1 /* 2 * Copyright (c) 2000, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_C1_C1_LIR_HPP 26 #define SHARE_C1_C1_LIR_HPP 27 28 #include "c1/c1_Defs.hpp" 29 #include "c1/c1_ValueType.hpp" 30 #include "oops/method.hpp" 31 #include "utilities/globalDefinitions.hpp" 32 #include "utilities/macros.hpp" 33 34 class BlockBegin; 35 class BlockList; 36 class LIR_Assembler; 37 class CodeEmitInfo; 38 class CodeStub; 39 class CodeStubList; 40 class C1SafepointPollStub; 41 class ArrayCopyStub; 42 class LIR_Op; 43 class ciType; 44 class ValueType; 45 class LIR_OpVisitState; 46 47 //--------------------------------------------------------------------- 48 // LIR Operands 49 // LIR_OprPtr 50 // LIR_Const 51 // LIR_Address 52 //--------------------------------------------------------------------- 53 class LIR_OprPtr; 54 class LIR_Const; 55 class LIR_Address; 56 class LIR_OprVisitor; 57 class LIR_Opr; 58 59 typedef int RegNr; 60 61 typedef GrowableArray<LIR_Opr> LIR_OprList; 62 typedef GrowableArray<LIR_Op*> LIR_OpArray; 63 typedef GrowableArray<LIR_Op*> LIR_OpList; 64 65 // define LIR_OprPtr early so LIR_Opr can refer to it 66 class LIR_OprPtr: public CompilationResourceObj { 67 public: 68 bool is_oop_pointer() const { return (type() == T_OBJECT); } 69 bool is_float_kind() const { BasicType t = type(); return (t == T_FLOAT) || (t == T_DOUBLE); } 70 71 virtual LIR_Const* as_constant() { return nullptr; } 72 virtual LIR_Address* as_address() { return nullptr; } 73 virtual BasicType type() const = 0; 74 virtual void print_value_on(outputStream* out) const = 0; 75 }; 76 77 78 79 // LIR constants 80 class LIR_Const: public LIR_OprPtr { 81 private: 82 JavaValue _value; 83 84 void type_check(BasicType t) const { assert(type() == t, "type check"); } 85 void type_check(BasicType t1, BasicType t2) const { assert(type() == t1 || type() == t2, "type check"); } 86 void type_check(BasicType t1, BasicType t2, BasicType t3) const { assert(type() == t1 || type() == t2 || type() == t3, "type check"); } 87 88 public: 89 LIR_Const(jint i, bool is_address=false) { _value.set_type(is_address?T_ADDRESS:T_INT); _value.set_jint(i); } 90 LIR_Const(jlong l) { _value.set_type(T_LONG); _value.set_jlong(l); } 91 LIR_Const(jfloat f) { _value.set_type(T_FLOAT); _value.set_jfloat(f); } 92 LIR_Const(jdouble d) { _value.set_type(T_DOUBLE); _value.set_jdouble(d); } 93 LIR_Const(jobject o) { _value.set_type(T_OBJECT); _value.set_jobject(o); } 94 LIR_Const(void* p) { 95 #ifdef _LP64 96 assert(sizeof(jlong) >= sizeof(p), "too small");; 97 _value.set_type(T_LONG); _value.set_jlong((jlong)p); 98 #else 99 assert(sizeof(jint) >= sizeof(p), "too small");; 100 _value.set_type(T_INT); _value.set_jint((jint)p); 101 #endif 102 } 103 LIR_Const(Metadata* m) { 104 _value.set_type(T_METADATA); 105 #ifdef _LP64 106 _value.set_jlong((jlong)m); 107 #else 108 _value.set_jint((jint)m); 109 #endif // _LP64 110 } 111 112 virtual BasicType type() const { return _value.get_type(); } 113 virtual LIR_Const* as_constant() { return this; } 114 115 jint as_jint() const { type_check(T_INT, T_ADDRESS); return _value.get_jint(); } 116 jlong as_jlong() const { type_check(T_LONG ); return _value.get_jlong(); } 117 jfloat as_jfloat() const { type_check(T_FLOAT ); return _value.get_jfloat(); } 118 jdouble as_jdouble() const { type_check(T_DOUBLE); return _value.get_jdouble(); } 119 jobject as_jobject() const { type_check(T_OBJECT); return _value.get_jobject(); } 120 jint as_jint_lo() const { type_check(T_LONG ); return low(_value.get_jlong()); } 121 jint as_jint_hi() const { type_check(T_LONG ); return high(_value.get_jlong()); } 122 123 #ifdef _LP64 124 address as_pointer() const { type_check(T_LONG ); return (address)_value.get_jlong(); } 125 Metadata* as_metadata() const { type_check(T_METADATA); return (Metadata*)_value.get_jlong(); } 126 #else 127 address as_pointer() const { type_check(T_INT ); return (address)_value.get_jint(); } 128 Metadata* as_metadata() const { type_check(T_METADATA); return (Metadata*)_value.get_jint(); } 129 #endif 130 131 132 jint as_jint_bits() const { type_check(T_FLOAT, T_INT, T_ADDRESS); return _value.get_jint(); } 133 jint as_jint_lo_bits() const { 134 if (type() == T_DOUBLE) { 135 return low(jlong_cast(_value.get_jdouble())); 136 } else { 137 return as_jint_lo(); 138 } 139 } 140 jint as_jint_hi_bits() const { 141 if (type() == T_DOUBLE) { 142 return high(jlong_cast(_value.get_jdouble())); 143 } else { 144 return as_jint_hi(); 145 } 146 } 147 jlong as_jlong_bits() const { 148 if (type() == T_DOUBLE) { 149 return jlong_cast(_value.get_jdouble()); 150 } else { 151 return as_jlong(); 152 } 153 } 154 155 virtual void print_value_on(outputStream* out) const PRODUCT_RETURN; 156 157 158 bool is_zero_float() { 159 jfloat f = as_jfloat(); 160 jfloat ok = 0.0f; 161 return jint_cast(f) == jint_cast(ok); 162 } 163 164 bool is_one_float() { 165 jfloat f = as_jfloat(); 166 return !g_isnan(f) && g_isfinite(f) && f == 1.0; 167 } 168 169 bool is_zero_double() { 170 jdouble d = as_jdouble(); 171 jdouble ok = 0.0; 172 return jlong_cast(d) == jlong_cast(ok); 173 } 174 175 bool is_one_double() { 176 jdouble d = as_jdouble(); 177 return !g_isnan(d) && g_isfinite(d) && d == 1.0; 178 } 179 }; 180 181 182 //---------------------LIR Operand descriptor------------------------------------ 183 // 184 // The class LIR_Opr represents a LIR instruction operand; 185 // it can be a register (ALU/FPU), stack location or a constant; 186 // Constants and addresses are represented as resource area allocated 187 // structures (see above), and pointers are stored in the _value field (cast to 188 // an intptr_t). 189 // Registers and stack locations are represented inline as integers. 190 // (see value function). 191 192 // Previously, this class was derived from CompilationResourceObj. 193 // However, deriving from any of the "Obj" types in allocation.hpp seems 194 // detrimental, since in some build modes it would add a vtable to this class, 195 // which make it no longer be a 1-word trivially-copyable wrapper object, 196 // which is the entire point of it. 197 198 class LIR_Opr { 199 public: 200 // value structure: 201 // data other-non-data opr-type opr-kind 202 // +-------------------+--------------+-------+-----+ 203 // [max...............................|6 5 4 3|2 1 0] 204 // ^ 205 // is_pointer bit 206 // 207 // lowest bit cleared, means it is a structure pointer 208 // we need 4 bits to represent types 209 210 private: 211 friend class LIR_OprFact; 212 213 intptr_t _value; 214 // Conversion 215 intptr_t value() const { return _value; } 216 217 bool check_value_mask(intptr_t mask, intptr_t masked_value) const { 218 return (value() & mask) == masked_value; 219 } 220 221 enum OprKind { 222 pointer_value = 0 223 , stack_value = 1 224 , cpu_register = 3 225 , fpu_register = 5 226 , illegal_value = 7 227 }; 228 229 enum OprBits { 230 pointer_bits = 1 231 , kind_bits = 3 232 , type_bits = 4 233 , size_bits = 2 234 , destroys_bits = 1 235 , virtual_bits = 1 236 , is_xmm_bits = 1 237 , last_use_bits = 1 238 , non_data_bits = kind_bits + type_bits + size_bits + destroys_bits + virtual_bits 239 + is_xmm_bits + last_use_bits 240 , data_bits = BitsPerInt - non_data_bits 241 , reg_bits = data_bits / 2 // for two registers in one value encoding 242 }; 243 244 enum OprShift : uintptr_t { 245 kind_shift = 0 246 , type_shift = kind_shift + kind_bits 247 , size_shift = type_shift + type_bits 248 , destroys_shift = size_shift + size_bits 249 , last_use_shift = destroys_shift + destroys_bits 250 , virtual_shift = last_use_shift + last_use_bits 251 , is_xmm_shift = virtual_shift + virtual_bits 252 , data_shift = is_xmm_shift + is_xmm_bits 253 , reg1_shift = data_shift 254 , reg2_shift = data_shift + reg_bits 255 256 }; 257 258 enum OprSize { 259 single_size = 0 << size_shift 260 , double_size = 1 << size_shift 261 }; 262 263 enum OprMask { 264 kind_mask = right_n_bits(kind_bits) 265 , type_mask = right_n_bits(type_bits) << type_shift 266 , size_mask = right_n_bits(size_bits) << size_shift 267 , last_use_mask = right_n_bits(last_use_bits) << last_use_shift 268 , virtual_mask = right_n_bits(virtual_bits) << virtual_shift 269 , is_xmm_mask = right_n_bits(is_xmm_bits) << is_xmm_shift 270 , pointer_mask = right_n_bits(pointer_bits) 271 , lower_reg_mask = right_n_bits(reg_bits) 272 , no_type_mask = (int)(~(type_mask | last_use_mask)) 273 }; 274 275 uint32_t data() const { return (uint32_t)value() >> data_shift; } 276 int lo_reg_half() const { return data() & lower_reg_mask; } 277 int hi_reg_half() const { return (data() >> reg_bits) & lower_reg_mask; } 278 OprKind kind_field() const { return (OprKind)(value() & kind_mask); } 279 OprSize size_field() const { return (OprSize)(value() & size_mask); } 280 281 static char type_char(BasicType t); 282 283 public: 284 LIR_Opr() : _value(0) {} 285 LIR_Opr(intptr_t val) : _value(val) {} 286 LIR_Opr(LIR_OprPtr *val) : _value(reinterpret_cast<intptr_t>(val)) {} 287 bool operator==(const LIR_Opr &other) const { return _value == other._value; } 288 bool operator!=(const LIR_Opr &other) const { return _value != other._value; } 289 explicit operator bool() const { return _value != 0; } 290 291 // UGLY HACK: make this value object look like a pointer (to itself). This 292 // operator overload should be removed, and all callers updated from 293 // `opr->fn()` to `opr.fn()`. 294 const LIR_Opr* operator->() const { return this; } 295 LIR_Opr* operator->() { return this; } 296 297 enum { 298 vreg_base = ConcreteRegisterImpl::number_of_registers, 299 data_max = (1 << data_bits) - 1, // max unsigned value for data bit field 300 vreg_limit = 10000, // choose a reasonable limit, 301 vreg_max = MIN2(vreg_limit, data_max) // and make sure if fits in the bit field 302 }; 303 304 static inline LIR_Opr illegalOpr(); 305 static inline LIR_Opr nullOpr(); 306 307 enum OprType { 308 unknown_type = 0 << type_shift // means: not set (catch uninitialized types) 309 , int_type = 1 << type_shift 310 , long_type = 2 << type_shift 311 , object_type = 3 << type_shift 312 , address_type = 4 << type_shift 313 , float_type = 5 << type_shift 314 , double_type = 6 << type_shift 315 , metadata_type = 7 << type_shift 316 }; 317 friend OprType as_OprType(BasicType t); 318 friend BasicType as_BasicType(OprType t); 319 320 OprType type_field_valid() const { assert(is_register() || is_stack(), "should not be called otherwise"); return (OprType)(value() & type_mask); } 321 OprType type_field() const { return is_illegal() ? unknown_type : (OprType)(value() & type_mask); } 322 323 static OprSize size_for(BasicType t) { 324 switch (t) { 325 case T_LONG: 326 case T_DOUBLE: 327 return double_size; 328 break; 329 330 case T_FLOAT: 331 case T_BOOLEAN: 332 case T_CHAR: 333 case T_BYTE: 334 case T_SHORT: 335 case T_INT: 336 case T_ADDRESS: 337 case T_OBJECT: 338 case T_ARRAY: 339 case T_METADATA: 340 return single_size; 341 break; 342 343 default: 344 ShouldNotReachHere(); 345 return single_size; 346 } 347 } 348 349 350 void validate_type() const PRODUCT_RETURN; 351 352 BasicType type() const { 353 if (is_pointer()) { 354 return pointer()->type(); 355 } 356 return as_BasicType(type_field()); 357 } 358 359 360 ValueType* value_type() const { return as_ValueType(type()); } 361 362 char type_char() const { return type_char((is_pointer()) ? pointer()->type() : type()); } 363 364 bool is_equal(LIR_Opr opr) const { return *this == opr; } 365 // checks whether types are same 366 bool is_same_type(LIR_Opr opr) const { 367 assert(type_field() != unknown_type && 368 opr->type_field() != unknown_type, "shouldn't see unknown_type"); 369 return type_field() == opr->type_field(); 370 } 371 bool is_same_register(LIR_Opr opr) { 372 return (is_register() && opr->is_register() && 373 kind_field() == opr->kind_field() && 374 (value() & no_type_mask) == (opr->value() & no_type_mask)); 375 } 376 377 bool is_pointer() const { return check_value_mask(pointer_mask, pointer_value); } 378 bool is_illegal() const { return kind_field() == illegal_value; } 379 bool is_valid() const { return kind_field() != illegal_value; } 380 381 bool is_register() const { return is_cpu_register() || is_fpu_register(); } 382 bool is_virtual() const { return is_virtual_cpu() || is_virtual_fpu(); } 383 384 bool is_constant() const { return is_pointer() && pointer()->as_constant() != nullptr; } 385 bool is_address() const { return is_pointer() && pointer()->as_address() != nullptr; } 386 387 bool is_float_kind() const { return is_pointer() ? pointer()->is_float_kind() : (kind_field() == fpu_register); } 388 bool is_oop() const; 389 390 // semantic for fpu- and xmm-registers: 391 // * is_float and is_double return true for xmm_registers 392 // (so is_single_fpu and is_single_xmm are true) 393 // * So you must always check for is_???