1 /*
   2  * Copyright (c) 2000, 2021, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_CodeStubs.hpp"
  27 #include "c1/c1_InstructionPrinter.hpp"
  28 #include "c1/c1_LIR.hpp"
  29 #include "c1/c1_LIRAssembler.hpp"
  30 #include "c1/c1_ValueStack.hpp"
  31 #include "ci/ciInlineKlass.hpp"
  32 #include "ci/ciInstance.hpp"
  33 #include "runtime/safepointMechanism.inline.hpp"
  34 #include "runtime/sharedRuntime.hpp"
  35 #include "runtime/vm_version.hpp"
  36 
  37 Register LIR_Opr::as_register() const {
  38   return FrameMap::cpu_rnr2reg(cpu_regnr());
  39 }
  40 
  41 Register LIR_Opr::as_register_lo() const {
  42   return FrameMap::cpu_rnr2reg(cpu_regnrLo());
  43 }
  44 
  45 Register LIR_Opr::as_register_hi() const {
  46   return FrameMap::cpu_rnr2reg(cpu_regnrHi());
  47 }
  48 
  49 LIR_Opr LIR_OprFact::illegalOpr = LIR_OprFact::illegal();
  50 LIR_Opr LIR_OprFact::nullOpr = LIR_Opr();
  51 
  52 LIR_Opr LIR_OprFact::value_type(ValueType* type) {
  53   ValueTag tag = type->tag();
  54   switch (tag) {
  55   case metaDataTag : {
  56     ClassConstant* c = type->as_ClassConstant();
  57     if (c != NULL && !c->value()->is_loaded()) {
  58       return LIR_OprFact::metadataConst(NULL);
  59     } else if (c != NULL) {
  60       return LIR_OprFact::metadataConst(c->value()->constant_encoding());
  61     } else {
  62       MethodConstant* m = type->as_MethodConstant();
  63       assert (m != NULL, "not a class or a method?");
  64       return LIR_OprFact::metadataConst(m->value()->constant_encoding());
  65     }
  66   }
  67   case objectTag : {
  68       return LIR_OprFact::oopConst(type->as_ObjectType()->encoding());
  69     }
  70   case addressTag: return LIR_OprFact::addressConst(type->as_AddressConstant()->value());
  71   case intTag    : return LIR_OprFact::intConst(type->as_IntConstant()->value());
  72   case floatTag  : return LIR_OprFact::floatConst(type->as_FloatConstant()->value());
  73   case longTag   : return LIR_OprFact::longConst(type->as_LongConstant()->value());
  74   case doubleTag : return LIR_OprFact::doubleConst(type->as_DoubleConstant()->value());
  75   default: ShouldNotReachHere(); return LIR_OprFact::intConst(-1);
  76   }
  77 }
  78 
  79 
  80 //---------------------------------------------------
  81 
  82 
  83 LIR_Address::Scale LIR_Address::scale(BasicType type) {
  84   int elem_size = type2aelembytes(type);
  85   switch (elem_size) {
  86   case 1: return LIR_Address::times_1;
  87   case 2: return LIR_Address::times_2;
  88   case 4: return LIR_Address::times_4;
  89   case 8: return LIR_Address::times_8;
  90   }
  91   ShouldNotReachHere();
  92   return LIR_Address::times_1;
  93 }
  94 
  95 //---------------------------------------------------
  96 
  97 char LIR_Opr::type_char(BasicType t) {
  98   switch (t) {
  99     case T_ARRAY:
 100     case T_PRIMITIVE_OBJECT:
 101       t = T_OBJECT;
 102     case T_BOOLEAN:
 103     case T_CHAR:
 104     case T_FLOAT:
 105     case T_DOUBLE:
 106     case T_BYTE:
 107     case T_SHORT:
 108     case T_INT:
 109     case T_LONG:
 110     case T_OBJECT:
 111     case T_ADDRESS:
 112     case T_VOID:
 113       return ::type2char(t);
 114     case T_METADATA:
 115       return 'M';
 116     case T_ILLEGAL:
 117       return '?';
 118 
 119     default:
 120       ShouldNotReachHere();
 121       return '?';
 122   }
 123 }
 124 
 125 #ifndef PRODUCT
 126 void LIR_Opr::validate_type() const {
 127 
 128 #ifdef ASSERT
 129   if (!is_pointer() && !is_illegal()) {
 130     OprKind kindfield = kind_field(); // Factored out because of compiler bug, see 8002160
 131     switch (as_BasicType(type_field())) {
 132     case T_LONG:
 133       assert((kindfield == cpu_register || kindfield == stack_value) &&
 134              size_field() == double_size, "must match");
 135       break;
 136     case T_FLOAT:
 137       // FP return values can be also in CPU registers on ARM (softfp ABI)
 138       assert((kindfield == fpu_register || kindfield == stack_value
 139              ARM_ONLY(|| kindfield == cpu_register) ) &&
 140              size_field() == single_size, "must match");
 141       break;
 142     case T_DOUBLE:
 143       // FP return values can be also in CPU registers on ARM (softfp ABI)
 144       assert((kindfield == fpu_register || kindfield == stack_value
 145              ARM_ONLY(|| kindfield == cpu_register) ) &&
 146              size_field() == double_size, "must match");
 147       break;
 148     case T_BOOLEAN:
 149     case T_CHAR:
 150     case T_BYTE:
 151     case T_SHORT:
 152     case T_INT:
 153     case T_ADDRESS:
 154     case T_OBJECT:
 155     case T_METADATA:
 156     case T_ARRAY:
 157     case T_PRIMITIVE_OBJECT:
 158       assert((kindfield == cpu_register || kindfield == stack_value) &&
 159              size_field() == single_size, "must match");
 160       break;
 161 
 162     case T_ILLEGAL:
 163       // XXX TKR also means unknown right now
 164       // assert(is_illegal(), "must match");
 165       break;
 166 
 167     default:
 168       ShouldNotReachHere();
 169     }
 170   }
 171 #endif
 172 
 173 }
 174 #endif // PRODUCT
 175 
 176 
 177 bool LIR_Opr::is_oop() const {
 178   if (is_pointer()) {
 179     return pointer()->is_oop_pointer();
 180   } else {
 181     OprType t= type_field();
 182     assert(t != unknown_type, "not set");
 183     return t == object_type;
 184   }
 185 }
 186 
 187 
 188 
 189 void LIR_Op2::verify() const {
 190 #ifdef ASSERT
 191   switch (code()) {
 192     case lir_cmove:
 193     case lir_xchg:
 194       break;
 195 
 196     default:
 197       assert(!result_opr()->is_register() || !result_opr()->is_oop_register(),
 198              "can't produce oops from arith");
 199   }
 200 
 201   if (TwoOperandLIRForm) {
 202 
 203 #ifdef ASSERT
 204     bool threeOperandForm = false;
 205 #ifdef S390
 206     // There are 3 operand shifts on S390 (see LIR_Assembler::shift_op()).
 207     threeOperandForm =
 208       code() == lir_shl ||
 209       ((code() == lir_shr || code() == lir_ushr) && (result_opr()->is_double_cpu() || in_opr1()->type() == T_OBJECT));
 210 #endif
 211 #endif
 212 
 213     switch (code()) {
 214     case lir_add:
 215     case lir_sub:
 216     case lir_mul:
 217     case lir_div:
 218     case lir_rem:
 219     case lir_logic_and:
 220     case lir_logic_or:
 221     case lir_logic_xor:
 222     case lir_shl:
 223     case lir_shr:
 224       assert(in_opr1() == result_opr() || threeOperandForm, "opr1 and result must match");
 225       assert(in_opr1()->is_valid() && in_opr2()->is_valid(), "must be valid");
 226       break;
 227 
 228     // special handling for lir_ushr because of write barriers
 229     case lir_ushr:
 230       assert(in_opr1() == result_opr() || in_opr2()->is_constant() || threeOperandForm, "opr1 and result must match or shift count is constant");
 231       assert(in_opr1()->is_valid() && in_opr2()->is_valid(), "must be valid");
 232       break;
 233 
 234     default:
 235       break;
 236     }
 237   }
 238 #endif
 239 }
 240 
 241 
 242 LIR_OpBranch::LIR_OpBranch(LIR_Condition cond, BlockBegin* block)
 243   : LIR_Op(lir_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*)NULL)
 244   , _cond(cond)
 245   , _label(block->label())
 246   , _block(block)
 247   , _ublock(NULL)
 248   , _stub(NULL) {
 249 }
 250 
 251 LIR_OpBranch::LIR_OpBranch(LIR_Condition cond, CodeStub* stub) :
 252   LIR_Op(lir_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*)NULL)
 253   , _cond(cond)
 254   , _label(stub->entry())
 255   , _block(NULL)
 256   , _ublock(NULL)
 257   , _stub(stub) {
 258 }
 259 
 260 LIR_OpBranch::LIR_OpBranch(LIR_Condition cond, BlockBegin* block, BlockBegin* ublock)
 261   : LIR_Op(lir_cond_float_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*)NULL)
 262   , _cond(cond)
 263   , _label(block->label())
 264   , _block(block)
 265   , _ublock(ublock)
 266   , _stub(NULL)
 267 {
 268 }
 269 
 270 void LIR_OpBranch::change_block(BlockBegin* b) {
 271   assert(_block != NULL, "must have old block");
 272   assert(_block->label() == label(), "must be equal");
 273 
 274   _block = b;
 275   _label = b->label();
 276 }
 277 
 278 void LIR_OpBranch::change_ublock(BlockBegin* b) {
 279   assert(_ublock != NULL, "must have old block");
 280   _ublock = b;
 281 }
 282 
 283 void LIR_OpBranch::negate_cond() {
 284   switch (_cond) {
 285     case lir_cond_equal:        _cond = lir_cond_notEqual;     break;
 286     case lir_cond_notEqual:     _cond = lir_cond_equal;        break;
 287     case lir_cond_less:         _cond = lir_cond_greaterEqual; break;
 288     case lir_cond_lessEqual:    _cond = lir_cond_greater;      break;
 289     case lir_cond_greaterEqual: _cond = lir_cond_less;         break;
 290     case lir_cond_greater:      _cond = lir_cond_lessEqual;    break;
 291     default: ShouldNotReachHere();
 292   }
 293 }
 294 
 295 
 296 LIR_OpTypeCheck::LIR_OpTypeCheck(LIR_Code code, LIR_Opr result, LIR_Opr object, ciKlass* klass,
 297                                  LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3,
 298                                  bool fast_check, CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch,
 299                                  CodeStub* stub, bool need_null_check)
 300 
 301   : LIR_Op(code, result, NULL)
 302   , _object(object)
 303   , _array(LIR_OprFact::illegalOpr)
 304   , _klass(klass)
 305   , _tmp1(tmp1)
 306   , _tmp2(tmp2)
 307   , _tmp3(tmp3)
 308   , _fast_check(fast_check)
 309   , _info_for_patch(info_for_patch)
 310   , _info_for_exception(info_for_exception)
 311   , _stub(stub)
 312   , _profiled_method(NULL)
 313   , _profiled_bci(-1)
 314   , _should_profile(false)
 315   , _need_null_check(need_null_check)
 316 {
 317   if (code == lir_checkcast) {
 318     assert(info_for_exception != NULL, "checkcast throws exceptions");
 319   } else if (code == lir_instanceof) {
 320     assert(info_for_exception == NULL, "instanceof throws no exceptions");
 321   } else {
 322     ShouldNotReachHere();
 323   }
 324 }
 325 
 326 
 327 
 328 LIR_OpTypeCheck::LIR_OpTypeCheck(LIR_Code code, LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception)
 329   : LIR_Op(code, LIR_OprFact::illegalOpr, NULL)
 330   , _object(object)
 331   , _array(array)
 332   , _klass(NULL)
 333   , _tmp1(tmp1)
 334   , _tmp2(tmp2)
 335   , _tmp3(tmp3)
 336   , _fast_check(false)
 337   , _info_for_patch(NULL)
 338   , _info_for_exception(info_for_exception)
 339   , _stub(NULL)
 340   , _profiled_method(NULL)
 341   , _profiled_bci(-1)
 342   , _should_profile(false)
 343   , _need_null_check(true)
 344 {
 345   if (code == lir_store_check) {
 346     _stub = new ArrayStoreExceptionStub(object, info_for_exception);
 347     assert(info_for_exception != NULL, "store_check throws exceptions");
 348   } else {
 349     ShouldNotReachHere();
 350   }
 351 }
 352 
 353 LIR_OpFlattenedArrayCheck::LIR_OpFlattenedArrayCheck(LIR_Opr array, LIR_Opr value, LIR_Opr tmp, CodeStub* stub)
