1 /* 2 * Copyright (c) 2000, 2021, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_C1_C1_LIR_HPP 26 #define SHARE_C1_C1_LIR_HPP 27 28 #include "c1/c1_Defs.hpp" 29 #include "c1/c1_ValueType.hpp" 30 #include "oops/method.hpp" 31 #include "utilities/globalDefinitions.hpp" 32 33 class BlockBegin; 34 class BlockList; 35 class LIR_Assembler; 36 class CodeEmitInfo; 37 class CodeStub; 38 class CodeStubList; 39 class C1SafepointPollStub; 40 class ArrayCopyStub; 41 class LIR_Op; 42 class ciType; 43 class ValueType; 44 class LIR_OpVisitState; 45 class FpuStackSim; 46 47 //--------------------------------------------------------------------- 48 // LIR Operands 49 // LIR_OprPtr 50 // LIR_Const 51 // LIR_Address 52 //--------------------------------------------------------------------- 53 class LIR_OprPtr; 54 class LIR_Const; 55 class LIR_Address; 56 class LIR_OprVisitor; 57 class LIR_Opr; 58 59 typedef int RegNr; 60 61 typedef GrowableArray<LIR_Opr> LIR_OprList; 62 typedef GrowableArray<LIR_Op*> LIR_OpArray; 63 typedef GrowableArray<LIR_Op*> LIR_OpList; 64 65 // define LIR_OprPtr early so LIR_Opr can refer to it 66 class LIR_OprPtr: public CompilationResourceObj { 67 public: 68 bool is_oop_pointer() const { return (type() == T_OBJECT); } 69 bool is_float_kind() const { BasicType t = type(); return (t == T_FLOAT) || (t == T_DOUBLE); } 70 71 virtual LIR_Const* as_constant() { return NULL; } 72 virtual LIR_Address* as_address() { return NULL; } 73 virtual BasicType type() const = 0; 74 virtual void print_value_on(outputStream* out) const = 0; 75 }; 76 77 78 79 // LIR constants 80 class LIR_Const: public LIR_OprPtr { 81 private: 82 JavaValue _value; 83 84 void type_check(BasicType t) const { assert(type() == t, "type check"); } 85 void type_check(BasicType t1, BasicType t2) const { assert(type() == t1 || type() == t2, "type check"); } 86 void type_check(BasicType t1, BasicType t2, BasicType t3) const { assert(type() == t1 || type() == t2 || type() == t3, "type check"); } 87 88 public: 89 LIR_Const(jint i, bool is_address=false) { _value.set_type(is_address?T_ADDRESS:T_INT); _value.set_jint(i); } 90 LIR_Const(jlong l) { _value.set_type(T_LONG); _value.set_jlong(l); } 91 LIR_Const(jfloat f) { _value.set_type(T_FLOAT); _value.set_jfloat(f); } 92 LIR_Const(jdouble d) { _value.set_type(T_DOUBLE); _value.set_jdouble(d); } 93 LIR_Const(jobject o) { _value.set_type(T_OBJECT); _value.set_jobject(o); } 94 LIR_Const(void* p) { 95 #ifdef _LP64 96 assert(sizeof(jlong) >= sizeof(p), "too small");; 97 _value.set_type(T_LONG); _value.set_jlong((jlong)p); 98 #else 99 assert(sizeof(jint) >= sizeof(p), "too small");; 100 _value.set_type(T_INT); _value.set_jint((jint)p); 101 #endif 102 } 103 LIR_Const(Metadata* m) { 104 _value.set_type(T_METADATA); 105 #ifdef _LP64 106 _value.set_jlong((jlong)m); 107 #else 108 _value.set_jint((jint)m); 109 #endif // _LP64 110 } 111 112 virtual BasicType type() const { return _value.get_type(); } 113 virtual LIR_Const* as_constant() { return this; } 114 115 jint as_jint() const { type_check(T_INT, T_ADDRESS); return _value.get_jint(); } 116 jlong as_jlong() const { type_check(T_LONG ); return _value.get_jlong(); } 117 jfloat as_jfloat() const { type_check(T_FLOAT ); return _value.get_jfloat(); } 118 jdouble as_jdouble() const { type_check(T_DOUBLE); return _value.get_jdouble(); } 119 jobject as_jobject() const { type_check(T_OBJECT); return _value.get_jobject(); } 120 jint as_jint_lo() const { type_check(T_LONG ); return low(_value.get_jlong()); } 121 jint as_jint_hi() const { type_check(T_LONG ); return high(_value.get_jlong()); } 122 123 #ifdef _LP64 124 address as_pointer() const { type_check(T_LONG ); return (address)_value.get_jlong(); } 125 Metadata* as_metadata() const { type_check(T_METADATA); return (Metadata*)_value.get_jlong(); } 126 #else 127 address as_pointer() const { type_check(T_INT ); return (address)_value.get_jint(); } 128 Metadata* as_metadata() const { type_check(T_METADATA); return (Metadata*)_value.get_jint(); } 129 #endif 130 131 132 jint as_jint_bits() const { type_check(T_FLOAT, T_INT, T_ADDRESS); return _value.get_jint(); } 133 jint as_jint_lo_bits() const { 134 if (type() == T_DOUBLE) { 135 return low(jlong_cast(_value.get_jdouble())); 136 } else { 137 return as_jint_lo(); 138 } 139 } 140 jint as_jint_hi_bits() const { 141 if (type() == T_DOUBLE) { 142 return high(jlong_cast(_value.get_jdouble())); 143 } else { 144 return as_jint_hi(); 145 } 146 } 147 jlong as_jlong_bits() const { 148 if (type() == T_DOUBLE) { 149 return jlong_cast(_value.get_jdouble()); 150 } else { 151 return as_jlong(); 152 } 153 } 154 155 virtual void print_value_on(outputStream* out) const PRODUCT_RETURN; 156 157 158 bool is_zero_float() { 159 jfloat f = as_jfloat(); 160 jfloat ok = 0.0f; 161 return jint_cast(f) == jint_cast(ok); 162 } 163 164 bool is_one_float() { 165 jfloat f = as_jfloat(); 166 return !g_isnan(f) && g_isfinite(f) && f == 1.0; 167 } 168 169 bool is_zero_double() { 170 jdouble d = as_jdouble(); 171 jdouble ok = 0.0; 172 return jlong_cast(d) == jlong_cast(ok); 173 } 174 175 bool is_one_double() { 176 jdouble d = as_jdouble(); 177 return !g_isnan(d) && g_isfinite(d) && d == 1.0; 178 } 179 }; 180 181 182 //---------------------LIR Operand descriptor------------------------------------ 183 // 184 // The class LIR_Opr represents a LIR instruction operand; 185 // it can be a register (ALU/FPU), stack location or a constant; 186 // Constants and addresses are represented as resource area allocated 187 // structures (see above), and pointers are stored in the _value field (cast to 188 // an intptr_t). 189 // Registers and stack locations are represented inline as integers. 190 // (see value function). 191 192 // Previously, this class was derived from CompilationResourceObj. 193 // However, deriving from any of the "Obj" types in allocation.hpp seems 194 // detrimental, since in some build modes it would add a vtable to this class, 195 // which make it no longer be a 1-word trivially-copyable wrapper object, 196 // which is the entire point of it. 197 198 class LIR_Opr { 199 public: 200 // value structure: 201 // data opr-type opr-kind 202 // +--------------+-------+-------+ 203 // [max...........|7 6 5 4|3 2 1 0] 204 // ^ 205 // is_pointer bit 206 // 207 // lowest bit cleared, means it is a structure pointer 208 // we need 4 bits to represent types 209 210 private: 211 friend class LIR_OprFact; 212 213 intptr_t _value; 214 // Conversion 215 intptr_t value() const { return _value; } 216 217 bool check_value_mask(intptr_t mask, intptr_t masked_value) const { 218 return (value() & mask) == masked_value; 219 } 220 221 enum OprKind { 222 pointer_value = 0 223 , stack_value = 1 224 , cpu_register = 3 225 , fpu_register = 5 226 , illegal_value = 7 227 }; 228 229 enum OprBits { 230 pointer_bits = 1 231 , kind_bits = 3 232 , type_bits = 4 233 , size_bits = 2 234 , destroys_bits = 1 235 , virtual_bits = 1 236 , is_xmm_bits = 1 237 , last_use_bits = 1 238 , is_fpu_stack_offset_bits = 1 // used in assertion checking on x86 for FPU stack slot allocation 239 , non_data_bits = pointer_bits + kind_bits + type_bits + size_bits + destroys_bits + virtual_bits 240 + is_xmm_bits + last_use_bits + is_fpu_stack_offset_bits 241 , data_bits = BitsPerInt - non_data_bits 242 , reg_bits = data_bits / 2 // for two registers in one value encoding 243 }; 244 245 enum OprShift { 246 kind_shift = 0 247 , type_shift = kind_shift + kind_bits 248 , size_shift = type_shift + type_bits 249 , destroys_shift = size_shift + size_bits 250 , last_use_shift = destroys_shift + destroys_bits 251 , is_fpu_stack_offset_shift = last_use_shift + last_use_bits 252 , virtual_shift = is_fpu_stack_offset_shift + is_fpu_stack_offset_bits 253 , is_xmm_shift = virtual_shift + virtual_bits 254 , data_shift = is_xmm_shift + is_xmm_bits 255 , reg1_shift = data_shift 256 , reg2_shift = data_shift + reg_bits 257 258 }; 259 260 enum OprSize { 261 single_size = 0 << size_shift 262 , double_size = 1 << size_shift 263 }; 264 265 enum OprMask { 266 kind_mask = right_n_bits(kind_bits) 267 , type_mask = right_n_bits(type_bits) << type_shift 268 , size_mask = right_n_bits(size_bits) << size_shift 269 , last_use_mask = right_n_bits(last_use_bits) << last_use_shift 270 , is_fpu_stack_offset_mask = right_n_bits(is_fpu_stack_offset_bits) << is_fpu_stack_offset_shift 271 , virtual_mask = right_n_bits(virtual_bits) << virtual_shift 272 , is_xmm_mask = right_n_bits(is_xmm_bits) << is_xmm_shift 273 , pointer_mask = right_n_bits(pointer_bits) 274 , lower_reg_mask = right_n_bits(reg_bits) 275 , no_type_mask = (int)(~(type_mask | last_use_mask | is_fpu_stack_offset_mask)) 276 }; 277 278 uintptr_t data() const { return value() >> data_shift; } 279 int lo_reg_half() const { return data() & lower_reg_mask; } 280 int hi_reg_half() const { return (data() >> reg_bits) & lower_reg_mask; } 281 OprKind kind_field() const { return (OprKind)(value() & kind_mask); } 282 OprSize size_field() const { return (OprSize)(value() & size_mask); } 283 284 static char type_char(BasicType t); 285 286 public: 287 LIR_Opr() : _value(0) {} 288 LIR_Opr(intptr_t val) : _value(val) {} 289 LIR_Opr(LIR_OprPtr *val) : _value(reinterpret_cast<intptr_t>(val)) {} 290 bool operator==(const LIR_Opr &other) const { return _value == other._value; } 291 bool operator!=(const LIR_Opr &other) const { return _value != other._value; } 292 explicit operator bool() const { return _value != 0; } 293 294 // UGLY HACK: make this value object look like a pointer (to itself). This 295 // operator overload should be removed, and all callers updated from 296 // `opr->fn()` to `opr.fn()`. 297 const LIR_Opr* operator->() const { return this; } 298 LIR_Opr* operator->() { return this; } 299 300 enum { 301 vreg_base = ConcreteRegisterImpl::number_of_registers, 302 vreg_max = (1 << data_bits) - 1 303 }; 304 305 static inline LIR_Opr illegalOpr(); 306 static inline LIR_Opr nullOpr(); 307 308 enum OprType { 309 unknown_type = 0 << type_shift // means: not set (catch uninitialized types) 310 , int_type = 1 << type_shift 311 , long_type = 2 << type_shift 312 , object_type = 3 << type_shift 313 , address_type = 4 << type_shift 314 , float_type = 5 << type_shift 315 , double_type = 6 << type_shift 316 , metadata_type = 7 << type_shift 317 }; 318 friend OprType as_OprType(BasicType t); 319 friend BasicType as_BasicType(OprType t); 320 321 OprType type_field_valid() const { assert(is_register() || is_stack(), "should not be called otherwise"); return (OprType)(value() & type_mask); } 322 OprType type_field() const { return is_illegal() ? unknown_type : (OprType)(value() & type_mask); } 323 324 static OprSize size_for(BasicType t) { 325 switch (t) { 326 case T_LONG: 327 case T_DOUBLE: 328 return double_size; 329 break; 330 331 case T_FLOAT: 332 case T_BOOLEAN: 333 case T_CHAR: 334 case T_BYTE: 335 case T_SHORT: 336 case T_INT: 337 case T_ADDRESS: 338 case T_OBJECT: 339 case T_PRIMITIVE_OBJECT: 340 case T_ARRAY: 341 case T_METADATA: 342 return single_size; 343 break; 344 345 default: 346 ShouldNotReachHere(); 347 return single_size; 348 } 349 } 350 351 352 void validate_type() const PRODUCT_RETURN; 353 354 BasicType type() const { 355 if (is_pointer()) { 356 return pointer()->type(); 357 } 358 return as_BasicType(type_field()); 359 } 360 361 362 ValueType* value_type() const { return as_ValueType(type()); } 363 364 char type_char() const { return type_char((is_pointer()) ? pointer()->type() : type()); } 365 366 bool is_equal(LIR_Opr opr) const { return *this == opr; } 367 // checks whether types are same 368 bool is_same_type(LIR_Opr opr) const { 369 assert(type_field() != unknown_type && 370 opr->type_field() != unknown_type, "shouldn't see unknown_type"); 371 return type_field() == opr->type_field(); 372 } 373 bool is_same_register(LIR_Opr opr) { 374 return (is_register() && opr->is_register() && 375 kind_field() == opr->kind_field() && 376 (value() & no_type_mask) == (opr->value() & no_type_mask)); 377 } 378 379 bool is_pointer() const { return check_value_mask(pointer_mask, pointer_value); } 380 bool is_illegal() const { return kind_field() == illegal_value; } 381 bool is_valid() const { return kind_field() != illegal_value; } 382 383 bool is_register() const { return is_cpu_register() || is_fpu_register(); } 384 bool is_virtual() const { return is_virtual_cpu() || is_virtual_fpu(); } 385 386 bool is_constant() const { return is_pointer() && pointer()->as_constant() != NULL; } 387 bool is_address() const { return is_pointer() && pointer()->as_address() != NULL; } 388 389 bool is_float_kind() const { return is_pointer() ? pointer()->is_float_kind() : (kind_field() == fpu_register); } 390 bool is_oop() const; 391 392 // semantic for fpu- and xmm-registers: 393 // * is_float and is_double return true for xmm_registers 394 // (so is_single_fpu and is_single_xmm are true) 395 // * So you must always check for is_???