1 /*
2 * Copyright (c) 2000, 2025, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #ifndef SHARE_C1_C1_LIR_HPP
26 #define SHARE_C1_C1_LIR_HPP
27
28 #include "c1/c1_Defs.hpp"
29 #include "c1/c1_ValueType.hpp"
30 #include "oops/method.hpp"
31 #include "utilities/globalDefinitions.hpp"
32 #include "utilities/macros.hpp"
33
34 class BlockBegin;
35 class BlockList;
36 class LIR_Assembler;
37 class CodeEmitInfo;
38 class CodeStub;
39 class CodeStubList;
40 class C1SafepointPollStub;
41 class ArrayCopyStub;
42 class LIR_Op;
43 class ciType;
44 class ValueType;
45 class LIR_OpVisitState;
46
47 //---------------------------------------------------------------------
48 // LIR Operands
49 // LIR_OprPtr
50 // LIR_Const
51 // LIR_Address
52 //---------------------------------------------------------------------
53 class LIR_OprPtr;
54 class LIR_Const;
55 class LIR_Address;
56 class LIR_OprVisitor;
57 class LIR_Opr;
58
59 typedef int RegNr;
60
61 typedef GrowableArray<LIR_Opr> LIR_OprList;
62 typedef GrowableArray<LIR_Op*> LIR_OpArray;
63 typedef GrowableArray<LIR_Op*> LIR_OpList;
64
65 // define LIR_OprPtr early so LIR_Opr can refer to it
66 class LIR_OprPtr: public CompilationResourceObj {
67 public:
68 bool is_oop_pointer() const { return (type() == T_OBJECT); }
69 bool is_float_kind() const { BasicType t = type(); return (t == T_FLOAT) || (t == T_DOUBLE); }
70
71 virtual LIR_Const* as_constant() { return nullptr; }
72 virtual LIR_Address* as_address() { return nullptr; }
73 virtual BasicType type() const = 0;
74 virtual void print_value_on(outputStream* out) const = 0;
75 };
76
77
78
79 // LIR constants
80 class LIR_Const: public LIR_OprPtr {
81 private:
82 JavaValue _value;
83
84 void type_check(BasicType t) const { assert(type() == t, "type check"); }
85 void type_check(BasicType t1, BasicType t2) const { assert(type() == t1 || type() == t2, "type check"); }
86 void type_check(BasicType t1, BasicType t2, BasicType t3) const { assert(type() == t1 || type() == t2 || type() == t3, "type check"); }
87
88 public:
89 LIR_Const(jint i, bool is_address=false) { _value.set_type(is_address?T_ADDRESS:T_INT); _value.set_jint(i); }
90 LIR_Const(jlong l) { _value.set_type(T_LONG); _value.set_jlong(l); }
91 LIR_Const(jfloat f) { _value.set_type(T_FLOAT); _value.set_jfloat(f); }
92 LIR_Const(jdouble d) { _value.set_type(T_DOUBLE); _value.set_jdouble(d); }
93 LIR_Const(jobject o) { _value.set_type(T_OBJECT); _value.set_jobject(o); }
94 LIR_Const(void* p) {
95 #ifdef _LP64
96 assert(sizeof(jlong) >= sizeof(p), "too small");;
97 _value.set_type(T_LONG); _value.set_jlong((jlong)p);
98 #else
99 assert(sizeof(jint) >= sizeof(p), "too small");;
100 _value.set_type(T_INT); _value.set_jint((jint)p);
101 #endif
102 }
103 LIR_Const(Metadata* m) {
104 _value.set_type(T_METADATA);
105 #ifdef _LP64
106 _value.set_jlong((jlong)m);
107 #else
108 _value.set_jint((jint)m);
109 #endif // _LP64
110 }
111
112 virtual BasicType type() const { return _value.get_type(); }
113 virtual LIR_Const* as_constant() { return this; }
114
115 jint as_jint() const { type_check(T_INT, T_ADDRESS); return _value.get_jint(); }
116 jlong as_jlong() const { type_check(T_LONG ); return _value.get_jlong(); }
117 jfloat as_jfloat() const { type_check(T_FLOAT ); return _value.get_jfloat(); }
118 jdouble as_jdouble() const { type_check(T_DOUBLE); return _value.get_jdouble(); }
119 jobject as_jobject() const { type_check(T_OBJECT); return _value.get_jobject(); }
120 jint as_jint_lo() const { type_check(T_LONG ); return low(_value.get_jlong()); }
121 jint as_jint_hi() const { type_check(T_LONG ); return high(_value.get_jlong()); }
122
123 #ifdef _LP64
124 address as_pointer() const { type_check(T_LONG ); return (address)_value.get_jlong(); }
125 Metadata* as_metadata() const { type_check(T_METADATA); return (Metadata*)_value.get_jlong(); }
126 #else
127 address as_pointer() const { type_check(T_INT ); return (address)_value.get_jint(); }
128 Metadata* as_metadata() const { type_check(T_METADATA); return (Metadata*)_value.get_jint(); }
129 #endif
130
131
132 jint as_jint_bits() const { type_check(T_FLOAT, T_INT, T_ADDRESS); return _value.get_jint(); }
133 jint as_jint_lo_bits() const {
134 if (type() == T_DOUBLE) {
135 return low(jlong_cast(_value.get_jdouble()));
136 } else {
137 return as_jint_lo();
138 }
139 }
140 jint as_jint_hi_bits() const {
141 if (type() == T_DOUBLE) {
142 return high(jlong_cast(_value.get_jdouble()));
143 } else {
144 return as_jint_hi();
145 }
146 }
147 jlong as_jlong_bits() const {
148 if (type() == T_DOUBLE) {
149 return jlong_cast(_value.get_jdouble());
150 } else {
151 return as_jlong();
152 }
153 }
154
155 virtual void print_value_on(outputStream* out) const PRODUCT_RETURN;
156
157
158 bool is_zero_float() {
159 jfloat f = as_jfloat();
160 jfloat ok = 0.0f;
161 return jint_cast(f) == jint_cast(ok);
162 }
163
164 bool is_one_float() {
165 jfloat f = as_jfloat();
166 return !g_isnan(f) && g_isfinite(f) && f == 1.0;
167 }
168
169 bool is_zero_double() {
170 jdouble d = as_jdouble();
171 jdouble ok = 0.0;
172 return jlong_cast(d) == jlong_cast(ok);
173 }
174
175 bool is_one_double() {
176 jdouble d = as_jdouble();
177 return !g_isnan(d) && g_isfinite(d) && d == 1.0;
178 }
179 };
180
181
182 //---------------------LIR Operand descriptor------------------------------------
183 //
184 // The class LIR_Opr represents a LIR instruction operand;
185 // it can be a register (ALU/FPU), stack location or a constant;
186 // Constants and addresses are represented as resource area allocated
187 // structures (see above), and pointers are stored in the _value field (cast to
188 // an intptr_t).
189 // Registers and stack locations are represented inline as integers.
190 // (see value function).
191
192 // Previously, this class was derived from CompilationResourceObj.
193 // However, deriving from any of the "Obj" types in allocation.hpp seems
194 // detrimental, since in some build modes it would add a vtable to this class,
195 // which make it no longer be a 1-word trivially-copyable wrapper object,
196 // which is the entire point of it.
197
198 class LIR_Opr {
199 public:
200 // value structure:
201 // data other-non-data opr-type opr-kind
202 // +-------------------+--------------+-------+-----+
203 // [max...............................|6 5 4 3|2 1 0]
204 // ^
205 // is_pointer bit
206 //
207 // lowest bit cleared, means it is a structure pointer
208 // we need 4 bits to represent types
209
210 private:
211 friend class LIR_OprFact;
212
213 intptr_t _value;
214 // Conversion
215 intptr_t value() const { return _value; }
216
217 bool check_value_mask(intptr_t mask, intptr_t masked_value) const {
218 return (value() & mask) == masked_value;
219 }
220
221 enum OprKind {
222 pointer_value = 0
223 , stack_value = 1
224 , cpu_register = 3
225 , fpu_register = 5
226 , illegal_value = 7
227 };
228
229 enum OprBits {
230 pointer_bits = 1
231 , kind_bits = 3
232 , type_bits = 4
233 , size_bits = 2
234 , destroys_bits = 1
235 , virtual_bits = 1
236 , is_xmm_bits = 1
237 , last_use_bits = 1
238 , non_data_bits = kind_bits + type_bits + size_bits + destroys_bits + virtual_bits
239 + is_xmm_bits + last_use_bits
240 , data_bits = BitsPerInt - non_data_bits
241 , reg_bits = data_bits / 2 // for two registers in one value encoding
242 };
243
244 enum OprShift : uintptr_t {
245 kind_shift = 0
246 , type_shift = kind_shift + kind_bits
247 , size_shift = type_shift + type_bits
248 , destroys_shift = size_shift + size_bits
249 , last_use_shift = destroys_shift + destroys_bits
250 , virtual_shift = last_use_shift + last_use_bits
251 , is_xmm_shift = virtual_shift + virtual_bits
252 , data_shift = is_xmm_shift + is_xmm_bits
253 , reg1_shift = data_shift
254 , reg2_shift = data_shift + reg_bits
255
256 };
257
258 enum OprSize {
259 single_size = 0 << size_shift
260 , double_size = 1 << size_shift
261 };
262
263 enum OprMask {
264 kind_mask = right_n_bits(kind_bits)
265 , type_mask = right_n_bits(type_bits) << type_shift
266 , size_mask = right_n_bits(size_bits) << size_shift
267 , last_use_mask = right_n_bits(last_use_bits) << last_use_shift
268 , virtual_mask = right_n_bits(virtual_bits) << virtual_shift
269 , is_xmm_mask = right_n_bits(is_xmm_bits) << is_xmm_shift
270 , pointer_mask = right_n_bits(pointer_bits)
271 , lower_reg_mask = right_n_bits(reg_bits)
272 , no_type_mask = (int)(~(type_mask | last_use_mask))
273 };
274
275 uint32_t data() const { return (uint32_t)value() >> data_shift; }
276 int lo_reg_half() const { return data() & lower_reg_mask; }
277 int hi_reg_half() const { return (data() >> reg_bits) & lower_reg_mask; }
278 OprKind kind_field() const { return (OprKind)(value() & kind_mask); }
279 OprSize size_field() const { return (OprSize)(value() & size_mask); }
280
281 static char type_char(BasicType t);
282
283 public:
284 LIR_Opr() : _value(0) {}
285 LIR_Opr(intptr_t val) : _value(val) {}
286 LIR_Opr(LIR_OprPtr *val) : _value(reinterpret_cast<intptr_t>(val)) {}
287 bool operator==(const LIR_Opr &other) const { return _value == other._value; }
288 bool operator!=(const LIR_Opr &other) const { return _value != other._value; }
289 explicit operator bool() const { return _value != 0; }
290
291 // UGLY HACK: make this value object look like a pointer (to itself). This
292 // operator overload should be removed, and all callers updated from
293 // `opr->fn()` to `opr.fn()`.
