1 /*
   2  * Copyright (c) 2005, 2023, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_Defs.hpp"
  28 #include "c1/c1_FrameMap.hpp"
  29 #include "c1/c1_Instruction.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_LIRGenerator.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArrayKlass.hpp"
  34 #include "ci/ciInstance.hpp"
  35 #include "ci/ciObjArray.hpp"
  36 #include "ci/ciUtilities.hpp"
  37 #include "compiler/compilerDefinitions.inline.hpp"
  38 #include "gc/shared/barrierSet.hpp"
  39 #include "gc/shared/c1/barrierSetC1.hpp"
  40 #include "oops/klass.inline.hpp"
  41 #include "oops/methodCounters.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 #include "runtime/stubRoutines.hpp"
  44 #include "runtime/vm_version.hpp"
  45 #include "utilities/bitMap.inline.hpp"
  46 #include "utilities/macros.hpp"
  47 #include "utilities/powerOfTwo.hpp"
  48 
  49 #ifdef ASSERT
  50 #define __ gen()->lir(__FILE__, __LINE__)->
  51 #else
  52 #define __ gen()->lir()->
  53 #endif
  54 
  55 #ifndef PATCHED_ADDR
  56 #define PATCHED_ADDR  (max_jint)
  57 #endif
  58 
  59 void PhiResolverState::reset() {
  60   _virtual_operands.clear();
  61   _other_operands.clear();
  62   _vreg_table.clear();
  63 }
  64 
  65 
  66 //--------------------------------------------------------------
  67 // PhiResolver
  68 
  69 // Resolves cycles:
  70 //
  71 //  r1 := r2  becomes  temp := r1
  72 //  r2 := r1           r1 := r2
  73 //                     r2 := temp
  74 // and orders moves:
  75 //
  76 //  r2 := r3  becomes  r1 := r2
  77 //  r1 := r2           r2 := r3
  78 
  79 PhiResolver::PhiResolver(LIRGenerator* gen)
  80  : _gen(gen)
  81  , _state(gen->resolver_state())
  82  , _loop(nullptr)
  83  , _temp(LIR_OprFact::illegalOpr)
  84 {
  85   // reinitialize the shared state arrays
  86   _state.reset();
  87 }
  88 
  89 
  90 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
  91   assert(src->is_valid(), "");
  92   assert(dest->is_valid(), "");
  93   __ move(src, dest);
  94 }
  95 
  96 
  97 void PhiResolver::move_temp_to(LIR_Opr dest) {
  98   assert(_temp->is_valid(), "");
  99   emit_move(_temp, dest);
 100   NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
 101 }
 102 
 103 
 104 void PhiResolver::move_to_temp(LIR_Opr src) {
 105   assert(_temp->is_illegal(), "");
 106   _temp = _gen->new_register(src->type());
 107   emit_move(src, _temp);
 108 }
 109 
 110 
 111 // Traverse assignment graph in depth first order and generate moves in post order
 112 // ie. two assignments: b := c, a := b start with node c:
 113 // Call graph: move(null, c) -> move(c, b) -> move(b, a)
 114 // Generates moves in this order: move b to a and move c to b
 115 // ie. cycle a := b, b := a start with node a
 116 // Call graph: move(null, a) -> move(a, b) -> move(b, a)
 117 // Generates moves in this order: move b to temp, move a to b, move temp to a
 118 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
 119   if (!dest->visited()) {
 120     dest->set_visited();
 121     for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
 122       move(dest, dest->destination_at(i));
 123     }
 124   } else if (!dest->start_node()) {
 125     // cylce in graph detected
 126     assert(_loop == nullptr, "only one loop valid!");
 127     _loop = dest;
 128     move_to_temp(src->operand());
 129     return;
 130   } // else dest is a start node
 131 
 132   if (!dest->assigned()) {
 133     if (_loop == dest) {
 134       move_temp_to(dest->operand());
 135       dest->set_assigned();
 136     } else if (src != nullptr) {
 137       emit_move(src->operand(), dest->operand());
 138       dest->set_assigned();
 139     }
 140   }
 141 }
 142 
 143 
 144 PhiResolver::~PhiResolver() {
 145   int i;
 146   // resolve any cycles in moves from and to virtual registers
 147   for (i = virtual_operands().length() - 1; i >= 0; i --) {
 148     ResolveNode* node = virtual_operands().at(i);
 149     if (!node->visited()) {
 150       _loop = nullptr;
 151       move(nullptr, node);
 152       node->set_start_node();
 153       assert(_temp->is_illegal(), "move_temp_to() call missing");
 154     }
 155   }
 156 
 157   // generate move for move from non virtual register to abitrary destination
 158   for (i = other_operands().length() - 1; i >= 0; i --) {
 159     ResolveNode* node = other_operands().at(i);
 160     for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
 161       emit_move(node->operand(), node->destination_at(j)->operand());
 162     }
 163   }
 164 }
 165 
 166 
 167 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
 168   ResolveNode* node;
 169   if (opr->is_virtual()) {
 170     int vreg_num = opr->vreg_number();
 171     node = vreg_table().at_grow(vreg_num, nullptr);
 172     assert(node == nullptr || node->operand() == opr, "");
 173     if (node == nullptr) {
 174       node = new ResolveNode(opr);
 175       vreg_table().at_put(vreg_num, node);
 176     }
 177     // Make sure that all virtual operands show up in the list when
 178     // they are used as the source of a move.
 179     if (source && !virtual_operands().contains(node)) {
 180       virtual_operands().append(node);
 181     }
 182   } else {
 183     assert(source, "");
 184     node = new ResolveNode(opr);
 185     other_operands().append(node);
 186   }
 187   return node;
 188 }
 189 
 190 
 191 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
 192   assert(dest->is_virtual(), "");
 193   // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
 194   assert(src->is_valid(), "");
 195   assert(dest->is_valid(), "");
 196   ResolveNode* source = source_node(src);
 197   source->append(destination_node(dest));
 198 }
 199 
 200 
 201 //--------------------------------------------------------------
 202 // LIRItem
 203 
 204 void LIRItem::set_result(LIR_Opr opr) {
 205   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
 206   value()->set_operand(opr);
 207 
 208   if (opr->is_virtual()) {
 209     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), nullptr);
 210   }
 211 
 212   _result = opr;
 213 }
 214 
 215 void LIRItem::load_item() {
 216   if (result()->is_illegal()) {
 217     // update the items result
 218     _result = value()->operand();
 219   }
 220   if (!result()->is_register()) {
 221     LIR_Opr reg = _gen->new_register(value()->type());
 222     __ move(result(), reg);
 223     if (result()->is_constant()) {
 224       _result = reg;
 225     } else {
 226       set_result(reg);
 227     }
 228   }
 229 }
 230 
 231 
 232 void LIRItem::load_for_store(BasicType type) {
 233   if (_gen->can_store_as_constant(value(), type)) {
 234     _result = value()->operand();
 235     if (!_result->is_constant()) {
 236       _result = LIR_OprFact::value_type(value()->type());
 237     }
 238   } else if (type == T_BYTE || type == T_BOOLEAN) {
 239     load_byte_item();
 240   } else {
 241     load_item();
 242   }
 243 }
 244 
 245 void LIRItem::load_item_force(LIR_Opr reg) {
 246   LIR_Opr r = result();
 247   if (r != reg) {
 248 #if !defined(ARM) && !defined(E500V2)
 249     if (r->type() != reg->type()) {
 250       // moves between different types need an intervening spill slot
 251       r = _gen->force_to_spill(r, reg->type());
 252     }
 253 #endif
 254     __ move(r, reg);
 255     _result = reg;
 256   }
 257 }
 258 
 259 ciObject* LIRItem::get_jobject_constant() const {
 260   ObjectType* oc = type()->as_ObjectType();
 261   if (oc) {
 262     return oc->constant_value();
 263   }
 264   return nullptr;
 265 }
 266 
 267 
 268 jint LIRItem::get_jint_constant() const {
 269   assert(is_constant() && value() != nullptr, "");
 270   assert(type()->as_IntConstant() != nullptr, "type check");
 271   return type()->as_IntConstant()->value();
 272 }
 273 
 274 
 275 jint LIRItem::get_address_constant() const {
 276   assert(is_constant() && value() != nullptr, "");
 277   assert(type()->as_AddressConstant() != nullptr, "type check");
 278   return type()->as_AddressConstant()->value();
 279 }
 280 
 281 
 282 jfloat LIRItem::get_jfloat_constant() const {
 283   assert(is_constant() && value() != nullptr, "");
 284   assert(type()->as_FloatConstant() != nullptr, "type check");
 285   return type()->as_FloatConstant()->value();
 286 }
 287 
 288 
 289 jdouble LIRItem::get_jdouble_constant() const {
 290   assert(is_constant() && value() != nullptr, "");
 291   assert(type()->as_DoubleConstant() != nullptr, "type check");
 292   return type()->as_DoubleConstant()->value();
 293 }
 294 
 295 
 296 jlong LIRItem::get_jlong_constant() const {
 297   assert(is_constant() && value() != nullptr, "");
 298   assert(type()->as_LongConstant() != nullptr, "type check");
 299   return type()->as_LongConstant()->value();
 300 }
 301 
 302 
 303 
 304 //--------------------------------------------------------------
 305 
 306 
 307 void LIRGenerator::block_do_prolog(BlockBegin* block) {
 308 #ifndef PRODUCT
 309   if (PrintIRWithLIR) {
 310     block->print();
 311   }
 312 #endif
 313 
 314   // set up the list of LIR instructions
 315   assert(block->lir() == nullptr, "LIR list already computed for this block");
 316   _lir = new LIR_List(compilation(), block);
 317   block->set_lir(_lir);
 318 
 319   __ branch_destination(block->label());
 320 
 321   if (LIRTraceExecution &&
 322       Compilation::current()->hir()->start()->block_id() != block->block_id() &&
 323       !block->is_set(BlockBegin::exception_entry_flag)) {
 324     assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
 325     trace_block_entry(block);
 326   }
 327 }
 328 
 329 
 330 void LIRGenerator::block_do_epilog(BlockBegin* block) {
 331 #ifndef PRODUCT
 332   if (PrintIRWithLIR) {
 333     tty->cr();
 334   }
 335 #endif
 336 
 337   // LIR_Opr for unpinned constants shouldn't be referenced by other
 338   // blocks so clear them out after processing the block.
 339   for (int i = 0; i < _unpinned_constants.length(); i++) {
 340     _unpinned_constants.at(i)->clear_operand();
 341   }
 342   _unpinned_constants.trunc_to(0);
 343 
 344   // clear our any registers for other local constants
 345   _constants.trunc_to(0);
 346   _reg_for_constants.trunc_to(0);
 347 }
 348 
 349 
 350 void LIRGenerator::block_do(BlockBegin* block) {
 351   CHECK_BAILOUT();
 352 
 353   block_do_prolog(block);
 354   set_block(block);
 355 
 356   for (Instruction* instr = block; instr != nullptr; instr = instr->next()) {
 357     if (instr->is_pinned()) do_root(instr);
 358   }
 359 
 360   set_block(nullptr);
 361   block_do_epilog(block);
 362 }
 363 
 364 
 365 //-------------------------LIRGenerator-----------------------------
 366 
 367 // This is where the tree-walk starts; instr must be root;
 368 void LIRGenerator::do_root(Value instr) {
 369   CHECK_BAILOUT();
 370 
 371   InstructionMark im(compilation(), instr);
 372 
 373   assert(instr->is_pinned(), "use only with roots");
 374   assert(instr->subst() == instr, "shouldn't have missed substitution");
 375 
 376   instr->visit(this);
 377 
 378   assert(!instr->has_uses() || instr->operand()->is_valid() ||
 379          instr->as_Constant() != nullptr || bailed_out(), "invalid item set");
 380 }
 381 
 382 
 383 // This is called for each node in tree; the walk stops if a root is reached
 384 void LIRGenerator::walk(Value instr) {
 385   InstructionMark im(compilation(), instr);
 386   //stop walk when encounter a root
 387   if ((instr->is_pinned() && instr->as_Phi() == nullptr) || instr->operand()->is_valid()) {
 388     assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != nullptr, "this root has not yet been visited");
 389   } else {
 390     assert(instr->subst() == instr, "shouldn't have missed substitution");
 391     instr->visit(this);
 392     // assert(instr->use_count() > 0 || instr->as_Phi() != nullptr, "leaf instruction must have a use");
 393   }
 394 }
 395 
 396 
 397 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
 398   assert(state != nullptr, "state must be defined");
 399 
 400 #ifndef PRODUCT
 401   state->verify();
 402 #endif
 403 
 404   ValueStack* s = state;
 405   for_each_state(s) {
 406     if (s->kind() == ValueStack::EmptyExceptionState) {
 407       assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
 408       continue;
 409     }
 410 
 411     int index;
 412     Value value;
 413     for_each_stack_value(s, index, value) {
 414       assert(value->subst() == value, "missed substitution");
 415       if (!value->is_pinned() && value->as_Constant() == nullptr && value->as_Local() == nullptr) {
 416         walk(value);
 417         assert(value->operand()->is_valid(), "must be evaluated now");
 418       }
 419     }
 420 
 421     int bci = s->bci();
 422     IRScope* scope = s->scope();
 423     ciMethod* method = scope->method();
 424 
 425     MethodLivenessResult liveness = method->liveness_at_bci(bci);
 426     if (bci == SynchronizationEntryBCI) {
 427       if (x->as_ExceptionObject() || x->as_Throw()) {
 428         // all locals are dead on exit from the synthetic unlocker
 429         liveness.clear();
 430       } else {
 431         assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
 432       }
 433     }
 434     if (!liveness.is_valid()) {
 435       // Degenerate or breakpointed method.
 436       bailout("Degenerate or breakpointed method");
 437     } else {
 438       assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
 439       for_each_local_value(s, index, value) {
 440         assert(value->subst() == value, "missed substitution");
 441         if (liveness.at(index) && !value->type()->is_illegal()) {
 442           if (!value->is_pinned() && value->as_Constant() == nullptr && value->as_Local() == nullptr) {
 443             walk(value);
 444             assert(value->operand()->is_valid(), "must be evaluated now");
 445           }
 446         } else {
 447           // null out this local so that linear scan can assume that all non-null values are live.
