1 /* 2 * Copyright (c) 2000, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "c1/c1_CodeStubs.hpp" 26 #include "c1/c1_InstructionPrinter.hpp" 27 #include "c1/c1_LIR.hpp" 28 #include "c1/c1_LIRAssembler.hpp" 29 #include "c1/c1_ValueStack.hpp" 30 #include "ci/ciInlineKlass.hpp" 31 #include "ci/ciInstance.hpp" 32 #include "runtime/safepointMechanism.inline.hpp" 33 #include "runtime/sharedRuntime.hpp" 34 #include "runtime/vm_version.hpp" 35 36 Register LIR_Opr::as_register() const { 37 return FrameMap::cpu_rnr2reg(cpu_regnr()); 38 } 39 40 Register LIR_Opr::as_register_lo() const { 41 return FrameMap::cpu_rnr2reg(cpu_regnrLo()); 42 } 43 44 Register LIR_Opr::as_register_hi() const { 45 return FrameMap::cpu_rnr2reg(cpu_regnrHi()); 46 } 47 48 LIR_Opr LIR_OprFact::illegalOpr = LIR_OprFact::illegal(); 49 LIR_Opr LIR_OprFact::nullOpr = LIR_Opr(); 50 51 LIR_Opr LIR_OprFact::value_type(ValueType* type) { 52 ValueTag tag = type->tag(); 53 switch (tag) { 54 case metaDataTag : { 55 ClassConstant* c = type->as_ClassConstant(); 56 if (c != nullptr && !c->value()->is_loaded()) { 57 return LIR_OprFact::metadataConst(nullptr); 58 } else if (c != nullptr) { 59 return LIR_OprFact::metadataConst(c->value()->constant_encoding()); 60 } else { 61 MethodConstant* m = type->as_MethodConstant(); 62 assert (m != nullptr, "not a class or a method?"); 63 return LIR_OprFact::metadataConst(m->value()->constant_encoding()); 64 } 65 } 66 case objectTag : { 67 return LIR_OprFact::oopConst(type->as_ObjectType()->encoding()); 68 } 69 case addressTag: return LIR_OprFact::addressConst(type->as_AddressConstant()->value()); 70 case intTag : return LIR_OprFact::intConst(type->as_IntConstant()->value()); 71 case floatTag : return LIR_OprFact::floatConst(type->as_FloatConstant()->value()); 72 case longTag : return LIR_OprFact::longConst(type->as_LongConstant()->value()); 73 case doubleTag : return LIR_OprFact::doubleConst(type->as_DoubleConstant()->value()); 74 default: ShouldNotReachHere(); return LIR_OprFact::intConst(-1); 75 } 76 } 77 78 79 //--------------------------------------------------- 80 81 82 LIR_Address::Scale LIR_Address::scale(BasicType type) { 83 int elem_size = type2aelembytes(type); 84 switch (elem_size) { 85 case 1: return LIR_Address::times_1; 86 case 2: return LIR_Address::times_2; 87 case 4: return LIR_Address::times_4; 88 case 8: return LIR_Address::times_8; 89 } 90 ShouldNotReachHere(); 91 return LIR_Address::times_1; 92 } 93 94 //--------------------------------------------------- 95 96 char LIR_Opr::type_char(BasicType t) { 97 switch (t) { 98 case T_ARRAY: 99 t = T_OBJECT; 100 case T_BOOLEAN: 101 case T_CHAR: 102 case T_FLOAT: 103 case T_DOUBLE: 104 case T_BYTE: 105 case T_SHORT: 106 case T_INT: 107 case T_LONG: 108 case T_OBJECT: 109 case T_ADDRESS: 110 case T_VOID: 111 return ::type2char(t); 112 case T_METADATA: 113 return 'M'; 114 case T_ILLEGAL: 115 return '?'; 116 117 default: 118 ShouldNotReachHere(); 119 return '?'; 120 } 121 } 122 123 #ifndef PRODUCT 124 void LIR_Opr::validate_type() const { 125 126 #ifdef ASSERT 127 if (!is_pointer() && !is_illegal()) { 128 OprKind kindfield = kind_field(); // Factored out because of compiler bug, see 8002160 129 switch (as_BasicType(type_field())) { 130 case T_LONG: 131 assert((kindfield == cpu_register || kindfield == stack_value) && 132 size_field() == double_size, "must match"); 133 break; 134 case T_FLOAT: 135 // FP return values can be also in CPU registers on ARM (softfp ABI) 136 assert((kindfield == fpu_register || kindfield == stack_value 137 ARM_ONLY(|| kindfield == cpu_register) ) && 138 size_field() == single_size, "must match"); 139 break; 140 case T_DOUBLE: 141 // FP return values can be also in CPU registers on ARM (softfp ABI) 142 assert((kindfield == fpu_register || kindfield == stack_value 143 ARM_ONLY(|| kindfield == cpu_register) ) && 144 size_field() == double_size, "must match"); 145 break; 146 case T_BOOLEAN: 147 case T_CHAR: 148 case T_BYTE: 149 case T_SHORT: 150 case T_INT: 151 case T_ADDRESS: 152 case T_OBJECT: 153 case T_METADATA: 154 case T_ARRAY: 155 assert((kindfield == cpu_register || kindfield == stack_value) && 156 size_field() == single_size, "must match"); 157 break; 158 159 case T_ILLEGAL: 160 // XXX TKR also means unknown right now 161 // assert(is_illegal(), "must match"); 162 break; 163 164 default: 165 ShouldNotReachHere(); 166 } 167 } 168 #endif 169 170 } 171 #endif // PRODUCT 172 173 174 bool LIR_Opr::is_oop() const { 175 if (is_pointer()) { 176 return pointer()->is_oop_pointer(); 177 } else { 178 OprType t= type_field(); 179 assert(t != unknown_type, "not set"); 180 return t == object_type; 181 } 182 } 183 184 185 186 void LIR_Op2::verify() const { 187 #ifdef ASSERT 188 switch (code()) { 189 case lir_xchg: 190 break; 191 192 default: 193 assert(!result_opr()->is_register() || !result_opr()->is_oop_register(), 194 "can't produce oops from arith"); 195 } 196 197 if (two_operand_lir_form) { 198 199 bool threeOperandForm = false; 200 #ifdef S390 201 // There are 3 operand shifts on S390 (see LIR_Assembler::shift_op()). 202 threeOperandForm = 203 code() == lir_shl || 204 ((code() == lir_shr || code() == lir_ushr) && (result_opr()->is_double_cpu() || in_opr1()->type() == T_OBJECT)); 205 #endif 206 207 switch (code()) { 208 case lir_add: 209 case lir_sub: 210 case lir_mul: 211 case lir_div: 212 case lir_rem: 213 case lir_logic_and: 214 case lir_logic_or: 215 case lir_logic_xor: 216 case lir_shl: 217 case lir_shr: 218 assert(in_opr1() == result_opr() || threeOperandForm, "opr1 and result must match"); 219 assert(in_opr1()->is_valid() && in_opr2()->is_valid(), "must be valid"); 220 break; 221 222 // special handling for lir_ushr because of write barriers 223 case lir_ushr: 224 assert(in_opr1() == result_opr() || in_opr2()->is_constant() || threeOperandForm, "opr1 and result must match or shift count is constant"); 225 assert(in_opr1()->is_valid() && in_opr2()->is_valid(), "must be valid"); 226 break; 227 228 default: 229 break; 230 } 231 } 232 #endif 233 } 234 235 236 LIR_OpBranch::LIR_OpBranch(LIR_Condition cond, BlockBegin* block) 237 : LIR_Op2(lir_branch, cond, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, (CodeEmitInfo*)nullptr) 238 , _label(block->label()) 239 , _block(block) 240 , _ublock(nullptr) 241 , _stub(nullptr) { 242 } 243 244 LIR_OpBranch::LIR_OpBranch(LIR_Condition cond, CodeStub* stub) : 245 LIR_Op2(lir_branch, cond, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, (CodeEmitInfo*)nullptr) 246 , _label(stub->entry()) 247 , _block(nullptr) 248 , _ublock(nullptr) 249 , _stub(stub) { 250 } 251 252 LIR_OpBranch::LIR_OpBranch(LIR_Condition cond, BlockBegin* block, BlockBegin* ublock) 253 : LIR_Op2(lir_cond_float_branch, cond, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, (CodeEmitInfo*)nullptr) 254 , _label(block->label()) 255 , _block(block) 256 , _ublock(ublock) 257 , _stub(nullptr) 258 { 259 } 260 261 void LIR_OpBranch::change_block(BlockBegin* b) { 262 assert(_block != nullptr, "must have old block"); 263 assert(_block->label() == label(), "must be equal"); 264 265 _block = b; 266 _label = b->label(); 267 } 268 269 void LIR_OpBranch::change_ublock(BlockBegin* b) { 270 assert(_ublock != nullptr, "must have old block"); 271 _ublock = b; 272 } 273 274 void LIR_OpBranch::negate_cond() { 275 switch (cond()) { 276 case lir_cond_equal: set_cond(lir_cond_notEqual); break; 277 case lir_cond_notEqual: set_cond(lir_cond_equal); break; 278 case lir_cond_less: set_cond(lir_cond_greaterEqual); break; 279 case lir_cond_lessEqual: set_cond(lir_cond_greater); break; 280 case lir_cond_greaterEqual: set_cond(lir_cond_less); break; 281 case lir_cond_greater: set_cond(lir_cond_lessEqual); break; 282 default: ShouldNotReachHere(); 283 } 284 } 285 286 287 LIR_OpTypeCheck::LIR_OpTypeCheck(LIR_Code code, LIR_Opr result, LIR_Opr object, ciKlass* klass, 288 LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, 289 bool fast_check, CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, 290 CodeStub* stub, bool need_null_check) 291 292 : LIR_Op(code, result, nullptr) 293 , _object(object) 294 , _array(LIR_OprFact::illegalOpr) 295 , _klass(klass) 296 , _tmp1(tmp1) 297 , _tmp2(tmp2) 298 , _tmp3(tmp3) 299 , _info_for_patch(info_for_patch) 300 , _info_for_exception(info_for_exception) 301 , _stub(stub) 302 , _profiled_method(nullptr) 303 , _profiled_bci(-1) 304 , _should_profile(false) 305 , _fast_check(fast_check) 306 , _need_null_check(need_null_check) 307 { 308 if (code == lir_checkcast) { 309 assert(info_for_exception != nullptr, "checkcast throws exceptions"); 310 } else if (code == lir_instanceof) { 311 assert(info_for_exception == nullptr, "instanceof throws no exceptions"); 312 } else { 313 ShouldNotReachHere(); 314 } 315 } 316 317 318 319 LIR_OpTypeCheck::LIR_OpTypeCheck(LIR_Code code, LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception) 320 : LIR_Op(code, LIR_OprFact::illegalOpr, nullptr) 321 , _object(object) 322 , _array(array) 323 , _klass(nullptr) 324 , _tmp1(tmp1) 325 , _tmp2(tmp2) 326 , _tmp3(tmp3) 327 , _info_for_patch(nullptr) 328 , _info_for_exception(info_for_exception) 329 , _stub(nullptr) 330 , _profiled_method(nullptr) 331 , _profiled_bci(-1) 332 , _should_profile(false) 333 , _fast_check(false) 334 , _need_null_check(true) 335 { 336 if (code == lir_store_check) { 337 _stub = new ArrayStoreExceptionStub(object, info_for_exception); 338 assert(info_for_exception != nullptr, "store_check throws exceptions"); 339 } else { 340 ShouldNotReachHere(); 341 } 342 } 343 344 LIR_OpFlattenedArrayCheck::LIR_OpFlattenedArrayCheck(LIR_Opr array, LIR_Opr value, LIR_Opr tmp, CodeStub* stub) 