1 /* 2 * Copyright (c) 1999, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "c1/c1_Compilation.hpp" 27 #include "c1/c1_FrameMap.hpp" 28 #include "c1/c1_GraphBuilder.hpp" 29 #include "c1/c1_IR.hpp" 30 #include "c1/c1_InstructionPrinter.hpp" 31 #include "c1/c1_Optimizer.hpp" 32 #include "compiler/oopMap.hpp" 33 #include "memory/resourceArea.hpp" 34 #include "utilities/bitMap.inline.hpp" 35 36 37 // Implementation of XHandlers 38 // 39 // Note: This code could eventually go away if we are 40 // just using the ciExceptionHandlerStream. 41 42 XHandlers::XHandlers(ciMethod* method) : _list(method->exception_table_length()) { 43 ciExceptionHandlerStream s(method); 44 while (!s.is_done()) { 45 _list.append(new XHandler(s.handler())); 46 s.next(); 47 } 48 assert(s.count() == method->exception_table_length(), "exception table lengths inconsistent"); 49 } 50 51 // deep copy of all XHandler contained in list 52 XHandlers::XHandlers(XHandlers* other) : 53 _list(other->length()) 54 { 55 for (int i = 0; i < other->length(); i++) { 56 _list.append(new XHandler(other->handler_at(i))); 57 } 58 } 59 60 // Returns whether a particular exception type can be caught. Also 61 // returns true if klass is unloaded or any exception handler 62 // classes are unloaded. type_is_exact indicates whether the throw 63 // is known to be exactly that class or it might throw a subtype. 64 bool XHandlers::could_catch(ciInstanceKlass* klass, bool type_is_exact) const { 65 // the type is unknown so be conservative 66 if (!klass->is_loaded()) { 67 return true; 68 } 69 70 for (int i = 0; i < length(); i++) { 71 XHandler* handler = handler_at(i); 72 if (handler->is_catch_all()) { 73 // catch of ANY 74 return true; 75 } 76 ciInstanceKlass* handler_klass = handler->catch_klass(); 77 // if it's unknown it might be catchable 78 if (!handler_klass->is_loaded()) { 79 return true; 80 } 81 // if the throw type is definitely a subtype of the catch type 82 // then it can be caught. 83 if (klass->is_subtype_of(handler_klass)) { 84 return true; 85 } 86 if (!type_is_exact) { 87 // If the type isn't exactly known then it can also be caught by 88 // catch statements where the inexact type is a subtype of the 89 // catch type. 90 // given: foo extends bar extends Exception 91 // throw bar can be caught by catch foo, catch bar, and catch 92 // Exception, however it can't be caught by any handlers without 93 // bar in its type hierarchy. 94 if (handler_klass->is_subtype_of(klass)) { 95 return true; 96 } 97 } 98 } 99 100 return false; 101 } 102 103 104 bool XHandlers::equals(XHandlers* others) const { 105 if (others == nullptr) return false; 106 if (length() != others->length()) return false; 107 108 for (int i = 0; i < length(); i++) { 109 if (!handler_at(i)->equals(others->handler_at(i))) return false; 110 } 111 return true; 112 } 113 114 bool XHandler::equals(XHandler* other) const { 115 assert(entry_pco() != -1 && other->entry_pco() != -1, "must have entry_pco"); 116 117 if (entry_pco() != other->entry_pco()) return false; 118 if (scope_count() != other->scope_count()) return false; 119 if (_desc != other->_desc) return false; 120 121 assert(entry_block() == other->entry_block(), "entry_block must be equal when entry_pco is equal"); 122 return true; 123 } 124 125 126 // Implementation of IRScope 127 BlockBegin* IRScope::build_graph(Compilation* compilation, int osr_bci) { 128 GraphBuilder gm(compilation, this); 129 NOT_PRODUCT(if (PrintValueNumbering && Verbose) gm.print_stats()); 130 if (compilation->bailed_out()) return nullptr; 131 return gm.start(); 132 } 133 134 135 IRScope::IRScope(Compilation* compilation, IRScope* caller, int caller_bci, ciMethod* method, int osr_bci, bool create_graph) 136 : _compilation(compilation) 137 , _callees(2) 138 , _requires_phi_function(method->max_locals()) 139 { 140 _caller = caller; 141 _level = caller == nullptr ? 0 : caller->level() + 1; 142 _method = method; 143 _xhandlers = new XHandlers(method); 144 _number_of_locks = 0; 145 _monitor_pairing_ok = method->has_balanced_monitors(); 146 _wrote_final = false; 147 _wrote_fields = false; 148 _wrote_volatile = false; 149 _wrote_stable = false; 150 _start = nullptr; 151 152 if (osr_bci != -1) { 153 // selective creation of phi functions is not possibel in osr-methods 154 _requires_phi_function.set_range(0, method->max_locals()); 155 } 156 157 assert(method->holder()->is_loaded() , "method holder must be loaded"); 158 159 // build graph if monitor pairing is ok 160 if (create_graph && monitor_pairing_ok()) _start = build_graph(compilation, osr_bci); 161 } 162 163 164 int IRScope::max_stack() const { 165 int my_max = method()->max_stack(); 166 int callee_max = 0; 167 for (int i = 0; i < number_of_callees(); i++) { 168 callee_max = MAX2(callee_max, callee_no(i)->max_stack()); 169 } 170 return my_max + callee_max; 171 } 172 173 174 bool IRScopeDebugInfo::should_reexecute() { 175 ciMethod* cur_method = scope()->method(); 176 int cur_bci = bci(); 177 if (cur_method != nullptr && cur_bci != SynchronizationEntryBCI) { 178 Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci); 179 return Interpreter::bytecode_should_reexecute(code); 180 } else 181 return false; 182 } 183 184 185 // Implementation of CodeEmitInfo 186 187 // Stack must be NON-null 188 CodeEmitInfo::CodeEmitInfo(ValueStack* stack, XHandlers* exception_handlers, bool deoptimize_on_exception) 189 : _scope_debug_info(nullptr) 190 , _scope(stack->scope()) 191 , _exception_handlers(exception_handlers) 192 , _oop_map(nullptr) 193 , _stack(stack) 194 , _is_method_handle_invoke(false) 195 , _deoptimize_on_exception(deoptimize_on_exception) 196 , _force_reexecute(false) { 197 assert(_stack != nullptr, "must be non null"); 198 } 199 200 201 CodeEmitInfo::CodeEmitInfo(CodeEmitInfo* info, ValueStack* stack) 202 : _scope_debug_info(nullptr) 203 , _scope(info->_scope) 204 , _exception_handlers(nullptr) 205 , _oop_map(nullptr) 206 , _stack(stack == nullptr ? info->_stack : stack) 207 , _is_method_handle_invoke(info->_is_method_handle_invoke) 208 , _deoptimize_on_exception(info->_deoptimize_on_exception) 209 , _force_reexecute(info->_force_reexecute) { 210 211 // deep copy of exception handlers 212 if (info->_exception_handlers != nullptr) { 213 _exception_handlers = new XHandlers(info->_exception_handlers); 214 } 215 } 216 217 218 void CodeEmitInfo::record_debug_info(DebugInformationRecorder* recorder, int pc_offset) { 219 // record the safepoint before recording the debug info for enclosing scopes 220 recorder->add_safepoint(pc_offset, _oop_map->deep_copy()); 221 bool reexecute = _force_reexecute || _scope_debug_info->should_reexecute(); 222 _scope_debug_info->record_debug_info(recorder, pc_offset, reexecute, _is_method_handle_invoke); 223 recorder->end_safepoint(pc_offset); 224 } 225 226 227 void CodeEmitInfo::add_register_oop(LIR_Opr opr) { 228 assert(_oop_map != nullptr, "oop map must already exist"); 229 assert(opr->is_single_cpu(), "should not call otherwise"); 230 231 VMReg name = frame_map()->regname(opr); 232 _oop_map->set_oop(name); 233 } 234 235 // Mirror the stack size calculation in the deopt code 236 // How much stack space would we need at this point in the program in 237 // case of deoptimization? 