 448           s->invalidate_local(index);
 449         }
 450       }
 451     }
 452   }
 453 
 454   return new CodeEmitInfo(state, ignore_xhandler ? nullptr : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
 455 }
 456 
 457 
 458 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
 459   return state_for(x, x->exception_state());
 460 }
 461 
 462 
 463 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) {
 464   /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if tiered compilation
 465    * is active and the class hasn't yet been resolved we need to emit a patch that resolves
 466    * the class. */
 467   if ((!CompilerConfig::is_c1_only_no_jvmci() && need_resolve) || !obj->is_loaded() || PatchALot) {
 468     assert(info != nullptr, "info must be set if class is not loaded");
 469     __ klass2reg_patch(nullptr, r, info);
 470   } else {
 471     // no patching needed
 472     __ metadata2reg(obj->constant_encoding(), r);
 473   }
 474 }
 475 
 476 
 477 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
 478                                     CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
 479   CodeStub* stub = new RangeCheckStub(range_check_info, index, array);
 480   if (index->is_constant()) {
 481     cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
 482                 index->as_jint(), null_check_info);
 483     __ branch(lir_cond_belowEqual, stub); // forward branch
 484   } else {
 485     cmp_reg_mem(lir_cond_aboveEqual, index, array,
 486                 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
 487     __ branch(lir_cond_aboveEqual, stub); // forward branch
 488   }
 489 }
 490 
 491 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp_op, CodeEmitInfo* info) {
 492   LIR_Opr result_op = result;
 493   LIR_Opr left_op   = left;
 494   LIR_Opr right_op  = right;
 495 
 496   if (two_operand_lir_form && left_op != result_op) {
 497     assert(right_op != result_op, "malformed");
 498     __ move(left_op, result_op);
 499     left_op = result_op;
 500   }
 501 
 502   switch(code) {
 503     case Bytecodes::_dadd:
 504     case Bytecodes::_fadd:
 505     case Bytecodes::_ladd:
 506     case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
 507     case Bytecodes::_fmul:
 508     case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
 509 
 510     case Bytecodes::_dmul:  __ mul(left_op, right_op, result_op, tmp_op); break;
 511 
 512     case Bytecodes::_imul:
 513       {
 514         bool did_strength_reduce = false;
 515 
 516         if (right->is_constant()) {
 517           jint c = right->as_jint();
 518           if (c > 0 && is_power_of_2(c)) {
 519             // do not need tmp here
 520             __ shift_left(left_op, exact_log2(c), result_op);
 521             did_strength_reduce = true;
 522           } else {
 523             did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
 524           }
 525         }
 526         // we couldn't strength reduce so just emit the multiply
 527         if (!did_strength_reduce) {
 528           __ mul(left_op, right_op, result_op);
 529         }
 530       }
 531       break;
 532 
 533     case Bytecodes::_dsub:
 534     case Bytecodes::_fsub:
 535     case Bytecodes::_lsub:
 536     case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
 537 
 538     case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
 539     // ldiv and lrem are implemented with a direct runtime call
 540 
 541     case Bytecodes::_ddiv: __ div(left_op, right_op, result_op, tmp_op); break;
 542 
 543     case Bytecodes::_drem:
 544     case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
 545 
 546     default: ShouldNotReachHere();
 547   }
 548 }
 549 
 550 
 551 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 552   arithmetic_op(code, result, left, right, tmp);
 553 }
 554 
 555 
 556 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
 557   arithmetic_op(code, result, left, right, LIR_OprFact::illegalOpr, info);
 558 }
 559 
 560 
 561 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 562   arithmetic_op(code, result, left, right, tmp);
 563 }
 564 
 565 
 566 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
 567 
 568   if (two_operand_lir_form && value != result_op
 569       // Only 32bit right shifts require two operand form on S390.
 570       S390_ONLY(&& (code == Bytecodes::_ishr || code == Bytecodes::_iushr))) {
 571     assert(count != result_op, "malformed");
 572     __ move(value, result_op);
 573     value = result_op;
 574   }
 575 
 576   assert(count->is_constant() || count->is_register(), "must be");
 577   switch(code) {
 578   case Bytecodes::_ishl:
 579   case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
 580   case Bytecodes::_ishr:
 581   case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
 582   case Bytecodes::_iushr:
 583   case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
 584   default: ShouldNotReachHere();
 585   }
 586 }
 587 
 588 
 589 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
 590   if (two_operand_lir_form && left_op != result_op) {
 591     assert(right_op != result_op, "malformed");
 592     __ move(left_op, result_op);
 593     left_op = result_op;
 594   }
 595 
 596   switch(code) {
 597     case Bytecodes::_iand:
 598     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
 599 
 600     case Bytecodes::_ior:
 601     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
 602 
 603     case Bytecodes::_ixor:
 604     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
 605 
 606     default: ShouldNotReachHere();
 607   }
 608 }
 609 
 610 
 611 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
 612   if (!GenerateSynchronizationCode) return;
 613   // for slow path, use debug info for state after successful locking
 614   CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
 615   __ load_stack_address_monitor(monitor_no, lock);
 616   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
 617   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
 618 }
 619 
 620 
 621 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
 622   if (!GenerateSynchronizationCode) return;
 623   // setup registers
 624   LIR_Opr hdr = lock;
 625   lock = new_hdr;
 626   CodeStub* slow_path = new MonitorExitStub(lock, LockingMode != LM_MONITOR, monitor_no);
 627   __ load_stack_address_monitor(monitor_no, lock);
 628   __ unlock_object(hdr, object, lock, scratch, slow_path);
 629 }
 630 
 631 #ifndef PRODUCT
 632 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
 633   if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
 634     tty->print_cr("   ###class not loaded at new bci %d", new_instance->printable_bci());
 635   } else if (PrintNotLoaded && (!CompilerConfig::is_c1_only_no_jvmci() && new_instance->is_unresolved())) {
 636     tty->print_cr("   ###class not resolved at new bci %d", new_instance->printable_bci());
 637   }
 638 }
 639 #endif
 640 
 641 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
 642   klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
 643   // If klass is not loaded we do not know if the klass has finalizers:
 644   if (UseFastNewInstance && klass->is_loaded()
 645       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
 646 
 647     Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
 648 
 649     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
 650 
 651     assert(klass->is_loaded(), "must be loaded");
 652     // allocate space for instance
 653     assert(klass->size_helper() > 0, "illegal instance size");
 654     const int instance_size = align_object_size(klass->size_helper());
 655     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
 656                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
 657   } else {
 658     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
 659     __ branch(lir_cond_always, slow_path);
 660     __ branch_destination(slow_path->continuation());
 661   }
 662 }
 663 
 664 
 665 static bool is_constant_zero(Instruction* inst) {
 666   IntConstant* c = inst->type()->as_IntConstant();
 667   if (c) {
 668     return (c->value() == 0);
 669   }
 670   return false;
 671 }
 672 
 673 
 674 static bool positive_constant(Instruction* inst) {
 675   IntConstant* c = inst->type()->as_IntConstant();
 676   if (c) {
 677     return (c->value() >= 0);
 678   }
 679   return false;
 680 }
 681 
 682 
 683 static ciArrayKlass* as_array_klass(ciType* type) {
 684   if (type != nullptr && type->is_array_klass() && type->is_loaded()) {
 685     return (ciArrayKlass*)type;
 686   } else {
 687     return nullptr;
 688   }
 689 }
 690 
 691 static ciType* phi_declared_type(Phi* phi) {
 692   ciType* t = phi->operand_at(0)->declared_type();
 693   if (t == nullptr) {
 694     return nullptr;
 695   }
 696   for(int i = 1; i < phi->operand_count(); i++) {
 697     if (t != phi->operand_at(i)->declared_type()) {
 698       return nullptr;
 699     }
 700   }
 701   return t;
 702 }
 703 
 704 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
 705   Instruction* src     = x->argument_at(0);
 706   Instruction* src_pos = x->argument_at(1);
 707   Instruction* dst     = x->argument_at(2);
 708   Instruction* dst_pos = x->argument_at(3);
 709   Instruction* length  = x->argument_at(4);
 710 
 711   // first try to identify the likely type of the arrays involved
 712   ciArrayKlass* expected_type = nullptr;
 713   bool is_exact = false, src_objarray = false, dst_objarray = false;
 714   {
 715     ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
 716     ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
 717     Phi* phi;
 718     if (src_declared_type == nullptr && (phi = src->as_Phi()) != nullptr) {
 719       src_declared_type = as_array_klass(phi_declared_type(phi));
 720     }
 721     ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
 722     ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
 723     if (dst_declared_type == nullptr && (phi = dst->as_Phi()) != nullptr) {
 724       dst_declared_type = as_array_klass(phi_declared_type(phi));
 725     }
 726 
 727     if (src_exact_type != nullptr && src_exact_type == dst_exact_type) {
 728       // the types exactly match so the type is fully known
 729       is_exact = true;
 730       expected_type = src_exact_type;
 731     } else if (dst_exact_type != nullptr && dst_exact_type->is_obj_array_klass()) {
 732       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
 733       ciArrayKlass* src_type = nullptr;
 734       if (src_exact_type != nullptr && src_exact_type->is_obj_array_klass()) {
 735         src_type = (ciArrayKlass*) src_exact_type;
 736       } else if (src_declared_type != nullptr && src_declared_type->is_obj_array_klass()) {
 737         src_type = (ciArrayKlass*) src_declared_type;
 738       }
 739       if (src_type != nullptr) {
 740         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
 741           is_exact = true;
 742           expected_type = dst_type;
 743         }
 744       }
 745     }
 746     // at least pass along a good guess
 747     if (expected_type == nullptr) expected_type = dst_exact_type;
 748     if (expected_type == nullptr) expected_type = src_declared_type;
 749     if (expected_type == nullptr) expected_type = dst_declared_type;
 750 
 751     src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
 752     dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
 753   }
 754 
 755   // if a probable array type has been identified, figure out if any
 756   // of the required checks for a fast case can be elided.
 757   int flags = LIR_OpArrayCopy::all_flags;
 758 
 759   if (!src_objarray)
 760     flags &= ~LIR_OpArrayCopy::src_objarray;
 761   if (!dst_objarray)
 762     flags &= ~LIR_OpArrayCopy::dst_objarray;
 763 
 764   if (!x->arg_needs_null_check(0))
 765     flags &= ~LIR_OpArrayCopy::src_null_check;
 766   if (!x->arg_needs_null_check(2))
 767     flags &= ~LIR_OpArrayCopy::dst_null_check;
 768 
 769 
 770   if (expected_type != nullptr) {
 771     Value length_limit = nullptr;
 772 
 773     IfOp* ifop = length->as_IfOp();
 774     if (ifop != nullptr) {
 775       // look for expressions like min(v, a.length) which ends up as
 776       //   x > y ? y : x  or  x >= y ? y : x
 777       if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
 778           ifop->x() == ifop->fval() &&
 779           ifop->y() == ifop->tval()) {
 780         length_limit = ifop->y();
 781       }
 782     }
 783 
 784     // try to skip null checks and range checks
 785     NewArray* src_array = src->as_NewArray();
 786     if (src_array != nullptr) {
 787       flags &= ~LIR_OpArrayCopy::src_null_check;
 788       if (length_limit != nullptr &&
 789           src_array->length() == length_limit &&
 790           is_constant_zero(src_pos)) {
 791         flags &= ~LIR_OpArrayCopy::src_range_check;
 792       }
 793     }
 794 
 795     NewArray* dst_array = dst->as_NewArray();
 796     if (dst_array != nullptr) {
 797       flags &= ~LIR_OpArrayCopy::dst_null_check;
 798       if (length_limit != nullptr &&
 799           dst_array->length() == length_limit &&
 800           is_constant_zero(dst_pos)) {
 801         flags &= ~LIR_OpArrayCopy::dst_range_check;
 802       }
 803     }
 804 
 805     // check from incoming constant values
 806     if (positive_constant(src_pos))
 807       flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
 808     if (positive_constant(dst_pos))
 809       flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
 810     if (positive_constant(length))
 811       flags &= ~LIR_OpArrayCopy::length_positive_check;
 812 
 813     // see if the range check can be elided, which might also imply
 814     // that src or dst is non-null.
 815     ArrayLength* al = length->as_ArrayLength();
 816     if (al != nullptr) {
 817       if (al->array() == src) {
 818         // it's the length of the source array
 819         flags &= ~LIR_OpArrayCopy::length_positive_check;
 820         flags &= ~LIR_OpArrayCopy::src_null_check;
 821         if (is_constant_zero(src_pos))
 822           flags &= ~LIR_OpArrayCopy::src_range_check;
 823       }
 824       if (al->array() == dst) {
 825         // it's the length of the destination array
 826         flags &= ~LIR_OpArrayCopy::length_positive_check;
 827         flags &= ~LIR_OpArrayCopy::dst_null_check;
 828         if (is_constant_zero(dst_pos))
 829           flags &= ~LIR_OpArrayCopy::dst_range_check;
 830       }
 831     }
 832     if (is_exact) {
 833       flags &= ~LIR_OpArrayCopy::type_check;
 834     }
 835   }
 836 
 837   IntConstant* src_int = src_pos->type()->as_IntConstant();
 838   IntConstant* dst_int = dst_pos->type()->as_IntConstant();
 839   if (src_int && dst_int) {
 840     int s_offs = src_int->value();
 841     int d_offs = dst_int->value();
 842     if (src_int->value() >= dst_int->value()) {
 843       flags &= ~LIR_OpArrayCopy::overlapping;
 844     }
 845     if (expected_type != nullptr) {
 846       BasicType t = expected_type->element_type()->basic_type();
 847       int element_size = type2aelembytes(t);
 848       if (((arrayOopDesc::base_offset_in_bytes(t) + (uint)s_offs * element_size) % HeapWordSize == 0) &&
 849           ((arrayOopDesc::base_offset_in_bytes(t) + (uint)d_offs * element_size) % HeapWordSize == 0)) {
 850         flags &= ~LIR_OpArrayCopy::unaligned;
 851       }
 852     }
 853   } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
 854     // src and dest positions are the same, or dst is zero so assume
 855     // nonoverlapping copy.
 856     flags &= ~LIR_OpArrayCopy::overlapping;
 857   }
 858 
 859   if (src == dst) {
 860     // moving within a single array so no type checks are needed
 861     if (flags & LIR_OpArrayCopy::type_check) {
 862       flags &= ~LIR_OpArrayCopy::type_check;
 863     }
 864   }
 865   *flagsp = flags;
 866   *expected_typep = (ciArrayKlass*)expected_type;
 867 }
 868 
 869 
 870 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
 871   assert(opr->is_register(), "why spill if item is not register?");
 872 
 873   if (strict_fp_requires_explicit_rounding) {
 874 #ifdef IA32
 875     if (UseSSE < 1 && opr->is_single_fpu()) {
 876       LIR_Opr result = new_register(T_FLOAT);
 877       set_vreg_flag(result, must_start_in_memory);
 878       assert(opr->is_register(), "only a register can be spilled");
 879       assert(opr->value_type()->is_float(), "rounding only for floats available");
 880       __ roundfp(opr, LIR_OprFact::illegalOpr, result);
 881       return result;
 882     }
 883 #else
 884     Unimplemented();
 885 #endif // IA32
 886   }
 887   return opr;
 888 }
 889 
 890 
 891 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
 892   assert(type2size[t] == type2size[value->type()],
 893          "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type()));
 894   if (!value->is_register()) {
 895     // force into a register
 896     LIR_Opr r = new_register(value->type());
 897     __ move(value, r);
 898     value = r;
 899   }
 900 
 901   // create a spill location
 902   LIR_Opr tmp = new_register(t);
 903   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
 904 
 905   // move from register to spill
 906   __ move(value, tmp);
 907   return tmp;
 908 }
 909 
 910 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
 911   if (if_instr->should_profile()) {
 912     ciMethod* method = if_instr->profiled_method();
 913     assert(method != nullptr, "method should be set if branch is profiled");
 914     ciMethodData* md = method->method_data_or_null();
 915     assert(md != nullptr, "Sanity");
 916     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
 917     assert(data != nullptr, "must have profiling data");
 918     assert(data->is_BranchData(), "need BranchData for two-way branches");
 919     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
 920     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
 921     if (if_instr->is_swapped()) {
 922       int t = taken_count_offset;
 923       taken_count_offset = not_taken_count_offset;
 924       not_taken_count_offset = t;
 925     }
 926 
 927     LIR_Opr md_reg = new_register(T_METADATA);
 928     __ metadata2reg(md->constant_encoding(), md_reg);
 929 
 930     LIR_Opr data_offset_reg = new_pointer_register();
 931     __ cmove(lir_cond(cond),
 932              LIR_OprFact::intptrConst(taken_count_offset),
 933              LIR_OprFact::intptrConst(not_taken_count_offset),
 934              data_offset_reg, as_BasicType(if_instr->x()->type()));
 935 
 936     // MDO cells are intptr_t, so the data_reg width is arch-dependent.
 937     LIR_Opr data_reg = new_pointer_register();
 938     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
 939     __ move(data_addr, data_reg);
 940     // Use leal instead of add to avoid destroying condition codes on x86
 941     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
 942     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
 943     __ move(data_reg, data_addr);
 944   }
 945 }
 946 
 947 // Phi technique:
 948 // This is about passing live values from one basic block to the other.
 949 // In code generated with Java it is rather rare that more than one
 950 // value is on the stack from one basic block to the other.
 951 // We optimize our technique for efficient passing of one value
 952 // (of type long, int, double..) but it can be extended.
