1 /*
   2  * Copyright (c) 1999, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "c1/c1_Instruction.hpp"
  26 #include "c1/c1_InstructionPrinter.hpp"
  27 #include "c1/c1_IR.hpp"
  28 #include "c1/c1_ValueStack.hpp"
  29 #include "ci/ciFlatArrayKlass.hpp"
  30 #include "ci/ciInlineKlass.hpp"
  31 #include "ci/ciObjArrayKlass.hpp"
  32 #include "ci/ciTypeArrayKlass.hpp"
  33 #include "utilities/bitMap.inline.hpp"
  34 
  35 
  36 // Implementation of Instruction
  37 
  38 
  39 int Instruction::dominator_depth() {
  40   int result = -1;
  41   if (block()) {
  42     result = block()->dominator_depth();
  43   }
  44   assert(result != -1 || this->as_Local(), "Only locals have dominator depth -1");
  45   return result;
  46 }
  47 
  48 Instruction::Condition Instruction::mirror(Condition cond) {
  49   switch (cond) {
  50     case eql: return eql;
  51     case neq: return neq;
  52     case lss: return gtr;
  53     case leq: return geq;
  54     case gtr: return lss;
  55     case geq: return leq;
  56     case aeq: return beq;
  57     case beq: return aeq;
  58   }
  59   ShouldNotReachHere();
  60   return eql;
  61 }
  62 
  63 
  64 Instruction::Condition Instruction::negate(Condition cond) {
  65   switch (cond) {
  66     case eql: return neq;
  67     case neq: return eql;
  68     case lss: return geq;
  69     case leq: return gtr;
  70     case gtr: return leq;
  71     case geq: return lss;
  72     case aeq: assert(false, "Above equal cannot be negated");
  73     case beq: assert(false, "Below equal cannot be negated");
  74   }
  75   ShouldNotReachHere();
  76   return eql;
  77 }
  78 
  79 void Instruction::update_exception_state(ValueStack* state) {
  80   if (state != nullptr && (state->kind() == ValueStack::EmptyExceptionState || state->kind() == ValueStack::ExceptionState)) {
  81     assert(state->kind() == ValueStack::EmptyExceptionState || Compilation::current()->env()->should_retain_local_variables(), "unexpected state kind");
  82     _exception_state = state;
  83   } else {
  84     _exception_state = nullptr;
  85   }
  86 }
  87 
  88 // Prev without need to have BlockBegin
  89 Instruction* Instruction::prev() {
  90   Instruction* p = nullptr;
  91   Instruction* q = block();
  92   while (q != this) {
  93     assert(q != nullptr, "this is not in the block's instruction list");
  94     p = q; q = q->next();
  95   }
  96   return p;
  97 }
  98 
  99 
 100 void Instruction::state_values_do(ValueVisitor* f) {
 101   if (state_before() != nullptr) {
 102     state_before()->values_do(f);
 103   }
 104   if (exception_state() != nullptr) {
 105     exception_state()->values_do(f);
 106   }
 107 }
 108 
 109 ciType* Instruction::exact_type() const {
 110   ciType* t = declared_type();
 111   if (t != nullptr && t->is_klass()) {
 112     return t->as_klass()->exact_klass();
 113   }
 114   return nullptr;
 115 }
 116 
 117 ciKlass* Instruction::as_loaded_klass_or_null() const {
 118   ciType* type = declared_type();
 119   if (type != nullptr && type->is_klass()) {
 120     ciKlass* klass = type->as_klass();
 121     if (klass->is_loaded()) {
 122       return klass;
 123     }
 124   }
 125   return nullptr;
 126 }
 127 
 128 bool Instruction::is_loaded_flat_array() const {
 129   if (UseArrayFlattening) {
 130     ciType* type = declared_type();
 131     return type != nullptr && type->is_flat_array_klass();
 132   }
 133   return false;
 134 }
 135 
 136 bool Instruction::maybe_flat_array() {
 137   if (UseArrayFlattening) {
 138     ciType* type = declared_type();
 139     if (type != nullptr) {
 140       if (type->is_ref_array_klass()) {
 141         return false;
 142       } else if (type->is_flat_array_klass()) {
 143         return true;
 144       } else if (type->is_obj_array_klass()) {
 145         // This is the unrefined array type
 146         ciKlass* element_klass = type->as_obj_array_klass()->element_klass();
 147         if (element_klass->can_be_inline_klass() && (!element_klass->is_inlinetype() || element_klass->as_inline_klass()->maybe_flat_in_array())) {
 148           return true;
 149         }
 150       } else if (type->is_klass() && type->as_klass()->is_java_lang_Object()) {
 151         // This can happen as a parameter to System.arraycopy()
 152         return true;
 153       }
 154     } else {
 155       // Type info gets lost during Phi merging (Phi, IfOp, etc), but we might be storing into a
 156       // flat array, so we should do a runtime check.
 157       return true;
 158     }
 159   }
 160   return false;
 161 }
 162 
 163 bool Instruction::maybe_null_free_array() {
 164   ciType* type = declared_type();
 165   if (type != nullptr) {
 166     if (type->is_obj_array_klass()) {
 167       // Due to array covariance, the runtime type might be a null-free array.