_xmm prior to is_???_fpu to 394 // distinguish between fpu- and xmm-registers 395 396 bool is_stack() const { validate_type(); return check_value_mask(kind_mask, stack_value); } 397 bool is_single_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask, stack_value | single_size); } 398 bool is_double_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask, stack_value | double_size); } 399 400 bool is_cpu_register() const { validate_type(); return check_value_mask(kind_mask, cpu_register); } 401 bool is_virtual_cpu() const { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register | virtual_mask); } 402 bool is_fixed_cpu() const { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register); } 403 bool is_single_cpu() const { validate_type(); return check_value_mask(kind_mask | size_mask, cpu_register | single_size); } 404 bool is_double_cpu() const { validate_type(); return check_value_mask(kind_mask | size_mask, cpu_register | double_size); } 405 406 bool is_fpu_register() const { validate_type(); return check_value_mask(kind_mask, fpu_register); } 407 bool is_virtual_fpu() const { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register | virtual_mask); } 408 bool is_fixed_fpu() const { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register); } 409 bool is_single_fpu() const { validate_type(); return check_value_mask(kind_mask | size_mask, fpu_register | single_size); } 410 bool is_double_fpu() const { validate_type(); return check_value_mask(kind_mask | size_mask, fpu_register | double_size); } 411 412 bool is_xmm_register() const { validate_type(); return check_value_mask(kind_mask | is_xmm_mask, fpu_register | is_xmm_mask); } 413 bool is_single_xmm() const { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | single_size | is_xmm_mask); } 414 bool is_double_xmm() const { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | double_size | is_xmm_mask); } 415 416 // fast accessor functions for special bits that do not work for pointers 417 // (in this functions, the check for is_pointer() is omitted) 418 bool is_single_word() const { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, single_size); } 419 bool is_double_word() const { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, double_size); } 420 bool is_virtual_register() const { assert(is_register(), "type check"); return check_value_mask(virtual_mask, virtual_mask); } 421 bool is_oop_register() const { assert(is_register() || is_stack(), "type check"); return type_field_valid() == object_type; } 422 BasicType type_register() const { assert(is_register() || is_stack(), "type check"); return as_BasicType(type_field_valid()); } 423 424 bool is_last_use() const { assert(is_register(), "only works for registers"); return (value() & last_use_mask) != 0; } 425 LIR_Opr make_last_use() { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | last_use_mask); } 426 427 428 int single_stack_ix() const { assert(is_single_stack() && !is_virtual(), "type check"); return (int)data(); } 429 int double_stack_ix() const { assert(is_double_stack() && !is_virtual(), "type check"); return (int)data(); } 430 RegNr cpu_regnr() const { assert(is_single_cpu() && !is_virtual(), "type check"); return (RegNr)data(); } 431 RegNr cpu_regnrLo() const { assert(is_double_cpu() && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); } 432 RegNr cpu_regnrHi() const { assert(is_double_cpu() && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); } 433 RegNr fpu_regnr() const { assert(is_single_fpu() && !is_virtual(), "type check"); return (RegNr)data(); } 434 RegNr fpu_regnrLo() const { assert(is_double_fpu() && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); } 435 RegNr fpu_regnrHi() const { assert(is_double_fpu() && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); } 436 RegNr xmm_regnr() const { assert(is_single_xmm() && !is_virtual(), "type check"); return (RegNr)data(); } 437 RegNr xmm_regnrLo() const { assert(is_double_xmm() && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); } 438 RegNr xmm_regnrHi() const { assert(is_double_xmm() && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); } 439 int vreg_number() const { assert(is_virtual(), "type check"); return (RegNr)data(); } 440 441 LIR_OprPtr* pointer() const { assert(_value != 0 && is_pointer(), "nullness and type check"); return (LIR_OprPtr*)_value; } 442 LIR_Const* as_constant_ptr() const { return pointer()->as_constant(); } 443 LIR_Address* as_address_ptr() const { return pointer()->as_address(); } 444 445 Register as_register() const; 446 Register as_register_lo() const; 447 Register as_register_hi() const; 448 449 Register as_pointer_register() { 450 #ifdef _LP64 451 if (is_double_cpu()) { 452 assert(as_register_lo() == as_register_hi(), "should be a single register"); 453 return as_register_lo(); 454 } 455 #endif 456 return as_register(); 457 } 458 459 FloatRegister as_float_reg () const; 460 FloatRegister as_double_reg () const; 461 #ifdef X86 462 XMMRegister as_xmm_float_reg () const; 463 XMMRegister as_xmm_double_reg() const; 464 // for compatibility with RInfo 465 int fpu() const { return lo_reg_half(); } 466 #endif 467 468 jint as_jint() const { return as_constant_ptr()->as_jint(); } 469 jlong as_jlong() const { return as_constant_ptr()->as_jlong(); } 470 jfloat as_jfloat() const { return as_constant_ptr()->as_jfloat(); } 471 jdouble as_jdouble() const { return as_constant_ptr()->as_jdouble(); } 472 jobject as_jobject() const { return as_constant_ptr()->as_jobject(); } 473 474 void print() const PRODUCT_RETURN; 475 void print(outputStream* out) const PRODUCT_RETURN; 476 }; 477 478 inline LIR_Opr::OprType as_OprType(BasicType type) { 479 switch (type) { 480 case T_INT: return LIR_Opr::int_type; 481 case T_LONG: return LIR_Opr::long_type; 482 case T_FLOAT: return LIR_Opr::float_type; 483 case T_DOUBLE: return LIR_Opr::double_type; 484 case T_OBJECT: 485 case T_ARRAY: return LIR_Opr::object_type; 486 case T_ADDRESS: return LIR_Opr::address_type; 487 case T_METADATA: return LIR_Opr::metadata_type; 488 case T_ILLEGAL: // fall through 489 default: ShouldNotReachHere(); return LIR_Opr::unknown_type; 490 } 491 } 492 493 inline BasicType as_BasicType(LIR_Opr::OprType t) { 494 switch (t) { 495 case LIR_Opr::int_type: return T_INT; 496 case LIR_Opr::long_type: return T_LONG; 497 case LIR_Opr::float_type: return T_FLOAT; 498 case LIR_Opr::double_type: return T_DOUBLE; 499 case LIR_Opr::object_type: return T_OBJECT; 500 case LIR_Opr::address_type: return T_ADDRESS; 501 case LIR_Opr::metadata_type:return T_METADATA; 502 case LIR_Opr::unknown_type: // fall through 503 default: ShouldNotReachHere(); return T_ILLEGAL; 504 } 505 } 506 507 508 // LIR_Address 509 class LIR_Address: public LIR_OprPtr { 510 friend class LIR_OpVisitState; 511 512 public: 513 // NOTE: currently these must be the log2 of the scale factor (and 514 // must also be equivalent to the ScaleFactor enum in 515 // assembler_i486.hpp) 516 enum Scale { 517 times_1 = 0, 518 times_2 = 1, 519 times_4 = 2, 520 times_8 = 3 521 }; 522 523 private: 524 LIR_Opr _base; 525 LIR_Opr _index; 526 intx _disp; 527 Scale _scale; 528 BasicType _type; 529 530 public: 531 LIR_Address(LIR_Opr base, LIR_Opr index, BasicType type): 532 _base(base) 533 , _index(index) 534 , _disp(0) 535 , _scale(times_1) 536 , _type(type) { verify(); } 537 538 LIR_Address(LIR_Opr base, intx disp, BasicType type): 539 _base(base) 540 , _index(LIR_Opr::illegalOpr()) 541 , _disp(disp) 542 , _scale(times_1) 543 , _type(type) { verify(); } 544 545 LIR_Address(LIR_Opr base, BasicType type): 546 _base(base) 547 , _index(LIR_Opr::illegalOpr()) 548 , _disp(0) 549 , _scale(times_1) 550 , _type(type) { verify(); } 551 552 LIR_Address(LIR_Opr base, LIR_Opr index, intx disp, BasicType type): 553 _base(base) 554 , _index(index) 555 , _disp(disp) 556 , _scale(times_1) 557 , _type(type) { verify(); } 558 559 LIR_Address(LIR_Opr base, LIR_Opr index, Scale scale, intx disp, BasicType type): 560 _base(base) 561 , _index(index) 562 , _disp(disp) 563 , _scale(scale) 564 , _type(type) { verify(); } 565 566 LIR_Opr base() const { return _base; } 567 LIR_Opr index() const { return _index; } 568 Scale scale() const { return _scale; } 569 intx disp() const { return _disp; } 570 571 bool equals(LIR_Address* other) const { return base() == other->base() && index() == other->index() && disp() == other->disp() && scale() == other->scale(); } 572 573 virtual LIR_Address* as_address() { return this; } 574 virtual BasicType type() const { return _type; } 575 virtual void print_value_on(outputStream* out) const PRODUCT_RETURN; 576 577 void verify() const PRODUCT_RETURN; 578 579 static Scale scale(BasicType type); 580 }; 581 582 583 // operand factory 584 class LIR_OprFact: public AllStatic { 585 public: 586 587 static LIR_Opr illegalOpr; 588 static LIR_Opr nullOpr; 589 590 static LIR_Opr single_cpu(int reg) { 591 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) | 592 LIR_Opr::int_type | 593 LIR_Opr::cpu_register | 594 LIR_Opr::single_size); 595 } 596 static LIR_Opr single_cpu_oop(int reg) { 597 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) | 598 LIR_Opr::object_type | 599 LIR_Opr::cpu_register | 600 LIR_Opr::single_size); 601 } 602 static LIR_Opr single_cpu_address(int reg) { 603 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) | 604 LIR_Opr::address_type | 605 LIR_Opr::cpu_register | 606 LIR_Opr::single_size); 607 } 608 static LIR_Opr single_cpu_metadata(int reg) { 609 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) | 610 LIR_Opr::metadata_type | 611 LIR_Opr::cpu_register | 612 LIR_Opr::single_size); 613 } 614 static LIR_Opr double_cpu(int reg1, int reg2) { 615 LP64_ONLY(assert(reg1 == reg2, "must be identical")); 616 return (LIR_Opr)(intptr_t)((reg1 << LIR_Opr::reg1_shift) | 617 (reg2 << LIR_Opr::reg2_shift) | 618 LIR_Opr::long_type | 619 LIR_Opr::cpu_register | 620 LIR_Opr::double_size); 621 } 622 623 static LIR_Opr single_fpu(int reg) { 624 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) | 625 LIR_Opr::float_type | 626 LIR_Opr::fpu_register | 627 LIR_Opr::single_size); 628 } 629 630 // Platform dependent. 