 953 // When entering or leaving a basic block, all registers and all spill
 954 // slots are release and empty. We use the released registers
 955 // and spill slots to pass the live values from one block
 956 // to the other. The topmost value, i.e., the value on TOS of expression
 957 // stack is passed in registers. All other values are stored in spilling
 958 // area. Every Phi has an index which designates its spill slot
 959 // At exit of a basic block, we fill the register(s) and spill slots.
 960 // At entry of a basic block, the block_prolog sets up the content of phi nodes
 961 // and locks necessary registers and spilling slots.
 962 
 963 
 964 // move current value to referenced phi function
 965 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
 966   Phi* phi = sux_val->as_Phi();
 967   // cur_val can be null without phi being null in conjunction with inlining
 968   if (phi != nullptr && cur_val != nullptr && cur_val != phi && !phi->is_illegal()) {
 969     if (phi->is_local()) {
 970       for (int i = 0; i < phi->operand_count(); i++) {
 971         Value op = phi->operand_at(i);
 972         if (op != nullptr && op->type()->is_illegal()) {
 973           bailout("illegal phi operand");
 974         }
 975       }
 976     }
 977     Phi* cur_phi = cur_val->as_Phi();
 978     if (cur_phi != nullptr && cur_phi->is_illegal()) {
 979       // Phi and local would need to get invalidated
 980       // (which is unexpected for Linear Scan).
 981       // But this case is very rare so we simply bail out.
 982       bailout("propagation of illegal phi");
 983       return;
 984     }
 985     LIR_Opr operand = cur_val->operand();
 986     if (operand->is_illegal()) {
 987       assert(cur_val->as_Constant() != nullptr || cur_val->as_Local() != nullptr,
 988              "these can be produced lazily");
 989       operand = operand_for_instruction(cur_val);
 990     }
 991     resolver->move(operand, operand_for_instruction(phi));
 992   }
 993 }
 994 
 995 
 996 // Moves all stack values into their PHI position
 997 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
 998   BlockBegin* bb = block();
 999   if (bb->number_of_sux() == 1) {
1000     BlockBegin* sux = bb->sux_at(0);
1001     assert(sux->number_of_preds() > 0, "invalid CFG");
1002 
1003     // a block with only one predecessor never has phi functions
1004     if (sux->number_of_preds() > 1) {
1005       PhiResolver resolver(this);
1006 
1007       ValueStack* sux_state = sux->state();
1008       Value sux_value;
1009       int index;
1010 
1011       assert(cur_state->scope() == sux_state->scope(), "not matching");
1012       assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
1013       assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
1014 
1015       for_each_stack_value(sux_state, index, sux_value) {
1016         move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
1017       }
1018 
1019       for_each_local_value(sux_state, index, sux_value) {
1020         move_to_phi(&resolver, cur_state->local_at(index), sux_value);
1021       }
1022 
1023       assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
1024     }
1025   }
1026 }
1027 
1028 
1029 LIR_Opr LIRGenerator::new_register(BasicType type) {
1030   int vreg_num = _virtual_register_number;
1031   // Add a little fudge factor for the bailout since the bailout is only checked periodically. This allows us to hand out
1032   // a few extra registers before we really run out which helps to avoid to trip over assertions.
1033   if (vreg_num + 20 >= LIR_Opr::vreg_max) {
1034     bailout("out of virtual registers in LIR generator");
1035     if (vreg_num + 2 >= LIR_Opr::vreg_max) {
1036       // Wrap it around and continue until bailout really happens to avoid hitting assertions.
1037       _virtual_register_number = LIR_Opr::vreg_base;
1038       vreg_num = LIR_Opr::vreg_base;
1039     }
1040   }
1041   _virtual_register_number += 1;
1042   LIR_Opr vreg = LIR_OprFact::virtual_register(vreg_num, type);
1043   assert(vreg != LIR_OprFact::illegal(), "ran out of virtual registers");
1044   return vreg;
1045 }
1046 
1047 
1048 // Try to lock using register in hint
1049 LIR_Opr LIRGenerator::rlock(Value instr) {
1050   return new_register(instr->type());
1051 }
1052 
1053 
1054 // does an rlock and sets result
1055 LIR_Opr LIRGenerator::rlock_result(Value x) {
1056   LIR_Opr reg = rlock(x);
1057   set_result(x, reg);
1058   return reg;
1059 }
1060 
1061 
1062 // does an rlock and sets result
1063 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
1064   LIR_Opr reg;
1065   switch (type) {
1066   case T_BYTE:
1067   case T_BOOLEAN:
1068     reg = rlock_byte(type);
1069     break;
1070   default:
1071     reg = rlock(x);
1072     break;
1073   }
1074 
1075   set_result(x, reg);
1076   return reg;
1077 }
1078 
1079 
1080 //---------------------------------------------------------------------
1081 ciObject* LIRGenerator::get_jobject_constant(Value value) {
1082   ObjectType* oc = value->type()->as_ObjectType();
1083   if (oc) {
1084     return oc->constant_value();
1085   }
1086   return nullptr;
1087 }
1088 
1089 
1090 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1091   assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1092   assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1093 
1094   // no moves are created for phi functions at the begin of exception
1095   // handlers, so assign operands manually here
1096   for_each_phi_fun(block(), phi,
1097                    if (!phi->is_illegal()) { operand_for_instruction(phi); });
1098 
1099   LIR_Opr thread_reg = getThreadPointer();
1100   __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1101                exceptionOopOpr());
1102   __ move_wide(LIR_OprFact::oopConst(nullptr),
1103                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1104   __ move_wide(LIR_OprFact::oopConst(nullptr),
1105                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1106 
1107   LIR_Opr result = new_register(T_OBJECT);
1108   __ move(exceptionOopOpr(), result);
1109   set_result(x, result);
1110 }
1111 
1112 
1113 //----------------------------------------------------------------------
1114 //----------------------------------------------------------------------
1115 //----------------------------------------------------------------------
1116 //----------------------------------------------------------------------
1117 //                        visitor functions
1118 //----------------------------------------------------------------------
1119 //----------------------------------------------------------------------
1120 //----------------------------------------------------------------------
1121 //----------------------------------------------------------------------
1122 
1123 void LIRGenerator::do_Phi(Phi* x) {
1124   // phi functions are never visited directly
1125   ShouldNotReachHere();
1126 }
1127 
1128 
1129 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1130 void LIRGenerator::do_Constant(Constant* x) {
1131   if (x->state_before() != nullptr) {
1132     // Any constant with a ValueStack requires patching so emit the patch here
1133     LIR_Opr reg = rlock_result(x);
1134     CodeEmitInfo* info = state_for(x, x->state_before());
1135     __ oop2reg_patch(nullptr, reg, info);
1136   } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1137     if (!x->is_pinned()) {
1138       // unpinned constants are handled specially so that they can be
1139       // put into registers when they are used multiple times within a
1140       // block.  After the block completes their operand will be
1141       // cleared so that other blocks can't refer to that register.
1142       set_result(x, load_constant(x));
1143     } else {
1144       LIR_Opr res = x->operand();
1145       if (!res->is_valid()) {
1146         res = LIR_OprFact::value_type(x->type());
1147       }
1148       if (res->is_constant()) {
1149         LIR_Opr reg = rlock_result(x);
1150         __ move(res, reg);
1151       } else {
1152         set_result(x, res);
1153       }
1154     }
1155   } else {
1156     set_result(x, LIR_OprFact::value_type(x->type()));
1157   }
1158 }
1159 
1160 
1161 void LIRGenerator::do_Local(Local* x) {
1162   // operand_for_instruction has the side effect of setting the result
1163   // so there's no need to do it here.
1164   operand_for_instruction(x);
1165 }
1166 
1167 
1168 void LIRGenerator::do_Return(Return* x) {
1169   if (compilation()->env()->dtrace_method_probes()) {
1170     BasicTypeList signature;
1171     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
1172     signature.append(T_METADATA); // Method*
1173     LIR_OprList* args = new LIR_OprList();
1174     args->append(getThreadPointer());
1175     LIR_Opr meth = new_register(T_METADATA);
1176     __ metadata2reg(method()->constant_encoding(), meth);
1177     args->append(meth);
1178     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, nullptr);
1179   }
1180 
1181   if (x->type()->is_void()) {
1182     __ return_op(LIR_OprFact::illegalOpr);
1183   } else {
1184     LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1185     LIRItem result(x->result(), this);
1186 
1187     result.load_item_force(reg);
1188     __ return_op(result.result());
1189   }
1190   set_no_result(x);
1191 }
1192 
1193 // Example: ref.get()
1194 // Combination of LoadField and g1 pre-write barrier
1195 void LIRGenerator::do_Reference_get(Intrinsic* x) {
1196 
1197   const int referent_offset = java_lang_ref_Reference::referent_offset();
1198 
1199   assert(x->number_of_arguments() == 1, "wrong type");
1200 
1201   LIRItem reference(x->argument_at(0), this);
1202   reference.load_item();
1203 
1204   // need to perform the null check on the reference object
1205   CodeEmitInfo* info = nullptr;
1206   if (x->needs_null_check()) {
1207     info = state_for(x);
1208   }
1209 
1210   LIR_Opr result = rlock_result(x, T_OBJECT);
1211   access_load_at(IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT,
1212                  reference, LIR_OprFact::intConst(referent_offset), result,
1213                  nullptr, info);
1214 }
1215 
1216 // Example: clazz.isInstance(object)
1217 void LIRGenerator::do_isInstance(Intrinsic* x) {
1218   assert(x->number_of_arguments() == 2, "wrong type");
1219 
1220   // TODO could try to substitute this node with an equivalent InstanceOf
1221   // if clazz is known to be a constant Class. This will pick up newly found
1222   // constants after HIR construction. I'll leave this to a future change.
1223 
1224   // as a first cut, make a simple leaf call to runtime to stay platform independent.
1225   // could follow the aastore example in a future change.
1226 
1227   LIRItem clazz(x->argument_at(0), this);
1228   LIRItem object(x->argument_at(1), this);
1229   clazz.load_item();
1230   object.load_item();
1231   LIR_Opr result = rlock_result(x);
1232 
1233   // need to perform null check on clazz
1234   if (x->needs_null_check()) {
1235     CodeEmitInfo* info = state_for(x);
1236     __ null_check(clazz.result(), info);
1237   }
1238 
1239   LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
1240                                      CAST_FROM_FN_PTR(address, Runtime1::is_instance_of),
1241                                      x->type(),
1242                                      nullptr); // null CodeEmitInfo results in a leaf call
1243   __ move(call_result, result);
1244 }
1245 
1246 void LIRGenerator::load_klass(LIR_Opr obj, LIR_Opr klass, CodeEmitInfo* null_check_info) {
1247   __ load_klass(obj, klass, null_check_info);
1248 }
1249 
1250 // Example: object.getClass ()
1251 void LIRGenerator::do_getClass(Intrinsic* x) {
1252   assert(x->number_of_arguments() == 1, "wrong type");
1253 
1254   LIRItem rcvr(x->argument_at(0), this);
1255   rcvr.load_item();
1256   LIR_Opr temp = new_register(T_ADDRESS);
1257   LIR_Opr result = rlock_result(x);
1258 
1259   // need to perform the null check on the rcvr
1260   CodeEmitInfo* info = nullptr;
1261   if (x->needs_null_check()) {
1262     info = state_for(x);
1263   }
1264 
1265   LIR_Opr klass = new_register(T_METADATA);
1266   load_klass(rcvr.result(), klass, info);
1267   __ move_wide(new LIR_Address(klass, in_bytes(Klass::java_mirror_offset()), T_ADDRESS), temp);
1268   // mirror = ((OopHandle)mirror)->resolve();
1269   access_load(IN_NATIVE, T_OBJECT,
1270               LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), result);
1271 }
1272 
1273 // java.lang.Class::isPrimitive()
1274 void LIRGenerator::do_isPrimitive(Intrinsic* x) {
1275   assert(x->number_of_arguments() == 1, "wrong type");
1276 
1277   LIRItem rcvr(x->argument_at(0), this);
1278   rcvr.load_item();
1279   LIR_Opr temp = new_register(T_METADATA);
1280   LIR_Opr result = rlock_result(x);
1281 
1282   CodeEmitInfo* info = nullptr;
1283   if (x->needs_null_check()) {
1284     info = state_for(x);
1285   }
1286 
1287   __ move(new LIR_Address(rcvr.result(), java_lang_Class::klass_offset(), T_ADDRESS), temp, info);
1288   __ cmp(lir_cond_notEqual, temp, LIR_OprFact::metadataConst(0));
1289   __ cmove(lir_cond_notEqual, LIR_OprFact::intConst(0), LIR_OprFact::intConst(1), result, T_BOOLEAN);
1290 }
1291 
1292 // Example: Foo.class.getModifiers()
1293 void LIRGenerator::do_getModifiers(Intrinsic* x) {
1294   assert(x->number_of_arguments() == 1, "wrong type");
1295 
1296   LIRItem receiver(x->argument_at(0), this);
1297   receiver.load_item();
1298   LIR_Opr result = rlock_result(x);
1299 
1300   CodeEmitInfo* info = nullptr;
1301   if (x->needs_null_check()) {
1302     info = state_for(x);
1303   }
1304 
1305   // While reading off the universal constant mirror is less efficient than doing
1306   // another branch and returning the constant answer, this branchless code runs into
1307   // much less risk of confusion for C1 register allocator. The choice of the universe
1308   // object here is correct as long as it returns the same modifiers we would expect
1309   // from the primitive class itself. See spec for Class.getModifiers that provides
1310   // the typed array klasses with similar modifiers as their component types.
1311 
1312   Klass* univ_klass_obj = Universe::byteArrayKlassObj();
1313   assert(univ_klass_obj->modifier_flags() == (JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC), "Sanity");
1314   LIR_Opr prim_klass = LIR_OprFact::metadataConst(univ_klass_obj);
1315 
1316   LIR_Opr recv_klass = new_register(T_METADATA);
1317   __ move(new LIR_Address(receiver.result(), java_lang_Class::klass_offset(), T_ADDRESS), recv_klass, info);
1318 
1319   // Check if this is a Java mirror of primitive type, and select the appropriate klass.
1320   LIR_Opr klass = new_register(T_METADATA);
1321   __ cmp(lir_cond_equal, recv_klass, LIR_OprFact::metadataConst(0));
1322   __ cmove(lir_cond_equal, prim_klass, recv_klass, klass, T_ADDRESS);
1323 
1324   // Get the answer.
1325   __ move(new LIR_Address(klass, in_bytes(Klass::modifier_flags_offset()), T_INT), result);
1326 }
1327 
1328 void LIRGenerator::do_getObjectSize(Intrinsic* x) {
1329   assert(x->number_of_arguments() == 3, "wrong type");
1330   LIR_Opr result_reg = rlock_result(x);
1331 
1332   LIRItem value(x->argument_at(2), this);
1333   value.load_item();
1334 
1335   LIR_Opr klass = new_register(T_METADATA);
1336   load_klass(value.result(), klass, nullptr);
1337   LIR_Opr layout = new_register(T_INT);
1338   __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
1339 
1340   LabelObj* L_done = new LabelObj();
1341   LabelObj* L_array = new LabelObj();
1342 
1343   __ cmp(lir_cond_lessEqual, layout, 0);
1344   __ branch(lir_cond_lessEqual, L_array->label());
1345 
1346   // Instance case: the layout helper gives us instance size almost directly,
1347   // but we need to mask out the _lh_instance_slow_path_bit.
1348 
1349   assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
1350 
1351   LIR_Opr mask = load_immediate(~(jint) right_n_bits(LogBytesPerLong), T_INT);
1352   __ logical_and(layout, mask, layout);
1353   __ convert(Bytecodes::_i2l, layout, result_reg);
1354 
1355   __ branch(lir_cond_always, L_done->label());
1356 
1357   // Array case: size is round(header + element_size*arraylength).
1358   // Since arraylength is different for every array instance, we have to
1359   // compute the whole thing at runtime.
1360 
1361   __ branch_destination(L_array->label());
1362 
1363   int round_mask = MinObjAlignmentInBytes - 1;
1364 
1365   // Figure out header sizes first.
