1 /* 2 * Copyright (c) 2000, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_C1_C1_LIR_HPP 26 #define SHARE_C1_C1_LIR_HPP 27 28 #include "c1/c1_Defs.hpp" 29 #include "c1/c1_ValueType.hpp" 30 #include "oops/method.hpp" 31 #include "utilities/globalDefinitions.hpp" 32 #include "utilities/macros.hpp" 33 34 class BlockBegin; 35 class BlockList; 36 class LIR_Assembler; 37 class CodeEmitInfo; 38 class CodeStub; 39 class CodeStubList; 40 class C1SafepointPollStub; 41 class ArrayCopyStub; 42 class LIR_Op; 43 class ciType; 44 class ValueType; 45 class LIR_OpVisitState; 46 class FpuStackSim; 47 48 //--------------------------------------------------------------------- 49 // LIR Operands 50 // LIR_OprPtr 51 // LIR_Const 52 // LIR_Address 53 //--------------------------------------------------------------------- 54 class LIR_OprPtr; 55 class LIR_Const; 56 class LIR_Address; 57 class LIR_OprVisitor; 58 class LIR_Opr; 59 60 typedef int RegNr; 61 62 typedef GrowableArray<LIR_Opr> LIR_OprList; 63 typedef GrowableArray<LIR_Op*> LIR_OpArray; 64 typedef GrowableArray<LIR_Op*> LIR_OpList; 65 66 // define LIR_OprPtr early so LIR_Opr can refer to it 67 class LIR_OprPtr: public CompilationResourceObj { 68 public: 69 bool is_oop_pointer() const { return (type() == T_OBJECT); } 70 bool is_float_kind() const { BasicType t = type(); return (t == T_FLOAT) || (t == T_DOUBLE); } 71 72 virtual LIR_Const* as_constant() { return nullptr; } 73 virtual LIR_Address* as_address() { return nullptr; } 74 virtual BasicType type() const = 0; 75 virtual void print_value_on(outputStream* out) const = 0; 76 }; 77 78 79 80 // LIR constants 81 class LIR_Const: public LIR_OprPtr { 82 private: 83 JavaValue _value; 84 85 void type_check(BasicType t) const { assert(type() == t, "type check"); } 86 void type_check(BasicType t1, BasicType t2) const { assert(type() == t1 || type() == t2, "type check"); } 87 void type_check(BasicType t1, BasicType t2, BasicType t3) const { assert(type() == t1 || type() == t2 || type() == t3, "type check"); } 88 89 public: 90 LIR_Const(jint i, bool is_address=false) { _value.set_type(is_address?T_ADDRESS:T_INT); _value.set_jint(i); } 91 LIR_Const(jlong l) { _value.set_type(T_LONG); _value.set_jlong(l); } 92 LIR_Const(jfloat f) { _value.set_type(T_FLOAT); _value.set_jfloat(f); } 93 LIR_Const(jdouble d) { _value.set_type(T_DOUBLE); _value.set_jdouble(d); } 94 LIR_Const(jobject o) { _value.set_type(T_OBJECT); _value.set_jobject(o); } 95 LIR_Const(void* p) { 96 #ifdef _LP64 97 assert(sizeof(jlong) >= sizeof(p), "too small");; 98 _value.set_type(T_LONG); _value.set_jlong((jlong)p); 99 #else 100 assert(sizeof(jint) >= sizeof(p), "too small");; 101 _value.set_type(T_INT); _value.set_jint((jint)p); 102 #endif 103 } 104 LIR_Const(Metadata* m) { 105 _value.set_type(T_METADATA); 106 #ifdef _LP64 107 _value.set_jlong((jlong)m); 108 #else 109 _value.set_jint((jint)m); 110 #endif // _LP64 111 } 112 113 virtual BasicType type() const { return _value.get_type(); } 114 virtual LIR_Const* as_constant() { return this; } 115 116 jint as_jint() const { type_check(T_INT, T_ADDRESS); return _value.get_jint(); } 117 jlong as_jlong() const { type_check(T_LONG ); return _value.get_jlong(); } 118 jfloat as_jfloat() const { type_check(T_FLOAT ); return _value.get_jfloat(); } 119 jdouble as_jdouble() const { type_check(T_DOUBLE); return _value.get_jdouble(); } 120 jobject as_jobject() const { type_check(T_OBJECT); return _value.get_jobject(); } 121 jint as_jint_lo() const { type_check(T_LONG ); return low(_value.get_jlong()); } 122 jint as_jint_hi() const { type_check(T_LONG ); return high(_value.get_jlong()); } 123 124 #ifdef _LP64 125 address as_pointer() const { type_check(T_LONG ); return (address)_value.get_jlong(); } 126 Metadata* as_metadata() const { type_check(T_METADATA); return (Metadata*)_value.get_jlong(); } 127 #else 128 address as_pointer() const { type_check(T_INT ); return (address)_value.get_jint(); } 129 Metadata* as_metadata() const { type_check(T_METADATA); return (Metadata*)_value.get_jint(); } 130 #endif 131 132 133 jint as_jint_bits() const { type_check(T_FLOAT, T_INT, T_ADDRESS); return _value.get_jint(); } 134 jint as_jint_lo_bits() const { 135 if (type() == T_DOUBLE) { 136 return low(jlong_cast(_value.get_jdouble())); 137 } else { 138 return as_jint_lo(); 139 } 140 } 141 jint as_jint_hi_bits() const { 142 if (type() == T_DOUBLE) { 143 return high(jlong_cast(_value.get_jdouble())); 144 } else { 145 return as_jint_hi(); 146 } 147 } 148 jlong as_jlong_bits() const { 149 if (type() == T_DOUBLE) { 150 return jlong_cast(_value.get_jdouble()); 151 } else { 152 return as_jlong(); 153 } 154 } 155 156 virtual void print_value_on(outputStream* out) const PRODUCT_RETURN; 157 158 159 bool is_zero_float() { 160 jfloat f = as_jfloat(); 161 jfloat ok = 0.0f; 162 return jint_cast(f) == jint_cast(ok); 163 } 164 165 bool is_one_float() { 166 jfloat f = as_jfloat(); 167 return !g_isnan(f) && g_isfinite(f) && f == 1.0; 168 } 169 170 bool is_zero_double() { 171 jdouble d = as_jdouble(); 172 jdouble ok = 0.0; 173 return jlong_cast(d) == jlong_cast(ok); 174 } 175 176 bool is_one_double() { 177 jdouble d = as_jdouble(); 178 return !g_isnan(d) && g_isfinite(d) && d == 1.0; 179 } 180 }; 181 182 183 //---------------------LIR Operand descriptor------------------------------------ 184 // 185 // The class LIR_Opr represents a LIR instruction operand; 186 // it can be a register (ALU/FPU), stack location or a constant; 187 // Constants and addresses are represented as resource area allocated 188 // structures (see above), and pointers are stored in the _value field (cast to 189 // an intptr_t). 190 // Registers and stack locations are represented inline as integers. 191 // (see value function). 192 193 // Previously, this class was derived from CompilationResourceObj. 194 // However, deriving from any of the "Obj" types in allocation.hpp seems 195 // detrimental, since in some build modes it would add a vtable to this class, 196 // which make it no longer be a 1-word trivially-copyable wrapper object, 197 // which is the entire point of it. 198 199 class LIR_Opr { 200 public: 201 // value structure: 202 // data other-non-data opr-type opr-kind 203 // +-------------------+--------------+-------+-----+ 204 // [max...............................|6 5 4 3|2 1 0] 205 // ^ 206 // is_pointer bit 207 // 208 // lowest bit cleared, means it is a structure pointer 209 // we need 4 bits to represent types 210 211 private: 212 friend class LIR_OprFact; 213 214 intptr_t _value; 215 // Conversion 216 intptr_t value() const { return _value; } 217 218 bool check_value_mask(intptr_t mask, intptr_t masked_value) const { 219 return (value() & mask) == masked_value; 220 } 221 222 enum OprKind { 223 pointer_value = 0 224 , stack_value = 1 225 , cpu_register = 3 226 , fpu_register = 5 227 , illegal_value = 7 228 }; 229 230 enum OprBits { 231 pointer_bits = 1 232 , kind_bits = 3 233 , type_bits = 4 234 , size_bits = 2 235 , destroys_bits = 1 236 , virtual_bits = 1 237 , is_xmm_bits = 1 238 , last_use_bits = 1 239 , is_fpu_stack_offset_bits = 1 // used in assertion checking on x86 for FPU stack slot allocation 240 , non_data_bits = kind_bits + type_bits + size_bits + destroys_bits + virtual_bits 241 + is_xmm_bits + last_use_bits + is_fpu_stack_offset_bits 242 , data_bits = BitsPerInt - non_data_bits 243 , reg_bits = data_bits / 2 // for two registers in one value encoding 244 }; 245 246 enum OprShift : uintptr_t { 247 kind_shift = 0 248 , type_shift = kind_shift + kind_bits 249 , size_shift = type_shift + type_bits 250 , destroys_shift = size_shift + size_bits 251 , last_use_shift = destroys_shift + destroys_bits 252 , is_fpu_stack_offset_shift = last_use_shift + last_use_bits 253 , virtual_shift = is_fpu_stack_offset_shift + is_fpu_stack_offset_bits 254 , is_xmm_shift = virtual_shift + virtual_bits 255 , data_shift = is_xmm_shift + is_xmm_bits 256 , reg1_shift = data_shift 257 , reg2_shift = data_shift + reg_bits 258 259 }; 260 261 enum OprSize { 262 single_size = 0 << size_shift 263 , double_size = 1 << size_shift 264 }; 265 266 enum OprMask { 267 kind_mask = right_n_bits(kind_bits) 268 , type_mask = right_n_bits(type_bits) << type_shift 269 , size_mask = right_n_bits(size_bits) << size_shift 270 , last_use_mask = right_n_bits(last_use_bits) << last_use_shift 271 , is_fpu_stack_offset_mask = right_n_bits(is_fpu_stack_offset_bits) << is_fpu_stack_offset_shift 272 , virtual_mask = right_n_bits(virtual_bits) << virtual_shift 273 , is_xmm_mask = right_n_bits(is_xmm_bits) << is_xmm_shift 274 , pointer_mask = right_n_bits(pointer_bits) 275 , lower_reg_mask = right_n_bits(reg_bits) 276 , no_type_mask = (int)(~(type_mask | last_use_mask | is_fpu_stack_offset_mask)) 277 }; 278 279 uint32_t data() const { return (uint32_t)value() >> data_shift; } 280 int lo_reg_half() const { return data() & lower_reg_mask; } 281 int hi_reg_half() const { return (data() >> reg_bits) & lower_reg_mask; } 282 OprKind kind_field() const { return (OprKind)(value() & kind_mask); } 283 OprSize size_field() const { return (OprSize)(value() & size_mask); } 284 285 static char type_char(BasicType t); 286 287 public: 288 LIR_Opr() : _value(0) {} 289 LIR_Opr(intptr_t val) : _value(val) {} 290 LIR_Opr(LIR_OprPtr *val) : _value(reinterpret_cast<intptr_t>(val)) {} 291 bool operator==(const LIR_Opr &other) const { return _value == other._value; } 292 bool operator!=(const LIR_Opr &other) const { return _value != other._value; } 293 explicit operator bool() const { return _value != 0; } 294 295 // UGLY HACK: make this value object look like a pointer (to itself). This 296 // operator overload should be removed, and all callers updated from 297 // `opr->fn()` to `opr.fn()`. 298 const LIR_Opr* operator->() const { return this; } 299 LIR_Opr* operator->() { return this; } 300 301 enum { 302 vreg_base = ConcreteRegisterImpl::number_of_registers, 303 data_max = (1 << data_bits) - 1, // max unsigned value for data bit field 304 vreg_limit = 10000, // choose a reasonable limit, 305 vreg_max = MIN2(vreg_limit, data_max) // and make sure if fits in the bit field 306 }; 307 308 static inline LIR_Opr illegalOpr(); 309 static inline LIR_Opr nullOpr(); 310 311 enum OprType { 312 unknown_type = 0 << type_shift // means: not set (catch uninitialized types) 313 , int_type = 1 << type_shift 314 , long_type = 2 << type_shift 315 , object_type = 3 << type_shift 316 , address_type = 4 << type_shift 317 , float_type = 5 << type_shift 318 , double_type = 6 << type_shift 319 , metadata_type = 7 << type_shift 320 }; 321 friend OprType as_OprType(BasicType t); 322 friend BasicType as_BasicType(OprType t); 323 324 OprType type_field_valid() const { assert(is_register() || is_stack(), "should not be called otherwise"); return (OprType)(value() & type_mask); } 325 OprType type_field() const { return is_illegal() ? unknown_type : (OprType)(value() & type_mask); } 326 327 static OprSize size_for(BasicType t) { 328 switch (t) { 329 case T_LONG: 330 case T_DOUBLE: 331 return double_size; 332 break; 333 334 case T_FLOAT: 335 case T_BOOLEAN: 336 case T_CHAR: 337 case T_BYTE: 338 case T_SHORT: 339 case T_INT: 340 case T_ADDRESS: 341 case T_OBJECT: 342 case T_ARRAY: 343 case T_METADATA: 344 return single_size; 345 break; 346 347 default: 348 ShouldNotReachHere(); 349 return single_size; 350 } 351 } 352 353 354 void validate_type() const PRODUCT_RETURN; 355 356 BasicType type() const { 357 if (is_pointer()) { 358 return pointer()->type(); 359 } 360 return as_BasicType(type_field()); 361 } 362 363 364 ValueType* value_type() const { return as_ValueType(type()); } 365 366 char type_char() const { return type_char((is_pointer()) ? pointer()->type() : type()); } 367 368 bool is_equal(LIR_Opr opr) const { return *this == opr; } 369 // checks whether types are same 370 bool is_same_type(LIR_Opr opr) const { 371 assert(type_field() != unknown_type && 372 opr->type_field() != unknown_type, "shouldn't see unknown_type"); 373 return type_field() == opr->type_field(); 374 } 375 bool is_same_register(LIR_Opr opr) { 376 return (is_register() && opr->is_register() && 377 kind_field() == opr->kind_field() && 378 (value() & no_type_mask) == (opr->value() & no_type_mask)); 379 } 380 381 bool is_pointer() const { return check_value_mask(pointer_mask, pointer_value); } 382 bool is_illegal() const { return kind_field() == illegal_value; } 383 bool is_valid() const { return kind_field() != illegal_value; } 384 385 bool is_register() const { return is_cpu_register() || is_fpu_register(); } 386 bool is_virtual() const { return is_virtual_cpu() || is_virtual_fpu(); } 387 388 bool is_constant() const { return is_pointer() && pointer()->as_constant() != nullptr; } 389 bool is_address() const { return is_pointer() && pointer()->as_address() != nullptr; } 390 391 bool is_float_kind() const { return is_pointer() ? pointer()->is_float_kind() : (kind_field() == fpu_register); } 392 bool is_oop() const; 393 394 // semantic for fpu- and xmm-registers: 395 // * is_float and is_double return true for xmm_registers 396 // (so is_single_fpu and is_single_xmm are true) 397 // * So you must always check for is_???