1 /*
2 * Copyright (c) 1999, 2026, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "c1/c1_Canonicalizer.hpp"
26 #include "c1/c1_CFGPrinter.hpp"
27 #include "c1/c1_Compilation.hpp"
28 #include "c1/c1_GraphBuilder.hpp"
29 #include "c1/c1_Instruction.hpp"
30 #include "c1/c1_InstructionPrinter.hpp"
31 #include "c1/c1_ValueType.hpp"
32 #include "ci/ciCallSite.hpp"
33 #include "ci/ciField.hpp"
34 #include "ci/ciFlatArrayKlass.hpp"
35 #include "ci/ciInlineKlass.hpp"
36 #include "ci/ciKlass.hpp"
37 #include "ci/ciMemberName.hpp"
38 #include "ci/ciSymbols.hpp"
39 #include "ci/ciUtilities.inline.hpp"
40 #include "classfile/javaClasses.hpp"
41 #include "compiler/compilationPolicy.hpp"
42 #include "compiler/compileBroker.hpp"
43 #include "compiler/compilerEvent.hpp"
44 #include "interpreter/bytecode.hpp"
45 #include "jfr/jfrEvents.hpp"
46 #include "memory/resourceArea.hpp"
47 #include "runtime/arguments.hpp"
48 #include "runtime/sharedRuntime.hpp"
49 #include "utilities/checkedCast.hpp"
50 #include "utilities/macros.hpp"
51 #if INCLUDE_JFR
52 #include "jfr/jfr.hpp"
53 #endif
54
55 class BlockListBuilder {
56 private:
57 Compilation* _compilation;
58 IRScope* _scope;
59
60 BlockList _blocks; // internal list of all blocks
61 BlockList* _bci2block; // mapping from bci to blocks for GraphBuilder
62 GrowableArray<BlockList> _bci2block_successors; // Mapping bcis to their blocks successors while we dont have a blockend
63
64 // fields used by mark_loops
65 ResourceBitMap _active; // for iteration of control flow graph
66 ResourceBitMap _visited; // for iteration of control flow graph
67 GrowableArray<ResourceBitMap> _loop_map; // caches the information if a block is contained in a loop
68 int _next_loop_index; // next free loop number
69 int _next_block_number; // for reverse postorder numbering of blocks
70 int _block_id_start;
71
72 int bit_number(int block_id) const { return block_id - _block_id_start; }
73 // accessors
74 Compilation* compilation() const { return _compilation; }
75 IRScope* scope() const { return _scope; }
76 ciMethod* method() const { return scope()->method(); }
77 XHandlers* xhandlers() const { return scope()->xhandlers(); }
78
79 // unified bailout support
80 void bailout(const char* msg) const { compilation()->bailout(msg); }
81 bool bailed_out() const { return compilation()->bailed_out(); }
82
83 // helper functions
84 BlockBegin* make_block_at(int bci, BlockBegin* predecessor);
85 void handle_exceptions(BlockBegin* current, int cur_bci);
86 void handle_jsr(BlockBegin* current, int sr_bci, int next_bci);
87 void store_one(BlockBegin* current, int local);
88 void store_two(BlockBegin* current, int local);
89 void set_entries(int osr_bci);
90 void set_leaders();
91
92 void make_loop_header(BlockBegin* block);
93 void mark_loops();
94 BitMap& mark_loops(BlockBegin* b, bool in_subroutine);
95
96 // debugging
97 #ifndef PRODUCT
98 void print();
99 #endif
100
101 int number_of_successors(BlockBegin* block);
102 BlockBegin* successor_at(BlockBegin* block, int i);
103 void add_successor(BlockBegin* block, BlockBegin* sux);
104 bool is_successor(BlockBegin* block, BlockBegin* sux);
105
106 public:
107 // creation
108 BlockListBuilder(Compilation* compilation, IRScope* scope, int osr_bci);
109
110 // accessors for GraphBuilder
111 BlockList* bci2block() const { return _bci2block; }
112 };
113
114
115 // Implementation of BlockListBuilder
116
117 BlockListBuilder::BlockListBuilder(Compilation* compilation, IRScope* scope, int osr_bci)
118 : _compilation(compilation)
119 , _scope(scope)
120 , _blocks(16)
121 , _bci2block(new BlockList(scope->method()->code_size(), nullptr))
122 , _bci2block_successors(scope->method()->code_size())
123 , _active() // size not known yet
124 , _visited() // size not known yet
125 , _loop_map() // size not known yet
126 , _next_loop_index(0)
127 , _next_block_number(0)
128 , _block_id_start(0)
129 {
130 set_entries(osr_bci);
131 set_leaders();
132 CHECK_BAILOUT();
133
134 mark_loops();
135 NOT_PRODUCT(if (PrintInitialBlockList) print());
136
137 // _bci2block still contains blocks with _end == null and > 0 sux in _bci2block_successors.
138
139 #ifndef PRODUCT
140 if (PrintCFGToFile) {
141 stringStream title;
142 title.print("BlockListBuilder ");
143 scope->method()->print_name(&title);
144 CFGPrinter::print_cfg(_bci2block, title.freeze(), false, false);
145 }
146 #endif
147 }
148
149
150 void BlockListBuilder::set_entries(int osr_bci) {
151 // generate start blocks
152 BlockBegin* std_entry = make_block_at(0, nullptr);
153 if (scope()->caller() == nullptr) {
154 std_entry->set(BlockBegin::std_entry_flag);
155 }
156 if (osr_bci != -1) {
157 BlockBegin* osr_entry = make_block_at(osr_bci, nullptr);
158 osr_entry->set(BlockBegin::osr_entry_flag);
159 }
160
161 // generate exception entry blocks
162 XHandlers* list = xhandlers();
163 const int n = list->length();
164 for (int i = 0; i < n; i++) {
165 XHandler* h = list->handler_at(i);
166 BlockBegin* entry = make_block_at(h->handler_bci(), nullptr);
167 entry->set(BlockBegin::exception_entry_flag);
168 h->set_entry_block(entry);
169 }
170 }
171
172
173 BlockBegin* BlockListBuilder::make_block_at(int cur_bci, BlockBegin* predecessor) {
174 assert(method()->bci_block_start().at(cur_bci), "wrong block starts of MethodLivenessAnalyzer");
175
176 BlockBegin* block = _bci2block->at(cur_bci);
177 if (block == nullptr) {
178 block = new BlockBegin(cur_bci);
179 block->init_stores_to_locals(method()->max_locals());
180 _bci2block->at_put(cur_bci, block);
181 _bci2block_successors.at_put_grow(cur_bci, BlockList());
182 _blocks.append(block);
183
184 assert(predecessor == nullptr || predecessor->bci() < cur_bci, "targets for backward branches must already exist");
185 }
186
187 if (predecessor != nullptr) {
188 if (block->is_set(BlockBegin::exception_entry_flag)) {
189 BAILOUT_("Exception handler can be reached by both normal and exceptional control flow", block);
190 }
191
192 add_successor(predecessor, block);
193 block->increment_total_preds();
194 }
195
196 return block;
197 }
198
199
200 inline void BlockListBuilder::store_one(BlockBegin* current, int local) {
201 current->stores_to_locals().set_bit(local);
202 }
203 inline void BlockListBuilder::store_two(BlockBegin* current, int local) {
204 store_one(current, local);
205 store_one(current, local + 1);
206 }
207
208
209 void BlockListBuilder::handle_exceptions(BlockBegin* current, int cur_bci) {
210 // Draws edges from a block to its exception handlers
211 XHandlers* list = xhandlers();
212 const int n = list->length();
213
214 for (int i = 0; i < n; i++) {
215 XHandler* h = list->handler_at(i);
216
217 if (h->covers(cur_bci)) {
218 BlockBegin* entry = h->entry_block();
219 assert(entry != nullptr && entry == _bci2block->at(h->handler_bci()), "entry must be set");
220 assert(entry->is_set(BlockBegin::exception_entry_flag), "flag must be set");
221
222 // add each exception handler only once
223 if(!is_successor(current, entry)) {
224 add_successor(current, entry);
225 entry->increment_total_preds();
226 }
227
228 // stop when reaching catchall
229 if (h->catch_type() == 0) break;
230 }
231 }
232 }
233
234 void BlockListBuilder::handle_jsr(BlockBegin* current, int sr_bci, int next_bci) {
235 if (next_bci < method()->code_size()) {
236 // start a new block after jsr-bytecode and link this block into cfg
237 make_block_at(next_bci, current);
238 }
239
240 // start a new block at the subroutine entry at mark it with special flag
241 BlockBegin* sr_block = make_block_at(sr_bci, current);
242 if (!sr_block->is_set(BlockBegin::subroutine_entry_flag)) {
243 sr_block->set(BlockBegin::subroutine_entry_flag);
244 }
245 }
246
247
248 void BlockListBuilder::set_leaders() {
249 bool has_xhandlers = xhandlers()->has_handlers();
250 BlockBegin* current = nullptr;
251
252 // The information which bci starts a new block simplifies the analysis
253 // Without it, backward branches could jump to a bci where no block was created
254 // during bytecode iteration. This would require the creation of a new block at the
255 // branch target and a modification of the successor lists.
256 const BitMap& bci_block_start = method()->bci_block_start();
257
258 int end_bci = method()->code_size();
259
260 ciBytecodeStream s(method());
261 while (s.next() != ciBytecodeStream::EOBC()) {
262 int cur_bci = s.cur_bci();
263
264 if (bci_block_start.at(cur_bci)) {
265 current = make_block_at(cur_bci, current);
266 }
267 assert(current != nullptr, "must have current block");
268
269 if (has_xhandlers && GraphBuilder::can_trap(method(), s.cur_bc())) {
270 handle_exceptions(current, cur_bci);
271 }
272
273 switch (s.cur_bc()) {
274 // track stores to local variables for selective creation of phi functions
275 case Bytecodes::_iinc: store_one(current, s.get_index()); break;
276 case Bytecodes::_istore: store_one(current, s.get_index()); break;
277 case Bytecodes::_lstore: store_two(current, s.get_index()); break;
278 case Bytecodes::_fstore: store_one(current, s.get_index()); break;
279 case Bytecodes::_dstore: store_two(current, s.get_index()); break;
280 case Bytecodes::_astore: store_one(current, s.get_index()); break;
281 case Bytecodes::_istore_0: store_one(current, 0); break;
282 case Bytecodes::_istore_1: store_one(current, 1); break;
283 case Bytecodes::_istore_2: store_one(current, 2); break;
284 case Bytecodes::_istore_3: store_one(current, 3); break;
285 case Bytecodes::_lstore_0: store_two(current, 0); break;
286 case Bytecodes::_lstore_1: store_two(current, 1); break;
287 case Bytecodes::_lstore_2: store_two(current, 2); break;
288 case Bytecodes::_lstore_3: store_two(current, 3); break;
289 case Bytecodes::_fstore_0: store_one(current, 0); break;
290 case Bytecodes::_fstore_1: store_one(current, 1); break;
291 case Bytecodes::_fstore_2: store_one(current, 2); break;
292 case Bytecodes::_fstore_3: store_one(current, 3); break;
293 case Bytecodes::_dstore_0: store_two(current, 0); break;
294 case Bytecodes::_dstore_1: store_two(current, 1); break;
295 case Bytecodes::_dstore_2: store_two(current, 2); break;
296 case Bytecodes::_dstore_3: store_two(current, 3); break;
297 case Bytecodes::_astore_0: store_one(current, 0); break;
298 case Bytecodes::_astore_1: store_one(current, 1); break;
299 case Bytecodes::_astore_2: store_one(current, 2); break;
300 case Bytecodes::_astore_3: store_one(current, 3); break;
301
302 // track bytecodes that affect the control flow
303 case Bytecodes::_athrow: // fall through
304 case Bytecodes::_ret: // fall through
305 case Bytecodes::_ireturn: // fall through
306 case Bytecodes::_lreturn: // fall through
307 case Bytecodes::_freturn: // fall through
308 case Bytecodes::_dreturn: // fall through
309 case Bytecodes::_areturn: // fall through
310 case Bytecodes::_return:
311 current = nullptr;
312 break;
313
314 case Bytecodes::_ifeq: // fall through
315 case Bytecodes::_ifne: // fall through
316 case Bytecodes::_iflt: // fall through
317 case Bytecodes::_ifge: // fall through
318 case Bytecodes::_ifgt: // fall through
319 case Bytecodes::_ifle: // fall through
320 case Bytecodes::_if_icmpeq: // fall through
321 case Bytecodes::_if_icmpne: // fall through
322 case Bytecodes::_if_icmplt: // fall through
323 case Bytecodes::_if_icmpge: // fall through
324 case Bytecodes::_if_icmpgt: // fall through
325 case Bytecodes::_if_icmple: // fall through
326 case Bytecodes::_if_acmpeq: // fall through
327 case Bytecodes::_if_acmpne: // fall through
328 case Bytecodes::_ifnull: // fall through
329 case Bytecodes::_ifnonnull:
330 if (s.next_bci() < end_bci) {
331 make_block_at(s.next_bci(), current);
332 }
333 make_block_at(s.get_dest(), current);
334 current = nullptr;
335 break;
336
337 case Bytecodes::_goto:
338 make_block_at(s.get_dest(), current);
339 current = nullptr;
340 break;
341
342 case Bytecodes::_goto_w:
343 make_block_at(s.get_far_dest(), current);
344 current = nullptr;
345 break;
346
347 case Bytecodes::_jsr:
348 handle_jsr(current, s.get_dest(), s.next_bci());
349 current = nullptr;
350 break;
351
352 case Bytecodes::_jsr_w:
353 handle_jsr(current, s.get_far_dest(), s.next_bci());
354 current = nullptr;
355 break;
356
357 case Bytecodes::_tableswitch: {
358 // set block for each case
359 Bytecode_tableswitch sw(&s);
360 int l = sw.length();
361 for (int i = 0; i < l; i++) {
362 make_block_at(cur_bci + sw.dest_offset_at(i), current);
363 }
364 make_block_at(cur_bci + sw.default_offset(), current);
365 current = nullptr;
366 break;
367 }
368
369 case Bytecodes::_lookupswitch: {
370 // set block for each case
371 Bytecode_lookupswitch sw(&s);
372 int l = sw.number_of_pairs();
373 for (int i = 0; i < l; i++) {
374 make_block_at(cur_bci + sw.pair_at(i).offset(), current);
375 }
376 make_block_at(cur_bci + sw.default_offset(), current);
377 current = nullptr;
378 break;
379 }
380
381 default:
382 break;
383 }
384 }
385 }
386
387
388 void BlockListBuilder::mark_loops() {
389 ResourceMark rm;
390
391 const int number_of_blocks = _blocks.length();
392 _active.initialize(number_of_blocks);
393 _visited.initialize(number_of_blocks);
394 _loop_map = GrowableArray<ResourceBitMap>(number_of_blocks, number_of_blocks, ResourceBitMap());
395 for (int i = 0; i < number_of_blocks; i++) {
396 _loop_map.at(i).initialize(number_of_blocks);
397 }
398 _next_loop_index = 0;
399 _next_block_number = _blocks.length();
400
401 // The loop detection algorithm works as follows:
402 // - We maintain the _loop_map, where for each block we have a bitmap indicating which loops contain this block.
403 // - The CFG is recursively traversed (depth-first) and if we detect a loop, we assign the loop a unique number that is stored
404 // in the bitmap associated with the loop header block. Until we return back through that loop header the bitmap contains
405 // only a single bit corresponding to the loop number.
406 // - The bit is then propagated for all the blocks in the loop after we exit them (post-order). There could be multiple bits
407 // of course in case of nested loops.
408 // - When we exit the loop header we remove that single bit and assign the real loop state for it.
409 // - Now, the tricky part here is how we detect irreducible loops. In the algorithm above the loop state bits
410 // are propagated to the predecessors. If we encounter an irreducible loop (a loop with multiple heads) we would see
411 // a node with some loop bit set that would then propagate back and be never cleared because we would
412 // never go back through the original loop header. Therefore if there are any irreducible loops the bits in the states
413 // for these loops are going to propagate back to the root.
414 BlockBegin* start = _bci2block->at(0);
415 _block_id_start = start->block_id();
416 BitMap& loop_state = mark_loops(start, false);
417 if (!loop_state.is_empty()) {
418 compilation()->set_has_irreducible_loops(true);
419 }
420 assert(_next_block_number >= 0, "invalid block numbers");
421
422 // Remove dangling Resource pointers before the ResourceMark goes out-of-scope.
423 _active.resize(0);
424 _visited.resize(0);
425 _loop_map.clear();
426 }
427
428 void BlockListBuilder::make_loop_header(BlockBegin* block) {
429 int block_id = block->block_id();
430 int block_bit = bit_number(block_id);
431 if (block->is_set(BlockBegin::exception_entry_flag)) {
432 // exception edges may look like loops but don't mark them as such
433 // since it screws up block ordering.
434 return;
435 }
436 if (!block->is_set(BlockBegin::parser_loop_header_flag)) {
437 block->set(BlockBegin::parser_loop_header_flag);
438
439 assert(_loop_map.at(block_bit).is_empty(), "must not be set yet");
440 assert(0 <= _next_loop_index && _next_loop_index < _loop_map.length(), "_next_loop_index is too large");
441 _loop_map.at(block_bit).set_bit(_next_loop_index++);
442 } else {
443 // block already marked as loop header
444 assert(_loop_map.at(block_bit).count_one_bits() == 1, "exactly one bit must be set");
445 }
446 }
447
448 BitMap& BlockListBuilder::mark_loops(BlockBegin* block, bool in_subroutine) {
449 int block_id = block->block_id();
450 int block_bit = bit_number(block_id);
451 if (_visited.at(block_bit)) {
452 if (_active.at(block_bit)) {
453 // reached block via backward branch
454 make_loop_header(block);
455 }
456 // return cached loop information for this block
457 return _loop_map.at(block_bit);
458 }
459
460 if (block->is_set(BlockBegin::subroutine_entry_flag)) {
461 in_subroutine = true;
462 }
463
464 // set active and visited bits before successors are processed
465 _visited.set_bit(block_bit);
466 _active.set_bit(block_bit);
467
468 ResourceMark rm;
469 ResourceBitMap loop_state(_loop_map.length());
470 for (int i = number_of_successors(block) - 1; i >= 0; i--) {
471 BlockBegin* sux = successor_at(block, i);
472 // recursively process all successors
473 loop_state.set_union(mark_loops(sux, in_subroutine));
474 }
475
476 // clear active-bit after all successors are processed
477 _active.clear_bit(block_bit);
478
479 // reverse-post-order numbering of all blocks
480 block->set_depth_first_number(_next_block_number);
481 _next_block_number--;
482
483 if (!loop_state.is_empty() || in_subroutine ) {
484 // block is contained at least in one loop, so phi functions are necessary
485 // phi functions are also necessary for all locals stored in a subroutine
486 scope()->requires_phi_function().set_union(block->stores_to_locals());
487 }
488
489 if (block->is_set(BlockBegin::parser_loop_header_flag)) {
490 BitMap& header_loop_state = _loop_map.at(block_bit);
491 assert(header_loop_state.count_one_bits() == 1, "exactly one bit must be set");
492 // remove the bit with the loop number for the state (header is outside of the loop)
493 loop_state.set_difference(header_loop_state);
494 }
495
496 // cache and return loop information for this block
497 _loop_map.at(block_bit).set_from(loop_state);
498 return _loop_map.at(block_bit);
499 }
500
501 inline int BlockListBuilder::number_of_successors(BlockBegin* block)
502 {
503 assert(_bci2block_successors.length() > block->bci(), "sux must exist");
504 return _bci2block_successors.at(block->bci()).length();
505 }
506
507 inline BlockBegin* BlockListBuilder::successor_at(BlockBegin* block, int i)
508 {
509 assert(_bci2block_successors.length() > block->bci(), "sux must exist");
510 return _bci2block_successors.at(block->bci()).at(i);
511 }
512
513 inline void BlockListBuilder::add_successor(BlockBegin* block, BlockBegin* sux)
514 {
515 assert(_bci2block_successors.length() > block->bci(), "sux must exist");
516 _bci2block_successors.at(block->bci()).append(sux);
517 }
518
519 inline bool BlockListBuilder::is_successor(BlockBegin* block, BlockBegin* sux) {
520 assert(_bci2block_successors.length() > block->bci(), "sux must exist");
521 return _bci2block_successors.at(block->bci()).contains(sux);
522 }
523
524 #ifndef PRODUCT
525
526 static int compare_depth_first(BlockBegin** a, BlockBegin** b) {
527 return (*a)->depth_first_number() - (*b)->depth_first_number();
528 }
529
530 void BlockListBuilder::print() {
531 tty->print("----- initial block list of BlockListBuilder for method ");
532 method()->print_short_name();
533 tty->cr();
534
535 // better readability if blocks are sorted in processing order
536 _blocks.sort(compare_depth_first);
537
538 for (int i = 0; i < _blocks.length(); i++) {
539 BlockBegin* cur = _blocks.at(i);
540 tty->print("%4d: B%-4d bci: %-4d preds: %-4d ", cur->depth_first_number(), cur->block_id(), cur->bci(), cur->total_preds());
541
542 tty->print(cur->is_set(BlockBegin::std_entry_flag) ? " std" : " ");
543 tty->print(cur->is_set(BlockBegin::osr_entry_flag) ? " osr" : " ");
544 tty->print(cur->is_set(BlockBegin::exception_entry_flag) ? " ex" : " ");
545 tty->print(cur->is_set(BlockBegin::subroutine_entry_flag) ? " sr" : " ");
546 tty->print(cur->is_set(BlockBegin::parser_loop_header_flag) ? " lh" : " ");
547
548 if (number_of_successors(cur) > 0) {
549 tty->print(" sux: ");
550 for (int j = 0; j < number_of_successors(cur); j++) {
551 BlockBegin* sux = successor_at(cur, j);
552 tty->print("B%d ", sux->block_id());
553 }
554 }
555 tty->cr();
556 }
557 }
558
559 #endif
560
561
562 // A simple growable array of Values indexed by ciFields
563 class FieldBuffer: public CompilationResourceObj {
564 private:
565 GrowableArray<Value> _values;
566
567 public:
568 FieldBuffer() {}
569
570 void kill() {
571 _values.trunc_to(0);
572 }
573
574 Value at(ciField* field) {
575 assert(field->holder()->is_loaded(), "must be a loaded field");
576 int offset = field->offset_in_bytes();
577 if (offset < _values.length()) {
578 return _values.at(offset);
579 } else {
580 return nullptr;
581 }
582 }
583
584 void at_put(ciField* field, Value value) {
585 assert(field->holder()->is_loaded(), "must be a loaded field");
586 int offset = field->offset_in_bytes();
587 _values.at_put_grow(offset, value, nullptr);
588 }
589
590 };
591
592
593 // MemoryBuffer is fairly simple model of the current state of memory.
594 // It partitions memory into several pieces. The first piece is
595 // generic memory where little is known about the owner of the memory.
596 // This is conceptually represented by the tuple <O, F, V> which says
597 // that the field F of object O has value V. This is flattened so
598 // that F is represented by the offset of the field and the parallel
599 // arrays _objects and _values are used for O and V. Loads of O.F can
600 // simply use V. Newly allocated objects are kept in a separate list
601 // along with a parallel array for each object which represents the
602 // current value of its fields. Stores of the default value to fields
603 // which have never been stored to before are eliminated since they
604 // are redundant. Once newly allocated objects are stored into
605 // another object or they are passed out of the current compile they
606 // are treated like generic memory.
607
608 class MemoryBuffer: public CompilationResourceObj {
609 private:
610 FieldBuffer _values;
611 GrowableArray<Value> _objects;
612 GrowableArray<Value> _newobjects;
613 GrowableArray<FieldBuffer*> _fields;
614
615 public:
616 MemoryBuffer() {}
617
618 StoreField* store(StoreField* st) {
619 if (!EliminateFieldAccess) {
620 return st;
621 }
622
623 Value object = st->obj();
624 Value value = st->value();
625 ciField* field = st->field();
626 if (field->holder()->is_loaded()) {
627 int offset = field->offset_in_bytes();
628 int index = _newobjects.find(object);
629 if (index != -1) {
630 // newly allocated object with no other stores performed on this field
631 FieldBuffer* buf = _fields.at(index);
632 if (buf->at(field) == nullptr && is_default_value(value)) {
633 #ifndef PRODUCT
634 if (PrintIRDuringConstruction && Verbose) {
635 tty->print_cr("Eliminated store for object %d:", index);
636 st->print_line();
637 }
638 #endif
639 return nullptr;
640 } else {
641 buf->at_put(field, value);
642 }
643 } else {
644 _objects.at_put_grow(offset, object, nullptr);
645 _values.at_put(field, value);
646 }
647
648 store_value(value);
649 } else {
650 // if we held onto field names we could alias based on names but
651 // we don't know what's being stored to so kill it all.
652 kill();
653 }
654 return st;
655 }
656
657
658 // return true if this value correspond to the default value of a field.
659 bool is_default_value(Value value) {
660 Constant* con = value->as_Constant();
661 if (con) {
662 switch (con->type()->tag()) {
663 case intTag: return con->type()->as_IntConstant()->value() == 0;
664 case longTag: return con->type()->as_LongConstant()->value() == 0;
665 case floatTag: return jint_cast(con->type()->as_FloatConstant()->value()) == 0;
666 case doubleTag: return jlong_cast(con->type()->as_DoubleConstant()->value()) == jlong_cast(0);
667 case objectTag: return con->type() == objectNull;
668 default: ShouldNotReachHere();
669 }
670 }
671 return false;
672 }
673
674
675 // return either the actual value of a load or the load itself
676 Value load(LoadField* load) {
677 if (!EliminateFieldAccess) {
678 return load;
679 }
680
681 ciField* field = load->field();
682 Value object = load->obj();
683 if (field->holder()->is_loaded() && !field->is_volatile()) {
684 int offset = field->offset_in_bytes();
685 Value result = nullptr;
686 int index = _newobjects.find(object);
687 if (index != -1) {
688 result = _fields.at(index)->at(field);
689 } else if (_objects.at_grow(offset, nullptr) == object) {
690 result = _values.at(field);
691 }
692 if (result != nullptr) {
693 #ifndef PRODUCT
694 if (PrintIRDuringConstruction && Verbose) {
695 tty->print_cr("Eliminated load: ");
696 load->print_line();
697 }
698 #endif
699 assert(result->type()->tag() == load->type()->tag(), "wrong types");
700 return result;
701 }
702 }
703 return load;
704 }
705
706 // Record this newly allocated object
707 void new_instance(NewInstance* object) {
708 int index = _newobjects.length();
709 _newobjects.append(object);
710 if (_fields.at_grow(index, nullptr) == nullptr) {
711 _fields.at_put(index, new FieldBuffer());
712 } else {
713 _fields.at(index)->kill();
714 }
715 }
716
717 void store_value(Value value) {
718 int index = _newobjects.find(value);
719 if (index != -1) {
720 // stored a newly allocated object into another object.
