< prev index next >

src/hotspot/share/c1/c1_LIRGenerator.cpp

Print this page
*** 29,10 ***
--- 29,12 ---
  #include "c1/c1_Instruction.hpp"
  #include "c1/c1_LIRAssembler.hpp"
  #include "c1/c1_LIRGenerator.hpp"
  #include "c1/c1_ValueStack.hpp"
  #include "ci/ciArrayKlass.hpp"
+ #include "ci/ciFlatArrayKlass.hpp"
+ #include "ci/ciInlineKlass.hpp"
  #include "ci/ciInstance.hpp"
  #include "ci/ciObjArray.hpp"
  #include "ci/ciUtilities.hpp"
  #include "compiler/compilerDefinitions.inline.hpp"
  #include "gc/shared/barrierSet.hpp"

*** 213,10 ***
--- 215,12 ---
  
    _result = opr;
  }
  
  void LIRItem::load_item() {
+   assert(!_gen->in_conditional_code(), "LIRItem cannot be loaded in conditional code");
+ 
    if (result()->is_illegal()) {
      // update the items result
      _result = value()->operand();
    }
    if (!result()->is_register()) {

*** 620,17 ***
      default: ShouldNotReachHere();
    }
  }
  
  
! void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
    if (!GenerateSynchronizationCode) return;
    // for slow path, use debug info for state after successful locking
!   CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
    __ load_stack_address_monitor(monitor_no, lock);
    // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
!   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
  }
  
  
  void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
    if (!GenerateSynchronizationCode) return;
--- 624,18 ---
      default: ShouldNotReachHere();
    }
  }
  
  
! void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no,
+                                  CodeEmitInfo* info_for_exception, CodeEmitInfo* info, CodeStub* throw_ie_stub) {
    if (!GenerateSynchronizationCode) return;
    // for slow path, use debug info for state after successful locking
!   CodeStub* slow_path = new MonitorEnterStub(object, lock, info, throw_ie_stub, scratch);
    __ load_stack_address_monitor(monitor_no, lock);
    // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
!   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception, throw_ie_stub);
  }
  
  
  void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
    if (!GenerateSynchronizationCode) return;

*** 650,14 ***
      tty->print_cr("   ###class not resolved at new bci %d", new_instance->printable_bci());
    }
  }
  #endif
  
! void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
!   klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
!   // If klass is not loaded we do not know if the klass has finalizers:
!   if (UseFastNewInstance && klass->is_loaded()
        && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
  
      Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
  
      CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
--- 655,19 ---
      tty->print_cr("   ###class not resolved at new bci %d", new_instance->printable_bci());
    }
  }
  #endif
  
! void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, bool allow_inline, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
!   if (allow_inline) {
!     assert(!is_unresolved && klass->is_loaded(), "inline type klass should be resolved");
!     __ metadata2reg(klass->constant_encoding(), klass_reg);
+   } else {
+     klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
+   }
+   // If klass is not loaded we do not know if the klass has finalizers or is an unexpected inline klass
+   if (UseFastNewInstance && klass->is_loaded() && (allow_inline || !klass->is_inlinetype())
        && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
  
      Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
  
      CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);

*** 668,11 ***
      const int instance_size = align_object_size(klass->size_helper());
      __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
                         oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
    } else {
      CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
!     __ branch(lir_cond_always, slow_path);
      __ branch_destination(slow_path->continuation());
    }
  }
  
  
--- 678,11 ---
      const int instance_size = align_object_size(klass->size_helper());
      __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
                         oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
    } else {
      CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
!     __ jump(slow_path);
      __ branch_destination(slow_path->continuation());
    }
  }
  
  

*** 768,10 ***
--- 778,20 ---
  
    // if a probable array type has been identified, figure out if any
    // of the required checks for a fast case can be elided.
    int flags = LIR_OpArrayCopy::all_flags;
  
+   if (!src->is_loaded_flat_array() && !dst->is_loaded_flat_array()) {
+     flags &= ~LIR_OpArrayCopy::always_slow_path;
+   }
+   if (!src->maybe_flat_array()) {
+     flags &= ~LIR_OpArrayCopy::src_inlinetype_check;
+   }
+   if (!dst->maybe_flat_array() && !dst->maybe_null_free_array()) {
+     flags &= ~LIR_OpArrayCopy::dst_inlinetype_check;
+   }
+ 
    if (!src_objarray)
      flags &= ~LIR_OpArrayCopy::src_objarray;
    if (!dst_objarray)
      flags &= ~LIR_OpArrayCopy::dst_objarray;
  

*** 1321,24 ***
    // much less risk of confusion for C1 register allocator. The choice of the universe
    // object here is correct as long as it returns the same modifiers we would expect
    // from the primitive class itself. See spec for Class.getModifiers that provides
    // the typed array klasses with similar modifiers as their component types.
  
    Klass* univ_klass_obj = Universe::byteArrayKlassObj();
!   assert(univ_klass_obj->modifier_flags() == (JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC), "Sanity");
    LIR_Opr prim_klass = LIR_OprFact::metadataConst(univ_klass_obj);
  
    LIR_Opr recv_klass = new_register(T_METADATA);
    __ move(new LIR_Address(receiver.result(), java_lang_Class::klass_offset(), T_ADDRESS), recv_klass, info);
  
    // Check if this is a Java mirror of primitive type, and select the appropriate klass.
    LIR_Opr klass = new_register(T_METADATA);
    __ cmp(lir_cond_equal, recv_klass, LIR_OprFact::metadataConst(0));
    __ cmove(lir_cond_equal, prim_klass, recv_klass, klass, T_ADDRESS);
  
-   // Get the answer.
-   __ move(new LIR_Address(klass, in_bytes(Klass::modifier_flags_offset()), T_INT), result);
  }
  
  void LIRGenerator::do_getObjectSize(Intrinsic* x) {
    assert(x->number_of_arguments() == 3, "wrong type");
    LIR_Opr result_reg = rlock_result(x);
--- 1341,39 ---
    // much less risk of confusion for C1 register allocator. The choice of the universe
    // object here is correct as long as it returns the same modifiers we would expect
    // from the primitive class itself. See spec for Class.getModifiers that provides
    // the typed array klasses with similar modifiers as their component types.
  
