1 /*
2 * Copyright (c) 2000, 2025, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #ifndef SHARE_C1_C1_LIR_HPP
26 #define SHARE_C1_C1_LIR_HPP
27
28 #include "c1/c1_Defs.hpp"
29 #include "c1/c1_ValueType.hpp"
30 #include "oops/method.hpp"
31 #include "utilities/globalDefinitions.hpp"
32 #include "utilities/macros.hpp"
33
34 class BlockBegin;
35 class BlockList;
36 class LIR_Assembler;
37 class CodeEmitInfo;
38 class CodeStub;
39 class CodeStubList;
40 class C1SafepointPollStub;
41 class ArrayCopyStub;
42 class LIR_Op;
43 class ciType;
44 class ValueType;
45 class LIR_OpVisitState;
46
47 //---------------------------------------------------------------------
48 // LIR Operands
49 // LIR_OprPtr
50 // LIR_Const
51 // LIR_Address
52 //---------------------------------------------------------------------
53 class LIR_OprPtr;
54 class LIR_Const;
55 class LIR_Address;
56 class LIR_OprVisitor;
57 class LIR_Opr;
58
59 typedef int RegNr;
60
61 typedef GrowableArray<LIR_Opr> LIR_OprList;
62 typedef GrowableArray<LIR_Op*> LIR_OpArray;
63 typedef GrowableArray<LIR_Op*> LIR_OpList;
64
65 // define LIR_OprPtr early so LIR_Opr can refer to it
66 class LIR_OprPtr: public CompilationResourceObj {
67 public:
68 bool is_oop_pointer() const { return (type() == T_OBJECT); }
69 bool is_float_kind() const { BasicType t = type(); return (t == T_FLOAT) || (t == T_DOUBLE); }
70
71 virtual LIR_Const* as_constant() { return nullptr; }
72 virtual LIR_Address* as_address() { return nullptr; }
73 virtual BasicType type() const = 0;
74 virtual void print_value_on(outputStream* out) const = 0;
75 };
76
77
78
79 // LIR constants
80 class LIR_Const: public LIR_OprPtr {
81 private:
82 JavaValue _value;
83
84 void type_check(BasicType t) const { assert(type() == t, "type check"); }
85 void type_check(BasicType t1, BasicType t2) const { assert(type() == t1 || type() == t2, "type check"); }
86 void type_check(BasicType t1, BasicType t2, BasicType t3) const { assert(type() == t1 || type() == t2 || type() == t3, "type check"); }
87
88 public:
89 LIR_Const(jint i, bool is_address=false) { _value.set_type(is_address?T_ADDRESS:T_INT); _value.set_jint(i); }
90 LIR_Const(jlong l) { _value.set_type(T_LONG); _value.set_jlong(l); }
91 LIR_Const(jfloat f) { _value.set_type(T_FLOAT); _value.set_jfloat(f); }
92 LIR_Const(jdouble d) { _value.set_type(T_DOUBLE); _value.set_jdouble(d); }
93 LIR_Const(jobject o) { _value.set_type(T_OBJECT); _value.set_jobject(o); }
94 LIR_Const(void* p) {
95 #ifdef _LP64
96 assert(sizeof(jlong) >= sizeof(p), "too small");;
97 _value.set_type(T_LONG); _value.set_jlong((jlong)p);
98 #else
99 assert(sizeof(jint) >= sizeof(p), "too small");;
100 _value.set_type(T_INT); _value.set_jint((jint)p);
101 #endif
102 }
103 LIR_Const(Metadata* m) {
104 _value.set_type(T_METADATA);
105 #ifdef _LP64
106 _value.set_jlong((jlong)m);
107 #else
108 _value.set_jint((jint)m);
109 #endif // _LP64
110 }
111
112 virtual BasicType type() const { return _value.get_type(); }
113 virtual LIR_Const* as_constant() { return this; }
114
115 jint as_jint() const { type_check(T_INT, T_ADDRESS); return _value.get_jint(); }
116 jlong as_jlong() const { type_check(T_LONG ); return _value.get_jlong(); }
117 jfloat as_jfloat() const { type_check(T_FLOAT ); return _value.get_jfloat(); }
118 jdouble as_jdouble() const { type_check(T_DOUBLE); return _value.get_jdouble(); }
119 jobject as_jobject() const { type_check(T_OBJECT); return _value.get_jobject(); }
120 jint as_jint_lo() const { type_check(T_LONG ); return low(_value.get_jlong()); }
121 jint as_jint_hi() const { type_check(T_LONG ); return high(_value.get_jlong()); }
122
123 #ifdef _LP64
124 address as_pointer() const { type_check(T_LONG ); return (address)_value.get_jlong(); }
125 Metadata* as_metadata() const { type_check(T_METADATA); return (Metadata*)_value.get_jlong(); }
126 #else
127 address as_pointer() const { type_check(T_INT ); return (address)_value.get_jint(); }
128 Metadata* as_metadata() const { type_check(T_METADATA); return (Metadata*)_value.get_jint(); }
129 #endif
130
131
132 jint as_jint_bits() const { type_check(T_FLOAT, T_INT, T_ADDRESS); return _value.get_jint(); }
133 jint as_jint_lo_bits() const {
134 if (type() == T_DOUBLE) {
135 return low(jlong_cast(_value.get_jdouble()));
136 } else {
137 return as_jint_lo();
138 }
139 }
140 jint as_jint_hi_bits() const {
141 if (type() == T_DOUBLE) {
142 return high(jlong_cast(_value.get_jdouble()));
143 } else {
144 return as_jint_hi();
145 }
146 }
147 jlong as_jlong_bits() const {
148 if (type() == T_DOUBLE) {
149 return jlong_cast(_value.get_jdouble());
150 } else {
151 return as_jlong();
152 }
153 }
154
155 virtual void print_value_on(outputStream* out) const PRODUCT_RETURN;
156
157
158 bool is_zero_float() {
159 jfloat f = as_jfloat();
160 jfloat ok = 0.0f;
161 return jint_cast(f) == jint_cast(ok);
162 }
163
164 bool is_one_float() {
165 jfloat f = as_jfloat();
166 return !g_isnan(f) && g_isfinite(f) && f == 1.0;
167 }
168
169 bool is_zero_double() {
170 jdouble d = as_jdouble();
171 jdouble ok = 0.0;
172 return jlong_cast(d) == jlong_cast(ok);
173 }
174
175 bool is_one_double() {
176 jdouble d = as_jdouble();
177 return !g_isnan(d) && g_isfinite(d) && d == 1.0;
178 }
179 };
180
181
182 //---------------------LIR Operand descriptor------------------------------------
183 //
184 // The class LIR_Opr represents a LIR instruction operand;
185 // it can be a register (ALU/FPU), stack location or a constant;
186 // Constants and addresses are represented as resource area allocated
187 // structures (see above), and pointers are stored in the _value field (cast to
188 // an intptr_t).
189 // Registers and stack locations are represented inline as integers.
190 // (see value function).
191
192 // Previously, this class was derived from CompilationResourceObj.
193 // However, deriving from any of the "Obj" types in allocation.hpp seems
194 // detrimental, since in some build modes it would add a vtable to this class,
195 // which make it no longer be a 1-word trivially-copyable wrapper object,
196 // which is the entire point of it.
197
198 class LIR_Opr {
199 public:
200 // value structure:
201 // data other-non-data opr-type opr-kind
202 // +-------------------+--------------+-------+-----+
203 // [max...............................|6 5 4 3|2 1 0]
204 // ^
205 // is_pointer bit
206 //
207 // lowest bit cleared, means it is a structure pointer
208 // we need 4 bits to represent types
209
210 private:
211 friend class LIR_OprFact;
212
213 intptr_t _value;
214 // Conversion
215 intptr_t value() const { return _value; }
216
217 bool check_value_mask(intptr_t mask, intptr_t masked_value) const {
218 return (value() & mask) == masked_value;
219 }
220
221 enum OprKind {
222 pointer_value = 0
223 , stack_value = 1
224 , cpu_register = 3
225 , fpu_register = 5
226 , illegal_value = 7
227 };
228
229 enum OprBits {
230 pointer_bits = 1
231 , kind_bits = 3
232 , type_bits = 4
233 , size_bits = 2
234 , destroys_bits = 1
235 , virtual_bits = 1
236 , is_xmm_bits = 1
237 , last_use_bits = 1
238 , non_data_bits = kind_bits + type_bits + size_bits + destroys_bits + virtual_bits
239 + is_xmm_bits + last_use_bits
240 , data_bits = BitsPerInt - non_data_bits
241 , reg_bits = data_bits / 2 // for two registers in one value encoding
242 };
243
244 enum OprShift : uintptr_t {
245 kind_shift = 0
246 , type_shift = kind_shift + kind_bits
247 , size_shift = type_shift + type_bits
248 , destroys_shift = size_shift + size_bits
249 , last_use_shift = destroys_shift + destroys_bits
250 , virtual_shift = last_use_shift + last_use_bits
251 , is_xmm_shift = virtual_shift + virtual_bits
252 , data_shift = is_xmm_shift + is_xmm_bits
253 , reg1_shift = data_shift
254 , reg2_shift = data_shift + reg_bits
255
256 };
257
258 enum OprSize {
259 single_size = 0 << size_shift
260 , double_size = 1 << size_shift
261 };
262
263 enum OprMask {
264 kind_mask = right_n_bits(kind_bits)
265 , type_mask = right_n_bits(type_bits) << type_shift
266 , size_mask = right_n_bits(size_bits) << size_shift
267 , last_use_mask = right_n_bits(last_use_bits) << last_use_shift
268 , virtual_mask = right_n_bits(virtual_bits) << virtual_shift
269 , is_xmm_mask = right_n_bits(is_xmm_bits) << is_xmm_shift
270 , pointer_mask = right_n_bits(pointer_bits)
271 , lower_reg_mask = right_n_bits(reg_bits)
272 , no_type_mask = (int)(~(type_mask | last_use_mask))
273 };
274
275 uint32_t data() const { return (uint32_t)value() >> data_shift; }
276 int lo_reg_half() const { return data() & lower_reg_mask; }
277 int hi_reg_half() const { return (data() >> reg_bits) & lower_reg_mask; }
278 OprKind kind_field() const { return (OprKind)(value() & kind_mask); }
279 OprSize size_field() const { return (OprSize)(value() & size_mask); }
280
281 static char type_char(BasicType t);
282
283 public:
284 LIR_Opr() : _value(0) {}
285 LIR_Opr(intptr_t val) : _value(val) {}
286 LIR_Opr(LIR_OprPtr *val) : _value(reinterpret_cast<intptr_t>(val)) {}
287 bool operator==(const LIR_Opr &other) const { return _value == other._value; }
288 bool operator!=(const LIR_Opr &other) const { return _value != other._value; }
289 explicit operator bool() const { return _value != 0; }
290
291 // UGLY HACK: make this value object look like a pointer (to itself). This
292 // operator overload should be removed, and all callers updated from
293 // `opr->fn()` to `opr.fn()`.
