1 /* 2 * Copyright (c) 1999, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "c1/c1_Compilation.hpp" 27 #include "c1/c1_FrameMap.hpp" 28 #include "c1/c1_GraphBuilder.hpp" 29 #include "c1/c1_IR.hpp" 30 #include "c1/c1_InstructionPrinter.hpp" 31 #include "c1/c1_Optimizer.hpp" 32 #include "compiler/oopMap.hpp" 33 #include "memory/resourceArea.hpp" 34 #include "utilities/bitMap.inline.hpp" 35 36 37 // Implementation of XHandlers 38 // 39 // Note: This code could eventually go away if we are 40 // just using the ciExceptionHandlerStream. 41 42 XHandlers::XHandlers(ciMethod* method) : _list(method->exception_table_length()) { 43 ciExceptionHandlerStream s(method); 44 while (!s.is_done()) { 45 _list.append(new XHandler(s.handler())); 46 s.next(); 47 } 48 assert(s.count() == method->exception_table_length(), "exception table lengths inconsistent"); 49 } 50 51 // deep copy of all XHandler contained in list 52 XHandlers::XHandlers(XHandlers* other) : 53 _list(other->length()) 54 { 55 for (int i = 0; i < other->length(); i++) { 56 _list.append(new XHandler(other->handler_at(i))); 57 } 58 } 59 60 // Returns whether a particular exception type can be caught. Also 61 // returns true if klass is unloaded or any exception handler 62 // classes are unloaded. type_is_exact indicates whether the throw 63 // is known to be exactly that class or it might throw a subtype. 64 bool XHandlers::could_catch(ciInstanceKlass* klass, bool type_is_exact) const { 65 // the type is unknown so be conservative 66 if (!klass->is_loaded()) { 67 return true; 68 } 69 70 for (int i = 0; i < length(); i++) { 71 XHandler* handler = handler_at(i); 72 if (handler->is_catch_all()) { 73 // catch of ANY 74 return true; 75 } 76 ciInstanceKlass* handler_klass = handler->catch_klass(); 77 // if it's unknown it might be catchable 78 if (!handler_klass->is_loaded()) { 79 return true; 80 } 81 // if the throw type is definitely a subtype of the catch type 82 // then it can be caught. 83 if (klass->is_subtype_of(handler_klass)) { 84 return true; 85 } 86 if (!type_is_exact) { 87 // If the type isn't exactly known then it can also be caught by 88 // catch statements where the inexact type is a subtype of the 89 // catch type. 90 // given: foo extends bar extends Exception 91 // throw bar can be caught by catch foo, catch bar, and catch 92 // Exception, however it can't be caught by any handlers without 93 // bar in its type hierarchy. 94 if (handler_klass->is_subtype_of(klass)) { 95 return true; 96 } 97 } 98 } 99 100 return false; 101 } 102 103 104 bool XHandlers::equals(XHandlers* others) const { 105 if (others == nullptr) return false; 106 if (length() != others->length()) return false; 107 108 for (int i = 0; i < length(); i++) { 109 if (!handler_at(i)->equals(others->handler_at(i))) return false; 110 } 111 return true; 112 } 113 114 bool XHandler::equals(XHandler* other) const { 115 assert(entry_pco() != -1 && other->entry_pco() != -1, "must have entry_pco"); 116 117 if (entry_pco() != other->entry_pco()) return false; 118 if (scope_count() != other->scope_count()) return false; 119 if (_desc != other->_desc) return false; 120 121 assert(entry_block() == other->entry_block(), "entry_block must be equal when entry_pco is equal"); 122 return true; 123 } 124 125 126 // Implementation of IRScope 127 BlockBegin* IRScope::build_graph(Compilation* compilation, int osr_bci) { 128 GraphBuilder gm(compilation, this); 129 NOT_PRODUCT(if (PrintValueNumbering && Verbose) gm.print_stats()); 130 if (compilation->bailed_out()) return nullptr; 131 return gm.start(); 132 } 133 134 135 IRScope::IRScope(Compilation* compilation, IRScope* caller, int caller_bci, ciMethod* method, int osr_bci, bool create_graph) 136 : _compilation(compilation) 137 , _callees(2) 138 , _requires_phi_function(method->max_locals()) 139 { 140 _caller = caller; 141 _level = caller == nullptr ? 0 : caller->level() + 1; 142 _method = method; 143 _xhandlers = new XHandlers(method); 144 _number_of_locks = 0; 145 _monitor_pairing_ok = method->has_balanced_monitors(); 146 _wrote_final = false; 147 _wrote_fields = false; 148 _wrote_volatile = false; 149 _wrote_stable = false; 150 _start = nullptr; 151 152 if (osr_bci != -1) { 153 // selective creation of phi functions is not possibel in osr-methods 154 _requires_phi_function.set_range(0, method->max_locals()); 155 } 156 157 assert(method->holder()->is_loaded() , "method holder must be loaded"); 158 159 // build graph if monitor pairing is ok 160 if (create_graph && monitor_pairing_ok()) _start = build_graph(compilation, osr_bci); 161 } 162 163 164 int IRScope::max_stack() const { 165 int my_max = method()->max_stack(); 166 int callee_max = 0; 167 for (int i = 0; i < number_of_callees(); i++) { 168 callee_max = MAX2(callee_max, callee_no(i)->max_stack()); 169 } 170 return my_max + callee_max; 171 } 172 173 174 bool IRScopeDebugInfo::should_reexecute() { 175 if (_should_reexecute) { 176 return true; 177 } 178 ciMethod* cur_method = scope()->method(); 179 int cur_bci = bci(); 180 if (cur_method != nullptr && cur_bci != SynchronizationEntryBCI) { 181 Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci); 182 return Interpreter::bytecode_should_reexecute(code); 183 } else 184 return false; 185 } 186 187 // Implementation of CodeEmitInfo 188 189 // Stack must be NON-null 190 CodeEmitInfo::CodeEmitInfo(ValueStack* stack, XHandlers* exception_handlers, bool deoptimize_on_exception) 191 : _scope_debug_info(nullptr) 192 , _scope(stack->scope()) 193 , _exception_handlers(exception_handlers) 194 , _oop_map(nullptr) 195 , _stack(stack) 196 , _is_method_handle_invoke(false) 197 , _deoptimize_on_exception(deoptimize_on_exception) 198 , _force_reexecute(false) { 199 assert(_stack != nullptr, "must be non null"); 200 } 201 202 203 CodeEmitInfo::CodeEmitInfo(CodeEmitInfo* info, ValueStack* stack) 204 : _scope_debug_info(nullptr) 205 , _scope(info->_scope) 206 , _exception_handlers(nullptr) 207 , _oop_map(nullptr) 208 , _stack(stack == nullptr ? info->_stack : stack) 209 , _is_method_handle_invoke(info->_is_method_handle_invoke) 210 , _deoptimize_on_exception(info->_deoptimize_on_exception) 211 , _force_reexecute(info->_force_reexecute) { 212 213 // deep copy of exception handlers 214 if (info->_exception_handlers != nullptr) { 215 _exception_handlers = new XHandlers(info->_exception_handlers); 216 } 217 } 218 219 220 void CodeEmitInfo::record_debug_info(DebugInformationRecorder* recorder, int pc_offset, bool maybe_return_as_fields) { 221 // record the safepoint before recording the debug info for enclosing scopes 222 recorder->add_safepoint(pc_offset, _oop_map->deep_copy()); 223 bool reexecute = _force_reexecute || _scope_debug_info->should_reexecute(); 224 _scope_debug_info->record_debug_info(recorder, pc_offset, reexecute, _is_method_handle_invoke, maybe_return_as_fields); 225 recorder->end_safepoint(pc_offset); 226 } 227 228 229 void CodeEmitInfo::add_register_oop(LIR_Opr opr) { 230 assert(_oop_map != nullptr, "oop map must already exist"); 231 assert(opr->is_single_cpu(), "should not call otherwise"); 232 233 VMReg name = frame_map()->regname(opr); 234 _oop_map->set_oop(name); 235 } 236 237 // Mirror the stack size calculation in the deopt code 238 // How much stack space would we need at this point in the program in 239 // case of deoptimization? 