1 /*
   2  * Copyright (c) 1999, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_IR.hpp"
  27 #include "c1/c1_Instruction.hpp"
  28 #include "c1/c1_InstructionPrinter.hpp"
  29 #include "c1/c1_ValueStack.hpp"
  30 #include "ci/ciFlatArrayKlass.hpp"
  31 #include "ci/ciInlineKlass.hpp"
  32 #include "ci/ciObjArrayKlass.hpp"
  33 #include "ci/ciTypeArrayKlass.hpp"
  34 #include "utilities/bitMap.inline.hpp"
  35 
  36 
  37 // Implementation of Instruction
  38 
  39 
  40 int Instruction::dominator_depth() {
  41   int result = -1;
  42   if (block()) {
  43     result = block()->dominator_depth();
  44   }
  45   assert(result != -1 || this->as_Local(), "Only locals have dominator depth -1");
  46   return result;
  47 }
  48 
  49 Instruction::Condition Instruction::mirror(Condition cond) {
  50   switch (cond) {
  51     case eql: return eql;
  52     case neq: return neq;
  53     case lss: return gtr;
  54     case leq: return geq;
  55     case gtr: return lss;
  56     case geq: return leq;
  57     case aeq: return beq;
  58     case beq: return aeq;
  59   }
  60   ShouldNotReachHere();
  61   return eql;
  62 }
  63 
  64 
  65 Instruction::Condition Instruction::negate(Condition cond) {
  66   switch (cond) {
  67     case eql: return neq;
  68     case neq: return eql;
  69     case lss: return geq;
  70     case leq: return gtr;
  71     case gtr: return leq;
  72     case geq: return lss;
  73     case aeq: assert(false, "Above equal cannot be negated");
  74     case beq: assert(false, "Below equal cannot be negated");
  75   }
  76   ShouldNotReachHere();
  77   return eql;
  78 }
  79 
  80 void Instruction::update_exception_state(ValueStack* state) {
  81   if (state != nullptr && (state->kind() == ValueStack::EmptyExceptionState || state->kind() == ValueStack::ExceptionState)) {
  82     assert(state->kind() == ValueStack::EmptyExceptionState || Compilation::current()->env()->should_retain_local_variables(), "unexpected state kind");
  83     _exception_state = state;
  84   } else {
  85     _exception_state = nullptr;
  86   }
  87 }
  88 
  89 // Prev without need to have BlockBegin
  90 Instruction* Instruction::prev() {
  91   Instruction* p = nullptr;
  92   Instruction* q = block();
  93   while (q != this) {
  94     assert(q != nullptr, "this is not in the block's instruction list");
  95     p = q; q = q->next();
  96   }
  97   return p;
  98 }
  99 
 100 
 101 void Instruction::state_values_do(ValueVisitor* f) {
 102   if (state_before() != nullptr) {
 103     state_before()->values_do(f);
 104   }
 105   if (exception_state() != nullptr) {
 106     exception_state()->values_do(f);
 107   }
 108 }
 109 
 110 ciType* Instruction::exact_type() const {
 111   ciType* t = declared_type();
 112   if (t != nullptr && t->is_klass()) {
 113     return t->as_klass()->exact_klass();
 114   }
 115   return nullptr;
 116 }
 117 
 118 ciKlass* Instruction::as_loaded_klass_or_null() const {
 119   ciType* type = declared_type();
 120   if (type != nullptr && type->is_klass()) {
 121     ciKlass* klass = type->as_klass();
 122     if (klass->is_loaded()) {
 123       return klass;
 124     }
 125   }
 126   return nullptr;
 127 }
 128 
 129 bool Instruction::is_loaded_flat_array() const {
 130   if (UseFlatArray) {
 131     ciType* type = declared_type();
 132     return type != nullptr && type->is_flat_array_klass();
 133   }
 134   return false;
 135 }
 136 
 137 bool Instruction::maybe_flat_array() {
 138   if (UseFlatArray) {
 139     ciType* type = declared_type();
 140     if (type != nullptr) {
 141       if (type->is_obj_array_klass()) {
 142         // Due to array covariance, the runtime type might be a flat array.
 143         ciKlass* element_klass = type->as_obj_array_klass()->element_klass();
 144         if (element_klass->can_be_inline_klass() && (!element_klass->is_inlinetype() || element_klass->as_inline_klass()->flat_in_array())) {
 145           return true;
 146         }
 147       } else if (type->is_flat_array_klass()) {
 148         return true;
 149       } else if (type->is_klass() && type->as_klass()->is_java_lang_Object()) {
 150         // This can happen as a parameter to System.arraycopy()
 151         return true;
 152       }
 153     } else {
 154       // Type info gets lost during Phi merging (Phi, IfOp, etc), but we might be storing into a
 155       // flat array, so we should do a runtime check.
 156       return true;
 157     }
 158   }
 159   return false;
 160 }
 161 
 162 bool Instruction::maybe_null_free_array() {
 163   ciType* type = declared_type();
 164   if (type != nullptr) {
 165     if (type->is_obj_array_klass()) {
 166       // Due to array covariance, the runtime type might be a null-free array.
 167       if (type->as_obj_array_klass()->can_be_inline_array_klass()) {
 168         return true;
 169       }
 170     }
 171   } else {
 172     // Type info gets lost during Phi merging (Phi, IfOp, etc), but we might be storing into a
 173     // null-free array, so we should do a runtime check.
