1 /*
2 * Copyright (c) 1999, 2025, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "c1/c1_Canonicalizer.hpp"
26 #include "c1/c1_CFGPrinter.hpp"
27 #include "c1/c1_Compilation.hpp"
28 #include "c1/c1_GraphBuilder.hpp"
29 #include "c1/c1_InstructionPrinter.hpp"
30 #include "ci/ciCallSite.hpp"
31 #include "ci/ciField.hpp"
32 #include "ci/ciFlatArrayKlass.hpp"
33 #include "ci/ciInlineKlass.hpp"
34 #include "ci/ciKlass.hpp"
35 #include "ci/ciMemberName.hpp"
36 #include "ci/ciSymbols.hpp"
37 #include "ci/ciUtilities.inline.hpp"
38 #include "classfile/javaClasses.hpp"
39 #include "compiler/compilationPolicy.hpp"
40 #include "compiler/compileBroker.hpp"
41 #include "compiler/compilerEvent.hpp"
42 #include "interpreter/bytecode.hpp"
43 #include "jfr/jfrEvents.hpp"
44 #include "memory/resourceArea.hpp"
45 #include "runtime/sharedRuntime.hpp"
46 #include "utilities/checkedCast.hpp"
47 #include "utilities/macros.hpp"
48 #if INCLUDE_JFR
49 #include "jfr/jfr.hpp"
50 #endif
51
52 class BlockListBuilder {
53 private:
54 Compilation* _compilation;
55 IRScope* _scope;
56
57 BlockList _blocks; // internal list of all blocks
58 BlockList* _bci2block; // mapping from bci to blocks for GraphBuilder
59 GrowableArray<BlockList> _bci2block_successors; // Mapping bcis to their blocks successors while we dont have a blockend
60
61 // fields used by mark_loops
62 ResourceBitMap _active; // for iteration of control flow graph
63 ResourceBitMap _visited; // for iteration of control flow graph
64 GrowableArray<ResourceBitMap> _loop_map; // caches the information if a block is contained in a loop
65 int _next_loop_index; // next free loop number
66 int _next_block_number; // for reverse postorder numbering of blocks
67 int _block_id_start;
68
69 int bit_number(int block_id) const { return block_id - _block_id_start; }
70 // accessors
71 Compilation* compilation() const { return _compilation; }
72 IRScope* scope() const { return _scope; }
73 ciMethod* method() const { return scope()->method(); }
74 XHandlers* xhandlers() const { return scope()->xhandlers(); }
75
76 // unified bailout support
77 void bailout(const char* msg) const { compilation()->bailout(msg); }
78 bool bailed_out() const { return compilation()->bailed_out(); }
79
80 // helper functions
81 BlockBegin* make_block_at(int bci, BlockBegin* predecessor);
82 void handle_exceptions(BlockBegin* current, int cur_bci);
83 void handle_jsr(BlockBegin* current, int sr_bci, int next_bci);
84 void store_one(BlockBegin* current, int local);
85 void store_two(BlockBegin* current, int local);
86 void set_entries(int osr_bci);
87 void set_leaders();
88
89 void make_loop_header(BlockBegin* block);
90 void mark_loops();
91 BitMap& mark_loops(BlockBegin* b, bool in_subroutine);
92
93 // debugging
94 #ifndef PRODUCT
95 void print();
96 #endif
97
98 int number_of_successors(BlockBegin* block);
99 BlockBegin* successor_at(BlockBegin* block, int i);
100 void add_successor(BlockBegin* block, BlockBegin* sux);
101 bool is_successor(BlockBegin* block, BlockBegin* sux);
102
103 public:
104 // creation
105 BlockListBuilder(Compilation* compilation, IRScope* scope, int osr_bci);
106
107 // accessors for GraphBuilder
108 BlockList* bci2block() const { return _bci2block; }
109 };
110
111
112 // Implementation of BlockListBuilder
113
114 BlockListBuilder::BlockListBuilder(Compilation* compilation, IRScope* scope, int osr_bci)
115 : _compilation(compilation)
116 , _scope(scope)
117 , _blocks(16)
118 , _bci2block(new BlockList(scope->method()->code_size(), nullptr))
119 , _bci2block_successors(scope->method()->code_size())
120 , _active() // size not known yet
121 , _visited() // size not known yet
122 , _loop_map() // size not known yet
123 , _next_loop_index(0)
124 , _next_block_number(0)
125 , _block_id_start(0)
126 {
127 set_entries(osr_bci);
128 set_leaders();
129 CHECK_BAILOUT();
130
131 mark_loops();
132 NOT_PRODUCT(if (PrintInitialBlockList) print());
133
134 // _bci2block still contains blocks with _end == null and > 0 sux in _bci2block_successors.
135
136 #ifndef PRODUCT
137 if (PrintCFGToFile) {
138 stringStream title;
139 title.print("BlockListBuilder ");
140 scope->method()->print_name(&title);
141 CFGPrinter::print_cfg(_bci2block, title.freeze(), false, false);
142 }
143 #endif
144 }
145
146
147 void BlockListBuilder::set_entries(int osr_bci) {
148 // generate start blocks
149 BlockBegin* std_entry = make_block_at(0, nullptr);
150 if (scope()->caller() == nullptr) {
151 std_entry->set(BlockBegin::std_entry_flag);
152 }
153 if (osr_bci != -1) {
154 BlockBegin* osr_entry = make_block_at(osr_bci, nullptr);
155 osr_entry->set(BlockBegin::osr_entry_flag);
156 }
157
158 // generate exception entry blocks
159 XHandlers* list = xhandlers();
160 const int n = list->length();
161 for (int i = 0; i < n; i++) {
162 XHandler* h = list->handler_at(i);
163 BlockBegin* entry = make_block_at(h->handler_bci(), nullptr);
164 entry->set(BlockBegin::exception_entry_flag);
165 h->set_entry_block(entry);
166 }
167 }
168
169
170 BlockBegin* BlockListBuilder::make_block_at(int cur_bci, BlockBegin* predecessor) {
171 assert(method()->bci_block_start().at(cur_bci), "wrong block starts of MethodLivenessAnalyzer");
172
173 BlockBegin* block = _bci2block->at(cur_bci);
174 if (block == nullptr) {
175 block = new BlockBegin(cur_bci);
176 block->init_stores_to_locals(method()->max_locals());
177 _bci2block->at_put(cur_bci, block);
178 _bci2block_successors.at_put_grow(cur_bci, BlockList());
179 _blocks.append(block);
180
181 assert(predecessor == nullptr || predecessor->bci() < cur_bci, "targets for backward branches must already exist");
182 }
183
184 if (predecessor != nullptr) {
185 if (block->is_set(BlockBegin::exception_entry_flag)) {
186 BAILOUT_("Exception handler can be reached by both normal and exceptional control flow", block);
187 }
188
189 add_successor(predecessor, block);
190 block->increment_total_preds();
191 }
192
193 return block;
194 }
195
196
197 inline void BlockListBuilder::store_one(BlockBegin* current, int local) {
198 current->stores_to_locals().set_bit(local);
199 }
200 inline void BlockListBuilder::store_two(BlockBegin* current, int local) {
201 store_one(current, local);
202 store_one(current, local + 1);
203 }
204
205
206 void BlockListBuilder::handle_exceptions(BlockBegin* current, int cur_bci) {
207 // Draws edges from a block to its exception handlers
208 XHandlers* list = xhandlers();
209 const int n = list->length();
210
211 for (int i = 0; i < n; i++) {
212 XHandler* h = list->handler_at(i);
213
214 if (h->covers(cur_bci)) {
215 BlockBegin* entry = h->entry_block();
216 assert(entry != nullptr && entry == _bci2block->at(h->handler_bci()), "entry must be set");
217 assert(entry->is_set(BlockBegin::exception_entry_flag), "flag must be set");
218
219 // add each exception handler only once
220 if(!is_successor(current, entry)) {
221 add_successor(current, entry);
222 entry->increment_total_preds();
223 }
224
225 // stop when reaching catchall
226 if (h->catch_type() == 0) break;
227 }
228 }
229 }
230
231 void BlockListBuilder::handle_jsr(BlockBegin* current, int sr_bci, int next_bci) {
232 if (next_bci < method()->code_size()) {
233 // start a new block after jsr-bytecode and link this block into cfg
234 make_block_at(next_bci, current);
235 }
236
237 // start a new block at the subroutine entry at mark it with special flag
238 BlockBegin* sr_block = make_block_at(sr_bci, current);
239 if (!sr_block->is_set(BlockBegin::subroutine_entry_flag)) {
240 sr_block->set(BlockBegin::subroutine_entry_flag);
241 }
242 }
243
244
245 void BlockListBuilder::set_leaders() {
246 bool has_xhandlers = xhandlers()->has_handlers();
247 BlockBegin* current = nullptr;
248
249 // The information which bci starts a new block simplifies the analysis
250 // Without it, backward branches could jump to a bci where no block was created
251 // during bytecode iteration. This would require the creation of a new block at the
252 // branch target and a modification of the successor lists.
253 const BitMap& bci_block_start = method()->bci_block_start();
254
255 int end_bci = method()->code_size();
256
257 ciBytecodeStream s(method());
258 while (s.next() != ciBytecodeStream::EOBC()) {
259 int cur_bci = s.cur_bci();
260
261 if (bci_block_start.at(cur_bci)) {
262 current = make_block_at(cur_bci, current);
263 }
264 assert(current != nullptr, "must have current block");
265
266 if (has_xhandlers && GraphBuilder::can_trap(method(), s.cur_bc())) {
267 handle_exceptions(current, cur_bci);
268 }
269
270 switch (s.cur_bc()) {
271 // track stores to local variables for selective creation of phi functions
272 case Bytecodes::_iinc: store_one(current, s.get_index()); break;
273 case Bytecodes::_istore: store_one(current, s.get_index()); break;
274 case Bytecodes::_lstore: store_two(current, s.get_index()); break;
275 case Bytecodes::_fstore: store_one(current, s.get_index()); break;
276 case Bytecodes::_dstore: store_two(current, s.get_index()); break;
277 case Bytecodes::_astore: store_one(current, s.get_index()); break;
278 case Bytecodes::_istore_0: store_one(current, 0); break;
279 case Bytecodes::_istore_1: store_one(current, 1); break;
280 case Bytecodes::_istore_2: store_one(current, 2); break;
281 case Bytecodes::_istore_3: store_one(current, 3); break;
282 case Bytecodes::_lstore_0: store_two(current, 0); break;
283 case Bytecodes::_lstore_1: store_two(current, 1); break;
284 case Bytecodes::_lstore_2: store_two(current, 2); break;
285 case Bytecodes::_lstore_3: store_two(current, 3); break;
286 case Bytecodes::_fstore_0: store_one(current, 0); break;
287 case Bytecodes::_fstore_1: store_one(current, 1); break;
288 case Bytecodes::_fstore_2: store_one(current, 2); break;
289 case Bytecodes::_fstore_3: store_one(current, 3); break;
290 case Bytecodes::_dstore_0: store_two(current, 0); break;
291 case Bytecodes::_dstore_1: store_two(current, 1); break;
292 case Bytecodes::_dstore_2: store_two(current, 2); break;
293 case Bytecodes::_dstore_3: store_two(current, 3); break;
294 case Bytecodes::_astore_0: store_one(current, 0); break;
295 case Bytecodes::_astore_1: store_one(current, 1); break;
296 case Bytecodes::_astore_2: store_one(current, 2); break;
297 case Bytecodes::_astore_3: store_one(current, 3); break;
298
299 // track bytecodes that affect the control flow
300 case Bytecodes::_athrow: // fall through
301 case Bytecodes::_ret: // fall through
302 case Bytecodes::_ireturn: // fall through
303 case Bytecodes::_lreturn: // fall through
304 case Bytecodes::_freturn: // fall through
305 case Bytecodes::_dreturn: // fall through
306 case Bytecodes::_areturn: // fall through
307 case Bytecodes::_return:
308 current = nullptr;
309 break;
310
311 case Bytecodes::_ifeq: // fall through
312 case Bytecodes::_ifne: // fall through
313 case Bytecodes::_iflt: // fall through
314 case Bytecodes::_ifge: // fall through
315 case Bytecodes::_ifgt: // fall through
316 case Bytecodes::_ifle: // fall through
317 case Bytecodes::_if_icmpeq: // fall through
318 case Bytecodes::_if_icmpne: // fall through
319 case Bytecodes::_if_icmplt: // fall through
320 case Bytecodes::_if_icmpge: // fall through
321 case Bytecodes::_if_icmpgt: // fall through
322 case Bytecodes::_if_icmple: // fall through
323 case Bytecodes::_if_acmpeq: // fall through
324 case Bytecodes::_if_acmpne: // fall through
325 case Bytecodes::_ifnull: // fall through
326 case Bytecodes::_ifnonnull:
327 if (s.next_bci() < end_bci) {
328 make_block_at(s.next_bci(), current);
329 }
330 make_block_at(s.get_dest(), current);
331 current = nullptr;
332 break;
333
334 case Bytecodes::_goto:
335 make_block_at(s.get_dest(), current);
336 current = nullptr;
337 break;
338
339 case Bytecodes::_goto_w:
340 make_block_at(s.get_far_dest(), current);
341 current = nullptr;
342 break;
343
344 case Bytecodes::_jsr:
345 handle_jsr(current, s.get_dest(), s.next_bci());
346 current = nullptr;
347 break;
348
349 case Bytecodes::_jsr_w:
350 handle_jsr(current, s.get_far_dest(), s.next_bci());
351 current = nullptr;
352 break;
353
354 case Bytecodes::_tableswitch: {
355 // set block for each case
356 Bytecode_tableswitch sw(&s);
357 int l = sw.length();
358 for (int i = 0; i < l; i++) {
359 make_block_at(cur_bci + sw.dest_offset_at(i), current);
360 }
361 make_block_at(cur_bci + sw.default_offset(), current);
362 current = nullptr;
363 break;
364 }
365
366 case Bytecodes::_lookupswitch: {
367 // set block for each case
368 Bytecode_lookupswitch sw(&s);
369 int l = sw.number_of_pairs();
370 for (int i = 0; i < l; i++) {
371 make_block_at(cur_bci + sw.pair_at(i).offset(), current);
372 }
373 make_block_at(cur_bci + sw.default_offset(), current);
374 current = nullptr;
375 break;
376 }
377
378 default:
379 break;
380 }
381 }
382 }
383
384
385 void BlockListBuilder::mark_loops() {
386 ResourceMark rm;
387
388 const int number_of_blocks = _blocks.length();
389 _active.initialize(number_of_blocks);
390 _visited.initialize(number_of_blocks);
391 _loop_map = GrowableArray<ResourceBitMap>(number_of_blocks, number_of_blocks, ResourceBitMap());
392 for (int i = 0; i < number_of_blocks; i++) {
393 _loop_map.at(i).initialize(number_of_blocks);
394 }
395 _next_loop_index = 0;
396 _next_block_number = _blocks.length();
397
398 // The loop detection algorithm works as follows:
399 // - We maintain the _loop_map, where for each block we have a bitmap indicating which loops contain this block.
400 // - The CFG is recursively traversed (depth-first) and if we detect a loop, we assign the loop a unique number that is stored
401 // in the bitmap associated with the loop header block. Until we return back through that loop header the bitmap contains
402 // only a single bit corresponding to the loop number.
403 // - The bit is then propagated for all the blocks in the loop after we exit them (post-order). There could be multiple bits
404 // of course in case of nested loops.
405 // - When we exit the loop header we remove that single bit and assign the real loop state for it.
406 // - Now, the tricky part here is how we detect irreducible loops. In the algorithm above the loop state bits
407 // are propagated to the predecessors. If we encounter an irreducible loop (a loop with multiple heads) we would see
408 // a node with some loop bit set that would then propagate back and be never cleared because we would
409 // never go back through the original loop header. Therefore if there are any irreducible loops the bits in the states
410 // for these loops are going to propagate back to the root.
411 BlockBegin* start = _bci2block->at(0);
412 _block_id_start = start->block_id();
413 BitMap& loop_state = mark_loops(start, false);
414 if (!loop_state.is_empty()) {
415 compilation()->set_has_irreducible_loops(true);
416 }
417 assert(_next_block_number >= 0, "invalid block numbers");
418
419 // Remove dangling Resource pointers before the ResourceMark goes out-of-scope.
420 _active.resize(0);
421 _visited.resize(0);
422 _loop_map.clear();
423 }
424
425 void BlockListBuilder::make_loop_header(BlockBegin* block) {
426 int block_id = block->block_id();
427 int block_bit = bit_number(block_id);
428 if (block->is_set(BlockBegin::exception_entry_flag)) {
429 // exception edges may look like loops but don't mark them as such
430 // since it screws up block ordering.
431 return;
432 }
433 if (!block->is_set(BlockBegin::parser_loop_header_flag)) {
434 block->set(BlockBegin::parser_loop_header_flag);
435
436 assert(_loop_map.at(block_bit).is_empty(), "must not be set yet");
437 assert(0 <= _next_loop_index && _next_loop_index < _loop_map.length(), "_next_loop_index is too large");
438 _loop_map.at(block_bit).set_bit(_next_loop_index++);
439 } else {
440 // block already marked as loop header
441 assert(_loop_map.at(block_bit).count_one_bits() == 1, "exactly one bit must be set");
442 }
443 }
444
445 BitMap& BlockListBuilder::mark_loops(BlockBegin* block, bool in_subroutine) {
446 int block_id = block->block_id();
447 int block_bit = bit_number(block_id);
448 if (_visited.at(block_bit)) {
449 if (_active.at(block_bit)) {
450 // reached block via backward branch
451 make_loop_header(block);
452 }
453 // return cached loop information for this block
454 return _loop_map.at(block_bit);
455 }
456
457 if (block->is_set(BlockBegin::subroutine_entry_flag)) {
458 in_subroutine = true;
459 }
460
461 // set active and visited bits before successors are processed
462 _visited.set_bit(block_bit);
463 _active.set_bit(block_bit);
464
465 ResourceMark rm;
466 ResourceBitMap loop_state(_loop_map.length());
467 for (int i = number_of_successors(block) - 1; i >= 0; i--) {
468 BlockBegin* sux = successor_at(block, i);
469 // recursively process all successors
470 loop_state.set_union(mark_loops(sux, in_subroutine));
471 }
472
473 // clear active-bit after all successors are processed
474 _active.clear_bit(block_bit);
475
476 // reverse-post-order numbering of all blocks
477 block->set_depth_first_number(_next_block_number);
478 _next_block_number--;
479
480 if (!loop_state.is_empty() || in_subroutine ) {
481 // block is contained at least in one loop, so phi functions are necessary
482 // phi functions are also necessary for all locals stored in a subroutine
483 scope()->requires_phi_function().set_union(block->stores_to_locals());
484 }
485
486 if (block->is_set(BlockBegin::parser_loop_header_flag)) {
487 BitMap& header_loop_state = _loop_map.at(block_bit);
488 assert(header_loop_state.count_one_bits() == 1, "exactly one bit must be set");
489 // remove the bit with the loop number for the state (header is outside of the loop)
490 loop_state.set_difference(header_loop_state);
491 }
492
493 // cache and return loop information for this block
494 _loop_map.at(block_bit).set_from(loop_state);
495 return _loop_map.at(block_bit);
496 }
497
498 inline int BlockListBuilder::number_of_successors(BlockBegin* block)
499 {
500 assert(_bci2block_successors.length() > block->bci(), "sux must exist");
501 return _bci2block_successors.at(block->bci()).length();
502 }
503
504 inline BlockBegin* BlockListBuilder::successor_at(BlockBegin* block, int i)
505 {
506 assert(_bci2block_successors.length() > block->bci(), "sux must exist");
507 return _bci2block_successors.at(block->bci()).at(i);
508 }
509
510 inline void BlockListBuilder::add_successor(BlockBegin* block, BlockBegin* sux)
511 {
512 assert(_bci2block_successors.length() > block->bci(), "sux must exist");
513 _bci2block_successors.at(block->bci()).append(sux);
514 }
515
516 inline bool BlockListBuilder::is_successor(BlockBegin* block, BlockBegin* sux) {
517 assert(_bci2block_successors.length() > block->bci(), "sux must exist");
518 return _bci2block_successors.at(block->bci()).contains(sux);
519 }
520
521 #ifndef PRODUCT
522
523 static int compare_depth_first(BlockBegin** a, BlockBegin** b) {
524 return (*a)->depth_first_number() - (*b)->depth_first_number();
525 }
526
527 void BlockListBuilder::print() {
528 tty->print("----- initial block list of BlockListBuilder for method ");
529 method()->print_short_name();
530 tty->cr();
531
532 // better readability if blocks are sorted in processing order
533 _blocks.sort(compare_depth_first);
534
535 for (int i = 0; i < _blocks.length(); i++) {
536 BlockBegin* cur = _blocks.at(i);
537 tty->print("%4d: B%-4d bci: %-4d preds: %-4d ", cur->depth_first_number(), cur->block_id(), cur->bci(), cur->total_preds());
538
539 tty->print(cur->is_set(BlockBegin::std_entry_flag) ? " std" : " ");
540 tty->print(cur->is_set(BlockBegin::osr_entry_flag) ? " osr" : " ");
541 tty->print(cur->is_set(BlockBegin::exception_entry_flag) ? " ex" : " ");
542 tty->print(cur->is_set(BlockBegin::subroutine_entry_flag) ? " sr" : " ");
543 tty->print(cur->is_set(BlockBegin::parser_loop_header_flag) ? " lh" : " ");
544
545 if (number_of_successors(cur) > 0) {
546 tty->print(" sux: ");
547 for (int j = 0; j < number_of_successors(cur); j++) {
548 BlockBegin* sux = successor_at(cur, j);
549 tty->print("B%d ", sux->block_id());
550 }
551 }
552 tty->cr();
553 }
554 }
555
556 #endif
557
558
559 // A simple growable array of Values indexed by ciFields
560 class FieldBuffer: public CompilationResourceObj {
561 private:
562 GrowableArray<Value> _values;
563
564 public:
565 FieldBuffer() {}
566
567 void kill() {
568 _values.trunc_to(0);
569 }
570
571 Value at(ciField* field) {
572 assert(field->holder()->is_loaded(), "must be a loaded field");
573 int offset = field->offset_in_bytes();
574 if (offset < _values.length()) {
575 return _values.at(offset);
576 } else {
577 return nullptr;
578 }
579 }
580
581 void at_put(ciField* field, Value value) {
582 assert(field->holder()->is_loaded(), "must be a loaded field");
583 int offset = field->offset_in_bytes();
584 _values.at_put_grow(offset, value, nullptr);
585 }
586
587 };
588
589
590 // MemoryBuffer is fairly simple model of the current state of memory.
591 // It partitions memory into several pieces. The first piece is
592 // generic memory where little is known about the owner of the memory.
593 // This is conceptually represented by the tuple <O, F, V> which says
594 // that the field F of object O has value V. This is flattened so
595 // that F is represented by the offset of the field and the parallel
596 // arrays _objects and _values are used for O and V. Loads of O.F can
597 // simply use V. Newly allocated objects are kept in a separate list
598 // along with a parallel array for each object which represents the
599 // current value of its fields. Stores of the default value to fields
600 // which have never been stored to before are eliminated since they
601 // are redundant. Once newly allocated objects are stored into
602 // another object or they are passed out of the current compile they
603 // are treated like generic memory.
604
605 class MemoryBuffer: public CompilationResourceObj {
606 private:
607 FieldBuffer _values;
608 GrowableArray<Value> _objects;
609 GrowableArray<Value> _newobjects;
610 GrowableArray<FieldBuffer*> _fields;
611
612 public:
613 MemoryBuffer() {}
614
615 StoreField* store(StoreField* st) {
616 if (!EliminateFieldAccess) {
617 return st;
618 }
619
620 Value object = st->obj();
621 Value value = st->value();
622 ciField* field = st->field();
623 if (field->holder()->is_loaded()) {
624 int offset = field->offset_in_bytes();
625 int index = _newobjects.find(object);
626 if (index != -1) {
627 // newly allocated object with no other stores performed on this field
628 FieldBuffer* buf = _fields.at(index);
629 if (buf->at(field) == nullptr && is_default_value(value)) {
630 #ifndef PRODUCT
631 if (PrintIRDuringConstruction && Verbose) {
632 tty->print_cr("Eliminated store for object %d:", index);
633 st->print_line();
634 }
635 #endif
636 return nullptr;
637 } else {
638 buf->at_put(field, value);
639 }
640 } else {
641 _objects.at_put_grow(offset, object, nullptr);
642 _values.at_put(field, value);
643 }
644
645 store_value(value);
646 } else {
647 // if we held onto field names we could alias based on names but
648 // we don't know what's being stored to so kill it all.
649 kill();
650 }
651 return st;
652 }
653
654
655 // return true if this value correspond to the default value of a field.
656 bool is_default_value(Value value) {
657 Constant* con = value->as_Constant();
658 if (con) {
659 switch (con->type()->tag()) {
660 case intTag: return con->type()->as_IntConstant()->value() == 0;
661 case longTag: return con->type()->as_LongConstant()->value() == 0;
662 case floatTag: return jint_cast(con->type()->as_FloatConstant()->value()) == 0;
663 case doubleTag: return jlong_cast(con->type()->as_DoubleConstant()->value()) == jlong_cast(0);
664 case objectTag: return con->type() == objectNull;
665 default: ShouldNotReachHere();
666 }
667 }
668 return false;
669 }
670
671
672 // return either the actual value of a load or the load itself
673 Value load(LoadField* load) {
674 if (!EliminateFieldAccess) {
675 return load;
676 }
677
678 ciField* field = load->field();
679 Value object = load->obj();
680 if (field->holder()->is_loaded() && !field->is_volatile()) {
681 int offset = field->offset_in_bytes();
682 Value result = nullptr;
683 int index = _newobjects.find(object);
684 if (index != -1) {
685 result = _fields.at(index)->at(field);
686 } else if (_objects.at_grow(offset, nullptr) == object) {
687 result = _values.at(field);
688 }
689 if (result != nullptr) {
690 #ifndef PRODUCT
691 if (PrintIRDuringConstruction && Verbose) {
692 tty->print_cr("Eliminated load: ");
693 load->print_line();
694 }
695 #endif
696 assert(result->type()->tag() == load->type()->tag(), "wrong types");
697 return result;
698 }
699 }
700 return load;
701 }
702
703 // Record this newly allocated object
704 void new_instance(NewInstance* object) {
705 int index = _newobjects.length();
706 _newobjects.append(object);
707 if (_fields.at_grow(index, nullptr) == nullptr) {
708 _fields.at_put(index, new FieldBuffer());
709 } else {
710 _fields.at(index)->kill();
711 }
712 }
713
714 void store_value(Value value) {
715 int index = _newobjects.find(value);
716 if (index != -1) {
717 // stored a newly allocated object into another object.
