
 5187 
 5188   ins_cost(150); // XXX
 5189   format %{ "movl    $mem, $src\t# compressed klass ptr" %}
 5190   ins_encode %{
 5191     __ set_narrow_klass($mem$$Address, (Klass*)$src$$constant);
 5192   %}
 5193   ins_pipe(ialu_mem_imm);
 5194 %}
 5195 
 5196 // Store Integer Immediate
 5197 instruct storeImmI0(memory mem, immI_0 zero)
 5198 %{
 5199   predicate(UseCompressedOops && (CompressedOops::base() == nullptr));
 5200   match(Set mem (StoreI mem zero));
 5201 
 5202   ins_cost(125); // XXX
 5203   format %{ "movl    $mem, R12\t# int (R12_heapbase==0)" %}
 5204   ins_encode %{
 5205     __ movl($mem$$Address, r12);
 5206   %}
 5207   ins_pipe(ialu_mem_reg);
 5208 %}
 5209 
 5210 instruct storeImmI(memory mem, immI src)
 5211 %{
 5212   match(Set mem (StoreI mem src));
 5213 
 5214   ins_cost(150);
 5215   format %{ "movl    $mem, $src\t# int" %}
 5216   ins_encode %{
 5217     __ movl($mem$$Address, $src$$constant);
 5218   %}
 5219   ins_pipe(ialu_mem_imm);
 5220 %}
 5221 
 5222 // Store Long Immediate
 5223 instruct storeImmL0(memory mem, immL0 zero)
 5224 %{
 5225   predicate(UseCompressedOops && (CompressedOops::base() == nullptr));
 5226   match(Set mem (StoreL mem zero));
 5227 
 5228   ins_cost(125); // XXX
 5229   format %{ "movq    $mem, R12\t# long (R12_heapbase==0)" %}
 5230   ins_encode %{
 5231     __ movq($mem$$Address, r12);
 5232   %}
 5233   ins_pipe(ialu_mem_reg);
 5234 %}
 5235 
 5236 instruct storeImmL(memory mem, immL32 src)
 5237 %{
 5238   match(Set mem (StoreL mem src));
 5239 
 5240   ins_cost(150);
 5241   format %{ "movq    $mem, $src\t# long" %}
 5242   ins_encode %{
 5243     __ movq($mem$$Address, $src$$constant);
 5244   %}
 5245   ins_pipe(ialu_mem_imm);
 5246 %}
 5247 
 5248 // Store Short/Char Immediate
 5249 instruct storeImmC0(memory mem, immI_0 zero)
 5250 %{
 5251   predicate(UseCompressedOops && (CompressedOops::base() == nullptr));
 5252   match(Set mem (StoreC mem zero));
 5253 
 5254   ins_cost(125); // XXX
 5255   format %{ "movw    $mem, R12\t# short/char (R12_heapbase==0)" %}
 5256   ins_encode %{
 5257     __ movw($mem$$Address, r12);
 5258   %}
 5259   ins_pipe(ialu_mem_reg);
 5260 %}
 5261 
 5262 instruct storeImmI16(memory mem, immI16 src)
 5263 %{
 5264   predicate(UseStoreImmI16);
 5265   match(Set mem (StoreC mem src));
 5266 
 5267   ins_cost(150);
 5268   format %{ "movw    $mem, $src\t# short/char" %}
 5269   ins_encode %{
 5270     __ movw($mem$$Address, $src$$constant);
 5271   %}
 5272   ins_pipe(ialu_mem_imm);
 5273 %}
 5274 
 5275 // Store Byte Immediate
 5276 instruct storeImmB0(memory mem, immI_0 zero)
 5277 %{
 5278   predicate(UseCompressedOops && (CompressedOops::base() == nullptr));
 5279   match(Set mem (StoreB mem zero));
 5280 
 5281   ins_cost(125); // XXX
 5282   format %{ "movb    $mem, R12\t# short/char (R12_heapbase==0)" %}
 5283   ins_encode %{
 5284     __ movb($mem$$Address, r12);
 5285   %}
 5286   ins_pipe(ialu_mem_reg);
 5287 %}
 5288 
 5289 instruct storeImmB(memory mem, immI8 src)
 5290 %{
 5291   match(Set mem (StoreB mem src));
 5292 
 5293   ins_cost(150); // XXX
 5294   format %{ "movb    $mem, $src\t# byte" %}
 5295   ins_encode %{
 5296     __ movb($mem$$Address, $src$$constant);
 5297   %}
 5298   ins_pipe(ialu_mem_imm);
 5299 %}
 5300 
 5301 // Store Float
 5302 instruct storeF(memory mem, regF src)
 5303 %{
 5304   match(Set mem (StoreF mem src));
 5305 
 5306   ins_cost(95); // XXX
 5307   format %{ "movss   $mem, $src\t# float" %}
 5308   ins_encode %{
 5309     __ movflt($mem$$Address, $src$$XMMRegister);
 5310   %}
 5311   ins_pipe(pipe_slow); // XXX
 5312 %}
 5313 
 5314 // Store immediate Float value (it is faster than store from XMM register)
 5315 instruct storeF0(memory mem, immF0 zero)
 5316 %{
 5317   predicate(UseCompressedOops && (CompressedOops::base() == nullptr));
 5318   match(Set mem (StoreF mem zero));
 5319 
 5320   ins_cost(25); // XXX
 5321   format %{ "movl    $mem, R12\t# float 0. (R12_heapbase==0)" %}
 5322   ins_encode %{
 5323     __ movl($mem$$Address, r12);
 5324   %}
 5325   ins_pipe(ialu_mem_reg);
 5326 %}
 5327 
 5328 instruct storeF_imm(memory mem, immF src)
 5329 %{
 5330   match(Set mem (StoreF mem src));
 5331 
 5332   ins_cost(50);
 5333   format %{ "movl    $mem, $src\t# float" %}
 5334   ins_encode %{
 5335     __ movl($mem$$Address, jint_cast($src$$constant));
 5336   %}
 5337   ins_pipe(ialu_mem_imm);
 5338 %}
 5339 
 5340 // Store Double
 5341 instruct storeD(memory mem, regD src)
 5342 %{
 5343   match(Set mem (StoreD mem src));
 5344 
 5345   ins_cost(95); // XXX
 5346   format %{ "movsd   $mem, $src\t# double" %}
 5347   ins_encode %{
 5348     __ movdbl($mem$$Address, $src$$XMMRegister);
 5349   %}
 5350   ins_pipe(pipe_slow); // XXX
 5351 %}
 5352 
 5353 // Store immediate double 0.0 (it is faster than store from XMM register)
 5354 instruct storeD0_imm(memory mem, immD0 src)
 5355 %{
 5356   predicate(!UseCompressedOops || (CompressedOops::base() != nullptr));
 5357   match(Set mem (StoreD mem src));
 5358 
 5359   ins_cost(50);
 5360   format %{ "movq    $mem, $src\t# double 0." %}
 5361   ins_encode %{
 5362     __ movq($mem$$Address, $src$$constant);
 5363   %}
 5364   ins_pipe(ialu_mem_imm);
 5365 %}
 5366 
 5367 instruct storeD0(memory mem, immD0 zero)
 5368 %{
 5369   predicate(UseCompressedOops && (CompressedOops::base() == nullptr));
 5370   match(Set mem (StoreD mem zero));
 5371 
 5372   ins_cost(25); // XXX
 5373   format %{ "movq    $mem, R12\t# double 0. (R12_heapbase==0)" %}
 5374   ins_encode %{
 5375     __ movq($mem$$Address, r12);
 5376   %}
 5377   ins_pipe(ialu_mem_reg);
 5378 %}
 5379 
 5380 instruct storeSSI(stackSlotI dst, rRegI src)
 5381 %{
 5382   match(Set dst src);
 5383 
 5384   ins_cost(100);
 5385   format %{ "movl    $dst, $src\t# int stk" %}
 5386   ins_encode %{
 5387     __ movl($dst$$Address, $src$$Register);
 5388   %}
 5389   ins_pipe( ialu_mem_reg );
 5390 %}
 5391 
 5392 instruct storeSSL(stackSlotL dst, rRegL src)
 5393 %{
 5394   match(Set dst src);
 5395 
 5396   ins_cost(100);
 5397   format %{ "movq    $dst, $src\t# long stk" %}
 5398   ins_encode %{
 5399     __ movq($dst$$Address, $src$$Register);
 5400   %}
 5401   ins_pipe(ialu_mem_reg);
 5402 %}
 5403 
 5404 instruct storeSSP(stackSlotP dst, rRegP src)
 5405 %{
 5406   match(Set dst src);
 5407 
 5408   ins_cost(100);
 5409   format %{ "movq    $dst, $src\t# ptr stk" %}
 5410   ins_encode %{
 5411     __ movq($dst$$Address, $src$$Register);
 5412   %}
 5413   ins_pipe(ialu_mem_reg);
 5414 %}
 5415 
 5416 instruct storeSSF(stackSlotF dst, regF src)
 5417 %{
 5418   match(Set dst src);
 5419 
 5420   ins_cost(95); // XXX
 5421   format %{ "movss   $dst, $src\t# float stk" %}
 5422   ins_encode %{
 5423     __ movflt(Address(rsp, $dst$$disp), $src$$XMMRegister);
 5424   %}
 5425   ins_pipe(pipe_slow); // XXX
 5426 %}
 5427 
 5428 instruct storeSSD(stackSlotD dst, regD src)
 5429 %{
 5430   match(Set dst src);
 5431 
 5432   ins_cost(95); // XXX
 5433   format %{ "movsd   $dst, $src\t# double stk" %}
 5434   ins_encode %{
 5435     __ movdbl(Address(rsp, $dst$$disp), $src$$XMMRegister);
 5436   %}
 5437   ins_pipe(pipe_slow); // XXX
 5438 %}
 5439 
 5440 instruct cacheWB(indirect addr)
 5441 %{
 5442   predicate(VM_Version::supports_data_cache_line_flush());
 5443   match(CacheWB addr);
 5444 
 5445   ins_cost(100);
 5446   format %{"cache wb $addr" %}
 5447   ins_encode %{
 5448     assert($addr->index_position() < 0, "should be");
 5449     assert($addr$$disp == 0, "should be");
 5450     __ cache_wb(Address($addr$$base$$Register, 0));
 5451   %}
 5452   ins_pipe(pipe_slow); // XXX
 5453 %}
 5454 
 5455 instruct cacheWBPreSync()
 5456 %{
 5457   predicate(VM_Version::supports_data_cache_line_flush());
 5458   match(CacheWBPreSync);
 5459 
 5460   ins_cost(100);
 5461   format %{"cache wb presync" %}
 5462   ins_encode %{
 5463     __ cache_wbsync(true);
 5464   %}
 5465   ins_pipe(pipe_slow); // XXX
 5466 %}
 5467 
 5468 instruct cacheWBPostSync()
 5469 %{
 5470   predicate(VM_Version::supports_data_cache_line_flush());
 5471   match(CacheWBPostSync);
 5472 
 5473   ins_cost(100);
 5474   format %{"cache wb postsync" %}
 5475   ins_encode %{
 5476     __ cache_wbsync(false);
 5477   %}
 5478   ins_pipe(pipe_slow); // XXX
 5479 %}
 5480 
 5481 //----------BSWAP Instructions-------------------------------------------------
 5482 instruct bytes_reverse_int(rRegI dst) %{
 5483   match(Set dst (ReverseBytesI dst));
 5484 
 5485   format %{ "bswapl  $dst" %}
 5486   ins_encode %{
 5487     __ bswapl($dst$$Register);
 5488   %}
 5489   ins_pipe( ialu_reg );
 5490 %}
 5491 
 5492 instruct bytes_reverse_long(rRegL dst) %{
 5493   match(Set dst (ReverseBytesL dst));
 5494 
 5495   format %{ "bswapq  $dst" %}
 5496   ins_encode %{
 5497     __ bswapq($dst$$Register);
 5498   %}
 5499   ins_pipe( ialu_reg);
 5500 %}
 5501 
 5502 instruct bytes_reverse_unsigned_short(rRegI dst, rFlagsReg cr) %{
 5503   match(Set dst (ReverseBytesUS dst));
 5504   effect(KILL cr);
 5505 
 5506   format %{ "bswapl  $dst\n\t"
 5507             "shrl    $dst,16\n\t" %}
 5508   ins_encode %{
 5509     __ bswapl($dst$$Register);
 5510     __ shrl($dst$$Register, 16);
 5511   %}
 5512   ins_pipe( ialu_reg );
 5513 %}
 5514 
 5515 instruct bytes_reverse_short(rRegI dst, rFlagsReg cr) %{
 5516   match(Set dst (ReverseBytesS dst));
 5517   effect(KILL cr);
 5518 
 5519   format %{ "bswapl  $dst\n\t"
 5520             "sar     $dst,16\n\t" %}
 5521   ins_encode %{
 5522     __ bswapl($dst$$Register);
 5523     __ sarl($dst$$Register, 16);
 5524   %}
 5525   ins_pipe( ialu_reg );
 5526 %}
 5527 
 5528 //---------- Zeros Count Instructions ------------------------------------------
 5529 
 5530 instruct countLeadingZerosI(rRegI dst, rRegI src, rFlagsReg cr) %{
 5531   predicate(UseCountLeadingZerosInstruction);
 5532   match(Set dst (CountLeadingZerosI src));
 5533   effect(KILL cr);
 5534 
 5535   format %{ "lzcntl  $dst, $src\t# count leading zeros (int)" %}
 5536   ins_encode %{
 5537     __ lzcntl($dst$$Register, $src$$Register);
 5538   %}
 5539   ins_pipe(ialu_reg);
 5540 %}
 5541 
 5542 instruct countLeadingZerosI_mem(rRegI dst, memory src, rFlagsReg cr) %{
 5543   predicate(UseCountLeadingZerosInstruction);
 5544   match(Set dst (CountLeadingZerosI (LoadI src)));
 5545   effect(KILL cr);
 5546   ins_cost(175);
 5547   format %{ "lzcntl  $dst, $src\t# count leading zeros (int)" %}
 5548   ins_encode %{
 5549     __ lzcntl($dst$$Register, $src$$Address);
 5550   %}
 5551   ins_pipe(ialu_reg_mem);
 5552 %}
 5553 
 5554 instruct countLeadingZerosI_bsr(rRegI dst, rRegI src, rFlagsReg cr) %{
 5555   predicate(!UseCountLeadingZerosInstruction);
 5556   match(Set dst (CountLeadingZerosI src));
 5557   effect(KILL cr);
 5558 
 5559   format %{ "bsrl    $dst, $src\t# count leading zeros (int)\n\t"
 5560             "jnz     skip\n\t"
 5561             "movl    $dst, -1\n"
 5562       "skip:\n\t"
 5563             "negl    $dst\n\t"
 5564             "addl    $dst, 31" %}
 5565   ins_encode %{
 5566     Register Rdst = $dst$$Register;
 5567     Register Rsrc = $src$$Register;
 5568     Label skip;
 5569     __ bsrl(Rdst, Rsrc);
 5570     __ jccb(Assembler::notZero, skip);
 5571     __ movl(Rdst, -1);
 5572     __ bind(skip);
 5573     __ negl(Rdst);
 5574     __ addl(Rdst, BitsPerInt - 1);
 5575   %}
 5576   ins_pipe(ialu_reg);
 5577 %}
 5578 
 5579 instruct countLeadingZerosL(rRegI dst, rRegL src, rFlagsReg cr) %{
 5580   predicate(UseCountLeadingZerosInstruction);
 5581   match(Set dst (CountLeadingZerosL src));
 5582   effect(KILL cr);
 5583 
 5584   format %{ "lzcntq  $dst, $src\t# count leading zeros (long)" %}
 5585   ins_encode %{
 5586     __ lzcntq($dst$$Register, $src$$Register);
 5587   %}
 5588   ins_pipe(ialu_reg);
 5589 %}
 5590 
 5591 instruct countLeadingZerosL_mem(rRegI dst, memory src, rFlagsReg cr) %{
 5592   predicate(UseCountLeadingZerosInstruction);
 5593   match(Set dst (CountLeadingZerosL (LoadL src)));
 5594   effect(KILL cr);
 5595   ins_cost(175);
 5596   format %{ "lzcntq  $dst, $src\t# count leading zeros (long)" %}
 5597   ins_encode %{
 5598     __ lzcntq($dst$$Register, $src$$Address);
 5599   %}
 5600   ins_pipe(ialu_reg_mem);
 5601 %}
 5602 
 5603 instruct countLeadingZerosL_bsr(rRegI dst, rRegL src, rFlagsReg cr) %{
 5604   predicate(!UseCountLeadingZerosInstruction);
 5605   match(Set dst (CountLeadingZerosL src));
 5606   effect(KILL cr);
 5607 
 5608   format %{ "bsrq    $dst, $src\t# count leading zeros (long)\n\t"
 5609             "jnz     skip\n\t"
 5610             "movl    $dst, -1\n"
 5611       "skip:\n\t"
 5612             "negl    $dst\n\t"
 5613             "addl    $dst, 63" %}
 5614   ins_encode %{
 5615     Register Rdst = $dst$$Register;
 5616     Register Rsrc = $src$$Register;
 5617     Label skip;
 5618     __ bsrq(Rdst, Rsrc);
 5619     __ jccb(Assembler::notZero, skip);
 5620     __ movl(Rdst, -1);
 5621     __ bind(skip);
 5622     __ negl(Rdst);
 5623     __ addl(Rdst, BitsPerLong - 1);
 5624   %}
 5625   ins_pipe(ialu_reg);
 5626 %}
 5627 
 5628 instruct countTrailingZerosI(rRegI dst, rRegI src, rFlagsReg cr) %{
 5629   predicate(UseCountTrailingZerosInstruction);
 5630   match(Set dst (CountTrailingZerosI src));
 5631   effect(KILL cr);
 5632 
 5633   format %{ "tzcntl    $dst, $src\t# count trailing zeros (int)" %}
 5634   ins_encode %{
 5635     __ tzcntl($dst$$Register, $src$$Register);
 5636   %}
 5637   ins_pipe(ialu_reg);
 5638 %}
 5639 
 5640 instruct countTrailingZerosI_mem(rRegI dst, memory src, rFlagsReg cr) %{
 5641   predicate(UseCountTrailingZerosInstruction);
 5642   match(Set dst (CountTrailingZerosI (LoadI src)));
 5643   effect(KILL cr);
 5644   ins_cost(175);
 5645   format %{ "tzcntl    $dst, $src\t# count trailing zeros (int)" %}
 5646   ins_encode %{
 5647     __ tzcntl($dst$$Register, $src$$Address);
 5648   %}
 5649   ins_pipe(ialu_reg_mem);
 5650 %}
 5651 
 5652 instruct countTrailingZerosI_bsf(rRegI dst, rRegI src, rFlagsReg cr) %{
 5653   predicate(!UseCountTrailingZerosInstruction);
 5654   match(Set dst (CountTrailingZerosI src));
 5655   effect(KILL cr);
 5656 
 5657   format %{ "bsfl    $dst, $src\t# count trailing zeros (int)\n\t"
 5658             "jnz     done\n\t"
 5659             "movl    $dst, 32\n"
 5660       "done:" %}
 5661   ins_encode %{
 5662     Register Rdst = $dst$$Register;
 5663     Label done;
 5664     __ bsfl(Rdst, $src$$Register);
 5665     __ jccb(Assembler::notZero, done);
 5666     __ movl(Rdst, BitsPerInt);
 5667     __ bind(done);
 5668   %}
 5669   ins_pipe(ialu_reg);
 5670 %}
 5671 
 5672 instruct countTrailingZerosL(rRegI dst, rRegL src, rFlagsReg cr) %{
 5673   predicate(UseCountTrailingZerosInstruction);
 5674   match(Set dst (CountTrailingZerosL src));
 5675   effect(KILL cr);
 5676 
 5677   format %{ "tzcntq    $dst, $src\t# count trailing zeros (long)" %}
 5678   ins_encode %{
 5679     __ tzcntq($dst$$Register, $src$$Register);
 5680   %}
 5681   ins_pipe(ialu_reg);
 5682 %}
 5683 
 5684 instruct countTrailingZerosL_mem(rRegI dst, memory src, rFlagsReg cr) %{
 5685   predicate(UseCountTrailingZerosInstruction);
 5686   match(Set dst (CountTrailingZerosL (LoadL src)));
 5687   effect(KILL cr);
 5688   ins_cost(175);
 5689   format %{ "tzcntq    $dst, $src\t# count trailing zeros (long)" %}
 5690   ins_encode %{
 5691     __ tzcntq($dst$$Register, $src$$Address);
 5692   %}
 5693   ins_pipe(ialu_reg_mem);
 5694 %}
 5695 
 5696 instruct countTrailingZerosL_bsf(rRegI dst, rRegL src, rFlagsReg cr) %{
 5697   predicate(!UseCountTrailingZerosInstruction);
 5698   match(Set dst (CountTrailingZerosL src));
 5699   effect(KILL cr);
 5700 
 5701   format %{ "bsfq    $dst, $src\t# count trailing zeros (long)\n\t"
 5702             "jnz     done\n\t"
 5703             "movl    $dst, 64\n"
 5704       "done:" %}
 5705   ins_encode %{
 5706     Register Rdst = $dst$$Register;
 5707     Label done;
 5708     __ bsfq(Rdst, $src$$Register);
 5709     __ jccb(Assembler::notZero, done);
 5710     __ movl(Rdst, BitsPerLong);
 5711     __ bind(done);
 5712   %}
 5713   ins_pipe(ialu_reg);
 5714 %}
 5715 
 5716 //--------------- Reverse Operation Instructions ----------------
 5717 instruct bytes_reversebit_int(rRegI dst, rRegI src, rRegI rtmp, rFlagsReg cr) %{
 5718   predicate(!VM_Version::supports_gfni());
 5719   match(Set dst (ReverseI src));
 5720   effect(TEMP dst, TEMP rtmp, KILL cr);
 5721   format %{ "reverse_int $dst $src\t! using $rtmp as TEMP" %}
 5722   ins_encode %{
 5723     __ reverseI($dst$$Register, $src$$Register, xnoreg, xnoreg, $rtmp$$Register);
 5724   %}
 5725   ins_pipe( ialu_reg );
 5726 %}
 5727 
 5728 instruct bytes_reversebit_int_gfni(rRegI dst, rRegI src, vlRegF xtmp1, vlRegF xtmp2, rRegL rtmp, rFlagsReg cr) %{
 5729   predicate(VM_Version::supports_gfni());
 5730   match(Set dst (ReverseI src));
 5731   effect(TEMP dst, TEMP xtmp1, TEMP xtmp2, TEMP rtmp, KILL cr);
 5732   format %{ "reverse_int $dst $src\t! using $rtmp, $xtmp1 and $xtmp2 as TEMP" %}
 5733   ins_encode %{
 5734     __ reverseI($dst$$Register, $src$$Register, $xtmp1$$XMMRegister, $xtmp2$$XMMRegister, $rtmp$$Register);
 5735   %}
 5736   ins_pipe( ialu_reg );
 5737 %}
 5738 
 5739 instruct bytes_reversebit_long(rRegL dst, rRegL src, rRegL rtmp1, rRegL rtmp2, rFlagsReg cr) %{
 5740   predicate(!VM_Version::supports_gfni());
 5741   match(Set dst (ReverseL src));
 5742   effect(TEMP dst, TEMP rtmp1, TEMP rtmp2, KILL cr);
 5743   format %{ "reverse_long $dst $src\t! using $rtmp1 and $rtmp2 as TEMP" %}
 5744   ins_encode %{
 5745     __ reverseL($dst$$Register, $src$$Register, xnoreg, xnoreg, $rtmp1$$Register, $rtmp2$$Register);
 5746   %}
 5747   ins_pipe( ialu_reg );
 5748 %}
 5749 
 5750 instruct bytes_reversebit_long_gfni(rRegL dst, rRegL src, vlRegD xtmp1, vlRegD xtmp2, rRegL rtmp, rFlagsReg cr) %{
 5751   predicate(VM_Version::supports_gfni());
 5752   match(Set dst (ReverseL src));
 5753   effect(TEMP dst, TEMP xtmp1, TEMP xtmp2, TEMP rtmp, KILL cr);
 5754   format %{ "reverse_long $dst $src\t! using $rtmp, $xtmp1 and $xtmp2 as TEMP" %}
 5755   ins_encode %{
 5756     __ reverseL($dst$$Register, $src$$Register, $xtmp1$$XMMRegister, $xtmp2$$XMMRegister, $rtmp$$Register, noreg);
 5757   %}
 5758   ins_pipe( ialu_reg );
 5759 %}
 5760 
 5761 //---------- Population Count Instructions -------------------------------------
 5762 
 5763 instruct popCountI(rRegI dst, rRegI src, rFlagsReg cr) %{
 5764   predicate(UsePopCountInstruction);
 5765   match(Set dst (PopCountI src));
 5766   effect(KILL cr);
 5767 
 5768   format %{ "popcnt  $dst, $src" %}
 5769   ins_encode %{
 5770     __ popcntl($dst$$Register, $src$$Register);
 5771   %}
 5772   ins_pipe(ialu_reg);
 5773 %}
 5774 
 5775 instruct popCountI_mem(rRegI dst, memory mem, rFlagsReg cr) %{
 5776   predicate(UsePopCountInstruction);
 5777   match(Set dst (PopCountI (LoadI mem)));
 5778   effect(KILL cr);
 5779 
 5780   format %{ "popcnt  $dst, $mem" %}
 5781   ins_encode %{
 5782     __ popcntl($dst$$Register, $mem$$Address);
 5783   %}
 5784   ins_pipe(ialu_reg);
 5785 %}
 5786 
 5787 // Note: Long.bitCount(long) returns an int.
 5788 instruct popCountL(rRegI dst, rRegL src, rFlagsReg cr) %{
 5789   predicate(UsePopCountInstruction);
 5790   match(Set dst (PopCountL src));
 5791   effect(KILL cr);
 5792 
 5793   format %{ "popcnt  $dst, $src" %}
 5794   ins_encode %{
 5795     __ popcntq($dst$$Register, $src$$Register);
 5796   %}
 5797   ins_pipe(ialu_reg);
 5798 %}
 5799 
 5800 // Note: Long.bitCount(long) returns an int.
 5801 instruct popCountL_mem(rRegI dst, memory mem, rFlagsReg cr) %{
 5802   predicate(UsePopCountInstruction);
 5803   match(Set dst (PopCountL (LoadL mem)));
 5804   effect(KILL cr);
 5805 
 5806   format %{ "popcnt  $dst, $mem" %}
 5807   ins_encode %{
 5808     __ popcntq($dst$$Register, $mem$$Address);
 5809   %}
 5810   ins_pipe(ialu_reg);
 5811 %}
 5812 
 5813 
 5814 //----------MemBar Instructions-----------------------------------------------
 5815 // Memory barrier flavors
 5816 
 5817 instruct membar_acquire()
 5818 %{
 5819   match(MemBarAcquire);
 5820   match(LoadFence);
 5821   ins_cost(0);
 5822 
 5823   size(0);
 5824   format %{ "MEMBAR-acquire ! (empty encoding)" %}
 5825   ins_encode();
 5826   ins_pipe(empty);
 5827 %}
 5828 
 5829 instruct membar_acquire_lock()
 5830 %{
 5831   match(MemBarAcquireLock);
 5832   ins_cost(0);
 5833 
 5834   size(0);
 5835   format %{ "MEMBAR-acquire (prior CMPXCHG in FastLock so empty encoding)" %}
 5836   ins_encode();
 5837   ins_pipe(empty);
 5838 %}
 5839 
 5840 instruct membar_release()
 5841 %{
 5842   match(MemBarRelease);
 5843   match(StoreFence);
 5844   ins_cost(0);
 5845 
 5846   size(0);
 5847   format %{ "MEMBAR-release ! (empty encoding)" %}
 5848   ins_encode();
 5849   ins_pipe(empty);
 5850 %}
 5851 
 5852 instruct membar_release_lock()
 5853 %{
 5854   match(MemBarReleaseLock);
 5855   ins_cost(0);
 5856 
 5857   size(0);
 5858   format %{ "MEMBAR-release (a FastUnlock follows so empty encoding)" %}
 5859   ins_encode();
 5860   ins_pipe(empty);
 5861 %}
 5862 
 5863 instruct membar_volatile(rFlagsReg cr) %{
 5864   match(MemBarVolatile);
 5865   effect(KILL cr);
 5866   ins_cost(400);
 5867 
 5868   format %{
 5869     $$template
 5870     $$emit$$"lock addl [rsp + #0], 0\t! membar_volatile"
 5871   %}
 5872   ins_encode %{
 5873     __ membar(Assembler::StoreLoad);
 5874   %}
 5875   ins_pipe(pipe_slow);
 5876 %}
 5877 
 5878 instruct unnecessary_membar_volatile()
 5879 %{
 5880   match(MemBarVolatile);
 5881   predicate(Matcher::post_store_load_barrier(n));
 5882   ins_cost(0);
 5883 
 5884   size(0);
 5885   format %{ "MEMBAR-volatile (unnecessary so empty encoding)" %}
 5886   ins_encode();
 5887   ins_pipe(empty);
 5888 %}
 5889 
 5890 instruct membar_storestore() %{
 5891   match(MemBarStoreStore);
 5892   match(StoreStoreFence);
 5893   ins_cost(0);
 5894 
 5895   size(0);
 5896   format %{ "MEMBAR-storestore (empty encoding)" %}
 5897   ins_encode( );
 5898   ins_pipe(empty);
 5899 %}
 5900 
 5901 //----------Move Instructions--------------------------------------------------
 5902 
 5903 instruct castX2P(rRegP dst, rRegL src)
 5904 %{
 5905   match(Set dst (CastX2P src));
 5906 
 5907   format %{ "movq    $dst, $src\t# long->ptr" %}
 5908   ins_encode %{
 5909     if ($dst$$reg != $src$$reg) {
 5910       __ movptr($dst$$Register, $src$$Register);
 5911     }
 5912   %}
 5913   ins_pipe(ialu_reg_reg); // XXX
 5914 %}
 5915 
 5916 instruct castP2X(rRegL dst, rRegP src)
 5917 %{
 5918   match(Set dst (CastP2X src));
 5919 
 5920   format %{ "movq    $dst, $src\t# ptr -> long" %}
 5921   ins_encode %{
 5922     if ($dst$$reg != $src$$reg) {
 5923       __ movptr($dst$$Register, $src$$Register);
 5924     }
 5925   %}
 5926   ins_pipe(ialu_reg_reg); // XXX
 5927 %}
 5928 
 5929 // Convert oop into int for vectors alignment masking
 5930 instruct convP2I(rRegI dst, rRegP src)
 5931 %{
 5932   match(Set dst (ConvL2I (CastP2X src)));
 5933 
 5934   format %{ "movl    $dst, $src\t# ptr -> int" %}
 5935   ins_encode %{
 5936     __ movl($dst$$Register, $src$$Register);
 5937   %}
 5938   ins_pipe(ialu_reg_reg); // XXX
 5939 %}
 5940 
 5941 // Convert compressed oop into int for vectors alignment masking
 5942 // in case of 32bit oops (heap < 4Gb).
 5943 instruct convN2I(rRegI dst, rRegN src)
 5944 %{
 5945   predicate(CompressedOops::shift() == 0);
 5946   match(Set dst (ConvL2I (CastP2X (DecodeN src))));
 5947 
 5948   format %{ "movl    $dst, $src\t# compressed ptr -> int" %}
 5949   ins_encode %{
 5950     __ movl($dst$$Register, $src$$Register);
 5951   %}
 5952   ins_pipe(ialu_reg_reg); // XXX
 5953 %}
 5954 
 5955 // Convert oop pointer into compressed form
 5956 instruct encodeHeapOop(rRegN dst, rRegP src, rFlagsReg cr) %{
 5957   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
 5958   match(Set dst (EncodeP src));
 5959   effect(KILL cr);
 5960   format %{ "encode_heap_oop $dst,$src" %}
 5961   ins_encode %{
 5962     Register s = $src$$Register;
 5963     Register d = $dst$$Register;
 5964     if (s != d) {
 5965       __ movq(d, s);
 5966     }
 5967     __ encode_heap_oop(d);
 5968   %}
 5969   ins_pipe(ialu_reg_long);
 5970 %}
 5971 
 5972 instruct encodeHeapOop_not_null(rRegN dst, rRegP src, rFlagsReg cr) %{
 5973   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
 5974   match(Set dst (EncodeP src));
 5975   effect(KILL cr);
 5976   format %{ "encode_heap_oop_not_null $dst,$src" %}
 5977   ins_encode %{
 5978     __ encode_heap_oop_not_null($dst$$Register, $src$$Register);
 5979   %}
 5980   ins_pipe(ialu_reg_long);
 5981 %}
 5982 
 5983 instruct decodeHeapOop(rRegP dst, rRegN src, rFlagsReg cr) %{
 5984   predicate(n->bottom_type()->is_ptr()->ptr() != TypePtr::NotNull &&
 5985             n->bottom_type()->is_ptr()->ptr() != TypePtr::Constant);
 5986   match(Set dst (DecodeN src));
 5987   effect(KILL cr);
 5988   format %{ "decode_heap_oop $dst,$src" %}
 5989   ins_encode %{
 5990     Register s = $src$$Register;
 5991     Register d = $dst$$Register;
 5992     if (s != d) {
 5993       __ movq(d, s);
 5994     }
 5995     __ decode_heap_oop(d);
 5996   %}
 5997   ins_pipe(ialu_reg_long);
 5998 %}
 5999 
 6000 instruct decodeHeapOop_not_null(rRegP dst, rRegN src, rFlagsReg cr) %{
 6001   predicate(n->bottom_type()->is_ptr()->ptr() == TypePtr::NotNull ||
 6002             n->bottom_type()->is_ptr()->ptr() == TypePtr::Constant);
 6003   match(Set dst (DecodeN src));
 6004   effect(KILL cr);
 6005   format %{ "decode_heap_oop_not_null $dst,$src" %}
 6006   ins_encode %{
 6007     Register s = $src$$Register;
 6008     Register d = $dst$$Register;
 6009     if (s != d) {
 6010       __ decode_heap_oop_not_null(d, s);
 6011     } else {
 6012       __ decode_heap_oop_not_null(d);
 6013     }
 6014   %}
 6015   ins_pipe(ialu_reg_long);
 6016 %}
 6017 
 6018 instruct encodeKlass_not_null(rRegN dst, rRegP src, rFlagsReg cr) %{
 6019   match(Set dst (EncodePKlass src));
 6020   effect(TEMP dst, KILL cr);
 6021   format %{ "encode_and_move_klass_not_null $dst,$src" %}
 6022   ins_encode %{
 6023     __ encode_and_move_klass_not_null($dst$$Register, $src$$Register);
 6024   %}
 6025   ins_pipe(ialu_reg_long);
 6026 %}
 6027 
 6028 instruct decodeKlass_not_null(rRegP dst, rRegN src, rFlagsReg cr) %{
 6029   match(Set dst (DecodeNKlass src));
 6030   effect(TEMP dst, KILL cr);
 6031   format %{ "decode_and_move_klass_not_null $dst,$src" %}
 6032   ins_encode %{
 6033     __ decode_and_move_klass_not_null($dst$$Register, $src$$Register);
 6034   %}
 6035   ins_pipe(ialu_reg_long);
 6036 %}
 6037 
 6038 //----------Conditional Move---------------------------------------------------
 6039 // Jump
 6040 // dummy instruction for generating temp registers
 6041 instruct jumpXtnd_offset(rRegL switch_val, immI2 shift, rRegI dest) %{
 6042   match(Jump (LShiftL switch_val shift));
 6043   ins_cost(350);
 6044   predicate(false);
 6045   effect(TEMP dest);
 6046 
 6047   format %{ "leaq    $dest, [$constantaddress]\n\t"
 6048             "jmp     [$dest + $switch_val << $shift]\n\t" %}
 6049   ins_encode %{
 6050     // We could use jump(ArrayAddress) except that the macro assembler needs to use r10
 6051     // to do that and the compiler is using that register as one it can allocate.
 6052     // So we build it all by hand.
 6053     // Address index(noreg, switch_reg, (Address::ScaleFactor)$shift$$constant);
 6054     // ArrayAddress dispatch(table, index);
 6055     Address dispatch($dest$$Register, $switch_val$$Register, (Address::ScaleFactor) $shift$$constant);
 6056     __ lea($dest$$Register, $constantaddress);
 6057     __ jmp(dispatch);
 6058   %}
 6059   ins_pipe(pipe_jmp);
 6060 %}
 6061 
 6062 instruct jumpXtnd_addr(rRegL switch_val, immI2 shift, immL32 offset, rRegI dest) %{
 6063   match(Jump (AddL (LShiftL switch_val shift) offset));
 6064   ins_cost(350);
 6065   effect(TEMP dest);
 6066 
 6067   format %{ "leaq    $dest, [$constantaddress]\n\t"
 6068             "jmp     [$dest + $switch_val << $shift + $offset]\n\t" %}
 6069   ins_encode %{
 6070     // We could use jump(ArrayAddress) except that the macro assembler needs to use r10
 6071     // to do that and the compiler is using that register as one it can allocate.
 6072     // So we build it all by hand.
 6073     // Address index(noreg, switch_reg, (Address::ScaleFactor) $shift$$constant, (int) $offset$$constant);
 6074     // ArrayAddress dispatch(table, index);
 6075     Address dispatch($dest$$Register, $switch_val$$Register, (Address::ScaleFactor) $shift$$constant, (int) $offset$$constant);
 6076     __ lea($dest$$Register, $constantaddress);
 6077     __ jmp(dispatch);
 6078   %}
 6079   ins_pipe(pipe_jmp);
 6080 %}
 6081 
 6082 instruct jumpXtnd(rRegL switch_val, rRegI dest) %{
 6083   match(Jump switch_val);
 6084   ins_cost(350);
 6085   effect(TEMP dest);
 6086 
 6087   format %{ "leaq    $dest, [$constantaddress]\n\t"
 6088             "jmp     [$dest + $switch_val]\n\t" %}
 6089   ins_encode %{
 6090     // We could use jump(ArrayAddress) except that the macro assembler needs to use r10
 6091     // to do that and the compiler is using that register as one it can allocate.
 6092     // So we build it all by hand.
