1 /* 2 * Copyright (c) 2000, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_C1_C1_LIR_HPP 26 #define SHARE_C1_C1_LIR_HPP 27 28 #include "c1/c1_Defs.hpp" 29 #include "c1/c1_ValueType.hpp" 30 #include "oops/method.hpp" 31 #include "utilities/globalDefinitions.hpp" 32 #include "utilities/macros.hpp" 33 34 class BlockBegin; 35 class BlockList; 36 class LIR_Assembler; 37 class CodeEmitInfo; 38 class CodeStub; 39 class CodeStubList; 40 class C1SafepointPollStub; 41 class ArrayCopyStub; 42 class LIR_Op; 43 class ciType; 44 class ValueType; 45 class LIR_OpVisitState; 46 class FpuStackSim; 47 48 //--------------------------------------------------------------------- 49 // LIR Operands 50 // LIR_OprPtr 51 // LIR_Const 52 // LIR_Address 53 //--------------------------------------------------------------------- 54 class LIR_OprPtr; 55 class LIR_Const; 56 class LIR_Address; 57 class LIR_OprVisitor; 58 class LIR_Opr; 59 60 typedef int RegNr; 61 62 typedef GrowableArray<LIR_Opr> LIR_OprList; 63 typedef GrowableArray<LIR_Op*> LIR_OpArray; 64 typedef GrowableArray<LIR_Op*> LIR_OpList; 65 66 // define LIR_OprPtr early so LIR_Opr can refer to it 67 class LIR_OprPtr: public CompilationResourceObj { 68 public: 69 bool is_oop_pointer() const { return (type() == T_OBJECT); } 70 bool is_float_kind() const { BasicType t = type(); return (t == T_FLOAT) || (t == T_DOUBLE); } 71 72 virtual LIR_Const* as_constant() { return nullptr; } 73 virtual LIR_Address* as_address() { return nullptr; } 74 virtual BasicType type() const = 0; 75 virtual void print_value_on(outputStream* out) const = 0; 76 }; 77 78 79 80 // LIR constants 81 class LIR_Const: public LIR_OprPtr { 82 private: 83 JavaValue _value; 84 85 void type_check(BasicType t) const { assert(type() == t, "type check"); } 86 void type_check(BasicType t1, BasicType t2) const { assert(type() == t1 || type() == t2, "type check"); } 87 void type_check(BasicType t1, BasicType t2, BasicType t3) const { assert(type() == t1 || type() == t2 || type() == t3, "type check"); } 88 89 public: 90 LIR_Const(jint i, bool is_address=false) { _value.set_type(is_address?T_ADDRESS:T_INT); _value.set_jint(i); } 91 LIR_Const(jlong l) { _value.set_type(T_LONG); _value.set_jlong(l); } 92 LIR_Const(jfloat f) { _value.set_type(T_FLOAT); _value.set_jfloat(f); } 93 LIR_Const(jdouble d) { _value.set_type(T_DOUBLE); _value.set_jdouble(d); } 94 LIR_Const(jobject o) { _value.set_type(T_OBJECT); _value.set_jobject(o); } 95 LIR_Const(void* p) { 96 #ifdef _LP64 97 assert(sizeof(jlong) >= sizeof(p), "too small");; 98 _value.set_type(T_LONG); _value.set_jlong((jlong)p); 99 #else 100 assert(sizeof(jint) >= sizeof(p), "too small");; 101 _value.set_type(T_INT); _value.set_jint((jint)p); 102 #endif 103 } 104 LIR_Const(Metadata* m) { 105 _value.set_type(T_METADATA); 106 #ifdef _LP64 107 _value.set_jlong((jlong)m); 108 #else 109 _value.set_jint((jint)m); 110 #endif // _LP64 111 } 112 113 virtual BasicType type() const { return _value.get_type(); } 114 virtual LIR_Const* as_constant() { return this; } 115 116 jint as_jint() const { type_check(T_INT, T_ADDRESS); return _value.get_jint(); } 117 jlong as_jlong() const { type_check(T_LONG ); return _value.get_jlong(); } 118 jfloat as_jfloat() const { type_check(T_FLOAT ); return _value.get_jfloat(); } 119 jdouble as_jdouble() const { type_check(T_DOUBLE); return _value.get_jdouble(); } 120 jobject as_jobject() const { type_check(T_OBJECT); return _value.get_jobject(); } 121 jint as_jint_lo() const { type_check(T_LONG ); return low(_value.get_jlong()); } 122 jint as_jint_hi() const { type_check(T_LONG ); return high(_value.get_jlong()); } 123 124 #ifdef _LP64 125 address as_pointer() const { type_check(T_LONG ); return (address)_value.get_jlong(); } 126 Metadata* as_metadata() const { type_check(T_METADATA); return (Metadata*)_value.get_jlong(); } 127 #else 128 address as_pointer() const { type_check(T_INT ); return (address)_value.get_jint(); } 129 Metadata* as_metadata() const { type_check(T_METADATA); return (Metadata*)_value.get_jint(); } 130 #endif 131 132 133 jint as_jint_bits() const { type_check(T_FLOAT, T_INT, T_ADDRESS); return _value.get_jint(); } 134 jint as_jint_lo_bits() const { 135 if (type() == T_DOUBLE) { 136 return low(jlong_cast(_value.get_jdouble())); 137 } else { 138 return as_jint_lo(); 139 } 140 } 141 jint as_jint_hi_bits() const { 142 if (type() == T_DOUBLE) { 143 return high(jlong_cast(_value.get_jdouble())); 144 } else { 145 return as_jint_hi(); 146 } 147 } 148 jlong as_jlong_bits() const { 149 if (type() == T_DOUBLE) { 150 return jlong_cast(_value.get_jdouble()); 151 } else { 152 return as_jlong(); 153 } 154 } 155 156 virtual void print_value_on(outputStream* out) const PRODUCT_RETURN; 157 158 159 bool is_zero_float() { 160 jfloat f = as_jfloat(); 161 jfloat ok = 0.0f; 162 return jint_cast(f) == jint_cast(ok); 163 } 164 165 bool is_one_float() { 166 jfloat f = as_jfloat(); 167 return !g_isnan(f) && g_isfinite(f) && f == 1.0; 168 } 169 170 bool is_zero_double() { 171 jdouble d = as_jdouble(); 172 jdouble ok = 0.0; 173 return jlong_cast(d) == jlong_cast(ok); 174 } 175 176 bool is_one_double() { 177 jdouble d = as_jdouble(); 178 return !g_isnan(d) && g_isfinite(d) && d == 1.0; 179 } 180 }; 181 182 183 //---------------------LIR Operand descriptor------------------------------------ 184 // 185 // The class LIR_Opr represents a LIR instruction operand; 186 // it can be a register (ALU/FPU), stack location or a constant; 187 // Constants and addresses are represented as resource area allocated 188 // structures (see above), and pointers are stored in the _value field (cast to 189 // an intptr_t). 190 // Registers and stack locations are represented inline as integers. 191 // (see value function). 192 193 // Previously, this class was derived from CompilationResourceObj. 194 // However, deriving from any of the "Obj" types in allocation.hpp seems 195 // detrimental, since in some build modes it would add a vtable to this class, 196 // which make it no longer be a 1-word trivially-copyable wrapper object, 197 // which is the entire point of it. 198 199 class LIR_Opr { 200 public: 201 // value structure: 202 // data other-non-data opr-type opr-kind 203 // +-------------------+--------------+-------+-----+ 204 // [max...............................|6 5 4 3|2 1 0] 205 // ^ 206 // is_pointer bit 207 // 208 // lowest bit cleared, means it is a structure pointer 209 // we need 4 bits to represent types 210 211 private: 212 friend class LIR_OprFact; 213 214 intptr_t _value; 215 // Conversion 216 intptr_t value() const { return _value; } 217 218 bool check_value_mask(intptr_t mask, intptr_t masked_value) const { 219 return (value() & mask) == masked_value; 220 } 221 222 enum OprKind { 223 pointer_value = 0 224 , stack_value = 1 225 , cpu_register = 3 226 , fpu_register = 5 227 , illegal_value = 7 228 }; 229 230 enum OprBits { 231 pointer_bits = 1 232 , kind_bits = 3 233 , type_bits = 4 234 , size_bits = 2 235 , destroys_bits = 1 236 , virtual_bits = 1 237 , is_xmm_bits = 1 238 , last_use_bits = 1 239 , is_fpu_stack_offset_bits = 1 // used in assertion checking on x86 for FPU stack slot allocation 240 , non_data_bits = kind_bits + type_bits + size_bits + destroys_bits + virtual_bits 241 + is_xmm_bits + last_use_bits + is_fpu_stack_offset_bits 242 , data_bits = BitsPerInt - non_data_bits 243 , reg_bits = data_bits / 2 // for two registers in one value encoding 244 }; 245 246 enum OprShift : uintptr_t { 247 kind_shift = 0 248 , type_shift = kind_shift + kind_bits 249 , size_shift = type_shift + type_bits 250 , destroys_shift = size_shift + size_bits 251 , last_use_shift = destroys_shift + destroys_bits 252 , is_fpu_stack_offset_shift = last_use_shift + last_use_bits 253 , virtual_shift = is_fpu_stack_offset_shift + is_fpu_stack_offset_bits 254 , is_xmm_shift = virtual_shift + virtual_bits 255 , data_shift = is_xmm_shift + is_xmm_bits 256 , reg1_shift = data_shift 257 , reg2_shift = data_shift + reg_bits 258 259 }; 260 261 enum OprSize { 262 single_size = 0 << size_shift 263 , double_size = 1 << size_shift 264 }; 265 266 enum OprMask { 267 kind_mask = right_n_bits(kind_bits) 268 , type_mask = right_n_bits(type_bits) << type_shift 269 , size_mask = right_n_bits(size_bits) << size_shift 270 , last_use_mask = right_n_bits(last_use_bits) << last_use_shift 271 , is_fpu_stack_offset_mask = right_n_bits(is_fpu_stack_offset_bits) << is_fpu_stack_offset_shift 272 , virtual_mask = right_n_bits(virtual_bits) << virtual_shift 273 , is_xmm_mask = right_n_bits(is_xmm_bits) << is_xmm_shift 274 , pointer_mask = right_n_bits(pointer_bits) 275 , lower_reg_mask = right_n_bits(reg_bits) 276 , no_type_mask = (int)(~(type_mask | last_use_mask | is_fpu_stack_offset_mask)) 277 }; 278 279 uint32_t data() const { return (uint32_t)value() >> data_shift; } 280 int lo_reg_half() const { return data() & lower_reg_mask; } 281 int hi_reg_half() const { return (data() >> reg_bits) & lower_reg_mask; } 282 OprKind kind_field() const { return (OprKind)(value() & kind_mask); } 283 OprSize size_field() const { return (OprSize)(value() & size_mask); } 284 285 static char type_char(BasicType t); 286 287 public: 288 LIR_Opr() : _value(0) {} 289 LIR_Opr(intptr_t val) : _value(val) {} 290 LIR_Opr(LIR_OprPtr *val) : _value(reinterpret_cast<intptr_t>(val)) {} 291 bool operator==(const LIR_Opr &other) const { return _value == other._value; } 292 bool operator!=(const LIR_Opr &other) const { return _value != other._value; } 293 explicit operator bool() const { return _value != 0; } 294 295 // UGLY HACK: make this value object look like a pointer (to itself). This 296 // operator overload should be removed, and all callers updated from 297 // `opr->fn()` to `opr.fn()`. 298 const LIR_Opr* operator->() const { return this; } 299 LIR_Opr* operator->() { return this; } 300 301 enum { 302 vreg_base = ConcreteRegisterImpl::number_of_registers, 303 data_max = (1 << data_bits) - 1, // max unsigned value for data bit field 304 vreg_limit = 10000, // choose a reasonable limit, 305 vreg_max = MIN2(vreg_limit, data_max) // and make sure if fits in the bit field 306 }; 307 308 static inline LIR_Opr illegalOpr(); 309 static inline LIR_Opr nullOpr(); 310 311 enum OprType { 312 unknown_type = 0 << type_shift // means: not set (catch uninitialized types) 313 , int_type = 1 << type_shift 314 , long_type = 2 << type_shift 315 , object_type = 3 << type_shift 316 , address_type = 4 << type_shift 317 , float_type = 5 << type_shift 318 , double_type = 6 << type_shift 319 , metadata_type = 7 << type_shift 320 }; 321 friend OprType as_OprType(BasicType t); 322 friend BasicType as_BasicType(OprType t); 323 324 OprType type_field_valid() const { assert(is_register() || is_stack(), "should not be called otherwise"); return (OprType)(value() & type_mask); } 325 OprType type_field() const { return is_illegal() ? unknown_type : (OprType)(value() & type_mask); } 326 327 static OprSize size_for(BasicType t) { 328 switch (t) { 329 case T_LONG: 330 case T_DOUBLE: 331 return double_size; 332 break; 333 334 case T_FLOAT: 335 case T_BOOLEAN: 336 case T_CHAR: 337 case T_BYTE: 338 case T_SHORT: 339 case T_INT: 340 case T_ADDRESS: 341 case T_OBJECT: 342 case T_ARRAY: 343 case T_METADATA: 344 return single_size; 345 break; 346 347 default: 348 ShouldNotReachHere(); 349 return single_size; 350 } 351 } 352 353 354 void validate_type() const PRODUCT_RETURN; 355 356 BasicType type() const { 357 if (is_pointer()) { 358 return pointer()->type(); 359 } 360 return as_BasicType(type_field()); 361 } 362 363 364 ValueType* value_type() const { return as_ValueType(type()); } 365 366 char type_char() const { return type_char((is_pointer()) ? pointer()->type() : type()); } 367 368 bool is_equal(LIR_Opr opr) const { return *this == opr; } 369 // checks whether types are same 370 bool is_same_type(LIR_Opr opr) const { 371 assert(type_field() != unknown_type && 372 opr->type_field() != unknown_type, "shouldn't see unknown_type"); 373 return type_field() == opr->type_field(); 374 } 375 bool is_same_register(LIR_Opr opr) { 376 return (is_register() && opr->is_register() && 377 kind_field() == opr->kind_field() && 378 (value() & no_type_mask) == (opr->value() & no_type_mask)); 379 } 380 381 bool is_pointer() const { return check_value_mask(pointer_mask, pointer_value); } 382 bool is_illegal() const { return kind_field() == illegal_value; } 383 bool is_valid() const { return kind_field() != illegal_value; } 384 385 bool is_register() const { return is_cpu_register() || is_fpu_register(); } 386 bool is_virtual() const { return is_virtual_cpu() || is_virtual_fpu(); } 387 388 bool is_constant() const { return is_pointer() && pointer()->as_constant() != nullptr; } 389 bool is_address() const { return is_pointer() && pointer()->as_address() != nullptr; } 390 391 bool is_float_kind() const { return is_pointer() ? pointer()->is_float_kind() : (kind_field() == fpu_register); } 392 bool is_oop() const; 393 394 // semantic for fpu- and xmm-registers: 395 // * is_float and is_double return true for xmm_registers 396 // (so is_single_fpu and is_single_xmm are true) 397 // * So you must always check for is_???