631 static LIR_Opr double_fpu(int reg1, int reg2 = -1 /*fnoreg*/); 632 633 #ifdef ARM32 634 static LIR_Opr single_softfp(int reg) { 635 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) | 636 LIR_Opr::float_type | 637 LIR_Opr::cpu_register | 638 LIR_Opr::single_size); 639 } 640 static LIR_Opr double_softfp(int reg1, int reg2) { 641 return (LIR_Opr)(intptr_t)((reg1 << LIR_Opr::reg1_shift) | 642 (reg2 << LIR_Opr::reg2_shift) | 643 LIR_Opr::double_type | 644 LIR_Opr::cpu_register | 645 LIR_Opr::double_size); 646 } 647 #endif // ARM32 648 649 #if defined(X86) 650 static LIR_Opr single_xmm(int reg) { 651 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) | 652 LIR_Opr::float_type | 653 LIR_Opr::fpu_register | 654 LIR_Opr::single_size | 655 LIR_Opr::is_xmm_mask); 656 } 657 static LIR_Opr double_xmm(int reg) { 658 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) | 659 (reg << LIR_Opr::reg2_shift) | 660 LIR_Opr::double_type | 661 LIR_Opr::fpu_register | 662 LIR_Opr::double_size | 663 LIR_Opr::is_xmm_mask); 664 } 665 #endif // X86 666 667 static LIR_Opr virtual_register(int index, BasicType type) { 668 if (index > LIR_Opr::vreg_max) { 669 // Running out of virtual registers. Caller should bailout. 670 return illegalOpr; 671 } 672 673 LIR_Opr res; 674 switch (type) { 675 case T_OBJECT: // fall through 676 case T_ARRAY: 677 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 678 LIR_Opr::object_type | 679 LIR_Opr::cpu_register | 680 LIR_Opr::single_size | 681 LIR_Opr::virtual_mask); 682 break; 683 684 case T_METADATA: 685 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 686 LIR_Opr::metadata_type| 687 LIR_Opr::cpu_register | 688 LIR_Opr::single_size | 689 LIR_Opr::virtual_mask); 690 break; 691 692 case T_INT: 693 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 694 LIR_Opr::int_type | 695 LIR_Opr::cpu_register | 696 LIR_Opr::single_size | 697 LIR_Opr::virtual_mask); 698 break; 699 700 case T_ADDRESS: 701 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 702 LIR_Opr::address_type | 703 LIR_Opr::cpu_register | 704 LIR_Opr::single_size | 705 LIR_Opr::virtual_mask); 706 break; 707 708 case T_LONG: 709 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 710 LIR_Opr::long_type | 711 LIR_Opr::cpu_register | 712 LIR_Opr::double_size | 713 LIR_Opr::virtual_mask); 714 break; 715 716 #ifdef __SOFTFP__ 717 case T_FLOAT: 718 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 719 LIR_Opr::float_type | 720 LIR_Opr::cpu_register | 721 LIR_Opr::single_size | 722 LIR_Opr::virtual_mask); 723 break; 724 case T_DOUBLE: 725 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 726 LIR_Opr::double_type | 727 LIR_Opr::cpu_register | 728 LIR_Opr::double_size | 729 LIR_Opr::virtual_mask); 730 break; 731 #else // __SOFTFP__ 732 case T_FLOAT: 733 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 734 LIR_Opr::float_type | 735 LIR_Opr::fpu_register | 736 LIR_Opr::single_size | 737 LIR_Opr::virtual_mask); 738 break; 739 740 case 741 T_DOUBLE: res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 742 LIR_Opr::double_type | 743 LIR_Opr::fpu_register | 744 LIR_Opr::double_size | 745 LIR_Opr::virtual_mask); 746 break; 747 #endif // __SOFTFP__ 748 default: ShouldNotReachHere(); res = illegalOpr; 749 } 750 751 #ifdef ASSERT 752 res->validate_type(); 753 assert(res->vreg_number() == index, "conversion check"); 754 assert(index >= LIR_Opr::vreg_base, "must start at vreg_base"); 755 756 // old-style calculation; check if old and new method are equal 757 LIR_Opr::OprType t = as_OprType(type); 758 #ifdef __SOFTFP__ 759 LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 760 t | 761 LIR_Opr::cpu_register | 762 LIR_Opr::size_for(type) | LIR_Opr::virtual_mask); 763 #else // __SOFTFP__ 764 LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | t | 765 ((type == T_FLOAT || type == T_DOUBLE) ? LIR_Opr::fpu_register : LIR_Opr::cpu_register) | 766 LIR_Opr::size_for(type) | LIR_Opr::virtual_mask); 767 assert(res == old_res, "old and new method not equal"); 768 #endif // __SOFTFP__ 769 #endif // ASSERT 770 771 return res; 772 } 773 774 // 'index' is computed by FrameMap::local_stack_pos(index); do not use other parameters as 775 // the index is platform independent; a double stack using indices 2 and 3 has always 776 // index 2. 777 static LIR_Opr stack(int index, BasicType type) { 778 LIR_Opr res; 779 switch (type) { 780 case T_OBJECT: // fall through 781 case T_ARRAY: 782 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 783 LIR_Opr::object_type | 784 LIR_Opr::stack_value | 785 LIR_Opr::single_size); 786 break; 787 788 case T_METADATA: 789 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 790 LIR_Opr::metadata_type | 791 LIR_Opr::stack_value | 792 LIR_Opr::single_size); 793 break; 794 case T_INT: 795 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 796 LIR_Opr::int_type | 797 LIR_Opr::stack_value | 798 LIR_Opr::single_size); 799 break; 800 801 case T_ADDRESS: 802 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 803 LIR_Opr::address_type | 804 LIR_Opr::stack_value | 805 LIR_Opr::single_size); 806 break; 807 808 case T_LONG: 809 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 810 LIR_Opr::long_type | 811 LIR_Opr::stack_value | 812 LIR_Opr::double_size); 813 break; 814 815 case T_FLOAT: 816 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 817 LIR_Opr::float_type | 818 LIR_Opr::stack_value | 819 LIR_Opr::single_size); 820 break; 821 case T_DOUBLE: 822 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 823 LIR_Opr::double_type | 824 LIR_Opr::stack_value | 825 LIR_Opr::double_size); 826 break; 827 828 default: ShouldNotReachHere(); res = illegalOpr; 829 } 830 831 #ifdef ASSERT 832 assert(index >= 0, "index must be positive"); 833 assert(index == (int)res->data(), "conversion check"); 834 835 LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 836 LIR_Opr::stack_value | 837 as_OprType(type) | 838 LIR_Opr::size_for(type)); 839 assert(res == old_res, "old and new method not equal"); 840 #endif 841 842 return res; 843 } 844 845 static LIR_Opr intConst(jint i) { return (LIR_Opr)(new LIR_Const(i)); } 846 static LIR_Opr longConst(jlong l) { return (LIR_Opr)(new LIR_Const(l)); } 847 static LIR_Opr floatConst(jfloat f) { return (LIR_Opr)(new LIR_Const(f)); } 848 static LIR_Opr doubleConst(jdouble d) { return (LIR_Opr)(new LIR_Const(d)); } 849 static LIR_Opr oopConst(jobject o) { return (LIR_Opr)(new LIR_Const(o)); } 850 static LIR_Opr address(LIR_Address* a) { return (LIR_Opr)a; } 851 static LIR_Opr intptrConst(void* p) { return (LIR_Opr)(new LIR_Const(p)); } 852 static LIR_Opr intptrConst(intptr_t v) { return (LIR_Opr)(new LIR_Const((void*)v)); } 853 static LIR_Opr illegal() { return (LIR_Opr)-1; } 854 static LIR_Opr addressConst(jint i) { return (LIR_Opr)(new LIR_Const(i, true)); } 855 static LIR_Opr metadataConst(Metadata* m) { return (LIR_Opr)(new LIR_Const(m)); } 856 857 static LIR_Opr value_type(ValueType* type); 858 }; 859 860 861 //------------------------------------------------------------------------------- 862 // LIR Instructions 863 //------------------------------------------------------------------------------- 864 // 865 // Note: 866 // - every instruction has a result operand 867 // - every instruction has an CodeEmitInfo operand (can be revisited later) 868 // - every instruction has a LIR_OpCode operand 869 // - LIR_OpN, means an instruction that has N input operands 870 // 871 // class hierarchy: 872 // 873 class LIR_Op; 874 class LIR_Op0; 875 class LIR_OpLabel; 876 class LIR_Op1; 877 class LIR_OpBranch; 878 class LIR_OpConvert; 879 class LIR_OpAllocObj; 880 class LIR_OpReturn; 881 class LIR_Op2; 882 class LIR_OpDelay; 883 class LIR_Op3; 884 class LIR_OpAllocArray; 885 class LIR_Op4; 886 class LIR_OpCall; 887 class LIR_OpJavaCall; 888 class LIR_OpRTCall; 889 class LIR_OpArrayCopy; 890 class LIR_OpUpdateCRC32; 891 class LIR_OpLock; 892 class LIR_OpTypeCheck; 893 class LIR_OpCompareAndSwap; 894 class LIR_OpLoadKlass; 895 class LIR_OpProfileCall; 896 class LIR_OpProfileType; 897 #ifdef ASSERT 898 class LIR_OpAssert; 899 #endif 900 901 // LIR operation codes 902 enum LIR_Code { 903 lir_none 904 , begin_op0 905 , lir_label 906 , lir_nop 907 , lir_std_entry 908 , lir_osr_entry 909 , lir_breakpoint 910 , lir_rtcall 911 , lir_membar 912 , lir_membar_acquire 913 , lir_membar_release 914 , lir_membar_loadload 915 , lir_membar_storestore 916 , lir_membar_loadstore 917 , lir_membar_storeload 918 , lir_get_thread 919 , lir_on_spin_wait 920 , end_op0 921 , begin_op1 922 , lir_push 923 , lir_pop 924 , lir_null_check 925 , lir_return 926 , lir_leal 927 , lir_move 928 , lir_convert 929 , lir_alloc_object 930 , lir_monaddr 931 , lir_sqrt 932 , lir_abs 933 , lir_neg 934 , lir_f2hf 935 , lir_hf2f 936 , lir_safepoint 937 , lir_unwind 938 , lir_load_klass 939 , end_op1 940 , begin_op2 941 , lir_branch 942 , lir_cond_float_branch 943 , lir_cmp 944 , lir_cmp_l2i 945 , lir_ucmp_fd2i 946 , lir_cmp_fd2i 947 , lir_add 948 , lir_sub 949 , lir_mul 950 , lir_div 951 , lir_rem 952 , lir_logic_and 953 , lir_logic_or 954 , lir_logic_xor 955 , lir_shl 956 , lir_shr 957 , lir_ushr 958 , lir_alloc_array 959 , lir_throw 960 , lir_xadd 961 , lir_xchg 962 , end_op2 963 , begin_op3 964 , lir_idiv 965 , lir_irem 966 , lir_fmad 967 , lir_fmaf 968 , end_op3 969 , begin_op4 970 , lir_cmove 971 , end_op4 972 , begin_opJavaCall 973 , lir_static_call 974 , lir_optvirtual_call 975 , lir_icvirtual_call 976 , lir_dynamic_call 977 , end_opJavaCall 978 , begin_opArrayCopy 979 , lir_arraycopy 980 , end_opArrayCopy 981 , begin_opUpdateCRC32 982 , lir_updatecrc32 983 , end_opUpdateCRC32 984 , begin_opLock 985 , lir_lock 986 , lir_unlock 987 , end_opLock 988 , begin_delay_slot 989 , lir_delay_slot 990 , end_delay_slot 991 , begin_opTypeCheck 992 , lir_instanceof 993 , lir_checkcast 994 , lir_store_check 995 , end_opTypeCheck 996 , begin_opCompareAndSwap 997 , lir_cas_long 998 , lir_cas_obj 999 , lir_cas_int 1000 , end_opCompareAndSwap 1001 , begin_opMDOProfile 1002 , lir_profile_call 1003 , lir_profile_type 1004 , end_opMDOProfile 1005 , begin_opAssert 1006 , lir_assert 1007 , end_opAssert 1008 #if INCLUDE_ZGC 1009 , begin_opXLoadBarrierTest 1010 , lir_xloadbarrier_test 1011 , end_opXLoadBarrierTest 1012 #endif 1013 }; 1014 1015 1016 enum LIR_Condition { 1017 lir_cond_equal 1018 , lir_cond_notEqual 1019 , lir_cond_less 1020 , lir_cond_lessEqual 1021 , lir_cond_greaterEqual 1022 , lir_cond_greater 1023 , lir_cond_belowEqual 1024 , lir_cond_aboveEqual 1025 , lir_cond_always 1026 , lir_cond_unknown = -1 1027 }; 1028 1029 1030 enum LIR_PatchCode { 1031 lir_patch_none, 1032 lir_patch_low, 1033 lir_patch_high, 1034 lir_patch_normal 1035 }; 1036 1037 1038 enum LIR_MoveKind { 1039 lir_move_normal, 1040 lir_move_volatile, 1041 lir_move_wide, 1042 lir_move_max_flag 1043 }; 1044 1045 1046 // -------------------------------------------------- 1047 // LIR_Op 1048 // -------------------------------------------------- 1049 class LIR_Op: public CompilationResourceObj { 1050 friend class LIR_OpVisitState; 1051 1052 #ifdef ASSERT 1053 private: 1054 const char * _file; 1055 int _line; 1056 #endif 1057 1058 protected: 1059 LIR_Opr _result; 1060 unsigned short _code; 1061 unsigned short _flags; 1062 CodeEmitInfo* _info; 1063 int _id; // value id for register allocation 1064 Instruction* _source; // for debugging 1065 1066 static void print_condition(outputStream* out, LIR_Condition cond) PRODUCT_RETURN; 1067 1068 protected: 1069 static bool is_in_range(LIR_Code test, LIR_Code start, LIR_Code end) { return start < test && test < end; } 1070 1071 public: 1072 LIR_Op() 1073 : 1074 #ifdef ASSERT 1075 _file(nullptr) 1076 , _line(0), 1077 #endif 1078 _result(LIR_OprFact::illegalOpr) 