718 // Assume we've lost track of it as separate slice of memory.
719 // We could do better by keeping track of whether individual
720 // fields could alias each other.
721 _newobjects.remove_at(index);
722 // pull out the field info and store it at the end up the list
723 // of field info list to be reused later.
724 _fields.append(_fields.at(index));
725 _fields.remove_at(index);
726 }
727 }
728
729 void kill() {
730 _newobjects.trunc_to(0);
731 _objects.trunc_to(0);
732 _values.kill();
733 }
734 };
735
736
737 // Implementation of GraphBuilder's ScopeData
738
739 GraphBuilder::ScopeData::ScopeData(ScopeData* parent)
740 : _parent(parent)
741 , _bci2block(nullptr)
742 , _scope(nullptr)
743 , _has_handler(false)
744 , _stream(nullptr)
745 , _work_list(nullptr)
746 , _caller_stack_size(-1)
747 , _continuation(nullptr)
748 , _parsing_jsr(false)
749 , _jsr_xhandlers(nullptr)
750 , _num_returns(0)
751 , _cleanup_block(nullptr)
752 , _cleanup_return_prev(nullptr)
753 , _cleanup_state(nullptr)
754 , _ignore_return(false)
755 {
756 if (parent != nullptr) {
757 _max_inline_size = (intx) ((float) NestedInliningSizeRatio * (float) parent->max_inline_size() / 100.0f);
758 } else {
759 _max_inline_size = C1MaxInlineSize;
760 }
761 if (_max_inline_size < C1MaxTrivialSize) {
762 _max_inline_size = C1MaxTrivialSize;
763 }
764 }
765
766
767 void GraphBuilder::kill_all() {
768 if (UseLocalValueNumbering) {
769 vmap()->kill_all();
770 }
771 _memory->kill();
772 }
773
774
775 BlockBegin* GraphBuilder::ScopeData::block_at(int bci) {
776 if (parsing_jsr()) {
777 // It is necessary to clone all blocks associated with a
778 // subroutine, including those for exception handlers in the scope
779 // of the method containing the jsr (because those exception
780 // handlers may contain ret instructions in some cases).
781 BlockBegin* block = bci2block()->at(bci);
782 if (block != nullptr && block == parent()->bci2block()->at(bci)) {
783 BlockBegin* new_block = new BlockBegin(block->bci());
784 if (PrintInitialBlockList) {
785 tty->print_cr("CFG: cloned block %d (bci %d) as block %d for jsr",
786 block->block_id(), block->bci(), new_block->block_id());
787 }
788 // copy data from cloned blocked
789 new_block->set_depth_first_number(block->depth_first_number());
790 if (block->is_set(BlockBegin::parser_loop_header_flag)) new_block->set(BlockBegin::parser_loop_header_flag);
791 // Preserve certain flags for assertion checking
792 if (block->is_set(BlockBegin::subroutine_entry_flag)) new_block->set(BlockBegin::subroutine_entry_flag);
793 if (block->is_set(BlockBegin::exception_entry_flag)) new_block->set(BlockBegin::exception_entry_flag);
794
795 // copy was_visited_flag to allow early detection of bailouts
796 // if a block that is used in a jsr has already been visited before,
797 // it is shared between the normal control flow and a subroutine
798 // BlockBegin::try_merge returns false when the flag is set, this leads
799 // to a compilation bailout
800 if (block->is_set(BlockBegin::was_visited_flag)) new_block->set(BlockBegin::was_visited_flag);
801
802 bci2block()->at_put(bci, new_block);
803 block = new_block;
804 }
805 return block;
806 } else {
807 return bci2block()->at(bci);
808 }
809 }
810
811
812 XHandlers* GraphBuilder::ScopeData::xhandlers() const {
813 if (_jsr_xhandlers == nullptr) {
814 assert(!parsing_jsr(), "");
815 return scope()->xhandlers();
816 }
817 assert(parsing_jsr(), "");
818 return _jsr_xhandlers;
819 }
820
821
822 void GraphBuilder::ScopeData::set_scope(IRScope* scope) {
823 _scope = scope;
824 bool parent_has_handler = false;
825 if (parent() != nullptr) {
826 parent_has_handler = parent()->has_handler();
827 }
828 _has_handler = parent_has_handler || scope->xhandlers()->has_handlers();
829 }
830
831
832 void GraphBuilder::ScopeData::set_inline_cleanup_info(BlockBegin* block,
833 Instruction* return_prev,
834 ValueStack* return_state) {
835 _cleanup_block = block;
836 _cleanup_return_prev = return_prev;
837 _cleanup_state = return_state;
838 }
839
840
841 void GraphBuilder::ScopeData::add_to_work_list(BlockBegin* block) {
842 if (_work_list == nullptr) {
843 _work_list = new BlockList();
844 }
845
846 if (!block->is_set(BlockBegin::is_on_work_list_flag)) {
847 // Do not start parsing the continuation block while in a
848 // sub-scope
849 if (parsing_jsr()) {
850 if (block == jsr_continuation()) {
851 return;
852 }
853 } else {
854 if (block == continuation()) {
855 return;
856 }
857 }
858 block->set(BlockBegin::is_on_work_list_flag);
859 _work_list->push(block);
860
861 sort_top_into_worklist(_work_list, block);
862 }
863 }
864
865
866 void GraphBuilder::sort_top_into_worklist(BlockList* worklist, BlockBegin* top) {
867 assert(worklist->top() == top, "");
868 // sort block descending into work list
869 const int dfn = top->depth_first_number();
870 assert(dfn != -1, "unknown depth first number");
871 int i = worklist->length()-2;
872 while (i >= 0) {
873 BlockBegin* b = worklist->at(i);
874 if (b->depth_first_number() < dfn) {
875 worklist->at_put(i+1, b);
876 } else {
877 break;
878 }
879 i --;
880 }
881 if (i >= -1) worklist->at_put(i + 1, top);
882 }
883
884
885 BlockBegin* GraphBuilder::ScopeData::remove_from_work_list() {
886 if (is_work_list_empty()) {
887 return nullptr;
888 }
889 return _work_list->pop();
890 }
891
892
893 bool GraphBuilder::ScopeData::is_work_list_empty() const {
894 return (_work_list == nullptr || _work_list->length() == 0);
895 }
896
897
898 void GraphBuilder::ScopeData::setup_jsr_xhandlers() {
899 assert(parsing_jsr(), "");
900 // clone all the exception handlers from the scope
901 XHandlers* handlers = new XHandlers(scope()->xhandlers());
902 const int n = handlers->length();
903 for (int i = 0; i < n; i++) {
904 // The XHandlers need to be adjusted to dispatch to the cloned
905 // handler block instead of the default one but the synthetic
906 // unlocker needs to be handled specially. The synthetic unlocker
907 // should be left alone since there can be only one and all code
908 // should dispatch to the same one.
909 XHandler* h = handlers->handler_at(i);
910 assert(h->handler_bci() != SynchronizationEntryBCI, "must be real");
911 h->set_entry_block(block_at(h->handler_bci()));
912 }
913 _jsr_xhandlers = handlers;
914 }
915
916
917 int GraphBuilder::ScopeData::num_returns() {
918 if (parsing_jsr()) {
919 return parent()->num_returns();
920 }
921 return _num_returns;
922 }
923
924
925 void GraphBuilder::ScopeData::incr_num_returns() {
926 if (parsing_jsr()) {
927 parent()->incr_num_returns();
928 } else {
929 ++_num_returns;
930 }
931 }
932
933
934 // Implementation of GraphBuilder
935
936 #define INLINE_BAILOUT(msg) { inline_bailout(msg); return false; }
937
938
939 void GraphBuilder::load_constant() {
940 ciConstant con = stream()->get_constant();
941 if (con.is_valid()) {
942 ValueType* t = illegalType;
943 ValueStack* patch_state = nullptr;
944 switch (con.basic_type()) {
945 case T_BOOLEAN: t = new IntConstant (con.as_boolean()); break;
946 case T_BYTE : t = new IntConstant (con.as_byte ()); break;
947 case T_CHAR : t = new IntConstant (con.as_char ()); break;
948 case T_SHORT : t = new IntConstant (con.as_short ()); break;
949 case T_INT : t = new IntConstant (con.as_int ()); break;
950 case T_LONG : t = new LongConstant (con.as_long ()); break;
951 case T_FLOAT : t = new FloatConstant (con.as_float ()); break;
952 case T_DOUBLE : t = new DoubleConstant(con.as_double ()); break;
953 case T_ARRAY : // fall-through
954 case T_OBJECT : {
955 ciObject* obj = con.as_object();
956 if (!obj->is_loaded() || (PatchALot && !stream()->is_string_constant())) {
957 // A Class, MethodType, MethodHandle, Dynamic, or String.
958 patch_state = copy_state_before();
959 t = new ObjectConstant(obj);
960 } else {
961 // Might be a Class, MethodType, MethodHandle, or Dynamic constant
962 // result, which might turn out to be an array.
963 if (obj->is_null_object()) {
964 t = objectNull;
965 } else if (obj->is_array()) {
966 t = new ArrayConstant(obj->as_array());
967 } else {
968 t = new InstanceConstant(obj->as_instance());
969 }
970 }
971 break;
972 }
973 default: ShouldNotReachHere();
974 }
975 Value x;
976 if (patch_state != nullptr) {
977 // Arbitrary memory effects from running BSM or class loading (using custom loader) during linkage.
978 bool kills_memory = stream()->is_dynamic_constant() ||
979 (!stream()->is_string_constant() && !method()->holder()->has_trusted_loader());
980 x = new Constant(t, patch_state, kills_memory);
981 } else {
982 x = new Constant(t);
983 }
984
985 // Unbox the value at runtime, if needed.
986 // ConstantDynamic entry can be of a primitive type, but it is cached in boxed form.
987 if (patch_state != nullptr) {
988 int cp_index = stream()->get_constant_pool_index();
989 BasicType type = stream()->get_basic_type_for_constant_at(cp_index);
990 if (is_java_primitive(type)) {
991 ciInstanceKlass* box_klass = ciEnv::current()->get_box_klass_for_primitive_type(type);
992 assert(box_klass->is_loaded(), "sanity");
993 int offset = java_lang_boxing_object::value_offset(type);
994 ciField* value_field = box_klass->get_field_by_offset(offset, false /*is_static*/);
995 x = new LoadField(append(x), offset, value_field, false /*is_static*/, patch_state, false /*needs_patching*/);
996 t = as_ValueType(type);
997 } else {
998 assert(is_reference_type(type), "not a reference: %s", type2name(type));
999 }
1000 }
1001
1002 push(t, append(x));
1003 } else {
1004 BAILOUT("could not resolve a constant");
1005 }
1006 }
1007
1008
1009 void GraphBuilder::load_local(ValueType* type, int index) {
1010 Value x = state()->local_at(index);
1011 assert(x != nullptr && !x->type()->is_illegal(), "access of illegal local variable");
1012 push(type, x);
1013 }
1014
1015
1016 void GraphBuilder::store_local(ValueType* type, int index) {
1017 Value x = pop(type);
1018 store_local(state(), x, index);
1019 }
1020
1021
1022 void GraphBuilder::store_local(ValueStack* state, Value x, int index) {
1023 if (parsing_jsr()) {
1024 // We need to do additional tracking of the location of the return
1025 // address for jsrs since we don't handle arbitrary jsr/ret
1026 // constructs. Here we are figuring out in which circumstances we
1027 // need to bail out.
1028 if (x->type()->is_address()) {
1029 scope_data()->set_jsr_return_address_local(index);
1030
1031 // Also check parent jsrs (if any) at this time to see whether
1032 // they are using this local. We don't handle skipping over a
1033 // ret.
1034 for (ScopeData* cur_scope_data = scope_data()->parent();
1035 cur_scope_data != nullptr && cur_scope_data->parsing_jsr() && cur_scope_data->scope() == scope();
1036 cur_scope_data = cur_scope_data->parent()) {
1037 if (cur_scope_data->jsr_return_address_local() == index) {
1038 BAILOUT("subroutine overwrites return address from previous subroutine");
1039 }
1040 }
1041 } else if (index == scope_data()->jsr_return_address_local()) {
1042 scope_data()->set_jsr_return_address_local(-1);
1043 }
1044 }
1045
1046 state->store_local(index, x);
1047 }
1048
1049
1050 void GraphBuilder::load_indexed(BasicType type) {
1051 // In case of in block code motion in range check elimination
1052 ValueStack* state_before = nullptr;
1053 int array_idx = state()->stack_size() - 2;
1054 if (type == T_OBJECT && state()->stack_at(array_idx)->maybe_flat_array()) {
1055 // Save the entire state and re-execute on deopt when accessing flat arrays
1056 state_before = copy_state_before();
1057 state_before->set_should_reexecute(true);
1058 } else {
1059 state_before = copy_state_indexed_access();
1060 }
1061 compilation()->set_has_access_indexed(true);
1062 Value index = ipop();
1063 Value array = apop();
1064 Value length = nullptr;
1065 if (CSEArrayLength ||
1066 (array->as_Constant() != nullptr) ||
1067 (array->as_AccessField() && array->as_AccessField()->field()->is_constant()) ||
1068 (array->as_NewArray() && array->as_NewArray()->length() && array->as_NewArray()->length()->type()->is_constant()) ||
1069 (array->as_NewMultiArray() && array->as_NewMultiArray()->dims()->at(0)->type()->is_constant())) {
1070 length = append(new ArrayLength(array, state_before));
1071 }
1072
1073 bool need_membar = false;
1074 LoadIndexed* load_indexed = nullptr;
1075 Instruction* result = nullptr;
1076 if (array->is_loaded_flat_array()) {
1077 // TODO 8350865 This is currently dead code. Can we use set_null_free on the result here if the array is null-free?
1078 ciType* array_type = array->declared_type();
1079 ciInlineKlass* elem_klass = array_type->as_flat_array_klass()->element_klass()->as_inline_klass();
1080
1081 bool can_delay_access = false;
1082 ciBytecodeStream s(method());
1083 s.force_bci(bci());
1084 s.next();
1085 if (s.cur_bc() == Bytecodes::_getfield) {
1086 bool will_link;
1087 ciField* next_field = s.get_field(will_link);
1088 bool next_needs_patching = !next_field->holder()->is_initialized() ||
1089 !next_field->will_link(method(), Bytecodes::_getfield) ||
1090 PatchALot;
1091 can_delay_access = C1UseDelayedFlattenedFieldReads && !next_needs_patching;
1092 }
1093 if (can_delay_access) {
1094 // potentially optimizable array access, storing information for delayed decision
1095 LoadIndexed* li = new LoadIndexed(array, index, length, type, state_before);
1096 DelayedLoadIndexed* dli = new DelayedLoadIndexed(li, state_before);
1097 li->set_delayed(dli);
1098 set_pending_load_indexed(dli);
1099 return; // Nothing else to do for now
1100 } else {
1101 NewInstance* new_instance = new NewInstance(elem_klass, state_before, false, true);
1102 _memory->new_instance(new_instance);
1103 apush(append_split(new_instance));
1104 load_indexed = new LoadIndexed(array, index, length, type, state_before);
1105 load_indexed->set_vt(new_instance);
1106 // The LoadIndexed node will initialise this instance by copying from
1107 // the flat field. Ensure these stores are visible before any
1108 // subsequent store that publishes this reference.
1109 need_membar = true;
1110 }
1111 } else {
1112 load_indexed = new LoadIndexed(array, index, length, type, state_before);
1113 if (profile_array_accesses() && is_reference_type(type)) {
1114 compilation()->set_would_profile(true);
1115 load_indexed->set_should_profile(true);
1116 load_indexed->set_profiled_method(method());
1117 load_indexed->set_profiled_bci(bci());
1118 }
1119 }
1120 result = append(load_indexed);
1121 if (need_membar) {
1122 append(new MemBar(lir_membar_storestore));
1123 }
1124 assert(!load_indexed->should_profile() || load_indexed == result, "should not be optimized out");
1125 if (!array->is_loaded_flat_array()) {
1126 push(as_ValueType(type), result);
1127 }
1128 }
1129
1130
1131 void GraphBuilder::store_indexed(BasicType type) {
1132 // In case of in block code motion in range check elimination
1133 ValueStack* state_before = nullptr;
1134 int array_idx = state()->stack_size() - 3;
1135 if (type == T_OBJECT && state()->stack_at(array_idx)->maybe_flat_array()) {
1136 // Save the entire state and re-execute on deopt when accessing flat arrays
1137 state_before = copy_state_before();
1138 state_before->set_should_reexecute(true);
1139 } else {
1140 state_before = copy_state_indexed_access();
1141 }
1142 compilation()->set_has_access_indexed(true);
1143 Value value = pop(as_ValueType(type));
1144 Value index = ipop();
1145 Value array = apop();
1146 Value length = nullptr;
1147 if (CSEArrayLength ||
1148 (array->as_Constant() != nullptr) ||
1149 (array->as_AccessField() && array->as_AccessField()->field()->is_constant()) ||
1150 (array->as_NewArray() && array->as_NewArray()->length() && array->as_NewArray()->length()->type()->is_constant()) ||
1151 (array->as_NewMultiArray() && array->as_NewMultiArray()->dims()->at(0)->type()->is_constant())) {
1152 length = append(new ArrayLength(array, state_before));
1153 }
1154 ciType* array_type = array->declared_type();
1155 bool check_boolean = false;
1156 if (array_type != nullptr) {
1157 if (array_type->is_loaded() &&
1158 array_type->as_array_klass()->element_type()->basic_type() == T_BOOLEAN) {
1159 assert(type == T_BYTE, "boolean store uses bastore");
1160 Value mask = append(new Constant(new IntConstant(1)));
1161 value = append(new LogicOp(Bytecodes::_iand, value, mask));
1162 }
1163 } else if (type == T_BYTE) {
1164 check_boolean = true;
1165 }
1166
1167 StoreIndexed* store_indexed = new StoreIndexed(array, index, length, type, value, state_before, check_boolean);
1168 if (profile_array_accesses() && is_reference_type(type) && !array->is_loaded_flat_array()) {
1169 compilation()->set_would_profile(true);
1170 store_indexed->set_should_profile(true);
1171 store_indexed->set_profiled_method(method());
1172 store_indexed->set_profiled_bci(bci());
1173 }
1174 Instruction* result = append(store_indexed);
1175 assert(!store_indexed->should_profile() || store_indexed == result, "should not be optimized out");
1176 _memory->store_value(value);
1177 }
1178
1179 void GraphBuilder::stack_op(Bytecodes::Code code) {
1180 switch (code) {
1181 case Bytecodes::_pop:
1182 { Value w = state()->raw_pop();
1183 }
1184 break;
1185 case Bytecodes::_pop2:
1186 { Value w1 = state()->raw_pop();
1187 Value w2 = state()->raw_pop();
1188 }
1189 break;
1190 case Bytecodes::_dup:
1191 { Value w = state()->raw_pop();
1192 state()->raw_push(w);
1193 state()->raw_push(w);
1194 }
1195 break;
1196 case Bytecodes::_dup_x1:
1197 { Value w1 = state()->raw_pop();
1198 Value w2 = state()->raw_pop();
1199 state()->raw_push(w1);
1200 state()->raw_push(w2);
1201 state()->raw_push(w1);
1202 }
1203 break;
1204 case Bytecodes::_dup_x2:
1205 { Value w1 = state()->raw_pop();
1206 Value w2 = state()->raw_pop();
1207 Value w3 = state()->raw_pop();
1208 state()->raw_push(w1);
1209 state()->raw_push(w3);
1210 state()->raw_push(w2);
1211 state()->raw_push(w1);
1212 }
1213 break;
1214 case Bytecodes::_dup2:
1215 { Value w1 = state()->raw_pop();
1216 Value w2 = state()->raw_pop();
1217 state()->raw_push(w2);
1218 state()->raw_push(w1);
1219 state()->raw_push(w2);
1220 state()->raw_push(w1);
1221 }
1222 break;
1223 case Bytecodes::_dup2_x1:
1224 { Value w1 = state()->raw_pop();
1225 Value w2 = state()->raw_pop();
1226 Value w3 = state()->raw_pop();
1227 state()->raw_push(w2);
1228 state()->raw_push(w1);
1229 state()->raw_push(w3);
1230 state()->raw_push(w2);
1231 state()->raw_push(w1);
1232 }
1233 break;
1234 case Bytecodes::_dup2_x2:
1235 { Value w1 = state()->raw_pop();
1236 Value w2 = state()->raw_pop();
1237 Value w3 = state()->raw_pop();
1238 Value w4 = state()->raw_pop();
1239 state()->raw_push(w2);
1240 state()->raw_push(w1);
1241 state()->raw_push(w4);
1242 state()->raw_push(w3);
1243 state()->raw_push(w2);
1244 state()->raw_push(w1);
1245 }
1246 break;
1247 case Bytecodes::_swap:
1248 { Value w1 = state()->raw_pop();
1249 Value w2 = state()->raw_pop();
1250 state()->raw_push(w1);
1251 state()->raw_push(w2);
1252 }
1253 break;
1254 default:
1255 ShouldNotReachHere();
1256 break;
1257 }
1258 }
1259
1260
1261 void GraphBuilder::arithmetic_op(ValueType* type, Bytecodes::Code code, ValueStack* state_before) {
1262 Value y = pop(type);
1263 Value x = pop(type);
1264 Value res = new ArithmeticOp(code, x, y, state_before);
1265 push(type, append(res));
1266 }
1267
1268
1269 void GraphBuilder::negate_op(ValueType* type) {
1270 push(type, append(new NegateOp(pop(type))));
1271 }
1272
1273
1274 void GraphBuilder::shift_op(ValueType* type, Bytecodes::Code code) {
1275 Value s = ipop();
1276 Value x = pop(type);
1277 // try to simplify
1278 // Note: This code should go into the canonicalizer as soon as it can
1279 // can handle canonicalized forms that contain more than one node.
1280 if (CanonicalizeNodes && code == Bytecodes::_iushr) {
1281 // pattern: x >>> s
1282 IntConstant* s1 = s->type()->as_IntConstant();
1283 if (s1 != nullptr) {
1284 // pattern: x >>> s1, with s1 constant
1285 ShiftOp* l = x->as_ShiftOp();
1286 if (l != nullptr && l->op() == Bytecodes::_ishl) {
1287 // pattern: (a << b) >>> s1
1288 IntConstant* s0 = l->y()->type()->as_IntConstant();
1289 if (s0 != nullptr) {
1290 // pattern: (a << s0) >>> s1
1291 const int s0c = s0->value() & 0x1F; // only the low 5 bits are significant for shifts
1292 const int s1c = s1->value() & 0x1F; // only the low 5 bits are significant for shifts
1293 if (s0c == s1c) {
1294 if (s0c == 0) {
1295 // pattern: (a << 0) >>> 0 => simplify to: a
1296 ipush(l->x());
1297 } else {
1298 // pattern: (a << s0c) >>> s0c => simplify to: a & m, with m constant
1299 assert(0 < s0c && s0c < BitsPerInt, "adjust code below to handle corner cases");
1300 const int m = checked_cast<int>(right_n_bits(BitsPerInt - s0c));
1301 Value s = append(new Constant(new IntConstant(m)));
1302 ipush(append(new LogicOp(Bytecodes::_iand, l->x(), s)));
1303 }
1304 return;
1305 }
1306 }
1307 }
1308 }
1309 }
1310 // could not simplify
1311 push(type, append(new ShiftOp(code, x, s)));
1312 }
1313
1314
1315 void GraphBuilder::logic_op(ValueType* type, Bytecodes::Code code) {
1316 Value y = pop(type);
1317 Value x = pop(type);
1318 push(type, append(new LogicOp(code, x, y)));
1319 }
1320
1321
1322 void GraphBuilder::compare_op(ValueType* type, Bytecodes::Code code) {
1323 ValueStack* state_before = copy_state_before();
1324 Value y = pop(type);
1325 Value x = pop(type);
1326 ipush(append(new CompareOp(code, x, y, state_before)));
1327 }
1328
1329
1330 void GraphBuilder::convert(Bytecodes::Code op, BasicType from, BasicType to) {
1331 push(as_ValueType(to), append(new Convert(op, pop(as_ValueType(from)), as_ValueType(to))));
1332 }
1333
1334
1335 void GraphBuilder::increment() {
1336 int index = stream()->get_index();
1337 int delta = stream()->is_wide() ? (signed short)Bytes::get_Java_u2(stream()->cur_bcp() + 4) : (signed char)(stream()->cur_bcp()[2]);
1338 load_local(intType, index);
1339 ipush(append(new Constant(new IntConstant(delta))));
1340 arithmetic_op(intType, Bytecodes::_iadd);
1341 store_local(intType, index);
1342 }
1343
1344
1345 void GraphBuilder::_goto(int from_bci, int to_bci) {
1346 Goto *x = new Goto(block_at(to_bci), to_bci <= from_bci);
1347 if (is_profiling()) {
1348 compilation()->set_would_profile(true);
1349 x->set_profiled_bci(bci());
1350 if (profile_branches()) {
1351 x->set_profiled_method(method());
1352 x->set_should_profile(true);
1353 }
1354 }
1355 append(x);
1356 }
1357
1358
1359 void GraphBuilder::if_node(Value x, If::Condition cond, Value y, ValueStack* state_before) {
1360 BlockBegin* tsux = block_at(stream()->get_dest());
1361 BlockBegin* fsux = block_at(stream()->next_bci());
1362 bool is_bb = tsux->bci() < stream()->cur_bci() || fsux->bci() < stream()->cur_bci();
1363
1364 bool subst_check = false;
1365 if (EnableValhalla && (stream()->cur_bc() == Bytecodes::_if_acmpeq || stream()->cur_bc() == Bytecodes::_if_acmpne)) {
1366 ValueType* left_vt = x->type();
1367 ValueType* right_vt = y->type();
1368 if (left_vt->is_object()) {
1369 assert(right_vt->is_object(), "must be");
1370 ciKlass* left_klass = x->as_loaded_klass_or_null();
1371 ciKlass* right_klass = y->as_loaded_klass_or_null();
1372
1373 if (left_klass == nullptr || right_klass == nullptr) {
1374 // The klass is still unloaded, or came from a Phi node. Go slow case;
1375 subst_check = true;
1376 } else if (left_klass->can_be_inline_klass() || right_klass->can_be_inline_klass()) {
1377 // Either operand may be a value object, but we're not sure. Go slow case;
1378 subst_check = true;
1379 } else {
1380 // No need to do substitutability check
1381 }
1382 }
1383 }
1384 if ((stream()->cur_bc() == Bytecodes::_if_acmpeq || stream()->cur_bc() == Bytecodes::_if_acmpne) &&
1385 is_profiling() && profile_branches()) {
1386 compilation()->set_would_profile(true);
1387 append(new ProfileACmpTypes(method(), bci(), x, y));
1388 }
1389
1390 // In case of loop invariant code motion or predicate insertion
1391 // before the body of a loop the state is needed
1392 Instruction *i = append(new If(x, cond, false, y, tsux, fsux, (is_bb || compilation()->is_optimistic() || subst_check) ? state_before : nullptr, is_bb, subst_check));
1393
1394 assert(i->as_Goto() == nullptr ||
1395 (i->as_Goto()->sux_at(0) == tsux && i->as_Goto()->is_safepoint() == (tsux->bci() < stream()->cur_bci())) ||
1396 (i->as_Goto()->sux_at(0) == fsux && i->as_Goto()->is_safepoint() == (fsux->bci() < stream()->cur_bci())),
1397 "safepoint state of Goto returned by canonicalizer incorrect");
1398
1399 if (is_profiling()) {
1400 If* if_node = i->as_If();
1401 if (if_node != nullptr) {
1402 // Note that we'd collect profile data in this method if we wanted it.
