1 /* 2 * Copyright (c) 2000, 2022, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_C1_C1_LIR_HPP 26 #define SHARE_C1_C1_LIR_HPP 27 28 #include "c1/c1_Defs.hpp" 29 #include "c1/c1_ValueType.hpp" 30 #include "oops/method.hpp" 31 #include "utilities/globalDefinitions.hpp" 32 33 class BlockBegin; 34 class BlockList; 35 class LIR_Assembler; 36 class CodeEmitInfo; 37 class CodeStub; 38 class CodeStubList; 39 class C1SafepointPollStub; 40 class ArrayCopyStub; 41 class LIR_Op; 42 class ciType; 43 class ValueType; 44 class LIR_OpVisitState; 45 class FpuStackSim; 46 47 //--------------------------------------------------------------------- 48 // LIR Operands 49 // LIR_OprPtr 50 // LIR_Const 51 // LIR_Address 52 //--------------------------------------------------------------------- 53 class LIR_OprPtr; 54 class LIR_Const; 55 class LIR_Address; 56 class LIR_OprVisitor; 57 class LIR_Opr; 58 59 typedef int RegNr; 60 61 typedef GrowableArray<LIR_Opr> LIR_OprList; 62 typedef GrowableArray<LIR_Op*> LIR_OpArray; 63 typedef GrowableArray<LIR_Op*> LIR_OpList; 64 65 // define LIR_OprPtr early so LIR_Opr can refer to it 66 class LIR_OprPtr: public CompilationResourceObj { 67 public: 68 bool is_oop_pointer() const { return (type() == T_OBJECT); } 69 bool is_float_kind() const { BasicType t = type(); return (t == T_FLOAT) || (t == T_DOUBLE); } 70 71 virtual LIR_Const* as_constant() { return NULL; } 72 virtual LIR_Address* as_address() { return NULL; } 73 virtual BasicType type() const = 0; 74 virtual void print_value_on(outputStream* out) const = 0; 75 }; 76 77 78 79 // LIR constants 80 class LIR_Const: public LIR_OprPtr { 81 private: 82 JavaValue _value; 83 84 void type_check(BasicType t) const { assert(type() == t, "type check"); } 85 void type_check(BasicType t1, BasicType t2) const { assert(type() == t1 || type() == t2, "type check"); } 86 void type_check(BasicType t1, BasicType t2, BasicType t3) const { assert(type() == t1 || type() == t2 || type() == t3, "type check"); } 87 88 public: 89 LIR_Const(jint i, bool is_address=false) { _value.set_type(is_address?T_ADDRESS:T_INT); _value.set_jint(i); } 90 LIR_Const(jlong l) { _value.set_type(T_LONG); _value.set_jlong(l); } 91 LIR_Const(jfloat f) { _value.set_type(T_FLOAT); _value.set_jfloat(f); } 92 LIR_Const(jdouble d) { _value.set_type(T_DOUBLE); _value.set_jdouble(d); } 93 LIR_Const(jobject o) { _value.set_type(T_OBJECT); _value.set_jobject(o); } 94 LIR_Const(void* p) { 95 #ifdef _LP64 96 assert(sizeof(jlong) >= sizeof(p), "too small");; 97 _value.set_type(T_LONG); _value.set_jlong((jlong)p); 98 #else 99 assert(sizeof(jint) >= sizeof(p), "too small");; 100 _value.set_type(T_INT); _value.set_jint((jint)p); 101 #endif 102 } 103 LIR_Const(Metadata* m) { 104 _value.set_type(T_METADATA); 105 #ifdef _LP64 106 _value.set_jlong((jlong)m); 107 #else 108 _value.set_jint((jint)m); 109 #endif // _LP64 110 } 111 112 virtual BasicType type() const { return _value.get_type(); } 113 virtual LIR_Const* as_constant() { return this; } 114 115 jint as_jint() const { type_check(T_INT, T_ADDRESS); return _value.get_jint(); } 116 jlong as_jlong() const { type_check(T_LONG ); return _value.get_jlong(); } 117 jfloat as_jfloat() const { type_check(T_FLOAT ); return _value.get_jfloat(); } 118 jdouble as_jdouble() const { type_check(T_DOUBLE); return _value.get_jdouble(); } 119 jobject as_jobject() const { type_check(T_OBJECT); return _value.get_jobject(); } 120 jint as_jint_lo() const { type_check(T_LONG ); return low(_value.get_jlong()); } 121 jint as_jint_hi() const { type_check(T_LONG ); return high(_value.get_jlong()); } 122 123 #ifdef _LP64 124 address as_pointer() const { type_check(T_LONG ); return (address)_value.get_jlong(); } 125 Metadata* as_metadata() const { type_check(T_METADATA); return (Metadata*)_value.get_jlong(); } 126 #else 127 address as_pointer() const { type_check(T_INT ); return (address)_value.get_jint(); } 128 Metadata* as_metadata() const { type_check(T_METADATA); return (Metadata*)_value.get_jint(); } 129 #endif 130 131 132 jint as_jint_bits() const { type_check(T_FLOAT, T_INT, T_ADDRESS); return _value.get_jint(); } 133 jint as_jint_lo_bits() const { 134 if (type() == T_DOUBLE) { 135 return low(jlong_cast(_value.get_jdouble())); 136 } else { 137 return as_jint_lo(); 138 } 139 } 140 jint as_jint_hi_bits() const { 141 if (type() == T_DOUBLE) { 142 return high(jlong_cast(_value.get_jdouble())); 143 } else { 144 return as_jint_hi(); 145 } 146 } 147 jlong as_jlong_bits() const { 148 if (type() == T_DOUBLE) { 149 return jlong_cast(_value.get_jdouble()); 150 } else { 151 return as_jlong(); 152 } 153 } 154 155 virtual void print_value_on(outputStream* out) const PRODUCT_RETURN; 156 157 158 bool is_zero_float() { 159 jfloat f = as_jfloat(); 160 jfloat ok = 0.0f; 161 return jint_cast(f) == jint_cast(ok); 162 } 163 164 bool is_one_float() { 165 jfloat f = as_jfloat(); 166 return !g_isnan(f) && g_isfinite(f) && f == 1.0; 167 } 168 169 bool is_zero_double() { 170 jdouble d = as_jdouble(); 171 jdouble ok = 0.0; 172 return jlong_cast(d) == jlong_cast(ok); 173 } 174 175 bool is_one_double() { 176 jdouble d = as_jdouble(); 177 return !g_isnan(d) && g_isfinite(d) && d == 1.0; 178 } 179 }; 180 181 182 //---------------------LIR Operand descriptor------------------------------------ 183 // 184 // The class LIR_Opr represents a LIR instruction operand; 185 // it can be a register (ALU/FPU), stack location or a constant; 186 // Constants and addresses are represented as resource area allocated 187 // structures (see above), and pointers are stored in the _value field (cast to 188 // an intptr_t). 189 // Registers and stack locations are represented inline as integers. 190 // (see value function). 191 192 // Previously, this class was derived from CompilationResourceObj. 193 // However, deriving from any of the "Obj" types in allocation.hpp seems 194 // detrimental, since in some build modes it would add a vtable to this class, 195 // which make it no longer be a 1-word trivially-copyable wrapper object, 196 // which is the entire point of it. 197 198 class LIR_Opr { 199 public: 200 // value structure: 201 // data other-non-data opr-type opr-kind 202 // +-------------------+--------------+-------+-----+ 203 // [max...............................|6 5 4 3|2 1 0] 204 // ^ 205 // is_pointer bit 206 // 207 // lowest bit cleared, means it is a structure pointer 208 // we need 4 bits to represent types 209 210 private: 211 friend class LIR_OprFact; 212 213 intptr_t _value; 214 // Conversion 215 intptr_t value() const { return _value; } 216 217 bool check_value_mask(intptr_t mask, intptr_t masked_value) const { 218 return (value() & mask) == masked_value; 219 } 220 221 enum OprKind { 222 pointer_value = 0 223 , stack_value = 1 224 , cpu_register = 3 225 , fpu_register = 5 226 , illegal_value = 7 227 }; 228 229 enum OprBits { 230 pointer_bits = 1 231 , kind_bits = 3 232 , type_bits = 4 233 , size_bits = 2 234 , destroys_bits = 1 235 , virtual_bits = 1 236 , is_xmm_bits = 1 237 , last_use_bits = 1 238 , is_fpu_stack_offset_bits = 1 // used in assertion checking on x86 for FPU stack slot allocation 239 , non_data_bits = kind_bits + type_bits + size_bits + destroys_bits + virtual_bits 240 + is_xmm_bits + last_use_bits + is_fpu_stack_offset_bits 241 , data_bits = BitsPerInt - non_data_bits 242 , reg_bits = data_bits / 2 // for two registers in one value encoding 243 }; 244 245 enum OprShift : uintptr_t { 246 kind_shift = 0 247 , type_shift = kind_shift + kind_bits 248 , size_shift = type_shift + type_bits 249 , destroys_shift = size_shift + size_bits 250 , last_use_shift = destroys_shift + destroys_bits 251 , is_fpu_stack_offset_shift = last_use_shift + last_use_bits 252 , virtual_shift = is_fpu_stack_offset_shift + is_fpu_stack_offset_bits 253 , is_xmm_shift = virtual_shift + virtual_bits 254 , data_shift = is_xmm_shift + is_xmm_bits 255 , reg1_shift = data_shift 256 , reg2_shift = data_shift + reg_bits 257 258 }; 259 260 enum OprSize { 261 single_size = 0 << size_shift 262 , double_size = 1 << size_shift 263 }; 264 265 enum OprMask { 266 kind_mask = right_n_bits(kind_bits) 267 , type_mask = right_n_bits(type_bits) << type_shift 268 , size_mask = right_n_bits(size_bits) << size_shift 269 , last_use_mask = right_n_bits(last_use_bits) << last_use_shift 270 , is_fpu_stack_offset_mask = right_n_bits(is_fpu_stack_offset_bits) << is_fpu_stack_offset_shift 271 , virtual_mask = right_n_bits(virtual_bits) << virtual_shift 272 , is_xmm_mask = right_n_bits(is_xmm_bits) << is_xmm_shift 273 , pointer_mask = right_n_bits(pointer_bits) 274 , lower_reg_mask = right_n_bits(reg_bits) 275 , no_type_mask = (int)(~(type_mask | last_use_mask | is_fpu_stack_offset_mask)) 276 }; 277 278 uint32_t data() const { return (uint32_t)value() >> data_shift; } 279 int lo_reg_half() const { return data() & lower_reg_mask; } 280 int hi_reg_half() const { return (data() >> reg_bits) & lower_reg_mask; } 281 OprKind kind_field() const { return (OprKind)(value() & kind_mask); } 282 OprSize size_field() const { return (OprSize)(value() & size_mask); } 283 284 static char type_char(BasicType t); 285 286 public: 287 LIR_Opr() : _value(0) {} 288 LIR_Opr(intptr_t val) : _value(val) {} 289 LIR_Opr(LIR_OprPtr *val) : _value(reinterpret_cast<intptr_t>(val)) {} 290 bool operator==(const LIR_Opr &other) const { return _value == other._value; } 291 bool operator!=(const LIR_Opr &other) const { return _value != other._value; } 292 explicit operator bool() const { return _value != 0; } 293 294 // UGLY HACK: make this value object look like a pointer (to itself). This 295 // operator overload should be removed, and all callers updated from 296 // `opr->fn()` to `opr.fn()`. 297 const LIR_Opr* operator->() const { return this; } 298 LIR_Opr* operator->() { return this; } 299 300 enum { 301 vreg_base = ConcreteRegisterImpl::number_of_registers, 302 data_max = (1 << data_bits) - 1, // max unsigned value for data bit field 303 vreg_limit = 10000, // choose a reasonable limit, 304 vreg_max = MIN2(vreg_limit, data_max) // and make sure if fits in the bit field 305 }; 306 307 static inline LIR_Opr illegalOpr(); 308 static inline LIR_Opr nullOpr(); 309 310 enum OprType { 311 unknown_type = 0 << type_shift // means: not set (catch uninitialized types) 312 , int_type = 1 << type_shift 313 , long_type = 2 << type_shift 314 , object_type = 3 << type_shift 315 , address_type = 4 << type_shift 316 , float_type = 5 << type_shift 317 , double_type = 6 << type_shift 318 , metadata_type = 7 << type_shift 319 }; 320 friend OprType as_OprType(BasicType t); 321 friend BasicType as_BasicType(OprType t); 322 323 OprType type_field_valid() const { assert(is_register() || is_stack(), "should not be called otherwise"); return (OprType)(value() & type_mask); } 324 OprType type_field() const { return is_illegal() ? unknown_type : (OprType)(value() & type_mask); } 325 326 static OprSize size_for(BasicType t) { 327 switch (t) { 328 case T_LONG: 329 case T_DOUBLE: 330 return double_size; 331 break; 332 333 case T_FLOAT: 334 case T_BOOLEAN: 335 case T_CHAR: 336 case T_BYTE: 337 case T_SHORT: 338 case T_INT: 339 case T_ADDRESS: 340 case T_OBJECT: 341 case T_PRIMITIVE_OBJECT: 342 case T_ARRAY: 343 case T_METADATA: 344 return single_size; 345 break; 346 347 default: 348 ShouldNotReachHere(); 349 return single_size; 350 } 351 } 352 353 354 void validate_type() const PRODUCT_RETURN; 355 356 BasicType type() const { 357 if (is_pointer()) { 358 return pointer()->type(); 359 } 360 return as_BasicType(type_field()); 361 } 362 363 364 ValueType* value_type() const { return as_ValueType(type()); } 365 366 char type_char() const { return type_char((is_pointer()) ? pointer()->type() : type()); } 367 368 bool is_equal(LIR_Opr opr) const { return *this == opr; } 369 // checks whether types are same 370 bool is_same_type(LIR_Opr opr) const { 371 assert(type_field() != unknown_type && 372 opr->type_field() != unknown_type, "shouldn't see unknown_type"); 373 return type_field() == opr->type_field(); 374 } 375 bool is_same_register(LIR_Opr opr) { 376 return (is_register() && opr->is_register() && 377 kind_field() == opr->kind_field() && 378 (value() & no_type_mask) == (opr->value() & no_type_mask)); 379 } 380 381 bool is_pointer() const { return check_value_mask(pointer_mask, pointer_value); } 382 bool is_illegal() const { return kind_field() == illegal_value; } 383 bool is_valid() const { return kind_field() != illegal_value; } 384 385 bool is_register() const { return is_cpu_register() || is_fpu_register(); } 386 bool is_virtual() const { return is_virtual_cpu() || is_virtual_fpu(); } 387 388 bool is_constant() const { return is_pointer() && pointer()->as_constant() != NULL; } 389 bool is_address() const { return is_pointer() && pointer()->as_address() != NULL; } 390 391 bool is_float_kind() const { return is_pointer() ? pointer()->is_float_kind() : (kind_field() == fpu_register); } 392 bool is_oop() const; 393 394 // semantic for fpu- and xmm-registers: 395 // * is_float and is_double return true for xmm_registers 396 // (so is_single_fpu and is_single_xmm are true) 397 // * So you must always check for is_???