_xmm prior to is_???_fpu to 396 // distinguish between fpu- and xmm-registers 397 398 bool is_stack() const { validate_type(); return check_value_mask(kind_mask, stack_value); } 399 bool is_single_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask, stack_value | single_size); } 400 bool is_double_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask, stack_value | double_size); } 401 402 bool is_cpu_register() const { validate_type(); return check_value_mask(kind_mask, cpu_register); } 403 bool is_virtual_cpu() const { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register | virtual_mask); } 404 bool is_fixed_cpu() const { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register); } 405 bool is_single_cpu() const { validate_type(); return check_value_mask(kind_mask | size_mask, cpu_register | single_size); } 406 bool is_double_cpu() const { validate_type(); return check_value_mask(kind_mask | size_mask, cpu_register | double_size); } 407 408 bool is_fpu_register() const { validate_type(); return check_value_mask(kind_mask, fpu_register); } 409 bool is_virtual_fpu() const { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register | virtual_mask); } 410 bool is_fixed_fpu() const { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register); } 411 bool is_single_fpu() const { validate_type(); return check_value_mask(kind_mask | size_mask, fpu_register | single_size); } 412 bool is_double_fpu() const { validate_type(); return check_value_mask(kind_mask | size_mask, fpu_register | double_size); } 413 414 bool is_xmm_register() const { validate_type(); return check_value_mask(kind_mask | is_xmm_mask, fpu_register | is_xmm_mask); } 415 bool is_single_xmm() const { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | single_size | is_xmm_mask); } 416 bool is_double_xmm() const { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | double_size | is_xmm_mask); } 417 418 // fast accessor functions for special bits that do not work for pointers 419 // (in this functions, the check for is_pointer() is omitted) 420 bool is_single_word() const { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, single_size); } 421 bool is_double_word() const { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, double_size); } 422 bool is_virtual_register() const { assert(is_register(), "type check"); return check_value_mask(virtual_mask, virtual_mask); } 423 bool is_oop_register() const { assert(is_register() || is_stack(), "type check"); return type_field_valid() == object_type; } 424 BasicType type_register() const { assert(is_register() || is_stack(), "type check"); return as_BasicType(type_field_valid()); } 425 426 bool is_last_use() const { assert(is_register(), "only works for registers"); return (value() & last_use_mask) != 0; } 427 bool is_fpu_stack_offset() const { assert(is_register(), "only works for registers"); return (value() & is_fpu_stack_offset_mask) != 0; } 428 LIR_Opr make_last_use() { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | last_use_mask); } 429 LIR_Opr make_fpu_stack_offset() { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | is_fpu_stack_offset_mask); } 430 431 432 int single_stack_ix() const { assert(is_single_stack() && !is_virtual(), "type check"); return (int)data(); } 433 int double_stack_ix() const { assert(is_double_stack() && !is_virtual(), "type check"); return (int)data(); } 434 RegNr cpu_regnr() const { assert(is_single_cpu() && !is_virtual(), "type check"); return (RegNr)data(); } 435 RegNr cpu_regnrLo() const { assert(is_double_cpu() && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); } 436 RegNr cpu_regnrHi() const { assert(is_double_cpu() && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); } 437 RegNr fpu_regnr() const { assert(is_single_fpu() && !is_virtual(), "type check"); return (RegNr)data(); } 438 RegNr fpu_regnrLo() const { assert(is_double_fpu() && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); } 439 RegNr fpu_regnrHi() const { assert(is_double_fpu() && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); } 440 RegNr xmm_regnr() const { assert(is_single_xmm() && !is_virtual(), "type check"); return (RegNr)data(); } 441 RegNr xmm_regnrLo() const { assert(is_double_xmm() && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); } 442 RegNr xmm_regnrHi() const { assert(is_double_xmm() && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); } 443 int vreg_number() const { assert(is_virtual(), "type check"); return (RegNr)data(); } 444 445 LIR_OprPtr* pointer() const { assert(_value != 0 && is_pointer(), "nullness and type check"); return (LIR_OprPtr*)_value; } 446 LIR_Const* as_constant_ptr() const { return pointer()->as_constant(); } 447 LIR_Address* as_address_ptr() const { return pointer()->as_address(); } 448 449 Register as_register() const; 450 Register as_register_lo() const; 451 Register as_register_hi() const; 452 453 Register as_pointer_register() { 454 #ifdef _LP64 455 if (is_double_cpu()) { 456 assert(as_register_lo() == as_register_hi(), "should be a single register"); 457 return as_register_lo(); 458 } 459 #endif 460 return as_register(); 461 } 462 463 FloatRegister as_float_reg () const; 464 FloatRegister as_double_reg () const; 465 #ifdef X86 466 XMMRegister as_xmm_float_reg () const; 467 XMMRegister as_xmm_double_reg() const; 468 // for compatibility with RInfo 469 int fpu() const { return lo_reg_half(); } 470 #endif 471 472 jint as_jint() const { return as_constant_ptr()->as_jint(); } 473 jlong as_jlong() const { return as_constant_ptr()->as_jlong(); } 474 jfloat as_jfloat() const { return as_constant_ptr()->as_jfloat(); } 475 jdouble as_jdouble() const { return as_constant_ptr()->as_jdouble(); } 476 jobject as_jobject() const { return as_constant_ptr()->as_jobject(); } 477 478 void print() const PRODUCT_RETURN; 479 void print(outputStream* out) const PRODUCT_RETURN; 480 }; 481 482 inline LIR_Opr::OprType as_OprType(BasicType type) { 483 switch (type) { 484 case T_INT: return LIR_Opr::int_type; 485 case T_LONG: return LIR_Opr::long_type; 486 case T_FLOAT: return LIR_Opr::float_type; 487 case T_DOUBLE: return LIR_Opr::double_type; 488 case T_OBJECT: 489 case T_PRIMITIVE_OBJECT: 490 case T_ARRAY: return LIR_Opr::object_type; 491 case T_ADDRESS: return LIR_Opr::address_type; 492 case T_METADATA: return LIR_Opr::metadata_type; 493 case T_ILLEGAL: // fall through 494 default: ShouldNotReachHere(); return LIR_Opr::unknown_type; 495 } 496 } 497 498 inline BasicType as_BasicType(LIR_Opr::OprType t) { 499 switch (t) { 500 case LIR_Opr::int_type: return T_INT; 501 case LIR_Opr::long_type: return T_LONG; 502 case LIR_Opr::float_type: return T_FLOAT; 503 case LIR_Opr::double_type: return T_DOUBLE; 504 case LIR_Opr::object_type: return T_OBJECT; 505 case LIR_Opr::address_type: return T_ADDRESS; 506 case LIR_Opr::metadata_type:return T_METADATA; 507 case LIR_Opr::unknown_type: // fall through 508 default: ShouldNotReachHere(); return T_ILLEGAL; 509 } 510 } 511 512 513 // LIR_Address 514 class LIR_Address: public LIR_OprPtr { 515 friend class LIR_OpVisitState; 516 517 public: 518 // NOTE: currently these must be the log2 of the scale factor (and 519 // must also be equivalent to the ScaleFactor enum in 520 // assembler_i486.hpp) 521 enum Scale { 522 times_1 = 0, 523 times_2 = 1, 524 times_4 = 2, 525 times_8 = 3 526 }; 527 528 private: 529 LIR_Opr _base; 530 LIR_Opr _index; 531 Scale _scale; 532 intx _disp; 533 BasicType _type; 534 535 public: 536 LIR_Address(LIR_Opr base, LIR_Opr index, BasicType type): 537 _base(base) 538 , _index(index) 539 , _scale(times_1) 540 , _disp(0) 541 , _type(type) { verify(); } 542 543 LIR_Address(LIR_Opr base, intx disp, BasicType type): 544 _base(base) 545 , _index(LIR_Opr::illegalOpr()) 546 , _scale(times_1) 547 , _disp(disp) 548 , _type(type) { verify(); } 549 550 LIR_Address(LIR_Opr base, BasicType type): 551 _base(base) 552 , _index(LIR_Opr::illegalOpr()) 553 , _scale(times_1) 554 , _disp(0) 555 , _type(type) { verify(); } 556 557 LIR_Address(LIR_Opr base, LIR_Opr index, intx disp, BasicType type): 558 _base(base) 559 , _index(index) 560 , _scale(times_1) 561 , _disp(disp) 562 , _type(type) { verify(); } 563 564 LIR_Address(LIR_Opr base, LIR_Opr index, Scale scale, intx disp, BasicType type): 565 _base(base) 566 , _index(index) 567 , _scale(scale) 568 , _disp(disp) 569 , _type(type) { verify(); } 570 571 LIR_Opr base() const { return _base; } 572 LIR_Opr index() const { return _index; } 573 Scale scale() const { return _scale; } 574 intx disp() const { return _disp; } 575 576 bool equals(LIR_Address* other) const { return base() == other->base() && index() == other->index() && disp() == other->disp() && scale() == other->scale(); } 577 578 virtual LIR_Address* as_address() { return this; } 579 virtual BasicType type() const { return _type; } 580 virtual void print_value_on(outputStream* out) const PRODUCT_RETURN; 581 582 void verify() const PRODUCT_RETURN; 583 584 static Scale scale(BasicType type); 585 }; 586 587 588 // operand factory 589 class LIR_OprFact: public AllStatic { 590 public: 591 592 static LIR_Opr illegalOpr; 593 static LIR_Opr nullOpr; 594 595 static LIR_Opr single_cpu(int reg) { 596 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) | 597 LIR_Opr::int_type | 598 LIR_Opr::cpu_register | 599 LIR_Opr::single_size); 600 } 601 static LIR_Opr single_cpu_oop(int reg) { 602 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) | 603 LIR_Opr::object_type | 604 LIR_Opr::cpu_register | 605 LIR_Opr::single_size); 606 } 607 static LIR_Opr single_cpu_address(int reg) { 608 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) | 609 LIR_Opr::address_type | 610 LIR_Opr::cpu_register | 611 LIR_Opr::single_size); 612 } 613 static LIR_Opr single_cpu_metadata(int reg) { 614 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) | 615 LIR_Opr::metadata_type | 616 LIR_Opr::cpu_register | 617 LIR_Opr::single_size); 618 } 619 static LIR_Opr double_cpu(int reg1, int reg2) { 620 LP64_ONLY(assert(reg1 == reg2, "must be identical")); 621 return (LIR_Opr)(intptr_t)((reg1 << LIR_Opr::reg1_shift) | 622 (reg2 << LIR_Opr::reg2_shift) | 623 LIR_Opr::long_type | 624 LIR_Opr::cpu_register | 625 LIR_Opr::double_size); 626 } 627 628 static LIR_Opr single_fpu(int reg) { 629 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) | 630 LIR_Opr::float_type | 631 LIR_Opr::fpu_register | 632 LIR_Opr::single_size); 633 } 634 635 // Platform dependant. 636 static LIR_Opr double_fpu(int reg1, int reg2 = -1 /*fnoreg*/); 637 638 #ifdef ARM32 639 static LIR_Opr single_softfp(int reg) { 640 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) | 641 LIR_Opr::float_type | 642 LIR_Opr::cpu_register | 643 LIR_Opr::single_size); 644 } 645 static LIR_Opr double_softfp(int reg1, int reg2) { 646 return (LIR_Opr)(intptr_t)((reg1 << LIR_Opr::reg1_shift) | 647 (reg2 << LIR_Opr::reg2_shift) | 648 LIR_Opr::double_type | 649 LIR_Opr::cpu_register | 650 LIR_Opr::double_size); 651 } 652 #endif // ARM32 653 654 #if defined(X86) 655 static LIR_Opr single_xmm(int reg) { 656 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) | 657 LIR_Opr::float_type | 658 LIR_Opr::fpu_register | 659 LIR_Opr::single_size | 660 LIR_Opr::is_xmm_mask); 661 } 662 static LIR_Opr double_xmm(int reg) { 663 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) | 664 (reg << LIR_Opr::reg2_shift) | 665 LIR_Opr::double_type | 666 LIR_Opr::fpu_register | 667 LIR_Opr::double_size | 668 LIR_Opr::is_xmm_mask); 669 } 670 #endif // X86 671 672 static LIR_Opr virtual_register(int index, BasicType type) { 673 if (index > LIR_Opr::vreg_max) { 674 // Running out of virtual registers. Caller should bailout. 