1403 compilation()->set_would_profile(true);
1404 // At level 2 we need the proper bci to count backedges
1405 if_node->set_profiled_bci(bci());
1406 if (profile_branches()) {
1407 // Successors can be rotated by the canonicalizer, check for this case.
1408 if_node->set_profiled_method(method());
1409 if_node->set_should_profile(true);
1410 if (if_node->tsux() == fsux) {
1411 if_node->set_swapped(true);
1412 }
1413 }
1414 return;
1415 }
1416
1417 // Check if this If was reduced to Goto.
1418 Goto *goto_node = i->as_Goto();
1419 if (goto_node != nullptr) {
1420 compilation()->set_would_profile(true);
1421 goto_node->set_profiled_bci(bci());
1422 if (profile_branches()) {
1423 goto_node->set_profiled_method(method());
1424 goto_node->set_should_profile(true);
1425 // Find out which successor is used.
1426 if (goto_node->default_sux() == tsux) {
1427 goto_node->set_direction(Goto::taken);
1428 } else if (goto_node->default_sux() == fsux) {
1429 goto_node->set_direction(Goto::not_taken);
1430 } else {
1431 ShouldNotReachHere();
1432 }
1433 }
1434 return;
1435 }
1436 }
1437 }
1438
1439
1440 void GraphBuilder::if_zero(ValueType* type, If::Condition cond) {
1441 Value y = append(new Constant(intZero));
1442 ValueStack* state_before = copy_state_before();
1443 Value x = ipop();
1444 if_node(x, cond, y, state_before);
1445 }
1446
1447
1448 void GraphBuilder::if_null(ValueType* type, If::Condition cond) {
1449 Value y = append(new Constant(objectNull));
1450 ValueStack* state_before = copy_state_before();
1451 Value x = apop();
1452 if_node(x, cond, y, state_before);
1453 }
1454
1455
1456 void GraphBuilder::if_same(ValueType* type, If::Condition cond) {
1457 ValueStack* state_before = copy_state_before();
1458 Value y = pop(type);
1459 Value x = pop(type);
1460 if_node(x, cond, y, state_before);
1461 }
1462
1463
1464 void GraphBuilder::jsr(int dest) {
1465 // We only handle well-formed jsrs (those which are "block-structured").
1466 // If the bytecodes are strange (jumping out of a jsr block) then we
1467 // might end up trying to re-parse a block containing a jsr which
1468 // has already been activated. Watch for this case and bail out.
1469 if (next_bci() >= method()->code_size()) {
1470 // This can happen if the subroutine does not terminate with a ret,
1471 // effectively turning the jsr into a goto.
1472 BAILOUT("too-complicated jsr/ret structure");
1473 }
1474 for (ScopeData* cur_scope_data = scope_data();
1475 cur_scope_data != nullptr && cur_scope_data->parsing_jsr() && cur_scope_data->scope() == scope();
1476 cur_scope_data = cur_scope_data->parent()) {
1477 if (cur_scope_data->jsr_entry_bci() == dest) {
1478 BAILOUT("too-complicated jsr/ret structure");
1479 }
1480 }
1481
1482 push(addressType, append(new Constant(new AddressConstant(next_bci()))));
1483 if (!try_inline_jsr(dest)) {
1484 return; // bailed out while parsing and inlining subroutine
1485 }
1486 }
1487
1488
1489 void GraphBuilder::ret(int local_index) {
1490 if (!parsing_jsr()) BAILOUT("ret encountered while not parsing subroutine");
1491
1492 if (local_index != scope_data()->jsr_return_address_local()) {
1493 BAILOUT("can not handle complicated jsr/ret constructs");
1494 }
1495
1496 // Rets simply become (NON-SAFEPOINT) gotos to the jsr continuation
1497 append(new Goto(scope_data()->jsr_continuation(), false));
1498 }
1499
1500
1501 void GraphBuilder::table_switch() {
1502 Bytecode_tableswitch sw(stream());
1503 const int l = sw.length();
1504 if (CanonicalizeNodes && l == 1 && compilation()->env()->comp_level() != CompLevel_full_profile) {
1505 // total of 2 successors => use If instead of switch
1506 // Note: This code should go into the canonicalizer as soon as it can
1507 // can handle canonicalized forms that contain more than one node.
1508 Value key = append(new Constant(new IntConstant(sw.low_key())));
1509 BlockBegin* tsux = block_at(bci() + sw.dest_offset_at(0));
1510 BlockBegin* fsux = block_at(bci() + sw.default_offset());
1511 bool is_bb = tsux->bci() < bci() || fsux->bci() < bci();
1512 // In case of loop invariant code motion or predicate insertion
1513 // before the body of a loop the state is needed
1514 ValueStack* state_before = copy_state_if_bb(is_bb);
1515 append(new If(ipop(), If::eql, true, key, tsux, fsux, state_before, is_bb));
1516 } else {
1517 // collect successors
1518 BlockList* sux = new BlockList(l + 1, nullptr);
1519 int i;
1520 bool has_bb = false;
1521 for (i = 0; i < l; i++) {
1522 sux->at_put(i, block_at(bci() + sw.dest_offset_at(i)));
1523 if (sw.dest_offset_at(i) < 0) has_bb = true;
1524 }
1525 // add default successor
1526 if (sw.default_offset() < 0) has_bb = true;
1527 sux->at_put(i, block_at(bci() + sw.default_offset()));
1528 // In case of loop invariant code motion or predicate insertion
1529 // before the body of a loop the state is needed
1530 ValueStack* state_before = copy_state_if_bb(has_bb);
1531 Instruction* res = append(new TableSwitch(ipop(), sux, sw.low_key(), state_before, has_bb));
1532 #ifdef ASSERT
1533 if (res->as_Goto()) {
1534 for (i = 0; i < l; i++) {
1535 if (sux->at(i) == res->as_Goto()->sux_at(0)) {
1536 assert(res->as_Goto()->is_safepoint() == (sw.dest_offset_at(i) < 0), "safepoint state of Goto returned by canonicalizer incorrect");
1537 }
1538 }
1539 }
1540 #endif
1541 }
1542 }
1543
1544
1545 void GraphBuilder::lookup_switch() {
1546 Bytecode_lookupswitch sw(stream());
1547 const int l = sw.number_of_pairs();
1548 if (CanonicalizeNodes && l == 1 && compilation()->env()->comp_level() != CompLevel_full_profile) {
1549 // total of 2 successors => use If instead of switch
1550 // Note: This code should go into the canonicalizer as soon as it can
1551 // can handle canonicalized forms that contain more than one node.
1552 // simplify to If
1553 LookupswitchPair pair = sw.pair_at(0);
1554 Value key = append(new Constant(new IntConstant(pair.match())));
1555 BlockBegin* tsux = block_at(bci() + pair.offset());
1556 BlockBegin* fsux = block_at(bci() + sw.default_offset());
1557 bool is_bb = tsux->bci() < bci() || fsux->bci() < bci();
1558 // In case of loop invariant code motion or predicate insertion
1559 // before the body of a loop the state is needed
1560 ValueStack* state_before = copy_state_if_bb(is_bb);;
1561 append(new If(ipop(), If::eql, true, key, tsux, fsux, state_before, is_bb));
1562 } else {
1563 // collect successors & keys
1564 BlockList* sux = new BlockList(l + 1, nullptr);
1565 intArray* keys = new intArray(l, l, 0);
1566 int i;
1567 bool has_bb = false;
1568 for (i = 0; i < l; i++) {
1569 LookupswitchPair pair = sw.pair_at(i);
1570 if (pair.offset() < 0) has_bb = true;
1571 sux->at_put(i, block_at(bci() + pair.offset()));
1572 keys->at_put(i, pair.match());
1573 }
1574 // add default successor
1575 if (sw.default_offset() < 0) has_bb = true;
1576 sux->at_put(i, block_at(bci() + sw.default_offset()));
1577 // In case of loop invariant code motion or predicate insertion
1578 // before the body of a loop the state is needed
1579 ValueStack* state_before = copy_state_if_bb(has_bb);
1580 Instruction* res = append(new LookupSwitch(ipop(), sux, keys, state_before, has_bb));
1581 #ifdef ASSERT
1582 if (res->as_Goto()) {
1583 for (i = 0; i < l; i++) {
1584 if (sux->at(i) == res->as_Goto()->sux_at(0)) {
1585 assert(res->as_Goto()->is_safepoint() == (sw.pair_at(i).offset() < 0), "safepoint state of Goto returned by canonicalizer incorrect");
1586 }
1587 }
1588 }
1589 #endif
1590 }
1591 }
1592
1593 void GraphBuilder::call_register_finalizer() {
1594 // If the receiver requires finalization then emit code to perform
1595 // the registration on return.
1596
1597 // Gather some type information about the receiver
1598 Value receiver = state()->local_at(0);
1599 assert(receiver != nullptr, "must have a receiver");
1600 ciType* declared_type = receiver->declared_type();
1601 ciType* exact_type = receiver->exact_type();
1602 if (exact_type == nullptr &&
1603 receiver->as_Local() &&
1604 receiver->as_Local()->java_index() == 0) {
1605 ciInstanceKlass* ik = compilation()->method()->holder();
1606 if (ik->is_final()) {
1607 exact_type = ik;
1608 } else if (UseCHA && !(ik->has_subklass() || ik->is_interface())) {
1609 // test class is leaf class
1610 compilation()->dependency_recorder()->assert_leaf_type(ik);
1611 exact_type = ik;
1612 } else {
1613 declared_type = ik;
1614 }
1615 }
1616
1617 // see if we know statically that registration isn't required
1618 bool needs_check = true;
1619 if (exact_type != nullptr) {
1620 needs_check = exact_type->as_instance_klass()->has_finalizer();
1621 } else if (declared_type != nullptr) {
1622 ciInstanceKlass* ik = declared_type->as_instance_klass();
1623 if (!Dependencies::has_finalizable_subclass(ik)) {
1624 compilation()->dependency_recorder()->assert_has_no_finalizable_subclasses(ik);
1625 needs_check = false;
1626 }
1627 }
1628
1629 if (needs_check) {
1630 // Perform the registration of finalizable objects.
1631 ValueStack* state_before = copy_state_for_exception();
1632 load_local(objectType, 0);
1633 append_split(new Intrinsic(voidType, vmIntrinsics::_Object_init,
1634 state()->pop_arguments(1),
1635 true, state_before, true));
1636 }
1637 }
1638
1639
1640 void GraphBuilder::method_return(Value x, bool ignore_return) {
1641 if (method()->intrinsic_id() == vmIntrinsics::_Object_init) {
1642 call_register_finalizer();
1643 }
1644
1645 // The conditions for a memory barrier are described in Parse::do_exits().
1646 bool need_mem_bar = false;
1647 if (method()->is_object_constructor() &&
1648 (scope()->wrote_final() || scope()->wrote_stable() ||
1649 (AlwaysSafeConstructors && scope()->wrote_fields()) ||
1650 (support_IRIW_for_not_multiple_copy_atomic_cpu && scope()->wrote_volatile()))) {
1651 need_mem_bar = true;
1652 }
1653
1654 BasicType bt = method()->return_type()->basic_type();
1655 switch (bt) {
1656 case T_BYTE:
1657 {
1658 Value shift = append(new Constant(new IntConstant(24)));
1659 x = append(new ShiftOp(Bytecodes::_ishl, x, shift));
1660 x = append(new ShiftOp(Bytecodes::_ishr, x, shift));
1661 break;
1662 }
1663 case T_SHORT:
1664 {
1665 Value shift = append(new Constant(new IntConstant(16)));
1666 x = append(new ShiftOp(Bytecodes::_ishl, x, shift));
1667 x = append(new ShiftOp(Bytecodes::_ishr, x, shift));
1668 break;
1669 }
1670 case T_CHAR:
1671 {
1672 Value mask = append(new Constant(new IntConstant(0xFFFF)));
1673 x = append(new LogicOp(Bytecodes::_iand, x, mask));
1674 break;
1675 }
1676 case T_BOOLEAN:
1677 {
1678 Value mask = append(new Constant(new IntConstant(1)));
1679 x = append(new LogicOp(Bytecodes::_iand, x, mask));
1680 break;
1681 }
1682 default:
1683 break;
1684 }
1685
1686 // Check to see whether we are inlining. If so, Return
1687 // instructions become Gotos to the continuation point.
1688 if (continuation() != nullptr) {
1689
1690 int invoke_bci = state()->caller_state()->bci();
1691
1692 if (x != nullptr && !ignore_return) {
1693 ciMethod* caller = state()->scope()->caller()->method();
1694 Bytecodes::Code invoke_raw_bc = caller->raw_code_at_bci(invoke_bci);
1695 if (invoke_raw_bc == Bytecodes::_invokehandle || invoke_raw_bc == Bytecodes::_invokedynamic) {
1696 ciType* declared_ret_type = caller->get_declared_signature_at_bci(invoke_bci)->return_type();
1697 if (declared_ret_type->is_klass() && x->exact_type() == nullptr &&
1698 x->declared_type() != declared_ret_type && declared_ret_type != compilation()->env()->Object_klass()) {
1699 x = append(new TypeCast(declared_ret_type->as_klass(), x, copy_state_before()));
1700 }
1701 }
1702 }
1703
1704 assert(!method()->is_synchronized() || InlineSynchronizedMethods, "can not inline synchronized methods yet");
1705
1706 if (compilation()->env()->dtrace_method_probes()) {
1707 // Report exit from inline methods
1708 Values* args = new Values(1);
1709 args->push(append(new Constant(new MethodConstant(method()))));
1710 append(new RuntimeCall(voidType, "dtrace_method_exit", CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), args));
1711 }
1712
1713 // If the inlined method is synchronized, the monitor must be
1714 // released before we jump to the continuation block.
1715 if (method()->is_synchronized()) {
1716 assert(state()->locks_size() == 1, "receiver must be locked here");
1717 monitorexit(state()->lock_at(0), SynchronizationEntryBCI);
1718 }
1719
1720 if (need_mem_bar) {
1721 append(new MemBar(lir_membar_storestore));
1722 }
1723
1724 // State at end of inlined method is the state of the caller
1725 // without the method parameters on stack, including the
1726 // return value, if any, of the inlined method on operand stack.
1727 set_state(state()->caller_state()->copy_for_parsing());
1728 if (x != nullptr) {
1729 if (!ignore_return) {
1730 state()->push(x->type(), x);
1731 }
1732 if (profile_return() && x->type()->is_object_kind()) {
1733 ciMethod* caller = state()->scope()->method();
1734 profile_return_type(x, method(), caller, invoke_bci);
1735 }
1736 }
1737 Goto* goto_callee = new Goto(continuation(), false);
1738
1739 // See whether this is the first return; if so, store off some
1740 // of the state for later examination
1741 if (num_returns() == 0) {
1742 set_inline_cleanup_info();
1743 }
1744
1745 // The current bci() is in the wrong scope, so use the bci() of
1746 // the continuation point.
1747 append_with_bci(goto_callee, scope_data()->continuation()->bci());
1748 incr_num_returns();
1749 return;
1750 }
1751
1752 state()->truncate_stack(0);
1753 if (method()->is_synchronized()) {
1754 // perform the unlocking before exiting the method
1755 Value receiver;
1756 if (!method()->is_static()) {
1757 receiver = _initial_state->local_at(0);
1758 } else {
1759 receiver = append(new Constant(new ClassConstant(method()->holder())));
1760 }
1761 append_split(new MonitorExit(receiver, state()->unlock()));
1762 }
1763
1764 if (need_mem_bar) {
1765 append(new MemBar(lir_membar_storestore));
1766 }
1767
1768 assert(!ignore_return, "Ignoring return value works only for inlining");
1769 append(new Return(x));
1770 }
1771
1772 Value GraphBuilder::make_constant(ciConstant field_value, ciField* field) {
1773 if (!field_value.is_valid()) return nullptr;
1774
1775 BasicType field_type = field_value.basic_type();
1776 ValueType* value = as_ValueType(field_value);
1777
1778 // Attach dimension info to stable arrays.
1779 if (FoldStableValues &&
1780 field->is_stable() && field_type == T_ARRAY && !field_value.is_null_or_zero()) {
1781 ciArray* array = field_value.as_object()->as_array();
1782 jint dimension = field->type()->as_array_klass()->dimension();
1783 value = new StableArrayConstant(array, dimension);
1784 }
1785
1786 switch (field_type) {
1787 case T_ARRAY:
1788 case T_OBJECT:
1789 if (field_value.as_object()->should_be_constant()) {
1790 return new Constant(value);
1791 }
1792 return nullptr; // Not a constant.
1793 default:
1794 return new Constant(value);
1795 }
1796 }
1797
1798 void GraphBuilder::copy_inline_content(ciInlineKlass* vk, Value src, int src_off, Value dest, int dest_off, ValueStack* state_before, ciField* enclosing_field) {
1799 for (int i = 0; i < vk->nof_declared_nonstatic_fields(); i++) {
1800 ciField* field = vk->declared_nonstatic_field_at(i);
1801 int offset = field->offset_in_bytes() - vk->payload_offset();
1802 if (field->is_flat()) {
1803 copy_inline_content(field->type()->as_inline_klass(), src, src_off + offset, dest, dest_off + offset, state_before, enclosing_field);
1804 if (!field->is_null_free()) {
1805 // Nullable, copy the null marker using Unsafe because null markers are no real fields
1806 int null_marker_offset = field->null_marker_offset() - vk->payload_offset();
1807 Value offset = append(new Constant(new LongConstant(src_off + null_marker_offset)));
1808 Value nm = append(new UnsafeGet(T_BOOLEAN, src, offset, false));
1809 offset = append(new Constant(new LongConstant(dest_off + null_marker_offset)));
1810 append(new UnsafePut(T_BOOLEAN, dest, offset, nm, false));
1811 }
1812 } else {
1813 Value value = append(new LoadField(src, src_off + offset, field, false, state_before, false));
1814 StoreField* store = new StoreField(dest, dest_off + offset, field, value, false, state_before, false);
1815 store->set_enclosing_field(enclosing_field);
1816 append(store);
1817 }
1818 }
1819 }
1820
1821 void GraphBuilder::access_field(Bytecodes::Code code) {
1822 bool will_link;
1823 ciField* field = stream()->get_field(will_link);
1824 ciInstanceKlass* holder = field->holder();
1825 BasicType field_type = field->type()->basic_type();
1826 ValueType* type = as_ValueType(field_type);
1827
1828 // call will_link again to determine if the field is valid.
1829 const bool needs_patching = !holder->is_loaded() ||
1830 !field->will_link(method(), code) ||
1831 (!field->is_flat() && PatchALot);
1832
1833 ValueStack* state_before = nullptr;
1834 if (!holder->is_initialized() || needs_patching) {
1835 // save state before instruction for debug info when
1836 // deoptimization happens during patching
1837 state_before = copy_state_before();
1838 }
1839
1840 Value obj = nullptr;
1841 if (code == Bytecodes::_getstatic || code == Bytecodes::_putstatic) {
1842 if (state_before != nullptr) {
1843 // build a patching constant
1844 obj = new Constant(new InstanceConstant(holder->java_mirror()), state_before);
1845 } else {
1846 obj = new Constant(new InstanceConstant(holder->java_mirror()));
1847 }
1848 }
1849
1850 if (code == Bytecodes::_putfield) {
1851 scope()->set_wrote_fields();
1852 if (field->is_volatile()) {
1853 scope()->set_wrote_volatile();
1854 }
1855 if (field->is_final()) {
1856 scope()->set_wrote_final();
1857 }
1858 if (field->is_stable()) {
1859 scope()->set_wrote_stable();
1860 }
1861 }
1862
1863 int offset = !needs_patching ? field->offset_in_bytes() : -1;
1864 switch (code) {
1865 case Bytecodes::_getstatic: {
1866 // check for compile-time constants, i.e., initialized static final fields
1867 Value constant = nullptr;
1868 if (field->is_static_constant() && !PatchALot) {
1869 ciConstant field_value = field->constant_value();
1870 assert(!field->is_stable() || !field_value.is_null_or_zero(),
1871 "stable static w/ default value shouldn't be a constant");
1872 constant = make_constant(field_value, field);
1873 }
1874 if (constant != nullptr) {
1875 push(type, append(constant));
1876 } else {
1877 if (state_before == nullptr) {
1878 state_before = copy_state_for_exception();
1879 }
1880 LoadField* load_field = new LoadField(append(obj), offset, field, true,
1881 state_before, needs_patching);
1882 push(type, append(load_field));
1883 }
1884 break;
1885 }
1886 case Bytecodes::_putstatic: {
1887 Value val = pop(type);
1888 if (state_before == nullptr) {
1889 state_before = copy_state_for_exception();
1890 }
1891 if (field_type == T_BOOLEAN) {
1892 Value mask = append(new Constant(new IntConstant(1)));
1893 val = append(new LogicOp(Bytecodes::_iand, val, mask));
1894 }
1895 if (field->is_null_free()) {
1896 null_check(val);
1897 }
1898 if (field->is_null_free() && field->type()->is_loaded() && field->type()->as_inline_klass()->is_empty() && (!method()->is_class_initializer() || field->is_flat())) {
1899 // Storing to a field of an empty, null-free inline type that is already initialized. Ignore.
1900 break;
1901 }
1902 append(new StoreField(append(obj), offset, field, val, true, state_before, needs_patching));
1903 break;
1904 }
1905 case Bytecodes::_getfield: {
1906 // Check for compile-time constants, i.e., trusted final non-static fields.
1907 Value constant = nullptr;
1908 if (state_before == nullptr && field->is_flat()) {
1909 // Save the entire state and re-execute on deopt when accessing flat fields
1910 assert(Interpreter::bytecode_should_reexecute(code), "should reexecute");
1911 state_before = copy_state_before();
1912 }
1913 if (!has_pending_field_access() && !has_pending_load_indexed()) {
1914 obj = apop();
1915 ObjectType* obj_type = obj->type()->as_ObjectType();
1916 if (field->is_constant() && !field->is_flat() && obj_type->is_constant() && !PatchALot) {
1917 ciObject* const_oop = obj_type->constant_value();
1918 if (!const_oop->is_null_object() && const_oop->is_loaded()) {
1919 ciConstant field_value = field->constant_value_of(const_oop);
1920 if (field_value.is_valid()) {
1921 constant = make_constant(field_value, field);
1922 // For CallSite objects add a dependency for invalidation of the optimization.
1923 if (field->is_call_site_target()) {
1924 ciCallSite* call_site = const_oop->as_call_site();
1925 if (!call_site->is_fully_initialized_constant_call_site()) {
1926 ciMethodHandle* target = field_value.as_object()->as_method_handle();
1927 dependency_recorder()->assert_call_site_target_value(call_site, target);
1928 }
1929 }
1930 }
1931 }
1932 }
1933 }
1934 if (constant != nullptr) {
1935 push(type, append(constant));
1936 } else {
1937 if (state_before == nullptr) {
1938 state_before = copy_state_for_exception();
1939 }
1940 if (!field->is_flat()) {
1941 if (has_pending_field_access()) {
1942 assert(!needs_patching, "Can't patch delayed field access");
1943 obj = pending_field_access()->obj();
1944 offset += pending_field_access()->offset() - field->holder()->as_inline_klass()->payload_offset();
1945 field = pending_field_access()->holder()->get_field_by_offset(offset, false);
1946 assert(field != nullptr, "field not found");
1947 set_pending_field_access(nullptr);
1948 } else if (has_pending_load_indexed()) {
1949 assert(!needs_patching, "Can't patch delayed field access");
1950 pending_load_indexed()->update(field, offset - field->holder()->as_inline_klass()->payload_offset());
1951 LoadIndexed* li = pending_load_indexed()->load_instr();
1952 li->set_type(type);
1953 push(type, append(li));
1954 set_pending_load_indexed(nullptr);
1955 break;
1956 }
1957 LoadField* load = new LoadField(obj, offset, field, false, state_before, needs_patching);
1958 Value replacement = !needs_patching ? _memory->load(load) : load;
1959 if (replacement != load) {
1960 assert(replacement->is_linked() || !replacement->can_be_linked(), "should already by linked");
1961 // Writing an (integer) value to a boolean, byte, char or short field includes an implicit narrowing
1962 // conversion. Emit an explicit conversion here to get the correct field value after the write.
