1 /*
   2  * Copyright (c) 2000, 2021, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_C1_C1_LIR_HPP
  26 #define SHARE_C1_C1_LIR_HPP
  27 
  28 #include "c1/c1_Defs.hpp"
  29 #include "c1/c1_ValueType.hpp"
  30 #include "oops/method.hpp"
  31 #include "utilities/globalDefinitions.hpp"
  32 
  33 class BlockBegin;
  34 class BlockList;
  35 class LIR_Assembler;
  36 class CodeEmitInfo;
  37 class CodeStub;
  38 class CodeStubList;
  39 class C1SafepointPollStub;
  40 class ArrayCopyStub;
  41 class LIR_Op;
  42 class ciType;
  43 class ValueType;
  44 class LIR_OpVisitState;
  45 class FpuStackSim;
  46 
  47 //---------------------------------------------------------------------
  48 //                 LIR Operands
  49 //  LIR_OprDesc
  50 //    LIR_OprPtr
  51 //      LIR_Const
  52 //      LIR_Address
  53 //---------------------------------------------------------------------
  54 class LIR_OprDesc;
  55 class LIR_OprPtr;
  56 class LIR_Const;
  57 class LIR_Address;
  58 class LIR_OprVisitor;
  59 
  60 
  61 typedef LIR_OprDesc* LIR_Opr;
  62 typedef int          RegNr;
  63 
  64 typedef GrowableArray<LIR_Opr> LIR_OprList;
  65 typedef GrowableArray<LIR_Op*> LIR_OpArray;
  66 typedef GrowableArray<LIR_Op*> LIR_OpList;
  67 
  68 // define LIR_OprPtr early so LIR_OprDesc can refer to it
  69 class LIR_OprPtr: public CompilationResourceObj {
  70  public:
  71   bool is_oop_pointer() const                    { return (type() == T_OBJECT); }
  72   bool is_float_kind() const                     { BasicType t = type(); return (t == T_FLOAT) || (t == T_DOUBLE); }
  73 
  74   virtual LIR_Const*  as_constant()              { return NULL; }
  75   virtual LIR_Address* as_address()              { return NULL; }
  76   virtual BasicType type() const                 = 0;
  77   virtual void print_value_on(outputStream* out) const = 0;
  78 };
  79 
  80 
  81 
  82 // LIR constants
  83 class LIR_Const: public LIR_OprPtr {
  84  private:
  85   JavaValue _value;
  86 
  87   void type_check(BasicType t) const   { assert(type() == t, "type check"); }
  88   void type_check(BasicType t1, BasicType t2) const   { assert(type() == t1 || type() == t2, "type check"); }
  89   void type_check(BasicType t1, BasicType t2, BasicType t3) const   { assert(type() == t1 || type() == t2 || type() == t3, "type check"); }
  90 
  91  public:
  92   LIR_Const(jint i, bool is_address=false)       { _value.set_type(is_address?T_ADDRESS:T_INT); _value.set_jint(i); }
  93   LIR_Const(jlong l)                             { _value.set_type(T_LONG);    _value.set_jlong(l); }
  94   LIR_Const(jfloat f)                            { _value.set_type(T_FLOAT);   _value.set_jfloat(f); }
  95   LIR_Const(jdouble d)                           { _value.set_type(T_DOUBLE);  _value.set_jdouble(d); }
  96   LIR_Const(jobject o)                           { _value.set_type(T_OBJECT);  _value.set_jobject(o); }
  97   LIR_Const(void* p) {
  98 #ifdef _LP64
  99     assert(sizeof(jlong) >= sizeof(p), "too small");;
 100     _value.set_type(T_LONG);    _value.set_jlong((jlong)p);
 101 #else
 102     assert(sizeof(jint) >= sizeof(p), "too small");;
 103     _value.set_type(T_INT);     _value.set_jint((jint)p);
 104 #endif
 105   }
 106   LIR_Const(Metadata* m) {
 107     _value.set_type(T_METADATA);
 108 #ifdef _LP64
 109     _value.set_jlong((jlong)m);
 110 #else
 111     _value.set_jint((jint)m);
 112 #endif // _LP64
 113   }
 114 
 115   virtual BasicType type()       const { return _value.get_type(); }
 116   virtual LIR_Const* as_constant()     { return this; }
 117 
 118   jint      as_jint()    const         { type_check(T_INT, T_ADDRESS); return _value.get_jint(); }
 119   jlong     as_jlong()   const         { type_check(T_LONG  ); return _value.get_jlong(); }
 120   jfloat    as_jfloat()  const         { type_check(T_FLOAT ); return _value.get_jfloat(); }
 121   jdouble   as_jdouble() const         { type_check(T_DOUBLE); return _value.get_jdouble(); }
 122   jobject   as_jobject() const         { type_check(T_OBJECT); return _value.get_jobject(); }
 123   jint      as_jint_lo() const         { type_check(T_LONG  ); return low(_value.get_jlong()); }
 124   jint      as_jint_hi() const         { type_check(T_LONG  ); return high(_value.get_jlong()); }
 125 
 126 #ifdef _LP64
 127   address   as_pointer() const         { type_check(T_LONG  ); return (address)_value.get_jlong(); }
 128   Metadata* as_metadata() const        { type_check(T_METADATA); return (Metadata*)_value.get_jlong(); }
 129 #else
 130   address   as_pointer() const         { type_check(T_INT   ); return (address)_value.get_jint(); }
 131   Metadata* as_metadata() const        { type_check(T_METADATA); return (Metadata*)_value.get_jint(); }
 132 #endif
 133 
 134 
 135   jint      as_jint_bits() const       { type_check(T_FLOAT, T_INT, T_ADDRESS); return _value.get_jint(); }
 136   jint      as_jint_lo_bits() const    {
 137     if (type() == T_DOUBLE) {
 138       return low(jlong_cast(_value.get_jdouble()));
 139     } else {
 140       return as_jint_lo();
 141     }
 142   }
 143   jint      as_jint_hi_bits() const    {
 144     if (type() == T_DOUBLE) {
 145       return high(jlong_cast(_value.get_jdouble()));
 146     } else {
 147       return as_jint_hi();
 148     }
 149   }
 150   jlong      as_jlong_bits() const    {
 151     if (type() == T_DOUBLE) {
 152       return jlong_cast(_value.get_jdouble());
 153     } else {
 154       return as_jlong();
 155     }
 156   }
 157 
 158   virtual void print_value_on(outputStream* out) const PRODUCT_RETURN;
 159 
 160 
 161   bool is_zero_float() {
 162     jfloat f = as_jfloat();
 163     jfloat ok = 0.0f;
 164     return jint_cast(f) == jint_cast(ok);
 165   }
 166 
 167   bool is_one_float() {
 168     jfloat f = as_jfloat();
 169     return !g_isnan(f) && g_isfinite(f) && f == 1.0;
 170   }
 171 
 172   bool is_zero_double() {
 173     jdouble d = as_jdouble();
 174     jdouble ok = 0.0;
 175     return jlong_cast(d) == jlong_cast(ok);
 176   }
 177 
 178   bool is_one_double() {
 179     jdouble d = as_jdouble();
 180     return !g_isnan(d) && g_isfinite(d) && d == 1.0;
 181   }
 182 };
 183 
 184 
 185 //---------------------LIR Operand descriptor------------------------------------
 186 //
 187 // The class LIR_OprDesc represents a LIR instruction operand;
 188 // it can be a register (ALU/FPU), stack location or a constant;
 189 // Constants and addresses are represented as resource area allocated
 190 // structures (see above).
 191 // Registers and stack locations are inlined into the this pointer
 192 // (see value function).
 193 
 194 class LIR_OprDesc: public CompilationResourceObj {
 195  public:
 196   // value structure:
 197   //     data       opr-type opr-kind
 198   // +--------------+-------+-------+
 199   // [max...........|7 6 5 4|3 2 1 0]
 200   //                               ^
 201   //                         is_pointer bit
 202   //
 203   // lowest bit cleared, means it is a structure pointer
 204   // we need  4 bits to represent types
 205 
 206  private:
 207   friend class LIR_OprFact;
 208 
 209   // Conversion
 210   intptr_t value() const                         { return (intptr_t) this; }
 211 
 212   bool check_value_mask(intptr_t mask, intptr_t masked_value) const {
 213     return (value() & mask) == masked_value;
 214   }
 215 
 216   enum OprKind {
 217       pointer_value      = 0
 218     , stack_value        = 1
 219     , cpu_register       = 3
 220     , fpu_register       = 5
 221     , illegal_value      = 7
 222   };
 223 
 224   enum OprBits {
 225       pointer_bits   = 1
 226     , kind_bits      = 3
 227     , type_bits      = 4
 228     , size_bits      = 2
 229     , destroys_bits  = 1
 230     , virtual_bits   = 1
 231     , is_xmm_bits    = 1
 232     , last_use_bits  = 1
 233     , is_fpu_stack_offset_bits = 1        // used in assertion checking on x86 for FPU stack slot allocation
 234     , non_data_bits  = pointer_bits + kind_bits + type_bits + size_bits + destroys_bits + virtual_bits
 235                        + is_xmm_bits + last_use_bits + is_fpu_stack_offset_bits
 236     , data_bits      = BitsPerInt - non_data_bits
 237     , reg_bits       = data_bits / 2      // for two registers in one value encoding
 238   };
 239 
 240   enum OprShift {
 241       kind_shift     = 0
 242     , type_shift     = kind_shift     + kind_bits
 243     , size_shift     = type_shift     + type_bits
 244     , destroys_shift = size_shift     + size_bits
 245     , last_use_shift = destroys_shift + destroys_bits
 246     , is_fpu_stack_offset_shift = last_use_shift + last_use_bits
 247     , virtual_shift  = is_fpu_stack_offset_shift + is_fpu_stack_offset_bits
 248     , is_xmm_shift   = virtual_shift + virtual_bits
 249     , data_shift     = is_xmm_shift + is_xmm_bits
 250     , reg1_shift = data_shift
 251     , reg2_shift = data_shift + reg_bits
 252 
 253   };
 254 
 255   enum OprSize {
 256       single_size = 0 << size_shift
 257     , double_size = 1 << size_shift
 258   };
 259 
 260   enum OprMask {
 261       kind_mask      = right_n_bits(kind_bits)
 262     , type_mask      = right_n_bits(type_bits) << type_shift
 263     , size_mask      = right_n_bits(size_bits) << size_shift
 264     , last_use_mask  = right_n_bits(last_use_bits) << last_use_shift
 265     , is_fpu_stack_offset_mask = right_n_bits(is_fpu_stack_offset_bits) << is_fpu_stack_offset_shift
 266     , virtual_mask   = right_n_bits(virtual_bits) << virtual_shift
 267     , is_xmm_mask    = right_n_bits(is_xmm_bits) << is_xmm_shift
 268     , pointer_mask   = right_n_bits(pointer_bits)
 269     , lower_reg_mask = right_n_bits(reg_bits)
 270     , no_type_mask   = (int)(~(type_mask | last_use_mask | is_fpu_stack_offset_mask))
 271   };
 272 
 273   uintptr_t data() const                         { return value() >> data_shift; }
 274   int lo_reg_half() const                        { return data() & lower_reg_mask; }
 275   int hi_reg_half() const                        { return (data() >> reg_bits) & lower_reg_mask; }
 276   OprKind kind_field() const                     { return (OprKind)(value() & kind_mask); }
 277   OprSize size_field() const                     { return (OprSize)(value() & size_mask); }
 278 
 279   static char type_char(BasicType t);
 280 
 281  public:
 282   enum {
 283     vreg_base = ConcreteRegisterImpl::number_of_registers,
 284     vreg_max = (1 << data_bits) - 1
 285   };
 286 
 287   static inline LIR_Opr illegalOpr();
 288 
 289   enum OprType {
 290       unknown_type  = 0 << type_shift    // means: not set (catch uninitialized types)
 291     , int_type      = 1 << type_shift
 292     , long_type     = 2 << type_shift
 293     , object_type   = 3 << type_shift
 294     , address_type  = 4 << type_shift
 295     , float_type    = 5 << type_shift
 296     , double_type   = 6 << type_shift
 297     , metadata_type = 7 << type_shift
 298   };
 299   friend OprType as_OprType(BasicType t);
 300   friend BasicType as_BasicType(OprType t);
 301 
 302   OprType type_field_valid() const               { assert(is_register() || is_stack(), "should not be called otherwise"); return (OprType)(value() & type_mask); }
 303   OprType type_field() const                     { return is_illegal() ? unknown_type : (OprType)(value() & type_mask); }
 304 
 305   static OprSize size_for(BasicType t) {
 306     switch (t) {
 307       case T_LONG:
 308       case T_DOUBLE:
 309         return double_size;
 310         break;
 311 
 312       case T_FLOAT:
 313       case T_BOOLEAN:
 314       case T_CHAR:
 315       case T_BYTE:
 316       case T_SHORT:
 317       case T_INT:
 318       case T_ADDRESS:
 319       case T_OBJECT:
 320       case T_ARRAY:
 321       case T_METADATA:
 322         return single_size;
 323         break;
 324 
 325       default:
 326         ShouldNotReachHere();
 327         return single_size;
 328       }
 329   }
 330 
 331 
 332   void validate_type() const PRODUCT_RETURN;
 333 
 334   BasicType type() const {
 335     if (is_pointer()) {
 336       return pointer()->type();
 337     }
 338     return as_BasicType(type_field());
 339   }
 340 
 341 
 342   ValueType* value_type() const                  { return as_ValueType(type()); }
 343 
 344   char type_char() const                         { return type_char((is_pointer()) ? pointer()->type() : type()); }
 345 
 346   bool is_equal(LIR_Opr opr) const         { return this == opr; }
 347   // checks whether types are same
 348   bool is_same_type(LIR_Opr opr) const     {
 349     assert(type_field() != unknown_type &&
 350            opr->type_field() != unknown_type, "shouldn't see unknown_type");
 351     return type_field() == opr->type_field();
 352   }
 353   bool is_same_register(LIR_Opr opr) {
 354     return (is_register() && opr->is_register() &&
 355             kind_field() == opr->kind_field() &&
 356             (value() & no_type_mask) == (opr->value() & no_type_mask));
 357   }
 358 
 359   bool is_pointer() const      { return check_value_mask(pointer_mask, pointer_value); }
 360   bool is_illegal() const      { return kind_field() == illegal_value; }