_xmm prior to is_???_fpu to 398 // distinguish between fpu- and xmm-registers 399 400 bool is_stack() const { validate_type(); return check_value_mask(kind_mask, stack_value); } 401 bool is_single_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask, stack_value | single_size); } 402 bool is_double_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask, stack_value | double_size); } 403 404 bool is_cpu_register() const { validate_type(); return check_value_mask(kind_mask, cpu_register); } 405 bool is_virtual_cpu() const { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register | virtual_mask); } 406 bool is_fixed_cpu() const { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register); } 407 bool is_single_cpu() const { validate_type(); return check_value_mask(kind_mask | size_mask, cpu_register | single_size); } 408 bool is_double_cpu() const { validate_type(); return check_value_mask(kind_mask | size_mask, cpu_register | double_size); } 409 410 bool is_fpu_register() const { validate_type(); return check_value_mask(kind_mask, fpu_register); } 411 bool is_virtual_fpu() const { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register | virtual_mask); } 412 bool is_fixed_fpu() const { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register); } 413 bool is_single_fpu() const { validate_type(); return check_value_mask(kind_mask | size_mask, fpu_register | single_size); } 414 bool is_double_fpu() const { validate_type(); return check_value_mask(kind_mask | size_mask, fpu_register | double_size); } 415 416 bool is_xmm_register() const { validate_type(); return check_value_mask(kind_mask | is_xmm_mask, fpu_register | is_xmm_mask); } 417 bool is_single_xmm() const { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | single_size | is_xmm_mask); } 418 bool is_double_xmm() const { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | double_size | is_xmm_mask); } 419 420 // fast accessor functions for special bits that do not work for pointers 421 // (in this functions, the check for is_pointer() is omitted) 422 bool is_single_word() const { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, single_size); } 423 bool is_double_word() const { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, double_size); } 424 bool is_virtual_register() const { assert(is_register(), "type check"); return check_value_mask(virtual_mask, virtual_mask); } 425 bool is_oop_register() const { assert(is_register() || is_stack(), "type check"); return type_field_valid() == object_type; } 426 BasicType type_register() const { assert(is_register() || is_stack(), "type check"); return as_BasicType(type_field_valid()); } 427 428 bool is_last_use() const { assert(is_register(), "only works for registers"); return (value() & last_use_mask) != 0; } 429 bool is_fpu_stack_offset() const { assert(is_register(), "only works for registers"); return (value() & is_fpu_stack_offset_mask) != 0; } 430 LIR_Opr make_last_use() { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | last_use_mask); } 431 LIR_Opr make_fpu_stack_offset() { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | is_fpu_stack_offset_mask); } 432 433 434 int single_stack_ix() const { assert(is_single_stack() && !is_virtual(), "type check"); return (int)data(); } 435 int double_stack_ix() const { assert(is_double_stack() && !is_virtual(), "type check"); return (int)data(); } 436 RegNr cpu_regnr() const { assert(is_single_cpu() && !is_virtual(), "type check"); return (RegNr)data(); } 437 RegNr cpu_regnrLo() const { assert(is_double_cpu() && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); } 438 RegNr cpu_regnrHi() const { assert(is_double_cpu() && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); } 439 RegNr fpu_regnr() const { assert(is_single_fpu() && !is_virtual(), "type check"); return (RegNr)data(); } 440 RegNr fpu_regnrLo() const { assert(is_double_fpu() && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); } 441 RegNr fpu_regnrHi() const { assert(is_double_fpu() && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); } 442 RegNr xmm_regnr() const { assert(is_single_xmm() && !is_virtual(), "type check"); return (RegNr)data(); } 443 RegNr xmm_regnrLo() const { assert(is_double_xmm() && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); } 444 RegNr xmm_regnrHi() const { assert(is_double_xmm() && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); } 445 int vreg_number() const { assert(is_virtual(), "type check"); return (RegNr)data(); } 446 447 LIR_OprPtr* pointer() const { assert(_value != 0 && is_pointer(), "nullness and type check"); return (LIR_OprPtr*)_value; } 448 LIR_Const* as_constant_ptr() const { return pointer()->as_constant(); } 449 LIR_Address* as_address_ptr() const { return pointer()->as_address(); } 450 451 Register as_register() const; 452 Register as_register_lo() const; 453 Register as_register_hi() const; 454 455 Register as_pointer_register() { 456 #ifdef _LP64 457 if (is_double_cpu()) { 458 assert(as_register_lo() == as_register_hi(), "should be a single register"); 459 return as_register_lo(); 460 } 461 #endif 462 return as_register(); 463 } 464 465 FloatRegister as_float_reg () const; 466 FloatRegister as_double_reg () const; 467 #ifdef X86 468 XMMRegister as_xmm_float_reg () const; 469 XMMRegister as_xmm_double_reg() const; 470 // for compatibility with RInfo 471 int fpu() const { return lo_reg_half(); } 472 #endif 473 474 jint as_jint() const { return as_constant_ptr()->as_jint(); } 475 jlong as_jlong() const { return as_constant_ptr()->as_jlong(); } 476 jfloat as_jfloat() const { return as_constant_ptr()->as_jfloat(); } 477 jdouble as_jdouble() const { return as_constant_ptr()->as_jdouble(); } 478 jobject as_jobject() const { return as_constant_ptr()->as_jobject(); } 479 480 void print() const PRODUCT_RETURN; 481 void print(outputStream* out) const PRODUCT_RETURN; 482 }; 483 484 inline LIR_Opr::OprType as_OprType(BasicType type) { 485 switch (type) { 486 case T_INT: return LIR_Opr::int_type; 487 case T_LONG: return LIR_Opr::long_type; 488 case T_FLOAT: return LIR_Opr::float_type; 489 case T_DOUBLE: return LIR_Opr::double_type; 490 case T_OBJECT: 491 case T_ARRAY: return LIR_Opr::object_type; 492 case T_ADDRESS: return LIR_Opr::address_type; 493 case T_METADATA: return LIR_Opr::metadata_type; 494 case T_ILLEGAL: // fall through 495 default: ShouldNotReachHere(); return LIR_Opr::unknown_type; 496 } 497 } 498 499 inline BasicType as_BasicType(LIR_Opr::OprType t) { 500 switch (t) { 501 case LIR_Opr::int_type: return T_INT; 502 case LIR_Opr::long_type: return T_LONG; 503 case LIR_Opr::float_type: return T_FLOAT; 504 case LIR_Opr::double_type: return T_DOUBLE; 505 case LIR_Opr::object_type: return T_OBJECT; 506 case LIR_Opr::address_type: return T_ADDRESS; 507 case LIR_Opr::metadata_type:return T_METADATA; 508 case LIR_Opr::unknown_type: // fall through 509 default: ShouldNotReachHere(); return T_ILLEGAL; 510 } 511 } 512 513 514 // LIR_Address 515 class LIR_Address: public LIR_OprPtr { 516 friend class LIR_OpVisitState; 517 518 public: 519 // NOTE: currently these must be the log2 of the scale factor (and 520 // must also be equivalent to the ScaleFactor enum in 521 // assembler_i486.hpp) 522 enum Scale { 523 times_1 = 0, 524 times_2 = 1, 525 times_4 = 2, 526 times_8 = 3 527 }; 528 529 private: 530 LIR_Opr _base; 531 LIR_Opr _index; 532 intx _disp; 533 Scale _scale; 534 BasicType _type; 535 536 public: 537 LIR_Address(LIR_Opr base, LIR_Opr index, BasicType type): 538 _base(base) 539 , _index(index) 540 , _disp(0) 541 , _scale(times_1) 542 , _type(type) { verify(); } 543 544 LIR_Address(LIR_Opr base, intx disp, BasicType type): 545 _base(base) 546 , _index(LIR_Opr::illegalOpr()) 547 , _disp(disp) 548 , _scale(times_1) 549 , _type(type) { verify(); } 550 551 LIR_Address(LIR_Opr base, BasicType type): 552 _base(base) 553 , _index(LIR_Opr::illegalOpr()) 554 , _disp(0) 555 , _scale(times_1) 556 , _type(type) { verify(); } 557 558 LIR_Address(LIR_Opr base, LIR_Opr index, intx disp, BasicType type): 559 _base(base) 560 , _index(index) 561 , _disp(disp) 562 , _scale(times_1) 563 , _type(type) { verify(); } 564 565 LIR_Address(LIR_Opr base, LIR_Opr index, Scale scale, intx disp, BasicType type): 566 _base(base) 567 , _index(index) 568 , _disp(disp) 569 , _scale(scale) 570 , _type(type) { verify(); } 571 572 LIR_Opr base() const { return _base; } 573 LIR_Opr index() const { return _index; } 574 Scale scale() const { return _scale; } 575 intx disp() const { return _disp; } 576 577 bool equals(LIR_Address* other) const { return base() == other->base() && index() == other->index() && disp() == other->disp() && scale() == other->scale(); } 578 579 virtual LIR_Address* as_address() { return this; } 580 virtual BasicType type() const { return _type; } 581 virtual void print_value_on(outputStream* out) const PRODUCT_RETURN; 582 583 void verify() const PRODUCT_RETURN; 584 585 static Scale scale(BasicType type); 586 }; 587 588 589 // operand factory 590 class LIR_OprFact: public AllStatic { 591 public: 592 593 static LIR_Opr illegalOpr; 594 static LIR_Opr nullOpr; 595 596 static LIR_Opr single_cpu(int reg) { 597 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) | 598 LIR_Opr::int_type | 599 LIR_Opr::cpu_register | 600 LIR_Opr::single_size); 601 } 602 static LIR_Opr single_cpu_oop(int reg) { 603 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) | 604 LIR_Opr::object_type | 605 LIR_Opr::cpu_register | 606 LIR_Opr::single_size); 607 } 608 static LIR_Opr single_cpu_address(int reg) { 609 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) | 610 LIR_Opr::address_type | 611 LIR_Opr::cpu_register | 612 LIR_Opr::single_size); 613 } 614 static LIR_Opr single_cpu_metadata(int reg) { 615 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) | 616 LIR_Opr::metadata_type | 617 LIR_Opr::cpu_register | 618 LIR_Opr::single_size); 619 } 620 static LIR_Opr double_cpu(int reg1, int reg2) { 621 LP64_ONLY(assert(reg1 == reg2, "must be identical")); 622 return (LIR_Opr)(intptr_t)((reg1 << LIR_Opr::reg1_shift) | 623 (reg2 << LIR_Opr::reg2_shift) | 624 LIR_Opr::long_type | 625 LIR_Opr::cpu_register | 626 LIR_Opr::double_size); 627 } 628 629 static LIR_Opr single_fpu(int reg) { 630 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) | 631 LIR_Opr::float_type | 632 LIR_Opr::fpu_register | 633 LIR_Opr::single_size); 634 } 635 636 // Platform dependent. 637 static LIR_Opr double_fpu(int reg1, int reg2 = -1 /*fnoreg*/); 638 639 #ifdef ARM32 640 static LIR_Opr single_softfp(int reg) { 641 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) | 642 LIR_Opr::float_type | 643 LIR_Opr::cpu_register | 644 LIR_Opr::single_size); 645 } 646 static LIR_Opr double_softfp(int reg1, int reg2) { 647 return (LIR_Opr)(intptr_t)((reg1 << LIR_Opr::reg1_shift) | 648 (reg2 << LIR_Opr::reg2_shift) | 649 LIR_Opr::double_type | 650 LIR_Opr::cpu_register | 651 LIR_Opr::double_size); 652 } 653 #endif // ARM32 654 655 #if defined(X86) 656 static LIR_Opr single_xmm(int reg) { 657 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) | 658 LIR_Opr::float_type | 659 LIR_Opr::fpu_register | 660 LIR_Opr::single_size | 661 LIR_Opr::is_xmm_mask); 662 } 663 static LIR_Opr double_xmm(int reg) { 664 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) | 665 (reg << LIR_Opr::reg2_shift) | 666 LIR_Opr::double_type | 667 LIR_Opr::fpu_register | 668 LIR_Opr::double_size | 669 LIR_Opr::is_xmm_mask); 670 } 671 #endif // X86 672 673 static LIR_Opr virtual_register(int index, BasicType type) { 674 if (index > LIR_Opr::vreg_max) { 675 // Running out of virtual registers. Caller should bailout. 