1 /*
   2  * Copyright (c) 1999, 2021, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_CFGPrinter.hpp"
  27 #include "c1/c1_Canonicalizer.hpp"
  28 #include "c1/c1_Compilation.hpp"
  29 #include "c1/c1_GraphBuilder.hpp"
  30 #include "c1/c1_InstructionPrinter.hpp"
  31 #include "ci/ciCallSite.hpp"
  32 #include "ci/ciField.hpp"
  33 #include "ci/ciFlatArrayKlass.hpp"
  34 #include "ci/ciInlineKlass.hpp"
  35 #include "ci/ciKlass.hpp"
  36 #include "ci/ciMemberName.hpp"
  37 #include "ci/ciSymbols.hpp"
  38 #include "ci/ciUtilities.inline.hpp"
  39 #include "classfile/javaClasses.hpp"
  40 #include "compiler/compilationPolicy.hpp"
  41 #include "compiler/compileBroker.hpp"
  42 #include "compiler/compilerEvent.hpp"
  43 #include "interpreter/bytecode.hpp"
  44 #include "jfr/jfrEvents.hpp"
  45 #include "memory/resourceArea.hpp"
  46 #include "oops/oop.inline.hpp"
  47 #include "runtime/sharedRuntime.hpp"
  48 #include "runtime/vm_version.hpp"
  49 #include "utilities/bitMap.inline.hpp"
  50 #include "utilities/powerOfTwo.hpp"
  51 
  52 class BlockListBuilder {
  53  private:
  54   Compilation* _compilation;
  55   IRScope*     _scope;
  56 
  57   BlockList    _blocks;                // internal list of all blocks
  58   BlockList*   _bci2block;             // mapping from bci to blocks for GraphBuilder
  59   GrowableArray<BlockList> _bci2block_successors; // Mapping bcis to their blocks successors while we dont have a blockend
  60 
  61   // fields used by mark_loops
  62   ResourceBitMap _active;              // for iteration of control flow graph
  63   ResourceBitMap _visited;             // for iteration of control flow graph
  64   GrowableArray<ResourceBitMap> _loop_map; // caches the information if a block is contained in a loop
  65   int            _next_loop_index;     // next free loop number
  66   int            _next_block_number;   // for reverse postorder numbering of blocks
  67 
  68   // accessors
  69   Compilation*  compilation() const              { return _compilation; }
  70   IRScope*      scope() const                    { return _scope; }
  71   ciMethod*     method() const                   { return scope()->method(); }
  72   XHandlers*    xhandlers() const                { return scope()->xhandlers(); }
  73 
  74   // unified bailout support
  75   void          bailout(const char* msg) const   { compilation()->bailout(msg); }
  76   bool          bailed_out() const               { return compilation()->bailed_out(); }
  77 
  78   // helper functions
  79   BlockBegin* make_block_at(int bci, BlockBegin* predecessor);
  80   void handle_exceptions(BlockBegin* current, int cur_bci);
  81   void handle_jsr(BlockBegin* current, int sr_bci, int next_bci);
  82   void store_one(BlockBegin* current, int local);
  83   void store_two(BlockBegin* current, int local);
  84   void set_entries(int osr_bci);
  85   void set_leaders();
  86 
  87   void make_loop_header(BlockBegin* block);
  88   void mark_loops();
  89   BitMap& mark_loops(BlockBegin* b, bool in_subroutine);
  90 
  91   // debugging
  92 #ifndef PRODUCT
  93   void print();
  94 #endif
  95 
  96   int number_of_successors(BlockBegin* block);
  97   BlockBegin* successor_at(BlockBegin* block, int i);
  98   void add_successor(BlockBegin* block, BlockBegin* sux);
  99   bool is_successor(BlockBegin* block, BlockBegin* sux);
 100 
 101  public:
 102   // creation
 103   BlockListBuilder(Compilation* compilation, IRScope* scope, int osr_bci);
 104 
 105   // accessors for GraphBuilder
 106   BlockList*    bci2block() const                { return _bci2block; }
 107 };
 108 
 109 
 110 // Implementation of BlockListBuilder
 111 
 112 BlockListBuilder::BlockListBuilder(Compilation* compilation, IRScope* scope, int osr_bci)
 113  : _compilation(compilation)
 114  , _scope(scope)
 115  , _blocks(16)
 116  , _bci2block(new BlockList(scope->method()->code_size(), NULL))
 117  , _bci2block_successors(scope->method()->code_size())
 118  , _active()         // size not known yet
 119  , _visited()        // size not known yet
 120  , _loop_map() // size not known yet
 121  , _next_loop_index(0)
 122  , _next_block_number(0)
 123 {
 124   set_entries(osr_bci);
 125   set_leaders();
 126   CHECK_BAILOUT();
 127 
 128   mark_loops();
 129   NOT_PRODUCT(if (PrintInitialBlockList) print());
 130 
 131   // _bci2block still contains blocks with _end == null and > 0 sux in _bci2block_successors.
 132 
 133 #ifndef PRODUCT
 134   if (PrintCFGToFile) {
 135     stringStream title;
 136     title.print("BlockListBuilder ");
 137     scope->method()->print_name(&title);
 138     CFGPrinter::print_cfg(_bci2block, title.as_string(), false, false);
 139   }
 140 #endif
 141 }
 142 
 143 
 144 void BlockListBuilder::set_entries(int osr_bci) {
 145   // generate start blocks
 146   BlockBegin* std_entry = make_block_at(0, NULL);
 147   if (scope()->caller() == NULL) {
 148     std_entry->set(BlockBegin::std_entry_flag);
 149   }
 150   if (osr_bci != -1) {
 151     BlockBegin* osr_entry = make_block_at(osr_bci, NULL);
 152     osr_entry->set(BlockBegin::osr_entry_flag);
 153   }
 154 
 155   // generate exception entry blocks
 156   XHandlers* list = xhandlers();
 157   const int n = list->length();
 158   for (int i = 0; i < n; i++) {
 159     XHandler* h = list->handler_at(i);
 160     BlockBegin* entry = make_block_at(h->handler_bci(), NULL);
 161     entry->set(BlockBegin::exception_entry_flag);
 162     h->set_entry_block(entry);
 163   }
 164 }
 165 
 166 
 167 BlockBegin* BlockListBuilder::make_block_at(int cur_bci, BlockBegin* predecessor) {
 168   assert(method()->bci_block_start().at(cur_bci), "wrong block starts of MethodLivenessAnalyzer");
 169 
 170   BlockBegin* block = _bci2block->at(cur_bci);
 171   if (block == NULL) {
 172     block = new BlockBegin(cur_bci);
 173     block->init_stores_to_locals(method()->max_locals());
 174     _bci2block->at_put(cur_bci, block);
 175     _bci2block_successors.at_put_grow(cur_bci, BlockList());
 176     _blocks.append(block);
 177 
 178     assert(predecessor == NULL || predecessor->bci() < cur_bci, "targets for backward branches must already exist");
 179   }
 180 
 181   if (predecessor != NULL) {
 182     if (block->is_set(BlockBegin::exception_entry_flag)) {
 183       BAILOUT_("Exception handler can be reached by both normal and exceptional control flow", block);
 184     }
 185 
 186     add_successor(predecessor, block);
 187     block->increment_total_preds();
 188   }
 189 
 190   return block;
 191 }
 192 
 193 
 194 inline void BlockListBuilder::store_one(BlockBegin* current, int local) {
 195   current->stores_to_locals().set_bit(local);
 196 }
 197 inline void BlockListBuilder::store_two(BlockBegin* current, int local) {
 198   store_one(current, local);
 199   store_one(current, local + 1);
 200 }
 201 
 202 
 203 void BlockListBuilder::handle_exceptions(BlockBegin* current, int cur_bci) {
 204   // Draws edges from a block to its exception handlers
 205   XHandlers* list = xhandlers();
 206   const int n = list->length();
 207 
 208   for (int i = 0; i < n; i++) {
 209     XHandler* h = list->handler_at(i);
 210 
 211     if (h->covers(cur_bci)) {
 212       BlockBegin* entry = h->entry_block();
 213       assert(entry != NULL && entry == _bci2block->at(h->handler_bci()), "entry must be set");
 214       assert(entry->is_set(BlockBegin::exception_entry_flag), "flag must be set");
 215 
 216       // add each exception handler only once
 217       if(!is_successor(current, entry)) {
 218         add_successor(current, entry);
 219         entry->increment_total_preds();
 220       }
 221 
 222       // stop when reaching catchall
 223       if (h->catch_type() == 0) break;
 224     }
 225   }
 226 }
 227 
 228 void BlockListBuilder::handle_jsr(BlockBegin* current, int sr_bci, int next_bci) {
 229   // start a new block after jsr-bytecode and link this block into cfg
 230   make_block_at(next_bci, current);
 231 
 232   // start a new block at the subroutine entry at mark it with special flag
 233   BlockBegin* sr_block = make_block_at(sr_bci, current);
 234   if (!sr_block->is_set(BlockBegin::subroutine_entry_flag)) {
 235     sr_block->set(BlockBegin::subroutine_entry_flag);
 236   }
 237 }
 238 
 239 
 240 void BlockListBuilder::set_leaders() {
 241   bool has_xhandlers = xhandlers()->has_handlers();
 242   BlockBegin* current = NULL;
 243 
 244   // The information which bci starts a new block simplifies the analysis
 245   // Without it, backward branches could jump to a bci where no block was created
 246   // during bytecode iteration. This would require the creation of a new block at the
 247   // branch target and a modification of the successor lists.
 248   const BitMap& bci_block_start = method()->bci_block_start();
 249 
 250   ciBytecodeStream s(method());
 251   while (s.next() != ciBytecodeStream::EOBC()) {
 252     int cur_bci = s.cur_bci();
 253 
 254     if (bci_block_start.at(cur_bci)) {
 255       current = make_block_at(cur_bci, current);
 256     }
 257     assert(current != NULL, "must have current block");
 258 
 259     if (has_xhandlers && GraphBuilder::can_trap(method(), s.cur_bc())) {
 260       handle_exceptions(current, cur_bci);
 261     }
 262 
 263     switch (s.cur_bc()) {
 264       // track stores to local variables for selective creation of phi functions
 265       case Bytecodes::_iinc:     store_one(current, s.get_index()); break;
 266       case Bytecodes::_istore:   store_one(current, s.get_index()); break;
 267       case Bytecodes::_lstore:   store_two(current, s.get_index()); break;
 268       case Bytecodes::_fstore:   store_one(current, s.get_index()); break;
 269       case Bytecodes::_dstore:   store_two(current, s.get_index()); break;
 270       case Bytecodes::_astore:   store_one(current, s.get_index()); break;
 271       case Bytecodes::_istore_0: store_one(current, 0); break;
 272       case Bytecodes::_istore_1: store_one(current, 1); break;
 273       case Bytecodes::_istore_2: store_one(current, 2); break;
 274       case Bytecodes::_istore_3: store_one(current, 3); break;
 275       case Bytecodes::_lstore_0: store_two(current, 0); break;
 276       case Bytecodes::_lstore_1: store_two(current, 1); break;
 277       case Bytecodes::_lstore_2: store_two(current, 2); break;
 278       case Bytecodes::_lstore_3: store_two(current, 3); break;
 279       case Bytecodes::_fstore_0: store_one(current, 0); break;
 280       case Bytecodes::_fstore_1: store_one(current, 1); break;
 281       case Bytecodes::_fstore_2: store_one(current, 2); break;
 282       case Bytecodes::_fstore_3: store_one(current, 3); break;
 283       case Bytecodes::_dstore_0: store_two(current, 0); break;
 284       case Bytecodes::_dstore_1: store_two(current, 1); break;
 285       case Bytecodes::_dstore_2: store_two(current, 2); break;
 286       case Bytecodes::_dstore_3: store_two(current, 3); break;
 287       case Bytecodes::_astore_0: store_one(current, 0); break;
 288       case Bytecodes::_astore_1: store_one(current, 1); break;
 289       case Bytecodes::_astore_2: store_one(current, 2); break;
 290       case Bytecodes::_astore_3: store_one(current, 3); break;
 291 
 292       // track bytecodes that affect the control flow
 293       case Bytecodes::_athrow:  // fall through
 294       case Bytecodes::_ret:     // fall through
 295       case Bytecodes::_ireturn: // fall through
 296       case Bytecodes::_lreturn: // fall through
 297       case Bytecodes::_freturn: // fall through
 298       case Bytecodes::_dreturn: // fall through
 299       case Bytecodes::_areturn: // fall through
 300       case Bytecodes::_return:
 301         current = NULL;
 302         break;
 303 
 304       case Bytecodes::_ifeq:      // fall through
 305       case Bytecodes::_ifne:      // fall through
 306       case Bytecodes::_iflt:      // fall through
 307       case Bytecodes::_ifge:      // fall through
 308       case Bytecodes::_ifgt:      // fall through
 309       case Bytecodes::_ifle:      // fall through
 310       case Bytecodes::_if_icmpeq: // fall through
 311       case Bytecodes::_if_icmpne: // fall through
 312       case Bytecodes::_if_icmplt: // fall through
 313       case Bytecodes::_if_icmpge: // fall through
 314       case Bytecodes::_if_icmpgt: // fall through
 315       case Bytecodes::_if_icmple: // fall through
 316       case Bytecodes::_if_acmpeq: // fall through
 317       case Bytecodes::_if_acmpne: // fall through
 318       case Bytecodes::_ifnull:    // fall through
 319       case Bytecodes::_ifnonnull:
 320         make_block_at(s.next_bci(), current);
 321         make_block_at(s.get_dest(), current);
 322         current = NULL;
 323         break;
 324 
 325       case Bytecodes::_goto:
 326         make_block_at(s.get_dest(), current);
 327         current = NULL;
 328         break;
 329 
 330       case Bytecodes::_goto_w:
 331         make_block_at(s.get_far_dest(), current);
 332         current = NULL;
 333         break;
 334 
 335       case Bytecodes::_jsr:
 336         handle_jsr(current, s.get_dest(), s.next_bci());
 337         current = NULL;
 338         break;
 339 
 340       case Bytecodes::_jsr_w:
 341         handle_jsr(current, s.get_far_dest(), s.next_bci());
 342         current = NULL;
 343         break;
 344 
 345       case Bytecodes::_tableswitch: {
 346         // set block for each case
 347         Bytecode_tableswitch sw(&s);
 348         int l = sw.length();
 349         for (int i = 0; i < l; i++) {
 350           make_block_at(cur_bci + sw.dest_offset_at(i), current);
 351         }
 352         make_block_at(cur_bci + sw.default_offset(), current);
 353         current = NULL;
 354         break;
 355       }
 356 
 357       case Bytecodes::_lookupswitch: {
 358         // set block for each case
 359         Bytecode_lookupswitch sw(&s);
 360         int l = sw.number_of_pairs();
 361         for (int i = 0; i < l; i++) {
 362           make_block_at(cur_bci + sw.pair_at(i).offset(), current);
 363         }
 364         make_block_at(cur_bci + sw.default_offset(), current);
 365         current = NULL;
 366         break;
 367       }
 368 
 369       default:
 370         break;
 371     }
 372   }
 373 }
 374 
 375 
 376 void BlockListBuilder::mark_loops() {
 377   ResourceMark rm;
 378 
 379   _active.initialize(BlockBegin::number_of_blocks());
 380   _visited.initialize(BlockBegin::number_of_blocks());
 381   _loop_map = GrowableArray<ResourceBitMap>(BlockBegin::number_of_blocks(), BlockBegin::number_of_blocks(), ResourceBitMap());
 382   for (int i = 0; i < BlockBegin::number_of_blocks(); i++) {
 383     _loop_map.at(i).initialize(BlockBegin::number_of_blocks());
 384   }
 385   _next_loop_index = 0;
 386   _next_block_number = _blocks.length();
 387 
 388   // The loop detection algorithm works as follows:
 389   // - We maintain the _loop_map, where for each block we have a bitmap indicating which loops contain this block.
 390   // - The CFG is recursively traversed (depth-first) and if we detect a loop, we assign the loop a unique number that is stored
 391   // in the bitmap associated with the loop header block. Until we return back through that loop header the bitmap contains
 392   // only a single bit corresponding to the loop number.
 393   // -  The bit is then propagated for all the blocks in the loop after we exit them (post-order). There could be multiple bits
 394   // of course in case of nested loops.
 395   // -  When we exit the loop header we remove that single bit and assign the real loop state for it.
 396   // -  Now, the tricky part here is how we detect irriducible loops. In the algorithm above the loop state bits
 397   // are propagated to the predecessors. If we encounter an irreducible loop (a loop with multiple heads) we would see
 398   // a node with some loop bit set that would then propagate back and be never cleared because we would
 399   // never go back through the original loop header. Therefore if there are any irreducible loops the bits in the states
 400   // for these loops are going to propagate back to the root.
 401   BitMap& loop_state = mark_loops(_bci2block->at(0), false);
 402   if (!loop_state.is_empty()) {
 403     compilation()->set_has_irreducible_loops(true);
 404   }
 405   assert(_next_block_number >= 0, "invalid block numbers");
 406 
 407   // Remove dangling Resource pointers before the ResourceMark goes out-of-scope.
 408   _active.resize(0);
 409   _visited.resize(0);
 410   _loop_map.clear();
 411 }
 412 
 413 void BlockListBuilder::make_loop_header(BlockBegin* block) {
 414   if (block->is_set(BlockBegin::exception_entry_flag)) {
 415     // exception edges may look like loops but don't mark them as such
 416     // since it screws up block ordering.
 417     return;
 418   }
 419   if (!block->is_set(BlockBegin::parser_loop_header_flag)) {
 420     block->set(BlockBegin::parser_loop_header_flag);
 421 
 422     assert(_loop_map.at(block->block_id()).is_empty(), "must not be set yet");
 423     assert(0 <= _next_loop_index && _next_loop_index < BlockBegin::number_of_blocks(), "_next_loop_index is too large");
 424     _loop_map.at(block->block_id()).set_bit(_next_loop_index++);
 425   } else {
 426     // block already marked as loop header
 427     assert(_loop_map.at(block->block_id()).count_one_bits() == 1, "exactly one bit must be set");
 428   }
 429 }
 430 
 431 BitMap& BlockListBuilder::mark_loops(BlockBegin* block, bool in_subroutine) {
 432   int block_id = block->block_id();
 433   if (_visited.at(block_id)) {
 434     if (_active.at(block_id)) {
 435       // reached block via backward branch
 436       make_loop_header(block);
 437     }
 438     // return cached loop information for this block
 439     return _loop_map.at(block_id);
 440   }
 441 
 442   if (block->is_set(BlockBegin::subroutine_entry_flag)) {
 443     in_subroutine = true;
 444   }
 445 
 446   // set active and visited bits before successors are processed
 447   _visited.set_bit(block_id);
 448   _active.set_bit(block_id);
 449 
 450   ResourceMark rm;
 451   ResourceBitMap loop_state(BlockBegin::number_of_blocks());
 452   for (int i = number_of_successors(block) - 1; i >= 0; i--) {
 453     // recursively process all successors
 454     loop_state.set_union(mark_loops(successor_at(block, i), in_subroutine));
 455   }
 456 
 457   // clear active-bit after all successors are processed
 458   _active.clear_bit(block_id);
 459 
 460   // reverse-post-order numbering of all blocks
 461   block->set_depth_first_number(_next_block_number);
 462   _next_block_number--;
 463 
 464   if (!loop_state.is_empty() || in_subroutine ) {
 465     // block is contained at least in one loop, so phi functions are necessary
 466     // phi functions are also necessary for all locals stored in a subroutine
 467     scope()->requires_phi_function().set_union(block->stores_to_locals());
 468   }
 469 
 470   if (block->is_set(BlockBegin::parser_loop_header_flag)) {
 471     BitMap& header_loop_state = _loop_map.at(block_id);
 472     assert(header_loop_state.count_one_bits() == 1, "exactly one bit must be set");
 473     // remove the bit with the loop number for the state (header is outside of the loop)
 474     loop_state.set_difference(header_loop_state);
 475   }
 476 
 477   // cache and return loop information for this block
 478   _loop_map.at(block_id).set_from(loop_state);
 479   return _loop_map.at(block_id);
 480 }
 481 
 482 inline int BlockListBuilder::number_of_successors(BlockBegin* block)
 483 {
 484   assert(_bci2block_successors.length() > block->bci(), "sux must exist");
 485   return _bci2block_successors.at(block->bci()).length();
 486 }
 487 
 488 inline BlockBegin* BlockListBuilder::successor_at(BlockBegin* block, int i)
 489 {
 490   assert(_bci2block_successors.length() > block->bci(), "sux must exist");
 491   return _bci2block_successors.at(block->bci()).at(i);
 492 }
 493 
 494 inline void BlockListBuilder::add_successor(BlockBegin* block, BlockBegin* sux)
 495 {
 496   assert(_bci2block_successors.length() > block->bci(), "sux must exist");
 497   _bci2block_successors.at(block->bci()).append(sux);
 498 }
 499 
 500 inline bool BlockListBuilder::is_successor(BlockBegin* block, BlockBegin* sux) {
 501   assert(_bci2block_successors.length() > block->bci(), "sux must exist");
 502   return _bci2block_successors.at(block->bci()).contains(sux);
 503 }
 504 
 505 #ifndef PRODUCT
 506 
 507 int compare_depth_first(BlockBegin** a, BlockBegin** b) {
 508   return (*a)->depth_first_number() - (*b)->depth_first_number();
 509 }
 510 
 511 void BlockListBuilder::print() {
 512   tty->print("----- initial block list of BlockListBuilder for method ");
 513   method()->print_short_name();
 514   tty->cr();
 515 
 516   // better readability if blocks are sorted in processing order
 517   _blocks.sort(compare_depth_first);
 518 
 519   for (int i = 0; i < _blocks.length(); i++) {
 520     BlockBegin* cur = _blocks.at(i);
 521     tty->print("%4d: B%-4d bci: %-4d  preds: %-4d ", cur->depth_first_number(), cur->block_id(), cur->bci(), cur->total_preds());
 522 
 523     tty->print(cur->is_set(BlockBegin::std_entry_flag)               ? " std" : "    ");
 524     tty->print(cur->is_set(BlockBegin::osr_entry_flag)               ? " osr" : "    ");
 525     tty->print(cur->is_set(BlockBegin::exception_entry_flag)         ? " ex" : "   ");
 526     tty->print(cur->is_set(BlockBegin::subroutine_entry_flag)        ? " sr" : "   ");
 527     tty->print(cur->is_set(BlockBegin::parser_loop_header_flag)      ? " lh" : "   ");
 528 
 529     if (number_of_successors(cur) > 0) {
 530       tty->print("    sux: ");
 531       for (int j = 0; j < number_of_successors(cur); j++) {
 532         BlockBegin* sux = successor_at(cur, j);
 533         tty->print("B%d ", sux->block_id());
 534       }
 535     }
 536     tty->cr();
 537   }
 538 }
 539 
 540 #endif
 541 
 542 
 543 // A simple growable array of Values indexed by ciFields
 544 class FieldBuffer: public CompilationResourceObj {
 545  private:
 546   GrowableArray<Value> _values;
 547 
 548  public:
 549   FieldBuffer() {}
 550 
 551   void kill() {
 552     _values.trunc_to(0);
 553   }
 554 
 555   Value at(ciField* field) {
 556     assert(field->holder()->is_loaded(), "must be a loaded field");
 557     int offset = field->offset();
 558     if (offset < _values.length()) {
 559       return _values.at(offset);
 560     } else {
 561       return NULL;
 562     }
 563   }
 564 
 565   void at_put(ciField* field, Value value) {
 566     assert(field->holder()->is_loaded(), "must be a loaded field");
 567     int offset = field->offset();
 568     _values.at_put_grow(offset, value, NULL);
 569   }
 570 
 571 };
 572 
 573 
 574 // MemoryBuffer is fairly simple model of the current state of memory.
 575 // It partitions memory into several pieces.  The first piece is
 576 // generic memory where little is known about the owner of the memory.
 577 // This is conceptually represented by the tuple <O, F, V> which says
 578 // that the field F of object O has value V.  This is flattened so
 579 // that F is represented by the offset of the field and the parallel
 580 // arrays _objects and _values are used for O and V.  Loads of O.F can
 581 // simply use V.  Newly allocated objects are kept in a separate list
 582 // along with a parallel array for each object which represents the
 583 // current value of its fields.  Stores of the default value to fields
 584 // which have never been stored to before are eliminated since they
 585 // are redundant.  Once newly allocated objects are stored into
 586 // another object or they are passed out of the current compile they
 587 // are treated like generic memory.
 588 
 589 class MemoryBuffer: public CompilationResourceObj {
 590  private:
 591   FieldBuffer                 _values;
 592   GrowableArray<Value>        _objects;
 593   GrowableArray<Value>        _newobjects;
 594   GrowableArray<FieldBuffer*> _fields;
 595 
 596  public:
 597   MemoryBuffer() {}
 598 
 599   StoreField* store(StoreField* st) {
 600     if (!EliminateFieldAccess) {
 601       return st;
 602     }
 603 
 604     Value object = st->obj();
 605     Value value = st->value();
 606     ciField* field = st->field();
 607     if (field->holder()->is_loaded()) {
 608       int offset = field->offset();
 609       int index = _newobjects.find(object);
 610       if (index != -1) {
 611         // newly allocated object with no other stores performed on this field
 612         FieldBuffer* buf = _fields.at(index);
 613         if (buf->at(field) == NULL && is_default_value(value)) {
 614 #ifndef PRODUCT
 615           if (PrintIRDuringConstruction && Verbose) {
 616             tty->print_cr("Eliminated store for object %d:", index);
 617             st->print_line();
 618           }
 619 #endif
 620           return NULL;
 621         } else {
 622           buf->at_put(field, value);
 623         }
 624       } else {
 625         _objects.at_put_grow(offset, object, NULL);
 626         _values.at_put(field, value);
 627       }
 628 
 629       store_value(value);
 630     } else {
 631       // if we held onto field names we could alias based on names but
 632       // we don't know what's being stored to so kill it all.
 633       kill();
 634     }
 635     return st;
 636   }
 637 
 638 
 639   // return true if this value correspond to the default value of a field.
