1 /* 2 * Copyright (c) 2000, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_C1_C1_LIR_HPP 26 #define SHARE_C1_C1_LIR_HPP 27 28 #include "c1/c1_Defs.hpp" 29 #include "c1/c1_ValueType.hpp" 30 #include "oops/method.hpp" 31 #include "utilities/globalDefinitions.hpp" 32 #include "utilities/macros.hpp" 33 34 class BlockBegin; 35 class BlockList; 36 class LIR_Assembler; 37 class CodeEmitInfo; 38 class CodeStub; 39 class CodeStubList; 40 class C1SafepointPollStub; 41 class ArrayCopyStub; 42 class LIR_Op; 43 class ciType; 44 class ValueType; 45 class LIR_OpVisitState; 46 47 //--------------------------------------------------------------------- 48 // LIR Operands 49 // LIR_OprPtr 50 // LIR_Const 51 // LIR_Address 52 //--------------------------------------------------------------------- 53 class LIR_OprPtr; 54 class LIR_Const; 55 class LIR_Address; 56 class LIR_OprVisitor; 57 class LIR_Opr; 58 59 typedef int RegNr; 60 61 typedef GrowableArray<LIR_Opr> LIR_OprList; 62 typedef GrowableArray<LIR_Op*> LIR_OpArray; 63 typedef GrowableArray<LIR_Op*> LIR_OpList; 64 65 // define LIR_OprPtr early so LIR_Opr can refer to it 66 class LIR_OprPtr: public CompilationResourceObj { 67 public: 68 bool is_oop_pointer() const { return (type() == T_OBJECT); } 69 bool is_float_kind() const { BasicType t = type(); return (t == T_FLOAT) || (t == T_DOUBLE); } 70 71 virtual LIR_Const* as_constant() { return nullptr; } 72 virtual LIR_Address* as_address() { return nullptr; } 73 virtual BasicType type() const = 0; 74 virtual void print_value_on(outputStream* out) const = 0; 75 }; 76 77 78 79 // LIR constants 80 class LIR_Const: public LIR_OprPtr { 81 private: 82 JavaValue _value; 83 84 void type_check(BasicType t) const { assert(type() == t, "type check"); } 85 void type_check(BasicType t1, BasicType t2) const { assert(type() == t1 || type() == t2, "type check"); } 86 void type_check(BasicType t1, BasicType t2, BasicType t3) const { assert(type() == t1 || type() == t2 || type() == t3, "type check"); } 87 88 public: 89 LIR_Const(jint i, bool is_address=false) { _value.set_type(is_address?T_ADDRESS:T_INT); _value.set_jint(i); } 90 LIR_Const(jlong l) { _value.set_type(T_LONG); _value.set_jlong(l); } 91 LIR_Const(jfloat f) { _value.set_type(T_FLOAT); _value.set_jfloat(f); } 92 LIR_Const(jdouble d) { _value.set_type(T_DOUBLE); _value.set_jdouble(d); } 93 LIR_Const(jobject o) { _value.set_type(T_OBJECT); _value.set_jobject(o); } 94 LIR_Const(void* p) { 95 #ifdef _LP64 96 assert(sizeof(jlong) >= sizeof(p), "too small");; 97 _value.set_type(T_LONG); _value.set_jlong((jlong)p); 98 #else 99 assert(sizeof(jint) >= sizeof(p), "too small");; 100 _value.set_type(T_INT); _value.set_jint((jint)p); 101 #endif 102 } 103 LIR_Const(Metadata* m) { 104 _value.set_type(T_METADATA); 105 #ifdef _LP64 106 _value.set_jlong((jlong)m); 107 #else 108 _value.set_jint((jint)m); 109 #endif // _LP64 110 } 111 112 virtual BasicType type() const { return _value.get_type(); } 113 virtual LIR_Const* as_constant() { return this; } 114 115 jint as_jint() const { type_check(T_INT, T_ADDRESS); return _value.get_jint(); } 116 jlong as_jlong() const { type_check(T_LONG ); return _value.get_jlong(); } 117 jfloat as_jfloat() const { type_check(T_FLOAT ); return _value.get_jfloat(); } 118 jdouble as_jdouble() const { type_check(T_DOUBLE); return _value.get_jdouble(); } 119 jobject as_jobject() const { type_check(T_OBJECT); return _value.get_jobject(); } 120 jint as_jint_lo() const { type_check(T_LONG ); return low(_value.get_jlong()); } 121 jint as_jint_hi() const { type_check(T_LONG ); return high(_value.get_jlong()); } 122 123 #ifdef _LP64 124 address as_pointer() const { type_check(T_LONG ); return (address)_value.get_jlong(); } 125 Metadata* as_metadata() const { type_check(T_METADATA); return (Metadata*)_value.get_jlong(); } 126 #else 127 address as_pointer() const { type_check(T_INT ); return (address)_value.get_jint(); } 128 Metadata* as_metadata() const { type_check(T_METADATA); return (Metadata*)_value.get_jint(); } 129 #endif 130 131 132 jint as_jint_bits() const { type_check(T_FLOAT, T_INT, T_ADDRESS); return _value.get_jint(); } 133 jint as_jint_lo_bits() const { 134 if (type() == T_DOUBLE) { 135 return low(jlong_cast(_value.get_jdouble())); 136 } else { 137 return as_jint_lo(); 138 } 139 } 140 jint as_jint_hi_bits() const { 141 if (type() == T_DOUBLE) { 142 return high(jlong_cast(_value.get_jdouble())); 143 } else { 144 return as_jint_hi(); 145 } 146 } 147 jlong as_jlong_bits() const { 148 if (type() == T_DOUBLE) { 149 return jlong_cast(_value.get_jdouble()); 150 } else { 151 return as_jlong(); 152 } 153 } 154 155 virtual void print_value_on(outputStream* out) const PRODUCT_RETURN; 156 157 158 bool is_zero_float() { 159 jfloat f = as_jfloat(); 160 jfloat ok = 0.0f; 161 return jint_cast(f) == jint_cast(ok); 162 } 163 164 bool is_one_float() { 165 jfloat f = as_jfloat(); 166 return !g_isnan(f) && g_isfinite(f) && f == 1.0; 167 } 168 169 bool is_zero_double() { 170 jdouble d = as_jdouble(); 171 jdouble ok = 0.0; 172 return jlong_cast(d) == jlong_cast(ok); 173 } 174 175 bool is_one_double() { 176 jdouble d = as_jdouble(); 177 return !g_isnan(d) && g_isfinite(d) && d == 1.0; 178 } 179 }; 180 181 182 //---------------------LIR Operand descriptor------------------------------------ 183 // 184 // The class LIR_Opr represents a LIR instruction operand; 185 // it can be a register (ALU/FPU), stack location or a constant; 186 // Constants and addresses are represented as resource area allocated 187 // structures (see above), and pointers are stored in the _value field (cast to 188 // an intptr_t). 189 // Registers and stack locations are represented inline as integers. 190 // (see value function). 191 192 // Previously, this class was derived from CompilationResourceObj. 193 // However, deriving from any of the "Obj" types in allocation.hpp seems 194 // detrimental, since in some build modes it would add a vtable to this class, 195 // which make it no longer be a 1-word trivially-copyable wrapper object, 196 // which is the entire point of it. 197 198 class LIR_Opr { 199 public: 200 // value structure: 201 // data other-non-data opr-type opr-kind 202 // +-------------------+--------------+-------+-----+ 203 // [max...............................|6 5 4 3|2 1 0] 204 // ^ 205 // is_pointer bit 206 // 207 // lowest bit cleared, means it is a structure pointer 208 // we need 4 bits to represent types 209 210 private: 211 friend class LIR_OprFact; 212 213 intptr_t _value; 214 // Conversion 215 intptr_t value() const { return _value; } 216 217 bool check_value_mask(intptr_t mask, intptr_t masked_value) const { 218 return (value() & mask) == masked_value; 219 } 220 221 enum OprKind { 222 pointer_value = 0 223 , stack_value = 1 224 , cpu_register = 3 225 , fpu_register = 5 226 , illegal_value = 7 227 }; 228 229 enum OprBits { 230 pointer_bits = 1 231 , kind_bits = 3 232 , type_bits = 4 233 , size_bits = 2 234 , destroys_bits = 1 235 , virtual_bits = 1 236 , is_xmm_bits = 1 237 , last_use_bits = 1 238 , non_data_bits = kind_bits + type_bits + size_bits + destroys_bits + virtual_bits 239 + is_xmm_bits + last_use_bits 240 , data_bits = BitsPerInt - non_data_bits 241 , reg_bits = data_bits / 2 // for two registers in one value encoding 242 }; 243 244 enum OprShift : uintptr_t { 245 kind_shift = 0 246 , type_shift = kind_shift + kind_bits 247 , size_shift = type_shift + type_bits 248 , destroys_shift = size_shift + size_bits 249 , last_use_shift = destroys_shift + destroys_bits 250 , virtual_shift = last_use_shift + last_use_bits 251 , is_xmm_shift = virtual_shift + virtual_bits 252 , data_shift = is_xmm_shift + is_xmm_bits 253 , reg1_shift = data_shift 254 , reg2_shift = data_shift + reg_bits 255 256 }; 257 258 enum OprSize { 259 single_size = 0 << size_shift 260 , double_size = 1 << size_shift 261 }; 262 263 enum OprMask { 264 kind_mask = right_n_bits(kind_bits) 265 , type_mask = right_n_bits(type_bits) << type_shift 266 , size_mask = right_n_bits(size_bits) << size_shift 267 , last_use_mask = right_n_bits(last_use_bits) << last_use_shift 268 , virtual_mask = right_n_bits(virtual_bits) << virtual_shift 269 , is_xmm_mask = right_n_bits(is_xmm_bits) << is_xmm_shift 270 , pointer_mask = right_n_bits(pointer_bits) 271 , lower_reg_mask = right_n_bits(reg_bits) 272 , no_type_mask = (int)(~(type_mask | last_use_mask)) 273 }; 274 275 uint32_t data() const { return (uint32_t)value() >> data_shift; } 276 int lo_reg_half() const { return data() & lower_reg_mask; } 277 int hi_reg_half() const { return (data() >> reg_bits) & lower_reg_mask; } 278 OprKind kind_field() const { return (OprKind)(value() & kind_mask); } 279 OprSize size_field() const { return (OprSize)(value() & size_mask); } 280 281 static char type_char(BasicType t); 282 283 public: 284 LIR_Opr() : _value(0) {} 285 LIR_Opr(intptr_t val) : _value(val) {} 286 LIR_Opr(LIR_OprPtr *val) : _value(reinterpret_cast<intptr_t>(val)) {} 287 bool operator==(const LIR_Opr &other) const { return _value == other._value; } 288 bool operator!=(const LIR_Opr &other) const { return _value != other._value; } 289 explicit operator bool() const { return _value != 0; } 290 291 // UGLY HACK: make this value object look like a pointer (to itself). This 292 // operator overload should be removed, and all callers updated from 293 // `opr->fn()` to `opr.fn()`. 294 const LIR_Opr* operator->() const { return this; } 295 LIR_Opr* operator->() { return this; } 296 297 enum { 298 vreg_base = ConcreteRegisterImpl::number_of_registers, 299 data_max = (1 << data_bits) - 1, // max unsigned value for data bit field 300 vreg_limit = 10000, // choose a reasonable limit, 301 vreg_max = MIN2(vreg_limit, data_max) // and make sure if fits in the bit field 302 }; 303 304 static inline LIR_Opr illegalOpr(); 305 static inline LIR_Opr nullOpr(); 306 307 enum OprType { 308 unknown_type = 0 << type_shift // means: not set (catch uninitialized types) 309 , int_type = 1 << type_shift 310 , long_type = 2 << type_shift 311 , object_type = 3 << type_shift 312 , address_type = 4 << type_shift 313 , float_type = 5 << type_shift 314 , double_type = 6 << type_shift 315 , metadata_type = 7 << type_shift 316 }; 317 friend OprType as_OprType(BasicType t); 318 friend BasicType as_BasicType(OprType t); 319 320 OprType type_field_valid() const { assert(is_register() || is_stack(), "should not be called otherwise"); return (OprType)(value() & type_mask); } 321 OprType type_field() const { return is_illegal() ? unknown_type : (OprType)(value() & type_mask); } 322 323 static OprSize size_for(BasicType t) { 324 switch (t) { 325 case T_LONG: 326 case T_DOUBLE: 327 return double_size; 328 break; 329 330 case T_FLOAT: 331 case T_BOOLEAN: 332 case T_CHAR: 333 case T_BYTE: 334 case T_SHORT: 335 case T_INT: 336 case T_ADDRESS: 337 case T_OBJECT: 338 case T_ARRAY: 339 case T_METADATA: 340 return single_size; 341 break; 342 343 default: 344 ShouldNotReachHere(); 345 return single_size; 346 } 347 } 348 349 350 void validate_type() const PRODUCT_RETURN; 351 352 BasicType type() const { 353 if (is_pointer()) { 354 return pointer()->type(); 355 } 356 return as_BasicType(type_field()); 357 } 358 359 360 ValueType* value_type() const { return as_ValueType(type()); } 361 362 char type_char() const { return type_char((is_pointer()) ? pointer()->type() : type()); } 363 364 bool is_equal(LIR_Opr opr) const { return *this == opr; } 365 // checks whether types are same 366 bool is_same_type(LIR_Opr opr) const { 367 assert(type_field() != unknown_type && 368 opr->type_field() != unknown_type, "shouldn't see unknown_type"); 369 return type_field() == opr->type_field(); 370 } 371 bool is_same_register(LIR_Opr opr) { 372 return (is_register() && opr->is_register() && 373 kind_field() == opr->kind_field() && 374 (value() & no_type_mask) == (opr->value() & no_type_mask)); 375 } 376 377 bool is_pointer() const { return check_value_mask(pointer_mask, pointer_value); } 378 bool is_illegal() const { return kind_field() == illegal_value; } 379 bool is_valid() const { return kind_field() != illegal_value; } 380 381 bool is_register() const { return is_cpu_register() || is_fpu_register(); } 382 bool is_virtual() const { return is_virtual_cpu() || is_virtual_fpu(); } 383 384 bool is_constant() const { return is_pointer() && pointer()->as_constant() != nullptr; } 385 bool is_address() const { return is_pointer() && pointer()->as_address() != nullptr; } 386 387 bool is_float_kind() const { return is_pointer() ? pointer()->is_float_kind() : (kind_field() == fpu_register); } 388 bool is_oop() const; 389 390 // semantic for fpu- and xmm-registers: 391 // * is_float and is_double return true for xmm_registers 392 // (so is_single_fpu and is_single_xmm are true) 393 // * So you must always check for is_???