294 const LIR_Opr* operator->() const { return this; }
295 LIR_Opr* operator->() { return this; }
296
297 enum {
298 vreg_base = ConcreteRegisterImpl::number_of_registers,
299 data_max = (1 << data_bits) - 1, // max unsigned value for data bit field
300 vreg_limit = 10000, // choose a reasonable limit,
301 vreg_max = MIN2(vreg_limit, data_max) // and make sure if fits in the bit field
302 };
303
304 static inline LIR_Opr illegalOpr();
305 static inline LIR_Opr nullOpr();
306
307 enum OprType {
308 unknown_type = 0 << type_shift // means: not set (catch uninitialized types)
309 , int_type = 1 << type_shift
310 , long_type = 2 << type_shift
311 , object_type = 3 << type_shift
312 , address_type = 4 << type_shift
313 , float_type = 5 << type_shift
314 , double_type = 6 << type_shift
315 , metadata_type = 7 << type_shift
316 };
317 friend OprType as_OprType(BasicType t);
318 friend BasicType as_BasicType(OprType t);
319
320 OprType type_field_valid() const { assert(is_register() || is_stack(), "should not be called otherwise"); return (OprType)(value() & type_mask); }
321 OprType type_field() const { return is_illegal() ? unknown_type : (OprType)(value() & type_mask); }
322
323 static OprSize size_for(BasicType t) {
324 switch (t) {
325 case T_LONG:
326 case T_DOUBLE:
327 return double_size;
328 break;
329
330 case T_FLOAT:
331 case T_BOOLEAN:
332 case T_CHAR:
333 case T_BYTE:
334 case T_SHORT:
335 case T_INT:
336 case T_ADDRESS:
337 case T_OBJECT:
338 case T_ARRAY:
339 case T_METADATA:
340 return single_size;
341 break;
342
343 default:
344 ShouldNotReachHere();
345 return single_size;
346 }
347 }
348
349
350 void validate_type() const PRODUCT_RETURN;
351
352 BasicType type() const {
353 if (is_pointer()) {
354 return pointer()->type();
355 }
356 return as_BasicType(type_field());
357 }
358
359
360 ValueType* value_type() const { return as_ValueType(type()); }
361
362 char type_char() const { return type_char((is_pointer()) ? pointer()->type() : type()); }
363
364 bool is_equal(LIR_Opr opr) const { return *this == opr; }
365 // checks whether types are same
366 bool is_same_type(LIR_Opr opr) const {
367 assert(type_field() != unknown_type &&
368 opr->type_field() != unknown_type, "shouldn't see unknown_type");
369 return type_field() == opr->type_field();
370 }
371 bool is_same_register(LIR_Opr opr) {
372 return (is_register() && opr->is_register() &&
373 kind_field() == opr->kind_field() &&
374 (value() & no_type_mask) == (opr->value() & no_type_mask));
375 }
376
377 bool is_pointer() const { return check_value_mask(pointer_mask, pointer_value); }
378 bool is_illegal() const { return kind_field() == illegal_value; }
379 bool is_valid() const { return kind_field() != illegal_value; }
380
381 bool is_register() const { return is_cpu_register() || is_fpu_register(); }
382 bool is_virtual() const { return is_virtual_cpu() || is_virtual_fpu(); }
383
384 bool is_constant() const { return is_pointer() && pointer()->as_constant() != nullptr; }
385 bool is_address() const { return is_pointer() && pointer()->as_address() != nullptr; }
386
387 bool is_float_kind() const { return is_pointer() ? pointer()->is_float_kind() : (kind_field() == fpu_register); }
388 bool is_oop() const;
389
390 // semantic for fpu- and xmm-registers:
391 // * is_float and is_double return true for xmm_registers
392 // (so is_single_fpu and is_single_xmm are true)
393 // * So you must always check for is_???_xmm prior to is_???_fpu to
394 // distinguish between fpu- and xmm-registers
395
396 bool is_stack() const { validate_type(); return check_value_mask(kind_mask, stack_value); }
397 bool is_single_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask, stack_value | single_size); }
398 bool is_double_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask, stack_value | double_size); }
399
400 bool is_cpu_register() const { validate_type(); return check_value_mask(kind_mask, cpu_register); }
401 bool is_virtual_cpu() const { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register | virtual_mask); }
402 bool is_fixed_cpu() const { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register); }
403 bool is_single_cpu() const { validate_type(); return check_value_mask(kind_mask | size_mask, cpu_register | single_size); }
404 bool is_double_cpu() const { validate_type(); return check_value_mask(kind_mask | size_mask, cpu_register | double_size); }
405
406 bool is_fpu_register() const { validate_type(); return check_value_mask(kind_mask, fpu_register); }
407 bool is_virtual_fpu() const { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register | virtual_mask); }
408 bool is_fixed_fpu() const { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register); }
409 bool is_single_fpu() const { validate_type(); return check_value_mask(kind_mask | size_mask, fpu_register | single_size); }
410 bool is_double_fpu() const { validate_type(); return check_value_mask(kind_mask | size_mask, fpu_register | double_size); }
411
412 bool is_xmm_register() const { validate_type(); return check_value_mask(kind_mask | is_xmm_mask, fpu_register | is_xmm_mask); }
413 bool is_single_xmm() const { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | single_size | is_xmm_mask); }
414 bool is_double_xmm() const { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | double_size | is_xmm_mask); }
415
416 // fast accessor functions for special bits that do not work for pointers
417 // (in this functions, the check for is_pointer() is omitted)
418 bool is_single_word() const { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, single_size); }
419 bool is_double_word() const { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, double_size); }
420 bool is_virtual_register() const { assert(is_register(), "type check"); return check_value_mask(virtual_mask, virtual_mask); }
421 bool is_oop_register() const { assert(is_register() || is_stack(), "type check"); return type_field_valid() == object_type; }
422 BasicType type_register() const { assert(is_register() || is_stack(), "type check"); return as_BasicType(type_field_valid()); }
423
424 bool is_last_use() const { assert(is_register(), "only works for registers"); return (value() & last_use_mask) != 0; }
425 LIR_Opr make_last_use() { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | last_use_mask); }
426
427
428 int single_stack_ix() const { assert(is_single_stack() && !is_virtual(), "type check"); return (int)data(); }
429 int double_stack_ix() const { assert(is_double_stack() && !is_virtual(), "type check"); return (int)data(); }
430 RegNr cpu_regnr() const { assert(is_single_cpu() && !is_virtual(), "type check"); return (RegNr)data(); }
431 RegNr cpu_regnrLo() const { assert(is_double_cpu() && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
432 RegNr cpu_regnrHi() const { assert(is_double_cpu() && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
433 RegNr fpu_regnr() const { assert(is_single_fpu() && !is_virtual(), "type check"); return (RegNr)data(); }
434 RegNr fpu_regnrLo() const { assert(is_double_fpu() && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
435 RegNr fpu_regnrHi() const { assert(is_double_fpu() && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
436 RegNr xmm_regnr() const { assert(is_single_xmm() && !is_virtual(), "type check"); return (RegNr)data(); }
437 RegNr xmm_regnrLo() const { assert(is_double_xmm() && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
438 RegNr xmm_regnrHi() const { assert(is_double_xmm() && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
439 int vreg_number() const { assert(is_virtual(), "type check"); return (RegNr)data(); }
440
441 LIR_OprPtr* pointer() const { assert(_value != 0 && is_pointer(), "nullness and type check"); return (LIR_OprPtr*)_value; }
442 LIR_Const* as_constant_ptr() const { return pointer()->as_constant(); }
443 LIR_Address* as_address_ptr() const { return pointer()->as_address(); }
444
445 Register as_register() const;
446 Register as_register_lo() const;
447 Register as_register_hi() const;
448
449 Register as_pointer_register() {
450 #ifdef _LP64
451 if (is_double_cpu()) {
452 assert(as_register_lo() == as_register_hi(), "should be a single register");
453 return as_register_lo();
454 }
455 #endif
456 return as_register();
457 }
458
459 FloatRegister as_float_reg () const;
460 FloatRegister as_double_reg () const;
461 #ifdef X86
462 XMMRegister as_xmm_float_reg () const;
463 XMMRegister as_xmm_double_reg() const;
464 // for compatibility with RInfo
465 int fpu() const { return lo_reg_half(); }
466 #endif
467
468 jint as_jint() const { return as_constant_ptr()->as_jint(); }
469 jlong as_jlong() const { return as_constant_ptr()->as_jlong(); }
470 jfloat as_jfloat() const { return as_constant_ptr()->as_jfloat(); }
471 jdouble as_jdouble() const { return as_constant_ptr()->as_jdouble(); }
472 jobject as_jobject() const { return as_constant_ptr()->as_jobject(); }
473
474 void print() const PRODUCT_RETURN;
475 void print(outputStream* out) const PRODUCT_RETURN;
476 };
477
478 inline LIR_Opr::OprType as_OprType(BasicType type) {
479 switch (type) {
480 case T_INT: return LIR_Opr::int_type;
481 case T_LONG: return LIR_Opr::long_type;
482 case T_FLOAT: return LIR_Opr::float_type;
483 case T_DOUBLE: return LIR_Opr::double_type;
484 case T_OBJECT:
485 case T_ARRAY: return LIR_Opr::object_type;
486 case T_ADDRESS: return LIR_Opr::address_type;
487 case T_METADATA: return LIR_Opr::metadata_type;
488 case T_ILLEGAL: // fall through
489 default: ShouldNotReachHere(); return LIR_Opr::unknown_type;
490 }
491 }
492
493 inline BasicType as_BasicType(LIR_Opr::OprType t) {
494 switch (t) {
495 case LIR_Opr::int_type: return T_INT;
496 case LIR_Opr::long_type: return T_LONG;
497 case LIR_Opr::float_type: return T_FLOAT;
498 case LIR_Opr::double_type: return T_DOUBLE;
499 case LIR_Opr::object_type: return T_OBJECT;
500 case LIR_Opr::address_type: return T_ADDRESS;
501 case LIR_Opr::metadata_type:return T_METADATA;
502 case LIR_Opr::unknown_type: // fall through
503 default: ShouldNotReachHere(); return T_ILLEGAL;
504 }
505 }
506
507
508 // LIR_Address
509 class LIR_Address: public LIR_OprPtr {
510 friend class LIR_OpVisitState;
511
512 public:
513 // NOTE: currently these must be the log2 of the scale factor (and
514 // must also be equivalent to the ScaleFactor enum in
515 // assembler_i486.hpp)
516 enum Scale {
517 times_1 = 0,
518 times_2 = 1,
519 times_4 = 2,
520 times_8 = 3
521 };
522
523 private:
524 LIR_Opr _base;
525 LIR_Opr _index;
526 intx _disp;
527 Scale _scale;
528 BasicType _type;
529
530 public:
531 LIR_Address(LIR_Opr base, LIR_Opr index, BasicType type):
532 _base(base)
533 , _index(index)
534 , _disp(0)
535 , _scale(times_1)
536 , _type(type) { verify(); }
537
538 LIR_Address(LIR_Opr base, intx disp, BasicType type):
539 _base(base)
540 , _index(LIR_Opr::illegalOpr())
541 , _disp(disp)
542 , _scale(times_1)
543 , _type(type) { verify(); }
544
545 LIR_Address(LIR_Opr base, BasicType type):
546 _base(base)
547 , _index(LIR_Opr::illegalOpr())
548 , _disp(0)
549 , _scale(times_1)
550 , _type(type) { verify(); }
551
552 LIR_Address(LIR_Opr base, LIR_Opr index, intx disp, BasicType type):
553 _base(base)
554 , _index(index)
555 , _disp(disp)
556 , _scale(times_1)
557 , _type(type) { verify(); }
558
559 LIR_Address(LIR_Opr base, LIR_Opr index, Scale scale, intx disp, BasicType type):
560 _base(base)
561 , _index(index)
562 , _disp(disp)
563 , _scale(scale)
564 , _type(type) { verify(); }
565
566 LIR_Opr base() const { return _base; }
567 LIR_Opr index() const { return _index; }
568 Scale scale() const { return _scale; }
569 intx disp() const { return _disp; }
570
571 bool equals(LIR_Address* other) const { return base() == other->base() && index() == other->index() && disp() == other->disp() && scale() == other->scale(); }
572
573 virtual LIR_Address* as_address() { return this; }
574 virtual BasicType type() const { return _type; }
575 virtual void print_value_on(outputStream* out) const PRODUCT_RETURN;
576
577 void verify() const PRODUCT_RETURN;
578
579 static Scale scale(BasicType type);
580 };
581
582
583 // operand factory
584 class LIR_OprFact: public AllStatic {
585 public:
586
587 static LIR_Opr illegalOpr;
588 static LIR_Opr nullOpr;
589
590 static LIR_Opr single_cpu(int reg) {
591 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) |
592 LIR_Opr::int_type |
593 LIR_Opr::cpu_register |
594 LIR_Opr::single_size);
595 }
596 static LIR_Opr single_cpu_oop(int reg) {
597 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) |
598 LIR_Opr::object_type |
599 LIR_Opr::cpu_register |
600 LIR_Opr::single_size);
601 }
602 static LIR_Opr single_cpu_address(int reg) {
603 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) |
604 LIR_Opr::address_type |
605 LIR_Opr::cpu_register |
606 LIR_Opr::single_size);
607 }
608 static LIR_Opr single_cpu_metadata(int reg) {
609 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) |
610 LIR_Opr::metadata_type |
611 LIR_Opr::cpu_register |
612 LIR_Opr::single_size);
613 }
614 static LIR_Opr double_cpu(int reg1, int reg2) {
615 LP64_ONLY(assert(reg1 == reg2, "must be identical"));
616 return (LIR_Opr)(intptr_t)((reg1 << LIR_Opr::reg1_shift) |
617 (reg2 << LIR_Opr::reg2_shift) |
618 LIR_Opr::long_type |
619 LIR_Opr::cpu_register |
620 LIR_Opr::double_size);
621 }
622
623 static LIR_Opr single_fpu(int reg) {
624 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) |
625 LIR_Opr::float_type |
626 LIR_Opr::fpu_register |
627 LIR_Opr::single_size);
628 }
629
630 // Platform dependent.
631 static LIR_Opr double_fpu(int reg1, int reg2 = -1 /*fnoreg*/);
632
633 #ifdef ARM32
634 static LIR_Opr single_softfp(int reg) {
635 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) |
636 LIR_Opr::float_type |
637 LIR_Opr::cpu_register |
638 LIR_Opr::single_size);
639 }
640 static LIR_Opr double_softfp(int reg1, int reg2) {
641 return (LIR_Opr)(intptr_t)((reg1 << LIR_Opr::reg1_shift) |
642 (reg2 << LIR_Opr::reg2_shift) |
643 LIR_Opr::double_type |
644 LIR_Opr::cpu_register |
645 LIR_Opr::double_size);
646 }
647 #endif // ARM32
648
649 #if defined(X86)
650 static LIR_Opr single_xmm(int reg) {
651 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) |
652 LIR_Opr::float_type |
653 LIR_Opr::fpu_register |
654 LIR_Opr::single_size |
655 LIR_Opr::is_xmm_mask);
656 }
657 static LIR_Opr double_xmm(int reg) {
658 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) |
659 (reg << LIR_Opr::reg2_shift) |
660 LIR_Opr::double_type |
661 LIR_Opr::fpu_register |
662 LIR_Opr::double_size |
663 LIR_Opr::is_xmm_mask);
664 }
665 #endif // X86
666
667 static LIR_Opr virtual_register(int index, BasicType type) {
668 if (index > LIR_Opr::vreg_max) {
669 // Running out of virtual registers. Caller should bailout.