 640   bool is_default_value(Value value) {
 641     Constant* con = value->as_Constant();
 642     if (con) {
 643       switch (con->type()->tag()) {
 644         case intTag:    return con->type()->as_IntConstant()->value() == 0;
 645         case longTag:   return con->type()->as_LongConstant()->value() == 0;
 646         case floatTag:  return jint_cast(con->type()->as_FloatConstant()->value()) == 0;
 647         case doubleTag: return jlong_cast(con->type()->as_DoubleConstant()->value()) == jlong_cast(0);
 648         case objectTag: return con->type() == objectNull;
 649         default:  ShouldNotReachHere();
 650       }
 651     }
 652     return false;
 653   }
 654 
 655 
 656   // return either the actual value of a load or the load itself
 657   Value load(LoadField* load) {
 658     if (!EliminateFieldAccess) {
 659       return load;
 660     }
 661 
 662     if (strict_fp_requires_explicit_rounding && load->type()->is_float_kind()) {
 663 #ifdef IA32
 664       if (UseSSE < 2) {
 665         // can't skip load since value might get rounded as a side effect
 666         return load;
 667       }
 668 #else
 669       Unimplemented();
 670 #endif // IA32
 671     }
 672 
 673     ciField* field = load->field();
 674     Value object   = load->obj();
 675     if (field->holder()->is_loaded() && !field->is_volatile()) {
 676       int offset = field->offset();
 677       Value result = NULL;
 678       int index = _newobjects.find(object);
 679       if (index != -1) {
 680         result = _fields.at(index)->at(field);
 681       } else if (_objects.at_grow(offset, NULL) == object) {
 682         result = _values.at(field);
 683       }
 684       if (result != NULL) {
 685 #ifndef PRODUCT
 686         if (PrintIRDuringConstruction && Verbose) {
 687           tty->print_cr("Eliminated load: ");
 688           load->print_line();
 689         }
 690 #endif
 691         assert(result->type()->tag() == load->type()->tag(), "wrong types");
 692         return result;
 693       }
 694     }
 695     return load;
 696   }
 697 
 698   // Record this newly allocated object
 699   void new_instance(NewInstance* object) {
 700     int index = _newobjects.length();
 701     _newobjects.append(object);
 702     if (_fields.at_grow(index, NULL) == NULL) {
 703       _fields.at_put(index, new FieldBuffer());
 704     } else {
 705       _fields.at(index)->kill();
 706     }
 707   }
 708 
 709   // Record this newly allocated object
 710   void new_instance(NewInlineTypeInstance* object) {
 711     int index = _newobjects.length();
 712     _newobjects.append(object);
 713     if (_fields.at_grow(index, NULL) == NULL) {
 714       _fields.at_put(index, new FieldBuffer());
 715     } else {
 716       _fields.at(index)->kill();
 717     }
 718   }
 719 
 720   void store_value(Value value) {
 721     int index = _newobjects.find(value);
 722     if (index != -1) {
 723       // stored a newly allocated object into another object.
 724       // Assume we've lost track of it as separate slice of memory.
 725       // We could do better by keeping track of whether individual
 726       // fields could alias each other.
 727       _newobjects.remove_at(index);
 728       // pull out the field info and store it at the end up the list
 729       // of field info list to be reused later.
 730       _fields.append(_fields.at(index));
 731       _fields.remove_at(index);
 732     }
 733   }
 734 
 735   void kill() {
 736     _newobjects.trunc_to(0);
 737     _objects.trunc_to(0);
 738     _values.kill();
 739   }
 740 };
 741 
 742 
 743 // Implementation of GraphBuilder's ScopeData
 744 
 745 GraphBuilder::ScopeData::ScopeData(ScopeData* parent)
 746   : _parent(parent)
 747   , _bci2block(NULL)
 748   , _scope(NULL)
 749   , _has_handler(false)
 750   , _stream(NULL)
 751   , _work_list(NULL)
 752   , _caller_stack_size(-1)
 753   , _continuation(NULL)
 754   , _parsing_jsr(false)
 755   , _jsr_xhandlers(NULL)
 756   , _num_returns(0)
 757   , _cleanup_block(NULL)
 758   , _cleanup_return_prev(NULL)
 759   , _cleanup_state(NULL)
 760   , _ignore_return(false)
 761 {
 762   if (parent != NULL) {
 763     _max_inline_size = (intx) ((float) NestedInliningSizeRatio * (float) parent->max_inline_size() / 100.0f);
 764   } else {
 765     _max_inline_size = C1MaxInlineSize;
 766   }
 767   if (_max_inline_size < C1MaxTrivialSize) {
 768     _max_inline_size = C1MaxTrivialSize;
 769   }
 770 }
 771 
 772 
 773 void GraphBuilder::kill_all() {
 774   if (UseLocalValueNumbering) {
 775     vmap()->kill_all();
 776   }
 777   _memory->kill();
 778 }
 779 
 780 
 781 BlockBegin* GraphBuilder::ScopeData::block_at(int bci) {
 782   if (parsing_jsr()) {
 783     // It is necessary to clone all blocks associated with a
 784     // subroutine, including those for exception handlers in the scope
 785     // of the method containing the jsr (because those exception
 786     // handlers may contain ret instructions in some cases).
 787     BlockBegin* block = bci2block()->at(bci);
 788     if (block != NULL && block == parent()->bci2block()->at(bci)) {
 789       BlockBegin* new_block = new BlockBegin(block->bci());
 790       if (PrintInitialBlockList) {
 791         tty->print_cr("CFG: cloned block %d (bci %d) as block %d for jsr",
 792                       block->block_id(), block->bci(), new_block->block_id());
 793       }
 794       // copy data from cloned blocked
 795       new_block->set_depth_first_number(block->depth_first_number());
 796       if (block->is_set(BlockBegin::parser_loop_header_flag)) new_block->set(BlockBegin::parser_loop_header_flag);
 797       // Preserve certain flags for assertion checking
 798       if (block->is_set(BlockBegin::subroutine_entry_flag)) new_block->set(BlockBegin::subroutine_entry_flag);
 799       if (block->is_set(BlockBegin::exception_entry_flag))  new_block->set(BlockBegin::exception_entry_flag);
 800 
 801       // copy was_visited_flag to allow early detection of bailouts
 802       // if a block that is used in a jsr has already been visited before,
 803       // it is shared between the normal control flow and a subroutine
 804       // BlockBegin::try_merge returns false when the flag is set, this leads
 805       // to a compilation bailout
 806       if (block->is_set(BlockBegin::was_visited_flag))  new_block->set(BlockBegin::was_visited_flag);
 807 
 808       bci2block()->at_put(bci, new_block);
 809       block = new_block;
 810     }
 811     return block;
 812   } else {
 813     return bci2block()->at(bci);
 814   }
 815 }
 816 
 817 
 818 XHandlers* GraphBuilder::ScopeData::xhandlers() const {
 819   if (_jsr_xhandlers == NULL) {
 820     assert(!parsing_jsr(), "");
 821     return scope()->xhandlers();
 822   }
 823   assert(parsing_jsr(), "");
 824   return _jsr_xhandlers;
 825 }
 826 
 827 
 828 void GraphBuilder::ScopeData::set_scope(IRScope* scope) {
 829   _scope = scope;
 830   bool parent_has_handler = false;
 831   if (parent() != NULL) {
 832     parent_has_handler = parent()->has_handler();
 833   }
 834   _has_handler = parent_has_handler || scope->xhandlers()->has_handlers();
 835 }
 836 
 837 
 838 void GraphBuilder::ScopeData::set_inline_cleanup_info(BlockBegin* block,
 839                                                       Instruction* return_prev,
 840                                                       ValueStack* return_state) {
 841   _cleanup_block       = block;
 842   _cleanup_return_prev = return_prev;
 843   _cleanup_state       = return_state;
 844 }
 845 
 846 
 847 void GraphBuilder::ScopeData::add_to_work_list(BlockBegin* block) {
 848   if (_work_list == NULL) {
 849     _work_list = new BlockList();
 850   }
 851 
 852   if (!block->is_set(BlockBegin::is_on_work_list_flag)) {
 853     // Do not start parsing the continuation block while in a
 854     // sub-scope
 855     if (parsing_jsr()) {
 856       if (block == jsr_continuation()) {
 857         return;
 858       }
 859     } else {
 860       if (block == continuation()) {
 861         return;
 862       }
 863     }
 864     block->set(BlockBegin::is_on_work_list_flag);
 865     _work_list->push(block);
 866 
 867     sort_top_into_worklist(_work_list, block);
 868   }
 869 }
 870 
 871 
 872 void GraphBuilder::sort_top_into_worklist(BlockList* worklist, BlockBegin* top) {
 873   assert(worklist->top() == top, "");
 874   // sort block descending into work list
 875   const int dfn = top->depth_first_number();
 876   assert(dfn != -1, "unknown depth first number");
 877   int i = worklist->length()-2;
 878   while (i >= 0) {
 879     BlockBegin* b = worklist->at(i);
 880     if (b->depth_first_number() < dfn) {
 881       worklist->at_put(i+1, b);
 882     } else {
 883       break;
 884     }
 885     i --;
 886   }
 887   if (i >= -1) worklist->at_put(i + 1, top);
 888 }
 889 
 890 
 891 BlockBegin* GraphBuilder::ScopeData::remove_from_work_list() {
 892   if (is_work_list_empty()) {
 893     return NULL;
 894   }
 895   return _work_list->pop();
 896 }
 897 
 898 
 899 bool GraphBuilder::ScopeData::is_work_list_empty() const {
 900   return (_work_list == NULL || _work_list->length() == 0);
 901 }
 902 
 903 
 904 void GraphBuilder::ScopeData::setup_jsr_xhandlers() {
 905   assert(parsing_jsr(), "");
 906   // clone all the exception handlers from the scope
 907   XHandlers* handlers = new XHandlers(scope()->xhandlers());
 908   const int n = handlers->length();
 909   for (int i = 0; i < n; i++) {
 910     // The XHandlers need to be adjusted to dispatch to the cloned
 911     // handler block instead of the default one but the synthetic
 912     // unlocker needs to be handled specially.  The synthetic unlocker
 913     // should be left alone since there can be only one and all code
 914     // should dispatch to the same one.
 915     XHandler* h = handlers->handler_at(i);
 916     assert(h->handler_bci() != SynchronizationEntryBCI, "must be real");
 917     h->set_entry_block(block_at(h->handler_bci()));
 918   }
 919   _jsr_xhandlers = handlers;
 920 }
 921 
 922 
 923 int GraphBuilder::ScopeData::num_returns() {
 924   if (parsing_jsr()) {
 925     return parent()->num_returns();
 926   }
 927   return _num_returns;
 928 }
 929 
 930 
 931 void GraphBuilder::ScopeData::incr_num_returns() {
 932   if (parsing_jsr()) {
 933     parent()->incr_num_returns();
 934   } else {
 935     ++_num_returns;
 936   }
 937 }
 938 
 939 
 940 // Implementation of GraphBuilder
 941 
 942 #define INLINE_BAILOUT(msg)        { inline_bailout(msg); return false; }
 943 
 944 
 945 void GraphBuilder::load_constant() {
 946   ciConstant con = stream()->get_constant();
 947   if (con.is_valid()) {
 948     ValueType* t = illegalType;
 949     ValueStack* patch_state = NULL;
 950     switch (con.basic_type()) {
 951       case T_BOOLEAN: t = new IntConstant   (con.as_boolean()); break;
 952       case T_BYTE   : t = new IntConstant   (con.as_byte   ()); break;
 953       case T_CHAR   : t = new IntConstant   (con.as_char   ()); break;
 954       case T_SHORT  : t = new IntConstant   (con.as_short  ()); break;
 955       case T_INT    : t = new IntConstant   (con.as_int    ()); break;
 956       case T_LONG   : t = new LongConstant  (con.as_long   ()); break;
 957       case T_FLOAT  : t = new FloatConstant (con.as_float  ()); break;
 958       case T_DOUBLE : t = new DoubleConstant(con.as_double ()); break;
 959       case T_ARRAY  : // fall-through
 960       case T_OBJECT : {
 961         ciObject* obj = con.as_object();
 962         if (!obj->is_loaded() || (PatchALot && (obj->is_null_object() || obj->klass() != ciEnv::current()->String_klass()))) {
 963           // A Class, MethodType, MethodHandle, Dynamic, or String.
 964           patch_state = copy_state_before();
 965           t = new ObjectConstant(obj);
 966         } else {
 967           // Might be a Class, MethodType, MethodHandle, or Dynamic constant
 968           // result, which might turn out to be an array.
 969           if (obj->is_null_object()) {
 970             t = objectNull;
 971           } else if (obj->is_array()) {
 972             t = new ArrayConstant(obj->as_array());
 973           } else {
 974             t = new InstanceConstant(obj->as_instance());
 975           }
 976         }
 977         break;
 978       }
 979       default: ShouldNotReachHere();
 980     }
 981     Value x;
 982     if (patch_state != NULL) {
 983       bool kills_memory = stream()->is_dynamic_constant(); // arbitrary memory effects from running BSM during linkage
 984       x = new Constant(t, patch_state, kills_memory);
 985     } else {
 986       x = new Constant(t);
 987     }
 988 
 989     // Unbox the value at runtime, if needed.
 990     // ConstantDynamic entry can be of a primitive type, but it is cached in boxed form.
 991     if (patch_state != NULL) {
 992       int index = stream()->get_constant_pool_index();
 993       BasicType type = stream()->get_basic_type_for_constant_at(index);
 994       if (is_java_primitive(type)) {
 995         ciInstanceKlass* box_klass = ciEnv::current()->get_box_klass_for_primitive_type(type);
 996         assert(box_klass->is_loaded(), "sanity");
 997         int offset = java_lang_boxing_object::value_offset(type);
 998         ciField* value_field = box_klass->get_field_by_offset(offset, false /*is_static*/);
 999         x = new LoadField(append(x), offset, value_field, false /*is_static*/, patch_state, false /*needs_patching*/);
1000         t = as_ValueType(type);
1001       } else {
1002         assert(is_reference_type(type), "not a reference: %s", type2name(type));
1003       }
1004     }
1005 
1006     push(t, append(x));
1007   } else {
1008     BAILOUT("could not resolve a constant");
1009   }
1010 }
1011 
1012 
1013 void GraphBuilder::load_local(ValueType* type, int index) {
1014   Value x = state()->local_at(index);
1015   assert(x != NULL && !x->type()->is_illegal(), "access of illegal local variable");
1016   push(type, x);
1017   if (x->as_NewInlineTypeInstance() != NULL && x->as_NewInlineTypeInstance()->in_larval_state()) {
1018     if (x->as_NewInlineTypeInstance()->on_stack_count() == 1) {
1019       x->as_NewInlineTypeInstance()->set_not_larva_anymore();
1020     } else {
1021       x->as_NewInlineTypeInstance()->increment_on_stack_count();
1022     }
1023   }
1024 }
1025 
1026 
1027 void GraphBuilder::store_local(ValueType* type, int index) {
1028   Value x = pop(type);
1029   store_local(state(), x, index);
1030   if (x->as_NewInlineTypeInstance() != NULL) {
1031     x->as_NewInlineTypeInstance()->set_local_index(index);
1032   }
1033 }
1034 
1035 
1036 void GraphBuilder::store_local(ValueStack* state, Value x, int index) {
1037   if (parsing_jsr()) {
1038     // We need to do additional tracking of the location of the return
1039     // address for jsrs since we don't handle arbitrary jsr/ret
1040     // constructs. Here we are figuring out in which circumstances we
1041     // need to bail out.
1042     if (x->type()->is_address()) {
1043       scope_data()->set_jsr_return_address_local(index);
1044 
1045       // Also check parent jsrs (if any) at this time to see whether
1046       // they are using this local. We don't handle skipping over a
1047       // ret.
1048       for (ScopeData* cur_scope_data = scope_data()->parent();
1049            cur_scope_data != NULL && cur_scope_data->parsing_jsr() && cur_scope_data->scope() == scope();
1050            cur_scope_data = cur_scope_data->parent()) {
1051         if (cur_scope_data->jsr_return_address_local() == index) {
1052           BAILOUT("subroutine overwrites return address from previous subroutine");
1053         }
1054       }
1055     } else if (index == scope_data()->jsr_return_address_local()) {
1056       scope_data()->set_jsr_return_address_local(-1);
1057     }
1058   }
1059 
1060   state->store_local(index, round_fp(x));
1061   if (x->as_NewInlineTypeInstance() != NULL) {
1062     x->as_NewInlineTypeInstance()->set_local_index(index);
1063   }
1064 }
1065 
1066 
1067 void GraphBuilder::load_indexed(BasicType type) {
1068   // In case of in block code motion in range check elimination
1069   ValueStack* state_before = NULL;
1070   int array_idx = state()->stack_size() - 2;
1071   if (type == T_OBJECT && state()->stack_at(array_idx)->maybe_flattened_array()) {
1072     // Save the entire state and re-execute on deopt when accessing flattened arrays
1073     state_before = copy_state_before();
1074     state_before->set_should_reexecute(true);
1075   } else {
1076     state_before = copy_state_indexed_access();
1077   }
1078   compilation()->set_has_access_indexed(true);
1079   Value index = ipop();
1080   Value array = apop();
1081   Value length = NULL;
1082   if (CSEArrayLength ||
1083       (array->as_Constant() != NULL) ||
1084       (array->as_AccessField() && array->as_AccessField()->field()->is_constant()) ||
1085       (array->as_NewArray() && array->as_NewArray()->length() && array->as_NewArray()->length()->type()->is_constant()) ||
1086       (array->as_NewMultiArray() && array->as_NewMultiArray()->dims()->at(0)->type()->is_constant())) {
1087     length = append(new ArrayLength(array, state_before));
1088   }
1089 
1090   bool need_membar = false;
1091   LoadIndexed* load_indexed = NULL;
1092   Instruction* result = NULL;
1093   if (array->is_loaded_flattened_array()) {
1094     ciType* array_type = array->declared_type();
1095     ciInlineKlass* elem_klass = array_type->as_flat_array_klass()->element_klass()->as_inline_klass();
1096 
1097     bool can_delay_access = false;
1098     ciBytecodeStream s(method());
1099     s.force_bci(bci());
1100     s.next();
1101     if (s.cur_bc() == Bytecodes::_getfield) {
1102       bool will_link;
1103       ciField* next_field = s.get_field(will_link);
1104       bool next_needs_patching = !next_field->holder()->is_loaded() ||
1105                                  !next_field->will_link(method(), Bytecodes::_getfield) ||
1106                                  PatchALot;
1107       can_delay_access = C1UseDelayedFlattenedFieldReads && !next_needs_patching;
1108     }
1109     if (can_delay_access) {
1110       // potentially optimizable array access, storing information for delayed decision
1111       LoadIndexed* li = new LoadIndexed(array, index, length, type, state_before);
1112       DelayedLoadIndexed* dli = new DelayedLoadIndexed(li, state_before);
1113       li->set_delayed(dli);
1114       set_pending_load_indexed(dli);
1115       return; // Nothing else to do for now
1116     } else {
1117       if (elem_klass->is_empty()) {
1118         // No need to create a new instance, the default instance will be used instead
1119         load_indexed = new LoadIndexed(array, index, length, type, state_before);
1120         apush(append(load_indexed));
1121       } else {
1122         NewInlineTypeInstance* new_instance = new NewInlineTypeInstance(elem_klass, state_before);
1123         _memory->new_instance(new_instance);
1124         apush(append_split(new_instance));
1125         load_indexed = new LoadIndexed(array, index, length, type, state_before);
1126         load_indexed->set_vt(new_instance);
1127         // The LoadIndexed node will initialise this instance by copying from
1128         // the flattened field.  Ensure these stores are visible before any
1129         // subsequent store that publishes this reference.
1130         need_membar = true;
1131       }
1132     }
1133   } else {
1134     load_indexed = new LoadIndexed(array, index, length, type, state_before);
1135     if (profile_array_accesses() && is_reference_type(type)) {
1136       compilation()->set_would_profile(true);
1137       load_indexed->set_should_profile(true);
1138       load_indexed->set_profiled_method(method());
1139       load_indexed->set_profiled_bci(bci());
1140     }
1141   }
1142   result = append(load_indexed);
1143   if (need_membar) {
1144     append(new MemBar(lir_membar_storestore));
1145   }
1146   assert(!load_indexed->should_profile() || load_indexed == result, "should not be optimized out");
1147   if (!array->is_loaded_flattened_array()) {
1148     push(as_ValueType(type), result);
1149   }
1150 }
1151 
1152 
1153 void GraphBuilder::store_indexed(BasicType type) {
1154   // In case of in block code motion in range check elimination
1155   ValueStack* state_before = NULL;
1156   int array_idx = state()->stack_size() - 3;
1157   if (type == T_OBJECT && state()->stack_at(array_idx)->maybe_flattened_array()) {
1158     // Save the entire state and re-execute on deopt when accessing flattened arrays
1159     state_before = copy_state_before();
1160     state_before->set_should_reexecute(true);
1161   } else {
1162     state_before = copy_state_indexed_access();
1163   }
1164   compilation()->set_has_access_indexed(true);
1165   Value value = pop(as_ValueType(type));
1166   Value index = ipop();
1167   Value array = apop();
1168   Value length = NULL;
1169   if (CSEArrayLength ||
1170       (array->as_Constant() != NULL) ||
1171       (array->as_AccessField() && array->as_AccessField()->field()->is_constant()) ||
1172       (array->as_NewArray() && array->as_NewArray()->length() && array->as_NewArray()->length()->type()->is_constant()) ||
1173       (array->as_NewMultiArray() && array->as_NewMultiArray()->dims()->at(0)->type()->is_constant())) {
1174     length = append(new ArrayLength(array, state_before));
1175   }
1176   ciType* array_type = array->declared_type();
1177   bool check_boolean = false;
1178   if (array_type != NULL) {
1179     if (array_type->is_loaded() &&
1180       array_type->as_array_klass()->element_type()->basic_type() == T_BOOLEAN) {
1181       assert(type == T_BYTE, "boolean store uses bastore");
1182       Value mask = append(new Constant(new IntConstant(1)));
1183       value = append(new LogicOp(Bytecodes::_iand, value, mask));
1184     }
1185   } else if (type == T_BYTE) {
1186     check_boolean = true;
1187   }
1188 
1189   StoreIndexed* store_indexed = new StoreIndexed(array, index, length, type, value, state_before, check_boolean);
1190   if (profile_array_accesses() && is_reference_type(type) && !array->is_loaded_flattened_array()) {
1191     compilation()->set_would_profile(true);
1192     store_indexed->set_should_profile(true);
1193     store_indexed->set_profiled_method(method());
1194     store_indexed->set_profiled_bci(bci());
1195   }
1196   Instruction* result = append(store_indexed);
1197   assert(!store_indexed->should_profile() || store_indexed == result, "should not be optimized out");
1198   _memory->store_value(value);
1199 }
1200 
1201 void GraphBuilder::stack_op(Bytecodes::Code code) {
1202   switch (code) {
1203     case Bytecodes::_pop:
1204       { Value w = state()->raw_pop();
1205         update_larva_stack_count(w);
1206       }
1207       break;
1208     case Bytecodes::_pop2:
1209       { Value w1 = state()->raw_pop();
1210         Value w2 = state()->raw_pop();
1211         update_larva_stack_count(w1);
1212         update_larva_stack_count(w2);
1213       }
1214       break;
1215     case Bytecodes::_dup:
1216       { Value w = state()->raw_pop();
1217         update_larval_state(w);
1218         state()->raw_push(w);
1219         state()->raw_push(w);
1220       }
1221       break;
1222     case Bytecodes::_dup_x1:
1223       { Value w1 = state()->raw_pop();
1224         Value w2 = state()->raw_pop();
1225         update_larval_state(w1);
1226         state()->raw_push(w1);
1227         state()->raw_push(w2);
1228         state()->raw_push(w1);
1229       }
1230       break;
1231     case Bytecodes::_dup_x2:
1232       { Value w1 = state()->raw_pop();
1233         Value w2 = state()->raw_pop();
1234         Value w3 = state()->raw_pop();
1235         // special handling for the dup_x2/pop sequence (see JDK-8251046)
1236         if (w1 != NULL && w1->as_NewInlineTypeInstance() != NULL) {
1237           ciBytecodeStream s(method());
1238           s.force_bci(bci());
1239           s.next();
1240           if (s.cur_bc() != Bytecodes::_pop) {
1241             w1->as_NewInlineTypeInstance()->set_not_larva_anymore();
1242           }  else {
1243             w1->as_NewInlineTypeInstance()->increment_on_stack_count();
1244            }
1245         }
1246         state()->raw_push(w1);
1247         state()->raw_push(w3);
1248         state()->raw_push(w2);
1249         state()->raw_push(w1);
1250       }
1251       break;
1252     case Bytecodes::_dup2:
1253       { Value w1 = state()->raw_pop();
1254         Value w2 = state()->raw_pop();
1255         update_larval_state(w1);
1256         update_larval_state(w2);
1257         state()->raw_push(w2);
1258         state()->raw_push(w1);
1259         state()->raw_push(w2);
1260         state()->raw_push(w1);
1261       }
1262       break;
1263     case Bytecodes::_dup2_x1:
1264       { Value w1 = state()->raw_pop();
1265         Value w2 = state()->raw_pop();
1266         Value w3 = state()->raw_pop();
1267         update_larval_state(w1);
1268         update_larval_state(w2);
1269         state()->raw_push(w2);
1270         state()->raw_push(w1);
1271         state()->raw_push(w3);
1272         state()->raw_push(w2);
1273         state()->raw_push(w1);
1274       }
1275       break;
1276     case Bytecodes::_dup2_x2:
1277       { Value w1 = state()->raw_pop();
1278         Value w2 = state()->raw_pop();
1279         Value w3 = state()->raw_pop();
1280         Value w4 = state()->raw_pop();
1281         update_larval_state(w1);
1282         update_larval_state(w2);
1283         state()->raw_push(w2);
1284         state()->raw_push(w1);
1285         state()->raw_push(w4);
1286         state()->raw_push(w3);
1287         state()->raw_push(w2);
1288         state()->raw_push(w1);
1289       }
1290       break;
1291     case Bytecodes::_swap:
1292       { Value w1 = state()->raw_pop();
1293         Value w2 = state()->raw_pop();
1294         state()->raw_push(w1);
1295         state()->raw_push(w2);
1296       }
1297       break;
1298     default:
1299       ShouldNotReachHere();
1300       break;
1301   }
1302 }
1303 
1304 
1305 void GraphBuilder::arithmetic_op(ValueType* type, Bytecodes::Code code, ValueStack* state_before) {
1306   Value y = pop(type);
1307   Value x = pop(type);
1308   Value res = new ArithmeticOp(code, x, y, state_before);
1309   // Note: currently single-precision floating-point rounding on Intel is handled at the LIRGenerator level
1310   res = append(res);
1311   res = round_fp(res);
1312   push(type, res);
1313 }
1314 
1315 
1316 void GraphBuilder::negate_op(ValueType* type) {
1317   push(type, append(new NegateOp(pop(type))));
1318 }
1319 
1320 
1321 void GraphBuilder::shift_op(ValueType* type, Bytecodes::Code code) {
1322   Value s = ipop();
1323   Value x = pop(type);
1324   // try to simplify
1325   // Note: This code should go into the canonicalizer as soon as it can
1326   //       can handle canonicalized forms that contain more than one node.