294 const LIR_Opr* operator->() const { return this; }
295 LIR_Opr* operator->() { return this; }
296
297 enum {
298 vreg_base = ConcreteRegisterImpl::number_of_registers,
299 data_max = (1 << data_bits) - 1, // max unsigned value for data bit field
300 vreg_limit = 10000, // choose a reasonable limit,
301 vreg_max = MIN2(vreg_limit, data_max) // and make sure if fits in the bit field
302 };
303
304 static inline LIR_Opr illegalOpr();
305 static inline LIR_Opr nullOpr();
306
307 enum OprType {
308 unknown_type = 0 << type_shift // means: not set (catch uninitialized types)
309 , int_type = 1 << type_shift
310 , long_type = 2 << type_shift
311 , object_type = 3 << type_shift
312 , address_type = 4 << type_shift
313 , float_type = 5 << type_shift
314 , double_type = 6 << type_shift
315 , metadata_type = 7 << type_shift
316 };
317 friend OprType as_OprType(BasicType t);
318 friend BasicType as_BasicType(OprType t);
319
320 OprType type_field_valid() const { assert(is_register() || is_stack(), "should not be called otherwise"); return (OprType)(value() & type_mask); }
321 OprType type_field() const { return is_illegal() ? unknown_type : (OprType)(value() & type_mask); }
322
323 static OprSize size_for(BasicType t) {
324 switch (t) {
325 case T_LONG:
326 case T_DOUBLE:
327 return double_size;
328 break;
329
330 case T_FLOAT:
331 case T_BOOLEAN:
332 case T_CHAR:
333 case T_BYTE:
334 case T_SHORT:
335 case T_INT:
336 case T_ADDRESS:
337 case T_OBJECT:
338 case T_ARRAY:
339 case T_METADATA:
340 return single_size;
341 break;
342
343 default:
344 ShouldNotReachHere();
345 return single_size;
346 }
347 }
348
349
350 void validate_type() const PRODUCT_RETURN;
351
352 BasicType type() const {
353 if (is_pointer()) {
354 return pointer()->type();
355 }
356 return as_BasicType(type_field());
357 }
358
359
360 ValueType* value_type() const { return as_ValueType(type()); }
361
362 char type_char() const { return type_char((is_pointer()) ? pointer()->type() : type()); }
363
364 bool is_equal(LIR_Opr opr) const { return *this == opr; }
365 // checks whether types are same
366 bool is_same_type(LIR_Opr opr) const {
367 assert(type_field() != unknown_type &&
368 opr->type_field() != unknown_type, "shouldn't see unknown_type");
369 return type_field() == opr->type_field();
370 }
371 bool is_same_register(LIR_Opr opr) {
372 return (is_register() && opr->is_register() &&
373 kind_field() == opr->kind_field() &&
374 (value() & no_type_mask) == (opr->value() & no_type_mask));
375 }
376
377 bool is_pointer() const { return check_value_mask(pointer_mask, pointer_value); }
378 bool is_illegal() const { return kind_field() == illegal_value; }
379 bool is_valid() const { return kind_field() != illegal_value; }
380
381 bool is_register() const { return is_cpu_register() || is_fpu_register(); }
382 bool is_virtual() const { return is_virtual_cpu() || is_virtual_fpu(); }
383
384 bool is_constant() const { return is_pointer() && pointer()->as_constant() != nullptr; }
385 bool is_address() const { return is_pointer() && pointer()->as_address() != nullptr; }
386
387 bool is_float_kind() const { return is_pointer() ? pointer()->is_float_kind() : (kind_field() == fpu_register); }
388 bool is_oop() const;
389
390 // semantic for fpu- and xmm-registers:
391 // * is_float and is_double return true for xmm_registers
392 // (so is_single_fpu and is_single_xmm are true)
393 // * So you must always check for is_???_xmm prior to is_???_fpu to
394 // distinguish between fpu- and xmm-registers
395
396 bool is_stack() const { validate_type(); return check_value_mask(kind_mask, stack_value); }
397 bool is_single_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask, stack_value | single_size); }
398 bool is_double_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask, stack_value | double_size); }
399
400 bool is_cpu_register() const { validate_type(); return check_value_mask(kind_mask, cpu_register); }
401 bool is_virtual_cpu() const { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register | virtual_mask); }
402 bool is_fixed_cpu() const { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register); }
403 bool is_single_cpu() const { validate_type(); return check_value_mask(kind_mask | size_mask, cpu_register | single_size); }
404 bool is_double_cpu() const { validate_type(); return check_value_mask(kind_mask | size_mask, cpu_register | double_size); }
405
406 bool is_fpu_register() const { validate_type(); return check_value_mask(kind_mask, fpu_register); }
407 bool is_virtual_fpu() const { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register | virtual_mask); }
408 bool is_fixed_fpu() const { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register); }
409 bool is_single_fpu() const { validate_type(); return check_value_mask(kind_mask | size_mask, fpu_register | single_size); }
410 bool is_double_fpu() const { validate_type(); return check_value_mask(kind_mask | size_mask, fpu_register | double_size); }
411
412 bool is_xmm_register() const { validate_type(); return check_value_mask(kind_mask | is_xmm_mask, fpu_register | is_xmm_mask); }
413 bool is_single_xmm() const { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | single_size | is_xmm_mask); }
414 bool is_double_xmm() const { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | double_size | is_xmm_mask); }
415
416 // fast accessor functions for special bits that do not work for pointers
417 // (in this functions, the check for is_pointer() is omitted)
418 bool is_single_word() const { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, single_size); }
419 bool is_double_word() const { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, double_size); }
420 bool is_virtual_register() const { assert(is_register(), "type check"); return check_value_mask(virtual_mask, virtual_mask); }
421 bool is_oop_register() const { assert(is_register() || is_stack(), "type check"); return type_field_valid() == object_type; }
422 BasicType type_register() const { assert(is_register() || is_stack(), "type check"); return as_BasicType(type_field_valid()); }
423
424 bool is_last_use() const { assert(is_register(), "only works for registers"); return (value() & last_use_mask) != 0; }
425 LIR_Opr make_last_use() { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | last_use_mask); }
426
427
428 int single_stack_ix() const { assert(is_single_stack() && !is_virtual(), "type check"); return (int)data(); }
429 int double_stack_ix() const { assert(is_double_stack() && !is_virtual(), "type check"); return (int)data(); }
430 RegNr cpu_regnr() const { assert(is_single_cpu() && !is_virtual(), "type check"); return (RegNr)data(); }
431 RegNr cpu_regnrLo() const { assert(is_double_cpu() && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
432 RegNr cpu_regnrHi() const { assert(is_double_cpu() && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
433 RegNr fpu_regnr() const { assert(is_single_fpu() && !is_virtual(), "type check"); return (RegNr)data(); }
434 RegNr fpu_regnrLo() const { assert(is_double_fpu() && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
435 RegNr fpu_regnrHi() const { assert(is_double_fpu() && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
436 RegNr xmm_regnr() const { assert(is_single_xmm() && !is_virtual(), "type check"); return (RegNr)data(); }
437 RegNr xmm_regnrLo() const { assert(is_double_xmm() && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
438 RegNr xmm_regnrHi() const { assert(is_double_xmm() && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
439 int vreg_number() const { assert(is_virtual(), "type check"); return (RegNr)data(); }
440
441 LIR_OprPtr* pointer() const { assert(_value != 0 && is_pointer(), "nullness and type check"); return (LIR_OprPtr*)_value; }
442 LIR_Const* as_constant_ptr() const { return pointer()->as_constant(); }
443 LIR_Address* as_address_ptr() const { return pointer()->as_address(); }
444
445 Register as_register() const;
446 Register as_register_lo() const;
447 Register as_register_hi() const;
448
449 Register as_pointer_register() {
450 #ifdef _LP64
451 if (is_double_cpu()) {
452 assert(as_register_lo() == as_register_hi(), "should be a single register");
453 return as_register_lo();
454 }
455 #endif
456 return as_register();
457 }
458
459 FloatRegister as_float_reg () const;
460 FloatRegister as_double_reg () const;
461 #ifdef X86
462 XMMRegister as_xmm_float_reg () const;
463 XMMRegister as_xmm_double_reg() const;
464 // for compatibility with RInfo
465 int fpu() const { return lo_reg_half(); }
466 #endif
467
468 jint as_jint() const { return as_constant_ptr()->as_jint(); }
469 jlong as_jlong() const { return as_constant_ptr()->as_jlong(); }
470 jfloat as_jfloat() const { return as_constant_ptr()->as_jfloat(); }
471 jdouble as_jdouble() const { return as_constant_ptr()->as_jdouble(); }
472 jobject as_jobject() const { return as_constant_ptr()->as_jobject(); }
473
474 void print() const PRODUCT_RETURN;
475 void print(outputStream* out) const PRODUCT_RETURN;
476 };
477
478 inline LIR_Opr::OprType as_OprType(BasicType type) {
479 switch (type) {
480 case T_INT: return LIR_Opr::int_type;
481 case T_LONG: return LIR_Opr::long_type;
482 case T_FLOAT: return LIR_Opr::float_type;
483 case T_DOUBLE: return LIR_Opr::double_type;
484 case T_OBJECT:
485 case T_ARRAY: return LIR_Opr::object_type;
486 case T_ADDRESS: return LIR_Opr::address_type;
487 case T_METADATA: return LIR_Opr::metadata_type;
488 case T_ILLEGAL: // fall through
489 default: ShouldNotReachHere(); return LIR_Opr::unknown_type;
490 }
491 }
492
493 inline BasicType as_BasicType(LIR_Opr::OprType t) {
494 switch (t) {
495 case LIR_Opr::int_type: return T_INT;
496 case LIR_Opr::long_type: return T_LONG;
497 case LIR_Opr::float_type: return T_FLOAT;
498 case LIR_Opr::double_type: return T_DOUBLE;
499 case LIR_Opr::object_type: return T_OBJECT;
500 case LIR_Opr::address_type: return T_ADDRESS;
501 case LIR_Opr::metadata_type:return T_METADATA;
502 case LIR_Opr::unknown_type: // fall through
503 default: ShouldNotReachHere(); return T_ILLEGAL;
504 }
505 }
506
507
508 // LIR_Address
509 class LIR_Address: public LIR_OprPtr {
510 friend class LIR_OpVisitState;
511
512 public:
513 // NOTE: currently these must be the log2 of the scale factor (and
514 // must also be equivalent to the ScaleFactor enum in
515 // assembler_i486.hpp)
516 enum Scale {
517 times_1 = 0,
518 times_2 = 1,
519 times_4 = 2,
520 times_8 = 3
521 };
522
523 private:
524 LIR_Opr _base;
525 LIR_Opr _index;
526 intx _disp;
527 Scale _scale;
528 BasicType _type;
529
530 public:
531 LIR_Address(LIR_Opr base, LIR_Opr index, BasicType type):
532 _base(base)
533 , _index(index)
534 , _disp(0)
535 , _scale(times_1)
536 , _type(type) { verify(); }
537
538 LIR_Address(LIR_Opr base, intx disp, BasicType type):
539 _base(base)
540 , _index(LIR_Opr::illegalOpr())
541 , _disp(disp)
542 , _scale(times_1)
543 , _type(type) { verify(); }
544
545 LIR_Address(LIR_Opr base, BasicType type):
546 _base(base)
547 , _index(LIR_Opr::illegalOpr())
548 , _disp(0)
549 , _scale(times_1)
550 , _type(type) { verify(); }
551
552 LIR_Address(LIR_Opr base, LIR_Opr index, intx disp, BasicType type):
553 _base(base)
554 , _index(index)
555 , _disp(disp)
556 , _scale(times_1)
557 , _type(type) { verify(); }
558
559 LIR_Address(LIR_Opr base, LIR_Opr index, Scale scale, intx disp, BasicType type):
560 _base(base)
561 , _index(index)
562 , _disp(disp)
563 , _scale(scale)
564 , _type(type) { verify(); }
565
566 LIR_Opr base() const { return _base; }
567 LIR_Opr index() const { return _index; }
568 Scale scale() const { return _scale; }
569 intx disp() const { return _disp; }
570
571 bool equals(LIR_Address* other) const { return base() == other->base() && index() == other->index() && disp() == other->disp() && scale() == other->scale(); }
572
573 virtual LIR_Address* as_address() { return this; }
574 virtual BasicType type() const { return _type; }
575 virtual void print_value_on(outputStream* out) const PRODUCT_RETURN;
576
577 void verify() const PRODUCT_RETURN;
578
579 static Scale scale(BasicType type);
580 };
581
582
583 // operand factory
584 class LIR_OprFact: public AllStatic {
585 public:
586
587 static LIR_Opr illegalOpr;
588 static LIR_Opr nullOpr;
589
590 static LIR_Opr single_cpu(int reg) {
591 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) |
592 LIR_Opr::int_type |
593 LIR_Opr::cpu_register |
594 LIR_Opr::single_size);
595 }
596 static LIR_Opr single_cpu_oop(int reg) {
597 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) |
598 LIR_Opr::object_type |
599 LIR_Opr::cpu_register |
600 LIR_Opr::single_size);
601 }
602 static LIR_Opr single_cpu_address(int reg) {
603 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) |
604 LIR_Opr::address_type |
605 LIR_Opr::cpu_register |
606 LIR_Opr::single_size);
607 }
608 static LIR_Opr single_cpu_metadata(int reg) {
609 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) |
610 LIR_Opr::metadata_type |
611 LIR_Opr::cpu_register |
612 LIR_Opr::single_size);
613 }
614 static LIR_Opr double_cpu(int reg1, int reg2) {
615 LP64_ONLY(assert(reg1 == reg2, "must be identical"));
616 return (LIR_Opr)(intptr_t)((reg1 << LIR_Opr::reg1_shift) |
617 (reg2 << LIR_Opr::reg2_shift) |
618 LIR_Opr::long_type |
619 LIR_Opr::cpu_register |
620 LIR_Opr::double_size);
621 }
622
623 static LIR_Opr single_fpu(int reg) {
624 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) |
625 LIR_Opr::float_type |
626 LIR_Opr::fpu_register |
627 LIR_Opr::single_size);
628 }
629
630 // Platform dependent.
631 static LIR_Opr double_fpu(int reg1, int reg2 = -1 /*fnoreg*/);
632
633 #ifdef ARM32
634 static LIR_Opr single_softfp(int reg) {
635 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) |
636 LIR_Opr::float_type |
637 LIR_Opr::cpu_register |
638 LIR_Opr::single_size);
639 }
640 static LIR_Opr double_softfp(int reg1, int reg2) {
641 return (LIR_Opr)(intptr_t)((reg1 << LIR_Opr::reg1_shift) |
642 (reg2 << LIR_Opr::reg2_shift) |
643 LIR_Opr::double_type |
644 LIR_Opr::cpu_register |
645 LIR_Opr::double_size);
646 }
647 #endif // ARM32
648
649 #if defined(X86)
650 static LIR_Opr single_xmm(int reg) {
651 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) |
652 LIR_Opr::float_type |
653 LIR_Opr::fpu_register |
654 LIR_Opr::single_size |
655 LIR_Opr::is_xmm_mask);
656 }
657 static LIR_Opr double_xmm(int reg) {
658 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) |
659 (reg << LIR_Opr::reg2_shift) |
660 LIR_Opr::double_type |
661 LIR_Opr::fpu_register |
662 LIR_Opr::double_size |
663 LIR_Opr::is_xmm_mask);
664 }
665 #endif // X86
666
667 static LIR_Opr virtual_register(int index, BasicType type) {
668 if (index > LIR_Opr::vreg_max) {
669 // Running out of virtual registers. Caller should bailout.