238 int CodeEmitInfo::interpreter_frame_size() const { 239 ValueStack* state = _stack; 240 int size = 0; 241 int callee_parameters = 0; 242 int callee_locals = 0; 243 int extra_args = state->scope()->method()->max_stack() - state->stack_size(); 244 245 while (state != nullptr) { 246 int locks = state->locks_size(); 247 int temps = state->stack_size(); 248 bool is_top_frame = (state == _stack); 249 ciMethod* method = state->scope()->method(); 250 251 int frame_size = BytesPerWord * Interpreter::size_activation(method->max_stack(), 252 temps + callee_parameters, 253 extra_args, 254 locks, 255 callee_parameters, 256 callee_locals, 257 is_top_frame); 258 size += frame_size; 259 260 callee_parameters = method->size_of_parameters(); 261 callee_locals = method->max_locals(); 262 extra_args = 0; 263 state = state->caller_state(); 264 } 265 return size + Deoptimization::last_frame_adjust(0, callee_locals) * BytesPerWord; 266 } 267 268 // Implementation of IR 269 270 IR::IR(Compilation* compilation, ciMethod* method, int osr_bci) : 271 _num_loops(0) { 272 // setup IR fields 273 _compilation = compilation; 274 _top_scope = new IRScope(compilation, nullptr, -1, method, osr_bci, true); 275 _code = nullptr; 276 } 277 278 279 void IR::optimize_blocks() { 280 Optimizer opt(this); 281 if (!compilation()->profile_branches()) { 282 if (DoCEE) { 283 opt.eliminate_conditional_expressions(); 284 #ifndef PRODUCT 285 if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after CEE"); print(true); } 286 if (PrintIR || PrintIR1 ) { tty->print_cr("IR after CEE"); print(false); } 287 #endif 288 } 289 if (EliminateBlocks) { 290 opt.eliminate_blocks(); 291 #ifndef PRODUCT 292 if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after block elimination"); print(true); } 293 if (PrintIR || PrintIR1 ) { tty->print_cr("IR after block elimination"); print(false); } 294 #endif 295 } 296 } 297 } 298 299 void IR::eliminate_null_checks() { 300 Optimizer opt(this); 301 if (EliminateNullChecks) { 302 opt.eliminate_null_checks(); 303 #ifndef PRODUCT 304 if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after null check elimination"); print(true); } 305 if (PrintIR || PrintIR1 ) { tty->print_cr("IR after null check elimination"); print(false); } 306 #endif 307 } 308 } 309 310 // The functionality of this class is to insert a new block between 311 // the 'from' and 'to' block of a critical edge. 312 // It first collects the block pairs, and then processes them. 313 // 314 // Some instructions may introduce more than one edge between two blocks. 315 // By checking if the current 'to' block sets critical_edge_split_flag 316 // (all new blocks set this flag) we can avoid repeated processing. 317 // This is why BlockPair contains the index rather than the original 'to' block. 318 class CriticalEdgeFinder: public BlockClosure { 319 BlockPairList blocks; 320 321 public: 322 CriticalEdgeFinder(IR* ir) { 323 ir->iterate_preorder(this); 324 } 325 326 void block_do(BlockBegin* bb) { 327 BlockEnd* be = bb->end(); 328 int nos = be->number_of_sux(); 329 if (nos >= 2) { 330 for (int i = 0; i < nos; i++) { 331 BlockBegin* sux = be->sux_at(i); 332 if (sux->number_of_preds() >= 2) { 333 blocks.append(new BlockPair(bb, i)); 334 } 335 } 336 } 337 } 338 339 void split_edges() { 340 for (int i = 0; i < blocks.length(); i++) { 341 BlockPair* pair = blocks.at(i); 342 BlockBegin* from = pair->from(); 343 int index = pair->index(); 344 BlockBegin* to = from->end()->sux_at(index); 345 if (to->is_set(BlockBegin::critical_edge_split_flag)) { 346 // inserted 347 continue; 348 } 349 BlockBegin* split = from->insert_block_between(to); 350 #ifndef PRODUCT 351 if ((PrintIR || PrintIR1) && Verbose) { 352 tty->print_cr("Split critical edge B%d -> B%d (new block B%d)", 353 from->block_id(), to->block_id(), split->block_id()); 354 } 355 #endif 356 } 357 } 358 }; 359 360 void IR::split_critical_edges() { 361 CriticalEdgeFinder cef(this); 362 cef.split_edges(); 363 } 364 365 366 class UseCountComputer: public ValueVisitor, BlockClosure { 367 private: 368 void visit(Value* n) { 369 // Local instructions and Phis for expression stack values at the 370 // start of basic blocks are not added to the instruction list 371 if (!(*n)->is_linked() && (*n)->can_be_linked()) { 372 assert(false, "a node was not appended to the graph"); 373 Compilation::current()->bailout("a node was not appended to the graph"); 374 } 375 // use n's input if not visited before 376 if (!(*n)->is_pinned() && !(*n)->has_uses()) { 377 // note: a) if the instruction is pinned, it will be handled by compute_use_count 378 // b) if the instruction has uses, it was touched before 379 // => in both cases we don't need to update n's values 380 uses_do(n); 381 } 382 // use n 383 (*n)->_use_count++; 384 } 385 386 Values* worklist; 387 int depth; 388 enum { 389 max_recurse_depth = 20 390 }; 391 392 void uses_do(Value* n) { 393 depth++; 394 if (depth > max_recurse_depth) { 395 // don't allow the traversal to recurse too deeply 396 worklist->push(*n); 397 } else { 398 (*n)->input_values_do(this); 399 // special handling for some instructions 400 if ((*n)->as_BlockEnd() != nullptr) { 401 // note on BlockEnd: 402 // must 'use' the stack only if the method doesn't 403 // terminate, however, in those cases stack is empty 404 (*n)->state_values_do(this); 405 } 406 } 407 depth--; 408 } 409 410 void block_do(BlockBegin* b) { 411 depth = 0; 412 // process all pinned nodes as the roots of expression trees 413 for (Instruction* n = b; n != nullptr; n = n->next()) { 414 if (n->is_pinned()) uses_do(&n); 415 } 416 assert(depth == 0, "should have counted back down"); 417 418 // now process any unpinned nodes which recursed too deeply 419 while (worklist->length() > 0) { 420 Value t = worklist->pop(); 421 if (!t->is_pinned()) { 422 // compute the use count 423 uses_do(&t); 424 425 // pin the instruction so that LIRGenerator doesn't recurse 426 // too deeply during it's evaluation. 