 6093     // Address index(noreg, switch_reg, Address::times_1);
 6094     // ArrayAddress dispatch(table, index);
 6095     Address dispatch($dest$$Register, $switch_val$$Register, Address::times_1);
 6096     __ lea($dest$$Register, $constantaddress);
 6097     __ jmp(dispatch);
 6098   %}
 6099   ins_pipe(pipe_jmp);
 6100 %}
 6101 
 6102 // Conditional move
 6103 instruct cmovI_imm_01(rRegI dst, immI_1 src, rFlagsReg cr, cmpOp cop)
 6104 %{
 6105   predicate(n->in(2)->in(2)->is_Con() && n->in(2)->in(2)->get_int() == 0);
 6106   match(Set dst (CMoveI (Binary cop cr) (Binary src dst)));
 6107 
 6108   ins_cost(100); // XXX
 6109   format %{ "setbn$cop $dst\t# signed, int" %}
 6110   ins_encode %{
 6111     Assembler::Condition cond = (Assembler::Condition)($cop$$cmpcode);
 6112     __ setb(MacroAssembler::negate_condition(cond), $dst$$Register);
 6113   %}
 6114   ins_pipe(ialu_reg);
 6115 %}
 6116 
 6117 instruct cmovI_reg(rRegI dst, rRegI src, rFlagsReg cr, cmpOp cop)
 6118 %{
 6119   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
 6120 
 6121   ins_cost(200); // XXX
 6122   format %{ "cmovl$cop $dst, $src\t# signed, int" %}
 6123   ins_encode %{
 6124     __ cmovl((Assembler::Condition)($cop$$cmpcode), $dst$$Register, $src$$Register);
 6125   %}
 6126   ins_pipe(pipe_cmov_reg);
 6127 %}
 6128 
 6129 instruct cmovI_imm_01U(rRegI dst, immI_1 src, rFlagsRegU cr, cmpOpU cop)
 6130 %{
 6131   predicate(n->in(2)->in(2)->is_Con() && n->in(2)->in(2)->get_int() == 0);
 6132   match(Set dst (CMoveI (Binary cop cr) (Binary src dst)));
 6133 
 6134   ins_cost(100); // XXX
 6135   format %{ "setbn$cop $dst\t# unsigned, int" %}
 6136   ins_encode %{
 6137     Assembler::Condition cond = (Assembler::Condition)($cop$$cmpcode);
 6138     __ setb(MacroAssembler::negate_condition(cond), $dst$$Register);
 6139   %}
 6140   ins_pipe(ialu_reg);
 6141 %}
 6142 
 6143 instruct cmovI_regU(cmpOpU cop, rFlagsRegU cr, rRegI dst, rRegI src) %{
 6144   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
 6145 
 6146   ins_cost(200); // XXX
 6147   format %{ "cmovl$cop $dst, $src\t# unsigned, int" %}
 6148   ins_encode %{
 6149     __ cmovl((Assembler::Condition)($cop$$cmpcode), $dst$$Register, $src$$Register);
 6150   %}
 6151   ins_pipe(pipe_cmov_reg);
 6152 %}
 6153 
 6154 instruct cmovI_imm_01UCF(rRegI dst, immI_1 src, rFlagsRegUCF cr, cmpOpUCF cop)
 6155 %{
 6156   predicate(n->in(2)->in(2)->is_Con() && n->in(2)->in(2)->get_int() == 0);
 6157   match(Set dst (CMoveI (Binary cop cr) (Binary src dst)));
 6158 
 6159   ins_cost(100); // XXX
 6160   format %{ "setbn$cop $dst\t# unsigned, int" %}
 6161   ins_encode %{
 6162     Assembler::Condition cond = (Assembler::Condition)($cop$$cmpcode);
 6163     __ setb(MacroAssembler::negate_condition(cond), $dst$$Register);
 6164   %}
 6165   ins_pipe(ialu_reg);
 6166 %}
 6167 
 6168 instruct cmovI_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegI dst, rRegI src) %{
 6169   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
 6170   ins_cost(200);
 6171   expand %{
 6172     cmovI_regU(cop, cr, dst, src);
 6173   %}
 6174 %}
 6175 
 6176 instruct cmovI_regUCF2_ne(cmpOpUCF2 cop, rFlagsRegUCF cr, rRegI dst, rRegI src) %{
 6177   predicate(n->in(1)->in(1)->as_Bool()->_test._test == BoolTest::ne);
 6178   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
 6179 
 6180   ins_cost(200); // XXX
 6181   format %{ "cmovpl  $dst, $src\n\t"
 6182             "cmovnel $dst, $src" %}
 6183   ins_encode %{
 6184     __ cmovl(Assembler::parity, $dst$$Register, $src$$Register);
 6185     __ cmovl(Assembler::notEqual, $dst$$Register, $src$$Register);
 6186   %}
 6187   ins_pipe(pipe_cmov_reg);
 6188 %}
 6189 
 6190 // Since (x == y) == !(x != y), we can flip the sense of the test by flipping the
 6191 // inputs of the CMove
 6192 instruct cmovI_regUCF2_eq(cmpOpUCF2 cop, rFlagsRegUCF cr, rRegI dst, rRegI src) %{
 6193   predicate(n->in(1)->in(1)->as_Bool()->_test._test == BoolTest::eq);
 6194   match(Set dst (CMoveI (Binary cop cr) (Binary src dst)));
 6195 
 6196   ins_cost(200); // XXX
 6197   format %{ "cmovpl  $dst, $src\n\t"
 6198             "cmovnel $dst, $src" %}
 6199   ins_encode %{
 6200     __ cmovl(Assembler::parity, $dst$$Register, $src$$Register);
 6201     __ cmovl(Assembler::notEqual, $dst$$Register, $src$$Register);
 6202   %}
 6203   ins_pipe(pipe_cmov_reg);
 6204 %}
 6205 
 6206 // Conditional move
 6207 instruct cmovI_mem(cmpOp cop, rFlagsReg cr, rRegI dst, memory src) %{
 6208   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
 6209 
 6210   ins_cost(250); // XXX
 6211   format %{ "cmovl$cop $dst, $src\t# signed, int" %}
 6212   ins_encode %{
 6213     __ cmovl((Assembler::Condition)($cop$$cmpcode), $dst$$Register, $src$$Address);
 6214   %}
 6215   ins_pipe(pipe_cmov_mem);
 6216 %}
 6217 
 6218 // Conditional move
 6219 instruct cmovI_memU(cmpOpU cop, rFlagsRegU cr, rRegI dst, memory src)
 6220 %{
 6221   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
 6222 
 6223   ins_cost(250); // XXX
 6224   format %{ "cmovl$cop $dst, $src\t# unsigned, int" %}
 6225   ins_encode %{
 6226     __ cmovl((Assembler::Condition)($cop$$cmpcode), $dst$$Register, $src$$Address);
 6227   %}
 6228   ins_pipe(pipe_cmov_mem);
 6229 %}
 6230 
 6231 instruct cmovI_memUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegI dst, memory src) %{
 6232   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
 6233   ins_cost(250);
 6234   expand %{
 6235     cmovI_memU(cop, cr, dst, src);
 6236   %}
 6237 %}
 6238 
 6239 // Conditional move
 6240 instruct cmovN_reg(rRegN dst, rRegN src, rFlagsReg cr, cmpOp cop)
 6241 %{
 6242   match(Set dst (CMoveN (Binary cop cr) (Binary dst src)));
 6243 
 6244   ins_cost(200); // XXX
 6245   format %{ "cmovl$cop $dst, $src\t# signed, compressed ptr" %}
 6246   ins_encode %{
 6247     __ cmovl((Assembler::Condition)($cop$$cmpcode), $dst$$Register, $src$$Register);
 6248   %}
 6249   ins_pipe(pipe_cmov_reg);
 6250 %}
 6251 
 6252 // Conditional move
 6253 instruct cmovN_regU(cmpOpU cop, rFlagsRegU cr, rRegN dst, rRegN src)
 6254 %{
 6255   match(Set dst (CMoveN (Binary cop cr) (Binary dst src)));
 6256 
 6257   ins_cost(200); // XXX
 6258   format %{ "cmovl$cop $dst, $src\t# unsigned, compressed ptr" %}
 6259   ins_encode %{
 6260     __ cmovl((Assembler::Condition)($cop$$cmpcode), $dst$$Register, $src$$Register);
 6261   %}
 6262   ins_pipe(pipe_cmov_reg);
 6263 %}
 6264 
 6265 instruct cmovN_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegN dst, rRegN src) %{
 6266   match(Set dst (CMoveN (Binary cop cr) (Binary dst src)));
 6267   ins_cost(200);
 6268   expand %{
 6269     cmovN_regU(cop, cr, dst, src);
 6270   %}
 6271 %}
 6272 
 6273 instruct cmovN_regUCF2_ne(cmpOpUCF2 cop, rFlagsRegUCF cr, rRegN dst, rRegN src) %{
 6274   predicate(n->in(1)->in(1)->as_Bool()->_test._test == BoolTest::ne);
 6275   match(Set dst (CMoveN (Binary cop cr) (Binary dst src)));
 6276 
 6277   ins_cost(200); // XXX
 6278   format %{ "cmovpl  $dst, $src\n\t"
 6279             "cmovnel $dst, $src" %}
 6280   ins_encode %{
 6281     __ cmovl(Assembler::parity, $dst$$Register, $src$$Register);
 6282     __ cmovl(Assembler::notEqual, $dst$$Register, $src$$Register);
 6283   %}
 6284   ins_pipe(pipe_cmov_reg);
 6285 %}
 6286 
 6287 // Since (x == y) == !(x != y), we can flip the sense of the test by flipping the
 6288 // inputs of the CMove
 6289 instruct cmovN_regUCF2_eq(cmpOpUCF2 cop, rFlagsRegUCF cr, rRegN dst, rRegN src) %{
 6290   predicate(n->in(1)->in(1)->as_Bool()->_test._test == BoolTest::eq);
 6291   match(Set dst (CMoveN (Binary cop cr) (Binary src dst)));
 6292 
 6293   ins_cost(200); // XXX
 6294   format %{ "cmovpl  $dst, $src\n\t"
 6295             "cmovnel $dst, $src" %}
 6296   ins_encode %{
 6297     __ cmovl(Assembler::parity, $dst$$Register, $src$$Register);
 6298     __ cmovl(Assembler::notEqual, $dst$$Register, $src$$Register);
 6299   %}
 6300   ins_pipe(pipe_cmov_reg);
 6301 %}
 6302 
 6303 // Conditional move
 6304 instruct cmovP_reg(rRegP dst, rRegP src, rFlagsReg cr, cmpOp cop)
 6305 %{
 6306   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
 6307 
 6308   ins_cost(200); // XXX
 6309   format %{ "cmovq$cop $dst, $src\t# signed, ptr" %}
 6310   ins_encode %{
 6311     __ cmovq((Assembler::Condition)($cop$$cmpcode), $dst$$Register, $src$$Register);
 6312   %}
 6313   ins_pipe(pipe_cmov_reg);  // XXX
 6314 %}
 6315 
 6316 // Conditional move
 6317 instruct cmovP_regU(cmpOpU cop, rFlagsRegU cr, rRegP dst, rRegP src)
 6318 %{
 6319   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
 6320 
 6321   ins_cost(200); // XXX
 6322   format %{ "cmovq$cop $dst, $src\t# unsigned, ptr" %}
 6323   ins_encode %{
 6324     __ cmovq((Assembler::Condition)($cop$$cmpcode), $dst$$Register, $src$$Register);
 6325   %}
 6326   ins_pipe(pipe_cmov_reg); // XXX
 6327 %}
 6328 
 6329 instruct cmovP_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegP dst, rRegP src) %{
 6330   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
 6331   ins_cost(200);
 6332   expand %{
 6333     cmovP_regU(cop, cr, dst, src);
 6334   %}
 6335 %}
 6336 
 6337 instruct cmovP_regUCF2_ne(cmpOpUCF2 cop, rFlagsRegUCF cr, rRegP dst, rRegP src) %{
 6338   predicate(n->in(1)->in(1)->as_Bool()->_test._test == BoolTest::ne);
 6339   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
 6340 
 6341   ins_cost(200); // XXX
 6342   format %{ "cmovpq  $dst, $src\n\t"
 6343             "cmovneq $dst, $src" %}
 6344   ins_encode %{
 6345     __ cmovq(Assembler::parity, $dst$$Register, $src$$Register);
 6346     __ cmovq(Assembler::notEqual, $dst$$Register, $src$$Register);
 6347   %}
 6348   ins_pipe(pipe_cmov_reg);
 6349 %}
 6350 
 6351 // Since (x == y) == !(x != y), we can flip the sense of the test by flipping the
 6352 // inputs of the CMove
 6353 instruct cmovP_regUCF2_eq(cmpOpUCF2 cop, rFlagsRegUCF cr, rRegP dst, rRegP src) %{
 6354   predicate(n->in(1)->in(1)->as_Bool()->_test._test == BoolTest::eq);
 6355   match(Set dst (CMoveP (Binary cop cr) (Binary src dst)));
 6356 
 6357   ins_cost(200); // XXX
 6358   format %{ "cmovpq  $dst, $src\n\t"
 6359             "cmovneq $dst, $src" %}
 6360   ins_encode %{
 6361     __ cmovq(Assembler::parity, $dst$$Register, $src$$Register);
 6362     __ cmovq(Assembler::notEqual, $dst$$Register, $src$$Register);
 6363   %}
 6364   ins_pipe(pipe_cmov_reg);
 6365 %}
 6366 
 6367 instruct cmovL_imm_01(rRegL dst, immL1 src, rFlagsReg cr, cmpOp cop)
 6368 %{
 6369   predicate(n->in(2)->in(2)->is_Con() && n->in(2)->in(2)->get_long() == 0);
 6370   match(Set dst (CMoveL (Binary cop cr) (Binary src dst)));
 6371 
 6372   ins_cost(100); // XXX
 6373   format %{ "setbn$cop $dst\t# signed, long" %}
 6374   ins_encode %{
 6375     Assembler::Condition cond = (Assembler::Condition)($cop$$cmpcode);
 6376     __ setb(MacroAssembler::negate_condition(cond), $dst$$Register);
 6377   %}
 6378   ins_pipe(ialu_reg);
 6379 %}
 6380 
 6381 instruct cmovL_reg(cmpOp cop, rFlagsReg cr, rRegL dst, rRegL src)
 6382 %{
 6383   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
 6384 
 6385   ins_cost(200); // XXX
 6386   format %{ "cmovq$cop $dst, $src\t# signed, long" %}
 6387   ins_encode %{
 6388     __ cmovq((Assembler::Condition)($cop$$cmpcode), $dst$$Register, $src$$Register);
 6389   %}
 6390   ins_pipe(pipe_cmov_reg);  // XXX
 6391 %}
 6392 
 6393 instruct cmovL_mem(cmpOp cop, rFlagsReg cr, rRegL dst, memory src)
 6394 %{
 6395   match(Set dst (CMoveL (Binary cop cr) (Binary dst (LoadL src))));
 6396 
 6397   ins_cost(200); // XXX
 6398   format %{ "cmovq$cop $dst, $src\t# signed, long" %}
 6399   ins_encode %{
 6400     __ cmovq((Assembler::Condition)($cop$$cmpcode), $dst$$Register, $src$$Address);
 6401   %}
 6402   ins_pipe(pipe_cmov_mem);  // XXX
 6403 %}
 6404 
 6405 instruct cmovL_imm_01U(rRegL dst, immL1 src, rFlagsRegU cr, cmpOpU cop)
 6406 %{
 6407   predicate(n->in(2)->in(2)->is_Con() && n->in(2)->in(2)->get_long() == 0);
 6408   match(Set dst (CMoveL (Binary cop cr) (Binary src dst)));
 6409 
 6410   ins_cost(100); // XXX
 6411   format %{ "setbn$cop $dst\t# unsigned, long" %}
 6412   ins_encode %{
 6413     Assembler::Condition cond = (Assembler::Condition)($cop$$cmpcode);
 6414     __ setb(MacroAssembler::negate_condition(cond), $dst$$Register);
 6415   %}
 6416   ins_pipe(ialu_reg);
 6417 %}
 6418 
 6419 instruct cmovL_regU(cmpOpU cop, rFlagsRegU cr, rRegL dst, rRegL src)
 6420 %{
 6421   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
 6422 
 6423   ins_cost(200); // XXX
 6424   format %{ "cmovq$cop $dst, $src\t# unsigned, long" %}
 6425   ins_encode %{
 6426     __ cmovq((Assembler::Condition)($cop$$cmpcode), $dst$$Register, $src$$Register);
 6427   %}
 6428   ins_pipe(pipe_cmov_reg); // XXX
 6429 %}
 6430 
 6431 instruct cmovL_imm_01UCF(rRegL dst, immL1 src, rFlagsRegUCF cr, cmpOpUCF cop)
 6432 %{
 6433   predicate(n->in(2)->in(2)->is_Con() && n->in(2)->in(2)->get_long() == 0);
 6434   match(Set dst (CMoveL (Binary cop cr) (Binary src dst)));
 6435 
 6436   ins_cost(100); // XXX
 6437   format %{ "setbn$cop $dst\t# unsigned, long" %}
 6438   ins_encode %{
 6439     Assembler::Condition cond = (Assembler::Condition)($cop$$cmpcode);
 6440     __ setb(MacroAssembler::negate_condition(cond), $dst$$Register);
 6441   %}
 6442   ins_pipe(ialu_reg);
 6443 %}
 6444 
 6445 instruct cmovL_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegL dst, rRegL src) %{
 6446   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
 6447   ins_cost(200);
 6448   expand %{
 6449     cmovL_regU(cop, cr, dst, src);
 6450   %}
 6451 %}
 6452 
 6453 instruct cmovL_regUCF2_ne(cmpOpUCF2 cop, rFlagsRegUCF cr, rRegL dst, rRegL src) %{
 6454   predicate(n->in(1)->in(1)->as_Bool()->_test._test == BoolTest::ne);
 6455   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
 6456 
 6457   ins_cost(200); // XXX
 6458   format %{ "cmovpq  $dst, $src\n\t"
 6459             "cmovneq $dst, $src" %}
 6460   ins_encode %{
 6461     __ cmovq(Assembler::parity, $dst$$Register, $src$$Register);
 6462     __ cmovq(Assembler::notEqual, $dst$$Register, $src$$Register);
 6463   %}
 6464   ins_pipe(pipe_cmov_reg);
 6465 %}
 6466 
 6467 // Since (x == y) == !(x != y), we can flip the sense of the test by flipping the
 6468 // inputs of the CMove
 6469 instruct cmovL_regUCF2_eq(cmpOpUCF2 cop, rFlagsRegUCF cr, rRegL dst, rRegL src) %{
 6470   predicate(n->in(1)->in(1)->as_Bool()->_test._test == BoolTest::eq);
 6471   match(Set dst (CMoveL (Binary cop cr) (Binary src dst)));
 6472 
 6473   ins_cost(200); // XXX
 6474   format %{ "cmovpq  $dst, $src\n\t"
 6475             "cmovneq $dst, $src" %}
 6476   ins_encode %{
 6477     __ cmovq(Assembler::parity, $dst$$Register, $src$$Register);
 6478     __ cmovq(Assembler::notEqual, $dst$$Register, $src$$Register);
 6479   %}
 6480   ins_pipe(pipe_cmov_reg);
 6481 %}
 6482 
 6483 instruct cmovL_memU(cmpOpU cop, rFlagsRegU cr, rRegL dst, memory src)
 6484 %{
 6485   match(Set dst (CMoveL (Binary cop cr) (Binary dst (LoadL src))));
 6486 
 6487   ins_cost(200); // XXX
 6488   format %{ "cmovq$cop $dst, $src\t# unsigned, long" %}
 6489   ins_encode %{
 6490     __ cmovq((Assembler::Condition)($cop$$cmpcode), $dst$$Register, $src$$Address);
 6491   %}
 6492   ins_pipe(pipe_cmov_mem); // XXX
 6493 %}
 6494 
 6495 instruct cmovL_memUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegL dst, memory src) %{
 6496   match(Set dst (CMoveL (Binary cop cr) (Binary dst (LoadL src))));
 6497   ins_cost(200);
 6498   expand %{
 6499     cmovL_memU(cop, cr, dst, src);
 6500   %}
 6501 %}
 6502 
 6503 instruct cmovF_reg(cmpOp cop, rFlagsReg cr, regF dst, regF src)
 6504 %{
 6505   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
 6506 
 6507   ins_cost(200); // XXX
 6508   format %{ "jn$cop    skip\t# signed cmove float\n\t"
 6509             "movss     $dst, $src\n"
 6510     "skip:" %}
 6511   ins_encode %{
 6512     Label Lskip;
 6513     // Invert sense of branch from sense of CMOV
 6514     __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
 6515     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
 6516     __ bind(Lskip);
 6517   %}
 6518   ins_pipe(pipe_slow);
 6519 %}
 6520 
 6521 instruct cmovF_regU(cmpOpU cop, rFlagsRegU cr, regF dst, regF src)
 6522 %{
 6523   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
 6524 
 6525   ins_cost(200); // XXX
 6526   format %{ "jn$cop    skip\t# unsigned cmove float\n\t"
 6527             "movss     $dst, $src\n"
 6528     "skip:" %}
 6529   ins_encode %{
 6530     Label Lskip;
 6531     // Invert sense of branch from sense of CMOV
 6532     __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
 6533     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
 6534     __ bind(Lskip);
 6535   %}
 6536   ins_pipe(pipe_slow);
 6537 %}
 6538 
 6539 instruct cmovF_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, regF dst, regF src) %{
 6540   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
 6541   ins_cost(200);
 6542   expand %{
 6543     cmovF_regU(cop, cr, dst, src);
 6544   %}
 6545 %}
 6546 
 6547 instruct cmovD_reg(cmpOp cop, rFlagsReg cr, regD dst, regD src)
 6548 %{
 6549   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
 6550 
 6551   ins_cost(200); // XXX
 6552   format %{ "jn$cop    skip\t# signed cmove double\n\t"
 6553             "movsd     $dst, $src\n"
 6554     "skip:" %}
 6555   ins_encode %{
 6556     Label Lskip;
 6557     // Invert sense of branch from sense of CMOV
 6558     __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
 6559     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
 6560     __ bind(Lskip);
 6561   %}
 6562   ins_pipe(pipe_slow);
 6563 %}
 6564 
 6565 instruct cmovD_regU(cmpOpU cop, rFlagsRegU cr, regD dst, regD src)
 6566 %{
 6567   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
 6568 
 6569   ins_cost(200); // XXX
 6570   format %{ "jn$cop    skip\t# unsigned cmove double\n\t"
 6571             "movsd     $dst, $src\n"
 6572     "skip:" %}
 6573   ins_encode %{
 6574     Label Lskip;
 6575     // Invert sense of branch from sense of CMOV
 6576     __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
 6577     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
 6578     __ bind(Lskip);
 6579   %}
 6580   ins_pipe(pipe_slow);
 6581 %}
 6582 
 6583 instruct cmovD_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, regD dst, regD src) %{
 6584   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
 6585   ins_cost(200);
 6586   expand %{
 6587     cmovD_regU(cop, cr, dst, src);
 6588   %}
 6589 %}
 6590 
 6591 //----------Arithmetic Instructions--------------------------------------------
 6592 //----------Addition Instructions----------------------------------------------
 6593 
 6594 instruct addI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
 6595 %{
 6596   match(Set dst (AddI dst src));
 6597   effect(KILL cr);
 6598   flag(PD::Flag_sets_overflow_flag, PD::Flag_sets_sign_flag, PD::Flag_sets_zero_flag, PD::Flag_sets_carry_flag, PD::Flag_sets_parity_flag);
 6599   format %{ "addl    $dst, $src\t# int" %}
 6600   ins_encode %{
 6601     __ addl($dst$$Register, $src$$Register);
 6602   %}
 6603   ins_pipe(ialu_reg_reg);
 6604 %}
 6605 
 6606 instruct addI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
 6607 %{
 6608   match(Set dst (AddI dst src));
 6609   effect(KILL cr);
 6610   flag(PD::Flag_sets_overflow_flag, PD::Flag_sets_sign_flag, PD::Flag_sets_zero_flag, PD::Flag_sets_carry_flag, PD::Flag_sets_parity_flag);
 6611 
 6612   format %{ "addl    $dst, $src\t# int" %}
 6613   ins_encode %{
 6614     __ addl($dst$$Register, $src$$constant);
 6615   %}
 6616   ins_pipe( ialu_reg );
 6617 %}
 6618 
 6619 instruct addI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
 6620 %{
 6621   match(Set dst (AddI dst (LoadI src)));
 6622   effect(KILL cr);
 6623   flag(PD::Flag_sets_overflow_flag, PD::Flag_sets_sign_flag, PD::Flag_sets_zero_flag, PD::Flag_sets_carry_flag, PD::Flag_sets_parity_flag);
 6624 
 6625   ins_cost(150); // XXX
 6626   format %{ "addl    $dst, $src\t# int" %}
 6627   ins_encode %{
 6628     __ addl($dst$$Register, $src$$Address);
 6629   %}
 6630   ins_pipe(ialu_reg_mem);
 6631 %}
 6632 
 6633 instruct addI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
 6634 %{
 6635   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
 6636   effect(KILL cr);
 6637   flag(PD::Flag_sets_overflow_flag, PD::Flag_sets_sign_flag, PD::Flag_sets_zero_flag, PD::Flag_sets_carry_flag, PD::Flag_sets_parity_flag);
 6638 
 6639   ins_cost(150); // XXX
 6640   format %{ "addl    $dst, $src\t# int" %}
 6641   ins_encode %{
 6642     __ addl($dst$$Address, $src$$Register);
 6643   %}
 6644   ins_pipe(ialu_mem_reg);
 6645 %}
 6646 
 6647 instruct addI_mem_imm(memory dst, immI src, rFlagsReg cr)
 6648 %{
 6649   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
 6650   effect(KILL cr);
 6651   flag(PD::Flag_sets_overflow_flag, PD::Flag_sets_sign_flag, PD::Flag_sets_zero_flag, PD::Flag_sets_carry_flag, PD::Flag_sets_parity_flag);
 6652 
 6653 
 6654   ins_cost(125); // XXX
 6655   format %{ "addl    $dst, $src\t# int" %}
 6656   ins_encode %{
 6657     __ addl($dst$$Address, $src$$constant);
 6658   %}
 6659   ins_pipe(ialu_mem_imm);
 6660 %}
 6661 
 6662 instruct incI_rReg(rRegI dst, immI_1 src, rFlagsReg cr)
 6663 %{
 6664   predicate(UseIncDec);
 6665   match(Set dst (AddI dst src));
 6666   effect(KILL cr);
 6667 
 6668   format %{ "incl    $dst\t# int" %}
 6669   ins_encode %{
 6670     __ incrementl($dst$$Register);
 6671   %}
 6672   ins_pipe(ialu_reg);
 6673 %}
 6674 
 6675 instruct incI_mem(memory dst, immI_1 src, rFlagsReg cr)
 6676 %{
 6677   predicate(UseIncDec);
 6678   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
 6679   effect(KILL cr);
 6680 
 6681   ins_cost(125); // XXX
 6682   format %{ "incl    $dst\t# int" %}
 6683   ins_encode %{
 6684     __ incrementl($dst$$Address);
 6685   %}
 6686   ins_pipe(ialu_mem_imm);
 6687 %}
 6688 
 6689 // XXX why does that use AddI
 6690 instruct decI_rReg(rRegI dst, immI_M1 src, rFlagsReg cr)
 6691 %{
 6692   predicate(UseIncDec);
 6693   match(Set dst (AddI dst src));
 6694   effect(KILL cr);
 6695 
 6696   format %{ "decl    $dst\t# int" %}
 6697   ins_encode %{
 6698     __ decrementl($dst$$Register);
 6699   %}
 6700   ins_pipe(ialu_reg);
 6701 %}
 6702 
 6703 // XXX why does that use AddI
 6704 instruct decI_mem(memory dst, immI_M1 src, rFlagsReg cr)
 6705 %{
 6706   predicate(UseIncDec);
 6707   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
 6708   effect(KILL cr);
 6709 
 6710   ins_cost(125); // XXX
 6711   format %{ "decl    $dst\t# int" %}
 6712   ins_encode %{
 6713     __ decrementl($dst$$Address);
 6714   %}
 6715   ins_pipe(ialu_mem_imm);
 6716 %}
 6717 
 6718 instruct leaI_rReg_immI2_immI(rRegI dst, rRegI index, immI2 scale, immI disp)
 6719 %{
 6720   predicate(VM_Version::supports_fast_2op_lea());
 6721   match(Set dst (AddI (LShiftI index scale) disp));
 6722 
 6723   format %{ "leal $dst, [$index << $scale + $disp]\t# int" %}
 6724   ins_encode %{
 6725     Address::ScaleFactor scale = static_cast<Address::ScaleFactor>($scale$$constant);
 6726     __ leal($dst$$Register, Address(noreg, $index$$Register, scale, $disp$$constant));
 6727   %}
 6728   ins_pipe(ialu_reg_reg);
 6729 %}
 6730 
 6731 instruct leaI_rReg_rReg_immI(rRegI dst, rRegI base, rRegI index, immI disp)
 6732 %{
 6733   predicate(VM_Version::supports_fast_3op_lea());
 6734   match(Set dst (AddI (AddI base index) disp));
 6735 
 6736   format %{ "leal $dst, [$base + $index + $disp]\t# int" %}
 6737   ins_encode %{
 6738     __ leal($dst$$Register, Address($base$$Register, $index$$Register, Address::times_1, $disp$$constant));
 6739   %}
 6740   ins_pipe(ialu_reg_reg);
 6741 %}
 6742 
 6743 instruct leaI_rReg_rReg_immI2(rRegI dst, no_rbp_r13_RegI base, rRegI index, immI2 scale)
 6744 %{
 6745   predicate(VM_Version::supports_fast_2op_lea());
 6746   match(Set dst (AddI base (LShiftI index scale)));
 6747 
 6748   format %{ "leal $dst, [$base + $index << $scale]\t# int" %}
 6749   ins_encode %{
 6750     Address::ScaleFactor scale = static_cast<Address::ScaleFactor>($scale$$constant);
 6751     __ leal($dst$$Register, Address($base$$Register, $index$$Register, scale));
 6752   %}
 6753   ins_pipe(ialu_reg_reg);
 6754 %}
 6755 
 6756 instruct leaI_rReg_rReg_immI2_immI(rRegI dst, rRegI base, rRegI index, immI2 scale, immI disp)
 6757 %{
 6758   predicate(VM_Version::supports_fast_3op_lea());
 6759   match(Set dst (AddI (AddI base (LShiftI index scale)) disp));
 6760 
 6761   format %{ "leal $dst, [$base + $index << $scale + $disp]\t# int" %}
 6762   ins_encode %{
 6763     Address::ScaleFactor scale = static_cast<Address::ScaleFactor>($scale$$constant);
 6764     __ leal($dst$$Register, Address($base$$Register, $index$$Register, scale, $disp$$constant));
 6765   %}
 6766   ins_pipe(ialu_reg_reg);
 6767 %}
 6768 
 6769 instruct addL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
 6770 %{
 6771   match(Set dst (AddL dst src));
 6772   effect(KILL cr);
 6773   flag(PD::Flag_sets_overflow_flag, PD::Flag_sets_sign_flag, PD::Flag_sets_zero_flag, PD::Flag_sets_carry_flag, PD::Flag_sets_parity_flag);
 6774 
 6775   format %{ "addq    $dst, $src\t# long" %}
 6776   ins_encode %{
 6777     __ addq($dst$$Register, $src$$Register);
 6778   %}
 6779   ins_pipe(ialu_reg_reg);
 6780 %}
 6781 
 6782 instruct addL_rReg_imm(rRegL dst, immL32 src, rFlagsReg cr)
 6783 %{
 6784   match(Set dst (AddL dst src));
 6785   effect(KILL cr);
 6786   flag(PD::Flag_sets_overflow_flag, PD::Flag_sets_sign_flag, PD::Flag_sets_zero_flag, PD::Flag_sets_carry_flag, PD::Flag_sets_parity_flag);
 6787 
 6788   format %{ "addq    $dst, $src\t# long" %}
 6789   ins_encode %{
 6790     __ addq($dst$$Register, $src$$constant);
 6791   %}
 6792   ins_pipe( ialu_reg );
 6793 %}
 6794 
 6795 instruct addL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
 6796 %{
 6797   match(Set dst (AddL dst (LoadL src)));
 6798   effect(KILL cr);
 6799   flag(PD::Flag_sets_overflow_flag, PD::Flag_sets_sign_flag, PD::Flag_sets_zero_flag, PD::Flag_sets_carry_flag, PD::Flag_sets_parity_flag);
 6800 
 6801   ins_cost(150); // XXX
 6802   format %{ "addq    $dst, $src\t# long" %}
 6803   ins_encode %{
 6804     __ addq($dst$$Register, $src$$Address);
 6805   %}
 6806   ins_pipe(ialu_reg_mem);
 6807 %}
 6808 
 6809 instruct addL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
 6810 %{
 6811   match(Set dst (StoreL dst (AddL (LoadL dst) src)));
 6812   effect(KILL cr);
 6813   flag(PD::Flag_sets_overflow_flag, PD::Flag_sets_sign_flag, PD::Flag_sets_zero_flag, PD::Flag_sets_carry_flag, PD::Flag_sets_parity_flag);
 6814 
 6815   ins_cost(150); // XXX
 6816   format %{ "addq    $dst, $src\t# long" %}
 6817   ins_encode %{
 6818     __ addq($dst$$Address, $src$$Register);
 6819   %}
 6820   ins_pipe(ialu_mem_reg);
 6821 %}
 6822 
 6823 instruct addL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
 6824 %{
 6825   match(Set dst (StoreL dst (AddL (LoadL dst) src)));
 6826   effect(KILL cr);
 6827   flag(PD::Flag_sets_overflow_flag, PD::Flag_sets_sign_flag, PD::Flag_sets_zero_flag, PD::Flag_sets_carry_flag, PD::Flag_sets_parity_flag);
 6828 
 6829   ins_cost(125); // XXX
 6830   format %{ "addq    $dst, $src\t# long" %}
 6831   ins_encode %{
 6832     __ addq($dst$$Address, $src$$constant);
 6833   %}
 6834   ins_pipe(ialu_mem_imm);
 6835 %}
 6836 
 6837 instruct incL_rReg(rRegI dst, immL1 src, rFlagsReg cr)
 6838 %{
 6839   predicate(UseIncDec);
 6840   match(Set dst (AddL dst src));
 6841   effect(KILL cr);
 6842 
 6843   format %{ "incq    $dst\t# long" %}
 6844   ins_encode %{
 6845     __ incrementq($dst$$Register);
 6846   %}
 6847   ins_pipe(ialu_reg);
 6848 %}
 6849 
 6850 instruct incL_mem(memory dst, immL1 src, rFlagsReg cr)
 6851 %{
 6852   predicate(UseIncDec);
 6853   match(Set dst (StoreL dst (AddL (LoadL dst) src)));
 6854   effect(KILL cr);
 6855 
 6856   ins_cost(125); // XXX
 6857   format %{ "incq    $dst\t# long" %}
 6858   ins_encode %{
 6859     __ incrementq($dst$$Address);
 6860   %}
 6861   ins_pipe(ialu_mem_imm);
 6862 %}
 6863 
 6864 // XXX why does that use AddL
 6865 instruct decL_rReg(rRegL dst, immL_M1 src, rFlagsReg cr)
 6866 %{
 6867   predicate(UseIncDec);
 6868   match(Set dst (AddL dst src));
 6869   effect(KILL cr);
 6870 
 6871   format %{ "decq    $dst\t# long" %}
 6872   ins_encode %{
 6873     __ decrementq($dst$$Register);
 6874   %}
 6875   ins_pipe(ialu_reg);
 6876 %}
 6877 
 6878 // XXX why does that use AddL
 6879 instruct decL_mem(memory dst, immL_M1 src, rFlagsReg cr)
 6880 %{
 6881   predicate(UseIncDec);
 6882   match(Set dst (StoreL dst (AddL (LoadL dst) src)));
 6883   effect(KILL cr);
 6884 
 6885   ins_cost(125); // XXX
 6886   format %{ "decq    $dst\t# long" %}
 6887   ins_encode %{
 6888     __ decrementq($dst$$Address);
 6889   %}
 6890   ins_pipe(ialu_mem_imm);
 6891 %}
 6892 
 6893 instruct leaL_rReg_immI2_immL32(rRegL dst, rRegL index, immI2 scale, immL32 disp)
 6894 %{
 6895   predicate(VM_Version::supports_fast_2op_lea());
 6896   match(Set dst (AddL (LShiftL index scale) disp));
 6897 
 6898   format %{ "leaq $dst, [$index << $scale + $disp]\t# long" %}
 6899   ins_encode %{
 6900     Address::ScaleFactor scale = static_cast<Address::ScaleFactor>($scale$$constant);
 6901     __ leaq($dst$$Register, Address(noreg, $index$$Register, scale, $disp$$constant));
 6902   %}
 6903   ins_pipe(ialu_reg_reg);
 6904 %}
 6905 
 6906 instruct leaL_rReg_rReg_immL32(rRegL dst, rRegL base, rRegL index, immL32 disp)
 6907 %{
 6908   predicate(VM_Version::supports_fast_3op_lea());
 6909   match(Set dst (AddL (AddL base index) disp));
 6910 
 6911   format %{ "leaq $dst, [$base + $index + $disp]\t# long" %}
 6912   ins_encode %{
 6913     __ leaq($dst$$Register, Address($base$$Register, $index$$Register, Address::times_1, $disp$$constant));
 6914   %}
 6915   ins_pipe(ialu_reg_reg);
 6916 %}
 6917 
 6918 instruct leaL_rReg_rReg_immI2(rRegL dst, no_rbp_r13_RegL base, rRegL index, immI2 scale)
 6919 %{
 6920   predicate(VM_Version::supports_fast_2op_lea());
 6921   match(Set dst (AddL base (LShiftL index scale)));
 6922 
 6923   format %{ "leaq $dst, [$base + $index << $scale]\t# long" %}
 6924   ins_encode %{
 6925     Address::ScaleFactor scale = static_cast<Address::ScaleFactor>($scale$$constant);
 6926     __ leaq($dst$$Register, Address($base$$Register, $index$$Register, scale));
 6927   %}
 6928   ins_pipe(ialu_reg_reg);
 6929 %}
 6930 
 6931 instruct leaL_rReg_rReg_immI2_immL32(rRegL dst, rRegL base, rRegL index, immI2 scale, immL32 disp)
 6932 %{
 6933   predicate(VM_Version::supports_fast_3op_lea());
 6934   match(Set dst (AddL (AddL base (LShiftL index scale)) disp));
 6935 
 6936   format %{ "leaq $dst, [$base + $index << $scale + $disp]\t# long" %}
 6937   ins_encode %{
 6938     Address::ScaleFactor scale = static_cast<Address::ScaleFactor>($scale$$constant);
 6939     __ leaq($dst$$Register, Address($base$$Register, $index$$Register, scale, $disp$$constant));
 6940   %}
 6941   ins_pipe(ialu_reg_reg);
 6942 %}
 6943 
 6944 instruct addP_rReg(rRegP dst, rRegL src, rFlagsReg cr)
 6945 %{
 6946   match(Set dst (AddP dst src));
 6947   effect(KILL cr);
 6948   flag(PD::Flag_sets_overflow_flag, PD::Flag_sets_sign_flag, PD::Flag_sets_zero_flag, PD::Flag_sets_carry_flag, PD::Flag_sets_parity_flag);
 6949 
 6950   format %{ "addq    $dst, $src\t# ptr" %}
 6951   ins_encode %{
 6952     __ addq($dst$$Register, $src$$Register);
 6953   %}
 6954   ins_pipe(ialu_reg_reg);
 6955 %}
 6956 
 6957 instruct addP_rReg_imm(rRegP dst, immL32 src, rFlagsReg cr)
 6958 %{
 6959   match(Set dst (AddP dst src));
 6960   effect(KILL cr);
 6961   flag(PD::Flag_sets_overflow_flag, PD::Flag_sets_sign_flag, PD::Flag_sets_zero_flag, PD::Flag_sets_carry_flag, PD::Flag_sets_parity_flag);
 6962 
 6963   format %{ "addq    $dst, $src\t# ptr" %}
 6964   ins_encode %{
 6965     __ addq($dst$$Register, $src$$constant);
 6966   %}
 6967   ins_pipe( ialu_reg );
 6968 %}
 6969 
 6970 // XXX addP mem ops ????