_xmm prior to is_???_fpu to 398 // distinguish between fpu- and xmm-registers 399 400 bool is_stack() const { validate_type(); return check_value_mask(kind_mask, stack_value); } 401 bool is_single_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask, stack_value | single_size); } 402 bool is_double_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask, stack_value | double_size); } 403 404 bool is_cpu_register() const { validate_type(); return check_value_mask(kind_mask, cpu_register); } 405 bool is_virtual_cpu() const { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register | virtual_mask); } 406 bool is_fixed_cpu() const { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register); } 407 bool is_single_cpu() const { validate_type(); return check_value_mask(kind_mask | size_mask, cpu_register | single_size); } 408 bool is_double_cpu() const { validate_type(); return check_value_mask(kind_mask | size_mask, cpu_register | double_size); } 409 410 bool is_fpu_register() const { validate_type(); return check_value_mask(kind_mask, fpu_register); } 411 bool is_virtual_fpu() const { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register | virtual_mask); } 412 bool is_fixed_fpu() const { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register); } 413 bool is_single_fpu() const { validate_type(); return check_value_mask(kind_mask | size_mask, fpu_register | single_size); } 414 bool is_double_fpu() const { validate_type(); return check_value_mask(kind_mask | size_mask, fpu_register | double_size); } 415 416 bool is_xmm_register() const { validate_type(); return check_value_mask(kind_mask | is_xmm_mask, fpu_register | is_xmm_mask); } 417 bool is_single_xmm() const { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | single_size | is_xmm_mask); } 418 bool is_double_xmm() const { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | double_size | is_xmm_mask); } 419 420 // fast accessor functions for special bits that do not work for pointers 421 // (in this functions, the check for is_pointer() is omitted) 422 bool is_single_word() const { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, single_size); } 423 bool is_double_word() const { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, double_size); } 424 bool is_virtual_register() const { assert(is_register(), "type check"); return check_value_mask(virtual_mask, virtual_mask); } 425 bool is_oop_register() const { assert(is_register() || is_stack(), "type check"); return type_field_valid() == object_type; } 426 BasicType type_register() const { assert(is_register() || is_stack(), "type check"); return as_BasicType(type_field_valid()); } 427 428 bool is_last_use() const { assert(is_register(), "only works for registers"); return (value() & last_use_mask) != 0; } 429 bool is_fpu_stack_offset() const { assert(is_register(), "only works for registers"); return (value() & is_fpu_stack_offset_mask) != 0; } 430 LIR_Opr make_last_use() { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | last_use_mask); } 431 LIR_Opr make_fpu_stack_offset() { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | is_fpu_stack_offset_mask); } 432 433 434 int single_stack_ix() const { assert(is_single_stack() && !is_virtual(), "type check"); return (int)data(); } 435 int double_stack_ix() const { assert(is_double_stack() && !is_virtual(), "type check"); return (int)data(); } 436 RegNr cpu_regnr() const { assert(is_single_cpu() && !is_virtual(), "type check"); return (RegNr)data(); } 437 RegNr cpu_regnrLo() const { assert(is_double_cpu() && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); } 438 RegNr cpu_regnrHi() const { assert(is_double_cpu() && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); } 439 RegNr fpu_regnr() const { assert(is_single_fpu() && !is_virtual(), "type check"); return (RegNr)data(); } 440 RegNr fpu_regnrLo() const { assert(is_double_fpu() && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); } 441 RegNr fpu_regnrHi() const { assert(is_double_fpu() && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); } 442 RegNr xmm_regnr() const { assert(is_single_xmm() && !is_virtual(), "type check"); return (RegNr)data(); } 443 RegNr xmm_regnrLo() const { assert(is_double_xmm() && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); } 444 RegNr xmm_regnrHi() const { assert(is_double_xmm() && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); } 445 int vreg_number() const { assert(is_virtual(), "type check"); return (RegNr)data(); } 446 447 LIR_OprPtr* pointer() const { assert(_value != 0 && is_pointer(), "nullness and type check"); return (LIR_OprPtr*)_value; } 448 LIR_Const* as_constant_ptr() const { return pointer()->as_constant(); } 449 LIR_Address* as_address_ptr() const { return pointer()->as_address(); } 450 451 Register as_register() const; 452 Register as_register_lo() const; 453 Register as_register_hi() const; 454 455 Register as_pointer_register() { 456 #ifdef _LP64 457 if (is_double_cpu()) { 458 assert(as_register_lo() == as_register_hi(), "should be a single register"); 459 return as_register_lo(); 460 } 461 #endif 462 return as_register(); 463 } 464 465 FloatRegister as_float_reg () const; 466 FloatRegister as_double_reg () const; 467 #ifdef X86 468 XMMRegister as_xmm_float_reg () const; 469 XMMRegister as_xmm_double_reg() const; 470 // for compatibility with RInfo 471 int fpu() const { return lo_reg_half(); } 472 #endif 473 474 jint as_jint() const { return as_constant_ptr()->as_jint(); } 475 jlong as_jlong() const { return as_constant_ptr()->as_jlong(); } 476 jfloat as_jfloat() const { return as_constant_ptr()->as_jfloat(); } 477 jdouble as_jdouble() const { return as_constant_ptr()->as_jdouble(); } 478 jobject as_jobject() const { return as_constant_ptr()->as_jobject(); } 479 480 void print() const PRODUCT_RETURN; 481 void print(outputStream* out) const PRODUCT_RETURN; 482 }; 483 484 inline LIR_Opr::OprType as_OprType(BasicType type) { 485 switch (type) { 486 case T_INT: return LIR_Opr::int_type; 487 case T_LONG: return LIR_Opr::long_type; 488 case T_FLOAT: return LIR_Opr::float_type; 489 case T_DOUBLE: return LIR_Opr::double_type; 490 case T_OBJECT: 491 case T_ARRAY: return LIR_Opr::object_type; 492 case T_ADDRESS: return LIR_Opr::address_type; 493 case T_METADATA: return LIR_Opr::metadata_type; 494 case T_ILLEGAL: // fall through 495 default: ShouldNotReachHere(); return LIR_Opr::unknown_type; 496 } 497 } 498 499 inline BasicType as_BasicType(LIR_Opr::OprType t) { 500 switch (t) { 501 case LIR_Opr::int_type: return T_INT; 502 case LIR_Opr::long_type: return T_LONG; 503 case LIR_Opr::float_type: return T_FLOAT; 504 case LIR_Opr::double_type: return T_DOUBLE; 505 case LIR_Opr::object_type: return T_OBJECT; 506 case LIR_Opr::address_type: return T_ADDRESS; 507 case LIR_Opr::metadata_type:return T_METADATA; 508 case LIR_Opr::unknown_type: // fall through 509 default: ShouldNotReachHere(); return T_ILLEGAL; 510 } 511 } 512 513 514 // LIR_Address 515 class LIR_Address: public LIR_OprPtr { 516 friend class LIR_OpVisitState; 517 518 public: 519 // NOTE: currently these must be the log2 of the scale factor (and 520 // must also be equivalent to the ScaleFactor enum in 521 // assembler_i486.hpp) 522 enum Scale { 523 times_1 = 0, 524 times_2 = 1, 525 times_4 = 2, 526 times_8 = 3 527 }; 528 529 private: 530 LIR_Opr _base; 531 LIR_Opr _index; 532 intx _disp; 533 Scale _scale; 534 BasicType _type; 535 536 public: 537 LIR_Address(LIR_Opr base, LIR_Opr index, BasicType type): 538 _base(base) 539 , _index(index) 540 , _disp(0) 541 , _scale(times_1) 542 , _type(type) { verify(); } 543 544 LIR_Address(LIR_Opr base, intx disp, BasicType type): 545 _base(base) 546 , _index(LIR_Opr::illegalOpr()) 547 , _disp(disp) 548 , _scale(times_1) 549 , _type(type) { verify(); } 550 551 LIR_Address(LIR_Opr base, BasicType type): 552 _base(base) 553 , _index(LIR_Opr::illegalOpr()) 554 , _disp(0) 555 , _scale(times_1) 556 , _type(type) { verify(); } 557 558 LIR_Address(LIR_Opr base, LIR_Opr index, intx disp, BasicType type): 559 _base(base) 560 , _index(index) 561 , _disp(disp) 562 , _scale(times_1) 563 , _type(type) { verify(); } 564 565 LIR_Address(LIR_Opr base, LIR_Opr index, Scale scale, intx disp, BasicType type): 566 _base(base) 567 , _index(index) 568 , _disp(disp) 569 , _scale(scale) 570 , _type(type) { verify(); } 571 572 LIR_Opr base() const { return _base; } 573 LIR_Opr index() const { return _index; } 574 Scale scale() const { return _scale; } 575 intx disp() const { return _disp; } 576 577 bool equals(LIR_Address* other) const { return base() == other->base() && index() == other->index() && disp() == other->disp() && scale() == other->scale(); } 578 579 virtual LIR_Address* as_address() { return this; } 580 virtual BasicType type() const { return _type; } 581 virtual void print_value_on(outputStream* out) const PRODUCT_RETURN; 582 583 void verify() const PRODUCT_RETURN; 584 585 static Scale scale(BasicType type); 586 }; 587 588 589 // operand factory 590 class LIR_OprFact: public AllStatic { 591 public: 592 593 static LIR_Opr illegalOpr; 594 static LIR_Opr nullOpr; 595 596 static LIR_Opr single_cpu(int reg) { 597 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) | 598 LIR_Opr::int_type | 599 LIR_Opr::cpu_register | 600 LIR_Opr::single_size); 601 } 602 static LIR_Opr single_cpu_oop(int reg) { 603 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) | 604 LIR_Opr::object_type | 605 LIR_Opr::cpu_register | 606 LIR_Opr::single_size); 607 } 608 static LIR_Opr single_cpu_address(int reg) { 609 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) | 610 LIR_Opr::address_type | 611 LIR_Opr::cpu_register | 612 LIR_Opr::single_size); 613 } 614 static LIR_Opr single_cpu_metadata(int reg) { 615 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) | 616 LIR_Opr::metadata_type | 617 LIR_Opr::cpu_register | 618 LIR_Opr::single_size); 619 } 620 static LIR_Opr double_cpu(int reg1, int reg2) { 621 LP64_ONLY(assert(reg1 == reg2, "must be identical")); 622 return (LIR_Opr)(intptr_t)((reg1 << LIR_Opr::reg1_shift) | 623 (reg2 << LIR_Opr::reg2_shift) | 624 LIR_Opr::long_type | 625 LIR_Opr::cpu_register | 626 LIR_Opr::double_size); 627 } 628 629 static LIR_Opr single_fpu(int reg) { 630 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) | 631 LIR_Opr::float_type | 632 LIR_Opr::fpu_register | 633 LIR_Opr::single_size); 634 } 635 636 // Platform dependent. 637 static LIR_Opr double_fpu(int reg1, int reg2 = -1 /*fnoreg*/); 638 639 #ifdef ARM32 640 static LIR_Opr single_softfp(int reg) { 641 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) | 642 LIR_Opr::float_type | 643 LIR_Opr::cpu_register | 644 LIR_Opr::single_size); 645 } 646 static LIR_Opr double_softfp(int reg1, int reg2) { 647 return (LIR_Opr)(intptr_t)((reg1 << LIR_Opr::reg1_shift) | 648 (reg2 << LIR_Opr::reg2_shift) | 649 LIR_Opr::double_type | 650 LIR_Opr::cpu_register | 651 LIR_Opr::double_size); 652 } 653 #endif // ARM32 654 655 #if defined(X86) 656 static LIR_Opr single_xmm(int reg) { 657 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) | 658 LIR_Opr::float_type | 659 LIR_Opr::fpu_register | 660 LIR_Opr::single_size | 661 LIR_Opr::is_xmm_mask); 662 } 663 static LIR_Opr double_xmm(int reg) { 664 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) | 665 (reg << LIR_Opr::reg2_shift) | 666 LIR_Opr::double_type | 667 LIR_Opr::fpu_register | 668 LIR_Opr::double_size | 669 LIR_Opr::is_xmm_mask); 670 } 671 #endif // X86 672 673 static LIR_Opr virtual_register(int index, BasicType type) { 674 if (index > LIR_Opr::vreg_max) { 675 // Running out of virtual registers. Caller should bailout. 