670 return illegalOpr;
671 }
672
673 LIR_Opr res;
674 switch (type) {
675 case T_OBJECT: // fall through
676 case T_ARRAY:
677 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) |
678 LIR_Opr::object_type |
679 LIR_Opr::cpu_register |
680 LIR_Opr::single_size |
681 LIR_Opr::virtual_mask);
682 break;
683
684 case T_METADATA:
685 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) |
686 LIR_Opr::metadata_type|
687 LIR_Opr::cpu_register |
688 LIR_Opr::single_size |
689 LIR_Opr::virtual_mask);
690 break;
691
692 case T_INT:
693 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) |
694 LIR_Opr::int_type |
695 LIR_Opr::cpu_register |
696 LIR_Opr::single_size |
697 LIR_Opr::virtual_mask);
698 break;
699
700 case T_ADDRESS:
701 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) |
702 LIR_Opr::address_type |
703 LIR_Opr::cpu_register |
704 LIR_Opr::single_size |
705 LIR_Opr::virtual_mask);
706 break;
707
708 case T_LONG:
709 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) |
710 LIR_Opr::long_type |
711 LIR_Opr::cpu_register |
712 LIR_Opr::double_size |
713 LIR_Opr::virtual_mask);
714 break;
715
716 #ifdef __SOFTFP__
717 case T_FLOAT:
718 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) |
719 LIR_Opr::float_type |
720 LIR_Opr::cpu_register |
721 LIR_Opr::single_size |
722 LIR_Opr::virtual_mask);
723 break;
724 case T_DOUBLE:
725 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) |
726 LIR_Opr::double_type |
727 LIR_Opr::cpu_register |
728 LIR_Opr::double_size |
729 LIR_Opr::virtual_mask);
730 break;
731 #else // __SOFTFP__
732 case T_FLOAT:
733 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) |
734 LIR_Opr::float_type |
735 LIR_Opr::fpu_register |
736 LIR_Opr::single_size |
737 LIR_Opr::virtual_mask);
738 break;
739
740 case
741 T_DOUBLE: res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) |
742 LIR_Opr::double_type |
743 LIR_Opr::fpu_register |
744 LIR_Opr::double_size |
745 LIR_Opr::virtual_mask);
746 break;
747 #endif // __SOFTFP__
748 default: ShouldNotReachHere(); res = illegalOpr;
749 }
750
751 #ifdef ASSERT
752 res->validate_type();
753 assert(res->vreg_number() == index, "conversion check");
754 assert(index >= LIR_Opr::vreg_base, "must start at vreg_base");
755
756 // old-style calculation; check if old and new method are equal
757 LIR_Opr::OprType t = as_OprType(type);
758 #ifdef __SOFTFP__
759 LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) |
760 t |
761 LIR_Opr::cpu_register |
762 LIR_Opr::size_for(type) | LIR_Opr::virtual_mask);
763 #else // __SOFTFP__
764 LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | t |
765 ((type == T_FLOAT || type == T_DOUBLE) ? LIR_Opr::fpu_register : LIR_Opr::cpu_register) |
766 LIR_Opr::size_for(type) | LIR_Opr::virtual_mask);
767 assert(res == old_res, "old and new method not equal");
768 #endif // __SOFTFP__
769 #endif // ASSERT
770
771 return res;
772 }
773
774 // 'index' is computed by FrameMap::local_stack_pos(index); do not use other parameters as
775 // the index is platform independent; a double stack using indices 2 and 3 has always
776 // index 2.
777 static LIR_Opr stack(int index, BasicType type) {
778 LIR_Opr res;
779 switch (type) {
780 case T_OBJECT: // fall through
781 case T_ARRAY:
782 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) |
783 LIR_Opr::object_type |
784 LIR_Opr::stack_value |
785 LIR_Opr::single_size);
786 break;
787
788 case T_METADATA:
789 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) |
790 LIR_Opr::metadata_type |
791 LIR_Opr::stack_value |
792 LIR_Opr::single_size);
793 break;
794 case T_INT:
795 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) |
796 LIR_Opr::int_type |
797 LIR_Opr::stack_value |
798 LIR_Opr::single_size);
799 break;
800
801 case T_ADDRESS:
802 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) |
803 LIR_Opr::address_type |
804 LIR_Opr::stack_value |
805 LIR_Opr::single_size);
806 break;
807
808 case T_LONG:
809 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) |
810 LIR_Opr::long_type |
811 LIR_Opr::stack_value |
812 LIR_Opr::double_size);
813 break;
814
815 case T_FLOAT:
816 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) |
817 LIR_Opr::float_type |
818 LIR_Opr::stack_value |
819 LIR_Opr::single_size);
820 break;
821 case T_DOUBLE:
822 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) |
823 LIR_Opr::double_type |
824 LIR_Opr::stack_value |
825 LIR_Opr::double_size);
826 break;
827
828 default: ShouldNotReachHere(); res = illegalOpr;
829 }
830
831 #ifdef ASSERT
832 assert(index >= 0, "index must be positive");
833 assert(index == (int)res->data(), "conversion check");
834
835 LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) |
836 LIR_Opr::stack_value |
837 as_OprType(type) |
838 LIR_Opr::size_for(type));
839 assert(res == old_res, "old and new method not equal");
840 #endif
841
842 return res;
843 }
844
845 static LIR_Opr intConst(jint i) { return (LIR_Opr)(new LIR_Const(i)); }
846 static LIR_Opr longConst(jlong l) { return (LIR_Opr)(new LIR_Const(l)); }
847 static LIR_Opr floatConst(jfloat f) { return (LIR_Opr)(new LIR_Const(f)); }
848 static LIR_Opr doubleConst(jdouble d) { return (LIR_Opr)(new LIR_Const(d)); }
849 static LIR_Opr oopConst(jobject o) { return (LIR_Opr)(new LIR_Const(o)); }
850 static LIR_Opr address(LIR_Address* a) { return (LIR_Opr)a; }
851 static LIR_Opr intptrConst(void* p) { return (LIR_Opr)(new LIR_Const(p)); }
852 static LIR_Opr intptrConst(intptr_t v) { return (LIR_Opr)(new LIR_Const((void*)v)); }
853 static LIR_Opr illegal() { return (LIR_Opr)-1; }
854 static LIR_Opr addressConst(jint i) { return (LIR_Opr)(new LIR_Const(i, true)); }
855 static LIR_Opr metadataConst(Metadata* m) { return (LIR_Opr)(new LIR_Const(m)); }
856
857 static LIR_Opr value_type(ValueType* type);
858 };
859
860
861 //-------------------------------------------------------------------------------
862 // LIR Instructions
863 //-------------------------------------------------------------------------------
864 //
865 // Note:
866 // - every instruction has a result operand
867 // - every instruction has an CodeEmitInfo operand (can be revisited later)
868 // - every instruction has a LIR_OpCode operand
869 // - LIR_OpN, means an instruction that has N input operands
870 //
871 // class hierarchy:
872 //
873 class LIR_Op;
874 class LIR_Op0;
875 class LIR_OpLabel;
876 class LIR_Op1;
877 class LIR_OpBranch;
878 class LIR_OpConvert;
879 class LIR_OpAllocObj;
880 class LIR_OpReturn;
881 class LIR_Op2;
882 class LIR_Op3;
883 class LIR_OpAllocArray;
884 class LIR_Op4;
885 class LIR_OpCall;
886 class LIR_OpJavaCall;
887 class LIR_OpRTCall;
888 class LIR_OpArrayCopy;
889 class LIR_OpUpdateCRC32;
890 class LIR_OpLock;
891 class LIR_OpTypeCheck;
892 class LIR_OpFlattenedArrayCheck;
893 class LIR_OpNullFreeArrayCheck;
894 class LIR_OpSubstitutabilityCheck;
895 class LIR_OpCompareAndSwap;
896 class LIR_OpLoadKlass;
897 class LIR_OpProfileCall;
898 class LIR_OpProfileType;
899 class LIR_OpProfileInlineType;
900 #ifdef ASSERT
901 class LIR_OpAssert;
902 #endif
903
904 // LIR operation codes
905 enum LIR_Code {
906 lir_none
907 , begin_op0
908 , lir_label
909 , lir_nop
910 , lir_std_entry
911 , lir_osr_entry
912 , lir_breakpoint
913 , lir_rtcall
914 , lir_membar
915 , lir_membar_acquire
916 , lir_membar_release
917 , lir_membar_loadload
918 , lir_membar_storestore
919 , lir_membar_loadstore
920 , lir_membar_storeload
921 , lir_get_thread
922 , lir_on_spin_wait
923 , lir_check_orig_pc
924 , end_op0
925 , begin_op1
926 , lir_push
927 , lir_pop
928 , lir_null_check
929 , lir_return
930 , lir_leal
931 , lir_move
932 , lir_convert
933 , lir_alloc_object
934 , lir_monaddr
935 , lir_sqrt
936 , lir_abs
937 , lir_neg
938 , lir_f2hf
939 , lir_hf2f
940 , lir_safepoint
941 , lir_unwind
942 , lir_load_klass
943 , end_op1
944 , begin_op2
945 , lir_branch
946 , lir_cond_float_branch
947 , lir_cmp
948 , lir_cmp_l2i
949 , lir_ucmp_fd2i
950 , lir_cmp_fd2i
951 , lir_add
952 , lir_sub
953 , lir_mul
954 , lir_div
955 , lir_rem
956 , lir_logic_and
957 , lir_logic_or
958 , lir_logic_xor
959 , lir_shl
960 , lir_shr
961 , lir_ushr
962 , lir_alloc_array
963 , lir_throw
964 , lir_xadd
965 , lir_xchg
966 , end_op2
967 , begin_op3
968 , lir_idiv
969 , lir_irem
970 , lir_fmad
971 , lir_fmaf
972 , end_op3
973 , begin_op4
974 , lir_cmove
975 , end_op4
976 , begin_opJavaCall
977 , lir_static_call
978 , lir_optvirtual_call
979 , lir_icvirtual_call
980 , lir_dynamic_call
981 , end_opJavaCall
982 , begin_opArrayCopy
983 , lir_arraycopy
984 , end_opArrayCopy
985 , begin_opUpdateCRC32
986 , lir_updatecrc32
987 , end_opUpdateCRC32
988 , begin_opLock
989 , lir_lock
990 , lir_unlock
991 , end_opLock
992 , begin_opTypeCheck
993 , lir_instanceof
994 , lir_checkcast
995 , lir_store_check
996 , end_opTypeCheck
997 , begin_opFlattenedArrayCheck
998 , lir_flat_array_check
999 , end_opFlattenedArrayCheck
1000 , begin_opNullFreeArrayCheck
1001 , lir_null_free_array_check
1002 , end_opNullFreeArrayCheck
1003 , begin_opSubstitutabilityCheck
1004 , lir_substitutability_check
1005 , end_opSubstitutabilityCheck
1006 , begin_opCompareAndSwap
1007 , lir_cas_long
1008 , lir_cas_obj
1009 , lir_cas_int
1010 , end_opCompareAndSwap
1011 , begin_opMDOProfile
1012 , lir_profile_call
1013 , lir_profile_type
1014 , lir_profile_inline_type
1015 , end_opMDOProfile
1016 , begin_opAssert
1017 , lir_assert
1018 , end_opAssert
1019 #if INCLUDE_ZGC
1020 , begin_opXLoadBarrierTest
1021 , lir_xloadbarrier_test
1022 , end_opXLoadBarrierTest
1023 #endif
1024 };
1025
1026
1027 enum LIR_Condition {
1028 lir_cond_equal
1029 , lir_cond_notEqual
1030 , lir_cond_less
1031 , lir_cond_lessEqual
1032 , lir_cond_greaterEqual
1033 , lir_cond_greater
1034 , lir_cond_belowEqual
1035 , lir_cond_aboveEqual
1036 , lir_cond_always
1037 , lir_cond_unknown = -1
1038 };
1039
1040
1041 enum LIR_PatchCode {
1042 lir_patch_none,
1043 lir_patch_low,
1044 lir_patch_high,
1045 lir_patch_normal
1046 };
1047
1048
1049 enum LIR_MoveKind {
1050 lir_move_normal,
1051 lir_move_volatile,
1052 lir_move_wide,
1053 lir_move_max_flag
1054 };
1055
1056
1057 // --------------------------------------------------
1058 // LIR_Op
1059 // --------------------------------------------------
1060 class LIR_Op: public CompilationResourceObj {
1061 friend class LIR_OpVisitState;
1062
1063 #ifdef ASSERT
1064 private:
1065 const char * _file;
1066 int _line;
1067 #endif
1068
1069 protected:
1070 LIR_Opr _result;
1071 unsigned short _code;
1072 unsigned short _flags;
1073 CodeEmitInfo* _info;
1074 int _id; // value id for register allocation
1075 Instruction* _source; // for debugging
1076
1077 static void print_condition(outputStream* out, LIR_Condition cond) PRODUCT_RETURN;
1078
1079 protected:
1080 static bool is_in_range(LIR_Code test, LIR_Code start, LIR_Code end) { return start < test && test < end; }
1081
1082 public:
1083 LIR_Op()
1084 :
1085 #ifdef ASSERT
1086 _file(nullptr)
1087 , _line(0),
1088 #endif
1089 _result(LIR_OprFact::illegalOpr)
1090 , _code(lir_none)
1091 , _flags(0)
1092 , _info(nullptr)
1093 , _id(-1)
1094 , _source(nullptr) {}
1095
1096 LIR_Op(LIR_Code code, LIR_Opr result, CodeEmitInfo* info)
1097 :
1098 #ifdef ASSERT
1099 _file(nullptr)
1100 , _line(0),
1101 #endif
1102 _result(result)
1103 , _code(code)
1104 , _flags(0)
1105 , _info(info)
1106 , _id(-1)
1107 , _source(nullptr) {}
1108
1109 CodeEmitInfo* info() const { return _info; }
1110 LIR_Code code() const { return (LIR_Code)_code; }
1111 LIR_Opr result_opr() const { return _result; }
1112 void set_result_opr(LIR_Opr opr) { _result = opr; }
1113
1114 #ifdef ASSERT
1115 void set_file_and_line(const char * file, int line) {
1116 _file = file;
1117 _line = line;
1118 }
1119 #endif
1120
1121 virtual const char * name() const PRODUCT_RETURN_NULL;
1122 virtual void visit(LIR_OpVisitState* state);
1123
1124 int id() const { return _id; }
1125 void set_id(int id) { _id = id; }
1126
1127 Instruction* source() const { return _source; }
1128 void set_source(Instruction* ins) { _source = ins; }
1129
1130 virtual void emit_code(LIR_Assembler* masm) = 0;
1131 virtual void print_instr(outputStream* out) const = 0;
1132 virtual void print_on(outputStream* st) const PRODUCT_RETURN;
1133
1134 virtual bool is_patching() { return false; }
1135 virtual LIR_OpCall* as_OpCall() { return nullptr; }
1136 virtual LIR_OpJavaCall* as_OpJavaCall() { return nullptr; }
1137 virtual LIR_OpLabel* as_OpLabel() { return nullptr; }
1138 virtual LIR_OpLock* as_OpLock() { return nullptr; }
1139 virtual LIR_OpAllocArray* as_OpAllocArray() { return nullptr; }
1140 virtual LIR_OpAllocObj* as_OpAllocObj() { return nullptr; }
1141 virtual LIR_OpBranch* as_OpBranch() { return nullptr; }
1142 virtual LIR_OpReturn* as_OpReturn() { return nullptr; }
1143 virtual LIR_OpRTCall* as_OpRTCall() { return nullptr; }
1144 virtual LIR_OpConvert* as_OpConvert() { return nullptr; }
1145 virtual LIR_Op0* as_Op0() { return nullptr; }
1146 virtual LIR_Op1* as_Op1() { return nullptr; }
1147 virtual LIR_Op2* as_Op2() { return nullptr; }
1148 virtual LIR_Op3* as_Op3() { return nullptr; }
1149 virtual LIR_Op4* as_Op4() { return nullptr; }
1150 virtual LIR_OpArrayCopy* as_OpArrayCopy() { return nullptr; }
1151 virtual LIR_OpUpdateCRC32* as_OpUpdateCRC32() { return nullptr; }
1152 virtual LIR_OpTypeCheck* as_OpTypeCheck() { return nullptr; }
1153 virtual LIR_OpFlattenedArrayCheck* as_OpFlattenedArrayCheck() { return nullptr; }
1154 virtual LIR_OpNullFreeArrayCheck* as_OpNullFreeArrayCheck() { return nullptr; }
1155 virtual LIR_OpSubstitutabilityCheck* as_OpSubstitutabilityCheck() { return nullptr; }
1156 virtual LIR_OpCompareAndSwap* as_OpCompareAndSwap() { return nullptr; }
1157 virtual LIR_OpLoadKlass* as_OpLoadKlass() { return nullptr; }
1158 virtual LIR_OpProfileCall* as_OpProfileCall() { return nullptr; }
1159 virtual LIR_OpProfileType* as_OpProfileType() { return nullptr; }
1160 virtual LIR_OpProfileInlineType* as_OpProfileInlineType() { return nullptr; }
1161 #ifdef ASSERT
1162 virtual LIR_OpAssert* as_OpAssert() { return nullptr; }
1163 #endif
1164
1165 virtual void verify() const {}
1166 };
1167
1168 // for calls
1169 class LIR_OpCall: public LIR_Op {
1170 friend class LIR_OpVisitState;
1171
1172 protected:
1173 address _addr;
1174 LIR_OprList* _arguments;
1175 protected:
1176 LIR_OpCall(LIR_Code code, address addr, LIR_Opr result,
1177 LIR_OprList* arguments, CodeEmitInfo* info = nullptr)
1178 : LIR_Op(code, result, info)
1179 , _addr(addr)
1180 , _arguments(arguments) {}
1181
1182 public:
1183 address addr() const { return _addr; }
1184 const LIR_OprList* arguments() const { return _arguments; }
1185 virtual LIR_OpCall* as_OpCall() { return this; }
1186 };
1187
1188
1189 // --------------------------------------------------
1190 // LIR_OpJavaCall
1191 // --------------------------------------------------
1192 class LIR_OpJavaCall: public LIR_OpCall {
1193 friend class LIR_OpVisitState;
1194
1195 private:
1196 ciMethod* _method;
1197 LIR_Opr _receiver;
1198
1199 public:
1200 LIR_OpJavaCall(LIR_Code code, ciMethod* method,
1201 LIR_Opr receiver, LIR_Opr result,
1202 address addr, LIR_OprList* arguments,
1203 CodeEmitInfo* info)
1204 : LIR_OpCall(code, addr, result, arguments, info)
1205 , _method(method)
1206 , _receiver(receiver)
1207 { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); }
1208
1209 LIR_OpJavaCall(LIR_Code code, ciMethod* method,
1210 LIR_Opr receiver, LIR_Opr result, intptr_t vtable_offset,
1211 LIR_OprList* arguments, CodeEmitInfo* info)
1212 : LIR_OpCall(code, (address)vtable_offset, result, arguments, info)
1213 , _method(method)
1214 , _receiver(receiver)
1215 { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); }
1216
1217 LIR_Opr receiver() const { return _receiver; }
1218 ciMethod* method() const { return _method; }
1219
1220 // JSR 292 support.