675 return illegalOpr; 676 } 677 678 LIR_Opr res; 679 switch (type) { 680 case T_OBJECT: // fall through 681 case T_PRIMITIVE_OBJECT: // fall through 682 case T_ARRAY: 683 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 684 LIR_Opr::object_type | 685 LIR_Opr::cpu_register | 686 LIR_Opr::single_size | 687 LIR_Opr::virtual_mask); 688 break; 689 690 case T_METADATA: 691 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 692 LIR_Opr::metadata_type| 693 LIR_Opr::cpu_register | 694 LIR_Opr::single_size | 695 LIR_Opr::virtual_mask); 696 break; 697 698 case T_INT: 699 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 700 LIR_Opr::int_type | 701 LIR_Opr::cpu_register | 702 LIR_Opr::single_size | 703 LIR_Opr::virtual_mask); 704 break; 705 706 case T_ADDRESS: 707 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 708 LIR_Opr::address_type | 709 LIR_Opr::cpu_register | 710 LIR_Opr::single_size | 711 LIR_Opr::virtual_mask); 712 break; 713 714 case T_LONG: 715 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 716 LIR_Opr::long_type | 717 LIR_Opr::cpu_register | 718 LIR_Opr::double_size | 719 LIR_Opr::virtual_mask); 720 break; 721 722 #ifdef __SOFTFP__ 723 case T_FLOAT: 724 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 725 LIR_Opr::float_type | 726 LIR_Opr::cpu_register | 727 LIR_Opr::single_size | 728 LIR_Opr::virtual_mask); 729 break; 730 case T_DOUBLE: 731 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 732 LIR_Opr::double_type | 733 LIR_Opr::cpu_register | 734 LIR_Opr::double_size | 735 LIR_Opr::virtual_mask); 736 break; 737 #else // __SOFTFP__ 738 case T_FLOAT: 739 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 740 LIR_Opr::float_type | 741 LIR_Opr::fpu_register | 742 LIR_Opr::single_size | 743 LIR_Opr::virtual_mask); 744 break; 745 746 case 747 T_DOUBLE: res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 748 LIR_Opr::double_type | 749 LIR_Opr::fpu_register | 750 LIR_Opr::double_size | 751 LIR_Opr::virtual_mask); 752 break; 753 #endif // __SOFTFP__ 754 default: ShouldNotReachHere(); res = illegalOpr; 755 } 756 757 #ifdef ASSERT 758 res->validate_type(); 759 assert(res->vreg_number() == index, "conversion check"); 760 assert(index >= LIR_Opr::vreg_base, "must start at vreg_base"); 761 assert(index <= (max_jint >> LIR_Opr::data_shift), "index is too big"); 762 763 // old-style calculation; check if old and new method are equal 764 LIR_Opr::OprType t = as_OprType(type); 765 #ifdef __SOFTFP__ 766 LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 767 t | 768 LIR_Opr::cpu_register | 769 LIR_Opr::size_for(type) | LIR_Opr::virtual_mask); 770 #else // __SOFTFP__ 771 LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | t | 772 ((type == T_FLOAT || type == T_DOUBLE) ? LIR_Opr::fpu_register : LIR_Opr::cpu_register) | 773 LIR_Opr::size_for(type) | LIR_Opr::virtual_mask); 774 assert(res == old_res, "old and new method not equal"); 775 #endif // __SOFTFP__ 776 #endif // ASSERT 777 778 return res; 779 } 780 781 // 'index' is computed by FrameMap::local_stack_pos(index); do not use other parameters as 782 // the index is platform independent; a double stack useing indeces 2 and 3 has always 783 // index 2. 784 static LIR_Opr stack(int index, BasicType type) { 785 LIR_Opr res; 786 switch (type) { 787 case T_PRIMITIVE_OBJECT: // fall through 788 case T_OBJECT: // fall through 789 case T_ARRAY: 790 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 791 LIR_Opr::object_type | 792 LIR_Opr::stack_value | 793 LIR_Opr::single_size); 794 break; 795 796 case T_METADATA: 797 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 798 LIR_Opr::metadata_type | 799 LIR_Opr::stack_value | 800 LIR_Opr::single_size); 801 break; 802 case T_INT: 803 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 804 LIR_Opr::int_type | 805 LIR_Opr::stack_value | 806 LIR_Opr::single_size); 807 break; 808 809 case T_ADDRESS: 810 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 811 LIR_Opr::address_type | 812 LIR_Opr::stack_value | 813 LIR_Opr::single_size); 814 break; 815 816 case T_LONG: 817 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 818 LIR_Opr::long_type | 819 LIR_Opr::stack_value | 820 LIR_Opr::double_size); 821 break; 822 823 case T_FLOAT: 824 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 825 LIR_Opr::float_type | 826 LIR_Opr::stack_value | 827 LIR_Opr::single_size); 828 break; 829 case T_DOUBLE: 830 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 831 LIR_Opr::double_type | 832 LIR_Opr::stack_value | 833 LIR_Opr::double_size); 834 break; 835 836 default: ShouldNotReachHere(); res = illegalOpr; 837 } 838 839 #ifdef ASSERT 840 assert(index >= 0, "index must be positive"); 841 assert(index <= (max_jint >> LIR_Opr::data_shift), "index is too big"); 842 843 LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 844 LIR_Opr::stack_value | 845 as_OprType(type) | 846 LIR_Opr::size_for(type)); 847 assert(res == old_res, "old and new method not equal"); 848 #endif 849 850 return res; 851 } 852 853 static LIR_Opr intConst(jint i) { return (LIR_Opr)(new LIR_Const(i)); } 854 static LIR_Opr longConst(jlong l) { return (LIR_Opr)(new LIR_Const(l)); } 855 static LIR_Opr floatConst(jfloat f) { return (LIR_Opr)(new LIR_Const(f)); } 856 static LIR_Opr doubleConst(jdouble d) { return (LIR_Opr)(new LIR_Const(d)); } 857 static LIR_Opr oopConst(jobject o) { return (LIR_Opr)(new LIR_Const(o)); } 858 static LIR_Opr address(LIR_Address* a) { return (LIR_Opr)a; } 859 static LIR_Opr intptrConst(void* p) { return (LIR_Opr)(new LIR_Const(p)); } 860 static LIR_Opr intptrConst(intptr_t v) { return (LIR_Opr)(new LIR_Const((void*)v)); } 861 static LIR_Opr illegal() { return (LIR_Opr)-1; } 862 static LIR_Opr addressConst(jint i) { return (LIR_Opr)(new LIR_Const(i, true)); } 863 static LIR_Opr metadataConst(Metadata* m) { return (LIR_Opr)(new LIR_Const(m)); } 864 865 static LIR_Opr value_type(ValueType* type); 866 }; 867 868 869 //------------------------------------------------------------------------------- 870 // LIR Instructions 871 //------------------------------------------------------------------------------- 872 // 873 // Note: 874 // - every instruction has a result operand 875 // - every instruction has an CodeEmitInfo operand (can be revisited later) 876 // - every instruction has a LIR_OpCode operand 877 // - LIR_OpN, means an instruction that has N input operands 878 // 879 // class hierarchy: 880 // 881 class LIR_Op; 882 class LIR_Op0; 883 class LIR_OpLabel; 884 class LIR_Op1; 885 class LIR_OpBranch; 886 class LIR_OpConvert; 887 class LIR_OpAllocObj; 888 class LIR_OpReturn; 889 class LIR_OpRoundFP; 890 class LIR_Op2; 891 class LIR_OpDelay; 892 class LIR_Op3; 893 class LIR_OpAllocArray; 894 class LIR_OpCall; 895 class LIR_OpJavaCall; 896 class LIR_OpRTCall; 897 class LIR_OpArrayCopy; 898 class LIR_OpUpdateCRC32; 899 class LIR_OpLock; 900 class LIR_OpTypeCheck; 901 class LIR_OpFlattenedArrayCheck; 902 class LIR_OpNullFreeArrayCheck; 903 class LIR_OpSubstitutabilityCheck; 904 class LIR_OpCompareAndSwap; 905 class LIR_OpLoadKlass; 906 class LIR_OpProfileCall; 907 class LIR_OpProfileType; 908 class LIR_OpProfileInlineType; 909 #ifdef ASSERT 910 class LIR_OpAssert; 911 #endif 912 913 // LIR operation codes 914 enum LIR_Code { 915 lir_none 916 , begin_op0 917 , lir_label 918 , lir_nop 919 , lir_std_entry 920 , lir_osr_entry 921 , lir_fpop_raw 922 , lir_breakpoint 923 , lir_rtcall 924 , lir_membar 925 , lir_membar_acquire 926 , lir_membar_release 927 , lir_membar_loadload 928 , lir_membar_storestore 929 , lir_membar_loadstore 930 , lir_membar_storeload 931 , lir_get_thread 932 , lir_on_spin_wait 933 , lir_check_orig_pc 934 , end_op0 935 , begin_op1 936 , lir_fxch 937 , lir_fld 938 , lir_push 939 , lir_pop 940 , lir_null_check 941 , lir_return 942 , lir_leal 943 , lir_branch 944 , lir_cond_float_branch 945 , lir_move 946 , lir_convert 947 , lir_alloc_object 948 , lir_monaddr 949 , lir_roundfp 950 , lir_safepoint 951 , lir_unwind 952 , lir_load_klass 953 , end_op1 954 , begin_op2 955 , lir_cmp 956 , lir_cmp_l2i 957 , lir_ucmp_fd2i 958 , lir_cmp_fd2i 959 , lir_cmove 960 , lir_add 961 , lir_sub 962 , lir_mul 963 , lir_div 964 , lir_rem 965 , lir_sqrt 966 , lir_abs 967 , lir_neg 968 , lir_tan 969 , lir_log10 970 , lir_logic_and 971 , lir_logic_or 972 , lir_logic_xor 973 , lir_shl 974 , lir_shr 975 , lir_ushr 976 , lir_alloc_array 977 , lir_throw 978 , lir_xadd 979 , lir_xchg 980 , end_op2 981 , begin_op3 982 , lir_idiv 983 , lir_irem 984 , lir_fmad 985 , lir_fmaf 986 , end_op3 987 , begin_opJavaCall 988 , lir_static_call 989 , lir_optvirtual_call 990 , lir_icvirtual_call 991 , lir_dynamic_call 992 , end_opJavaCall 993 , begin_opArrayCopy 994 , lir_arraycopy 995 , end_opArrayCopy 996 , begin_opUpdateCRC32 997 , lir_updatecrc32 998 , end_opUpdateCRC32 999 , begin_opLock 1000 , lir_lock 1001 , lir_unlock 1002 , end_opLock 1003 , begin_delay_slot 1004 , lir_delay_slot 1005 , end_delay_slot 1006 , begin_opTypeCheck 1007 , lir_instanceof 1008 , lir_checkcast 1009 , lir_store_check 1010 , end_opTypeCheck 1011 , begin_opFlattenedArrayCheck 1012 , lir_flattened_array_check 1013 , end_opFlattenedArrayCheck 1014 , begin_opNullFreeArrayCheck 1015 , lir_null_free_array_check 1016 , end_opNullFreeArrayCheck 1017 , begin_opSubstitutabilityCheck 1018 , lir_substitutability_check 1019 , end_opSubstitutabilityCheck 1020 , begin_opCompareAndSwap 1021 , lir_cas_long 1022 , lir_cas_obj 1023 , lir_cas_int 1024 , end_opCompareAndSwap 1025 , begin_opMDOProfile 1026 , lir_profile_call 1027 , lir_profile_type 1028 , lir_profile_inline_type 1029 , end_opMDOProfile 1030 , begin_opAssert 1031 , lir_assert 1032 , end_opAssert 1033 }; 1034 1035 1036 enum LIR_Condition { 1037 lir_cond_equal 1038 , lir_cond_notEqual 1039 , lir_cond_less 1040 , lir_cond_lessEqual 1041 , lir_cond_greaterEqual 1042 , lir_cond_greater 1043 , lir_cond_belowEqual 1044 , lir_cond_aboveEqual 1045 , lir_cond_always 1046 , lir_cond_unknown = -1 1047 }; 1048 1049 1050 enum LIR_PatchCode { 1051 lir_patch_none, 1052 lir_patch_low, 1053 lir_patch_high, 1054 lir_patch_normal 1055 }; 1056 1057 1058 enum LIR_MoveKind { 1059 lir_move_normal, 1060 lir_move_volatile, 1061 lir_move_wide, 1062 lir_move_max_flag 1063 }; 1064 1065 1066 // -------------------------------------------------- 1067 // LIR_Op 1068 // -------------------------------------------------- 1069 class LIR_Op: public CompilationResourceObj { 1070 friend class LIR_OpVisitState; 1071 1072 #ifdef ASSERT 1073 private: 1074 const char * _file; 1075 int _line; 1076 #endif 1077 1078 protected: 1079 LIR_Opr _result; 1080 unsigned short _code; 1081 unsigned short _flags; 1082 CodeEmitInfo* _info; 1083 int _id; // value id for register allocation 1084 int _fpu_pop_count; 1085 Instruction* _source; // for debugging 1086 1087 static void print_condition(outputStream* out, LIR_Condition cond) PRODUCT_RETURN; 1088 1089 protected: 1090 static bool is_in_range(LIR_Code test, LIR_Code start, LIR_Code end) { return start < test && test < end; } 1091 1092 public: 1093 LIR_Op() 1094 : 1095 #ifdef ASSERT 1096 _file(NULL) 1097 , _line(0), 1098 #endif 1099 _result(LIR_OprFact::illegalOpr) 1100 , _code(lir_none) 1101 , _flags(0) 1102 , _info(NULL) 1103 , _id(-1) 1104 , _fpu_pop_count(0) 1105 , _source(NULL) {} 1106 1107 LIR_Op(LIR_Code code, LIR_Opr result, CodeEmitInfo* info) 1108 : 1109 #ifdef ASSERT 1110 _file(NULL) 1111 , _line(0), 1112 #endif 1113 _result(result) 1114 , _code(code) 1115 , _flags(0) 1116 , _info(info) 1117 , _id(-1) 1118 , _fpu_pop_count(0) 1119 , _source(NULL) {} 1120 1121 CodeEmitInfo* info() const { return _info; } 1122 LIR_Code code() const { return (LIR_Code)_code; } 1123 LIR_Opr result_opr() const { return _result; } 1124 void set_result_opr(LIR_Opr opr) { _result = opr; } 1125 1126 #ifdef ASSERT 1127 void set_file_and_line(const char * file, int line) { 1128 _file = file; 1129 _line = line; 1130 } 1131 #endif 1132 1133 virtual const char * name() const PRODUCT_RETURN0; 1134 virtual void visit(LIR_OpVisitState* state); 1135 1136 int id() const { return _id; } 1137 void set_id(int id) { _id = id; } 1138 1139 // FPU stack simulation helpers -- only used on Intel 1140 void set_fpu_pop_count(int count) { assert(count >= 0 && count <= 1, "currently only 0 and 1 are valid"); _fpu_pop_count = count; } 1141 int fpu_pop_count() const { return _fpu_pop_count; } 1142 bool pop_fpu_stack() { return _fpu_pop_count > 0; } 1143 1144 Instruction* source() const { return _source; } 1145 void set_source(Instruction* ins) { _source = ins; } 1146 1147 virtual void emit_code(LIR_Assembler* masm) = 0; 1148 virtual void print_instr(outputStream* out) const = 0; 1149 virtual void print_on(outputStream* st) const PRODUCT_RETURN; 1150 1151 virtual bool is_patching() { return false; } 1152 virtual LIR_OpCall* as_OpCall() { return NULL; } 1153 virtual LIR_OpJavaCall* as_OpJavaCall() { return NULL; } 1154 virtual LIR_OpLabel* as_OpLabel() { return NULL; } 1155 virtual LIR_OpDelay* as_OpDelay() { return NULL; } 1156 virtual LIR_OpLock* as_OpLock() { return NULL; } 1157 virtual LIR_OpAllocArray* as_OpAllocArray() { return NULL; } 1158 virtual LIR_OpAllocObj* as_OpAllocObj() { return NULL; } 1159 virtual LIR_OpRoundFP* as_OpRoundFP() { return NULL; } 1160 virtual LIR_OpBranch* as_OpBranch() { return NULL; } 1161 virtual LIR_OpReturn* as_OpReturn() { return NULL; } 1162 virtual LIR_OpRTCall* as_OpRTCall() { return NULL; } 1163 virtual LIR_OpConvert* as_OpConvert() { return NULL; } 1164 virtual LIR_Op0* as_Op0() { return NULL; } 1165 virtual LIR_Op1* as_Op1() { return NULL; } 1166 virtual LIR_Op2* as_Op2() { return NULL; } 1167 virtual LIR_Op3* as_Op3() { return NULL; } 1168 virtual LIR_OpArrayCopy* as_OpArrayCopy() { return NULL; } 1169 virtual LIR_OpUpdateCRC32* as_OpUpdateCRC32() { return NULL; } 1170 virtual LIR_OpTypeCheck* as_OpTypeCheck() { return NULL; } 1171 virtual LIR_OpFlattenedArrayCheck* as_OpFlattenedArrayCheck() { return NULL; } 1172 virtual LIR_OpNullFreeArrayCheck* as_OpNullFreeArrayCheck() { return NULL; } 1173 virtual LIR_OpSubstitutabilityCheck* as_OpSubstitutabilityCheck() { return NULL; } 1174 virtual LIR_OpCompareAndSwap* as_OpCompareAndSwap() { return NULL; } 1175 virtual LIR_OpLoadKlass* as_OpLoadKlass() { return NULL; } 1176 virtual LIR_OpProfileCall* as_OpProfileCall() { return NULL; } 1177 virtual LIR_OpProfileType* as_OpProfileType() { return NULL; } 1178 virtual LIR_OpProfileInlineType* as_OpProfileInlineType() { return NULL; } 1179 #ifdef ASSERT 1180 virtual LIR_OpAssert* as_OpAssert() { return NULL; } 1181 #endif 1182 1183 virtual void verify() const {} 1184 }; 1185 1186 // for calls 1187 class LIR_OpCall: public LIR_Op { 1188 friend class LIR_OpVisitState; 1189 1190 protected: 1191 address _addr; 1192 LIR_OprList* _arguments; 1193 protected: 1194 LIR_OpCall(LIR_Code code, address addr, LIR_Opr result, 1195 LIR_OprList* arguments, CodeEmitInfo* info = NULL) 1196 : LIR_Op(code, result, info) 1197 , _addr(addr) 1198 , _arguments(arguments) {} 1199 1200 public: 1201 address addr() const { return _addr; } 1202 const LIR_OprList* arguments() const { return _arguments; } 1203 virtual LIR_OpCall* as_OpCall() { return this; } 1204 }; 1205 1206 1207 // -------------------------------------------------- 1208 // LIR_OpJavaCall 1209 // -------------------------------------------------- 1210 class LIR_OpJavaCall: public LIR_OpCall { 1211 friend class LIR_OpVisitState; 1212 1213 private: 1214 ciMethod* _method; 1215 LIR_Opr _receiver; 1216 LIR_Opr _method_handle_invoke_SP_save_opr; // Used in LIR_OpVisitState::visit to store the reference to FrameMap::method_handle_invoke_SP_save_opr. 1217 1218 public: 1219 LIR_OpJavaCall(LIR_Code code, ciMethod* method, 1220 LIR_Opr receiver, LIR_Opr result, 1221 address addr, LIR_OprList* arguments, 1222 CodeEmitInfo* info) 1223 : LIR_OpCall(code, addr, result, arguments, info) 1224 , _method(method) 1225 , _receiver(receiver) 1226 , _method_handle_invoke_SP_save_opr(LIR_OprFact::illegalOpr) 1227 { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); } 1228 1229 LIR_OpJavaCall(LIR_Code code, ciMethod* method, 1230 LIR_Opr receiver, LIR_Opr result, intptr_t vtable_offset, 1231 LIR_OprList* arguments, CodeEmitInfo* info) 1232 : LIR_OpCall(code, (address)vtable_offset, result, arguments, info) 1233 , _method(method) 1234 , _receiver(receiver) 1235 , _method_handle_invoke_SP_save_opr(LIR_OprFact::illegalOpr) 1236 { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); } 1237 1238 LIR_Opr receiver() const { return _receiver; } 1239 ciMethod* method() const { return _method; } 1240 1241 // JSR 292 support. 1242 bool is_invokedynamic() const { return code() == lir_dynamic_call; } 1243 bool is_method_handle_invoke() const { 1244 return method()->is_compiled_lambda_form() || // Java-generated lambda form 1245 method()->is_method_handle_intrinsic(); // JVM-generated MH intrinsic 1246 } 1247 1248 virtual void emit_code(LIR_Assembler* masm); 1249 virtual LIR_OpJavaCall* as_OpJavaCall() { return this; } 1250 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1251 1252 bool maybe_return_as_fields(ciInlineKlass** vk = NULL) const; 1253 }; 1254 1255 // -------------------------------------------------- 1256 // LIR_OpLabel 1257 // -------------------------------------------------- 1258 // Location where a branch can continue 1259 class LIR_OpLabel: public LIR_Op { 1260 friend class LIR_OpVisitState; 1261 1262 private: 1263 Label* _label; 1264 public: 1265 LIR_OpLabel(Label* lbl) 1266 : LIR_Op(lir_label, LIR_OprFact::illegalOpr, NULL) 1267 , _label(lbl) {} 1268 Label* label() const { return _label; } 1269 1270 virtual void emit_code(LIR_Assembler* masm); 1271 virtual LIR_OpLabel* as_OpLabel() { return this; } 1272 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1273 }; 1274 1275 // LIR_OpArrayCopy 1276 class LIR_OpArrayCopy: public LIR_Op { 1277 friend class LIR_OpVisitState; 1278 1279 private: 1280 ArrayCopyStub* _stub; 1281 LIR_Opr _src; 1282 LIR_Opr _src_pos; 1283 LIR_Opr _dst; 1284 LIR_Opr _dst_pos; 1285 LIR_Opr _length; 1286 LIR_Opr _tmp; 1287 ciArrayKlass* _expected_type; 1288 int _flags; 1289 1290 public: 1291 enum Flags { 1292 src_null_check = 1 << 0, 1293 dst_null_check = 1 << 1, 1294 src_pos_positive_check = 1 << 2, 1295 dst_pos_positive_check = 1 << 3, 1296 length_positive_check = 1 << 4, 1297 src_range_check = 1 << 5, 1298 dst_range_check = 1 << 6, 1299 type_check = 1 << 7, 1300 overlapping = 1 << 8, 1301 unaligned = 1 << 9, 1302 src_objarray = 1 << 10, 1303 dst_objarray = 1 << 11, 1304 always_slow_path = 1 << 12, 1305 src_inlinetype_check = 1 << 13, 1306 dst_inlinetype_check = 1 << 14, 1307 all_flags = (1 << 15) - 1 1308 }; 1309 1310 LIR_OpArrayCopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp, 1311 ciArrayKlass* expected_type, int flags, CodeEmitInfo* info); 1312 1313 LIR_Opr src() const { return _src; } 1314 LIR_Opr src_pos() const { return _src_pos; } 1315 LIR_Opr dst() const { return _dst; } 1316 LIR_Opr dst_pos() const { return _dst_pos; } 1317 LIR_Opr length() const { return _length; } 1318 LIR_Opr tmp() const { return _tmp; } 1319 int flags() const { return _flags; } 1320 ciArrayKlass* expected_type() const { return _expected_type; } 1321 ArrayCopyStub* stub() const { return _stub; } 1322 1323 virtual void emit_code(LIR_Assembler* masm); 1324 virtual LIR_OpArrayCopy* as_OpArrayCopy() { return this; } 1325 void print_instr(outputStream* out) const PRODUCT_RETURN; 1326 }; 1327 1328 // LIR_OpUpdateCRC32 1329 class LIR_OpUpdateCRC32: public LIR_Op { 1330 friend class LIR_OpVisitState; 1331 1332 private: 1333 LIR_Opr _crc; 1334 LIR_Opr _val; 1335 1336 public: 1337 1338 LIR_OpUpdateCRC32(LIR_Opr crc, LIR_Opr val, LIR_Opr res); 1339 1340 LIR_Opr crc() const { return _crc; } 1341 LIR_Opr val() const { return _val; } 1342 1343 virtual void emit_code(LIR_Assembler* masm); 1344 virtual LIR_OpUpdateCRC32* as_OpUpdateCRC32() { return this; } 1345 void print_instr(outputStream* out) const PRODUCT_RETURN; 1346 }; 1347 1348 // -------------------------------------------------- 1349 // LIR_Op0 1350 // -------------------------------------------------- 1351 class LIR_Op0: public LIR_Op { 1352 friend class LIR_OpVisitState; 1353 1354 public: 1355 LIR_Op0(LIR_Code code) 1356 : LIR_Op(code, LIR_OprFact::illegalOpr, NULL) { assert(is_in_range(code, begin_op0, end_op0), "code check"); } 1357 LIR_Op0(LIR_Code code, LIR_Opr result, CodeEmitInfo* info = NULL) 1358 : LIR_Op(code, result, info) { assert(is_in_range(code, begin_op0, end_op0), "code check"); } 1359 1360 virtual void emit_code(LIR_Assembler* masm); 1361 virtual LIR_Op0* as_Op0() { return this; } 1362 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1363 }; 1364 1365 1366 // -------------------------------------------------- 1367 // LIR_Op1 1368 // -------------------------------------------------- 1369 1370 class LIR_Op1: public LIR_Op { 1371 friend class LIR_OpVisitState; 1372 1373 protected: 1374 LIR_Opr _opr; // input operand 1375 BasicType _type; // Operand types 1376 LIR_PatchCode _patch; // only required with patchin (NEEDS_CLEANUP: do we want a special instruction for patching?) 1377 1378 static void print_patch_code(outputStream* out, LIR_PatchCode code); 1379 1380 void set_kind(LIR_MoveKind kind) { 1381 assert(code() == lir_move, "must be"); 1382 _flags = kind; 1383 } 1384 1385 public: 1386 LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result = LIR_OprFact::illegalOpr, BasicType type = T_ILLEGAL, LIR_PatchCode patch = lir_patch_none, CodeEmitInfo* info = NULL) 1387 : LIR_Op(code, result, info) 1388 , _opr(opr) 1389 , _type(type) 1390 , _patch(patch) { assert(is_in_range(code, begin_op1, end_op1), "code check"); } 1391 1392 LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result, BasicType type, LIR_PatchCode patch, CodeEmitInfo* info, LIR_MoveKind kind) 1393 : LIR_Op(code, result, info) 1394 , _opr(opr) 1395 , _type(type) 1396 , _patch(patch) { 1397 assert(code == lir_move, "must be"); 1398 set_kind(kind); 1399 } 1400 1401 LIR_Op1(LIR_Code code, LIR_Opr opr, CodeEmitInfo* info) 1402 : LIR_Op(code, LIR_OprFact::illegalOpr, info) 1403 , _opr(opr) 1404 , _type(T_ILLEGAL) 1405 , _patch(lir_patch_none) { assert(is_in_range(code, begin_op1, end_op1), "code check"); } 1406 1407 LIR_Opr in_opr() const { return _opr; } 1408 LIR_PatchCode patch_code() const { return _patch; } 1409 BasicType type() const { return _type; } 1410 1411 LIR_MoveKind move_kind() const { 1412 assert(code() == lir_move, "must be"); 1413 return (LIR_MoveKind)_flags; 1414 } 1415 1416 virtual bool is_patching() { return _patch != lir_patch_none; } 1417 virtual void emit_code(LIR_Assembler* masm); 1418 virtual LIR_Op1* as_Op1() { return this; } 1419 virtual const char * name() const PRODUCT_RETURN0; 1420 1421 void set_in_opr(LIR_Opr opr) { _opr = opr; } 1422 1423 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1424 virtual void verify() const; 1425 }; 1426 1427 1428 // for runtime calls 1429 class LIR_OpRTCall: public LIR_OpCall { 1430 friend class LIR_OpVisitState; 1431 1432 private: 1433 LIR_Opr _tmp; 1434 public: 1435 LIR_OpRTCall(address addr, LIR_Opr tmp, 1436 LIR_Opr result, LIR_OprList* arguments, CodeEmitInfo* info = NULL) 1437 : LIR_OpCall(lir_rtcall, addr, result, arguments, info) 1438 , _tmp(tmp) {} 1439 1440 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1441 virtual void emit_code(LIR_Assembler* masm); 1442 virtual LIR_OpRTCall* as_OpRTCall() { return this; } 1443 1444 LIR_Opr tmp() const { return _tmp; } 1445 1446 virtual void verify() const; 