 168       if (type->as_obj_array_klass()->can_be_inline_array_klass()) {
 169         return true;
 170       }
 171     }
 172   } else {
 173     // Type info gets lost during Phi merging (Phi, IfOp, etc), but we might be storing into a
 174     // null-free array, so we should do a runtime check.
 175     return true;
 176   }
 177   return false;
 178 }
 179 
 180 #ifndef PRODUCT
 181 void Instruction::check_state(ValueStack* state) {
 182   if (state != nullptr) {
 183     state->verify();
 184   }
 185 }
 186 
 187 
 188 void Instruction::print() {
 189   InstructionPrinter ip;
 190   print(ip);
 191 }
 192 
 193 
 194 void Instruction::print_line() {
 195   InstructionPrinter ip;
 196   ip.print_line(this);
 197 }
 198 
 199 
 200 void Instruction::print(InstructionPrinter& ip) {
 201   ip.print_head();
 202   ip.print_line(this);
 203   tty->cr();
 204 }
 205 #endif // PRODUCT
 206 
 207 
 208 // perform constant and interval tests on index value
 209 bool AccessIndexed::compute_needs_range_check() {
 210   if (length()) {
 211     Constant* clength = length()->as_Constant();
 212     Constant* cindex = index()->as_Constant();
 213     if (clength && cindex) {
 214       IntConstant* l = clength->type()->as_IntConstant();
 215       IntConstant* i = cindex->type()->as_IntConstant();
 216       if (l && i && i->value() < l->value() && i->value() >= 0) {
 217         return false;
 218       }
 219     }
 220   }
 221 
 222   if (!this->check_flag(NeedsRangeCheckFlag)) {
 223     return false;
 224   }
 225 
 226   return true;
 227 }
 228 
 229 
 230 ciType* Constant::exact_type() const {
 231   if (type()->is_object() && type()->as_ObjectType()->is_loaded()) {
 232     return type()->as_ObjectType()->exact_type();
 233   }
 234   return nullptr;
 235 }
 236 
 237 ciType* LoadIndexed::exact_type() const {
 238   ciType* array_type = array()->exact_type();
 239   if (delayed() == nullptr && array_type != nullptr) {
 240     assert(array_type->is_array_klass(), "what else?");
 241     ciArrayKlass* ak = (ciArrayKlass*)array_type;
 242 
 243     if (ak->element_type()->is_instance_klass()) {
 244       ciInstanceKlass* ik = (ciInstanceKlass*)ak->element_type();
 245       if (ik->is_loaded() && ik->is_final()) {
 246         return ik;
 247       }
 248     }
 249   }
 250   return Instruction::exact_type();
 251 }
 252 
 253 ciType* LoadIndexed::declared_type() const {
 254   if (delayed() != nullptr) {
 255     return delayed()->field()->type();
 256   }
 257   ciType* array_type = array()->declared_type();
 258   if (array_type == nullptr || !array_type->is_loaded()) {
 259     return nullptr;
 260   }
 261   assert(array_type->is_array_klass(), "what else?");
 262   ciArrayKlass* ak = (ciArrayKlass*)array_type;
 263   return ak->element_type();
 264 }
 265 
 266 bool StoreIndexed::is_exact_flat_array_store() const {
 267   if (array()->is_loaded_flat_array() && value()->as_Constant() == nullptr && value()->declared_type() != nullptr) {
 268     ciKlass* element_klass = array()->declared_type()->as_flat_array_klass()->element_klass();
 269     ciKlass* actual_klass = value()->declared_type()->as_klass();
 270 
 271     // The following check can fail with inlining:
 272     //     void test45_inline(Object[] oa, Object o, int index) { oa[index] = o; }
 273     //     void test45(MyValue1[] va, int index, MyValue2 v) { test45_inline(va, v, index); }
 274     if (element_klass == actual_klass) {
 275       return true;
 276     }
 277   }
 278   return false;
 279 }
 280 
 281 ciType* LoadField::declared_type() const {
 282   return field()->type();
 283 }
 284 
 285 
 286 ciType* NewTypeArray::exact_type() const {
 287   return ciTypeArrayKlass::make(elt_type());
 288 }
 289 
 290 ciType* NewObjectArray::exact_type() const {
 291   return ciArrayKlass::make(klass());
 292 }
 293 
 294 ciType* NewMultiArray::exact_type() const {
 295   return _klass;
 296 }
 297 
 298 ciType* NewArray::declared_type() const {
 299   return exact_type();
 300 }
 301 
 302 ciType* NewInstance::exact_type() const {
 303   return klass();
 304 }
 305 
 306 ciType* NewInstance::declared_type() const {
 307   return exact_type();
 308 }
 309 
 310 ciType* CheckCast::declared_type() const {
 311   return klass();
 312 }
 313 