1327   if (CanonicalizeNodes && code == Bytecodes::_iushr) {
1328     // pattern: x >>> s
1329     IntConstant* s1 = s->type()->as_IntConstant();
1330     if (s1 != NULL) {
1331       // pattern: x >>> s1, with s1 constant
1332       ShiftOp* l = x->as_ShiftOp();
1333       if (l != NULL && l->op() == Bytecodes::_ishl) {
1334         // pattern: (a << b) >>> s1
1335         IntConstant* s0 = l->y()->type()->as_IntConstant();
1336         if (s0 != NULL) {
1337           // pattern: (a << s0) >>> s1
1338           const int s0c = s0->value() & 0x1F; // only the low 5 bits are significant for shifts
1339           const int s1c = s1->value() & 0x1F; // only the low 5 bits are significant for shifts
1340           if (s0c == s1c) {
1341             if (s0c == 0) {
1342               // pattern: (a << 0) >>> 0 => simplify to: a
1343               ipush(l->x());
1344             } else {
1345               // pattern: (a << s0c) >>> s0c => simplify to: a & m, with m constant
1346               assert(0 < s0c && s0c < BitsPerInt, "adjust code below to handle corner cases");
1347               const int m = (1 << (BitsPerInt - s0c)) - 1;
1348               Value s = append(new Constant(new IntConstant(m)));
1349               ipush(append(new LogicOp(Bytecodes::_iand, l->x(), s)));
1350             }
1351             return;
1352           }
1353         }
1354       }
1355     }
1356   }
1357   // could not simplify
1358   push(type, append(new ShiftOp(code, x, s)));
1359 }
1360 
1361 
1362 void GraphBuilder::logic_op(ValueType* type, Bytecodes::Code code) {
1363   Value y = pop(type);
1364   Value x = pop(type);
1365   push(type, append(new LogicOp(code, x, y)));
1366 }
1367 
1368 
1369 void GraphBuilder::compare_op(ValueType* type, Bytecodes::Code code) {
1370   ValueStack* state_before = copy_state_before();
1371   Value y = pop(type);
1372   Value x = pop(type);
1373   ipush(append(new CompareOp(code, x, y, state_before)));
1374 }
1375 
1376 
1377 void GraphBuilder::convert(Bytecodes::Code op, BasicType from, BasicType to) {
1378   push(as_ValueType(to), append(new Convert(op, pop(as_ValueType(from)), as_ValueType(to))));
1379 }
1380 
1381 
1382 void GraphBuilder::increment() {
1383   int index = stream()->get_index();
1384   int delta = stream()->is_wide() ? (signed short)Bytes::get_Java_u2(stream()->cur_bcp() + 4) : (signed char)(stream()->cur_bcp()[2]);
1385   load_local(intType, index);
1386   ipush(append(new Constant(new IntConstant(delta))));
1387   arithmetic_op(intType, Bytecodes::_iadd);
1388   store_local(intType, index);
1389 }
1390 
1391 
1392 void GraphBuilder::_goto(int from_bci, int to_bci) {
1393   Goto *x = new Goto(block_at(to_bci), to_bci <= from_bci);
1394   if (is_profiling()) {
1395     compilation()->set_would_profile(true);
1396     x->set_profiled_bci(bci());
1397     if (profile_branches()) {
1398       x->set_profiled_method(method());
1399       x->set_should_profile(true);
1400     }
1401   }
1402   append(x);
1403 }
1404 
1405 
1406 void GraphBuilder::if_node(Value x, If::Condition cond, Value y, ValueStack* state_before) {
1407   BlockBegin* tsux = block_at(stream()->get_dest());
1408   BlockBegin* fsux = block_at(stream()->next_bci());
1409   bool is_bb = tsux->bci() < stream()->cur_bci() || fsux->bci() < stream()->cur_bci();
1410 
1411   bool subst_check = false;
1412   if (EnableValhalla && (stream()->cur_bc() == Bytecodes::_if_acmpeq || stream()->cur_bc() == Bytecodes::_if_acmpne)) {
1413     ValueType* left_vt = x->type();
1414     ValueType* right_vt = y->type();
1415     if (left_vt->is_object()) {
1416       assert(right_vt->is_object(), "must be");
1417       ciKlass* left_klass = x->as_loaded_klass_or_null();
1418       ciKlass* right_klass = y->as_loaded_klass_or_null();
1419 
1420       if (left_klass == NULL || right_klass == NULL) {
1421         // The klass is still unloaded, or came from a Phi node. Go slow case;
1422         subst_check = true;
1423       } else if (left_klass->can_be_inline_klass() || right_klass->can_be_inline_klass()) {
1424         // Either operand may be a value object, but we're not sure. Go slow case;
1425         subst_check = true;
1426       } else {
1427         // No need to do substitutability check
1428       }
1429     }
1430   }
1431   if ((stream()->cur_bc() == Bytecodes::_if_acmpeq || stream()->cur_bc() == Bytecodes::_if_acmpne) &&
1432       is_profiling() && profile_branches()) {
1433     compilation()->set_would_profile(true);
1434     append(new ProfileACmpTypes(method(), bci(), x, y));
1435   }
1436 
1437   // In case of loop invariant code motion or predicate insertion
1438   // before the body of a loop the state is needed
1439   Instruction *i = append(new If(x, cond, false, y, tsux, fsux, (is_bb || compilation()->is_optimistic() || subst_check) ? state_before : NULL, is_bb, subst_check));
1440 
1441   assert(i->as_Goto() == NULL ||
1442          (i->as_Goto()->sux_at(0) == tsux  && i->as_Goto()->is_safepoint() == tsux->bci() < stream()->cur_bci()) ||
1443          (i->as_Goto()->sux_at(0) == fsux  && i->as_Goto()->is_safepoint() == fsux->bci() < stream()->cur_bci()),
1444          "safepoint state of Goto returned by canonicalizer incorrect");
1445 
1446   if (is_profiling()) {
1447     If* if_node = i->as_If();
1448     if (if_node != NULL) {
1449       // Note that we'd collect profile data in this method if we wanted it.
1450       compilation()->set_would_profile(true);
1451       // At level 2 we need the proper bci to count backedges
1452       if_node->set_profiled_bci(bci());
1453       if (profile_branches()) {
1454         // Successors can be rotated by the canonicalizer, check for this case.
1455         if_node->set_profiled_method(method());
1456         if_node->set_should_profile(true);
1457         if (if_node->tsux() == fsux) {
1458           if_node->set_swapped(true);
1459         }
1460       }
1461       return;
1462     }
1463 
1464     // Check if this If was reduced to Goto.
1465     Goto *goto_node = i->as_Goto();
1466     if (goto_node != NULL) {
1467       compilation()->set_would_profile(true);
1468       goto_node->set_profiled_bci(bci());
1469       if (profile_branches()) {
1470         goto_node->set_profiled_method(method());
1471         goto_node->set_should_profile(true);
1472         // Find out which successor is used.
1473         if (goto_node->default_sux() == tsux) {
1474           goto_node->set_direction(Goto::taken);
1475         } else if (goto_node->default_sux() == fsux) {
1476           goto_node->set_direction(Goto::not_taken);
1477         } else {
1478           ShouldNotReachHere();
1479         }
1480       }
1481       return;
1482     }
1483   }
1484 }
1485 
1486 
1487 void GraphBuilder::if_zero(ValueType* type, If::Condition cond) {
1488   Value y = append(new Constant(intZero));
1489   ValueStack* state_before = copy_state_before();
1490   Value x = ipop();
1491   if_node(x, cond, y, state_before);
1492 }
1493 
1494 
1495 void GraphBuilder::if_null(ValueType* type, If::Condition cond) {
1496   Value y = append(new Constant(objectNull));
1497   ValueStack* state_before = copy_state_before();
1498   Value x = apop();
1499   if_node(x, cond, y, state_before);
1500 }
1501 
1502 
1503 void GraphBuilder::if_same(ValueType* type, If::Condition cond) {
1504   ValueStack* state_before = copy_state_before();
1505   Value y = pop(type);
1506   Value x = pop(type);
1507   if_node(x, cond, y, state_before);
1508 }
1509 
1510 
1511 void GraphBuilder::jsr(int dest) {
1512   // We only handle well-formed jsrs (those which are "block-structured").
1513   // If the bytecodes are strange (jumping out of a jsr block) then we
1514   // might end up trying to re-parse a block containing a jsr which
1515   // has already been activated. Watch for this case and bail out.
1516   for (ScopeData* cur_scope_data = scope_data();
1517        cur_scope_data != NULL && cur_scope_data->parsing_jsr() && cur_scope_data->scope() == scope();
1518        cur_scope_data = cur_scope_data->parent()) {
1519     if (cur_scope_data->jsr_entry_bci() == dest) {
1520       BAILOUT("too-complicated jsr/ret structure");
1521     }
1522   }
1523 
1524   push(addressType, append(new Constant(new AddressConstant(next_bci()))));
1525   if (!try_inline_jsr(dest)) {
1526     return; // bailed out while parsing and inlining subroutine
1527   }
1528 }
1529 
1530 
1531 void GraphBuilder::ret(int local_index) {
1532   if (!parsing_jsr()) BAILOUT("ret encountered while not parsing subroutine");
1533 
1534   if (local_index != scope_data()->jsr_return_address_local()) {
1535     BAILOUT("can not handle complicated jsr/ret constructs");
1536   }
1537 
1538   // Rets simply become (NON-SAFEPOINT) gotos to the jsr continuation
1539   append(new Goto(scope_data()->jsr_continuation(), false));
1540 }
1541 
1542 
1543 void GraphBuilder::table_switch() {
1544   Bytecode_tableswitch sw(stream());
1545   const int l = sw.length();
1546   if (CanonicalizeNodes && l == 1 && compilation()->env()->comp_level() != CompLevel_full_profile) {
1547     // total of 2 successors => use If instead of switch
1548     // Note: This code should go into the canonicalizer as soon as it can
1549     //       can handle canonicalized forms that contain more than one node.
1550     Value key = append(new Constant(new IntConstant(sw.low_key())));
1551     BlockBegin* tsux = block_at(bci() + sw.dest_offset_at(0));
1552     BlockBegin* fsux = block_at(bci() + sw.default_offset());
1553     bool is_bb = tsux->bci() < bci() || fsux->bci() < bci();
1554     // In case of loop invariant code motion or predicate insertion
1555     // before the body of a loop the state is needed
1556     ValueStack* state_before = copy_state_if_bb(is_bb);
1557     append(new If(ipop(), If::eql, true, key, tsux, fsux, state_before, is_bb));
1558   } else {
1559     // collect successors
1560     BlockList* sux = new BlockList(l + 1, NULL);
1561     int i;
1562     bool has_bb = false;
1563     for (i = 0; i < l; i++) {
1564       sux->at_put(i, block_at(bci() + sw.dest_offset_at(i)));
1565       if (sw.dest_offset_at(i) < 0) has_bb = true;
1566     }
1567     // add default successor
1568     if (sw.default_offset() < 0) has_bb = true;
1569     sux->at_put(i, block_at(bci() + sw.default_offset()));
1570     // In case of loop invariant code motion or predicate insertion
1571     // before the body of a loop the state is needed
1572     ValueStack* state_before = copy_state_if_bb(has_bb);
1573     Instruction* res = append(new TableSwitch(ipop(), sux, sw.low_key(), state_before, has_bb));
1574 #ifdef ASSERT
1575     if (res->as_Goto()) {
1576       for (i = 0; i < l; i++) {
1577         if (sux->at(i) == res->as_Goto()->sux_at(0)) {
1578           assert(res->as_Goto()->is_safepoint() == sw.dest_offset_at(i) < 0, "safepoint state of Goto returned by canonicalizer incorrect");
1579         }
1580       }
1581     }
1582 #endif
1583   }
1584 }
1585 
1586 
1587 void GraphBuilder::lookup_switch() {
1588   Bytecode_lookupswitch sw(stream());
1589   const int l = sw.number_of_pairs();
1590   if (CanonicalizeNodes && l == 1 && compilation()->env()->comp_level() != CompLevel_full_profile) {
1591     // total of 2 successors => use If instead of switch
1592     // Note: This code should go into the canonicalizer as soon as it can
1593     //       can handle canonicalized forms that contain more than one node.
1594     // simplify to If
1595     LookupswitchPair pair = sw.pair_at(0);
1596     Value key = append(new Constant(new IntConstant(pair.match())));
1597     BlockBegin* tsux = block_at(bci() + pair.offset());
1598     BlockBegin* fsux = block_at(bci() + sw.default_offset());
1599     bool is_bb = tsux->bci() < bci() || fsux->bci() < bci();
1600     // In case of loop invariant code motion or predicate insertion
1601     // before the body of a loop the state is needed
1602     ValueStack* state_before = copy_state_if_bb(is_bb);;
1603     append(new If(ipop(), If::eql, true, key, tsux, fsux, state_before, is_bb));
1604   } else {
1605     // collect successors & keys
1606     BlockList* sux = new BlockList(l + 1, NULL);
1607     intArray* keys = new intArray(l, l, 0);
1608     int i;
1609     bool has_bb = false;
1610     for (i = 0; i < l; i++) {
1611       LookupswitchPair pair = sw.pair_at(i);
1612       if (pair.offset() < 0) has_bb = true;
1613       sux->at_put(i, block_at(bci() + pair.offset()));
1614       keys->at_put(i, pair.match());
1615     }
1616     // add default successor
1617     if (sw.default_offset() < 0) has_bb = true;
1618     sux->at_put(i, block_at(bci() + sw.default_offset()));
1619     // In case of loop invariant code motion or predicate insertion
1620     // before the body of a loop the state is needed
1621     ValueStack* state_before = copy_state_if_bb(has_bb);
1622     Instruction* res = append(new LookupSwitch(ipop(), sux, keys, state_before, has_bb));
1623 #ifdef ASSERT
1624     if (res->as_Goto()) {
1625       for (i = 0; i < l; i++) {
1626         if (sux->at(i) == res->as_Goto()->sux_at(0)) {
1627           assert(res->as_Goto()->is_safepoint() == sw.pair_at(i).offset() < 0, "safepoint state of Goto returned by canonicalizer incorrect");
1628         }
1629       }
1630     }
1631 #endif
1632   }
1633 }
1634 
1635 void GraphBuilder::call_register_finalizer() {
1636   // If the receiver requires finalization then emit code to perform
1637   // the registration on return.
1638 
1639   // Gather some type information about the receiver
1640   Value receiver = state()->local_at(0);
1641   assert(receiver != NULL, "must have a receiver");
1642   ciType* declared_type = receiver->declared_type();
1643   ciType* exact_type = receiver->exact_type();
1644   if (exact_type == NULL &&
1645       receiver->as_Local() &&
1646       receiver->as_Local()->java_index() == 0) {
1647     ciInstanceKlass* ik = compilation()->method()->holder();
1648     if (ik->is_final()) {
1649       exact_type = ik;
1650     } else if (UseCHA && !(ik->has_subklass() || ik->is_interface())) {
1651       // test class is leaf class
1652       compilation()->dependency_recorder()->assert_leaf_type(ik);
1653       exact_type = ik;
1654     } else {
1655       declared_type = ik;
1656     }
1657   }
1658 
1659   // see if we know statically that registration isn't required
1660   bool needs_check = true;
1661   if (exact_type != NULL) {
1662     needs_check = exact_type->as_instance_klass()->has_finalizer();
1663   } else if (declared_type != NULL) {
1664     ciInstanceKlass* ik = declared_type->as_instance_klass();
1665     if (!Dependencies::has_finalizable_subclass(ik)) {
1666       compilation()->dependency_recorder()->assert_has_no_finalizable_subclasses(ik);
1667       needs_check = false;
1668     }
1669   }
1670 
1671   if (needs_check) {
1672     // Perform the registration of finalizable objects.
1673     ValueStack* state_before = copy_state_for_exception();
1674     load_local(objectType, 0);
1675     append_split(new Intrinsic(voidType, vmIntrinsics::_Object_init,
1676                                state()->pop_arguments(1),
1677                                true, state_before, true));
1678   }
1679 }
1680 
1681 
1682 void GraphBuilder::method_return(Value x, bool ignore_return) {
1683   if (RegisterFinalizersAtInit &&
1684       method()->intrinsic_id() == vmIntrinsics::_Object_init) {
1685     call_register_finalizer();
1686   }
1687 
1688   // The conditions for a memory barrier are described in Parse::do_exits().
1689   bool need_mem_bar = false;
1690   if ((method()->is_object_constructor() || method()->is_static_init_factory()) &&
1691        (scope()->wrote_final() ||
1692          (AlwaysSafeConstructors && scope()->wrote_fields()) ||
1693          (support_IRIW_for_not_multiple_copy_atomic_cpu && scope()->wrote_volatile()))) {
1694     need_mem_bar = true;
1695   }
1696 
1697   BasicType bt = method()->return_type()->basic_type();
1698   switch (bt) {
1699     case T_BYTE:
1700     {
1701       Value shift = append(new Constant(new IntConstant(24)));
1702       x = append(new ShiftOp(Bytecodes::_ishl, x, shift));
1703       x = append(new ShiftOp(Bytecodes::_ishr, x, shift));
1704       break;
1705     }
1706     case T_SHORT:
1707     {
1708       Value shift = append(new Constant(new IntConstant(16)));
1709       x = append(new ShiftOp(Bytecodes::_ishl, x, shift));
1710       x = append(new ShiftOp(Bytecodes::_ishr, x, shift));
1711       break;
1712     }
1713     case T_CHAR:
1714     {
1715       Value mask = append(new Constant(new IntConstant(0xFFFF)));
1716       x = append(new LogicOp(Bytecodes::_iand, x, mask));
1717       break;
1718     }
1719     case T_BOOLEAN:
1720     {
1721       Value mask = append(new Constant(new IntConstant(1)));
1722       x = append(new LogicOp(Bytecodes::_iand, x, mask));
1723       break;
1724     }
1725     default:
1726       break;
1727   }
1728 
1729   // Check to see whether we are inlining. If so, Return
1730   // instructions become Gotos to the continuation point.
1731   if (continuation() != NULL) {
1732 
1733     int invoke_bci = state()->caller_state()->bci();
1734 
1735     if (x != NULL  && !ignore_return) {
1736       ciMethod* caller = state()->scope()->caller()->method();
1737       Bytecodes::Code invoke_raw_bc = caller->raw_code_at_bci(invoke_bci);
1738       if (invoke_raw_bc == Bytecodes::_invokehandle || invoke_raw_bc == Bytecodes::_invokedynamic) {
1739         ciType* declared_ret_type = caller->get_declared_signature_at_bci(invoke_bci)->return_type();
1740         if (declared_ret_type->is_klass() && x->exact_type() == NULL &&
1741             x->declared_type() != declared_ret_type && declared_ret_type != compilation()->env()->Object_klass()) {
1742           x = append(new TypeCast(declared_ret_type->as_klass(), x, copy_state_before()));
1743         }
1744       }
1745     }
1746 
1747     assert(!method()->is_synchronized() || InlineSynchronizedMethods, "can not inline synchronized methods yet");
1748 
1749     if (compilation()->env()->dtrace_method_probes()) {
1750       // Report exit from inline methods
1751       Values* args = new Values(1);
1752       args->push(append(new Constant(new MethodConstant(method()))));
1753       append(new RuntimeCall(voidType, "dtrace_method_exit", CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), args));
1754     }
1755 
1756     // If the inlined method is synchronized, the monitor must be
1757     // released before we jump to the continuation block.
1758     if (method()->is_synchronized()) {
1759       assert(state()->locks_size() == 1, "receiver must be locked here");
1760       monitorexit(state()->lock_at(0), SynchronizationEntryBCI);
1761     }
1762 
1763     if (need_mem_bar) {
1764       append(new MemBar(lir_membar_storestore));
1765     }
1766 
1767     // State at end of inlined method is the state of the caller
1768     // without the method parameters on stack, including the
1769     // return value, if any, of the inlined method on operand stack.
1770     set_state(state()->caller_state()->copy_for_parsing());
1771     if (x != NULL) {
1772       if (!ignore_return) {
1773         state()->push(x->type(), x);
1774       }
1775       if (profile_return() && x->type()->is_object_kind()) {
1776         ciMethod* caller = state()->scope()->method();
1777         profile_return_type(x, method(), caller, invoke_bci);
1778       }
1779     }
1780     Goto* goto_callee = new Goto(continuation(), false);
1781 
1782     // See whether this is the first return; if so, store off some
1783     // of the state for later examination
1784     if (num_returns() == 0) {
1785       set_inline_cleanup_info();
1786     }
1787 
1788     // The current bci() is in the wrong scope, so use the bci() of
1789     // the continuation point.
1790     append_with_bci(goto_callee, scope_data()->continuation()->bci());
1791     incr_num_returns();
1792     return;
1793   }
1794 
1795   state()->truncate_stack(0);
1796   if (method()->is_synchronized()) {
1797     // perform the unlocking before exiting the method
1798     Value receiver;
1799     if (!method()->is_static()) {
1800       receiver = _initial_state->local_at(0);
1801     } else {
1802       receiver = append(new Constant(new ClassConstant(method()->holder())));
1803     }
1804     append_split(new MonitorExit(receiver, state()->unlock()));
1805   }
1806 
1807   if (need_mem_bar) {
1808       append(new MemBar(lir_membar_storestore));
1809   }
1810 
1811   assert(!ignore_return, "Ignoring return value works only for inlining");
1812   append(new Return(x));
1813 }
1814 
1815 Value GraphBuilder::make_constant(ciConstant field_value, ciField* field) {
1816   if (!field_value.is_valid())  return NULL;
1817 
1818   BasicType field_type = field_value.basic_type();
1819   ValueType* value = as_ValueType(field_value);
1820 
1821   // Attach dimension info to stable arrays.
1822   if (FoldStableValues &&
1823       field->is_stable() && field_type == T_ARRAY && !field_value.is_null_or_zero()) {
1824     ciArray* array = field_value.as_object()->as_array();
1825     jint dimension = field->type()->as_array_klass()->dimension();
1826     value = new StableArrayConstant(array, dimension);
1827   }
1828 
1829   switch (field_type) {
1830     case T_ARRAY:
1831     case T_OBJECT:
1832       if (field_value.as_object()->should_be_constant()) {
1833         return new Constant(value);
1834       }
1835       return NULL; // Not a constant.
1836     default:
1837       return new Constant(value);
1838   }
1839 }
1840 
1841 void GraphBuilder::copy_inline_content(ciInlineKlass* vk, Value src, int src_off, Value dest, int dest_off, ValueStack* state_before, ciField* enclosing_field) {
1842   for (int i = 0; i < vk->nof_nonstatic_fields(); i++) {
1843     ciField* inner_field = vk->nonstatic_field_at(i);
1844     assert(!inner_field->is_flattened(), "the iteration over nested fields is handled by the loop itself");
1845     int off = inner_field->offset() - vk->first_field_offset();
1846     LoadField* load = new LoadField(src, src_off + off, inner_field, false, state_before, false);
1847     Value replacement = append(load);
1848     StoreField* store = new StoreField(dest, dest_off + off, inner_field, replacement, false, state_before, false);
1849     store->set_enclosing_field(enclosing_field);
1850     append(store);
1851   }
1852 }
1853 
1854 void GraphBuilder::access_field(Bytecodes::Code code) {
1855   bool will_link;
1856   ciField* field = stream()->get_field(will_link);
1857   ciInstanceKlass* holder = field->holder();
1858   BasicType field_type = field->type()->basic_type();
1859   ValueType* type = as_ValueType(field_type);
1860 
1861   // call will_link again to determine if the field is valid.
1862   const bool needs_patching = !holder->is_loaded() ||
1863                               !field->will_link(method(), code) ||
1864                               (!field->is_flattened() && PatchALot);
1865 
1866   ValueStack* state_before = NULL;
1867   if (!holder->is_initialized() || needs_patching) {
1868     // save state before instruction for debug info when
1869     // deoptimization happens during patching
1870     state_before = copy_state_before();
1871   }
1872 
1873   Value obj = NULL;
1874   if (code == Bytecodes::_getstatic || code == Bytecodes::_putstatic) {
1875     if (state_before != NULL) {
1876       // build a patching constant
1877       obj = new Constant(new InstanceConstant(holder->java_mirror()), state_before);
1878     } else {
1879       obj = new Constant(new InstanceConstant(holder->java_mirror()));
1880     }
1881   }
1882 
1883   if (field->is_final() && code == Bytecodes::_putfield) {
1884     scope()->set_wrote_final();
1885   }
1886 
1887   if (code == Bytecodes::_putfield) {
1888     scope()->set_wrote_fields();
1889     if (field->is_volatile()) {
1890       scope()->set_wrote_volatile();
1891     }
1892   }
1893 
1894   int offset = !needs_patching ? field->offset() : -1;
1895   switch (code) {
1896     case Bytecodes::_getstatic: {
1897       // check for compile-time constants, i.e., initialized static final fields
1898       Value constant = NULL;
1899       if (field->is_static_constant() && !PatchALot) {
1900         ciConstant field_value = field->constant_value();
1901         assert(!field->is_stable() || !field_value.is_null_or_zero(),
1902                "stable static w/ default value shouldn't be a constant");
1903         constant = make_constant(field_value, field);
1904       } else if (field->is_null_free() && field->type()->as_instance_klass()->is_initialized() &&
1905                  field->type()->as_inline_klass()->is_empty()) {
1906         // Loading from a field of an empty inline type. Just return the default instance.
1907         constant = new Constant(new InstanceConstant(field->type()->as_inline_klass()->default_instance()));
1908       }
1909       if (constant != NULL) {
1910         push(type, append(constant));
1911       } else {
1912         if (state_before == NULL) {
1913           state_before = copy_state_for_exception();
1914         }
1915         LoadField* load_field = new LoadField(append(obj), offset, field, true,
1916                                         state_before, needs_patching);
1917         push(type, append(load_field));
1918       }
1919       break;
1920     }
1921     case Bytecodes::_putstatic: {
1922       Value val = pop(type);
1923       if (state_before == NULL) {
1924         state_before = copy_state_for_exception();
1925       }
1926       if (field_type == T_BOOLEAN) {
1927         Value mask = append(new Constant(new IntConstant(1)));
1928         val = append(new LogicOp(Bytecodes::_iand, val, mask));
1929       }
1930       if (field->is_null_free() && field->type()->is_loaded() && field->type()->as_inline_klass()->is_empty()) {
1931         // Storing to a field of an empty inline type. Ignore.
1932         break;
1933       }
1934       append(new StoreField(append(obj), offset, field, val, true, state_before, needs_patching));
1935       break;
1936     }
1937     case Bytecodes::_getfield: {
1938       // Check for compile-time constants, i.e., trusted final non-static fields.
1939       Value constant = NULL;
1940       if (state_before == NULL && field->is_flattened()) {
1941         // Save the entire state and re-execute on deopt when accessing flattened fields
1942         assert(Interpreter::bytecode_should_reexecute(code), "should reexecute");
1943         state_before = copy_state_before();
1944       }
1945       if (!has_pending_field_access() && !has_pending_load_indexed()) {
1946         obj = apop();
1947         ObjectType* obj_type = obj->type()->as_ObjectType();
1948         if (field->is_null_free() && field->type()->as_instance_klass()->is_initialized()
1949             && field->type()->as_inline_klass()->is_empty()) {
1950           // Loading from a field of an empty inline type. Just return the default instance.
1951           null_check(obj);
1952           constant = new Constant(new InstanceConstant(field->type()->as_inline_klass()->default_instance()));
1953         } else if (field->is_constant() && !field->is_flattened() && obj_type->is_constant() && !PatchALot) {
1954           ciObject* const_oop = obj_type->constant_value();
1955           if (!const_oop->is_null_object() && const_oop->is_loaded()) {
1956             ciConstant field_value = field->constant_value_of(const_oop);
1957             if (field_value.is_valid()) {
1958               if (field->is_null_free() && field_value.is_null_or_zero()) {
1959                 // Non-flattened inline type field. Replace null by the default value.