240 int CodeEmitInfo::interpreter_frame_size() const { 241 ValueStack* state = _stack; 242 int size = 0; 243 int callee_parameters = 0; 244 int callee_locals = 0; 245 int extra_args = state->scope()->method()->max_stack() - state->stack_size(); 246 247 while (state != nullptr) { 248 int locks = state->locks_size(); 249 int temps = state->stack_size(); 250 bool is_top_frame = (state == _stack); 251 ciMethod* method = state->scope()->method(); 252 253 int frame_size = BytesPerWord * Interpreter::size_activation(method->max_stack(), 254 temps + callee_parameters, 255 extra_args, 256 locks, 257 callee_parameters, 258 callee_locals, 259 is_top_frame); 260 size += frame_size; 261 262 callee_parameters = method->size_of_parameters(); 263 callee_locals = method->max_locals(); 264 extra_args = 0; 265 state = state->caller_state(); 266 } 267 return size + Deoptimization::last_frame_adjust(0, callee_locals) * BytesPerWord; 268 } 269 270 // Implementation of IR 271 272 IR::IR(Compilation* compilation, ciMethod* method, int osr_bci) : 273 _num_loops(0) { 274 // setup IR fields 275 _compilation = compilation; 276 _top_scope = new IRScope(compilation, nullptr, -1, method, osr_bci, true); 277 _code = nullptr; 278 } 279 280 281 void IR::optimize_blocks() { 282 Optimizer opt(this); 283 if (!compilation()->profile_branches()) { 284 if (DoCEE) { 285 opt.eliminate_conditional_expressions(); 286 #ifndef PRODUCT 287 if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after CEE"); print(true); } 288 if (PrintIR || PrintIR1 ) { tty->print_cr("IR after CEE"); print(false); } 289 #endif 290 } 291 if (EliminateBlocks) { 292 opt.eliminate_blocks(); 293 #ifndef PRODUCT 294 if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after block elimination"); print(true); } 295 if (PrintIR || PrintIR1 ) { tty->print_cr("IR after block elimination"); print(false); } 296 #endif 297 } 298 } 299 } 300 301 void IR::eliminate_null_checks() { 302 Optimizer opt(this); 303 if (EliminateNullChecks) { 304 opt.eliminate_null_checks(); 305 #ifndef PRODUCT 306 if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after null check elimination"); print(true); } 307 if (PrintIR || PrintIR1 ) { tty->print_cr("IR after null check elimination"); print(false); } 308 #endif 309 } 310 } 311 312 // The functionality of this class is to insert a new block between 313 // the 'from' and 'to' block of a critical edge. 314 // It first collects the block pairs, and then processes them. 315 // 316 // Some instructions may introduce more than one edge between two blocks. 317 // By checking if the current 'to' block sets critical_edge_split_flag 318 // (all new blocks set this flag) we can avoid repeated processing. 319 // This is why BlockPair contains the index rather than the original 'to' block. 320 class CriticalEdgeFinder: public BlockClosure { 321 BlockPairList blocks; 322 323 public: 324 CriticalEdgeFinder(IR* ir) { 325 ir->iterate_preorder(this); 326 } 327 328 void block_do(BlockBegin* bb) { 329 BlockEnd* be = bb->end(); 330 int nos = be->number_of_sux(); 331 if (nos >= 2) { 332 for (int i = 0; i < nos; i++) { 333 BlockBegin* sux = be->sux_at(i); 334 if (sux->number_of_preds() >= 2) { 335 blocks.append(new BlockPair(bb, i)); 336 } 337 } 338 } 339 } 340 341 void split_edges() { 342 for (int i = 0; i < blocks.length(); i++) { 343 BlockPair* pair = blocks.at(i); 344 BlockBegin* from = pair->from(); 345 int index = pair->index(); 346 BlockBegin* to = from->end()->sux_at(index); 347 if (to->is_set(BlockBegin::critical_edge_split_flag)) { 348 // inserted 349 continue; 350 } 351 BlockBegin* split = from->insert_block_between(to); 352 #ifndef PRODUCT 353 if ((PrintIR || PrintIR1) && Verbose) { 354 tty->print_cr("Split critical edge B%d -> B%d (new block B%d)", 355 from->block_id(), to->block_id(), split->block_id()); 356 } 357 #endif 358 } 359 } 360 }; 361 362 void IR::split_critical_edges() { 363 CriticalEdgeFinder cef(this); 364 cef.split_edges(); 365 } 366 367 368 class UseCountComputer: public ValueVisitor, BlockClosure { 369 private: 370 void visit(Value* n) { 371 // Local instructions and Phis for expression stack values at the 372 // start of basic blocks are not added to the instruction list 373 if (!(*n)->is_linked() && (*n)->can_be_linked()) { 374 assert(false, "a node was not appended to the graph"); 375 Compilation::current()->bailout("a node was not appended to the graph"); 376 } 377 // use n's input if not visited before 378 if (!(*n)->is_pinned() && !(*n)->has_uses()) { 379 // note: a) if the instruction is pinned, it will be handled by compute_use_count 380 // b) if the instruction has uses, it was touched before 381 // => in both cases we don't need to update n's values 382 uses_do(n); 383 } 384 // use n 385 (*n)->_use_count++; 386 } 387 388 Values* worklist; 389 int depth; 390 enum { 391 max_recurse_depth = 20 392 }; 393 394 void uses_do(Value* n) { 395 depth++; 396 if (depth > max_recurse_depth) { 397 // don't allow the traversal to recurse too deeply 398 worklist->push(*n); 399 } else { 400 (*n)->input_values_do(this); 401 // special handling for some instructions 402 if ((*n)->as_BlockEnd() != nullptr) { 403 // note on BlockEnd: 404 // must 'use' the stack only if the method doesn't 405 // terminate, however, in those cases stack is empty 406 (*n)->state_values_do(this); 407 } 408 } 409 depth--; 410 } 411 412 void block_do(BlockBegin* b) { 413 depth = 0; 414 // process all pinned nodes as the roots of expression trees 415 for (Instruction* n = b; n != nullptr; n = n->next()) { 416 if (n->is_pinned()) uses_do(&n); 417 } 418 assert(depth == 0, "should have counted back down"); 419 420 // now process any unpinned nodes which recursed too deeply 421 while (worklist->length() > 0) { 422 Value t = worklist->pop(); 423 if (!t->is_pinned()) { 424 // compute the use count 425 uses_do(&t); 426 427 // pin the instruction so that LIRGenerator doesn't recurse 428 // too deeply during it's evaluation. 