1079 , _code(lir_none) 1080 , _flags(0) 1081 , _info(nullptr) 1082 , _id(-1) 1083 , _source(nullptr) {} 1084 1085 LIR_Op(LIR_Code code, LIR_Opr result, CodeEmitInfo* info) 1086 : 1087 #ifdef ASSERT 1088 _file(nullptr) 1089 , _line(0), 1090 #endif 1091 _result(result) 1092 , _code(code) 1093 , _flags(0) 1094 , _info(info) 1095 , _id(-1) 1096 , _source(nullptr) {} 1097 1098 CodeEmitInfo* info() const { return _info; } 1099 LIR_Code code() const { return (LIR_Code)_code; } 1100 LIR_Opr result_opr() const { return _result; } 1101 void set_result_opr(LIR_Opr opr) { _result = opr; } 1102 1103 #ifdef ASSERT 1104 void set_file_and_line(const char * file, int line) { 1105 _file = file; 1106 _line = line; 1107 } 1108 #endif 1109 1110 virtual const char * name() const PRODUCT_RETURN_NULL; 1111 virtual void visit(LIR_OpVisitState* state); 1112 1113 int id() const { return _id; } 1114 void set_id(int id) { _id = id; } 1115 1116 Instruction* source() const { return _source; } 1117 void set_source(Instruction* ins) { _source = ins; } 1118 1119 virtual void emit_code(LIR_Assembler* masm) = 0; 1120 virtual void print_instr(outputStream* out) const = 0; 1121 virtual void print_on(outputStream* st) const PRODUCT_RETURN; 1122 1123 virtual bool is_patching() { return false; } 1124 virtual LIR_OpCall* as_OpCall() { return nullptr; } 1125 virtual LIR_OpJavaCall* as_OpJavaCall() { return nullptr; } 1126 virtual LIR_OpLabel* as_OpLabel() { return nullptr; } 1127 virtual LIR_OpDelay* as_OpDelay() { return nullptr; } 1128 virtual LIR_OpLock* as_OpLock() { return nullptr; } 1129 virtual LIR_OpAllocArray* as_OpAllocArray() { return nullptr; } 1130 virtual LIR_OpAllocObj* as_OpAllocObj() { return nullptr; } 1131 virtual LIR_OpBranch* as_OpBranch() { return nullptr; } 1132 virtual LIR_OpReturn* as_OpReturn() { return nullptr; } 1133 virtual LIR_OpRTCall* as_OpRTCall() { return nullptr; } 1134 virtual LIR_OpConvert* as_OpConvert() { return nullptr; } 1135 virtual LIR_Op0* as_Op0() { return nullptr; } 1136 virtual LIR_Op1* as_Op1() { return nullptr; } 1137 virtual LIR_Op2* as_Op2() { return nullptr; } 1138 virtual LIR_Op3* as_Op3() { return nullptr; } 1139 virtual LIR_Op4* as_Op4() { return nullptr; } 1140 virtual LIR_OpArrayCopy* as_OpArrayCopy() { return nullptr; } 1141 virtual LIR_OpUpdateCRC32* as_OpUpdateCRC32() { return nullptr; } 1142 virtual LIR_OpTypeCheck* as_OpTypeCheck() { return nullptr; } 1143 virtual LIR_OpCompareAndSwap* as_OpCompareAndSwap() { return nullptr; } 1144 virtual LIR_OpLoadKlass* as_OpLoadKlass() { return nullptr; } 1145 virtual LIR_OpProfileCall* as_OpProfileCall() { return nullptr; } 1146 virtual LIR_OpProfileType* as_OpProfileType() { return nullptr; } 1147 #ifdef ASSERT 1148 virtual LIR_OpAssert* as_OpAssert() { return nullptr; } 1149 #endif 1150 1151 virtual void verify() const {} 1152 }; 1153 1154 // for calls 1155 class LIR_OpCall: public LIR_Op { 1156 friend class LIR_OpVisitState; 1157 1158 protected: 1159 address _addr; 1160 LIR_OprList* _arguments; 1161 protected: 1162 LIR_OpCall(LIR_Code code, address addr, LIR_Opr result, 1163 LIR_OprList* arguments, CodeEmitInfo* info = nullptr) 1164 : LIR_Op(code, result, info) 1165 , _addr(addr) 1166 , _arguments(arguments) {} 1167 1168 public: 1169 address addr() const { return _addr; } 1170 const LIR_OprList* arguments() const { return _arguments; } 1171 virtual LIR_OpCall* as_OpCall() { return this; } 1172 }; 1173 1174 1175 // -------------------------------------------------- 1176 // LIR_OpJavaCall 1177 // -------------------------------------------------- 1178 class LIR_OpJavaCall: public LIR_OpCall { 1179 friend class LIR_OpVisitState; 1180 1181 private: 1182 ciMethod* _method; 1183 LIR_Opr _receiver; 1184 LIR_Opr _method_handle_invoke_SP_save_opr; // Used in LIR_OpVisitState::visit to store the reference to FrameMap::method_handle_invoke_SP_save_opr. 1185 1186 public: 1187 LIR_OpJavaCall(LIR_Code code, ciMethod* method, 1188 LIR_Opr receiver, LIR_Opr result, 1189 address addr, LIR_OprList* arguments, 1190 CodeEmitInfo* info) 1191 : LIR_OpCall(code, addr, result, arguments, info) 1192 , _method(method) 1193 , _receiver(receiver) 1194 , _method_handle_invoke_SP_save_opr(LIR_OprFact::illegalOpr) 1195 { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); } 1196 1197 LIR_OpJavaCall(LIR_Code code, ciMethod* method, 1198 LIR_Opr receiver, LIR_Opr result, intptr_t vtable_offset, 1199 LIR_OprList* arguments, CodeEmitInfo* info) 1200 : LIR_OpCall(code, (address)vtable_offset, result, arguments, info) 1201 , _method(method) 1202 , _receiver(receiver) 1203 , _method_handle_invoke_SP_save_opr(LIR_OprFact::illegalOpr) 1204 { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); } 1205 1206 LIR_Opr receiver() const { return _receiver; } 1207 ciMethod* method() const { return _method; } 1208 1209 // JSR 292 support. 1210 bool is_invokedynamic() const { return code() == lir_dynamic_call; } 1211 bool is_method_handle_invoke() const { 1212 return method()->is_compiled_lambda_form() || // Java-generated lambda form 1213 method()->is_method_handle_intrinsic(); // JVM-generated MH intrinsic 1214 } 1215 1216 virtual void emit_code(LIR_Assembler* masm); 1217 virtual LIR_OpJavaCall* as_OpJavaCall() { return this; } 1218 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1219 }; 1220 1221 // -------------------------------------------------- 1222 // LIR_OpLabel 1223 // -------------------------------------------------- 1224 // Location where a branch can continue 1225 class LIR_OpLabel: public LIR_Op { 1226 friend class LIR_OpVisitState; 1227 1228 private: 1229 Label* _label; 1230 public: 1231 LIR_OpLabel(Label* lbl) 1232 : LIR_Op(lir_label, LIR_OprFact::illegalOpr, nullptr) 1233 , _label(lbl) {} 1234 Label* label() const { return _label; } 1235 1236 virtual void emit_code(LIR_Assembler* masm); 1237 virtual LIR_OpLabel* as_OpLabel() { return this; } 1238 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1239 }; 1240 1241 // LIR_OpArrayCopy 1242 class LIR_OpArrayCopy: public LIR_Op { 1243 friend class LIR_OpVisitState; 1244 1245 private: 1246 ArrayCopyStub* _stub; 1247 LIR_Opr _src; 1248 LIR_Opr _src_pos; 1249 LIR_Opr _dst; 1250 LIR_Opr _dst_pos; 1251 LIR_Opr _length; 1252 LIR_Opr _tmp; 1253 ciArrayKlass* _expected_type; 1254 int _flags; 1255 1256 public: 1257 enum Flags { 1258 src_null_check = 1 << 0, 1259 dst_null_check = 1 << 1, 1260 src_pos_positive_check = 1 << 2, 1261 dst_pos_positive_check = 1 << 3, 1262 length_positive_check = 1 << 4, 1263 src_range_check = 1 << 5, 1264 dst_range_check = 1 << 6, 1265 type_check = 1 << 7, 1266 overlapping = 1 << 8, 1267 unaligned = 1 << 9, 1268 src_objarray = 1 << 10, 1269 dst_objarray = 1 << 11, 1270 all_flags = (1 << 12) - 1 1271 }; 1272 1273 LIR_OpArrayCopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp, 1274 ciArrayKlass* expected_type, int flags, CodeEmitInfo* info); 1275 1276 LIR_Opr src() const { return _src; } 1277 LIR_Opr src_pos() const { return _src_pos; } 1278 LIR_Opr dst() const { return _dst; } 1279 LIR_Opr dst_pos() const { return _dst_pos; } 1280 LIR_Opr length() const { return _length; } 1281 LIR_Opr tmp() const { return _tmp; } 1282 int flags() const { return _flags; } 1283 ciArrayKlass* expected_type() const { return _expected_type; } 1284 ArrayCopyStub* stub() const { return _stub; } 1285 1286 virtual void emit_code(LIR_Assembler* masm); 1287 virtual LIR_OpArrayCopy* as_OpArrayCopy() { return this; } 1288 void print_instr(outputStream* out) const PRODUCT_RETURN; 1289 }; 1290 1291 // LIR_OpUpdateCRC32 1292 class LIR_OpUpdateCRC32: public LIR_Op { 1293 friend class LIR_OpVisitState; 1294 1295 private: 1296 LIR_Opr _crc; 1297 LIR_Opr _val; 1298 1299 public: 1300 1301 LIR_OpUpdateCRC32(LIR_Opr crc, LIR_Opr val, LIR_Opr res); 1302 1303 LIR_Opr crc() const { return _crc; } 1304 LIR_Opr val() const { return _val; } 1305 1306 virtual void emit_code(LIR_Assembler* masm); 1307 virtual LIR_OpUpdateCRC32* as_OpUpdateCRC32() { return this; } 1308 void print_instr(outputStream* out) const PRODUCT_RETURN; 1309 }; 1310 1311 // -------------------------------------------------- 1312 // LIR_Op0 1313 // -------------------------------------------------- 1314 class LIR_Op0: public LIR_Op { 1315 friend class LIR_OpVisitState; 1316 1317 public: 1318 LIR_Op0(LIR_Code code) 1319 : LIR_Op(code, LIR_OprFact::illegalOpr, nullptr) { assert(is_in_range(code, begin_op0, end_op0), "code check"); } 1320 LIR_Op0(LIR_Code code, LIR_Opr result, CodeEmitInfo* info = nullptr) 1321 : LIR_Op(code, result, info) { assert(is_in_range(code, begin_op0, end_op0), "code check"); } 1322 1323 virtual void emit_code(LIR_Assembler* masm); 1324 virtual LIR_Op0* as_Op0() { return this; } 1325 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1326 }; 1327 1328 1329 // -------------------------------------------------- 1330 // LIR_Op1 1331 // -------------------------------------------------- 1332 1333 class LIR_Op1: public LIR_Op { 1334 friend class LIR_OpVisitState; 1335 1336 protected: 1337 LIR_Opr _opr; // input operand 1338 LIR_Opr _tmp; 1339 BasicType _type; // Operand types 1340 LIR_PatchCode _patch; // only required with patchin (NEEDS_CLEANUP: do we want a special instruction for patching?) 1341 1342 static void print_patch_code(outputStream* out, LIR_PatchCode code); 1343 1344 void set_kind(LIR_MoveKind kind) { 1345 assert(code() == lir_move, "must be"); 1346 _flags = kind; 1347 } 1348 1349 public: 1350 LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result = LIR_OprFact::illegalOpr, BasicType type = T_ILLEGAL, LIR_PatchCode patch = lir_patch_none, CodeEmitInfo* info = nullptr) 1351 : LIR_Op(code, result, info) 1352 , _opr(opr) 1353 , _tmp(LIR_OprFact::illegalOpr) 1354 , _type(type) 1355 , _patch(patch) { assert(is_in_range(code, begin_op1, end_op1), "code check"); } 1356 1357 LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result, LIR_Opr tmp, BasicType type = T_ILLEGAL, LIR_PatchCode patch = lir_patch_none, CodeEmitInfo* info = nullptr) 1358 : LIR_Op(code, result, info) 1359 , _opr(opr) 1360 , _tmp(tmp) 1361 , _type(type) 1362 , _patch(patch) { assert(is_in_range(code, begin_op1, end_op1), "code check"); } 1363 1364 LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result, BasicType type, LIR_PatchCode patch, CodeEmitInfo* info, LIR_MoveKind kind) 1365 : LIR_Op(code, result, info) 1366 , _opr(opr) 1367 , _tmp(LIR_OprFact::illegalOpr) 1368 , _type(type) 1369 , _patch(patch) { 1370 assert(code == lir_move, "must be"); 1371 set_kind(kind); 1372 } 1373 1374 LIR_Op1(LIR_Code code, LIR_Opr opr, CodeEmitInfo* info) 1375 : LIR_Op(code, LIR_OprFact::illegalOpr, info) 1376 , _opr(opr) 1377 , _tmp(LIR_OprFact::illegalOpr) 1378 , _type(T_ILLEGAL) 1379 , _patch(lir_patch_none) { assert(is_in_range(code, begin_op1, end_op1), "code check"); } 1380 1381 LIR_Opr in_opr() const { return _opr; } 1382 LIR_Opr tmp_opr() const { return _tmp; } 1383 LIR_PatchCode patch_code() const { return _patch; } 1384 BasicType type() const { return _type; } 1385 1386 LIR_MoveKind move_kind() const { 1387 assert(code() == lir_move, "must be"); 1388 return (LIR_MoveKind)_flags; 1389 } 1390 1391 virtual bool is_patching() { return _patch != lir_patch_none; } 1392 virtual void emit_code(LIR_Assembler* masm); 1393 virtual LIR_Op1* as_Op1() { return this; } 1394 virtual const char * name() const PRODUCT_RETURN_NULL; 1395 1396 void set_in_opr(LIR_Opr opr) { _opr = opr; } 1397 1398 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1399 virtual void verify() const; 1400 }; 1401 1402 1403 // for