 361   bool is_valid() const        { return kind_field() != illegal_value; }
 362 
 363   bool is_register() const     { return is_cpu_register() || is_fpu_register(); }
 364   bool is_virtual() const      { return is_virtual_cpu()  || is_virtual_fpu();  }
 365 
 366   bool is_constant() const     { return is_pointer() && pointer()->as_constant() != NULL; }
 367   bool is_address() const      { return is_pointer() && pointer()->as_address() != NULL; }
 368 
 369   bool is_float_kind() const   { return is_pointer() ? pointer()->is_float_kind() : (kind_field() == fpu_register); }
 370   bool is_oop() const;
 371 
 372   // semantic for fpu- and xmm-registers:
 373   // * is_float and is_double return true for xmm_registers
 374   //   (so is_single_fpu and is_single_xmm are true)
 375   // * So you must always check for is_???_xmm prior to is_???_fpu to
 376   //   distinguish between fpu- and xmm-registers
 377 
 378   bool is_stack() const        { validate_type(); return check_value_mask(kind_mask,                stack_value);                 }
 379   bool is_single_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask,    stack_value  | single_size);  }
 380   bool is_double_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask,    stack_value  | double_size);  }
 381 
 382   bool is_cpu_register() const { validate_type(); return check_value_mask(kind_mask,                cpu_register);                }
 383   bool is_virtual_cpu() const  { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register | virtual_mask); }
 384   bool is_fixed_cpu() const    { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register);                }
 385   bool is_single_cpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    cpu_register | single_size);  }
 386   bool is_double_cpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    cpu_register | double_size);  }
 387 
 388   bool is_fpu_register() const { validate_type(); return check_value_mask(kind_mask,                fpu_register);                }
 389   bool is_virtual_fpu() const  { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register | virtual_mask); }
 390   bool is_fixed_fpu() const    { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register);                }
 391   bool is_single_fpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    fpu_register | single_size);  }
 392   bool is_double_fpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    fpu_register | double_size);  }
 393 
 394   bool is_xmm_register() const { validate_type(); return check_value_mask(kind_mask | is_xmm_mask,             fpu_register | is_xmm_mask); }
 395   bool is_single_xmm() const   { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | single_size | is_xmm_mask); }
 396   bool is_double_xmm() const   { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | double_size | is_xmm_mask); }
 397 
 398   // fast accessor functions for special bits that do not work for pointers
 399   // (in this functions, the check for is_pointer() is omitted)
 400   bool is_single_word() const      { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, single_size); }
 401   bool is_double_word() const      { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, double_size); }
 402   bool is_virtual_register() const { assert(is_register(),               "type check"); return check_value_mask(virtual_mask, virtual_mask); }
 403   bool is_oop_register() const     { assert(is_register() || is_stack(), "type check"); return type_field_valid() == object_type; }
 404   BasicType type_register() const  { assert(is_register() || is_stack(), "type check"); return as_BasicType(type_field_valid());  }
 405 
 406   bool is_last_use() const         { assert(is_register(), "only works for registers"); return (value() & last_use_mask) != 0; }
 407   bool is_fpu_stack_offset() const { assert(is_register(), "only works for registers"); return (value() & is_fpu_stack_offset_mask) != 0; }
 408   LIR_Opr make_last_use()          { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | last_use_mask); }
 409   LIR_Opr make_fpu_stack_offset()  { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | is_fpu_stack_offset_mask); }
 410 
 411 
 412   int single_stack_ix() const  { assert(is_single_stack() && !is_virtual(), "type check"); return (int)data(); }
 413   int double_stack_ix() const  { assert(is_double_stack() && !is_virtual(), "type check"); return (int)data(); }
 414   RegNr cpu_regnr() const      { assert(is_single_cpu()   && !is_virtual(), "type check"); return (RegNr)data(); }
 415   RegNr cpu_regnrLo() const    { assert(is_double_cpu()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
 416   RegNr cpu_regnrHi() const    { assert(is_double_cpu()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
 417   RegNr fpu_regnr() const      { assert(is_single_fpu()   && !is_virtual(), "type check"); return (RegNr)data(); }
 418   RegNr fpu_regnrLo() const    { assert(is_double_fpu()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
 419   RegNr fpu_regnrHi() const    { assert(is_double_fpu()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
 420   RegNr xmm_regnr() const      { assert(is_single_xmm()   && !is_virtual(), "type check"); return (RegNr)data(); }
 421   RegNr xmm_regnrLo() const    { assert(is_double_xmm()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
 422   RegNr xmm_regnrHi() const    { assert(is_double_xmm()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
 423   int   vreg_number() const    { assert(is_virtual(),                       "type check"); return (RegNr)data(); }
 424 
 425   LIR_OprPtr* pointer()  const                   { assert(is_pointer(), "type check");      return (LIR_OprPtr*)this; }
 426   LIR_Const* as_constant_ptr() const             { return pointer()->as_constant(); }
 427   LIR_Address* as_address_ptr() const            { return pointer()->as_address(); }
 428 
 429   Register as_register()    const;
 430   Register as_register_lo() const;
 431   Register as_register_hi() const;
 432 
 433   Register as_pointer_register() {
 434 #ifdef _LP64
 435     if (is_double_cpu()) {
 436       assert(as_register_lo() == as_register_hi(), "should be a single register");
 437       return as_register_lo();
 438     }
 439 #endif
 440     return as_register();
 441   }
 442 
 443   FloatRegister as_float_reg   () const;
 444   FloatRegister as_double_reg  () const;
 445 #ifdef X86
 446   XMMRegister as_xmm_float_reg () const;
 447   XMMRegister as_xmm_double_reg() const;
 448   // for compatibility with RInfo
 449   int fpu() const { return lo_reg_half(); }
 450 #endif
 451 
 452   jint      as_jint()    const { return as_constant_ptr()->as_jint(); }
 453   jlong     as_jlong()   const { return as_constant_ptr()->as_jlong(); }
 454   jfloat    as_jfloat()  const { return as_constant_ptr()->as_jfloat(); }
 455   jdouble   as_jdouble() const { return as_constant_ptr()->as_jdouble(); }
 456   jobject   as_jobject() const { return as_constant_ptr()->as_jobject(); }
 457 
 458   void print() const PRODUCT_RETURN;
 459   void print(outputStream* out) const PRODUCT_RETURN;
 460 };
 461 
 462 
 463 inline LIR_OprDesc::OprType as_OprType(BasicType type) {
 464   switch (type) {
 465   case T_INT:      return LIR_OprDesc::int_type;
 466   case T_LONG:     return LIR_OprDesc::long_type;
 467   case T_FLOAT:    return LIR_OprDesc::float_type;
 468   case T_DOUBLE:   return LIR_OprDesc::double_type;
 469   case T_OBJECT:
 470   case T_ARRAY:    return LIR_OprDesc::object_type;
 471   case T_ADDRESS:  return LIR_OprDesc::address_type;
 472   case T_METADATA: return LIR_OprDesc::metadata_type;
 473   case T_ILLEGAL:  // fall through
 474   default: ShouldNotReachHere(); return LIR_OprDesc::unknown_type;
 475   }
 476 }
 477 
 478 inline BasicType as_BasicType(LIR_OprDesc::OprType t) {
 479   switch (t) {
 480   case LIR_OprDesc::int_type:     return T_INT;
 481   case LIR_OprDesc::long_type:    return T_LONG;
 482   case LIR_OprDesc::float_type:   return T_FLOAT;
 483   case LIR_OprDesc::double_type:  return T_DOUBLE;
 484   case LIR_OprDesc::object_type:  return T_OBJECT;
 485   case LIR_OprDesc::address_type: return T_ADDRESS;
 486   case LIR_OprDesc::metadata_type:return T_METADATA;
 487   case LIR_OprDesc::unknown_type: // fall through
 488   default: ShouldNotReachHere();  return T_ILLEGAL;
 489   }
 490 }
 491 
 492 
 493 // LIR_Address
 494 class LIR_Address: public LIR_OprPtr {
 495  friend class LIR_OpVisitState;
 496 
 497  public:
 498   // NOTE: currently these must be the log2 of the scale factor (and
 499   // must also be equivalent to the ScaleFactor enum in
 500   // assembler_i486.hpp)
 501   enum Scale {
 502     times_1  =  0,
 503     times_2  =  1,
 504     times_4  =  2,
 505     times_8  =  3
 506   };
 507 
 508  private:
 509   LIR_Opr   _base;
 510   LIR_Opr   _index;
 511   Scale     _scale;
 512   intx      _disp;
 513   BasicType _type;
 514 
 515  public:
 516   LIR_Address(LIR_Opr base, LIR_Opr index, BasicType type):
 517        _base(base)
 518      , _index(index)
 519      , _scale(times_1)
 520      , _disp(0)
 521      , _type(type) { verify(); }
 522 
 523   LIR_Address(LIR_Opr base, intx disp, BasicType type):
 524        _base(base)
 525      , _index(LIR_OprDesc::illegalOpr())
 526      , _scale(times_1)
 527      , _disp(disp)
 528      , _type(type) { verify(); }
 529 
 530   LIR_Address(LIR_Opr base, BasicType type):
 531        _base(base)
 532      , _index(LIR_OprDesc::illegalOpr())
 533      , _scale(times_1)
 534      , _disp(0)
 535      , _type(type) { verify(); }
 536 
 537   LIR_Address(LIR_Opr base, LIR_Opr index, intx disp, BasicType type):
 538        _base(base)
 539      , _index(index)
 540      , _scale(times_1)
 541      , _disp(disp)
 542      , _type(type) { verify(); }
 543 
 544   LIR_Address(LIR_Opr base, LIR_Opr index, Scale scale, intx disp, BasicType type):
 545        _base(base)
 546      , _index(index)
 547      , _scale(scale)
 548      , _disp(disp)
 549      , _type(type) { verify(); }
 550 
 551   LIR_Opr base()  const                          { return _base;  }
 552   LIR_Opr index() const                          { return _index; }
 553   Scale   scale() const                          { return _scale; }
 554   intx    disp()  const                          { return _disp;  }
 555 
 556   bool equals(LIR_Address* other) const          { return base() == other->base() && index() == other->index() && disp() == other->disp() && scale() == other->scale(); }
 557 
 558   virtual LIR_Address* as_address()              { return this;   }
 559   virtual BasicType type() const                 { return _type; }
 560   virtual void print_value_on(outputStream* out) const PRODUCT_RETURN;
 561 
 562   void verify() const PRODUCT_RETURN;
 563 
 564   static Scale scale(BasicType type);
 565 };
 566 
 567 
 568 // operand factory
 569 class LIR_OprFact: public AllStatic {
 570  public:
 571 
 572   static LIR_Opr illegalOpr;
 573 
 574   static LIR_Opr single_cpu(int reg) {
 575     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 576                                LIR_OprDesc::int_type             |
 577                                LIR_OprDesc::cpu_register         |
 578                                LIR_OprDesc::single_size);
 579   }
 580   static LIR_Opr single_cpu_oop(int reg) {
 581     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 582                                LIR_OprDesc::object_type          |
 583                                LIR_OprDesc::cpu_register         |
 584                                LIR_OprDesc::single_size);
 585   }
 586   static LIR_Opr single_cpu_address(int reg) {
 587     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 588                                LIR_OprDesc::address_type         |
 589                                LIR_OprDesc::cpu_register         |
 590                                LIR_OprDesc::single_size);
 591   }
 592   static LIR_Opr single_cpu_metadata(int reg) {
 593     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 594                                LIR_OprDesc::metadata_type        |
 595                                LIR_OprDesc::cpu_register         |
 596                                LIR_OprDesc::single_size);
 597   }
 598   static LIR_Opr double_cpu(int reg1, int reg2) {
 599     LP64_ONLY(assert(reg1 == reg2, "must be identical"));
 600     return (LIR_Opr)(intptr_t)((reg1 << LIR_OprDesc::reg1_shift) |
 601                                (reg2 << LIR_OprDesc::reg2_shift) |
 602                                LIR_OprDesc::long_type            |
 603                                LIR_OprDesc::cpu_register         |
 604                                LIR_OprDesc::double_size);
 605   }
 606 
 607   static LIR_Opr single_fpu(int reg) {
 608     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 609                                LIR_OprDesc::float_type           |
 610                                LIR_OprDesc::fpu_register         |
 611                                LIR_OprDesc::single_size);
 612   }
 613 
 614   // Platform dependant.