 174     return true;
 175   }
 176   return false;
 177 }
 178 
 179 #ifndef PRODUCT
 180 void Instruction::check_state(ValueStack* state) {
 181   if (state != nullptr) {
 182     state->verify();
 183   }
 184 }
 185 
 186 
 187 void Instruction::print() {
 188   InstructionPrinter ip;
 189   print(ip);
 190 }
 191 
 192 
 193 void Instruction::print_line() {
 194   InstructionPrinter ip;
 195   ip.print_line(this);
 196 }
 197 
 198 
 199 void Instruction::print(InstructionPrinter& ip) {
 200   ip.print_head();
 201   ip.print_line(this);
 202   tty->cr();
 203 }
 204 #endif // PRODUCT
 205 
 206 
 207 // perform constant and interval tests on index value
 208 bool AccessIndexed::compute_needs_range_check() {
 209   if (length()) {
 210     Constant* clength = length()->as_Constant();
 211     Constant* cindex = index()->as_Constant();
 212     if (clength && cindex) {
 213       IntConstant* l = clength->type()->as_IntConstant();
 214       IntConstant* i = cindex->type()->as_IntConstant();
 215       if (l && i && i->value() < l->value() && i->value() >= 0) {
 216         return false;
 217       }
 218     }
 219   }
 220 
 221   if (!this->check_flag(NeedsRangeCheckFlag)) {
 222     return false;
 223   }
 224 
 225   return true;
 226 }
 227 
 228 
 229 ciType* Constant::exact_type() const {
 230   if (type()->is_object() && type()->as_ObjectType()->is_loaded()) {
 231     return type()->as_ObjectType()->exact_type();
 232   }
 233   return nullptr;
 234 }
 235 
 236 ciType* LoadIndexed::exact_type() const {
 237   ciType* array_type = array()->exact_type();
 238   if (delayed() == nullptr && array_type != nullptr) {
 239     assert(array_type->is_array_klass(), "what else?");
 240     ciArrayKlass* ak = (ciArrayKlass*)array_type;
 241 
 242     if (ak->element_type()->is_instance_klass()) {
 243       ciInstanceKlass* ik = (ciInstanceKlass*)ak->element_type();
 244       if (ik->is_loaded() && ik->is_final()) {
 245         return ik;
 246       }
 247     }
 248   }
 249   return Instruction::exact_type();
 250 }
 251 
 252 ciType* LoadIndexed::declared_type() const {
 253   if (delayed() != nullptr) {
 254     return delayed()->field()->type();
 255   }
 256   ciType* array_type = array()->declared_type();
 257   if (array_type == nullptr || !array_type->is_loaded()) {
 258     return nullptr;
 259   }
 260   assert(array_type->is_array_klass(), "what else?");
 261   ciArrayKlass* ak = (ciArrayKlass*)array_type;
 262   return ak->element_type();
 263 }
 264 
 265 bool StoreIndexed::is_exact_flat_array_store() const {
 266   if (array()->is_loaded_flat_array() && value()->as_Constant() == nullptr && value()->declared_type() != nullptr) {
 267     ciKlass* element_klass = array()->declared_type()->as_flat_array_klass()->element_klass();
 268     ciKlass* actual_klass = value()->declared_type()->as_klass();
 269 
 270     // The following check can fail with inlining:
 271     //     void test45_inline(Object[] oa, Object o, int index) { oa[index] = o; }
 272     //     void test45(MyValue1[] va, int index, MyValue2 v) { test45_inline(va, v, index); }
 273     if (element_klass == actual_klass) {
 274       return true;
 275     }
 276   }
 277   return false;
 278 }
 279 
 280 ciType* LoadField::declared_type() const {
 281   return field()->type();
 282 }
 283 
 284 
 285 ciType* NewTypeArray::exact_type() const {
 286   return ciTypeArrayKlass::make(elt_type());
 287 }
 288 
 289 ciType* NewObjectArray::exact_type() const {
 290   return ciArrayKlass::make(klass());
 291 }
 292 
 293 ciType* NewMultiArray::exact_type() const {
 294   return _klass;
 295 }
 296 
 297 ciType* NewArray::declared_type() const {
 298   return exact_type();
 299 }
 300 
 301 ciType* NewInstance::exact_type() const {
 302   return klass();
 303 }
 304 
 305 ciType* NewInstance::declared_type() const {
 306   return exact_type();
 307 }
 308 
 309 ciType* CheckCast::declared_type() const {
 310   return klass();
 311 }
 312 
 313 // Implementation of ArithmeticOp
 314 
 315 bool ArithmeticOp::is_commutative() const {
 316   switch (op()) {
 317     case Bytecodes::_iadd: // fall through
 318     case Bytecodes::_ladd: // fall through
 319     case Bytecodes::_fadd: // fall through