 6971 
 6972 instruct checkCastPP(rRegP dst)
 6973 %{
 6974   match(Set dst (CheckCastPP dst));
 6975 
 6976   size(0);
 6977   format %{ "# checkcastPP of $dst" %}
 6978   ins_encode(/* empty encoding */);
 6979   ins_pipe(empty);
 6980 %}
 6981 
 6982 instruct castPP(rRegP dst)
 6983 %{
 6984   match(Set dst (CastPP dst));
 6985 
 6986   size(0);
 6987   format %{ "# castPP of $dst" %}
 6988   ins_encode(/* empty encoding */);
 6989   ins_pipe(empty);
 6990 %}
 6991 
 6992 instruct castII(rRegI dst)
 6993 %{
 6994   match(Set dst (CastII dst));
 6995 
 6996   size(0);
 6997   format %{ "# castII of $dst" %}
 6998   ins_encode(/* empty encoding */);
 6999   ins_cost(0);
 7000   ins_pipe(empty);
 7001 %}
 7002 
 7003 instruct castLL(rRegL dst)
 7004 %{
 7005   match(Set dst (CastLL dst));
 7006 
 7007   size(0);
 7008   format %{ "# castLL of $dst" %}
 7009   ins_encode(/* empty encoding */);
 7010   ins_cost(0);
 7011   ins_pipe(empty);
 7012 %}
 7013 
 7014 instruct castFF(regF dst)
 7015 %{
 7016   match(Set dst (CastFF dst));
 7017 
 7018   size(0);
 7019   format %{ "# castFF of $dst" %}
 7020   ins_encode(/* empty encoding */);
 7021   ins_cost(0);
 7022   ins_pipe(empty);
 7023 %}
 7024 
 7025 instruct castDD(regD dst)
 7026 %{
 7027   match(Set dst (CastDD dst));
 7028 
 7029   size(0);
 7030   format %{ "# castDD of $dst" %}
 7031   ins_encode(/* empty encoding */);
 7032   ins_cost(0);
 7033   ins_pipe(empty);
 7034 %}
 7035 
 7036 // XXX No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
 7037 instruct compareAndSwapP(rRegI res,
 7038                          memory mem_ptr,
 7039                          rax_RegP oldval, rRegP newval,
 7040                          rFlagsReg cr)
 7041 %{
 7042   predicate(n->as_LoadStore()->barrier_data() == 0);
 7043   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
 7044   match(Set res (WeakCompareAndSwapP mem_ptr (Binary oldval newval)));
 7045   effect(KILL cr, KILL oldval);
 7046 
 7047   format %{ "cmpxchgq $mem_ptr,$newval\t# "
 7048             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
 7049             "setcc $res \t# emits sete + movzbl or setzue for APX" %}
 7050   ins_encode %{
 7051     __ lock();
 7052     __ cmpxchgq($newval$$Register, $mem_ptr$$Address);
 7053     __ setcc(Assembler::equal, $res$$Register);
 7054   %}
 7055   ins_pipe( pipe_cmpxchg );
 7056 %}
 7057 
 7058 instruct compareAndSwapL(rRegI res,
 7059                          memory mem_ptr,
 7060                          rax_RegL oldval, rRegL newval,
 7061                          rFlagsReg cr)
 7062 %{
 7063   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
 7064   match(Set res (WeakCompareAndSwapL mem_ptr (Binary oldval newval)));
 7065   effect(KILL cr, KILL oldval);
 7066 
 7067   format %{ "cmpxchgq $mem_ptr,$newval\t# "
 7068             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
 7069             "setcc $res \t# emits sete + movzbl or setzue for APX" %}
 7070   ins_encode %{
 7071     __ lock();
 7072     __ cmpxchgq($newval$$Register, $mem_ptr$$Address);
 7073     __ setcc(Assembler::equal, $res$$Register);
 7074   %}
 7075   ins_pipe( pipe_cmpxchg );
 7076 %}
 7077 
 7078 instruct compareAndSwapI(rRegI res,
 7079                          memory mem_ptr,
 7080                          rax_RegI oldval, rRegI newval,
 7081                          rFlagsReg cr)
 7082 %{
 7083   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
 7084   match(Set res (WeakCompareAndSwapI mem_ptr (Binary oldval newval)));
 7085   effect(KILL cr, KILL oldval);
 7086 
 7087   format %{ "cmpxchgl $mem_ptr,$newval\t# "
 7088             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
 7089             "setcc $res \t# emits sete + movzbl or setzue for APX" %}
 7090   ins_encode %{
 7091     __ lock();
 7092     __ cmpxchgl($newval$$Register, $mem_ptr$$Address);
 7093     __ setcc(Assembler::equal, $res$$Register);
 7094   %}
 7095   ins_pipe( pipe_cmpxchg );
 7096 %}
 7097 
 7098 instruct compareAndSwapB(rRegI res,
 7099                          memory mem_ptr,
 7100                          rax_RegI oldval, rRegI newval,
 7101                          rFlagsReg cr)
 7102 %{
 7103   match(Set res (CompareAndSwapB mem_ptr (Binary oldval newval)));
 7104   match(Set res (WeakCompareAndSwapB mem_ptr (Binary oldval newval)));
 7105   effect(KILL cr, KILL oldval);
 7106 
 7107   format %{ "cmpxchgb $mem_ptr,$newval\t# "
 7108             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
 7109             "setcc $res \t# emits sete + movzbl or setzue for APX" %}
 7110   ins_encode %{
 7111     __ lock();
 7112     __ cmpxchgb($newval$$Register, $mem_ptr$$Address);
 7113     __ setcc(Assembler::equal, $res$$Register);
 7114   %}
 7115   ins_pipe( pipe_cmpxchg );
 7116 %}
 7117 
 7118 instruct compareAndSwapS(rRegI res,
 7119                          memory mem_ptr,
 7120                          rax_RegI oldval, rRegI newval,
 7121                          rFlagsReg cr)
 7122 %{
 7123   match(Set res (CompareAndSwapS mem_ptr (Binary oldval newval)));
 7124   match(Set res (WeakCompareAndSwapS mem_ptr (Binary oldval newval)));
 7125   effect(KILL cr, KILL oldval);
 7126 
 7127   format %{ "cmpxchgw $mem_ptr,$newval\t# "
 7128             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
 7129             "setcc $res \t# emits sete + movzbl or setzue for APX" %}
 7130   ins_encode %{
 7131     __ lock();
 7132     __ cmpxchgw($newval$$Register, $mem_ptr$$Address);
 7133     __ setcc(Assembler::equal, $res$$Register);
 7134   %}
 7135   ins_pipe( pipe_cmpxchg );
 7136 %}
 7137 
 7138 instruct compareAndSwapN(rRegI res,
 7139                           memory mem_ptr,
 7140                           rax_RegN oldval, rRegN newval,
 7141                           rFlagsReg cr) %{
 7142   predicate(n->as_LoadStore()->barrier_data() == 0);
 7143   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
 7144   match(Set res (WeakCompareAndSwapN mem_ptr (Binary oldval newval)));
 7145   effect(KILL cr, KILL oldval);
 7146 
 7147   format %{ "cmpxchgl $mem_ptr,$newval\t# "
 7148             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
 7149             "setcc $res \t# emits sete + movzbl or setzue for APX" %}
 7150   ins_encode %{
 7151     __ lock();
 7152     __ cmpxchgl($newval$$Register, $mem_ptr$$Address);
 7153     __ setcc(Assembler::equal, $res$$Register);
 7154   %}
 7155   ins_pipe( pipe_cmpxchg );
 7156 %}
 7157 
 7158 instruct compareAndExchangeB(
 7159                          memory mem_ptr,
 7160                          rax_RegI oldval, rRegI newval,
 7161                          rFlagsReg cr)
 7162 %{
 7163   match(Set oldval (CompareAndExchangeB mem_ptr (Binary oldval newval)));
 7164   effect(KILL cr);
 7165 
 7166   format %{ "cmpxchgb $mem_ptr,$newval\t# "
 7167             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"  %}
 7168   ins_encode %{
 7169     __ lock();
 7170     __ cmpxchgb($newval$$Register, $mem_ptr$$Address);
 7171   %}
 7172   ins_pipe( pipe_cmpxchg );
 7173 %}
 7174 
 7175 instruct compareAndExchangeS(
 7176                          memory mem_ptr,
 7177                          rax_RegI oldval, rRegI newval,
 7178                          rFlagsReg cr)
 7179 %{
 7180   match(Set oldval (CompareAndExchangeS mem_ptr (Binary oldval newval)));
 7181   effect(KILL cr);
 7182 
 7183   format %{ "cmpxchgw $mem_ptr,$newval\t# "
 7184             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"  %}
 7185   ins_encode %{
 7186     __ lock();
 7187     __ cmpxchgw($newval$$Register, $mem_ptr$$Address);
 7188   %}
 7189   ins_pipe( pipe_cmpxchg );
 7190 %}
 7191 
 7192 instruct compareAndExchangeI(
 7193                          memory mem_ptr,
 7194                          rax_RegI oldval, rRegI newval,
 7195                          rFlagsReg cr)
 7196 %{
 7197   match(Set oldval (CompareAndExchangeI mem_ptr (Binary oldval newval)));
 7198   effect(KILL cr);
 7199 
 7200   format %{ "cmpxchgl $mem_ptr,$newval\t# "
 7201             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"  %}
 7202   ins_encode %{
 7203     __ lock();
 7204     __ cmpxchgl($newval$$Register, $mem_ptr$$Address);
 7205   %}
 7206   ins_pipe( pipe_cmpxchg );
 7207 %}
 7208 
 7209 instruct compareAndExchangeL(
 7210                          memory mem_ptr,
 7211                          rax_RegL oldval, rRegL newval,
 7212                          rFlagsReg cr)
 7213 %{
 7214   match(Set oldval (CompareAndExchangeL mem_ptr (Binary oldval newval)));
 7215   effect(KILL cr);
 7216 
 7217   format %{ "cmpxchgq $mem_ptr,$newval\t# "
 7218             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"  %}
 7219   ins_encode %{
 7220     __ lock();
 7221     __ cmpxchgq($newval$$Register, $mem_ptr$$Address);
 7222   %}
 7223   ins_pipe( pipe_cmpxchg );
 7224 %}
 7225 
 7226 instruct compareAndExchangeN(
 7227                           memory mem_ptr,
 7228                           rax_RegN oldval, rRegN newval,
 7229                           rFlagsReg cr) %{
 7230   predicate(n->as_LoadStore()->barrier_data() == 0);
 7231   match(Set oldval (CompareAndExchangeN mem_ptr (Binary oldval newval)));
 7232   effect(KILL cr);
 7233 
 7234   format %{ "cmpxchgl $mem_ptr,$newval\t# "
 7235             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t" %}
 7236   ins_encode %{
 7237     __ lock();
 7238     __ cmpxchgl($newval$$Register, $mem_ptr$$Address);
 7239   %}
 7240   ins_pipe( pipe_cmpxchg );
 7241 %}
 7242 
 7243 instruct compareAndExchangeP(
 7244                          memory mem_ptr,
 7245                          rax_RegP oldval, rRegP newval,
 7246                          rFlagsReg cr)
 7247 %{
 7248   predicate(n->as_LoadStore()->barrier_data() == 0);
 7249   match(Set oldval (CompareAndExchangeP mem_ptr (Binary oldval newval)));
 7250   effect(KILL cr);
 7251 
 7252   format %{ "cmpxchgq $mem_ptr,$newval\t# "
 7253             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t" %}
 7254   ins_encode %{
 7255     __ lock();
 7256     __ cmpxchgq($newval$$Register, $mem_ptr$$Address);
 7257   %}
 7258   ins_pipe( pipe_cmpxchg );
 7259 %}
 7260 
 7261 instruct xaddB_reg_no_res(memory mem, Universe dummy, rRegI add, rFlagsReg cr) %{
 7262   predicate(n->as_LoadStore()->result_not_used());
 7263   match(Set dummy (GetAndAddB mem add));
 7264   effect(KILL cr);
 7265   format %{ "addb_lock   $mem, $add" %}
 7266   ins_encode %{
 7267     __ lock();
 7268     __ addb($mem$$Address, $add$$Register);
 7269   %}
 7270   ins_pipe(pipe_cmpxchg);
 7271 %}
 7272 
 7273 instruct xaddB_imm_no_res(memory mem, Universe dummy, immI add, rFlagsReg cr) %{
 7274   predicate(n->as_LoadStore()->result_not_used());
 7275   match(Set dummy (GetAndAddB mem add));
 7276   effect(KILL cr);
 7277   format %{ "addb_lock   $mem, $add" %}
 7278   ins_encode %{
 7279     __ lock();
 7280     __ addb($mem$$Address, $add$$constant);
 7281   %}
 7282   ins_pipe(pipe_cmpxchg);
 7283 %}
 7284 
 7285 instruct xaddB(memory mem, rRegI newval, rFlagsReg cr) %{
 7286   predicate(!n->as_LoadStore()->result_not_used());
 7287   match(Set newval (GetAndAddB mem newval));
 7288   effect(KILL cr);
 7289   format %{ "xaddb_lock  $mem, $newval" %}
 7290   ins_encode %{
 7291     __ lock();
 7292     __ xaddb($mem$$Address, $newval$$Register);
 7293   %}
 7294   ins_pipe(pipe_cmpxchg);
 7295 %}
 7296 
 7297 instruct xaddS_reg_no_res(memory mem, Universe dummy, rRegI add, rFlagsReg cr) %{
 7298   predicate(n->as_LoadStore()->result_not_used());
 7299   match(Set dummy (GetAndAddS mem add));
 7300   effect(KILL cr);
 7301   format %{ "addw_lock   $mem, $add" %}
 7302   ins_encode %{
 7303     __ lock();
 7304     __ addw($mem$$Address, $add$$Register);
 7305   %}
 7306   ins_pipe(pipe_cmpxchg);
 7307 %}
 7308 
 7309 instruct xaddS_imm_no_res(memory mem, Universe dummy, immI add, rFlagsReg cr) %{
 7310   predicate(UseStoreImmI16 && n->as_LoadStore()->result_not_used());
 7311   match(Set dummy (GetAndAddS mem add));
 7312   effect(KILL cr);
 7313   format %{ "addw_lock   $mem, $add" %}
 7314   ins_encode %{
 7315     __ lock();
 7316     __ addw($mem$$Address, $add$$constant);
 7317   %}
 7318   ins_pipe(pipe_cmpxchg);
 7319 %}
 7320 
 7321 instruct xaddS(memory mem, rRegI newval, rFlagsReg cr) %{
 7322   predicate(!n->as_LoadStore()->result_not_used());
 7323   match(Set newval (GetAndAddS mem newval));
 7324   effect(KILL cr);
 7325   format %{ "xaddw_lock  $mem, $newval" %}
 7326   ins_encode %{
 7327     __ lock();
 7328     __ xaddw($mem$$Address, $newval$$Register);
 7329   %}
 7330   ins_pipe(pipe_cmpxchg);
 7331 %}
 7332 
 7333 instruct xaddI_reg_no_res(memory mem, Universe dummy, rRegI add, rFlagsReg cr) %{
 7334   predicate(n->as_LoadStore()->result_not_used());
 7335   match(Set dummy (GetAndAddI mem add));
 7336   effect(KILL cr);
 7337   format %{ "addl_lock   $mem, $add" %}
 7338   ins_encode %{
 7339     __ lock();
 7340     __ addl($mem$$Address, $add$$Register);
 7341   %}
 7342   ins_pipe(pipe_cmpxchg);
 7343 %}
 7344 
 7345 instruct xaddI_imm_no_res(memory mem, Universe dummy, immI add, rFlagsReg cr) %{
 7346   predicate(n->as_LoadStore()->result_not_used());
 7347   match(Set dummy (GetAndAddI mem add));
 7348   effect(KILL cr);
 7349   format %{ "addl_lock   $mem, $add" %}
 7350   ins_encode %{
 7351     __ lock();
 7352     __ addl($mem$$Address, $add$$constant);
 7353   %}
 7354   ins_pipe(pipe_cmpxchg);
 7355 %}
 7356 
 7357 instruct xaddI(memory mem, rRegI newval, rFlagsReg cr) %{
 7358   predicate(!n->as_LoadStore()->result_not_used());
 7359   match(Set newval (GetAndAddI mem newval));
 7360   effect(KILL cr);
 7361   format %{ "xaddl_lock  $mem, $newval" %}
 7362   ins_encode %{
 7363     __ lock();
 7364     __ xaddl($mem$$Address, $newval$$Register);
 7365   %}
 7366   ins_pipe(pipe_cmpxchg);
 7367 %}
 7368 
 7369 instruct xaddL_reg_no_res(memory mem, Universe dummy, rRegL add, rFlagsReg cr) %{
 7370   predicate(n->as_LoadStore()->result_not_used());
 7371   match(Set dummy (GetAndAddL mem add));
 7372   effect(KILL cr);
 7373   format %{ "addq_lock   $mem, $add" %}
 7374   ins_encode %{
 7375     __ lock();
 7376     __ addq($mem$$Address, $add$$Register);
 7377   %}
 7378   ins_pipe(pipe_cmpxchg);
 7379 %}
 7380 
 7381 instruct xaddL_imm_no_res(memory mem, Universe dummy, immL32 add, rFlagsReg cr) %{
 7382   predicate(n->as_LoadStore()->result_not_used());
 7383   match(Set dummy (GetAndAddL mem add));
 7384   effect(KILL cr);
 7385   format %{ "addq_lock   $mem, $add" %}
 7386   ins_encode %{
 7387     __ lock();
 7388     __ addq($mem$$Address, $add$$constant);
 7389   %}
 7390   ins_pipe(pipe_cmpxchg);
 7391 %}
 7392 
 7393 instruct xaddL(memory mem, rRegL newval, rFlagsReg cr) %{
 7394   predicate(!n->as_LoadStore()->result_not_used());
 7395   match(Set newval (GetAndAddL mem newval));
 7396   effect(KILL cr);
 7397   format %{ "xaddq_lock  $mem, $newval" %}
 7398   ins_encode %{
 7399     __ lock();
 7400     __ xaddq($mem$$Address, $newval$$Register);
 7401   %}
 7402   ins_pipe(pipe_cmpxchg);
 7403 %}
 7404 
 7405 instruct xchgB( memory mem, rRegI newval) %{
 7406   match(Set newval (GetAndSetB mem newval));
 7407   format %{ "XCHGB  $newval,[$mem]" %}
 7408   ins_encode %{
 7409     __ xchgb($newval$$Register, $mem$$Address);
 7410   %}
 7411   ins_pipe( pipe_cmpxchg );
 7412 %}
 7413 
 7414 instruct xchgS( memory mem, rRegI newval) %{
 7415   match(Set newval (GetAndSetS mem newval));
 7416   format %{ "XCHGW  $newval,[$mem]" %}
 7417   ins_encode %{
 7418     __ xchgw($newval$$Register, $mem$$Address);
 7419   %}
 7420   ins_pipe( pipe_cmpxchg );
 7421 %}
 7422 
 7423 instruct xchgI( memory mem, rRegI newval) %{
 7424   match(Set newval (GetAndSetI mem newval));
 7425   format %{ "XCHGL  $newval,[$mem]" %}
 7426   ins_encode %{
 7427     __ xchgl($newval$$Register, $mem$$Address);
 7428   %}
 7429   ins_pipe( pipe_cmpxchg );
 7430 %}
 7431 
 7432 instruct xchgL( memory mem, rRegL newval) %{
 7433   match(Set newval (GetAndSetL mem newval));
 7434   format %{ "XCHGL  $newval,[$mem]" %}
 7435   ins_encode %{
 7436     __ xchgq($newval$$Register, $mem$$Address);
 7437   %}
 7438   ins_pipe( pipe_cmpxchg );
 7439 %}
 7440 
 7441 instruct xchgP( memory mem, rRegP newval) %{
 7442   match(Set newval (GetAndSetP mem newval));
 7443   predicate(n->as_LoadStore()->barrier_data() == 0);
 7444   format %{ "XCHGQ  $newval,[$mem]" %}
 7445   ins_encode %{
 7446     __ xchgq($newval$$Register, $mem$$Address);
 7447   %}
 7448   ins_pipe( pipe_cmpxchg );
 7449 %}
 7450 
 7451 instruct xchgN( memory mem, rRegN newval) %{
 7452   predicate(n->as_LoadStore()->barrier_data() == 0);
 7453   match(Set newval (GetAndSetN mem newval));
 7454   format %{ "XCHGL  $newval,$mem]" %}
 7455   ins_encode %{
 7456     __ xchgl($newval$$Register, $mem$$Address);
 7457   %}
 7458   ins_pipe( pipe_cmpxchg );
 7459 %}
 7460 
 7461 //----------Abs Instructions-------------------------------------------
 7462 
 7463 // Integer Absolute Instructions
 7464 instruct absI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
 7465 %{
 7466   match(Set dst (AbsI src));
 7467   effect(TEMP dst, KILL cr);
 7468   format %{ "xorl    $dst, $dst\t# abs int\n\t"
 7469             "subl    $dst, $src\n\t"
 7470             "cmovll  $dst, $src" %}
 7471   ins_encode %{
 7472     __ xorl($dst$$Register, $dst$$Register);
 7473     __ subl($dst$$Register, $src$$Register);
 7474     __ cmovl(Assembler::less, $dst$$Register, $src$$Register);
 7475   %}
 7476 
 7477   ins_pipe(ialu_reg_reg);
 7478 %}
 7479 
 7480 // Long Absolute Instructions
 7481 instruct absL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
 7482 %{
 7483   match(Set dst (AbsL src));
 7484   effect(TEMP dst, KILL cr);
 7485   format %{ "xorl    $dst, $dst\t# abs long\n\t"
 7486             "subq    $dst, $src\n\t"
 7487             "cmovlq  $dst, $src" %}
 7488   ins_encode %{
 7489     __ xorl($dst$$Register, $dst$$Register);
 7490     __ subq($dst$$Register, $src$$Register);
 7491     __ cmovq(Assembler::less, $dst$$Register, $src$$Register);
 7492   %}
 7493 
 7494   ins_pipe(ialu_reg_reg);
 7495 %}
 7496 
 7497 //----------Subtraction Instructions-------------------------------------------
 7498 
 7499 // Integer Subtraction Instructions
 7500 instruct subI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
 7501 %{
 7502   match(Set dst (SubI dst src));
 7503   effect(KILL cr);
 7504   flag(PD::Flag_sets_overflow_flag, PD::Flag_sets_sign_flag, PD::Flag_sets_zero_flag, PD::Flag_sets_carry_flag, PD::Flag_sets_parity_flag);
 7505 
 7506   format %{ "subl    $dst, $src\t# int" %}
 7507   ins_encode %{
 7508     __ subl($dst$$Register, $src$$Register);
 7509   %}
 7510   ins_pipe(ialu_reg_reg);
 7511 %}
 7512 
 7513 instruct subI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
 7514 %{
 7515   match(Set dst (SubI dst (LoadI src)));
 7516   effect(KILL cr);
 7517   flag(PD::Flag_sets_overflow_flag, PD::Flag_sets_sign_flag, PD::Flag_sets_zero_flag, PD::Flag_sets_carry_flag, PD::Flag_sets_parity_flag);
 7518 
 7519   ins_cost(150);
 7520   format %{ "subl    $dst, $src\t# int" %}
 7521   ins_encode %{
 7522     __ subl($dst$$Register, $src$$Address);
 7523   %}
 7524   ins_pipe(ialu_reg_mem);
 7525 %}
 7526 
 7527 instruct subI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
 7528 %{
 7529   match(Set dst (StoreI dst (SubI (LoadI dst) src)));
 7530   effect(KILL cr);
 7531   flag(PD::Flag_sets_overflow_flag, PD::Flag_sets_sign_flag, PD::Flag_sets_zero_flag, PD::Flag_sets_carry_flag, PD::Flag_sets_parity_flag);
 7532 
 7533   ins_cost(150);
 7534   format %{ "subl    $dst, $src\t# int" %}
 7535   ins_encode %{
 7536     __ subl($dst$$Address, $src$$Register);
 7537   %}
 7538   ins_pipe(ialu_mem_reg);
 7539 %}
 7540 
 7541 instruct subL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
 7542 %{
 7543   match(Set dst (SubL dst src));
 7544   effect(KILL cr);
 7545   flag(PD::Flag_sets_overflow_flag, PD::Flag_sets_sign_flag, PD::Flag_sets_zero_flag, PD::Flag_sets_carry_flag, PD::Flag_sets_parity_flag);
 7546 
 7547   format %{ "subq    $dst, $src\t# long" %}
 7548   ins_encode %{
 7549     __ subq($dst$$Register, $src$$Register);
 7550   %}
 7551   ins_pipe(ialu_reg_reg);
 7552 %}
 7553 
 7554 instruct subL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
 7555 %{
 7556   match(Set dst (SubL dst (LoadL src)));
 7557   effect(KILL cr);
 7558   flag(PD::Flag_sets_overflow_flag, PD::Flag_sets_sign_flag, PD::Flag_sets_zero_flag, PD::Flag_sets_carry_flag, PD::Flag_sets_parity_flag);
 7559 
 7560   ins_cost(150);
 7561   format %{ "subq    $dst, $src\t# long" %}
 7562   ins_encode %{
 7563     __ subq($dst$$Register, $src$$Address);
 7564   %}
 7565   ins_pipe(ialu_reg_mem);
 7566 %}
 7567 
 7568 instruct subL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
 7569 %{
 7570   match(Set dst (StoreL dst (SubL (LoadL dst) src)));
 7571   effect(KILL cr);
 7572   flag(PD::Flag_sets_overflow_flag, PD::Flag_sets_sign_flag, PD::Flag_sets_zero_flag, PD::Flag_sets_carry_flag, PD::Flag_sets_parity_flag);
 7573 
 7574   ins_cost(150);
 7575   format %{ "subq    $dst, $src\t# long" %}
 7576   ins_encode %{
 7577     __ subq($dst$$Address, $src$$Register);
 7578   %}
 7579   ins_pipe(ialu_mem_reg);
 7580 %}
 7581 
 7582 // Subtract from a pointer
 7583 // XXX hmpf???
 7584 instruct subP_rReg(rRegP dst, rRegI src, immI_0 zero, rFlagsReg cr)
 7585 %{
 7586   match(Set dst (AddP dst (SubI zero src)));
 7587   effect(KILL cr);
 7588 
 7589   format %{ "subq    $dst, $src\t# ptr - int" %}
 7590   ins_encode %{
 7591     __ subq($dst$$Register, $src$$Register);
 7592   %}
 7593   ins_pipe(ialu_reg_reg);
 7594 %}
 7595 
 7596 instruct negI_rReg(rRegI dst, immI_0 zero, rFlagsReg cr)
 7597 %{
 7598   match(Set dst (SubI zero dst));
 7599   effect(KILL cr);
 7600   flag(PD::Flag_sets_overflow_flag, PD::Flag_sets_sign_flag, PD::Flag_sets_zero_flag, PD::Flag_sets_parity_flag);
 7601 
 7602   format %{ "negl    $dst\t# int" %}
 7603   ins_encode %{
 7604     __ negl($dst$$Register);
 7605   %}
 7606   ins_pipe(ialu_reg);
 7607 %}
 7608 
 7609 instruct negI_rReg_2(rRegI dst, rFlagsReg cr)
 7610 %{
 7611   match(Set dst (NegI dst));
 7612   effect(KILL cr);
 7613   flag(PD::Flag_sets_overflow_flag, PD::Flag_sets_sign_flag, PD::Flag_sets_zero_flag, PD::Flag_sets_parity_flag);
 7614 
 7615   format %{ "negl    $dst\t# int" %}
 7616   ins_encode %{
 7617     __ negl($dst$$Register);
 7618   %}
 7619   ins_pipe(ialu_reg);
 7620 %}
 7621 
 7622 instruct negI_mem(memory dst, immI_0 zero, rFlagsReg cr)
 7623 %{
 7624   match(Set dst (StoreI dst (SubI zero (LoadI dst))));
 7625   effect(KILL cr);
 7626   flag(PD::Flag_sets_overflow_flag, PD::Flag_sets_sign_flag, PD::Flag_sets_zero_flag, PD::Flag_sets_parity_flag);
 7627 
 7628   format %{ "negl    $dst\t# int" %}
 7629   ins_encode %{
 7630     __ negl($dst$$Address);
 7631   %}
 7632   ins_pipe(ialu_reg);
 7633 %}
 7634 
 7635 instruct negL_rReg(rRegL dst, immL0 zero, rFlagsReg cr)
 7636 %{
 7637   match(Set dst (SubL zero dst));
 7638   effect(KILL cr);
 7639   flag(PD::Flag_sets_overflow_flag, PD::Flag_sets_sign_flag, PD::Flag_sets_zero_flag, PD::Flag_sets_parity_flag);
 7640 
 7641   format %{ "negq    $dst\t# long" %}
 7642   ins_encode %{
 7643     __ negq($dst$$Register);
 7644   %}
 7645   ins_pipe(ialu_reg);
 7646 %}
 7647 
 7648 instruct negL_rReg_2(rRegL dst, rFlagsReg cr)
 7649 %{
 7650   match(Set dst (NegL dst));
 7651   effect(KILL cr);
 7652   flag(PD::Flag_sets_overflow_flag, PD::Flag_sets_sign_flag, PD::Flag_sets_zero_flag, PD::Flag_sets_parity_flag);
 7653 
 7654   format %{ "negq    $dst\t# int" %}
 7655   ins_encode %{
 7656     __ negq($dst$$Register);
 7657   %}
 7658   ins_pipe(ialu_reg);
 7659 %}
 7660 
 7661 instruct negL_mem(memory dst, immL0 zero, rFlagsReg cr)
 7662 %{
 7663   match(Set dst (StoreL dst (SubL zero (LoadL dst))));
 7664   effect(KILL cr);
 7665   flag(PD::Flag_sets_overflow_flag, PD::Flag_sets_sign_flag, PD::Flag_sets_zero_flag, PD::Flag_sets_parity_flag);
 7666 
 7667   format %{ "negq    $dst\t# long" %}
 7668   ins_encode %{
 7669     __ negq($dst$$Address);
 7670   %}
 7671   ins_pipe(ialu_reg);
 7672 %}
 7673 
 7674 //----------Multiplication/Division Instructions-------------------------------
 7675 // Integer Multiplication Instructions
 7676 // Multiply Register
 7677 
 7678 instruct mulI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
 7679 %{
 7680   match(Set dst (MulI dst src));
 7681   effect(KILL cr);
 7682 
 7683   ins_cost(300);
 7684   format %{ "imull   $dst, $src\t# int" %}
 7685   ins_encode %{
 7686     __ imull($dst$$Register, $src$$Register);
 7687   %}
 7688   ins_pipe(ialu_reg_reg_alu0);
 7689 %}
 7690 
 7691 instruct mulI_rReg_imm(rRegI dst, rRegI src, immI imm, rFlagsReg cr)
 7692 %{
 7693   match(Set dst (MulI src imm));
 7694   effect(KILL cr);
 7695 
 7696   ins_cost(300);
 7697   format %{ "imull   $dst, $src, $imm\t# int" %}
 7698   ins_encode %{
 7699     __ imull($dst$$Register, $src$$Register, $imm$$constant);
 7700   %}
 7701   ins_pipe(ialu_reg_reg_alu0);
 7702 %}
 7703 
 7704 instruct mulI_mem(rRegI dst, memory src, rFlagsReg cr)
 7705 %{
 7706   match(Set dst (MulI dst (LoadI src)));
 7707   effect(KILL cr);
 7708 
 7709   ins_cost(350);
 7710   format %{ "imull   $dst, $src\t# int" %}
 7711   ins_encode %{
 7712     __ imull($dst$$Register, $src$$Address);
 7713   %}
 7714   ins_pipe(ialu_reg_mem_alu0);
 7715 %}
 7716 
 7717 instruct mulI_mem_imm(rRegI dst, memory src, immI imm, rFlagsReg cr)
 7718 %{
 7719   match(Set dst (MulI (LoadI src) imm));
 7720   effect(KILL cr);
 7721 
 7722   ins_cost(300);
 7723   format %{ "imull   $dst, $src, $imm\t# int" %}
 7724   ins_encode %{
 7725     __ imull($dst$$Register, $src$$Address, $imm$$constant);
 7726   %}
 7727   ins_pipe(ialu_reg_mem_alu0);
 7728 %}
 7729 
 7730 instruct mulAddS2I_rReg(rRegI dst, rRegI src1, rRegI src2, rRegI src3, rFlagsReg cr)
 7731 %{
 7732   match(Set dst (MulAddS2I (Binary dst src1) (Binary src2 src3)));
 7733   effect(KILL cr, KILL src2);
 7734 
 7735   expand %{ mulI_rReg(dst, src1, cr);
 7736            mulI_rReg(src2, src3, cr);
 7737            addI_rReg(dst, src2, cr); %}
 7738 %}
 7739 
 7740 instruct mulL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
 7741 %{
 7742   match(Set dst (MulL dst src));
 7743   effect(KILL cr);
 7744 
 7745   ins_cost(300);
 7746   format %{ "imulq   $dst, $src\t# long" %}
 7747   ins_encode %{
 7748     __ imulq($dst$$Register, $src$$Register);
 7749   %}
 7750   ins_pipe(ialu_reg_reg_alu0);
 7751 %}
 7752 
 7753 instruct mulL_rReg_imm(rRegL dst, rRegL src, immL32 imm, rFlagsReg cr)
 7754 %{
 7755   match(Set dst (MulL src imm));
 7756   effect(KILL cr);
 7757 
 7758   ins_cost(300);
 7759   format %{ "imulq   $dst, $src, $imm\t# long" %}
 7760   ins_encode %{
 7761     __ imulq($dst$$Register, $src$$Register, $imm$$constant);
 7762   %}
 7763   ins_pipe(ialu_reg_reg_alu0);
 7764 %}
 7765 
 7766 instruct mulL_mem(rRegL dst, memory src, rFlagsReg cr)
 7767 %{
 7768   match(Set dst (MulL dst (LoadL src)));
 7769   effect(KILL cr);
 7770 
 7771   ins_cost(350);
 7772   format %{ "imulq   $dst, $src\t# long" %}
 7773   ins_encode %{
 7774     __ imulq($dst$$Register, $src$$Address);
 7775   %}
 7776   ins_pipe(ialu_reg_mem_alu0);
 7777 %}
 7778 
 7779 instruct mulL_mem_imm(rRegL dst, memory src, immL32 imm, rFlagsReg cr)
 7780 %{
 7781   match(Set dst (MulL (LoadL src) imm));
 7782   effect(KILL cr);
 7783 
 7784   ins_cost(300);
 7785   format %{ "imulq   $dst, $src, $imm\t# long" %}
 7786   ins_encode %{
 7787     __ imulq($dst$$Register, $src$$Address, $imm$$constant);
 7788   %}
 7789   ins_pipe(ialu_reg_mem_alu0);
 7790 %}
 7791 
 7792 instruct mulHiL_rReg(rdx_RegL dst, rRegL src, rax_RegL rax, rFlagsReg cr)
 7793 %{
 7794   match(Set dst (MulHiL src rax));
 7795   effect(USE_KILL rax, KILL cr);
 7796 
 7797   ins_cost(300);
 7798   format %{ "imulq   RDX:RAX, RAX, $src\t# mulhi" %}
 7799   ins_encode %{
 7800     __ imulq($src$$Register);
 7801   %}
 7802   ins_pipe(ialu_reg_reg_alu0);
 7803 %}
 7804 
 7805 instruct umulHiL_rReg(rdx_RegL dst, rRegL src, rax_RegL rax, rFlagsReg cr)
 7806 %{
 7807   match(Set dst (UMulHiL src rax));
 7808   effect(USE_KILL rax, KILL cr);
 7809 
 7810   ins_cost(300);
 7811   format %{ "mulq   RDX:RAX, RAX, $src\t# umulhi" %}
 7812   ins_encode %{
 7813     __ mulq($src$$Register);
 7814   %}
 7815   ins_pipe(ialu_reg_reg_alu0);
 7816 %}
 7817 
 7818 instruct divI_rReg(rax_RegI rax, rdx_RegI rdx, no_rax_rdx_RegI div,
 7819                    rFlagsReg cr)
 7820 %{
 7821   match(Set rax (DivI rax div));
 7822   effect(KILL rdx, KILL cr);
 7823 
 7824   ins_cost(30*100+10*100); // XXX
 7825   format %{ "cmpl    rax, 0x80000000\t# idiv\n\t"
 7826             "jne,s   normal\n\t"
 7827             "xorl    rdx, rdx\n\t"
 7828             "cmpl    $div, -1\n\t"
 7829             "je,s    done\n"
 7830     "normal: cdql\n\t"
 7831             "idivl   $div\n"
 7832     "done:"        %}
 7833   ins_encode(cdql_enc(div));
 7834   ins_pipe(ialu_reg_reg_alu0);
 7835 %}
 7836 
 7837 instruct divL_rReg(rax_RegL rax, rdx_RegL rdx, no_rax_rdx_RegL div,
 7838                    rFlagsReg cr)
 7839 %{
 7840   match(Set rax (DivL rax div));
 7841   effect(KILL rdx, KILL cr);
 7842 
 7843   ins_cost(30*100+10*100); // XXX
 7844   format %{ "movq    rdx, 0x8000000000000000\t# ldiv\n\t"
 7845             "cmpq    rax, rdx\n\t"
 7846             "jne,s   normal\n\t"
 7847             "xorl    rdx, rdx\n\t"
 7848             "cmpq    $div, -1\n\t"
 7849             "je,s    done\n"
 7850     "normal: cdqq\n\t"
 7851             "idivq   $div\n"
 7852     "done:"        %}
 7853   ins_encode(cdqq_enc(div));
 7854   ins_pipe(ialu_reg_reg_alu0);
 7855 %}
 7856 
 7857 instruct udivI_rReg(rax_RegI rax, rdx_RegI rdx, no_rax_rdx_RegI div, rFlagsReg cr)
 7858 %{
 7859   match(Set rax (UDivI rax div));
 7860   effect(KILL rdx, KILL cr);
 7861 
 7862   ins_cost(300);
 7863   format %{ "udivl $rax,$rax,$div\t# UDivI\n" %}
 7864   ins_encode %{
 7865     __ udivI($rax$$Register, $div$$Register, $rdx$$Register);
 7866   %}
 7867   ins_pipe(ialu_reg_reg_alu0);
 7868 %}
 7869 
 7870 instruct udivL_rReg(rax_RegL rax, rdx_RegL rdx, no_rax_rdx_RegL div, rFlagsReg cr)
 7871 %{
 7872   match(Set rax (UDivL rax div));
 7873   effect(KILL rdx, KILL cr);
 7874 
 7875   ins_cost(300);
 7876   format %{ "udivq $rax,$rax,$div\t# UDivL\n" %}
 7877   ins_encode %{
 7878      __ udivL($rax$$Register, $div$$Register, $rdx$$Register);
 7879   %}
 7880   ins_pipe(ialu_reg_reg_alu0);
 7881 %}
 7882 
 7883 // Integer DIVMOD with Register, both quotient and mod results
 7884 instruct divModI_rReg_divmod(rax_RegI rax, rdx_RegI rdx, no_rax_rdx_RegI div,
 7885                              rFlagsReg cr)
 7886 %{
 7887   match(DivModI rax div);
 7888   effect(KILL cr);
 7889 
 7890   ins_cost(30*100+10*100); // XXX
 7891   format %{ "cmpl    rax, 0x80000000\t# idiv\n\t"
 7892             "jne,s   normal\n\t"
 7893             "xorl    rdx, rdx\n\t"
 7894             "cmpl    $div, -1\n\t"
 7895             "je,s    done\n"
 7896     "normal: cdql\n\t"
 7897             "idivl   $div\n"
 7898     "done:"        %}
 7899   ins_encode(cdql_enc(div));
 7900   ins_pipe(pipe_slow);
 7901 %}
 7902 
 7903 // Long DIVMOD with Register, both quotient and mod results
 7904 instruct divModL_rReg_divmod(rax_RegL rax, rdx_RegL rdx, no_rax_rdx_RegL div,
 7905                              rFlagsReg cr)
 7906 %{
 7907   match(DivModL rax div);
 7908   effect(KILL cr);
 7909 
 7910   ins_cost(30*100+10*100); // XXX
 7911   format %{ "movq    rdx, 0x8000000000000000\t# ldiv\n\t"
 7912             "cmpq    rax, rdx\n\t"
 7913             "jne,s   normal\n\t"
 7914             "xorl    rdx, rdx\n\t"
 7915             "cmpq    $div, -1\n\t"
 7916             "je,s    done\n"
 7917     "normal: cdqq\n\t"
 7918             "idivq   $div\n"
 7919     "done:"        %}
 7920   ins_encode(cdqq_enc(div));
 7921   ins_pipe(pipe_slow);
 7922 %}
 7923 
 7924 // Unsigned integer DIVMOD with Register, both quotient and mod results
 7925 instruct udivModI_rReg_divmod(rax_RegI rax, no_rax_rdx_RegI tmp, rdx_RegI rdx,
 7926                               no_rax_rdx_RegI div, rFlagsReg cr)
 7927 %{
 7928   match(UDivModI rax div);
 7929   effect(TEMP tmp, KILL cr);
 7930 
 7931   ins_cost(300);
 7932   format %{ "udivl $rax,$rax,$div\t# begin UDivModI\n\t"
 7933             "umodl $rdx,$rax,$div\t! using $tmp as TEMP # end UDivModI\n"
 7934           %}
 7935   ins_encode %{
 7936     __ udivmodI($rax$$Register, $div$$Register, $rdx$$Register, $tmp$$Register);
 7937   %}
 7938   ins_pipe(pipe_slow);
 7939 %}
 7940 
 7941 // Unsigned long DIVMOD with Register, both quotient and mod results
 7942 instruct udivModL_rReg_divmod(rax_RegL rax, no_rax_rdx_RegL tmp, rdx_RegL rdx,
 7943                               no_rax_rdx_RegL div, rFlagsReg cr)
 7944 %{
 7945   match(UDivModL rax div);
 7946   effect(TEMP tmp, KILL cr);
 7947 
 7948   ins_cost(300);
 7949   format %{ "udivq $rax,$rax,$div\t# begin UDivModL\n\t"
 7950             "umodq $rdx,$rax,$div\t! using $tmp as TEMP # end UDivModL\n"
 7951           %}
 7952   ins_encode %{
 7953     __ udivmodL($rax$$Register, $div$$Register, $rdx$$Register, $tmp$$Register);
 7954   %}
 7955   ins_pipe(pipe_slow);
 7956 %}
 7957 
 7958 instruct modI_rReg(rdx_RegI rdx, rax_RegI rax, no_rax_rdx_RegI div,
 7959                    rFlagsReg cr)
 7960 %{
 7961   match(Set rdx (ModI rax div));
 7962   effect(KILL rax, KILL cr);
 7963 
 7964   ins_cost(300); // XXX
 7965   format %{ "cmpl    rax, 0x80000000\t# irem\n\t"
 7966             "jne,s   normal\n\t"
 7967             "xorl    rdx, rdx\n\t"
 7968             "cmpl    $div, -1\n\t"
 7969             "je,s    done\n"
 7970     "normal: cdql\n\t"
 7971             "idivl   $div\n"
 7972     "done:"        %}
 7973   ins_encode(cdql_enc(div));
 7974   ins_pipe(ialu_reg_reg_alu0);
 7975 %}
 7976 
 7977 instruct modL_rReg(rdx_RegL rdx, rax_RegL rax, no_rax_rdx_RegL div,
 7978                    rFlagsReg cr)
 7979 %{
 7980   match(Set rdx (ModL rax div));
 7981   effect(KILL rax, KILL cr);
 7982 
 7983   ins_cost(300); // XXX
 7984   format %{ "movq    rdx, 0x8000000000000000\t# lrem\n\t"
 7985             "cmpq    rax, rdx\n\t"
 7986             "jne,s   normal\n\t"
 7987             "xorl    rdx, rdx\n\t"
 7988             "cmpq    $div, -1\n\t"
 7989             "je,s    done\n"
 7990     "normal: cdqq\n\t"
 7991             "idivq   $div\n"
 7992     "done:"        %}
 7993   ins_encode(cdqq_enc(div));
 7994   ins_pipe(ialu_reg_reg_alu0);
 7995 %}
 7996 
 7997 instruct umodI_rReg(rdx_RegI rdx, rax_RegI rax, no_rax_rdx_RegI div, rFlagsReg cr)
 7998 %{
 7999   match(Set rdx (UModI rax div));
 8000   effect(KILL rax, KILL cr);
 8001 
 8002   ins_cost(300);
 8003   format %{ "umodl $rdx,$rax,$div\t# UModI\n" %}
 8004   ins_encode %{
 8005     __ umodI($rax$$Register, $div$$Register, $rdx$$Register);
 8006   %}
 8007   ins_pipe(ialu_reg_reg_alu0);
 8008 %}
 8009 
 8010 instruct umodL_rReg(rdx_RegL rdx, rax_RegL rax, no_rax_rdx_RegL div, rFlagsReg cr)
 8011 %{
 8012   match(Set rdx (UModL rax div));
 8013   effect(KILL rax, KILL cr);
 8014 
 8015   ins_cost(300);
 8016   format %{ "umodq $rdx,$rax,$div\t# UModL\n" %}
 8017   ins_encode %{
 8018     __ umodL($rax$$Register, $div$$Register, $rdx$$Register);
 8019   %}
 8020   ins_pipe(ialu_reg_reg_alu0);
 8021 %}
 8022 
 8023 // Integer Shift Instructions
 8024 // Shift Left by one, two, three
 8025 instruct salI_rReg_immI2(rRegI dst, immI2 shift, rFlagsReg cr)
 8026 %{
 8027   match(Set dst (LShiftI dst shift));
 8028   effect(KILL cr);
 8029 
 8030   format %{ "sall    $dst, $shift" %}
 8031   ins_encode %{
 8032     __ sall($dst$$Register, $shift$$constant);
 8033   %}
 8034   ins_pipe(ialu_reg);
 8035 %}
 8036 
 8037 // Shift Left by 8-bit immediate
 8038 instruct salI_rReg_imm(rRegI dst, immI8 shift, rFlagsReg cr)
 8039 %{
 8040   match(Set dst (LShiftI dst shift));
 8041   effect(KILL cr);
 8042 
 8043   format %{ "sall    $dst, $shift" %}
 8044   ins_encode %{
 8045     __ sall($dst$$Register, $shift$$constant);
 8046   %}
 8047   ins_pipe(ialu_reg);
 8048 %}
 8049 
 8050 // Shift Left by 8-bit immediate
 8051 instruct salI_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
 8052 %{
 8053   match(Set dst (StoreI dst (LShiftI (LoadI dst) shift)));
 8054   effect(KILL cr);
 8055 
 8056   format %{ "sall    $dst, $shift" %}
 8057   ins_encode %{
 8058     __ sall($dst$$Address, $shift$$constant);
 8059   %}
 8060   ins_pipe(ialu_mem_imm);
 8061 %}
 8062 
 8063 // Shift Left by variable
 8064 instruct salI_rReg_CL(rRegI dst, rcx_RegI shift, rFlagsReg cr)
 8065 %{
 8066   predicate(!VM_Version::supports_bmi2());
 8067   match(Set dst (LShiftI dst shift));
 8068   effect(KILL cr);
 8069 
 8070   format %{ "sall    $dst, $shift" %}
 8071   ins_encode %{
 8072     __ sall($dst$$Register);
 8073   %}
 8074   ins_pipe(ialu_reg_reg);
 8075 %}
 8076 
 8077 // Shift Left by variable
 8078 instruct salI_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
 8079 %{
 8080   predicate(!VM_Version::supports_bmi2());
 8081   match(Set dst (StoreI dst (LShiftI (LoadI dst) shift)));
 8082   effect(KILL cr);
 8083 
 8084   format %{ "sall    $dst, $shift" %}
 8085   ins_encode %{
 8086     __ sall($dst$$Address);
 8087   %}
 8088   ins_pipe(ialu_mem_reg);
 8089 %}
 8090 
 8091 instruct salI_rReg_rReg(rRegI dst, rRegI src, rRegI shift)
 8092 %{
 8093   predicate(VM_Version::supports_bmi2());
 8094   match(Set dst (LShiftI src shift));
 8095 
 8096   format %{ "shlxl   $dst, $src, $shift" %}
 8097   ins_encode %{
 8098     __ shlxl($dst$$Register, $src$$Register, $shift$$Register);
 8099   %}
 8100   ins_pipe(ialu_reg_reg);
 8101 %}
 8102 
 8103 instruct salI_mem_rReg(rRegI dst, memory src, rRegI shift)
 8104 %{
 8105   predicate(VM_Version::supports_bmi2());
 8106   match(Set dst (LShiftI (LoadI src) shift));
 8107   ins_cost(175);
 8108   format %{ "shlxl   $dst, $src, $shift" %}
 8109   ins_encode %{
 8110     __ shlxl($dst$$Register, $src$$Address, $shift$$Register);
 8111   %}
 8112   ins_pipe(ialu_reg_mem);
 8113 %}
 8114 
 8115 // Arithmetic Shift Right by 8-bit immediate
 8116 instruct sarI_rReg_imm(rRegI dst, immI8 shift, rFlagsReg cr)
 8117 %{
 8118   match(Set dst (RShiftI dst shift));
 8119   effect(KILL cr);
 8120 
 8121   format %{ "sarl    $dst, $shift" %}
 8122   ins_encode %{
 8123     __ sarl($dst$$Register, $shift$$constant);
 8124   %}
 8125   ins_pipe(ialu_mem_imm);
 8126 %}
 8127 
 8128 // Arithmetic Shift Right by 8-bit immediate
 8129 instruct sarI_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
 8130 %{
 8131   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
 8132   effect(KILL cr);
 8133 
 8134   format %{ "sarl    $dst, $shift" %}
 8135   ins_encode %{
 8136     __ sarl($dst$$Address, $shift$$constant);
 8137   %}
 8138   ins_pipe(ialu_mem_imm);
 8139 %}
 8140 
 8141 // Arithmetic Shift Right by variable
 8142 instruct sarI_rReg_CL(rRegI dst, rcx_RegI shift, rFlagsReg cr)
 8143 %{
 8144   predicate(!VM_Version::supports_bmi2());
 8145   match(Set dst (RShiftI dst shift));
 8146   effect(KILL cr);
 8147 
 8148   format %{ "sarl    $dst, $shift" %}
 8149   ins_encode %{
 8150     __ sarl($dst$$Register);
 8151   %}
 8152   ins_pipe(ialu_reg_reg);
 8153 %}
 8154 
 8155 // Arithmetic Shift Right by variable
 8156 instruct sarI_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
 8157 %{
 8158   predicate(!VM_Version::supports_bmi2());
 8159   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
 8160   effect(KILL cr);
 8161 
 8162   format %{ "sarl    $dst, $shift" %}
 8163   ins_encode %{
 8164     __ sarl($dst$$Address);
 8165   %}
 8166   ins_pipe(ialu_mem_reg);
 8167 %}
 8168 
 8169 instruct sarI_rReg_rReg(rRegI dst, rRegI src, rRegI shift)
 8170 %{
 8171   predicate(VM_Version::supports_bmi2());
 8172   match(Set dst (RShiftI src shift));
 8173 
 8174   format %{ "sarxl   $dst, $src, $shift" %}
 8175   ins_encode %{
 8176     __ sarxl($dst$$Register, $src$$Register, $shift$$Register);
 8177   %}
 8178   ins_pipe(ialu_reg_reg);
 8179 %}
 8180 
