1 /*
2 * Copyright (c) 1999, 2025, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "c1/c1_Canonicalizer.hpp"
26 #include "c1/c1_CFGPrinter.hpp"
27 #include "c1/c1_Compilation.hpp"
28 #include "c1/c1_GraphBuilder.hpp"
29 #include "c1/c1_InstructionPrinter.hpp"
30 #include "ci/ciCallSite.hpp"
31 #include "ci/ciField.hpp"
32 #include "ci/ciFlatArrayKlass.hpp"
33 #include "ci/ciInlineKlass.hpp"
34 #include "ci/ciKlass.hpp"
35 #include "ci/ciMemberName.hpp"
36 #include "ci/ciSymbols.hpp"
37 #include "ci/ciUtilities.inline.hpp"
38 #include "classfile/javaClasses.hpp"
39 #include "compiler/compilationPolicy.hpp"
40 #include "compiler/compileBroker.hpp"
41 #include "compiler/compilerEvent.hpp"
42 #include "interpreter/bytecode.hpp"
43 #include "jfr/jfrEvents.hpp"
44 #include "memory/resourceArea.hpp"
45 #include "runtime/arguments.hpp"
46 #include "runtime/sharedRuntime.hpp"
47 #include "utilities/checkedCast.hpp"
48 #include "utilities/macros.hpp"
49 #if INCLUDE_JFR
50 #include "jfr/jfr.hpp"
51 #endif
52
53 class BlockListBuilder {
54 private:
55 Compilation* _compilation;
56 IRScope* _scope;
57
58 BlockList _blocks; // internal list of all blocks
59 BlockList* _bci2block; // mapping from bci to blocks for GraphBuilder
60 GrowableArray<BlockList> _bci2block_successors; // Mapping bcis to their blocks successors while we dont have a blockend
61
62 // fields used by mark_loops
63 ResourceBitMap _active; // for iteration of control flow graph
64 ResourceBitMap _visited; // for iteration of control flow graph
65 GrowableArray<ResourceBitMap> _loop_map; // caches the information if a block is contained in a loop
66 int _next_loop_index; // next free loop number
67 int _next_block_number; // for reverse postorder numbering of blocks
68 int _block_id_start;
69
70 int bit_number(int block_id) const { return block_id - _block_id_start; }
71 // accessors
72 Compilation* compilation() const { return _compilation; }
73 IRScope* scope() const { return _scope; }
74 ciMethod* method() const { return scope()->method(); }
75 XHandlers* xhandlers() const { return scope()->xhandlers(); }
76
77 // unified bailout support
78 void bailout(const char* msg) const { compilation()->bailout(msg); }
79 bool bailed_out() const { return compilation()->bailed_out(); }
80
81 // helper functions
82 BlockBegin* make_block_at(int bci, BlockBegin* predecessor);
83 void handle_exceptions(BlockBegin* current, int cur_bci);
84 void handle_jsr(BlockBegin* current, int sr_bci, int next_bci);
85 void store_one(BlockBegin* current, int local);
86 void store_two(BlockBegin* current, int local);
87 void set_entries(int osr_bci);
88 void set_leaders();
89
90 void make_loop_header(BlockBegin* block);
91 void mark_loops();
92 BitMap& mark_loops(BlockBegin* b, bool in_subroutine);
93
94 // debugging
95 #ifndef PRODUCT
96 void print();
97 #endif
98
99 int number_of_successors(BlockBegin* block);
100 BlockBegin* successor_at(BlockBegin* block, int i);
101 void add_successor(BlockBegin* block, BlockBegin* sux);
102 bool is_successor(BlockBegin* block, BlockBegin* sux);
103
104 public:
105 // creation
106 BlockListBuilder(Compilation* compilation, IRScope* scope, int osr_bci);
107
108 // accessors for GraphBuilder
109 BlockList* bci2block() const { return _bci2block; }
110 };
111
112
113 // Implementation of BlockListBuilder
114
115 BlockListBuilder::BlockListBuilder(Compilation* compilation, IRScope* scope, int osr_bci)
116 : _compilation(compilation)
117 , _scope(scope)
118 , _blocks(16)
119 , _bci2block(new BlockList(scope->method()->code_size(), nullptr))
120 , _bci2block_successors(scope->method()->code_size())
121 , _active() // size not known yet
122 , _visited() // size not known yet
123 , _loop_map() // size not known yet
124 , _next_loop_index(0)
125 , _next_block_number(0)
126 , _block_id_start(0)
127 {
128 set_entries(osr_bci);
129 set_leaders();
130 CHECK_BAILOUT();
131
132 mark_loops();
133 NOT_PRODUCT(if (PrintInitialBlockList) print());
134
135 // _bci2block still contains blocks with _end == null and > 0 sux in _bci2block_successors.
136
137 #ifndef PRODUCT
138 if (PrintCFGToFile) {
139 stringStream title;
140 title.print("BlockListBuilder ");
141 scope->method()->print_name(&title);
142 CFGPrinter::print_cfg(_bci2block, title.freeze(), false, false);
143 }
144 #endif
145 }
146
147
148 void BlockListBuilder::set_entries(int osr_bci) {
149 // generate start blocks
150 BlockBegin* std_entry = make_block_at(0, nullptr);
151 if (scope()->caller() == nullptr) {
152 std_entry->set(BlockBegin::std_entry_flag);
153 }
154 if (osr_bci != -1) {
155 BlockBegin* osr_entry = make_block_at(osr_bci, nullptr);
156 osr_entry->set(BlockBegin::osr_entry_flag);
157 }
158
159 // generate exception entry blocks
160 XHandlers* list = xhandlers();
161 const int n = list->length();
162 for (int i = 0; i < n; i++) {
163 XHandler* h = list->handler_at(i);
164 BlockBegin* entry = make_block_at(h->handler_bci(), nullptr);
165 entry->set(BlockBegin::exception_entry_flag);
166 h->set_entry_block(entry);
167 }
168 }
169
170
171 BlockBegin* BlockListBuilder::make_block_at(int cur_bci, BlockBegin* predecessor) {
172 assert(method()->bci_block_start().at(cur_bci), "wrong block starts of MethodLivenessAnalyzer");
173
174 BlockBegin* block = _bci2block->at(cur_bci);
175 if (block == nullptr) {
176 block = new BlockBegin(cur_bci);
177 block->init_stores_to_locals(method()->max_locals());
178 _bci2block->at_put(cur_bci, block);
179 _bci2block_successors.at_put_grow(cur_bci, BlockList());
180 _blocks.append(block);
181
182 assert(predecessor == nullptr || predecessor->bci() < cur_bci, "targets for backward branches must already exist");
183 }
184
185 if (predecessor != nullptr) {
186 if (block->is_set(BlockBegin::exception_entry_flag)) {
187 BAILOUT_("Exception handler can be reached by both normal and exceptional control flow", block);
188 }
189
190 add_successor(predecessor, block);
191 block->increment_total_preds();
192 }
193
194 return block;
195 }
196
197
198 inline void BlockListBuilder::store_one(BlockBegin* current, int local) {
199 current->stores_to_locals().set_bit(local);
200 }
201 inline void BlockListBuilder::store_two(BlockBegin* current, int local) {
202 store_one(current, local);
203 store_one(current, local + 1);
204 }
205
206
207 void BlockListBuilder::handle_exceptions(BlockBegin* current, int cur_bci) {
208 // Draws edges from a block to its exception handlers
209 XHandlers* list = xhandlers();
210 const int n = list->length();
211
212 for (int i = 0; i < n; i++) {
213 XHandler* h = list->handler_at(i);
214
215 if (h->covers(cur_bci)) {
216 BlockBegin* entry = h->entry_block();
217 assert(entry != nullptr && entry == _bci2block->at(h->handler_bci()), "entry must be set");
218 assert(entry->is_set(BlockBegin::exception_entry_flag), "flag must be set");
219
220 // add each exception handler only once
221 if(!is_successor(current, entry)) {
222 add_successor(current, entry);
223 entry->increment_total_preds();
224 }
225
226 // stop when reaching catchall
227 if (h->catch_type() == 0) break;
228 }
229 }
230 }
231
232 void BlockListBuilder::handle_jsr(BlockBegin* current, int sr_bci, int next_bci) {
233 if (next_bci < method()->code_size()) {
234 // start a new block after jsr-bytecode and link this block into cfg
235 make_block_at(next_bci, current);
236 }
237
238 // start a new block at the subroutine entry at mark it with special flag
239 BlockBegin* sr_block = make_block_at(sr_bci, current);
240 if (!sr_block->is_set(BlockBegin::subroutine_entry_flag)) {
241 sr_block->set(BlockBegin::subroutine_entry_flag);
242 }
243 }
244
245
246 void BlockListBuilder::set_leaders() {
247 bool has_xhandlers = xhandlers()->has_handlers();
248 BlockBegin* current = nullptr;
249
250 // The information which bci starts a new block simplifies the analysis
251 // Without it, backward branches could jump to a bci where no block was created
252 // during bytecode iteration. This would require the creation of a new block at the
253 // branch target and a modification of the successor lists.
254 const BitMap& bci_block_start = method()->bci_block_start();
255
256 int end_bci = method()->code_size();
257
258 ciBytecodeStream s(method());
259 while (s.next() != ciBytecodeStream::EOBC()) {
260 int cur_bci = s.cur_bci();
261
262 if (bci_block_start.at(cur_bci)) {
263 current = make_block_at(cur_bci, current);
264 }
265 assert(current != nullptr, "must have current block");
266
267 if (has_xhandlers && GraphBuilder::can_trap(method(), s.cur_bc())) {
268 handle_exceptions(current, cur_bci);
269 }
270
271 switch (s.cur_bc()) {
272 // track stores to local variables for selective creation of phi functions
273 case Bytecodes::_iinc: store_one(current, s.get_index()); break;
274 case Bytecodes::_istore: store_one(current, s.get_index()); break;
275 case Bytecodes::_lstore: store_two(current, s.get_index()); break;
276 case Bytecodes::_fstore: store_one(current, s.get_index()); break;
277 case Bytecodes::_dstore: store_two(current, s.get_index()); break;
278 case Bytecodes::_astore: store_one(current, s.get_index()); break;
279 case Bytecodes::_istore_0: store_one(current, 0); break;
280 case Bytecodes::_istore_1: store_one(current, 1); break;
281 case Bytecodes::_istore_2: store_one(current, 2); break;
282 case Bytecodes::_istore_3: store_one(current, 3); break;
283 case Bytecodes::_lstore_0: store_two(current, 0); break;
284 case Bytecodes::_lstore_1: store_two(current, 1); break;
285 case Bytecodes::_lstore_2: store_two(current, 2); break;
286 case Bytecodes::_lstore_3: store_two(current, 3); break;
287 case Bytecodes::_fstore_0: store_one(current, 0); break;
288 case Bytecodes::_fstore_1: store_one(current, 1); break;
289 case Bytecodes::_fstore_2: store_one(current, 2); break;
290 case Bytecodes::_fstore_3: store_one(current, 3); break;
291 case Bytecodes::_dstore_0: store_two(current, 0); break;
292 case Bytecodes::_dstore_1: store_two(current, 1); break;
293 case Bytecodes::_dstore_2: store_two(current, 2); break;
294 case Bytecodes::_dstore_3: store_two(current, 3); break;
295 case Bytecodes::_astore_0: store_one(current, 0); break;
296 case Bytecodes::_astore_1: store_one(current, 1); break;
297 case Bytecodes::_astore_2: store_one(current, 2); break;
298 case Bytecodes::_astore_3: store_one(current, 3); break;
299
300 // track bytecodes that affect the control flow
301 case Bytecodes::_athrow: // fall through
302 case Bytecodes::_ret: // fall through
303 case Bytecodes::_ireturn: // fall through
304 case Bytecodes::_lreturn: // fall through
305 case Bytecodes::_freturn: // fall through
306 case Bytecodes::_dreturn: // fall through
307 case Bytecodes::_areturn: // fall through
308 case Bytecodes::_return:
309 current = nullptr;
310 break;
311
312 case Bytecodes::_ifeq: // fall through
313 case Bytecodes::_ifne: // fall through
314 case Bytecodes::_iflt: // fall through
315 case Bytecodes::_ifge: // fall through
316 case Bytecodes::_ifgt: // fall through
317 case Bytecodes::_ifle: // fall through
318 case Bytecodes::_if_icmpeq: // fall through
319 case Bytecodes::_if_icmpne: // fall through
320 case Bytecodes::_if_icmplt: // fall through
321 case Bytecodes::_if_icmpge: // fall through
322 case Bytecodes::_if_icmpgt: // fall through
323 case Bytecodes::_if_icmple: // fall through
324 case Bytecodes::_if_acmpeq: // fall through
325 case Bytecodes::_if_acmpne: // fall through
326 case Bytecodes::_ifnull: // fall through
327 case Bytecodes::_ifnonnull:
328 if (s.next_bci() < end_bci) {
329 make_block_at(s.next_bci(), current);
330 }
331 make_block_at(s.get_dest(), current);
332 current = nullptr;
333 break;
334
335 case Bytecodes::_goto:
336 make_block_at(s.get_dest(), current);
337 current = nullptr;
338 break;
339
340 case Bytecodes::_goto_w:
341 make_block_at(s.get_far_dest(), current);
342 current = nullptr;
343 break;
344
345 case Bytecodes::_jsr:
346 handle_jsr(current, s.get_dest(), s.next_bci());
347 current = nullptr;
348 break;
349
350 case Bytecodes::_jsr_w:
351 handle_jsr(current, s.get_far_dest(), s.next_bci());
352 current = nullptr;
353 break;
354
355 case Bytecodes::_tableswitch: {
356 // set block for each case
357 Bytecode_tableswitch sw(&s);
358 int l = sw.length();
359 for (int i = 0; i < l; i++) {
360 make_block_at(cur_bci + sw.dest_offset_at(i), current);
361 }
362 make_block_at(cur_bci + sw.default_offset(), current);
363 current = nullptr;
364 break;
365 }
366
367 case Bytecodes::_lookupswitch: {
368 // set block for each case
369 Bytecode_lookupswitch sw(&s);
370 int l = sw.number_of_pairs();
371 for (int i = 0; i < l; i++) {
372 make_block_at(cur_bci + sw.pair_at(i).offset(), current);
373 }
374 make_block_at(cur_bci + sw.default_offset(), current);
375 current = nullptr;
376 break;
377 }
378
379 default:
380 break;
381 }
382 }
383 }
384
385
386 void BlockListBuilder::mark_loops() {
387 ResourceMark rm;
388
389 const int number_of_blocks = _blocks.length();
390 _active.initialize(number_of_blocks);
391 _visited.initialize(number_of_blocks);
392 _loop_map = GrowableArray<ResourceBitMap>(number_of_blocks, number_of_blocks, ResourceBitMap());
393 for (int i = 0; i < number_of_blocks; i++) {
394 _loop_map.at(i).initialize(number_of_blocks);
395 }
396 _next_loop_index = 0;
397 _next_block_number = _blocks.length();
398
399 // The loop detection algorithm works as follows:
400 // - We maintain the _loop_map, where for each block we have a bitmap indicating which loops contain this block.
401 // - The CFG is recursively traversed (depth-first) and if we detect a loop, we assign the loop a unique number that is stored
402 // in the bitmap associated with the loop header block. Until we return back through that loop header the bitmap contains
403 // only a single bit corresponding to the loop number.
404 // - The bit is then propagated for all the blocks in the loop after we exit them (post-order). There could be multiple bits
405 // of course in case of nested loops.
406 // - When we exit the loop header we remove that single bit and assign the real loop state for it.
407 // - Now, the tricky part here is how we detect irreducible loops. In the algorithm above the loop state bits
408 // are propagated to the predecessors. If we encounter an irreducible loop (a loop with multiple heads) we would see
409 // a node with some loop bit set that would then propagate back and be never cleared because we would
410 // never go back through the original loop header. Therefore if there are any irreducible loops the bits in the states
411 // for these loops are going to propagate back to the root.
412 BlockBegin* start = _bci2block->at(0);
413 _block_id_start = start->block_id();
414 BitMap& loop_state = mark_loops(start, false);
415 if (!loop_state.is_empty()) {
416 compilation()->set_has_irreducible_loops(true);
417 }
418 assert(_next_block_number >= 0, "invalid block numbers");
419
420 // Remove dangling Resource pointers before the ResourceMark goes out-of-scope.
421 _active.resize(0);
422 _visited.resize(0);
423 _loop_map.clear();
424 }
425
426 void BlockListBuilder::make_loop_header(BlockBegin* block) {
427 int block_id = block->block_id();
428 int block_bit = bit_number(block_id);
429 if (block->is_set(BlockBegin::exception_entry_flag)) {
430 // exception edges may look like loops but don't mark them as such
431 // since it screws up block ordering.
432 return;
433 }
434 if (!block->is_set(BlockBegin::parser_loop_header_flag)) {
435 block->set(BlockBegin::parser_loop_header_flag);
436
437 assert(_loop_map.at(block_bit).is_empty(), "must not be set yet");
438 assert(0 <= _next_loop_index && _next_loop_index < _loop_map.length(), "_next_loop_index is too large");
439 _loop_map.at(block_bit).set_bit(_next_loop_index++);
440 } else {
441 // block already marked as loop header
442 assert(_loop_map.at(block_bit).count_one_bits() == 1, "exactly one bit must be set");
443 }
444 }
445
446 BitMap& BlockListBuilder::mark_loops(BlockBegin* block, bool in_subroutine) {
447 int block_id = block->block_id();
448 int block_bit = bit_number(block_id);
449 if (_visited.at(block_bit)) {
450 if (_active.at(block_bit)) {
451 // reached block via backward branch
452 make_loop_header(block);
453 }
454 // return cached loop information for this block
455 return _loop_map.at(block_bit);
456 }
457
458 if (block->is_set(BlockBegin::subroutine_entry_flag)) {
459 in_subroutine = true;
460 }
461
462 // set active and visited bits before successors are processed
463 _visited.set_bit(block_bit);
464 _active.set_bit(block_bit);
465
466 ResourceMark rm;
467 ResourceBitMap loop_state(_loop_map.length());
468 for (int i = number_of_successors(block) - 1; i >= 0; i--) {
469 BlockBegin* sux = successor_at(block, i);
470 // recursively process all successors
471 loop_state.set_union(mark_loops(sux, in_subroutine));
472 }
473
474 // clear active-bit after all successors are processed
475 _active.clear_bit(block_bit);
476
477 // reverse-post-order numbering of all blocks
478 block->set_depth_first_number(_next_block_number);
479 _next_block_number--;
480
481 if (!loop_state.is_empty() || in_subroutine ) {
482 // block is contained at least in one loop, so phi functions are necessary
483 // phi functions are also necessary for all locals stored in a subroutine
484 scope()->requires_phi_function().set_union(block->stores_to_locals());
485 }
486
487 if (block->is_set(BlockBegin::parser_loop_header_flag)) {
488 BitMap& header_loop_state = _loop_map.at(block_bit);
489 assert(header_loop_state.count_one_bits() == 1, "exactly one bit must be set");
490 // remove the bit with the loop number for the state (header is outside of the loop)
491 loop_state.set_difference(header_loop_state);
492 }
493
494 // cache and return loop information for this block
495 _loop_map.at(block_bit).set_from(loop_state);
496 return _loop_map.at(block_bit);
497 }
498
499 inline int BlockListBuilder::number_of_successors(BlockBegin* block)
500 {
501 assert(_bci2block_successors.length() > block->bci(), "sux must exist");
502 return _bci2block_successors.at(block->bci()).length();
503 }
504
505 inline BlockBegin* BlockListBuilder::successor_at(BlockBegin* block, int i)
506 {
507 assert(_bci2block_successors.length() > block->bci(), "sux must exist");
508 return _bci2block_successors.at(block->bci()).at(i);
509 }
510
511 inline void BlockListBuilder::add_successor(BlockBegin* block, BlockBegin* sux)
512 {
513 assert(_bci2block_successors.length() > block->bci(), "sux must exist");
514 _bci2block_successors.at(block->bci()).append(sux);
515 }
516
517 inline bool BlockListBuilder::is_successor(BlockBegin* block, BlockBegin* sux) {
518 assert(_bci2block_successors.length() > block->bci(), "sux must exist");
519 return _bci2block_successors.at(block->bci()).contains(sux);
520 }
521
522 #ifndef PRODUCT
523
524 static int compare_depth_first(BlockBegin** a, BlockBegin** b) {
525 return (*a)->depth_first_number() - (*b)->depth_first_number();
526 }
527
528 void BlockListBuilder::print() {
529 tty->print("----- initial block list of BlockListBuilder for method ");
530 method()->print_short_name();
531 tty->cr();
532
533 // better readability if blocks are sorted in processing order
534 _blocks.sort(compare_depth_first);
535
536 for (int i = 0; i < _blocks.length(); i++) {
537 BlockBegin* cur = _blocks.at(i);
538 tty->print("%4d: B%-4d bci: %-4d preds: %-4d ", cur->depth_first_number(), cur->block_id(), cur->bci(), cur->total_preds());
539
540 tty->print(cur->is_set(BlockBegin::std_entry_flag) ? " std" : " ");
541 tty->print(cur->is_set(BlockBegin::osr_entry_flag) ? " osr" : " ");
542 tty->print(cur->is_set(BlockBegin::exception_entry_flag) ? " ex" : " ");
543 tty->print(cur->is_set(BlockBegin::subroutine_entry_flag) ? " sr" : " ");
544 tty->print(cur->is_set(BlockBegin::parser_loop_header_flag) ? " lh" : " ");
545
546 if (number_of_successors(cur) > 0) {
547 tty->print(" sux: ");
548 for (int j = 0; j < number_of_successors(cur); j++) {
549 BlockBegin* sux = successor_at(cur, j);
550 tty->print("B%d ", sux->block_id());
551 }
552 }
553 tty->cr();
554 }
555 }
556
557 #endif
558
559
560 // A simple growable array of Values indexed by ciFields
561 class FieldBuffer: public CompilationResourceObj {
562 private:
563 GrowableArray<Value> _values;
564
565 public:
566 FieldBuffer() {}
567
568 void kill() {
569 _values.trunc_to(0);
570 }
571
572 Value at(ciField* field) {
573 assert(field->holder()->is_loaded(), "must be a loaded field");
574 int offset = field->offset_in_bytes();
575 if (offset < _values.length()) {
576 return _values.at(offset);
577 } else {
578 return nullptr;
579 }
580 }
581
582 void at_put(ciField* field, Value value) {
583 assert(field->holder()->is_loaded(), "must be a loaded field");
584 int offset = field->offset_in_bytes();
585 _values.at_put_grow(offset, value, nullptr);
586 }
587
588 };
589
590
591 // MemoryBuffer is fairly simple model of the current state of memory.
592 // It partitions memory into several pieces. The first piece is
593 // generic memory where little is known about the owner of the memory.
594 // This is conceptually represented by the tuple <O, F, V> which says
595 // that the field F of object O has value V. This is flattened so
596 // that F is represented by the offset of the field and the parallel
597 // arrays _objects and _values are used for O and V. Loads of O.F can
598 // simply use V. Newly allocated objects are kept in a separate list
599 // along with a parallel array for each object which represents the
600 // current value of its fields. Stores of the default value to fields
601 // which have never been stored to before are eliminated since they
602 // are redundant. Once newly allocated objects are stored into
603 // another object or they are passed out of the current compile they
604 // are treated like generic memory.
605
606 class MemoryBuffer: public CompilationResourceObj {
607 private:
608 FieldBuffer _values;
609 GrowableArray<Value> _objects;
610 GrowableArray<Value> _newobjects;
611 GrowableArray<FieldBuffer*> _fields;
612
613 public:
614 MemoryBuffer() {}
615
616 StoreField* store(StoreField* st) {
617 if (!EliminateFieldAccess) {
618 return st;
619 }
620
621 Value object = st->obj();
622 Value value = st->value();
623 ciField* field = st->field();
624 if (field->holder()->is_loaded()) {
625 int offset = field->offset_in_bytes();
626 int index = _newobjects.find(object);
627 if (index != -1) {
628 // newly allocated object with no other stores performed on this field
629 FieldBuffer* buf = _fields.at(index);
630 if (buf->at(field) == nullptr && is_default_value(value)) {
631 #ifndef PRODUCT
632 if (PrintIRDuringConstruction && Verbose) {
633 tty->print_cr("Eliminated store for object %d:", index);
634 st->print_line();
635 }
636 #endif
637 return nullptr;
638 } else {
639 buf->at_put(field, value);
640 }
641 } else {
642 _objects.at_put_grow(offset, object, nullptr);
643 _values.at_put(field, value);
644 }
645
646 store_value(value);
647 } else {
648 // if we held onto field names we could alias based on names but
649 // we don't know what's being stored to so kill it all.
650 kill();
651 }
652 return st;
653 }
654
655
656 // return true if this value correspond to the default value of a field.
657 bool is_default_value(Value value) {
658 Constant* con = value->as_Constant();
659 if (con) {
660 switch (con->type()->tag()) {
661 case intTag: return con->type()->as_IntConstant()->value() == 0;
662 case longTag: return con->type()->as_LongConstant()->value() == 0;
663 case floatTag: return jint_cast(con->type()->as_FloatConstant()->value()) == 0;
664 case doubleTag: return jlong_cast(con->type()->as_DoubleConstant()->value()) == jlong_cast(0);
665 case objectTag: return con->type() == objectNull;
666 default: ShouldNotReachHere();
667 }
668 }
669 return false;
670 }
671
672
673 // return either the actual value of a load or the load itself
674 Value load(LoadField* load) {
675 if (!EliminateFieldAccess) {
676 return load;
677 }
678
679 ciField* field = load->field();
680 Value object = load->obj();
681 if (field->holder()->is_loaded() && !field->is_volatile()) {
682 int offset = field->offset_in_bytes();
683 Value result = nullptr;
684 int index = _newobjects.find(object);
685 if (index != -1) {
686 result = _fields.at(index)->at(field);
687 } else if (_objects.at_grow(offset, nullptr) == object) {
688 result = _values.at(field);
689 }
690 if (result != nullptr) {
691 #ifndef PRODUCT
692 if (PrintIRDuringConstruction && Verbose) {
693 tty->print_cr("Eliminated load: ");
694 load->print_line();
695 }
696 #endif
697 assert(result->type()->tag() == load->type()->tag(), "wrong types");
698 return result;
699 }
700 }
701 return load;
702 }
703
704 // Record this newly allocated object
705 void new_instance(NewInstance* object) {
706 int index = _newobjects.length();
707 _newobjects.append(object);
708 if (_fields.at_grow(index, nullptr) == nullptr) {
709 _fields.at_put(index, new FieldBuffer());
710 } else {
711 _fields.at(index)->kill();
712 }
713 }
714
715 void store_value(Value value) {
716 int index = _newobjects.find(value);
717 if (index != -1) {
718 // stored a newly allocated object into another object.