_xmm prior to is_???_fpu to 398 // distinguish between fpu- and xmm-registers 399 400 bool is_stack() const { validate_type(); return check_value_mask(kind_mask, stack_value); } 401 bool is_single_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask, stack_value | single_size); } 402 bool is_double_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask, stack_value | double_size); } 403 404 bool is_cpu_register() const { validate_type(); return check_value_mask(kind_mask, cpu_register); } 405 bool is_virtual_cpu() const { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register | virtual_mask); } 406 bool is_fixed_cpu() const { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register); } 407 bool is_single_cpu() const { validate_type(); return check_value_mask(kind_mask | size_mask, cpu_register | single_size); } 408 bool is_double_cpu() const { validate_type(); return check_value_mask(kind_mask | size_mask, cpu_register | double_size); } 409 410 bool is_fpu_register() const { validate_type(); return check_value_mask(kind_mask, fpu_register); } 411 bool is_virtual_fpu() const { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register | virtual_mask); } 412 bool is_fixed_fpu() const { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register); } 413 bool is_single_fpu() const { validate_type(); return check_value_mask(kind_mask | size_mask, fpu_register | single_size); } 414 bool is_double_fpu() const { validate_type(); return check_value_mask(kind_mask | size_mask, fpu_register | double_size); } 415 416 bool is_xmm_register() const { validate_type(); return check_value_mask(kind_mask | is_xmm_mask, fpu_register | is_xmm_mask); } 417 bool is_single_xmm() const { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | single_size | is_xmm_mask); } 418 bool is_double_xmm() const { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | double_size | is_xmm_mask); } 419 420 // fast accessor functions for special bits that do not work for pointers 421 // (in this functions, the check for is_pointer() is omitted) 422 bool is_single_word() const { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, single_size); } 423 bool is_double_word() const { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, double_size); } 424 bool is_virtual_register() const { assert(is_register(), "type check"); return check_value_mask(virtual_mask, virtual_mask); } 425 bool is_oop_register() const { assert(is_register() || is_stack(), "type check"); return type_field_valid() == object_type; } 426 BasicType type_register() const { assert(is_register() || is_stack(), "type check"); return as_BasicType(type_field_valid()); } 427 428 bool is_last_use() const { assert(is_register(), "only works for registers"); return (value() & last_use_mask) != 0; } 429 bool is_fpu_stack_offset() const { assert(is_register(), "only works for registers"); return (value() & is_fpu_stack_offset_mask) != 0; } 430 LIR_Opr make_last_use() { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | last_use_mask); } 431 LIR_Opr make_fpu_stack_offset() { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | is_fpu_stack_offset_mask); } 432 433 434 int single_stack_ix() const { assert(is_single_stack() && !is_virtual(), "type check"); return (int)data(); } 435 int double_stack_ix() const { assert(is_double_stack() && !is_virtual(), "type check"); return (int)data(); } 436 RegNr cpu_regnr() const { assert(is_single_cpu() && !is_virtual(), "type check"); return (RegNr)data(); } 437 RegNr cpu_regnrLo() const { assert(is_double_cpu() && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); } 438 RegNr cpu_regnrHi() const { assert(is_double_cpu() && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); } 439 RegNr fpu_regnr() const { assert(is_single_fpu() && !is_virtual(), "type check"); return (RegNr)data(); } 440 RegNr fpu_regnrLo() const { assert(is_double_fpu() && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); } 441 RegNr fpu_regnrHi() const { assert(is_double_fpu() && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); } 442 RegNr xmm_regnr() const { assert(is_single_xmm() && !is_virtual(), "type check"); return (RegNr)data(); } 443 RegNr xmm_regnrLo() const { assert(is_double_xmm() && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); } 444 RegNr xmm_regnrHi() const { assert(is_double_xmm() && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); } 445 int vreg_number() const { assert(is_virtual(), "type check"); return (RegNr)data(); } 446 447 LIR_OprPtr* pointer() const { assert(_value != 0 && is_pointer(), "nullness and type check"); return (LIR_OprPtr*)_value; } 448 LIR_Const* as_constant_ptr() const { return pointer()->as_constant(); } 449 LIR_Address* as_address_ptr() const { return pointer()->as_address(); } 450 451 Register as_register() const; 452 Register as_register_lo() const; 453 Register as_register_hi() const; 454 455 Register as_pointer_register() { 456 #ifdef _LP64 457 if (is_double_cpu()) { 458 assert(as_register_lo() == as_register_hi(), "should be a single register"); 459 return as_register_lo(); 460 } 461 #endif 462 return as_register(); 463 } 464 465 FloatRegister as_float_reg () const; 466 FloatRegister as_double_reg () const; 467 #ifdef X86 468 XMMRegister as_xmm_float_reg () const; 469 XMMRegister as_xmm_double_reg() const; 470 // for compatibility with RInfo 471 int fpu() const { return lo_reg_half(); } 472 #endif 473 474 jint as_jint() const { return as_constant_ptr()->as_jint(); } 475 jlong as_jlong() const { return as_constant_ptr()->as_jlong(); } 476 jfloat as_jfloat() const { return as_constant_ptr()->as_jfloat(); } 477 jdouble as_jdouble() const { return as_constant_ptr()->as_jdouble(); } 478 jobject as_jobject() const { return as_constant_ptr()->as_jobject(); } 479 480 void print() const PRODUCT_RETURN; 481 void print(outputStream* out) const PRODUCT_RETURN; 482 }; 483 484 inline LIR_Opr::OprType as_OprType(BasicType type) { 485 switch (type) { 486 case T_INT: return LIR_Opr::int_type; 487 case T_LONG: return LIR_Opr::long_type; 488 case T_FLOAT: return LIR_Opr::float_type; 489 case T_DOUBLE: return LIR_Opr::double_type; 490 case T_OBJECT: 491 case T_PRIMITIVE_OBJECT: 492 case T_ARRAY: return LIR_Opr::object_type; 493 case T_ADDRESS: return LIR_Opr::address_type; 494 case T_METADATA: return LIR_Opr::metadata_type; 495 case T_ILLEGAL: // fall through 496 default: ShouldNotReachHere(); return LIR_Opr::unknown_type; 497 } 498 } 499 500 inline BasicType as_BasicType(LIR_Opr::OprType t) { 501 switch (t) { 502 case LIR_Opr::int_type: return T_INT; 503 case LIR_Opr::long_type: return T_LONG; 504 case LIR_Opr::float_type: return T_FLOAT; 505 case LIR_Opr::double_type: return T_DOUBLE; 506 case LIR_Opr::object_type: return T_OBJECT; 507 case LIR_Opr::address_type: return T_ADDRESS; 508 case LIR_Opr::metadata_type:return T_METADATA; 509 case LIR_Opr::unknown_type: // fall through 510 default: ShouldNotReachHere(); return T_ILLEGAL; 511 } 512 } 513 514 515 // LIR_Address 516 class LIR_Address: public LIR_OprPtr { 517 friend class LIR_OpVisitState; 518 519 public: 520 // NOTE: currently these must be the log2 of the scale factor (and 521 // must also be equivalent to the ScaleFactor enum in 522 // assembler_i486.hpp) 523 enum Scale { 524 times_1 = 0, 525 times_2 = 1, 526 times_4 = 2, 527 times_8 = 3 528 }; 529 530 private: 531 LIR_Opr _base; 532 LIR_Opr _index; 533 Scale _scale; 534 intx _disp; 535 BasicType _type; 536 537 public: 538 LIR_Address(LIR_Opr base, LIR_Opr index, BasicType type): 539 _base(base) 540 , _index(index) 541 , _scale(times_1) 542 , _disp(0) 543 , _type(type) { verify(); } 544 545 LIR_Address(LIR_Opr base, intx disp, BasicType type): 546 _base(base) 547 , _index(LIR_Opr::illegalOpr()) 548 , _scale(times_1) 549 , _disp(disp) 550 , _type(type) { verify(); } 551 552 LIR_Address(LIR_Opr base, BasicType type): 553 _base(base) 554 , _index(LIR_Opr::illegalOpr()) 555 , _scale(times_1) 556 , _disp(0) 557 , _type(type) { verify(); } 558 559 LIR_Address(LIR_Opr base, LIR_Opr index, intx disp, BasicType type): 560 _base(base) 561 , _index(index) 562 , _scale(times_1) 563 , _disp(disp) 564 , _type(type) { verify(); } 565 566 LIR_Address(LIR_Opr base, LIR_Opr index, Scale scale, intx disp, BasicType type): 567 _base(base) 568 , _index(index) 569 , _scale(scale) 570 , _disp(disp) 571 , _type(type) { verify(); } 572 573 LIR_Opr base() const { return _base; } 574 LIR_Opr index() const { return _index; } 575 Scale scale() const { return _scale; } 576 intx disp() const { return _disp; } 577 578 bool equals(LIR_Address* other) const { return base() == other->base() && index() == other->index() && disp() == other->disp() && scale() == other->scale(); } 579 580 virtual LIR_Address* as_address() { return this; } 581 virtual BasicType type() const { return _type; } 582 virtual void print_value_on(outputStream* out) const PRODUCT_RETURN; 583 584 void verify() const PRODUCT_RETURN; 585 586 static Scale scale(BasicType type); 587 }; 588 589 590 // operand factory 591 class LIR_OprFact: public AllStatic { 592 public: 593 594 static LIR_Opr illegalOpr; 595 static LIR_Opr nullOpr; 596 597 static LIR_Opr single_cpu(int reg) { 598 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) | 599 LIR_Opr::int_type | 600 LIR_Opr::cpu_register | 601 LIR_Opr::single_size); 602 } 603 static LIR_Opr single_cpu_oop(int reg) { 604 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) | 605 LIR_Opr::object_type | 606 LIR_Opr::cpu_register | 607 LIR_Opr::single_size); 608 } 609 static LIR_Opr single_cpu_address(int reg) { 610 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) | 611 LIR_Opr::address_type | 612 LIR_Opr::cpu_register | 613 LIR_Opr::single_size); 614 } 615 static LIR_Opr single_cpu_metadata(int reg) { 616 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) | 617 LIR_Opr::metadata_type | 618 LIR_Opr::cpu_register | 619 LIR_Opr::single_size); 620 } 621 static LIR_Opr double_cpu(int reg1, int reg2) { 622 LP64_ONLY(assert(reg1 == reg2, "must be identical")); 623 return (LIR_Opr)(intptr_t)((reg1 << LIR_Opr::reg1_shift) | 624 (reg2 << LIR_Opr::reg2_shift) | 625 LIR_Opr::long_type | 626 LIR_Opr::cpu_register | 627 LIR_Opr::double_size); 628 } 629 630 static LIR_Opr single_fpu(int reg) { 631 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) | 632 LIR_Opr::float_type | 633 LIR_Opr::fpu_register | 634 LIR_Opr::single_size); 635 } 636 637 // Platform dependent. 638 static LIR_Opr double_fpu(int reg1, int reg2 = -1 /*fnoreg*/); 639 640 #ifdef ARM32 641 static LIR_Opr single_softfp(int reg) { 642 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) | 643 LIR_Opr::float_type | 644 LIR_Opr::cpu_register | 645 LIR_Opr::single_size); 646 } 647 static LIR_Opr double_softfp(int reg1, int reg2) { 648 return (LIR_Opr)(intptr_t)((reg1 << LIR_Opr::reg1_shift) | 649 (reg2 << LIR_Opr::reg2_shift) | 650 LIR_Opr::double_type | 651 LIR_Opr::cpu_register | 652 LIR_Opr::double_size); 653 } 654 #endif // ARM32 655 656 #if defined(X86) 657 static LIR_Opr single_xmm(int reg) { 658 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) | 659 LIR_Opr::float_type | 660 LIR_Opr::fpu_register | 661 LIR_Opr::single_size | 662 LIR_Opr::is_xmm_mask); 663 } 664 static LIR_Opr double_xmm(int reg) { 665 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) | 666 (reg << LIR_Opr::reg2_shift) | 667 LIR_Opr::double_type | 668 LIR_Opr::fpu_register | 669 LIR_Opr::double_size | 670 LIR_Opr::is_xmm_mask); 671 } 672 #endif // X86 673 674 static LIR_Opr virtual_register(int index, BasicType type) { 675 if (index > LIR_Opr::vreg_max) { 676 // Running out of virtual registers. Caller should bailout. 