721 // Assume we've lost track of it as separate slice of memory.
722 // We could do better by keeping track of whether individual
723 // fields could alias each other.
724 _newobjects.remove_at(index);
725 // pull out the field info and store it at the end up the list
726 // of field info list to be reused later.
727 _fields.append(_fields.at(index));
728 _fields.remove_at(index);
729 }
730 }
731
732 void kill() {
733 _newobjects.trunc_to(0);
734 _objects.trunc_to(0);
735 _values.kill();
736 }
737 };
738
739
740 // Implementation of GraphBuilder's ScopeData
741
742 GraphBuilder::ScopeData::ScopeData(ScopeData* parent)
743 : _parent(parent)
744 , _bci2block(nullptr)
745 , _scope(nullptr)
746 , _has_handler(false)
747 , _stream(nullptr)
748 , _work_list(nullptr)
749 , _caller_stack_size(-1)
750 , _continuation(nullptr)
751 , _parsing_jsr(false)
752 , _jsr_xhandlers(nullptr)
753 , _num_returns(0)
754 , _cleanup_block(nullptr)
755 , _cleanup_return_prev(nullptr)
756 , _cleanup_state(nullptr)
757 , _ignore_return(false)
758 {
759 if (parent != nullptr) {
760 _max_inline_size = (intx) ((float) NestedInliningSizeRatio * (float) parent->max_inline_size() / 100.0f);
761 } else {
762 _max_inline_size = C1MaxInlineSize;
763 }
764 if (_max_inline_size < C1MaxTrivialSize) {
765 _max_inline_size = C1MaxTrivialSize;
766 }
767 }
768
769
770 void GraphBuilder::kill_all() {
771 if (UseLocalValueNumbering) {
772 vmap()->kill_all();
773 }
774 _memory->kill();
775 }
776
777
778 BlockBegin* GraphBuilder::ScopeData::block_at(int bci) {
779 if (parsing_jsr()) {
780 // It is necessary to clone all blocks associated with a
781 // subroutine, including those for exception handlers in the scope
782 // of the method containing the jsr (because those exception
783 // handlers may contain ret instructions in some cases).
784 BlockBegin* block = bci2block()->at(bci);
785 if (block != nullptr && block == parent()->bci2block()->at(bci)) {
786 BlockBegin* new_block = new BlockBegin(block->bci());
787 if (PrintInitialBlockList) {
788 tty->print_cr("CFG: cloned block %d (bci %d) as block %d for jsr",
789 block->block_id(), block->bci(), new_block->block_id());
790 }
791 // copy data from cloned blocked
792 new_block->set_depth_first_number(block->depth_first_number());
793 if (block->is_set(BlockBegin::parser_loop_header_flag)) new_block->set(BlockBegin::parser_loop_header_flag);
794 // Preserve certain flags for assertion checking
795 if (block->is_set(BlockBegin::subroutine_entry_flag)) new_block->set(BlockBegin::subroutine_entry_flag);
796 if (block->is_set(BlockBegin::exception_entry_flag)) new_block->set(BlockBegin::exception_entry_flag);
797
798 // copy was_visited_flag to allow early detection of bailouts
799 // if a block that is used in a jsr has already been visited before,
800 // it is shared between the normal control flow and a subroutine
801 // BlockBegin::try_merge returns false when the flag is set, this leads
802 // to a compilation bailout
803 if (block->is_set(BlockBegin::was_visited_flag)) new_block->set(BlockBegin::was_visited_flag);
804
805 bci2block()->at_put(bci, new_block);
806 block = new_block;
807 }
808 return block;
809 } else {
810 return bci2block()->at(bci);
811 }
812 }
813
814
815 XHandlers* GraphBuilder::ScopeData::xhandlers() const {
816 if (_jsr_xhandlers == nullptr) {
817 assert(!parsing_jsr(), "");
818 return scope()->xhandlers();
819 }
820 assert(parsing_jsr(), "");
821 return _jsr_xhandlers;
822 }
823
824
825 void GraphBuilder::ScopeData::set_scope(IRScope* scope) {
826 _scope = scope;
827 bool parent_has_handler = false;
828 if (parent() != nullptr) {
829 parent_has_handler = parent()->has_handler();
830 }
831 _has_handler = parent_has_handler || scope->xhandlers()->has_handlers();
832 }
833
834
835 void GraphBuilder::ScopeData::set_inline_cleanup_info(BlockBegin* block,
836 Instruction* return_prev,
837 ValueStack* return_state) {
838 _cleanup_block = block;
839 _cleanup_return_prev = return_prev;
840 _cleanup_state = return_state;
841 }
842
843
844 void GraphBuilder::ScopeData::add_to_work_list(BlockBegin* block) {
845 if (_work_list == nullptr) {
846 _work_list = new BlockList();
847 }
848
849 if (!block->is_set(BlockBegin::is_on_work_list_flag)) {
850 // Do not start parsing the continuation block while in a
851 // sub-scope
852 if (parsing_jsr()) {
853 if (block == jsr_continuation()) {
854 return;
855 }
856 } else {
857 if (block == continuation()) {
858 return;
859 }
860 }
861 block->set(BlockBegin::is_on_work_list_flag);
862 _work_list->push(block);
863
864 sort_top_into_worklist(_work_list, block);
865 }
866 }
867
868
869 void GraphBuilder::sort_top_into_worklist(BlockList* worklist, BlockBegin* top) {
870 assert(worklist->top() == top, "");
871 // sort block descending into work list
872 const int dfn = top->depth_first_number();
873 assert(dfn != -1, "unknown depth first number");
874 int i = worklist->length()-2;
875 while (i >= 0) {
876 BlockBegin* b = worklist->at(i);
877 if (b->depth_first_number() < dfn) {
878 worklist->at_put(i+1, b);
879 } else {
880 break;
881 }
882 i --;
883 }
884 if (i >= -1) worklist->at_put(i + 1, top);
885 }
886
887
888 BlockBegin* GraphBuilder::ScopeData::remove_from_work_list() {
889 if (is_work_list_empty()) {
890 return nullptr;
891 }
892 return _work_list->pop();
893 }
894
895
896 bool GraphBuilder::ScopeData::is_work_list_empty() const {
897 return (_work_list == nullptr || _work_list->length() == 0);
898 }
899
900
901 void GraphBuilder::ScopeData::setup_jsr_xhandlers() {
902 assert(parsing_jsr(), "");
903 // clone all the exception handlers from the scope
904 XHandlers* handlers = new XHandlers(scope()->xhandlers());
905 const int n = handlers->length();
906 for (int i = 0; i < n; i++) {
907 // The XHandlers need to be adjusted to dispatch to the cloned
908 // handler block instead of the default one but the synthetic
909 // unlocker needs to be handled specially. The synthetic unlocker
910 // should be left alone since there can be only one and all code
911 // should dispatch to the same one.
912 XHandler* h = handlers->handler_at(i);
913 assert(h->handler_bci() != SynchronizationEntryBCI, "must be real");
914 h->set_entry_block(block_at(h->handler_bci()));
915 }
916 _jsr_xhandlers = handlers;
917 }
918
919
920 int GraphBuilder::ScopeData::num_returns() {
921 if (parsing_jsr()) {
922 return parent()->num_returns();
923 }
924 return _num_returns;
925 }
926
927
928 void GraphBuilder::ScopeData::incr_num_returns() {
929 if (parsing_jsr()) {
930 parent()->incr_num_returns();
931 } else {
932 ++_num_returns;
933 }
934 }
935
936
937 // Implementation of GraphBuilder
938
939 #define INLINE_BAILOUT(msg) { inline_bailout(msg); return false; }
940
941
942 void GraphBuilder::load_constant() {
943 ciConstant con = stream()->get_constant();
944 if (con.is_valid()) {
945 ValueType* t = illegalType;
946 ValueStack* patch_state = nullptr;
947 switch (con.basic_type()) {
948 case T_BOOLEAN: t = new IntConstant (con.as_boolean()); break;
949 case T_BYTE : t = new IntConstant (con.as_byte ()); break;
950 case T_CHAR : t = new IntConstant (con.as_char ()); break;
951 case T_SHORT : t = new IntConstant (con.as_short ()); break;
952 case T_INT : t = new IntConstant (con.as_int ()); break;
953 case T_LONG : t = new LongConstant (con.as_long ()); break;
954 case T_FLOAT : t = new FloatConstant (con.as_float ()); break;
955 case T_DOUBLE : t = new DoubleConstant(con.as_double ()); break;
956 case T_ARRAY : // fall-through
957 case T_OBJECT : {
958 ciObject* obj = con.as_object();
959 if (!obj->is_loaded() || (PatchALot && !stream()->is_string_constant())) {
960 // A Class, MethodType, MethodHandle, Dynamic, or String.
961 patch_state = copy_state_before();
962 t = new ObjectConstant(obj);
963 } else {
964 // Might be a Class, MethodType, MethodHandle, or Dynamic constant
965 // result, which might turn out to be an array.
966 if (obj->is_null_object()) {
967 t = objectNull;
968 } else if (obj->is_array()) {
969 t = new ArrayConstant(obj->as_array());
970 } else {
971 t = new InstanceConstant(obj->as_instance());
972 }
973 }
974 break;
975 }
976 default: ShouldNotReachHere();
977 }
978 Value x;
979 if (patch_state != nullptr) {
980 // Arbitrary memory effects from running BSM or class loading (using custom loader) during linkage.
981 bool kills_memory = stream()->is_dynamic_constant() ||
982 (!stream()->is_string_constant() && !method()->holder()->has_trusted_loader());
983 x = new Constant(t, patch_state, kills_memory);
984 } else {
985 x = new Constant(t);
986 }
987
988 // Unbox the value at runtime, if needed.
989 // ConstantDynamic entry can be of a primitive type, but it is cached in boxed form.
990 if (patch_state != nullptr) {
991 int cp_index = stream()->get_constant_pool_index();
992 BasicType type = stream()->get_basic_type_for_constant_at(cp_index);
993 if (is_java_primitive(type)) {
994 ciInstanceKlass* box_klass = ciEnv::current()->get_box_klass_for_primitive_type(type);
995 assert(box_klass->is_loaded(), "sanity");
996 int offset = java_lang_boxing_object::value_offset(type);
997 ciField* value_field = box_klass->get_field_by_offset(offset, false /*is_static*/);
998 x = new LoadField(append(x), offset, value_field, false /*is_static*/, patch_state, false /*needs_patching*/);
999 t = as_ValueType(type);
1000 } else {
1001 assert(is_reference_type(type), "not a reference: %s", type2name(type));
1002 }
1003 }
1004
1005 push(t, append(x));
1006 } else {
1007 BAILOUT("could not resolve a constant");
1008 }
1009 }
1010
1011
1012 void GraphBuilder::load_local(ValueType* type, int index) {
1013 Value x = state()->local_at(index);
1014 assert(x != nullptr && !x->type()->is_illegal(), "access of illegal local variable");
1015 push(type, x);
1016 }
1017
1018
1019 void GraphBuilder::store_local(ValueType* type, int index) {
1020 Value x = pop(type);
1021 store_local(state(), x, index);
1022 }
1023
1024
1025 void GraphBuilder::store_local(ValueStack* state, Value x, int index) {
1026 if (parsing_jsr()) {
1027 // We need to do additional tracking of the location of the return
1028 // address for jsrs since we don't handle arbitrary jsr/ret
1029 // constructs. Here we are figuring out in which circumstances we
1030 // need to bail out.
1031 if (x->type()->is_address()) {
1032 scope_data()->set_jsr_return_address_local(index);
1033
1034 // Also check parent jsrs (if any) at this time to see whether
1035 // they are using this local. We don't handle skipping over a
1036 // ret.
1037 for (ScopeData* cur_scope_data = scope_data()->parent();
1038 cur_scope_data != nullptr && cur_scope_data->parsing_jsr() && cur_scope_data->scope() == scope();
1039 cur_scope_data = cur_scope_data->parent()) {
1040 if (cur_scope_data->jsr_return_address_local() == index) {
1041 BAILOUT("subroutine overwrites return address from previous subroutine");
1042 }
1043 }
1044 } else if (index == scope_data()->jsr_return_address_local()) {
1045 scope_data()->set_jsr_return_address_local(-1);
1046 }
1047 }
1048
1049 state->store_local(index, x);
1050 }
1051
1052
1053 void GraphBuilder::load_indexed(BasicType type) {
1054 // In case of in block code motion in range check elimination
1055 ValueStack* state_before = nullptr;
1056 int array_idx = state()->stack_size() - 2;
1057 if (type == T_OBJECT && state()->stack_at(array_idx)->maybe_flat_array()) {
1058 // Save the entire state and re-execute on deopt when accessing flat arrays
1059 state_before = copy_state_before();
1060 state_before->set_should_reexecute(true);
1061 } else {
1062 state_before = copy_state_indexed_access();
1063 }
1064 compilation()->set_has_access_indexed(true);
1065 Value index = ipop();
1066 Value array = apop();
1067 Value length = nullptr;
1068 if (CSEArrayLength ||
1069 (array->as_Constant() != nullptr) ||
1070 (array->as_AccessField() && array->as_AccessField()->field()->is_constant()) ||
1071 (array->as_NewArray() && array->as_NewArray()->length() && array->as_NewArray()->length()->type()->is_constant()) ||
1072 (array->as_NewMultiArray() && array->as_NewMultiArray()->dims()->at(0)->type()->is_constant())) {
1073 length = append(new ArrayLength(array, state_before));
1074 }
1075
1076 bool need_membar = false;
1077 LoadIndexed* load_indexed = nullptr;
1078 Instruction* result = nullptr;
1079 if (array->is_loaded_flat_array()) {
1080 // TODO 8350865 This is currently dead code. Can we use set_null_free on the result here if the array is null-free?
1081 ciType* array_type = array->declared_type();
1082 ciInlineKlass* elem_klass = array_type->as_flat_array_klass()->element_klass()->as_inline_klass();
1083
1084 bool can_delay_access = false;
1085 ciBytecodeStream s(method());
1086 s.force_bci(bci());
1087 s.next();
1088 if (s.cur_bc() == Bytecodes::_getfield) {
1089 bool will_link;
1090 ciField* next_field = s.get_field(will_link);
1091 bool next_needs_patching = !next_field->holder()->is_initialized() ||
1092 !next_field->will_link(method(), Bytecodes::_getfield) ||
1093 PatchALot;
1094 can_delay_access = C1UseDelayedFlattenedFieldReads && !next_needs_patching;
1095 }
1096 if (can_delay_access) {
1097 // potentially optimizable array access, storing information for delayed decision
1098 LoadIndexed* li = new LoadIndexed(array, index, length, type, state_before);
1099 DelayedLoadIndexed* dli = new DelayedLoadIndexed(li, state_before);
1100 li->set_delayed(dli);
1101 set_pending_load_indexed(dli);
1102 return; // Nothing else to do for now
1103 } else {
1104 NewInstance* new_instance = new NewInstance(elem_klass, state_before, false, true);
1105 _memory->new_instance(new_instance);
1106 apush(append_split(new_instance));
1107 load_indexed = new LoadIndexed(array, index, length, type, state_before);
1108 load_indexed->set_vt(new_instance);
1109 // The LoadIndexed node will initialise this instance by copying from
1110 // the flat field. Ensure these stores are visible before any
1111 // subsequent store that publishes this reference.
1112 need_membar = true;
1113 }
1114 } else {
1115 load_indexed = new LoadIndexed(array, index, length, type, state_before);
1116 if (profile_array_accesses() && is_reference_type(type)) {
1117 compilation()->set_would_profile(true);
1118 load_indexed->set_should_profile(true);
1119 load_indexed->set_profiled_method(method());
1120 load_indexed->set_profiled_bci(bci());
1121 }
1122 }
1123 result = append(load_indexed);
1124 if (need_membar) {
1125 append(new MemBar(lir_membar_storestore));
1126 }
1127 assert(!load_indexed->should_profile() || load_indexed == result, "should not be optimized out");
1128 if (!array->is_loaded_flat_array()) {
1129 push(as_ValueType(type), result);
1130 }
1131 }
1132
1133
1134 void GraphBuilder::store_indexed(BasicType type) {
1135 // In case of in block code motion in range check elimination
1136 ValueStack* state_before = nullptr;
1137 int array_idx = state()->stack_size() - 3;
1138 if (type == T_OBJECT && state()->stack_at(array_idx)->maybe_flat_array()) {
1139 // Save the entire state and re-execute on deopt when accessing flat arrays
1140 state_before = copy_state_before();
1141 state_before->set_should_reexecute(true);
1142 } else {
1143 state_before = copy_state_indexed_access();
1144 }
1145 compilation()->set_has_access_indexed(true);
1146 Value value = pop(as_ValueType(type));
1147 Value index = ipop();
1148 Value array = apop();
1149 Value length = nullptr;
1150 if (CSEArrayLength ||
1151 (array->as_Constant() != nullptr) ||
1152 (array->as_AccessField() && array->as_AccessField()->field()->is_constant()) ||
1153 (array->as_NewArray() && array->as_NewArray()->length() && array->as_NewArray()->length()->type()->is_constant()) ||
1154 (array->as_NewMultiArray() && array->as_NewMultiArray()->dims()->at(0)->type()->is_constant())) {
1155 length = append(new ArrayLength(array, state_before));
1156 }
1157 ciType* array_type = array->declared_type();
1158 bool check_boolean = false;
1159 if (array_type != nullptr) {
1160 if (array_type->is_loaded() &&
1161 array_type->as_array_klass()->element_type()->basic_type() == T_BOOLEAN) {
1162 assert(type == T_BYTE, "boolean store uses bastore");
1163 Value mask = append(new Constant(new IntConstant(1)));
1164 value = append(new LogicOp(Bytecodes::_iand, value, mask));
1165 }
1166 } else if (type == T_BYTE) {
1167 check_boolean = true;
1168 }
1169
1170 StoreIndexed* store_indexed = new StoreIndexed(array, index, length, type, value, state_before, check_boolean);
1171 if (profile_array_accesses() && is_reference_type(type) && !array->is_loaded_flat_array()) {
1172 compilation()->set_would_profile(true);
1173 store_indexed->set_should_profile(true);
1174 store_indexed->set_profiled_method(method());
1175 store_indexed->set_profiled_bci(bci());
1176 }
1177 Instruction* result = append(store_indexed);
1178 assert(!store_indexed->should_profile() || store_indexed == result, "should not be optimized out");
1179 _memory->store_value(value);
1180 }
1181
1182 void GraphBuilder::stack_op(Bytecodes::Code code) {
1183 switch (code) {
1184 case Bytecodes::_pop:
1185 { Value w = state()->raw_pop();
1186 }
1187 break;
1188 case Bytecodes::_pop2:
1189 { Value w1 = state()->raw_pop();
1190 Value w2 = state()->raw_pop();
1191 }
1192 break;
1193 case Bytecodes::_dup:
1194 { Value w = state()->raw_pop();
1195 state()->raw_push(w);
1196 state()->raw_push(w);
1197 }
1198 break;
1199 case Bytecodes::_dup_x1:
1200 { Value w1 = state()->raw_pop();
1201 Value w2 = state()->raw_pop();
1202 state()->raw_push(w1);
1203 state()->raw_push(w2);
1204 state()->raw_push(w1);
1205 }
1206 break;
1207 case Bytecodes::_dup_x2:
1208 { Value w1 = state()->raw_pop();
1209 Value w2 = state()->raw_pop();
1210 Value w3 = state()->raw_pop();
1211 state()->raw_push(w1);
1212 state()->raw_push(w3);
1213 state()->raw_push(w2);
1214 state()->raw_push(w1);
1215 }
1216 break;
1217 case Bytecodes::_dup2:
1218 { Value w1 = state()->raw_pop();
1219 Value w2 = state()->raw_pop();
1220 state()->raw_push(w2);
1221 state()->raw_push(w1);
1222 state()->raw_push(w2);
1223 state()->raw_push(w1);
1224 }
1225 break;
1226 case Bytecodes::_dup2_x1:
1227 { Value w1 = state()->raw_pop();
1228 Value w2 = state()->raw_pop();
1229 Value w3 = state()->raw_pop();
1230 state()->raw_push(w2);
1231 state()->raw_push(w1);
1232 state()->raw_push(w3);
1233 state()->raw_push(w2);
1234 state()->raw_push(w1);
1235 }
1236 break;
1237 case Bytecodes::_dup2_x2:
1238 { Value w1 = state()->raw_pop();
1239 Value w2 = state()->raw_pop();
1240 Value w3 = state()->raw_pop();
1241 Value w4 = state()->raw_pop();
1242 state()->raw_push(w2);
1243 state()->raw_push(w1);
1244 state()->raw_push(w4);
1245 state()->raw_push(w3);
1246 state()->raw_push(w2);
1247 state()->raw_push(w1);
1248 }
1249 break;
1250 case Bytecodes::_swap:
1251 { Value w1 = state()->raw_pop();
1252 Value w2 = state()->raw_pop();
1253 state()->raw_push(w1);
1254 state()->raw_push(w2);
1255 }
1256 break;
1257 default:
1258 ShouldNotReachHere();
1259 break;
1260 }
1261 }
1262
1263
1264 void GraphBuilder::arithmetic_op(ValueType* type, Bytecodes::Code code, ValueStack* state_before) {
1265 Value y = pop(type);
1266 Value x = pop(type);
1267 Value res = new ArithmeticOp(code, x, y, state_before);
1268 push(type, append(res));
1269 }
1270
1271
1272 void GraphBuilder::negate_op(ValueType* type) {
1273 push(type, append(new NegateOp(pop(type))));
1274 }
1275
1276
1277 void GraphBuilder::shift_op(ValueType* type, Bytecodes::Code code) {
1278 Value s = ipop();
1279 Value x = pop(type);
1280 // try to simplify
1281 // Note: This code should go into the canonicalizer as soon as it can
1282 // can handle canonicalized forms that contain more than one node.
1283 if (CanonicalizeNodes && code == Bytecodes::_iushr) {
1284 // pattern: x >>> s
1285 IntConstant* s1 = s->type()->as_IntConstant();
1286 if (s1 != nullptr) {
1287 // pattern: x >>> s1, with s1 constant
1288 ShiftOp* l = x->as_ShiftOp();
1289 if (l != nullptr && l->op() == Bytecodes::_ishl) {
1290 // pattern: (a << b) >>> s1
1291 IntConstant* s0 = l->y()->type()->as_IntConstant();
1292 if (s0 != nullptr) {
1293 // pattern: (a << s0) >>> s1
1294 const int s0c = s0->value() & 0x1F; // only the low 5 bits are significant for shifts
1295 const int s1c = s1->value() & 0x1F; // only the low 5 bits are significant for shifts
1296 if (s0c == s1c) {
1297 if (s0c == 0) {
1298 // pattern: (a << 0) >>> 0 => simplify to: a
1299 ipush(l->x());
1300 } else {
1301 // pattern: (a << s0c) >>> s0c => simplify to: a & m, with m constant
1302 assert(0 < s0c && s0c < BitsPerInt, "adjust code below to handle corner cases");
1303 const int m = checked_cast<int>(right_n_bits(BitsPerInt - s0c));
1304 Value s = append(new Constant(new IntConstant(m)));
1305 ipush(append(new LogicOp(Bytecodes::_iand, l->x(), s)));
1306 }
1307 return;
1308 }
1309 }
1310 }
1311 }
1312 }
1313 // could not simplify
1314 push(type, append(new ShiftOp(code, x, s)));
1315 }
1316
1317
1318 void GraphBuilder::logic_op(ValueType* type, Bytecodes::Code code) {
1319 Value y = pop(type);
1320 Value x = pop(type);
1321 push(type, append(new LogicOp(code, x, y)));
1322 }
1323
1324
1325 void GraphBuilder::compare_op(ValueType* type, Bytecodes::Code code) {
1326 ValueStack* state_before = copy_state_before();
1327 Value y = pop(type);
1328 Value x = pop(type);
1329 ipush(append(new CompareOp(code, x, y, state_before)));
1330 }
1331
1332
1333 void GraphBuilder::convert(Bytecodes::Code op, BasicType from, BasicType to) {
1334 push(as_ValueType(to), append(new Convert(op, pop(as_ValueType(from)), as_ValueType(to))));
1335 }
1336
1337
1338 void GraphBuilder::increment() {
1339 int index = stream()->get_index();
1340 int delta = stream()->is_wide() ? (signed short)Bytes::get_Java_u2(stream()->cur_bcp() + 4) : (signed char)(stream()->cur_bcp()[2]);
1341 load_local(intType, index);
1342 ipush(append(new Constant(new IntConstant(delta))));
1343 arithmetic_op(intType, Bytecodes::_iadd);
1344 store_local(intType, index);
1345 }
1346
1347
1348 void GraphBuilder::_goto(int from_bci, int to_bci) {
1349 Goto *x = new Goto(block_at(to_bci), to_bci <= from_bci);
1350 if (is_profiling()) {
1351 compilation()->set_would_profile(true);
1352 x->set_profiled_bci(bci());
1353 if (profile_branches()) {
1354 x->set_profiled_method(method());
1355 x->set_should_profile(true);
1356 }
1357 }
1358 append(x);
1359 }
1360
1361
1362 void GraphBuilder::if_node(Value x, If::Condition cond, Value y, ValueStack* state_before) {
1363 BlockBegin* tsux = block_at(stream()->get_dest());
1364 BlockBegin* fsux = block_at(stream()->next_bci());
1365 bool is_bb = tsux->bci() < stream()->cur_bci() || fsux->bci() < stream()->cur_bci();
1366
1367 bool subst_check = false;
1368 if (Arguments::is_valhalla_enabled() && (stream()->cur_bc() == Bytecodes::_if_acmpeq || stream()->cur_bc() == Bytecodes::_if_acmpne)) {
1369 ValueType* left_vt = x->type();
1370 ValueType* right_vt = y->type();
1371 if (left_vt->is_object()) {
1372 assert(right_vt->is_object(), "must be");
1373 ciKlass* left_klass = x->as_loaded_klass_or_null();
1374 ciKlass* right_klass = y->as_loaded_klass_or_null();
1375
1376 if (left_klass == nullptr || right_klass == nullptr) {
1377 // The klass is still unloaded, or came from a Phi node. Go slow case;
1378 subst_check = true;
1379 } else if (left_klass->can_be_inline_klass() || right_klass->can_be_inline_klass()) {
1380 // Either operand may be a value object, but we're not sure. Go slow case;
1381 subst_check = true;
1382 } else {
1383 // No need to do substitutability check
1384 }
1385 }
1386 }
1387 if ((stream()->cur_bc() == Bytecodes::_if_acmpeq || stream()->cur_bc() == Bytecodes::_if_acmpne) &&
1388 is_profiling() && profile_branches()) {
1389 compilation()->set_would_profile(true);
1390 append(new ProfileACmpTypes(method(), bci(), x, y));
1391 }
1392
1393 // In case of loop invariant code motion or predicate insertion
1394 // before the body of a loop the state is needed
1395 Instruction *i = append(new If(x, cond, false, y, tsux, fsux, (is_bb || compilation()->is_optimistic() || subst_check) ? state_before : nullptr, is_bb, subst_check));
1396
1397 assert(i->as_Goto() == nullptr ||
1398 (i->as_Goto()->sux_at(0) == tsux && i->as_Goto()->is_safepoint() == (tsux->bci() < stream()->cur_bci())) ||
1399 (i->as_Goto()->sux_at(0) == fsux && i->as_Goto()->is_safepoint() == (fsux->bci() < stream()->cur_bci())),
1400 "safepoint state of Goto returned by canonicalizer incorrect");
1401
1402 if (is_profiling()) {
1403 If* if_node = i->as_If();
1404 if (if_node != nullptr) {
1405 // Note that we'd collect profile data in this method if we wanted it.