719 // Assume we've lost track of it as separate slice of memory.
720 // We could do better by keeping track of whether individual
721 // fields could alias each other.
722 _newobjects.remove_at(index);
723 // pull out the field info and store it at the end up the list
724 // of field info list to be reused later.
725 _fields.append(_fields.at(index));
726 _fields.remove_at(index);
727 }
728 }
729
730 void kill() {
731 _newobjects.trunc_to(0);
732 _objects.trunc_to(0);
733 _values.kill();
734 }
735 };
736
737
738 // Implementation of GraphBuilder's ScopeData
739
740 GraphBuilder::ScopeData::ScopeData(ScopeData* parent)
741 : _parent(parent)
742 , _bci2block(nullptr)
743 , _scope(nullptr)
744 , _has_handler(false)
745 , _stream(nullptr)
746 , _work_list(nullptr)
747 , _caller_stack_size(-1)
748 , _continuation(nullptr)
749 , _parsing_jsr(false)
750 , _jsr_xhandlers(nullptr)
751 , _num_returns(0)
752 , _cleanup_block(nullptr)
753 , _cleanup_return_prev(nullptr)
754 , _cleanup_state(nullptr)
755 , _ignore_return(false)
756 {
757 if (parent != nullptr) {
758 _max_inline_size = (intx) ((float) NestedInliningSizeRatio * (float) parent->max_inline_size() / 100.0f);
759 } else {
760 _max_inline_size = C1MaxInlineSize;
761 }
762 if (_max_inline_size < C1MaxTrivialSize) {
763 _max_inline_size = C1MaxTrivialSize;
764 }
765 }
766
767
768 void GraphBuilder::kill_all() {
769 if (UseLocalValueNumbering) {
770 vmap()->kill_all();
771 }
772 _memory->kill();
773 }
774
775
776 BlockBegin* GraphBuilder::ScopeData::block_at(int bci) {
777 if (parsing_jsr()) {
778 // It is necessary to clone all blocks associated with a
779 // subroutine, including those for exception handlers in the scope
780 // of the method containing the jsr (because those exception
781 // handlers may contain ret instructions in some cases).
782 BlockBegin* block = bci2block()->at(bci);
783 if (block != nullptr && block == parent()->bci2block()->at(bci)) {
784 BlockBegin* new_block = new BlockBegin(block->bci());
785 if (PrintInitialBlockList) {
786 tty->print_cr("CFG: cloned block %d (bci %d) as block %d for jsr",
787 block->block_id(), block->bci(), new_block->block_id());
788 }
789 // copy data from cloned blocked
790 new_block->set_depth_first_number(block->depth_first_number());
791 if (block->is_set(BlockBegin::parser_loop_header_flag)) new_block->set(BlockBegin::parser_loop_header_flag);
792 // Preserve certain flags for assertion checking
793 if (block->is_set(BlockBegin::subroutine_entry_flag)) new_block->set(BlockBegin::subroutine_entry_flag);
794 if (block->is_set(BlockBegin::exception_entry_flag)) new_block->set(BlockBegin::exception_entry_flag);
795
796 // copy was_visited_flag to allow early detection of bailouts
797 // if a block that is used in a jsr has already been visited before,
798 // it is shared between the normal control flow and a subroutine
799 // BlockBegin::try_merge returns false when the flag is set, this leads
800 // to a compilation bailout
801 if (block->is_set(BlockBegin::was_visited_flag)) new_block->set(BlockBegin::was_visited_flag);
802
803 bci2block()->at_put(bci, new_block);
804 block = new_block;
805 }
806 return block;
807 } else {
808 return bci2block()->at(bci);
809 }
810 }
811
812
813 XHandlers* GraphBuilder::ScopeData::xhandlers() const {
814 if (_jsr_xhandlers == nullptr) {
815 assert(!parsing_jsr(), "");
816 return scope()->xhandlers();
817 }
818 assert(parsing_jsr(), "");
819 return _jsr_xhandlers;
820 }
821
822
823 void GraphBuilder::ScopeData::set_scope(IRScope* scope) {
824 _scope = scope;
825 bool parent_has_handler = false;
826 if (parent() != nullptr) {
827 parent_has_handler = parent()->has_handler();
828 }
829 _has_handler = parent_has_handler || scope->xhandlers()->has_handlers();
830 }
831
832
833 void GraphBuilder::ScopeData::set_inline_cleanup_info(BlockBegin* block,
834 Instruction* return_prev,
835 ValueStack* return_state) {
836 _cleanup_block = block;
837 _cleanup_return_prev = return_prev;
838 _cleanup_state = return_state;
839 }
840
841
842 void GraphBuilder::ScopeData::add_to_work_list(BlockBegin* block) {
843 if (_work_list == nullptr) {
844 _work_list = new BlockList();
845 }
846
847 if (!block->is_set(BlockBegin::is_on_work_list_flag)) {
848 // Do not start parsing the continuation block while in a
849 // sub-scope
850 if (parsing_jsr()) {
851 if (block == jsr_continuation()) {
852 return;
853 }
854 } else {
855 if (block == continuation()) {
856 return;
857 }
858 }
859 block->set(BlockBegin::is_on_work_list_flag);
860 _work_list->push(block);
861
862 sort_top_into_worklist(_work_list, block);
863 }
864 }
865
866
867 void GraphBuilder::sort_top_into_worklist(BlockList* worklist, BlockBegin* top) {
868 assert(worklist->top() == top, "");
869 // sort block descending into work list
870 const int dfn = top->depth_first_number();
871 assert(dfn != -1, "unknown depth first number");
872 int i = worklist->length()-2;
873 while (i >= 0) {
874 BlockBegin* b = worklist->at(i);
875 if (b->depth_first_number() < dfn) {
876 worklist->at_put(i+1, b);
877 } else {
878 break;
879 }
880 i --;
881 }
882 if (i >= -1) worklist->at_put(i + 1, top);
883 }
884
885
886 BlockBegin* GraphBuilder::ScopeData::remove_from_work_list() {
887 if (is_work_list_empty()) {
888 return nullptr;
889 }
890 return _work_list->pop();
891 }
892
893
894 bool GraphBuilder::ScopeData::is_work_list_empty() const {
895 return (_work_list == nullptr || _work_list->length() == 0);
896 }
897
898
899 void GraphBuilder::ScopeData::setup_jsr_xhandlers() {
900 assert(parsing_jsr(), "");
901 // clone all the exception handlers from the scope
902 XHandlers* handlers = new XHandlers(scope()->xhandlers());
903 const int n = handlers->length();
904 for (int i = 0; i < n; i++) {
905 // The XHandlers need to be adjusted to dispatch to the cloned
906 // handler block instead of the default one but the synthetic
907 // unlocker needs to be handled specially. The synthetic unlocker
908 // should be left alone since there can be only one and all code
909 // should dispatch to the same one.
910 XHandler* h = handlers->handler_at(i);
911 assert(h->handler_bci() != SynchronizationEntryBCI, "must be real");
912 h->set_entry_block(block_at(h->handler_bci()));
913 }
914 _jsr_xhandlers = handlers;
915 }
916
917
918 int GraphBuilder::ScopeData::num_returns() {
919 if (parsing_jsr()) {
920 return parent()->num_returns();
921 }
922 return _num_returns;
923 }
924
925
926 void GraphBuilder::ScopeData::incr_num_returns() {
927 if (parsing_jsr()) {
928 parent()->incr_num_returns();
929 } else {
930 ++_num_returns;
931 }
932 }
933
934
935 // Implementation of GraphBuilder
936
937 #define INLINE_BAILOUT(msg) { inline_bailout(msg); return false; }
938
939
940 void GraphBuilder::load_constant() {
941 ciConstant con = stream()->get_constant();
942 if (con.is_valid()) {
943 ValueType* t = illegalType;
944 ValueStack* patch_state = nullptr;
945 switch (con.basic_type()) {
946 case T_BOOLEAN: t = new IntConstant (con.as_boolean()); break;
947 case T_BYTE : t = new IntConstant (con.as_byte ()); break;
948 case T_CHAR : t = new IntConstant (con.as_char ()); break;
949 case T_SHORT : t = new IntConstant (con.as_short ()); break;
950 case T_INT : t = new IntConstant (con.as_int ()); break;
951 case T_LONG : t = new LongConstant (con.as_long ()); break;
952 case T_FLOAT : t = new FloatConstant (con.as_float ()); break;
953 case T_DOUBLE : t = new DoubleConstant(con.as_double ()); break;
954 case T_ARRAY : // fall-through
955 case T_OBJECT : {
956 ciObject* obj = con.as_object();
957 if (!obj->is_loaded() || (PatchALot && !stream()->is_string_constant())) {
958 // A Class, MethodType, MethodHandle, Dynamic, or String.
959 patch_state = copy_state_before();
960 t = new ObjectConstant(obj);
961 } else {
962 // Might be a Class, MethodType, MethodHandle, or Dynamic constant
963 // result, which might turn out to be an array.
964 if (obj->is_null_object()) {
965 t = objectNull;
966 } else if (obj->is_array()) {
967 t = new ArrayConstant(obj->as_array());
968 } else {
969 t = new InstanceConstant(obj->as_instance());
970 }
971 }
972 break;
973 }
974 default: ShouldNotReachHere();
975 }
976 Value x;
977 if (patch_state != nullptr) {
978 // Arbitrary memory effects from running BSM or class loading (using custom loader) during linkage.
979 bool kills_memory = stream()->is_dynamic_constant() ||
980 (!stream()->is_string_constant() && !method()->holder()->has_trusted_loader());
981 x = new Constant(t, patch_state, kills_memory);
982 } else {
983 x = new Constant(t);
984 }
985
986 // Unbox the value at runtime, if needed.
987 // ConstantDynamic entry can be of a primitive type, but it is cached in boxed form.
988 if (patch_state != nullptr) {
989 int cp_index = stream()->get_constant_pool_index();
990 BasicType type = stream()->get_basic_type_for_constant_at(cp_index);
991 if (is_java_primitive(type)) {
992 ciInstanceKlass* box_klass = ciEnv::current()->get_box_klass_for_primitive_type(type);
993 assert(box_klass->is_loaded(), "sanity");
994 int offset = java_lang_boxing_object::value_offset(type);
995 ciField* value_field = box_klass->get_field_by_offset(offset, false /*is_static*/);
996 x = new LoadField(append(x), offset, value_field, false /*is_static*/, patch_state, false /*needs_patching*/);
997 t = as_ValueType(type);
998 } else {
999 assert(is_reference_type(type), "not a reference: %s", type2name(type));
1000 }
1001 }
1002
1003 push(t, append(x));
1004 } else {
1005 BAILOUT("could not resolve a constant");
1006 }
1007 }
1008
1009
1010 void GraphBuilder::load_local(ValueType* type, int index) {
1011 Value x = state()->local_at(index);
1012 assert(x != nullptr && !x->type()->is_illegal(), "access of illegal local variable");
1013 push(type, x);
1014 }
1015
1016
1017 void GraphBuilder::store_local(ValueType* type, int index) {
1018 Value x = pop(type);
1019 store_local(state(), x, index);
1020 }
1021
1022
1023 void GraphBuilder::store_local(ValueStack* state, Value x, int index) {
1024 if (parsing_jsr()) {
1025 // We need to do additional tracking of the location of the return
1026 // address for jsrs since we don't handle arbitrary jsr/ret
1027 // constructs. Here we are figuring out in which circumstances we
1028 // need to bail out.
1029 if (x->type()->is_address()) {
1030 scope_data()->set_jsr_return_address_local(index);
1031
1032 // Also check parent jsrs (if any) at this time to see whether
1033 // they are using this local. We don't handle skipping over a
1034 // ret.
1035 for (ScopeData* cur_scope_data = scope_data()->parent();
1036 cur_scope_data != nullptr && cur_scope_data->parsing_jsr() && cur_scope_data->scope() == scope();
1037 cur_scope_data = cur_scope_data->parent()) {
1038 if (cur_scope_data->jsr_return_address_local() == index) {
1039 BAILOUT("subroutine overwrites return address from previous subroutine");
1040 }
1041 }
1042 } else if (index == scope_data()->jsr_return_address_local()) {
1043 scope_data()->set_jsr_return_address_local(-1);
1044 }
1045 }
1046
1047 state->store_local(index, x);
1048 }
1049
1050
1051 void GraphBuilder::load_indexed(BasicType type) {
1052 // In case of in block code motion in range check elimination
1053 ValueStack* state_before = nullptr;
1054 int array_idx = state()->stack_size() - 2;
1055 if (type == T_OBJECT && state()->stack_at(array_idx)->maybe_flat_array()) {
1056 // Save the entire state and re-execute on deopt when accessing flat arrays
1057 state_before = copy_state_before();
1058 state_before->set_should_reexecute(true);
1059 } else {
1060 state_before = copy_state_indexed_access();
1061 }
1062 compilation()->set_has_access_indexed(true);
1063 Value index = ipop();
1064 Value array = apop();
1065 Value length = nullptr;
1066 if (CSEArrayLength ||
1067 (array->as_Constant() != nullptr) ||
1068 (array->as_AccessField() && array->as_AccessField()->field()->is_constant()) ||
1069 (array->as_NewArray() && array->as_NewArray()->length() && array->as_NewArray()->length()->type()->is_constant()) ||
1070 (array->as_NewMultiArray() && array->as_NewMultiArray()->dims()->at(0)->type()->is_constant())) {
1071 length = append(new ArrayLength(array, state_before));
1072 }
1073
1074 bool need_membar = false;
1075 LoadIndexed* load_indexed = nullptr;
1076 Instruction* result = nullptr;
1077 if (array->is_loaded_flat_array()) {
1078 // TODO 8350865 This is currently dead code. Can we use set_null_free on the result here if the array is null-free?
1079 ciType* array_type = array->declared_type();
1080 ciInlineKlass* elem_klass = array_type->as_flat_array_klass()->element_klass()->as_inline_klass();
1081
1082 bool can_delay_access = false;
1083 ciBytecodeStream s(method());
1084 s.force_bci(bci());
1085 s.next();
1086 if (s.cur_bc() == Bytecodes::_getfield) {
1087 bool will_link;
1088 ciField* next_field = s.get_field(will_link);
1089 bool next_needs_patching = !next_field->holder()->is_initialized() ||
1090 !next_field->will_link(method(), Bytecodes::_getfield) ||
1091 PatchALot;
1092 can_delay_access = C1UseDelayedFlattenedFieldReads && !next_needs_patching;
1093 }
1094 if (can_delay_access) {
1095 // potentially optimizable array access, storing information for delayed decision
1096 LoadIndexed* li = new LoadIndexed(array, index, length, type, state_before);
1097 DelayedLoadIndexed* dli = new DelayedLoadIndexed(li, state_before);
1098 li->set_delayed(dli);
1099 set_pending_load_indexed(dli);
1100 return; // Nothing else to do for now
1101 } else {
1102 NewInstance* new_instance = new NewInstance(elem_klass, state_before, false, true);
1103 _memory->new_instance(new_instance);
1104 apush(append_split(new_instance));
1105 load_indexed = new LoadIndexed(array, index, length, type, state_before);
1106 load_indexed->set_vt(new_instance);
1107 // The LoadIndexed node will initialise this instance by copying from
1108 // the flat field. Ensure these stores are visible before any
1109 // subsequent store that publishes this reference.
1110 need_membar = true;
1111 }
1112 } else {
1113 load_indexed = new LoadIndexed(array, index, length, type, state_before);
1114 if (profile_array_accesses() && is_reference_type(type)) {
1115 compilation()->set_would_profile(true);
1116 load_indexed->set_should_profile(true);
1117 load_indexed->set_profiled_method(method());
1118 load_indexed->set_profiled_bci(bci());
1119 }
1120 }
1121 result = append(load_indexed);
1122 if (need_membar) {
1123 append(new MemBar(lir_membar_storestore));
1124 }
1125 assert(!load_indexed->should_profile() || load_indexed == result, "should not be optimized out");
1126 if (!array->is_loaded_flat_array()) {
1127 push(as_ValueType(type), result);
1128 }
1129 }
1130
1131
1132 void GraphBuilder::store_indexed(BasicType type) {
1133 // In case of in block code motion in range check elimination
1134 ValueStack* state_before = nullptr;
1135 int array_idx = state()->stack_size() - 3;
1136 if (type == T_OBJECT && state()->stack_at(array_idx)->maybe_flat_array()) {
1137 // Save the entire state and re-execute on deopt when accessing flat arrays
1138 state_before = copy_state_before();
1139 state_before->set_should_reexecute(true);
1140 } else {
1141 state_before = copy_state_indexed_access();
1142 }
1143 compilation()->set_has_access_indexed(true);
1144 Value value = pop(as_ValueType(type));
1145 Value index = ipop();
1146 Value array = apop();
1147 Value length = nullptr;
1148 if (CSEArrayLength ||
1149 (array->as_Constant() != nullptr) ||
1150 (array->as_AccessField() && array->as_AccessField()->field()->is_constant()) ||
1151 (array->as_NewArray() && array->as_NewArray()->length() && array->as_NewArray()->length()->type()->is_constant()) ||
1152 (array->as_NewMultiArray() && array->as_NewMultiArray()->dims()->at(0)->type()->is_constant())) {
1153 length = append(new ArrayLength(array, state_before));
1154 }
1155 ciType* array_type = array->declared_type();
1156 bool check_boolean = false;
1157 if (array_type != nullptr) {
1158 if (array_type->is_loaded() &&
1159 array_type->as_array_klass()->element_type()->basic_type() == T_BOOLEAN) {
1160 assert(type == T_BYTE, "boolean store uses bastore");
1161 Value mask = append(new Constant(new IntConstant(1)));
1162 value = append(new LogicOp(Bytecodes::_iand, value, mask));
1163 }
1164 } else if (type == T_BYTE) {
1165 check_boolean = true;
1166 }
1167
1168 StoreIndexed* store_indexed = new StoreIndexed(array, index, length, type, value, state_before, check_boolean);
1169 if (profile_array_accesses() && is_reference_type(type) && !array->is_loaded_flat_array()) {
1170 compilation()->set_would_profile(true);
1171 store_indexed->set_should_profile(true);
1172 store_indexed->set_profiled_method(method());
1173 store_indexed->set_profiled_bci(bci());
1174 }
1175 Instruction* result = append(store_indexed);
1176 assert(!store_indexed->should_profile() || store_indexed == result, "should not be optimized out");
1177 _memory->store_value(value);
1178 }
1179
1180 void GraphBuilder::stack_op(Bytecodes::Code code) {
1181 switch (code) {
1182 case Bytecodes::_pop:
1183 { Value w = state()->raw_pop();
1184 }
1185 break;
1186 case Bytecodes::_pop2:
1187 { Value w1 = state()->raw_pop();
1188 Value w2 = state()->raw_pop();
1189 }
1190 break;
1191 case Bytecodes::_dup:
1192 { Value w = state()->raw_pop();
1193 state()->raw_push(w);
1194 state()->raw_push(w);
1195 }
1196 break;
1197 case Bytecodes::_dup_x1:
1198 { Value w1 = state()->raw_pop();
1199 Value w2 = state()->raw_pop();
1200 state()->raw_push(w1);
1201 state()->raw_push(w2);
1202 state()->raw_push(w1);
1203 }
1204 break;
1205 case Bytecodes::_dup_x2:
1206 { Value w1 = state()->raw_pop();
1207 Value w2 = state()->raw_pop();
1208 Value w3 = state()->raw_pop();
1209 state()->raw_push(w1);
1210 state()->raw_push(w3);
1211 state()->raw_push(w2);
1212 state()->raw_push(w1);
1213 }
1214 break;
1215 case Bytecodes::_dup2:
1216 { Value w1 = state()->raw_pop();
1217 Value w2 = state()->raw_pop();
1218 state()->raw_push(w2);
1219 state()->raw_push(w1);
1220 state()->raw_push(w2);
1221 state()->raw_push(w1);
1222 }
1223 break;
1224 case Bytecodes::_dup2_x1:
1225 { Value w1 = state()->raw_pop();
1226 Value w2 = state()->raw_pop();
1227 Value w3 = state()->raw_pop();
1228 state()->raw_push(w2);
1229 state()->raw_push(w1);
1230 state()->raw_push(w3);
1231 state()->raw_push(w2);
1232 state()->raw_push(w1);
1233 }
1234 break;
1235 case Bytecodes::_dup2_x2:
1236 { Value w1 = state()->raw_pop();
1237 Value w2 = state()->raw_pop();
1238 Value w3 = state()->raw_pop();
1239 Value w4 = state()->raw_pop();
1240 state()->raw_push(w2);
1241 state()->raw_push(w1);
1242 state()->raw_push(w4);
1243 state()->raw_push(w3);
1244 state()->raw_push(w2);
1245 state()->raw_push(w1);
1246 }
1247 break;
1248 case Bytecodes::_swap:
1249 { Value w1 = state()->raw_pop();
1250 Value w2 = state()->raw_pop();
1251 state()->raw_push(w1);
1252 state()->raw_push(w2);
1253 }
1254 break;
1255 default:
1256 ShouldNotReachHere();
1257 break;
1258 }
1259 }
1260
1261
1262 void GraphBuilder::arithmetic_op(ValueType* type, Bytecodes::Code code, ValueStack* state_before) {
1263 Value y = pop(type);
1264 Value x = pop(type);
1265 Value res = new ArithmeticOp(code, x, y, state_before);
1266 push(type, append(res));
1267 }
1268
1269
1270 void GraphBuilder::negate_op(ValueType* type) {
1271 push(type, append(new NegateOp(pop(type))));
1272 }
1273
1274
1275 void GraphBuilder::shift_op(ValueType* type, Bytecodes::Code code) {
1276 Value s = ipop();
1277 Value x = pop(type);
1278 // try to simplify
1279 // Note: This code should go into the canonicalizer as soon as it can
1280 // can handle canonicalized forms that contain more than one node.
1281 if (CanonicalizeNodes && code == Bytecodes::_iushr) {
1282 // pattern: x >>> s
1283 IntConstant* s1 = s->type()->as_IntConstant();
1284 if (s1 != nullptr) {
1285 // pattern: x >>> s1, with s1 constant
1286 ShiftOp* l = x->as_ShiftOp();
1287 if (l != nullptr && l->op() == Bytecodes::_ishl) {
1288 // pattern: (a << b) >>> s1
1289 IntConstant* s0 = l->y()->type()->as_IntConstant();
1290 if (s0 != nullptr) {
1291 // pattern: (a << s0) >>> s1
1292 const int s0c = s0->value() & 0x1F; // only the low 5 bits are significant for shifts
1293 const int s1c = s1->value() & 0x1F; // only the low 5 bits are significant for shifts
1294 if (s0c == s1c) {
1295 if (s0c == 0) {
1296 // pattern: (a << 0) >>> 0 => simplify to: a
1297 ipush(l->x());
1298 } else {
1299 // pattern: (a << s0c) >>> s0c => simplify to: a & m, with m constant
1300 assert(0 < s0c && s0c < BitsPerInt, "adjust code below to handle corner cases");
1301 const int m = checked_cast<int>(right_n_bits(BitsPerInt - s0c));
1302 Value s = append(new Constant(new IntConstant(m)));
1303 ipush(append(new LogicOp(Bytecodes::_iand, l->x(), s)));
1304 }
1305 return;
1306 }
1307 }
1308 }
1309 }
1310 }
1311 // could not simplify
1312 push(type, append(new ShiftOp(code, x, s)));
1313 }
1314
1315
1316 void GraphBuilder::logic_op(ValueType* type, Bytecodes::Code code) {
1317 Value y = pop(type);
1318 Value x = pop(type);
1319 push(type, append(new LogicOp(code, x, y)));
1320 }
1321
1322
1323 void GraphBuilder::compare_op(ValueType* type, Bytecodes::Code code) {
1324 ValueStack* state_before = copy_state_before();
1325 Value y = pop(type);
1326 Value x = pop(type);
1327 ipush(append(new CompareOp(code, x, y, state_before)));
1328 }
1329
1330
1331 void GraphBuilder::convert(Bytecodes::Code op, BasicType from, BasicType to) {
1332 push(as_ValueType(to), append(new Convert(op, pop(as_ValueType(from)), as_ValueType(to))));
1333 }
1334
1335
1336 void GraphBuilder::increment() {
1337 int index = stream()->get_index();
1338 int delta = stream()->is_wide() ? (signed short)Bytes::get_Java_u2(stream()->cur_bcp() + 4) : (signed char)(stream()->cur_bcp()[2]);
1339 load_local(intType, index);
1340 ipush(append(new Constant(new IntConstant(delta))));
1341 arithmetic_op(intType, Bytecodes::_iadd);
1342 store_local(intType, index);
1343 }
1344
1345
1346 void GraphBuilder::_goto(int from_bci, int to_bci) {
1347 Goto *x = new Goto(block_at(to_bci), to_bci <= from_bci);
1348 if (is_profiling()) {
1349 compilation()->set_would_profile(true);
1350 x->set_profiled_bci(bci());
1351 if (profile_branches()) {
1352 x->set_profiled_method(method());
1353 x->set_should_profile(true);
1354 }
1355 }
1356 append(x);
1357 }
1358
1359
1360 void GraphBuilder::if_node(Value x, If::Condition cond, Value y, ValueStack* state_before) {
1361 BlockBegin* tsux = block_at(stream()->get_dest());
1362 BlockBegin* fsux = block_at(stream()->next_bci());
1363 bool is_bb = tsux->bci() < stream()->cur_bci() || fsux->bci() < stream()->cur_bci();
1364
1365 bool subst_check = false;
1366 if (Arguments::is_valhalla_enabled() && (stream()->cur_bc() == Bytecodes::_if_acmpeq || stream()->cur_bc() == Bytecodes::_if_acmpne)) {
1367 ValueType* left_vt = x->type();
1368 ValueType* right_vt = y->type();
1369 if (left_vt->is_object()) {
1370 assert(right_vt->is_object(), "must be");
1371 ciKlass* left_klass = x->as_loaded_klass_or_null();
1372 ciKlass* right_klass = y->as_loaded_klass_or_null();
1373
1374 if (left_klass == nullptr || right_klass == nullptr) {
1375 // The klass is still unloaded, or came from a Phi node. Go slow case;
1376 subst_check = true;
1377 } else if (left_klass->can_be_inline_klass() || right_klass->can_be_inline_klass()) {
1378 // Either operand may be a value object, but we're not sure. Go slow case;
1379 subst_check = true;
1380 } else {
1381 // No need to do substitutability check
1382 }
1383 }
1384 }
1385 if ((stream()->cur_bc() == Bytecodes::_if_acmpeq || stream()->cur_bc() == Bytecodes::_if_acmpne) &&
1386 is_profiling() && profile_branches()) {
1387 compilation()->set_would_profile(true);
1388 append(new ProfileACmpTypes(method(), bci(), x, y));
1389 }
1390
1391 // In case of loop invariant code motion or predicate insertion
1392 // before the body of a loop the state is needed
1393 Instruction *i = append(new If(x, cond, false, y, tsux, fsux, (is_bb || compilation()->is_optimistic() || subst_check) ? state_before : nullptr, is_bb, subst_check));
1394
1395 assert(i->as_Goto() == nullptr ||
1396 (i->as_Goto()->sux_at(0) == tsux && i->as_Goto()->is_safepoint() == (tsux->bci() < stream()->cur_bci())) ||
1397 (i->as_Goto()->sux_at(0) == fsux && i->as_Goto()->is_safepoint() == (fsux->bci() < stream()->cur_bci())),
1398 "safepoint state of Goto returned by canonicalizer incorrect");
1399
1400 if (is_profiling()) {
1401 If* if_node = i->as_If();
1402 if (if_node != nullptr) {
1403 // Note that we'd collect profile data in this method if we wanted it.