1447 }; 1448 1449 1450 class LIR_OpBranch: public LIR_Op { 1451 friend class LIR_OpVisitState; 1452 1453 private: 1454 LIR_Condition _cond; 1455 Label* _label; 1456 BlockBegin* _block; // if this is a branch to a block, this is the block 1457 BlockBegin* _ublock; // if this is a float-branch, this is the unorderd block 1458 CodeStub* _stub; // if this is a branch to a stub, this is the stub 1459 1460 public: 1461 LIR_OpBranch(LIR_Condition cond, Label* lbl) 1462 : LIR_Op(lir_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*) NULL) 1463 , _cond(cond) 1464 , _label(lbl) 1465 , _block(NULL) 1466 , _ublock(NULL) 1467 , _stub(NULL) { } 1468 1469 LIR_OpBranch(LIR_Condition cond, BlockBegin* block); 1470 LIR_OpBranch(LIR_Condition cond, CodeStub* stub); 1471 1472 // for unordered comparisons 1473 LIR_OpBranch(LIR_Condition cond, BlockBegin* block, BlockBegin* ublock); 1474 1475 LIR_Condition cond() const { return _cond; } 1476 Label* label() const { return _label; } 1477 BlockBegin* block() const { return _block; } 1478 BlockBegin* ublock() const { return _ublock; } 1479 CodeStub* stub() const { return _stub; } 1480 1481 void change_block(BlockBegin* b); 1482 void change_ublock(BlockBegin* b); 1483 void negate_cond(); 1484 1485 virtual void emit_code(LIR_Assembler* masm); 1486 virtual LIR_OpBranch* as_OpBranch() { return this; } 1487 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1488 }; 1489 1490 class LIR_OpReturn: public LIR_Op1 { 1491 friend class LIR_OpVisitState; 1492 1493 private: 1494 C1SafepointPollStub* _stub; 1495 1496 public: 1497 LIR_OpReturn(LIR_Opr opr); 1498 1499 C1SafepointPollStub* stub() const { return _stub; } 1500 virtual LIR_OpReturn* as_OpReturn() { return this; } 1501 }; 1502 1503 class ConversionStub; 1504 1505 class LIR_OpConvert: public LIR_Op1 { 1506 friend class LIR_OpVisitState; 1507 1508 private: 1509 Bytecodes::Code _bytecode; 1510 ConversionStub* _stub; 1511 1512 public: 1513 LIR_OpConvert(Bytecodes::Code code, LIR_Opr opr, LIR_Opr result, ConversionStub* stub) 1514 : LIR_Op1(lir_convert, opr, result) 1515 , _bytecode(code) 1516 , _stub(stub) {} 1517 1518 Bytecodes::Code bytecode() const { return _bytecode; } 1519 ConversionStub* stub() const { return _stub; } 1520 1521 virtual void emit_code(LIR_Assembler* masm); 1522 virtual LIR_OpConvert* as_OpConvert() { return this; } 1523 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1524 1525 static void print_bytecode(outputStream* out, Bytecodes::Code code) PRODUCT_RETURN; 1526 }; 1527 1528 1529 // LIR_OpAllocObj 1530 class LIR_OpAllocObj : public LIR_Op1 { 1531 friend class LIR_OpVisitState; 1532 1533 private: 1534 LIR_Opr _tmp1; 1535 LIR_Opr _tmp2; 1536 LIR_Opr _tmp3; 1537 LIR_Opr _tmp4; 1538 int _hdr_size; 1539 int _obj_size; 1540 CodeStub* _stub; 1541 bool _init_check; 1542 1543 public: 1544 LIR_OpAllocObj(LIR_Opr klass, LIR_Opr result, 1545 LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, 1546 int hdr_size, int obj_size, bool init_check, CodeStub* stub) 1547 : LIR_Op1(lir_alloc_object, klass, result) 1548 , _tmp1(t1) 1549 , _tmp2(t2) 1550 , _tmp3(t3) 1551 , _tmp4(t4) 1552 , _hdr_size(hdr_size) 1553 , _obj_size(obj_size) 1554 , _stub(stub) 1555 , _init_check(init_check) { } 1556 1557 LIR_Opr klass() const { return in_opr(); } 1558 LIR_Opr obj() const { return result_opr(); } 1559 LIR_Opr tmp1() const { return _tmp1; } 1560 LIR_Opr tmp2() const { return _tmp2; } 1561 LIR_Opr tmp3() const { return _tmp3; } 1562 LIR_Opr tmp4() const { return _tmp4; } 1563 int header_size() const { return _hdr_size; } 1564 int object_size() const { return _obj_size; } 1565 bool init_check() const { return _init_check; } 1566 CodeStub* stub() const { return _stub; } 1567 1568 virtual void emit_code(LIR_Assembler* masm); 1569 virtual LIR_OpAllocObj * as_OpAllocObj () { return this; } 1570 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1571 }; 1572 1573 1574 // LIR_OpRoundFP 1575 class LIR_OpRoundFP : public LIR_Op1 { 1576 friend class LIR_OpVisitState; 1577 1578 private: 1579 LIR_Opr _tmp; 1580 1581 public: 1582 LIR_OpRoundFP(LIR_Opr reg, LIR_Opr stack_loc_temp, LIR_Opr result) 1583 : LIR_Op1(lir_roundfp, reg, result) 1584 , _tmp(stack_loc_temp) {} 1585 1586 LIR_Opr tmp() const { return _tmp; } 1587 virtual LIR_OpRoundFP* as_OpRoundFP() { return this; } 1588 void print_instr(outputStream* out) const PRODUCT_RETURN; 1589 }; 1590 1591 // LIR_OpTypeCheck 1592 class LIR_OpTypeCheck: public LIR_Op { 1593 friend class LIR_OpVisitState; 1594 1595 private: 1596 LIR_Opr _object; 1597 LIR_Opr _array; 1598 ciKlass* _klass; 1599 LIR_Opr _tmp1; 1600 LIR_Opr _tmp2; 1601 LIR_Opr _tmp3; 1602 bool _fast_check; 1603 CodeEmitInfo* _info_for_patch; 1604 CodeEmitInfo* _info_for_exception; 1605 CodeStub* _stub; 1606 ciMethod* _profiled_method; 1607 int _profiled_bci; 1608 bool _should_profile; 1609 bool _need_null_check; 1610 1611 public: 1612 LIR_OpTypeCheck(LIR_Code code, LIR_Opr result, LIR_Opr object, ciKlass* klass, 1613 LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, 1614 CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub, bool need_null_check = true); 1615 LIR_OpTypeCheck(LIR_Code code, LIR_Opr object, LIR_Opr array, 1616 LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception); 1617 1618 LIR_Opr object() const { return _object; } 1619 LIR_Opr array() const { assert(code() == lir_store_check, "not valid"); return _array; } 1620 LIR_Opr tmp1() const { return _tmp1; } 1621 LIR_Opr tmp2() const { return _tmp2; } 1622 LIR_Opr tmp3() const { return _tmp3; } 1623 ciKlass* klass() const { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _klass; } 1624 bool fast_check() const { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _fast_check; } 1625 CodeEmitInfo* info_for_patch() const { return _info_for_patch; } 1626 CodeEmitInfo* info_for_exception() const { return _info_for_exception; } 1627 CodeStub* stub() const { return _stub; } 1628 1629 // MethodData* profiling 1630 void set_profiled_method(ciMethod *method) { _profiled_method = method; } 1631 void set_profiled_bci(int bci) { _profiled_bci = bci; } 1632 void set_should_profile(bool b) { _should_profile = b; } 1633 ciMethod* profiled_method() const { return _profiled_method; } 1634 int profiled_bci() const { return _profiled_bci; } 1635 bool should_profile() const { return _should_profile; } 1636 bool need_null_check() const { return _need_null_check; } 1637 virtual bool is_patching() { return _info_for_patch != NULL; } 1638 virtual void emit_code(LIR_Assembler* masm); 1639 virtual LIR_OpTypeCheck* as_OpTypeCheck() { return this; } 1640 void print_instr(outputStream* out) const PRODUCT_RETURN; 1641 }; 1642 1643 // LIR_OpFlattenedArrayCheck 1644 class LIR_OpFlattenedArrayCheck: public LIR_Op { 1645 friend class LIR_OpVisitState; 1646 1647 private: 1648 LIR_Opr _array; 1649 LIR_Opr _value; 1650 LIR_Opr _tmp; 1651 CodeStub* _stub; 1652 public: 1653 LIR_OpFlattenedArrayCheck(LIR_Opr array, LIR_Opr value, LIR_Opr tmp, CodeStub* stub); 1654 LIR_Opr array() const { return _array; } 1655 LIR_Opr value() const { return _value; } 1656 LIR_Opr tmp() const { return _tmp; } 1657 CodeStub* stub() const { return _stub; } 1658 1659 virtual void emit_code(LIR_Assembler* masm); 1660 virtual LIR_OpFlattenedArrayCheck* as_OpFlattenedArrayCheck() { return this; } 1661 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1662 }; 1663 1664 // LIR_OpNullFreeArrayCheck 1665 class LIR_OpNullFreeArrayCheck: public LIR_Op { 1666 friend class LIR_OpVisitState; 1667 1668 private: 1669 LIR_Opr _array; 1670 LIR_Opr _tmp; 1671 public: 1672 LIR_OpNullFreeArrayCheck(LIR_Opr array, LIR_Opr tmp); 1673 LIR_Opr array() const { return _array; } 1674 LIR_Opr tmp() const { return _tmp; } 1675 1676 virtual void emit_code(LIR_Assembler* masm); 1677 virtual LIR_OpNullFreeArrayCheck* as_OpNullFreeArrayCheck() { return this; } 1678 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1679 }; 1680 1681 class LIR_OpSubstitutabilityCheck: public LIR_Op { 1682 friend class LIR_OpVisitState; 1683 1684 private: 1685 LIR_Opr _left; 1686 LIR_Opr _right; 1687 LIR_Opr _equal_result; 1688 LIR_Opr _not_equal_result; 1689 LIR_Opr _tmp1; 1690 LIR_Opr _tmp2; 1691 ciKlass* _left_klass; 1692 ciKlass* _right_klass; 1693 LIR_Opr _left_klass_op; 1694 LIR_Opr _right_klass_op; 1695 CodeStub* _stub; 1696 public: 1697 LIR_OpSubstitutabilityCheck(LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr equal_result, LIR_Opr not_equal_result, 1698 LIR_Opr tmp1, LIR_Opr tmp2, 1699 ciKlass* left_klass, ciKlass* right_klass, LIR_Opr left_klass_op, LIR_Opr right_klass_op, 1700 CodeEmitInfo* info, CodeStub* stub); 1701 1702 LIR_Opr left() const { return _left; } 1703 LIR_Opr right() const { return _right; } 1704 LIR_Opr equal_result() const { return _equal_result; } 1705 LIR_Opr not_equal_result() const { return _not_equal_result; } 1706 LIR_Opr tmp1() const { return _tmp1; } 1707 LIR_Opr tmp2() const { return _tmp2; } 1708 ciKlass* left_klass() const { return _left_klass; } 1709 ciKlass* right_klass() const { return _right_klass; } 1710 LIR_Opr left_klass_op() const { return _left_klass_op; } 1711 LIR_Opr right_klass_op() const { return _right_klass_op; } 1712 CodeStub* stub() const { return _stub; } 1713 1714 virtual void emit_code(LIR_Assembler* masm); 1715 virtual LIR_OpSubstitutabilityCheck* as_OpSubstitutabilityCheck() { return this; } 1716 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1717 }; 1718 1719 // LIR_Op2 1720 class LIR_Op2: public LIR_Op { 1721 friend class LIR_OpVisitState; 1722 1723 int _fpu_stack_size; // for sin/cos implementation on Intel 1724 1725 protected: 1726 LIR_Opr _opr1; 1727 LIR_Opr _opr2; 1728 BasicType _type; 1729 LIR_Opr _tmp1; 1730 LIR_Opr _tmp2; 1731 LIR_Opr _tmp3; 1732 LIR_Opr _tmp4; 1733 LIR_Opr _tmp5; 1734 LIR_Condition _condition; 1735 1736 void verify() const; 1737 1738 public: 1739 LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, CodeEmitInfo* info = NULL) 1740 : LIR_Op(code, LIR_OprFact::illegalOpr, info) 1741 , _fpu_stack_size(0) 1742 , _opr1(opr1) 1743 , _opr2(opr2) 1744 , _type(T_ILLEGAL) 1745 , _tmp1(LIR_OprFact::illegalOpr) 1746 , _tmp2(LIR_OprFact::illegalOpr) 1747 , _tmp3(LIR_OprFact::illegalOpr) 1748 , _tmp4(LIR_OprFact::illegalOpr) 1749 , _tmp5(LIR_OprFact::illegalOpr) 1750 , _condition(condition) { 1751 assert(code == lir_cmp || code == lir_assert, "code check"); 1752 } 1753 1754 LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) 1755 : LIR_Op(code, result, NULL) 1756 , _fpu_stack_size(0) 1757 , _opr1(opr1) 1758 , _opr2(opr2) 1759 , _type(type) 1760 , _tmp1(LIR_OprFact::illegalOpr) 1761 , _tmp2(LIR_OprFact::illegalOpr) 1762 , _tmp3(LIR_OprFact::illegalOpr) 1763 , _tmp4(LIR_OprFact::illegalOpr) 1764 , _tmp5(LIR_OprFact::illegalOpr) 1765 , _condition(condition) { 1766 assert(code == lir_cmove, "code check"); 1767 assert(type != T_ILLEGAL, "cmove should have type"); 1768 } 1769 1770 LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result = LIR_OprFact::illegalOpr, 1771 CodeEmitInfo* info = NULL, BasicType type = T_ILLEGAL) 1772 : LIR_Op(code, result, info) 1773 , _fpu_stack_size(0) 1774 , _opr1(opr1) 1775 , _opr2(opr2) 1776 , _type(type) 1777 , _tmp1(LIR_OprFact::illegalOpr) 1778 , _tmp2(LIR_OprFact::illegalOpr) 1779 , _tmp3(LIR_OprFact::illegalOpr) 1780 , _tmp4(LIR_OprFact::illegalOpr) 1781 , _tmp5(LIR_OprFact::illegalOpr) 1782 , _condition(lir_cond_unknown) { 1783 assert(code != lir_cmp && is_in_range(code, begin_op2, end_op2), "code check"); 1784 } 1785 1786 LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, LIR_Opr tmp1, LIR_Opr tmp2 = LIR_OprFact::illegalOpr, 1787 LIR_Opr tmp3 = LIR_OprFact::illegalOpr, LIR_Opr tmp4 = LIR_OprFact::illegalOpr, LIR_Opr tmp5 = LIR_OprFact::illegalOpr) 1788 : LIR_Op(code, result, NULL) 1789 , _fpu_stack_size(0) 1790 , _opr1(opr1) 1791 , _opr2(opr2) 1792 , _type(T_ILLEGAL) 1793 , _tmp1(tmp1) 1794 , _tmp2(tmp2) 1795 , _tmp3(tmp3) 1796 , _tmp4(tmp4) 1797 , _tmp5(tmp5) 1798 , _condition(lir_cond_unknown) { 1799 assert(code != lir_cmp && is_in_range(code, begin_op2, end_op2), "code check"); 1800 } 1801 1802 LIR_Opr in_opr1() const { return _opr1; } 1803 LIR_Opr in_opr2() const { return _opr2; } 1804 BasicType type() const { return _type; } 1805 LIR_Opr tmp1_opr() const { return _tmp1; } 1806 LIR_Opr tmp2_opr() const { return _tmp2; } 1807 LIR_Opr tmp3_opr() const { return _tmp3; } 1808 LIR_Opr tmp4_opr() const { return _tmp4; } 1809 LIR_Opr tmp5_opr() const { return _tmp5; } 1810 LIR_Condition condition() const { 1811 assert(code() == lir_cmp || code() == lir_cmove || code() == lir_assert, "only valid for cmp and cmove and assert"); return _condition; 1812 } 1813 void set_condition(LIR_Condition condition) { 1814 assert(code() == lir_cmp || code() == lir_cmove, "only valid for cmp and cmove"); _condition = condition; 1815 } 1816 1817 void set_fpu_stack_size(int size) { _fpu_stack_size = size; } 1818 int fpu_stack_size() const { return _fpu_stack_size; } 1819 1820 void set_in_opr1(LIR_Opr opr) { _opr1 = opr; } 1821 void set_in_opr2(LIR_Opr opr) { _opr2 = opr; } 1822 1823 virtual void emit_code(LIR_Assembler* masm); 1824 virtual LIR_Op2* as_Op2() { return this; } 1825 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1826 }; 1827 1828 class LIR_OpAllocArray : public LIR_Op { 1829 friend class LIR_OpVisitState; 1830 1831 private: 1832 LIR_Opr _klass; 1833 LIR_Opr _len; 1834 LIR_Opr _tmp1; 1835 LIR_Opr _tmp2; 1836 LIR_Opr _tmp3; 1837 LIR_Opr _tmp4; 1838 BasicType _type; 1839 CodeStub* _stub; 1840 1841 public: 1842 LIR_OpAllocArray(LIR_Opr klass, LIR_Opr len, LIR_Opr result, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, BasicType type, CodeStub* stub) 1843 : LIR_Op(lir_alloc_array, result, NULL) 1844 , _klass(klass) 1845 , _len(len) 1846 , _tmp1(t1) 1847 , _tmp2(t2) 1848 , _tmp3(t3) 1849 , _tmp4(t4) 1850 , _type(type) 1851 , _stub(stub) {} 1852 1853 LIR_Opr klass() const { return _klass; } 1854 LIR_Opr len() const { return _len; } 1855 LIR_Opr obj() const { return result_opr(); } 1856 LIR_Opr tmp1() const { return _tmp1; } 1857 LIR_Opr tmp2() const { return _tmp2; } 1858 LIR_Opr tmp3() const { return _tmp3; } 1859 LIR_Opr tmp4() const { return _tmp4; } 1860 BasicType type() const { return _type; } 1861 CodeStub* stub() const { return _stub; } 1862 1863 virtual void emit_code(LIR_Assembler* masm); 1864 virtual LIR_OpAllocArray * as_OpAllocArray () { return this; } 1865 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1866 }; 1867 1868 1869 class LIR_Op3: public LIR_Op { 1870 friend class LIR_OpVisitState; 1871 1872 private: 1873 LIR_Opr _opr1; 1874 LIR_Opr _opr2; 1875 LIR_Opr _opr3; 1876 public: 1877 LIR_Op3(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr opr3, LIR_Opr result, CodeEmitInfo* info = NULL) 1878 : LIR_Op(code, result, info) 1879 , _opr1(opr1) 1880 , _opr2(opr2) 1881 , _opr3(opr3) { assert(is_in_range(code, begin_op3, end_op3), "code check"); } 1882 LIR_Opr in_opr1() const { return _opr1; } 1883 LIR_Opr in_opr2() const { return _opr2; } 1884 LIR_Opr in_opr3() const { return _opr3; } 1885 1886 virtual void emit_code(LIR_Assembler* masm); 1887 virtual LIR_Op3* as_Op3() { return this; } 1888 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1889 }; 1890 1891 1892 //-------------------------------- 1893 class LabelObj: public CompilationResourceObj { 1894 private: 1895 Label _label; 1896 public: 1897 LabelObj() {} 1898 Label* label() { return &_label; } 1899 }; 1900 1901 1902 class LIR_OpLock: public LIR_Op { 1903 friend class LIR_OpVisitState; 1904 1905 private: 1906 LIR_Opr _hdr; 1907 LIR_Opr _obj; 1908 LIR_Opr _lock; 1909 LIR_Opr _scratch; 1910 CodeStub* _stub; 1911 CodeStub* _throw_imse_stub; 1912 public: 1913 LIR_OpLock(LIR_Code code, LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info, CodeStub* throw_imse_stub=NULL) 1914 : LIR_Op(code, LIR_OprFact::illegalOpr, info) 1915 , _hdr(hdr) 1916 , _obj(obj) 1917 , _lock(lock) 1918 , _scratch(scratch) 1919 , _stub(stub) 1920 , _throw_imse_stub(throw_imse_stub) {} 1921 1922 LIR_Opr hdr_opr() const { return _hdr; } 1923 LIR_Opr obj_opr() const { return _obj; } 1924 LIR_Opr lock_opr() const { return _lock; } 1925 LIR_Opr scratch_opr() const { return _scratch; } 1926 CodeStub* stub() const { return _stub; } 1927 CodeStub* throw_imse_stub() const { return _throw_imse_stub; } 1928 1929 virtual void emit_code(LIR_Assembler* masm); 1930 virtual LIR_OpLock* as_OpLock() { return this; } 1931 void print_instr(outputStream* out) const PRODUCT_RETURN; 1932 }; 1933 1934 class LIR_OpLoadKlass: public LIR_Op { 1935 friend class LIR_OpVisitState; 1936 1937 private: 1938 LIR_Opr _obj; 1939 public: 1940 LIR_OpLoadKlass(LIR_Opr obj, LIR_Opr result, CodeEmitInfo* info) 1941 : LIR_Op(lir_load_klass, result, info) 1942 , _obj(obj) 1943 {} 1944 1945 LIR_Opr obj() const { return _obj; } 1946 1947 virtual LIR_OpLoadKlass* as_OpLoadKlass() { return this; } 1948 virtual void emit_code(LIR_Assembler* masm); 1949 void print_instr(outputStream* out) const PRODUCT_RETURN; 1950 }; 1951 1952 class LIR_OpDelay: public LIR_Op { 1953 friend class LIR_OpVisitState; 1954 1955 private: 1956 LIR_Op* _op; 1957 1958 public: 1959 LIR_OpDelay(LIR_Op* op, CodeEmitInfo* info): 1960 LIR_Op(lir_delay_slot, LIR_OprFact::illegalOpr, info), 1961 _op(op) { 1962 assert(op->code() == lir_nop, "should be filling with nops"); 1963 } 1964 virtual void emit_code(LIR_Assembler* masm); 1965 virtual LIR_OpDelay* as_OpDelay() { return this; } 1966 void print_instr(outputStream* out) const PRODUCT_RETURN; 1967 LIR_Op* delay_op() const { return _op; } 1968 CodeEmitInfo* call_info() const { return info(); } 1969 }; 1970 1971 #ifdef ASSERT 1972 // LIR_OpAssert 1973 class LIR_OpAssert : public LIR_Op2 { 1974 friend class LIR_OpVisitState; 1975 1976 private: 1977 const char* _msg; 1978 bool _halt; 1979 1980 public: 1981 LIR_OpAssert(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, const char* msg, bool halt) 1982 : LIR_Op2(lir_assert, condition, opr1, opr2) 1983 , _msg(msg) 1984 , _halt(halt) { 1985 } 1986 1987 const char* msg() const { return _msg; } 1988 bool halt() const { return _halt; } 1989 1990 virtual void emit_code(LIR_Assembler* masm); 1991 virtual LIR_OpAssert* as_OpAssert() { return this; } 1992 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1993 }; 1994 #endif 1995 1996 // LIR_OpCompareAndSwap 1997 class LIR_OpCompareAndSwap : public LIR_Op { 1998 friend class LIR_OpVisitState; 1999 2000 private: 2001 LIR_Opr _addr; 2002 LIR_Opr _cmp_value; 2003 LIR_Opr _new_value; 2004 LIR_Opr _tmp1; 2005 LIR_Opr _tmp2; 2006 2007 public: 2008 LIR_OpCompareAndSwap(LIR_Code code, LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value, 2009 LIR_Opr t1, LIR_Opr t2, LIR_Opr result) 2010 : LIR_Op(code, result, NULL) // no result, no info 2011 , _addr(addr) 2012 , _cmp_value(cmp_value) 2013 , _new_value(new_value) 2014 , _tmp1(t1) 2015 , _tmp2(t2) { } 2016 2017 LIR_Opr addr() const { return _addr; } 2018 LIR_Opr cmp_value() const { return _cmp_value; } 2019 LIR_Opr new_value() const { return _new_value; } 2020 LIR_Opr tmp1() const { return _tmp1; } 2021 LIR_Opr tmp2() const { return _tmp2; } 2022 2023 virtual void emit_code(LIR_Assembler* masm); 2024 virtual LIR_OpCompareAndSwap * as_OpCompareAndSwap () { return this; } 2025 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 2026 }; 2027 2028 // LIR_OpProfileCall 2029 class LIR_OpProfileCall : public LIR_Op { 2030 friend class LIR_OpVisitState; 2031 2032 private: 2033 ciMethod* _profiled_method; 2034 int _profiled_bci; 2035 ciMethod* _profiled_callee; 2036 LIR_Opr _mdo; 2037 LIR_Opr _recv; 2038 LIR_Opr _tmp1; 2039 ciKlass* _known_holder; 2040 2041 public: 2042 // Destroys recv 2043 LIR_OpProfileCall(ciMethod* profiled_method, int profiled_bci, ciMethod* profiled_callee, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* known_holder) 2044 : LIR_Op(lir_profile_call, LIR_OprFact::illegalOpr, NULL) // no result, no info 2045 , _profiled_method(profiled_method) 2046 , _profiled_bci(profiled_bci) 2047 , _profiled_callee(profiled_callee) 2048 , _mdo(mdo) 2049 , _recv(recv) 2050 , _tmp1(t1) 2051 , _known_holder(known_holder) { } 2052 2053 ciMethod* profiled_method() const { return _profiled_method; } 2054 int profiled_bci() const { return _profiled_bci; } 2055 ciMethod* profiled_callee() const { return _profiled_callee; } 2056 LIR_Opr mdo() const { return _mdo; } 2057 LIR_Opr recv() const { return _recv; } 2058 LIR_Opr tmp1() const { return _tmp1; } 2059 ciKlass* known_holder() const { return _known_holder; } 2060 2061 virtual void emit_code(LIR_Assembler* masm); 2062 virtual LIR_OpProfileCall* as_OpProfileCall() { return this; } 2063 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 2064 bool should_profile_receiver_type() const { 2065 bool callee_is_static = _profiled_callee->is_loaded() && _profiled_callee->is_static(); 2066 Bytecodes::Code bc = _profiled_method->java_code_at_bci(_profiled_bci); 2067 bool call_is_virtual = (bc == Bytecodes::_invokevirtual && !_profiled_callee->can_be_statically_bound()) || bc == Bytecodes::_invokeinterface; 2068 return C1ProfileVirtualCalls && call_is_virtual && !callee_is_static; 2069 } 2070 }; 2071 2072 // LIR_OpProfileType 2073 class LIR_OpProfileType : public LIR_Op { 2074 friend class LIR_OpVisitState; 2075 2076 private: 2077 LIR_Opr _mdp; 2078 LIR_Opr _obj; 2079 LIR_Opr _tmp; 2080 ciKlass* _exact_klass; // non NULL if we know the klass statically (no need to load it from _obj) 2081 intptr_t _current_klass; // what the profiling currently reports 2082 bool _not_null; // true if we know statically that _obj cannot be null 2083 bool _no_conflict; // true if we're profling parameters, _exact_klass is not NULL and we know 2084 // _exact_klass it the only possible type for this parameter in any context. 2085 2086 public: 2087 // Destroys recv 2088 LIR_OpProfileType(LIR_Opr mdp, LIR_Opr obj, ciKlass* exact_klass, intptr_t current_klass, LIR_Opr tmp, bool not_null, bool no_conflict) 2089 : LIR_Op(lir_profile_type, LIR_OprFact::illegalOpr, NULL) // no result, no info 2090 , _mdp(mdp) 2091 , _obj(obj) 2092 , _tmp(tmp) 2093 , _exact_klass(exact_klass) 2094 , _current_klass(current_klass) 2095 , _not_null(not_null) 2096 , _no_conflict(no_conflict) { } 2097 2098 LIR_Opr mdp() const { return _mdp; } 2099 LIR_Opr obj() const { return _obj; } 2100 LIR_Opr tmp() const { return _tmp; } 2101 ciKlass* exact_klass() const { return _exact_klass; } 2102 intptr_t current_klass() const { return _current_klass; } 2103 bool not_null() const { return _not_null; } 2104 bool no_conflict() const { return _no_conflict; } 2105 2106 virtual void emit_code(LIR_Assembler* masm); 2107 virtual LIR_OpProfileType* as_OpProfileType() { return this; } 2108 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 2109 }; 2110 2111 // LIR_OpProfileInlineType 2112 class LIR_OpProfileInlineType : public LIR_Op { 2113 friend class LIR_OpVisitState; 2114 2115 private: 2116 LIR_Opr _mdp; 2117 LIR_Opr _obj; 2118 int _flag; 2119 LIR_Opr _tmp; 2120 bool _not_null; // true if we know statically that _obj cannot be null 2121 2122 public: 2123 // Destroys recv 2124 LIR_OpProfileInlineType(LIR_Opr mdp, LIR_Opr obj, int flag, LIR_Opr tmp, bool not_null) 2125 : LIR_Op(lir_profile_inline_type, LIR_OprFact::illegalOpr, NULL) // no result, no info 2126 , _mdp(mdp) 2127 , _obj(obj) 2128 , _flag(flag) 2129 , _tmp(tmp) 2130 , _not_null(not_null) { } 2131 2132 LIR_Opr mdp() const { return _mdp; } 2133 LIR_Opr obj() const { return _obj; } 2134 int flag() const { return _flag; } 2135 LIR_Opr tmp() const { return _tmp; } 2136 bool not_null() const { return _not_null; } 2137 2138 virtual void emit_code(LIR_Assembler* masm); 2139 virtual LIR_OpProfileInlineType* as_OpProfileInlineType() { return this; } 2140 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 2141 }; 2142 2143 class LIR_InsertionBuffer; 2144 2145 //--------------------------------LIR_List--------------------------------------------------- 2146 // Maintains a list of LIR instructions (one instance of LIR_List per basic block) 2147 // The LIR