_xmm prior to is_???_fpu to 394 // distinguish between fpu- and xmm-registers 395 396 bool is_stack() const { validate_type(); return check_value_mask(kind_mask, stack_value); } 397 bool is_single_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask, stack_value | single_size); } 398 bool is_double_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask, stack_value | double_size); } 399 400 bool is_cpu_register() const { validate_type(); return check_value_mask(kind_mask, cpu_register); } 401 bool is_virtual_cpu() const { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register | virtual_mask); } 402 bool is_fixed_cpu() const { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register); } 403 bool is_single_cpu() const { validate_type(); return check_value_mask(kind_mask | size_mask, cpu_register | single_size); } 404 bool is_double_cpu() const { validate_type(); return check_value_mask(kind_mask | size_mask, cpu_register | double_size); } 405 406 bool is_fpu_register() const { validate_type(); return check_value_mask(kind_mask, fpu_register); } 407 bool is_virtual_fpu() const { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register | virtual_mask); } 408 bool is_fixed_fpu() const { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register); } 409 bool is_single_fpu() const { validate_type(); return check_value_mask(kind_mask | size_mask, fpu_register | single_size); } 410 bool is_double_fpu() const { validate_type(); return check_value_mask(kind_mask | size_mask, fpu_register | double_size); } 411 412 bool is_xmm_register() const { validate_type(); return check_value_mask(kind_mask | is_xmm_mask, fpu_register | is_xmm_mask); } 413 bool is_single_xmm() const { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | single_size | is_xmm_mask); } 414 bool is_double_xmm() const { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | double_size | is_xmm_mask); } 415 416 // fast accessor functions for special bits that do not work for pointers 417 // (in this functions, the check for is_pointer() is omitted) 418 bool is_single_word() const { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, single_size); } 419 bool is_double_word() const { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, double_size); } 420 bool is_virtual_register() const { assert(is_register(), "type check"); return check_value_mask(virtual_mask, virtual_mask); } 421 bool is_oop_register() const { assert(is_register() || is_stack(), "type check"); return type_field_valid() == object_type; } 422 BasicType type_register() const { assert(is_register() || is_stack(), "type check"); return as_BasicType(type_field_valid()); } 423 424 bool is_last_use() const { assert(is_register(), "only works for registers"); return (value() & last_use_mask) != 0; } 425 LIR_Opr make_last_use() { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | last_use_mask); } 426 427 428 int single_stack_ix() const { assert(is_single_stack() && !is_virtual(), "type check"); return (int)data(); } 429 int double_stack_ix() const { assert(is_double_stack() && !is_virtual(), "type check"); return (int)data(); } 430 RegNr cpu_regnr() const { assert(is_single_cpu() && !is_virtual(), "type check"); return (RegNr)data(); } 431 RegNr cpu_regnrLo() const { assert(is_double_cpu() && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); } 432 RegNr cpu_regnrHi() const { assert(is_double_cpu() && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); } 433 RegNr fpu_regnr() const { assert(is_single_fpu() && !is_virtual(), "type check"); return (RegNr)data(); } 434 RegNr fpu_regnrLo() const { assert(is_double_fpu() && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); } 435 RegNr fpu_regnrHi() const { assert(is_double_fpu() && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); } 436 RegNr xmm_regnr() const { assert(is_single_xmm() && !is_virtual(), "type check"); return (RegNr)data(); } 437 RegNr xmm_regnrLo() const { assert(is_double_xmm() && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); } 438 RegNr xmm_regnrHi() const { assert(is_double_xmm() && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); } 439 int vreg_number() const { assert(is_virtual(), "type check"); return (RegNr)data(); } 440 441 LIR_OprPtr* pointer() const { assert(_value != 0 && is_pointer(), "nullness and type check"); return (LIR_OprPtr*)_value; } 442 LIR_Const* as_constant_ptr() const { return pointer()->as_constant(); } 443 LIR_Address* as_address_ptr() const { return pointer()->as_address(); } 444 445 Register as_register() const; 446 Register as_register_lo() const; 447 Register as_register_hi() const; 448 449 Register as_pointer_register() { 450 #ifdef _LP64 451 if (is_double_cpu()) { 452 assert(as_register_lo() == as_register_hi(), "should be a single register"); 453 return as_register_lo(); 454 } 455 #endif 456 return as_register(); 457 } 458 459 FloatRegister as_float_reg () const; 460 FloatRegister as_double_reg () const; 461 #ifdef X86 462 XMMRegister as_xmm_float_reg () const; 463 XMMRegister as_xmm_double_reg() const; 464 // for compatibility with RInfo 465 int fpu() const { return lo_reg_half(); } 466 #endif 467 468 jint as_jint() const { return as_constant_ptr()->as_jint(); } 469 jlong as_jlong() const { return as_constant_ptr()->as_jlong(); } 470 jfloat as_jfloat() const { return as_constant_ptr()->as_jfloat(); } 471 jdouble as_jdouble() const { return as_constant_ptr()->as_jdouble(); } 472 jobject as_jobject() const { return as_constant_ptr()->as_jobject(); } 473 474 void print() const PRODUCT_RETURN; 475 void print(outputStream* out) const PRODUCT_RETURN; 476 }; 477 478 inline LIR_Opr::OprType as_OprType(BasicType type) { 479 switch (type) { 480 case T_INT: return LIR_Opr::int_type; 481 case T_LONG: return LIR_Opr::long_type; 482 case T_FLOAT: return LIR_Opr::float_type; 483 case T_DOUBLE: return LIR_Opr::double_type; 484 case T_OBJECT: 485 case T_ARRAY: return LIR_Opr::object_type; 486 case T_ADDRESS: return LIR_Opr::address_type; 487 case T_METADATA: return LIR_Opr::metadata_type; 488 case T_ILLEGAL: // fall through 489 default: ShouldNotReachHere(); return LIR_Opr::unknown_type; 490 } 491 } 492 493 inline BasicType as_BasicType(LIR_Opr::OprType t) { 494 switch (t) { 495 case LIR_Opr::int_type: return T_INT; 496 case LIR_Opr::long_type: return T_LONG; 497 case LIR_Opr::float_type: return T_FLOAT; 498 case LIR_Opr::double_type: return T_DOUBLE; 499 case LIR_Opr::object_type: return T_OBJECT; 500 case LIR_Opr::address_type: return T_ADDRESS; 501 case LIR_Opr::metadata_type:return T_METADATA; 502 case LIR_Opr::unknown_type: // fall through 503 default: ShouldNotReachHere(); return T_ILLEGAL; 504 } 505 } 506 507 508 // LIR_Address 509 class LIR_Address: public LIR_OprPtr { 510 friend class LIR_OpVisitState; 511 512 public: 513 // NOTE: currently these must be the log2 of the scale factor (and 514 // must also be equivalent to the ScaleFactor enum in 515 // assembler_i486.hpp) 516 enum Scale { 517 times_1 = 0, 518 times_2 = 1, 519 times_4 = 2, 520 times_8 = 3 521 }; 522 523 private: 524 LIR_Opr _base; 525 LIR_Opr _index; 526 intx _disp; 527 Scale _scale; 528 BasicType _type; 529 530 public: 531 LIR_Address(LIR_Opr base, LIR_Opr index, BasicType type): 532 _base(base) 533 , _index(index) 534 , _disp(0) 535 , _scale(times_1) 536 , _type(type) { verify(); } 537 538 LIR_Address(LIR_Opr base, intx disp, BasicType type): 539 _base(base) 540 , _index(LIR_Opr::illegalOpr()) 541 , _disp(disp) 542 , _scale(times_1) 543 , _type(type) { verify(); } 544 545 LIR_Address(LIR_Opr base, BasicType type): 546 _base(base) 547 , _index(LIR_Opr::illegalOpr()) 548 , _disp(0) 549 , _scale(times_1) 550 , _type(type) { verify(); } 551 552 LIR_Address(LIR_Opr base, LIR_Opr index, intx disp, BasicType type): 553 _base(base) 554 , _index(index) 555 , _disp(disp) 556 , _scale(times_1) 557 , _type(type) { verify(); } 558 559 LIR_Address(LIR_Opr base, LIR_Opr index, Scale scale, intx disp, BasicType type): 560 _base(base) 561 , _index(index) 562 , _disp(disp) 563 , _scale(scale) 564 , _type(type) { verify(); } 565 566 LIR_Opr base() const { return _base; } 567 LIR_Opr index() const { return _index; } 568 Scale scale() const { return _scale; } 569 intx disp() const { return _disp; } 570 571 bool equals(LIR_Address* other) const { return base() == other->base() && index() == other->index() && disp() == other->disp() && scale() == other->scale(); } 572 573 virtual LIR_Address* as_address() { return this; } 574 virtual BasicType type() const { return _type; } 575 virtual void print_value_on(outputStream* out) const PRODUCT_RETURN; 576 577 void verify() const PRODUCT_RETURN; 578 579 static Scale scale(BasicType type); 580 }; 581 582 583 // operand factory 584 class LIR_OprFact: public AllStatic { 585 public: 586 587 static LIR_Opr illegalOpr; 588 static LIR_Opr nullOpr; 589 590 static LIR_Opr single_cpu(int reg) { 591 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) | 592 LIR_Opr::int_type | 593 LIR_Opr::cpu_register | 594 LIR_Opr::single_size); 595 } 596 static LIR_Opr single_cpu_oop(int reg) { 597 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) | 598 LIR_Opr::object_type | 599 LIR_Opr::cpu_register | 600 LIR_Opr::single_size); 601 } 602 static LIR_Opr single_cpu_address(int reg) { 603 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) | 604 LIR_Opr::address_type | 605 LIR_Opr::cpu_register | 606 LIR_Opr::single_size); 607 } 608 static LIR_Opr single_cpu_metadata(int reg) { 609 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) | 610 LIR_Opr::metadata_type | 611 LIR_Opr::cpu_register | 612 LIR_Opr::single_size); 613 } 614 static LIR_Opr double_cpu(int reg1, int reg2) { 615 LP64_ONLY(assert(reg1 == reg2, "must be identical")); 616 return (LIR_Opr)(intptr_t)((reg1 << LIR_Opr::reg1_shift) | 617 (reg2 << LIR_Opr::reg2_shift) | 618 LIR_Opr::long_type | 619 LIR_Opr::cpu_register | 620 LIR_Opr::double_size); 621 } 622 623 static LIR_Opr single_fpu(int reg) { 624 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) | 625 LIR_Opr::float_type | 626 LIR_Opr::fpu_register | 627 LIR_Opr::single_size); 628 } 629 630 // Platform dependent. 631 static LIR_Opr double_fpu(int reg1, int reg2 = -1 /*fnoreg*/); 632 633 #ifdef ARM32 634 static LIR_Opr single_softfp(int reg) { 635 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) | 636 LIR_Opr::float_type | 637 LIR_Opr::cpu_register | 638 LIR_Opr::single_size); 639 } 640 static LIR_Opr double_softfp(int reg1, int reg2) { 641 return (LIR_Opr)(intptr_t)((reg1 << LIR_Opr::reg1_shift) | 642 (reg2 << LIR_Opr::reg2_shift) | 643 LIR_Opr::double_type | 644 LIR_Opr::cpu_register | 645 LIR_Opr::double_size); 646 } 647 #endif // ARM32 648 649 #if defined(X86) 650 static LIR_Opr single_xmm(int reg) { 651 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) | 652 LIR_Opr::float_type | 653 LIR_Opr::fpu_register | 654 LIR_Opr::single_size | 655 LIR_Opr::is_xmm_mask); 656 } 657 static LIR_Opr double_xmm(int reg) { 658 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) | 659 (reg << LIR_Opr::reg2_shift) | 660 LIR_Opr::double_type | 661 LIR_Opr::fpu_register | 662 LIR_Opr::double_size | 663 LIR_Opr::is_xmm_mask); 664 } 665 #endif // X86 666 667 static LIR_Opr virtual_register(int index, BasicType type) { 668 if (index > LIR_Opr::vreg_max) { 669 // Running out of virtual registers. Caller should bailout. 