 615   static LIR_Opr double_fpu(int reg1, int reg2 = -1 /*fnoreg*/);
 616 
 617 #ifdef ARM32
 618   static LIR_Opr single_softfp(int reg) {
 619     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 620                                LIR_OprDesc::float_type           |
 621                                LIR_OprDesc::cpu_register         |
 622                                LIR_OprDesc::single_size);
 623   }
 624   static LIR_Opr double_softfp(int reg1, int reg2) {
 625     return (LIR_Opr)(intptr_t)((reg1 << LIR_OprDesc::reg1_shift) |
 626                                (reg2 << LIR_OprDesc::reg2_shift) |
 627                                LIR_OprDesc::double_type          |
 628                                LIR_OprDesc::cpu_register         |
 629                                LIR_OprDesc::double_size);
 630   }
 631 #endif // ARM32
 632 
 633 #if defined(X86)
 634   static LIR_Opr single_xmm(int reg) {
 635     return (LIR_Opr)(intptr_t)((reg << LIR_OprDesc::reg1_shift) |
 636                                LIR_OprDesc::float_type          |
 637                                LIR_OprDesc::fpu_register        |
 638                                LIR_OprDesc::single_size         |
 639                                LIR_OprDesc::is_xmm_mask);
 640   }
 641   static LIR_Opr double_xmm(int reg) {
 642     return (LIR_Opr)(intptr_t)((reg << LIR_OprDesc::reg1_shift) |
 643                                (reg << LIR_OprDesc::reg2_shift) |
 644                                LIR_OprDesc::double_type         |
 645                                LIR_OprDesc::fpu_register        |
 646                                LIR_OprDesc::double_size         |
 647                                LIR_OprDesc::is_xmm_mask);
 648   }
 649 #endif // X86
 650 
 651   static LIR_Opr virtual_register(int index, BasicType type) {
 652     if (index > LIR_OprDesc::vreg_max) {
 653       // Running out of virtual registers. Caller should bailout.
 654       return illegalOpr;
 655     }
 656 
 657     LIR_Opr res;
 658     switch (type) {
 659       case T_OBJECT: // fall through
 660       case T_ARRAY:
 661         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift)  |
 662                                             LIR_OprDesc::object_type  |
 663                                             LIR_OprDesc::cpu_register |
 664                                             LIR_OprDesc::single_size  |
 665                                             LIR_OprDesc::virtual_mask);
 666         break;
 667 
 668       case T_METADATA:
 669         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift)  |
 670                                             LIR_OprDesc::metadata_type|
 671                                             LIR_OprDesc::cpu_register |
 672                                             LIR_OprDesc::single_size  |
 673                                             LIR_OprDesc::virtual_mask);
 674         break;
 675 
 676       case T_INT:
 677         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 678                                   LIR_OprDesc::int_type              |
 679                                   LIR_OprDesc::cpu_register          |
 680                                   LIR_OprDesc::single_size           |
 681                                   LIR_OprDesc::virtual_mask);
 682         break;
 683 
 684       case T_ADDRESS:
 685         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 686                                   LIR_OprDesc::address_type          |
 687                                   LIR_OprDesc::cpu_register          |
 688                                   LIR_OprDesc::single_size           |
 689                                   LIR_OprDesc::virtual_mask);
 690         break;
 691 
 692       case T_LONG:
 693         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 694                                   LIR_OprDesc::long_type             |
 695                                   LIR_OprDesc::cpu_register          |
 696                                   LIR_OprDesc::double_size           |
 697                                   LIR_OprDesc::virtual_mask);
 698         break;
 699 
 700 #ifdef __SOFTFP__
 701       case T_FLOAT:
 702         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 703                                   LIR_OprDesc::float_type  |
 704                                   LIR_OprDesc::cpu_register |
 705                                   LIR_OprDesc::single_size |
 706                                   LIR_OprDesc::virtual_mask);
 707         break;
 708       case T_DOUBLE:
 709         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 710                                   LIR_OprDesc::double_type |
 711                                   LIR_OprDesc::cpu_register |
 712                                   LIR_OprDesc::double_size |
 713                                   LIR_OprDesc::virtual_mask);
 714         break;
 715 #else // __SOFTFP__
 716       case T_FLOAT:
 717         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 718                                   LIR_OprDesc::float_type           |
 719                                   LIR_OprDesc::fpu_register         |
 720                                   LIR_OprDesc::single_size          |
 721                                   LIR_OprDesc::virtual_mask);
 722         break;
 723 
 724       case
 725         T_DOUBLE: res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 726                                             LIR_OprDesc::double_type           |
 727                                             LIR_OprDesc::fpu_register          |
 728                                             LIR_OprDesc::double_size           |
 729                                             LIR_OprDesc::virtual_mask);
 730         break;
 731 #endif // __SOFTFP__
 732       default:       ShouldNotReachHere(); res = illegalOpr;
 733     }
 734 
 735 #ifdef ASSERT
 736     res->validate_type();
 737     assert(res->vreg_number() == index, "conversion check");
 738     assert(index >= LIR_OprDesc::vreg_base, "must start at vreg_base");
 739     assert(index <= (max_jint >> LIR_OprDesc::data_shift), "index is too big");
 740 
 741     // old-style calculation; check if old and new method are equal
 742     LIR_OprDesc::OprType t = as_OprType(type);
 743 #ifdef __SOFTFP__
 744     LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 745                                t |
 746                                LIR_OprDesc::cpu_register |
 747                                LIR_OprDesc::size_for(type) | LIR_OprDesc::virtual_mask);
 748 #else // __SOFTFP__
 749     LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) | t |
 750                                           ((type == T_FLOAT || type == T_DOUBLE) ?  LIR_OprDesc::fpu_register : LIR_OprDesc::cpu_register) |
 751                                LIR_OprDesc::size_for(type) | LIR_OprDesc::virtual_mask);
 752     assert(res == old_res, "old and new method not equal");
 753 #endif // __SOFTFP__
 754 #endif // ASSERT
 755 
 756     return res;
 757   }
 758 
 759   // 'index' is computed by FrameMap::local_stack_pos(index); do not use other parameters as
 760   // the index is platform independent; a double stack useing indeces 2 and 3 has always
 761   // index 2.
 762   static LIR_Opr stack(int index, BasicType type) {
 763     LIR_Opr res;
 764     switch (type) {
 765       case T_OBJECT: // fall through
 766       case T_ARRAY:
 767         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 768                                   LIR_OprDesc::object_type           |
 769                                   LIR_OprDesc::stack_value           |
 770                                   LIR_OprDesc::single_size);
 771         break;
 772 
 773       case T_METADATA:
 774         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 775                                   LIR_OprDesc::metadata_type         |
 776                                   LIR_OprDesc::stack_value           |
 777                                   LIR_OprDesc::single_size);
 778         break;
 779       case T_INT:
 780         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 781                                   LIR_OprDesc::int_type              |
 782                                   LIR_OprDesc::stack_value           |
 783                                   LIR_OprDesc::single_size);
 784         break;
 785 
 786       case T_ADDRESS:
 787         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 788                                   LIR_OprDesc::address_type          |
 789                                   LIR_OprDesc::stack_value           |
 790                                   LIR_OprDesc::single_size);
 791         break;
 792 
 793       case T_LONG:
 794         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 795                                   LIR_OprDesc::long_type             |
 796                                   LIR_OprDesc::stack_value           |
 797                                   LIR_OprDesc::double_size);
 798         break;
 799 
 800       case T_FLOAT:
 801         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 802                                   LIR_OprDesc::float_type            |
 803                                   LIR_OprDesc::stack_value           |
 804                                   LIR_OprDesc::single_size);
 805         break;
 806       case T_DOUBLE:
 807         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 808                                   LIR_OprDesc::double_type           |
 809                                   LIR_OprDesc::stack_value           |
 810                                   LIR_OprDesc::double_size);
 811         break;
 812 
 813       default:       ShouldNotReachHere(); res = illegalOpr;
 814     }
 815 
 816 #ifdef ASSERT
 817     assert(index >= 0, "index must be positive");
 818     assert(index <= (max_jint >> LIR_OprDesc::data_shift), "index is too big");
 819 
 820     LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 821                                           LIR_OprDesc::stack_value           |
 822                                           as_OprType(type)                   |
 823                                           LIR_OprDesc::size_for(type));
 824     assert(res == old_res, "old and new method not equal");
 825 #endif
 826 
 827     return res;
 828   }
 829 
 830   static LIR_Opr intConst(jint i)                { return (LIR_Opr)(new LIR_Const(i)); }
 831   static LIR_Opr longConst(jlong l)              { return (LIR_Opr)(new LIR_Const(l)); }
 832   static LIR_Opr floatConst(jfloat f)            { return (LIR_Opr)(new LIR_Const(f)); }
 833   static LIR_Opr doubleConst(jdouble d)          { return (LIR_Opr)(new LIR_Const(d)); }
 834   static LIR_Opr oopConst(jobject o)             { return (LIR_Opr)(new LIR_Const(o)); }
 835   static LIR_Opr address(LIR_Address* a)         { return (LIR_Opr)a; }
 836   static LIR_Opr intptrConst(void* p)            { return (LIR_Opr)(new LIR_Const(p)); }
 837   static LIR_Opr intptrConst(intptr_t v)         { return (LIR_Opr)(new LIR_Const((void*)v)); }
 838   static LIR_Opr illegal()                       { return (LIR_Opr)-1; }
 839   static LIR_Opr addressConst(jint i)            { return (LIR_Opr)(new LIR_Const(i, true)); }
 840   static LIR_Opr metadataConst(Metadata* m)      { return (LIR_Opr)(new LIR_Const(m)); }
 841 
 842   static LIR_Opr value_type(ValueType* type);
 843 };
 844 
 845 
 846 //-------------------------------------------------------------------------------
 847 //                   LIR Instructions
 848 //-------------------------------------------------------------------------------
 849 //
 850 // Note:
 851 //  - every instruction has a result operand
 852 //  - every instruction has an CodeEmitInfo operand (can be revisited later)
 853 //  - every instruction has a LIR_OpCode operand
 854 //  - LIR_OpN, means an instruction that has N input operands
 855 //
 856 // class hierarchy:
 857 //
 858 class  LIR_Op;
 859 class    LIR_Op0;
 860 class      LIR_OpLabel;
 861 class    LIR_Op1;
 862 class      LIR_OpBranch;
 863 class      LIR_OpConvert;
 864 class      LIR_OpAllocObj;
 865 class      LIR_OpReturn;
 866 class      LIR_OpRoundFP;
 867 class    LIR_Op2;
 868 class    LIR_OpDelay;
 869 class    LIR_Op3;
 870 class      LIR_OpAllocArray;
 871 class    LIR_OpCall;
 872 class      LIR_OpJavaCall;
 873 class      LIR_OpRTCall;
 874 class    LIR_OpArrayCopy;
 875 class    LIR_OpUpdateCRC32;
 876 class    LIR_OpLock;
 877 class    LIR_OpTypeCheck;
 878 class    LIR_OpCompareAndSwap;
 879 class    LIR_OpProfileCall;
 880 class    LIR_OpProfileType;
 881 #ifdef ASSERT
 882 class    LIR_OpAssert;
 883 #endif
 884 
 885 // LIR operation codes
 886 enum LIR_Code {
 887     lir_none
 888   , begin_op0
 889       , lir_label
 890       , lir_nop
 891       , lir_std_entry
 892       , lir_osr_entry
 893       , lir_fpop_raw
 894       , lir_breakpoint
 895       , lir_rtcall
 896       , lir_membar
 897       , lir_membar_acquire
 898       , lir_membar_release
 899       , lir_membar_loadload
 900       , lir_membar_storestore
 901       , lir_membar_loadstore
 902       , lir_membar_storeload
 903       , lir_get_thread
 904       , lir_on_spin_wait
 905   , end_op0
 906   , begin_op1
 907       , lir_fxch
 908       , lir_fld
 909       , lir_push
 910       , lir_pop
 911       , lir_null_check
 912       , lir_return
 913       , lir_leal
 914       , lir_branch
 915       , lir_cond_float_branch
 916       , lir_move
 917       , lir_convert
 918       , lir_alloc_object
 919       , lir_monaddr
 920       , lir_roundfp
 921       , lir_safepoint
 922       , lir_unwind
 923   , end_op1
 924   , begin_op2
 925       , lir_cmp
 926       , lir_cmp_l2i
 927       , lir_ucmp_fd2i
 928       , lir_cmp_fd2i