 354   : LIR_Op(lir_flattened_array_check, LIR_OprFact::illegalOpr, NULL)
 355   , _array(array)
 356   , _value(value)
 357   , _tmp(tmp)
 358   , _stub(stub) {}
 359 
 360 
 361 LIR_OpNullFreeArrayCheck::LIR_OpNullFreeArrayCheck(LIR_Opr array, LIR_Opr tmp)
 362   : LIR_Op(lir_null_free_array_check, LIR_OprFact::illegalOpr, NULL)
 363   , _array(array)
 364   , _tmp(tmp) {}
 365 
 366 
 367 LIR_OpSubstitutabilityCheck::LIR_OpSubstitutabilityCheck(LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr equal_result, LIR_Opr not_equal_result,
 368                                                          LIR_Opr tmp1, LIR_Opr tmp2,
 369                                                          ciKlass* left_klass, ciKlass* right_klass, LIR_Opr left_klass_op, LIR_Opr right_klass_op,
 370                                                          CodeEmitInfo* info, CodeStub* stub)
 371   : LIR_Op(lir_substitutability_check, result, info)
 372   , _left(left)
 373   , _right(right)
 374   , _equal_result(equal_result)
 375   , _not_equal_result(not_equal_result)
 376   , _tmp1(tmp1)
 377   , _tmp2(tmp2)
 378   , _left_klass(left_klass)
 379   , _right_klass(right_klass)
 380   , _left_klass_op(left_klass_op)
 381   , _right_klass_op(right_klass_op)
 382   , _stub(stub) {}
 383 
 384 
 385 LIR_OpArrayCopy::LIR_OpArrayCopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length,
 386                                  LIR_Opr tmp, ciArrayKlass* expected_type, int flags, CodeEmitInfo* info)
 387   : LIR_Op(lir_arraycopy, LIR_OprFact::illegalOpr, info)
 388   , _src(src)
 389   , _src_pos(src_pos)
 390   , _dst(dst)
 391   , _dst_pos(dst_pos)
 392   , _length(length)
 393   , _tmp(tmp)
 394   , _expected_type(expected_type)
 395   , _flags(flags) {
 396   _stub = new ArrayCopyStub(this);
 397 }
 398 
 399 LIR_OpUpdateCRC32::LIR_OpUpdateCRC32(LIR_Opr crc, LIR_Opr val, LIR_Opr res)
 400   : LIR_Op(lir_updatecrc32, res, NULL)
 401   , _crc(crc)
 402   , _val(val) {
 403 }
 404 
 405 //-------------------verify--------------------------
 406 
 407 void LIR_Op1::verify() const {
 408   switch(code()) {
 409   case lir_move:
 410     assert(in_opr()->is_valid() && result_opr()->is_valid(), "must be");
 411     break;
 412   case lir_null_check:
 413     assert(in_opr()->is_register(), "must be");
 414     break;
 415   case lir_return:
 416     assert(in_opr()->is_register() || in_opr()->is_illegal(), "must be");
 417     break;
 418   default:
 419     break;
 420   }
 421 }
 422 
 423 void LIR_OpRTCall::verify() const {
 424   assert(strcmp(Runtime1::name_for_address(addr()), "<unknown function>") != 0, "unknown function");
 425 }
 426 
 427 //-------------------visits--------------------------
 428 
 429 // complete rework of LIR instruction visitor.
 430 // The virtual call for each instruction type is replaced by a big
 431 // switch that adds the operands for each instruction
 432 
 433 void LIR_OpVisitState::visit(LIR_Op* op) {
 434   // copy information from the LIR_Op
 435   reset();
 436   set_op(op);
 437 
 438   switch (op->code()) {
 439 
 440 // LIR_Op0
 441     case lir_fpop_raw:                 // result and info always invalid
 442     case lir_breakpoint:               // result and info always invalid
 443     case lir_membar:                   // result and info always invalid
 444     case lir_membar_acquire:           // result and info always invalid
 445     case lir_membar_release:           // result and info always invalid
 446     case lir_membar_loadload:          // result and info always invalid
 447     case lir_membar_storestore:        // result and info always invalid
 448     case lir_membar_loadstore:         // result and info always invalid
 449     case lir_membar_storeload:         // result and info always invalid
 450     case lir_check_orig_pc:            // result and info always invalid
 451     case lir_on_spin_wait:
 452     {
 453       assert(op->as_Op0() != NULL, "must be");
 454       assert(op->_info == NULL, "info not used by this instruction");
 455       assert(op->_result->is_illegal(), "not used");
 456       break;
 457     }
 458 
 459     case lir_nop:                      // may have info, result always invalid
 460     case lir_std_entry:                // may have result, info always invalid
 461     case lir_osr_entry:                // may have result, info always invalid
 462     case lir_get_thread:               // may have result, info always invalid
 463     {
 464       assert(op->as_Op0() != NULL, "must be");
 465       if (op->_info != NULL)           do_info(op->_info);
 466       if (op->_result->is_valid())     do_output(op->_result);
 467       break;
 468     }
 469 
 470 
 471 // LIR_OpLabel
 472     case lir_label:                    // result and info always invalid
 473     {
 474       assert(op->as_OpLabel() != NULL, "must be");
 475       assert(op->_info == NULL, "info not used by this instruction");
 476       assert(op->_result->is_illegal(), "not used");
 477       break;
 478     }
 479 
 480 
 481 // LIR_Op1
 482     case lir_fxch:           // input always valid, result and info always invalid
 483     case lir_fld:            // input always valid, result and info always invalid
 484     case lir_push:           // input always valid, result and info always invalid
 485     case lir_pop:            // input always valid, result and info always invalid
 486     case lir_leal:           // input and result always valid, info always invalid
 487     case lir_monaddr:        // input and result always valid, info always invalid
 488     case lir_null_check:     // input and info always valid, result always invalid
 489     case lir_move:           // input and result always valid, may have info
 490     {
 491       assert(op->as_Op1() != NULL, "must be");
 492       LIR_Op1* op1 = (LIR_Op1*)op;
 493 
 494       if (op1->_info)                  do_info(op1->_info);
 495       if (op1->_opr->is_valid())       do_input(op1->_opr);
 496       if (op1->_result->is_valid())    do_output(op1->_result);
 497 
 498       break;
 499     }
 500 
 501     case lir_return:
 502     {
 503       assert(op->as_OpReturn() != NULL, "must be");
 504       LIR_OpReturn* op_ret = (LIR_OpReturn*)op;
 505 
 506       if (op_ret->_info)               do_info(op_ret->_info);
 507       if (op_ret->_opr->is_valid())    do_input(op_ret->_opr);
 508       if (op_ret->_result->is_valid()) do_output(op_ret->_result);
 509       if (op_ret->stub() != NULL)      do_stub(op_ret->stub());
 510 
 511       break;
 512     }
 513 
 514     case lir_safepoint:
 515     {
 516       assert(op->as_Op1() != NULL, "must be");
 517       LIR_Op1* op1 = (LIR_Op1*)op;
 518 
 519       assert(op1->_info != NULL, "");  do_info(op1->_info);
 520       if (op1->_opr->is_valid())       do_temp(op1->_opr); // safepoints on SPARC need temporary register
 521       assert(op1->_result->is_illegal(), "safepoint does not produce value");
 522 
 523       break;
 524     }
 525 
 526 // LIR_OpConvert;
 527     case lir_convert:        // input and result always valid, info always invalid
 528     {
 529       assert(op->as_OpConvert() != NULL, "must be");
 530       LIR_OpConvert* opConvert = (LIR_OpConvert*)op;
 531 
 532       assert(opConvert->_info == NULL, "must be");
 533       if (opConvert->_opr->is_valid())       do_input(opConvert->_opr);
 534       if (opConvert->_result->is_valid())    do_output(opConvert->_result);
 535       do_stub(opConvert->_stub);
 536 
 537       break;
 538     }
 539 
 540 // LIR_OpBranch;
 541     case lir_branch:                   // may have info, input and result register always invalid
 542     case lir_cond_float_branch:        // may have info, input and result register always invalid
 543     {
 544       assert(op->as_OpBranch() != NULL, "must be");
 545       LIR_OpBranch* opBranch = (LIR_OpBranch*)op;
 546 
 547       if (opBranch->_info != NULL)     do_info(opBranch->_info);
 548       assert(opBranch->_result->is_illegal(), "not used");
 549       if (opBranch->_stub != NULL)     opBranch->stub()->visit(this);
 550 
 551       break;
 552     }
 553 
 554 
 555 // LIR_OpAllocObj
 556     case lir_alloc_object:
 557     {
 558       assert(op->as_OpAllocObj() != NULL, "must be");
 559       LIR_OpAllocObj* opAllocObj = (LIR_OpAllocObj*)op;
 560 
 561       if (opAllocObj->_info)                     do_info(opAllocObj->_info);
 562       if (opAllocObj->_opr->is_valid()) {        do_input(opAllocObj->_opr);
 563                                                  do_temp(opAllocObj->_opr);
 564                                         }
 565       if (opAllocObj->_tmp1->is_valid())         do_temp(opAllocObj->_tmp1);
 566       if (opAllocObj->_tmp2->is_valid())         do_temp(opAllocObj->_tmp2);
 567       if (opAllocObj->_tmp3->is_valid())         do_temp(opAllocObj->_tmp3);
 568       if (opAllocObj->_tmp4->is_valid())         do_temp(opAllocObj->_tmp4);
 569       if (opAllocObj->_result->is_valid())       do_output(opAllocObj->_result);
 570                                                  do_stub(opAllocObj->_stub);
 571       break;
 572     }
 573 
 574 
 575 // LIR_OpRoundFP;
 576     case lir_roundfp: {
 577       assert(op->as_OpRoundFP() != NULL, "must be");
 578       LIR_OpRoundFP* opRoundFP = (LIR_OpRoundFP*)op;
 579 
 580       assert(op->_info == NULL, "info not used by this instruction");
 581       assert(opRoundFP->_tmp->is_illegal(), "not used");
 582       do_input(opRoundFP->_opr);
 583       do_output(opRoundFP->_result);
 584 
 585       break;
 586     }
 587 
 588 
 589 // LIR_Op2
 590     case lir_cmp:
 591     case lir_cmp_l2i:
 592     case lir_ucmp_fd2i:
 593     case lir_cmp_fd2i:
 594     case lir_add:
 595     case lir_sub:
 596     case lir_rem:
 597     case lir_sqrt:
 598     case lir_abs:
 599     case lir_neg:
 600     case lir_logic_and:
 601     case lir_logic_or:
 602     case lir_logic_xor:
 603     case lir_shl:
 604     case lir_shr:
 605     case lir_ushr:
 606     case lir_xadd:
 607     case lir_xchg:
 608     case lir_assert:
 609     {
 610       assert(op->as_Op2() != NULL, "must be");
 611       LIR_Op2* op2 = (LIR_Op2*)op;
 612       assert(op2->_tmp2->is_illegal() && op2->_tmp3->is_illegal() &&
 613              op2->_tmp4->is_illegal() && op2->_tmp5->is_illegal(), "not used");
 614 
 615       if (op2->_info)                     do_info(op2->_info);
 616       if (op2->_opr1->is_valid())         do_input(op2->_opr1);
 617       if (op2->_opr2->is_valid())         do_input(op2->_opr2);
 618       if (op2->_tmp1->is_valid())         do_temp(op2->_tmp1);
 619       if (op2->_result->is_valid())       do_output(op2->_result);
 620       if (op->code() == lir_xchg || op->code() == lir_xadd) {
 621         // on ARM and PPC, return value is loaded first so could
 622         // destroy inputs. On other platforms that implement those
 623         // (x86, sparc), the extra constrainsts are harmless.