+   // Valhalla update: the code is now a bit convuloted because arrays and primitive
+   // classes don't have the same modifiers set anymore, but we cannot introduce
+   // branches in LIR generation (JDK-8211231). So, the first part of the code remains
+   // identical, using the byteArrayKlass object to avoid a NPE when accessing the
+   // modifiers. But then the code also prepares the correct modifiers set for
+   // primitive classes, and there's a second conditional move to put the right
+   // value into result.
+ 
+ 
    Klass* univ_klass_obj = Universe::byteArrayKlassObj();
!   assert(univ_klass_obj->modifier_flags() == (JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC
+                                               | (Arguments::enable_preview() ? JVM_ACC_IDENTITY : 0)), "Sanity");
    LIR_Opr prim_klass = LIR_OprFact::metadataConst(univ_klass_obj);
  
    LIR_Opr recv_klass = new_register(T_METADATA);
    __ move(new LIR_Address(receiver.result(), java_lang_Class::klass_offset(), T_ADDRESS), recv_klass, info);
  
    // Check if this is a Java mirror of primitive type, and select the appropriate klass.
    LIR_Opr klass = new_register(T_METADATA);
    __ cmp(lir_cond_equal, recv_klass, LIR_OprFact::metadataConst(0));
    __ cmove(lir_cond_equal, prim_klass, recv_klass, klass, T_ADDRESS);
+   LIR_Opr klass_modifiers = new_register(T_INT);
+   __ move(new LIR_Address(klass, in_bytes(Klass::modifier_flags_offset()), T_INT), klass_modifiers);
+ 
+   LIR_Opr prim_modifiers = load_immediate(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC, T_INT);
+ 
+   __ cmp(lir_cond_equal, recv_klass, LIR_OprFact::metadataConst(0));
+   __ cmove(lir_cond_equal, prim_modifiers, klass_modifiers, result, T_INT);
  
  }
  
  void LIRGenerator::do_getObjectSize(Intrinsic* x) {
    assert(x->number_of_arguments() == 3, "wrong type");
    LIR_Opr result_reg = rlock_result(x);

*** 1567,15 ***
      }
    }
  
    LIR_Opr result = new_register(t);
    __ move((LIR_Opr)c, result);
!   _constants.append(c);
!   _reg_for_constants.append(result);
    return result;
  }
  
  //------------------------field access--------------------------------------
  
  void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
    assert(x->number_of_arguments() == 4, "wrong type");
    LIRItem obj   (x->argument_at(0), this);  // object
--- 1602,23 ---
      }
    }
  
    LIR_Opr result = new_register(t);
    __ move((LIR_Opr)c, result);
!   if (!in_conditional_code()) {
!     _constants.append(c);
+     _reg_for_constants.append(result);
+   }
    return result;
  }
  
+ void LIRGenerator::set_in_conditional_code(bool v) {
+   assert(v != _in_conditional_code, "must change state");
+   _in_conditional_code = v;
+ }
+ 
+ 
  //------------------------field access--------------------------------------
  
  void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
    assert(x->number_of_arguments() == 4, "wrong type");
    LIRItem obj   (x->argument_at(0), this);  // object

*** 1684,18 ***
  
    access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()),
                    value.result(), info != nullptr ? new CodeEmitInfo(info) : nullptr, info);
  }
  
  void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
    assert(x->is_pinned(),"");
    bool needs_range_check = x->compute_needs_range_check();
    bool use_length = x->length() != nullptr;
    bool obj_store = is_reference_type(x->elt_type());
!   bool needs_store_check = obj_store && (x->value()->as_Constant() == nullptr ||
!                                          !get_jobject_constant(x->value())->is_null_object() ||
!                                          x->should_profile());
  
    LIRItem array(x->array(), this);
    LIRItem index(x->index(), this);
    LIRItem value(x->value(), this);
    LIRItem length(this);
--- 1727,193 ---
  
    access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()),
                    value.result(), info != nullptr ? new CodeEmitInfo(info) : nullptr, info);
  }
  