670 return illegalOpr; 671 } 672 673 LIR_Opr res; 674 switch (type) { 675 case T_OBJECT: // fall through 676 case T_ARRAY: 677 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 678 LIR_Opr::object_type | 679 LIR_Opr::cpu_register | 680 LIR_Opr::single_size | 681 LIR_Opr::virtual_mask); 682 break; 683 684 case T_METADATA: 685 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 686 LIR_Opr::metadata_type| 687 LIR_Opr::cpu_register | 688 LIR_Opr::single_size | 689 LIR_Opr::virtual_mask); 690 break; 691 692 case T_INT: 693 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 694 LIR_Opr::int_type | 695 LIR_Opr::cpu_register | 696 LIR_Opr::single_size | 697 LIR_Opr::virtual_mask); 698 break; 699 700 case T_ADDRESS: 701 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 702 LIR_Opr::address_type | 703 LIR_Opr::cpu_register | 704 LIR_Opr::single_size | 705 LIR_Opr::virtual_mask); 706 break; 707 708 case T_LONG: 709 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 710 LIR_Opr::long_type | 711 LIR_Opr::cpu_register | 712 LIR_Opr::double_size | 713 LIR_Opr::virtual_mask); 714 break; 715 716 #ifdef __SOFTFP__ 717 case T_FLOAT: 718 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 719 LIR_Opr::float_type | 720 LIR_Opr::cpu_register | 721 LIR_Opr::single_size | 722 LIR_Opr::virtual_mask); 723 break; 724 case T_DOUBLE: 725 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 726 LIR_Opr::double_type | 727 LIR_Opr::cpu_register | 728 LIR_Opr::double_size | 729 LIR_Opr::virtual_mask); 730 break; 731 #else // __SOFTFP__ 732 case T_FLOAT: 733 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 734 LIR_Opr::float_type | 735 LIR_Opr::fpu_register | 736 LIR_Opr::single_size | 737 LIR_Opr::virtual_mask); 738 break; 739 740 case 741 T_DOUBLE: res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 742 LIR_Opr::double_type | 743 LIR_Opr::fpu_register | 744 LIR_Opr::double_size | 745 LIR_Opr::virtual_mask); 746 break; 747 #endif // __SOFTFP__ 748 default: ShouldNotReachHere(); res = illegalOpr; 749 } 750 751 #ifdef ASSERT 752 res->validate_type(); 753 assert(res->vreg_number() == index, "conversion check"); 754 assert(index >= LIR_Opr::vreg_base, "must start at vreg_base"); 755 756 // old-style calculation; check if old and new method are equal 757 LIR_Opr::OprType t = as_OprType(type); 758 #ifdef __SOFTFP__ 759 LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 760 t | 761 LIR_Opr::cpu_register | 762 LIR_Opr::size_for(type) | LIR_Opr::virtual_mask); 763 #else // __SOFTFP__ 764 LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | t | 765 ((type == T_FLOAT || type == T_DOUBLE) ? LIR_Opr::fpu_register : LIR_Opr::cpu_register) | 766 LIR_Opr::size_for(type) | LIR_Opr::virtual_mask); 767 assert(res == old_res, "old and new method not equal"); 768 #endif // __SOFTFP__ 769 #endif // ASSERT 770 771 return res; 772 } 773 774 // 'index' is computed by FrameMap::local_stack_pos(index); do not use other parameters as 775 // the index is platform independent; a double stack using indices 2 and 3 has always 776 // index 2. 777 static LIR_Opr stack(int index, BasicType type) { 778 LIR_Opr res; 779 switch (type) { 780 case T_OBJECT: // fall through 781 case T_ARRAY: 782 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 783 LIR_Opr::object_type | 784 LIR_Opr::stack_value | 785 LIR_Opr::single_size); 786 break; 787 788 case T_METADATA: 789 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 790 LIR_Opr::metadata_type | 791 LIR_Opr::stack_value | 792 LIR_Opr::single_size); 793 break; 794 case T_INT: 795 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 796 LIR_Opr::int_type | 797 LIR_Opr::stack_value | 798 LIR_Opr::single_size); 799 break; 800 801 case T_ADDRESS: 802 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 803 LIR_Opr::address_type | 804 LIR_Opr::stack_value | 805 LIR_Opr::single_size); 806 break; 807 808 case T_LONG: 809 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 810 LIR_Opr::long_type | 811 LIR_Opr::stack_value | 812 LIR_Opr::double_size); 813 break; 814 815 case T_FLOAT: 816 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 817 LIR_Opr::float_type | 818 LIR_Opr::stack_value | 819 LIR_Opr::single_size); 820 break; 821 case T_DOUBLE: 822 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 823 LIR_Opr::double_type | 824 LIR_Opr::stack_value | 825 LIR_Opr::double_size); 826 break; 827 828 default: ShouldNotReachHere(); res = illegalOpr; 829 } 830 831 #ifdef ASSERT 832 assert(index >= 0, "index must be positive"); 833 assert(index == (int)res->data(), "conversion check"); 834 835 LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 836 LIR_Opr::stack_value | 837 as_OprType(type) | 838 LIR_Opr::size_for(type)); 839 assert(res == old_res, "old and new method not equal"); 840 #endif 841 842 return res; 843 } 844 845 static LIR_Opr intConst(jint i) { return (LIR_Opr)(new LIR_Const(i)); } 846 static LIR_Opr longConst(jlong l) { return (LIR_Opr)(new LIR_Const(l)); } 847 static LIR_Opr floatConst(jfloat f) { return (LIR_Opr)(new LIR_Const(f)); } 848 static LIR_Opr doubleConst(jdouble d) { return (LIR_Opr)(new LIR_Const(d)); } 849 static LIR_Opr oopConst(jobject o) { return (LIR_Opr)(new LIR_Const(o)); } 850 static LIR_Opr address(LIR_Address* a) { return (LIR_Opr)a; } 851 static LIR_Opr intptrConst(void* p) { return (LIR_Opr)(new LIR_Const(p)); } 852 static LIR_Opr intptrConst(intptr_t v) { return (LIR_Opr)(new LIR_Const((void*)v)); } 853 static LIR_Opr illegal() { return (LIR_Opr)-1; } 854 static LIR_Opr addressConst(jint i) { return (LIR_Opr)(new LIR_Const(i, true)); } 855 static LIR_Opr metadataConst(Metadata* m) { return (LIR_Opr)(new LIR_Const(m)); } 856 857 static LIR_Opr value_type(ValueType* type); 858 }; 859 860 861 //------------------------------------------------------------------------------- 862 // LIR Instructions 863 //------------------------------------------------------------------------------- 864 // 865 // Note: 866 // - every instruction has a result operand 867 // - every instruction has an CodeEmitInfo operand (can be revisited later) 868 // - every instruction has a LIR_OpCode operand 869 // - LIR_OpN, means an instruction that has N input operands 870 // 871 // class hierarchy: 872 // 873 class LIR_Op; 874 class LIR_Op0; 875 class LIR_OpLabel; 876 class LIR_Op1; 877 class LIR_OpBranch; 878 class LIR_OpConvert; 879 class LIR_OpAllocObj; 880 class LIR_OpReturn; 881 class LIR_Op2; 882 class LIR_OpDelay; 883 class LIR_Op3; 884 class LIR_OpAllocArray; 885 class LIR_Op4; 886 class LIR_OpCall; 887 class LIR_OpJavaCall; 888 class LIR_OpRTCall; 889 class LIR_OpArrayCopy; 890 class LIR_OpUpdateCRC32; 891 class LIR_OpLock; 892 class LIR_OpTypeCheck; 893 class LIR_OpFlattenedArrayCheck; 894 class LIR_OpNullFreeArrayCheck; 895 class LIR_OpSubstitutabilityCheck; 896 class LIR_OpCompareAndSwap; 897 class LIR_OpLoadKlass; 898 class LIR_OpProfileCall; 899 class LIR_OpProfileType; 900 class LIR_OpProfileInlineType; 901 #ifdef ASSERT 902 class LIR_OpAssert; 903 #endif 904 905 // LIR operation codes 906 enum LIR_Code { 907 lir_none 908 , begin_op0 909 , lir_label 910 , lir_nop 911 , lir_std_entry 912 , lir_osr_entry 913 , lir_breakpoint 914 , lir_rtcall 915 , lir_membar 916 , lir_membar_acquire 917 , lir_membar_release 918 , lir_membar_loadload 919 , lir_membar_storestore 920 , lir_membar_loadstore 921 , lir_membar_storeload 922 , lir_get_thread 923 , lir_on_spin_wait 924 , lir_check_orig_pc 925 , end_op0 926 , begin_op1 927 , lir_push 928 , lir_pop 929 , lir_null_check 930 , lir_return 931 , lir_leal 932 , lir_move 933 , lir_convert 934 , lir_alloc_object 935 , lir_monaddr 936 , lir_sqrt 937 , lir_abs 938 , lir_neg 939 , lir_f2hf 940 , lir_hf2f 941 , lir_safepoint 942 , lir_unwind 943 , lir_load_klass 944 , end_op1 945 , begin_op2 946 , lir_branch 947 , lir_cond_float_branch 948 , lir_cmp 949 , lir_cmp_l2i 950 , lir_ucmp_fd2i 951 , lir_cmp_fd2i 952 , lir_add 953 , lir_sub 954 , lir_mul 955 , lir_div 956 , lir_rem 957 , lir_logic_and 958 , lir_logic_or 959 , lir_logic_xor 960 , lir_shl 961 , lir_shr 962 , lir_ushr 963 , lir_alloc_array 964 , lir_throw 965 , lir_xadd 966 , lir_xchg 967 , end_op2 968 , begin_op3 969 , lir_idiv 970 , lir_irem 971 , lir_fmad 972 , lir_fmaf 973 , end_op3 974 , begin_op4 975 , lir_cmove 976 , end_op4 977 , begin_opJavaCall 978 , lir_static_call 979 , lir_optvirtual_call 980 , lir_icvirtual_call 981 , lir_dynamic_call 982 , end_opJavaCall 983 , begin_opArrayCopy 984 , lir_arraycopy 985 , end_opArrayCopy 986 , begin_opUpdateCRC32 987 , lir_updatecrc32 988 , end_opUpdateCRC32 989 , begin_opLock 990 , lir_lock 991 , lir_unlock 992 , end_opLock 993 , begin_delay_slot 994 , lir_delay_slot 995 , end_delay_slot 996 , begin_opTypeCheck 997 , lir_instanceof 998 , lir_checkcast 999 , lir_store_check 1000 , end_opTypeCheck 1001 , begin_opFlattenedArrayCheck 1002 , lir_flat_array_check 1003 , end_opFlattenedArrayCheck 1004 , begin_opNullFreeArrayCheck 1005 , lir_null_free_array_check 1006 , end_opNullFreeArrayCheck 1007 , begin_opSubstitutabilityCheck 1008 , lir_substitutability_check 1009 , end_opSubstitutabilityCheck 1010 , begin_opCompareAndSwap 1011 , lir_cas_long 1012 , lir_cas_obj 1013 , lir_cas_int 1014 , end_opCompareAndSwap 1015 , begin_opMDOProfile 1016 , lir_profile_call 1017 , lir_profile_type 1018 , lir_profile_inline_type 1019 , end_opMDOProfile 1020 , begin_opAssert 1021 , lir_assert 1022 , end_opAssert 1023 #if INCLUDE_ZGC 1024 , begin_opXLoadBarrierTest 1025 , lir_xloadbarrier_test 1026 , end_opXLoadBarrierTest 1027 #endif 1028 }; 1029 1030 1031 enum LIR_Condition { 1032 lir_cond_equal 1033 , lir_cond_notEqual 1034 , lir_cond_less 1035 , lir_cond_lessEqual 1036 , lir_cond_greaterEqual 1037 , lir_cond_greater 1038 , lir_cond_belowEqual 1039 , lir_cond_aboveEqual 1040 , lir_cond_always 1041 , lir_cond_unknown = -1 1042 }; 1043 1044 1045 enum LIR_PatchCode { 1046 lir_patch_none, 1047 lir_patch_low, 1048 lir_patch_high, 1049 lir_patch_normal 1050 }; 1051 1052 1053 enum LIR_MoveKind { 1054 lir_move_normal, 1055 lir_move_volatile, 1056 lir_move_wide, 1057 lir_move_max_flag 1058 }; 1059 1060 1061 // -------------------------------------------------- 1062 // LIR_Op 1063 // -------------------------------------------------- 1064 class LIR_Op: public CompilationResourceObj { 1065 friend class LIR_OpVisitState; 1066 1067 #ifdef ASSERT 1068 private: 1069 const char * _file; 1070 int _line; 1071 #endif 1072 1073 protected: 1074 LIR_Opr _result; 1075 unsigned short _code; 1076 unsigned short _flags; 1077 CodeEmitInfo* _info; 1078 int _id; // value id for register allocation 1079 Instruction* _source; // for debugging 1080 1081 static void print_condition(outputStream* out, LIR_Condition cond) PRODUCT_RETURN; 1082 1083 protected: 1084 static bool is_in_range(LIR_Code test, LIR_Code start, LIR_Code end) { return start < test && test < end; } 1085 1086 public: 1087 LIR_Op() 1088 : 1089 #ifdef ASSERT 1090 _file(nullptr) 1091 , _line(0), 1092 #endif 1093 _result(LIR_OprFact::illegalOpr) 1094 , _code(lir_none) 1095 , _flags(0) 1096 , _info(nullptr) 1097 , _id(-1) 1098 , _source(nullptr) {} 1099 1100 LIR_Op(LIR_Code code, LIR_Opr result, CodeEmitInfo* info) 1101 : 1102 #ifdef ASSERT 1103 _file(nullptr) 1104 , _line(0), 1105 #endif 1106 _result(result) 1107 , _code(code) 1108 , _flags(0) 1109 , _info(info) 1110 , _id(-1) 1111 , _source(nullptr) {} 1112 1113 CodeEmitInfo* info() const { return _info; } 1114 LIR_Code code() const { return (LIR_Code)_code; } 1115 LIR_Opr result_opr() const { return _result; } 1116 void set_result_opr(LIR_Opr opr) { _result = opr; } 1117 1118 #ifdef ASSERT 1119 void set_file_and_line(const char * file, int line) { 1120 _file = file; 1121 _line = line; 1122 } 1123 #endif 1124 1125 virtual const char * name() const PRODUCT_RETURN_NULL; 1126 virtual void visit(LIR_OpVisitState* state); 1127 1128 int id() const { return _id; } 1129 void set_id(int id) { _id = id; } 1130 1131 Instruction* source() const { return _source; } 1132 void set_source(Instruction* ins) { _source = ins; } 1133 1134 virtual void emit_code(LIR_Assembler* masm) = 0; 1135 virtual void print_instr(outputStream* out) const = 0; 1136 virtual void print_on(outputStream* st) const PRODUCT_RETURN; 1137 1138 virtual bool is_patching() { return false; } 1139 virtual LIR_OpCall* as_OpCall() { return nullptr; } 1140 virtual LIR_OpJavaCall* as_OpJavaCall() { return nullptr; } 1141 virtual LIR_OpLabel* as_OpLabel() { return nullptr; } 1142 virtual LIR_OpDelay* as_OpDelay() { return nullptr; } 1143 virtual LIR_OpLock* as_OpLock() { return nullptr; } 1144 virtual LIR_OpAllocArray* as_OpAllocArray() { return nullptr; } 1145 virtual LIR_OpAllocObj* as_OpAllocObj() { return nullptr; } 1146 virtual LIR_OpBranch* as_OpBranch() { return nullptr; } 1147 virtual