1963 switch (field_type) {
1964 case T_BOOLEAN:
1965 case T_BYTE:
1966 replacement = append(new Convert(Bytecodes::_i2b, replacement, type));
1967 break;
1968 case T_CHAR:
1969 replacement = append(new Convert(Bytecodes::_i2c, replacement, type));
1970 break;
1971 case T_SHORT:
1972 replacement = append(new Convert(Bytecodes::_i2s, replacement, type));
1973 break;
1974 default:
1975 break;
1976 }
1977 push(type, replacement);
1978 } else {
1979 push(type, append(load));
1980 }
1981 } else {
1982 // Flat field
1983 assert(!needs_patching, "Can't patch flat inline type field access");
1984 ciInlineKlass* inline_klass = field->type()->as_inline_klass();
1985 bool is_naturally_atomic = inline_klass->nof_declared_nonstatic_fields() <= 1;
1986 bool needs_atomic_access = !field->is_null_free() || (field->is_volatile() && !is_naturally_atomic);
1987 if (needs_atomic_access) {
1988 assert(!has_pending_field_access(), "Pending field accesses are not supported");
1989 LoadField* load = new LoadField(obj, offset, field, false, state_before, needs_patching);
1990 push(type, append(load));
1991 } else {
1992 assert(field->is_null_free(), "must be null-free");
1993 // Look at the next bytecode to check if we can delay the field access
1994 bool can_delay_access = false;
1995 ciBytecodeStream s(method());
1996 s.force_bci(bci());
1997 s.next();
1998 if (s.cur_bc() == Bytecodes::_getfield && !needs_patching) {
1999 ciField* next_field = s.get_field(will_link);
2000 bool next_needs_patching = !next_field->holder()->is_loaded() ||
2001 !next_field->will_link(method(), Bytecodes::_getfield) ||
2002 PatchALot;
2003 // We can't update the offset for atomic accesses
2004 bool next_needs_atomic_access = !next_field->is_null_free() || next_field->is_volatile();
2005 can_delay_access = C1UseDelayedFlattenedFieldReads && !next_needs_patching && !next_needs_atomic_access;
2006 }
2007 if (can_delay_access) {
2008 if (has_pending_load_indexed()) {
2009 pending_load_indexed()->update(field, offset - field->holder()->as_inline_klass()->payload_offset());
2010 } else if (has_pending_field_access()) {
2011 pending_field_access()->inc_offset(offset - field->holder()->as_inline_klass()->payload_offset());
2012 } else {
2013 null_check(obj);
2014 DelayedFieldAccess* dfa = new DelayedFieldAccess(obj, field->holder(), field->offset_in_bytes(), state_before);
2015 set_pending_field_access(dfa);
2016 }
2017 } else {
2018 scope()->set_wrote_final();
2019 scope()->set_wrote_fields();
2020 bool need_membar = false;
2021 if (has_pending_load_indexed()) {
2022 assert(!needs_patching, "Can't patch delayed field access");
2023 pending_load_indexed()->update(field, offset - field->holder()->as_inline_klass()->payload_offset());
2024 NewInstance* vt = new NewInstance(inline_klass, pending_load_indexed()->state_before(), false, true);
2025 _memory->new_instance(vt);
2026 pending_load_indexed()->load_instr()->set_vt(vt);
2027 apush(append_split(vt));
2028 append(pending_load_indexed()->load_instr());
2029 set_pending_load_indexed(nullptr);
2030 need_membar = true;
2031 } else {
2032 if (has_pending_field_access()) {
2033 state_before = pending_field_access()->state_before();
2034 }
2035 NewInstance* new_instance = new NewInstance(inline_klass, state_before, false, true);
2036 _memory->new_instance(new_instance);
2037 apush(append_split(new_instance));
2038 if (has_pending_field_access()) {
2039 copy_inline_content(inline_klass, pending_field_access()->obj(),
2040 pending_field_access()->offset() + field->offset_in_bytes() - field->holder()->as_inline_klass()->payload_offset(),
2041 new_instance, inline_klass->payload_offset(), state_before);
2042 set_pending_field_access(nullptr);
2043 } else {
2044 if (field->type()->as_instance_klass()->is_initialized() && field->type()->as_inline_klass()->is_empty()) {
2045 // Needs an explicit null check because below code does not perform any actual load if there are no fields
2046 null_check(obj);
2047 }
2048 copy_inline_content(inline_klass, obj, field->offset_in_bytes(), new_instance, inline_klass->payload_offset(), state_before);
2049 }
2050 need_membar = true;
2051 }
2052 if (need_membar) {
2053 // If we allocated a new instance ensure the stores to copy the
2054 // field contents are visible before any subsequent store that
2055 // publishes this reference.
2056 append(new MemBar(lir_membar_storestore));
2057 }
2058 }
2059 }
2060 }
2061 }
2062 break;
2063 }
2064 case Bytecodes::_putfield: {
2065 Value val = pop(type);
2066 obj = apop();
2067 if (state_before == nullptr) {
2068 state_before = copy_state_for_exception();
2069 }
2070 if (field_type == T_BOOLEAN) {
2071 Value mask = append(new Constant(new IntConstant(1)));
2072 val = append(new LogicOp(Bytecodes::_iand, val, mask));
2073 }
2074
2075 if (field->is_null_free() && field->type()->is_loaded() && field->type()->as_inline_klass()->is_empty() && (!method()->is_object_constructor() || field->is_flat())) {
2076 // Storing to a field of an empty, null-free inline type that is already initialized. Ignore.
2077 null_check(obj);
2078 null_check(val);
2079 } else if (!field->is_flat()) {
2080 if (field->is_null_free()) {
2081 null_check(val);
2082 }
2083 StoreField* store = new StoreField(obj, offset, field, val, false, state_before, needs_patching);
2084 if (!needs_patching) store = _memory->store(store);
2085 if (store != nullptr) {
2086 append(store);
2087 }
2088 } else {
2089 // Flat field
2090 assert(!needs_patching, "Can't patch flat inline type field access");
2091 ciInlineKlass* inline_klass = field->type()->as_inline_klass();
2092 bool is_naturally_atomic = inline_klass->nof_declared_nonstatic_fields() <= 1;
2093 bool needs_atomic_access = !field->is_null_free() || (field->is_volatile() && !is_naturally_atomic);
2094 if (needs_atomic_access) {
2095 if (field->is_null_free()) {
2096 null_check(val);
2097 }
2098 append(new StoreField(obj, offset, field, val, false, state_before, needs_patching));
2099 } else {
2100 assert(field->is_null_free(), "must be null-free");
2101 copy_inline_content(inline_klass, val, inline_klass->payload_offset(), obj, offset, state_before, field);
2102 }
2103 }
2104 break;
2105 }
2106 default:
2107 ShouldNotReachHere();
2108 break;
2109 }
2110 }
2111
2112 Dependencies* GraphBuilder::dependency_recorder() const {
2113 return compilation()->dependency_recorder();
2114 }
2115
2116 // How many arguments do we want to profile?
2117 Values* GraphBuilder::args_list_for_profiling(ciMethod* target, int& start, bool may_have_receiver) {
2118 int n = 0;
2119 bool has_receiver = may_have_receiver && Bytecodes::has_receiver(method()->java_code_at_bci(bci()));
2120 start = has_receiver ? 1 : 0;
2121 if (profile_arguments()) {
2122 ciProfileData* data = method()->method_data()->bci_to_data(bci());
2123 if (data != nullptr && (data->is_CallTypeData() || data->is_VirtualCallTypeData())) {
2124 n = data->is_CallTypeData() ? data->as_CallTypeData()->number_of_arguments() : data->as_VirtualCallTypeData()->number_of_arguments();
2125 }
2126 }
2127 // If we are inlining then we need to collect arguments to profile parameters for the target
2128 if (profile_parameters() && target != nullptr) {
2129 if (target->method_data() != nullptr && target->method_data()->parameters_type_data() != nullptr) {
2130 // The receiver is profiled on method entry so it's included in
2131 // the number of parameters but here we're only interested in
2132 // actual arguments.
2133 n = MAX2(n, target->method_data()->parameters_type_data()->number_of_parameters() - start);
2134 }
2135 }
2136 if (n > 0) {
2137 return new Values(n);
2138 }
2139 return nullptr;
2140 }
2141
2142 void GraphBuilder::check_args_for_profiling(Values* obj_args, int expected) {
2143 #ifdef ASSERT
2144 bool ignored_will_link;
2145 ciSignature* declared_signature = nullptr;
2146 ciMethod* real_target = method()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
2147 assert(expected == obj_args->capacity() || real_target->is_method_handle_intrinsic(), "missed on arg?");
2148 #endif
2149 }
2150
2151 // Collect arguments that we want to profile in a list
2152 Values* GraphBuilder::collect_args_for_profiling(Values* args, ciMethod* target, bool may_have_receiver) {
2153 int start = 0;
2154 Values* obj_args = args_list_for_profiling(target, start, may_have_receiver);
2155 if (obj_args == nullptr) {
2156 return nullptr;
2157 }
2158 int s = obj_args->capacity();
2159 // if called through method handle invoke, some arguments may have been popped
2160 for (int i = start, j = 0; j < s && i < args->length(); i++) {
2161 if (args->at(i)->type()->is_object_kind()) {
2162 obj_args->push(args->at(i));
2163 j++;
2164 }
2165 }
2166 check_args_for_profiling(obj_args, s);
2167 return obj_args;
2168 }
2169
2170 void GraphBuilder::invoke(Bytecodes::Code code) {
2171 bool will_link;
2172 ciSignature* declared_signature = nullptr;
2173 ciMethod* target = stream()->get_method(will_link, &declared_signature);
2174 ciKlass* holder = stream()->get_declared_method_holder();
2175 const Bytecodes::Code bc_raw = stream()->cur_bc_raw();
2176 assert(declared_signature != nullptr, "cannot be null");
2177 assert(will_link == target->is_loaded(), "");
2178 JFR_ONLY(Jfr::on_resolution(this, holder, target); CHECK_BAILOUT();)
2179
2180 ciInstanceKlass* klass = target->holder();
2181 assert(!target->is_loaded() || klass->is_loaded(), "loaded target must imply loaded klass");
2182
2183 // check if CHA possible: if so, change the code to invoke_special
2184 ciInstanceKlass* calling_klass = method()->holder();
2185 ciInstanceKlass* callee_holder = ciEnv::get_instance_klass_for_declared_method_holder(holder);
2186 ciInstanceKlass* actual_recv = callee_holder;
2187
2188 CompileLog* log = compilation()->log();
2189 if (log != nullptr)
2190 log->elem("call method='%d' instr='%s'",
2191 log->identify(target),
2192 Bytecodes::name(code));
2193
2194 // Some methods are obviously bindable without any type checks so
2195 // convert them directly to an invokespecial or invokestatic.
2196 if (target->is_loaded() && !target->is_abstract() && target->can_be_statically_bound()) {
2197 switch (bc_raw) {
2198 case Bytecodes::_invokeinterface:
2199 // convert to invokespecial if the target is the private interface method.
2200 if (target->is_private()) {
2201 assert(holder->is_interface(), "How did we get a non-interface method here!");
2202 code = Bytecodes::_invokespecial;
2203 }
2204 break;
2205 case Bytecodes::_invokevirtual:
2206 code = Bytecodes::_invokespecial;
2207 break;
2208 case Bytecodes::_invokehandle:
2209 code = target->is_static() ? Bytecodes::_invokestatic : Bytecodes::_invokespecial;
2210 break;
2211 default:
2212 break;
2213 }
2214 } else {
2215 if (bc_raw == Bytecodes::_invokehandle) {
2216 assert(!will_link, "should come here only for unlinked call");
2217 code = Bytecodes::_invokespecial;
2218 }
2219 }
2220
2221 if (code == Bytecodes::_invokespecial) {
2222 // Additional receiver subtype checks for interface calls via invokespecial or invokeinterface.
2223 ciKlass* receiver_constraint = nullptr;
2224
2225 if (bc_raw == Bytecodes::_invokeinterface) {
2226 receiver_constraint = holder;
2227 } else if (bc_raw == Bytecodes::_invokespecial && !target->is_object_constructor() && calling_klass->is_interface()) {
2228 receiver_constraint = calling_klass;
2229 }
2230
2231 if (receiver_constraint != nullptr) {
2232 int index = state()->stack_size() - (target->arg_size_no_receiver() + 1);
2233 Value receiver = state()->stack_at(index);
2234 CheckCast* c = new CheckCast(receiver_constraint, receiver, copy_state_before());
2235 // go to uncommon_trap when checkcast fails
2236 c->set_invokespecial_receiver_check();
2237 state()->stack_at_put(index, append_split(c));
2238 }
2239 }
2240
2241 // Push appendix argument (MethodType, CallSite, etc.), if one.
2242 bool patch_for_appendix = false;
2243 int patching_appendix_arg = 0;
2244 if (Bytecodes::has_optional_appendix(bc_raw) && (!will_link || PatchALot)) {
2245 Value arg = append(new Constant(new ObjectConstant(compilation()->env()->unloaded_ciinstance()), copy_state_before()));
2246 apush(arg);
2247 patch_for_appendix = true;
2248 patching_appendix_arg = (will_link && stream()->has_appendix()) ? 0 : 1;
2249 } else if (stream()->has_appendix()) {
2250 ciObject* appendix = stream()->get_appendix();
2251 Value arg = append(new Constant(new ObjectConstant(appendix)));
2252 apush(arg);
2253 }
2254
2255 ciMethod* cha_monomorphic_target = nullptr;
2256 ciMethod* exact_target = nullptr;
2257 Value better_receiver = nullptr;
2258 if (UseCHA && target->is_loaded() &&
2259 !(// %%% FIXME: Are both of these relevant?
2260 target->is_method_handle_intrinsic() ||
2261 target->is_compiled_lambda_form()) &&
2262 !patch_for_appendix) {
2263 Value receiver = nullptr;
2264 ciInstanceKlass* receiver_klass = nullptr;
2265 bool type_is_exact = false;
2266 // try to find a precise receiver type
2267 if (will_link && !target->is_static()) {
2268 int index = state()->stack_size() - (target->arg_size_no_receiver() + 1);
2269 receiver = state()->stack_at(index);
2270 ciType* type = receiver->exact_type();
2271 if (type != nullptr && type->is_loaded()) {
2272 assert(!type->is_instance_klass() || !type->as_instance_klass()->is_interface(), "Must not be an interface");
2273 // Detects non-interface instances, primitive arrays, and some object arrays.
2274 // Array receivers can only call Object methods, so we should be able to allow
2275 // all object arrays here too, even those with unloaded types.
2276 receiver_klass = (ciInstanceKlass*) type;
2277 type_is_exact = true;
2278 }
2279 if (type == nullptr) {
2280 type = receiver->declared_type();
2281 if (type != nullptr && type->is_loaded() &&
2282 type->is_instance_klass() && !type->as_instance_klass()->is_interface()) {
2283 receiver_klass = (ciInstanceKlass*) type;
2284 if (receiver_klass->is_leaf_type() && !receiver_klass->is_final()) {
2285 // Insert a dependency on this type since
2286 // find_monomorphic_target may assume it's already done.
2287 dependency_recorder()->assert_leaf_type(receiver_klass);
2288 type_is_exact = true;
2289 }
2290 }
2291 }
2292 }
2293 if (receiver_klass != nullptr && type_is_exact &&
2294 receiver_klass->is_loaded() && code != Bytecodes::_invokespecial) {
2295 // If we have the exact receiver type we can bind directly to
2296 // the method to call.
2297 exact_target = target->resolve_invoke(calling_klass, receiver_klass);
2298 if (exact_target != nullptr) {
2299 target = exact_target;
2300 code = Bytecodes::_invokespecial;
2301 }
2302 }
2303 if (receiver_klass != nullptr &&
2304 receiver_klass->is_subtype_of(actual_recv) &&
2305 actual_recv->is_initialized()) {
2306 actual_recv = receiver_klass;
2307 }
2308
2309 if ((code == Bytecodes::_invokevirtual && callee_holder->is_initialized()) ||
2310 (code == Bytecodes::_invokeinterface && callee_holder->is_initialized() && !actual_recv->is_interface())) {
2311 // Use CHA on the receiver to select a more precise method.
2312 cha_monomorphic_target = target->find_monomorphic_target(calling_klass, callee_holder, actual_recv);
2313 } else if (code == Bytecodes::_invokeinterface && callee_holder->is_loaded() && receiver != nullptr) {
2314 assert(callee_holder->is_interface(), "invokeinterface to non interface?");
2315 // If there is only one implementor of this interface then we
2316 // may be able bind this invoke directly to the implementing
2317 // klass but we need both a dependence on the single interface
2318 // and on the method we bind to. Additionally since all we know
2319 // about the receiver type is the it's supposed to implement the
2320 // interface we have to insert a check that it's the class we
2321 // expect. Interface types are not checked by the verifier so
2322 // they are roughly equivalent to Object.
2323 // The number of implementors for declared_interface is less or
2324 // equal to the number of implementors for target->holder() so
2325 // if number of implementors of target->holder() == 1 then
2326 // number of implementors for decl_interface is 0 or 1. If
2327 // it's 0 then no class implements decl_interface and there's
2328 // no point in inlining.
2329 ciInstanceKlass* declared_interface = callee_holder;
2330 ciInstanceKlass* singleton = declared_interface->unique_implementor();
2331 if (singleton != nullptr) {
2332 assert(singleton != declared_interface, "not a unique implementor");
2333 cha_monomorphic_target = target->find_monomorphic_target(calling_klass, declared_interface, singleton);
2334 if (cha_monomorphic_target != nullptr) {
2335 ciInstanceKlass* holder = cha_monomorphic_target->holder();
2336 ciInstanceKlass* constraint = (holder->is_subtype_of(singleton) ? holder : singleton); // avoid upcasts
2337 if (holder != compilation()->env()->Object_klass() &&
2338 (!type_is_exact || receiver_klass->is_subtype_of(constraint))) {
2339 actual_recv = declared_interface;
2340
2341 // insert a check it's really the expected class.
2342 CheckCast* c = new CheckCast(constraint, receiver, copy_state_for_exception());
2343 c->set_incompatible_class_change_check();
2344 c->set_direct_compare(constraint->is_final());
2345 // pass the result of the checkcast so that the compiler has
2346 // more accurate type info in the inlinee
2347 better_receiver = append_split(c);
2348
2349 dependency_recorder()->assert_unique_implementor(declared_interface, singleton);
2350 } else {
2351 cha_monomorphic_target = nullptr;
2352 }
2353 }
2354 }
2355 }
2356 }
2357
2358 if (cha_monomorphic_target != nullptr) {
2359 assert(!target->can_be_statically_bound() || target == cha_monomorphic_target, "");
2360 assert(!cha_monomorphic_target->is_abstract(), "");
2361 if (!cha_monomorphic_target->can_be_statically_bound(actual_recv)) {
2362 // If we inlined because CHA revealed only a single target method,
2363 // then we are dependent on that target method not getting overridden
2364 // by dynamic class loading. Be sure to test the "static" receiver
2365 // dest_method here, as opposed to the actual receiver, which may
2366 // falsely lead us to believe that the receiver is final or private.
2367 dependency_recorder()->assert_unique_concrete_method(actual_recv, cha_monomorphic_target, callee_holder, target);
2368 }
2369 code = Bytecodes::_invokespecial;
2370 }
2371
2372 // check if we could do inlining
2373 if (!PatchALot && Inline && target->is_loaded() && !patch_for_appendix &&
2374 callee_holder->is_loaded()) { // the effect of symbolic reference resolution
2375
2376 // callee is known => check if we have static binding
2377 if ((code == Bytecodes::_invokestatic && klass->is_initialized()) || // invokestatic involves an initialization barrier on declaring class
2378 code == Bytecodes::_invokespecial ||
2379 (code == Bytecodes::_invokevirtual && target->is_final_method()) ||
2380 code == Bytecodes::_invokedynamic) {
2381 // static binding => check if callee is ok
2382 ciMethod* inline_target = (cha_monomorphic_target != nullptr) ? cha_monomorphic_target : target;
2383 bool holder_known = (cha_monomorphic_target != nullptr) || (exact_target != nullptr);
2384 bool success = try_inline(inline_target, holder_known, false /* ignore_return */, code, better_receiver);
2385
2386 CHECK_BAILOUT();
2387 clear_inline_bailout();
2388
2389 if (success) {
2390 // Register dependence if JVMTI has either breakpoint
2391 // setting or hotswapping of methods capabilities since they may
2392 // cause deoptimization.
2393 if (compilation()->env()->jvmti_can_hotswap_or_post_breakpoint()) {
2394 dependency_recorder()->assert_evol_method(inline_target);
2395 }
2396 return;
2397 }
2398 } else {
2399 print_inlining(target, "no static binding", /*success*/ false);
2400 }
2401 } else {
2402 print_inlining(target, "not inlineable", /*success*/ false);
2403 }
2404
2405 // If we attempted an inline which did not succeed because of a
2406 // bailout during construction of the callee graph, the entire
2407 // compilation has to be aborted. This is fairly rare and currently
2408 // seems to only occur for jasm-generated classes which contain
2409 // jsr/ret pairs which are not associated with finally clauses and
2410 // do not have exception handlers in the containing method, and are
2411 // therefore not caught early enough to abort the inlining without
2412 // corrupting the graph. (We currently bail out with a non-empty
2413 // stack at a ret in these situations.)
2414 CHECK_BAILOUT();
2415
2416 // inlining not successful => standard invoke
2417 ValueType* result_type = as_ValueType(declared_signature->return_type());
2418 ValueStack* state_before = copy_state_exhandling();
2419
2420 // The bytecode (code) might change in this method so we are checking this very late.
2421 const bool has_receiver =
2422 code == Bytecodes::_invokespecial ||
2423 code == Bytecodes::_invokevirtual ||
2424 code == Bytecodes::_invokeinterface;
2425 Values* args = state()->pop_arguments(target->arg_size_no_receiver() + patching_appendix_arg);
2426 Value recv = has_receiver ? apop() : nullptr;
2427
2428 // A null check is required here (when there is a receiver) for any of the following cases
2429 // - invokespecial, always need a null check.
2430 // - invokevirtual, when the target is final and loaded. Calls to final targets will become optimized
2431 // and require null checking. If the target is loaded a null check is emitted here.
2432 // If the target isn't loaded the null check must happen after the call resolution. We achieve that
2433 // by using the target methods unverified entry point (see CompiledIC::compute_monomorphic_entry).
2434 // (The JVM specification requires that LinkageError must be thrown before a NPE. An unloaded target may
2435 // potentially fail, and can't have the null check before the resolution.)
2436 // - A call that will be profiled. (But we can't add a null check when the target is unloaded, by the same
2437 // reason as above, so calls with a receiver to unloaded targets can't be profiled.)
2438 //
2439 // Normal invokevirtual will perform the null check during lookup
2440
2441 bool need_null_check = (code == Bytecodes::_invokespecial) ||
2442 (target->is_loaded() && (target->is_final_method() || (is_profiling() && profile_calls())));
2443
2444 if (need_null_check) {
2445 if (recv != nullptr) {
2446 null_check(recv);
2447 }
2448
2449 if (is_profiling()) {
2450 // Note that we'd collect profile data in this method if we wanted it.
2451 compilation()->set_would_profile(true);
2452
2453 if (profile_calls()) {
2454 assert(cha_monomorphic_target == nullptr || exact_target == nullptr, "both can not be set");
2455 ciKlass* target_klass = nullptr;
2456 if (cha_monomorphic_target != nullptr) {
2457 target_klass = cha_monomorphic_target->holder();
2458 } else if (exact_target != nullptr) {
2459 target_klass = exact_target->holder();
2460 }
2461 profile_call(target, recv, target_klass, collect_args_for_profiling(args, nullptr, false), false);
2462 }
2463 }
2464 }
2465
2466 Invoke* result = new Invoke(code, result_type, recv, args, target, state_before);
2467 // push result
2468 append_split(result);
2469
2470 if (result_type != voidType) {
2471 push(result_type, result);
2472 }
2473 if (profile_return() && result_type->is_object_kind()) {
2474 profile_return_type(result, target);
2475 }
2476 }
2477
2478
2479 void GraphBuilder::new_instance(int klass_index) {
2480 ValueStack* state_before = copy_state_exhandling();
2481 ciKlass* klass = stream()->get_klass();
2482 assert(klass->is_instance_klass(), "must be an instance klass");
2483 NewInstance* new_instance = new NewInstance(klass->as_instance_klass(), state_before, stream()->is_unresolved_klass(), false);
2484 _memory->new_instance(new_instance);
2485 apush(append_split(new_instance));
2486 }
2487
2488 void GraphBuilder::new_type_array() {
2489 ValueStack* state_before = copy_state_exhandling();
2490 apush(append_split(new NewTypeArray(ipop(), (BasicType)stream()->get_index(), state_before, true)));
2491 }
2492
2493
2494 void GraphBuilder::new_object_array() {
2495 ciKlass* klass = stream()->get_klass();
2496 ValueStack* state_before = !klass->is_loaded() || PatchALot ? copy_state_before() : copy_state_exhandling();
2497 NewArray* n = new NewObjectArray(klass, ipop(), state_before);
2498 apush(append_split(n));
2499 }
2500
2501
2502 bool GraphBuilder::direct_compare(ciKlass* k) {
2503 if (k->is_loaded() && k->is_instance_klass() && !UseSlowPath) {
2504 ciInstanceKlass* ik = k->as_instance_klass();
2505 if (ik->is_final()) {
2506 return true;
2507 } else {
2508 if (UseCHA && !(ik->has_subklass() || ik->is_interface())) {
2509 // test class is leaf class
2510 dependency_recorder()->assert_leaf_type(ik);
2511 return true;
2512 }
2513 }
2514 }
2515 return false;
2516 }
2517
2518
2519 void GraphBuilder::check_cast(int klass_index) {
2520 ciKlass* klass = stream()->get_klass();
2521 ValueStack* state_before = !klass->is_loaded() || PatchALot ? copy_state_before() : copy_state_for_exception();
2522 CheckCast* c = new CheckCast(klass, apop(), state_before);
2523 apush(append_split(c));
2524 c->set_direct_compare(direct_compare(klass));
2525
2526 if (is_profiling()) {
2527 // Note that we'd collect profile data in this method if we wanted it.
2528 compilation()->set_would_profile(true);
2529
2530 if (profile_checkcasts()) {
2531 c->set_profiled_method(method());
2532 c->set_profiled_bci(bci());
2533 c->set_should_profile(true);
2534 }
2535 }
2536 }
2537
2538
2539 void GraphBuilder::instance_of(int klass_index) {
2540 ciKlass* klass = stream()->get_klass();
2541 ValueStack* state_before = !klass->is_loaded() || PatchALot ? copy_state_before() : copy_state_exhandling();
2542 InstanceOf* i = new InstanceOf(klass, apop(), state_before);
2543 ipush(append_split(i));
2544 i->set_direct_compare(direct_compare(klass));
2545
2546 if (is_profiling()) {
2547 // Note that we'd collect profile data in this method if we wanted it.