1406 compilation()->set_would_profile(true);
1407 // At level 2 we need the proper bci to count backedges
1408 if_node->set_profiled_bci(bci());
1409 if (profile_branches()) {
1410 // Successors can be rotated by the canonicalizer, check for this case.
1411 if_node->set_profiled_method(method());
1412 if_node->set_should_profile(true);
1413 if (if_node->tsux() == fsux) {
1414 if_node->set_swapped(true);
1415 }
1416 }
1417 return;
1418 }
1419
1420 // Check if this If was reduced to Goto.
1421 Goto *goto_node = i->as_Goto();
1422 if (goto_node != nullptr) {
1423 compilation()->set_would_profile(true);
1424 goto_node->set_profiled_bci(bci());
1425 if (profile_branches()) {
1426 goto_node->set_profiled_method(method());
1427 goto_node->set_should_profile(true);
1428 // Find out which successor is used.
1429 if (goto_node->default_sux() == tsux) {
1430 goto_node->set_direction(Goto::taken);
1431 } else if (goto_node->default_sux() == fsux) {
1432 goto_node->set_direction(Goto::not_taken);
1433 } else {
1434 ShouldNotReachHere();
1435 }
1436 }
1437 return;
1438 }
1439 }
1440 }
1441
1442
1443 void GraphBuilder::if_zero(ValueType* type, If::Condition cond) {
1444 Value y = append(new Constant(intZero));
1445 ValueStack* state_before = copy_state_before();
1446 Value x = ipop();
1447 if_node(x, cond, y, state_before);
1448 }
1449
1450
1451 void GraphBuilder::if_null(ValueType* type, If::Condition cond) {
1452 Value y = append(new Constant(objectNull));
1453 ValueStack* state_before = copy_state_before();
1454 Value x = apop();
1455 if_node(x, cond, y, state_before);
1456 }
1457
1458
1459 void GraphBuilder::if_same(ValueType* type, If::Condition cond) {
1460 ValueStack* state_before = copy_state_before();
1461 Value y = pop(type);
1462 Value x = pop(type);
1463 if_node(x, cond, y, state_before);
1464 }
1465
1466
1467 void GraphBuilder::jsr(int dest) {
1468 // We only handle well-formed jsrs (those which are "block-structured").
1469 // If the bytecodes are strange (jumping out of a jsr block) then we
1470 // might end up trying to re-parse a block containing a jsr which
1471 // has already been activated. Watch for this case and bail out.
1472 if (next_bci() >= method()->code_size()) {
1473 // This can happen if the subroutine does not terminate with a ret,
1474 // effectively turning the jsr into a goto.
1475 BAILOUT("too-complicated jsr/ret structure");
1476 }
1477 for (ScopeData* cur_scope_data = scope_data();
1478 cur_scope_data != nullptr && cur_scope_data->parsing_jsr() && cur_scope_data->scope() == scope();
1479 cur_scope_data = cur_scope_data->parent()) {
1480 if (cur_scope_data->jsr_entry_bci() == dest) {
1481 BAILOUT("too-complicated jsr/ret structure");
1482 }
1483 }
1484
1485 push(addressType, append(new Constant(new AddressConstant(next_bci()))));
1486 if (!try_inline_jsr(dest)) {
1487 return; // bailed out while parsing and inlining subroutine
1488 }
1489 }
1490
1491
1492 void GraphBuilder::ret(int local_index) {
1493 if (!parsing_jsr()) BAILOUT("ret encountered while not parsing subroutine");
1494
1495 if (local_index != scope_data()->jsr_return_address_local()) {
1496 BAILOUT("can not handle complicated jsr/ret constructs");
1497 }
1498
1499 // Rets simply become (NON-SAFEPOINT) gotos to the jsr continuation
1500 append(new Goto(scope_data()->jsr_continuation(), false));
1501 }
1502
1503
1504 void GraphBuilder::table_switch() {
1505 Bytecode_tableswitch sw(stream());
1506 const int l = sw.length();
1507 if (CanonicalizeNodes && l == 1 && compilation()->env()->comp_level() != CompLevel_full_profile) {
1508 // total of 2 successors => use If instead of switch
1509 // Note: This code should go into the canonicalizer as soon as it can
1510 // can handle canonicalized forms that contain more than one node.
1511 Value key = append(new Constant(new IntConstant(sw.low_key())));
1512 BlockBegin* tsux = block_at(bci() + sw.dest_offset_at(0));
1513 BlockBegin* fsux = block_at(bci() + sw.default_offset());
1514 bool is_bb = tsux->bci() < bci() || fsux->bci() < bci();
1515 // In case of loop invariant code motion or predicate insertion
1516 // before the body of a loop the state is needed
1517 ValueStack* state_before = copy_state_if_bb(is_bb);
1518 append(new If(ipop(), If::eql, true, key, tsux, fsux, state_before, is_bb));
1519 } else {
1520 // collect successors
1521 BlockList* sux = new BlockList(l + 1, nullptr);
1522 int i;
1523 bool has_bb = false;
1524 for (i = 0; i < l; i++) {
1525 sux->at_put(i, block_at(bci() + sw.dest_offset_at(i)));
1526 if (sw.dest_offset_at(i) < 0) has_bb = true;
1527 }
1528 // add default successor
1529 if (sw.default_offset() < 0) has_bb = true;
1530 sux->at_put(i, block_at(bci() + sw.default_offset()));
1531 // In case of loop invariant code motion or predicate insertion
1532 // before the body of a loop the state is needed
1533 ValueStack* state_before = copy_state_if_bb(has_bb);
1534 Instruction* res = append(new TableSwitch(ipop(), sux, sw.low_key(), state_before, has_bb));
1535 #ifdef ASSERT
1536 if (res->as_Goto()) {
1537 for (i = 0; i < l; i++) {
1538 if (sux->at(i) == res->as_Goto()->sux_at(0)) {
1539 assert(res->as_Goto()->is_safepoint() == (sw.dest_offset_at(i) < 0), "safepoint state of Goto returned by canonicalizer incorrect");
1540 }
1541 }
1542 }
1543 #endif
1544 }
1545 }
1546
1547
1548 void GraphBuilder::lookup_switch() {
1549 Bytecode_lookupswitch sw(stream());
1550 const int l = sw.number_of_pairs();
1551 if (CanonicalizeNodes && l == 1 && compilation()->env()->comp_level() != CompLevel_full_profile) {
1552 // total of 2 successors => use If instead of switch
1553 // Note: This code should go into the canonicalizer as soon as it can
1554 // can handle canonicalized forms that contain more than one node.
1555 // simplify to If
1556 LookupswitchPair pair = sw.pair_at(0);
1557 Value key = append(new Constant(new IntConstant(pair.match())));
1558 BlockBegin* tsux = block_at(bci() + pair.offset());
1559 BlockBegin* fsux = block_at(bci() + sw.default_offset());
1560 bool is_bb = tsux->bci() < bci() || fsux->bci() < bci();
1561 // In case of loop invariant code motion or predicate insertion
1562 // before the body of a loop the state is needed
1563 ValueStack* state_before = copy_state_if_bb(is_bb);;
1564 append(new If(ipop(), If::eql, true, key, tsux, fsux, state_before, is_bb));
1565 } else {
1566 // collect successors & keys
1567 BlockList* sux = new BlockList(l + 1, nullptr);
1568 intArray* keys = new intArray(l, l, 0);
1569 int i;
1570 bool has_bb = false;
1571 for (i = 0; i < l; i++) {
1572 LookupswitchPair pair = sw.pair_at(i);
1573 if (pair.offset() < 0) has_bb = true;
1574 sux->at_put(i, block_at(bci() + pair.offset()));
1575 keys->at_put(i, pair.match());
1576 }
1577 // add default successor
1578 if (sw.default_offset() < 0) has_bb = true;
1579 sux->at_put(i, block_at(bci() + sw.default_offset()));
1580 // In case of loop invariant code motion or predicate insertion
1581 // before the body of a loop the state is needed
1582 ValueStack* state_before = copy_state_if_bb(has_bb);
1583 Instruction* res = append(new LookupSwitch(ipop(), sux, keys, state_before, has_bb));
1584 #ifdef ASSERT
1585 if (res->as_Goto()) {
1586 for (i = 0; i < l; i++) {
1587 if (sux->at(i) == res->as_Goto()->sux_at(0)) {
1588 assert(res->as_Goto()->is_safepoint() == (sw.pair_at(i).offset() < 0), "safepoint state of Goto returned by canonicalizer incorrect");
1589 }
1590 }
1591 }
1592 #endif
1593 }
1594 }
1595
1596 void GraphBuilder::call_register_finalizer() {
1597 // If the receiver requires finalization then emit code to perform
1598 // the registration on return.
1599
1600 // Gather some type information about the receiver
1601 Value receiver = state()->local_at(0);
1602 assert(receiver != nullptr, "must have a receiver");
1603 ciType* declared_type = receiver->declared_type();
1604 ciType* exact_type = receiver->exact_type();
1605 if (exact_type == nullptr &&
1606 receiver->as_Local() &&
1607 receiver->as_Local()->java_index() == 0) {
1608 ciInstanceKlass* ik = compilation()->method()->holder();
1609 if (ik->is_final()) {
1610 exact_type = ik;
1611 } else if (UseCHA && !(ik->has_subklass() || ik->is_interface())) {
1612 // test class is leaf class
1613 compilation()->dependency_recorder()->assert_leaf_type(ik);
1614 exact_type = ik;
1615 } else {
1616 declared_type = ik;
1617 }
1618 }
1619
1620 // see if we know statically that registration isn't required
1621 bool needs_check = true;
1622 if (exact_type != nullptr) {
1623 needs_check = exact_type->as_instance_klass()->has_finalizer();
1624 } else if (declared_type != nullptr) {
1625 ciInstanceKlass* ik = declared_type->as_instance_klass();
1626 if (!Dependencies::has_finalizable_subclass(ik)) {
1627 compilation()->dependency_recorder()->assert_has_no_finalizable_subclasses(ik);
1628 needs_check = false;
1629 }
1630 }
1631
1632 if (needs_check) {
1633 // Perform the registration of finalizable objects.
1634 ValueStack* state_before = copy_state_for_exception();
1635 load_local(objectType, 0);
1636 append_split(new Intrinsic(voidType, vmIntrinsics::_Object_init,
1637 state()->pop_arguments(1),
1638 true, state_before, true));
1639 }
1640 }
1641
1642
1643 void GraphBuilder::method_return(Value x, bool ignore_return) {
1644 if (method()->intrinsic_id() == vmIntrinsics::_Object_init) {
1645 call_register_finalizer();
1646 }
1647
1648 // The conditions for a memory barrier are described in Parse::do_exits().
1649 bool need_mem_bar = false;
1650 if (method()->is_object_constructor() &&
1651 (scope()->wrote_final() || scope()->wrote_stable() ||
1652 (AlwaysSafeConstructors && scope()->wrote_fields()) ||
1653 (support_IRIW_for_not_multiple_copy_atomic_cpu && scope()->wrote_volatile()))) {
1654 need_mem_bar = true;
1655 }
1656
1657 BasicType bt = method()->return_type()->basic_type();
1658 switch (bt) {
1659 case T_BYTE:
1660 {
1661 Value shift = append(new Constant(new IntConstant(24)));
1662 x = append(new ShiftOp(Bytecodes::_ishl, x, shift));
1663 x = append(new ShiftOp(Bytecodes::_ishr, x, shift));
1664 break;
1665 }
1666 case T_SHORT:
1667 {
1668 Value shift = append(new Constant(new IntConstant(16)));
1669 x = append(new ShiftOp(Bytecodes::_ishl, x, shift));
1670 x = append(new ShiftOp(Bytecodes::_ishr, x, shift));
1671 break;
1672 }
1673 case T_CHAR:
1674 {
1675 Value mask = append(new Constant(new IntConstant(0xFFFF)));
1676 x = append(new LogicOp(Bytecodes::_iand, x, mask));
1677 break;
1678 }
1679 case T_BOOLEAN:
1680 {
1681 Value mask = append(new Constant(new IntConstant(1)));
1682 x = append(new LogicOp(Bytecodes::_iand, x, mask));
1683 break;
1684 }
1685 default:
1686 break;
1687 }
1688
1689 // Check to see whether we are inlining. If so, Return
1690 // instructions become Gotos to the continuation point.
1691 if (continuation() != nullptr) {
1692
1693 int invoke_bci = state()->caller_state()->bci();
1694
1695 if (x != nullptr && !ignore_return) {
1696 ciMethod* caller = state()->scope()->caller()->method();
1697 Bytecodes::Code invoke_raw_bc = caller->raw_code_at_bci(invoke_bci);
1698 if (invoke_raw_bc == Bytecodes::_invokehandle || invoke_raw_bc == Bytecodes::_invokedynamic) {
1699 ciType* declared_ret_type = caller->get_declared_signature_at_bci(invoke_bci)->return_type();
1700 if (declared_ret_type->is_klass() && x->exact_type() == nullptr &&
1701 x->declared_type() != declared_ret_type && declared_ret_type != compilation()->env()->Object_klass()) {
1702 x = append(new TypeCast(declared_ret_type->as_klass(), x, copy_state_before()));
1703 }
1704 }
1705 }
1706
1707 assert(!method()->is_synchronized() || InlineSynchronizedMethods, "can not inline synchronized methods yet");
1708
1709 if (compilation()->env()->dtrace_method_probes()) {
1710 // Report exit from inline methods
1711 Values* args = new Values(1);
1712 args->push(append(new Constant(new MethodConstant(method()))));
1713 append(new RuntimeCall(voidType, "dtrace_method_exit", CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), args));
1714 }
1715
1716 // If the inlined method is synchronized, the monitor must be
1717 // released before we jump to the continuation block.
1718 if (method()->is_synchronized()) {
1719 assert(state()->locks_size() == 1, "receiver must be locked here");
1720 monitorexit(state()->lock_at(0), SynchronizationEntryBCI);
1721 }
1722
1723 if (need_mem_bar) {
1724 append(new MemBar(lir_membar_storestore));
1725 }
1726
1727 // State at end of inlined method is the state of the caller
1728 // without the method parameters on stack, including the
1729 // return value, if any, of the inlined method on operand stack.
1730 set_state(state()->caller_state()->copy_for_parsing());
1731 if (x != nullptr) {
1732 if (!ignore_return) {
1733 state()->push(x->type(), x);
1734 }
1735 if (profile_return() && x->type()->is_object_kind()) {
1736 ciMethod* caller = state()->scope()->method();
1737 profile_return_type(x, method(), caller, invoke_bci);
1738 }
1739 }
1740 Goto* goto_callee = new Goto(continuation(), false);
1741
1742 // See whether this is the first return; if so, store off some
1743 // of the state for later examination
1744 if (num_returns() == 0) {
1745 set_inline_cleanup_info();
1746 }
1747
1748 // The current bci() is in the wrong scope, so use the bci() of
1749 // the continuation point.
1750 append_with_bci(goto_callee, scope_data()->continuation()->bci());
1751 incr_num_returns();
1752 return;
1753 }
1754
1755 state()->truncate_stack(0);
1756 if (method()->is_synchronized()) {
1757 // perform the unlocking before exiting the method
1758 Value receiver;
1759 if (!method()->is_static()) {
1760 receiver = _initial_state->local_at(0);
1761 } else {
1762 receiver = append(new Constant(new ClassConstant(method()->holder())));
1763 }
1764 append_split(new MonitorExit(receiver, state()->unlock()));
1765 }
1766
1767 if (need_mem_bar) {
1768 append(new MemBar(lir_membar_storestore));
1769 }
1770
1771 assert(!ignore_return, "Ignoring return value works only for inlining");
1772 append(new Return(x));
1773 }
1774
1775 Value GraphBuilder::make_constant(ciConstant field_value, ciField* field) {
1776 if (!field_value.is_valid()) return nullptr;
1777
1778 BasicType field_type = field_value.basic_type();
1779 ValueType* value = as_ValueType(field_value);
1780
1781 // Attach dimension info to stable arrays.
1782 if (FoldStableValues &&
1783 field->is_stable() && field_type == T_ARRAY && !field_value.is_null_or_zero()) {
1784 ciArray* array = field_value.as_object()->as_array();
1785 jint dimension = field->type()->as_array_klass()->dimension();
1786 value = new StableArrayConstant(array, dimension);
1787 }
1788
1789 switch (field_type) {
1790 case T_ARRAY:
1791 case T_OBJECT:
1792 if (field_value.as_object()->should_be_constant()) {
1793 return new Constant(value);
1794 }
1795 return nullptr; // Not a constant.
1796 default:
1797 return new Constant(value);
1798 }
1799 }
1800
1801 void GraphBuilder::copy_inline_content(ciInlineKlass* vk, Value src, int src_off, Value dest, int dest_off, ValueStack* state_before, ciField* enclosing_field) {
1802 for (int i = 0; i < vk->nof_declared_nonstatic_fields(); i++) {
1803 ciField* field = vk->declared_nonstatic_field_at(i);
1804 int offset = field->offset_in_bytes() - vk->payload_offset();
1805 if (field->is_flat()) {
1806 copy_inline_content(field->type()->as_inline_klass(), src, src_off + offset, dest, dest_off + offset, state_before, enclosing_field);
1807 if (!field->is_null_free()) {
1808 // Nullable, copy the null marker using Unsafe because null markers are no real fields
1809 int null_marker_offset = field->null_marker_offset() - vk->payload_offset();
1810 Value offset = append(new Constant(new LongConstant(src_off + null_marker_offset)));
1811 Value nm = append(new UnsafeGet(T_BOOLEAN, src, offset, false));
1812 offset = append(new Constant(new LongConstant(dest_off + null_marker_offset)));
1813 append(new UnsafePut(T_BOOLEAN, dest, offset, nm, false));
1814 }
1815 } else {
1816 Value value = append(new LoadField(src, src_off + offset, field, false, state_before, false));
1817 StoreField* store = new StoreField(dest, dest_off + offset, field, value, false, state_before, false);
1818 store->set_enclosing_field(enclosing_field);
1819 append(store);
1820 }
1821 }
1822 }
1823
1824 void GraphBuilder::access_field(Bytecodes::Code code) {
1825 bool will_link;
1826 ciField* field = stream()->get_field(will_link);
1827 ciInstanceKlass* holder = field->holder();
1828 BasicType field_type = field->type()->basic_type();
1829 ValueType* type = as_ValueType(field_type);
1830
1831 // call will_link again to determine if the field is valid.
1832 const bool needs_patching = !holder->is_loaded() ||
1833 !field->will_link(method(), code) ||
1834 (!field->is_flat() && PatchALot);
1835
1836 ValueStack* state_before = nullptr;
1837 if (!holder->is_initialized() || needs_patching) {
1838 // save state before instruction for debug info when
1839 // deoptimization happens during patching
1840 state_before = copy_state_before();
1841 }
1842
1843 Value obj = nullptr;
1844 if (code == Bytecodes::_getstatic || code == Bytecodes::_putstatic) {
1845 if (state_before != nullptr) {
1846 // build a patching constant
1847 obj = new Constant(new InstanceConstant(holder->java_mirror()), state_before);
1848 } else {
1849 obj = new Constant(new InstanceConstant(holder->java_mirror()));
1850 }
1851 }
1852
1853 if (code == Bytecodes::_putfield) {
1854 scope()->set_wrote_fields();
1855 if (field->is_volatile()) {
1856 scope()->set_wrote_volatile();
1857 }
1858 if (field->is_final()) {
1859 scope()->set_wrote_final();
1860 }
1861 if (field->is_stable()) {
1862 scope()->set_wrote_stable();
1863 }
1864 }
1865
1866 int offset = !needs_patching ? field->offset_in_bytes() : -1;
1867 switch (code) {
1868 case Bytecodes::_getstatic: {
1869 // check for compile-time constants, i.e., initialized static final fields
1870 Value constant = nullptr;
1871 if (field->is_static_constant() && !PatchALot) {
1872 ciConstant field_value = field->constant_value();
1873 assert(!field->is_stable() || !field_value.is_null_or_zero(),
1874 "stable static w/ default value shouldn't be a constant");
1875 constant = make_constant(field_value, field);
1876 }
1877 if (constant != nullptr) {
1878 push(type, append(constant));
1879 } else {
1880 if (state_before == nullptr) {
1881 state_before = copy_state_for_exception();
1882 }
1883 LoadField* load_field = new LoadField(append(obj), offset, field, true,
1884 state_before, needs_patching);
1885 push(type, append(load_field));
1886 }
1887 break;
1888 }
1889 case Bytecodes::_putstatic: {
1890 Value val = pop(type);
1891 if (state_before == nullptr) {
1892 state_before = copy_state_for_exception();
1893 }
1894 if (field_type == T_BOOLEAN) {
1895 Value mask = append(new Constant(new IntConstant(1)));
1896 val = append(new LogicOp(Bytecodes::_iand, val, mask));
1897 }
1898 if (field->is_null_free()) {
1899 null_check(val);
1900 }
1901 if (field->is_null_free() && field->type()->is_loaded() && field->type()->as_inline_klass()->is_empty() && (!method()->is_class_initializer() || field->is_flat())) {
1902 // Storing to a field of an empty, null-free inline type that is already initialized. Ignore.
1903 break;
1904 }
1905 append(new StoreField(append(obj), offset, field, val, true, state_before, needs_patching));
1906 break;
1907 }
1908 case Bytecodes::_getfield: {
1909 // Check for compile-time constants, i.e., trusted final non-static fields.
1910 Value constant = nullptr;
1911 if (state_before == nullptr && field->is_flat()) {
1912 // Save the entire state and re-execute on deopt when accessing flat fields
1913 assert(Interpreter::bytecode_should_reexecute(code), "should reexecute");
1914 state_before = copy_state_before();
1915 }
1916 if (!has_pending_field_access() && !has_pending_load_indexed()) {
1917 obj = apop();
1918 ObjectType* obj_type = obj->type()->as_ObjectType();
1919 if (field->is_constant() && !field->is_flat() && obj_type->is_constant() && !PatchALot) {
1920 ciObject* const_oop = obj_type->constant_value();
1921 if (!const_oop->is_null_object() && const_oop->is_loaded()) {
1922 ciConstant field_value = field->constant_value_of(const_oop);
1923 if (field_value.is_valid()) {
1924 constant = make_constant(field_value, field);
1925 // For CallSite objects add a dependency for invalidation of the optimization.
1926 if (field->is_call_site_target()) {
1927 ciCallSite* call_site = const_oop->as_call_site();
1928 if (!call_site->is_fully_initialized_constant_call_site()) {
1929 ciMethodHandle* target = field_value.as_object()->as_method_handle();
1930 dependency_recorder()->assert_call_site_target_value(call_site, target);
1931 }
1932 }
1933 }
1934 }
1935 }
1936 }
1937 if (constant != nullptr) {
1938 push(type, append(constant));
1939 } else {
1940 if (state_before == nullptr) {
1941 state_before = copy_state_for_exception();
1942 }
1943 if (!field->is_flat()) {
1944 if (has_pending_field_access()) {
1945 assert(!needs_patching, "Can't patch delayed field access");
1946 obj = pending_field_access()->obj();
1947 offset += pending_field_access()->offset() - field->holder()->as_inline_klass()->payload_offset();
1948 field = pending_field_access()->holder()->get_field_by_offset(offset, false);
1949 assert(field != nullptr, "field not found");
1950 set_pending_field_access(nullptr);
1951 } else if (has_pending_load_indexed()) {
1952 assert(!needs_patching, "Can't patch delayed field access");
1953 pending_load_indexed()->update(field, offset - field->holder()->as_inline_klass()->payload_offset());
1954 LoadIndexed* li = pending_load_indexed()->load_instr();
1955 li->set_type(type);
1956 push(type, append(li));
1957 set_pending_load_indexed(nullptr);
1958 break;
1959 }
1960 LoadField* load = new LoadField(obj, offset, field, false, state_before, needs_patching);
1961 Value replacement = !needs_patching ? _memory->load(load) : load;
1962 if (replacement != load) {
1963 assert(replacement->is_linked() || !replacement->can_be_linked(), "should already by linked");
1964 // Writing an (integer) value to a boolean, byte, char or short field includes an implicit narrowing
1965 // conversion. Emit an explicit conversion here to get the correct field value after the write.