1366   LIR_Opr hss = load_immediate(Klass::_lh_header_size_shift, T_INT);
1367   LIR_Opr hsm = load_immediate(Klass::_lh_header_size_mask, T_INT);
1368 
1369   LIR_Opr header_size = new_register(T_INT);
1370   __ move(layout, header_size);
1371   LIR_Opr tmp = new_register(T_INT);
1372   __ unsigned_shift_right(header_size, hss, header_size, tmp);
1373   __ logical_and(header_size, hsm, header_size);
1374   __ add(header_size, LIR_OprFact::intConst(round_mask), header_size);
1375 
1376   // Figure out the array length in bytes
1377   assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
1378   LIR_Opr l2esm = load_immediate(Klass::_lh_log2_element_size_mask, T_INT);
1379   __ logical_and(layout, l2esm, layout);
1380 
1381   LIR_Opr length_int = new_register(T_INT);
1382   __ move(new LIR_Address(value.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), length_int);
1383 
1384 #ifdef _LP64
1385   LIR_Opr length = new_register(T_LONG);
1386   __ convert(Bytecodes::_i2l, length_int, length);
1387 #endif
1388 
1389   // Shift-left awkwardness. Normally it is just:
1390   //   __ shift_left(length, layout, length);
1391   // But C1 cannot perform shift_left with non-constant count, so we end up
1392   // doing the per-bit loop dance here. x86_32 also does not know how to shift
1393   // longs, so we have to act on ints.
1394   LabelObj* L_shift_loop = new LabelObj();
1395   LabelObj* L_shift_exit = new LabelObj();
1396 
1397   __ branch_destination(L_shift_loop->label());
1398   __ cmp(lir_cond_equal, layout, 0);
1399   __ branch(lir_cond_equal, L_shift_exit->label());
1400 
1401 #ifdef _LP64
1402   __ shift_left(length, 1, length);
1403 #else
1404   __ shift_left(length_int, 1, length_int);
1405 #endif
1406 
1407   __ sub(layout, LIR_OprFact::intConst(1), layout);
1408 
1409   __ branch(lir_cond_always, L_shift_loop->label());
1410   __ branch_destination(L_shift_exit->label());
1411 
1412   // Mix all up, round, and push to the result.
1413 #ifdef _LP64
1414   LIR_Opr header_size_long = new_register(T_LONG);
1415   __ convert(Bytecodes::_i2l, header_size, header_size_long);
1416   __ add(length, header_size_long, length);
1417   if (round_mask != 0) {
1418     LIR_Opr round_mask_opr = load_immediate(~(jlong)round_mask, T_LONG);
1419     __ logical_and(length, round_mask_opr, length);
1420   }
1421   __ move(length, result_reg);
1422 #else
1423   __ add(length_int, header_size, length_int);
1424   if (round_mask != 0) {
1425     LIR_Opr round_mask_opr = load_immediate(~round_mask, T_INT);
1426     __ logical_and(length_int, round_mask_opr, length_int);
1427   }
1428   __ convert(Bytecodes::_i2l, length_int, result_reg);
1429 #endif
1430 
1431   __ branch_destination(L_done->label());
1432 }
1433 
1434 void LIRGenerator::do_scopedValueCache(Intrinsic* x) {
1435   do_JavaThreadField(x, JavaThread::scopedValueCache_offset());
1436 }
1437 
1438 // Example: Thread.currentCarrierThread()
1439 void LIRGenerator::do_currentCarrierThread(Intrinsic* x) {
1440   do_JavaThreadField(x, JavaThread::threadObj_offset());
1441 }
1442 
1443 void LIRGenerator::do_vthread(Intrinsic* x) {
1444   do_JavaThreadField(x, JavaThread::vthread_offset());
1445 }
1446 
1447 void LIRGenerator::do_JavaThreadField(Intrinsic* x, ByteSize offset) {
1448   assert(x->number_of_arguments() == 0, "wrong type");
1449   LIR_Opr temp = new_register(T_ADDRESS);
1450   LIR_Opr reg = rlock_result(x);
1451   __ move(new LIR_Address(getThreadPointer(), in_bytes(offset), T_ADDRESS), temp);
1452   access_load(IN_NATIVE, T_OBJECT,
1453               LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), reg);
1454 }
1455 
1456 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1457   assert(x->number_of_arguments() == 1, "wrong type");
1458   LIRItem receiver(x->argument_at(0), this);
1459 
1460   receiver.load_item();
1461   BasicTypeList signature;
1462   signature.append(T_OBJECT); // receiver
1463   LIR_OprList* args = new LIR_OprList();
1464   args->append(receiver.result());
1465   CodeEmitInfo* info = state_for(x, x->state());
1466   call_runtime(&signature, args,
1467                CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
1468                voidType, info);
1469 
1470   set_no_result(x);
1471 }
1472 
1473 
1474 //------------------------local access--------------------------------------
1475 
1476 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1477   if (x->operand()->is_illegal()) {
1478     Constant* c = x->as_Constant();
1479     if (c != nullptr) {
1480       x->set_operand(LIR_OprFact::value_type(c->type()));
1481     } else {
1482       assert(x->as_Phi() || x->as_Local() != nullptr, "only for Phi and Local");
1483       // allocate a virtual register for this local or phi
1484       x->set_operand(rlock(x));
1485       _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, nullptr);
1486     }
1487   }
1488   return x->operand();
1489 }
1490 
1491 
1492 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
1493   if (opr->is_virtual()) {
1494     return instruction_for_vreg(opr->vreg_number());
1495   }
1496   return nullptr;
1497 }
1498 
1499 
1500 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1501   if (reg_num < _instruction_for_operand.length()) {
1502     return _instruction_for_operand.at(reg_num);
1503   }
1504   return nullptr;
1505 }
1506 
1507 
1508 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1509   if (_vreg_flags.size_in_bits() == 0) {
1510     BitMap2D temp(100, num_vreg_flags);
1511     _vreg_flags = temp;
1512   }
1513   _vreg_flags.at_put_grow(vreg_num, f, true);
1514 }
1515 
1516 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1517   if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1518     return false;
1519   }
1520   return _vreg_flags.at(vreg_num, f);
1521 }
1522 
1523 
1524 // Block local constant handling.  This code is useful for keeping
1525 // unpinned constants and constants which aren't exposed in the IR in
1526 // registers.  Unpinned Constant instructions have their operands
1527 // cleared when the block is finished so that other blocks can't end
1528 // up referring to their registers.
1529 
1530 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1531   assert(!x->is_pinned(), "only for unpinned constants");
1532   _unpinned_constants.append(x);
1533   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1534 }
1535 
1536 
1537 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1538   BasicType t = c->type();
1539   for (int i = 0; i < _constants.length(); i++) {
1540     LIR_Const* other = _constants.at(i);
1541     if (t == other->type()) {
1542       switch (t) {
1543       case T_INT:
1544       case T_FLOAT:
1545         if (c->as_jint_bits() != other->as_jint_bits()) continue;
1546         break;
1547       case T_LONG:
1548       case T_DOUBLE:
1549         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1550         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1551         break;
1552       case T_OBJECT:
1553         if (c->as_jobject() != other->as_jobject()) continue;
1554         break;
1555       default:
1556         break;
1557       }
1558       return _reg_for_constants.at(i);
1559     }
1560   }
1561 
1562   LIR_Opr result = new_register(t);
1563   __ move((LIR_Opr)c, result);
1564   _constants.append(c);
1565   _reg_for_constants.append(result);
1566   return result;
1567 }
1568 
1569 //------------------------field access--------------------------------------
1570 
1571 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
1572   assert(x->number_of_arguments() == 4, "wrong type");
1573   LIRItem obj   (x->argument_at(0), this);  // object
1574   LIRItem offset(x->argument_at(1), this);  // offset of field
1575   LIRItem cmp   (x->argument_at(2), this);  // value to compare with field
1576   LIRItem val   (x->argument_at(3), this);  // replace field with val if matches cmp
1577   assert(obj.type()->tag() == objectTag, "invalid type");
1578   assert(cmp.type()->tag() == type->tag(), "invalid type");
1579   assert(val.type()->tag() == type->tag(), "invalid type");
1580 
1581   LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type),
1582                                             obj, offset, cmp, val);
1583   set_result(x, result);
1584 }
1585 
1586 // Comment copied form templateTable_i486.cpp
1587 // ----------------------------------------------------------------------------
1588 // Volatile variables demand their effects be made known to all CPU's in
1589 // order.  Store buffers on most chips allow reads & writes to reorder; the
1590 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1591 // memory barrier (i.e., it's not sufficient that the interpreter does not
1592 // reorder volatile references, the hardware also must not reorder them).
1593 //
1594 // According to the new Java Memory Model (JMM):
1595 // (1) All volatiles are serialized wrt to each other.
1596 // ALSO reads & writes act as acquire & release, so:
1597 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1598 // the read float up to before the read.  It's OK for non-volatile memory refs
1599 // that happen before the volatile read to float down below it.
1600 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1601 // that happen BEFORE the write float down to after the write.  It's OK for
1602 // non-volatile memory refs that happen after the volatile write to float up
1603 // before it.
1604 //
1605 // We only put in barriers around volatile refs (they are expensive), not
1606 // _between_ memory refs (that would require us to track the flavor of the
1607 // previous memory refs).  Requirements (2) and (3) require some barriers
1608 // before volatile stores and after volatile loads.  These nearly cover
1609 // requirement (1) but miss the volatile-store-volatile-load case.  This final
1610 // case is placed after volatile-stores although it could just as well go
1611 // before volatile-loads.
1612 
1613 
1614 void LIRGenerator::do_StoreField(StoreField* x) {
1615   bool needs_patching = x->needs_patching();
1616   bool is_volatile = x->field()->is_volatile();
1617   BasicType field_type = x->field_type();
1618 
1619   CodeEmitInfo* info = nullptr;
1620   if (needs_patching) {
1621     assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access");
1622     info = state_for(x, x->state_before());
1623   } else if (x->needs_null_check()) {
1624     NullCheck* nc = x->explicit_null_check();
1625     if (nc == nullptr) {
1626       info = state_for(x);
1627     } else {
1628       info = state_for(nc);
1629     }
1630   }
1631 
1632   LIRItem object(x->obj(), this);
1633   LIRItem value(x->value(),  this);
1634 
1635   object.load_item();
1636 
1637   if (is_volatile || needs_patching) {
1638     // load item if field is volatile (fewer special cases for volatiles)
1639     // load item if field not initialized
1640     // load item if field not constant
1641     // because of code patching we cannot inline constants
1642     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1643       value.load_byte_item();
1644     } else  {
1645       value.load_item();
1646     }
1647   } else {
1648     value.load_for_store(field_type);
1649   }
1650 
1651   set_no_result(x);
1652 
1653 #ifndef PRODUCT
1654   if (PrintNotLoaded && needs_patching) {
1655     tty->print_cr("   ###class not loaded at store_%s bci %d",
1656                   x->is_static() ?  "static" : "field", x->printable_bci());
1657   }
1658 #endif
1659 
1660   if (x->needs_null_check() &&
1661       (needs_patching ||
1662        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1663     // Emit an explicit null check because the offset is too large.
1664     // If the class is not loaded and the object is null, we need to deoptimize to throw a
1665     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1666     __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1667   }
1668 
1669   DecoratorSet decorators = IN_HEAP;
1670   if (is_volatile) {
1671     decorators |= MO_SEQ_CST;
1672   }
1673   if (needs_patching) {
1674     decorators |= C1_NEEDS_PATCHING;
1675   }
1676 
1677   access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()),
1678                   value.result(), info != nullptr ? new CodeEmitInfo(info) : nullptr, info);
1679 }
1680 
1681 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
1682   assert(x->is_pinned(),"");
1683   bool needs_range_check = x->compute_needs_range_check();
1684   bool use_length = x->length() != nullptr;
1685   bool obj_store = is_reference_type(x->elt_type());
1686   bool needs_store_check = obj_store && (x->value()->as_Constant() == nullptr ||
1687                                          !get_jobject_constant(x->value())->is_null_object() ||
1688                                          x->should_profile());
1689 
1690   LIRItem array(x->array(), this);
1691   LIRItem index(x->index(), this);
1692   LIRItem value(x->value(), this);
1693   LIRItem length(this);
1694 
1695   array.load_item();
1696   index.load_nonconstant();
1697 
1698   if (use_length && needs_range_check) {
1699     length.set_instruction(x->length());
1700     length.load_item();
1701 
1702   }
1703   if (needs_store_check || x->check_boolean()) {
1704     value.load_item();
1705   } else {
1706     value.load_for_store(x->elt_type());
1707   }
1708 
1709   set_no_result(x);
1710 
1711   // the CodeEmitInfo must be duplicated for each different
1712   // LIR-instruction because spilling can occur anywhere between two
1713   // instructions and so the debug information must be different
1714   CodeEmitInfo* range_check_info = state_for(x);
1715   CodeEmitInfo* null_check_info = nullptr;
1716   if (x->needs_null_check()) {
1717     null_check_info = new CodeEmitInfo(range_check_info);
1718   }
1719 
1720   if (needs_range_check) {
1721     if (use_length) {
1722       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1723       __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
1724     } else {
1725       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1726       // range_check also does the null check
1727       null_check_info = nullptr;
1728     }
1729   }
1730 
1731   if (GenerateArrayStoreCheck && needs_store_check) {
1732     CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
1733     array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci());
1734   }
1735 
1736   DecoratorSet decorators = IN_HEAP | IS_ARRAY;
1737   if (x->check_boolean()) {
1738     decorators |= C1_MASK_BOOLEAN;
1739   }
1740 
1741   access_store_at(decorators, x->elt_type(), array, index.result(), value.result(),
1742                   nullptr, null_check_info);
1743 }
1744 
1745 void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type,
1746                                   LIRItem& base, LIR_Opr offset, LIR_Opr result,
1747                                   CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) {
1748   decorators |= ACCESS_READ;
1749   LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info);
1750   if (access.is_raw()) {
1751     _barrier_set->BarrierSetC1::load_at(access, result);
1752   } else {
1753     _barrier_set->load_at(access, result);
1754   }
1755 }
1756 
1757 void LIRGenerator::access_load(DecoratorSet decorators, BasicType type,
1758                                LIR_Opr addr, LIR_Opr result) {
1759   decorators |= ACCESS_READ;
1760   LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type);
1761   access.set_resolved_addr(addr);
1762   if (access.is_raw()) {
1763     _barrier_set->BarrierSetC1::load(access, result);
1764   } else {
1765     _barrier_set->load(access, result);
1766   }
1767 }
1768 
1769 void LIRGenerator::access_store_at(DecoratorSet decorators, BasicType type,
1770                                    LIRItem& base, LIR_Opr offset, LIR_Opr value,
1771                                    CodeEmitInfo* patch_info, CodeEmitInfo* store_emit_info) {
1772   decorators |= ACCESS_WRITE;
1773   LIRAccess access(this, decorators, base, offset, type, patch_info, store_emit_info);
1774   if (access.is_raw()) {
1775     _barrier_set->BarrierSetC1::store_at(access, value);
1776   } else {
1777     _barrier_set->store_at(access, value);
1778   }
1779 }
1780 
1781 LIR_Opr LIRGenerator::access_atomic_cmpxchg_at(DecoratorSet decorators, BasicType type,
1782                                                LIRItem& base, LIRItem& offset, LIRItem& cmp_value, LIRItem& new_value) {
1783   decorators |= ACCESS_READ;
1784   decorators |= ACCESS_WRITE;
1785   // Atomic operations are SEQ_CST by default
1786   decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1787   LIRAccess access(this, decorators, base, offset, type);
1788   if (access.is_raw()) {
1789     return _barrier_set->BarrierSetC1::atomic_cmpxchg_at(access, cmp_value, new_value);
1790   } else {
1791     return _barrier_set->atomic_cmpxchg_at(access, cmp_value, new_value);
1792   }
1793 }
1794 
1795 LIR_Opr LIRGenerator::access_atomic_xchg_at(DecoratorSet decorators, BasicType type,
1796                                             LIRItem& base, LIRItem& offset, LIRItem& value) {
1797   decorators |= ACCESS_READ;
1798   decorators |= ACCESS_WRITE;
1799   // Atomic operations are SEQ_CST by default
1800   decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1801   LIRAccess access(this, decorators, base, offset, type);
1802   if (access.is_raw()) {
1803     return _barrier_set->BarrierSetC1::atomic_xchg_at(access, value);
1804   } else {
1805     return _barrier_set->atomic_xchg_at(access, value);
1806   }
1807 }
1808 
1809 LIR_Opr LIRGenerator::access_atomic_add_at(DecoratorSet decorators, BasicType type,
1810                                            LIRItem& base, LIRItem& offset, LIRItem& value) {
1811   decorators |= ACCESS_READ;
1812   decorators |= ACCESS_WRITE;
1813   // Atomic operations are SEQ_CST by default
1814   decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1815   LIRAccess access(this, decorators, base, offset, type);
1816   if (access.is_raw()) {
1817     return _barrier_set->BarrierSetC1::atomic_add_at(access, value);
1818   } else {
1819     return _barrier_set->atomic_add_at(access, value);
1820   }
1821 }
1822 
1823 void LIRGenerator::do_LoadField(LoadField* x) {
1824   bool needs_patching = x->needs_patching();
1825   bool is_volatile = x->field()->is_volatile();
1826   BasicType field_type = x->field_type();
1827 
1828   CodeEmitInfo* info = nullptr;
1829   if (needs_patching) {
1830     assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access");
1831     info = state_for(x, x->state_before());
1832   } else if (x->needs_null_check()) {
1833     NullCheck* nc = x->explicit_null_check();
1834     if (nc == nullptr) {
1835       info = state_for(x);
1836     } else {
1837       info = state_for(nc);
1838     }
1839   }
1840 
1841   LIRItem object(x->obj(), this);
1842 
1843   object.load_item();
1844 
1845 #ifndef PRODUCT
1846   if (PrintNotLoaded && needs_patching) {
1847     tty->print_cr("   ###class not loaded at load_%s bci %d",
1848                   x->is_static() ?  "static" : "field", x->printable_bci());
1849   }
1850 #endif
1851 
1852   bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
1853   if (x->needs_null_check() &&
1854       (needs_patching ||
1855        MacroAssembler::needs_explicit_null_check(x->offset()) ||
1856        stress_deopt)) {
1857     LIR_Opr obj = object.result();
1858     if (stress_deopt) {
1859       obj = new_register(T_OBJECT);
1860       __ move(LIR_OprFact::oopConst(nullptr), obj);
1861     }
1862     // Emit an explicit null check because the offset is too large.