 320     case Bytecodes::_dadd: // fall through
 321     case Bytecodes::_imul: // fall through
 322     case Bytecodes::_lmul: // fall through
 323     case Bytecodes::_fmul: // fall through
 324     case Bytecodes::_dmul: return true;
 325     default              : return false;
 326   }
 327 }
 328 
 329 
 330 bool ArithmeticOp::can_trap() const {
 331   switch (op()) {
 332     case Bytecodes::_idiv: // fall through
 333     case Bytecodes::_ldiv: // fall through
 334     case Bytecodes::_irem: // fall through
 335     case Bytecodes::_lrem: return true;
 336     default              : return false;
 337   }
 338 }
 339 
 340 
 341 // Implementation of LogicOp
 342 
 343 bool LogicOp::is_commutative() const {
 344 #ifdef ASSERT
 345   switch (op()) {
 346     case Bytecodes::_iand: // fall through
 347     case Bytecodes::_land: // fall through
 348     case Bytecodes::_ior : // fall through
 349     case Bytecodes::_lor : // fall through
 350     case Bytecodes::_ixor: // fall through
 351     case Bytecodes::_lxor: break;
 352     default              : ShouldNotReachHere(); break;
 353   }
 354 #endif
 355   // all LogicOps are commutative
 356   return true;
 357 }
 358 
 359 
 360 // Implementation of IfOp
 361 
 362 bool IfOp::is_commutative() const {
 363   return cond() == eql || cond() == neq;
 364 }
 365 
 366 
 367 // Implementation of StateSplit
 368 
 369 void StateSplit::substitute(BlockList& list, BlockBegin* old_block, BlockBegin* new_block) {
 370   NOT_PRODUCT(bool assigned = false;)
 371   for (int i = 0; i < list.length(); i++) {
 372     BlockBegin** b = list.adr_at(i);
 373     if (*b == old_block) {
 374       *b = new_block;
 375       NOT_PRODUCT(assigned = true;)
 376     }
 377   }
 378   assert(assigned == true, "should have assigned at least once");
 379 }
 380 
 381 
 382 IRScope* StateSplit::scope() const {
 383   return _state->scope();
 384 }
 385 
 386 
 387 void StateSplit::state_values_do(ValueVisitor* f) {
 388   Instruction::state_values_do(f);
 389   if (state() != nullptr) state()->values_do(f);
 390 }
 391 
 392 
 393 void BlockBegin::state_values_do(ValueVisitor* f) {
 394   StateSplit::state_values_do(f);
 395 
 396   if (is_set(BlockBegin::exception_entry_flag)) {
 397     for (int i = 0; i < number_of_exception_states(); i++) {
 398       exception_state_at(i)->values_do(f);
 399     }
 400   }
 401 }
 402 
 403 
 404 StoreField::StoreField(Value obj, int offset, ciField* field, Value value, bool is_static,
 405                        ValueStack* state_before, bool needs_patching)
 406   : AccessField(obj, offset, field, is_static, state_before, needs_patching)
 407   , _value(value)
 408   , _enclosing_field(nullptr)
 409 {
 410   set_flag(NeedsWriteBarrierFlag, as_ValueType(field_type())->is_object());
 411 #ifdef ASSERT
 412   AssertValues assert_value;
 413   values_do(&assert_value);
 414 #endif
 415   pin();
 416 }
 417 
 418 StoreIndexed::StoreIndexed(Value array, Value index, Value length, BasicType elt_type, Value value,
 419                            ValueStack* state_before, bool check_boolean, bool mismatched)
 420   : AccessIndexed(array, index, length, elt_type, state_before, mismatched)
 421   , _value(value), _check_boolean(check_boolean)
 422 {
 423   set_flag(NeedsWriteBarrierFlag, (as_ValueType(elt_type)->is_object()));
 424   set_flag(NeedsStoreCheckFlag, (as_ValueType(elt_type)->is_object()));
 425 #ifdef ASSERT
 426   AssertValues assert_value;
 427   values_do(&assert_value);
 428 #endif
 429   pin();
 430 }
 431 
 432 
 433 // Implementation of Invoke
 434 
 435 
 436 Invoke::Invoke(Bytecodes::Code code, ValueType* result_type, Value recv, Values* args,
 437                ciMethod* target, ValueStack* state_before)
 438   : StateSplit(result_type, state_before)
 439   , _code(code)
 440   , _recv(recv)
 441   , _args(args)
 442   , _target(target)
 443 {
 444   set_flag(TargetIsLoadedFlag,   target->is_loaded());
 445   set_flag(TargetIsFinalFlag,    target_is_loaded() && target->is_final_method());
 446 
 447   assert(args != nullptr, "args must exist");
 448 #ifdef ASSERT
 449   AssertValues assert_value;
 450   values_do(&assert_value);
 451 #endif
 452 
 453   // provide an initial guess of signature size.