1404 compilation()->set_would_profile(true);
1405 // At level 2 we need the proper bci to count backedges
1406 if_node->set_profiled_bci(bci());
1407 if (profile_branches()) {
1408 // Successors can be rotated by the canonicalizer, check for this case.
1409 if_node->set_profiled_method(method());
1410 if_node->set_should_profile(true);
1411 if (if_node->tsux() == fsux) {
1412 if_node->set_swapped(true);
1413 }
1414 }
1415 return;
1416 }
1417
1418 // Check if this If was reduced to Goto.
1419 Goto *goto_node = i->as_Goto();
1420 if (goto_node != nullptr) {
1421 compilation()->set_would_profile(true);
1422 goto_node->set_profiled_bci(bci());
1423 if (profile_branches()) {
1424 goto_node->set_profiled_method(method());
1425 goto_node->set_should_profile(true);
1426 // Find out which successor is used.
1427 if (goto_node->default_sux() == tsux) {
1428 goto_node->set_direction(Goto::taken);
1429 } else if (goto_node->default_sux() == fsux) {
1430 goto_node->set_direction(Goto::not_taken);
1431 } else {
1432 ShouldNotReachHere();
1433 }
1434 }
1435 return;
1436 }
1437 }
1438 }
1439
1440
1441 void GraphBuilder::if_zero(ValueType* type, If::Condition cond) {
1442 Value y = append(new Constant(intZero));
1443 ValueStack* state_before = copy_state_before();
1444 Value x = ipop();
1445 if_node(x, cond, y, state_before);
1446 }
1447
1448
1449 void GraphBuilder::if_null(ValueType* type, If::Condition cond) {
1450 Value y = append(new Constant(objectNull));
1451 ValueStack* state_before = copy_state_before();
1452 Value x = apop();
1453 if_node(x, cond, y, state_before);
1454 }
1455
1456
1457 void GraphBuilder::if_same(ValueType* type, If::Condition cond) {
1458 ValueStack* state_before = copy_state_before();
1459 Value y = pop(type);
1460 Value x = pop(type);
1461 if_node(x, cond, y, state_before);
1462 }
1463
1464
1465 void GraphBuilder::jsr(int dest) {
1466 // We only handle well-formed jsrs (those which are "block-structured").
1467 // If the bytecodes are strange (jumping out of a jsr block) then we
1468 // might end up trying to re-parse a block containing a jsr which
1469 // has already been activated. Watch for this case and bail out.
1470 if (next_bci() >= method()->code_size()) {
1471 // This can happen if the subroutine does not terminate with a ret,
1472 // effectively turning the jsr into a goto.
1473 BAILOUT("too-complicated jsr/ret structure");
1474 }
1475 for (ScopeData* cur_scope_data = scope_data();
1476 cur_scope_data != nullptr && cur_scope_data->parsing_jsr() && cur_scope_data->scope() == scope();
1477 cur_scope_data = cur_scope_data->parent()) {
1478 if (cur_scope_data->jsr_entry_bci() == dest) {
1479 BAILOUT("too-complicated jsr/ret structure");
1480 }
1481 }
1482
1483 push(addressType, append(new Constant(new AddressConstant(next_bci()))));
1484 if (!try_inline_jsr(dest)) {
1485 return; // bailed out while parsing and inlining subroutine
1486 }
1487 }
1488
1489
1490 void GraphBuilder::ret(int local_index) {
1491 if (!parsing_jsr()) BAILOUT("ret encountered while not parsing subroutine");
1492
1493 if (local_index != scope_data()->jsr_return_address_local()) {
1494 BAILOUT("can not handle complicated jsr/ret constructs");
1495 }
1496
1497 // Rets simply become (NON-SAFEPOINT) gotos to the jsr continuation
1498 append(new Goto(scope_data()->jsr_continuation(), false));
1499 }
1500
1501
1502 void GraphBuilder::table_switch() {
1503 Bytecode_tableswitch sw(stream());
1504 const int l = sw.length();
1505 if (CanonicalizeNodes && l == 1 && compilation()->env()->comp_level() != CompLevel_full_profile) {
1506 // total of 2 successors => use If instead of switch
1507 // Note: This code should go into the canonicalizer as soon as it can
1508 // can handle canonicalized forms that contain more than one node.
1509 Value key = append(new Constant(new IntConstant(sw.low_key())));
1510 BlockBegin* tsux = block_at(bci() + sw.dest_offset_at(0));
1511 BlockBegin* fsux = block_at(bci() + sw.default_offset());
1512 bool is_bb = tsux->bci() < bci() || fsux->bci() < bci();
1513 // In case of loop invariant code motion or predicate insertion
1514 // before the body of a loop the state is needed
1515 ValueStack* state_before = copy_state_if_bb(is_bb);
1516 append(new If(ipop(), If::eql, true, key, tsux, fsux, state_before, is_bb));
1517 } else {
1518 // collect successors
1519 BlockList* sux = new BlockList(l + 1, nullptr);
1520 int i;
1521 bool has_bb = false;
1522 for (i = 0; i < l; i++) {
1523 sux->at_put(i, block_at(bci() + sw.dest_offset_at(i)));
1524 if (sw.dest_offset_at(i) < 0) has_bb = true;
1525 }
1526 // add default successor
1527 if (sw.default_offset() < 0) has_bb = true;
1528 sux->at_put(i, block_at(bci() + sw.default_offset()));
1529 // In case of loop invariant code motion or predicate insertion
1530 // before the body of a loop the state is needed
1531 ValueStack* state_before = copy_state_if_bb(has_bb);
1532 Instruction* res = append(new TableSwitch(ipop(), sux, sw.low_key(), state_before, has_bb));
1533 #ifdef ASSERT
1534 if (res->as_Goto()) {
1535 for (i = 0; i < l; i++) {
1536 if (sux->at(i) == res->as_Goto()->sux_at(0)) {
1537 assert(res->as_Goto()->is_safepoint() == (sw.dest_offset_at(i) < 0), "safepoint state of Goto returned by canonicalizer incorrect");
1538 }
1539 }
1540 }
1541 #endif
1542 }
1543 }
1544
1545
1546 void GraphBuilder::lookup_switch() {
1547 Bytecode_lookupswitch sw(stream());
1548 const int l = sw.number_of_pairs();
1549 if (CanonicalizeNodes && l == 1 && compilation()->env()->comp_level() != CompLevel_full_profile) {
1550 // total of 2 successors => use If instead of switch
1551 // Note: This code should go into the canonicalizer as soon as it can
1552 // can handle canonicalized forms that contain more than one node.
1553 // simplify to If
1554 LookupswitchPair pair = sw.pair_at(0);
1555 Value key = append(new Constant(new IntConstant(pair.match())));
1556 BlockBegin* tsux = block_at(bci() + pair.offset());
1557 BlockBegin* fsux = block_at(bci() + sw.default_offset());
1558 bool is_bb = tsux->bci() < bci() || fsux->bci() < bci();
1559 // In case of loop invariant code motion or predicate insertion
1560 // before the body of a loop the state is needed
1561 ValueStack* state_before = copy_state_if_bb(is_bb);;
1562 append(new If(ipop(), If::eql, true, key, tsux, fsux, state_before, is_bb));
1563 } else {
1564 // collect successors & keys
1565 BlockList* sux = new BlockList(l + 1, nullptr);
1566 intArray* keys = new intArray(l, l, 0);
1567 int i;
1568 bool has_bb = false;
1569 for (i = 0; i < l; i++) {
1570 LookupswitchPair pair = sw.pair_at(i);
1571 if (pair.offset() < 0) has_bb = true;
1572 sux->at_put(i, block_at(bci() + pair.offset()));
1573 keys->at_put(i, pair.match());
1574 }
1575 // add default successor
1576 if (sw.default_offset() < 0) has_bb = true;
1577 sux->at_put(i, block_at(bci() + sw.default_offset()));
1578 // In case of loop invariant code motion or predicate insertion
1579 // before the body of a loop the state is needed
1580 ValueStack* state_before = copy_state_if_bb(has_bb);
1581 Instruction* res = append(new LookupSwitch(ipop(), sux, keys, state_before, has_bb));
1582 #ifdef ASSERT
1583 if (res->as_Goto()) {
1584 for (i = 0; i < l; i++) {
1585 if (sux->at(i) == res->as_Goto()->sux_at(0)) {
1586 assert(res->as_Goto()->is_safepoint() == (sw.pair_at(i).offset() < 0), "safepoint state of Goto returned by canonicalizer incorrect");
1587 }
1588 }
1589 }
1590 #endif
1591 }
1592 }
1593
1594 void GraphBuilder::call_register_finalizer() {
1595 // If the receiver requires finalization then emit code to perform
1596 // the registration on return.
1597
1598 // Gather some type information about the receiver
1599 Value receiver = state()->local_at(0);
1600 assert(receiver != nullptr, "must have a receiver");
1601 ciType* declared_type = receiver->declared_type();
1602 ciType* exact_type = receiver->exact_type();
1603 if (exact_type == nullptr &&
1604 receiver->as_Local() &&
1605 receiver->as_Local()->java_index() == 0) {
1606 ciInstanceKlass* ik = compilation()->method()->holder();
1607 if (ik->is_final()) {
1608 exact_type = ik;
1609 } else if (UseCHA && !(ik->has_subklass() || ik->is_interface())) {
1610 // test class is leaf class
1611 compilation()->dependency_recorder()->assert_leaf_type(ik);
1612 exact_type = ik;
1613 } else {
1614 declared_type = ik;
1615 }
1616 }
1617
1618 // see if we know statically that registration isn't required
1619 bool needs_check = true;
1620 if (exact_type != nullptr) {
1621 needs_check = exact_type->as_instance_klass()->has_finalizer();
1622 } else if (declared_type != nullptr) {
1623 ciInstanceKlass* ik = declared_type->as_instance_klass();
1624 if (!Dependencies::has_finalizable_subclass(ik)) {
1625 compilation()->dependency_recorder()->assert_has_no_finalizable_subclasses(ik);
1626 needs_check = false;
1627 }
1628 }
1629
1630 if (needs_check) {
1631 // Perform the registration of finalizable objects.
1632 ValueStack* state_before = copy_state_for_exception();
1633 load_local(objectType, 0);
1634 append_split(new Intrinsic(voidType, vmIntrinsics::_Object_init,
1635 state()->pop_arguments(1),
1636 true, state_before, true));
1637 }
1638 }
1639
1640
1641 void GraphBuilder::method_return(Value x, bool ignore_return) {
1642 if (method()->intrinsic_id() == vmIntrinsics::_Object_init) {
1643 call_register_finalizer();
1644 }
1645
1646 // The conditions for a memory barrier are described in Parse::do_exits().
1647 bool need_mem_bar = false;
1648 if (method()->is_object_constructor() &&
1649 (scope()->wrote_final() || scope()->wrote_stable() ||
1650 (AlwaysSafeConstructors && scope()->wrote_fields()) ||
1651 (support_IRIW_for_not_multiple_copy_atomic_cpu && scope()->wrote_volatile()))) {
1652 need_mem_bar = true;
1653 }
1654
1655 BasicType bt = method()->return_type()->basic_type();
1656 switch (bt) {
1657 case T_BYTE:
1658 {
1659 Value shift = append(new Constant(new IntConstant(24)));
1660 x = append(new ShiftOp(Bytecodes::_ishl, x, shift));
1661 x = append(new ShiftOp(Bytecodes::_ishr, x, shift));
1662 break;
1663 }
1664 case T_SHORT:
1665 {
1666 Value shift = append(new Constant(new IntConstant(16)));
1667 x = append(new ShiftOp(Bytecodes::_ishl, x, shift));
1668 x = append(new ShiftOp(Bytecodes::_ishr, x, shift));
1669 break;
1670 }
1671 case T_CHAR:
1672 {
1673 Value mask = append(new Constant(new IntConstant(0xFFFF)));
1674 x = append(new LogicOp(Bytecodes::_iand, x, mask));
1675 break;
1676 }
1677 case T_BOOLEAN:
1678 {
1679 Value mask = append(new Constant(new IntConstant(1)));
1680 x = append(new LogicOp(Bytecodes::_iand, x, mask));
1681 break;
1682 }
1683 default:
1684 break;
1685 }
1686
1687 // Check to see whether we are inlining. If so, Return
1688 // instructions become Gotos to the continuation point.
1689 if (continuation() != nullptr) {
1690
1691 int invoke_bci = state()->caller_state()->bci();
1692
1693 if (x != nullptr && !ignore_return) {
1694 ciMethod* caller = state()->scope()->caller()->method();
1695 Bytecodes::Code invoke_raw_bc = caller->raw_code_at_bci(invoke_bci);
1696 if (invoke_raw_bc == Bytecodes::_invokehandle || invoke_raw_bc == Bytecodes::_invokedynamic) {
1697 ciType* declared_ret_type = caller->get_declared_signature_at_bci(invoke_bci)->return_type();
1698 if (declared_ret_type->is_klass() && x->exact_type() == nullptr &&
1699 x->declared_type() != declared_ret_type && declared_ret_type != compilation()->env()->Object_klass()) {
1700 x = append(new TypeCast(declared_ret_type->as_klass(), x, copy_state_before()));
1701 }
1702 }
1703 }
1704
1705 assert(!method()->is_synchronized() || InlineSynchronizedMethods, "can not inline synchronized methods yet");
1706
1707 if (compilation()->env()->dtrace_method_probes()) {
1708 // Report exit from inline methods
1709 Values* args = new Values(1);
1710 args->push(append(new Constant(new MethodConstant(method()))));
1711 append(new RuntimeCall(voidType, "dtrace_method_exit", CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), args));
1712 }
1713
1714 // If the inlined method is synchronized, the monitor must be
1715 // released before we jump to the continuation block.
1716 if (method()->is_synchronized()) {
1717 assert(state()->locks_size() == 1, "receiver must be locked here");
1718 monitorexit(state()->lock_at(0), SynchronizationEntryBCI);
1719 }
1720
1721 if (need_mem_bar) {
1722 append(new MemBar(lir_membar_storestore));
1723 }
1724
1725 // State at end of inlined method is the state of the caller
1726 // without the method parameters on stack, including the
1727 // return value, if any, of the inlined method on operand stack.
1728 set_state(state()->caller_state()->copy_for_parsing());
1729 if (x != nullptr) {
1730 if (!ignore_return) {
1731 state()->push(x->type(), x);
1732 }
1733 if (profile_return() && x->type()->is_object_kind()) {
1734 ciMethod* caller = state()->scope()->method();
1735 profile_return_type(x, method(), caller, invoke_bci);
1736 }
1737 }
1738 Goto* goto_callee = new Goto(continuation(), false);
1739
1740 // See whether this is the first return; if so, store off some
1741 // of the state for later examination
1742 if (num_returns() == 0) {
1743 set_inline_cleanup_info();
1744 }
1745
1746 // The current bci() is in the wrong scope, so use the bci() of
1747 // the continuation point.
1748 append_with_bci(goto_callee, scope_data()->continuation()->bci());
1749 incr_num_returns();
1750 return;
1751 }
1752
1753 state()->truncate_stack(0);
1754 if (method()->is_synchronized()) {
1755 // perform the unlocking before exiting the method
1756 Value receiver;
1757 if (!method()->is_static()) {
1758 receiver = _initial_state->local_at(0);
1759 } else {
1760 receiver = append(new Constant(new ClassConstant(method()->holder())));
1761 }
1762 append_split(new MonitorExit(receiver, state()->unlock()));
1763 }
1764
1765 if (need_mem_bar) {
1766 append(new MemBar(lir_membar_storestore));
1767 }
1768
1769 assert(!ignore_return, "Ignoring return value works only for inlining");
1770 append(new Return(x));
1771 }
1772
1773 Value GraphBuilder::make_constant(ciConstant field_value, ciField* field) {
1774 if (!field_value.is_valid()) return nullptr;
1775
1776 BasicType field_type = field_value.basic_type();
1777 ValueType* value = as_ValueType(field_value);
1778
1779 // Attach dimension info to stable arrays.
1780 if (FoldStableValues &&
1781 field->is_stable() && field_type == T_ARRAY && !field_value.is_null_or_zero()) {
1782 ciArray* array = field_value.as_object()->as_array();
1783 jint dimension = field->type()->as_array_klass()->dimension();
1784 value = new StableArrayConstant(array, dimension);
1785 }
1786
1787 switch (field_type) {
1788 case T_ARRAY:
1789 case T_OBJECT:
1790 if (field_value.as_object()->should_be_constant()) {
1791 return new Constant(value);
1792 }
1793 return nullptr; // Not a constant.
1794 default:
1795 return new Constant(value);
1796 }
1797 }
1798
1799 void GraphBuilder::copy_inline_content(ciInlineKlass* vk, Value src, int src_off, Value dest, int dest_off, ValueStack* state_before, ciField* enclosing_field) {
1800 for (int i = 0; i < vk->nof_declared_nonstatic_fields(); i++) {
1801 ciField* field = vk->declared_nonstatic_field_at(i);
1802 int offset = field->offset_in_bytes() - vk->payload_offset();
1803 if (field->is_flat()) {
1804 copy_inline_content(field->type()->as_inline_klass(), src, src_off + offset, dest, dest_off + offset, state_before, enclosing_field);
1805 if (!field->is_null_free()) {
1806 // Nullable, copy the null marker using Unsafe because null markers are no real fields
1807 int null_marker_offset = field->null_marker_offset() - vk->payload_offset();
1808 Value offset = append(new Constant(new LongConstant(src_off + null_marker_offset)));
1809 Value nm = append(new UnsafeGet(T_BOOLEAN, src, offset, false));
1810 offset = append(new Constant(new LongConstant(dest_off + null_marker_offset)));
1811 append(new UnsafePut(T_BOOLEAN, dest, offset, nm, false));
1812 }
1813 } else {
1814 Value value = append(new LoadField(src, src_off + offset, field, false, state_before, false));
1815 StoreField* store = new StoreField(dest, dest_off + offset, field, value, false, state_before, false);
1816 store->set_enclosing_field(enclosing_field);
1817 append(store);
1818 }
1819 }
1820 }
1821
1822 void GraphBuilder::access_field(Bytecodes::Code code) {
1823 bool will_link;
1824 ciField* field = stream()->get_field(will_link);
1825 ciInstanceKlass* holder = field->holder();
1826 BasicType field_type = field->type()->basic_type();
1827 ValueType* type = as_ValueType(field_type);
1828
1829 // call will_link again to determine if the field is valid.
1830 const bool needs_patching = !holder->is_loaded() ||
1831 !field->will_link(method(), code) ||
1832 (!field->is_flat() && PatchALot);
1833
1834 ValueStack* state_before = nullptr;
1835 if (!holder->is_initialized() || needs_patching) {
1836 // save state before instruction for debug info when
1837 // deoptimization happens during patching
1838 state_before = copy_state_before();
1839 }
1840
1841 Value obj = nullptr;
1842 if (code == Bytecodes::_getstatic || code == Bytecodes::_putstatic) {
1843 if (state_before != nullptr) {
1844 // build a patching constant
1845 obj = new Constant(new InstanceConstant(holder->java_mirror()), state_before);
1846 } else {
1847 obj = new Constant(new InstanceConstant(holder->java_mirror()));
1848 }
1849 }
1850
1851 if (code == Bytecodes::_putfield) {
1852 scope()->set_wrote_fields();
1853 if (field->is_volatile()) {
1854 scope()->set_wrote_volatile();
1855 }
1856 if (field->is_final()) {
1857 scope()->set_wrote_final();
1858 }
1859 if (field->is_stable()) {
1860 scope()->set_wrote_stable();
1861 }
1862 }
1863
1864 int offset = !needs_patching ? field->offset_in_bytes() : -1;
1865 switch (code) {
1866 case Bytecodes::_getstatic: {
1867 // check for compile-time constants, i.e., initialized static final fields
1868 Value constant = nullptr;
1869 if (field->is_static_constant() && !PatchALot) {
1870 ciConstant field_value = field->constant_value();
1871 assert(!field->is_stable() || !field_value.is_null_or_zero(),
1872 "stable static w/ default value shouldn't be a constant");
1873 constant = make_constant(field_value, field);
1874 }
1875 if (constant != nullptr) {
1876 push(type, append(constant));
1877 } else {
1878 if (state_before == nullptr) {
1879 state_before = copy_state_for_exception();
1880 }
1881 LoadField* load_field = new LoadField(append(obj), offset, field, true,
1882 state_before, needs_patching);
1883 push(type, append(load_field));
1884 }
1885 break;
1886 }
1887 case Bytecodes::_putstatic: {
1888 Value val = pop(type);
1889 if (state_before == nullptr) {
1890 state_before = copy_state_for_exception();
1891 }
1892 if (field_type == T_BOOLEAN) {
1893 Value mask = append(new Constant(new IntConstant(1)));
1894 val = append(new LogicOp(Bytecodes::_iand, val, mask));
1895 }
1896 if (field->is_null_free()) {
1897 null_check(val);
1898 }
1899 if (field->is_null_free() && field->type()->is_loaded() && field->type()->as_inline_klass()->is_empty() && (!method()->is_class_initializer() || field->is_flat())) {
1900 // Storing to a field of an empty, null-free inline type that is already initialized. Ignore.
1901 break;
1902 }
1903 append(new StoreField(append(obj), offset, field, val, true, state_before, needs_patching));
1904 break;
1905 }
1906 case Bytecodes::_getfield: {
1907 // Check for compile-time constants, i.e., trusted final non-static fields.
1908 Value constant = nullptr;
1909 if (state_before == nullptr && field->is_flat()) {
1910 // Save the entire state and re-execute on deopt when accessing flat fields
1911 assert(Interpreter::bytecode_should_reexecute(code), "should reexecute");
1912 state_before = copy_state_before();
1913 }
1914 if (!has_pending_field_access() && !has_pending_load_indexed()) {
1915 obj = apop();
1916 ObjectType* obj_type = obj->type()->as_ObjectType();
1917 if (field->is_constant() && !field->is_flat() && obj_type->is_constant() && !PatchALot) {
1918 ciObject* const_oop = obj_type->constant_value();
1919 if (!const_oop->is_null_object() && const_oop->is_loaded()) {
1920 ciConstant field_value = field->constant_value_of(const_oop);
1921 if (field_value.is_valid()) {
1922 constant = make_constant(field_value, field);
1923 // For CallSite objects add a dependency for invalidation of the optimization.
1924 if (field->is_call_site_target()) {
1925 ciCallSite* call_site = const_oop->as_call_site();
1926 if (!call_site->is_fully_initialized_constant_call_site()) {
1927 ciMethodHandle* target = field_value.as_object()->as_method_handle();
1928 dependency_recorder()->assert_call_site_target_value(call_site, target);
1929 }
1930 }
1931 }
1932 }
1933 }
1934 }
1935 if (constant != nullptr) {
1936 push(type, append(constant));
1937 } else {
1938 if (state_before == nullptr) {
1939 state_before = copy_state_for_exception();
1940 }
1941 if (!field->is_flat()) {
1942 if (has_pending_field_access()) {
1943 assert(!needs_patching, "Can't patch delayed field access");
1944 obj = pending_field_access()->obj();
1945 offset += pending_field_access()->offset() - field->holder()->as_inline_klass()->payload_offset();
1946 field = pending_field_access()->holder()->get_field_by_offset(offset, false);
1947 assert(field != nullptr, "field not found");
1948 set_pending_field_access(nullptr);
1949 } else if (has_pending_load_indexed()) {
1950 assert(!needs_patching, "Can't patch delayed field access");
1951 pending_load_indexed()->update(field, offset - field->holder()->as_inline_klass()->payload_offset());
1952 LoadIndexed* li = pending_load_indexed()->load_instr();
1953 li->set_type(type);
1954 push(type, append(li));
1955 set_pending_load_indexed(nullptr);
1956 break;
1957 }
1958 LoadField* load = new LoadField(obj, offset, field, false, state_before, needs_patching);
1959 Value replacement = !needs_patching ? _memory->load(load) : load;
1960 if (replacement != load) {
1961 assert(replacement->is_linked() || !replacement->can_be_linked(), "should already by linked");
1962 // Writing an (integer) value to a boolean, byte, char or short field includes an implicit narrowing
1963 // conversion. Emit an explicit conversion here to get the correct field value after the write.