345 : LIR_Op(lir_flat_array_check, LIR_OprFact::illegalOpr, nullptr) 346 , _array(array) 347 , _value(value) 348 , _tmp(tmp) 349 , _stub(stub) {} 350 351 352 LIR_OpNullFreeArrayCheck::LIR_OpNullFreeArrayCheck(LIR_Opr array, LIR_Opr tmp) 353 : LIR_Op(lir_null_free_array_check, LIR_OprFact::illegalOpr, nullptr) 354 , _array(array) 355 , _tmp(tmp) {} 356 357 358 LIR_OpSubstitutabilityCheck::LIR_OpSubstitutabilityCheck(LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr equal_result, LIR_Opr not_equal_result, 359 LIR_Opr tmp1, LIR_Opr tmp2, 360 ciKlass* left_klass, ciKlass* right_klass, LIR_Opr left_klass_op, LIR_Opr right_klass_op, 361 CodeEmitInfo* info, CodeStub* stub) 362 : LIR_Op(lir_substitutability_check, result, info) 363 , _left(left) 364 , _right(right) 365 , _equal_result(equal_result) 366 , _not_equal_result(not_equal_result) 367 , _tmp1(tmp1) 368 , _tmp2(tmp2) 369 , _left_klass(left_klass) 370 , _right_klass(right_klass) 371 , _left_klass_op(left_klass_op) 372 , _right_klass_op(right_klass_op) 373 , _stub(stub) {} 374 375 376 LIR_OpArrayCopy::LIR_OpArrayCopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, 377 LIR_Opr tmp, ciArrayKlass* expected_type, int flags, CodeEmitInfo* info) 378 : LIR_Op(lir_arraycopy, LIR_OprFact::illegalOpr, info) 379 , _src(src) 380 , _src_pos(src_pos) 381 , _dst(dst) 382 , _dst_pos(dst_pos) 383 , _length(length) 384 , _tmp(tmp) 385 , _expected_type(expected_type) 386 , _flags(flags) { 387 #if defined(X86) || defined(AARCH64) || defined(S390) || defined(RISCV) || defined(PPC64) 388 if (expected_type != nullptr && flags == 0) { 389 _stub = nullptr; 390 } else { 391 _stub = new ArrayCopyStub(this); 392 } 393 #else 394 _stub = new ArrayCopyStub(this); 395 #endif 396 } 397 398 LIR_OpUpdateCRC32::LIR_OpUpdateCRC32(LIR_Opr crc, LIR_Opr val, LIR_Opr res) 399 : LIR_Op(lir_updatecrc32, res, nullptr) 400 , _crc(crc) 401 , _val(val) { 402 } 403 404 //-------------------verify-------------------------- 405 406 void LIR_Op1::verify() const { 407 switch(code()) { 408 case lir_move: 409 assert(in_opr()->is_valid() && result_opr()->is_valid(), "must be"); 410 break; 411 case lir_null_check: 412 assert(in_opr()->is_register(), "must be"); 413 break; 414 case lir_return: 415 assert(in_opr()->is_register() || in_opr()->is_illegal(), "must be"); 416 break; 417 default: 418 break; 419 } 420 } 421 422 void LIR_OpRTCall::verify() const { 423 assert(strcmp(Runtime1::name_for_address(addr()), "<unknown function>") != 0, "unknown function"); 424 } 425 426 //-------------------visits-------------------------- 427 428 // complete rework of LIR instruction visitor. 429 // The virtual call for each instruction type is replaced by a big 430 // switch that adds the operands for each instruction 431 432 void LIR_OpVisitState::visit(LIR_Op* op) { 433 // copy information from the LIR_Op 434 reset(); 435 set_op(op); 436 437 switch (op->code()) { 438 439 // LIR_Op0 440 case lir_fpop_raw: // result and info always invalid 441 case lir_breakpoint: // result and info always invalid 442 case lir_membar: // result and info always invalid 443 case lir_membar_acquire: // result and info always invalid 444 case lir_membar_release: // result and info always invalid 445 case lir_membar_loadload: // result and info always invalid 446 case lir_membar_storestore: // result and info always invalid 447 case lir_membar_loadstore: // result and info always invalid 448 case lir_membar_storeload: // result and info always invalid 449 case lir_check_orig_pc: // result and info always invalid 450 case lir_on_spin_wait: 451 { 452 assert(op->as_Op0() != nullptr, "must be"); 453 assert(op->_info == nullptr, "info not used by this instruction"); 454 assert(op->_result->is_illegal(), "not used"); 455 break; 456 } 457 458 case lir_nop: // may have info, result always invalid 459 case lir_std_entry: // may have result, info always invalid 460 case lir_osr_entry: // may have result, info always invalid 461 case lir_get_thread: // may have result, info always invalid 462 { 463 assert(op->as_Op0() != nullptr, "must be"); 464 if (op->_info != nullptr) do_info(op->_info); 465 if (op->_result->is_valid()) do_output(op->_result); 466 break; 467 } 468 469 470 // LIR_OpLabel 471 case lir_label: // result and info always invalid 472 { 473 assert(op->as_OpLabel() != nullptr, "must be"); 474 assert(op->_info == nullptr, "info not used by this instruction"); 475 assert(op->_result->is_illegal(), "not used"); 476 break; 477 } 478 479 480 // LIR_Op1 481 case lir_fxch: // input always valid, result and info always invalid 482 case lir_fld: // input always valid, result and info always invalid 483 case lir_push: // input always valid, result and info always invalid 484 case lir_pop: // input always valid, result and info always invalid 485 case lir_leal: // input and result always valid, info always invalid 486 case lir_monaddr: // input and result always valid, info always invalid 487 case lir_null_check: // input and info always valid, result always invalid 488 case lir_move: // input and result always valid, may have info 489 case lir_sqrt: // FP Ops have no info, but input and result 490 case lir_abs: 491 case lir_neg: 492 case lir_f2hf: 493 case lir_hf2f: 494 { 495 assert(op->as_Op1() != nullptr, "must be"); 496 LIR_Op1* op1 = (LIR_Op1*)op; 497 498 if (op1->_info) do_info(op1->_info); 499 if (op1->_opr->is_valid()) do_input(op1->_opr); 500 if (op1->_tmp->is_valid()) do_temp(op1->_tmp); 501 if (op1->_result->is_valid()) do_output(op1->_result); 502 503 break; 504 } 505 506 case lir_return: 507 { 508 assert(op->as_OpReturn() != nullptr, "must be"); 509 LIR_OpReturn* op_ret = (LIR_OpReturn*)op; 510 511 if (op_ret->_info) do_info(op_ret->_info); 512 if (op_ret->_opr->is_valid()) do_input(op_ret->_opr); 513 if (op_ret->_result->is_valid()) do_output(op_ret->_result); 514 if (op_ret->stub() != nullptr) do_stub(op_ret->stub()); 515 516 break; 517 } 518 519 case lir_safepoint: 520 { 521 assert(op->as_Op1() != nullptr, "must be"); 522 LIR_Op1* op1 = (LIR_Op1*)op; 523 524 assert(op1->_info != nullptr, ""); do_info(op1->_info); 525 if (op1->_opr->is_valid()) do_temp(op1->_opr); // safepoints on SPARC need temporary register 526 assert(op1->_tmp->is_illegal(), "not used"); 527 assert(op1->_result->is_illegal(), "safepoint does not produce value"); 528 529 break; 530 } 531 532 // LIR_OpConvert; 533 case lir_convert: // input and result always valid, info always invalid 534 { 535 assert(op->as_OpConvert() != nullptr, "must be"); 536 LIR_OpConvert* opConvert = (LIR_OpConvert*)op; 537 538 assert(opConvert->_info == nullptr, "must be"); 539 if (opConvert->_opr->is_valid()) do_input(opConvert->_opr); 540 if (opConvert->_result->is_valid()) do_output(opConvert->_result); 541 do_stub(opConvert->_stub); 542 543 break; 544 } 545 546 // LIR_OpBranch; 547 case lir_branch: // may have info, input and result register always invalid 548 case lir_cond_float_branch: // may have info, input and result register always invalid 549 { 550 assert(op->as_OpBranch() != nullptr, "must be"); 551 LIR_OpBranch* opBranch = (LIR_OpBranch*)op; 552 553 assert(opBranch->_tmp1->is_illegal() && opBranch->_tmp2->is_illegal() && 554 opBranch->_tmp3->is_illegal() && opBranch->_tmp4->is_illegal() && 555 opBranch->_tmp5->is_illegal(), "not used"); 556 557 if (opBranch->_opr1->is_valid()) do_input(opBranch->_opr1); 558 if (opBranch->_opr2->is_valid()) do_input(opBranch->_opr2); 559 560 if (opBranch->_info != nullptr) do_info(opBranch->_info); 561 assert(opBranch->_result->is_illegal(), "not used"); 562 if (opBranch->_stub != nullptr) opBranch->stub()->visit(this); 563 564 break; 565 } 566 567 568 // LIR_OpAllocObj 569 case lir_alloc_object: 570 { 571 assert(op->as_OpAllocObj() != nullptr, "must be"); 572 LIR_OpAllocObj* opAllocObj = (LIR_OpAllocObj*)op; 573 574 if (opAllocObj->_info) do_info(opAllocObj->_info); 575 if (opAllocObj->_opr->is_valid()) { do_input(opAllocObj->_opr); 576 do_temp(opAllocObj->_opr); 577 } 578 if (opAllocObj->_tmp1->is_valid()) do_temp(opAllocObj->_tmp1); 579 if (opAllocObj->_tmp2->is_valid()) do_temp(opAllocObj->_tmp2); 580 if (opAllocObj->_tmp3->is_valid()) do_temp(opAllocObj->_tmp3); 581 if (opAllocObj->_tmp4->is_valid()) do_temp(opAllocObj->_tmp4); 582 if (opAllocObj->_result->is_valid()) do_output(opAllocObj->_result); 583 if (opAllocObj->_stub != nullptr) do_stub(opAllocObj->_stub); 584 break; 585 } 586 587 588 // LIR_OpRoundFP; 589 case lir_roundfp: { 590 assert(op->as_OpRoundFP() != nullptr, "must be"); 591 LIR_OpRoundFP* opRoundFP = (LIR_OpRoundFP*)op; 592 593 assert(op->_info == nullptr, "info not used by this instruction"); 594 assert(opRoundFP->_tmp->is_illegal(), "not used"); 595 do_input(opRoundFP->_opr); 596 do_output(opRoundFP->_result); 597 598 break; 599 } 600 601 602 // LIR_Op2 603 case lir_cmp: 604 case lir_cmp_l2i: 605 case lir_ucmp_fd2i: 606 case lir_cmp_fd2i: 607 case lir_add: 608 case lir_sub: 609 case lir_rem: 610 case lir_logic_and: 611 case lir_logic_or: 612 case lir_logic_xor: 613 case lir_shl: 614 case lir_shr: 615 case lir_ushr: 616 case lir_xadd: 617 case lir_xchg: 618 case lir_assert: 619 { 620 assert(op->as_Op2() != nullptr, "must be"); 621 LIR_Op2* op2 = (LIR_Op2*)op; 622 assert(op2->_tmp2->is_illegal() && op2->_tmp3->is_illegal() && 623 op2->_tmp4->is_illegal() && op2->_tmp5->is_illegal(), "not used"); 624 625 if (op2->_info) do_info(op2->_info); 626 if (op2->_opr1->is_valid()) do_input(op2->_opr1); 627 if (op2->_opr2->is_valid()) do_input(op2->_opr2); 628 if (op2->_tmp1->is_valid()) do_temp(op2->_tmp1); 629 if (op2->_result->is_valid()) do_output(op2->_result); 630 if (op->code() == lir_xchg || op->code() == lir_xadd) { 631 // on ARM and PPC, return value is loaded first so could 632 // destroy inputs. On other platforms that implement those 633 // (x86, sparc), the extra constrainsts are harmless. 