676 return illegalOpr; 677 } 678 679 LIR_Opr res; 680 switch (type) { 681 case T_OBJECT: // fall through 682 case T_ARRAY: 683 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 684 LIR_Opr::object_type | 685 LIR_Opr::cpu_register | 686 LIR_Opr::single_size | 687 LIR_Opr::virtual_mask); 688 break; 689 690 case T_METADATA: 691 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 692 LIR_Opr::metadata_type| 693 LIR_Opr::cpu_register | 694 LIR_Opr::single_size | 695 LIR_Opr::virtual_mask); 696 break; 697 698 case T_INT: 699 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 700 LIR_Opr::int_type | 701 LIR_Opr::cpu_register | 702 LIR_Opr::single_size | 703 LIR_Opr::virtual_mask); 704 break; 705 706 case T_ADDRESS: 707 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 708 LIR_Opr::address_type | 709 LIR_Opr::cpu_register | 710 LIR_Opr::single_size | 711 LIR_Opr::virtual_mask); 712 break; 713 714 case T_LONG: 715 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 716 LIR_Opr::long_type | 717 LIR_Opr::cpu_register | 718 LIR_Opr::double_size | 719 LIR_Opr::virtual_mask); 720 break; 721 722 #ifdef __SOFTFP__ 723 case T_FLOAT: 724 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 725 LIR_Opr::float_type | 726 LIR_Opr::cpu_register | 727 LIR_Opr::single_size | 728 LIR_Opr::virtual_mask); 729 break; 730 case T_DOUBLE: 731 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 732 LIR_Opr::double_type | 733 LIR_Opr::cpu_register | 734 LIR_Opr::double_size | 735 LIR_Opr::virtual_mask); 736 break; 737 #else // __SOFTFP__ 738 case T_FLOAT: 739 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 740 LIR_Opr::float_type | 741 LIR_Opr::fpu_register | 742 LIR_Opr::single_size | 743 LIR_Opr::virtual_mask); 744 break; 745 746 case 747 T_DOUBLE: res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 748 LIR_Opr::double_type | 749 LIR_Opr::fpu_register | 750 LIR_Opr::double_size | 751 LIR_Opr::virtual_mask); 752 break; 753 #endif // __SOFTFP__ 754 default: ShouldNotReachHere(); res = illegalOpr; 755 } 756 757 #ifdef ASSERT 758 res->validate_type(); 759 assert(res->vreg_number() == index, "conversion check"); 760 assert(index >= LIR_Opr::vreg_base, "must start at vreg_base"); 761 762 // old-style calculation; check if old and new method are equal 763 LIR_Opr::OprType t = as_OprType(type); 764 #ifdef __SOFTFP__ 765 LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 766 t | 767 LIR_Opr::cpu_register | 768 LIR_Opr::size_for(type) | LIR_Opr::virtual_mask); 769 #else // __SOFTFP__ 770 LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | t | 771 ((type == T_FLOAT || type == T_DOUBLE) ? LIR_Opr::fpu_register : LIR_Opr::cpu_register) | 772 LIR_Opr::size_for(type) | LIR_Opr::virtual_mask); 773 assert(res == old_res, "old and new method not equal"); 774 #endif // __SOFTFP__ 775 #endif // ASSERT 776 777 return res; 778 } 779 780 // 'index' is computed by FrameMap::local_stack_pos(index); do not use other parameters as 781 // the index is platform independent; a double stack using indices 2 and 3 has always 782 // index 2. 783 static LIR_Opr stack(int index, BasicType type) { 784 LIR_Opr res; 785 switch (type) { 786 case T_OBJECT: // fall through 787 case T_ARRAY: 788 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 789 LIR_Opr::object_type | 790 LIR_Opr::stack_value | 791 LIR_Opr::single_size); 792 break; 793 794 case T_METADATA: 795 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 796 LIR_Opr::metadata_type | 797 LIR_Opr::stack_value | 798 LIR_Opr::single_size); 799 break; 800 case T_INT: 801 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 802 LIR_Opr::int_type | 803 LIR_Opr::stack_value | 804 LIR_Opr::single_size); 805 break; 806 807 case T_ADDRESS: 808 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 809 LIR_Opr::address_type | 810 LIR_Opr::stack_value | 811 LIR_Opr::single_size); 812 break; 813 814 case T_LONG: 815 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 816 LIR_Opr::long_type | 817 LIR_Opr::stack_value | 818 LIR_Opr::double_size); 819 break; 820 821 case T_FLOAT: 822 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 823 LIR_Opr::float_type | 824 LIR_Opr::stack_value | 825 LIR_Opr::single_size); 826 break; 827 case T_DOUBLE: 828 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 829 LIR_Opr::double_type | 830 LIR_Opr::stack_value | 831 LIR_Opr::double_size); 832 break; 833 834 default: ShouldNotReachHere(); res = illegalOpr; 835 } 836 837 #ifdef ASSERT 838 assert(index >= 0, "index must be positive"); 839 assert(index == (int)res->data(), "conversion check"); 840 841 LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 842 LIR_Opr::stack_value | 843 as_OprType(type) | 844 LIR_Opr::size_for(type)); 845 assert(res == old_res, "old and new method not equal"); 846 #endif 847 848 return res; 849 } 850 851 static LIR_Opr intConst(jint i) { return (LIR_Opr)(new LIR_Const(i)); } 852 static LIR_Opr longConst(jlong l) { return (LIR_Opr)(new LIR_Const(l)); } 853 static LIR_Opr floatConst(jfloat f) { return (LIR_Opr)(new LIR_Const(f)); } 854 static LIR_Opr doubleConst(jdouble d) { return (LIR_Opr)(new LIR_Const(d)); } 855 static LIR_Opr oopConst(jobject o) { return (LIR_Opr)(new LIR_Const(o)); } 856 static LIR_Opr address(LIR_Address* a) { return (LIR_Opr)a; } 857 static LIR_Opr intptrConst(void* p) { return (LIR_Opr)(new LIR_Const(p)); } 858 static LIR_Opr intptrConst(intptr_t v) { return (LIR_Opr)(new LIR_Const((void*)v)); } 859 static LIR_Opr illegal() { return (LIR_Opr)-1; } 860 static LIR_Opr addressConst(jint i) { return (LIR_Opr)(new LIR_Const(i, true)); } 861 static LIR_Opr metadataConst(Metadata* m) { return (LIR_Opr)(new LIR_Const(m)); } 862 863 static LIR_Opr value_type(ValueType* type); 864 }; 865 866 867 //------------------------------------------------------------------------------- 868 // LIR Instructions 869 //------------------------------------------------------------------------------- 870 // 871 // Note: 872 // - every instruction has a result operand 873 // - every instruction has an CodeEmitInfo operand (can be revisited later) 874 // - every instruction has a LIR_OpCode operand 875 // - LIR_OpN, means an instruction that has N input operands 876 // 877 // class hierarchy: 878 // 879 class LIR_Op; 880 class LIR_Op0; 881 class LIR_OpLabel; 882 class LIR_Op1; 883 class LIR_OpBranch; 884 class LIR_OpConvert; 885 class LIR_OpAllocObj; 886 class LIR_OpReturn; 887 class LIR_OpRoundFP; 888 class LIR_Op2; 889 class LIR_OpDelay; 890 class LIR_Op3; 891 class LIR_OpAllocArray; 892 class LIR_Op4; 893 class LIR_OpCall; 894 class LIR_OpJavaCall; 895 class LIR_OpRTCall; 896 class LIR_OpArrayCopy; 897 class LIR_OpUpdateCRC32; 898 class LIR_OpLock; 899 class LIR_OpTypeCheck; 900 class LIR_OpFlattenedArrayCheck; 901 class LIR_OpNullFreeArrayCheck; 902 class LIR_OpSubstitutabilityCheck; 903 class LIR_OpCompareAndSwap; 904 class LIR_OpLoadKlass; 905 class LIR_OpProfileCall; 906 class LIR_OpProfileType; 907 class LIR_OpProfileInlineType; 908 #ifdef ASSERT 909 class LIR_OpAssert; 910 #endif 911 912 // LIR operation codes 913 enum LIR_Code { 914 lir_none 915 , begin_op0 916 , lir_label 917 , lir_nop 918 , lir_std_entry 919 , lir_osr_entry 920 , lir_fpop_raw 921 , lir_breakpoint 922 , lir_rtcall 923 , lir_membar 924 , lir_membar_acquire 925 , lir_membar_release 926 , lir_membar_loadload 927 , lir_membar_storestore 928 , lir_membar_loadstore 929 , lir_membar_storeload 930 , lir_get_thread 931 , lir_on_spin_wait 932 , lir_check_orig_pc 933 , end_op0 934 , begin_op1 935 , lir_fxch 936 , lir_fld 937 , lir_push 938 , lir_pop 939 , lir_null_check 940 , lir_return 941 , lir_leal 942 , lir_move 943 , lir_convert 944 , lir_alloc_object 945 , lir_monaddr 946 , lir_roundfp 947 , lir_safepoint 948 , lir_unwind 949 , lir_load_klass 950 , end_op1 951 , begin_op2 952 , lir_branch 953 , lir_cond_float_branch 954 , lir_cmp 955 , lir_cmp_l2i 956 , lir_ucmp_fd2i 957 , lir_cmp_fd2i 958 , lir_add 959 , lir_sub 960 , lir_mul 961 , lir_div 962 , lir_rem 963 , lir_sqrt 964 , lir_abs 965 , lir_neg 966 , lir_tan 967 , lir_f2hf 968 , lir_hf2f 969 , lir_log10 970 , lir_logic_and 971 , lir_logic_or 972 , lir_logic_xor 973 , lir_shl 974 , lir_shr 975 , lir_ushr 976 , lir_alloc_array 977 , lir_throw 978 , lir_xadd 979 , lir_xchg 980 , end_op2 981 , begin_op3 982 , lir_idiv 983 , lir_irem 984 , lir_fmad 985 , lir_fmaf 986 , end_op3 987 , begin_op4 988 , lir_cmove 989 , end_op4 990 , begin_opJavaCall 991 , lir_static_call 992 , lir_optvirtual_call 993 , lir_icvirtual_call 994 , lir_dynamic_call 995 , end_opJavaCall 996 , begin_opArrayCopy 997 , lir_arraycopy 998 , end_opArrayCopy 999 , begin_opUpdateCRC32 1000 , lir_updatecrc32 1001 , end_opUpdateCRC32 1002 , begin_opLock 1003 , lir_lock 1004 , lir_unlock 1005 , end_opLock 1006 , begin_delay_slot 1007 , lir_delay_slot 1008 , end_delay_slot 1009 , begin_opTypeCheck 1010 , lir_instanceof 1011 , lir_checkcast 1012 , lir_store_check 1013 , end_opTypeCheck 1014 , begin_opFlattenedArrayCheck 1015 , lir_flat_array_check 1016 , end_opFlattenedArrayCheck 1017 , begin_opNullFreeArrayCheck 1018 , lir_null_free_array_check 1019 , end_opNullFreeArrayCheck 1020 , begin_opSubstitutabilityCheck 1021 , lir_substitutability_check 1022 , end_opSubstitutabilityCheck 1023 , begin_opCompareAndSwap 1024 , lir_cas_long 1025 , lir_cas_obj 1026 , lir_cas_int 1027 , end_opCompareAndSwap 1028 , begin_opMDOProfile 1029 , lir_profile_call 1030 , lir_profile_type 1031 , lir_profile_inline_type 1032 , end_opMDOProfile 1033 , begin_opAssert 1034 , lir_assert 1035 , end_opAssert 1036 #ifdef INCLUDE_ZGC 1037 , begin_opXLoadBarrierTest 1038 , lir_xloadbarrier_test 1039 , end_opXLoadBarrierTest 1040 #endif 1041 }; 1042 1043 1044 enum LIR_Condition { 1045 lir_cond_equal 1046 , lir_cond_notEqual 1047 , lir_cond_less 1048 , lir_cond_lessEqual 1049 , lir_cond_greaterEqual 1050 , lir_cond_greater 1051 , lir_cond_belowEqual 1052 , lir_cond_aboveEqual 1053 , lir_cond_always 1054 , lir_cond_unknown = -1 1055 }; 1056 1057 1058 enum LIR_PatchCode { 1059 lir_patch_none, 1060 lir_patch_low, 1061 lir_patch_high, 1062 lir_patch_normal 1063 }; 1064 1065 1066 enum LIR_MoveKind { 1067 lir_move_normal, 1068 lir_move_volatile, 1069 lir_move_wide, 1070 lir_move_max_flag 1071 }; 1072 1073 1074 // -------------------------------------------------- 1075 // LIR_Op 1076 // -------------------------------------------------- 1077 class LIR_Op: public CompilationResourceObj { 1078 friend class LIR_OpVisitState; 1079 1080 #ifdef ASSERT 1081 private: 1082 const char * _file; 1083 int _line; 1084 #endif 1085 1086 protected: 1087 LIR_Opr _result; 1088 unsigned short _code; 1089 unsigned short _flags; 1090 CodeEmitInfo* _info; 1091 int _id; // value id for register allocation 1092 int _fpu_pop_count; 1093 Instruction* _source; // for debugging 1094 1095 static void print_condition(outputStream* out, LIR_Condition cond) PRODUCT_RETURN; 1096 1097 protected: 1098 static bool is_in_range(LIR_Code test, LIR_Code start, LIR_Code end) { return start < test && test < end; } 1099 1100 public: 1101 LIR_Op() 1102 : 1103 #ifdef ASSERT 1104 _file(nullptr) 1105 , _line(0), 1106 #endif 1107 _result(LIR_OprFact::illegalOpr) 1108 , _code(lir_none) 1109 , _flags(0) 1110 , _info(nullptr) 1111 , _id(-1) 1112 , _fpu_pop_count(0) 1113 , _source(nullptr) {} 1114 1115 LIR_Op(LIR_Code code, LIR_Opr result, CodeEmitInfo* info) 1116 : 1117 #ifdef ASSERT 1118 _file(nullptr) 1119 , _line(0), 1120 #endif 1121 _result(result) 1122 , _code(code) 1123 , _flags(0) 1124 , _info(info) 1125 , _id(-1) 1126 , _fpu_pop_count(0) 1127 , _source(nullptr) {} 1128 1129 CodeEmitInfo* info() const { return _info; } 1130 LIR_Code code() const { return (LIR_Code)_code; } 1131 LIR_Opr result_opr() const { return _result; } 1132 void set_result_opr(LIR_Opr opr) { _result = opr; } 1133 1134 #ifdef ASSERT 1135 void set_file_and_line(const char * file, int line) { 1136 _file = file; 1137 _line = line; 1138 } 1139 #endif 1140 1141 virtual const char * name() const PRODUCT_RETURN_NULL; 1142 virtual void visit(LIR_OpVisitState* state); 1143 1144 int id() const { return _id; } 1145 void set_id(int id) { _id = id; } 1146 1147 // FPU stack simulation helpers -- only used on Intel 1148 void set_fpu_pop_count(int count) { assert(count >= 0 && count <= 1, "currently only 0 and 1 are valid"); _fpu_pop_count = count; } 1149 int fpu_pop_count() const { return _fpu_pop_count; } 1150 bool pop_fpu_stack() { return _fpu_pop_count > 0; } 1151 1152 Instruction* source() const { return _source; } 1153 void set_source(Instruction* ins) { _source = ins; } 1154 1155 virtual void emit_code(LIR_Assembler* masm) = 0; 1156 virtual void print_instr(outputStream* out) const = 0; 1157 virtual void print_on(outputStream* st) const PRODUCT_RETURN; 1158 1159 virtual bool is_patching() { return