1960                 constant = new Constant(new InstanceConstant(field->type()->as_inline_klass()->default_instance()));
1961               } else {
1962                 constant = make_constant(field_value, field);
1963               }
1964               // For CallSite objects add a dependency for invalidation of the optimization.
1965               if (field->is_call_site_target()) {
1966                 ciCallSite* call_site = const_oop->as_call_site();
1967                 if (!call_site->is_fully_initialized_constant_call_site()) {
1968                   ciMethodHandle* target = field_value.as_object()->as_method_handle();
1969                   dependency_recorder()->assert_call_site_target_value(call_site, target);
1970                 }
1971               }
1972             }
1973           }
1974         }
1975       }
1976       if (constant != NULL) {
1977         push(type, append(constant));
1978       } else {
1979         if (state_before == NULL) {
1980           state_before = copy_state_for_exception();
1981         }
1982         if (!field->is_flattened()) {
1983           if (has_pending_field_access()) {
1984             assert(!needs_patching, "Can't patch delayed field access");
1985             obj = pending_field_access()->obj();
1986             offset += pending_field_access()->offset() - field->holder()->as_inline_klass()->first_field_offset();
1987             field = pending_field_access()->holder()->get_field_by_offset(offset, false);
1988             assert(field != NULL, "field not found");
1989             set_pending_field_access(NULL);
1990           } else if (has_pending_load_indexed()) {
1991             assert(!needs_patching, "Can't patch delayed field access");
1992             pending_load_indexed()->update(field, offset - field->holder()->as_inline_klass()->first_field_offset());
1993             LoadIndexed* li = pending_load_indexed()->load_instr();
1994             li->set_type(type);
1995             push(type, append(li));
1996             set_pending_load_indexed(NULL);
1997             break;
1998           }
1999           LoadField* load = new LoadField(obj, offset, field, false, state_before, needs_patching);
2000           Value replacement = !needs_patching ? _memory->load(load) : load;
2001           if (replacement != load) {
2002             assert(replacement->is_linked() || !replacement->can_be_linked(), "should already by linked");
2003             // Writing an (integer) value to a boolean, byte, char or short field includes an implicit narrowing
2004             // conversion. Emit an explicit conversion here to get the correct field value after the write.
2005             switch (field_type) {
2006             case T_BOOLEAN:
2007             case T_BYTE:
2008               replacement = append(new Convert(Bytecodes::_i2b, replacement, type));
2009               break;
2010             case T_CHAR:
2011               replacement = append(new Convert(Bytecodes::_i2c, replacement, type));
2012               break;
2013             case T_SHORT:
2014               replacement = append(new Convert(Bytecodes::_i2s, replacement, type));
2015               break;
2016             default:
2017               break;
2018             }
2019             push(type, replacement);
2020           } else {
2021             push(type, append(load));
2022           }
2023         } else {
2024           // Look at the next bytecode to check if we can delay the field access
2025           bool can_delay_access = false;
2026           ciBytecodeStream s(method());
2027           s.force_bci(bci());
2028           s.next();
2029           if (s.cur_bc() == Bytecodes::_getfield && !needs_patching) {
2030             ciField* next_field = s.get_field(will_link);
2031             bool next_needs_patching = !next_field->holder()->is_loaded() ||
2032                                        !next_field->will_link(method(), Bytecodes::_getfield) ||
2033                                        PatchALot;
2034             can_delay_access = C1UseDelayedFlattenedFieldReads && !next_needs_patching;
2035           }
2036           if (can_delay_access) {
2037             if (has_pending_load_indexed()) {
2038               pending_load_indexed()->update(field, offset - field->holder()->as_inline_klass()->first_field_offset());
2039             } else if (has_pending_field_access()) {
2040               pending_field_access()->inc_offset(offset - field->holder()->as_inline_klass()->first_field_offset());
2041             } else {
2042               null_check(obj);
2043               DelayedFieldAccess* dfa = new DelayedFieldAccess(obj, field->holder(), field->offset());
2044               set_pending_field_access(dfa);
2045             }
2046           } else {
2047             ciInlineKlass* inline_klass = field->type()->as_inline_klass();
2048             scope()->set_wrote_final();
2049             scope()->set_wrote_fields();
2050             bool need_membar = false;
2051             if (inline_klass->is_initialized() && inline_klass->is_empty()) {
2052               apush(append(new Constant(new InstanceConstant(inline_klass->default_instance()))));
2053               if (has_pending_field_access()) {
2054                 set_pending_field_access(NULL);
2055               } else if (has_pending_load_indexed()) {
2056                 set_pending_load_indexed(NULL);
2057               }
2058             } else if (has_pending_load_indexed()) {
2059               assert(!needs_patching, "Can't patch delayed field access");
2060               pending_load_indexed()->update(field, offset - field->holder()->as_inline_klass()->first_field_offset());
2061               NewInlineTypeInstance* vt = new NewInlineTypeInstance(inline_klass, pending_load_indexed()->state_before());
2062               _memory->new_instance(vt);
2063               pending_load_indexed()->load_instr()->set_vt(vt);
2064               apush(append_split(vt));
2065               append(pending_load_indexed()->load_instr());
2066               set_pending_load_indexed(NULL);
2067               need_membar = true;
2068             } else {
2069               NewInlineTypeInstance* new_instance = new NewInlineTypeInstance(inline_klass, state_before);
2070               _memory->new_instance(new_instance);
2071               apush(append_split(new_instance));
2072               assert(!needs_patching, "Can't patch flattened inline type field access");
2073               if (has_pending_field_access()) {
2074                 copy_inline_content(inline_klass, pending_field_access()->obj(),
2075                                     pending_field_access()->offset() + field->offset() - field->holder()->as_inline_klass()->first_field_offset(),
2076                                     new_instance, inline_klass->first_field_offset(), state_before);
2077                 set_pending_field_access(NULL);
2078               } else {
2079                 copy_inline_content(inline_klass, obj, field->offset(), new_instance, inline_klass->first_field_offset(), state_before);
2080               }
2081               need_membar = true;
2082             }
2083             if (need_membar) {
2084               // If we allocated a new instance ensure the stores to copy the
2085               // field contents are visible before any subsequent store that
2086               // publishes this reference.
2087               append(new MemBar(lir_membar_storestore));
2088             }
2089           }
2090         }
2091       }
2092       break;
2093     }
2094     case Bytecodes::_putfield: {
2095       Value val = pop(type);
2096       obj = apop();
2097       if (state_before == NULL) {
2098         state_before = copy_state_for_exception();
2099       }
2100       if (field_type == T_BOOLEAN) {
2101         Value mask = append(new Constant(new IntConstant(1)));
2102         val = append(new LogicOp(Bytecodes::_iand, val, mask));
2103       }
2104       if (field->is_null_free() && field->type()->is_loaded() && field->type()->as_inline_klass()->is_empty()) {
2105         // Storing to a field of an empty inline type. Ignore.
2106         null_check(obj);
2107       } else if (!field->is_flattened()) {
2108         StoreField* store = new StoreField(obj, offset, field, val, false, state_before, needs_patching);
2109         if (!needs_patching) store = _memory->store(store);
2110         if (store != NULL) {
2111           append(store);
2112         }
2113       } else {
2114         assert(!needs_patching, "Can't patch flattened inline type field access");
2115         ciInlineKlass* inline_klass = field->type()->as_inline_klass();
2116         copy_inline_content(inline_klass, val, inline_klass->first_field_offset(), obj, offset, state_before, field);
2117       }
2118       break;
2119     }
2120     default:
2121       ShouldNotReachHere();
2122       break;
2123   }
2124 }
2125 
2126 // Baseline version of withfield, allocate every time
2127 void GraphBuilder::withfield(int field_index) {
2128   // Save the entire state and re-execute on deopt
2129   ValueStack* state_before = copy_state_before();
2130   state_before->set_should_reexecute(true);
2131 
2132   bool will_link;
2133   ciField* field_modify = stream()->get_field(will_link);
2134   ciInstanceKlass* holder = field_modify->holder();
2135   BasicType field_type = field_modify->type()->basic_type();
2136   ValueType* type = as_ValueType(field_type);
2137   Value val = pop(type);
2138   Value obj = apop();
2139   null_check(obj);
2140 
2141   if (!holder->is_loaded() || !holder->is_inlinetype() || !will_link) {
2142     apush(append_split(new Deoptimize(holder, state_before)));
2143     return;
2144   }
2145 
2146   // call will_link again to determine if the field is valid.
2147   const bool needs_patching = !field_modify->will_link(method(), Bytecodes::_withfield) ||
2148                               (!field_modify->is_flattened() && PatchALot);
2149   const int offset_modify = !needs_patching ? field_modify->offset() : -1;
2150 
2151   scope()->set_wrote_final();
2152   scope()->set_wrote_fields();
2153 
2154   NewInlineTypeInstance* new_instance;
2155   if (obj->as_NewInlineTypeInstance() != NULL && obj->as_NewInlineTypeInstance()->in_larval_state()) {
2156     new_instance = obj->as_NewInlineTypeInstance();
2157     apush(append_split(new_instance));
2158   } else {
2159     new_instance = new NewInlineTypeInstance(holder->as_inline_klass(), state_before);
2160     _memory->new_instance(new_instance);
2161     apush(append_split(new_instance));
2162 
2163     // Initialize fields which are not modified
2164     for (int i = 0; i < holder->nof_nonstatic_fields(); i++) {
2165       ciField* field = holder->nonstatic_field_at(i);
2166       int offset = field->offset();
2167       // Don't use offset_modify here, it might be set to -1 if needs_patching
2168       if (offset != field_modify->offset()) {
2169         if (field->is_flattened()) {
2170           ciInlineKlass* vk = field->type()->as_inline_klass();
2171           if (!vk->is_empty()) {
2172             copy_inline_content(vk, obj, offset, new_instance, vk->first_field_offset(), state_before, field);
2173           }
2174         } else {
2175           LoadField* load = new LoadField(obj, offset, field, false, state_before, false);
2176           Value replacement = append(load);
2177           StoreField* store = new StoreField(new_instance, offset, field, replacement, false, state_before, false);
2178           append(store);
2179         }
2180       }
2181     }
2182   }
2183 
2184   // Field to modify
2185   if (field_type == T_BOOLEAN) {
2186     Value mask = append(new Constant(new IntConstant(1)));
2187     val = append(new LogicOp(Bytecodes::_iand, val, mask));
2188   }
2189   if (field_modify->is_flattened()) {
2190     assert(!needs_patching, "Can't patch flattened inline type field access");
2191     ciInlineKlass* vk = field_modify->type()->as_inline_klass();
2192     if (!vk->is_empty()) {
2193       copy_inline_content(vk, val, vk->first_field_offset(), new_instance, offset_modify, state_before, field_modify);
2194     }
2195   } else {
2196     StoreField* store = new StoreField(new_instance, offset_modify, field_modify, val, false, state_before, needs_patching);
2197     append(store);
2198   }
2199 }
2200 
2201 Dependencies* GraphBuilder::dependency_recorder() const {
2202   assert(DeoptC1, "need debug information");
2203   return compilation()->dependency_recorder();
2204 }
2205 
2206 // How many arguments do we want to profile?
2207 Values* GraphBuilder::args_list_for_profiling(ciMethod* target, int& start, bool may_have_receiver) {
2208   int n = 0;
2209   bool has_receiver = may_have_receiver && Bytecodes::has_receiver(method()->java_code_at_bci(bci()));
2210   start = has_receiver ? 1 : 0;
2211   if (profile_arguments()) {
2212     ciProfileData* data = method()->method_data()->bci_to_data(bci());
2213     if (data != NULL && (data->is_CallTypeData() || data->is_VirtualCallTypeData())) {
2214       n = data->is_CallTypeData() ? data->as_CallTypeData()->number_of_arguments() : data->as_VirtualCallTypeData()->number_of_arguments();
2215     }
2216   }
2217   // If we are inlining then we need to collect arguments to profile parameters for the target
2218   if (profile_parameters() && target != NULL) {
2219     if (target->method_data() != NULL && target->method_data()->parameters_type_data() != NULL) {
2220       // The receiver is profiled on method entry so it's included in
2221       // the number of parameters but here we're only interested in
2222       // actual arguments.
2223       n = MAX2(n, target->method_data()->parameters_type_data()->number_of_parameters() - start);
2224     }
2225   }
2226   if (n > 0) {
2227     return new Values(n);
2228   }
2229   return NULL;
2230 }
2231 
2232 void GraphBuilder::check_args_for_profiling(Values* obj_args, int expected) {
2233 #ifdef ASSERT
2234   bool ignored_will_link;
2235   ciSignature* declared_signature = NULL;
2236   ciMethod* real_target = method()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
2237   assert(expected == obj_args->max_length() || real_target->is_method_handle_intrinsic(), "missed on arg?");
2238 #endif
2239 }
2240 
2241 // Collect arguments that we want to profile in a list
2242 Values* GraphBuilder::collect_args_for_profiling(Values* args, ciMethod* target, bool may_have_receiver) {
2243   int start = 0;
2244   Values* obj_args = args_list_for_profiling(target, start, may_have_receiver);
2245   if (obj_args == NULL) {
2246     return NULL;
2247   }
2248   int s = obj_args->max_length();
2249   // if called through method handle invoke, some arguments may have been popped
2250   for (int i = start, j = 0; j < s && i < args->length(); i++) {
2251     if (args->at(i)->type()->is_object_kind()) {
2252       obj_args->push(args->at(i));
2253       j++;
2254     }
2255   }
2256   check_args_for_profiling(obj_args, s);
2257   return obj_args;
2258 }
2259 
2260 
2261 void GraphBuilder::invoke(Bytecodes::Code code) {
2262   bool will_link;
2263   ciSignature* declared_signature = NULL;
2264   ciMethod*             target = stream()->get_method(will_link, &declared_signature);
2265   ciKlass*              holder = stream()->get_declared_method_holder();
2266   const Bytecodes::Code bc_raw = stream()->cur_bc_raw();
2267   assert(declared_signature != NULL, "cannot be null");
2268   assert(will_link == target->is_loaded(), "");
2269 
2270   ciInstanceKlass* klass = target->holder();
2271   assert(!target->is_loaded() || klass->is_loaded(), "loaded target must imply loaded klass");
2272 
2273   // check if CHA possible: if so, change the code to invoke_special
2274   ciInstanceKlass* calling_klass = method()->holder();
2275   ciInstanceKlass* callee_holder = ciEnv::get_instance_klass_for_declared_method_holder(holder);
2276   ciInstanceKlass* actual_recv = callee_holder;
2277 
2278   CompileLog* log = compilation()->log();
2279   if (log != NULL)
2280       log->elem("call method='%d' instr='%s'",
2281                 log->identify(target),
2282                 Bytecodes::name(code));
2283 
2284   // Some methods are obviously bindable without any type checks so
2285   // convert them directly to an invokespecial or invokestatic.
2286   if (target->is_loaded() && !target->is_abstract() && target->can_be_statically_bound()) {
2287     switch (bc_raw) {
2288     case Bytecodes::_invokeinterface:
2289       // convert to invokespecial if the target is the private interface method.
2290       if (target->is_private()) {
2291         assert(holder->is_interface(), "How did we get a non-interface method here!");
2292         code = Bytecodes::_invokespecial;
2293       }
2294       break;
2295     case Bytecodes::_invokevirtual:
2296       code = Bytecodes::_invokespecial;
2297       break;
2298     case Bytecodes::_invokehandle:
2299       code = target->is_static() ? Bytecodes::_invokestatic : Bytecodes::_invokespecial;
2300       break;
2301     default:
2302       break;
2303     }
2304   } else {
2305     if (bc_raw == Bytecodes::_invokehandle) {
2306       assert(!will_link, "should come here only for unlinked call");
2307       code = Bytecodes::_invokespecial;
2308     }
2309   }
2310 
2311   if (code == Bytecodes::_invokespecial) {
2312     // Additional receiver subtype checks for interface calls via invokespecial or invokeinterface.
2313     ciKlass* receiver_constraint = nullptr;
2314 
2315     if (bc_raw == Bytecodes::_invokeinterface) {
2316       receiver_constraint = holder;
2317     } else if (bc_raw == Bytecodes::_invokespecial && !target->is_object_constructor() && calling_klass->is_interface()) {
2318       receiver_constraint = calling_klass;
2319     }
2320 
2321     if (receiver_constraint != nullptr) {
2322       int index = state()->stack_size() - (target->arg_size_no_receiver() + 1);
2323       Value receiver = state()->stack_at(index);
2324       CheckCast* c = new CheckCast(receiver_constraint, receiver, copy_state_before());
2325       // go to uncommon_trap when checkcast fails
2326       c->set_invokespecial_receiver_check();
2327       state()->stack_at_put(index, append_split(c));
2328     }
2329   }
2330 
2331   // Push appendix argument (MethodType, CallSite, etc.), if one.
2332   bool patch_for_appendix = false;
2333   int patching_appendix_arg = 0;
2334   if (Bytecodes::has_optional_appendix(bc_raw) && (!will_link || PatchALot)) {
2335     Value arg = append(new Constant(new ObjectConstant(compilation()->env()->unloaded_ciinstance()), copy_state_before()));
2336     apush(arg);
2337     patch_for_appendix = true;
2338     patching_appendix_arg = (will_link && stream()->has_appendix()) ? 0 : 1;
2339   } else if (stream()->has_appendix()) {
2340     ciObject* appendix = stream()->get_appendix();
2341     Value arg = append(new Constant(new ObjectConstant(appendix)));
2342     apush(arg);
2343   }
2344 
2345   ciMethod* cha_monomorphic_target = NULL;
2346   ciMethod* exact_target = NULL;
2347   Value better_receiver = NULL;
2348   if (UseCHA && DeoptC1 && target->is_loaded() &&
2349       !(// %%% FIXME: Are both of these relevant?
2350         target->is_method_handle_intrinsic() ||
2351         target->is_compiled_lambda_form()) &&
2352       !patch_for_appendix) {
2353     Value receiver = NULL;
2354     ciInstanceKlass* receiver_klass = NULL;
2355     bool type_is_exact = false;
2356     // try to find a precise receiver type
2357     if (will_link && !target->is_static()) {
2358       int index = state()->stack_size() - (target->arg_size_no_receiver() + 1);
2359       receiver = state()->stack_at(index);
2360       ciType* type = receiver->exact_type();
2361       if (type != NULL && type->is_loaded() &&
2362           type->is_instance_klass() && !type->as_instance_klass()->is_interface()) {
2363         receiver_klass = (ciInstanceKlass*) type;
2364         type_is_exact = true;
2365       }
2366       if (type == NULL) {
2367         type = receiver->declared_type();
2368         if (type != NULL && type->is_loaded() &&
2369             type->is_instance_klass() && !type->as_instance_klass()->is_interface()) {
2370           receiver_klass = (ciInstanceKlass*) type;
2371           if (receiver_klass->is_leaf_type() && !receiver_klass->is_final()) {
2372             // Insert a dependency on this type since
2373             // find_monomorphic_target may assume it's already done.
2374             dependency_recorder()->assert_leaf_type(receiver_klass);
2375             type_is_exact = true;
2376           }
2377         }
2378       }
2379     }
2380     if (receiver_klass != NULL && type_is_exact &&
2381         receiver_klass->is_loaded() && code != Bytecodes::_invokespecial) {
2382       // If we have the exact receiver type we can bind directly to
2383       // the method to call.
2384       exact_target = target->resolve_invoke(calling_klass, receiver_klass);
2385       if (exact_target != NULL) {
2386         target = exact_target;
2387         code = Bytecodes::_invokespecial;
2388       }
2389     }
2390     if (receiver_klass != NULL &&
2391         receiver_klass->is_subtype_of(actual_recv) &&
2392         actual_recv->is_initialized()) {
2393       actual_recv = receiver_klass;
2394     }
2395 
2396     if ((code == Bytecodes::_invokevirtual && callee_holder->is_initialized()) ||
2397         (code == Bytecodes::_invokeinterface && callee_holder->is_initialized() && !actual_recv->is_interface())) {
2398       // Use CHA on the receiver to select a more precise method.
2399       cha_monomorphic_target = target->find_monomorphic_target(calling_klass, callee_holder, actual_recv);
2400     } else if (code == Bytecodes::_invokeinterface && callee_holder->is_loaded() && receiver != NULL) {
2401       assert(callee_holder->is_interface(), "invokeinterface to non interface?");
2402       // If there is only one implementor of this interface then we
2403       // may be able bind this invoke directly to the implementing
2404       // klass but we need both a dependence on the single interface
2405       // and on the method we bind to.  Additionally since all we know
2406       // about the receiver type is the it's supposed to implement the
2407       // interface we have to insert a check that it's the class we
2408       // expect.  Interface types are not checked by the verifier so
2409       // they are roughly equivalent to Object.
2410       // The number of implementors for declared_interface is less or
2411       // equal to the number of implementors for target->holder() so
2412       // if number of implementors of target->holder() == 1 then
2413       // number of implementors for decl_interface is 0 or 1. If
2414       // it's 0 then no class implements decl_interface and there's
2415       // no point in inlining.
2416       ciInstanceKlass* declared_interface = callee_holder;
2417       ciInstanceKlass* singleton = declared_interface->unique_implementor();
2418       if (singleton != NULL) {
2419         assert(singleton != declared_interface, "not a unique implementor");
2420         cha_monomorphic_target = target->find_monomorphic_target(calling_klass, declared_interface, singleton);
2421         if (cha_monomorphic_target != NULL) {
2422           if (cha_monomorphic_target->holder() != compilation()->env()->Object_klass()) {
2423             ciInstanceKlass* holder = cha_monomorphic_target->holder();
2424             ciInstanceKlass* constraint = (holder->is_subtype_of(singleton) ? holder : singleton); // avoid upcasts
2425             actual_recv = declared_interface;
2426 
2427             // insert a check it's really the expected class.
2428             CheckCast* c = new CheckCast(constraint, receiver, copy_state_for_exception());
2429             c->set_incompatible_class_change_check();
2430             c->set_direct_compare(constraint->is_final());
2431             // pass the result of the checkcast so that the compiler has
2432             // more accurate type info in the inlinee
2433             better_receiver = append_split(c);
2434 
2435             dependency_recorder()->assert_unique_implementor(declared_interface, singleton);
2436           } else {
2437             cha_monomorphic_target = NULL; // subtype check against Object is useless
2438           }
2439         }
2440       }
2441     }
2442   }
2443 
2444   if (cha_monomorphic_target != NULL) {
2445     assert(!target->can_be_statically_bound() || target == cha_monomorphic_target, "");
2446     assert(!cha_monomorphic_target->is_abstract(), "");
2447     if (!cha_monomorphic_target->can_be_statically_bound(actual_recv)) {
2448       // If we inlined because CHA revealed only a single target method,
2449       // then we are dependent on that target method not getting overridden
2450       // by dynamic class loading.  Be sure to test the "static" receiver
2451       // dest_method here, as opposed to the actual receiver, which may
2452       // falsely lead us to believe that the receiver is final or private.
2453       dependency_recorder()->assert_unique_concrete_method(actual_recv, cha_monomorphic_target, callee_holder, target);
2454     }
2455     code = Bytecodes::_invokespecial;
2456   }
2457 
2458   // check if we could do inlining
2459   if (!PatchALot && Inline && target->is_loaded() && !patch_for_appendix &&
2460       callee_holder->is_loaded()) { // the effect of symbolic reference resolution
2461 
2462     // callee is known => check if we have static binding
2463     if ((code == Bytecodes::_invokestatic && klass->is_initialized()) || // invokestatic involves an initialization barrier on declaring class
2464         code == Bytecodes::_invokespecial ||
2465         (code == Bytecodes::_invokevirtual && target->is_final_method()) ||
2466         code == Bytecodes::_invokedynamic) {
2467       // static binding => check if callee is ok
2468       ciMethod* inline_target = (cha_monomorphic_target != NULL) ? cha_monomorphic_target : target;
2469       bool holder_known = (cha_monomorphic_target != NULL) || (exact_target != NULL);
2470       bool success = try_inline(inline_target, holder_known, false /* ignore_return */, code, better_receiver);
2471 
2472       CHECK_BAILOUT();
2473       clear_inline_bailout();
2474 
2475       if (success) {
2476         // Register dependence if JVMTI has either breakpoint
2477         // setting or hotswapping of methods capabilities since they may
2478         // cause deoptimization.
2479         if (compilation()->env()->jvmti_can_hotswap_or_post_breakpoint()) {
2480           dependency_recorder()->assert_evol_method(inline_target);
2481         }
2482         return;
2483       }
2484     } else {
2485       print_inlining(target, "no static binding", /*success*/ false);
2486     }
2487   } else {
2488     print_inlining(target, "not inlineable", /*success*/ false);
2489   }
2490 
2491   // If we attempted an inline which did not succeed because of a
2492   // bailout during construction of the callee graph, the entire
2493   // compilation has to be aborted. This is fairly rare and currently
2494   // seems to only occur for jasm-generated classes which contain
2495   // jsr/ret pairs which are not associated with finally clauses and
2496   // do not have exception handlers in the containing method, and are
2497   // therefore not caught early enough to abort the inlining without
2498   // corrupting the graph. (We currently bail out with a non-empty
2499   // stack at a ret in these situations.)
2500   CHECK_BAILOUT();
2501 
2502   // inlining not successful => standard invoke
2503   ValueType* result_type = as_ValueType(declared_signature->return_type());
2504   ValueStack* state_before = copy_state_exhandling();
2505 
2506   // The bytecode (code) might change in this method so we are checking this very late.
2507   const bool has_receiver =
2508     code == Bytecodes::_invokespecial   ||
2509     code == Bytecodes::_invokevirtual   ||
2510     code == Bytecodes::_invokeinterface;
2511   Values* args = state()->pop_arguments(target->arg_size_no_receiver() + patching_appendix_arg);
2512   Value recv = has_receiver ? apop() : NULL;
2513 
2514   // A null check is required here (when there is a receiver) for any of the following cases
2515   // - invokespecial, always need a null check.
2516   // - invokevirtual, when the target is final and loaded. Calls to final targets will become optimized
2517   //   and require null checking. If the target is loaded a null check is emitted here.
2518   //   If the target isn't loaded the null check must happen after the call resolution. We achieve that
2519   //   by using the target methods unverified entry point (see CompiledIC::compute_monomorphic_entry).
2520   //   (The JVM specification requires that LinkageError must be thrown before a NPE. An unloaded target may
2521   //   potentially fail, and can't have the null check before the resolution.)
2522   // - A call that will be profiled. (But we can't add a null check when the target is unloaded, by the same
2523   //   reason as above, so calls with a receiver to unloaded targets can't be profiled.)
2524   //
2525   // Normal invokevirtual will perform the null check during lookup
2526 
2527   bool need_null_check = (code == Bytecodes::_invokespecial) ||
2528       (target->is_loaded() && (target->is_final_method() || (is_profiling() && profile_calls())));
2529 
2530   if (need_null_check) {
2531     if (recv != NULL) {
2532       null_check(recv);
2533     }
2534 
2535     if (is_profiling()) {
2536       // Note that we'd collect profile data in this method if we wanted it.