670 return illegalOpr;
671 }
672
673 LIR_Opr res;
674 switch (type) {
675 case T_OBJECT: // fall through
676 case T_ARRAY:
677 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) |
678 LIR_Opr::object_type |
679 LIR_Opr::cpu_register |
680 LIR_Opr::single_size |
681 LIR_Opr::virtual_mask);
682 break;
683
684 case T_METADATA:
685 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) |
686 LIR_Opr::metadata_type|
687 LIR_Opr::cpu_register |
688 LIR_Opr::single_size |
689 LIR_Opr::virtual_mask);
690 break;
691
692 case T_INT:
693 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) |
694 LIR_Opr::int_type |
695 LIR_Opr::cpu_register |
696 LIR_Opr::single_size |
697 LIR_Opr::virtual_mask);
698 break;
699
700 case T_ADDRESS:
701 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) |
702 LIR_Opr::address_type |
703 LIR_Opr::cpu_register |
704 LIR_Opr::single_size |
705 LIR_Opr::virtual_mask);
706 break;
707
708 case T_LONG:
709 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) |
710 LIR_Opr::long_type |
711 LIR_Opr::cpu_register |
712 LIR_Opr::double_size |
713 LIR_Opr::virtual_mask);
714 break;
715
716 #ifdef __SOFTFP__
717 case T_FLOAT:
718 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) |
719 LIR_Opr::float_type |
720 LIR_Opr::cpu_register |
721 LIR_Opr::single_size |
722 LIR_Opr::virtual_mask);
723 break;
724 case T_DOUBLE:
725 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) |
726 LIR_Opr::double_type |
727 LIR_Opr::cpu_register |
728 LIR_Opr::double_size |
729 LIR_Opr::virtual_mask);
730 break;
731 #else // __SOFTFP__
732 case T_FLOAT:
733 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) |
734 LIR_Opr::float_type |
735 LIR_Opr::fpu_register |
736 LIR_Opr::single_size |
737 LIR_Opr::virtual_mask);
738 break;
739
740 case
741 T_DOUBLE: res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) |
742 LIR_Opr::double_type |
743 LIR_Opr::fpu_register |
744 LIR_Opr::double_size |
745 LIR_Opr::virtual_mask);
746 break;
747 #endif // __SOFTFP__
748 default: ShouldNotReachHere(); res = illegalOpr;
749 }
750
751 #ifdef ASSERT
752 res->validate_type();
753 assert(res->vreg_number() == index, "conversion check");
754 assert(index >= LIR_Opr::vreg_base, "must start at vreg_base");
755
756 // old-style calculation; check if old and new method are equal
757 LIR_Opr::OprType t = as_OprType(type);
758 #ifdef __SOFTFP__
759 LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) |
760 t |
761 LIR_Opr::cpu_register |
762 LIR_Opr::size_for(type) | LIR_Opr::virtual_mask);
763 #else // __SOFTFP__
764 LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | t |
765 ((type == T_FLOAT || type == T_DOUBLE) ? LIR_Opr::fpu_register : LIR_Opr::cpu_register) |
766 LIR_Opr::size_for(type) | LIR_Opr::virtual_mask);
767 assert(res == old_res, "old and new method not equal");
768 #endif // __SOFTFP__
769 #endif // ASSERT
770
771 return res;
772 }
773
774 // 'index' is computed by FrameMap::local_stack_pos(index); do not use other parameters as
775 // the index is platform independent; a double stack using indices 2 and 3 has always
776 // index 2.
777 static LIR_Opr stack(int index, BasicType type) {
778 LIR_Opr res;
779 switch (type) {
780 case T_OBJECT: // fall through
781 case T_ARRAY:
782 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) |
783 LIR_Opr::object_type |
784 LIR_Opr::stack_value |
785 LIR_Opr::single_size);
786 break;
787
788 case T_METADATA:
789 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) |
790 LIR_Opr::metadata_type |
791 LIR_Opr::stack_value |
792 LIR_Opr::single_size);
793 break;
794 case T_INT:
795 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) |
796 LIR_Opr::int_type |
797 LIR_Opr::stack_value |
798 LIR_Opr::single_size);
799 break;
800
801 case T_ADDRESS:
802 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) |
803 LIR_Opr::address_type |
804 LIR_Opr::stack_value |
805 LIR_Opr::single_size);
806 break;
807
808 case T_LONG:
809 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) |
810 LIR_Opr::long_type |
811 LIR_Opr::stack_value |
812 LIR_Opr::double_size);
813 break;
814
815 case T_FLOAT:
816 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) |
817 LIR_Opr::float_type |
818 LIR_Opr::stack_value |
819 LIR_Opr::single_size);
820 break;
821 case T_DOUBLE:
822 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) |
823 LIR_Opr::double_type |
824 LIR_Opr::stack_value |
825 LIR_Opr::double_size);
826 break;
827
828 default: ShouldNotReachHere(); res = illegalOpr;
829 }
830
831 #ifdef ASSERT
832 assert(index >= 0, "index must be positive");
833 assert(index == (int)res->data(), "conversion check");
834
835 LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) |
836 LIR_Opr::stack_value |
837 as_OprType(type) |
838 LIR_Opr::size_for(type));
839 assert(res == old_res, "old and new method not equal");
840 #endif
841
842 return res;
843 }
844
845 static LIR_Opr intConst(jint i) { return (LIR_Opr)(new LIR_Const(i)); }
846 static LIR_Opr longConst(jlong l) { return (LIR_Opr)(new LIR_Const(l)); }
847 static LIR_Opr floatConst(jfloat f) { return (LIR_Opr)(new LIR_Const(f)); }
848 static LIR_Opr doubleConst(jdouble d) { return (LIR_Opr)(new LIR_Const(d)); }
849 static LIR_Opr oopConst(jobject o) { return (LIR_Opr)(new LIR_Const(o)); }
850 static LIR_Opr address(LIR_Address* a) { return (LIR_Opr)a; }
851 static LIR_Opr intptrConst(void* p) { return (LIR_Opr)(new LIR_Const(p)); }
852 static LIR_Opr intptrConst(intptr_t v) { return (LIR_Opr)(new LIR_Const((void*)v)); }
853 static LIR_Opr illegal() { return (LIR_Opr)-1; }
854 static LIR_Opr addressConst(jint i) { return (LIR_Opr)(new LIR_Const(i, true)); }
855 static LIR_Opr metadataConst(Metadata* m) { return (LIR_Opr)(new LIR_Const(m)); }
856
857 static LIR_Opr value_type(ValueType* type);
858 };
859
860
861 //-------------------------------------------------------------------------------
862 // LIR Instructions
863 //-------------------------------------------------------------------------------
864 //
865 // Note:
866 // - every instruction has a result operand
867 // - every instruction has an CodeEmitInfo operand (can be revisited later)
868 // - every instruction has a LIR_OpCode operand
869 // - LIR_OpN, means an instruction that has N input operands
870 //
871 // class hierarchy:
872 //
873 class LIR_Op;
874 class LIR_Op0;
875 class LIR_OpLabel;
876 class LIR_Op1;
877 class LIR_OpBranch;
878 class LIR_OpConvert;
879 class LIR_OpAllocObj;
880 class LIR_OpReturn;
881 class LIR_Op2;
882 class LIR_Op3;
883 class LIR_OpAllocArray;
884 class LIR_Op4;
885 class LIR_OpCall;
886 class LIR_OpJavaCall;
887 class LIR_OpRTCall;
888 class LIR_OpArrayCopy;
889 class LIR_OpUpdateCRC32;
890 class LIR_OpLock;
891 class LIR_OpTypeCheck;
892 class LIR_OpCompareAndSwap;
893 class LIR_OpLoadKlass;
894 class LIR_OpProfileCall;
895 class LIR_OpProfileType;
896 #ifdef ASSERT
897 class LIR_OpAssert;
898 #endif
899
900 // LIR operation codes
901 enum LIR_Code {
902 lir_none
903 , begin_op0
904 , lir_label
905 , lir_nop
906 , lir_std_entry
907 , lir_osr_entry
908 , lir_breakpoint
909 , lir_rtcall
910 , lir_membar
911 , lir_membar_acquire
912 , lir_membar_release
913 , lir_membar_loadload
914 , lir_membar_storestore
915 , lir_membar_loadstore
916 , lir_membar_storeload
917 , lir_get_thread
918 , lir_on_spin_wait
919 , end_op0
920 , begin_op1
921 , lir_push
922 , lir_pop
923 , lir_null_check
924 , lir_return
925 , lir_leal
926 , lir_move
927 , lir_convert
928 , lir_alloc_object
929 , lir_monaddr
930 , lir_sqrt
931 , lir_abs
932 , lir_neg
933 , lir_f2hf
934 , lir_hf2f
935 , lir_safepoint
936 , lir_unwind
937 , lir_load_klass
938 , end_op1
939 , begin_op2
940 , lir_branch
941 , lir_cond_float_branch
942 , lir_cmp
943 , lir_cmp_l2i
944 , lir_ucmp_fd2i
945 , lir_cmp_fd2i
946 , lir_add
947 , lir_sub
948 , lir_mul
949 , lir_div
950 , lir_rem
951 , lir_logic_and
952 , lir_logic_or
953 , lir_logic_xor
954 , lir_shl
955 , lir_shr
956 , lir_ushr
957 , lir_alloc_array
958 , lir_throw
959 , lir_xadd
960 , lir_xchg
961 , end_op2
962 , begin_op3
963 , lir_idiv
964 , lir_irem
965 , lir_fmad
966 , lir_fmaf
967 , end_op3
968 , begin_op4
969 , lir_cmove
970 , end_op4
971 , begin_opJavaCall
972 , lir_static_call
973 , lir_optvirtual_call
974 , lir_icvirtual_call
975 , lir_dynamic_call
976 , end_opJavaCall
977 , begin_opArrayCopy
978 , lir_arraycopy
979 , end_opArrayCopy
980 , begin_opUpdateCRC32
981 , lir_updatecrc32
982 , end_opUpdateCRC32
983 , begin_opLock
984 , lir_lock
985 , lir_unlock
986 , end_opLock
987 , begin_opTypeCheck
988 , lir_instanceof
989 , lir_checkcast
990 , lir_store_check
991 , end_opTypeCheck
992 , begin_opCompareAndSwap
993 , lir_cas_long
994 , lir_cas_obj
995 , lir_cas_int
996 , end_opCompareAndSwap
997 , begin_opMDOProfile
998 , lir_profile_call
999 , lir_profile_type
1000 , end_opMDOProfile
1001 , begin_opAssert
1002 , lir_assert
1003 , end_opAssert
1004 #if INCLUDE_ZGC
1005 , begin_opXLoadBarrierTest
1006 , lir_xloadbarrier_test
1007 , end_opXLoadBarrierTest
1008 #endif
1009 };
1010
1011
1012 enum LIR_Condition {
1013 lir_cond_equal
1014 , lir_cond_notEqual
1015 , lir_cond_less
1016 , lir_cond_lessEqual
1017 , lir_cond_greaterEqual
1018 , lir_cond_greater
1019 , lir_cond_belowEqual
1020 , lir_cond_aboveEqual
1021 , lir_cond_always
1022 , lir_cond_unknown = -1
1023 };
1024
1025
1026 enum LIR_PatchCode {
1027 lir_patch_none,
1028 lir_patch_low,
1029 lir_patch_high,
1030 lir_patch_normal
1031 };
1032
1033
1034 enum LIR_MoveKind {
1035 lir_move_normal,
1036 lir_move_volatile,
1037 lir_move_wide,
1038 lir_move_max_flag
1039 };
1040
1041
1042 // --------------------------------------------------