LIR_OpReturn* as_OpReturn() { return nullptr; } 1148 virtual LIR_OpRTCall* as_OpRTCall() { return nullptr; } 1149 virtual LIR_OpConvert* as_OpConvert() { return nullptr; } 1150 virtual LIR_Op0* as_Op0() { return nullptr; } 1151 virtual LIR_Op1* as_Op1() { return nullptr; } 1152 virtual LIR_Op2* as_Op2() { return nullptr; } 1153 virtual LIR_Op3* as_Op3() { return nullptr; } 1154 virtual LIR_Op4* as_Op4() { return nullptr; } 1155 virtual LIR_OpArrayCopy* as_OpArrayCopy() { return nullptr; } 1156 virtual LIR_OpUpdateCRC32* as_OpUpdateCRC32() { return nullptr; } 1157 virtual LIR_OpTypeCheck* as_OpTypeCheck() { return nullptr; } 1158 virtual LIR_OpFlattenedArrayCheck* as_OpFlattenedArrayCheck() { return nullptr; } 1159 virtual LIR_OpNullFreeArrayCheck* as_OpNullFreeArrayCheck() { return nullptr; } 1160 virtual LIR_OpSubstitutabilityCheck* as_OpSubstitutabilityCheck() { return nullptr; } 1161 virtual LIR_OpCompareAndSwap* as_OpCompareAndSwap() { return nullptr; } 1162 virtual LIR_OpLoadKlass* as_OpLoadKlass() { return nullptr; } 1163 virtual LIR_OpProfileCall* as_OpProfileCall() { return nullptr; } 1164 virtual LIR_OpProfileType* as_OpProfileType() { return nullptr; } 1165 virtual LIR_OpProfileInlineType* as_OpProfileInlineType() { return nullptr; } 1166 #ifdef ASSERT 1167 virtual LIR_OpAssert* as_OpAssert() { return nullptr; } 1168 #endif 1169 1170 virtual void verify() const {} 1171 }; 1172 1173 // for calls 1174 class LIR_OpCall: public LIR_Op { 1175 friend class LIR_OpVisitState; 1176 1177 protected: 1178 address _addr; 1179 LIR_OprList* _arguments; 1180 protected: 1181 LIR_OpCall(LIR_Code code, address addr, LIR_Opr result, 1182 LIR_OprList* arguments, CodeEmitInfo* info = nullptr) 1183 : LIR_Op(code, result, info) 1184 , _addr(addr) 1185 , _arguments(arguments) {} 1186 1187 public: 1188 address addr() const { return _addr; } 1189 const LIR_OprList* arguments() const { return _arguments; } 1190 virtual LIR_OpCall* as_OpCall() { return this; } 1191 }; 1192 1193 1194 // -------------------------------------------------- 1195 // LIR_OpJavaCall 1196 // -------------------------------------------------- 1197 class LIR_OpJavaCall: public LIR_OpCall { 1198 friend class LIR_OpVisitState; 1199 1200 private: 1201 ciMethod* _method; 1202 LIR_Opr _receiver; 1203 LIR_Opr _method_handle_invoke_SP_save_opr; // Used in LIR_OpVisitState::visit to store the reference to FrameMap::method_handle_invoke_SP_save_opr. 1204 1205 public: 1206 LIR_OpJavaCall(LIR_Code code, ciMethod* method, 1207 LIR_Opr receiver, LIR_Opr result, 1208 address addr, LIR_OprList* arguments, 1209 CodeEmitInfo* info) 1210 : LIR_OpCall(code, addr, result, arguments, info) 1211 , _method(method) 1212 , _receiver(receiver) 1213 , _method_handle_invoke_SP_save_opr(LIR_OprFact::illegalOpr) 1214 { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); } 1215 1216 LIR_OpJavaCall(LIR_Code code, ciMethod* method, 1217 LIR_Opr receiver, LIR_Opr result, intptr_t vtable_offset, 1218 LIR_OprList* arguments, CodeEmitInfo* info) 1219 : LIR_OpCall(code, (address)vtable_offset, result, arguments, info) 1220 , _method(method) 1221 , _receiver(receiver) 1222 , _method_handle_invoke_SP_save_opr(LIR_OprFact::illegalOpr) 1223 { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); } 1224 1225 LIR_Opr receiver() const { return _receiver; } 1226 ciMethod* method() const { return _method; } 1227 1228 // JSR 292 support. 1229 bool is_invokedynamic() const { return code() == lir_dynamic_call; } 1230 bool is_method_handle_invoke() const { 1231 return method()->is_compiled_lambda_form() || // Java-generated lambda form 1232 method()->is_method_handle_intrinsic(); // JVM-generated MH intrinsic 1233 } 1234 1235 virtual void emit_code(LIR_Assembler* masm); 1236 virtual LIR_OpJavaCall* as_OpJavaCall() { return this; } 1237 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1238 1239 bool maybe_return_as_fields(ciInlineKlass** vk = nullptr) const; 1240 }; 1241 1242 // -------------------------------------------------- 1243 // LIR_OpLabel 1244 // -------------------------------------------------- 1245 // Location where a branch can continue 1246 class LIR_OpLabel: public LIR_Op { 1247 friend class LIR_OpVisitState; 1248 1249 private: 1250 Label* _label; 1251 public: 1252 LIR_OpLabel(Label* lbl) 1253 : LIR_Op(lir_label, LIR_OprFact::illegalOpr, nullptr) 1254 , _label(lbl) {} 1255 Label* label() const { return _label; } 1256 1257 virtual void emit_code(LIR_Assembler* masm); 1258 virtual LIR_OpLabel* as_OpLabel() { return this; } 1259 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1260 }; 1261 1262 // LIR_OpArrayCopy 1263 class LIR_OpArrayCopy: public LIR_Op { 1264 friend class LIR_OpVisitState; 1265 1266 private: 1267 ArrayCopyStub* _stub; 1268 LIR_Opr _src; 1269 LIR_Opr _src_pos; 1270 LIR_Opr _dst; 1271 LIR_Opr _dst_pos; 1272 LIR_Opr _length; 1273 LIR_Opr _tmp; 1274 ciArrayKlass* _expected_type; 1275 int _flags; 1276 1277 public: 1278 enum Flags { 1279 src_null_check = 1 << 0, 1280 dst_null_check = 1 << 1, 1281 src_pos_positive_check = 1 << 2, 1282 dst_pos_positive_check = 1 << 3, 1283 length_positive_check = 1 << 4, 1284 src_range_check = 1 << 5, 1285 dst_range_check = 1 << 6, 1286 type_check = 1 << 7, 1287 overlapping = 1 << 8, 1288 unaligned = 1 << 9, 1289 src_objarray = 1 << 10, 1290 dst_objarray = 1 << 11, 1291 always_slow_path = 1 << 12, 1292 src_inlinetype_check = 1 << 13, 1293 dst_inlinetype_check = 1 << 14, 1294 all_flags = (1 << 15) - 1 1295 }; 1296 1297 LIR_OpArrayCopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp, 1298 ciArrayKlass* expected_type, int flags, CodeEmitInfo* info); 1299 1300 LIR_Opr src() const { return _src; } 1301 LIR_Opr src_pos() const { return _src_pos; } 1302 LIR_Opr dst() const { return _dst; } 1303 LIR_Opr dst_pos() const { return _dst_pos; } 1304 LIR_Opr length() const { return _length; } 1305 LIR_Opr tmp() const { return _tmp; } 1306 int flags() const { return _flags; } 1307 ciArrayKlass* expected_type() const { return _expected_type; } 1308 ArrayCopyStub* stub() const { return _stub; } 1309 static int get_initial_copy_flags() { return LIR_OpArrayCopy::unaligned | 1310 LIR_OpArrayCopy::overlapping; } 1311 1312 virtual void emit_code(LIR_Assembler* masm); 1313 virtual LIR_OpArrayCopy* as_OpArrayCopy() { return this; } 1314 void print_instr(outputStream* out) const PRODUCT_RETURN; 1315 }; 1316 1317 // LIR_OpUpdateCRC32 1318 class LIR_OpUpdateCRC32: public LIR_Op { 1319 friend class LIR_OpVisitState; 1320 1321 private: 1322 LIR_Opr _crc; 1323 LIR_Opr _val; 1324 1325 public: 1326 1327 LIR_OpUpdateCRC32(LIR_Opr crc, LIR_Opr val, LIR_Opr res); 1328 1329 LIR_Opr crc() const { return _crc; } 1330 LIR_Opr val() const { return _val; } 1331 1332 virtual void emit_code(LIR_Assembler* masm); 1333 virtual LIR_OpUpdateCRC32* as_OpUpdateCRC32() { return this; } 1334 void print_instr(outputStream* out) const PRODUCT_RETURN; 1335 }; 1336 1337 // -------------------------------------------------- 1338 // LIR_Op0 1339 // -------------------------------------------------- 1340 class LIR_Op0: public LIR_Op { 1341 friend class LIR_OpVisitState; 1342 1343 public: 1344 LIR_Op0(LIR_Code code) 1345 : LIR_Op(code, LIR_OprFact::illegalOpr, nullptr) { assert(is_in_range(code, begin_op0, end_op0), "code check"); } 1346 LIR_Op0(LIR_Code code, LIR_Opr result, CodeEmitInfo* info = nullptr) 1347 : LIR_Op(code, result, info) { assert(is_in_range(code, begin_op0, end_op0), "code check"); } 1348 1349 virtual void emit_code(LIR_Assembler* masm); 1350 virtual LIR_Op0* as_Op0() { return this; } 1351 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1352 }; 1353 1354 1355 // -------------------------------------------------- 1356 // LIR_Op1 1357 // -------------------------------------------------- 1358 1359 class LIR_Op1: public LIR_Op { 1360 friend class LIR_OpVisitState; 1361 1362 protected: 1363 LIR_Opr _opr; // input operand 1364 LIR_Opr _tmp; 1365 BasicType _type; // Operand types 1366 LIR_PatchCode _patch; // only required with patchin (NEEDS_CLEANUP: do we want a special instruction for patching?) 1367 1368 static void print_patch_code(outputStream* out, LIR_PatchCode code); 1369 1370 void set_kind(LIR_MoveKind kind) { 1371 assert(code() == lir_move, "must be"); 1372 _flags = kind; 1373 } 1374 1375 public: 1376 LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result = LIR_OprFact::illegalOpr, BasicType type = T_ILLEGAL, LIR_PatchCode patch = lir_patch_none, CodeEmitInfo* info = nullptr) 1377 : LIR_Op(code, result, info) 1378 , _opr(opr) 1379 , _tmp(LIR_OprFact::illegalOpr) 1380 , _type(type) 1381 , _patch(patch) { assert(is_in_range(code, begin_op1, end_op1), "code check"); } 1382 1383 LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result, LIR_Opr tmp, BasicType type = T_ILLEGAL, LIR_PatchCode patch = lir_patch_none, CodeEmitInfo* info = nullptr) 1384 : LIR_Op(code, result, info) 1385 , _opr(opr) 1386 , _tmp(tmp) 1387 , _type(type) 1388 , _patch(patch) { assert(is_in_range(code, begin_op1, end_op1), "code check"); } 1389 1390 LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result, BasicType type, LIR_PatchCode patch, CodeEmitInfo* info, LIR_MoveKind kind) 1391 : LIR_Op(code, result, info) 1392 , _opr(opr) 1393 , _tmp(LIR_OprFact::illegalOpr) 1394 , _type(type) 1395 , _patch(patch) { 1396 assert(code == lir_move, "must be"); 1397 set_kind(kind); 1398 } 1399 1400 LIR_Op1(LIR_Code code, LIR_Opr opr, CodeEmitInfo* info) 1401 : LIR_Op(code, LIR_OprFact::illegalOpr, info) 1402 , _opr(opr) 1403 , _tmp(LIR_OprFact::illegalOpr) 1404 , _type(T_ILLEGAL) 1405 , _patch(lir_patch_none) { assert(is_in_range(code, begin_op1, end_op1), "code check"); } 1406 1407 LIR_Opr in_opr() const { return _opr; } 1408 LIR_Opr tmp_opr() const { return _tmp; } 1409 LIR_PatchCode patch_code() const { return _patch; } 1410 BasicType type() const { return _type; } 1411 1412 LIR_MoveKind move_kind() const { 1413 assert(code() == lir_move, "must be"); 1414 return (LIR_MoveKind)_flags; 1415 } 1416 1417 virtual bool is_patching() { return _patch != lir_patch_none; } 1418 virtual void emit_code(LIR_Assembler* masm); 1419 virtual LIR_Op1* as_Op1() { return this; } 1420 virtual const char * name() const PRODUCT_RETURN_NULL; 1421 1422 void set_in_opr(LIR_Opr opr) { _opr = opr; } 1423 1424 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1425 virtual void verify() const; 1426 }; 1427 1428 1429 // for runtime calls 1430 class LIR_OpRTCall: public LIR_OpCall { 1431 friend class LIR_OpVisitState; 1432 1433 private: 1434 LIR_Opr _tmp; 1435 public: 1436 LIR_OpRTCall(address addr, LIR_Opr tmp, 1437 LIR_Opr result, LIR_OprList* arguments, CodeEmitInfo* info = nullptr) 1438 : LIR_OpCall(lir_rtcall, addr, result, arguments, info) 1439 , _tmp(tmp) {} 1440 1441 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1442 virtual void emit_code(LIR_Assembler* masm); 1443 virtual LIR_OpRTCall* as_OpRTCall() { return this; } 1444 1445 LIR_Opr tmp() const { return _tmp; } 1446 1447 virtual void verify() const; 1448 }; 1449 1450 1451 1452 class LIR_OpReturn: public LIR_Op1 { 1453 friend class LIR_OpVisitState; 1454 1455 private: 1456 C1SafepointPollStub* _stub; 1457 1458 public: 1459 LIR_OpReturn(LIR_Opr opr); 1460 1461 C1SafepointPollStub* stub() const { return _stub; } 1462 virtual LIR_OpReturn* as_OpReturn() { return this; } 1463 }; 1464 1465 class ConversionStub; 1466 1467 class LIR_OpConvert: public LIR_Op1 { 1468 friend class LIR_OpVisitState; 1469 1470 private: 1471 Bytecodes::Code _bytecode; 1472 ConversionStub* _stub; 1473 1474 public: 1475 LIR_OpConvert(Bytecodes::Code code, LIR_Opr opr, LIR_Opr result, ConversionStub* stub) 1476 : LIR_Op1(lir_convert, opr, result) 1477 , _bytecode(code) 1478 , _stub(stub) {} 1479 1480 Bytecodes::Code bytecode() const { return _bytecode; } 1481 ConversionStub* stub() const { return _stub; } 1482 1483 virtual void emit_code(LIR_Assembler* masm); 1484 virtual LIR_OpConvert* as_OpConvert() { return this; } 1485 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1486 1487 static void print_bytecode(outputStream* out, Bytecodes::Code code) PRODUCT_RETURN; 1488 }; 1489 1490 1491 // LIR_OpAllocObj 1492 class LIR_OpAllocObj : public LIR_Op1 { 1493 friend class LIR_OpVisitState; 1494 1495 private: 1496 LIR_Opr _tmp1; 1497 LIR_Opr _tmp2; 1498 LIR_Opr _tmp3; 1499 LIR_Opr _tmp4; 