634 if (op2->_opr1->is_valid()) do_temp(op2->_opr1); 635 if (op2->_opr2->is_valid()) do_temp(op2->_opr2); 636 } 637 638 break; 639 } 640 641 // special handling for cmove: right input operand must not be equal 642 // to the result operand, otherwise the backend fails 643 case lir_cmove: 644 { 645 assert(op->as_Op4() != nullptr, "must be"); 646 LIR_Op4* op4 = (LIR_Op4*)op; 647 648 assert(op4->_info == nullptr && op4->_tmp1->is_illegal() && op4->_tmp2->is_illegal() && 649 op4->_tmp3->is_illegal() && op4->_tmp4->is_illegal() && op4->_tmp5->is_illegal(), "not used"); 650 assert(op4->_opr1->is_valid() && op4->_opr2->is_valid() && op4->_result->is_valid(), "used"); 651 652 do_input(op4->_opr1); 653 do_input(op4->_opr2); 654 if (op4->_opr3->is_valid()) do_input(op4->_opr3); 655 if (op4->_opr4->is_valid()) do_input(op4->_opr4); 656 do_temp(op4->_opr2); 657 do_output(op4->_result); 658 659 break; 660 } 661 662 // vspecial handling for strict operations: register input operands 663 // as temp to guarantee that they do not overlap with other 664 // registers 665 case lir_mul: 666 case lir_div: 667 { 668 assert(op->as_Op2() != nullptr, "must be"); 669 LIR_Op2* op2 = (LIR_Op2*)op; 670 671 assert(op2->_info == nullptr, "not used"); 672 assert(op2->_opr1->is_valid(), "used"); 673 assert(op2->_opr2->is_valid(), "used"); 674 assert(op2->_result->is_valid(), "used"); 675 assert(op2->_tmp2->is_illegal() && op2->_tmp3->is_illegal() && 676 op2->_tmp4->is_illegal() && op2->_tmp5->is_illegal(), "not used"); 677 678 do_input(op2->_opr1); do_temp(op2->_opr1); 679 do_input(op2->_opr2); do_temp(op2->_opr2); 680 if (op2->_tmp1->is_valid()) do_temp(op2->_tmp1); 681 do_output(op2->_result); 682 683 break; 684 } 685 686 case lir_throw: { 687 assert(op->as_Op2() != nullptr, "must be"); 688 LIR_Op2* op2 = (LIR_Op2*)op; 689 690 if (op2->_info) do_info(op2->_info); 691 if (op2->_opr1->is_valid()) do_temp(op2->_opr1); 692 if (op2->_opr2->is_valid()) do_input(op2->_opr2); // exception object is input parameter 693 assert(op2->_result->is_illegal(), "no result"); 694 assert(op2->_tmp2->is_illegal() && op2->_tmp3->is_illegal() && 695 op2->_tmp4->is_illegal() && op2->_tmp5->is_illegal(), "not used"); 696 697 break; 698 } 699 700 case lir_unwind: { 701 assert(op->as_Op1() != nullptr, "must be"); 702 LIR_Op1* op1 = (LIR_Op1*)op; 703 704 assert(op1->_info == nullptr, "no info"); 705 assert(op1->_opr->is_valid(), "exception oop"); do_input(op1->_opr); 706 assert(op1->_tmp->is_illegal(), "not used"); 707 assert(op1->_result->is_illegal(), "no result"); 708 709 break; 710 } 711 712 // LIR_Op3 713 case lir_idiv: 714 case lir_irem: { 715 assert(op->as_Op3() != nullptr, "must be"); 716 LIR_Op3* op3= (LIR_Op3*)op; 717 718 if (op3->_info) do_info(op3->_info); 719 if (op3->_opr1->is_valid()) do_input(op3->_opr1); 720 721 // second operand is input and temp, so ensure that second operand 722 // and third operand get not the same register 723 if (op3->_opr2->is_valid()) do_input(op3->_opr2); 724 if (op3->_opr2->is_valid()) do_temp(op3->_opr2); 725 if (op3->_opr3->is_valid()) do_temp(op3->_opr3); 726 727 if (op3->_result->is_valid()) do_output(op3->_result); 728 729 break; 730 } 731 732 case lir_fmad: 733 case lir_fmaf: { 734 assert(op->as_Op3() != nullptr, "must be"); 735 LIR_Op3* op3= (LIR_Op3*)op; 736 assert(op3->_info == nullptr, "no info"); 737 do_input(op3->_opr1); 738 do_input(op3->_opr2); 739 do_input(op3->_opr3); 740 do_output(op3->_result); 741 break; 742 } 743 744 // LIR_OpJavaCall 745 case lir_static_call: 746 case lir_optvirtual_call: 747 case lir_icvirtual_call: 748 case lir_dynamic_call: { 749 LIR_OpJavaCall* opJavaCall = op->as_OpJavaCall(); 750 assert(opJavaCall != nullptr, "must be"); 751 752 if (opJavaCall->_receiver->is_valid()) do_input(opJavaCall->_receiver); 753 754 // only visit register parameters 755 int n = opJavaCall->_arguments->length(); 756 for (int i = opJavaCall->_receiver->is_valid() ? 1 : 0; i < n; i++) { 757 if (!opJavaCall->_arguments->at(i)->is_pointer()) { 758 do_input(*opJavaCall->_arguments->adr_at(i)); 759 } 760 } 761 762 if (opJavaCall->_info) do_info(opJavaCall->_info); 763 if (FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr && 764 opJavaCall->is_method_handle_invoke()) { 765 opJavaCall->_method_handle_invoke_SP_save_opr = FrameMap::method_handle_invoke_SP_save_opr(); 766 do_temp(opJavaCall->_method_handle_invoke_SP_save_opr); 767 } 768 do_call(); 769 if (opJavaCall->_result->is_valid()) do_output(opJavaCall->_result); 770 771 break; 772 } 773 774 775 // LIR_OpRTCall 776 case lir_rtcall: { 777 assert(op->as_OpRTCall() != nullptr, "must be"); 778 LIR_OpRTCall* opRTCall = (LIR_OpRTCall*)op; 779 780 // only visit register parameters 781 int n = opRTCall->_arguments->length(); 782 for (int i = 0; i < n; i++) { 783 if (!opRTCall->_arguments->at(i)->is_pointer()) { 784 do_input(*opRTCall->_arguments->adr_at(i)); 785 } 786 } 787 if (opRTCall->_info) do_info(opRTCall->_info); 788 if (opRTCall->_tmp->is_valid()) do_temp(opRTCall->_tmp); 789 do_call(); 790 if (opRTCall->_result->is_valid()) do_output(opRTCall->_result); 791 792 break; 793 } 794 795 796 // LIR_OpArrayCopy 797 case lir_arraycopy: { 798 assert(op->as_OpArrayCopy() != nullptr, "must be"); 799 LIR_OpArrayCopy* opArrayCopy = (LIR_OpArrayCopy*)op; 800 801 assert(opArrayCopy->_result->is_illegal(), "unused"); 802 assert(opArrayCopy->_src->is_valid(), "used"); do_input(opArrayCopy->_src); do_temp(opArrayCopy->_src); 803 assert(opArrayCopy->_src_pos->is_valid(), "used"); do_input(opArrayCopy->_src_pos); do_temp(opArrayCopy->_src_pos); 804 assert(opArrayCopy->_dst->is_valid(), "used"); do_input(opArrayCopy->_dst); do_temp(opArrayCopy->_dst); 805 assert(opArrayCopy->_dst_pos->is_valid(), "used"); do_input(opArrayCopy->_dst_pos); do_temp(opArrayCopy->_dst_pos); 806 assert(opArrayCopy->_length->is_valid(), "used"); do_input(opArrayCopy->_length); do_temp(opArrayCopy->_length); 807 assert(opArrayCopy->_tmp->is_valid(), "used"); do_temp(opArrayCopy->_tmp); 808 if (opArrayCopy->_info) do_info(opArrayCopy->_info); 809 810 // the implementation of arraycopy always has a call into the runtime 811 do_call(); 812 813 break; 814 } 815 816 817 // LIR_OpUpdateCRC32 818 case lir_updatecrc32: { 819 assert(op->as_OpUpdateCRC32() != nullptr, "must be"); 820 LIR_OpUpdateCRC32* opUp = (LIR_OpUpdateCRC32*)op; 821 822 assert(opUp->_crc->is_valid(), "used"); do_input(opUp->_crc); do_temp(opUp->_crc); 823 assert(opUp->_val->is_valid(), "used"); do_input(opUp->_val); do_temp(opUp->_val); 824 assert(opUp->_result->is_valid(), "used"); do_output(opUp->_result); 825 assert(opUp->_info == nullptr, "no info for LIR_OpUpdateCRC32"); 826 827 break; 828 } 829 830 831 // LIR_OpLock 832 case lir_lock: 833 case lir_unlock: { 834 assert(op->as_OpLock() != nullptr, "must be"); 835 LIR_OpLock* opLock = (LIR_OpLock*)op; 836 837 if (opLock->_info) do_info(opLock->_info); 838 839 // TODO: check if these operands really have to be temp 840 // (or if input is sufficient). This may have influence on the oop map! 841 assert(opLock->_lock->is_valid(), "used"); do_temp(opLock->_lock); 842 assert(opLock->_hdr->is_valid(), "used"); do_temp(opLock->_hdr); 843 assert(opLock->_obj->is_valid(), "used"); do_temp(opLock->_obj); 844 845 if (opLock->_scratch->is_valid()) do_temp(opLock->_scratch); 846 assert(opLock->_result->is_illegal(), "unused"); 847 848 do_stub(opLock->_stub); 849 do_stub(opLock->_throw_ie_stub); 850 851 break; 852 } 853 854 855 // LIR_OpDelay 856 case lir_delay_slot: { 857 assert(op->as_OpDelay() != nullptr, "must be"); 858 LIR_OpDelay* opDelay = (LIR_OpDelay*)op; 859 860 visit(opDelay->delay_op()); 861 break; 862 } 863 864 // LIR_OpTypeCheck 865 case lir_instanceof: 866 case lir_checkcast: 867 case lir_store_check: { 868 assert(op->as_OpTypeCheck() != nullptr, "must be"); 869 LIR_OpTypeCheck* opTypeCheck = (LIR_OpTypeCheck*)op; 870 871 if (opTypeCheck->_info_for_exception) do_info(opTypeCheck->_info_for_exception); 872 if (opTypeCheck->_info_for_patch) do_info(opTypeCheck->_info_for_patch); 873 if (opTypeCheck->_object->is_valid()) do_input(opTypeCheck->_object); 874 if (op->code() == lir_store_check && opTypeCheck->_object->is_valid()) { 875 do_temp(opTypeCheck->_object); 876 } 877 if (opTypeCheck->_array->is_valid()) do_input(opTypeCheck->_array); 878 if (opTypeCheck->_tmp1->is_valid()) do_temp(opTypeCheck->_tmp1); 879 if (opTypeCheck->_tmp2->is_valid()) do_temp(opTypeCheck->_tmp2); 880 if (opTypeCheck->_tmp3->is_valid()) do_temp(opTypeCheck->_tmp3); 881 if (opTypeCheck->_result->is_valid()) do_output(opTypeCheck->_result); 882 if (opTypeCheck->_stub != nullptr) do_stub(opTypeCheck->_stub); 883 break; 884 } 885 886 // LIR_OpFlattenedArrayCheck 887 case lir_flat_array_check: { 888 assert(op->as_OpFlattenedArrayCheck() != nullptr, "must be"); 889 LIR_OpFlattenedArrayCheck* opFlattenedArrayCheck = (LIR_OpFlattenedArrayCheck*)op; 890 891 if (opFlattenedArrayCheck->_array->is_valid()) do_input(opFlattenedArrayCheck->_array); 892 if (opFlattenedArrayCheck->_value->is_valid()) do_input(opFlattenedArrayCheck->_value); 893 if (opFlattenedArrayCheck->_tmp->is_valid()) do_temp(opFlattenedArrayCheck->_tmp); 894 895 do_stub(opFlattenedArrayCheck->_stub); 896 897 break; 898 } 899 900 // LIR_OpNullFreeArrayCheck 901 case lir_null_free_array_check: { 902 assert(op->as_OpNullFreeArrayCheck() != nullptr, "must be"); 903 LIR_OpNullFreeArrayCheck* opNullFreeArrayCheck = (LIR_OpNullFreeArrayCheck*)op; 904 905 if (opNullFreeArrayCheck->_array->is_valid()) do_input(opNullFreeArrayCheck->_array); 906 if (opNullFreeArrayCheck->_tmp->is_valid()) do_temp(opNullFreeArrayCheck->_tmp); 907 break; 908 } 909 910 // LIR_OpSubstitutabilityCheck 911 case lir_substitutability_check: { 912 assert(op->as_OpSubstitutabilityCheck() != nullptr, "must be"); 913 LIR_OpSubstitutabilityCheck* opSubstitutabilityCheck = (LIR_OpSubstitutabilityCheck*)op; 914 do_input(opSubstitutabilityCheck->_left); 915 do_temp (opSubstitutabilityCheck->_left); 916 do_input(opSubstitutabilityCheck->_right); 917 do_temp (opSubstitutabilityCheck->_right); 918 do_input(opSubstitutabilityCheck->_equal_result); 919 do_temp (opSubstitutabilityCheck->_equal_result); 920 do_input(opSubstitutabilityCheck->_not_equal_result); 921 do_temp (opSubstitutabilityCheck->_not_equal_result); 922 if (opSubstitutabilityCheck->_tmp1->is_valid()) do_temp(opSubstitutabilityCheck->_tmp1); 923 if (opSubstitutabilityCheck->_tmp2->is_valid()) do_temp(opSubstitutabilityCheck->_tmp2); 924 if (opSubstitutabilityCheck->_left_klass_op->is_valid()) do_temp(opSubstitutabilityCheck->_left_klass_op); 925 if (opSubstitutabilityCheck->_right_klass_op->is_valid()) do_temp(opSubstitutabilityCheck->_right_klass_op); 926 if (opSubstitutabilityCheck->_result->is_valid()) do_output(opSubstitutabilityCheck->_result); 927 928 do_info(opSubstitutabilityCheck->_info); 929 do_stub(opSubstitutabilityCheck->_stub); 930 break; 931 } 932 933 // LIR_OpCompareAndSwap 934 case lir_cas_long: 935 case lir_cas_obj: 936 case lir_cas_int: { 937 assert(op->as_OpCompareAndSwap() != nullptr, "must be"); 938 LIR_OpCompareAndSwap* opCmpAndSwap = (LIR_OpCompareAndSwap*)op; 939 940 if (opCmpAndSwap->_info) do_info(opCmpAndSwap->_info); 941 assert(opCmpAndSwap->_addr->is_valid(), "used"); do_input(opCmpAndSwap->_addr); 942 do_temp(opCmpAndSwap->_addr); 943 assert(opCmpAndSwap->_cmp_value->is_valid(), "used"); do_input(opCmpAndSwap->_cmp_value); 944 do_temp(opCmpAndSwap->_cmp_value); 945 assert(opCmpAndSwap->_new_value->is_valid(), "used"); do_input(opCmpAndSwap->_new_value); 946 do_temp(opCmpAndSwap->_new_value); 947 if (opCmpAndSwap->_tmp1->is_valid()) do_temp(opCmpAndSwap->_tmp1); 948 if (opCmpAndSwap->_tmp2->is_valid()) do_temp(opCmpAndSwap->_tmp2); 949 if (opCmpAndSwap->_result->is_valid()) do_output(opCmpAndSwap->_result); 950 951 break; 952 } 953 954 955 // LIR_OpAllocArray; 956 case lir_alloc_array: { 957 assert(op->as_OpAllocArray() != nullptr, "must be"); 958 LIR_OpAllocArray* opAllocArray = (LIR_OpAllocArray*)op; 959 960 if (opAllocArray->_info) do_info(opAllocArray->_info); 961 if (opAllocArray->_klass->is_valid()) { do_input(opAllocArray->_klass); 962 do_temp(opAllocArray->_klass); 963 } 964 if (opAllocArray->_len->is_valid()) { do_input(opAllocArray->_len); 965 do_temp(opAllocArray->_len); 966 } 967 if (opAllocArray->_tmp1->is_valid()) do_temp(opAllocArray->_tmp1); 968 if (opAllocArray->_tmp2->is_valid()) do_temp(opAllocArray->_tmp2); 969 if (opAllocArray->_tmp3->is_valid()) do_temp(opAllocArray->_tmp3); 970 if (opAllocArray->_tmp4->is_valid()) do_temp(opAllocArray->_tmp4); 971 if (opAllocArray->_result->is_valid()) do_output(opAllocArray->_result); 972 if (opAllocArray->_stub != nullptr) do_stub(opAllocArray->_stub); 973 break; 974 } 975 976 // LIR_OpLoadKlass 977 case lir_load_klass: 978 { 979 LIR_OpLoadKlass* opLoadKlass = op->as_OpLoadKlass(); 980 assert(opLoadKlass != nullptr, "must be"); 981 982 do_input(opLoadKlass->_obj); 983 do_output(opLoadKlass->_result); 984 if (opLoadKlass->_info) do_info(opLoadKlass->_info); 985 break; 986 } 987 988 989 // LIR_OpProfileCall: 990 case lir_profile_call: { 991 assert(op->as_OpProfileCall() != nullptr, "must be"); 992 LIR_OpProfileCall* opProfileCall = (LIR_OpProfileCall*)op; 993 994 if (opProfileCall->_recv->is_valid()) do_temp(opProfileCall->_recv); 995 assert(opProfileCall->_mdo->is_valid(), "used"); do_temp(opProfileCall->_mdo); 996 assert(opProfileCall->_tmp1->is_valid(), "used"); do_temp(opProfileCall->_tmp1); 997 break; 998 } 999 1000 // LIR_OpProfileType: 1001 case lir_profile_type: { 1002 assert(op->as_OpProfileType() != nullptr, "must be"); 1003 LIR_OpProfileType* opProfileType = (LIR_OpProfileType*)op; 1004 1005 do_input(opProfileType->_mdp); do_temp(opProfileType->_mdp); 1006 do_input(opProfileType->_obj); 1007 do_temp(opProfileType->_tmp); 1008 break; 1009 } 1010 1011 // LIR_OpProfileInlineType: 1012 case lir_profile_inline_type: { 1013 assert(op->as_OpProfileInlineType() != nullptr, "must be"); 1014 LIR_OpProfileInlineType* opProfileInlineType = (LIR_OpProfileInlineType*)op; 1015 1016 do_input(opProfileInlineType->_mdp); do_temp(opProfileInlineType->_mdp); 1017 do_input(opProfileInlineType->_obj); 1018 do_temp(opProfileInlineType->_tmp); 1019 break; 1020 } 1021 default: 1022 op->visit(this); 1023 } 1024 } 1025 1026 void LIR_Op::visit(LIR_OpVisitState* state) { 1027 ShouldNotReachHere(); 1028 } 1029 1030 void LIR_OpVisitState::do_stub(CodeStub* stub) { 1031 if (stub != nullptr) { 1032 stub->visit(this); 1033 } 1034 } 1035 1036 XHandlers* LIR_OpVisitState::all_xhandler() { 1037 XHandlers* result = nullptr; 1038 1039 int i; 1040 for (i = 0; i < info_count(); i++) { 1041 if (info_at(i)->exception_handlers() != nullptr) { 1042 result = info_at(i)->exception_handlers(); 1043 break; 1044 } 1045 } 1046 1047 #ifdef ASSERT 1048 for (i = 0; i < info_count(); i++) { 1049 assert(info_at(i)->exception_handlers() == nullptr || 1050 info_at(i)->exception_handlers() == result, 1051 "only one xhandler list allowed per LIR-operation"); 1052 } 1053 #endif 1054 1055 if (result != nullptr) { 1056 return result; 1057 } else { 1058 return new XHandlers(); 1059 } 1060 1061 return result; 1062 } 1063 1064 1065 #ifdef ASSERT 1066 bool LIR_OpVisitState::no_operands(LIR_Op* op) { 1067 visit(op); 1068 1069 return opr_count(inputMode) == 0 && 1070 opr_count(outputMode) == 0 && 1071 opr_count(tempMode) == 0 && 1072 info_count() == 0 && 1073 !has_call() && 1074 !has_slow_case(); 1075 } 1076 #endif 1077 1078 // LIR_OpReturn 1079 LIR_OpReturn::LIR_OpReturn(LIR_Opr opr) : 1080 LIR_Op1(lir_return, opr, (CodeEmitInfo*)nullptr /* info */), 1081 _stub(nullptr) { 1082 if (VM_Version::supports_stack_watermark_barrier()) { 1083 _stub = new C1SafepointPollStub(); 1084 } 1085 } 1086 1087 //--------------------------------------------------- 1088 1089 1090 void LIR_OpJavaCall::emit_code(LIR_Assembler* masm) { 1091 masm->emit_call(this); 1092 } 1093 1094 bool LIR_OpJavaCall::maybe_return_as_fields(ciInlineKlass** vk_ret) const { 1095 ciType* return_type = method()->return_type(); 1096 if (InlineTypeReturnedAsFields) { 1097 if (return_type->is_inlinetype()) { 1098 ciInlineKlass* vk = return_type->as_inline_klass(); 1099 if (vk->can_be_returned_as_fields()) { 1100 if (vk_ret != nullptr) { 1101 *vk_ret = vk; 1102 } 1103 return true; 1104 } 1105 } else if (return_type->is_instance_klass() && 1106 (method()->is_method_handle_intrinsic() || !return_type->is_loaded() || 1107 StressCallingConvention)) { 1108 // An inline type might be returned from the call but we don't know its type. 1109 // This can happen with method handle intrinsics or when the return type is 1110 // not loaded (method holder is not loaded or preload attribute is missing). 1111 // If an inline type is returned, we either get an oop to a buffer and nothing 1112 // needs to be done or one of the values being returned is the klass of the 1113 // inline type (RAX on x64, with LSB set to 1) and we need to allocate an inline 1114 // type instance of that type and initialize it with the fields values being 1115 // returned in other registers. 1116 return true; 1117 } 1118 } 1119 return false; 1120 } 1121 1122 void LIR_OpRTCall::emit_code(LIR_Assembler* masm) { 1123 masm->emit_rtcall(this); 1124 } 1125 1126 void LIR_OpLabel::emit_code(LIR_Assembler* masm) { 1127 masm->emit_opLabel(this); 1128 } 1129 1130 void LIR_OpArrayCopy::emit_code(LIR_Assembler* masm) { 1131 masm->emit_arraycopy(this); 1132 ArrayCopyStub* code_stub = stub(); 1133 if (code_stub != nullptr) { 1134 masm->append_code_stub(code_stub); 1135 } 1136 } 1137 1138 void LIR_OpUpdateCRC32::emit_code(LIR_Assembler* masm) { 1139 masm->emit_updatecrc32(this); 1140 } 1141 1142 void LIR_Op0::emit_code(LIR_Assembler* masm) { 1143 masm->emit_op0(this); 1144 } 1145 1146 void LIR_Op1::emit_code(LIR_Assembler* masm) { 1147 masm->emit_op1(this); 1148 } 1149 1150 void LIR_OpAllocObj::emit_code(LIR_Assembler* masm) { 1151 masm->emit_alloc_obj(this); 1152 masm->append_code_stub(stub()); 1153 } 1154 1155 void LIR_OpBranch::emit_code(LIR_Assembler* masm) { 1156 masm->emit_opBranch(this); 1157 if (stub()) { 1158 masm->append_code_stub(stub()); 1159 } 1160 } 1161 1162 void LIR_OpConvert::emit_code(LIR_Assembler* masm) { 1163 masm->emit_opConvert(this); 1164 if (stub() != nullptr) { 1165 masm->append_code_stub(stub()); 1166 } 1167 } 1168 1169 void LIR_Op2::emit_code(LIR_Assembler* masm) { 1170 masm->emit_op2(this); 1171 } 1172 1173 void LIR_OpAllocArray::emit_code(LIR_Assembler* masm) { 1174 masm->emit_alloc_array(this); 1175 masm->append_code_stub(stub()); 1176 } 1177 1178 void LIR_OpTypeCheck::emit_code(LIR_Assembler* masm) { 1179 masm->emit_opTypeCheck(this); 1180 if (stub()) { 1181 masm->append_code_stub(stub()); 1182 } 1183 } 1184 1185 void LIR_OpFlattenedArrayCheck::emit_code(LIR_Assembler* masm) { 1186 masm->emit_opFlattenedArrayCheck(this); 1187 if (stub() != nullptr) { 1188 masm->append_code_stub(stub()); 1189 } 1190 } 1191 1192 void LIR_OpNullFreeArrayCheck::emit_code(LIR_Assembler* masm) { 1193 