1043 // LIR_Op
1044 // --------------------------------------------------
1045 class LIR_Op: public CompilationResourceObj {
1046 friend class LIR_OpVisitState;
1047
1048 #ifdef ASSERT
1049 private:
1050 const char * _file;
1051 int _line;
1052 #endif
1053
1054 protected:
1055 LIR_Opr _result;
1056 unsigned short _code;
1057 unsigned short _flags;
1058 CodeEmitInfo* _info;
1059 int _id; // value id for register allocation
1060 Instruction* _source; // for debugging
1061
1062 static void print_condition(outputStream* out, LIR_Condition cond) PRODUCT_RETURN;
1063
1064 protected:
1065 static bool is_in_range(LIR_Code test, LIR_Code start, LIR_Code end) { return start < test && test < end; }
1066
1067 public:
1068 LIR_Op()
1069 :
1070 #ifdef ASSERT
1071 _file(nullptr)
1072 , _line(0),
1073 #endif
1074 _result(LIR_OprFact::illegalOpr)
1075 , _code(lir_none)
1076 , _flags(0)
1077 , _info(nullptr)
1078 , _id(-1)
1079 , _source(nullptr) {}
1080
1081 LIR_Op(LIR_Code code, LIR_Opr result, CodeEmitInfo* info)
1082 :
1083 #ifdef ASSERT
1084 _file(nullptr)
1085 , _line(0),
1086 #endif
1087 _result(result)
1088 , _code(code)
1089 , _flags(0)
1090 , _info(info)
1091 , _id(-1)
1092 , _source(nullptr) {}
1093
1094 CodeEmitInfo* info() const { return _info; }
1095 LIR_Code code() const { return (LIR_Code)_code; }
1096 LIR_Opr result_opr() const { return _result; }
1097 void set_result_opr(LIR_Opr opr) { _result = opr; }
1098
1099 #ifdef ASSERT
1100 void set_file_and_line(const char * file, int line) {
1101 _file = file;
1102 _line = line;
1103 }
1104 #endif
1105
1106 virtual const char * name() const PRODUCT_RETURN_NULL;
1107 virtual void visit(LIR_OpVisitState* state);
1108
1109 int id() const { return _id; }
1110 void set_id(int id) { _id = id; }
1111
1112 Instruction* source() const { return _source; }
1113 void set_source(Instruction* ins) { _source = ins; }
1114
1115 virtual void emit_code(LIR_Assembler* masm) = 0;
1116 virtual void print_instr(outputStream* out) const = 0;
1117 virtual void print_on(outputStream* st) const PRODUCT_RETURN;
1118
1119 virtual bool is_patching() { return false; }
1120 virtual LIR_OpCall* as_OpCall() { return nullptr; }
1121 virtual LIR_OpJavaCall* as_OpJavaCall() { return nullptr; }
1122 virtual LIR_OpLabel* as_OpLabel() { return nullptr; }
1123 virtual LIR_OpLock* as_OpLock() { return nullptr; }
1124 virtual LIR_OpAllocArray* as_OpAllocArray() { return nullptr; }
1125 virtual LIR_OpAllocObj* as_OpAllocObj() { return nullptr; }
1126 virtual LIR_OpBranch* as_OpBranch() { return nullptr; }
1127 virtual LIR_OpReturn* as_OpReturn() { return nullptr; }
1128 virtual LIR_OpRTCall* as_OpRTCall() { return nullptr; }
1129 virtual LIR_OpConvert* as_OpConvert() { return nullptr; }
1130 virtual LIR_Op0* as_Op0() { return nullptr; }
1131 virtual LIR_Op1* as_Op1() { return nullptr; }
1132 virtual LIR_Op2* as_Op2() { return nullptr; }
1133 virtual LIR_Op3* as_Op3() { return nullptr; }
1134 virtual LIR_Op4* as_Op4() { return nullptr; }
1135 virtual LIR_OpArrayCopy* as_OpArrayCopy() { return nullptr; }
1136 virtual LIR_OpUpdateCRC32* as_OpUpdateCRC32() { return nullptr; }
1137 virtual LIR_OpTypeCheck* as_OpTypeCheck() { return nullptr; }
1138 virtual LIR_OpCompareAndSwap* as_OpCompareAndSwap() { return nullptr; }
1139 virtual LIR_OpLoadKlass* as_OpLoadKlass() { return nullptr; }
1140 virtual LIR_OpProfileCall* as_OpProfileCall() { return nullptr; }
1141 virtual LIR_OpProfileType* as_OpProfileType() { return nullptr; }
1142 #ifdef ASSERT
1143 virtual LIR_OpAssert* as_OpAssert() { return nullptr; }
1144 #endif
1145
1146 virtual void verify() const {}
1147 };
1148
1149 // for calls
1150 class LIR_OpCall: public LIR_Op {
1151 friend class LIR_OpVisitState;
1152
1153 protected:
1154 address _addr;
1155 LIR_OprList* _arguments;
1156 protected:
1157 LIR_OpCall(LIR_Code code, address addr, LIR_Opr result,
1158 LIR_OprList* arguments, CodeEmitInfo* info = nullptr)
1159 : LIR_Op(code, result, info)
1160 , _addr(addr)
1161 , _arguments(arguments) {}
1162
1163 public:
1164 address addr() const { return _addr; }
1165 const LIR_OprList* arguments() const { return _arguments; }
1166 virtual LIR_OpCall* as_OpCall() { return this; }
1167 };
1168
1169
1170 // --------------------------------------------------
1171 // LIR_OpJavaCall
1172 // --------------------------------------------------
1173 class LIR_OpJavaCall: public LIR_OpCall {
1174 friend class LIR_OpVisitState;
1175
1176 private:
1177 ciMethod* _method;
1178 LIR_Opr _receiver;
1179
1180 public:
1181 LIR_OpJavaCall(LIR_Code code, ciMethod* method,
1182 LIR_Opr receiver, LIR_Opr result,
1183 address addr, LIR_OprList* arguments,
1184 CodeEmitInfo* info)
1185 : LIR_OpCall(code, addr, result, arguments, info)
1186 , _method(method)
1187 , _receiver(receiver)
1188 { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); }
1189
1190 LIR_OpJavaCall(LIR_Code code, ciMethod* method,
1191 LIR_Opr receiver, LIR_Opr result, intptr_t vtable_offset,
1192 LIR_OprList* arguments, CodeEmitInfo* info)
1193 : LIR_OpCall(code, (address)vtable_offset, result, arguments, info)
1194 , _method(method)
1195 , _receiver(receiver)
1196 { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); }
1197
1198 LIR_Opr receiver() const { return _receiver; }
1199 ciMethod* method() const { return _method; }
1200
1201 // JSR 292 support.
1202 bool is_invokedynamic() const { return code() == lir_dynamic_call; }
1203 bool is_method_handle_invoke() const {
1204 return method()->is_compiled_lambda_form() || // Java-generated lambda form
1205 method()->is_method_handle_intrinsic(); // JVM-generated MH intrinsic
1206 }
1207
1208 virtual void emit_code(LIR_Assembler* masm);
1209 virtual LIR_OpJavaCall* as_OpJavaCall() { return this; }
1210 virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1211 };
1212
1213 // --------------------------------------------------
1214 // LIR_OpLabel
1215 // --------------------------------------------------
1216 // Location where a branch can continue
1217 class LIR_OpLabel: public LIR_Op {
1218 friend class LIR_OpVisitState;
1219
1220 private:
1221 Label* _label;
1222 public:
1223 LIR_OpLabel(Label* lbl)
1224 : LIR_Op(lir_label, LIR_OprFact::illegalOpr, nullptr)
1225 , _label(lbl) {}
1226 Label* label() const { return _label; }
1227
1228 virtual void emit_code(LIR_Assembler* masm);
1229 virtual LIR_OpLabel* as_OpLabel() { return this; }
1230 virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1231 };
1232
1233 // LIR_OpArrayCopy
1234 class LIR_OpArrayCopy: public LIR_Op {
1235 friend class LIR_OpVisitState;
1236
1237 private:
1238 ArrayCopyStub* _stub;
1239 LIR_Opr _src;
1240 LIR_Opr _src_pos;
1241 LIR_Opr _dst;
1242 LIR_Opr _dst_pos;
1243 LIR_Opr _length;
1244 LIR_Opr _tmp;
1245 ciArrayKlass* _expected_type;
1246 int _flags;
1247
1248 public:
1249 enum Flags {
1250 src_null_check = 1 << 0,
1251 dst_null_check = 1 << 1,
1252 src_pos_positive_check = 1 << 2,
1253 dst_pos_positive_check = 1 << 3,
1254 length_positive_check = 1 << 4,
1255 src_range_check = 1 << 5,
1256 dst_range_check = 1 << 6,
1257 type_check = 1 << 7,
1258 overlapping = 1 << 8,
1259 unaligned = 1 << 9,
1260 src_objarray = 1 << 10,
1261 dst_objarray = 1 << 11,
1262 all_flags = (1 << 12) - 1
1263 };
1264
1265 LIR_OpArrayCopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp,
1266 ciArrayKlass* expected_type, int flags, CodeEmitInfo* info);
1267
1268 LIR_Opr src() const { return _src; }
1269 LIR_Opr src_pos() const { return _src_pos; }
1270 LIR_Opr dst() const { return _dst; }
1271 LIR_Opr dst_pos() const { return _dst_pos; }
1272 LIR_Opr length() const { return _length; }
1273 LIR_Opr tmp() const { return _tmp; }
1274 int flags() const { return _flags; }
1275 ciArrayKlass* expected_type() const { return _expected_type; }
1276 ArrayCopyStub* stub() const { return _stub; }
1277 static int get_initial_copy_flags() { return LIR_OpArrayCopy::unaligned |
1278 LIR_OpArrayCopy::overlapping; }
1279
1280 virtual void emit_code(LIR_Assembler* masm);
1281 virtual LIR_OpArrayCopy* as_OpArrayCopy() { return this; }
1282 void print_instr(outputStream* out) const PRODUCT_RETURN;
1283 };
1284
1285 // LIR_OpUpdateCRC32
1286 class LIR_OpUpdateCRC32: public LIR_Op {
1287 friend class LIR_OpVisitState;
1288
1289 private:
1290 LIR_Opr _crc;
1291 LIR_Opr _val;
1292
1293 public:
1294
1295 LIR_OpUpdateCRC32(LIR_Opr crc, LIR_Opr val, LIR_Opr res);
1296
1297 LIR_Opr crc() const { return _crc; }
1298 LIR_Opr val() const { return _val; }
1299
1300 virtual void emit_code(LIR_Assembler* masm);
1301 virtual LIR_OpUpdateCRC32* as_OpUpdateCRC32() { return this; }
1302 void print_instr(outputStream* out) const PRODUCT_RETURN;
1303 };
1304
1305 // --------------------------------------------------
1306 // LIR_Op0
1307 // --------------------------------------------------
1308 class LIR_Op0: public LIR_Op {
1309 friend class LIR_OpVisitState;
1310
1311 public:
1312 LIR_Op0(LIR_Code code)
1313 : LIR_Op(code, LIR_OprFact::illegalOpr, nullptr) { assert(is_in_range(code, begin_op0, end_op0), "code check"); }
1314 LIR_Op0(LIR_Code code, LIR_Opr result, CodeEmitInfo* info = nullptr)
1315 : LIR_Op(code, result, info) { assert(is_in_range(code, begin_op0, end_op0), "code check"); }
1316
1317 virtual void emit_code(LIR_Assembler* masm);
1318 virtual LIR_Op0* as_Op0() { return this; }
1319 virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1320 };
1321
1322
1323 // --------------------------------------------------
1324 // LIR_Op1
1325 // --------------------------------------------------
1326
1327 class LIR_Op1: public LIR_Op {
1328 friend class LIR_OpVisitState;
1329
1330 protected:
1331 LIR_Opr _opr; // input operand
1332 LIR_Opr _tmp;
1333 BasicType _type; // Operand types
1334 LIR_PatchCode _patch; // only required with patchin (NEEDS_CLEANUP: do we want a special instruction for patching?)
1335
1336 static void print_patch_code(outputStream* out, LIR_PatchCode code);
1337
1338 void set_kind(LIR_MoveKind kind) {
1339 assert(code() == lir_move, "must be");
1340 _flags = kind;
1341 }
1342
1343 public:
1344 LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result = LIR_OprFact::illegalOpr, BasicType type = T_ILLEGAL, LIR_PatchCode patch = lir_patch_none, CodeEmitInfo* info = nullptr)
1345 : LIR_Op(code, result, info)
1346 , _opr(opr)
1347 , _tmp(LIR_OprFact::illegalOpr)
1348 , _type(type)
1349 , _patch(patch) { assert(is_in_range(code, begin_op1, end_op1), "code check"); }
1350
1351 LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result, LIR_Opr tmp, BasicType type = T_ILLEGAL, LIR_PatchCode patch = lir_patch_none, CodeEmitInfo* info = nullptr)
1352 : LIR_Op(code, result, info)
1353 , _opr(opr)
1354 , _tmp(tmp)
1355 , _type(type)
1356 , _patch(patch) { assert(is_in_range(code, begin_op1, end_op1), "code check"); }
1357
1358 LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result, BasicType type, LIR_PatchCode patch, CodeEmitInfo* info, LIR_MoveKind kind)
1359 : LIR_Op(code, result, info)
1360 , _opr(opr)
1361 , _tmp(LIR_OprFact::illegalOpr)
1362 , _type(type)
1363 , _patch(patch) {
1364 assert(code == lir_move, "must be");
1365 set_kind(kind);
1366 }
1367
1368 LIR_Op1(LIR_Code code, LIR_Opr opr, CodeEmitInfo* info)
1369 : LIR_Op(code, LIR_OprFact::illegalOpr, info)
1370 , _opr(opr)
1371 , _tmp(LIR_OprFact::illegalOpr)
1372 , _type(T_ILLEGAL)
1373 , _patch(lir_patch_none) { assert(is_in_range(code, begin_op1, end_op1), "code check"); }
1374
1375 LIR_Opr in_opr() const { return _opr; }
1376 LIR_Opr tmp_opr() const { return _tmp; }
1377 LIR_PatchCode patch_code() const { return _patch; }
1378 BasicType type() const { return _type; }
1379
1380 LIR_MoveKind move_kind() const {
1381 assert(code() == lir_move, "must be");
1382 return (LIR_MoveKind)_flags;
1383 }
1384
1385 virtual bool is_patching() { return _patch != lir_patch_none; }
1386 virtual void emit_code(LIR_Assembler* masm);
1387 virtual LIR_Op1* as_Op1() { return this; }
1388 virtual const char * name() const PRODUCT_RETURN_NULL;
1389
1390 void set_in_opr(LIR_Opr opr) { _opr = opr; }
1391
1392 virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1393 virtual void verify() const;
1394 };
1395
1396
1397 // for runtime calls
1398 class LIR_OpRTCall: public LIR_OpCall {
1399 friend class LIR_OpVisitState;
1400
1401 private:
1402 LIR_Opr _tmp;
1403 public:
1404 LIR_OpRTCall(address addr, LIR_Opr tmp,
1405 LIR_Opr result, LIR_OprList* arguments, CodeEmitInfo* info = nullptr)
1406 : LIR_OpCall(lir_rtcall, addr, result, arguments, info)
1407 , _tmp(tmp) {}
1408
1409 virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1410 virtual void emit_code(LIR_Assembler* masm);
1411 virtual LIR_OpRTCall* as_OpRTCall() { return this; }
1412
1413 LIR_Opr tmp() const { return _tmp; }
1414
1415 virtual void verify() const;
1416 };
1417
1418
1419
1420 class LIR_OpReturn: public LIR_Op1 {
1421 friend class LIR_OpVisitState;
1422
1423 private:
1424 C1SafepointPollStub* _stub;
1425
1426 public:
1427 LIR_OpReturn(LIR_Opr opr);
1428
1429 C1SafepointPollStub* stub() const { return _stub; }
1430 virtual LIR_OpReturn* as_OpReturn() { return this; }
1431 };
1432
1433 class ConversionStub;
1434
1435 class LIR_OpConvert: public LIR_Op1 {
1436 friend class LIR_OpVisitState;
1437
1438 private:
1439 Bytecodes::Code _bytecode;
1440 ConversionStub* _stub;
1441
1442 public:
1443 LIR_OpConvert(Bytecodes::Code code, LIR_Opr opr, LIR_Opr result, ConversionStub* stub)
1444 : LIR_Op1(lir_convert, opr, result)
1445 , _bytecode(code)
1446 , _stub(stub) {}
1447
1448 Bytecodes::Code bytecode() const { return _bytecode; }
1449 ConversionStub* stub() const { return _stub; }
1450
1451 virtual void emit_code(LIR_Assembler* masm);
1452 virtual LIR_OpConvert* as_OpConvert() { return this; }
1453 virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1454
1455 static void print_bytecode(outputStream* out, Bytecodes::Code code) PRODUCT_RETURN;
1456 };
1457
1458
1459 // LIR_OpAllocObj
1460 class LIR_OpAllocObj : public LIR_Op1 {
1461 friend class LIR_OpVisitState;
1462
1463 private:
1464 LIR_Opr _tmp1;
1465 LIR_Opr _tmp2;
1466 LIR_Opr _tmp3;
1467 LIR_Opr _tmp4;
1468 int _hdr_size;
1469 int _obj_size;
1470 CodeStub* _stub;
1471 bool _init_check;
1472
1473 public:
1474 LIR_OpAllocObj(LIR_Opr klass, LIR_Opr result,
1475 LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4,
1476 int hdr_size, int obj_size, bool init_check, CodeStub* stub)
1477 : LIR_Op1(lir_alloc_object, klass, result)
1478 , _tmp1(t1)
1479 , _tmp2(t2)
1480 , _tmp3(t3)
1481 , _tmp4(t4)
1482 , _hdr_size(hdr_size)
1483 , _obj_size(obj_size)
1484 , _stub(stub)
1485 , _init_check(init_check) { }
1486
1487 LIR_Opr klass() const { return in_opr(); }
1488 LIR_Opr obj() const { return result_opr(); }
1489 LIR_Opr tmp1() const { return _tmp1; }
1490 LIR_Opr tmp2() const { return _tmp2; }
1491 LIR_Opr tmp3() const { return _tmp3; }
1492 LIR_Opr tmp4() const { return _tmp4; }
1493 int header_size() const { return _hdr_size; }
1494 int object_size() const { return _obj_size; }
1495 bool init_check() const { return _init_check; }
1496 CodeStub* stub() const { return _stub; }
1497
1498 virtual void emit_code(LIR_Assembler* masm);
1499 virtual LIR_OpAllocObj * as_OpAllocObj () { return this; }
1500 virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1501 };
1502
1503
1504 // LIR_OpTypeCheck
1505 class LIR_OpTypeCheck: public LIR_Op {
1506 friend class LIR_OpVisitState;
1507
1508 private:
1509 LIR_Opr _object;
1510 LIR_Opr _array;
1511 ciKlass* _klass;
1512 LIR_Opr _tmp1;
1513 LIR_Opr _tmp2;
1514 LIR_Opr _tmp3;
1515 CodeEmitInfo* _info_for_patch;
1516 CodeEmitInfo* _info_for_exception;
1517 CodeStub* _stub;
1518 ciMethod* _profiled_method;
1519 int _profiled_bci;
1520 bool _should_profile;
1521 bool _fast_check;
1522
1523 public:
1524 LIR_OpTypeCheck(LIR_Code code, LIR_Opr result, LIR_Opr object, ciKlass* klass,
1525 LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
1526 CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub);
1527 LIR_OpTypeCheck(LIR_Code code, LIR_Opr object, LIR_Opr array,
1528 LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception);
1529
1530 LIR_Opr object() const { return _object; }
1531 LIR_Opr array() const { assert(code() == lir_store_check, "not valid"); return _array; }
1532 LIR_Opr tmp1() const { return _tmp1; }
1533 LIR_Opr tmp2() const { return _tmp2; }
1534 LIR_Opr tmp3() const { return _tmp3; }
1535 ciKlass* klass() const { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _klass; }
1536 bool fast_check() const { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _fast_check; }
1537 CodeEmitInfo* info_for_patch() const { return _info_for_patch; }
1538 CodeEmitInfo* info_for_exception() const { return _info_for_exception; }
1539 CodeStub* stub() const { return _stub; }
1540
1541 // MethodData* profiling
1542 void set_profiled_method(ciMethod *method) { _profiled_method = method; }
1543 void set_profiled_bci(int bci) { _profiled_bci = bci; }
1544 void set_should_profile(bool b) { _should_profile = b; }
1545 ciMethod* profiled_method() const { return _profiled_method; }
1546 int profiled_bci() const { return _profiled_bci; }
1547 bool should_profile() const { return _should_profile; }
1548
1549 virtual bool is_patching() { return _info_for_patch != nullptr; }
1550 virtual void emit_code(LIR_Assembler* masm);
1551 virtual LIR_OpTypeCheck* as_OpTypeCheck() { return this; }
1552 void print_instr(outputStream* out) const PRODUCT_RETURN;
1553 };
1554
1555 // LIR_Op2
1556 class LIR_Op2: public LIR_Op {
1557 friend class LIR_OpVisitState;
1558
1559 protected:
1560 LIR_Opr _opr1;
1561 LIR_Opr _opr2;
1562 LIR_Opr _tmp1;
1563 LIR_Opr _tmp2;
1564 LIR_Opr _tmp3;
1565 LIR_Opr _tmp4;
1566 LIR_Opr _tmp5;
1567 LIR_Condition _condition;
1568 BasicType _type;
1569
1570 void verify() const;
1571
1572 public:
1573 LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, CodeEmitInfo* info = nullptr, BasicType type = T_ILLEGAL)
1574 : LIR_Op(code, LIR_OprFact::illegalOpr, info)
1575 , _opr1(opr1)
1576 , _opr2(opr2)
1577 , _tmp1(LIR_OprFact::illegalOpr)
1578 , _tmp2(LIR_OprFact::illegalOpr)
1579 , _tmp3(LIR_OprFact::illegalOpr)
1580 , _tmp4(LIR_OprFact::illegalOpr)
1581 , _tmp5(LIR_OprFact::illegalOpr)
1582 , _condition(condition)
1583 , _type(type) {
1584 assert(code == lir_cmp || code == lir_branch || code == lir_cond_float_branch || code == lir_assert, "code check");
1585 }
1586
1587 LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type)
1588 : LIR_Op(code, result, nullptr)
1589 , _opr1(opr1)
1590 , _opr2(opr2)
1591 , _tmp1(LIR_OprFact::illegalOpr)
1592 , _tmp2(LIR_OprFact::illegalOpr)
1593 , _tmp3(LIR_OprFact::illegalOpr)
1594 , _tmp4(LIR_OprFact::illegalOpr)
1595 , _tmp5(LIR_OprFact::illegalOpr)
1596 , _condition(condition)
1597 , _type(type) {
1598 assert(code == lir_cmove, "code check");
1599 assert(type != T_ILLEGAL, "cmove should have type");
1600 }
1601
1602 LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result = LIR_OprFact::illegalOpr,
1603 CodeEmitInfo* info = nullptr, BasicType type = T_ILLEGAL)
1604 : LIR_Op(code, result, info)
1605 , _opr1(opr1)
1606 , _opr2(opr2)
1607 , _tmp1(LIR_OprFact::illegalOpr)
1608 , _tmp2(LIR_OprFact::illegalOpr)
1609 , _tmp3(LIR_OprFact::illegalOpr)
1610 , _tmp4(LIR_OprFact::illegalOpr)
1611 , _tmp5(LIR_OprFact::illegalOpr)
1612 , _condition(lir_cond_unknown)
1613 , _type(type) {
1614 assert(code != lir_cmp && code != lir_branch && code != lir_cond_float_branch && is_in_range(code, begin_op2, end_op2), "code check");
1615 }
1616
1617 LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, LIR_Opr tmp1, LIR_Opr tmp2 = LIR_OprFact::illegalOpr,
1618 LIR_Opr tmp3 = LIR_OprFact::illegalOpr, LIR_Opr tmp4 = LIR_OprFact::illegalOpr, LIR_Opr tmp5 = LIR_OprFact::illegalOpr)
1619 : LIR_Op(code, result, nullptr)
1620 , _opr1(opr1)
1621 , _opr2(opr2)
1622 , _tmp1(tmp1)
1623 , _tmp2(tmp2)
1624 , _tmp3(tmp3)
1625 , _tmp4(tmp4)
1626 , _tmp5(tmp5)
1627 , _condition(lir_cond_unknown)
1628 , _type(T_ILLEGAL) {
1629 assert(code != lir_cmp && code != lir_branch && code != lir_cond_float_branch && is_in_range(code, begin_op2, end_op2), "code check");
1630 }
1631
1632 LIR_Opr in_opr1() const { return _opr1; }
1633 LIR_Opr in_opr2() const { return _opr2; }
1634 BasicType type() const { return _type; }
1635 LIR_Opr tmp1_opr() const { return _tmp1; }
1636 LIR_Opr tmp2_opr() const { return _tmp2; }
1637 LIR_Opr tmp3_opr() const { return _tmp3; }
1638 LIR_Opr tmp4_opr() const { return _tmp4; }
1639 LIR_Opr tmp5_opr() const { return _tmp5; }
1640 LIR_Condition condition() const {
1641 assert(code() == lir_cmp || code() == lir_branch || code() == lir_cond_float_branch || code() == lir_assert, "only valid for branch and assert"); return _condition;
1642 }
1643 void set_condition(LIR_Condition condition) {
1644 assert(code() == lir_cmp || code() == lir_branch || code() == lir_cond_float_branch, "only valid for branch"); _condition = condition;
1645 }
1646
1647 void set_in_opr1(LIR_Opr opr) { _opr1 = opr; }
1648 void set_in_opr2(LIR_Opr opr) { _opr2 = opr; }
1649
1650 virtual void emit_code(LIR_Assembler* masm);
1651 virtual LIR_Op2* as_Op2() { return this; }