1500 int _hdr_size; 1501 int _obj_size; 1502 CodeStub* _stub; 1503 bool _init_check; 1504 1505 public: 1506 LIR_OpAllocObj(LIR_Opr klass, LIR_Opr result, 1507 LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, 1508 int hdr_size, int obj_size, bool init_check, CodeStub* stub) 1509 : LIR_Op1(lir_alloc_object, klass, result) 1510 , _tmp1(t1) 1511 , _tmp2(t2) 1512 , _tmp3(t3) 1513 , _tmp4(t4) 1514 , _hdr_size(hdr_size) 1515 , _obj_size(obj_size) 1516 , _stub(stub) 1517 , _init_check(init_check) { } 1518 1519 LIR_Opr klass() const { return in_opr(); } 1520 LIR_Opr obj() const { return result_opr(); } 1521 LIR_Opr tmp1() const { return _tmp1; } 1522 LIR_Opr tmp2() const { return _tmp2; } 1523 LIR_Opr tmp3() const { return _tmp3; } 1524 LIR_Opr tmp4() const { return _tmp4; } 1525 int header_size() const { return _hdr_size; } 1526 int object_size() const { return _obj_size; } 1527 bool init_check() const { return _init_check; } 1528 CodeStub* stub() const { return _stub; } 1529 1530 virtual void emit_code(LIR_Assembler* masm); 1531 virtual LIR_OpAllocObj * as_OpAllocObj () { return this; } 1532 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1533 }; 1534 1535 1536 // LIR_OpTypeCheck 1537 class LIR_OpTypeCheck: public LIR_Op { 1538 friend class LIR_OpVisitState; 1539 1540 private: 1541 LIR_Opr _object; 1542 LIR_Opr _array; 1543 ciKlass* _klass; 1544 LIR_Opr _tmp1; 1545 LIR_Opr _tmp2; 1546 LIR_Opr _tmp3; 1547 CodeEmitInfo* _info_for_patch; 1548 CodeEmitInfo* _info_for_exception; 1549 CodeStub* _stub; 1550 ciMethod* _profiled_method; 1551 int _profiled_bci; 1552 bool _should_profile; 1553 bool _fast_check; 1554 bool _need_null_check; 1555 1556 public: 1557 LIR_OpTypeCheck(LIR_Code code, LIR_Opr result, LIR_Opr object, ciKlass* klass, 1558 LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, 1559 CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub, bool need_null_check = true); 1560 LIR_OpTypeCheck(LIR_Code code, LIR_Opr object, LIR_Opr array, 1561 LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception); 1562 1563 LIR_Opr object() const { return _object; } 1564 LIR_Opr array() const { assert(code() == lir_store_check, "not valid"); return _array; } 1565 LIR_Opr tmp1() const { return _tmp1; } 1566 LIR_Opr tmp2() const { return _tmp2; } 1567 LIR_Opr tmp3() const { return _tmp3; } 1568 ciKlass* klass() const { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _klass; } 1569 bool fast_check() const { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _fast_check; } 1570 CodeEmitInfo* info_for_patch() const { return _info_for_patch; } 1571 CodeEmitInfo* info_for_exception() const { return _info_for_exception; } 1572 CodeStub* stub() const { return _stub; } 1573 1574 // MethodData* profiling 1575 void set_profiled_method(ciMethod *method) { _profiled_method = method; } 1576 void set_profiled_bci(int bci) { _profiled_bci = bci; } 1577 void set_should_profile(bool b) { _should_profile = b; } 1578 ciMethod* profiled_method() const { return _profiled_method; } 1579 int profiled_bci() const { return _profiled_bci; } 1580 bool should_profile() const { return _should_profile; } 1581 bool need_null_check() const { return _need_null_check; } 1582 virtual bool is_patching() { return _info_for_patch != nullptr; } 1583 virtual void emit_code(LIR_Assembler* masm); 1584 virtual LIR_OpTypeCheck* as_OpTypeCheck() { return this; } 1585 void print_instr(outputStream* out) const PRODUCT_RETURN; 1586 }; 1587 1588 // LIR_OpFlattenedArrayCheck 1589 class LIR_OpFlattenedArrayCheck: public LIR_Op { 1590 friend class LIR_OpVisitState; 1591 1592 private: 1593 LIR_Opr _array; 1594 LIR_Opr _value; 1595 LIR_Opr _tmp; 1596 CodeStub* _stub; 1597 public: 1598 LIR_OpFlattenedArrayCheck(LIR_Opr array, LIR_Opr value, LIR_Opr tmp, CodeStub* stub); 1599 LIR_Opr array() const { return _array; } 1600 LIR_Opr value() const { return _value; } 1601 LIR_Opr tmp() const { return _tmp; } 1602 CodeStub* stub() const { return _stub; } 1603 1604 virtual void emit_code(LIR_Assembler* masm); 1605 virtual LIR_OpFlattenedArrayCheck* as_OpFlattenedArrayCheck() { return this; } 1606 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1607 }; 1608 1609 // LIR_OpNullFreeArrayCheck 1610 class LIR_OpNullFreeArrayCheck: public LIR_Op { 1611 friend class LIR_OpVisitState; 1612 1613 private: 1614 LIR_Opr _array; 1615 LIR_Opr _tmp; 1616 public: 1617 LIR_OpNullFreeArrayCheck(LIR_Opr array, LIR_Opr tmp); 1618 LIR_Opr array() const { return _array; } 1619 LIR_Opr tmp() const { return _tmp; } 1620 1621 virtual void emit_code(LIR_Assembler* masm); 1622 virtual LIR_OpNullFreeArrayCheck* as_OpNullFreeArrayCheck() { return this; } 1623 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1624 }; 1625 1626 class LIR_OpSubstitutabilityCheck: public LIR_Op { 1627 friend class LIR_OpVisitState; 1628 1629 private: 1630 LIR_Opr _left; 1631 LIR_Opr _right; 1632 LIR_Opr _equal_result; 1633 LIR_Opr _not_equal_result; 1634 LIR_Opr _tmp1; 1635 LIR_Opr _tmp2; 1636 ciKlass* _left_klass; 1637 ciKlass* _right_klass; 1638 LIR_Opr _left_klass_op; 1639 LIR_Opr _right_klass_op; 1640 CodeStub* _stub; 1641 public: 1642 LIR_OpSubstitutabilityCheck(LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr equal_result, LIR_Opr not_equal_result, 1643 LIR_Opr tmp1, LIR_Opr tmp2, 1644 ciKlass* left_klass, ciKlass* right_klass, LIR_Opr left_klass_op, LIR_Opr right_klass_op, 1645 CodeEmitInfo* info, CodeStub* stub); 1646 1647 LIR_Opr left() const { return _left; } 1648 LIR_Opr right() const { return _right; } 1649 LIR_Opr equal_result() const { return _equal_result; } 1650 LIR_Opr not_equal_result() const { return _not_equal_result; } 1651 LIR_Opr tmp1() const { return _tmp1; } 1652 LIR_Opr tmp2() const { return _tmp2; } 1653 ciKlass* left_klass() const { return _left_klass; } 1654 ciKlass* right_klass() const { return _right_klass; } 1655 LIR_Opr left_klass_op() const { return _left_klass_op; } 1656 LIR_Opr right_klass_op() const { return _right_klass_op; } 1657 CodeStub* stub() const { return _stub; } 1658 1659 virtual void emit_code(LIR_Assembler* masm); 1660 virtual LIR_OpSubstitutabilityCheck* as_OpSubstitutabilityCheck() { return this; } 1661 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1662 }; 1663 1664 // LIR_Op2 1665 class LIR_Op2: public LIR_Op { 1666 friend class LIR_OpVisitState; 1667 1668 protected: 1669 LIR_Opr _opr1; 1670 LIR_Opr _opr2; 1671 LIR_Opr _tmp1; 1672 LIR_Opr _tmp2; 1673 LIR_Opr _tmp3; 1674 LIR_Opr _tmp4; 1675 LIR_Opr _tmp5; 1676 LIR_Condition _condition; 1677 BasicType _type; 1678 1679 void verify() const; 1680 1681 public: 1682 LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, CodeEmitInfo* info = nullptr, BasicType type = T_ILLEGAL) 1683 : LIR_Op(code, LIR_OprFact::illegalOpr, info) 1684 , _opr1(opr1) 1685 , _opr2(opr2) 1686 , _tmp1(LIR_OprFact::illegalOpr) 1687 , _tmp2(LIR_OprFact::illegalOpr) 1688 , _tmp3(LIR_OprFact::illegalOpr) 1689 , _tmp4(LIR_OprFact::illegalOpr) 1690 , _tmp5(LIR_OprFact::illegalOpr) 1691 , _condition(condition) 1692 , _type(type) { 1693 assert(code == lir_cmp || code == lir_branch || code == lir_cond_float_branch || code == lir_assert, "code check"); 1694 } 1695 1696 LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) 1697 : LIR_Op(code, result, nullptr) 1698 , _opr1(opr1) 1699 , _opr2(opr2) 1700 , _tmp1(LIR_OprFact::illegalOpr) 1701 , _tmp2(LIR_OprFact::illegalOpr) 1702 , _tmp3(LIR_OprFact::illegalOpr) 1703 , _tmp4(LIR_OprFact::illegalOpr) 1704 , _tmp5(LIR_OprFact::illegalOpr) 1705 , _condition(condition) 1706 , _type(type) { 1707 assert(code == lir_cmove, "code check"); 1708 assert(type != T_ILLEGAL, "cmove should have type"); 1709 } 1710 1711 LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result = LIR_OprFact::illegalOpr, 1712 CodeEmitInfo* info = nullptr, BasicType type = T_ILLEGAL) 1713 : LIR_Op(code, result, info) 1714 , _opr1(opr1) 1715 , _opr2(opr2) 1716 , _tmp1(LIR_OprFact::illegalOpr) 1717 , _tmp2(LIR_OprFact::illegalOpr) 1718 , _tmp3(LIR_OprFact::illegalOpr) 1719 , _tmp4(LIR_OprFact::illegalOpr) 1720 , _tmp5(LIR_OprFact::illegalOpr) 1721 , _condition(lir_cond_unknown) 1722 , _type(type) { 1723 assert(code != lir_cmp && code != lir_branch && code != lir_cond_float_branch && is_in_range(code, begin_op2, end_op2), "code check"); 1724 } 1725 1726 LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, LIR_Opr tmp1, LIR_Opr tmp2 = LIR_OprFact::illegalOpr, 1727 LIR_Opr tmp3 = LIR_OprFact::illegalOpr, LIR_Opr tmp4 = LIR_OprFact::illegalOpr, LIR_Opr tmp5 = LIR_OprFact::illegalOpr) 1728 : LIR_Op(code, result, nullptr) 1729 , _opr1(opr1) 1730 , _opr2(opr2) 1731 , _tmp1(tmp1) 1732 , _tmp2(tmp2) 1733 , _tmp3(tmp3) 1734 , _tmp4(tmp4) 1735 , _tmp5(tmp5) 1736 , _condition(lir_cond_unknown) 1737 , _type(T_ILLEGAL) { 1738 assert(code != lir_cmp && code != lir_branch && code != lir_cond_float_branch && is_in_range(code, begin_op2, end_op2), "code check"); 1739 } 1740 1741 LIR_Opr in_opr1() const { return _opr1; } 1742 LIR_Opr in_opr2() const { return _opr2; } 1743 BasicType type() const { return _type; } 1744 LIR_Opr tmp1_opr() const { return _tmp1; } 1745 LIR_Opr tmp2_opr() const { return _tmp2; } 1746 LIR_Opr tmp3_opr() const { return _tmp3; } 1747 LIR_Opr tmp4_opr() const { return _tmp4; } 1748 LIR_Opr tmp5_opr() const { return _tmp5; } 1749 LIR_Condition condition() const { 1750 assert(code() == lir_cmp || code() == lir_branch || code() == lir_cond_float_branch || code() == lir_assert, "only valid for branch and assert"); return _condition; 1751 } 1752 void set_condition(LIR_Condition condition) { 1753 assert(code() == lir_cmp || code() == lir_branch || code() == lir_cond_float_branch, "only valid for branch"); _condition = condition; 1754 } 1755 1756 void set_in_opr1(LIR_Opr opr) { _opr1 = opr; } 1757 void set_in_opr2(LIR_Opr opr) { _opr2 = opr; } 1758 1759 virtual void emit_code(LIR_Assembler* masm); 1760 virtual LIR_Op2* as_Op2() { return this; } 1761 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1762 }; 1763 1764 class LIR_OpBranch: public LIR_Op2 { 1765 friend class LIR_OpVisitState; 1766 1767 private: 1768 Label* _label; 1769 BlockBegin* _block; // if this is a branch to a block, this is the block 1770 BlockBegin* _ublock; // if this is a float-branch, this is the unordered block 1771 CodeStub* _stub; // if this is a branch to a stub, this is the stub 1772 1773 public: 1774 LIR_OpBranch(LIR_Condition cond, Label* lbl) 1775 : LIR_Op2(lir_branch, cond, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, (CodeEmitInfo*) nullptr) 1776 , _label(lbl) 1777 , _block(nullptr) 1778 , _ublock(nullptr) 1779 , _stub(nullptr) { } 1780 1781 LIR_OpBranch(LIR_Condition cond, BlockBegin* block); 1782 LIR_OpBranch(LIR_Condition cond, CodeStub* stub); 1783 1784 // for unordered comparisons 1785 LIR_OpBranch(LIR_Condition cond, BlockBegin* block, BlockBegin* ublock); 1786 1787 LIR_Condition cond() const { 1788 return condition(); 1789 } 1790 1791 void set_cond(LIR_Condition cond) { 1792 set_condition(cond); 1793 } 1794 1795 Label* label() const { return _label; } 1796 BlockBegin* block() const { return _block; } 1797 BlockBegin* ublock() const { return _ublock; } 1798 CodeStub* stub() const { return _stub; } 1799 1800 void change_block(BlockBegin* b); 1801 void change_ublock(BlockBegin* b); 1802 void negate_cond(); 1803 1804 virtual void emit_code(LIR_Assembler* masm); 1805 virtual LIR_OpBranch* as_OpBranch() { return this; } 1806 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1807 }; 1808 1809 class LIR_OpAllocArray : public LIR_Op { 1810 friend class LIR_OpVisitState; 1811 1812 private: 1813 LIR_Opr _klass; 1814 LIR_Opr _len; 1815 LIR_Opr _tmp1; 1816 LIR_Opr _tmp2; 1817 LIR_Opr _tmp3; 1818 LIR_Opr _tmp4; 1819 CodeStub* _stub; 1820 BasicType _type; 1821 bool _zero_array; 1822 bool _always_slow_path; 1823 1824 public: 1825 LIR_OpAllocArray(LIR_Opr klass, LIR_Opr len, LIR_Opr result, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, BasicType type, CodeStub* stub, bool zero_array, bool always_slow_path) 1826 : LIR_Op(lir_alloc_array, result, nullptr) 1827 , _klass(klass) 1828 , _len(len) 1829 , _tmp1(t1) 1830 , _tmp2(t2) 1831 , _tmp3(t3) 1832 , _tmp4(t4) 1833 , _stub(stub) 1834 , _type(type) 1835 , _zero_array(zero_array) 1836 , _always_slow_path(always_slow_path) {} 1837 1838 LIR_Opr klass() const { return _klass; } 1839 LIR_Opr len() const { return _len; } 1840 LIR_Opr obj() const { return result_opr(); } 1841 LIR_Opr tmp1() const { return _tmp1; } 1842 LIR_Opr tmp2() const { return _tmp2; } 1843 LIR_Opr tmp3() const { return _tmp3; } 1844 LIR_Opr tmp4() const { return _tmp4; } 1845 BasicType type() const { return _type; } 1846 CodeStub* stub() const { return _stub; } 1847 bool zero_array() const { return _zero_array; } 1848 bool always_slow_path() const { return _always_slow_path; } 1849 1850 virtual void emit_code(LIR_Assembler* masm); 1851 virtual LIR_OpAllocArray * as_OpAllocArray () { return this; } 1852 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1853 }; 1854 1855 1856 class LIR_Op3: public LIR_Op { 1857 friend class LIR_OpVisitState; 1858 1859 private: 1860 LIR_Opr _opr1; 1861 LIR_Opr _opr2; 1862 LIR_Opr _opr3; 1863 public: 1864 LIR_Op3(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr opr3, LIR_Opr result, CodeEmitInfo* info = nullptr) 1865 : LIR_Op(code, result, info) 1866 , _opr1(opr1) 1867 , _opr2(opr2) 1868 , _opr3(opr3) { assert(is_in_range(code, begin_op3, end_op3), "code check"); } 1869 LIR_Opr in_opr1() const { return _opr1; } 1870 LIR_Opr in_opr2() const { return _opr2; } 1871 LIR_Opr in_opr3() const { return _opr3; } 1872 1873 virtual void emit_code(LIR_Assembler* masm); 1874 virtual LIR_Op3* as_Op3() { return this; } 1875 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1876 }; 1877 1878 class LIR_Op4: public LIR_Op { 1879 friend class LIR_OpVisitState; 1880 protected: 1881 LIR_Opr _opr1; 1882 LIR_Opr _opr2; 1883 LIR_Opr _opr3; 1884 LIR_Opr _opr4; 1885 LIR_Opr _tmp1; 1886 LIR_Opr _tmp2; 1887 LIR_Opr _tmp3; 1888 LIR_Opr _tmp4; 1889 LIR_Opr _tmp5; 1890 LIR_Condition _condition; 1891 BasicType _type; 1892 1893 public: 1894 LIR_Op4(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr opr3, LIR_Opr opr4, 1895 LIR_Opr result, BasicType type) 1896 : LIR_Op(code, result, nullptr) 1897 , _opr1(opr1) 1898 , _opr2(opr2) 1899 , _opr3(opr3) 1900 , _opr4(opr4) 1901 , _tmp1(LIR_OprFact::illegalOpr) 1902 , _tmp2(LIR_OprFact::illegalOpr) 1903 , _tmp3(LIR_OprFact::illegalOpr) 1904 , _tmp4(LIR_OprFact::illegalOpr) 1905 , _tmp5(LIR_OprFact::illegalOpr) 1906 , _condition(condition) 1907 , _type(type) { 1908 assert(code == lir_cmove, "code check"); 1909 assert(type != T_ILLEGAL, "cmove should have type"); 1910 } 1911 1912 LIR_Opr in_opr1() const { return _opr1; } 1913 LIR_Opr in_opr2() const { return _opr2; } 1914 LIR_Opr in_opr3() const { return _opr3; } 1915 LIR_Opr in_opr4() const { return _opr4; } 1916 BasicType type() const { return _type; } 1917 LIR_Opr tmp1_opr() const { return _tmp1; } 1918 LIR_Opr tmp2_opr() const { return _tmp2; } 1919 LIR_Opr tmp3_opr() const { return _tmp3; } 1920 LIR_Opr tmp4_opr() const { return _tmp4; } 1921 LIR_Opr tmp5_opr() const { return _tmp5; } 1922 1923 LIR_Condition condition() const { return _condition; } 1924 void set_condition(LIR_Condition condition) { _condition = condition; } 1925 1926 void set_in_opr1(LIR_Opr opr) { _opr1 = opr; } 1927 void set_in_opr2(LIR_Opr opr) { _opr2 = opr; } 1928 void set_in_opr3(LIR_Opr opr) { _opr3 = opr; } 1929 void set_in_opr4(LIR_Opr opr) { _opr4 = opr; } 1930 virtual void emit_code(LIR_Assembler* masm); 1931 virtual LIR_Op4* as_Op4() { return this; } 1932 1933 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1934 }; 1935 1936 //-------------------------------- 1937 class LabelObj: public CompilationResourceObj { 1938 private: 1939 Label _label; 1940 public: 1941 LabelObj() {} 1942 Label* label() { return &_label; } 1943 }; 1944 1945 1946 class LIR_OpLock: public LIR_Op { 1947 friend class LIR_OpVisitState; 1948 1949 private: 1950 LIR_Opr _hdr; 1951 LIR_Opr _obj; 1952 LIR_Opr _lock; 1953 LIR_Opr _scratch; 1954 CodeStub* _stub; 1955 CodeStub* _throw_ie_stub; 1956 public: 1957 LIR_OpLock(LIR_Code code, LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info, CodeStub* throw_ie_stub=nullptr) 1958 : LIR_Op(code, LIR_OprFact::illegalOpr, info) 1959 , _hdr(hdr) 1960 , _obj(obj) 1961 , _lock(lock) 1962 , _scratch(scratch) 1963 , _stub(stub) 1964 , _throw_ie_stub(throw_ie_stub) {} 1965 1966 LIR_Opr hdr_opr() const { return _hdr; } 1967 LIR_Opr obj_opr() const { return _obj; } 1968 LIR_Opr lock_opr() const { return _lock; } 1969 LIR_Opr scratch_opr() const { return _scratch; } 1970 CodeStub* stub() const { return _stub; } 1971 CodeStub* throw_ie_stub() const { return _throw_ie_stub; } 1972 1973 virtual void emit_code(LIR_Assembler* masm); 1974 virtual LIR_OpLock* as_OpLock() { return this; } 1975 void print_instr(outputStream* out) const PRODUCT_RETURN; 1976 }; 1977 1978 class LIR_OpLoadKlass: public LIR_Op { 1979 friend class LIR_OpVisitState; 1980 1981 private: 1982 LIR_Opr _obj; 1983 public: 1984 LIR_OpLoadKlass(LIR_Opr obj, LIR_Opr result, CodeEmitInfo* info) 1985 : LIR_Op(lir_load_klass, result, info) 1986 , _obj(obj) 1987 {} 1988 1989 LIR_Opr obj() const { return _obj; } 1990 1991 virtual LIR_OpLoadKlass* as_OpLoadKlass() { return this; } 1992 virtual void emit_code(LIR_Assembler* masm); 1993 void print_instr(outputStream* out) const PRODUCT_RETURN; 1994 }; 1995 1996 class LIR_OpDelay: public LIR_Op { 1997 friend class LIR_OpVisitState; 1998 1999 private: 2000 LIR_Op* _op; 2001 2002 public: 2003 LIR_OpDelay(LIR_Op* op, CodeEmitInfo* info): 2004 LIR_Op(lir_delay_slot, LIR_OprFact::illegalOpr, info), 2005 _op(op) { 2006 assert(op->code() == lir_nop, "should be filling with nops"); 2007 } 2008 virtual void emit_code(LIR_Assembler* masm); 2009 virtual LIR_OpDelay* as_OpDelay() { return this; } 2010 void print_instr(outputStream* out) const PRODUCT_RETURN; 2011 LIR_Op* delay_op() const { return _op; } 2012 CodeEmitInfo* call_info() const { return info(); } 2013 }; 2014 2015 #ifdef ASSERT 2016 // LIR_OpAssert 2017 class LIR_OpAssert : public LIR_Op2 { 2018 friend class LIR_OpVisitState; 2019 2020 private: 2021 const char* _msg; 2022 bool _halt; 2023 2024 public: 2025 LIR_OpAssert(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, const char* msg, bool halt) 2026 : LIR_Op2(lir_assert, condition, opr1, opr2) 2027 , _msg(msg) 2028 , _halt(halt) { 2029 } 2030 2031 const char* msg() const { return _msg; } 2032 bool halt() const { return _halt; } 2033 2034 virtual void emit_code(LIR_Assembler* masm); 2035 virtual LIR_OpAssert* as_OpAssert() { return this; } 2036 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 2037 }; 2038 #endif 2039 2040 // LIR_OpCompareAndSwap 2041 class LIR_OpCompareAndSwap : public LIR_Op { 2042 friend class LIR_OpVisitState; 2043 2044 private: 2045 LIR_Opr _addr; 2046 LIR_Opr _cmp_value; 2047 LIR_Opr _new_value; 2048 LIR_Opr _tmp1; 2049 LIR_Opr _tmp2; 2050 2051 public: 2052 LIR_OpCompareAndSwap(LIR_Code code, LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value, 2053 LIR_Opr t1, LIR_Opr t2, LIR_Opr result) 2054 : LIR_Op(code, result, nullptr) // no result, no info 2055 , _addr(addr) 2056 , _cmp_value(cmp_value) 2057 , _new_value(new_value) 2058 , _tmp1(t1) 2059 , _tmp2(t2) { } 2060 2061 LIR_Opr addr() const { return _addr; } 2062 LIR_Opr cmp_value() const { return _cmp_value; } 2063 LIR_Opr new_value() const { return _new_value; } 2064 LIR_Opr tmp1() const { return _tmp1; } 2065 LIR_Opr tmp2() const { return _tmp2; } 2066 2067 virtual void emit_code(LIR_Assembler* masm); 2068 virtual LIR_OpCompareAndSwap * as_OpCompareAndSwap () { return this; } 2069 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 2070 }; 2071 2072 // LIR_OpProfileCall 2073 class LIR_OpProfileCall : public LIR_Op { 2074 friend class LIR_OpVisitState; 2075 2076 private: 2077 ciMethod* _profiled_method; 2078 int _profiled_bci; 2079 ciMethod* _profiled_callee; 2080 LIR_Opr _mdo; 2081 LIR_Opr _recv; 2082 LIR_Opr _tmp1; 2083 ciKlass* _known_holder; 2084 2085 public: 2086 // Destroys recv 2087 LIR_OpProfileCall(ciMethod* profiled_method, int profiled_bci, ciMethod* profiled_callee, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* known_holder) 2088 : LIR_Op(lir_profile_call, LIR_OprFact::illegalOpr, nullptr) // no result, no info 2089 , _profiled_method(profiled_method) 2090 , _profiled_bci(profiled_bci) 2091 , _profiled_callee(profiled_callee) 2092 , _mdo(mdo) 2093 , _recv(recv) 2094 , _tmp1(t1) 2095 , _known_holder(known_holder) { } 2096 2097 ciMethod* profiled_method() const { return _profiled_method; } 2098 int profiled_bci() const { return _profiled_bci; } 2099 ciMethod* profiled_callee() const { return _profiled_callee; } 2100 LIR_Opr mdo() const { return _mdo; } 2101 LIR_Opr recv() const { return _recv; } 2102 LIR_Opr tmp1() const { return _tmp1; } 2103 ciKlass* known_holder() const { return _known_holder; } 2104 2105 virtual void emit_code(LIR_Assembler* masm); 2106 virtual LIR_OpProfileCall* as_OpProfileCall() { return this; } 2107 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 2108 bool should_profile_receiver_type() const { 2109 bool callee_is_static = _profiled_callee->is_loaded() && _profiled_callee->is_static(); 2110 bool callee_is_private = _profiled_callee->is_loaded() && _profiled_callee->is_private(); 2111 Bytecodes::Code bc = _profiled_method->java_code_at_bci(_profiled_bci); 2112 bool call_is_virtual = (bc == Bytecodes::_invokevirtual && !callee_is_private) || bc == Bytecodes::_invokeinterface; 2113 return C1ProfileVirtualCalls && call_is_virtual && !callee_is_static; 2114 } 2115 }; 2116 2117 // LIR_OpProfileType 2118 class LIR_OpProfileType : public LIR_Op { 2119 friend class LIR_OpVisitState; 2120 2121 private: 2122 LIR_Opr _mdp; 2123 LIR_Opr _obj; 2124 LIR_Opr _tmp; 2125 ciKlass* _exact_klass; // non null if we know the klass statically (no need to load it from _obj) 2126 intptr_t _current_klass; // what the profiling currently reports 2127 bool _not_null; // true if we know statically that _obj cannot be null 2128 bool _no_conflict; // true if we're profling parameters, _exact_klass is not null and we know 2129 // _exact_klass it the only possible type for this parameter in any context. 2130 2131 public: 2132 // Destroys recv 2133 LIR_OpProfileType(LIR_Opr mdp, LIR_Opr obj, ciKlass* exact_klass, intptr_t current_klass, LIR_Opr tmp, bool not_null, bool no_conflict) 2134 : LIR_Op(lir_profile_type, LIR_OprFact::illegalOpr, nullptr) // no result, no info 2135 , _mdp(mdp) 2136 , _obj(obj) 2137 , _tmp(tmp) 2138 , _exact_klass(exact_klass) 2139 , _current_klass(current_klass) 2140 , _not_null(not_null) 2141 , _no_conflict(no_conflict) { } 2142 2143 LIR_Opr mdp() const { return _mdp; } 2144 LIR_Opr obj() const { return _obj; } 2145 LIR_Opr tmp() const { return _tmp; } 2146 ciKlass* exact_klass() const { return _exact_klass; } 2147 intptr_t current_klass() const { return _current_klass; } 2148 bool not_null() const { return _not_null; } 2149 bool no_conflict() const { return _no_conflict; } 2150 2151 virtual void emit_code(LIR_Assembler* masm); 2152 virtual LIR_OpProfileType* as_OpProfileType() { return this; } 2153 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 2154 }; 2155 2156 // LIR_OpProfileInlineType 2157 class LIR_OpProfileInlineType : public LIR_Op { 2158 friend class LIR_OpVisitState; 2159 2160 private: 2161 LIR_Opr _mdp; 2162 LIR_Opr _obj; 2163 int _flag; 2164 LIR_Opr _tmp; 2165 bool _not_null; // true if we know statically that _obj cannot be null 2166 2167 public: 2168 // Destroys recv 2169 LIR_OpProfileInlineType(LIR_Opr mdp, LIR_Opr obj, int flag, LIR_Opr tmp, bool not_null) 2170 : LIR_Op(lir_profile_inline_type, LIR_OprFact::illegalOpr, nullptr) // no result, no info 2171 , _mdp(mdp) 2172 , _obj(obj) 2173 , _flag(flag) 2174 , _tmp(tmp) 2175 , _not_null(not_null) { } 2176 2177 LIR_Opr mdp() const { return _mdp; } 2178 LIR_Opr obj() const { return _obj; } 2179 int flag() const { return _flag; } 2180 LIR_Opr tmp() const { return _tmp; } 2181 bool not_null() const { return _not_null; } 2182 2183 virtual void emit_code(LIR_Assembler* masm); 2184 virtual LIR_OpProfileInlineType* as_OpProfileInlineType() { return this; } 2185 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 2186 }; 2187 2188 class LIR_InsertionBuffer; 2189 2190 //--------------------------------LIR_List--------------------------------------------------- 2191 // Maintains a list of LIR instructions (one instance of LIR_List per basic block) 2192 // The LIR instructions are appended by the LIR_List class