 314 // Implementation of ArithmeticOp
 315 
 316 bool ArithmeticOp::is_commutative() const {
 317   switch (op()) {
 318     case Bytecodes::_iadd: // fall through
 319     case Bytecodes::_ladd: // fall through
 320     case Bytecodes::_fadd: // fall through
 321     case Bytecodes::_dadd: // fall through
 322     case Bytecodes::_imul: // fall through
 323     case Bytecodes::_lmul: // fall through
 324     case Bytecodes::_fmul: // fall through
 325     case Bytecodes::_dmul: return true;
 326     default              : return false;
 327   }
 328 }
 329 
 330 
 331 bool ArithmeticOp::can_trap() const {
 332   switch (op()) {
 333     case Bytecodes::_idiv: // fall through
 334     case Bytecodes::_ldiv: // fall through
 335     case Bytecodes::_irem: // fall through
 336     case Bytecodes::_lrem: return true;
 337     default              : return false;
 338   }
 339 }
 340 
 341 
 342 // Implementation of LogicOp
 343 
 344 bool LogicOp::is_commutative() const {
 345 #ifdef ASSERT
 346   switch (op()) {
 347     case Bytecodes::_iand: // fall through
 348     case Bytecodes::_land: // fall through
 349     case Bytecodes::_ior : // fall through
 350     case Bytecodes::_lor : // fall through
 351     case Bytecodes::_ixor: // fall through
 352     case Bytecodes::_lxor: break;
 353     default              : ShouldNotReachHere(); break;
 354   }
 355 #endif
 356   // all LogicOps are commutative
 357   return true;
 358 }
 359 
 360 
 361 // Implementation of IfOp
 362 
 363 bool IfOp::is_commutative() const {
 364   return cond() == eql || cond() == neq;
 365 }
 366 
 367 
 368 // Implementation of StateSplit
 369 
 370 void StateSplit::substitute(BlockList& list, BlockBegin* old_block, BlockBegin* new_block) {
 371   NOT_PRODUCT(bool assigned = false;)
 372   for (int i = 0; i < list.length(); i++) {
 373     BlockBegin** b = list.adr_at(i);
 374     if (*b == old_block) {
 375       *b = new_block;
 376       NOT_PRODUCT(assigned = true;)
 377     }
 378   }
 379   assert(assigned == true, "should have assigned at least once");
 380 }
 381 
 382 
 383 IRScope* StateSplit::scope() const {
 384   return _state->scope();
 385 }
 386 
 387 
 388 void StateSplit::state_values_do(ValueVisitor* f) {
 389   Instruction::state_values_do(f);
 390   if (state() != nullptr) state()->values_do(f);
 391 }
 392 
 393 
 394 void BlockBegin::state_values_do(ValueVisitor* f) {
 395   StateSplit::state_values_do(f);
 396 
 397   if (is_set(BlockBegin::exception_entry_flag)) {
 398     for (int i = 0; i < number_of_exception_states(); i++) {
 399       exception_state_at(i)->values_do(f);
 400     }
 401   }
 402 }
 403 
 404 
 405 StoreField::StoreField(Value obj, int offset, ciField* field, Value value, bool is_static,
 406                        ValueStack* state_before, bool needs_patching)
 407   : AccessField(obj, offset, field, is_static, state_before, needs_patching)
 408   , _value(value)
 409   , _enclosing_field(nullptr)
 410 {
 411 #ifdef ASSERT
 412   AssertValues assert_value;
 413   values_do(&assert_value);
 414 #endif
 415   pin();
 416 }
 417 
 418 StoreIndexed::StoreIndexed(Value array, Value index, Value length, BasicType elt_type, Value value,
 419                            ValueStack* state_before, bool check_boolean, bool mismatched)
 420   : AccessIndexed(array, index, length, elt_type, state_before, mismatched)
 421   , _value(value), _check_boolean(check_boolean)
 422 {
 423 #ifdef ASSERT
 424   AssertValues assert_value;
 425   values_do(&assert_value);
 426 #endif
 427   pin();
 428 }
 429 
 430 
 431 // Implementation of Invoke
 432 
 433 
 434 Invoke::Invoke(Bytecodes::Code code, ValueType* result_type, Value recv, Values* args,
 435                ciMethod* target, ValueStack* state_before)
 436   : StateSplit(result_type, state_before)
 437   , _code(code)
 438   , _recv(recv)
 439   , _args(args)
 440   , _target(target)
 441 {
 442   set_flag(TargetIsLoadedFlag,   target->is_loaded());
 443   set_flag(TargetIsFinalFlag,    target_is_loaded() && target->is_final_method());
 444 
 445   assert(args != nullptr, "args must exist");
 446 #ifdef ASSERT
 447   AssertValues assert_value;
 448   values_do(&assert_value);
 449 #endif
 450 
 451   // provide an initial guess of signature size.