runtime calls 1404 class LIR_OpRTCall: public LIR_OpCall { 1405 friend class LIR_OpVisitState; 1406 1407 private: 1408 LIR_Opr _tmp; 1409 public: 1410 LIR_OpRTCall(address addr, LIR_Opr tmp, 1411 LIR_Opr result, LIR_OprList* arguments, CodeEmitInfo* info = nullptr) 1412 : LIR_OpCall(lir_rtcall, addr, result, arguments, info) 1413 , _tmp(tmp) {} 1414 1415 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1416 virtual void emit_code(LIR_Assembler* masm); 1417 virtual LIR_OpRTCall* as_OpRTCall() { return this; } 1418 1419 LIR_Opr tmp() const { return _tmp; } 1420 1421 virtual void verify() const; 1422 }; 1423 1424 1425 1426 class LIR_OpReturn: public LIR_Op1 { 1427 friend class LIR_OpVisitState; 1428 1429 private: 1430 C1SafepointPollStub* _stub; 1431 1432 public: 1433 LIR_OpReturn(LIR_Opr opr); 1434 1435 C1SafepointPollStub* stub() const { return _stub; } 1436 virtual LIR_OpReturn* as_OpReturn() { return this; } 1437 }; 1438 1439 class ConversionStub; 1440 1441 class LIR_OpConvert: public LIR_Op1 { 1442 friend class LIR_OpVisitState; 1443 1444 private: 1445 Bytecodes::Code _bytecode; 1446 ConversionStub* _stub; 1447 1448 public: 1449 LIR_OpConvert(Bytecodes::Code code, LIR_Opr opr, LIR_Opr result, ConversionStub* stub) 1450 : LIR_Op1(lir_convert, opr, result) 1451 , _bytecode(code) 1452 , _stub(stub) {} 1453 1454 Bytecodes::Code bytecode() const { return _bytecode; } 1455 ConversionStub* stub() const { return _stub; } 1456 1457 virtual void emit_code(LIR_Assembler* masm); 1458 virtual LIR_OpConvert* as_OpConvert() { return this; } 1459 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1460 1461 static void print_bytecode(outputStream* out, Bytecodes::Code code) PRODUCT_RETURN; 1462 }; 1463 1464 1465 // LIR_OpAllocObj 1466 class LIR_OpAllocObj : public LIR_Op1 { 1467 friend class LIR_OpVisitState; 1468 1469 private: 1470 LIR_Opr _tmp1; 1471 LIR_Opr _tmp2; 1472 LIR_Opr _tmp3; 1473 LIR_Opr _tmp4; 1474 int _hdr_size; 1475 int _obj_size; 1476 CodeStub* _stub; 1477 bool _init_check; 1478 1479 public: 1480 LIR_OpAllocObj(LIR_Opr klass, LIR_Opr result, 1481 LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, 1482 int hdr_size, int obj_size, bool init_check, CodeStub* stub) 1483 : LIR_Op1(lir_alloc_object, klass, result) 1484 , _tmp1(t1) 1485 , _tmp2(t2) 1486 , _tmp3(t3) 1487 , _tmp4(t4) 1488 , _hdr_size(hdr_size) 1489 , _obj_size(obj_size) 1490 , _stub(stub) 1491 , _init_check(init_check) { } 1492 1493 LIR_Opr klass() const { return in_opr(); } 1494 LIR_Opr obj() const { return result_opr(); } 1495 LIR_Opr tmp1() const { return _tmp1; } 1496 LIR_Opr tmp2() const { return _tmp2; } 1497 LIR_Opr tmp3() const { return _tmp3; } 1498 LIR_Opr tmp4() const { return _tmp4; } 1499 int header_size() const { return _hdr_size; } 1500 int object_size() const { return _obj_size; } 1501 bool init_check() const { return _init_check; } 1502 CodeStub* stub() const { return _stub; } 1503 1504 virtual void emit_code(LIR_Assembler* masm); 1505 virtual LIR_OpAllocObj * as_OpAllocObj () { return this; } 1506 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1507 }; 1508 1509 1510 // LIR_OpTypeCheck 1511 class LIR_OpTypeCheck: public LIR_Op { 1512 friend class LIR_OpVisitState; 1513 1514 private: 1515 LIR_Opr _object; 1516 LIR_Opr _array; 1517 ciKlass* _klass; 1518 LIR_Opr _tmp1; 1519 LIR_Opr _tmp2; 1520 LIR_Opr _tmp3; 1521 CodeEmitInfo* _info_for_patch; 1522 CodeEmitInfo* _info_for_exception; 1523 CodeStub* _stub; 1524 ciMethod* _profiled_method; 1525 int _profiled_bci; 1526 bool _should_profile; 1527 bool _fast_check; 1528 1529 public: 1530 LIR_OpTypeCheck(LIR_Code code, LIR_Opr result, LIR_Opr object, ciKlass* klass, 1531 LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, 1532 CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub); 1533 LIR_OpTypeCheck(LIR_Code code, LIR_Opr object, LIR_Opr array, 1534 LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception); 1535 1536 LIR_Opr object() const { return _object; } 1537 LIR_Opr array() const { assert(code() == lir_store_check, "not valid"); return _array; } 1538 LIR_Opr tmp1() const { return _tmp1; } 1539 LIR_Opr tmp2() const { return _tmp2; } 1540 LIR_Opr tmp3() const { return _tmp3; } 1541 ciKlass* klass() const { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _klass; } 1542 bool fast_check() const { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _fast_check; } 1543 CodeEmitInfo* info_for_patch() const { return _info_for_patch; } 1544 CodeEmitInfo* info_for_exception() const { return _info_for_exception; } 1545 CodeStub* stub() const { return _stub; } 1546 1547 // MethodData* profiling 1548 void set_profiled_method(ciMethod *method) { _profiled_method = method; } 1549 void set_profiled_bci(int bci) { _profiled_bci = bci; } 1550 void set_should_profile(bool b) { _should_profile = b; } 1551 ciMethod* profiled_method() const { return _profiled_method; } 1552 int profiled_bci() const { return _profiled_bci; } 1553 bool should_profile() const { return _should_profile; } 1554 1555 virtual bool is_patching() { return _info_for_patch != nullptr; } 1556 virtual void emit_code(LIR_Assembler* masm); 1557 virtual LIR_OpTypeCheck* as_OpTypeCheck() { return this; } 1558 void print_instr(outputStream* out) const PRODUCT_RETURN; 1559 }; 1560 1561 // LIR_Op2 1562 class LIR_Op2: public LIR_Op { 1563 friend class LIR_OpVisitState; 1564 1565 protected: 1566 LIR_Opr _opr1; 1567 LIR_Opr _opr2; 1568 LIR_Opr _tmp1; 1569 LIR_Opr _tmp2; 1570 LIR_Opr _tmp3; 1571 LIR_Opr _tmp4; 1572 LIR_Opr _tmp5; 1573 LIR_Condition _condition; 1574 BasicType _type; 1575 1576 void verify() const; 1577 1578 public: 1579 LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, CodeEmitInfo* info = nullptr, BasicType type = T_ILLEGAL) 1580 : LIR_Op(code, LIR_OprFact::illegalOpr, info) 1581 , _opr1(opr1) 1582 , _opr2(opr2) 1583 , _tmp1(LIR_OprFact::illegalOpr) 1584 , _tmp2(LIR_OprFact::illegalOpr) 1585 , _tmp3(LIR_OprFact::illegalOpr) 1586 , _tmp4(LIR_OprFact::illegalOpr) 1587 , _tmp5(LIR_OprFact::illegalOpr) 1588 , _condition(condition) 1589 , _type(type) { 1590 assert(code == lir_cmp || code == lir_branch || code == lir_cond_float_branch || code == lir_assert, "code check"); 1591 } 1592 1593 LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) 1594 : LIR_Op(code, result, nullptr) 1595 , _opr1(opr1) 1596 , _opr2(opr2) 1597 , _tmp1(LIR_OprFact::illegalOpr) 1598 , _tmp2(LIR_OprFact::illegalOpr) 1599 , _tmp3(LIR_OprFact::illegalOpr) 1600 , _tmp4(LIR_OprFact::illegalOpr) 1601 , _tmp5(LIR_OprFact::illegalOpr) 1602 , _condition(condition) 1603 , _type(type) { 1604 assert(code == lir_cmove, "code check"); 1605 assert(type != T_ILLEGAL, "cmove should have type"); 1606 } 1607 1608 LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result = LIR_OprFact::illegalOpr, 1609 CodeEmitInfo* info = nullptr, BasicType type = T_ILLEGAL) 1610 : LIR_Op(code, result, info) 1611 , _opr1(opr1) 1612 , _opr2(opr2) 1613 , _tmp1(LIR_OprFact::illegalOpr) 1614 , _tmp2(LIR_OprFact::illegalOpr) 1615 , _tmp3(LIR_OprFact::illegalOpr) 1616 , _tmp4(LIR_OprFact::illegalOpr) 1617 , _tmp5(LIR_OprFact::illegalOpr) 1618 , _condition(lir_cond_unknown) 1619 , _type(type) { 1620 assert(code != lir_cmp && code != lir_branch && code != lir_cond_float_branch && is_in_range(code, begin_op2, end_op2), "code check"); 1621 } 1622 1623 LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, LIR_Opr tmp1, LIR_Opr tmp2 = LIR_OprFact::illegalOpr, 1624 LIR_Opr tmp3 = LIR_OprFact::illegalOpr, LIR_Opr tmp4 = LIR_OprFact::illegalOpr, LIR_Opr tmp5 = LIR_OprFact::illegalOpr) 1625 : LIR_Op(code, result, nullptr) 1626 , _opr1(opr1) 1627 , _opr2(opr2) 1628 , _tmp1(tmp1) 1629 , _tmp2(tmp2) 1630 , _tmp3(tmp3) 1631 , _tmp4(tmp4) 1632 , _tmp5(tmp5) 1633 , _condition(lir_cond_unknown) 1634 , _type(T_ILLEGAL) { 1635 assert(code != lir_cmp && code != lir_branch && code != lir_cond_float_branch && is_in_range(code, begin_op2, end_op2), "code check"); 1636 } 1637 1638 LIR_Opr in_opr1() const { return _opr1; } 1639 LIR_Opr in_opr2() const { return _opr2; } 1640 BasicType type() const { return _type; } 1641 LIR_Opr tmp1_opr() const { return _tmp1; } 1642 LIR_Opr tmp2_opr() const { return _tmp2; } 1643 LIR_Opr tmp3_opr() const { return _tmp3; } 1644 LIR_Opr tmp4_opr() const { return _tmp4; } 1645 LIR_Opr tmp5_opr() const { return _tmp5; } 1646 LIR_Condition condition() const { 1647 assert(code() == lir_cmp || code() == lir_branch || code() == lir_cond_float_branch || code() == lir_assert, "only valid for branch and assert"); return _condition; 1648 } 1649 void set_condition(LIR_Condition condition) { 1650 assert(code() == lir_cmp || code() == lir_branch || code() == lir_cond_float_branch, "only valid for branch"); _condition = condition; 1651 } 1652 1653 void set_in_opr1(LIR_Opr opr) { _opr1 = opr; } 1654 void set_in_opr2(LIR_Opr opr) { _opr2 = opr; } 1655 1656 virtual void emit_code(LIR_Assembler* masm); 1657 virtual LIR_Op2* as_Op2() { return this; } 1658 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1659 }; 1660 1661 class LIR_OpBranch: public LIR_Op2 { 1662 friend class LIR_OpVisitState; 1663 1664 private: 1665 Label* _label; 1666 BlockBegin* _block; // if this is a branch to a block, this is the block 1667 BlockBegin* _ublock; // if this is a float-branch, this is the unordered block 1668 CodeStub* _stub; // if this is a branch to a stub, this is the stub 1669 1670 public: 1671 LIR_OpBranch(LIR_Condition cond, Label* lbl) 1672 : LIR_Op2(lir_branch, cond, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, (CodeEmitInfo*) nullptr) 1673 , _label(lbl) 1674 , _block(nullptr) 1675 , _ublock(nullptr) 1676 , _stub(nullptr) { } 1677 1678 LIR_OpBranch(LIR_Condition cond, BlockBegin* block); 1679 LIR_OpBranch(LIR_Condition cond, CodeStub* stub); 1680 1681 // for unordered comparisons 1682 LIR_OpBranch(LIR_Condition cond, BlockBegin* block, BlockBegin* ublock); 1683 1684 LIR_Condition cond() const { 1685 return condition(); 1686 } 1687 1688 void set_cond(LIR_Condition cond) { 1689 set_condition(cond); 1690 } 1691 1692 Label* label() const { return _label; } 1693 BlockBegin* block() const { return _block; } 1694 BlockBegin* ublock() const { return _ublock; } 1695 CodeStub* stub() const { return _stub; } 1696 1697 void change_block(BlockBegin* b); 1698 void change_ublock(BlockBegin* b); 1699 void negate_cond(); 1700 1701 virtual void emit_code(LIR_Assembler* masm); 1702 virtual LIR_OpBranch* as_OpBranch() { return this; } 1703 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1704 }; 1705 1706 class LIR_OpAllocArray : public LIR_Op { 1707 friend class LIR_OpVisitState; 1708 1709 private: 1710 LIR_Opr _klass; 1711 LIR_Opr _len; 1712 LIR_Opr _tmp1; 1713 LIR_Opr _tmp2; 1714 LIR_Opr _tmp3; 1715 LIR_Opr _tmp4; 1716 CodeStub* _stub; 1717 BasicType _type; 1718 bool _zero_array; 1719 1720 public: 1721 LIR_OpAllocArray(LIR_Opr klass, LIR_Opr len, LIR_Opr result, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, BasicType type, CodeStub* stub, bool zero_array) 1722 : LIR_Op(lir_alloc_array, result, nullptr) 1723 , _klass(klass) 1724 , _len(len) 1725 , _tmp1(t1) 1726 , _tmp2(t2) 1727 , _tmp3(t3) 1728 , _tmp4(t4) 1729 , _stub(stub) 1730 , _type(type) 1731 , _zero_array(zero_array) {} 1732 1733 LIR_Opr klass() const { return _klass; } 1734 LIR_Opr len() const { return _len; } 1735 LIR_Opr obj() const { return result_opr(); } 1736 LIR_Opr tmp1() const { return _tmp1; } 1737 LIR_Opr tmp2() const { return _tmp2; } 1738 LIR_Opr tmp3() const { return _tmp3; } 1739 LIR_Opr tmp4() const { return _tmp4; } 1740 BasicType type() const { return _type; } 1741 CodeStub* stub() const { return _stub; } 1742 bool zero_array() const { return _zero_array; } 1743 1744 virtual void emit_code(LIR_Assembler* masm); 1745 virtual LIR_OpAllocArray * as_OpAllocArray () { return this; } 1746 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1747 }; 1748 1749 1750 class LIR_Op3: public LIR_Op { 1751 friend class LIR_OpVisitState; 1752 1753 private: 1754 LIR_Opr _opr1; 1755 LIR_Opr _opr2; 1756 LIR_Opr _opr3; 1757 public: 1758 LIR_Op3(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr opr3, LIR_Opr result, CodeEmitInfo* info = nullptr) 1759 : LIR_Op(code, result, info) 1760 , _opr1(opr1) 1761 , _opr2(opr2) 1762 , _opr3(opr3) { assert(is_in_range(code, begin_op3, end_op3), "code check"); } 1763 LIR_Opr in_opr1() const { return _opr1; } 1764 LIR_Opr in_opr2() const { return _opr2; } 1765 LIR_Opr in_opr3() const { return _opr3; } 1766 1767 virtual void emit_code(LIR_Assembler* masm); 1768 virtual LIR_Op3* as_Op3() { return this; } 1769 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1770 }; 1771 1772 class LIR_Op4: public LIR_Op { 1773 friend class LIR_OpVisitState; 1774 protected: 1775 LIR_Opr _opr1; 1776 LIR_Opr _opr2; 1777 LIR_Opr _opr3; 1778 LIR_Opr _opr4; 1779 LIR_Opr _tmp1; 1780 LIR_Opr _tmp2; 1781 LIR_Opr _tmp3; 1782 LIR_Opr _tmp4; 1783 LIR_Opr _tmp5; 1784 LIR_Condition _condition; 1785 BasicType _type; 1786 1787 public: 1788 LIR_Op4(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr opr3, LIR_Opr opr4, 1789 LIR_Opr result, BasicType type) 1790 : LIR_Op(code, result, nullptr) 1791 , _opr1(opr1) 1792 , _opr2(opr2) 1793 , _opr3(opr3) 1794 , _opr4(opr4) 1795 , _tmp1(LIR_OprFact::illegalOpr) 1796 , _tmp2(LIR_OprFact::illegalOpr) 1797 , _tmp3(LIR_OprFact::illegalOpr) 1798 , _tmp4(LIR_OprFact::illegalOpr) 1799 , _tmp5(LIR_OprFact::illegalOpr) 1800 , _condition(condition) 1801 , _type(type) { 1802 assert(code == lir_cmove, "code check"); 1803 assert(type != T_ILLEGAL, "cmove should have type"); 1804 } 1805 1806 LIR_Opr in_opr1() const { return _opr1; } 1807 LIR_Opr in_opr2() const { return _opr2; } 1808 LIR_Opr in_opr3() const { return _opr3; } 1809 LIR_Opr in_opr4() const { return _opr4; } 1810 BasicType type() const { return _type; } 1811 LIR_Opr tmp1_opr() const { return _tmp1; } 1812 LIR_Opr tmp2_opr() const { return _tmp2; } 1813 LIR_Opr tmp3_opr() const { return _tmp3; } 1814 LIR_Opr tmp4_opr() const { return _tmp4; } 1815 LIR_Opr tmp5_opr() const { return _tmp5; } 1816 1817 LIR_Condition condition() const { return _condition; } 1818 void set_condition(LIR_Condition condition) { _condition = condition; } 1819 1820 void set_in_opr1(LIR_Opr opr) { _opr1 = opr; } 1821 void set_in_opr2(LIR_Opr opr) { _opr2 = opr; } 1822 void set_in_opr3(LIR_Opr opr) { _opr3 = opr; } 1823 void set_in_opr4(LIR_Opr opr) { _opr4 = opr; } 1824 virtual void emit_code(LIR_Assembler* masm); 1825 virtual LIR_Op4* as_Op4() { return this; } 1826 1827 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1828 }; 1829 1830 //-------------------------------- 1831 class LabelObj: public CompilationResourceObj { 1832 private: 1833 Label _label; 1834 public: 1835 LabelObj() {} 1836 Label* label() { return &_label; } 1837 }; 1838 1839 1840 class LIR_OpLock: public LIR_Op { 1841 friend class LIR_OpVisitState; 1842 1843 private: 1844 LIR_Opr _hdr; 1845 LIR_Opr _obj; 1846 LIR_Opr _lock; 1847 LIR_Opr _scratch; 1848 CodeStub* _stub; 1849 public: 1850 LIR_OpLock(LIR_Code code, LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info) 1851 : LIR_Op(code, LIR_OprFact::illegalOpr, info) 1852 , _hdr(hdr) 1853 , _obj(obj) 1854 , _lock(lock) 1855 , _scratch(scratch) 1856 , _stub(stub) {} 1857 1858 LIR_Opr hdr_opr() const { return _hdr; } 1859 LIR_Opr obj_opr() const { return _obj; } 1860 LIR_Opr lock_opr() const { return _lock; } 1861 LIR_Opr scratch_opr() const { return _scratch; } 1862 CodeStub* stub() const { return _stub; } 1863 1864 virtual void emit_code(LIR_Assembler* masm); 1865 virtual LIR_OpLock* as_OpLock() { return this; } 1866 void print_instr(outputStream* out) const PRODUCT_RETURN; 1867 }; 1868 1869 class LIR_OpLoadKlass: public LIR_Op { 1870 friend class LIR_OpVisitState; 1871 1872 private: 1873 LIR_Opr _obj; 1874 public: 1875 LIR_OpLoadKlass(LIR_Opr obj, LIR_Opr result, CodeEmitInfo* info) 1876 : LIR_Op(lir_load_klass, result, info) 1877 , _obj(obj) 1878 {} 1879 1880 LIR_Opr obj() const { return _obj; } 1881 1882 virtual LIR_OpLoadKlass* as_OpLoadKlass() { return this; } 1883 virtual void emit_code(LIR_Assembler* masm); 1884 void print_instr(outputStream* out) const PRODUCT_RETURN; 1885 }; 1886 1887 class LIR_OpDelay: public LIR_Op { 1888 friend class LIR_OpVisitState; 1889 1890 private: 1891 LIR_Op* _op; 1892 1893 public: 1894 LIR_OpDelay(LIR_Op* op, CodeEmitInfo* info): 1895 LIR_Op(lir_delay_slot, LIR_OprFact::illegalOpr, info), 1896 _op(op) { 1897 assert(op->code() == lir_nop, "should be filling with nops"); 1898 } 1899 virtual void emit_code(LIR_Assembler* masm); 1900 virtual LIR_OpDelay* as_OpDelay() { return this; } 1901 void print_instr(outputStream* out) const PRODUCT_RETURN; 1902 LIR_Op* delay_op() const { return _op; } 1903 CodeEmitInfo* call_info() const { return info(); } 1904 }; 1905 1906 #ifdef ASSERT 1907 // LIR_OpAssert 1908 class LIR_OpAssert : public LIR_Op2 { 1909 friend class LIR_OpVisitState; 1910 1911 private: 1912 const char* _msg; 1913 bool _halt; 1914 1915 public: 1916 LIR_OpAssert(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, const char* msg, bool halt) 1917 : LIR_Op2(lir_assert, condition, opr1, opr2) 1918 , _msg(msg) 1919 , _halt(halt) { 1920 } 1921 1922 const char* msg() const { return _msg; } 1923 bool halt() const { return _halt; } 1924 1925 virtual void emit_code(LIR_Assembler* masm); 1926 virtual LIR_OpAssert* as_OpAssert() { return this; } 1927 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1928 }; 1929 #endif 1930 1931 // LIR_OpCompareAndSwap 1932 class LIR_OpCompareAndSwap : public LIR_Op { 1933 friend class LIR_OpVisitState; 1934 1935 private: 1936 LIR_Opr _addr; 1937 LIR_Opr _cmp_value; 1938 LIR_Opr _new_value; 1939 LIR_Opr _tmp1; 1940 LIR_Opr _tmp2; 1941 1942 public: 1943 LIR_OpCompareAndSwap(LIR_Code code, LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value, 1944 LIR_Opr t1, LIR_Opr t2, LIR_Opr result) 1945 : LIR_Op(code, result, nullptr) // no result, no info 1946 , _addr(addr) 1947 , _cmp_value(cmp_value) 1948 , _new_value(new_value) 1949 , _tmp1(t1) 1950 , _tmp2(t2) { } 1951 1952 LIR_Opr addr() const { return _addr; } 1953 LIR_Opr cmp_value() const { return _cmp_value; } 1954 LIR_Opr new_value() const { return _new_value; } 1955 LIR_Opr tmp1() const { return _tmp1; } 1956 LIR_Opr tmp2() const { return _tmp2; } 1957 1958 virtual void emit_code(LIR_Assembler* masm); 1959 virtual LIR_OpCompareAndSwap * as_OpCompareAndSwap () { return this; } 1960 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1961 }; 1962 1963 // LIR_OpProfileCall 1964 class LIR_OpProfileCall : public LIR_Op { 1965 friend class LIR_OpVisitState; 1966 1967 private: 1968 ciMethod* _profiled_method; 1969 int _profiled_bci; 1970 ciMethod* _profiled_callee; 1971 LIR_Opr _mdo; 1972 LIR_Opr _recv; 1973 LIR_Opr _tmp1; 1974 ciKlass* _known_holder; 1975 1976 public: 1977 // Destroys recv 1978 LIR_OpProfileCall(ciMethod* profiled_method, int profiled_bci, ciMethod* profiled_callee, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* known_holder) 1979 : LIR_Op(lir_profile_call, LIR_OprFact::illegalOpr, nullptr) // no result, no info 1980 , _profiled_method(profiled_method) 1981 , _profiled_bci(profiled_bci) 1982 , _profiled_callee(profiled_callee) 1983 , _mdo(mdo) 1984 , _recv(recv) 1985 , _tmp1(t1) 1986 , _known_holder(known_holder) { } 1987 1988 ciMethod* profiled_method() const { return _profiled_method; } 1989 int profiled_bci() const { return _profiled_bci; } 1990 ciMethod* profiled_callee() const { return _profiled_callee; } 1991 LIR_Opr mdo() const { return _mdo; } 1992 LIR_Opr recv() const { return _recv; } 1993 LIR_Opr tmp1() const { return _tmp1; } 1994 ciKlass* known_holder() const { return _known_holder; } 1995 1996 virtual void emit_code(LIR_Assembler* masm); 1997 virtual LIR_OpProfileCall* as_OpProfileCall() { return this; } 1998 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1999 bool should_profile_receiver_type() const { 2000 bool callee_is_static = _profiled_callee->is_loaded() && _profiled_callee->is_static(); 2001 bool callee_is_private = _profiled_callee->is_loaded() && _profiled_callee->is_private(); 2002 Bytecodes::Code bc = _profiled_method->java_code_at_bci(_profiled_bci); 2003 bool call_is_virtual = (bc == Bytecodes::_invokevirtual && !callee_is_private) || bc == Bytecodes::_invokeinterface; 2004 return C1ProfileVirtualCalls && call_is_virtual && !callee_is_static; 2005 } 2006 }; 2007 2008 // LIR_OpProfileType 2009 class LIR_OpProfileType : public LIR_Op { 2010 friend class LIR_OpVisitState; 2011 2012 private: 2013 LIR_Opr _mdp; 2014 LIR_Opr _obj; 2015 LIR_Opr _tmp; 2016 ciKlass* _exact_klass; // non null if we know the klass statically (no need to load it from _obj) 2017 intptr_t _current_klass; // what the profiling currently reports 2018 bool _not_null; // true if we know statically that _obj cannot be null 2019 bool _no_conflict; // true if we're profling parameters, _exact_klass is not null and we know 2020 // _exact_klass it the only possible type for this parameter in any context. 2021 2022 public: 2023 // Destroys recv 2024 LIR_OpProfileType(LIR_Opr mdp, LIR_Opr obj, ciKlass* exact_klass, intptr_t current_klass, LIR_Opr tmp, bool not_null, bool no_conflict) 2025 : LIR_Op(lir_profile_type, LIR_OprFact::illegalOpr, nullptr) // no result, no info 2026 , _mdp(mdp) 2027 , _obj(obj) 2028 , _tmp(tmp) 2029 , _exact_klass(exact_klass) 2030 , _current_klass(current_klass) 2031 , _not_null(not_null) 2032 , _no_conflict(no_conflict) { } 2033 2034 LIR_Opr mdp() const { return _mdp; } 2035 LIR_Opr obj() const { return _obj; } 2036 LIR_Opr tmp() const { return _tmp; } 2037 ciKlass* exact_klass() const { return _exact_klass; } 2038 intptr_t current_klass() const { return _current_klass; } 2039 bool not_null() const { return _not_null; } 2040 bool no_conflict() const { return _no_conflict; } 2041 2042 virtual void emit_code(LIR_Assembler* masm); 2043 virtual LIR_OpProfileType* as_OpProfileType() { return this; } 2044 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 2045 }; 2046 2047 class LIR_InsertionBuffer; 2048 2049 //--------------------------------LIR_List--------------------------------------------------- 2050 // Maintains a list of LIR instructions (one instance of LIR_List per basic block) 2051 // The LIR instructions are appended by the LIR_List class itself; 2052 // 2053 // Notes: 2054 // - all offsets are(should be) in bytes 2055 // - local positions are specified with an offset, with offset 0 being local 0 2056 2057 class LIR_List: public CompilationResourceObj { 2058 private: 2059 LIR_OpList _operations; 2060 2061 Compilation* _compilation; 2062 #ifndef PRODUCT 2063 BlockBegin* _block; 2064 #endif 2065 #ifdef ASSERT 2066 const char * _file; 2067 int _line; 2068 #endif 2069 #ifdef RISCV 2070 LIR_Opr _cmp_opr1; 2071 LIR_Opr _cmp_opr2; 2072 #endif 2073 2074 public: 2075 void append(LIR_Op* op) { 2076 if (op->source() == nullptr) 2077 op->set_source(_compilation->current_instruction()); 2078 #ifndef PRODUCT 2079 if (PrintIRWithLIR) { 2080 _compilation->maybe_print_current_instruction(); 2081 op->print(); tty->cr(); 2082 } 2083 #endif // PRODUCT 