1966 switch (field_type) {
1967 case T_BOOLEAN:
1968 case T_BYTE:
1969 replacement = append(new Convert(Bytecodes::_i2b, replacement, type));
1970 break;
1971 case T_CHAR:
1972 replacement = append(new Convert(Bytecodes::_i2c, replacement, type));
1973 break;
1974 case T_SHORT:
1975 replacement = append(new Convert(Bytecodes::_i2s, replacement, type));
1976 break;
1977 default:
1978 break;
1979 }
1980 push(type, replacement);
1981 } else {
1982 push(type, append(load));
1983 }
1984 } else {
1985 // Flat field
1986 assert(!needs_patching, "Can't patch flat inline type field access");
1987 ciInlineKlass* inline_klass = field->type()->as_inline_klass();
1988 if (field->is_atomic()) {
1989 assert(!has_pending_field_access(), "Pending field accesses are not supported");
1990 LoadField* load = new LoadField(obj, offset, field, false, state_before, needs_patching);
1991 push(type, append(load));
1992 } else {
1993 // Look at the next bytecode to check if we can delay the field access
1994 bool can_delay_access = false;
1995 if (field->is_null_free()) {
1996 ciBytecodeStream s(method());
1997 s.force_bci(bci());
1998 s.next();
1999 if (s.cur_bc() == Bytecodes::_getfield && !needs_patching) {
2000 ciField* next_field = s.get_field(will_link);
2001 bool next_needs_patching = !next_field->holder()->is_loaded() ||
2002 !next_field->will_link(method(), Bytecodes::_getfield) ||
2003 PatchALot;
2004 // We can't update the offset for atomic accesses
2005 bool next_needs_atomic_access = next_field->is_flat() && next_field->is_atomic();
2006 can_delay_access = C1UseDelayedFlattenedFieldReads && !next_needs_patching && !next_needs_atomic_access && next_field->is_null_free();
2007 }
2008 }
2009
2010 if (can_delay_access) {
2011 if (has_pending_load_indexed()) {
2012 pending_load_indexed()->update(field, offset - field->holder()->as_inline_klass()->payload_offset());
2013 } else if (has_pending_field_access()) {
2014 pending_field_access()->inc_offset(offset - field->holder()->as_inline_klass()->payload_offset());
2015 } else {
2016 null_check(obj);
2017 DelayedFieldAccess* dfa = new DelayedFieldAccess(obj, field->holder(), field->offset_in_bytes(), state_before);
2018 set_pending_field_access(dfa);
2019 }
2020 } else {
2021 scope()->set_wrote_final();
2022 scope()->set_wrote_fields();
2023 if (has_pending_load_indexed()) {
2024 assert(field->is_null_free(), "nullable fields do not support delayed accesses yet");
2025 assert(!needs_patching, "Can't patch delayed field access");
2026 pending_load_indexed()->update(field, offset - field->holder()->as_inline_klass()->payload_offset());
2027 NewInstance* vt = new NewInstance(inline_klass, pending_load_indexed()->state_before(), false, true);
2028 _memory->new_instance(vt);
2029 pending_load_indexed()->load_instr()->set_vt(vt);
2030 apush(append_split(vt));
2031 append(pending_load_indexed()->load_instr());
2032 set_pending_load_indexed(nullptr);
2033 } else if (has_pending_field_access()) {
2034 assert(field->is_null_free(), "nullable fields do not support delayed accesses yet");
2035 state_before = pending_field_access()->state_before();
2036 NewInstance* new_instance = new NewInstance(inline_klass, state_before, false, true);
2037 _memory->new_instance(new_instance);
2038 apush(append_split(new_instance));
2039 copy_inline_content(inline_klass, pending_field_access()->obj(),
2040 pending_field_access()->offset() + field->offset_in_bytes() - field->holder()->as_inline_klass()->payload_offset(),
2041 new_instance, inline_klass->payload_offset(), state_before);
2042 set_pending_field_access(nullptr);
2043 } else {
2044 if (!field->is_null_free() && !inline_klass->is_initialized()) {
2045 // Cannot allocate an instance of inline_klass because it may have not been
2046 // initialized, bailout for now
2047 bailout("load from an uninitialized nullable non-atomic flat field");
2048 return;
2049 }
2050
2051 NewInstance* new_instance = new NewInstance(inline_klass, state_before, false, true);
2052 _memory->new_instance(new_instance);
2053 append_split(new_instance);
2054
2055 if (inline_klass->is_initialized() && inline_klass->is_empty()) {
2056 // Needs an explicit null check because below code does not perform any actual load if there are no fields
2057 null_check(obj);
2058 }
2059 copy_inline_content(inline_klass, obj, field->offset_in_bytes(), new_instance, inline_klass->payload_offset(), state_before);
2060
2061 Instruction* result = new_instance;
2062 if (!field->is_null_free()) {
2063 Value int_zero = append(new Constant(intZero));
2064 Value object_null = append(new Constant(objectNull));
2065 Value nm_offset = append(new Constant(new LongConstant(offset + inline_klass->null_marker_offset_in_payload())));
2066 Value nm = append(new UnsafeGet(T_BOOLEAN, obj, nm_offset, false));
2067 result = append(new IfOp(nm, Instruction::neq, int_zero, new_instance, object_null, state_before, false));
2068 }
2069 apush(result);
2070 }
2071
2072 // If we allocated a new instance ensure the stores to copy the
2073 // field contents are visible before any subsequent store that
2074 // publishes this reference.
2075 append(new MemBar(lir_membar_storestore));
2076 }
2077 }
2078 }
2079 }
2080 break;
2081 }
2082 case Bytecodes::_putfield: {
2083 Value val = pop(type);
2084 obj = apop();
2085 if (state_before == nullptr) {
2086 state_before = copy_state_for_exception();
2087 }
2088 if (field_type == T_BOOLEAN) {
2089 Value mask = append(new Constant(new IntConstant(1)));
2090 val = append(new LogicOp(Bytecodes::_iand, val, mask));
2091 }
2092
2093 if (field->is_null_free() && field->type()->is_loaded() && field->type()->as_inline_klass()->is_empty() && (!method()->is_object_constructor() || field->is_flat())) {
2094 // Storing to a field of an empty, null-free inline type that is already initialized. Ignore.
2095 null_check(obj);
2096 null_check(val);
2097 } else if (!field->is_flat()) {
2098 if (field->is_null_free()) {
2099 null_check(val);
2100 }
2101 StoreField* store = new StoreField(obj, offset, field, val, false, state_before, needs_patching);
2102 if (!needs_patching) store = _memory->store(store);
2103 if (store != nullptr) {
2104 append(store);
2105 }
2106 } else {
2107 // Flat field
2108 assert(!needs_patching, "Can't patch flat inline type field access");
2109 ciInlineKlass* inline_klass = field->type()->as_inline_klass();
2110 if (field->is_atomic()) {
2111 if (field->is_null_free()) {
2112 null_check(val);
2113 }
2114 append(new StoreField(obj, offset, field, val, false, state_before, needs_patching));
2115 } else if (field->is_null_free()) {
2116 assert(!inline_klass->is_empty(), "should have been handled");
2117 copy_inline_content(inline_klass, val, inline_klass->payload_offset(), obj, offset, state_before, field);
2118 } else {
2119 if (!inline_klass->is_initialized()) {
2120 // null_reset_value is not available, bailout for now
2121 bailout("store to an uninitialized nullable non-atomic flat field");
2122 return;
2123 }
2124
2125 // Store the subfields when field is a nullable non-atomic field
2126 Value object_null = append(new Constant(objectNull));
2127 Value null_reset_value = append(new Constant(new ObjectConstant(inline_klass->get_null_reset_value().as_object())));
2128 Value src = append(new IfOp(val, Instruction::neq, object_null, val, null_reset_value, state_before, false));
2129 copy_inline_content(inline_klass, src, inline_klass->payload_offset(), obj, offset, state_before);
2130
2131 // Store the null marker
2132 Value int_one = append(new Constant(new IntConstant(1)));
2133 Value int_zero = append(new Constant(intZero));
2134 Value nm = append(new IfOp(val, Instruction::neq, object_null, int_one, int_zero, state_before, false));
2135 Value nm_offset = append(new Constant(new LongConstant(offset + inline_klass->null_marker_offset_in_payload())));
2136 append(new UnsafePut(T_BOOLEAN, obj, nm_offset, nm, false));
2137 }
2138 }
2139 break;
2140 }
2141 default:
2142 ShouldNotReachHere();
2143 break;
2144 }
2145 }
2146
2147 Dependencies* GraphBuilder::dependency_recorder() const {
2148 return compilation()->dependency_recorder();
2149 }
2150
2151 // How many arguments do we want to profile?
2152 Values* GraphBuilder::args_list_for_profiling(ciMethod* target, int& start, bool may_have_receiver) {
2153 int n = 0;
2154 bool has_receiver = may_have_receiver && Bytecodes::has_receiver(method()->java_code_at_bci(bci()));
2155 start = has_receiver ? 1 : 0;
2156 if (profile_arguments()) {
2157 ciProfileData* data = method()->method_data()->bci_to_data(bci());
2158 if (data != nullptr && (data->is_CallTypeData() || data->is_VirtualCallTypeData())) {
2159 n = data->is_CallTypeData() ? data->as_CallTypeData()->number_of_arguments() : data->as_VirtualCallTypeData()->number_of_arguments();
2160 }
2161 }
2162 // If we are inlining then we need to collect arguments to profile parameters for the target
2163 if (profile_parameters() && target != nullptr) {
2164 if (target->method_data() != nullptr && target->method_data()->parameters_type_data() != nullptr) {
2165 // The receiver is profiled on method entry so it's included in
2166 // the number of parameters but here we're only interested in
2167 // actual arguments.
2168 n = MAX2(n, target->method_data()->parameters_type_data()->number_of_parameters() - start);
2169 }
2170 }
2171 if (n > 0) {
2172 return new Values(n);
2173 }
2174 return nullptr;
2175 }
2176
2177 void GraphBuilder::check_args_for_profiling(Values* obj_args, int expected) {
2178 #ifdef ASSERT
2179 bool ignored_will_link;
2180 ciSignature* declared_signature = nullptr;
2181 ciMethod* real_target = method()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
2182 assert(expected == obj_args->capacity() || real_target->is_method_handle_intrinsic(), "missed on arg?");
2183 #endif
2184 }
2185
2186 // Collect arguments that we want to profile in a list
2187 Values* GraphBuilder::collect_args_for_profiling(Values* args, ciMethod* target, bool may_have_receiver) {
2188 int start = 0;
2189 Values* obj_args = args_list_for_profiling(target, start, may_have_receiver);
2190 if (obj_args == nullptr) {
2191 return nullptr;
2192 }
2193 int s = obj_args->capacity();
2194 // if called through method handle invoke, some arguments may have been popped
2195 for (int i = start, j = 0; j < s && i < args->length(); i++) {
2196 if (args->at(i)->type()->is_object_kind()) {
2197 obj_args->push(args->at(i));
2198 j++;
2199 }
2200 }
2201 check_args_for_profiling(obj_args, s);
2202 return obj_args;
2203 }
2204
2205 void GraphBuilder::invoke(Bytecodes::Code code) {
2206 bool will_link;
2207 ciSignature* declared_signature = nullptr;
2208 ciMethod* target = stream()->get_method(will_link, &declared_signature);
2209 ciKlass* holder = stream()->get_declared_method_holder();
2210 const Bytecodes::Code bc_raw = stream()->cur_bc_raw();
2211 assert(declared_signature != nullptr, "cannot be null");
2212 assert(will_link == target->is_loaded(), "");
2213 JFR_ONLY(Jfr::on_resolution(this, holder, target); CHECK_BAILOUT();)
2214
2215 ciInstanceKlass* klass = target->holder();
2216 assert(!target->is_loaded() || klass->is_loaded(), "loaded target must imply loaded klass");
2217
2218 // check if CHA possible: if so, change the code to invoke_special
2219 ciInstanceKlass* calling_klass = method()->holder();
2220 ciInstanceKlass* callee_holder = ciEnv::get_instance_klass_for_declared_method_holder(holder);
2221 ciInstanceKlass* actual_recv = callee_holder;
2222
2223 CompileLog* log = compilation()->log();
2224 if (log != nullptr)
2225 log->elem("call method='%d' instr='%s'",
2226 log->identify(target),
2227 Bytecodes::name(code));
2228
2229 // Some methods are obviously bindable without any type checks so
2230 // convert them directly to an invokespecial or invokestatic.
2231 if (target->is_loaded() && !target->is_abstract() && target->can_be_statically_bound()) {
2232 switch (bc_raw) {
2233 case Bytecodes::_invokeinterface:
2234 // convert to invokespecial if the target is the private interface method.
2235 if (target->is_private()) {
2236 assert(holder->is_interface(), "How did we get a non-interface method here!");
2237 code = Bytecodes::_invokespecial;
2238 }
2239 break;
2240 case Bytecodes::_invokevirtual:
2241 code = Bytecodes::_invokespecial;
2242 break;
2243 case Bytecodes::_invokehandle:
2244 code = target->is_static() ? Bytecodes::_invokestatic : Bytecodes::_invokespecial;
2245 break;
2246 default:
2247 break;
2248 }
2249 } else {
2250 if (bc_raw == Bytecodes::_invokehandle) {
2251 assert(!will_link, "should come here only for unlinked call");
2252 code = Bytecodes::_invokespecial;
2253 }
2254 }
2255
2256 if (code == Bytecodes::_invokespecial) {
2257 // Additional receiver subtype checks for interface calls via invokespecial or invokeinterface.
2258 ciKlass* receiver_constraint = nullptr;
2259
2260 if (bc_raw == Bytecodes::_invokeinterface) {
2261 receiver_constraint = holder;
2262 } else if (bc_raw == Bytecodes::_invokespecial && !target->is_object_constructor() && calling_klass->is_interface()) {
2263 receiver_constraint = calling_klass;
2264 }
2265
2266 if (receiver_constraint != nullptr) {
2267 int index = state()->stack_size() - (target->arg_size_no_receiver() + 1);
2268 Value receiver = state()->stack_at(index);
2269 CheckCast* c = new CheckCast(receiver_constraint, receiver, copy_state_before());
2270 // go to uncommon_trap when checkcast fails
2271 c->set_invokespecial_receiver_check();
2272 state()->stack_at_put(index, append_split(c));
2273 }
2274 }
2275
2276 // Push appendix argument (MethodType, CallSite, etc.), if one.
2277 bool patch_for_appendix = false;
2278 int patching_appendix_arg = 0;
2279 if (Bytecodes::has_optional_appendix(bc_raw) && (!will_link || PatchALot)) {
2280 Value arg = append(new Constant(new ObjectConstant(compilation()->env()->unloaded_ciinstance()), copy_state_before()));
2281 apush(arg);
2282 patch_for_appendix = true;
2283 patching_appendix_arg = (will_link && stream()->has_appendix()) ? 0 : 1;
2284 } else if (stream()->has_appendix()) {
2285 ciObject* appendix = stream()->get_appendix();
2286 Value arg = append(new Constant(new ObjectConstant(appendix)));
2287 apush(arg);
2288 }
2289
2290 ciMethod* cha_monomorphic_target = nullptr;
2291 ciMethod* exact_target = nullptr;
2292 Value better_receiver = nullptr;
2293 if (UseCHA && target->is_loaded() &&
2294 !(// %%% FIXME: Are both of these relevant?
2295 target->is_method_handle_intrinsic() ||
2296 target->is_compiled_lambda_form()) &&
2297 !patch_for_appendix) {
2298 Value receiver = nullptr;
2299 ciInstanceKlass* receiver_klass = nullptr;
2300 bool type_is_exact = false;
2301 // try to find a precise receiver type
2302 if (will_link && !target->is_static()) {
2303 int index = state()->stack_size() - (target->arg_size_no_receiver() + 1);
2304 receiver = state()->stack_at(index);
2305 ciType* type = receiver->exact_type();
2306 if (type != nullptr && type->is_loaded()) {
2307 assert(!type->is_instance_klass() || !type->as_instance_klass()->is_interface(), "Must not be an interface");
2308 // Detects non-interface instances, primitive arrays, and some object arrays.
2309 // Array receivers can only call Object methods, so we should be able to allow
2310 // all object arrays here too, even those with unloaded types.
2311 receiver_klass = (ciInstanceKlass*) type;
2312 type_is_exact = true;
2313 }
2314 if (type == nullptr) {
2315 type = receiver->declared_type();
2316 if (type != nullptr && type->is_loaded() &&
2317 type->is_instance_klass() && !type->as_instance_klass()->is_interface()) {
2318 receiver_klass = (ciInstanceKlass*) type;
2319 if (receiver_klass->is_leaf_type() && !receiver_klass->is_final()) {
2320 // Insert a dependency on this type since
2321 // find_monomorphic_target may assume it's already done.
2322 dependency_recorder()->assert_leaf_type(receiver_klass);
2323 type_is_exact = true;
2324 }
2325 }
2326 }
2327 }
2328 if (receiver_klass != nullptr && type_is_exact &&
2329 receiver_klass->is_loaded() && code != Bytecodes::_invokespecial) {
2330 // If we have the exact receiver type we can bind directly to
2331 // the method to call.
2332 exact_target = target->resolve_invoke(calling_klass, receiver_klass);
2333 if (exact_target != nullptr) {
2334 target = exact_target;
2335 code = Bytecodes::_invokespecial;
2336 }
2337 }
2338 if (receiver_klass != nullptr &&
2339 receiver_klass->is_subtype_of(actual_recv) &&
2340 actual_recv->is_initialized()) {
2341 actual_recv = receiver_klass;
2342 }
2343
2344 if ((code == Bytecodes::_invokevirtual && callee_holder->is_initialized()) ||
2345 (code == Bytecodes::_invokeinterface && callee_holder->is_initialized() && !actual_recv->is_interface())) {
2346 // Use CHA on the receiver to select a more precise method.
2347 cha_monomorphic_target = target->find_monomorphic_target(calling_klass, callee_holder, actual_recv);
2348 } else if (code == Bytecodes::_invokeinterface && callee_holder->is_loaded() && receiver != nullptr) {
2349 assert(callee_holder->is_interface(), "invokeinterface to non interface?");
2350 // If there is only one implementor of this interface then we
2351 // may be able bind this invoke directly to the implementing
2352 // klass but we need both a dependence on the single interface
2353 // and on the method we bind to. Additionally since all we know
2354 // about the receiver type is the it's supposed to implement the
2355 // interface we have to insert a check that it's the class we
2356 // expect. Interface types are not checked by the verifier so
2357 // they are roughly equivalent to Object.
2358 // The number of implementors for declared_interface is less or
2359 // equal to the number of implementors for target->holder() so
2360 // if number of implementors of target->holder() == 1 then
2361 // number of implementors for decl_interface is 0 or 1. If
2362 // it's 0 then no class implements decl_interface and there's
2363 // no point in inlining.
2364 ciInstanceKlass* declared_interface = callee_holder;
2365 ciInstanceKlass* singleton = declared_interface->unique_implementor();
2366 if (singleton != nullptr) {
2367 assert(singleton != declared_interface, "not a unique implementor");
2368 cha_monomorphic_target = target->find_monomorphic_target(calling_klass, declared_interface, singleton);
2369 if (cha_monomorphic_target != nullptr) {
2370 ciInstanceKlass* holder = cha_monomorphic_target->holder();
2371 ciInstanceKlass* constraint = (holder->is_subtype_of(singleton) ? holder : singleton); // avoid upcasts
2372 if (holder != compilation()->env()->Object_klass() &&
2373 (!type_is_exact || receiver_klass->is_subtype_of(constraint))) {
2374 actual_recv = declared_interface;
2375
2376 // insert a check it's really the expected class.
2377 CheckCast* c = new CheckCast(constraint, receiver, copy_state_for_exception());
2378 c->set_incompatible_class_change_check();
2379 c->set_direct_compare(constraint->is_final());
2380 // pass the result of the checkcast so that the compiler has
2381 // more accurate type info in the inlinee
2382 better_receiver = append_split(c);
2383
2384 dependency_recorder()->assert_unique_implementor(declared_interface, singleton);
2385 } else {
2386 cha_monomorphic_target = nullptr;
2387 }
2388 }
2389 }
2390 }
2391 }
2392
2393 if (cha_monomorphic_target != nullptr) {
2394 assert(!target->can_be_statically_bound() || target == cha_monomorphic_target, "");
2395 assert(!cha_monomorphic_target->is_abstract(), "");
2396 if (!cha_monomorphic_target->can_be_statically_bound(actual_recv)) {
2397 // If we inlined because CHA revealed only a single target method,
2398 // then we are dependent on that target method not getting overridden
2399 // by dynamic class loading. Be sure to test the "static" receiver
2400 // dest_method here, as opposed to the actual receiver, which may
2401 // falsely lead us to believe that the receiver is final or private.
2402 dependency_recorder()->assert_unique_concrete_method(actual_recv, cha_monomorphic_target, callee_holder, target);
2403 }
2404 code = Bytecodes::_invokespecial;
2405 }
2406
2407 // check if we could do inlining
2408 if (!PatchALot && Inline && target->is_loaded() && !patch_for_appendix &&
2409 callee_holder->is_loaded()) { // the effect of symbolic reference resolution
2410
2411 // callee is known => check if we have static binding
2412 if ((code == Bytecodes::_invokestatic && klass->is_initialized()) || // invokestatic involves an initialization barrier on declaring class
2413 code == Bytecodes::_invokespecial ||
2414 (code == Bytecodes::_invokevirtual && target->is_final_method()) ||
2415 code == Bytecodes::_invokedynamic) {
2416 // static binding => check if callee is ok
2417 ciMethod* inline_target = (cha_monomorphic_target != nullptr) ? cha_monomorphic_target : target;
2418 bool holder_known = (cha_monomorphic_target != nullptr) || (exact_target != nullptr);
2419 bool success = try_inline(inline_target, holder_known, false /* ignore_return */, code, better_receiver);
2420
2421 CHECK_BAILOUT();
2422 clear_inline_bailout();
2423
2424 if (success) {
2425 // Register dependence if JVMTI has either breakpoint
2426 // setting or hotswapping of methods capabilities since they may
2427 // cause deoptimization.
2428 if (compilation()->env()->jvmti_can_hotswap_or_post_breakpoint()) {
2429 dependency_recorder()->assert_evol_method(inline_target);
2430 }
2431 return;
2432 }
2433 } else {
2434 print_inlining(target, "no static binding", /*success*/ false);
2435 }
2436 } else {
2437 print_inlining(target, "not inlineable", /*success*/ false);
2438 }
2439
2440 // If we attempted an inline which did not succeed because of a
2441 // bailout during construction of the callee graph, the entire
2442 // compilation has to be aborted. This is fairly rare and currently
2443 // seems to only occur for jasm-generated classes which contain
2444 // jsr/ret pairs which are not associated with finally clauses and
2445 // do not have exception handlers in the containing method, and are
2446 // therefore not caught early enough to abort the inlining without
2447 // corrupting the graph. (We currently bail out with a non-empty
2448 // stack at a ret in these situations.)
2449 CHECK_BAILOUT();
2450
2451 // inlining not successful => standard invoke
2452 ciType* return_type = declared_signature->return_type();
2453 ValueStack* state_before = copy_state_exhandling();
2454
2455 // The bytecode (code) might change in this method so we are checking this very late.
2456 const bool has_receiver =
2457 code == Bytecodes::_invokespecial ||
2458 code == Bytecodes::_invokevirtual ||
2459 code == Bytecodes::_invokeinterface;
2460 Values* args = state()->pop_arguments(target->arg_size_no_receiver() + patching_appendix_arg);
2461 Value recv = has_receiver ? apop() : nullptr;
2462
2463 // A null check is required here (when there is a receiver) for any of the following cases
2464 // - invokespecial, always need a null check.
2465 // - invokevirtual, when the target is final and loaded. Calls to final targets will become optimized
2466 // and require null checking. If the target is loaded a null check is emitted here.
2467 // If the target isn't loaded the null check must happen after the call resolution. We achieve that
2468 // by using the target methods unverified entry point (see CompiledIC::compute_monomorphic_entry).
2469 // (The JVM specification requires that LinkageError must be thrown before a NPE. An unloaded target may
2470 // potentially fail, and can't have the null check before the resolution.)
2471 // - A call that will be profiled. (But we can't add a null check when the target is unloaded, by the same
2472 // reason as above, so calls with a receiver to unloaded targets can't be profiled.)
2473 //
2474 // Normal invokevirtual will perform the null check during lookup
2475
2476 bool need_null_check = (code == Bytecodes::_invokespecial) ||
2477 (target->is_loaded() && (target->is_final_method() || (is_profiling() && profile_calls())));
2478
2479 if (need_null_check) {
2480 if (recv != nullptr) {
2481 null_check(recv);
2482 }
2483
2484 if (is_profiling()) {
2485 // Note that we'd collect profile data in this method if we wanted it.
2486 compilation()->set_would_profile(true);
2487
2488 if (profile_calls()) {
2489 assert(cha_monomorphic_target == nullptr || exact_target == nullptr, "both can not be set");
2490 ciKlass* target_klass = nullptr;
2491 if (cha_monomorphic_target != nullptr) {
2492 target_klass = cha_monomorphic_target->holder();
2493 } else if (exact_target != nullptr) {
2494 target_klass = exact_target->holder();
2495 }
2496 profile_call(target, recv, target_klass, collect_args_for_profiling(args, nullptr, false), false);
2497 }
2498 }
2499 }
2500
2501 Invoke* result = new Invoke(code, return_type, recv, args, target, state_before);
2502 // push result
2503 append_split(result);
2504
2505 if (!return_type->is_void()) {
2506 push(as_ValueType(return_type), result);
2507 }
2508
2509 if (profile_return() && return_type->is_object()) {
2510 profile_return_type(result, target);
2511 }
2512 }
2513
2514
2515 void GraphBuilder::new_instance(int klass_index) {
2516 ValueStack* state_before = copy_state_exhandling();
2517 ciKlass* klass = stream()->get_klass();
2518 assert(klass->is_instance_klass(), "must be an instance klass");
2519 NewInstance* new_instance = new NewInstance(klass->as_instance_klass(), state_before, stream()->is_unresolved_klass(), false);
2520 _memory->new_instance(new_instance);
2521 apush(append_split(new_instance));
2522 }
2523
2524 void GraphBuilder::new_type_array() {
2525 ValueStack* state_before = copy_state_exhandling();
2526 apush(append_split(new NewTypeArray(ipop(), (BasicType)stream()->get_index(), state_before, true)));
2527 }
2528
2529
2530 void GraphBuilder::new_object_array() {
2531 ciKlass* klass = stream()->get_klass();
2532 ValueStack* state_before = !klass->is_loaded() || PatchALot ? copy_state_before() : copy_state_exhandling();
2533 NewArray* n = new NewObjectArray(klass, ipop(), state_before);
2534 apush(append_split(n));
2535 }
2536
2537
2538 bool GraphBuilder::direct_compare(ciKlass* k) {
2539 if (k->is_loaded() && k->is_instance_klass() && !UseSlowPath) {
2540 ciInstanceKlass* ik = k->as_instance_klass();
2541 if (ik->is_final()) {
2542 return true;
2543 } else {
2544 if (UseCHA && !(ik->has_subklass() || ik->is_interface())) {
2545 // test class is leaf class
2546 dependency_recorder()->assert_leaf_type(ik);
2547 return true;
2548 }
2549 }
2550 }
2551 return false;
2552 }
2553
2554
2555 void GraphBuilder::check_cast(int klass_index) {
2556 ciKlass* klass = stream()->get_klass();
2557 ValueStack* state_before = !klass->is_loaded() || PatchALot ? copy_state_before() : copy_state_for_exception();
2558 CheckCast* c = new CheckCast(klass, apop(), state_before);
2559 apush(append_split(c));
2560 c->set_direct_compare(direct_compare(klass));
2561
2562 if (is_profiling()) {
2563 // Note that we'd collect profile data in this method if we wanted it.