677 return illegalOpr; 678 } 679 680 LIR_Opr res; 681 switch (type) { 682 case T_OBJECT: // fall through 683 case T_PRIMITIVE_OBJECT: // fall through 684 case T_ARRAY: 685 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 686 LIR_Opr::object_type | 687 LIR_Opr::cpu_register | 688 LIR_Opr::single_size | 689 LIR_Opr::virtual_mask); 690 break; 691 692 case T_METADATA: 693 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 694 LIR_Opr::metadata_type| 695 LIR_Opr::cpu_register | 696 LIR_Opr::single_size | 697 LIR_Opr::virtual_mask); 698 break; 699 700 case T_INT: 701 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 702 LIR_Opr::int_type | 703 LIR_Opr::cpu_register | 704 LIR_Opr::single_size | 705 LIR_Opr::virtual_mask); 706 break; 707 708 case T_ADDRESS: 709 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 710 LIR_Opr::address_type | 711 LIR_Opr::cpu_register | 712 LIR_Opr::single_size | 713 LIR_Opr::virtual_mask); 714 break; 715 716 case T_LONG: 717 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 718 LIR_Opr::long_type | 719 LIR_Opr::cpu_register | 720 LIR_Opr::double_size | 721 LIR_Opr::virtual_mask); 722 break; 723 724 #ifdef __SOFTFP__ 725 case T_FLOAT: 726 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 727 LIR_Opr::float_type | 728 LIR_Opr::cpu_register | 729 LIR_Opr::single_size | 730 LIR_Opr::virtual_mask); 731 break; 732 case T_DOUBLE: 733 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 734 LIR_Opr::double_type | 735 LIR_Opr::cpu_register | 736 LIR_Opr::double_size | 737 LIR_Opr::virtual_mask); 738 break; 739 #else // __SOFTFP__ 740 case T_FLOAT: 741 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 742 LIR_Opr::float_type | 743 LIR_Opr::fpu_register | 744 LIR_Opr::single_size | 745 LIR_Opr::virtual_mask); 746 break; 747 748 case 749 T_DOUBLE: res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 750 LIR_Opr::double_type | 751 LIR_Opr::fpu_register | 752 LIR_Opr::double_size | 753 LIR_Opr::virtual_mask); 754 break; 755 #endif // __SOFTFP__ 756 default: ShouldNotReachHere(); res = illegalOpr; 757 } 758 759 #ifdef ASSERT 760 res->validate_type(); 761 assert(res->vreg_number() == index, "conversion check"); 762 assert(index >= LIR_Opr::vreg_base, "must start at vreg_base"); 763 764 // old-style calculation; check if old and new method are equal 765 LIR_Opr::OprType t = as_OprType(type); 766 #ifdef __SOFTFP__ 767 LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 768 t | 769 LIR_Opr::cpu_register | 770 LIR_Opr::size_for(type) | LIR_Opr::virtual_mask); 771 #else // __SOFTFP__ 772 LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | t | 773 ((type == T_FLOAT || type == T_DOUBLE) ? LIR_Opr::fpu_register : LIR_Opr::cpu_register) | 774 LIR_Opr::size_for(type) | LIR_Opr::virtual_mask); 775 assert(res == old_res, "old and new method not equal"); 776 #endif // __SOFTFP__ 777 #endif // ASSERT 778 779 return res; 780 } 781 782 // 'index' is computed by FrameMap::local_stack_pos(index); do not use other parameters as 783 // the index is platform independent; a double stack using indices 2 and 3 has always 784 // index 2. 785 static LIR_Opr stack(int index, BasicType type) { 786 LIR_Opr res; 787 switch (type) { 788 case T_PRIMITIVE_OBJECT: // fall through 789 case T_OBJECT: // fall through 790 case T_ARRAY: 791 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 792 LIR_Opr::object_type | 793 LIR_Opr::stack_value | 794 LIR_Opr::single_size); 795 break; 796 797 case T_METADATA: 798 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 799 LIR_Opr::metadata_type | 800 LIR_Opr::stack_value | 801 LIR_Opr::single_size); 802 break; 803 case T_INT: 804 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 805 LIR_Opr::int_type | 806 LIR_Opr::stack_value | 807 LIR_Opr::single_size); 808 break; 809 810 case T_ADDRESS: 811 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 812 LIR_Opr::address_type | 813 LIR_Opr::stack_value | 814 LIR_Opr::single_size); 815 break; 816 817 case T_LONG: 818 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 819 LIR_Opr::long_type | 820 LIR_Opr::stack_value | 821 LIR_Opr::double_size); 822 break; 823 824 case T_FLOAT: 825 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 826 LIR_Opr::float_type | 827 LIR_Opr::stack_value | 828 LIR_Opr::single_size); 829 break; 830 case T_DOUBLE: 831 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 832 LIR_Opr::double_type | 833 LIR_Opr::stack_value | 834 LIR_Opr::double_size); 835 break; 836 837 default: ShouldNotReachHere(); res = illegalOpr; 838 } 839 840 #ifdef ASSERT 841 assert(index >= 0, "index must be positive"); 842 assert(index == (int)res->data(), "conversion check"); 843 844 LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 845 LIR_Opr::stack_value | 846 as_OprType(type) | 847 LIR_Opr::size_for(type)); 848 assert(res == old_res, "old and new method not equal"); 849 #endif 850 851 return res; 852 } 853 854 static LIR_Opr intConst(jint i) { return (LIR_Opr)(new LIR_Const(i)); } 855 static LIR_Opr longConst(jlong l) { return (LIR_Opr)(new LIR_Const(l)); } 856 static LIR_Opr floatConst(jfloat f) { return (LIR_Opr)(new LIR_Const(f)); } 857 static LIR_Opr doubleConst(jdouble d) { return (LIR_Opr)(new LIR_Const(d)); } 858 static LIR_Opr oopConst(jobject o) { return (LIR_Opr)(new LIR_Const(o)); } 859 static LIR_Opr address(LIR_Address* a) { return (LIR_Opr)a; } 860 static LIR_Opr intptrConst(void* p) { return (LIR_Opr)(new LIR_Const(p)); } 861 static LIR_Opr intptrConst(intptr_t v) { return (LIR_Opr)(new LIR_Const((void*)v)); } 862 static LIR_Opr illegal() { return (LIR_Opr)-1; } 863 static LIR_Opr addressConst(jint i) { return (LIR_Opr)(new LIR_Const(i, true)); } 864 static LIR_Opr metadataConst(Metadata* m) { return (LIR_Opr)(new LIR_Const(m)); } 865 866 static LIR_Opr value_type(ValueType* type); 867 }; 868 869 870 //------------------------------------------------------------------------------- 871 // LIR Instructions 872 //------------------------------------------------------------------------------- 873 // 874 // Note: 875 // - every instruction has a result operand 876 // - every instruction has an CodeEmitInfo operand (can be revisited later) 877 // - every instruction has a LIR_OpCode operand 878 // - LIR_OpN, means an instruction that has N input operands 879 // 880 // class hierarchy: 881 // 882 class LIR_Op; 883 class LIR_Op0; 884 class LIR_OpLabel; 885 class LIR_Op1; 886 class LIR_OpBranch; 887 class LIR_OpConvert; 888 class LIR_OpAllocObj; 889 class LIR_OpReturn; 890 class LIR_OpRoundFP; 891 class LIR_Op2; 892 class LIR_OpDelay; 893 class LIR_Op3; 894 class LIR_OpAllocArray; 895 class LIR_Op4; 896 class LIR_OpCall; 897 class LIR_OpJavaCall; 898 class LIR_OpRTCall; 899 class LIR_OpArrayCopy; 900 class LIR_OpUpdateCRC32; 901 class LIR_OpLock; 902 class LIR_OpTypeCheck; 903 class LIR_OpFlattenedArrayCheck; 904 class LIR_OpNullFreeArrayCheck; 905 class LIR_OpSubstitutabilityCheck; 906 class LIR_OpCompareAndSwap; 907 class LIR_OpLoadKlass; 908 class LIR_OpProfileCall; 909 class LIR_OpProfileType; 910 class LIR_OpProfileInlineType; 911 #ifdef ASSERT 912 class LIR_OpAssert; 913 #endif 914 915 // LIR operation codes 916 enum LIR_Code { 917 lir_none 918 , begin_op0 919 , lir_label 920 , lir_nop 921 , lir_std_entry 922 , lir_osr_entry 923 , lir_fpop_raw 924 , lir_breakpoint 925 , lir_rtcall 926 , lir_membar 927 , lir_membar_acquire 928 , lir_membar_release 929 , lir_membar_loadload 930 , lir_membar_storestore 931 , lir_membar_loadstore 932 , lir_membar_storeload 933 , lir_get_thread 934 , lir_on_spin_wait 935 , lir_check_orig_pc 936 , end_op0 937 , begin_op1 938 , lir_fxch 939 , lir_fld 940 , lir_push 941 , lir_pop 942 , lir_null_check 943 , lir_return 944 , lir_leal 945 , lir_move 946 , lir_convert 947 , lir_alloc_object 948 , lir_monaddr 949 , lir_roundfp 950 , lir_safepoint 951 , lir_unwind 952 , lir_load_klass 953 , end_op1 954 , begin_op2 955 , lir_branch 956 , lir_cond_float_branch 957 , lir_cmp 958 , lir_cmp_l2i 959 , lir_ucmp_fd2i 960 , lir_cmp_fd2i 961 , lir_add 962 , lir_sub 963 , lir_mul 964 , lir_div 965 , lir_rem 966 , lir_sqrt 967 , lir_abs 968 , lir_neg 969 , lir_tan 970 , lir_log10 971 , lir_logic_and 972 , lir_logic_or 973 , lir_logic_xor 974 , lir_shl 975 , lir_shr 976 , lir_ushr 977 , lir_alloc_array 978 , lir_throw 979 , lir_xadd 980 , lir_xchg 981 , end_op2 982 , begin_op3 983 , lir_idiv 984 , lir_irem 985 , lir_fmad 986 , lir_fmaf 987 , end_op3 988 , begin_op4 989 , lir_cmove 990 , end_op4 991 , begin_opJavaCall 992 , lir_static_call 993 , lir_optvirtual_call 994 , lir_icvirtual_call 995 , lir_dynamic_call 996 , end_opJavaCall 997 , begin_opArrayCopy 998 , lir_arraycopy 999 , end_opArrayCopy 1000 , begin_opUpdateCRC32 1001 , lir_updatecrc32 1002 , end_opUpdateCRC32 1003 , begin_opLock 1004 , lir_lock 1005 , lir_unlock 1006 , end_opLock 1007 , begin_delay_slot 1008 , lir_delay_slot 1009 , end_delay_slot 1010 , begin_opTypeCheck 1011 , lir_instanceof 1012 , lir_checkcast 1013 , lir_store_check 1014 , end_opTypeCheck 1015 , begin_opFlattenedArrayCheck 1016 , lir_flattened_array_check 1017 , end_opFlattenedArrayCheck 1018 , begin_opNullFreeArrayCheck 1019 , lir_null_free_array_check 1020 , end_opNullFreeArrayCheck 1021 , begin_opSubstitutabilityCheck 1022 , lir_substitutability_check 1023 , end_opSubstitutabilityCheck 1024 , begin_opCompareAndSwap 1025 , lir_cas_long 1026 , lir_cas_obj 1027 , lir_cas_int 1028 , end_opCompareAndSwap 1029 , begin_opMDOProfile 1030 , lir_profile_call 1031 , lir_profile_type 1032 , lir_profile_inline_type 1033 , end_opMDOProfile 1034 , begin_opAssert 1035 , lir_assert 1036 , end_opAssert 1037 #ifdef INCLUDE_ZGC 1038 , begin_opZLoadBarrierTest 1039 , lir_zloadbarrier_test 1040 , end_opZLoadBarrierTest 1041 #endif 1042 }; 1043 1044 1045 enum LIR_Condition { 1046 lir_cond_equal 1047 , lir_cond_notEqual 1048 , lir_cond_less 1049 , lir_cond_lessEqual 1050 , lir_cond_greaterEqual 1051 , lir_cond_greater 1052 , lir_cond_belowEqual 1053 , lir_cond_aboveEqual 1054 , lir_cond_always 1055 , lir_cond_unknown = -1 1056 }; 1057 1058 1059 enum LIR_PatchCode { 1060 lir_patch_none, 1061 lir_patch_low, 1062 lir_patch_high, 1063 lir_patch_normal 1064 }; 1065 1066 1067 enum LIR_MoveKind { 1068 lir_move_normal, 1069 lir_move_volatile, 1070 lir_move_wide, 1071 lir_move_max_flag 1072 }; 1073 1074 1075 // -------------------------------------------------- 1076 // LIR_Op 1077 // -------------------------------------------------- 1078 class LIR_Op: public CompilationResourceObj { 1079 friend class LIR_OpVisitState; 1080 1081 #ifdef ASSERT 1082 private: 1083 const char * _file; 1084 int _line; 1085 #endif 1086 1087 protected: 1088 LIR_Opr _result; 1089 unsigned short _code; 1090 unsigned short _flags; 1091 CodeEmitInfo* _info; 1092 int _id; // value id for register allocation 1093 int _fpu_pop_count; 1094 Instruction* _source; // for debugging 1095 1096 static void print_condition(outputStream* out, LIR_Condition cond) PRODUCT_RETURN; 1097 1098 protected: 1099 static bool is_in_range(LIR_Code test, LIR_Code start, LIR_Code end) { return start < test && test < end; } 1100 1101 public: 1102 LIR_Op() 1103 : 1104 #ifdef ASSERT 1105 _file(NULL) 1106 , _line(0), 1107 #endif 1108 _result(LIR_OprFact::illegalOpr) 1109 , _code(lir_none) 1110 , _flags(0) 1111 , _info(NULL) 1112 , _id(-1) 1113 , _fpu_pop_count(0) 1114 , _source(NULL) {} 1115 1116 LIR_Op(LIR_Code code, LIR_Opr result, CodeEmitInfo* info) 1117 : 1118 #ifdef ASSERT 1119 _file(NULL) 1120 , _line(0), 1121 #endif 1122 _result(result) 1123 , _code(code) 1124 , _flags(0) 1125 , _info(info) 1126 , _id(-1) 1127 , _fpu_pop_count(0) 1128 , _source(NULL) {} 1129 1130 CodeEmitInfo* info() const { return _info; } 1131 LIR_Code code() const { return (LIR_Code)_code; } 1132 LIR_Opr result_opr() const { return _result; } 1133 void set_result_opr(LIR_Opr opr) { _result = opr; } 1134 1135 #ifdef ASSERT 1136 void set_file_and_line(const char * file, int line) { 1137 _file = file; 1138 _line = line; 1139 } 1140 #endif 1141 1142 virtual const char * name() const PRODUCT_RETURN0; 1143 virtual void visit(LIR_OpVisitState* state); 1144 1145 int id() const { return _id; } 1146 void set_id(int id) { _id = id; } 1147 1148 // FPU stack simulation helpers -- only used on Intel 1149 void set_fpu_pop_count(int count) { assert(count >= 0 && count <= 1, "currently only 0 and 1 are valid"); _fpu_pop_count = count; } 1150 int fpu_pop_count() const { return _fpu_pop_count; } 1151 bool pop_fpu_stack() { return _fpu_pop_count > 0; } 1152 1153 Instruction* source() const { return _source; } 1154 void set_source(Instruction* ins) { _source = ins; } 1155 1156 virtual void emit_code(LIR_Assembler* masm) = 0; 1157 virtual void print_instr(outputStream* out) const = 0; 1158 virtual void print_on(outputStream* st) const PRODUCT_RETURN; 1159 1160 virtual bool is_patching() { return false; } 1161 virtual LIR_OpCall* as_OpCall() { return NULL; } 1162 virtual LIR_OpJavaCall* as_OpJavaCall() { return NULL; } 1163 virtual LIR_OpLabel* as_OpLabel() { return NULL; } 1164 virtual LIR_OpDelay* as_OpDelay() { return NULL; } 1165 virtual LIR_OpLock* as_OpLock() { return NULL; } 1166 virtual LIR_OpAllocArray* as_OpAllocArray() { return NULL; } 1167 virtual LIR_OpAllocObj* as_OpAllocObj() { return NULL; } 1168 virtual LIR_OpRoundFP* as_OpRoundFP() { return NULL; } 1169 virtual LIR_OpBranch* as_OpBranch() { return NULL; } 1170 virtual LIR_OpReturn* as_OpReturn() { return NULL; } 1171 virtual LIR_OpRTCall* as_OpRTCall() { return NULL; } 1172 virtual LIR_OpConvert* as_OpConvert() { return NULL; } 1173 virtual LIR_Op0* as_Op0() { return NULL; } 1174 virtual LIR_Op1* as_Op1() { return NULL; } 1175 virtual LIR_Op2* as_Op2() { return NULL; } 1176 virtual LIR_Op3* as_Op3() { return NULL; } 1177 virtual LIR_Op4* as_Op4() { return NULL; } 1178 virtual LIR_OpArrayCopy* as_OpArrayCopy() { return NULL; } 1179 virtual LIR_OpUpdateCRC32* as_OpUpdateCRC32() { return NULL; } 1180 virtual LIR_OpTypeCheck* as_OpTypeCheck() { return NULL; } 1181 virtual LIR_OpFlattenedArrayCheck* as_OpFlattenedArrayCheck() { return NULL; } 1182 virtual LIR_OpNullFreeArrayCheck* as_OpNullFreeArrayCheck() { return NULL; } 1183 virtual LIR_OpSubstitutabilityCheck* as_OpSubstitutabilityCheck() { return NULL; } 1184 virtual LIR_OpCompareAndSwap* as_OpCompareAndSwap() { return NULL; } 1185 virtual LIR_OpLoadKlass* as_OpLoadKlass() { return NULL; } 1186 virtual LIR_OpProfileCall* as_OpProfileCall() { return NULL; } 1187 virtual LIR_OpProfileType* as_OpProfileType() { return NULL; } 1188 virtual LIR_OpProfileInlineType* as_OpProfileInlineType() { return NULL; } 1189 #ifdef ASSERT 1190 virtual LIR_OpAssert* as_OpAssert() { return NULL; } 1191 #endif 1192 1193 virtual void verify() const {} 1194 }; 1195 1196 // for calls 1197 class LIR_OpCall: public LIR_Op { 1198 friend class LIR_OpVisitState; 1199 1200 protected: 1201 address _addr; 1202 LIR_OprList* _arguments; 1203 protected: 1204 LIR_OpCall(LIR_Code code, address addr, LIR_Opr result, 1205 LIR_OprList* arguments, CodeEmitInfo* info = NULL) 1206 : LIR_Op(code, result, info) 1207 , _addr(addr) 1208 , _arguments(arguments) {} 1209 1210 public: 1211 address addr() const { return _addr; } 1212 const LIR_OprList* arguments() const { return _arguments; } 1213 virtual LIR_OpCall* as_OpCall() { return this; } 1214 }; 1215 1216 1217 // -------------------------------------------------- 1218 // LIR_OpJavaCall 1219 // -------------------------------------------------- 1220 class LIR_OpJavaCall: public LIR_OpCall { 1221 friend class LIR_OpVisitState; 1222 1223 private: 1224 ciMethod* _method; 1225 LIR_Opr _receiver; 1226 LIR_Opr _method_handle_invoke_SP_save_opr; // Used in LIR_OpVisitState::visit to store the reference to FrameMap::method_handle_invoke_SP_save_opr. 1227 1228 public: 1229 LIR_OpJavaCall(LIR_Code code, ciMethod* method, 1230 LIR_Opr receiver, LIR_Opr result, 1231 address addr, LIR_OprList* arguments, 1232 CodeEmitInfo* info) 1233 : LIR_OpCall(code, addr, result, arguments, info) 1234 , _method(method) 1235 , _receiver(receiver) 1236 , _method_handle_invoke_SP_save_opr(LIR_OprFact::illegalOpr) 1237 { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); } 1238 1239 LIR_OpJavaCall(LIR_Code code, ciMethod* method, 1240 LIR_Opr receiver, LIR_Opr result, intptr_t vtable_offset, 1241 LIR_OprList* arguments, CodeEmitInfo* info) 1242 : LIR_OpCall(code, (address)vtable_offset, result, arguments, info) 1243 , _method(method) 1244 , _receiver(receiver) 1245 , _method_handle_invoke_SP_save_opr(LIR_OprFact::illegalOpr) 1246 { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); } 1247 1248 LIR_Opr receiver() const { return _receiver; } 1249 ciMethod* method() const { return _method; } 1250 1251 // JSR 292 support. 1252 bool is_invokedynamic() const { return code() == lir_dynamic_call; } 1253 bool is_method_handle_invoke() const { 1254 return method()->is_compiled_lambda_form() || // Java-generated lambda form 1255 method()->is_method_handle_intrinsic(); // JVM-generated MH intrinsic 1256 } 1257 1258 virtual void emit_code(LIR_Assembler* masm); 1259 virtual LIR_OpJavaCall* as_OpJavaCall() { return this; } 1260 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1261 1262 bool maybe_return_as_fields(ciInlineKlass** vk = NULL) const; 1263 }; 1264 1265 // -------------------------------------------------- 1266 // LIR_OpLabel 1267 // -------------------------------------------------- 1268 // Location where a branch can continue 1269 class LIR_OpLabel: public LIR_Op { 1270 friend class LIR_OpVisitState; 1271 1272 private: 1273 Label* _label; 1274 public: 1275 LIR_OpLabel(Label* lbl) 1276 : LIR_Op(lir_label, LIR_OprFact::illegalOpr, NULL) 1277 , _label(lbl) {} 1278 Label* label() const { return _label; } 1279 1280 virtual void emit_code(LIR_Assembler* masm); 1281 virtual LIR_OpLabel* as_OpLabel() { return this; } 1282 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1283 }; 1284 1285 // LIR_OpArrayCopy 1286 class LIR_OpArrayCopy: public LIR_Op { 1287 friend class LIR_OpVisitState; 1288 1289 private: 1290 ArrayCopyStub* _stub; 1291 LIR_Opr _src; 1292 LIR_Opr _src_pos; 1293 LIR_Opr _dst; 1294 LIR_Opr _dst_pos; 1295 LIR_Opr _length; 1296 LIR_Opr _tmp; 1297 ciArrayKlass* _expected_type; 1298 int _flags; 1299 1300 public: 1301 enum Flags { 1302 src_null_check = 1 << 0, 1303 dst_null_check = 1 << 1, 1304 src_pos_positive_check = 1 << 2, 1305 dst_pos_positive_check = 1 << 3, 1306 length_positive_check = 1 << 4, 1307 src_range_check = 1 << 5, 1308 dst_range_check = 1 << 6, 1309 type_check = 1 << 7, 1310 overlapping = 1 << 8, 1311 unaligned = 1 << 9, 1312 src_objarray = 1 << 10, 1313 dst_objarray = 1 << 11, 1314 always_slow_path = 1 << 12, 1315 src_inlinetype_check = 1 << 13, 1316 dst_inlinetype_check = 1 << 14, 1317 all_flags = (1 << 15) - 1 1318 }; 1319 1320 LIR_OpArrayCopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp, 1321 ciArrayKlass* expected_type, int flags, CodeEmitInfo* info); 1322 1323 LIR_Opr src() const { return _src; } 1324 LIR_Opr src_pos() const { return _src_pos; } 1325 LIR_Opr dst() const { return _dst; } 1326 LIR_Opr dst_pos() const { return _dst_pos; } 1327 LIR_Opr length() const { return _length; } 1328 LIR_Opr tmp() const { return _tmp; } 1329 int flags() const { return _flags; } 1330 ciArrayKlass* expected_type() const { return _expected_type; } 1331 ArrayCopyStub* stub() const { return _stub; } 1332 1333 virtual void emit_code(LIR_Assembler* masm); 1334 virtual LIR_OpArrayCopy* as_OpArrayCopy() { return this; } 1335 void print_instr(outputStream* out) const PRODUCT_RETURN; 1336 }; 1337 1338 // LIR_OpUpdateCRC32 1339 class LIR_OpUpdateCRC32: public LIR_Op { 1340 friend class LIR_OpVisitState; 1341 1342 private: 1343 LIR_Opr _crc; 1344 LIR_Opr _val; 1345 1346 public: 1347 1348 LIR_OpUpdateCRC32(LIR_Opr crc, LIR_Opr val, LIR_Opr res); 1349 1350 LIR_Opr crc() const { return _crc; } 1351 LIR_Opr val() const { return _val; } 1352 1353 virtual void emit_code(LIR_Assembler* masm); 1354 virtual LIR_OpUpdateCRC32* as_OpUpdateCRC32() { return this; } 1355 void print_instr(outputStream* out) const PRODUCT_RETURN; 1356 }; 1357 1358 // -------------------------------------------------- 1359 // LIR_Op0 1360 // -------------------------------------------------- 1361 class LIR_Op0: public LIR_Op { 1362 friend class LIR_OpVisitState; 1363 1364 public: 1365 LIR_Op0(LIR_Code code) 1366 : LIR_Op(code, LIR_OprFact::illegalOpr, NULL) { assert(is_in_range(code, begin_op0, end_op0), "code check"); } 1367 LIR_Op0(LIR_Code code, LIR_Opr result, CodeEmitInfo* info = NULL) 1368 : LIR_Op(code, result, info) { assert(is_in_range(code, begin_op0, end_op0), "code check"); } 1369 1370 virtual void emit_code(LIR_Assembler* masm); 1371 virtual LIR_Op0* as_Op0() { return this; } 1372 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1373 }; 1374 1375 1376 // -------------------------------------------------- 1377 // LIR_Op1 1378 // -------------------------------------------------- 1379 1380 class LIR_Op1: public LIR_Op { 1381 friend class LIR_OpVisitState; 1382 1383 protected: 1384 LIR_Opr _opr; // input operand 1385 BasicType _type; // Operand types 1386 LIR_PatchCode _patch; // only required with patchin (NEEDS_CLEANUP: do we want a special instruction for patching?) 1387 1388 static void print_patch_code(outputStream* out, LIR_PatchCode code); 1389 1390 void set_kind(LIR_MoveKind kind) { 1391 assert(code() == lir_move, "must be"); 1392 _flags = kind; 1393 } 1394 1395 public: 1396 LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result = LIR_OprFact::illegalOpr, BasicType type = T_ILLEGAL, LIR_PatchCode patch = lir_patch_none, CodeEmitInfo* info = NULL) 1397 : LIR_Op(code, result, info) 1398 , _opr(opr) 1399 , _type(type) 1400 , _patch(patch) { assert(is_in_range(code, begin_op1, end_op1), "code check"); } 1401 1402 LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result, BasicType type, LIR_PatchCode patch, CodeEmitInfo* info, LIR_MoveKind kind) 1403 : LIR_Op(code, result, info) 1404 , _opr(opr) 1405 , _type(type) 1406 , _patch(patch) { 1407 assert(code == lir_move, "must be"); 1408 set_kind(kind); 1409 } 1410 1411 LIR_Op1(LIR_Code code, LIR_Opr opr, CodeEmitInfo* info) 1412 : LIR_Op(code, LIR_OprFact::illegalOpr, info) 1413 , _opr(opr) 1414 , _type(T_ILLEGAL) 1415 , _patch(lir_patch_none) { assert(is_in_range(code, begin_op1, end_op1), "code check"); } 1416 1417 LIR_Opr in_opr() const { return _opr; } 1418 LIR_PatchCode patch_code() const { return _patch; } 1419 BasicType type() const { return _type; } 1420 1421 LIR_MoveKind move_kind() const { 1422 assert(code() == lir_move, "must be"); 1423 return (LIR_MoveKind)_flags; 1424 } 1425 1426 virtual bool is_patching() { return _patch != lir_patch_none; } 1427 virtual void emit_code(LIR_Assembler* masm); 1428 virtual LIR_Op1* as_Op1() { return this; } 1429 virtual const char * name() const PRODUCT_RETURN0; 1430 1431 void set_in_opr(LIR_Opr opr) { _opr = opr; } 1432 1433 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1434 virtual void verify() const; 1435 }; 1436 1437 1438 // for runtime calls 1439 class LIR_OpRTCall: public LIR_OpCall { 1440 friend class LIR_OpVisitState; 1441 1442 private: 1443 LIR_Opr _tmp; 1444 public: 1445 LIR_OpRTCall(address addr, LIR_Opr tmp, 1446 LIR_Opr result, LIR_OprList* arguments, CodeEmitInfo* info = NULL) 1447 : LIR_OpCall(lir_rtcall, addr, result, arguments, info) 1448 , _tmp(tmp) {} 1449 1450 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1451 virtual void emit_code(LIR_Assembler* masm); 1452 virtual LIR_OpRTCall* as_OpRTCall() { return this; } 1453 1454 LIR_Opr tmp() const { return _tmp; } 1455 1456 virtual void verify() const; 1457 }; 1458 1459 1460 1461 class LIR_OpReturn: public LIR_Op1 { 1462 friend class LIR_OpVisitState; 1463 1464 private: 1465 C1SafepointPollStub* _stub; 1466 1467 public: 1468 LIR_OpReturn(LIR_Opr opr); 1469 1470 C1SafepointPollStub* stub() const { return _stub; } 1471 virtual LIR_OpReturn* as_OpReturn() { return this; } 1472 }; 1473 1474 class ConversionStub; 1475 1476 class LIR_OpConvert: public LIR_Op1 { 1477 friend class LIR_OpVisitState; 1478 1479 private: 1480 Bytecodes::Code _bytecode; 1481 ConversionStub* _stub; 1482 1483 public: 1484 LIR_OpConvert(Bytecodes::Code code, LIR_Opr opr, LIR_Opr result, ConversionStub* stub) 1485 : LIR_Op1(lir_convert, opr, result) 1486 , _bytecode(code) 1487 , _stub(stub) {} 1488 1489 Bytecodes::Code bytecode() const { return _bytecode; } 1490 ConversionStub* stub() const { return _stub; } 1491 1492 virtual void emit_code(LIR_Assembler* masm); 1493 virtual LIR_OpConvert* as_OpConvert() { return this; } 1494 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1495 1496 static void print_bytecode(outputStream* out, Bytecodes::Code code) PRODUCT_RETURN; 1497 }; 1498 1499 1500 // LIR_OpAllocObj 