2084 2085 #ifdef RISCV 2086 set_cmp_oprs(op); 2087 // lir_cmp set cmp oprs only on riscv 2088 if (op->code() == lir_cmp) return; 2089 #endif 2090 2091 _operations.append(op); 2092 2093 #ifdef ASSERT 2094 op->verify(); 2095 op->set_file_and_line(_file, _line); 2096 _file = nullptr; 2097 _line = 0; 2098 #endif 2099 } 2100 2101 LIR_List(Compilation* compilation, BlockBegin* block = nullptr); 2102 2103 #ifdef ASSERT 2104 void set_file_and_line(const char * file, int line); 2105 #endif 2106 2107 #ifdef RISCV 2108 void set_cmp_oprs(LIR_Op* op); 2109 #endif 2110 2111 //---------- accessors --------------- 2112 LIR_OpList* instructions_list() { return &_operations; } 2113 int length() const { return _operations.length(); } 2114 LIR_Op* at(int i) const { return _operations.at(i); } 2115 2116 NOT_PRODUCT(BlockBegin* block() const { return _block; }); 2117 2118 // insert LIR_Ops in buffer to right places in LIR_List 2119 void append(LIR_InsertionBuffer* buffer); 2120 2121 //---------- mutators --------------- 2122 void insert_before(int i, LIR_List* op_list) { _operations.insert_before(i, op_list->instructions_list()); } 2123 void insert_before(int i, LIR_Op* op) { _operations.insert_before(i, op); } 2124 void remove_at(int i) { _operations.remove_at(i); } 2125 2126 //---------- printing ------------- 2127 void print_instructions() PRODUCT_RETURN; 2128 2129 2130 //---------- instructions ------------- 2131 void call_opt_virtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result, 2132 address dest, LIR_OprList* arguments, 2133 CodeEmitInfo* info) { 2134 append(new LIR_OpJavaCall(lir_optvirtual_call, method, receiver, result, dest, arguments, info)); 2135 } 2136 void call_static(ciMethod* method, LIR_Opr result, 2137 address dest, LIR_OprList* arguments, CodeEmitInfo* info) { 2138 append(new LIR_OpJavaCall(lir_static_call, method, LIR_OprFact::illegalOpr, result, dest, arguments, info)); 2139 } 2140 void call_icvirtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result, 2141 address dest, LIR_OprList* arguments, CodeEmitInfo* info) { 2142 append(new LIR_OpJavaCall(lir_icvirtual_call, method, receiver, result, dest, arguments, info)); 2143 } 2144 void call_dynamic(ciMethod* method, LIR_Opr receiver, LIR_Opr result, 2145 address dest, LIR_OprList* arguments, CodeEmitInfo* info) { 2146 append(new LIR_OpJavaCall(lir_dynamic_call, method, receiver, result, dest, arguments, info)); 2147 } 2148 2149 void get_thread(LIR_Opr result) { append(new LIR_Op0(lir_get_thread, result)); } 2150 void membar() { append(new LIR_Op0(lir_membar)); } 2151 void membar_acquire() { append(new LIR_Op0(lir_membar_acquire)); } 2152 void membar_release() { append(new LIR_Op0(lir_membar_release)); } 2153 void membar_loadload() { append(new LIR_Op0(lir_membar_loadload)); } 2154 void membar_storestore() { append(new LIR_Op0(lir_membar_storestore)); } 2155 void membar_loadstore() { append(new LIR_Op0(lir_membar_loadstore)); } 2156 void membar_storeload() { append(new LIR_Op0(lir_membar_storeload)); } 2157 2158 void nop() { append(new LIR_Op0(lir_nop)); } 2159 2160 void std_entry(LIR_Opr receiver) { append(new LIR_Op0(lir_std_entry, receiver)); } 2161 void osr_entry(LIR_Opr osrPointer) { append(new LIR_Op0(lir_osr_entry, osrPointer)); } 2162 2163 void on_spin_wait() { append(new LIR_Op0(lir_on_spin_wait)); } 2164 2165 void branch_destination(Label* lbl) { append(new LIR_OpLabel(lbl)); } 2166 2167 void leal(LIR_Opr from, LIR_Opr result_reg, LIR_PatchCode patch_code = lir_patch_none, CodeEmitInfo* info = nullptr) { append(new LIR_Op1(lir_leal, from, result_reg, T_ILLEGAL, patch_code, info)); } 2168 2169 // result is a stack location for old backend and vreg for UseLinearScan 2170 // stack_loc_temp is an illegal register for old backend 2171 void move(LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = nullptr) { append(new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); } 2172 void move(LIR_Address* src, LIR_Opr dst, CodeEmitInfo* info = nullptr) { append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, src->type(), lir_patch_none, info)); } 2173 void move(LIR_Opr src, LIR_Address* dst, CodeEmitInfo* info = nullptr) { append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), dst->type(), lir_patch_none, info)); } 2174 void move_wide(LIR_Address* src, LIR_Opr dst, CodeEmitInfo* info = nullptr) { 2175 if (UseCompressedOops) { 2176 append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, src->type(), lir_patch_none, info, lir_move_wide)); 2177 } else { 2178 move(src, dst, info); 2179 } 2180 } 2181 void move_wide(LIR_Opr src, LIR_Address* dst, CodeEmitInfo* info = nullptr) { 2182 if (UseCompressedOops) { 2183 append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), dst->type(), lir_patch_none, info, lir_move_wide)); 2184 } else { 2185 move(src, dst, info); 2186 } 2187 } 2188 void volatile_move(LIR_Opr src, LIR_Opr dst, BasicType type, CodeEmitInfo* info = nullptr, LIR_PatchCode patch_code = lir_patch_none) { append(new LIR_Op1(lir_move, src, dst, type, patch_code, info, lir_move_volatile)); } 2189 2190 void oop2reg (jobject o, LIR_Opr reg) { assert(reg->type() == T_OBJECT, "bad reg"); append(new LIR_Op1(lir_move, LIR_OprFact::oopConst(o), reg)); } 2191 void oop2reg_patch(jobject o, LIR_Opr reg, CodeEmitInfo* info); 2192 2193 void metadata2reg (Metadata* o, LIR_Opr reg) { assert(reg->type() == T_METADATA, "bad reg"); append(new LIR_Op1(lir_move, LIR_OprFact::metadataConst(o), reg)); } 2194 void klass2reg_patch(Metadata* o, LIR_Opr reg, CodeEmitInfo* info); 2195 2196 void safepoint(LIR_Opr tmp, CodeEmitInfo* info) { append(new LIR_Op1(lir_safepoint, tmp, info)); } 2197 void return_op(LIR_Opr result) { append(new LIR_OpReturn(result)); } 2198 2199 void convert(Bytecodes::Code code, LIR_Opr left, LIR_Opr dst, ConversionStub* stub = nullptr/*, bool is_32bit = false*/) { append(new LIR_OpConvert(code, left, dst, stub)); } 2200 2201 void logical_and (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_and, left, right, dst)); } 2202 void logical_or (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_or, left, right, dst)); } 2203 void logical_xor (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_xor, left, right, dst)); } 2204 2205 void null_check(LIR_Opr opr, CodeEmitInfo* info, bool deoptimize_on_null = false); 2206 void throw_exception(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) { 2207 append(new LIR_Op2(lir_throw, exceptionPC, exceptionOop, LIR_OprFact::illegalOpr, info)); 2208 } 2209 void unwind_exception(LIR_Opr exceptionOop) { 2210 append(new LIR_Op1(lir_unwind, exceptionOop)); 2211 } 2212 2213 void push(LIR_Opr opr) { append(new LIR_Op1(lir_push, opr)); } 2214 void pop(LIR_Opr reg) { append(new LIR_Op1(lir_pop, reg)); } 2215 2216 void cmp(LIR_Condition condition, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info = nullptr) { 2217 append(new LIR_Op2(lir_cmp, condition, left, right, info)); 2218 } 2219 void cmp(LIR_Condition condition, LIR_Opr left, int right, CodeEmitInfo* info = nullptr) { 2220 cmp(condition, left, LIR_OprFact::intConst(right), info); 2221 } 2222 2223 void cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info); 2224 void cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Address* addr, CodeEmitInfo* info); 2225 2226 void cmove(LIR_Condition condition, LIR_Opr src1, LIR_Opr src2, LIR_Opr dst, BasicType type, 2227 LIR_Opr cmp_opr1 = LIR_OprFact::illegalOpr, LIR_Opr cmp_opr2 = LIR_OprFact::illegalOpr) { 2228 append(new LIR_Op4(lir_cmove, condition, src1, src2, cmp_opr1, cmp_opr2, dst, type)); 2229 } 2230 2231 void cas_long(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value, 2232 LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr); 2233 void cas_obj(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value, 2234 LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr); 2235 void cas_int(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value, 2236 LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr); 2237 2238 void abs (LIR_Opr from, LIR_Opr to, LIR_Opr tmp) { append(new LIR_Op1(lir_abs , from, to, tmp)); } 2239 void negate(LIR_Opr from, LIR_Opr to, LIR_Opr tmp = LIR_OprFact::illegalOpr) { append(new LIR_Op1(lir_neg, from, to, tmp)); } 2240 void sqrt(LIR_Opr from, LIR_Opr to, LIR_Opr tmp) { append(new LIR_Op1(lir_sqrt, from, to, tmp)); } 2241 void fmad(LIR_Opr from, LIR_Opr from1, LIR_Opr from2, LIR_Opr to) { append(new LIR_Op3(lir_fmad, from, from1, from2, to)); } 2242 void fmaf(LIR_Opr from, LIR_Opr from1, LIR_Opr from2, LIR_Opr to) { append(new LIR_Op3(lir_fmaf, from, from1, from2, to)); } 2243 void f2hf(LIR_Opr from, LIR_Opr to, LIR_Opr tmp) { append(new LIR_Op1(lir_f2hf, from, to, tmp)); } 2244 void hf2f(LIR_Opr from, LIR_Opr to, LIR_Opr tmp) { append(new LIR_Op1(lir_hf2f, from, to, tmp)); } 2245 2246 void add (LIR_Opr left, LIR_Opr right, LIR_Opr res) { append(new LIR_Op2(lir_add, left, right, res)); } 2247 void sub (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = nullptr) { append(new LIR_Op2(lir_sub, left, right, res, info)); } 2248 void mul (LIR_Opr left, LIR_Opr right, LIR_Opr res) { append(new LIR_Op2(lir_mul, left, right, res)); } 2249 void mul (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_mul, left, right, res, tmp)); } 2250 void div (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = nullptr) { append(new LIR_Op2(lir_div, left, right, res, info)); } 2251 void div (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_div, left, right, res, tmp)); } 2252 void rem (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = nullptr) { append(new LIR_Op2(lir_rem, left, right, res, info)); } 2253 2254 void volatile_load_mem_reg(LIR_Address* address, LIR_Opr dst, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none); 2255 void volatile_load_unsafe_reg(LIR_Opr base, LIR_Opr offset, LIR_Opr dst, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code); 2256 2257 void load(LIR_Address* addr, LIR_Opr src, CodeEmitInfo* info = nullptr, LIR_PatchCode patch_code = lir_patch_none); 2258 2259 void store_mem_int(jint v, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none); 2260 void store_mem_oop(jobject o, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none); 2261 void store(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info = nullptr, LIR_PatchCode patch_code = lir_patch_none); 2262 void volatile_store_mem_reg(LIR_Opr src, LIR_Address* address, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none); 2263 void volatile_store_unsafe_reg(LIR_Opr src, LIR_Opr base, LIR_Opr offset, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code); 2264 2265 void idiv(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info); 2266 void idiv(LIR_Opr left, int right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info); 2267 void irem(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info); 2268 void irem(LIR_Opr left, int right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info); 2269 2270 void allocate_object(LIR_Opr dst, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, int header_size, int object_size, LIR_Opr klass, bool init_check, CodeStub* stub); 2271 void allocate_array(LIR_Opr dst, LIR_Opr len, LIR_Opr t1,LIR_Opr t2, LIR_Opr t3,LIR_Opr t4, BasicType type, LIR_Opr klass, CodeStub* stub, bool zero_array = true); 2272 2273 // jump is an unconditional branch 2274 void jump(BlockBegin* block) { 2275 append(new LIR_OpBranch(lir_cond_always, block)); 2276 } 2277 void jump(CodeStub* stub) { 2278 append(new LIR_OpBranch(lir_cond_always, stub)); 2279 } 