instructions are appended by the LIR_List class itself; 2148 // 2149 // Notes: 2150 // - all offsets are(should be) in bytes 2151 // - local positions are specified with an offset, with offset 0 being local 0 2152 2153 class LIR_List: public CompilationResourceObj { 2154 private: 2155 LIR_OpList _operations; 2156 2157 Compilation* _compilation; 2158 #ifndef PRODUCT 2159 BlockBegin* _block; 2160 #endif 2161 #ifdef ASSERT 2162 const char * _file; 2163 int _line; 2164 #endif 2165 2166 public: 2167 void append(LIR_Op* op) { 2168 if (op->source() == NULL) 2169 op->set_source(_compilation->current_instruction()); 2170 #ifndef PRODUCT 2171 if (PrintIRWithLIR) { 2172 _compilation->maybe_print_current_instruction(); 2173 op->print(); tty->cr(); 2174 } 2175 #endif // PRODUCT 2176 2177 _operations.append(op); 2178 2179 #ifdef ASSERT 2180 op->verify(); 2181 op->set_file_and_line(_file, _line); 2182 _file = NULL; 2183 _line = 0; 2184 #endif 2185 } 2186 2187 LIR_List(Compilation* compilation, BlockBegin* block = NULL); 2188 2189 #ifdef ASSERT 2190 void set_file_and_line(const char * file, int line); 2191 #endif 2192 2193 //---------- accessors --------------- 2194 LIR_OpList* instructions_list() { return &_operations; } 2195 int length() const { return _operations.length(); } 2196 LIR_Op* at(int i) const { return _operations.at(i); } 2197 2198 NOT_PRODUCT(BlockBegin* block() const { return _block; }); 2199 2200 // insert LIR_Ops in buffer to right places in LIR_List 2201 void append(LIR_InsertionBuffer* buffer); 2202 2203 //---------- mutators --------------- 2204 void insert_before(int i, LIR_List* op_list) { _operations.insert_before(i, op_list->instructions_list()); } 2205 void insert_before(int i, LIR_Op* op) { _operations.insert_before(i, op); } 2206 void remove_at(int i) { _operations.remove_at(i); } 2207 2208 //---------- printing ------------- 2209 void print_instructions() PRODUCT_RETURN; 2210 2211 2212 //---------- instructions ------------- 2213 void call_opt_virtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result, 2214 address dest, LIR_OprList* arguments, 2215 CodeEmitInfo* info) { 2216 append(new LIR_OpJavaCall(lir_optvirtual_call, method, receiver, result, dest, arguments, info)); 2217 } 2218 void call_static(ciMethod* method, LIR_Opr result, 2219 address dest, LIR_OprList* arguments, CodeEmitInfo* info) { 2220 append(new LIR_OpJavaCall(lir_static_call, method, LIR_OprFact::illegalOpr, result, dest, arguments, info)); 2221 } 2222 void call_icvirtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result, 2223 address dest, LIR_OprList* arguments, CodeEmitInfo* info) { 2224 append(new LIR_OpJavaCall(lir_icvirtual_call, method, receiver, result, dest, arguments, info)); 2225 } 2226 void call_dynamic(ciMethod* method, LIR_Opr receiver, LIR_Opr result, 2227 address dest, LIR_OprList* arguments, CodeEmitInfo* info) { 2228 append(new LIR_OpJavaCall(lir_dynamic_call, method, receiver, result, dest, arguments, info)); 2229 } 2230 2231 void get_thread(LIR_Opr result) { append(new LIR_Op0(lir_get_thread, result)); } 2232 void membar() { append(new LIR_Op0(lir_membar)); } 2233 void membar_acquire() { append(new LIR_Op0(lir_membar_acquire)); } 2234 void membar_release() { append(new LIR_Op0(lir_membar_release)); } 2235 void membar_loadload() { append(new LIR_Op0(lir_membar_loadload)); } 2236 void membar_storestore() { append(new LIR_Op0(lir_membar_storestore)); } 2237 void membar_loadstore() { append(new LIR_Op0(lir_membar_loadstore)); } 2238 void membar_storeload() { append(new LIR_Op0(lir_membar_storeload)); } 2239 2240 void nop() { append(new LIR_Op0(lir_nop)); } 2241 2242 void std_entry(LIR_Opr receiver) { append(new LIR_Op0(lir_std_entry, receiver)); } 2243 void osr_entry(LIR_Opr osrPointer) { append(new LIR_Op0(lir_osr_entry, osrPointer)); } 2244 2245 void on_spin_wait() { append(new LIR_Op0(lir_on_spin_wait)); } 2246 2247 void branch_destination(Label* lbl) { append(new LIR_OpLabel(lbl)); } 2248 2249 void leal(LIR_Opr from, LIR_Opr result_reg, LIR_PatchCode patch_code = lir_patch_none, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_leal, from, result_reg, T_ILLEGAL, patch_code, info)); } 2250 2251 // result is a stack location for old backend and vreg for UseLinearScan 2252 // stack_loc_temp is an illegal register for old backend 2253 void roundfp(LIR_Opr reg, LIR_Opr stack_loc_temp, LIR_Opr result) { append(new LIR_OpRoundFP(reg, stack_loc_temp, result)); } 2254 void move(LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); } 2255 void move(LIR_Address* src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, src->type(), lir_patch_none, info)); } 2256 void move(LIR_Opr src, LIR_Address* dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), dst->type(), lir_patch_none, info)); } 2257 void move_wide(LIR_Address* src, LIR_Opr dst, CodeEmitInfo* info = NULL) { 2258 if (UseCompressedOops) { 2259 append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, src->type(), lir_patch_none, info, lir_move_wide)); 2260 } else { 2261 move(src, dst, info); 2262 } 2263 } 2264 void move_wide(LIR_Opr src, LIR_Address* dst, CodeEmitInfo* info = NULL) { 2265 if (UseCompressedOops) { 2266 append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), dst->type(), lir_patch_none, info, lir_move_wide)); 2267 } else { 2268 move(src, dst, info); 2269 } 2270 } 2271 void volatile_move(LIR_Opr src, LIR_Opr dst, BasicType type, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none) { append(new LIR_Op1(lir_move, src, dst, type, patch_code, info, lir_move_volatile)); } 2272 2273 void oop2reg (jobject o, LIR_Opr reg) { assert(reg->type() == T_OBJECT, "bad reg"); append(new LIR_Op1(lir_move, LIR_OprFact::oopConst(o), reg)); } 2274 void oop2reg_patch(jobject o, LIR_Opr reg, CodeEmitInfo* info); 2275 2276 void metadata2reg (Metadata* o, LIR_Opr reg) { assert(reg->type() == T_METADATA, "bad reg"); append(new LIR_Op1(lir_move, LIR_OprFact::metadataConst(o), reg)); } 2277 void klass2reg_patch(Metadata* o, LIR_Opr reg, CodeEmitInfo* info); 2278 2279 void safepoint(LIR_Opr tmp, CodeEmitInfo* info) { append(new LIR_Op1(lir_safepoint, tmp, info)); } 2280 void return_op(LIR_Opr result) { append(new LIR_OpReturn(result)); } 2281 2282 void convert(Bytecodes::Code code, LIR_Opr left, LIR_Opr dst, ConversionStub* stub = NULL/*, bool is_32bit = false*/) { append(new LIR_OpConvert(code, left, dst, stub)); } 2283 2284 void logical_and (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_and, left, right, dst)); } 2285 void logical_or (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_or, left, right, dst)); } 2286 void logical_xor (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_xor, left, right, dst)); } 2287 2288 void null_check(LIR_Opr opr, CodeEmitInfo* info, bool deoptimize_on_null = false); 2289 void throw_exception(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) { 2290 append(new LIR_Op2(lir_throw, exceptionPC, exceptionOop, LIR_OprFact::illegalOpr, info)); 2291 } 2292 void unwind_exception(LIR_Opr exceptionOop) { 2293 append(new LIR_Op1(lir_unwind, exceptionOop)); 2294 } 2295 2296 void push(LIR_Opr opr) { append(new LIR_Op1(lir_push, opr)); } 2297 void pop(LIR_Opr reg) { append(new LIR_Op1(lir_pop, reg)); } 2298 2299 void cmp(LIR_Condition condition, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info = NULL) { 2300 append(new LIR_Op2(lir_cmp, condition, left, right, info)); 2301 } 2302 void cmp(LIR_Condition condition, LIR_Opr left, int right, CodeEmitInfo* info = NULL) { 2303 cmp(condition, left, LIR_OprFact::intConst(right), info); 2304 } 2305 2306 void cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info); 2307 void cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Address* addr, CodeEmitInfo* info); 2308 2309 void cmove(LIR_Condition condition, LIR_Opr src1, LIR_Opr src2, LIR_Opr dst, BasicType type) { 2310 append(new LIR_Op2(lir_cmove, condition, src1, src2, dst, type)); 2311 } 2312 2313 void cas_long(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value, 2314 LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr); 2315 void cas_obj(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value, 2316 LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr); 2317 void cas_int(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value, 2318 LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr); 2319 2320 void abs (LIR_Opr from, LIR_Opr to, LIR_Opr tmp) { append(new LIR_Op2(lir_abs , from, tmp, to)); } 2321 void negate(LIR_Opr from, LIR_Opr to, LIR_Opr tmp = LIR_OprFact::illegalOpr) { append(new LIR_Op2(lir_neg, from, tmp, to)); } 2322 void sqrt(LIR_Opr from, LIR_Opr to, LIR_Opr tmp) { append(new LIR_Op2(lir_sqrt, from, tmp, to)); } 2323 void fmad(LIR_Opr from, LIR_Opr from1, LIR_Opr from2, LIR_Opr to) { append(new LIR_Op3(lir_fmad, from, from1, from2, to)); } 2324 void fmaf(LIR_Opr from, LIR_Opr from1, LIR_Opr from2, LIR_Opr to) { append(new LIR_Op3(lir_fmaf, from, from1, from2, to)); } 2325 void log10 (LIR_Opr from, LIR_Opr to, LIR_Opr tmp) { append(new LIR_Op2(lir_log10, from, LIR_OprFact::illegalOpr, to, tmp)); } 2326 void tan (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_tan , from, tmp1, to, tmp2)); } 2327 2328 void add (LIR_Opr left, LIR_Opr right, LIR_Opr res) { append(new LIR_Op2(lir_add, left, right, res)); } 2329 void sub (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL) { append(new LIR_Op2(lir_sub, left, right, res, info)); } 2330 void mul (LIR_Opr left, LIR_Opr right, LIR_Opr res) { append(new LIR_Op2(lir_mul, left, right, res)); } 2331 void mul (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_mul, left, right, res, tmp)); } 2332 void div (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL) { append(new LIR_Op2(lir_div, left, right, res, info)); } 2333 void div (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_div, left, right, res, tmp)); } 2334 void rem (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL) { append(new LIR_Op2(lir_rem, left, right, res, info)); } 2335 2336 void volatile_load_mem_reg(LIR_Address* address, LIR_Opr dst, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none); 2337 void volatile_load_unsafe_reg(LIR_Opr base, LIR_Opr offset, LIR_Opr dst, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code); 2338 2339 void load(LIR_Address* addr, LIR_Opr src, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none); 2340 2341 void store_mem_int(jint v, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none); 2342 void store_mem_oop(jobject o, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none); 2343 void store(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none); 2344 void volatile_store_mem_reg(LIR_Opr src, LIR_Address* address, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none); 2345 void volatile_store_unsafe_reg(LIR_Opr src, LIR_Opr base, LIR_Opr offset, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code); 2346 2347 void idiv(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info); 2348 void idiv(LIR_Opr left, int right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info); 2349 void irem(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info); 2350 void irem(LIR_Opr left, int right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info); 2351 2352 void allocate_object(LIR_Opr dst, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, int header_size, int object_size, LIR_Opr klass, bool init_check, CodeStub* stub); 2353 void allocate_array(LIR_Opr dst, LIR_Opr len, LIR_Opr t1,LIR_Opr t2, LIR_Opr t3,LIR_Opr t4, BasicType type, LIR_Opr klass, CodeStub* stub); 2354 2355 // jump is an unconditional branch 2356 void jump(BlockBegin* block) { 2357 append(new LIR_OpBranch(lir_cond_always, block)); 2358 } 2359 void jump(CodeStub* stub) { 2360 append(new LIR_OpBranch(lir_cond_always, stub)); 2361 } 2362 void branch(LIR_Condition cond, Label* lbl) { 2363 append(new LIR_OpBranch(cond, lbl)); 2364 } 2365 // Should not be used for fp comparisons 2366 void branch(LIR_Condition cond, BlockBegin* block) { 