 929       , lir_cmove
 930       , lir_add
 931       , lir_sub
 932       , lir_mul
 933       , lir_div
 934       , lir_rem
 935       , lir_sqrt
 936       , lir_abs
 937       , lir_neg
 938       , lir_tan
 939       , lir_log10
 940       , lir_logic_and
 941       , lir_logic_or
 942       , lir_logic_xor
 943       , lir_shl
 944       , lir_shr
 945       , lir_ushr
 946       , lir_alloc_array
 947       , lir_throw
 948       , lir_xadd
 949       , lir_xchg
 950   , end_op2
 951   , begin_op3
 952       , lir_idiv
 953       , lir_irem
 954       , lir_fmad
 955       , lir_fmaf
 956   , end_op3
 957   , begin_opJavaCall
 958       , lir_static_call
 959       , lir_optvirtual_call
 960       , lir_icvirtual_call
 961       , lir_dynamic_call
 962   , end_opJavaCall
 963   , begin_opArrayCopy
 964       , lir_arraycopy
 965   , end_opArrayCopy
 966   , begin_opUpdateCRC32
 967       , lir_updatecrc32
 968   , end_opUpdateCRC32
 969   , begin_opLock
 970     , lir_lock
 971     , lir_unlock
 972   , end_opLock
 973   , begin_delay_slot
 974     , lir_delay_slot
 975   , end_delay_slot
 976   , begin_opTypeCheck
 977     , lir_instanceof
 978     , lir_checkcast
 979     , lir_store_check
 980   , end_opTypeCheck
 981   , begin_opCompareAndSwap
 982     , lir_cas_long
 983     , lir_cas_obj
 984     , lir_cas_int
 985   , end_opCompareAndSwap
 986   , begin_opMDOProfile
 987     , lir_profile_call
 988     , lir_profile_type
 989   , end_opMDOProfile
 990   , begin_opAssert
 991     , lir_assert
 992   , end_opAssert
 993 };
 994 
 995 
 996 enum LIR_Condition {
 997     lir_cond_equal
 998   , lir_cond_notEqual
 999   , lir_cond_less
1000   , lir_cond_lessEqual
1001   , lir_cond_greaterEqual
1002   , lir_cond_greater
1003   , lir_cond_belowEqual
1004   , lir_cond_aboveEqual
1005   , lir_cond_always
1006   , lir_cond_unknown = -1
1007 };
1008 
1009 
1010 enum LIR_PatchCode {
1011   lir_patch_none,
1012   lir_patch_low,
1013   lir_patch_high,
1014   lir_patch_normal
1015 };
1016 
1017 
1018 enum LIR_MoveKind {
1019   lir_move_normal,
1020   lir_move_volatile,
1021   lir_move_wide,
1022   lir_move_max_flag
1023 };
1024 
1025 
1026 // --------------------------------------------------
1027 // LIR_Op
1028 // --------------------------------------------------
1029 class LIR_Op: public CompilationResourceObj {
1030  friend class LIR_OpVisitState;
1031 
1032 #ifdef ASSERT
1033  private:
1034   const char *  _file;
1035   int           _line;
1036 #endif
1037 
1038  protected:
1039   LIR_Opr       _result;
1040   unsigned short _code;
1041   unsigned short _flags;
1042   CodeEmitInfo* _info;
1043   int           _id;     // value id for register allocation
1044   int           _fpu_pop_count;
1045   Instruction*  _source; // for debugging
1046 
1047   static void print_condition(outputStream* out, LIR_Condition cond) PRODUCT_RETURN;
1048 
1049  protected:
1050   static bool is_in_range(LIR_Code test, LIR_Code start, LIR_Code end)  { return start < test && test < end; }
1051 
1052  public:
1053   LIR_Op()
1054     :
1055 #ifdef ASSERT
1056       _file(NULL)
1057     , _line(0),
1058 #endif
1059       _result(LIR_OprFact::illegalOpr)
1060     , _code(lir_none)
1061     , _flags(0)
1062     , _info(NULL)
1063     , _id(-1)
1064     , _fpu_pop_count(0)
1065     , _source(NULL) {}
1066 
1067   LIR_Op(LIR_Code code, LIR_Opr result, CodeEmitInfo* info)
1068     :
1069 #ifdef ASSERT
1070       _file(NULL)
1071     , _line(0),
1072 #endif
1073       _result(result)
1074     , _code(code)
1075     , _flags(0)
1076     , _info(info)
1077     , _id(-1)
1078     , _fpu_pop_count(0)
1079     , _source(NULL) {}
1080 
1081   CodeEmitInfo* info() const                  { return _info;   }
1082   LIR_Code code()      const                  { return (LIR_Code)_code;   }
1083   LIR_Opr result_opr() const                  { return _result; }
1084   void    set_result_opr(LIR_Opr opr)         { _result = opr;  }
1085 
1086 #ifdef ASSERT
1087   void set_file_and_line(const char * file, int line) {
1088     _file = file;
1089     _line = line;
1090   }
1091 #endif
1092 
1093   virtual const char * name() const PRODUCT_RETURN0;
1094   virtual void visit(LIR_OpVisitState* state);
1095 
1096   int id()             const                  { return _id;     }
1097   void set_id(int id)                         { _id = id; }
1098 
1099   // FPU stack simulation helpers -- only used on Intel
1100   void set_fpu_pop_count(int count)           { assert(count >= 0 && count <= 1, "currently only 0 and 1 are valid"); _fpu_pop_count = count; }
1101   int  fpu_pop_count() const                  { return _fpu_pop_count; }
1102   bool pop_fpu_stack()                        { return _fpu_pop_count > 0; }
1103 
1104   Instruction* source() const                 { return _source; }
1105   void set_source(Instruction* ins)           { _source = ins; }
1106 
1107   virtual void emit_code(LIR_Assembler* masm) = 0;
1108   virtual void print_instr(outputStream* out) const   = 0;
1109   virtual void print_on(outputStream* st) const PRODUCT_RETURN;
1110 
1111   virtual bool is_patching() { return false; }
1112   virtual LIR_OpCall* as_OpCall() { return NULL; }
1113   virtual LIR_OpJavaCall* as_OpJavaCall() { return NULL; }
1114   virtual LIR_OpLabel* as_OpLabel() { return NULL; }
1115   virtual LIR_OpDelay* as_OpDelay() { return NULL; }
1116   virtual LIR_OpLock* as_OpLock() { return NULL; }
1117   virtual LIR_OpAllocArray* as_OpAllocArray() { return NULL; }
1118   virtual LIR_OpAllocObj* as_OpAllocObj() { return NULL; }
1119   virtual LIR_OpRoundFP* as_OpRoundFP() { return NULL; }
1120   virtual LIR_OpBranch* as_OpBranch() { return NULL; }
1121   virtual LIR_OpReturn* as_OpReturn() { return NULL; }
1122   virtual LIR_OpRTCall* as_OpRTCall() { return NULL; }
1123   virtual LIR_OpConvert* as_OpConvert() { return NULL; }
1124   virtual LIR_Op0* as_Op0() { return NULL; }
1125   virtual LIR_Op1* as_Op1() { return NULL; }
1126   virtual LIR_Op2* as_Op2() { return NULL; }
1127   virtual LIR_Op3* as_Op3() { return NULL; }
1128   virtual LIR_OpArrayCopy* as_OpArrayCopy() { return NULL; }
1129   virtual LIR_OpUpdateCRC32* as_OpUpdateCRC32() { return NULL; }
1130   virtual LIR_OpTypeCheck* as_OpTypeCheck() { return NULL; }
1131   virtual LIR_OpCompareAndSwap* as_OpCompareAndSwap() { return NULL; }
1132   virtual LIR_OpProfileCall* as_OpProfileCall() { return NULL; }
1133   virtual LIR_OpProfileType* as_OpProfileType() { return NULL; }
1134 #ifdef ASSERT
1135   virtual LIR_OpAssert* as_OpAssert() { return NULL; }
1136 #endif
1137 
1138   virtual void verify() const {}
1139 };
1140 
1141 // for calls
1142 class LIR_OpCall: public LIR_Op {
1143  friend class LIR_OpVisitState;
1144 
1145  protected:
1146   address      _addr;
1147   LIR_OprList* _arguments;
1148  protected:
1149   LIR_OpCall(LIR_Code code, address addr, LIR_Opr result,
1150              LIR_OprList* arguments, CodeEmitInfo* info = NULL)
1151     : LIR_Op(code, result, info)
1152     , _addr(addr)
1153     , _arguments(arguments) {}
1154 
1155  public:
1156   address addr() const                           { return _addr; }
1157   const LIR_OprList* arguments() const           { return _arguments; }
1158   virtual LIR_OpCall* as_OpCall()                { return this; }
1159 };
1160 
1161 
1162 // --------------------------------------------------
1163 // LIR_OpJavaCall
1164 // --------------------------------------------------
1165 class LIR_OpJavaCall: public LIR_OpCall {
1166  friend class LIR_OpVisitState;
1167 
1168  private:
1169   ciMethod* _method;
1170   LIR_Opr   _receiver;
1171   LIR_Opr   _method_handle_invoke_SP_save_opr;  // Used in LIR_OpVisitState::visit to store the reference to FrameMap::method_handle_invoke_SP_save_opr.
1172 
1173  public:
1174   LIR_OpJavaCall(LIR_Code code, ciMethod* method,
1175                  LIR_Opr receiver, LIR_Opr result,
1176                  address addr, LIR_OprList* arguments,
1177                  CodeEmitInfo* info)
1178   : LIR_OpCall(code, addr, result, arguments, info)
1179   , _method(method)
1180   , _receiver(receiver)
1181   , _method_handle_invoke_SP_save_opr(LIR_OprFact::illegalOpr)
1182   { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); }
1183 
1184   LIR_OpJavaCall(LIR_Code code, ciMethod* method,
1185                  LIR_Opr receiver, LIR_Opr result, intptr_t vtable_offset,
1186                  LIR_OprList* arguments, CodeEmitInfo* info)
1187   : LIR_OpCall(code, (address)vtable_offset, result, arguments, info)
1188   , _method(method)
1189   , _receiver(receiver)
1190   , _method_handle_invoke_SP_save_opr(LIR_OprFact::illegalOpr)
1191   { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); }
1192 
1193   LIR_Opr receiver() const                       { return _receiver; }
1194   ciMethod* method() const                       { return _method;   }
1195 
1196   // JSR 292 support.
1197   bool is_invokedynamic() const                  { return code() == lir_dynamic_call; }
1198   bool is_method_handle_invoke() const {
1199     return method()->is_compiled_lambda_form() ||   // Java-generated lambda form
1200            method()->is_method_handle_intrinsic();  // JVM-generated MH intrinsic
1201   }
1202 
1203   virtual void emit_code(LIR_Assembler* masm);
1204   virtual LIR_OpJavaCall* as_OpJavaCall() { return this; }
1205   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1206 };
1207 
1208 // --------------------------------------------------
1209 // LIR_OpLabel
1210 // --------------------------------------------------
1211 // Location where a branch can continue
1212 class LIR_OpLabel: public LIR_Op {
1213  friend class LIR_OpVisitState;
1214 
1215  private:
1216   Label* _label;
1217  public:
1218   LIR_OpLabel(Label* lbl)
1219    : LIR_Op(lir_label, LIR_OprFact::illegalOpr, NULL)
1220    , _label(lbl)                                 {}
1221   Label* label() const                           { return _label; }
1222 
1223   virtual void emit_code(LIR_Assembler* masm);
1224   virtual LIR_OpLabel* as_OpLabel() { return this; }
1225   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1226 };
1227 
1228 // LIR_OpArrayCopy
1229 class LIR_OpArrayCopy: public LIR_Op {
1230  friend class LIR_OpVisitState;
1231 
1232  private:
1233   ArrayCopyStub*  _stub;
1234   LIR_Opr   _src;
1235   LIR_Opr   _src_pos;
1236   LIR_Opr   _dst;
1237   LIR_Opr   _dst_pos;
1238   LIR_Opr   _length;
1239   LIR_Opr   _tmp;
1240   ciArrayKlass* _expected_type;
1241   int       _flags;
1242 
1243 public:
1244   enum Flags {
1245     src_null_check         = 1 << 0,
1246     dst_null_check         = 1 << 1,
1247     src_pos_positive_check = 1 << 2,
1248     dst_pos_positive_check = 1 << 3,
1249     length_positive_check  = 1 << 4,
1250     src_range_check        = 1 << 5,
1251     dst_range_check        = 1 << 6,
1252     type_check             = 1 << 7,
1253     overlapping            = 1 << 8,
1254     unaligned              = 1 << 9,
1255     src_objarray           = 1 << 10,
1256     dst_objarray           = 1 << 11,
1257     all_flags              = (1 << 12) - 1
1258   };
1259 
1260   LIR_OpArrayCopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp,
1261                   ciArrayKlass* expected_type, int flags, CodeEmitInfo* info);
1262 
1263   LIR_Opr src() const                            { return _src; }
1264   LIR_Opr src_pos() const                        { return _src_pos; }
1265   LIR_Opr dst() const                            { return _dst; }
1266   LIR_Opr dst_pos() const                        { return _dst_pos; }
1267   LIR_Opr length() const                         { return _length; }
1268   LIR_Opr tmp() const                            { return _tmp; }
1269   int flags() const                              { return _flags; }
1270   ciArrayKlass* expected_type() const            { return _expected_type; }
1271   ArrayCopyStub* stub() const                    { return _stub; }
1272 
1273   virtual void emit_code(LIR_Assembler* masm);
1274   virtual LIR_OpArrayCopy* as_OpArrayCopy() { return this; }
1275   void print_instr(outputStream* out) const PRODUCT_RETURN;
1276 };
1277 
1278 // LIR_OpUpdateCRC32
1279 class LIR_OpUpdateCRC32: public LIR_Op {
1280   friend class LIR_OpVisitState;
1281 
1282 private:
1283   LIR_Opr   _crc;
1284   LIR_Opr   _val;
1285 
1286 public:
1287 
1288   LIR_OpUpdateCRC32(LIR_Opr crc, LIR_Opr val, LIR_Opr res);
1289 
1290   LIR_Opr crc() const                            { return _crc; }
1291   LIR_Opr val() const                            { return _val; }
1292 
1293   virtual void emit_code(LIR_Assembler* masm);
1294   virtual LIR_OpUpdateCRC32* as_OpUpdateCRC32()  { return this; }
1295   void print_instr(outputStream* out) const PRODUCT_RETURN;
1296 };
1297 
1298 // --------------------------------------------------
1299 // LIR_Op0
1300 // --------------------------------------------------
1301 class LIR_Op0: public LIR_Op {
1302  friend class LIR_OpVisitState;
1303 
1304  public:
1305   LIR_Op0(LIR_Code code)
1306    : LIR_Op(code, LIR_OprFact::illegalOpr, NULL)  { assert(is_in_range(code, begin_op0, end_op0), "code check"); }
1307   LIR_Op0(LIR_Code code, LIR_Opr result, CodeEmitInfo* info = NULL)
1308    : LIR_Op(code, result, info)  { assert(is_in_range(code, begin_op0, end_op0), "code check"); }
1309 
1310   virtual void emit_code(LIR_Assembler* masm);
1311   virtual LIR_Op0* as_Op0() { return this; }
1312   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1313 };
1314 
1315 
1316 // --------------------------------------------------
1317 // LIR_Op1
1318 // --------------------------------------------------
1319 
1320 class LIR_Op1: public LIR_Op {
1321  friend class LIR_OpVisitState;
1322 
1323  protected:
1324   LIR_Opr         _opr;   // input operand
1325   BasicType       _type;  // Operand types
1326   LIR_PatchCode   _patch; // only required with patchin (NEEDS_CLEANUP: do we want a special instruction for patching?)