427 t->pin(); 428 } 429 } 430 assert(depth == 0, "should have counted back down"); 431 } 432 433 UseCountComputer() { 434 worklist = new Values(); 435 depth = 0; 436 } 437 438 public: 439 static void compute(BlockList* blocks) { 440 UseCountComputer ucc; 441 blocks->iterate_backward(&ucc); 442 } 443 }; 444 445 446 // helper macro for short definition of trace-output inside code 447 #ifdef ASSERT 448 #define TRACE_LINEAR_SCAN(level, code) \ 449 if (TraceLinearScanLevel >= level) { \ 450 code; \ 451 } 452 #else 453 #define TRACE_LINEAR_SCAN(level, code) 454 #endif 455 456 class ComputeLinearScanOrder : public StackObj { 457 private: 458 int _max_block_id; // the highest block_id of a block 459 int _num_blocks; // total number of blocks (smaller than _max_block_id) 460 int _num_loops; // total number of loops 461 bool _iterative_dominators;// method requires iterative computation of dominatiors 462 463 BlockList* _linear_scan_order; // the resulting list of blocks in correct order 464 465 ResourceBitMap _visited_blocks; // used for recursive processing of blocks 466 ResourceBitMap _active_blocks; // used for recursive processing of blocks 467 ResourceBitMap _dominator_blocks; // temporary BitMap used for computation of dominator 468 intArray _forward_branches; // number of incoming forward branches for each block 469 BlockList _loop_end_blocks; // list of all loop end blocks collected during count_edges 470 BitMap2D _loop_map; // two-dimensional bit set: a bit is set if a block is contained in a loop 471 BlockList _work_list; // temporary list (used in mark_loops and compute_order) 472 BlockList _loop_headers; 473 474 Compilation* _compilation; 475 476 // accessors for _visited_blocks and _active_blocks 477 void init_visited() { _active_blocks.clear(); _visited_blocks.clear(); } 478 bool is_visited(BlockBegin* b) const { return _visited_blocks.at(b->block_id()); } 479 bool is_active(BlockBegin* b) const { return _active_blocks.at(b->block_id()); } 480 void set_visited(BlockBegin* b) { assert(!is_visited(b), "already set"); _visited_blocks.set_bit(b->block_id()); } 481 void set_active(BlockBegin* b) { assert(!is_active(b), "already set"); _active_blocks.set_bit(b->block_id()); } 482 void clear_active(BlockBegin* b) { assert(is_active(b), "not already"); _active_blocks.clear_bit(b->block_id()); } 483 484 // accessors for _forward_branches 485 void inc_forward_branches(BlockBegin* b) { _forward_branches.at_put(b->block_id(), _forward_branches.at(b->block_id()) + 1); } 486 int dec_forward_branches(BlockBegin* b) { _forward_branches.at_put(b->block_id(), _forward_branches.at(b->block_id()) - 1); return _forward_branches.at(b->block_id()); } 487 488 // accessors for _loop_map 489 bool is_block_in_loop (int loop_idx, BlockBegin* b) const { return _loop_map.at(loop_idx, b->block_id()); } 490 void set_block_in_loop (int loop_idx, BlockBegin* b) { _loop_map.set_bit(loop_idx, b->block_id()); } 491 void clear_block_in_loop(int loop_idx, int block_id) { _loop_map.clear_bit(loop_idx, block_id); } 492 493 // count edges between blocks 494 void count_edges(BlockBegin* cur, BlockBegin* parent); 495 496 // loop detection 497 void mark_loops(); 498 void clear_non_natural_loops(BlockBegin* start_block); 499 void assign_loop_depth(BlockBegin* start_block); 500 501 // computation of final block order 502 BlockBegin* common_dominator(BlockBegin* a, BlockBegin* b); 503 void compute_dominator(BlockBegin* cur, BlockBegin* parent); 504 void compute_dominator_impl(BlockBegin* cur, BlockBegin* parent); 505 int compute_weight(BlockBegin* cur); 506 bool ready_for_processing(BlockBegin* cur); 507 void sort_into_work_list(BlockBegin* b); 508 void append_block(BlockBegin* cur); 509 void compute_order(BlockBegin* start_block); 510 511 // fixup of dominators for non-natural loops 512 bool compute_dominators_iter(); 513 void compute_dominators(); 514 515 // debug functions 516 DEBUG_ONLY(void print_blocks();) 517 DEBUG_ONLY(void verify();) 518 519 Compilation* compilation() const { return _compilation; } 520 public: 521 ComputeLinearScanOrder(Compilation* c, BlockBegin* start_block); 522 523 // accessors for final result 524 BlockList* linear_scan_order() const { return _linear_scan_order; } 525 int num_loops() const { return _num_loops; } 526 }; 527 528 529 ComputeLinearScanOrder::ComputeLinearScanOrder(Compilation* c, BlockBegin* start_block) : 530 _max_block_id(BlockBegin::number_of_blocks()), 531 _num_blocks(0), 532 _num_loops(0), 533 _iterative_dominators(false), 534 _linear_scan_order(nullptr), // initialized later with correct size 535 _visited_blocks(_max_block_id), 536 _active_blocks(_max_block_id), 537 _dominator_blocks(_max_block_id), 538 _forward_branches(_max_block_id, _max_block_id, 0), 539 _loop_end_blocks(8), 540 _loop_map(0), // initialized later with correct size 541 _work_list(8), 542 _compilation(c) 543 { 544 TRACE_LINEAR_SCAN(2, tty->print_cr("***** computing linear-scan block order")); 545 546 count_edges(start_block, nullptr); 547 548 if (compilation()->is_profiling()) { 549 ciMethod *method = compilation()->method(); 550 if (!method->is_accessor()) { 551 ciMethodData* md = method->method_data_or_null(); 552 assert(md != nullptr, "Sanity"); 553 md->set_compilation_stats(_num_loops, _num_blocks); 554 } 555 } 556 557 if (_num_loops > 0) { 558 mark_loops(); 559 clear_non_natural_loops(start_block); 560 assign_loop_depth(start_block); 561 } 562 563 compute_order(start_block); 564 compute_dominators(); 565 566 DEBUG_ONLY(print_blocks()); 567 DEBUG_ONLY(verify()); 568 } 569 570 571 // Traverse the CFG: 572 // * count total number of blocks 573 // * count all incoming edges and backward incoming edges 574 // * number loop header blocks 575 // * create a list with all loop end blocks 576 void ComputeLinearScanOrder::count_edges(BlockBegin* cur, BlockBegin* parent) { 577 TRACE_LINEAR_SCAN(3, tty->print_cr("Enter count_edges for block B%d coming from B%d", cur->block_id(), parent != nullptr ? parent->block_id() : -1)); 578 assert(cur->dominator() == nullptr, "dominator already initialized"); 579 580 if (is_active(cur)) { 581 TRACE_LINEAR_SCAN(3, tty->print_cr("backward branch")); 582 assert(is_visited(cur), "block must be visisted when block is active"); 583 assert(parent != nullptr, "must have parent"); 584 585 cur->set(BlockBegin::backward_branch_target_flag); 586 587 // When a loop header is also the start of an exception handler, then the backward branch is 588 // an exception edge. Because such edges are usually critical edges which cannot be split, the 589 // loop must be excluded here from processing. 