+ // FIXME -- I can't find any other way to pass an address to access_load_at().
+ class TempResolvedAddress: public Instruction {
+  public:
+   TempResolvedAddress(ValueType* type, LIR_Opr addr) : Instruction(type) {
+     set_operand(addr);
+   }
+   virtual void input_values_do(ValueVisitor*) {}
+   virtual void visit(InstructionVisitor* v)   {}
+   virtual const char* name() const  { return "TempResolvedAddress"; }
+ };
+ 
+ LIR_Opr LIRGenerator::get_and_load_element_address(LIRItem& array, LIRItem& index) {
+   ciType* array_type = array.value()->declared_type();
+   ciFlatArrayKlass* flat_array_klass = array_type->as_flat_array_klass();
+   assert(flat_array_klass->is_loaded(), "must be");
+ 
+   int array_header_size = flat_array_klass->array_header_in_bytes();
+   int shift = flat_array_klass->log2_element_size();
+ 
+ #ifndef _LP64
+   LIR_Opr index_op = new_register(T_INT);
+   // FIXME -- on 32-bit, the shift below can overflow, so we need to check that
+   // the top (shift+1) bits of index_op must be zero, or
+   // else throw ArrayIndexOutOfBoundsException
+   if (index.result()->is_constant()) {
+     jint const_index = index.result()->as_jint();
+     __ move(LIR_OprFact::intConst(const_index << shift), index_op);
+   } else {
+     __ shift_left(index_op, shift, index.result());
+   }
+ #else
+   LIR_Opr index_op = new_register(T_LONG);
+   if (index.result()->is_constant()) {
+     jint const_index = index.result()->as_jint();
+     __ move(LIR_OprFact::longConst(const_index << shift), index_op);
+   } else {
+     __ convert(Bytecodes::_i2l, index.result(), index_op);
+     // Need to shift manually, as LIR_Address can scale only up to 3.
+     __ shift_left(index_op, shift, index_op);
+   }
+ #endif
+ 
+   LIR_Opr elm_op = new_pointer_register();
+   LIR_Address* elm_address = generate_address(array.result(), index_op, 0, array_header_size, T_ADDRESS);
+   __ leal(LIR_OprFact::address(elm_address), elm_op);
+   return elm_op;
+ }
+ 
+ void LIRGenerator::access_sub_element(LIRItem& array, LIRItem& index, LIR_Opr& result, ciField* field, int sub_offset) {
+   assert(field != nullptr, "Need a subelement type specified");
+ 
+   // Find the starting address of the source (inside the array)
+   LIR_Opr elm_op = get_and_load_element_address(array, index);
+ 
+   BasicType subelt_type = field->type()->basic_type();
+   TempResolvedAddress* elm_resolved_addr = new TempResolvedAddress(as_ValueType(subelt_type), elm_op);
+   LIRItem elm_item(elm_resolved_addr, this);
+ 
+   DecoratorSet decorators = IN_HEAP;
+   access_load_at(decorators, subelt_type,
+                      elm_item, LIR_OprFact::intConst(sub_offset), result,
+                      nullptr, nullptr);
+ 
+   if (field->is_null_free()) {
+     assert(field->type()->is_loaded(), "Must be");
+     assert(field->type()->is_inlinetype(), "Must be if loaded");
+     assert(field->type()->as_inline_klass()->is_initialized(), "Must be");
+     LabelObj* L_end = new LabelObj();
+     __ cmp(lir_cond_notEqual, result, LIR_OprFact::oopConst(nullptr));
+     __ branch(lir_cond_notEqual, L_end->label());
+     set_in_conditional_code(true);
+     Constant* default_value = new Constant(new InstanceConstant(field->type()->as_inline_klass()->default_instance()));
+     if (default_value->is_pinned()) {
+       __ move(LIR_OprFact::value_type(default_value->type()), result);
+     } else {
+       __ move(load_constant(default_value), result);
+     }
+     __ branch_destination(L_end->label());
+     set_in_conditional_code(false);
+   }
+ }
+ 
+ void LIRGenerator::access_flat_array(bool is_load, LIRItem& array, LIRItem& index, LIRItem& obj_item,
+                                           ciField* field, int sub_offset) {
+   assert(sub_offset == 0 || field != nullptr, "Sanity check");
+ 
+   // Find the starting address of the source (inside the array)
+   LIR_Opr elm_op = get_and_load_element_address(array, index);
+ 
+   ciInlineKlass* elem_klass = nullptr;
+   if (field != nullptr) {
+     elem_klass = field->type()->as_inline_klass();
+   } else {
+     elem_klass = array.value()->declared_type()->as_flat_array_klass()->element_klass()->as_inline_klass();
+   }
+   for (int i = 0; i < elem_klass->nof_nonstatic_fields(); i++) {
+     ciField* inner_field = elem_klass->nonstatic_field_at(i);
+     assert(!inner_field->is_flat(), "flat fields must have been expanded");
+     int obj_offset = inner_field->offset_in_bytes();
+     int elm_offset = obj_offset - elem_klass->first_field_offset() + sub_offset; // object header is not stored in array.
+     BasicType field_type = inner_field->type()->basic_type();
+ 
+     // Types which are smaller than int are still passed in an int register.
+     BasicType reg_type = field_type;
+     switch (reg_type) {
+     case T_BYTE:
+     case T_BOOLEAN:
+     case T_SHORT:
+     case T_CHAR:
+       reg_type = T_INT;
+       break;
+     default:
+       break;
+     }
+ 
+     LIR_Opr temp = new_register(reg_type);
+     TempResolvedAddress* elm_resolved_addr = new TempResolvedAddress(as_ValueType(field_type), elm_op);
+     LIRItem elm_item(elm_resolved_addr, this);
+ 
+     DecoratorSet decorators = IN_HEAP;
+     if (is_load) {
+       access_load_at(decorators, field_type,
+                      elm_item, LIR_OprFact::intConst(elm_offset), temp,
+                      nullptr, nullptr);
+       access_store_at(decorators, field_type,
+                       obj_item, LIR_OprFact::intConst(obj_offset), temp,
+                       nullptr, nullptr);
+     } else {
+       access_load_at(decorators, field_type,
+                      obj_item, LIR_OprFact::intConst(obj_offset), temp,
+                      nullptr, nullptr);
+       access_store_at(decorators, field_type,
+                       elm_item, LIR_OprFact::intConst(elm_offset), temp,
+                       nullptr, nullptr);
+     }
+   }
+ }
+ 
+ void LIRGenerator::check_flat_array(LIR_Opr array, LIR_Opr value, CodeStub* slow_path) {
+   LIR_Opr tmp = new_register(T_METADATA);
+   __ check_flat_array(array, value, tmp, slow_path);
+ }
+ 
+ void LIRGenerator::check_null_free_array(LIRItem& array, LIRItem& value, CodeEmitInfo* info) {
+   LabelObj* L_end = new LabelObj();
+   LIR_Opr tmp = new_register(T_METADATA);
+   __ check_null_free_array(array.result(), tmp);
+   __ branch(lir_cond_equal, L_end->label());
+   __ null_check(value.result(), info);
+   __ branch_destination(L_end->label());
+ }
+ 
+ bool LIRGenerator::needs_flat_array_store_check(StoreIndexed* x) {
+   if (x->elt_type() == T_OBJECT && x->array()->maybe_flat_array()) {
+     ciType* type = x->value()->declared_type();
+     if (type != nullptr && type->is_klass()) {
+       ciKlass* klass = type->as_klass();
+       if (!klass->can_be_inline_klass() || (klass->is_inlinetype() && !klass->as_inline_klass()->flat_in_array())) {
+         // This is known to be a non-flat object. If the array is a flat array,
+         // it will be caught by the code generated by array_store_check().
+         return false;
+       }
+     }
+     // We're not 100% sure, so let's do the flat_array_store_check.
+     return true;
+   }
+   return false;
+ }
+ 
+ bool LIRGenerator::needs_null_free_array_store_check(StoreIndexed* x) {
+   return x->elt_type() == T_OBJECT && x->array()->maybe_null_free_array();
+ }
+ 
  void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
    assert(x->is_pinned(),"");
+   assert(x->elt_type() != T_ARRAY, "never used");
+   bool is_loaded_flat_array = x->array()->is_loaded_flat_array();
    bool needs_range_check = x->compute_needs_range_check();
    bool use_length = x->length() != nullptr;
    bool obj_store = is_reference_type(x->elt_type());
!   bool needs_store_check = obj_store && !(is_loaded_flat_array && x->is_exact_flat_array_store()) &&
!                                         (x->value()->as_Constant() == nullptr ||
!                                          !get_jobject_constant(x->value())->is_null_object());
  