1221 bool is_invokedynamic() const { return code() == lir_dynamic_call; }
1222 bool is_method_handle_invoke() const {
1223 return method()->is_compiled_lambda_form() || // Java-generated lambda form
1224 method()->is_method_handle_intrinsic(); // JVM-generated MH intrinsic
1225 }
1226
1227 virtual void emit_code(LIR_Assembler* masm);
1228 virtual LIR_OpJavaCall* as_OpJavaCall() { return this; }
1229 virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1230
1231 bool maybe_return_as_fields(ciInlineKlass** vk = nullptr) const;
1232 };
1233
1234 // --------------------------------------------------
1235 // LIR_OpLabel
1236 // --------------------------------------------------
1237 // Location where a branch can continue
1238 class LIR_OpLabel: public LIR_Op {
1239 friend class LIR_OpVisitState;
1240
1241 private:
1242 Label* _label;
1243 public:
1244 LIR_OpLabel(Label* lbl)
1245 : LIR_Op(lir_label, LIR_OprFact::illegalOpr, nullptr)
1246 , _label(lbl) {}
1247 Label* label() const { return _label; }
1248
1249 virtual void emit_code(LIR_Assembler* masm);
1250 virtual LIR_OpLabel* as_OpLabel() { return this; }
1251 virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1252 };
1253
1254 // LIR_OpArrayCopy
1255 class LIR_OpArrayCopy: public LIR_Op {
1256 friend class LIR_OpVisitState;
1257
1258 private:
1259 ArrayCopyStub* _stub;
1260 LIR_Opr _src;
1261 LIR_Opr _src_pos;
1262 LIR_Opr _dst;
1263 LIR_Opr _dst_pos;
1264 LIR_Opr _length;
1265 LIR_Opr _tmp;
1266 ciArrayKlass* _expected_type;
1267 int _flags;
1268
1269 public:
1270 enum Flags {
1271 src_null_check = 1 << 0,
1272 dst_null_check = 1 << 1,
1273 src_pos_positive_check = 1 << 2,
1274 dst_pos_positive_check = 1 << 3,
1275 length_positive_check = 1 << 4,
1276 src_range_check = 1 << 5,
1277 dst_range_check = 1 << 6,
1278 type_check = 1 << 7,
1279 overlapping = 1 << 8,
1280 unaligned = 1 << 9,
1281 src_objarray = 1 << 10,
1282 dst_objarray = 1 << 11,
1283 always_slow_path = 1 << 12,
1284 src_inlinetype_check = 1 << 13,
1285 dst_inlinetype_check = 1 << 14,
1286 all_flags = (1 << 15) - 1
1287 };
1288
1289 LIR_OpArrayCopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp,
1290 ciArrayKlass* expected_type, int flags, CodeEmitInfo* info);
1291
1292 LIR_Opr src() const { return _src; }
1293 LIR_Opr src_pos() const { return _src_pos; }
1294 LIR_Opr dst() const { return _dst; }
1295 LIR_Opr dst_pos() const { return _dst_pos; }
1296 LIR_Opr length() const { return _length; }
1297 LIR_Opr tmp() const { return _tmp; }
1298 int flags() const { return _flags; }
1299 ciArrayKlass* expected_type() const { return _expected_type; }
1300 ArrayCopyStub* stub() const { return _stub; }
1301 static int get_initial_copy_flags() { return LIR_OpArrayCopy::unaligned |
1302 LIR_OpArrayCopy::overlapping; }
1303
1304 virtual void emit_code(LIR_Assembler* masm);
1305 virtual LIR_OpArrayCopy* as_OpArrayCopy() { return this; }
1306 void print_instr(outputStream* out) const PRODUCT_RETURN;
1307 };
1308
1309 // LIR_OpUpdateCRC32
1310 class LIR_OpUpdateCRC32: public LIR_Op {
1311 friend class LIR_OpVisitState;
1312
1313 private:
1314 LIR_Opr _crc;
1315 LIR_Opr _val;
1316
1317 public:
1318
1319 LIR_OpUpdateCRC32(LIR_Opr crc, LIR_Opr val, LIR_Opr res);
1320
1321 LIR_Opr crc() const { return _crc; }
1322 LIR_Opr val() const { return _val; }
1323
1324 virtual void emit_code(LIR_Assembler* masm);
1325 virtual LIR_OpUpdateCRC32* as_OpUpdateCRC32() { return this; }
1326 void print_instr(outputStream* out) const PRODUCT_RETURN;
1327 };
1328
1329 // --------------------------------------------------
1330 // LIR_Op0
1331 // --------------------------------------------------
1332 class LIR_Op0: public LIR_Op {
1333 friend class LIR_OpVisitState;
1334
1335 public:
1336 LIR_Op0(LIR_Code code)
1337 : LIR_Op(code, LIR_OprFact::illegalOpr, nullptr) { assert(is_in_range(code, begin_op0, end_op0), "code check"); }
1338 LIR_Op0(LIR_Code code, LIR_Opr result, CodeEmitInfo* info = nullptr)
1339 : LIR_Op(code, result, info) { assert(is_in_range(code, begin_op0, end_op0), "code check"); }
1340
1341 virtual void emit_code(LIR_Assembler* masm);
1342 virtual LIR_Op0* as_Op0() { return this; }
1343 virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1344 };
1345
1346
1347 // --------------------------------------------------
1348 // LIR_Op1
1349 // --------------------------------------------------
1350
1351 class LIR_Op1: public LIR_Op {
1352 friend class LIR_OpVisitState;
1353
1354 protected:
1355 LIR_Opr _opr; // input operand
1356 LIR_Opr _tmp;
1357 BasicType _type; // Operand types
1358 LIR_PatchCode _patch; // only required with patchin (NEEDS_CLEANUP: do we want a special instruction for patching?)
1359
1360 static void print_patch_code(outputStream* out, LIR_PatchCode code);
1361
1362 void set_kind(LIR_MoveKind kind) {
1363 assert(code() == lir_move, "must be");
1364 _flags = kind;
1365 }
1366
1367 public:
1368 LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result = LIR_OprFact::illegalOpr, BasicType type = T_ILLEGAL, LIR_PatchCode patch = lir_patch_none, CodeEmitInfo* info = nullptr)
1369 : LIR_Op(code, result, info)
1370 , _opr(opr)
1371 , _tmp(LIR_OprFact::illegalOpr)
1372 , _type(type)
1373 , _patch(patch) { assert(is_in_range(code, begin_op1, end_op1), "code check"); }
1374
1375 LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result, LIR_Opr tmp, BasicType type = T_ILLEGAL, LIR_PatchCode patch = lir_patch_none, CodeEmitInfo* info = nullptr)
1376 : LIR_Op(code, result, info)
1377 , _opr(opr)
1378 , _tmp(tmp)
1379 , _type(type)
1380 , _patch(patch) { assert(is_in_range(code, begin_op1, end_op1), "code check"); }
1381
1382 LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result, BasicType type, LIR_PatchCode patch, CodeEmitInfo* info, LIR_MoveKind kind)
1383 : LIR_Op(code, result, info)
1384 , _opr(opr)
1385 , _tmp(LIR_OprFact::illegalOpr)
1386 , _type(type)
1387 , _patch(patch) {
1388 assert(code == lir_move, "must be");
1389 set_kind(kind);
1390 }
1391
1392 LIR_Op1(LIR_Code code, LIR_Opr opr, CodeEmitInfo* info)
1393 : LIR_Op(code, LIR_OprFact::illegalOpr, info)
1394 , _opr(opr)
1395 , _tmp(LIR_OprFact::illegalOpr)
1396 , _type(T_ILLEGAL)
1397 , _patch(lir_patch_none) { assert(is_in_range(code, begin_op1, end_op1), "code check"); }
1398
1399 LIR_Opr in_opr() const { return _opr; }
1400 LIR_Opr tmp_opr() const { return _tmp; }
1401 LIR_PatchCode patch_code() const { return _patch; }
1402 BasicType type() const { return _type; }
1403
1404 LIR_MoveKind move_kind() const {
1405 assert(code() == lir_move, "must be");
1406 return (LIR_MoveKind)_flags;
1407 }
1408
1409 virtual bool is_patching() { return _patch != lir_patch_none; }
1410 virtual void emit_code(LIR_Assembler* masm);
1411 virtual LIR_Op1* as_Op1() { return this; }
1412 virtual const char * name() const PRODUCT_RETURN_NULL;
1413
1414 void set_in_opr(LIR_Opr opr) { _opr = opr; }
1415
1416 virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1417 virtual void verify() const;
1418 };
1419
1420
1421 // for runtime calls
1422 class LIR_OpRTCall: public LIR_OpCall {
1423 friend class LIR_OpVisitState;
1424
1425 private:
1426 LIR_Opr _tmp;
1427 public:
1428 LIR_OpRTCall(address addr, LIR_Opr tmp,
1429 LIR_Opr result, LIR_OprList* arguments, CodeEmitInfo* info = nullptr)
1430 : LIR_OpCall(lir_rtcall, addr, result, arguments, info)
1431 , _tmp(tmp) {}
1432
1433 virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1434 virtual void emit_code(LIR_Assembler* masm);
1435 virtual LIR_OpRTCall* as_OpRTCall() { return this; }
1436
1437 LIR_Opr tmp() const { return _tmp; }
1438
1439 virtual void verify() const;
1440 };
1441
1442
1443
1444 class LIR_OpReturn: public LIR_Op1 {
1445 friend class LIR_OpVisitState;
1446
1447 private:
1448 C1SafepointPollStub* _stub;
1449
1450 public:
1451 LIR_OpReturn(LIR_Opr opr);
1452
1453 C1SafepointPollStub* stub() const { return _stub; }
1454 virtual LIR_OpReturn* as_OpReturn() { return this; }
1455 };
1456
1457 class ConversionStub;
1458
1459 class LIR_OpConvert: public LIR_Op1 {
1460 friend class LIR_OpVisitState;
1461
1462 private:
1463 Bytecodes::Code _bytecode;
1464 ConversionStub* _stub;
1465
1466 public:
1467 LIR_OpConvert(Bytecodes::Code code, LIR_Opr opr, LIR_Opr result, ConversionStub* stub)
1468 : LIR_Op1(lir_convert, opr, result)
1469 , _bytecode(code)
1470 , _stub(stub) {}
1471
1472 Bytecodes::Code bytecode() const { return _bytecode; }
1473 ConversionStub* stub() const { return _stub; }
1474
1475 virtual void emit_code(LIR_Assembler* masm);
1476 virtual LIR_OpConvert* as_OpConvert() { return this; }
1477 virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1478
1479 static void print_bytecode(outputStream* out, Bytecodes::Code code) PRODUCT_RETURN;
1480 };
1481
1482
1483 // LIR_OpAllocObj
1484 class LIR_OpAllocObj : public LIR_Op1 {
1485 friend class LIR_OpVisitState;
1486
1487 private:
1488 LIR_Opr _tmp1;
1489 LIR_Opr _tmp2;
1490 LIR_Opr _tmp3;
1491 LIR_Opr _tmp4;
1492 int _hdr_size;
1493 int _obj_size;
1494 CodeStub* _stub;
1495 bool _init_check;
1496
1497 public:
1498 LIR_OpAllocObj(LIR_Opr klass, LIR_Opr result,
1499 LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4,
1500 int hdr_size, int obj_size, bool init_check, CodeStub* stub)
1501 : LIR_Op1(lir_alloc_object, klass, result)
1502 , _tmp1(t1)
1503 , _tmp2(t2)
1504 , _tmp3(t3)
1505 , _tmp4(t4)
1506 , _hdr_size(hdr_size)
1507 , _obj_size(obj_size)
1508 , _stub(stub)
1509 , _init_check(init_check) { }
1510
1511 LIR_Opr klass() const { return in_opr(); }
1512 LIR_Opr obj() const { return result_opr(); }
1513 LIR_Opr tmp1() const { return _tmp1; }
1514 LIR_Opr tmp2() const { return _tmp2; }
1515 LIR_Opr tmp3() const { return _tmp3; }
1516 LIR_Opr tmp4() const { return _tmp4; }
1517 int header_size() const { return _hdr_size; }
1518 int object_size() const { return _obj_size; }
1519 bool init_check() const { return _init_check; }
1520 CodeStub* stub() const { return _stub; }
1521
1522 virtual void emit_code(LIR_Assembler* masm);
1523 virtual LIR_OpAllocObj * as_OpAllocObj () { return this; }
1524 virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1525 };
1526
1527
1528 // LIR_OpTypeCheck
1529 class LIR_OpTypeCheck: public LIR_Op {
1530 friend class LIR_OpVisitState;