590 if (cur->is_set(BlockBegin::exception_entry_flag)) { 591 // Make sure that dominators are correct in this weird situation 592 _iterative_dominators = true; 593 return; 594 } 595 596 cur->set(BlockBegin::linear_scan_loop_header_flag); 597 parent->set(BlockBegin::linear_scan_loop_end_flag); 598 599 assert(parent->number_of_sux() == 1 && parent->sux_at(0) == cur, 600 "loop end blocks must have one successor (critical edges are split)"); 601 602 _loop_end_blocks.append(parent); 603 return; 604 } 605 606 // increment number of incoming forward branches 607 inc_forward_branches(cur); 608 609 if (is_visited(cur)) { 610 TRACE_LINEAR_SCAN(3, tty->print_cr("block already visited")); 611 return; 612 } 613 614 _num_blocks++; 615 set_visited(cur); 616 set_active(cur); 617 618 // recursive call for all successors 619 int i; 620 for (i = cur->number_of_sux() - 1; i >= 0; i--) { 621 count_edges(cur->sux_at(i), cur); 622 } 623 for (i = cur->number_of_exception_handlers() - 1; i >= 0; i--) { 624 count_edges(cur->exception_handler_at(i), cur); 625 } 626 627 clear_active(cur); 628 629 // Each loop has a unique number. 630 // When multiple loops are nested, assign_loop_depth assumes that the 631 // innermost loop has the lowest number. This is guaranteed by setting 632 // the loop number after the recursive calls for the successors above 633 // have returned. 634 if (cur->is_set(BlockBegin::linear_scan_loop_header_flag)) { 635 assert(cur->loop_index() == -1, "cannot set loop-index twice"); 636 TRACE_LINEAR_SCAN(3, tty->print_cr("Block B%d is loop header of loop %d", cur->block_id(), _num_loops)); 637 638 cur->set_loop_index(_num_loops); 639 _loop_headers.append(cur); 640 _num_loops++; 641 } 642 643 TRACE_LINEAR_SCAN(3, tty->print_cr("Finished count_edges for block B%d", cur->block_id())); 644 } 645 646 647 void ComputeLinearScanOrder::mark_loops() { 648 TRACE_LINEAR_SCAN(3, tty->print_cr("----- marking loops")); 649 650 _loop_map = BitMap2D(_num_loops, _max_block_id); 651 652 for (int i = _loop_end_blocks.length() - 1; i >= 0; i--) { 653 BlockBegin* loop_end = _loop_end_blocks.at(i); 654 BlockBegin* loop_start = loop_end->sux_at(0); 655 int loop_idx = loop_start->loop_index(); 656 657 TRACE_LINEAR_SCAN(3, tty->print_cr("Processing loop from B%d to B%d (loop %d):", loop_start->block_id(), loop_end->block_id(), loop_idx)); 658 assert(loop_end->is_set(BlockBegin::linear_scan_loop_end_flag), "loop end flag must be set"); 659 assert(loop_end->number_of_sux() == 1, "incorrect number of successors"); 660 assert(loop_start->is_set(BlockBegin::linear_scan_loop_header_flag), "loop header flag must be set"); 661 assert(loop_idx >= 0 && loop_idx < _num_loops, "loop index not set"); 662 assert(_work_list.is_empty(), "work list must be empty before processing"); 663 664 // add the end-block of the loop to the working list 665 _work_list.push(loop_end); 666 set_block_in_loop(loop_idx, loop_end); 667 do { 668 BlockBegin* cur = _work_list.pop(); 669 670 TRACE_LINEAR_SCAN(3, tty->print_cr(" processing B%d", cur->block_id())); 671 assert(is_block_in_loop(loop_idx, cur), "bit in loop map must be set when block is in work list"); 672 673 // recursive processing of all predecessors ends when start block of loop is reached 674 if (cur != loop_start && !cur->is_set(BlockBegin::osr_entry_flag)) { 675 for (int j = cur->number_of_preds() - 1; j >= 0; j--) { 676 BlockBegin* pred = cur->pred_at(j); 677 678 if (!is_block_in_loop(loop_idx, pred) /*&& !pred->is_set(BlockBeginosr_entry_flag)*/) { 679 // this predecessor has not been processed yet, so add it to work list 680 TRACE_LINEAR_SCAN(3, tty->print_cr(" pushing B%d", pred->block_id())); 681 _work_list.push(pred); 682 set_block_in_loop(loop_idx, pred); 683 } 684 } 685 } 686 } while (!_work_list.is_empty()); 687 } 688 } 689 690 691 // check for non-natural loops (loops where the loop header does not dominate 692 // all other loop blocks = loops with multiple entries). 693 // such loops are ignored 694 void ComputeLinearScanOrder::clear_non_natural_loops(BlockBegin* start_block) { 695 for (int i = _num_loops - 1; i >= 0; i--) { 696 if (is_block_in_loop(i, start_block)) { 697 // loop i contains the entry block of the method 698 // -> this is not a natural loop, so ignore it 699 TRACE_LINEAR_SCAN(2, tty->print_cr("Loop %d is non-natural, so it is ignored", i)); 700 701 BlockBegin *loop_header = _loop_headers.at(i); 702 assert(loop_header->is_set(BlockBegin::linear_scan_loop_header_flag), "Must be loop header"); 703 704 for (int j = 0; j < loop_header->number_of_preds(); j++) { 705 BlockBegin *pred = loop_header->pred_at(j); 706 pred->clear(BlockBegin::linear_scan_loop_end_flag); 707 } 708 709 loop_header->clear(BlockBegin::linear_scan_loop_header_flag); 710 711 for (int block_id = _max_block_id - 1; block_id >= 0; block_id--) { 712 clear_block_in_loop(i, block_id); 713 } 714 _iterative_dominators = true; 715 } 716 } 717 } 718 719 void ComputeLinearScanOrder::assign_loop_depth(BlockBegin* start_block) { 720 TRACE_LINEAR_SCAN(3, tty->print_cr("----- computing loop-depth and weight")); 721 init_visited(); 722 723 assert(_work_list.is_empty(), "work list must be empty before processing"); 724 _work_list.append(start_block); 725 726 do { 727 BlockBegin* cur = _work_list.pop(); 728 729 if (!is_visited(cur)) { 730 set_visited(cur); 731 TRACE_LINEAR_SCAN(4, tty->print_cr("Computing loop depth for block B%d", cur->block_id())); 732 733 // compute loop-depth and loop-index for the block 734 assert(cur->loop_depth() == 0, "cannot set loop-depth twice"); 735 int i; 736 int loop_depth = 0; 737 int min_loop_idx = -1; 738 for (i = _num_loops - 1; i >= 0; i--) { 739 if (is_block_in_loop(i, cur)) { 740 loop_depth++; 741 min_loop_idx = i; 742 } 743 } 744 cur->set_loop_depth(loop_depth); 745 cur->set_loop_index(min_loop_idx); 746 747 // append all unvisited successors to work list 748 for (i = cur->number_of_sux() - 1; i >= 0; i--) { 749 _work_list.append(cur->sux_at(i)); 750 } 751 for (i = cur->number_of_exception_handlers() - 1; i >= 0; i--) { 752 _work_list.append(cur->exception_handler_at(i)); 753 } 754 } 755 } while (!_work_list.is_empty()); 756 } 757 758 759 BlockBegin* ComputeLinearScanOrder::common_dominator(BlockBegin* a, BlockBegin* b) { 760 assert(a != nullptr && b != nullptr, "must have input blocks"); 761 762 _dominator_blocks.clear(); 763 while (a != nullptr) { 764 _dominator_blocks.set_bit(a->block_id()); 765 assert(a->dominator() != nullptr || a == _linear_scan_order->at(0), "dominator must be initialized"); 766 a = a->dominator(); 767 } 768 while (b != nullptr && !