    LIRItem array(x->array(), this);
    LIRItem index(x->index(), this);
    LIRItem value(x->value(), this);
    LIRItem length(this);

*** 1704,13 ***
    index.load_nonconstant();
  
    if (use_length && needs_range_check) {
      length.set_instruction(x->length());
      length.load_item();
- 
    }
!   if (needs_store_check || x->check_boolean()) {
      value.load_item();
    } else {
      value.load_for_store(x->elt_type());
    }
  
--- 1922,14 ---
    index.load_nonconstant();
  
    if (use_length && needs_range_check) {
      length.set_instruction(x->length());
      length.load_item();
    }
! 
+   if (needs_store_check || x->check_boolean()
+       || is_loaded_flat_array || needs_flat_array_store_check(x) || needs_null_free_array_store_check(x)) {
      value.load_item();
    } else {
      value.load_for_store(x->elt_type());
    }
  

*** 1734,22 ***
        // range_check also does the null check
        null_check_info = nullptr;
      }
    }
  
    if (GenerateArrayStoreCheck && needs_store_check) {
      CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
      array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci());
    }
  
!   DecoratorSet decorators = IN_HEAP | IS_ARRAY;
!   if (x->check_boolean()) {
!     decorators |= C1_MASK_BOOLEAN;
!   }
  
!   access_store_at(decorators, x->elt_type(), array, index.result(), value.result(),
!                   nullptr, null_check_info);
  }
  
  void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type,
                                    LIRItem& base, LIR_Opr offset, LIR_Opr result,
                                    CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) {
--- 1953,69 ---
        // range_check also does the null check
        null_check_info = nullptr;
      }
    }
  
+   if (x->should_profile()) {
+     if (x->array()->is_loaded_flat_array()) {
+       // No need to profile a store to a flat array of known type. This can happen if
+       // the type only became known after optimizations (for example, after the PhiSimplifier).
+       x->set_should_profile(false);
+     } else {
+       int bci = x->profiled_bci();
+       ciMethodData* md = x->profiled_method()->method_data();
+       assert(md != nullptr, "Sanity");
+       ciProfileData* data = md->bci_to_data(bci);
+       assert(data != nullptr && data->is_ArrayStoreData(), "incorrect profiling entry");
+       ciArrayStoreData* store_data = (ciArrayStoreData*)data;
+       profile_array_type(x, md, store_data);
+       assert(store_data->is_ArrayStoreData(), "incorrect profiling entry");
+       if (x->array()->maybe_null_free_array()) {
+         profile_null_free_array(array, md, store_data);
+       }
+     }
+   }
+ 
    if (GenerateArrayStoreCheck && needs_store_check) {
      CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
      array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci());
    }
  
!   if (is_loaded_flat_array) {
!     if (!x->value()->is_null_free()) {
!       __ null_check(value.result(), new CodeEmitInfo(range_check_info));
!     }
+     // If array element is an empty inline type, no need to copy anything
+     if (!x->array()->declared_type()->as_flat_array_klass()->element_klass()->as_inline_klass()->is_empty()) {
+       access_flat_array(false, array, index, value);
+     }
+   } else {
+     StoreFlattenedArrayStub* slow_path = nullptr;
+ 
+     if (needs_flat_array_store_check(x)) {
+       // Check if we indeed have a flat array
+       index.load_item();
+       slow_path = new StoreFlattenedArrayStub(array.result(), index.result(), value.result(), state_for(x, x->state_before()));
+       check_flat_array(array.result(), value.result(), slow_path);
+       set_in_conditional_code(true);
+     } else if (needs_null_free_array_store_check(x)) {
+       CodeEmitInfo* info = new CodeEmitInfo(range_check_info);
+       check_null_free_array(array, value, info);
+     }
+ 
+     DecoratorSet decorators = IN_HEAP | IS_ARRAY;
+     if (x->check_boolean()) {
+       decorators |= C1_MASK_BOOLEAN;
+     }
  