2548 compilation()->set_would_profile(true);
2549
2550 if (profile_checkcasts()) {
2551 i->set_profiled_method(method());
2552 i->set_profiled_bci(bci());
2553 i->set_should_profile(true);
2554 }
2555 }
2556 }
2557
2558
2559 void GraphBuilder::monitorenter(Value x, int bci) {
2560 bool maybe_inlinetype = false;
2561 if (bci == InvocationEntryBci) {
2562 // Called by GraphBuilder::inline_sync_entry.
2563 #ifdef ASSERT
2564 ciType* obj_type = x->declared_type();
2565 assert(obj_type == nullptr || !obj_type->is_inlinetype(), "inline types cannot have synchronized methods");
2566 #endif
2567 } else {
2568 // We are compiling a monitorenter bytecode
2569 if (EnableValhalla) {
2570 ciType* obj_type = x->declared_type();
2571 if (obj_type == nullptr || obj_type->as_klass()->can_be_inline_klass()) {
2572 // If we're (possibly) locking on an inline type, check for markWord::always_locked_pattern
2573 // and throw IMSE. (obj_type is null for Phi nodes, so let's just be conservative).
2574 maybe_inlinetype = true;
2575 }
2576 }
2577 }
2578
2579 // save state before locking in case of deoptimization after a NullPointerException
2580 ValueStack* state_before = copy_state_for_exception_with_bci(bci);
2581 append_with_bci(new MonitorEnter(x, state()->lock(x), state_before, maybe_inlinetype), bci);
2582 kill_all();
2583 }
2584
2585
2586 void GraphBuilder::monitorexit(Value x, int bci) {
2587 append_with_bci(new MonitorExit(x, state()->unlock()), bci);
2588 kill_all();
2589 }
2590
2591
2592 void GraphBuilder::new_multi_array(int dimensions) {
2593 ciKlass* klass = stream()->get_klass();
2594 ValueStack* state_before = !klass->is_loaded() || PatchALot ? copy_state_before() : copy_state_exhandling();
2595
2596 Values* dims = new Values(dimensions, dimensions, nullptr);
2597 // fill in all dimensions
2598 int i = dimensions;
2599 while (i-- > 0) dims->at_put(i, ipop());
2600 // create array
2601 NewArray* n = new NewMultiArray(klass, dims, state_before);
2602 apush(append_split(n));
2603 }
2604
2605
2606 void GraphBuilder::throw_op(int bci) {
2607 // We require that the debug info for a Throw be the "state before"
2608 // the Throw (i.e., exception oop is still on TOS)
2609 ValueStack* state_before = copy_state_before_with_bci(bci);
2610 Throw* t = new Throw(apop(), state_before);
2611 // operand stack not needed after a throw
2612 state()->truncate_stack(0);
2613 append_with_bci(t, bci);
2614 }
2615
2616
2617 Instruction* GraphBuilder::append_with_bci(Instruction* instr, int bci) {
2618 Canonicalizer canon(compilation(), instr, bci);
2619 Instruction* i1 = canon.canonical();
2620 if (i1->is_linked() || !i1->can_be_linked()) {
2621 // Canonicalizer returned an instruction which was already
2622 // appended so simply return it.
2623 return i1;
2624 }
2625
2626 if (UseLocalValueNumbering) {
2627 // Lookup the instruction in the ValueMap and add it to the map if
2628 // it's not found.
2629 Instruction* i2 = vmap()->find_insert(i1);
2630 if (i2 != i1) {
2631 // found an entry in the value map, so just return it.
2632 assert(i2->is_linked(), "should already be linked");
2633 return i2;
2634 }
2635 ValueNumberingEffects vne(vmap());
2636 i1->visit(&vne);
2637 }
2638
2639 // i1 was not eliminated => append it
2640 assert(i1->next() == nullptr, "shouldn't already be linked");
2641 _last = _last->set_next(i1, canon.bci());
2642
2643 if (++_instruction_count >= InstructionCountCutoff && !bailed_out()) {
2644 // set the bailout state but complete normal processing. We
2645 // might do a little more work before noticing the bailout so we
2646 // want processing to continue normally until it's noticed.
2647 bailout("Method and/or inlining is too large");
2648 }
2649
2650 #ifndef PRODUCT
2651 if (PrintIRDuringConstruction) {
2652 InstructionPrinter ip;
2653 ip.print_line(i1);
2654 if (Verbose) {
2655 state()->print();
2656 }
2657 }
2658 #endif
2659
2660 // save state after modification of operand stack for StateSplit instructions
2661 StateSplit* s = i1->as_StateSplit();
2662 if (s != nullptr) {
2663 if (EliminateFieldAccess) {
2664 Intrinsic* intrinsic = s->as_Intrinsic();
2665 if (s->as_Invoke() != nullptr || (intrinsic && !intrinsic->preserves_state())) {
2666 _memory->kill();
2667 }
2668 }
2669 s->set_state(state()->copy(ValueStack::StateAfter, canon.bci()));
2670 }
2671
2672 // set up exception handlers for this instruction if necessary
2673 if (i1->can_trap()) {
2674 i1->set_exception_handlers(handle_exception(i1));
2675 assert(i1->exception_state() != nullptr || !i1->needs_exception_state() || bailed_out(), "handle_exception must set exception state");
2676 }
2677 return i1;
2678 }
2679
2680
2681 Instruction* GraphBuilder::append(Instruction* instr) {
2682 assert(instr->as_StateSplit() == nullptr || instr->as_BlockEnd() != nullptr, "wrong append used");
2683 return append_with_bci(instr, bci());
2684 }
2685
2686
2687 Instruction* GraphBuilder::append_split(StateSplit* instr) {
2688 return append_with_bci(instr, bci());
2689 }
2690
2691
2692 void GraphBuilder::null_check(Value value) {
2693 if (value->as_NewArray() != nullptr || value->as_NewInstance() != nullptr) {
2694 return;
2695 } else {
2696 Constant* con = value->as_Constant();
2697 if (con) {
2698 ObjectType* c = con->type()->as_ObjectType();
2699 if (c && c->is_loaded()) {
2700 ObjectConstant* oc = c->as_ObjectConstant();
2701 if (!oc || !oc->value()->is_null_object()) {
2702 return;
2703 }
2704 }
2705 }
2706 if (value->is_null_free()) return;
2707 }
2708 append(new NullCheck(value, copy_state_for_exception()));
2709 }
2710
2711
2712
2713 XHandlers* GraphBuilder::handle_exception(Instruction* instruction) {
2714 if (!has_handler() && (!instruction->needs_exception_state() || instruction->exception_state() != nullptr)) {
2715 assert(instruction->exception_state() == nullptr
2716 || instruction->exception_state()->kind() == ValueStack::EmptyExceptionState
2717 || (instruction->exception_state()->kind() == ValueStack::ExceptionState && _compilation->env()->should_retain_local_variables()),
2718 "exception_state should be of exception kind");
2719 return new XHandlers();
2720 }
2721
2722 XHandlers* exception_handlers = new XHandlers();
2723 ScopeData* cur_scope_data = scope_data();
2724 ValueStack* cur_state = instruction->state_before();
2725 ValueStack* prev_state = nullptr;
2726 int scope_count = 0;
2727
2728 assert(cur_state != nullptr, "state_before must be set");
2729 do {
2730 int cur_bci = cur_state->bci();
2731 assert(cur_scope_data->scope() == cur_state->scope(), "scopes do not match");
2732 assert(cur_bci == SynchronizationEntryBCI || cur_bci == cur_scope_data->stream()->cur_bci()
2733 || has_pending_field_access() || has_pending_load_indexed(), "invalid bci");
2734
2735
2736 // join with all potential exception handlers
2737 XHandlers* list = cur_scope_data->xhandlers();
2738 const int n = list->length();
2739 for (int i = 0; i < n; i++) {
2740 XHandler* h = list->handler_at(i);
2741 if (h->covers(cur_bci)) {
2742 // h is a potential exception handler => join it
2743 compilation()->set_has_exception_handlers(true);
2744
2745 BlockBegin* entry = h->entry_block();
2746 if (entry == block()) {
2747 // It's acceptable for an exception handler to cover itself
2748 // but we don't handle that in the parser currently. It's
2749 // very rare so we bailout instead of trying to handle it.
2750 BAILOUT_("exception handler covers itself", exception_handlers);
2751 }
2752 assert(entry->bci() == h->handler_bci(), "must match");
2753 assert(entry->bci() == -1 || entry == cur_scope_data->block_at(entry->bci()), "blocks must correspond");
2754
2755 // previously this was a BAILOUT, but this is not necessary
2756 // now because asynchronous exceptions are not handled this way.
2757 assert(entry->state() == nullptr || cur_state->total_locks_size() == entry->state()->total_locks_size(), "locks do not match");
2758
2759 // xhandler start with an empty expression stack
2760 if (cur_state->stack_size() != 0) {
2761 // locals are preserved
2762 // stack will be truncated
2763 cur_state = cur_state->copy(ValueStack::ExceptionState, cur_state->bci());
2764 }
2765 if (instruction->exception_state() == nullptr) {
2766 instruction->set_exception_state(cur_state);
2767 }
2768
2769 // Note: Usually this join must work. However, very
2770 // complicated jsr-ret structures where we don't ret from
2771 // the subroutine can cause the objects on the monitor
2772 // stacks to not match because blocks can be parsed twice.
2773 // The only test case we've seen so far which exhibits this
2774 // problem is caught by the infinite recursion test in
2775 // GraphBuilder::jsr() if the join doesn't work.
2776 if (!entry->try_merge(cur_state, compilation()->has_irreducible_loops())) {
2777 BAILOUT_("error while joining with exception handler, prob. due to complicated jsr/rets", exception_handlers);
2778 }
2779
2780 // add current state for correct handling of phi functions at begin of xhandler
2781 int phi_operand = entry->add_exception_state(cur_state);
2782
2783 // add entry to the list of xhandlers of this block
2784 _block->add_exception_handler(entry);
2785
2786 // add back-edge from xhandler entry to this block
2787 if (!entry->is_predecessor(_block)) {
2788 entry->add_predecessor(_block);
2789 }
2790
2791 // clone XHandler because phi_operand and scope_count can not be shared
2792 XHandler* new_xhandler = new XHandler(h);
2793 new_xhandler->set_phi_operand(phi_operand);
2794 new_xhandler->set_scope_count(scope_count);
2795 exception_handlers->append(new_xhandler);
2796
2797 // fill in exception handler subgraph lazily
2798 assert(!entry->is_set(BlockBegin::was_visited_flag), "entry must not be visited yet");
2799 cur_scope_data->add_to_work_list(entry);
2800
2801 // stop when reaching catchall
2802 if (h->catch_type() == 0) {
2803 return exception_handlers;
2804 }
2805 }
2806 }
2807
2808 if (exception_handlers->length() == 0) {
2809 // This scope and all callees do not handle exceptions, so the local
2810 // variables of this scope are not needed. However, the scope itself is
2811 // required for a correct exception stack trace -> clear out the locals.
2812 // Stack and locals are invalidated but not truncated in caller state.
2813 if (prev_state != nullptr) {
2814 assert(instruction->exception_state() != nullptr, "missed set?");
2815 ValueStack::Kind exc_kind = ValueStack::empty_exception_kind(true /* caller */);
2816 cur_state = cur_state->copy(exc_kind, cur_state->bci());
2817 // reset caller exception state
2818 prev_state->set_caller_state(cur_state);
2819 } else {
2820 assert(instruction->exception_state() == nullptr, "already set");
2821 // set instruction exception state
2822 // truncate stack
2823 ValueStack::Kind exc_kind = ValueStack::empty_exception_kind();
2824 cur_state = cur_state->copy(exc_kind, cur_state->bci());
2825 instruction->set_exception_state(cur_state);
2826 }
2827 }
2828
2829 // Set up iteration for next time.
2830 // If parsing a jsr, do not grab exception handlers from the
2831 // parent scopes for this method (already got them, and they
2832 // needed to be cloned)
2833
2834 while (cur_scope_data->parsing_jsr()) {
2835 cur_scope_data = cur_scope_data->parent();
2836 }
2837
2838 assert(cur_scope_data->scope() == cur_state->scope(), "scopes do not match");
2839 assert(cur_state->locks_size() == 0 || cur_state->locks_size() == 1, "unlocking must be done in a catchall exception handler");
2840
2841 prev_state = cur_state;
2842 cur_state = cur_state->caller_state();
2843 cur_scope_data = cur_scope_data->parent();
2844 scope_count++;
2845 } while (cur_scope_data != nullptr);
2846
2847 return exception_handlers;
2848 }
2849
2850
2851 // Helper class for simplifying Phis.
2852 class PhiSimplifier : public BlockClosure {
2853 private:
2854 bool _has_substitutions;
2855 Value simplify(Value v);
2856
2857 public:
2858 PhiSimplifier(BlockBegin* start) : _has_substitutions(false) {
2859 start->iterate_preorder(this);
2860 if (_has_substitutions) {
2861 SubstitutionResolver sr(start);
2862 }
2863 }
2864 void block_do(BlockBegin* b);
2865 bool has_substitutions() const { return _has_substitutions; }
2866 };
2867
2868
2869 Value PhiSimplifier::simplify(Value v) {
2870 Phi* phi = v->as_Phi();
2871
2872 if (phi == nullptr) {
2873 // no phi function
2874 return v;
2875 } else if (v->has_subst()) {
2876 // already substituted; subst can be phi itself -> simplify
2877 return simplify(v->subst());
2878 } else if (phi->is_set(Phi::cannot_simplify)) {
2879 // already tried to simplify phi before
2880 return phi;
2881 } else if (phi->is_set(Phi::visited)) {
2882 // break cycles in phi functions
2883 return phi;
2884 } else if (phi->type()->is_illegal()) {
2885 // illegal phi functions are ignored anyway
2886 return phi;
2887
2888 } else {
2889 // mark phi function as processed to break cycles in phi functions
2890 phi->set(Phi::visited);
2891
2892 // simplify x = [y, x] and x = [y, y] to y
2893 Value subst = nullptr;
2894 int opd_count = phi->operand_count();
2895 for (int i = 0; i < opd_count; i++) {
2896 Value opd = phi->operand_at(i);
2897 assert(opd != nullptr, "Operand must exist!");
2898
2899 if (opd->type()->is_illegal()) {
2900 // if one operand is illegal, the entire phi function is illegal
2901 phi->make_illegal();
2902 phi->clear(Phi::visited);
2903 return phi;
2904 }
2905
2906 Value new_opd = simplify(opd);
2907 assert(new_opd != nullptr, "Simplified operand must exist!");
2908
2909 if (new_opd != phi && new_opd != subst) {
2910 if (subst == nullptr) {
2911 subst = new_opd;
2912 } else {
2913 // no simplification possible
2914 phi->set(Phi::cannot_simplify);
2915 phi->clear(Phi::visited);
2916 return phi;
2917 }
2918 }
2919 }
2920
2921 // successfully simplified phi function
2922 assert(subst != nullptr, "illegal phi function");
2923 _has_substitutions = true;
2924 phi->clear(Phi::visited);
2925 phi->set_subst(subst);
2926
2927 #ifndef PRODUCT
2928 if (PrintPhiFunctions) {
2929 tty->print_cr("simplified phi function %c%d to %c%d (Block B%d)", phi->type()->tchar(), phi->id(), subst->type()->tchar(), subst->id(), phi->block()->block_id());
2930 }
2931 #endif
2932
2933 return subst;
2934 }
2935 }
2936
2937
2938 void PhiSimplifier::block_do(BlockBegin* b) {
2939 for_each_phi_fun(b, phi,
2940 simplify(phi);
2941 );
2942
2943 #ifdef ASSERT
2944 for_each_phi_fun(b, phi,
2945 assert(phi->operand_count() != 1 || phi->subst() != phi || phi->is_illegal(), "missed trivial simplification");
2946 );
2947
2948 ValueStack* state = b->state()->caller_state();
2949 for_each_state_value(state, value,
2950 Phi* phi = value->as_Phi();
2951 assert(phi == nullptr || phi->block() != b, "must not have phi function to simplify in caller state");
2952 );
2953 #endif
2954 }
2955
2956 // This method is called after all blocks are filled with HIR instructions
2957 // It eliminates all Phi functions of the form x = [y, y] and x = [y, x]
2958 void GraphBuilder::eliminate_redundant_phis(BlockBegin* start) {
2959 PhiSimplifier simplifier(start);
2960 }
2961
2962
2963 void GraphBuilder::connect_to_end(BlockBegin* beg) {
2964 // setup iteration
2965 kill_all();
2966 _block = beg;
2967 _state = beg->state()->copy_for_parsing();
2968 _last = beg;
2969 iterate_bytecodes_for_block(beg->bci());
2970 }
2971
2972
2973 BlockEnd* GraphBuilder::iterate_bytecodes_for_block(int bci) {
2974 #ifndef PRODUCT
2975 if (PrintIRDuringConstruction) {
2976 tty->cr();
2977 InstructionPrinter ip;
2978 ip.print_instr(_block); tty->cr();
2979 ip.print_stack(_block->state()); tty->cr();
2980 ip.print_inline_level(_block);
2981 ip.print_head();
2982 tty->print_cr("locals size: %d stack size: %d", state()->locals_size(), state()->stack_size());
2983 }
2984 #endif
2985 _skip_block = false;
2986 assert(state() != nullptr, "ValueStack missing!");
2987 CompileLog* log = compilation()->log();
2988 ciBytecodeStream s(method());
2989 s.reset_to_bci(bci);
2990 int prev_bci = bci;
2991 scope_data()->set_stream(&s);
2992 // iterate
2993 Bytecodes::Code code = Bytecodes::_illegal;
2994 bool push_exception = false;
2995
2996 if (block()->is_set(BlockBegin::exception_entry_flag) && block()->next() == nullptr) {
2997 // first thing in the exception entry block should be the exception object.
2998 push_exception = true;
2999 }
3000
3001 bool ignore_return = scope_data()->ignore_return();
3002
3003 while (!bailed_out() && last()->as_BlockEnd() == nullptr &&
3004 (code = stream()->next()) != ciBytecodeStream::EOBC() &&
3005 (block_at(s.cur_bci()) == nullptr || block_at(s.cur_bci()) == block())) {
3006 assert(state()->kind() == ValueStack::Parsing, "invalid state kind");
3007
3008 if (log != nullptr)
3009 log->set_context("bc code='%d' bci='%d'", (int)code, s.cur_bci());
3010
3011 // Check for active jsr during OSR compilation
3012 if (compilation()->is_osr_compile()
3013 && scope()->is_top_scope()
3014 && parsing_jsr()
3015 && s.cur_bci() == compilation()->osr_bci()) {
3016 bailout("OSR not supported while a jsr is active");
3017 }
3018
3019 if (push_exception) {
3020 apush(append(new ExceptionObject()));
3021 push_exception = false;
3022 }
3023
3024 // handle bytecode
3025 switch (code) {
3026 case Bytecodes::_nop : /* nothing to do */ break;
3027 case Bytecodes::_aconst_null : apush(append(new Constant(objectNull ))); break;
3028 case Bytecodes::_iconst_m1 : ipush(append(new Constant(new IntConstant (-1)))); break;
3029 case Bytecodes::_iconst_0 : ipush(append(new Constant(intZero ))); break;
3030 case Bytecodes::_iconst_1 : ipush(append(new Constant(intOne ))); break;
3031 case Bytecodes::_iconst_2 : ipush(append(new Constant(new IntConstant ( 2)))); break;
3032 case Bytecodes::_iconst_3 : ipush(append(new Constant(new IntConstant ( 3)))); break;
3033 case Bytecodes::_iconst_4 : ipush(append(new Constant(new IntConstant ( 4)))); break;
3034 case Bytecodes::_iconst_5 : ipush(append(new Constant(new IntConstant ( 5)))); break;
3035 case Bytecodes::_lconst_0 : lpush(append(new Constant(new LongConstant ( 0)))); break;
3036 case Bytecodes::_lconst_1 : lpush(append(new Constant(new LongConstant ( 1)))); break;
3037 case Bytecodes::_fconst_0 : fpush(append(new Constant(new FloatConstant ( 0)))); break;
3038 case Bytecodes::_fconst_1 : fpush(append(new Constant(new FloatConstant ( 1)))); break;
3039 case Bytecodes::_fconst_2 : fpush(append(new Constant(new FloatConstant ( 2)))); break;
3040 case Bytecodes::_dconst_0 : dpush(append(new Constant(new DoubleConstant( 0)))); break;
3041 case Bytecodes::_dconst_1 : dpush(append(new Constant(new DoubleConstant( 1)))); break;
3042 case Bytecodes::_bipush : ipush(append(new Constant(new IntConstant(((signed char*)s.cur_bcp())[1])))); break;
3043 case Bytecodes::_sipush : ipush(append(new Constant(new IntConstant((short)Bytes::get_Java_u2(s.cur_bcp()+1))))); break;
3044 case Bytecodes::_ldc : // fall through
3045 case Bytecodes::_ldc_w : // fall through
3046 case Bytecodes::_ldc2_w : load_constant(); break;
3047 case Bytecodes::_iload : load_local(intType , s.get_index()); break;
3048 case Bytecodes::_lload : load_local(longType , s.get_index()); break;
3049 case Bytecodes::_fload : load_local(floatType , s.get_index()); break;
3050 case Bytecodes::_dload : load_local(doubleType , s.get_index()); break;
3051 case Bytecodes::_aload : load_local(instanceType, s.get_index()); break;
3052 case Bytecodes::_iload_0 : load_local(intType , 0); break;
3053 case Bytecodes::_iload_1 : load_local(intType , 1); break;
3054 case Bytecodes::_iload_2 : load_local(intType , 2); break;
3055 case Bytecodes::_iload_3 : load_local(intType , 3); break;
3056 case Bytecodes::_lload_0 : load_local(longType , 0); break;
3057 case Bytecodes::_lload_1 : load_local(longType , 1); break;
3058 case Bytecodes::_lload_2 : load_local(longType , 2); break;
3059 case Bytecodes::_lload_3 : load_local(longType , 3); break;
3060 case Bytecodes::_fload_0 : load_local(floatType , 0); break;
3061 case Bytecodes::_fload_1 : load_local(floatType , 1); break;
3062 case Bytecodes::_fload_2 : load_local(floatType , 2); break;
3063 case Bytecodes::_fload_3 : load_local(floatType , 3); break;
3064 case Bytecodes::_dload_0 : load_local(doubleType, 0); break;
3065 case Bytecodes::_dload_1 : load_local(doubleType, 1); break;
3066 case Bytecodes::_dload_2 : load_local(doubleType, 2); break;
3067 case Bytecodes::_dload_3 : load_local(doubleType, 3); break;
3068 case Bytecodes::_aload_0 : load_local(objectType, 0); break;
3069 case Bytecodes::_aload_1 : load_local(objectType, 1); break;
3070 case Bytecodes::_aload_2 : load_local(objectType, 2); break;
3071 case Bytecodes::_aload_3 : load_local(objectType, 3); break;
3072 case Bytecodes::_iaload : load_indexed(T_INT ); break;
3073 case Bytecodes::_laload : load_indexed(T_LONG ); break;
3074 case Bytecodes::_faload : load_indexed(T_FLOAT ); break;
3075 case Bytecodes::_daload : load_indexed(T_DOUBLE); break;
3076 case Bytecodes::_aaload : load_indexed(T_OBJECT); break;
3077 case Bytecodes::_baload : load_indexed(T_BYTE ); break;
3078 case Bytecodes::_caload : load_indexed(T_CHAR ); break;
3079 case Bytecodes::_saload : load_indexed(T_SHORT ); break;
3080 case Bytecodes::_istore : store_local(intType , s.get_index()); break;
3081 case Bytecodes::_lstore : store_local(longType , s.get_index()); break;
3082 case Bytecodes::_fstore : store_local(floatType , s.get_index()); break;
3083 case Bytecodes::_dstore : store_local(doubleType, s.get_index()); break;
3084 case Bytecodes::_astore : store_local(objectType, s.get_index()); break;
3085 case Bytecodes::_istore_0 : store_local(intType , 0); break;
3086 case Bytecodes::_istore_1 : store_local(intType , 1); break;
3087 case Bytecodes::_istore_2 : store_local(intType , 2); break;
3088 case Bytecodes::_istore_3 : store_local(intType , 3); break;
3089 case Bytecodes::_lstore_0 : store_local(longType , 0); break;
3090 case Bytecodes::_lstore_1 : store_local(longType , 1); break;
3091 case Bytecodes::_lstore_2 : store_local(longType , 2); break;
3092 case Bytecodes::_lstore_3 : store_local(longType , 3); break;
3093 case Bytecodes::_fstore_0 : store_local(floatType , 0); break;
3094 case Bytecodes::_fstore_1 : store_local(floatType , 1); break;
3095 case Bytecodes::_fstore_2 : store_local(floatType , 2); break;
3096 case Bytecodes::_fstore_3 : store_local(floatType , 3); break;
3097 case Bytecodes::_dstore_0 : store_local(doubleType, 0); break;
3098 case Bytecodes::_dstore_1 : store_local(doubleType, 1); break;
3099 case Bytecodes::_dstore_2 : store_local(doubleType, 2); break;
3100 case Bytecodes::_dstore_3 : store_local(doubleType, 3); break;
3101 case Bytecodes::_astore_0 : store_local(objectType, 0); break;
3102 case Bytecodes::_astore_1 : store_local(objectType, 1); break;
3103 case Bytecodes::_astore_2 : store_local(objectType, 2); break;
3104 case Bytecodes::_astore_3 : store_local(objectType, 3); break;
3105 case Bytecodes::_iastore : store_indexed(T_INT ); break;
3106 case Bytecodes::_lastore : store_indexed(T_LONG ); break;
3107 case Bytecodes::_fastore : store_indexed(T_FLOAT ); break;
3108 case Bytecodes::_dastore : store_indexed(T_DOUBLE); break;
3109 case Bytecodes::_aastore : store_indexed(T_OBJECT); break;
3110 case Bytecodes::_bastore : store_indexed(T_BYTE ); break;
3111 case Bytecodes::_castore : store_indexed(T_CHAR ); break;
3112 case Bytecodes::_sastore : store_indexed(T_SHORT ); break;