676 return illegalOpr; 677 } 678 679 LIR_Opr res; 680 switch (type) { 681 case T_OBJECT: // fall through 682 case T_ARRAY: 683 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 684 LIR_Opr::object_type | 685 LIR_Opr::cpu_register | 686 LIR_Opr::single_size | 687 LIR_Opr::virtual_mask); 688 break; 689 690 case T_METADATA: 691 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 692 LIR_Opr::metadata_type| 693 LIR_Opr::cpu_register | 694 LIR_Opr::single_size | 695 LIR_Opr::virtual_mask); 696 break; 697 698 case T_INT: 699 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 700 LIR_Opr::int_type | 701 LIR_Opr::cpu_register | 702 LIR_Opr::single_size | 703 LIR_Opr::virtual_mask); 704 break; 705 706 case T_ADDRESS: 707 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 708 LIR_Opr::address_type | 709 LIR_Opr::cpu_register | 710 LIR_Opr::single_size | 711 LIR_Opr::virtual_mask); 712 break; 713 714 case T_LONG: 715 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 716 LIR_Opr::long_type | 717 LIR_Opr::cpu_register | 718 LIR_Opr::double_size | 719 LIR_Opr::virtual_mask); 720 break; 721 722 #ifdef __SOFTFP__ 723 case T_FLOAT: 724 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 725 LIR_Opr::float_type | 726 LIR_Opr::cpu_register | 727 LIR_Opr::single_size | 728 LIR_Opr::virtual_mask); 729 break; 730 case T_DOUBLE: 731 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 732 LIR_Opr::double_type | 733 LIR_Opr::cpu_register | 734 LIR_Opr::double_size | 735 LIR_Opr::virtual_mask); 736 break; 737 #else // __SOFTFP__ 738 case T_FLOAT: 739 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 740 LIR_Opr::float_type | 741 LIR_Opr::fpu_register | 742 LIR_Opr::single_size | 743 LIR_Opr::virtual_mask); 744 break; 745 746 case 747 T_DOUBLE: res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 748 LIR_Opr::double_type | 749 LIR_Opr::fpu_register | 750 LIR_Opr::double_size | 751 LIR_Opr::virtual_mask); 752 break; 753 #endif // __SOFTFP__ 754 default: ShouldNotReachHere(); res = illegalOpr; 755 } 756 757 #ifdef ASSERT 758 res->validate_type(); 759 assert(res->vreg_number() == index, "conversion check"); 760 assert(index >= LIR_Opr::vreg_base, "must start at vreg_base"); 761 762 // old-style calculation; check if old and new method are equal 763 LIR_Opr::OprType t = as_OprType(type); 764 #ifdef __SOFTFP__ 765 LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 766 t | 767 LIR_Opr::cpu_register | 768 LIR_Opr::size_for(type) | LIR_Opr::virtual_mask); 769 #else // __SOFTFP__ 770 LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | t | 771 ((type == T_FLOAT || type == T_DOUBLE) ? LIR_Opr::fpu_register : LIR_Opr::cpu_register) | 772 LIR_Opr::size_for(type) | LIR_Opr::virtual_mask); 773 assert(res == old_res, "old and new method not equal"); 774 #endif // __SOFTFP__ 775 #endif // ASSERT 776 777 return res; 778 } 779 780 // 'index' is computed by FrameMap::local_stack_pos(index); do not use other parameters as 781 // the index is platform independent; a double stack using indices 2 and 3 has always 782 // index 2. 783 static LIR_Opr stack(int index, BasicType type) { 784 LIR_Opr res; 785 switch (type) { 786 case T_OBJECT: // fall through 787 case T_ARRAY: 788 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 789 LIR_Opr::object_type | 790 LIR_Opr::stack_value | 791 LIR_Opr::single_size); 792 break; 793 794 case T_METADATA: 795 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 796 LIR_Opr::metadata_type | 797 LIR_Opr::stack_value | 798 LIR_Opr::single_size); 799 break; 800 case T_INT: 801 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 802 LIR_Opr::int_type | 803 LIR_Opr::stack_value | 804 LIR_Opr::single_size); 805 break; 806 807 case T_ADDRESS: 808 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 809 LIR_Opr::address_type | 810 LIR_Opr::stack_value | 811 LIR_Opr::single_size); 812 break; 813 814 case T_LONG: 815 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 816 LIR_Opr::long_type | 817 LIR_Opr::stack_value | 818 LIR_Opr::double_size); 819 break; 820 821 case T_FLOAT: 822 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 823 LIR_Opr::float_type | 824 LIR_Opr::stack_value | 825 LIR_Opr::single_size); 826 break; 827 case T_DOUBLE: 828 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 829 LIR_Opr::double_type | 830 LIR_Opr::stack_value | 831 LIR_Opr::double_size); 832 break; 833 834 default: ShouldNotReachHere(); res = illegalOpr; 835 } 836 837 #ifdef ASSERT 838 assert(index >= 0, "index must be positive"); 839 assert(index == (int)res->data(), "conversion check"); 840 841 LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 842 LIR_Opr::stack_value | 843 as_OprType(type) | 844 LIR_Opr::size_for(type)); 845 assert(res == old_res, "old and new method not equal"); 846 #endif 847 848 return res; 849 } 850 851 static LIR_Opr intConst(jint i) { return (LIR_Opr)(new LIR_Const(i)); } 852 static LIR_Opr longConst(jlong l) { return (LIR_Opr)(new LIR_Const(l)); } 853 static LIR_Opr floatConst(jfloat f) { return (LIR_Opr)(new LIR_Const(f)); } 854 static LIR_Opr doubleConst(jdouble d) { return (LIR_Opr)(new LIR_Const(d)); } 855 static LIR_Opr oopConst(jobject o) { return (LIR_Opr)(new LIR_Const(o)); } 856 static LIR_Opr address(LIR_Address* a) { return (LIR_Opr)a; } 857 static LIR_Opr intptrConst(void* p) { return (LIR_Opr)(new LIR_Const(p)); } 858 static LIR_Opr intptrConst(intptr_t v) { return (LIR_Opr)(new LIR_Const((void*)v)); } 859 static LIR_Opr illegal() { return (LIR_Opr)-1; } 860 static LIR_Opr addressConst(jint i) { return (LIR_Opr)(new LIR_Const(i, true)); } 861 static LIR_Opr metadataConst(Metadata* m) { return (LIR_Opr)(new LIR_Const(m)); } 862 863 static LIR_Opr value_type(ValueType* type); 864 }; 865 866 867 //------------------------------------------------------------------------------- 868 // LIR Instructions 869 //------------------------------------------------------------------------------- 870 // 871 // Note: 872 // - every instruction has a result operand 873 // - every instruction has an CodeEmitInfo operand (can be revisited later) 874 // - every instruction has a LIR_OpCode operand 875 // - LIR_OpN, means an instruction that has N input operands 876 // 877 // class hierarchy: 878 // 879 class LIR_Op; 880 class LIR_Op0; 881 class LIR_OpLabel; 882 class LIR_Op1; 883 class LIR_OpBranch; 884 class LIR_OpConvert; 885 class LIR_OpAllocObj; 886 class LIR_OpReturn; 887 class LIR_OpRoundFP; 888 class LIR_Op2; 889 class LIR_OpDelay; 890 class LIR_Op3; 891 class LIR_OpAllocArray; 892 class LIR_Op4; 893 class LIR_OpCall; 894 class LIR_OpJavaCall; 895 class LIR_OpRTCall; 896 class LIR_OpArrayCopy; 897 class LIR_OpUpdateCRC32; 898 class LIR_OpLock; 899 class LIR_OpTypeCheck; 900 class LIR_OpFlattenedArrayCheck; 901 class LIR_OpNullFreeArrayCheck; 902 class LIR_OpSubstitutabilityCheck; 903 class LIR_OpCompareAndSwap; 904 class LIR_OpLoadKlass; 905 class LIR_OpProfileCall; 906 class LIR_OpProfileType; 907 class LIR_OpProfileInlineType; 908 #ifdef ASSERT 909 class LIR_OpAssert; 910 #endif 911 912 // LIR operation codes 913 enum LIR_Code { 914 lir_none 915 , begin_op0 916 , lir_label 917 , lir_nop 918 , lir_std_entry 919 , lir_osr_entry 920 , lir_fpop_raw 921 , lir_breakpoint 922 , lir_rtcall 923 , lir_membar 924 , lir_membar_acquire 925 , lir_membar_release 926 , lir_membar_loadload 927 , lir_membar_storestore 928 , lir_membar_loadstore 929 , lir_membar_storeload 930 , lir_get_thread 931 , lir_on_spin_wait 932 , lir_check_orig_pc 933 , end_op0 934 , begin_op1 935 , lir_fxch 936 , lir_fld 937 , lir_push 938 , lir_pop 939 , lir_null_check 940 , lir_return 941 , lir_leal 942 , lir_move 943 , lir_convert 944 , lir_alloc_object 945 , lir_monaddr 946 , lir_roundfp 947 , lir_sqrt 948 , lir_abs 949 , lir_neg 950 , lir_f2hf 951 , lir_hf2f 952 , lir_safepoint 953 , lir_unwind 954 , lir_load_klass 955 , end_op1 956 , begin_op2 957 , lir_branch 958 , lir_cond_float_branch 959 , lir_cmp 960 , lir_cmp_l2i 961 , lir_ucmp_fd2i 962 , lir_cmp_fd2i 963 , lir_add 964 , lir_sub 965 , lir_mul 966 , lir_div 967 , lir_rem 968 , lir_logic_and 969 , lir_logic_or 970 , lir_logic_xor 971 , lir_shl 972 , lir_shr 973 , lir_ushr 974 , lir_alloc_array 975 , lir_throw 976 , lir_xadd 977 , lir_xchg 978 , end_op2 979 , begin_op3 980 , lir_idiv 981 , lir_irem 982 , lir_fmad 983 , lir_fmaf 984 , end_op3 985 , begin_op4 986 , lir_cmove 987 , end_op4 988 , begin_opJavaCall 989 , lir_static_call 990 , lir_optvirtual_call 991 , lir_icvirtual_call 992 , lir_dynamic_call 993 , end_opJavaCall 994 , begin_opArrayCopy 995 , lir_arraycopy 996 , end_opArrayCopy 997 , begin_opUpdateCRC32 998 , lir_updatecrc32 999 , end_opUpdateCRC32 1000 , begin_opLock 1001 , lir_lock 1002 , lir_unlock 1003 , end_opLock 1004 , begin_delay_slot 1005 , lir_delay_slot 1006 , end_delay_slot 1007 , begin_opTypeCheck 1008 , lir_instanceof 1009 , lir_checkcast 1010 , lir_store_check 1011 , end_opTypeCheck 1012 , begin_opFlattenedArrayCheck 1013 , lir_flat_array_check 1014 , end_opFlattenedArrayCheck 1015 , begin_opNullFreeArrayCheck 1016 , lir_null_free_array_check 1017 , end_opNullFreeArrayCheck 1018 , begin_opSubstitutabilityCheck 1019 , lir_substitutability_check 1020 , end_opSubstitutabilityCheck 1021 , begin_opCompareAndSwap 1022 , lir_cas_long 1023 , lir_cas_obj 1024 , lir_cas_int 1025 , end_opCompareAndSwap 1026 , begin_opMDOProfile 1027 , lir_profile_call 1028 , lir_profile_type 1029 , lir_profile_inline_type 1030 , end_opMDOProfile 1031 , begin_opAssert 1032 , lir_assert 1033 , end_opAssert 1034 #if INCLUDE_ZGC 1035 , begin_opXLoadBarrierTest 1036 , lir_xloadbarrier_test 1037 , end_opXLoadBarrierTest 1038 #endif 1039 }; 1040 1041 1042 enum LIR_Condition { 1043 lir_cond_equal 1044 , lir_cond_notEqual 1045 , lir_cond_less 1046 , lir_cond_lessEqual 1047 , lir_cond_greaterEqual 1048 , lir_cond_greater 1049 , lir_cond_belowEqual 1050 , lir_cond_aboveEqual 1051 , lir_cond_always 1052 , lir_cond_unknown = -1 1053 }; 1054 1055 1056 enum LIR_PatchCode { 1057 lir_patch_none, 1058 lir_patch_low, 1059 lir_patch_high, 1060 lir_patch_normal 1061 }; 1062 1063 1064 enum LIR_MoveKind { 1065 lir_move_normal, 1066 lir_move_volatile, 1067 lir_move_wide, 1068 lir_move_max_flag 1069 }; 1070 1071 1072 // -------------------------------------------------- 1073 // LIR_Op 1074 // -------------------------------------------------- 1075 class LIR_Op: public CompilationResourceObj { 1076 friend class LIR_OpVisitState; 1077 1078 #ifdef ASSERT 1079 private: 1080 const char * _file; 1081 int _line; 1082 #endif 1083 1084 protected: 1085 LIR_Opr _result; 1086 unsigned short _code; 1087 unsigned short _flags; 1088 CodeEmitInfo* _info; 1089 int _id; // value id for register allocation 1090 int _fpu_pop_count; 1091 Instruction* _source; // for debugging 1092 1093 static void print_condition(outputStream* out, LIR_Condition cond) PRODUCT_RETURN; 1094 1095 protected: 1096 static bool is_in_range(LIR_Code test, LIR_Code start, LIR_Code end) { return start < test && test < end; } 1097 1098 public: 1099 LIR_Op() 1100 : 1101 #ifdef ASSERT 1102 _file(nullptr) 1103 , _line(0), 1104 #endif 1105 _result(LIR_OprFact::illegalOpr) 1106 , _code(lir_none) 1107 , _flags(0) 1108 , _info(nullptr) 1109 , _id(-1) 1110 , _fpu_pop_count(0) 1111 , _source(nullptr) {} 1112 1113 LIR_Op(LIR_Code code, LIR_Opr result, CodeEmitInfo* info) 1114 : 1115 #ifdef ASSERT 1116 _file(nullptr) 1117 , _line(0), 1118 #endif 1119 _result(result) 1120 , _code(code) 1121 , _flags(0) 1122 , _info(info) 1123 , _id(-1) 1124 , _fpu_pop_count(0) 1125 , _source(nullptr) {} 1126 1127 CodeEmitInfo* info() const { return _info; } 1128 LIR_Code code() const { return (LIR_Code)_code; } 1129 LIR_Opr result_opr() const { return _result; } 1130 void set_result_opr(LIR_Opr opr) { _result = opr; } 1131 1132 #ifdef ASSERT 1133 void set_file_and_line(const char * file, int line) { 1134 _file = file; 1135 _line = line; 1136 } 1137 #endif 1138 1139 virtual const char * name() const PRODUCT_RETURN_NULL; 1140 virtual void visit(LIR_OpVisitState* state); 1141 1142 int id() const { return _id; } 1143 void set_id(int id) { _id = id; } 1144 1145 // FPU stack simulation helpers -- only used on Intel 1146 void set_fpu_pop_count(int count) { assert(count >= 0 && count <= 1, "currently only 0 and 1 are valid"); _fpu_pop_count = count; } 1147 int fpu_pop_count() const { return _fpu_pop_count; } 1148 bool pop_fpu_stack() { return _fpu_pop_count > 0; } 1149 1150 Instruction* source() const { return _source; } 1151 void set_source(Instruction* ins) { _source = ins; } 1152 1153 virtual void emit_code(LIR_Assembler* masm) = 0; 1154 virtual void print_instr(outputStream* out) const = 0; 1155 virtual void print_on(outputStream* st) const PRODUCT_RETURN; 1156 1157 virtual bool is_patching() { return false; } 1158 virtual