_dominator_blocks.at(b->block_id())) { 769 assert(b->dominator() != nullptr || b == _linear_scan_order->at(0), "dominator must be initialized"); 770 b = b->dominator(); 771 } 772 773 assert(b != nullptr, "could not find dominator"); 774 return b; 775 } 776 777 void ComputeLinearScanOrder::compute_dominator(BlockBegin* cur, BlockBegin* parent) { 778 init_visited(); 779 compute_dominator_impl(cur, parent); 780 } 781 782 void ComputeLinearScanOrder::compute_dominator_impl(BlockBegin* cur, BlockBegin* parent) { 783 // Mark as visited to avoid recursive calls with same parent 784 set_visited(cur); 785 786 if (cur->dominator() == nullptr) { 787 TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: initializing dominator of B%d to B%d", cur->block_id(), parent->block_id())); 788 cur->set_dominator(parent); 789 790 } else if (!(cur->is_set(BlockBegin::linear_scan_loop_header_flag) && parent->is_set(BlockBegin::linear_scan_loop_end_flag))) { 791 TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: computing dominator of B%d: common dominator of B%d and B%d is B%d", cur->block_id(), parent->block_id(), cur->dominator()->block_id(), common_dominator(cur->dominator(), parent)->block_id())); 792 // Does not hold for exception blocks 793 assert(cur->number_of_preds() > 1 || cur->is_set(BlockBegin::exception_entry_flag), ""); 794 cur->set_dominator(common_dominator(cur->dominator(), parent)); 795 } 796 797 // Additional edge to xhandler of all our successors 798 // range check elimination needs that the state at the end of a 799 // block be valid in every block it dominates so cur must dominate 800 // the exception handlers of its successors. 801 int num_cur_xhandler = cur->number_of_exception_handlers(); 802 for (int j = 0; j < num_cur_xhandler; j++) { 803 BlockBegin* xhandler = cur->exception_handler_at(j); 804 if (!is_visited(xhandler)) { 805 compute_dominator_impl(xhandler, parent); 806 } 807 } 808 } 809 810 811 int ComputeLinearScanOrder::compute_weight(BlockBegin* cur) { 812 BlockBegin* single_sux = nullptr; 813 if (cur->number_of_sux() == 1) { 814 single_sux = cur->sux_at(0); 815 } 816 817 // limit loop-depth to 15 bit (only for security reason, it will never be so big) 818 int weight = (cur->loop_depth() & 0x7FFF) << 16; 819 820 // general macro for short definition of weight flags 821 // the first instance of INC_WEIGHT_IF has the highest priority 822 int cur_bit = 15; 823 #define INC_WEIGHT_IF(condition) if ((condition)) { weight |= (1 << cur_bit); } cur_bit--; 824 825 // this is necessary for the (very rare) case that two successive blocks have 826 // the same loop depth, but a different loop index (can happen for endless loops 827 // with exception handlers) 828 INC_WEIGHT_IF(!cur->is_set(BlockBegin::linear_scan_loop_header_flag)); 829 830 // loop end blocks (blocks that end with a backward branch) are added 831 // after all other blocks of the loop. 832 INC_WEIGHT_IF(!cur->is_set(BlockBegin::linear_scan_loop_end_flag)); 833 834 // critical edge split blocks are preferred because than they have a bigger 835 // proability to be completely empty 836 INC_WEIGHT_IF(cur->is_set(BlockBegin::critical_edge_split_flag)); 837 838 // exceptions should not be thrown in normal control flow, so these blocks 839 // are added as late as possible 840 INC_WEIGHT_IF(cur->end()->as_Throw() == nullptr && (single_sux == nullptr || single_sux->end()->as_Throw() == nullptr)); 841 INC_WEIGHT_IF(cur->end()->as_Return() == nullptr && (single_sux == nullptr || single_sux->end()->as_Return() == nullptr)); 842 843 // exceptions handlers are added as late as possible 844 INC_WEIGHT_IF(!cur->is_set(BlockBegin::exception_entry_flag)); 845 846 // guarantee that weight is > 0 847 weight |= 1; 848 849 #undef INC_WEIGHT_IF 850 assert(cur_bit >= 0, "too many flags"); 851 assert(weight > 0, "weight cannot become negative"); 852 853 return weight; 854 } 855 856 bool ComputeLinearScanOrder::ready_for_processing(BlockBegin* cur) { 857 // Discount the edge just traveled. 858 // When the number drops to zero, all forward branches were processed 859 if (dec_forward_branches(cur) != 0) { 860 return false; 861 } 862 863 assert(_linear_scan_order->find(cur) == -1, "block already processed (block can be ready only once)"); 864 assert(_work_list.find(cur) == -1, "block already in work-list (block can be ready only once)"); 865 return true; 866 } 867 868 void ComputeLinearScanOrder::sort_into_work_list(BlockBegin* cur) { 869 assert(_work_list.find(cur) == -1, "block already in work list"); 870 871 int cur_weight = compute_weight(cur); 872 873 // the linear_scan_number is used to cache the weight of a block 874 cur->set_linear_scan_number(cur_weight); 875 876 #ifndef PRODUCT 877 if (StressLinearScan) { 878 _work_list.insert_before(0, cur); 879 return; 880 } 881 #endif 882 883 _work_list.append(nullptr); // provide space for new element 884 885 int insert_idx = _work_list.length() - 1; 886 while (insert_idx > 0 && _work_list.at(insert_idx - 1)->linear_scan_number() > cur_weight) { 887 _work_list.at_put(insert_idx, _work_list.at(insert_idx - 1)); 888 insert_idx--; 889 } 890 _work_list.at_put(insert_idx, cur); 891 892 TRACE_LINEAR_SCAN(3, tty->print_cr("Sorted B%d into worklist. new worklist:", cur->block_id())); 893 TRACE_LINEAR_SCAN(3, for (int i = 0; i < _work_list.length(); i++) tty->print_cr("%8d B%2d weight:%6x", i, _work_list.at(i)->block_id(), _work_list.at(i)->linear_scan_number())); 894 895 #ifdef ASSERT 896 for (int i = 0; i < _work_list.length(); i++) { 897 assert(_work_list.at(i)->linear_scan_number() > 0, "weight not set"); 898 assert(i == 0 || _work_list.at(i - 1)->linear_scan_number() <= _work_list.at(i)->linear_scan_number(), "incorrect order in worklist"); 899 } 900 #endif 901 } 902 903 void ComputeLinearScanOrder::append_block(BlockBegin* cur) { 904 TRACE_LINEAR_SCAN(3, tty->print_cr("appending block B%d (weight 0x%6x) to linear-scan order", cur->block_id(), cur->linear_scan_number())); 905 assert(_linear_scan_order->find(cur) == -1, "cannot add the same block twice"); 906 907 // currently, the linear scan order and code emit order are equal. 908 // therefore the linear_scan_number and the weight of a block must also 909 // be equal. 