1652 virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1653 };
1654
1655 class LIR_OpBranch: public LIR_Op2 {
1656 friend class LIR_OpVisitState;
1657
1658 private:
1659 Label* _label;
1660 BlockBegin* _block; // if this is a branch to a block, this is the block
1661 BlockBegin* _ublock; // if this is a float-branch, this is the unordered block
1662 CodeStub* _stub; // if this is a branch to a stub, this is the stub
1663
1664 public:
1665 LIR_OpBranch(LIR_Condition cond, Label* lbl)
1666 : LIR_Op2(lir_branch, cond, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, (CodeEmitInfo*) nullptr)
1667 , _label(lbl)
1668 , _block(nullptr)
1669 , _ublock(nullptr)
1670 , _stub(nullptr) { }
1671
1672 LIR_OpBranch(LIR_Condition cond, BlockBegin* block);
1673 LIR_OpBranch(LIR_Condition cond, CodeStub* stub);
1674
1675 // for unordered comparisons
1676 LIR_OpBranch(LIR_Condition cond, BlockBegin* block, BlockBegin* ublock);
1677
1678 LIR_Condition cond() const {
1679 return condition();
1680 }
1681
1682 void set_cond(LIR_Condition cond) {
1683 set_condition(cond);
1684 }
1685
1686 Label* label() const { return _label; }
1687 BlockBegin* block() const { return _block; }
1688 BlockBegin* ublock() const { return _ublock; }
1689 CodeStub* stub() const { return _stub; }
1690
1691 void change_block(BlockBegin* b);
1692 void change_ublock(BlockBegin* b);
1693 void negate_cond();
1694
1695 virtual void emit_code(LIR_Assembler* masm);
1696 virtual LIR_OpBranch* as_OpBranch() { return this; }
1697 virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1698 };
1699
1700 class LIR_OpAllocArray : public LIR_Op {
1701 friend class LIR_OpVisitState;
1702
1703 private:
1704 LIR_Opr _klass;
1705 LIR_Opr _len;
1706 LIR_Opr _tmp1;
1707 LIR_Opr _tmp2;
1708 LIR_Opr _tmp3;
1709 LIR_Opr _tmp4;
1710 CodeStub* _stub;
1711 BasicType _type;
1712 bool _zero_array;
1713
1714 public:
1715 LIR_OpAllocArray(LIR_Opr klass, LIR_Opr len, LIR_Opr result, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, BasicType type, CodeStub* stub, bool zero_array)
1716 : LIR_Op(lir_alloc_array, result, nullptr)
1717 , _klass(klass)
1718 , _len(len)
1719 , _tmp1(t1)
1720 , _tmp2(t2)
1721 , _tmp3(t3)
1722 , _tmp4(t4)
1723 , _stub(stub)
1724 , _type(type)
1725 , _zero_array(zero_array) {}
1726
1727 LIR_Opr klass() const { return _klass; }
1728 LIR_Opr len() const { return _len; }
1729 LIR_Opr obj() const { return result_opr(); }
1730 LIR_Opr tmp1() const { return _tmp1; }
1731 LIR_Opr tmp2() const { return _tmp2; }
1732 LIR_Opr tmp3() const { return _tmp3; }
1733 LIR_Opr tmp4() const { return _tmp4; }
1734 BasicType type() const { return _type; }
1735 CodeStub* stub() const { return _stub; }
1736 bool zero_array() const { return _zero_array; }
1737
1738 virtual void emit_code(LIR_Assembler* masm);
1739 virtual LIR_OpAllocArray * as_OpAllocArray () { return this; }
1740 virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1741 };
1742
1743
1744 class LIR_Op3: public LIR_Op {
1745 friend class LIR_OpVisitState;
1746
1747 private:
1748 LIR_Opr _opr1;
1749 LIR_Opr _opr2;
1750 LIR_Opr _opr3;
1751 public:
1752 LIR_Op3(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr opr3, LIR_Opr result, CodeEmitInfo* info = nullptr)
1753 : LIR_Op(code, result, info)
1754 , _opr1(opr1)
1755 , _opr2(opr2)
1756 , _opr3(opr3) { assert(is_in_range(code, begin_op3, end_op3), "code check"); }
1757 LIR_Opr in_opr1() const { return _opr1; }
1758 LIR_Opr in_opr2() const { return _opr2; }
1759 LIR_Opr in_opr3() const { return _opr3; }
1760
1761 virtual void emit_code(LIR_Assembler* masm);
1762 virtual LIR_Op3* as_Op3() { return this; }
1763 virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1764 };
1765
1766 class LIR_Op4: public LIR_Op {
1767 friend class LIR_OpVisitState;
1768 protected:
1769 LIR_Opr _opr1;
1770 LIR_Opr _opr2;
1771 LIR_Opr _opr3;
1772 LIR_Opr _opr4;
1773 LIR_Opr _tmp1;
1774 LIR_Opr _tmp2;
1775 LIR_Opr _tmp3;
1776 LIR_Opr _tmp4;
1777 LIR_Opr _tmp5;
1778 LIR_Condition _condition;
1779 BasicType _type;
1780
1781 public:
1782 LIR_Op4(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr opr3, LIR_Opr opr4,
1783 LIR_Opr result, BasicType type)
1784 : LIR_Op(code, result, nullptr)
1785 , _opr1(opr1)
1786 , _opr2(opr2)
1787 , _opr3(opr3)
1788 , _opr4(opr4)
1789 , _tmp1(LIR_OprFact::illegalOpr)
1790 , _tmp2(LIR_OprFact::illegalOpr)
1791 , _tmp3(LIR_OprFact::illegalOpr)
1792 , _tmp4(LIR_OprFact::illegalOpr)
1793 , _tmp5(LIR_OprFact::illegalOpr)
1794 , _condition(condition)
1795 , _type(type) {
1796 assert(code == lir_cmove, "code check");
1797 assert(type != T_ILLEGAL, "cmove should have type");
1798 }
1799
1800 LIR_Opr in_opr1() const { return _opr1; }
1801 LIR_Opr in_opr2() const { return _opr2; }
1802 LIR_Opr in_opr3() const { return _opr3; }
1803 LIR_Opr in_opr4() const { return _opr4; }
1804 BasicType type() const { return _type; }
1805 LIR_Opr tmp1_opr() const { return _tmp1; }
1806 LIR_Opr tmp2_opr() const { return _tmp2; }
1807 LIR_Opr tmp3_opr() const { return _tmp3; }
1808 LIR_Opr tmp4_opr() const { return _tmp4; }
1809 LIR_Opr tmp5_opr() const { return _tmp5; }
1810
1811 LIR_Condition condition() const { return _condition; }
1812 void set_condition(LIR_Condition condition) { _condition = condition; }
1813
1814 void set_in_opr1(LIR_Opr opr) { _opr1 = opr; }
1815 void set_in_opr2(LIR_Opr opr) { _opr2 = opr; }
1816 void set_in_opr3(LIR_Opr opr) { _opr3 = opr; }
1817 void set_in_opr4(LIR_Opr opr) { _opr4 = opr; }
1818 virtual void emit_code(LIR_Assembler* masm);
1819 virtual LIR_Op4* as_Op4() { return this; }
1820
1821 virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1822 };
1823
1824 //--------------------------------
1825 class LabelObj: public CompilationResourceObj {
1826 private:
1827 Label _label;
1828 public:
1829 LabelObj() {}
1830 Label* label() { return &_label; }
1831 };
1832
1833
1834 class LIR_OpLock: public LIR_Op {
1835 friend class LIR_OpVisitState;
1836
1837 private:
1838 LIR_Opr _hdr;
1839 LIR_Opr _obj;
1840 LIR_Opr _lock;
1841 LIR_Opr _scratch;
1842 CodeStub* _stub;
1843 public:
1844 LIR_OpLock(LIR_Code code, LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info)
1845 : LIR_Op(code, LIR_OprFact::illegalOpr, info)
1846 , _hdr(hdr)
1847 , _obj(obj)
1848 , _lock(lock)
1849 , _scratch(scratch)
1850 , _stub(stub) {}
1851
1852 LIR_Opr hdr_opr() const { return _hdr; }
1853 LIR_Opr obj_opr() const { return _obj; }
1854 LIR_Opr lock_opr() const { return _lock; }
1855 LIR_Opr scratch_opr() const { return _scratch; }
1856 CodeStub* stub() const { return _stub; }
1857
1858 virtual void emit_code(LIR_Assembler* masm);
1859 virtual LIR_OpLock* as_OpLock() { return this; }
1860 void print_instr(outputStream* out) const PRODUCT_RETURN;
1861 };
1862
1863 class LIR_OpLoadKlass: public LIR_Op {
1864 friend class LIR_OpVisitState;
1865
1866 private:
1867 LIR_Opr _obj;
1868 public:
1869 LIR_OpLoadKlass(LIR_Opr obj, LIR_Opr result, CodeEmitInfo* info)
1870 : LIR_Op(lir_load_klass, result, info)
1871 , _obj(obj)
1872 {}
1873
1874 LIR_Opr obj() const { return _obj; }
1875
1876 virtual LIR_OpLoadKlass* as_OpLoadKlass() { return this; }
1877 virtual void emit_code(LIR_Assembler* masm);
1878 void print_instr(outputStream* out) const PRODUCT_RETURN;
1879 };
1880
1881 #ifdef ASSERT
1882 // LIR_OpAssert
1883 class LIR_OpAssert : public LIR_Op2 {
1884 friend class LIR_OpVisitState;
1885
1886 private:
1887 const char* _msg;
1888 bool _halt;
1889
1890 public:
1891 LIR_OpAssert(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, const char* msg, bool halt)
1892 : LIR_Op2(lir_assert, condition, opr1, opr2)
1893 , _msg(msg)
1894 , _halt(halt) {
1895 }
1896
1897 const char* msg() const { return _msg; }
1898 bool halt() const { return _halt; }
1899
1900 virtual void emit_code(LIR_Assembler* masm);
1901 virtual LIR_OpAssert* as_OpAssert() { return this; }
1902 virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1903 };
1904 #endif
1905
1906 // LIR_OpCompareAndSwap
1907 class LIR_OpCompareAndSwap : public LIR_Op {
1908 friend class LIR_OpVisitState;
1909
1910 private:
1911 LIR_Opr _addr;
1912 LIR_Opr _cmp_value;
1913 LIR_Opr _new_value;
1914 LIR_Opr _tmp1;
1915 LIR_Opr _tmp2;
1916
1917 public:
1918 LIR_OpCompareAndSwap(LIR_Code code, LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
1919 LIR_Opr t1, LIR_Opr t2, LIR_Opr result)
1920 : LIR_Op(code, result, nullptr) // no result, no info
1921 , _addr(addr)
1922 , _cmp_value(cmp_value)
1923 , _new_value(new_value)
1924 , _tmp1(t1)
1925 , _tmp2(t2) { }
1926
1927 LIR_Opr addr() const { return _addr; }
1928 LIR_Opr cmp_value() const { return _cmp_value; }
1929 LIR_Opr new_value() const { return _new_value; }
1930 LIR_Opr tmp1() const { return _tmp1; }
1931 LIR_Opr tmp2() const { return _tmp2; }
1932
1933 virtual void emit_code(LIR_Assembler* masm);
1934 virtual LIR_OpCompareAndSwap * as_OpCompareAndSwap () { return this; }
1935 virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1936 };
1937
1938 // LIR_OpProfileCall
1939 class LIR_OpProfileCall : public LIR_Op {
1940 friend class LIR_OpVisitState;
1941
1942 private:
1943 ciMethod* _profiled_method;
1944 int _profiled_bci;
1945 ciMethod* _profiled_callee;
1946 LIR_Opr _mdo;
1947 LIR_Opr _recv;
1948 LIR_Opr _tmp1;
1949 ciKlass* _known_holder;
1950
1951 public:
1952 // Destroys recv
1953 LIR_OpProfileCall(ciMethod* profiled_method, int profiled_bci, ciMethod* profiled_callee, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* known_holder)
1954 : LIR_Op(lir_profile_call, LIR_OprFact::illegalOpr, nullptr) // no result, no info
1955 , _profiled_method(profiled_method)
1956 , _profiled_bci(profiled_bci)
1957 , _profiled_callee(profiled_callee)
1958 , _mdo(mdo)
1959 , _recv(recv)
1960 , _tmp1(t1)
1961 , _known_holder(known_holder) { }
1962
1963 ciMethod* profiled_method() const { return _profiled_method; }
1964 int profiled_bci() const { return _profiled_bci; }
1965 ciMethod* profiled_callee() const { return _profiled_callee; }
1966 LIR_Opr mdo() const { return _mdo; }
1967 LIR_Opr recv() const { return _recv; }
1968 LIR_Opr tmp1() const { return _tmp1; }
1969 ciKlass* known_holder() const { return _known_holder; }
1970
1971 virtual void emit_code(LIR_Assembler* masm);
1972 virtual LIR_OpProfileCall* as_OpProfileCall() { return this; }
1973 virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1974 bool should_profile_receiver_type() const {
1975 bool callee_is_static = _profiled_callee->is_loaded() && _profiled_callee->is_static();
1976 bool callee_is_private = _profiled_callee->is_loaded() && _profiled_callee->is_private();
1977 Bytecodes::Code bc = _profiled_method->java_code_at_bci(_profiled_bci);
1978 bool call_is_virtual = (bc == Bytecodes::_invokevirtual && !callee_is_private) || bc == Bytecodes::_invokeinterface;
1979 return C1ProfileVirtualCalls && call_is_virtual && !callee_is_static;
1980 }
1981 };
1982
1983 // LIR_OpProfileType
1984 class LIR_OpProfileType : public LIR_Op {
1985 friend class LIR_OpVisitState;
1986
1987 private:
1988 LIR_Opr _mdp;
1989 LIR_Opr _obj;
1990 LIR_Opr _tmp;
1991 ciKlass* _exact_klass; // non null if we know the klass statically (no need to load it from _obj)
1992 intptr_t _current_klass; // what the profiling currently reports
1993 bool _not_null; // true if we know statically that _obj cannot be null
1994 bool _no_conflict; // true if we're profling parameters, _exact_klass is not null and we know
1995 // _exact_klass it the only possible type for this parameter in any context.