1964 switch (field_type) {
1965 case T_BOOLEAN:
1966 case T_BYTE:
1967 replacement = append(new Convert(Bytecodes::_i2b, replacement, type));
1968 break;
1969 case T_CHAR:
1970 replacement = append(new Convert(Bytecodes::_i2c, replacement, type));
1971 break;
1972 case T_SHORT:
1973 replacement = append(new Convert(Bytecodes::_i2s, replacement, type));
1974 break;
1975 default:
1976 break;
1977 }
1978 push(type, replacement);
1979 } else {
1980 push(type, append(load));
1981 }
1982 } else {
1983 // Flat field
1984 assert(!needs_patching, "Can't patch flat inline type field access");
1985 ciInlineKlass* inline_klass = field->type()->as_inline_klass();
1986 bool is_naturally_atomic = inline_klass->nof_declared_nonstatic_fields() <= 1;
1987 bool needs_atomic_access = !field->is_null_free() || (field->is_volatile() && !is_naturally_atomic);
1988 if (needs_atomic_access) {
1989 assert(!has_pending_field_access(), "Pending field accesses are not supported");
1990 LoadField* load = new LoadField(obj, offset, field, false, state_before, needs_patching);
1991 push(type, append(load));
1992 } else {
1993 assert(field->is_null_free(), "must be null-free");
1994 // Look at the next bytecode to check if we can delay the field access
1995 bool can_delay_access = false;
1996 ciBytecodeStream s(method());
1997 s.force_bci(bci());
1998 s.next();
1999 if (s.cur_bc() == Bytecodes::_getfield && !needs_patching) {
2000 ciField* next_field = s.get_field(will_link);
2001 bool next_needs_patching = !next_field->holder()->is_loaded() ||
2002 !next_field->will_link(method(), Bytecodes::_getfield) ||
2003 PatchALot;
2004 // We can't update the offset for atomic accesses
2005 bool next_needs_atomic_access = !next_field->is_null_free() || next_field->is_volatile();
2006 can_delay_access = C1UseDelayedFlattenedFieldReads && !next_needs_patching && !next_needs_atomic_access;
2007 }
2008 if (can_delay_access) {
2009 if (has_pending_load_indexed()) {
2010 pending_load_indexed()->update(field, offset - field->holder()->as_inline_klass()->payload_offset());
2011 } else if (has_pending_field_access()) {
2012 pending_field_access()->inc_offset(offset - field->holder()->as_inline_klass()->payload_offset());
2013 } else {
2014 null_check(obj);
2015 DelayedFieldAccess* dfa = new DelayedFieldAccess(obj, field->holder(), field->offset_in_bytes(), state_before);
2016 set_pending_field_access(dfa);
2017 }
2018 } else {
2019 scope()->set_wrote_final();
2020 scope()->set_wrote_fields();
2021 bool need_membar = false;
2022 if (has_pending_load_indexed()) {
2023 assert(!needs_patching, "Can't patch delayed field access");
2024 pending_load_indexed()->update(field, offset - field->holder()->as_inline_klass()->payload_offset());
2025 NewInstance* vt = new NewInstance(inline_klass, pending_load_indexed()->state_before(), false, true);
2026 _memory->new_instance(vt);
2027 pending_load_indexed()->load_instr()->set_vt(vt);
2028 apush(append_split(vt));
2029 append(pending_load_indexed()->load_instr());
2030 set_pending_load_indexed(nullptr);
2031 need_membar = true;
2032 } else {
2033 if (has_pending_field_access()) {
2034 state_before = pending_field_access()->state_before();
2035 }
2036 NewInstance* new_instance = new NewInstance(inline_klass, state_before, false, true);
2037 _memory->new_instance(new_instance);
2038 apush(append_split(new_instance));
2039 if (has_pending_field_access()) {
2040 copy_inline_content(inline_klass, pending_field_access()->obj(),
2041 pending_field_access()->offset() + field->offset_in_bytes() - field->holder()->as_inline_klass()->payload_offset(),
2042 new_instance, inline_klass->payload_offset(), state_before);
2043 set_pending_field_access(nullptr);
2044 } else {
2045 if (field->type()->as_instance_klass()->is_initialized() && field->type()->as_inline_klass()->is_empty()) {
2046 // Needs an explicit null check because below code does not perform any actual load if there are no fields
2047 null_check(obj);
2048 }
2049 copy_inline_content(inline_klass, obj, field->offset_in_bytes(), new_instance, inline_klass->payload_offset(), state_before);
2050 }
2051 need_membar = true;
2052 }
2053 if (need_membar) {
2054 // If we allocated a new instance ensure the stores to copy the
2055 // field contents are visible before any subsequent store that
2056 // publishes this reference.
2057 append(new MemBar(lir_membar_storestore));
2058 }
2059 }
2060 }
2061 }
2062 }
2063 break;
2064 }
2065 case Bytecodes::_putfield: {
2066 Value val = pop(type);
2067 obj = apop();
2068 if (state_before == nullptr) {
2069 state_before = copy_state_for_exception();
2070 }
2071 if (field_type == T_BOOLEAN) {
2072 Value mask = append(new Constant(new IntConstant(1)));
2073 val = append(new LogicOp(Bytecodes::_iand, val, mask));
2074 }
2075
2076 if (field->is_null_free() && field->type()->is_loaded() && field->type()->as_inline_klass()->is_empty() && (!method()->is_object_constructor() || field->is_flat())) {
2077 // Storing to a field of an empty, null-free inline type that is already initialized. Ignore.
2078 null_check(obj);
2079 null_check(val);
2080 } else if (!field->is_flat()) {
2081 if (field->is_null_free()) {
2082 null_check(val);
2083 }
2084 StoreField* store = new StoreField(obj, offset, field, val, false, state_before, needs_patching);
2085 if (!needs_patching) store = _memory->store(store);
2086 if (store != nullptr) {
2087 append(store);
2088 }
2089 } else {
2090 // Flat field
2091 assert(!needs_patching, "Can't patch flat inline type field access");
2092 ciInlineKlass* inline_klass = field->type()->as_inline_klass();
2093 bool is_naturally_atomic = inline_klass->nof_declared_nonstatic_fields() <= 1;
2094 bool needs_atomic_access = !field->is_null_free() || (field->is_volatile() && !is_naturally_atomic);
2095 if (needs_atomic_access) {
2096 if (field->is_null_free()) {
2097 null_check(val);
2098 }
2099 append(new StoreField(obj, offset, field, val, false, state_before, needs_patching));
2100 } else {
2101 assert(field->is_null_free(), "must be null-free");
2102 copy_inline_content(inline_klass, val, inline_klass->payload_offset(), obj, offset, state_before, field);
2103 }
2104 }
2105 break;
2106 }
2107 default:
2108 ShouldNotReachHere();
2109 break;
2110 }
2111 }
2112
2113 Dependencies* GraphBuilder::dependency_recorder() const {
2114 return compilation()->dependency_recorder();
2115 }
2116
2117 // How many arguments do we want to profile?
2118 Values* GraphBuilder::args_list_for_profiling(ciMethod* target, int& start, bool may_have_receiver) {
2119 int n = 0;
2120 bool has_receiver = may_have_receiver && Bytecodes::has_receiver(method()->java_code_at_bci(bci()));
2121 start = has_receiver ? 1 : 0;
2122 if (profile_arguments()) {
2123 ciProfileData* data = method()->method_data()->bci_to_data(bci());
2124 if (data != nullptr && (data->is_CallTypeData() || data->is_VirtualCallTypeData())) {
2125 n = data->is_CallTypeData() ? data->as_CallTypeData()->number_of_arguments() : data->as_VirtualCallTypeData()->number_of_arguments();
2126 }
2127 }
2128 // If we are inlining then we need to collect arguments to profile parameters for the target
2129 if (profile_parameters() && target != nullptr) {
2130 if (target->method_data() != nullptr && target->method_data()->parameters_type_data() != nullptr) {
2131 // The receiver is profiled on method entry so it's included in
2132 // the number of parameters but here we're only interested in
2133 // actual arguments.
2134 n = MAX2(n, target->method_data()->parameters_type_data()->number_of_parameters() - start);
2135 }
2136 }
2137 if (n > 0) {
2138 return new Values(n);
2139 }
2140 return nullptr;
2141 }
2142
2143 void GraphBuilder::check_args_for_profiling(Values* obj_args, int expected) {
2144 #ifdef ASSERT
2145 bool ignored_will_link;
2146 ciSignature* declared_signature = nullptr;
2147 ciMethod* real_target = method()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
2148 assert(expected == obj_args->capacity() || real_target->is_method_handle_intrinsic(), "missed on arg?");
2149 #endif
2150 }
2151
2152 // Collect arguments that we want to profile in a list
2153 Values* GraphBuilder::collect_args_for_profiling(Values* args, ciMethod* target, bool may_have_receiver) {
2154 int start = 0;
2155 Values* obj_args = args_list_for_profiling(target, start, may_have_receiver);
2156 if (obj_args == nullptr) {
2157 return nullptr;
2158 }
2159 int s = obj_args->capacity();
2160 // if called through method handle invoke, some arguments may have been popped
2161 for (int i = start, j = 0; j < s && i < args->length(); i++) {
2162 if (args->at(i)->type()->is_object_kind()) {
2163 obj_args->push(args->at(i));
2164 j++;
2165 }
2166 }
2167 check_args_for_profiling(obj_args, s);
2168 return obj_args;
2169 }
2170
2171 void GraphBuilder::invoke(Bytecodes::Code code) {
2172 bool will_link;
2173 ciSignature* declared_signature = nullptr;
2174 ciMethod* target = stream()->get_method(will_link, &declared_signature);
2175 ciKlass* holder = stream()->get_declared_method_holder();
2176 const Bytecodes::Code bc_raw = stream()->cur_bc_raw();
2177 assert(declared_signature != nullptr, "cannot be null");
2178 assert(will_link == target->is_loaded(), "");
2179 JFR_ONLY(Jfr::on_resolution(this, holder, target); CHECK_BAILOUT();)
2180
2181 ciInstanceKlass* klass = target->holder();
2182 assert(!target->is_loaded() || klass->is_loaded(), "loaded target must imply loaded klass");
2183
2184 // check if CHA possible: if so, change the code to invoke_special
2185 ciInstanceKlass* calling_klass = method()->holder();
2186 ciInstanceKlass* callee_holder = ciEnv::get_instance_klass_for_declared_method_holder(holder);
2187 ciInstanceKlass* actual_recv = callee_holder;
2188
2189 CompileLog* log = compilation()->log();
2190 if (log != nullptr)
2191 log->elem("call method='%d' instr='%s'",
2192 log->identify(target),
2193 Bytecodes::name(code));
2194
2195 // Some methods are obviously bindable without any type checks so
2196 // convert them directly to an invokespecial or invokestatic.
2197 if (target->is_loaded() && !target->is_abstract() && target->can_be_statically_bound()) {
2198 switch (bc_raw) {
2199 case Bytecodes::_invokeinterface:
2200 // convert to invokespecial if the target is the private interface method.
2201 if (target->is_private()) {
2202 assert(holder->is_interface(), "How did we get a non-interface method here!");
2203 code = Bytecodes::_invokespecial;
2204 }
2205 break;
2206 case Bytecodes::_invokevirtual:
2207 code = Bytecodes::_invokespecial;
2208 break;
2209 case Bytecodes::_invokehandle:
2210 code = target->is_static() ? Bytecodes::_invokestatic : Bytecodes::_invokespecial;
2211 break;
2212 default:
2213 break;
2214 }
2215 } else {
2216 if (bc_raw == Bytecodes::_invokehandle) {
2217 assert(!will_link, "should come here only for unlinked call");
2218 code = Bytecodes::_invokespecial;
2219 }
2220 }
2221
2222 if (code == Bytecodes::_invokespecial) {
2223 // Additional receiver subtype checks for interface calls via invokespecial or invokeinterface.
2224 ciKlass* receiver_constraint = nullptr;
2225
2226 if (bc_raw == Bytecodes::_invokeinterface) {
2227 receiver_constraint = holder;
2228 } else if (bc_raw == Bytecodes::_invokespecial && !target->is_object_constructor() && calling_klass->is_interface()) {
2229 receiver_constraint = calling_klass;
2230 }
2231
2232 if (receiver_constraint != nullptr) {
2233 int index = state()->stack_size() - (target->arg_size_no_receiver() + 1);
2234 Value receiver = state()->stack_at(index);
2235 CheckCast* c = new CheckCast(receiver_constraint, receiver, copy_state_before());
2236 // go to uncommon_trap when checkcast fails
2237 c->set_invokespecial_receiver_check();
2238 state()->stack_at_put(index, append_split(c));
2239 }
2240 }
2241
2242 // Push appendix argument (MethodType, CallSite, etc.), if one.
2243 bool patch_for_appendix = false;
2244 int patching_appendix_arg = 0;
2245 if (Bytecodes::has_optional_appendix(bc_raw) && (!will_link || PatchALot)) {
2246 Value arg = append(new Constant(new ObjectConstant(compilation()->env()->unloaded_ciinstance()), copy_state_before()));
2247 apush(arg);
2248 patch_for_appendix = true;
2249 patching_appendix_arg = (will_link && stream()->has_appendix()) ? 0 : 1;
2250 } else if (stream()->has_appendix()) {
2251 ciObject* appendix = stream()->get_appendix();
2252 Value arg = append(new Constant(new ObjectConstant(appendix)));
2253 apush(arg);
2254 }
2255
2256 ciMethod* cha_monomorphic_target = nullptr;
2257 ciMethod* exact_target = nullptr;
2258 Value better_receiver = nullptr;
2259 if (UseCHA && target->is_loaded() &&
2260 !(// %%% FIXME: Are both of these relevant?
2261 target->is_method_handle_intrinsic() ||
2262 target->is_compiled_lambda_form()) &&
2263 !patch_for_appendix) {
2264 Value receiver = nullptr;
2265 ciInstanceKlass* receiver_klass = nullptr;
2266 bool type_is_exact = false;
2267 // try to find a precise receiver type
2268 if (will_link && !target->is_static()) {
2269 int index = state()->stack_size() - (target->arg_size_no_receiver() + 1);
2270 receiver = state()->stack_at(index);
2271 ciType* type = receiver->exact_type();
2272 if (type != nullptr && type->is_loaded()) {
2273 assert(!type->is_instance_klass() || !type->as_instance_klass()->is_interface(), "Must not be an interface");
2274 // Detects non-interface instances, primitive arrays, and some object arrays.
2275 // Array receivers can only call Object methods, so we should be able to allow
2276 // all object arrays here too, even those with unloaded types.
2277 receiver_klass = (ciInstanceKlass*) type;
2278 type_is_exact = true;
2279 }
2280 if (type == nullptr) {
2281 type = receiver->declared_type();
2282 if (type != nullptr && type->is_loaded() &&
2283 type->is_instance_klass() && !type->as_instance_klass()->is_interface()) {
2284 receiver_klass = (ciInstanceKlass*) type;
2285 if (receiver_klass->is_leaf_type() && !receiver_klass->is_final()) {
2286 // Insert a dependency on this type since
2287 // find_monomorphic_target may assume it's already done.
2288 dependency_recorder()->assert_leaf_type(receiver_klass);
2289 type_is_exact = true;
2290 }
2291 }
2292 }
2293 }
2294 if (receiver_klass != nullptr && type_is_exact &&
2295 receiver_klass->is_loaded() && code != Bytecodes::_invokespecial) {
2296 // If we have the exact receiver type we can bind directly to
2297 // the method to call.
2298 exact_target = target->resolve_invoke(calling_klass, receiver_klass);
2299 if (exact_target != nullptr) {
2300 target = exact_target;
2301 code = Bytecodes::_invokespecial;
2302 }
2303 }
2304 if (receiver_klass != nullptr &&
2305 receiver_klass->is_subtype_of(actual_recv) &&
2306 actual_recv->is_initialized()) {
2307 actual_recv = receiver_klass;
2308 }
2309
2310 if ((code == Bytecodes::_invokevirtual && callee_holder->is_initialized()) ||
2311 (code == Bytecodes::_invokeinterface && callee_holder->is_initialized() && !actual_recv->is_interface())) {
2312 // Use CHA on the receiver to select a more precise method.
2313 cha_monomorphic_target = target->find_monomorphic_target(calling_klass, callee_holder, actual_recv);
2314 } else if (code == Bytecodes::_invokeinterface && callee_holder->is_loaded() && receiver != nullptr) {
2315 assert(callee_holder->is_interface(), "invokeinterface to non interface?");
2316 // If there is only one implementor of this interface then we
2317 // may be able bind this invoke directly to the implementing
2318 // klass but we need both a dependence on the single interface
2319 // and on the method we bind to. Additionally since all we know
2320 // about the receiver type is the it's supposed to implement the
2321 // interface we have to insert a check that it's the class we
2322 // expect. Interface types are not checked by the verifier so
2323 // they are roughly equivalent to Object.
2324 // The number of implementors for declared_interface is less or
2325 // equal to the number of implementors for target->holder() so
2326 // if number of implementors of target->holder() == 1 then
2327 // number of implementors for decl_interface is 0 or 1. If
2328 // it's 0 then no class implements decl_interface and there's
2329 // no point in inlining.
2330 ciInstanceKlass* declared_interface = callee_holder;
2331 ciInstanceKlass* singleton = declared_interface->unique_implementor();
2332 if (singleton != nullptr) {
2333 assert(singleton != declared_interface, "not a unique implementor");
2334 cha_monomorphic_target = target->find_monomorphic_target(calling_klass, declared_interface, singleton);
2335 if (cha_monomorphic_target != nullptr) {
2336 ciInstanceKlass* holder = cha_monomorphic_target->holder();
2337 ciInstanceKlass* constraint = (holder->is_subtype_of(singleton) ? holder : singleton); // avoid upcasts
2338 if (holder != compilation()->env()->Object_klass() &&
2339 (!type_is_exact || receiver_klass->is_subtype_of(constraint))) {
2340 actual_recv = declared_interface;
2341
2342 // insert a check it's really the expected class.
2343 CheckCast* c = new CheckCast(constraint, receiver, copy_state_for_exception());
2344 c->set_incompatible_class_change_check();
2345 c->set_direct_compare(constraint->is_final());
2346 // pass the result of the checkcast so that the compiler has
2347 // more accurate type info in the inlinee
2348 better_receiver = append_split(c);
2349
2350 dependency_recorder()->assert_unique_implementor(declared_interface, singleton);
2351 } else {
2352 cha_monomorphic_target = nullptr;
2353 }
2354 }
2355 }
2356 }
2357 }
2358
2359 if (cha_monomorphic_target != nullptr) {
2360 assert(!target->can_be_statically_bound() || target == cha_monomorphic_target, "");
2361 assert(!cha_monomorphic_target->is_abstract(), "");
2362 if (!cha_monomorphic_target->can_be_statically_bound(actual_recv)) {
2363 // If we inlined because CHA revealed only a single target method,
2364 // then we are dependent on that target method not getting overridden
2365 // by dynamic class loading. Be sure to test the "static" receiver
2366 // dest_method here, as opposed to the actual receiver, which may
2367 // falsely lead us to believe that the receiver is final or private.
2368 dependency_recorder()->assert_unique_concrete_method(actual_recv, cha_monomorphic_target, callee_holder, target);
2369 }
2370 code = Bytecodes::_invokespecial;
2371 }
2372
2373 // check if we could do inlining
2374 if (!PatchALot && Inline && target->is_loaded() && !patch_for_appendix &&
2375 callee_holder->is_loaded()) { // the effect of symbolic reference resolution
2376
2377 // callee is known => check if we have static binding
2378 if ((code == Bytecodes::_invokestatic && klass->is_initialized()) || // invokestatic involves an initialization barrier on declaring class
2379 code == Bytecodes::_invokespecial ||
2380 (code == Bytecodes::_invokevirtual && target->is_final_method()) ||
2381 code == Bytecodes::_invokedynamic) {
2382 // static binding => check if callee is ok
2383 ciMethod* inline_target = (cha_monomorphic_target != nullptr) ? cha_monomorphic_target : target;
2384 bool holder_known = (cha_monomorphic_target != nullptr) || (exact_target != nullptr);
2385 bool success = try_inline(inline_target, holder_known, false /* ignore_return */, code, better_receiver);
2386
2387 CHECK_BAILOUT();
2388 clear_inline_bailout();
2389
2390 if (success) {
2391 // Register dependence if JVMTI has either breakpoint
2392 // setting or hotswapping of methods capabilities since they may
2393 // cause deoptimization.
2394 if (compilation()->env()->jvmti_can_hotswap_or_post_breakpoint()) {
2395 dependency_recorder()->assert_evol_method(inline_target);
2396 }
2397 return;
2398 }
2399 } else {
2400 print_inlining(target, "no static binding", /*success*/ false);
2401 }
2402 } else {
2403 print_inlining(target, "not inlineable", /*success*/ false);
2404 }
2405
2406 // If we attempted an inline which did not succeed because of a
2407 // bailout during construction of the callee graph, the entire
2408 // compilation has to be aborted. This is fairly rare and currently
2409 // seems to only occur for jasm-generated classes which contain
2410 // jsr/ret pairs which are not associated with finally clauses and
2411 // do not have exception handlers in the containing method, and are
2412 // therefore not caught early enough to abort the inlining without
2413 // corrupting the graph. (We currently bail out with a non-empty
2414 // stack at a ret in these situations.)
2415 CHECK_BAILOUT();
2416
2417 // inlining not successful => standard invoke
2418 ValueType* result_type = as_ValueType(declared_signature->return_type());
2419 ValueStack* state_before = copy_state_exhandling();
2420
2421 // The bytecode (code) might change in this method so we are checking this very late.
2422 const bool has_receiver =
2423 code == Bytecodes::_invokespecial ||
2424 code == Bytecodes::_invokevirtual ||
2425 code == Bytecodes::_invokeinterface;
2426 Values* args = state()->pop_arguments(target->arg_size_no_receiver() + patching_appendix_arg);
2427 Value recv = has_receiver ? apop() : nullptr;
2428
2429 // A null check is required here (when there is a receiver) for any of the following cases
2430 // - invokespecial, always need a null check.
2431 // - invokevirtual, when the target is final and loaded. Calls to final targets will become optimized
2432 // and require null checking. If the target is loaded a null check is emitted here.
2433 // If the target isn't loaded the null check must happen after the call resolution. We achieve that
2434 // by using the target methods unverified entry point (see CompiledIC::compute_monomorphic_entry).
2435 // (The JVM specification requires that LinkageError must be thrown before a NPE. An unloaded target may
2436 // potentially fail, and can't have the null check before the resolution.)
2437 // - A call that will be profiled. (But we can't add a null check when the target is unloaded, by the same
2438 // reason as above, so calls with a receiver to unloaded targets can't be profiled.)
2439 //
2440 // Normal invokevirtual will perform the null check during lookup
2441
2442 bool need_null_check = (code == Bytecodes::_invokespecial) ||
2443 (target->is_loaded() && (target->is_final_method() || (is_profiling() && profile_calls())));
2444
2445 if (need_null_check) {
2446 if (recv != nullptr) {
2447 null_check(recv);
2448 }
2449
2450 if (is_profiling()) {
2451 // Note that we'd collect profile data in this method if we wanted it.
2452 compilation()->set_would_profile(true);
2453
2454 if (profile_calls()) {
2455 assert(cha_monomorphic_target == nullptr || exact_target == nullptr, "both can not be set");
2456 ciKlass* target_klass = nullptr;
2457 if (cha_monomorphic_target != nullptr) {
2458 target_klass = cha_monomorphic_target->holder();
2459 } else if (exact_target != nullptr) {
2460 target_klass = exact_target->holder();
2461 }
2462 profile_call(target, recv, target_klass, collect_args_for_profiling(args, nullptr, false), false);
2463 }
2464 }
2465 }
2466
2467 Invoke* result = new Invoke(code, result_type, recv, args, target, state_before);
2468 // push result
2469 append_split(result);
2470
2471 if (result_type != voidType) {
2472 push(result_type, result);
2473 }
2474 if (profile_return() && result_type->is_object_kind()) {
2475 profile_return_type(result, target);
2476 }
2477 }
2478
2479
2480 void GraphBuilder::new_instance(int klass_index) {
2481 ValueStack* state_before = copy_state_exhandling();
2482 ciKlass* klass = stream()->get_klass();
2483 assert(klass->is_instance_klass(), "must be an instance klass");
2484 NewInstance* new_instance = new NewInstance(klass->as_instance_klass(), state_before, stream()->is_unresolved_klass(), false);
2485 _memory->new_instance(new_instance);
2486 apush(append_split(new_instance));
2487 }
2488
2489 void GraphBuilder::new_type_array() {
2490 ValueStack* state_before = copy_state_exhandling();
2491 apush(append_split(new NewTypeArray(ipop(), (BasicType)stream()->get_index(), state_before, true)));
2492 }
2493
2494
2495 void GraphBuilder::new_object_array() {
2496 ciKlass* klass = stream()->get_klass();
2497 ValueStack* state_before = !klass->is_loaded() || PatchALot ? copy_state_before() : copy_state_exhandling();
2498 NewArray* n = new NewObjectArray(klass, ipop(), state_before);
2499 apush(append_split(n));
2500 }
2501
2502
2503 bool GraphBuilder::direct_compare(ciKlass* k) {
2504 if (k->is_loaded() && k->is_instance_klass() && !UseSlowPath) {
2505 ciInstanceKlass* ik = k->as_instance_klass();
2506 if (ik->is_final()) {
2507 return true;
2508 } else {
2509 if (UseCHA && !(ik->has_subklass() || ik->is_interface())) {
2510 // test class is leaf class
2511 dependency_recorder()->assert_leaf_type(ik);
2512 return true;
2513 }
2514 }
2515 }
2516 return false;
2517 }
2518
2519
2520 void GraphBuilder::check_cast(int klass_index) {
2521 ciKlass* klass = stream()->get_klass();
2522 ValueStack* state_before = !klass->is_loaded() || PatchALot ? copy_state_before() : copy_state_for_exception();
2523 CheckCast* c = new CheckCast(klass, apop(), state_before);
2524 apush(append_split(c));
2525 c->set_direct_compare(direct_compare(klass));
2526
2527 if (is_profiling()) {
2528 // Note that we'd collect profile data in this method if we wanted it.
2529 compilation()->set_would_profile(true);
2530
2531 if (profile_checkcasts()) {
2532 c->set_profiled_method(method());
2533 c->set_profiled_bci(bci());
2534 c->set_should_profile(true);
2535 }
2536 }
2537 }
2538
2539
2540 void GraphBuilder::instance_of(int klass_index) {
2541 ciKlass* klass = stream()->get_klass();
2542 ValueStack* state_before = !klass->is_loaded() || PatchALot ? copy_state_before() : copy_state_exhandling();
2543 InstanceOf* i = new InstanceOf(klass, apop(), state_before);
2544 ipush(append_split(i));
2545 i->set_direct_compare(direct_compare(klass));
2546
2547 if (is_profiling()) {
2548 // Note that we'd collect profile data in this method if we wanted it.