 8181 instruct sarI_mem_rReg(rRegI dst, memory src, rRegI shift)
 8182 %{
 8183   predicate(VM_Version::supports_bmi2());
 8184   match(Set dst (RShiftI (LoadI src) shift));
 8185   ins_cost(175);
 8186   format %{ "sarxl   $dst, $src, $shift" %}
 8187   ins_encode %{
 8188     __ sarxl($dst$$Register, $src$$Address, $shift$$Register);
 8189   %}
 8190   ins_pipe(ialu_reg_mem);
 8191 %}
 8192 
 8193 // Logical Shift Right by 8-bit immediate
 8194 instruct shrI_rReg_imm(rRegI dst, immI8 shift, rFlagsReg cr)
 8195 %{
 8196   match(Set dst (URShiftI dst shift));
 8197   effect(KILL cr);
 8198 
 8199   format %{ "shrl    $dst, $shift" %}
 8200   ins_encode %{
 8201     __ shrl($dst$$Register, $shift$$constant);
 8202   %}
 8203   ins_pipe(ialu_reg);
 8204 %}
 8205 
 8206 // Logical Shift Right by 8-bit immediate
 8207 instruct shrI_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
 8208 %{
 8209   match(Set dst (StoreI dst (URShiftI (LoadI dst) shift)));
 8210   effect(KILL cr);
 8211 
 8212   format %{ "shrl    $dst, $shift" %}
 8213   ins_encode %{
 8214     __ shrl($dst$$Address, $shift$$constant);
 8215   %}
 8216   ins_pipe(ialu_mem_imm);
 8217 %}
 8218 
 8219 // Logical Shift Right by variable
 8220 instruct shrI_rReg_CL(rRegI dst, rcx_RegI shift, rFlagsReg cr)
 8221 %{
 8222   predicate(!VM_Version::supports_bmi2());
 8223   match(Set dst (URShiftI dst shift));
 8224   effect(KILL cr);
 8225 
 8226   format %{ "shrl    $dst, $shift" %}
 8227   ins_encode %{
 8228     __ shrl($dst$$Register);
 8229   %}
 8230   ins_pipe(ialu_reg_reg);
 8231 %}
 8232 
 8233 // Logical Shift Right by variable
 8234 instruct shrI_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
 8235 %{
 8236   predicate(!VM_Version::supports_bmi2());
 8237   match(Set dst (StoreI dst (URShiftI (LoadI dst) shift)));
 8238   effect(KILL cr);
 8239 
 8240   format %{ "shrl    $dst, $shift" %}
 8241   ins_encode %{
 8242     __ shrl($dst$$Address);
 8243   %}
 8244   ins_pipe(ialu_mem_reg);
 8245 %}
 8246 
 8247 instruct shrI_rReg_rReg(rRegI dst, rRegI src, rRegI shift)
 8248 %{
 8249   predicate(VM_Version::supports_bmi2());
 8250   match(Set dst (URShiftI src shift));
 8251 
 8252   format %{ "shrxl   $dst, $src, $shift" %}
 8253   ins_encode %{
 8254     __ shrxl($dst$$Register, $src$$Register, $shift$$Register);
 8255   %}
 8256   ins_pipe(ialu_reg_reg);
 8257 %}
 8258 
 8259 instruct shrI_mem_rReg(rRegI dst, memory src, rRegI shift)
 8260 %{
 8261   predicate(VM_Version::supports_bmi2());
 8262   match(Set dst (URShiftI (LoadI src) shift));
 8263   ins_cost(175);
 8264   format %{ "shrxl   $dst, $src, $shift" %}
 8265   ins_encode %{
 8266     __ shrxl($dst$$Register, $src$$Address, $shift$$Register);
 8267   %}
 8268   ins_pipe(ialu_reg_mem);
 8269 %}
 8270 
 8271 // Long Shift Instructions
 8272 // Shift Left by one, two, three
 8273 instruct salL_rReg_immI2(rRegL dst, immI2 shift, rFlagsReg cr)
 8274 %{
 8275   match(Set dst (LShiftL dst shift));
 8276   effect(KILL cr);
 8277 
 8278   format %{ "salq    $dst, $shift" %}
 8279   ins_encode %{
 8280     __ salq($dst$$Register, $shift$$constant);
 8281   %}
 8282   ins_pipe(ialu_reg);
 8283 %}
 8284 
 8285 // Shift Left by 8-bit immediate
 8286 instruct salL_rReg_imm(rRegL dst, immI8 shift, rFlagsReg cr)
 8287 %{
 8288   match(Set dst (LShiftL dst shift));
 8289   effect(KILL cr);
 8290 
 8291   format %{ "salq    $dst, $shift" %}
 8292   ins_encode %{
 8293     __ salq($dst$$Register, $shift$$constant);
 8294   %}
 8295   ins_pipe(ialu_reg);
 8296 %}
 8297 
 8298 // Shift Left by 8-bit immediate
 8299 instruct salL_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
 8300 %{
 8301   match(Set dst (StoreL dst (LShiftL (LoadL dst) shift)));
 8302   effect(KILL cr);
 8303 
 8304   format %{ "salq    $dst, $shift" %}
 8305   ins_encode %{
 8306     __ salq($dst$$Address, $shift$$constant);
 8307   %}
 8308   ins_pipe(ialu_mem_imm);
 8309 %}
 8310 
 8311 // Shift Left by variable
 8312 instruct salL_rReg_CL(rRegL dst, rcx_RegI shift, rFlagsReg cr)
 8313 %{
 8314   predicate(!VM_Version::supports_bmi2());
 8315   match(Set dst (LShiftL dst shift));
 8316   effect(KILL cr);
 8317 
 8318   format %{ "salq    $dst, $shift" %}
 8319   ins_encode %{
 8320     __ salq($dst$$Register);
 8321   %}
 8322   ins_pipe(ialu_reg_reg);
 8323 %}
 8324 
 8325 // Shift Left by variable
 8326 instruct salL_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
 8327 %{
 8328   predicate(!VM_Version::supports_bmi2());
 8329   match(Set dst (StoreL dst (LShiftL (LoadL dst) shift)));
 8330   effect(KILL cr);
 8331 
 8332   format %{ "salq    $dst, $shift" %}
 8333   ins_encode %{
 8334     __ salq($dst$$Address);
 8335   %}
 8336   ins_pipe(ialu_mem_reg);
 8337 %}
 8338 
 8339 instruct salL_rReg_rReg(rRegL dst, rRegL src, rRegI shift)
 8340 %{
 8341   predicate(VM_Version::supports_bmi2());
 8342   match(Set dst (LShiftL src shift));
 8343 
 8344   format %{ "shlxq   $dst, $src, $shift" %}
 8345   ins_encode %{
 8346     __ shlxq($dst$$Register, $src$$Register, $shift$$Register);
 8347   %}
 8348   ins_pipe(ialu_reg_reg);
 8349 %}
 8350 
 8351 instruct salL_mem_rReg(rRegL dst, memory src, rRegI shift)
 8352 %{
 8353   predicate(VM_Version::supports_bmi2());
 8354   match(Set dst (LShiftL (LoadL src) shift));
 8355   ins_cost(175);
 8356   format %{ "shlxq   $dst, $src, $shift" %}
 8357   ins_encode %{
 8358     __ shlxq($dst$$Register, $src$$Address, $shift$$Register);
 8359   %}
 8360   ins_pipe(ialu_reg_mem);
 8361 %}
 8362 
 8363 // Arithmetic Shift Right by 8-bit immediate
 8364 instruct sarL_rReg_imm(rRegL dst, immI shift, rFlagsReg cr)
 8365 %{
 8366   match(Set dst (RShiftL dst shift));
 8367   effect(KILL cr);
 8368 
 8369   format %{ "sarq    $dst, $shift" %}
 8370   ins_encode %{
 8371     __ sarq($dst$$Register, (unsigned char)($shift$$constant & 0x3F));
 8372   %}
 8373   ins_pipe(ialu_mem_imm);
 8374 %}
 8375 
 8376 // Arithmetic Shift Right by 8-bit immediate
 8377 instruct sarL_mem_imm(memory dst, immI shift, rFlagsReg cr)
 8378 %{
 8379   match(Set dst (StoreL dst (RShiftL (LoadL dst) shift)));
 8380   effect(KILL cr);
 8381 
 8382   format %{ "sarq    $dst, $shift" %}
 8383   ins_encode %{
 8384     __ sarq($dst$$Address, (unsigned char)($shift$$constant & 0x3F));
 8385   %}
 8386   ins_pipe(ialu_mem_imm);
 8387 %}
 8388 
 8389 // Arithmetic Shift Right by variable
 8390 instruct sarL_rReg_CL(rRegL dst, rcx_RegI shift, rFlagsReg cr)
 8391 %{
 8392   predicate(!VM_Version::supports_bmi2());
 8393   match(Set dst (RShiftL dst shift));
 8394   effect(KILL cr);
 8395 
 8396   format %{ "sarq    $dst, $shift" %}
 8397   ins_encode %{
 8398     __ sarq($dst$$Register);
 8399   %}
 8400   ins_pipe(ialu_reg_reg);
 8401 %}
 8402 
 8403 // Arithmetic Shift Right by variable
 8404 instruct sarL_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
 8405 %{
 8406   predicate(!VM_Version::supports_bmi2());
 8407   match(Set dst (StoreL dst (RShiftL (LoadL dst) shift)));
 8408   effect(KILL cr);
 8409 
 8410   format %{ "sarq    $dst, $shift" %}
 8411   ins_encode %{
 8412     __ sarq($dst$$Address);
 8413   %}
 8414   ins_pipe(ialu_mem_reg);
 8415 %}
 8416 
 8417 instruct sarL_rReg_rReg(rRegL dst, rRegL src, rRegI shift)
 8418 %{
 8419   predicate(VM_Version::supports_bmi2());
 8420   match(Set dst (RShiftL src shift));
 8421 
 8422   format %{ "sarxq   $dst, $src, $shift" %}
 8423   ins_encode %{
 8424     __ sarxq($dst$$Register, $src$$Register, $shift$$Register);
 8425   %}
 8426   ins_pipe(ialu_reg_reg);
 8427 %}
 8428 
 8429 instruct sarL_mem_rReg(rRegL dst, memory src, rRegI shift)
 8430 %{
 8431   predicate(VM_Version::supports_bmi2());
 8432   match(Set dst (RShiftL (LoadL src) shift));
 8433   ins_cost(175);
 8434   format %{ "sarxq   $dst, $src, $shift" %}
 8435   ins_encode %{
 8436     __ sarxq($dst$$Register, $src$$Address, $shift$$Register);
 8437   %}
 8438   ins_pipe(ialu_reg_mem);
 8439 %}
 8440 
 8441 // Logical Shift Right by 8-bit immediate
 8442 instruct shrL_rReg_imm(rRegL dst, immI8 shift, rFlagsReg cr)
 8443 %{
 8444   match(Set dst (URShiftL dst shift));
 8445   effect(KILL cr);
 8446 
 8447   format %{ "shrq    $dst, $shift" %}
 8448   ins_encode %{
 8449     __ shrq($dst$$Register, $shift$$constant);
 8450   %}
 8451   ins_pipe(ialu_reg);
 8452 %}
 8453 
 8454 // Logical Shift Right by 8-bit immediate
 8455 instruct shrL_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
 8456 %{
 8457   match(Set dst (StoreL dst (URShiftL (LoadL dst) shift)));
 8458   effect(KILL cr);
 8459 
 8460   format %{ "shrq    $dst, $shift" %}
 8461   ins_encode %{
 8462     __ shrq($dst$$Address, $shift$$constant);
 8463   %}
 8464   ins_pipe(ialu_mem_imm);
 8465 %}
 8466 
 8467 // Logical Shift Right by variable
 8468 instruct shrL_rReg_CL(rRegL dst, rcx_RegI shift, rFlagsReg cr)
 8469 %{
 8470   predicate(!VM_Version::supports_bmi2());
 8471   match(Set dst (URShiftL dst shift));
 8472   effect(KILL cr);
 8473 
 8474   format %{ "shrq    $dst, $shift" %}
 8475   ins_encode %{
 8476     __ shrq($dst$$Register);
 8477   %}
 8478   ins_pipe(ialu_reg_reg);
 8479 %}
 8480 
 8481 // Logical Shift Right by variable
 8482 instruct shrL_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
 8483 %{
 8484   predicate(!VM_Version::supports_bmi2());
 8485   match(Set dst (StoreL dst (URShiftL (LoadL dst) shift)));
 8486   effect(KILL cr);
 8487 
 8488   format %{ "shrq    $dst, $shift" %}
 8489   ins_encode %{
 8490     __ shrq($dst$$Address);
 8491   %}
 8492   ins_pipe(ialu_mem_reg);
 8493 %}
 8494 
 8495 instruct shrL_rReg_rReg(rRegL dst, rRegL src, rRegI shift)
 8496 %{
 8497   predicate(VM_Version::supports_bmi2());
 8498   match(Set dst (URShiftL src shift));
 8499 
 8500   format %{ "shrxq   $dst, $src, $shift" %}
 8501   ins_encode %{
 8502     __ shrxq($dst$$Register, $src$$Register, $shift$$Register);
 8503   %}
 8504   ins_pipe(ialu_reg_reg);
 8505 %}
 8506 
 8507 instruct shrL_mem_rReg(rRegL dst, memory src, rRegI shift)
 8508 %{
 8509   predicate(VM_Version::supports_bmi2());
 8510   match(Set dst (URShiftL (LoadL src) shift));
 8511   ins_cost(175);
 8512   format %{ "shrxq   $dst, $src, $shift" %}
 8513   ins_encode %{
 8514     __ shrxq($dst$$Register, $src$$Address, $shift$$Register);
 8515   %}
 8516   ins_pipe(ialu_reg_mem);
 8517 %}
 8518 
 8519 // Logical Shift Right by 24, followed by Arithmetic Shift Left by 24.
 8520 // This idiom is used by the compiler for the i2b bytecode.
 8521 instruct i2b(rRegI dst, rRegI src, immI_24 twentyfour)
 8522 %{
 8523   match(Set dst (RShiftI (LShiftI src twentyfour) twentyfour));
 8524 
 8525   format %{ "movsbl  $dst, $src\t# i2b" %}
 8526   ins_encode %{
 8527     __ movsbl($dst$$Register, $src$$Register);
 8528   %}
 8529   ins_pipe(ialu_reg_reg);
 8530 %}
 8531 
 8532 // Logical Shift Right by 16, followed by Arithmetic Shift Left by 16.
 8533 // This idiom is used by the compiler the i2s bytecode.
 8534 instruct i2s(rRegI dst, rRegI src, immI_16 sixteen)
 8535 %{
 8536   match(Set dst (RShiftI (LShiftI src sixteen) sixteen));
 8537 
 8538   format %{ "movswl  $dst, $src\t# i2s" %}
 8539   ins_encode %{
 8540     __ movswl($dst$$Register, $src$$Register);
 8541   %}
 8542   ins_pipe(ialu_reg_reg);
 8543 %}
 8544 
 8545 // ROL/ROR instructions
 8546 
 8547 // Rotate left by constant.
 8548 instruct rolI_immI8_legacy(rRegI dst, immI8 shift, rFlagsReg cr)
 8549 %{
 8550   predicate(!VM_Version::supports_bmi2() && n->bottom_type()->basic_type() == T_INT);
 8551   match(Set dst (RotateLeft dst shift));
 8552   effect(KILL cr);
 8553   format %{ "roll    $dst, $shift" %}
 8554   ins_encode %{
 8555     __ roll($dst$$Register, $shift$$constant);
 8556   %}
 8557   ins_pipe(ialu_reg);
 8558 %}
 8559 
 8560 instruct rolI_immI8(rRegI dst, rRegI src, immI8 shift)
 8561 %{
 8562   predicate(VM_Version::supports_bmi2() && n->bottom_type()->basic_type() == T_INT);
 8563   match(Set dst (RotateLeft src shift));
 8564   format %{ "rolxl   $dst, $src, $shift" %}
 8565   ins_encode %{
 8566     int shift = 32 - ($shift$$constant & 31);
 8567     __ rorxl($dst$$Register, $src$$Register, shift);
 8568   %}
 8569   ins_pipe(ialu_reg_reg);
 8570 %}
 8571 
 8572 instruct rolI_mem_immI8(rRegI dst, memory src, immI8 shift)
 8573 %{
 8574   predicate(VM_Version::supports_bmi2() && n->bottom_type()->basic_type() == T_INT);
 8575   match(Set dst (RotateLeft (LoadI src) shift));
 8576   ins_cost(175);
 8577   format %{ "rolxl   $dst, $src, $shift" %}
 8578   ins_encode %{
 8579     int shift = 32 - ($shift$$constant & 31);
 8580     __ rorxl($dst$$Register, $src$$Address, shift);
 8581   %}
 8582   ins_pipe(ialu_reg_mem);
 8583 %}
 8584 
 8585 // Rotate Left by variable
 8586 instruct rolI_rReg_Var(rRegI dst, rcx_RegI shift, rFlagsReg cr)
 8587 %{
 8588   predicate(n->bottom_type()->basic_type() == T_INT);
 8589   match(Set dst (RotateLeft dst shift));
 8590   effect(KILL cr);
 8591   format %{ "roll    $dst, $shift" %}
 8592   ins_encode %{
 8593     __ roll($dst$$Register);
 8594   %}
 8595   ins_pipe(ialu_reg_reg);
 8596 %}
 8597 
 8598 // Rotate Right by constant.
 8599 instruct rorI_immI8_legacy(rRegI dst, immI8 shift, rFlagsReg cr)
 8600 %{
 8601   predicate(!VM_Version::supports_bmi2() && n->bottom_type()->basic_type() == T_INT);
 8602   match(Set dst (RotateRight dst shift));
 8603   effect(KILL cr);
 8604   format %{ "rorl    $dst, $shift" %}
 8605   ins_encode %{
 8606     __ rorl($dst$$Register, $shift$$constant);
 8607   %}
 8608   ins_pipe(ialu_reg);
 8609 %}
 8610 
 8611 // Rotate Right by constant.
 8612 instruct rorI_immI8(rRegI dst, rRegI src, immI8 shift)
 8613 %{
 8614   predicate(VM_Version::supports_bmi2() && n->bottom_type()->basic_type() == T_INT);
 8615   match(Set dst (RotateRight src shift));
 8616   format %{ "rorxl   $dst, $src, $shift" %}
 8617   ins_encode %{
 8618     __ rorxl($dst$$Register, $src$$Register, $shift$$constant);
 8619   %}
 8620   ins_pipe(ialu_reg_reg);
 8621 %}
 8622 
 8623 instruct rorI_mem_immI8(rRegI dst, memory src, immI8 shift)
 8624 %{
 8625   predicate(VM_Version::supports_bmi2() && n->bottom_type()->basic_type() == T_INT);
 8626   match(Set dst (RotateRight (LoadI src) shift));
 8627   ins_cost(175);
 8628   format %{ "rorxl   $dst, $src, $shift" %}
 8629   ins_encode %{
 8630     __ rorxl($dst$$Register, $src$$Address, $shift$$constant);
 8631   %}
 8632   ins_pipe(ialu_reg_mem);
 8633 %}
 8634 
 8635 // Rotate Right by variable
 8636 instruct rorI_rReg_Var(rRegI dst, rcx_RegI shift, rFlagsReg cr)
 8637 %{
 8638   predicate(n->bottom_type()->basic_type() == T_INT);
 8639   match(Set dst (RotateRight dst shift));
 8640   effect(KILL cr);
 8641   format %{ "rorl    $dst, $shift" %}
 8642   ins_encode %{
 8643     __ rorl($dst$$Register);
 8644   %}
 8645   ins_pipe(ialu_reg_reg);
 8646 %}
 8647 
 8648 // Rotate Left by constant.
 8649 instruct rolL_immI8_legacy(rRegL dst, immI8 shift, rFlagsReg cr)
 8650 %{
 8651   predicate(!VM_Version::supports_bmi2() && n->bottom_type()->basic_type() == T_LONG);
 8652   match(Set dst (RotateLeft dst shift));
 8653   effect(KILL cr);
 8654   format %{ "rolq    $dst, $shift" %}
 8655   ins_encode %{
 8656     __ rolq($dst$$Register, $shift$$constant);
 8657   %}
 8658   ins_pipe(ialu_reg);
 8659 %}
 8660 
 8661 instruct rolL_immI8(rRegL dst, rRegL src, immI8 shift)
 8662 %{
 8663   predicate(VM_Version::supports_bmi2() && n->bottom_type()->basic_type() == T_LONG);
 8664   match(Set dst (RotateLeft src shift));
 8665   format %{ "rolxq   $dst, $src, $shift" %}
 8666   ins_encode %{
 8667     int shift = 64 - ($shift$$constant & 63);
 8668     __ rorxq($dst$$Register, $src$$Register, shift);
 8669   %}
 8670   ins_pipe(ialu_reg_reg);
 8671 %}
 8672 
 8673 instruct rolL_mem_immI8(rRegL dst, memory src, immI8 shift)
 8674 %{
 8675   predicate(VM_Version::supports_bmi2() && n->bottom_type()->basic_type() == T_LONG);
 8676   match(Set dst (RotateLeft (LoadL src) shift));
 8677   ins_cost(175);
 8678   format %{ "rolxq   $dst, $src, $shift" %}
 8679   ins_encode %{
 8680     int shift = 64 - ($shift$$constant & 63);
 8681     __ rorxq($dst$$Register, $src$$Address, shift);
 8682   %}
 8683   ins_pipe(ialu_reg_mem);
 8684 %}
 8685 
 8686 // Rotate Left by variable
 8687 instruct rolL_rReg_Var(rRegL dst, rcx_RegI shift, rFlagsReg cr)
 8688 %{
 8689   predicate(n->bottom_type()->basic_type() == T_LONG);
 8690   match(Set dst (RotateLeft dst shift));
 8691   effect(KILL cr);
 8692   format %{ "rolq    $dst, $shift" %}
 8693   ins_encode %{
 8694     __ rolq($dst$$Register);
 8695   %}
 8696   ins_pipe(ialu_reg_reg);
 8697 %}
 8698 
 8699 // Rotate Right by constant.
 8700 instruct rorL_immI8_legacy(rRegL dst, immI8 shift, rFlagsReg cr)
 8701 %{
 8702   predicate(!VM_Version::supports_bmi2() && n->bottom_type()->basic_type() == T_LONG);
 8703   match(Set dst (RotateRight dst shift));
 8704   effect(KILL cr);
 8705   format %{ "rorq    $dst, $shift" %}
 8706   ins_encode %{
 8707     __ rorq($dst$$Register, $shift$$constant);
 8708   %}
 8709   ins_pipe(ialu_reg);
 8710 %}
 8711 
 8712 // Rotate Right by constant
 8713 instruct rorL_immI8(rRegL dst, rRegL src, immI8 shift)
 8714 %{
 8715   predicate(VM_Version::supports_bmi2() && n->bottom_type()->basic_type() == T_LONG);
 8716   match(Set dst (RotateRight src shift));
 8717   format %{ "rorxq   $dst, $src, $shift" %}
 8718   ins_encode %{
 8719     __ rorxq($dst$$Register, $src$$Register, $shift$$constant);
 8720   %}
 8721   ins_pipe(ialu_reg_reg);
 8722 %}
 8723 
 8724 instruct rorL_mem_immI8(rRegL dst, memory src, immI8 shift)
 8725 %{
 8726   predicate(VM_Version::supports_bmi2() && n->bottom_type()->basic_type() == T_LONG);
 8727   match(Set dst (RotateRight (LoadL src) shift));
 8728   ins_cost(175);
 8729   format %{ "rorxq   $dst, $src, $shift" %}
 8730   ins_encode %{
 8731     __ rorxq($dst$$Register, $src$$Address, $shift$$constant);
 8732   %}
 8733   ins_pipe(ialu_reg_mem);
 8734 %}
 8735 
 8736 // Rotate Right by variable
 8737 instruct rorL_rReg_Var(rRegL dst, rcx_RegI shift, rFlagsReg cr)
 8738 %{
 8739   predicate(n->bottom_type()->basic_type() == T_LONG);
 8740   match(Set dst (RotateRight dst shift));
 8741   effect(KILL cr);
 8742   format %{ "rorq    $dst, $shift" %}
 8743   ins_encode %{
 8744     __ rorq($dst$$Register);
 8745   %}
 8746   ins_pipe(ialu_reg_reg);
 8747 %}
 8748 
 8749 //----------------------------- CompressBits/ExpandBits ------------------------
 8750 
 8751 instruct compressBitsL_reg(rRegL dst, rRegL src, rRegL mask) %{
 8752   predicate(n->bottom_type()->isa_long());
 8753   match(Set dst (CompressBits src mask));
 8754   format %{ "pextq  $dst, $src, $mask\t! parallel bit extract" %}
 8755   ins_encode %{
 8756     __ pextq($dst$$Register, $src$$Register, $mask$$Register);
 8757   %}
 8758   ins_pipe( pipe_slow );
 8759 %}
 8760 
 8761 instruct expandBitsL_reg(rRegL dst, rRegL src, rRegL mask) %{
 8762   predicate(n->bottom_type()->isa_long());
 8763   match(Set dst (ExpandBits src mask));
 8764   format %{ "pdepq  $dst, $src, $mask\t! parallel bit deposit" %}
 8765   ins_encode %{
 8766     __ pdepq($dst$$Register, $src$$Register, $mask$$Register);
 8767   %}
 8768   ins_pipe( pipe_slow );
 8769 %}
 8770 
 8771 instruct compressBitsL_mem(rRegL dst, rRegL src, memory mask) %{
 8772   predicate(n->bottom_type()->isa_long());
 8773   match(Set dst (CompressBits src (LoadL mask)));
 8774   format %{ "pextq  $dst, $src, $mask\t! parallel bit extract" %}
 8775   ins_encode %{
 8776     __ pextq($dst$$Register, $src$$Register, $mask$$Address);
 8777   %}
 8778   ins_pipe( pipe_slow );
 8779 %}
 8780 
 8781 instruct expandBitsL_mem(rRegL dst, rRegL src, memory mask) %{
 8782   predicate(n->bottom_type()->isa_long());
 8783   match(Set dst (ExpandBits src (LoadL mask)));
 8784   format %{ "pdepq  $dst, $src, $mask\t! parallel bit deposit" %}
 8785   ins_encode %{
 8786     __ pdepq($dst$$Register, $src$$Register, $mask$$Address);
 8787   %}
 8788   ins_pipe( pipe_slow );
 8789 %}
 8790 
 8791 
 8792 // Logical Instructions
 8793 
 8794 // Integer Logical Instructions
 8795 
 8796 // And Instructions
 8797 // And Register with Register
 8798 instruct andI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
 8799 %{
 8800   match(Set dst (AndI dst src));
 8801   effect(KILL cr);
 8802   flag(PD::Flag_sets_sign_flag, PD::Flag_sets_zero_flag, PD::Flag_sets_parity_flag, PD::Flag_clears_overflow_flag, PD::Flag_clears_carry_flag);
 8803 
 8804   format %{ "andl    $dst, $src\t# int" %}
 8805   ins_encode %{
 8806     __ andl($dst$$Register, $src$$Register);
 8807   %}
 8808   ins_pipe(ialu_reg_reg);
 8809 %}
 8810 
 8811 // And Register with Immediate 255
 8812 instruct andI_rReg_imm255(rRegI dst, rRegI src, immI_255 mask)
 8813 %{
 8814   match(Set dst (AndI src mask));
 8815 
 8816   format %{ "movzbl  $dst, $src\t# int & 0xFF" %}
 8817   ins_encode %{
 8818     __ movzbl($dst$$Register, $src$$Register);
 8819   %}
 8820   ins_pipe(ialu_reg);
 8821 %}
 8822 
 8823 // And Register with Immediate 255 and promote to long
 8824 instruct andI2L_rReg_imm255(rRegL dst, rRegI src, immI_255 mask)
 8825 %{
 8826   match(Set dst (ConvI2L (AndI src mask)));
 8827 
 8828   format %{ "movzbl  $dst, $src\t# int & 0xFF -> long" %}
 8829   ins_encode %{
 8830     __ movzbl($dst$$Register, $src$$Register);
 8831   %}
 8832   ins_pipe(ialu_reg);
 8833 %}
 8834 
 8835 // And Register with Immediate 65535
 8836 instruct andI_rReg_imm65535(rRegI dst, rRegI src, immI_65535 mask)
 8837 %{
 8838   match(Set dst (AndI src mask));
 8839 
 8840   format %{ "movzwl  $dst, $src\t# int & 0xFFFF" %}
 8841   ins_encode %{
 8842     __ movzwl($dst$$Register, $src$$Register);
 8843   %}
 8844   ins_pipe(ialu_reg);
 8845 %}
 8846 
 8847 // And Register with Immediate 65535 and promote to long
 8848 instruct andI2L_rReg_imm65535(rRegL dst, rRegI src, immI_65535 mask)
 8849 %{
 8850   match(Set dst (ConvI2L (AndI src mask)));
 8851 
 8852   format %{ "movzwl  $dst, $src\t# int & 0xFFFF -> long" %}
 8853   ins_encode %{
 8854     __ movzwl($dst$$Register, $src$$Register);
 8855   %}
 8856   ins_pipe(ialu_reg);
 8857 %}
 8858 
 8859 // Can skip int2long conversions after AND with small bitmask
 8860 instruct convI2LAndI_reg_immIbitmask(rRegL dst, rRegI src,  immI_Pow2M1 mask, rRegI tmp, rFlagsReg cr)
 8861 %{
 8862   predicate(VM_Version::supports_bmi2());
 8863   ins_cost(125);
 8864   effect(TEMP tmp, KILL cr);
 8865   match(Set dst (ConvI2L (AndI src mask)));
 8866   format %{ "bzhiq $dst, $src, $mask \t# using $tmp as TEMP, int &  immI_Pow2M1 -> long" %}
 8867   ins_encode %{
 8868     __ movl($tmp$$Register, exact_log2($mask$$constant + 1));
 8869     __ bzhiq($dst$$Register, $src$$Register, $tmp$$Register);
 8870   %}
 8871   ins_pipe(ialu_reg_reg);
 8872 %}
 8873 
 8874 // And Register with Immediate
 8875 instruct andI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
 8876 %{
 8877   match(Set dst (AndI dst src));
 8878   effect(KILL cr);
 8879   flag(PD::Flag_sets_sign_flag, PD::Flag_sets_zero_flag, PD::Flag_sets_parity_flag, PD::Flag_clears_overflow_flag, PD::Flag_clears_carry_flag);
 8880 
 8881   format %{ "andl    $dst, $src\t# int" %}
 8882   ins_encode %{
 8883     __ andl($dst$$Register, $src$$constant);
 8884   %}
 8885   ins_pipe(ialu_reg);
 8886 %}
 8887 
 8888 // And Register with Memory
 8889 instruct andI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
 8890 %{
 8891   match(Set dst (AndI dst (LoadI src)));
 8892   effect(KILL cr);
 8893   flag(PD::Flag_sets_sign_flag, PD::Flag_sets_zero_flag, PD::Flag_sets_parity_flag, PD::Flag_clears_overflow_flag, PD::Flag_clears_carry_flag);
 8894 
 8895   ins_cost(150);
 8896   format %{ "andl    $dst, $src\t# int" %}
 8897   ins_encode %{
 8898     __ andl($dst$$Register, $src$$Address);
 8899   %}
 8900   ins_pipe(ialu_reg_mem);
 8901 %}
 8902 
 8903 // And Memory with Register
 8904 instruct andB_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
 8905 %{
 8906   match(Set dst (StoreB dst (AndI (LoadB dst) src)));
 8907   effect(KILL cr);
 8908   flag(PD::Flag_sets_sign_flag, PD::Flag_sets_zero_flag, PD::Flag_sets_parity_flag, PD::Flag_clears_overflow_flag, PD::Flag_clears_carry_flag);
 8909 
 8910   ins_cost(150);
 8911   format %{ "andb    $dst, $src\t# byte" %}
 8912   ins_encode %{
 8913     __ andb($dst$$Address, $src$$Register);
 8914   %}
 8915   ins_pipe(ialu_mem_reg);
 8916 %}
 8917 
 8918 instruct andI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
 8919 %{
 8920   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
 8921   effect(KILL cr);
 8922   flag(PD::Flag_sets_sign_flag, PD::Flag_sets_zero_flag, PD::Flag_sets_parity_flag, PD::Flag_clears_overflow_flag, PD::Flag_clears_carry_flag);
 8923 
 8924   ins_cost(150);
 8925   format %{ "andl    $dst, $src\t# int" %}
 8926   ins_encode %{
 8927     __ andl($dst$$Address, $src$$Register);
 8928   %}
 8929   ins_pipe(ialu_mem_reg);
 8930 %}
 8931 
 8932 // And Memory with Immediate
 8933 instruct andI_mem_imm(memory dst, immI src, rFlagsReg cr)
 8934 %{
 8935   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
 8936   effect(KILL cr);
 8937   flag(PD::Flag_sets_sign_flag, PD::Flag_sets_zero_flag, PD::Flag_sets_parity_flag, PD::Flag_clears_overflow_flag, PD::Flag_clears_carry_flag);
 8938 
 8939   ins_cost(125);
 8940   format %{ "andl    $dst, $src\t# int" %}
 8941   ins_encode %{
 8942     __ andl($dst$$Address, $src$$constant);
 8943   %}
 8944   ins_pipe(ialu_mem_imm);
 8945 %}
 8946 
 8947 // BMI1 instructions
 8948 instruct andnI_rReg_rReg_mem(rRegI dst, rRegI src1, memory src2, immI_M1 minus_1, rFlagsReg cr) %{
 8949   match(Set dst (AndI (XorI src1 minus_1) (LoadI src2)));
 8950   predicate(UseBMI1Instructions);
 8951   effect(KILL cr);
 8952   flag(PD::Flag_sets_sign_flag, PD::Flag_sets_zero_flag, PD::Flag_clears_overflow_flag, PD::Flag_clears_carry_flag);
 8953 
 8954   ins_cost(125);
 8955   format %{ "andnl  $dst, $src1, $src2" %}
 8956 
 8957   ins_encode %{
 8958     __ andnl($dst$$Register, $src1$$Register, $src2$$Address);
 8959   %}
 8960   ins_pipe(ialu_reg_mem);
 8961 %}
 8962 
 8963 instruct andnI_rReg_rReg_rReg(rRegI dst, rRegI src1, rRegI src2, immI_M1 minus_1, rFlagsReg cr) %{
 8964   match(Set dst (AndI (XorI src1 minus_1) src2));
 8965   predicate(UseBMI1Instructions);
 8966   effect(KILL cr);
 8967   flag(PD::Flag_sets_sign_flag, PD::Flag_sets_zero_flag, PD::Flag_clears_overflow_flag, PD::Flag_clears_carry_flag);
 8968 
 8969   format %{ "andnl  $dst, $src1, $src2" %}
 8970 
 8971   ins_encode %{
 8972     __ andnl($dst$$Register, $src1$$Register, $src2$$Register);
 8973   %}
 8974   ins_pipe(ialu_reg);
 8975 %}
 8976 
 8977 instruct blsiI_rReg_rReg(rRegI dst, rRegI src, immI_0 imm_zero, rFlagsReg cr) %{
 8978   match(Set dst (AndI (SubI imm_zero src) src));
 8979   predicate(UseBMI1Instructions);
 8980   effect(KILL cr);
 8981   flag(PD::Flag_sets_sign_flag, PD::Flag_sets_zero_flag, PD::Flag_clears_overflow_flag);
 8982 
 8983   format %{ "blsil  $dst, $src" %}
 8984 
 8985   ins_encode %{
 8986     __ blsil($dst$$Register, $src$$Register);
 8987   %}
 8988   ins_pipe(ialu_reg);
 8989 %}
 8990 
 8991 instruct blsiI_rReg_mem(rRegI dst, memory src, immI_0 imm_zero, rFlagsReg cr) %{
 8992   match(Set dst (AndI (SubI imm_zero (LoadI src) ) (LoadI src) ));
 8993   predicate(UseBMI1Instructions);
 8994   effect(KILL cr);
 8995   flag(PD::Flag_sets_sign_flag, PD::Flag_sets_zero_flag, PD::Flag_clears_overflow_flag);
 8996 
 8997   ins_cost(125);
 8998   format %{ "blsil  $dst, $src" %}
 8999 
 9000   ins_encode %{
 9001     __ blsil($dst$$Register, $src$$Address);
 9002   %}
 9003   ins_pipe(ialu_reg_mem);
 9004 %}
 9005 
 9006 instruct blsmskI_rReg_mem(rRegI dst, memory src, immI_M1 minus_1, rFlagsReg cr)
 9007 %{
 9008   match(Set dst (XorI (AddI (LoadI src) minus_1) (LoadI src) ) );
 9009   predicate(UseBMI1Instructions);
 9010   effect(KILL cr);
 9011   flag(PD::Flag_sets_sign_flag, PD::Flag_clears_zero_flag, PD::Flag_clears_overflow_flag);
 9012 
 9013   ins_cost(125);
 9014   format %{ "blsmskl $dst, $src" %}
 9015 
 9016   ins_encode %{
 9017     __ blsmskl($dst$$Register, $src$$Address);
 9018   %}
 9019   ins_pipe(ialu_reg_mem);
 9020 %}
 9021 
 9022 instruct blsmskI_rReg_rReg(rRegI dst, rRegI src, immI_M1 minus_1, rFlagsReg cr)
 9023 %{
 9024   match(Set dst (XorI (AddI src minus_1) src));
 9025   predicate(UseBMI1Instructions);
 9026   effect(KILL cr);
 9027   flag(PD::Flag_sets_sign_flag, PD::Flag_clears_zero_flag, PD::Flag_clears_overflow_flag);
 9028 
 9029   format %{ "blsmskl $dst, $src" %}
 9030 
 9031   ins_encode %{
 9032     __ blsmskl($dst$$Register, $src$$Register);
 9033   %}
 9034 
 9035   ins_pipe(ialu_reg);
 9036 %}
 9037 
 9038 instruct blsrI_rReg_rReg(rRegI dst, rRegI src, immI_M1 minus_1, rFlagsReg cr)
 9039 %{
 9040   match(Set dst (AndI (AddI src minus_1) src) );
 9041   predicate(UseBMI1Instructions);
 9042   effect(KILL cr);
 9043   flag(PD::Flag_sets_sign_flag, PD::Flag_sets_zero_flag, PD::Flag_clears_overflow_flag);
 9044 
 9045   format %{ "blsrl  $dst, $src" %}
 9046 
 9047   ins_encode %{
 9048     __ blsrl($dst$$Register, $src$$Register);
 9049   %}
 9050 
 9051   ins_pipe(ialu_reg_mem);
 9052 %}
 9053 
 9054 instruct blsrI_rReg_mem(rRegI dst, memory src, immI_M1 minus_1, rFlagsReg cr)
 9055 %{
 9056   match(Set dst (AndI (AddI (LoadI src) minus_1) (LoadI src) ) );
 9057   predicate(UseBMI1Instructions);
 9058   effect(KILL cr);
 9059   flag(PD::Flag_sets_sign_flag, PD::Flag_sets_zero_flag, PD::Flag_clears_overflow_flag);
 9060 
 9061   ins_cost(125);
 9062   format %{ "blsrl  $dst, $src" %}
 9063 
 9064   ins_encode %{
 9065     __ blsrl($dst$$Register, $src$$Address);
 9066   %}
 9067 
 9068   ins_pipe(ialu_reg);
 9069 %}
 9070 
 9071 // Or Instructions
 9072 // Or Register with Register
 9073 instruct orI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
 9074 %{
 9075   match(Set dst (OrI dst src));
 9076   effect(KILL cr);
 9077   flag(PD::Flag_sets_sign_flag, PD::Flag_sets_zero_flag, PD::Flag_sets_parity_flag, PD::Flag_clears_overflow_flag, PD::Flag_clears_carry_flag);
 9078 
 9079   format %{ "orl     $dst, $src\t# int" %}
 9080   ins_encode %{
 9081     __ orl($dst$$Register, $src$$Register);
 9082   %}
 9083   ins_pipe(ialu_reg_reg);
 9084 %}
 9085 
 9086 // Or Register with Immediate
 9087 instruct orI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
 9088 %{
 9089   match(Set dst (OrI dst src));
 9090   effect(KILL cr);
 9091   flag(PD::Flag_sets_sign_flag, PD::Flag_sets_zero_flag, PD::Flag_sets_parity_flag, PD::Flag_clears_overflow_flag, PD::Flag_clears_carry_flag);
 9092 
 9093   format %{ "orl     $dst, $src\t# int" %}
 9094   ins_encode %{
 9095     __ orl($dst$$Register, $src$$constant);
 9096   %}
 9097   ins_pipe(ialu_reg);
 9098 %}
 9099 
 9100 // Or Register with Memory
 9101 instruct orI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
 9102 %{
 9103   match(Set dst (OrI dst (LoadI src)));
 9104   effect(KILL cr);
 9105   flag(PD::Flag_sets_sign_flag, PD::Flag_sets_zero_flag, PD::Flag_sets_parity_flag, PD::Flag_clears_overflow_flag, PD::Flag_clears_carry_flag);
 9106 
 9107   ins_cost(150);
 9108   format %{ "orl     $dst, $src\t# int" %}
 9109   ins_encode %{
 9110     __ orl($dst$$Register, $src$$Address);
 9111   %}
 9112   ins_pipe(ialu_reg_mem);
 9113 %}
 9114 
 9115 // Or Memory with Register
 9116 instruct orB_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
 9117 %{
 9118   match(Set dst (StoreB dst (OrI (LoadB dst) src)));
 9119   effect(KILL cr);
 9120   flag(PD::Flag_sets_sign_flag, PD::Flag_sets_zero_flag, PD::Flag_sets_parity_flag, PD::Flag_clears_overflow_flag, PD::Flag_clears_carry_flag);
 9121 
 9122   ins_cost(150);
 9123   format %{ "orb    $dst, $src\t# byte" %}
 9124   ins_encode %{
 9125     __ orb($dst$$Address, $src$$Register);
 9126   %}
 9127   ins_pipe(ialu_mem_reg);
 9128 %}
 9129 
 9130 instruct orI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
 9131 %{
 9132   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
 9133   effect(KILL cr);
 9134   flag(PD::Flag_sets_sign_flag, PD::Flag_sets_zero_flag, PD::Flag_sets_parity_flag, PD::Flag_clears_overflow_flag, PD::Flag_clears_carry_flag);
 9135 
 9136   ins_cost(150);
 9137   format %{ "orl     $dst, $src\t# int" %}
 9138   ins_encode %{
 9139     __ orl($dst$$Address, $src$$Register);
 9140   %}
 9141   ins_pipe(ialu_mem_reg);
 9142 %}
 9143 
 9144 // Or Memory with Immediate
 9145 instruct orI_mem_imm(memory dst, immI src, rFlagsReg cr)
 9146 %{
 9147   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
 9148   effect(KILL cr);
 9149   flag(PD::Flag_sets_sign_flag, PD::Flag_sets_zero_flag, PD::Flag_sets_parity_flag, PD::Flag_clears_overflow_flag, PD::Flag_clears_carry_flag);
 9150 
 9151   ins_cost(125);
 9152   format %{ "orl     $dst, $src\t# int" %}
 9153   ins_encode %{
 9154     __ orl($dst$$Address, $src$$constant);
 9155   %}
 9156   ins_pipe(ialu_mem_imm);
 9157 %}
 9158 
 9159 // Xor Instructions
 9160 // Xor Register with Register
 9161 instruct xorI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
 9162 %{
 9163   match(Set dst (XorI dst src));
 9164   effect(KILL cr);
 9165   flag(PD::Flag_sets_sign_flag, PD::Flag_sets_zero_flag, PD::Flag_sets_parity_flag, PD::Flag_clears_overflow_flag, PD::Flag_clears_carry_flag);
 9166 
 9167   format %{ "xorl    $dst, $src\t# int" %}
 9168   ins_encode %{
 9169     __ xorl($dst$$Register, $src$$Register);
 9170   %}
 9171   ins_pipe(ialu_reg_reg);
 9172 %}
 9173 
 9174 // Xor Register with Immediate -1
 9175 instruct xorI_rReg_im1(rRegI dst, immI_M1 imm) %{
 9176   match(Set dst (XorI dst imm));
 9177 
 9178   format %{ "not    $dst" %}
 9179   ins_encode %{
 9180      __ notl($dst$$Register);
 9181   %}
 9182   ins_pipe(ialu_reg);
 9183 %}
 9184 
 9185 // Xor Register with Immediate
 9186 instruct xorI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
 9187 %{
 9188   match(Set dst (XorI dst src));
 9189   effect(KILL cr);
 9190   flag(PD::Flag_sets_sign_flag, PD::Flag_sets_zero_flag, PD::Flag_sets_parity_flag, PD::Flag_clears_overflow_flag, PD::Flag_clears_carry_flag);
 9191 
 9192   format %{ "xorl    $dst, $src\t# int" %}
 9193   ins_encode %{
 9194     __ xorl($dst$$Register, $src$$constant);
 9195   %}
 9196   ins_pipe(ialu_reg);
 9197 %}
 9198 
 9199 // Xor Register with Memory
 9200 instruct xorI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
 9201 %{
 9202   match(Set dst (XorI dst (LoadI src)));
 9203   effect(KILL cr);
 9204   flag(PD::Flag_sets_sign_flag, PD::Flag_sets_zero_flag, PD::Flag_sets_parity_flag, PD::Flag_clears_overflow_flag, PD::Flag_clears_carry_flag);
 9205 
 9206   ins_cost(150);
 9207   format %{ "xorl    $dst, $src\t# int" %}
 9208   ins_encode %{
 9209     __ xorl($dst$$Register, $src$$Address);
 9210   %}
 9211   ins_pipe(ialu_reg_mem);
 9212 %}
 9213 
 9214 // Xor Memory with Register
 9215 instruct xorB_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
 9216 %{
 9217   match(Set dst (StoreB dst (XorI (LoadB dst) src)));
 9218   effect(KILL cr);
 9219   flag(PD::Flag_sets_sign_flag, PD::Flag_sets_zero_flag, PD::Flag_sets_parity_flag, PD::Flag_clears_overflow_flag, PD::Flag_clears_carry_flag);
 9220 
 9221   ins_cost(150);
 9222   format %{ "xorb    $dst, $src\t# byte" %}
 9223   ins_encode %{
 9224     __ xorb($dst$$Address, $src$$Register);
 9225   %}
 9226   ins_pipe(ialu_mem_reg);
 9227 %}
 9228 
 9229 instruct xorI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
 9230 %{
 9231   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
 9232   effect(KILL cr);
 9233   flag(PD::Flag_sets_sign_flag, PD::Flag_sets_zero_flag, PD::Flag_sets_parity_flag, PD::Flag_clears_overflow_flag, PD::Flag_clears_carry_flag);
 9234 
 9235   ins_cost(150);
 9236   format %{ "xorl    $dst, $src\t# int" %}
 9237   ins_encode %{
 9238     __ xorl($dst$$Address, $src$$Register);
 9239   %}
 9240   ins_pipe(ialu_mem_reg);
 9241 %}
 9242 
 9243 // Xor Memory with Immediate
 9244 instruct xorI_mem_imm(memory dst, immI src, rFlagsReg cr)
 9245 %{
 9246   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
 9247   effect(KILL cr);
 9248   flag(PD::Flag_sets_sign_flag, PD::Flag_sets_zero_flag, PD::Flag_sets_parity_flag, PD::Flag_clears_overflow_flag, PD::Flag_clears_carry_flag);
 9249 
 9250   ins_cost(125);
 9251   format %{ "xorl    $dst, $src\t# int" %}
 9252   ins_encode %{
 9253     __ xorl($dst$$Address, $src$$constant);
 9254   %}
 9255   ins_pipe(ialu_mem_imm);
 9256 %}
 9257 
 9258 
 9259 // Long Logical Instructions
 9260 
 9261 // And Instructions
 9262 // And Register with Register
 9263 instruct andL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
 9264 %{
 9265   match(Set dst (AndL dst src));
 9266   effect(KILL cr);
 9267   flag(PD::Flag_sets_sign_flag, PD::Flag_sets_zero_flag, PD::Flag_sets_parity_flag, PD::Flag_clears_overflow_flag, PD::Flag_clears_carry_flag);
 9268 
 9269   format %{ "andq    $dst, $src\t# long" %}
 9270   ins_encode %{
 9271     __ andq($dst$$Register, $src$$Register);
 9272   %}
 9273   ins_pipe(ialu_reg_reg);
 9274 %}
 9275 
 9276 // And Register with Immediate 255
 9277 instruct andL_rReg_imm255(rRegL dst, rRegL src, immL_255 mask)
 9278 %{
 9279   match(Set dst (AndL src mask));
 9280 
 9281   format %{ "movzbl  $dst, $src\t# long & 0xFF" %}
 9282   ins_encode %{
 9283     // movzbl zeroes out the upper 32-bit and does not need REX.W
 9284     __ movzbl($dst$$Register, $src$$Register);
 9285   %}
 9286   ins_pipe(ialu_reg);
 9287 %}
 9288 
 9289 // And Register with Immediate 65535
 9290 instruct andL_rReg_imm65535(rRegL dst, rRegL src, immL_65535 mask)
 9291 %{
 9292   match(Set dst (AndL src mask));
 9293 
 9294   format %{ "movzwl  $dst, $src\t# long & 0xFFFF" %}
 9295   ins_encode %{
 9296     // movzwl zeroes out the upper 32-bit and does not need REX.W
 9297     __ movzwl($dst$$Register, $src$$Register);
 9298   %}
 9299   ins_pipe(ialu_reg);
 9300 %}
 9301 
 9302 // And Register with Immediate
 9303 instruct andL_rReg_imm(rRegL dst, immL32 src, rFlagsReg cr)
 9304 %{
 9305   match(Set dst (AndL dst src));
 9306   effect(KILL cr);
 9307   flag(PD::Flag_sets_sign_flag, PD::Flag_sets_zero_flag, PD::Flag_sets_parity_flag, PD::Flag_clears_overflow_flag, PD::Flag_clears_carry_flag);
 9308 
 9309   format %{ "andq    $dst, $src\t# long" %}
 9310   ins_encode %{
 9311     __ andq($dst$$Register, $src$$constant);
 9312   %}
 9313   ins_pipe(ialu_reg);
 9314 %}
 9315 
 9316 // And Register with Memory
 9317 instruct andL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
 9318 %{
 9319   match(Set dst (AndL dst (LoadL src)));
 9320   effect(KILL cr);
 9321   flag(PD::Flag_sets_sign_flag, PD::Flag_sets_zero_flag, PD::Flag_sets_parity_flag, PD::Flag_clears_overflow_flag, PD::Flag_clears_carry_flag);
 9322 
 9323   ins_cost(150);
 9324   format %{ "andq    $dst, $src\t# long" %}
 9325   ins_encode %{
 9326     __ andq($dst$$Register, $src$$Address);
 9327   %}
 9328   ins_pipe(ialu_reg_mem);
 9329 %}
 9330 
 9331 // And Memory with Register
 9332 instruct andL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
 9333 %{
 9334   match(Set dst (StoreL dst (AndL (LoadL dst) src)));
 9335   effect(KILL cr);
 9336   flag(PD::Flag_sets_sign_flag, PD::Flag_sets_zero_flag, PD::Flag_sets_parity_flag, PD::Flag_clears_overflow_flag, PD::Flag_clears_carry_flag);
 9337 
 9338   ins_cost(150);
 9339   format %{ "andq    $dst, $src\t# long" %}
 9340   ins_encode %{
 9341     __ andq($dst$$Address, $src$$Register);
 9342   %}
 9343   ins_pipe(ialu_mem_reg);
 9344 %}
 9345 
 9346 // And Memory with Immediate
 9347 instruct andL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
 9348 %{
 9349   match(Set dst (StoreL dst (AndL (LoadL dst) src)));
 9350   effect(KILL cr);
 9351   flag(PD::Flag_sets_sign_flag, PD::Flag_sets_zero_flag, PD::Flag_sets_parity_flag, PD::Flag_clears_overflow_flag, PD::Flag_clears_carry_flag);
 9352 
 9353   ins_cost(125);
 9354   format %{ "andq    $dst, $src\t# long" %}
 9355   ins_encode %{
 9356     __ andq($dst$$Address, $src$$constant);
 9357   %}
 9358   ins_pipe(ialu_mem_imm);
 9359 %}
 9360 
 9361 instruct btrL_mem_imm(memory dst, immL_NotPow2 con, rFlagsReg cr)
 9362 %{
 9363   // con should be a pure 64-bit immediate given that not(con) is a power of 2
 9364   // because AND/OR works well enough for 8/32-bit values.