1996
1997 public:
1998 // Destroys recv
1999 LIR_OpProfileType(LIR_Opr mdp, LIR_Opr obj, ciKlass* exact_klass, intptr_t current_klass, LIR_Opr tmp, bool not_null, bool no_conflict)
2000 : LIR_Op(lir_profile_type, LIR_OprFact::illegalOpr, nullptr) // no result, no info
2001 , _mdp(mdp)
2002 , _obj(obj)
2003 , _tmp(tmp)
2004 , _exact_klass(exact_klass)
2005 , _current_klass(current_klass)
2006 , _not_null(not_null)
2007 , _no_conflict(no_conflict) { }
2008
2009 LIR_Opr mdp() const { return _mdp; }
2010 LIR_Opr obj() const { return _obj; }
2011 LIR_Opr tmp() const { return _tmp; }
2012 ciKlass* exact_klass() const { return _exact_klass; }
2013 intptr_t current_klass() const { return _current_klass; }
2014 bool not_null() const { return _not_null; }
2015 bool no_conflict() const { return _no_conflict; }
2016
2017 virtual void emit_code(LIR_Assembler* masm);
2018 virtual LIR_OpProfileType* as_OpProfileType() { return this; }
2019 virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
2020 };
2021
2022 class LIR_InsertionBuffer;
2023
2024 //--------------------------------LIR_List---------------------------------------------------
2025 // Maintains a list of LIR instructions (one instance of LIR_List per basic block)
2026 // The LIR instructions are appended by the LIR_List class itself;
2027 //
2028 // Notes:
2029 // - all offsets are(should be) in bytes
2030 // - local positions are specified with an offset, with offset 0 being local 0
2031
2032 class LIR_List: public CompilationResourceObj {
2033 private:
2034 LIR_OpList _operations;
2035
2036 Compilation* _compilation;
2037 #ifndef PRODUCT
2038 BlockBegin* _block;
2039 #endif
2040 #ifdef ASSERT
2041 const char * _file;
2042 int _line;
2043 #endif
2044 #ifdef RISCV
2045 LIR_Opr _cmp_opr1;
2046 LIR_Opr _cmp_opr2;
2047 #endif
2048
2049 public:
2050 void append(LIR_Op* op) {
2051 if (op->source() == nullptr)
2052 op->set_source(_compilation->current_instruction());
2053 #ifndef PRODUCT
2054 if (PrintIRWithLIR) {
2055 _compilation->maybe_print_current_instruction();
2056 op->print(); tty->cr();
2057 }
2058 #endif // PRODUCT
2059
2060 #ifdef RISCV
2061 set_cmp_oprs(op);
2062 // lir_cmp set cmp oprs only on riscv
2063 if (op->code() == lir_cmp) return;
2064 #endif
2065
2066 _operations.append(op);
2067
2068 #ifdef ASSERT
2069 op->verify();
2070 op->set_file_and_line(_file, _line);
2071 _file = nullptr;
2072 _line = 0;
2073 #endif
2074 }
2075
2076 LIR_List(Compilation* compilation, BlockBegin* block = nullptr);
2077
2078 #ifdef ASSERT
2079 void set_file_and_line(const char * file, int line);
2080 #endif
2081
2082 #ifdef RISCV
2083 void set_cmp_oprs(LIR_Op* op);
2084 #endif
2085
2086 //---------- accessors ---------------
2087 LIR_OpList* instructions_list() { return &_operations; }
2088 int length() const { return _operations.length(); }
2089 LIR_Op* at(int i) const { return _operations.at(i); }
2090
2091 NOT_PRODUCT(BlockBegin* block() const { return _block; });
2092
2093 // insert LIR_Ops in buffer to right places in LIR_List
2094 void append(LIR_InsertionBuffer* buffer);
2095
2096 //---------- mutators ---------------
2097 void insert_before(int i, LIR_List* op_list) { _operations.insert_before(i, op_list->instructions_list()); }
2098 void insert_before(int i, LIR_Op* op) { _operations.insert_before(i, op); }
2099 void remove_at(int i) { _operations.remove_at(i); }
2100
2101 //---------- printing -------------
2102 void print_instructions() PRODUCT_RETURN;
2103
2104
2105 //---------- instructions -------------
2106 void call_opt_virtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
2107 address dest, LIR_OprList* arguments,
2108 CodeEmitInfo* info) {
2109 append(new LIR_OpJavaCall(lir_optvirtual_call, method, receiver, result, dest, arguments, info));
2110 }
2111 void call_static(ciMethod* method, LIR_Opr result,
2112 address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
2113 append(new LIR_OpJavaCall(lir_static_call, method, LIR_OprFact::illegalOpr, result, dest, arguments, info));
2114 }
2115 void call_icvirtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
2116 address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
2117 append(new LIR_OpJavaCall(lir_icvirtual_call, method, receiver, result, dest, arguments, info));
2118 }
2119 void call_dynamic(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
2120 address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
2121 append(new LIR_OpJavaCall(lir_dynamic_call, method, receiver, result, dest, arguments, info));
2122 }
2123
2124 void get_thread(LIR_Opr result) { append(new LIR_Op0(lir_get_thread, result)); }
2125 void membar() { append(new LIR_Op0(lir_membar)); }
2126 void membar_acquire() { append(new LIR_Op0(lir_membar_acquire)); }
2127 void membar_release() { append(new LIR_Op0(lir_membar_release)); }
2128 void membar_loadload() { append(new LIR_Op0(lir_membar_loadload)); }
2129 void membar_storestore() { append(new LIR_Op0(lir_membar_storestore)); }
2130 void membar_loadstore() { append(new LIR_Op0(lir_membar_loadstore)); }
2131 void membar_storeload() { append(new LIR_Op0(lir_membar_storeload)); }
2132
2133 void nop() { append(new LIR_Op0(lir_nop)); }
2134
2135 void std_entry(LIR_Opr receiver) { append(new LIR_Op0(lir_std_entry, receiver)); }
2136 void osr_entry(LIR_Opr osrPointer) { append(new LIR_Op0(lir_osr_entry, osrPointer)); }
2137
2138 void on_spin_wait() { append(new LIR_Op0(lir_on_spin_wait)); }
2139
2140 void branch_destination(Label* lbl) { append(new LIR_OpLabel(lbl)); }
2141
2142 void leal(LIR_Opr from, LIR_Opr result_reg, LIR_PatchCode patch_code = lir_patch_none, CodeEmitInfo* info = nullptr) { append(new LIR_Op1(lir_leal, from, result_reg, T_ILLEGAL, patch_code, info)); }
2143
2144 // result is a stack location for old backend and vreg for UseLinearScan
2145 // stack_loc_temp is an illegal register for old backend
2146 void move(LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = nullptr) { append(new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); }
2147 void move(LIR_Address* src, LIR_Opr dst, CodeEmitInfo* info = nullptr) { append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, src->type(), lir_patch_none, info)); }
2148 void move(LIR_Opr src, LIR_Address* dst, CodeEmitInfo* info = nullptr) { append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), dst->type(), lir_patch_none, info)); }
2149 void move_wide(LIR_Address* src, LIR_Opr dst, CodeEmitInfo* info = nullptr) {
2150 if (UseCompressedOops) {
2151 append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, src->type(), lir_patch_none, info, lir_move_wide));
2152 } else {
2153 move(src, dst, info);
2154 }
2155 }
2156 void move_wide(LIR_Opr src, LIR_Address* dst, CodeEmitInfo* info = nullptr) {
2157 if (UseCompressedOops) {
2158 append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), dst->type(), lir_patch_none, info, lir_move_wide));
2159 } else {
2160 move(src, dst, info);
2161 }
2162 }
2163 void volatile_move(LIR_Opr src, LIR_Opr dst, BasicType type, CodeEmitInfo* info = nullptr, LIR_PatchCode patch_code = lir_patch_none) { append(new LIR_Op1(lir_move, src, dst, type, patch_code, info, lir_move_volatile)); }
2164
2165 void oop2reg (jobject o, LIR_Opr reg) { assert(reg->type() == T_OBJECT, "bad reg"); append(new LIR_Op1(lir_move, LIR_OprFact::oopConst(o), reg)); }
2166 void oop2reg_patch(jobject o, LIR_Opr reg, CodeEmitInfo* info);
2167
2168 void metadata2reg (Metadata* o, LIR_Opr reg) { assert(reg->type() == T_METADATA, "bad reg"); append(new LIR_Op1(lir_move, LIR_OprFact::metadataConst(o), reg)); }
2169 void klass2reg_patch(Metadata* o, LIR_Opr reg, CodeEmitInfo* info);
2170
2171 void safepoint(LIR_Opr tmp, CodeEmitInfo* info) { append(new LIR_Op1(lir_safepoint, tmp, info)); }
2172 void return_op(LIR_Opr result) { append(new LIR_OpReturn(result)); }
2173
2174 void convert(Bytecodes::Code code, LIR_Opr left, LIR_Opr dst, ConversionStub* stub = nullptr/*, bool is_32bit = false*/) { append(new LIR_OpConvert(code, left, dst, stub)); }
2175
2176 void logical_and (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_and, left, right, dst)); }
2177 void logical_or (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_or, left, right, dst)); }
2178 void logical_xor (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_xor, left, right, dst)); }
2179
2180 void null_check(LIR_Opr opr, CodeEmitInfo* info, bool deoptimize_on_null = false);
2181 void throw_exception(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2182 append(new LIR_Op2(lir_throw, exceptionPC, exceptionOop, LIR_OprFact::illegalOpr, info));
2183 }
2184 void unwind_exception(LIR_Opr exceptionOop) {
2185 append(new LIR_Op1(lir_unwind, exceptionOop));
2186 }
2187
2188 void push(LIR_Opr opr) { append(new LIR_Op1(lir_push, opr)); }
2189 void pop(LIR_Opr reg) { append(new LIR_Op1(lir_pop, reg)); }
2190
2191 void cmp(LIR_Condition condition, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info = nullptr) {
2192 append(new LIR_Op2(lir_cmp, condition, left, right, info));
2193 }
2194 void cmp(LIR_Condition condition, LIR_Opr left, int right, CodeEmitInfo* info = nullptr) {
2195 cmp(condition, left, LIR_OprFact::intConst(right), info);
2196 }
2197
2198 void cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info);
2199 void cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Address* addr, CodeEmitInfo* info);
2200
2201 void cmove(LIR_Condition condition, LIR_Opr src1, LIR_Opr src2, LIR_Opr dst, BasicType type,
2202 LIR_Opr cmp_opr1 = LIR_OprFact::illegalOpr, LIR_Opr cmp_opr2 = LIR_OprFact::illegalOpr) {
2203 append(new LIR_Op4(lir_cmove, condition, src1, src2, cmp_opr1, cmp_opr2, dst, type));
2204 }
2205
2206 void cas_long(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
2207 LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr);
2208 void cas_obj(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
2209 LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr);
2210 void cas_int(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
2211 LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr);
2212
2213 void abs (LIR_Opr from, LIR_Opr to, LIR_Opr tmp) { append(new LIR_Op1(lir_abs , from, to, tmp)); }
2214 void negate(LIR_Opr from, LIR_Opr to, LIR_Opr tmp = LIR_OprFact::illegalOpr) { append(new LIR_Op1(lir_neg, from, to, tmp)); }
2215 void sqrt(LIR_Opr from, LIR_Opr to, LIR_Opr tmp) { append(new LIR_Op1(lir_sqrt, from, to, tmp)); }
2216 void fmad(LIR_Opr from, LIR_Opr from1, LIR_Opr from2, LIR_Opr to) { append(new LIR_Op3(lir_fmad, from, from1, from2, to)); }
2217 void fmaf(LIR_Opr from, LIR_Opr from1, LIR_Opr from2, LIR_Opr to) { append(new LIR_Op3(lir_fmaf, from, from1, from2, to)); }
2218 void f2hf(LIR_Opr from, LIR_Opr to, LIR_Opr tmp) { append(new LIR_Op1(lir_f2hf, from, to, tmp)); }
2219 void hf2f(LIR_Opr from, LIR_Opr to, LIR_Opr tmp) { append(new LIR_Op1(lir_hf2f, from, to, tmp)); }
2220
2221 void add (LIR_Opr left, LIR_Opr right, LIR_Opr res) { append(new LIR_Op2(lir_add, left, right, res)); }
2222 void sub (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = nullptr) { append(new LIR_Op2(lir_sub, left, right, res, info)); }
2223 void mul (LIR_Opr left, LIR_Opr right, LIR_Opr res) { append(new LIR_Op2(lir_mul, left, right, res)); }
2224 void mul (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_mul, left, right, res, tmp)); }
2225 void div (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = nullptr) { append(new LIR_Op2(lir_div, left, right, res, info)); }
2226 void div (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_div, left, right, res, tmp)); }
2227 void rem (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = nullptr) { append(new LIR_Op2(lir_rem, left, right, res, info)); }
2228
2229 void volatile_load_mem_reg(LIR_Address* address, LIR_Opr dst, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2230 void volatile_load_unsafe_reg(LIR_Opr base, LIR_Opr offset, LIR_Opr dst, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code);
2231
2232 void load(LIR_Address* addr, LIR_Opr src, CodeEmitInfo* info = nullptr, LIR_PatchCode patch_code = lir_patch_none);
2233
2234 void store_mem_int(jint v, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2235 void store_mem_oop(jobject o, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2236 void store(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info = nullptr, LIR_PatchCode patch_code = lir_patch_none);
2237 void volatile_store_mem_reg(LIR_Opr src, LIR_Address* address, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2238 void volatile_store_unsafe_reg(LIR_Opr src, LIR_Opr base, LIR_Opr offset, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code);