LIR_OpCall* as_OpCall() { return nullptr; } 1159 virtual LIR_OpJavaCall* as_OpJavaCall() { return nullptr; } 1160 virtual LIR_OpLabel* as_OpLabel() { return nullptr; } 1161 virtual LIR_OpDelay* as_OpDelay() { return nullptr; } 1162 virtual LIR_OpLock* as_OpLock() { return nullptr; } 1163 virtual LIR_OpAllocArray* as_OpAllocArray() { return nullptr; } 1164 virtual LIR_OpAllocObj* as_OpAllocObj() { return nullptr; } 1165 virtual LIR_OpRoundFP* as_OpRoundFP() { return nullptr; } 1166 virtual LIR_OpBranch* as_OpBranch() { return nullptr; } 1167 virtual LIR_OpReturn* as_OpReturn() { return nullptr; } 1168 virtual LIR_OpRTCall* as_OpRTCall() { return nullptr; } 1169 virtual LIR_OpConvert* as_OpConvert() { return nullptr; } 1170 virtual LIR_Op0* as_Op0() { return nullptr; } 1171 virtual LIR_Op1* as_Op1() { return nullptr; } 1172 virtual LIR_Op2* as_Op2() { return nullptr; } 1173 virtual LIR_Op3* as_Op3() { return nullptr; } 1174 virtual LIR_Op4* as_Op4() { return nullptr; } 1175 virtual LIR_OpArrayCopy* as_OpArrayCopy() { return nullptr; } 1176 virtual LIR_OpUpdateCRC32* as_OpUpdateCRC32() { return nullptr; } 1177 virtual LIR_OpTypeCheck* as_OpTypeCheck() { return nullptr; } 1178 virtual LIR_OpFlattenedArrayCheck* as_OpFlattenedArrayCheck() { return nullptr; } 1179 virtual LIR_OpNullFreeArrayCheck* as_OpNullFreeArrayCheck() { return nullptr; } 1180 virtual LIR_OpSubstitutabilityCheck* as_OpSubstitutabilityCheck() { return nullptr; } 1181 virtual LIR_OpCompareAndSwap* as_OpCompareAndSwap() { return nullptr; } 1182 virtual LIR_OpLoadKlass* as_OpLoadKlass() { return nullptr; } 1183 virtual LIR_OpProfileCall* as_OpProfileCall() { return nullptr; } 1184 virtual LIR_OpProfileType* as_OpProfileType() { return nullptr; } 1185 virtual LIR_OpProfileInlineType* as_OpProfileInlineType() { return nullptr; } 1186 #ifdef ASSERT 1187 virtual LIR_OpAssert* as_OpAssert() { return nullptr; } 1188 #endif 1189 1190 virtual void verify() const {} 1191 }; 1192 1193 // for calls 1194 class LIR_OpCall: public LIR_Op { 1195 friend class LIR_OpVisitState; 1196 1197 protected: 1198 address _addr; 1199 LIR_OprList* _arguments; 1200 protected: 1201 LIR_OpCall(LIR_Code code, address addr, LIR_Opr result, 1202 LIR_OprList* arguments, CodeEmitInfo* info = nullptr) 1203 : LIR_Op(code, result, info) 1204 , _addr(addr) 1205 , _arguments(arguments) {} 1206 1207 public: 1208 address addr() const { return _addr; } 1209 const LIR_OprList* arguments() const { return _arguments; } 1210 virtual LIR_OpCall* as_OpCall() { return this; } 1211 }; 1212 1213 1214 // -------------------------------------------------- 1215 // LIR_OpJavaCall 1216 // -------------------------------------------------- 1217 class LIR_OpJavaCall: public LIR_OpCall { 1218 friend class LIR_OpVisitState; 1219 1220 private: 1221 ciMethod* _method; 1222 LIR_Opr _receiver; 1223 LIR_Opr _method_handle_invoke_SP_save_opr; // Used in LIR_OpVisitState::visit to store the reference to FrameMap::method_handle_invoke_SP_save_opr. 1224 1225 public: 1226 LIR_OpJavaCall(LIR_Code code, ciMethod* method, 1227 LIR_Opr receiver, LIR_Opr result, 1228 address addr, LIR_OprList* arguments, 1229 CodeEmitInfo* info) 1230 : LIR_OpCall(code, addr, result, arguments, info) 1231 , _method(method) 1232 , _receiver(receiver) 1233 , _method_handle_invoke_SP_save_opr(LIR_OprFact::illegalOpr) 1234 { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); } 1235 1236 LIR_OpJavaCall(LIR_Code code, ciMethod* method, 1237 LIR_Opr receiver, LIR_Opr result, intptr_t vtable_offset, 1238 LIR_OprList* arguments, CodeEmitInfo* info) 1239 : LIR_OpCall(code, (address)vtable_offset, result, arguments, info) 1240 , _method(method) 1241 , _receiver(receiver) 1242 , _method_handle_invoke_SP_save_opr(LIR_OprFact::illegalOpr) 1243 { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); } 1244 1245 LIR_Opr receiver() const { return _receiver; } 1246 ciMethod* method() const { return _method; } 1247 1248 // JSR 292 support. 1249 bool is_invokedynamic() const { return code() == lir_dynamic_call; } 1250 bool is_method_handle_invoke() const { 1251 return method()->is_compiled_lambda_form() || // Java-generated lambda form 1252 method()->is_method_handle_intrinsic(); // JVM-generated MH intrinsic 1253 } 1254 1255 virtual void emit_code(LIR_Assembler* masm); 1256 virtual LIR_OpJavaCall* as_OpJavaCall() { return this; } 1257 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1258 1259 bool maybe_return_as_fields(ciInlineKlass** vk = nullptr) const; 1260 }; 1261 1262 // -------------------------------------------------- 1263 // LIR_OpLabel 1264 // -------------------------------------------------- 1265 // Location where a branch can continue 1266 class LIR_OpLabel: public LIR_Op { 1267 friend class LIR_OpVisitState; 1268 1269 private: 1270 Label* _label; 1271 public: 1272 LIR_OpLabel(Label* lbl) 1273 : LIR_Op(lir_label, LIR_OprFact::illegalOpr, nullptr) 1274 , _label(lbl) {} 1275 Label* label() const { return _label; } 1276 1277 virtual void emit_code(LIR_Assembler* masm); 1278 virtual LIR_OpLabel* as_OpLabel() { return this; } 1279 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1280 }; 1281 1282 // LIR_OpArrayCopy 1283 class LIR_OpArrayCopy: public LIR_Op { 1284 friend class LIR_OpVisitState; 1285 1286 private: 1287 ArrayCopyStub* _stub; 1288 LIR_Opr _src; 1289 LIR_Opr _src_pos; 1290 LIR_Opr _dst; 1291 LIR_Opr _dst_pos; 1292 LIR_Opr _length; 1293 LIR_Opr _tmp; 1294 ciArrayKlass* _expected_type; 1295 int _flags; 1296 1297 public: 1298 enum Flags { 1299 src_null_check = 1 << 0, 1300 dst_null_check = 1 << 1, 1301 src_pos_positive_check = 1 << 2, 1302 dst_pos_positive_check = 1 << 3, 1303 length_positive_check = 1 << 4, 1304 src_range_check = 1 << 5, 1305 dst_range_check = 1 << 6, 1306 type_check = 1 << 7, 1307 overlapping = 1 << 8, 1308 unaligned = 1 << 9, 1309 src_objarray = 1 << 10, 1310 dst_objarray = 1 << 11, 1311 always_slow_path = 1 << 12, 1312 src_inlinetype_check = 1 << 13, 1313 dst_inlinetype_check = 1 << 14, 1314 all_flags = (1 << 15) - 1 1315 }; 1316 1317 LIR_OpArrayCopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp, 1318 ciArrayKlass* expected_type, int flags, CodeEmitInfo* info); 1319 1320 LIR_Opr src() const { return _src; } 1321 LIR_Opr src_pos() const { return _src_pos; } 1322 LIR_Opr dst() const { return _dst; } 1323 LIR_Opr dst_pos() const { return _dst_pos; } 1324 LIR_Opr length() const { return _length; } 1325 LIR_Opr tmp() const { return _tmp; } 1326 int flags() const { return _flags; } 1327 ciArrayKlass* expected_type() const { return _expected_type; } 1328 ArrayCopyStub* stub() const { return _stub; } 1329 1330 virtual void emit_code(LIR_Assembler* masm); 1331 virtual LIR_OpArrayCopy* as_OpArrayCopy() { return this; } 1332 void print_instr(outputStream* out) const PRODUCT_RETURN; 1333 }; 1334 1335 // LIR_OpUpdateCRC32 1336 class LIR_OpUpdateCRC32: public LIR_Op { 1337 friend class LIR_OpVisitState; 1338 1339 private: 1340 LIR_Opr _crc; 1341 LIR_Opr _val; 1342 1343 public: 1344 1345 LIR_OpUpdateCRC32(LIR_Opr crc, LIR_Opr val, LIR_Opr res); 1346 1347 LIR_Opr crc() const { return _crc; } 1348 LIR_Opr val() const { return _val; } 1349 1350 virtual void emit_code(LIR_Assembler* masm); 1351 virtual LIR_OpUpdateCRC32* as_OpUpdateCRC32() { return this; } 1352 void print_instr(outputStream* out) const PRODUCT_RETURN; 1353 }; 1354 1355 // -------------------------------------------------- 1356 // LIR_Op0 1357 // -------------------------------------------------- 1358 class LIR_Op0: public LIR_Op { 1359 friend class LIR_OpVisitState; 1360 1361 public: 1362 LIR_Op0(LIR_Code code) 1363 : LIR_Op(code, LIR_OprFact::illegalOpr, nullptr) { assert(is_in_range(code, begin_op0, end_op0), "code check"); } 1364 LIR_Op0(LIR_Code code, LIR_Opr result, CodeEmitInfo* info = nullptr) 1365 : LIR_Op(code, result, info) { assert(is_in_range(code, begin_op0, end_op0), "code check"); } 1366 1367 virtual void emit_code(LIR_Assembler* masm); 1368 virtual LIR_Op0* as_Op0() { return this; } 1369 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1370 }; 1371 1372 1373 // -------------------------------------------------- 1374 // LIR_Op1 1375 // -------------------------------------------------- 1376 1377 class LIR_Op1: public LIR_Op { 1378 friend class LIR_OpVisitState; 1379 1380 protected: 1381 LIR_Opr _opr; // input operand 1382 LIR_Opr _tmp; 1383 BasicType _type; // Operand types 1384 LIR_PatchCode _patch; // only required with patchin (NEEDS_CLEANUP: do we want a special instruction for patching?) 1385 1386 static void print_patch_code(outputStream* out, LIR_PatchCode code); 1387 1388 void set_kind(LIR_MoveKind kind) { 1389 assert(code() == lir_move, "must be"); 1390 _flags = kind; 1391 } 1392 1393 public: 1394 LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result = LIR_OprFact::illegalOpr, BasicType type = T_ILLEGAL, LIR_PatchCode patch = lir_patch_none, CodeEmitInfo* info = nullptr) 1395 : LIR_Op(code, result, info) 1396 , _opr(opr) 1397 , _tmp(LIR_OprFact::illegalOpr) 1398 , _type(type) 1399 , _patch(patch) { assert(is_in_range(code, begin_op1, end_op1), "code check"); } 1400 1401 LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result, LIR_Opr tmp, BasicType type = T_ILLEGAL, LIR_PatchCode patch = lir_patch_none, CodeEmitInfo* info = nullptr) 1402 : LIR_Op(code, result, info) 1403 , _opr(opr) 1404 , _tmp(tmp) 1405 , _type(type) 1406 , _patch(patch) { assert(is_in_range(code, begin_op1, end_op1), "code check"); } 1407 1408 LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result, BasicType type, LIR_PatchCode patch, CodeEmitInfo* info, LIR_MoveKind kind) 1409 : LIR_Op(code, result, info) 1410 , _opr(opr) 1411 , _tmp(LIR_OprFact::illegalOpr) 1412 , _type(type) 1413 , _patch(patch) { 1414 assert(code == lir_move, "must be"); 1415 set_kind(kind); 1416 } 1417 1418 LIR_Op1(LIR_Code code, LIR_Opr opr, CodeEmitInfo* info) 1419 : LIR_Op(code, LIR_OprFact::illegalOpr, info) 1420 , _opr(opr) 1421 , _tmp(LIR_OprFact::illegalOpr) 1422 , _type(T_ILLEGAL) 1423 , _patch(lir_patch_none) { assert(is_in_range(code, begin_op1, end_op1), "code check"); } 1424 1425 LIR_Opr in_opr() const { return _opr; } 1426 LIR_Opr tmp_opr() const { return _tmp; } 1427 LIR_PatchCode patch_code() const { return _patch; } 1428 BasicType type() const { return _type; } 1429 1430 LIR_MoveKind move_kind() const { 1431 assert(code() == lir_move, "must be"); 1432 return (LIR_MoveKind)_flags; 1433 } 1434 1435 virtual bool is_patching() { return _patch != lir_patch_none; } 1436 virtual void emit_code(LIR_Assembler* masm); 1437 virtual LIR_Op1* as_Op1() { return this; } 1438 virtual const char * name() const PRODUCT_RETURN_NULL; 1439 1440 void set_in_opr(LIR_Opr opr) { _opr = opr; } 1441 1442 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1443 virtual void verify() const; 1444 }; 1445 1446 1447 // for runtime calls 1448 class LIR_OpRTCall: public LIR_OpCall { 1449 friend class LIR_OpVisitState; 1450 1451 private: 1452 LIR_Opr _tmp; 1453 public: 1454 LIR_OpRTCall(address addr, LIR_Opr tmp, 1455 LIR_Opr result, LIR_OprList* arguments, CodeEmitInfo* info = nullptr) 1456 : LIR_OpCall(lir_rtcall, addr, result, arguments, info) 1457 , _tmp(tmp) {} 1458 1459 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1460 virtual void emit_code(LIR_Assembler* masm); 1461 virtual LIR_OpRTCall* as_OpRTCall() { return this; } 1462 1463 LIR_Opr tmp() const { return _tmp; } 1464 1465 virtual void verify() const; 1466 }; 1467 1468 1469 1470 class LIR_OpReturn: public LIR_Op1 { 1471 friend class LIR_OpVisitState; 1472 1473 private: 1474 C1SafepointPollStub* _stub; 1475 1476 public: 1477 LIR_OpReturn(LIR_Opr opr); 1478 1479 C1SafepointPollStub* stub() const { return _stub; } 1480 virtual LIR_OpReturn* as_OpReturn() { return this; } 1481 }; 1482 1483 class ConversionStub; 1484 1485 class LIR_OpConvert: public LIR_Op1 { 1486 friend class LIR_OpVisitState; 1487 1488 private: 1489 Bytecodes::Code _bytecode; 1490 ConversionStub* _stub; 1491 1492 public: 1493 LIR_OpConvert(Bytecodes::Code code, LIR_Opr opr, LIR_Opr result, ConversionStub* stub) 1494 : LIR_Op1(lir_convert, opr, result) 1495 , _bytecode(code) 1496 , _stub(stub) {} 1497 1498 Bytecodes::Code bytecode() const { return _bytecode; } 1499 ConversionStub* stub() const { return _stub; } 1500 1501 virtual void emit_code(LIR_Assembler* masm); 1502 virtual LIR_OpConvert* as_OpConvert() { return this; } 1503 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1504 1505 static void print_bytecode(outputStream* out, Bytecodes::Code