1863     // If the class is not loaded and the object is null, we need to deoptimize to throw a
1864     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1865     __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1866   }
1867 
1868   DecoratorSet decorators = IN_HEAP;
1869   if (is_volatile) {
1870     decorators |= MO_SEQ_CST;
1871   }
1872   if (needs_patching) {
1873     decorators |= C1_NEEDS_PATCHING;
1874   }
1875 
1876   LIR_Opr result = rlock_result(x, field_type);
1877   access_load_at(decorators, field_type,
1878                  object, LIR_OprFact::intConst(x->offset()), result,
1879                  info ? new CodeEmitInfo(info) : nullptr, info);
1880 }
1881 
1882 // int/long jdk.internal.util.Preconditions.checkIndex
1883 void LIRGenerator::do_PreconditionsCheckIndex(Intrinsic* x, BasicType type) {
1884   assert(x->number_of_arguments() == 3, "wrong type");
1885   LIRItem index(x->argument_at(0), this);
1886   LIRItem length(x->argument_at(1), this);
1887   LIRItem oobef(x->argument_at(2), this);
1888 
1889   index.load_item();
1890   length.load_item();
1891   oobef.load_item();
1892 
1893   LIR_Opr result = rlock_result(x);
1894   // x->state() is created from copy_state_for_exception, it does not contains arguments
1895   // we should prepare them before entering into interpreter mode due to deoptimization.
1896   ValueStack* state = x->state();
1897   for (int i = 0; i < x->number_of_arguments(); i++) {
1898     Value arg = x->argument_at(i);
1899     state->push(arg->type(), arg);
1900   }
1901   CodeEmitInfo* info = state_for(x, state);
1902 
1903   LIR_Opr len = length.result();
1904   LIR_Opr zero;
1905   if (type == T_INT) {
1906     zero = LIR_OprFact::intConst(0);
1907     if (length.result()->is_constant()){
1908       len = LIR_OprFact::intConst(length.result()->as_jint());
1909     }
1910   } else {
1911     assert(type == T_LONG, "sanity check");
1912     zero = LIR_OprFact::longConst(0);
1913     if (length.result()->is_constant()){
1914       len = LIR_OprFact::longConst(length.result()->as_jlong());
1915     }
1916   }
1917   // C1 can not handle the case that comparing index with constant value while condition
1918   // is neither lir_cond_equal nor lir_cond_notEqual, see LIR_Assembler::comp_op.
1919   LIR_Opr zero_reg = new_register(type);
1920   __ move(zero, zero_reg);
1921 #if defined(X86) && !defined(_LP64)
1922   // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy.
1923   LIR_Opr index_copy = new_register(index.type());
1924   // index >= 0
1925   __ move(index.result(), index_copy);
1926   __ cmp(lir_cond_less, index_copy, zero_reg);
1927   __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
1928                                                     Deoptimization::Action_make_not_entrant));
1929   // index < length
1930   __ move(index.result(), index_copy);
1931   __ cmp(lir_cond_greaterEqual, index_copy, len);
1932   __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
1933                                                             Deoptimization::Action_make_not_entrant));
1934 #else
1935   // index >= 0
1936   __ cmp(lir_cond_less, index.result(), zero_reg);
1937   __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
1938                                                     Deoptimization::Action_make_not_entrant));
1939   // index < length
1940   __ cmp(lir_cond_greaterEqual, index.result(), len);
1941   __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
1942                                                             Deoptimization::Action_make_not_entrant));
1943 #endif
1944   __ move(index.result(), result);
1945 }
1946 
1947 //------------------------array access--------------------------------------
1948 
1949 
1950 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
1951   LIRItem array(x->array(), this);
1952   array.load_item();
1953   LIR_Opr reg = rlock_result(x);
1954 
1955   CodeEmitInfo* info = nullptr;
1956   if (x->needs_null_check()) {
1957     NullCheck* nc = x->explicit_null_check();
1958     if (nc == nullptr) {
1959       info = state_for(x);
1960     } else {
1961       info = state_for(nc);
1962     }
1963     if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
1964       LIR_Opr obj = new_register(T_OBJECT);
1965       __ move(LIR_OprFact::oopConst(nullptr), obj);
1966       __ null_check(obj, new CodeEmitInfo(info));
1967     }
1968   }
1969   __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
1970 }
1971 
1972 
1973 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
1974   bool use_length = x->length() != nullptr;
1975   LIRItem array(x->array(), this);
1976   LIRItem index(x->index(), this);
1977   LIRItem length(this);
1978   bool needs_range_check = x->compute_needs_range_check();
1979 
1980   if (use_length && needs_range_check) {
1981     length.set_instruction(x->length());
1982     length.load_item();
1983   }
1984 
1985   array.load_item();
1986   if (index.is_constant() && can_inline_as_constant(x->index())) {
1987     // let it be a constant
1988     index.dont_load_item();
1989   } else {
1990     index.load_item();
1991   }
1992 
1993   CodeEmitInfo* range_check_info = state_for(x);
1994   CodeEmitInfo* null_check_info = nullptr;
1995   if (x->needs_null_check()) {
1996     NullCheck* nc = x->explicit_null_check();
1997     if (nc != nullptr) {
1998       null_check_info = state_for(nc);
1999     } else {
2000       null_check_info = range_check_info;
2001     }
2002     if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
2003       LIR_Opr obj = new_register(T_OBJECT);
2004       __ move(LIR_OprFact::oopConst(nullptr), obj);
2005       __ null_check(obj, new CodeEmitInfo(null_check_info));
2006     }
2007   }
2008 
2009   if (needs_range_check) {
2010     if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
2011       __ branch(lir_cond_always, new RangeCheckStub(range_check_info, index.result(), array.result()));
2012     } else if (use_length) {
2013       // TODO: use a (modified) version of array_range_check that does not require a
2014       //       constant length to be loaded to a register
2015       __ cmp(lir_cond_belowEqual, length.result(), index.result());
2016       __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
2017     } else {
2018       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
2019       // The range check performs the null check, so clear it out for the load
2020       null_check_info = nullptr;
2021     }
2022   }
2023 
2024   DecoratorSet decorators = IN_HEAP | IS_ARRAY;
2025 
2026   LIR_Opr result = rlock_result(x, x->elt_type());
2027   access_load_at(decorators, x->elt_type(),
2028                  array, index.result(), result,
2029                  nullptr, null_check_info);
2030 }
2031 
2032 
2033 void LIRGenerator::do_NullCheck(NullCheck* x) {
2034   if (x->can_trap()) {
2035     LIRItem value(x->obj(), this);
2036     value.load_item();
2037     CodeEmitInfo* info = state_for(x);
2038     __ null_check(value.result(), info);
2039   }
2040 }
2041 
2042 
2043 void LIRGenerator::do_TypeCast(TypeCast* x) {
2044   LIRItem value(x->obj(), this);
2045   value.load_item();
2046   // the result is the same as from the node we are casting
2047   set_result(x, value.result());
2048 }
2049 
2050 
2051 void LIRGenerator::do_Throw(Throw* x) {
2052   LIRItem exception(x->exception(), this);
2053   exception.load_item();
2054   set_no_result(x);
2055   LIR_Opr exception_opr = exception.result();
2056   CodeEmitInfo* info = state_for(x, x->state());
2057 
2058 #ifndef PRODUCT
2059   if (PrintC1Statistics) {
2060     increment_counter(Runtime1::throw_count_address(), T_INT);
2061   }
2062 #endif
2063 
2064   // check if the instruction has an xhandler in any of the nested scopes
2065   bool unwind = false;
2066   if (info->exception_handlers()->length() == 0) {
2067     // this throw is not inside an xhandler
2068     unwind = true;
2069   } else {
2070     // get some idea of the throw type
2071     bool type_is_exact = true;
2072     ciType* throw_type = x->exception()->exact_type();
2073     if (throw_type == nullptr) {
2074       type_is_exact = false;
2075       throw_type = x->exception()->declared_type();
2076     }
2077     if (throw_type != nullptr && throw_type->is_instance_klass()) {
2078       ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
2079       unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
2080     }
2081   }
2082 
2083   // do null check before moving exception oop into fixed register
2084   // to avoid a fixed interval with an oop during the null check.
2085   // Use a copy of the CodeEmitInfo because debug information is
2086   // different for null_check and throw.
2087   if (x->exception()->as_NewInstance() == nullptr && x->exception()->as_ExceptionObject() == nullptr) {
2088     // if the exception object wasn't created using new then it might be null.
2089     __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
2090   }
2091 
2092   if (compilation()->env()->jvmti_can_post_on_exceptions()) {
2093     // we need to go through the exception lookup path to get JVMTI
2094     // notification done
2095     unwind = false;
2096   }
2097 
2098   // move exception oop into fixed register
2099   __ move(exception_opr, exceptionOopOpr());
2100 
2101   if (unwind) {
2102     __ unwind_exception(exceptionOopOpr());
2103   } else {
2104     __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
2105   }
2106 }
2107 
2108 
2109 void LIRGenerator::do_RoundFP(RoundFP* x) {
2110   assert(strict_fp_requires_explicit_rounding, "not required");
2111 
2112   LIRItem input(x->input(), this);
2113   input.load_item();
2114   LIR_Opr input_opr = input.result();
2115   assert(input_opr->is_register(), "why round if value is not in a register?");
2116   assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
2117   if (input_opr->is_single_fpu()) {
2118     set_result(x, round_item(input_opr)); // This code path not currently taken
2119   } else {
2120     LIR_Opr result = new_register(T_DOUBLE);
2121     set_vreg_flag(result, must_start_in_memory);
2122     __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
2123     set_result(x, result);
2124   }
2125 }
2126 
2127 
2128 void LIRGenerator::do_UnsafeGet(UnsafeGet* x) {
2129   BasicType type = x->basic_type();
2130   LIRItem src(x->object(), this);
2131   LIRItem off(x->offset(), this);
2132 
2133   off.load_item();
2134   src.load_item();
2135 
2136   DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS;
2137 
2138   if (x->is_volatile()) {
2139     decorators |= MO_SEQ_CST;
2140   }
2141   if (type == T_BOOLEAN) {
2142     decorators |= C1_MASK_BOOLEAN;
2143   }
2144   if (is_reference_type(type)) {
2145     decorators |= ON_UNKNOWN_OOP_REF;
2146   }
2147 
2148   LIR_Opr result = rlock_result(x, type);
2149   if (!x->is_raw()) {
2150     access_load_at(decorators, type, src, off.result(), result);
2151   } else {
2152     // Currently it is only used in GraphBuilder::setup_osr_entry_block.
2153     // It reads the value from [src + offset] directly.