false; } 1160 virtual LIR_OpCall* as_OpCall() { return nullptr; } 1161 virtual LIR_OpJavaCall* as_OpJavaCall() { return nullptr; } 1162 virtual LIR_OpLabel* as_OpLabel() { return nullptr; } 1163 virtual LIR_OpDelay* as_OpDelay() { return nullptr; } 1164 virtual LIR_OpLock* as_OpLock() { return nullptr; } 1165 virtual LIR_OpAllocArray* as_OpAllocArray() { return nullptr; } 1166 virtual LIR_OpAllocObj* as_OpAllocObj() { return nullptr; } 1167 virtual LIR_OpRoundFP* as_OpRoundFP() { return nullptr; } 1168 virtual LIR_OpBranch* as_OpBranch() { return nullptr; } 1169 virtual LIR_OpReturn* as_OpReturn() { return nullptr; } 1170 virtual LIR_OpRTCall* as_OpRTCall() { return nullptr; } 1171 virtual LIR_OpConvert* as_OpConvert() { return nullptr; } 1172 virtual LIR_Op0* as_Op0() { return nullptr; } 1173 virtual LIR_Op1* as_Op1() { return nullptr; } 1174 virtual LIR_Op2* as_Op2() { return nullptr; } 1175 virtual LIR_Op3* as_Op3() { return nullptr; } 1176 virtual LIR_Op4* as_Op4() { return nullptr; } 1177 virtual LIR_OpArrayCopy* as_OpArrayCopy() { return nullptr; } 1178 virtual LIR_OpUpdateCRC32* as_OpUpdateCRC32() { return nullptr; } 1179 virtual LIR_OpTypeCheck* as_OpTypeCheck() { return nullptr; } 1180 virtual LIR_OpFlattenedArrayCheck* as_OpFlattenedArrayCheck() { return nullptr; } 1181 virtual LIR_OpNullFreeArrayCheck* as_OpNullFreeArrayCheck() { return nullptr; } 1182 virtual LIR_OpSubstitutabilityCheck* as_OpSubstitutabilityCheck() { return nullptr; } 1183 virtual LIR_OpCompareAndSwap* as_OpCompareAndSwap() { return nullptr; } 1184 virtual LIR_OpLoadKlass* as_OpLoadKlass() { return nullptr; } 1185 virtual LIR_OpProfileCall* as_OpProfileCall() { return nullptr; } 1186 virtual LIR_OpProfileType* as_OpProfileType() { return nullptr; } 1187 virtual LIR_OpProfileInlineType* as_OpProfileInlineType() { return nullptr; } 1188 #ifdef ASSERT 1189 virtual LIR_OpAssert* as_OpAssert() { return nullptr; } 1190 #endif 1191 1192 virtual void verify() const {} 1193 }; 1194 1195 // for calls 1196 class LIR_OpCall: public LIR_Op { 1197 friend class LIR_OpVisitState; 1198 1199 protected: 1200 address _addr; 1201 LIR_OprList* _arguments; 1202 protected: 1203 LIR_OpCall(LIR_Code code, address addr, LIR_Opr result, 1204 LIR_OprList* arguments, CodeEmitInfo* info = nullptr) 1205 : LIR_Op(code, result, info) 1206 , _addr(addr) 1207 , _arguments(arguments) {} 1208 1209 public: 1210 address addr() const { return _addr; } 1211 const LIR_OprList* arguments() const { return _arguments; } 1212 virtual LIR_OpCall* as_OpCall() { return this; } 1213 }; 1214 1215 1216 // -------------------------------------------------- 1217 // LIR_OpJavaCall 1218 // -------------------------------------------------- 1219 class LIR_OpJavaCall: public LIR_OpCall { 1220 friend class LIR_OpVisitState; 1221 1222 private: 1223 ciMethod* _method; 1224 LIR_Opr _receiver; 1225 LIR_Opr _method_handle_invoke_SP_save_opr; // Used in LIR_OpVisitState::visit to store the reference to FrameMap::method_handle_invoke_SP_save_opr. 1226 1227 public: 1228 LIR_OpJavaCall(LIR_Code code, ciMethod* method, 1229 LIR_Opr receiver, LIR_Opr result, 1230 address addr, LIR_OprList* arguments, 1231 CodeEmitInfo* info) 1232 : LIR_OpCall(code, addr, result, arguments, info) 1233 , _method(method) 1234 , _receiver(receiver) 1235 , _method_handle_invoke_SP_save_opr(LIR_OprFact::illegalOpr) 1236 { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); } 1237 1238 LIR_OpJavaCall(LIR_Code code, ciMethod* method, 1239 LIR_Opr receiver, LIR_Opr result, intptr_t vtable_offset, 1240 LIR_OprList* arguments, CodeEmitInfo* info) 1241 : LIR_OpCall(code, (address)vtable_offset, result, arguments, info) 1242 , _method(method) 1243 , _receiver(receiver) 1244 , _method_handle_invoke_SP_save_opr(LIR_OprFact::illegalOpr) 1245 { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); } 1246 1247 LIR_Opr receiver() const { return _receiver; } 1248 ciMethod* method() const { return _method; } 1249 1250 // JSR 292 support. 1251 bool is_invokedynamic() const { return code() == lir_dynamic_call; } 1252 bool is_method_handle_invoke() const { 1253 return method()->is_compiled_lambda_form() || // Java-generated lambda form 1254 method()->is_method_handle_intrinsic(); // JVM-generated MH intrinsic 1255 } 1256 1257 virtual void emit_code(LIR_Assembler* masm); 1258 virtual LIR_OpJavaCall* as_OpJavaCall() { return this; } 1259 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1260 1261 bool maybe_return_as_fields(ciInlineKlass** vk = nullptr) const; 1262 }; 1263 1264 // -------------------------------------------------- 1265 // LIR_OpLabel 1266 // -------------------------------------------------- 1267 // Location where a branch can continue 1268 class LIR_OpLabel: public LIR_Op { 1269 friend class LIR_OpVisitState; 1270 1271 private: 1272 Label* _label; 1273 public: 1274 LIR_OpLabel(Label* lbl) 1275 : LIR_Op(lir_label, LIR_OprFact::illegalOpr, nullptr) 1276 , _label(lbl) {} 1277 Label* label() const { return _label; } 1278 1279 virtual void emit_code(LIR_Assembler* masm); 1280 virtual LIR_OpLabel* as_OpLabel() { return this; } 1281 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1282 }; 1283 1284 // LIR_OpArrayCopy 1285 class LIR_OpArrayCopy: public LIR_Op { 1286 friend class LIR_OpVisitState; 1287 1288 private: 1289 ArrayCopyStub* _stub; 1290 LIR_Opr _src; 1291 LIR_Opr _src_pos; 1292 LIR_Opr _dst; 1293 LIR_Opr _dst_pos; 1294 LIR_Opr _length; 1295 LIR_Opr _tmp; 1296 ciArrayKlass* _expected_type; 1297 int _flags; 1298 1299 public: 1300 enum Flags { 1301 src_null_check = 1 << 0, 1302 dst_null_check = 1 << 1, 1303 src_pos_positive_check = 1 << 2, 1304 dst_pos_positive_check = 1 << 3, 1305 length_positive_check = 1 << 4, 1306 src_range_check = 1 << 5, 1307 dst_range_check = 1 << 6, 1308 type_check = 1 << 7, 1309 overlapping = 1 << 8, 1310 unaligned = 1 << 9, 1311 src_objarray = 1 << 10, 1312 dst_objarray = 1 << 11, 1313 always_slow_path = 1 << 12, 1314 src_inlinetype_check = 1 << 13, 1315 dst_inlinetype_check = 1 << 14, 1316 all_flags = (1 << 15) - 1 1317 }; 1318 1319 LIR_OpArrayCopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp, 1320 ciArrayKlass* expected_type, int flags, CodeEmitInfo* info); 1321 1322 LIR_Opr src() const { return _src; } 1323 LIR_Opr src_pos() const { return _src_pos; } 1324 LIR_Opr dst() const { return _dst; } 1325 LIR_Opr dst_pos() const { return _dst_pos; } 1326 LIR_Opr length() const { return _length; } 1327 LIR_Opr tmp() const { return _tmp; } 1328 int flags() const { return _flags; } 1329 ciArrayKlass* expected_type() const { return _expected_type; } 1330 ArrayCopyStub* stub() const { return _stub; } 1331 1332 virtual void emit_code(LIR_Assembler* masm); 1333 virtual LIR_OpArrayCopy* as_OpArrayCopy() { return this; } 1334 void print_instr(outputStream* out) const PRODUCT_RETURN; 1335 }; 1336 1337 // LIR_OpUpdateCRC32 1338 class LIR_OpUpdateCRC32: public LIR_Op { 1339 friend class LIR_OpVisitState; 1340 1341 private: 1342 LIR_Opr _crc; 1343 LIR_Opr _val; 1344 1345 public: 1346 1347 LIR_OpUpdateCRC32(LIR_Opr crc, LIR_Opr val, LIR_Opr res); 1348 1349 LIR_Opr crc() const { return _crc; } 1350 LIR_Opr val() const { return _val; } 1351 1352 virtual void emit_code(LIR_Assembler* masm); 1353 virtual LIR_OpUpdateCRC32* as_OpUpdateCRC32() { return this; } 1354 void print_instr(outputStream* out) const PRODUCT_RETURN; 1355 }; 1356 1357 // -------------------------------------------------- 1358 // LIR_Op0 1359 // -------------------------------------------------- 1360 class LIR_Op0: public LIR_Op { 1361 friend class LIR_OpVisitState; 1362 1363 public: 1364 LIR_Op0(LIR_Code code) 1365 : LIR_Op(code, LIR_OprFact::illegalOpr, nullptr) { assert(is_in_range(code, begin_op0, end_op0), "code check"); } 1366 LIR_Op0(LIR_Code code, LIR_Opr result, CodeEmitInfo* info = nullptr) 1367 : LIR_Op(code, result, info) { assert(is_in_range(code, begin_op0, end_op0), "code check"); } 1368 1369 virtual void emit_code(LIR_Assembler* masm); 1370 virtual LIR_Op0* as_Op0() { return this; } 1371 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1372 }; 1373 1374 1375 // -------------------------------------------------- 1376 // LIR_Op1 1377 // -------------------------------------------------- 1378 1379 class LIR_Op1: public LIR_Op { 1380 friend class LIR_OpVisitState; 1381 1382 protected: 1383 LIR_Opr _opr; // input operand 1384 BasicType _type; // Operand types 1385 LIR_PatchCode _patch; // only required with patchin (NEEDS_CLEANUP: do we want a special instruction for patching?) 1386 1387 static void print_patch_code(outputStream* out, LIR_PatchCode code); 1388 1389 void set_kind(LIR_MoveKind kind) { 1390 assert(code() == lir_move, "must be"); 1391 _flags = kind; 1392 } 1393 1394 public: 1395 LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result = LIR_OprFact::illegalOpr, BasicType type = T_ILLEGAL, LIR_PatchCode patch = lir_patch_none, CodeEmitInfo* info = nullptr) 1396 : LIR_Op(code, result, info) 1397 , _opr(opr) 1398 , _type(type) 1399 , _patch(patch) { assert(is_in_range(code, begin_op1, end_op1), "code check"); } 1400 1401 LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result, BasicType type, LIR_PatchCode patch, CodeEmitInfo* info, LIR_MoveKind kind) 1402 : LIR_Op(code, result, info) 1403 , _opr(opr) 1404 , _type(type) 1405 , _patch(patch) { 1406 assert(code == lir_move, "must be"); 1407 set_kind(kind); 1408 } 1409 1410 LIR_Op1(LIR_Code code, LIR_Opr opr, CodeEmitInfo* info) 1411 : LIR_Op(code, LIR_OprFact::illegalOpr, info) 1412 , _opr(opr) 1413 , _type(T_ILLEGAL) 1414 , _patch(lir_patch_none) { assert(is_in_range(code, begin_op1, end_op1), "code check"); } 1415 1416 LIR_Opr in_opr() const { return _opr; } 1417 LIR_PatchCode patch_code() const { return _patch; } 1418 BasicType type() const { return _type; } 1419 1420 LIR_MoveKind move_kind() const { 1421 assert(code() == lir_move, "must be"); 1422 return (LIR_MoveKind)_flags; 1423 } 1424 1425 virtual bool is_patching() { return _patch != lir_patch_none; } 1426 virtual void emit_code(LIR_Assembler* masm); 1427 virtual LIR_Op1* as_Op1() { return this; } 1428 virtual const char * name() const PRODUCT_RETURN_NULL; 1429 1430 void set_in_opr(LIR_Opr opr) { _opr = opr; } 1431 1432 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1433 virtual void verify() const; 1434 }; 1435 1436 1437 // for runtime calls 1438 class LIR_OpRTCall: public LIR_OpCall { 1439 friend class LIR_OpVisitState; 1440 1441 private: 1442 LIR_Opr _tmp; 1443 public: 1444 LIR_OpRTCall(address addr, LIR_Opr tmp, 1445 LIR_Opr result, LIR_OprList* arguments, CodeEmitInfo* info = nullptr) 1446 : LIR_OpCall(lir_rtcall, addr, result, arguments, info) 1447 , _tmp(tmp) {} 1448 1449 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1450 virtual void emit_code(LIR_Assembler* masm); 1451 virtual LIR_OpRTCall* as_OpRTCall() { return this; } 1452 1453 LIR_Opr tmp() const { return _tmp; } 1454 1455 virtual void verify() const; 1456 }; 1457 1458 1459 1460 class LIR_OpReturn: public LIR_Op1 { 1461 friend class LIR_OpVisitState; 1462 1463 private: 1464 C1SafepointPollStub* _stub; 1465 1466 public: 1467 LIR_OpReturn(LIR_Opr opr); 1468 1469 C1SafepointPollStub* stub() const { return _stub; } 1470 virtual LIR_OpReturn* as_OpReturn() { return this; } 1471 }; 1472 1473 class ConversionStub; 1474 1475 class LIR_OpConvert: public LIR_Op1 { 1476 friend class LIR_OpVisitState; 1477 1478 private: 1479 Bytecodes::Code _bytecode; 1480 ConversionStub* _stub; 1481 1482 public: 1483 LIR_OpConvert(Bytecodes::Code code, LIR_Opr opr, LIR_Opr result, ConversionStub* stub) 1484 : LIR_Op1(lir_convert, opr, result) 1485 , _bytecode(code) 1486 , _stub(stub) {} 1487 1488 Bytecodes::Code bytecode() const { return _bytecode; } 1489 ConversionStub* stub() const { return _stub; } 1490 1491 virtual void emit_code(LIR_Assembler* masm); 1492 virtual LIR_OpConvert* as_OpConvert() { return this; } 1493 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1494 1495 static void print_bytecode(outputStream* out, Bytecodes::Code code) PRODUCT_RETURN; 1496 }; 1497 1498 1499 // LIR_OpAllocObj 1500 class LIR_OpAllocObj : public LIR_Op1 { 1501 friend class LIR_OpVisitState; 1502 1503 private: 1504 LIR_Opr _tmp1; 1505 LIR_Opr _tmp2; 1506 LIR_Opr _tmp3; 1507 LIR_Opr _tmp4; 1508 int _hdr_size; 1509 int _obj_size; 1510 CodeStub* _stub; 1511 bool _init_check; 1512 1513 public: 1514 LIR_OpAllocObj(LIR_Opr klass, LIR_Opr result, 1515 LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, 1516 int hdr_size, int obj_size, bool init_check, CodeStub* stub) 