 454   _signature = new BasicTypeList(number_of_arguments() + (has_receiver() ? 1 : 0));
 455   if (has_receiver()) {
 456     _signature->append(as_BasicType(receiver()->type()));
 457   }
 458   for (int i = 0; i < number_of_arguments(); i++) {
 459     Value v = argument_at(i);
 460     ValueType* t = v->type();
 461     BasicType bt = as_BasicType(t);
 462     _signature->append(bt);
 463   }
 464 }
 465 
 466 
 467 void Invoke::state_values_do(ValueVisitor* f) {
 468   StateSplit::state_values_do(f);
 469   if (state_before() != nullptr) state_before()->values_do(f);
 470   if (state()        != nullptr) state()->values_do(f);
 471 }
 472 
 473 ciType* Invoke::declared_type() const {
 474   ciSignature* declared_signature = state()->scope()->method()->get_declared_signature_at_bci(state()->bci());
 475   ciType *t = declared_signature->return_type();
 476   assert(t->basic_type() != T_VOID, "need return value of void method?");
 477   return t;
 478 }
 479 
 480 // Implementation of Constant
 481 intx Constant::hash() const {
 482   if (state_before() == nullptr) {
 483     switch (type()->tag()) {
 484     case intTag:
 485       return HASH2(name(), type()->as_IntConstant()->value());
 486     case addressTag:
 487       return HASH2(name(), type()->as_AddressConstant()->value());
 488     case longTag:
 489       {
 490         jlong temp = type()->as_LongConstant()->value();
 491         return HASH3(name(), high(temp), low(temp));
 492       }
 493     case floatTag:
 494       return HASH2(name(), jint_cast(type()->as_FloatConstant()->value()));
 495     case doubleTag:
 496       {
 497         jlong temp = jlong_cast(type()->as_DoubleConstant()->value());
 498         return HASH3(name(), high(temp), low(temp));
 499       }
 500     case objectTag:
 501       assert(type()->as_ObjectType()->is_loaded(), "can't handle unloaded values");
 502       return HASH2(name(), type()->as_ObjectType()->constant_value());
 503     case metaDataTag:
 504       assert(type()->as_MetadataType()->is_loaded(), "can't handle unloaded values");
 505       return HASH2(name(), type()->as_MetadataType()->constant_value());
 506     default:
 507       ShouldNotReachHere();
 508     }
 509   }
 510   return 0;
 511 }
 512 
 513 bool Constant::is_equal(Value v) const {
 514   if (v->as_Constant() == nullptr) return false;
 515 
 516   switch (type()->tag()) {
 517     case intTag:
 518       {
 519         IntConstant* t1 =    type()->as_IntConstant();
 520         IntConstant* t2 = v->type()->as_IntConstant();
 521         return (t1 != nullptr && t2 != nullptr &&
 522                 t1->value() == t2->value());
 523       }
 524     case longTag:
 525       {
 526         LongConstant* t1 =    type()->as_LongConstant();
 527         LongConstant* t2 = v->type()->as_LongConstant();
 528         return (t1 != nullptr && t2 != nullptr &&
 529                 t1->value() == t2->value());
 530       }
 531     case floatTag:
 532       {
 533         FloatConstant* t1 =    type()->as_FloatConstant();
 534         FloatConstant* t2 = v->type()->as_FloatConstant();
 535         return (t1 != nullptr && t2 != nullptr &&
 536                 jint_cast(t1->value()) == jint_cast(t2->value()));
 537       }
 538     case doubleTag:
 539       {
 540         DoubleConstant* t1 =    type()->as_DoubleConstant();
 541         DoubleConstant* t2 = v->type()->as_DoubleConstant();
 542         return (t1 != nullptr && t2 != nullptr &&
 543                 jlong_cast(t1->value()) == jlong_cast(t2->value()));
 544       }
 545     case objectTag:
 546       {
 547         ObjectType* t1 =    type()->as_ObjectType();
 548         ObjectType* t2 = v->type()->as_ObjectType();
 549         return (t1 != nullptr && t2 != nullptr &&
 550                 t1->is_loaded() && t2->is_loaded() &&
 551                 t1->constant_value() == t2->constant_value());
 552       }
 553     case metaDataTag:
 554       {
 555         MetadataType* t1 =    type()->as_MetadataType();
 556         MetadataType* t2 = v->type()->as_MetadataType();
 557         return (t1 != nullptr && t2 != nullptr &&
 558                 t1->is_loaded() && t2->is_loaded() &&
 559                 t1->constant_value() == t2->constant_value());
 560       }
 561     default:
 562       return false;
 563   }
 564 }
 565 
 566 Constant::CompareResult Constant::compare(Instruction::Condition cond, Value right) const {
 567   Constant* rc = right->as_Constant();
 568   // other is not a constant
 569   if (rc == nullptr) return not_comparable;
 570 
 571   ValueType* lt = type();
 572   ValueType* rt = rc->type();
 573   // different types
 574   if (lt->base() != rt->base()) return not_comparable;
 575   switch (lt->tag()) {
 576   case intTag: {
 577     int x = lt->as_IntConstant()->value();
 578     int y = rt->as_IntConstant()->value();
 579     switch (cond) {
 580     case If::eql: return x == y ? cond_true : cond_false;
 581     case If::neq: return x != y ? cond_true : cond_false;
 582     case If::lss: return x <  y ? cond_true : cond_false;
 583     case If::leq: return x <= y ? cond_true : cond_false;
 584     case If::gtr: return x >  y ? cond_true : cond_false;
 585     case If::geq: return x >= y ? cond_true : cond_false;
 586     default     : break;
 587     }
 588     break;
 589   }
 590   case longTag: {
 591     jlong x = lt->as_LongConstant()->value();
 592     jlong y = rt->as_LongConstant()->value();
 593     switch (cond) {