1327 
1328   static void print_patch_code(outputStream* out, LIR_PatchCode code);
1329 
1330   void set_kind(LIR_MoveKind kind) {
1331     assert(code() == lir_move, "must be");
1332     _flags = kind;
1333   }
1334 
1335  public:
1336   LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result = LIR_OprFact::illegalOpr, BasicType type = T_ILLEGAL, LIR_PatchCode patch = lir_patch_none, CodeEmitInfo* info = NULL)
1337     : LIR_Op(code, result, info)
1338     , _opr(opr)
1339     , _type(type)
1340     , _patch(patch)                    { assert(is_in_range(code, begin_op1, end_op1), "code check"); }
1341 
1342   LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result, BasicType type, LIR_PatchCode patch, CodeEmitInfo* info, LIR_MoveKind kind)
1343     : LIR_Op(code, result, info)
1344     , _opr(opr)
1345     , _type(type)
1346     , _patch(patch)                    {
1347     assert(code == lir_move, "must be");
1348     set_kind(kind);
1349   }
1350 
1351   LIR_Op1(LIR_Code code, LIR_Opr opr, CodeEmitInfo* info)
1352     : LIR_Op(code, LIR_OprFact::illegalOpr, info)
1353     , _opr(opr)
1354     , _type(T_ILLEGAL)
1355     , _patch(lir_patch_none)           { assert(is_in_range(code, begin_op1, end_op1), "code check"); }
1356 
1357   LIR_Opr in_opr()           const               { return _opr;   }
1358   LIR_PatchCode patch_code() const               { return _patch; }
1359   BasicType type()           const               { return _type;  }
1360 
1361   LIR_MoveKind move_kind() const {
1362     assert(code() == lir_move, "must be");
1363     return (LIR_MoveKind)_flags;
1364   }
1365 
1366   virtual bool is_patching() { return _patch != lir_patch_none; }
1367   virtual void emit_code(LIR_Assembler* masm);
1368   virtual LIR_Op1* as_Op1() { return this; }
1369   virtual const char * name() const PRODUCT_RETURN0;
1370 
1371   void set_in_opr(LIR_Opr opr) { _opr = opr; }
1372 
1373   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1374   virtual void verify() const;
1375 };
1376 
1377 
1378 // for runtime calls
1379 class LIR_OpRTCall: public LIR_OpCall {
1380  friend class LIR_OpVisitState;
1381 
1382  private:
1383   LIR_Opr _tmp;
1384  public:
1385   LIR_OpRTCall(address addr, LIR_Opr tmp,
1386                LIR_Opr result, LIR_OprList* arguments, CodeEmitInfo* info = NULL)
1387     : LIR_OpCall(lir_rtcall, addr, result, arguments, info)
1388     , _tmp(tmp) {}
1389 
1390   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1391   virtual void emit_code(LIR_Assembler* masm);
1392   virtual LIR_OpRTCall* as_OpRTCall() { return this; }
1393 
1394   LIR_Opr tmp() const                            { return _tmp; }
1395 
1396   virtual void verify() const;
1397 };
1398 
1399 
1400 class LIR_OpBranch: public LIR_Op {
1401  friend class LIR_OpVisitState;
1402 
1403  private:
1404   LIR_Condition _cond;
1405   Label*        _label;
1406   BlockBegin*   _block;  // if this is a branch to a block, this is the block
1407   BlockBegin*   _ublock; // if this is a float-branch, this is the unorderd block
1408   CodeStub*     _stub;   // if this is a branch to a stub, this is the stub
1409 
1410  public:
1411   LIR_OpBranch(LIR_Condition cond, Label* lbl)
1412     : LIR_Op(lir_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*) NULL)
1413     , _cond(cond)
1414     , _label(lbl)
1415     , _block(NULL)
1416     , _ublock(NULL)
1417     , _stub(NULL) { }
1418 
1419   LIR_OpBranch(LIR_Condition cond, BlockBegin* block);
1420   LIR_OpBranch(LIR_Condition cond, CodeStub* stub);
1421 
1422   // for unordered comparisons
1423   LIR_OpBranch(LIR_Condition cond, BlockBegin* block, BlockBegin* ublock);
1424 
1425   LIR_Condition cond()        const              { return _cond;        }
1426   Label*        label()       const              { return _label;       }
1427   BlockBegin*   block()       const              { return _block;       }
1428   BlockBegin*   ublock()      const              { return _ublock;      }
1429   CodeStub*     stub()        const              { return _stub;       }
1430 
1431   void          change_block(BlockBegin* b);
1432   void          change_ublock(BlockBegin* b);
1433   void          negate_cond();
1434 
1435   virtual void emit_code(LIR_Assembler* masm);
1436   virtual LIR_OpBranch* as_OpBranch() { return this; }
1437   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1438 };
1439 
1440 class LIR_OpReturn: public LIR_Op1 {
1441  friend class LIR_OpVisitState;
1442 
1443  private:
1444   C1SafepointPollStub* _stub;
1445 
1446  public:
1447   LIR_OpReturn(LIR_Opr opr);
1448 
1449   C1SafepointPollStub* stub() const { return _stub; }
1450   virtual LIR_OpReturn* as_OpReturn() { return this; }
1451 };
1452 
1453 class ConversionStub;
1454 
1455 class LIR_OpConvert: public LIR_Op1 {
1456  friend class LIR_OpVisitState;
1457 
1458  private:
1459    Bytecodes::Code _bytecode;
1460    ConversionStub* _stub;
1461 
1462  public:
1463    LIR_OpConvert(Bytecodes::Code code, LIR_Opr opr, LIR_Opr result, ConversionStub* stub)
1464      : LIR_Op1(lir_convert, opr, result)
1465      , _bytecode(code)
1466      , _stub(stub)                               {}
1467 
1468   Bytecodes::Code bytecode() const               { return _bytecode; }
1469   ConversionStub* stub() const                   { return _stub; }
1470 
1471   virtual void emit_code(LIR_Assembler* masm);
1472   virtual LIR_OpConvert* as_OpConvert() { return this; }
1473   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1474 
1475   static void print_bytecode(outputStream* out, Bytecodes::Code code) PRODUCT_RETURN;
1476 };
1477 
1478 
1479 // LIR_OpAllocObj
1480 class LIR_OpAllocObj : public LIR_Op1 {
1481  friend class LIR_OpVisitState;
1482 
1483  private:
1484   LIR_Opr _tmp1;
1485   LIR_Opr _tmp2;
1486   LIR_Opr _tmp3;
1487   LIR_Opr _tmp4;
1488   int     _hdr_size;
1489   int     _obj_size;
1490   CodeStub* _stub;
1491   bool    _init_check;
1492 
1493  public:
1494   LIR_OpAllocObj(LIR_Opr klass, LIR_Opr result,
1495                  LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4,
1496                  int hdr_size, int obj_size, bool init_check, CodeStub* stub)
1497     : LIR_Op1(lir_alloc_object, klass, result)
1498     , _tmp1(t1)
1499     , _tmp2(t2)
1500     , _tmp3(t3)
1501     , _tmp4(t4)
1502     , _hdr_size(hdr_size)
1503     , _obj_size(obj_size)
1504     , _stub(stub)
1505     , _init_check(init_check)                    { }
1506 
1507   LIR_Opr klass()        const                   { return in_opr();     }
1508   LIR_Opr obj()          const                   { return result_opr(); }
1509   LIR_Opr tmp1()         const                   { return _tmp1;        }
1510   LIR_Opr tmp2()         const                   { return _tmp2;        }
1511   LIR_Opr tmp3()         const                   { return _tmp3;        }
1512   LIR_Opr tmp4()         const                   { return _tmp4;        }
1513   int     header_size()  const                   { return _hdr_size;    }
1514   int     object_size()  const                   { return _obj_size;    }
1515   bool    init_check()   const                   { return _init_check;  }
1516   CodeStub* stub()       const                   { return _stub;        }
1517 
1518   virtual void emit_code(LIR_Assembler* masm);
1519   virtual LIR_OpAllocObj * as_OpAllocObj () { return this; }
1520   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1521 };
1522 
1523 
1524 // LIR_OpRoundFP
1525 class LIR_OpRoundFP : public LIR_Op1 {
1526  friend class LIR_OpVisitState;
1527 
1528  private:
1529   LIR_Opr _tmp;
1530 
1531  public:
1532   LIR_OpRoundFP(LIR_Opr reg, LIR_Opr stack_loc_temp, LIR_Opr result)
1533     : LIR_Op1(lir_roundfp, reg, result)
1534     , _tmp(stack_loc_temp) {}
1535 
1536   LIR_Opr tmp() const                            { return _tmp; }
1537   virtual LIR_OpRoundFP* as_OpRoundFP()          { return this; }
1538   void print_instr(outputStream* out) const PRODUCT_RETURN;
1539 };
1540 
1541 // LIR_OpTypeCheck
1542 class LIR_OpTypeCheck: public LIR_Op {
1543  friend class LIR_OpVisitState;
1544 
1545  private:
1546   LIR_Opr       _object;
1547   LIR_Opr       _array;
1548   ciKlass*      _klass;
1549   LIR_Opr       _tmp1;
1550   LIR_Opr       _tmp2;
1551   LIR_Opr       _tmp3;
1552   bool          _fast_check;
1553   CodeEmitInfo* _info_for_patch;
1554   CodeEmitInfo* _info_for_exception;
1555   CodeStub*     _stub;
1556   ciMethod*     _profiled_method;
1557   int           _profiled_bci;
1558   bool          _should_profile;
1559 
1560 public:
1561   LIR_OpTypeCheck(LIR_Code code, LIR_Opr result, LIR_Opr object, ciKlass* klass,
1562                   LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
1563                   CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub);
1564   LIR_OpTypeCheck(LIR_Code code, LIR_Opr object, LIR_Opr array,
1565                   LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception);
1566 
1567   LIR_Opr object() const                         { return _object;         }
1568   LIR_Opr array() const                          { assert(code() == lir_store_check, "not valid"); return _array;         }
1569   LIR_Opr tmp1() const                           { return _tmp1;           }
1570   LIR_Opr tmp2() const                           { return _tmp2;           }
1571   LIR_Opr tmp3() const                           { return _tmp3;           }
1572   ciKlass* klass() const                         { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _klass;          }
1573   bool fast_check() const                        { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _fast_check;     }
1574   CodeEmitInfo* info_for_patch() const           { return _info_for_patch;  }
1575   CodeEmitInfo* info_for_exception() const       { return _info_for_exception; }
1576   CodeStub* stub() const                         { return _stub;           }
1577 
1578   // MethodData* profiling
1579   void set_profiled_method(ciMethod *method)     { _profiled_method = method; }
1580   void set_profiled_bci(int bci)                 { _profiled_bci = bci;       }
1581   void set_should_profile(bool b)                { _should_profile = b;       }
1582   ciMethod* profiled_method() const              { return _profiled_method;   }
1583   int       profiled_bci() const                 { return _profiled_bci;      }
1584   bool      should_profile() const               { return _should_profile;    }
1585 
1586   virtual bool is_patching() { return _info_for_patch != NULL; }
1587   virtual void emit_code(LIR_Assembler* masm);
1588   virtual LIR_OpTypeCheck* as_OpTypeCheck() { return this; }
1589   void print_instr(outputStream* out) const PRODUCT_RETURN;
1590 };
1591 
1592 // LIR_Op2
1593 class LIR_Op2: public LIR_Op {
1594  friend class LIR_OpVisitState;
1595 
1596   int  _fpu_stack_size; // for sin/cos implementation on Intel
1597 
1598  protected:
1599   LIR_Opr   _opr1;
1600   LIR_Opr   _opr2;
1601   BasicType _type;
1602   LIR_Opr   _tmp1;
1603   LIR_Opr   _tmp2;
1604   LIR_Opr   _tmp3;
1605   LIR_Opr   _tmp4;
1606   LIR_Opr   _tmp5;
1607   LIR_Condition _condition;
1608 
1609   void verify() const;
1610 
1611  public:
1612   LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, CodeEmitInfo* info = NULL)
1613     : LIR_Op(code, LIR_OprFact::illegalOpr, info)
1614     , _fpu_stack_size(0)
1615     , _opr1(opr1)
1616     , _opr2(opr2)
1617     , _type(T_ILLEGAL)
1618     , _tmp1(LIR_OprFact::illegalOpr)
1619     , _tmp2(LIR_OprFact::illegalOpr)
1620     , _tmp3(LIR_OprFact::illegalOpr)
1621     , _tmp4(LIR_OprFact::illegalOpr)
1622     , _tmp5(LIR_OprFact::illegalOpr)
1623     , _condition(condition) {
1624     assert(code == lir_cmp || code == lir_assert, "code check");
1625   }
1626 
1627   LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type)
1628     : LIR_Op(code, result, NULL)
1629     , _fpu_stack_size(0)
1630     , _opr1(opr1)
1631     , _opr2(opr2)
1632     , _type(type)
1633     , _tmp1(LIR_OprFact::illegalOpr)
1634     , _tmp2(LIR_OprFact::illegalOpr)
1635     , _tmp3(LIR_OprFact::illegalOpr)
1636     , _tmp4(LIR_OprFact::illegalOpr)
1637     , _tmp5(LIR_OprFact::illegalOpr)
1638     , _condition(condition) {
1639     assert(code == lir_cmove, "code check");