2537       compilation()->set_would_profile(true);
2538 
2539       if (profile_calls()) {
2540         assert(cha_monomorphic_target == NULL || exact_target == NULL, "both can not be set");
2541         ciKlass* target_klass = NULL;
2542         if (cha_monomorphic_target != NULL) {
2543           target_klass = cha_monomorphic_target->holder();
2544         } else if (exact_target != NULL) {
2545           target_klass = exact_target->holder();
2546         }
2547         profile_call(target, recv, target_klass, collect_args_for_profiling(args, NULL, false), false);
2548       }
2549     }
2550   }
2551 
2552   Invoke* result = new Invoke(code, result_type, recv, args, target, state_before,
2553                               declared_signature->returns_null_free_inline_type());
2554   // push result
2555   append_split(result);
2556 
2557   if (result_type != voidType) {
2558     push(result_type, round_fp(result));
2559   }
2560   if (profile_return() && result_type->is_object_kind()) {
2561     profile_return_type(result, target);
2562   }
2563 }
2564 
2565 
2566 void GraphBuilder::new_instance(int klass_index) {
2567   ValueStack* state_before = copy_state_exhandling();
2568   bool will_link;
2569   ciKlass* klass = stream()->get_klass(will_link);
2570   assert(klass->is_instance_klass(), "must be an instance klass");
2571   NewInstance* new_instance = new NewInstance(klass->as_instance_klass(), state_before, stream()->is_unresolved_klass());
2572   _memory->new_instance(new_instance);
2573   apush(append_split(new_instance));
2574 }
2575 
2576 void GraphBuilder::default_value(int klass_index) {
2577   bool will_link;
2578   ciKlass* klass = stream()->get_klass(will_link);
2579   if (!stream()->is_unresolved_klass() && klass->is_inlinetype() &&
2580       klass->as_inline_klass()->is_initialized()) {
2581     ciInlineKlass* vk = klass->as_inline_klass();
2582     apush(append(new Constant(new InstanceConstant(vk->default_instance()))));
2583   } else {
2584     apush(append_split(new Deoptimize(klass, copy_state_before())));
2585   }
2586 }
2587 
2588 void GraphBuilder::new_type_array() {
2589   ValueStack* state_before = copy_state_exhandling();
2590   apush(append_split(new NewTypeArray(ipop(), (BasicType)stream()->get_index(), state_before)));
2591 }
2592 
2593 
2594 void GraphBuilder::new_object_array() {
2595   bool will_link;
2596   ciKlass* klass = stream()->get_klass(will_link);
2597   bool null_free = stream()->has_Q_signature();
2598   ValueStack* state_before = !klass->is_loaded() || PatchALot ? copy_state_before() : copy_state_exhandling();
2599   NewArray* n = new NewObjectArray(klass, ipop(), state_before, null_free);
2600   apush(append_split(n));
2601 }
2602 
2603 
2604 bool GraphBuilder::direct_compare(ciKlass* k) {
2605   if (k->is_loaded() && k->is_instance_klass() && !UseSlowPath) {
2606     ciInstanceKlass* ik = k->as_instance_klass();
2607     if (ik->is_final()) {
2608       return true;
2609     } else {
2610       if (DeoptC1 && UseCHA && !(ik->has_subklass() || ik->is_interface())) {
2611         // test class is leaf class
2612         dependency_recorder()->assert_leaf_type(ik);
2613         return true;
2614       }
2615     }
2616   }
2617   return false;
2618 }
2619 
2620 
2621 void GraphBuilder::check_cast(int klass_index) {
2622   bool will_link;
2623   ciKlass* klass = stream()->get_klass(will_link);
2624   bool null_free = stream()->has_Q_signature();
2625   ValueStack* state_before = !klass->is_loaded() || PatchALot ? copy_state_before() : copy_state_for_exception();
2626   CheckCast* c = new CheckCast(klass, apop(), state_before, null_free);
2627   apush(append_split(c));
2628   c->set_direct_compare(direct_compare(klass));
2629 
2630   if (is_profiling()) {
2631     // Note that we'd collect profile data in this method if we wanted it.
2632     compilation()->set_would_profile(true);
2633 
2634     if (profile_checkcasts()) {
2635       c->set_profiled_method(method());
2636       c->set_profiled_bci(bci());
2637       c->set_should_profile(true);
2638     }
2639   }
2640 }
2641 
2642 
2643 void GraphBuilder::instance_of(int klass_index) {
2644   bool will_link;
2645   ciKlass* klass = stream()->get_klass(will_link);
2646   ValueStack* state_before = !klass->is_loaded() || PatchALot ? copy_state_before() : copy_state_exhandling();
2647   InstanceOf* i = new InstanceOf(klass, apop(), state_before);
2648   ipush(append_split(i));
2649   i->set_direct_compare(direct_compare(klass));
2650 
2651   if (is_profiling()) {
2652     // Note that we'd collect profile data in this method if we wanted it.
2653     compilation()->set_would_profile(true);
2654 
2655     if (profile_checkcasts()) {
2656       i->set_profiled_method(method());
2657       i->set_profiled_bci(bci());
2658       i->set_should_profile(true);
2659     }
2660   }
2661 }
2662 
2663 
2664 void GraphBuilder::monitorenter(Value x, int bci) {
2665   bool maybe_inlinetype = false;
2666   if (bci == InvocationEntryBci) {
2667     // Called by GraphBuilder::inline_sync_entry.
2668 #ifdef ASSERT
2669     ciType* obj_type = x->declared_type();
2670     assert(obj_type == NULL || !obj_type->is_inlinetype(), "inline types cannot have synchronized methods");
2671 #endif
2672   } else {
2673     // We are compiling a monitorenter bytecode
2674     if (EnableValhalla) {
2675       ciType* obj_type = x->declared_type();
2676       if (obj_type == NULL || obj_type->as_klass()->can_be_inline_klass()) {
2677         // If we're (possibly) locking on an inline type, check for markWord::always_locked_pattern
2678         // and throw IMSE. (obj_type is null for Phi nodes, so let's just be conservative).
2679         maybe_inlinetype = true;
2680       }
2681     }
2682   }
2683 
2684   // save state before locking in case of deoptimization after a NullPointerException
2685   ValueStack* state_before = copy_state_for_exception_with_bci(bci);
2686   append_with_bci(new MonitorEnter(x, state()->lock(x), state_before, maybe_inlinetype), bci);
2687   kill_all();
2688 }
2689 
2690 
2691 void GraphBuilder::monitorexit(Value x, int bci) {
2692   append_with_bci(new MonitorExit(x, state()->unlock()), bci);
2693   kill_all();
2694 }
2695 
2696 
2697 void GraphBuilder::new_multi_array(int dimensions) {
2698   bool will_link;
2699   ciKlass* klass = stream()->get_klass(will_link);
2700   ValueStack* state_before = !klass->is_loaded() || PatchALot ? copy_state_before() : copy_state_exhandling();
2701 
2702   Values* dims = new Values(dimensions, dimensions, NULL);
2703   // fill in all dimensions
2704   int i = dimensions;
2705   while (i-- > 0) dims->at_put(i, ipop());
2706   // create array
2707   NewArray* n = new NewMultiArray(klass, dims, state_before);
2708   apush(append_split(n));
2709 }
2710 
2711 
2712 void GraphBuilder::throw_op(int bci) {
2713   // We require that the debug info for a Throw be the "state before"
2714   // the Throw (i.e., exception oop is still on TOS)
2715   ValueStack* state_before = copy_state_before_with_bci(bci);
2716   Throw* t = new Throw(apop(), state_before);
2717   // operand stack not needed after a throw
2718   state()->truncate_stack(0);
2719   append_with_bci(t, bci);
2720 }
2721 
2722 
2723 Value GraphBuilder::round_fp(Value fp_value) {
2724   if (strict_fp_requires_explicit_rounding) {
2725 #ifdef IA32
2726     // no rounding needed if SSE2 is used
2727     if (UseSSE < 2) {
2728       // Must currently insert rounding node for doubleword values that
2729       // are results of expressions (i.e., not loads from memory or
2730       // constants)
2731       if (fp_value->type()->tag() == doubleTag &&
2732           fp_value->as_Constant() == NULL &&
2733           fp_value->as_Local() == NULL &&       // method parameters need no rounding
2734           fp_value->as_RoundFP() == NULL) {
2735         return append(new RoundFP(fp_value));
2736       }
2737     }
2738 #else
2739     Unimplemented();
2740 #endif // IA32
2741   }
2742   return fp_value;
2743 }
2744 
2745 
2746 Instruction* GraphBuilder::append_with_bci(Instruction* instr, int bci) {
2747   Canonicalizer canon(compilation(), instr, bci);
2748   Instruction* i1 = canon.canonical();
2749   if (i1->is_linked() || !i1->can_be_linked()) {
2750     // Canonicalizer returned an instruction which was already
2751     // appended so simply return it.
2752     return i1;
2753   }
2754 
2755   if (UseLocalValueNumbering) {
2756     // Lookup the instruction in the ValueMap and add it to the map if
2757     // it's not found.
2758     Instruction* i2 = vmap()->find_insert(i1);
2759     if (i2 != i1) {
2760       // found an entry in the value map, so just return it.
2761       assert(i2->is_linked(), "should already be linked");
2762       return i2;
2763     }
2764     ValueNumberingEffects vne(vmap());
2765     i1->visit(&vne);
2766   }
2767 
2768   // i1 was not eliminated => append it
2769   assert(i1->next() == NULL, "shouldn't already be linked");
2770   _last = _last->set_next(i1, canon.bci());
2771 
2772   if (++_instruction_count >= InstructionCountCutoff && !bailed_out()) {
2773     // set the bailout state but complete normal processing.  We
2774     // might do a little more work before noticing the bailout so we
2775     // want processing to continue normally until it's noticed.
2776     bailout("Method and/or inlining is too large");
2777   }
2778 
2779 #ifndef PRODUCT
2780   if (PrintIRDuringConstruction) {
2781     InstructionPrinter ip;
2782     ip.print_line(i1);
2783     if (Verbose) {
2784       state()->print();
2785     }
2786   }
2787 #endif
2788 
2789   // save state after modification of operand stack for StateSplit instructions
2790   StateSplit* s = i1->as_StateSplit();
2791   if (s != NULL) {
2792     if (EliminateFieldAccess) {
2793       Intrinsic* intrinsic = s->as_Intrinsic();
2794       if (s->as_Invoke() != NULL || (intrinsic && !intrinsic->preserves_state())) {
2795         _memory->kill();
2796       }
2797     }
2798     s->set_state(state()->copy(ValueStack::StateAfter, canon.bci()));
2799   }
2800 
2801   // set up exception handlers for this instruction if necessary
2802   if (i1->can_trap()) {
2803     i1->set_exception_handlers(handle_exception(i1));
2804     assert(i1->exception_state() != NULL || !i1->needs_exception_state() || bailed_out(), "handle_exception must set exception state");
2805   }
2806   return i1;
2807 }
2808 
2809 
2810 Instruction* GraphBuilder::append(Instruction* instr) {
2811   assert(instr->as_StateSplit() == NULL || instr->as_BlockEnd() != NULL, "wrong append used");
2812   return append_with_bci(instr, bci());
2813 }
2814 
2815 
2816 Instruction* GraphBuilder::append_split(StateSplit* instr) {
2817   return append_with_bci(instr, bci());
2818 }
2819 
2820 
2821 void GraphBuilder::null_check(Value value) {
2822   if (value->as_NewArray() != NULL || value->as_NewInstance() != NULL || value->as_NewInlineTypeInstance() != NULL) {
2823     return;
2824   } else {
2825     Constant* con = value->as_Constant();
2826     if (con) {
2827       ObjectType* c = con->type()->as_ObjectType();
2828       if (c && c->is_loaded()) {
2829         ObjectConstant* oc = c->as_ObjectConstant();
2830         if (!oc || !oc->value()->is_null_object()) {
2831           return;
2832         }
2833       }
2834     }
2835     if (value->is_null_free()) return;
2836   }
2837   append(new NullCheck(value, copy_state_for_exception()));
2838 }
2839 
2840 
2841 
2842 XHandlers* GraphBuilder::handle_exception(Instruction* instruction) {
2843   if (!has_handler() && (!instruction->needs_exception_state() || instruction->exception_state() != NULL)) {
2844     assert(instruction->exception_state() == NULL
2845            || instruction->exception_state()->kind() == ValueStack::EmptyExceptionState
2846            || (instruction->exception_state()->kind() == ValueStack::ExceptionState && _compilation->env()->should_retain_local_variables()),
2847            "exception_state should be of exception kind");
2848     return new XHandlers();
2849   }
2850 
2851   XHandlers*  exception_handlers = new XHandlers();
2852   ScopeData*  cur_scope_data = scope_data();
2853   ValueStack* cur_state = instruction->state_before();
2854   ValueStack* prev_state = NULL;
2855   int scope_count = 0;
2856 
2857   assert(cur_state != NULL, "state_before must be set");
2858   do {
2859     int cur_bci = cur_state->bci();
2860     assert(cur_scope_data->scope() == cur_state->scope(), "scopes do not match");
2861     assert(cur_bci == SynchronizationEntryBCI || cur_bci == cur_scope_data->stream()->cur_bci()
2862            || has_pending_field_access() || has_pending_load_indexed(), "invalid bci");
2863 
2864 
2865     // join with all potential exception handlers
2866     XHandlers* list = cur_scope_data->xhandlers();
2867     const int n = list->length();
2868     for (int i = 0; i < n; i++) {
2869       XHandler* h = list->handler_at(i);
2870       if (h->covers(cur_bci)) {
2871         // h is a potential exception handler => join it
2872         compilation()->set_has_exception_handlers(true);
2873 
2874         BlockBegin* entry = h->entry_block();
2875         if (entry == block()) {
2876           // It's acceptable for an exception handler to cover itself
2877           // but we don't handle that in the parser currently.  It's
2878           // very rare so we bailout instead of trying to handle it.
2879           BAILOUT_("exception handler covers itself", exception_handlers);
2880         }
2881         assert(entry->bci() == h->handler_bci(), "must match");
2882         assert(entry->bci() == -1 || entry == cur_scope_data->block_at(entry->bci()), "blocks must correspond");
2883 
2884         // previously this was a BAILOUT, but this is not necessary
2885         // now because asynchronous exceptions are not handled this way.
2886         assert(entry->state() == NULL || cur_state->total_locks_size() == entry->state()->total_locks_size(), "locks do not match");
2887 
2888         // xhandler start with an empty expression stack
2889         if (cur_state->stack_size() != 0) {
2890           cur_state = cur_state->copy(ValueStack::ExceptionState, cur_state->bci());
2891         }
2892         if (instruction->exception_state() == NULL) {
2893           instruction->set_exception_state(cur_state);
2894         }
2895 
2896         // Note: Usually this join must work. However, very
2897         // complicated jsr-ret structures where we don't ret from
2898         // the subroutine can cause the objects on the monitor
2899         // stacks to not match because blocks can be parsed twice.
2900         // The only test case we've seen so far which exhibits this
2901         // problem is caught by the infinite recursion test in
2902         // GraphBuilder::jsr() if the join doesn't work.
2903         if (!entry->try_merge(cur_state, compilation()->has_irreducible_loops())) {
2904           BAILOUT_("error while joining with exception handler, prob. due to complicated jsr/rets", exception_handlers);
2905         }
2906 
2907         // add current state for correct handling of phi functions at begin of xhandler
2908         int phi_operand = entry->add_exception_state(cur_state);
2909 
2910         // add entry to the list of xhandlers of this block
2911         _block->add_exception_handler(entry);
2912 
2913         // add back-edge from xhandler entry to this block
2914         if (!entry->is_predecessor(_block)) {
2915           entry->add_predecessor(_block);
2916         }
2917 
2918         // clone XHandler because phi_operand and scope_count can not be shared
2919         XHandler* new_xhandler = new XHandler(h);
2920         new_xhandler->set_phi_operand(phi_operand);
2921         new_xhandler->set_scope_count(scope_count);
2922         exception_handlers->append(new_xhandler);
2923 
2924         // fill in exception handler subgraph lazily
2925         assert(!entry->is_set(BlockBegin::was_visited_flag), "entry must not be visited yet");
2926         cur_scope_data->add_to_work_list(entry);
2927 
2928         // stop when reaching catchall
2929         if (h->catch_type() == 0) {
2930           return exception_handlers;
2931         }
2932       }
2933     }
2934 
2935     if (exception_handlers->length() == 0) {
2936       // This scope and all callees do not handle exceptions, so the local
2937       // variables of this scope are not needed. However, the scope itself is
2938       // required for a correct exception stack trace -> clear out the locals.
2939       if (_compilation->env()->should_retain_local_variables()) {
2940         cur_state = cur_state->copy(ValueStack::ExceptionState, cur_state->bci());
2941       } else {
2942         cur_state = cur_state->copy(ValueStack::EmptyExceptionState, cur_state->bci());
2943       }
2944       if (prev_state != NULL) {
2945         prev_state->set_caller_state(cur_state);
2946       }
2947       if (instruction->exception_state() == NULL) {
2948         instruction->set_exception_state(cur_state);
2949       }
2950     }
2951 
2952     // Set up iteration for next time.
2953     // If parsing a jsr, do not grab exception handlers from the
2954     // parent scopes for this method (already got them, and they
2955     // needed to be cloned)
2956 
2957     while (cur_scope_data->parsing_jsr()) {
2958       cur_scope_data = cur_scope_data->parent();
2959     }
2960 
2961     assert(cur_scope_data->scope() == cur_state->scope(), "scopes do not match");
2962     assert(cur_state->locks_size() == 0 || cur_state->locks_size() == 1, "unlocking must be done in a catchall exception handler");
2963 
2964     prev_state = cur_state;
2965     cur_state = cur_state->caller_state();
2966     cur_scope_data = cur_scope_data->parent();
2967     scope_count++;
2968   } while (cur_scope_data != NULL);
2969 
2970   return exception_handlers;
2971 }
2972 
2973 
2974 // Helper class for simplifying Phis.
2975 class PhiSimplifier : public BlockClosure {
2976  private:
2977   bool _has_substitutions;
2978   Value simplify(Value v);
2979 
2980  public:
2981   PhiSimplifier(BlockBegin* start) : _has_substitutions(false) {
2982     start->iterate_preorder(this);
2983     if (_has_substitutions) {
2984       SubstitutionResolver sr(start);
2985     }
2986   }
2987   void block_do(BlockBegin* b);
2988   bool has_substitutions() const { return _has_substitutions; }
2989 };
2990 
2991 
2992 Value PhiSimplifier::simplify(Value v) {
2993   Phi* phi = v->as_Phi();
2994 
2995   if (phi == NULL) {
2996     // no phi function
2997     return v;
2998   } else if (v->has_subst()) {
2999     // already substituted; subst can be phi itself -> simplify
3000     return simplify(v->subst());
3001   } else if (phi->is_set(Phi::cannot_simplify)) {
3002     // already tried to simplify phi before
3003     return phi;
3004   } else if (phi->is_set(Phi::visited)) {
3005     // break cycles in phi functions
3006     return phi;
3007   } else if (phi->type()->is_illegal()) {
3008     // illegal phi functions are ignored anyway
3009     return phi;
3010 
3011   } else {
3012     // mark phi function as processed to break cycles in phi functions
3013     phi->set(Phi::visited);
3014 
3015     // simplify x = [y, x] and x = [y, y] to y
3016     Value subst = NULL;
3017     int opd_count = phi->operand_count();
3018     for (int i = 0; i < opd_count; i++) {
3019       Value opd = phi->operand_at(i);
3020       assert(opd != NULL, "Operand must exist!");
3021 
3022       if (opd->type()->is_illegal()) {
3023         // if one operand is illegal, the entire phi function is illegal
3024         phi->make_illegal();
3025         phi->clear(Phi::visited);
3026         return phi;
3027       }
3028 
3029       Value new_opd = simplify(opd);
3030       assert(new_opd != NULL, "Simplified operand must exist!");
3031 
3032       if (new_opd != phi && new_opd != subst) {
3033         if (subst == NULL) {
3034           subst = new_opd;
3035         } else {
3036           // no simplification possible
3037           phi->set(Phi::cannot_simplify);
3038           phi->clear(Phi::visited);
3039           return phi;
3040         }
3041       }
3042     }
3043 
3044     // sucessfully simplified phi function
3045     assert(subst != NULL, "illegal phi function");
3046     _has_substitutions = true;
3047     phi->clear(Phi::visited);
3048     phi->set_subst(subst);
3049 
3050 #ifndef PRODUCT
3051     if (PrintPhiFunctions) {
3052       tty->print_cr("simplified phi function %c%d to %c%d (Block B%d)", phi->type()->tchar(), phi->id(), subst->type()->tchar(), subst->id(), phi->block()->block_id());
3053     }
3054 #endif
3055 
3056     return subst;
3057   }
3058 }
3059 
3060 
3061 void PhiSimplifier::block_do(BlockBegin* b) {
3062   for_each_phi_fun(b, phi,
3063     simplify(phi);
3064   );
3065 
3066 #ifdef ASSERT
3067   for_each_phi_fun(b, phi,
3068                    assert(phi->operand_count() != 1 || phi->subst() != phi || phi->is_illegal(), "missed trivial simplification");
3069   );
3070 
3071   ValueStack* state = b->state()->caller_state();
3072   for_each_state_value(state, value,
3073     Phi* phi = value->as_Phi();
3074     assert(phi == NULL || phi->block() != b, "must not have phi function to simplify in caller state");
3075   );
3076 #endif
3077 }
3078 
3079 // This method is called after all blocks are filled with HIR instructions
3080 // It eliminates all Phi functions of the form x = [y, y] and x = [y, x]
3081 void GraphBuilder::eliminate_redundant_phis(BlockBegin* start) {
3082   PhiSimplifier simplifier(start);
3083 }
3084 
3085 
3086 void GraphBuilder::connect_to_end(BlockBegin* beg) {
3087   // setup iteration
3088   kill_all();
3089   _block = beg;
3090   _state = beg->state()->copy_for_parsing();
3091   _last  = beg;
3092   iterate_bytecodes_for_block(beg->bci());
3093 }
3094 
3095 
3096 BlockEnd* GraphBuilder::iterate_bytecodes_for_block(int bci) {
3097 #ifndef PRODUCT
3098   if (PrintIRDuringConstruction) {
3099     tty->cr();
3100     InstructionPrinter ip;
3101     ip.print_instr(_block); tty->cr();
3102     ip.print_stack(_block->state()); tty->cr();
3103     ip.print_inline_level(_block);
3104     ip.print_head();
3105     tty->print_cr("locals size: %d stack size: %d", state()->locals_size(), state()->stack_size());
3106   }
3107 #endif
3108   _skip_block = false;
3109   assert(state() != NULL, "ValueStack missing!");
3110   CompileLog* log = compilation()->log();
3111   ciBytecodeStream s(method());
3112   s.reset_to_bci(bci);
3113   int prev_bci = bci;
3114   scope_data()->set_stream(&s);
3115   // iterate
3116   Bytecodes::Code code = Bytecodes::_illegal;
3117   bool push_exception = false;
3118 
3119   if (block()->is_set(BlockBegin::exception_entry_flag) && block()->next() == NULL) {
3120     // first thing in the exception entry block should be the exception object.