 594     case If::eql: return x == y ? cond_true : cond_false;
 595     case If::neq: return x != y ? cond_true : cond_false;
 596     case If::lss: return x <  y ? cond_true : cond_false;
 597     case If::leq: return x <= y ? cond_true : cond_false;
 598     case If::gtr: return x >  y ? cond_true : cond_false;
 599     case If::geq: return x >= y ? cond_true : cond_false;
 600     default     : break;
 601     }
 602     break;
 603   }
 604   case objectTag: {
 605     ciObject* xvalue = lt->as_ObjectType()->constant_value();
 606     ciObject* yvalue = rt->as_ObjectType()->constant_value();
 607     assert(xvalue != nullptr && yvalue != nullptr, "not constants");
 608     if (xvalue->is_loaded() && yvalue->is_loaded()) {
 609       switch (cond) {
 610       case If::eql: return xvalue == yvalue ? cond_true : cond_false;
 611       case If::neq: return xvalue != yvalue ? cond_true : cond_false;
 612       default     : break;
 613       }
 614     }
 615     break;
 616   }
 617   case metaDataTag: {
 618     ciMetadata* xvalue = lt->as_MetadataType()->constant_value();
 619     ciMetadata* yvalue = rt->as_MetadataType()->constant_value();
 620     assert(xvalue != nullptr && yvalue != nullptr, "not constants");
 621     if (xvalue->is_loaded() && yvalue->is_loaded()) {
 622       switch (cond) {
 623       case If::eql: return xvalue == yvalue ? cond_true : cond_false;
 624       case If::neq: return xvalue != yvalue ? cond_true : cond_false;
 625       default     : break;
 626       }
 627     }
 628     break;
 629   }
 630   default:
 631     break;
 632   }
 633   return not_comparable;
 634 }
 635 
 636 
 637 // Implementation of BlockBegin
 638 
 639 void BlockBegin::set_end(BlockEnd* new_end) { // Assumes that no predecessor of new_end still has it as its successor
 640   assert(new_end != nullptr, "Should not reset block new_end to null");
 641   if (new_end == _end) return;
 642 
 643   // Remove this block as predecessor of its current successors
 644   if (_end != nullptr) {
 645     for (int i = 0; i < number_of_sux(); i++) {
 646       sux_at(i)->remove_predecessor(this);
 647     }
 648   }
 649 
 650   _end = new_end;
 651 
 652   // Add this block as predecessor of its new successors
 653   for (int i = 0; i < number_of_sux(); i++) {
 654     sux_at(i)->add_predecessor(this);
 655   }
 656 }
 657 
 658 
 659 void BlockBegin::disconnect_edge(BlockBegin* from, BlockBegin* to) {
 660   // disconnect any edges between from and to
 661 #ifndef PRODUCT
 662   if (PrintIR && Verbose) {
 663     tty->print_cr("Disconnected edge B%d -> B%d", from->block_id(), to->block_id());
 664   }
 665 #endif
 666   for (int s = 0; s < from->number_of_sux();) {
 667     BlockBegin* sux = from->sux_at(s);
 668     if (sux == to) {
 669       int index = sux->_predecessors.find(from);
 670       if (index >= 0) {
 671         sux->_predecessors.remove_at(index);
 672       }
 673       from->end()->remove_sux_at(s);
 674     } else {
 675       s++;
 676     }
 677   }
 678 }
 679 
 680 
 681 void BlockBegin::substitute_sux(BlockBegin* old_sux, BlockBegin* new_sux) {
 682   // modify predecessors before substituting successors
 683   for (int i = 0; i < number_of_sux(); i++) {
 684     if (sux_at(i) == old_sux) {
 685       // remove old predecessor before adding new predecessor
 686       // otherwise there is a dead predecessor in the list
 687       new_sux->remove_predecessor(old_sux);
 688       new_sux->add_predecessor(this);
 689     }
 690   }
 691   old_sux->remove_predecessor(this);
 692   end()->substitute_sux(old_sux, new_sux);
 693 }
 694 
 695 
 696 
 697 // In general it is not possible to calculate a value for the field "depth_first_number"
 698 // of the inserted block, without recomputing the values of the other blocks
 699 // in the CFG. Therefore the value of "depth_first_number" in BlockBegin becomes meaningless.
 700 BlockBegin* BlockBegin::insert_block_between(BlockBegin* sux) {
 701   assert(!sux->is_set(critical_edge_split_flag), "sanity check");
 702 
 703   int bci = sux->bci();
 704   // critical edge splitting may introduce a goto after a if and array
 705   // bound check elimination may insert a predicate between the if and
 706   // goto. The bci of the goto can't be the one of the if otherwise
 707   // the state and bci are inconsistent and a deoptimization triggered
 708   // by the predicate would lead to incorrect execution/a crash.
 709   BlockBegin* new_sux = new BlockBegin(bci);
 710 
 711   // mark this block (special treatment when block order is computed)
 712   new_sux->set(critical_edge_split_flag);
 713 
 714   // This goto is not a safepoint.
 715   Goto* e = new Goto(sux, false);
 716   new_sux->set_next(e, bci);
 717   new_sux->set_end(e);
 718   // setup states
 719   ValueStack* s = end()->state();
 720   new_sux->set_state(s->copy(s->kind(), bci));
 721   e->set_state(s->copy(s->kind(), bci));
 722   assert(new_sux->state()->locals_size() == s->locals_size(), "local size mismatch!");
 723   assert(new_sux->state()->stack_size() == s->stack_size(), "stack size mismatch!");
 724   assert(new_sux->state()->locks_size() == s->locks_size(), "locks size mismatch!");
 725 
 726   // link predecessor to new block
 727   end()->substitute_sux(sux, new_sux);
 728 
 729   // The ordering needs to be the same, so remove the link that the
 730   // set_end call above added and substitute the new_sux for this
 731   // block.