3113 case Bytecodes::_pop : // fall through
3114 case Bytecodes::_pop2 : // fall through
3115 case Bytecodes::_dup : // fall through
3116 case Bytecodes::_dup_x1 : // fall through
3117 case Bytecodes::_dup_x2 : // fall through
3118 case Bytecodes::_dup2 : // fall through
3119 case Bytecodes::_dup2_x1 : // fall through
3120 case Bytecodes::_dup2_x2 : // fall through
3121 case Bytecodes::_swap : stack_op(code); break;
3122 case Bytecodes::_iadd : arithmetic_op(intType , code); break;
3123 case Bytecodes::_ladd : arithmetic_op(longType , code); break;
3124 case Bytecodes::_fadd : arithmetic_op(floatType , code); break;
3125 case Bytecodes::_dadd : arithmetic_op(doubleType, code); break;
3126 case Bytecodes::_isub : arithmetic_op(intType , code); break;
3127 case Bytecodes::_lsub : arithmetic_op(longType , code); break;
3128 case Bytecodes::_fsub : arithmetic_op(floatType , code); break;
3129 case Bytecodes::_dsub : arithmetic_op(doubleType, code); break;
3130 case Bytecodes::_imul : arithmetic_op(intType , code); break;
3131 case Bytecodes::_lmul : arithmetic_op(longType , code); break;
3132 case Bytecodes::_fmul : arithmetic_op(floatType , code); break;
3133 case Bytecodes::_dmul : arithmetic_op(doubleType, code); break;
3134 case Bytecodes::_idiv : arithmetic_op(intType , code, copy_state_for_exception()); break;
3135 case Bytecodes::_ldiv : arithmetic_op(longType , code, copy_state_for_exception()); break;
3136 case Bytecodes::_fdiv : arithmetic_op(floatType , code); break;
3137 case Bytecodes::_ddiv : arithmetic_op(doubleType, code); break;
3138 case Bytecodes::_irem : arithmetic_op(intType , code, copy_state_for_exception()); break;
3139 case Bytecodes::_lrem : arithmetic_op(longType , code, copy_state_for_exception()); break;
3140 case Bytecodes::_frem : arithmetic_op(floatType , code); break;
3141 case Bytecodes::_drem : arithmetic_op(doubleType, code); break;
3142 case Bytecodes::_ineg : negate_op(intType ); break;
3143 case Bytecodes::_lneg : negate_op(longType ); break;
3144 case Bytecodes::_fneg : negate_op(floatType ); break;
3145 case Bytecodes::_dneg : negate_op(doubleType); break;
3146 case Bytecodes::_ishl : shift_op(intType , code); break;
3147 case Bytecodes::_lshl : shift_op(longType, code); break;
3148 case Bytecodes::_ishr : shift_op(intType , code); break;
3149 case Bytecodes::_lshr : shift_op(longType, code); break;
3150 case Bytecodes::_iushr : shift_op(intType , code); break;
3151 case Bytecodes::_lushr : shift_op(longType, code); break;
3152 case Bytecodes::_iand : logic_op(intType , code); break;
3153 case Bytecodes::_land : logic_op(longType, code); break;
3154 case Bytecodes::_ior : logic_op(intType , code); break;
3155 case Bytecodes::_lor : logic_op(longType, code); break;
3156 case Bytecodes::_ixor : logic_op(intType , code); break;
3157 case Bytecodes::_lxor : logic_op(longType, code); break;
3158 case Bytecodes::_iinc : increment(); break;
3159 case Bytecodes::_i2l : convert(code, T_INT , T_LONG ); break;
3160 case Bytecodes::_i2f : convert(code, T_INT , T_FLOAT ); break;
3161 case Bytecodes::_i2d : convert(code, T_INT , T_DOUBLE); break;
3162 case Bytecodes::_l2i : convert(code, T_LONG , T_INT ); break;
3163 case Bytecodes::_l2f : convert(code, T_LONG , T_FLOAT ); break;
3164 case Bytecodes::_l2d : convert(code, T_LONG , T_DOUBLE); break;
3165 case Bytecodes::_f2i : convert(code, T_FLOAT , T_INT ); break;
3166 case Bytecodes::_f2l : convert(code, T_FLOAT , T_LONG ); break;
3167 case Bytecodes::_f2d : convert(code, T_FLOAT , T_DOUBLE); break;
3168 case Bytecodes::_d2i : convert(code, T_DOUBLE, T_INT ); break;
3169 case Bytecodes::_d2l : convert(code, T_DOUBLE, T_LONG ); break;
3170 case Bytecodes::_d2f : convert(code, T_DOUBLE, T_FLOAT ); break;
3171 case Bytecodes::_i2b : convert(code, T_INT , T_BYTE ); break;
3172 case Bytecodes::_i2c : convert(code, T_INT , T_CHAR ); break;
3173 case Bytecodes::_i2s : convert(code, T_INT , T_SHORT ); break;
3174 case Bytecodes::_lcmp : compare_op(longType , code); break;
3175 case Bytecodes::_fcmpl : compare_op(floatType , code); break;
3176 case Bytecodes::_fcmpg : compare_op(floatType , code); break;
3177 case Bytecodes::_dcmpl : compare_op(doubleType, code); break;
3178 case Bytecodes::_dcmpg : compare_op(doubleType, code); break;
3179 case Bytecodes::_ifeq : if_zero(intType , If::eql); break;
3180 case Bytecodes::_ifne : if_zero(intType , If::neq); break;
3181 case Bytecodes::_iflt : if_zero(intType , If::lss); break;
3182 case Bytecodes::_ifge : if_zero(intType , If::geq); break;
3183 case Bytecodes::_ifgt : if_zero(intType , If::gtr); break;
3184 case Bytecodes::_ifle : if_zero(intType , If::leq); break;
3185 case Bytecodes::_if_icmpeq : if_same(intType , If::eql); break;
3186 case Bytecodes::_if_icmpne : if_same(intType , If::neq); break;
3187 case Bytecodes::_if_icmplt : if_same(intType , If::lss); break;
3188 case Bytecodes::_if_icmpge : if_same(intType , If::geq); break;
3189 case Bytecodes::_if_icmpgt : if_same(intType , If::gtr); break;
3190 case Bytecodes::_if_icmple : if_same(intType , If::leq); break;
3191 case Bytecodes::_if_acmpeq : if_same(objectType, If::eql); break;
3192 case Bytecodes::_if_acmpne : if_same(objectType, If::neq); break;
3193 case Bytecodes::_goto : _goto(s.cur_bci(), s.get_dest()); break;
3194 case Bytecodes::_jsr : jsr(s.get_dest()); break;
3195 case Bytecodes::_ret : ret(s.get_index()); break;
3196 case Bytecodes::_tableswitch : table_switch(); break;
3197 case Bytecodes::_lookupswitch : lookup_switch(); break;
3198 case Bytecodes::_ireturn : method_return(ipop(), ignore_return); break;
3199 case Bytecodes::_lreturn : method_return(lpop(), ignore_return); break;
3200 case Bytecodes::_freturn : method_return(fpop(), ignore_return); break;
3201 case Bytecodes::_dreturn : method_return(dpop(), ignore_return); break;
3202 case Bytecodes::_areturn : method_return(apop(), ignore_return); break;
3203 case Bytecodes::_return : method_return(nullptr, ignore_return); break;
3204 case Bytecodes::_getstatic : // fall through
3205 case Bytecodes::_putstatic : // fall through
3206 case Bytecodes::_getfield : // fall through
3207 case Bytecodes::_putfield : access_field(code); break;
3208 case Bytecodes::_invokevirtual : // fall through
3209 case Bytecodes::_invokespecial : // fall through
3210 case Bytecodes::_invokestatic : // fall through
3211 case Bytecodes::_invokedynamic : // fall through
3212 case Bytecodes::_invokeinterface: invoke(code); break;
3213 case Bytecodes::_new : new_instance(s.get_index_u2()); break;
3214 case Bytecodes::_newarray : new_type_array(); break;
3215 case Bytecodes::_anewarray : new_object_array(); break;
3216 case Bytecodes::_arraylength : { ValueStack* state_before = copy_state_for_exception(); ipush(append(new ArrayLength(apop(), state_before))); break; }
3217 case Bytecodes::_athrow : throw_op(s.cur_bci()); break;
3218 case Bytecodes::_checkcast : check_cast(s.get_index_u2()); break;
3219 case Bytecodes::_instanceof : instance_of(s.get_index_u2()); break;
3220 case Bytecodes::_monitorenter : monitorenter(apop(), s.cur_bci()); break;
3221 case Bytecodes::_monitorexit : monitorexit (apop(), s.cur_bci()); break;
3222 case Bytecodes::_wide : ShouldNotReachHere(); break;
3223 case Bytecodes::_multianewarray : new_multi_array(s.cur_bcp()[3]); break;
3224 case Bytecodes::_ifnull : if_null(objectType, If::eql); break;
3225 case Bytecodes::_ifnonnull : if_null(objectType, If::neq); break;
3226 case Bytecodes::_goto_w : _goto(s.cur_bci(), s.get_far_dest()); break;
3227 case Bytecodes::_jsr_w : jsr(s.get_far_dest()); break;
3228 case Bytecodes::_breakpoint : BAILOUT_("concurrent setting of breakpoint", nullptr);
3229 default : ShouldNotReachHere(); break;
3230 }
3231
3232 if (log != nullptr)
3233 log->clear_context(); // skip marker if nothing was printed
3234
3235 // save current bci to setup Goto at the end
3236 prev_bci = s.cur_bci();
3237
3238 }
3239 CHECK_BAILOUT_(nullptr);
3240 // stop processing of this block (see try_inline_full)
3241 if (_skip_block) {
3242 _skip_block = false;
3243 assert(_last && _last->as_BlockEnd(), "");
3244 return _last->as_BlockEnd();
3245 }
3246 // if there are any, check if last instruction is a BlockEnd instruction
3247 BlockEnd* end = last()->as_BlockEnd();
3248 if (end == nullptr) {
3249 // all blocks must end with a BlockEnd instruction => add a Goto
3250 end = new Goto(block_at(s.cur_bci()), false);
3251 append(end);
3252 }
3253 assert(end == last()->as_BlockEnd(), "inconsistency");
3254
3255 assert(end->state() != nullptr, "state must already be present");
3256 assert(end->as_Return() == nullptr || end->as_Throw() == nullptr || end->state()->stack_size() == 0, "stack not needed for return and throw");
3257
3258 // connect to begin & set state
3259 // NOTE that inlining may have changed the block we are parsing
3260 block()->set_end(end);
3261 // propagate state
3262 for (int i = end->number_of_sux() - 1; i >= 0; i--) {
3263 BlockBegin* sux = end->sux_at(i);
3264 assert(sux->is_predecessor(block()), "predecessor missing");
3265 // be careful, bailout if bytecodes are strange
3266 if (!sux->try_merge(end->state(), compilation()->has_irreducible_loops())) BAILOUT_("block join failed", nullptr);
3267 scope_data()->add_to_work_list(end->sux_at(i));
3268 }
3269
3270 scope_data()->set_stream(nullptr);
3271
3272 // done
3273 return end;
3274 }
3275
3276
3277 void GraphBuilder::iterate_all_blocks(bool start_in_current_block_for_inlining) {
3278 do {
3279 if (start_in_current_block_for_inlining && !bailed_out()) {
3280 iterate_bytecodes_for_block(0);
3281 start_in_current_block_for_inlining = false;
3282 } else {
3283 BlockBegin* b;
3284 while ((b = scope_data()->remove_from_work_list()) != nullptr) {
3285 if (!b->is_set(BlockBegin::was_visited_flag)) {
3286 if (b->is_set(BlockBegin::osr_entry_flag)) {
3287 // we're about to parse the osr entry block, so make sure
3288 // we setup the OSR edge leading into this block so that
3289 // Phis get setup correctly.
3290 setup_osr_entry_block();
3291 // this is no longer the osr entry block, so clear it.
3292 b->clear(BlockBegin::osr_entry_flag);
3293 }
3294 b->set(BlockBegin::was_visited_flag);
3295 connect_to_end(b);
3296 }
3297 }
3298 }
3299 } while (!bailed_out() && !scope_data()->is_work_list_empty());
3300 }
3301
3302
3303 bool GraphBuilder::_can_trap [Bytecodes::number_of_java_codes];
3304
3305 void GraphBuilder::initialize() {
3306 // the following bytecodes are assumed to potentially
3307 // throw exceptions in compiled code - note that e.g.
3308 // monitorexit & the return bytecodes do not throw
3309 // exceptions since monitor pairing proved that they
3310 // succeed (if monitor pairing succeeded)
3311 Bytecodes::Code can_trap_list[] =
3312 { Bytecodes::_ldc
3313 , Bytecodes::_ldc_w
3314 , Bytecodes::_ldc2_w
3315 , Bytecodes::_iaload
3316 , Bytecodes::_laload
3317 , Bytecodes::_faload
3318 , Bytecodes::_daload
3319 , Bytecodes::_aaload
3320 , Bytecodes::_baload
3321 , Bytecodes::_caload
3322 , Bytecodes::_saload
3323 , Bytecodes::_iastore
3324 , Bytecodes::_lastore
3325 , Bytecodes::_fastore
3326 , Bytecodes::_dastore
3327 , Bytecodes::_aastore
3328 , Bytecodes::_bastore
3329 , Bytecodes::_castore
3330 , Bytecodes::_sastore
3331 , Bytecodes::_idiv
3332 , Bytecodes::_ldiv
3333 , Bytecodes::_irem
3334 , Bytecodes::_lrem
3335 , Bytecodes::_getstatic
3336 , Bytecodes::_putstatic
3337 , Bytecodes::_getfield
3338 , Bytecodes::_putfield
3339 , Bytecodes::_invokevirtual
3340 , Bytecodes::_invokespecial
3341 , Bytecodes::_invokestatic
3342 , Bytecodes::_invokedynamic
3343 , Bytecodes::_invokeinterface
3344 , Bytecodes::_new
3345 , Bytecodes::_newarray
3346 , Bytecodes::_anewarray
3347 , Bytecodes::_arraylength
3348 , Bytecodes::_athrow
3349 , Bytecodes::_checkcast
3350 , Bytecodes::_instanceof
3351 , Bytecodes::_monitorenter
3352 , Bytecodes::_multianewarray
3353 };
3354
3355 // inititialize trap tables
3356 for (int i = 0; i < Bytecodes::number_of_java_codes; i++) {
3357 _can_trap[i] = false;
3358 }
3359 // set standard trap info
3360 for (uint j = 0; j < ARRAY_SIZE(can_trap_list); j++) {
3361 _can_trap[can_trap_list[j]] = true;
3362 }
3363 }
3364
3365
3366 BlockBegin* GraphBuilder::header_block(BlockBegin* entry, BlockBegin::Flag f, ValueStack* state) {
3367 assert(entry->is_set(f), "entry/flag mismatch");
3368 // create header block
3369 BlockBegin* h = new BlockBegin(entry->bci());
3370 h->set_depth_first_number(0);
3371
3372 Value l = h;
3373 BlockEnd* g = new Goto(entry, false);
3374 l->set_next(g, entry->bci());
3375 h->set_end(g);
3376 h->set(f);
3377 // setup header block end state
3378 ValueStack* s = state->copy(ValueStack::StateAfter, entry->bci()); // can use copy since stack is empty (=> no phis)
3379 assert(s->stack_is_empty(), "must have empty stack at entry point");
3380 g->set_state(s);
3381 return h;
3382 }
3383
3384
3385
3386 BlockBegin* GraphBuilder::setup_start_block(int osr_bci, BlockBegin* std_entry, BlockBegin* osr_entry, ValueStack* state) {
3387 BlockBegin* start = new BlockBegin(0);
3388
3389 // This code eliminates the empty start block at the beginning of
3390 // each method. Previously, each method started with the
3391 // start-block created below, and this block was followed by the
3392 // header block that was always empty. This header block is only
3393 // necessary if std_entry is also a backward branch target because
3394 // then phi functions may be necessary in the header block. It's
3395 // also necessary when profiling so that there's a single block that
3396 // can increment the counters.
3397 // In addition, with range check elimination, we may need a valid block
3398 // that dominates all the rest to insert range predicates.
3399 BlockBegin* new_header_block;
3400 if (std_entry->number_of_preds() > 0 || is_profiling() || RangeCheckElimination) {
3401 new_header_block = header_block(std_entry, BlockBegin::std_entry_flag, state);
3402 } else {
3403 new_header_block = std_entry;
3404 }
3405
3406 // setup start block (root for the IR graph)
3407 Base* base =
3408 new Base(
3409 new_header_block,
3410 osr_entry
3411 );
3412 start->set_next(base, 0);
3413 start->set_end(base);
3414 // create & setup state for start block
3415 start->set_state(state->copy(ValueStack::StateAfter, std_entry->bci()));
3416 base->set_state(state->copy(ValueStack::StateAfter, std_entry->bci()));
3417
3418 if (base->std_entry()->state() == nullptr) {
3419 // setup states for header blocks
3420 base->std_entry()->merge(state, compilation()->has_irreducible_loops());
3421 }
3422
3423 assert(base->std_entry()->state() != nullptr, "");
3424 return start;
3425 }
3426
3427
3428 void GraphBuilder::setup_osr_entry_block() {
3429 assert(compilation()->is_osr_compile(), "only for osrs");
3430
3431 int osr_bci = compilation()->osr_bci();
3432 ciBytecodeStream s(method());
3433 s.reset_to_bci(osr_bci);
3434 s.next();
3435 scope_data()->set_stream(&s);
3436
3437 // create a new block to be the osr setup code
3438 _osr_entry = new BlockBegin(osr_bci);
3439 _osr_entry->set(BlockBegin::osr_entry_flag);
3440 _osr_entry->set_depth_first_number(0);
3441 BlockBegin* target = bci2block()->at(osr_bci);
3442 assert(target != nullptr && target->is_set(BlockBegin::osr_entry_flag), "must be there");
3443 // the osr entry has no values for locals
3444 ValueStack* state = target->state()->copy();
3445 _osr_entry->set_state(state);
3446
3447 kill_all();
3448 _block = _osr_entry;
3449 _state = _osr_entry->state()->copy();
3450 assert(_state->bci() == osr_bci, "mismatch");
3451 _last = _osr_entry;
3452 Value e = append(new OsrEntry());
3453 e->set_needs_null_check(false);
3454
3455 // OSR buffer is
3456 //
3457 // locals[nlocals-1..0]
3458 // monitors[number_of_locks-1..0]
3459 //
3460 // locals is a direct copy of the interpreter frame so in the osr buffer
3461 // so first slot in the local array is the last local from the interpreter
3462 // and last slot is local[0] (receiver) from the interpreter
3463 //
3464 // Similarly with locks. The first lock slot in the osr buffer is the nth lock
3465 // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
3466 // in the interpreter frame (the method lock if a sync method)
3467
3468 // Initialize monitors in the compiled activation.
3469
3470 int index;
3471 Value local;
3472
3473 // find all the locals that the interpreter thinks contain live oops
3474 const ResourceBitMap live_oops = method()->live_local_oops_at_bci(osr_bci);
3475
3476 // compute the offset into the locals so that we can treat the buffer
3477 // as if the locals were still in the interpreter frame
3478 int locals_offset = BytesPerWord * (method()->max_locals() - 1);
3479 for_each_local_value(state, index, local) {
3480 int offset = locals_offset - (index + local->type()->size() - 1) * BytesPerWord;
3481 Value get;
3482 if (local->type()->is_object_kind() && !live_oops.at(index)) {
3483 // The interpreter thinks this local is dead but the compiler
3484 // doesn't so pretend that the interpreter passed in null.
3485 get = append(new Constant(objectNull));
3486 } else {
3487 Value off_val = append(new Constant(new IntConstant(offset)));
3488 get = append(new UnsafeGet(as_BasicType(local->type()), e,
3489 off_val,
3490 false/*is_volatile*/,
3491 true/*is_raw*/));
3492 }
3493 _state->store_local(index, get);
3494 }
3495
3496 // the storage for the OSR buffer is freed manually in the LIRGenerator.
3497
3498 assert(state->caller_state() == nullptr, "should be top scope");
3499 state->clear_locals();
3500 Goto* g = new Goto(target, false);
3501 append(g);
3502 _osr_entry->set_end(g);
3503 target->merge(_osr_entry->end()->state(), compilation()->has_irreducible_loops());
3504
3505 scope_data()->set_stream(nullptr);
3506 }
3507
3508
3509 ValueStack* GraphBuilder::state_at_entry() {
3510 ValueStack* state = new ValueStack(scope(), nullptr);
3511
3512 // Set up locals for receiver
3513 int idx = 0;
3514 if (!method()->is_static()) {
3515 // we should always see the receiver
3516 state->store_local(idx, new Local(method()->holder(), objectType, idx, true));
3517 idx = 1;
3518 }
3519
3520 // Set up locals for incoming arguments
3521 ciSignature* sig = method()->signature();
3522 for (int i = 0; i < sig->count(); i++) {
3523 ciType* type = sig->type_at(i);
3524 BasicType basic_type = type->basic_type();
3525 // don't allow T_ARRAY to propagate into locals types
3526 if (is_reference_type(basic_type)) basic_type = T_OBJECT;
3527 ValueType* vt = as_ValueType(basic_type);
3528 state->store_local(idx, new Local(type, vt, idx, false));
3529 idx += type->size();
3530 }
3531
3532 // lock synchronized method
3533 if (method()->is_synchronized()) {
3534 state->lock(nullptr);
3535 }
3536
3537 return state;
3538 }
3539
3540
3541 GraphBuilder::GraphBuilder(Compilation* compilation, IRScope* scope)
3542 : _scope_data(nullptr)
3543 , _compilation(compilation)
3544 , _memory(new MemoryBuffer())
3545 , _inline_bailout_msg(nullptr)
3546 , _instruction_count(0)
3547 , _osr_entry(nullptr)
3548 , _pending_field_access(nullptr)
3549 , _pending_load_indexed(nullptr)
3550 {
3551 int osr_bci = compilation->osr_bci();
3552
3553 // determine entry points and bci2block mapping
3554 BlockListBuilder blm(compilation, scope, osr_bci);
3555 CHECK_BAILOUT();
3556
3557 BlockList* bci2block = blm.bci2block();
3558 BlockBegin* start_block = bci2block->at(0);
3559
3560 push_root_scope(scope, bci2block, start_block);
3561
3562 // setup state for std entry
3563 _initial_state = state_at_entry();
3564 start_block->merge(_initial_state, compilation->has_irreducible_loops());
3565
3566 // End nulls still exist here
3567
3568 // complete graph
3569 _vmap = new ValueMap();
3570 switch (scope->method()->intrinsic_id()) {
3571 case vmIntrinsics::_dabs : // fall through
3572 case vmIntrinsics::_dsqrt : // fall through
3573 case vmIntrinsics::_dsqrt_strict : // fall through
3574 case vmIntrinsics::_dsin : // fall through
3575 case vmIntrinsics::_dcos : // fall through
3576 case vmIntrinsics::_dtan : // fall through
3577 case vmIntrinsics::_dsinh : // fall through
3578 case vmIntrinsics::_dtanh : // fall through
3579 case vmIntrinsics::_dcbrt : // fall through
3580 case vmIntrinsics::_dlog : // fall through
3581 case vmIntrinsics::_dlog10 : // fall through
3582 case vmIntrinsics::_dexp : // fall through
3583 case vmIntrinsics::_dpow : // fall through
3584 {
3585 // Compiles where the root method is an intrinsic need a special
3586 // compilation environment because the bytecodes for the method
3587 // shouldn't be parsed during the compilation, only the special
3588 // Intrinsic node should be emitted. If this isn't done the
3589 // code for the inlined version will be different than the root
3590 // compiled version which could lead to monotonicity problems on
3591 // intel.
3592 if (CheckIntrinsics && !scope->method()->intrinsic_candidate()) {
3593 BAILOUT("failed to inline intrinsic, method not annotated");
3594 }
3595
3596 // Set up a stream so that appending instructions works properly.
3597 ciBytecodeStream s(scope->method());
3598 s.reset_to_bci(0);
3599 scope_data()->set_stream(&s);
3600 s.next();
3601
3602 // setup the initial block state
3603 _block = start_block;
3604 _state = start_block->state()->copy_for_parsing();
3605 _last = start_block;
3606 load_local(doubleType, 0);
3607 if (scope->method()->intrinsic_id() == vmIntrinsics::_dpow) {
3608 load_local(doubleType, 2);
3609 }
3610
3611 // Emit the intrinsic node.
3612 bool result = try_inline_intrinsics(scope->method());
3613 if (!result) BAILOUT("failed to inline intrinsic");
3614 method_return(dpop());
3615
3616 // connect the begin and end blocks and we're all done.
3617 BlockEnd* end = last()->as_BlockEnd();
3618 block()->set_end(end);
3619 break;
3620 }
3621
3622 case vmIntrinsics::_Reference_get0:
3623 {
3624 {
3625 // With java.lang.ref.reference.get() we must go through the
3626 // intrinsic - when G1 is enabled - even when get() is the root
3627 // method of the compile so that, if necessary, the value in
3628 // the referent field of the reference object gets recorded by
3629 // the pre-barrier code.
3630 // Specifically, if G1 is enabled, the value in the referent
3631 // field is recorded by the G1 SATB pre barrier. This will
3632 // result in the referent being marked live and the reference
3633 // object removed from the list of discovered references during
3634 // reference processing.
3635 if (CheckIntrinsics && !scope->method()->intrinsic_candidate()) {
3636 BAILOUT("failed to inline intrinsic, method not annotated");
3637 }
3638
3639 // Also we need intrinsic to prevent commoning reads from this field
3640 // across safepoint since GC can change its value.
3641
3642 // Set up a stream so that appending instructions works properly.
3643 ciBytecodeStream s(scope->method());
3644 s.reset_to_bci(0);
3645 scope_data()->set_stream(&s);
3646 s.next();
3647
3648 // setup the initial block state
3649 _block = start_block;
3650 _state = start_block->state()->copy_for_parsing();
3651 _last = start_block;
3652 load_local(objectType, 0);
3653
3654 // Emit the intrinsic node.
3655 bool result = try_inline_intrinsics(scope->method());
3656 if (!result) BAILOUT("failed to inline intrinsic");
3657 method_return(apop());
3658
3659 // connect the begin and end blocks and we're all done.