3121     push_exception = true;
3122   }
3123 
3124   bool ignore_return = scope_data()->ignore_return();
3125 
3126   while (!bailed_out() && last()->as_BlockEnd() == NULL &&
3127          (code = stream()->next()) != ciBytecodeStream::EOBC() &&
3128          (block_at(s.cur_bci()) == NULL || block_at(s.cur_bci()) == block())) {
3129     assert(state()->kind() == ValueStack::Parsing, "invalid state kind");
3130 
3131     if (log != NULL)
3132       log->set_context("bc code='%d' bci='%d'", (int)code, s.cur_bci());
3133 
3134     // Check for active jsr during OSR compilation
3135     if (compilation()->is_osr_compile()
3136         && scope()->is_top_scope()
3137         && parsing_jsr()
3138         && s.cur_bci() == compilation()->osr_bci()) {
3139       bailout("OSR not supported while a jsr is active");
3140     }
3141 
3142     if (push_exception) {
3143       apush(append(new ExceptionObject()));
3144       push_exception = false;
3145     }
3146 
3147     // handle bytecode
3148     switch (code) {
3149       case Bytecodes::_nop            : /* nothing to do */ break;
3150       case Bytecodes::_aconst_null    : apush(append(new Constant(objectNull            ))); break;
3151       case Bytecodes::_iconst_m1      : ipush(append(new Constant(new IntConstant   (-1)))); break;
3152       case Bytecodes::_iconst_0       : ipush(append(new Constant(intZero               ))); break;
3153       case Bytecodes::_iconst_1       : ipush(append(new Constant(intOne                ))); break;
3154       case Bytecodes::_iconst_2       : ipush(append(new Constant(new IntConstant   ( 2)))); break;
3155       case Bytecodes::_iconst_3       : ipush(append(new Constant(new IntConstant   ( 3)))); break;
3156       case Bytecodes::_iconst_4       : ipush(append(new Constant(new IntConstant   ( 4)))); break;
3157       case Bytecodes::_iconst_5       : ipush(append(new Constant(new IntConstant   ( 5)))); break;
3158       case Bytecodes::_lconst_0       : lpush(append(new Constant(new LongConstant  ( 0)))); break;
3159       case Bytecodes::_lconst_1       : lpush(append(new Constant(new LongConstant  ( 1)))); break;
3160       case Bytecodes::_fconst_0       : fpush(append(new Constant(new FloatConstant ( 0)))); break;
3161       case Bytecodes::_fconst_1       : fpush(append(new Constant(new FloatConstant ( 1)))); break;
3162       case Bytecodes::_fconst_2       : fpush(append(new Constant(new FloatConstant ( 2)))); break;
3163       case Bytecodes::_dconst_0       : dpush(append(new Constant(new DoubleConstant( 0)))); break;
3164       case Bytecodes::_dconst_1       : dpush(append(new Constant(new DoubleConstant( 1)))); break;
3165       case Bytecodes::_bipush         : ipush(append(new Constant(new IntConstant(((signed char*)s.cur_bcp())[1])))); break;
3166       case Bytecodes::_sipush         : ipush(append(new Constant(new IntConstant((short)Bytes::get_Java_u2(s.cur_bcp()+1))))); break;
3167       case Bytecodes::_ldc            : // fall through
3168       case Bytecodes::_ldc_w          : // fall through
3169       case Bytecodes::_ldc2_w         : load_constant(); break;
3170       case Bytecodes::_iload          : load_local(intType     , s.get_index()); break;
3171       case Bytecodes::_lload          : load_local(longType    , s.get_index()); break;
3172       case Bytecodes::_fload          : load_local(floatType   , s.get_index()); break;
3173       case Bytecodes::_dload          : load_local(doubleType  , s.get_index()); break;
3174       case Bytecodes::_aload          : load_local(instanceType, s.get_index()); break;
3175       case Bytecodes::_iload_0        : load_local(intType   , 0); break;
3176       case Bytecodes::_iload_1        : load_local(intType   , 1); break;
3177       case Bytecodes::_iload_2        : load_local(intType   , 2); break;
3178       case Bytecodes::_iload_3        : load_local(intType   , 3); break;
3179       case Bytecodes::_lload_0        : load_local(longType  , 0); break;
3180       case Bytecodes::_lload_1        : load_local(longType  , 1); break;
3181       case Bytecodes::_lload_2        : load_local(longType  , 2); break;
3182       case Bytecodes::_lload_3        : load_local(longType  , 3); break;
3183       case Bytecodes::_fload_0        : load_local(floatType , 0); break;
3184       case Bytecodes::_fload_1        : load_local(floatType , 1); break;
3185       case Bytecodes::_fload_2        : load_local(floatType , 2); break;
3186       case Bytecodes::_fload_3        : load_local(floatType , 3); break;
3187       case Bytecodes::_dload_0        : load_local(doubleType, 0); break;
3188       case Bytecodes::_dload_1        : load_local(doubleType, 1); break;
3189       case Bytecodes::_dload_2        : load_local(doubleType, 2); break;
3190       case Bytecodes::_dload_3        : load_local(doubleType, 3); break;
3191       case Bytecodes::_aload_0        : load_local(objectType, 0); break;
3192       case Bytecodes::_aload_1        : load_local(objectType, 1); break;
3193       case Bytecodes::_aload_2        : load_local(objectType, 2); break;
3194       case Bytecodes::_aload_3        : load_local(objectType, 3); break;
3195       case Bytecodes::_iaload         : load_indexed(T_INT   ); break;
3196       case Bytecodes::_laload         : load_indexed(T_LONG  ); break;
3197       case Bytecodes::_faload         : load_indexed(T_FLOAT ); break;
3198       case Bytecodes::_daload         : load_indexed(T_DOUBLE); break;
3199       case Bytecodes::_aaload         : load_indexed(T_OBJECT); break;
3200       case Bytecodes::_baload         : load_indexed(T_BYTE  ); break;
3201       case Bytecodes::_caload         : load_indexed(T_CHAR  ); break;
3202       case Bytecodes::_saload         : load_indexed(T_SHORT ); break;
3203       case Bytecodes::_istore         : store_local(intType   , s.get_index()); break;
3204       case Bytecodes::_lstore         : store_local(longType  , s.get_index()); break;
3205       case Bytecodes::_fstore         : store_local(floatType , s.get_index()); break;
3206       case Bytecodes::_dstore         : store_local(doubleType, s.get_index()); break;
3207       case Bytecodes::_astore         : store_local(objectType, s.get_index()); break;
3208       case Bytecodes::_istore_0       : store_local(intType   , 0); break;
3209       case Bytecodes::_istore_1       : store_local(intType   , 1); break;
3210       case Bytecodes::_istore_2       : store_local(intType   , 2); break;
3211       case Bytecodes::_istore_3       : store_local(intType   , 3); break;
3212       case Bytecodes::_lstore_0       : store_local(longType  , 0); break;
3213       case Bytecodes::_lstore_1       : store_local(longType  , 1); break;
3214       case Bytecodes::_lstore_2       : store_local(longType  , 2); break;
3215       case Bytecodes::_lstore_3       : store_local(longType  , 3); break;
3216       case Bytecodes::_fstore_0       : store_local(floatType , 0); break;
3217       case Bytecodes::_fstore_1       : store_local(floatType , 1); break;
3218       case Bytecodes::_fstore_2       : store_local(floatType , 2); break;
3219       case Bytecodes::_fstore_3       : store_local(floatType , 3); break;
3220       case Bytecodes::_dstore_0       : store_local(doubleType, 0); break;
3221       case Bytecodes::_dstore_1       : store_local(doubleType, 1); break;
3222       case Bytecodes::_dstore_2       : store_local(doubleType, 2); break;
3223       case Bytecodes::_dstore_3       : store_local(doubleType, 3); break;
3224       case Bytecodes::_astore_0       : store_local(objectType, 0); break;
3225       case Bytecodes::_astore_1       : store_local(objectType, 1); break;
3226       case Bytecodes::_astore_2       : store_local(objectType, 2); break;
3227       case Bytecodes::_astore_3       : store_local(objectType, 3); break;
3228       case Bytecodes::_iastore        : store_indexed(T_INT   ); break;
3229       case Bytecodes::_lastore        : store_indexed(T_LONG  ); break;
3230       case Bytecodes::_fastore        : store_indexed(T_FLOAT ); break;
3231       case Bytecodes::_dastore        : store_indexed(T_DOUBLE); break;
3232       case Bytecodes::_aastore        : store_indexed(T_OBJECT); break;
3233       case Bytecodes::_bastore        : store_indexed(T_BYTE  ); break;
3234       case Bytecodes::_castore        : store_indexed(T_CHAR  ); break;
3235       case Bytecodes::_sastore        : store_indexed(T_SHORT ); break;
3236       case Bytecodes::_pop            : // fall through
3237       case Bytecodes::_pop2           : // fall through
3238       case Bytecodes::_dup            : // fall through
3239       case Bytecodes::_dup_x1         : // fall through
3240       case Bytecodes::_dup_x2         : // fall through
3241       case Bytecodes::_dup2           : // fall through
3242       case Bytecodes::_dup2_x1        : // fall through
3243       case Bytecodes::_dup2_x2        : // fall through
3244       case Bytecodes::_swap           : stack_op(code); break;
3245       case Bytecodes::_iadd           : arithmetic_op(intType   , code); break;
3246       case Bytecodes::_ladd           : arithmetic_op(longType  , code); break;
3247       case Bytecodes::_fadd           : arithmetic_op(floatType , code); break;
3248       case Bytecodes::_dadd           : arithmetic_op(doubleType, code); break;
3249       case Bytecodes::_isub           : arithmetic_op(intType   , code); break;
3250       case Bytecodes::_lsub           : arithmetic_op(longType  , code); break;
3251       case Bytecodes::_fsub           : arithmetic_op(floatType , code); break;
3252       case Bytecodes::_dsub           : arithmetic_op(doubleType, code); break;
3253       case Bytecodes::_imul           : arithmetic_op(intType   , code); break;
3254       case Bytecodes::_lmul           : arithmetic_op(longType  , code); break;
3255       case Bytecodes::_fmul           : arithmetic_op(floatType , code); break;
3256       case Bytecodes::_dmul           : arithmetic_op(doubleType, code); break;
3257       case Bytecodes::_idiv           : arithmetic_op(intType   , code, copy_state_for_exception()); break;
3258       case Bytecodes::_ldiv           : arithmetic_op(longType  , code, copy_state_for_exception()); break;
3259       case Bytecodes::_fdiv           : arithmetic_op(floatType , code); break;
3260       case Bytecodes::_ddiv           : arithmetic_op(doubleType, code); break;
3261       case Bytecodes::_irem           : arithmetic_op(intType   , code, copy_state_for_exception()); break;
3262       case Bytecodes::_lrem           : arithmetic_op(longType  , code, copy_state_for_exception()); break;
3263       case Bytecodes::_frem           : arithmetic_op(floatType , code); break;
3264       case Bytecodes::_drem           : arithmetic_op(doubleType, code); break;
3265       case Bytecodes::_ineg           : negate_op(intType   ); break;
3266       case Bytecodes::_lneg           : negate_op(longType  ); break;
3267       case Bytecodes::_fneg           : negate_op(floatType ); break;
3268       case Bytecodes::_dneg           : negate_op(doubleType); break;
3269       case Bytecodes::_ishl           : shift_op(intType , code); break;
3270       case Bytecodes::_lshl           : shift_op(longType, code); break;
3271       case Bytecodes::_ishr           : shift_op(intType , code); break;
3272       case Bytecodes::_lshr           : shift_op(longType, code); break;
3273       case Bytecodes::_iushr          : shift_op(intType , code); break;
3274       case Bytecodes::_lushr          : shift_op(longType, code); break;
3275       case Bytecodes::_iand           : logic_op(intType , code); break;
3276       case Bytecodes::_land           : logic_op(longType, code); break;
3277       case Bytecodes::_ior            : logic_op(intType , code); break;
3278       case Bytecodes::_lor            : logic_op(longType, code); break;
3279       case Bytecodes::_ixor           : logic_op(intType , code); break;
3280       case Bytecodes::_lxor           : logic_op(longType, code); break;
3281       case Bytecodes::_iinc           : increment(); break;
3282       case Bytecodes::_i2l            : convert(code, T_INT   , T_LONG  ); break;
3283       case Bytecodes::_i2f            : convert(code, T_INT   , T_FLOAT ); break;
3284       case Bytecodes::_i2d            : convert(code, T_INT   , T_DOUBLE); break;
3285       case Bytecodes::_l2i            : convert(code, T_LONG  , T_INT   ); break;
3286       case Bytecodes::_l2f            : convert(code, T_LONG  , T_FLOAT ); break;
3287       case Bytecodes::_l2d            : convert(code, T_LONG  , T_DOUBLE); break;
3288       case Bytecodes::_f2i            : convert(code, T_FLOAT , T_INT   ); break;
3289       case Bytecodes::_f2l            : convert(code, T_FLOAT , T_LONG  ); break;
3290       case Bytecodes::_f2d            : convert(code, T_FLOAT , T_DOUBLE); break;
3291       case Bytecodes::_d2i            : convert(code, T_DOUBLE, T_INT   ); break;
3292       case Bytecodes::_d2l            : convert(code, T_DOUBLE, T_LONG  ); break;
3293       case Bytecodes::_d2f            : convert(code, T_DOUBLE, T_FLOAT ); break;
3294       case Bytecodes::_i2b            : convert(code, T_INT   , T_BYTE  ); break;
3295       case Bytecodes::_i2c            : convert(code, T_INT   , T_CHAR  ); break;
3296       case Bytecodes::_i2s            : convert(code, T_INT   , T_SHORT ); break;
3297       case Bytecodes::_lcmp           : compare_op(longType  , code); break;
3298       case Bytecodes::_fcmpl          : compare_op(floatType , code); break;
3299       case Bytecodes::_fcmpg          : compare_op(floatType , code); break;
3300       case Bytecodes::_dcmpl          : compare_op(doubleType, code); break;
3301       case Bytecodes::_dcmpg          : compare_op(doubleType, code); break;
3302       case Bytecodes::_ifeq           : if_zero(intType   , If::eql); break;
3303       case Bytecodes::_ifne           : if_zero(intType   , If::neq); break;
3304       case Bytecodes::_iflt           : if_zero(intType   , If::lss); break;
3305       case Bytecodes::_ifge           : if_zero(intType   , If::geq); break;
3306       case Bytecodes::_ifgt           : if_zero(intType   , If::gtr); break;
3307       case Bytecodes::_ifle           : if_zero(intType   , If::leq); break;
3308       case Bytecodes::_if_icmpeq      : if_same(intType   , If::eql); break;
3309       case Bytecodes::_if_icmpne      : if_same(intType   , If::neq); break;
3310       case Bytecodes::_if_icmplt      : if_same(intType   , If::lss); break;
3311       case Bytecodes::_if_icmpge      : if_same(intType   , If::geq); break;
3312       case Bytecodes::_if_icmpgt      : if_same(intType   , If::gtr); break;
3313       case Bytecodes::_if_icmple      : if_same(intType   , If::leq); break;
3314       case Bytecodes::_if_acmpeq      : if_same(objectType, If::eql); break;
3315       case Bytecodes::_if_acmpne      : if_same(objectType, If::neq); break;
3316       case Bytecodes::_goto           : _goto(s.cur_bci(), s.get_dest()); break;
3317       case Bytecodes::_jsr            : jsr(s.get_dest()); break;
3318       case Bytecodes::_ret            : ret(s.get_index()); break;
3319       case Bytecodes::_tableswitch    : table_switch(); break;
3320       case Bytecodes::_lookupswitch   : lookup_switch(); break;
3321       case Bytecodes::_ireturn        : method_return(ipop(), ignore_return); break;
3322       case Bytecodes::_lreturn        : method_return(lpop(), ignore_return); break;
3323       case Bytecodes::_freturn        : method_return(fpop(), ignore_return); break;
3324       case Bytecodes::_dreturn        : method_return(dpop(), ignore_return); break;
3325       case Bytecodes::_areturn        : method_return(apop(), ignore_return); break;
3326       case Bytecodes::_return         : method_return(NULL  , ignore_return); break;
3327       case Bytecodes::_getstatic      : // fall through
3328       case Bytecodes::_putstatic      : // fall through
3329       case Bytecodes::_getfield       : // fall through
3330       case Bytecodes::_putfield       : access_field(code); break;
3331       case Bytecodes::_invokevirtual  : // fall through
3332       case Bytecodes::_invokespecial  : // fall through
3333       case Bytecodes::_invokestatic   : // fall through
3334       case Bytecodes::_invokedynamic  : // fall through
3335       case Bytecodes::_invokeinterface: invoke(code); break;
3336       case Bytecodes::_new            : new_instance(s.get_index_u2()); break;
3337       case Bytecodes::_newarray       : new_type_array(); break;
3338       case Bytecodes::_anewarray      : new_object_array(); break;
3339       case Bytecodes::_arraylength    : { ValueStack* state_before = copy_state_for_exception(); ipush(append(new ArrayLength(apop(), state_before))); break; }
3340       case Bytecodes::_athrow         : throw_op(s.cur_bci()); break;
3341       case Bytecodes::_checkcast      : check_cast(s.get_index_u2()); break;
3342       case Bytecodes::_instanceof     : instance_of(s.get_index_u2()); break;
3343       case Bytecodes::_monitorenter   : monitorenter(apop(), s.cur_bci()); break;
3344       case Bytecodes::_monitorexit    : monitorexit (apop(), s.cur_bci()); break;
3345       case Bytecodes::_wide           : ShouldNotReachHere(); break;
3346       case Bytecodes::_multianewarray : new_multi_array(s.cur_bcp()[3]); break;
3347       case Bytecodes::_ifnull         : if_null(objectType, If::eql); break;
3348       case Bytecodes::_ifnonnull      : if_null(objectType, If::neq); break;
3349       case Bytecodes::_goto_w         : _goto(s.cur_bci(), s.get_far_dest()); break;
3350       case Bytecodes::_jsr_w          : jsr(s.get_far_dest()); break;
3351       case Bytecodes::_aconst_init   : default_value(s.get_index_u2()); break;
3352       case Bytecodes::_withfield      : withfield(s.get_index_u2()); break;
3353       case Bytecodes::_breakpoint     : BAILOUT_("concurrent setting of breakpoint", NULL);
3354       default                         : ShouldNotReachHere(); break;
3355     }
3356 
3357     if (log != NULL)
3358       log->clear_context(); // skip marker if nothing was printed
3359 
3360     // save current bci to setup Goto at the end
3361     prev_bci = s.cur_bci();
3362 
3363   }
3364   CHECK_BAILOUT_(NULL);
3365   // stop processing of this block (see try_inline_full)
3366   if (_skip_block) {
3367     _skip_block = false;
3368     assert(_last && _last->as_BlockEnd(), "");
3369     return _last->as_BlockEnd();
3370   }
3371   // if there are any, check if last instruction is a BlockEnd instruction
3372   BlockEnd* end = last()->as_BlockEnd();
3373   if (end == NULL) {
3374     // all blocks must end with a BlockEnd instruction => add a Goto
3375     end = new Goto(block_at(s.cur_bci()), false);
3376     append(end);
3377   }
3378   assert(end == last()->as_BlockEnd(), "inconsistency");
3379 
3380   assert(end->state() != NULL, "state must already be present");
3381   assert(end->as_Return() == NULL || end->as_Throw() == NULL || end->state()->stack_size() == 0, "stack not needed for return and throw");
3382 
3383   // connect to begin & set state
3384   // NOTE that inlining may have changed the block we are parsing
3385   block()->set_end(end);
3386   // propagate state
3387   for (int i = end->number_of_sux() - 1; i >= 0; i--) {
3388     BlockBegin* sux = end->sux_at(i);
3389     assert(sux->is_predecessor(block()), "predecessor missing");
3390     // be careful, bailout if bytecodes are strange
3391     if (!sux->try_merge(end->state(), compilation()->has_irreducible_loops())) BAILOUT_("block join failed", NULL);
3392     scope_data()->add_to_work_list(end->sux_at(i));
3393   }
3394 
3395   scope_data()->set_stream(NULL);
3396 
3397   // done
3398   return end;
3399 }
3400 
3401 
3402 void GraphBuilder::iterate_all_blocks(bool start_in_current_block_for_inlining) {
3403   do {
3404     if (start_in_current_block_for_inlining && !bailed_out()) {
3405       iterate_bytecodes_for_block(0);
3406       start_in_current_block_for_inlining = false;
3407     } else {
3408       BlockBegin* b;
3409       while ((b = scope_data()->remove_from_work_list()) != NULL) {
3410         if (!b->is_set(BlockBegin::was_visited_flag)) {
3411           if (b->is_set(BlockBegin::osr_entry_flag)) {
3412             // we're about to parse the osr entry block, so make sure
3413             // we setup the OSR edge leading into this block so that
3414             // Phis get setup correctly.
3415             setup_osr_entry_block();
3416             // this is no longer the osr entry block, so clear it.
3417             b->clear(BlockBegin::osr_entry_flag);
3418           }
3419           b->set(BlockBegin::was_visited_flag);
3420           connect_to_end(b);
3421         }
3422       }
3423     }
3424   } while (!bailed_out() && !scope_data()->is_work_list_empty());
3425 }
3426 
3427 
3428 bool GraphBuilder::_can_trap      [Bytecodes::number_of_java_codes];
3429 
3430 void GraphBuilder::initialize() {
3431   // the following bytecodes are assumed to potentially
3432   // throw exceptions in compiled code - note that e.g.
3433   // monitorexit & the return bytecodes do not throw
3434   // exceptions since monitor pairing proved that they
3435   // succeed (if monitor pairing succeeded)
3436   Bytecodes::Code can_trap_list[] =
3437     { Bytecodes::_ldc
3438     , Bytecodes::_ldc_w
3439     , Bytecodes::_ldc2_w
3440     , Bytecodes::_iaload
3441     , Bytecodes::_laload
3442     , Bytecodes::_faload
3443     , Bytecodes::_daload
3444     , Bytecodes::_aaload
3445     , Bytecodes::_baload
3446     , Bytecodes::_caload
3447     , Bytecodes::_saload
3448     , Bytecodes::_iastore
3449     , Bytecodes::_lastore
3450     , Bytecodes::_fastore
3451     , Bytecodes::_dastore
3452     , Bytecodes::_aastore
3453     , Bytecodes::_bastore
3454     , Bytecodes::_castore
3455     , Bytecodes::_sastore
3456     , Bytecodes::_idiv
3457     , Bytecodes::_ldiv
3458     , Bytecodes::_irem
3459     , Bytecodes::_lrem
3460     , Bytecodes::_getstatic
3461     , Bytecodes::_putstatic
3462     , Bytecodes::_getfield
3463     , Bytecodes::_putfield
3464     , Bytecodes::_invokevirtual
3465     , Bytecodes::_invokespecial
3466     , Bytecodes::_invokestatic
3467     , Bytecodes::_invokedynamic
3468     , Bytecodes::_invokeinterface
3469     , Bytecodes::_new
3470     , Bytecodes::_newarray
3471     , Bytecodes::_anewarray
3472     , Bytecodes::_arraylength
3473     , Bytecodes::_athrow
3474     , Bytecodes::_checkcast
3475     , Bytecodes::_instanceof
3476     , Bytecodes::_monitorenter
3477     , Bytecodes::_multianewarray
3478     };
3479 
3480   // inititialize trap tables
3481   for (int i = 0; i < Bytecodes::number_of_java_codes; i++) {
3482     _can_trap[i] = false;
3483   }
3484   // set standard trap info
3485   for (uint j = 0; j < ARRAY_SIZE(can_trap_list); j++) {
3486     _can_trap[can_trap_list[j]] = true;
3487   }
3488 }
3489 
3490 
3491 BlockBegin* GraphBuilder::header_block(BlockBegin* entry, BlockBegin::Flag f, ValueStack* state) {
3492   assert(entry->is_set(f), "entry/flag mismatch");
3493   // create header block
3494   BlockBegin* h = new BlockBegin(entry->bci());
3495   h->set_depth_first_number(0);
3496 
3497   Value l = h;
3498   BlockEnd* g = new Goto(entry, false);
3499   l->set_next(g, entry->bci());
3500   h->set_end(g);
3501   h->set(f);
3502   // setup header block end state
3503   ValueStack* s = state->copy(ValueStack::StateAfter, entry->bci()); // can use copy since stack is empty (=> no phis)
3504   assert(s->stack_is_empty(), "must have empty stack at entry point");
3505   g->set_state(s);
3506   return h;
3507 }
3508 
3509 
3510 
3511 BlockBegin* GraphBuilder::setup_start_block(int osr_bci, BlockBegin* std_entry, BlockBegin* osr_entry, ValueStack* state) {
3512   BlockBegin* start = new BlockBegin(0);
3513 
3514   // This code eliminates the empty start block at the beginning of
3515   // each method.  Previously, each method started with the
3516   // start-block created below, and this block was followed by the
3517   // header block that was always empty.  This header block is only
3518   // necessary if std_entry is also a backward branch target because
3519   // then phi functions may be necessary in the header block.  It's
3520   // also necessary when profiling so that there's a single block that
3521   // can increment the the counters.
3522   // In addition, with range check elimination, we may need a valid block
3523   // that dominates all the rest to insert range predicates.
3524   BlockBegin* new_header_block;
3525   if (std_entry->number_of_preds() > 0 || is_profiling() || RangeCheckElimination) {
3526     new_header_block = header_block(std_entry, BlockBegin::std_entry_flag, state);
3527   } else {
3528     new_header_block = std_entry;
3529   }
3530 
3531   // setup start block (root for the IR graph)
3532   Base* base =
3533     new Base(
3534       new_header_block,
3535       osr_entry
3536     );
3537   start->set_next(base, 0);
3538   start->set_end(base);
3539   // create & setup state for start block
3540   start->set_state(state->copy(ValueStack::StateAfter, std_entry->bci()));
3541   base->set_state(state->copy(ValueStack::StateAfter, std_entry->bci()));
3542 
3543   if (base->std_entry()->state() == NULL) {
3544     // setup states for header blocks
3545     base->std_entry()->merge(state, compilation()->has_irreducible_loops());
3546   }
3547 
3548   assert(base->std_entry()->state() != NULL, "");
3549   return start;
3550 }
3551 
3552 
3553 void GraphBuilder::setup_osr_entry_block() {
3554   assert(compilation()->is_osr_compile(), "only for osrs");
3555 
3556   int osr_bci = compilation()->osr_bci();
3557   ciBytecodeStream s(method());
3558   s.reset_to_bci(osr_bci);
3559   s.next();
3560   scope_data()->set_stream(&s);
3561 
3562   // create a new block to be the osr setup code
3563   _osr_entry = new BlockBegin(osr_bci);
3564   _osr_entry->set(BlockBegin::osr_entry_flag);
3565   _osr_entry->set_depth_first_number(0);
3566   BlockBegin* target = bci2block()->at(osr_bci);
3567   assert(target != NULL && target->is_set(BlockBegin::osr_entry_flag), "must be there");
3568   // the osr entry has no values for locals
3569   ValueStack* state = target->state()->copy();
3570   _osr_entry->set_state(state);
3571 
3572   kill_all();
3573   _block = _osr_entry;
3574   _state = _osr_entry->state()->copy();
3575   assert(_state->bci() == osr_bci, "mismatch");
3576   _last  = _osr_entry;
3577   Value e = append(new OsrEntry());
3578   e->set_needs_null_check(false);
3579 
3580   // OSR buffer is
3581   //
3582   // locals[nlocals-1..0]
3583   // monitors[number_of_locks-1..0]
3584   //
3585   // locals is a direct copy of the interpreter frame so in the osr buffer
3586   // so first slot in the local array is the last local from the interpreter
3587   // and last slot is local[0] (receiver) from the interpreter
3588   //
3589   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
3590   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
3591   // in the interpreter frame (the method lock if a sync method)
3592 
3593   // Initialize monitors in the compiled activation.
3594 
3595   int index;
3596   Value local;
3597 
3598   // find all the locals that the interpreter thinks contain live oops
3599   const ResourceBitMap live_oops = method()->live_local_oops_at_bci(osr_bci);
3600 
3601   // compute the offset into the locals so that we can treat the buffer
3602   // as if the locals were still in the interpreter frame
3603   int locals_offset = BytesPerWord * (method()->max_locals() - 1);
3604   for_each_local_value(state, index, local) {
3605     int offset = locals_offset - (index + local->type()->size() - 1) * BytesPerWord;
3606     Value get;
3607     if (local->type()->is_object_kind() && !live_oops.at(index)) {
3608       // The interpreter thinks this local is dead but the compiler
3609       // doesn't so pretend that the interpreter passed in null.
3610       get = append(new Constant(objectNull));
3611     } else {
3612       Value off_val = append(new Constant(new IntConstant(offset)));
3613       get = append(new UnsafeGet(as_BasicType(local->type()), e,
3614                                  off_val,
3615                                  false/*is_volatile*/,
3616                                  true/*is_raw*/));
3617     }
3618     _state->store_local(index, get);
3619   }
3620 
3621   // the storage for the OSR buffer is freed manually in the LIRGenerator.
3622 
3623   assert(state->caller_state() == NULL, "should be top scope");
3624   state->clear_locals();
3625   Goto* g = new Goto(target, false);
3626   append(g);
3627   _osr_entry->set_end(g);
3628   target->merge(_osr_entry->end()->state(), compilation()->has_irreducible_loops());
3629 
3630   scope_data()->set_stream(NULL);
3631 }
3632 
3633 
3634 ValueStack* GraphBuilder::state_at_entry() {
3635   ValueStack* state = new ValueStack(scope(), NULL);
3636 
3637   // Set up locals for receiver
3638   int idx = 0;
3639   if (!method()->is_static()) {
3640     // we should always see the receiver
3641     state->store_local(idx, new Local(method()->holder(), objectType, idx,
3642              /*receiver*/ true, /*null_free*/ method()->holder()->is_flat_array_klass()));
3643     idx = 1;
3644   }
3645 
3646   // Set up locals for incoming arguments
3647   ciSignature* sig = method()->signature();
3648   for (int i = 0; i < sig->count(); i++) {
3649     ciType* type = sig->type_at(i);
3650     BasicType basic_type = type->basic_type();
3651     // don't allow T_ARRAY to propagate into locals types
3652     if (is_reference_type(basic_type)) basic_type = T_OBJECT;
3653     ValueType* vt = as_ValueType(basic_type);
3654     state->store_local(idx, new Local(type, vt, idx, false, sig->is_null_free_at(i)));
3655     idx += type->size();
3656   }
3657 
3658   // lock synchronized method
3659   if (method()->is_synchronized()) {
3660     state->lock(NULL);
3661   }
3662 
3663   return state;
3664 }
3665 
3666 
3667 GraphBuilder::GraphBuilder(Compilation* compilation, IRScope* scope)
3668   : _scope_data(NULL)
3669   , _compilation(compilation)
3670   , _memory(new MemoryBuffer())
3671   , _inline_bailout_msg(NULL)
3672   , _instruction_count(0)
3673   , _osr_entry(NULL)
3674   , _pending_field_access(NULL)
3675   , _pending_load_indexed(NULL)
3676 {
3677   int osr_bci = compilation->osr_bci();
3678 
3679   // determine entry points and bci2block mapping
3680   BlockListBuilder blm(compilation, scope, osr_bci);
3681   CHECK_BAILOUT();
3682 
3683   BlockList* bci2block = blm.bci2block();
3684   BlockBegin* start_block = bci2block->at(0);
3685 
3686   push_root_scope(scope, bci2block, start_block);
3687 
3688   // setup state for std entry
3689   _initial_state = state_at_entry();
3690   start_block->merge(_initial_state, compilation->has_irreducible_loops());
3691 
3692   // End nulls still exist here
3693 
3694   // complete graph
3695   _vmap        = new ValueMap();
3696   switch (scope->method()->intrinsic_id()) {
3697   case vmIntrinsics::_dabs          : // fall through
3698   case vmIntrinsics::_dsqrt         : // fall through
3699   case vmIntrinsics::_dsqrt_strict  : // fall through
3700   case vmIntrinsics::_dsin          : // fall through
3701   case vmIntrinsics::_dcos          : // fall through
3702   case vmIntrinsics::_dtan          : // fall through
3703   case vmIntrinsics::_dlog          : // fall through
3704   case vmIntrinsics::_dlog10        : // fall through
3705   case vmIntrinsics::_dexp          : // fall through
3706   case vmIntrinsics::_dpow          : // fall through
3707     {
3708       // Compiles where the root method is an intrinsic need a special
3709       // compilation environment because the bytecodes for the method
3710       // shouldn't be parsed during the compilation, only the special
3711       // Intrinsic node should be emitted.  If this isn't done the the
3712       // code for the inlined version will be different than the root
3713       // compiled version which could lead to monotonicity problems on
3714       // intel.