1531
1532 private:
1533 LIR_Opr _object;
1534 LIR_Opr _array;
1535 ciKlass* _klass;
1536 LIR_Opr _tmp1;
1537 LIR_Opr _tmp2;
1538 LIR_Opr _tmp3;
1539 CodeEmitInfo* _info_for_patch;
1540 CodeEmitInfo* _info_for_exception;
1541 CodeStub* _stub;
1542 ciMethod* _profiled_method;
1543 int _profiled_bci;
1544 bool _should_profile;
1545 bool _fast_check;
1546 bool _need_null_check;
1547
1548 public:
1549 LIR_OpTypeCheck(LIR_Code code, LIR_Opr result, LIR_Opr object, ciKlass* klass,
1550 LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
1551 CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub, bool need_null_check = true);
1552 LIR_OpTypeCheck(LIR_Code code, LIR_Opr object, LIR_Opr array,
1553 LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception);
1554
1555 LIR_Opr object() const { return _object; }
1556 LIR_Opr array() const { assert(code() == lir_store_check, "not valid"); return _array; }
1557 LIR_Opr tmp1() const { return _tmp1; }
1558 LIR_Opr tmp2() const { return _tmp2; }
1559 LIR_Opr tmp3() const { return _tmp3; }
1560 ciKlass* klass() const { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _klass; }
1561 bool fast_check() const { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _fast_check; }
1562 CodeEmitInfo* info_for_patch() const { return _info_for_patch; }
1563 CodeEmitInfo* info_for_exception() const { return _info_for_exception; }
1564 CodeStub* stub() const { return _stub; }
1565
1566 // MethodData* profiling
1567 void set_profiled_method(ciMethod *method) { _profiled_method = method; }
1568 void set_profiled_bci(int bci) { _profiled_bci = bci; }
1569 void set_should_profile(bool b) { _should_profile = b; }
1570 ciMethod* profiled_method() const { return _profiled_method; }
1571 int profiled_bci() const { return _profiled_bci; }
1572 bool should_profile() const { return _should_profile; }
1573 bool need_null_check() const { return _need_null_check; }
1574 virtual bool is_patching() { return _info_for_patch != nullptr; }
1575 virtual void emit_code(LIR_Assembler* masm);
1576 virtual LIR_OpTypeCheck* as_OpTypeCheck() { return this; }
1577 void print_instr(outputStream* out) const PRODUCT_RETURN;
1578 };
1579
1580 // LIR_OpFlattenedArrayCheck
1581 class LIR_OpFlattenedArrayCheck: public LIR_Op {
1582 friend class LIR_OpVisitState;
1583
1584 private:
1585 LIR_Opr _array;
1586 LIR_Opr _value;
1587 LIR_Opr _tmp;
1588 CodeStub* _stub;
1589 public:
1590 LIR_OpFlattenedArrayCheck(LIR_Opr array, LIR_Opr value, LIR_Opr tmp, CodeStub* stub);
1591 LIR_Opr array() const { return _array; }
1592 LIR_Opr value() const { return _value; }
1593 LIR_Opr tmp() const { return _tmp; }
1594 CodeStub* stub() const { return _stub; }
1595
1596 virtual void emit_code(LIR_Assembler* masm);
1597 virtual LIR_OpFlattenedArrayCheck* as_OpFlattenedArrayCheck() { return this; }
1598 virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1599 };
1600
1601 // LIR_OpNullFreeArrayCheck
1602 class LIR_OpNullFreeArrayCheck: public LIR_Op {
1603 friend class LIR_OpVisitState;
1604
1605 private:
1606 LIR_Opr _array;
1607 LIR_Opr _tmp;
1608 public:
1609 LIR_OpNullFreeArrayCheck(LIR_Opr array, LIR_Opr tmp);
1610 LIR_Opr array() const { return _array; }
1611 LIR_Opr tmp() const { return _tmp; }
1612
1613 virtual void emit_code(LIR_Assembler* masm);
1614 virtual LIR_OpNullFreeArrayCheck* as_OpNullFreeArrayCheck() { return this; }
1615 virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1616 };
1617
1618 class LIR_OpSubstitutabilityCheck: public LIR_Op {
1619 friend class LIR_OpVisitState;
1620
1621 private:
1622 LIR_Opr _left;
1623 LIR_Opr _right;
1624 LIR_Opr _equal_result;
1625 LIR_Opr _not_equal_result;
1626 LIR_Opr _tmp1;
1627 LIR_Opr _tmp2;
1628 ciKlass* _left_klass;
1629 ciKlass* _right_klass;
1630 LIR_Opr _left_klass_op;
1631 LIR_Opr _right_klass_op;
1632 CodeStub* _stub;
1633 public:
1634 LIR_OpSubstitutabilityCheck(LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr equal_result, LIR_Opr not_equal_result,
1635 LIR_Opr tmp1, LIR_Opr tmp2,
1636 ciKlass* left_klass, ciKlass* right_klass, LIR_Opr left_klass_op, LIR_Opr right_klass_op,
1637 CodeEmitInfo* info, CodeStub* stub);
1638
1639 LIR_Opr left() const { return _left; }
1640 LIR_Opr right() const { return _right; }
1641 LIR_Opr equal_result() const { return _equal_result; }
1642 LIR_Opr not_equal_result() const { return _not_equal_result; }
1643 LIR_Opr tmp1() const { return _tmp1; }
1644 LIR_Opr tmp2() const { return _tmp2; }
1645 ciKlass* left_klass() const { return _left_klass; }
1646 ciKlass* right_klass() const { return _right_klass; }
1647 LIR_Opr left_klass_op() const { return _left_klass_op; }
1648 LIR_Opr right_klass_op() const { return _right_klass_op; }
1649 CodeStub* stub() const { return _stub; }
1650
1651 virtual void emit_code(LIR_Assembler* masm);
1652 virtual LIR_OpSubstitutabilityCheck* as_OpSubstitutabilityCheck() { return this; }
1653 virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1654 };
1655
1656 // LIR_Op2
1657 class LIR_Op2: public LIR_Op {
1658 friend class LIR_OpVisitState;
1659
1660 protected:
1661 LIR_Opr _opr1;
1662 LIR_Opr _opr2;
1663 LIR_Opr _tmp1;
1664 LIR_Opr _tmp2;
1665 LIR_Opr _tmp3;
1666 LIR_Opr _tmp4;
1667 LIR_Opr _tmp5;
1668 LIR_Condition _condition;
1669 BasicType _type;
1670
1671 void verify() const;
1672
1673 public:
1674 LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, CodeEmitInfo* info = nullptr, BasicType type = T_ILLEGAL)
1675 : LIR_Op(code, LIR_OprFact::illegalOpr, info)
1676 , _opr1(opr1)
1677 , _opr2(opr2)
1678 , _tmp1(LIR_OprFact::illegalOpr)
1679 , _tmp2(LIR_OprFact::illegalOpr)
1680 , _tmp3(LIR_OprFact::illegalOpr)
1681 , _tmp4(LIR_OprFact::illegalOpr)
1682 , _tmp5(LIR_OprFact::illegalOpr)
1683 , _condition(condition)
1684 , _type(type) {
1685 assert(code == lir_cmp || code == lir_branch || code == lir_cond_float_branch || code == lir_assert, "code check");
1686 }
1687
1688 LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type)
1689 : LIR_Op(code, result, nullptr)
1690 , _opr1(opr1)
1691 , _opr2(opr2)
1692 , _tmp1(LIR_OprFact::illegalOpr)
1693 , _tmp2(LIR_OprFact::illegalOpr)
1694 , _tmp3(LIR_OprFact::illegalOpr)
1695 , _tmp4(LIR_OprFact::illegalOpr)
1696 , _tmp5(LIR_OprFact::illegalOpr)
1697 , _condition(condition)
1698 , _type(type) {
1699 assert(code == lir_cmove, "code check");
1700 assert(type != T_ILLEGAL, "cmove should have type");
1701 }
1702
1703 LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result = LIR_OprFact::illegalOpr,
1704 CodeEmitInfo* info = nullptr, BasicType type = T_ILLEGAL)
1705 : LIR_Op(code, result, info)
1706 , _opr1(opr1)
1707 , _opr2(opr2)
1708 , _tmp1(LIR_OprFact::illegalOpr)
1709 , _tmp2(LIR_OprFact::illegalOpr)
1710 , _tmp3(LIR_OprFact::illegalOpr)
1711 , _tmp4(LIR_OprFact::illegalOpr)
1712 , _tmp5(LIR_OprFact::illegalOpr)
1713 , _condition(lir_cond_unknown)
1714 , _type(type) {
1715 assert(code != lir_cmp && code != lir_branch && code != lir_cond_float_branch && is_in_range(code, begin_op2, end_op2), "code check");
1716 }
1717
1718 LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, LIR_Opr tmp1, LIR_Opr tmp2 = LIR_OprFact::illegalOpr,
1719 LIR_Opr tmp3 = LIR_OprFact::illegalOpr, LIR_Opr tmp4 = LIR_OprFact::illegalOpr, LIR_Opr tmp5 = LIR_OprFact::illegalOpr)
1720 : LIR_Op(code, result, nullptr)
1721 , _opr1(opr1)
1722 , _opr2(opr2)
1723 , _tmp1(tmp1)
1724 , _tmp2(tmp2)
1725 , _tmp3(tmp3)
1726 , _tmp4(tmp4)
1727 , _tmp5(tmp5)
1728 , _condition(lir_cond_unknown)
1729 , _type(T_ILLEGAL) {
1730 assert(code != lir_cmp && code != lir_branch && code != lir_cond_float_branch && is_in_range(code, begin_op2, end_op2), "code check");
1731 }
1732
1733 LIR_Opr in_opr1() const { return _opr1; }
1734 LIR_Opr in_opr2() const { return _opr2; }
1735 BasicType type() const { return _type; }
1736 LIR_Opr tmp1_opr() const { return _tmp1; }
1737 LIR_Opr tmp2_opr() const { return _tmp2; }
1738 LIR_Opr tmp3_opr() const { return _tmp3; }
1739 LIR_Opr tmp4_opr() const { return _tmp4; }
1740 LIR_Opr tmp5_opr() const { return _tmp5; }
1741 LIR_Condition condition() const {
1742 assert(code() == lir_cmp || code() == lir_branch || code() == lir_cond_float_branch || code() == lir_assert, "only valid for branch and assert"); return _condition;
1743 }
1744 void set_condition(LIR_Condition condition) {
1745 assert(code() == lir_cmp || code() == lir_branch || code() == lir_cond_float_branch, "only valid for branch"); _condition = condition;
1746 }
1747
1748 void set_in_opr1(LIR_Opr opr) { _opr1 = opr; }
1749 void set_in_opr2(LIR_Opr opr) { _opr2 = opr; }
1750
1751 virtual void emit_code(LIR_Assembler* masm);
1752 virtual LIR_Op2* as_Op2() { return this; }
1753 virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1754 };
1755
1756 class LIR_OpBranch: public LIR_Op2 {
1757 friend class LIR_OpVisitState;
1758
1759 private:
1760 Label* _label;
1761 BlockBegin* _block; // if this is a branch to a block, this is the block
1762 BlockBegin* _ublock; // if this is a float-branch, this is the unordered block
1763 CodeStub* _stub; // if this is a branch to a stub, this is the stub
1764
1765 public:
1766 LIR_OpBranch(LIR_Condition cond, Label* lbl)
1767 : LIR_Op2(lir_branch, cond, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, (CodeEmitInfo*) nullptr)
1768 , _label(lbl)
1769 , _block(nullptr)
1770 , _ublock(nullptr)
1771 , _stub(nullptr) { }
1772
1773 LIR_OpBranch(LIR_Condition cond, BlockBegin* block);
1774 LIR_OpBranch(LIR_Condition cond, CodeStub* stub);
1775
1776 // for unordered comparisons
1777 LIR_OpBranch(LIR_Condition cond, BlockBegin* block, BlockBegin* ublock);
1778
1779 LIR_Condition cond() const {
1780 return condition();
1781 }
1782
1783 void set_cond(LIR_Condition cond) {
1784 set_condition(cond);
1785 }
1786
1787 Label* label() const { return _label; }
1788 BlockBegin* block() const { return _block; }
1789 BlockBegin* ublock() const { return _ublock; }
1790 CodeStub* stub() const { return _stub; }
1791
1792 void change_block(BlockBegin* b);
1793 void change_ublock(BlockBegin* b);
1794 void negate_cond();
1795
1796 virtual void emit_code(LIR_Assembler* masm);
1797 virtual LIR_OpBranch* as_OpBranch() { return this; }
1798 virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1799 };
1800