!     access_store_at(decorators, x->elt_type(), array, index.result(), value.result(),
!                     nullptr, null_check_info);
+     if (slow_path != nullptr) {
+       __ branch_destination(slow_path->continuation());
+       set_in_conditional_code(false);
+     }
+   }
  }
  
  void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type,
                                    LIRItem& base, LIR_Opr offset, LIR_Opr result,
                                    CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) {

*** 1883,10 ***
--- 2149,44 ---
  
    LIR_Opr result = rlock_result(x, field_type);
    access_load_at(decorators, field_type,
                   object, LIR_OprFact::intConst(x->offset()), result,
                   info ? new CodeEmitInfo(info) : nullptr, info);
+ 
+   ciField* field = x->field();
+   if (field->is_null_free()) {
+     // Load from non-flat inline type field requires
+     // a null check to replace null with the default value.
+     ciInstanceKlass* holder = field->holder();
+     if (field->is_static() && holder->is_loaded()) {
+       ciObject* val = holder->java_mirror()->field_value(field).as_object();
+       if (!val->is_null_object()) {
+         // Static field is initialized, we don't need to perform a null check.
+         return;
+       }
+     }
+     ciInlineKlass* inline_klass = field->type()->as_inline_klass();
+     if (inline_klass->is_initialized()) {
+       LabelObj* L_end = new LabelObj();
+       __ cmp(lir_cond_notEqual, result, LIR_OprFact::oopConst(nullptr));
+       __ branch(lir_cond_notEqual, L_end->label());
+       set_in_conditional_code(true);
+       Constant* default_value = new Constant(new InstanceConstant(inline_klass->default_instance()));
+       if (default_value->is_pinned()) {
+         __ move(LIR_OprFact::value_type(default_value->type()), result);
+       } else {
+         __ move(load_constant(default_value), result);
+       }
+       __ branch_destination(L_end->label());
+       set_in_conditional_code(false);
+     } else {
+       info = state_for(x, x->state_before());
+       __ cmp(lir_cond_equal, result, LIR_OprFact::oopConst(nullptr));
+       __ branch(lir_cond_equal, new DeoptimizeStub(info, Deoptimization::Reason_uninitialized,
+                                                          Deoptimization::Action_make_not_entrant));
+     }
+   }
  }
  
  // int/long jdk.internal.util.Preconditions.checkIndex
  void LIRGenerator::do_PreconditionsCheckIndex(Intrinsic* x, BasicType type) {
    assert(x->number_of_arguments() == 3, "wrong type");

*** 2027,16 ***
        // The range check performs the null check, so clear it out for the load
        null_check_info = nullptr;
      }
    }
  
!   DecoratorSet decorators = IN_HEAP | IS_ARRAY;
  
!   LIR_Opr result = rlock_result(x, x->elt_type());
!   access_load_at(decorators, x->elt_type(),
!                  array, index.result(), result,
!                  nullptr, null_check_info);
  }
  
  
  void LIRGenerator::do_NullCheck(NullCheck* x) {
    if (x->can_trap()) {
--- 2327,88 ---
        // The range check performs the null check, so clear it out for the load
        null_check_info = nullptr;
      }
    }
  
!   ciMethodData* md = nullptr;
+   ciArrayLoadData* load_data = nullptr;
+   if (x->should_profile()) {
+     if (x->array()->is_loaded_flat_array()) {
+       // No need to profile a load from a flat array of known type. This can happen if
+       // the type only became known after optimizations (for example, after the PhiSimplifier).
+       x->set_should_profile(false);
+     } else {
+       int bci = x->profiled_bci();
+       md = x->profiled_method()->method_data();
+       assert(md != nullptr, "Sanity");
+       ciProfileData* data = md->bci_to_data(bci);
+       assert(data != nullptr && data->is_ArrayLoadData(), "incorrect profiling entry");
+       load_data = (ciArrayLoadData*)data;
+       profile_array_type(x, md, load_data);
+     }
+   }
+ 
+   Value element;
+   if (x->vt() != nullptr) {
+     assert(x->array()->is_loaded_flat_array(), "must be");
+     // Find the destination address (of the NewInlineTypeInstance).
+     LIRItem obj_item(x->vt(), this);
+ 
+     access_flat_array(true, array, index, obj_item,
+                       x->delayed() == nullptr ? 0 : x->delayed()->field(),
+                       x->delayed() == nullptr ? 0 : x->delayed()->offset());
+     set_no_result(x);
+   } else if (x->delayed() != nullptr) {
+     assert(x->array()->is_loaded_flat_array(), "must be");
+     LIR_Opr result = rlock_result(x, x->delayed()->field()->type()->basic_type());
+     access_sub_element(array, index, result, x->delayed()->field(), x->delayed()->offset());
+   } else if (x->array() != nullptr && x->array()->is_loaded_flat_array() &&
+              x->array()->declared_type()->as_flat_array_klass()->element_klass()->as_inline_klass()->is_initialized() &&
+              x->array()->declared_type()->as_flat_array_klass()->element_klass()->as_inline_klass()->is_empty()) {
+     // Load the default instance instead of reading the element
+     ciInlineKlass* elem_klass = x->array()->declared_type()->as_flat_array_klass()->element_klass()->as_inline_klass();
+     LIR_Opr result = rlock_result(x, x->elt_type());
+     assert(elem_klass->is_initialized(), "Must be");
+     Constant* default_value = new Constant(new InstanceConstant(elem_klass->default_instance()));
+     if (default_value->is_pinned()) {
+       __ move(LIR_OprFact::value_type(default_value->type()), result);
+     } else {
+       __ move(load_constant(default_value), result);
+     }
+   } else {
+     LIR_Opr result = rlock_result(x, x->elt_type());
+     LoadFlattenedArrayStub* slow_path = nullptr;
+ 
+     if (x->should_profile() && x->array()->maybe_null_free_array()) {
+       profile_null_free_array(array, md, load_data);
+     }
+ 
+     if (x->elt_type() == T_OBJECT && x->array()->maybe_flat_array()) {
+       assert(x->delayed() == nullptr, "Delayed LoadIndexed only apply to loaded_flat_arrays");
+       index.load_item();
+       // if we are loading from a flat array, load it using a runtime call
+       slow_path = new LoadFlattenedArrayStub(array.result(), index.result(), result, state_for(x, x->state_before()));
+       check_flat_array(array.result(), LIR_OprFact::illegalOpr, slow_path);
+       set_in_conditional_code(true);
+     }
+ 
+     DecoratorSet decorators = IN_HEAP | IS_ARRAY;
+     access_load_at(decorators, x->elt_type(),
+                    array, index.result(), result,
+                    nullptr, null_check_info);
  