 732   sux->remove_predecessor(new_sux);
 733 
 734   // the successor could be the target of a switch so it might have
 735   // multiple copies of this predecessor, so substitute the new_sux
 736   // for the first and delete the rest.
 737   bool assigned = false;
 738   BlockList& list = sux->_predecessors;
 739   for (int i = 0; i < list.length(); i++) {
 740     BlockBegin** b = list.adr_at(i);
 741     if (*b == this) {
 742       if (assigned) {
 743         list.remove_at(i);
 744         // reprocess this index
 745         i--;
 746       } else {
 747         assigned = true;
 748         *b = new_sux;
 749       }
 750       // link the new block back to it's predecessors.
 751       new_sux->add_predecessor(this);
 752     }
 753   }
 754   assert(assigned == true, "should have assigned at least once");
 755   return new_sux;
 756 }
 757 
 758 
 759 void BlockBegin::add_predecessor(BlockBegin* pred) {
 760   _predecessors.append(pred);
 761 }
 762 
 763 
 764 void BlockBegin::remove_predecessor(BlockBegin* pred) {
 765   int idx;
 766   while ((idx = _predecessors.find(pred)) >= 0) {
 767     _predecessors.remove_at(idx);
 768   }
 769 }
 770 
 771 
 772 void BlockBegin::add_exception_handler(BlockBegin* b) {
 773   assert(b != nullptr && (b->is_set(exception_entry_flag)), "exception handler must exist");
 774   // add only if not in the list already
 775   if (!_exception_handlers.contains(b)) _exception_handlers.append(b);
 776 }
 777 
 778 int BlockBegin::add_exception_state(ValueStack* state) {
 779   assert(is_set(exception_entry_flag), "only for xhandlers");
 780   if (_exception_states == nullptr) {
 781     _exception_states = new ValueStackStack(4);
 782   }
 783   _exception_states->append(state);
 784   return _exception_states->length() - 1;
 785 }
 786 
 787 
 788 void BlockBegin::iterate_preorder(boolArray& mark, BlockClosure* closure) {
 789   if (!mark.at(block_id())) {
 790     mark.at_put(block_id(), true);
 791     closure->block_do(this);
 792     BlockEnd* e = end(); // must do this after block_do because block_do may change it!
 793     { for (int i = number_of_exception_handlers() - 1; i >= 0; i--) exception_handler_at(i)->iterate_preorder(mark, closure); }
 794     { for (int i = e->number_of_sux            () - 1; i >= 0; i--) e->sux_at           (i)->iterate_preorder(mark, closure); }
 795   }
 796 }
 797 
 798 
 799 void BlockBegin::iterate_postorder(boolArray& mark, BlockClosure* closure) {
 800   if (!mark.at(block_id())) {
 801     mark.at_put(block_id(), true);
 802     BlockEnd* e = end();
 803     { for (int i = number_of_exception_handlers() - 1; i >= 0; i--) exception_handler_at(i)->iterate_postorder(mark, closure); }
 804     { for (int i = e->number_of_sux            () - 1; i >= 0; i--) e->sux_at           (i)->iterate_postorder(mark, closure); }
 805     closure->block_do(this);
 806   }
 807 }
 808 
 809 
 810 void BlockBegin::iterate_preorder(BlockClosure* closure) {
 811   int mark_len = number_of_blocks();
 812   boolArray mark(mark_len, mark_len, false);
 813   iterate_preorder(mark, closure);
 814 }
 815 
 816 
 817 void BlockBegin::iterate_postorder(BlockClosure* closure) {
 818   int mark_len = number_of_blocks();
 819   boolArray mark(mark_len, mark_len, false);
 820   iterate_postorder(mark, closure);
 821 }
 822 
 823 
 824 void BlockBegin::block_values_do(ValueVisitor* f) {
 825   for (Instruction* n = this; n != nullptr; n = n->next()) n->values_do(f);
 826 }
 827 
 828 
 829 #ifndef PRODUCT
 830    #define TRACE_PHI(code) if (PrintPhiFunctions) { code; }
 831 #else
 832    #define TRACE_PHI(coce)
 833 #endif
 834 
 835 
 836 bool BlockBegin::try_merge(ValueStack* new_state, bool has_irreducible_loops) {
 837   TRACE_PHI(tty->print_cr("********** try_merge for block B%d", block_id()));
 838 
 839   // local variables used for state iteration
 840   int index;
 841   Value new_value, existing_value;
 842 
 843   ValueStack* existing_state = state();
 844   if (existing_state == nullptr) {
 845     TRACE_PHI(tty->print_cr("first call of try_merge for this block"));
 846 
 847     if (is_set(BlockBegin::was_visited_flag)) {
 848       // this actually happens for complicated jsr/ret structures
 849       return false; // BAILOUT in caller
 850     }
 851 
 852     // copy state because it is altered
 853     new_state = new_state->copy(ValueStack::BlockBeginState, bci());
 854 
 855     // Use method liveness to invalidate dead locals
 856     MethodLivenessResult liveness = new_state->scope()->method()->liveness_at_bci(bci());
 857     if (liveness.is_valid()) {
 858       assert((int)liveness.size() == new_state->locals_size(), "error in use of liveness");
 859 
 860       for_each_local_value(new_state, index, new_value) {
 861         if (!liveness.at(index) || new_value->type()->is_illegal()) {