2367 append(new LIR_OpBranch(cond, block)); 2368 } 2369 // Should not be used for fp comparisons 2370 void branch(LIR_Condition cond, CodeStub* stub) { 2371 append(new LIR_OpBranch(cond, stub)); 2372 } 2373 // Should only be used for fp comparisons 2374 void branch(LIR_Condition cond, BlockBegin* block, BlockBegin* unordered) { 2375 append(new LIR_OpBranch(cond, block, unordered)); 2376 } 2377 2378 void shift_left(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp); 2379 void shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp); 2380 void unsigned_shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp); 2381 2382 void shift_left(LIR_Opr value, int count, LIR_Opr dst) { shift_left(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); } 2383 void shift_right(LIR_Opr value, int count, LIR_Opr dst) { shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); } 2384 void unsigned_shift_right(LIR_Opr value, int count, LIR_Opr dst) { unsigned_shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); } 2385 2386 void lcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_cmp_l2i, left, right, dst)); } 2387 void fcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst, bool is_unordered_less); 2388 2389 void call_runtime_leaf(address routine, LIR_Opr tmp, LIR_Opr result, LIR_OprList* arguments) { 2390 append(new LIR_OpRTCall(routine, tmp, result, arguments)); 2391 } 2392 2393 void call_runtime(address routine, LIR_Opr tmp, LIR_Opr result, 2394 LIR_OprList* arguments, CodeEmitInfo* info) { 2395 append(new LIR_OpRTCall(routine, tmp, result, arguments, info)); 2396 } 2397 2398 void load_stack_address_monitor(int monitor_ix, LIR_Opr dst) { append(new LIR_Op1(lir_monaddr, LIR_OprFact::intConst(monitor_ix), dst)); } 2399 void unlock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub); 2400 void lock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info, CodeStub* throw_imse_stub=NULL); 2401 2402 void breakpoint() { append(new LIR_Op0(lir_breakpoint)); } 2403 2404 void arraycopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp, ciArrayKlass* expected_type, int flags, CodeEmitInfo* info) { append(new LIR_OpArrayCopy(src, src_pos, dst, dst_pos, length, tmp, expected_type, flags, info)); } 2405 2406 void update_crc32(LIR_Opr crc, LIR_Opr val, LIR_Opr res) { append(new LIR_OpUpdateCRC32(crc, val, res)); } 2407 2408 void instanceof(LIR_Opr result, LIR_Opr object, ciKlass* klass, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, CodeEmitInfo* info_for_patch, ciMethod* profiled_method, int profiled_bci); 2409 void store_check(LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception, ciMethod* profiled_method, int profiled_bci); 2410 void check_flattened_array(LIR_Opr array, LIR_Opr value, LIR_Opr tmp, CodeStub* stub); 2411 void check_null_free_array(LIR_Opr array, LIR_Opr tmp); 2412 void substitutability_check(LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr equal_result, LIR_Opr not_equal_result, 2413 LIR_Opr tmp1, LIR_Opr tmp2, 2414 ciKlass* left_klass, ciKlass* right_klass, LIR_Opr left_klass_op, LIR_Opr right_klass_op, 2415 CodeEmitInfo* info, CodeStub* stub); 2416 2417 void checkcast (LIR_Opr result, LIR_Opr object, ciKlass* klass, 2418 LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, 2419 CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub, 2420 ciMethod* profiled_method, int profiled_bci, bool is_null_free); 2421 // MethodData* profiling 2422 void profile_call(ciMethod* method, int bci, ciMethod* callee, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* cha_klass) { 2423 append(new LIR_OpProfileCall(method, bci, callee, mdo, recv, t1, cha_klass)); 2424 } 2425 void profile_type(LIR_Address* mdp, LIR_Opr obj, ciKlass* exact_klass, intptr_t current_klass, LIR_Opr tmp, bool not_null, bool no_conflict) { 2426 append(new LIR_OpProfileType(LIR_OprFact::address(mdp), obj, exact_klass, current_klass, tmp, not_null, no_conflict)); 2427 } 2428 void profile_inline_type(LIR_Address* mdp, LIR_Opr obj, int flag, LIR_Opr tmp, bool not_null) { 2429 append(new LIR_OpProfileInlineType(LIR_OprFact::address(mdp), obj, flag, tmp, not_null)); 2430 } 2431 2432 void xadd(LIR_Opr src, LIR_Opr add, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_xadd, src, add, res, tmp)); } 2433 void xchg(LIR_Opr src, LIR_Opr set, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_xchg, src, set, res, tmp)); } 2434 2435 void load_klass(LIR_Opr obj, LIR_Opr result, CodeEmitInfo* info) { append(new LIR_OpLoadKlass(obj, result, info)); } 2436 2437 #ifdef ASSERT 2438 void lir_assert(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, const char* msg, bool halt) { append(new LIR_OpAssert(condition, opr1, opr2, msg, halt)); } 2439 #endif 2440 }; 2441 2442 void print_LIR(BlockList* blocks); 2443 2444 class LIR_InsertionBuffer : public CompilationResourceObj { 2445 private: 2446 LIR_List* _lir; // the lir list where ops of this buffer should be inserted later (NULL when uninitialized) 2447 2448 // list of insertion points. index and count are stored alternately: 2449 // _index_and_count[i * 2]: the index into lir list where "count" ops should be inserted 2450 // _index_and_count[i * 2 + 1]: the number of ops to be inserted at index 2451 intStack _index_and_count; 2452 2453 // the LIR_Ops to be inserted 2454 LIR_OpList _ops; 2455 2456 void append_new(int index, int count) { _index_and_count.append(index); _index_and_count.append(count); } 2457 void set_index_at(int i, int value) { _index_and_count.at_put((i << 1), value); } 2458 void set_count_at(int i, int value) { _index_and_count.at_put((i << 1) + 1, value); } 2459 2460 #ifdef ASSERT 2461 void verify(); 2462 #endif 2463 public: 2464 LIR_InsertionBuffer() : _lir(NULL), _index_and_count(8), _ops(8) { } 2465 2466 // must be called before using the insertion buffer 2467 void init(LIR_List* lir) { assert(!initialized(), "already initialized"); _lir = lir; _index_and_count.clear(); _ops.clear(); } 2468 bool initialized() const { return _lir != NULL; } 2469 // called automatically when the buffer is appended to the LIR_List 2470 void finish() { _lir = NULL; } 2471 2472 // accessors 2473 LIR_List* lir_list() const { return _lir; } 2474 int number_of_insertion_points() const { return _index_and_count.length() >> 1; } 2475 int index_at(int i) const { return _index_and_count.at((i << 1)); } 2476 int count_at(int i) const { return _index_and_count.at((i << 1) + 1); } 2477 2478 int number_of_ops() const { return _ops.length(); } 2479 LIR_Op* op_at(int i) const { return _ops.at(i); } 2480 2481 // append an instruction to the buffer 2482 void append(int index, LIR_Op* op); 2483 2484 // instruction 2485 void move(int index, LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(index, new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); } 2486 }; 2487 2488 2489 // 2490 // LIR_OpVisitState is used for manipulating LIR_Ops in an abstract way. 2491 // Calling a LIR_Op's visit function with a LIR_OpVisitState causes 2492 // information about the input, output and temporaries used by the 2493 // op to be recorded. It also records whether the op has call semantics 2494 // and also records all the CodeEmitInfos used by this op. 2495 // 2496 2497 2498 class LIR_OpVisitState: public StackObj { 2499 public: 2500 typedef enum { inputMode, firstMode = inputMode, tempMode, outputMode, numModes, invalidMode = -1 } OprMode; 2501 2502 enum { 2503 maxNumberOfOperands = 20, 2504 maxNumberOfInfos = 4 2505 }; 2506 2507 private: 2508 LIR_Op* _op; 2509 2510 // optimization: the operands and infos are not stored in a variable-length 2511 // list, but in a fixed-size array to save time of size checks and resizing 2512 int _oprs_len[numModes]; 2513 LIR_Opr* _oprs_new[numModes][maxNumberOfOperands]; 2514 int _info_len; 2515 CodeEmitInfo* _info_new[maxNumberOfInfos]; 2516 2517 bool _has_call; 2518 bool _has_slow_case; 2519 2520 2521 // only include register operands 2522 // addresses are decomposed to the base and index registers 2523 // constants and stack operands are ignored 2524 void append(LIR_Opr& opr, OprMode mode) { 2525 assert(opr->is_valid(), "should not call this otherwise"); 2526 assert(mode >= 0 && mode < numModes, "bad mode"); 2527 2528 if (opr->is_register()) { 2529 assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow"); 2530 _oprs_new[mode][_oprs_len[mode]++] = &opr; 2531 2532 } else if (opr->is_pointer()) { 2533 LIR_Address* address = opr->as_address_ptr(); 2534 if (address != NULL) { 2535 // special handling for addresses: add base and index register of the address 2536 // both are always input operands or temp if we want to extend 2537 // their liveness! 2538 if (mode == outputMode) { 2539 mode = inputMode; 2540 } 2541 assert (mode == inputMode || mode == tempMode, "input or temp only for addresses"); 2542 if (address->_base->is_valid()) { 2543 assert(address->_base->is_register(), "must be"); 2544 assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow"); 2545 _oprs_new[mode][_oprs_len[mode]++] = &address->_base; 2546 } 2547 if (address->_index->is_valid()) { 2548 assert(address->_index->is_register(), "must be"); 2549 assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow"); 2550 _oprs_new[mode][_oprs_len[mode]++] = &address->_index; 2551 } 2552 2553 } else { 2554 assert(opr->is_constant(), "constant operands are not processed"); 2555 } 2556 } else { 2557 assert(opr->is_stack(), "stack operands are not processed"); 2558 } 2559 } 2560 2561 void append(CodeEmitInfo* info) { 2562 assert(info != NULL, "should not call this otherwise"); 2563 assert(_info_len < maxNumberOfInfos, "array overflow"); 2564 _info_new[_info_len++] = info; 2565 } 2566 2567 public: 2568 LIR_OpVisitState() { reset(); } 2569 2570 LIR_Op* op() const { return _op; } 2571 void set_op(LIR_Op* op) { reset(); _op = op; } 2572 2573 bool has_call() const { return _has_call; } 2574 bool has_slow_case() const { return _has_slow_case; } 2575 2576 void reset() { 2577 _op = NULL; 2578 _has_call = false; 2579 _has_slow_case = false; 2580 2581 _oprs_len[inputMode] = 0; 2582 _oprs_len[tempMode] = 0; 2583 _oprs_len[outputMode] = 0; 2584 _info_len = 0; 2585 } 2586 2587 2588 int opr_count(OprMode mode) const { 2589 assert(mode >= 0 && mode < numModes, "bad mode"); 2590 return _oprs_len[mode]; 2591 } 2592 2593 LIR_Opr opr_at(OprMode mode, int index) const { 2594 assert(mode >= 0 && mode < numModes, "bad mode"); 2595 assert(index >= 0 && index < _oprs_len[mode], "index out of bound"); 2596 return *_oprs_new[mode][index]; 2597 } 2598 2599 void set_opr_at(OprMode mode, int index, LIR_Opr opr) const { 2600 assert(mode >= 0 && mode < numModes, "bad mode"); 2601 assert(index >= 0 && index < _oprs_len[mode], "index out of bound"); 2602 *_oprs_new[mode][index] = opr; 2603 } 2604 2605 int info_count() const { 2606 return _info_len; 2607 } 2608 2609 CodeEmitInfo* info_at(int index) const { 2610 assert(index < _info_len, "index out of bounds"); 2611 return _info_new[index]; 2612 } 2613 2614 XHandlers* all_xhandler(); 2615 2616 // collects all register operands of the instruction 2617 void visit(LIR_Op* op); 2618 2619 #ifdef ASSERT 2620 // check that an operation has no operands 2621 bool no_operands(LIR_Op* op); 2622 #endif 2623 2624 // LIR_Op visitor functions use these to fill in the state 2625 void do_input(LIR_Opr& opr) { append(opr, LIR_OpVisitState::inputMode); } 2626 void do_output(LIR_Opr& opr) { append(opr, LIR_OpVisitState::outputMode); } 2627 void do_temp(LIR_Opr& opr) { append(opr, LIR_OpVisitState::tempMode); } 2628 void do_info(CodeEmitInfo* info) { append(info); } 2629 2630 void do_stub(CodeStub* stub); 2631 void do_call() { _has_call = true; } 2632 void do_slow_case() { _has_slow_case = true; } 2633 void do_slow_case(CodeEmitInfo* info) { 2634 _has_slow_case = true; 2635 append(info); 2636 } 2637 }; 2638 2639 2640 inline LIR_Opr LIR_Opr::illegalOpr() { return LIR_OprFact::illegalOpr; }; 2641 2642 inline LIR_Opr LIR_Opr::nullOpr() { return LIR_OprFact::nullOpr; }; 2643 2644 #endif // SHARE_C1_C1_LIR_HPP