2564 compilation()->set_would_profile(true);
2565
2566 if (profile_checkcasts()) {
2567 c->set_profiled_method(method());
2568 c->set_profiled_bci(bci());
2569 c->set_should_profile(true);
2570 }
2571 }
2572 }
2573
2574
2575 void GraphBuilder::instance_of(int klass_index) {
2576 ciKlass* klass = stream()->get_klass();
2577 ValueStack* state_before = !klass->is_loaded() || PatchALot ? copy_state_before() : copy_state_exhandling();
2578 InstanceOf* i = new InstanceOf(klass, apop(), state_before);
2579 ipush(append_split(i));
2580 i->set_direct_compare(direct_compare(klass));
2581
2582 if (is_profiling()) {
2583 // Note that we'd collect profile data in this method if we wanted it.
2584 compilation()->set_would_profile(true);
2585
2586 if (profile_checkcasts()) {
2587 i->set_profiled_method(method());
2588 i->set_profiled_bci(bci());
2589 i->set_should_profile(true);
2590 }
2591 }
2592 }
2593
2594
2595 void GraphBuilder::monitorenter(Value x, int bci) {
2596 bool maybe_inlinetype = false;
2597 if (bci == InvocationEntryBci) {
2598 // Called by GraphBuilder::inline_sync_entry.
2599 #ifdef ASSERT
2600 ciType* obj_type = x->declared_type();
2601 assert(obj_type == nullptr || !obj_type->is_inlinetype(), "inline types cannot have synchronized methods");
2602 #endif
2603 } else {
2604 // We are compiling a monitorenter bytecode
2605 if (Arguments::is_valhalla_enabled()) {
2606 ciType* obj_type = x->declared_type();
2607 if (obj_type == nullptr || obj_type->as_klass()->can_be_inline_klass()) {
2608 // If we're (possibly) locking on an inline type, check for markWord::always_locked_pattern
2609 // and throw IMSE. (obj_type is null for Phi nodes, so let's just be conservative).
2610 maybe_inlinetype = true;
2611 }
2612 }
2613 }
2614
2615 // save state before locking in case of deoptimization after a NullPointerException
2616 ValueStack* state_before = copy_state_for_exception_with_bci(bci);
2617 append_with_bci(new MonitorEnter(x, state()->lock(x), state_before, maybe_inlinetype), bci);
2618 kill_all();
2619 }
2620
2621
2622 void GraphBuilder::monitorexit(Value x, int bci) {
2623 append_with_bci(new MonitorExit(x, state()->unlock()), bci);
2624 kill_all();
2625 }
2626
2627
2628 void GraphBuilder::new_multi_array(int dimensions) {
2629 ciKlass* klass = stream()->get_klass();
2630 ValueStack* state_before = !klass->is_loaded() || PatchALot ? copy_state_before() : copy_state_exhandling();
2631
2632 Values* dims = new Values(dimensions, dimensions, nullptr);
2633 // fill in all dimensions
2634 int i = dimensions;
2635 while (i-- > 0) dims->at_put(i, ipop());
2636 // create array
2637 NewArray* n = new NewMultiArray(klass, dims, state_before);
2638 apush(append_split(n));
2639 }
2640
2641
2642 void GraphBuilder::throw_op(int bci) {
2643 // We require that the debug info for a Throw be the "state before"
2644 // the Throw (i.e., exception oop is still on TOS)
2645 ValueStack* state_before = copy_state_before_with_bci(bci);
2646 Throw* t = new Throw(apop(), state_before);
2647 // operand stack not needed after a throw
2648 state()->truncate_stack(0);
2649 append_with_bci(t, bci);
2650 }
2651
2652
2653 Instruction* GraphBuilder::append_with_bci(Instruction* instr, int bci) {
2654 Canonicalizer canon(compilation(), instr, bci);
2655 Instruction* i1 = canon.canonical();
2656 if (i1->is_linked() || !i1->can_be_linked()) {
2657 // Canonicalizer returned an instruction which was already
2658 // appended so simply return it.
2659 return i1;
2660 }
2661
2662 if (UseLocalValueNumbering) {
2663 // Lookup the instruction in the ValueMap and add it to the map if
2664 // it's not found.
2665 Instruction* i2 = vmap()->find_insert(i1);
2666 if (i2 != i1) {
2667 // found an entry in the value map, so just return it.
2668 assert(i2->is_linked(), "should already be linked");
2669 return i2;
2670 }
2671 ValueNumberingEffects vne(vmap());
2672 i1->visit(&vne);
2673 }
2674
2675 // i1 was not eliminated => append it
2676 assert(i1->next() == nullptr, "shouldn't already be linked");
2677 _last = _last->set_next(i1, canon.bci());
2678
2679 if (++_instruction_count >= InstructionCountCutoff && !bailed_out()) {
2680 // set the bailout state but complete normal processing. We
2681 // might do a little more work before noticing the bailout so we
2682 // want processing to continue normally until it's noticed.
2683 bailout("Method and/or inlining is too large");
2684 }
2685
2686 #ifndef PRODUCT
2687 if (PrintIRDuringConstruction) {
2688 InstructionPrinter ip;
2689 ip.print_line(i1);
2690 if (Verbose) {
2691 state()->print();
2692 }
2693 }
2694 #endif
2695
2696 // save state after modification of operand stack for StateSplit instructions
2697 StateSplit* s = i1->as_StateSplit();
2698 if (s != nullptr) {
2699 if (EliminateFieldAccess) {
2700 Intrinsic* intrinsic = s->as_Intrinsic();
2701 if (s->as_Invoke() != nullptr || (intrinsic && !intrinsic->preserves_state())) {
2702 _memory->kill();
2703 }
2704 }
2705 s->set_state(state()->copy(ValueStack::StateAfter, canon.bci()));
2706 }
2707
2708 // set up exception handlers for this instruction if necessary
2709 if (i1->can_trap()) {
2710 i1->set_exception_handlers(handle_exception(i1));
2711 assert(i1->exception_state() != nullptr || !i1->needs_exception_state() || bailed_out(), "handle_exception must set exception state");
2712 }
2713 return i1;
2714 }
2715
2716
2717 Instruction* GraphBuilder::append(Instruction* instr) {
2718 assert(instr->as_StateSplit() == nullptr || instr->as_BlockEnd() != nullptr, "wrong append used");
2719 return append_with_bci(instr, bci());
2720 }
2721
2722
2723 Instruction* GraphBuilder::append_split(StateSplit* instr) {
2724 return append_with_bci(instr, bci());
2725 }
2726
2727
2728 void GraphBuilder::null_check(Value value) {
2729 if (value->as_NewArray() != nullptr || value->as_NewInstance() != nullptr) {
2730 return;
2731 } else {
2732 Constant* con = value->as_Constant();
2733 if (con) {
2734 ObjectType* c = con->type()->as_ObjectType();
2735 if (c && c->is_loaded()) {
2736 ObjectConstant* oc = c->as_ObjectConstant();
2737 if (!oc || !oc->value()->is_null_object()) {
2738 return;
2739 }
2740 }
2741 }
2742 if (value->is_null_free()) return;
2743 }
2744 append(new NullCheck(value, copy_state_for_exception()));
2745 }
2746
2747
2748
2749 XHandlers* GraphBuilder::handle_exception(Instruction* instruction) {
2750 if (!has_handler() && (!instruction->needs_exception_state() || instruction->exception_state() != nullptr)) {
2751 assert(instruction->exception_state() == nullptr
2752 || instruction->exception_state()->kind() == ValueStack::EmptyExceptionState
2753 || (instruction->exception_state()->kind() == ValueStack::ExceptionState && _compilation->env()->should_retain_local_variables()),
2754 "exception_state should be of exception kind");
2755 return new XHandlers();
2756 }
2757
2758 XHandlers* exception_handlers = new XHandlers();
2759 ScopeData* cur_scope_data = scope_data();
2760 ValueStack* cur_state = instruction->state_before();
2761 ValueStack* prev_state = nullptr;
2762 int scope_count = 0;
2763
2764 assert(cur_state != nullptr, "state_before must be set");
2765 do {
2766 int cur_bci = cur_state->bci();
2767 assert(cur_scope_data->scope() == cur_state->scope(), "scopes do not match");
2768 assert(cur_bci == SynchronizationEntryBCI || cur_bci == cur_scope_data->stream()->cur_bci()
2769 || has_pending_field_access() || has_pending_load_indexed(), "invalid bci");
2770
2771
2772 // join with all potential exception handlers
2773 XHandlers* list = cur_scope_data->xhandlers();
2774 const int n = list->length();
2775 for (int i = 0; i < n; i++) {
2776 XHandler* h = list->handler_at(i);
2777 if (h->covers(cur_bci)) {
2778 // h is a potential exception handler => join it
2779 compilation()->set_has_exception_handlers(true);
2780
2781 BlockBegin* entry = h->entry_block();
2782 if (entry == block()) {
2783 // It's acceptable for an exception handler to cover itself
2784 // but we don't handle that in the parser currently. It's
2785 // very rare so we bailout instead of trying to handle it.
2786 BAILOUT_("exception handler covers itself", exception_handlers);
2787 }
2788 assert(entry->bci() == h->handler_bci(), "must match");
2789 assert(entry->bci() == -1 || entry == cur_scope_data->block_at(entry->bci()), "blocks must correspond");
2790
2791 // previously this was a BAILOUT, but this is not necessary
2792 // now because asynchronous exceptions are not handled this way.
2793 assert(entry->state() == nullptr || cur_state->total_locks_size() == entry->state()->total_locks_size(), "locks do not match");
2794
2795 // xhandler start with an empty expression stack
2796 if (cur_state->stack_size() != 0) {
2797 // locals are preserved
2798 // stack will be truncated
2799 cur_state = cur_state->copy(ValueStack::ExceptionState, cur_state->bci());
2800 }
2801 if (instruction->exception_state() == nullptr) {
2802 instruction->set_exception_state(cur_state);
2803 }
2804
2805 // Note: Usually this join must work. However, very
2806 // complicated jsr-ret structures where we don't ret from
2807 // the subroutine can cause the objects on the monitor
2808 // stacks to not match because blocks can be parsed twice.
2809 // The only test case we've seen so far which exhibits this
2810 // problem is caught by the infinite recursion test in
2811 // GraphBuilder::jsr() if the join doesn't work.
2812 if (!entry->try_merge(cur_state, compilation()->has_irreducible_loops())) {
2813 BAILOUT_("error while joining with exception handler, prob. due to complicated jsr/rets", exception_handlers);
2814 }
2815
2816 // add current state for correct handling of phi functions at begin of xhandler
2817 int phi_operand = entry->add_exception_state(cur_state);
2818
2819 // add entry to the list of xhandlers of this block
2820 _block->add_exception_handler(entry);
2821
2822 // add back-edge from xhandler entry to this block
2823 if (!entry->is_predecessor(_block)) {
2824 entry->add_predecessor(_block);
2825 }
2826
2827 // clone XHandler because phi_operand and scope_count can not be shared
2828 XHandler* new_xhandler = new XHandler(h);
2829 new_xhandler->set_phi_operand(phi_operand);
2830 new_xhandler->set_scope_count(scope_count);
2831 exception_handlers->append(new_xhandler);
2832
2833 // fill in exception handler subgraph lazily
2834 assert(!entry->is_set(BlockBegin::was_visited_flag), "entry must not be visited yet");
2835 cur_scope_data->add_to_work_list(entry);
2836
2837 // stop when reaching catchall
2838 if (h->catch_type() == 0) {
2839 return exception_handlers;
2840 }
2841 }
2842 }
2843
2844 if (exception_handlers->length() == 0) {
2845 // This scope and all callees do not handle exceptions, so the local
2846 // variables of this scope are not needed. However, the scope itself is
2847 // required for a correct exception stack trace -> clear out the locals.
2848 // Stack and locals are invalidated but not truncated in caller state.
2849 if (prev_state != nullptr) {
2850 assert(instruction->exception_state() != nullptr, "missed set?");
2851 ValueStack::Kind exc_kind = ValueStack::empty_exception_kind(true /* caller */);
2852 cur_state = cur_state->copy(exc_kind, cur_state->bci());
2853 // reset caller exception state
2854 prev_state->set_caller_state(cur_state);
2855 } else {
2856 assert(instruction->exception_state() == nullptr, "already set");
2857 // set instruction exception state
2858 // truncate stack
2859 ValueStack::Kind exc_kind = ValueStack::empty_exception_kind();
2860 cur_state = cur_state->copy(exc_kind, cur_state->bci());
2861 instruction->set_exception_state(cur_state);
2862 }
2863 }
2864
2865 // Set up iteration for next time.
2866 // If parsing a jsr, do not grab exception handlers from the
2867 // parent scopes for this method (already got them, and they
2868 // needed to be cloned)
2869
2870 while (cur_scope_data->parsing_jsr()) {
2871 cur_scope_data = cur_scope_data->parent();
2872 }
2873
2874 assert(cur_scope_data->scope() == cur_state->scope(), "scopes do not match");
2875 assert(cur_state->locks_size() == 0 || cur_state->locks_size() == 1, "unlocking must be done in a catchall exception handler");
2876
2877 prev_state = cur_state;
2878 cur_state = cur_state->caller_state();
2879 cur_scope_data = cur_scope_data->parent();
2880 scope_count++;
2881 } while (cur_scope_data != nullptr);
2882
2883 return exception_handlers;
2884 }
2885
2886
2887 // Helper class for simplifying Phis.
2888 class PhiSimplifier : public BlockClosure {
2889 private:
2890 bool _has_substitutions;
2891 Value simplify(Value v);
2892
2893 public:
2894 PhiSimplifier(BlockBegin* start) : _has_substitutions(false) {
2895 start->iterate_preorder(this);
2896 if (_has_substitutions) {
2897 SubstitutionResolver sr(start);
2898 }
2899 }
2900 void block_do(BlockBegin* b);
2901 bool has_substitutions() const { return _has_substitutions; }
2902 };
2903
2904
2905 Value PhiSimplifier::simplify(Value v) {
2906 Phi* phi = v->as_Phi();
2907
2908 if (phi == nullptr) {
2909 // no phi function
2910 return v;
2911 } else if (v->has_subst()) {
2912 // already substituted; subst can be phi itself -> simplify
2913 return simplify(v->subst());
2914 } else if (phi->is_set(Phi::cannot_simplify)) {
2915 // already tried to simplify phi before
2916 return phi;
2917 } else if (phi->is_set(Phi::visited)) {
2918 // break cycles in phi functions
2919 return phi;
2920 } else if (phi->type()->is_illegal()) {
2921 // illegal phi functions are ignored anyway
2922 return phi;
2923
2924 } else {
2925 // mark phi function as processed to break cycles in phi functions
2926 phi->set(Phi::visited);
2927
2928 // simplify x = [y, x] and x = [y, y] to y
2929 Value subst = nullptr;
2930 int opd_count = phi->operand_count();
2931 for (int i = 0; i < opd_count; i++) {
2932 Value opd = phi->operand_at(i);
2933 assert(opd != nullptr, "Operand must exist!");
2934
2935 if (opd->type()->is_illegal()) {
2936 // if one operand is illegal, the entire phi function is illegal
2937 phi->make_illegal();
2938 phi->clear(Phi::visited);
2939 return phi;
2940 }
2941
2942 Value new_opd = simplify(opd);
2943 assert(new_opd != nullptr, "Simplified operand must exist!");
2944
2945 if (new_opd != phi && new_opd != subst) {
2946 if (subst == nullptr) {
2947 subst = new_opd;
2948 } else {
2949 // no simplification possible
2950 phi->set(Phi::cannot_simplify);
2951 phi->clear(Phi::visited);
2952 return phi;
2953 }
2954 }
2955 }
2956
2957 // successfully simplified phi function
2958 assert(subst != nullptr, "illegal phi function");
2959 _has_substitutions = true;
2960 phi->clear(Phi::visited);
2961 phi->set_subst(subst);
2962
2963 #ifndef PRODUCT
2964 if (PrintPhiFunctions) {
2965 tty->print_cr("simplified phi function %c%d to %c%d (Block B%d)", phi->type()->tchar(), phi->id(), subst->type()->tchar(), subst->id(), phi->block()->block_id());
2966 }
2967 #endif
2968
2969 return subst;
2970 }
2971 }
2972
2973
2974 void PhiSimplifier::block_do(BlockBegin* b) {
2975 for_each_phi_fun(b, phi,
2976 simplify(phi);
2977 );
2978
2979 #ifdef ASSERT
2980 for_each_phi_fun(b, phi,
2981 assert(phi->operand_count() != 1 || phi->subst() != phi || phi->is_illegal(), "missed trivial simplification");
2982 );
2983
2984 ValueStack* state = b->state()->caller_state();
2985 for_each_state_value(state, value,
2986 Phi* phi = value->as_Phi();
2987 assert(phi == nullptr || phi->block() != b, "must not have phi function to simplify in caller state");
2988 );
2989 #endif
2990 }
2991
2992 // This method is called after all blocks are filled with HIR instructions
2993 // It eliminates all Phi functions of the form x = [y, y] and x = [y, x]
2994 void GraphBuilder::eliminate_redundant_phis(BlockBegin* start) {
2995 PhiSimplifier simplifier(start);
2996 }
2997
2998
2999 void GraphBuilder::connect_to_end(BlockBegin* beg) {
3000 // setup iteration
3001 kill_all();
3002 _block = beg;
3003 _state = beg->state()->copy_for_parsing();
3004 _last = beg;
3005 iterate_bytecodes_for_block(beg->bci());
3006 }
3007
3008
3009 BlockEnd* GraphBuilder::iterate_bytecodes_for_block(int bci) {
3010 #ifndef PRODUCT
3011 if (PrintIRDuringConstruction) {
3012 tty->cr();
3013 InstructionPrinter ip;
3014 ip.print_instr(_block); tty->cr();
3015 ip.print_stack(_block->state()); tty->cr();
3016 ip.print_inline_level(_block);
3017 ip.print_head();
3018 tty->print_cr("locals size: %d stack size: %d", state()->locals_size(), state()->stack_size());
3019 }
3020 #endif
3021 _skip_block = false;
3022 assert(state() != nullptr, "ValueStack missing!");
3023 CompileLog* log = compilation()->log();
3024 ciBytecodeStream s(method());
3025 s.reset_to_bci(bci);
3026 int prev_bci = bci;
3027 scope_data()->set_stream(&s);
3028 // iterate
3029 Bytecodes::Code code = Bytecodes::_illegal;
3030 bool push_exception = false;
3031
3032 if (block()->is_set(BlockBegin::exception_entry_flag) && block()->next() == nullptr) {
3033 // first thing in the exception entry block should be the exception object.
3034 push_exception = true;
3035 }
3036
3037 bool ignore_return = scope_data()->ignore_return();
3038
3039 while (!bailed_out() && last()->as_BlockEnd() == nullptr &&
3040 (code = stream()->next()) != ciBytecodeStream::EOBC() &&
3041 (block_at(s.cur_bci()) == nullptr || block_at(s.cur_bci()) == block())) {
3042 assert(state()->kind() == ValueStack::Parsing, "invalid state kind");
3043
3044 if (log != nullptr)
3045 log->set_context("bc code='%d' bci='%d'", (int)code, s.cur_bci());
3046
3047 // Check for active jsr during OSR compilation
3048 if (compilation()->is_osr_compile()
3049 && scope()->is_top_scope()
3050 && parsing_jsr()
3051 && s.cur_bci() == compilation()->osr_bci()) {
3052 bailout("OSR not supported while a jsr is active");
3053 }
3054
3055 if (push_exception) {
3056 apush(append(new ExceptionObject()));
3057 push_exception = false;
3058 }
3059
3060 // handle bytecode
3061 switch (code) {
3062 case Bytecodes::_nop : /* nothing to do */ break;
3063 case Bytecodes::_aconst_null : apush(append(new Constant(objectNull ))); break;
3064 case Bytecodes::_iconst_m1 : ipush(append(new Constant(new IntConstant (-1)))); break;
3065 case Bytecodes::_iconst_0 : ipush(append(new Constant(intZero ))); break;
3066 case Bytecodes::_iconst_1 : ipush(append(new Constant(intOne ))); break;
3067 case Bytecodes::_iconst_2 : ipush(append(new Constant(new IntConstant ( 2)))); break;
3068 case Bytecodes::_iconst_3 : ipush(append(new Constant(new IntConstant ( 3)))); break;
3069 case Bytecodes::_iconst_4 : ipush(append(new Constant(new IntConstant ( 4)))); break;
3070 case Bytecodes::_iconst_5 : ipush(append(new Constant(new IntConstant ( 5)))); break;
3071 case Bytecodes::_lconst_0 : lpush(append(new Constant(new LongConstant ( 0)))); break;
3072 case Bytecodes::_lconst_1 : lpush(append(new Constant(new LongConstant ( 1)))); break;
3073 case Bytecodes::_fconst_0 : fpush(append(new Constant(new FloatConstant ( 0)))); break;
3074 case Bytecodes::_fconst_1 : fpush(append(new Constant(new FloatConstant ( 1)))); break;
3075 case Bytecodes::_fconst_2 : fpush(append(new Constant(new FloatConstant ( 2)))); break;
3076 case Bytecodes::_dconst_0 : dpush(append(new Constant(new DoubleConstant( 0)))); break;
3077 case Bytecodes::_dconst_1 : dpush(append(new Constant(new DoubleConstant( 1)))); break;
3078 case Bytecodes::_bipush : ipush(append(new Constant(new IntConstant(((signed char*)s.cur_bcp())[1])))); break;
3079 case Bytecodes::_sipush : ipush(append(new Constant(new IntConstant((short)Bytes::get_Java_u2(s.cur_bcp()+1))))); break;
3080 case Bytecodes::_ldc : // fall through
3081 case Bytecodes::_ldc_w : // fall through
3082 case Bytecodes::_ldc2_w : load_constant(); break;
3083 case Bytecodes::_iload : load_local(intType , s.get_index()); break;
3084 case Bytecodes::_lload : load_local(longType , s.get_index()); break;
3085 case Bytecodes::_fload : load_local(floatType , s.get_index()); break;
3086 case Bytecodes::_dload : load_local(doubleType , s.get_index()); break;
3087 case Bytecodes::_aload : load_local(instanceType, s.get_index()); break;
3088 case Bytecodes::_iload_0 : load_local(intType , 0); break;
3089 case Bytecodes::_iload_1 : load_local(intType , 1); break;
3090 case Bytecodes::_iload_2 : load_local(intType , 2); break;
3091 case Bytecodes::_iload_3 : load_local(intType , 3); break;
3092 case Bytecodes::_lload_0 : load_local(longType , 0); break;
3093 case Bytecodes::_lload_1 : load_local(longType , 1); break;
3094 case Bytecodes::_lload_2 : load_local(longType , 2); break;
3095 case Bytecodes::_lload_3 : load_local(longType , 3); break;
3096 case Bytecodes::_fload_0 : load_local(floatType , 0); break;
3097 case Bytecodes::_fload_1 : load_local(floatType , 1); break;
3098 case Bytecodes::_fload_2 : load_local(floatType , 2); break;
3099 case Bytecodes::_fload_3 : load_local(floatType , 3); break;
3100 case Bytecodes::_dload_0 : load_local(doubleType, 0); break;
3101 case Bytecodes::_dload_1 : load_local(doubleType, 1); break;
3102 case Bytecodes::_dload_2 : load_local(doubleType, 2); break;
3103 case Bytecodes::_dload_3 : load_local(doubleType, 3); break;
3104 case Bytecodes::_aload_0 : load_local(objectType, 0); break;
3105 case Bytecodes::_aload_1 : load_local(objectType, 1); break;
3106 case Bytecodes::_aload_2 : load_local(objectType, 2); break;
3107 case Bytecodes::_aload_3 : load_local(objectType, 3); break;
3108 case Bytecodes::_iaload : load_indexed(T_INT ); break;
3109 case Bytecodes::_laload : load_indexed(T_LONG ); break;
3110 case Bytecodes::_faload : load_indexed(T_FLOAT ); break;
3111 case Bytecodes::_daload : load_indexed(T_DOUBLE); break;
3112 case Bytecodes::_aaload : load_indexed(T_OBJECT); break;
3113 case Bytecodes::_baload : load_indexed(T_BYTE ); break;
3114 case Bytecodes::_caload : load_indexed(T_CHAR ); break;
3115 case Bytecodes::_saload : load_indexed(T_SHORT ); break;
3116 case Bytecodes::_istore : store_local(intType , s.get_index()); break;
3117 case Bytecodes::_lstore : store_local(longType , s.get_index()); break;
3118 case Bytecodes::_fstore : store_local(floatType , s.get_index()); break;
3119 case Bytecodes::_dstore : store_local(doubleType, s.get_index()); break;
3120 case Bytecodes::_astore : store_local(objectType, s.get_index()); break;
3121 case Bytecodes::_istore_0 : store_local(intType , 0); break;
3122 case Bytecodes::_istore_1 : store_local(intType , 1); break;
3123 case Bytecodes::_istore_2 : store_local(intType , 2); break;
3124 case Bytecodes::_istore_3 : store_local(intType , 3); break;
3125 case Bytecodes::_lstore_0 : store_local(longType , 0); break;
3126 case Bytecodes::_lstore_1 : store_local(longType , 1); break;
3127 case Bytecodes::_lstore_2 : store_local(longType , 2); break;
3128 case Bytecodes::_lstore_3 : store_local(longType , 3); break;
3129 case Bytecodes::_fstore_0 : store_local(floatType , 0); break;
3130 case Bytecodes::_fstore_1 : store_local(floatType , 1); break;
3131 case Bytecodes::_fstore_2 : store_local(floatType , 2); break;
3132 case Bytecodes::_fstore_3 : store_local(floatType , 3); break;
3133 case Bytecodes::_dstore_0 : store_local(doubleType, 0); break;
3134 case Bytecodes::_dstore_1 : store_local(doubleType, 1); break;
3135 case Bytecodes::_dstore_2 : store_local(doubleType, 2); break;
3136 case Bytecodes::_dstore_3 : store_local(doubleType, 3); break;
3137 case Bytecodes::_astore_0 : store_local(objectType, 0); break;
3138 case Bytecodes::_astore_1 : store_local(objectType, 1); break;
3139 case Bytecodes::_astore_2 : store_local(objectType, 2); break;
3140 case Bytecodes::_astore_3 : store_local(objectType, 3); break;
3141 case Bytecodes::_iastore : store_indexed(T_INT ); break;
3142 case Bytecodes::_lastore : store_indexed(T_LONG ); break;