 9365   predicate(log2i_graceful(~n->in(3)->in(2)->get_long()) > 30);
 9366 
 9367   match(Set dst (StoreL dst (AndL (LoadL dst) con)));
 9368   effect(KILL cr);
 9369 
 9370   ins_cost(125);
 9371   format %{ "btrq    $dst, log2(not($con))\t# long" %}
 9372   ins_encode %{
 9373     __ btrq($dst$$Address, log2i_exact((julong)~$con$$constant));
 9374   %}
 9375   ins_pipe(ialu_mem_imm);
 9376 %}
 9377 
 9378 // BMI1 instructions
 9379 instruct andnL_rReg_rReg_mem(rRegL dst, rRegL src1, memory src2, immL_M1 minus_1, rFlagsReg cr) %{
 9380   match(Set dst (AndL (XorL src1 minus_1) (LoadL src2)));
 9381   predicate(UseBMI1Instructions);
 9382   effect(KILL cr);
 9383   flag(PD::Flag_sets_sign_flag, PD::Flag_sets_zero_flag, PD::Flag_clears_overflow_flag, PD::Flag_clears_carry_flag);
 9384 
 9385   ins_cost(125);
 9386   format %{ "andnq  $dst, $src1, $src2" %}
 9387 
 9388   ins_encode %{
 9389     __ andnq($dst$$Register, $src1$$Register, $src2$$Address);
 9390   %}
 9391   ins_pipe(ialu_reg_mem);
 9392 %}
 9393 
 9394 instruct andnL_rReg_rReg_rReg(rRegL dst, rRegL src1, rRegL src2, immL_M1 minus_1, rFlagsReg cr) %{
 9395   match(Set dst (AndL (XorL src1 minus_1) src2));
 9396   predicate(UseBMI1Instructions);
 9397   effect(KILL cr);
 9398   flag(PD::Flag_sets_sign_flag, PD::Flag_sets_zero_flag, PD::Flag_clears_overflow_flag, PD::Flag_clears_carry_flag);
 9399 
 9400   format %{ "andnq  $dst, $src1, $src2" %}
 9401 
 9402   ins_encode %{
 9403   __ andnq($dst$$Register, $src1$$Register, $src2$$Register);
 9404   %}
 9405   ins_pipe(ialu_reg_mem);
 9406 %}
 9407 
 9408 instruct blsiL_rReg_rReg(rRegL dst, rRegL src, immL0 imm_zero, rFlagsReg cr) %{
 9409   match(Set dst (AndL (SubL imm_zero src) src));
 9410   predicate(UseBMI1Instructions);
 9411   effect(KILL cr);
 9412   flag(PD::Flag_sets_sign_flag, PD::Flag_sets_zero_flag, PD::Flag_clears_overflow_flag);
 9413 
 9414   format %{ "blsiq  $dst, $src" %}
 9415 
 9416   ins_encode %{
 9417     __ blsiq($dst$$Register, $src$$Register);
 9418   %}
 9419   ins_pipe(ialu_reg);
 9420 %}
 9421 
 9422 instruct blsiL_rReg_mem(rRegL dst, memory src, immL0 imm_zero, rFlagsReg cr) %{
 9423   match(Set dst (AndL (SubL imm_zero (LoadL src) ) (LoadL src) ));
 9424   predicate(UseBMI1Instructions);
 9425   effect(KILL cr);
 9426   flag(PD::Flag_sets_sign_flag, PD::Flag_sets_zero_flag, PD::Flag_clears_overflow_flag);
 9427 
 9428   ins_cost(125);
 9429   format %{ "blsiq  $dst, $src" %}
 9430 
 9431   ins_encode %{
 9432     __ blsiq($dst$$Register, $src$$Address);
 9433   %}
 9434   ins_pipe(ialu_reg_mem);
 9435 %}
 9436 
 9437 instruct blsmskL_rReg_mem(rRegL dst, memory src, immL_M1 minus_1, rFlagsReg cr)
 9438 %{
 9439   match(Set dst (XorL (AddL (LoadL src) minus_1) (LoadL src) ) );
 9440   predicate(UseBMI1Instructions);
 9441   effect(KILL cr);
 9442   flag(PD::Flag_sets_sign_flag, PD::Flag_clears_zero_flag, PD::Flag_clears_overflow_flag);
 9443 
 9444   ins_cost(125);
 9445   format %{ "blsmskq $dst, $src" %}
 9446 
 9447   ins_encode %{
 9448     __ blsmskq($dst$$Register, $src$$Address);
 9449   %}
 9450   ins_pipe(ialu_reg_mem);
 9451 %}
 9452 
 9453 instruct blsmskL_rReg_rReg(rRegL dst, rRegL src, immL_M1 minus_1, rFlagsReg cr)
 9454 %{
 9455   match(Set dst (XorL (AddL src minus_1) src));
 9456   predicate(UseBMI1Instructions);
 9457   effect(KILL cr);
 9458   flag(PD::Flag_sets_sign_flag, PD::Flag_clears_zero_flag, PD::Flag_clears_overflow_flag);
 9459 
 9460   format %{ "blsmskq $dst, $src" %}
 9461 
 9462   ins_encode %{
 9463     __ blsmskq($dst$$Register, $src$$Register);
 9464   %}
 9465 
 9466   ins_pipe(ialu_reg);
 9467 %}
 9468 
 9469 instruct blsrL_rReg_rReg(rRegL dst, rRegL src, immL_M1 minus_1, rFlagsReg cr)
 9470 %{
 9471   match(Set dst (AndL (AddL src minus_1) src) );
 9472   predicate(UseBMI1Instructions);
 9473   effect(KILL cr);
 9474   flag(PD::Flag_sets_sign_flag, PD::Flag_sets_zero_flag, PD::Flag_clears_overflow_flag);
 9475 
 9476   format %{ "blsrq  $dst, $src" %}
 9477 
 9478   ins_encode %{
 9479     __ blsrq($dst$$Register, $src$$Register);
 9480   %}
 9481 
 9482   ins_pipe(ialu_reg);
 9483 %}
 9484 
 9485 instruct blsrL_rReg_mem(rRegL dst, memory src, immL_M1 minus_1, rFlagsReg cr)
 9486 %{
 9487   match(Set dst (AndL (AddL (LoadL src) minus_1) (LoadL src)) );
 9488   predicate(UseBMI1Instructions);
 9489   effect(KILL cr);
 9490   flag(PD::Flag_sets_sign_flag, PD::Flag_sets_zero_flag, PD::Flag_clears_overflow_flag);
 9491 
 9492   ins_cost(125);
 9493   format %{ "blsrq  $dst, $src" %}
 9494 
 9495   ins_encode %{
 9496     __ blsrq($dst$$Register, $src$$Address);
 9497   %}
 9498 
 9499   ins_pipe(ialu_reg);
 9500 %}
 9501 
 9502 // Or Instructions
 9503 // Or Register with Register
 9504 instruct orL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
 9505 %{
 9506   match(Set dst (OrL dst src));
 9507   effect(KILL cr);
 9508   flag(PD::Flag_sets_sign_flag, PD::Flag_sets_zero_flag, PD::Flag_sets_parity_flag, PD::Flag_clears_overflow_flag, PD::Flag_clears_carry_flag);
 9509 
 9510   format %{ "orq     $dst, $src\t# long" %}
 9511   ins_encode %{
 9512     __ orq($dst$$Register, $src$$Register);
 9513   %}
 9514   ins_pipe(ialu_reg_reg);
 9515 %}
 9516 
 9517 // Use any_RegP to match R15 (TLS register) without spilling.
 9518 instruct orL_rReg_castP2X(rRegL dst, any_RegP src, rFlagsReg cr) %{
 9519   match(Set dst (OrL dst (CastP2X src)));
 9520   effect(KILL cr);
 9521   flag(PD::Flag_sets_sign_flag, PD::Flag_sets_zero_flag, PD::Flag_sets_parity_flag, PD::Flag_clears_overflow_flag, PD::Flag_clears_carry_flag);
 9522 
 9523   format %{ "orq     $dst, $src\t# long" %}
 9524   ins_encode %{
 9525     __ orq($dst$$Register, $src$$Register);
 9526   %}
 9527   ins_pipe(ialu_reg_reg);
 9528 %}
 9529 
 9530 
 9531 // Or Register with Immediate
 9532 instruct orL_rReg_imm(rRegL dst, immL32 src, rFlagsReg cr)
 9533 %{
 9534   match(Set dst (OrL dst src));
 9535   effect(KILL cr);
 9536   flag(PD::Flag_sets_sign_flag, PD::Flag_sets_zero_flag, PD::Flag_sets_parity_flag, PD::Flag_clears_overflow_flag, PD::Flag_clears_carry_flag);
 9537 
 9538   format %{ "orq     $dst, $src\t# long" %}
 9539   ins_encode %{
 9540     __ orq($dst$$Register, $src$$constant);
 9541   %}
 9542   ins_pipe(ialu_reg);
 9543 %}
 9544 
 9545 // Or Register with Memory
 9546 instruct orL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
 9547 %{
 9548   match(Set dst (OrL dst (LoadL src)));
 9549   effect(KILL cr);
 9550   flag(PD::Flag_sets_sign_flag, PD::Flag_sets_zero_flag, PD::Flag_sets_parity_flag, PD::Flag_clears_overflow_flag, PD::Flag_clears_carry_flag);
 9551 
 9552   ins_cost(150);
 9553   format %{ "orq     $dst, $src\t# long" %}
 9554   ins_encode %{
 9555     __ orq($dst$$Register, $src$$Address);
 9556   %}
 9557   ins_pipe(ialu_reg_mem);
 9558 %}
 9559 
 9560 // Or Memory with Register
 9561 instruct orL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
 9562 %{
 9563   match(Set dst (StoreL dst (OrL (LoadL dst) src)));
 9564   effect(KILL cr);
 9565   flag(PD::Flag_sets_sign_flag, PD::Flag_sets_zero_flag, PD::Flag_sets_parity_flag, PD::Flag_clears_overflow_flag, PD::Flag_clears_carry_flag);
 9566 
 9567   ins_cost(150);
 9568   format %{ "orq     $dst, $src\t# long" %}
 9569   ins_encode %{
 9570     __ orq($dst$$Address, $src$$Register);
 9571   %}
 9572   ins_pipe(ialu_mem_reg);
 9573 %}
 9574 
 9575 // Or Memory with Immediate
 9576 instruct orL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
 9577 %{
 9578   match(Set dst (StoreL dst (OrL (LoadL dst) src)));
 9579   effect(KILL cr);
 9580   flag(PD::Flag_sets_sign_flag, PD::Flag_sets_zero_flag, PD::Flag_sets_parity_flag, PD::Flag_clears_overflow_flag, PD::Flag_clears_carry_flag);
 9581 
 9582   ins_cost(125);
 9583   format %{ "orq     $dst, $src\t# long" %}
 9584   ins_encode %{
 9585     __ orq($dst$$Address, $src$$constant);
 9586   %}
 9587   ins_pipe(ialu_mem_imm);
 9588 %}
 9589 
 9590 instruct btsL_mem_imm(memory dst, immL_Pow2 con, rFlagsReg cr)
 9591 %{
 9592   // con should be a pure 64-bit power of 2 immediate
 9593   // because AND/OR works well enough for 8/32-bit values.
 9594   predicate(log2i_graceful(n->in(3)->in(2)->get_long()) > 31);
 9595 
 9596   match(Set dst (StoreL dst (OrL (LoadL dst) con)));
 9597   effect(KILL cr);
 9598 
 9599   ins_cost(125);
 9600   format %{ "btsq    $dst, log2($con)\t# long" %}
 9601   ins_encode %{
 9602     __ btsq($dst$$Address, log2i_exact((julong)$con$$constant));
 9603   %}
 9604   ins_pipe(ialu_mem_imm);
 9605 %}
 9606 
 9607 // Xor Instructions
 9608 // Xor Register with Register
 9609 instruct xorL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
 9610 %{
 9611   match(Set dst (XorL dst src));
 9612   effect(KILL cr);
 9613   flag(PD::Flag_sets_sign_flag, PD::Flag_sets_zero_flag, PD::Flag_sets_parity_flag, PD::Flag_clears_overflow_flag, PD::Flag_clears_carry_flag);
 9614 
 9615   format %{ "xorq    $dst, $src\t# long" %}
 9616   ins_encode %{
 9617     __ xorq($dst$$Register, $src$$Register);
 9618   %}
 9619   ins_pipe(ialu_reg_reg);
 9620 %}
 9621 
 9622 // Xor Register with Immediate -1
 9623 instruct xorL_rReg_im1(rRegL dst, immL_M1 imm) %{
 9624   match(Set dst (XorL dst imm));
 9625 
 9626   format %{ "notq   $dst" %}
 9627   ins_encode %{
 9628      __ notq($dst$$Register);
 9629   %}
 9630   ins_pipe(ialu_reg);
 9631 %}
 9632 
 9633 // Xor Register with Immediate
 9634 instruct xorL_rReg_imm(rRegL dst, immL32 src, rFlagsReg cr)
 9635 %{
 9636   match(Set dst (XorL dst src));
 9637   effect(KILL cr);
 9638   flag(PD::Flag_sets_sign_flag, PD::Flag_sets_zero_flag, PD::Flag_sets_parity_flag, PD::Flag_clears_overflow_flag, PD::Flag_clears_carry_flag);
 9639 
 9640   format %{ "xorq    $dst, $src\t# long" %}
 9641   ins_encode %{
 9642     __ xorq($dst$$Register, $src$$constant);
 9643   %}
 9644   ins_pipe(ialu_reg);
 9645 %}
 9646 
 9647 // Xor Register with Memory
 9648 instruct xorL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
 9649 %{
 9650   match(Set dst (XorL dst (LoadL src)));
 9651   effect(KILL cr);
 9652   flag(PD::Flag_sets_sign_flag, PD::Flag_sets_zero_flag, PD::Flag_sets_parity_flag, PD::Flag_clears_overflow_flag, PD::Flag_clears_carry_flag);
 9653 
 9654   ins_cost(150);
 9655   format %{ "xorq    $dst, $src\t# long" %}
 9656   ins_encode %{
 9657     __ xorq($dst$$Register, $src$$Address);
 9658   %}
 9659   ins_pipe(ialu_reg_mem);
 9660 %}
 9661 
 9662 // Xor Memory with Register
 9663 instruct xorL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
 9664 %{
 9665   match(Set dst (StoreL dst (XorL (LoadL dst) src)));
 9666   effect(KILL cr);
 9667   flag(PD::Flag_sets_sign_flag, PD::Flag_sets_zero_flag, PD::Flag_sets_parity_flag, PD::Flag_clears_overflow_flag, PD::Flag_clears_carry_flag);
 9668 
 9669   ins_cost(150);
 9670   format %{ "xorq    $dst, $src\t# long" %}
 9671   ins_encode %{
 9672     __ xorq($dst$$Address, $src$$Register);
 9673   %}
 9674   ins_pipe(ialu_mem_reg);
 9675 %}
 9676 
 9677 // Xor Memory with Immediate
 9678 instruct xorL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
 9679 %{
 9680   match(Set dst (StoreL dst (XorL (LoadL dst) src)));
 9681   effect(KILL cr);
 9682   flag(PD::Flag_sets_sign_flag, PD::Flag_sets_zero_flag, PD::Flag_sets_parity_flag, PD::Flag_clears_overflow_flag, PD::Flag_clears_carry_flag);
 9683 
 9684   ins_cost(125);
 9685   format %{ "xorq    $dst, $src\t# long" %}
 9686   ins_encode %{
 9687     __ xorq($dst$$Address, $src$$constant);
 9688   %}
 9689   ins_pipe(ialu_mem_imm);
 9690 %}
 9691 
 9692 instruct cmpLTMask(rRegI dst, rRegI p, rRegI q, rFlagsReg cr)
 9693 %{
 9694   match(Set dst (CmpLTMask p q));
 9695   effect(KILL cr);
 9696 
 9697   ins_cost(400);
 9698   format %{ "cmpl    $p, $q\t# cmpLTMask\n\t"
 9699             "setcc   $dst \t# emits setlt + movzbl or setzul for APX"
 9700             "negl    $dst" %}
 9701   ins_encode %{
 9702     __ cmpl($p$$Register, $q$$Register);
 9703     __ setcc(Assembler::less, $dst$$Register);
 9704     __ negl($dst$$Register);
 9705   %}
 9706   ins_pipe(pipe_slow);
 9707 %}
 9708 
 9709 instruct cmpLTMask0(rRegI dst, immI_0 zero, rFlagsReg cr)
 9710 %{
 9711   match(Set dst (CmpLTMask dst zero));
 9712   effect(KILL cr);
 9713 
 9714   ins_cost(100);
 9715   format %{ "sarl    $dst, #31\t# cmpLTMask0" %}
 9716   ins_encode %{
 9717     __ sarl($dst$$Register, 31);
 9718   %}
 9719   ins_pipe(ialu_reg);
 9720 %}
 9721 
 9722 /* Better to save a register than avoid a branch */
 9723 instruct cadd_cmpLTMask(rRegI p, rRegI q, rRegI y, rFlagsReg cr)
 9724 %{
 9725   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
 9726   effect(KILL cr);
 9727   ins_cost(300);
 9728   format %{ "subl    $p,$q\t# cadd_cmpLTMask\n\t"
 9729             "jge     done\n\t"
 9730             "addl    $p,$y\n"
 9731             "done:   " %}
 9732   ins_encode %{
 9733     Register Rp = $p$$Register;
 9734     Register Rq = $q$$Register;
 9735     Register Ry = $y$$Register;
 9736     Label done;
 9737     __ subl(Rp, Rq);
 9738     __ jccb(Assembler::greaterEqual, done);
 9739     __ addl(Rp, Ry);
 9740     __ bind(done);
 9741   %}
 9742   ins_pipe(pipe_cmplt);
 9743 %}
 9744 
 9745 /* Better to save a register than avoid a branch */
 9746 instruct and_cmpLTMask(rRegI p, rRegI q, rRegI y, rFlagsReg cr)
 9747 %{
 9748   match(Set y (AndI (CmpLTMask p q) y));
 9749   effect(KILL cr);
 9750 
 9751   ins_cost(300);
 9752 
 9753   format %{ "cmpl    $p, $q\t# and_cmpLTMask\n\t"
 9754             "jlt     done\n\t"
 9755             "xorl    $y, $y\n"
 9756             "done:   " %}
 9757   ins_encode %{
 9758     Register Rp = $p$$Register;
 9759     Register Rq = $q$$Register;
 9760     Register Ry = $y$$Register;
 9761     Label done;
 9762     __ cmpl(Rp, Rq);
 9763     __ jccb(Assembler::less, done);
 9764     __ xorl(Ry, Ry);
 9765     __ bind(done);
 9766   %}
 9767   ins_pipe(pipe_cmplt);
 9768 %}
 9769 
 9770 
 9771 //---------- FP Instructions------------------------------------------------
 9772 
 9773 // Really expensive, avoid
 9774 instruct cmpF_cc_reg(rFlagsRegU cr, regF src1, regF src2)
 9775 %{
 9776   match(Set cr (CmpF src1 src2));
 9777 
 9778   ins_cost(500);
 9779   format %{ "ucomiss $src1, $src2\n\t"
 9780             "jnp,s   exit\n\t"
 9781             "pushfq\t# saw NaN, set CF\n\t"
 9782             "andq    [rsp], #0xffffff2b\n\t"
 9783             "popfq\n"
 9784     "exit:" %}
 9785   ins_encode %{
 9786     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
 9787     emit_cmpfp_fixup(masm);
 9788   %}
 9789   ins_pipe(pipe_slow);
 9790 %}
 9791 
 9792 instruct cmpF_cc_reg_CF(rFlagsRegUCF cr, regF src1, regF src2) %{
 9793   match(Set cr (CmpF src1 src2));
 9794 
 9795   ins_cost(100);
 9796   format %{ "ucomiss $src1, $src2" %}
 9797   ins_encode %{
 9798     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
 9799   %}
 9800   ins_pipe(pipe_slow);
 9801 %}
 9802 
 9803 instruct cmpF_cc_memCF(rFlagsRegUCF cr, regF src1, memory src2) %{
 9804   match(Set cr (CmpF src1 (LoadF src2)));
 9805 
 9806   ins_cost(100);
 9807   format %{ "ucomiss $src1, $src2" %}
 9808   ins_encode %{
 9809     __ ucomiss($src1$$XMMRegister, $src2$$Address);
 9810   %}
 9811   ins_pipe(pipe_slow);
 9812 %}
 9813 
 9814 instruct cmpF_cc_immCF(rFlagsRegUCF cr, regF src, immF con) %{
 9815   match(Set cr (CmpF src con));
 9816   ins_cost(100);
 9817   format %{ "ucomiss $src, [$constantaddress]\t# load from constant table: float=$con" %}
 9818   ins_encode %{
 9819     __ ucomiss($src$$XMMRegister, $constantaddress($con));
 9820   %}
 9821   ins_pipe(pipe_slow);
 9822 %}
 9823 
 9824 // Really expensive, avoid
 9825 instruct cmpD_cc_reg(rFlagsRegU cr, regD src1, regD src2)
 9826 %{
 9827   match(Set cr (CmpD src1 src2));
 9828 
 9829   ins_cost(500);
 9830   format %{ "ucomisd $src1, $src2\n\t"
 9831             "jnp,s   exit\n\t"
 9832             "pushfq\t# saw NaN, set CF\n\t"
 9833             "andq    [rsp], #0xffffff2b\n\t"
 9834             "popfq\n"
 9835     "exit:" %}
 9836   ins_encode %{
 9837     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
 9838     emit_cmpfp_fixup(masm);
 9839   %}
 9840   ins_pipe(pipe_slow);
 9841 %}
 9842 
 9843 instruct cmpD_cc_reg_CF(rFlagsRegUCF cr, regD src1, regD src2) %{
 9844   match(Set cr (CmpD src1 src2));
 9845 
 9846   ins_cost(100);
 9847   format %{ "ucomisd $src1, $src2 test" %}
 9848   ins_encode %{
 9849     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
 9850   %}
 9851   ins_pipe(pipe_slow);
 9852 %}
 9853 
 9854 instruct cmpD_cc_memCF(rFlagsRegUCF cr, regD src1, memory src2) %{
 9855   match(Set cr (CmpD src1 (LoadD src2)));
 9856 
 9857   ins_cost(100);
 9858   format %{ "ucomisd $src1, $src2" %}
 9859   ins_encode %{
 9860     __ ucomisd($src1$$XMMRegister, $src2$$Address);
 9861   %}
 9862   ins_pipe(pipe_slow);
 9863 %}
 9864 
 9865 instruct cmpD_cc_immCF(rFlagsRegUCF cr, regD src, immD con) %{
 9866   match(Set cr (CmpD src con));
 9867   ins_cost(100);
 9868   format %{ "ucomisd $src, [$constantaddress]\t# load from constant table: double=$con" %}
 9869   ins_encode %{
 9870     __ ucomisd($src$$XMMRegister, $constantaddress($con));
 9871   %}
 9872   ins_pipe(pipe_slow);
 9873 %}
 9874 
 9875 // Compare into -1,0,1
 9876 instruct cmpF_reg(rRegI dst, regF src1, regF src2, rFlagsReg cr)
 9877 %{
 9878   match(Set dst (CmpF3 src1 src2));
 9879   effect(KILL cr);
 9880 
 9881   ins_cost(275);
 9882   format %{ "ucomiss $src1, $src2\n\t"
 9883             "movl    $dst, #-1\n\t"
 9884             "jp,s    done\n\t"
 9885             "jb,s    done\n\t"
 9886             "setne   $dst\n\t"
 9887             "movzbl  $dst, $dst\n"
 9888     "done:" %}
 9889   ins_encode %{
 9890     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
 9891     emit_cmpfp3(masm, $dst$$Register);
 9892   %}
 9893   ins_pipe(pipe_slow);
 9894 %}
 9895 
 9896 // Compare into -1,0,1
 9897 instruct cmpF_mem(rRegI dst, regF src1, memory src2, rFlagsReg cr)
 9898 %{
 9899   match(Set dst (CmpF3 src1 (LoadF src2)));
 9900   effect(KILL cr);
 9901 
 9902   ins_cost(275);
 9903   format %{ "ucomiss $src1, $src2\n\t"
 9904             "movl    $dst, #-1\n\t"
 9905             "jp,s    done\n\t"
 9906             "jb,s    done\n\t"
 9907             "setne   $dst\n\t"
 9908             "movzbl  $dst, $dst\n"
 9909     "done:" %}
 9910   ins_encode %{
 9911     __ ucomiss($src1$$XMMRegister, $src2$$Address);
 9912     emit_cmpfp3(masm, $dst$$Register);
 9913   %}
 9914   ins_pipe(pipe_slow);
 9915 %}
 9916 
 9917 // Compare into -1,0,1
 9918 instruct cmpF_imm(rRegI dst, regF src, immF con, rFlagsReg cr) %{
 9919   match(Set dst (CmpF3 src con));
 9920   effect(KILL cr);
 9921 
 9922   ins_cost(275);
 9923   format %{ "ucomiss $src, [$constantaddress]\t# load from constant table: float=$con\n\t"
 9924             "movl    $dst, #-1\n\t"
 9925             "jp,s    done\n\t"
 9926             "jb,s    done\n\t"
 9927             "setne   $dst\n\t"
 9928             "movzbl  $dst, $dst\n"
 9929     "done:" %}
 9930   ins_encode %{
 9931     __ ucomiss($src$$XMMRegister, $constantaddress($con));
 9932     emit_cmpfp3(masm, $dst$$Register);
 9933   %}
 9934   ins_pipe(pipe_slow);
 9935 %}
 9936 
 9937 // Compare into -1,0,1
 9938 instruct cmpD_reg(rRegI dst, regD src1, regD src2, rFlagsReg cr)
 9939 %{
 9940   match(Set dst (CmpD3 src1 src2));
 9941   effect(KILL cr);
 9942 
 9943   ins_cost(275);
 9944   format %{ "ucomisd $src1, $src2\n\t"
 9945             "movl    $dst, #-1\n\t"
 9946             "jp,s    done\n\t"
 9947             "jb,s    done\n\t"
 9948             "setne   $dst\n\t"
 9949             "movzbl  $dst, $dst\n"
 9950     "done:" %}
 9951   ins_encode %{
 9952     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
 9953     emit_cmpfp3(masm, $dst$$Register);
 9954   %}
 9955   ins_pipe(pipe_slow);
 9956 %}
 9957 
 9958 // Compare into -1,0,1
 9959 instruct cmpD_mem(rRegI dst, regD src1, memory src2, rFlagsReg cr)
 9960 %{
 9961   match(Set dst (CmpD3 src1 (LoadD src2)));
 9962   effect(KILL cr);
 9963 
 9964   ins_cost(275);
 9965   format %{ "ucomisd $src1, $src2\n\t"
 9966             "movl    $dst, #-1\n\t"
 9967             "jp,s    done\n\t"
 9968             "jb,s    done\n\t"
 9969             "setne   $dst\n\t"
 9970             "movzbl  $dst, $dst\n"
 9971     "done:" %}
 9972   ins_encode %{
 9973     __ ucomisd($src1$$XMMRegister, $src2$$Address);
 9974     emit_cmpfp3(masm, $dst$$Register);
 9975   %}
 9976   ins_pipe(pipe_slow);
 9977 %}
 9978 
 9979 // Compare into -1,0,1
 9980 instruct cmpD_imm(rRegI dst, regD src, immD con, rFlagsReg cr) %{
 9981   match(Set dst (CmpD3 src con));
 9982   effect(KILL cr);
 9983 
 9984   ins_cost(275);
 9985   format %{ "ucomisd $src, [$constantaddress]\t# load from constant table: double=$con\n\t"
 9986             "movl    $dst, #-1\n\t"
 9987             "jp,s    done\n\t"
 9988             "jb,s    done\n\t"
 9989             "setne   $dst\n\t"
 9990             "movzbl  $dst, $dst\n"
 9991     "done:" %}
 9992   ins_encode %{
 9993     __ ucomisd($src$$XMMRegister, $constantaddress($con));
 9994     emit_cmpfp3(masm, $dst$$Register);
 9995   %}
 9996   ins_pipe(pipe_slow);
 9997 %}
 9998 
 9999 //----------Arithmetic Conversion Instructions---------------------------------
10000 
10001 instruct convF2D_reg_reg(regD dst, regF src)
10002 %{
10003   match(Set dst (ConvF2D src));
10004 
10005   format %{ "cvtss2sd $dst, $src" %}
10006   ins_encode %{
10007     __ cvtss2sd ($dst$$XMMRegister, $src$$XMMRegister);
10008   %}
10009   ins_pipe(pipe_slow); // XXX
10010 %}
10011 
10012 instruct convF2D_reg_mem(regD dst, memory src)
10013 %{
10014   predicate(UseAVX == 0);
10015   match(Set dst (ConvF2D (LoadF src)));
10016 
10017   format %{ "cvtss2sd $dst, $src" %}
10018   ins_encode %{
10019     __ cvtss2sd ($dst$$XMMRegister, $src$$Address);
10020   %}
10021   ins_pipe(pipe_slow); // XXX
10022 %}
10023 
10024 instruct convD2F_reg_reg(regF dst, regD src)
10025 %{
10026   match(Set dst (ConvD2F src));
10027 
10028   format %{ "cvtsd2ss $dst, $src" %}
10029   ins_encode %{
10030     __ cvtsd2ss ($dst$$XMMRegister, $src$$XMMRegister);
10031   %}
10032   ins_pipe(pipe_slow); // XXX
10033 %}
10034 
10035 instruct convD2F_reg_mem(regF dst, memory src)
10036 %{
10037   predicate(UseAVX == 0);
10038   match(Set dst (ConvD2F (LoadD src)));
10039 
10040   format %{ "cvtsd2ss $dst, $src" %}
10041   ins_encode %{
10042     __ cvtsd2ss ($dst$$XMMRegister, $src$$Address);
10043   %}
10044   ins_pipe(pipe_slow); // XXX
10045 %}
10046 
10047 // XXX do mem variants
10048 instruct convF2I_reg_reg(rRegI dst, regF src, rFlagsReg cr)
10049 %{
10050   match(Set dst (ConvF2I src));
10051   effect(KILL cr);
10052   format %{ "convert_f2i $dst, $src" %}
10053   ins_encode %{
10054     __ convertF2I(T_INT, T_FLOAT, $dst$$Register, $src$$XMMRegister);
10055   %}
10056   ins_pipe(pipe_slow);
10057 %}
10058 
10059 instruct convF2L_reg_reg(rRegL dst, regF src, rFlagsReg cr)
10060 %{
10061   match(Set dst (ConvF2L src));
10062   effect(KILL cr);
10063   format %{ "convert_f2l $dst, $src"%}
10064   ins_encode %{
10065     __ convertF2I(T_LONG, T_FLOAT, $dst$$Register, $src$$XMMRegister);
10066   %}
10067   ins_pipe(pipe_slow);
10068 %}
10069 
10070 instruct convD2I_reg_reg(rRegI dst, regD src, rFlagsReg cr)
10071 %{
10072   match(Set dst (ConvD2I src));
10073   effect(KILL cr);
10074   format %{ "convert_d2i $dst, $src"%}
10075   ins_encode %{
10076     __ convertF2I(T_INT, T_DOUBLE, $dst$$Register, $src$$XMMRegister);
10077   %}
10078   ins_pipe(pipe_slow);
10079 %}
10080 
10081 instruct convD2L_reg_reg(rRegL dst, regD src, rFlagsReg cr)
10082 %{
10083   match(Set dst (ConvD2L src));
10084   effect(KILL cr);
10085   format %{ "convert_d2l $dst, $src"%}
10086   ins_encode %{
10087     __ convertF2I(T_LONG, T_DOUBLE, $dst$$Register, $src$$XMMRegister);
10088   %}
10089   ins_pipe(pipe_slow);
10090 %}
10091 
10092 instruct round_double_reg(rRegL dst, regD src, rRegL rtmp, rcx_RegL rcx, rFlagsReg cr)
10093 %{
10094   match(Set dst (RoundD src));
10095   effect(TEMP dst, TEMP rtmp, TEMP rcx, KILL cr);
10096   format %{ "round_double $dst,$src \t! using $rtmp and $rcx as TEMP"%}
10097   ins_encode %{
10098     __ round_double($dst$$Register, $src$$XMMRegister, $rtmp$$Register, $rcx$$Register);
10099   %}
10100   ins_pipe(pipe_slow);
10101 %}
10102 
10103 instruct round_float_reg(rRegI dst, regF src, rRegL rtmp, rcx_RegL rcx, rFlagsReg cr)
10104 %{
10105   match(Set dst (RoundF src));
10106   effect(TEMP dst, TEMP rtmp, TEMP rcx, KILL cr);
10107   format %{ "round_float $dst,$src" %}
10108   ins_encode %{
10109     __ round_float($dst$$Register, $src$$XMMRegister, $rtmp$$Register, $rcx$$Register);
10110   %}
10111   ins_pipe(pipe_slow);
10112 %}
10113 
10114 instruct convI2F_reg_reg(vlRegF dst, rRegI src)
10115 %{
10116   predicate(!UseXmmI2F);
10117   match(Set dst (ConvI2F src));
10118 
10119   format %{ "cvtsi2ssl $dst, $src\t# i2f" %}
10120   ins_encode %{
10121     if (UseAVX > 0) {
10122       __ pxor($dst$$XMMRegister, $dst$$XMMRegister);
10123     }
10124     __ cvtsi2ssl ($dst$$XMMRegister, $src$$Register);
10125   %}
10126   ins_pipe(pipe_slow); // XXX
10127 %}
10128 
10129 instruct convI2F_reg_mem(regF dst, memory src)
10130 %{
10131   predicate(UseAVX == 0);
10132   match(Set dst (ConvI2F (LoadI src)));
10133 
10134   format %{ "cvtsi2ssl $dst, $src\t# i2f" %}
10135   ins_encode %{
10136     __ cvtsi2ssl ($dst$$XMMRegister, $src$$Address);
10137   %}
10138   ins_pipe(pipe_slow); // XXX
10139 %}
10140 
10141 instruct convI2D_reg_reg(vlRegD dst, rRegI src)
10142 %{
10143   predicate(!UseXmmI2D);
10144   match(Set dst (ConvI2D src));
10145 
10146   format %{ "cvtsi2sdl $dst, $src\t# i2d" %}
10147   ins_encode %{
10148     if (UseAVX > 0) {
10149       __ pxor($dst$$XMMRegister, $dst$$XMMRegister);
10150     }
10151     __ cvtsi2sdl ($dst$$XMMRegister, $src$$Register);
10152   %}
10153   ins_pipe(pipe_slow); // XXX
10154 %}
10155 
10156 instruct convI2D_reg_mem(regD dst, memory src)
10157 %{
10158   predicate(UseAVX == 0);
10159   match(Set dst (ConvI2D (LoadI src)));
10160 
10161   format %{ "cvtsi2sdl $dst, $src\t# i2d" %}
10162   ins_encode %{
10163     __ cvtsi2sdl ($dst$$XMMRegister, $src$$Address);
10164   %}
10165   ins_pipe(pipe_slow); // XXX
10166 %}
10167 
10168 instruct convXI2F_reg(regF dst, rRegI src)
10169 %{
10170   predicate(UseXmmI2F);
10171   match(Set dst (ConvI2F src));
10172 
10173   format %{ "movdl $dst, $src\n\t"
10174             "cvtdq2psl $dst, $dst\t# i2f" %}
10175   ins_encode %{
10176     __ movdl($dst$$XMMRegister, $src$$Register);
10177     __ cvtdq2ps($dst$$XMMRegister, $dst$$XMMRegister);
10178   %}
10179   ins_pipe(pipe_slow); // XXX
10180 %}
10181 
10182 instruct convXI2D_reg(regD dst, rRegI src)
10183 %{
10184   predicate(UseXmmI2D);
10185   match(Set dst (ConvI2D src));
10186 
10187   format %{ "movdl $dst, $src\n\t"
10188             "cvtdq2pdl $dst, $dst\t# i2d" %}
10189   ins_encode %{
10190     __ movdl($dst$$XMMRegister, $src$$Register);
10191     __ cvtdq2pd($dst$$XMMRegister, $dst$$XMMRegister);
10192   %}
10193   ins_pipe(pipe_slow); // XXX
10194 %}
10195 
10196 instruct convL2F_reg_reg(vlRegF dst, rRegL src)
10197 %{
10198   match(Set dst (ConvL2F src));
10199 
10200   format %{ "cvtsi2ssq $dst, $src\t# l2f" %}
10201   ins_encode %{
10202     if (UseAVX > 0) {
10203       __ pxor($dst$$XMMRegister, $dst$$XMMRegister);
10204     }
10205     __ cvtsi2ssq ($dst$$XMMRegister, $src$$Register);
10206   %}
10207   ins_pipe(pipe_slow); // XXX
10208 %}
10209 
10210 instruct convL2F_reg_mem(regF dst, memory src)
10211 %{
10212   predicate(UseAVX == 0);
10213   match(Set dst (ConvL2F (LoadL src)));
10214 
10215   format %{ "cvtsi2ssq $dst, $src\t# l2f" %}
10216   ins_encode %{
10217     __ cvtsi2ssq ($dst$$XMMRegister, $src$$Address);
10218   %}
10219   ins_pipe(pipe_slow); // XXX
10220 %}
10221 
10222 instruct convL2D_reg_reg(vlRegD dst, rRegL src)
10223 %{
10224   match(Set dst (ConvL2D src));
10225 
10226   format %{ "cvtsi2sdq $dst, $src\t# l2d" %}
10227   ins_encode %{
10228     if (UseAVX > 0) {
10229       __ pxor($dst$$XMMRegister, $dst$$XMMRegister);
10230     }
10231     __ cvtsi2sdq ($dst$$XMMRegister, $src$$Register);
10232   %}
10233   ins_pipe(pipe_slow); // XXX
10234 %}
10235 
10236 instruct convL2D_reg_mem(regD dst, memory src)
10237 %{
10238   predicate(UseAVX == 0);
10239   match(Set dst (ConvL2D (LoadL src)));
10240 
10241   format %{ "cvtsi2sdq $dst, $src\t# l2d" %}