!     if (slow_path != nullptr) {
!       __ branch_destination(slow_path->continuation());
!       set_in_conditional_code(false);
!     }
+ 
+     element = x;
+   }
+ 
+   if (x->should_profile()) {
+     profile_element_type(element, md, load_data);
+   }
  }
  
  
  void LIRGenerator::do_NullCheck(NullCheck* x) {
    if (x->can_trap()) {

*** 2534,11 ***
    if (!do_null && !do_update) {
      return result;
    }
  
    ciKlass* exact_signature_k = nullptr;
!   if (do_update) {
      // Is the type from the signature exact (the only one possible)?
      exact_signature_k = signature_at_call_k->exact_klass();
      if (exact_signature_k == nullptr) {
        exact_signature_k = comp->cha_exact_type(signature_at_call_k);
      } else {
--- 2906,11 ---
    if (!do_null && !do_update) {
      return result;
    }
  
    ciKlass* exact_signature_k = nullptr;
!   if (do_update && signature_at_call_k != nullptr) {
      // Is the type from the signature exact (the only one possible)?
      exact_signature_k = signature_at_call_k->exact_klass();
      if (exact_signature_k == nullptr) {
        exact_signature_k = comp->cha_exact_type(signature_at_call_k);
      } else {

*** 2619,10 ***
--- 2991,50 ---
        }
      }
    }
  }
  
+ void LIRGenerator::profile_flags(ciMethodData* md, ciProfileData* data, int flag, LIR_Condition condition) {
+   assert(md != nullptr && data != nullptr, "should have been initialized");
+   LIR_Opr mdp = new_register(T_METADATA);
+   __ metadata2reg(md->constant_encoding(), mdp);
+   LIR_Address* addr = new LIR_Address(mdp, md->byte_offset_of_slot(data, DataLayout::flags_offset()), T_BYTE);
+   LIR_Opr flags = new_register(T_INT);
+   __ move(addr, flags);
+   if (condition != lir_cond_always) {
+     LIR_Opr update = new_register(T_INT);
+     __ cmove(condition, LIR_OprFact::intConst(0), LIR_OprFact::intConst(flag), update, T_INT);
+   } else {
+     __ logical_or(flags, LIR_OprFact::intConst(flag), flags);
+   }
+   __ store(flags, addr);
+ }
+ 
+ template <class ArrayData> void LIRGenerator::profile_null_free_array(LIRItem array, ciMethodData* md, ArrayData* load_store) {
+   assert(compilation()->profile_array_accesses(), "array access profiling is disabled");
+   LabelObj* L_end = new LabelObj();
+   LIR_Opr tmp = new_register(T_METADATA);
+   __ check_null_free_array(array.result(), tmp);
+ 
+   profile_flags(md, load_store, ArrayStoreData::null_free_array_byte_constant(), lir_cond_equal);
+ }
+ 
+ template <class ArrayData> void LIRGenerator::profile_array_type(AccessIndexed* x, ciMethodData*& md, ArrayData*& load_store) {
+   assert(compilation()->profile_array_accesses(), "array access profiling is disabled");
+   LIR_Opr mdp = LIR_OprFact::illegalOpr;
+   profile_type(md, md->byte_offset_of_slot(load_store, ArrayData::array_offset()), 0,
+                load_store->array()->type(), x->array(), mdp, true, nullptr, nullptr);
+ }
+ 
+ void LIRGenerator::profile_element_type(Value element, ciMethodData* md, ciArrayLoadData* load_data) {
+   assert(compilation()->profile_array_accesses(), "array access profiling is disabled");
+   assert(md != nullptr && load_data != nullptr, "should have been initialized");
+   LIR_Opr mdp = LIR_OprFact::illegalOpr;
+   profile_type(md, md->byte_offset_of_slot(load_data, ArrayLoadData::element_offset()), 0,
+                load_data->element()->type(), element, mdp, false, nullptr, nullptr);
+ }
+ 
  void LIRGenerator::do_Base(Base* x) {
    __ std_entry(LIR_OprFact::illegalOpr);
    // Emit moves from physical registers / stack slots to virtual registers
    CallingConvention* args = compilation()->frame_map()->incoming_arguments();
    IRScope* irScope = compilation()->hir()->top_scope();

*** 2701,10 ***
--- 3113,18 ---
    if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
      profile_parameters(x);
      CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, false);
      increment_invocation_counter(info);
    }
+   if (method()->has_scalarized_args()) {
+     // Check if deoptimization was triggered (i.e. orig_pc was set) while buffering scalarized inline type arguments
+     // in the entry point (see comments in frame::deoptimize). If so, deoptimize only now that we have the right state.
+     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, 0), nullptr, false);
+     CodeStub* deopt_stub = new DeoptimizeStub(info, Deoptimization::Reason_none, Deoptimization::Action_none);
+     __ append(new LIR_Op0(lir_check_orig_pc));
+     __ branch(lir_cond_notEqual, deopt_stub);
+   }
  