3660 BlockEnd* end = last()->as_BlockEnd();
3661 block()->set_end(end);
3662 break;
3663 }
3664 // Otherwise, fall thru
3665 }
3666
3667 default:
3668 scope_data()->add_to_work_list(start_block);
3669 iterate_all_blocks();
3670 break;
3671 }
3672 CHECK_BAILOUT();
3673
3674 # ifdef ASSERT
3675 // For all blocks reachable from start_block: _end must be non-null
3676 {
3677 BlockList processed;
3678 BlockList to_go;
3679 to_go.append(start_block);
3680 while(to_go.length() > 0) {
3681 BlockBegin* current = to_go.pop();
3682 assert(current != nullptr, "Should not happen.");
3683 assert(current->end() != nullptr, "All blocks reachable from start_block should have end() != nullptr.");
3684 processed.append(current);
3685 for(int i = 0; i < current->number_of_sux(); i++) {
3686 BlockBegin* s = current->sux_at(i);
3687 if (!processed.contains(s)) {
3688 to_go.append(s);
3689 }
3690 }
3691 }
3692 }
3693 #endif // ASSERT
3694
3695 _start = setup_start_block(osr_bci, start_block, _osr_entry, _initial_state);
3696
3697 eliminate_redundant_phis(_start);
3698
3699 NOT_PRODUCT(if (PrintValueNumbering && Verbose) print_stats());
3700 // for osr compile, bailout if some requirements are not fulfilled
3701 if (osr_bci != -1) {
3702 BlockBegin* osr_block = blm.bci2block()->at(osr_bci);
3703 if (!osr_block->is_set(BlockBegin::was_visited_flag)) {
3704 BAILOUT("osr entry must have been visited for osr compile");
3705 }
3706
3707 // check if osr entry point has empty stack - we cannot handle non-empty stacks at osr entry points
3708 if (!osr_block->state()->stack_is_empty()) {
3709 BAILOUT("stack not empty at OSR entry point");
3710 }
3711 }
3712 #ifndef PRODUCT
3713 if (PrintCompilation && Verbose) tty->print_cr("Created %d Instructions", _instruction_count);
3714 #endif
3715 }
3716
3717
3718 ValueStack* GraphBuilder::copy_state_before() {
3719 return copy_state_before_with_bci(bci());
3720 }
3721
3722 ValueStack* GraphBuilder::copy_state_exhandling() {
3723 return copy_state_exhandling_with_bci(bci());
3724 }
3725
3726 ValueStack* GraphBuilder::copy_state_for_exception() {
3727 return copy_state_for_exception_with_bci(bci());
3728 }
3729
3730 ValueStack* GraphBuilder::copy_state_before_with_bci(int bci) {
3731 return state()->copy(ValueStack::StateBefore, bci);
3732 }
3733
3734 ValueStack* GraphBuilder::copy_state_exhandling_with_bci(int bci) {
3735 if (!has_handler()) return nullptr;
3736 return state()->copy(ValueStack::StateBefore, bci);
3737 }
3738
3739 ValueStack* GraphBuilder::copy_state_for_exception_with_bci(int bci) {
3740 ValueStack* s = copy_state_exhandling_with_bci(bci);
3741 if (s == nullptr) {
3742 // no handler, no need to retain locals
3743 ValueStack::Kind exc_kind = ValueStack::empty_exception_kind();
3744 s = state()->copy(exc_kind, bci);
3745 }
3746 return s;
3747 }
3748
3749 int GraphBuilder::recursive_inline_level(ciMethod* cur_callee) const {
3750 int recur_level = 0;
3751 for (IRScope* s = scope(); s != nullptr; s = s->caller()) {
3752 if (s->method() == cur_callee) {
3753 ++recur_level;
3754 }
3755 }
3756 return recur_level;
3757 }
3758
3759 static void set_flags_for_inlined_callee(Compilation* compilation, ciMethod* callee) {
3760 if (callee->has_reserved_stack_access()) {
3761 compilation->set_has_reserved_stack_access(true);
3762 }
3763 if (callee->is_synchronized() || callee->has_monitor_bytecodes()) {
3764 compilation->set_has_monitors(true);
3765 }
3766 if (callee->is_scoped()) {
3767 compilation->set_has_scoped_access(true);
3768 }
3769 }
3770
3771 bool GraphBuilder::try_inline(ciMethod* callee, bool holder_known, bool ignore_return, Bytecodes::Code bc, Value receiver) {
3772 const char* msg = nullptr;
3773
3774 // clear out any existing inline bailout condition
3775 clear_inline_bailout();
3776
3777 // exclude methods we don't want to inline
3778 msg = should_not_inline(callee);
3779 if (msg != nullptr) {
3780 print_inlining(callee, msg, /*success*/ false);
3781 return false;
3782 }
3783
3784 // method handle invokes
3785 if (callee->is_method_handle_intrinsic()) {
3786 if (try_method_handle_inline(callee, ignore_return)) {
3787 set_flags_for_inlined_callee(compilation(), callee);
3788 return true;
3789 }
3790 return false;
3791 }
3792
3793 // handle intrinsics
3794 if (callee->intrinsic_id() != vmIntrinsics::_none &&
3795 callee->check_intrinsic_candidate()) {
3796 if (try_inline_intrinsics(callee, ignore_return)) {
3797 print_inlining(callee, "intrinsic");
3798 set_flags_for_inlined_callee(compilation(), callee);
3799 return true;
3800 }
3801 // try normal inlining
3802 }
3803
3804 // certain methods cannot be parsed at all
3805 msg = check_can_parse(callee);
3806 if (msg != nullptr) {
3807 print_inlining(callee, msg, /*success*/ false);
3808 return false;
3809 }
3810
3811 // If bytecode not set use the current one.
3812 if (bc == Bytecodes::_illegal) {
3813 bc = code();
3814 }
3815 if (try_inline_full(callee, holder_known, ignore_return, bc, receiver)) {
3816 set_flags_for_inlined_callee(compilation(), callee);
3817 return true;
3818 }
3819
3820 // Entire compilation could fail during try_inline_full call.
3821 // In that case printing inlining decision info is useless.
3822 if (!bailed_out())
3823 print_inlining(callee, _inline_bailout_msg, /*success*/ false);
3824
3825 return false;
3826 }
3827
3828
3829 const char* GraphBuilder::check_can_parse(ciMethod* callee) const {
3830 // Certain methods cannot be parsed at all:
3831 if ( callee->is_native()) return "native method";
3832 if ( callee->is_abstract()) return "abstract method";
3833 if (!callee->can_be_parsed()) return "cannot be parsed";
3834 return nullptr;
3835 }
3836
3837 // negative filter: should callee NOT be inlined? returns null, ok to inline, or rejection msg
3838 const char* GraphBuilder::should_not_inline(ciMethod* callee) const {
3839 if ( compilation()->directive()->should_not_inline(callee)) return "disallowed by CompileCommand";
3840 if ( callee->dont_inline()) return "don't inline by annotation";
3841 return nullptr;
3842 }
3843
3844 void GraphBuilder::build_graph_for_intrinsic(ciMethod* callee, bool ignore_return) {
3845 vmIntrinsics::ID id = callee->intrinsic_id();
3846 assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
3847
3848 // Some intrinsics need special IR nodes.
3849 switch(id) {
3850 case vmIntrinsics::_getReference : append_unsafe_get(callee, T_OBJECT, false); return;
3851 case vmIntrinsics::_getBoolean : append_unsafe_get(callee, T_BOOLEAN, false); return;
3852 case vmIntrinsics::_getByte : append_unsafe_get(callee, T_BYTE, false); return;
3853 case vmIntrinsics::_getShort : append_unsafe_get(callee, T_SHORT, false); return;
3854 case vmIntrinsics::_getChar : append_unsafe_get(callee, T_CHAR, false); return;
3855 case vmIntrinsics::_getInt : append_unsafe_get(callee, T_INT, false); return;
3856 case vmIntrinsics::_getLong : append_unsafe_get(callee, T_LONG, false); return;
3857 case vmIntrinsics::_getFloat : append_unsafe_get(callee, T_FLOAT, false); return;
3858 case vmIntrinsics::_getDouble : append_unsafe_get(callee, T_DOUBLE, false); return;
3859 case vmIntrinsics::_putReference : append_unsafe_put(callee, T_OBJECT, false); return;
3860 case vmIntrinsics::_putBoolean : append_unsafe_put(callee, T_BOOLEAN, false); return;
3861 case vmIntrinsics::_putByte : append_unsafe_put(callee, T_BYTE, false); return;
3862 case vmIntrinsics::_putShort : append_unsafe_put(callee, T_SHORT, false); return;
3863 case vmIntrinsics::_putChar : append_unsafe_put(callee, T_CHAR, false); return;
3864 case vmIntrinsics::_putInt : append_unsafe_put(callee, T_INT, false); return;
3865 case vmIntrinsics::_putLong : append_unsafe_put(callee, T_LONG, false); return;
3866 case vmIntrinsics::_putFloat : append_unsafe_put(callee, T_FLOAT, false); return;
3867 case vmIntrinsics::_putDouble : append_unsafe_put(callee, T_DOUBLE, false); return;
3868 case vmIntrinsics::_getShortUnaligned : append_unsafe_get(callee, T_SHORT, false); return;
3869 case vmIntrinsics::_getCharUnaligned : append_unsafe_get(callee, T_CHAR, false); return;
3870 case vmIntrinsics::_getIntUnaligned : append_unsafe_get(callee, T_INT, false); return;
3871 case vmIntrinsics::_getLongUnaligned : append_unsafe_get(callee, T_LONG, false); return;
3872 case vmIntrinsics::_putShortUnaligned : append_unsafe_put(callee, T_SHORT, false); return;
3873 case vmIntrinsics::_putCharUnaligned : append_unsafe_put(callee, T_CHAR, false); return;
3874 case vmIntrinsics::_putIntUnaligned : append_unsafe_put(callee, T_INT, false); return;
3875 case vmIntrinsics::_putLongUnaligned : append_unsafe_put(callee, T_LONG, false); return;
3876 case vmIntrinsics::_getReferenceVolatile : append_unsafe_get(callee, T_OBJECT, true); return;
3877 case vmIntrinsics::_getBooleanVolatile : append_unsafe_get(callee, T_BOOLEAN, true); return;
3878 case vmIntrinsics::_getByteVolatile : append_unsafe_get(callee, T_BYTE, true); return;
3879 case vmIntrinsics::_getShortVolatile : append_unsafe_get(callee, T_SHORT, true); return;
3880 case vmIntrinsics::_getCharVolatile : append_unsafe_get(callee, T_CHAR, true); return;
3881 case vmIntrinsics::_getIntVolatile : append_unsafe_get(callee, T_INT, true); return;
3882 case vmIntrinsics::_getLongVolatile : append_unsafe_get(callee, T_LONG, true); return;
3883 case vmIntrinsics::_getFloatVolatile : append_unsafe_get(callee, T_FLOAT, true); return;
3884 case vmIntrinsics::_getDoubleVolatile : append_unsafe_get(callee, T_DOUBLE, true); return;
3885 case vmIntrinsics::_putReferenceVolatile : append_unsafe_put(callee, T_OBJECT, true); return;
3886 case vmIntrinsics::_putBooleanVolatile : append_unsafe_put(callee, T_BOOLEAN, true); return;
3887 case vmIntrinsics::_putByteVolatile : append_unsafe_put(callee, T_BYTE, true); return;
3888 case vmIntrinsics::_putShortVolatile : append_unsafe_put(callee, T_SHORT, true); return;
3889 case vmIntrinsics::_putCharVolatile : append_unsafe_put(callee, T_CHAR, true); return;
3890 case vmIntrinsics::_putIntVolatile : append_unsafe_put(callee, T_INT, true); return;
3891 case vmIntrinsics::_putLongVolatile : append_unsafe_put(callee, T_LONG, true); return;
3892 case vmIntrinsics::_putFloatVolatile : append_unsafe_put(callee, T_FLOAT, true); return;
3893 case vmIntrinsics::_putDoubleVolatile : append_unsafe_put(callee, T_DOUBLE, true); return;
3894 case vmIntrinsics::_compareAndSetLong:
3895 case vmIntrinsics::_compareAndSetInt:
3896 case vmIntrinsics::_compareAndSetReference : append_unsafe_CAS(callee); return;
3897 case vmIntrinsics::_getAndAddInt:
3898 case vmIntrinsics::_getAndAddLong : append_unsafe_get_and_set(callee, true); return;
3899 case vmIntrinsics::_getAndSetInt :
3900 case vmIntrinsics::_getAndSetLong :
3901 case vmIntrinsics::_getAndSetReference : append_unsafe_get_and_set(callee, false); return;
3902 case vmIntrinsics::_getCharStringU : append_char_access(callee, false); return;
3903 case vmIntrinsics::_putCharStringU : append_char_access(callee, true); return;
3904 case vmIntrinsics::_clone : append_alloc_array_copy(callee); return;
3905 default:
3906 break;
3907 }
3908 if (_inline_bailout_msg != nullptr) {
3909 return;
3910 }
3911
3912 // create intrinsic node
3913 const bool has_receiver = !callee->is_static();
3914 ValueType* result_type = as_ValueType(callee->return_type());
3915 ValueStack* state_before = copy_state_for_exception();
3916
3917 Values* args = state()->pop_arguments(callee->arg_size());
3918
3919 if (is_profiling()) {
3920 // Don't profile in the special case where the root method
3921 // is the intrinsic
3922 if (callee != method()) {
3923 // Note that we'd collect profile data in this method if we wanted it.
3924 compilation()->set_would_profile(true);
3925 if (profile_calls()) {
3926 Value recv = nullptr;
3927 if (has_receiver) {
3928 recv = args->at(0);
3929 null_check(recv);
3930 }
3931 profile_call(callee, recv, nullptr, collect_args_for_profiling(args, callee, true), true);
3932 }
3933 }
3934 }
3935
3936 Intrinsic* result = new Intrinsic(result_type, callee->intrinsic_id(),
3937 args, has_receiver, state_before,
3938 vmIntrinsics::preserves_state(id),
3939 vmIntrinsics::can_trap(id));
3940 // append instruction & push result
3941 Value value = append_split(result);
3942 if (result_type != voidType && !ignore_return) {
3943 push(result_type, value);
3944 }
3945
3946 if (callee != method() && profile_return() && result_type->is_object_kind()) {
3947 profile_return_type(result, callee);
3948 }
3949 }
3950
3951 bool GraphBuilder::try_inline_intrinsics(ciMethod* callee, bool ignore_return) {
3952 // For calling is_intrinsic_available we need to transition to
3953 // the '_thread_in_vm' state because is_intrinsic_available()
3954 // accesses critical VM-internal data.
3955 bool is_available = false;
3956 {
3957 VM_ENTRY_MARK;
3958 methodHandle mh(THREAD, callee->get_Method());
3959 is_available = _compilation->compiler()->is_intrinsic_available(mh, _compilation->directive());
3960 }
3961
3962 if (!is_available) {
3963 if (!InlineNatives) {
3964 // Return false and also set message that the inlining of
3965 // intrinsics has been disabled in general.
3966 INLINE_BAILOUT("intrinsic method inlining disabled");
3967 } else {
3968 return false;
3969 }
3970 }
3971 build_graph_for_intrinsic(callee, ignore_return);
3972 if (_inline_bailout_msg != nullptr) {
3973 return false;
3974 }
3975 return true;
3976 }
3977
3978
3979 bool GraphBuilder::try_inline_jsr(int jsr_dest_bci) {
3980 // Introduce a new callee continuation point - all Ret instructions
3981 // will be replaced with Gotos to this point.
3982 if (next_bci() >= method()->code_size()) {
3983 return false;
3984 }
3985 BlockBegin* cont = block_at(next_bci());
3986 assert(cont != nullptr, "continuation must exist (BlockListBuilder starts a new block after a jsr");
3987
3988 // Note: can not assign state to continuation yet, as we have to
3989 // pick up the state from the Ret instructions.
3990
3991 // Push callee scope
3992 push_scope_for_jsr(cont, jsr_dest_bci);
3993
3994 // Temporarily set up bytecode stream so we can append instructions
3995 // (only using the bci of this stream)
3996 scope_data()->set_stream(scope_data()->parent()->stream());
3997
3998 BlockBegin* jsr_start_block = block_at(jsr_dest_bci);
3999 assert(jsr_start_block != nullptr, "jsr start block must exist");
4000 assert(!jsr_start_block->is_set(BlockBegin::was_visited_flag), "should not have visited jsr yet");
4001 Goto* goto_sub = new Goto(jsr_start_block, false);
4002 // Must copy state to avoid wrong sharing when parsing bytecodes
4003 assert(jsr_start_block->state() == nullptr, "should have fresh jsr starting block");
4004 jsr_start_block->set_state(copy_state_before_with_bci(jsr_dest_bci));
4005 append(goto_sub);
4006 _block->set_end(goto_sub);
4007 _last = _block = jsr_start_block;
4008
4009 // Clear out bytecode stream
4010 scope_data()->set_stream(nullptr);
4011
4012 scope_data()->add_to_work_list(jsr_start_block);
4013
4014 // Ready to resume parsing in subroutine
4015 iterate_all_blocks();
4016
4017 // If we bailed out during parsing, return immediately (this is bad news)
4018 CHECK_BAILOUT_(false);
4019
4020 // Detect whether the continuation can actually be reached. If not,
4021 // it has not had state set by the join() operations in
4022 // iterate_bytecodes_for_block()/ret() and we should not touch the
4023 // iteration state. The calling activation of
4024 // iterate_bytecodes_for_block will then complete normally.
4025 if (cont->state() != nullptr) {
4026 if (!cont->is_set(BlockBegin::was_visited_flag)) {
4027 // add continuation to work list instead of parsing it immediately
4028 scope_data()->parent()->add_to_work_list(cont);
4029 }
4030 }
4031
4032 assert(jsr_continuation() == cont, "continuation must not have changed");
4033 assert(!jsr_continuation()->is_set(BlockBegin::was_visited_flag) ||
4034 jsr_continuation()->is_set(BlockBegin::parser_loop_header_flag),
4035 "continuation can only be visited in case of backward branches");
4036 assert(_last && _last->as_BlockEnd(), "block must have end");
4037
4038 // continuation is in work list, so end iteration of current block
4039 _skip_block = true;
4040 pop_scope_for_jsr();
4041
4042 return true;
4043 }
4044
4045
4046 // Inline the entry of a synchronized method as a monitor enter and
4047 // register the exception handler which releases the monitor if an
4048 // exception is thrown within the callee. Note that the monitor enter
4049 // cannot throw an exception itself, because the receiver is
4050 // guaranteed to be non-null by the explicit null check at the
4051 // beginning of inlining.
4052 void GraphBuilder::inline_sync_entry(Value lock, BlockBegin* sync_handler) {
4053 assert(lock != nullptr && sync_handler != nullptr, "lock or handler missing");
4054
4055 monitorenter(lock, SynchronizationEntryBCI);
4056 assert(_last->as_MonitorEnter() != nullptr, "monitor enter expected");
4057 _last->set_needs_null_check(false);
4058
4059 sync_handler->set(BlockBegin::exception_entry_flag);
4060 sync_handler->set(BlockBegin::is_on_work_list_flag);
4061
4062 ciExceptionHandler* desc = new ciExceptionHandler(method()->holder(), 0, method()->code_size(), -1, 0);
4063 XHandler* h = new XHandler(desc);
4064 h->set_entry_block(sync_handler);
4065 scope_data()->xhandlers()->append(h);
4066 scope_data()->set_has_handler();
4067 }
4068
4069
4070 // If an exception is thrown and not handled within an inlined
4071 // synchronized method, the monitor must be released before the
4072 // exception is rethrown in the outer scope. Generate the appropriate
4073 // instructions here.
4074 void GraphBuilder::fill_sync_handler(Value lock, BlockBegin* sync_handler, bool default_handler) {
4075 BlockBegin* orig_block = _block;
4076 ValueStack* orig_state = _state;
4077 Instruction* orig_last = _last;
4078 _last = _block = sync_handler;
4079 _state = sync_handler->state()->copy();
4080
4081 assert(sync_handler != nullptr, "handler missing");
4082 assert(!sync_handler->is_set(BlockBegin::was_visited_flag), "is visited here");
4083
4084 assert(lock != nullptr || default_handler, "lock or handler missing");
4085
4086 XHandler* h = scope_data()->xhandlers()->remove_last();
4087 assert(h->entry_block() == sync_handler, "corrupt list of handlers");
4088
4089 block()->set(BlockBegin::was_visited_flag);
4090 Value exception = append_with_bci(new ExceptionObject(), SynchronizationEntryBCI);
4091 assert(exception->is_pinned(), "must be");
4092
4093 int bci = SynchronizationEntryBCI;
4094 if (compilation()->env()->dtrace_method_probes()) {
4095 // Report exit from inline methods. We don't have a stream here
4096 // so pass an explicit bci of SynchronizationEntryBCI.
4097 Values* args = new Values(1);
4098 args->push(append_with_bci(new Constant(new MethodConstant(method())), bci));
4099 append_with_bci(new RuntimeCall(voidType, "dtrace_method_exit", CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), args), bci);
4100 }
4101
4102 if (lock) {
4103 assert(state()->locks_size() > 0 && state()->lock_at(state()->locks_size() - 1) == lock, "lock is missing");
4104 if (!lock->is_linked()) {
4105 lock = append_with_bci(lock, bci);
4106 }
4107
4108 // exit the monitor in the context of the synchronized method
4109 monitorexit(lock, bci);
4110
4111 // exit the context of the synchronized method
4112 if (!default_handler) {
4113 pop_scope();
4114 bci = _state->caller_state()->bci();
4115 _state = _state->caller_state()->copy_for_parsing();
4116 }
4117 }
4118
4119 // perform the throw as if at the call site
4120 apush(exception);
4121 throw_op(bci);
4122
4123 BlockEnd* end = last()->as_BlockEnd();
4124 block()->set_end(end);
4125
4126 _block = orig_block;
4127 _state = orig_state;
4128 _last = orig_last;
4129 }
4130
4131
4132 bool GraphBuilder::try_inline_full(ciMethod* callee, bool holder_known, bool ignore_return, Bytecodes::Code bc, Value receiver) {
4133 assert(!callee->is_native(), "callee must not be native");
4134 if (CompilationPolicy::should_not_inline(compilation()->env(), callee)) {
4135 INLINE_BAILOUT("inlining prohibited by policy");
4136 }
4137 // first perform tests of things it's not possible to inline
4138 if (callee->has_exception_handlers() &&
4139 !InlineMethodsWithExceptionHandlers) INLINE_BAILOUT("callee has exception handlers");
4140 if (callee->is_synchronized() &&
4141 !InlineSynchronizedMethods ) INLINE_BAILOUT("callee is synchronized");
4142 if (!callee->holder()->is_linked()) INLINE_BAILOUT("callee's klass not linked yet");
4143 if (bc == Bytecodes::_invokestatic &&
4144 !callee->holder()->is_initialized()) INLINE_BAILOUT("callee's klass not initialized yet");
4145 if (!callee->has_balanced_monitors()) INLINE_BAILOUT("callee's monitors do not match");
4146
4147 // Proper inlining of methods with jsrs requires a little more work.
4148 if (callee->has_jsrs() ) INLINE_BAILOUT("jsrs not handled properly by inliner yet");
4149
4150 if (is_profiling() && !callee->ensure_method_data()) {
4151 INLINE_BAILOUT("mdo allocation failed");
4152 }
4153
4154 const bool is_invokedynamic = (bc == Bytecodes::_invokedynamic);
4155 const bool has_receiver = (bc != Bytecodes::_invokestatic && !is_invokedynamic);
4156
4157 const int args_base = state()->stack_size() - callee->arg_size();
4158 assert(args_base >= 0, "stack underflow during inlining");
4159
4160 Value recv = nullptr;
4161 if (has_receiver) {
4162 assert(!callee->is_static(), "callee must not be static");
4163 assert(callee->arg_size() > 0, "must have at least a receiver");
4164
4165 recv = state()->stack_at(args_base);
4166 if (recv->is_null_obj()) {
4167 INLINE_BAILOUT("receiver is always null");
4168 }
4169 }
4170
4171 // now perform tests that are based on flag settings
4172 bool inlinee_by_directive = compilation()->directive()->should_inline(callee);
4173 if (callee->force_inline() || inlinee_by_directive) {
4174 if (inline_level() > MaxForceInlineLevel ) INLINE_BAILOUT("MaxForceInlineLevel");
4175 if (recursive_inline_level(callee) > C1MaxRecursiveInlineLevel) INLINE_BAILOUT("recursive inlining too deep");
4176
4177 const char* msg = "";
4178 if (callee->force_inline()) msg = "force inline by annotation";
4179 if (inlinee_by_directive) msg = "force inline by CompileCommand";
4180 print_inlining(callee, msg);
4181 } else {
4182 // use heuristic controls on inlining
4183 if (inline_level() > C1MaxInlineLevel ) INLINE_BAILOUT("inlining too deep");
4184 int callee_recursive_level = recursive_inline_level(callee);
4185 if (callee_recursive_level > C1MaxRecursiveInlineLevel ) INLINE_BAILOUT("recursive inlining too deep");
4186 if (callee->code_size_for_inlining() > max_inline_size() ) INLINE_BAILOUT("callee is too large");
4187 // Additional condition to limit stack usage for non-recursive calls.
4188 if ((callee_recursive_level == 0) &&
4189 (callee->max_stack() + callee->max_locals() - callee->size_of_parameters() > C1InlineStackLimit)) {
4190 INLINE_BAILOUT("callee uses too much stack");
4191 }
4192
4193 // don't inline throwable methods unless the inlining tree is rooted in a throwable class
4194 if (callee->name() == ciSymbols::object_initializer_name() &&
4195 callee->holder()->is_subclass_of(ciEnv::current()->Throwable_klass())) {
4196 // Throwable constructor call
4197 IRScope* top = scope();
4198 while (top->caller() != nullptr) {
4199 top = top->caller();
4200 }
4201 if (!top->method()->holder()->is_subclass_of(ciEnv::current()->Throwable_klass())) {
4202 INLINE_BAILOUT("don't inline Throwable constructors");
4203 }
4204 }
4205
4206 if (compilation()->env()->num_inlined_bytecodes() > DesiredMethodLimit) {
4207 INLINE_BAILOUT("total inlining greater than DesiredMethodLimit");
4208 }
4209 // printing
4210 print_inlining(callee, "inline", /*success*/ true);
4211 }
4212
4213 assert(bc != Bytecodes::_invokestatic || callee->holder()->is_initialized(), "required");
4214
4215 // NOTE: Bailouts from this point on, which occur at the
4216 // GraphBuilder level, do not cause bailout just of the inlining but
4217 // in fact of the entire compilation.
4218
4219 BlockBegin* orig_block = block();
4220
4221 // Insert null check if necessary
4222 if (has_receiver) {
4223 // note: null check must happen even if first instruction of callee does
4224 // an implicit null check since the callee is in a different scope
4225 // and we must make sure exception handling does the right thing
4226 null_check(recv);
4227 }
4228
4229 if (is_profiling()) {
4230 // Note that we'd collect profile data in this method if we wanted it.