10242   ins_encode %{
10243     __ cvtsi2sdq ($dst$$XMMRegister, $src$$Address);
10244   %}
10245   ins_pipe(pipe_slow); // XXX
10246 %}
10247 
10248 instruct convI2L_reg_reg(rRegL dst, rRegI src)
10249 %{
10250   match(Set dst (ConvI2L src));
10251 
10252   ins_cost(125);
10253   format %{ "movslq  $dst, $src\t# i2l" %}
10254   ins_encode %{
10255     __ movslq($dst$$Register, $src$$Register);
10256   %}
10257   ins_pipe(ialu_reg_reg);
10258 %}
10259 
10260 // Zero-extend convert int to long
10261 instruct convI2L_reg_reg_zex(rRegL dst, rRegI src, immL_32bits mask)
10262 %{
10263   match(Set dst (AndL (ConvI2L src) mask));
10264 
10265   format %{ "movl    $dst, $src\t# i2l zero-extend\n\t" %}
10266   ins_encode %{
10267     if ($dst$$reg != $src$$reg) {
10268       __ movl($dst$$Register, $src$$Register);
10269     }
10270   %}
10271   ins_pipe(ialu_reg_reg);
10272 %}
10273 
10274 // Zero-extend convert int to long
10275 instruct convI2L_reg_mem_zex(rRegL dst, memory src, immL_32bits mask)
10276 %{
10277   match(Set dst (AndL (ConvI2L (LoadI src)) mask));
10278 
10279   format %{ "movl    $dst, $src\t# i2l zero-extend\n\t" %}
10280   ins_encode %{
10281     __ movl($dst$$Register, $src$$Address);
10282   %}
10283   ins_pipe(ialu_reg_mem);
10284 %}
10285 
10286 instruct zerox_long_reg_reg(rRegL dst, rRegL src, immL_32bits mask)
10287 %{
10288   match(Set dst (AndL src mask));
10289 
10290   format %{ "movl    $dst, $src\t# zero-extend long" %}
10291   ins_encode %{
10292     __ movl($dst$$Register, $src$$Register);
10293   %}
10294   ins_pipe(ialu_reg_reg);
10295 %}
10296 
10297 instruct convL2I_reg_reg(rRegI dst, rRegL src)
10298 %{
10299   match(Set dst (ConvL2I src));
10300 
10301   format %{ "movl    $dst, $src\t# l2i" %}
10302   ins_encode %{
10303     __ movl($dst$$Register, $src$$Register);
10304   %}
10305   ins_pipe(ialu_reg_reg);
10306 %}
10307 
10308 
10309 instruct MoveF2I_stack_reg(rRegI dst, stackSlotF src) %{
10310   match(Set dst (MoveF2I src));
10311   effect(DEF dst, USE src);
10312 
10313   ins_cost(125);
10314   format %{ "movl    $dst, $src\t# MoveF2I_stack_reg" %}
10315   ins_encode %{
10316     __ movl($dst$$Register, Address(rsp, $src$$disp));
10317   %}
10318   ins_pipe(ialu_reg_mem);
10319 %}
10320 
10321 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
10322   match(Set dst (MoveI2F src));
10323   effect(DEF dst, USE src);
10324 
10325   ins_cost(125);
10326   format %{ "movss   $dst, $src\t# MoveI2F_stack_reg" %}
10327   ins_encode %{
10328     __ movflt($dst$$XMMRegister, Address(rsp, $src$$disp));
10329   %}
10330   ins_pipe(pipe_slow);
10331 %}
10332 
10333 instruct MoveD2L_stack_reg(rRegL dst, stackSlotD src) %{
10334   match(Set dst (MoveD2L src));
10335   effect(DEF dst, USE src);
10336 
10337   ins_cost(125);
10338   format %{ "movq    $dst, $src\t# MoveD2L_stack_reg" %}
10339   ins_encode %{
10340     __ movq($dst$$Register, Address(rsp, $src$$disp));
10341   %}
10342   ins_pipe(ialu_reg_mem);
10343 %}
10344 
10345 instruct MoveL2D_stack_reg_partial(regD dst, stackSlotL src) %{
10346   predicate(!UseXmmLoadAndClearUpper);
10347   match(Set dst (MoveL2D src));
10348   effect(DEF dst, USE src);
10349 
10350   ins_cost(125);
10351   format %{ "movlpd  $dst, $src\t# MoveL2D_stack_reg" %}
10352   ins_encode %{
10353     __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
10354   %}
10355   ins_pipe(pipe_slow);
10356 %}
10357 
10358 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
10359   predicate(UseXmmLoadAndClearUpper);
10360   match(Set dst (MoveL2D src));
10361   effect(DEF dst, USE src);
10362 
10363   ins_cost(125);
10364   format %{ "movsd   $dst, $src\t# MoveL2D_stack_reg" %}
10365   ins_encode %{
10366     __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
10367   %}
10368   ins_pipe(pipe_slow);
10369 %}
10370 
10371 
10372 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
10373   match(Set dst (MoveF2I src));
10374   effect(DEF dst, USE src);
10375 
10376   ins_cost(95); // XXX
10377   format %{ "movss   $dst, $src\t# MoveF2I_reg_stack" %}
10378   ins_encode %{
10379     __ movflt(Address(rsp, $dst$$disp), $src$$XMMRegister);
10380   %}
10381   ins_pipe(pipe_slow);
10382 %}
10383 
10384 instruct MoveI2F_reg_stack(stackSlotF dst, rRegI src) %{
10385   match(Set dst (MoveI2F src));
10386   effect(DEF dst, USE src);
10387 
10388   ins_cost(100);
10389   format %{ "movl    $dst, $src\t# MoveI2F_reg_stack" %}
10390   ins_encode %{
10391     __ movl(Address(rsp, $dst$$disp), $src$$Register);
10392   %}
10393   ins_pipe( ialu_mem_reg );
10394 %}
10395 
10396 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
10397   match(Set dst (MoveD2L src));
10398   effect(DEF dst, USE src);
10399 
10400   ins_cost(95); // XXX
10401   format %{ "movsd   $dst, $src\t# MoveL2D_reg_stack" %}
10402   ins_encode %{
10403     __ movdbl(Address(rsp, $dst$$disp), $src$$XMMRegister);
10404   %}
10405   ins_pipe(pipe_slow);
10406 %}
10407 
10408 instruct MoveL2D_reg_stack(stackSlotD dst, rRegL src) %{
10409   match(Set dst (MoveL2D src));
10410   effect(DEF dst, USE src);
10411 
10412   ins_cost(100);
10413   format %{ "movq    $dst, $src\t# MoveL2D_reg_stack" %}
10414   ins_encode %{
10415     __ movq(Address(rsp, $dst$$disp), $src$$Register);
10416   %}
10417   ins_pipe(ialu_mem_reg);
10418 %}
10419 
10420 instruct MoveF2I_reg_reg(rRegI dst, regF src) %{
10421   match(Set dst (MoveF2I src));
10422   effect(DEF dst, USE src);
10423   ins_cost(85);
10424   format %{ "movd    $dst,$src\t# MoveF2I" %}
10425   ins_encode %{
10426     __ movdl($dst$$Register, $src$$XMMRegister);
10427   %}
10428   ins_pipe( pipe_slow );
10429 %}
10430 
10431 instruct MoveD2L_reg_reg(rRegL dst, regD src) %{
10432   match(Set dst (MoveD2L src));
10433   effect(DEF dst, USE src);
10434   ins_cost(85);
10435   format %{ "movd    $dst,$src\t# MoveD2L" %}
10436   ins_encode %{
10437     __ movdq($dst$$Register, $src$$XMMRegister);
10438   %}
10439   ins_pipe( pipe_slow );
10440 %}
10441 
10442 instruct MoveI2F_reg_reg(regF dst, rRegI src) %{
10443   match(Set dst (MoveI2F src));
10444   effect(DEF dst, USE src);
10445   ins_cost(100);
10446   format %{ "movd    $dst,$src\t# MoveI2F" %}
10447   ins_encode %{
10448     __ movdl($dst$$XMMRegister, $src$$Register);
10449   %}
10450   ins_pipe( pipe_slow );
10451 %}
10452 
10453 instruct MoveL2D_reg_reg(regD dst, rRegL src) %{
10454   match(Set dst (MoveL2D src));
10455   effect(DEF dst, USE src);
10456   ins_cost(100);
10457   format %{ "movd    $dst,$src\t# MoveL2D" %}
10458   ins_encode %{
10459      __ movdq($dst$$XMMRegister, $src$$Register);
10460   %}
10461   ins_pipe( pipe_slow );
10462 %}
10463 
10464 // Fast clearing of an array
10465 // Small non-constant lenght ClearArray for non-AVX512 targets.
10466 instruct rep_stos(rcx_RegL cnt, rdi_RegP base, regD tmp, rax_RegI zero,
10467                   Universe dummy, rFlagsReg cr)
10468 %{
10469   predicate(!((ClearArrayNode*)n)->is_large() && (UseAVX <= 2));
10470   match(Set dummy (ClearArray cnt base));
10471   effect(USE_KILL cnt, USE_KILL base, TEMP tmp, KILL zero, KILL cr);
10472 
10473   format %{ $$template
10474     $$emit$$"xorq    rax, rax\t# ClearArray:\n\t"
10475     $$emit$$"cmp     InitArrayShortSize,rcx\n\t"
10476     $$emit$$"jg      LARGE\n\t"
10477     $$emit$$"dec     rcx\n\t"
10478     $$emit$$"js      DONE\t# Zero length\n\t"
10479     $$emit$$"mov     rax,(rdi,rcx,8)\t# LOOP\n\t"
10480     $$emit$$"dec     rcx\n\t"
10481     $$emit$$"jge     LOOP\n\t"
10482     $$emit$$"jmp     DONE\n\t"
10483     $$emit$$"# LARGE:\n\t"
10484     if (UseFastStosb) {
10485        $$emit$$"shlq    rcx,3\t# Convert doublewords to bytes\n\t"
10486        $$emit$$"rep     stosb\t# Store rax to *rdi++ while rcx--\n\t"
10487     } else if (UseXMMForObjInit) {
10488        $$emit$$"mov     rdi,rax\n\t"
10489        $$emit$$"vpxor   ymm0,ymm0,ymm0\n\t"
10490        $$emit$$"jmpq    L_zero_64_bytes\n\t"
10491        $$emit$$"# L_loop:\t# 64-byte LOOP\n\t"
10492        $$emit$$"vmovdqu ymm0,(rax)\n\t"
10493        $$emit$$"vmovdqu ymm0,0x20(rax)\n\t"
10494        $$emit$$"add     0x40,rax\n\t"
10495        $$emit$$"# L_zero_64_bytes:\n\t"
10496        $$emit$$"sub     0x8,rcx\n\t"
10497        $$emit$$"jge     L_loop\n\t"
10498        $$emit$$"add     0x4,rcx\n\t"
10499        $$emit$$"jl      L_tail\n\t"
10500        $$emit$$"vmovdqu ymm0,(rax)\n\t"
10501        $$emit$$"add     0x20,rax\n\t"
10502        $$emit$$"sub     0x4,rcx\n\t"
10503        $$emit$$"# L_tail:\t# Clearing tail bytes\n\t"
10504        $$emit$$"add     0x4,rcx\n\t"
10505        $$emit$$"jle     L_end\n\t"
10506        $$emit$$"dec     rcx\n\t"
10507        $$emit$$"# L_sloop:\t# 8-byte short loop\n\t"
10508        $$emit$$"vmovq   xmm0,(rax)\n\t"
10509        $$emit$$"add     0x8,rax\n\t"
10510        $$emit$$"dec     rcx\n\t"
10511        $$emit$$"jge     L_sloop\n\t"
10512        $$emit$$"# L_end:\n\t"
10513     } else {
10514        $$emit$$"rep     stosq\t# Store rax to *rdi++ while rcx--\n\t"
10515     }
10516     $$emit$$"# DONE"
10517   %}
10518   ins_encode %{
10519     __ clear_mem($base$$Register, $cnt$$Register, $zero$$Register,
10520                  $tmp$$XMMRegister, false, knoreg);
10521   %}
10522   ins_pipe(pipe_slow);
10523 %}
10524 
10525 // Small non-constant length ClearArray for AVX512 targets.
10526 instruct rep_stos_evex(rcx_RegL cnt, rdi_RegP base, legRegD tmp, kReg ktmp, rax_RegI zero,
10527                        Universe dummy, rFlagsReg cr)
10528 %{
10529   predicate(!((ClearArrayNode*)n)->is_large() && (UseAVX > 2));
10530   match(Set dummy (ClearArray cnt base));
10531   ins_cost(125);
10532   effect(USE_KILL cnt, USE_KILL base, TEMP tmp, TEMP ktmp, KILL zero, KILL cr);
10533 
10534   format %{ $$template
10535     $$emit$$"xorq    rax, rax\t# ClearArray:\n\t"
10536     $$emit$$"cmp     InitArrayShortSize,rcx\n\t"
10537     $$emit$$"jg      LARGE\n\t"
10538     $$emit$$"dec     rcx\n\t"
10539     $$emit$$"js      DONE\t# Zero length\n\t"
10540     $$emit$$"mov     rax,(rdi,rcx,8)\t# LOOP\n\t"
10541     $$emit$$"dec     rcx\n\t"
10542     $$emit$$"jge     LOOP\n\t"
10543     $$emit$$"jmp     DONE\n\t"
10544     $$emit$$"# LARGE:\n\t"
10545     if (UseFastStosb) {
10546        $$emit$$"shlq    rcx,3\t# Convert doublewords to bytes\n\t"
10547        $$emit$$"rep     stosb\t# Store rax to *rdi++ while rcx--\n\t"
10548     } else if (UseXMMForObjInit) {
10549        $$emit$$"mov     rdi,rax\n\t"
10550        $$emit$$"vpxor   ymm0,ymm0,ymm0\n\t"
10551        $$emit$$"jmpq    L_zero_64_bytes\n\t"
10552        $$emit$$"# L_loop:\t# 64-byte LOOP\n\t"
10553        $$emit$$"vmovdqu ymm0,(rax)\n\t"
10554        $$emit$$"vmovdqu ymm0,0x20(rax)\n\t"
10555        $$emit$$"add     0x40,rax\n\t"
10556        $$emit$$"# L_zero_64_bytes:\n\t"
10557        $$emit$$"sub     0x8,rcx\n\t"
10558        $$emit$$"jge     L_loop\n\t"
10559        $$emit$$"add     0x4,rcx\n\t"
10560        $$emit$$"jl      L_tail\n\t"
10561        $$emit$$"vmovdqu ymm0,(rax)\n\t"
10562        $$emit$$"add     0x20,rax\n\t"
10563        $$emit$$"sub     0x4,rcx\n\t"
10564        $$emit$$"# L_tail:\t# Clearing tail bytes\n\t"
10565        $$emit$$"add     0x4,rcx\n\t"
10566        $$emit$$"jle     L_end\n\t"
10567        $$emit$$"dec     rcx\n\t"
10568        $$emit$$"# L_sloop:\t# 8-byte short loop\n\t"
10569        $$emit$$"vmovq   xmm0,(rax)\n\t"
10570        $$emit$$"add     0x8,rax\n\t"
10571        $$emit$$"dec     rcx\n\t"
10572        $$emit$$"jge     L_sloop\n\t"
10573        $$emit$$"# L_end:\n\t"
10574     } else {
10575        $$emit$$"rep     stosq\t# Store rax to *rdi++ while rcx--\n\t"
10576     }
10577     $$emit$$"# DONE"
10578   %}
10579   ins_encode %{
10580     __ clear_mem($base$$Register, $cnt$$Register, $zero$$Register,
10581                  $tmp$$XMMRegister, false, $ktmp$$KRegister);
10582   %}
10583   ins_pipe(pipe_slow);
10584 %}
10585 
10586 // Large non-constant length ClearArray for non-AVX512 targets.
10587 instruct rep_stos_large(rcx_RegL cnt, rdi_RegP base, regD tmp, rax_RegI zero,
10588                         Universe dummy, rFlagsReg cr)
10589 %{
10590   predicate((UseAVX <=2) && ((ClearArrayNode*)n)->is_large());
10591   match(Set dummy (ClearArray cnt base));
10592   effect(USE_KILL cnt, USE_KILL base, TEMP tmp, KILL zero, KILL cr);
10593 
10594   format %{ $$template
10595     if (UseFastStosb) {
10596        $$emit$$"xorq    rax, rax\t# ClearArray:\n\t"
10597        $$emit$$"shlq    rcx,3\t# Convert doublewords to bytes\n\t"
10598        $$emit$$"rep     stosb\t# Store rax to *rdi++ while rcx--"
10599     } else if (UseXMMForObjInit) {
10600        $$emit$$"mov     rdi,rax\t# ClearArray:\n\t"
10601        $$emit$$"vpxor   ymm0,ymm0,ymm0\n\t"
10602        $$emit$$"jmpq    L_zero_64_bytes\n\t"
10603        $$emit$$"# L_loop:\t# 64-byte LOOP\n\t"
10604        $$emit$$"vmovdqu ymm0,(rax)\n\t"
10605        $$emit$$"vmovdqu ymm0,0x20(rax)\n\t"
10606        $$emit$$"add     0x40,rax\n\t"
10607        $$emit$$"# L_zero_64_bytes:\n\t"
10608        $$emit$$"sub     0x8,rcx\n\t"
10609        $$emit$$"jge     L_loop\n\t"
10610        $$emit$$"add     0x4,rcx\n\t"
10611        $$emit$$"jl      L_tail\n\t"
10612        $$emit$$"vmovdqu ymm0,(rax)\n\t"
10613        $$emit$$"add     0x20,rax\n\t"
10614        $$emit$$"sub     0x4,rcx\n\t"
10615        $$emit$$"# L_tail:\t# Clearing tail bytes\n\t"
10616        $$emit$$"add     0x4,rcx\n\t"
10617        $$emit$$"jle     L_end\n\t"
10618        $$emit$$"dec     rcx\n\t"
10619        $$emit$$"# L_sloop:\t# 8-byte short loop\n\t"
10620        $$emit$$"vmovq   xmm0,(rax)\n\t"
10621        $$emit$$"add     0x8,rax\n\t"
10622        $$emit$$"dec     rcx\n\t"
10623        $$emit$$"jge     L_sloop\n\t"
10624        $$emit$$"# L_end:\n\t"
10625     } else {
10626        $$emit$$"xorq    rax, rax\t# ClearArray:\n\t"
10627        $$emit$$"rep     stosq\t# Store rax to *rdi++ while rcx--"
10628     }
10629   %}
10630   ins_encode %{
10631     __ clear_mem($base$$Register, $cnt$$Register, $zero$$Register,
10632                  $tmp$$XMMRegister, true, knoreg);
10633   %}
10634   ins_pipe(pipe_slow);
10635 %}
10636 
10637 // Large non-constant length ClearArray for AVX512 targets.
10638 instruct rep_stos_large_evex(rcx_RegL cnt, rdi_RegP base, legRegD tmp, kReg ktmp, rax_RegI zero,
10639                              Universe dummy, rFlagsReg cr)
10640 %{
10641   predicate((UseAVX > 2) && ((ClearArrayNode*)n)->is_large());
10642   match(Set dummy (ClearArray cnt base));
10643   effect(USE_KILL cnt, USE_KILL base, TEMP tmp, TEMP ktmp, KILL zero, KILL cr);
10644 
10645   format %{ $$template
10646     if (UseFastStosb) {
10647        $$emit$$"xorq    rax, rax\t# ClearArray:\n\t"
10648        $$emit$$"shlq    rcx,3\t# Convert doublewords to bytes\n\t"
10649        $$emit$$"rep     stosb\t# Store rax to *rdi++ while rcx--"
10650     } else if (UseXMMForObjInit) {
10651        $$emit$$"mov     rdi,rax\t# ClearArray:\n\t"
10652        $$emit$$"vpxor   ymm0,ymm0,ymm0\n\t"
10653        $$emit$$"jmpq    L_zero_64_bytes\n\t"
10654        $$emit$$"# L_loop:\t# 64-byte LOOP\n\t"
10655        $$emit$$"vmovdqu ymm0,(rax)\n\t"
10656        $$emit$$"vmovdqu ymm0,0x20(rax)\n\t"
10657        $$emit$$"add     0x40,rax\n\t"
10658        $$emit$$"# L_zero_64_bytes:\n\t"
10659        $$emit$$"sub     0x8,rcx\n\t"
10660        $$emit$$"jge     L_loop\n\t"
10661        $$emit$$"add     0x4,rcx\n\t"
10662        $$emit$$"jl      L_tail\n\t"
10663        $$emit$$"vmovdqu ymm0,(rax)\n\t"
10664        $$emit$$"add     0x20,rax\n\t"
10665        $$emit$$"sub     0x4,rcx\n\t"
10666        $$emit$$"# L_tail:\t# Clearing tail bytes\n\t"
10667        $$emit$$"add     0x4,rcx\n\t"
10668        $$emit$$"jle     L_end\n\t"
10669        $$emit$$"dec     rcx\n\t"
10670        $$emit$$"# L_sloop:\t# 8-byte short loop\n\t"
10671        $$emit$$"vmovq   xmm0,(rax)\n\t"
10672        $$emit$$"add     0x8,rax\n\t"
10673        $$emit$$"dec     rcx\n\t"
10674        $$emit$$"jge     L_sloop\n\t"
10675        $$emit$$"# L_end:\n\t"
10676     } else {
10677        $$emit$$"xorq    rax, rax\t# ClearArray:\n\t"
10678        $$emit$$"rep     stosq\t# Store rax to *rdi++ while rcx--"
10679     }
10680   %}
10681   ins_encode %{
10682     __ clear_mem($base$$Register, $cnt$$Register, $zero$$Register,
10683                  $tmp$$XMMRegister, true, $ktmp$$KRegister);
10684   %}
10685   ins_pipe(pipe_slow);
10686 %}
10687 
10688 // Small constant length ClearArray for AVX512 targets.
10689 instruct rep_stos_im(immL cnt, rRegP base, regD tmp, rRegI zero, kReg ktmp, Universe dummy, rFlagsReg cr)
10690 %{
10691   predicate(!((ClearArrayNode*)n)->is_large() && (MaxVectorSize >= 32) && VM_Version::supports_avx512vl());
10692   match(Set dummy (ClearArray cnt base));
10693   ins_cost(100);
10694   effect(TEMP tmp, TEMP zero, TEMP ktmp, KILL cr);
10695   format %{ "clear_mem_imm $base , $cnt  \n\t" %}
10696   ins_encode %{
10697    __ clear_mem($base$$Register, $cnt$$constant, $zero$$Register, $tmp$$XMMRegister, $ktmp$$KRegister);
10698   %}
10699   ins_pipe(pipe_slow);
10700 %}
10701 
10702 instruct string_compareL(rdi_RegP str1, rcx_RegI cnt1, rsi_RegP str2, rdx_RegI cnt2,
10703                          rax_RegI result, legRegD tmp1, rFlagsReg cr)
10704 %{
10705   predicate(!VM_Version::supports_avx512vlbw() && ((StrCompNode*)n)->encoding() == StrIntrinsicNode::LL);
10706   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
10707   effect(TEMP tmp1, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
10708 
10709   format %{ "String Compare byte[] $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1" %}
10710   ins_encode %{
10711     __ string_compare($str1$$Register, $str2$$Register,
10712                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
10713                       $tmp1$$XMMRegister, StrIntrinsicNode::LL, knoreg);
10714   %}
10715   ins_pipe( pipe_slow );
10716 %}
10717 
10718 instruct string_compareL_evex(rdi_RegP str1, rcx_RegI cnt1, rsi_RegP str2, rdx_RegI cnt2,
10719                               rax_RegI result, legRegD tmp1, kReg ktmp, rFlagsReg cr)
10720 %{
10721   predicate(VM_Version::supports_avx512vlbw() && ((StrCompNode*)n)->encoding() == StrIntrinsicNode::LL);
10722   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
10723   effect(TEMP tmp1, TEMP ktmp, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
10724 
10725   format %{ "String Compare byte[] $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1" %}
10726   ins_encode %{
10727     __ string_compare($str1$$Register, $str2$$Register,
10728                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
10729                       $tmp1$$XMMRegister, StrIntrinsicNode::LL, $ktmp$$KRegister);
10730   %}
10731   ins_pipe( pipe_slow );
10732 %}
10733 
10734 instruct string_compareU(rdi_RegP str1, rcx_RegI cnt1, rsi_RegP str2, rdx_RegI cnt2,
10735                          rax_RegI result, legRegD tmp1, rFlagsReg cr)
10736 %{
10737   predicate(!VM_Version::supports_avx512vlbw() && ((StrCompNode*)n)->encoding() == StrIntrinsicNode::UU);
10738   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
10739   effect(TEMP tmp1, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
10740 
10741   format %{ "String Compare char[] $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1" %}
10742   ins_encode %{
10743     __ string_compare($str1$$Register, $str2$$Register,
10744                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
10745                       $tmp1$$XMMRegister, StrIntrinsicNode::UU, knoreg);
10746   %}
10747   ins_pipe( pipe_slow );
10748 %}
10749 
10750 instruct string_compareU_evex(rdi_RegP str1, rcx_RegI cnt1, rsi_RegP str2, rdx_RegI cnt2,
10751                               rax_RegI result, legRegD tmp1, kReg ktmp, rFlagsReg cr)
10752 %{
10753   predicate(VM_Version::supports_avx512vlbw() && ((StrCompNode*)n)->encoding() == StrIntrinsicNode::UU);
10754   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
10755   effect(TEMP tmp1, TEMP ktmp, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
10756 
10757   format %{ "String Compare char[] $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1" %}
10758   ins_encode %{
10759     __ string_compare($str1$$Register, $str2$$Register,
10760                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
10761                       $tmp1$$XMMRegister, StrIntrinsicNode::UU, $ktmp$$KRegister);
10762   %}
10763   ins_pipe( pipe_slow );
10764 %}
10765 
10766 instruct string_compareLU(rdi_RegP str1, rcx_RegI cnt1, rsi_RegP str2, rdx_RegI cnt2,
10767                           rax_RegI result, legRegD tmp1, rFlagsReg cr)
10768 %{
10769   predicate(!VM_Version::supports_avx512vlbw() && ((StrCompNode*)n)->encoding() == StrIntrinsicNode::LU);
10770   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
10771   effect(TEMP tmp1, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
10772 
10773   format %{ "String Compare byte[] $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1" %}
10774   ins_encode %{
10775     __ string_compare($str1$$Register, $str2$$Register,
10776                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
10777                       $tmp1$$XMMRegister, StrIntrinsicNode::LU, knoreg);
10778   %}
10779   ins_pipe( pipe_slow );
10780 %}
10781 
10782 instruct string_compareLU_evex(rdi_RegP str1, rcx_RegI cnt1, rsi_RegP str2, rdx_RegI cnt2,
10783                                rax_RegI result, legRegD tmp1, kReg ktmp, rFlagsReg cr)
10784 %{
10785   predicate(VM_Version::supports_avx512vlbw() && ((StrCompNode*)n)->encoding() == StrIntrinsicNode::LU);
10786   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
10787   effect(TEMP tmp1, TEMP ktmp, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
10788 
10789   format %{ "String Compare byte[] $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1" %}
10790   ins_encode %{
10791     __ string_compare($str1$$Register, $str2$$Register,
10792                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
10793                       $tmp1$$XMMRegister, StrIntrinsicNode::LU, $ktmp$$KRegister);
10794   %}
10795   ins_pipe( pipe_slow );
10796 %}
10797 
10798 instruct string_compareUL(rsi_RegP str1, rdx_RegI cnt1, rdi_RegP str2, rcx_RegI cnt2,
10799                           rax_RegI result, legRegD tmp1, rFlagsReg cr)
10800 %{
10801   predicate(!VM_Version::supports_avx512vlbw() && ((StrCompNode*)n)->encoding() == StrIntrinsicNode::UL);
10802   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
10803   effect(TEMP tmp1, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
10804 
10805   format %{ "String Compare byte[] $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1" %}
10806   ins_encode %{
10807     __ string_compare($str2$$Register, $str1$$Register,
10808                       $cnt2$$Register, $cnt1$$Register, $result$$Register,
10809                       $tmp1$$XMMRegister, StrIntrinsicNode::UL, knoreg);
10810   %}
10811   ins_pipe( pipe_slow );
10812 %}
10813 
10814 instruct string_compareUL_evex(rsi_RegP str1, rdx_RegI cnt1, rdi_RegP str2, rcx_RegI cnt2,
10815                                rax_RegI result, legRegD tmp1, kReg ktmp, rFlagsReg cr)
10816 %{
10817   predicate(VM_Version::supports_avx512vlbw() && ((StrCompNode*)n)->encoding() == StrIntrinsicNode::UL);
10818   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
10819   effect(TEMP tmp1, TEMP ktmp, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
10820 
10821   format %{ "String Compare byte[] $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1" %}
10822   ins_encode %{
10823     __ string_compare($str2$$Register, $str1$$Register,
10824                       $cnt2$$Register, $cnt1$$Register, $result$$Register,
10825                       $tmp1$$XMMRegister, StrIntrinsicNode::UL, $ktmp$$KRegister);
10826   %}
10827   ins_pipe( pipe_slow );
10828 %}
10829 
10830 // fast search of substring with known size.
10831 instruct string_indexof_conL(rdi_RegP str1, rdx_RegI cnt1, rsi_RegP str2, immI int_cnt2,
10832                              rbx_RegI result, legRegD tmp_vec, rax_RegI cnt2, rcx_RegI tmp, rFlagsReg cr)
10833 %{
10834   predicate(UseSSE42Intrinsics && (((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::LL));
10835   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2)));
10836   effect(TEMP tmp_vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, KILL cnt2, KILL tmp, KILL cr);
10837 
10838   format %{ "String IndexOf byte[] $str1,$cnt1,$str2,$int_cnt2 -> $result   // KILL $tmp_vec, $cnt1, $cnt2, $tmp" %}
10839   ins_encode %{
10840     int icnt2 = (int)$int_cnt2$$constant;
10841     if (icnt2 >= 16) {
10842       // IndexOf for constant substrings with size >= 16 elements
10843       // which don't need to be loaded through stack.
10844       __ string_indexofC8($str1$$Register, $str2$$Register,
10845                           $cnt1$$Register, $cnt2$$Register,
10846                           icnt2, $result$$Register,
10847                           $tmp_vec$$XMMRegister, $tmp$$Register, StrIntrinsicNode::LL);
10848     } else {
10849       // Small strings are loaded through stack if they cross page boundary.
10850       __ string_indexof($str1$$Register, $str2$$Register,
10851                         $cnt1$$Register, $cnt2$$Register,
10852                         icnt2, $result$$Register,
10853                         $tmp_vec$$XMMRegister, $tmp$$Register, StrIntrinsicNode::LL);
10854     }
10855   %}
10856   ins_pipe( pipe_slow );
10857 %}
10858 
10859 // fast search of substring with known size.
10860 instruct string_indexof_conU(rdi_RegP str1, rdx_RegI cnt1, rsi_RegP str2, immI int_cnt2,
10861                              rbx_RegI result, legRegD tmp_vec, rax_RegI cnt2, rcx_RegI tmp, rFlagsReg cr)
10862 %{
10863   predicate(UseSSE42Intrinsics && (((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UU));
10864   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2)));
10865   effect(TEMP tmp_vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, KILL cnt2, KILL tmp, KILL cr);
10866 
10867   format %{ "String IndexOf char[] $str1,$cnt1,$str2,$int_cnt2 -> $result   // KILL $tmp_vec, $cnt1, $cnt2, $tmp" %}
10868   ins_encode %{
10869     int icnt2 = (int)$int_cnt2$$constant;
10870     if (icnt2 >= 8) {
10871       // IndexOf for constant substrings with size >= 8 elements
10872       // which don't need to be loaded through stack.
10873       __ string_indexofC8($str1$$Register, $str2$$Register,
10874                           $cnt1$$Register, $cnt2$$Register,
10875                           icnt2, $result$$Register,
10876                           $tmp_vec$$XMMRegister, $tmp$$Register, StrIntrinsicNode::UU);
10877     } else {
10878       // Small strings are loaded through stack if they cross page boundary.
10879       __ string_indexof($str1$$Register, $str2$$Register,
10880                         $cnt1$$Register, $cnt2$$Register,
10881                         icnt2, $result$$Register,
10882                         $tmp_vec$$XMMRegister, $tmp$$Register, StrIntrinsicNode::UU);
10883     }
10884   %}
10885   ins_pipe( pipe_slow );
10886 %}
10887 
10888 // fast search of substring with known size.
10889 instruct string_indexof_conUL(rdi_RegP str1, rdx_RegI cnt1, rsi_RegP str2, immI int_cnt2,
10890                               rbx_RegI result, legRegD tmp_vec, rax_RegI cnt2, rcx_RegI tmp, rFlagsReg cr)
10891 %{
10892   predicate(UseSSE42Intrinsics && (((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UL));
10893   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2)));
10894   effect(TEMP tmp_vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, KILL cnt2, KILL tmp, KILL cr);
10895 
10896   format %{ "String IndexOf char[] $str1,$cnt1,$str2,$int_cnt2 -> $result   // KILL $tmp_vec, $cnt1, $cnt2, $tmp" %}
10897   ins_encode %{
10898     int icnt2 = (int)$int_cnt2$$constant;
10899     if (icnt2 >= 8) {
10900       // IndexOf for constant substrings with size >= 8 elements
10901       // which don't need to be loaded through stack.
10902       __ string_indexofC8($str1$$Register, $str2$$Register,
10903                           $cnt1$$Register, $cnt2$$Register,
10904                           icnt2, $result$$Register,
10905                           $tmp_vec$$XMMRegister, $tmp$$Register, StrIntrinsicNode::UL);
10906     } else {
10907       // Small strings are loaded through stack if they cross page boundary.