1517 : LIR_Op1(lir_alloc_object, klass, result) 1518 , _tmp1(t1) 1519 , _tmp2(t2) 1520 , _tmp3(t3) 1521 , _tmp4(t4) 1522 , _hdr_size(hdr_size) 1523 , _obj_size(obj_size) 1524 , _stub(stub) 1525 , _init_check(init_check) { } 1526 1527 LIR_Opr klass() const { return in_opr(); } 1528 LIR_Opr obj() const { return result_opr(); } 1529 LIR_Opr tmp1() const { return _tmp1; } 1530 LIR_Opr tmp2() const { return _tmp2; } 1531 LIR_Opr tmp3() const { return _tmp3; } 1532 LIR_Opr tmp4() const { return _tmp4; } 1533 int header_size() const { return _hdr_size; } 1534 int object_size() const { return _obj_size; } 1535 bool init_check() const { return _init_check; } 1536 CodeStub* stub() const { return _stub; } 1537 1538 virtual void emit_code(LIR_Assembler* masm); 1539 virtual LIR_OpAllocObj * as_OpAllocObj () { return this; } 1540 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1541 }; 1542 1543 1544 // LIR_OpRoundFP 1545 class LIR_OpRoundFP : public LIR_Op1 { 1546 friend class LIR_OpVisitState; 1547 1548 private: 1549 LIR_Opr _tmp; 1550 1551 public: 1552 LIR_OpRoundFP(LIR_Opr reg, LIR_Opr stack_loc_temp, LIR_Opr result) 1553 : LIR_Op1(lir_roundfp, reg, result) 1554 , _tmp(stack_loc_temp) {} 1555 1556 LIR_Opr tmp() const { return _tmp; } 1557 virtual LIR_OpRoundFP* as_OpRoundFP() { return this; } 1558 void print_instr(outputStream* out) const PRODUCT_RETURN; 1559 }; 1560 1561 // LIR_OpTypeCheck 1562 class LIR_OpTypeCheck: public LIR_Op { 1563 friend class LIR_OpVisitState; 1564 1565 private: 1566 LIR_Opr _object; 1567 LIR_Opr _array; 1568 ciKlass* _klass; 1569 LIR_Opr _tmp1; 1570 LIR_Opr _tmp2; 1571 LIR_Opr _tmp3; 1572 CodeEmitInfo* _info_for_patch; 1573 CodeEmitInfo* _info_for_exception; 1574 CodeStub* _stub; 1575 ciMethod* _profiled_method; 1576 int _profiled_bci; 1577 bool _should_profile; 1578 bool _fast_check; 1579 bool _need_null_check; 1580 1581 public: 1582 LIR_OpTypeCheck(LIR_Code code, LIR_Opr result, LIR_Opr object, ciKlass* klass, 1583 LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, 1584 CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub, bool need_null_check = true); 1585 LIR_OpTypeCheck(LIR_Code code, LIR_Opr object, LIR_Opr array, 1586 LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception); 1587 1588 LIR_Opr object() const { return _object; } 1589 LIR_Opr array() const { assert(code() == lir_store_check, "not valid"); return _array; } 1590 LIR_Opr tmp1() const { return _tmp1; } 1591 LIR_Opr tmp2() const { return _tmp2; } 1592 LIR_Opr tmp3() const { return _tmp3; } 1593 ciKlass* klass() const { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _klass; } 1594 bool fast_check() const { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _fast_check; } 1595 CodeEmitInfo* info_for_patch() const { return _info_for_patch; } 1596 CodeEmitInfo* info_for_exception() const { return _info_for_exception; } 1597 CodeStub* stub() const { return _stub; } 1598 1599 // MethodData* profiling 1600 void set_profiled_method(ciMethod *method) { _profiled_method = method; } 1601 void set_profiled_bci(int bci) { _profiled_bci = bci; } 1602 void set_should_profile(bool b) { _should_profile = b; } 1603 ciMethod* profiled_method() const { return _profiled_method; } 1604 int profiled_bci() const { return _profiled_bci; } 1605 bool should_profile() const { return _should_profile; } 1606 bool need_null_check() const { return _need_null_check; } 1607 virtual bool is_patching() { return _info_for_patch != nullptr; } 1608 virtual void emit_code(LIR_Assembler* masm); 1609 virtual LIR_OpTypeCheck* as_OpTypeCheck() { return this; } 1610 void print_instr(outputStream* out) const PRODUCT_RETURN; 1611 }; 1612 1613 // LIR_OpFlattenedArrayCheck 1614 class LIR_OpFlattenedArrayCheck: public LIR_Op { 1615 friend class LIR_OpVisitState; 1616 1617 private: 1618 LIR_Opr _array; 1619 LIR_Opr _value; 1620 LIR_Opr _tmp; 1621 CodeStub* _stub; 1622 public: 1623 LIR_OpFlattenedArrayCheck(LIR_Opr array, LIR_Opr value, LIR_Opr tmp, CodeStub* stub); 1624 LIR_Opr array() const { return _array; } 1625 LIR_Opr value() const { return _value; } 1626 LIR_Opr tmp() const { return _tmp; } 1627 CodeStub* stub() const { return _stub; } 1628 1629 virtual void emit_code(LIR_Assembler* masm); 1630 virtual LIR_OpFlattenedArrayCheck* as_OpFlattenedArrayCheck() { return this; } 1631 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1632 }; 1633 1634 // LIR_OpNullFreeArrayCheck 1635 class LIR_OpNullFreeArrayCheck: public LIR_Op { 1636 friend class LIR_OpVisitState; 1637 1638 private: 1639 LIR_Opr _array; 1640 LIR_Opr _tmp; 1641 public: 1642 LIR_OpNullFreeArrayCheck(LIR_Opr array, LIR_Opr tmp); 1643 LIR_Opr array() const { return _array; } 1644 LIR_Opr tmp() const { return _tmp; } 1645 1646 virtual void emit_code(LIR_Assembler* masm); 1647 virtual LIR_OpNullFreeArrayCheck* as_OpNullFreeArrayCheck() { return this; } 1648 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1649 }; 1650 1651 class LIR_OpSubstitutabilityCheck: public LIR_Op { 1652 friend class LIR_OpVisitState; 1653 1654 private: 1655 LIR_Opr _left; 1656 LIR_Opr _right; 1657 LIR_Opr _equal_result; 1658 LIR_Opr _not_equal_result; 1659 LIR_Opr _tmp1; 1660 LIR_Opr _tmp2; 1661 ciKlass* _left_klass; 1662 ciKlass* _right_klass; 1663 LIR_Opr _left_klass_op; 1664 LIR_Opr _right_klass_op; 1665 CodeStub* _stub; 1666 public: 1667 LIR_OpSubstitutabilityCheck(LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr equal_result, LIR_Opr not_equal_result, 1668 LIR_Opr tmp1, LIR_Opr tmp2, 1669 ciKlass* left_klass, ciKlass* right_klass, LIR_Opr left_klass_op, LIR_Opr right_klass_op, 1670 CodeEmitInfo* info, CodeStub* stub); 1671 1672 LIR_Opr left() const { return _left; } 1673 LIR_Opr right() const { return _right; } 1674 LIR_Opr equal_result() const { return _equal_result; } 1675 LIR_Opr not_equal_result() const { return _not_equal_result; } 1676 LIR_Opr tmp1() const { return _tmp1; } 1677 LIR_Opr tmp2() const { return _tmp2; } 1678 ciKlass* left_klass() const { return _left_klass; } 1679 ciKlass* right_klass() const { return _right_klass; } 1680 LIR_Opr left_klass_op() const { return _left_klass_op; } 1681 LIR_Opr right_klass_op() const { return _right_klass_op; } 1682 CodeStub* stub() const { return _stub; } 1683 1684 virtual void emit_code(LIR_Assembler* masm); 1685 virtual LIR_OpSubstitutabilityCheck* as_OpSubstitutabilityCheck() { return this; } 1686 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1687 }; 1688 1689 // LIR_Op2 1690 class LIR_Op2: public LIR_Op { 1691 friend class LIR_OpVisitState; 1692 1693 int _fpu_stack_size; // for sin/cos implementation on Intel 1694 1695 protected: 1696 LIR_Opr _opr1; 1697 LIR_Opr _opr2; 1698 LIR_Opr _tmp1; 1699 LIR_Opr _tmp2; 1700 LIR_Opr _tmp3; 1701 LIR_Opr _tmp4; 1702 LIR_Opr _tmp5; 1703 LIR_Condition _condition; 1704 BasicType _type; 1705 1706 void verify() const; 1707 1708 public: 1709 LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, CodeEmitInfo* info = nullptr, BasicType type = T_ILLEGAL) 1710 : LIR_Op(code, LIR_OprFact::illegalOpr, info) 1711 , _fpu_stack_size(0) 1712 , _opr1(opr1) 1713 , _opr2(opr2) 1714 , _tmp1(LIR_OprFact::illegalOpr) 1715 , _tmp2(LIR_OprFact::illegalOpr) 1716 , _tmp3(LIR_OprFact::illegalOpr) 1717 , _tmp4(LIR_OprFact::illegalOpr) 1718 , _tmp5(LIR_OprFact::illegalOpr) 1719 , _condition(condition) 1720 , _type(type) { 1721 assert(code == lir_cmp || code == lir_branch || code == lir_cond_float_branch || code == lir_assert, "code check"); 1722 } 1723 1724 LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) 1725 : LIR_Op(code, result, nullptr) 1726 , _fpu_stack_size(0) 1727 , _opr1(opr1) 1728 , _opr2(opr2) 1729 , _tmp1(LIR_OprFact::illegalOpr) 1730 , _tmp2(LIR_OprFact::illegalOpr) 1731 , _tmp3(LIR_OprFact::illegalOpr) 1732 , _tmp4(LIR_OprFact::illegalOpr) 1733 , _tmp5(LIR_OprFact::illegalOpr) 1734 , _condition(condition) 1735 , _type(type) { 1736 assert(code == lir_cmove, "code check"); 1737 assert(type != T_ILLEGAL, "cmove should have type"); 1738 } 1739 1740 LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result = LIR_OprFact::illegalOpr, 1741 CodeEmitInfo* info = nullptr, BasicType type = T_ILLEGAL) 1742 : LIR_Op(code, result, info) 1743 , _fpu_stack_size(0) 1744 , _opr1(opr1) 1745 , _opr2(opr2) 1746 , _tmp1(LIR_OprFact::illegalOpr) 1747 , _tmp2(LIR_OprFact::illegalOpr) 1748 , _tmp3(LIR_OprFact::illegalOpr) 1749 , _tmp4(LIR_OprFact::illegalOpr) 1750 , _tmp5(LIR_OprFact::illegalOpr) 1751 , _condition(lir_cond_unknown) 1752 , _type(type) { 1753 assert(code != lir_cmp && code != lir_branch && code != lir_cond_float_branch && is_in_range(code, begin_op2, end_op2), "code check"); 1754 } 1755 1756 LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, LIR_Opr tmp1, LIR_Opr tmp2 = LIR_OprFact::illegalOpr, 1757 LIR_Opr tmp3 = LIR_OprFact::illegalOpr, LIR_Opr tmp4 = LIR_OprFact::illegalOpr, LIR_Opr tmp5 = LIR_OprFact::illegalOpr) 1758 : LIR_Op(code, result, nullptr) 1759 , _fpu_stack_size(0) 1760 , _opr1(opr1) 1761 , _opr2(opr2) 1762 , _tmp1(tmp1) 1763 , _tmp2(tmp2) 1764 , _tmp3(tmp3) 1765 , _tmp4(tmp4) 1766 , _tmp5(tmp5) 1767 , _condition(lir_cond_unknown) 1768 , _type(T_ILLEGAL) { 1769 assert(code != lir_cmp && code != lir_branch && code != lir_cond_float_branch && is_in_range(code, begin_op2, end_op2), "code check"); 1770 } 1771 1772 LIR_Opr in_opr1() const { return _opr1; } 1773 LIR_Opr in_opr2() const { return _opr2; } 1774 BasicType type() const { return _type; } 1775 LIR_Opr tmp1_opr() const { return _tmp1; } 1776 LIR_Opr tmp2_opr() const { return _tmp2; } 1777 LIR_Opr tmp3_opr() const { return _tmp3; } 1778 LIR_Opr tmp4_opr() const { return _tmp4; } 1779 LIR_Opr tmp5_opr() const { return _tmp5; } 1780 LIR_Condition condition() const { 1781 assert(code() == lir_cmp || code() == lir_branch || code() == lir_cond_float_branch || code() == lir_assert, "only valid for branch and assert"); return _condition; 1782 } 1783 void set_condition(LIR_Condition condition) { 1784 assert(code() == lir_cmp || code() == lir_branch || code() == lir_cond_float_branch, "only valid for branch"); _condition = condition; 1785 } 1786 1787 void set_fpu_stack_size(int size) { _fpu_stack_size = size; } 1788 int fpu_stack_size() const { return _fpu_stack_size; } 1789 1790 void set_in_opr1(LIR_Opr opr) { _opr1 = opr; } 1791 void set_in_opr2(LIR_Opr opr) { _opr2 = opr; } 1792 1793 virtual void emit_code(LIR_Assembler* masm); 1794 virtual LIR_Op2* as_Op2() { return this; } 1795 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1796 }; 1797 1798 class LIR_OpBranch: public LIR_Op2 { 1799 friend class LIR_OpVisitState; 1800 1801 private: 1802 Label* _label; 1803 BlockBegin* _block; // if this is a branch to a block, this is the block 1804 BlockBegin* _ublock; // if this is a float-branch, this is the unordered block 1805 CodeStub* _stub; // if this is a branch to a stub, this is the stub 1806 1807 public: 1808 LIR_OpBranch(LIR_Condition cond, Label* lbl) 1809 : LIR_Op2(lir_branch, cond, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, (CodeEmitInfo*) nullptr) 1810 , _label(lbl) 1811 , _block(nullptr) 1812 , _ublock(nullptr) 1813 , _stub(nullptr) { } 1814 1815 LIR_OpBranch(LIR_Condition cond, BlockBegin* block); 1816 LIR_OpBranch(LIR_Condition cond, CodeStub* stub); 1817 1818 // for unordered comparisons 1819 LIR_OpBranch(LIR_Condition cond, BlockBegin* block, BlockBegin* ublock); 1820 1821 LIR_Condition cond() const { 1822 return condition(); 1823 } 1824 1825 void set_cond(LIR_Condition cond) { 1826 set_condition(cond); 1827 } 1828 1829 Label* label() const { return _label; } 1830 BlockBegin* block() const { return _block; } 1831 BlockBegin* ublock() const { return _ublock; } 1832 CodeStub* stub() const { return _stub; } 1833 1834 void change_block(BlockBegin* b); 1835 void change_ublock(BlockBegin* b); 1836 void negate_cond(); 1837 1838 virtual void emit_code(LIR_Assembler* masm); 1839 virtual LIR_OpBranch* as_OpBranch() { return this; } 1840 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1841 }; 1842 1843 class LIR_OpAllocArray : public LIR_Op { 1844 friend class LIR_OpVisitState; 1845 1846 private: 1847 LIR_Opr _klass; 1848 LIR_Opr _len; 1849 LIR_Opr _tmp1; 1850 LIR_Opr _tmp2; 1851 LIR_Opr _tmp3; 1852 LIR_Opr _tmp4; 1853 CodeStub* _stub; 1854 BasicType _type; 1855 bool _zero_array; 1856 bool _is_null_free; 1857 1858 public: 1859 LIR_OpAllocArray(LIR_Opr klass, LIR_Opr len, LIR_Opr result, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, BasicType type, CodeStub* stub, bool zero_array, bool is_null_free) 1860 : LIR_Op(lir_alloc_array, result, nullptr) 1861 , _klass(klass) 1862 , _len(len) 1863 , _tmp1(t1) 1864 , _tmp2(t2) 1865 , _tmp3(t3) 1866 , _tmp4(t4) 1867 , _stub(stub) 1868 , _type(type) 1869 , _zero_array(zero_array) 1870 , _is_null_free(is_null_free) {} 1871 1872 LIR_Opr klass() const { return _klass; } 1873 LIR_Opr len() const { return _len; } 1874 LIR_Opr obj() const { return result_opr(); } 1875 LIR_Opr tmp1() const { return _tmp1; } 1876 LIR_Opr tmp2() const { return _tmp2; } 1877 LIR_Opr tmp3() const { return _tmp3; } 1878 LIR_Opr tmp4() const { return _tmp4; } 1879 BasicType type() const { return _type; } 1880 CodeStub* stub() const { return _stub; } 1881 bool zero_array() const { return _zero_array; } 1882 bool is_null_free() const { return _is_null_free;} 1883 1884 virtual void emit_code(LIR_Assembler* masm); 1885 virtual LIR_OpAllocArray * as_OpAllocArray () { return this; } 1886 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1887 }; 1888 1889 1890 class LIR_Op3: public LIR_Op { 1891 friend class LIR_OpVisitState; 1892 1893 private: 1894 LIR_Opr _opr1; 1895 LIR_Opr _opr2; 1896 LIR_Opr _opr3; 1897 public: 1898 LIR_Op3(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr opr3, LIR_Opr result, CodeEmitInfo* info = nullptr) 1899 : LIR_Op(code, result, info) 1900 , _opr1(opr1) 1901 , _opr2(opr2) 1902 , _opr3(opr3) { assert(is_in_range(code, begin_op3, end_op3), "code check"); } 1903 LIR_Opr in_opr1() const { return _opr1; } 1904 LIR_Opr in_opr2() const { return _opr2; } 1905 LIR_Opr in_opr3() const { return _opr3; } 1906 1907 virtual void emit_code(LIR_Assembler* masm); 1908 virtual LIR_Op3* as_Op3() { return this; } 1909 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1910 }; 1911 1912 class LIR_Op4: public LIR_Op { 1913 friend class LIR_OpVisitState; 1914 protected: 1915 LIR_Opr _opr1; 1916 LIR_Opr _opr2; 1917 LIR_Opr _opr3; 1918 LIR_Opr _opr4; 1919 LIR_Opr _tmp1; 1920 LIR_Opr _tmp2; 1921 LIR_Opr _tmp3; 1922 LIR_Opr _tmp4; 1923 LIR_Opr _tmp5; 1924 LIR_Condition _condition; 1925 BasicType _type; 1926 1927 public: 1928 LIR_Op4(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr opr3, LIR_Opr opr4, 1929 LIR_Opr result, BasicType type) 1930 : LIR_Op(code, result, nullptr) 1931 , _opr1(opr1) 1932 , _opr2(opr2) 1933 , _opr3(opr3) 1934 , _opr4(opr4) 1935 , _tmp1(LIR_OprFact::illegalOpr) 1936 , _tmp2(LIR_OprFact::illegalOpr) 1937 , _tmp3(LIR_OprFact::illegalOpr) 1938 , _tmp4(LIR_OprFact::illegalOpr) 1939 , _tmp5(LIR_OprFact::illegalOpr) 1940 , _condition(condition) 1941 , _type(type) { 1942 assert(code == lir_cmove, "code check"); 1943 assert(type != T_ILLEGAL, "cmove should have type"); 1944 } 1945 1946 LIR_Opr in_opr1() const { return _opr1; } 1947 LIR_Opr in_opr2() const { return _opr2; } 1948 LIR_Opr in_opr3() const { return _opr3; } 1949 LIR_Opr in_opr4() const { return _opr4; } 1950 BasicType type() const { return _type; } 1951 LIR_Opr tmp1_opr() const { return _tmp1; } 1952 LIR_Opr tmp2_opr() const { return _tmp2; } 1953 LIR_Opr tmp3_opr() const { return _tmp3; } 1954 LIR_Opr tmp4_opr() const { return _tmp4; } 1955 LIR_Opr tmp5_opr() const { return _tmp5; } 1956 1957 LIR_Condition condition() const { return _condition; } 1958 void set_condition(LIR_Condition condition) { _condition = condition; } 1959 1960 void set_in_opr1(LIR_Opr opr) { _opr1 = opr; } 1961 void set_in_opr2(LIR_Opr opr) { _opr2 = opr; } 1962 void set_in_opr3(LIR_Opr opr) { _opr3 = opr; } 1963 void set_in_opr4(LIR_Opr opr) { _opr4 = opr; } 1964 virtual void emit_code(LIR_Assembler* masm); 1965 virtual LIR_Op4* as_Op4() { return this; } 1966 1967 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1968 }; 1969 1970 //-------------------------------- 1971 class LabelObj: public CompilationResourceObj { 1972 private: 1973 Label _label; 1974 public: 1975 LabelObj() {} 1976 Label* label() { return &_label; } 1977 }; 1978 1979 1980 class LIR_OpLock: public LIR_Op { 1981 friend class LIR_OpVisitState; 1982 1983 private: 1984 LIR_Opr _hdr; 1985 LIR_Opr _obj; 1986 LIR_Opr _lock; 1987 LIR_Opr _scratch; 1988 CodeStub* _stub; 1989 CodeStub* _throw_ie_stub; 1990 public: 1991 LIR_OpLock(LIR_Code code, LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info, CodeStub* throw_ie_stub=nullptr) 1992 : LIR_Op(code, LIR_OprFact::illegalOpr, info) 1993 , _hdr(hdr) 1994 , _obj(obj) 1995 , _lock(lock) 1996 , _scratch(scratch) 1997 , _stub(stub) 1998 , _throw_ie_stub(throw_ie_stub) {} 1999 2000 LIR_Opr hdr_opr() const { return _hdr; } 2001 LIR_Opr obj_opr() const { return _obj; } 2002 LIR_Opr lock_opr() const { return _lock; } 2003 LIR_Opr scratch_opr() const { return _scratch; } 2004 CodeStub* stub() const { return _stub; } 2005 CodeStub* throw_ie_stub() const { return _throw_ie_stub; } 2006 2007 virtual void emit_code(LIR_Assembler* masm); 2008 virtual LIR_OpLock* as_OpLock() { return this; } 2009 void print_instr(outputStream* out) const PRODUCT_RETURN; 2010 }; 2011 2012 class LIR_OpLoadKlass: public LIR_Op { 2013 friend class LIR_OpVisitState; 2014 2015 private: 2016 LIR_Opr _obj; 2017 public: 2018 LIR_OpLoadKlass(LIR_Opr obj, LIR_Opr result, CodeEmitInfo* info) 2019 : LIR_Op(lir_load_klass, result, info) 2020 , _obj(obj) 2021 {} 2022 2023 LIR_Opr obj() const { return _obj; } 2024 2025 virtual LIR_OpLoadKlass* as_OpLoadKlass() { return this; } 2026 virtual void emit_code(LIR_Assembler* masm); 2027 void print_instr(outputStream* out) const PRODUCT_RETURN; 2028 }; 2029 2030 class LIR_OpDelay: public LIR_Op { 2031 friend class LIR_OpVisitState; 2032 2033 private: 2034 LIR_Op* _op; 2035 2036 public: 2037 LIR_OpDelay(LIR_Op* op, CodeEmitInfo* info): 2038 LIR_Op(lir_delay_slot, LIR_OprFact::illegalOpr, info), 2039 _op(op) { 2040 assert(op->code() == lir_nop, "should be filling with nops"); 2041 } 2042 virtual void emit_code(LIR_Assembler* masm); 2043 virtual LIR_OpDelay* as_OpDelay() { return this; } 2044 void print_instr(outputStream* out) const PRODUCT_RETURN; 2045 LIR_Op* delay_op() const { return _op; } 2046 CodeEmitInfo* call_info() const { return info(); } 2047 }; 2048 2049 #ifdef ASSERT 2050 // LIR_OpAssert 2051 class LIR_OpAssert : public LIR_Op2 { 2052 friend class LIR_OpVisitState; 2053 2054 private: 2055 const char* _msg; 2056 bool _halt; 2057 2058 public: 2059 LIR_OpAssert(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, const char* msg, bool halt) 2060 : LIR_Op2(lir_assert, condition, opr1, opr2) 2061 , _msg(msg) 2062 , _halt(halt) { 2063 } 2064 2065 const char* msg() const { return _msg; } 2066 bool halt() const { return _halt; } 2067 2068 virtual void emit_code(LIR_Assembler* masm); 2069 virtual LIR_OpAssert* as_OpAssert() { return this; } 2070 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 2071 }; 2072 #endif 2073 2074 // LIR_OpCompareAndSwap 2075 class LIR_OpCompareAndSwap : public LIR_Op { 2076 friend class LIR_OpVisitState; 2077 2078 private: 2079 LIR_Opr _addr; 2080 LIR_Opr _cmp_value; 2081 LIR_Opr _new_value; 2082 LIR_Opr _tmp1; 2083 LIR_Opr _tmp2; 2084 2085 public: 2086 LIR_OpCompareAndSwap(LIR_Code code, LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value, 2087 LIR_Opr t1, LIR_Opr t2, LIR_Opr result) 2088 : LIR_Op(code, result, nullptr) // no result, no info 2089 , _addr(addr) 2090 , _cmp_value(cmp_value) 2091 , _new_value(new_value) 2092 , _tmp1(t1) 2093 , _tmp2(t2) { } 2094 2095 LIR_Opr addr() const { return _addr; } 2096 LIR_Opr cmp_value() const { return _cmp_value; } 2097 LIR_Opr new_value() const { return _new_value; } 2098 LIR_Opr tmp1() const { return _tmp1; } 2099 LIR_Opr tmp2() const { return _tmp2; } 2100 2101 virtual void emit_code(LIR_Assembler* masm); 2102 virtual LIR_OpCompareAndSwap * as_OpCompareAndSwap () { return this; } 2103 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 2104 }; 2105 2106 // LIR_OpProfileCall 2107 class LIR_OpProfileCall : public LIR_Op { 2108 friend class LIR_OpVisitState; 2109 2110 private: 2111 ciMethod* _profiled_method; 2112 int _profiled_bci; 2113 ciMethod* _profiled_callee; 2114 LIR_Opr _mdo; 2115 LIR_Opr _recv; 2116 LIR_Opr _tmp1; 2117 ciKlass* _known_holder; 2118 2119 public: 2120 // Destroys recv 2121 LIR_OpProfileCall(ciMethod* profiled_method, int profiled_bci, ciMethod* profiled_callee, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* known_holder) 2122 : LIR_Op(lir_profile_call, LIR_OprFact::illegalOpr, nullptr) // no result, no info 2123 , _profiled_method(profiled_method) 2124 , _profiled_bci(profiled_bci) 2125 , _profiled_callee(profiled_callee) 2126 , _mdo(mdo) 2127 , _recv(recv) 2128 , _tmp1(t1) 2129 , _known_holder(known_holder) { } 2130 2131 ciMethod* profiled_method() const { return _profiled_method; } 2132 int profiled_bci() const { return _profiled_bci; } 2133 ciMethod* profiled_callee() const { return _profiled_callee; } 2134 LIR_Opr mdo() const { return _mdo; } 2135 LIR_Opr recv() const { return _recv; } 2136 LIR_Opr tmp1() const { return _tmp1; } 2137 ciKlass* known_holder() const { return _known_holder; } 2138 2139 virtual void emit_code(LIR_Assembler* masm); 2140 virtual LIR_OpProfileCall* as_OpProfileCall() { return this; } 2141 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 2142 bool should_profile_receiver_type() const { 2143 bool callee_is_static = _profiled_callee->is_loaded() && _profiled_callee->is_static(); 2144 bool callee_is_private = _profiled_callee->is_loaded() && _profiled_callee->is_private(); 2145 Bytecodes::Code bc = _profiled_method->java_code_at_bci(_profiled_bci); 2146 bool call_is_virtual = (bc == Bytecodes::_invokevirtual && !callee_is_private) || bc == Bytecodes::_invokeinterface; 2147 return C1ProfileVirtualCalls && call_is_virtual && !callee_is_static; 2148 } 2149 }; 2150 2151 // LIR_OpProfileType 2152 class LIR_OpProfileType : public LIR_Op { 2153 friend class LIR_OpVisitState; 2154 2155 private: 2156 LIR_Opr _mdp; 2157 LIR_Opr _obj; 2158 LIR_Opr _tmp; 2159 ciKlass* _exact_klass; // non null if we know the klass statically (no need to load it from _obj) 2160 intptr_t _current_klass; // what the profiling currently reports 2161 bool _not_null; // true if we know statically that _obj cannot be null 2162 bool _no_conflict; // true if we're profling parameters, _exact_klass is not null and we know 2163 // _exact_klass it the only possible type for this parameter in any context. 2164 2165 public: 2166 // Destroys recv 2167 LIR_OpProfileType(LIR_Opr mdp, LIR_Opr obj, ciKlass* exact_klass, intptr_t current_klass, LIR_Opr tmp, bool not_null, bool no_conflict) 2168 : LIR_Op(lir_profile_type, LIR_OprFact::illegalOpr, nullptr) // no result, no info 2169 , _mdp(mdp) 2170 , _obj(obj) 2171 , _tmp(tmp) 2172 , _exact_klass(exact_klass) 2173 , _current_klass(current_klass) 2174 , _not_null(not_null) 2175 , _no_conflict(no_conflict) { } 2176 2177 LIR_Opr mdp() const { return _mdp; } 2178 LIR_Opr obj() const { return _obj; } 2179 LIR_Opr tmp() const { return _tmp; } 2180 ciKlass* exact_klass() const { return _exact_klass; } 2181 intptr_t current_klass() const { return _current_klass; } 2182 bool not_null() const { return _not_null; } 2183 bool no_conflict() const { return _no_conflict; } 2184 2185 virtual void emit_code(LIR_Assembler* masm); 2186 virtual LIR_OpProfileType* as_OpProfileType() { return this; } 2187 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 2188 }; 2189 2190 // LIR_OpProfileInlineType 2191 class LIR_OpProfileInlineType : public LIR_Op { 2192 friend class LIR_OpVisitState; 2193 2194 private: 2195 LIR_Opr _mdp; 2196 LIR_Opr _obj; 2197 int _flag; 2198 LIR_Opr _tmp; 2199 bool _not_null; // true if we know statically that _obj cannot be null 2200 2201 public: 2202 // Destroys recv 2203 LIR_OpProfileInlineType(LIR_Opr mdp, LIR_Opr obj, int flag, LIR_Opr tmp, bool not_null) 2204 : LIR_Op(lir_profile_inline_type, LIR_OprFact::illegalOpr, nullptr) // no result, no info 2205 , _mdp(mdp) 2206 , _obj(obj) 2207 , _flag(flag) 2208 , _tmp(tmp) 2209 , _not_null(not_null) { } 2210 2211 LIR_Opr mdp() const { return _mdp; } 2212 LIR_Opr obj() const { return _obj; } 2213 int flag() const { return _flag; } 2214 LIR_Opr tmp() const { return _tmp; } 2215 bool not_null() const { return _not_null; } 2216 2217 virtual void emit_code(LIR_Assembler* masm); 2218 virtual LIR_OpProfileInlineType* as_OpProfileInlineType() { return this; } 2219 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 2220 }; 2221 2222 class LIR_InsertionBuffer; 2223 2224 //--------------------------------LIR_List--------------------------------------------------- 2225 // Maintains a list of LIR instructions (one instance of LIR_List per basic block) 2226 // The LIR instructions are appended by the LIR_List class itself; 2227 // 2228 // Notes: 2229 // - all offsets are(should be) in bytes 2230 // - local positions are specified with an offset, with offset 0 being local 0 2231 2232 class LIR_List: public CompilationResourceObj { 2233 private: 2234 LIR_OpList _operations; 2235 2236 Compilation* _compilation; 2237 #ifndef PRODUCT 2238 BlockBegin* _block; 2239 #endif 2240 #ifdef ASSERT 2241 const char * _file; 2242 int _line; 2243 #endif 2244 #ifdef RISCV 2245 LIR_Opr _cmp_opr1; 2246 LIR_Opr _cmp_opr2; 2247 #endif 2248 2249 public: 2250 void append(LIR_Op* op) { 2251 if (op->source() == nullptr) 2252 op->set_source(_compilation->current_instruction()); 2253 #ifndef PRODUCT 2254 if (PrintIRWithLIR) { 2255 _compilation->maybe_print_current_instruction(); 2256 op->print(); tty->cr(); 2257 } 2258 #endif // PRODUCT 2259 2260 #ifdef RISCV 2261 set_cmp_oprs(op); 2262 // lir_cmp set cmp oprs only on riscv 2263 if (op->code() == lir_cmp) return; 2264 #endif 2265 2266 _operations.append(op); 2267 2268 #ifdef ASSERT 2269 op->verify(); 2270 op->set_file_and_line(_file, _line); 2271 _file = nullptr; 2272 _line = 0; 2273 #endif 2274 } 2275 2276 LIR_List(Compilation* compilation, BlockBegin* block = nullptr); 2277 2278 #ifdef ASSERT 2279 void set_file_and_line(const char * file, int line); 2280 #endif 2281 2282 #ifdef RISCV 2283 void set_cmp_oprs(LIR_Op* op); 2284 #endif 2285 2286 //---------- accessors --------------- 2287 LIR_OpList* instructions_list() { return &_operations; } 2288 int length() const { return _operations.length(); } 2289 LIR_Op* at(int i) const { return _operations.at(i); } 2290 2291 NOT_PRODUCT(BlockBegin* block() const { return _block; }); 2292 2293 // insert LIR_Ops in buffer to right places in LIR_List 2294 void append(LIR_InsertionBuffer* buffer); 2295 2296 //---------- mutators --------------- 2297 void insert_before(int i, LIR_List* op_list) { _operations.insert_before(i, op_list->instructions_list()); } 2298 void insert_before(int i, LIR_Op* op) { _operations.insert_before(i, op); } 2299 void remove_at(int i) { _operations.remove_at(i); } 2300 2301 //---------- printing ------------- 2302 void print_instructions() PRODUCT_RETURN; 2303 2304 2305 //---------- instructions ------------- 2306 void call_opt_virtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result, 2307 address dest, LIR_OprList* arguments, 2308 CodeEmitInfo* info) { 2309 append(new LIR_OpJavaCall(lir_optvirtual_call, method, receiver, result, dest, arguments, info)); 2310 } 2311 void call_static(ciMethod* method, LIR_Opr result, 2312 address dest, LIR_OprList* arguments, CodeEmitInfo* info) { 2313 append(new LIR_OpJavaCall(lir_static_call, method, LIR_OprFact::illegalOpr, result, dest, arguments, info)); 2314 } 2315 void call_icvirtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result, 2316 address dest, LIR_OprList* arguments, CodeEmitInfo* info) { 2317 append(new LIR_OpJavaCall(lir_icvirtual_call, method, receiver, result, dest, arguments, info)); 2318 } 2319 void call_dynamic(ciMethod* method, LIR_Opr receiver, LIR_Opr result, 2320 address dest, LIR_OprList* arguments, CodeEmitInfo* info) { 2321 append(new LIR_OpJavaCall(lir_dynamic_call, method, receiver, result, dest, arguments, info)); 2322 } 2323 2324 void get_thread(LIR_Opr result) { append(new LIR_Op0(lir_get_thread, result)); } 2325 void membar() { append(new LIR_Op0(lir_membar)); } 2326 void membar_acquire() { append(new LIR_Op0(lir_membar_acquire)); } 2327 void membar_release() { append(new LIR_Op0(lir_membar_release)); } 2328 void membar_loadload() { append(new LIR_Op0(lir_membar_loadload)); } 2329 void membar_storestore() { append(new LIR_Op0(lir_membar_storestore)); } 2330 void membar_loadstore() { append(new LIR_Op0(lir_membar_loadstore)); } 2331 void membar_storeload() { append(new LIR_Op0(lir_membar_storeload)); } 2332 2333 void nop() { append(new LIR_Op0(lir_nop)); } 2334 2335 void std_entry(LIR_Opr receiver) { append(new LIR_Op0(lir_std_entry, receiver)); } 2336 void osr_entry(LIR_Opr osrPointer) { append(new LIR_Op0(lir_osr_entry, osrPointer)); } 2337 2338 void on_spin_wait() { append(new LIR_Op0(lir_on_spin_wait)); } 2339 2340 void branch_destination(Label* lbl) { append(new LIR_OpLabel(lbl)); } 2341 2342 void leal(LIR_Opr from, LIR_Opr result_reg, LIR_PatchCode patch_code = lir_patch_none, CodeEmitInfo* info = nullptr) { append(new LIR_Op1(lir_leal, from, result_reg, T_ILLEGAL, patch_code, info)); } 2343 2344 // result is a stack location for old backend and vreg for UseLinearScan 2345 // stack_loc_temp is an illegal register for old backend 2346 void roundfp(LIR_Opr reg, LIR_Opr stack_loc_temp, LIR_Opr result) { append(new LIR_OpRoundFP(reg, stack_loc_temp, result)); } 2347 void move(LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = nullptr) { append(new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); } 2348 void move(LIR_Address* src, LIR_Opr dst, CodeEmitInfo* info = nullptr) { append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, src->type(), lir_patch_none, info)); } 2349 void move(LIR_Opr src, LIR_Address* dst, CodeEmitInfo* info = nullptr) { append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), dst->type(), lir_patch_none, info)); } 2350 void move_wide(LIR_Address* src, LIR_Opr dst, CodeEmitInfo* info = nullptr) { 2351 if (UseCompressedOops) { 2352 append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, src->type(), lir_patch_none, info, lir_move_wide)); 2353 } else { 2354 move(src, dst, info); 2355 } 2356 } 2357 void move_wide(LIR_Opr src, LIR_Address* dst, CodeEmitInfo* info = nullptr) { 2358 if (UseCompressedOops) { 2359 append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), dst->type(), lir_patch_none, info, lir_move_wide)); 2360 } else { 2361 move(src, dst, info); 2362 } 2363 } 2364 void volatile_move(LIR_Opr src, LIR_Opr dst, BasicType type, CodeEmitInfo* info = nullptr, LIR_PatchCode patch_code = lir_patch_none) { append(new LIR_Op1(lir_move, src, dst, type, patch_code, info, lir_move_volatile)); } 2365 2366 void oop2reg (jobject o, LIR_Opr reg) { assert(reg->type() == T_OBJECT, "bad reg"); append(new LIR_Op1(lir_move, LIR_OprFact::oopConst(o), reg)); } 2367 void oop2reg_patch(jobject o, LIR_Opr reg, CodeEmitInfo* info); 2368 2369 void metadata2reg (Metadata* o, LIR_Opr reg) { assert(reg->type() == T_METADATA, "bad reg"); append(new LIR_Op1(lir_move, LIR_OprFact::metadataConst(o), reg)); } 2370 void klass2reg_patch(Metadata* o, LIR_Opr reg, CodeEmitInfo* info); 2371 2372 void safepoint(LIR_Opr tmp, CodeEmitInfo* info) { append(new LIR_Op1(lir_safepoint, tmp, info)); } 2373 void return_op(LIR_Opr result) { append(new LIR_OpReturn(result)); } 2374 2375 void convert(Bytecodes::Code code, LIR_Opr left, LIR_Opr dst, ConversionStub* stub = nullptr/*, bool is_32bit = false*/) { append(new LIR_OpConvert(code, left, dst, stub)); } 2376 2377 void logical_and (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_and, left, right, dst)); } 2378 void logical_or (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_or, left, right, dst)); } 2379 void logical_xor (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_xor, left, right, dst)); } 2380 2381 void null_check(LIR_Opr opr, CodeEmitInfo* info, bool deoptimize_on_null = false); 2382 void throw_exception(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) { 2383 append(new LIR_Op2(lir_throw, exceptionPC, exceptionOop, LIR_OprFact::illegalOpr, info)); 2384 } 2385 void unwind_exception(LIR_Opr exceptionOop) { 2386 append(new LIR_Op1(lir_unwind, exceptionOop)); 2387 } 2388 2389 void push(LIR_Opr opr) { append(new LIR_Op1(lir_push, opr)); } 2390 void pop(LIR_Opr reg) { append(new LIR_Op1(lir_pop, reg)); } 2391 2392 void cmp(LIR_Condition condition, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info = nullptr) { 2393 append(new LIR_Op2(lir_cmp, condition, left, right, info)); 2394 } 2395 void cmp(LIR_Condition condition, LIR_Opr left, int right, CodeEmitInfo* info = nullptr) { 2396 cmp(condition, left, LIR_OprFact::intConst(right), info); 2397 } 2398 2399 void cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info); 2400 void cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Address* addr, CodeEmitInfo* info); 2401 2402 void cmove(LIR_Condition condition, LIR_Opr src1, LIR_Opr src2, LIR_Opr dst, BasicType type, 2403 LIR_Opr cmp_opr1 = LIR_OprFact::illegalOpr, LIR_Opr cmp_opr2 = LIR_OprFact::illegalOpr) { 2404 append(new LIR_Op4(lir_cmove, condition, src1, src2, cmp_opr1, cmp_opr2, dst, type)); 2405 } 2406 2407 void cas_long(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value, 2408 LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr); 2409 void cas_obj(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value, 2410 LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr); 2411 void cas_int(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value, 2412 LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr); 2413 2414 void abs (LIR_Opr from, LIR_Opr to, LIR_Opr tmp) { append(new LIR_Op2(lir_abs , from, tmp, to)); } 2415 void negate(LIR_Opr from, LIR_Opr to, LIR_Opr tmp = LIR_OprFact::illegalOpr) { append(new LIR_Op2(lir_neg, from, tmp, to)); } 2416 void sqrt(LIR_Opr from, LIR_Opr to, LIR_Opr tmp) { append(new LIR_Op2(lir_sqrt, from, tmp, to)); } 2417 void fmad(LIR_Opr from, LIR_Opr from1, LIR_Opr from2, LIR_Opr to) { append(new LIR_Op3(lir_fmad, from, from1, from2, to)); } 2418 void fmaf(LIR_Opr from, LIR_Opr from1, LIR_Opr from2, LIR_Opr to) { append(new LIR_Op3(lir_fmaf, from, from1, from2, to)); } 2419 void log10 (LIR_Opr from, LIR_Opr to, LIR_Opr tmp) { append(new LIR_Op2(lir_log10, from, LIR_OprFact::illegalOpr, to, tmp)); } 2420 void tan (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_tan , from, tmp1, to, tmp2)); } 2421 void f2hf(LIR_Opr from, LIR_Opr to, LIR_Opr tmp) { append(new LIR_Op2(lir_f2hf, from, tmp, to)); } 2422 void hf2f(LIR_Opr from, LIR_Opr to, LIR_Opr tmp) { append(new LIR_Op2(lir_hf2f, from, tmp, to)); } 2423 2424 void add (LIR_Opr left, LIR_Opr right, LIR_Opr res) { append(new LIR_Op2(lir_add, left, right, res)); } 2425 void sub (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = nullptr) { append(new LIR_Op2(lir_sub, left, right, res, info)); } 2426 void mul (LIR_Opr left, LIR_Opr right, LIR_Opr res) { append(new LIR_Op2(lir_mul, left, right, res)); } 2427 void mul (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_mul, left, right, res, tmp)); } 2428 void div (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = nullptr) { append(new LIR_Op2(lir_div, left, right, res, info)); } 2429 void div (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_div, left, right, res, tmp)); } 2430 void rem (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = nullptr) { append(new LIR_Op2(lir_rem, left, right, res, info)); } 2431 2432 void volatile_load_mem_reg(LIR_Address* address, LIR_Opr dst, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none); 2433 void volatile_load_unsafe_reg(LIR_Opr base, LIR_Opr offset, LIR_Opr dst, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code); 2434 2435 void load(LIR_Address* addr, LIR_Opr src, CodeEmitInfo* info = nullptr, LIR_PatchCode patch_code = lir_patch_none); 2436 2437 void store_mem_int(jint v, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none); 2438 void store_mem_oop(jobject o, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none); 2439 void store(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info = nullptr, LIR_PatchCode patch_code = lir_patch_none); 2440 void volatile_store_mem_reg(LIR_Opr src, LIR_Address* address, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none); 2441 void volatile_store_unsafe_reg(LIR_Opr src, LIR_Opr base, LIR_Opr offset, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code); 2442 2443 void idiv(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info); 2444 void idiv(LIR_Opr left, int right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info); 2445 void irem(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info); 2446 void irem(LIR_Opr left, int right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info); 2447 2448 void allocate_object(LIR_Opr dst, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, int header_size, int object_size, LIR_Opr klass, bool init_check, CodeStub* stub); 2449 void allocate_array(LIR_Opr dst, LIR_Opr len, LIR_Opr t1,LIR_Opr t2, LIR_Opr t3,LIR_Opr t4, BasicType type, LIR_Opr klass, CodeStub* stub, bool