2549 compilation()->set_would_profile(true);
2550
2551 if (profile_checkcasts()) {
2552 i->set_profiled_method(method());
2553 i->set_profiled_bci(bci());
2554 i->set_should_profile(true);
2555 }
2556 }
2557 }
2558
2559
2560 void GraphBuilder::monitorenter(Value x, int bci) {
2561 bool maybe_inlinetype = false;
2562 if (bci == InvocationEntryBci) {
2563 // Called by GraphBuilder::inline_sync_entry.
2564 #ifdef ASSERT
2565 ciType* obj_type = x->declared_type();
2566 assert(obj_type == nullptr || !obj_type->is_inlinetype(), "inline types cannot have synchronized methods");
2567 #endif
2568 } else {
2569 // We are compiling a monitorenter bytecode
2570 if (Arguments::is_valhalla_enabled()) {
2571 ciType* obj_type = x->declared_type();
2572 if (obj_type == nullptr || obj_type->as_klass()->can_be_inline_klass()) {
2573 // If we're (possibly) locking on an inline type, check for markWord::always_locked_pattern
2574 // and throw IMSE. (obj_type is null for Phi nodes, so let's just be conservative).
2575 maybe_inlinetype = true;
2576 }
2577 }
2578 }
2579
2580 // save state before locking in case of deoptimization after a NullPointerException
2581 ValueStack* state_before = copy_state_for_exception_with_bci(bci);
2582 append_with_bci(new MonitorEnter(x, state()->lock(x), state_before, maybe_inlinetype), bci);
2583 kill_all();
2584 }
2585
2586
2587 void GraphBuilder::monitorexit(Value x, int bci) {
2588 append_with_bci(new MonitorExit(x, state()->unlock()), bci);
2589 kill_all();
2590 }
2591
2592
2593 void GraphBuilder::new_multi_array(int dimensions) {
2594 ciKlass* klass = stream()->get_klass();
2595 ValueStack* state_before = !klass->is_loaded() || PatchALot ? copy_state_before() : copy_state_exhandling();
2596
2597 Values* dims = new Values(dimensions, dimensions, nullptr);
2598 // fill in all dimensions
2599 int i = dimensions;
2600 while (i-- > 0) dims->at_put(i, ipop());
2601 // create array
2602 NewArray* n = new NewMultiArray(klass, dims, state_before);
2603 apush(append_split(n));
2604 }
2605
2606
2607 void GraphBuilder::throw_op(int bci) {
2608 // We require that the debug info for a Throw be the "state before"
2609 // the Throw (i.e., exception oop is still on TOS)
2610 ValueStack* state_before = copy_state_before_with_bci(bci);
2611 Throw* t = new Throw(apop(), state_before);
2612 // operand stack not needed after a throw
2613 state()->truncate_stack(0);
2614 append_with_bci(t, bci);
2615 }
2616
2617
2618 Instruction* GraphBuilder::append_with_bci(Instruction* instr, int bci) {
2619 Canonicalizer canon(compilation(), instr, bci);
2620 Instruction* i1 = canon.canonical();
2621 if (i1->is_linked() || !i1->can_be_linked()) {
2622 // Canonicalizer returned an instruction which was already
2623 // appended so simply return it.
2624 return i1;
2625 }
2626
2627 if (UseLocalValueNumbering) {
2628 // Lookup the instruction in the ValueMap and add it to the map if
2629 // it's not found.
2630 Instruction* i2 = vmap()->find_insert(i1);
2631 if (i2 != i1) {
2632 // found an entry in the value map, so just return it.
2633 assert(i2->is_linked(), "should already be linked");
2634 return i2;
2635 }
2636 ValueNumberingEffects vne(vmap());
2637 i1->visit(&vne);
2638 }
2639
2640 // i1 was not eliminated => append it
2641 assert(i1->next() == nullptr, "shouldn't already be linked");
2642 _last = _last->set_next(i1, canon.bci());
2643
2644 if (++_instruction_count >= InstructionCountCutoff && !bailed_out()) {
2645 // set the bailout state but complete normal processing. We
2646 // might do a little more work before noticing the bailout so we
2647 // want processing to continue normally until it's noticed.
2648 bailout("Method and/or inlining is too large");
2649 }
2650
2651 #ifndef PRODUCT
2652 if (PrintIRDuringConstruction) {
2653 InstructionPrinter ip;
2654 ip.print_line(i1);
2655 if (Verbose) {
2656 state()->print();
2657 }
2658 }
2659 #endif
2660
2661 // save state after modification of operand stack for StateSplit instructions
2662 StateSplit* s = i1->as_StateSplit();
2663 if (s != nullptr) {
2664 if (EliminateFieldAccess) {
2665 Intrinsic* intrinsic = s->as_Intrinsic();
2666 if (s->as_Invoke() != nullptr || (intrinsic && !intrinsic->preserves_state())) {
2667 _memory->kill();
2668 }
2669 }
2670 s->set_state(state()->copy(ValueStack::StateAfter, canon.bci()));
2671 }
2672
2673 // set up exception handlers for this instruction if necessary
2674 if (i1->can_trap()) {
2675 i1->set_exception_handlers(handle_exception(i1));
2676 assert(i1->exception_state() != nullptr || !i1->needs_exception_state() || bailed_out(), "handle_exception must set exception state");
2677 }
2678 return i1;
2679 }
2680
2681
2682 Instruction* GraphBuilder::append(Instruction* instr) {
2683 assert(instr->as_StateSplit() == nullptr || instr->as_BlockEnd() != nullptr, "wrong append used");
2684 return append_with_bci(instr, bci());
2685 }
2686
2687
2688 Instruction* GraphBuilder::append_split(StateSplit* instr) {
2689 return append_with_bci(instr, bci());
2690 }
2691
2692
2693 void GraphBuilder::null_check(Value value) {
2694 if (value->as_NewArray() != nullptr || value->as_NewInstance() != nullptr) {
2695 return;
2696 } else {
2697 Constant* con = value->as_Constant();
2698 if (con) {
2699 ObjectType* c = con->type()->as_ObjectType();
2700 if (c && c->is_loaded()) {
2701 ObjectConstant* oc = c->as_ObjectConstant();
2702 if (!oc || !oc->value()->is_null_object()) {
2703 return;
2704 }
2705 }
2706 }
2707 if (value->is_null_free()) return;
2708 }
2709 append(new NullCheck(value, copy_state_for_exception()));
2710 }
2711
2712
2713
2714 XHandlers* GraphBuilder::handle_exception(Instruction* instruction) {
2715 if (!has_handler() && (!instruction->needs_exception_state() || instruction->exception_state() != nullptr)) {
2716 assert(instruction->exception_state() == nullptr
2717 || instruction->exception_state()->kind() == ValueStack::EmptyExceptionState
2718 || (instruction->exception_state()->kind() == ValueStack::ExceptionState && _compilation->env()->should_retain_local_variables()),
2719 "exception_state should be of exception kind");
2720 return new XHandlers();
2721 }
2722
2723 XHandlers* exception_handlers = new XHandlers();
2724 ScopeData* cur_scope_data = scope_data();
2725 ValueStack* cur_state = instruction->state_before();
2726 ValueStack* prev_state = nullptr;
2727 int scope_count = 0;
2728
2729 assert(cur_state != nullptr, "state_before must be set");
2730 do {
2731 int cur_bci = cur_state->bci();
2732 assert(cur_scope_data->scope() == cur_state->scope(), "scopes do not match");
2733 assert(cur_bci == SynchronizationEntryBCI || cur_bci == cur_scope_data->stream()->cur_bci()
2734 || has_pending_field_access() || has_pending_load_indexed(), "invalid bci");
2735
2736
2737 // join with all potential exception handlers
2738 XHandlers* list = cur_scope_data->xhandlers();
2739 const int n = list->length();
2740 for (int i = 0; i < n; i++) {
2741 XHandler* h = list->handler_at(i);
2742 if (h->covers(cur_bci)) {
2743 // h is a potential exception handler => join it
2744 compilation()->set_has_exception_handlers(true);
2745
2746 BlockBegin* entry = h->entry_block();
2747 if (entry == block()) {
2748 // It's acceptable for an exception handler to cover itself
2749 // but we don't handle that in the parser currently. It's
2750 // very rare so we bailout instead of trying to handle it.
2751 BAILOUT_("exception handler covers itself", exception_handlers);
2752 }
2753 assert(entry->bci() == h->handler_bci(), "must match");
2754 assert(entry->bci() == -1 || entry == cur_scope_data->block_at(entry->bci()), "blocks must correspond");
2755
2756 // previously this was a BAILOUT, but this is not necessary
2757 // now because asynchronous exceptions are not handled this way.
2758 assert(entry->state() == nullptr || cur_state->total_locks_size() == entry->state()->total_locks_size(), "locks do not match");
2759
2760 // xhandler start with an empty expression stack
2761 if (cur_state->stack_size() != 0) {
2762 // locals are preserved
2763 // stack will be truncated
2764 cur_state = cur_state->copy(ValueStack::ExceptionState, cur_state->bci());
2765 }
2766 if (instruction->exception_state() == nullptr) {
2767 instruction->set_exception_state(cur_state);
2768 }
2769
2770 // Note: Usually this join must work. However, very
2771 // complicated jsr-ret structures where we don't ret from
2772 // the subroutine can cause the objects on the monitor
2773 // stacks to not match because blocks can be parsed twice.
2774 // The only test case we've seen so far which exhibits this
2775 // problem is caught by the infinite recursion test in
2776 // GraphBuilder::jsr() if the join doesn't work.
2777 if (!entry->try_merge(cur_state, compilation()->has_irreducible_loops())) {
2778 BAILOUT_("error while joining with exception handler, prob. due to complicated jsr/rets", exception_handlers);
2779 }
2780
2781 // add current state for correct handling of phi functions at begin of xhandler
2782 int phi_operand = entry->add_exception_state(cur_state);
2783
2784 // add entry to the list of xhandlers of this block
2785 _block->add_exception_handler(entry);
2786
2787 // add back-edge from xhandler entry to this block
2788 if (!entry->is_predecessor(_block)) {
2789 entry->add_predecessor(_block);
2790 }
2791
2792 // clone XHandler because phi_operand and scope_count can not be shared
2793 XHandler* new_xhandler = new XHandler(h);
2794 new_xhandler->set_phi_operand(phi_operand);
2795 new_xhandler->set_scope_count(scope_count);
2796 exception_handlers->append(new_xhandler);
2797
2798 // fill in exception handler subgraph lazily
2799 assert(!entry->is_set(BlockBegin::was_visited_flag), "entry must not be visited yet");
2800 cur_scope_data->add_to_work_list(entry);
2801
2802 // stop when reaching catchall
2803 if (h->catch_type() == 0) {
2804 return exception_handlers;
2805 }
2806 }
2807 }
2808
2809 if (exception_handlers->length() == 0) {
2810 // This scope and all callees do not handle exceptions, so the local
2811 // variables of this scope are not needed. However, the scope itself is
2812 // required for a correct exception stack trace -> clear out the locals.
2813 // Stack and locals are invalidated but not truncated in caller state.
2814 if (prev_state != nullptr) {
2815 assert(instruction->exception_state() != nullptr, "missed set?");
2816 ValueStack::Kind exc_kind = ValueStack::empty_exception_kind(true /* caller */);
2817 cur_state = cur_state->copy(exc_kind, cur_state->bci());
2818 // reset caller exception state
2819 prev_state->set_caller_state(cur_state);
2820 } else {
2821 assert(instruction->exception_state() == nullptr, "already set");
2822 // set instruction exception state
2823 // truncate stack
2824 ValueStack::Kind exc_kind = ValueStack::empty_exception_kind();
2825 cur_state = cur_state->copy(exc_kind, cur_state->bci());
2826 instruction->set_exception_state(cur_state);
2827 }
2828 }
2829
2830 // Set up iteration for next time.
2831 // If parsing a jsr, do not grab exception handlers from the
2832 // parent scopes for this method (already got them, and they
2833 // needed to be cloned)
2834
2835 while (cur_scope_data->parsing_jsr()) {
2836 cur_scope_data = cur_scope_data->parent();
2837 }
2838
2839 assert(cur_scope_data->scope() == cur_state->scope(), "scopes do not match");
2840 assert(cur_state->locks_size() == 0 || cur_state->locks_size() == 1, "unlocking must be done in a catchall exception handler");
2841
2842 prev_state = cur_state;
2843 cur_state = cur_state->caller_state();
2844 cur_scope_data = cur_scope_data->parent();
2845 scope_count++;
2846 } while (cur_scope_data != nullptr);
2847
2848 return exception_handlers;
2849 }
2850
2851
2852 // Helper class for simplifying Phis.
2853 class PhiSimplifier : public BlockClosure {
2854 private:
2855 bool _has_substitutions;
2856 Value simplify(Value v);
2857
2858 public:
2859 PhiSimplifier(BlockBegin* start) : _has_substitutions(false) {
2860 start->iterate_preorder(this);
2861 if (_has_substitutions) {
2862 SubstitutionResolver sr(start);
2863 }
2864 }
2865 void block_do(BlockBegin* b);
2866 bool has_substitutions() const { return _has_substitutions; }
2867 };
2868
2869
2870 Value PhiSimplifier::simplify(Value v) {
2871 Phi* phi = v->as_Phi();
2872
2873 if (phi == nullptr) {
2874 // no phi function
2875 return v;
2876 } else if (v->has_subst()) {
2877 // already substituted; subst can be phi itself -> simplify
2878 return simplify(v->subst());
2879 } else if (phi->is_set(Phi::cannot_simplify)) {
2880 // already tried to simplify phi before
2881 return phi;
2882 } else if (phi->is_set(Phi::visited)) {
2883 // break cycles in phi functions
2884 return phi;
2885 } else if (phi->type()->is_illegal()) {
2886 // illegal phi functions are ignored anyway
2887 return phi;
2888
2889 } else {
2890 // mark phi function as processed to break cycles in phi functions
2891 phi->set(Phi::visited);
2892
2893 // simplify x = [y, x] and x = [y, y] to y
2894 Value subst = nullptr;
2895 int opd_count = phi->operand_count();
2896 for (int i = 0; i < opd_count; i++) {
2897 Value opd = phi->operand_at(i);
2898 assert(opd != nullptr, "Operand must exist!");
2899
2900 if (opd->type()->is_illegal()) {
2901 // if one operand is illegal, the entire phi function is illegal
2902 phi->make_illegal();
2903 phi->clear(Phi::visited);
2904 return phi;
2905 }
2906
2907 Value new_opd = simplify(opd);
2908 assert(new_opd != nullptr, "Simplified operand must exist!");
2909
2910 if (new_opd != phi && new_opd != subst) {
2911 if (subst == nullptr) {
2912 subst = new_opd;
2913 } else {
2914 // no simplification possible
2915 phi->set(Phi::cannot_simplify);
2916 phi->clear(Phi::visited);
2917 return phi;
2918 }
2919 }
2920 }
2921
2922 // successfully simplified phi function
2923 assert(subst != nullptr, "illegal phi function");
2924 _has_substitutions = true;
2925 phi->clear(Phi::visited);
2926 phi->set_subst(subst);
2927
2928 #ifndef PRODUCT
2929 if (PrintPhiFunctions) {
2930 tty->print_cr("simplified phi function %c%d to %c%d (Block B%d)", phi->type()->tchar(), phi->id(), subst->type()->tchar(), subst->id(), phi->block()->block_id());
2931 }
2932 #endif
2933
2934 return subst;
2935 }
2936 }
2937
2938
2939 void PhiSimplifier::block_do(BlockBegin* b) {
2940 for_each_phi_fun(b, phi,
2941 simplify(phi);
2942 );
2943
2944 #ifdef ASSERT
2945 for_each_phi_fun(b, phi,
2946 assert(phi->operand_count() != 1 || phi->subst() != phi || phi->is_illegal(), "missed trivial simplification");
2947 );
2948
2949 ValueStack* state = b->state()->caller_state();
2950 for_each_state_value(state, value,
2951 Phi* phi = value->as_Phi();
2952 assert(phi == nullptr || phi->block() != b, "must not have phi function to simplify in caller state");
2953 );
2954 #endif
2955 }
2956
2957 // This method is called after all blocks are filled with HIR instructions
2958 // It eliminates all Phi functions of the form x = [y, y] and x = [y, x]
2959 void GraphBuilder::eliminate_redundant_phis(BlockBegin* start) {
2960 PhiSimplifier simplifier(start);
2961 }
2962
2963
2964 void GraphBuilder::connect_to_end(BlockBegin* beg) {
2965 // setup iteration
2966 kill_all();
2967 _block = beg;
2968 _state = beg->state()->copy_for_parsing();
2969 _last = beg;
2970 iterate_bytecodes_for_block(beg->bci());
2971 }
2972
2973
2974 BlockEnd* GraphBuilder::iterate_bytecodes_for_block(int bci) {
2975 #ifndef PRODUCT
2976 if (PrintIRDuringConstruction) {
2977 tty->cr();
2978 InstructionPrinter ip;
2979 ip.print_instr(_block); tty->cr();
2980 ip.print_stack(_block->state()); tty->cr();
2981 ip.print_inline_level(_block);
2982 ip.print_head();
2983 tty->print_cr("locals size: %d stack size: %d", state()->locals_size(), state()->stack_size());
2984 }
2985 #endif
2986 _skip_block = false;
2987 assert(state() != nullptr, "ValueStack missing!");
2988 CompileLog* log = compilation()->log();
2989 ciBytecodeStream s(method());
2990 s.reset_to_bci(bci);
2991 int prev_bci = bci;
2992 scope_data()->set_stream(&s);
2993 // iterate
2994 Bytecodes::Code code = Bytecodes::_illegal;
2995 bool push_exception = false;
2996
2997 if (block()->is_set(BlockBegin::exception_entry_flag) && block()->next() == nullptr) {
2998 // first thing in the exception entry block should be the exception object.
2999 push_exception = true;
3000 }
3001
3002 bool ignore_return = scope_data()->ignore_return();
3003
3004 while (!bailed_out() && last()->as_BlockEnd() == nullptr &&
3005 (code = stream()->next()) != ciBytecodeStream::EOBC() &&
3006 (block_at(s.cur_bci()) == nullptr || block_at(s.cur_bci()) == block())) {
3007 assert(state()->kind() == ValueStack::Parsing, "invalid state kind");
3008
3009 if (log != nullptr)
3010 log->set_context("bc code='%d' bci='%d'", (int)code, s.cur_bci());
3011
3012 // Check for active jsr during OSR compilation
3013 if (compilation()->is_osr_compile()
3014 && scope()->is_top_scope()
3015 && parsing_jsr()
3016 && s.cur_bci() == compilation()->osr_bci()) {
3017 bailout("OSR not supported while a jsr is active");
3018 }
3019
3020 if (push_exception) {
3021 apush(append(new ExceptionObject()));
3022 push_exception = false;
3023 }
3024
3025 // handle bytecode
3026 switch (code) {
3027 case Bytecodes::_nop : /* nothing to do */ break;
3028 case Bytecodes::_aconst_null : apush(append(new Constant(objectNull ))); break;
3029 case Bytecodes::_iconst_m1 : ipush(append(new Constant(new IntConstant (-1)))); break;
3030 case Bytecodes::_iconst_0 : ipush(append(new Constant(intZero ))); break;
3031 case Bytecodes::_iconst_1 : ipush(append(new Constant(intOne ))); break;
3032 case Bytecodes::_iconst_2 : ipush(append(new Constant(new IntConstant ( 2)))); break;
3033 case Bytecodes::_iconst_3 : ipush(append(new Constant(new IntConstant ( 3)))); break;
3034 case Bytecodes::_iconst_4 : ipush(append(new Constant(new IntConstant ( 4)))); break;
3035 case Bytecodes::_iconst_5 : ipush(append(new Constant(new IntConstant ( 5)))); break;
3036 case Bytecodes::_lconst_0 : lpush(append(new Constant(new LongConstant ( 0)))); break;
3037 case Bytecodes::_lconst_1 : lpush(append(new Constant(new LongConstant ( 1)))); break;
3038 case Bytecodes::_fconst_0 : fpush(append(new Constant(new FloatConstant ( 0)))); break;
3039 case Bytecodes::_fconst_1 : fpush(append(new Constant(new FloatConstant ( 1)))); break;
3040 case Bytecodes::_fconst_2 : fpush(append(new Constant(new FloatConstant ( 2)))); break;
3041 case Bytecodes::_dconst_0 : dpush(append(new Constant(new DoubleConstant( 0)))); break;
3042 case Bytecodes::_dconst_1 : dpush(append(new Constant(new DoubleConstant( 1)))); break;
3043 case Bytecodes::_bipush : ipush(append(new Constant(new IntConstant(((signed char*)s.cur_bcp())[1])))); break;
3044 case Bytecodes::_sipush : ipush(append(new Constant(new IntConstant((short)Bytes::get_Java_u2(s.cur_bcp()+1))))); break;
3045 case Bytecodes::_ldc : // fall through
3046 case Bytecodes::_ldc_w : // fall through
3047 case Bytecodes::_ldc2_w : load_constant(); break;
3048 case Bytecodes::_iload : load_local(intType , s.get_index()); break;
3049 case Bytecodes::_lload : load_local(longType , s.get_index()); break;
3050 case Bytecodes::_fload : load_local(floatType , s.get_index()); break;
3051 case Bytecodes::_dload : load_local(doubleType , s.get_index()); break;
3052 case Bytecodes::_aload : load_local(instanceType, s.get_index()); break;
3053 case Bytecodes::_iload_0 : load_local(intType , 0); break;
3054 case Bytecodes::_iload_1 : load_local(intType , 1); break;
3055 case Bytecodes::_iload_2 : load_local(intType , 2); break;
3056 case Bytecodes::_iload_3 : load_local(intType , 3); break;
3057 case Bytecodes::_lload_0 : load_local(longType , 0); break;
3058 case Bytecodes::_lload_1 : load_local(longType , 1); break;
3059 case Bytecodes::_lload_2 : load_local(longType , 2); break;
3060 case Bytecodes::_lload_3 : load_local(longType , 3); break;
3061 case Bytecodes::_fload_0 : load_local(floatType , 0); break;
3062 case Bytecodes::_fload_1 : load_local(floatType , 1); break;
3063 case Bytecodes::_fload_2 : load_local(floatType , 2); break;
3064 case Bytecodes::_fload_3 : load_local(floatType , 3); break;
3065 case Bytecodes::_dload_0 : load_local(doubleType, 0); break;
3066 case Bytecodes::_dload_1 : load_local(doubleType, 1); break;
3067 case Bytecodes::_dload_2 : load_local(doubleType, 2); break;
3068 case Bytecodes::_dload_3 : load_local(doubleType, 3); break;
3069 case Bytecodes::_aload_0 : load_local(objectType, 0); break;
3070 case Bytecodes::_aload_1 : load_local(objectType, 1); break;
3071 case Bytecodes::_aload_2 : load_local(objectType, 2); break;
3072 case Bytecodes::_aload_3 : load_local(objectType, 3); break;
3073 case Bytecodes::_iaload : load_indexed(T_INT ); break;
3074 case Bytecodes::_laload : load_indexed(T_LONG ); break;
3075 case Bytecodes::_faload : load_indexed(T_FLOAT ); break;
3076 case Bytecodes::_daload : load_indexed(T_DOUBLE); break;
3077 case Bytecodes::_aaload : load_indexed(T_OBJECT); break;
3078 case Bytecodes::_baload : load_indexed(T_BYTE ); break;
3079 case Bytecodes::_caload : load_indexed(T_CHAR ); break;
3080 case Bytecodes::_saload : load_indexed(T_SHORT ); break;
3081 case Bytecodes::_istore : store_local(intType , s.get_index()); break;
3082 case Bytecodes::_lstore : store_local(longType , s.get_index()); break;
3083 case Bytecodes::_fstore : store_local(floatType , s.get_index()); break;
3084 case Bytecodes::_dstore : store_local(doubleType, s.get_index()); break;
3085 case Bytecodes::_astore : store_local(objectType, s.get_index()); break;
3086 case Bytecodes::_istore_0 : store_local(intType , 0); break;
3087 case Bytecodes::_istore_1 : store_local(intType , 1); break;
3088 case Bytecodes::_istore_2 : store_local(intType , 2); break;
3089 case Bytecodes::_istore_3 : store_local(intType , 3); break;
3090 case Bytecodes::_lstore_0 : store_local(longType , 0); break;
3091 case Bytecodes::_lstore_1 : store_local(longType , 1); break;
3092 case Bytecodes::_lstore_2 : store_local(longType , 2); break;
3093 case Bytecodes::_lstore_3 : store_local(longType , 3); break;
3094 case Bytecodes::_fstore_0 : store_local(floatType , 0); break;
3095 case Bytecodes::_fstore_1 : store_local(floatType , 1); break;
3096 case Bytecodes::_fstore_2 : store_local(floatType , 2); break;
3097 case Bytecodes::_fstore_3 : store_local(floatType , 3); break;
3098 case Bytecodes::_dstore_0 : store_local(doubleType, 0); break;
3099 case Bytecodes::_dstore_1 : store_local(doubleType, 1); break;
3100 case Bytecodes::_dstore_2 : store_local(doubleType, 2); break;
3101 case Bytecodes::_dstore_3 : store_local(doubleType, 3); break;
3102 case Bytecodes::_astore_0 : store_local(objectType, 0); break;
3103 case Bytecodes::_astore_1 : store_local(objectType, 1); break;
3104 case Bytecodes::_astore_2 : store_local(objectType, 2); break;
3105 case Bytecodes::_astore_3 : store_local(objectType, 3); break;
3106 case Bytecodes::_iastore : store_indexed(T_INT ); break;
3107 case Bytecodes::_lastore : store_indexed(T_LONG ); break;
3108 case Bytecodes::_fastore : store_indexed(T_FLOAT ); break;
3109 case Bytecodes::_dastore : store_indexed(T_DOUBLE); break;
3110 case Bytecodes::_aastore : store_indexed(T_OBJECT); break;
3111 case Bytecodes::_bastore : store_indexed(T_BYTE ); break;
3112 case Bytecodes::_castore : store_indexed(T_CHAR ); break;