 624         if (op2->_opr1->is_valid())       do_temp(op2->_opr1);
 625         if (op2->_opr2->is_valid())       do_temp(op2->_opr2);
 626       }
 627 
 628       break;
 629     }
 630 
 631     // special handling for cmove: right input operand must not be equal
 632     // to the result operand, otherwise the backend fails
 633     case lir_cmove:
 634     {
 635       assert(op->as_Op2() != NULL, "must be");
 636       LIR_Op2* op2 = (LIR_Op2*)op;
 637 
 638       assert(op2->_info == NULL && op2->_tmp1->is_illegal() && op2->_tmp2->is_illegal() &&
 639              op2->_tmp3->is_illegal() && op2->_tmp4->is_illegal() && op2->_tmp5->is_illegal(), "not used");
 640       assert(op2->_opr1->is_valid() && op2->_opr2->is_valid() && op2->_result->is_valid(), "used");
 641 
 642       do_input(op2->_opr1);
 643       do_input(op2->_opr2);
 644       do_temp(op2->_opr2);
 645       do_output(op2->_result);
 646 
 647       break;
 648     }
 649 
 650     // vspecial handling for strict operations: register input operands
 651     // as temp to guarantee that they do not overlap with other
 652     // registers
 653     case lir_mul:
 654     case lir_div:
 655     {
 656       assert(op->as_Op2() != NULL, "must be");
 657       LIR_Op2* op2 = (LIR_Op2*)op;
 658 
 659       assert(op2->_info == NULL, "not used");
 660       assert(op2->_opr1->is_valid(), "used");
 661       assert(op2->_opr2->is_valid(), "used");
 662       assert(op2->_result->is_valid(), "used");
 663       assert(op2->_tmp2->is_illegal() && op2->_tmp3->is_illegal() &&
 664              op2->_tmp4->is_illegal() && op2->_tmp5->is_illegal(), "not used");
 665 
 666       do_input(op2->_opr1); do_temp(op2->_opr1);
 667       do_input(op2->_opr2); do_temp(op2->_opr2);
 668       if (op2->_tmp1->is_valid()) do_temp(op2->_tmp1);
 669       do_output(op2->_result);
 670 
 671       break;
 672     }
 673 
 674     case lir_throw: {
 675       assert(op->as_Op2() != NULL, "must be");
 676       LIR_Op2* op2 = (LIR_Op2*)op;
 677 
 678       if (op2->_info)                     do_info(op2->_info);
 679       if (op2->_opr1->is_valid())         do_temp(op2->_opr1);
 680       if (op2->_opr2->is_valid())         do_input(op2->_opr2); // exception object is input parameter
 681       assert(op2->_result->is_illegal(), "no result");
 682       assert(op2->_tmp2->is_illegal() && op2->_tmp3->is_illegal() &&
 683              op2->_tmp4->is_illegal() && op2->_tmp5->is_illegal(), "not used");
 684 
 685       break;
 686     }
 687 
 688     case lir_unwind: {
 689       assert(op->as_Op1() != NULL, "must be");
 690       LIR_Op1* op1 = (LIR_Op1*)op;
 691 
 692       assert(op1->_info == NULL, "no info");
 693       assert(op1->_opr->is_valid(), "exception oop");         do_input(op1->_opr);
 694       assert(op1->_result->is_illegal(), "no result");
 695 
 696       break;
 697     }
 698 
 699 // LIR_Op3
 700     case lir_idiv:
 701     case lir_irem: {
 702       assert(op->as_Op3() != NULL, "must be");
 703       LIR_Op3* op3= (LIR_Op3*)op;
 704 
 705       if (op3->_info)                     do_info(op3->_info);
 706       if (op3->_opr1->is_valid())         do_input(op3->_opr1);
 707 
 708       // second operand is input and temp, so ensure that second operand
 709       // and third operand get not the same register
 710       if (op3->_opr2->is_valid())         do_input(op3->_opr2);
 711       if (op3->_opr2->is_valid())         do_temp(op3->_opr2);
 712       if (op3->_opr3->is_valid())         do_temp(op3->_opr3);
 713 
 714       if (op3->_result->is_valid())       do_output(op3->_result);
 715 
 716       break;
 717     }
 718 
 719     case lir_fmad:
 720     case lir_fmaf: {
 721       assert(op->as_Op3() != NULL, "must be");
 722       LIR_Op3* op3= (LIR_Op3*)op;
 723       assert(op3->_info == NULL, "no info");
 724       do_input(op3->_opr1);
 725       do_input(op3->_opr2);
 726       do_input(op3->_opr3);
 727       do_output(op3->_result);
 728       break;
 729     }
 730 
 731 // LIR_OpJavaCall
 732     case lir_static_call:
 733     case lir_optvirtual_call:
 734     case lir_icvirtual_call:
 735     case lir_dynamic_call: {
 736       LIR_OpJavaCall* opJavaCall = op->as_OpJavaCall();
 737       assert(opJavaCall != NULL, "must be");
 738 
 739       if (opJavaCall->_receiver->is_valid())     do_input(opJavaCall->_receiver);
 740 
 741       // only visit register parameters
 742       int n = opJavaCall->_arguments->length();
 743       for (int i = opJavaCall->_receiver->is_valid() ? 1 : 0; i < n; i++) {
 744         if (!opJavaCall->_arguments->at(i)->is_pointer()) {
 745           do_input(*opJavaCall->_arguments->adr_at(i));
 746         }
 747       }
 748 
 749       if (opJavaCall->_info)                     do_info(opJavaCall->_info);
 750       if (FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr &&
 751           opJavaCall->is_method_handle_invoke()) {
 752         opJavaCall->_method_handle_invoke_SP_save_opr = FrameMap::method_handle_invoke_SP_save_opr();
 753         do_temp(opJavaCall->_method_handle_invoke_SP_save_opr);
 754       }
 755       do_call();
 756       if (opJavaCall->_result->is_valid())       do_output(opJavaCall->_result);
 757 
 758       break;
 759     }
 760 
 761 
 762 // LIR_OpRTCall
 763     case lir_rtcall: {
 764       assert(op->as_OpRTCall() != NULL, "must be");
 765       LIR_OpRTCall* opRTCall = (LIR_OpRTCall*)op;
 766 
 767       // only visit register parameters
 768       int n = opRTCall->_arguments->length();
 769       for (int i = 0; i < n; i++) {
 770         if (!opRTCall->_arguments->at(i)->is_pointer()) {
 771           do_input(*opRTCall->_arguments->adr_at(i));
 772         }
 773       }
 774       if (opRTCall->_info)                     do_info(opRTCall->_info);
 775       if (opRTCall->_tmp->is_valid())          do_temp(opRTCall->_tmp);
 776       do_call();
 777       if (opRTCall->_result->is_valid())       do_output(opRTCall->_result);
 778 
 779       break;
 780     }
 781 
 782 
 783 // LIR_OpArrayCopy
 784     case lir_arraycopy: {
 785       assert(op->as_OpArrayCopy() != NULL, "must be");
 786       LIR_OpArrayCopy* opArrayCopy = (LIR_OpArrayCopy*)op;
 787 
 788       assert(opArrayCopy->_result->is_illegal(), "unused");
 789       assert(opArrayCopy->_src->is_valid(), "used");          do_input(opArrayCopy->_src);     do_temp(opArrayCopy->_src);
 790       assert(opArrayCopy->_src_pos->is_valid(), "used");      do_input(opArrayCopy->_src_pos); do_temp(opArrayCopy->_src_pos);
 791       assert(opArrayCopy->_dst->is_valid(), "used");          do_input(opArrayCopy->_dst);     do_temp(opArrayCopy->_dst);
 792       assert(opArrayCopy->_dst_pos->is_valid(), "used");      do_input(opArrayCopy->_dst_pos); do_temp(opArrayCopy->_dst_pos);
 793       assert(opArrayCopy->_length->is_valid(), "used");       do_input(opArrayCopy->_length);  do_temp(opArrayCopy->_length);
 794       assert(opArrayCopy->_tmp->is_valid(), "used");          do_temp(opArrayCopy->_tmp);
 795       if (opArrayCopy->_info)                     do_info(opArrayCopy->_info);
 796 
 797       // the implementation of arraycopy always has a call into the runtime
 798       do_call();
 799 
 800       break;
 801     }
 802 
 803 
 804 // LIR_OpUpdateCRC32
 805     case lir_updatecrc32: {
 806       assert(op->as_OpUpdateCRC32() != NULL, "must be");
 807       LIR_OpUpdateCRC32* opUp = (LIR_OpUpdateCRC32*)op;
 808 
 809       assert(opUp->_crc->is_valid(), "used");          do_input(opUp->_crc);     do_temp(opUp->_crc);
 810       assert(opUp->_val->is_valid(), "used");          do_input(opUp->_val);     do_temp(opUp->_val);
 811       assert(opUp->_result->is_valid(), "used");       do_output(opUp->_result);
 812       assert(opUp->_info == NULL, "no info for LIR_OpUpdateCRC32");
 813 
 814       break;
 815     }
 816 
 817 
 818 // LIR_OpLock
 819     case lir_lock:
 820     case lir_unlock: {
 821       assert(op->as_OpLock() != NULL, "must be");
 822       LIR_OpLock* opLock = (LIR_OpLock*)op;
 823 
 824       if (opLock->_info)                          do_info(opLock->_info);
 825 
 826       // TODO: check if these operands really have to be temp
 827       // (or if input is sufficient). This may have influence on the oop map!