zero_array = true, bool is_null_free = false); 2450 2451 // jump is an unconditional branch 2452 void jump(BlockBegin* block) { 2453 append(new LIR_OpBranch(lir_cond_always, block)); 2454 } 2455 void jump(CodeStub* stub) { 2456 append(new LIR_OpBranch(lir_cond_always, stub)); 2457 } 2458 void branch(LIR_Condition cond, Label* lbl) { 2459 append(new LIR_OpBranch(cond, lbl)); 2460 } 2461 // Should not be used for fp comparisons 2462 void branch(LIR_Condition cond, BlockBegin* block) { 2463 append(new LIR_OpBranch(cond, block)); 2464 } 2465 // Should not be used for fp comparisons 2466 void branch(LIR_Condition cond, CodeStub* stub) { 2467 append(new LIR_OpBranch(cond, stub)); 2468 } 2469 // Should only be used for fp comparisons 2470 void branch(LIR_Condition cond, BlockBegin* block, BlockBegin* unordered) { 2471 append(new LIR_OpBranch(cond, block, unordered)); 2472 } 2473 2474 void shift_left(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp); 2475 void shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp); 2476 void unsigned_shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp); 2477 2478 void shift_left(LIR_Opr value, int count, LIR_Opr dst) { shift_left(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); } 2479 void shift_right(LIR_Opr value, int count, LIR_Opr dst) { shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); } 2480 void unsigned_shift_right(LIR_Opr value, int count, LIR_Opr dst) { unsigned_shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); } 2481 2482 void lcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_cmp_l2i, left, right, dst)); } 2483 void fcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst, bool is_unordered_less); 2484 2485 void call_runtime_leaf(address routine, LIR_Opr tmp, LIR_Opr result, LIR_OprList* arguments) { 2486 append(new LIR_OpRTCall(routine, tmp, result, arguments)); 2487 } 2488 2489 void call_runtime(address routine, LIR_Opr tmp, LIR_Opr result, 2490 LIR_OprList* arguments, CodeEmitInfo* info) { 2491 append(new LIR_OpRTCall(routine, tmp, result, arguments, info)); 2492 } 2493 2494 void load_stack_address_monitor(int monitor_ix, LIR_Opr dst) { append(new LIR_Op1(lir_monaddr, LIR_OprFact::intConst(monitor_ix), dst)); } 2495 void unlock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub); 2496 void lock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info, CodeStub* throw_ie_stub=nullptr); 2497 2498 void breakpoint() { append(new LIR_Op0(lir_breakpoint)); } 2499 2500 void arraycopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp, ciArrayKlass* expected_type, int flags, CodeEmitInfo* info) { append(new LIR_OpArrayCopy(src, src_pos, dst, dst_pos, length, tmp, expected_type, flags, info)); } 2501 2502 void update_crc32(LIR_Opr crc, LIR_Opr val, LIR_Opr res) { append(new LIR_OpUpdateCRC32(crc, val, res)); } 2503 2504 void instanceof(LIR_Opr result, LIR_Opr object, ciKlass* klass, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, CodeEmitInfo* info_for_patch, ciMethod* profiled_method, int profiled_bci); 2505 void store_check(LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception, ciMethod* profiled_method, int profiled_bci); 2506 void check_flat_array(LIR_Opr array, LIR_Opr value, LIR_Opr tmp, CodeStub* stub); 2507 void check_null_free_array(LIR_Opr array, LIR_Opr tmp); 2508 void substitutability_check(LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr equal_result, LIR_Opr not_equal_result, 2509 LIR_Opr tmp1, LIR_Opr tmp2, 2510 ciKlass* left_klass, ciKlass* right_klass, LIR_Opr left_klass_op, LIR_Opr right_klass_op, 2511 CodeEmitInfo* info, CodeStub* stub); 2512 2513 void checkcast (LIR_Opr result, LIR_Opr object, ciKlass* klass, 2514 LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, 2515 CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub, 2516 ciMethod* profiled_method, int profiled_bci, bool is_null_free); 2517 // MethodData* profiling 2518 void profile_call(ciMethod* method, int bci, ciMethod* callee, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* cha_klass) { 2519 append(new LIR_OpProfileCall(method, bci, callee, mdo, recv, t1, cha_klass)); 2520 } 2521 void profile_type(LIR_Address* mdp, LIR_Opr obj, ciKlass* exact_klass, intptr_t current_klass, LIR_Opr tmp, bool not_null, bool no_conflict) { 2522 append(new LIR_OpProfileType(LIR_OprFact::address(mdp), obj, exact_klass, current_klass, tmp, not_null, no_conflict)); 2523 } 2524 void profile_inline_type(LIR_Address* mdp, LIR_Opr obj, int flag, LIR_Opr tmp, bool not_null) { 2525 append(new LIR_OpProfileInlineType(LIR_OprFact::address(mdp), obj, flag, tmp, not_null)); 2526 } 2527 2528 void xadd(LIR_Opr src, LIR_Opr add, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_xadd, src, add, res, tmp)); } 2529 void xchg(LIR_Opr src, LIR_Opr set, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_xchg, src, set, res, tmp)); } 2530 2531 void load_klass(LIR_Opr obj, LIR_Opr result, CodeEmitInfo* info) { append(new LIR_OpLoadKlass(obj, result, info)); } 2532 2533 #ifdef ASSERT 2534 void lir_assert(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, const char* msg, bool halt) { append(new LIR_OpAssert(condition, opr1, opr2, msg, halt)); } 2535 #endif 2536 }; 2537 2538 void print_LIR(BlockList* blocks); 2539 2540 class LIR_InsertionBuffer : public CompilationResourceObj { 2541 private: 2542 LIR_List* _lir; // the lir list where ops of this buffer should be inserted later (null when uninitialized) 2543 2544 // list of insertion points. index and count are stored alternately: 2545 // _index_and_count[i * 2]: the index into lir list where "count" ops should be inserted 2546 // _index_and_count[i * 2 + 1]: the number of ops to be inserted at index 2547 intStack _index_and_count; 2548 2549 // the LIR_Ops to be inserted 2550 LIR_OpList _ops; 2551 2552 void append_new(int index, int count) { _index_and_count.append(index); _index_and_count.append(count); } 2553 void set_index_at(int i, int value) { _index_and_count.at_put((i << 1), value); } 2554 void set_count_at(int i, int value) { _index_and_count.at_put((i << 1) + 1, value); } 2555 2556 #ifdef ASSERT 2557 void verify(); 2558 #endif 2559 public: 2560 LIR_InsertionBuffer() : _lir(nullptr), _index_and_count(8), _ops(8) { } 2561 2562 // must be called before using the insertion buffer 2563 void init(LIR_List* lir) { assert(!initialized(), "already initialized"); _lir = lir; _index_and_count.clear(); _ops.clear(); } 2564 bool initialized() const { return _lir != nullptr; } 2565 // called automatically when the buffer is appended to the LIR_List 2566 void finish() { _lir = nullptr; } 2567 2568 // accessors 2569 LIR_List* lir_list() const { return _lir; } 2570 int number_of_insertion_points() const { return _index_and_count.length() >> 1; } 2571 int index_at(int i) const { return _index_and_count.at((i << 1)); } 2572 int count_at(int i) const { return _index_and_count.at((i << 1) + 1); } 2573 2574 int number_of_ops() const { return _ops.length(); } 2575 LIR_Op* op_at(int i) const { return _ops.at(i); } 2576 2577 // append an instruction to the buffer 2578 void append(int index, LIR_Op* op); 2579 2580 // instruction 2581 void move(int index, LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = nullptr) { append(index, new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); } 2582 }; 2583 2584 2585 // 2586 // LIR_OpVisitState is used for manipulating LIR_Ops in an abstract way. 2587 // Calling a LIR_Op's visit function with a LIR_OpVisitState causes 2588 // information about the input, output and temporaries used by the 2589 // op to be recorded. It also records whether the op has call semantics 2590 // and also records all the CodeEmitInfos used by this op. 2591 // 2592 2593 2594 class LIR_OpVisitState: public StackObj { 2595 public: 2596 typedef enum { inputMode, firstMode = inputMode, tempMode, outputMode, numModes, invalidMode = -1 } OprMode; 2597 2598 enum { 2599 maxNumberOfOperands = 21, 2600 maxNumberOfInfos = 4 2601 }; 2602 2603 private: 2604 LIR_Op* _op; 2605 2606 // optimization: the operands and infos are not stored in a variable-length 2607 // list, but in a fixed-size array to save time of size checks and resizing 2608 int _oprs_len[numModes]; 2609 LIR_Opr* _oprs_new[numModes][maxNumberOfOperands]; 2610 int _info_len; 2611 CodeEmitInfo* _info_new[maxNumberOfInfos]; 2612 2613 bool _has_call; 2614 bool _has_slow_case; 2615 2616 2617 // only include register operands 2618 // addresses are decomposed to the base and index registers 2619 // constants and stack operands are ignored 2620 void append(LIR_Opr& opr, OprMode mode) { 2621 assert(opr->is_valid(), "should not call this otherwise"); 2622 assert(mode >= 0 && mode < numModes, "bad mode"); 2623 2624 if (opr->is_register()) { 2625 assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow"); 2626 _oprs_new[mode][_oprs_len[mode]++] = &opr; 2627 2628 } else if (opr->is_pointer()) { 2629 LIR_Address* address = opr->as_address_ptr(); 2630 if (address != nullptr) { 2631 // special handling for addresses: add base and index register of the address 2632 // both are always input operands or temp if we want to extend 2633 // their liveness! 2634 if (mode == outputMode) { 2635 mode = inputMode; 2636 } 2637 assert (mode == inputMode || mode == tempMode, "input or temp only for addresses"); 2638 if (address->_base->is_valid()) { 2639 assert(address->_base->is_register(), "must be"); 2640 assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow"); 2641 _oprs_new[mode][_oprs_len[mode]++] = &address->_base; 2642 } 2643 if (address->_index->is_valid()) { 2644 assert(address->_index->is_register(), "must be"); 2645 assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow"); 2646 _oprs_new[mode][_oprs_len[mode]++] = &address->_index; 2647 } 2648 2649 } else { 2650 assert(opr->is_constant(), "constant operands are not processed"); 2651 } 2652 } else { 2653 assert(opr->is_stack(), "stack operands are not processed"); 2654 } 2655 } 2656 2657 void append(CodeEmitInfo* info) { 2658 assert(info != nullptr, "should not call this otherwise"); 2659 assert(_info_len < maxNumberOfInfos, "array overflow"); 2660 _info_new[_info_len++] = info; 2661 } 2662 2663 public: 2664 LIR_OpVisitState() { reset(); } 2665 2666 LIR_Op* op() const { return _op; } 2667 void set_op(LIR_Op* op) { reset(); _op = op; } 2668 2669 bool has_call() const { return _has_call; } 2670 bool has_slow_case() const { return _has_slow_case; } 2671 2672 void reset() { 2673 _op = nullptr; 2674 _has_call = false; 2675 _has_slow_case = false; 2676 2677 _oprs_len[inputMode] = 0; 2678 _oprs_len[tempMode] = 0; 2679 _oprs_len[outputMode] = 0; 2680 _info_len = 0; 2681 } 2682 2683 2684 int opr_count(OprMode mode) const { 2685 assert(mode >= 0 && mode < numModes, "bad mode"); 2686 return _oprs_len[mode]; 2687 } 2688 2689 LIR_Opr opr_at(OprMode mode, int index) const { 2690 assert(mode >= 0 && mode < numModes, "bad mode"); 2691 assert(index >= 0 && index < _oprs_len[mode], "index out of bound"); 2692 return *_oprs_new[mode][index]; 2693 } 2694 2695 void set_opr_at(OprMode mode, int index, LIR_Opr opr) const { 2696 assert(mode >= 0 && mode < numModes, "bad mode"); 2697 assert(index >= 0 && index < _oprs_len[mode], "index out of bound"); 2698 *_oprs_new[mode][index] = opr; 2699 } 2700 2701 int info_count() const { 2702 return _info_len; 2703 } 2704 2705 CodeEmitInfo* info_at(int index) const { 2706 assert(index < _info_len, "index out of bounds"); 2707 return _info_new[index]; 2708 } 2709 2710 XHandlers* all_xhandler(); 2711 2712 // collects all register operands of the instruction 2713 void visit(LIR_Op* op); 2714 2715 #ifdef ASSERT 2716 // check that an operation has no operands 2717 bool no_operands(LIR_Op* op); 2718 #endif 2719 2720 // LIR_Op visitor functions use these to fill in the state 2721 void do_input(LIR_Opr& opr) { append(opr, LIR_OpVisitState::inputMode); } 2722 void do_output(LIR_Opr& opr) { append(opr, LIR_OpVisitState::outputMode); } 2723 void do_temp(LIR_Opr& opr) { append(opr, LIR_OpVisitState::tempMode); } 2724 void do_info(CodeEmitInfo* info) { append(info); } 2725 2726 void do_stub(CodeStub* stub); 2727 void do_call() { _has_call = true; } 2728 void do_slow_case() { _has_slow_case = true; } 2729 void do_slow_case(CodeEmitInfo* info) { 2730 _has_slow_case = true; 2731 append(info); 2732 } 2733 }; 2734 2735 2736 inline LIR_Opr LIR_Opr::illegalOpr() { return LIR_OprFact::illegalOpr; }; 2737 2738 inline LIR_Opr LIR_Opr::nullOpr() { return LIR_OprFact::nullOpr; }; 2739 2740 #endif // SHARE_C1_C1_LIR_HPP