3113 case Bytecodes::_sastore : store_indexed(T_SHORT ); break;
3114 case Bytecodes::_pop : // fall through
3115 case Bytecodes::_pop2 : // fall through
3116 case Bytecodes::_dup : // fall through
3117 case Bytecodes::_dup_x1 : // fall through
3118 case Bytecodes::_dup_x2 : // fall through
3119 case Bytecodes::_dup2 : // fall through
3120 case Bytecodes::_dup2_x1 : // fall through
3121 case Bytecodes::_dup2_x2 : // fall through
3122 case Bytecodes::_swap : stack_op(code); break;
3123 case Bytecodes::_iadd : arithmetic_op(intType , code); break;
3124 case Bytecodes::_ladd : arithmetic_op(longType , code); break;
3125 case Bytecodes::_fadd : arithmetic_op(floatType , code); break;
3126 case Bytecodes::_dadd : arithmetic_op(doubleType, code); break;
3127 case Bytecodes::_isub : arithmetic_op(intType , code); break;
3128 case Bytecodes::_lsub : arithmetic_op(longType , code); break;
3129 case Bytecodes::_fsub : arithmetic_op(floatType , code); break;
3130 case Bytecodes::_dsub : arithmetic_op(doubleType, code); break;
3131 case Bytecodes::_imul : arithmetic_op(intType , code); break;
3132 case Bytecodes::_lmul : arithmetic_op(longType , code); break;
3133 case Bytecodes::_fmul : arithmetic_op(floatType , code); break;
3134 case Bytecodes::_dmul : arithmetic_op(doubleType, code); break;
3135 case Bytecodes::_idiv : arithmetic_op(intType , code, copy_state_for_exception()); break;
3136 case Bytecodes::_ldiv : arithmetic_op(longType , code, copy_state_for_exception()); break;
3137 case Bytecodes::_fdiv : arithmetic_op(floatType , code); break;
3138 case Bytecodes::_ddiv : arithmetic_op(doubleType, code); break;
3139 case Bytecodes::_irem : arithmetic_op(intType , code, copy_state_for_exception()); break;
3140 case Bytecodes::_lrem : arithmetic_op(longType , code, copy_state_for_exception()); break;
3141 case Bytecodes::_frem : arithmetic_op(floatType , code); break;
3142 case Bytecodes::_drem : arithmetic_op(doubleType, code); break;
3143 case Bytecodes::_ineg : negate_op(intType ); break;
3144 case Bytecodes::_lneg : negate_op(longType ); break;
3145 case Bytecodes::_fneg : negate_op(floatType ); break;
3146 case Bytecodes::_dneg : negate_op(doubleType); break;
3147 case Bytecodes::_ishl : shift_op(intType , code); break;
3148 case Bytecodes::_lshl : shift_op(longType, code); break;
3149 case Bytecodes::_ishr : shift_op(intType , code); break;
3150 case Bytecodes::_lshr : shift_op(longType, code); break;
3151 case Bytecodes::_iushr : shift_op(intType , code); break;
3152 case Bytecodes::_lushr : shift_op(longType, code); break;
3153 case Bytecodes::_iand : logic_op(intType , code); break;
3154 case Bytecodes::_land : logic_op(longType, code); break;
3155 case Bytecodes::_ior : logic_op(intType , code); break;
3156 case Bytecodes::_lor : logic_op(longType, code); break;
3157 case Bytecodes::_ixor : logic_op(intType , code); break;
3158 case Bytecodes::_lxor : logic_op(longType, code); break;
3159 case Bytecodes::_iinc : increment(); break;
3160 case Bytecodes::_i2l : convert(code, T_INT , T_LONG ); break;
3161 case Bytecodes::_i2f : convert(code, T_INT , T_FLOAT ); break;
3162 case Bytecodes::_i2d : convert(code, T_INT , T_DOUBLE); break;
3163 case Bytecodes::_l2i : convert(code, T_LONG , T_INT ); break;
3164 case Bytecodes::_l2f : convert(code, T_LONG , T_FLOAT ); break;
3165 case Bytecodes::_l2d : convert(code, T_LONG , T_DOUBLE); break;
3166 case Bytecodes::_f2i : convert(code, T_FLOAT , T_INT ); break;
3167 case Bytecodes::_f2l : convert(code, T_FLOAT , T_LONG ); break;
3168 case Bytecodes::_f2d : convert(code, T_FLOAT , T_DOUBLE); break;
3169 case Bytecodes::_d2i : convert(code, T_DOUBLE, T_INT ); break;
3170 case Bytecodes::_d2l : convert(code, T_DOUBLE, T_LONG ); break;
3171 case Bytecodes::_d2f : convert(code, T_DOUBLE, T_FLOAT ); break;
3172 case Bytecodes::_i2b : convert(code, T_INT , T_BYTE ); break;
3173 case Bytecodes::_i2c : convert(code, T_INT , T_CHAR ); break;
3174 case Bytecodes::_i2s : convert(code, T_INT , T_SHORT ); break;
3175 case Bytecodes::_lcmp : compare_op(longType , code); break;
3176 case Bytecodes::_fcmpl : compare_op(floatType , code); break;
3177 case Bytecodes::_fcmpg : compare_op(floatType , code); break;
3178 case Bytecodes::_dcmpl : compare_op(doubleType, code); break;
3179 case Bytecodes::_dcmpg : compare_op(doubleType, code); break;
3180 case Bytecodes::_ifeq : if_zero(intType , If::eql); break;
3181 case Bytecodes::_ifne : if_zero(intType , If::neq); break;
3182 case Bytecodes::_iflt : if_zero(intType , If::lss); break;
3183 case Bytecodes::_ifge : if_zero(intType , If::geq); break;
3184 case Bytecodes::_ifgt : if_zero(intType , If::gtr); break;
3185 case Bytecodes::_ifle : if_zero(intType , If::leq); break;
3186 case Bytecodes::_if_icmpeq : if_same(intType , If::eql); break;
3187 case Bytecodes::_if_icmpne : if_same(intType , If::neq); break;
3188 case Bytecodes::_if_icmplt : if_same(intType , If::lss); break;
3189 case Bytecodes::_if_icmpge : if_same(intType , If::geq); break;
3190 case Bytecodes::_if_icmpgt : if_same(intType , If::gtr); break;
3191 case Bytecodes::_if_icmple : if_same(intType , If::leq); break;
3192 case Bytecodes::_if_acmpeq : if_same(objectType, If::eql); break;
3193 case Bytecodes::_if_acmpne : if_same(objectType, If::neq); break;
3194 case Bytecodes::_goto : _goto(s.cur_bci(), s.get_dest()); break;
3195 case Bytecodes::_jsr : jsr(s.get_dest()); break;
3196 case Bytecodes::_ret : ret(s.get_index()); break;
3197 case Bytecodes::_tableswitch : table_switch(); break;
3198 case Bytecodes::_lookupswitch : lookup_switch(); break;
3199 case Bytecodes::_ireturn : method_return(ipop(), ignore_return); break;
3200 case Bytecodes::_lreturn : method_return(lpop(), ignore_return); break;
3201 case Bytecodes::_freturn : method_return(fpop(), ignore_return); break;
3202 case Bytecodes::_dreturn : method_return(dpop(), ignore_return); break;
3203 case Bytecodes::_areturn : method_return(apop(), ignore_return); break;
3204 case Bytecodes::_return : method_return(nullptr, ignore_return); break;
3205 case Bytecodes::_getstatic : // fall through
3206 case Bytecodes::_putstatic : // fall through
3207 case Bytecodes::_getfield : // fall through
3208 case Bytecodes::_putfield : access_field(code); break;
3209 case Bytecodes::_invokevirtual : // fall through
3210 case Bytecodes::_invokespecial : // fall through
3211 case Bytecodes::_invokestatic : // fall through
3212 case Bytecodes::_invokedynamic : // fall through
3213 case Bytecodes::_invokeinterface: invoke(code); break;
3214 case Bytecodes::_new : new_instance(s.get_index_u2()); break;
3215 case Bytecodes::_newarray : new_type_array(); break;
3216 case Bytecodes::_anewarray : new_object_array(); break;
3217 case Bytecodes::_arraylength : { ValueStack* state_before = copy_state_for_exception(); ipush(append(new ArrayLength(apop(), state_before))); break; }
3218 case Bytecodes::_athrow : throw_op(s.cur_bci()); break;
3219 case Bytecodes::_checkcast : check_cast(s.get_index_u2()); break;
3220 case Bytecodes::_instanceof : instance_of(s.get_index_u2()); break;
3221 case Bytecodes::_monitorenter : monitorenter(apop(), s.cur_bci()); break;
3222 case Bytecodes::_monitorexit : monitorexit (apop(), s.cur_bci()); break;
3223 case Bytecodes::_wide : ShouldNotReachHere(); break;
3224 case Bytecodes::_multianewarray : new_multi_array(s.cur_bcp()[3]); break;
3225 case Bytecodes::_ifnull : if_null(objectType, If::eql); break;
3226 case Bytecodes::_ifnonnull : if_null(objectType, If::neq); break;
3227 case Bytecodes::_goto_w : _goto(s.cur_bci(), s.get_far_dest()); break;
3228 case Bytecodes::_jsr_w : jsr(s.get_far_dest()); break;
3229 case Bytecodes::_breakpoint : BAILOUT_("concurrent setting of breakpoint", nullptr);
3230 default : ShouldNotReachHere(); break;
3231 }
3232
3233 if (log != nullptr)
3234 log->clear_context(); // skip marker if nothing was printed
3235
3236 // save current bci to setup Goto at the end
3237 prev_bci = s.cur_bci();
3238
3239 }
3240 CHECK_BAILOUT_(nullptr);
3241 // stop processing of this block (see try_inline_full)
3242 if (_skip_block) {
3243 _skip_block = false;
3244 assert(_last && _last->as_BlockEnd(), "");
3245 return _last->as_BlockEnd();
3246 }
3247 // if there are any, check if last instruction is a BlockEnd instruction
3248 BlockEnd* end = last()->as_BlockEnd();
3249 if (end == nullptr) {
3250 // all blocks must end with a BlockEnd instruction => add a Goto
3251 end = new Goto(block_at(s.cur_bci()), false);
3252 append(end);
3253 }
3254 assert(end == last()->as_BlockEnd(), "inconsistency");
3255
3256 assert(end->state() != nullptr, "state must already be present");
3257 assert(end->as_Return() == nullptr || end->as_Throw() == nullptr || end->state()->stack_size() == 0, "stack not needed for return and throw");
3258
3259 // connect to begin & set state
3260 // NOTE that inlining may have changed the block we are parsing
3261 block()->set_end(end);
3262 // propagate state
3263 for (int i = end->number_of_sux() - 1; i >= 0; i--) {
3264 BlockBegin* sux = end->sux_at(i);
3265 assert(sux->is_predecessor(block()), "predecessor missing");
3266 // be careful, bailout if bytecodes are strange
3267 if (!sux->try_merge(end->state(), compilation()->has_irreducible_loops())) BAILOUT_("block join failed", nullptr);
3268 scope_data()->add_to_work_list(end->sux_at(i));
3269 }
3270
3271 scope_data()->set_stream(nullptr);
3272
3273 // done
3274 return end;
3275 }
3276
3277
3278 void GraphBuilder::iterate_all_blocks(bool start_in_current_block_for_inlining) {
3279 do {
3280 if (start_in_current_block_for_inlining && !bailed_out()) {
3281 iterate_bytecodes_for_block(0);
3282 start_in_current_block_for_inlining = false;
3283 } else {
3284 BlockBegin* b;
3285 while ((b = scope_data()->remove_from_work_list()) != nullptr) {
3286 if (!b->is_set(BlockBegin::was_visited_flag)) {
3287 if (b->is_set(BlockBegin::osr_entry_flag)) {
3288 // we're about to parse the osr entry block, so make sure
3289 // we setup the OSR edge leading into this block so that
3290 // Phis get setup correctly.
3291 setup_osr_entry_block();
3292 // this is no longer the osr entry block, so clear it.
3293 b->clear(BlockBegin::osr_entry_flag);
3294 }
3295 b->set(BlockBegin::was_visited_flag);
3296 connect_to_end(b);
3297 }
3298 }
3299 }
3300 } while (!bailed_out() && !scope_data()->is_work_list_empty());
3301 }
3302
3303
3304 bool GraphBuilder::_can_trap [Bytecodes::number_of_java_codes];
3305
3306 void GraphBuilder::initialize() {
3307 // the following bytecodes are assumed to potentially
3308 // throw exceptions in compiled code - note that e.g.
3309 // monitorexit & the return bytecodes do not throw
3310 // exceptions since monitor pairing proved that they
3311 // succeed (if monitor pairing succeeded)
3312 Bytecodes::Code can_trap_list[] =
3313 { Bytecodes::_ldc
3314 , Bytecodes::_ldc_w
3315 , Bytecodes::_ldc2_w
3316 , Bytecodes::_iaload
3317 , Bytecodes::_laload
3318 , Bytecodes::_faload
3319 , Bytecodes::_daload
3320 , Bytecodes::_aaload
3321 , Bytecodes::_baload
3322 , Bytecodes::_caload
3323 , Bytecodes::_saload
3324 , Bytecodes::_iastore
3325 , Bytecodes::_lastore
3326 , Bytecodes::_fastore
3327 , Bytecodes::_dastore
3328 , Bytecodes::_aastore
3329 , Bytecodes::_bastore
3330 , Bytecodes::_castore
3331 , Bytecodes::_sastore
3332 , Bytecodes::_idiv
3333 , Bytecodes::_ldiv
3334 , Bytecodes::_irem
3335 , Bytecodes::_lrem
3336 , Bytecodes::_getstatic
3337 , Bytecodes::_putstatic
3338 , Bytecodes::_getfield
3339 , Bytecodes::_putfield
3340 , Bytecodes::_invokevirtual
3341 , Bytecodes::_invokespecial
3342 , Bytecodes::_invokestatic
3343 , Bytecodes::_invokedynamic
3344 , Bytecodes::_invokeinterface
3345 , Bytecodes::_new
3346 , Bytecodes::_newarray
3347 , Bytecodes::_anewarray
3348 , Bytecodes::_arraylength
3349 , Bytecodes::_athrow
3350 , Bytecodes::_checkcast
3351 , Bytecodes::_instanceof
3352 , Bytecodes::_monitorenter
3353 , Bytecodes::_multianewarray
3354 };
3355
3356 // inititialize trap tables
3357 for (int i = 0; i < Bytecodes::number_of_java_codes; i++) {
3358 _can_trap[i] = false;
3359 }
3360 // set standard trap info
3361 for (uint j = 0; j < ARRAY_SIZE(can_trap_list); j++) {
3362 _can_trap[can_trap_list[j]] = true;
3363 }
3364 }
3365
3366
3367 BlockBegin* GraphBuilder::header_block(BlockBegin* entry, BlockBegin::Flag f, ValueStack* state) {
3368 assert(entry->is_set(f), "entry/flag mismatch");
3369 // create header block
3370 BlockBegin* h = new BlockBegin(entry->bci());
3371 h->set_depth_first_number(0);
3372
3373 Value l = h;
3374 BlockEnd* g = new Goto(entry, false);
3375 l->set_next(g, entry->bci());
3376 h->set_end(g);
3377 h->set(f);
3378 // setup header block end state
3379 ValueStack* s = state->copy(ValueStack::StateAfter, entry->bci()); // can use copy since stack is empty (=> no phis)
3380 assert(s->stack_is_empty(), "must have empty stack at entry point");
3381 g->set_state(s);
3382 return h;
3383 }
3384
3385
3386
3387 BlockBegin* GraphBuilder::setup_start_block(int osr_bci, BlockBegin* std_entry, BlockBegin* osr_entry, ValueStack* state) {
3388 BlockBegin* start = new BlockBegin(0);
3389
3390 // This code eliminates the empty start block at the beginning of
3391 // each method. Previously, each method started with the
3392 // start-block created below, and this block was followed by the
3393 // header block that was always empty. This header block is only
3394 // necessary if std_entry is also a backward branch target because
3395 // then phi functions may be necessary in the header block. It's
3396 // also necessary when profiling so that there's a single block that
3397 // can increment the counters.
3398 // In addition, with range check elimination, we may need a valid block
3399 // that dominates all the rest to insert range predicates.
3400 BlockBegin* new_header_block;
3401 if (std_entry->number_of_preds() > 0 || is_profiling() || RangeCheckElimination) {
3402 new_header_block = header_block(std_entry, BlockBegin::std_entry_flag, state);
3403 } else {
3404 new_header_block = std_entry;
3405 }
3406
3407 // setup start block (root for the IR graph)
3408 Base* base =
3409 new Base(
3410 new_header_block,
3411 osr_entry
3412 );
3413 start->set_next(base, 0);
3414 start->set_end(base);
3415 // create & setup state for start block
3416 start->set_state(state->copy(ValueStack::StateAfter, std_entry->bci()));
3417 base->set_state(state->copy(ValueStack::StateAfter, std_entry->bci()));
3418
3419 if (base->std_entry()->state() == nullptr) {
3420 // setup states for header blocks
3421 base->std_entry()->merge(state, compilation()->has_irreducible_loops());
3422 }
3423
3424 assert(base->std_entry()->state() != nullptr, "");
3425 return start;
3426 }
3427
3428
3429 void GraphBuilder::setup_osr_entry_block() {
3430 assert(compilation()->is_osr_compile(), "only for osrs");
3431
3432 int osr_bci = compilation()->osr_bci();
3433 ciBytecodeStream s(method());
3434 s.reset_to_bci(osr_bci);
3435 s.next();
3436 scope_data()->set_stream(&s);
3437
3438 // create a new block to be the osr setup code
3439 _osr_entry = new BlockBegin(osr_bci);
3440 _osr_entry->set(BlockBegin::osr_entry_flag);
3441 _osr_entry->set_depth_first_number(0);
3442 BlockBegin* target = bci2block()->at(osr_bci);
3443 assert(target != nullptr && target->is_set(BlockBegin::osr_entry_flag), "must be there");
3444 // the osr entry has no values for locals
3445 ValueStack* state = target->state()->copy();
3446 _osr_entry->set_state(state);
3447
3448 kill_all();
3449 _block = _osr_entry;
3450 _state = _osr_entry->state()->copy();
3451 assert(_state->bci() == osr_bci, "mismatch");
3452 _last = _osr_entry;
3453 Value e = append(new OsrEntry());
3454 e->set_needs_null_check(false);
3455
3456 // OSR buffer is
3457 //
3458 // locals[nlocals-1..0]
3459 // monitors[number_of_locks-1..0]
3460 //
3461 // locals is a direct copy of the interpreter frame so in the osr buffer
3462 // so first slot in the local array is the last local from the interpreter
3463 // and last slot is local[0] (receiver) from the interpreter
3464 //
3465 // Similarly with locks. The first lock slot in the osr buffer is the nth lock
3466 // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
3467 // in the interpreter frame (the method lock if a sync method)
3468
3469 // Initialize monitors in the compiled activation.
3470
3471 int index;
3472 Value local;
3473
3474 // find all the locals that the interpreter thinks contain live oops
3475 const ResourceBitMap live_oops = method()->live_local_oops_at_bci(osr_bci);
3476
3477 // compute the offset into the locals so that we can treat the buffer
3478 // as if the locals were still in the interpreter frame
3479 int locals_offset = BytesPerWord * (method()->max_locals() - 1);
3480 for_each_local_value(state, index, local) {
3481 int offset = locals_offset - (index + local->type()->size() - 1) * BytesPerWord;
3482 Value get;
3483 if (local->type()->is_object_kind() && !live_oops.at(index)) {
3484 // The interpreter thinks this local is dead but the compiler
3485 // doesn't so pretend that the interpreter passed in null.
3486 get = append(new Constant(objectNull));
3487 } else {
3488 Value off_val = append(new Constant(new IntConstant(offset)));
3489 get = append(new UnsafeGet(as_BasicType(local->type()), e,
3490 off_val,
3491 false/*is_volatile*/,
3492 true/*is_raw*/));
3493 }
3494 _state->store_local(index, get);
3495 }
3496
3497 // the storage for the OSR buffer is freed manually in the LIRGenerator.
3498
3499 assert(state->caller_state() == nullptr, "should be top scope");
3500 state->clear_locals();
3501 Goto* g = new Goto(target, false);
3502 append(g);
3503 _osr_entry->set_end(g);
3504 target->merge(_osr_entry->end()->state(), compilation()->has_irreducible_loops());
3505
3506 scope_data()->set_stream(nullptr);
3507 }
3508
3509
3510 ValueStack* GraphBuilder::state_at_entry() {
3511 ValueStack* state = new ValueStack(scope(), nullptr);
3512
3513 // Set up locals for receiver
3514 int idx = 0;
3515 if (!method()->is_static()) {
3516 // we should always see the receiver
3517 state->store_local(idx, new Local(method()->holder(), objectType, idx, true));
3518 idx = 1;
3519 }
3520
3521 // Set up locals for incoming arguments
3522 ciSignature* sig = method()->signature();
3523 for (int i = 0; i < sig->count(); i++) {
3524 ciType* type = sig->type_at(i);
3525 BasicType basic_type = type->basic_type();
3526 // don't allow T_ARRAY to propagate into locals types
3527 if (is_reference_type(basic_type)) basic_type = T_OBJECT;
3528 ValueType* vt = as_ValueType(basic_type);
3529 state->store_local(idx, new Local(type, vt, idx, false));
3530 idx += type->size();
3531 }
3532
3533 // lock synchronized method
3534 if (method()->is_synchronized()) {
3535 state->lock(nullptr);
3536 }
3537
3538 return state;
3539 }
3540
3541
3542 GraphBuilder::GraphBuilder(Compilation* compilation, IRScope* scope)
3543 : _scope_data(nullptr)
3544 , _compilation(compilation)
3545 , _memory(new MemoryBuffer())
3546 , _inline_bailout_msg(nullptr)
3547 , _instruction_count(0)
3548 , _osr_entry(nullptr)
3549 , _pending_field_access(nullptr)
3550 , _pending_load_indexed(nullptr)
3551 {
3552 int osr_bci = compilation->osr_bci();
3553
3554 // determine entry points and bci2block mapping
3555 BlockListBuilder blm(compilation, scope, osr_bci);
3556 CHECK_BAILOUT();
3557
3558 BlockList* bci2block = blm.bci2block();
3559 BlockBegin* start_block = bci2block->at(0);
3560
3561 push_root_scope(scope, bci2block, start_block);
3562
3563 // setup state for std entry
3564 _initial_state = state_at_entry();
3565 start_block->merge(_initial_state, compilation->has_irreducible_loops());
3566
3567 // End nulls still exist here
3568
3569 // complete graph
3570 _vmap = new ValueMap();
3571 switch (scope->method()->intrinsic_id()) {
3572 case vmIntrinsics::_dabs : // fall through
3573 case vmIntrinsics::_dsqrt : // fall through
3574 case vmIntrinsics::_dsqrt_strict : // fall through
3575 case vmIntrinsics::_dsin : // fall through
3576 case vmIntrinsics::_dcos : // fall through
3577 case vmIntrinsics::_dtan : // fall through
3578 case vmIntrinsics::_dsinh : // fall through
3579 case vmIntrinsics::_dtanh : // fall through
3580 case vmIntrinsics::_dcbrt : // fall through
3581 case vmIntrinsics::_dlog : // fall through
3582 case vmIntrinsics::_dlog10 : // fall through
3583 case vmIntrinsics::_dexp : // fall through
3584 case vmIntrinsics::_dpow : // fall through
3585 {
3586 // Compiles where the root method is an intrinsic need a special
3587 // compilation environment because the bytecodes for the method
3588 // shouldn't be parsed during the compilation, only the special
3589 // Intrinsic node should be emitted. If this isn't done the
3590 // code for the inlined version will be different than the root
3591 // compiled version which could lead to monotonicity problems on
3592 // intel.
3593 if (CheckIntrinsics && !scope->method()->intrinsic_candidate()) {
3594 BAILOUT("failed to inline intrinsic, method not annotated");
3595 }
3596
3597 // Set up a stream so that appending instructions works properly.
3598 ciBytecodeStream s(scope->method());
3599 s.reset_to_bci(0);
3600 scope_data()->set_stream(&s);
3601 s.next();
3602
3603 // setup the initial block state
3604 _block = start_block;
3605 _state = start_block->state()->copy_for_parsing();
3606 _last = start_block;
3607 load_local(doubleType, 0);
3608 if (scope->method()->intrinsic_id() == vmIntrinsics::_dpow) {
3609 load_local(doubleType, 2);
3610 }
3611
3612 // Emit the intrinsic node.
3613 bool result = try_inline_intrinsics(scope->method());
3614 if (!result) BAILOUT("failed to inline intrinsic");
3615 method_return(dpop());
3616
3617 // connect the begin and end blocks and we're all done.
3618 BlockEnd* end = last()->as_BlockEnd();
3619 block()->set_end(end);
3620 break;
3621 }
3622
3623 case vmIntrinsics::_Reference_get0:
3624 {
3625 {
3626 // With java.lang.ref.reference.get() we must go through the
3627 // intrinsic - when G1 is enabled - even when get() is the root
3628 // method of the compile so that, if necessary, the value in
3629 // the referent field of the reference object gets recorded by
3630 // the pre-barrier code.
3631 // Specifically, if G1 is enabled, the value in the referent
3632 // field is recorded by the G1 SATB pre barrier. This will
3633 // result in the referent being marked live and the reference
3634 // object removed from the list of discovered references during
3635 // reference processing.
3636 if (CheckIntrinsics && !scope->method()->intrinsic_candidate()) {
3637 BAILOUT("failed to inline intrinsic, method not annotated");
3638 }
3639
3640 // Also we need intrinsic to prevent commoning reads from this field
3641 // across safepoint since GC can change its value.
3642
3643 // Set up a stream so that appending instructions works properly.
3644 ciBytecodeStream s(scope->method());
3645 s.reset_to_bci(0);
3646 scope_data()->set_stream(&s);
3647 s.next();
3648
3649 // setup the initial block state
3650 _block = start_block;
3651 _state = start_block->state()->copy_for_parsing();
3652 _last = start_block;
3653 load_local(objectType, 0);
3654
3655 // Emit the intrinsic node.
3656 bool result = try_inline_intrinsics(scope->method());
3657 if (!result) BAILOUT("failed to inline intrinsic");
3658 method_return(apop());
3659
3660 // connect the begin and end blocks and we're all done.