 828       assert(opLock->_lock->is_valid(), "used");  do_temp(opLock->_lock);
 829       assert(opLock->_hdr->is_valid(),  "used");  do_temp(opLock->_hdr);
 830       assert(opLock->_obj->is_valid(),  "used");  do_temp(opLock->_obj);
 831 
 832       if (opLock->_scratch->is_valid())           do_temp(opLock->_scratch);
 833       assert(opLock->_result->is_illegal(), "unused");
 834 
 835       do_stub(opLock->_stub);
 836       do_stub(opLock->_throw_imse_stub);
 837 
 838       break;
 839     }
 840 
 841 
 842 // LIR_OpDelay
 843     case lir_delay_slot: {
 844       assert(op->as_OpDelay() != NULL, "must be");
 845       LIR_OpDelay* opDelay = (LIR_OpDelay*)op;
 846 
 847       visit(opDelay->delay_op());
 848       break;
 849     }
 850 
 851 // LIR_OpTypeCheck
 852     case lir_instanceof:
 853     case lir_checkcast:
 854     case lir_store_check: {
 855       assert(op->as_OpTypeCheck() != NULL, "must be");
 856       LIR_OpTypeCheck* opTypeCheck = (LIR_OpTypeCheck*)op;
 857 
 858       if (opTypeCheck->_info_for_exception)       do_info(opTypeCheck->_info_for_exception);
 859       if (opTypeCheck->_info_for_patch)           do_info(opTypeCheck->_info_for_patch);
 860       if (opTypeCheck->_object->is_valid())       do_input(opTypeCheck->_object);
 861       if (op->code() == lir_store_check && opTypeCheck->_object->is_valid()) {
 862         do_temp(opTypeCheck->_object);
 863       }
 864       if (opTypeCheck->_array->is_valid())        do_input(opTypeCheck->_array);
 865       if (opTypeCheck->_tmp1->is_valid())         do_temp(opTypeCheck->_tmp1);
 866       if (opTypeCheck->_tmp2->is_valid())         do_temp(opTypeCheck->_tmp2);
 867       if (opTypeCheck->_tmp3->is_valid())         do_temp(opTypeCheck->_tmp3);
 868       if (opTypeCheck->_result->is_valid())       do_output(opTypeCheck->_result);
 869                                                   do_stub(opTypeCheck->_stub);
 870       break;
 871     }
 872 
 873 // LIR_OpFlattenedArrayCheck
 874     case lir_flattened_array_check: {
 875       assert(op->as_OpFlattenedArrayCheck() != NULL, "must be");
 876       LIR_OpFlattenedArrayCheck* opFlattenedArrayCheck = (LIR_OpFlattenedArrayCheck*)op;
 877 
 878       if (opFlattenedArrayCheck->_array->is_valid()) do_input(opFlattenedArrayCheck->_array);
 879       if (opFlattenedArrayCheck->_value->is_valid()) do_input(opFlattenedArrayCheck->_value);
 880       if (opFlattenedArrayCheck->_tmp->is_valid())   do_temp(opFlattenedArrayCheck->_tmp);
 881                                                      do_stub(opFlattenedArrayCheck->_stub);
 882 
 883       break;
 884     }
 885 
 886 // LIR_OpNullFreeArrayCheck
 887     case lir_null_free_array_check: {
 888       assert(op->as_OpNullFreeArrayCheck() != NULL, "must be");
 889       LIR_OpNullFreeArrayCheck* opNullFreeArrayCheck = (LIR_OpNullFreeArrayCheck*)op;
 890 
 891       if (opNullFreeArrayCheck->_array->is_valid()) do_input(opNullFreeArrayCheck->_array);
 892       if (opNullFreeArrayCheck->_tmp->is_valid())   do_temp(opNullFreeArrayCheck->_tmp);
 893       break;
 894     }
 895 
 896 // LIR_OpSubstitutabilityCheck
 897     case lir_substitutability_check: {
 898       assert(op->as_OpSubstitutabilityCheck() != NULL, "must be");
 899       LIR_OpSubstitutabilityCheck* opSubstitutabilityCheck = (LIR_OpSubstitutabilityCheck*)op;
 900                                                                 do_input(opSubstitutabilityCheck->_left);
 901                                                                 do_temp (opSubstitutabilityCheck->_left);
 902                                                                 do_input(opSubstitutabilityCheck->_right);
 903                                                                 do_temp (opSubstitutabilityCheck->_right);
 904                                                                 do_input(opSubstitutabilityCheck->_equal_result);
 905                                                                 do_temp (opSubstitutabilityCheck->_equal_result);
 906                                                                 do_input(opSubstitutabilityCheck->_not_equal_result);
 907                                                                 do_temp (opSubstitutabilityCheck->_not_equal_result);
 908       if (opSubstitutabilityCheck->_tmp1->is_valid())           do_temp(opSubstitutabilityCheck->_tmp1);
 909       if (opSubstitutabilityCheck->_tmp2->is_valid())           do_temp(opSubstitutabilityCheck->_tmp2);
 910       if (opSubstitutabilityCheck->_left_klass_op->is_valid())  do_temp(opSubstitutabilityCheck->_left_klass_op);
 911       if (opSubstitutabilityCheck->_right_klass_op->is_valid()) do_temp(opSubstitutabilityCheck->_right_klass_op);
 912       if (opSubstitutabilityCheck->_result->is_valid())         do_output(opSubstitutabilityCheck->_result);
 913                                                                 do_info(opSubstitutabilityCheck->_info);
 914                                                                 do_stub(opSubstitutabilityCheck->_stub);
 915       break;
 916     }
 917 
 918 // LIR_OpCompareAndSwap
 919     case lir_cas_long:
 920     case lir_cas_obj:
 921     case lir_cas_int: {
 922       assert(op->as_OpCompareAndSwap() != NULL, "must be");
 923       LIR_OpCompareAndSwap* opCompareAndSwap = (LIR_OpCompareAndSwap*)op;
 924 
 925       assert(opCompareAndSwap->_addr->is_valid(),      "used");
 926       assert(opCompareAndSwap->_cmp_value->is_valid(), "used");
 927       assert(opCompareAndSwap->_new_value->is_valid(), "used");
 928       if (opCompareAndSwap->_info)                    do_info(opCompareAndSwap->_info);
 929                                                       do_input(opCompareAndSwap->_addr);
 930                                                       do_temp(opCompareAndSwap->_addr);
 931                                                       do_input(opCompareAndSwap->_cmp_value);
 932                                                       do_temp(opCompareAndSwap->_cmp_value);
 933                                                       do_input(opCompareAndSwap->_new_value);
 934                                                       do_temp(opCompareAndSwap->_new_value);
 935       if (opCompareAndSwap->_tmp1->is_valid())        do_temp(opCompareAndSwap->_tmp1);
 936       if (opCompareAndSwap->_tmp2->is_valid())        do_temp(opCompareAndSwap->_tmp2);
 937       if (opCompareAndSwap->_result->is_valid())      do_output(opCompareAndSwap->_result);
 938 
 939       break;
 940     }
 941 
 942 
 943 // LIR_OpAllocArray;
 944     case lir_alloc_array: {
 945       assert(op->as_OpAllocArray() != NULL, "must be");
 946       LIR_OpAllocArray* opAllocArray = (LIR_OpAllocArray*)op;
 947 
 948       if (opAllocArray->_info)                        do_info(opAllocArray->_info);
 949       if (opAllocArray->_klass->is_valid())           do_input(opAllocArray->_klass); do_temp(opAllocArray->_klass);
 950       if (opAllocArray->_len->is_valid())             do_input(opAllocArray->_len);   do_temp(opAllocArray->_len);
 951       if (opAllocArray->_tmp1->is_valid())            do_temp(opAllocArray->_tmp1);
 952       if (opAllocArray->_tmp2->is_valid())            do_temp(opAllocArray->_tmp2);
 953       if (opAllocArray->_tmp3->is_valid())            do_temp(opAllocArray->_tmp3);
 954       if (opAllocArray->_tmp4->is_valid())            do_temp(opAllocArray->_tmp4);
 955       if (opAllocArray->_result->is_valid())          do_output(opAllocArray->_result);
 956                                                       do_stub(opAllocArray->_stub);
 957       break;
 958     }
 959 
 960 // LIR_OpLoadKlass
 961     case lir_load_klass:
 962     {
 963       LIR_OpLoadKlass* opLoadKlass = op->as_OpLoadKlass();
 964       assert(opLoadKlass != NULL, "must be");
 965 
 966       do_input(opLoadKlass->_obj);
 967       do_output(opLoadKlass->_result);
 968       if (opLoadKlass->_info) do_info(opLoadKlass->_info);
 969       break;
 970     }
 971 
 972 
 973 // LIR_OpProfileCall:
 974     case lir_profile_call: {
 975       assert(op->as_OpProfileCall() != NULL, "must be");
 976       LIR_OpProfileCall* opProfileCall = (LIR_OpProfileCall*)op;
 977 
 978       if (opProfileCall->_recv->is_valid())              do_temp(opProfileCall->_recv);
 979       assert(opProfileCall->_mdo->is_valid(), "used");   do_temp(opProfileCall->_mdo);
 980       assert(opProfileCall->_tmp1->is_valid(), "used");  do_temp(opProfileCall->_tmp1);
 981       break;
 982     }
 983 
 984 // LIR_OpProfileType:
 985     case lir_profile_type: {
 986       assert(op->as_OpProfileType() != NULL, "must be");
 987       LIR_OpProfileType* opProfileType = (LIR_OpProfileType*)op;
 988 
 989       do_input(opProfileType->_mdp); do_temp(opProfileType->_mdp);
 990       do_input(opProfileType->_obj);
 991       do_temp(opProfileType->_tmp);
 992       break;
 993     }
 994 
 995     // LIR_OpProfileInlineType:
 996     case lir_profile_inline_type: {
 997       assert(op->as_OpProfileInlineType() != NULL, "must be");
 998       LIR_OpProfileInlineType* opProfileInlineType = (LIR_OpProfileInlineType*)op;
 999 
1000       do_input(opProfileInlineType->_mdp); do_temp(opProfileInlineType->_mdp);
1001       do_input(opProfileInlineType->_obj);
1002       do_temp(opProfileInlineType->_tmp);
1003       break;
1004     }
1005 default:
1006     op->visit(this);
1007   }
1008 }
1009 
1010 void LIR_Op::visit(LIR_OpVisitState* state) {
1011   ShouldNotReachHere();
1012 }
1013 
1014 void LIR_OpVisitState::do_stub(CodeStub* stub) {
1015   if (stub != NULL) {
1016     stub->visit(this);
1017   }
1018 }
1019 
1020 XHandlers* LIR_OpVisitState::all_xhandler() {
1021   XHandlers* result = NULL;
1022 
1023   int i;
1024   for (i = 0; i < info_count(); i++) {
1025     if (info_at(i)->exception_handlers() != NULL) {
1026       result = info_at(i)->exception_handlers();
1027       break;
1028     }
1029   }
1030 
1031 #ifdef ASSERT
1032   for (i = 0; i < info_count(); i++) {
1033     assert(info_at(i)->exception_handlers() == NULL ||
1034            info_at(i)->exception_handlers() == result,
1035            "only one xhandler list allowed per LIR-operation");
1036   }
1037 #endif
1038 
1039   if (result != NULL) {
1040     return result;
1041   } else {
1042     return new XHandlers();
1043   }
1044 
1045   return result;
1046 }
1047 
1048 
1049 #ifdef ASSERT
1050 bool LIR_OpVisitState::no_operands(LIR_Op* op) {
1051   visit(op);
1052 
1053   return opr_count(inputMode) == 0 &&
1054          opr_count(outputMode) == 0 &&
1055          opr_count(tempMode) == 0 &&
1056          info_count() == 0 &&
1057          !has_call() &&
1058          !has_slow_case();
1059 }
1060 #endif
1061 
1062 // LIR_OpReturn
1063 LIR_OpReturn::LIR_OpReturn(LIR_Opr opr) :
1064     LIR_Op1(lir_return, opr, (CodeEmitInfo*)NULL /* info */),
1065     _stub(NULL) {
1066   if (VM_Version::supports_stack_watermark_barrier()) {
1067     _stub = new C1SafepointPollStub();
1068   }
1069 }
1070 
1071 //---------------------------------------------------
1072 
1073 
1074 void LIR_OpJavaCall::emit_code(LIR_Assembler* masm) {
1075   masm->emit_call(this);
1076 }
1077 
1078 bool LIR_OpJavaCall::maybe_return_as_fields(ciInlineKlass** vk_ret) const {
1079   ciType* return_type = method()->return_type();
1080   if (InlineTypeReturnedAsFields) {
1081     if (return_type->is_inlinetype()) {
1082       ciInlineKlass* vk = return_type->as_inline_klass();
1083       if (vk->can_be_returned_as_fields()) {
1084         if (vk_ret != NULL) {
1085           *vk_ret = vk;
1086         }
1087         return true;
1088       }
1089     } else if (return_type->is_instance_klass() &&
1090                (method()->is_method_handle_intrinsic() ||
1091                 (!return_type->is_loaded() && !method()->holder()->is_loaded()))) {
1092       // An inline type might be returned from the call but we don't know its type.
1093       // This can happen with method handle intrinsics or when both the return type
1094       // and the method holder are unloaded (and therefore the preload logic did not
1095       // get a chance to load the return type). If an inline type is returned, we
1096       // either get an oop to a buffer and nothing needs to be done or one of the
1097       // values being returned is the klass of the inline type (RAX on x64, with LSB
1098       // set to 1) and we need to allocate an inline type instance of that type and
1099       // initialize it with other values being returned (in other registers).