 452   _signature = new BasicTypeList(number_of_arguments() + (has_receiver() ? 1 : 0));
 453   if (has_receiver()) {
 454     _signature->append(as_BasicType(receiver()->type()));
 455   }
 456   for (int i = 0; i < number_of_arguments(); i++) {
 457     Value v = argument_at(i);
 458     ValueType* t = v->type();
 459     BasicType bt = as_BasicType(t);
 460     _signature->append(bt);
 461   }
 462 }
 463 
 464 
 465 void Invoke::state_values_do(ValueVisitor* f) {
 466   StateSplit::state_values_do(f);
 467   if (state_before() != nullptr) state_before()->values_do(f);
 468   if (state()        != nullptr) state()->values_do(f);
 469 }
 470 
 471 ciType* Invoke::declared_type() const {
 472   ciSignature* declared_signature = state()->scope()->method()->get_declared_signature_at_bci(state()->bci());
 473   ciType *t = declared_signature->return_type();
 474   assert(t->basic_type() != T_VOID, "need return value of void method?");
 475   return t;
 476 }
 477 
 478 // Implementation of Constant
 479 intx Constant::hash() const {
 480   if (state_before() == nullptr) {
 481     switch (type()->tag()) {
 482     case intTag:
 483       return HASH2(name(), type()->as_IntConstant()->value());
 484     case addressTag:
 485       return HASH2(name(), type()->as_AddressConstant()->value());
 486     case longTag:
 487       {
 488         jlong temp = type()->as_LongConstant()->value();
 489         return HASH3(name(), high(temp), low(temp));
 490       }
 491     case floatTag:
 492       return HASH2(name(), jint_cast(type()->as_FloatConstant()->value()));
 493     case doubleTag:
 494       {
 495         jlong temp = jlong_cast(type()->as_DoubleConstant()->value());
 496         return HASH3(name(), high(temp), low(temp));
 497       }
 498     case objectTag:
 499       assert(type()->as_ObjectType()->is_loaded(), "can't handle unloaded values");
 500       return HASH2(name(), type()->as_ObjectType()->constant_value());
 501     case metaDataTag:
 502       assert(type()->as_MetadataType()->is_loaded(), "can't handle unloaded values");
 503       return HASH2(name(), type()->as_MetadataType()->constant_value());
 504     default:
 505       ShouldNotReachHere();
 506     }
 507   }
 508   return 0;
 509 }
 510 
 511 bool Constant::is_equal(Value v) const {
 512   if (v->as_Constant() == nullptr) return false;
 513 
 514   switch (type()->tag()) {
 515     case intTag:
 516       {
 517         IntConstant* t1 =    type()->as_IntConstant();
 518         IntConstant* t2 = v->type()->as_IntConstant();
 519         return (t1 != nullptr && t2 != nullptr &&
 520                 t1->value() == t2->value());
 521       }
 522     case longTag:
 523       {
 524         LongConstant* t1 =    type()->as_LongConstant();
 525         LongConstant* t2 = v->type()->as_LongConstant();
 526         return (t1 != nullptr && t2 != nullptr &&
 527                 t1->value() == t2->value());
 528       }
 529     case floatTag:
 530       {
 531         FloatConstant* t1 =    type()->as_FloatConstant();
 532         FloatConstant* t2 = v->type()->as_FloatConstant();
 533         return (t1 != nullptr && t2 != nullptr &&
 534                 jint_cast(t1->value()) == jint_cast(t2->value()));
 535       }
 536     case doubleTag:
 537       {
 538         DoubleConstant* t1 =    type()->as_DoubleConstant();
 539         DoubleConstant* t2 = v->type()->as_DoubleConstant();
 540         return (t1 != nullptr && t2 != nullptr &&
 541                 jlong_cast(t1->value()) == jlong_cast(t2->value()));
 542       }
 543     case objectTag:
 544       {
 545         ObjectType* t1 =    type()->as_ObjectType();
 546         ObjectType* t2 = v->type()->as_ObjectType();
 547         return (t1 != nullptr && t2 != nullptr &&
 548                 t1->is_loaded() && t2->is_loaded() &&
 549                 t1->constant_value() == t2->constant_value());
 550       }
 551     case metaDataTag:
 552       {
 553         MetadataType* t1 =    type()->as_MetadataType();
 554         MetadataType* t2 = v->type()->as_MetadataType();
 555         return (t1 != nullptr && t2 != nullptr &&
 556                 t1->is_loaded() && t2->is_loaded() &&
 557                 t1->constant_value() == t2->constant_value());
 558       }
 559     default:
 560       return false;
 561   }
 562 }
 563 
 564 Constant::CompareResult Constant::compare(Instruction::Condition cond, Value right) const {
 565   Constant* rc = right->as_Constant();
 566   // other is not a constant
 567   if (rc == nullptr) return not_comparable;
 568 
 569   ValueType* lt = type();
 570   ValueType* rt = rc->type();
 571   // different types
 572   if (lt->base() != rt->base()) return not_comparable;
 573   switch (lt->tag()) {
 574   case intTag: {
 575     int x = lt->as_IntConstant()->value();
 576     int y = rt->as_IntConstant()->value();
 577     switch (cond) {
 578     case If::eql: return x == y ? cond_true : cond_false;
 579     case If::neq: return x != y ? cond_true : cond_false;
 580     case If::lss: return x <  y ? cond_true : cond_false;
 581     case If::leq: return x <= y ? cond_true : cond_false;
 582     case If::gtr: return x >  y ? cond_true : cond_false;
 583     case If::geq: return x >= y ? cond_true : cond_false;
 584     default     : break;
 585     }
 586     break;
 587   }
 588   case longTag: {
 589     jlong x = lt->as_LongConstant()->value();
 590     jlong y = rt->as_LongConstant()->value();
 591     switch (cond) {