3661 BlockEnd* end = last()->as_BlockEnd();
3662 block()->set_end(end);
3663 break;
3664 }
3665 // Otherwise, fall thru
3666 }
3667
3668 default:
3669 scope_data()->add_to_work_list(start_block);
3670 iterate_all_blocks();
3671 break;
3672 }
3673 CHECK_BAILOUT();
3674
3675 # ifdef ASSERT
3676 // For all blocks reachable from start_block: _end must be non-null
3677 {
3678 BlockList processed;
3679 BlockList to_go;
3680 to_go.append(start_block);
3681 while(to_go.length() > 0) {
3682 BlockBegin* current = to_go.pop();
3683 assert(current != nullptr, "Should not happen.");
3684 assert(current->end() != nullptr, "All blocks reachable from start_block should have end() != nullptr.");
3685 processed.append(current);
3686 for(int i = 0; i < current->number_of_sux(); i++) {
3687 BlockBegin* s = current->sux_at(i);
3688 if (!processed.contains(s)) {
3689 to_go.append(s);
3690 }
3691 }
3692 }
3693 }
3694 #endif // ASSERT
3695
3696 _start = setup_start_block(osr_bci, start_block, _osr_entry, _initial_state);
3697
3698 eliminate_redundant_phis(_start);
3699
3700 NOT_PRODUCT(if (PrintValueNumbering && Verbose) print_stats());
3701 // for osr compile, bailout if some requirements are not fulfilled
3702 if (osr_bci != -1) {
3703 BlockBegin* osr_block = blm.bci2block()->at(osr_bci);
3704 if (!osr_block->is_set(BlockBegin::was_visited_flag)) {
3705 BAILOUT("osr entry must have been visited for osr compile");
3706 }
3707
3708 // check if osr entry point has empty stack - we cannot handle non-empty stacks at osr entry points
3709 if (!osr_block->state()->stack_is_empty()) {
3710 BAILOUT("stack not empty at OSR entry point");
3711 }
3712 }
3713 #ifndef PRODUCT
3714 if (PrintCompilation && Verbose) tty->print_cr("Created %d Instructions", _instruction_count);
3715 #endif
3716 }
3717
3718
3719 ValueStack* GraphBuilder::copy_state_before() {
3720 return copy_state_before_with_bci(bci());
3721 }
3722
3723 ValueStack* GraphBuilder::copy_state_exhandling() {
3724 return copy_state_exhandling_with_bci(bci());
3725 }
3726
3727 ValueStack* GraphBuilder::copy_state_for_exception() {
3728 return copy_state_for_exception_with_bci(bci());
3729 }
3730
3731 ValueStack* GraphBuilder::copy_state_before_with_bci(int bci) {
3732 return state()->copy(ValueStack::StateBefore, bci);
3733 }
3734
3735 ValueStack* GraphBuilder::copy_state_exhandling_with_bci(int bci) {
3736 if (!has_handler()) return nullptr;
3737 return state()->copy(ValueStack::StateBefore, bci);
3738 }
3739
3740 ValueStack* GraphBuilder::copy_state_for_exception_with_bci(int bci) {
3741 ValueStack* s = copy_state_exhandling_with_bci(bci);
3742 if (s == nullptr) {
3743 // no handler, no need to retain locals
3744 ValueStack::Kind exc_kind = ValueStack::empty_exception_kind();
3745 s = state()->copy(exc_kind, bci);
3746 }
3747 return s;
3748 }
3749
3750 int GraphBuilder::recursive_inline_level(ciMethod* cur_callee) const {
3751 int recur_level = 0;
3752 for (IRScope* s = scope(); s != nullptr; s = s->caller()) {
3753 if (s->method() == cur_callee) {
3754 ++recur_level;
3755 }
3756 }
3757 return recur_level;
3758 }
3759
3760 static void set_flags_for_inlined_callee(Compilation* compilation, ciMethod* callee) {
3761 if (callee->has_reserved_stack_access()) {
3762 compilation->set_has_reserved_stack_access(true);
3763 }
3764 if (callee->is_synchronized() || callee->has_monitor_bytecodes()) {
3765 compilation->set_has_monitors(true);
3766 }
3767 if (callee->is_scoped()) {
3768 compilation->set_has_scoped_access(true);
3769 }
3770 }
3771
3772 bool GraphBuilder::try_inline(ciMethod* callee, bool holder_known, bool ignore_return, Bytecodes::Code bc, Value receiver) {
3773 const char* msg = nullptr;
3774
3775 // clear out any existing inline bailout condition
3776 clear_inline_bailout();
3777
3778 // exclude methods we don't want to inline
3779 msg = should_not_inline(callee);
3780 if (msg != nullptr) {
3781 print_inlining(callee, msg, /*success*/ false);
3782 return false;
3783 }
3784
3785 // method handle invokes
3786 if (callee->is_method_handle_intrinsic()) {
3787 if (try_method_handle_inline(callee, ignore_return)) {
3788 set_flags_for_inlined_callee(compilation(), callee);
3789 return true;
3790 }
3791 return false;
3792 }
3793
3794 // handle intrinsics
3795 if (callee->intrinsic_id() != vmIntrinsics::_none &&
3796 callee->check_intrinsic_candidate()) {
3797 if (try_inline_intrinsics(callee, ignore_return)) {
3798 print_inlining(callee, "intrinsic");
3799 set_flags_for_inlined_callee(compilation(), callee);
3800 return true;
3801 }
3802 // try normal inlining
3803 }
3804
3805 // certain methods cannot be parsed at all
3806 msg = check_can_parse(callee);
3807 if (msg != nullptr) {
3808 print_inlining(callee, msg, /*success*/ false);
3809 return false;
3810 }
3811
3812 // If bytecode not set use the current one.
3813 if (bc == Bytecodes::_illegal) {
3814 bc = code();
3815 }
3816 if (try_inline_full(callee, holder_known, ignore_return, bc, receiver)) {
3817 set_flags_for_inlined_callee(compilation(), callee);
3818 return true;
3819 }
3820
3821 // Entire compilation could fail during try_inline_full call.
3822 // In that case printing inlining decision info is useless.
3823 if (!bailed_out())
3824 print_inlining(callee, _inline_bailout_msg, /*success*/ false);
3825
3826 return false;
3827 }
3828
3829
3830 const char* GraphBuilder::check_can_parse(ciMethod* callee) const {
3831 // Certain methods cannot be parsed at all:
3832 if ( callee->is_native()) return "native method";
3833 if ( callee->is_abstract()) return "abstract method";
3834 if (!callee->can_be_parsed()) return "cannot be parsed";
3835 return nullptr;
3836 }
3837
3838 // negative filter: should callee NOT be inlined? returns null, ok to inline, or rejection msg
3839 const char* GraphBuilder::should_not_inline(ciMethod* callee) const {
3840 if ( compilation()->directive()->should_not_inline(callee)) return "disallowed by CompileCommand";
3841 if ( callee->dont_inline()) return "don't inline by annotation";
3842 return nullptr;
3843 }
3844
3845 void GraphBuilder::build_graph_for_intrinsic(ciMethod* callee, bool ignore_return) {
3846 vmIntrinsics::ID id = callee->intrinsic_id();
3847 assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
3848
3849 // Some intrinsics need special IR nodes.
3850 switch(id) {
3851 case vmIntrinsics::_getReference : append_unsafe_get(callee, T_OBJECT, false); return;
3852 case vmIntrinsics::_getBoolean : append_unsafe_get(callee, T_BOOLEAN, false); return;
3853 case vmIntrinsics::_getByte : append_unsafe_get(callee, T_BYTE, false); return;
3854 case vmIntrinsics::_getShort : append_unsafe_get(callee, T_SHORT, false); return;
3855 case vmIntrinsics::_getChar : append_unsafe_get(callee, T_CHAR, false); return;
3856 case vmIntrinsics::_getInt : append_unsafe_get(callee, T_INT, false); return;
3857 case vmIntrinsics::_getLong : append_unsafe_get(callee, T_LONG, false); return;
3858 case vmIntrinsics::_getFloat : append_unsafe_get(callee, T_FLOAT, false); return;
3859 case vmIntrinsics::_getDouble : append_unsafe_get(callee, T_DOUBLE, false); return;
3860 case vmIntrinsics::_putReference : append_unsafe_put(callee, T_OBJECT, false); return;
3861 case vmIntrinsics::_putBoolean : append_unsafe_put(callee, T_BOOLEAN, false); return;
3862 case vmIntrinsics::_putByte : append_unsafe_put(callee, T_BYTE, false); return;
3863 case vmIntrinsics::_putShort : append_unsafe_put(callee, T_SHORT, false); return;
3864 case vmIntrinsics::_putChar : append_unsafe_put(callee, T_CHAR, false); return;
3865 case vmIntrinsics::_putInt : append_unsafe_put(callee, T_INT, false); return;
3866 case vmIntrinsics::_putLong : append_unsafe_put(callee, T_LONG, false); return;
3867 case vmIntrinsics::_putFloat : append_unsafe_put(callee, T_FLOAT, false); return;
3868 case vmIntrinsics::_putDouble : append_unsafe_put(callee, T_DOUBLE, false); return;
3869 case vmIntrinsics::_getShortUnaligned : append_unsafe_get(callee, T_SHORT, false); return;
3870 case vmIntrinsics::_getCharUnaligned : append_unsafe_get(callee, T_CHAR, false); return;
3871 case vmIntrinsics::_getIntUnaligned : append_unsafe_get(callee, T_INT, false); return;
3872 case vmIntrinsics::_getLongUnaligned : append_unsafe_get(callee, T_LONG, false); return;
3873 case vmIntrinsics::_putShortUnaligned : append_unsafe_put(callee, T_SHORT, false); return;
3874 case vmIntrinsics::_putCharUnaligned : append_unsafe_put(callee, T_CHAR, false); return;
3875 case vmIntrinsics::_putIntUnaligned : append_unsafe_put(callee, T_INT, false); return;
3876 case vmIntrinsics::_putLongUnaligned : append_unsafe_put(callee, T_LONG, false); return;
3877 case vmIntrinsics::_getReferenceVolatile : append_unsafe_get(callee, T_OBJECT, true); return;
3878 case vmIntrinsics::_getBooleanVolatile : append_unsafe_get(callee, T_BOOLEAN, true); return;
3879 case vmIntrinsics::_getByteVolatile : append_unsafe_get(callee, T_BYTE, true); return;
3880 case vmIntrinsics::_getShortVolatile : append_unsafe_get(callee, T_SHORT, true); return;
3881 case vmIntrinsics::_getCharVolatile : append_unsafe_get(callee, T_CHAR, true); return;
3882 case vmIntrinsics::_getIntVolatile : append_unsafe_get(callee, T_INT, true); return;
3883 case vmIntrinsics::_getLongVolatile : append_unsafe_get(callee, T_LONG, true); return;
3884 case vmIntrinsics::_getFloatVolatile : append_unsafe_get(callee, T_FLOAT, true); return;
3885 case vmIntrinsics::_getDoubleVolatile : append_unsafe_get(callee, T_DOUBLE, true); return;
3886 case vmIntrinsics::_putReferenceVolatile : append_unsafe_put(callee, T_OBJECT, true); return;
3887 case vmIntrinsics::_putBooleanVolatile : append_unsafe_put(callee, T_BOOLEAN, true); return;
3888 case vmIntrinsics::_putByteVolatile : append_unsafe_put(callee, T_BYTE, true); return;
3889 case vmIntrinsics::_putShortVolatile : append_unsafe_put(callee, T_SHORT, true); return;
3890 case vmIntrinsics::_putCharVolatile : append_unsafe_put(callee, T_CHAR, true); return;
3891 case vmIntrinsics::_putIntVolatile : append_unsafe_put(callee, T_INT, true); return;
3892 case vmIntrinsics::_putLongVolatile : append_unsafe_put(callee, T_LONG, true); return;
3893 case vmIntrinsics::_putFloatVolatile : append_unsafe_put(callee, T_FLOAT, true); return;
3894 case vmIntrinsics::_putDoubleVolatile : append_unsafe_put(callee, T_DOUBLE, true); return;
3895 case vmIntrinsics::_compareAndSetLong:
3896 case vmIntrinsics::_compareAndSetInt:
3897 case vmIntrinsics::_compareAndSetReference : append_unsafe_CAS(callee); return;
3898 case vmIntrinsics::_getAndAddInt:
3899 case vmIntrinsics::_getAndAddLong : append_unsafe_get_and_set(callee, true); return;
3900 case vmIntrinsics::_getAndSetInt :
3901 case vmIntrinsics::_getAndSetLong :
3902 case vmIntrinsics::_getAndSetReference : append_unsafe_get_and_set(callee, false); return;
3903 case vmIntrinsics::_getCharStringU : append_char_access(callee, false); return;
3904 case vmIntrinsics::_putCharStringU : append_char_access(callee, true); return;
3905 case vmIntrinsics::_clone : append_alloc_array_copy(callee); return;
3906 default:
3907 break;
3908 }
3909 if (_inline_bailout_msg != nullptr) {
3910 return;
3911 }
3912
3913 // create intrinsic node
3914 const bool has_receiver = !callee->is_static();
3915 ValueType* result_type = as_ValueType(callee->return_type());
3916 ValueStack* state_before = copy_state_for_exception();
3917
3918 Values* args = state()->pop_arguments(callee->arg_size());
3919
3920 if (is_profiling()) {
3921 // Don't profile in the special case where the root method
3922 // is the intrinsic
3923 if (callee != method()) {
3924 // Note that we'd collect profile data in this method if we wanted it.
3925 compilation()->set_would_profile(true);
3926 if (profile_calls()) {
3927 Value recv = nullptr;
3928 if (has_receiver) {
3929 recv = args->at(0);
3930 null_check(recv);
3931 }
3932 profile_call(callee, recv, nullptr, collect_args_for_profiling(args, callee, true), true);
3933 }
3934 }
3935 }
3936
3937 Intrinsic* result = new Intrinsic(result_type, callee->intrinsic_id(),
3938 args, has_receiver, state_before,
3939 vmIntrinsics::preserves_state(id),
3940 vmIntrinsics::can_trap(id));
3941 // append instruction & push result
3942 Value value = append_split(result);
3943 if (result_type != voidType && !ignore_return) {
3944 push(result_type, value);
3945 }
3946
3947 if (callee != method() && profile_return() && result_type->is_object_kind()) {
3948 profile_return_type(result, callee);
3949 }
3950 }
3951
3952 bool GraphBuilder::try_inline_intrinsics(ciMethod* callee, bool ignore_return) {
3953 // For calling is_intrinsic_available we need to transition to
3954 // the '_thread_in_vm' state because is_intrinsic_available()
3955 // accesses critical VM-internal data.
3956 bool is_available = false;
3957 {
3958 VM_ENTRY_MARK;
3959 methodHandle mh(THREAD, callee->get_Method());
3960 is_available = _compilation->compiler()->is_intrinsic_available(mh, _compilation->directive());
3961 }
3962
3963 if (!is_available) {
3964 if (!InlineNatives) {
3965 // Return false and also set message that the inlining of
3966 // intrinsics has been disabled in general.
3967 INLINE_BAILOUT("intrinsic method inlining disabled");
3968 } else {
3969 return false;
3970 }
3971 }
3972 build_graph_for_intrinsic(callee, ignore_return);
3973 if (_inline_bailout_msg != nullptr) {
3974 return false;
3975 }
3976 return true;
3977 }
3978
3979
3980 bool GraphBuilder::try_inline_jsr(int jsr_dest_bci) {
3981 // Introduce a new callee continuation point - all Ret instructions
3982 // will be replaced with Gotos to this point.
3983 if (next_bci() >= method()->code_size()) {
3984 return false;
3985 }
3986 BlockBegin* cont = block_at(next_bci());
3987 assert(cont != nullptr, "continuation must exist (BlockListBuilder starts a new block after a jsr");
3988
3989 // Note: can not assign state to continuation yet, as we have to
3990 // pick up the state from the Ret instructions.
3991
3992 // Push callee scope
3993 push_scope_for_jsr(cont, jsr_dest_bci);
3994
3995 // Temporarily set up bytecode stream so we can append instructions
3996 // (only using the bci of this stream)
3997 scope_data()->set_stream(scope_data()->parent()->stream());
3998
3999 BlockBegin* jsr_start_block = block_at(jsr_dest_bci);
4000 assert(jsr_start_block != nullptr, "jsr start block must exist");
4001 assert(!jsr_start_block->is_set(BlockBegin::was_visited_flag), "should not have visited jsr yet");
4002 Goto* goto_sub = new Goto(jsr_start_block, false);
4003 // Must copy state to avoid wrong sharing when parsing bytecodes
4004 assert(jsr_start_block->state() == nullptr, "should have fresh jsr starting block");
4005 jsr_start_block->set_state(copy_state_before_with_bci(jsr_dest_bci));
4006 append(goto_sub);
4007 _block->set_end(goto_sub);
4008 _last = _block = jsr_start_block;
4009
4010 // Clear out bytecode stream
4011 scope_data()->set_stream(nullptr);
4012
4013 scope_data()->add_to_work_list(jsr_start_block);
4014
4015 // Ready to resume parsing in subroutine
4016 iterate_all_blocks();
4017
4018 // If we bailed out during parsing, return immediately (this is bad news)
4019 CHECK_BAILOUT_(false);
4020
4021 // Detect whether the continuation can actually be reached. If not,
4022 // it has not had state set by the join() operations in
4023 // iterate_bytecodes_for_block()/ret() and we should not touch the
4024 // iteration state. The calling activation of
4025 // iterate_bytecodes_for_block will then complete normally.
4026 if (cont->state() != nullptr) {
4027 if (!cont->is_set(BlockBegin::was_visited_flag)) {
4028 // add continuation to work list instead of parsing it immediately
4029 scope_data()->parent()->add_to_work_list(cont);
4030 }
4031 }
4032
4033 assert(jsr_continuation() == cont, "continuation must not have changed");
4034 assert(!jsr_continuation()->is_set(BlockBegin::was_visited_flag) ||
4035 jsr_continuation()->is_set(BlockBegin::parser_loop_header_flag),
4036 "continuation can only be visited in case of backward branches");
4037 assert(_last && _last->as_BlockEnd(), "block must have end");
4038
4039 // continuation is in work list, so end iteration of current block
4040 _skip_block = true;
4041 pop_scope_for_jsr();
4042
4043 return true;
4044 }
4045
4046
4047 // Inline the entry of a synchronized method as a monitor enter and
4048 // register the exception handler which releases the monitor if an
4049 // exception is thrown within the callee. Note that the monitor enter
4050 // cannot throw an exception itself, because the receiver is
4051 // guaranteed to be non-null by the explicit null check at the
4052 // beginning of inlining.
4053 void GraphBuilder::inline_sync_entry(Value lock, BlockBegin* sync_handler) {
4054 assert(lock != nullptr && sync_handler != nullptr, "lock or handler missing");
4055
4056 monitorenter(lock, SynchronizationEntryBCI);
4057 assert(_last->as_MonitorEnter() != nullptr, "monitor enter expected");
4058 _last->set_needs_null_check(false);
4059
4060 sync_handler->set(BlockBegin::exception_entry_flag);
4061 sync_handler->set(BlockBegin::is_on_work_list_flag);
4062
4063 ciExceptionHandler* desc = new ciExceptionHandler(method()->holder(), 0, method()->code_size(), -1, 0);
4064 XHandler* h = new XHandler(desc);
4065 h->set_entry_block(sync_handler);
4066 scope_data()->xhandlers()->append(h);
4067 scope_data()->set_has_handler();
4068 }
4069
4070
4071 // If an exception is thrown and not handled within an inlined
4072 // synchronized method, the monitor must be released before the
4073 // exception is rethrown in the outer scope. Generate the appropriate
4074 // instructions here.
4075 void GraphBuilder::fill_sync_handler(Value lock, BlockBegin* sync_handler, bool default_handler) {
4076 BlockBegin* orig_block = _block;
4077 ValueStack* orig_state = _state;
4078 Instruction* orig_last = _last;
4079 _last = _block = sync_handler;
4080 _state = sync_handler->state()->copy();
4081
4082 assert(sync_handler != nullptr, "handler missing");
4083 assert(!sync_handler->is_set(BlockBegin::was_visited_flag), "is visited here");
4084
4085 assert(lock != nullptr || default_handler, "lock or handler missing");
4086
4087 XHandler* h = scope_data()->xhandlers()->remove_last();
4088 assert(h->entry_block() == sync_handler, "corrupt list of handlers");
4089
4090 block()->set(BlockBegin::was_visited_flag);
4091 Value exception = append_with_bci(new ExceptionObject(), SynchronizationEntryBCI);
4092 assert(exception->is_pinned(), "must be");
4093
4094 int bci = SynchronizationEntryBCI;
4095 if (compilation()->env()->dtrace_method_probes()) {
4096 // Report exit from inline methods. We don't have a stream here
4097 // so pass an explicit bci of SynchronizationEntryBCI.
4098 Values* args = new Values(1);
4099 args->push(append_with_bci(new Constant(new MethodConstant(method())), bci));
4100 append_with_bci(new RuntimeCall(voidType, "dtrace_method_exit", CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), args), bci);
4101 }
4102
4103 if (lock) {
4104 assert(state()->locks_size() > 0 && state()->lock_at(state()->locks_size() - 1) == lock, "lock is missing");
4105 if (!lock->is_linked()) {
4106 lock = append_with_bci(lock, bci);
4107 }
4108
4109 // exit the monitor in the context of the synchronized method
4110 monitorexit(lock, bci);
4111
4112 // exit the context of the synchronized method
4113 if (!default_handler) {
4114 pop_scope();
4115 bci = _state->caller_state()->bci();
4116 _state = _state->caller_state()->copy_for_parsing();
4117 }
4118 }
4119
4120 // perform the throw as if at the call site
4121 apush(exception);
4122 throw_op(bci);
4123
4124 BlockEnd* end = last()->as_BlockEnd();
4125 block()->set_end(end);
4126
4127 _block = orig_block;
4128 _state = orig_state;
4129 _last = orig_last;
4130 }
4131
4132
4133 bool GraphBuilder::try_inline_full(ciMethod* callee, bool holder_known, bool ignore_return, Bytecodes::Code bc, Value receiver) {
4134 assert(!callee->is_native(), "callee must not be native");
4135 if (CompilationPolicy::should_not_inline(compilation()->env(), callee)) {
4136 INLINE_BAILOUT("inlining prohibited by policy");
4137 }
4138 // first perform tests of things it's not possible to inline
4139 if (callee->has_exception_handlers() &&
4140 !InlineMethodsWithExceptionHandlers) INLINE_BAILOUT("callee has exception handlers");
4141 if (callee->is_synchronized() &&
4142 !InlineSynchronizedMethods ) INLINE_BAILOUT("callee is synchronized");
4143 if (!callee->holder()->is_linked()) INLINE_BAILOUT("callee's klass not linked yet");
4144 if (bc == Bytecodes::_invokestatic &&
4145 !callee->holder()->is_initialized()) INLINE_BAILOUT("callee's klass not initialized yet");
4146 if (!callee->has_balanced_monitors()) INLINE_BAILOUT("callee's monitors do not match");
4147
4148 // Proper inlining of methods with jsrs requires a little more work.
4149 if (callee->has_jsrs() ) INLINE_BAILOUT("jsrs not handled properly by inliner yet");
4150
4151 if (is_profiling() && !callee->ensure_method_data()) {
4152 INLINE_BAILOUT("mdo allocation failed");
4153 }
4154
4155 const bool is_invokedynamic = (bc == Bytecodes::_invokedynamic);
4156 const bool has_receiver = (bc != Bytecodes::_invokestatic && !is_invokedynamic);
4157
4158 const int args_base = state()->stack_size() - callee->arg_size();
4159 assert(args_base >= 0, "stack underflow during inlining");
4160
4161 Value recv = nullptr;
4162 if (has_receiver) {
4163 assert(!callee->is_static(), "callee must not be static");
4164 assert(callee->arg_size() > 0, "must have at least a receiver");
4165
4166 recv = state()->stack_at(args_base);
4167 if (recv->is_null_obj()) {
4168 INLINE_BAILOUT("receiver is always null");
4169 }
4170 }
4171
4172 // now perform tests that are based on flag settings
4173 bool inlinee_by_directive = compilation()->directive()->should_inline(callee);
4174 if (callee->force_inline() || inlinee_by_directive) {
4175 if (inline_level() > MaxForceInlineLevel ) INLINE_BAILOUT("MaxForceInlineLevel");
4176 if (recursive_inline_level(callee) > C1MaxRecursiveInlineLevel) INLINE_BAILOUT("recursive inlining too deep");
4177
4178 const char* msg = "";
4179 if (callee->force_inline()) msg = "force inline by annotation";
4180 if (inlinee_by_directive) msg = "force inline by CompileCommand";
4181 print_inlining(callee, msg);
4182 } else {
4183 // use heuristic controls on inlining
4184 if (inline_level() > C1MaxInlineLevel ) INLINE_BAILOUT("inlining too deep");
4185 int callee_recursive_level = recursive_inline_level(callee);
4186 if (callee_recursive_level > C1MaxRecursiveInlineLevel ) INLINE_BAILOUT("recursive inlining too deep");
4187 if (callee->code_size_for_inlining() > max_inline_size() ) INLINE_BAILOUT("callee is too large");
4188 // Additional condition to limit stack usage for non-recursive calls.
4189 if ((callee_recursive_level == 0) &&
4190 (callee->max_stack() + callee->max_locals() - callee->size_of_parameters() > C1InlineStackLimit)) {
4191 INLINE_BAILOUT("callee uses too much stack");
4192 }
4193
4194 // don't inline throwable methods unless the inlining tree is rooted in a throwable class
4195 if (callee->name() == ciSymbols::object_initializer_name() &&
4196 callee->holder()->is_subclass_of(ciEnv::current()->Throwable_klass())) {
4197 // Throwable constructor call
4198 IRScope* top = scope();
4199 while (top->caller() != nullptr) {
4200 top = top->caller();
4201 }
4202 if (!top->method()->holder()->is_subclass_of(ciEnv::current()->Throwable_klass())) {
4203 INLINE_BAILOUT("don't inline Throwable constructors");
4204 }
4205 }
4206
4207 if (compilation()->env()->num_inlined_bytecodes() > DesiredMethodLimit) {
4208 INLINE_BAILOUT("total inlining greater than DesiredMethodLimit");
4209 }
4210 // printing
4211 print_inlining(callee, "inline", /*success*/ true);
4212 }
4213
4214 assert(bc != Bytecodes::_invokestatic || callee->holder()->is_initialized(), "required");
4215
4216 // NOTE: Bailouts from this point on, which occur at the
4217 // GraphBuilder level, do not cause bailout just of the inlining but
4218 // in fact of the entire compilation.
4219
4220 BlockBegin* orig_block = block();
4221
4222 // Insert null check if necessary
4223 if (has_receiver) {
4224 // note: null check must happen even if first instruction of callee does
4225 // an implicit null check since the callee is in a different scope
4226 // and we must make sure exception handling does the right thing
4227 null_check(recv);
4228 }
4229
4230 if (is_profiling()) {
4231 // Note that we'd collect profile data in this method if we wanted it.