code) PRODUCT_RETURN; 1506 }; 1507 1508 1509 // LIR_OpAllocObj 1510 class LIR_OpAllocObj : public LIR_Op1 { 1511 friend class LIR_OpVisitState; 1512 1513 private: 1514 LIR_Opr _tmp1; 1515 LIR_Opr _tmp2; 1516 LIR_Opr _tmp3; 1517 LIR_Opr _tmp4; 1518 int _hdr_size; 1519 int _obj_size; 1520 CodeStub* _stub; 1521 bool _init_check; 1522 1523 public: 1524 LIR_OpAllocObj(LIR_Opr klass, LIR_Opr result, 1525 LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, 1526 int hdr_size, int obj_size, bool init_check, CodeStub* stub) 1527 : LIR_Op1(lir_alloc_object, klass, result) 1528 , _tmp1(t1) 1529 , _tmp2(t2) 1530 , _tmp3(t3) 1531 , _tmp4(t4) 1532 , _hdr_size(hdr_size) 1533 , _obj_size(obj_size) 1534 , _stub(stub) 1535 , _init_check(init_check) { } 1536 1537 LIR_Opr klass() const { return in_opr(); } 1538 LIR_Opr obj() const { return result_opr(); } 1539 LIR_Opr tmp1() const { return _tmp1; } 1540 LIR_Opr tmp2() const { return _tmp2; } 1541 LIR_Opr tmp3() const { return _tmp3; } 1542 LIR_Opr tmp4() const { return _tmp4; } 1543 int header_size() const { return _hdr_size; } 1544 int object_size() const { return _obj_size; } 1545 bool init_check() const { return _init_check; } 1546 CodeStub* stub() const { return _stub; } 1547 1548 virtual void emit_code(LIR_Assembler* masm); 1549 virtual LIR_OpAllocObj * as_OpAllocObj () { return this; } 1550 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1551 }; 1552 1553 1554 // LIR_OpRoundFP 1555 class LIR_OpRoundFP : public LIR_Op1 { 1556 friend class LIR_OpVisitState; 1557 1558 private: 1559 LIR_Opr _tmp; 1560 1561 public: 1562 LIR_OpRoundFP(LIR_Opr reg, LIR_Opr stack_loc_temp, LIR_Opr result) 1563 : LIR_Op1(lir_roundfp, reg, result) 1564 , _tmp(stack_loc_temp) {} 1565 1566 LIR_Opr tmp() const { return _tmp; } 1567 virtual LIR_OpRoundFP* as_OpRoundFP() { return this; } 1568 void print_instr(outputStream* out) const PRODUCT_RETURN; 1569 }; 1570 1571 // LIR_OpTypeCheck 1572 class LIR_OpTypeCheck: public LIR_Op { 1573 friend class LIR_OpVisitState; 1574 1575 private: 1576 LIR_Opr _object; 1577 LIR_Opr _array; 1578 ciKlass* _klass; 1579 LIR_Opr _tmp1; 1580 LIR_Opr _tmp2; 1581 LIR_Opr _tmp3; 1582 CodeEmitInfo* _info_for_patch; 1583 CodeEmitInfo* _info_for_exception; 1584 CodeStub* _stub; 1585 ciMethod* _profiled_method; 1586 int _profiled_bci; 1587 bool _should_profile; 1588 bool _fast_check; 1589 bool _need_null_check; 1590 1591 public: 1592 LIR_OpTypeCheck(LIR_Code code, LIR_Opr result, LIR_Opr object, ciKlass* klass, 1593 LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, 1594 CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub, bool need_null_check = true); 1595 LIR_OpTypeCheck(LIR_Code code, LIR_Opr object, LIR_Opr array, 1596 LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception); 1597 1598 LIR_Opr object() const { return _object; } 1599 LIR_Opr array() const { assert(code() == lir_store_check, "not valid"); return _array; } 1600 LIR_Opr tmp1() const { return _tmp1; } 1601 LIR_Opr tmp2() const { return _tmp2; } 1602 LIR_Opr tmp3() const { return _tmp3; } 1603 ciKlass* klass() const { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _klass; } 1604 bool fast_check() const { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _fast_check; } 1605 CodeEmitInfo* info_for_patch() const { return _info_for_patch; } 1606 CodeEmitInfo* info_for_exception() const { return _info_for_exception; } 1607 CodeStub* stub() const { return _stub; } 1608 1609 // MethodData* profiling 1610 void set_profiled_method(ciMethod *method) { _profiled_method = method; } 1611 void set_profiled_bci(int bci) { _profiled_bci = bci; } 1612 void set_should_profile(bool b) { _should_profile = b; } 1613 ciMethod* profiled_method() const { return _profiled_method; } 1614 int profiled_bci() const { return _profiled_bci; } 1615 bool should_profile() const { return _should_profile; } 1616 bool need_null_check() const { return _need_null_check; } 1617 virtual bool is_patching() { return _info_for_patch != nullptr; } 1618 virtual void emit_code(LIR_Assembler* masm); 1619 virtual LIR_OpTypeCheck* as_OpTypeCheck() { return this; } 1620 void print_instr(outputStream* out) const PRODUCT_RETURN; 1621 }; 1622 1623 // LIR_OpFlattenedArrayCheck 1624 class LIR_OpFlattenedArrayCheck: public LIR_Op { 1625 friend class LIR_OpVisitState; 1626 1627 private: 1628 LIR_Opr _array; 1629 LIR_Opr _value; 1630 LIR_Opr _tmp; 1631 CodeStub* _stub; 1632 public: 1633 LIR_OpFlattenedArrayCheck(LIR_Opr array, LIR_Opr value, LIR_Opr tmp, CodeStub* stub); 1634 LIR_Opr array() const { return _array; } 1635 LIR_Opr value() const { return _value; } 1636 LIR_Opr tmp() const { return _tmp; } 1637 CodeStub* stub() const { return _stub; } 1638 1639 virtual void emit_code(LIR_Assembler* masm); 1640 virtual LIR_OpFlattenedArrayCheck* as_OpFlattenedArrayCheck() { return this; } 1641 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1642 }; 1643 1644 // LIR_OpNullFreeArrayCheck 1645 class LIR_OpNullFreeArrayCheck: public LIR_Op { 1646 friend class LIR_OpVisitState; 1647 1648 private: 1649 LIR_Opr _array; 1650 LIR_Opr _tmp; 1651 public: 1652 LIR_OpNullFreeArrayCheck(LIR_Opr array, LIR_Opr tmp); 1653 LIR_Opr array() const { return _array; } 1654 LIR_Opr tmp() const { return _tmp; } 1655 1656 virtual void emit_code(LIR_Assembler* masm); 1657 virtual LIR_OpNullFreeArrayCheck* as_OpNullFreeArrayCheck() { return this; } 1658 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1659 }; 1660 1661 class LIR_OpSubstitutabilityCheck: public LIR_Op { 1662 friend class LIR_OpVisitState; 1663 1664 private: 1665 LIR_Opr _left; 1666 LIR_Opr _right; 1667 LIR_Opr _equal_result; 1668 LIR_Opr _not_equal_result; 1669 LIR_Opr _tmp1; 1670 LIR_Opr _tmp2; 1671 ciKlass* _left_klass; 1672 ciKlass* _right_klass; 1673 LIR_Opr _left_klass_op; 1674 LIR_Opr _right_klass_op; 1675 CodeStub* _stub; 1676 public: 1677 LIR_OpSubstitutabilityCheck(LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr equal_result, LIR_Opr not_equal_result, 1678 LIR_Opr tmp1, LIR_Opr tmp2, 1679 ciKlass* left_klass, ciKlass* right_klass, LIR_Opr left_klass_op, LIR_Opr right_klass_op, 1680 CodeEmitInfo* info, CodeStub* stub); 1681 1682 LIR_Opr left() const { return _left; } 1683 LIR_Opr right() const { return _right; } 1684 LIR_Opr equal_result() const { return _equal_result; } 1685 LIR_Opr not_equal_result() const { return _not_equal_result; } 1686 LIR_Opr tmp1() const { return _tmp1; } 1687 LIR_Opr tmp2() const { return _tmp2; } 1688 ciKlass* left_klass() const { return _left_klass; } 1689 ciKlass* right_klass() const { return _right_klass; } 1690 LIR_Opr left_klass_op() const { return _left_klass_op; } 1691 LIR_Opr right_klass_op() const { return _right_klass_op; } 1692 CodeStub* stub() const { return _stub; } 1693 1694 virtual void emit_code(LIR_Assembler* masm); 1695 virtual LIR_OpSubstitutabilityCheck* as_OpSubstitutabilityCheck() { return this; } 1696 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1697 }; 1698 1699 // LIR_Op2 1700 class LIR_Op2: public LIR_Op { 1701 friend class LIR_OpVisitState; 1702 1703 protected: 1704 LIR_Opr _opr1; 1705 LIR_Opr _opr2; 1706 LIR_Opr _tmp1; 1707 LIR_Opr _tmp2; 1708 LIR_Opr _tmp3; 1709 LIR_Opr _tmp4; 1710 LIR_Opr _tmp5; 1711 LIR_Condition _condition; 1712 BasicType _type; 1713 1714 void verify() const; 1715 1716 public: 1717 LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, CodeEmitInfo* info = nullptr, BasicType type = T_ILLEGAL) 1718 : LIR_Op(code, LIR_OprFact::illegalOpr, info) 1719 , _opr1(opr1) 1720 , _opr2(opr2) 1721 , _tmp1(LIR_OprFact::illegalOpr) 1722 , _tmp2(LIR_OprFact::illegalOpr) 1723 , _tmp3(LIR_OprFact::illegalOpr) 1724 , _tmp4(LIR_OprFact::illegalOpr) 1725 , _tmp5(LIR_OprFact::illegalOpr) 1726 , _condition(condition) 1727 , _type(type) { 1728 assert(code == lir_cmp || code == lir_branch || code == lir_cond_float_branch || code == lir_assert, "code check"); 1729 } 1730 1731 LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) 1732 : LIR_Op(code, result, nullptr) 1733 , _opr1(opr1) 1734 , _opr2(opr2) 1735 , _tmp1(LIR_OprFact::illegalOpr) 1736 , _tmp2(LIR_OprFact::illegalOpr) 1737 , _tmp3(LIR_OprFact::illegalOpr) 1738 , _tmp4(LIR_OprFact::illegalOpr) 1739 , _tmp5(LIR_OprFact::illegalOpr) 1740 , _condition(condition) 1741 , _type(type) { 1742 assert(code == lir_cmove, "code check"); 1743 assert(type != T_ILLEGAL, "cmove should have type"); 1744 } 1745 1746 LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result = LIR_OprFact::illegalOpr, 1747 CodeEmitInfo* info = nullptr, BasicType type = T_ILLEGAL) 1748 : LIR_Op(code, result, info) 1749 , _opr1(opr1) 1750 , _opr2(opr2) 1751 , _tmp1(LIR_OprFact::illegalOpr) 1752 , _tmp2(LIR_OprFact::illegalOpr) 1753 , _tmp3(LIR_OprFact::illegalOpr) 1754 , _tmp4(LIR_OprFact::illegalOpr) 1755 , _tmp5(LIR_OprFact::illegalOpr) 1756 , _condition(lir_cond_unknown) 1757 , _type(type) { 1758 assert(code != lir_cmp && code != lir_branch && code != lir_cond_float_branch && is_in_range(code, begin_op2, end_op2), "code check"); 1759 } 1760 1761 LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, LIR_Opr tmp1, LIR_Opr tmp2 = LIR_OprFact::illegalOpr, 1762 LIR_Opr tmp3 = LIR_OprFact::illegalOpr, LIR_Opr tmp4 = LIR_OprFact::illegalOpr, LIR_Opr tmp5 = LIR_OprFact::illegalOpr) 1763 : LIR_Op(code, result, nullptr) 1764 , _opr1(opr1) 1765 , _opr2(opr2) 1766 , _tmp1(tmp1) 1767 , _tmp2(tmp2) 1768 , _tmp3(tmp3) 1769 , _tmp4(tmp4) 1770 , _tmp5(tmp5) 1771 , _condition(lir_cond_unknown) 1772 , _type(T_ILLEGAL) { 1773 assert(code != lir_cmp && code != lir_branch && code != lir_cond_float_branch && is_in_range(code, begin_op2, end_op2), "code check"); 1774 } 1775 1776 LIR_Opr in_opr1() const { return _opr1; } 1777 LIR_Opr in_opr2() const { return _opr2; } 1778 BasicType type() const { return _type; } 1779 LIR_Opr tmp1_opr() const { return _tmp1; } 1780 LIR_Opr tmp2_opr() const { return _tmp2; } 1781 LIR_Opr tmp3_opr() const { return _tmp3; } 1782 LIR_Opr tmp4_opr() const { return _tmp4; } 1783 LIR_Opr tmp5_opr() const { return _tmp5; } 1784 LIR_Condition condition() const { 1785 assert(code() == lir_cmp || code() == lir_branch || code() == lir_cond_float_branch || code() == lir_assert, "only valid for branch and assert"); return _condition; 1786 } 1787 void set_condition(LIR_Condition condition) { 1788 assert(code() == lir_cmp || code() == lir_branch || code() == lir_cond_float_branch, "only valid for branch"); _condition = condition; 1789 } 1790 1791 void set_in_opr1(LIR_Opr opr) { _opr1 = opr; } 1792 void set_in_opr2(LIR_Opr opr) { _opr2 = opr; } 1793 1794 virtual void emit_code(LIR_Assembler* masm); 1795 virtual LIR_Op2* as_Op2() { return this; } 1796 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1797 }; 1798 1799 class LIR_OpBranch: public LIR_Op2 { 1800 friend class LIR_OpVisitState; 1801 1802 private: 1803 Label* _label; 1804 BlockBegin* _block; // if this is a branch to a block, this is the block 1805 BlockBegin* _ublock; // if this is a float-branch, this is the unordered block 1806 CodeStub* _stub; // if this is a branch to a stub, this is the stub 1807 1808 public: 1809 LIR_OpBranch(LIR_Condition cond, Label* lbl) 1810 : LIR_Op2(lir_branch, cond, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, (CodeEmitInfo*) nullptr) 1811 , _label(lbl) 1812 , _block(nullptr) 1813 , _ublock(nullptr) 1814 , _stub(nullptr) { } 1815 1816 LIR_OpBranch(LIR_Condition cond, BlockBegin* block); 1817 LIR_OpBranch(LIR_Condition cond, CodeStub* stub); 1818 1819 // for unordered comparisons 1820 LIR_OpBranch(LIR_Condition cond, BlockBegin* block, BlockBegin* ublock); 1821 1822 LIR_Condition cond() const { 1823 return condition(); 1824 } 1825 1826 void set_cond(LIR_Condition cond) { 1827 set_condition(cond); 1828 } 1829 1830 Label* label() const { return _label; } 1831 BlockBegin* block() const { return _block; } 1832 BlockBegin* ublock() const { return _ublock; } 1833 CodeStub* stub() const { return _stub; } 1834 1835 void change_block(BlockBegin* b); 1836 void change_ublock(BlockBegin* b); 1837 void negate_cond(); 1838 1839 virtual void emit_code(LIR_Assembler* masm); 1840 virtual LIR_OpBranch* as_OpBranch() { return this; } 1841 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1842 }; 1843 1844 class LIR_OpAllocArray : public LIR_Op { 1845 friend class LIR_OpVisitState; 1846 1847 private: 1848 LIR_Opr _klass; 1849 LIR_Opr _len; 1850 LIR_Opr _tmp1; 1851 LIR_Opr _tmp2; 1852 LIR_Opr _tmp3; 1853 LIR_Opr _tmp4; 1854 CodeStub* _stub; 1855 BasicType _type; 1856 bool _zero_array; 1857 bool _is_null_free; 1858 1859 