2154 #ifdef _LP64
2155     LIR_Opr offset = new_register(T_LONG);
2156     __ convert(Bytecodes::_i2l, off.result(), offset);
2157 #else
2158     LIR_Opr offset = off.result();
2159 #endif
2160     LIR_Address* addr = new LIR_Address(src.result(), offset, type);
2161     if (is_reference_type(type)) {
2162       __ move_wide(addr, result);
2163     } else {
2164       __ move(addr, result);
2165     }
2166   }
2167 }
2168 
2169 
2170 void LIRGenerator::do_UnsafePut(UnsafePut* x) {
2171   BasicType type = x->basic_type();
2172   LIRItem src(x->object(), this);
2173   LIRItem off(x->offset(), this);
2174   LIRItem data(x->value(), this);
2175 
2176   src.load_item();
2177   if (type == T_BOOLEAN || type == T_BYTE) {
2178     data.load_byte_item();
2179   } else {
2180     data.load_item();
2181   }
2182   off.load_item();
2183 
2184   set_no_result(x);
2185 
2186   DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS;
2187   if (is_reference_type(type)) {
2188     decorators |= ON_UNKNOWN_OOP_REF;
2189   }
2190   if (x->is_volatile()) {
2191     decorators |= MO_SEQ_CST;
2192   }
2193   access_store_at(decorators, type, src, off.result(), data.result());
2194 }
2195 
2196 void LIRGenerator::do_UnsafeGetAndSet(UnsafeGetAndSet* x) {
2197   BasicType type = x->basic_type();
2198   LIRItem src(x->object(), this);
2199   LIRItem off(x->offset(), this);
2200   LIRItem value(x->value(), this);
2201 
2202   DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS | MO_SEQ_CST;
2203 
2204   if (is_reference_type(type)) {
2205     decorators |= ON_UNKNOWN_OOP_REF;
2206   }
2207 
2208   LIR_Opr result;
2209   if (x->is_add()) {
2210     result = access_atomic_add_at(decorators, type, src, off, value);
2211   } else {
2212     result = access_atomic_xchg_at(decorators, type, src, off, value);
2213   }
2214   set_result(x, result);
2215 }
2216 
2217 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2218   int lng = x->length();
2219 
2220   for (int i = 0; i < lng; i++) {
2221     C1SwitchRange* one_range = x->at(i);
2222     int low_key = one_range->low_key();
2223     int high_key = one_range->high_key();
2224     BlockBegin* dest = one_range->sux();
2225     if (low_key == high_key) {
2226       __ cmp(lir_cond_equal, value, low_key);
2227       __ branch(lir_cond_equal, dest);
2228     } else if (high_key - low_key == 1) {
2229       __ cmp(lir_cond_equal, value, low_key);
2230       __ branch(lir_cond_equal, dest);
2231       __ cmp(lir_cond_equal, value, high_key);
2232       __ branch(lir_cond_equal, dest);
2233     } else {
2234       LabelObj* L = new LabelObj();
2235       __ cmp(lir_cond_less, value, low_key);
2236       __ branch(lir_cond_less, L->label());
2237       __ cmp(lir_cond_lessEqual, value, high_key);
2238       __ branch(lir_cond_lessEqual, dest);
2239       __ branch_destination(L->label());
2240     }
2241   }
2242   __ jump(default_sux);
2243 }
2244 
2245 
2246 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2247   SwitchRangeList* res = new SwitchRangeList();
2248   int len = x->length();
2249   if (len > 0) {
2250     BlockBegin* sux = x->sux_at(0);
2251     int low = x->lo_key();
2252     BlockBegin* default_sux = x->default_sux();
2253     C1SwitchRange* range = new C1SwitchRange(low, sux);
2254     for (int i = 0; i < len; i++) {
2255       int key = low + i;
2256       BlockBegin* new_sux = x->sux_at(i);
2257       if (sux == new_sux) {
2258         // still in same range
2259         range->set_high_key(key);
2260       } else {
2261         // skip tests which explicitly dispatch to the default
2262         if (sux != default_sux) {
2263           res->append(range);
2264         }
2265         range = new C1SwitchRange(key, new_sux);
2266       }
2267       sux = new_sux;
2268     }
2269     if (res->length() == 0 || res->last() != range)  res->append(range);
2270   }
2271   return res;
2272 }
2273 
2274 
2275 // we expect the keys to be sorted by increasing value
2276 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2277   SwitchRangeList* res = new SwitchRangeList();
2278   int len = x->length();
2279   if (len > 0) {
2280     BlockBegin* default_sux = x->default_sux();
2281     int key = x->key_at(0);
2282     BlockBegin* sux = x->sux_at(0);
2283     C1SwitchRange* range = new C1SwitchRange(key, sux);
2284     for (int i = 1; i < len; i++) {
2285       int new_key = x->key_at(i);
2286       BlockBegin* new_sux = x->sux_at(i);
2287       if (key+1 == new_key && sux == new_sux) {
2288         // still in same range
2289         range->set_high_key(new_key);
2290       } else {
2291         // skip tests which explicitly dispatch to the default
2292         if (range->sux() != default_sux) {
2293           res->append(range);
2294         }
2295         range = new C1SwitchRange(new_key, new_sux);
2296       }
2297       key = new_key;
2298       sux = new_sux;
2299     }
2300     if (res->length() == 0 || res->last() != range)  res->append(range);
2301   }
2302   return res;
2303 }
2304 
2305 
2306 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2307   LIRItem tag(x->tag(), this);
2308   tag.load_item();
2309   set_no_result(x);
2310 
2311   if (x->is_safepoint()) {
2312     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2313   }
2314 
2315   // move values into phi locations
2316   move_to_phi(x->state());
2317 
2318   int lo_key = x->lo_key();
2319   int len = x->length();
2320   assert(lo_key <= (lo_key + (len - 1)), "integer overflow");
2321   LIR_Opr value = tag.result();
2322 
2323   if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) {
2324     ciMethod* method = x->state()->scope()->method();
2325     ciMethodData* md = method->method_data_or_null();
2326     assert(md != nullptr, "Sanity");
2327     ciProfileData* data = md->bci_to_data(x->state()->bci());
2328     assert(data != nullptr, "must have profiling data");
2329     assert(data->is_MultiBranchData(), "bad profile data?");
2330     int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset());
2331     LIR_Opr md_reg = new_register(T_METADATA);
2332     __ metadata2reg(md->constant_encoding(), md_reg);
2333     LIR_Opr data_offset_reg = new_pointer_register();
2334     LIR_Opr tmp_reg = new_pointer_register();
2335 
2336     __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg);
2337     for (int i = 0; i < len; i++) {
2338       int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i));
2339       __ cmp(lir_cond_equal, value, i + lo_key);
2340       __ move(data_offset_reg, tmp_reg);
2341       __ cmove(lir_cond_equal,
2342                LIR_OprFact::intptrConst(count_offset),
2343                tmp_reg,
2344                data_offset_reg, T_INT);
2345     }
2346 
2347     LIR_Opr data_reg = new_pointer_register();
2348     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
2349     __ move(data_addr, data_reg);
2350     __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg);
2351     __ move(data_reg, data_addr);
2352   }
2353 
2354   if (UseTableRanges) {
2355     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2356   } else {
2357     for (int i = 0; i < len; i++) {
2358       __ cmp(lir_cond_equal, value, i + lo_key);
2359       __ branch(lir_cond_equal, x->sux_at(i));
2360     }
2361     __ jump(x->default_sux());
2362   }
2363 }
2364 
2365 
2366 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2367   LIRItem tag(x->tag(), this);
2368   tag.load_item();
2369   set_no_result(x);
2370 
2371   if (x->is_safepoint()) {
2372     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2373   }
2374 
2375   // move values into phi locations
2376   move_to_phi(x->state());
2377 
2378   LIR_Opr value = tag.result();
2379   int len = x->length();
2380 
2381   if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) {
2382     ciMethod* method = x->state()->scope()->method();
2383     ciMethodData* md = method->method_data_or_null();
2384     assert(md != nullptr, "Sanity");
2385     ciProfileData* data = md->bci_to_data(x->state()->bci());
2386     assert(data != nullptr, "must have profiling data");
2387     assert(data->is_MultiBranchData(), "bad profile data?");
2388     int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset());
2389     LIR_Opr md_reg = new_register(T_METADATA);
2390     __ metadata2reg(md->constant_encoding(), md_reg);
2391     LIR_Opr data_offset_reg = new_pointer_register();
2392     LIR_Opr tmp_reg = new_pointer_register();
2393 
2394     __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg);
2395     for (int i = 0; i < len; i++) {
2396       int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i));
2397       __ cmp(lir_cond_equal, value, x->key_at(i));
2398       __ move(data_offset_reg, tmp_reg);
2399       __ cmove(lir_cond_equal,
2400                LIR_OprFact::intptrConst(count_offset),
2401                tmp_reg,
2402                data_offset_reg, T_INT);
2403     }
2404 
2405     LIR_Opr data_reg = new_pointer_register();
2406     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
2407     __ move(data_addr, data_reg);
2408     __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg);
2409     __ move(data_reg, data_addr);
2410   }
2411 
2412   if (UseTableRanges) {
2413     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2414   } else {
2415     int len = x->length();
2416     for (int i = 0; i < len; i++) {
2417       __ cmp(lir_cond_equal, value, x->key_at(i));
2418       __ branch(lir_cond_equal, x->sux_at(i));
2419     }
2420     __ jump(x->default_sux());
2421   }
2422 }
2423 
2424 
2425 void LIRGenerator::do_Goto(Goto* x) {
2426   set_no_result(x);
2427 
2428   if (block()->next()->as_OsrEntry()) {
2429     // need to free up storage used for OSR entry point
2430     LIR_Opr osrBuffer = block()->next()->operand();
2431     BasicTypeList signature;
2432     signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer
2433     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2434     __ move(osrBuffer, cc->args()->at(0));
2435     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2436                          getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2437   }
2438 
2439   if (x->is_safepoint()) {
2440     ValueStack* state = x->state_before() ? x->state_before() : x->state();
2441 
2442     // increment backedge counter if needed
2443     CodeEmitInfo* info = state_for(x, state);
2444     increment_backedge_counter(info, x->profiled_bci());
2445     CodeEmitInfo* safepoint_info = state_for(x, state);
2446     __ safepoint(safepoint_poll_register(), safepoint_info);
2447   }
2448 
2449   // Gotos can be folded Ifs, handle this case.
2450   if (x->should_profile()) {
2451     ciMethod* method = x->profiled_method();
2452     assert(method != nullptr, "method should be set if branch is profiled");
2453     ciMethodData* md = method->method_data_or_null();
2454     assert(md != nullptr, "Sanity");
2455     ciProfileData* data = md->bci_to_data(x->profiled_bci());
2456     assert(data != nullptr, "must have profiling data");
2457     int offset;
2458     if (x->direction() == Goto::taken) {
2459       assert(data->is_BranchData(), "need BranchData for two-way branches");
2460       offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2461     } else if (x->direction() == Goto::not_taken) {
2462       assert(data->is_BranchData(), "need BranchData for two-way branches");
2463       offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2464     } else {
2465       assert(data->is_JumpData(), "need JumpData for branches");
2466       offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2467     }
2468     LIR_Opr md_reg = new_register(T_METADATA);
2469     __ metadata2reg(md->constant_encoding(), md_reg);
2470 
2471     increment_counter(new LIR_Address(md_reg, offset,
2472                                       NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2473   }
2474 
2475   // emit phi-instruction move after safepoint since this simplifies
2476   // describing the state as the safepoint.
2477   move_to_phi(x->state());
2478 
2479   __ jump(x->default_sux());
2480 }
2481 
2482 /**
2483  * Emit profiling code if needed for arguments, parameters, return value types
2484  *
2485  * @param md                    MDO the code will update at runtime
2486  * @param md_base_offset        common offset in the MDO for this profile and subsequent ones
2487  * @param md_offset             offset in the MDO (on top of md_base_offset) for this profile
2488  * @param profiled_k            current profile
2489  * @param obj                   IR node for the object to be profiled
2490  * @param mdp                   register to hold the pointer inside the MDO (md + md_base_offset).
2491  *                              Set once we find an update to make and use for next ones.
2492  * @param not_null              true if we know obj cannot be null
2493  * @param signature_at_call_k   signature at call for obj
2494  * @param callee_signature_k    signature of callee for obj
2495  *                              at call and callee signatures differ at method handle call
2496  * @return                      the only klass we know will ever be seen at this profile point
2497  */
2498 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k,
2499                                     Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k,
2500                                     ciKlass* callee_signature_k) {
2501   ciKlass* result = nullptr;
2502   bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k);
2503   bool do_update = !TypeEntries::is_type_unknown(profiled_k);
2504   // known not to be null or null bit already set and already set to
2505   // unknown: nothing we can do to improve profiling
2506   if (!do_null && !do_update) {
2507     return result;
2508   }
2509 
2510   ciKlass* exact_klass = nullptr;
2511   Compilation* comp = Compilation::current();
2512   if (do_update) {
2513     // try to find exact type, using CHA if possible, so that loading
2514     // the klass from the object can be avoided
2515     ciType* type = obj->exact_type();
2516     if (type == nullptr) {
2517       type = obj->declared_type();
2518       type = comp->cha_exact_type(type);
2519     }
2520     assert(type == nullptr || type->is_klass(), "type should be class");
2521     exact_klass = (type != nullptr && type->is_loaded()) ? (ciKlass*)type : nullptr;
2522 
2523     do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2524   }
2525 
2526   if (!do_null && !do_update) {
2527     return result;
2528   }
2529 
2530   ciKlass* exact_signature_k = nullptr;
2531   if (do_update) {
2532     // Is the type from the signature exact (the only one possible)?
2533     exact_signature_k = signature_at_call_k->exact_klass();
2534     if (exact_signature_k == nullptr) {
2535       exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2536     } else {
2537       result = exact_signature_k;
2538       // Known statically. No need to emit any code: prevent
2539       // LIR_Assembler::emit_profile_type() from emitting useless code
2540       profiled_k = ciTypeEntries::with_status(result, profiled_k);
2541     }
2542     // exact_klass and exact_signature_k can be both non null but
2543     // different if exact_klass is loaded after the ciObject for
2544     // exact_signature_k is created.
2545     if (exact_klass == nullptr && exact_signature_k != nullptr && exact_klass != exact_signature_k) {
2546       // sometimes the type of the signature is better than the best type
2547       // the compiler has
2548       exact_klass = exact_signature_k;
2549     }
2550     if (callee_signature_k != nullptr &&
2551         callee_signature_k != signature_at_call_k) {
2552       ciKlass* improved_klass = callee_signature_k->exact_klass();
2553       if (improved_klass == nullptr) {
2554         improved_klass = comp->cha_exact_type(callee_signature_k);
2555       }
2556       if (exact_klass == nullptr && improved_klass != nullptr && exact_klass != improved_klass) {
2557         exact_klass = exact_signature_k;
2558       }
2559     }
2560     do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2561   }
2562 
2563   if (!do_null && !do_update) {
2564     return result;
2565   }
2566 
2567   if (mdp == LIR_OprFact::illegalOpr) {
2568     mdp = new_register(T_METADATA);
2569     __ metadata2reg(md->constant_encoding(), mdp);
2570     if (md_base_offset != 0) {
2571       LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2572       mdp = new_pointer_register();
2573       __ leal(LIR_OprFact::address(base_type_address), mdp);
2574     }
2575   }
2576   LIRItem value(obj, this);
2577   value.load_item();
2578   __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2579                   value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != nullptr);
2580   return result;
2581 }
2582 
2583 // profile parameters on entry to the root of the compilation
2584 void LIRGenerator::profile_parameters(Base* x) {
2585   if (compilation()->profile_parameters()) {
2586     CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2587     ciMethodData* md = scope()->method()->method_data_or_null();
2588     assert(md != nullptr, "Sanity");
2589 
2590     if (md->parameters_type_data() != nullptr) {
2591       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
2592       ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
2593       LIR_Opr mdp = LIR_OprFact::illegalOpr;
2594       for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) {
2595         LIR_Opr src = args->at(i);
2596         assert(!src->is_illegal(), "check");
2597         BasicType t = src->type();
2598         if (is_reference_type(t)) {
2599           intptr_t profiled_k = parameters->type(j);
2600           Local* local = x->state()->local_at(java_index)->as_Local();
2601           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2602                                         in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2603                                         profiled_k, local, mdp, false, local->declared_type()->as_klass(), nullptr);
2604           // If the profile is known statically set it once for all and do not emit any code
2605           if (exact != nullptr) {
2606             md->set_parameter_type(j, exact);
2607           }
2608           j++;
2609         }
2610         java_index += type2size[t];
2611       }
2612     }
2613   }
2614 }
2615 
2616 void LIRGenerator::do_Base(Base* x) {
2617   __ std_entry(LIR_OprFact::illegalOpr);
2618   // Emit moves from physical registers / stack slots to virtual registers
2619   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2620   IRScope* irScope = compilation()->hir()->top_scope();
2621   int java_index = 0;
2622   for (int i = 0; i < args->length(); i++) {
2623     LIR_Opr src = args->at(i);
2624     assert(!src->is_illegal(), "check");
2625     BasicType t = src->type();
2626 
2627     // Types which are smaller than int are passed as int, so
2628     // correct the type which passed.
2629     switch (t) {
2630     case T_BYTE:
2631     case T_BOOLEAN:
2632     case T_SHORT:
2633     case T_CHAR:
2634       t = T_INT;
2635       break;
2636     default:
2637       break;
2638     }
2639 
2640     LIR_Opr dest = new_register(t);
2641     __ move(src, dest);
2642 
2643     // Assign new location to Local instruction for this local
2644     Local* local = x->state()->local_at(java_index)->as_Local();
2645     assert(local != nullptr, "Locals for incoming arguments must have been created");
2646 #ifndef __SOFTFP__
2647     // The java calling convention passes double as long and float as int.