masm->emit_opNullFreeArrayCheck(this); 1194 } 1195 1196 void LIR_OpSubstitutabilityCheck::emit_code(LIR_Assembler* masm) { 1197 masm->emit_opSubstitutabilityCheck(this); 1198 if (stub() != nullptr) { 1199 masm->append_code_stub(stub()); 1200 } 1201 } 1202 1203 void LIR_OpCompareAndSwap::emit_code(LIR_Assembler* masm) { 1204 masm->emit_compare_and_swap(this); 1205 } 1206 1207 void LIR_Op3::emit_code(LIR_Assembler* masm) { 1208 masm->emit_op3(this); 1209 } 1210 1211 void LIR_Op4::emit_code(LIR_Assembler* masm) { 1212 masm->emit_op4(this); 1213 } 1214 1215 void LIR_OpLock::emit_code(LIR_Assembler* masm) { 1216 masm->emit_lock(this); 1217 if (stub()) { 1218 masm->append_code_stub(stub()); 1219 } 1220 if (throw_ie_stub()) { 1221 masm->append_code_stub(throw_ie_stub()); 1222 } 1223 } 1224 1225 void LIR_OpLoadKlass::emit_code(LIR_Assembler* masm) { 1226 masm->emit_load_klass(this); 1227 } 1228 1229 #ifdef ASSERT 1230 void LIR_OpAssert::emit_code(LIR_Assembler* masm) { 1231 masm->emit_assert(this); 1232 } 1233 #endif 1234 1235 void LIR_OpDelay::emit_code(LIR_Assembler* masm) { 1236 masm->emit_delay(this); 1237 } 1238 1239 void LIR_OpProfileCall::emit_code(LIR_Assembler* masm) { 1240 masm->emit_profile_call(this); 1241 } 1242 1243 void LIR_OpProfileType::emit_code(LIR_Assembler* masm) { 1244 masm->emit_profile_type(this); 1245 } 1246 1247 void LIR_OpProfileInlineType::emit_code(LIR_Assembler* masm) { 1248 masm->emit_profile_inline_type(this); 1249 } 1250 1251 // LIR_List 1252 LIR_List::LIR_List(Compilation* compilation, BlockBegin* block) 1253 : _operations(8) 1254 , _compilation(compilation) 1255 #ifndef PRODUCT 1256 , _block(block) 1257 #endif 1258 #ifdef ASSERT 1259 , _file(nullptr) 1260 , _line(0) 1261 #endif 1262 #ifdef RISCV 1263 , _cmp_opr1(LIR_OprFact::illegalOpr) 1264 , _cmp_opr2(LIR_OprFact::illegalOpr) 1265 #endif 1266 { } 1267 1268 1269 #ifdef ASSERT 1270 void LIR_List::set_file_and_line(const char * file, int line) { 1271 const char * f = strrchr(file, '/'); 1272 if (f == nullptr) f = strrchr(file, '\\'); 1273 if (f == nullptr) { 1274 f = file; 1275 } else { 1276 f++; 1277 } 1278 _file = f; 1279 _line = line; 1280 } 1281 #endif 1282 1283 #ifdef RISCV 1284 void LIR_List::set_cmp_oprs(LIR_Op* op) { 1285 switch (op->code()) { 1286 case lir_cmp: 1287 _cmp_opr1 = op->as_Op2()->in_opr1(); 1288 _cmp_opr2 = op->as_Op2()->in_opr2(); 1289 break; 1290 case lir_branch: // fall through 1291 case lir_cond_float_branch: 1292 assert(op->as_OpBranch()->cond() == lir_cond_always || 1293 (_cmp_opr1 != LIR_OprFact::illegalOpr && _cmp_opr2 != LIR_OprFact::illegalOpr), 1294 "conditional branches must have legal operands"); 1295 if (op->as_OpBranch()->cond() != lir_cond_always) { 1296 op->as_Op2()->set_in_opr1(_cmp_opr1); 1297 op->as_Op2()->set_in_opr2(_cmp_opr2); 1298 } 1299 break; 1300 case lir_cmove: 1301 op->as_Op4()->set_in_opr3(_cmp_opr1); 1302 op->as_Op4()->set_in_opr4(_cmp_opr2); 1303 break; 1304 case lir_cas_long: 1305 case lir_cas_obj: 1306 case lir_cas_int: 1307 _cmp_opr1 = op->as_OpCompareAndSwap()->result_opr(); 1308 _cmp_opr2 = LIR_OprFact::intConst(0); 1309 break; 1310 #if INCLUDE_ZGC 1311 case lir_xloadbarrier_test: 1312 _cmp_opr1 = FrameMap::as_opr(t1); 1313 _cmp_opr2 = LIR_OprFact::intConst(0); 1314 break; 1315 #endif 1316 default: 1317 break; 1318 } 1319 } 1320 #endif 1321 1322 void LIR_List::append(LIR_InsertionBuffer* buffer) { 1323 assert(this == buffer->lir_list(), "wrong lir list"); 1324 const int n = _operations.length(); 1325 1326 if (buffer->number_of_ops() > 0) { 1327 // increase size of instructions list 1328 _operations.at_grow(n + buffer->number_of_ops() - 1, nullptr); 1329 // insert ops from buffer into instructions list 1330 int op_index = buffer->number_of_ops() - 1; 1331 int ip_index = buffer->number_of_insertion_points() - 1; 1332 int from_index = n - 1; 1333 int to_index = _operations.length() - 1; 1334 for (; ip_index >= 0; ip_index --) { 1335 int index = buffer->index_at(ip_index); 1336 // make room after insertion point 1337 while (index < from_index) { 1338 _operations.at_put(to_index --, _operations.at(from_index --)); 1339 } 1340 // insert ops from buffer 1341 for (int i = buffer->count_at(ip_index); i > 0; i --) { 1342 _operations.at_put(to_index --, buffer->op_at(op_index --)); 1343 } 1344 } 1345 } 1346 1347 buffer->finish(); 1348 } 1349 1350 1351 void LIR_List::oop2reg_patch(jobject o, LIR_Opr reg, CodeEmitInfo* info) { 1352 assert(reg->type() == T_OBJECT, "bad reg"); 1353 append(new LIR_Op1(lir_move, LIR_OprFact::oopConst(o), reg, T_OBJECT, lir_patch_normal, info)); 1354 } 1355 1356 void LIR_List::klass2reg_patch(Metadata* o, LIR_Opr reg, CodeEmitInfo* info) { 1357 assert(reg->type() == T_METADATA, "bad reg"); 1358 append(new LIR_Op1(lir_move, LIR_OprFact::metadataConst(o), reg, T_METADATA, lir_patch_normal, info)); 1359 } 1360 1361 void LIR_List::load(LIR_Address* addr, LIR_Opr src, CodeEmitInfo* info, LIR_PatchCode patch_code) { 1362 append(new LIR_Op1( 1363 lir_move, 1364 LIR_OprFact::address(addr), 1365 src, 1366 addr->type(), 1367 patch_code, 1368 info)); 1369 } 1370 1371 1372 void LIR_List::volatile_load_mem_reg(LIR_Address* address, LIR_Opr dst, CodeEmitInfo* info, LIR_PatchCode patch_code) { 1373 append(new LIR_Op1( 1374 lir_move, 1375 LIR_OprFact::address(address), 1376 dst, 1377 address->type(), 1378 patch_code, 1379 info, lir_move_volatile)); 1380 } 1381 1382 void LIR_List::volatile_load_unsafe_reg(LIR_Opr base, LIR_Opr offset, LIR_Opr dst, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code) { 1383 append(new LIR_Op1( 1384 lir_move, 1385 LIR_OprFact::address(new LIR_Address(base, offset, type)), 1386 dst, 1387 type, 1388 patch_code, 1389 info, lir_move_volatile)); 1390 } 1391 1392 1393 void LIR_List::store_mem_int(jint v, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code) { 1394 append(new LIR_Op1( 1395 lir_move, 1396 LIR_OprFact::intConst(v), 1397 LIR_OprFact::address(new LIR_Address(base, offset_in_bytes, type)), 1398 type, 1399 patch_code, 1400 info)); 1401 } 1402 1403 1404 void LIR_List::store_mem_oop(jobject o, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code) { 1405 append(new LIR_Op1( 1406 lir_move, 1407 LIR_OprFact::oopConst(o), 1408 LIR_OprFact::address(new LIR_Address(base, offset_in_bytes, type)), 1409 type, 1410 patch_code, 1411 info)); 1412 } 1413 1414 1415 void LIR_List::store(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info, LIR_PatchCode patch_code) { 1416 append(new LIR_Op1( 1417 lir_move, 1418 src, 1419 LIR_OprFact::address(addr), 1420 addr->type(), 1421 patch_code, 1422 info)); 1423 } 1424 1425 1426 void LIR_List::volatile_store_mem_reg(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info, LIR_PatchCode patch_code) { 1427 append(new LIR_Op1( 1428 lir_move, 1429 src, 1430 LIR_OprFact::address(addr), 1431 addr->type(), 1432 patch_code, 1433 info, 1434 lir_move_volatile)); 1435 } 1436 1437 void LIR_List::volatile_store_unsafe_reg(LIR_Opr src, LIR_Opr base, LIR_Opr offset, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code) { 1438 append(new LIR_Op1( 1439 lir_move, 1440 src, 1441 LIR_OprFact::address(new LIR_Address(base, offset, type)), 1442 type, 1443 patch_code, 1444 info, lir_move_volatile)); 1445 } 1446 1447 1448 void LIR_List::idiv(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info) { 1449 append(new LIR_Op3( 1450 lir_idiv, 1451 left, 1452 right, 1453 tmp, 1454 res, 1455 info)); 1456 } 1457 1458 1459 void LIR_List::idiv(LIR_Opr left, int right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info) { 1460 append(new LIR_Op3( 1461 lir_idiv, 1462 left, 1463 LIR_OprFact::intConst(right), 1464 tmp, 1465 res, 1466 info)); 1467 } 1468 1469 1470 void LIR_List::irem(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info) { 1471 append(new LIR_Op3( 1472 lir_irem, 1473 left, 1474 right, 1475 tmp, 1476 res, 1477 info)); 1478 } 1479 1480 1481 void LIR_List::irem(LIR_Opr left, int right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info) { 1482 append(new LIR_Op3( 1483 lir_irem, 1484 left, 1485 LIR_OprFact::intConst(right), 1486 tmp, 1487 res, 1488 info)); 1489 } 1490 1491 1492 void LIR_List::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) { 1493 append(new LIR_Op2( 1494 lir_cmp, 1495 condition, 1496 LIR_OprFact::address(new LIR_Address(base, disp, T_INT)), 1497 LIR_OprFact::intConst(c), 1498 info)); 1499 } 1500 1501 1502 void LIR_List::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Address* addr, CodeEmitInfo* info) { 1503 append(new LIR_Op2( 1504 lir_cmp, 1505 condition, 1506 reg, 1507 LIR_OprFact::address(addr), 1508 info)); 1509 } 1510 1511 void LIR_List::allocate_object(LIR_Opr dst, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, 1512 int header_size, int object_size, LIR_Opr klass, bool init_check, CodeStub* stub) { 1513 append(new LIR_OpAllocObj( 1514 klass, 1515 dst, 1516 t1, 1517 t2, 1518 t3, 1519 t4, 1520 header_size, 1521 object_size, 1522 init_check, 1523 stub)); 1524 } 1525 1526 void LIR_List::allocate_array(LIR_Opr dst, LIR_Opr len, LIR_Opr t1,LIR_Opr t2, LIR_Opr t3,LIR_Opr t4, BasicType type, LIR_Opr klass, CodeStub* stub, bool zero_array, bool is_null_free) { 1527 append(new LIR_OpAllocArray( 1528 klass, 1529 len, 1530 dst, 1531 t1, 1532 t2, 1533 t3, 1534 t4, 1535 type, 1536 stub, 1537 zero_array, 1538 is_null_free)); 1539 } 1540 1541 void LIR_List::shift_left(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp) { 1542 append(new LIR_Op2( 1543 lir_shl, 1544 value, 1545 count, 1546 dst, 1547 tmp)); 1548 } 1549 1550 void LIR_List::shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp) { 1551 append(new LIR_Op2( 1552 lir_shr, 1553 