itself; 2193 // 2194 // Notes: 2195 // - all offsets are(should be) in bytes 2196 // - local positions are specified with an offset, with offset 0 being local 0 2197 2198 class LIR_List: public CompilationResourceObj { 2199 private: 2200 LIR_OpList _operations; 2201 2202 Compilation* _compilation; 2203 #ifndef PRODUCT 2204 BlockBegin* _block; 2205 #endif 2206 #ifdef ASSERT 2207 const char * _file; 2208 int _line; 2209 #endif 2210 #ifdef RISCV 2211 LIR_Opr _cmp_opr1; 2212 LIR_Opr _cmp_opr2; 2213 #endif 2214 2215 public: 2216 void append(LIR_Op* op) { 2217 if (op->source() == nullptr) 2218 op->set_source(_compilation->current_instruction()); 2219 #ifndef PRODUCT 2220 if (PrintIRWithLIR) { 2221 _compilation->maybe_print_current_instruction(); 2222 op->print(); tty->cr(); 2223 } 2224 #endif // PRODUCT 2225 2226 #ifdef RISCV 2227 set_cmp_oprs(op); 2228 // lir_cmp set cmp oprs only on riscv 2229 if (op->code() == lir_cmp) return; 2230 #endif 2231 2232 _operations.append(op); 2233 2234 #ifdef ASSERT 2235 op->verify(); 2236 op->set_file_and_line(_file, _line); 2237 _file = nullptr; 2238 _line = 0; 2239 #endif 2240 } 2241 2242 LIR_List(Compilation* compilation, BlockBegin* block = nullptr); 2243 2244 #ifdef ASSERT 2245 void set_file_and_line(const char * file, int line); 2246 #endif 2247 2248 #ifdef RISCV 2249 void set_cmp_oprs(LIR_Op* op); 2250 #endif 2251 2252 //---------- accessors --------------- 2253 LIR_OpList* instructions_list() { return &_operations; } 2254 int length() const { return _operations.length(); } 2255 LIR_Op* at(int i) const { return _operations.at(i); } 2256 2257 NOT_PRODUCT(BlockBegin* block() const { return _block; }); 2258 2259 // insert LIR_Ops in buffer to right places in LIR_List 2260 void append(LIR_InsertionBuffer* buffer); 2261 2262 //---------- mutators --------------- 2263 void insert_before(int i, LIR_List* op_list) { _operations.insert_before(i, op_list->instructions_list()); } 2264 void insert_before(int i, LIR_Op* op) { _operations.insert_before(i, op); } 2265 void remove_at(int i) { _operations.remove_at(i); } 2266 2267 //---------- printing ------------- 2268 void print_instructions() PRODUCT_RETURN; 2269 2270 2271 //---------- instructions ------------- 2272 void call_opt_virtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result, 2273 address dest, LIR_OprList* arguments, 2274 CodeEmitInfo* info) { 2275 append(new LIR_OpJavaCall(lir_optvirtual_call, method, receiver, result, dest, arguments, info)); 2276 } 2277 void call_static(ciMethod* method, LIR_Opr result, 2278 address dest, LIR_OprList* arguments, CodeEmitInfo* info) { 2279 append(new LIR_OpJavaCall(lir_static_call, method, LIR_OprFact::illegalOpr, result, dest, arguments, info)); 2280 } 2281 void call_icvirtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result, 2282 address dest, LIR_OprList* arguments, CodeEmitInfo* info) { 2283 append(new LIR_OpJavaCall(lir_icvirtual_call, method, receiver, result, dest, arguments, info)); 2284 } 2285 void call_dynamic(ciMethod* method, LIR_Opr receiver, LIR_Opr result, 2286 address dest, LIR_OprList* arguments, CodeEmitInfo* info) { 2287 append(new LIR_OpJavaCall(lir_dynamic_call, method, receiver, result, dest, arguments, info)); 2288 } 2289 2290 void get_thread(LIR_Opr result) { append(new LIR_Op0(lir_get_thread, result)); } 2291 void membar() { append(new LIR_Op0(lir_membar)); } 2292 void membar_acquire() { append(new LIR_Op0(lir_membar_acquire)); } 2293 void membar_release() { append(new LIR_Op0(lir_membar_release)); } 2294 void membar_loadload() { append(new LIR_Op0(lir_membar_loadload)); } 2295 void membar_storestore() { append(new LIR_Op0(lir_membar_storestore)); } 2296 void membar_loadstore() { append(new LIR_Op0(lir_membar_loadstore)); } 2297 void membar_storeload() { append(new LIR_Op0(lir_membar_storeload)); } 2298 2299 void nop() { append(new LIR_Op0(lir_nop)); } 2300 2301 void std_entry(LIR_Opr receiver) { append(new LIR_Op0(lir_std_entry, receiver)); } 2302 void osr_entry(LIR_Opr osrPointer) { append(new LIR_Op0(lir_osr_entry, osrPointer)); } 2303 2304 void on_spin_wait() { append(new LIR_Op0(lir_on_spin_wait)); } 2305 2306 void branch_destination(Label* lbl) { append(new LIR_OpLabel(lbl)); } 2307 2308 void leal(LIR_Opr from, LIR_Opr result_reg, LIR_PatchCode patch_code = lir_patch_none, CodeEmitInfo* info = nullptr) { append(new LIR_Op1(lir_leal, from, result_reg, T_ILLEGAL, patch_code, info)); } 2309 2310 // result is a stack location for old backend and vreg for UseLinearScan 2311 // stack_loc_temp is an illegal register for old backend 2312 void move(LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = nullptr) { append(new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); } 2313 void move(LIR_Address* src, LIR_Opr dst, CodeEmitInfo* info = nullptr) { append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, src->type(), lir_patch_none, info)); } 2314 void move(LIR_Opr src, LIR_Address* dst, CodeEmitInfo* info = nullptr) { append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), dst->type(), lir_patch_none, info)); } 2315 void move_wide(LIR_Address* src, LIR_Opr dst, CodeEmitInfo* info = nullptr) { 2316 if (UseCompressedOops) { 2317 append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, src->type(), lir_patch_none, info, lir_move_wide)); 2318 } else { 2319 move(src, dst, info); 2320 } 2321 } 2322 void move_wide(LIR_Opr src, LIR_Address* dst, CodeEmitInfo* info = nullptr) { 2323 if (UseCompressedOops) { 2324 append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), dst->type(), lir_patch_none, info, lir_move_wide)); 2325 } else { 2326 move(src, dst, info); 2327 } 2328 } 2329 void volatile_move(LIR_Opr src, LIR_Opr dst, BasicType type, CodeEmitInfo* info = nullptr, LIR_PatchCode patch_code = lir_patch_none) { append(new LIR_Op1(lir_move, src, dst, type, patch_code, info, lir_move_volatile)); } 2330 2331 void oop2reg (jobject o, LIR_Opr reg) { assert(reg->type() == T_OBJECT, "bad reg"); append(new LIR_Op1(lir_move, LIR_OprFact::oopConst(o), reg)); } 2332 void oop2reg_patch(jobject o, LIR_Opr reg, CodeEmitInfo* info); 2333 2334 void metadata2reg (Metadata* o, LIR_Opr reg) { assert(reg->type() == T_METADATA, "bad reg"); append(new LIR_Op1(lir_move, LIR_OprFact::metadataConst(o), reg)); } 2335 void klass2reg_patch(Metadata* o, LIR_Opr reg, CodeEmitInfo* info); 2336 2337 void safepoint(LIR_Opr tmp, CodeEmitInfo* info) { append(new LIR_Op1(lir_safepoint, tmp, info)); } 2338 void return_op(LIR_Opr result) { append(new LIR_OpReturn(result)); } 2339 2340 void convert(Bytecodes::Code code, LIR_Opr left, LIR_Opr dst, ConversionStub* stub = nullptr/*, bool is_32bit = false*/) { append(new LIR_OpConvert(code, left, dst, stub)); } 2341 2342 void logical_and (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_and, left, right, dst)); } 2343 void logical_or (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_or, left, right, dst)); } 2344 void logical_xor (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_xor, left, right, dst)); } 2345 2346 void null_check(LIR_Opr opr, CodeEmitInfo* info, bool deoptimize_on_null = false); 2347 void throw_exception(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) { 2348 append(new LIR_Op2(lir_throw, exceptionPC, exceptionOop, LIR_OprFact::illegalOpr, info)); 2349 } 2350 void unwind_exception(LIR_Opr exceptionOop) { 2351 append(new LIR_Op1(lir_unwind, exceptionOop)); 2352 } 2353 2354 void push(LIR_Opr opr) { append(new LIR_Op1(lir_push, opr)); } 2355 void pop(LIR_Opr reg) { append(new LIR_Op1(lir_pop, reg)); } 2356 2357 void cmp(LIR_Condition condition, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info = nullptr) { 2358 append(new LIR_Op2(lir_cmp, condition, left, right, info)); 2359 } 2360 void cmp(LIR_Condition condition, LIR_Opr left, int right, CodeEmitInfo* info = nullptr) { 2361 cmp(condition, left, LIR_OprFact::intConst(right), info); 2362 } 2363 2364 void cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info); 2365 void cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Address* addr, CodeEmitInfo* info); 2366 2367 void cmove(LIR_Condition condition, LIR_Opr src1, LIR_Opr src2, LIR_Opr dst, BasicType type, 2368 LIR_Opr cmp_opr1 = LIR_OprFact::illegalOpr, LIR_Opr cmp_opr2 = LIR_OprFact::illegalOpr) { 2369 append(new LIR_Op4(lir_cmove, condition, src1, src2, cmp_opr1, cmp_opr2, dst, type)); 2370 } 2371 2372 void cas_long(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value, 2373 LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr); 2374 void cas_obj(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value, 2375 LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr); 2376 void cas_int(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value, 2377 LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr); 2378 2379 void abs (LIR_Opr from, LIR_Opr to, LIR_Opr tmp) { append(new LIR_Op1(lir_abs , from, to, tmp)); } 2380 void negate(LIR_Opr from, LIR_Opr to, LIR_Opr tmp = LIR_OprFact::illegalOpr) { append(new LIR_Op1(lir_neg, from, to, tmp)); } 2381 void sqrt(LIR_Opr from, LIR_Opr to, LIR_Opr tmp) { append(new LIR_Op1(lir_sqrt, from, to, tmp)); } 2382 void fmad(LIR_Opr from, LIR_Opr from1, LIR_Opr from2, LIR_Opr to) { append(new LIR_Op3(lir_fmad, from, from1, from2, to)); } 2383 void fmaf(LIR_Opr from, LIR_Opr from1, LIR_Opr from2, LIR_Opr to) { append(new LIR_Op3(lir_fmaf, from, from1, from2, to)); } 2384 void f2hf(LIR_Opr from, LIR_Opr to, LIR_Opr tmp) { append(new LIR_Op1(lir_f2hf, from, to, tmp)); } 2385 void hf2f(LIR_Opr from, LIR_Opr to, LIR_Opr tmp) { append(new LIR_Op1(lir_hf2f, from, to, tmp)); } 2386 2387 void add (LIR_Opr left, LIR_Opr right, LIR_Opr res) { append(new LIR_Op2(lir_add, left, right, res)); } 2388 void sub (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = nullptr) { append(new LIR_Op2(lir_sub, left, right, res, info)); } 2389 void mul (LIR_Opr left, LIR_Opr right, LIR_Opr res) { append(new LIR_Op2(lir_mul, left, right, res)); } 2390 void mul (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_mul, left, right, res, tmp)); } 2391 void div (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = nullptr) { append(new LIR_Op2(lir_div, left, right, res, info)); } 2392 void div (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_div, left, right, res, tmp)); } 2393 void rem (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = nullptr) { append(new LIR_Op2(lir_rem, left, right, res, info)); } 2394 2395 void volatile_load_mem_reg(LIR_Address* address, LIR_Opr dst, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none); 2396 void volatile_load_unsafe_reg(LIR_Opr base, LIR_Opr offset, LIR_Opr dst, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code); 2397 2398 void load(LIR_Address* addr, LIR_Opr src, CodeEmitInfo* info = nullptr, LIR_PatchCode patch_code = lir_patch_none); 2399 2400 void store_mem_int(jint v, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none); 2401 void store_mem_oop(jobject o, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none); 2402 void store(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info = nullptr, LIR_PatchCode patch_code = lir_patch_none); 2403 void volatile_store_mem_reg(LIR_Opr src, LIR_Address* address, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none); 2404 void volatile_store_unsafe_reg(LIR_Opr src, LIR_Opr base, LIR_Opr offset, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code); 2405 2406 void idiv(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info); 2407 void idiv(LIR_Opr left, int right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info); 2408 void irem(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info); 2409 void irem(LIR_Opr left, int right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info); 2410 2411 void allocate_object(LIR_Opr dst, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, int header_size, int object_size, LIR_Opr klass, bool init_check, CodeStub* stub); 2412 void allocate_array(LIR_Opr dst, LIR_Opr len, LIR_Opr t1,LIR_Opr t2, LIR_Opr t3,LIR_Opr t4, BasicType type, LIR_Opr klass, CodeStub* stub, bool zero_array = true, bool always_slow_path = false); 2413 2414 // jump is an unconditional branch 2415 void jump(BlockBegin* block) { 2416 append(new LIR_OpBranch(lir_cond_always, block)); 2417 } 2418 void jump(CodeStub* stub) { 