1801 class LIR_OpAllocArray : public LIR_Op {
1802 friend class LIR_OpVisitState;
1803
1804 private:
1805 LIR_Opr _klass;
1806 LIR_Opr _len;
1807 LIR_Opr _tmp1;
1808 LIR_Opr _tmp2;
1809 LIR_Opr _tmp3;
1810 LIR_Opr _tmp4;
1811 CodeStub* _stub;
1812 BasicType _type;
1813 bool _zero_array;
1814 bool _always_slow_path;
1815
1816 public:
1817 LIR_OpAllocArray(LIR_Opr klass, LIR_Opr len, LIR_Opr result, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, BasicType type, CodeStub* stub, bool zero_array, bool always_slow_path)
1818 : LIR_Op(lir_alloc_array, result, nullptr)
1819 , _klass(klass)
1820 , _len(len)
1821 , _tmp1(t1)
1822 , _tmp2(t2)
1823 , _tmp3(t3)
1824 , _tmp4(t4)
1825 , _stub(stub)
1826 , _type(type)
1827 , _zero_array(zero_array)
1828 , _always_slow_path(always_slow_path) {}
1829
1830 LIR_Opr klass() const { return _klass; }
1831 LIR_Opr len() const { return _len; }
1832 LIR_Opr obj() const { return result_opr(); }
1833 LIR_Opr tmp1() const { return _tmp1; }
1834 LIR_Opr tmp2() const { return _tmp2; }
1835 LIR_Opr tmp3() const { return _tmp3; }
1836 LIR_Opr tmp4() const { return _tmp4; }
1837 BasicType type() const { return _type; }
1838 CodeStub* stub() const { return _stub; }
1839 bool zero_array() const { return _zero_array; }
1840 bool always_slow_path() const { return _always_slow_path; }
1841
1842 virtual void emit_code(LIR_Assembler* masm);
1843 virtual LIR_OpAllocArray * as_OpAllocArray () { return this; }
1844 virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1845 };
1846
1847
1848 class LIR_Op3: public LIR_Op {
1849 friend class LIR_OpVisitState;
1850
1851 private:
1852 LIR_Opr _opr1;
1853 LIR_Opr _opr2;
1854 LIR_Opr _opr3;
1855 public:
1856 LIR_Op3(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr opr3, LIR_Opr result, CodeEmitInfo* info = nullptr)
1857 : LIR_Op(code, result, info)
1858 , _opr1(opr1)
1859 , _opr2(opr2)
1860 , _opr3(opr3) { assert(is_in_range(code, begin_op3, end_op3), "code check"); }
1861 LIR_Opr in_opr1() const { return _opr1; }
1862 LIR_Opr in_opr2() const { return _opr2; }
1863 LIR_Opr in_opr3() const { return _opr3; }
1864
1865 virtual void emit_code(LIR_Assembler* masm);
1866 virtual LIR_Op3* as_Op3() { return this; }
1867 virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1868 };
1869
1870 class LIR_Op4: public LIR_Op {
1871 friend class LIR_OpVisitState;
1872 protected:
1873 LIR_Opr _opr1;
1874 LIR_Opr _opr2;
1875 LIR_Opr _opr3;
1876 LIR_Opr _opr4;
1877 LIR_Opr _tmp1;
1878 LIR_Opr _tmp2;
1879 LIR_Opr _tmp3;
1880 LIR_Opr _tmp4;
1881 LIR_Opr _tmp5;
1882 LIR_Condition _condition;
1883 BasicType _type;
1884
1885 public:
1886 LIR_Op4(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr opr3, LIR_Opr opr4,
1887 LIR_Opr result, BasicType type)
1888 : LIR_Op(code, result, nullptr)
1889 , _opr1(opr1)
1890 , _opr2(opr2)
1891 , _opr3(opr3)
1892 , _opr4(opr4)
1893 , _tmp1(LIR_OprFact::illegalOpr)
1894 , _tmp2(LIR_OprFact::illegalOpr)
1895 , _tmp3(LIR_OprFact::illegalOpr)
1896 , _tmp4(LIR_OprFact::illegalOpr)
1897 , _tmp5(LIR_OprFact::illegalOpr)
1898 , _condition(condition)
1899 , _type(type) {
1900 assert(code == lir_cmove, "code check");
1901 assert(type != T_ILLEGAL, "cmove should have type");
1902 }
1903
1904 LIR_Opr in_opr1() const { return _opr1; }
1905 LIR_Opr in_opr2() const { return _opr2; }
1906 LIR_Opr in_opr3() const { return _opr3; }
1907 LIR_Opr in_opr4() const { return _opr4; }
1908 BasicType type() const { return _type; }
1909 LIR_Opr tmp1_opr() const { return _tmp1; }
1910 LIR_Opr tmp2_opr() const { return _tmp2; }
1911 LIR_Opr tmp3_opr() const { return _tmp3; }
1912 LIR_Opr tmp4_opr() const { return _tmp4; }
1913 LIR_Opr tmp5_opr() const { return _tmp5; }
1914
1915 LIR_Condition condition() const { return _condition; }
1916 void set_condition(LIR_Condition condition) { _condition = condition; }
1917
1918 void set_in_opr1(LIR_Opr opr) { _opr1 = opr; }
1919 void set_in_opr2(LIR_Opr opr) { _opr2 = opr; }
1920 void set_in_opr3(LIR_Opr opr) { _opr3 = opr; }
1921 void set_in_opr4(LIR_Opr opr) { _opr4 = opr; }
1922 virtual void emit_code(LIR_Assembler* masm);
1923 virtual LIR_Op4* as_Op4() { return this; }
1924
1925 virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1926 };
1927
1928 //--------------------------------
1929 class LabelObj: public CompilationResourceObj {
1930 private:
1931 Label _label;
1932 public:
1933 LabelObj() {}
1934 Label* label() { return &_label; }
1935 };
1936
1937
1938 class LIR_OpLock: public LIR_Op {
1939 friend class LIR_OpVisitState;
1940
1941 private:
1942 LIR_Opr _hdr;
1943 LIR_Opr _obj;
1944 LIR_Opr _lock;
1945 LIR_Opr _scratch;
1946 CodeStub* _stub;
1947 CodeStub* _throw_ie_stub;
1948 public:
1949 LIR_OpLock(LIR_Code code, LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info, CodeStub* throw_ie_stub=nullptr)
1950 : LIR_Op(code, LIR_OprFact::illegalOpr, info)
1951 , _hdr(hdr)
1952 , _obj(obj)
1953 , _lock(lock)
1954 , _scratch(scratch)
1955 , _stub(stub)
1956 , _throw_ie_stub(throw_ie_stub) {}
1957
1958 LIR_Opr hdr_opr() const { return _hdr; }
1959 LIR_Opr obj_opr() const { return _obj; }
1960 LIR_Opr lock_opr() const { return _lock; }
1961 LIR_Opr scratch_opr() const { return _scratch; }
1962 CodeStub* stub() const { return _stub; }
1963 CodeStub* throw_ie_stub() const { return _throw_ie_stub; }
1964
1965 virtual void emit_code(LIR_Assembler* masm);
1966 virtual LIR_OpLock* as_OpLock() { return this; }
1967 void print_instr(outputStream* out) const PRODUCT_RETURN;
1968 };
1969
1970 class LIR_OpLoadKlass: public LIR_Op {
1971 friend class LIR_OpVisitState;
1972
1973 private:
1974 LIR_Opr _obj;
1975 public:
1976 LIR_OpLoadKlass(LIR_Opr obj, LIR_Opr result, CodeEmitInfo* info)
1977 : LIR_Op(lir_load_klass, result, info)
1978 , _obj(obj)
1979 {}
1980
1981 LIR_Opr obj() const { return _obj; }
1982
1983 virtual LIR_OpLoadKlass* as_OpLoadKlass() { return this; }
1984 virtual void emit_code(LIR_Assembler* masm);
1985 void print_instr(outputStream* out) const PRODUCT_RETURN;
1986 };
1987
1988 #ifdef ASSERT
1989 // LIR_OpAssert
1990 class LIR_OpAssert : public LIR_Op2 {
1991 friend class LIR_OpVisitState;
1992
1993 private:
1994 const char* _msg;
1995 bool _halt;
1996
1997 public:
1998 LIR_OpAssert(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, const char* msg, bool halt)
1999 : LIR_Op2(lir_assert, condition, opr1, opr2)
2000 , _msg(msg)
2001 , _halt(halt) {
2002 }
2003
2004 const char* msg() const { return _msg; }
2005 bool halt() const { return _halt; }
2006
2007 virtual void emit_code(LIR_Assembler* masm);
2008 virtual LIR_OpAssert* as_OpAssert() { return this; }
2009 virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
2010 };
2011 #endif
2012
2013 // LIR_OpCompareAndSwap
2014 class LIR_OpCompareAndSwap : public LIR_Op {
2015 friend class LIR_OpVisitState;
2016
2017 private:
2018 LIR_Opr _addr;
2019 LIR_Opr _cmp_value;
2020 LIR_Opr _new_value;
2021 LIR_Opr _tmp1;
2022 LIR_Opr _tmp2;
2023
2024 public:
2025 LIR_OpCompareAndSwap(LIR_Code code, LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
2026 LIR_Opr t1, LIR_Opr t2, LIR_Opr result)
2027 : LIR_Op(code, result, nullptr) // no result, no info
2028 , _addr(addr)
2029 , _cmp_value(cmp_value)
2030 , _new_value(new_value)
2031 , _tmp1(t1)
2032 , _tmp2(t2) { }
2033
2034 LIR_Opr addr() const { return _addr; }
2035 LIR_Opr cmp_value() const { return _cmp_value; }
2036 LIR_Opr new_value() const { return _new_value; }
2037 LIR_Opr tmp1() const { return _tmp1; }
2038 LIR_Opr tmp2() const { return _tmp2; }
2039
2040 virtual void emit_code(LIR_Assembler* masm);
2041 virtual LIR_OpCompareAndSwap * as_OpCompareAndSwap () { return this; }
2042 virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
2043 };
2044
2045 // LIR_OpProfileCall
2046 class LIR_OpProfileCall : public LIR_Op {
2047 friend class LIR_OpVisitState;
2048
2049 private:
2050 ciMethod* _profiled_method;
2051 int _profiled_bci;
2052 ciMethod* _profiled_callee;
2053 LIR_Opr _mdo;
2054 LIR_Opr _recv;
2055 LIR_Opr _tmp1;
2056 ciKlass* _known_holder;
2057
2058 public:
2059 // Destroys recv
2060 LIR_OpProfileCall(ciMethod* profiled_method, int profiled_bci, ciMethod* profiled_callee, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* known_holder)
2061 : LIR_Op(lir_profile_call, LIR_OprFact::illegalOpr, nullptr) // no result, no info
2062 , _profiled_method(profiled_method)
2063 , _profiled_bci(profiled_bci)
2064 , _profiled_callee(profiled_callee)
2065 , _mdo(mdo)
2066 , _recv(recv)
2067 , _tmp1(t1)
2068 , _known_holder(known_holder) { }
2069
2070 ciMethod* profiled_method() const { return _profiled_method; }
2071 int profiled_bci() const { return _profiled_bci; }
2072 ciMethod* profiled_callee() const { return _profiled_callee; }
2073 LIR_Opr mdo() const { return _mdo; }
2074 LIR_Opr recv() const { return _recv; }
2075 LIR_Opr tmp1() const { return _tmp1; }
2076 ciKlass* known_holder() const { return _known_holder; }
2077
2078 virtual void emit_code(LIR_Assembler* masm);
2079 virtual LIR_OpProfileCall* as_OpProfileCall() { return this; }
2080 virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
2081 bool should_profile_receiver_type() const {
2082 bool callee_is_static = _profiled_callee->is_loaded() && _profiled_callee->is_static();
2083 bool callee_is_private = _profiled_callee->is_loaded() && _profiled_callee->is_private();
2084 Bytecodes::Code bc = _profiled_method->java_code_at_bci(_profiled_bci);
2085 bool call_is_virtual = (bc == Bytecodes::_invokevirtual && !callee_is_private) || bc == Bytecodes::_invokeinterface;
2086 return C1ProfileVirtualCalls && call_is_virtual && !callee_is_static;
2087 }
2088 };
2089
2090 // LIR_OpProfileType
2091 class LIR_OpProfileType : public LIR_Op {
2092 friend class LIR_OpVisitState;
2093
2094 private:
2095 LIR_Opr _mdp;
2096 LIR_Opr _obj;
2097 LIR_Opr _tmp;
2098 ciKlass* _exact_klass; // non null if we know the klass statically (no need to load it from _obj)
2099 intptr_t _current_klass; // what the profiling currently reports
2100 bool _not_null; // true if we know statically that _obj cannot be null
2101 bool _no_conflict; // true if we're profling parameters, _exact_klass is not null and we know
2102 // _exact_klass it the only possible type for this parameter in any context.