3715       if (CheckIntrinsics && !scope->method()->intrinsic_candidate()) {
3716         BAILOUT("failed to inline intrinsic, method not annotated");
3717       }
3718 
3719       // Set up a stream so that appending instructions works properly.
3720       ciBytecodeStream s(scope->method());
3721       s.reset_to_bci(0);
3722       scope_data()->set_stream(&s);
3723       s.next();
3724 
3725       // setup the initial block state
3726       _block = start_block;
3727       _state = start_block->state()->copy_for_parsing();
3728       _last  = start_block;
3729       load_local(doubleType, 0);
3730       if (scope->method()->intrinsic_id() == vmIntrinsics::_dpow) {
3731         load_local(doubleType, 2);
3732       }
3733 
3734       // Emit the intrinsic node.
3735       bool result = try_inline_intrinsics(scope->method());
3736       if (!result) BAILOUT("failed to inline intrinsic");
3737       method_return(dpop());
3738 
3739       // connect the begin and end blocks and we're all done.
3740       BlockEnd* end = last()->as_BlockEnd();
3741       block()->set_end(end);
3742       break;
3743     }
3744 
3745   case vmIntrinsics::_Reference_get:
3746     {
3747       {
3748         // With java.lang.ref.reference.get() we must go through the
3749         // intrinsic - when G1 is enabled - even when get() is the root
3750         // method of the compile so that, if necessary, the value in
3751         // the referent field of the reference object gets recorded by
3752         // the pre-barrier code.
3753         // Specifically, if G1 is enabled, the value in the referent
3754         // field is recorded by the G1 SATB pre barrier. This will
3755         // result in the referent being marked live and the reference
3756         // object removed from the list of discovered references during
3757         // reference processing.
3758         if (CheckIntrinsics && !scope->method()->intrinsic_candidate()) {
3759           BAILOUT("failed to inline intrinsic, method not annotated");
3760         }
3761 
3762         // Also we need intrinsic to prevent commoning reads from this field
3763         // across safepoint since GC can change its value.
3764 
3765         // Set up a stream so that appending instructions works properly.
3766         ciBytecodeStream s(scope->method());
3767         s.reset_to_bci(0);
3768         scope_data()->set_stream(&s);
3769         s.next();
3770 
3771         // setup the initial block state
3772         _block = start_block;
3773         _state = start_block->state()->copy_for_parsing();
3774         _last  = start_block;
3775         load_local(objectType, 0);
3776 
3777         // Emit the intrinsic node.
3778         bool result = try_inline_intrinsics(scope->method());
3779         if (!result) BAILOUT("failed to inline intrinsic");
3780         method_return(apop());
3781 
3782         // connect the begin and end blocks and we're all done.
3783         BlockEnd* end = last()->as_BlockEnd();
3784         block()->set_end(end);
3785         break;
3786       }
3787       // Otherwise, fall thru
3788     }
3789 
3790   default:
3791     scope_data()->add_to_work_list(start_block);
3792     iterate_all_blocks();
3793     break;
3794   }
3795   CHECK_BAILOUT();
3796 
3797 # ifdef ASSERT
3798   //All blocks reachable from start_block have _end != NULL
3799   {
3800     BlockList processed;
3801     BlockList to_go;
3802     to_go.append(start_block);
3803     while(to_go.length() > 0) {
3804       BlockBegin* current = to_go.pop();
3805       assert(current != NULL, "Should not happen.");
3806       assert(current->end() != NULL, "All blocks reachable from start_block should have end() != NULL.");
3807       processed.append(current);
3808       for(int i = 0; i < current->number_of_sux(); i++) {
3809         BlockBegin* s = current->sux_at(i);
3810         if (!processed.contains(s)) {
3811           to_go.append(s);
3812         }
3813       }
3814     }
3815   }
3816 #endif // ASSERT
3817 
3818   _start = setup_start_block(osr_bci, start_block, _osr_entry, _initial_state);
3819 
3820   eliminate_redundant_phis(_start);
3821 
3822   NOT_PRODUCT(if (PrintValueNumbering && Verbose) print_stats());
3823   // for osr compile, bailout if some requirements are not fulfilled
3824   if (osr_bci != -1) {
3825     BlockBegin* osr_block = blm.bci2block()->at(osr_bci);
3826     if (!osr_block->is_set(BlockBegin::was_visited_flag)) {
3827       BAILOUT("osr entry must have been visited for osr compile");
3828     }
3829 
3830     // check if osr entry point has empty stack - we cannot handle non-empty stacks at osr entry points
3831     if (!osr_block->state()->stack_is_empty()) {
3832       BAILOUT("stack not empty at OSR entry point");
3833     }
3834   }
3835 #ifndef PRODUCT
3836   if (PrintCompilation && Verbose) tty->print_cr("Created %d Instructions", _instruction_count);
3837 #endif
3838 }
3839 
3840 
3841 ValueStack* GraphBuilder::copy_state_before() {
3842   return copy_state_before_with_bci(bci());
3843 }
3844 
3845 ValueStack* GraphBuilder::copy_state_exhandling() {
3846   return copy_state_exhandling_with_bci(bci());
3847 }
3848 
3849 ValueStack* GraphBuilder::copy_state_for_exception() {
3850   return copy_state_for_exception_with_bci(bci());
3851 }
3852 
3853 ValueStack* GraphBuilder::copy_state_before_with_bci(int bci) {
3854   return state()->copy(ValueStack::StateBefore, bci);
3855 }
3856 
3857 ValueStack* GraphBuilder::copy_state_exhandling_with_bci(int bci) {
3858   if (!has_handler()) return NULL;
3859   return state()->copy(ValueStack::StateBefore, bci);
3860 }
3861 
3862 ValueStack* GraphBuilder::copy_state_for_exception_with_bci(int bci) {
3863   ValueStack* s = copy_state_exhandling_with_bci(bci);
3864   if (s == NULL) {
3865     if (_compilation->env()->should_retain_local_variables()) {
3866       s = state()->copy(ValueStack::ExceptionState, bci);
3867     } else {
3868       s = state()->copy(ValueStack::EmptyExceptionState, bci);
3869     }
3870   }
3871   return s;
3872 }
3873 
3874 int GraphBuilder::recursive_inline_level(ciMethod* cur_callee) const {
3875   int recur_level = 0;
3876   for (IRScope* s = scope(); s != NULL; s = s->caller()) {
3877     if (s->method() == cur_callee) {
3878       ++recur_level;
3879     }
3880   }
3881   return recur_level;
3882 }
3883 
3884 
3885 bool GraphBuilder::try_inline(ciMethod* callee, bool holder_known, bool ignore_return, Bytecodes::Code bc, Value receiver) {
3886   const char* msg = NULL;
3887 
3888   // clear out any existing inline bailout condition
3889   clear_inline_bailout();
3890 
3891   // exclude methods we don't want to inline
3892   msg = should_not_inline(callee);
3893   if (msg != NULL) {
3894     print_inlining(callee, msg, /*success*/ false);
3895     return false;
3896   }
3897 
3898   // method handle invokes
3899   if (callee->is_method_handle_intrinsic()) {
3900     if (try_method_handle_inline(callee, ignore_return)) {
3901       if (callee->has_reserved_stack_access()) {
3902         compilation()->set_has_reserved_stack_access(true);
3903       }
3904       return true;
3905     }
3906     return false;
3907   }
3908 
3909   // handle intrinsics
3910   if (callee->intrinsic_id() != vmIntrinsics::_none &&
3911       callee->check_intrinsic_candidate()) {
3912     if (try_inline_intrinsics(callee, ignore_return)) {
3913       print_inlining(callee, "intrinsic");
3914       if (callee->has_reserved_stack_access()) {
3915         compilation()->set_has_reserved_stack_access(true);
3916       }
3917       return true;
3918     }
3919     // try normal inlining
3920   }
3921 
3922   // certain methods cannot be parsed at all
3923   msg = check_can_parse(callee);
3924   if (msg != NULL) {
3925     print_inlining(callee, msg, /*success*/ false);
3926     return false;
3927   }
3928 
3929   // If bytecode not set use the current one.
3930   if (bc == Bytecodes::_illegal) {
3931     bc = code();
3932   }
3933   if (try_inline_full(callee, holder_known, ignore_return, bc, receiver)) {
3934     if (callee->has_reserved_stack_access()) {
3935       compilation()->set_has_reserved_stack_access(true);
3936     }
3937     return true;
3938   }
3939 
3940   // Entire compilation could fail during try_inline_full call.
3941   // In that case printing inlining decision info is useless.
3942   if (!bailed_out())
3943     print_inlining(callee, _inline_bailout_msg, /*success*/ false);
3944 
3945   return false;
3946 }
3947 
3948 
3949 const char* GraphBuilder::check_can_parse(ciMethod* callee) const {
3950   // Certain methods cannot be parsed at all:
3951   if ( callee->is_native())            return "native method";
3952   if ( callee->is_abstract())          return "abstract method";
3953   if (!callee->can_be_parsed())        return "cannot be parsed";
3954   return NULL;
3955 }
3956 
3957 // negative filter: should callee NOT be inlined?  returns NULL, ok to inline, or rejection msg
3958 const char* GraphBuilder::should_not_inline(ciMethod* callee) const {
3959   if ( compilation()->directive()->should_not_inline(callee)) return "disallowed by CompileCommand";
3960   if ( callee->dont_inline())          return "don't inline by annotation";
3961   return NULL;
3962 }
3963 
3964 void GraphBuilder::build_graph_for_intrinsic(ciMethod* callee, bool ignore_return) {
3965   vmIntrinsics::ID id = callee->intrinsic_id();
3966   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
3967 
3968   // Some intrinsics need special IR nodes.
3969   switch(id) {
3970   case vmIntrinsics::_getReference           : append_unsafe_get(callee, T_OBJECT,  false); return;
3971   case vmIntrinsics::_getBoolean             : append_unsafe_get(callee, T_BOOLEAN, false); return;
3972   case vmIntrinsics::_getByte                : append_unsafe_get(callee, T_BYTE,    false); return;
3973   case vmIntrinsics::_getShort               : append_unsafe_get(callee, T_SHORT,   false); return;
3974   case vmIntrinsics::_getChar                : append_unsafe_get(callee, T_CHAR,    false); return;
3975   case vmIntrinsics::_getInt                 : append_unsafe_get(callee, T_INT,     false); return;
3976   case vmIntrinsics::_getLong                : append_unsafe_get(callee, T_LONG,    false); return;
3977   case vmIntrinsics::_getFloat               : append_unsafe_get(callee, T_FLOAT,   false); return;
3978   case vmIntrinsics::_getDouble              : append_unsafe_get(callee, T_DOUBLE,  false); return;
3979   case vmIntrinsics::_putReference           : append_unsafe_put(callee, T_OBJECT,  false); return;
3980   case vmIntrinsics::_putBoolean             : append_unsafe_put(callee, T_BOOLEAN, false); return;
3981   case vmIntrinsics::_putByte                : append_unsafe_put(callee, T_BYTE,    false); return;
3982   case vmIntrinsics::_putShort               : append_unsafe_put(callee, T_SHORT,   false); return;
3983   case vmIntrinsics::_putChar                : append_unsafe_put(callee, T_CHAR,    false); return;
3984   case vmIntrinsics::_putInt                 : append_unsafe_put(callee, T_INT,     false); return;
3985   case vmIntrinsics::_putLong                : append_unsafe_put(callee, T_LONG,    false); return;
3986   case vmIntrinsics::_putFloat               : append_unsafe_put(callee, T_FLOAT,   false); return;
3987   case vmIntrinsics::_putDouble              : append_unsafe_put(callee, T_DOUBLE,  false); return;
3988   case vmIntrinsics::_getShortUnaligned      : append_unsafe_get(callee, T_SHORT,   false); return;
3989   case vmIntrinsics::_getCharUnaligned       : append_unsafe_get(callee, T_CHAR,    false); return;
3990   case vmIntrinsics::_getIntUnaligned        : append_unsafe_get(callee, T_INT,     false); return;
3991   case vmIntrinsics::_getLongUnaligned       : append_unsafe_get(callee, T_LONG,    false); return;
3992   case vmIntrinsics::_putShortUnaligned      : append_unsafe_put(callee, T_SHORT,   false); return;
3993   case vmIntrinsics::_putCharUnaligned       : append_unsafe_put(callee, T_CHAR,    false); return;
3994   case vmIntrinsics::_putIntUnaligned        : append_unsafe_put(callee, T_INT,     false); return;
3995   case vmIntrinsics::_putLongUnaligned       : append_unsafe_put(callee, T_LONG,    false); return;
3996   case vmIntrinsics::_getReferenceVolatile   : append_unsafe_get(callee, T_OBJECT,  true); return;
3997   case vmIntrinsics::_getBooleanVolatile     : append_unsafe_get(callee, T_BOOLEAN, true); return;
3998   case vmIntrinsics::_getByteVolatile        : append_unsafe_get(callee, T_BYTE,    true); return;
3999   case vmIntrinsics::_getShortVolatile       : append_unsafe_get(callee, T_SHORT,   true); return;
4000   case vmIntrinsics::_getCharVolatile        : append_unsafe_get(callee, T_CHAR,    true); return;
4001   case vmIntrinsics::_getIntVolatile         : append_unsafe_get(callee, T_INT,     true); return;
4002   case vmIntrinsics::_getLongVolatile        : append_unsafe_get(callee, T_LONG,    true); return;
4003   case vmIntrinsics::_getFloatVolatile       : append_unsafe_get(callee, T_FLOAT,   true); return;
4004   case vmIntrinsics::_getDoubleVolatile      : append_unsafe_get(callee, T_DOUBLE,  true); return;
4005   case vmIntrinsics::_putReferenceVolatile   : append_unsafe_put(callee, T_OBJECT,  true); return;
4006   case vmIntrinsics::_putBooleanVolatile     : append_unsafe_put(callee, T_BOOLEAN, true); return;
4007   case vmIntrinsics::_putByteVolatile        : append_unsafe_put(callee, T_BYTE,    true); return;
4008   case vmIntrinsics::_putShortVolatile       : append_unsafe_put(callee, T_SHORT,   true); return;
4009   case vmIntrinsics::_putCharVolatile        : append_unsafe_put(callee, T_CHAR,    true); return;
4010   case vmIntrinsics::_putIntVolatile         : append_unsafe_put(callee, T_INT,     true); return;
4011   case vmIntrinsics::_putLongVolatile        : append_unsafe_put(callee, T_LONG,    true); return;
4012   case vmIntrinsics::_putFloatVolatile       : append_unsafe_put(callee, T_FLOAT,   true); return;
4013   case vmIntrinsics::_putDoubleVolatile      : append_unsafe_put(callee, T_DOUBLE,  true); return;
4014   case vmIntrinsics::_compareAndSetLong:
4015   case vmIntrinsics::_compareAndSetInt:
4016   case vmIntrinsics::_compareAndSetReference : append_unsafe_CAS(callee); return;
4017   case vmIntrinsics::_getAndAddInt:
4018   case vmIntrinsics::_getAndAddLong          : append_unsafe_get_and_set(callee, true); return;
4019   case vmIntrinsics::_getAndSetInt           :
4020   case vmIntrinsics::_getAndSetLong          :
4021   case vmIntrinsics::_getAndSetReference     : append_unsafe_get_and_set(callee, false); return;
4022   case vmIntrinsics::_getCharStringU         : append_char_access(callee, false); return;
4023   case vmIntrinsics::_putCharStringU         : append_char_access(callee, true); return;
4024   default:
4025     break;
4026   }
4027 
4028   // create intrinsic node
4029   const bool has_receiver = !callee->is_static();
4030   ValueType* result_type = as_ValueType(callee->return_type());
4031   ValueStack* state_before = copy_state_for_exception();
4032 
4033   Values* args = state()->pop_arguments(callee->arg_size());
4034 
4035   if (is_profiling()) {
4036     // Don't profile in the special case where the root method
4037     // is the intrinsic
4038     if (callee != method()) {
4039       // Note that we'd collect profile data in this method if we wanted it.
4040       compilation()->set_would_profile(true);
4041       if (profile_calls()) {
4042         Value recv = NULL;
4043         if (has_receiver) {
4044           recv = args->at(0);
4045           null_check(recv);
4046         }
4047         profile_call(callee, recv, NULL, collect_args_for_profiling(args, callee, true), true);
4048       }
4049     }
4050   }
4051 
4052   Intrinsic* result = new Intrinsic(result_type, callee->intrinsic_id(),
4053                                     args, has_receiver, state_before,
4054                                     vmIntrinsics::preserves_state(id),
4055                                     vmIntrinsics::can_trap(id));
4056   // append instruction & push result
4057   Value value = append_split(result);
4058   if (result_type != voidType && !ignore_return) {
4059     push(result_type, value);
4060   }
4061 
4062   if (callee != method() && profile_return() && result_type->is_object_kind()) {
4063     profile_return_type(result, callee);
4064   }
4065 }
4066 
4067 bool GraphBuilder::try_inline_intrinsics(ciMethod* callee, bool ignore_return) {
4068   // For calling is_intrinsic_available we need to transition to
4069   // the '_thread_in_vm' state because is_intrinsic_available()
4070   // accesses critical VM-internal data.
4071   bool is_available = false;
4072   {
4073     VM_ENTRY_MARK;
4074     methodHandle mh(THREAD, callee->get_Method());
4075     is_available = _compilation->compiler()->is_intrinsic_available(mh, _compilation->directive());
4076   }
4077 
4078   if (!is_available) {
4079     if (!InlineNatives) {
4080       // Return false and also set message that the inlining of
4081       // intrinsics has been disabled in general.
4082       INLINE_BAILOUT("intrinsic method inlining disabled");
4083     } else {
4084       return false;
4085     }
4086   }
4087   build_graph_for_intrinsic(callee, ignore_return);
4088   return true;
4089 }
4090 
4091 
4092 bool GraphBuilder::try_inline_jsr(int jsr_dest_bci) {
4093   // Introduce a new callee continuation point - all Ret instructions
4094   // will be replaced with Gotos to this point.
4095   BlockBegin* cont = block_at(next_bci());
4096   assert(cont != NULL, "continuation must exist (BlockListBuilder starts a new block after a jsr");
4097 
4098   // Note: can not assign state to continuation yet, as we have to
4099   // pick up the state from the Ret instructions.
4100 
4101   // Push callee scope
4102   push_scope_for_jsr(cont, jsr_dest_bci);
4103 
4104   // Temporarily set up bytecode stream so we can append instructions
4105   // (only using the bci of this stream)
4106   scope_data()->set_stream(scope_data()->parent()->stream());
4107 
4108   BlockBegin* jsr_start_block = block_at(jsr_dest_bci);
4109   assert(jsr_start_block != NULL, "jsr start block must exist");
4110   assert(!jsr_start_block->is_set(BlockBegin::was_visited_flag), "should not have visited jsr yet");
4111   Goto* goto_sub = new Goto(jsr_start_block, false);
4112   // Must copy state to avoid wrong sharing when parsing bytecodes
4113   assert(jsr_start_block->state() == NULL, "should have fresh jsr starting block");
4114   jsr_start_block->set_state(copy_state_before_with_bci(jsr_dest_bci));
4115   append(goto_sub);
4116   _block->set_end(goto_sub);
4117   _last = _block = jsr_start_block;
4118 
4119   // Clear out bytecode stream
4120   scope_data()->set_stream(NULL);
4121 
4122   scope_data()->add_to_work_list(jsr_start_block);
4123 
4124   // Ready to resume parsing in subroutine
4125   iterate_all_blocks();
4126 
4127   // If we bailed out during parsing, return immediately (this is bad news)
4128   CHECK_BAILOUT_(false);
4129 
4130   // Detect whether the continuation can actually be reached. If not,
4131   // it has not had state set by the join() operations in
4132   // iterate_bytecodes_for_block()/ret() and we should not touch the
4133   // iteration state. The calling activation of
4134   // iterate_bytecodes_for_block will then complete normally.
4135   if (cont->state() != NULL) {
4136     if (!cont->is_set(BlockBegin::was_visited_flag)) {
4137       // add continuation to work list instead of parsing it immediately
4138       scope_data()->parent()->add_to_work_list(cont);
4139     }
4140   }
4141 
4142   assert(jsr_continuation() == cont, "continuation must not have changed");
4143   assert(!jsr_continuation()->is_set(BlockBegin::was_visited_flag) ||
4144          jsr_continuation()->is_set(BlockBegin::parser_loop_header_flag),
4145          "continuation can only be visited in case of backward branches");
4146   assert(_last && _last->as_BlockEnd(), "block must have end");
4147 
4148   // continuation is in work list, so end iteration of current block
4149   _skip_block = true;
4150   pop_scope_for_jsr();
4151 
4152   return true;
4153 }
4154 
4155 
4156 // Inline the entry of a synchronized method as a monitor enter and
4157 // register the exception handler which releases the monitor if an
4158 // exception is thrown within the callee. Note that the monitor enter
4159 // cannot throw an exception itself, because the receiver is
4160 // guaranteed to be non-null by the explicit null check at the
4161 // beginning of inlining.
4162 void GraphBuilder::inline_sync_entry(Value lock, BlockBegin* sync_handler) {
4163   assert(lock != NULL && sync_handler != NULL, "lock or handler missing");
4164 
4165   monitorenter(lock, SynchronizationEntryBCI);
4166   assert(_last->as_MonitorEnter() != NULL, "monitor enter expected");
4167   _last->set_needs_null_check(false);
4168 
4169   sync_handler->set(BlockBegin::exception_entry_flag);
4170   sync_handler->set(BlockBegin::is_on_work_list_flag);
4171 
4172   ciExceptionHandler* desc = new ciExceptionHandler(method()->holder(), 0, method()->code_size(), -1, 0);
4173   XHandler* h = new XHandler(desc);
4174   h->set_entry_block(sync_handler);
4175   scope_data()->xhandlers()->append(h);
4176   scope_data()->set_has_handler();
4177 }
4178 
4179 
4180 // If an exception is thrown and not handled within an inlined
4181 // synchronized method, the monitor must be released before the
4182 // exception is rethrown in the outer scope. Generate the appropriate
4183 // instructions here.
4184 void GraphBuilder::fill_sync_handler(Value lock, BlockBegin* sync_handler, bool default_handler) {
4185   BlockBegin* orig_block = _block;
4186   ValueStack* orig_state = _state;
4187   Instruction* orig_last = _last;
4188   _last = _block = sync_handler;
4189   _state = sync_handler->state()->copy();
4190 
4191   assert(sync_handler != NULL, "handler missing");
4192   assert(!sync_handler->is_set(BlockBegin::was_visited_flag), "is visited here");
4193 
4194   assert(lock != NULL || default_handler, "lock or handler missing");
4195 
4196   XHandler* h = scope_data()->xhandlers()->remove_last();
4197   assert(h->entry_block() == sync_handler, "corrupt list of handlers");
4198 
4199   block()->set(BlockBegin::was_visited_flag);
4200   Value exception = append_with_bci(new ExceptionObject(), SynchronizationEntryBCI);
4201   assert(exception->is_pinned(), "must be");
4202 
4203   int bci = SynchronizationEntryBCI;
4204   if (compilation()->env()->dtrace_method_probes()) {
4205     // Report exit from inline methods.  We don't have a stream here
4206     // so pass an explicit bci of SynchronizationEntryBCI.
4207     Values* args = new Values(1);
4208     args->push(append_with_bci(new Constant(new MethodConstant(method())), bci));
4209     append_with_bci(new RuntimeCall(voidType, "dtrace_method_exit", CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), args), bci);
4210   }
4211 
4212   if (lock) {
4213     assert(state()->locks_size() > 0 && state()->lock_at(state()->locks_size() - 1) == lock, "lock is missing");
4214     if (!lock->is_linked()) {
4215       lock = append_with_bci(lock, bci);
4216     }
4217 
4218     // exit the monitor in the context of the synchronized method
4219     monitorexit(lock, bci);
4220 
4221     // exit the context of the synchronized method
4222     if (!default_handler) {
4223       pop_scope();
4224       bci = _state->caller_state()->bci();
4225       _state = _state->caller_state()->copy_for_parsing();
4226     }
4227   }
4228 
4229   // perform the throw as if at the the call site
4230   apush(exception);
4231   throw_op(bci);
4232 
4233   BlockEnd* end = last()->as_BlockEnd();
4234   block()->set_end(end);
4235 
4236   _block = orig_block;
4237   _state = orig_state;
4238   _last = orig_last;
4239 }
4240 
4241 
4242 bool GraphBuilder::try_inline_full(ciMethod* callee, bool holder_known, bool ignore_return, Bytecodes::Code bc, Value receiver) {
4243   assert(!callee->is_native(), "callee must not be native");
4244   if (CompilationPolicy::should_not_inline(compilation()->env(), callee)) {
4245     INLINE_BAILOUT("inlining prohibited by policy");
4246   }
4247   // first perform tests of things it's not possible to inline
4248   if (callee->has_exception_handlers() &&
4249       !InlineMethodsWithExceptionHandlers) INLINE_BAILOUT("callee has exception handlers");
4250   if (callee->is_synchronized() &&
4251       !InlineSynchronizedMethods         ) INLINE_BAILOUT("callee is synchronized");
4252   if (!callee->holder()->is_linked())      INLINE_BAILOUT("callee's klass not linked yet");
4253   if (bc == Bytecodes::_invokestatic &&
4254       !callee->holder()->is_initialized()) INLINE_BAILOUT("callee's klass not initialized yet");
4255   if (!callee->has_balanced_monitors())    INLINE_BAILOUT("callee's monitors do not match");
4256 
4257   // Proper inlining of methods with jsrs requires a little more work.