2648     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2649 #endif // __SOFTFP__
2650     local->set_operand(dest);
2651     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, nullptr);
2652     java_index += type2size[t];
2653   }
2654 
2655   if (compilation()->env()->dtrace_method_probes()) {
2656     BasicTypeList signature;
2657     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
2658     signature.append(T_METADATA); // Method*
2659     LIR_OprList* args = new LIR_OprList();
2660     args->append(getThreadPointer());
2661     LIR_Opr meth = new_register(T_METADATA);
2662     __ metadata2reg(method()->constant_encoding(), meth);
2663     args->append(meth);
2664     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, nullptr);
2665   }
2666 
2667   if (method()->is_synchronized()) {
2668     LIR_Opr obj;
2669     if (method()->is_static()) {
2670       obj = new_register(T_OBJECT);
2671       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2672     } else {
2673       Local* receiver = x->state()->local_at(0)->as_Local();
2674       assert(receiver != nullptr, "must already exist");
2675       obj = receiver->operand();
2676     }
2677     assert(obj->is_valid(), "must be valid");
2678 
2679     if (method()->is_synchronized() && GenerateSynchronizationCode) {
2680       LIR_Opr lock = syncLockOpr();
2681       __ load_stack_address_monitor(0, lock);
2682 
2683       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, x->check_flag(Instruction::DeoptimizeOnException));
2684       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2685 
2686       // receiver is guaranteed non-null so don't need CodeEmitInfo
2687       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, nullptr);
2688     }
2689   }
2690   // increment invocation counters if needed
2691   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2692     profile_parameters(x);
2693     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, false);
2694     increment_invocation_counter(info);
2695   }
2696 
2697   // all blocks with a successor must end with an unconditional jump
2698   // to the successor even if they are consecutive
2699   __ jump(x->default_sux());
2700 }
2701 
2702 
2703 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2704   // construct our frame and model the production of incoming pointer
2705   // to the OSR buffer.
2706   __ osr_entry(LIR_Assembler::osrBufferPointer());
2707   LIR_Opr result = rlock_result(x);
2708   __ move(LIR_Assembler::osrBufferPointer(), result);
2709 }
2710 
2711 
2712 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2713   assert(args->length() == arg_list->length(),
2714          "args=%d, arg_list=%d", args->length(), arg_list->length());
2715   for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
2716     LIRItem* param = args->at(i);
2717     LIR_Opr loc = arg_list->at(i);
2718     if (loc->is_register()) {
2719       param->load_item_force(loc);
2720     } else {
2721       LIR_Address* addr = loc->as_address_ptr();
2722       param->load_for_store(addr->type());
2723       if (addr->type() == T_OBJECT) {
2724         __ move_wide(param->result(), addr);
2725       } else
2726         __ move(param->result(), addr);
2727     }
2728   }
2729 
2730   if (x->has_receiver()) {
2731     LIRItem* receiver = args->at(0);
2732     LIR_Opr loc = arg_list->at(0);
2733     if (loc->is_register()) {
2734       receiver->load_item_force(loc);
2735     } else {
2736       assert(loc->is_address(), "just checking");
2737       receiver->load_for_store(T_OBJECT);
2738       __ move_wide(receiver->result(), loc->as_address_ptr());
2739     }
2740   }
2741 }
2742 
2743 
2744 // Visits all arguments, returns appropriate items without loading them
2745 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2746   LIRItemList* argument_items = new LIRItemList();
2747   if (x->has_receiver()) {
2748     LIRItem* receiver = new LIRItem(x->receiver(), this);
2749     argument_items->append(receiver);
2750   }
2751   for (int i = 0; i < x->number_of_arguments(); i++) {
2752     LIRItem* param = new LIRItem(x->argument_at(i), this);
2753     argument_items->append(param);
2754   }
2755   return argument_items;
2756 }
2757 
2758 
2759 // The invoke with receiver has following phases:
2760 //   a) traverse and load/lock receiver;
2761 //   b) traverse all arguments -> item-array (invoke_visit_argument)
2762 //   c) push receiver on stack
2763 //   d) load each of the items and push on stack
2764 //   e) unlock receiver
2765 //   f) move receiver into receiver-register %o0
2766 //   g) lock result registers and emit call operation
2767 //
2768 // Before issuing a call, we must spill-save all values on stack
2769 // that are in caller-save register. "spill-save" moves those registers
2770 // either in a free callee-save register or spills them if no free
2771 // callee save register is available.
2772 //
2773 // The problem is where to invoke spill-save.
2774 // - if invoked between e) and f), we may lock callee save
2775 //   register in "spill-save" that destroys the receiver register
2776 //   before f) is executed
2777 // - if we rearrange f) to be earlier (by loading %o0) it
2778 //   may destroy a value on the stack that is currently in %o0
2779 //   and is waiting to be spilled
2780 // - if we keep the receiver locked while doing spill-save,
2781 //   we cannot spill it as it is spill-locked
2782 //
2783 void LIRGenerator::do_Invoke(Invoke* x) {
2784   CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
2785 
2786   LIR_OprList* arg_list = cc->args();
2787   LIRItemList* args = invoke_visit_arguments(x);
2788   LIR_Opr receiver = LIR_OprFact::illegalOpr;
2789 
2790   // setup result register
2791   LIR_Opr result_register = LIR_OprFact::illegalOpr;
2792   if (x->type() != voidType) {
2793     result_register = result_register_for(x->type());
2794   }
2795 
2796   CodeEmitInfo* info = state_for(x, x->state());
2797 
2798   invoke_load_arguments(x, args, arg_list);
2799 
2800   if (x->has_receiver()) {
2801     args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
2802     receiver = args->at(0)->result();
2803   }
2804 
2805   // emit invoke code
2806   assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
2807 
2808   // JSR 292
2809   // Preserve the SP over MethodHandle call sites, if needed.
2810   ciMethod* target = x->target();
2811   bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
2812                                   target->is_method_handle_intrinsic() ||
2813                                   target->is_compiled_lambda_form());
2814   if (is_method_handle_invoke) {
2815     info->set_is_method_handle_invoke(true);
2816     if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
2817         __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
2818     }
2819   }
2820 
2821   switch (x->code()) {
2822     case Bytecodes::_invokestatic:
2823       __ call_static(target, result_register,
2824                      SharedRuntime::get_resolve_static_call_stub(),
2825                      arg_list, info);
2826       break;
2827     case Bytecodes::_invokespecial:
2828     case Bytecodes::_invokevirtual:
2829     case Bytecodes::_invokeinterface:
2830       // for loaded and final (method or class) target we still produce an inline cache,
2831       // in order to be able to call mixed mode
2832       if (x->code() == Bytecodes::_invokespecial || x->target_is_final()) {
2833         __ call_opt_virtual(target, receiver, result_register,
2834                             SharedRuntime::get_resolve_opt_virtual_call_stub(),
2835                             arg_list, info);
2836       } else {
2837         __ call_icvirtual(target, receiver, result_register,
2838                           SharedRuntime::get_resolve_virtual_call_stub(),
2839                           arg_list, info);
2840       }
2841       break;
2842     case Bytecodes::_invokedynamic: {
2843       __ call_dynamic(target, receiver, result_register,
2844                       SharedRuntime::get_resolve_static_call_stub(),
2845                       arg_list, info);
2846       break;
2847     }
2848     default:
2849       fatal("unexpected bytecode: %s", Bytecodes::name(x->code()));
2850       break;
2851   }
2852 
2853   // JSR 292
2854   // Restore the SP after MethodHandle call sites, if needed.
2855   if (is_method_handle_invoke
2856       && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
2857     __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
2858   }
2859 
2860   if (result_register->is_valid()) {
2861     LIR_Opr result = rlock_result(x);
2862     __ move(result_register, result);
2863   }
2864 }
2865 
2866 
2867 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
2868   assert(x->number_of_arguments() == 1, "wrong type");
2869   LIRItem value       (x->argument_at(0), this);
2870   LIR_Opr reg = rlock_result(x);
2871   value.load_item();
2872   LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
2873   __ move(tmp, reg);
2874 }
2875 
2876 
2877 
2878 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
2879 void LIRGenerator::do_IfOp(IfOp* x) {
2880 #ifdef ASSERT
2881   {
2882     ValueTag xtag = x->x()->type()->tag();
2883     ValueTag ttag = x->tval()->type()->tag();
2884     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
2885     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
2886     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
2887   }
2888 #endif
2889 
2890   LIRItem left(x->x(), this);
2891   LIRItem right(x->y(), this);
2892   left.load_item();
2893   if (can_inline_as_constant(right.value())) {
2894     right.dont_load_item();
2895   } else {
2896     right.load_item();
2897   }
2898 
2899   LIRItem t_val(x->tval(), this);
2900   LIRItem f_val(x->fval(), this);
2901   t_val.dont_load_item();
2902   f_val.dont_load_item();
2903   LIR_Opr reg = rlock_result(x);
2904 
2905   __ cmp(lir_cond(x->cond()), left.result(), right.result());
2906   __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
2907 }
2908 
2909 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) {
2910   assert(x->number_of_arguments() == 0, "wrong type");
2911   // Enforce computation of _reserved_argument_area_size which is required on some platforms.
2912   BasicTypeList signature;
2913   CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2914   LIR_Opr reg = result_register_for(x->type());
2915   __ call_runtime_leaf(routine, getThreadTemp(),
2916                        reg, new LIR_OprList());
2917   LIR_Opr result = rlock_result(x);
2918   __ move(reg, result);
2919 }
2920 
2921 
2922 
2923 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
2924   switch (x->id()) {
2925   case vmIntrinsics::_intBitsToFloat      :
2926   case vmIntrinsics::_doubleToRawLongBits :
2927   case vmIntrinsics::_longBitsToDouble    :
2928   case vmIntrinsics::_floatToRawIntBits   : {
2929     do_FPIntrinsics(x);
2930     break;
2931   }
2932 
2933 #ifdef JFR_HAVE_INTRINSICS
2934   case vmIntrinsics::_counterTime:
2935     do_RuntimeCall(CAST_FROM_FN_PTR(address, JfrTime::time_function()), x);
2936     break;
2937 #endif
2938 
2939   case vmIntrinsics::_currentTimeMillis:
2940     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x);
2941     break;
2942 
2943   case vmIntrinsics::_nanoTime:
2944     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x);
2945     break;
2946 
2947   case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
2948   case vmIntrinsics::_isInstance:     do_isInstance(x);    break;
2949   case vmIntrinsics::_isPrimitive:    do_isPrimitive(x);   break;
2950   case vmIntrinsics::_getModifiers:   do_getModifiers(x);  break;
2951   case vmIntrinsics::_getClass:       do_getClass(x);      break;
2952   case vmIntrinsics::_getObjectSize:  do_getObjectSize(x); break;
2953   case vmIntrinsics::_currentCarrierThread: do_currentCarrierThread(x); break;
2954   case vmIntrinsics::_currentThread:  do_vthread(x);       break;
2955   case vmIntrinsics::_scopedValueCache: do_scopedValueCache(x); break;
2956 
2957   case vmIntrinsics::_dlog:           // fall through
2958   case vmIntrinsics::_dlog10:         // fall through
2959   case vmIntrinsics::_dabs:           // fall through
2960   case vmIntrinsics::_dsqrt:          // fall through
2961   case vmIntrinsics::_dsqrt_strict:   // fall through
2962   case vmIntrinsics::_dtan:           // fall through
2963   case vmIntrinsics::_dsin :          // fall through
2964   case vmIntrinsics::_dcos :          // fall through
2965   case vmIntrinsics::_dexp :          // fall through
2966   case vmIntrinsics::_dpow :          do_MathIntrinsic(x); break;
2967   case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
2968 
2969   case vmIntrinsics::_fmaD:           do_FmaIntrinsic(x); break;
2970   case vmIntrinsics::_fmaF:           do_FmaIntrinsic(x); break;
2971 
2972   // Use java.lang.Math intrinsics code since it works for these intrinsics too.
2973   case vmIntrinsics::_floatToFloat16: // fall through
2974   case vmIntrinsics::_float16ToFloat: do_MathIntrinsic(x); break;
2975 
2976   case vmIntrinsics::_Preconditions_checkIndex:
2977     do_PreconditionsCheckIndex(x, T_INT);
2978     break;
2979   case vmIntrinsics::_Preconditions_checkLongIndex:
2980     do_PreconditionsCheckIndex(x, T_LONG);
2981     break;
2982 
2983   case vmIntrinsics::_compareAndSetReference:
2984     do_CompareAndSwap(x, objectType);
2985     break;
2986   case vmIntrinsics::_compareAndSetInt:
2987     do_CompareAndSwap(x, intType);
2988     break;
2989   case vmIntrinsics::_compareAndSetLong:
2990     do_CompareAndSwap(x, longType);
2991     break;
2992 
2993   case vmIntrinsics::_loadFence :
2994     __ membar_acquire();
2995     break;
2996   case vmIntrinsics::_storeFence:
2997     __ membar_release();
2998     break;
2999   case vmIntrinsics::_storeStoreFence:
3000     __ membar_storestore();
3001     break;
3002   case vmIntrinsics::_fullFence :
3003     __ membar();
3004     break;
3005   case vmIntrinsics::_onSpinWait:
3006     __ on_spin_wait();
3007     break;
3008   case vmIntrinsics::_Reference_get:
3009     do_Reference_get(x);
3010     break;
3011 
3012   case vmIntrinsics::_updateCRC32:
3013   case vmIntrinsics::_updateBytesCRC32:
3014   case vmIntrinsics::_updateByteBufferCRC32:
3015     do_update_CRC32(x);
3016     break;
3017 
3018   case vmIntrinsics::_updateBytesCRC32C:
3019   case vmIntrinsics::_updateDirectByteBufferCRC32C:
3020     do_update_CRC32C(x);
3021     break;
3022 
3023   case vmIntrinsics::_vectorizedMismatch:
3024     do_vectorizedMismatch(x);
3025     break;
3026 
3027   case vmIntrinsics::_blackhole:
3028     do_blackhole(x);
3029     break;
3030 
3031   default: ShouldNotReachHere(); break;
3032   }
3033 }
3034 
3035 void LIRGenerator::profile_arguments(ProfileCall* x) {
3036   if (compilation()->profile_arguments()) {
3037     int bci = x->bci_of_invoke();
3038     ciMethodData* md = x->method()->method_data_or_null();
3039     assert(md != nullptr, "Sanity");
3040     ciProfileData* data = md->bci_to_data(bci);
3041     if (data != nullptr) {
3042       if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) ||
3043           (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) {
3044         ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset();
3045         int base_offset = md->byte_offset_of_slot(data, extra);
3046         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3047         ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args();
3048 
3049         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3050         int start = 0;
3051         int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments();
3052         if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) {
3053           // first argument is not profiled at call (method handle invoke)
3054           assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected");
3055           start = 1;
3056         }
3057         ciSignature* callee_signature = x->callee()->signature();
3058         // method handle call to virtual method
3059         bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc);
3060         ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : nullptr);
3061 
3062         bool ignored_will_link;
3063         ciSignature* signature_at_call = nullptr;
3064         x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3065         ciSignatureStream signature_at_call_stream(signature_at_call);
3066 
3067         // if called through method handle invoke, some arguments may have been popped
3068         for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) {
3069           int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset());
3070           ciKlass* exact = profile_type(md, base_offset, off,
3071               args->type(i), x->profiled_arg_at(i+start), mdp,
3072               !x->arg_needs_null_check(i+start),
3073               signature_at_call_stream.next_klass(), callee_signature_stream.next_klass());
3074           if (exact != nullptr) {
3075             md->set_argument_type(bci, i, exact);
3076           }
3077         }
3078       } else {
3079 #ifdef ASSERT
3080         Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke());
3081         int n = x->nb_profiled_args();
3082         assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() ||
3083             (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))),
3084             "only at JSR292 bytecodes");
3085 #endif
3086       }
3087     }
3088   }
3089 }
3090 
3091 // profile parameters on entry to an inlined method
3092 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) {
3093   if (compilation()->profile_parameters() && x->inlined()) {
3094     ciMethodData* md = x->callee()->method_data_or_null();
3095     if (md != nullptr) {
3096       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
3097       if (parameters_type_data != nullptr) {
3098         ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
3099         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3100         bool has_receiver = !x->callee()->is_static();
3101         ciSignature* sig = x->callee()->signature();
3102         ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : nullptr);
3103         int i = 0; // to iterate on the Instructions
3104         Value arg = x->recv();
3105         bool not_null = false;
3106         int bci = x->bci_of_invoke();
3107         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3108         // The first parameter is the receiver so that's what we start
3109         // with if it exists. One exception is method handle call to
3110         // virtual method: the receiver is in the args list
3111         if (arg == nullptr || !Bytecodes::has_receiver(bc)) {
3112           i = 1;
3113           arg = x->profiled_arg_at(0);
3114           not_null = !x->arg_needs_null_check(0);
3115         }
3116         int k = 0; // to iterate on the profile data
3117         for (;;) {
3118           intptr_t profiled_k = parameters->type(k);
3119           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
3120                                         in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)),
3121                                         profiled_k, arg, mdp, not_null, sig_stream.next_klass(), nullptr);
3122           // If the profile is known statically set it once for all and do not emit any code
3123           if (exact != nullptr) {
3124             md->set_parameter_type(k, exact);
3125           }
3126           k++;
3127           if (k >= parameters_type_data->number_of_parameters()) {
3128 #ifdef ASSERT
3129             int extra = 0;
3130             if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 &&
3131                 x->nb_profiled_args() >= TypeProfileParmsLimit &&
3132                 x->recv() != nullptr && Bytecodes::has_receiver(bc)) {
3133               extra += 1;
3134             }
3135             assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?");
3136 #endif
3137             break;
3138           }
3139           arg = x->profiled_arg_at(i);
3140           not_null = !x->arg_needs_null_check(i);
3141           i++;
3142         }
3143       }
3144     }
3145   }
3146 }
3147 
3148 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
3149   // Need recv in a temporary register so it interferes with the other temporaries
3150   LIR_Opr recv = LIR_OprFact::illegalOpr;
3151   LIR_Opr mdo = new_register(T_METADATA);
3152   // tmp is used to hold the counters on SPARC
3153   LIR_Opr tmp = new_pointer_register();
3154 
3155   if (x->nb_profiled_args() > 0) {
3156     profile_arguments(x);
3157   }
3158 
3159   // profile parameters on inlined method entry including receiver
3160   if (x->recv() != nullptr || x->nb_profiled_args() > 0) {
3161     profile_parameters_at_call(x);
3162   }
3163 
3164   if (x->recv() != nullptr) {
3165     LIRItem value(x->recv(), this);
3166     value.load_item();
3167     recv = new_register(T_OBJECT);
3168     __ move(value.result(), recv);
3169   }
3170   __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3171 }
3172 
3173 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3174   int bci = x->bci_of_invoke();
3175   ciMethodData* md = x->method()->method_data_or_null();
3176   assert(md != nullptr, "Sanity");
3177   ciProfileData* data = md->bci_to_data(bci);
3178   if (data != nullptr) {
3179     assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3180     ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3181     LIR_Opr mdp = LIR_OprFact::illegalOpr;
3182 
3183     bool ignored_will_link;
3184     ciSignature* signature_at_call = nullptr;
3185     x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3186 
3187     // The offset within the MDO of the entry to update may be too large
3188     // to be used in load/store instructions on some platforms. So have
3189     // profile_type() compute the address of the profile in a register.