2103
2104 public:
2105 // Destroys recv
2106 LIR_OpProfileType(LIR_Opr mdp, LIR_Opr obj, ciKlass* exact_klass, intptr_t current_klass, LIR_Opr tmp, bool not_null, bool no_conflict)
2107 : LIR_Op(lir_profile_type, LIR_OprFact::illegalOpr, nullptr) // no result, no info
2108 , _mdp(mdp)
2109 , _obj(obj)
2110 , _tmp(tmp)
2111 , _exact_klass(exact_klass)
2112 , _current_klass(current_klass)
2113 , _not_null(not_null)
2114 , _no_conflict(no_conflict) { }
2115
2116 LIR_Opr mdp() const { return _mdp; }
2117 LIR_Opr obj() const { return _obj; }
2118 LIR_Opr tmp() const { return _tmp; }
2119 ciKlass* exact_klass() const { return _exact_klass; }
2120 intptr_t current_klass() const { return _current_klass; }
2121 bool not_null() const { return _not_null; }
2122 bool no_conflict() const { return _no_conflict; }
2123
2124 virtual void emit_code(LIR_Assembler* masm);
2125 virtual LIR_OpProfileType* as_OpProfileType() { return this; }
2126 virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
2127 };
2128
2129 // LIR_OpProfileInlineType
2130 class LIR_OpProfileInlineType : public LIR_Op {
2131 friend class LIR_OpVisitState;
2132
2133 private:
2134 LIR_Opr _mdp;
2135 LIR_Opr _obj;
2136 int _flag;
2137 LIR_Opr _tmp;
2138 bool _not_null; // true if we know statically that _obj cannot be null
2139
2140 public:
2141 // Destroys recv
2142 LIR_OpProfileInlineType(LIR_Opr mdp, LIR_Opr obj, int flag, LIR_Opr tmp, bool not_null)
2143 : LIR_Op(lir_profile_inline_type, LIR_OprFact::illegalOpr, nullptr) // no result, no info
2144 , _mdp(mdp)
2145 , _obj(obj)
2146 , _flag(flag)
2147 , _tmp(tmp)
2148 , _not_null(not_null) { }
2149
2150 LIR_Opr mdp() const { return _mdp; }
2151 LIR_Opr obj() const { return _obj; }
2152 int flag() const { return _flag; }
2153 LIR_Opr tmp() const { return _tmp; }
2154 bool not_null() const { return _not_null; }
2155
2156 virtual void emit_code(LIR_Assembler* masm);
2157 virtual LIR_OpProfileInlineType* as_OpProfileInlineType() { return this; }
2158 virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
2159 };
2160
2161 class LIR_InsertionBuffer;
2162
2163 //--------------------------------LIR_List---------------------------------------------------
2164 // Maintains a list of LIR instructions (one instance of LIR_List per basic block)
2165 // The LIR instructions are appended by the LIR_List class itself;
2166 //
2167 // Notes:
2168 // - all offsets are(should be) in bytes
2169 // - local positions are specified with an offset, with offset 0 being local 0
2170
2171 class LIR_List: public CompilationResourceObj {
2172 private:
2173 LIR_OpList _operations;
2174
2175 Compilation* _compilation;
2176 #ifndef PRODUCT
2177 BlockBegin* _block;
2178 #endif
2179 #ifdef ASSERT
2180 const char * _file;
2181 int _line;
2182 #endif
2183 #ifdef RISCV
2184 LIR_Opr _cmp_opr1;
2185 LIR_Opr _cmp_opr2;
2186 #endif
2187
2188 public:
2189 void append(LIR_Op* op) {
2190 if (op->source() == nullptr)
2191 op->set_source(_compilation->current_instruction());
2192 #ifndef PRODUCT
2193 if (PrintIRWithLIR) {
2194 _compilation->maybe_print_current_instruction();
2195 op->print(); tty->cr();
2196 }
2197 #endif // PRODUCT
2198
2199 #ifdef RISCV
2200 set_cmp_oprs(op);
2201 // lir_cmp set cmp oprs only on riscv
2202 if (op->code() == lir_cmp) return;
2203 #endif
2204
2205 _operations.append(op);
2206
2207 #ifdef ASSERT
2208 op->verify();
2209 op->set_file_and_line(_file, _line);
2210 _file = nullptr;
2211 _line = 0;
2212 #endif
2213 }
2214
2215 LIR_List(Compilation* compilation, BlockBegin* block = nullptr);
2216
2217 #ifdef ASSERT
2218 void set_file_and_line(const char * file, int line);
2219 #endif
2220
2221 #ifdef RISCV
2222 void set_cmp_oprs(LIR_Op* op);
2223 #endif
2224
2225 //---------- accessors ---------------
2226 LIR_OpList* instructions_list() { return &_operations; }
2227 int length() const { return _operations.length(); }
2228 LIR_Op* at(int i) const { return _operations.at(i); }
2229
2230 NOT_PRODUCT(BlockBegin* block() const { return _block; });
2231
2232 // insert LIR_Ops in buffer to right places in LIR_List
2233 void append(LIR_InsertionBuffer* buffer);
2234
2235 //---------- mutators ---------------
2236 void insert_before(int i, LIR_List* op_list) { _operations.insert_before(i, op_list->instructions_list()); }
2237 void insert_before(int i, LIR_Op* op) { _operations.insert_before(i, op); }
2238 void remove_at(int i) { _operations.remove_at(i); }
2239
2240 //---------- printing -------------
2241 void print_instructions() PRODUCT_RETURN;
2242
2243
2244 //---------- instructions -------------
2245 void call_opt_virtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
2246 address dest, LIR_OprList* arguments,
2247 CodeEmitInfo* info) {
2248 append(new LIR_OpJavaCall(lir_optvirtual_call, method, receiver, result, dest, arguments, info));
2249 }
2250 void call_static(ciMethod* method, LIR_Opr result,
2251 address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
2252 append(new LIR_OpJavaCall(lir_static_call, method, LIR_OprFact::illegalOpr, result, dest, arguments, info));
2253 }
2254 void call_icvirtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
2255 address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
2256 append(new LIR_OpJavaCall(lir_icvirtual_call, method, receiver, result, dest, arguments, info));
2257 }
2258 void call_dynamic(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
2259 address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
2260 append(new LIR_OpJavaCall(lir_dynamic_call, method, receiver, result, dest, arguments, info));
2261 }
2262
2263 void get_thread(LIR_Opr result) { append(new LIR_Op0(lir_get_thread, result)); }
2264 void membar() { append(new LIR_Op0(lir_membar)); }
2265 void membar_acquire() { append(new LIR_Op0(lir_membar_acquire)); }
2266 void membar_release() { append(new LIR_Op0(lir_membar_release)); }
2267 void membar_loadload() { append(new LIR_Op0(lir_membar_loadload)); }
2268 void membar_storestore() { append(new LIR_Op0(lir_membar_storestore)); }
2269 void membar_loadstore() { append(new LIR_Op0(lir_membar_loadstore)); }
2270 void membar_storeload() { append(new LIR_Op0(lir_membar_storeload)); }
2271
2272 void nop() { append(new LIR_Op0(lir_nop)); }
2273
2274 void std_entry(LIR_Opr receiver) { append(new LIR_Op0(lir_std_entry, receiver)); }
2275 void osr_entry(LIR_Opr osrPointer) { append(new LIR_Op0(lir_osr_entry, osrPointer)); }
2276
2277 void on_spin_wait() { append(new LIR_Op0(lir_on_spin_wait)); }
2278
2279 void branch_destination(Label* lbl) { append(new LIR_OpLabel(lbl)); }
2280
2281 void leal(LIR_Opr from, LIR_Opr result_reg, LIR_PatchCode patch_code = lir_patch_none, CodeEmitInfo* info = nullptr) { append(new LIR_Op1(lir_leal, from, result_reg, T_ILLEGAL, patch_code, info)); }
2282
2283 // result is a stack location for old backend and vreg for UseLinearScan
2284 // stack_loc_temp is an illegal register for old backend
2285 void move(LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = nullptr) { append(new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); }
2286 void move(LIR_Address* src, LIR_Opr dst, CodeEmitInfo* info = nullptr) { append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, src->type(), lir_patch_none, info)); }
2287 void move(LIR_Opr src, LIR_Address* dst, CodeEmitInfo* info = nullptr) { append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), dst->type(), lir_patch_none, info)); }
2288 void move_wide(LIR_Address* src, LIR_Opr dst, CodeEmitInfo* info = nullptr) {
2289 if (UseCompressedOops) {
2290 append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, src->type(), lir_patch_none, info, lir_move_wide));
2291 } else {
2292 move(src, dst, info);
2293 }
2294 }
2295 void move_wide(LIR_Opr src, LIR_Address* dst, CodeEmitInfo* info = nullptr) {
2296 if (UseCompressedOops) {
2297 append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), dst->type(), lir_patch_none, info, lir_move_wide));
2298 } else {
2299 move(src, dst, info);
2300 }
2301 }
2302 void volatile_move(LIR_Opr src, LIR_Opr dst, BasicType type, CodeEmitInfo* info = nullptr, LIR_PatchCode patch_code = lir_patch_none) { append(new LIR_Op1(lir_move, src, dst, type, patch_code, info, lir_move_volatile)); }
2303
2304 void oop2reg (jobject o, LIR_Opr reg) { assert(reg->type() == T_OBJECT, "bad reg"); append(new LIR_Op1(lir_move, LIR_OprFact::oopConst(o), reg)); }
2305 void oop2reg_patch(jobject o, LIR_Opr reg, CodeEmitInfo* info);
2306
2307 void metadata2reg (Metadata* o, LIR_Opr reg) { assert(reg->type() == T_METADATA, "bad reg"); append(new LIR_Op1(lir_move, LIR_OprFact::metadataConst(o), reg)); }
2308 void klass2reg_patch(Metadata* o, LIR_Opr reg, CodeEmitInfo* info);
2309
2310 void safepoint(LIR_Opr tmp, CodeEmitInfo* info) { append(new LIR_Op1(lir_safepoint, tmp, info)); }
2311 void return_op(LIR_Opr result) { append(new LIR_OpReturn(result)); }
2312
2313 void convert(Bytecodes::Code code, LIR_Opr left, LIR_Opr dst, ConversionStub* stub = nullptr/*, bool is_32bit = false*/) { append(new LIR_OpConvert(code, left, dst, stub)); }
2314
2315 void logical_and (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_and, left, right, dst)); }
2316 void logical_or (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_or, left, right, dst)); }
2317 void logical_xor (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_xor, left, right, dst)); }
2318
2319 void null_check(LIR_Opr opr, CodeEmitInfo* info, bool deoptimize_on_null = false);
2320 void throw_exception(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2321 append(new LIR_Op2(lir_throw, exceptionPC, exceptionOop, LIR_OprFact::illegalOpr, info));
2322 }
2323 void unwind_exception(LIR_Opr exceptionOop) {
2324 append(new LIR_Op1(lir_unwind, exceptionOop));
2325 }
2326
2327 void push(LIR_Opr opr) { append(new LIR_Op1(lir_push, opr)); }
2328 void pop(LIR_Opr reg) { append(new LIR_Op1(lir_pop, reg)); }
2329
2330 void cmp(LIR_Condition condition, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info = nullptr) {
2331 append(new LIR_Op2(lir_cmp, condition, left, right, info));
2332 }
2333 void cmp(LIR_Condition condition, LIR_Opr left, int right, CodeEmitInfo* info = nullptr) {
2334 cmp(condition, left, LIR_OprFact::intConst(right), info);
2335 }
2336
2337 void cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info);
2338 void cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Address* addr, CodeEmitInfo* info);
2339
2340 void cmove(LIR_Condition condition, LIR_Opr src1, LIR_Opr src2, LIR_Opr dst, BasicType type,
2341 LIR_Opr cmp_opr1 = LIR_OprFact::illegalOpr, LIR_Opr cmp_opr2 = LIR_OprFact::illegalOpr) {
2342 append(new LIR_Op4(lir_cmove, condition, src1, src2, cmp_opr1, cmp_opr2, dst, type));
2343 }
2344
2345 void cas_long(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
2346 LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr);
2347 void cas_obj(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
2348 LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr);
2349 void cas_int(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
2350 LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr);
2351
2352 void abs (LIR_Opr from, LIR_Opr to, LIR_Opr tmp) { append(new LIR_Op1(lir_abs , from, to, tmp)); }
2353 void negate(LIR_Opr from, LIR_Opr to, LIR_Opr tmp = LIR_OprFact::illegalOpr) { append(new LIR_Op1(lir_neg, from, to, tmp)); }
2354 void sqrt(LIR_Opr from, LIR_Opr to, LIR_Opr tmp) { append(new LIR_Op1(lir_sqrt, from, to, tmp)); }
2355 void fmad(LIR_Opr from, LIR_Opr from1, LIR_Opr from2, LIR_Opr to) { append(new LIR_Op3(lir_fmad, from, from1, from2, to)); }
2356 void fmaf(LIR_Opr from, LIR_Opr from1, LIR_Opr from2, LIR_Opr to) { append(new LIR_Op3(lir_fmaf, from, from1, from2, to)); }
2357 void f2hf(LIR_Opr from, LIR_Opr to, LIR_Opr tmp) { append(new LIR_Op1(lir_f2hf, from, to, tmp)); }
2358 void hf2f(LIR_Opr from, LIR_Opr to, LIR_Opr tmp) { append(new LIR_Op1(lir_hf2f, from, to, tmp)); }
2359
2360 void add (LIR_Opr left, LIR_Opr right, LIR_Opr res) { append(new LIR_Op2(lir_add, left, right, res)); }
2361 void sub (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = nullptr) { append(new LIR_Op2(lir_sub, left, right, res, info)); }
2362 void mul (LIR_Opr left, LIR_Opr right, LIR_Opr res) { append(new LIR_Op2(lir_mul, left, right, res)); }
2363 void mul (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_mul, left, right, res, tmp)); }
2364 void div (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = nullptr) { append(new LIR_Op2(lir_div, left, right, res, info)); }
2365 void div (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_div, left, right, res, tmp)); }
2366 void rem (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = nullptr) { append(new LIR_Op2(lir_rem, left, right, res, info)); }
2367
2368 void volatile_load_mem_reg(LIR_Address* address, LIR_Opr dst, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2369 void volatile_load_unsafe_reg(LIR_Opr base, LIR_Opr offset, LIR_Opr dst, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code);
2370
2371 void load(LIR_Address* addr, LIR_Opr src, CodeEmitInfo* info = nullptr, LIR_PatchCode patch_code = lir_patch_none);
2372
2373 void store_mem_int(jint v, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2374 void store_mem_oop(jobject o, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2375 void store(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info = nullptr, LIR_PatchCode patch_code = lir_patch_none);