4231 // this may be redundant here...
4232 compilation()->set_would_profile(true);
4233
4234 if (profile_calls()) {
4235 int start = 0;
4236 Values* obj_args = args_list_for_profiling(callee, start, has_receiver);
4237 if (obj_args != nullptr) {
4238 int s = obj_args->capacity();
4239 // if called through method handle invoke, some arguments may have been popped
4240 for (int i = args_base+start, j = 0; j < obj_args->capacity() && i < state()->stack_size(); ) {
4241 Value v = state()->stack_at_inc(i);
4242 if (v->type()->is_object_kind()) {
4243 obj_args->push(v);
4244 j++;
4245 }
4246 }
4247 check_args_for_profiling(obj_args, s);
4248 }
4249 profile_call(callee, recv, holder_known ? callee->holder() : nullptr, obj_args, true);
4250 }
4251 }
4252
4253 // Introduce a new callee continuation point - if the callee has
4254 // more than one return instruction or the return does not allow
4255 // fall-through of control flow, all return instructions of the
4256 // callee will need to be replaced by Goto's pointing to this
4257 // continuation point.
4258 BlockBegin* cont = block_at(next_bci());
4259 bool continuation_existed = true;
4260 if (cont == nullptr) {
4261 cont = new BlockBegin(next_bci());
4262 // low number so that continuation gets parsed as early as possible
4263 cont->set_depth_first_number(0);
4264 if (PrintInitialBlockList) {
4265 tty->print_cr("CFG: created block %d (bci %d) as continuation for inline at bci %d",
4266 cont->block_id(), cont->bci(), bci());
4267 }
4268 continuation_existed = false;
4269 }
4270 // Record number of predecessors of continuation block before
4271 // inlining, to detect if inlined method has edges to its
4272 // continuation after inlining.
4273 int continuation_preds = cont->number_of_preds();
4274
4275 // Push callee scope
4276 push_scope(callee, cont);
4277
4278 // the BlockListBuilder for the callee could have bailed out
4279 if (bailed_out())
4280 return false;
4281
4282 // Temporarily set up bytecode stream so we can append instructions
4283 // (only using the bci of this stream)
4284 scope_data()->set_stream(scope_data()->parent()->stream());
4285
4286 // Pass parameters into callee state: add assignments
4287 // note: this will also ensure that all arguments are computed before being passed
4288 ValueStack* callee_state = state();
4289 ValueStack* caller_state = state()->caller_state();
4290 for (int i = args_base; i < caller_state->stack_size(); ) {
4291 const int arg_no = i - args_base;
4292 Value arg = caller_state->stack_at_inc(i);
4293 store_local(callee_state, arg, arg_no);
4294 }
4295
4296 // Remove args from stack.
4297 // Note that we preserve locals state in case we can use it later
4298 // (see use of pop_scope() below)
4299 caller_state->truncate_stack(args_base);
4300 assert(callee_state->stack_size() == 0, "callee stack must be empty");
4301
4302 // Check if we need a membar at the beginning of the java.lang.Object
4303 // constructor to satisfy the memory model for strict fields.
4304 if (EnableValhalla && method()->intrinsic_id() == vmIntrinsics::_Object_init) {
4305 Value receiver = state()->local_at(0);
4306 ciType* klass = receiver->exact_type();
4307 if (klass == nullptr) {
4308 // No exact type, check if the declared type has no implementors and add a dependency
4309 klass = receiver->declared_type();
4310 klass = compilation()->cha_exact_type(klass);
4311 }
4312 if (klass != nullptr && klass->is_instance_klass()) {
4313 // Exact receiver type, check if there is a strict field
4314 ciInstanceKlass* holder = klass->as_instance_klass();
4315 for (int i = 0; i < holder->nof_nonstatic_fields(); i++) {
4316 ciField* field = holder->nonstatic_field_at(i);
4317 if (field->is_strict()) {
4318 // Found a strict field, a membar is needed
4319 append(new MemBar(lir_membar_storestore));
4320 break;
4321 }
4322 }
4323 } else if (klass == nullptr) {
4324 // We can't statically determine the type of the receiver and therefore need
4325 // to put a membar here because it could have a strict field.
4326 append(new MemBar(lir_membar_storestore));
4327 }
4328 }
4329
4330 Value lock = nullptr;
4331 BlockBegin* sync_handler = nullptr;
4332
4333 // Inline the locking of the receiver if the callee is synchronized
4334 if (callee->is_synchronized()) {
4335 lock = callee->is_static() ? append(new Constant(new InstanceConstant(callee->holder()->java_mirror())))
4336 : state()->local_at(0);
4337 sync_handler = new BlockBegin(SynchronizationEntryBCI);
4338 inline_sync_entry(lock, sync_handler);
4339 }
4340
4341 if (compilation()->env()->dtrace_method_probes()) {
4342 Values* args = new Values(1);
4343 args->push(append(new Constant(new MethodConstant(method()))));
4344 append(new RuntimeCall(voidType, "dtrace_method_entry", CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), args));
4345 }
4346
4347 if (profile_inlined_calls()) {
4348 profile_invocation(callee, copy_state_before_with_bci(SynchronizationEntryBCI));
4349 }
4350
4351 BlockBegin* callee_start_block = block_at(0);
4352 if (callee_start_block != nullptr) {
4353 assert(callee_start_block->is_set(BlockBegin::parser_loop_header_flag), "must be loop header");
4354 Goto* goto_callee = new Goto(callee_start_block, false);
4355 // The state for this goto is in the scope of the callee, so use
4356 // the entry bci for the callee instead of the call site bci.
4357 append_with_bci(goto_callee, 0);
4358 _block->set_end(goto_callee);
4359 callee_start_block->merge(callee_state, compilation()->has_irreducible_loops());
4360
4361 _last = _block = callee_start_block;
4362
4363 scope_data()->add_to_work_list(callee_start_block);
4364 }
4365
4366 // Clear out bytecode stream
4367 scope_data()->set_stream(nullptr);
4368 scope_data()->set_ignore_return(ignore_return);
4369
4370 CompileLog* log = compilation()->log();
4371 if (log != nullptr) log->head("parse method='%d'", log->identify(callee));
4372
4373 // Ready to resume parsing in callee (either in the same block we
4374 // were in before or in the callee's start block)
4375 iterate_all_blocks(callee_start_block == nullptr);
4376
4377 if (log != nullptr) log->done("parse");
4378
4379 // If we bailed out during parsing, return immediately (this is bad news)
4380 if (bailed_out())
4381 return false;
4382
4383 // iterate_all_blocks theoretically traverses in random order; in
4384 // practice, we have only traversed the continuation if we are
4385 // inlining into a subroutine
4386 assert(continuation_existed ||
4387 !continuation()->is_set(BlockBegin::was_visited_flag),
4388 "continuation should not have been parsed yet if we created it");
4389
4390 // At this point we are almost ready to return and resume parsing of
4391 // the caller back in the GraphBuilder. The only thing we want to do
4392 // first is an optimization: during parsing of the callee we
4393 // generated at least one Goto to the continuation block. If we
4394 // generated exactly one, and if the inlined method spanned exactly
4395 // one block (and we didn't have to Goto its entry), then we snip
4396 // off the Goto to the continuation, allowing control to fall
4397 // through back into the caller block and effectively performing
4398 // block merging. This allows load elimination and CSE to take place
4399 // across multiple callee scopes if they are relatively simple, and
4400 // is currently essential to making inlining profitable.
4401 if (num_returns() == 1
4402 && block() == orig_block
4403 && block() == inline_cleanup_block()) {
4404 _last = inline_cleanup_return_prev();
4405 _state = inline_cleanup_state();
4406 } else if (continuation_preds == cont->number_of_preds()) {
4407 // Inlining caused that the instructions after the invoke in the
4408 // caller are not reachable any more. So skip filling this block
4409 // with instructions!
4410 assert(cont == continuation(), "");
4411 assert(_last && _last->as_BlockEnd(), "");
4412 _skip_block = true;
4413 } else {
4414 // Resume parsing in continuation block unless it was already parsed.
4415 // Note that if we don't change _last here, iteration in
4416 // iterate_bytecodes_for_block will stop when we return.
4417 if (!continuation()->is_set(BlockBegin::was_visited_flag)) {
4418 // add continuation to work list instead of parsing it immediately
4419 assert(_last && _last->as_BlockEnd(), "");
4420 scope_data()->parent()->add_to_work_list(continuation());
4421 _skip_block = true;
4422 }
4423 }
4424
4425 // Fill the exception handler for synchronized methods with instructions
4426 if (callee->is_synchronized() && sync_handler->state() != nullptr) {
4427 fill_sync_handler(lock, sync_handler);
4428 } else {
4429 pop_scope();
4430 }
4431
4432 compilation()->notice_inlined_method(callee);
4433
4434 return true;
4435 }
4436
4437
4438 bool GraphBuilder::try_method_handle_inline(ciMethod* callee, bool ignore_return) {
4439 ValueStack* state_before = copy_state_before();
4440 vmIntrinsics::ID iid = callee->intrinsic_id();
4441 switch (iid) {
4442 case vmIntrinsics::_invokeBasic:
4443 {
4444 // get MethodHandle receiver
4445 const int args_base = state()->stack_size() - callee->arg_size();
4446 ValueType* type = state()->stack_at(args_base)->type();
4447 if (type->is_constant()) {
4448 ciObject* mh = type->as_ObjectType()->constant_value();
4449 if (mh->is_method_handle()) {
4450 ciMethod* target = mh->as_method_handle()->get_vmtarget();
4451
4452 // We don't do CHA here so only inline static and statically bindable methods.
4453 if (target->is_static() || target->can_be_statically_bound()) {
4454 if (ciMethod::is_consistent_info(callee, target)) {
4455 Bytecodes::Code bc = target->is_static() ? Bytecodes::_invokestatic : Bytecodes::_invokevirtual;
4456 ignore_return = ignore_return || (callee->return_type()->is_void() && !target->return_type()->is_void());
4457 if (try_inline(target, /*holder_known*/ !callee->is_static(), ignore_return, bc)) {
4458 return true;
4459 }
4460 } else {
4461 print_inlining(target, "signatures mismatch", /*success*/ false);
4462 }
4463 } else {
4464 assert(false, "no inlining through MH::invokeBasic"); // missing optimization opportunity due to suboptimal LF shape
4465 print_inlining(target, "not static or statically bindable", /*success*/ false);
4466 }
4467 } else {
4468 assert(mh->is_null_object(), "not a null");
4469 print_inlining(callee, "receiver is always null", /*success*/ false);
4470 }
4471 } else {
4472 print_inlining(callee, "receiver not constant", /*success*/ false);
4473 }
4474 }
4475 break;
4476
4477 case vmIntrinsics::_linkToVirtual:
4478 case vmIntrinsics::_linkToStatic:
4479 case vmIntrinsics::_linkToSpecial:
4480 case vmIntrinsics::_linkToInterface:
4481 {
4482 // pop MemberName argument
4483 const int args_base = state()->stack_size() - callee->arg_size();
4484 ValueType* type = apop()->type();
4485 if (type->is_constant()) {
4486 ciMethod* target = type->as_ObjectType()->constant_value()->as_member_name()->get_vmtarget();
4487 ignore_return = ignore_return || (callee->return_type()->is_void() && !target->return_type()->is_void());
4488 // If the target is another method handle invoke, try to recursively get
4489 // a better target.
4490 if (target->is_method_handle_intrinsic()) {
4491 if (try_method_handle_inline(target, ignore_return)) {
4492 return true;
4493 }
4494 } else if (!ciMethod::is_consistent_info(callee, target)) {
4495 print_inlining(target, "signatures mismatch", /*success*/ false);
4496 } else {
4497 ciSignature* signature = target->signature();
4498 const int receiver_skip = target->is_static() ? 0 : 1;
4499 // Cast receiver to its type.
4500 if (!target->is_static()) {
4501 ciKlass* tk = signature->accessing_klass();
4502 Value obj = state()->stack_at(args_base);
4503 if (obj->exact_type() == nullptr &&
4504 obj->declared_type() != tk && tk != compilation()->env()->Object_klass()) {
4505 TypeCast* c = new TypeCast(tk, obj, state_before);
4506 append(c);
4507 state()->stack_at_put(args_base, c);
4508 }
4509 }
4510 // Cast reference arguments to its type.
4511 for (int i = 0, j = 0; i < signature->count(); i++) {
4512 ciType* t = signature->type_at(i);
4513 if (t->is_klass()) {
4514 ciKlass* tk = t->as_klass();
4515 Value obj = state()->stack_at(args_base + receiver_skip + j);
4516 if (obj->exact_type() == nullptr &&
4517 obj->declared_type() != tk && tk != compilation()->env()->Object_klass()) {
4518 TypeCast* c = new TypeCast(t, obj, state_before);
4519 append(c);
4520 state()->stack_at_put(args_base + receiver_skip + j, c);
4521 }
4522 }
4523 j += t->size(); // long and double take two slots
4524 }
4525 // We don't do CHA here so only inline static and statically bindable methods.
4526 if (target->is_static() || target->can_be_statically_bound()) {
4527 Bytecodes::Code bc = target->is_static() ? Bytecodes::_invokestatic : Bytecodes::_invokevirtual;
4528 if (try_inline(target, /*holder_known*/ !callee->is_static(), ignore_return, bc)) {
4529 return true;
4530 }
4531 } else {
4532 print_inlining(target, "not static or statically bindable", /*success*/ false);
4533 }
4534 }
4535 } else {
4536 print_inlining(callee, "MemberName not constant", /*success*/ false);
4537 }
4538 }
4539 break;
4540
4541 case vmIntrinsics::_linkToNative:
4542 print_inlining(callee, "native call", /*success*/ false);
4543 break;
4544
4545 default:
4546 fatal("unexpected intrinsic %d: %s", vmIntrinsics::as_int(iid), vmIntrinsics::name_at(iid));
4547 break;
4548 }
4549 set_state(state_before->copy_for_parsing());
4550 return false;
4551 }
4552
4553
4554 void GraphBuilder::inline_bailout(const char* msg) {
4555 assert(msg != nullptr, "inline bailout msg must exist");
4556 _inline_bailout_msg = msg;
4557 }
4558
4559
4560 void GraphBuilder::clear_inline_bailout() {
4561 _inline_bailout_msg = nullptr;
4562 }
4563
4564
4565 void GraphBuilder::push_root_scope(IRScope* scope, BlockList* bci2block, BlockBegin* start) {
4566 ScopeData* data = new ScopeData(nullptr);
4567 data->set_scope(scope);
4568 data->set_bci2block(bci2block);
4569 _scope_data = data;
4570 _block = start;
4571 }
4572
4573
4574 void GraphBuilder::push_scope(ciMethod* callee, BlockBegin* continuation) {
4575 IRScope* callee_scope = new IRScope(compilation(), scope(), bci(), callee, -1, false);
4576 scope()->add_callee(callee_scope);
4577
4578 BlockListBuilder blb(compilation(), callee_scope, -1);
4579 CHECK_BAILOUT();
4580
4581 if (!blb.bci2block()->at(0)->is_set(BlockBegin::parser_loop_header_flag)) {
4582 // this scope can be inlined directly into the caller so remove
4583 // the block at bci 0.
4584 blb.bci2block()->at_put(0, nullptr);
4585 }
4586
4587 set_state(new ValueStack(callee_scope, state()->copy(ValueStack::CallerState, bci())));
4588
4589 ScopeData* data = new ScopeData(scope_data());
4590 data->set_scope(callee_scope);
4591 data->set_bci2block(blb.bci2block());
4592 data->set_continuation(continuation);
4593 _scope_data = data;
4594 }
4595
4596
4597 void GraphBuilder::push_scope_for_jsr(BlockBegin* jsr_continuation, int jsr_dest_bci) {
4598 ScopeData* data = new ScopeData(scope_data());
4599 data->set_parsing_jsr();
4600 data->set_jsr_entry_bci(jsr_dest_bci);
4601 data->set_jsr_return_address_local(-1);
4602 // Must clone bci2block list as we will be mutating it in order to
4603 // properly clone all blocks in jsr region as well as exception
4604 // handlers containing rets
4605 BlockList* new_bci2block = new BlockList(bci2block()->length());
4606 new_bci2block->appendAll(bci2block());
4607 data->set_bci2block(new_bci2block);
4608 data->set_scope(scope());
4609 data->setup_jsr_xhandlers();
4610 data->set_continuation(continuation());
4611 data->set_jsr_continuation(jsr_continuation);
4612 _scope_data = data;
4613 }
4614
4615
4616 void GraphBuilder::pop_scope() {
4617 int number_of_locks = scope()->number_of_locks();
4618 _scope_data = scope_data()->parent();
4619 // accumulate minimum number of monitor slots to be reserved
4620 scope()->set_min_number_of_locks(number_of_locks);
4621 }
4622
4623
4624 void GraphBuilder::pop_scope_for_jsr() {
4625 _scope_data = scope_data()->parent();
4626 }
4627
4628 void GraphBuilder::append_unsafe_get(ciMethod* callee, BasicType t, bool is_volatile) {
4629 Values* args = state()->pop_arguments(callee->arg_size());
4630 null_check(args->at(0));
4631 Instruction* offset = args->at(2);
4632 #ifndef _LP64
4633 offset = append(new Convert(Bytecodes::_l2i, offset, as_ValueType(T_INT)));
4634 #endif
4635 Instruction* op = append(new UnsafeGet(t, args->at(1), offset, is_volatile));
4636 push(op->type(), op);
4637 compilation()->set_has_unsafe_access(true);
4638 }
4639
4640
4641 void GraphBuilder::append_unsafe_put(ciMethod* callee, BasicType t, bool is_volatile) {
4642 Values* args = state()->pop_arguments(callee->arg_size());
4643 null_check(args->at(0));
4644 Instruction* offset = args->at(2);
4645 #ifndef _LP64
4646 offset = append(new Convert(Bytecodes::_l2i, offset, as_ValueType(T_INT)));
4647 #endif
4648 Value val = args->at(3);
4649 if (t == T_BOOLEAN) {
4650 Value mask = append(new Constant(new IntConstant(1)));
4651 val = append(new LogicOp(Bytecodes::_iand, val, mask));
4652 }
4653 Instruction* op = append(new UnsafePut(t, args->at(1), offset, val, is_volatile));
4654 compilation()->set_has_unsafe_access(true);
4655 kill_all();
4656 }
4657
4658 void GraphBuilder::append_unsafe_CAS(ciMethod* callee) {
4659 ValueStack* state_before = copy_state_for_exception();
4660 ValueType* result_type = as_ValueType(callee->return_type());
4661 assert(result_type->is_int(), "int result");
4662 Values* args = state()->pop_arguments(callee->arg_size());
4663
4664 // Pop off some args to specially handle, then push back
4665 Value newval = args->pop();
4666 Value cmpval = args->pop();
4667 Value offset = args->pop();
4668 Value src = args->pop();
4669 Value unsafe_obj = args->pop();
4670
4671 // Separately handle the unsafe arg. It is not needed for code
4672 // generation, but must be null checked
4673 null_check(unsafe_obj);
4674
4675 #ifndef _LP64
4676 offset = append(new Convert(Bytecodes::_l2i, offset, as_ValueType(T_INT)));
4677 #endif
4678
4679 args->push(src);
4680 args->push(offset);
4681 args->push(cmpval);
4682 args->push(newval);
4683
4684 // An unsafe CAS can alias with other field accesses, but we don't
4685 // know which ones so mark the state as no preserved. This will
4686 // cause CSE to invalidate memory across it.
4687 bool preserves_state = false;
4688 Intrinsic* result = new Intrinsic(result_type, callee->intrinsic_id(), args, false, state_before, preserves_state);
4689 append_split(result);
4690 push(result_type, result);
4691 compilation()->set_has_unsafe_access(true);
4692 }
4693
4694 void GraphBuilder::append_char_access(ciMethod* callee, bool is_store) {
4695 // This intrinsic accesses byte[] array as char[] array. Computing the offsets
4696 // correctly requires matched array shapes.
4697 assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE),
4698 "sanity: byte[] and char[] bases agree");
4699 assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2,
4700 "sanity: byte[] and char[] scales agree");
4701
4702 ValueStack* state_before = copy_state_indexed_access();
4703 compilation()->set_has_access_indexed(true);
4704 Values* args = state()->pop_arguments(callee->arg_size());
4705 Value array = args->at(0);
4706 Value index = args->at(1);
4707 if (is_store) {
4708 Value value = args->at(2);
4709 Instruction* store = append(new StoreIndexed(array, index, nullptr, T_CHAR, value, state_before, false, true));
4710 store->set_flag(Instruction::NeedsRangeCheckFlag, false);
4711 _memory->store_value(value);
4712 } else {
4713 Instruction* load = append(new LoadIndexed(array, index, nullptr, T_CHAR, state_before, true));
4714 load->set_flag(Instruction::NeedsRangeCheckFlag, false);
4715 push(load->type(), load);
4716 }
4717 }
4718
4719 void GraphBuilder::append_alloc_array_copy(ciMethod* callee) {
4720 const int args_base = state()->stack_size() - callee->arg_size();
4721 ciType* receiver_type = state()->stack_at(args_base)->exact_type();
4722 if (receiver_type == nullptr) {
4723 inline_bailout("must have a receiver");
4724 return;
4725 }
4726 if (!receiver_type->is_type_array_klass()) {
4727 inline_bailout("clone array not primitive");
4728 return;
4729 }
4730
4731 ValueStack* state_before = copy_state_before();
4732 state_before->set_force_reexecute();
4733 Value src = apop();
4734 BasicType basic_type = src->exact_type()->as_array_klass()->element_type()->basic_type();
4735 Value length = append(new ArrayLength(src, state_before));
4736 Value new_array = append_split(new NewTypeArray(length, basic_type, state_before, false));
4737
4738 ValueType* result_type = as_ValueType(callee->return_type());
4739 vmIntrinsics::ID id = vmIntrinsics::_arraycopy;
4740 Values* args = new Values(5);
4741 args->push(src);
4742 args->push(append(new Constant(new IntConstant(0))));
4743 args->push(new_array);
4744 args->push(append(new Constant(new IntConstant(0))));
4745 args->push(length);
4746 const bool has_receiver = true;
4747 Intrinsic* array_copy = new Intrinsic(result_type, id,
4748 args, has_receiver, state_before,
4749 vmIntrinsics::preserves_state(id),
4750 vmIntrinsics::can_trap(id));
4751 array_copy->set_flag(Instruction::OmitChecksFlag, true);
4752 append_split(array_copy);
4753 apush(new_array);
4754 append(new MemBar(lir_membar_storestore));
4755 }
4756
4757 void GraphBuilder::print_inlining(ciMethod* callee, const char* msg, bool success) {
4758 CompileLog* log = compilation()->log();
4759 if (log != nullptr) {
4760 assert(msg != nullptr, "inlining msg should not be null!");
4761 if (success) {
4762 log->inline_success(msg);
4763 } else {
4764 log->inline_fail(msg);
4765 }
4766 }
4767 EventCompilerInlining event;
4768 if (event.should_commit()) {
4769 CompilerEvent::InlineEvent::post(event, compilation()->env()->task()->compile_id(), method()->get_Method(), callee, success, msg, bci());
4770 }
4771
4772 CompileTask::print_inlining_ul(callee, scope()->level(), bci(), inlining_result_of(success), msg);
4773
4774 if (!compilation()->directive()->PrintInliningOption) {
4775 return;
4776 }
4777 CompileTask::print_inlining_tty(callee, scope()->level(), bci(), inlining_result_of(success), msg);
4778 if (success && CIPrintMethodCodes) {
4779 callee->print_codes();
4780 }
4781 }
4782
4783 void GraphBuilder::append_unsafe_get_and_set(ciMethod* callee, bool is_add) {
4784 Values* args = state()->pop_arguments(callee->arg_size());
4785 BasicType t = callee->return_type()->basic_type();
4786 null_check(args->at(0));
4787 Instruction* offset = args->at(2);
4788 #ifndef _LP64
4789 offset = append(new Convert(Bytecodes::_l2i, offset, as_ValueType(T_INT)));
4790 #endif
4791 Instruction* op = append(new UnsafeGetAndSet(t, args->at(1), offset, args->at(3), is_add));
4792 compilation()->set_has_unsafe_access(true);
4793 kill_all();
4794 push(op->type(), op);
4795 }
4796
4797 #ifndef PRODUCT
4798 void GraphBuilder::print_stats() {
4799 if (UseLocalValueNumbering) {
4800 vmap()->print();
4801 }
4802 }
4803 #endif // PRODUCT
4804
4805 void GraphBuilder::profile_call(ciMethod* callee, Value recv, ciKlass* known_holder, Values* obj_args, bool inlined) {
4806 assert(known_holder == nullptr || (known_holder->is_instance_klass() &&
4807 (!known_holder->is_interface() ||
4808 ((ciInstanceKlass*)known_holder)->has_nonstatic_concrete_methods())), "should be non-static concrete method");
4809 if (known_holder != nullptr) {
4810 if (known_holder->exact_klass() == nullptr) {
4811 known_holder = compilation()->cha_exact_type(known_holder);
4812 }
4813 }
4814
4815 append(new ProfileCall(method(), bci(), callee, recv, known_holder, obj_args, inlined));
4816 }
4817
4818 void GraphBuilder::profile_return_type(Value ret, ciMethod* callee, ciMethod* m, int invoke_bci) {
4819 assert((m == nullptr) == (invoke_bci < 0), "invalid method and invalid bci together");
4820 if (m == nullptr) {
4821 m = method();
4822 }
4823 if (invoke_bci < 0) {
4824 invoke_bci = bci();
4825 }
4826 ciMethodData* md = m->method_data_or_null();
4827 ciProfileData* data = md->bci_to_data(invoke_bci);
4828 if (data != nullptr && (data->is_CallTypeData() || data->is_VirtualCallTypeData())) {
4829 bool has_return = data->is_CallTypeData() ? ((ciCallTypeData*)data)->has_return() : ((ciVirtualCallTypeData*)data)->has_return();
4830 if (has_return) {
4831 append(new ProfileReturnType(m , invoke_bci, callee, ret));
4832 }
4833 }
4834 }
4835
4836 void GraphBuilder::profile_invocation(ciMethod* callee, ValueStack* state) {
4837 append(new ProfileInvoke(callee, state));
4838 }