3143 case Bytecodes::_fastore : store_indexed(T_FLOAT ); break;
3144 case Bytecodes::_dastore : store_indexed(T_DOUBLE); break;
3145 case Bytecodes::_aastore : store_indexed(T_OBJECT); break;
3146 case Bytecodes::_bastore : store_indexed(T_BYTE ); break;
3147 case Bytecodes::_castore : store_indexed(T_CHAR ); break;
3148 case Bytecodes::_sastore : store_indexed(T_SHORT ); break;
3149 case Bytecodes::_pop : // fall through
3150 case Bytecodes::_pop2 : // fall through
3151 case Bytecodes::_dup : // fall through
3152 case Bytecodes::_dup_x1 : // fall through
3153 case Bytecodes::_dup_x2 : // fall through
3154 case Bytecodes::_dup2 : // fall through
3155 case Bytecodes::_dup2_x1 : // fall through
3156 case Bytecodes::_dup2_x2 : // fall through
3157 case Bytecodes::_swap : stack_op(code); break;
3158 case Bytecodes::_iadd : arithmetic_op(intType , code); break;
3159 case Bytecodes::_ladd : arithmetic_op(longType , code); break;
3160 case Bytecodes::_fadd : arithmetic_op(floatType , code); break;
3161 case Bytecodes::_dadd : arithmetic_op(doubleType, code); break;
3162 case Bytecodes::_isub : arithmetic_op(intType , code); break;
3163 case Bytecodes::_lsub : arithmetic_op(longType , code); break;
3164 case Bytecodes::_fsub : arithmetic_op(floatType , code); break;
3165 case Bytecodes::_dsub : arithmetic_op(doubleType, code); break;
3166 case Bytecodes::_imul : arithmetic_op(intType , code); break;
3167 case Bytecodes::_lmul : arithmetic_op(longType , code); break;
3168 case Bytecodes::_fmul : arithmetic_op(floatType , code); break;
3169 case Bytecodes::_dmul : arithmetic_op(doubleType, code); break;
3170 case Bytecodes::_idiv : arithmetic_op(intType , code, copy_state_for_exception()); break;
3171 case Bytecodes::_ldiv : arithmetic_op(longType , code, copy_state_for_exception()); break;
3172 case Bytecodes::_fdiv : arithmetic_op(floatType , code); break;
3173 case Bytecodes::_ddiv : arithmetic_op(doubleType, code); break;
3174 case Bytecodes::_irem : arithmetic_op(intType , code, copy_state_for_exception()); break;
3175 case Bytecodes::_lrem : arithmetic_op(longType , code, copy_state_for_exception()); break;
3176 case Bytecodes::_frem : arithmetic_op(floatType , code); break;
3177 case Bytecodes::_drem : arithmetic_op(doubleType, code); break;
3178 case Bytecodes::_ineg : negate_op(intType ); break;
3179 case Bytecodes::_lneg : negate_op(longType ); break;
3180 case Bytecodes::_fneg : negate_op(floatType ); break;
3181 case Bytecodes::_dneg : negate_op(doubleType); break;
3182 case Bytecodes::_ishl : shift_op(intType , code); break;
3183 case Bytecodes::_lshl : shift_op(longType, code); break;
3184 case Bytecodes::_ishr : shift_op(intType , code); break;
3185 case Bytecodes::_lshr : shift_op(longType, code); break;
3186 case Bytecodes::_iushr : shift_op(intType , code); break;
3187 case Bytecodes::_lushr : shift_op(longType, code); break;
3188 case Bytecodes::_iand : logic_op(intType , code); break;
3189 case Bytecodes::_land : logic_op(longType, code); break;
3190 case Bytecodes::_ior : logic_op(intType , code); break;
3191 case Bytecodes::_lor : logic_op(longType, code); break;
3192 case Bytecodes::_ixor : logic_op(intType , code); break;
3193 case Bytecodes::_lxor : logic_op(longType, code); break;
3194 case Bytecodes::_iinc : increment(); break;
3195 case Bytecodes::_i2l : convert(code, T_INT , T_LONG ); break;
3196 case Bytecodes::_i2f : convert(code, T_INT , T_FLOAT ); break;
3197 case Bytecodes::_i2d : convert(code, T_INT , T_DOUBLE); break;
3198 case Bytecodes::_l2i : convert(code, T_LONG , T_INT ); break;
3199 case Bytecodes::_l2f : convert(code, T_LONG , T_FLOAT ); break;
3200 case Bytecodes::_l2d : convert(code, T_LONG , T_DOUBLE); break;
3201 case Bytecodes::_f2i : convert(code, T_FLOAT , T_INT ); break;
3202 case Bytecodes::_f2l : convert(code, T_FLOAT , T_LONG ); break;
3203 case Bytecodes::_f2d : convert(code, T_FLOAT , T_DOUBLE); break;
3204 case Bytecodes::_d2i : convert(code, T_DOUBLE, T_INT ); break;
3205 case Bytecodes::_d2l : convert(code, T_DOUBLE, T_LONG ); break;
3206 case Bytecodes::_d2f : convert(code, T_DOUBLE, T_FLOAT ); break;
3207 case Bytecodes::_i2b : convert(code, T_INT , T_BYTE ); break;
3208 case Bytecodes::_i2c : convert(code, T_INT , T_CHAR ); break;
3209 case Bytecodes::_i2s : convert(code, T_INT , T_SHORT ); break;
3210 case Bytecodes::_lcmp : compare_op(longType , code); break;
3211 case Bytecodes::_fcmpl : compare_op(floatType , code); break;
3212 case Bytecodes::_fcmpg : compare_op(floatType , code); break;
3213 case Bytecodes::_dcmpl : compare_op(doubleType, code); break;
3214 case Bytecodes::_dcmpg : compare_op(doubleType, code); break;
3215 case Bytecodes::_ifeq : if_zero(intType , If::eql); break;
3216 case Bytecodes::_ifne : if_zero(intType , If::neq); break;
3217 case Bytecodes::_iflt : if_zero(intType , If::lss); break;
3218 case Bytecodes::_ifge : if_zero(intType , If::geq); break;
3219 case Bytecodes::_ifgt : if_zero(intType , If::gtr); break;
3220 case Bytecodes::_ifle : if_zero(intType , If::leq); break;
3221 case Bytecodes::_if_icmpeq : if_same(intType , If::eql); break;
3222 case Bytecodes::_if_icmpne : if_same(intType , If::neq); break;
3223 case Bytecodes::_if_icmplt : if_same(intType , If::lss); break;
3224 case Bytecodes::_if_icmpge : if_same(intType , If::geq); break;
3225 case Bytecodes::_if_icmpgt : if_same(intType , If::gtr); break;
3226 case Bytecodes::_if_icmple : if_same(intType , If::leq); break;
3227 case Bytecodes::_if_acmpeq : if_same(objectType, If::eql); break;
3228 case Bytecodes::_if_acmpne : if_same(objectType, If::neq); break;
3229 case Bytecodes::_goto : _goto(s.cur_bci(), s.get_dest()); break;
3230 case Bytecodes::_jsr : jsr(s.get_dest()); break;
3231 case Bytecodes::_ret : ret(s.get_index()); break;
3232 case Bytecodes::_tableswitch : table_switch(); break;
3233 case Bytecodes::_lookupswitch : lookup_switch(); break;
3234 case Bytecodes::_ireturn : method_return(ipop(), ignore_return); break;
3235 case Bytecodes::_lreturn : method_return(lpop(), ignore_return); break;
3236 case Bytecodes::_freturn : method_return(fpop(), ignore_return); break;
3237 case Bytecodes::_dreturn : method_return(dpop(), ignore_return); break;
3238 case Bytecodes::_areturn : method_return(apop(), ignore_return); break;
3239 case Bytecodes::_return : method_return(nullptr, ignore_return); break;
3240 case Bytecodes::_getstatic : // fall through
3241 case Bytecodes::_putstatic : // fall through
3242 case Bytecodes::_getfield : // fall through
3243 case Bytecodes::_putfield : access_field(code); break;
3244 case Bytecodes::_invokevirtual : // fall through
3245 case Bytecodes::_invokespecial : // fall through
3246 case Bytecodes::_invokestatic : // fall through
3247 case Bytecodes::_invokedynamic : // fall through
3248 case Bytecodes::_invokeinterface: invoke(code); break;
3249 case Bytecodes::_new : new_instance(s.get_index_u2()); break;
3250 case Bytecodes::_newarray : new_type_array(); break;
3251 case Bytecodes::_anewarray : new_object_array(); break;
3252 case Bytecodes::_arraylength : { ValueStack* state_before = copy_state_for_exception(); ipush(append(new ArrayLength(apop(), state_before))); break; }
3253 case Bytecodes::_athrow : throw_op(s.cur_bci()); break;
3254 case Bytecodes::_checkcast : check_cast(s.get_index_u2()); break;
3255 case Bytecodes::_instanceof : instance_of(s.get_index_u2()); break;
3256 case Bytecodes::_monitorenter : monitorenter(apop(), s.cur_bci()); break;
3257 case Bytecodes::_monitorexit : monitorexit (apop(), s.cur_bci()); break;
3258 case Bytecodes::_wide : ShouldNotReachHere(); break;
3259 case Bytecodes::_multianewarray : new_multi_array(s.cur_bcp()[3]); break;
3260 case Bytecodes::_ifnull : if_null(objectType, If::eql); break;
3261 case Bytecodes::_ifnonnull : if_null(objectType, If::neq); break;
3262 case Bytecodes::_goto_w : _goto(s.cur_bci(), s.get_far_dest()); break;
3263 case Bytecodes::_jsr_w : jsr(s.get_far_dest()); break;
3264 case Bytecodes::_breakpoint : BAILOUT_("concurrent setting of breakpoint", nullptr);
3265 default : ShouldNotReachHere(); break;
3266 }
3267
3268 if (log != nullptr)
3269 log->clear_context(); // skip marker if nothing was printed
3270
3271 // save current bci to setup Goto at the end
3272 prev_bci = s.cur_bci();
3273
3274 }
3275 CHECK_BAILOUT_(nullptr);
3276 // stop processing of this block (see try_inline_full)
3277 if (_skip_block) {
3278 _skip_block = false;
3279 assert(_last && _last->as_BlockEnd(), "");
3280 return _last->as_BlockEnd();
3281 }
3282 // if there are any, check if last instruction is a BlockEnd instruction
3283 BlockEnd* end = last()->as_BlockEnd();
3284 if (end == nullptr) {
3285 // all blocks must end with a BlockEnd instruction => add a Goto
3286 end = new Goto(block_at(s.cur_bci()), false);
3287 append(end);
3288 }
3289 assert(end == last()->as_BlockEnd(), "inconsistency");
3290
3291 assert(end->state() != nullptr, "state must already be present");
3292 assert(end->as_Return() == nullptr || end->as_Throw() == nullptr || end->state()->stack_size() == 0, "stack not needed for return and throw");
3293
3294 // connect to begin & set state
3295 // NOTE that inlining may have changed the block we are parsing
3296 block()->set_end(end);
3297 // propagate state
3298 for (int i = end->number_of_sux() - 1; i >= 0; i--) {
3299 BlockBegin* sux = end->sux_at(i);
3300 assert(sux->is_predecessor(block()), "predecessor missing");
3301 // be careful, bailout if bytecodes are strange
3302 if (!sux->try_merge(end->state(), compilation()->has_irreducible_loops())) BAILOUT_("block join failed", nullptr);
3303 scope_data()->add_to_work_list(end->sux_at(i));
3304 }
3305
3306 scope_data()->set_stream(nullptr);
3307
3308 // done
3309 return end;
3310 }
3311
3312
3313 void GraphBuilder::iterate_all_blocks(bool start_in_current_block_for_inlining) {
3314 do {
3315 if (start_in_current_block_for_inlining && !bailed_out()) {
3316 iterate_bytecodes_for_block(0);
3317 start_in_current_block_for_inlining = false;
3318 } else {
3319 BlockBegin* b;
3320 while ((b = scope_data()->remove_from_work_list()) != nullptr) {
3321 if (!b->is_set(BlockBegin::was_visited_flag)) {
3322 if (b->is_set(BlockBegin::osr_entry_flag)) {
3323 // we're about to parse the osr entry block, so make sure
3324 // we setup the OSR edge leading into this block so that
3325 // Phis get setup correctly.
3326 setup_osr_entry_block();
3327 // this is no longer the osr entry block, so clear it.
3328 b->clear(BlockBegin::osr_entry_flag);
3329 }
3330 b->set(BlockBegin::was_visited_flag);
3331 connect_to_end(b);
3332 }
3333 }
3334 }
3335 } while (!bailed_out() && !scope_data()->is_work_list_empty());
3336 }
3337
3338
3339 bool GraphBuilder::_can_trap [Bytecodes::number_of_java_codes];
3340
3341 void GraphBuilder::initialize() {
3342 // the following bytecodes are assumed to potentially
3343 // throw exceptions in compiled code - note that e.g.
3344 // monitorexit & the return bytecodes do not throw
3345 // exceptions since monitor pairing proved that they
3346 // succeed (if monitor pairing succeeded)
3347 Bytecodes::Code can_trap_list[] =
3348 { Bytecodes::_ldc
3349 , Bytecodes::_ldc_w
3350 , Bytecodes::_ldc2_w
3351 , Bytecodes::_iaload
3352 , Bytecodes::_laload
3353 , Bytecodes::_faload
3354 , Bytecodes::_daload
3355 , Bytecodes::_aaload
3356 , Bytecodes::_baload
3357 , Bytecodes::_caload
3358 , Bytecodes::_saload
3359 , Bytecodes::_iastore
3360 , Bytecodes::_lastore
3361 , Bytecodes::_fastore
3362 , Bytecodes::_dastore
3363 , Bytecodes::_aastore
3364 , Bytecodes::_bastore
3365 , Bytecodes::_castore
3366 , Bytecodes::_sastore
3367 , Bytecodes::_idiv
3368 , Bytecodes::_ldiv
3369 , Bytecodes::_irem
3370 , Bytecodes::_lrem
3371 , Bytecodes::_getstatic
3372 , Bytecodes::_putstatic
3373 , Bytecodes::_getfield
3374 , Bytecodes::_putfield
3375 , Bytecodes::_invokevirtual
3376 , Bytecodes::_invokespecial
3377 , Bytecodes::_invokestatic
3378 , Bytecodes::_invokedynamic
3379 , Bytecodes::_invokeinterface
3380 , Bytecodes::_new
3381 , Bytecodes::_newarray
3382 , Bytecodes::_anewarray
3383 , Bytecodes::_arraylength
3384 , Bytecodes::_athrow
3385 , Bytecodes::_checkcast
3386 , Bytecodes::_instanceof
3387 , Bytecodes::_monitorenter
3388 , Bytecodes::_multianewarray
3389 };
3390
3391 // inititialize trap tables
3392 for (int i = 0; i < Bytecodes::number_of_java_codes; i++) {
3393 _can_trap[i] = false;
3394 }
3395 // set standard trap info
3396 for (uint j = 0; j < ARRAY_SIZE(can_trap_list); j++) {
3397 _can_trap[can_trap_list[j]] = true;
3398 }
3399 }
3400
3401
3402 BlockBegin* GraphBuilder::header_block(BlockBegin* entry, BlockBegin::Flag f, ValueStack* state) {
3403 assert(entry->is_set(f), "entry/flag mismatch");
3404 // create header block
3405 BlockBegin* h = new BlockBegin(entry->bci());
3406 h->set_depth_first_number(0);
3407
3408 Value l = h;
3409 BlockEnd* g = new Goto(entry, false);
3410 l->set_next(g, entry->bci());
3411 h->set_end(g);
3412 h->set(f);
3413 // setup header block end state
3414 ValueStack* s = state->copy(ValueStack::StateAfter, entry->bci()); // can use copy since stack is empty (=> no phis)
3415 assert(s->stack_is_empty(), "must have empty stack at entry point");
3416 g->set_state(s);
3417 return h;
3418 }
3419
3420
3421
3422 BlockBegin* GraphBuilder::setup_start_block(int osr_bci, BlockBegin* std_entry, BlockBegin* osr_entry, ValueStack* state) {
3423 BlockBegin* start = new BlockBegin(0);
3424
3425 // This code eliminates the empty start block at the beginning of
3426 // each method. Previously, each method started with the
3427 // start-block created below, and this block was followed by the
3428 // header block that was always empty. This header block is only
3429 // necessary if std_entry is also a backward branch target because
3430 // then phi functions may be necessary in the header block. It's
3431 // also necessary when profiling so that there's a single block that
3432 // can increment the counters.
3433 // In addition, with range check elimination, we may need a valid block
3434 // that dominates all the rest to insert range predicates.
3435 BlockBegin* new_header_block;
3436 if (std_entry->number_of_preds() > 0 || is_profiling() || RangeCheckElimination) {
3437 new_header_block = header_block(std_entry, BlockBegin::std_entry_flag, state);
3438 } else {
3439 new_header_block = std_entry;
3440 }
3441
3442 // setup start block (root for the IR graph)
3443 Base* base =
3444 new Base(
3445 new_header_block,
3446 osr_entry
3447 );
3448 start->set_next(base, 0);
3449 start->set_end(base);
3450 // create & setup state for start block
3451 start->set_state(state->copy(ValueStack::StateAfter, std_entry->bci()));
3452 base->set_state(state->copy(ValueStack::StateAfter, std_entry->bci()));
3453
3454 if (base->std_entry()->state() == nullptr) {
3455 // setup states for header blocks
3456 base->std_entry()->merge(state, compilation()->has_irreducible_loops());
3457 }
3458
3459 assert(base->std_entry()->state() != nullptr, "");
3460 return start;
3461 }
3462
3463
3464 void GraphBuilder::setup_osr_entry_block() {
3465 assert(compilation()->is_osr_compile(), "only for osrs");
3466
3467 int osr_bci = compilation()->osr_bci();
3468 ciBytecodeStream s(method());
3469 s.reset_to_bci(osr_bci);
3470 s.next();
3471 scope_data()->set_stream(&s);
3472
3473 // create a new block to be the osr setup code
3474 _osr_entry = new BlockBegin(osr_bci);
3475 _osr_entry->set(BlockBegin::osr_entry_flag);
3476 _osr_entry->set_depth_first_number(0);
3477 BlockBegin* target = bci2block()->at(osr_bci);
3478 assert(target != nullptr && target->is_set(BlockBegin::osr_entry_flag), "must be there");
3479 // the osr entry has no values for locals
3480 ValueStack* state = target->state()->copy();
3481 _osr_entry->set_state(state);
3482
3483 kill_all();
3484 _block = _osr_entry;
3485 _state = _osr_entry->state()->copy();
3486 assert(_state->bci() == osr_bci, "mismatch");
3487 _last = _osr_entry;
3488 Value e = append(new OsrEntry());
3489 e->set_needs_null_check(false);
3490
3491 // OSR buffer is
3492 //
3493 // locals[nlocals-1..0]
3494 // monitors[number_of_locks-1..0]
3495 //
3496 // locals is a direct copy of the interpreter frame so in the osr buffer
3497 // so first slot in the local array is the last local from the interpreter
3498 // and last slot is local[0] (receiver) from the interpreter
3499 //
3500 // Similarly with locks. The first lock slot in the osr buffer is the nth lock
3501 // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
3502 // in the interpreter frame (the method lock if a sync method)
3503
3504 // Initialize monitors in the compiled activation.
3505
3506 int index;
3507 Value local;
3508
3509 // find all the locals that the interpreter thinks contain live oops
3510 const ResourceBitMap live_oops = method()->live_local_oops_at_bci(osr_bci);
3511
3512 // compute the offset into the locals so that we can treat the buffer
3513 // as if the locals were still in the interpreter frame
3514 int locals_offset = BytesPerWord * (method()->max_locals() - 1);
3515 for_each_local_value(state, index, local) {
3516 int offset = locals_offset - (index + local->type()->size() - 1) * BytesPerWord;
3517 Value get;
3518 if (local->type()->is_object_kind() && !live_oops.at(index)) {
3519 // The interpreter thinks this local is dead but the compiler
3520 // doesn't so pretend that the interpreter passed in null.
3521 get = append(new Constant(objectNull));
3522 } else {
3523 Value off_val = append(new Constant(new IntConstant(offset)));
3524 get = append(new UnsafeGet(as_BasicType(local->type()), e,
3525 off_val,
3526 false/*is_volatile*/,
3527 true/*is_raw*/));
3528 }
3529 _state->store_local(index, get);
3530 }
3531
3532 // the storage for the OSR buffer is freed manually in the LIRGenerator.
3533
3534 assert(state->caller_state() == nullptr, "should be top scope");
3535 state->clear_locals();
3536 Goto* g = new Goto(target, false);
3537 append(g);
3538 _osr_entry->set_end(g);
3539 target->merge(_osr_entry->end()->state(), compilation()->has_irreducible_loops());
3540
3541 scope_data()->set_stream(nullptr);
3542 }
3543
3544
3545 ValueStack* GraphBuilder::state_at_entry() {
3546 ValueStack* state = new ValueStack(scope(), nullptr);
3547
3548 // Set up locals for receiver
3549 int idx = 0;
3550 if (!method()->is_static()) {
3551 // we should always see the receiver
3552 state->store_local(idx, new Local(method()->holder(), objectType, idx, true));
3553 idx = 1;
3554 }
3555
3556 // Set up locals for incoming arguments
3557 ciSignature* sig = method()->signature();
3558 for (int i = 0; i < sig->count(); i++) {
3559 ciType* type = sig->type_at(i);
3560 BasicType basic_type = type->basic_type();
3561 // don't allow T_ARRAY to propagate into locals types
3562 if (is_reference_type(basic_type)) basic_type = T_OBJECT;
3563 ValueType* vt = as_ValueType(basic_type);
3564 state->store_local(idx, new Local(type, vt, idx, false));
3565 idx += type->size();
3566 }
3567
3568 // lock synchronized method
3569 if (method()->is_synchronized()) {
3570 state->lock(nullptr);
3571 }
3572
3573 return state;
3574 }
3575
3576
3577 GraphBuilder::GraphBuilder(Compilation* compilation, IRScope* scope)
3578 : _scope_data(nullptr)
3579 , _compilation(compilation)
3580 , _memory(new MemoryBuffer())
3581 , _inline_bailout_msg(nullptr)
3582 , _instruction_count(0)
3583 , _osr_entry(nullptr)
3584 , _pending_field_access(nullptr)
3585 , _pending_load_indexed(nullptr)
3586 {
3587 int osr_bci = compilation->osr_bci();
3588
3589 // determine entry points and bci2block mapping
3590 BlockListBuilder blm(compilation, scope, osr_bci);
3591 CHECK_BAILOUT();
3592
3593 BlockList* bci2block = blm.bci2block();
3594 BlockBegin* start_block = bci2block->at(0);
3595
3596 push_root_scope(scope, bci2block, start_block);
3597
3598 // setup state for std entry
3599 _initial_state = state_at_entry();
3600 start_block->merge(_initial_state, compilation->has_irreducible_loops());
3601
3602 // End nulls still exist here
3603
3604 // complete graph
3605 _vmap = new ValueMap();
3606 switch (scope->method()->intrinsic_id()) {
3607 case vmIntrinsics::_dabs : // fall through
3608 case vmIntrinsics::_dsqrt : // fall through
3609 case vmIntrinsics::_dsqrt_strict : // fall through
3610 case vmIntrinsics::_dsin : // fall through
3611 case vmIntrinsics::_dcos : // fall through
3612 case vmIntrinsics::_dtan : // fall through
3613 case vmIntrinsics::_dsinh : // fall through
3614 case vmIntrinsics::_dtanh : // fall through
3615 case vmIntrinsics::_dcbrt : // fall through
3616 case vmIntrinsics::_dlog : // fall through
3617 case vmIntrinsics::_dlog10 : // fall through
3618 case vmIntrinsics::_dexp : // fall through
3619 case vmIntrinsics::_dpow : // fall through
3620 {
3621 // Compiles where the root method is an intrinsic need a special
3622 // compilation environment because the bytecodes for the method
3623 // shouldn't be parsed during the compilation, only the special
3624 // Intrinsic node should be emitted. If this isn't done the
3625 // code for the inlined version will be different than the root
3626 // compiled version which could lead to monotonicity problems on
3627 // intel.
3628 if (CheckIntrinsics && !scope->method()->intrinsic_candidate()) {
3629 BAILOUT("failed to inline intrinsic, method not annotated");
3630 }
3631
3632 // Set up a stream so that appending instructions works properly.
3633 ciBytecodeStream s(scope->method());
3634 s.reset_to_bci(0);
3635 scope_data()->set_stream(&s);
3636 s.next();
3637
3638 // setup the initial block state
3639 _block = start_block;
3640 _state = start_block->state()->copy_for_parsing();
3641 _last = start_block;
3642 load_local(doubleType, 0);
3643 if (scope->method()->intrinsic_id() == vmIntrinsics::_dpow) {
3644 load_local(doubleType, 2);
3645 }
3646
3647 // Emit the intrinsic node.
3648 bool result = try_inline_intrinsics(scope->method());
3649 if (!result) BAILOUT("failed to inline intrinsic");
3650 method_return(dpop());
3651
3652 // connect the begin and end blocks and we're all done.
3653 BlockEnd* end = last()->as_BlockEnd();
3654 block()->set_end(end);
3655 break;
3656 }
3657
3658 case vmIntrinsics::_Reference_get0:
3659 {
3660 {
3661 // With java.lang.ref.reference.get() we must go through the
3662 // intrinsic - when G1 is enabled - even when get() is the root
3663 // method of the compile so that, if necessary, the value in
3664 // the referent field of the reference object gets recorded by
3665 // the pre-barrier code.
3666 // Specifically, if G1 is enabled, the value in the referent
3667 // field is recorded by the G1 SATB pre barrier. This will
3668 // result in the referent being marked live and the reference
3669 // object removed from the list of discovered references during
3670 // reference processing.
3671 if (CheckIntrinsics && !scope->method()->intrinsic_candidate()) {
3672 BAILOUT("failed to inline intrinsic, method not annotated");
3673 }
3674
3675 // Also we need intrinsic to prevent commoning reads from this field
3676 // across safepoint since GC can change its value.
3677
3678 // Set up a stream so that appending instructions works properly.
3679 ciBytecodeStream s(scope->method());
3680 s.reset_to_bci(0);
3681 scope_data()->set_stream(&s);
3682 s.next();
3683
3684 // setup the initial block state
3685 _block = start_block;
3686 _state = start_block->state()->copy_for_parsing();
3687 _last = start_block;
3688 load_local(objectType, 0);
3689
3690 // Emit the intrinsic node.
3691 bool result = try_inline_intrinsics(scope->method());
3692 if (!result) BAILOUT("failed to inline intrinsic");
3693 method_return(apop());
3694
3695 // connect the begin and end blocks and we're all done.