910 cur->set_linear_scan_number(_linear_scan_order->length()); 911 _linear_scan_order->append(cur); 912 } 913 914 void ComputeLinearScanOrder::compute_order(BlockBegin* start_block) { 915 TRACE_LINEAR_SCAN(3, tty->print_cr("----- computing final block order")); 916 917 // the start block is always the first block in the linear scan order 918 _linear_scan_order = new BlockList(_num_blocks); 919 append_block(start_block); 920 921 assert(start_block->end()->as_Base() != nullptr, "start block must end with Base-instruction"); 922 BlockBegin* std_entry = ((Base*)start_block->end())->std_entry(); 923 BlockBegin* osr_entry = ((Base*)start_block->end())->osr_entry(); 924 925 BlockBegin* sux_of_osr_entry = nullptr; 926 if (osr_entry != nullptr) { 927 // special handling for osr entry: 928 // ignore the edge between the osr entry and its successor for processing 929 // the osr entry block is added manually below 930 assert(osr_entry->number_of_sux() == 1, "osr entry must have exactly one successor"); 931 assert(osr_entry->sux_at(0)->number_of_preds() >= 2, "successor of osr entry must have two predecessors (otherwise it is not present in normal control flow"); 932 933 sux_of_osr_entry = osr_entry->sux_at(0); 934 dec_forward_branches(sux_of_osr_entry); 935 936 compute_dominator(osr_entry, start_block); 937 _iterative_dominators = true; 938 } 939 compute_dominator(std_entry, start_block); 940 941 // start processing with standard entry block 942 assert(_work_list.is_empty(), "list must be empty before processing"); 943 944 if (ready_for_processing(std_entry)) { 945 sort_into_work_list(std_entry); 946 } else { 947 assert(false, "the std_entry must be ready for processing (otherwise, the method has no start block)"); 948 } 949 950 do { 951 BlockBegin* cur = _work_list.pop(); 952 953 if (cur == sux_of_osr_entry) { 954 // the osr entry block is ignored in normal processing, it is never added to the 955 // work list. Instead, it is added as late as possible manually here. 956 append_block(osr_entry); 957 compute_dominator(cur, osr_entry); 958 } 959 append_block(cur); 960 961 int i; 962 int num_sux = cur->number_of_sux(); 963 // changed loop order to get "intuitive" order of if- and else-blocks 964 for (i = 0; i < num_sux; i++) { 965 BlockBegin* sux = cur->sux_at(i); 966 compute_dominator(sux, cur); 967 if (ready_for_processing(sux)) { 968 sort_into_work_list(sux); 969 } 970 } 971 num_sux = cur->number_of_exception_handlers(); 972 for (i = 0; i < num_sux; i++) { 973 BlockBegin* sux = cur->exception_handler_at(i); 974 if (ready_for_processing(sux)) { 975 sort_into_work_list(sux); 976 } 977 } 978 } while (_work_list.length() > 0); 979 } 980 981 982 bool ComputeLinearScanOrder::compute_dominators_iter() { 983 bool changed = false; 984 int num_blocks = _linear_scan_order->length(); 985 986 assert(_linear_scan_order->at(0)->dominator() == nullptr, "must not have dominator"); 987 assert(_linear_scan_order->at(0)->number_of_preds() == 0, "must not have predecessors"); 988 for (int i = 1; i < num_blocks; i++) { 989 BlockBegin* block = _linear_scan_order->at(i); 990 991 BlockBegin* dominator = block->pred_at(0); 992 int num_preds = block->number_of_preds(); 993 994 TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: Processing B%d", block->block_id())); 995 996 for (int j = 0; j < num_preds; j++) { 997 998 BlockBegin *pred = block->pred_at(j); 999 TRACE_LINEAR_SCAN(4, tty->print_cr(" DOM: Subrocessing B%d", pred->block_id())); 1000 1001 if (block->is_set(BlockBegin::exception_entry_flag)) { 1002 dominator = common_dominator(dominator, pred); 1003 int num_pred_preds = pred->number_of_preds(); 1004 for (int k = 0; k < num_pred_preds; k++) { 1005 dominator = common_dominator(dominator, pred->pred_at(k)); 1006 } 1007 } else { 1008 dominator = common_dominator(dominator, pred); 1009 } 1010 } 1011 1012 if (dominator != block->dominator()) { 1013 TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: updating dominator of B%d from B%d to B%d", block->block_id(), block->dominator()->block_id(), dominator->block_id())); 1014 1015 block->set_dominator(dominator); 1016 changed = true; 1017 } 1018 } 1019 return changed; 1020 } 1021 1022 void ComputeLinearScanOrder::compute_dominators() { 1023 TRACE_LINEAR_SCAN(3, tty->print_cr("----- computing dominators (iterative computation reqired: %d)", _iterative_dominators)); 1024 1025 // iterative computation of dominators is only required for methods with non-natural loops 1026 // and OSR-methods. For all other methods, the dominators computed when generating the 1027 // linear scan block order are correct. 1028 if (_iterative_dominators) { 1029 do { 1030 TRACE_LINEAR_SCAN(1, tty->print_cr("DOM: next iteration of fix-point calculation")); 1031 } while (compute_dominators_iter()); 1032 } 1033 1034 // check that dominators are correct 1035 assert(!compute_dominators_iter(), "fix point not reached"); 1036 1037 // Add Blocks to dominates-Array 1038 int num_blocks = _linear_scan_order->length(); 1039 for (int i = 0; i < num_blocks; i++) { 1040 BlockBegin* block = _linear_scan_order->at(i); 1041 1042 BlockBegin *dom = block->dominator(); 1043 if (dom) { 1044 assert(dom->dominator_depth() != -1, "Dominator must have been visited before"); 1045 dom->dominates()->append(block); 1046 block->set_dominator_depth(dom->dominator_depth() + 1); 1047 } else { 1048 block->set_dominator_depth(0); 1049 } 1050 } 1051 } 1052 1053 1054 #ifdef ASSERT 1055 void ComputeLinearScanOrder::print_blocks() { 1056 if (TraceLinearScanLevel >= 2) { 1057 tty->print_cr("----- loop information:"); 1058 for (int block_idx = 0; block_idx < _linear_scan_order->length(); block_idx++) { 1059 BlockBegin* cur = _linear_scan_order->at(block_idx); 1060 1061 tty->print("%4d: B%2d: ", cur->linear_scan_number(), cur->block_id()); 1062 for (int loop_idx = 0; loop_idx < _num_loops; loop_idx++) { 1063 tty->print ("%d ", is_block_in_loop(loop_idx, cur)); 1064 } 1065 tty->print_cr(" -> loop_index: %2d, loop_depth: %2d", cur->loop_index(), cur->loop_depth()); 1066 } 1067 } 1068 1069 if (TraceLinearScanLevel >= 1) { 1070 tty->print_cr("----- linear-scan block order:"); 1071 for (int block_idx = 0; block_idx < _linear_scan_order->length(); block_idx++) { 1072 BlockBegin* cur = _linear_scan_order->at(block_idx); 1073 tty->print("%4d: B%2d loop: %2d depth: %2d", cur->linear_scan_number(), cur->block_id(), cur->loop_index(), cur->loop_depth()); 1074 1075 tty->print(cur->is_set(BlockBegin::exception_entry_flag) ? " ex" : " "); 1076 tty->print(cur->is_set(BlockBegin::critical_edge_split_flag) ? " ce" : " "); 1077 tty->print(cur->is_set(BlockBegin::linear_scan_loop_header_flag) ? " lh" : " "); 1078 tty->print(cur->is_set(BlockBegin::linear_scan_loop_end_flag) ? " le" : " "); 1079 1080 if (cur->dominator() != nullptr) { 1081 tty->print(" dom: B%d ", cur->dominator()->block_id()); 1082 } else { 1083 tty->print(" dom: null "); 1084 } 1085 1086 if (cur->number_of_preds() > 0) { 1087 tty->print(" preds: "); 1088 for (int j = 0; j < cur->number_of_preds(); j++) { 1089 BlockBegin* pred = cur->pred_at(j); 1090 tty->print("B%d ", pred->block_id()); 1091 } 1092 } 1093 if (cur->number_of_sux() > 0) { 1094 tty->print(" sux: "); 1095 for (int j = 0; j < cur->number_of_sux(); j++) { 1096 BlockBegin* sux = cur->sux_at(j); 1097 tty->print("B%d ", sux->block_id()); 1098 } 1099 } 1100 if (cur->number_of_exception_handlers() > 0) { 1101 tty->print(" ex: "); 