value, 1554 count, 1555 dst, 1556 tmp)); 1557 } 1558 1559 1560 void LIR_List::unsigned_shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp) { 1561 append(new LIR_Op2( 1562 lir_ushr, 1563 value, 1564 count, 1565 dst, 1566 tmp)); 1567 } 1568 1569 void LIR_List::fcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst, bool is_unordered_less) { 1570 append(new LIR_Op2(is_unordered_less ? lir_ucmp_fd2i : lir_cmp_fd2i, 1571 left, 1572 right, 1573 dst)); 1574 } 1575 1576 void LIR_List::lock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info, CodeStub* throw_ie_stub) { 1577 append(new LIR_OpLock( 1578 lir_lock, 1579 hdr, 1580 obj, 1581 lock, 1582 scratch, 1583 stub, 1584 info, 1585 throw_ie_stub)); 1586 } 1587 1588 void LIR_List::unlock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub) { 1589 append(new LIR_OpLock( 1590 lir_unlock, 1591 hdr, 1592 obj, 1593 lock, 1594 scratch, 1595 stub, 1596 nullptr)); 1597 } 1598 1599 1600 void check_LIR() { 1601 // cannot do the proper checking as PRODUCT and other modes return different results 1602 // guarantee(sizeof(LIR_Opr) == wordSize, "may not have a v-table"); 1603 } 1604 1605 1606 1607 void LIR_List::checkcast (LIR_Opr result, LIR_Opr object, ciKlass* klass, 1608 LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, 1609 CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub, 1610 ciMethod* profiled_method, int profiled_bci, bool is_null_free) { 1611 // If klass is non-nullable, LIRGenerator::do_CheckCast has already performed null-check 1612 // on the object. 1613 bool need_null_check = !is_null_free; 1614 LIR_OpTypeCheck* c = new LIR_OpTypeCheck(lir_checkcast, result, object, klass, 1615 tmp1, tmp2, tmp3, fast_check, info_for_exception, info_for_patch, stub, 1616 need_null_check); 1617 if (profiled_method != nullptr) { 1618 c->set_profiled_method(profiled_method); 1619 c->set_profiled_bci(profiled_bci); 1620 c->set_should_profile(true); 1621 } 1622 append(c); 1623 } 1624 1625 void LIR_List::instanceof(LIR_Opr result, LIR_Opr object, ciKlass* klass, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, CodeEmitInfo* info_for_patch, ciMethod* profiled_method, int profiled_bci) { 1626 LIR_OpTypeCheck* c = new LIR_OpTypeCheck(lir_instanceof, result, object, klass, tmp1, tmp2, tmp3, fast_check, nullptr, info_for_patch, nullptr); 1627 if (profiled_method != nullptr) { 1628 c->set_profiled_method(profiled_method); 1629 c->set_profiled_bci(profiled_bci); 1630 c->set_should_profile(true); 1631 } 1632 append(c); 1633 } 1634 1635 1636 void LIR_List::store_check(LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, 1637 CodeEmitInfo* info_for_exception, ciMethod* profiled_method, int profiled_bci) { 1638 // FIXME -- if the types of the array and/or the object are known statically, we can avoid loading the klass 1639 LIR_OpTypeCheck* c = new LIR_OpTypeCheck(lir_store_check, object, array, tmp1, tmp2, tmp3, info_for_exception); 1640 if (profiled_method != nullptr) { 1641 c->set_profiled_method(profiled_method); 1642 c->set_profiled_bci(profiled_bci); 1643 c->set_should_profile(true); 1644 } 1645 append(c); 1646 } 1647 1648 void LIR_List::null_check(LIR_Opr opr, CodeEmitInfo* info, bool deoptimize_on_null) { 1649 if (deoptimize_on_null) { 1650 // Emit an explicit null check and deoptimize if opr is null 1651 CodeStub* deopt = new DeoptimizeStub(info, Deoptimization::Reason_null_check, Deoptimization::Action_none); 1652 cmp(lir_cond_equal, opr, LIR_OprFact::oopConst(nullptr)); 1653 branch(lir_cond_equal, deopt); 1654 } else { 1655 // Emit an implicit null check 1656 append(new LIR_Op1(lir_null_check, opr, info)); 1657 } 1658 } 1659 1660 void LIR_List::check_flat_array(LIR_Opr array, LIR_Opr value, LIR_Opr tmp, CodeStub* stub) { 1661 LIR_OpFlattenedArrayCheck* c = new LIR_OpFlattenedArrayCheck(array, value, tmp, stub); 1662 append(c); 1663 } 1664 1665 void LIR_List::check_null_free_array(LIR_Opr array, LIR_Opr tmp) { 1666 LIR_OpNullFreeArrayCheck* c = new LIR_OpNullFreeArrayCheck(array, tmp); 1667 append(c); 1668 } 1669 1670 void LIR_List::substitutability_check(LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr equal_result, LIR_Opr not_equal_result, 1671 LIR_Opr tmp1, LIR_Opr tmp2, 1672 ciKlass* left_klass, ciKlass* right_klass, LIR_Opr left_klass_op, LIR_Opr right_klass_op, 1673 CodeEmitInfo* info, CodeStub* stub) { 1674 LIR_OpSubstitutabilityCheck* c = new LIR_OpSubstitutabilityCheck(result, left, right, equal_result, not_equal_result, 1675 tmp1, tmp2, 1676 left_klass, right_klass, left_klass_op, right_klass_op, 1677 info, stub); 1678 append(c); 1679 } 1680 1681 void LIR_List::cas_long(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value, 1682 LIR_Opr t1, LIR_Opr t2, LIR_Opr result) { 1683 append(new LIR_OpCompareAndSwap(lir_cas_long, addr, cmp_value, new_value, t1, t2, result)); 1684 } 1685 1686 void LIR_List::cas_obj(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value, 1687 LIR_Opr t1, LIR_Opr t2, LIR_Opr result) { 1688 append(new LIR_OpCompareAndSwap(lir_cas_obj, addr, cmp_value, new_value, t1, t2, result)); 1689 } 1690 1691 void LIR_List::cas_int(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value, 1692 LIR_Opr t1, LIR_Opr t2, LIR_Opr result) { 1693 append(new LIR_OpCompareAndSwap(lir_cas_int, addr, cmp_value, new_value, t1, t2, result)); 1694 } 1695 1696 1697 #ifdef PRODUCT 1698 1699 void print_LIR(BlockList* blocks) { 1700 } 1701 1702 #else 1703 // LIR_Opr 1704 void LIR_Opr::print() const { 1705 print(tty); 1706 } 1707 1708 void LIR_Opr::print(outputStream* out) const { 1709 if (is_illegal()) { 1710 return; 1711 } 1712 1713 out->print("["); 1714 if (is_pointer()) { 1715 pointer()->print_value_on(out); 1716 } else if (is_single_stack()) { 1717 out->print("stack:%d", single_stack_ix()); 1718 } else if (is_double_stack()) { 1719 out->print("dbl_stack:%d",double_stack_ix()); 1720 } else if (is_virtual()) { 1721 out->print("R%d", vreg_number()); 1722 } else if (is_single_cpu()) { 1723 out->print("%s", as_register()->name()); 1724 } else if (is_double_cpu()) { 1725 out->print("%s", as_register_hi()->name()); 1726 out->print("%s", as_register_lo()->name()); 1727 #if defined(X86) 1728 } else if (is_single_xmm()) { 1729 out->print("%s", as_xmm_float_reg()->name()); 1730 } else if (is_double_xmm()) { 1731 out->print("%s", as_xmm_double_reg()->name()); 1732 } else if (is_single_fpu()) { 1733 out->print("fpu%d", fpu_regnr()); 1734 } else if (is_double_fpu()) { 1735 out->print("fpu%d", fpu_regnrLo()); 1736 #elif defined(AARCH64) 1737 } else if (is_single_fpu()) { 1738 out->print("fpu%d", fpu_regnr()); 1739 } else if (is_double_fpu()) { 1740 out->print("fpu%d", fpu_regnrLo()); 1741 #elif defined(ARM) 1742 } else if (is_single_fpu()) { 1743 out->print("s%d", fpu_regnr()); 1744 } else if (is_double_fpu()) { 1745 out->print("d%d", fpu_regnrLo() >> 1); 1746 #else 1747 } else if (is_single_fpu()) { 1748 out->print("%s", as_float_reg()->name()); 1749 } else if (is_double_fpu()) { 1750 out->print("%s", as_double_reg()->name()); 1751 #endif 1752 1753 } else if (is_illegal()) { 1754 out->print("-"); 1755 } else { 1756 out->print("Unknown Operand"); 1757 } 1758 if (!is_illegal()) { 1759 out->print("|%c", type_char()); 1760 } 1761 if (is_register() && is_last_use()) { 1762 out->print("(last_use)"); 1763 } 1764 out->print("]"); 1765 } 1766 1767 1768 // LIR_Address 1769 void LIR_Const::print_value_on(outputStream* out) const { 1770 switch (type()) { 1771 case T_ADDRESS:out->print("address:%d",as_jint()); break; 1772 case T_INT: out->print("int:%d", as_jint()); break; 1773 case T_LONG: out->print("lng:" JLONG_FORMAT, as_jlong()); break; 1774 case T_FLOAT: out->print("flt:%f", as_jfloat()); break; 1775 case T_DOUBLE: out->print("dbl:%f", as_jdouble()); break; 1776 case T_OBJECT: out->print("obj:" INTPTR_FORMAT, p2i(as_jobject())); break; 1777 case T_METADATA: out->print("metadata:" INTPTR_FORMAT, p2i(as_metadata()));break; 1778 default: out->print("%3d:" UINT64_FORMAT_X, type(), (uint64_t)as_jlong()); break; 1779 } 1780 } 1781 1782 // LIR_Address 1783 void LIR_Address::print_value_on(outputStream* out) const { 1784 out->print("Base:"); _base->print(out); 1785 if (!_index->is_illegal()) { 1786 out->print(" Index:"); _index->print(out); 1787 switch (scale()) { 1788 case times_1: break; 1789 case times_2: out->print(" * 2"); break; 1790 case times_4: out->print(" * 4"); break; 1791 case times_8: out->print(" * 8"); break; 1792 } 1793 } 1794 out->print(" Disp: %zd", _disp); 1795 } 1796 1797 // debug output of block header without InstructionPrinter 1798 // (because phi functions are not necessary for LIR) 1799 static void print_block(BlockBegin* x) { 1800 // print block id 1801 BlockEnd* end = x->end(); 1802 tty->print("B%d ", x->block_id()); 1803 1804 // print flags 1805 if (x->is_set(BlockBegin::std_entry_flag)) tty->print("std "); 1806 if (x->is_set(BlockBegin::osr_entry_flag)) tty->print("osr "); 1807 if (x->is_set(BlockBegin::exception_entry_flag)) tty->print("ex "); 1808 if (x->is_set(BlockBegin::subroutine_entry_flag)) tty->print("jsr "); 1809 if (x->is_set(BlockBegin::backward_branch_target_flag)) tty->print("bb "); 1810 if (x->is_set(BlockBegin::linear_scan_loop_header_flag)) tty->print("lh "); 1811 if (x->is_set(BlockBegin::linear_scan_loop_end_flag)) tty->print("le "); 1812 1813 // print block bci range 1814 tty->print("[%d, %d] ", x->bci(), (end == nullptr ? -1 : end->printable_bci())); 1815 1816 // print predecessors and successors 1817 if (x->number_of_preds() > 0) { 1818 tty->print("preds: "); 1819 for (int i = 0; i < x->number_of_preds(); i ++) { 1820 tty->print("B%d ", x->pred_at(i)->block_id()); 1821 } 1822 } 1823 1824 if (end != nullptr && x->number_of_sux() > 0) { 1825 tty->print("sux: "); 1826 for (int i = 0; i < x->number_of_sux(); i ++) { 1827 tty->print("B%d ", x->sux_at(i)->block_id()); 1828 } 1829 } 1830 1831 // print exception handlers 1832 if (x->number_of_exception_handlers() > 0) { 1833 tty->print("xhandler: "); 1834 for (int i = 0; i < x->number_of_exception_handlers(); i++) { 1835 tty->print("B%d ", x->exception_handler_at(i)->block_id()); 1836 } 1837 } 1838 1839 tty->cr(); 1840 } 1841 1842 void print_LIR(BlockList* blocks) { 1843 tty->print_cr("LIR:"); 1844 int i; 1845 for (i = 0; i < blocks->length(); i++) { 1846 BlockBegin* bb = blocks->at(i); 1847 print_block(bb); 1848 tty->print("__id_Instruction___________________________________________"); tty->cr(); 1849 bb->lir()->print_instructions(); 1850 } 1851 } 1852 1853 void LIR_List::print_instructions() { 1854 for (int i = 0; i < _operations.length(); i++) { 1855 _operations.at(i)->print(); tty->cr(); 1856 } 1857 tty->cr(); 1858 } 1859 1860 // LIR_Ops printing routines 1861 // LIR_Op 1862 void LIR_Op::print_on(outputStream* out) const { 1863 if (id() != -1 || PrintCFGToFile) { 1864 out->print("%4d ", id()); 1865 } else { 1866 out->print(" "); 1867 } 1868 out->print("%s ", name()); 1869 print_instr(out); 1870 if (info() != nullptr) out->print(" [bci:%d]", info()->stack()->bci()); 1871 #ifdef ASSERT 1872 if (Verbose && _file != nullptr) { 1873 out->print(" (%s:%d)", _file, _line); 1874 } 1875 #endif 1876 } 1877 1878 const char * LIR_Op::name() const { 1879 const char* s = nullptr; 1880 switch(code()) { 1881 // LIR_Op0 1882 case lir_membar: s = "membar"; break; 1883 case lir_membar_acquire: s = "membar_acquire"; break; 1884 case lir_membar_release: s = "membar_release"; break; 1885 case lir_membar_loadload: s = "membar_loadload"; break; 1886 case lir_membar_storestore: s = "membar_storestore"; break; 1887 case lir_membar_loadstore: s = "membar_loadstore"; break; 1888 case lir_membar_storeload: s = "membar_storeload"; break; 1889 case lir_label: s = "label"; break; 1890 case lir_nop: s = "nop"; break; 1891 case lir_on_spin_wait: s = "on_spin_wait"; break; 1892 case lir_std_entry: s = "std_entry"; break; 1893 case lir_osr_entry: s = "osr_entry"; break; 1894 case lir_fpop_raw: s = "fpop_raw"; break; 1895 case lir_breakpoint: s = "breakpoint"; break; 1896 case lir_get_thread: s = "get_thread"; break; 1897 case lir_check_orig_pc: s = "check_orig_pc"; break; 1898 // LIR_Op1 1899 case lir_fxch: s = "fxch"; break; 1900 case lir_fld: s = "fld"; break; 1901 case lir_push: s = "push"; break; 1902 case lir_pop: s = "pop"; break; 1903 case lir_null_check: s = "null_check"; break; 1904 case lir_return: s = "return"; break; 1905 case lir_safepoint: s = "safepoint"; break; 1906 case lir_leal: s = "leal"; break; 1907 case lir_branch: s = "branch"; break; 1908 case lir_cond_float_branch: s = "flt_cond_br"; break; 1909 case lir_move: s = "move"; break; 1910 case lir_roundfp: s = "roundfp"; break; 1911 case lir_abs: s = "abs"; break; 1912 case lir_neg: s = "neg"; break; 1913 case lir_sqrt: s = "sqrt"; break; 1914 case lir_f2hf: s = "f2hf"; break; 1915 case lir_hf2f: s = "hf2f"; break; 1916 case lir_rtcall: s = "rtcall"; break; 1917 case lir_throw: s = "throw"; break; 1918 case lir_unwind: s = "unwind"; break; 1919 case lir_convert: s = "convert"; break; 1920 case lir_alloc_object: s = "alloc_obj"; break; 1921 case lir_monaddr: s = "mon_addr"; break; 1922 // LIR_Op2 1923 case lir_cmp: s = "cmp"; break; 1924 case lir_cmp_l2i: s = "cmp_l2i"; break; 1925 case lir_ucmp_fd2i: s = "ucomp_fd2i"; break; 1926 case lir_cmp_fd2i: s = "comp_fd2i"; break; 1927 case lir_add: s = "add"; break; 1928 case lir_sub: s = "sub"; break; 1929 case lir_mul: s = "mul"; break; 1930 case lir_div: s = "div"; break; 1931 case lir_rem: s = "rem"; break; 1932 case lir_logic_and: s = "logic_and"; break; 1933 case lir_logic_or: s = "logic_or"; break; 1934 case lir_logic_xor: s = "logic_xor"; break; 1935 case lir_shl: s = "shift_left"; break; 1936 case lir_shr: s = "shift_right"; break; 1937 case lir_ushr: s = "ushift_right"; break; 1938 case lir_alloc_array: s = "alloc_array"; break; 1939 case lir_xadd: s = "xadd"; break; 1940 case lir_xchg: s = "xchg"; break; 1941 // LIR_Op3 1942 case lir_idiv: s = "idiv"; break; 1943 case lir_irem: s = "irem"; break; 1944 case lir_fmad: s = "fmad"; break; 1945 case lir_fmaf: s = "fmaf"; break; 1946 // LIR_Op4 1947 case lir_cmove: s = "cmove"; break; 1948 // LIR_OpJavaCall 1949 case lir_static_call: s = "static"; break; 1950 case lir_optvirtual_call: s = "optvirtual"; break; 1951 case lir_icvirtual_call: s = "icvirtual"; break; 1952 case lir_dynamic_call: s = "dynamic"; break; 1953 // LIR_OpArrayCopy 1954 case lir_arraycopy: s = "arraycopy"; break; 1955 // LIR_OpUpdateCRC32 1956 case lir_updatecrc32: s = "updatecrc32"; break; 1957 // LIR_OpLock 1958 case lir_lock: s = "lock"; break; 1959 case lir_unlock: s = "unlock"; break; 1960 // LIR_OpDelay 1961 case lir_delay_slot: s = "delay"; break; 1962 // LIR_OpTypeCheck 1963 case lir_instanceof: s = "instanceof"; break; 1964 case lir_checkcast: s = "checkcast"; break; 1965 case lir_store_check: s = "store_check"; break; 1966 // LIR_OpFlattenedArrayCheck 1967 case lir_flat_array_check: s = "flat_array_check"; break; 1968 // LIR_OpNullFreeArrayCheck 1969 case lir_null_free_array_check: s = "null_free_array_check"; break; 1970 // LIR_OpSubstitutabilityCheck 1971 case lir_substitutability_check: s = "substitutability_check"; break; 1972 // LIR_OpCompareAndSwap 1973 case lir_cas_long: s = "cas_long"; break; 1974 case lir_cas_obj: s = "cas_obj"; break; 1975 case lir_cas_int: s = "cas_int"; break; 1976 // LIR_OpProfileCall 1977 case lir_profile_call: s = "profile_call"; break; 1978 // LIR_OpProfileType 1979 case lir_profile_type: s = "profile_type"; break; 1980 // LIR_OpProfileInlineType 1981 case lir_profile_inline_type: s = "profile_inline_type"; break; 1982 // LIR_OpAssert 1983 #ifdef ASSERT 1984 case lir_assert: s = "assert"; break; 1985 #endif 1986 case lir_none: ShouldNotReachHere();break; 1987 default: s = "illegal_op"; break; 1988 } 1989 return s; 1990 } 1991 1992 // LIR_OpJavaCall 1993 void LIR_OpJavaCall::print_instr(outputStream* out) const { 1994 out->print("call: "); 1995 out->print("[addr: " INTPTR_FORMAT "]", p2i(address())); 1996 if (receiver()->is_valid()) { 1997 out->print(" [recv: "); receiver()->print(out); out->print("]"); 1998 } 1999 if (result_opr()->is_valid()) { 2000 out->print(" [result: "); result_opr()->print(out); out->print("]"); 2001 } 2002 } 2003 2004 // LIR_OpLabel 2005 void LIR_OpLabel::print_instr(outputStream* out) const { 2006 out->print("[label:" INTPTR_FORMAT "]", p2i(_label)); 2007 } 2008 2009 // LIR_OpArrayCopy 2010 void LIR_OpArrayCopy::print_instr(outputStream* out) const { 2011 src()->print(out); out->print(" "); 2012 src_pos()->print(out); out->print(" "); 2013 dst()->print(out); out->print(" "); 2014 dst_pos()->print(out); out->print(" "); 2015 length()->print(out); out->print(" "); 2016 tmp()->print(out); out->print(" "); 2017 } 2018 2019 // LIR_OpUpdateCRC32 2020 void LIR_OpUpdateCRC32::print_instr(outputStream* out) const { 2021 crc()->print(out); out->print(" "); 2022 val()->print(out); out->print(" "); 2023 result_opr()->print(out); out->print(" "); 2024 } 2025 2026 // LIR_OpCompareAndSwap 2027 void LIR_OpCompareAndSwap::print_instr(outputStream* out) const { 2028 addr()->print(out); out->print(" "); 2029 cmp_value()->print(out); out->print(" "); 2030 new_value()->print(out); out->print(" "); 2031 tmp1()->print(out); out->print(" "); 2032 tmp2()->print(out); out->print(" "); 2033 2034 } 2035 2036 // LIR_Op0 2037 void LIR_Op0::print_instr(outputStream* out) const { 2038 result_opr()->print(out); 2039 } 2040 2041 // LIR_Op1 2042 const char * LIR_Op1::name() const { 2043 if (code() == lir_move) { 2044 switch (move_kind()) { 2045 case lir_move_normal: 2046 return "move"; 2047 case lir_move_volatile: 2048 return "volatile_move"; 2049 case lir_move_wide: 2050 return "wide_move"; 2051 default: 2052 ShouldNotReachHere(); 2053 return "illegal_op"; 2054 } 2055 } else { 2056 return LIR_Op::name(); 2057 } 2058 } 2059 2060 2061 void LIR_Op1::print_instr(outputStream* out) const { 2062 _opr->print(out); out->print(" "); 2063 result_opr()->print(out); out->print(" "); 2064 print_patch_code(out, patch_code()); 2065 } 2066 2067 2068 // LIR_Op1 2069 void LIR_OpRTCall::print_instr(outputStream* out) const { 2070 intx a = (intx)addr(); 2071 out->print("%s", Runtime1::name_for_address(addr())); 2072 out->print(" "); 2073 tmp()->print(out); 2074 } 2075 2076 void LIR_Op1::print_patch_code(outputStream* out, LIR_PatchCode code) { 2077 switch(code) { 2078 case lir_patch_none: break; 2079 case lir_patch_low: out->print("[patch_low]"); break; 2080 case lir_patch_high: out->print("[patch_high]"); break; 2081 case lir_patch_normal: out->print("[patch_normal]"); break; 2082 default: ShouldNotReachHere(); 2083 } 2084 } 2085 2086 // LIR_OpBranch 2087 void LIR_OpBranch::print_instr(outputStream* out) const { 2088 print_condition(out, cond()); out->print(" "); 2089 in_opr1()->print(out); out->print(" "); 2090 in_opr2()->print(out); out->print(" "); 2091 if (block() != nullptr) { 2092 out->print("[B%d] ", block()->block_id()); 2093 } else if (stub() != nullptr) { 2094 out->print("["); 2095 stub()->print_name(out); 2096 out->print(": " INTPTR_FORMAT "]", p2i(stub())); 2097 if (stub()->info() != nullptr) out->print(" [bci:%d]", stub()->info()->stack()->bci()); 2098 } else { 2099 out->print("[label:" INTPTR_FORMAT "] ", p2i(label())); 2100 } 2101 if (ublock() != nullptr) { 