429 t->pin(); 430 } 431 } 432 assert(depth == 0, "should have counted back down"); 433 } 434 435 UseCountComputer() { 436 worklist = new Values(); 437 depth = 0; 438 } 439 440 public: 441 static void compute(BlockList* blocks) { 442 UseCountComputer ucc; 443 blocks->iterate_backward(&ucc); 444 } 445 }; 446 447 448 // helper macro for short definition of trace-output inside code 449 #ifdef ASSERT 450 #define TRACE_LINEAR_SCAN(level, code) \ 451 if (TraceLinearScanLevel >= level) { \ 452 code; \ 453 } 454 #else 455 #define TRACE_LINEAR_SCAN(level, code) 456 #endif 457 458 class ComputeLinearScanOrder : public StackObj { 459 private: 460 int _max_block_id; // the highest block_id of a block 461 int _num_blocks; // total number of blocks (smaller than _max_block_id) 462 int _num_loops; // total number of loops 463 bool _iterative_dominators;// method requires iterative computation of dominatiors 464 465 BlockList* _linear_scan_order; // the resulting list of blocks in correct order 466 467 ResourceBitMap _visited_blocks; // used for recursive processing of blocks 468 ResourceBitMap _active_blocks; // used for recursive processing of blocks 469 ResourceBitMap _dominator_blocks; // temporary BitMap used for computation of dominator 470 intArray _forward_branches; // number of incoming forward branches for each block 471 BlockList _loop_end_blocks; // list of all loop end blocks collected during count_edges 472 BitMap2D _loop_map; // two-dimensional bit set: a bit is set if a block is contained in a loop 473 BlockList _work_list; // temporary list (used in mark_loops and compute_order) 474 BlockList _loop_headers; 475 476 Compilation* _compilation; 477 478 // accessors for _visited_blocks and _active_blocks 479 void init_visited() { _active_blocks.clear(); _visited_blocks.clear(); } 480 bool is_visited(BlockBegin* b) const { return _visited_blocks.at(b->block_id()); } 481 bool is_active(BlockBegin* b) const { return _active_blocks.at(b->block_id()); } 482 void set_visited(BlockBegin* b) { assert(!is_visited(b), "already set"); _visited_blocks.set_bit(b->block_id()); } 483 void set_active(BlockBegin* b) { assert(!is_active(b), "already set"); _active_blocks.set_bit(b->block_id()); } 484 void clear_active(BlockBegin* b) { assert(is_active(b), "not already"); _active_blocks.clear_bit(b->block_id()); } 485 486 // accessors for _forward_branches 487 void inc_forward_branches(BlockBegin* b) { _forward_branches.at_put(b->block_id(), _forward_branches.at(b->block_id()) + 1); } 488 int dec_forward_branches(BlockBegin* b) { _forward_branches.at_put(b->block_id(), _forward_branches.at(b->block_id()) - 1); return _forward_branches.at(b->block_id()); } 489 490 // accessors for _loop_map 491 bool is_block_in_loop (int loop_idx, BlockBegin* b) const { return _loop_map.at(loop_idx, b->block_id()); } 492 void set_block_in_loop (int loop_idx, BlockBegin* b) { _loop_map.set_bit(loop_idx, b->block_id()); } 493 void clear_block_in_loop(int loop_idx, int block_id) { _loop_map.clear_bit(loop_idx, block_id); } 494 495 // count edges between blocks 496 void count_edges(BlockBegin* cur, BlockBegin* parent); 497 498 // loop detection 499 void mark_loops(); 500 void clear_non_natural_loops(BlockBegin* start_block); 501 void assign_loop_depth(BlockBegin* start_block); 502 503 // computation of final block order 504 BlockBegin* common_dominator(BlockBegin* a, BlockBegin* b); 505 void compute_dominator(BlockBegin* cur, BlockBegin* parent); 506 void compute_dominator_impl(BlockBegin* cur, BlockBegin* parent); 507 int compute_weight(BlockBegin* cur); 508 bool ready_for_processing(BlockBegin* cur); 509 void sort_into_work_list(BlockBegin* b); 510 void append_block(BlockBegin* cur); 511 void compute_order(BlockBegin* start_block); 512 513 // fixup of dominators for non-natural loops 514 bool compute_dominators_iter(); 515 void compute_dominators(); 516 517 // debug functions 518 DEBUG_ONLY(void print_blocks();) 519 DEBUG_ONLY(void verify();) 520 521 Compilation* compilation() const { return _compilation; } 522 public: 523 ComputeLinearScanOrder(Compilation* c, BlockBegin* start_block); 524 525 // accessors for final result 526 BlockList* linear_scan_order() const { return _linear_scan_order; } 527 int num_loops() const { return _num_loops; } 528 }; 529 530 531 ComputeLinearScanOrder::ComputeLinearScanOrder(Compilation* c, BlockBegin* start_block) : 532 _max_block_id(BlockBegin::number_of_blocks()), 533 _num_blocks(0), 534 _num_loops(0), 535 _iterative_dominators(false), 536 _linear_scan_order(nullptr), // initialized later with correct size 537 _visited_blocks(_max_block_id), 538 _active_blocks(_max_block_id), 539 _dominator_blocks(_max_block_id), 540 _forward_branches(_max_block_id, _max_block_id, 0), 541 _loop_end_blocks(8), 542 _loop_map(0), // initialized later with correct size 543 _work_list(8), 544 _compilation(c) 545 { 546 TRACE_LINEAR_SCAN(2, tty->print_cr("***** computing linear-scan block order")); 547 548 count_edges(start_block, nullptr); 549 550 if (compilation()->is_profiling()) { 551 ciMethod *method = compilation()->method(); 552 if (!method->is_accessor()) { 553 ciMethodData* md = method->method_data_or_null(); 554 assert(md != nullptr, "Sanity"); 555 md->set_compilation_stats(_num_loops, _num_blocks); 556 } 557 } 558 559 if (_num_loops > 0) { 560 mark_loops(); 561 clear_non_natural_loops(start_block); 562 assign_loop_depth(start_block); 563 } 564 565 compute_order(start_block); 566 compute_dominators(); 567 568 DEBUG_ONLY(print_blocks()); 569 DEBUG_ONLY(verify()); 570 } 571 572 573 // Traverse the CFG: 574 // * count total number of blocks 575 // * count all incoming edges and backward incoming edges 576 // * number loop header blocks 577 // * create a list with all loop end blocks 578 void ComputeLinearScanOrder::count_edges(BlockBegin* cur, BlockBegin* parent) { 579 TRACE_LINEAR_SCAN(3, tty->print_cr("Enter count_edges for block B%d coming from B%d", cur->block_id(), parent != nullptr ? parent->block_id() : -1)); 580 assert(cur->dominator() == nullptr, "dominator already initialized"); 581 582 if (is_active(cur)) { 583 TRACE_LINEAR_SCAN(3, tty->print_cr("backward branch")); 584 assert(is_visited(cur), "block must be visisted when block is active"); 585 assert(parent != nullptr, "must have parent"); 586 587 cur->set(BlockBegin::backward_branch_target_flag); 588 589 // When a loop header is also the start of an exception handler, then the backward branch is 590 // an exception edge. Because such edges are usually critical edges which cannot be split, the 591 // loop must be excluded here from processing. 