3190     ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3191         ret->type(), x->ret(), mdp,
3192         !x->needs_null_check(),
3193         signature_at_call->return_type()->as_klass(),
3194         x->callee()->signature()->return_type()->as_klass());
3195     if (exact != nullptr) {
3196       md->set_return_type(bci, exact);
3197     }
3198   }
3199 }
3200 
3201 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3202   // We can safely ignore accessors here, since c2 will inline them anyway,
3203   // accessors are also always mature.
3204   if (!x->inlinee()->is_accessor()) {
3205     CodeEmitInfo* info = state_for(x, x->state(), true);
3206     // Notify the runtime very infrequently only to take care of counter overflows
3207     int freq_log = Tier23InlineeNotifyFreqLog;
3208     double scale;
3209     if (_method->has_option_value(CompileCommand::CompileThresholdScaling, scale)) {
3210       freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3211     }
3212     increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true);
3213   }
3214 }
3215 
3216 void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) {
3217   if (compilation()->is_profiling()) {
3218 #if defined(X86) && !defined(_LP64)
3219     // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy.
3220     LIR_Opr left_copy = new_register(left->type());
3221     __ move(left, left_copy);
3222     __ cmp(cond, left_copy, right);
3223 #else
3224     __ cmp(cond, left, right);
3225 #endif
3226     LIR_Opr step = new_register(T_INT);
3227     LIR_Opr plus_one = LIR_OprFact::intConst(InvocationCounter::count_increment);
3228     LIR_Opr zero = LIR_OprFact::intConst(0);
3229     __ cmove(cond,
3230         (left_bci < bci) ? plus_one : zero,
3231         (right_bci < bci) ? plus_one : zero,
3232         step, left->type());
3233     increment_backedge_counter(info, step, bci);
3234   }
3235 }
3236 
3237 
3238 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, LIR_Opr step, int bci, bool backedge) {
3239   int freq_log = 0;
3240   int level = compilation()->env()->comp_level();
3241   if (level == CompLevel_limited_profile) {
3242     freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
3243   } else if (level == CompLevel_full_profile) {
3244     freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
3245   } else {
3246     ShouldNotReachHere();
3247   }
3248   // Increment the appropriate invocation/backedge counter and notify the runtime.
3249   double scale;
3250   if (_method->has_option_value(CompileCommand::CompileThresholdScaling, scale)) {
3251     freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3252   }
3253   increment_event_counter_impl(info, info->scope()->method(), step, right_n_bits(freq_log), bci, backedge, true);
3254 }
3255 
3256 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
3257                                                 ciMethod *method, LIR_Opr step, int frequency,
3258                                                 int bci, bool backedge, bool notify) {
3259   assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
3260   int level = _compilation->env()->comp_level();
3261   assert(level > CompLevel_simple, "Shouldn't be here");
3262 
3263   int offset = -1;
3264   LIR_Opr counter_holder;
3265   if (level == CompLevel_limited_profile) {
3266     MethodCounters* counters_adr = method->ensure_method_counters();
3267     if (counters_adr == nullptr) {
3268       bailout("method counters allocation failed");
3269       return;
3270     }
3271     counter_holder = new_pointer_register();
3272     __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder);
3273     offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() :
3274                                  MethodCounters::invocation_counter_offset());
3275   } else if (level == CompLevel_full_profile) {
3276     counter_holder = new_register(T_METADATA);
3277     offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
3278                                  MethodData::invocation_counter_offset());
3279     ciMethodData* md = method->method_data_or_null();
3280     assert(md != nullptr, "Sanity");
3281     __ metadata2reg(md->constant_encoding(), counter_holder);
3282   } else {
3283     ShouldNotReachHere();
3284   }
3285   LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
3286   LIR_Opr result = new_register(T_INT);
3287   __ load(counter, result);
3288   __ add(result, step, result);
3289   __ store(result, counter);
3290   if (notify && (!backedge || UseOnStackReplacement)) {
3291     LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding());
3292     // The bci for info can point to cmp for if's we want the if bci
3293     CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
3294     int freq = frequency << InvocationCounter::count_shift;
3295     if (freq == 0) {
3296       if (!step->is_constant()) {
3297         __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0));
3298         __ branch(lir_cond_notEqual, overflow);
3299       } else {
3300         __ branch(lir_cond_always, overflow);
3301       }
3302     } else {
3303       LIR_Opr mask = load_immediate(freq, T_INT);
3304       if (!step->is_constant()) {
3305         // If step is 0, make sure the overflow check below always fails
3306         __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0));
3307         __ cmove(lir_cond_notEqual, result, LIR_OprFact::intConst(InvocationCounter::count_increment), result, T_INT);
3308       }
3309       __ logical_and(result, mask, result);
3310       __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
3311       __ branch(lir_cond_equal, overflow);
3312     }
3313     __ branch_destination(overflow->continuation());
3314   }
3315 }
3316 
3317 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
3318   LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
3319   BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
3320 
3321   if (x->pass_thread()) {
3322     signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
3323     args->append(getThreadPointer());
3324   }
3325 
3326   for (int i = 0; i < x->number_of_arguments(); i++) {
3327     Value a = x->argument_at(i);
3328     LIRItem* item = new LIRItem(a, this);
3329     item->load_item();
3330     args->append(item->result());
3331     signature->append(as_BasicType(a->type()));
3332   }
3333 
3334   LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), nullptr);
3335   if (x->type() == voidType) {
3336     set_no_result(x);
3337   } else {
3338     __ move(result, rlock_result(x));
3339   }
3340 }
3341 
3342 #ifdef ASSERT
3343 void LIRGenerator::do_Assert(Assert *x) {
3344   ValueTag tag = x->x()->type()->tag();
3345   If::Condition cond = x->cond();
3346 
3347   LIRItem xitem(x->x(), this);
3348   LIRItem yitem(x->y(), this);
3349   LIRItem* xin = &xitem;
3350   LIRItem* yin = &yitem;
3351 
3352   assert(tag == intTag, "Only integer assertions are valid!");
3353 
3354   xin->load_item();
3355   yin->dont_load_item();
3356 
3357   set_no_result(x);
3358 
3359   LIR_Opr left = xin->result();
3360   LIR_Opr right = yin->result();
3361 
3362   __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
3363 }
3364 #endif
3365 
3366 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
3367 
3368 
3369   Instruction *a = x->x();
3370   Instruction *b = x->y();
3371   if (!a || StressRangeCheckElimination) {
3372     assert(!b || StressRangeCheckElimination, "B must also be null");
3373 
3374     CodeEmitInfo *info = state_for(x, x->state());
3375     CodeStub* stub = new PredicateFailedStub(info);
3376 
3377     __ jump(stub);
3378   } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
3379     int a_int = a->type()->as_IntConstant()->value();
3380     int b_int = b->type()->as_IntConstant()->value();
3381 
3382     bool ok = false;
3383 
3384     switch(x->cond()) {
3385       case Instruction::eql: ok = (a_int == b_int); break;
3386       case Instruction::neq: ok = (a_int != b_int); break;
3387       case Instruction::lss: ok = (a_int < b_int); break;
3388       case Instruction::leq: ok = (a_int <= b_int); break;
3389       case Instruction::gtr: ok = (a_int > b_int); break;
3390       case Instruction::geq: ok = (a_int >= b_int); break;
3391       case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
3392       case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
3393       default: ShouldNotReachHere();
3394     }
3395 
3396     if (ok) {
3397 
3398       CodeEmitInfo *info = state_for(x, x->state());
3399       CodeStub* stub = new PredicateFailedStub(info);
3400 
3401       __ jump(stub);
3402     }
3403   } else {
3404 
3405     ValueTag tag = x->x()->type()->tag();
3406     If::Condition cond = x->cond();
3407     LIRItem xitem(x->x(), this);
3408     LIRItem yitem(x->y(), this);
3409     LIRItem* xin = &xitem;
3410     LIRItem* yin = &yitem;
3411 
3412     assert(tag == intTag, "Only integer deoptimizations are valid!");
3413 
3414     xin->load_item();
3415     yin->dont_load_item();
3416     set_no_result(x);
3417 
3418     LIR_Opr left = xin->result();
3419     LIR_Opr right = yin->result();
3420 
3421     CodeEmitInfo *info = state_for(x, x->state());
3422     CodeStub* stub = new PredicateFailedStub(info);
3423 
3424     __ cmp(lir_cond(cond), left, right);
3425     __ branch(lir_cond(cond), stub);
3426   }
3427 }
3428 
3429 void LIRGenerator::do_blackhole(Intrinsic *x) {
3430   assert(!x->has_receiver(), "Should have been checked before: only static methods here");
3431   for (int c = 0; c < x->number_of_arguments(); c++) {
3432     // Load the argument
3433     LIRItem vitem(x->argument_at(c), this);
3434     vitem.load_item();
3435     // ...and leave it unused.
3436   }
3437 }
3438 
3439 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
3440   LIRItemList args(1);
3441   LIRItem value(arg1, this);
3442   args.append(&value);
3443   BasicTypeList signature;
3444   signature.append(as_BasicType(arg1->type()));
3445 
3446   return call_runtime(&signature, &args, entry, result_type, info);
3447 }
3448 
3449 
3450 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
3451   LIRItemList args(2);
3452   LIRItem value1(arg1, this);
3453   LIRItem value2(arg2, this);
3454   args.append(&value1);
3455   args.append(&value2);
3456   BasicTypeList signature;
3457   signature.append(as_BasicType(arg1->type()));
3458   signature.append(as_BasicType(arg2->type()));
3459 
3460   return call_runtime(&signature, &args, entry, result_type, info);
3461 }
3462 
3463 
3464 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
3465                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3466   // get a result register
3467   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3468   LIR_Opr result = LIR_OprFact::illegalOpr;
3469   if (result_type->tag() != voidTag) {
3470     result = new_register(result_type);
3471     phys_reg = result_register_for(result_type);
3472   }
3473 
3474   // move the arguments into the correct location
3475   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3476   assert(cc->length() == args->length(), "argument mismatch");
3477   for (int i = 0; i < args->length(); i++) {
3478     LIR_Opr arg = args->at(i);
3479     LIR_Opr loc = cc->at(i);
3480     if (loc->is_register()) {
3481       __ move(arg, loc);
3482     } else {
3483       LIR_Address* addr = loc->as_address_ptr();
3484 //           if (!can_store_as_constant(arg)) {
3485 //             LIR_Opr tmp = new_register(arg->type());
3486 //             __ move(arg, tmp);
3487 //             arg = tmp;
3488 //           }
3489       __ move(arg, addr);
3490     }
3491   }
3492 
3493   if (info) {
3494     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3495   } else {
3496     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3497   }
3498   if (result->is_valid()) {
3499     __ move(phys_reg, result);
3500   }
3501   return result;
3502 }
3503 
3504 
3505 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
3506                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3507   // get a result register
3508   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3509   LIR_Opr result = LIR_OprFact::illegalOpr;
3510   if (result_type->tag() != voidTag) {
3511     result = new_register(result_type);
3512     phys_reg = result_register_for(result_type);
3513   }
3514 
3515   // move the arguments into the correct location
3516   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3517 
3518   assert(cc->length() == args->length(), "argument mismatch");
3519   for (int i = 0; i < args->length(); i++) {
3520     LIRItem* arg = args->at(i);
3521     LIR_Opr loc = cc->at(i);
3522     if (loc->is_register()) {
3523       arg->load_item_force(loc);
3524     } else {
3525       LIR_Address* addr = loc->as_address_ptr();
3526       arg->load_for_store(addr->type());
3527       __ move(arg->result(), addr);
3528     }
3529   }
3530 
3531   if (info) {
3532     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3533   } else {
3534     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3535   }
3536   if (result->is_valid()) {
3537     __ move(phys_reg, result);
3538   }
3539   return result;
3540 }
3541 
3542 void LIRGenerator::do_MemBar(MemBar* x) {
3543   LIR_Code code = x->code();
3544   switch(code) {
3545   case lir_membar_acquire   : __ membar_acquire(); break;
3546   case lir_membar_release   : __ membar_release(); break;
3547   case lir_membar           : __ membar(); break;
3548   case lir_membar_loadload  : __ membar_loadload(); break;
3549   case lir_membar_storestore: __ membar_storestore(); break;
3550   case lir_membar_loadstore : __ membar_loadstore(); break;
3551   case lir_membar_storeload : __ membar_storeload(); break;
3552   default                   : ShouldNotReachHere(); break;
3553   }
3554 }
3555 
3556 LIR_Opr LIRGenerator::mask_boolean(LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) {
3557   LIR_Opr value_fixed = rlock_byte(T_BYTE);
3558   if (two_operand_lir_form) {
3559     __ move(value, value_fixed);
3560     __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed);
3561   } else {
3562     __ logical_and(value, LIR_OprFact::intConst(1), value_fixed);
3563   }
3564   LIR_Opr klass = new_register(T_METADATA);
3565   load_klass(array, klass, null_check_info);
3566   null_check_info = nullptr;
3567   LIR_Opr layout = new_register(T_INT);
3568   __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
3569   int diffbit = Klass::layout_helper_boolean_diffbit();
3570   __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout);
3571   __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0));
3572   __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE);
3573   value = value_fixed;
3574   return value;
3575 }