2280 void branch(LIR_Condition cond, Label* lbl) { 2281 append(new LIR_OpBranch(cond, lbl)); 2282 } 2283 // Should not be used for fp comparisons 2284 void branch(LIR_Condition cond, BlockBegin* block) { 2285 append(new LIR_OpBranch(cond, block)); 2286 } 2287 // Should not be used for fp comparisons 2288 void branch(LIR_Condition cond, CodeStub* stub) { 2289 append(new LIR_OpBranch(cond, stub)); 2290 } 2291 // Should only be used for fp comparisons 2292 void branch(LIR_Condition cond, BlockBegin* block, BlockBegin* unordered) { 2293 append(new LIR_OpBranch(cond, block, unordered)); 2294 } 2295 2296 void shift_left(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp); 2297 void shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp); 2298 void unsigned_shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp); 2299 2300 void shift_left(LIR_Opr value, int count, LIR_Opr dst) { shift_left(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); } 2301 void shift_right(LIR_Opr value, int count, LIR_Opr dst) { shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); } 2302 void unsigned_shift_right(LIR_Opr value, int count, LIR_Opr dst) { unsigned_shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); } 2303 2304 void lcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_cmp_l2i, left, right, dst)); } 2305 void fcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst, bool is_unordered_less); 2306 2307 void call_runtime_leaf(address routine, LIR_Opr tmp, LIR_Opr result, LIR_OprList* arguments) { 2308 append(new LIR_OpRTCall(routine, tmp, result, arguments)); 2309 } 2310 2311 void call_runtime(address routine, LIR_Opr tmp, LIR_Opr result, 2312 LIR_OprList* arguments, CodeEmitInfo* info) { 2313 append(new LIR_OpRTCall(routine, tmp, result, arguments, info)); 2314 } 2315 2316 void load_stack_address_monitor(int monitor_ix, LIR_Opr dst) { append(new LIR_Op1(lir_monaddr, LIR_OprFact::intConst(monitor_ix), dst)); } 2317 void unlock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub); 2318 void lock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info); 2319 2320 void breakpoint() { append(new LIR_Op0(lir_breakpoint)); } 2321 2322 void arraycopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp, ciArrayKlass* expected_type, int flags, CodeEmitInfo* info) { append(new LIR_OpArrayCopy(src, src_pos, dst, dst_pos, length, tmp, expected_type, flags, info)); } 2323 2324 void update_crc32(LIR_Opr crc, LIR_Opr val, LIR_Opr res) { append(new LIR_OpUpdateCRC32(crc, val, res)); } 2325 2326 void instanceof(LIR_Opr result, LIR_Opr object, ciKlass* klass, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, CodeEmitInfo* info_for_patch, ciMethod* profiled_method, int profiled_bci); 2327 void store_check(LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception, ciMethod* profiled_method, int profiled_bci); 2328 2329 void checkcast (LIR_Opr result, LIR_Opr object, ciKlass* klass, 2330 LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, 2331 CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub, 2332 ciMethod* profiled_method, int profiled_bci); 2333 // MethodData* profiling 2334 void profile_call(ciMethod* method, int bci, ciMethod* callee, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* cha_klass) { 2335 append(new LIR_OpProfileCall(method, bci, callee, mdo, recv, t1, cha_klass)); 2336 } 2337 void profile_type(LIR_Address* mdp, LIR_Opr obj, ciKlass* exact_klass, intptr_t current_klass, LIR_Opr tmp, bool not_null, bool no_conflict) { 2338 append(new LIR_OpProfileType(LIR_OprFact::address(mdp), obj, exact_klass, current_klass, tmp, not_null, no_conflict)); 2339 } 2340 2341 void xadd(LIR_Opr src, LIR_Opr add, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_xadd, src, add, res, tmp)); } 2342 void xchg(LIR_Opr src, LIR_Opr set, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_xchg, src, set, res, tmp)); } 2343 2344 void load_klass(LIR_Opr obj, LIR_Opr result, CodeEmitInfo* info) { append(new LIR_OpLoadKlass(obj, result, info)); } 2345 2346 #ifdef ASSERT 2347 void lir_assert(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, const char* msg, bool halt) { append(new LIR_OpAssert(condition, opr1, opr2, msg, halt)); } 2348 #endif 2349 }; 2350 2351 void print_LIR(BlockList* blocks); 2352 2353 class LIR_InsertionBuffer : public CompilationResourceObj { 2354 private: 2355 LIR_List* _lir; // the lir list where ops of this buffer should be inserted later (null when uninitialized) 2356 2357 // list of insertion points. index and count are stored alternately: 2358 // _index_and_count[i * 2]: the index into lir list where "count" ops should be inserted 2359 // _index_and_count[i * 2 + 1]: the number of ops to be inserted at index 2360 intStack _index_and_count; 2361 2362 // the LIR_Ops to be inserted 2363 LIR_OpList _ops; 2364 2365 void append_new(int index, int count) { _index_and_count.append(index); _index_and_count.append(count); } 2366 void set_index_at(int i, int value) { _index_and_count.at_put((i << 1), value); } 2367 void set_count_at(int i, int value) { _index_and_count.at_put((i << 1) + 1, value); } 2368 2369 #ifdef ASSERT 2370 void verify(); 2371 #endif 2372 public: 2373 LIR_InsertionBuffer() : _lir(nullptr), _index_and_count(8), _ops(8) { } 2374 2375 // must be called before using the insertion buffer 2376 void init(LIR_List* lir) { assert(!initialized(), "already initialized"); _lir = lir; _index_and_count.clear(); _ops.clear(); } 2377 bool initialized() const { return _lir != nullptr; } 2378 // called automatically when the buffer is appended to the LIR_List 2379 void finish() { _lir = nullptr; } 2380 2381 // accessors 2382 LIR_List* lir_list() const { return _lir; } 2383 int number_of_insertion_points() const { return _index_and_count.length() >> 1; } 2384 int index_at(int i) const { return _index_and_count.at((i << 1)); } 2385 int count_at(int i) const { return _index_and_count.at((i << 1) + 1); } 2386 2387 int number_of_ops() const { return _ops.length(); } 2388 LIR_Op* op_at(int i) const { return _ops.at(i); } 2389 2390 // append an instruction to the buffer 2391 void append(int index, LIR_Op* op); 2392 2393 // instruction 2394 void move(int index, LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = nullptr) { append(index, new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); } 2395 }; 2396 2397 2398 // 2399 // LIR_OpVisitState is used for manipulating LIR_Ops in an abstract way. 2400 // Calling a LIR_Op's visit function with a LIR_OpVisitState causes 2401 // information about the input, output and temporaries used by the 2402 // op to be recorded. It also records whether the op has call semantics 2403 // and also records all the CodeEmitInfos used by this op. 2404 // 2405 2406 2407 class LIR_OpVisitState: public StackObj { 2408 public: 2409 typedef enum { inputMode, firstMode = inputMode, tempMode, outputMode, numModes, invalidMode = -1 } OprMode; 2410 2411 enum { 2412 maxNumberOfOperands = 21, 2413 maxNumberOfInfos = 4 2414 }; 2415 2416 private: 2417 LIR_Op* _op; 2418 2419 // optimization: the operands and infos are not stored in a variable-length 2420 // list, but in a fixed-size array to save time of size checks and resizing 2421 int _oprs_len[numModes]; 2422 LIR_Opr* _oprs_new[numModes][maxNumberOfOperands]; 2423 int _info_len; 2424 CodeEmitInfo* _info_new[maxNumberOfInfos]; 2425 2426 bool _has_call; 2427 bool _has_slow_case; 2428 2429 2430 // only include register operands 2431 // addresses are decomposed to the base and index registers 2432 // constants and stack operands are ignored 2433 void append(LIR_Opr& opr, OprMode mode) { 2434 assert(opr->is_valid(), "should not call this otherwise"); 2435 assert(mode >= 0 && mode < numModes, "bad mode"); 2436 2437 if (opr->is_register()) { 2438 assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow"); 2439 _oprs_new[mode][_oprs_len[mode]++] = &opr; 2440 2441 } else if (opr->is_pointer()) { 2442 LIR_Address* address = opr->as_address_ptr(); 2443 if (address != nullptr) { 2444 // special handling for addresses: add base and index register of the address 2445 // both are always input operands or temp if we want to extend 2446 // their liveness! 2447 if (mode == outputMode) { 2448 mode = inputMode; 2449 } 2450 assert (mode == inputMode || mode == tempMode, "input or temp only for addresses"); 2451 if (address->_base->is_valid()) { 2452 assert(address->_base->is_register(), "must be"); 2453 assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow"); 2454 _oprs_new[mode][_oprs_len[mode]++] = &address->_base; 2455 } 2456 if (address->_index->is_valid()) { 2457 assert(address->_index->is_register(), "must be"); 2458 assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow"); 2459 _oprs_new[mode][_oprs_len[mode]++] = &address->_index; 2460 } 2461 2462 } else { 2463 assert(opr->is_constant(), "constant operands are not processed"); 2464 } 2465 } else { 2466 assert(opr->is_stack(), "stack operands are not processed"); 2467 } 2468 } 2469 2470 void append(CodeEmitInfo* info) { 2471 assert(info != nullptr, "should not call this otherwise"); 2472 assert(_info_len < maxNumberOfInfos, "array overflow"); 2473 _info_new[_info_len++] = info; 2474 } 2475 2476 public: 2477 LIR_OpVisitState() { reset(); } 2478 2479 LIR_Op* op() const { return _op; } 2480 void set_op(LIR_Op* op) { reset(); _op = op; } 2481 2482 bool has_call() const { return _has_call; } 2483 bool has_slow_case() const { return _has_slow_case; } 2484 2485 void reset() { 2486 _op = nullptr; 2487 _has_call = false; 2488 _has_slow_case = false; 2489 2490 _oprs_len[inputMode] = 0; 2491 _oprs_len[tempMode] = 0; 2492 _oprs_len[outputMode] = 0; 2493 _info_len = 0; 2494 } 2495 2496 2497 int opr_count(OprMode mode) const { 2498 assert(mode >= 0 && mode < numModes, "bad mode"); 2499 return _oprs_len[mode]; 2500 } 2501 2502 LIR_Opr opr_at(OprMode mode, int index) const { 2503 assert(mode >= 0 && mode < numModes, "bad mode"); 2504 assert(index >= 0 && index < _oprs_len[mode], "index out of bound"); 2505 return *_oprs_new[mode][index]; 2506 } 2507 2508 void set_opr_at(OprMode mode, int index, LIR_Opr opr) const { 2509 assert(mode >= 0 && mode < numModes, "bad mode"); 2510 assert(index >= 0 && index < _oprs_len[mode], "index out of bound"); 2511 *_oprs_new[mode][index] = opr; 2512 } 2513 2514 int info_count() const { 2515 return _info_len; 2516 } 2517 2518 CodeEmitInfo* info_at(int index) const { 2519 assert(index < _info_len, "index out of bounds"); 2520 return _info_new[index]; 2521 } 2522 2523 XHandlers* all_xhandler(); 2524 2525 // collects all register operands of the instruction 2526 void visit(LIR_Op* op); 2527 2528 #ifdef ASSERT 2529 // check that an operation has no operands 2530 bool no_operands(LIR_Op* op); 2531 #endif 2532 2533 // LIR_Op visitor functions use these to fill in the state 2534 void do_input(LIR_Opr& opr) { append(opr, LIR_OpVisitState::inputMode); } 2535 void do_output(LIR_Opr& opr) { append(opr, LIR_OpVisitState::outputMode); } 2536 void do_temp(LIR_Opr& opr) { append(opr, LIR_OpVisitState::tempMode); } 2537 void do_info(CodeEmitInfo* info) { append(info); } 2538 2539 void do_stub(CodeStub* stub); 2540 void do_call() { _has_call = true; } 2541 void do_slow_case() { _has_slow_case = true; } 2542 void do_slow_case(CodeEmitInfo* info) { 2543 _has_slow_case = true; 2544 append(info); 2545 } 2546 }; 2547 2548 2549 inline LIR_Opr LIR_Opr::illegalOpr() { return LIR_OprFact::illegalOpr; }; 2550 2551 inline LIR_Opr LIR_Opr::nullOpr() { return LIR_OprFact::nullOpr; }; 2552 2553 #endif // SHARE_C1_C1_LIR_HPP