1501 class LIR_OpAllocObj : public LIR_Op1 { 1502 friend class LIR_OpVisitState; 1503 1504 private: 1505 LIR_Opr _tmp1; 1506 LIR_Opr _tmp2; 1507 LIR_Opr _tmp3; 1508 LIR_Opr _tmp4; 1509 int _hdr_size; 1510 int _obj_size; 1511 CodeStub* _stub; 1512 bool _init_check; 1513 1514 public: 1515 LIR_OpAllocObj(LIR_Opr klass, LIR_Opr result, 1516 LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, 1517 int hdr_size, int obj_size, bool init_check, CodeStub* stub) 1518 : LIR_Op1(lir_alloc_object, klass, result) 1519 , _tmp1(t1) 1520 , _tmp2(t2) 1521 , _tmp3(t3) 1522 , _tmp4(t4) 1523 , _hdr_size(hdr_size) 1524 , _obj_size(obj_size) 1525 , _stub(stub) 1526 , _init_check(init_check) { } 1527 1528 LIR_Opr klass() const { return in_opr(); } 1529 LIR_Opr obj() const { return result_opr(); } 1530 LIR_Opr tmp1() const { return _tmp1; } 1531 LIR_Opr tmp2() const { return _tmp2; } 1532 LIR_Opr tmp3() const { return _tmp3; } 1533 LIR_Opr tmp4() const { return _tmp4; } 1534 int header_size() const { return _hdr_size; } 1535 int object_size() const { return _obj_size; } 1536 bool init_check() const { return _init_check; } 1537 CodeStub* stub() const { return _stub; } 1538 1539 virtual void emit_code(LIR_Assembler* masm); 1540 virtual LIR_OpAllocObj * as_OpAllocObj () { return this; } 1541 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1542 }; 1543 1544 1545 // LIR_OpRoundFP 1546 class LIR_OpRoundFP : public LIR_Op1 { 1547 friend class LIR_OpVisitState; 1548 1549 private: 1550 LIR_Opr _tmp; 1551 1552 public: 1553 LIR_OpRoundFP(LIR_Opr reg, LIR_Opr stack_loc_temp, LIR_Opr result) 1554 : LIR_Op1(lir_roundfp, reg, result) 1555 , _tmp(stack_loc_temp) {} 1556 1557 LIR_Opr tmp() const { return _tmp; } 1558 virtual LIR_OpRoundFP* as_OpRoundFP() { return this; } 1559 void print_instr(outputStream* out) const PRODUCT_RETURN; 1560 }; 1561 1562 // LIR_OpTypeCheck 1563 class LIR_OpTypeCheck: public LIR_Op { 1564 friend class LIR_OpVisitState; 1565 1566 private: 1567 LIR_Opr _object; 1568 LIR_Opr _array; 1569 ciKlass* _klass; 1570 LIR_Opr _tmp1; 1571 LIR_Opr _tmp2; 1572 LIR_Opr _tmp3; 1573 bool _fast_check; 1574 CodeEmitInfo* _info_for_patch; 1575 CodeEmitInfo* _info_for_exception; 1576 CodeStub* _stub; 1577 ciMethod* _profiled_method; 1578 int _profiled_bci; 1579 bool _should_profile; 1580 bool _need_null_check; 1581 1582 public: 1583 LIR_OpTypeCheck(LIR_Code code, LIR_Opr result, LIR_Opr object, ciKlass* klass, 1584 LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, 1585 CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub, bool need_null_check = true); 1586 LIR_OpTypeCheck(LIR_Code code, LIR_Opr object, LIR_Opr array, 1587 LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception); 1588 1589 LIR_Opr object() const { return _object; } 1590 LIR_Opr array() const { assert(code() == lir_store_check, "not valid"); return _array; } 1591 LIR_Opr tmp1() const { return _tmp1; } 1592 LIR_Opr tmp2() const { return _tmp2; } 1593 LIR_Opr tmp3() const { return _tmp3; } 1594 ciKlass* klass() const { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _klass; } 1595 bool fast_check() const { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _fast_check; } 1596 CodeEmitInfo* info_for_patch() const { return _info_for_patch; } 1597 CodeEmitInfo* info_for_exception() const { return _info_for_exception; } 1598 CodeStub* stub() const { return _stub; } 1599 1600 // MethodData* profiling 1601 void set_profiled_method(ciMethod *method) { _profiled_method = method; } 1602 void set_profiled_bci(int bci) { _profiled_bci = bci; } 1603 void set_should_profile(bool b) { _should_profile = b; } 1604 ciMethod* profiled_method() const { return _profiled_method; } 1605 int profiled_bci() const { return _profiled_bci; } 1606 bool should_profile() const { return _should_profile; } 1607 bool need_null_check() const { return _need_null_check; } 1608 virtual bool is_patching() { return _info_for_patch != NULL; } 1609 virtual void emit_code(LIR_Assembler* masm); 1610 virtual LIR_OpTypeCheck* as_OpTypeCheck() { return this; } 1611 void print_instr(outputStream* out) const PRODUCT_RETURN; 1612 }; 1613 1614 // LIR_OpFlattenedArrayCheck 1615 class LIR_OpFlattenedArrayCheck: public LIR_Op { 1616 friend class LIR_OpVisitState; 1617 1618 private: 1619 LIR_Opr _array; 1620 LIR_Opr _value; 1621 LIR_Opr _tmp; 1622 CodeStub* _stub; 1623 public: 1624 LIR_OpFlattenedArrayCheck(LIR_Opr array, LIR_Opr value, LIR_Opr tmp, CodeStub* stub); 1625 LIR_Opr array() const { return _array; } 1626 LIR_Opr value() const { return _value; } 1627 LIR_Opr tmp() const { return _tmp; } 1628 CodeStub* stub() const { return _stub; } 1629 1630 virtual void emit_code(LIR_Assembler* masm); 1631 virtual LIR_OpFlattenedArrayCheck* as_OpFlattenedArrayCheck() { return this; } 1632 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1633 }; 1634 1635 // LIR_OpNullFreeArrayCheck 1636 class LIR_OpNullFreeArrayCheck: public LIR_Op { 1637 friend class LIR_OpVisitState; 1638 1639 private: 1640 LIR_Opr _array; 1641 LIR_Opr _tmp; 1642 public: 1643 LIR_OpNullFreeArrayCheck(LIR_Opr array, LIR_Opr tmp); 1644 LIR_Opr array() const { return _array; } 1645 LIR_Opr tmp() const { return _tmp; } 1646 1647 virtual void emit_code(LIR_Assembler* masm); 1648 virtual LIR_OpNullFreeArrayCheck* as_OpNullFreeArrayCheck() { return this; } 1649 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1650 }; 1651 1652 class LIR_OpSubstitutabilityCheck: public LIR_Op { 1653 friend class LIR_OpVisitState; 1654 1655 private: 1656 LIR_Opr _left; 1657 LIR_Opr _right; 1658 LIR_Opr _equal_result; 1659 LIR_Opr _not_equal_result; 1660 LIR_Opr _tmp1; 1661 LIR_Opr _tmp2; 1662 ciKlass* _left_klass; 1663 ciKlass* _right_klass; 1664 LIR_Opr _left_klass_op; 1665 LIR_Opr _right_klass_op; 1666 CodeStub* _stub; 1667 public: 1668 LIR_OpSubstitutabilityCheck(LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr equal_result, LIR_Opr not_equal_result, 1669 LIR_Opr tmp1, LIR_Opr tmp2, 1670 ciKlass* left_klass, ciKlass* right_klass, LIR_Opr left_klass_op, LIR_Opr right_klass_op, 1671 CodeEmitInfo* info, CodeStub* stub); 1672 1673 LIR_Opr left() const { return _left; } 1674 LIR_Opr right() const { return _right; } 1675 LIR_Opr equal_result() const { return _equal_result; } 1676 LIR_Opr not_equal_result() const { return _not_equal_result; } 1677 LIR_Opr tmp1() const { return _tmp1; } 1678 LIR_Opr tmp2() const { return _tmp2; } 1679 ciKlass* left_klass() const { return _left_klass; } 1680 ciKlass* right_klass() const { return _right_klass; } 1681 LIR_Opr left_klass_op() const { return _left_klass_op; } 1682 LIR_Opr right_klass_op() const { return _right_klass_op; } 1683 CodeStub* stub() const { return _stub; } 1684 1685 virtual void emit_code(LIR_Assembler* masm); 1686 virtual LIR_OpSubstitutabilityCheck* as_OpSubstitutabilityCheck() { return this; } 1687 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1688 }; 1689 1690 // LIR_Op2 1691 class LIR_Op2: public LIR_Op { 1692 friend class LIR_OpVisitState; 1693 1694 int _fpu_stack_size; // for sin/cos implementation on Intel 1695 1696 protected: 1697 LIR_Opr _opr1; 1698 LIR_Opr _opr2; 1699 BasicType _type; 1700 LIR_Opr _tmp1; 1701 LIR_Opr _tmp2; 1702 LIR_Opr _tmp3; 1703 LIR_Opr _tmp4; 1704 LIR_Opr _tmp5; 1705 LIR_Condition _condition; 1706 1707 void verify() const; 1708 1709 public: 1710 LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, CodeEmitInfo* info = NULL, BasicType type = T_ILLEGAL) 1711 : LIR_Op(code, LIR_OprFact::illegalOpr, info) 1712 , _fpu_stack_size(0) 1713 , _opr1(opr1) 1714 , _opr2(opr2) 1715 , _type(type) 1716 , _tmp1(LIR_OprFact::illegalOpr) 1717 , _tmp2(LIR_OprFact::illegalOpr) 1718 , _tmp3(LIR_OprFact::illegalOpr) 1719 , _tmp4(LIR_OprFact::illegalOpr) 1720 , _tmp5(LIR_OprFact::illegalOpr) 1721 , _condition(condition) { 1722 assert(code == lir_cmp || code == lir_branch || code == lir_cond_float_branch || code == lir_assert, "code check"); 1723 } 1724 1725 LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) 1726 : LIR_Op(code, result, NULL) 1727 , _fpu_stack_size(0) 1728 , _opr1(opr1) 1729 , _opr2(opr2) 1730 , _type(type) 1731 , _tmp1(LIR_OprFact::illegalOpr) 1732 , _tmp2(LIR_OprFact::illegalOpr) 1733 , _tmp3(LIR_OprFact::illegalOpr) 1734 , _tmp4(LIR_OprFact::illegalOpr) 1735 , _tmp5(LIR_OprFact::illegalOpr) 1736 , _condition(condition) { 1737 assert(code == lir_cmove, "code check"); 1738 assert(type != T_ILLEGAL, "cmove should have type"); 1739 } 1740 1741 LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result = LIR_OprFact::illegalOpr, 1742 CodeEmitInfo* info = NULL, BasicType type = T_ILLEGAL) 1743 : LIR_Op(code, result, info) 1744 , _fpu_stack_size(0) 1745 , _opr1(opr1) 1746 , _opr2(opr2) 1747 , _type(type) 1748 , _tmp1(LIR_OprFact::illegalOpr) 1749 , _tmp2(LIR_OprFact::illegalOpr) 1750 , _tmp3(LIR_OprFact::illegalOpr) 1751 , _tmp4(LIR_OprFact::illegalOpr) 1752 , _tmp5(LIR_OprFact::illegalOpr) 1753 , _condition(lir_cond_unknown) { 1754 assert(code != lir_cmp && code != lir_branch && code != lir_cond_float_branch && is_in_range(code, begin_op2, end_op2), "code check"); 1755 } 1756 1757 LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, LIR_Opr tmp1, LIR_Opr tmp2 = LIR_OprFact::illegalOpr, 1758 LIR_Opr tmp3 = LIR_OprFact::illegalOpr, LIR_Opr tmp4 = LIR_OprFact::illegalOpr, LIR_Opr tmp5 = LIR_OprFact::illegalOpr) 1759 : LIR_Op(code, result, NULL) 1760 , _fpu_stack_size(0) 1761 , _opr1(opr1) 1762 , _opr2(opr2) 1763 , _type(T_ILLEGAL) 1764 , _tmp1(tmp1) 1765 , _tmp2(tmp2) 1766 , _tmp3(tmp3) 1767 , _tmp4(tmp4) 1768 , _tmp5(tmp5) 1769 , _condition(lir_cond_unknown) { 1770 assert(code != lir_cmp && code != lir_branch && code != lir_cond_float_branch && is_in_range(code, begin_op2, end_op2), "code check"); 1771 } 1772 1773 LIR_Opr in_opr1() const { return _opr1; } 1774 LIR_Opr in_opr2() const { return _opr2; } 1775 BasicType type() const { return _type; } 1776 LIR_Opr tmp1_opr() const { return _tmp1; } 1777 LIR_Opr tmp2_opr() const { return _tmp2; } 1778 LIR_Opr tmp3_opr() const { return _tmp3; } 1779 LIR_Opr tmp4_opr() const { return _tmp4; } 1780 LIR_Opr tmp5_opr() const { return _tmp5; } 1781 LIR_Condition condition() const { 1782 assert(code() == lir_cmp || code() == lir_branch || code() == lir_cond_float_branch || code() == lir_assert, "only valid for branch and assert"); return _condition; 1783 } 1784 void set_condition(LIR_Condition condition) { 1785 assert(code() == lir_cmp || code() == lir_branch || code() == lir_cond_float_branch, "only valid for branch"); _condition = condition; 1786 } 1787 1788 void set_fpu_stack_size(int size) { _fpu_stack_size = size; } 1789 int fpu_stack_size() const { return _fpu_stack_size; } 1790 1791 void set_in_opr1(LIR_Opr opr) { _opr1 = opr; } 1792 void set_in_opr2(LIR_Opr opr) { _opr2 = opr; } 1793 1794 virtual void emit_code(LIR_Assembler* masm); 1795 virtual LIR_Op2* as_Op2() { return this; } 1796 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1797 }; 1798 1799 class LIR_OpBranch: public LIR_Op2 { 1800 friend class LIR_OpVisitState; 1801 1802 private: 1803 Label* _label; 1804 BlockBegin* _block; // if this is a branch to a block, this is the block 1805 BlockBegin* _ublock; // if this is a float-branch, this is the unordered block 1806 CodeStub* _stub; // if this is a branch to a stub, this is the stub 1807 1808 public: 1809 LIR_OpBranch(LIR_Condition cond, Label* lbl) 1810 : LIR_Op2(lir_branch, cond, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, (CodeEmitInfo*) NULL) 1811 , _label(lbl) 1812 , _block(NULL) 1813 , _ublock(NULL) 1814 , _stub(NULL) { } 1815 1816 LIR_OpBranch(LIR_Condition cond, BlockBegin* block); 1817 LIR_OpBranch(LIR_Condition cond, CodeStub* stub); 1818 1819 // for unordered comparisons 1820 LIR_OpBranch(LIR_Condition cond, BlockBegin* block, BlockBegin* ublock); 1821 1822 LIR_Condition cond() const { 1823 return condition(); 1824 } 1825 1826 void set_cond(LIR_Condition cond) { 1827 set_condition(cond); 1828 } 1829 1830 Label* label() const { return _label; } 1831 BlockBegin* block() const { return _block; } 1832 BlockBegin* ublock() const { return _ublock; } 1833 CodeStub* stub() const { return _stub; } 1834 1835 void change_block(BlockBegin* b); 1836 void change_ublock(BlockBegin* b); 1837 void negate_cond(); 1838 1839 virtual void emit_code(LIR_Assembler* masm); 1840 virtual LIR_OpBranch* as_OpBranch() { return this; } 1841 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1842 }; 1843 1844 class LIR_OpAllocArray : public LIR_Op { 1845 friend class LIR_OpVisitState; 1846 1847 private: 1848 LIR_Opr _klass; 1849 LIR_Opr _len; 1850 LIR_Opr _tmp1; 1851 LIR_Opr _tmp2; 1852 LIR_Opr _tmp3; 1853 LIR_Opr _tmp4; 1854 BasicType _type; 1855 CodeStub* _stub; 1856 1857 public: 1858 LIR_OpAllocArray(LIR_Opr klass, LIR_Opr len, LIR_Opr result, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, BasicType type, CodeStub* stub) 1859 : LIR_Op(lir_alloc_array, result, NULL) 1860 , _klass(klass) 1861 , _len(len) 1862 , _tmp1(t1) 1863 , _tmp2(t2) 1864 , _tmp3(t3) 1865 , _tmp4(t4) 1866 , _type(type) 1867 , _stub(stub) {} 1868 1869 LIR_Opr klass() const { return _klass; } 1870 LIR_Opr len() const { return _len; } 1871 LIR_Opr obj() const { return result_opr(); } 1872 LIR_Opr tmp1() const { return _tmp1; } 1873 LIR_Opr tmp2() const { return _tmp2; } 1874 LIR_Opr tmp3() const { return _tmp3; } 1875 LIR_Opr tmp4() const { return _tmp4; } 1876 BasicType type() const { return _type; } 1877 CodeStub* stub() const { return _stub; } 1878 1879 virtual void emit_code(LIR_Assembler* masm); 1880 virtual LIR_OpAllocArray * as_OpAllocArray () { return this; } 1881 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1882 }; 1883 1884 1885 class LIR_Op3: public LIR_Op { 1886 friend class LIR_OpVisitState; 1887 1888 private: 1889 LIR_Opr _opr1; 1890 LIR_Opr _opr2; 1891 LIR_Opr _opr3; 1892 public: 1893 LIR_Op3(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr opr3, LIR_Opr result, CodeEmitInfo* info = NULL) 1894 : LIR_Op(code, result, info) 1895 , _opr1(opr1) 1896 , _opr2(opr2) 1897 , _opr3(opr3) { assert(is_in_range(code, begin_op3, end_op3), "code check"); } 1898 LIR_Opr in_opr1() const { return _opr1; } 1899 LIR_Opr in_opr2() const { return _opr2; } 1900 LIR_Opr in_opr3() const { return _opr3; } 1901 1902 virtual void emit_code(LIR_Assembler* masm); 1903 virtual LIR_Op3* as_Op3() { return this; } 1904 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1905 }; 1906 1907 class LIR_Op4: public LIR_Op { 1908 friend class LIR_OpVisitState; 1909 protected: 1910 LIR_Opr _opr1; 1911 LIR_Opr _opr2; 1912 LIR_Opr _opr3; 1913 LIR_Opr _opr4; 1914 BasicType _type; 1915 LIR_Opr _tmp1; 1916 LIR_Opr _tmp2; 1917 LIR_Opr _tmp3; 1918 LIR_Opr _tmp4; 1919 LIR_Opr _tmp5; 1920 LIR_Condition _condition; 1921 1922 public: 1923 LIR_Op4(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr opr3, LIR_Opr opr4, 1924 LIR_Opr result, BasicType type) 1925 : LIR_Op(code, result, NULL) 1926 , _opr1(opr1) 1927 , _opr2(opr2) 1928 , _opr3(opr3) 1929 , _opr4(opr4) 1930 , _type(type) 1931 , _tmp1(LIR_OprFact::illegalOpr) 1932 , _tmp2(LIR_OprFact::illegalOpr) 1933 , _tmp3(LIR_OprFact::illegalOpr) 1934 , _tmp4(LIR_OprFact::illegalOpr) 1935 , _tmp5(LIR_OprFact::illegalOpr) 1936 , _condition(condition) { 1937 assert(code == lir_cmove, "code check"); 1938 assert(type != T_ILLEGAL, "cmove should have type"); 1939 } 1940 1941 LIR_Opr in_opr1() const { return _opr1; } 1942 LIR_Opr in_opr2() const { return _opr2; } 1943 LIR_Opr in_opr3() const { return _opr3; } 1944 LIR_Opr in_opr4() const { return _opr4; } 1945 BasicType type() const { return _type; } 1946 LIR_Opr tmp1_opr() const { return _tmp1; } 1947 LIR_Opr tmp2_opr() const { return _tmp2; } 1948 LIR_Opr tmp3_opr() const { return _tmp3; } 1949 LIR_Opr tmp4_opr() const { return _tmp4; } 1950 LIR_Opr tmp5_opr() const { return _tmp5; } 1951 1952 LIR_Condition condition() const { return _condition; } 1953 void set_condition(LIR_Condition condition) { _condition = condition; } 1954 1955 void set_in_opr1(LIR_Opr opr) { _opr1 = opr; } 1956 void set_in_opr2(LIR_Opr opr) { _opr2 = opr; } 1957 void set_in_opr3(LIR_Opr opr) { _opr3 = opr; } 1958 void set_in_opr4(LIR_Opr opr) { _opr4 = opr; } 1959 virtual void emit_code(LIR_Assembler* masm); 1960 virtual LIR_Op4* as_Op4() { return this; } 1961 1962 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1963 }; 1964 1965 //-------------------------------- 1966 class LabelObj: public CompilationResourceObj { 1967 private: 1968 Label _label; 1969 public: 1970 LabelObj() {} 1971 Label* label() { return &_label; } 1972 }; 1973 1974 1975 class LIR_OpLock: public LIR_Op { 1976 friend class LIR_OpVisitState; 1977 1978 private: 1979 LIR_Opr _hdr; 1980 LIR_Opr _obj; 1981 LIR_Opr _lock; 1982 LIR_Opr _scratch; 1983 CodeStub* _stub; 1984 CodeStub* _throw_imse_stub; 1985 public: 1986 LIR_OpLock(LIR_Code code, LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info, CodeStub* throw_imse_stub=NULL) 1987 : LIR_Op(code, LIR_OprFact::illegalOpr, info) 1988 , _hdr(hdr) 1989 , _obj(obj) 1990 , _lock(lock) 1991 , _scratch(scratch) 1992 , _stub(stub) 1993 , _throw_imse_stub(throw_imse_stub) {} 1994 1995 LIR_Opr hdr_opr() const { return _hdr; } 1996 LIR_Opr obj_opr() const { return _obj; } 1997 LIR_Opr lock_opr() const { return _lock; } 1998 LIR_Opr scratch_opr() const { return _scratch; } 1999 CodeStub* stub() const { return _stub; } 2000 CodeStub* throw_imse_stub() const { return _throw_imse_stub; } 2001 2002 virtual void emit_code(LIR_Assembler* masm); 2003 virtual LIR_OpLock* as_OpLock() { return this; } 2004 void print_instr(outputStream* out) const PRODUCT_RETURN; 2005 }; 2006 2007 class LIR_OpLoadKlass: public LIR_Op { 2008 friend class LIR_OpVisitState; 2009 2010 private: 2011 LIR_Opr _obj; 2012 public: 2013 LIR_OpLoadKlass(LIR_Opr obj, LIR_Opr result, CodeEmitInfo* info) 2014 : LIR_Op(lir_load_klass, result, info) 2015 , _obj(obj) 2016 {} 2017 2018 LIR_Opr obj() const { return _obj; } 2019 2020 virtual LIR_OpLoadKlass* as_OpLoadKlass() { return this; } 2021 virtual void emit_code(LIR_Assembler* masm); 2022 void print_instr(outputStream* out) const PRODUCT_RETURN; 2023 }; 2024 2025 class LIR_OpDelay: public LIR_Op { 2026 friend class LIR_OpVisitState; 2027 2028 private: 2029 LIR_Op* _op; 2030 2031 public: 2032 LIR_OpDelay(LIR_Op* op, CodeEmitInfo* info): 2033 LIR_Op(lir_delay_slot, LIR_OprFact::illegalOpr, info), 2034 _op(op) { 2035 assert(op->code() == lir_nop, "should be filling with nops"); 2036 } 2037 virtual void emit_code(LIR_Assembler* masm); 2038 virtual LIR_OpDelay* as_OpDelay() { return this; } 2039 void print_instr(outputStream* out) const PRODUCT_RETURN; 2040 LIR_Op* delay_op() const { return _op; } 2041 CodeEmitInfo* call_info() const { return info(); } 2042 }; 2043 2044 #ifdef ASSERT 2045 // LIR_OpAssert 2046 class LIR_OpAssert : public LIR_Op2 { 2047 friend class LIR_OpVisitState; 2048 2049 private: 2050 const char* _msg; 2051 bool _halt; 2052 2053 public: 2054 LIR_OpAssert(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, const char* msg, bool halt) 2055 : LIR_Op2(lir_assert, condition, opr1, opr2) 2056 , _msg(msg) 2057 , _halt(halt) { 2058 } 2059 2060 const char* msg() const { return _msg; } 2061 bool halt() const { return _halt; } 2062 2063 virtual void emit_code(LIR_Assembler* masm); 2064 virtual LIR_OpAssert* as_OpAssert() { return this; } 2065 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 2066 }; 2067 #endif 2068 2069 // LIR_OpCompareAndSwap 2070 class LIR_OpCompareAndSwap : public LIR_Op { 2071 friend class LIR_OpVisitState; 2072 2073 private: 2074 LIR_Opr _addr; 2075 LIR_Opr _cmp_value; 2076 LIR_Opr _new_value; 2077 LIR_Opr _tmp1; 2078 LIR_Opr _tmp2; 2079 2080 public: 2081 LIR_OpCompareAndSwap(LIR_Code code, LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value, 2082 LIR_Opr t1, LIR_Opr t2, LIR_Opr result) 2083 : LIR_Op(code, result, NULL) // no result, no info 2084 , _addr(addr) 2085 , _cmp_value(cmp_value) 2086 , _new_value(new_value) 2087 , _tmp1(t1) 2088 , _tmp2(t2) { } 2089 2090 LIR_Opr addr() const { return _addr; } 2091 LIR_Opr cmp_value() const { return _cmp_value; } 2092 LIR_Opr new_value() const { return _new_value; } 2093 LIR_Opr tmp1() const { return _tmp1; } 2094 LIR_Opr tmp2() const { return _tmp2; } 2095 2096 virtual void emit_code(LIR_Assembler* masm); 2097 virtual LIR_OpCompareAndSwap * as_OpCompareAndSwap () { return this; } 2098 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 2099 }; 2100 2101 // LIR_OpProfileCall 2102 class LIR_OpProfileCall : public LIR_Op { 2103 friend class LIR_OpVisitState; 2104 2105 private: 2106 ciMethod* _profiled_method; 2107 int _profiled_bci; 2108 ciMethod* _profiled_callee; 2109 LIR_Opr _mdo; 2110 LIR_Opr _recv; 2111 LIR_Opr _tmp1; 2112 ciKlass* _known_holder; 2113 2114 public: 2115 // Destroys recv 2116 LIR_OpProfileCall(ciMethod* profiled_method, int profiled_bci, ciMethod* profiled_callee, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* known_holder) 2117 : LIR_Op(lir_profile_call, LIR_OprFact::illegalOpr, NULL) // no result, no info 2118 , _profiled_method(profiled_method) 2119 , _profiled_bci(profiled_bci) 2120 , _profiled_callee(profiled_callee) 2121 , _mdo(mdo) 2122 , _recv(recv) 2123 , _tmp1(t1) 2124 , _known_holder(known_holder) { } 2125 2126 ciMethod* profiled_method() const { return _profiled_method; } 2127 int profiled_bci() const { return _profiled_bci; } 2128 ciMethod* profiled_callee() const { return _profiled_callee; } 2129 LIR_Opr mdo() const { return _mdo; } 2130 LIR_Opr recv() const { return _recv; } 2131 LIR_Opr tmp1() const { return _tmp1; } 2132 ciKlass* known_holder() const { return _known_holder; } 2133 2134 virtual void emit_code(LIR_Assembler* masm); 2135 virtual LIR_OpProfileCall* as_OpProfileCall() { return this; } 2136 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 2137 bool should_profile_receiver_type() const { 2138 bool callee_is_static = _profiled_callee->is_loaded() && _profiled_callee->is_static(); 2139 Bytecodes::Code bc = _profiled_method->java_code_at_bci(_profiled_bci); 2140 bool call_is_virtual = (bc == Bytecodes::_invokevirtual && !_profiled_callee->can_be_statically_bound()) || bc == Bytecodes::_invokeinterface; 2141 return C1ProfileVirtualCalls && call_is_virtual && !callee_is_static; 2142 } 2143 }; 2144 2145 // LIR_OpProfileType 2146 class LIR_OpProfileType : public LIR_Op { 2147 friend class LIR_OpVisitState; 2148 2149 private: 2150 LIR_Opr _mdp; 2151 LIR_Opr _obj; 2152 LIR_Opr _tmp; 2153 ciKlass* _exact_klass; // non NULL if we know the klass statically (no need to load it from _obj) 2154 intptr_t _current_klass; // what the profiling currently reports 2155 bool _not_null; // true if we know statically that _obj cannot be null 2156 bool _no_conflict; // true if we're profling parameters, _exact_klass is not NULL and we know 2157 // _exact_klass it the only possible type for this parameter in any context. 2158 2159 public: 2160 // Destroys recv 2161 LIR_OpProfileType(LIR_Opr mdp, LIR_Opr obj, ciKlass* exact_klass, intptr_t current_klass, LIR_Opr tmp, bool not_null, bool no_conflict) 2162 : LIR_Op(lir_profile_type, LIR_OprFact::illegalOpr, NULL) // no result, no info 2163 , _mdp(mdp) 2164 , _obj(obj) 2165 , _tmp(tmp) 2166 , _exact_klass(exact_klass) 2167 , _current_klass(current_klass) 2168 , _not_null(not_null) 2169 , _no_conflict(no_conflict) { } 2170 2171 LIR_Opr mdp() const { return _mdp; } 2172 LIR_Opr obj() const { return _obj; } 2173 LIR_Opr tmp() const { return _tmp; } 2174 ciKlass* exact_klass() const { return _exact_klass; } 2175 intptr_t current_klass() const { return _current_klass; } 2176 bool not_null() const { return _not_null; } 2177 bool no_conflict() const { return _no_conflict; } 2178 2179 virtual void emit_code(LIR_Assembler* masm); 2180 virtual LIR_OpProfileType* as_OpProfileType() { return this; } 2181 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 2182 }; 2183 2184 // LIR_OpProfileInlineType 2185 class LIR_OpProfileInlineType : public LIR_Op { 2186 friend class LIR_OpVisitState; 2187 2188 private: 2189 LIR_Opr _mdp; 2190 LIR_Opr _obj; 2191 int _flag; 2192 LIR_Opr _tmp; 2193 bool _not_null; // true if we know statically that _obj cannot be null 2194 2195 public: 2196 // Destroys recv 2197 LIR_OpProfileInlineType(LIR_Opr mdp, LIR_Opr obj, int flag, LIR_Opr tmp, bool not_null) 2198 : LIR_Op(lir_profile_inline_type, LIR_OprFact::illegalOpr, NULL) // no result, no info 2199 , _mdp(mdp) 2200 , _obj(obj) 2201 , _flag(flag) 2202 , _tmp(tmp) 2203 , _not_null(not_null) { } 2204 2205 LIR_Opr mdp() const { return _mdp; } 2206 LIR_Opr obj() const { return _obj; } 2207 int flag() const { return _flag; } 2208 LIR_Opr tmp() const { return _tmp; } 2209 bool not_null() const { return _not_null; } 2210 2211 virtual void emit_code(LIR_Assembler* masm); 2212 virtual