public: 1860 LIR_OpAllocArray(LIR_Opr klass, LIR_Opr len, LIR_Opr result, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, BasicType type, CodeStub* stub, bool zero_array, bool is_null_free) 1861 : LIR_Op(lir_alloc_array, result, nullptr) 1862 , _klass(klass) 1863 , _len(len) 1864 , _tmp1(t1) 1865 , _tmp2(t2) 1866 , _tmp3(t3) 1867 , _tmp4(t4) 1868 , _stub(stub) 1869 , _type(type) 1870 , _zero_array(zero_array) 1871 , _is_null_free(is_null_free) {} 1872 1873 LIR_Opr klass() const { return _klass; } 1874 LIR_Opr len() const { return _len; } 1875 LIR_Opr obj() const { return result_opr(); } 1876 LIR_Opr tmp1() const { return _tmp1; } 1877 LIR_Opr tmp2() const { return _tmp2; } 1878 LIR_Opr tmp3() const { return _tmp3; } 1879 LIR_Opr tmp4() const { return _tmp4; } 1880 BasicType type() const { return _type; } 1881 CodeStub* stub() const { return _stub; } 1882 bool zero_array() const { return _zero_array; } 1883 bool is_null_free() const { return _is_null_free;} 1884 1885 virtual void emit_code(LIR_Assembler* masm); 1886 virtual LIR_OpAllocArray * as_OpAllocArray () { return this; } 1887 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1888 }; 1889 1890 1891 class LIR_Op3: public LIR_Op { 1892 friend class LIR_OpVisitState; 1893 1894 private: 1895 LIR_Opr _opr1; 1896 LIR_Opr _opr2; 1897 LIR_Opr _opr3; 1898 public: 1899 LIR_Op3(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr opr3, LIR_Opr result, CodeEmitInfo* info = nullptr) 1900 : LIR_Op(code, result, info) 1901 , _opr1(opr1) 1902 , _opr2(opr2) 1903 , _opr3(opr3) { assert(is_in_range(code, begin_op3, end_op3), "code check"); } 1904 LIR_Opr in_opr1() const { return _opr1; } 1905 LIR_Opr in_opr2() const { return _opr2; } 1906 LIR_Opr in_opr3() const { return _opr3; } 1907 1908 virtual void emit_code(LIR_Assembler* masm); 1909 virtual LIR_Op3* as_Op3() { return this; } 1910 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1911 }; 1912 1913 class LIR_Op4: public LIR_Op { 1914 friend class LIR_OpVisitState; 1915 protected: 1916 LIR_Opr _opr1; 1917 LIR_Opr _opr2; 1918 LIR_Opr _opr3; 1919 LIR_Opr _opr4; 1920 LIR_Opr _tmp1; 1921 LIR_Opr _tmp2; 1922 LIR_Opr _tmp3; 1923 LIR_Opr _tmp4; 1924 LIR_Opr _tmp5; 1925 LIR_Condition _condition; 1926 BasicType _type; 1927 1928 public: 1929 LIR_Op4(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr opr3, LIR_Opr opr4, 1930 LIR_Opr result, BasicType type) 1931 : LIR_Op(code, result, nullptr) 1932 , _opr1(opr1) 1933 , _opr2(opr2) 1934 , _opr3(opr3) 1935 , _opr4(opr4) 1936 , _tmp1(LIR_OprFact::illegalOpr) 1937 , _tmp2(LIR_OprFact::illegalOpr) 1938 , _tmp3(LIR_OprFact::illegalOpr) 1939 , _tmp4(LIR_OprFact::illegalOpr) 1940 , _tmp5(LIR_OprFact::illegalOpr) 1941 , _condition(condition) 1942 , _type(type) { 1943 assert(code == lir_cmove, "code check"); 1944 assert(type != T_ILLEGAL, "cmove should have type"); 1945 } 1946 1947 LIR_Opr in_opr1() const { return _opr1; } 1948 LIR_Opr in_opr2() const { return _opr2; } 1949 LIR_Opr in_opr3() const { return _opr3; } 1950 LIR_Opr in_opr4() const { return _opr4; } 1951 BasicType type() const { return _type; } 1952 LIR_Opr tmp1_opr() const { return _tmp1; } 1953 LIR_Opr tmp2_opr() const { return _tmp2; } 1954 LIR_Opr tmp3_opr() const { return _tmp3; } 1955 LIR_Opr tmp4_opr() const { return _tmp4; } 1956 LIR_Opr tmp5_opr() const { return _tmp5; } 1957 1958 LIR_Condition condition() const { return _condition; } 1959 void set_condition(LIR_Condition condition) { _condition = condition; } 1960 1961 void set_in_opr1(LIR_Opr opr) { _opr1 = opr; } 1962 void set_in_opr2(LIR_Opr opr) { _opr2 = opr; } 1963 void set_in_opr3(LIR_Opr opr) { _opr3 = opr; } 1964 void set_in_opr4(LIR_Opr opr) { _opr4 = opr; } 1965 virtual void emit_code(LIR_Assembler* masm); 1966 virtual LIR_Op4* as_Op4() { return this; } 1967 1968 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1969 }; 1970 1971 //-------------------------------- 1972 class LabelObj: public CompilationResourceObj { 1973 private: 1974 Label _label; 1975 public: 1976 LabelObj() {} 1977 Label* label() { return &_label; } 1978 }; 1979 1980 1981 class LIR_OpLock: public LIR_Op { 1982 friend class LIR_OpVisitState; 1983 1984 private: 1985 LIR_Opr _hdr; 1986 LIR_Opr _obj; 1987 LIR_Opr _lock; 1988 LIR_Opr _scratch; 1989 CodeStub* _stub; 1990 CodeStub* _throw_ie_stub; 1991 public: 1992 LIR_OpLock(LIR_Code code, LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info, CodeStub* throw_ie_stub=nullptr) 1993 : LIR_Op(code, LIR_OprFact::illegalOpr, info) 1994 , _hdr(hdr) 1995 , _obj(obj) 1996 , _lock(lock) 1997 , _scratch(scratch) 1998 , _stub(stub) 1999 , _throw_ie_stub(throw_ie_stub) {} 2000 2001 LIR_Opr hdr_opr() const { return _hdr; } 2002 LIR_Opr obj_opr() const { return _obj; } 2003 LIR_Opr lock_opr() const { return _lock; } 2004 LIR_Opr scratch_opr() const { return _scratch; } 2005 CodeStub* stub() const { return _stub; } 2006 CodeStub* throw_ie_stub() const { return _throw_ie_stub; } 2007 2008 virtual void emit_code(LIR_Assembler* masm); 2009 virtual LIR_OpLock* as_OpLock() { return this; } 2010 void print_instr(outputStream* out) const PRODUCT_RETURN; 2011 }; 2012 2013 class LIR_OpLoadKlass: public LIR_Op { 2014 friend class LIR_OpVisitState; 2015 2016 private: 2017 LIR_Opr _obj; 2018 public: 2019 LIR_OpLoadKlass(LIR_Opr obj, LIR_Opr result, CodeEmitInfo* info) 2020 : LIR_Op(lir_load_klass, result, info) 2021 , _obj(obj) 2022 {} 2023 2024 LIR_Opr obj() const { return _obj; } 2025 2026 virtual LIR_OpLoadKlass* as_OpLoadKlass() { return this; } 2027 virtual void emit_code(LIR_Assembler* masm); 2028 void print_instr(outputStream* out) const PRODUCT_RETURN; 2029 }; 2030 2031 class LIR_OpDelay: public LIR_Op { 2032 friend class LIR_OpVisitState; 2033 2034 private: 2035 LIR_Op* _op; 2036 2037 public: 2038 LIR_OpDelay(LIR_Op* op, CodeEmitInfo* info): 2039 LIR_Op(lir_delay_slot, LIR_OprFact::illegalOpr, info), 2040 _op(op) { 2041 assert(op->code() == lir_nop, "should be filling with nops"); 2042 } 2043 virtual void emit_code(LIR_Assembler* masm); 2044 virtual LIR_OpDelay* as_OpDelay() { return this; } 2045 void print_instr(outputStream* out) const PRODUCT_RETURN; 2046 LIR_Op* delay_op() const { return _op; } 2047 CodeEmitInfo* call_info() const { return info(); } 2048 }; 2049 2050 #ifdef ASSERT 2051 // LIR_OpAssert 2052 class LIR_OpAssert : public LIR_Op2 { 2053 friend class LIR_OpVisitState; 2054 2055 private: 2056 const char* _msg; 2057 bool _halt; 2058 2059 public: 2060 LIR_OpAssert(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, const char* msg, bool halt) 2061 : LIR_Op2(lir_assert, condition, opr1, opr2) 2062 , _msg(msg) 2063 , _halt(halt) { 2064 } 2065 2066 const char* msg() const { return _msg; } 2067 bool halt() const { return _halt; } 2068 2069 virtual void emit_code(LIR_Assembler* masm); 2070 virtual LIR_OpAssert* as_OpAssert() { return this; } 2071 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 2072 }; 2073 #endif 2074 2075 // LIR_OpCompareAndSwap 2076 class LIR_OpCompareAndSwap : public LIR_Op { 2077 friend class LIR_OpVisitState; 2078 2079 private: 2080 LIR_Opr _addr; 2081 LIR_Opr _cmp_value; 2082 LIR_Opr _new_value; 2083 LIR_Opr _tmp1; 2084 LIR_Opr _tmp2; 2085 2086 public: 2087 LIR_OpCompareAndSwap(LIR_Code code, LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value, 2088 LIR_Opr t1, LIR_Opr t2, LIR_Opr result) 2089 : LIR_Op(code, result, nullptr) // no result, no info 2090 , _addr(addr) 2091 , _cmp_value(cmp_value) 2092 , _new_value(new_value) 2093 , _tmp1(t1) 2094 , _tmp2(t2) { } 2095 2096 LIR_Opr addr() const { return _addr; } 2097 LIR_Opr cmp_value() const { return _cmp_value; } 2098 LIR_Opr new_value() const { return _new_value; } 2099 LIR_Opr tmp1() const { return _tmp1; } 2100 LIR_Opr tmp2() const { return _tmp2; } 2101 2102 virtual void emit_code(LIR_Assembler* masm); 2103 virtual LIR_OpCompareAndSwap * as_OpCompareAndSwap () { return this; } 2104 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 2105 }; 2106 2107 // LIR_OpProfileCall 2108 class LIR_OpProfileCall : public LIR_Op { 2109 friend class LIR_OpVisitState; 2110 2111 private: 2112 ciMethod* _profiled_method; 2113 int _profiled_bci; 2114 ciMethod* _profiled_callee; 2115 LIR_Opr _mdo; 2116 LIR_Opr _recv; 2117 LIR_Opr _tmp1; 2118 ciKlass* _known_holder; 2119 2120 public: 2121 // Destroys recv 2122 LIR_OpProfileCall(ciMethod* profiled_method, int profiled_bci, ciMethod* profiled_callee, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* known_holder) 2123 : LIR_Op(lir_profile_call, LIR_OprFact::illegalOpr, nullptr) // no result, no info 2124 , _profiled_method(profiled_method) 2125 , _profiled_bci(profiled_bci) 2126 , _profiled_callee(profiled_callee) 2127 , _mdo(mdo) 2128 , _recv(recv) 2129 , _tmp1(t1) 2130 , _known_holder(known_holder) { } 2131 2132 ciMethod* profiled_method() const { return _profiled_method; } 2133 int profiled_bci() const { return _profiled_bci; } 2134 ciMethod* profiled_callee() const { return _profiled_callee; } 2135 LIR_Opr mdo() const { return _mdo; } 2136 LIR_Opr recv() const { return _recv; } 2137 LIR_Opr tmp1() const { return _tmp1; } 2138 ciKlass* known_holder() const { return _known_holder; } 2139 2140 virtual void emit_code(LIR_Assembler* masm); 2141 virtual LIR_OpProfileCall* as_OpProfileCall() { return this; } 2142 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 2143 bool should_profile_receiver_type() const { 2144 bool callee_is_static = _profiled_callee->is_loaded() && _profiled_callee->is_static(); 2145 bool callee_is_private = _profiled_callee->is_loaded() && _profiled_callee->is_private(); 2146 Bytecodes::Code bc = _profiled_method->java_code_at_bci(_profiled_bci); 2147 bool call_is_virtual = (bc == Bytecodes::_invokevirtual && !callee_is_private) || bc == Bytecodes::_invokeinterface; 2148 return C1ProfileVirtualCalls && call_is_virtual && !callee_is_static; 2149 } 2150 }; 2151 2152 // LIR_OpProfileType 2153 class LIR_OpProfileType : public LIR_Op { 2154 friend class LIR_OpVisitState; 2155 2156 private: 2157 LIR_Opr _mdp; 2158 LIR_Opr _obj; 2159 LIR_Opr _tmp; 2160 ciKlass* _exact_klass; // non null if we know the klass statically (no need to load it from _obj) 2161 intptr_t _current_klass; // what the profiling currently reports 2162 bool _not_null; // true if we know statically that _obj cannot be null 2163 bool _no_conflict; // true if we're profling parameters, _exact_klass is not null and we know 2164 // _exact_klass it the only possible type for this parameter in any context. 2165 2166 public: 2167 // Destroys recv 2168 LIR_OpProfileType(LIR_Opr mdp, LIR_Opr obj, ciKlass* exact_klass, intptr_t current_klass, LIR_Opr tmp, bool not_null, bool no_conflict) 2169 : LIR_Op(lir_profile_type, LIR_OprFact::illegalOpr, nullptr) // no result, no info 2170 , _mdp(mdp) 2171 , _obj(obj) 2172 , _tmp(tmp) 2173 , _exact_klass(exact_klass) 2174 , _current_klass(current_klass) 2175 , _not_null(not_null) 2176 , _no_conflict(no_conflict) { } 2177 2178 LIR_Opr mdp() const { return _mdp; } 2179 LIR_Opr obj() const { return _obj; } 2180 LIR_Opr tmp() const { return _tmp; } 2181 ciKlass* exact_klass() const { return _exact_klass; } 2182 intptr_t current_klass() const { return _current_klass; } 2183 bool not_null() const { return _not_null; } 2184 bool no_conflict() const { return _no_conflict; } 2185 2186 virtual void emit_code(LIR_Assembler* masm); 2187 virtual LIR_OpProfileType* as_OpProfileType() { return this; } 2188 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 2189 }; 2190 2191 // LIR_OpProfileInlineType 2192 class LIR_OpProfileInlineType : public LIR_Op { 2193 friend class LIR_OpVisitState; 2194 2195 private: 2196 LIR_Opr _mdp; 2197 LIR_Opr _obj; 2198 int _flag; 2199 LIR_Opr _tmp; 2200 bool _not_null; // true if we know statically that _obj cannot be null 2201 2202 public: 2203 // Destroys recv 2204 LIR_OpProfileInlineType(LIR_Opr mdp, LIR_Opr obj, int flag, LIR_Opr tmp, bool not_null) 2205 : LIR_Op(lir_profile_inline_type, LIR_OprFact::illegalOpr, nullptr) // no result, no info 2206 , _mdp(mdp) 2207 , _obj(obj) 2208 , _flag(flag) 2209 , _tmp(tmp) 2210 , _not_null(not_null) { } 2211 2212 LIR_Opr mdp() const { return _mdp; } 2213 LIR_Opr obj() const { return _obj; } 2214 int flag() const { return _flag; } 2215 LIR_Opr tmp() const { return _tmp; } 2216 bool not_null() const { return _not_null; } 2217 2218 virtual void emit_code(LIR_Assembler* masm); 2219 virtual LIR_OpProfileInlineType* as_OpProfileInlineType() { return this; } 2220 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 2221 }; 2222 2223 