3696 BlockEnd* end = last()->as_BlockEnd();
3697 block()->set_end(end);
3698 break;
3699 }
3700 // Otherwise, fall thru
3701 }
3702
3703 default:
3704 scope_data()->add_to_work_list(start_block);
3705 iterate_all_blocks();
3706 break;
3707 }
3708 CHECK_BAILOUT();
3709
3710 # ifdef ASSERT
3711 // For all blocks reachable from start_block: _end must be non-null
3712 {
3713 BlockList processed;
3714 BlockList to_go;
3715 to_go.append(start_block);
3716 while(to_go.length() > 0) {
3717 BlockBegin* current = to_go.pop();
3718 assert(current != nullptr, "Should not happen.");
3719 assert(current->end() != nullptr, "All blocks reachable from start_block should have end() != nullptr.");
3720 processed.append(current);
3721 for(int i = 0; i < current->number_of_sux(); i++) {
3722 BlockBegin* s = current->sux_at(i);
3723 if (!processed.contains(s)) {
3724 to_go.append(s);
3725 }
3726 }
3727 }
3728 }
3729 #endif // ASSERT
3730
3731 _start = setup_start_block(osr_bci, start_block, _osr_entry, _initial_state);
3732
3733 eliminate_redundant_phis(_start);
3734
3735 NOT_PRODUCT(if (PrintValueNumbering && Verbose) print_stats());
3736 // for osr compile, bailout if some requirements are not fulfilled
3737 if (osr_bci != -1) {
3738 BlockBegin* osr_block = blm.bci2block()->at(osr_bci);
3739 if (!osr_block->is_set(BlockBegin::was_visited_flag)) {
3740 BAILOUT("osr entry must have been visited for osr compile");
3741 }
3742
3743 // check if osr entry point has empty stack - we cannot handle non-empty stacks at osr entry points
3744 if (!osr_block->state()->stack_is_empty()) {
3745 BAILOUT("stack not empty at OSR entry point");
3746 }
3747 }
3748 #ifndef PRODUCT
3749 if (PrintCompilation && Verbose) tty->print_cr("Created %d Instructions", _instruction_count);
3750 #endif
3751 }
3752
3753
3754 ValueStack* GraphBuilder::copy_state_before() {
3755 return copy_state_before_with_bci(bci());
3756 }
3757
3758 ValueStack* GraphBuilder::copy_state_exhandling() {
3759 return copy_state_exhandling_with_bci(bci());
3760 }
3761
3762 ValueStack* GraphBuilder::copy_state_for_exception() {
3763 return copy_state_for_exception_with_bci(bci());
3764 }
3765
3766 ValueStack* GraphBuilder::copy_state_before_with_bci(int bci) {
3767 return state()->copy(ValueStack::StateBefore, bci);
3768 }
3769
3770 ValueStack* GraphBuilder::copy_state_exhandling_with_bci(int bci) {
3771 if (!has_handler()) return nullptr;
3772 return state()->copy(ValueStack::StateBefore, bci);
3773 }
3774
3775 ValueStack* GraphBuilder::copy_state_for_exception_with_bci(int bci) {
3776 ValueStack* s = copy_state_exhandling_with_bci(bci);
3777 if (s == nullptr) {
3778 // no handler, no need to retain locals
3779 ValueStack::Kind exc_kind = ValueStack::empty_exception_kind();
3780 s = state()->copy(exc_kind, bci);
3781 }
3782 return s;
3783 }
3784
3785 int GraphBuilder::recursive_inline_level(ciMethod* cur_callee) const {
3786 int recur_level = 0;
3787 for (IRScope* s = scope(); s != nullptr; s = s->caller()) {
3788 if (s->method() == cur_callee) {
3789 ++recur_level;
3790 }
3791 }
3792 return recur_level;
3793 }
3794
3795 static void set_flags_for_inlined_callee(Compilation* compilation, ciMethod* callee) {
3796 if (callee->has_reserved_stack_access()) {
3797 compilation->set_has_reserved_stack_access(true);
3798 }
3799 if (callee->is_synchronized() || callee->has_monitor_bytecodes()) {
3800 compilation->set_has_monitors(true);
3801 }
3802 if (callee->is_scoped()) {
3803 compilation->set_has_scoped_access(true);
3804 }
3805 }
3806
3807 bool GraphBuilder::try_inline(ciMethod* callee, bool holder_known, bool ignore_return, Bytecodes::Code bc, Value receiver) {
3808 const char* msg = nullptr;
3809
3810 // clear out any existing inline bailout condition
3811 clear_inline_bailout();
3812
3813 // exclude methods we don't want to inline
3814 msg = should_not_inline(callee);
3815 if (msg != nullptr) {
3816 print_inlining(callee, msg, /*success*/ false);
3817 return false;
3818 }
3819
3820 // method handle invokes
3821 if (callee->is_method_handle_intrinsic()) {
3822 if (try_method_handle_inline(callee, ignore_return)) {
3823 set_flags_for_inlined_callee(compilation(), callee);
3824 return true;
3825 }
3826 return false;
3827 }
3828
3829 // handle intrinsics
3830 if (callee->intrinsic_id() != vmIntrinsics::_none &&
3831 callee->check_intrinsic_candidate()) {
3832 if (try_inline_intrinsics(callee, ignore_return)) {
3833 print_inlining(callee, "intrinsic");
3834 set_flags_for_inlined_callee(compilation(), callee);
3835 return true;
3836 }
3837 // try normal inlining
3838 }
3839
3840 // certain methods cannot be parsed at all
3841 msg = check_can_parse(callee);
3842 if (msg != nullptr) {
3843 print_inlining(callee, msg, /*success*/ false);
3844 return false;
3845 }
3846
3847 // If bytecode not set use the current one.
3848 if (bc == Bytecodes::_illegal) {
3849 bc = code();
3850 }
3851 if (try_inline_full(callee, holder_known, ignore_return, bc, receiver)) {
3852 set_flags_for_inlined_callee(compilation(), callee);
3853 return true;
3854 }
3855
3856 // Entire compilation could fail during try_inline_full call.
3857 // In that case printing inlining decision info is useless.
3858 if (!bailed_out())
3859 print_inlining(callee, _inline_bailout_msg, /*success*/ false);
3860
3861 return false;
3862 }
3863
3864
3865 const char* GraphBuilder::check_can_parse(ciMethod* callee) const {
3866 // Certain methods cannot be parsed at all:
3867 if ( callee->is_native()) return "native method";
3868 if ( callee->is_abstract()) return "abstract method";
3869 if (!callee->can_be_parsed()) return "cannot be parsed";
3870 return nullptr;
3871 }
3872
3873 // negative filter: should callee NOT be inlined? returns null, ok to inline, or rejection msg
3874 const char* GraphBuilder::should_not_inline(ciMethod* callee) const {
3875 if ( compilation()->directive()->should_not_inline(callee)) return "disallowed by CompileCommand";
3876 if ( callee->dont_inline()) return "don't inline by annotation";
3877 return nullptr;
3878 }
3879
3880 void GraphBuilder::build_graph_for_intrinsic(ciMethod* callee, bool ignore_return) {
3881 vmIntrinsics::ID id = callee->intrinsic_id();
3882 assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
3883
3884 // Some intrinsics need special IR nodes.
3885 switch(id) {
3886 case vmIntrinsics::_getReference : append_unsafe_get(callee, T_OBJECT, false); return;
3887 case vmIntrinsics::_getBoolean : append_unsafe_get(callee, T_BOOLEAN, false); return;
3888 case vmIntrinsics::_getByte : append_unsafe_get(callee, T_BYTE, false); return;
3889 case vmIntrinsics::_getShort : append_unsafe_get(callee, T_SHORT, false); return;
3890 case vmIntrinsics::_getChar : append_unsafe_get(callee, T_CHAR, false); return;
3891 case vmIntrinsics::_getInt : append_unsafe_get(callee, T_INT, false); return;
3892 case vmIntrinsics::_getLong : append_unsafe_get(callee, T_LONG, false); return;
3893 case vmIntrinsics::_getFloat : append_unsafe_get(callee, T_FLOAT, false); return;
3894 case vmIntrinsics::_getDouble : append_unsafe_get(callee, T_DOUBLE, false); return;
3895 case vmIntrinsics::_putReference : append_unsafe_put(callee, T_OBJECT, false); return;
3896 case vmIntrinsics::_putBoolean : append_unsafe_put(callee, T_BOOLEAN, false); return;
3897 case vmIntrinsics::_putByte : append_unsafe_put(callee, T_BYTE, false); return;
3898 case vmIntrinsics::_putShort : append_unsafe_put(callee, T_SHORT, false); return;
3899 case vmIntrinsics::_putChar : append_unsafe_put(callee, T_CHAR, false); return;
3900 case vmIntrinsics::_putInt : append_unsafe_put(callee, T_INT, false); return;
3901 case vmIntrinsics::_putLong : append_unsafe_put(callee, T_LONG, false); return;
3902 case vmIntrinsics::_putFloat : append_unsafe_put(callee, T_FLOAT, false); return;
3903 case vmIntrinsics::_putDouble : append_unsafe_put(callee, T_DOUBLE, false); return;
3904 case vmIntrinsics::_getShortUnaligned : append_unsafe_get(callee, T_SHORT, false); return;
3905 case vmIntrinsics::_getCharUnaligned : append_unsafe_get(callee, T_CHAR, false); return;
3906 case vmIntrinsics::_getIntUnaligned : append_unsafe_get(callee, T_INT, false); return;
3907 case vmIntrinsics::_getLongUnaligned : append_unsafe_get(callee, T_LONG, false); return;
3908 case vmIntrinsics::_putShortUnaligned : append_unsafe_put(callee, T_SHORT, false); return;
3909 case vmIntrinsics::_putCharUnaligned : append_unsafe_put(callee, T_CHAR, false); return;
3910 case vmIntrinsics::_putIntUnaligned : append_unsafe_put(callee, T_INT, false); return;
3911 case vmIntrinsics::_putLongUnaligned : append_unsafe_put(callee, T_LONG, false); return;
3912 case vmIntrinsics::_getReferenceVolatile : append_unsafe_get(callee, T_OBJECT, true); return;
3913 case vmIntrinsics::_getBooleanVolatile : append_unsafe_get(callee, T_BOOLEAN, true); return;
3914 case vmIntrinsics::_getByteVolatile : append_unsafe_get(callee, T_BYTE, true); return;
3915 case vmIntrinsics::_getShortVolatile : append_unsafe_get(callee, T_SHORT, true); return;
3916 case vmIntrinsics::_getCharVolatile : append_unsafe_get(callee, T_CHAR, true); return;
3917 case vmIntrinsics::_getIntVolatile : append_unsafe_get(callee, T_INT, true); return;
3918 case vmIntrinsics::_getLongVolatile : append_unsafe_get(callee, T_LONG, true); return;
3919 case vmIntrinsics::_getFloatVolatile : append_unsafe_get(callee, T_FLOAT, true); return;
3920 case vmIntrinsics::_getDoubleVolatile : append_unsafe_get(callee, T_DOUBLE, true); return;
3921 case vmIntrinsics::_putReferenceVolatile : append_unsafe_put(callee, T_OBJECT, true); return;
3922 case vmIntrinsics::_putBooleanVolatile : append_unsafe_put(callee, T_BOOLEAN, true); return;
3923 case vmIntrinsics::_putByteVolatile : append_unsafe_put(callee, T_BYTE, true); return;
3924 case vmIntrinsics::_putShortVolatile : append_unsafe_put(callee, T_SHORT, true); return;
3925 case vmIntrinsics::_putCharVolatile : append_unsafe_put(callee, T_CHAR, true); return;
3926 case vmIntrinsics::_putIntVolatile : append_unsafe_put(callee, T_INT, true); return;
3927 case vmIntrinsics::_putLongVolatile : append_unsafe_put(callee, T_LONG, true); return;
3928 case vmIntrinsics::_putFloatVolatile : append_unsafe_put(callee, T_FLOAT, true); return;
3929 case vmIntrinsics::_putDoubleVolatile : append_unsafe_put(callee, T_DOUBLE, true); return;
3930 case vmIntrinsics::_compareAndSetLong:
3931 case vmIntrinsics::_compareAndSetInt:
3932 case vmIntrinsics::_compareAndSetReference : append_unsafe_CAS(callee); return;
3933 case vmIntrinsics::_getAndAddInt:
3934 case vmIntrinsics::_getAndAddLong : append_unsafe_get_and_set(callee, true); return;
3935 case vmIntrinsics::_getAndSetInt :
3936 case vmIntrinsics::_getAndSetLong :
3937 case vmIntrinsics::_getAndSetReference : append_unsafe_get_and_set(callee, false); return;
3938 case vmIntrinsics::_getCharStringU : append_char_access(callee, false); return;
3939 case vmIntrinsics::_putCharStringU : append_char_access(callee, true); return;
3940 case vmIntrinsics::_clone : append_alloc_array_copy(callee); return;
3941 default:
3942 break;
3943 }
3944 if (_inline_bailout_msg != nullptr) {
3945 return;
3946 }
3947
3948 // create intrinsic node
3949 const bool has_receiver = !callee->is_static();
3950 ValueType* result_type = as_ValueType(callee->return_type());
3951 ValueStack* state_before = copy_state_for_exception();
3952
3953 Values* args = state()->pop_arguments(callee->arg_size());
3954
3955 if (is_profiling()) {
3956 // Don't profile in the special case where the root method
3957 // is the intrinsic
3958 if (callee != method()) {
3959 // Note that we'd collect profile data in this method if we wanted it.
3960 compilation()->set_would_profile(true);
3961 if (profile_calls()) {
3962 Value recv = nullptr;
3963 if (has_receiver) {
3964 recv = args->at(0);
3965 null_check(recv);
3966 }
3967 profile_call(callee, recv, nullptr, collect_args_for_profiling(args, callee, true), true);
3968 }
3969 }
3970 }
3971
3972 Intrinsic* result = new Intrinsic(result_type, callee->intrinsic_id(),
3973 args, has_receiver, state_before,
3974 vmIntrinsics::preserves_state(id),
3975 vmIntrinsics::can_trap(id));
3976 // append instruction & push result
3977 Value value = append_split(result);
3978 if (result_type != voidType && !ignore_return) {
3979 push(result_type, value);
3980 }
3981
3982 if (callee != method() && profile_return() && result_type->is_object_kind()) {
3983 profile_return_type(result, callee);
3984 }
3985 }
3986
3987 bool GraphBuilder::try_inline_intrinsics(ciMethod* callee, bool ignore_return) {
3988 // For calling is_intrinsic_available we need to transition to
3989 // the '_thread_in_vm' state because is_intrinsic_available()
3990 // accesses critical VM-internal data.
3991 bool is_available = false;
3992 {
3993 VM_ENTRY_MARK;
3994 methodHandle mh(THREAD, callee->get_Method());
3995 is_available = _compilation->compiler()->is_intrinsic_available(mh, _compilation->directive());
3996 }
3997
3998 if (!is_available) {
3999 if (!InlineNatives) {
4000 // Return false and also set message that the inlining of
4001 // intrinsics has been disabled in general.
4002 INLINE_BAILOUT("intrinsic method inlining disabled");
4003 } else {
4004 return false;
4005 }
4006 }
4007 build_graph_for_intrinsic(callee, ignore_return);
4008 if (_inline_bailout_msg != nullptr) {
4009 return false;
4010 }
4011 return true;
4012 }
4013
4014
4015 bool GraphBuilder::try_inline_jsr(int jsr_dest_bci) {
4016 // Introduce a new callee continuation point - all Ret instructions
4017 // will be replaced with Gotos to this point.
4018 if (next_bci() >= method()->code_size()) {
4019 return false;
4020 }
4021 BlockBegin* cont = block_at(next_bci());
4022 assert(cont != nullptr, "continuation must exist (BlockListBuilder starts a new block after a jsr");
4023
4024 // Note: can not assign state to continuation yet, as we have to
4025 // pick up the state from the Ret instructions.
4026
4027 // Push callee scope
4028 push_scope_for_jsr(cont, jsr_dest_bci);
4029
4030 // Temporarily set up bytecode stream so we can append instructions
4031 // (only using the bci of this stream)
4032 scope_data()->set_stream(scope_data()->parent()->stream());
4033
4034 BlockBegin* jsr_start_block = block_at(jsr_dest_bci);
4035 assert(jsr_start_block != nullptr, "jsr start block must exist");
4036 assert(!jsr_start_block->is_set(BlockBegin::was_visited_flag), "should not have visited jsr yet");
4037 Goto* goto_sub = new Goto(jsr_start_block, false);
4038 // Must copy state to avoid wrong sharing when parsing bytecodes
4039 assert(jsr_start_block->state() == nullptr, "should have fresh jsr starting block");
4040 jsr_start_block->set_state(copy_state_before_with_bci(jsr_dest_bci));
4041 append(goto_sub);
4042 _block->set_end(goto_sub);
4043 _last = _block = jsr_start_block;
4044
4045 // Clear out bytecode stream
4046 scope_data()->set_stream(nullptr);
4047
4048 scope_data()->add_to_work_list(jsr_start_block);
4049
4050 // Ready to resume parsing in subroutine
4051 iterate_all_blocks();
4052
4053 // If we bailed out during parsing, return immediately (this is bad news)
4054 CHECK_BAILOUT_(false);
4055
4056 // Detect whether the continuation can actually be reached. If not,
4057 // it has not had state set by the join() operations in
4058 // iterate_bytecodes_for_block()/ret() and we should not touch the
4059 // iteration state. The calling activation of
4060 // iterate_bytecodes_for_block will then complete normally.
4061 if (cont->state() != nullptr) {
4062 if (!cont->is_set(BlockBegin::was_visited_flag)) {
4063 // add continuation to work list instead of parsing it immediately
4064 scope_data()->parent()->add_to_work_list(cont);
4065 }
4066 }
4067
4068 assert(jsr_continuation() == cont, "continuation must not have changed");
4069 assert(!jsr_continuation()->is_set(BlockBegin::was_visited_flag) ||
4070 jsr_continuation()->is_set(BlockBegin::parser_loop_header_flag),
4071 "continuation can only be visited in case of backward branches");
4072 assert(_last && _last->as_BlockEnd(), "block must have end");
4073
4074 // continuation is in work list, so end iteration of current block
4075 _skip_block = true;
4076 pop_scope_for_jsr();
4077
4078 return true;
4079 }
4080
4081
4082 // Inline the entry of a synchronized method as a monitor enter and
4083 // register the exception handler which releases the monitor if an
4084 // exception is thrown within the callee. Note that the monitor enter
4085 // cannot throw an exception itself, because the receiver is
4086 // guaranteed to be non-null by the explicit null check at the
4087 // beginning of inlining.
4088 void GraphBuilder::inline_sync_entry(Value lock, BlockBegin* sync_handler) {
4089 assert(lock != nullptr && sync_handler != nullptr, "lock or handler missing");
4090
4091 monitorenter(lock, SynchronizationEntryBCI);
4092 assert(_last->as_MonitorEnter() != nullptr, "monitor enter expected");
4093 _last->set_needs_null_check(false);
4094
4095 sync_handler->set(BlockBegin::exception_entry_flag);
4096 sync_handler->set(BlockBegin::is_on_work_list_flag);
4097
4098 ciExceptionHandler* desc = new ciExceptionHandler(method()->holder(), 0, method()->code_size(), -1, 0);
4099 XHandler* h = new XHandler(desc);
4100 h->set_entry_block(sync_handler);
4101 scope_data()->xhandlers()->append(h);
4102 scope_data()->set_has_handler();
4103 }
4104
4105
4106 // If an exception is thrown and not handled within an inlined
4107 // synchronized method, the monitor must be released before the
4108 // exception is rethrown in the outer scope. Generate the appropriate
4109 // instructions here.
4110 void GraphBuilder::fill_sync_handler(Value lock, BlockBegin* sync_handler, bool default_handler) {
4111 BlockBegin* orig_block = _block;
4112 ValueStack* orig_state = _state;
4113 Instruction* orig_last = _last;
4114 _last = _block = sync_handler;
4115 _state = sync_handler->state()->copy();
4116
4117 assert(sync_handler != nullptr, "handler missing");
4118 assert(!sync_handler->is_set(BlockBegin::was_visited_flag), "is visited here");
4119
4120 assert(lock != nullptr || default_handler, "lock or handler missing");
4121
4122 XHandler* h = scope_data()->xhandlers()->remove_last();
4123 assert(h->entry_block() == sync_handler, "corrupt list of handlers");
4124
4125 block()->set(BlockBegin::was_visited_flag);
4126 Value exception = append_with_bci(new ExceptionObject(), SynchronizationEntryBCI);
4127 assert(exception->is_pinned(), "must be");
4128
4129 int bci = SynchronizationEntryBCI;
4130 if (compilation()->env()->dtrace_method_probes()) {
4131 // Report exit from inline methods. We don't have a stream here
4132 // so pass an explicit bci of SynchronizationEntryBCI.
4133 Values* args = new Values(1);
4134 args->push(append_with_bci(new Constant(new MethodConstant(method())), bci));
4135 append_with_bci(new RuntimeCall(voidType, "dtrace_method_exit", CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), args), bci);
4136 }
4137
4138 if (lock) {
4139 assert(state()->locks_size() > 0 && state()->lock_at(state()->locks_size() - 1) == lock, "lock is missing");
4140 if (!lock->is_linked()) {
4141 lock = append_with_bci(lock, bci);
4142 }
4143
4144 // exit the monitor in the context of the synchronized method
4145 monitorexit(lock, bci);
4146
4147 // exit the context of the synchronized method
4148 if (!default_handler) {
4149 pop_scope();
4150 bci = _state->caller_state()->bci();
4151 _state = _state->caller_state()->copy_for_parsing();
4152 }
4153 }
4154
4155 // perform the throw as if at the call site
4156 apush(exception);
4157 throw_op(bci);
4158
4159 BlockEnd* end = last()->as_BlockEnd();
4160 block()->set_end(end);
4161
4162 _block = orig_block;
4163 _state = orig_state;
4164 _last = orig_last;
4165 }
4166
4167
4168 bool GraphBuilder::try_inline_full(ciMethod* callee, bool holder_known, bool ignore_return, Bytecodes::Code bc, Value receiver) {
4169 assert(!callee->is_native(), "callee must not be native");
4170 if (CompilationPolicy::should_not_inline(compilation()->env(), callee)) {
4171 INLINE_BAILOUT("inlining prohibited by policy");
4172 }
4173 // first perform tests of things it's not possible to inline
4174 if (callee->has_exception_handlers() &&
4175 !InlineMethodsWithExceptionHandlers) INLINE_BAILOUT("callee has exception handlers");
4176 if (callee->is_synchronized() &&
4177 !InlineSynchronizedMethods ) INLINE_BAILOUT("callee is synchronized");
4178 if (!callee->holder()->is_linked()) INLINE_BAILOUT("callee's klass not linked yet");
4179 if (bc == Bytecodes::_invokestatic &&
4180 !callee->holder()->is_initialized()) INLINE_BAILOUT("callee's klass not initialized yet");
4181 if (!callee->has_balanced_monitors()) INLINE_BAILOUT("callee's monitors do not match");
4182
4183 // Proper inlining of methods with jsrs requires a little more work.
4184 if (callee->has_jsrs() ) INLINE_BAILOUT("jsrs not handled properly by inliner yet");
4185
4186 if (is_profiling() && !callee->ensure_method_data()) {
4187 INLINE_BAILOUT("mdo allocation failed");
4188 }
4189
4190 const bool is_invokedynamic = (bc == Bytecodes::_invokedynamic);
4191 const bool has_receiver = (bc != Bytecodes::_invokestatic && !is_invokedynamic);
4192
4193 const int args_base = state()->stack_size() - callee->arg_size();
4194 assert(args_base >= 0, "stack underflow during inlining");
4195
4196 Value recv = nullptr;
4197 if (has_receiver) {
4198 assert(!callee->is_static(), "callee must not be static");
4199 assert(callee->arg_size() > 0, "must have at least a receiver");
4200
4201 recv = state()->stack_at(args_base);
4202 if (recv->is_null_obj()) {
4203 INLINE_BAILOUT("receiver is always null");
4204 }
4205 }
4206
4207 // now perform tests that are based on flag settings
4208 bool inlinee_by_directive = compilation()->directive()->should_inline(callee);
4209 if (callee->force_inline() || inlinee_by_directive) {
4210 if (inline_level() > MaxForceInlineLevel ) INLINE_BAILOUT("MaxForceInlineLevel");
4211 if (recursive_inline_level(callee) > C1MaxRecursiveInlineLevel) INLINE_BAILOUT("recursive inlining too deep");
4212
4213 const char* msg = "";
4214 if (callee->force_inline()) msg = "force inline by annotation";
4215 if (inlinee_by_directive) msg = "force inline by CompileCommand";
4216 print_inlining(callee, msg);
4217 } else {
4218 // use heuristic controls on inlining
4219 if (inline_level() > C1MaxInlineLevel ) INLINE_BAILOUT("inlining too deep");
4220 int callee_recursive_level = recursive_inline_level(callee);
4221 if (callee_recursive_level > C1MaxRecursiveInlineLevel ) INLINE_BAILOUT("recursive inlining too deep");
4222 if (callee->code_size_for_inlining() > max_inline_size() ) INLINE_BAILOUT("callee is too large");
4223 // Additional condition to limit stack usage for non-recursive calls.
4224 if ((callee_recursive_level == 0) &&
4225 (callee->max_stack() + callee->max_locals() - callee->size_of_parameters() > C1InlineStackLimit)) {
4226 INLINE_BAILOUT("callee uses too much stack");
4227 }
4228
4229 // don't inline throwable methods unless the inlining tree is rooted in a throwable class
4230 if (callee->name() == ciSymbols::object_initializer_name() &&
4231 callee->holder()->is_subclass_of(ciEnv::current()->Throwable_klass())) {
4232 // Throwable constructor call
4233 IRScope* top = scope();
4234 while (top->caller() != nullptr) {
4235 top = top->caller();
4236 }
4237 if (!top->method()->holder()->is_subclass_of(ciEnv::current()->Throwable_klass())) {
4238 INLINE_BAILOUT("don't inline Throwable constructors");
4239 }
4240 }
4241
4242 if (compilation()->env()->num_inlined_bytecodes() > DesiredMethodLimit) {
4243 INLINE_BAILOUT("total inlining greater than DesiredMethodLimit");
4244 }
4245 // printing
4246 print_inlining(callee, "inline", /*success*/ true);
4247 }
4248
4249 assert(bc != Bytecodes::_invokestatic || callee->holder()->is_initialized(), "required");
4250
4251 // NOTE: Bailouts from this point on, which occur at the
4252 // GraphBuilder level, do not cause bailout just of the inlining but
4253 // in fact of the entire compilation.