LIR_OpProfileInlineType* as_OpProfileInlineType() { return this; } 2213 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 2214 }; 2215 2216 class LIR_InsertionBuffer; 2217 2218 //--------------------------------LIR_List--------------------------------------------------- 2219 // Maintains a list of LIR instructions (one instance of LIR_List per basic block) 2220 // The LIR instructions are appended by the LIR_List class itself; 2221 // 2222 // Notes: 2223 // - all offsets are(should be) in bytes 2224 // - local positions are specified with an offset, with offset 0 being local 0 2225 2226 class LIR_List: public CompilationResourceObj { 2227 private: 2228 LIR_OpList _operations; 2229 2230 Compilation* _compilation; 2231 #ifndef PRODUCT 2232 BlockBegin* _block; 2233 #endif 2234 #ifdef ASSERT 2235 const char * _file; 2236 int _line; 2237 #endif 2238 #ifdef RISCV 2239 LIR_Opr _cmp_opr1; 2240 LIR_Opr _cmp_opr2; 2241 #endif 2242 2243 public: 2244 void append(LIR_Op* op) { 2245 if (op->source() == NULL) 2246 op->set_source(_compilation->current_instruction()); 2247 #ifndef PRODUCT 2248 if (PrintIRWithLIR) { 2249 _compilation->maybe_print_current_instruction(); 2250 op->print(); tty->cr(); 2251 } 2252 #endif // PRODUCT 2253 2254 #ifdef RISCV 2255 set_cmp_oprs(op); 2256 // lir_cmp set cmp oprs only on riscv 2257 if (op->code() == lir_cmp) return; 2258 #endif 2259 2260 _operations.append(op); 2261 2262 #ifdef ASSERT 2263 op->verify(); 2264 op->set_file_and_line(_file, _line); 2265 _file = NULL; 2266 _line = 0; 2267 #endif 2268 } 2269 2270 LIR_List(Compilation* compilation, BlockBegin* block = NULL); 2271 2272 #ifdef ASSERT 2273 void set_file_and_line(const char * file, int line); 2274 #endif 2275 2276 #ifdef RISCV 2277 void set_cmp_oprs(LIR_Op* op); 2278 #endif 2279 2280 //---------- accessors --------------- 2281 LIR_OpList* instructions_list() { return &_operations; } 2282 int length() const { return _operations.length(); } 2283 LIR_Op* at(int i) const { return _operations.at(i); } 2284 2285 NOT_PRODUCT(BlockBegin* block() const { return _block; }); 2286 2287 // insert LIR_Ops in buffer to right places in LIR_List 2288 void append(LIR_InsertionBuffer* buffer); 2289 2290 //---------- mutators --------------- 2291 void insert_before(int i, LIR_List* op_list) { _operations.insert_before(i, op_list->instructions_list()); } 2292 void insert_before(int i, LIR_Op* op) { _operations.insert_before(i, op); } 2293 void remove_at(int i) { _operations.remove_at(i); } 2294 2295 //---------- printing ------------- 2296 void print_instructions() PRODUCT_RETURN; 2297 2298 2299 //---------- instructions ------------- 2300 void call_opt_virtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result, 2301 address dest, LIR_OprList* arguments, 2302 CodeEmitInfo* info) { 2303 append(new LIR_OpJavaCall(lir_optvirtual_call, method, receiver, result, dest, arguments, info)); 2304 } 2305 void call_static(ciMethod* method, LIR_Opr result, 2306 address dest, LIR_OprList* arguments, CodeEmitInfo* info) { 2307 append(new LIR_OpJavaCall(lir_static_call, method, LIR_OprFact::illegalOpr, result, dest, arguments, info)); 2308 } 2309 void call_icvirtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result, 2310 address dest, LIR_OprList* arguments, CodeEmitInfo* info) { 2311 append(new LIR_OpJavaCall(lir_icvirtual_call, method, receiver, result, dest, arguments, info)); 2312 } 2313 void call_dynamic(ciMethod* method, LIR_Opr receiver, LIR_Opr result, 2314 address dest, LIR_OprList* arguments, CodeEmitInfo* info) { 2315 append(new LIR_OpJavaCall(lir_dynamic_call, method, receiver, result, dest, arguments, info)); 2316 } 2317 2318 void get_thread(LIR_Opr result) { append(new LIR_Op0(lir_get_thread, result)); } 2319 void membar() { append(new LIR_Op0(lir_membar)); } 2320 void membar_acquire() { append(new LIR_Op0(lir_membar_acquire)); } 2321 void membar_release() { append(new LIR_Op0(lir_membar_release)); } 2322 void membar_loadload() { append(new LIR_Op0(lir_membar_loadload)); } 2323 void membar_storestore() { append(new LIR_Op0(lir_membar_storestore)); } 2324 void membar_loadstore() { append(new LIR_Op0(lir_membar_loadstore)); } 2325 void membar_storeload() { append(new LIR_Op0(lir_membar_storeload)); } 2326 2327 void nop() { append(new LIR_Op0(lir_nop)); } 2328 2329 void std_entry(LIR_Opr receiver) { append(new LIR_Op0(lir_std_entry, receiver)); } 2330 void osr_entry(LIR_Opr osrPointer) { append(new LIR_Op0(lir_osr_entry, osrPointer)); } 2331 2332 void on_spin_wait() { append(new LIR_Op0(lir_on_spin_wait)); } 2333 2334 void branch_destination(Label* lbl) { append(new LIR_OpLabel(lbl)); } 2335 2336 void leal(LIR_Opr from, LIR_Opr result_reg, LIR_PatchCode patch_code = lir_patch_none, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_leal, from, result_reg, T_ILLEGAL, patch_code, info)); } 2337 2338 // result is a stack location for old backend and vreg for UseLinearScan 2339 // stack_loc_temp is an illegal register for old backend 2340 void roundfp(LIR_Opr reg, LIR_Opr stack_loc_temp, LIR_Opr result) { append(new LIR_OpRoundFP(reg, stack_loc_temp, result)); } 2341 void move(LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); } 2342 void move(LIR_Address* src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, src->type(), lir_patch_none, info)); } 2343 void move(LIR_Opr src, LIR_Address* dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), dst->type(), lir_patch_none, info)); } 2344 void move_wide(LIR_Address* src, LIR_Opr dst, CodeEmitInfo* info = NULL) { 2345 if (UseCompressedOops) { 2346 append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, src->type(), lir_patch_none, info, lir_move_wide)); 2347 } else { 2348 move(src, dst, info); 2349 } 2350 } 2351 void move_wide(LIR_Opr src, LIR_Address* dst, CodeEmitInfo* info = NULL) { 2352 if (UseCompressedOops) { 2353 append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), dst->type(), lir_patch_none, info, lir_move_wide)); 2354 } else { 2355 move(src, dst, info); 2356 } 2357 } 2358 void volatile_move(LIR_Opr src, LIR_Opr dst, BasicType type, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none) { append(new LIR_Op1(lir_move, src, dst, type, patch_code, info, lir_move_volatile)); } 2359 2360 void oop2reg (jobject o, LIR_Opr reg) { assert(reg->type() == T_OBJECT, "bad reg"); append(new LIR_Op1(lir_move, LIR_OprFact::oopConst(o), reg)); } 2361 void oop2reg_patch(jobject o, LIR_Opr reg, CodeEmitInfo* info); 2362 2363 void metadata2reg (Metadata* o, LIR_Opr reg) { assert(reg->type() == T_METADATA, "bad reg"); append(new LIR_Op1(lir_move, LIR_OprFact::metadataConst(o), reg)); } 2364 void klass2reg_patch(Metadata* o, LIR_Opr reg, CodeEmitInfo* info); 2365 2366 void safepoint(LIR_Opr tmp, CodeEmitInfo* info) { append(new LIR_Op1(lir_safepoint, tmp, info)); } 2367 void return_op(LIR_Opr result) { append(new LIR_OpReturn(result)); } 2368 2369 void convert(Bytecodes::Code code, LIR_Opr left, LIR_Opr dst, ConversionStub* stub = NULL/*, bool is_32bit = false*/) { append(new LIR_OpConvert(code, left, dst, stub)); } 2370 2371 void logical_and (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_and, left, right, dst)); } 2372 void logical_or (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_or, left, right, dst)); } 2373 void logical_xor (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_xor, left, right, dst)); } 2374 2375 void null_check(LIR_Opr opr, CodeEmitInfo* info, bool deoptimize_on_null = false); 2376 void throw_exception(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) { 2377 append(new LIR_Op2(lir_throw, exceptionPC, exceptionOop, LIR_OprFact::illegalOpr, info)); 2378 } 2379 void unwind_exception(LIR_Opr exceptionOop) { 2380 append(new LIR_Op1(lir_unwind, exceptionOop)); 2381 } 2382 2383 void push(LIR_Opr opr) { append(new LIR_Op1(lir_push, opr)); } 2384 void pop(LIR_Opr reg) { append(new LIR_Op1(lir_pop, reg)); } 2385 2386 void cmp(LIR_Condition condition, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info = NULL) { 2387 append(new LIR_Op2(lir_cmp, condition, left, right, info)); 2388 } 2389 void cmp(LIR_Condition condition, LIR_Opr left, int right, CodeEmitInfo* info = NULL) { 2390 cmp(condition, left, LIR_OprFact::intConst(right), info); 2391 } 2392 2393 void cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info); 2394 void cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Address* addr, CodeEmitInfo* info); 2395 2396 void cmove(LIR_Condition condition, LIR_Opr src1, LIR_Opr src2, LIR_Opr dst, BasicType type, 2397 LIR_Opr cmp_opr1 = LIR_OprFact::illegalOpr, LIR_Opr cmp_opr2 = LIR_OprFact::illegalOpr) { 2398 append(new LIR_Op4(lir_cmove, condition, src1, src2, cmp_opr1, cmp_opr2, dst, type)); 2399 } 2400 2401 void cas_long(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value, 2402 LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr); 2403 void cas_obj(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value, 2404 LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr); 2405 void cas_int(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value, 2406 LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr); 2407 2408 void abs (LIR_Opr from, LIR_Opr to, LIR_Opr tmp) { append(new LIR_Op2(lir_abs , from, tmp, to)); } 2409 void negate(LIR_Opr from, LIR_Opr to, LIR_Opr tmp = LIR_OprFact::illegalOpr) { append(new LIR_Op2(lir_neg, from, tmp, to)); } 2410 void sqrt(LIR_Opr from, LIR_Opr to, LIR_Opr tmp) { append(new LIR_Op2(lir_sqrt, from, tmp, to)); } 2411 void fmad(LIR_Opr from, LIR_Opr from1, LIR_Opr from2, LIR_Opr to) { append(new LIR_Op3(lir_fmad, from, from1, from2, to)); } 2412 void fmaf(LIR_Opr from, LIR_Opr from1, LIR_Opr from2, LIR_Opr to) { append(new LIR_Op3(lir_fmaf, from, from1, from2, to)); } 2413 void log10 (LIR_Opr from, LIR_Opr to, LIR_Opr tmp) { append(new LIR_Op2(lir_log10, from, LIR_OprFact::illegalOpr, to, tmp)); } 2414 void tan (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_tan , from, tmp1, to, tmp2)); } 2415 2416 void add (LIR_Opr left, LIR_Opr right, LIR_Opr res) { append(new LIR_Op2(lir_add, left, right, res)); } 2417 void sub (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL) { append(new LIR_Op2(lir_sub, left, right, res, info)); } 2418 void mul (LIR_Opr left, LIR_Opr right, LIR_Opr res) { append(new LIR_Op2(lir_mul, left, right, res)); } 2419 void mul (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_mul, left, right, res, tmp)); } 2420 void div (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL) { append(new LIR_Op2(lir_div, left, right, res, info)); } 2421 void div (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_div, left, right, res, tmp)); } 2422 void rem (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL) { append(new LIR_Op2(lir_rem, left, right, res, info)); } 2423 2424 void volatile_load_mem_reg(LIR_Address* address, LIR_Opr dst, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none); 2425 void volatile_load_unsafe_reg(LIR_Opr base, LIR_Opr offset, LIR_Opr dst, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code); 2426 2427 void load(LIR_Address* addr, LIR_Opr src, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none); 2428 2429 void store_mem_int(jint v, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none); 2430 void store_mem_oop(jobject o, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none); 2431 void store(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none); 2432 void volatile_store_mem_reg(LIR_Opr src, LIR_Address* address, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none); 2433 void volatile_store_unsafe_reg(LIR_Opr src, LIR_Opr base, LIR_Opr offset, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code); 2434 2435 void idiv(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info); 2436 void idiv(LIR_Opr left, int right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info); 2437 void irem(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info); 2438 void irem(LIR_Opr left, int right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info); 2439 2440 void allocate_object(LIR_Opr dst, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, int header_size, int object_size, LIR_Opr klass, bool init_check, CodeStub* stub); 2441 void allocate_array(LIR_Opr dst, LIR_Opr len, LIR_Opr t1,LIR_Opr t2, LIR_Opr t3,LIR_Opr t4, BasicType type, LIR_Opr klass, CodeStub* stub); 2442 2443 // jump is an unconditional branch 2444 