    // all blocks with a successor must end with an unconditional jump
    // to the successor even if they are consecutive
    __ jump(x->default_sux());
  }

*** 2716,27 ***
    __ osr_entry(LIR_Assembler::osrBufferPointer());
    LIR_Opr result = rlock_result(x);
    __ move(LIR_Assembler::osrBufferPointer(), result);
  }
  
  
  void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
    assert(args->length() == arg_list->length(),
           "args=%d, arg_list=%d", args->length(), arg_list->length());
    for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
      LIRItem* param = args->at(i);
      LIR_Opr loc = arg_list->at(i);
!     if (loc->is_register()) {
-       param->load_item_force(loc);
-     } else {
-       LIR_Address* addr = loc->as_address_ptr();
-       param->load_for_store(addr->type());
-       if (addr->type() == T_OBJECT) {
-         __ move_wide(param->result(), addr);
-       } else
-         __ move(param->result(), addr);
-     }
    }
  
    if (x->has_receiver()) {
      LIRItem* receiver = args->at(0);
      LIR_Opr loc = arg_list->at(0);
--- 3136,31 ---
    __ osr_entry(LIR_Assembler::osrBufferPointer());
    LIR_Opr result = rlock_result(x);
    __ move(LIR_Assembler::osrBufferPointer(), result);
  }
  
+ void LIRGenerator::invoke_load_one_argument(LIRItem* param, LIR_Opr loc) {
+   if (loc->is_register()) {
+     param->load_item_force(loc);
+   } else {
+     LIR_Address* addr = loc->as_address_ptr();
+     param->load_for_store(addr->type());
+     if (addr->type() == T_OBJECT) {
+       __ move_wide(param->result(), addr);
+     } else {
+       __ move(param->result(), addr);
+     }
+   }
+ }
  
  void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
    assert(args->length() == arg_list->length(),
           "args=%d, arg_list=%d", args->length(), arg_list->length());
    for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
      LIRItem* param = args->at(i);
      LIR_Opr loc = arg_list->at(i);
!     invoke_load_one_argument(param, loc);
    }
  
    if (x->has_receiver()) {
      LIRItem* receiver = args->at(0);
      LIR_Opr loc = arg_list->at(0);

*** 2898,24 ***
  #endif
  
    LIRItem left(x->x(), this);
    LIRItem right(x->y(), this);
    left.load_item();
!   if (can_inline_as_constant(right.value())) {
      right.dont_load_item();
    } else {
      right.load_item();
    }
  
    LIRItem t_val(x->tval(), this);
    LIRItem f_val(x->fval(), this);
    t_val.dont_load_item();
    f_val.dont_load_item();
-   LIR_Opr reg = rlock_result(x);
  
!   __ cmp(lir_cond(x->cond()), left.result(), right.result());
!   __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
  }
  
  void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) {
    assert(x->number_of_arguments() == 0, "wrong type");
    // Enforce computation of _reserved_argument_area_size which is required on some platforms.
--- 3322,82 ---
  #endif
  
    LIRItem left(x->x(), this);
    LIRItem right(x->y(), this);
    left.load_item();
!   if (can_inline_as_constant(right.value()) && !x->substitutability_check()) {
      right.dont_load_item();
    } else {
+     // substitutability_check() needs to use right as a base register.
      right.load_item();
    }
  
    LIRItem t_val(x->tval(), this);
    LIRItem f_val(x->fval(), this);
    t_val.dont_load_item();
    f_val.dont_load_item();
  
!   if (x->substitutability_check()) {
!     substitutability_check(x, left, right, t_val, f_val);
+   } else {
+     LIR_Opr reg = rlock_result(x);
+     __ cmp(lir_cond(x->cond()), left.result(), right.result());
+     __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
+   }
+ }
+ 
+ void LIRGenerator::substitutability_check(IfOp* x, LIRItem& left, LIRItem& right, LIRItem& t_val, LIRItem& f_val) {
+   assert(x->cond() == If::eql || x->cond() == If::neq, "must be");
+   bool is_acmpeq = (x->cond() == If::eql);
+   LIR_Opr equal_result     = is_acmpeq ? t_val.result() : f_val.result();
+   LIR_Opr not_equal_result = is_acmpeq ? f_val.result() : t_val.result();
+   LIR_Opr result = rlock_result(x);
+   CodeEmitInfo* info = state_for(x, x->state_before());
+ 
+   substitutability_check_common(x->x(), x->y(), left, right, equal_result, not_equal_result, result, info);
+ }
+ 
+ void LIRGenerator::substitutability_check(If* x, LIRItem& left, LIRItem& right) {
+   LIR_Opr equal_result     = LIR_OprFact::intConst(1);
+   LIR_Opr not_equal_result = LIR_OprFact::intConst(0);
+   LIR_Opr result = new_register(T_INT);
+   CodeEmitInfo* info = state_for(x, x->state_before());
+ 
+   substitutability_check_common(x->x(), x->y(), left, right, equal_result, not_equal_result, result, info);
+ 
+   assert(x->cond() == If::eql || x->cond() == If::neq, "must be");
+   __ cmp(lir_cond(x->cond()), result, equal_result);
+ }
+ 
+ void LIRGenerator::substitutability_check_common(Value left_val, Value right_val, LIRItem& left, LIRItem& right,
+                                                  LIR_Opr equal_result, LIR_Opr not_equal_result, LIR_Opr result,
+                                                  CodeEmitInfo* info) {
+   LIR_Opr tmp1 = LIR_OprFact::illegalOpr;
+   LIR_Opr tmp2 = LIR_OprFact::illegalOpr;
+   LIR_Opr left_klass_op = LIR_OprFact::illegalOpr;
+   LIR_Opr right_klass_op = LIR_OprFact::illegalOpr;
+ 
+   ciKlass* left_klass  = left_val ->as_loaded_klass_or_null();
+   ciKlass* right_klass = right_val->as_loaded_klass_or_null();
+ 
+   if ((left_klass == nullptr || right_klass == nullptr) ||// The klass is still unloaded, or came from a Phi node.
+       !left_klass->is_inlinetype() || !right_klass->is_inlinetype()) {
+     init_temps_for_substitutability_check(tmp1, tmp2);
+   }
+ 
+   if (left_klass != nullptr && left_klass->is_inlinetype() && left_klass == right_klass) {
+     // No need to load klass -- the operands are statically known to be the same inline klass.
+   } else {
+     BasicType t_klass = UseCompressedOops ? T_INT : T_METADATA;
+     left_klass_op = new_register(t_klass);
+     right_klass_op = new_register(t_klass);
+   }
+ 
+   CodeStub* slow_path = new SubstitutabilityCheckStub(left.result(), right.result(), info);
+   __ substitutability_check(result, left.result(), right.result(), equal_result, not_equal_result,
+                             tmp1, tmp2,
+                             left_klass, right_klass, left_klass_op, right_klass_op, info, slow_path);
  }
  