2419 append(new LIR_OpBranch(lir_cond_always, stub)); 2420 } 2421 void branch(LIR_Condition cond, Label* lbl) { 2422 append(new LIR_OpBranch(cond, lbl)); 2423 } 2424 // Should not be used for fp comparisons 2425 void branch(LIR_Condition cond, BlockBegin* block) { 2426 append(new LIR_OpBranch(cond, block)); 2427 } 2428 // Should not be used for fp comparisons 2429 void branch(LIR_Condition cond, CodeStub* stub) { 2430 append(new LIR_OpBranch(cond, stub)); 2431 } 2432 // Should only be used for fp comparisons 2433 void branch(LIR_Condition cond, BlockBegin* block, BlockBegin* unordered) { 2434 append(new LIR_OpBranch(cond, block, unordered)); 2435 } 2436 2437 void shift_left(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp); 2438 void shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp); 2439 void unsigned_shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp); 2440 2441 void shift_left(LIR_Opr value, int count, LIR_Opr dst) { shift_left(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); } 2442 void shift_right(LIR_Opr value, int count, LIR_Opr dst) { shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); } 2443 void unsigned_shift_right(LIR_Opr value, int count, LIR_Opr dst) { unsigned_shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); } 2444 2445 void lcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_cmp_l2i, left, right, dst)); } 2446 void fcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst, bool is_unordered_less); 2447 2448 void call_runtime_leaf(address routine, LIR_Opr tmp, LIR_Opr result, LIR_OprList* arguments) { 2449 append(new LIR_OpRTCall(routine, tmp, result, arguments)); 2450 } 2451 2452 void call_runtime(address routine, LIR_Opr tmp, LIR_Opr result, 2453 LIR_OprList* arguments, CodeEmitInfo* info) { 2454 append(new LIR_OpRTCall(routine, tmp, result, arguments, info)); 2455 } 2456 2457 void load_stack_address_monitor(int monitor_ix, LIR_Opr dst) { append(new LIR_Op1(lir_monaddr, LIR_OprFact::intConst(monitor_ix), dst)); } 2458 void unlock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub); 2459 void lock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info, CodeStub* throw_ie_stub=nullptr); 2460 2461 void breakpoint() { append(new LIR_Op0(lir_breakpoint)); } 2462 2463 void arraycopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp, ciArrayKlass* expected_type, int flags, CodeEmitInfo* info) { append(new LIR_OpArrayCopy(src, src_pos, dst, dst_pos, length, tmp, expected_type, flags, info)); } 2464 2465 void update_crc32(LIR_Opr crc, LIR_Opr val, LIR_Opr res) { append(new LIR_OpUpdateCRC32(crc, val, res)); } 2466 2467 void instanceof(LIR_Opr result, LIR_Opr object, ciKlass* klass, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, CodeEmitInfo* info_for_patch, ciMethod* profiled_method, int profiled_bci); 2468 void store_check(LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception, ciMethod* profiled_method, int profiled_bci); 2469 void check_flat_array(LIR_Opr array, LIR_Opr value, LIR_Opr tmp, CodeStub* stub); 2470 void check_null_free_array(LIR_Opr array, LIR_Opr tmp); 2471 void substitutability_check(LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr equal_result, LIR_Opr not_equal_result, 2472 LIR_Opr tmp1, LIR_Opr tmp2, 2473 ciKlass* left_klass, ciKlass* right_klass, LIR_Opr left_klass_op, LIR_Opr right_klass_op, 2474 CodeEmitInfo* info, CodeStub* stub); 2475 2476 void checkcast (LIR_Opr result, LIR_Opr object, ciKlass* klass, 2477 LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, 2478 CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub, 2479 ciMethod* profiled_method, int profiled_bci, bool is_null_free); 2480 // MethodData* profiling 2481 void profile_call(ciMethod* method, int bci, ciMethod* callee, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* cha_klass) { 2482 append(new LIR_OpProfileCall(method, bci, callee, mdo, recv, t1, cha_klass)); 2483 } 2484 void profile_type(LIR_Address* mdp, LIR_Opr obj, ciKlass* exact_klass, intptr_t current_klass, LIR_Opr tmp, bool not_null, bool no_conflict) { 2485 append(new LIR_OpProfileType(LIR_OprFact::address(mdp), obj, exact_klass, current_klass, tmp, not_null, no_conflict)); 2486 } 2487 void profile_inline_type(LIR_Address* mdp, LIR_Opr obj, int flag, LIR_Opr tmp, bool not_null) { 2488 append(new LIR_OpProfileInlineType(LIR_OprFact::address(mdp), obj, flag, tmp, not_null)); 2489 } 2490 2491 void xadd(LIR_Opr src, LIR_Opr add, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_xadd, src, add, res, tmp)); } 2492 void xchg(LIR_Opr src, LIR_Opr set, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_xchg, src, set, res, tmp)); } 2493 2494 void load_klass(LIR_Opr obj, LIR_Opr result, CodeEmitInfo* info) { append(new LIR_OpLoadKlass(obj, result, info)); } 2495 2496 #ifdef ASSERT 2497 void lir_assert(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, const char* msg, bool halt) { append(new LIR_OpAssert(condition, opr1, opr2, msg, halt)); } 2498 #endif 2499 }; 2500 2501 void print_LIR(BlockList* blocks); 2502 2503 class LIR_InsertionBuffer : public CompilationResourceObj { 2504 private: 2505 LIR_List* _lir; // the lir list where ops of this buffer should be inserted later (null when uninitialized) 2506 2507 // list of insertion points. index and count are stored alternately: 2508 // _index_and_count[i * 2]: the index into lir list where "count" ops should be inserted 2509 // _index_and_count[i * 2 + 1]: the number of ops to be inserted at index 2510 intStack _index_and_count; 2511 2512 // the LIR_Ops to be inserted 2513 LIR_OpList _ops; 2514 2515 void append_new(int index, int count) { _index_and_count.append(index); _index_and_count.append(count); } 2516 void set_index_at(int i, int value) { _index_and_count.at_put((i << 1), value); } 2517 void set_count_at(int i, int value) { _index_and_count.at_put((i << 1) + 1, value); } 2518 2519 #ifdef ASSERT 2520 void verify(); 2521 #endif 2522 public: 2523 LIR_InsertionBuffer() : _lir(nullptr), _index_and_count(8), _ops(8) { } 2524 2525 // must be called before using the insertion buffer 2526 void init(LIR_List* lir) { assert(!initialized(), "already initialized"); _lir = lir; _index_and_count.clear(); _ops.clear(); } 2527 bool initialized() const { return _lir != nullptr; } 2528 // called automatically when the buffer is appended to the LIR_List 2529 void finish() { _lir = nullptr; } 2530 2531 // accessors 2532 LIR_List* lir_list() const { return _lir; } 2533 int number_of_insertion_points() const { return _index_and_count.length() >> 1; } 2534 int index_at(int i) const { return _index_and_count.at((i << 1)); } 2535 int count_at(int i) const { return _index_and_count.at((i << 1) + 1); } 2536 2537 int number_of_ops() const { return _ops.length(); } 2538 LIR_Op* op_at(int i) const { return _ops.at(i); } 2539 2540 // append an instruction to the buffer 2541 void append(int index, LIR_Op* op); 2542 2543 // instruction 2544 void move(int index, LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = nullptr) { append(index, new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); } 2545 }; 2546 2547 2548 // 2549 // LIR_OpVisitState is used for manipulating LIR_Ops in an abstract way. 2550 // Calling a LIR_Op's visit function with a LIR_OpVisitState causes 2551 // information about the input, output and temporaries used by the 2552 // op to be recorded. It also records whether the op has call semantics 2553 // and also records all the CodeEmitInfos used by this op. 2554 // 2555 2556 2557 class LIR_OpVisitState: public StackObj { 2558 public: 2559 typedef enum { inputMode, firstMode = inputMode, tempMode, outputMode, numModes, invalidMode = -1 } OprMode; 2560 2561 enum { 2562 maxNumberOfOperands = 21, 2563 maxNumberOfInfos = 4 2564 }; 2565 2566 private: 2567 LIR_Op* _op; 2568 2569 // optimization: the operands and infos are not stored in a variable-length 2570 // list, but in a fixed-size array to save time of size checks and resizing 2571 int _oprs_len[numModes]; 2572 LIR_Opr* _oprs_new[numModes][maxNumberOfOperands]; 2573 int _info_len; 2574 CodeEmitInfo* _info_new[maxNumberOfInfos]; 2575 2576 bool _has_call; 2577 bool _has_slow_case; 2578 2579 2580 // only include register operands 2581 // addresses are decomposed to the base and index registers 2582 // constants and stack operands are ignored 2583 void append(LIR_Opr& opr, OprMode mode) { 2584 assert(opr->is_valid(), "should not call this otherwise"); 2585 assert(mode >= 0 && mode < numModes, "bad mode"); 2586 2587 if (opr->is_register()) { 2588 assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow"); 2589 _oprs_new[mode][_oprs_len[mode]++] = &opr; 2590 2591 } else if (opr->is_pointer()) { 2592 LIR_Address* address = opr->as_address_ptr(); 2593 if (address != nullptr) { 2594 // special handling for addresses: add base and index register of the address 2595 // both are always input operands or temp if we want to extend 2596 // their liveness! 2597 if (mode == outputMode) { 2598 mode = inputMode; 2599 } 2600 assert (mode == inputMode || mode == tempMode, "input or temp only for addresses"); 2601 if (address->_base->is_valid()) { 2602 assert(address->_base->is_register(), "must be"); 2603 assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow"); 2604 _oprs_new[mode][_oprs_len[mode]++] = &address->_base; 2605 } 2606 if (address->_index->is_valid()) { 2607 assert(address->_index->is_register(), "must be"); 2608 assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow"); 2609 _oprs_new[mode][_oprs_len[mode]++] = &address->_index; 2610 } 2611 2612 } else { 2613 assert(opr->is_constant(), "constant operands are not processed"); 2614 } 2615 } else { 2616 assert(opr->is_stack(), "stack operands are not processed"); 2617 } 2618 } 2619 2620 void append(CodeEmitInfo* info) { 2621 assert(info != nullptr, "should not call this otherwise"); 2622 assert(_info_len < maxNumberOfInfos, "array overflow"); 2623 _info_new[_info_len++] = info; 2624 } 2625 2626 public: 2627 LIR_OpVisitState() { reset(); } 2628 2629 LIR_Op* op() const { return _op; } 2630 void set_op(LIR_Op* op) { reset(); _op = op; } 2631 2632 bool has_call() const { return _has_call; } 2633 bool has_slow_case() const { return _has_slow_case; } 2634 2635 void reset() { 2636 _op = nullptr; 2637 _has_call = false; 2638 _has_slow_case = false; 2639 2640 _oprs_len[inputMode] = 0; 2641 _oprs_len[tempMode] = 0; 2642 _oprs_len[outputMode] = 0; 2643 _info_len = 0; 2644 } 2645 2646 2647 int opr_count(OprMode mode) const { 2648 assert(mode >= 0 && mode < numModes, "bad mode"); 2649 return _oprs_len[mode]; 2650 } 2651 2652 LIR_Opr opr_at(OprMode mode, int index) const { 2653 assert(mode >= 0 && mode < numModes, "bad mode"); 2654 assert(index >= 0 && index < _oprs_len[mode], "index out of bound"); 2655 return *_oprs_new[mode][index]; 2656 } 2657 2658 void set_opr_at(OprMode mode, int index, LIR_Opr opr) const { 2659 assert(mode >= 0 && mode < numModes, "bad mode"); 2660 assert(index >= 0 && index < _oprs_len[mode], "index out of bound"); 2661 *_oprs_new[mode][index] = opr; 2662 } 2663 2664 int info_count() const { 2665 return _info_len; 2666 } 2667 2668 CodeEmitInfo* info_at(int index) const { 2669 assert(index < _info_len, "index out of bounds"); 2670 return _info_new[index]; 2671 } 2672 2673 XHandlers* all_xhandler(); 2674 2675 // collects all register operands of the instruction 2676 void visit(LIR_Op* op); 2677 2678 #ifdef ASSERT 2679 // check that an operation has no operands 2680 bool no_operands(LIR_Op* op); 2681 #endif 2682 2683 // LIR_Op visitor functions use these to fill in the state 2684 void do_input(LIR_Opr& opr) { append(opr, LIR_OpVisitState::inputMode); } 2685 void do_output(LIR_Opr& opr) { append(opr, LIR_OpVisitState::outputMode); } 2686 void do_temp(LIR_Opr& opr) { append(opr, LIR_OpVisitState::tempMode); } 2687 void do_info(CodeEmitInfo* info) { append(info); } 2688 2689 void do_stub(CodeStub* stub); 2690 void do_call() { _has_call = true; } 2691 void do_slow_case() { _has_slow_case = true; } 2692 void do_slow_case(CodeEmitInfo* info) { 2693 _has_slow_case = true; 2694 append(info); 2695 } 2696 }; 2697 2698 2699 inline LIR_Opr LIR_Opr::illegalOpr() { return LIR_OprFact::illegalOpr; }; 2700 2701 inline LIR_Opr LIR_Opr::nullOpr() { return LIR_OprFact::nullOpr; }; 2702 2703 #endif // SHARE_C1_C1_LIR_HPP