1100       return true;
1101     }
1102   }
1103   return false;
1104 }
1105 
1106 void LIR_OpRTCall::emit_code(LIR_Assembler* masm) {
1107   masm->emit_rtcall(this);
1108 }
1109 
1110 void LIR_OpLabel::emit_code(LIR_Assembler* masm) {
1111   masm->emit_opLabel(this);
1112 }
1113 
1114 void LIR_OpArrayCopy::emit_code(LIR_Assembler* masm) {
1115   masm->emit_arraycopy(this);
1116   masm->append_code_stub(stub());
1117 }
1118 
1119 void LIR_OpUpdateCRC32::emit_code(LIR_Assembler* masm) {
1120   masm->emit_updatecrc32(this);
1121 }
1122 
1123 void LIR_Op0::emit_code(LIR_Assembler* masm) {
1124   masm->emit_op0(this);
1125 }
1126 
1127 void LIR_Op1::emit_code(LIR_Assembler* masm) {
1128   masm->emit_op1(this);
1129 }
1130 
1131 void LIR_OpAllocObj::emit_code(LIR_Assembler* masm) {
1132   masm->emit_alloc_obj(this);
1133   masm->append_code_stub(stub());
1134 }
1135 
1136 void LIR_OpBranch::emit_code(LIR_Assembler* masm) {
1137   masm->emit_opBranch(this);
1138   if (stub()) {
1139     masm->append_code_stub(stub());
1140   }
1141 }
1142 
1143 void LIR_OpConvert::emit_code(LIR_Assembler* masm) {
1144   masm->emit_opConvert(this);
1145   if (stub() != NULL) {
1146     masm->append_code_stub(stub());
1147   }
1148 }
1149 
1150 void LIR_Op2::emit_code(LIR_Assembler* masm) {
1151   masm->emit_op2(this);
1152 }
1153 
1154 void LIR_OpAllocArray::emit_code(LIR_Assembler* masm) {
1155   masm->emit_alloc_array(this);
1156   masm->append_code_stub(stub());
1157 }
1158 
1159 void LIR_OpTypeCheck::emit_code(LIR_Assembler* masm) {
1160   masm->emit_opTypeCheck(this);
1161   if (stub()) {
1162     masm->append_code_stub(stub());
1163   }
1164 }
1165 
1166 void LIR_OpFlattenedArrayCheck::emit_code(LIR_Assembler* masm) {
1167   masm->emit_opFlattenedArrayCheck(this);
1168   if (stub() != NULL) {
1169     masm->append_code_stub(stub());
1170   }
1171 }
1172 
1173 void LIR_OpNullFreeArrayCheck::emit_code(LIR_Assembler* masm) {
1174   masm->emit_opNullFreeArrayCheck(this);
1175 }
1176 
1177 void LIR_OpSubstitutabilityCheck::emit_code(LIR_Assembler* masm) {
1178   masm->emit_opSubstitutabilityCheck(this);
1179   if (stub() != NULL) {
1180     masm->append_code_stub(stub());
1181   }
1182 }
1183 
1184 void LIR_OpCompareAndSwap::emit_code(LIR_Assembler* masm) {
1185   masm->emit_compare_and_swap(this);
1186 }
1187 
1188 void LIR_Op3::emit_code(LIR_Assembler* masm) {
1189   masm->emit_op3(this);
1190 }
1191 
1192 void LIR_OpLock::emit_code(LIR_Assembler* masm) {
1193   masm->emit_lock(this);
1194   if (stub()) {
1195     masm->append_code_stub(stub());
1196   }
1197   if (throw_imse_stub()) {
1198     masm->append_code_stub(throw_imse_stub());
1199   }
1200 }
1201 
1202 void LIR_OpLoadKlass::emit_code(LIR_Assembler* masm) {
1203   masm->emit_load_klass(this);
1204 }
1205 
1206 #ifdef ASSERT
1207 void LIR_OpAssert::emit_code(LIR_Assembler* masm) {
1208   masm->emit_assert(this);
1209 }
1210 #endif
1211 
1212 void LIR_OpDelay::emit_code(LIR_Assembler* masm) {
1213   masm->emit_delay(this);
1214 }
1215 
1216 void LIR_OpProfileCall::emit_code(LIR_Assembler* masm) {
1217   masm->emit_profile_call(this);
1218 }
1219 
1220 void LIR_OpProfileType::emit_code(LIR_Assembler* masm) {
1221   masm->emit_profile_type(this);
1222 }
1223 
1224 void LIR_OpProfileInlineType::emit_code(LIR_Assembler* masm) {
1225   masm->emit_profile_inline_type(this);
1226 }
1227 
1228 // LIR_List
1229 LIR_List::LIR_List(Compilation* compilation, BlockBegin* block)
1230   : _operations(8)
1231   , _compilation(compilation)
1232 #ifndef PRODUCT
1233   , _block(block)
1234 #endif
1235 #ifdef ASSERT
1236   , _file(NULL)
1237   , _line(0)
1238 #endif
1239 { }
1240 
1241 
1242 #ifdef ASSERT
1243 void LIR_List::set_file_and_line(const char * file, int line) {
1244   const char * f = strrchr(file, '/');
1245   if (f == NULL) f = strrchr(file, '\\');
1246   if (f == NULL) {
1247     f = file;
1248   } else {
1249     f++;
1250   }
1251   _file = f;
1252   _line = line;
1253 }
1254 #endif
1255 
1256 
1257 void LIR_List::append(LIR_InsertionBuffer* buffer) {
1258   assert(this == buffer->lir_list(), "wrong lir list");
1259   const int n = _operations.length();
1260 
1261   if (buffer->number_of_ops() > 0) {
1262     // increase size of instructions list
1263     _operations.at_grow(n + buffer->number_of_ops() - 1, NULL);
1264     // insert ops from buffer into instructions list
1265     int op_index = buffer->number_of_ops() - 1;
1266     int ip_index = buffer->number_of_insertion_points() - 1;
1267     int from_index = n - 1;
1268     int to_index = _operations.length() - 1;
1269     for (; ip_index >= 0; ip_index --) {
1270       int index = buffer->index_at(ip_index);
1271       // make room after insertion point
1272       while (index < from_index) {
1273         _operations.at_put(to_index --, _operations.at(from_index --));
1274       }
1275       // insert ops from buffer
1276       for (int i = buffer->count_at(ip_index); i > 0; i --) {
1277         _operations.at_put(to_index --, buffer->op_at(op_index --));
1278       }
1279     }
1280   }
1281 
1282   buffer->finish();
1283 }
1284 
1285 
1286 void LIR_List::oop2reg_patch(jobject o, LIR_Opr reg, CodeEmitInfo* info) {
1287   assert(reg->type() == T_OBJECT, "bad reg");
1288   append(new LIR_Op1(lir_move, LIR_OprFact::oopConst(o),  reg, T_OBJECT, lir_patch_normal, info));
1289 }
1290 
1291 void LIR_List::klass2reg_patch(Metadata* o, LIR_Opr reg, CodeEmitInfo* info) {
1292   assert(reg->type() == T_METADATA, "bad reg");
1293   append(new LIR_Op1(lir_move, LIR_OprFact::metadataConst(o), reg, T_METADATA, lir_patch_normal, info));
1294 }
1295 
1296 void LIR_List::load(LIR_Address* addr, LIR_Opr src, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1297   append(new LIR_Op1(
1298             lir_move,
1299             LIR_OprFact::address(addr),
1300             src,
1301             addr->type(),
1302             patch_code,
1303             info));
1304 }
1305 
1306 
1307 void LIR_List::volatile_load_mem_reg(LIR_Address* address, LIR_Opr dst, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1308   append(new LIR_Op1(
1309             lir_move,
1310             LIR_OprFact::address(address),
1311             dst,
1312             address->type(),
1313             patch_code,
1314             info, lir_move_volatile));
1315 }
1316 
1317 void LIR_List::volatile_load_unsafe_reg(LIR_Opr base, LIR_Opr offset, LIR_Opr dst, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1318   append(new LIR_Op1(
1319             lir_move,
1320             LIR_OprFact::address(new LIR_Address(base, offset, type)),
1321             dst,
1322             type,
1323             patch_code,
1324             info, lir_move_volatile));
1325 }
1326 
1327 
1328 void LIR_List::store_mem_int(jint v, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1329   append(new LIR_Op1(
1330             lir_move,
1331             LIR_OprFact::intConst(v),
1332             LIR_OprFact::address(new LIR_Address(base, offset_in_bytes, type)),
1333             type,
1334             patch_code,
1335             info));
1336 }
1337 
1338 
1339 void LIR_List::store_mem_oop(jobject o, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1340   append(new LIR_Op1(
1341             lir_move,
1342             LIR_OprFact::oopConst(o),
1343             LIR_OprFact::address(new LIR_Address(base, offset_in_bytes, type)),
1344             type,
1345             patch_code,
1346             info));
1347 }
1348 
1349 
1350 void LIR_List::store(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1351   append(new LIR_Op1(
1352             lir_move,
1353             src,
1354             LIR_OprFact::address(addr),
1355             addr->type(),
1356             patch_code,
1357             info));
1358 }
1359 
1360 
1361 void LIR_List::volatile_store_mem_reg(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1362   append(new LIR_Op1(
1363             lir_move,
1364             src,
1365             LIR_OprFact::address(addr),
1366             addr->type(),
1367             patch_code,
1368             info,
1369             lir_move_volatile));
1370 }
1371 
1372 void LIR_List::volatile_store_unsafe_reg(LIR_Opr src, LIR_Opr base, LIR_Opr offset, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1373   append(new LIR_Op1(
1374             lir_move,
1375             src,
1376             LIR_OprFact::address(new LIR_Address(base, offset, type)),
1377             type,
1378             patch_code,
1379             info, lir_move_volatile));
1380 }
1381 
1382 
1383 void LIR_List::idiv(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info) {
1384   append(new LIR_Op3(
1385                     lir_idiv,
1386                     left,
1387                     right,
1388                     tmp,
1389                     res,
1390                     info));
1391 }
1392 
1393 
1394 void LIR_List::idiv(LIR_Opr left, int right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info) {
1395   append(new LIR_Op3(
1396                     lir_idiv,
1397                     left,
1398                     LIR_OprFact::intConst(right),
1399                     tmp,
1400                     res,
1401                     info));
1402 }
1403 
1404 
1405 void LIR_List::irem(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info) {
1406   append(new LIR_Op3(
1407                     lir_irem,
1408                     left,
1409                     right,
1410                     tmp,
1411                     res,
1412                     info));
1413 }
1414 
1415 
1416 void LIR_List::irem(LIR_Opr left, int right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info) {
1417   append(new LIR_Op3(
1418                     lir_irem,
1419                     left,
1420                     LIR_OprFact::intConst(right),
1421                     tmp,
1422                     res,
1423                     info));
1424 }
1425 
1426 
1427 void LIR_List::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
1428   append(new LIR_Op2(
1429                     lir_cmp,
1430                     condition,
1431                     LIR_OprFact::address(new LIR_Address(base, disp, T_INT)),
1432                     LIR_OprFact::intConst(c),
1433                     info));
1434 }
1435 
1436 
1437 void LIR_List::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Address* addr, CodeEmitInfo* info) {
1438   append(new LIR_Op2(
1439                     lir_cmp,
1440                     condition,
1441                     reg,
1442                     LIR_OprFact::address(addr),
1443                     info));
1444 }
1445 
1446 void LIR_List::allocate_object(LIR_Opr dst, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4,
1447                                int header_size, int object_size, LIR_Opr klass, bool init_check, CodeStub* stub) {
1448   append(new LIR_OpAllocObj(
1449                            klass,
1450                            dst,
1451                            t1,
1452                            t2,
1453                            t3,
1454                            t4,
1455                            header_size,
1456                            object_size,
1457                            init_check,
1458                            stub));
1459 }
1460 
1461 void LIR_List::allocate_array(LIR_Opr dst, LIR_Opr len, LIR_Opr t1,LIR_Opr t2, LIR_Opr t3,LIR_Opr t4, BasicType type, LIR_Opr klass, CodeStub* stub) {
1462   append(new LIR_OpAllocArray(
1463                            klass,
1464                            len,
1465                            dst,
1466                            t1,
1467                            t2,
1468                            t3,
1469                            t4,
1470                            type,
1471                            stub));
1472 }
1473 
1474 void LIR_List::shift_left(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp) {
1475  append(new LIR_Op2(
1476                     lir_shl,
1477                     value,
1478                     count,
1479                     dst,
1480                     tmp));
1481 }
1482 
1483 void LIR_List::shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp) {
1484  append(new LIR_Op2(
1485                     lir_shr,
1486                     value,
1487                     count,
1488                     dst,
1489                     tmp));
1490 }
1491 
1492 
1493 void LIR_List::unsigned_shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp) {
1494  append(new LIR_Op2(
1495                     lir_ushr,
1496                     value,
1497                     count,
1498                     dst,
1499                     tmp));
1500 }
1501 
1502 void LIR_List::fcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst, bool is_unordered_less) {
1503   append(new LIR_Op2(is_unordered_less ? lir_ucmp_fd2i : lir_cmp_fd2i,
1504                      left,
1505                      right,
1506                      dst));
1507 }
1508 
1509 void LIR_List::lock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info, CodeStub* throw_imse_stub) {
1510   append(new LIR_OpLock(
1511                     lir_lock,
1512                     hdr,
1513                     obj,
1514                     lock,
1515                     scratch,
1516                     stub,
1517                     info,
1518                     throw_imse_stub));
1519 }
1520 
1521 void LIR_List::unlock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub) {
1522   append(new LIR_OpLock(
1523                     lir_unlock,
1524                     hdr,
1525                     obj,
1526                     lock,
1527                     scratch,
1528                     stub,
1529                     NULL));
1530 }
1531 
1532 
1533 void check_LIR() {
1534   // cannot do the proper checking as PRODUCT and other modes return different results
1535   // guarantee(sizeof(LIR_Opr) == wordSize, "may not have a v-table");
1536 }
1537 
1538 
1539 
1540 void LIR_List::checkcast (LIR_Opr result, LIR_Opr object, ciKlass* klass,
1541                           LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
1542                           CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub,
1543                           ciMethod* profiled_method, int profiled_bci, bool is_null_free) {
1544   // If klass is non-nullable,  LIRGenerator::do_CheckCast has already performed null-check
1545   // on the object.