10908       __ string_indexof($str1$$Register, $str2$$Register,
10909                         $cnt1$$Register, $cnt2$$Register,
10910                         icnt2, $result$$Register,
10911                         $tmp_vec$$XMMRegister, $tmp$$Register, StrIntrinsicNode::UL);
10912     }
10913   %}
10914   ins_pipe( pipe_slow );
10915 %}
10916 
10917 instruct string_indexofL(rdi_RegP str1, rdx_RegI cnt1, rsi_RegP str2, rax_RegI cnt2,
10918                          rbx_RegI result, legRegD tmp_vec, rcx_RegI tmp, rFlagsReg cr)
10919 %{
10920   predicate(UseSSE42Intrinsics && (((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::LL));
10921   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
10922   effect(TEMP tmp_vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL tmp, KILL cr);
10923 
10924   format %{ "String IndexOf byte[] $str1,$cnt1,$str2,$cnt2 -> $result   // KILL all" %}
10925   ins_encode %{
10926     __ string_indexof($str1$$Register, $str2$$Register,
10927                       $cnt1$$Register, $cnt2$$Register,
10928                       (-1), $result$$Register,
10929                       $tmp_vec$$XMMRegister, $tmp$$Register, StrIntrinsicNode::LL);
10930   %}
10931   ins_pipe( pipe_slow );
10932 %}
10933 
10934 instruct string_indexofU(rdi_RegP str1, rdx_RegI cnt1, rsi_RegP str2, rax_RegI cnt2,
10935                          rbx_RegI result, legRegD tmp_vec, rcx_RegI tmp, rFlagsReg cr)
10936 %{
10937   predicate(UseSSE42Intrinsics && (((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UU));
10938   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
10939   effect(TEMP tmp_vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL tmp, KILL cr);
10940 
10941   format %{ "String IndexOf char[] $str1,$cnt1,$str2,$cnt2 -> $result   // KILL all" %}
10942   ins_encode %{
10943     __ string_indexof($str1$$Register, $str2$$Register,
10944                       $cnt1$$Register, $cnt2$$Register,
10945                       (-1), $result$$Register,
10946                       $tmp_vec$$XMMRegister, $tmp$$Register, StrIntrinsicNode::UU);
10947   %}
10948   ins_pipe( pipe_slow );
10949 %}
10950 
10951 instruct string_indexofUL(rdi_RegP str1, rdx_RegI cnt1, rsi_RegP str2, rax_RegI cnt2,
10952                           rbx_RegI result, legRegD tmp_vec, rcx_RegI tmp, rFlagsReg cr)
10953 %{
10954   predicate(UseSSE42Intrinsics && (((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UL));
10955   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
10956   effect(TEMP tmp_vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL tmp, KILL cr);
10957 
10958   format %{ "String IndexOf char[] $str1,$cnt1,$str2,$cnt2 -> $result   // KILL all" %}
10959   ins_encode %{
10960     __ string_indexof($str1$$Register, $str2$$Register,
10961                       $cnt1$$Register, $cnt2$$Register,
10962                       (-1), $result$$Register,
10963                       $tmp_vec$$XMMRegister, $tmp$$Register, StrIntrinsicNode::UL);
10964   %}
10965   ins_pipe( pipe_slow );
10966 %}
10967 
10968 instruct string_indexof_char(rdi_RegP str1, rdx_RegI cnt1, rax_RegI ch,
10969                               rbx_RegI result, legRegD tmp_vec1, legRegD tmp_vec2, legRegD tmp_vec3, rcx_RegI tmp, rFlagsReg cr)
10970 %{
10971   predicate(UseSSE42Intrinsics && (((StrIndexOfCharNode*)n)->encoding() == StrIntrinsicNode::U));
10972   match(Set result (StrIndexOfChar (Binary str1 cnt1) ch));
10973   effect(TEMP tmp_vec1, TEMP tmp_vec2, TEMP tmp_vec3, USE_KILL str1, USE_KILL cnt1, USE_KILL ch, TEMP tmp, KILL cr);
10974   format %{ "StringUTF16 IndexOf char[] $str1,$cnt1,$ch -> $result   // KILL all" %}
10975   ins_encode %{
10976     __ string_indexof_char($str1$$Register, $cnt1$$Register, $ch$$Register, $result$$Register,
10977                            $tmp_vec1$$XMMRegister, $tmp_vec2$$XMMRegister, $tmp_vec3$$XMMRegister, $tmp$$Register);
10978   %}
10979   ins_pipe( pipe_slow );
10980 %}
10981 
10982 instruct stringL_indexof_char(rdi_RegP str1, rdx_RegI cnt1, rax_RegI ch,
10983                               rbx_RegI result, legRegD tmp_vec1, legRegD tmp_vec2, legRegD tmp_vec3, rcx_RegI tmp, rFlagsReg cr)
10984 %{
10985   predicate(UseSSE42Intrinsics && (((StrIndexOfCharNode*)n)->encoding() == StrIntrinsicNode::L));
10986   match(Set result (StrIndexOfChar (Binary str1 cnt1) ch));
10987   effect(TEMP tmp_vec1, TEMP tmp_vec2, TEMP tmp_vec3, USE_KILL str1, USE_KILL cnt1, USE_KILL ch, TEMP tmp, KILL cr);
10988   format %{ "StringLatin1 IndexOf char[] $str1,$cnt1,$ch -> $result   // KILL all" %}
10989   ins_encode %{
10990     __ stringL_indexof_char($str1$$Register, $cnt1$$Register, $ch$$Register, $result$$Register,
10991                            $tmp_vec1$$XMMRegister, $tmp_vec2$$XMMRegister, $tmp_vec3$$XMMRegister, $tmp$$Register);
10992   %}
10993   ins_pipe( pipe_slow );
10994 %}
10995 
10996 // fast string equals
10997 instruct string_equals(rdi_RegP str1, rsi_RegP str2, rcx_RegI cnt, rax_RegI result,
10998                        legRegD tmp1, legRegD tmp2, rbx_RegI tmp3, rFlagsReg cr)
10999 %{
11000   predicate(!VM_Version::supports_avx512vlbw());
11001   match(Set result (StrEquals (Binary str1 str2) cnt));
11002   effect(TEMP tmp1, TEMP tmp2, USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp3, KILL cr);
11003 
11004   format %{ "String Equals $str1,$str2,$cnt -> $result    // KILL $tmp1, $tmp2, $tmp3" %}
11005   ins_encode %{
11006     __ arrays_equals(false, $str1$$Register, $str2$$Register,
11007                      $cnt$$Register, $result$$Register, $tmp3$$Register,
11008                      $tmp1$$XMMRegister, $tmp2$$XMMRegister, false /* char */, knoreg);
11009   %}
11010   ins_pipe( pipe_slow );
11011 %}
11012 
11013 instruct string_equals_evex(rdi_RegP str1, rsi_RegP str2, rcx_RegI cnt, rax_RegI result,
11014                            legRegD tmp1, legRegD tmp2, kReg ktmp, rbx_RegI tmp3, rFlagsReg cr)
11015 %{
11016   predicate(VM_Version::supports_avx512vlbw());
11017   match(Set result (StrEquals (Binary str1 str2) cnt));
11018   effect(TEMP tmp1, TEMP tmp2, TEMP ktmp, USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp3, KILL cr);
11019 
11020   format %{ "String Equals $str1,$str2,$cnt -> $result    // KILL $tmp1, $tmp2, $tmp3" %}
11021   ins_encode %{
11022     __ arrays_equals(false, $str1$$Register, $str2$$Register,
11023                      $cnt$$Register, $result$$Register, $tmp3$$Register,
11024                      $tmp1$$XMMRegister, $tmp2$$XMMRegister, false /* char */, $ktmp$$KRegister);
11025   %}
11026   ins_pipe( pipe_slow );
11027 %}
11028 
11029 // fast array equals
11030 instruct array_equalsB(rdi_RegP ary1, rsi_RegP ary2, rax_RegI result,
11031                        legRegD tmp1, legRegD tmp2, rcx_RegI tmp3, rbx_RegI tmp4, rFlagsReg cr)
11032 %{
11033   predicate(!VM_Version::supports_avx512vlbw() && ((AryEqNode*)n)->encoding() == StrIntrinsicNode::LL);
11034   match(Set result (AryEq ary1 ary2));
11035   effect(TEMP tmp1, TEMP tmp2, USE_KILL ary1, USE_KILL ary2, KILL tmp3, KILL tmp4, KILL cr);
11036 
11037   format %{ "Array Equals byte[] $ary1,$ary2 -> $result   // KILL $tmp1, $tmp2, $tmp3, $tmp4" %}
11038   ins_encode %{
11039     __ arrays_equals(true, $ary1$$Register, $ary2$$Register,
11040                      $tmp3$$Register, $result$$Register, $tmp4$$Register,
11041                      $tmp1$$XMMRegister, $tmp2$$XMMRegister, false /* char */, knoreg);
11042   %}
11043   ins_pipe( pipe_slow );
11044 %}
11045 
11046 instruct array_equalsB_evex(rdi_RegP ary1, rsi_RegP ary2, rax_RegI result,
11047                             legRegD tmp1, legRegD tmp2, kReg ktmp, rcx_RegI tmp3, rbx_RegI tmp4, rFlagsReg cr)
11048 %{
11049   predicate(VM_Version::supports_avx512vlbw() && ((AryEqNode*)n)->encoding() == StrIntrinsicNode::LL);
11050   match(Set result (AryEq ary1 ary2));
11051   effect(TEMP tmp1, TEMP tmp2, TEMP ktmp, USE_KILL ary1, USE_KILL ary2, KILL tmp3, KILL tmp4, KILL cr);
11052 
11053   format %{ "Array Equals byte[] $ary1,$ary2 -> $result   // KILL $tmp1, $tmp2, $tmp3, $tmp4" %}
11054   ins_encode %{
11055     __ arrays_equals(true, $ary1$$Register, $ary2$$Register,
11056                      $tmp3$$Register, $result$$Register, $tmp4$$Register,
11057                      $tmp1$$XMMRegister, $tmp2$$XMMRegister, false /* char */, $ktmp$$KRegister);
11058   %}
11059   ins_pipe( pipe_slow );
11060 %}
11061 
11062 instruct array_equalsC(rdi_RegP ary1, rsi_RegP ary2, rax_RegI result,
11063                        legRegD tmp1, legRegD tmp2, rcx_RegI tmp3, rbx_RegI tmp4, rFlagsReg cr)
11064 %{
11065   predicate(!VM_Version::supports_avx512vlbw() && ((AryEqNode*)n)->encoding() == StrIntrinsicNode::UU);
11066   match(Set result (AryEq ary1 ary2));
11067   effect(TEMP tmp1, TEMP tmp2, USE_KILL ary1, USE_KILL ary2, KILL tmp3, KILL tmp4, KILL cr);
11068 
11069   format %{ "Array Equals char[] $ary1,$ary2 -> $result   // KILL $tmp1, $tmp2, $tmp3, $tmp4" %}
11070   ins_encode %{
11071     __ arrays_equals(true, $ary1$$Register, $ary2$$Register,
11072                      $tmp3$$Register, $result$$Register, $tmp4$$Register,
11073                      $tmp1$$XMMRegister, $tmp2$$XMMRegister, true /* char */, knoreg);
11074   %}
11075   ins_pipe( pipe_slow );
11076 %}
11077 
11078 instruct array_equalsC_evex(rdi_RegP ary1, rsi_RegP ary2, rax_RegI result,
11079                             legRegD tmp1, legRegD tmp2, kReg ktmp, rcx_RegI tmp3, rbx_RegI tmp4, rFlagsReg cr)
11080 %{
11081   predicate(VM_Version::supports_avx512vlbw() && ((AryEqNode*)n)->encoding() == StrIntrinsicNode::UU);
11082   match(Set result (AryEq ary1 ary2));
11083   effect(TEMP tmp1, TEMP tmp2, TEMP ktmp, USE_KILL ary1, USE_KILL ary2, KILL tmp3, KILL tmp4, KILL cr);
11084 
11085   format %{ "Array Equals char[] $ary1,$ary2 -> $result   // KILL $tmp1, $tmp2, $tmp3, $tmp4" %}
11086   ins_encode %{
11087     __ arrays_equals(true, $ary1$$Register, $ary2$$Register,
11088                      $tmp3$$Register, $result$$Register, $tmp4$$Register,
11089                      $tmp1$$XMMRegister, $tmp2$$XMMRegister, true /* char */, $ktmp$$KRegister);
11090   %}
11091   ins_pipe( pipe_slow );
11092 %}
11093 
11094 instruct arrays_hashcode(rdi_RegP ary1, rdx_RegI cnt1, rbx_RegI result, immU8 basic_type,
11095                          legRegD tmp_vec1, legRegD tmp_vec2, legRegD tmp_vec3, legRegD tmp_vec4,
11096                          legRegD tmp_vec5, legRegD tmp_vec6, legRegD tmp_vec7, legRegD tmp_vec8,
11097                          legRegD tmp_vec9, legRegD tmp_vec10, legRegD tmp_vec11, legRegD tmp_vec12,
11098                          legRegD tmp_vec13, rRegI tmp1, rRegI tmp2, rRegI tmp3, rFlagsReg cr)
11099 %{
11100   predicate(UseAVX >= 2);
11101   match(Set result (VectorizedHashCode (Binary ary1 cnt1) (Binary result basic_type)));
11102   effect(TEMP tmp_vec1, TEMP tmp_vec2, TEMP tmp_vec3, TEMP tmp_vec4, TEMP tmp_vec5, TEMP tmp_vec6,
11103          TEMP tmp_vec7, TEMP tmp_vec8, TEMP tmp_vec9, TEMP tmp_vec10, TEMP tmp_vec11, TEMP tmp_vec12,
11104          TEMP tmp_vec13, TEMP tmp1, TEMP tmp2, TEMP tmp3, USE_KILL ary1, USE_KILL cnt1,
11105          USE basic_type, KILL cr);
11106 
11107   format %{ "Array HashCode array[] $ary1,$cnt1,$result,$basic_type -> $result   // KILL all" %}
11108   ins_encode %{
11109     __ arrays_hashcode($ary1$$Register, $cnt1$$Register, $result$$Register,
11110                        $tmp1$$Register, $tmp2$$Register, $tmp3$$Register,
11111                        $tmp_vec1$$XMMRegister, $tmp_vec2$$XMMRegister, $tmp_vec3$$XMMRegister,
11112                        $tmp_vec4$$XMMRegister, $tmp_vec5$$XMMRegister, $tmp_vec6$$XMMRegister,
11113                        $tmp_vec7$$XMMRegister, $tmp_vec8$$XMMRegister, $tmp_vec9$$XMMRegister,
11114                        $tmp_vec10$$XMMRegister, $tmp_vec11$$XMMRegister, $tmp_vec12$$XMMRegister,
11115                        $tmp_vec13$$XMMRegister, (BasicType)$basic_type$$constant);
11116   %}
11117   ins_pipe( pipe_slow );
11118 %}
11119 
11120 instruct count_positives(rsi_RegP ary1, rcx_RegI len, rax_RegI result,
11121                          legRegD tmp1, legRegD tmp2, rbx_RegI tmp3, rFlagsReg cr,)
11122 %{
11123   predicate(!VM_Version::supports_avx512vlbw() || !VM_Version::supports_bmi2());
11124   match(Set result (CountPositives ary1 len));
11125   effect(TEMP tmp1, TEMP tmp2, USE_KILL ary1, USE_KILL len, KILL tmp3, KILL cr);
11126 
11127   format %{ "countPositives byte[] $ary1,$len -> $result   // KILL $tmp1, $tmp2, $tmp3" %}
11128   ins_encode %{
11129     __ count_positives($ary1$$Register, $len$$Register,
11130                        $result$$Register, $tmp3$$Register,
11131                        $tmp1$$XMMRegister, $tmp2$$XMMRegister, knoreg, knoreg);
11132   %}
11133   ins_pipe( pipe_slow );
11134 %}
11135 
11136 instruct count_positives_evex(rsi_RegP ary1, rcx_RegI len, rax_RegI result,
11137                               legRegD tmp1, legRegD tmp2, kReg ktmp1, kReg ktmp2, rbx_RegI tmp3, rFlagsReg cr,)
11138 %{
11139   predicate(VM_Version::supports_avx512vlbw() && VM_Version::supports_bmi2());
11140   match(Set result (CountPositives ary1 len));
11141   effect(TEMP tmp1, TEMP tmp2, TEMP ktmp1, TEMP ktmp2, USE_KILL ary1, USE_KILL len, KILL tmp3, KILL cr);
11142 
11143   format %{ "countPositives byte[] $ary1,$len -> $result   // KILL $tmp1, $tmp2, $tmp3" %}
11144   ins_encode %{
11145     __ count_positives($ary1$$Register, $len$$Register,
11146                        $result$$Register, $tmp3$$Register,
11147                        $tmp1$$XMMRegister, $tmp2$$XMMRegister, $ktmp1$$KRegister, $ktmp2$$KRegister);
11148   %}
11149   ins_pipe( pipe_slow );
11150 %}
11151 
11152 // fast char[] to byte[] compression
11153 instruct string_compress(rsi_RegP src, rdi_RegP dst, rdx_RegI len, legRegD tmp1, legRegD tmp2, legRegD tmp3,
11154                          legRegD tmp4, rcx_RegI tmp5, rax_RegI result, rFlagsReg cr) %{
11155   predicate(!VM_Version::supports_avx512vlbw() || !VM_Version::supports_bmi2());
11156   match(Set result (StrCompressedCopy src (Binary dst len)));
11157   effect(TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, USE_KILL src, USE_KILL dst,
11158          USE_KILL len, KILL tmp5, KILL cr);
11159 
11160   format %{ "String Compress $src,$dst -> $result    // KILL RAX, RCX, RDX" %}
11161   ins_encode %{
11162     __ char_array_compress($src$$Register, $dst$$Register, $len$$Register,
11163                            $tmp1$$XMMRegister, $tmp2$$XMMRegister, $tmp3$$XMMRegister,
11164                            $tmp4$$XMMRegister, $tmp5$$Register, $result$$Register,
11165                            knoreg, knoreg);
11166   %}
11167   ins_pipe( pipe_slow );
11168 %}
11169 
11170 instruct string_compress_evex(rsi_RegP src, rdi_RegP dst, rdx_RegI len, legRegD tmp1, legRegD tmp2, legRegD tmp3,
11171                               legRegD tmp4, kReg ktmp1, kReg ktmp2, rcx_RegI tmp5, rax_RegI result, rFlagsReg cr) %{
11172   predicate(VM_Version::supports_avx512vlbw() && VM_Version::supports_bmi2());
11173   match(Set result (StrCompressedCopy src (Binary dst len)));
11174   effect(TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, TEMP ktmp1, TEMP ktmp2, USE_KILL src, USE_KILL dst,
11175          USE_KILL len, KILL tmp5, KILL cr);
11176 
11177   format %{ "String Compress $src,$dst -> $result    // KILL RAX, RCX, RDX" %}
11178   ins_encode %{
11179     __ char_array_compress($src$$Register, $dst$$Register, $len$$Register,
11180                            $tmp1$$XMMRegister, $tmp2$$XMMRegister, $tmp3$$XMMRegister,
11181                            $tmp4$$XMMRegister, $tmp5$$Register, $result$$Register,
11182                            $ktmp1$$KRegister, $ktmp2$$KRegister);
11183   %}
11184   ins_pipe( pipe_slow );
11185 %}
11186 // fast byte[] to char[] inflation
11187 instruct string_inflate(Universe dummy, rsi_RegP src, rdi_RegP dst, rdx_RegI len,
11188                         legRegD tmp1, rcx_RegI tmp2, rFlagsReg cr) %{
11189   predicate(!VM_Version::supports_avx512vlbw() || !VM_Version::supports_bmi2());
11190   match(Set dummy (StrInflatedCopy src (Binary dst len)));
11191   effect(TEMP tmp1, TEMP tmp2, USE_KILL src, USE_KILL dst, USE_KILL len, KILL cr);
11192 
11193   format %{ "String Inflate $src,$dst    // KILL $tmp1, $tmp2" %}
11194   ins_encode %{
11195     __ byte_array_inflate($src$$Register, $dst$$Register, $len$$Register,
11196                           $tmp1$$XMMRegister, $tmp2$$Register, knoreg);
11197   %}
11198   ins_pipe( pipe_slow );
11199 %}
11200 
11201 instruct string_inflate_evex(Universe dummy, rsi_RegP src, rdi_RegP dst, rdx_RegI len,
11202                              legRegD tmp1, kReg ktmp, rcx_RegI tmp2, rFlagsReg cr) %{
11203   predicate(VM_Version::supports_avx512vlbw() && VM_Version::supports_bmi2());
11204   match(Set dummy (StrInflatedCopy src (Binary dst len)));
11205   effect(TEMP tmp1, TEMP tmp2, TEMP ktmp, USE_KILL src, USE_KILL dst, USE_KILL len, KILL cr);
11206 
11207   format %{ "String Inflate $src,$dst    // KILL $tmp1, $tmp2" %}
11208   ins_encode %{
11209     __ byte_array_inflate($src$$Register, $dst$$Register, $len$$Register,
11210                           $tmp1$$XMMRegister, $tmp2$$Register, $ktmp$$KRegister);
11211   %}
11212   ins_pipe( pipe_slow );
11213 %}
11214 
11215 // encode char[] to byte[] in ISO_8859_1
11216 instruct encode_iso_array(rsi_RegP src, rdi_RegP dst, rdx_RegI len,
11217                           legRegD tmp1, legRegD tmp2, legRegD tmp3, legRegD tmp4,
11218                           rcx_RegI tmp5, rax_RegI result, rFlagsReg cr) %{
11219   predicate(!((EncodeISOArrayNode*)n)->is_ascii());
11220   match(Set result (EncodeISOArray src (Binary dst len)));
11221   effect(TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, USE_KILL src, USE_KILL dst, USE_KILL len, KILL tmp5, KILL cr);
11222 
11223   format %{ "Encode iso array $src,$dst,$len -> $result    // KILL RCX, RDX, $tmp1, $tmp2, $tmp3, $tmp4, RSI, RDI " %}
11224   ins_encode %{
11225     __ encode_iso_array($src$$Register, $dst$$Register, $len$$Register,
11226                         $tmp1$$XMMRegister, $tmp2$$XMMRegister, $tmp3$$XMMRegister,
11227                         $tmp4$$XMMRegister, $tmp5$$Register, $result$$Register, false);
11228   %}
11229   ins_pipe( pipe_slow );
11230 %}
11231 
11232 // encode char[] to byte[] in ASCII
11233 instruct encode_ascii_array(rsi_RegP src, rdi_RegP dst, rdx_RegI len,
11234                             legRegD tmp1, legRegD tmp2, legRegD tmp3, legRegD tmp4,
11235                             rcx_RegI tmp5, rax_RegI result, rFlagsReg cr) %{
11236   predicate(((EncodeISOArrayNode*)n)->is_ascii());
11237   match(Set result (EncodeISOArray src (Binary dst len)));
11238   effect(TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, USE_KILL src, USE_KILL dst, USE_KILL len, KILL tmp5, KILL cr);
11239 
11240   format %{ "Encode ascii array $src,$dst,$len -> $result    // KILL RCX, RDX, $tmp1, $tmp2, $tmp3, $tmp4, RSI, RDI " %}
11241   ins_encode %{
11242     __ encode_iso_array($src$$Register, $dst$$Register, $len$$Register,
11243                         $tmp1$$XMMRegister, $tmp2$$XMMRegister, $tmp3$$XMMRegister,
11244                         $tmp4$$XMMRegister, $tmp5$$Register, $result$$Register, true);
11245   %}
11246   ins_pipe( pipe_slow );
11247 %}
11248 
11249 //----------Overflow Math Instructions-----------------------------------------
11250 
11251 instruct overflowAddI_rReg(rFlagsReg cr, rax_RegI op1, rRegI op2)
11252 %{
11253   match(Set cr (OverflowAddI op1 op2));
11254   effect(DEF cr, USE_KILL op1, USE op2);
11255 
11256   format %{ "addl    $op1, $op2\t# overflow check int" %}
11257 
11258   ins_encode %{
11259     __ addl($op1$$Register, $op2$$Register);
11260   %}
11261   ins_pipe(ialu_reg_reg);
11262 %}
11263 
11264 instruct overflowAddI_rReg_imm(rFlagsReg cr, rax_RegI op1, immI op2)
11265 %{
11266   match(Set cr (OverflowAddI op1 op2));
11267   effect(DEF cr, USE_KILL op1, USE op2);
11268 
11269   format %{ "addl    $op1, $op2\t# overflow check int" %}
11270 
11271   ins_encode %{
11272     __ addl($op1$$Register, $op2$$constant);
11273   %}
11274   ins_pipe(ialu_reg_reg);
11275 %}
11276 
11277 instruct overflowAddL_rReg(rFlagsReg cr, rax_RegL op1, rRegL op2)
11278 %{
11279   match(Set cr (OverflowAddL op1 op2));
11280   effect(DEF cr, USE_KILL op1, USE op2);
11281 
11282   format %{ "addq    $op1, $op2\t# overflow check long" %}
11283   ins_encode %{
11284     __ addq($op1$$Register, $op2$$Register);
11285   %}
11286   ins_pipe(ialu_reg_reg);
11287 %}
11288 
11289 instruct overflowAddL_rReg_imm(rFlagsReg cr, rax_RegL op1, immL32 op2)
11290 %{
11291   match(Set cr (OverflowAddL op1 op2));
11292   effect(DEF cr, USE_KILL op1, USE op2);
11293 
11294   format %{ "addq    $op1, $op2\t# overflow check long" %}
11295   ins_encode %{
11296     __ addq($op1$$Register, $op2$$constant);
11297   %}
11298   ins_pipe(ialu_reg_reg);
11299 %}
11300 
11301 instruct overflowSubI_rReg(rFlagsReg cr, rRegI op1, rRegI op2)
11302 %{
11303   match(Set cr (OverflowSubI op1 op2));
11304 
11305   format %{ "cmpl    $op1, $op2\t# overflow check int" %}
11306   ins_encode %{
11307     __ cmpl($op1$$Register, $op2$$Register);
11308   %}
11309   ins_pipe(ialu_reg_reg);
11310 %}
11311 
11312 instruct overflowSubI_rReg_imm(rFlagsReg cr, rRegI op1, immI op2)
11313 %{
11314   match(Set cr (OverflowSubI op1 op2));
11315 
11316   format %{ "cmpl    $op1, $op2\t# overflow check int" %}
11317   ins_encode %{
11318     __ cmpl($op1$$Register, $op2$$constant);
11319   %}
11320   ins_pipe(ialu_reg_reg);
11321 %}
11322 
11323 instruct overflowSubL_rReg(rFlagsReg cr, rRegL op1, rRegL op2)
11324 %{
11325   match(Set cr (OverflowSubL op1 op2));
11326 
11327   format %{ "cmpq    $op1, $op2\t# overflow check long" %}
11328   ins_encode %{
11329     __ cmpq($op1$$Register, $op2$$Register);
11330   %}
11331   ins_pipe(ialu_reg_reg);
11332 %}
11333 
11334 instruct overflowSubL_rReg_imm(rFlagsReg cr, rRegL op1, immL32 op2)
11335 %{
11336   match(Set cr (OverflowSubL op1 op2));
11337 
11338   format %{ "cmpq    $op1, $op2\t# overflow check long" %}
11339   ins_encode %{
11340     __ cmpq($op1$$Register, $op2$$constant);
11341   %}
11342   ins_pipe(ialu_reg_reg);
11343 %}
11344 
11345 instruct overflowNegI_rReg(rFlagsReg cr, immI_0 zero, rax_RegI op2)
11346 %{
11347   match(Set cr (OverflowSubI zero op2));
11348   effect(DEF cr, USE_KILL op2);
11349 
11350   format %{ "negl    $op2\t# overflow check int" %}
11351   ins_encode %{
11352     __ negl($op2$$Register);
11353   %}
11354   ins_pipe(ialu_reg_reg);
11355 %}
11356 
11357 instruct overflowNegL_rReg(rFlagsReg cr, immL0 zero, rax_RegL op2)
11358 %{
11359   match(Set cr (OverflowSubL zero op2));
11360   effect(DEF cr, USE_KILL op2);
11361 
11362   format %{ "negq    $op2\t# overflow check long" %}
11363   ins_encode %{
11364     __ negq($op2$$Register);
11365   %}
11366   ins_pipe(ialu_reg_reg);
11367 %}
11368 
11369 instruct overflowMulI_rReg(rFlagsReg cr, rax_RegI op1, rRegI op2)
11370 %{
11371   match(Set cr (OverflowMulI op1 op2));
11372   effect(DEF cr, USE_KILL op1, USE op2);
11373 
11374   format %{ "imull    $op1, $op2\t# overflow check int" %}
11375   ins_encode %{
11376     __ imull($op1$$Register, $op2$$Register);
11377   %}
11378   ins_pipe(ialu_reg_reg_alu0);
11379 %}
11380 
11381 instruct overflowMulI_rReg_imm(rFlagsReg cr, rRegI op1, immI op2, rRegI tmp)
11382 %{
11383   match(Set cr (OverflowMulI op1 op2));
11384   effect(DEF cr, TEMP tmp, USE op1, USE op2);
11385 
11386   format %{ "imull    $tmp, $op1, $op2\t# overflow check int" %}
11387   ins_encode %{
11388     __ imull($tmp$$Register, $op1$$Register, $op2$$constant);
11389   %}
11390   ins_pipe(ialu_reg_reg_alu0);
11391 %}
11392 
11393 instruct overflowMulL_rReg(rFlagsReg cr, rax_RegL op1, rRegL op2)
11394 %{
11395   match(Set cr (OverflowMulL op1 op2));
11396   effect(DEF cr, USE_KILL op1, USE op2);
11397 
11398   format %{ "imulq    $op1, $op2\t# overflow check long" %}
11399   ins_encode %{
11400     __ imulq($op1$$Register, $op2$$Register);
11401   %}
11402   ins_pipe(ialu_reg_reg_alu0);
11403 %}
11404 
11405 instruct overflowMulL_rReg_imm(rFlagsReg cr, rRegL op1, immL32 op2, rRegL tmp)
11406 %{
11407   match(Set cr (OverflowMulL op1 op2));
11408   effect(DEF cr, TEMP tmp, USE op1, USE op2);
11409 
11410   format %{ "imulq    $tmp, $op1, $op2\t# overflow check long" %}
11411   ins_encode %{
11412     __ imulq($tmp$$Register, $op1$$Register, $op2$$constant);
11413   %}
11414   ins_pipe(ialu_reg_reg_alu0);
11415 %}
11416 
11417 
11418 //----------Control Flow Instructions------------------------------------------
11419 // Signed compare Instructions
11420 
11421 // XXX more variants!!
11422 instruct compI_rReg(rFlagsReg cr, rRegI op1, rRegI op2)
11423 %{
11424   match(Set cr (CmpI op1 op2));
11425   effect(DEF cr, USE op1, USE op2);
11426 
11427   format %{ "cmpl    $op1, $op2" %}
11428   ins_encode %{
11429     __ cmpl($op1$$Register, $op2$$Register);
11430   %}
11431   ins_pipe(ialu_cr_reg_reg);
11432 %}
11433 
11434 instruct compI_rReg_imm(rFlagsReg cr, rRegI op1, immI op2)
11435 %{
11436   match(Set cr (CmpI op1 op2));
11437 
11438   format %{ "cmpl    $op1, $op2" %}
11439   ins_encode %{
11440     __ cmpl($op1$$Register, $op2$$constant);
11441   %}
11442   ins_pipe(ialu_cr_reg_imm);
11443 %}
11444 
11445 instruct compI_rReg_mem(rFlagsReg cr, rRegI op1, memory op2)
11446 %{
11447   match(Set cr (CmpI op1 (LoadI op2)));
11448 
11449   ins_cost(500); // XXX
11450   format %{ "cmpl    $op1, $op2" %}
11451   ins_encode %{
11452     __ cmpl($op1$$Register, $op2$$Address);
11453   %}
11454   ins_pipe(ialu_cr_reg_mem);
11455 %}
11456 
11457 instruct testI_reg(rFlagsReg cr, rRegI src, immI_0 zero)
11458 %{
11459   match(Set cr (CmpI src zero));
11460 
11461   format %{ "testl   $src, $src" %}
11462   ins_encode %{
11463     __ testl($src$$Register, $src$$Register);
11464   %}
11465   ins_pipe(ialu_cr_reg_imm);
11466 %}
11467 
11468 instruct testI_reg_imm(rFlagsReg cr, rRegI src, immI con, immI_0 zero)
11469 %{
11470   match(Set cr (CmpI (AndI src con) zero));
11471 
11472   format %{ "testl   $src, $con" %}
11473   ins_encode %{
11474     __ testl($src$$Register, $con$$constant);
11475   %}
11476   ins_pipe(ialu_cr_reg_imm);
11477 %}
11478 
11479 instruct testI_reg_reg(rFlagsReg cr, rRegI src1, rRegI src2, immI_0 zero)
11480 %{
11481   match(Set cr (CmpI (AndI src1 src2) zero));
11482 
11483   format %{ "testl   $src1, $src2" %}
11484   ins_encode %{
11485     __ testl($src1$$Register, $src2$$Register);
11486   %}
11487   ins_pipe(ialu_cr_reg_imm);
11488 %}
11489 
11490 instruct testI_reg_mem(rFlagsReg cr, rRegI src, memory mem, immI_0 zero)
11491 %{
11492   match(Set cr (CmpI (AndI src (LoadI mem)) zero));
11493 
11494   format %{ "testl   $src, $mem" %}
11495   ins_encode %{
11496     __ testl($src$$Register, $mem$$Address);
11497   %}
11498   ins_pipe(ialu_cr_reg_mem);
11499 %}
11500 
11501 // Unsigned compare Instructions; really, same as signed except they
11502 // produce an rFlagsRegU instead of rFlagsReg.
11503 instruct compU_rReg(rFlagsRegU cr, rRegI op1, rRegI op2)
11504 %{
11505   match(Set cr (CmpU op1 op2));
11506 
11507   format %{ "cmpl    $op1, $op2\t# unsigned" %}
11508   ins_encode %{
11509     __ cmpl($op1$$Register, $op2$$Register);
11510   %}
11511   ins_pipe(ialu_cr_reg_reg);
11512 %}
11513 
11514 instruct compU_rReg_imm(rFlagsRegU cr, rRegI op1, immI op2)
11515 %{
11516   match(Set cr (CmpU op1 op2));
11517 
11518   format %{ "cmpl    $op1, $op2\t# unsigned" %}
11519   ins_encode %{
11520     __ cmpl($op1$$Register, $op2$$constant);
11521   %}
11522   ins_pipe(ialu_cr_reg_imm);
11523 %}
11524 
11525 instruct compU_rReg_mem(rFlagsRegU cr, rRegI op1, memory op2)
11526 %{
11527   match(Set cr (CmpU op1 (LoadI op2)));
11528 
11529   ins_cost(500); // XXX
11530   format %{ "cmpl    $op1, $op2\t# unsigned" %}
11531   ins_encode %{
11532     __ cmpl($op1$$Register, $op2$$Address);
11533   %}
11534   ins_pipe(ialu_cr_reg_mem);
11535 %}
11536 
11537 instruct testU_reg(rFlagsRegU cr, rRegI src, immI_0 zero)
11538 %{
11539   match(Set cr (CmpU src zero));
11540 
11541   format %{ "testl   $src, $src\t# unsigned" %}
11542   ins_encode %{
11543     __ testl($src$$Register, $src$$Register);
11544   %}
11545   ins_pipe(ialu_cr_reg_imm);
11546 %}
11547 
11548 instruct compP_rReg(rFlagsRegU cr, rRegP op1, rRegP op2)
11549 %{
11550   match(Set cr (CmpP op1 op2));
11551 
11552   format %{ "cmpq    $op1, $op2\t# ptr" %}
11553   ins_encode %{
11554     __ cmpq($op1$$Register, $op2$$Register);
11555   %}
11556   ins_pipe(ialu_cr_reg_reg);
11557 %}
11558 
11559 instruct compP_rReg_mem(rFlagsRegU cr, rRegP op1, memory op2)
11560 %{
11561   match(Set cr (CmpP op1 (LoadP op2)));
11562   predicate(n->in(2)->as_Load()->barrier_data() == 0);
11563 
11564   ins_cost(500); // XXX
11565   format %{ "cmpq    $op1, $op2\t# ptr" %}
11566   ins_encode %{
11567     __ cmpq($op1$$Register, $op2$$Address);
11568   %}
11569   ins_pipe(ialu_cr_reg_mem);
11570 %}
11571 
11572 // XXX this is generalized by compP_rReg_mem???
11573 // Compare raw pointer (used in out-of-heap check).
11574 // Only works because non-oop pointers must be raw pointers
11575 // and raw pointers have no anti-dependencies.
11576 instruct compP_mem_rReg(rFlagsRegU cr, rRegP op1, memory op2)
11577 %{
11578   predicate(n->in(2)->in(2)->bottom_type()->reloc() == relocInfo::none &&
11579             n->in(2)->as_Load()->barrier_data() == 0);
11580   match(Set cr (CmpP op1 (LoadP op2)));
11581 
11582   format %{ "cmpq    $op1, $op2\t# raw ptr" %}
11583   ins_encode %{
11584     __ cmpq($op1$$Register, $op2$$Address);
11585   %}
11586   ins_pipe(ialu_cr_reg_mem);
11587 %}
11588 
11589 // This will generate a signed flags result. This should be OK since
11590 // any compare to a zero should be eq/neq.
11591 instruct testP_reg(rFlagsReg cr, rRegP src, immP0 zero)
11592 %{
11593   match(Set cr (CmpP src zero));
11594 
11595   format %{ "testq   $src, $src\t# ptr" %}
11596   ins_encode %{
11597     __ testq($src$$Register, $src$$Register);
11598   %}
11599   ins_pipe(ialu_cr_reg_imm);
11600 %}
11601 
11602 // This will generate a signed flags result. This should be OK since
11603 // any compare to a zero should be eq/neq.
11604 instruct testP_mem(rFlagsReg cr, memory op, immP0 zero)
11605 %{
11606   predicate((!UseCompressedOops || (CompressedOops::base() != nullptr)) &&
11607             n->in(1)->as_Load()->barrier_data() == 0);
11608   match(Set cr (CmpP (LoadP op) zero));
11609 
11610   ins_cost(500); // XXX
11611   format %{ "testq   $op, 0xffffffffffffffff\t# ptr" %}
11612   ins_encode %{
11613     __ testq($op$$Address, 0xFFFFFFFF);
11614   %}
11615   ins_pipe(ialu_cr_reg_imm);
11616 %}
11617 
11618 instruct testP_mem_reg0(rFlagsReg cr, memory mem, immP0 zero)
11619 %{
11620   predicate(UseCompressedOops && (CompressedOops::base() == nullptr) &&
11621             n->in(1)->as_Load()->barrier_data() == 0);
11622   match(Set cr (CmpP (LoadP mem) zero));
11623 
11624   format %{ "cmpq    R12, $mem\t# ptr (R12_heapbase==0)" %}
11625   ins_encode %{
11626     __ cmpq(r12, $mem$$Address);
11627   %}
11628   ins_pipe(ialu_cr_reg_mem);
11629 %}
11630 
11631 instruct compN_rReg(rFlagsRegU cr, rRegN op1, rRegN op2)
11632 %{
11633   match(Set cr (CmpN op1 op2));
11634 
11635   format %{ "cmpl    $op1, $op2\t# compressed ptr" %}
11636   ins_encode %{ __ cmpl($op1$$Register, $op2$$Register); %}
11637   ins_pipe(ialu_cr_reg_reg);
11638 %}
11639 
11640 instruct compN_rReg_mem(rFlagsRegU cr, rRegN src, memory mem)
11641 %{
11642   predicate(n->in(2)->as_Load()->barrier_data() == 0);
11643   match(Set cr (CmpN src (LoadN mem)));
11644 
11645   format %{ "cmpl    $src, $mem\t# compressed ptr" %}
11646   ins_encode %{
11647     __ cmpl($src$$Register, $mem$$Address);
11648   %}
11649   ins_pipe(ialu_cr_reg_mem);
11650 %}
11651 
11652 instruct compN_rReg_imm(rFlagsRegU cr, rRegN op1, immN op2) %{
11653   match(Set cr (CmpN op1 op2));
11654 
11655   format %{ "cmpl    $op1, $op2\t# compressed ptr" %}
11656   ins_encode %{
11657     __ cmp_narrow_oop($op1$$Register, (jobject)$op2$$constant);
11658   %}
11659   ins_pipe(ialu_cr_reg_imm);
11660 %}
11661 
11662 instruct compN_mem_imm(rFlagsRegU cr, memory mem, immN src)
11663 %{
11664   predicate(n->in(2)->as_Load()->barrier_data() == 0);
11665   match(Set cr (CmpN src (LoadN mem)));
11666 
11667   format %{ "cmpl    $mem, $src\t# compressed ptr" %}
11668   ins_encode %{
11669     __ cmp_narrow_oop($mem$$Address, (jobject)$src$$constant);
11670   %}
11671   ins_pipe(ialu_cr_reg_mem);
11672 %}
11673 
11674 instruct compN_rReg_imm_klass(rFlagsRegU cr, rRegN op1, immNKlass op2) %{
11675   match(Set cr (CmpN op1 op2));
11676 
11677   format %{ "cmpl    $op1, $op2\t# compressed klass ptr" %}
11678   ins_encode %{
11679     __ cmp_narrow_klass($op1$$Register, (Klass*)$op2$$constant);
11680   %}
11681   ins_pipe(ialu_cr_reg_imm);
11682 %}
11683 
11684 instruct compN_mem_imm_klass(rFlagsRegU cr, memory mem, immNKlass src)
11685 %{
11686   match(Set cr (CmpN src (LoadNKlass mem)));
11687 
11688   format %{ "cmpl    $mem, $src\t# compressed klass ptr" %}
11689   ins_encode %{
11690     __ cmp_narrow_klass($mem$$Address, (Klass*)$src$$constant);
11691   %}
11692   ins_pipe(ialu_cr_reg_mem);
11693 %}
11694 
11695 instruct testN_reg(rFlagsReg cr, rRegN src, immN0 zero) %{
11696   match(Set cr (CmpN src zero));
11697 
11698   format %{ "testl   $src, $src\t# compressed ptr" %}
11699   ins_encode %{ __ testl($src$$Register, $src$$Register); %}
11700   ins_pipe(ialu_cr_reg_imm);
11701 %}
11702 
11703 instruct testN_mem(rFlagsReg cr, memory mem, immN0 zero)
11704 %{
11705   predicate(CompressedOops::base() != nullptr &&
11706             n->in(1)->as_Load()->barrier_data() == 0);
11707   match(Set cr (CmpN (LoadN mem) zero));
11708 
11709   ins_cost(500); // XXX
11710   format %{ "testl   $mem, 0xffffffff\t# compressed ptr" %}
11711   ins_encode %{
11712     __ cmpl($mem$$Address, (int)0xFFFFFFFF);
11713   %}
11714   ins_pipe(ialu_cr_reg_mem);
11715 %}
11716 
11717 instruct testN_mem_reg0(rFlagsReg cr, memory mem, immN0 zero)
11718 %{
11719   predicate(CompressedOops::base() == nullptr &&
11720             n->in(1)->as_Load()->barrier_data() == 0);
11721   match(Set cr (CmpN (LoadN mem) zero));
11722 
11723   format %{ "cmpl    R12, $mem\t# compressed ptr (R12_heapbase==0)" %}
11724   ins_encode %{
11725     __ cmpl(r12, $mem$$Address);
11726   %}
11727   ins_pipe(ialu_cr_reg_mem);
11728 %}
11729 
11730 // Yanked all unsigned pointer compare operations.
11731 // Pointer compares are done with CmpP which is already unsigned.
11732 
11733 instruct compL_rReg(rFlagsReg cr, rRegL op1, rRegL op2)
11734 %{
11735   match(Set cr (CmpL op1 op2));
11736 
11737   format %{ "cmpq    $op1, $op2" %}
11738   ins_encode %{
11739     __ cmpq($op1$$Register, $op2$$Register);
11740   %}
11741   ins_pipe(ialu_cr_reg_reg);
11742 %}
11743 
11744 instruct compL_rReg_imm(rFlagsReg cr, rRegL op1, immL32 op2)
11745 %{
11746   match(Set cr (CmpL op1 op2));
11747 
11748   format %{ "cmpq    $op1, $op2" %}
11749   ins_encode %{
11750     __ cmpq($op1$$Register, $op2$$constant);
11751   %}
11752   ins_pipe(ialu_cr_reg_imm);
11753 %}
11754 
11755 instruct compL_rReg_mem(rFlagsReg cr, rRegL op1, memory op2)
11756 %{
11757   match(Set cr (CmpL op1 (LoadL op2)));
11758 
11759   format %{ "cmpq    $op1, $op2" %}
11760   ins_encode %{
11761     __ cmpq($op1$$Register, $op2$$Address);
11762   %}
11763   ins_pipe(ialu_cr_reg_mem);
11764 %}
11765 
11766 instruct testL_reg(rFlagsReg cr, rRegL src, immL0 zero)
11767 %{
11768   match(Set cr (CmpL src zero));
11769 
11770   format %{ "testq   $src, $src" %}
11771   ins_encode %{
11772     __ testq($src$$Register, $src$$Register);
11773   %}
11774   ins_pipe(ialu_cr_reg_imm);
11775 %}
11776 
11777 instruct testL_reg_imm(rFlagsReg cr, rRegL src, immL32 con, immL0 zero)
11778 %{
11779   match(Set cr (CmpL (AndL src con) zero));
11780 
11781   format %{ "testq   $src, $con\t# long" %}
11782   ins_encode %{
11783     __ testq($src$$Register, $con$$constant);
11784   %}
11785   ins_pipe(ialu_cr_reg_imm);
11786 %}
11787 
11788 instruct testL_reg_reg(rFlagsReg cr, rRegL src1, rRegL src2, immL0 zero)
11789 %{
11790   match(Set cr (CmpL (AndL src1 src2) zero));
11791 
11792   format %{ "testq   $src1, $src2\t# long" %}
11793   ins_encode %{
11794     __ testq($src1$$Register, $src2$$Register);
11795   %}
11796   ins_pipe(ialu_cr_reg_imm);
11797 %}
11798 
11799 instruct testL_reg_mem(rFlagsReg cr, rRegL src, memory mem, immL0 zero)
11800 %{
11801   match(Set cr (CmpL (AndL src (LoadL mem)) zero));
11802 
11803   format %{ "testq   $src, $mem" %}
11804   ins_encode %{
11805     __ testq($src$$Register, $mem$$Address);
11806   %}
11807   ins_pipe(ialu_cr_reg_mem);
11808 %}
11809 
11810 instruct testL_reg_mem2(rFlagsReg cr, rRegP src, memory mem, immL0 zero)
11811 %{
11812   match(Set cr (CmpL (AndL (CastP2X src) (LoadL mem)) zero));
11813 
11814   format %{ "testq   $src, $mem" %}
11815   ins_encode %{
11816     __ testq($src$$Register, $mem$$Address);
11817   %}
11818   ins_pipe(ialu_cr_reg_mem);
11819 %}
11820 
11821 // Manifest a CmpU result in an integer register.  Very painful.
11822 // This is the test to avoid.
11823 instruct cmpU3_reg_reg(rRegI dst, rRegI src1, rRegI src2, rFlagsReg flags)
11824 %{
11825   match(Set dst (CmpU3 src1 src2));
11826   effect(KILL flags);
11827 
11828   ins_cost(275); // XXX
11829   format %{ "cmpl    $src1, $src2\t# CmpL3\n\t"
11830             "movl    $dst, -1\n\t"
11831             "jb,u    done\n\t"
11832             "setcc   $dst \t# emits setne + movzbl or setzune for APX"
11833     "done:" %}
11834   ins_encode %{
11835     Label done;
11836     __ cmpl($src1$$Register, $src2$$Register);
11837     __ movl($dst$$Register, -1);
11838     __ jccb(Assembler::below, done);
11839     __ setcc(Assembler::notZero, $dst$$Register);
11840     __ bind(done);
11841   %}
11842   ins_pipe(pipe_slow);
11843 %}
11844 
11845 // Manifest a CmpL result in an integer register.  Very painful.