2102 out->print("unordered: [B%d] ", ublock()->block_id()); 2103 } 2104 } 2105 2106 void LIR_Op::print_condition(outputStream* out, LIR_Condition cond) { 2107 switch(cond) { 2108 case lir_cond_equal: out->print("[EQ]"); break; 2109 case lir_cond_notEqual: out->print("[NE]"); break; 2110 case lir_cond_less: out->print("[LT]"); break; 2111 case lir_cond_lessEqual: out->print("[LE]"); break; 2112 case lir_cond_greaterEqual: out->print("[GE]"); break; 2113 case lir_cond_greater: out->print("[GT]"); break; 2114 case lir_cond_belowEqual: out->print("[BE]"); break; 2115 case lir_cond_aboveEqual: out->print("[AE]"); break; 2116 case lir_cond_always: out->print("[AL]"); break; 2117 default: out->print("[%d]",cond); break; 2118 } 2119 } 2120 2121 // LIR_OpConvert 2122 void LIR_OpConvert::print_instr(outputStream* out) const { 2123 print_bytecode(out, bytecode()); 2124 in_opr()->print(out); out->print(" "); 2125 result_opr()->print(out); out->print(" "); 2126 } 2127 2128 void LIR_OpConvert::print_bytecode(outputStream* out, Bytecodes::Code code) { 2129 switch(code) { 2130 case Bytecodes::_d2f: out->print("[d2f] "); break; 2131 case Bytecodes::_d2i: out->print("[d2i] "); break; 2132 case Bytecodes::_d2l: out->print("[d2l] "); break; 2133 case Bytecodes::_f2d: out->print("[f2d] "); break; 2134 case Bytecodes::_f2i: out->print("[f2i] "); break; 2135 case Bytecodes::_f2l: out->print("[f2l] "); break; 2136 case Bytecodes::_i2b: out->print("[i2b] "); break; 2137 case Bytecodes::_i2c: out->print("[i2c] "); break; 2138 case Bytecodes::_i2d: out->print("[i2d] "); break; 2139 case Bytecodes::_i2f: out->print("[i2f] "); break; 2140 case Bytecodes::_i2l: out->print("[i2l] "); break; 2141 case Bytecodes::_i2s: out->print("[i2s] "); break; 2142 case Bytecodes::_l2i: out->print("[l2i] "); break; 2143 case Bytecodes::_l2f: out->print("[l2f] "); break; 2144 case Bytecodes::_l2d: out->print("[l2d] "); break; 2145 default: 2146 out->print("[?%d]",code); 2147 break; 2148 } 2149 } 2150 2151 void LIR_OpAllocObj::print_instr(outputStream* out) const { 2152 klass()->print(out); out->print(" "); 2153 obj()->print(out); out->print(" "); 2154 tmp1()->print(out); out->print(" "); 2155 tmp2()->print(out); out->print(" "); 2156 tmp3()->print(out); out->print(" "); 2157 tmp4()->print(out); out->print(" "); 2158 out->print("[hdr:%d]", header_size()); out->print(" "); 2159 out->print("[obj:%d]", object_size()); out->print(" "); 2160 out->print("[lbl:" INTPTR_FORMAT "]", p2i(stub()->entry())); 2161 } 2162 2163 void LIR_OpRoundFP::print_instr(outputStream* out) const { 2164 _opr->print(out); out->print(" "); 2165 tmp()->print(out); out->print(" "); 2166 result_opr()->print(out); out->print(" "); 2167 } 2168 2169 // LIR_Op2 2170 void LIR_Op2::print_instr(outputStream* out) const { 2171 if (code() == lir_cmp || code() == lir_branch || code() == lir_cond_float_branch) { 2172 print_condition(out, condition()); out->print(" "); 2173 } 2174 in_opr1()->print(out); out->print(" "); 2175 in_opr2()->print(out); out->print(" "); 2176 if (tmp1_opr()->is_valid()) { tmp1_opr()->print(out); out->print(" "); } 2177 if (tmp2_opr()->is_valid()) { tmp2_opr()->print(out); out->print(" "); } 2178 if (tmp3_opr()->is_valid()) { tmp3_opr()->print(out); out->print(" "); } 2179 if (tmp4_opr()->is_valid()) { tmp4_opr()->print(out); out->print(" "); } 2180 if (tmp5_opr()->is_valid()) { tmp5_opr()->print(out); out->print(" "); } 2181 result_opr()->print(out); 2182 } 2183 2184 void LIR_OpAllocArray::print_instr(outputStream* out) const { 2185 klass()->print(out); out->print(" "); 2186 len()->print(out); out->print(" "); 2187 obj()->print(out); out->print(" "); 2188 tmp1()->print(out); out->print(" "); 2189 tmp2()->print(out); out->print(" "); 2190 tmp3()->print(out); out->print(" "); 2191 tmp4()->print(out); out->print(" "); 2192 out->print("[type:0x%x]", type()); out->print(" "); 2193 out->print("[label:" INTPTR_FORMAT "]", p2i(stub()->entry())); 2194 } 2195 2196 2197 void LIR_OpTypeCheck::print_instr(outputStream* out) const { 2198 object()->print(out); out->print(" "); 2199 if (code() == lir_store_check) { 2200 array()->print(out); out->print(" "); 2201 } 2202 if (code() != lir_store_check) { 2203 klass()->print_name_on(out); out->print(" "); 2204 if (fast_check()) out->print("fast_check "); 2205 } 2206 tmp1()->print(out); out->print(" "); 2207 tmp2()->print(out); out->print(" "); 2208 tmp3()->print(out); out->print(" "); 2209 result_opr()->print(out); out->print(" "); 2210 if (info_for_exception() != nullptr) out->print(" [bci:%d]", info_for_exception()->stack()->bci()); 2211 } 2212 2213 void LIR_OpFlattenedArrayCheck::print_instr(outputStream* out) const { 2214 array()->print(out); out->print(" "); 2215 value()->print(out); out->print(" "); 2216 tmp()->print(out); out->print(" "); 2217 if (stub() != nullptr) { 2218 out->print("[label:" INTPTR_FORMAT "]", p2i(stub()->entry())); 2219 } 2220 } 2221 2222 void LIR_OpNullFreeArrayCheck::print_instr(outputStream* out) const { 2223 array()->print(out); out->print(" "); 2224 tmp()->print(out); out->print(" "); 2225 } 2226 2227 void LIR_OpSubstitutabilityCheck::print_instr(outputStream* out) const { 2228 result_opr()->print(out); out->print(" "); 2229 left()->print(out); out->print(" "); 2230 right()->print(out); out->print(" "); 2231 equal_result()->print(out); out->print(" "); 2232 not_equal_result()->print(out); out->print(" "); 2233 tmp1()->print(out); out->print(" "); 2234 tmp2()->print(out); out->print(" "); 2235 if (left_klass() == nullptr) { 2236 out->print("unknown "); 2237 } else { 2238 left_klass()->print(out); out->print(" "); 2239 } 2240 if (right_klass() == nullptr) { 2241 out->print("unknown "); 2242 } else { 2243 right_klass()->print(out); out->print(" "); 2244 } 2245 left_klass_op()->print(out); out->print(" "); 2246 right_klass_op()->print(out); out->print(" "); 2247 if (stub() != nullptr) { 2248 out->print("[label:" INTPTR_FORMAT "]", p2i(stub()->entry())); 2249 } 2250 } 2251 2252 // LIR_Op3 2253 void LIR_Op3::print_instr(outputStream* out) const { 2254 in_opr1()->print(out); out->print(" "); 2255 in_opr2()->print(out); out->print(" "); 2256 in_opr3()->print(out); out->print(" "); 2257 result_opr()->print(out); 2258 } 2259 2260 // LIR_Op4 2261 void LIR_Op4::print_instr(outputStream* out) const { 2262 print_condition(out, condition()); out->print(" "); 2263 in_opr1()->print(out); out->print(" "); 2264 in_opr2()->print(out); out->print(" "); 2265 in_opr3()->print(out); out->print(" "); 2266 in_opr4()->print(out); out->print(" "); 2267 result_opr()->print(out); 2268 } 2269 2270 void LIR_OpLock::print_instr(outputStream* out) const { 2271 hdr_opr()->print(out); out->print(" "); 2272 obj_opr()->print(out); out->print(" "); 2273 lock_opr()->print(out); out->print(" "); 2274 if (_scratch->is_valid()) { 2275 _scratch->print(out); out->print(" "); 2276 } 2277 out->print("[lbl:" INTPTR_FORMAT "]", p2i(stub()->entry())); 2278 } 2279 2280 void LIR_OpLoadKlass::print_instr(outputStream* out) const { 2281 obj()->print(out); out->print(" "); 2282 result_opr()->print(out); out->print(" "); 2283 } 2284 2285 #ifdef ASSERT 2286 void LIR_OpAssert::print_instr(outputStream* out) const { 2287 print_condition(out, condition()); out->print(" "); 2288 in_opr1()->print(out); out->print(" "); 2289 in_opr2()->print(out); out->print(", \""); 2290 out->print("%s", msg()); out->print("\""); 2291 } 2292 #endif 2293 2294 2295 void LIR_OpDelay::print_instr(outputStream* out) const { 2296 _op->print_on(out); 2297 } 2298 2299 2300 // LIR_OpProfileCall 2301 void LIR_OpProfileCall::print_instr(outputStream* out) const { 2302 profiled_method()->name()->print_symbol_on(out); 2303 out->print("."); 2304 profiled_method()->holder()->name()->print_symbol_on(out); 2305 out->print(" @ %d ", profiled_bci()); 2306 mdo()->print(out); out->print(" "); 2307 recv()->print(out); out->print(" "); 2308 tmp1()->print(out); out->print(" "); 2309 } 2310 2311 // LIR_OpProfileType 2312 void LIR_OpProfileType::print_instr(outputStream* out) const { 2313 out->print("exact = "); 2314 if (exact_klass() == nullptr) { 2315 out->print("unknown"); 2316 } else { 2317 exact_klass()->print_name_on(out); 2318 } 2319 out->print(" current = "); ciTypeEntries::print_ciklass(out, current_klass()); 2320 out->print(" "); 2321 mdp()->print(out); out->print(" "); 2322 obj()->print(out); out->print(" "); 2323 tmp()->print(out); out->print(" "); 2324 } 2325 2326 // LIR_OpProfileInlineType 2327 void LIR_OpProfileInlineType::print_instr(outputStream* out) const { 2328 out->print(" flag = %x ", flag()); 2329 mdp()->print(out); out->print(" "); 2330 obj()->print(out); out->print(" "); 2331 tmp()->print(out); out->print(" "); 2332 } 2333 2334 #endif // PRODUCT 2335 2336 // Implementation of LIR_InsertionBuffer 2337 2338 void LIR_InsertionBuffer::append(int index, LIR_Op* op) { 2339 assert(_index_and_count.length() % 2 == 0, "must have a count for each index"); 2340 2341 int i = number_of_insertion_points() - 1; 2342 if (i < 0 || index_at(i) < index) { 2343 append_new(index, 1); 2344 } else { 2345 assert(index_at(i) == index, "can append LIR_Ops in ascending order only"); 2346 assert(count_at(i) > 0, "check"); 2347 set_count_at(i, count_at(i) + 1); 2348 } 2349 _ops.push(op); 2350 2351 DEBUG_ONLY(verify()); 2352 } 2353 2354 #ifdef ASSERT 2355 void LIR_InsertionBuffer::verify() { 2356 int sum = 0; 2357 int prev_idx = -1; 2358 2359 for (int i = 0; i < number_of_insertion_points(); i++) { 2360 assert(prev_idx < index_at(i), "index must be ordered ascending"); 2361 sum += count_at(i); 2362 } 2363 assert(sum == number_of_ops(), "wrong total sum"); 2364 } 2365 #endif