 592     case If::eql: return x == y ? cond_true : cond_false;
 593     case If::neq: return x != y ? cond_true : cond_false;
 594     case If::lss: return x <  y ? cond_true : cond_false;
 595     case If::leq: return x <= y ? cond_true : cond_false;
 596     case If::gtr: return x >  y ? cond_true : cond_false;
 597     case If::geq: return x >= y ? cond_true : cond_false;
 598     default     : break;
 599     }
 600     break;
 601   }
 602   case objectTag: {
 603     ciObject* xvalue = lt->as_ObjectType()->constant_value();
 604     ciObject* yvalue = rt->as_ObjectType()->constant_value();
 605     assert(xvalue != nullptr && yvalue != nullptr, "not constants");
 606     if (xvalue->is_loaded() && yvalue->is_loaded()) {
 607       switch (cond) {
 608       case If::eql: return xvalue == yvalue ? cond_true : cond_false;
 609       case If::neq: return xvalue != yvalue ? cond_true : cond_false;
 610       default     : break;
 611       }
 612     }
 613     break;
 614   }
 615   case metaDataTag: {
 616     ciMetadata* xvalue = lt->as_MetadataType()->constant_value();
 617     ciMetadata* yvalue = rt->as_MetadataType()->constant_value();
 618     assert(xvalue != nullptr && yvalue != nullptr, "not constants");
 619     if (xvalue->is_loaded() && yvalue->is_loaded()) {
 620       switch (cond) {
 621       case If::eql: return xvalue == yvalue ? cond_true : cond_false;
 622       case If::neq: return xvalue != yvalue ? cond_true : cond_false;
 623       default     : break;
 624       }
 625     }
 626     break;
 627   }
 628   default:
 629     break;
 630   }
 631   return not_comparable;
 632 }
 633 
 634 
 635 // Implementation of BlockBegin
 636 
 637 void BlockBegin::set_end(BlockEnd* new_end) { // Assumes that no predecessor of new_end still has it as its successor
 638   assert(new_end != nullptr, "Should not reset block new_end to null");
 639   if (new_end == _end) return;
 640 
 641   // Remove this block as predecessor of its current successors
 642   if (_end != nullptr) {
 643     for (int i = 0; i < number_of_sux(); i++) {
 644       sux_at(i)->remove_predecessor(this);
 645     }
 646   }
 647 
 648   _end = new_end;
 649 
 650   // Add this block as predecessor of its new successors
 651   for (int i = 0; i < number_of_sux(); i++) {
 652     sux_at(i)->add_predecessor(this);
 653   }
 654 }
 655 
 656 
 657 void BlockBegin::disconnect_edge(BlockBegin* from, BlockBegin* to) {
 658   // disconnect any edges between from and to
 659 #ifndef PRODUCT
 660   if (PrintIR && Verbose) {
 661     tty->print_cr("Disconnected edge B%d -> B%d", from->block_id(), to->block_id());
 662   }
 663 #endif
 664   for (int s = 0; s < from->number_of_sux();) {
 665     BlockBegin* sux = from->sux_at(s);
 666     if (sux == to) {
 667       int index = sux->_predecessors.find(from);
 668       if (index >= 0) {
 669         sux->_predecessors.remove_at(index);
 670       }
 671       from->end()->remove_sux_at(s);
 672     } else {
 673       s++;
 674     }
 675   }
 676 }
 677 
 678 
 679 void BlockBegin::substitute_sux(BlockBegin* old_sux, BlockBegin* new_sux) {
 680   // modify predecessors before substituting successors
 681   for (int i = 0; i < number_of_sux(); i++) {
 682     if (sux_at(i) == old_sux) {
 683       // remove old predecessor before adding new predecessor
 684       // otherwise there is a dead predecessor in the list
 685       new_sux->remove_predecessor(old_sux);
 686       new_sux->add_predecessor(this);
 687     }
 688   }
 689   old_sux->remove_predecessor(this);
 690   end()->substitute_sux(old_sux, new_sux);
 691 }
 692 
 693 
 694 
 695 // In general it is not possible to calculate a value for the field "depth_first_number"
 696 // of the inserted block, without recomputing the values of the other blocks
 697 // in the CFG. Therefore the value of "depth_first_number" in BlockBegin becomes meaningless.
 698 BlockBegin* BlockBegin::insert_block_between(BlockBegin* sux) {
 699   assert(!sux->is_set(critical_edge_split_flag), "sanity check");
 700 
 701   int bci = sux->bci();
 702   // critical edge splitting may introduce a goto after a if and array
 703   // bound check elimination may insert a predicate between the if and
 704   // goto. The bci of the goto can't be the one of the if otherwise
 705   // the state and bci are inconsistent and a deoptimization triggered
 706   // by the predicate would lead to incorrect execution/a crash.
 707   BlockBegin* new_sux = new BlockBegin(bci);
 708 
 709   // mark this block (special treatment when block order is computed)
 710   new_sux->set(critical_edge_split_flag);
 711 
 712   // This goto is not a safepoint.
 713   Goto* e = new Goto(sux, false);
 714   new_sux->set_next(e, bci);
 715   new_sux->set_end(e);
 716   // setup states
 717   ValueStack* s = end()->state();
 718   new_sux->set_state(s->copy(s->kind(), bci));
 719   e->set_state(s->copy(s->kind(), bci));
 720   assert(new_sux->state()->locals_size() == s->locals_size(), "local size mismatch!");
 721   assert(new_sux->state()->stack_size() == s->stack_size(), "stack size mismatch!");
 722   assert(new_sux->state()->locks_size() == s->locks_size(), "locks size mismatch!");
 723 
 724   // link predecessor to new block
 725   end()->substitute_sux(sux, new_sux);
 726 
 727   // The ordering needs to be the same, so remove the link that the
 728   // set_end call above added and substitute the new_sux for this
 729   // block.