4232 // this may be redundant here...
4233 compilation()->set_would_profile(true);
4234
4235 if (profile_calls()) {
4236 int start = 0;
4237 Values* obj_args = args_list_for_profiling(callee, start, has_receiver);
4238 if (obj_args != nullptr) {
4239 int s = obj_args->capacity();
4240 // if called through method handle invoke, some arguments may have been popped
4241 for (int i = args_base+start, j = 0; j < obj_args->capacity() && i < state()->stack_size(); ) {
4242 Value v = state()->stack_at_inc(i);
4243 if (v->type()->is_object_kind()) {
4244 obj_args->push(v);
4245 j++;
4246 }
4247 }
4248 check_args_for_profiling(obj_args, s);
4249 }
4250 profile_call(callee, recv, holder_known ? callee->holder() : nullptr, obj_args, true);
4251 }
4252 }
4253
4254 // Introduce a new callee continuation point - if the callee has
4255 // more than one return instruction or the return does not allow
4256 // fall-through of control flow, all return instructions of the
4257 // callee will need to be replaced by Goto's pointing to this
4258 // continuation point.
4259 BlockBegin* cont = block_at(next_bci());
4260 bool continuation_existed = true;
4261 if (cont == nullptr) {
4262 cont = new BlockBegin(next_bci());
4263 // low number so that continuation gets parsed as early as possible
4264 cont->set_depth_first_number(0);
4265 if (PrintInitialBlockList) {
4266 tty->print_cr("CFG: created block %d (bci %d) as continuation for inline at bci %d",
4267 cont->block_id(), cont->bci(), bci());
4268 }
4269 continuation_existed = false;
4270 }
4271 // Record number of predecessors of continuation block before
4272 // inlining, to detect if inlined method has edges to its
4273 // continuation after inlining.
4274 int continuation_preds = cont->number_of_preds();
4275
4276 // Push callee scope
4277 push_scope(callee, cont);
4278
4279 // the BlockListBuilder for the callee could have bailed out
4280 if (bailed_out())
4281 return false;
4282
4283 // Temporarily set up bytecode stream so we can append instructions
4284 // (only using the bci of this stream)
4285 scope_data()->set_stream(scope_data()->parent()->stream());
4286
4287 // Pass parameters into callee state: add assignments
4288 // note: this will also ensure that all arguments are computed before being passed
4289 ValueStack* callee_state = state();
4290 ValueStack* caller_state = state()->caller_state();
4291 for (int i = args_base; i < caller_state->stack_size(); ) {
4292 const int arg_no = i - args_base;
4293 Value arg = caller_state->stack_at_inc(i);
4294 store_local(callee_state, arg, arg_no);
4295 }
4296
4297 // Remove args from stack.
4298 // Note that we preserve locals state in case we can use it later
4299 // (see use of pop_scope() below)
4300 caller_state->truncate_stack(args_base);
4301 assert(callee_state->stack_size() == 0, "callee stack must be empty");
4302
4303 // Check if we need a membar at the beginning of the java.lang.Object
4304 // constructor to satisfy the memory model for strict fields.
4305 if (Arguments::is_valhalla_enabled() && method()->intrinsic_id() == vmIntrinsics::_Object_init) {
4306 Value receiver = state()->local_at(0);
4307 ciType* klass = receiver->exact_type();
4308 if (klass == nullptr) {
4309 // No exact type, check if the declared type has no implementors and add a dependency
4310 klass = receiver->declared_type();
4311 klass = compilation()->cha_exact_type(klass);
4312 }
4313 if (klass != nullptr && klass->is_instance_klass()) {
4314 // Exact receiver type, check if there is a strict field
4315 ciInstanceKlass* holder = klass->as_instance_klass();
4316 for (int i = 0; i < holder->nof_nonstatic_fields(); i++) {
4317 ciField* field = holder->nonstatic_field_at(i);
4318 if (field->is_strict()) {
4319 // Found a strict field, a membar is needed
4320 append(new MemBar(lir_membar_storestore));
4321 break;
4322 }
4323 }
4324 } else if (klass == nullptr) {
4325 // We can't statically determine the type of the receiver and therefore need
4326 // to put a membar here because it could have a strict field.
4327 append(new MemBar(lir_membar_storestore));
4328 }
4329 }
4330
4331 Value lock = nullptr;
4332 BlockBegin* sync_handler = nullptr;
4333
4334 // Inline the locking of the receiver if the callee is synchronized
4335 if (callee->is_synchronized()) {
4336 lock = callee->is_static() ? append(new Constant(new InstanceConstant(callee->holder()->java_mirror())))
4337 : state()->local_at(0);
4338 sync_handler = new BlockBegin(SynchronizationEntryBCI);
4339 inline_sync_entry(lock, sync_handler);
4340 }
4341
4342 if (compilation()->env()->dtrace_method_probes()) {
4343 Values* args = new Values(1);
4344 args->push(append(new Constant(new MethodConstant(method()))));
4345 append(new RuntimeCall(voidType, "dtrace_method_entry", CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), args));
4346 }
4347
4348 if (profile_inlined_calls()) {
4349 profile_invocation(callee, copy_state_before_with_bci(SynchronizationEntryBCI));
4350 }
4351
4352 BlockBegin* callee_start_block = block_at(0);
4353 if (callee_start_block != nullptr) {
4354 assert(callee_start_block->is_set(BlockBegin::parser_loop_header_flag), "must be loop header");
4355 Goto* goto_callee = new Goto(callee_start_block, false);
4356 // The state for this goto is in the scope of the callee, so use
4357 // the entry bci for the callee instead of the call site bci.
4358 append_with_bci(goto_callee, 0);
4359 _block->set_end(goto_callee);
4360 callee_start_block->merge(callee_state, compilation()->has_irreducible_loops());
4361
4362 _last = _block = callee_start_block;
4363
4364 scope_data()->add_to_work_list(callee_start_block);
4365 }
4366
4367 // Clear out bytecode stream
4368 scope_data()->set_stream(nullptr);
4369 scope_data()->set_ignore_return(ignore_return);
4370
4371 CompileLog* log = compilation()->log();
4372 if (log != nullptr) log->head("parse method='%d'", log->identify(callee));
4373
4374 // Ready to resume parsing in callee (either in the same block we
4375 // were in before or in the callee's start block)
4376 iterate_all_blocks(callee_start_block == nullptr);
4377
4378 if (log != nullptr) log->done("parse");
4379
4380 // If we bailed out during parsing, return immediately (this is bad news)
4381 if (bailed_out())
4382 return false;
4383
4384 // iterate_all_blocks theoretically traverses in random order; in
4385 // practice, we have only traversed the continuation if we are
4386 // inlining into a subroutine
4387 assert(continuation_existed ||
4388 !continuation()->is_set(BlockBegin::was_visited_flag),
4389 "continuation should not have been parsed yet if we created it");
4390
4391 // At this point we are almost ready to return and resume parsing of
4392 // the caller back in the GraphBuilder. The only thing we want to do
4393 // first is an optimization: during parsing of the callee we
4394 // generated at least one Goto to the continuation block. If we
4395 // generated exactly one, and if the inlined method spanned exactly
4396 // one block (and we didn't have to Goto its entry), then we snip
4397 // off the Goto to the continuation, allowing control to fall
4398 // through back into the caller block and effectively performing
4399 // block merging. This allows load elimination and CSE to take place
4400 // across multiple callee scopes if they are relatively simple, and
4401 // is currently essential to making inlining profitable.
4402 if (num_returns() == 1
4403 && block() == orig_block
4404 && block() == inline_cleanup_block()) {
4405 _last = inline_cleanup_return_prev();
4406 _state = inline_cleanup_state();
4407 } else if (continuation_preds == cont->number_of_preds()) {
4408 // Inlining caused that the instructions after the invoke in the
4409 // caller are not reachable any more. So skip filling this block
4410 // with instructions!
4411 assert(cont == continuation(), "");
4412 assert(_last && _last->as_BlockEnd(), "");
4413 _skip_block = true;
4414 } else {
4415 // Resume parsing in continuation block unless it was already parsed.
4416 // Note that if we don't change _last here, iteration in
4417 // iterate_bytecodes_for_block will stop when we return.
4418 if (!continuation()->is_set(BlockBegin::was_visited_flag)) {
4419 // add continuation to work list instead of parsing it immediately
4420 assert(_last && _last->as_BlockEnd(), "");
4421 scope_data()->parent()->add_to_work_list(continuation());
4422 _skip_block = true;
4423 }
4424 }
4425
4426 // Fill the exception handler for synchronized methods with instructions
4427 if (callee->is_synchronized() && sync_handler->state() != nullptr) {
4428 fill_sync_handler(lock, sync_handler);
4429 } else {
4430 pop_scope();
4431 }
4432
4433 compilation()->notice_inlined_method(callee);
4434
4435 return true;
4436 }
4437
4438
4439 bool GraphBuilder::try_method_handle_inline(ciMethod* callee, bool ignore_return) {
4440 ValueStack* state_before = copy_state_before();
4441 vmIntrinsics::ID iid = callee->intrinsic_id();
4442 switch (iid) {
4443 case vmIntrinsics::_invokeBasic:
4444 {
4445 // get MethodHandle receiver
4446 const int args_base = state()->stack_size() - callee->arg_size();
4447 ValueType* type = state()->stack_at(args_base)->type();
4448 if (type->is_constant()) {
4449 ciObject* mh = type->as_ObjectType()->constant_value();
4450 if (mh->is_method_handle()) {
4451 ciMethod* target = mh->as_method_handle()->get_vmtarget();
4452
4453 // We don't do CHA here so only inline static and statically bindable methods.
4454 if (target->is_static() || target->can_be_statically_bound()) {
4455 if (ciMethod::is_consistent_info(callee, target)) {
4456 Bytecodes::Code bc = target->is_static() ? Bytecodes::_invokestatic : Bytecodes::_invokevirtual;
4457 ignore_return = ignore_return || (callee->return_type()->is_void() && !target->return_type()->is_void());
4458 if (try_inline(target, /*holder_known*/ !callee->is_static(), ignore_return, bc)) {
4459 return true;
4460 }
4461 } else {
4462 print_inlining(target, "signatures mismatch", /*success*/ false);
4463 }
4464 } else {
4465 assert(false, "no inlining through MH::invokeBasic"); // missing optimization opportunity due to suboptimal LF shape
4466 print_inlining(target, "not static or statically bindable", /*success*/ false);
4467 }
4468 } else {
4469 assert(mh->is_null_object(), "not a null");
4470 print_inlining(callee, "receiver is always null", /*success*/ false);
4471 }
4472 } else {
4473 print_inlining(callee, "receiver not constant", /*success*/ false);
4474 }
4475 }
4476 break;
4477
4478 case vmIntrinsics::_linkToVirtual:
4479 case vmIntrinsics::_linkToStatic:
4480 case vmIntrinsics::_linkToSpecial:
4481 case vmIntrinsics::_linkToInterface:
4482 {
4483 // pop MemberName argument
4484 const int args_base = state()->stack_size() - callee->arg_size();
4485 ValueType* type = apop()->type();
4486 if (type->is_constant()) {
4487 ciMethod* target = type->as_ObjectType()->constant_value()->as_member_name()->get_vmtarget();
4488 ignore_return = ignore_return || (callee->return_type()->is_void() && !target->return_type()->is_void());
4489 // If the target is another method handle invoke, try to recursively get
4490 // a better target.
4491 if (target->is_method_handle_intrinsic()) {
4492 if (try_method_handle_inline(target, ignore_return)) {
4493 return true;
4494 }
4495 } else if (!ciMethod::is_consistent_info(callee, target)) {
4496 print_inlining(target, "signatures mismatch", /*success*/ false);
4497 } else {
4498 ciSignature* signature = target->signature();
4499 const int receiver_skip = target->is_static() ? 0 : 1;
4500 // Cast receiver to its type.
4501 if (!target->is_static()) {
4502 ciKlass* tk = signature->accessing_klass();
4503 Value obj = state()->stack_at(args_base);
4504 if (obj->exact_type() == nullptr &&
4505 obj->declared_type() != tk && tk != compilation()->env()->Object_klass()) {
4506 TypeCast* c = new TypeCast(tk, obj, state_before);
4507 append(c);
4508 state()->stack_at_put(args_base, c);
4509 }
4510 }
4511 // Cast reference arguments to its type.
4512 for (int i = 0, j = 0; i < signature->count(); i++) {
4513 ciType* t = signature->type_at(i);
4514 if (t->is_klass()) {
4515 ciKlass* tk = t->as_klass();
4516 Value obj = state()->stack_at(args_base + receiver_skip + j);
4517 if (obj->exact_type() == nullptr &&
4518 obj->declared_type() != tk && tk != compilation()->env()->Object_klass()) {
4519 TypeCast* c = new TypeCast(t, obj, state_before);
4520 append(c);
4521 state()->stack_at_put(args_base + receiver_skip + j, c);
4522 }
4523 }
4524 j += t->size(); // long and double take two slots
4525 }
4526 // We don't do CHA here so only inline static and statically bindable methods.
4527 if (target->is_static() || target->can_be_statically_bound()) {
4528 Bytecodes::Code bc = target->is_static() ? Bytecodes::_invokestatic : Bytecodes::_invokevirtual;
4529 if (try_inline(target, /*holder_known*/ !callee->is_static(), ignore_return, bc)) {
4530 return true;
4531 }
4532 } else {
4533 print_inlining(target, "not static or statically bindable", /*success*/ false);
4534 }
4535 }
4536 } else {
4537 print_inlining(callee, "MemberName not constant", /*success*/ false);
4538 }
4539 }
4540 break;
4541
4542 case vmIntrinsics::_linkToNative:
4543 print_inlining(callee, "native call", /*success*/ false);
4544 break;
4545
4546 default:
4547 fatal("unexpected intrinsic %d: %s", vmIntrinsics::as_int(iid), vmIntrinsics::name_at(iid));
4548 break;
4549 }
4550 set_state(state_before->copy_for_parsing());
4551 return false;
4552 }
4553
4554
4555 void GraphBuilder::inline_bailout(const char* msg) {
4556 assert(msg != nullptr, "inline bailout msg must exist");
4557 _inline_bailout_msg = msg;
4558 }
4559
4560
4561 void GraphBuilder::clear_inline_bailout() {
4562 _inline_bailout_msg = nullptr;
4563 }
4564
4565
4566 void GraphBuilder::push_root_scope(IRScope* scope, BlockList* bci2block, BlockBegin* start) {
4567 ScopeData* data = new ScopeData(nullptr);
4568 data->set_scope(scope);
4569 data->set_bci2block(bci2block);
4570 _scope_data = data;
4571 _block = start;
4572 }
4573
4574
4575 void GraphBuilder::push_scope(ciMethod* callee, BlockBegin* continuation) {
4576 IRScope* callee_scope = new IRScope(compilation(), scope(), bci(), callee, -1, false);
4577 scope()->add_callee(callee_scope);
4578
4579 BlockListBuilder blb(compilation(), callee_scope, -1);
4580 CHECK_BAILOUT();
4581
4582 if (!blb.bci2block()->at(0)->is_set(BlockBegin::parser_loop_header_flag)) {
4583 // this scope can be inlined directly into the caller so remove
4584 // the block at bci 0.
4585 blb.bci2block()->at_put(0, nullptr);
4586 }
4587
4588 set_state(new ValueStack(callee_scope, state()->copy(ValueStack::CallerState, bci())));
4589
4590 ScopeData* data = new ScopeData(scope_data());
4591 data->set_scope(callee_scope);
4592 data->set_bci2block(blb.bci2block());
4593 data->set_continuation(continuation);
4594 _scope_data = data;
4595 }
4596
4597
4598 void GraphBuilder::push_scope_for_jsr(BlockBegin* jsr_continuation, int jsr_dest_bci) {
4599 ScopeData* data = new ScopeData(scope_data());
4600 data->set_parsing_jsr();
4601 data->set_jsr_entry_bci(jsr_dest_bci);
4602 data->set_jsr_return_address_local(-1);
4603 // Must clone bci2block list as we will be mutating it in order to
4604 // properly clone all blocks in jsr region as well as exception
4605 // handlers containing rets
4606 BlockList* new_bci2block = new BlockList(bci2block()->length());
4607 new_bci2block->appendAll(bci2block());
4608 data->set_bci2block(new_bci2block);
4609 data->set_scope(scope());
4610 data->setup_jsr_xhandlers();
4611 data->set_continuation(continuation());
4612 data->set_jsr_continuation(jsr_continuation);
4613 _scope_data = data;
4614 }
4615
4616
4617 void GraphBuilder::pop_scope() {
4618 int number_of_locks = scope()->number_of_locks();
4619 _scope_data = scope_data()->parent();
4620 // accumulate minimum number of monitor slots to be reserved
4621 scope()->set_min_number_of_locks(number_of_locks);
4622 }
4623
4624
4625 void GraphBuilder::pop_scope_for_jsr() {
4626 _scope_data = scope_data()->parent();
4627 }
4628
4629 void GraphBuilder::append_unsafe_get(ciMethod* callee, BasicType t, bool is_volatile) {
4630 Values* args = state()->pop_arguments(callee->arg_size());
4631 null_check(args->at(0));
4632 Instruction* offset = args->at(2);
4633 #ifndef _LP64
4634 offset = append(new Convert(Bytecodes::_l2i, offset, as_ValueType(T_INT)));
4635 #endif
4636 Instruction* op = append(new UnsafeGet(t, args->at(1), offset, is_volatile));
4637 push(op->type(), op);
4638 compilation()->set_has_unsafe_access(true);
4639 }
4640
4641
4642 void GraphBuilder::append_unsafe_put(ciMethod* callee, BasicType t, bool is_volatile) {
4643 Values* args = state()->pop_arguments(callee->arg_size());
4644 null_check(args->at(0));
4645 Instruction* offset = args->at(2);
4646 #ifndef _LP64
4647 offset = append(new Convert(Bytecodes::_l2i, offset, as_ValueType(T_INT)));
4648 #endif
4649 Value val = args->at(3);
4650 if (t == T_BOOLEAN) {
4651 Value mask = append(new Constant(new IntConstant(1)));
4652 val = append(new LogicOp(Bytecodes::_iand, val, mask));
4653 }
4654 Instruction* op = append(new UnsafePut(t, args->at(1), offset, val, is_volatile));
4655 compilation()->set_has_unsafe_access(true);
4656 kill_all();
4657 }
4658
4659 void GraphBuilder::append_unsafe_CAS(ciMethod* callee) {
4660 ValueStack* state_before = copy_state_for_exception();
4661 ValueType* result_type = as_ValueType(callee->return_type());
4662 assert(result_type->is_int(), "int result");
4663 Values* args = state()->pop_arguments(callee->arg_size());
4664
4665 // Pop off some args to specially handle, then push back
4666 Value newval = args->pop();
4667 Value cmpval = args->pop();
4668 Value offset = args->pop();
4669 Value src = args->pop();
4670 Value unsafe_obj = args->pop();
4671
4672 // Separately handle the unsafe arg. It is not needed for code
4673 // generation, but must be null checked
4674 null_check(unsafe_obj);
4675
4676 #ifndef _LP64
4677 offset = append(new Convert(Bytecodes::_l2i, offset, as_ValueType(T_INT)));
4678 #endif
4679
4680 args->push(src);
4681 args->push(offset);
4682 args->push(cmpval);
4683 args->push(newval);
4684
4685 // An unsafe CAS can alias with other field accesses, but we don't
4686 // know which ones so mark the state as no preserved. This will
4687 // cause CSE to invalidate memory across it.
4688 bool preserves_state = false;
4689 Intrinsic* result = new Intrinsic(result_type, callee->intrinsic_id(), args, false, state_before, preserves_state);
4690 append_split(result);
4691 push(result_type, result);
4692 compilation()->set_has_unsafe_access(true);
4693 }
4694
4695 void GraphBuilder::append_char_access(ciMethod* callee, bool is_store) {
4696 // This intrinsic accesses byte[] array as char[] array. Computing the offsets
4697 // correctly requires matched array shapes.
4698 assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE),
4699 "sanity: byte[] and char[] bases agree");
4700 assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2,
4701 "sanity: byte[] and char[] scales agree");
4702
4703 ValueStack* state_before = copy_state_indexed_access();
4704 compilation()->set_has_access_indexed(true);
4705 Values* args = state()->pop_arguments(callee->arg_size());
4706 Value array = args->at(0);
4707 Value index = args->at(1);
4708 if (is_store) {
4709 Value value = args->at(2);
4710 Instruction* store = append(new StoreIndexed(array, index, nullptr, T_CHAR, value, state_before, false, true));
4711 store->set_flag(Instruction::NeedsRangeCheckFlag, false);
4712 _memory->store_value(value);
4713 } else {
4714 Instruction* load = append(new LoadIndexed(array, index, nullptr, T_CHAR, state_before, true));
4715 load->set_flag(Instruction::NeedsRangeCheckFlag, false);
4716 push(load->type(), load);
4717 }
4718 }
4719
4720 void GraphBuilder::append_alloc_array_copy(ciMethod* callee) {
4721 const int args_base = state()->stack_size() - callee->arg_size();
4722 ciType* receiver_type = state()->stack_at(args_base)->exact_type();
4723 if (receiver_type == nullptr) {
4724 inline_bailout("must have a receiver");
4725 return;
4726 }
4727 if (!receiver_type->is_type_array_klass()) {
4728 inline_bailout("clone array not primitive");
4729 return;
4730 }
4731
4732 ValueStack* state_before = copy_state_before();
4733 state_before->set_force_reexecute();
4734 Value src = apop();
4735 BasicType basic_type = src->exact_type()->as_array_klass()->element_type()->basic_type();
4736 Value length = append(new ArrayLength(src, state_before));
4737 Value new_array = append_split(new NewTypeArray(length, basic_type, state_before, false));
4738
4739 ValueType* result_type = as_ValueType(callee->return_type());
4740 vmIntrinsics::ID id = vmIntrinsics::_arraycopy;
4741 Values* args = new Values(5);
4742 args->push(src);
4743 args->push(append(new Constant(new IntConstant(0))));
4744 args->push(new_array);
4745 args->push(append(new Constant(new IntConstant(0))));
4746 args->push(length);
4747 const bool has_receiver = true;
4748 Intrinsic* array_copy = new Intrinsic(result_type, id,
4749 args, has_receiver, state_before,
4750 vmIntrinsics::preserves_state(id),
4751 vmIntrinsics::can_trap(id));
4752 array_copy->set_flag(Instruction::OmitChecksFlag, true);
4753 append_split(array_copy);
4754 apush(new_array);
4755 append(new MemBar(lir_membar_storestore));
4756 }
4757
4758 void GraphBuilder::print_inlining(ciMethod* callee, const char* msg, bool success) {
4759 CompileLog* log = compilation()->log();
4760 if (log != nullptr) {
4761 assert(msg != nullptr, "inlining msg should not be null!");
4762 if (success) {
4763 log->inline_success(msg);
4764 } else {
4765 log->inline_fail(msg);
4766 }
4767 }
4768 EventCompilerInlining event;
4769 if (event.should_commit()) {
4770 CompilerEvent::InlineEvent::post(event, compilation()->env()->task()->compile_id(), method()->get_Method(), callee, success, msg, bci());
4771 }
4772
4773 CompileTask::print_inlining_ul(callee, scope()->level(), bci(), inlining_result_of(success), msg);
4774
4775 if (!compilation()->directive()->PrintInliningOption) {
4776 return;
4777 }
4778 CompileTask::print_inlining_tty(callee, scope()->level(), bci(), inlining_result_of(success), msg);
4779 if (success && CIPrintMethodCodes) {
4780 callee->print_codes();
4781 }
4782 }
4783
4784 void GraphBuilder::append_unsafe_get_and_set(ciMethod* callee, bool is_add) {
4785 Values* args = state()->pop_arguments(callee->arg_size());
4786 BasicType t = callee->return_type()->basic_type();
4787 null_check(args->at(0));
4788 Instruction* offset = args->at(2);
4789 #ifndef _LP64
4790 offset = append(new Convert(Bytecodes::_l2i, offset, as_ValueType(T_INT)));
4791 #endif
4792 Instruction* op = append(new UnsafeGetAndSet(t, args->at(1), offset, args->at(3), is_add));
4793 compilation()->set_has_unsafe_access(true);
4794 kill_all();
4795 push(op->type(), op);
4796 }
4797
4798 #ifndef PRODUCT
4799 void GraphBuilder::print_stats() {
4800 if (UseLocalValueNumbering) {
4801 vmap()->print();
4802 }
4803 }
4804 #endif // PRODUCT
4805
4806 void GraphBuilder::profile_call(ciMethod* callee, Value recv, ciKlass* known_holder, Values* obj_args, bool inlined) {
4807 assert(known_holder == nullptr || (known_holder->is_instance_klass() &&
4808 (!known_holder->is_interface() ||
4809 ((ciInstanceKlass*)known_holder)->has_nonstatic_concrete_methods())), "should be non-static concrete method");
4810 if (known_holder != nullptr) {
4811 if (known_holder->exact_klass() == nullptr) {
4812 known_holder = compilation()->cha_exact_type(known_holder);
4813 }
4814 }
4815
4816 append(new ProfileCall(method(), bci(), callee, recv, known_holder, obj_args, inlined));
4817 }
4818
4819 void GraphBuilder::profile_return_type(Value ret, ciMethod* callee, ciMethod* m, int invoke_bci) {
4820 assert((m == nullptr) == (invoke_bci < 0), "invalid method and invalid bci together");
4821 if (m == nullptr) {
4822 m = method();
4823 }
4824 if (invoke_bci < 0) {
4825 invoke_bci = bci();
4826 }
4827 ciMethodData* md = m->method_data_or_null();
4828 ciProfileData* data = md->bci_to_data(invoke_bci);
4829 if (data != nullptr && (data->is_CallTypeData() || data->is_VirtualCallTypeData())) {
4830 bool has_return = data->is_CallTypeData() ? ((ciCallTypeData*)data)->has_return() : ((ciVirtualCallTypeData*)data)->has_return();
4831 if (has_return) {
4832 append(new ProfileReturnType(m , invoke_bci, callee, ret));
4833 }
4834 }
4835 }
4836
4837 void GraphBuilder::profile_invocation(ciMethod* callee, ValueStack* state) {
4838 append(new ProfileInvoke(callee, state));
4839 }