 862           new_state->invalidate_local(index);
 863           TRACE_PHI(tty->print_cr("invalidating dead local %d", index));
 864         }
 865       }
 866     }
 867 
 868     if (is_set(BlockBegin::parser_loop_header_flag)) {
 869       TRACE_PHI(tty->print_cr("loop header block, initializing phi functions"));
 870 
 871       for_each_stack_value(new_state, index, new_value) {
 872         new_state->setup_phi_for_stack(this, index);
 873         TRACE_PHI(tty->print_cr("creating phi-function %c%d for stack %d", new_state->stack_at(index)->type()->tchar(), new_state->stack_at(index)->id(), index));
 874       }
 875 
 876       BitMap& requires_phi_function = new_state->scope()->requires_phi_function();
 877       for_each_local_value(new_state, index, new_value) {
 878         bool requires_phi = requires_phi_function.at(index) || (new_value->type()->is_double_word() && requires_phi_function.at(index + 1));
 879         if (requires_phi || !SelectivePhiFunctions || has_irreducible_loops) {
 880           new_state->setup_phi_for_local(this, index);
 881           TRACE_PHI(tty->print_cr("creating phi-function %c%d for local %d", new_state->local_at(index)->type()->tchar(), new_state->local_at(index)->id(), index));
 882         }
 883       }
 884     }
 885 
 886     // initialize state of block
 887     set_state(new_state);
 888 
 889   } else if (existing_state->is_same(new_state)) {
 890     TRACE_PHI(tty->print_cr("existing state found"));
 891 
 892     assert(existing_state->scope() == new_state->scope(), "not matching");
 893     assert(existing_state->locals_size() == new_state->locals_size(), "not matching");
 894     assert(existing_state->stack_size() == new_state->stack_size(), "not matching");
 895 
 896     if (is_set(BlockBegin::was_visited_flag)) {
 897       TRACE_PHI(tty->print_cr("loop header block, phis must be present"));
 898 
 899       if (!is_set(BlockBegin::parser_loop_header_flag)) {
 900         // this actually happens for complicated jsr/ret structures
 901         return false; // BAILOUT in caller
 902       }
 903 
 904       for_each_local_value(existing_state, index, existing_value) {
 905         Value new_value = new_state->local_at(index);
 906         if (new_value == nullptr || new_value->type()->tag() != existing_value->type()->tag()) {
 907           Phi* existing_phi = existing_value->as_Phi();
 908           if (existing_phi == nullptr) {
 909             return false; // BAILOUT in caller
 910           }
 911           // Invalidate the phi function here. This case is very rare except for
 912           // JVMTI capability "can_access_local_variables".
 913           // In really rare cases we will bail out in LIRGenerator::move_to_phi.
 914           existing_phi->make_illegal();
 915           existing_state->invalidate_local(index);
 916           TRACE_PHI(tty->print_cr("invalidating local %d because of type mismatch", index));
 917         }
 918 
 919         if (existing_value != new_state->local_at(index) && existing_value->as_Phi() == nullptr) {
 920           TRACE_PHI(tty->print_cr("required phi for local %d is missing, irreducible loop?", index));
 921           return false; // BAILOUT in caller
 922         }
 923       }
 924 
 925 #ifdef ASSERT
 926       // check that all necessary phi functions are present
 927       for_each_stack_value(existing_state, index, existing_value) {
 928         assert(existing_value->as_Phi() != nullptr && existing_value->as_Phi()->block() == this, "phi function required");
 929       }
 930       for_each_local_value(existing_state, index, existing_value) {
 931         assert(existing_value == new_state->local_at(index) || (existing_value->as_Phi() != nullptr && existing_value->as_Phi()->as_Phi()->block() == this), "phi function required");
 932       }
 933 #endif
 934 
 935     } else {
 936       TRACE_PHI(tty->print_cr("creating phi functions on demand"));
 937 
 938       // create necessary phi functions for stack
 939       for_each_stack_value(existing_state, index, existing_value) {
 940         Value new_value = new_state->stack_at(index);
 941         Phi* existing_phi = existing_value->as_Phi();
 942 
 943         if (new_value != existing_value && (existing_phi == nullptr || existing_phi->block() != this)) {
 944           existing_state->setup_phi_for_stack(this, index);
 945           TRACE_PHI(tty->print_cr("creating phi-function %c%d for stack %d", existing_state->stack_at(index)->type()->tchar(), existing_state->stack_at(index)->id(), index));
 946         }
 947       }
 948 
 949       // create necessary phi functions for locals
 950       for_each_local_value(existing_state, index, existing_value) {
 951         Value new_value = new_state->local_at(index);
 952         Phi* existing_phi = existing_value->as_Phi();
 953 
 954         if (new_value == nullptr || new_value->type()->tag() != existing_value->type()->tag()) {