1546   bool need_null_check = !is_null_free;
1547   LIR_OpTypeCheck* c = new LIR_OpTypeCheck(lir_checkcast, result, object, klass,
1548                                            tmp1, tmp2, tmp3, fast_check, info_for_exception, info_for_patch, stub,
1549                                            need_null_check);
1550   if (profiled_method != NULL) {
1551     c->set_profiled_method(profiled_method);
1552     c->set_profiled_bci(profiled_bci);
1553     c->set_should_profile(true);
1554   }
1555   append(c);
1556 }
1557 
1558 void LIR_List::instanceof(LIR_Opr result, LIR_Opr object, ciKlass* klass, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, CodeEmitInfo* info_for_patch, ciMethod* profiled_method, int profiled_bci) {
1559   LIR_OpTypeCheck* c = new LIR_OpTypeCheck(lir_instanceof, result, object, klass, tmp1, tmp2, tmp3, fast_check, NULL, info_for_patch, NULL);
1560   if (profiled_method != NULL) {
1561     c->set_profiled_method(profiled_method);
1562     c->set_profiled_bci(profiled_bci);
1563     c->set_should_profile(true);
1564   }
1565   append(c);
1566 }
1567 
1568 
1569 void LIR_List::store_check(LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3,
1570                            CodeEmitInfo* info_for_exception, ciMethod* profiled_method, int profiled_bci) {
1571   // FIXME -- if the types of the array and/or the object are known statically, we can avoid loading the klass
1572   LIR_OpTypeCheck* c = new LIR_OpTypeCheck(lir_store_check, object, array, tmp1, tmp2, tmp3, info_for_exception);
1573   if (profiled_method != NULL) {
1574     c->set_profiled_method(profiled_method);
1575     c->set_profiled_bci(profiled_bci);
1576     c->set_should_profile(true);
1577   }
1578   append(c);
1579 }
1580 
1581 void LIR_List::null_check(LIR_Opr opr, CodeEmitInfo* info, bool deoptimize_on_null) {
1582   if (deoptimize_on_null) {
1583     // Emit an explicit null check and deoptimize if opr is null
1584     CodeStub* deopt = new DeoptimizeStub(info, Deoptimization::Reason_null_check, Deoptimization::Action_none);
1585     cmp(lir_cond_equal, opr, LIR_OprFact::oopConst(NULL));
1586     branch(lir_cond_equal, deopt);
1587   } else {
1588     // Emit an implicit null check
1589     append(new LIR_Op1(lir_null_check, opr, info));
1590   }
1591 }
1592 
1593 void LIR_List::check_flattened_array(LIR_Opr array, LIR_Opr value, LIR_Opr tmp, CodeStub* stub) {
1594   LIR_OpFlattenedArrayCheck* c = new LIR_OpFlattenedArrayCheck(array, value, tmp, stub);
1595   append(c);
1596 }
1597 
1598 void LIR_List::check_null_free_array(LIR_Opr array, LIR_Opr tmp) {
1599   LIR_OpNullFreeArrayCheck* c = new LIR_OpNullFreeArrayCheck(array, tmp);
1600   append(c);
1601 }
1602 
1603 void LIR_List::substitutability_check(LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr equal_result, LIR_Opr not_equal_result,
1604                                       LIR_Opr tmp1, LIR_Opr tmp2,
1605                                       ciKlass* left_klass, ciKlass* right_klass, LIR_Opr left_klass_op, LIR_Opr right_klass_op,
1606                                       CodeEmitInfo* info, CodeStub* stub) {
1607   LIR_OpSubstitutabilityCheck* c = new LIR_OpSubstitutabilityCheck(result, left, right, equal_result, not_equal_result,
1608                                                                    tmp1, tmp2,
1609                                                                    left_klass, right_klass, left_klass_op, right_klass_op,
1610                                                                    info, stub);
1611   append(c);
1612 }
1613 
1614 void LIR_List::cas_long(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
1615                         LIR_Opr t1, LIR_Opr t2, LIR_Opr result) {
1616   append(new LIR_OpCompareAndSwap(lir_cas_long, addr, cmp_value, new_value, t1, t2, result));
1617 }
1618 
1619 void LIR_List::cas_obj(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
1620                        LIR_Opr t1, LIR_Opr t2, LIR_Opr result) {
1621   append(new LIR_OpCompareAndSwap(lir_cas_obj, addr, cmp_value, new_value, t1, t2, result));
1622 }
1623 
1624 void LIR_List::cas_int(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
1625                        LIR_Opr t1, LIR_Opr t2, LIR_Opr result) {
1626   append(new LIR_OpCompareAndSwap(lir_cas_int, addr, cmp_value, new_value, t1, t2, result));
1627 }
1628 
1629 
1630 #ifdef PRODUCT
1631 
1632 void print_LIR(BlockList* blocks) {
1633 }
1634 
1635 #else
1636 // LIR_Opr
1637 void LIR_Opr::print() const {
1638   print(tty);
1639 }
1640 
1641 void LIR_Opr::print(outputStream* out) const {
1642   if (is_illegal()) {
1643     return;
1644   }
1645 
1646   out->print("[");
1647   if (is_pointer()) {
1648     pointer()->print_value_on(out);
1649   } else if (is_single_stack()) {
1650     out->print("stack:%d", single_stack_ix());
1651   } else if (is_double_stack()) {
1652     out->print("dbl_stack:%d",double_stack_ix());
1653   } else if (is_virtual()) {
1654     out->print("R%d", vreg_number());
1655   } else if (is_single_cpu()) {
1656     out->print("%s", as_register()->name());
1657   } else if (is_double_cpu()) {
1658     out->print("%s", as_register_hi()->name());
1659     out->print("%s", as_register_lo()->name());
1660 #if defined(X86)
1661   } else if (is_single_xmm()) {
1662     out->print("%s", as_xmm_float_reg()->name());
1663   } else if (is_double_xmm()) {
1664     out->print("%s", as_xmm_double_reg()->name());
1665   } else if (is_single_fpu()) {
1666     out->print("fpu%d", fpu_regnr());
1667   } else if (is_double_fpu()) {
1668     out->print("fpu%d", fpu_regnrLo());
1669 #elif defined(AARCH64)
1670   } else if (is_single_fpu()) {
1671     out->print("fpu%d", fpu_regnr());
1672   } else if (is_double_fpu()) {
1673     out->print("fpu%d", fpu_regnrLo());
1674 #elif defined(ARM)
1675   } else if (is_single_fpu()) {
1676     out->print("s%d", fpu_regnr());
1677   } else if (is_double_fpu()) {
1678     out->print("d%d", fpu_regnrLo() >> 1);
1679 #else
1680   } else if (is_single_fpu()) {
1681     out->print("%s", as_float_reg()->name());
1682   } else if (is_double_fpu()) {
1683     out->print("%s", as_double_reg()->name());
1684 #endif
1685 
1686   } else if (is_illegal()) {
1687     out->print("-");
1688   } else {
1689     out->print("Unknown Operand");
1690   }
1691   if (!is_illegal()) {
1692     out->print("|%c", type_char());
1693   }
1694   if (is_register() && is_last_use()) {
1695     out->print("(last_use)");
1696   }
1697   out->print("]");
1698 }
1699 
1700 
1701 // LIR_Address
1702 void LIR_Const::print_value_on(outputStream* out) const {
1703   switch (type()) {
1704     case T_ADDRESS:out->print("address:%d",as_jint());          break;
1705     case T_INT:    out->print("int:%d",   as_jint());           break;
1706     case T_LONG:   out->print("lng:" JLONG_FORMAT, as_jlong()); break;
1707     case T_FLOAT:  out->print("flt:%f",   as_jfloat());         break;
1708     case T_DOUBLE: out->print("dbl:%f",   as_jdouble());        break;
1709     case T_OBJECT: out->print("obj:" INTPTR_FORMAT, p2i(as_jobject()));        break;
1710     case T_METADATA: out->print("metadata:" INTPTR_FORMAT, p2i(as_metadata()));break;
1711     default:       out->print("%3d:0x" UINT64_FORMAT_X, type(), (uint64_t)as_jlong()); break;
1712   }
1713 }
1714 
1715 // LIR_Address
1716 void LIR_Address::print_value_on(outputStream* out) const {
1717   out->print("Base:"); _base->print(out);
1718   if (!_index->is_illegal()) {
1719     out->print(" Index:"); _index->print(out);
1720     switch (scale()) {
1721     case times_1: break;
1722     case times_2: out->print(" * 2"); break;
1723     case times_4: out->print(" * 4"); break;
1724     case times_8: out->print(" * 8"); break;
1725     }
1726   }
1727   out->print(" Disp: " INTX_FORMAT, _disp);
1728 }
1729 
1730 // debug output of block header without InstructionPrinter
1731 //       (because phi functions are not necessary for LIR)
1732 static void print_block(BlockBegin* x) {
1733   // print block id
1734   BlockEnd* end = x->end();
1735   tty->print("B%d ", x->block_id());
1736 
1737   // print flags
1738   if (x->is_set(BlockBegin::std_entry_flag))               tty->print("std ");
1739   if (x->is_set(BlockBegin::osr_entry_flag))               tty->print("osr ");
1740   if (x->is_set(BlockBegin::exception_entry_flag))         tty->print("ex ");
1741   if (x->is_set(BlockBegin::subroutine_entry_flag))        tty->print("jsr ");
1742   if (x->is_set(BlockBegin::backward_branch_target_flag))  tty->print("bb ");
1743   if (x->is_set(BlockBegin::linear_scan_loop_header_flag)) tty->print("lh ");
1744   if (x->is_set(BlockBegin::linear_scan_loop_end_flag))    tty->print("le ");
1745 
1746   // print block bci range
1747   tty->print("[%d, %d] ", x->bci(), (end == NULL ? -1 : end->printable_bci()));
1748 
1749   // print predecessors and successors
1750   if (x->number_of_preds() > 0) {
1751     tty->print("preds: ");
1752     for (int i = 0; i < x->number_of_preds(); i ++) {
1753       tty->print("B%d ", x->pred_at(i)->block_id());
1754     }
1755   }
1756 
1757   if (end != NULL && x->number_of_sux() > 0) {
1758     tty->print("sux: ");
1759     for (int i = 0; i < x->number_of_sux(); i ++) {
1760       tty->print("B%d ", x->sux_at(i)->block_id());
1761     }
1762   }
1763 
1764   // print exception handlers
1765   if (x->number_of_exception_handlers() > 0) {
1766     tty->print("xhandler: ");
1767     for (int i = 0; i < x->number_of_exception_handlers();  i++) {
1768       tty->print("B%d ", x->exception_handler_at(i)->block_id());
1769     }
1770   }
1771 
1772   tty->cr();
1773 }
1774 
1775 void print_LIR(BlockList* blocks) {
1776   tty->print_cr("LIR:");
1777   int i;
1778   for (i = 0; i < blocks->length(); i++) {
1779     BlockBegin* bb = blocks->at(i);
1780     print_block(bb);
1781     tty->print("__id_Instruction___________________________________________"); tty->cr();
1782     bb->lir()->print_instructions();
1783   }
1784 }
1785 
1786 void LIR_List::print_instructions() {
1787   for (int i = 0; i < _operations.length(); i++) {
1788     _operations.at(i)->print(); tty->cr();
1789   }
1790   tty->cr();
1791 }
1792 
1793 // LIR_Ops printing routines
1794 // LIR_Op
1795 void LIR_Op::print_on(outputStream* out) const {
1796   if (id() != -1 || PrintCFGToFile) {
1797     out->print("%4d ", id());
1798   } else {
1799     out->print("     ");
1800   }
1801   out->print("%s ", name());
1802   print_instr(out);
1803   if (info() != NULL) out->print(" [bci:%d]", info()->stack()->bci());