1102 for (int j = 0; j < cur->number_of_exception_handlers(); j++) { 1103 BlockBegin* ex = cur->exception_handler_at(j); 1104 tty->print("B%d ", ex->block_id()); 1105 } 1106 } 1107 tty->cr(); 1108 } 1109 } 1110 } 1111 1112 void ComputeLinearScanOrder::verify() { 1113 assert(_linear_scan_order->length() == _num_blocks, "wrong number of blocks in list"); 1114 1115 if (StressLinearScan) { 1116 // blocks are scrambled when StressLinearScan is used 1117 return; 1118 } 1119 1120 // check that all successors of a block have a higher linear-scan-number 1121 // and that all predecessors of a block have a lower linear-scan-number 1122 // (only backward branches of loops are ignored) 1123 int i; 1124 for (i = 0; i < _linear_scan_order->length(); i++) { 1125 BlockBegin* cur = _linear_scan_order->at(i); 1126 1127 assert(cur->linear_scan_number() == i, "incorrect linear_scan_number"); 1128 assert(cur->linear_scan_number() >= 0 && cur->linear_scan_number() == _linear_scan_order->find(cur), "incorrect linear_scan_number"); 1129 1130 int j; 1131 for (j = cur->number_of_sux() - 1; j >= 0; j--) { 1132 BlockBegin* sux = cur->sux_at(j); 1133 1134 assert(sux->linear_scan_number() >= 0 && sux->linear_scan_number() == _linear_scan_order->find(sux), "incorrect linear_scan_number"); 1135 if (!sux->is_set(BlockBegin::backward_branch_target_flag)) { 1136 assert(cur->linear_scan_number() < sux->linear_scan_number(), "invalid order"); 1137 } 1138 if (cur->loop_depth() == sux->loop_depth()) { 1139 assert(cur->loop_index() == sux->loop_index() || sux->is_set(BlockBegin::linear_scan_loop_header_flag), "successive blocks with same loop depth must have same loop index"); 1140 } 1141 } 1142 1143 for (j = cur->number_of_preds() - 1; j >= 0; j--) { 1144 BlockBegin* pred = cur->pred_at(j); 1145 1146 assert(pred->linear_scan_number() >= 0 && pred->linear_scan_number() == _linear_scan_order->find(pred), "incorrect linear_scan_number"); 1147 if (!cur->is_set(BlockBegin::backward_branch_target_flag)) { 1148 assert(cur->linear_scan_number() > pred->linear_scan_number(), "invalid order"); 1149 } 1150 if (cur->loop_depth() == pred->loop_depth()) { 1151 assert(cur->loop_index() == pred->loop_index() || cur->is_set(BlockBegin::linear_scan_loop_header_flag), "successive blocks with same loop depth must have same loop index"); 1152 } 1153 1154 assert(cur->dominator()->linear_scan_number() <= cur->pred_at(j)->linear_scan_number(), "dominator must be before predecessors"); 1155 } 1156 1157 // check dominator 1158 if (i == 0) { 1159 assert(cur->dominator() == nullptr, "first block has no dominator"); 1160 } else { 1161 assert(cur->dominator() != nullptr, "all but first block must have dominator"); 1162 } 1163 // Assertion does not hold for exception handlers 1164 assert(cur->number_of_preds() != 1 || cur->dominator() == cur->pred_at(0) || cur->is_set(BlockBegin::exception_entry_flag), "Single predecessor must also be dominator"); 1165 } 1166 1167 // check that all loops are continuous 1168 for (int loop_idx = 0; loop_idx < _num_loops; loop_idx++) { 1169 int block_idx = 0; 1170 assert(!is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx)), "the first block must not be present in any loop"); 1171 1172 // skip blocks before the loop 1173 while (block_idx < _num_blocks && !is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx))) { 1174 block_idx++; 1175 } 1176 // skip blocks of loop 1177 while (block_idx < _num_blocks && is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx))) { 1178 block_idx++; 1179 } 1180 // after the first non-loop block, there must not be another loop-block 1181 while (block_idx < _num_blocks) { 1182 assert(!is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx)), "loop not continuous in linear-scan order"); 1183 block_idx++; 1184 } 1185 } 1186 } 1187 #endif // ASSERT 1188 1189 1190 void IR::compute_code() { 1191 assert(is_valid(), "IR must be valid"); 1192 1193 ComputeLinearScanOrder compute_order(compilation(), start()); 1194 _num_loops = compute_order.num_loops(); 1195 _code = compute_order.linear_scan_order(); 1196 } 1197 1198 1199 void IR::compute_use_counts() { 1200 // make sure all values coming out of this block get evaluated. 1201 int num_blocks = _code->length(); 1202 for (int i = 0; i < num_blocks; i++) { 1203 _code->at(i)->end()->state()->pin_stack_for_linear_scan(); 1204 } 1205 1206 // compute use counts 1207 UseCountComputer::compute(_code); 1208 } 1209 1210 1211 void IR::iterate_preorder(BlockClosure* closure) { 1212 assert(is_valid(), "IR must be valid"); 1213 start()->iterate_preorder(closure); 1214 } 1215 1216 1217 void IR::iterate_postorder(BlockClosure* closure) { 1218 assert(is_valid(), "IR must be valid"); 1219 start()->iterate_postorder(closure); 1220 } 1221 1222 void IR::iterate_linear_scan_order(BlockClosure* closure) { 1223 linear_scan_order()->iterate_forward(closure); 1224 } 1225 1226 1227 #ifndef PRODUCT 1228 class BlockPrinter: public BlockClosure { 1229 private: 1230 InstructionPrinter* _ip; 1231 bool _cfg_only; 1232 bool _live_only; 1233 1234 public: 1235 BlockPrinter(InstructionPrinter* ip, bool cfg_only, bool live_only = false) { 1236 _ip = ip; 1237 _cfg_only = cfg_only; 1238 _live_only = live_only; 1239 } 1240 1241 virtual void block_do(BlockBegin* block) { 1242 if (_cfg_only) { 1243 _ip->print_instr(block); tty->cr(); 1244 } else { 1245 block->print_block(*_ip, _live_only); 1246 } 1247 } 1248 }; 1249 1250 1251 void IR::print(BlockBegin* start, bool cfg_only, bool live_only) { 1252 ttyLocker ttyl; 1253 InstructionPrinter ip(!cfg_only); 1254 BlockPrinter bp(&ip, cfg_only, live_only); 1255 start->iterate_preorder(&bp); 1256 tty->cr(); 1257 } 1258 1259 void IR::print(bool cfg_only, bool live_only) { 1260 if (is_valid()) { 1261 print(start(), cfg_only, live_only); 1262 } else { 1263 tty->print_cr("invalid IR"); 1264 } 1265 } 1266 #endif // PRODUCT 1267 1268 #ifdef ASSERT 1269 class EndNotNullValidator : public BlockClosure { 1270 public: 1271 virtual void block_do(BlockBegin* block) { 1272 assert(block->end() != nullptr, "Expect block end to exist."); 1273 } 1274 }; 1275 1276 class XentryFlagValidator : public BlockClosure { 1277 public: 1278 virtual void block_do(BlockBegin* block) { 1279 for (int i = 0; i < block->end()->number_of_sux(); i++) { 1280 assert(!block->end()->sux_at(i)->is_set(BlockBegin::exception_entry_flag), "must not be xhandler"); 1281 } 1282 for (int i = 0; i < block->number_of_exception_handlers(); i++) { 1283 assert(block->exception_handler_at(i)->is_set(BlockBegin::exception_entry_flag), "must be xhandler"); 1284 } 1285 } 1286 }; 1287 1288 typedef GrowableArray<BlockList*> BlockListList; 1289 1290 // Validation goals: 