11846 // This is the test to avoid.
11847 instruct cmpL3_reg_reg(rRegI dst, rRegL src1, rRegL src2, rFlagsReg flags)
11848 %{
11849   match(Set dst (CmpL3 src1 src2));
11850   effect(KILL flags);
11851 
11852   ins_cost(275); // XXX
11853   format %{ "cmpq    $src1, $src2\t# CmpL3\n\t"
11854             "movl    $dst, -1\n\t"
11855             "jl,s    done\n\t"
11856             "setcc   $dst \t# emits setne + movzbl or setzune for APX"
11857     "done:" %}
11858   ins_encode %{
11859     Label done;
11860     __ cmpq($src1$$Register, $src2$$Register);
11861     __ movl($dst$$Register, -1);
11862     __ jccb(Assembler::less, done);
11863     __ setcc(Assembler::notZero, $dst$$Register);
11864     __ bind(done);
11865   %}
11866   ins_pipe(pipe_slow);
11867 %}
11868 
11869 // Manifest a CmpUL result in an integer register.  Very painful.
11870 // This is the test to avoid.
11871 instruct cmpUL3_reg_reg(rRegI dst, rRegL src1, rRegL src2, rFlagsReg flags)
11872 %{
11873   match(Set dst (CmpUL3 src1 src2));
11874   effect(KILL flags);
11875 
11876   ins_cost(275); // XXX
11877   format %{ "cmpq    $src1, $src2\t# CmpL3\n\t"
11878             "movl    $dst, -1\n\t"
11879             "jb,u    done\n\t"
11880             "setcc   $dst \t# emits setne + movzbl or setzune for APX"
11881     "done:" %}
11882   ins_encode %{
11883     Label done;
11884     __ cmpq($src1$$Register, $src2$$Register);
11885     __ movl($dst$$Register, -1);
11886     __ jccb(Assembler::below, done);
11887     __ setcc(Assembler::notZero, $dst$$Register);
11888     __ bind(done);
11889   %}
11890   ins_pipe(pipe_slow);
11891 %}
11892 
11893 // Unsigned long compare Instructions; really, same as signed long except they
11894 // produce an rFlagsRegU instead of rFlagsReg.
11895 instruct compUL_rReg(rFlagsRegU cr, rRegL op1, rRegL op2)
11896 %{
11897   match(Set cr (CmpUL op1 op2));
11898 
11899   format %{ "cmpq    $op1, $op2\t# unsigned" %}
11900   ins_encode %{
11901     __ cmpq($op1$$Register, $op2$$Register);
11902   %}
11903   ins_pipe(ialu_cr_reg_reg);
11904 %}
11905 
11906 instruct compUL_rReg_imm(rFlagsRegU cr, rRegL op1, immL32 op2)
11907 %{
11908   match(Set cr (CmpUL op1 op2));
11909 
11910   format %{ "cmpq    $op1, $op2\t# unsigned" %}
11911   ins_encode %{
11912     __ cmpq($op1$$Register, $op2$$constant);
11913   %}
11914   ins_pipe(ialu_cr_reg_imm);
11915 %}
11916 
11917 instruct compUL_rReg_mem(rFlagsRegU cr, rRegL op1, memory op2)
11918 %{
11919   match(Set cr (CmpUL op1 (LoadL op2)));
11920 
11921   format %{ "cmpq    $op1, $op2\t# unsigned" %}
11922   ins_encode %{
11923     __ cmpq($op1$$Register, $op2$$Address);
11924   %}
11925   ins_pipe(ialu_cr_reg_mem);
11926 %}
11927 
11928 instruct testUL_reg(rFlagsRegU cr, rRegL src, immL0 zero)
11929 %{
11930   match(Set cr (CmpUL src zero));
11931 
11932   format %{ "testq   $src, $src\t# unsigned" %}
11933   ins_encode %{
11934     __ testq($src$$Register, $src$$Register);
11935   %}
11936   ins_pipe(ialu_cr_reg_imm);
11937 %}
11938 
11939 instruct compB_mem_imm(rFlagsReg cr, memory mem, immI8 imm)
11940 %{
11941   match(Set cr (CmpI (LoadB mem) imm));
11942 
11943   ins_cost(125);
11944   format %{ "cmpb    $mem, $imm" %}
11945   ins_encode %{ __ cmpb($mem$$Address, $imm$$constant); %}
11946   ins_pipe(ialu_cr_reg_mem);
11947 %}
11948 
11949 instruct testUB_mem_imm(rFlagsReg cr, memory mem, immU7 imm, immI_0 zero)
11950 %{
11951   match(Set cr (CmpI (AndI (LoadUB mem) imm) zero));
11952 
11953   ins_cost(125);
11954   format %{ "testb   $mem, $imm\t# ubyte" %}
11955   ins_encode %{ __ testb($mem$$Address, $imm$$constant); %}
11956   ins_pipe(ialu_cr_reg_mem);
11957 %}
11958 
11959 instruct testB_mem_imm(rFlagsReg cr, memory mem, immI8 imm, immI_0 zero)
11960 %{
11961   match(Set cr (CmpI (AndI (LoadB mem) imm) zero));
11962 
11963   ins_cost(125);
11964   format %{ "testb   $mem, $imm\t# byte" %}
11965   ins_encode %{ __ testb($mem$$Address, $imm$$constant); %}
11966   ins_pipe(ialu_cr_reg_mem);
11967 %}
11968 
11969 //----------Max and Min--------------------------------------------------------
11970 // Min Instructions
11971 
11972 instruct cmovI_reg_g(rRegI dst, rRegI src, rFlagsReg cr)
11973 %{
11974   effect(USE_DEF dst, USE src, USE cr);
11975 
11976   format %{ "cmovlgt $dst, $src\t# min" %}
11977   ins_encode %{
11978     __ cmovl(Assembler::greater, $dst$$Register, $src$$Register);
11979   %}
11980   ins_pipe(pipe_cmov_reg);
11981 %}
11982 
11983 
11984 instruct minI_rReg(rRegI dst, rRegI src)
11985 %{
11986   match(Set dst (MinI dst src));
11987 
11988   ins_cost(200);
11989   expand %{
11990     rFlagsReg cr;
11991     compI_rReg(cr, dst, src);
11992     cmovI_reg_g(dst, src, cr);
11993   %}
11994 %}
11995 
11996 instruct cmovI_reg_l(rRegI dst, rRegI src, rFlagsReg cr)
11997 %{
11998   effect(USE_DEF dst, USE src, USE cr);
11999 
12000   format %{ "cmovllt $dst, $src\t# max" %}
12001   ins_encode %{
12002     __ cmovl(Assembler::less, $dst$$Register, $src$$Register);
12003   %}
12004   ins_pipe(pipe_cmov_reg);
12005 %}
12006 
12007 
12008 instruct maxI_rReg(rRegI dst, rRegI src)
12009 %{
12010   match(Set dst (MaxI dst src));
12011 
12012   ins_cost(200);
12013   expand %{
12014     rFlagsReg cr;
12015     compI_rReg(cr, dst, src);
12016     cmovI_reg_l(dst, src, cr);
12017   %}
12018 %}
12019 
12020 // ============================================================================
12021 // Branch Instructions
12022 
12023 // Jump Direct - Label defines a relative address from JMP+1
12024 instruct jmpDir(label labl)
12025 %{
12026   match(Goto);
12027   effect(USE labl);
12028 
12029   ins_cost(300);
12030   format %{ "jmp     $labl" %}
12031   size(5);
12032   ins_encode %{
12033     Label* L = $labl$$label;
12034     __ jmp(*L, false); // Always long jump
12035   %}
12036   ins_pipe(pipe_jmp);
12037 %}
12038 
12039 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12040 instruct jmpCon(cmpOp cop, rFlagsReg cr, label labl)
12041 %{
12042   match(If cop cr);
12043   effect(USE labl);
12044 
12045   ins_cost(300);
12046   format %{ "j$cop     $labl" %}
12047   size(6);
12048   ins_encode %{
12049     Label* L = $labl$$label;
12050     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12051   %}
12052   ins_pipe(pipe_jcc);
12053 %}
12054 
12055 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12056 instruct jmpLoopEnd(cmpOp cop, rFlagsReg cr, label labl)
12057 %{
12058   match(CountedLoopEnd cop cr);
12059   effect(USE labl);
12060 
12061   ins_cost(300);
12062   format %{ "j$cop     $labl\t# loop end" %}
12063   size(6);
12064   ins_encode %{
12065     Label* L = $labl$$label;
12066     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12067   %}
12068   ins_pipe(pipe_jcc);
12069 %}
12070 
12071 // Jump Direct Conditional - using unsigned comparison
12072 instruct jmpConU(cmpOpU cop, rFlagsRegU cmp, label labl) %{
12073   match(If cop cmp);
12074   effect(USE labl);
12075 
12076   ins_cost(300);
12077   format %{ "j$cop,u   $labl" %}
12078   size(6);
12079   ins_encode %{
12080     Label* L = $labl$$label;
12081     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12082   %}
12083   ins_pipe(pipe_jcc);
12084 %}
12085 
12086 instruct jmpConUCF(cmpOpUCF cop, rFlagsRegUCF cmp, label labl) %{
12087   match(If cop cmp);
12088   effect(USE labl);
12089 
12090   ins_cost(200);
12091   format %{ "j$cop,u   $labl" %}
12092   size(6);
12093   ins_encode %{
12094     Label* L = $labl$$label;
12095     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12096   %}
12097   ins_pipe(pipe_jcc);
12098 %}
12099 
12100 instruct jmpConUCF2(cmpOpUCF2 cop, rFlagsRegUCF cmp, label labl) %{
12101   match(If cop cmp);
12102   effect(USE labl);
12103 
12104   ins_cost(200);
12105   format %{ $$template
12106     if ($cop$$cmpcode == Assembler::notEqual) {
12107       $$emit$$"jp,u    $labl\n\t"
12108       $$emit$$"j$cop,u   $labl"
12109     } else {
12110       $$emit$$"jp,u    done\n\t"
12111       $$emit$$"j$cop,u   $labl\n\t"
12112       $$emit$$"done:"
12113     }
12114   %}
12115   ins_encode %{
12116     Label* l = $labl$$label;
12117     if ($cop$$cmpcode == Assembler::notEqual) {
12118       __ jcc(Assembler::parity, *l, false);
12119       __ jcc(Assembler::notEqual, *l, false);
12120     } else if ($cop$$cmpcode == Assembler::equal) {
12121       Label done;
12122       __ jccb(Assembler::parity, done);
12123       __ jcc(Assembler::equal, *l, false);
12124       __ bind(done);
12125     } else {
12126        ShouldNotReachHere();
12127     }
12128   %}
12129   ins_pipe(pipe_jcc);
12130 %}
12131 
12132 // ============================================================================
12133 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary
12134 // superklass array for an instance of the superklass.  Set a hidden
12135 // internal cache on a hit (cache is checked with exposed code in
12136 // gen_subtype_check()).  Return NZ for a miss or zero for a hit.  The
12137 // encoding ALSO sets flags.
12138 
12139 instruct partialSubtypeCheck(rdi_RegP result,
12140                              rsi_RegP sub, rax_RegP super, rcx_RegI rcx,
12141                              rFlagsReg cr)
12142 %{
12143   match(Set result (PartialSubtypeCheck sub super));
12144   effect(KILL rcx, KILL cr);
12145 
12146   ins_cost(1100);  // slightly larger than the next version
12147   format %{ "movq    rdi, [$sub + in_bytes(Klass::secondary_supers_offset())]\n\t"
12148             "movl    rcx, [rdi + Array<Klass*>::length_offset_in_bytes()]\t# length to scan\n\t"
12149             "addq    rdi, Array<Klass*>::base_offset_in_bytes()\t# Skip to start of data; set NZ in case count is zero\n\t"
12150             "repne   scasq\t# Scan *rdi++ for a match with rax while rcx--\n\t"
12151             "jne,s   miss\t\t# Missed: rdi not-zero\n\t"
12152             "movq    [$sub + in_bytes(Klass::secondary_super_cache_offset())], $super\t# Hit: update cache\n\t"
12153             "xorq    $result, $result\t\t Hit: rdi zero\n\t"
12154     "miss:\t" %}
12155 
12156   opcode(0x1); // Force a XOR of RDI
12157   ins_encode(enc_PartialSubtypeCheck());
12158   ins_pipe(pipe_slow);
12159 %}
12160 
12161 instruct partialSubtypeCheckConstSuper(rsi_RegP sub, rax_RegP super_reg, immP super_con, rdi_RegP result,
12162                                        rdx_RegL temp1, rcx_RegL temp2, rbx_RegP temp3, r11_RegL temp4,
12163                                        rFlagsReg cr)
12164 %{
12165   match(Set result (PartialSubtypeCheck sub (Binary super_reg super_con)));
12166   predicate(UseSecondarySupersTable);
12167   effect(KILL cr, TEMP temp1, TEMP temp2, TEMP temp3, TEMP temp4);
12168 
12169   ins_cost(700);  // smaller than the next version
12170   format %{ "partialSubtypeCheck $result, $sub, $super_reg, $super_con" %}
12171 
12172   ins_encode %{
12173     u1 super_klass_slot = ((Klass*)$super_con$$constant)->hash_slot();
12174     if (InlineSecondarySupersTest) {
12175       __ lookup_secondary_supers_table($sub$$Register, $super_reg$$Register, $temp1$$Register, $temp2$$Register,
12176                                        $temp3$$Register, $temp4$$Register, $result$$Register,
12177                                        super_klass_slot);
12178     } else {
12179       __ call(RuntimeAddress(StubRoutines::lookup_secondary_supers_table_stub(super_klass_slot)));
12180     }
12181   %}
12182 
12183   ins_pipe(pipe_slow);
12184 %}
12185 
12186 instruct partialSubtypeCheck_vs_Zero(rFlagsReg cr,
12187                                      rsi_RegP sub, rax_RegP super, rcx_RegI rcx,
12188                                      immP0 zero,
12189                                      rdi_RegP result)
12190 %{
12191   match(Set cr (CmpP (PartialSubtypeCheck sub super) zero));
12192   effect(KILL rcx, KILL result);
12193 
12194   ins_cost(1000);
12195   format %{ "movq    rdi, [$sub + in_bytes(Klass::secondary_supers_offset())]\n\t"
12196             "movl    rcx, [rdi + Array<Klass*>::length_offset_in_bytes()]\t# length to scan\n\t"
12197             "addq    rdi, Array<Klass*>::base_offset_in_bytes()\t# Skip to start of data; set NZ in case count is zero\n\t"
12198             "repne   scasq\t# Scan *rdi++ for a match with rax while cx-- != 0\n\t"
12199             "jne,s   miss\t\t# Missed: flags nz\n\t"
12200             "movq    [$sub + in_bytes(Klass::secondary_super_cache_offset())], $super\t# Hit: update cache\n\t"
12201     "miss:\t" %}
12202 
12203   opcode(0x0); // No need to XOR RDI
12204   ins_encode(enc_PartialSubtypeCheck());
12205   ins_pipe(pipe_slow);
12206 %}
12207 
12208 // ============================================================================
12209 // Branch Instructions -- short offset versions
12210 //
12211 // These instructions are used to replace jumps of a long offset (the default
12212 // match) with jumps of a shorter offset.  These instructions are all tagged
12213 // with the ins_short_branch attribute, which causes the ADLC to suppress the
12214 // match rules in general matching.  Instead, the ADLC generates a conversion
12215 // method in the MachNode which can be used to do in-place replacement of the
12216 // long variant with the shorter variant.  The compiler will determine if a
12217 // branch can be taken by the is_short_branch_offset() predicate in the machine
12218 // specific code section of the file.
12219 
12220 // Jump Direct - Label defines a relative address from JMP+1
12221 instruct jmpDir_short(label labl) %{
12222   match(Goto);
12223   effect(USE labl);
12224 
12225   ins_cost(300);
12226   format %{ "jmp,s   $labl" %}
12227   size(2);
12228   ins_encode %{
12229     Label* L = $labl$$label;
12230     __ jmpb(*L);
12231   %}
12232   ins_pipe(pipe_jmp);
12233   ins_short_branch(1);
12234 %}
12235 
12236 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12237 instruct jmpCon_short(cmpOp cop, rFlagsReg cr, label labl) %{
12238   match(If cop cr);
12239   effect(USE labl);
12240 
12241   ins_cost(300);
12242   format %{ "j$cop,s   $labl" %}
12243   size(2);
12244   ins_encode %{
12245     Label* L = $labl$$label;
12246     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12247   %}
12248   ins_pipe(pipe_jcc);
12249   ins_short_branch(1);
12250 %}
12251 
12252 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12253 instruct jmpLoopEnd_short(cmpOp cop, rFlagsReg cr, label labl) %{
12254   match(CountedLoopEnd cop cr);
12255   effect(USE labl);
12256 
12257   ins_cost(300);
12258   format %{ "j$cop,s   $labl\t# loop end" %}
12259   size(2);
12260   ins_encode %{
12261     Label* L = $labl$$label;
12262     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12263   %}
12264   ins_pipe(pipe_jcc);
12265   ins_short_branch(1);
12266 %}
12267 
12268 // Jump Direct Conditional - using unsigned comparison
12269 instruct jmpConU_short(cmpOpU cop, rFlagsRegU cmp, label labl) %{
12270   match(If cop cmp);
12271   effect(USE labl);
12272 
12273   ins_cost(300);
12274   format %{ "j$cop,us  $labl" %}
12275   size(2);
12276   ins_encode %{
12277     Label* L = $labl$$label;
12278     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12279   %}
12280   ins_pipe(pipe_jcc);
12281   ins_short_branch(1);
12282 %}
12283 
12284 instruct jmpConUCF_short(cmpOpUCF cop, rFlagsRegUCF cmp, label labl) %{
12285   match(If cop cmp);
12286   effect(USE labl);
12287 
12288   ins_cost(300);
12289   format %{ "j$cop,us  $labl" %}
12290   size(2);
12291   ins_encode %{
12292     Label* L = $labl$$label;
12293     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12294   %}
12295   ins_pipe(pipe_jcc);
12296   ins_short_branch(1);
12297 %}
12298 
12299 instruct jmpConUCF2_short(cmpOpUCF2 cop, rFlagsRegUCF cmp, label labl) %{
12300   match(If cop cmp);
12301   effect(USE labl);
12302 
12303   ins_cost(300);
12304   format %{ $$template
12305     if ($cop$$cmpcode == Assembler::notEqual) {
12306       $$emit$$"jp,u,s  $labl\n\t"
12307       $$emit$$"j$cop,u,s  $labl"
12308     } else {
12309       $$emit$$"jp,u,s  done\n\t"
12310       $$emit$$"j$cop,u,s  $labl\n\t"
12311       $$emit$$"done:"
12312     }
12313   %}
12314   size(4);
12315   ins_encode %{
12316     Label* l = $labl$$label;
12317     if ($cop$$cmpcode == Assembler::notEqual) {
12318       __ jccb(Assembler::parity, *l);
12319       __ jccb(Assembler::notEqual, *l);
12320     } else if ($cop$$cmpcode == Assembler::equal) {
12321       Label done;
12322       __ jccb(Assembler::parity, done);
12323       __ jccb(Assembler::equal, *l);
12324       __ bind(done);
12325     } else {
12326        ShouldNotReachHere();
12327     }
12328   %}
12329   ins_pipe(pipe_jcc);
12330   ins_short_branch(1);
12331 %}
12332 
12333 // ============================================================================
12334 // inlined locking and unlocking
12335 
12336 instruct cmpFastLock(rFlagsReg cr, rRegP object, rbx_RegP box, rax_RegI tmp, rRegP scr) %{
12337   predicate(LockingMode != LM_LIGHTWEIGHT);
12338   match(Set cr (FastLock object box));
12339   effect(TEMP tmp, TEMP scr, USE_KILL box);
12340   ins_cost(300);
12341   format %{ "fastlock $object,$box\t! kills $box,$tmp,$scr" %}
12342   ins_encode %{
12343     __ fast_lock($object$$Register, $box$$Register, $tmp$$Register,
12344                  $scr$$Register, noreg, noreg, r15_thread, nullptr);
12345   %}
12346   ins_pipe(pipe_slow);
12347 %}
12348 
12349 instruct cmpFastUnlock(rFlagsReg cr, rRegP object, rax_RegP box, rRegP tmp) %{
12350   predicate(LockingMode != LM_LIGHTWEIGHT);
12351   match(Set cr (FastUnlock object box));
12352   effect(TEMP tmp, USE_KILL box);
12353   ins_cost(300);
12354   format %{ "fastunlock $object,$box\t! kills $box,$tmp" %}
12355   ins_encode %{
12356     __ fast_unlock($object$$Register, $box$$Register, $tmp$$Register);
12357   %}
12358   ins_pipe(pipe_slow);
12359 %}
12360 
12361 instruct cmpFastLockLightweight(rFlagsReg cr, rRegP object, rbx_RegP box, rax_RegI rax_reg, rRegP tmp) %{
12362   predicate(LockingMode == LM_LIGHTWEIGHT);
12363   match(Set cr (FastLock object box));
12364   effect(TEMP rax_reg, TEMP tmp, USE_KILL box);
12365   ins_cost(300);
12366   format %{ "fastlock $object,$box\t! kills $box,$rax_reg,$tmp" %}
12367   ins_encode %{
12368     __ fast_lock_lightweight($object$$Register, $box$$Register, $rax_reg$$Register, $tmp$$Register, r15_thread);
12369   %}
12370   ins_pipe(pipe_slow);
12371 %}
12372 
12373 instruct cmpFastUnlockLightweight(rFlagsReg cr, rRegP object, rax_RegP rax_reg, rRegP tmp) %{
12374   predicate(LockingMode == LM_LIGHTWEIGHT);
12375   match(Set cr (FastUnlock object rax_reg));
12376   effect(TEMP tmp, USE_KILL rax_reg);
12377   ins_cost(300);
12378   format %{ "fastunlock $object,$rax_reg\t! kills $rax_reg,$tmp" %}
12379   ins_encode %{
12380     __ fast_unlock_lightweight($object$$Register, $rax_reg$$Register, $tmp$$Register, r15_thread);
12381   %}
12382   ins_pipe(pipe_slow);
12383 %}
12384 
12385 
12386 // ============================================================================
12387 // Safepoint Instructions
12388 instruct safePoint_poll_tls(rFlagsReg cr, rRegP poll)
12389 %{
12390   match(SafePoint poll);
12391   effect(KILL cr, USE poll);
12392 
12393   format %{ "testl   rax, [$poll]\t"
12394             "# Safepoint: poll for GC" %}
12395   ins_cost(125);
12396   ins_encode %{
12397     __ relocate(relocInfo::poll_type);
12398     address pre_pc = __ pc();
12399     __ testl(rax, Address($poll$$Register, 0));
12400     assert(nativeInstruction_at(pre_pc)->is_safepoint_poll(), "must emit test %%eax [reg]");
12401   %}
12402   ins_pipe(ialu_reg_mem);
12403 %}
12404 
12405 instruct mask_all_evexL(kReg dst, rRegL src) %{
12406   match(Set dst (MaskAll src));
12407   format %{ "mask_all_evexL $dst, $src \t! mask all operation" %}
12408   ins_encode %{
12409     int mask_len = Matcher::vector_length(this);
12410     __ vector_maskall_operation($dst$$KRegister, $src$$Register, mask_len);
12411   %}
12412   ins_pipe( pipe_slow );
12413 %}
12414 
12415 instruct mask_all_evexI_GT32(kReg dst, rRegI src, rRegL tmp) %{
12416   predicate(Matcher::vector_length(n) > 32);
12417   match(Set dst (MaskAll src));
12418   effect(TEMP tmp);
12419   format %{ "mask_all_evexI_GT32 $dst, $src \t! using $tmp as TEMP" %}
12420   ins_encode %{
12421     int mask_len = Matcher::vector_length(this);
12422     __ movslq($tmp$$Register, $src$$Register);
12423     __ vector_maskall_operation($dst$$KRegister, $tmp$$Register, mask_len);
12424   %}
12425   ins_pipe( pipe_slow );
12426 %}
12427 
12428 // ============================================================================
12429 // Procedure Call/Return Instructions
12430 // Call Java Static Instruction
12431 // Note: If this code changes, the corresponding ret_addr_offset() and
12432 //       compute_padding() functions will have to be adjusted.
12433 instruct CallStaticJavaDirect(method meth) %{
12434   match(CallStaticJava);
12435   effect(USE meth);
12436 
12437   ins_cost(300);
12438   format %{ "call,static " %}
12439   opcode(0xE8); /* E8 cd */
12440   ins_encode(clear_avx, Java_Static_Call(meth), call_epilog);
12441   ins_pipe(pipe_slow);
12442   ins_alignment(4);
12443 %}
12444 
12445 // Call Java Dynamic Instruction
12446 // Note: If this code changes, the corresponding ret_addr_offset() and
12447 //       compute_padding() functions will have to be adjusted.
12448 instruct CallDynamicJavaDirect(method meth)
12449 %{
12450   match(CallDynamicJava);
12451   effect(USE meth);
12452 
12453   ins_cost(300);
12454   format %{ "movq    rax, #Universe::non_oop_word()\n\t"
12455             "call,dynamic " %}
12456   ins_encode(clear_avx, Java_Dynamic_Call(meth), call_epilog);
12457   ins_pipe(pipe_slow);
12458   ins_alignment(4);
12459 %}
12460 
12461 // Call Runtime Instruction
12462 instruct CallRuntimeDirect(method meth)
12463 %{
12464   match(CallRuntime);
12465   effect(USE meth);
12466 
12467   ins_cost(300);
12468   format %{ "call,runtime " %}
12469   ins_encode(clear_avx, Java_To_Runtime(meth));
12470   ins_pipe(pipe_slow);
12471 %}
12472 
12473 // Call runtime without safepoint
12474 instruct CallLeafDirect(method meth)
12475 %{
12476   match(CallLeaf);
12477   effect(USE meth);
12478 
12479   ins_cost(300);
12480   format %{ "call_leaf,runtime " %}
12481   ins_encode(clear_avx, Java_To_Runtime(meth));
12482   ins_pipe(pipe_slow);
12483 %}
12484 
12485 // Call runtime without safepoint and with vector arguments
12486 instruct CallLeafDirectVector(method meth)
12487 %{
12488   match(CallLeafVector);
12489   effect(USE meth);
12490 
12491   ins_cost(300);
12492   format %{ "call_leaf,vector " %}
12493   ins_encode(Java_To_Runtime(meth));
12494   ins_pipe(pipe_slow);
12495 %}
12496 
12497 // Call runtime without safepoint
12498 instruct CallLeafNoFPDirect(method meth)
12499 %{
12500   match(CallLeafNoFP);
12501   effect(USE meth);
12502 
12503   ins_cost(300);
12504   format %{ "call_leaf_nofp,runtime " %}
12505   ins_encode(clear_avx, Java_To_Runtime(meth));
12506   ins_pipe(pipe_slow);
12507 %}
12508 
12509 // Return Instruction
12510 // Remove the return address & jump to it.
12511 // Notice: We always emit a nop after a ret to make sure there is room
12512 // for safepoint patching
12513 instruct Ret()
12514 %{
12515   match(Return);
12516 
12517   format %{ "ret" %}
12518   ins_encode %{
12519     __ ret(0);
12520   %}
12521   ins_pipe(pipe_jmp);
12522 %}
12523 
12524 // Tail Call; Jump from runtime stub to Java code.
12525 // Also known as an 'interprocedural jump'.
12526 // Target of jump will eventually return to caller.
12527 // TailJump below removes the return address.
12528 // Don't use rbp for 'jump_target' because a MachEpilogNode has already been
12529 // emitted just above the TailCall which has reset rbp to the caller state.
12530 instruct TailCalljmpInd(no_rbp_RegP jump_target, rbx_RegP method_ptr)
12531 %{
12532   match(TailCall jump_target method_ptr);
12533 
12534   ins_cost(300);
12535   format %{ "jmp     $jump_target\t# rbx holds method" %}
12536   ins_encode %{
12537     __ jmp($jump_target$$Register);
12538   %}
12539   ins_pipe(pipe_jmp);
12540 %}
12541 
12542 // Tail Jump; remove the return address; jump to target.
12543 // TailCall above leaves the return address around.
12544 instruct tailjmpInd(no_rbp_RegP jump_target, rax_RegP ex_oop)
12545 %{
12546   match(TailJump jump_target ex_oop);
12547 
12548   ins_cost(300);
12549   format %{ "popq    rdx\t# pop return address\n\t"
12550             "jmp     $jump_target" %}
12551   ins_encode %{
12552     __ popq(as_Register(RDX_enc));
12553     __ jmp($jump_target$$Register);
12554   %}
12555   ins_pipe(pipe_jmp);
12556 %}
12557 
12558 // Forward exception.
12559 instruct ForwardExceptionjmp()
12560 %{
12561   match(ForwardException);
12562 
12563   format %{ "jmp     forward_exception_stub" %}
12564   ins_encode %{
12565     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()), noreg);
12566   %}
12567   ins_pipe(pipe_jmp);
12568 %}
12569 
12570 // Create exception oop: created by stack-crawling runtime code.
12571 // Created exception is now available to this handler, and is setup
12572 // just prior to jumping to this handler.  No code emitted.
12573 instruct CreateException(rax_RegP ex_oop)
12574 %{
12575   match(Set ex_oop (CreateEx));
12576 
12577   size(0);
12578   // use the following format syntax
12579   format %{ "# exception oop is in rax; no code emitted" %}
12580   ins_encode();
12581   ins_pipe(empty);
12582 %}
12583 
12584 // Rethrow exception:
12585 // The exception oop will come in the first argument position.
12586 // Then JUMP (not call) to the rethrow stub code.
12587 instruct RethrowException()
12588 %{
12589   match(Rethrow);
12590 
12591   // use the following format syntax
12592   format %{ "jmp     rethrow_stub" %}
12593   ins_encode %{
12594     __ jump(RuntimeAddress(OptoRuntime::rethrow_stub()), noreg);
12595   %}
12596   ins_pipe(pipe_jmp);
12597 %}
12598 
12599 // ============================================================================
12600 // This name is KNOWN by the ADLC and cannot be changed.
12601 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
12602 // for this guy.
12603 instruct tlsLoadP(r15_RegP dst) %{
12604   match(Set dst (ThreadLocal));
12605   effect(DEF dst);
12606 
12607   size(0);
12608   format %{ "# TLS is in R15" %}
12609   ins_encode( /*empty encoding*/ );
12610   ins_pipe(ialu_reg_reg);
12611 %}
12612 
12613 
12614 //----------PEEPHOLE RULES-----------------------------------------------------
12615 // These must follow all instruction definitions as they use the names
12616 // defined in the instructions definitions.
12617 //
12618 // peeppredicate ( rule_predicate );
12619 // // the predicate unless which the peephole rule will be ignored
12620 //
12621 // peepmatch ( root_instr_name [preceding_instruction]* );
12622 //
12623 // peepprocedure ( procedure_name );
12624 // // provide a procedure name to perform the optimization, the procedure should
12625 // // reside in the architecture dependent peephole file, the method has the
12626 // // signature of MachNode* (Block*, int, PhaseRegAlloc*, (MachNode*)(*)(), int...)
12627 // // with the arguments being the basic block, the current node index inside the
12628 // // block, the register allocator, the functions upon invoked return a new node
12629 // // defined in peepreplace, and the rules of the nodes appearing in the
12630 // // corresponding peepmatch, the function return true if successful, else
12631 // // return false
12632 //
12633 // peepconstraint %{
12634 // (instruction_number.operand_name relational_op instruction_number.operand_name
12635 //  [, ...] );
12636 // // instruction numbers are zero-based using left to right order in peepmatch
12637 //
12638 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
12639 // // provide an instruction_number.operand_name for each operand that appears
12640 // // in the replacement instruction's match rule
12641 //
12642 // ---------VM FLAGS---------------------------------------------------------
12643 //
12644 // All peephole optimizations can be turned off using -XX:-OptoPeephole
12645 //
12646 // Each peephole rule is given an identifying number starting with zero and
12647 // increasing by one in the order seen by the parser.  An individual peephole
12648 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
12649 // on the command-line.
12650 //
12651 // ---------CURRENT LIMITATIONS----------------------------------------------
12652 //
12653 // Only transformations inside a basic block (do we need more for peephole)
12654 //
12655 // ---------EXAMPLE----------------------------------------------------------
12656 //
12657 // // pertinent parts of existing instructions in architecture description
12658 // instruct movI(rRegI dst, rRegI src)
12659 // %{
12660 //   match(Set dst (CopyI src));
12661 // %}
12662 //
12663 // instruct incI_rReg(rRegI dst, immI_1 src, rFlagsReg cr)
12664 // %{
12665 //   match(Set dst (AddI dst src));
12666 //   effect(KILL cr);
12667 // %}
12668 //
12669 // instruct leaI_rReg_immI(rRegI dst, immI_1 src)
12670 // %{
12671 //   match(Set dst (AddI dst src));
12672 // %}
12673 //
12674 // 1. Simple replacement
12675 // - Only match adjacent instructions in same basic block
12676 // - Only equality constraints
12677 // - Only constraints between operands, not (0.dest_reg == RAX_enc)
12678 // - Only one replacement instruction
12679 //
12680 // // Change (inc mov) to lea
12681 // peephole %{
12682 //   // lea should only be emitted when beneficial
12683 //   peeppredicate( VM_Version::supports_fast_2op_lea() );
12684 //   // increment preceded by register-register move
12685 //   peepmatch ( incI_rReg movI );
12686 //   // require that the destination register of the increment
12687 //   // match the destination register of the move
12688 //   peepconstraint ( 0.dst == 1.dst );
12689 //   // construct a replacement instruction that sets
12690 //   // the destination to ( move's source register + one )
12691 //   peepreplace ( leaI_rReg_immI( 0.dst 1.src 0.src ) );
12692 // %}
12693 //
12694 // 2. Procedural replacement
12695 // - More flexible finding relevent nodes
12696 // - More flexible constraints
12697 // - More flexible transformations
12698 // - May utilise architecture-dependent API more effectively
12699 // - Currently only one replacement instruction due to adlc parsing capabilities
12700 //
12701 // // Change (inc mov) to lea
12702 // peephole %{
12703 //   // lea should only be emitted when beneficial
12704 //   peeppredicate( VM_Version::supports_fast_2op_lea() );
12705 //   // the rule numbers of these nodes inside are passed into the function below
12706 //   peepmatch ( incI_rReg movI );
12707 //   // the method that takes the responsibility of transformation
12708 //   peepprocedure ( inc_mov_to_lea );
12709 //   // the replacement is a leaI_rReg_immI, a lambda upon invoked creating this
12710 //   // node is passed into the function above
12711 //   peepreplace ( leaI_rReg_immI() );
12712 // %}
12713 
12714 // These instructions is not matched by the matcher but used by the peephole
12715 instruct leaI_rReg_rReg_peep(rRegI dst, rRegI src1, rRegI src2)
12716 %{
12717   predicate(false);
12718   match(Set dst (AddI src1 src2));
12719   format %{ "leal    $dst, [$src1 + $src2]" %}
12720   ins_encode %{
12721     Register dst = $dst$$Register;
12722     Register src1 = $src1$$Register;
12723     Register src2 = $src2$$Register;
12724     if (src1 != rbp && src1 != r13) {
12725       __ leal(dst, Address(src1, src2, Address::times_1));
12726     } else {
12727       assert(src2 != rbp && src2 != r13, "");
12728       __ leal(dst, Address(src2, src1, Address::times_1));
12729     }
12730   %}
12731   ins_pipe(ialu_reg_reg);
12732 %}
12733 
12734 instruct leaI_rReg_immI_peep(rRegI dst, rRegI src1, immI src2)
12735 %{
12736   predicate(false);
12737   match(Set dst (AddI src1 src2));
12738   format %{ "leal    $dst, [$src1 + $src2]" %}
12739   ins_encode %{
12740     __ leal($dst$$Register, Address($src1$$Register, $src2$$constant));
12741   %}
12742   ins_pipe(ialu_reg_reg);
12743 %}
12744 
12745 instruct leaI_rReg_immI2_peep(rRegI dst, rRegI src, immI2 shift)
12746 %{
12747   predicate(false);
12748   match(Set dst (LShiftI src shift));
12749   format %{ "leal    $dst, [$src << $shift]" %}
12750   ins_encode %{
12751     Address::ScaleFactor scale = static_cast<Address::ScaleFactor>($shift$$constant);
12752     Register src = $src$$Register;
12753     if (scale == Address::times_2 && src != rbp && src != r13) {
12754       __ leal($dst$$Register, Address(src, src, Address::times_1));
12755     } else {
12756       __ leal($dst$$Register, Address(noreg, src, scale));
12757     }
12758   %}
12759   ins_pipe(ialu_reg_reg);
12760 %}
12761 
12762 instruct leaL_rReg_rReg_peep(rRegL dst, rRegL src1, rRegL src2)
12763 %{
12764   predicate(false);
12765   match(Set dst (AddL src1 src2));
12766   format %{ "leaq    $dst, [$src1 + $src2]" %}
12767   ins_encode %{
12768     Register dst = $dst$$Register;
12769     Register src1 = $src1$$Register;
12770     Register src2 = $src2$$Register;
12771     if (src1 != rbp && src1 != r13) {
12772       __ leaq(dst, Address(src1, src2, Address::times_1));
12773     } else {
12774       assert(src2 != rbp && src2 != r13, "");
12775       __ leaq(dst, Address(src2, src1, Address::times_1));
12776     }
12777   %}
12778   ins_pipe(ialu_reg_reg);
12779 %}
12780 
12781 instruct leaL_rReg_immL32_peep(rRegL dst, rRegL src1, immL32 src2)
12782 %{
12783   predicate(false);
12784   match(Set dst (AddL src1 src2));
12785   format %{ "leaq    $dst, [$src1 + $src2]" %}
12786   ins_encode %{
12787     __ leaq($dst$$Register, Address($src1$$Register, $src2$$constant));
12788   %}
12789   ins_pipe(ialu_reg_reg);
12790 %}
12791 
12792 instruct leaL_rReg_immI2_peep(rRegL dst, rRegL src, immI2 shift)
12793 %{
12794   predicate(false);
12795   match(Set dst (LShiftL src shift));
12796   format %{ "leaq    $dst, [$src << $shift]" %}
12797   ins_encode %{
12798     Address::ScaleFactor scale = static_cast<Address::ScaleFactor>($shift$$constant);
12799     Register src = $src$$Register;
12800     if (scale == Address::times_2 && src != rbp && src != r13) {
12801       __ leaq($dst$$Register, Address(src, src, Address::times_1));
12802     } else {
12803       __ leaq($dst$$Register, Address(noreg, src, scale));
12804     }
12805   %}
12806   ins_pipe(ialu_reg_reg);
12807 %}
12808 
12809 // These peephole rules replace mov + I pairs (where I is one of {add, inc, dec,
12810 // sal}) with lea instructions. The {add, sal} rules are beneficial in
12811 // processors with at least partial ALU support for lea
12812 // (supports_fast_2op_lea()), whereas the {inc, dec} rules are only generally
12813 // beneficial for processors with full ALU support
12814 // (VM_Version::supports_fast_3op_lea()) and Intel Cascade Lake.
12815 
12816 peephole
12817 %{
12818   peeppredicate(VM_Version::supports_fast_2op_lea());
12819   peepmatch (addI_rReg);
12820   peepprocedure (lea_coalesce_reg);
12821   peepreplace (leaI_rReg_rReg_peep());
12822 %}
12823 
12824 peephole
12825 %{
12826   peeppredicate(VM_Version::supports_fast_2op_lea());
12827   peepmatch (addI_rReg_imm);
12828   peepprocedure (lea_coalesce_imm);
12829   peepreplace (leaI_rReg_immI_peep());
12830 %}
12831 
12832 peephole
12833 %{
12834   peeppredicate(VM_Version::supports_fast_3op_lea() ||
12835                 VM_Version::is_intel_cascade_lake());
12836   peepmatch (incI_rReg);
12837   peepprocedure (lea_coalesce_imm);
12838   peepreplace (leaI_rReg_immI_peep());
12839 %}
12840 
12841 peephole
12842 %{
12843   peeppredicate(VM_Version::supports_fast_3op_lea() ||
12844                 VM_Version::is_intel_cascade_lake());
12845   peepmatch (decI_rReg);
12846   peepprocedure (lea_coalesce_imm);
12847   peepreplace (leaI_rReg_immI_peep());
12848 %}
12849 
12850 peephole
12851 %{
12852   peeppredicate(VM_Version::supports_fast_2op_lea());
12853   peepmatch (salI_rReg_immI2);
12854   peepprocedure (lea_coalesce_imm);
12855   peepreplace (leaI_rReg_immI2_peep());
12856 %}
12857 
12858 peephole
12859 %{
12860   peeppredicate(VM_Version::supports_fast_2op_lea());
12861   peepmatch (addL_rReg);
12862   peepprocedure (lea_coalesce_reg);
12863   peepreplace (leaL_rReg_rReg_peep());
12864 %}
12865 
12866 peephole
12867 %{
12868   peeppredicate(VM_Version::supports_fast_2op_lea());
12869   peepmatch (addL_rReg_imm);
12870   peepprocedure (lea_coalesce_imm);
12871   peepreplace (leaL_rReg_immL32_peep());
12872 %}
12873 
12874 peephole
12875 %{
12876   peeppredicate(VM_Version::supports_fast_3op_lea() ||
12877                 VM_Version::is_intel_cascade_lake());
12878   peepmatch (incL_rReg);
12879   peepprocedure (lea_coalesce_imm);
12880   peepreplace (leaL_rReg_immL32_peep());
12881 %}
12882 
12883 peephole
12884 %{
12885   peeppredicate(VM_Version::supports_fast_3op_lea() ||
12886                 VM_Version::is_intel_cascade_lake());
12887   peepmatch (decL_rReg);
12888   peepprocedure (lea_coalesce_imm);
12889   peepreplace (leaL_rReg_immL32_peep());
12890 %}
12891 
12892 peephole
12893 %{
12894   peeppredicate(VM_Version::supports_fast_2op_lea());
12895   peepmatch (salL_rReg_immI2);
12896   peepprocedure (lea_coalesce_imm);
12897   peepreplace (leaL_rReg_immI2_peep());
12898 %}
12899 
12900 // These peephole rules matches instructions which set flags and are followed by a testI/L_reg
12901 // The test instruction is redudanent in case the downstream instuctions (like JCC or CMOV) only use flags that are already set by the previous instruction
12902 
12903 //int variant
12904 peephole
12905 %{
12906   peepmatch (testI_reg);
12907   peepprocedure (test_may_remove);
12908 %}
12909 
12910 //long variant
12911 peephole
12912 %{
12913   peepmatch (testL_reg);
12914   peepprocedure (test_may_remove);
12915 %}
12916 
12917 
12918 //----------SMARTSPILL RULES---------------------------------------------------
12919 // These must follow all instruction definitions as they use the names
12920 // defined in the instructions definitions.