592 if (cur->is_set(BlockBegin::exception_entry_flag)) { 593 // Make sure that dominators are correct in this weird situation 594 _iterative_dominators = true; 595 return; 596 } 597 598 cur->set(BlockBegin::linear_scan_loop_header_flag); 599 parent->set(BlockBegin::linear_scan_loop_end_flag); 600 601 assert(parent->number_of_sux() == 1 && parent->sux_at(0) == cur, 602 "loop end blocks must have one successor (critical edges are split)"); 603 604 _loop_end_blocks.append(parent); 605 return; 606 } 607 608 // increment number of incoming forward branches 609 inc_forward_branches(cur); 610 611 if (is_visited(cur)) { 612 TRACE_LINEAR_SCAN(3, tty->print_cr("block already visited")); 613 return; 614 } 615 616 _num_blocks++; 617 set_visited(cur); 618 set_active(cur); 619 620 // recursive call for all successors 621 int i; 622 for (i = cur->number_of_sux() - 1; i >= 0; i--) { 623 count_edges(cur->sux_at(i), cur); 624 } 625 for (i = cur->number_of_exception_handlers() - 1; i >= 0; i--) { 626 count_edges(cur->exception_handler_at(i), cur); 627 } 628 629 clear_active(cur); 630 631 // Each loop has a unique number. 632 // When multiple loops are nested, assign_loop_depth assumes that the 633 // innermost loop has the lowest number. This is guaranteed by setting 634 // the loop number after the recursive calls for the successors above 635 // have returned. 636 if (cur->is_set(BlockBegin::linear_scan_loop_header_flag)) { 637 assert(cur->loop_index() == -1, "cannot set loop-index twice"); 638 TRACE_LINEAR_SCAN(3, tty->print_cr("Block B%d is loop header of loop %d", cur->block_id(), _num_loops)); 639 640 cur->set_loop_index(_num_loops); 641 _loop_headers.append(cur); 642 _num_loops++; 643 } 644 645 TRACE_LINEAR_SCAN(3, tty->print_cr("Finished count_edges for block B%d", cur->block_id())); 646 } 647 648 649 void ComputeLinearScanOrder::mark_loops() { 650 TRACE_LINEAR_SCAN(3, tty->print_cr("----- marking loops")); 651 652 _loop_map = BitMap2D(_num_loops, _max_block_id); 653 654 for (int i = _loop_end_blocks.length() - 1; i >= 0; i--) { 655 BlockBegin* loop_end = _loop_end_blocks.at(i); 656 BlockBegin* loop_start = loop_end->sux_at(0); 657 int loop_idx = loop_start->loop_index(); 658 659 TRACE_LINEAR_SCAN(3, tty->print_cr("Processing loop from B%d to B%d (loop %d):", loop_start->block_id(), loop_end->block_id(), loop_idx)); 660 assert(loop_end->is_set(BlockBegin::linear_scan_loop_end_flag), "loop end flag must be set"); 661 assert(loop_end->number_of_sux() == 1, "incorrect number of successors"); 662 assert(loop_start->is_set(BlockBegin::linear_scan_loop_header_flag), "loop header flag must be set"); 663 assert(loop_idx >= 0 && loop_idx < _num_loops, "loop index not set"); 664 assert(_work_list.is_empty(), "work list must be empty before processing"); 665 666 // add the end-block of the loop to the working list 667 _work_list.push(loop_end); 668 set_block_in_loop(loop_idx, loop_end); 669 do { 670 BlockBegin* cur = _work_list.pop(); 671 672 TRACE_LINEAR_SCAN(3, tty->print_cr(" processing B%d", cur->block_id())); 673 assert(is_block_in_loop(loop_idx, cur), "bit in loop map must be set when block is in work list"); 674 675 // recursive processing of all predecessors ends when start block of loop is reached 676 if (cur != loop_start && !cur->is_set(BlockBegin::osr_entry_flag)) { 677 for (int j = cur->number_of_preds() - 1; j >= 0; j--) { 678 BlockBegin* pred = cur->pred_at(j); 679 680 if (!is_block_in_loop(loop_idx, pred) /*&& !pred->is_set(BlockBeginosr_entry_flag)*/) { 681 // this predecessor has not been processed yet, so add it to work list 682 TRACE_LINEAR_SCAN(3, tty->print_cr(" pushing B%d", pred->block_id())); 683 _work_list.push(pred); 684 set_block_in_loop(loop_idx, pred); 685 } 686 } 687 } 688 } while (!_work_list.is_empty()); 689 } 690 } 691 692 693 // check for non-natural loops (loops where the loop header does not dominate 694 // all other loop blocks = loops with multiple entries). 695 // such loops are ignored 696 void ComputeLinearScanOrder::clear_non_natural_loops(BlockBegin* start_block) { 697 for (int i = _num_loops - 1; i >= 0; i--) { 698 if (is_block_in_loop(i, start_block)) { 699 // loop i contains the entry block of the method 700 // -> this is not a natural loop, so ignore it 701 TRACE_LINEAR_SCAN(2, tty->print_cr("Loop %d is non-natural, so it is ignored", i)); 702 703 BlockBegin *loop_header = _loop_headers.at(i); 704 assert(loop_header->is_set(BlockBegin::linear_scan_loop_header_flag), "Must be loop header"); 705 706 for (int j = 0; j < loop_header->number_of_preds(); j++) { 707 BlockBegin *pred = loop_header->pred_at(j); 708 pred->clear(BlockBegin::linear_scan_loop_end_flag); 709 } 710 711 loop_header->clear(BlockBegin::linear_scan_loop_header_flag); 712 713 for (int block_id = _max_block_id - 1; block_id >= 0; block_id--) { 714 clear_block_in_loop(i, block_id); 715 } 716 _iterative_dominators = true; 717 } 718 } 719 } 720 721 void ComputeLinearScanOrder::assign_loop_depth(BlockBegin* start_block) { 722 TRACE_LINEAR_SCAN(3, tty->print_cr("----- computing loop-depth and weight")); 723 init_visited(); 724 725 assert(_work_list.is_empty(), "work list must be empty before processing"); 726 _work_list.append(start_block); 727 728 do { 729 BlockBegin* cur = _work_list.pop(); 730 731 if (!is_visited(cur)) { 732 set_visited(cur); 733 TRACE_LINEAR_SCAN(4, tty->print_cr("Computing loop depth for block B%d", cur->block_id())); 734 735 // compute loop-depth and loop-index for the block 736 assert(cur->loop_depth() == 0, "cannot set loop-depth twice"); 737 int i; 738 int loop_depth = 0; 739 int min_loop_idx = -1; 740 for (i = _num_loops - 1; i >= 0; i--) { 741 if (is_block_in_loop(i, cur)) { 742 loop_depth++; 743 min_loop_idx = i; 744 } 745 } 746 cur->set_loop_depth(loop_depth); 747 cur->set_loop_index(min_loop_idx); 748 749 // append all unvisited successors to work list 750 for (i = cur->number_of_sux() - 1; i >= 0; i--) { 751 _work_list.append(cur->sux_at(i)); 752 } 753 for (i = cur->number_of_exception_handlers() - 1; i >= 0; i--) { 754 _work_list.append(cur->exception_handler_at(i)); 755 } 756 } 757 } while (!_work_list.is_empty()); 758 } 759 760 761 BlockBegin* ComputeLinearScanOrder::common_dominator(BlockBegin* a, BlockBegin* b) { 762 assert(a != nullptr && b != nullptr, "must have input blocks"); 763 764 _dominator_blocks.clear(); 765 while (a != nullptr) { 766 _dominator_blocks.set_bit(a->block_id()); 767 assert(a->dominator() != nullptr || a == _linear_scan_order->at(0), "dominator must be initialized"); 768 a = a->dominator(); 769 } 770 while (b != nullptr && !