1640     assert(type != T_ILLEGAL, "cmove should have type");
1641   }
1642 
1643   LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result = LIR_OprFact::illegalOpr,
1644           CodeEmitInfo* info = NULL, BasicType type = T_ILLEGAL)
1645     : LIR_Op(code, result, info)
1646     , _fpu_stack_size(0)
1647     , _opr1(opr1)
1648     , _opr2(opr2)
1649     , _type(type)
1650     , _tmp1(LIR_OprFact::illegalOpr)
1651     , _tmp2(LIR_OprFact::illegalOpr)
1652     , _tmp3(LIR_OprFact::illegalOpr)
1653     , _tmp4(LIR_OprFact::illegalOpr)
1654     , _tmp5(LIR_OprFact::illegalOpr)
1655     , _condition(lir_cond_unknown) {
1656     assert(code != lir_cmp && is_in_range(code, begin_op2, end_op2), "code check");
1657   }
1658 
1659   LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, LIR_Opr tmp1, LIR_Opr tmp2 = LIR_OprFact::illegalOpr,
1660           LIR_Opr tmp3 = LIR_OprFact::illegalOpr, LIR_Opr tmp4 = LIR_OprFact::illegalOpr, LIR_Opr tmp5 = LIR_OprFact::illegalOpr)
1661     : LIR_Op(code, result, NULL)
1662     , _fpu_stack_size(0)
1663     , _opr1(opr1)
1664     , _opr2(opr2)
1665     , _type(T_ILLEGAL)
1666     , _tmp1(tmp1)
1667     , _tmp2(tmp2)
1668     , _tmp3(tmp3)
1669     , _tmp4(tmp4)
1670     , _tmp5(tmp5)
1671     , _condition(lir_cond_unknown) {
1672     assert(code != lir_cmp && is_in_range(code, begin_op2, end_op2), "code check");
1673   }
1674 
1675   LIR_Opr in_opr1() const                        { return _opr1; }
1676   LIR_Opr in_opr2() const                        { return _opr2; }
1677   BasicType type()  const                        { return _type; }
1678   LIR_Opr tmp1_opr() const                       { return _tmp1; }
1679   LIR_Opr tmp2_opr() const                       { return _tmp2; }
1680   LIR_Opr tmp3_opr() const                       { return _tmp3; }
1681   LIR_Opr tmp4_opr() const                       { return _tmp4; }
1682   LIR_Opr tmp5_opr() const                       { return _tmp5; }
1683   LIR_Condition condition() const  {
1684     assert(code() == lir_cmp || code() == lir_cmove || code() == lir_assert, "only valid for cmp and cmove and assert"); return _condition;
1685   }
1686   void set_condition(LIR_Condition condition) {
1687     assert(code() == lir_cmp || code() == lir_cmove, "only valid for cmp and cmove");  _condition = condition;
1688   }
1689 
1690   void set_fpu_stack_size(int size)              { _fpu_stack_size = size; }
1691   int  fpu_stack_size() const                    { return _fpu_stack_size; }
1692 
1693   void set_in_opr1(LIR_Opr opr)                  { _opr1 = opr; }
1694   void set_in_opr2(LIR_Opr opr)                  { _opr2 = opr; }
1695 
1696   virtual void emit_code(LIR_Assembler* masm);
1697   virtual LIR_Op2* as_Op2() { return this; }
1698   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1699 };
1700 
1701 class LIR_OpAllocArray : public LIR_Op {
1702  friend class LIR_OpVisitState;
1703 
1704  private:
1705   LIR_Opr   _klass;
1706   LIR_Opr   _len;
1707   LIR_Opr   _tmp1;
1708   LIR_Opr   _tmp2;
1709   LIR_Opr   _tmp3;
1710   LIR_Opr   _tmp4;
1711   BasicType _type;
1712   CodeStub* _stub;
1713 
1714  public:
1715   LIR_OpAllocArray(LIR_Opr klass, LIR_Opr len, LIR_Opr result, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, BasicType type, CodeStub* stub)
1716     : LIR_Op(lir_alloc_array, result, NULL)
1717     , _klass(klass)
1718     , _len(len)
1719     , _tmp1(t1)
1720     , _tmp2(t2)
1721     , _tmp3(t3)
1722     , _tmp4(t4)
1723     , _type(type)
1724     , _stub(stub) {}
1725 
1726   LIR_Opr   klass()   const                      { return _klass;       }
1727   LIR_Opr   len()     const                      { return _len;         }
1728   LIR_Opr   obj()     const                      { return result_opr(); }
1729   LIR_Opr   tmp1()    const                      { return _tmp1;        }
1730   LIR_Opr   tmp2()    const                      { return _tmp2;        }
1731   LIR_Opr   tmp3()    const                      { return _tmp3;        }
1732   LIR_Opr   tmp4()    const                      { return _tmp4;        }
1733   BasicType type()    const                      { return _type;        }
1734   CodeStub* stub()    const                      { return _stub;        }
1735 
1736   virtual void emit_code(LIR_Assembler* masm);
1737   virtual LIR_OpAllocArray * as_OpAllocArray () { return this; }
1738   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1739 };
1740 
1741 
1742 class LIR_Op3: public LIR_Op {
1743  friend class LIR_OpVisitState;
1744 
1745  private:
1746   LIR_Opr _opr1;
1747   LIR_Opr _opr2;
1748   LIR_Opr _opr3;
1749  public:
1750   LIR_Op3(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr opr3, LIR_Opr result, CodeEmitInfo* info = NULL)
1751     : LIR_Op(code, result, info)
1752     , _opr1(opr1)
1753     , _opr2(opr2)
1754     , _opr3(opr3)                                { assert(is_in_range(code, begin_op3, end_op3), "code check"); }
1755   LIR_Opr in_opr1() const                        { return _opr1; }
1756   LIR_Opr in_opr2() const                        { return _opr2; }
1757   LIR_Opr in_opr3() const                        { return _opr3; }
1758 
1759   virtual void emit_code(LIR_Assembler* masm);
1760   virtual LIR_Op3* as_Op3() { return this; }
1761   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1762 };
1763 
1764 
1765 //--------------------------------
1766 class LabelObj: public CompilationResourceObj {
1767  private:
1768   Label _label;
1769  public:
1770   LabelObj()                                     {}
1771   Label* label()                                 { return &_label; }
1772 };
1773 
1774 
1775 class LIR_OpLock: public LIR_Op {
1776  friend class LIR_OpVisitState;
1777 
1778  private:
1779   LIR_Opr _hdr;
1780   LIR_Opr _obj;
1781   LIR_Opr _lock;
1782   LIR_Opr _scratch;
1783   CodeStub* _stub;
1784  public:
1785   LIR_OpLock(LIR_Code code, LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info)
1786     : LIR_Op(code, LIR_OprFact::illegalOpr, info)
1787     , _hdr(hdr)
1788     , _obj(obj)
1789     , _lock(lock)
1790     , _scratch(scratch)
1791     , _stub(stub)                      {}
1792 
1793   LIR_Opr hdr_opr() const                        { return _hdr; }
1794   LIR_Opr obj_opr() const                        { return _obj; }
1795   LIR_Opr lock_opr() const                       { return _lock; }
1796   LIR_Opr scratch_opr() const                    { return _scratch; }
1797   CodeStub* stub() const                         { return _stub; }
1798 
1799   virtual void emit_code(LIR_Assembler* masm);
1800   virtual LIR_OpLock* as_OpLock() { return this; }
1801   void print_instr(outputStream* out) const PRODUCT_RETURN;
1802 };
1803 
1804 
1805 class LIR_OpDelay: public LIR_Op {
1806  friend class LIR_OpVisitState;
1807 
1808  private:
1809   LIR_Op* _op;
1810 
1811  public:
1812   LIR_OpDelay(LIR_Op* op, CodeEmitInfo* info):
1813     LIR_Op(lir_delay_slot, LIR_OprFact::illegalOpr, info),
1814     _op(op) {
1815     assert(op->code() == lir_nop, "should be filling with nops");
1816   }
1817   virtual void emit_code(LIR_Assembler* masm);
1818   virtual LIR_OpDelay* as_OpDelay() { return this; }
1819   void print_instr(outputStream* out) const PRODUCT_RETURN;
1820   LIR_Op* delay_op() const { return _op; }
1821   CodeEmitInfo* call_info() const { return info(); }
1822 };
1823 
1824 #ifdef ASSERT
1825 // LIR_OpAssert
1826 class LIR_OpAssert : public LIR_Op2 {
1827  friend class LIR_OpVisitState;
1828 
1829  private:
1830   const char* _msg;
1831   bool        _halt;
1832 
1833  public:
1834   LIR_OpAssert(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, const char* msg, bool halt)
1835     : LIR_Op2(lir_assert, condition, opr1, opr2)
1836     , _msg(msg)
1837     , _halt(halt) {
1838   }
1839 
1840   const char* msg() const                        { return _msg; }
1841   bool        halt() const                       { return _halt; }
1842 
1843   virtual void emit_code(LIR_Assembler* masm);
1844   virtual LIR_OpAssert* as_OpAssert()            { return this; }
1845   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1846 };
1847 #endif
1848 
1849 // LIR_OpCompareAndSwap
1850 class LIR_OpCompareAndSwap : public LIR_Op {
1851  friend class LIR_OpVisitState;
1852 
1853  private:
1854   LIR_Opr _addr;
1855   LIR_Opr _cmp_value;
1856   LIR_Opr _new_value;
1857   LIR_Opr _tmp1;
1858   LIR_Opr _tmp2;
1859 
1860  public:
1861   LIR_OpCompareAndSwap(LIR_Code code, LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
1862                        LIR_Opr t1, LIR_Opr t2, LIR_Opr result)
1863     : LIR_Op(code, result, NULL)  // no result, no info
1864     , _addr(addr)
1865     , _cmp_value(cmp_value)
1866     , _new_value(new_value)
1867     , _tmp1(t1)
1868     , _tmp2(t2)                                  { }
1869 
1870   LIR_Opr addr()        const                    { return _addr;  }
1871   LIR_Opr cmp_value()   const                    { return _cmp_value; }
1872   LIR_Opr new_value()   const                    { return _new_value; }
1873   LIR_Opr tmp1()        const                    { return _tmp1;      }
1874   LIR_Opr tmp2()        const                    { return _tmp2;      }
1875 
1876   virtual void emit_code(LIR_Assembler* masm);
1877   virtual LIR_OpCompareAndSwap * as_OpCompareAndSwap () { return this; }
1878   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1879 };
1880 
1881 // LIR_OpProfileCall
1882 class LIR_OpProfileCall : public LIR_Op {
1883  friend class LIR_OpVisitState;
1884 
1885  private:
1886   ciMethod* _profiled_method;
1887   int       _profiled_bci;
1888   ciMethod* _profiled_callee;
1889   LIR_Opr   _mdo;
1890   LIR_Opr   _recv;
1891   LIR_Opr   _tmp1;
1892   ciKlass*  _known_holder;
1893 
1894  public:
1895   // Destroys recv
1896   LIR_OpProfileCall(ciMethod* profiled_method, int profiled_bci, ciMethod* profiled_callee, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* known_holder)
1897     : LIR_Op(lir_profile_call, LIR_OprFact::illegalOpr, NULL)  // no result, no info
1898     , _profiled_method(profiled_method)
1899     , _profiled_bci(profiled_bci)
1900     , _profiled_callee(profiled_callee)
1901     , _mdo(mdo)
1902     , _recv(recv)
1903     , _tmp1(t1)
1904     , _known_holder(known_holder)                { }
1905 
1906   ciMethod* profiled_method() const              { return _profiled_method;  }
1907   int       profiled_bci()    const              { return _profiled_bci;     }
1908   ciMethod* profiled_callee() const              { return _profiled_callee;  }
1909   LIR_Opr   mdo()             const              { return _mdo;              }
1910   LIR_Opr   recv()            const              { return _recv;             }
1911   LIR_Opr   tmp1()            const              { return _tmp1;             }
1912   ciKlass*  known_holder()    const              { return _known_holder;     }
1913 
1914   virtual void emit_code(LIR_Assembler* masm);
1915   virtual LIR_OpProfileCall* as_OpProfileCall() { return this; }
1916   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1917   bool should_profile_receiver_type() const {
1918     bool callee_is_static = _profiled_callee->is_loaded() && _profiled_callee->is_static();
1919     Bytecodes::Code bc = _profiled_method->java_code_at_bci(_profiled_bci);
1920     bool call_is_virtual = (bc == Bytecodes::_invokevirtual && !_profiled_callee->can_be_statically_bound()) || bc == Bytecodes::_invokeinterface;
1921     return C1ProfileVirtualCalls && call_is_virtual && !callee_is_static;
1922   }
1923 };
1924 
1925 // LIR_OpProfileType
1926 class LIR_OpProfileType : public LIR_Op {
1927  friend class LIR_OpVisitState;
1928 
1929  private:
1930   LIR_Opr      _mdp;
1931   LIR_Opr      _obj;
1932   LIR_Opr      _tmp;
1933   ciKlass*     _exact_klass;   // non NULL if we know the klass statically (no need to load it from _obj)
1934   intptr_t     _current_klass; // what the profiling currently reports
1935   bool         _not_null;      // true if we know statically that _obj cannot be null
1936   bool         _no_conflict;   // true if we're profling parameters, _exact_klass is not NULL and we know
1937                                // _exact_klass it the only possible type for this parameter in any context.