class LIR_InsertionBuffer; 2224 2225 //--------------------------------LIR_List--------------------------------------------------- 2226 // Maintains a list of LIR instructions (one instance of LIR_List per basic block) 2227 // The LIR instructions are appended by the LIR_List class itself; 2228 // 2229 // Notes: 2230 // - all offsets are(should be) in bytes 2231 // - local positions are specified with an offset, with offset 0 being local 0 2232 2233 class LIR_List: public CompilationResourceObj { 2234 private: 2235 LIR_OpList _operations; 2236 2237 Compilation* _compilation; 2238 #ifndef PRODUCT 2239 BlockBegin* _block; 2240 #endif 2241 #ifdef ASSERT 2242 const char * _file; 2243 int _line; 2244 #endif 2245 #ifdef RISCV 2246 LIR_Opr _cmp_opr1; 2247 LIR_Opr _cmp_opr2; 2248 #endif 2249 2250 public: 2251 void append(LIR_Op* op) { 2252 if (op->source() == nullptr) 2253 op->set_source(_compilation->current_instruction()); 2254 #ifndef PRODUCT 2255 if (PrintIRWithLIR) { 2256 _compilation->maybe_print_current_instruction(); 2257 op->print(); tty->cr(); 2258 } 2259 #endif // PRODUCT 2260 2261 #ifdef RISCV 2262 set_cmp_oprs(op); 2263 // lir_cmp set cmp oprs only on riscv 2264 if (op->code() == lir_cmp) return; 2265 #endif 2266 2267 _operations.append(op); 2268 2269 #ifdef ASSERT 2270 op->verify(); 2271 op->set_file_and_line(_file, _line); 2272 _file = nullptr; 2273 _line = 0; 2274 #endif 2275 } 2276 2277 LIR_List(Compilation* compilation, BlockBegin* block = nullptr); 2278 2279 #ifdef ASSERT 2280 void set_file_and_line(const char * file, int line); 2281 #endif 2282 2283 #ifdef RISCV 2284 void set_cmp_oprs(LIR_Op* op); 2285 #endif 2286 2287 //---------- accessors --------------- 2288 LIR_OpList* instructions_list() { return &_operations; } 2289 int length() const { return _operations.length(); } 2290 LIR_Op* at(int i) const { return _operations.at(i); } 2291 2292 NOT_PRODUCT(BlockBegin* block() const { return _block; }); 2293 2294 // insert LIR_Ops in buffer to right places in LIR_List 2295 void append(LIR_InsertionBuffer* buffer); 2296 2297 //---------- mutators --------------- 2298 void insert_before(int i, LIR_List* op_list) { _operations.insert_before(i, op_list->instructions_list()); } 2299 void insert_before(int i, LIR_Op* op) { _operations.insert_before(i, op); } 2300 void remove_at(int i) { _operations.remove_at(i); } 2301 2302 //---------- printing ------------- 2303 void print_instructions() PRODUCT_RETURN; 2304 2305 2306 //---------- instructions ------------- 2307 void call_opt_virtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result, 2308 address dest, LIR_OprList* arguments, 2309 CodeEmitInfo* info) { 2310 append(new LIR_OpJavaCall(lir_optvirtual_call, method, receiver, result, dest, arguments, info)); 2311 } 2312 void call_static(ciMethod* method, LIR_Opr result, 2313 address dest, LIR_OprList* arguments, CodeEmitInfo* info) { 2314 append(new LIR_OpJavaCall(lir_static_call, method, LIR_OprFact::illegalOpr, result, dest, arguments, info)); 2315 } 2316 void call_icvirtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result, 2317 address dest, LIR_OprList* arguments, CodeEmitInfo* info) { 2318 append(new LIR_OpJavaCall(lir_icvirtual_call, method, receiver, result, dest, arguments, info)); 2319 } 2320 void call_dynamic(ciMethod* method, LIR_Opr receiver, LIR_Opr result, 2321 address dest, LIR_OprList* arguments, CodeEmitInfo* info) { 2322 append(new LIR_OpJavaCall(lir_dynamic_call, method, receiver, result, dest, arguments, info)); 2323 } 2324 2325 void get_thread(LIR_Opr result) { append(new LIR_Op0(lir_get_thread, result)); } 2326 void membar() { append(new LIR_Op0(lir_membar)); } 2327 void membar_acquire() { append(new LIR_Op0(lir_membar_acquire)); } 2328 void membar_release() { append(new LIR_Op0(lir_membar_release)); } 2329 void membar_loadload() { append(new LIR_Op0(lir_membar_loadload)); } 2330 void membar_storestore() { append(new LIR_Op0(lir_membar_storestore)); } 2331 void membar_loadstore() { append(new LIR_Op0(lir_membar_loadstore)); } 2332 void membar_storeload() { append(new LIR_Op0(lir_membar_storeload)); } 2333 2334 void nop() { append(new LIR_Op0(lir_nop)); } 2335 2336 void std_entry(LIR_Opr receiver) { append(new LIR_Op0(lir_std_entry, receiver)); } 2337 void osr_entry(LIR_Opr osrPointer) { append(new LIR_Op0(lir_osr_entry, osrPointer)); } 2338 2339 void on_spin_wait() { append(new LIR_Op0(lir_on_spin_wait)); } 2340 2341 void branch_destination(Label* lbl) { append(new LIR_OpLabel(lbl)); } 2342 2343 void leal(LIR_Opr from, LIR_Opr result_reg, LIR_PatchCode patch_code = lir_patch_none, CodeEmitInfo* info = nullptr) { append(new LIR_Op1(lir_leal, from, result_reg, T_ILLEGAL, patch_code, info)); } 2344 2345 // result is a stack location for old backend and vreg for UseLinearScan 2346 // stack_loc_temp is an illegal register for old backend 2347 void roundfp(LIR_Opr reg, LIR_Opr stack_loc_temp, LIR_Opr result) { append(new LIR_OpRoundFP(reg, stack_loc_temp, result)); } 2348 void move(LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = nullptr) { append(new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); } 2349 void move(LIR_Address* src, LIR_Opr dst, CodeEmitInfo* info = nullptr) { append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, src->type(), lir_patch_none, info)); } 2350 void move(LIR_Opr src, LIR_Address* dst, CodeEmitInfo* info = nullptr) { append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), dst->type(), lir_patch_none, info)); } 2351 void move_wide(LIR_Address* src, LIR_Opr dst, CodeEmitInfo* info = nullptr) { 2352 if (UseCompressedOops) { 2353 append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, src->type(), lir_patch_none, info, lir_move_wide)); 2354 } else { 2355 move(src, dst, info); 2356 } 2357 } 2358 void move_wide(LIR_Opr src, LIR_Address* dst, CodeEmitInfo* info = nullptr) { 2359 if (UseCompressedOops) { 2360 append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), dst->type(), lir_patch_none, info, lir_move_wide)); 2361 } else { 2362 move(src, dst, info); 2363 } 2364 } 2365 void volatile_move(LIR_Opr src, LIR_Opr dst, BasicType type, CodeEmitInfo* info = nullptr, LIR_PatchCode patch_code = lir_patch_none) { append(new LIR_Op1(lir_move, src, dst, type, patch_code, info, lir_move_volatile)); } 2366 2367 void oop2reg (jobject o, LIR_Opr reg) { assert(reg->type() == T_OBJECT, "bad reg"); append(new LIR_Op1(lir_move, LIR_OprFact::oopConst(o), reg)); } 2368 void oop2reg_patch(jobject o, LIR_Opr reg, CodeEmitInfo* info); 2369 2370 void metadata2reg (Metadata* o, LIR_Opr reg) { assert(reg->type() == T_METADATA, "bad reg"); append(new LIR_Op1(lir_move, LIR_OprFact::metadataConst(o), reg)); } 2371 void klass2reg_patch(Metadata* o, LIR_Opr reg, CodeEmitInfo* info); 2372 2373 void safepoint(LIR_Opr tmp, CodeEmitInfo* info) { append(new LIR_Op1(lir_safepoint, tmp, info)); } 2374 void return_op(LIR_Opr result) { append(new LIR_OpReturn(result)); } 2375 2376 void convert(Bytecodes::Code code, LIR_Opr left, LIR_Opr dst, ConversionStub* stub = nullptr/*, bool is_32bit = false*/) { append(new LIR_OpConvert(code, left, dst, stub)); } 2377 2378 void logical_and (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_and, left, right, dst)); } 2379 void logical_or (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_or, left, right, dst)); } 2380 void logical_xor (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_xor, left, right, dst)); } 2381 2382 void null_check(LIR_Opr opr, CodeEmitInfo* info, bool deoptimize_on_null = false); 2383 void throw_exception(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) { 2384 append(new LIR_Op2(lir_throw, exceptionPC, exceptionOop, LIR_OprFact::illegalOpr, info)); 2385 } 2386 void unwind_exception(LIR_Opr exceptionOop) { 2387 append(new LIR_Op1(lir_unwind, exceptionOop)); 2388 } 2389 2390 void push(LIR_Opr opr) { append(new LIR_Op1(lir_push, opr)); } 2391 void pop(LIR_Opr reg) { append(new LIR_Op1(lir_pop, reg)); } 2392 2393 void cmp(LIR_Condition condition, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info = nullptr) { 2394 append(new LIR_Op2(lir_cmp, condition, left, right, info)); 2395 } 2396 void cmp(LIR_Condition condition, LIR_Opr left, int right, CodeEmitInfo* info = nullptr) { 2397 cmp(condition, left, LIR_OprFact::intConst(right), info); 2398 } 2399 2400 void cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info); 2401 void cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Address* addr, CodeEmitInfo* info); 2402 2403 void cmove(LIR_Condition condition, LIR_Opr src1, LIR_Opr src2, LIR_Opr dst, BasicType type, 2404 LIR_Opr cmp_opr1 = LIR_OprFact::illegalOpr, LIR_Opr cmp_opr2 = LIR_OprFact::illegalOpr) { 2405 append(new LIR_Op4(lir_cmove, condition, src1, src2, cmp_opr1, cmp_opr2, dst, type)); 2406 } 2407 2408 void cas_long(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value, 2409 LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr); 2410 void cas_obj(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value, 2411 LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr); 2412 void cas_int(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value, 2413 LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr); 2414 2415 void abs (LIR_Opr from, LIR_Opr to, LIR_Opr tmp) { append(new LIR_Op1(lir_abs , from, to, tmp)); } 2416 void negate(LIR_Opr from, LIR_Opr to, LIR_Opr tmp = LIR_OprFact::illegalOpr) { append(new LIR_Op1(lir_neg, from, to, tmp)); } 2417 void sqrt(LIR_Opr from, LIR_Opr to, LIR_Opr tmp) { append(new LIR_Op1(lir_sqrt, from, to, tmp)); } 2418 void fmad(LIR_Opr from, LIR_Opr from1, LIR_Opr from2, LIR_Opr to) { append(new LIR_Op3(lir_fmad, from, from1, from2, to)); } 2419 void fmaf(LIR_Opr from, LIR_Opr from1, LIR_Opr from2, LIR_Opr to) { append(new LIR_Op3(lir_fmaf, from, from1, from2, to)); } 2420 void f2hf(LIR_Opr from, LIR_Opr to, LIR_Opr tmp) { append(new LIR_Op1(lir_f2hf, from, to, tmp)); } 2421 void hf2f(LIR_Opr from, LIR_Opr to, LIR_Opr tmp) { append(new LIR_Op1(lir_hf2f, from, to, tmp)); } 2422 2423 void add (LIR_Opr left, LIR_Opr right, LIR_Opr res) { append(new LIR_Op2(lir_add, left, right, res)); } 2424 void sub (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = nullptr) { append(new LIR_Op2(lir_sub, left, right, res, info)); } 2425 void mul (LIR_Opr left, LIR_Opr right, LIR_Opr res) { append(new LIR_Op2(lir_mul, left, right, res)); } 2426 void mul (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_mul, left, right, res, tmp)); } 2427 void div (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = nullptr) { append(new LIR_Op2(lir_div, left, right, res, info)); } 2428 void div (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_div, left, right, res, tmp)); } 2429 void rem (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = nullptr) { append(new LIR_Op2(lir_rem, left, right, res, info)); } 2430 2431 void volatile_load_mem_reg(LIR_Address* address, LIR_Opr dst, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none); 2432 void volatile_load_unsafe_reg(LIR_Opr base, LIR_Opr offset, LIR_Opr dst, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code); 2433 2434 void load(LIR_Address* addr, LIR_Opr src, CodeEmitInfo* info = nullptr, LIR_PatchCode patch_code = lir_patch_none); 2435 2436 void store_mem_int(jint v, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none); 2437 void store_mem_oop(jobject o, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none); 2438 void store(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info = nullptr, LIR_PatchCode patch_code = lir_patch_none); 2439 void volatile_store_mem_reg(LIR_Opr src, LIR_Address* address, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none); 2440 void volatile_store_unsafe_reg(LIR_Opr src, LIR_Opr base, LIR_Opr offset, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code); 2441 2442 void idiv(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info); 2443 void idiv(LIR_Opr left, int right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info); 2444 void irem(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info); 2445 void irem(LIR_Opr left, int right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info); 2446 2447 void allocate_object(LIR_Opr dst, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, int header_size, int object_size, LIR_Opr klass, bool init_check, CodeStub* stub); 2448 void allocate_array(LIR_Opr dst, LIR_Opr len, LIR_Opr t1,LIR_Opr t2, LIR_Opr t3,LIR_Opr t4, BasicType type, LIR_Opr klass, CodeStub* stub, bool zero_array = true, bool is_null_free = false); 2449 2450 // jump is an unconditional branch 2451 void jump(BlockBegin* block) { 2452 append(new LIR_OpBranch(lir_cond_always, block)); 2453 } 2454 void jump(CodeStub* stub) { 2455 append(new LIR_OpBranch(lir_cond_always, stub)); 2456 } 2457 void branch(LIR_Condition cond, Label* lbl) { 2458 append(new LIR_OpBranch(cond, lbl)); 2459 } 2460 // Should not be used for fp comparisons 2461 void branch(LIR_Condition cond, BlockBegin* block) { 2462 append(new LIR_OpBranch(cond, block)); 2463 } 2464 // Should not be used for fp comparisons 2465 void branch(LIR_Condition cond, CodeStub* stub) { 2466 append(new LIR_OpBranch(cond, stub)); 2467 } 2468 // Should only be used for fp comparisons 2469 void branch(LIR_Condition cond, BlockBegin* block, BlockBegin* unordered) { 2470 append(new LIR_OpBranch(cond, block, unordered)); 2471 } 2472 2473 void shift_left(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp); 2474 void shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp); 2475 void unsigned_shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp); 2476 2477 void shift_left(LIR_Opr value, int count, LIR_Opr dst) { shift_left(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); } 2478 void shift_right(LIR_Opr value, int count, LIR_Opr dst) { shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); } 2479 void unsigned_shift_right(LIR_Opr value, int count, LIR_Opr dst) { unsigned_shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); } 2480 2481 void lcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_cmp_l2i, left, right, dst)); } 2482 void fcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst, bool is_unordered_less); 2483 2484 void call_runtime_leaf(address routine, LIR_Opr tmp, LIR_Opr result, LIR_OprList* arguments) { 2485 append(new LIR_OpRTCall(routine, tmp, result, arguments)); 2486 } 2487 2488 void call_runtime(address routine, LIR_Opr tmp, LIR_Opr result, 2489 LIR_OprList* arguments, CodeEmitInfo* info) { 2490 append(new LIR_OpRTCall(routine, tmp, result, arguments, info)); 2491 } 2492 2493 void load_stack_address_monitor(int monitor_ix, LIR_Opr dst) { append(new LIR_Op1(lir_monaddr, LIR_OprFact::intConst(monitor_ix), dst)); } 2494 void unlock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub); 2495 void lock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info, CodeStub* throw_ie_stub=nullptr); 2496 2497 void breakpoint() { append(new LIR_Op0(lir_breakpoint)); } 2498 2499 void arraycopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp, ciArrayKlass* expected_type, int flags, CodeEmitInfo* info) { append(new LIR_OpArrayCopy(src, src_pos, dst, dst_pos, length, tmp, expected_type, flags, info)); } 2500 2501 void update_crc32(LIR_Opr crc, LIR_Opr val, LIR_Opr res) { append(new LIR_OpUpdateCRC32(crc, val, res)); } 2502 2503 void instanceof(LIR_Opr result, LIR_Opr object, ciKlass* klass, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, CodeEmitInfo* info_for_patch, ciMethod* profiled_method, int profiled_bci); 2504 void store_check(LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception, ciMethod* profiled_method, int profiled_bci); 2505 void check_flat_array(LIR_Opr array, LIR_Opr value, LIR_Opr tmp, CodeStub* stub); 2506 void check_null_free_array(LIR_Opr array, LIR_Opr tmp); 2507 void substitutability_check(LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr equal_result, LIR_Opr not_equal_result, 2508 LIR_Opr tmp1, LIR_Opr tmp2, 2509 ciKlass* left_klass, ciKlass* right_klass, LIR_Opr left_klass_op, LIR_Opr right_klass_op, 2510 CodeEmitInfo* info, CodeStub* stub); 2511 2512 void checkcast (LIR_Opr result, LIR_Opr object, ciKlass* klass, 2513 LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, 2514 CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub, 2515 ciMethod* profiled_method, int profiled_bci, bool is_null_free); 2516 // MethodData* profiling 2517 void profile_call(ciMethod* method, int bci, ciMethod* callee, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* cha_klass) { 2518 append(new LIR_OpProfileCall(method, bci, callee, mdo, recv, t1, cha_klass)); 2519 } 2520 void profile_type(LIR_Address* mdp, LIR_Opr obj, ciKlass* exact_klass, intptr_t current_klass, LIR_Opr tmp, bool not_null, bool no_conflict) { 2521 append(new LIR_OpProfileType(LIR_OprFact::address(mdp), obj, exact_klass, current_klass, tmp, not_null, no_conflict)); 2522 } 2523 void profile_inline_type(LIR_Address* mdp, LIR_Opr obj, int flag, LIR_Opr tmp, bool not_null) { 2524 append(new LIR_OpProfileInlineType(LIR_OprFact::address(mdp), obj, flag, tmp, not_null)); 2525 } 2526 2527 void xadd(LIR_Opr src, LIR_Opr add, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_xadd, src, add, res, tmp)); } 2528 void xchg(LIR_Opr src, LIR_Opr set, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_xchg, src, set, res, tmp)); } 2529 2530 void load_klass(LIR_Opr obj, LIR_Opr result, CodeEmitInfo* info) { append(new LIR_OpLoadKlass(obj, result, info)); } 2531 2532 #ifdef ASSERT 2533 void lir_assert(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, const char* msg, bool halt) { append(new LIR_OpAssert(condition, opr1, opr2, msg, halt)); } 2534 #endif 2535 }; 2536 2537 void print_LIR(BlockList* blocks); 2538 2539 class LIR_InsertionBuffer : public CompilationResourceObj { 2540 private: 2541 LIR_List* _lir; // the lir list where ops of this buffer should be inserted later (null when uninitialized) 2542 2543 // list of insertion points. index and count are stored alternately: 2544 // _index_and_count[i * 2]: the index into lir list where "count" ops should be inserted 2545 // _index_and_count[i * 2 + 1]: the number of ops to be inserted at index 2546 intStack _index_and_count; 2547 2548 // the LIR_Ops to be inserted 2549 LIR_OpList _ops; 2550 2551 void append_new(int index, int count) { _index_and_count.append(index); _index_and_count.append(count); } 2552 void set_index_at(int i, int value) { _index_and_count.at_put((i << 1), value); } 2553 void set_count_at(int i, int value) { _index_and_count.at_put((i << 1) + 1, value); } 2554 2555 #ifdef ASSERT 2556 void verify(); 2557 #endif 2558 public: 2559 LIR_InsertionBuffer() : _lir(nullptr), _index_and_count(8), _ops(8) { } 2560 2561 // must be called before using the insertion buffer 2562 void init(LIR_List* lir) { assert(!initialized(), "already initialized"); _lir = lir; _index_and_count.clear(); _ops.clear(); } 2563 bool initialized() const { return _lir != nullptr; } 2564 // called automatically when the buffer is appended to the LIR_List 2565 void finish() { _lir = nullptr; } 2566 2567 // accessors 2568 LIR_List* lir_list() const { return _lir; } 2569 int number_of_insertion_points() const { return _index_and_count.length() >> 1; } 2570 int index_at(int i) const { return _index_and_count.at((i << 1)); } 2571 int count_at(int i) const { return _index_and_count.at((i << 1) + 1); } 2572 2573 int number_of_ops() const { return _ops.length(); } 2574 LIR_Op* op_at(int i) const { return _ops.at(i); } 2575 2576 // append an instruction to the buffer 2577 void append(int index, LIR_Op* op); 2578 2579 // instruction 2580 void move(int index, LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = nullptr) { append(index, new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); } 2581 }; 2582 2583 2584 // 2585 // LIR_OpVisitState is used for manipulating LIR_Ops in an abstract way. 2586 // Calling a LIR_Op's visit function with a LIR_OpVisitState causes 2587 // information about the input, output and temporaries used by the 2588 // op to be recorded. It also records whether the op has call semantics 2589 // and also records all the CodeEmitInfos used by this op. 2590 // 2591 2592 2593 class LIR_OpVisitState: public StackObj { 2594 public: 2595 typedef enum { inputMode, firstMode = inputMode, tempMode, outputMode, numModes, invalidMode = -1 } OprMode; 2596 2597 enum { 2598 maxNumberOfOperands = 21, 2599 maxNumberOfInfos = 4 2600 }; 2601 2602 private: 2603 LIR_Op* _op; 2604 2605 // optimization: the operands and infos are not stored in a variable-length 2606 // list, but in a fixed-size array to save time of size checks and resizing 2607 int _oprs_len[numModes]; 2608 LIR_Opr* _oprs_new[numModes][maxNumberOfOperands]; 2609 int _info_len; 2610 CodeEmitInfo* _info_new[maxNumberOfInfos]; 2611 2612 bool _has_call; 2613 bool _has_slow_case; 2614 2615 2616 // only include register operands 2617 // addresses are decomposed to the base and index registers 2618 // constants and stack operands are ignored 2619 void append(LIR_Opr& opr, OprMode mode) { 2620 assert(opr->is_valid(), "should not call this otherwise"); 2621 assert(mode >= 0 && mode < numModes, "bad mode"); 2622 2623 if (opr->is_register()) { 2624 assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow"); 2625 _oprs_new[mode][_oprs_len[mode]++] = &opr; 2626 2627 } else if (opr->is_pointer()) { 2628 LIR_Address* address = opr->as_address_ptr(); 2629 if (address != nullptr) { 2630 // special handling for addresses: add base and index register of the address 2631 // both are always input operands or temp if we want to extend 2632 // their liveness! 2633 if (mode == outputMode) { 2634 mode = inputMode; 2635 } 2636 assert (mode == inputMode || mode == tempMode, "input or temp only for addresses"); 2637 if (address->_base->is_valid()) { 2638 assert(address->_base->is_register(), "must be"); 2639 assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow"); 2640 _oprs_new[mode][_oprs_len[mode]++] = &address->_base; 2641 } 2642 if (address->_index->is_valid()) { 2643 assert(address->_index->is_register(), "must be"); 2644 assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow"); 2645 _oprs_new[mode][_oprs_len[mode]++] = &address->_index; 2646 } 2647 2648 } else { 2649 assert(opr->is_constant(), "constant operands are not processed"); 2650 } 2651 } else { 2652 assert(opr->is_stack(), "stack operands are not processed"); 2653 } 2654 } 2655 2656 void append(CodeEmitInfo* info) { 2657 assert(info != nullptr, "should not call this otherwise"); 2658 assert(_info_len < maxNumberOfInfos, "array overflow"); 2659 _info_new[_info_len++] = info; 2660 } 2661 2662 public: 2663 LIR_OpVisitState() { reset(); } 2664 2665 LIR_Op* op() const { return _op; } 2666 void set_op(LIR_Op* op) { reset(); _op = op; } 2667 2668 bool has_call() const { return _has_call; } 2669 bool has_slow_case() const { return _has_slow_case; } 2670 2671 void reset() { 2672 _op = nullptr; 2673 _has_call = false; 2674 _has_slow_case = false; 2675 2676 _oprs_len[inputMode] = 0; 2677 _oprs_len[tempMode] = 0; 2678 _oprs_len[outputMode] = 0; 2679 _info_len = 0; 2680 } 2681 2682 2683 int opr_count(OprMode mode) const { 2684 assert(mode >= 0 && mode < numModes, "bad mode"); 2685 return _oprs_len[mode]; 2686 } 2687 2688 LIR_Opr opr_at(OprMode mode, int index) const { 2689 assert(mode >= 0 && mode < numModes, "bad mode"); 2690 assert(index >= 0 && index < _oprs_len[mode], "index out of bound"); 2691 return *_oprs_new[mode][index]; 2692 } 2693 2694 void set_opr_at(OprMode mode, int index, LIR_Opr opr) const { 2695 assert(mode >= 0 && mode < numModes, "bad mode"); 2696 assert(index >= 0 && index < _oprs_len[mode], "index out of bound"); 2697 *_oprs_new[mode][index] = opr; 2698 } 2699 2700 int info_count() const { 2701 return _info_len; 2702 } 2703 2704 CodeEmitInfo* info_at(int index) const { 2705 assert(index < _info_len, "index out of bounds"); 2706 return _info_new[index]; 2707 } 2708 2709 XHandlers* all_xhandler(); 2710 2711 // collects all register operands of the instruction 2712 void visit(LIR_Op* op); 2713 2714 #ifdef ASSERT 2715 // check that an operation has no operands 2716 bool no_operands(LIR_Op* op); 2717 #endif 2718 2719 // LIR_Op visitor functions use these to fill in the state 2720 void do_input(LIR_Opr& opr) { append(opr, LIR_OpVisitState::inputMode); } 2721 void do_output(LIR_Opr& opr) { append(opr, LIR_OpVisitState::outputMode); } 2722 void do_temp(LIR_Opr& opr) { append(opr, LIR_OpVisitState::tempMode); } 2723 void do_info(CodeEmitInfo* info) { append(info); } 2724 2725 void do_stub(CodeStub* stub); 2726 void do_call() { _has_call = true; } 2727 void do_slow_case() { _has_slow_case = true; } 2728 void do_slow_case(CodeEmitInfo* info) { 2729 _has_slow_case = true; 2730 append(info); 2731 } 2732 }; 2733 2734 2735 inline LIR_Opr LIR_Opr::illegalOpr() { return LIR_OprFact::illegalOpr; }; 2736 2737 inline LIR_Opr LIR_Opr::nullOpr() { return LIR_OprFact::nullOpr; }; 2738 2739 #endif // SHARE_C1_C1_LIR_HPP