4258   if (callee->has_jsrs()                 ) INLINE_BAILOUT("jsrs not handled properly by inliner yet");
4259 
4260   if (is_profiling() && !callee->ensure_method_data()) {
4261     INLINE_BAILOUT("mdo allocation failed");
4262   }
4263 
4264   const bool is_invokedynamic = (bc == Bytecodes::_invokedynamic);
4265   const bool has_receiver = (bc != Bytecodes::_invokestatic && !is_invokedynamic);
4266 
4267   const int args_base = state()->stack_size() - callee->arg_size();
4268   assert(args_base >= 0, "stack underflow during inlining");
4269 
4270   Value recv = NULL;
4271   if (has_receiver) {
4272     assert(!callee->is_static(), "callee must not be static");
4273     assert(callee->arg_size() > 0, "must have at least a receiver");
4274 
4275     recv = state()->stack_at(args_base);
4276     if (recv->is_null_obj()) {
4277       INLINE_BAILOUT("receiver is always null");
4278     }
4279   }
4280 
4281   // now perform tests that are based on flag settings
4282   bool inlinee_by_directive = compilation()->directive()->should_inline(callee);
4283   if (callee->force_inline() || inlinee_by_directive) {
4284     if (inline_level() > MaxForceInlineLevel                      ) INLINE_BAILOUT("MaxForceInlineLevel");
4285     if (recursive_inline_level(callee) > C1MaxRecursiveInlineLevel) INLINE_BAILOUT("recursive inlining too deep");
4286 
4287     const char* msg = "";
4288     if (callee->force_inline())  msg = "force inline by annotation";
4289     if (inlinee_by_directive)    msg = "force inline by CompileCommand";
4290     print_inlining(callee, msg);
4291   } else {
4292     // use heuristic controls on inlining
4293     if (inline_level() > C1MaxInlineLevel                       ) INLINE_BAILOUT("inlining too deep");
4294     int callee_recursive_level = recursive_inline_level(callee);
4295     if (callee_recursive_level > C1MaxRecursiveInlineLevel      ) INLINE_BAILOUT("recursive inlining too deep");
4296     if (callee->code_size_for_inlining() > max_inline_size()    ) INLINE_BAILOUT("callee is too large");
4297     // Additional condition to limit stack usage for non-recursive calls.
4298     if ((callee_recursive_level == 0) &&
4299         (callee->max_stack() + callee->max_locals() - callee->size_of_parameters() > C1InlineStackLimit)) {
4300       INLINE_BAILOUT("callee uses too much stack");
4301     }
4302 
4303     // don't inline throwable methods unless the inlining tree is rooted in a throwable class
4304     if (callee->name() == ciSymbols::object_initializer_name() &&
4305         callee->holder()->is_subclass_of(ciEnv::current()->Throwable_klass())) {
4306       // Throwable constructor call
4307       IRScope* top = scope();
4308       while (top->caller() != NULL) {
4309         top = top->caller();
4310       }
4311       if (!top->method()->holder()->is_subclass_of(ciEnv::current()->Throwable_klass())) {
4312         INLINE_BAILOUT("don't inline Throwable constructors");
4313       }
4314     }
4315 
4316     if (compilation()->env()->num_inlined_bytecodes() > DesiredMethodLimit) {
4317       INLINE_BAILOUT("total inlining greater than DesiredMethodLimit");
4318     }
4319     // printing
4320     print_inlining(callee, "inline", /*success*/ true);
4321   }
4322 
4323   assert(bc != Bytecodes::_invokestatic || callee->holder()->is_initialized(), "required");
4324 
4325   // NOTE: Bailouts from this point on, which occur at the
4326   // GraphBuilder level, do not cause bailout just of the inlining but
4327   // in fact of the entire compilation.
4328 
4329   BlockBegin* orig_block = block();
4330 
4331   // Insert null check if necessary
4332   if (has_receiver) {
4333     // note: null check must happen even if first instruction of callee does
4334     //       an implicit null check since the callee is in a different scope
4335     //       and we must make sure exception handling does the right thing
4336     null_check(recv);
4337   }
4338 
4339   if (is_profiling()) {
4340     // Note that we'd collect profile data in this method if we wanted it.
4341     // this may be redundant here...
4342     compilation()->set_would_profile(true);
4343 
4344     if (profile_calls()) {
4345       int start = 0;
4346       Values* obj_args = args_list_for_profiling(callee, start, has_receiver);
4347       if (obj_args != NULL) {
4348         int s = obj_args->max_length();
4349         // if called through method handle invoke, some arguments may have been popped
4350         for (int i = args_base+start, j = 0; j < obj_args->max_length() && i < state()->stack_size(); ) {
4351           Value v = state()->stack_at_inc(i);
4352           if (v->type()->is_object_kind()) {
4353             obj_args->push(v);
4354             j++;
4355           }
4356         }
4357         check_args_for_profiling(obj_args, s);
4358       }
4359       profile_call(callee, recv, holder_known ? callee->holder() : NULL, obj_args, true);
4360     }
4361   }
4362 
4363   // Introduce a new callee continuation point - if the callee has
4364   // more than one return instruction or the return does not allow
4365   // fall-through of control flow, all return instructions of the
4366   // callee will need to be replaced by Goto's pointing to this
4367   // continuation point.
4368   BlockBegin* cont = block_at(next_bci());
4369   bool continuation_existed = true;
4370   if (cont == NULL) {
4371     cont = new BlockBegin(next_bci());
4372     // low number so that continuation gets parsed as early as possible
4373     cont->set_depth_first_number(0);
4374     if (PrintInitialBlockList) {
4375       tty->print_cr("CFG: created block %d (bci %d) as continuation for inline at bci %d",
4376                     cont->block_id(), cont->bci(), bci());
4377     }
4378     continuation_existed = false;
4379   }
4380   // Record number of predecessors of continuation block before
4381   // inlining, to detect if inlined method has edges to its
4382   // continuation after inlining.
4383   int continuation_preds = cont->number_of_preds();
4384 
4385   // Push callee scope
4386   push_scope(callee, cont);
4387 
4388   // the BlockListBuilder for the callee could have bailed out
4389   if (bailed_out())
4390       return false;
4391 
4392   // Temporarily set up bytecode stream so we can append instructions
4393   // (only using the bci of this stream)
4394   scope_data()->set_stream(scope_data()->parent()->stream());
4395 
4396   // Pass parameters into callee state: add assignments
4397   // note: this will also ensure that all arguments are computed before being passed
4398   ValueStack* callee_state = state();
4399   ValueStack* caller_state = state()->caller_state();
4400   for (int i = args_base; i < caller_state->stack_size(); ) {
4401     const int arg_no = i - args_base;
4402     Value arg = caller_state->stack_at_inc(i);
4403     store_local(callee_state, arg, arg_no);
4404   }
4405 
4406   // Remove args from stack.
4407   // Note that we preserve locals state in case we can use it later
4408   // (see use of pop_scope() below)
4409   caller_state->truncate_stack(args_base);
4410   assert(callee_state->stack_size() == 0, "callee stack must be empty");
4411 
4412   Value lock = NULL;
4413   BlockBegin* sync_handler = NULL;
4414 
4415   // Inline the locking of the receiver if the callee is synchronized
4416   if (callee->is_synchronized()) {
4417     lock = callee->is_static() ? append(new Constant(new InstanceConstant(callee->holder()->java_mirror())))
4418                                : state()->local_at(0);
4419     sync_handler = new BlockBegin(SynchronizationEntryBCI);
4420     inline_sync_entry(lock, sync_handler);
4421   }
4422 
4423   if (compilation()->env()->dtrace_method_probes()) {
4424     Values* args = new Values(1);
4425     args->push(append(new Constant(new MethodConstant(method()))));
4426     append(new RuntimeCall(voidType, "dtrace_method_entry", CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), args));
4427   }
4428 
4429   if (profile_inlined_calls()) {
4430     profile_invocation(callee, copy_state_before_with_bci(SynchronizationEntryBCI));
4431   }
4432 
4433   BlockBegin* callee_start_block = block_at(0);
4434   if (callee_start_block != NULL) {
4435     assert(callee_start_block->is_set(BlockBegin::parser_loop_header_flag), "must be loop header");
4436     Goto* goto_callee = new Goto(callee_start_block, false);
4437     // The state for this goto is in the scope of the callee, so use
4438     // the entry bci for the callee instead of the call site bci.
4439     append_with_bci(goto_callee, 0);
4440     _block->set_end(goto_callee);
4441     callee_start_block->merge(callee_state, compilation()->has_irreducible_loops());
4442 
4443     _last = _block = callee_start_block;
4444 
4445     scope_data()->add_to_work_list(callee_start_block);
4446   }
4447 
4448   // Clear out bytecode stream
4449   scope_data()->set_stream(NULL);
4450   scope_data()->set_ignore_return(ignore_return);
4451 
4452   CompileLog* log = compilation()->log();
4453   if (log != NULL) log->head("parse method='%d'", log->identify(callee));
4454 
4455   // Ready to resume parsing in callee (either in the same block we
4456   // were in before or in the callee's start block)
4457   iterate_all_blocks(callee_start_block == NULL);
4458 
4459   if (log != NULL) log->done("parse");
4460 
4461   // If we bailed out during parsing, return immediately (this is bad news)
4462   if (bailed_out())
4463       return false;
4464 
4465   // iterate_all_blocks theoretically traverses in random order; in
4466   // practice, we have only traversed the continuation if we are
4467   // inlining into a subroutine
4468   assert(continuation_existed ||
4469          !continuation()->is_set(BlockBegin::was_visited_flag),
4470          "continuation should not have been parsed yet if we created it");
4471 
4472   // At this point we are almost ready to return and resume parsing of
4473   // the caller back in the GraphBuilder. The only thing we want to do
4474   // first is an optimization: during parsing of the callee we
4475   // generated at least one Goto to the continuation block. If we
4476   // generated exactly one, and if the inlined method spanned exactly
4477   // one block (and we didn't have to Goto its entry), then we snip
4478   // off the Goto to the continuation, allowing control to fall
4479   // through back into the caller block and effectively performing
4480   // block merging. This allows load elimination and CSE to take place
4481   // across multiple callee scopes if they are relatively simple, and
4482   // is currently essential to making inlining profitable.
4483   if (num_returns() == 1
4484       && block() == orig_block
4485       && block() == inline_cleanup_block()) {
4486     _last  = inline_cleanup_return_prev();
4487     _state = inline_cleanup_state();
4488   } else if (continuation_preds == cont->number_of_preds()) {
4489     // Inlining caused that the instructions after the invoke in the
4490     // caller are not reachable any more. So skip filling this block
4491     // with instructions!
4492     assert(cont == continuation(), "");
4493     assert(_last && _last->as_BlockEnd(), "");
4494     _skip_block = true;
4495   } else {
4496     // Resume parsing in continuation block unless it was already parsed.
4497     // Note that if we don't change _last here, iteration in
4498     // iterate_bytecodes_for_block will stop when we return.
4499     if (!continuation()->is_set(BlockBegin::was_visited_flag)) {
4500       // add continuation to work list instead of parsing it immediately
4501       assert(_last && _last->as_BlockEnd(), "");
4502       scope_data()->parent()->add_to_work_list(continuation());
4503       _skip_block = true;
4504     }
4505   }
4506 
4507   // Fill the exception handler for synchronized methods with instructions
4508   if (callee->is_synchronized() && sync_handler->state() != NULL) {
4509     fill_sync_handler(lock, sync_handler);
4510   } else {
4511     pop_scope();
4512   }
4513 
4514   compilation()->notice_inlined_method(callee);
4515 
4516   return true;
4517 }
4518 
4519 
4520 bool GraphBuilder::try_method_handle_inline(ciMethod* callee, bool ignore_return) {
4521   ValueStack* state_before = copy_state_before();
4522   vmIntrinsics::ID iid = callee->intrinsic_id();
4523   switch (iid) {
4524   case vmIntrinsics::_invokeBasic:
4525     {
4526       // get MethodHandle receiver
4527       const int args_base = state()->stack_size() - callee->arg_size();
4528       ValueType* type = state()->stack_at(args_base)->type();
4529       if (type->is_constant()) {
4530         ciMethod* target = type->as_ObjectType()->constant_value()->as_method_handle()->get_vmtarget();
4531         // We don't do CHA here so only inline static and statically bindable methods.
4532         if (target->is_static() || target->can_be_statically_bound()) {
4533           if (ciMethod::is_consistent_info(callee, target)) {
4534             Bytecodes::Code bc = target->is_static() ? Bytecodes::_invokestatic : Bytecodes::_invokevirtual;
4535             ignore_return = ignore_return || (callee->return_type()->is_void() && !target->return_type()->is_void());
4536             if (try_inline(target, /*holder_known*/ !callee->is_static(), ignore_return, bc)) {
4537               return true;
4538             }
4539           } else {
4540             print_inlining(target, "signatures mismatch", /*success*/ false);
4541           }
4542         } else {
4543           print_inlining(target, "not static or statically bindable", /*success*/ false);
4544         }
4545       } else {
4546         print_inlining(callee, "receiver not constant", /*success*/ false);
4547       }
4548     }
4549     break;
4550 
4551   case vmIntrinsics::_linkToVirtual:
4552   case vmIntrinsics::_linkToStatic:
4553   case vmIntrinsics::_linkToSpecial:
4554   case vmIntrinsics::_linkToInterface:
4555     {
4556       // pop MemberName argument
4557       const int args_base = state()->stack_size() - callee->arg_size();
4558       ValueType* type = apop()->type();
4559       if (type->is_constant()) {
4560         ciMethod* target = type->as_ObjectType()->constant_value()->as_member_name()->get_vmtarget();
4561         ignore_return = ignore_return || (callee->return_type()->is_void() && !target->return_type()->is_void());
4562         // If the target is another method handle invoke, try to recursively get
4563         // a better target.
4564         if (target->is_method_handle_intrinsic()) {
4565           if (try_method_handle_inline(target, ignore_return)) {
4566             return true;
4567           }
4568         } else if (!ciMethod::is_consistent_info(callee, target)) {
4569           print_inlining(target, "signatures mismatch", /*success*/ false);
4570         } else {
4571           ciSignature* signature = target->signature();
4572           const int receiver_skip = target->is_static() ? 0 : 1;
4573           // Cast receiver to its type.
4574           if (!target->is_static()) {
4575             ciKlass* tk = signature->accessing_klass();
4576             Value obj = state()->stack_at(args_base);
4577             if (obj->exact_type() == NULL &&
4578                 obj->declared_type() != tk && tk != compilation()->env()->Object_klass()) {
4579               TypeCast* c = new TypeCast(tk, obj, state_before);
4580               append(c);
4581               state()->stack_at_put(args_base, c);
4582             }
4583           }
4584           // Cast reference arguments to its type.
4585           for (int i = 0, j = 0; i < signature->count(); i++) {
4586             ciType* t = signature->type_at(i);
4587             if (t->is_klass()) {
4588               ciKlass* tk = t->as_klass();
4589               Value obj = state()->stack_at(args_base + receiver_skip + j);
4590               if (obj->exact_type() == NULL &&
4591                   obj->declared_type() != tk && tk != compilation()->env()->Object_klass()) {
4592                 TypeCast* c = new TypeCast(t, obj, state_before);
4593                 append(c);
4594                 state()->stack_at_put(args_base + receiver_skip + j, c);
4595               }
4596             }
4597             j += t->size();  // long and double take two slots
4598           }
4599           // We don't do CHA here so only inline static and statically bindable methods.
4600           if (target->is_static() || target->can_be_statically_bound()) {
4601             Bytecodes::Code bc = target->is_static() ? Bytecodes::_invokestatic : Bytecodes::_invokevirtual;
4602             if (try_inline(target, /*holder_known*/ !callee->is_static(), ignore_return, bc)) {
4603               return true;
4604             }
4605           } else {
4606             print_inlining(target, "not static or statically bindable", /*success*/ false);
4607           }
4608         }
4609       } else {
4610         print_inlining(callee, "MemberName not constant", /*success*/ false);
4611       }
4612     }
4613     break;
4614 
4615   case vmIntrinsics::_linkToNative:
4616     break; // TODO: NYI
4617 
4618   default:
4619     fatal("unexpected intrinsic %d: %s", vmIntrinsics::as_int(iid), vmIntrinsics::name_at(iid));
4620     break;
4621   }
4622   set_state(state_before->copy_for_parsing());
4623   return false;
4624 }
4625 
4626 
4627 void GraphBuilder::inline_bailout(const char* msg) {
4628   assert(msg != NULL, "inline bailout msg must exist");
4629   _inline_bailout_msg = msg;
4630 }
4631 
4632 
4633 void GraphBuilder::clear_inline_bailout() {
4634   _inline_bailout_msg = NULL;
4635 }
4636 
4637 
4638 void GraphBuilder::push_root_scope(IRScope* scope, BlockList* bci2block, BlockBegin* start) {
4639   ScopeData* data = new ScopeData(NULL);
4640   data->set_scope(scope);
4641   data->set_bci2block(bci2block);
4642   _scope_data = data;
4643   _block = start;
4644 }
4645 
4646 
4647 void GraphBuilder::push_scope(ciMethod* callee, BlockBegin* continuation) {
4648   IRScope* callee_scope = new IRScope(compilation(), scope(), bci(), callee, -1, false);
4649   scope()->add_callee(callee_scope);
4650 
4651   BlockListBuilder blb(compilation(), callee_scope, -1);
4652   CHECK_BAILOUT();
4653 
4654   if (!blb.bci2block()->at(0)->is_set(BlockBegin::parser_loop_header_flag)) {
4655     // this scope can be inlined directly into the caller so remove
4656     // the block at bci 0.
4657     blb.bci2block()->at_put(0, NULL);
4658   }
4659 
4660   set_state(new ValueStack(callee_scope, state()->copy(ValueStack::CallerState, bci())));
4661 
4662   ScopeData* data = new ScopeData(scope_data());
4663   data->set_scope(callee_scope);
4664   data->set_bci2block(blb.bci2block());
4665   data->set_continuation(continuation);
4666   _scope_data = data;
4667 }
4668 
4669 
4670 void GraphBuilder::push_scope_for_jsr(BlockBegin* jsr_continuation, int jsr_dest_bci) {
4671   ScopeData* data = new ScopeData(scope_data());
4672   data->set_parsing_jsr();
4673   data->set_jsr_entry_bci(jsr_dest_bci);
4674   data->set_jsr_return_address_local(-1);
4675   // Must clone bci2block list as we will be mutating it in order to
4676   // properly clone all blocks in jsr region as well as exception
4677   // handlers containing rets
4678   BlockList* new_bci2block = new BlockList(bci2block()->length());
4679   new_bci2block->appendAll(bci2block());
4680   data->set_bci2block(new_bci2block);
4681   data->set_scope(scope());
4682   data->setup_jsr_xhandlers();
4683   data->set_continuation(continuation());
4684   data->set_jsr_continuation(jsr_continuation);
4685   _scope_data = data;
4686 }
4687 
4688 
4689 void GraphBuilder::pop_scope() {
4690   int number_of_locks = scope()->number_of_locks();
4691   _scope_data = scope_data()->parent();
4692   // accumulate minimum number of monitor slots to be reserved
4693   scope()->set_min_number_of_locks(number_of_locks);
4694 }
4695 
4696 
4697 void GraphBuilder::pop_scope_for_jsr() {
4698   _scope_data = scope_data()->parent();
4699 }
4700 
4701 void GraphBuilder::append_unsafe_get(ciMethod* callee, BasicType t, bool is_volatile) {
4702   Values* args = state()->pop_arguments(callee->arg_size());
4703   null_check(args->at(0));
4704   Instruction* offset = args->at(2);
4705 #ifndef _LP64
4706   offset = append(new Convert(Bytecodes::_l2i, offset, as_ValueType(T_INT)));
4707 #endif
4708   Instruction* op = append(new UnsafeGet(t, args->at(1), offset, is_volatile));
4709   push(op->type(), op);
4710   compilation()->set_has_unsafe_access(true);
4711 }
4712 
4713 
4714 void GraphBuilder::append_unsafe_put(ciMethod* callee, BasicType t, bool is_volatile) {
4715   Values* args = state()->pop_arguments(callee->arg_size());
4716   null_check(args->at(0));
4717   Instruction* offset = args->at(2);
4718 #ifndef _LP64
4719   offset = append(new Convert(Bytecodes::_l2i, offset, as_ValueType(T_INT)));
4720 #endif
4721   Value val = args->at(3);
4722   if (t == T_BOOLEAN) {
4723     Value mask = append(new Constant(new IntConstant(1)));
4724     val = append(new LogicOp(Bytecodes::_iand, val, mask));
4725   }
4726   Instruction* op = append(new UnsafePut(t, args->at(1), offset, val, is_volatile));
4727   compilation()->set_has_unsafe_access(true);
4728   kill_all();
4729 }
4730 
4731 void GraphBuilder::append_unsafe_CAS(ciMethod* callee) {
4732   ValueStack* state_before = copy_state_for_exception();
4733   ValueType* result_type = as_ValueType(callee->return_type());
4734   assert(result_type->is_int(), "int result");
4735   Values* args = state()->pop_arguments(callee->arg_size());
4736 
4737   // Pop off some args to specially handle, then push back
4738   Value newval = args->pop();
4739   Value cmpval = args->pop();
4740   Value offset = args->pop();
4741   Value src = args->pop();
4742   Value unsafe_obj = args->pop();
4743 
4744   // Separately handle the unsafe arg. It is not needed for code
4745   // generation, but must be null checked
4746   null_check(unsafe_obj);
4747 
4748 #ifndef _LP64
4749   offset = append(new Convert(Bytecodes::_l2i, offset, as_ValueType(T_INT)));
4750 #endif
4751 
4752   args->push(src);
4753   args->push(offset);
4754   args->push(cmpval);
4755   args->push(newval);
4756 
4757   // An unsafe CAS can alias with other field accesses, but we don't
4758   // know which ones so mark the state as no preserved.  This will
4759   // cause CSE to invalidate memory across it.
4760   bool preserves_state = false;
4761   Intrinsic* result = new Intrinsic(result_type, callee->intrinsic_id(), args, false, state_before, preserves_state);
4762   append_split(result);
4763   push(result_type, result);
4764   compilation()->set_has_unsafe_access(true);
4765 }
4766 
4767 void GraphBuilder::append_char_access(ciMethod* callee, bool is_store) {
4768   // This intrinsic accesses byte[] array as char[] array. Computing the offsets
4769   // correctly requires matched array shapes.
4770   assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE),
4771           "sanity: byte[] and char[] bases agree");
4772   assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2,
4773           "sanity: byte[] and char[] scales agree");
4774 
4775   ValueStack* state_before = copy_state_indexed_access();
4776   compilation()->set_has_access_indexed(true);
4777   Values* args = state()->pop_arguments(callee->arg_size());
4778   Value array = args->at(0);
4779   Value index = args->at(1);
4780   if (is_store) {
4781     Value value = args->at(2);
4782     Instruction* store = append(new StoreIndexed(array, index, NULL, T_CHAR, value, state_before, false, true));
4783     store->set_flag(Instruction::NeedsRangeCheckFlag, false);
4784     _memory->store_value(value);
4785   } else {
4786     Instruction* load = append(new LoadIndexed(array, index, NULL, T_CHAR, state_before, true));
4787     load->set_flag(Instruction::NeedsRangeCheckFlag, false);
4788     push(load->type(), load);
4789   }
4790 }
4791 
4792 void GraphBuilder::print_inlining(ciMethod* callee, const char* msg, bool success) {
4793   CompileLog* log = compilation()->log();
4794   if (log != NULL) {
4795     assert(msg != NULL, "inlining msg should not be null!");
4796     if (success) {
4797       log->inline_success(msg);
4798     } else {
4799       log->inline_fail(msg);
4800     }
4801   }
4802   EventCompilerInlining event;
4803   if (event.should_commit()) {
4804     CompilerEvent::InlineEvent::post(event, compilation()->env()->task()->compile_id(), method()->get_Method(), callee, success, msg, bci());
4805   }
4806 
4807   CompileTask::print_inlining_ul(callee, scope()->level(), bci(), msg);
4808 
4809   if (!compilation()->directive()->PrintInliningOption) {
4810     return;
4811   }
4812   CompileTask::print_inlining_tty(callee, scope()->level(), bci(), msg);
4813   if (success && CIPrintMethodCodes) {
4814     callee->print_codes();
4815   }
4816 }
4817 
4818 void GraphBuilder::append_unsafe_get_and_set(ciMethod* callee, bool is_add) {
4819   Values* args = state()->pop_arguments(callee->arg_size());
4820   BasicType t = callee->return_type()->basic_type();
4821   null_check(args->at(0));
4822   Instruction* offset = args->at(2);
4823 #ifndef _LP64
4824   offset = append(new Convert(Bytecodes::_l2i, offset, as_ValueType(T_INT)));
4825 #endif
4826   Instruction* op = append(new UnsafeGetAndSet(t, args->at(1), offset, args->at(3), is_add));
4827   compilation()->set_has_unsafe_access(true);
4828   kill_all();
4829   push(op->type(), op);
4830 }
4831 
4832 #ifndef PRODUCT
4833 void GraphBuilder::print_stats() {
4834   vmap()->print();
4835 }
4836 #endif // PRODUCT
4837 
4838 void GraphBuilder::profile_call(ciMethod* callee, Value recv, ciKlass* known_holder, Values* obj_args, bool inlined) {
4839   assert(known_holder == NULL || (known_holder->is_instance_klass() &&
4840                                   (!known_holder->is_interface() ||
4841                                    ((ciInstanceKlass*)known_holder)->has_nonstatic_concrete_methods())), "should be non-static concrete method");
4842   if (known_holder != NULL) {
4843     if (known_holder->exact_klass() == NULL) {
4844       known_holder = compilation()->cha_exact_type(known_holder);
4845     }
4846   }
4847 
4848   append(new ProfileCall(method(), bci(), callee, recv, known_holder, obj_args, inlined));
4849 }
4850 
4851 void GraphBuilder::profile_return_type(Value ret, ciMethod* callee, ciMethod* m, int invoke_bci) {
4852   assert((m == NULL) == (invoke_bci < 0), "invalid method and invalid bci together");
4853   if (m == NULL) {
4854     m = method();
4855   }
4856   if (invoke_bci < 0) {
4857     invoke_bci = bci();
4858   }
4859   ciMethodData* md = m->method_data_or_null();
4860   ciProfileData* data = md->bci_to_data(invoke_bci);
4861   if (data != NULL && (data->is_CallTypeData() || data->is_VirtualCallTypeData())) {
4862     bool has_return = data->is_CallTypeData() ? ((ciCallTypeData*)data)->has_return() : ((ciVirtualCallTypeData*)data)->has_return();
4863     if (has_return) {
4864       append(new ProfileReturnType(m , invoke_bci, callee, ret));
4865     }
4866   }
4867 }
4868 
4869 void GraphBuilder::profile_invocation(ciMethod* callee, ValueStack* state) {
4870   append(new ProfileInvoke(callee, state));
4871 }