4254
4255 BlockBegin* orig_block = block();
4256
4257 // Insert null check if necessary
4258 if (has_receiver) {
4259 // note: null check must happen even if first instruction of callee does
4260 // an implicit null check since the callee is in a different scope
4261 // and we must make sure exception handling does the right thing
4262 null_check(recv);
4263 }
4264
4265 if (is_profiling()) {
4266 // Note that we'd collect profile data in this method if we wanted it.
4267 // this may be redundant here...
4268 compilation()->set_would_profile(true);
4269
4270 if (profile_calls()) {
4271 int start = 0;
4272 Values* obj_args = args_list_for_profiling(callee, start, has_receiver);
4273 if (obj_args != nullptr) {
4274 int s = obj_args->capacity();
4275 // if called through method handle invoke, some arguments may have been popped
4276 for (int i = args_base+start, j = 0; j < obj_args->capacity() && i < state()->stack_size(); ) {
4277 Value v = state()->stack_at_inc(i);
4278 if (v->type()->is_object_kind()) {
4279 obj_args->push(v);
4280 j++;
4281 }
4282 }
4283 check_args_for_profiling(obj_args, s);
4284 }
4285 profile_call(callee, recv, holder_known ? callee->holder() : nullptr, obj_args, true);
4286 }
4287 }
4288
4289 // Introduce a new callee continuation point - if the callee has
4290 // more than one return instruction or the return does not allow
4291 // fall-through of control flow, all return instructions of the
4292 // callee will need to be replaced by Goto's pointing to this
4293 // continuation point.
4294 BlockBegin* cont = block_at(next_bci());
4295 bool continuation_existed = true;
4296 if (cont == nullptr) {
4297 cont = new BlockBegin(next_bci());
4298 // low number so that continuation gets parsed as early as possible
4299 cont->set_depth_first_number(0);
4300 if (PrintInitialBlockList) {
4301 tty->print_cr("CFG: created block %d (bci %d) as continuation for inline at bci %d",
4302 cont->block_id(), cont->bci(), bci());
4303 }
4304 continuation_existed = false;
4305 }
4306 // Record number of predecessors of continuation block before
4307 // inlining, to detect if inlined method has edges to its
4308 // continuation after inlining.
4309 int continuation_preds = cont->number_of_preds();
4310
4311 // Push callee scope
4312 push_scope(callee, cont);
4313
4314 // the BlockListBuilder for the callee could have bailed out
4315 if (bailed_out())
4316 return false;
4317
4318 // Temporarily set up bytecode stream so we can append instructions
4319 // (only using the bci of this stream)
4320 scope_data()->set_stream(scope_data()->parent()->stream());
4321
4322 // Pass parameters into callee state: add assignments
4323 // note: this will also ensure that all arguments are computed before being passed
4324 ValueStack* callee_state = state();
4325 ValueStack* caller_state = state()->caller_state();
4326 for (int i = args_base; i < caller_state->stack_size(); ) {
4327 const int arg_no = i - args_base;
4328 Value arg = caller_state->stack_at_inc(i);
4329 store_local(callee_state, arg, arg_no);
4330 }
4331
4332 // Remove args from stack.
4333 // Note that we preserve locals state in case we can use it later
4334 // (see use of pop_scope() below)
4335 caller_state->truncate_stack(args_base);
4336 assert(callee_state->stack_size() == 0, "callee stack must be empty");
4337
4338 // Check if we need a membar at the beginning of the java.lang.Object
4339 // constructor to satisfy the memory model for strict fields.
4340 if (Arguments::is_valhalla_enabled() && method()->intrinsic_id() == vmIntrinsics::_Object_init) {
4341 Value receiver = state()->local_at(0);
4342 ciType* klass = receiver->exact_type();
4343 if (klass == nullptr) {
4344 // No exact type, check if the declared type has no implementors and add a dependency
4345 klass = receiver->declared_type();
4346 klass = compilation()->cha_exact_type(klass);
4347 }
4348 if (klass != nullptr && klass->is_instance_klass()) {
4349 // Exact receiver type, check if there is a strict field
4350 ciInstanceKlass* holder = klass->as_instance_klass();
4351 for (int i = 0; i < holder->nof_nonstatic_fields(); i++) {
4352 ciField* field = holder->nonstatic_field_at(i);
4353 if (field->is_strict()) {
4354 // Found a strict field, a membar is needed
4355 append(new MemBar(lir_membar_storestore));
4356 break;
4357 }
4358 }
4359 } else if (klass == nullptr) {
4360 // We can't statically determine the type of the receiver and therefore need
4361 // to put a membar here because it could have a strict field.
4362 append(new MemBar(lir_membar_storestore));
4363 }
4364 }
4365
4366 Value lock = nullptr;
4367 BlockBegin* sync_handler = nullptr;
4368
4369 // Inline the locking of the receiver if the callee is synchronized
4370 if (callee->is_synchronized()) {
4371 lock = callee->is_static() ? append(new Constant(new InstanceConstant(callee->holder()->java_mirror())))
4372 : state()->local_at(0);
4373 sync_handler = new BlockBegin(SynchronizationEntryBCI);
4374 inline_sync_entry(lock, sync_handler);
4375 }
4376
4377 if (compilation()->env()->dtrace_method_probes()) {
4378 Values* args = new Values(1);
4379 args->push(append(new Constant(new MethodConstant(method()))));
4380 append(new RuntimeCall(voidType, "dtrace_method_entry", CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), args));
4381 }
4382
4383 if (profile_inlined_calls()) {
4384 profile_invocation(callee, copy_state_before_with_bci(SynchronizationEntryBCI));
4385 }
4386
4387 BlockBegin* callee_start_block = block_at(0);
4388 if (callee_start_block != nullptr) {
4389 assert(callee_start_block->is_set(BlockBegin::parser_loop_header_flag), "must be loop header");
4390 Goto* goto_callee = new Goto(callee_start_block, false);
4391 // The state for this goto is in the scope of the callee, so use
4392 // the entry bci for the callee instead of the call site bci.
4393 append_with_bci(goto_callee, 0);
4394 _block->set_end(goto_callee);
4395 callee_start_block->merge(callee_state, compilation()->has_irreducible_loops());
4396
4397 _last = _block = callee_start_block;
4398
4399 scope_data()->add_to_work_list(callee_start_block);
4400 }
4401
4402 // Clear out bytecode stream
4403 scope_data()->set_stream(nullptr);
4404 scope_data()->set_ignore_return(ignore_return);
4405
4406 CompileLog* log = compilation()->log();
4407 if (log != nullptr) log->head("parse method='%d'", log->identify(callee));
4408
4409 // Ready to resume parsing in callee (either in the same block we
4410 // were in before or in the callee's start block)
4411 iterate_all_blocks(callee_start_block == nullptr);
4412
4413 if (log != nullptr) log->done("parse");
4414
4415 // If we bailed out during parsing, return immediately (this is bad news)
4416 if (bailed_out())
4417 return false;
4418
4419 // iterate_all_blocks theoretically traverses in random order; in
4420 // practice, we have only traversed the continuation if we are
4421 // inlining into a subroutine
4422 assert(continuation_existed ||
4423 !continuation()->is_set(BlockBegin::was_visited_flag),
4424 "continuation should not have been parsed yet if we created it");
4425
4426 // At this point we are almost ready to return and resume parsing of
4427 // the caller back in the GraphBuilder. The only thing we want to do
4428 // first is an optimization: during parsing of the callee we
4429 // generated at least one Goto to the continuation block. If we
4430 // generated exactly one, and if the inlined method spanned exactly
4431 // one block (and we didn't have to Goto its entry), then we snip
4432 // off the Goto to the continuation, allowing control to fall
4433 // through back into the caller block and effectively performing
4434 // block merging. This allows load elimination and CSE to take place
4435 // across multiple callee scopes if they are relatively simple, and
4436 // is currently essential to making inlining profitable.
4437 if (num_returns() == 1
4438 && block() == orig_block
4439 && block() == inline_cleanup_block()) {
4440 _last = inline_cleanup_return_prev();
4441 _state = inline_cleanup_state();
4442 } else if (continuation_preds == cont->number_of_preds()) {
4443 // Inlining caused that the instructions after the invoke in the
4444 // caller are not reachable any more. So skip filling this block
4445 // with instructions!
4446 assert(cont == continuation(), "");
4447 assert(_last && _last->as_BlockEnd(), "");
4448 _skip_block = true;
4449 } else {
4450 // Resume parsing in continuation block unless it was already parsed.
4451 // Note that if we don't change _last here, iteration in
4452 // iterate_bytecodes_for_block will stop when we return.
4453 if (!continuation()->is_set(BlockBegin::was_visited_flag)) {
4454 // add continuation to work list instead of parsing it immediately
4455 assert(_last && _last->as_BlockEnd(), "");
4456 scope_data()->parent()->add_to_work_list(continuation());
4457 _skip_block = true;
4458 }
4459 }
4460
4461 // Fill the exception handler for synchronized methods with instructions
4462 if (callee->is_synchronized() && sync_handler->state() != nullptr) {
4463 fill_sync_handler(lock, sync_handler);
4464 } else {
4465 pop_scope();
4466 }
4467
4468 compilation()->notice_inlined_method(callee);
4469
4470 return true;
4471 }
4472
4473
4474 bool GraphBuilder::try_method_handle_inline(ciMethod* callee, bool ignore_return) {
4475 ValueStack* state_before = copy_state_before();
4476 vmIntrinsics::ID iid = callee->intrinsic_id();
4477 switch (iid) {
4478 case vmIntrinsics::_invokeBasic:
4479 {
4480 // get MethodHandle receiver
4481 const int args_base = state()->stack_size() - callee->arg_size();
4482 ValueType* type = state()->stack_at(args_base)->type();
4483 if (type->is_constant()) {
4484 ciObject* mh = type->as_ObjectType()->constant_value();
4485 if (mh->is_method_handle()) {
4486 ciMethod* target = mh->as_method_handle()->get_vmtarget();
4487
4488 // We don't do CHA here so only inline static and statically bindable methods.
4489 if (target->is_static() || target->can_be_statically_bound()) {
4490 if (ciMethod::is_consistent_info(callee, target)) {
4491 Bytecodes::Code bc = target->is_static() ? Bytecodes::_invokestatic : Bytecodes::_invokevirtual;
4492 ignore_return = ignore_return || (callee->return_type()->is_void() && !target->return_type()->is_void());
4493 if (try_inline(target, /*holder_known*/ !callee->is_static(), ignore_return, bc)) {
4494 return true;
4495 }
4496 } else {
4497 print_inlining(target, "signatures mismatch", /*success*/ false);
4498 }
4499 } else {
4500 assert(false, "no inlining through MH::invokeBasic"); // missing optimization opportunity due to suboptimal LF shape
4501 print_inlining(target, "not static or statically bindable", /*success*/ false);
4502 }
4503 } else {
4504 assert(mh->is_null_object(), "not a null");
4505 print_inlining(callee, "receiver is always null", /*success*/ false);
4506 }
4507 } else {
4508 print_inlining(callee, "receiver not constant", /*success*/ false);
4509 }
4510 }
4511 break;
4512
4513 case vmIntrinsics::_linkToVirtual:
4514 case vmIntrinsics::_linkToStatic:
4515 case vmIntrinsics::_linkToSpecial:
4516 case vmIntrinsics::_linkToInterface:
4517 {
4518 // pop MemberName argument
4519 const int args_base = state()->stack_size() - callee->arg_size();
4520 ValueType* type = apop()->type();
4521 if (type->is_constant()) {
4522 ciMethod* target = type->as_ObjectType()->constant_value()->as_member_name()->get_vmtarget();
4523 ignore_return = ignore_return || (callee->return_type()->is_void() && !target->return_type()->is_void());
4524 // If the target is another method handle invoke, try to recursively get
4525 // a better target.
4526 if (target->is_method_handle_intrinsic()) {
4527 if (try_method_handle_inline(target, ignore_return)) {
4528 return true;
4529 }
4530 } else if (!ciMethod::is_consistent_info(callee, target)) {
4531 print_inlining(target, "signatures mismatch", /*success*/ false);
4532 } else {
4533 ciSignature* signature = target->signature();
4534 const int receiver_skip = target->is_static() ? 0 : 1;
4535 // Cast receiver to its type.
4536 if (!target->is_static()) {
4537 ciKlass* tk = signature->accessing_klass();
4538 Value obj = state()->stack_at(args_base);
4539 if (obj->exact_type() == nullptr &&
4540 obj->declared_type() != tk && tk != compilation()->env()->Object_klass()) {
4541 TypeCast* c = new TypeCast(tk, obj, state_before);
4542 append(c);
4543 state()->stack_at_put(args_base, c);
4544 }
4545 }
4546 // Cast reference arguments to its type.
4547 for (int i = 0, j = 0; i < signature->count(); i++) {
4548 ciType* t = signature->type_at(i);
4549 if (t->is_klass()) {
4550 ciKlass* tk = t->as_klass();
4551 Value obj = state()->stack_at(args_base + receiver_skip + j);
4552 if (obj->exact_type() == nullptr &&
4553 obj->declared_type() != tk && tk != compilation()->env()->Object_klass()) {
4554 TypeCast* c = new TypeCast(t, obj, state_before);
4555 append(c);
4556 state()->stack_at_put(args_base + receiver_skip + j, c);
4557 }
4558 }
4559 j += t->size(); // long and double take two slots
4560 }
4561 // We don't do CHA here so only inline static and statically bindable methods.
4562 if (target->is_static() || target->can_be_statically_bound()) {
4563 Bytecodes::Code bc = target->is_static() ? Bytecodes::_invokestatic : Bytecodes::_invokevirtual;
4564 if (try_inline(target, /*holder_known*/ !callee->is_static(), ignore_return, bc)) {
4565 return true;
4566 }
4567 } else {
4568 print_inlining(target, "not static or statically bindable", /*success*/ false);
4569 }
4570 }
4571 } else {
4572 print_inlining(callee, "MemberName not constant", /*success*/ false);
4573 }
4574 }
4575 break;
4576
4577 case vmIntrinsics::_linkToNative:
4578 print_inlining(callee, "native call", /*success*/ false);
4579 break;
4580
4581 default:
4582 fatal("unexpected intrinsic %d: %s", vmIntrinsics::as_int(iid), vmIntrinsics::name_at(iid));
4583 break;
4584 }
4585 set_state(state_before->copy_for_parsing());
4586 return false;
4587 }
4588
4589
4590 void GraphBuilder::inline_bailout(const char* msg) {
4591 assert(msg != nullptr, "inline bailout msg must exist");
4592 _inline_bailout_msg = msg;
4593 }
4594
4595
4596 void GraphBuilder::clear_inline_bailout() {
4597 _inline_bailout_msg = nullptr;
4598 }
4599
4600
4601 void GraphBuilder::push_root_scope(IRScope* scope, BlockList* bci2block, BlockBegin* start) {
4602 ScopeData* data = new ScopeData(nullptr);
4603 data->set_scope(scope);
4604 data->set_bci2block(bci2block);
4605 _scope_data = data;
4606 _block = start;
4607 }
4608
4609
4610 void GraphBuilder::push_scope(ciMethod* callee, BlockBegin* continuation) {
4611 IRScope* callee_scope = new IRScope(compilation(), scope(), bci(), callee, -1, false);
4612 scope()->add_callee(callee_scope);
4613
4614 BlockListBuilder blb(compilation(), callee_scope, -1);
4615 CHECK_BAILOUT();
4616
4617 if (!blb.bci2block()->at(0)->is_set(BlockBegin::parser_loop_header_flag)) {
4618 // this scope can be inlined directly into the caller so remove
4619 // the block at bci 0.
4620 blb.bci2block()->at_put(0, nullptr);
4621 }
4622
4623 set_state(new ValueStack(callee_scope, state()->copy(ValueStack::CallerState, bci())));
4624
4625 ScopeData* data = new ScopeData(scope_data());
4626 data->set_scope(callee_scope);
4627 data->set_bci2block(blb.bci2block());
4628 data->set_continuation(continuation);
4629 _scope_data = data;
4630 }
4631
4632
4633 void GraphBuilder::push_scope_for_jsr(BlockBegin* jsr_continuation, int jsr_dest_bci) {
4634 ScopeData* data = new ScopeData(scope_data());
4635 data->set_parsing_jsr();
4636 data->set_jsr_entry_bci(jsr_dest_bci);
4637 data->set_jsr_return_address_local(-1);
4638 // Must clone bci2block list as we will be mutating it in order to
4639 // properly clone all blocks in jsr region as well as exception
4640 // handlers containing rets
4641 BlockList* new_bci2block = new BlockList(bci2block()->length());
4642 new_bci2block->appendAll(bci2block());
4643 data->set_bci2block(new_bci2block);
4644 data->set_scope(scope());
4645 data->setup_jsr_xhandlers();
4646 data->set_continuation(continuation());
4647 data->set_jsr_continuation(jsr_continuation);
4648 _scope_data = data;
4649 }
4650
4651
4652 void GraphBuilder::pop_scope() {
4653 int number_of_locks = scope()->number_of_locks();
4654 _scope_data = scope_data()->parent();
4655 // accumulate minimum number of monitor slots to be reserved
4656 scope()->set_min_number_of_locks(number_of_locks);
4657 }
4658
4659
4660 void GraphBuilder::pop_scope_for_jsr() {
4661 _scope_data = scope_data()->parent();
4662 }
4663
4664 void GraphBuilder::append_unsafe_get(ciMethod* callee, BasicType t, bool is_volatile) {
4665 Values* args = state()->pop_arguments(callee->arg_size());
4666 null_check(args->at(0));
4667 Instruction* offset = args->at(2);
4668 #ifndef _LP64
4669 offset = append(new Convert(Bytecodes::_l2i, offset, as_ValueType(T_INT)));
4670 #endif
4671 Instruction* op = append(new UnsafeGet(t, args->at(1), offset, is_volatile));
4672 push(op->type(), op);
4673 compilation()->set_has_unsafe_access(true);
4674 }
4675
4676
4677 void GraphBuilder::append_unsafe_put(ciMethod* callee, BasicType t, bool is_volatile) {
4678 Values* args = state()->pop_arguments(callee->arg_size());
4679 null_check(args->at(0));
4680 Instruction* offset = args->at(2);
4681 #ifndef _LP64
4682 offset = append(new Convert(Bytecodes::_l2i, offset, as_ValueType(T_INT)));
4683 #endif
4684 Value val = args->at(3);
4685 if (t == T_BOOLEAN) {
4686 Value mask = append(new Constant(new IntConstant(1)));
4687 val = append(new LogicOp(Bytecodes::_iand, val, mask));
4688 }
4689 Instruction* op = append(new UnsafePut(t, args->at(1), offset, val, is_volatile));
4690 compilation()->set_has_unsafe_access(true);
4691 kill_all();
4692 }
4693
4694 void GraphBuilder::append_unsafe_CAS(ciMethod* callee) {
4695 ValueStack* state_before = copy_state_for_exception();
4696 ValueType* result_type = as_ValueType(callee->return_type());
4697 assert(result_type->is_int(), "int result");
4698 Values* args = state()->pop_arguments(callee->arg_size());
4699
4700 // Pop off some args to specially handle, then push back
4701 Value newval = args->pop();
4702 Value cmpval = args->pop();
4703 Value offset = args->pop();
4704 Value src = args->pop();
4705 Value unsafe_obj = args->pop();
4706
4707 // Separately handle the unsafe arg. It is not needed for code
4708 // generation, but must be null checked
4709 null_check(unsafe_obj);
4710
4711 #ifndef _LP64
4712 offset = append(new Convert(Bytecodes::_l2i, offset, as_ValueType(T_INT)));
4713 #endif
4714
4715 args->push(src);
4716 args->push(offset);
4717 args->push(cmpval);
4718 args->push(newval);
4719
4720 // An unsafe CAS can alias with other field accesses, but we don't
4721 // know which ones so mark the state as no preserved. This will
4722 // cause CSE to invalidate memory across it.
4723 bool preserves_state = false;
4724 Intrinsic* result = new Intrinsic(result_type, callee->intrinsic_id(), args, false, state_before, preserves_state);
4725 append_split(result);
4726 push(result_type, result);
4727 compilation()->set_has_unsafe_access(true);
4728 }
4729
4730 void GraphBuilder::append_char_access(ciMethod* callee, bool is_store) {
4731 // This intrinsic accesses byte[] array as char[] array. Computing the offsets
4732 // correctly requires matched array shapes.
4733 assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE),
4734 "sanity: byte[] and char[] bases agree");
4735 assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2,
4736 "sanity: byte[] and char[] scales agree");
4737
4738 ValueStack* state_before = copy_state_indexed_access();
4739 compilation()->set_has_access_indexed(true);
4740 Values* args = state()->pop_arguments(callee->arg_size());
4741 Value array = args->at(0);
4742 Value index = args->at(1);
4743 if (is_store) {
4744 Value value = args->at(2);
4745 Instruction* store = append(new StoreIndexed(array, index, nullptr, T_CHAR, value, state_before, false, true));
4746 store->set_flag(Instruction::NeedsRangeCheckFlag, false);
4747 _memory->store_value(value);
4748 } else {
4749 Instruction* load = append(new LoadIndexed(array, index, nullptr, T_CHAR, state_before, true));
4750 load->set_flag(Instruction::NeedsRangeCheckFlag, false);
4751 push(load->type(), load);
4752 }
4753 }
4754
4755 void GraphBuilder::append_alloc_array_copy(ciMethod* callee) {
4756 const int args_base = state()->stack_size() - callee->arg_size();
4757 ciType* receiver_type = state()->stack_at(args_base)->exact_type();
4758 if (receiver_type == nullptr) {
4759 inline_bailout("must have a receiver");
4760 return;
4761 }
4762 if (!receiver_type->is_type_array_klass()) {
4763 inline_bailout("clone array not primitive");
4764 return;
4765 }
4766
4767 ValueStack* state_before = copy_state_before();
4768 state_before->set_force_reexecute();
4769 Value src = apop();
4770 BasicType basic_type = src->exact_type()->as_array_klass()->element_type()->basic_type();
4771 Value length = append(new ArrayLength(src, state_before));
4772 Value new_array = append_split(new NewTypeArray(length, basic_type, state_before, false));
4773
4774 ValueType* result_type = as_ValueType(callee->return_type());
4775 vmIntrinsics::ID id = vmIntrinsics::_arraycopy;
4776 Values* args = new Values(5);
4777 args->push(src);
4778 args->push(append(new Constant(new IntConstant(0))));
4779 args->push(new_array);
4780 args->push(append(new Constant(new IntConstant(0))));
4781 args->push(length);
4782 const bool has_receiver = true;
4783 Intrinsic* array_copy = new Intrinsic(result_type, id,
4784 args, has_receiver, state_before,
4785 vmIntrinsics::preserves_state(id),
4786 vmIntrinsics::can_trap(id));
4787 array_copy->set_flag(Instruction::OmitChecksFlag, true);
4788 append_split(array_copy);
4789 apush(new_array);
4790 append(new MemBar(lir_membar_storestore));
4791 }
4792
4793 void GraphBuilder::print_inlining(ciMethod* callee, const char* msg, bool success) {
4794 CompileLog* log = compilation()->log();
4795 if (log != nullptr) {
4796 assert(msg != nullptr, "inlining msg should not be null!");
4797 if (success) {
4798 log->inline_success(msg);
4799 } else {
4800 log->inline_fail(msg);
4801 }
4802 }
4803 EventCompilerInlining event;
4804 if (event.should_commit()) {
4805 CompilerEvent::InlineEvent::post(event, compilation()->env()->task()->compile_id(), method()->get_Method(), callee, success, msg, bci());
4806 }
4807
4808 CompileTask::print_inlining_ul(callee, scope()->level(), bci(), inlining_result_of(success), msg);
4809
4810 if (!compilation()->directive()->PrintInliningOption) {
4811 return;
4812 }
4813 CompileTask::print_inlining_tty(callee, scope()->level(), bci(), inlining_result_of(success), msg);
4814 if (success && CIPrintMethodCodes) {
4815 callee->print_codes();
4816 }
4817 }
4818
4819 void GraphBuilder::append_unsafe_get_and_set(ciMethod* callee, bool is_add) {
4820 Values* args = state()->pop_arguments(callee->arg_size());
4821 BasicType t = callee->return_type()->basic_type();
4822 null_check(args->at(0));
4823 Instruction* offset = args->at(2);
4824 #ifndef _LP64
4825 offset = append(new Convert(Bytecodes::_l2i, offset, as_ValueType(T_INT)));
4826 #endif
4827 Instruction* op = append(new UnsafeGetAndSet(t, args->at(1), offset, args->at(3), is_add));
4828 compilation()->set_has_unsafe_access(true);
4829 kill_all();
4830 push(op->type(), op);
4831 }
4832
4833 #ifndef PRODUCT
4834 void GraphBuilder::print_stats() {
4835 if (UseLocalValueNumbering) {
4836 vmap()->print();
4837 }
4838 }
4839 #endif // PRODUCT
4840
4841 void GraphBuilder::profile_call(ciMethod* callee, Value recv, ciKlass* known_holder, Values* obj_args, bool inlined) {
4842 assert(known_holder == nullptr || (known_holder->is_instance_klass() &&
4843 (!known_holder->is_interface() ||
4844 ((ciInstanceKlass*)known_holder)->has_nonstatic_concrete_methods())), "should be non-static concrete method");
4845 if (known_holder != nullptr) {
4846 if (known_holder->exact_klass() == nullptr) {
4847 known_holder = compilation()->cha_exact_type(known_holder);
4848 }
4849 }
4850
4851 append(new ProfileCall(method(), bci(), callee, recv, known_holder, obj_args, inlined));
4852 }
4853
4854 void GraphBuilder::profile_return_type(Value ret, ciMethod* callee, ciMethod* m, int invoke_bci) {
4855 assert((m == nullptr) == (invoke_bci < 0), "invalid method and invalid bci together");
4856 if (m == nullptr) {
4857 m = method();
4858 }
4859 if (invoke_bci < 0) {
4860 invoke_bci = bci();
4861 }
4862 ciMethodData* md = m->method_data_or_null();
4863 ciProfileData* data = md->bci_to_data(invoke_bci);
4864 if (data != nullptr && (data->is_CallTypeData() || data->is_VirtualCallTypeData())) {
4865 bool has_return = data->is_CallTypeData() ? ((ciCallTypeData*)data)->has_return() : ((ciVirtualCallTypeData*)data)->has_return();
4866 if (has_return) {
4867 append(new ProfileReturnType(m , invoke_bci, callee, ret));
4868 }
4869 }
4870 }
4871
4872 void GraphBuilder::profile_invocation(ciMethod* callee, ValueStack* state) {
4873 append(new ProfileInvoke(callee, state));
4874 }