 730   sux->remove_predecessor(new_sux);
 731 
 732   // the successor could be the target of a switch so it might have
 733   // multiple copies of this predecessor, so substitute the new_sux
 734   // for the first and delete the rest.
 735   bool assigned = false;
 736   BlockList& list = sux->_predecessors;
 737   for (int i = 0; i < list.length(); i++) {
 738     BlockBegin** b = list.adr_at(i);
 739     if (*b == this) {
 740       if (assigned) {
 741         list.remove_at(i);
 742         // reprocess this index
 743         i--;
 744       } else {
 745         assigned = true;
 746         *b = new_sux;
 747       }
 748       // link the new block back to it's predecessors.
 749       new_sux->add_predecessor(this);
 750     }
 751   }
 752   assert(assigned == true, "should have assigned at least once");
 753   return new_sux;
 754 }
 755 
 756 
 757 void BlockBegin::add_predecessor(BlockBegin* pred) {
 758   _predecessors.append(pred);
 759 }
 760 
 761 
 762 void BlockBegin::remove_predecessor(BlockBegin* pred) {
 763   int idx;
 764   while ((idx = _predecessors.find(pred)) >= 0) {
 765     _predecessors.remove_at(idx);
 766   }
 767 }
 768 
 769 
 770 void BlockBegin::add_exception_handler(BlockBegin* b) {
 771   assert(b != nullptr && (b->is_set(exception_entry_flag)), "exception handler must exist");
 772   // add only if not in the list already
 773   if (!_exception_handlers.contains(b)) _exception_handlers.append(b);
 774 }
 775 
 776 int BlockBegin::add_exception_state(ValueStack* state) {
 777   assert(is_set(exception_entry_flag), "only for xhandlers");
 778   if (_exception_states == nullptr) {
 779     _exception_states = new ValueStackStack(4);
 780   }
 781   _exception_states->append(state);
 782   return _exception_states->length() - 1;
 783 }
 784 
 785 
 786 void BlockBegin::iterate_preorder(boolArray& mark, BlockClosure* closure) {
 787   if (!mark.at(block_id())) {
 788     mark.at_put(block_id(), true);
 789     closure->block_do(this);
 790     BlockEnd* e = end(); // must do this after block_do because block_do may change it!
 791     { for (int i = number_of_exception_handlers() - 1; i >= 0; i--) exception_handler_at(i)->iterate_preorder(mark, closure); }
 792     { for (int i = e->number_of_sux            () - 1; i >= 0; i--) e->sux_at           (i)->iterate_preorder(mark, closure); }
 793   }
 794 }
 795 
 796 
 797 void BlockBegin::iterate_postorder(boolArray& mark, BlockClosure* closure) {
 798   if (!mark.at(block_id())) {
 799     mark.at_put(block_id(), true);
 800     BlockEnd* e = end();
 801     { for (int i = number_of_exception_handlers() - 1; i >= 0; i--) exception_handler_at(i)->iterate_postorder(mark, closure); }
 802     { for (int i = e->number_of_sux            () - 1; i >= 0; i--) e->sux_at           (i)->iterate_postorder(mark, closure); }
 803     closure->block_do(this);
 804   }
 805 }
 806 
 807 
 808 void BlockBegin::iterate_preorder(BlockClosure* closure) {
 809   int mark_len = number_of_blocks();
 810   boolArray mark(mark_len, mark_len, false);
 811   iterate_preorder(mark, closure);
 812 }
 813 
 814 
 815 void BlockBegin::iterate_postorder(BlockClosure* closure) {
 816   int mark_len = number_of_blocks();
 817   boolArray mark(mark_len, mark_len, false);
 818   iterate_postorder(mark, closure);
 819 }
 820 
 821 
 822 void BlockBegin::block_values_do(ValueVisitor* f) {
 823   for (Instruction* n = this; n != nullptr; n = n->next()) n->values_do(f);
 824 }
 825 
 826 
 827 #ifndef PRODUCT
 828    #define TRACE_PHI(code) if (PrintPhiFunctions) { code; }
 829 #else
 830    #define TRACE_PHI(coce)
 831 #endif
 832 
 833 
 834 bool BlockBegin::try_merge(ValueStack* new_state, bool has_irreducible_loops) {
 835   TRACE_PHI(tty->print_cr("********** try_merge for block B%d", block_id()));
 836 
 837   // local variables used for state iteration
 838   int index;
 839   Value new_value, existing_value;
 840 
 841   ValueStack* existing_state = state();
 842   if (existing_state == nullptr) {
 843     TRACE_PHI(tty->print_cr("first call of try_merge for this block"));
 844 
 845     if (is_set(BlockBegin::was_visited_flag)) {
 846       // this actually happens for complicated jsr/ret structures
 847       return false; // BAILOUT in caller
 848     }
 849 
 850     // copy state because it is altered
 851     new_state = new_state->copy(ValueStack::BlockBeginState, bci());
 852 
 853     // Use method liveness to invalidate dead locals
 854     MethodLivenessResult liveness = new_state->scope()->method()->liveness_at_bci(bci());
 855     if (liveness.is_valid()) {
 856       assert((int)liveness.size() == new_state->locals_size(), "error in use of liveness");
 857 
 858       for_each_local_value(new_state, index, new_value) {
 859         if (!liveness.at(index) || new_value->type()->is_illegal()) {