_dominator_blocks.at(b->block_id())) { 771 assert(b->dominator() != nullptr || b == _linear_scan_order->at(0), "dominator must be initialized"); 772 b = b->dominator(); 773 } 774 775 assert(b != nullptr, "could not find dominator"); 776 return b; 777 } 778 779 void ComputeLinearScanOrder::compute_dominator(BlockBegin* cur, BlockBegin* parent) { 780 init_visited(); 781 compute_dominator_impl(cur, parent); 782 } 783 784 void ComputeLinearScanOrder::compute_dominator_impl(BlockBegin* cur, BlockBegin* parent) { 785 // Mark as visited to avoid recursive calls with same parent 786 set_visited(cur); 787 788 if (cur->dominator() == nullptr) { 789 TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: initializing dominator of B%d to B%d", cur->block_id(), parent->block_id())); 790 cur->set_dominator(parent); 791 792 } else if (!(cur->is_set(BlockBegin::linear_scan_loop_header_flag) && parent->is_set(BlockBegin::linear_scan_loop_end_flag))) { 793 TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: computing dominator of B%d: common dominator of B%d and B%d is B%d", cur->block_id(), parent->block_id(), cur->dominator()->block_id(), common_dominator(cur->dominator(), parent)->block_id())); 794 // Does not hold for exception blocks 795 assert(cur->number_of_preds() > 1 || cur->is_set(BlockBegin::exception_entry_flag), ""); 796 cur->set_dominator(common_dominator(cur->dominator(), parent)); 797 } 798 799 // Additional edge to xhandler of all our successors 800 // range check elimination needs that the state at the end of a 801 // block be valid in every block it dominates so cur must dominate 802 // the exception handlers of its successors. 803 int num_cur_xhandler = cur->number_of_exception_handlers(); 804 for (int j = 0; j < num_cur_xhandler; j++) { 805 BlockBegin* xhandler = cur->exception_handler_at(j); 806 if (!is_visited(xhandler)) { 807 compute_dominator_impl(xhandler, parent); 808 } 809 } 810 } 811 812 813 int ComputeLinearScanOrder::compute_weight(BlockBegin* cur) { 814 BlockBegin* single_sux = nullptr; 815 if (cur->number_of_sux() == 1) { 816 single_sux = cur->sux_at(0); 817 } 818 819 // limit loop-depth to 15 bit (only for security reason, it will never be so big) 820 int weight = (cur->loop_depth() & 0x7FFF) << 16; 821 822 // general macro for short definition of weight flags 823 // the first instance of INC_WEIGHT_IF has the highest priority 824 int cur_bit = 15; 825 #define INC_WEIGHT_IF(condition) if ((condition)) { weight |= (1 << cur_bit); } cur_bit--; 826 827 // this is necessary for the (very rare) case that two successive blocks have 828 // the same loop depth, but a different loop index (can happen for endless loops 829 // with exception handlers) 830 INC_WEIGHT_IF(!cur->is_set(BlockBegin::linear_scan_loop_header_flag)); 831 832 // loop end blocks (blocks that end with a backward branch) are added 833 // after all other blocks of the loop. 834 INC_WEIGHT_IF(!cur->is_set(BlockBegin::linear_scan_loop_end_flag)); 835 836 // critical edge split blocks are preferred because than they have a bigger 837 // proability to be completely empty 838 INC_WEIGHT_IF(cur->is_set(BlockBegin::critical_edge_split_flag)); 839 840 // exceptions should not be thrown in normal control flow, so these blocks 841 // are added as late as possible 842 INC_WEIGHT_IF(cur->end()->as_Throw() == nullptr && (single_sux == nullptr || single_sux->end()->as_Throw() == nullptr)); 843 INC_WEIGHT_IF(cur->end()->as_Return() == nullptr && (single_sux == nullptr || single_sux->end()->as_Return() == nullptr)); 844 845 // exceptions handlers are added as late as possible 846 INC_WEIGHT_IF(!cur->is_set(BlockBegin::exception_entry_flag)); 847 848 // guarantee that weight is > 0 849 weight |= 1; 850 851 #undef INC_WEIGHT_IF 852 assert(cur_bit >= 0, "too many flags"); 853 assert(weight > 0, "weight cannot become negative"); 854 855 return weight; 856 } 857 858 bool ComputeLinearScanOrder::ready_for_processing(BlockBegin* cur) { 859 // Discount the edge just traveled. 860 // When the number drops to zero, all forward branches were processed 861 if (dec_forward_branches(cur) != 0) { 862 return false; 863 } 864 865 assert(_linear_scan_order->find(cur) == -1, "block already processed (block can be ready only once)"); 866 assert(_work_list.find(cur) == -1, "block already in work-list (block can be ready only once)"); 867 return true; 868 } 869 870 void ComputeLinearScanOrder::sort_into_work_list(BlockBegin* cur) { 871 assert(_work_list.find(cur) == -1, "block already in work list"); 872 873 int cur_weight = compute_weight(cur); 874 875 // the linear_scan_number is used to cache the weight of a block 876 cur->set_linear_scan_number(cur_weight); 877 878 #ifndef PRODUCT 879 if (StressLinearScan) { 880 _work_list.insert_before(0, cur); 881 return; 882 } 883 #endif 884 885 _work_list.append(nullptr); // provide space for new element 886 887 int insert_idx = _work_list.length() - 1; 888 while (insert_idx > 0 && _work_list.at(insert_idx - 1)->linear_scan_number() > cur_weight) { 889 _work_list.at_put(insert_idx, _work_list.at(insert_idx - 1)); 890 insert_idx--; 891 } 892 _work_list.at_put(insert_idx, cur); 893 894 TRACE_LINEAR_SCAN(3, tty->print_cr("Sorted B%d into worklist. new worklist:", cur->block_id())); 895 TRACE_LINEAR_SCAN(3, for (int i = 0; i < _work_list.length(); i++) tty->print_cr("%8d B%2d weight:%6x", i, _work_list.at(i)->block_id(), _work_list.at(i)->linear_scan_number())); 896 897 #ifdef ASSERT 898 for (int i = 0; i < _work_list.length(); i++) { 899 assert(_work_list.at(i)->linear_scan_number() > 0, "weight not set"); 900 assert(i == 0 || _work_list.at(i - 1)->linear_scan_number() <= _work_list.at(i)->linear_scan_number(), "incorrect order in worklist"); 901 } 902 #endif 903 } 904 905 void ComputeLinearScanOrder::append_block(BlockBegin* cur) { 906 TRACE_LINEAR_SCAN(3, tty->print_cr("appending block B%d (weight 0x%6x) to linear-scan order", cur->block_id(), cur->linear_scan_number())); 907 assert(_linear_scan_order->find(cur) == -1, "cannot add the same block twice"); 908 909 // currently, the linear scan order and code emit order are equal. 910 // therefore the linear_scan_number and the weight of a block must also 911 // be equal. 