1804 #ifdef ASSERT
1805   if (Verbose && _file != NULL) {
1806     out->print(" (%s:%d)", _file, _line);
1807   }
1808 #endif
1809 }
1810 
1811 const char * LIR_Op::name() const {
1812   const char* s = NULL;
1813   switch(code()) {
1814      // LIR_Op0
1815      case lir_membar:                s = "membar";        break;
1816      case lir_membar_acquire:        s = "membar_acquire"; break;
1817      case lir_membar_release:        s = "membar_release"; break;
1818      case lir_membar_loadload:       s = "membar_loadload";   break;
1819      case lir_membar_storestore:     s = "membar_storestore"; break;
1820      case lir_membar_loadstore:      s = "membar_loadstore";  break;
1821      case lir_membar_storeload:      s = "membar_storeload";  break;
1822      case lir_label:                 s = "label";         break;
1823      case lir_nop:                   s = "nop";           break;
1824      case lir_on_spin_wait:          s = "on_spin_wait";  break;
1825      case lir_std_entry:             s = "std_entry";     break;
1826      case lir_osr_entry:             s = "osr_entry";     break;
1827      case lir_fpop_raw:              s = "fpop_raw";      break;
1828      case lir_breakpoint:            s = "breakpoint";    break;
1829      case lir_get_thread:            s = "get_thread";    break;
1830      case lir_check_orig_pc:         s = "check_orig_pc"; break;
1831      // LIR_Op1
1832      case lir_fxch:                  s = "fxch";          break;
1833      case lir_fld:                   s = "fld";           break;
1834      case lir_push:                  s = "push";          break;
1835      case lir_pop:                   s = "pop";           break;
1836      case lir_null_check:            s = "null_check";    break;
1837      case lir_return:                s = "return";        break;
1838      case lir_safepoint:             s = "safepoint";     break;
1839      case lir_leal:                  s = "leal";          break;
1840      case lir_branch:                s = "branch";        break;
1841      case lir_cond_float_branch:     s = "flt_cond_br";   break;
1842      case lir_move:                  s = "move";          break;
1843      case lir_roundfp:               s = "roundfp";       break;
1844      case lir_rtcall:                s = "rtcall";        break;
1845      case lir_throw:                 s = "throw";         break;
1846      case lir_unwind:                s = "unwind";        break;
1847      case lir_convert:               s = "convert";       break;
1848      case lir_alloc_object:          s = "alloc_obj";     break;
1849      case lir_monaddr:               s = "mon_addr";      break;
1850      // LIR_Op2
1851      case lir_cmp:                   s = "cmp";           break;
1852      case lir_cmp_l2i:               s = "cmp_l2i";       break;
1853      case lir_ucmp_fd2i:             s = "ucomp_fd2i";    break;
1854      case lir_cmp_fd2i:              s = "comp_fd2i";     break;
1855      case lir_cmove:                 s = "cmove";         break;
1856      case lir_add:                   s = "add";           break;
1857      case lir_sub:                   s = "sub";           break;
1858      case lir_mul:                   s = "mul";           break;
1859      case lir_div:                   s = "div";           break;
1860      case lir_rem:                   s = "rem";           break;
1861      case lir_abs:                   s = "abs";           break;
1862      case lir_neg:                   s = "neg";           break;
1863      case lir_sqrt:                  s = "sqrt";          break;
1864      case lir_logic_and:             s = "logic_and";     break;
1865      case lir_logic_or:              s = "logic_or";      break;
1866      case lir_logic_xor:             s = "logic_xor";     break;
1867      case lir_shl:                   s = "shift_left";    break;
1868      case lir_shr:                   s = "shift_right";   break;
1869      case lir_ushr:                  s = "ushift_right";  break;
1870      case lir_alloc_array:           s = "alloc_array";   break;
1871      case lir_xadd:                  s = "xadd";          break;
1872      case lir_xchg:                  s = "xchg";          break;
1873      // LIR_Op3
1874      case lir_idiv:                  s = "idiv";          break;
1875      case lir_irem:                  s = "irem";          break;
1876      case lir_fmad:                  s = "fmad";          break;
1877      case lir_fmaf:                  s = "fmaf";          break;
1878      // LIR_OpJavaCall
1879      case lir_static_call:           s = "static";        break;
1880      case lir_optvirtual_call:       s = "optvirtual";    break;
1881      case lir_icvirtual_call:        s = "icvirtual";     break;
1882      case lir_dynamic_call:          s = "dynamic";       break;
1883      // LIR_OpArrayCopy
1884      case lir_arraycopy:             s = "arraycopy";     break;
1885      // LIR_OpUpdateCRC32
1886      case lir_updatecrc32:           s = "updatecrc32";   break;
1887      // LIR_OpLock
1888      case lir_lock:                  s = "lock";          break;
1889      case lir_unlock:                s = "unlock";        break;
1890      // LIR_OpDelay
1891      case lir_delay_slot:            s = "delay";         break;
1892      // LIR_OpTypeCheck
1893      case lir_instanceof:            s = "instanceof";    break;
1894      case lir_checkcast:             s = "checkcast";     break;
1895      case lir_store_check:           s = "store_check";   break;
1896      // LIR_OpFlattenedArrayCheck
1897      case lir_flattened_array_check: s = "flattened_array_check"; break;
1898      // LIR_OpNullFreeArrayCheck
1899      case lir_null_free_array_check: s = "null_free_array_check"; break;
1900      // LIR_OpSubstitutabilityCheck
1901      case lir_substitutability_check: s = "substitutability_check"; break;
1902      // LIR_OpCompareAndSwap
1903      case lir_cas_long:              s = "cas_long";      break;
1904      case lir_cas_obj:               s = "cas_obj";      break;
1905      case lir_cas_int:               s = "cas_int";      break;
1906      // LIR_OpProfileCall
1907      case lir_profile_call:          s = "profile_call";  break;
1908      // LIR_OpProfileType
1909      case lir_profile_type:          s = "profile_type";  break;
1910      // LIR_OpProfileInlineType
1911      case lir_profile_inline_type:   s = "profile_inline_type"; break;
1912      // LIR_OpAssert
1913 #ifdef ASSERT
1914      case lir_assert:                s = "assert";        break;
1915 #endif
1916      case lir_none:                  ShouldNotReachHere();break;
1917     default:                         s = "illegal_op";    break;
1918   }
1919   return s;
1920 }
1921 
1922 // LIR_OpJavaCall
1923 void LIR_OpJavaCall::print_instr(outputStream* out) const {
1924   out->print("call: ");
1925   out->print("[addr: " INTPTR_FORMAT "]", p2i(address()));
1926   if (receiver()->is_valid()) {
1927     out->print(" [recv: ");   receiver()->print(out);   out->print("]");
1928   }
1929   if (result_opr()->is_valid()) {
1930     out->print(" [result: "); result_opr()->print(out); out->print("]");
1931   }
1932 }
1933 
1934 // LIR_OpLabel
1935 void LIR_OpLabel::print_instr(outputStream* out) const {
1936   out->print("[label:" INTPTR_FORMAT "]", p2i(_label));
1937 }
1938 
1939 // LIR_OpArrayCopy
1940 void LIR_OpArrayCopy::print_instr(outputStream* out) const {
1941   src()->print(out);     out->print(" ");
1942   src_pos()->print(out); out->print(" ");
1943   dst()->print(out);     out->print(" ");
1944   dst_pos()->print(out); out->print(" ");
1945   length()->print(out);  out->print(" ");
1946   tmp()->print(out);     out->print(" ");
1947 }
1948 
1949 // LIR_OpUpdateCRC32
1950 void LIR_OpUpdateCRC32::print_instr(outputStream* out) const {
1951   crc()->print(out);     out->print(" ");
1952   val()->print(out);     out->print(" ");
1953   result_opr()->print(out); out->print(" ");
1954 }
1955 
1956 // LIR_OpCompareAndSwap
1957 void LIR_OpCompareAndSwap::print_instr(outputStream* out) const {
1958   addr()->print(out);      out->print(" ");
1959   cmp_value()->print(out); out->print(" ");
1960   new_value()->print(out); out->print(" ");
1961   tmp1()->print(out);      out->print(" ");
1962   tmp2()->print(out);      out->print(" ");
1963 
1964 }
1965 
1966 // LIR_Op0
1967 void LIR_Op0::print_instr(outputStream* out) const {
1968   result_opr()->print(out);
1969 }
1970 
1971 // LIR_Op1
1972 const char * LIR_Op1::name() const {
1973   if (code() == lir_move) {
1974     switch (move_kind()) {
1975     case lir_move_normal:
1976       return "move";
1977     case lir_move_volatile:
1978       return "volatile_move";
1979     case lir_move_wide:
1980       return "wide_move";
1981     default:
1982       ShouldNotReachHere();
1983     return "illegal_op";
1984     }
1985   } else {
1986     return LIR_Op::name();
1987   }
1988 }
1989 
1990 
1991 void LIR_Op1::print_instr(outputStream* out) const {
1992   _opr->print(out);         out->print(" ");
1993   result_opr()->print(out); out->print(" ");
1994   print_patch_code(out, patch_code());
1995 }
1996 
1997 
1998 // LIR_Op1
1999 void LIR_OpRTCall::print_instr(outputStream* out) const {
2000   intx a = (intx)addr();
2001   out->print("%s", Runtime1::name_for_address(addr()));
2002   out->print(" ");
2003   tmp()->print(out);
2004 }
2005 
2006 void LIR_Op1::print_patch_code(outputStream* out, LIR_PatchCode code) {
2007   switch(code) {
2008     case lir_patch_none:                                 break;
2009     case lir_patch_low:    out->print("[patch_low]");    break;
2010     case lir_patch_high:   out->print("[patch_high]");   break;
2011     case lir_patch_normal: out->print("[patch_normal]"); break;
2012     default: ShouldNotReachHere();
2013   }
2014 }
2015 
2016 // LIR_OpBranch
2017 void LIR_OpBranch::print_instr(outputStream* out) const {
2018   print_condition(out, cond());             out->print(" ");
2019   if (block() != NULL) {
2020     out->print("[B%d] ", block()->block_id());
2021   } else if (stub() != NULL) {
2022     out->print("[");
2023     stub()->print_name(out);
2024     out->print(": " INTPTR_FORMAT "]", p2i(stub()));
2025     if (stub()->info() != NULL) out->print(" [bci:%d]", stub()->info()->stack()->bci());
2026   } else {
2027     out->print("[label:" INTPTR_FORMAT "] ", p2i(label()));
2028   }
2029   if (ublock() != NULL) {
2030     out->print("unordered: [B%d] ", ublock()->block_id());
2031   }
2032 }
2033 