2239
2240 void idiv(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2241 void idiv(LIR_Opr left, int right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2242 void irem(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2243 void irem(LIR_Opr left, int right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2244
2245 void allocate_object(LIR_Opr dst, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, int header_size, int object_size, LIR_Opr klass, bool init_check, CodeStub* stub);
2246 void allocate_array(LIR_Opr dst, LIR_Opr len, LIR_Opr t1,LIR_Opr t2, LIR_Opr t3,LIR_Opr t4, BasicType type, LIR_Opr klass, CodeStub* stub, bool zero_array = true);
2247
2248 // jump is an unconditional branch
2249 void jump(BlockBegin* block) {
2250 append(new LIR_OpBranch(lir_cond_always, block));
2251 }
2252 void jump(CodeStub* stub) {
2253 append(new LIR_OpBranch(lir_cond_always, stub));
2254 }
2255 void branch(LIR_Condition cond, Label* lbl) {
2256 append(new LIR_OpBranch(cond, lbl));
2257 }
2258 // Should not be used for fp comparisons
2259 void branch(LIR_Condition cond, BlockBegin* block) {
2260 append(new LIR_OpBranch(cond, block));
2261 }
2262 // Should not be used for fp comparisons
2263 void branch(LIR_Condition cond, CodeStub* stub) {
2264 append(new LIR_OpBranch(cond, stub));
2265 }
2266 // Should only be used for fp comparisons
2267 void branch(LIR_Condition cond, BlockBegin* block, BlockBegin* unordered) {
2268 append(new LIR_OpBranch(cond, block, unordered));
2269 }
2270
2271 void shift_left(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
2272 void shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
2273 void unsigned_shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
2274
2275 void shift_left(LIR_Opr value, int count, LIR_Opr dst) { shift_left(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
2276 void shift_right(LIR_Opr value, int count, LIR_Opr dst) { shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
2277 void unsigned_shift_right(LIR_Opr value, int count, LIR_Opr dst) { unsigned_shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
2278
2279 void lcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_cmp_l2i, left, right, dst)); }
2280 void fcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst, bool is_unordered_less);
2281
2282 void call_runtime_leaf(address routine, LIR_Opr tmp, LIR_Opr result, LIR_OprList* arguments) {
2283 append(new LIR_OpRTCall(routine, tmp, result, arguments));
2284 }
2285
2286 void call_runtime(address routine, LIR_Opr tmp, LIR_Opr result,
2287 LIR_OprList* arguments, CodeEmitInfo* info) {
2288 append(new LIR_OpRTCall(routine, tmp, result, arguments, info));
2289 }
2290
2291 void load_stack_address_monitor(int monitor_ix, LIR_Opr dst) { append(new LIR_Op1(lir_monaddr, LIR_OprFact::intConst(monitor_ix), dst)); }
2292 void unlock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub);
2293 void lock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info);
2294
2295 void breakpoint() { append(new LIR_Op0(lir_breakpoint)); }
2296
2297 void arraycopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp, ciArrayKlass* expected_type, int flags, CodeEmitInfo* info) { append(new LIR_OpArrayCopy(src, src_pos, dst, dst_pos, length, tmp, expected_type, flags, info)); }
2298
2299 void update_crc32(LIR_Opr crc, LIR_Opr val, LIR_Opr res) { append(new LIR_OpUpdateCRC32(crc, val, res)); }
2300
2301 void instanceof(LIR_Opr result, LIR_Opr object, ciKlass* klass, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, CodeEmitInfo* info_for_patch, ciMethod* profiled_method, int profiled_bci);
2302 void store_check(LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception, ciMethod* profiled_method, int profiled_bci);
2303
2304 void checkcast (LIR_Opr result, LIR_Opr object, ciKlass* klass,
2305 LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
2306 CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub,
2307 ciMethod* profiled_method, int profiled_bci);
2308 // MethodData* profiling
2309 void profile_call(ciMethod* method, int bci, ciMethod* callee, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* cha_klass) {
2310 append(new LIR_OpProfileCall(method, bci, callee, mdo, recv, t1, cha_klass));
2311 }
2312 void profile_type(LIR_Address* mdp, LIR_Opr obj, ciKlass* exact_klass, intptr_t current_klass, LIR_Opr tmp, bool not_null, bool no_conflict) {
2313 append(new LIR_OpProfileType(LIR_OprFact::address(mdp), obj, exact_klass, current_klass, tmp, not_null, no_conflict));
2314 }
2315
2316 void xadd(LIR_Opr src, LIR_Opr add, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_xadd, src, add, res, tmp)); }
2317 void xchg(LIR_Opr src, LIR_Opr set, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_xchg, src, set, res, tmp)); }
2318
2319 void load_klass(LIR_Opr obj, LIR_Opr result, CodeEmitInfo* info) { append(new LIR_OpLoadKlass(obj, result, info)); }
2320
2321 #ifdef ASSERT
2322 void lir_assert(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, const char* msg, bool halt) { append(new LIR_OpAssert(condition, opr1, opr2, msg, halt)); }
2323 #endif
2324 };
2325
2326 void print_LIR(BlockList* blocks);
2327
2328 class LIR_InsertionBuffer : public CompilationResourceObj {
2329 private:
2330 LIR_List* _lir; // the lir list where ops of this buffer should be inserted later (null when uninitialized)
2331
2332 // list of insertion points. index and count are stored alternately:
2333 // _index_and_count[i * 2]: the index into lir list where "count" ops should be inserted
2334 // _index_and_count[i * 2 + 1]: the number of ops to be inserted at index
2335 intStack _index_and_count;
2336
2337 // the LIR_Ops to be inserted
2338 LIR_OpList _ops;
2339
2340 void append_new(int index, int count) { _index_and_count.append(index); _index_and_count.append(count); }
2341 void set_index_at(int i, int value) { _index_and_count.at_put((i << 1), value); }
2342 void set_count_at(int i, int value) { _index_and_count.at_put((i << 1) + 1, value); }
2343
2344 #ifdef ASSERT
2345 void verify();
2346 #endif
2347 public:
2348 LIR_InsertionBuffer() : _lir(nullptr), _index_and_count(8), _ops(8) { }
2349
2350 // must be called before using the insertion buffer
2351 void init(LIR_List* lir) { assert(!initialized(), "already initialized"); _lir = lir; _index_and_count.clear(); _ops.clear(); }
2352 bool initialized() const { return _lir != nullptr; }
2353 // called automatically when the buffer is appended to the LIR_List
2354 void finish() { _lir = nullptr; }
2355
2356 // accessors
2357 LIR_List* lir_list() const { return _lir; }
2358 int number_of_insertion_points() const { return _index_and_count.length() >> 1; }
2359 int index_at(int i) const { return _index_and_count.at((i << 1)); }
2360 int count_at(int i) const { return _index_and_count.at((i << 1) + 1); }
2361
2362 int number_of_ops() const { return _ops.length(); }
2363 LIR_Op* op_at(int i) const { return _ops.at(i); }
2364
2365 // append an instruction to the buffer
2366 void append(int index, LIR_Op* op);
2367
2368 // instruction
2369 void move(int index, LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = nullptr) { append(index, new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); }
2370 };
2371
2372
2373 //
2374 // LIR_OpVisitState is used for manipulating LIR_Ops in an abstract way.
2375 // Calling a LIR_Op's visit function with a LIR_OpVisitState causes
2376 // information about the input, output and temporaries used by the
2377 // op to be recorded. It also records whether the op has call semantics
2378 // and also records all the CodeEmitInfos used by this op.
2379 //
2380
2381
2382 class LIR_OpVisitState: public StackObj {
2383 public:
2384 typedef enum { inputMode, firstMode = inputMode, tempMode, outputMode, numModes, invalidMode = -1 } OprMode;
2385
2386 enum {
2387 maxNumberOfOperands = 21,
2388 maxNumberOfInfos = 4
2389 };
2390
2391 private:
2392 LIR_Op* _op;
2393
2394 // optimization: the operands and infos are not stored in a variable-length
2395 // list, but in a fixed-size array to save time of size checks and resizing
2396 int _oprs_len[numModes];
2397 LIR_Opr* _oprs_new[numModes][maxNumberOfOperands];
2398 int _info_len;
2399 CodeEmitInfo* _info_new[maxNumberOfInfos];
2400
2401 bool _has_call;
2402 bool _has_slow_case;
2403
2404
2405 // only include register operands
2406 // addresses are decomposed to the base and index registers
2407 // constants and stack operands are ignored
2408 void append(LIR_Opr& opr, OprMode mode) {
2409 assert(opr->is_valid(), "should not call this otherwise");
2410 assert(mode >= 0 && mode < numModes, "bad mode");
2411
2412 if (opr->is_register()) {
2413 assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow");
2414 _oprs_new[mode][_oprs_len[mode]++] = &opr;
2415
2416 } else if (opr->is_pointer()) {
2417 LIR_Address* address = opr->as_address_ptr();
2418 if (address != nullptr) {
2419 // special handling for addresses: add base and index register of the address
2420 // both are always input operands or temp if we want to extend
2421 // their liveness!
2422 if (mode == outputMode) {
2423 mode = inputMode;
2424 }
2425 assert (mode == inputMode || mode == tempMode, "input or temp only for addresses");
2426 if (address->_base->is_valid()) {
2427 assert(address->_base->is_register(), "must be");
2428 assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow");
2429 _oprs_new[mode][_oprs_len[mode]++] = &address->_base;
2430 }
2431 if (address->_index->is_valid()) {
2432 assert(address->_index->is_register(), "must be");
2433 assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow");
2434 _oprs_new[mode][_oprs_len[mode]++] = &address->_index;
2435 }
2436
2437 } else {
2438 assert(opr->is_constant(), "constant operands are not processed");
2439 }
2440 } else {
2441 assert(opr->is_stack(), "stack operands are not processed");
2442 }
2443 }
2444
2445 void append(CodeEmitInfo* info) {
2446 assert(info != nullptr, "should not call this otherwise");
2447 assert(_info_len < maxNumberOfInfos, "array overflow");
2448 _info_new[_info_len++] = info;
2449 }
2450
2451 public:
2452 LIR_OpVisitState() { reset(); }
2453
2454 LIR_Op* op() const { return _op; }
2455 void set_op(LIR_Op* op) { reset(); _op = op; }
2456
2457 bool has_call() const { return _has_call; }
2458 bool has_slow_case() const { return _has_slow_case; }
2459
2460 void reset() {
2461 _op = nullptr;
2462 _has_call = false;
2463 _has_slow_case = false;
2464
2465 _oprs_len[inputMode] = 0;
2466 _oprs_len[tempMode] = 0;
2467 _oprs_len[outputMode] = 0;
2468 _info_len = 0;
2469 }
2470
2471
2472 int opr_count(OprMode mode) const {
2473 assert(mode >= 0 && mode < numModes, "bad mode");
2474 return _oprs_len[mode];
2475 }
2476
2477 LIR_Opr opr_at(OprMode mode, int index) const {
2478 assert(mode >= 0 && mode < numModes, "bad mode");
2479 assert(index >= 0 && index < _oprs_len[mode], "index out of bound");
2480 return *_oprs_new[mode][index];
2481 }
2482
2483 void set_opr_at(OprMode mode, int index, LIR_Opr opr) const {
2484 assert(mode >= 0 && mode < numModes, "bad mode");
2485 assert(index >= 0 && index < _oprs_len[mode], "index out of bound");
2486 *_oprs_new[mode][index] = opr;
2487 }
2488
2489 int info_count() const {
2490 return _info_len;
2491 }
2492
2493 CodeEmitInfo* info_at(int index) const {
2494 assert(index < _info_len, "index out of bounds");
2495 return _info_new[index];
2496 }
2497
2498 XHandlers* all_xhandler();
2499
2500 // collects all register operands of the instruction
2501 void visit(LIR_Op* op);
2502
2503 #ifdef ASSERT
2504 // check that an operation has no operands
2505 bool no_operands(LIR_Op* op);
2506 #endif
2507
2508 // LIR_Op visitor functions use these to fill in the state
2509 void do_input(LIR_Opr& opr) { append(opr, LIR_OpVisitState::inputMode); }
2510 void do_output(LIR_Opr& opr) { append(opr, LIR_OpVisitState::outputMode); }
2511 void do_temp(LIR_Opr& opr) { append(opr, LIR_OpVisitState::tempMode); }
2512 void do_info(CodeEmitInfo* info) { append(info); }
2513
2514 void do_stub(CodeStub* stub);
2515 void do_call() { _has_call = true; }
2516 void do_slow_case() { _has_slow_case = true; }
2517 void do_slow_case(CodeEmitInfo* info) {
2518 _has_slow_case = true;
2519 append(info);
2520 }
2521 };
2522
2523
2524 inline LIR_Opr LIR_Opr::illegalOpr() { return LIR_OprFact::illegalOpr; };
2525
2526 inline LIR_Opr LIR_Opr::nullOpr() { return LIR_OprFact::nullOpr; };
2527
2528 #endif // SHARE_C1_C1_LIR_HPP