912 cur->set_linear_scan_number(_linear_scan_order->length()); 913 _linear_scan_order->append(cur); 914 } 915 916 void ComputeLinearScanOrder::compute_order(BlockBegin* start_block) { 917 TRACE_LINEAR_SCAN(3, tty->print_cr("----- computing final block order")); 918 919 // the start block is always the first block in the linear scan order 920 _linear_scan_order = new BlockList(_num_blocks); 921 append_block(start_block); 922 923 assert(start_block->end()->as_Base() != nullptr, "start block must end with Base-instruction"); 924 BlockBegin* std_entry = ((Base*)start_block->end())->std_entry(); 925 BlockBegin* osr_entry = ((Base*)start_block->end())->osr_entry(); 926 927 BlockBegin* sux_of_osr_entry = nullptr; 928 if (osr_entry != nullptr) { 929 // special handling for osr entry: 930 // ignore the edge between the osr entry and its successor for processing 931 // the osr entry block is added manually below 932 assert(osr_entry->number_of_sux() == 1, "osr entry must have exactly one successor"); 933 assert(osr_entry->sux_at(0)->number_of_preds() >= 2, "successor of osr entry must have two predecessors (otherwise it is not present in normal control flow"); 934 935 sux_of_osr_entry = osr_entry->sux_at(0); 936 dec_forward_branches(sux_of_osr_entry); 937 938 compute_dominator(osr_entry, start_block); 939 _iterative_dominators = true; 940 } 941 compute_dominator(std_entry, start_block); 942 943 // start processing with standard entry block 944 assert(_work_list.is_empty(), "list must be empty before processing"); 945 946 if (ready_for_processing(std_entry)) { 947 sort_into_work_list(std_entry); 948 } else { 949 assert(false, "the std_entry must be ready for processing (otherwise, the method has no start block)"); 950 } 951 952 do { 953 BlockBegin* cur = _work_list.pop(); 954 955 if (cur == sux_of_osr_entry) { 956 // the osr entry block is ignored in normal processing, it is never added to the 957 // work list. Instead, it is added as late as possible manually here. 958 append_block(osr_entry); 959 compute_dominator(cur, osr_entry); 960 } 961 append_block(cur); 962 963 int i; 964 int num_sux = cur->number_of_sux(); 965 // changed loop order to get "intuitive" order of if- and else-blocks 966 for (i = 0; i < num_sux; i++) { 967 BlockBegin* sux = cur->sux_at(i); 968 compute_dominator(sux, cur); 969 if (ready_for_processing(sux)) { 970 sort_into_work_list(sux); 971 } 972 } 973 num_sux = cur->number_of_exception_handlers(); 974 for (i = 0; i < num_sux; i++) { 975 BlockBegin* sux = cur->exception_handler_at(i); 976 if (ready_for_processing(sux)) { 977 sort_into_work_list(sux); 978 } 979 } 980 } while (_work_list.length() > 0); 981 } 982 983 984 bool ComputeLinearScanOrder::compute_dominators_iter() { 985 bool changed = false; 986 int num_blocks = _linear_scan_order->length(); 987 988 assert(_linear_scan_order->at(0)->dominator() == nullptr, "must not have dominator"); 989 assert(_linear_scan_order->at(0)->number_of_preds() == 0, "must not have predecessors"); 990 for (int i = 1; i < num_blocks; i++) { 991 BlockBegin* block = _linear_scan_order->at(i); 992 993 BlockBegin* dominator = block->pred_at(0); 994 int num_preds = block->number_of_preds(); 995 996 TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: Processing B%d", block->block_id())); 997 998 for (int j = 0; j < num_preds; j++) { 999 1000 BlockBegin *pred = block->pred_at(j); 1001 TRACE_LINEAR_SCAN(4, tty->print_cr(" DOM: Subrocessing B%d", pred->block_id())); 1002 1003 if (block->is_set(BlockBegin::exception_entry_flag)) { 1004 dominator = common_dominator(dominator, pred); 1005 int num_pred_preds = pred->number_of_preds(); 1006 for (int k = 0; k < num_pred_preds; k++) { 1007 dominator = common_dominator(dominator, pred->pred_at(k)); 1008 } 1009 } else { 1010 dominator = common_dominator(dominator, pred); 1011 } 1012 } 1013 1014 if (dominator != block->dominator()) { 1015 TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: updating dominator of B%d from B%d to B%d", block->block_id(), block->dominator()->block_id(), dominator->block_id())); 1016 1017 block->set_dominator(dominator); 1018 changed = true; 1019 } 1020 } 1021 return changed; 1022 } 1023 1024 void ComputeLinearScanOrder::compute_dominators() { 1025 TRACE_LINEAR_SCAN(3, tty->print_cr("----- computing dominators (iterative computation reqired: %d)", _iterative_dominators)); 1026 1027 // iterative computation of dominators is only required for methods with non-natural loops 1028 // and OSR-methods. For all other methods, the dominators computed when generating the 1029 // linear scan block order are correct. 1030 if (_iterative_dominators) { 1031 do { 1032 TRACE_LINEAR_SCAN(1, tty->print_cr("DOM: next iteration of fix-point calculation")); 1033 } while (compute_dominators_iter()); 1034 } 1035 1036 // check that dominators are correct 1037 assert(!compute_dominators_iter(), "fix point not reached"); 1038 1039 // Add Blocks to dominates-Array 1040 int num_blocks = _linear_scan_order->length(); 1041 for (int i = 0; i < num_blocks; i++) { 1042 BlockBegin* block = _linear_scan_order->at(i); 1043 1044 BlockBegin *dom = block->dominator(); 1045 if (dom) { 1046 assert(dom->dominator_depth() != -1, "Dominator must have been visited before"); 1047 dom->dominates()->append(block); 1048 block->set_dominator_depth(dom->dominator_depth() + 1); 1049 } else { 1050 block->set_dominator_depth(0); 1051 } 1052 } 1053 } 1054 1055 1056 #ifdef ASSERT 1057 void ComputeLinearScanOrder::print_blocks() { 1058 if (TraceLinearScanLevel >= 2) { 1059 tty->print_cr("----- loop information:"); 1060 for (int block_idx = 0; block_idx < _linear_scan_order->length(); block_idx++) { 1061 BlockBegin* cur = _linear_scan_order->at(block_idx); 1062 1063 tty->print("%4d: B%2d: ", cur->linear_scan_number(), cur->block_id()); 1064 for (int loop_idx = 0; loop_idx < _num_loops; loop_idx++) { 1065 tty->print ("%d ", is_block_in_loop(loop_idx, cur)); 1066 } 1067 tty->print_cr(" -> loop_index: %2d, loop_depth: %2d", cur->loop_index(), cur->loop_depth()); 1068 } 1069 } 1070 1071 if (TraceLinearScanLevel >= 1) { 1072 tty->print_cr("----- linear-scan block order:"); 1073 for (int block_idx = 0; block_idx < _linear_scan_order->length(); block_idx++) { 1074 BlockBegin* cur = _linear_scan_order->at(block_idx); 1075 tty->print("%4d: B%2d loop: %2d depth: %2d", cur->linear_scan_number(), cur->block_id(), cur->loop_index(), cur->loop_depth()); 1076 1077 tty->print(cur->is_set(BlockBegin::exception_entry_flag) ? " ex" : " "); 1078 tty->print(cur->is_set(BlockBegin::critical_edge_split_flag) ? " ce" : " "); 1079 tty->print(cur->is_set(BlockBegin::linear_scan_loop_header_flag) ? " lh" : " "); 1080 tty->print(cur->is_set(BlockBegin::linear_scan_loop_end_flag) ? " le" : " "); 1081 1082 if (cur->dominator() != nullptr) { 1083 tty->print(" dom: B%d ", cur->dominator()->block_id()); 1084 } else { 1085 tty->print(" dom: null "); 1086 } 1087 1088 if (cur->number_of_preds() > 0) { 1089 tty->print(" preds: "); 1090 for (int j = 0; j < cur->number_of_preds(); j++) { 1091 BlockBegin* pred = cur->pred_at(j); 1092 tty->print("B%d ", pred->block_id()); 1093 } 1094 } 1095 if (cur->number_of_sux() > 0) { 1096 tty->print(" sux: "); 1097 for (int j = 0; j < cur->number_of_sux(); j++) { 1098 BlockBegin* sux = cur->sux_at(j); 1099 tty->print("B%d ", sux->block_id()); 1100 } 1101 } 1102 if (cur->number_of_exception_handlers() > 0) { 1103 