 860           new_state->invalidate_local(index);
 861           TRACE_PHI(tty->print_cr("invalidating dead local %d", index));
 862         }
 863       }
 864     }
 865 
 866     if (is_set(BlockBegin::parser_loop_header_flag)) {
 867       TRACE_PHI(tty->print_cr("loop header block, initializing phi functions"));
 868 
 869       for_each_stack_value(new_state, index, new_value) {
 870         new_state->setup_phi_for_stack(this, index);
 871         TRACE_PHI(tty->print_cr("creating phi-function %c%d for stack %d", new_state->stack_at(index)->type()->tchar(), new_state->stack_at(index)->id(), index));
 872       }
 873 
 874       BitMap& requires_phi_function = new_state->scope()->requires_phi_function();
 875       for_each_local_value(new_state, index, new_value) {
 876         bool requires_phi = requires_phi_function.at(index) || (new_value->type()->is_double_word() && requires_phi_function.at(index + 1));
 877         if (requires_phi || !SelectivePhiFunctions || has_irreducible_loops) {
 878           new_state->setup_phi_for_local(this, index);
 879           TRACE_PHI(tty->print_cr("creating phi-function %c%d for local %d", new_state->local_at(index)->type()->tchar(), new_state->local_at(index)->id(), index));
 880         }
 881       }
 882     }
 883 
 884     // initialize state of block
 885     set_state(new_state);
 886 
 887   } else if (existing_state->is_same(new_state)) {
 888     TRACE_PHI(tty->print_cr("existing state found"));
 889 
 890     assert(existing_state->scope() == new_state->scope(), "not matching");
 891     assert(existing_state->locals_size() == new_state->locals_size(), "not matching");
 892     assert(existing_state->stack_size() == new_state->stack_size(), "not matching");
 893 
 894     if (is_set(BlockBegin::was_visited_flag)) {
 895       TRACE_PHI(tty->print_cr("loop header block, phis must be present"));
 896 
 897       if (!is_set(BlockBegin::parser_loop_header_flag)) {
 898         // this actually happens for complicated jsr/ret structures
 899         return false; // BAILOUT in caller
 900       }
 901 
 902       for_each_local_value(existing_state, index, existing_value) {
 903         Value new_value = new_state->local_at(index);
 904         if (new_value == nullptr || new_value->type()->tag() != existing_value->type()->tag()) {
 905           Phi* existing_phi = existing_value->as_Phi();
 906           if (existing_phi == nullptr) {
 907             return false; // BAILOUT in caller
 908           }
 909           // Invalidate the phi function here. This case is very rare except for
 910           // JVMTI capability "can_access_local_variables".
 911           // In really rare cases we will bail out in LIRGenerator::move_to_phi.
 912           existing_phi->make_illegal();
 913           existing_state->invalidate_local(index);
 914           TRACE_PHI(tty->print_cr("invalidating local %d because of type mismatch", index));
 915         }
 916 
 917         if (existing_value != new_state->local_at(index) && existing_value->as_Phi() == nullptr) {
 918           TRACE_PHI(tty->print_cr("required phi for local %d is missing, irreducible loop?", index));
 919           return false; // BAILOUT in caller
 920         }
 921       }
 922 
 923 #ifdef ASSERT
 924       // check that all necessary phi functions are present
 925       for_each_stack_value(existing_state, index, existing_value) {
 926         assert(existing_value->as_Phi() != nullptr && existing_value->as_Phi()->block() == this, "phi function required");
 927       }
 928       for_each_local_value(existing_state, index, existing_value) {
 929         assert(existing_value == new_state->local_at(index) || (existing_value->as_Phi() != nullptr && existing_value->as_Phi()->as_Phi()->block() == this), "phi function required");
 930       }
 931 #endif
 932 
 933     } else {
 934       TRACE_PHI(tty->print_cr("creating phi functions on demand"));
 935 
 936       // create necessary phi functions for stack
 937       for_each_stack_value(existing_state, index, existing_value) {
 938         Value new_value = new_state->stack_at(index);
 939         Phi* existing_phi = existing_value->as_Phi();
 940 
 941         if (new_value != existing_value && (existing_phi == nullptr || existing_phi->block() != this)) {
 942           existing_state->setup_phi_for_stack(this, index);
 943           TRACE_PHI(tty->print_cr("creating phi-function %c%d for stack %d", existing_state->stack_at(index)->type()->tchar(), existing_state->stack_at(index)->id(), index));
 944         }
 945       }
 946 
 947       // create necessary phi functions for locals
 948       for_each_local_value(existing_state, index, existing_value) {
 949         Value new_value = new_state->local_at(index);
 950         Phi* existing_phi = existing_value->as_Phi();
 951 
 952         if (new_value == nullptr || new_value->type()->tag() != existing_value->type()->tag()) {