 955           existing_state->invalidate_local(index);
 956           TRACE_PHI(tty->print_cr("invalidating local %d because of type mismatch", index));
 957         } else if (new_value != existing_value && (existing_phi == nullptr || existing_phi->block() != this)) {
 958           existing_state->setup_phi_for_local(this, index);
 959           TRACE_PHI(tty->print_cr("creating phi-function %c%d for local %d", existing_state->local_at(index)->type()->tchar(), existing_state->local_at(index)->id(), index));
 960         }
 961       }
 962     }
 963 
 964     assert(existing_state->caller_state() == new_state->caller_state(), "caller states must be equal");
 965 
 966   } else {
 967     assert(false, "stack or locks not matching (invalid bytecodes)");
 968     return false;
 969   }
 970 
 971   TRACE_PHI(tty->print_cr("********** try_merge for block B%d successful", block_id()));
 972 
 973   return true;
 974 }
 975 
 976 
 977 #ifndef PRODUCT
 978 void BlockBegin::print_block() {
 979   InstructionPrinter ip;
 980   print_block(ip, false);
 981 }
 982 
 983 
 984 void BlockBegin::print_block(InstructionPrinter& ip, bool live_only) {
 985   ip.print_instr(this); tty->cr();
 986   ip.print_stack(this->state()); tty->cr();
 987   ip.print_inline_level(this);
 988   ip.print_head();
 989   for (Instruction* n = next(); n != nullptr; n = n->next()) {
 990     if (!live_only || n->is_pinned() || n->use_count() > 0) {
 991       ip.print_line(n);
 992     }
 993   }
 994   tty->cr();
 995 }
 996 #endif // PRODUCT
 997 
 998 
 999 // Implementation of BlockList
1000 
1001 void BlockList::iterate_forward (BlockClosure* closure) {
1002   const int l = length();
1003   for (int i = 0; i < l; i++) closure->block_do(at(i));
1004 }
1005 
1006 
1007 void BlockList::iterate_backward(BlockClosure* closure) {
1008   for (int i = length() - 1; i >= 0; i--) closure->block_do(at(i));
1009 }
1010 
1011 
1012 void BlockList::values_do(ValueVisitor* f) {
1013   for (int i = length() - 1; i >= 0; i--) at(i)->block_values_do(f);
1014 }
1015 
1016 
1017 #ifndef PRODUCT
1018 void BlockList::print(bool cfg_only, bool live_only) {
1019   InstructionPrinter ip;
1020   for (int i = 0; i < length(); i++) {
1021     BlockBegin* block = at(i);
1022     if (cfg_only) {
1023       ip.print_instr(block); tty->cr();
1024     } else {
1025       block->print_block(ip, live_only);
1026     }
1027   }
1028 }
1029 #endif // PRODUCT
1030 
1031 
1032 // Implementation of BlockEnd
1033 
1034 void BlockEnd::substitute_sux(BlockBegin* old_sux, BlockBegin* new_sux) {
1035   substitute(*_sux, old_sux, new_sux);
1036 }
1037 
1038 // Implementation of Phi
1039 
1040 // Normal phi functions take their operands from the last instruction of the
1041 // predecessor. Special handling is needed for xhanlder entries because there
1042 // the state of arbitrary instructions are needed.
1043 
1044 Value Phi::operand_at(int i) const {
1045   ValueStack* state;
1046   if (_block->is_set(BlockBegin::exception_entry_flag)) {
1047     state = _block->exception_state_at(i);
1048   } else {
1049     state = _block->pred_at(i)->end()->state();
1050   }
1051   assert(state != nullptr, "");
1052 
1053   if (is_local()) {
1054     return state->local_at(local_index());
1055   } else {
1056     return state->stack_at(stack_index());
1057   }
1058 }
1059 
1060 
1061 int Phi::operand_count() const {
1062   if (_block->is_set(BlockBegin::exception_entry_flag)) {
1063     return _block->number_of_exception_states();
1064   } else {
1065     return _block->number_of_preds();
1066   }
1067 }
1068 
1069 #ifdef ASSERT
1070 // Constructor of Assert
1071 Assert::Assert(Value x, Condition cond, bool unordered_is_true, Value y) : Instruction(illegalType)
1072   , _x(x)
1073   , _cond(cond)
1074   , _y(y)
1075 {
1076   set_flag(UnorderedIsTrueFlag, unordered_is_true);
1077   assert(x->type()->tag() == y->type()->tag(), "types must match");
1078   pin();
1079 
1080   stringStream strStream;
1081   Compilation::current()->method()->print_name(&strStream);
1082 
1083   stringStream strStream1;
1084   InstructionPrinter ip1(1, &strStream1);
1085   ip1.print_instr(x);
1086 
1087   stringStream strStream2;
1088   InstructionPrinter ip2(1, &strStream2);
1089   ip2.print_instr(y);
1090 
1091   stringStream ss;
1092   ss.print("Assertion %s %s %s in method %s", strStream1.freeze(), ip2.cond_name(cond), strStream2.freeze(), strStream.freeze());
1093 
1094   _message = ss.as_string();
1095 }
1096 #endif
1097 
1098 void RangeCheckPredicate::check_state() {
1099   assert(state()->kind() != ValueStack::EmptyExceptionState && state()->kind() != ValueStack::ExceptionState, "will deopt with empty state");
1100 }
1101 
1102 void ProfileInvoke::state_values_do(ValueVisitor* f) {
1103   if (state() != nullptr) state()->values_do(f);
1104 }
1105