1291 // - code() length == blocks length 1292 // - code() contents == blocks content 1293 // - Each block's computed predecessors match sux lists (length) 1294 // - Each block's computed predecessors match sux lists (set content) 1295 class PredecessorAndCodeValidator : public BlockClosure { 1296 private: 1297 BlockListList* _predecessors; // Each index i will hold predecessors of block with id i 1298 BlockList* _blocks; 1299 1300 static int cmp(BlockBegin** a, BlockBegin** b) { 1301 return (*a)->block_id() - (*b)->block_id(); 1302 } 1303 1304 public: 1305 PredecessorAndCodeValidator(IR* hir) { 1306 ResourceMark rm; 1307 _predecessors = new BlockListList(BlockBegin::number_of_blocks(), BlockBegin::number_of_blocks(), nullptr); 1308 _blocks = new BlockList(BlockBegin::number_of_blocks()); 1309 1310 hir->start()->iterate_preorder(this); 1311 if (hir->code() != nullptr) { 1312 assert(hir->code()->length() == _blocks->length(), "must match"); 1313 for (int i = 0; i < _blocks->length(); i++) { 1314 assert(hir->code()->contains(_blocks->at(i)), "should be in both lists"); 1315 } 1316 } 1317 1318 for (int i = 0; i < _blocks->length(); i++) { 1319 BlockBegin* block = _blocks->at(i); 1320 verify_block_preds_against_collected_preds(block); 1321 } 1322 } 1323 1324 virtual void block_do(BlockBegin* block) { 1325 _blocks->append(block); 1326 collect_predecessors(block); 1327 } 1328 1329 private: 1330 void collect_predecessors(BlockBegin* block) { 1331 for (int i = 0; i < block->end()->number_of_sux(); i++) { 1332 collect_predecessor(block, block->end()->sux_at(i)); 1333 } 1334 for (int i = 0; i < block->number_of_exception_handlers(); i++) { 1335 collect_predecessor(block, block->exception_handler_at(i)); 1336 } 1337 } 1338 1339 void collect_predecessor(BlockBegin* const pred, const BlockBegin* sux) { 1340 BlockList* preds = _predecessors->at_grow(sux->block_id(), nullptr); 1341 if (preds == nullptr) { 1342 preds = new BlockList(); 1343 _predecessors->at_put(sux->block_id(), preds); 1344 } 1345 preds->append(pred); 1346 } 1347 1348 void verify_block_preds_against_collected_preds(const BlockBegin* block) const { 1349 BlockList* preds = _predecessors->at(block->block_id()); 1350 if (preds == nullptr) { 1351 assert(block->number_of_preds() == 0, "should be the same"); 1352 return; 1353 } 1354 assert(preds->length() == block->number_of_preds(), "should be the same"); 1355 1356 // clone the pred list so we can mutate it 1357 BlockList* pred_copy = new BlockList(); 1358 for (int j = 0; j < block->number_of_preds(); j++) { 1359 pred_copy->append(block->pred_at(j)); 1360 } 1361 // sort them in the same order 1362 preds->sort(cmp); 1363 pred_copy->sort(cmp); 1364 for (int j = 0; j < block->number_of_preds(); j++) { 1365 assert(preds->at(j) == pred_copy->at(j), "must match"); 1366 } 1367 } 1368 }; 1369 1370 class VerifyBlockBeginField : public BlockClosure { 1371 public: 1372 virtual void block_do(BlockBegin* block) { 1373 for (Instruction* cur = block; cur != nullptr; cur = cur->next()) { 1374 assert(cur->block() == block, "Block begin is not correct"); 1375 } 1376 } 1377 }; 1378 1379 class ValidateEdgeMutuality : public BlockClosure { 1380 public: 1381 virtual void block_do(BlockBegin* block) { 1382 for (int i = 0; i < block->end()->number_of_sux(); i++) { 1383 assert(block->end()->sux_at(i)->is_predecessor(block), "Block's successor should have it as predecessor"); 1384 } 1385 1386 for (int i = 0; i < block->number_of_exception_handlers(); i++) { 1387 assert(block->exception_handler_at(i)->is_predecessor(block), "Block's exception handler should have it as predecessor"); 1388 } 1389 1390 for (int i = 0; i < block->number_of_preds(); i++) { 1391 assert(block->pred_at(i) != nullptr, "Predecessor must exist"); 1392 assert(block->pred_at(i)->end() != nullptr, "Predecessor end must exist"); 1393 bool is_sux = block->pred_at(i)->end()->is_sux(block); 1394 bool is_xhandler = block->pred_at(i)->is_exception_handler(block); 1395 assert(is_sux || is_xhandler, "Block's predecessor should have it as successor or xhandler"); 1396 } 1397 } 1398 }; 1399 1400 void IR::expand_with_neighborhood(BlockList& blocks) { 1401 int original_size = blocks.length(); 1402 for (int h = 0; h < original_size; h++) { 1403 BlockBegin* block = blocks.at(h); 1404 1405 for (int i = 0; i < block->end()->number_of_sux(); i++) { 1406 if (!blocks.contains(block->end()->sux_at(i))) { 1407 blocks.append(block->end()->sux_at(i)); 1408 } 1409 } 1410 1411 for (int i = 0; i < block->number_of_preds(); i++) { 1412 if (!blocks.contains(block->pred_at(i))) { 1413 blocks.append(block->pred_at(i)); 1414 } 1415 } 1416 1417 for (int i = 0; i < block->number_of_exception_handlers(); i++) { 1418 if (!blocks.contains(block->exception_handler_at(i))) { 1419 blocks.append(block->exception_handler_at(i)); 1420 } 1421 } 1422 } 1423 } 1424 1425 void IR::verify_local(BlockList& blocks) { 1426 EndNotNullValidator ennv; 1427 blocks.iterate_forward(&ennv); 1428 1429 ValidateEdgeMutuality vem; 1430 blocks.iterate_forward(&vem); 1431 1432 VerifyBlockBeginField verifier; 1433 blocks.iterate_forward(&verifier); 1434 } 1435 1436 void IR::verify() { 1437 XentryFlagValidator xe; 1438 iterate_postorder(&xe); 1439 1440 PredecessorAndCodeValidator pv(this); 1441 1442 EndNotNullValidator ennv; 1443 iterate_postorder(&ennv); 1444 1445 ValidateEdgeMutuality vem; 1446 iterate_postorder(&vem); 1447 1448 VerifyBlockBeginField verifier; 1449 iterate_postorder(&verifier); 1450 } 1451 #endif // ASSERT 1452 1453 void SubstitutionResolver::visit(Value* v) { 1454 Value v0 = *v; 1455 if (v0) { 1456 Value vs = v0->subst(); 1457 if (vs != v0) { 1458 *v = v0->subst(); 1459 } 1460 } 1461 } 1462 1463 #ifdef ASSERT 1464 class SubstitutionChecker: public ValueVisitor { 1465 void visit(Value* v) { 1466 Value v0 = *v; 1467 if (v0) { 1468 Value vs = v0->subst(); 1469 assert(vs == v0, "missed substitution"); 1470 } 1471 } 1472 }; 1473 #endif 1474 1475 1476 void SubstitutionResolver::block_do(BlockBegin* block) { 1477 Instruction* last = nullptr; 1478 for (Instruction* n = block; n != nullptr;) { 1479 n->values_do(this); 1480 // need to remove this instruction from the instruction stream 1481 if (n->subst() != n) { 1482 guarantee(last != nullptr, "must have last"); 1483 last->set_next(n->next()); 1484 } else { 1485 last = n; 1486 } 1487 n = last->next(); 1488 } 1489 1490 #ifdef ASSERT 1491 SubstitutionChecker check_substitute; 1492 if (block->state()) block->state()->values_do(&check_substitute); 1493 block->block_values_do(&check_substitute); 1494 if (block->end() && block->end()->state()) block->end()->state()->values_do(&check_substitute); 1495 #endif 1496 }