 953           existing_state->invalidate_local(index);
 954           TRACE_PHI(tty->print_cr("invalidating local %d because of type mismatch", index));
 955         } else if (new_value != existing_value && (existing_phi == nullptr || existing_phi->block() != this)) {
 956           existing_state->setup_phi_for_local(this, index);
 957           TRACE_PHI(tty->print_cr("creating phi-function %c%d for local %d", existing_state->local_at(index)->type()->tchar(), existing_state->local_at(index)->id(), index));
 958         }
 959       }
 960     }
 961 
 962     assert(existing_state->caller_state() == new_state->caller_state(), "caller states must be equal");
 963 
 964   } else {
 965     assert(false, "stack or locks not matching (invalid bytecodes)");
 966     return false;
 967   }
 968 
 969   TRACE_PHI(tty->print_cr("********** try_merge for block B%d successful", block_id()));
 970 
 971   return true;
 972 }
 973 
 974 
 975 #ifndef PRODUCT
 976 void BlockBegin::print_block() {
 977   InstructionPrinter ip;
 978   print_block(ip, false);
 979 }
 980 
 981 
 982 void BlockBegin::print_block(InstructionPrinter& ip, bool live_only) {
 983   ip.print_instr(this); tty->cr();
 984   ip.print_stack(this->state()); tty->cr();
 985   ip.print_inline_level(this);
 986   ip.print_head();
 987   for (Instruction* n = next(); n != nullptr; n = n->next()) {
 988     if (!live_only || n->is_pinned() || n->use_count() > 0) {
 989       ip.print_line(n);
 990     }
 991   }
 992   tty->cr();
 993 }
 994 #endif // PRODUCT
 995 
 996 
 997 // Implementation of BlockList
 998 
 999 void BlockList::iterate_forward (BlockClosure* closure) {
1000   const int l = length();
1001   for (int i = 0; i < l; i++) closure->block_do(at(i));
1002 }
1003 
1004 
1005 void BlockList::iterate_backward(BlockClosure* closure) {
1006   for (int i = length() - 1; i >= 0; i--) closure->block_do(at(i));
1007 }
1008 
1009 
1010 void BlockList::values_do(ValueVisitor* f) {
1011   for (int i = length() - 1; i >= 0; i--) at(i)->block_values_do(f);
1012 }
1013 
1014 
1015 #ifndef PRODUCT
1016 void BlockList::print(bool cfg_only, bool live_only) {
1017   InstructionPrinter ip;
1018   for (int i = 0; i < length(); i++) {
1019     BlockBegin* block = at(i);
1020     if (cfg_only) {
1021       ip.print_instr(block); tty->cr();
1022     } else {
1023       block->print_block(ip, live_only);
1024     }
1025   }
1026 }
1027 #endif // PRODUCT
1028 
1029 
1030 // Implementation of BlockEnd
1031 
1032 void BlockEnd::substitute_sux(BlockBegin* old_sux, BlockBegin* new_sux) {
1033   substitute(*_sux, old_sux, new_sux);
1034 }
1035 
1036 // Implementation of Phi
1037 
1038 // Normal phi functions take their operands from the last instruction of the
1039 // predecessor. Special handling is needed for xhanlder entries because there
1040 // the state of arbitrary instructions are needed.
1041 
1042 Value Phi::operand_at(int i) const {
1043   ValueStack* state;
1044   if (_block->is_set(BlockBegin::exception_entry_flag)) {
1045     state = _block->exception_state_at(i);
1046   } else {
1047     state = _block->pred_at(i)->end()->state();
1048   }
1049   assert(state != nullptr, "");
1050 
1051   if (is_local()) {
1052     return state->local_at(local_index());
1053   } else {
1054     return state->stack_at(stack_index());
1055   }
1056 }
1057 
1058 
1059 int Phi::operand_count() const {
1060   if (_block->is_set(BlockBegin::exception_entry_flag)) {
1061     return _block->number_of_exception_states();
1062   } else {
1063     return _block->number_of_preds();
1064   }
1065 }
1066 
1067 #ifdef ASSERT
1068 // Constructor of Assert
1069 Assert::Assert(Value x, Condition cond, bool unordered_is_true, Value y) : Instruction(illegalType)
1070   , _x(x)
1071   , _cond(cond)
1072   , _y(y)
1073 {
1074   set_flag(UnorderedIsTrueFlag, unordered_is_true);
1075   assert(x->type()->tag() == y->type()->tag(), "types must match");
1076   pin();
1077 
1078   stringStream strStream;
1079   Compilation::current()->method()->print_name(&strStream);
1080 
1081   stringStream strStream1;
1082   InstructionPrinter ip1(1, &strStream1);
1083   ip1.print_instr(x);
1084 
1085   stringStream strStream2;
1086   InstructionPrinter ip2(1, &strStream2);
1087   ip2.print_instr(y);
1088 
1089   stringStream ss;
1090   ss.print("Assertion %s %s %s in method %s", strStream1.freeze(), ip2.cond_name(cond), strStream2.freeze(), strStream.freeze());
1091 
1092   _message = ss.as_string();
1093 }
1094 #endif
1095 
1096 void RangeCheckPredicate::check_state() {
1097   assert(state()->kind() != ValueStack::EmptyExceptionState && state()->kind() != ValueStack::ExceptionState, "will deopt with empty state");
1098 }
1099 
1100 void ProfileInvoke::state_values_do(ValueVisitor* f) {
1101   if (state() != nullptr) state()->values_do(f);
1102 }
1103