void jump(BlockBegin* block) { 2445 append(new LIR_OpBranch(lir_cond_always, block)); 2446 } 2447 void jump(CodeStub* stub) { 2448 append(new LIR_OpBranch(lir_cond_always, stub)); 2449 } 2450 void branch(LIR_Condition cond, Label* lbl) { 2451 append(new LIR_OpBranch(cond, lbl)); 2452 } 2453 // Should not be used for fp comparisons 2454 void branch(LIR_Condition cond, BlockBegin* block) { 2455 append(new LIR_OpBranch(cond, block)); 2456 } 2457 // Should not be used for fp comparisons 2458 void branch(LIR_Condition cond, CodeStub* stub) { 2459 append(new LIR_OpBranch(cond, stub)); 2460 } 2461 // Should only be used for fp comparisons 2462 void branch(LIR_Condition cond, BlockBegin* block, BlockBegin* unordered) { 2463 append(new LIR_OpBranch(cond, block, unordered)); 2464 } 2465 2466 void shift_left(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp); 2467 void shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp); 2468 void unsigned_shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp); 2469 2470 void shift_left(LIR_Opr value, int count, LIR_Opr dst) { shift_left(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); } 2471 void shift_right(LIR_Opr value, int count, LIR_Opr dst) { shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); } 2472 void unsigned_shift_right(LIR_Opr value, int count, LIR_Opr dst) { unsigned_shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); } 2473 2474 void lcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_cmp_l2i, left, right, dst)); } 2475 void fcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst, bool is_unordered_less); 2476 2477 void call_runtime_leaf(address routine, LIR_Opr tmp, LIR_Opr result, LIR_OprList* arguments) { 2478 append(new LIR_OpRTCall(routine, tmp, result, arguments)); 2479 } 2480 2481 void call_runtime(address routine, LIR_Opr tmp, LIR_Opr result, 2482 LIR_OprList* arguments, CodeEmitInfo* info) { 2483 append(new LIR_OpRTCall(routine, tmp, result, arguments, info)); 2484 } 2485 2486 void load_stack_address_monitor(int monitor_ix, LIR_Opr dst) { append(new LIR_Op1(lir_monaddr, LIR_OprFact::intConst(monitor_ix), dst)); } 2487 void unlock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub); 2488 void lock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info, CodeStub* throw_imse_stub=NULL); 2489 2490 void breakpoint() { append(new LIR_Op0(lir_breakpoint)); } 2491 2492 void arraycopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp, ciArrayKlass* expected_type, int flags, CodeEmitInfo* info) { append(new LIR_OpArrayCopy(src, src_pos, dst, dst_pos, length, tmp, expected_type, flags, info)); } 2493 2494 void update_crc32(LIR_Opr crc, LIR_Opr val, LIR_Opr res) { append(new LIR_OpUpdateCRC32(crc, val, res)); } 2495 2496 void instanceof(LIR_Opr result, LIR_Opr object, ciKlass* klass, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, CodeEmitInfo* info_for_patch, ciMethod* profiled_method, int profiled_bci); 2497 void store_check(LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception, ciMethod* profiled_method, int profiled_bci); 2498 void check_flattened_array(LIR_Opr array, LIR_Opr value, LIR_Opr tmp, CodeStub* stub); 2499 void check_null_free_array(LIR_Opr array, LIR_Opr tmp); 2500 void substitutability_check(LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr equal_result, LIR_Opr not_equal_result, 2501 LIR_Opr tmp1, LIR_Opr tmp2, 2502 ciKlass* left_klass, ciKlass* right_klass, LIR_Opr left_klass_op, LIR_Opr right_klass_op, 2503 CodeEmitInfo* info, CodeStub* stub); 2504 2505 void checkcast (LIR_Opr result, LIR_Opr object, ciKlass* klass, 2506 LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, 2507 CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub, 2508 ciMethod* profiled_method, int profiled_bci, bool is_null_free); 2509 // MethodData* profiling 2510 void profile_call(ciMethod* method, int bci, ciMethod* callee, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* cha_klass) { 2511 append(new LIR_OpProfileCall(method, bci, callee, mdo, recv, t1, cha_klass)); 2512 } 2513 void profile_type(LIR_Address* mdp, LIR_Opr obj, ciKlass* exact_klass, intptr_t current_klass, LIR_Opr tmp, bool not_null, bool no_conflict) { 2514 append(new LIR_OpProfileType(LIR_OprFact::address(mdp), obj, exact_klass, current_klass, tmp, not_null, no_conflict)); 2515 } 2516 void profile_inline_type(LIR_Address* mdp, LIR_Opr obj, int flag, LIR_Opr tmp, bool not_null) { 2517 append(new LIR_OpProfileInlineType(LIR_OprFact::address(mdp), obj, flag, tmp, not_null)); 2518 } 2519 2520 void xadd(LIR_Opr src, LIR_Opr add, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_xadd, src, add, res, tmp)); } 2521 void xchg(LIR_Opr src, LIR_Opr set, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_xchg, src, set, res, tmp)); } 2522 2523 void load_klass(LIR_Opr obj, LIR_Opr result, CodeEmitInfo* info) { append(new LIR_OpLoadKlass(obj, result, info)); } 2524 2525 #ifdef ASSERT 2526 void lir_assert(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, const char* msg, bool halt) { append(new LIR_OpAssert(condition, opr1, opr2, msg, halt)); } 2527 #endif 2528 }; 2529 2530 void print_LIR(BlockList* blocks); 2531 2532 class LIR_InsertionBuffer : public CompilationResourceObj { 2533 private: 2534 LIR_List* _lir; // the lir list where ops of this buffer should be inserted later (NULL when uninitialized) 2535 2536 // list of insertion points. index and count are stored alternately: 2537 // _index_and_count[i * 2]: the index into lir list where "count" ops should be inserted 2538 // _index_and_count[i * 2 + 1]: the number of ops to be inserted at index 2539 intStack _index_and_count; 2540 2541 // the LIR_Ops to be inserted 2542 LIR_OpList _ops; 2543 2544 void append_new(int index, int count) { _index_and_count.append(index); _index_and_count.append(count); } 2545 void set_index_at(int i, int value) { _index_and_count.at_put((i << 1), value); } 2546 void set_count_at(int i, int value) { _index_and_count.at_put((i << 1) + 1, value); } 2547 2548 #ifdef ASSERT 2549 void verify(); 2550 #endif 2551 public: 2552 LIR_InsertionBuffer() : _lir(NULL), _index_and_count(8), _ops(8) { } 2553 2554 // must be called before using the insertion buffer 2555 void init(LIR_List* lir) { assert(!initialized(), "already initialized"); _lir = lir; _index_and_count.clear(); _ops.clear(); } 2556 bool initialized() const { return _lir != NULL; } 2557 // called automatically when the buffer is appended to the LIR_List 2558 void finish() { _lir = NULL; } 2559 2560 // accessors 2561 LIR_List* lir_list() const { return _lir; } 2562 int number_of_insertion_points() const { return _index_and_count.length() >> 1; } 2563 int index_at(int i) const { return _index_and_count.at((i << 1)); } 2564 int count_at(int i) const { return _index_and_count.at((i << 1) + 1); } 2565 2566 int number_of_ops() const { return _ops.length(); } 2567 LIR_Op* op_at(int i) const { return _ops.at(i); } 2568 2569 // append an instruction to the buffer 2570 void append(int index, LIR_Op* op); 2571 2572 // instruction 2573 void move(int index, LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(index, new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); } 2574 }; 2575 2576 2577 // 2578 // LIR_OpVisitState is used for manipulating LIR_Ops in an abstract way. 2579 // Calling a LIR_Op's visit function with a LIR_OpVisitState causes 2580 // information about the input, output and temporaries used by the 2581 // op to be recorded. It also records whether the op has call semantics 2582 // and also records all the CodeEmitInfos used by this op. 2583 // 2584 2585 2586 class LIR_OpVisitState: public StackObj { 2587 public: 2588 typedef enum { inputMode, firstMode = inputMode, tempMode, outputMode, numModes, invalidMode = -1 } OprMode; 2589 2590 enum { 2591 maxNumberOfOperands = 21, 2592 maxNumberOfInfos = 4 2593 }; 2594 2595 private: 2596 LIR_Op* _op; 2597 2598 // optimization: the operands and infos are not stored in a variable-length 2599 // list, but in a fixed-size array to save time of size checks and resizing 2600 int _oprs_len[numModes]; 2601 LIR_Opr* _oprs_new[numModes][maxNumberOfOperands]; 2602 int _info_len; 2603 CodeEmitInfo* _info_new[maxNumberOfInfos]; 2604 2605 bool _has_call; 2606 bool _has_slow_case; 2607 2608 2609 // only include register operands 2610 // addresses are decomposed to the base and index registers 2611 // constants and stack operands are ignored 2612 void append(LIR_Opr& opr, OprMode mode) { 2613 assert(opr->is_valid(), "should not call this otherwise"); 2614 assert(mode >= 0 && mode < numModes, "bad mode"); 2615 2616 if (opr->is_register()) { 2617 assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow"); 2618 _oprs_new[mode][_oprs_len[mode]++] = &opr; 2619 2620 } else if (opr->is_pointer()) { 2621 LIR_Address* address = opr->as_address_ptr(); 2622 if (address != NULL) { 2623 // special handling for addresses: add base and index register of the address 2624 // both are always input operands or temp if we want to extend 2625 // their liveness! 2626 if (mode == outputMode) { 2627 mode = inputMode; 2628 } 2629 assert (mode == inputMode || mode == tempMode, "input or temp only for addresses"); 2630 if (address->_base->is_valid()) { 2631 assert(address->_base->is_register(), "must be"); 2632 assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow"); 2633 _oprs_new[mode][_oprs_len[mode]++] = &address->_base; 2634 } 2635 if (address->_index->is_valid()) { 2636 assert(address->_index->is_register(), "must be"); 2637 assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow"); 2638 _oprs_new[mode][_oprs_len[mode]++] = &address->_index; 2639 } 2640 2641 } else { 2642 assert(opr->is_constant(), "constant operands are not processed"); 2643 } 2644 } else { 2645 assert(opr->is_stack(), "stack operands are not processed"); 2646 } 2647 } 2648 2649 void append(CodeEmitInfo* info) { 2650 assert(info != NULL, "should not call this otherwise"); 2651 assert(_info_len < maxNumberOfInfos, "array overflow"); 2652 _info_new[_info_len++] = info; 2653 } 2654 2655 public: 2656 LIR_OpVisitState() { reset(); } 2657 2658 LIR_Op* op() const { return _op; } 2659 void set_op(LIR_Op* op) { reset(); _op = op; } 2660 2661 bool has_call() const { return _has_call; } 2662 bool has_slow_case() const { return _has_slow_case; } 2663 2664 void reset() { 2665 _op = NULL; 2666 _has_call = false; 2667 _has_slow_case = false; 2668 2669 _oprs_len[inputMode] = 0; 2670 _oprs_len[tempMode] = 0; 2671 _oprs_len[outputMode] = 0; 2672 _info_len = 0; 2673 } 2674 2675 2676 int opr_count(OprMode mode) const { 2677 assert(mode >= 0 && mode < numModes, "bad mode"); 2678 return _oprs_len[mode]; 2679 } 2680 2681 LIR_Opr opr_at(OprMode mode, int index) const { 2682 assert(mode >= 0 && mode < numModes, "bad mode"); 2683 assert(index >= 0 && index < _oprs_len[mode], "index out of bound"); 2684 return *_oprs_new[mode][index]; 2685 } 2686 2687 void set_opr_at(OprMode mode, int index, LIR_Opr opr) const { 2688 assert(mode >= 0 && mode < numModes, "bad mode"); 2689 assert(index >= 0 && index < _oprs_len[mode], "index out of bound"); 2690 *_oprs_new[mode][index] = opr; 2691 } 2692 2693 int info_count() const { 2694 return _info_len; 2695 } 2696 2697 CodeEmitInfo* info_at(int index) const { 2698 assert(index < _info_len, "index out of bounds"); 2699 return _info_new[index]; 2700 } 2701 2702 XHandlers* all_xhandler(); 2703 2704 // collects all register operands of the instruction 2705 void visit(LIR_Op* op); 2706 2707 #ifdef ASSERT 2708 // check that an operation has no operands 2709 bool no_operands(LIR_Op* op); 2710 #endif 2711 2712 // LIR_Op visitor functions use these to fill in the state 2713 void do_input(LIR_Opr& opr) { append(opr, LIR_OpVisitState::inputMode); } 2714 void do_output(LIR_Opr& opr) { append(opr, LIR_OpVisitState::outputMode); } 2715 void do_temp(LIR_Opr& opr) { append(opr, LIR_OpVisitState::tempMode); } 2716 void do_info(CodeEmitInfo* info) { append(info); } 2717 2718 void do_stub(CodeStub* stub); 2719 void do_call() { _has_call = true; } 2720 void do_slow_case() { _has_slow_case = true; } 2721 void do_slow_case(CodeEmitInfo* info) { 2722 _has_slow_case = true; 2723 append(info); 2724 } 2725 }; 2726 2727 2728 inline LIR_Opr LIR_Opr::illegalOpr() { return LIR_OprFact::illegalOpr; }; 2729 2730 inline LIR_Opr LIR_Opr::nullOpr() { return LIR_OprFact::nullOpr; }; 2731 2732 #endif // SHARE_C1_C1_LIR_HPP