1938 
1939  public:
1940   // Destroys recv
1941   LIR_OpProfileType(LIR_Opr mdp, LIR_Opr obj, ciKlass* exact_klass, intptr_t current_klass, LIR_Opr tmp, bool not_null, bool no_conflict)
1942     : LIR_Op(lir_profile_type, LIR_OprFact::illegalOpr, NULL)  // no result, no info
1943     , _mdp(mdp)
1944     , _obj(obj)
1945     , _tmp(tmp)
1946     , _exact_klass(exact_klass)
1947     , _current_klass(current_klass)
1948     , _not_null(not_null)
1949     , _no_conflict(no_conflict) { }
1950 
1951   LIR_Opr      mdp()              const             { return _mdp;              }
1952   LIR_Opr      obj()              const             { return _obj;              }
1953   LIR_Opr      tmp()              const             { return _tmp;              }
1954   ciKlass*     exact_klass()      const             { return _exact_klass;      }
1955   intptr_t     current_klass()    const             { return _current_klass;    }
1956   bool         not_null()         const             { return _not_null;         }
1957   bool         no_conflict()      const             { return _no_conflict;      }
1958 
1959   virtual void emit_code(LIR_Assembler* masm);
1960   virtual LIR_OpProfileType* as_OpProfileType() { return this; }
1961   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1962 };
1963 
1964 class LIR_InsertionBuffer;
1965 
1966 //--------------------------------LIR_List---------------------------------------------------
1967 // Maintains a list of LIR instructions (one instance of LIR_List per basic block)
1968 // The LIR instructions are appended by the LIR_List class itself;
1969 //
1970 // Notes:
1971 // - all offsets are(should be) in bytes
1972 // - local positions are specified with an offset, with offset 0 being local 0
1973 
1974 class LIR_List: public CompilationResourceObj {
1975  private:
1976   LIR_OpList  _operations;
1977 
1978   Compilation*  _compilation;
1979 #ifndef PRODUCT
1980   BlockBegin*   _block;
1981 #endif
1982 #ifdef ASSERT
1983   const char *  _file;
1984   int           _line;
1985 #endif
1986 
1987  public:
1988   void append(LIR_Op* op) {
1989     if (op->source() == NULL)
1990       op->set_source(_compilation->current_instruction());
1991 #ifndef PRODUCT
1992     if (PrintIRWithLIR) {
1993       _compilation->maybe_print_current_instruction();
1994       op->print(); tty->cr();
1995     }
1996 #endif // PRODUCT
1997 
1998     _operations.append(op);
1999 
2000 #ifdef ASSERT
2001     op->verify();
2002     op->set_file_and_line(_file, _line);
2003     _file = NULL;
2004     _line = 0;
2005 #endif
2006   }
2007 
2008   LIR_List(Compilation* compilation, BlockBegin* block = NULL);
2009 
2010 #ifdef ASSERT
2011   void set_file_and_line(const char * file, int line);
2012 #endif
2013 
2014   //---------- accessors ---------------
2015   LIR_OpList* instructions_list()                { return &_operations; }
2016   int         length() const                     { return _operations.length(); }
2017   LIR_Op*     at(int i) const                    { return _operations.at(i); }
2018 
2019   NOT_PRODUCT(BlockBegin* block() const          { return _block; });
2020 
2021   // insert LIR_Ops in buffer to right places in LIR_List
2022   void append(LIR_InsertionBuffer* buffer);
2023 
2024   //---------- mutators ---------------
2025   void insert_before(int i, LIR_List* op_list)   { _operations.insert_before(i, op_list->instructions_list()); }
2026   void insert_before(int i, LIR_Op* op)          { _operations.insert_before(i, op); }
2027   void remove_at(int i)                          { _operations.remove_at(i); }
2028 
2029   //---------- printing -------------
2030   void print_instructions() PRODUCT_RETURN;
2031 
2032 
2033   //---------- instructions -------------
2034   void call_opt_virtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
2035                         address dest, LIR_OprList* arguments,
2036                         CodeEmitInfo* info) {
2037     append(new LIR_OpJavaCall(lir_optvirtual_call, method, receiver, result, dest, arguments, info));
2038   }
2039   void call_static(ciMethod* method, LIR_Opr result,
2040                    address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
2041     append(new LIR_OpJavaCall(lir_static_call, method, LIR_OprFact::illegalOpr, result, dest, arguments, info));
2042   }
2043   void call_icvirtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
2044                       address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
2045     append(new LIR_OpJavaCall(lir_icvirtual_call, method, receiver, result, dest, arguments, info));
2046   }
2047   void call_dynamic(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
2048                     address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
2049     append(new LIR_OpJavaCall(lir_dynamic_call, method, receiver, result, dest, arguments, info));
2050   }
2051 
2052   void get_thread(LIR_Opr result)                { append(new LIR_Op0(lir_get_thread, result)); }
2053   void membar()                                  { append(new LIR_Op0(lir_membar)); }
2054   void membar_acquire()                          { append(new LIR_Op0(lir_membar_acquire)); }
2055   void membar_release()                          { append(new LIR_Op0(lir_membar_release)); }
2056   void membar_loadload()                         { append(new LIR_Op0(lir_membar_loadload)); }
2057   void membar_storestore()                       { append(new LIR_Op0(lir_membar_storestore)); }
2058   void membar_loadstore()                        { append(new LIR_Op0(lir_membar_loadstore)); }
2059   void membar_storeload()                        { append(new LIR_Op0(lir_membar_storeload)); }
2060 
2061   void nop()                                     { append(new LIR_Op0(lir_nop)); }
2062 
2063   void std_entry(LIR_Opr receiver)               { append(new LIR_Op0(lir_std_entry, receiver)); }
2064   void osr_entry(LIR_Opr osrPointer)             { append(new LIR_Op0(lir_osr_entry, osrPointer)); }
2065 
2066   void on_spin_wait()                            { append(new LIR_Op0(lir_on_spin_wait)); }
2067 
2068   void branch_destination(Label* lbl)            { append(new LIR_OpLabel(lbl)); }
2069 
2070   void leal(LIR_Opr from, LIR_Opr result_reg, LIR_PatchCode patch_code = lir_patch_none, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_leal, from, result_reg, T_ILLEGAL, patch_code, info)); }
2071 
2072   // result is a stack location for old backend and vreg for UseLinearScan
2073   // stack_loc_temp is an illegal register for old backend
2074   void roundfp(LIR_Opr reg, LIR_Opr stack_loc_temp, LIR_Opr result) { append(new LIR_OpRoundFP(reg, stack_loc_temp, result)); }
2075   void move(LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); }
2076   void move(LIR_Address* src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, src->type(), lir_patch_none, info)); }
2077   void move(LIR_Opr src, LIR_Address* dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), dst->type(), lir_patch_none, info)); }
2078   void move_wide(LIR_Address* src, LIR_Opr dst, CodeEmitInfo* info = NULL) {
2079     if (UseCompressedOops) {
2080       append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, src->type(), lir_patch_none, info, lir_move_wide));
2081     } else {
2082       move(src, dst, info);
2083     }
2084   }
2085   void move_wide(LIR_Opr src, LIR_Address* dst, CodeEmitInfo* info = NULL) {
2086     if (UseCompressedOops) {
2087       append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), dst->type(), lir_patch_none, info, lir_move_wide));
2088     } else {
2089       move(src, dst, info);
2090     }
2091   }
2092   void volatile_move(LIR_Opr src, LIR_Opr dst, BasicType type, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none) { append(new LIR_Op1(lir_move, src, dst, type, patch_code, info, lir_move_volatile)); }
2093 
2094   void oop2reg  (jobject o, LIR_Opr reg)         { assert(reg->type() == T_OBJECT, "bad reg"); append(new LIR_Op1(lir_move, LIR_OprFact::oopConst(o),    reg));   }
2095   void oop2reg_patch(jobject o, LIR_Opr reg, CodeEmitInfo* info);
2096 
2097   void metadata2reg  (Metadata* o, LIR_Opr reg)  { assert(reg->type() == T_METADATA, "bad reg"); append(new LIR_Op1(lir_move, LIR_OprFact::metadataConst(o), reg));   }
2098   void klass2reg_patch(Metadata* o, LIR_Opr reg, CodeEmitInfo* info);
2099 
2100   void safepoint(LIR_Opr tmp, CodeEmitInfo* info)  { append(new LIR_Op1(lir_safepoint, tmp, info)); }
2101   void return_op(LIR_Opr result)                   { append(new LIR_OpReturn(result)); }
2102 
2103   void convert(Bytecodes::Code code, LIR_Opr left, LIR_Opr dst, ConversionStub* stub = NULL/*, bool is_32bit = false*/) { append(new LIR_OpConvert(code, left, dst, stub)); }
2104 
2105   void logical_and (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_and,  left, right, dst)); }
2106   void logical_or  (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_or,   left, right, dst)); }
2107   void logical_xor (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_xor,  left, right, dst)); }
2108 
2109   void null_check(LIR_Opr opr, CodeEmitInfo* info, bool deoptimize_on_null = false);
2110   void throw_exception(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2111     append(new LIR_Op2(lir_throw, exceptionPC, exceptionOop, LIR_OprFact::illegalOpr, info));
2112   }
2113   void unwind_exception(LIR_Opr exceptionOop) {
2114     append(new LIR_Op1(lir_unwind, exceptionOop));
2115   }
2116 
2117   void push(LIR_Opr opr)                                   { append(new LIR_Op1(lir_push, opr)); }
2118   void pop(LIR_Opr reg)                                    { append(new LIR_Op1(lir_pop,  reg)); }
2119 
2120   void cmp(LIR_Condition condition, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info = NULL) {
2121     append(new LIR_Op2(lir_cmp, condition, left, right, info));
2122   }
2123   void cmp(LIR_Condition condition, LIR_Opr left, int right, CodeEmitInfo* info = NULL) {
2124     cmp(condition, left, LIR_OprFact::intConst(right), info);
2125   }
2126 
2127   void cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info);
2128   void cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Address* addr, CodeEmitInfo* info);
2129 
2130   void cmove(LIR_Condition condition, LIR_Opr src1, LIR_Opr src2, LIR_Opr dst, BasicType type) {
2131     append(new LIR_Op2(lir_cmove, condition, src1, src2, dst, type));
2132   }
2133 
2134   void cas_long(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
2135                 LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr);
2136   void cas_obj(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
2137                LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr);
2138   void cas_int(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
2139                LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr);
2140 
2141   void abs (LIR_Opr from, LIR_Opr to, LIR_Opr tmp)                { append(new LIR_Op2(lir_abs , from, tmp, to)); }
2142   void negate(LIR_Opr from, LIR_Opr to, LIR_Opr tmp = LIR_OprFact::illegalOpr)              { append(new LIR_Op2(lir_neg, from, tmp, to)); }
2143   void sqrt(LIR_Opr from, LIR_Opr to, LIR_Opr tmp)                { append(new LIR_Op2(lir_sqrt, from, tmp, to)); }
2144   void fmad(LIR_Opr from, LIR_Opr from1, LIR_Opr from2, LIR_Opr to) { append(new LIR_Op3(lir_fmad, from, from1, from2, to)); }
2145   void fmaf(LIR_Opr from, LIR_Opr from1, LIR_Opr from2, LIR_Opr to) { append(new LIR_Op3(lir_fmaf, from, from1, from2, to)); }
2146   void log10 (LIR_Opr from, LIR_Opr to, LIR_Opr tmp)              { append(new LIR_Op2(lir_log10, from, LIR_OprFact::illegalOpr, to, tmp)); }
2147   void tan (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_tan , from, tmp1, to, tmp2)); }
2148 
2149   void add (LIR_Opr left, LIR_Opr right, LIR_Opr res)      { append(new LIR_Op2(lir_add, left, right, res)); }
2150   void sub (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL) { append(new LIR_Op2(lir_sub, left, right, res, info)); }
2151   void mul (LIR_Opr left, LIR_Opr right, LIR_Opr res) { append(new LIR_Op2(lir_mul, left, right, res)); }
2152   void mul (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_mul, left, right, res, tmp)); }
2153   void div (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL)      { append(new LIR_Op2(lir_div, left, right, res, info)); }
2154   void div (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_div, left, right, res, tmp)); }
2155   void rem (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL)      { append(new LIR_Op2(lir_rem, left, right, res, info)); }
2156 
2157   void volatile_load_mem_reg(LIR_Address* address, LIR_Opr dst, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2158   void volatile_load_unsafe_reg(LIR_Opr base, LIR_Opr offset, LIR_Opr dst, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code);
2159 
2160   void load(LIR_Address* addr, LIR_Opr src, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none);
2161 
2162   void store_mem_int(jint v,    LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2163   void store_mem_oop(jobject o, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2164   void store(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none);
2165   void volatile_store_mem_reg(LIR_Opr src, LIR_Address* address, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2166   void volatile_store_unsafe_reg(LIR_Opr src, LIR_Opr base, LIR_Opr offset, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code);