2034 void LIR_Op::print_condition(outputStream* out, LIR_Condition cond) {
2035   switch(cond) {
2036     case lir_cond_equal:           out->print("[EQ]");      break;
2037     case lir_cond_notEqual:        out->print("[NE]");      break;
2038     case lir_cond_less:            out->print("[LT]");      break;
2039     case lir_cond_lessEqual:       out->print("[LE]");      break;
2040     case lir_cond_greaterEqual:    out->print("[GE]");      break;
2041     case lir_cond_greater:         out->print("[GT]");      break;
2042     case lir_cond_belowEqual:      out->print("[BE]");      break;
2043     case lir_cond_aboveEqual:      out->print("[AE]");      break;
2044     case lir_cond_always:          out->print("[AL]");      break;
2045     default:                       out->print("[%d]",cond); break;
2046   }
2047 }
2048 
2049 // LIR_OpConvert
2050 void LIR_OpConvert::print_instr(outputStream* out) const {
2051   print_bytecode(out, bytecode());
2052   in_opr()->print(out);                  out->print(" ");
2053   result_opr()->print(out);              out->print(" ");
2054 }
2055 
2056 void LIR_OpConvert::print_bytecode(outputStream* out, Bytecodes::Code code) {
2057   switch(code) {
2058     case Bytecodes::_d2f: out->print("[d2f] "); break;
2059     case Bytecodes::_d2i: out->print("[d2i] "); break;
2060     case Bytecodes::_d2l: out->print("[d2l] "); break;
2061     case Bytecodes::_f2d: out->print("[f2d] "); break;
2062     case Bytecodes::_f2i: out->print("[f2i] "); break;
2063     case Bytecodes::_f2l: out->print("[f2l] "); break;
2064     case Bytecodes::_i2b: out->print("[i2b] "); break;
2065     case Bytecodes::_i2c: out->print("[i2c] "); break;
2066     case Bytecodes::_i2d: out->print("[i2d] "); break;
2067     case Bytecodes::_i2f: out->print("[i2f] "); break;
2068     case Bytecodes::_i2l: out->print("[i2l] "); break;
2069     case Bytecodes::_i2s: out->print("[i2s] "); break;
2070     case Bytecodes::_l2i: out->print("[l2i] "); break;
2071     case Bytecodes::_l2f: out->print("[l2f] "); break;
2072     case Bytecodes::_l2d: out->print("[l2d] "); break;
2073     default:
2074       out->print("[?%d]",code);
2075     break;
2076   }
2077 }
2078 
2079 void LIR_OpAllocObj::print_instr(outputStream* out) const {
2080   klass()->print(out);                      out->print(" ");
2081   obj()->print(out);                        out->print(" ");
2082   tmp1()->print(out);                       out->print(" ");
2083   tmp2()->print(out);                       out->print(" ");
2084   tmp3()->print(out);                       out->print(" ");
2085   tmp4()->print(out);                       out->print(" ");
2086   out->print("[hdr:%d]", header_size()); out->print(" ");
2087   out->print("[obj:%d]", object_size()); out->print(" ");
2088   out->print("[lbl:" INTPTR_FORMAT "]", p2i(stub()->entry()));
2089 }
2090 
2091 void LIR_OpRoundFP::print_instr(outputStream* out) const {
2092   _opr->print(out);         out->print(" ");
2093   tmp()->print(out);        out->print(" ");
2094   result_opr()->print(out); out->print(" ");
2095 }
2096 
2097 // LIR_Op2
2098 void LIR_Op2::print_instr(outputStream* out) const {
2099   if (code() == lir_cmove || code() == lir_cmp) {
2100     print_condition(out, condition());         out->print(" ");
2101   }
2102   in_opr1()->print(out);    out->print(" ");
2103   in_opr2()->print(out);    out->print(" ");
2104   if (tmp1_opr()->is_valid()) { tmp1_opr()->print(out);    out->print(" "); }
2105   if (tmp2_opr()->is_valid()) { tmp2_opr()->print(out);    out->print(" "); }
2106   if (tmp3_opr()->is_valid()) { tmp3_opr()->print(out);    out->print(" "); }
2107   if (tmp4_opr()->is_valid()) { tmp4_opr()->print(out);    out->print(" "); }
2108   if (tmp5_opr()->is_valid()) { tmp5_opr()->print(out);    out->print(" "); }
2109   result_opr()->print(out);
2110 }
2111 
2112 void LIR_OpAllocArray::print_instr(outputStream* out) const {
2113   klass()->print(out);                   out->print(" ");
2114   len()->print(out);                     out->print(" ");
2115   obj()->print(out);                     out->print(" ");
2116   tmp1()->print(out);                    out->print(" ");
2117   tmp2()->print(out);                    out->print(" ");
2118   tmp3()->print(out);                    out->print(" ");
2119   tmp4()->print(out);                    out->print(" ");
2120   out->print("[type:0x%x]", type());     out->print(" ");
2121   out->print("[label:" INTPTR_FORMAT "]", p2i(stub()->entry()));
2122 }
2123 
2124 
2125 void LIR_OpTypeCheck::print_instr(outputStream* out) const {
2126   object()->print(out);                  out->print(" ");
2127   if (code() == lir_store_check) {
2128     array()->print(out);                 out->print(" ");
2129   }
2130   if (code() != lir_store_check) {
2131     klass()->print_name_on(out);         out->print(" ");
2132     if (fast_check())                 out->print("fast_check ");
2133   }
2134   tmp1()->print(out);                    out->print(" ");
2135   tmp2()->print(out);                    out->print(" ");
2136   tmp3()->print(out);                    out->print(" ");
2137   result_opr()->print(out);              out->print(" ");
2138   if (info_for_exception() != NULL) out->print(" [bci:%d]", info_for_exception()->stack()->bci());
2139 }
2140 
2141 void LIR_OpFlattenedArrayCheck::print_instr(outputStream* out) const {
2142   array()->print(out);                   out->print(" ");
2143   value()->print(out);                   out->print(" ");
2144   tmp()->print(out);                     out->print(" ");
2145   if (stub() != NULL) {
2146     out->print("[label:" INTPTR_FORMAT "]", p2i(stub()->entry()));
2147   }
2148 }
2149 
2150 void LIR_OpNullFreeArrayCheck::print_instr(outputStream* out) const {
2151   array()->print(out);                   out->print(" ");
2152   tmp()->print(out);                     out->print(" ");
2153 }
2154 
2155 void LIR_OpSubstitutabilityCheck::print_instr(outputStream* out) const {
2156   result_opr()->print(out);              out->print(" ");
2157   left()->print(out);                    out->print(" ");
2158   right()->print(out);                   out->print(" ");
2159   equal_result()->print(out);            out->print(" ");
2160   not_equal_result()->print(out);        out->print(" ");
2161   tmp1()->print(out);                    out->print(" ");
2162   tmp2()->print(out);                    out->print(" ");
2163   if (left_klass() == NULL) {
2164     out->print("unknown ");
2165   } else {
2166     left_klass()->print(out);            out->print(" ");
2167   }
2168   if (right_klass() == NULL) {
2169     out->print("unknown ");
2170   } else {
2171     right_klass()->print(out);           out->print(" ");
2172   }
2173   left_klass_op()->print(out);           out->print(" ");
2174   right_klass_op()->print(out);          out->print(" ");
2175   if (stub() != NULL) {
2176     out->print("[label:" INTPTR_FORMAT "]", p2i(stub()->entry()));
2177   }
2178 }
2179 
2180 // LIR_Op3
2181 void LIR_Op3::print_instr(outputStream* out) const {
2182   in_opr1()->print(out);    out->print(" ");
2183   in_opr2()->print(out);    out->print(" ");
2184   in_opr3()->print(out);    out->print(" ");
2185   result_opr()->print(out);
2186 }
2187 
2188 
2189 void LIR_OpLock::print_instr(outputStream* out) const {
2190   hdr_opr()->print(out);   out->print(" ");
2191   obj_opr()->print(out);   out->print(" ");
2192   lock_opr()->print(out);  out->print(" ");
2193   if (_scratch->is_valid()) {
2194     _scratch->print(out);  out->print(" ");
2195   }
2196   out->print("[lbl:" INTPTR_FORMAT "]", p2i(stub()->entry()));
2197 }
2198 
2199 void LIR_OpLoadKlass::print_instr(outputStream* out) const {
2200   obj()->print(out);        out->print(" ");
2201   result_opr()->print(out); out->print(" ");
2202 }
2203 
2204 #ifdef ASSERT
2205 void LIR_OpAssert::print_instr(outputStream* out) const {
2206   print_condition(out, condition()); out->print(" ");
2207   in_opr1()->print(out);             out->print(" ");
2208   in_opr2()->print(out);             out->print(", \"");
2209   out->print("%s", msg());          out->print("\"");
2210 }
2211 #endif
2212 
2213 
2214 void LIR_OpDelay::print_instr(outputStream* out) const {
2215   _op->print_on(out);
2216 }
2217 
2218 
2219 // LIR_OpProfileCall
2220 void LIR_OpProfileCall::print_instr(outputStream* out) const {
2221   profiled_method()->name()->print_symbol_on(out);
2222   out->print(".");
2223   profiled_method()->holder()->name()->print_symbol_on(out);
2224   out->print(" @ %d ", profiled_bci());
2225   mdo()->print(out);           out->print(" ");
2226   recv()->print(out);          out->print(" ");
2227   tmp1()->print(out);          out->print(" ");
2228 }
2229 
2230 // LIR_OpProfileType
2231 void LIR_OpProfileType::print_instr(outputStream* out) const {
2232   out->print("exact = ");
2233   if  (exact_klass() == NULL) {
2234     out->print("unknown");
2235   } else {
2236     exact_klass()->print_name_on(out);
2237   }
2238   out->print(" current = "); ciTypeEntries::print_ciklass(out, current_klass());
2239   out->print(" ");
2240   mdp()->print(out);          out->print(" ");
2241   obj()->print(out);          out->print(" ");
2242   tmp()->print(out);          out->print(" ");
2243 }
2244 
2245 // LIR_OpProfileInlineType
2246 void LIR_OpProfileInlineType::print_instr(outputStream* out) const {
2247   out->print(" flag = %x ", flag());
2248   mdp()->print(out);          out->print(" ");
2249   obj()->print(out);          out->print(" ");
2250   tmp()->print(out);          out->print(" ");
2251 }
2252 
2253 #endif // PRODUCT
2254 
2255 // Implementation of LIR_InsertionBuffer
2256 
2257 void LIR_InsertionBuffer::append(int index, LIR_Op* op) {
2258   assert(_index_and_count.length() % 2 == 0, "must have a count for each index");
2259 
2260   int i = number_of_insertion_points() - 1;
2261   if (i < 0 || index_at(i) < index) {
2262     append_new(index, 1);
2263   } else {
2264     assert(index_at(i) == index, "can append LIR_Ops in ascending order only");
2265     assert(count_at(i) > 0, "check");
2266     set_count_at(i, count_at(i) + 1);
2267   }
2268   _ops.push(op);
2269 
2270   DEBUG_ONLY(verify());
2271 }
2272 
2273 #ifdef ASSERT
2274 void LIR_InsertionBuffer::verify() {
2275   int sum = 0;
2276   int prev_idx = -1;
2277 
2278   for (int i = 0; i < number_of_insertion_points(); i++) {
2279     assert(prev_idx < index_at(i), "index must be ordered ascending");
2280     sum += count_at(i);
2281   }
2282   assert(sum == number_of_ops(), "wrong total sum");
2283 }
2284 #endif