2376 void volatile_store_mem_reg(LIR_Opr src, LIR_Address* address, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2377 void volatile_store_unsafe_reg(LIR_Opr src, LIR_Opr base, LIR_Opr offset, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code);
2378
2379 void idiv(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2380 void idiv(LIR_Opr left, int right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2381 void irem(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2382 void irem(LIR_Opr left, int right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2383
2384 void allocate_object(LIR_Opr dst, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, int header_size, int object_size, LIR_Opr klass, bool init_check, CodeStub* stub);
2385 void allocate_array(LIR_Opr dst, LIR_Opr len, LIR_Opr t1,LIR_Opr t2, LIR_Opr t3,LIR_Opr t4, BasicType type, LIR_Opr klass, CodeStub* stub, bool zero_array = true, bool always_slow_path = false);
2386
2387 // jump is an unconditional branch
2388 void jump(BlockBegin* block) {
2389 append(new LIR_OpBranch(lir_cond_always, block));
2390 }
2391 void jump(CodeStub* stub) {
2392 append(new LIR_OpBranch(lir_cond_always, stub));
2393 }
2394 void branch(LIR_Condition cond, Label* lbl) {
2395 append(new LIR_OpBranch(cond, lbl));
2396 }
2397 // Should not be used for fp comparisons
2398 void branch(LIR_Condition cond, BlockBegin* block) {
2399 append(new LIR_OpBranch(cond, block));
2400 }
2401 // Should not be used for fp comparisons
2402 void branch(LIR_Condition cond, CodeStub* stub) {
2403 append(new LIR_OpBranch(cond, stub));
2404 }
2405 // Should only be used for fp comparisons
2406 void branch(LIR_Condition cond, BlockBegin* block, BlockBegin* unordered) {
2407 append(new LIR_OpBranch(cond, block, unordered));
2408 }
2409
2410 void shift_left(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
2411 void shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
2412 void unsigned_shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
2413
2414 void shift_left(LIR_Opr value, int count, LIR_Opr dst) { shift_left(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
2415 void shift_right(LIR_Opr value, int count, LIR_Opr dst) { shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
2416 void unsigned_shift_right(LIR_Opr value, int count, LIR_Opr dst) { unsigned_shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
2417
2418 void lcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_cmp_l2i, left, right, dst)); }
2419 void fcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst, bool is_unordered_less);
2420
2421 void call_runtime_leaf(address routine, LIR_Opr tmp, LIR_Opr result, LIR_OprList* arguments) {
2422 append(new LIR_OpRTCall(routine, tmp, result, arguments));
2423 }
2424
2425 void call_runtime(address routine, LIR_Opr tmp, LIR_Opr result,
2426 LIR_OprList* arguments, CodeEmitInfo* info) {
2427 append(new LIR_OpRTCall(routine, tmp, result, arguments, info));
2428 }
2429
2430 void load_stack_address_monitor(int monitor_ix, LIR_Opr dst) { append(new LIR_Op1(lir_monaddr, LIR_OprFact::intConst(monitor_ix), dst)); }
2431 void unlock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub);
2432 void lock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info, CodeStub* throw_ie_stub=nullptr);
2433
2434 void breakpoint() { append(new LIR_Op0(lir_breakpoint)); }
2435
2436 void arraycopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp, ciArrayKlass* expected_type, int flags, CodeEmitInfo* info) { append(new LIR_OpArrayCopy(src, src_pos, dst, dst_pos, length, tmp, expected_type, flags, info)); }
2437
2438 void update_crc32(LIR_Opr crc, LIR_Opr val, LIR_Opr res) { append(new LIR_OpUpdateCRC32(crc, val, res)); }
2439
2440 void instanceof(LIR_Opr result, LIR_Opr object, ciKlass* klass, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, CodeEmitInfo* info_for_patch, ciMethod* profiled_method, int profiled_bci);
2441 void store_check(LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception, ciMethod* profiled_method, int profiled_bci);
2442 void check_flat_array(LIR_Opr array, LIR_Opr value, LIR_Opr tmp, CodeStub* stub);
2443 void check_null_free_array(LIR_Opr array, LIR_Opr tmp);
2444 void substitutability_check(LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr equal_result, LIR_Opr not_equal_result,
2445 LIR_Opr tmp1, LIR_Opr tmp2,
2446 ciKlass* left_klass, ciKlass* right_klass, LIR_Opr left_klass_op, LIR_Opr right_klass_op,
2447 CodeEmitInfo* info, CodeStub* stub);
2448
2449 void checkcast (LIR_Opr result, LIR_Opr object, ciKlass* klass,
2450 LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
2451 CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub,
2452 ciMethod* profiled_method, int profiled_bci, bool is_null_free);
2453 // MethodData* profiling
2454 void profile_call(ciMethod* method, int bci, ciMethod* callee, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* cha_klass) {
2455 append(new LIR_OpProfileCall(method, bci, callee, mdo, recv, t1, cha_klass));
2456 }
2457 void profile_type(LIR_Address* mdp, LIR_Opr obj, ciKlass* exact_klass, intptr_t current_klass, LIR_Opr tmp, bool not_null, bool no_conflict) {
2458 append(new LIR_OpProfileType(LIR_OprFact::address(mdp), obj, exact_klass, current_klass, tmp, not_null, no_conflict));
2459 }
2460 void profile_inline_type(LIR_Address* mdp, LIR_Opr obj, int flag, LIR_Opr tmp, bool not_null) {
2461 append(new LIR_OpProfileInlineType(LIR_OprFact::address(mdp), obj, flag, tmp, not_null));
2462 }
2463
2464 void xadd(LIR_Opr src, LIR_Opr add, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_xadd, src, add, res, tmp)); }
2465 void xchg(LIR_Opr src, LIR_Opr set, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_xchg, src, set, res, tmp)); }
2466
2467 void load_klass(LIR_Opr obj, LIR_Opr result, CodeEmitInfo* info) { append(new LIR_OpLoadKlass(obj, result, info)); }
2468
2469 #ifdef ASSERT
2470 void lir_assert(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, const char* msg, bool halt) { append(new LIR_OpAssert(condition, opr1, opr2, msg, halt)); }
2471 #endif
2472 };
2473
2474 void print_LIR(BlockList* blocks);
2475
2476 class LIR_InsertionBuffer : public CompilationResourceObj {
2477 private:
2478 LIR_List* _lir; // the lir list where ops of this buffer should be inserted later (null when uninitialized)
2479
2480 // list of insertion points. index and count are stored alternately:
2481 // _index_and_count[i * 2]: the index into lir list where "count" ops should be inserted
2482 // _index_and_count[i * 2 + 1]: the number of ops to be inserted at index
2483 intStack _index_and_count;
2484
2485 // the LIR_Ops to be inserted
2486 LIR_OpList _ops;
2487
2488 void append_new(int index, int count) { _index_and_count.append(index); _index_and_count.append(count); }
2489 void set_index_at(int i, int value) { _index_and_count.at_put((i << 1), value); }
2490 void set_count_at(int i, int value) { _index_and_count.at_put((i << 1) + 1, value); }
2491
2492 #ifdef ASSERT
2493 void verify();
2494 #endif
2495 public:
2496 LIR_InsertionBuffer() : _lir(nullptr), _index_and_count(8), _ops(8) { }
2497
2498 // must be called before using the insertion buffer
2499 void init(LIR_List* lir) { assert(!initialized(), "already initialized"); _lir = lir; _index_and_count.clear(); _ops.clear(); }
2500 bool initialized() const { return _lir != nullptr; }
2501 // called automatically when the buffer is appended to the LIR_List
2502 void finish() { _lir = nullptr; }
2503
2504 // accessors
2505 LIR_List* lir_list() const { return _lir; }
2506 int number_of_insertion_points() const { return _index_and_count.length() >> 1; }
2507 int index_at(int i) const { return _index_and_count.at((i << 1)); }
2508 int count_at(int i) const { return _index_and_count.at((i << 1) + 1); }
2509
2510 int number_of_ops() const { return _ops.length(); }
2511 LIR_Op* op_at(int i) const { return _ops.at(i); }
2512
2513 // append an instruction to the buffer
2514 void append(int index, LIR_Op* op);
2515
2516 // instruction
2517 void move(int index, LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = nullptr) { append(index, new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); }
2518 };
2519
2520
2521 //
2522 // LIR_OpVisitState is used for manipulating LIR_Ops in an abstract way.
2523 // Calling a LIR_Op's visit function with a LIR_OpVisitState causes
2524 // information about the input, output and temporaries used by the
2525 // op to be recorded. It also records whether the op has call semantics
2526 // and also records all the CodeEmitInfos used by this op.
2527 //
2528
2529
2530 class LIR_OpVisitState: public StackObj {
2531 public:
2532 typedef enum { inputMode, firstMode = inputMode, tempMode, outputMode, numModes, invalidMode = -1 } OprMode;
2533
2534 enum {
2535 maxNumberOfOperands = 21,
2536 maxNumberOfInfos = 4
2537 };
2538
2539 private:
2540 LIR_Op* _op;
2541
2542 // optimization: the operands and infos are not stored in a variable-length
2543 // list, but in a fixed-size array to save time of size checks and resizing
2544 int _oprs_len[numModes];
2545 LIR_Opr* _oprs_new[numModes][maxNumberOfOperands];
2546 int _info_len;
2547 CodeEmitInfo* _info_new[maxNumberOfInfos];
2548
2549 bool _has_call;
2550 bool _has_slow_case;
2551
2552
2553 // only include register operands
2554 // addresses are decomposed to the base and index registers
2555 // constants and stack operands are ignored
2556 void append(LIR_Opr& opr, OprMode mode) {
2557 assert(opr->is_valid(), "should not call this otherwise");
2558 assert(mode >= 0 && mode < numModes, "bad mode");
2559
2560 if (opr->is_register()) {
2561 assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow");
2562 _oprs_new[mode][_oprs_len[mode]++] = &opr;
2563
2564 } else if (opr->is_pointer()) {
2565 LIR_Address* address = opr->as_address_ptr();
2566 if (address != nullptr) {
2567 // special handling for addresses: add base and index register of the address
2568 // both are always input operands or temp if we want to extend
2569 // their liveness!
2570 if (mode == outputMode) {
2571 mode = inputMode;
2572 }
2573 assert (mode == inputMode || mode == tempMode, "input or temp only for addresses");
2574 if (address->_base->is_valid()) {
2575 assert(address->_base->is_register(), "must be");
2576 assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow");
2577 _oprs_new[mode][_oprs_len[mode]++] = &address->_base;
2578 }
2579 if (address->_index->is_valid()) {
2580 assert(address->_index->is_register(), "must be");
2581 assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow");
2582 _oprs_new[mode][_oprs_len[mode]++] = &address->_index;
2583 }
2584
2585 } else {
2586 assert(opr->is_constant(), "constant operands are not processed");
2587 }
2588 } else {
2589 assert(opr->is_stack(), "stack operands are not processed");
2590 }
2591 }
2592
2593 void append(CodeEmitInfo* info) {
2594 assert(info != nullptr, "should not call this otherwise");
2595 assert(_info_len < maxNumberOfInfos, "array overflow");
2596 _info_new[_info_len++] = info;
2597 }
2598
2599 public:
2600 LIR_OpVisitState() { reset(); }
2601
2602 LIR_Op* op() const { return _op; }
2603 void set_op(LIR_Op* op) { reset(); _op = op; }
2604
2605 bool has_call() const { return _has_call; }
2606 bool has_slow_case() const { return _has_slow_case; }
2607
2608 void reset() {
2609 _op = nullptr;
2610 _has_call = false;
2611 _has_slow_case = false;
2612
2613 _oprs_len[inputMode] = 0;
2614 _oprs_len[tempMode] = 0;
2615 _oprs_len[outputMode] = 0;
2616 _info_len = 0;
2617 }
2618
2619
2620 int opr_count(OprMode mode) const {
2621 assert(mode >= 0 && mode < numModes, "bad mode");
2622 return _oprs_len[mode];
2623 }
2624
2625 LIR_Opr opr_at(OprMode mode, int index) const {
2626 assert(mode >= 0 && mode < numModes, "bad mode");
2627 assert(index >= 0 && index < _oprs_len[mode], "index out of bound");
2628 return *_oprs_new[mode][index];
2629 }
2630
2631 void set_opr_at(OprMode mode, int index, LIR_Opr opr) const {
2632 assert(mode >= 0 && mode < numModes, "bad mode");
2633 assert(index >= 0 && index < _oprs_len[mode], "index out of bound");
2634 *_oprs_new[mode][index] = opr;
2635 }
2636
2637 int info_count() const {
2638 return _info_len;
2639 }
2640
2641 CodeEmitInfo* info_at(int index) const {
2642 assert(index < _info_len, "index out of bounds");
2643 return _info_new[index];
2644 }
2645
2646 XHandlers* all_xhandler();
2647
2648 // collects all register operands of the instruction
2649 void visit(LIR_Op* op);
2650
2651 #ifdef ASSERT
2652 // check that an operation has no operands
2653 bool no_operands(LIR_Op* op);
2654 #endif
2655
2656 // LIR_Op visitor functions use these to fill in the state
2657 void do_input(LIR_Opr& opr) { append(opr, LIR_OpVisitState::inputMode); }
2658 void do_output(LIR_Opr& opr) { append(opr, LIR_OpVisitState::outputMode); }
2659 void do_temp(LIR_Opr& opr) { append(opr, LIR_OpVisitState::tempMode); }
2660 void do_info(CodeEmitInfo* info) { append(info); }
2661
2662 void do_stub(CodeStub* stub);
2663 void do_call() { _has_call = true; }
2664 void do_slow_case() { _has_slow_case = true; }
2665 void do_slow_case(CodeEmitInfo* info) {
2666 _has_slow_case = true;
2667 append(info);
2668 }
2669 };
2670
2671
2672 inline LIR_Opr LIR_Opr::illegalOpr() { return LIR_OprFact::illegalOpr; };
2673
2674 inline LIR_Opr LIR_Opr::nullOpr() { return LIR_OprFact::nullOpr; };
2675
2676 #endif // SHARE_C1_C1_LIR_HPP