  void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) {
    assert(x->number_of_arguments() == 0, "wrong type");
    // Enforce computation of _reserved_argument_area_size which is required on some platforms.

*** 3185,11 ***
    ciMethodData* md = x->method()->method_data_or_null();
    assert(md != nullptr, "Sanity");
    ciProfileData* data = md->bci_to_data(bci);
    if (data != nullptr) {
      assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
!     ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
      LIR_Opr mdp = LIR_OprFact::illegalOpr;
  
      bool ignored_will_link;
      ciSignature* signature_at_call = nullptr;
      x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
--- 3667,11 ---
    ciMethodData* md = x->method()->method_data_or_null();
    assert(md != nullptr, "Sanity");
    ciProfileData* data = md->bci_to_data(bci);
    if (data != nullptr) {
      assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
!     ciSingleTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
      LIR_Opr mdp = LIR_OprFact::illegalOpr;
  
      bool ignored_will_link;
      ciSignature* signature_at_call = nullptr;
      x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);

*** 3206,10 ***
--- 3688,57 ---
        md->set_return_type(bci, exact);
      }
    }
  }
  
+ bool LIRGenerator::profile_inline_klass(ciMethodData* md, ciProfileData* data, Value value, int flag) {
+   ciKlass* klass = value->as_loaded_klass_or_null();
+   if (klass != nullptr) {
+     if (klass->is_inlinetype()) {
+       profile_flags(md, data, flag, lir_cond_always);
+     } else if (klass->can_be_inline_klass()) {
+       return false;
+     }
+   } else {
+     return false;
+   }
+   return true;
+ }
+ 
+ 
+ void LIRGenerator::do_ProfileACmpTypes(ProfileACmpTypes* x) {
+   ciMethod* method = x->method();
+   assert(method != nullptr, "method should be set if branch is profiled");
+   ciMethodData* md = method->method_data_or_null();
+   assert(md != nullptr, "Sanity");
+   ciProfileData* data = md->bci_to_data(x->bci());
+   assert(data != nullptr, "must have profiling data");
+   assert(data->is_ACmpData(), "need BranchData for two-way branches");
+   ciACmpData* acmp = (ciACmpData*)data;
+   LIR_Opr mdp = LIR_OprFact::illegalOpr;
+   profile_type(md, md->byte_offset_of_slot(acmp, ACmpData::left_offset()), 0,
+                acmp->left()->type(), x->left(), mdp, !x->left_maybe_null(), nullptr, nullptr);
+   int flags_offset = md->byte_offset_of_slot(data, DataLayout::flags_offset());
+   if (!profile_inline_klass(md, acmp, x->left(), ACmpData::left_inline_type_byte_constant())) {
+     LIR_Opr mdp = new_register(T_METADATA);
+     __ metadata2reg(md->constant_encoding(), mdp);
+     LIRItem value(x->left(), this);
+     value.load_item();
+     __ profile_inline_type(new LIR_Address(mdp, flags_offset, T_INT), value.result(), ACmpData::left_inline_type_byte_constant(), new_register(T_INT), !x->left_maybe_null());
+   }
+   profile_type(md, md->byte_offset_of_slot(acmp, ACmpData::left_offset()),
+                in_bytes(ACmpData::right_offset()) - in_bytes(ACmpData::left_offset()),
+                acmp->right()->type(), x->right(), mdp, !x->right_maybe_null(), nullptr, nullptr);
+   if (!profile_inline_klass(md, acmp, x->right(), ACmpData::right_inline_type_byte_constant())) {
+     LIR_Opr mdp = new_register(T_METADATA);
+     __ metadata2reg(md->constant_encoding(), mdp);
+     LIRItem value(x->right(), this);
+     value.load_item();
+     __ profile_inline_type(new LIR_Address(mdp, flags_offset, T_INT), value.result(), ACmpData::right_inline_type_byte_constant(), new_register(T_INT), !x->left_maybe_null());
+   }
+ }
+ 
  void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
    // We can safely ignore accessors here, since c2 will inline them anyway,
    // accessors are also always mature.
    if (!x->inlinee()->is_accessor()) {
      CodeEmitInfo* info = state_for(x, x->state(), true);
< prev index next >