tty->print(" ex: "); 1104 for (int j = 0; j < cur->number_of_exception_handlers(); j++) { 1105 BlockBegin* ex = cur->exception_handler_at(j); 1106 tty->print("B%d ", ex->block_id()); 1107 } 1108 } 1109 tty->cr(); 1110 } 1111 } 1112 } 1113 1114 void ComputeLinearScanOrder::verify() { 1115 assert(_linear_scan_order->length() == _num_blocks, "wrong number of blocks in list"); 1116 1117 if (StressLinearScan) { 1118 // blocks are scrambled when StressLinearScan is used 1119 return; 1120 } 1121 1122 // check that all successors of a block have a higher linear-scan-number 1123 // and that all predecessors of a block have a lower linear-scan-number 1124 // (only backward branches of loops are ignored) 1125 int i; 1126 for (i = 0; i < _linear_scan_order->length(); i++) { 1127 BlockBegin* cur = _linear_scan_order->at(i); 1128 1129 assert(cur->linear_scan_number() == i, "incorrect linear_scan_number"); 1130 assert(cur->linear_scan_number() >= 0 && cur->linear_scan_number() == _linear_scan_order->find(cur), "incorrect linear_scan_number"); 1131 1132 int j; 1133 for (j = cur->number_of_sux() - 1; j >= 0; j--) { 1134 BlockBegin* sux = cur->sux_at(j); 1135 1136 assert(sux->linear_scan_number() >= 0 && sux->linear_scan_number() == _linear_scan_order->find(sux), "incorrect linear_scan_number"); 1137 if (!sux->is_set(BlockBegin::backward_branch_target_flag)) { 1138 assert(cur->linear_scan_number() < sux->linear_scan_number(), "invalid order"); 1139 } 1140 if (cur->loop_depth() == sux->loop_depth()) { 1141 assert(cur->loop_index() == sux->loop_index() || sux->is_set(BlockBegin::linear_scan_loop_header_flag), "successive blocks with same loop depth must have same loop index"); 1142 } 1143 } 1144 1145 for (j = cur->number_of_preds() - 1; j >= 0; j--) { 1146 BlockBegin* pred = cur->pred_at(j); 1147 1148 assert(pred->linear_scan_number() >= 0 && pred->linear_scan_number() == _linear_scan_order->find(pred), "incorrect linear_scan_number"); 1149 if (!cur->is_set(BlockBegin::backward_branch_target_flag)) { 1150 assert(cur->linear_scan_number() > pred->linear_scan_number(), "invalid order"); 1151 } 1152 if (cur->loop_depth() == pred->loop_depth()) { 1153 assert(cur->loop_index() == pred->loop_index() || cur->is_set(BlockBegin::linear_scan_loop_header_flag), "successive blocks with same loop depth must have same loop index"); 1154 } 1155 1156 assert(cur->dominator()->linear_scan_number() <= cur->pred_at(j)->linear_scan_number(), "dominator must be before predecessors"); 1157 } 1158 1159 // check dominator 1160 if (i == 0) { 1161 assert(cur->dominator() == nullptr, "first block has no dominator"); 1162 } else { 1163 assert(cur->dominator() != nullptr, "all but first block must have dominator"); 1164 } 1165 // Assertion does not hold for exception handlers 1166 assert(cur->number_of_preds() != 1 || cur->dominator() == cur->pred_at(0) || cur->is_set(BlockBegin::exception_entry_flag), "Single predecessor must also be dominator"); 1167 } 1168 1169 // check that all loops are continuous 1170 for (int loop_idx = 0; loop_idx < _num_loops; loop_idx++) { 1171 int block_idx = 0; 1172 assert(!is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx)), "the first block must not be present in any loop"); 1173 1174 // skip blocks before the loop 1175 while (block_idx < _num_blocks && !is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx))) { 1176 block_idx++; 1177 } 1178 // skip blocks of loop 1179 while (block_idx < _num_blocks && is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx))) { 1180 block_idx++; 1181 } 1182 // after the first non-loop block, there must not be another loop-block 1183 while (block_idx < _num_blocks) { 1184 assert(!is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx)), "loop not continuous in linear-scan order"); 1185 block_idx++; 1186 } 1187 } 1188 } 1189 #endif // ASSERT 1190 1191 1192 void IR::compute_code() { 1193 assert(is_valid(), "IR must be valid"); 1194 1195 ComputeLinearScanOrder compute_order(compilation(), start()); 1196 _num_loops = compute_order.num_loops(); 1197 _code = compute_order.linear_scan_order(); 1198 } 1199 1200 1201 void IR::compute_use_counts() { 1202 // make sure all values coming out of this block get evaluated. 1203 int num_blocks = _code->length(); 1204 for (int i = 0; i < num_blocks; i++) { 1205 _code->at(i)->end()->state()->pin_stack_for_linear_scan(); 1206 } 1207 1208 // compute use counts 1209 UseCountComputer::compute(_code); 1210 } 1211 1212 1213 void IR::iterate_preorder(BlockClosure* closure) { 1214 assert(is_valid(), "IR must be valid"); 1215 start()->iterate_preorder(closure); 1216 } 1217 1218 1219 void IR::iterate_postorder(BlockClosure* closure) { 1220 assert(is_valid(), "IR must be valid"); 1221 start()->iterate_postorder(closure); 1222 } 1223 1224 void IR::iterate_linear_scan_order(BlockClosure* closure) { 1225 linear_scan_order()->iterate_forward(closure); 1226 } 1227 1228 1229 #ifndef PRODUCT 1230 class BlockPrinter: public BlockClosure { 1231 private: 1232 InstructionPrinter* _ip; 1233 bool _cfg_only; 1234 bool _live_only; 1235 1236 public: 1237 BlockPrinter(InstructionPrinter* ip, bool cfg_only, bool live_only = false) { 1238 _ip = ip; 1239 _cfg_only = cfg_only; 1240 _live_only = live_only; 1241 } 1242 1243 virtual void block_do(BlockBegin* block) { 1244 if (_cfg_only) { 1245 _ip->print_instr(block); tty->cr(); 1246 } else { 1247 block->print_block(*_ip, _live_only); 1248 } 1249 } 1250 }; 1251 1252 1253 void IR::print(BlockBegin* start, bool cfg_only, bool live_only) { 1254 ttyLocker ttyl; 1255 InstructionPrinter ip(!cfg_only); 1256 BlockPrinter bp(&ip, cfg_only, live_only); 1257 start->iterate_preorder(&bp); 1258 tty->cr(); 1259 } 1260 1261 void IR::print(bool cfg_only, bool live_only) { 1262 if (is_valid()) { 1263 print(start(), cfg_only, live_only); 1264 } else { 1265 tty->print_cr("invalid IR"); 1266 } 1267 } 1268 #endif // PRODUCT 1269 1270 #ifdef ASSERT 1271 class EndNotNullValidator : public BlockClosure { 1272 public: 1273 virtual void block_do(BlockBegin* block) { 1274 assert(block->end() != nullptr, "Expect block end to exist."); 1275 } 1276 }; 1277 1278 class XentryFlagValidator : public BlockClosure { 1279 public: 1280 virtual void block_do(BlockBegin* block) { 1281 for (int i = 0; i < block->end()->number_of_sux(); i++) { 1282 assert(!block->end()->sux_at(i)->is_set(BlockBegin::exception_entry_flag), "must not be xhandler"); 1283 } 1284 for (int i = 0; i < block->number_of_exception_handlers(); i++) { 1285 assert(block->exception_handler_at(i)->is_set(BlockBegin::exception_entry_flag), "must be xhandler"); 1286 } 1287 } 1288 }; 1289 1290 typedef GrowableArray<BlockList*> BlockListList; 1291 1292 // Validation goals: 1293 // - code() length == blocks length 1294 // - code() contents == blocks content 1295 // - Each block's computed predecessors match sux lists (length) 1296 // - Each block's computed predecessors match sux lists (set content) 1297 class PredecessorAndCodeValidator : public BlockClosure { 1298 private: 1299 BlockListList* _predecessors; // Each index i will hold predecessors of block with id i 1300 BlockList* _blocks; 1301 1302 static int cmp(BlockBegin** a, BlockBegin** b) { 1303 return (*a)->block_id() - (*b)->block_id(); 1304 } 1305 1306 public: 1307 PredecessorAndCodeValidator(IR* hir) { 1308 ResourceMark rm; 1309 _predecessors = new BlockListList(BlockBegin::number_of_blocks(), BlockBegin::number_of_blocks(), nullptr); 1310 _blocks = new BlockList(BlockBegin::number_of_blocks()); 1311 1312 hir->start()->iterate_preorder(this); 1313 if (hir->code() != nullptr) { 1314 assert(hir->code()->length() == _blocks->length(), "must match"); 1315 for (int i = 0; i < _blocks->length(); i++) { 1316 assert(hir->code()->contains(_blocks->at(i)), "should be in both lists"); 1317 } 1318 } 1319 1320 for (int i = 0; i < _blocks->length(); i++) { 1321 BlockBegin* block = _blocks->at(i); 1322 verify_block_preds_against_collected_preds(block); 1323 } 1324 } 1325 1326 virtual void block_do(BlockBegin* block) { 1327 _blocks->append(block); 1328 collect_predecessors(block); 1329 } 1330 1331 private: 1332 void collect_predecessors(BlockBegin* block) { 1333 for (int i = 0; i < block->end()->number_of_sux(); i++) { 1334 collect_predecessor(block, block->end()->sux_at(i)); 1335 } 1336 for (int i = 0; i < block->number_of_exception_handlers(); i++) { 1337 collect_predecessor(block, block->exception_handler_at(i)); 1338 } 1339 } 1340 1341 void collect_predecessor(BlockBegin* const pred, const BlockBegin* sux) { 1342 BlockList* preds = _predecessors->at_grow(sux->block_id(), nullptr); 1343 if (preds == nullptr) { 1344 preds = new BlockList(); 1345 _predecessors->at_put(sux->block_id(), preds); 1346 } 1347 preds->append(pred); 1348 } 1349 1350 void verify_block_preds_against_collected_preds(const BlockBegin* block) const { 1351 BlockList* preds = _predecessors->at(block->block_id()); 1352 if (preds == nullptr) { 1353 assert(block->number_of_preds() == 0, "should be the same"); 1354 return; 1355 } 1356 assert(preds->length() == block->number_of_preds(), "should be the same"); 1357 1358 // clone the pred list so we can mutate it 1359 BlockList* pred_copy = new BlockList(); 1360 for (int j = 0; j < block->number_of_preds(); j++) { 1361 pred_copy->append(block->pred_at(j)); 1362 } 1363 // sort them in the same order 1364 preds->sort(cmp); 1365 pred_copy->sort(cmp); 1366 for (int j = 0; j < block->number_of_preds(); j++) { 1367 assert(preds->at(j) == pred_copy->at(j), "must match"); 1368 } 1369 } 1370 }; 1371 1372 class VerifyBlockBeginField : public BlockClosure { 1373 public: 1374 virtual void block_do(BlockBegin* block) { 1375 for (Instruction* cur = block; cur != nullptr; cur = cur->next()) { 1376 assert(cur->block() == block, "Block begin is not correct"); 1377 } 1378 } 1379 }; 1380 1381 class ValidateEdgeMutuality : public BlockClosure { 1382 public: 1383 virtual void block_do(BlockBegin* block) { 1384 for (int i = 0; i < block->end()->number_of_sux(); i++) { 1385 assert(block->end()->sux_at(i)->is_predecessor(block), "Block's successor should have it as predecessor"); 1386 } 1387 1388 for (int i = 0; i < block->number_of_exception_handlers(); i++) { 1389 assert(block->exception_handler_at(i)->is_predecessor(block), "Block's exception handler should have it as predecessor"); 1390 } 1391 1392 for (int i = 0; i < block->number_of_preds(); i++) { 1393 assert(block->pred_at(i) != nullptr, "Predecessor must exist"); 1394 assert(block->pred_at(i)->end() != nullptr, "Predecessor end must exist"); 1395 bool is_sux = block->pred_at(i)->end()->is_sux(block); 1396 bool is_xhandler = block->pred_at(i)->is_exception_handler(block); 1397 assert(is_sux || is_xhandler, "Block's predecessor should have it as successor or xhandler"); 1398 } 1399 } 1400 }; 1401 1402 void IR::expand_with_neighborhood(BlockList& blocks) { 1403 int original_size = blocks.length(); 1404 for (int h = 0; h < original_size; h++) { 1405 BlockBegin* block = blocks.at(h); 1406 1407 for (int i = 0; i < block->end()->number_of_sux(); i++) { 1408 if (!blocks.contains(block->end()->sux_at(i))) { 1409 blocks.append(block->end()->sux_at(i)); 1410 } 1411 } 1412 1413 for (int i = 0; i < block->number_of_preds(); i++) { 1414 if (!blocks.contains(block->pred_at(i))) { 1415 blocks.append(block->pred_at(i)); 1416 } 1417 } 1418 1419 for (int i = 0; i < block->number_of_exception_handlers(); i++) { 1420 if (!blocks.contains(block->exception_handler_at(i))) { 1421 blocks.append(block->exception_handler_at(i)); 1422 } 1423 } 1424 } 1425 } 1426 1427 void IR::verify_local(BlockList& blocks) { 1428 EndNotNullValidator ennv; 1429 blocks.iterate_forward(&ennv); 1430 1431 ValidateEdgeMutuality vem; 1432 blocks.iterate_forward(&vem); 1433 1434 VerifyBlockBeginField verifier; 1435 blocks.iterate_forward(&verifier); 1436 } 1437 1438 void IR::verify() { 1439 XentryFlagValidator xe; 1440 iterate_postorder(&xe); 1441 1442 PredecessorAndCodeValidator pv(this); 1443 1444 EndNotNullValidator ennv; 1445 iterate_postorder(&ennv); 1446 1447 ValidateEdgeMutuality vem; 1448 iterate_postorder(&vem); 1449 1450 VerifyBlockBeginField verifier; 1451 iterate_postorder(&verifier); 1452 } 1453 #endif // ASSERT 1454 1455 void SubstitutionResolver::visit(Value* v) { 1456 Value v0 = *v; 1457 if (v0) { 1458 Value vs = v0->subst(); 1459 if (vs != v0) { 1460 *v = v0->subst(); 1461 } 1462 } 1463 } 1464 1465 #ifdef ASSERT 1466 class SubstitutionChecker: public ValueVisitor { 1467 void visit(Value* v) { 1468 Value v0 = *v; 1469 if (v0) { 1470 Value vs = v0->subst(); 1471 assert(vs == v0, "missed substitution"); 1472 } 1473 } 1474 }; 1475 #endif 1476 1477 1478 void SubstitutionResolver::block_do(BlockBegin* block) { 1479 Instruction* last = nullptr; 1480 for (Instruction* n = block; n != nullptr;) { 1481 n->values_do(this); 1482 // need to remove this instruction from the instruction stream 1483 if (n->subst() != n) { 1484 guarantee(last != nullptr, "must have last"); 1485 last->set_next(n->next()); 1486 } else { 1487 last = n; 1488 } 1489 n = last->next(); 1490 } 1491 1492 #ifdef ASSERT 1493 SubstitutionChecker check_substitute; 1494 if (block->state()) block->state()->values_do(&check_substitute); 1495 block->block_values_do(&check_substitute); 1496 if (block->end() && block->end()->state()) block->end()->state()->values_do(&check_substitute); 1497 #endif 1498 }