2167 
2168   void idiv(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2169   void idiv(LIR_Opr left, int   right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2170   void irem(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2171   void irem(LIR_Opr left, int   right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2172 
2173   void allocate_object(LIR_Opr dst, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, int header_size, int object_size, LIR_Opr klass, bool init_check, CodeStub* stub);
2174   void allocate_array(LIR_Opr dst, LIR_Opr len, LIR_Opr t1,LIR_Opr t2, LIR_Opr t3,LIR_Opr t4, BasicType type, LIR_Opr klass, CodeStub* stub);
2175 
2176   // jump is an unconditional branch
2177   void jump(BlockBegin* block) {
2178     append(new LIR_OpBranch(lir_cond_always, block));
2179   }
2180   void jump(CodeStub* stub) {
2181     append(new LIR_OpBranch(lir_cond_always, stub));
2182   }
2183   void branch(LIR_Condition cond, Label* lbl) {
2184     append(new LIR_OpBranch(cond, lbl));
2185   }
2186   // Should not be used for fp comparisons
2187   void branch(LIR_Condition cond, BlockBegin* block) {
2188     append(new LIR_OpBranch(cond, block));
2189   }
2190   // Should not be used for fp comparisons
2191   void branch(LIR_Condition cond, CodeStub* stub) {
2192     append(new LIR_OpBranch(cond, stub));
2193   }
2194   // Should only be used for fp comparisons
2195   void branch(LIR_Condition cond, BlockBegin* block, BlockBegin* unordered) {
2196     append(new LIR_OpBranch(cond, block, unordered));
2197   }
2198 
2199   void shift_left(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
2200   void shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
2201   void unsigned_shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
2202 
2203   void shift_left(LIR_Opr value, int count, LIR_Opr dst)       { shift_left(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
2204   void shift_right(LIR_Opr value, int count, LIR_Opr dst)      { shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
2205   void unsigned_shift_right(LIR_Opr value, int count, LIR_Opr dst) { unsigned_shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
2206 
2207   void lcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst)        { append(new LIR_Op2(lir_cmp_l2i,  left, right, dst)); }
2208   void fcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst, bool is_unordered_less);
2209 
2210   void call_runtime_leaf(address routine, LIR_Opr tmp, LIR_Opr result, LIR_OprList* arguments) {
2211     append(new LIR_OpRTCall(routine, tmp, result, arguments));
2212   }
2213 
2214   void call_runtime(address routine, LIR_Opr tmp, LIR_Opr result,
2215                     LIR_OprList* arguments, CodeEmitInfo* info) {
2216     append(new LIR_OpRTCall(routine, tmp, result, arguments, info));
2217   }
2218 
2219   void load_stack_address_monitor(int monitor_ix, LIR_Opr dst)  { append(new LIR_Op1(lir_monaddr, LIR_OprFact::intConst(monitor_ix), dst)); }
2220   void unlock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub);
2221   void lock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info);
2222 
2223   void breakpoint()                                                  { append(new LIR_Op0(lir_breakpoint)); }
2224 
2225   void arraycopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp, ciArrayKlass* expected_type, int flags, CodeEmitInfo* info) { append(new LIR_OpArrayCopy(src, src_pos, dst, dst_pos, length, tmp, expected_type, flags, info)); }
2226 
2227   void update_crc32(LIR_Opr crc, LIR_Opr val, LIR_Opr res)  { append(new LIR_OpUpdateCRC32(crc, val, res)); }
2228 
2229   void instanceof(LIR_Opr result, LIR_Opr object, ciKlass* klass, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, CodeEmitInfo* info_for_patch, ciMethod* profiled_method, int profiled_bci);
2230   void store_check(LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception, ciMethod* profiled_method, int profiled_bci);
2231 
2232   void checkcast (LIR_Opr result, LIR_Opr object, ciKlass* klass,
2233                   LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
2234                   CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub,
2235                   ciMethod* profiled_method, int profiled_bci);
2236   // MethodData* profiling
2237   void profile_call(ciMethod* method, int bci, ciMethod* callee, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* cha_klass) {
2238     append(new LIR_OpProfileCall(method, bci, callee, mdo, recv, t1, cha_klass));
2239   }
2240   void profile_type(LIR_Address* mdp, LIR_Opr obj, ciKlass* exact_klass, intptr_t current_klass, LIR_Opr tmp, bool not_null, bool no_conflict) {
2241     append(new LIR_OpProfileType(LIR_OprFact::address(mdp), obj, exact_klass, current_klass, tmp, not_null, no_conflict));
2242   }
2243 
2244   void xadd(LIR_Opr src, LIR_Opr add, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_xadd, src, add, res, tmp)); }
2245   void xchg(LIR_Opr src, LIR_Opr set, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_xchg, src, set, res, tmp)); }
2246 #ifdef ASSERT
2247   void lir_assert(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, const char* msg, bool halt) { append(new LIR_OpAssert(condition, opr1, opr2, msg, halt)); }
2248 #endif
2249 };
2250 
2251 void print_LIR(BlockList* blocks);
2252 
2253 class LIR_InsertionBuffer : public CompilationResourceObj {
2254  private:
2255   LIR_List*   _lir;   // the lir list where ops of this buffer should be inserted later (NULL when uninitialized)
2256 
2257   // list of insertion points. index and count are stored alternately:
2258   // _index_and_count[i * 2]:     the index into lir list where "count" ops should be inserted
2259   // _index_and_count[i * 2 + 1]: the number of ops to be inserted at index
2260   intStack    _index_and_count;
2261 
2262   // the LIR_Ops to be inserted
2263   LIR_OpList  _ops;
2264 
2265   void append_new(int index, int count)  { _index_and_count.append(index); _index_and_count.append(count); }
2266   void set_index_at(int i, int value)    { _index_and_count.at_put((i << 1),     value); }
2267   void set_count_at(int i, int value)    { _index_and_count.at_put((i << 1) + 1, value); }
2268 
2269 #ifdef ASSERT
2270   void verify();
2271 #endif
2272  public:
2273   LIR_InsertionBuffer() : _lir(NULL), _index_and_count(8), _ops(8) { }
2274 
2275   // must be called before using the insertion buffer
2276   void init(LIR_List* lir)  { assert(!initialized(), "already initialized"); _lir = lir; _index_and_count.clear(); _ops.clear(); }
2277   bool initialized() const  { return _lir != NULL; }
2278   // called automatically when the buffer is appended to the LIR_List
2279   void finish()             { _lir = NULL; }
2280 
2281   // accessors
2282   LIR_List*  lir_list() const             { return _lir; }
2283   int number_of_insertion_points() const  { return _index_and_count.length() >> 1; }
2284   int index_at(int i) const               { return _index_and_count.at((i << 1));     }
2285   int count_at(int i) const               { return _index_and_count.at((i << 1) + 1); }
2286 
2287   int number_of_ops() const               { return _ops.length(); }
2288   LIR_Op* op_at(int i) const              { return _ops.at(i); }
2289 
2290   // append an instruction to the buffer
2291   void append(int index, LIR_Op* op);
2292 
2293   // instruction
2294   void move(int index, LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(index, new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); }
2295 };
2296 
2297 
2298 //
2299 // LIR_OpVisitState is used for manipulating LIR_Ops in an abstract way.
2300 // Calling a LIR_Op's visit function with a LIR_OpVisitState causes
2301 // information about the input, output and temporaries used by the
2302 // op to be recorded.  It also records whether the op has call semantics
2303 // and also records all the CodeEmitInfos used by this op.
2304 //
2305 
2306 
2307 class LIR_OpVisitState: public StackObj {
2308  public:
2309   typedef enum { inputMode, firstMode = inputMode, tempMode, outputMode, numModes, invalidMode = -1 } OprMode;
2310 
2311   enum {
2312     maxNumberOfOperands = 20,
2313     maxNumberOfInfos = 4
2314   };
2315 
2316  private:
2317   LIR_Op*          _op;
2318 
2319   // optimization: the operands and infos are not stored in a variable-length
2320   //               list, but in a fixed-size array to save time of size checks and resizing
2321   int              _oprs_len[numModes];
2322   LIR_Opr*         _oprs_new[numModes][maxNumberOfOperands];
2323   int _info_len;
2324   CodeEmitInfo*    _info_new[maxNumberOfInfos];
2325 
2326   bool             _has_call;
2327   bool             _has_slow_case;
2328 
2329 
2330   // only include register operands
2331   // addresses are decomposed to the base and index registers
2332   // constants and stack operands are ignored
2333   void append(LIR_Opr& opr, OprMode mode) {
2334     assert(opr->is_valid(), "should not call this otherwise");
2335     assert(mode >= 0 && mode < numModes, "bad mode");
2336 
2337     if (opr->is_register()) {
2338        assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow");
2339       _oprs_new[mode][_oprs_len[mode]++] = &opr;
2340 
2341     } else if (opr->is_pointer()) {
2342       LIR_Address* address = opr->as_address_ptr();
2343       if (address != NULL) {
2344         // special handling for addresses: add base and index register of the address
2345         // both are always input operands or temp if we want to extend
2346         // their liveness!
2347         if (mode == outputMode) {
2348           mode = inputMode;
2349         }
2350         assert (mode == inputMode || mode == tempMode, "input or temp only for addresses");
2351         if (address->_base->is_valid()) {
2352           assert(address->_base->is_register(), "must be");
2353           assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow");
2354           _oprs_new[mode][_oprs_len[mode]++] = &address->_base;
2355         }
2356         if (address->_index->is_valid()) {
2357           assert(address->_index->is_register(), "must be");
2358           assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow");
2359           _oprs_new[mode][_oprs_len[mode]++] = &address->_index;
2360         }
2361 
2362       } else {
2363         assert(opr->is_constant(), "constant operands are not processed");
2364       }
2365     } else {
2366       assert(opr->is_stack(), "stack operands are not processed");
2367     }
2368   }
2369 
2370   void append(CodeEmitInfo* info) {
2371     assert(info != NULL, "should not call this otherwise");
2372     assert(_info_len < maxNumberOfInfos, "array overflow");
2373     _info_new[_info_len++] = info;
2374   }
2375 
2376  public:
2377   LIR_OpVisitState()         { reset(); }
2378 
2379   LIR_Op* op() const         { return _op; }
2380   void set_op(LIR_Op* op)    { reset(); _op = op; }
2381 
2382   bool has_call() const      { return _has_call; }
2383   bool has_slow_case() const { return _has_slow_case; }
2384 
2385   void reset() {
2386     _op = NULL;
2387     _has_call = false;
2388     _has_slow_case = false;
2389 
2390     _oprs_len[inputMode] = 0;
2391     _oprs_len[tempMode] = 0;
2392     _oprs_len[outputMode] = 0;
2393     _info_len = 0;
2394   }
2395 
2396 
2397   int opr_count(OprMode mode) const {
2398     assert(mode >= 0 && mode < numModes, "bad mode");
2399     return _oprs_len[mode];
2400   }
2401 
2402   LIR_Opr opr_at(OprMode mode, int index) const {
2403     assert(mode >= 0 && mode < numModes, "bad mode");
2404     assert(index >= 0 && index < _oprs_len[mode], "index out of bound");
2405     return *_oprs_new[mode][index];
2406   }
2407 
2408   void set_opr_at(OprMode mode, int index, LIR_Opr opr) const {
2409     assert(mode >= 0 && mode < numModes, "bad mode");
2410     assert(index >= 0 && index < _oprs_len[mode], "index out of bound");
2411     *_oprs_new[mode][index] = opr;
2412   }
2413 
2414   int info_count() const {
2415     return _info_len;
2416   }
2417 
2418   CodeEmitInfo* info_at(int index) const {
2419     assert(index < _info_len, "index out of bounds");
2420     return _info_new[index];
2421   }
2422 
2423   XHandlers* all_xhandler();
2424 
2425   // collects all register operands of the instruction
2426   void visit(LIR_Op* op);
2427 
2428 #ifdef ASSERT
2429   // check that an operation has no operands
2430   bool no_operands(LIR_Op* op);
2431 #endif
2432 
2433   // LIR_Op visitor functions use these to fill in the state
2434   void do_input(LIR_Opr& opr)             { append(opr, LIR_OpVisitState::inputMode); }
2435   void do_output(LIR_Opr& opr)            { append(opr, LIR_OpVisitState::outputMode); }
2436   void do_temp(LIR_Opr& opr)              { append(opr, LIR_OpVisitState::tempMode); }
2437   void do_info(CodeEmitInfo* info)        { append(info); }
2438 
2439   void do_stub(CodeStub* stub);
2440   void do_call()                          { _has_call = true; }
2441   void do_slow_case()                     { _has_slow_case = true; }
2442   void do_slow_case(CodeEmitInfo* info) {
2443     _has_slow_case = true;
2444     append(info);
2445   }
2446 };
2447 
2448 
2449 inline LIR_Opr LIR_OprDesc::illegalOpr()   { return LIR_OprFact::illegalOpr; };
2450 
2451 #endif // SHARE_C1_C1_LIR_HPP